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Abstract 

In this thesis, we proposed a systematic approach for query language customization 

which can lead to Custonlized Query Languages (CQL) and different query front 

ends on new generation database systems in the heterogeneous clakabase environ- 

ment. Our approach is based on a. core Object-Oriented data model and query model 

that is derived from the data models of Object Management Group(OMG, 1990), 

Object Database Management Group(0DMG-93) and some other Object-Oriented 

and Extended Relational Database Systems, like 02,  Orion, Postgres, and SQL3. 

Object-Oriented methodology is used in designing and presenting the data model and 

query model, i.e. all the basic components in the data model and query model are 

abstracted into meta-objects and meta-types, for which some basic characteristics 

and operations are defined. Special default ~'constructors" for all the meta-types are 

prc-ded to represent both the default semantics and syntactic appearance of the cor- 

responding components in our default Object Definition Language(0DL) and Object 

Query Language(0QL). Query language specifiers can provide their own "construc- 

tors" for these meta-types to override the default ones in order to tailor the syntactic 

appearance a d / o r  semantics. New components and operations corresponding to some 

new components in the specified query languages can also be defined in a similar way 



as the new types and functions defined in C++. Following this approa,ch, a non- 

p-ocedural specification language is proposed which leads to automatic generat,ion of 

query language specific processor in LEX and YACC. 
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Chapter 1 

Introduction 

1.1 New Generation Database Systems 

Relational Database Systems: which mainly focused on business applications and only 

provided simple data management have been proved inadequate for many advanced 

applications, such as CAD(Computer Aided Design), CASE(Computer Aided Soft- 

ware Engineering), GIS(Geographic Information System), etc. In the past decade, a 

lot of research and development have been conducted and tried to bring the so-called 

new generation database systems to these application areas. 

There are several different approaches based on different data models to address 

the problems of new generation database syst.ems. The most obvious apprcach is 

Eased on the extended relational data model which incorporates complex data types, 

procedures and other new features into the basic relational data model. This leads to 

the extended relational. database systems, for example, Postgres. Another approach is 

actually inspired by the Object-Oriented Programming Languages. The data models, 
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which have complex data types and operations defined on the data types, are called 

object-oriented data models, and the systems based on these models, such as 02 ,  

Orion, Objectstore, etc are called Object-Oriented Database Systems. Most of the 

current new generation database prototypes or commercial systems are based on these 

two kinds of data models; although there are some others based on functional data 

models or semantic data models. 

Despite these different approaches, "There is a surprising degree of consensus on 

the desired capabilities of these next-generation systems" [IT]. As summarized in 

[I?], [4] (Chapter 6)) etc, one of the primary goals of the new generation DBMS 

is to support complex data management. This means that, first the DBMS should 

provide facilities for directly describing complex data structures in a natural way for 

the applications; and secondly the DBMS should also provide an efficient and natural 

way to store and manipulate the complex data. From users' perspective, this means 

that the DBMS should provide an interface, usually in the form of query languages, 

either declarative or procedural, stand-alone or embedded, that can deal with complex 

data. 

1.2 

12.1 

Query Language Issues for New Generation 

Database Systems 

Declarative or Procedural 

Standard non-procedural query languages are one of the main reasons for the suc- 

cess of relational database systems. For the new generation database systems, people 
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begin to agree that declarative data definition languages and data manipulation lan- 

guages are still one of the most desirable features to the users. This is not only 

because declarat.ive languages are easy to learn and use, but also they can provide 

more physical independence. In a lot of typical situations, performance of high-level 

queries can be better than ordinary hand coded low level associative queries. This is 

because the system itself knows more details of its implementation and there are a lot 

of well-defined query optimization algorithms for these cases. This is quite similar to 

the fact that people usually do not have to write programs in assembly languages if 

there is a good compiler for a high-level language. 

1.2.2 Standardization 

For relational database systems, the standard query language is based on the simple 

relational data model, relational algebra or relational calculus, in which there are 

only one structured type(re1ation) and three operations(selection, projection, and 

join), which satisfy the database compvtational completeness [4] (i.e. in some sense, 

all the computational tasks that on the information in the database can be done with 

these operations). We can say that the origin of the relational query language is the 

relational data model theory. 

Unlike RDBMS7s(Relational Database Management Systems), the origin of declar- 

ative query languages is the application needs and the compatibility with SQL. But in 

reality, there are a lot of difficulties in providing a general declarative query language 

for all the new generation database systems. One of the main reasons is that there is 

no single data model that is widely accepted for the new generation DBMS. Because 

of the complexity of the underlying data model, there are also a lot of variants even for 
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the same data model. For all these data models, none of them has a very solid theo- 

retical foundation that is similar to that of the relational data model. As a result, the 

query languages for the new generation database systems are quite different from one 

to another. Right now, no standard query language for the new generation database 

systems are widely accepted like SQL for RDBMS. Instead, different systems provide 

their different query facilities, and some of the object-oriented database systems even 

have not provided any declarative query language at all. 

1.2.3 Customization of Query Language 

Another problem related to the declarative query languages is that for many advanced 

applications, there are a lot of application specific semantics in the data. When users 

do the data entry, maintenance and manipulation, they want to use a query language 

that embeds a lot of these semantics in it, so that it is much easier and convenient for 

them to use. They may even want to use the vocabularies specific to the applications in 

the query languages, not only just the ordinary select-from-where format. These kinds 

of query languages are called Customized Query Languages(CQL). CQLs usually are 

defined and implemented by some application programmers on a certain underlying 

platform. Usually, to provide a clearly defined and efficiently implemented CQL is 

not an easy work for ordinary application programmers. 

Although many end users may prefer CQL for many advanced applications and 

they may not want to use any general query facilities, the need for CQLs should not 

be used as an argument against the need for general declarative query languages. This 

is because many end users and application programmers still need query languages 

to phrase their ad hoc queries. CQL and the general query language are actually in 
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different layers of the database systems. As we can see later, usually a CQL should be 

built based on the basic components of the general query languages instead of starting 

from scratch. 

1.3 Current Research 

There is a lot of research on query languages for the new generation database systems. 

For the extended relational database systems, they mainly focus on the extension of 

relational query languages by incorporating a lot of object-oriented concepts into 

them. For example, Postquel(which is based on relational query language Quel of 

Ingres) in Postgres. For the object-oriented database systems, they usually want to 

adopt SQL-like format for some typical data manipulation patterns because of the 

popularity of SQL. Several systems like 02, ORION, etc, probide stand alone query 

facilities in the format similar to the standard SQL; and some others like Objectstore, 

provided embedded declarative and/or associative query languages. Although, the 

semantics and functionalities of the query languages are quite similar, there are still 

a lot of differences between query languages of different systems. 

The variants of the new generation systems and their query languages create a 

lot of problems for the users. At the current stage, with a lot of network connections 

and different database systems co-existing, users may have to learn different query 

languages for different database systems. When they phrase the queries, they have to 

know what kind of database systems they are using. If they want to use customized 

query languages, then the application programmers may have to implement the lan- 

guage on different platforms, which may need a lot of expertise of different database 

systems. 
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1.3.1 Standard Work 

A lot of research has been done addressing these problems. One of the main efforts is 

the standardization of the new generation database systems based on the researches 

and development cf a lot of different systems in the past decade. Nevertheless, current 

standards are only limited to several different data models, although they do absorb 

some new concepts from other data models. Along the relational and extended re- 

lational database systems, SQL3 is the on-going standard. Within object-oriented 

database systems, there are several different groups working on their standards, such 

as ANSI Object-Oriented Database Task Group (OODBTG, 1990), Object Manage- 

ment Group (OMG, 1990), and more recently Object Database Management Group 

(ODMG, 1993)) etc. Standardization remains a long-term goal. At least in the near 

future, it may only reduce the problems, but will not eliminate it completely. 

1.3.2 Front End Systems 

Another approach is trying to provide some facilities for users and systems to use 

different platforms easily. Front end systems are one of them. Actually, a query facility 

that is provided to the users is only a front end of the underlying database system. 

The same underlying platform can support several different front end query languages. 

Even for relational database systems, because of SQL being developed by different 

vendors having some different flavors and extensions, a lot of front end systems have 

appeared on the market. For example, Sybase, as aD underlying platform, may have 

an Oracle front end provided besides its own front end query languages. The data 

model of a front end query facility may also be different from the data model of the 

underlying database system, although usually they are the same. Some research has 
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been done to build object-oriented front ends on relational database systems [13], and 

there are even some commercial systems like persistenceTM [16] in the market. There 

is also some work trying to build relational front ends on object-oriented database 

1.3.3 Customized Query Languages 

There are a lot application specific query languages, which have been defined and 

implemented on different database systems for some special applications. For example, 

TQuel is a relational query language that can deal with temporal predicates and it 

was developed on the relational database system Ingres (191. Geo++ is a GIs system 

built on the extended relational database system Postgres, and it provides a spatial 

query language based on Postgres [15] [20]. DCQL, developed on the object-oriented 

database system Objectstore, is a CQL that can manipulate 3-D objects in a blocks 

world [Ill. 

In relational database systems, the query languages usually do not support user 

defined functions or predicates. If users want to use some new predicates in the query 

language, like the temporal predicates in TQuel, the application programmers have to 

do a lot of work. Not only do they have to define and implement the new predicates, 

but also the need to redo a lot of query processing work in his application programs, 

even though most of the work, like parsing and optimization, is already done in 

the original query processor. This is because the interface between the relational 

database system and the user (including the application programmer) is quite simple 

and limited. In extended relational and object-oriented database systems, the query 

languages directly support user-defined functions and predicates. It is much easier to 
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add new predicates into the query languages. For example, for the query language 

in Geo++ system, the developers only have to define and implement the new spatial 

predicates, and do not need to worry too much about how to integrate these new 

predicates into the original query language Post quel. 

But if the CQL that the user wants to use has some different components or 

syntactic appearance other than the basic query languages, the developers may still 

have to redo a lot query processing work, like parsing, internal processing, overall 

optimization, etc. For example, in the development of DSQL, the developers had to 

define all the syntactic rules and do all the parsing work for the query, even though 

most of them are quite similar to the ordinary query languages. In current research 

1.4 Our Approach and Thesis Organization 

Addressing the problems discussed above, in this thesis, we propose a systematic 

approach for query language specification and implementation which can help devel- 

opers build different query front ends and Customized Query Languages for different 

applications on new generation database systems in the heterogeneous database en- 

vironment. 

Based on our studies of several popular new generation database systems and 

standards, we abstracted a lot of common components in the abstract level from 

the data models and query languages of these systems. These common components 

actually consist of an abstract common object model and query model. Based on 
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these models, we also provide a default query language and some kind of mechanisms 

for modifications a.nd extensions to the default query langua,ge, both semantically 

and syntactically. The description of the modifications and extensions consists of 

the special feature specifications of the target query languages users want to spec- 

ify. According to these specifications, our system can automatically generate query 

processors for the target query languages. 

For ease of use and understanding of our system, object-oriented methodology is 

used in our design of our abstract object model, default query language and the tools 

for modifications and extensions. This is to say that all the common components in 

the data model and default query language are represented by some kinds of meta- 

objects. The design of these common components embed the basic semantics of the 

object model and query model. Syntax of query languages based on these models 

are represented by the special kind of meta "constructors" of these meta objects. 

Query language specifiers can provide their own "constructors" for the rneta-objects 

to override the default one in order to tailor the syntactic appearance andfor semantics 

of these components. New components and operations corresponding to some new 

components in the target query lanp,uages can also be defined through constructing 

some new meta objects and meta operations in a similar way to the new types and 

functions definition in C++. Since the whole query language specification is based 

on the pre-defined basic components, we can understand the syntax as well as the 

semantics of the target query language. Hence a query processor for the specified 

language can be generated automatically. 

In our approach, language specifiers usually only have to specify their special 

features (comparing to the default one we provided) in their target languages. In this . 

way, they actually can reuse both the specification and implementation of most of 
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the common components in query languages, and their work of building customized 

query languages can be dramatically reduced. 

Another more important advantage of our approach is that in multidatabase envi- 

ronment, our high level specification of a query language provides a high independence 

for the implementation of the query processor for this query language from the un- 

derlying platforms. Actually, language specifiers can concentrate on language design 

itself, do not have to worry about how to implement it on different database systems. 

Because our system can generate the query processor automatically for them. 

In the following chapters, Chapter 2 will give some more general overview of our 

approach. Chapter 3 will concentrate on the common components in the Object 

Description Languages (ODL) and the object-oriented specification of these compo- 

nents. Chapter 4 is the counterpart of Chapter 3 for the Object Query Languages 

(OQL). In these two chapters, we also use a lot of language examples to illustrate the 

functionality and flexibility of our language specification language. Implementation 

algorithms are described in Chapter 5, and some testing examples are also discussed 

in this chapter. Chapter 6 discusses our conclusions, and some further work is also 

suggested. 



Chapter 2 

Design Overview 

In this chapter, we will give a general overview of our approach and explain the basic 

underlying philosophy of our system design. This mainly includes the following points: 

1. Front End Approach: We separate query processors from the underlying 

platform, so that different query front ends can be built on one underlying 

platform. 

2. Abstract Object Model and Query Language: We abstracted a lot of 

basic components from the object models and query languages of different new 

generation database systems, and these abstract common components formed 

an abstract object model and query language. 

3. Object-oriented Design of the Abstract Object Model and Query Lan- 

guage: All the components in the object model and query language are rep- 

resented by meta objects and meta-types, for which n e t a  attributes and meta 

operations are defined. Language specifiers can customize the object model 
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and query language into the query languages they needed by providing their 

own "constructors'' for these meta objects. These "constructors" actually pro- 

vide some kind of mapping of the data models and query languages from the 

specified query language to the abstract ones we provide in our system. 

4. Constructing New Components for CQL: For customized query languages, 

there may be some special components which are not easy to be mapped directly 

onto the components of our abstract query lmguage. Our system also provide 

some mechanisms to the language specifiers to construct these special com- 

ponents based on our abstract components in the abstract object model and 

query language. These special component constructions actually serve as some 

complex mapping from these language specific components to some ordinary 

components in our abstract query languages. 

5. Automatic Generation of Query Processor for t he  Specified Query 

Languages: According to the specification of the query language based on 

our system, our system can automatically generate a YACC/LEX program for 

the specification and further generate a query processor for the specified query 

language. 

In the following subsections, we explain these points one by one. 

2.1 Front End Approach 

Query languages are interfaces of data definition and data manipulation provided 

by database systems. They can be treated as front ends of the underlying database 

platforms. A query language is usually based on a certain data model in which 
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Figure 2.1: Data Model Mapping From Front End to Underlying Platform 

the users will define and manipulate their application data. The data model of the 

front end should be close to that of the application so that the mapping between the 

application data model to the front end data model can be natural and efficient. But 

the data model of the front end need not be the same as the one of the underlying 

platform, as long zs we can have an automatic and efficient way to map the front end 

data model to that of the underlying database system (see figure 2.1). So the same 

underlying database system may support different front ends (figure 2.21, and one 

query language (including some CQL) can be implemented on different underlying 

platforms- (figure 2.3). 

Our purpose of the separation of front ends from underlying platforms is to try to 

provide a maximum insulation between the front end of the database systems that the 

users use and the underlying platforms that may be different in the network. This kind 



Figure 2.2: Different Front Ends on One Underlying Platform 
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of insulation first can be very useful for the end users, because they only need to learn 

one kind of front end query facility and phrase their queries in this query language, 

even though they are actually using different platforms. For example, suppose a user 

is familiar with 0 2  query language, and now he has to use a database system with 

the underlying system of Objectstore (which currently does not provide any stand- 

alone query language). With an 0 2  front end built on Objectstore, the user can use 

Objectstore as if it were 02.  Secondly, it is also good for the application developers: 

when they develop a certain application specific query language (ASQL or CQL), they 

do not have to worry about the underlying platforms. Instead they can concentrate 

on the front end designing itself. Actually, a CQL can also be treated as a kind of 

front end of the underlying platform. A query based on a CQL can be mapped onto 

a query facility (stand-alone or embedded query languages with some help of other 

components in the host language) of the underlying platform directly. We will explain 

more about this later. 

2.2 Abstract Object Model and Query Language 

The problem of whether it is easy to support different query front ends on one under- 

lying platform depends on how different the front end object models/query languages 

are from those of the underlying systems. Although there are a lot of different new 

generation database systems, and different systems have different data models and 

query languages, after our studies of several popular new generation database sys- 

tems and standards, we found a lot of commonalities in most of the systems. The 

reason for this phenomenon is that the main goals and desired capabilities of these 
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systems are quite similar. As summarized in [4], "The new data models generally pro- 

vide similar functionality". Especially in recent yea.rs, all the data models incorporate 

a lot of object-oriented concepts into them to deal with the problems of complex data 

management, and they began to merge into one data model. "The important ob- 

servation to make from this confusion of data models is that many data models are 

slowly converging on a single data model that has a combination of features." So the 

difference between the data models is superficial compared to the small difference of 

the underlying semant,ics, and "The data model is most useful as a way to distinguish 

the genealogy of a system;" [4]. Different query languages based on these data models 

may have different flavors or dialects, but the differences are more in syntactic aspects 

than semantic ones. 

From our studies, we abstracted a lot of common features from the data models and 

query languages of different new generation database systems and standards. These 

common features, which can be divided into two main parts, META-ODL and META- 

OQL (corresponding to  Object Description Languages and Object Query Languages), 

capture the basic semantics of the data models and query languages of different new 

generation database systems. In a sense, all these common components consist of a 

core abstract object model and a kernel query language. But the core abstract object 

model and the kernel query language are at  an abstract level. Because the common 

features are abstract structures which describe not only the basic common semantics, 

but also the special features of different systems. Based on the abstract object model 

and query language, we can describe various object models and query languages by 

providing a specification of the special features of that query language and object 

model. 
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2.3 Object-Oriented Design of the Abstract Ob- 

ject Model and Query Language 

There are a lot of basic common components in the abstract object model and query 

language. Among these components, there are a lot of different constraints and rela- 

tionships. For the ease of use and understanding of the general framework for query 

language specification, we used object-oriented methodology in designing and pre- 

senting the whole model. That is to say, all the components in the model and query 

language are abstracted into some kind of meta-objects and meta-types. All these 

meta-objects and meta-types have their own meta attributes. And we also define 

some special meta-operations on them. 

Different concrete query languages based on the object-oriented data model can 

be specified by customizing some of the meta-objects and meta-types. The syntactic 

appearance of query languages will be presented as a kind of special operations (which 

are called meta-operations) defined on the meta-objects. All these operations have 

default formats derived from the corresponding components in the popular query 

languages, and these default formats actually consist of our default query language 

for the new generation database systems. If any actual query language is only different 

in some features, the language specifiers will only have to specify the differing parts 

by providing their own meta-operations to override the default ones. In this way, the 

language specifiers will actually reuse a lot of work that is common to most of the 

query languages. 

Since we understand the underlying semantics of all the meta-objects and meta- 

types in our abstract data model, the semantics of any query language specification 
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Figure 2.4: Our Approach for Query Processor Development 

that is based on the meta-objects and meta-types will be easily understood by our 

system. So most of the syntactic appearance specification (in the form of overriding 

of some meta operations) will also be some kind of semantic specification. Language 

specifiers will only provide some high-level semantic actions for some special mapping 

of some components of object models and query languages if necessary, and our system 

will be able to generate a query processor according to the specification. In some 

sense, the language specification will also be the implementation of itself. This will 

dramatically reduce the amount of work for the language implementation.The general 

picture of this process is illustrated by the figure 2.4. 

From the figure, we can also see that we can actually generate the query processors 

for the language specification on different platforms. This is because it is not difficult 

to map our abstract object model and query language to the object models and 

query languages of those actual systems. In this thesis, we will not elaborate this in 

detail. Instead, we will use some examples to illustrate how we can map the common 
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components of our model onto those of the Objectstore system, since the mapping 

onto other OODBMS is quite similar to the mapping we described for Objectstore. 

2.4 Constructing New Components for CQL 

As we stated before, a customized query language usually has some special compo- 

nents in the query language. For example in TQuel, they provide temporal predicates; 

in Geo++, they provide spatial predicates; in DSQL they even used different vocab- 

ularies of the commands, i.e. provide some other formats (which are more natural 

for the application) of the data manipulation components, such as move, rotate, etc. 

Some of the special components can be easily fit into the ordinary general query fa- 

cilities provided by the underlying new generation database systems. But some of 

them may not. If this is the case, then the developers of the CQL may have to redo a 

lot of work even for some ordinary components in the query languages, like parsing, 

and more difficult, the internal processing and overall optimization. This is because, 

although this work has been done for the general query facilities, it is not directly 

available to the developers. This is one of the main reasons why currently there is no 

systematic way to specify and implement customized query languages. 

In our system, since we treat a CQL as a front end of the underlying platform, 

we also provide some facilities for CQL specification. Usually, the developers of a 

CQL will only have to  specify the special components that are not easy to fit into 

the general query facilities. This is done through the construction of special com- 

ponents based on our abstract object model. Since the construction of the special 

components is quite similar to the new type or new method definitions in ordinary 

object-oriented programming languages, like C++, it will not be difficult for ordinary 
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developers. And because the constructions of the special components will actually be 

based on the pre-defined basic components, they will define the relationship between 

the special components and the pre-built components in our system. This will reveal 

the relationship of the CQL and the general query facilities, and the system will be 

able to automatically generate a query processor for the CQL. 

2.5 Implementation Consideration: Automatic Gen- 

eration of Query Processor 

Generally, if we want to build a query language on a new generation database system, 

first we have to formally specify t.he language in some format. Usually, an ordinary 

formal language is specified in two parts: syntax and semantics. The syntax is speci- 

fied in the general BNF or its variants' format, and the semantics is described in the 

semantic actions (described in a programming language) hooked to the BNF rules. 

There are some compiler generator tools, like YACC which will help the implemen- 

tation of the language. But it still involves a lot of work, from the parsing to the 

internal processing and optimization. (see figure 2.5) 

In our approach, as discussed above, it seems that we use a rather different way 

to tackle this problem. But actually, there is a close relaationship between these 

two different approaches. From the implementation point of view, we first map the 

specification based on our framework onto the general approach. That is to say, we 

will generate the BNF syntax rules and also semantic actions hooked to these rules 

from the specification given by the language specifiers. More specifically here, we 

generate a YACC program for the specification. Then from the YACC program, we 
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Figure 2.5: General Approach for Query Processor Development 

can further generate a query processor for the specified query language. 

To illustrate the relationship between our framework and the general formal lan- 

guage specification, and also explain some basic concepts that we will use in the 

following chapters, in the next section, we will present an overview of general for- 

mal language specification and how our framework deals with all these aspects of the 

formal specification of query languages for new generation database systems. 

2.6 Language Specificat ion Overview 

The specification of a linear (or one dimensional, not two dimensional like QBE) 

language should include the following aspects, from low level to high level: 
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1. Lexical Elements and Lexical Rules: Which include the specification of 

character set (including some special characters, and some other features, like 

case sensitive or not, etc), tokens, separators and literals; For the tokens, sepa- 

rators and literals, some lexical rules are associated with them, describing how 

the; are made from the characters in the character set. 

2. Non-terminal Syntactic Symbols: Which represents the basic concepts in 

the specified language. In ordinary programming language specifications, this 

includes < Program >, < Function >, < Statement >, etc; and in SQL, < Table 

Definition >, < Column Definition >, < Query Expression > are some typical 

syntactic symbols. 

3. Syntactic Rules: Which describe the appearances of the syntactic symbols, 

i.e. how the higher level concepts are made from the low level concepts in the 

specified language. 

4. Language Semantics: While the above three aspects only describe how the 

language looks like, the language semantics will describe what is the actual 

meaning of the language. Although there are several formal methodologies of 

defining the semantics of formal languages, such as Operational Semantics, De- 

notational Semantics, Axiom Semantics, etc, usually it is not easy to do that. 

In practice, nature languages are used in the language documents and semantic 

actions described in some programming languages are used in some compiler 

generators, like YACC. 

In our framework, we need to  provide the corresponding facilities to the language 

specifiers to describe the above aspects of the special formal languages: query lan- 

guages for s b  ject-oriented database systems. 
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2.6.1 Lexical Elements and Lexical Rules 

Currently we assume our character set is the ordinary ASCII set, including some of 

the non-visible characters, like ' \n ' , ' \t ' , etc. Although, other kind of character 

sets can also be specified easily, we will not consider this in our thesis. 

Tokens and separators are the basic lexical units in query languages. Tokens in- 

clude keywords, regular identifiers, etc; separators include space, newline, comments. 

Tokens and separators are usually associated with some kind of lexical rules. In our 

system, we have some default rules for some default tokens and separators. Language 

specifiers can use the default tokens and separators, change the default lexical rules 

of these default lexical units, or define their own tokens and separators. Tokens and 

separators declarations are the first part of a language specification, and in our system, 

all of these can be done by the token declaration part at  the beginning of a language 

specification. For example, we can declare that 

TOKEN IDENTIFIER (letter)(letter-or-digit)* 

which means that IDENTIFIER is a TOKEN and it consists of a string of letters 

or digits in our character set. The last part of the above declaration is in regular 

expression format and means that the string corresponding to IDENTIFIER must 

start with a letter. If the language specifiers will not give the regular expressions for 

the token here, we assume that he will provide the information of how the token is 

composed in another place. Having been declared, the TOKEN can be used in the 

specification. Generally, these kinds of lexical elements and lexical rules are dealt 

with in a way similar to YACC and LEX. 

Literals include the literals of the built-in types and literals of the constructed 
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types defined by the users. A numeric literal is a literal of built-in types (INTE- 

GER, FLOAT, etc). A string literal is usually also a literal of built-in types(CHAR, 

VARCHAR, etc), which usually consists of a string body enclosed in double or single 

quotes. These kinds of simple literals are also described by lexical rules. For the 

constructed types, we should provide some more complex rules, usually in the format 

of syntax rules, to construct the literals of these types. We will discuss this in the 

following chapters. 

2.6.2 Non-terminal Syntactic Symbols 

Non-terminal syntactic symbols represent the basic concepts in the specified language. 

In query languages conforming to the object models, we should already know most 

of the basic concepts in them, according to our study of object models and query 

languages. Here we use 00 methodology to analyze and represent object models and 

query languages. We can abstract the widely accepted concepts into a set of types 

and objects. These are the meta-types and meta-objects. 

The meta-types and objects are the center of our system. Most of the non-terminal 

syntactic symbols in the query languages that will be specified are objects or compo- 

nents of objects in our system. When we describe any meta-types or objects, we list 

all the components of the types. For each component, we define an attribute name 

and a domain of this attribute. The domains of the attributes in our meta objects 

can be TOKENS, other meta-types or meta constructed types (like list) defined in our 

model. If the domain of an attribute is a TOKEN, then the language specifier can 

redefine the domain as another TOKEN defined before as a sub-type of TOKEN (for 

example IDENTIFIER defined above). The definition of the (meta-)attributes in the 
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meta objects using (meta-)domain actually reveals some aspects of the relationships 

between the basic concepts in the specified languages. We will explain this further 

with some examples. 

2.6.3 Syntactic Rules 

Just like ordinary types and objects, all the meta-types and objects also have (meta- 

)operations defined on them. These operations are in the special format, i.e. the 

parameters of the operations are represented by lists of ''Comma Expression". Con- 

structors of the meta-types are one kind of special operations which define how the 

meta-objects are constructed from their components. And these just represent the 

syntactic rules of how the higher level symbols are made from the lower level symbols. 

In Chapter 3, we have a lot of examples to illustrate how the meta operations and the 

parameters to the meta operations look like. A rather formal description of them will 

be presented in chapter 5. The algorithms of how syntactic rules in BNF format can 

be generated from the operations defined on the meta-objects will also be described 

there. 

2.6.4 Language Semantics 

Most parts of the semantics of the specified languages are actually predefined because 

of the predefined 00 data model. The predefined metz-types, meta objects and 

their components actildly represent some semantics, and wherever they appear in 

the target language specification, the system understands what they stand for and 

corresponding semantic actions will be performed in the generated query processor. 

This is the same for the syntactic rules represented by the meta-operations predefined 
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on the meta types and meta objects. We will explain the corresponding semantics of 

the components of our meta languages (i-e. in some sense, we provide some operational 

semantics for the specified languages) in Chapter 3 and Chapter 4. 

Language specifiers can also provide their own semantic actions in some special 

cases. This is because for some languages, the concepts in their object model may 

not be able to be mapped directly onto the concepts in the object model we provide 

here. Then the language specifiers must provide some more semantic actions for 

some components, specifying the mapping methods from the concepts in the specified 

language to the components of our abstract object model and query language. These 

semantic actions are usually at.tached to the comma expressions or meta operations, 

reference some corresponding meta objects and in the format of C++ statement. We 

will explain this more with some examples in the following chapters. 



Chapter 3 

Abstract Object Model and ODL 

3.1 Object-Oriented Data Model Overview 

The Data model is the basis of any database management system. It is a logical 

framework in which the real-w-orld data will be represented by users, and it also 

defines the framework of how a system will manage the application data. All interfaces 

between a system and users, such as data definition and data manipulation language, 

should conform to this model and are only some kinds of concrete forms of the data 

model. 

There is a lot of research on objectoriented data models in recent years, and 

pmpIe begin to agree on most of the basic concepts, i.e. some "core concepts" of 

the data modds. The apxxm~t .  ozi most of the basic concepts of object-oriented 

data models provided the basis for the work of many commercial products of object- 

oriented database system and standardization efforts of these kinds of systems. From 

our studies of several object-oriented systems such as Objectstore, 02, Orion, some 
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extended relational database syst,ems such as Postgres, and especially some of the 

popular standards in these areas, such as SQL3, OMG, ODhIG-93, we found that 

there are a lot of common components in the data models and query languages at 

an abstract level. These abstract common components formed an abstract object 

model and an abstract query language based on this model. In this chapter, we 

will analysis and define these common components in our object model and object 

definition language. 

For the purposes of this thesis, we d l  not describe a complete object model here. 

But rather we only include some of the basic aspects of building general stand-alone 

query facilities, i .e. basic components in Object Definition Language (without schema 

evolution, version management, et c) and Object Query Language (query statements 

themselses, without transactions management, etc). This chapter will describe ODL 

part. The part for OQL will be left for the next chapter 

Generally, in an object-oriented data model, object is the basic unit of modeling. 

Objects are classified into types, and types are organized into type hierarchy under 

the relationship of super/sub-type, As the basic unit of modeling the application 

world, an object is characterized by a set of states and behaviors. Objects of the same 

type have the same behaviors and the same set of state ranges, and these objects 

are called instances of this type. Along the line of object and type, there are some 

other basic components in an object model. For example, to represent the states of 

ax object, we hasx aftnbubes of the cbject, relationships bet~veen objects; we have 

operations to model the behaviors of objects. Between sub-type and super type, we 

Have inheritance to represent their relationship, etc. All these components have their 

own chaxacteristics. For example, an object has an object identifier, type, and lifetime, 

efsc. It also has a set of operations, such as create, delete, etc. All these represent the 
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basic concepts in an object model. 

In the following sections, we will analyze the basic components abstracted from 

these basic concepts of general object models. Usually, in our abstract model, each 

abstract component is represented by a meta type which corresponds to a compo- 

nent in some concrete object models and query languages. For example, we have an 

abstract meta type OBJECT which corresponds to the basic concept of object in ordi- 

n a y  OODBMS's, and we also have an abstract meta type TYPE which corresponds 

to  the concepts of t y p e  or part of class in different systems. For each of the basic 

abstract components, we will first give a general discussion about this component, 

describe the basic functionalities of this abstraction, and its basic characteristics and 

operations that we provide to query language specifiers. Then we define this compo- 

nent as a meta type in an object-oriented manner using our meta language. Finally, 

when necessary, we use some examples to illustrate how different modifications and 

extensions can be done to this component of our object model and the part of the 

corresponding ODL. 

3.2 OBJECT 

Object is the basic unit of application modeling and also the basic unit of data man- 

agement. Although in most systems, most of the characteristics of an object are not 

directly visible to  end users through the Object Definition language, and most of the 

'The format of a definition In oilr metalanguage is quite similar to the format of a class definition 
and function prototype definition in C++. The only difference is that we use our meta types and 
meta type  constrvciors instead of C++ types and constructors when we define the meta attributes of 
the defined components, and use comma expressions as the parameters when we define all the meta 
operations. Hence, we will not give a complete formal description of our meta language. Instead we 
will just explain the special features of our meta language along with some examples in the following 
description. 
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operations on objects are only part of the Object Query Language, which we will dis- 

cuss in the next chapter, some of the basic semantics of object are important for the 

following discussion of other components in ODL. Hence in this section we introduce 

our meta type OBJECT as the abstraction of the concept of object. The basic at- 

tributes and operations of OBJECT are based on the basic attributes and operations 

of an object in most OODBMS's. 

3.2.1 Basic Attributes 

An object in most systems has the following attributes, and in our abstract object 

model and meta system we also support these basic semantic of objects: 

Object ID (OID): Each object has its own unique object identity, which is 

usually called as an object identifier (OID). The OID of an object remains the 

same even if the states of this object may change and an old OID will not be 

used even if the associated object has been deleted from the system. In some 

systems, the user can use OID function to get the OID of any object and then 

the OID can be used to pin-point the object. 

Usually, OID is not directly visible to end users, and the pattern of an OID 

is also implementation dependent. We will not directly support any special 

semantics of OID in our system. 

0 Type: Right now, in all the systems we have studied, each object has one and 

only one the most specific type(MST, which means that if the object belongs to 

any type, then the MST of this object must be a sub-type of this type). When 

an object is created, usually the type is also specified. In some systems, some 
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kind operations are also provided to the end users to get the MST of any object. 

Lifetime: Most systems assume that the lifetime of an object is orthogonal 

to its type. It is either transient, which means that the object will not exist 

any more after the process that creates the object finishes; or persistent, which 

means that the object will outlive the process and usually will be stored in a 

non-volatile storage. Lifetime of an object is usually indicated when the object 

is created. 

Names: In some systems, user can define names for objects. A name is a kind 

of meaningful identity of the named object so that after named, the object can 

be referred later by this name. An object can have several different names, but 

it can have only one OID. 

A name can be transient, like an ordinary variable name (but the name of 

an object can not be given to another object while a variable name can), or 

persistent which means that we can use the same name to refer an object in 

different processes. Right now most systems only support one single name space 

within a database for the persistent names. This is to say, the same name must 

refer to the same object in the whole database. So in our meta system, we only 

directly support a single persistent name space. 

Syntactically, a name of an object is usually a string with a certain set of lexical 

rules, or we say that i t  is a certain kind of TOKEN in our system. Usually we 

call this kind of TOKENS as IDENTIFIERS which are a kind of sub-type of 

TOKEN. 
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3.2.2 Basic Operations 

In our meta system and abstract object model, we have the following default built-in 

operations for an object, reflecting the basic operations for objects in an ordinary 

00DBhIS: 

create: This operation will create an object according to the specified type and 

lifetime (which are the two main parameters to the object creation operation). 

In our meta system, there is a default built-in create operation which will be 

mapped to the underlying database functions that will do the basic work for 

an object creation, such as OID generation, storage allocation, etc. In many 

systems, different types can have their different instance creation operations, i.e 

L 'c~n~tructor~" .  These different constructors may override the default one and 

also initialize some attributes of the object. But eventually they will call the 

basic object creation operation. Special instance creation operations for some 

types will be discussed later. 

delete: This is the counter operation of create operation. Although we have a 

default built-in delete operation for all the objects, different types may define 

their different delete operations which we call "destructors'. Usually these "de- 

structors" will override the default one, but again they will also call the basic 

object delete operations eventually. Delete operations only need the OID or 

name of the object that will be deleted 

equality: This is the function or operator which is used to test whether two 

parameters refer to the same object, i.e. the OIDs of the two objects are the 

same or not. 
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There are several different equality semantics in different object oriented data 

models. In our thesis, for simplicity, we only consider this kind of OID equality. 

Other kind of equality semantics can also be analyzed in a similar way. 

OID-function: This is the function that returns the OID of an object. In 

some systems, the OID is not visible to  users and there may be no such a kind 

of function provided to end users. 

MST-function: This is the function which returns the most specific type of an 

object. This operation has to retrieve the meta knowledge, i.e. the schema of 

the database. In object-oriented database systems, this kind of meta knowledge 

is very useful to the users. 

3.2.3 Specification and Explanation 

According to the above discussion, a meta type OBJECT can be defined in our meta 

system as follows: 

OBJECT ( 

TYPE Type ; 

LIFETIME Lif eTime ; 

list(1DENTIFIER) Names ; 

f /  default built-in operations on OBJECT. 

create("createm, Lif eTime, Names. ele, "of" , Type); 

delete("deleteW , Names. ele) ; 

OID oid("oidW , "(", Names. ele, ") ") ; 

TYPE.Name MST( "type", " (" , Names. ele, ")'I) ; 



CHAPTER 3. ABSTRACT OBJECT MODEL A N D  ODL 35 
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ENUM LIFETIME( 

KEYWORD Persistent; 

KEYWORD Transient ; 

// default built-in specification of KEYWORD. 

Persistence("persistent") ; 

Transient ("transient") ; 

// defining the default for a meta enumeration type. 

As the first component specified in our meta system, there are a lot of places that 

should be explained. But here we only explain the following basic points about the 

speciscation. More explanations will be presented in our later examples: 

1. The meta type definition consists of a list of meta attribute definitions and 

a list of meta operation definitions which are the abstraction of the common 

attributes and operations of objects in different OODBMS's. Since OID is not 

directly visible to the users, we only specified the other three attributes of the 

meta type OBJECT. 

2. The definition of each meta attribute consists of an attribute name in the right 

side and a meta domain of this attribute in the left side. The definition of a 

meta attribute usually has both semantic and syntactic meanings, which are 

mainly dependent on the meta domain of this meta attribute. There are several 

different kinds of meta domains, including TOKEN, another meta type and 

constructed meta type, etc. We will explain these with some examples later. 
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3. The meta attribute Type represents the (most specific) type of the object, and 

its meta domain is TYPE which represents all the possible type specifications 

(both semantics and syntax) in the specified language collectively and we will 

explain this concept later. 

4. The meta attribute Lif eTime represents the lifetime of the object, and its meta 

domain is a meta enumeration type LIFETIME which is also defined above. The 

meaning of this definition is obvious, it represents what kind of lifetime an object 

can have. More detailed discussion about meta enumeration type definition will 

be presented later. 

5. The meta domain of Names is a meta parameterized type list (IDENTIFIER) 

which means that object can have a list of names, each of which is an IDEN- 

TIFIER. IDENTIFIER as we declared in Chapter 2, represents a kind of token 

with a certain set of lexical rules. Meta type constructor list and several of its 

operators (such as . ele used above) will be explained later, too. 

6. We specified some default built-in operations for the meta type OBJECT. Se- 

mantically, they specify what kind of operations are provided for objects in the 

specified languages, and what kind of parameters are needed for these opera- 

tions. Syntactically, they also represent what these operations look like in the 

specified language. So these specifications actually connect the syntactic appear- 

ances of the operations with the underlying semantics in the specified language. 

As we can see from the above example, the format of the meta operation spec- 

ification is quite similar to an ordinary C++ function signature specification. 

The only difference is that each of the parameter for the operations is a Comma 

Expression as we mentioned in Chapter 2. We have several different kinds 
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s which have different semantic of Comma Expression and syntactic meanings. 

Here we have three kinds of Comma Expressions. In the meta operation create 

(which is the name of the meta operation), "create", "as" are called String 

Comma Expressions which mean that they will appear themselves in the object 

create statement in the specified (here is the default) query language. Type, 

LifeTime are the meta attributes of the OBJECT, (and Names in Names. e l e  is 

also an attribute of OBJECT, . e l e  is an abbreviation of element, representing 

the element in the list), they represent the corresponding semantic and syntactic 

meanings of these meta attributes as we explained above. So we know that, for 

example, in this object creation ~tat~ement,  the last string should conform to 

the lexical rules of Names. e l e  (i.e. IDENTIFIER), and should be saved as the 

name of the created object. 

According to the above specification, we know that there is an object create 

statement in the default query language. The information needed by this state- 

ment is the life time, type and the name of the created object. And also, we 

know that the format of the create statement should look like:' 

create [persistent I transient] cob j -name> of <type> 

where the cobj-name> is an IDENTIFIER, and the format of <type> will be 

described later on. The specification of other meta operations are similar to this 

create statement. 

2 ~ e  just use some simple forms which is similar to BNF rules to illustrate the format of the 
statement. In chapter 5, we will describe how the syntax rules in YACC BNF format can be 
generated from our specification. 
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3.2.4 Examples of Modifications and Extensions 

Similar to ordinary Object-Oriented (00) programming languages, such as C++, 

language specifiers can override the specification of the default built-in operations by 

providing their own specification for these operations. The overriding of a built-in 

operation means that a similar operation does exist in the specified language, but the 

format (hence the syntax and also semantics) of the operation may be different from 

the default one. Here we use a small example to show how some simple modifications 

can be done to customize the default query language. For example, language specifiers 

can provide their own object create operation to override the above default one in the 

following format: 

OBJECT::create(LifeTime, Type, Names.ele); 

where OBJECT : : specifies the scope of the meta operation create is within OBJECT. 

According to this meta operation, in the specified query language, objects are created 

as follows: 

[persistent 1 transient] <type> (obj -name> ; 

which is similar to  the format in the Objectstore and Oz system. 

Some other variations can be done to the above specification, and a lot of more will 

be done through the variations of the specification of the type system for the specified 

language, which will be described later in the corresponding sections. But no matter 

what kind of specification it may be, we know that in the position of Names. ele, the 
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string is served as the name of the created object, in the position of Type, the part 

of specification will be processed as type information of this object, etc. And after 

all, all these information will be passed to the creation operation of an object in the 

underlying database system because we know that this is an object create statement 

from the predefined meta operation name create. So we can see that the specification 

serves as both syntax format and semantics. 

3.3 TYPE 

Although object is the basic unit of modeling in object models, objects are usually 

grouped into types, and type is the basic way of defining the states and behaviors of 

objects. The type system is one of the most important part of any object-oriented 

database system. Usually, there are some pre-defined basic types and type construc- 

tors in an object-oriented database system. And the system also provides some kind 

of mechanisms for new type definition. Schema definition through type definition is 

- one of the central parts of ordinary Object Definition Language. Here we provide 

the meta type TYPE to capture this basic concept, and provide it to  language spec- 

ifiers to specify those features of new type definitions in their query languages. The 

corresponding meta types for describing pre-defined types in the type system will be 

described later in this chapter. 
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3.3.1 General Discussion 

In the object-oriented field, including many object-oriented database systems and 

object-oriented programming languages, sometimes another concept class is used in- 

stead of type. In different systems, the concept class may have different meanings. 

First, a class defines the intent of a type, i.e. it defines the characteristics, such as 

states and behaviors of the objects of this type. This is the basic meaning of a type. 

Secondly, it may also define the extent of the type, i.e. the set of all the instances of 

this type. This is not an essential aspect of a type and maj7 not be defined in the type 

system in some systems. For example in most 00 programming languages, they do 

not define nor maintain the extent of a type. Although in ordinary OODBh/IS's, it is 

important to maintain the extent of a type, we believe t-hat it is better to  separate the 

extent specification from the intent specification of a type. So in our system, a type 

only defines the intent. We will provide another concept, i.e. persistent collection, to 

specify an extent of a type, so we can even define more than one extent of a given 

type. This is quite similar to the idea in SQL3, which can define ADTs (types) and 

more than one TABLE (persistent collections) for a given ADT. And a TABLE of an 

ADT is actually an avtomatic~lly maintained persistent collection of this type. 

In some 00DBMS7s, such as Objectstore, they can define some other attributes 

or constraints on a type, for example keys. But this is because they mix the extent of 

a type with the intent of the type. A key is only meaningful when there is a collection 

of the instance of thzt type maintained. Otherwise the system can not use the key 

to  distinguish or retrieve the objects. So in our type concept, we do not have these 

kinds of attributes or constraints. 
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3.3.2 Basic Attributes 

The foIlowing is an outline of the basic attributes of the meta type TYPE abstracted 

from various systems. They actually represent the basic characteristics of a type 

definition that different object oriented query languages may have. 

Name: Each type has a name which is the identifier of this type. It should he 

unique within a certain name space. Right now, all the systems we have studied 

use a single name space within each database. So in our meta system, we also 

take this assumption. Similar to the names of objects, names of types are also 

a kind of TOKE3 with a certain set of lexical rules which may not be the same 

as those for object names. For esample, we may use TYPE-IDENTIFIER to 

represent this kind of TOKENS. 

Inheritance: Types in an object-oriented system are organized into type hi- 

erarchy under the relationship of sub-type and super-type. A type can specify 

its super-types. This implies that it may inherit some characteristics(i.e. at- 

tributes, relationships and operations) from its super-types. A type may have 

more than one most specific super-types in our system. All these kinds of fea- 

tures about type definition will be described in Inheritance description of this 

type. The details about inheritance description are abstracted into the meta 

type INHERITANCE, which will be discussed later in this chapter. 

Attributes: Usually a type has to  define the states of its instances, and the 

states of an instance include a list of attributes. Attributes in our meta type 

TYPE is used to capture this kind of features of type definition. The detail 

of how t o  define each attribute is abstracted into the meta type ATTRIBUTE, 
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which will be discussed later. 

Relationships: Relationships are also part of the state definition for the in- 

stances of a type. They are used to represent the binary relationships between 

the defined type and another type. Relationship is one of the mechanisms of 

maintaining referential integrity. Usually, a relationship is decomposed into two 

parts for t.he two involved types. Each part is called traversal path in our sys- 

tem (and some other systems, such as ODMG-93 etc). So actually, in a type 

definition, we only define one part of a relationship, i-e. the traversal path in 

this type, instead of the whole relationship. A traversal path can be used in 

navigational retrieval from the instance of one type to the instances of the other 

type. More discussion about that is under RELATIONSHIP component of our 

abstract object model. 

Operation: Object behaviors are represented by a set of operations. An op- 

eration specification usually can be divided into two parts: its signature, which 

specifies the name of the operation, the parameter list and the type of the re- 

turn value; and its implementation. Csually these two parts can be defined 

separately, and even in different (programming or query) languages. More dis- 

cussion about; operations is under OPERATION component of our data model. 

In some systems, the attributes and relationships are collectively called properties 

of a type. Properties together with operations OL a type are called characteristics of 

this type. In our system, we use meta types PROPERTIES and CHARACTERISTICS 

to represent these two concepts respectively: and they will be discussed later in this 

chapter. 
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3.3.3 Basic Operations 

The following operations are some default built-in operations on TYPE. They are 

abstracted from the basic operations or functions on types provided to end users by 

ordinary OODBhWs. Through these operations, language specifiers can specify how 

these operations can be prosided to end users in the query languages they want to 

specify. 

create: Type creation forms a new type with a list of characteristics: i.e a list of 

attributes, relationships and operat.ions (signatures only) of the type. Usually, 

a name is also provided when a user defined type is created. 

e delete: This operation drops the type from the system. Usually, only the type 

name is needed for this operation. 

e supertype: This function returns all the immediate super-types of the type. 

Usuallj~ only the type name is needed for this operation. 

Here, we do not include some advanced functions or operations, such as schema 

evolution operations, etc. But, these advanced functions can be analyzed in a similar 

way as those above. 

3.3.4 Specification and Explanat ion 

Accafding to our previous analysis, the meta type TYPE in our rneta system is defined 
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TOKEN 

INHERITANCE 

Name ; 

Inheritance ; 

list(CHARACTERIST1CS) Characteristics; 

// default TOKEN definition for Name; 

Name(TYPE-IDENTIFIER); 

create("create", "type", Mame, [Inheritance] , "(", 

Characteristics, "3") ; 

delete("deleteU, Name) ; 

LIST(TYPE.Name) supertype("supertype", " ('I, Name, ") ") ; 

// default separator of the list : 

Characteristics. sep = " ; " ; 

There are several points we should explain for the above definition of the meta 

type TYPE: 

1. The meta domain for the meta attribute Name is TOKEN, which means that the 

name of a type should be a token terminator in the specified language. In our 

system, for all the meta attributes whose domains are TOKENS, language speci- 

fiers can override this by providing their own special TOKENs for this attribute. 

For example, we provide TYPEIDENTIFIER as the default special TOKEN 

domain for the attribute Name, and .we have defined TYPE-IDENTIFIER in the 

TOKEN part of the language specification. All these definitions imply that type 

names in the specified language should be formed according to the lexical rules 

of TYPEIDENTIFIER, and the string value of this TOKEN will be saved as 

type names in the schema. 
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2. The meta domain for the attribute Inheritance is a met,a type INHERITANCE 

whose definition will be discussed later. It implies that the informstlm of in- 

heritance of a type definition is decided by the definition of INHERIS'AXC'E. 

3. As we mentioned above, characteristics collectively represent the attributes, re- 

lationships and operations of a type. Similar to the Names attribute in OBJECT, 

the meta domain of the attribute Characteristics is a meta constructed type 

list (CHARACTERISTICS) which represents a list of CHARACTERISTICS. 

Here we explain some more about the meta type constructor list. Semantically 

it only includes the elements in the list. Syntactically, the elements may or may 

not appear together in the specified language. But for specification convenience, 

by default, the elements appear together and they are terminated or separated 

by a string. (We only need either terminator or separator for a list here. A 

separator is used to separate the elements in the list, while terminator is a 

terminator of the element in the list.) Here the default separator is ";" as 

specified in the above specification. (sep is an abbreviation of separator. We 

also have some other notation of meta type constructor list) Language specifiers 

can override all these defaults in the specification which we will explain later. 

3.3.5 Examples of Modifications and Extensions 

In Postgres, the type3 create statement is in the following format, 

"create" <type name> 

"(I8 (characteristic) " , I' <characteristic> . . . ") " 
3 ~ n  Postgres, the concept class is used instead of t ype ,  and a class has more meaning than a t ype ,  

as we discussed above. For illustrative purpose here, we just treat a class as a type. 
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so the corresponding create meta operation and list separator for characteristics def- 

inition can be specified as follows: 

TYPE: : create("createl' , Name, 

"(", Characteristics, ")", [Inheritance]) ; 

The difference between this create statement and the default one (at this level) are: 

first, in this create statement, the inheritance information is described at the end of 

the statement while in our default language, it is described immediately after the 

type name; second, the separator between each characteristic specification is "," here 

while in our default language, it is ";". Difference between these two type create 

statements may also show in other levels: at the level of characteristic specification 

and inheritance specification that will be described later. 

3.4 INHERITANCE 

3.4.1 General Discussion 

As we explained before, INHERITANCE is an abstraction for inheritance specification 

between types. Inheritance is not a "first class" object in ordinary object models. It 

can not be defined independently and does not have any operation on it. Instead, it 

must be associated with type definitions. 
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INHERITANCE describes the relationship between a sub-type and its super-types. 

Multiple inheritance is now widely accepted, hence the sub/super type relationship is 

usually represented by a list of super-types specified in the sub-type. 

Multiple inheritance may bring name conflicts in the case that more than one 

super-types have the same name of characteristics(i.e. attribute, relationship or op- 

eration). Right now, we, as many OODBMS's, suppose this kind of conflicts will be 

resolved statically by users, using renaming to specify from which the characteristics 

should be inherited. 

Renaming can be used not only for the resolution of name conflict. Sometimes, 

because of the application vocabulary, the end user may prefer different names for the 

characteristics of the sub-type and super- type. 

3.4.2 Basic Attributes 

In our system, INHERITANCE has the following components. They are provided to 

the language specifiers to specify the corresponding features in their query languages. 

Super-types: which describes the immediate super types of this type. It is a 

list of type names; 

Rename: which describes new names(of attributes, relationships, and opera- 

tions) should be used for the conflicting names. Usuaily it describes from which 

super type the renamed characteristic should inherit, and actually the new name 

can be the same as the inherited name as long as the semantics is clear. How 

to describe rename clauses is abstracted into the meta type RENAME, which 

is 23~0 described here. 
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3.4.3 Specification and Explanation 

According to the above analysis, INHERITANCE component is defined in our meta 

language as following: 

INHERITANCE ( 

list (TYPE. Name) SuperTypes; 

1 is t (RENAME) Renames ; 

// default "constructor" for INHERITANCE. 

INHERITANCE(" : " , SuperTypes , ["rename", Renames] ) ; 

// default separator or terminator for SuperTypes and Renames. 

SuperTypes-sep = "," ; 

Renames. sep = ";" 

and RENAME is defined as following: 

TYPE. Name SuperTypeName, 

CHARACTERISTIC.Name SuperTypeCharasName; 

CHARACTERISTIC.lame NewCharasName ; 

// default "constructor" for RENBME. 

REHAPIE( f ( [ (Super~ypeName, DOT) I , ~u~erTypeCharasNamel1, 

"as", %ewAttri'~utelu'ame) ; 

There are several points we should explain for the above specification: 
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As we mentioned before, 1NHER.ITANCE is a non-first-class object, and the de- 

scriptions of inheritance in specified languages (i.e. constructing the inheritance 

components) are closely related to the type definition. For all these kinds of 

non-first-class objects, we also have the default built-in operations for them and 

the operation names are the components' names themselves (corresponding to 

constructors). For example, n7e have the above INHERITANCE and RENAh4E 

operation specificat ions. 

When we specify the domain of SuperTypes, we used the Meta Path Expression: 

TYPE. Name in the meta constructed type 1 i s t  (TYPE. Name), which means that 

in the list, every eleme2t should be a type name. This not only specifies that 

the domains of the e1ement.s are TOKENS (or more specific according to our 

default definition, TYPEIDENTIFIER) since the domain of TYPE. Name is TO- 

KEN(or TYPE-IDENTIFIER), but also put some kind of semantic constraints 

on the meta domain, i.e. these TOKENS must be t+ype names, not just any 

string that conforms to the lexical rules of TOKEN(or TYPE-IDENTIFIER). 

According to this specification, we can generate some constraints checking se- 

mantic actions for this meta domain. The same idea for the domain definition 

of SuperTgpeAttrName in RENAME definition. 

As we mentioned above, CHARACTERISTIC collectively represents attributes, 

relationships and operations of a type. It is actually a meta super type of the 

meta types ATTRIBUTE, TRAVERSAL-PATH(representing relationship) and 

OPERATION. Name is an attribute of CHARACTERISTIC, that is why we 

cabn use CHARACTERISTIC. Name as a Meta Path Expression in defining the meta 

domain of SuperTypeCharashlame and NewCharasName. 
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4. DOT in the RENAME constructor definition is another meta object in our system. 

It represents the connector in the path expression in the specified language. 

Usually, it is a dot("."). But some systems may want to use other form. The 

point of this definition here is to keep consistency. All the path expressions in 

the language should conform to the same format. DOT will be defined later in 

our system. 

3.4.4 Examples of Modifications and Extensions 

In our above examples for type definition, we did not explain what the inheritance 

looks like. Now, according to our default specification, we can see that the <inheritance> 

should be in the following format: 

" :" <type name list> ["rename" (rename clause list>] 

and the <type name list> looks like: 

<rename clause l i s t> looks like: 

[<supertype name> " . "1 Cold charas name> "as" (new charas name> 

[" . I t  , [<superty?e name> " . "1 <old charas name> "as" <new charas name> . . .I 

where <old charas name> means the old characteristics name of one of the super 

type, and <new charas name> represents the new name that will be used in the sub- 

type- 

In some systems, the inheritance is specified in some other ways, for 

02, we cabn specify the inheritance as follows: 

example, in 
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INHERITANCE::INHERITANCE("inherits", SuperTypes, ["rename", Renames]); 

which only differs in a very minor way, so the <inheritance> will look like as follows: 

: "inherits" <type name list> [<rename clause list>] 

And for SQL3, we can have the following specification: 

INHERITANCE::INHERITANCE( "UNDER", 

[ "(" "WITH" , ( Renames. ele 

// attached actions to Renames.ele. 

This specification is more complicated than the above specifications. Basically in 

SQL3, the specification of inheritance looks like: 

UNDER <type name> [" (" WITH <old charas name> AS <new charas name> . . . ") " 1 

[ " , <type name> ["(" WITH <old charas name> AS <new cbaras name> ") " 1 1 

In our above specification, we use SuperTypes . ele to represent an element in the 

SuperTypes which is a meta list of type name. So SuperTypes . ele represents a type 

name that will be in the super-type name list of this type. The same idea applies to 
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We also used a structure, List Comma Expression to represent the repeat struc- 

tures in the specified language. For a List Comma Expression, we have two parts: 

the first one is the element part which can be any kind of Comma Expression in our 

system; and the second part specifies the separator/terminator for the list element, 

which in the form of swstring" or eUstring". So the string after s or t represents 

the separator or terminator respectively. In our above example, Renames. ele is the 

element part of the List Comma Expression (at this moment please ignore the part 

of attached actions), and sf' ; I' means that the separator for the element in the list is 

I 1  . I I  
# - 

Another List Comma Expression in our above specification is more complex. The 

element part is an Aggregational Comma Expression which consists of a pair of ( ) and 

a sequence of Comma Expressions. Here the sequence of the Comma Expressions in 

this Aggregational Comma Expression are SuperTypes . ele and an Optional Comma 

Expression (which again is an Aggregational Comma Expression). The separator for 

the element in this List Comma Expression is " , " as specified above. 

In our above specifications, we used a lot of meta type constructor list. The 

actual meaning of a meta list attribute is equivalent to a List Comma Expression in 

the sense that whenever the meta attribute (for example Characteristic in TYPE) 

appears in an meta operation (for example in TYPE: : create), it can be expressed in a 

List Comma Expression consists of a pair of ( ) and two parts in ( 3: the first is the 

attribute name followed with . ele (for examp1e:Charact erist ic . ele), the second 

part is either a s or a t  followed by a string of separator or terminator of the list. 

The semantic action part for the Comma Expression Renames. ele is straight for- 

ward. Because the rename clause is immediately after the type (represented by the 
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CHARACTERISTIC 

PROPERTY OPERATION 

ATTRIBUTE TRAVERSAL-PATH 

Figure 3.1: Characteristics subtree of the meta types 

type name) of which the old name will be renamed, and in the rename clause the type 

name information is not specified anymore (The RENAME : :RENAME is also redefined as 

in the above specification), we should record the type name in the SuperTypeName 

attribute of the rename structure. There are several other kinds of semantic action 

formats in our system which can be attached to a Comma Expression or a meta 

operation. We will explain these later with some examples. 

3.5 CHARACTERISTIC and PROPERTY 

As we mentioned above, attributes and relationships are collectively called properties, 

and together with operations, they are called characteristics of a type. To represent 

these c0ncept.s and the relationship among them, in our meta system, we have a 

meta type CHARACTERISTIC which has two sub meta types: PROPERTY and 

OPERATION. Under PROPERTY, we again have two sub meta types: ATTRIBUTE 

and TRAVERSALPATH (representing relationship). All these are illustrated by 

fig. 3.1 
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3.5.1 Basic Characteristics 

The basic attributes of Characteristics are the the common attributes of attributes, 

traversal-paths and operations. They are name and encapsulation tag. 

Name: Name is the identifier of the characteristics. Characteristics names are 

not in the name space of the whole database. Instead, they are only unique 

within the type definition itself. We use the ordinary name scope semantics 

here. Syntactically, a charact.eristics name is also a string with a certain set 

lexical rules, which is usually described by the TOKEN of IDENTIFIER. 

Encapsulation Tag: Encapsulation and information hiding is another impor- 

tant concept in object-oriented paradigm. The basic idea is the separation of the 

interface from the implementation of the object. In ODMG-93, they separate 

type interface from its implementation. But they do not provide any concrete 

mechanism to do that, and to our knowledge there is no system available now 

that directly supports these concepts exactly. In our system, like many other 

systems, such as 02, Objectstore, SQL3, etc, we use the three level protection 

mechanisa to do that. For each type, we have a public interface which is accessi- 

ble by all the objects, a protected interface which is only accessible by the objects 

of sub-types, and a private characteristics which is only accessible by the objects 

of this type itself. Public interface definition is corresponding to the interface 

definition in ODMG-93, and private characteristics defines the implementation 

of the interface. Although ODMG-93 claim that they can provide more than 

one implementations for the same interface without abusing sub-types, we think 

there are some problems if a type has some characteristics corresponding to the 

protected interface- This is because the same object(type) may have different 
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interfaces to different objects. Generally, we have objects of the type itself, ob- 

jects of its sub-types, objects of friend types, and objects of others types. The 

interface may vary a lot between them. So the three level protected mechanism 

is widely accepted in most of the OODBMS's. 

In our meta system, we use an encapsulation tag which is abstracted into the 

meta type EXCAPSULrlTIOX-TAG to represent this encapsulation mechanism. 

The tag can be any of the three lesels, and the default one can be private, or 

public. 

3.5.2 Specification and Explanation 

According to the above discussion, ive have the following definitions in our meta 

system: 

CHARACTERISTIC ( 

IDENTIFIER Name ; 

ENCAPSULATION-TAG AccessTag; 

ENZFM ENCAPSULATION-TAG ( 

KEYWORD Private ; 

KEYWORD Protected ; 

KEYWORD Public; 

// default format of the keywords 

private ("privatett) ; 
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// special meta operation of defining the  default(no t ag ) .  

Default (Private) ; 

PROPERTY : CHARACTERISTIC { 3 

There are several points we should explain about the above specification 

1. For CHARACTERISTIC, we do not have any constructor, because its different 

sub-types may have their different constructors. But when we use CHARAC- 

TERISTIC. then it means that it can be any of its sub-types. For example, 

we used l i s t  (CHARACTERISTIC) in the meta type definition, which means that 

semantically and syntactically7 the element in the list can be ATTRIBUTE, 

TRAVERS-XLPATH or OPERXTION. When we use CHARACTERISTIC . Name, 

then the name of ATTRIBUTE, TRAVERSAL-PATH or OPERATION can be 

fit in. 

PROPERTY : CHARACTERISTIC means that PROPERTY is a sub meta type of 

CHARACTERISTIC. Here in PROPERTY, we do not haxe any more charac- 

teristics which should be defined. So its definition is empty. 

2. As we discussed above, the access of any characteristic is controlled in the form of 

ENCAPSfitLa4T10%-TAG, which is a meta enumerate type, as the LIFETIME 

we discussed above. Here we explain more about the meta enumerate type. 

Each attribute in ihe meta enumerate type is an element of the enumer;ction. 

In our above definition, the meta enumerate type ENCAPSULATION-TAG has 

three elements, and all of them are defined as KEYWORD. KEYWORD is 

again a sub type of TOKEN, which need to be specified by a special string used 
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as  a keyword in the specified language. In our above specification, "private", 

upr~tected", and "public" are these special strings. 

For the meta enumerate type, we also define a special mete operation default, 

which means that if none of the elements appears in the position, it is equivalent 

to the default element. 

3.6 ATTRIBUTE 

3.6.1 Basic Attributes 

Attribute is not a "first class" in ordinary object models either. They must be defined 

for a type definition and exist with an object of this type. ATTRIBUTE is the 

abstracted structure for attribute definition. Since ATTRIBUTE is a sub-type of 

CHARACTERISTIC, it inherits all the characteristics of CHARACTERISTIC. In our 

following discussion, we will only discuss those special characteristics of ATTRIBUTE. 

Usually, an attribute definition indudes the following aspects. So our ATTRIBUTE 

also includes the following components. 

Name: (the same as that of CHAR.~CTERISTIC)* 

Domain: Domain components of an attribute specifies the type and value range 

of the attributes. It is usually a type name either pre-defined in the system or 

predefined by users. It can also be a type construction. 

c Domain Constraints: which describe some constraints on the attribute. There 

are two main kinds of domain constraint specifications. The simpler one is using 

some constraint, fags, aad different types may have different constraint tags. For 
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example, for the type of CHAR, it may have the constraints of "NOT NULL". 

Another one is using some constraint functions. For ex&nple, in ODMG-93, they 

can define birthdate DATE CHECK(birthdate < > DATE 'l992-Ol-Ol'), which 

means that birthdate is of type DATE and with the constraint function CHECK. 

Right now, for simplicity, we only consider some constraint tags. Constraint 

functions can be analyzed in a similar way. 

e Default-value: Default-value gives the attribute the initial value when the 

instance of this type is created. Default-value should be literals of the type of 

this attribute. Different- types may have different literal construction formats, 

we will discuss t.hese in the corresponding pre-defined types.4 

3.6.2 Basic Operat ions 

For attributes, we usually have two basic operations: 

r get-value(): which references the value. Usually we use the rvalue (right side 

value) of the attribute instead of this operation to retrieve the value, but we 

can also define this method. 

set-value(): Similar to get-value(), deferences the value. Usually we use the 

lvalue (left side value) to  represent this method. 

In most systems, these two operations are represented by the 'Ldot expression" 

uniformly. According to  the context, the system can decide whether the "dot expres- 

sion" is rvalzle or l~alzle of this attribute. "Dot expression" will be explained later in 

4Right now, most of the systems assume one format of literal constructions for the user defined 
types. Our meta system currently also takes this assumption, although it is not very difficult to let 
users specify their special literal constructions for the types defined by them. 
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Chapter 4. 

3.6.3 Specification and Explanation 

According to the above discussion, we have the following definition in our meta system: 

ATTRIBUTE : PROPERTY ( 

TYPE Type ; 

list(D0MAIN-CONSTRAINT) ConstraintTags; 

LITERAL Default -value ; 

ATTRIBUTE(Type, Name, ConstraintTags, Def ault-value ) ; 

// default build-in operat ions for attribute 

LITERAL get-value (Name) ( "get -valuen, " (" , Name, ") " ) ; 

void set-value(Name, LITERAL) ( "set-value", "(", Name, LITERAL, " ) "  ) ;  

ConstraintTags.sep="," 

3 

The following points should be explained for the above specification: 

1. ConstraintTags is defined as a list of DOMAIN-CONSTRAINT, because for 

some types, there may be several constraints can be used together. UOMAIN- 

CONSTRAINT is a concept representing all possible domain constrain tags for 

different types. So it again depends on the language specification given by the 

language designers for the specified language. Our system will automatically 

collect all the domain constraint tags for the language specifiers. And at the 

same time, our system can check automatically whether the constraint tags are 

consistent or not with the type of the domain. 
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Default-value is defined as a LITERAL. The situation here is quite similar 

to the above situation for DOMAIN-CONSTRAINT. Since LITERAL is a con- 

cept representing all possible literal constructions in the specified language. The 

format of a literal depends on its type and also depends on the language specifi- 

cation. Our system will automatically collect all possible literal constructions in 

the specified language, and consistency (with the type) check can also be done 

automatically by our system. 

The default built-in operation get-value() returns the value of this attribute in the 

spzcified language, and set-value() uses the value in the parameter to set the value of 

the attribute. The format of t.he function in the default language is specified in the 

the default specification for these two operakions. 

3.7 RELATIONSHIP 

A relationship, like an attributes, is one of the characteristics of a type. It is defined 

between two types of objects, and can be used to traverse from the object of one type 

to the objects of the other, or vice visa, by the traversal path of the relationship. It 

maintains the referential integrity because if an object in the relationship is deleted, 

then it is automatically removed from the relationship so that there will not be any 

dangling object in this kind of reference. 

A relationship does not have a name itself, but the traversal paths of the relation- 

ship have names. 
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3.7.1 Basic Attributes 

Meta type TRAVERSAL-PATH in our system is the abstract structure for t,rax*ersal- 

path definition in the specified query language, and it is consisted of the following 

components: (Again, we omit the characteristics that are inherited from CHARAC- 

TERISTIC) 

Name: (inherited from CHARACTERISTIC.) 

Type: The traversal path consists of the objects of the other type in the rela- 

tionship. So the type of fraaersal path can be the other type in the relationship, 

or some kind of collection of the objects of the other type in the relationship. 

Peer Type: To pair two direction traversal paths of the relationship, we have 

to  point out the inverse traversal path in the paired type. And actually, without 

the inverse path specificat.ion, i t  will only be an ordinary attribute, since the 

system has no way to maintain the reference integrity of the other side of the 

relationship. Peer type specifies the type in which the inverse traversal path is 

defined. 

Xnverse Path Name: This specifies the traversal path name in the paired type 

that is the other part of the relationship. 

Although there are a lot of different operations on relationship internally in most 

OODBMS, all the operations are not visible to  end users. And traversal-paths are used 

just as osdinaxy attributes. So get-value, set-value and "dot ezpression" can actually 

be specified for the PR0PEEM"Y so that both ATTRf BUTE and TRAVERS AL-PATH 

can inherit these opesations. 
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3.7.2 Specificat ion and Explanat ion 

According to the above discussion, we have the following definition in our meta system: 

TRAVERSAL-PATH : PROPERTY i 

TYPE Type ; 

TYPE. Name PeerType ; 

TRAVERSAL-PATH-Hame PeerName ; 

// constructor of a traversal-path . 

TRAVERSAL-PATH(Type, Name, "inverse", PeerType, SCOPE-SIGN, PeerName ); 

3 

Several points about the above specification is explained as follows: 

1- Similar to the specification of ATTRIBUTE, the meta type of Type is TYPE. 

But the meta type of PeerName is only TYPE-Name. This is because it is only a 

name of a user (already) defined t ~ p e  and can not be any new type construction. 

2. PeerName is defined as TRAVmAL-PATH .Name because the paired name can not 

be anything else but another traversal path name. Some semantic actions can 

be generated to verify this. 

3. SCOPE-SIGH is similar to DOT in our previous specification. It represents the 

symbol that used for the scope definition in the specified language. Usually it is 

"::" as in C++ or several other 00 systems. SCOPE-SIGN will be specified later 

in Chapter 4, 
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3.8.1 Basic Attributes and Operat ions 

In our system, we only consider the specification of the signature of an OPERATION. 

The implementation of the operation may be described in other kinds of programming 

languages, or in the query languages themselves. We will not go int.0 details about 

that here. 

Specification of an operation includes the following components:" 

Return Type: which specifies the type of the return value of the operation. It 

can be any type in the specified language. 

Parameter List: which specifies the parameters to the operation. Each param- 

eter in the list is a parameter which is described by the meta type PARAMETER 

that is discussed as foIlows. 

We also have some built-in operations on OPERATIOE, like invoke(), but they 

usually should not be Visible to end users of the interactive query facility. Using 

the operation name with appropriate parameters is the simplest way to invoke the 

operation. 

3.8.2 Specification and Explanat ion 

TYPE 

'Again, we omit the characteristics inherited from CHARACTERISTIC. 
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1 is t (PARAMETER) Parameters ; 

// default list separator: 

Parameters.sep = "," ; 

o~~~AT~oN(ReturnType, Name, " (" , Parameters, " ) " ) ; 

// default invocation operation on the OPERATION. 

invoke(Name, "(", (QUERY-EXP, s","), It)" 1; 

// another format of invocation. 

invoke(Name, "(", {(Parameters-Name, ":", QUERY-EXP), s","), ")" ) ;  

3 

PARAMETER ( 

TYPE 

IDENTIFIER 

ParameterType ; 

Name ; 

/ / parameter passing mechanism; 

PARAMETER-PASSTYPE PassType ; 

PARAMETER(P~~sT~~~, ParameterType , [" : " , Name] ) ; 

1 

EXCLUSIVE-ENUM PARAMETER-PASSTIPE ( 

NO-TAG 

IN-OUT-TAG 

None ; 

InOut ; 

VAL-REF-TAG ValRef ; 

// EWMtype: all, or one, here is one, and choose InOut; 

f /  if no choose function, then all. 

choose (Inout) ; 

3 

EmM IN-OUT-TAG ( 
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KEYWORD 

KEYWORD 

I n ;  

Out ; 

/ / de f au l t  I n ,  Out s p e c i f i c a t i o n .  

Out ("out 'I) ; 

VAL-REF-TAG ENUM ( 

KEYWORD 

KEYWORD 

Value ; 

Reference;  

/ / de f au l t  Value, Reference s p e c i f i c a t i o n .  

Value ("by", "value") ; 

Out ("by", " re fe rence")  ; 

3 

There are several points that should be explained: 

1. In above specification, for the default invocation operation on OPERATION, we 

used a list of QUERY-EXP as the actual parameters to the operation. QUERY- 

EXP is a meta types defined for OQL which will be discussed in Chapter 4, 

representing all possible kinds of query expressions. 

2. 'We used another kind of meta enumeration: EXCLUSIVE-ENUM to represent the 

exclusive choice of two different parameter passing mechanisms. Each element 

in this kind of meta enumeration is similar to the element in ordinary meta 

enumeration, but in the whole system, we can only choose one element in the 

specification, representing by the default operation choose. 
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TYPE 

Predefined Predefined Types Generated 
Basic Types Constructed Type by Predefined Type 

Constructors 

Figure 3.2: Type System 

3.9 TYPE, Type Generator and Type Hierarchy 

As we stated before, all objects in an object-oriented system are classified into types, 

and all the types in the specified language form the type hierarchy of that language. 

In the above, we actually only analyzed the new type construction. But we can see 

from the above discussion t9hat we need some basic types and type constructors for the 

attribute and relationship definitions in a new type construction. That is the reason 

why all the systems have to provide some pre-defined types, such as integer, character, 

etc, and some predefined type generators, such as array, structure, etc, by which end 

users can define more user-defined new types. All the predefined types and all the new 

types defined by end users consist of the whole type hierarchy of the application(see 

figure 3.2). In this section, we will study what kinds of predefined types and type 

generators a system may need, and also provide the abstract structures of them to 

language specifiers so that they can tailor or customize these components according 

to  the needs of their specified languages. 

3.9.1 Predefined Basic Types 

Predefined types in a system usually include predefined basic types and predefined 

strtictured types. The predefined basic types are the lowest level in the type hierarchy. 
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/ Predefined Basic Type I 
L 

Fix Point Friction 

Figure 3.3: Basic Predefined Data Type 

They are already implemented in the system for the end users and all the instances of 

these types are also pre-existed. End users will only use these instances and can not 

create any new instances of these types. ,411 the operations on these types are also 

implemented in the system and end users can not redefine these operations. They can 

not define any new operations for these types, either. 

Figure 3.3 illustrates the predefined basic types that we provide for language 

specifiers. All the inner nodes are Abstract Data Type (ADT) names and can not be 

instantiated directly while all the leaf nodes are the instantiable types supported by 

our system. But all these types can be customized by language specifiers. 

Since there are so many different predefined basic types here, we can not analyze 

all the features of them in this thesis. Instead, we will use the iVurneric subtree to 

illustrate our ideas about these predefined basic types and how language specifiers 

can customize them according to their needs. 
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Discussion on Numeric ADT 

Numeric ADT has one common attribute: Signed Tag, which is used to specify the 

numeric range, i.e. whether the numeric instance is signed or not. All the arithmetic 

operations, for example, operators: +, -, *, /, etc are also defined here so that all its 

sub-types can inherit these operations. Since numeric instances are totally ordered, 

relational operators, such as >, <, <=, >=, =, etc are also defined for them. 

Under Numeric, we have two sub-types, Exact and Approximate. Under Exact, we 

have Fixed pointed Fractions, which only a few systems distinguish them from float, 

and Integers, which in some systems may be divided into some sub-types according 

to the value range or the length of storage, such as Intl(1 byte), Int2(2 bytes) and 

Inq(4 bytes). Different systems may have different names of all these types, but we 

usually can customize the above type structures according to the specified languages. 

Specification nf Numeric ADT 

Here are the specifications for the Numeric ADT and some of its sub-types. 

Numeric : Predefined-Basic-Type (: 

SIGN-TAG S ignTag ; 

// operators defined on numeric ADT. 

Numeric operator+(opl:Numeric, op2:Numeric) 

(opi : QUERY-EXP, "+It , op2 : QUERY-EX?) ; 

Numeric operator-(opl:Numeric, op2:Numeric) 

Numeric operator* (opl :Numeric, op2 : Numeric) 
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(op 1 : QUERY -EXP , " * " , op2 : QUERY-EXP) ) ; 
Numeric operator/(opl:Numeric, op2:Numeric) 

(op1:QUERY-EXP, "/", op2:QUERY-EXP); 

Boolean operator>(opl:Numeric, op2:Numeric) 

(op1:QUERY-EXP, ">", op2:QUERY-EXP); 

... . . .  

3 

ENUM SIGN-TAG { 

KEYWORD 

KEYWORD 

Signed("signedW); 

Unsigned("unsigned") ; 

default(Signed); 

3 

Exact : Numeric ( 

TOKEN-INTEGER 

TOKEN-INTEGER 

Signed; 

Unsigned ; 

Precision; 

Scale ; 

Exact( SignTag, ( "~XERIC" I "DECIMAL" I "DECu ),  

precision, [" , " , scale1 , "3" 1 ) ; 

Exact( SignTag, ( "NUMERIC" 1 "DECIMAL" 1 "DECil ) )  

( Precision = 15; Scale = 6; 3 

literal. (TOKE;t'-Im~B, tft . " , TOKEN-INTEGER] ) ; 

Integer : Exact ( 

literal (TOKEN-IEffEGm) ; 
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I n t l  : Integer  ( 

Intl(SignTag, "tiny", "integer"); 

Explanation and Examples of Numeric ADT Specification 

Most of the specifications are similar to the specifications we described before, and 

we only explaii; the following new features here: 

1. In the specification of the operators for Numeric, the format is more complex 

than other operation specification. The first part of the specification is exactly 

the same as the signature specification of C++ operator, which fully expresses 

the exact meaning of the operator. All the types in these part, although us- 

ing the same name in our meta system, represents the types in the specified 

language mapped from the meta type ia our meta system. For example, the 

return type Numeric represent the type ia the specified language corresponding 

to the Numeric type in our meta system. Starting from the second parenthe- 

sis, specifications represent how these operators look like, similar to the other 

specifications we mentioned before. The only digereme is that we give each 

parameter a name: and use the name to represent the relationship between 

the parameters in the original operator (or operation) signature and that in our 

a e t a  operation. Usudly, when the semantics (the original signature of the oper- 

ation and the refationship between the parameters in the original operation and 

those in the mega operation) is dear, we always use simplified meta operation 
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specification format, as we used before. 

2. There are two "constructors" for Exact. The first specifies the precision and 

scale for t,his exact fraction, while the second does not. But actually the second 

format of Exact t>rpe specification takes default values for the precision and 

scale. This is described by the semantic actions for the "constructor''. 

3. ?Ve defined a kind of special meta operation:literal to specify the literal format 

of this type. Actxallg this is an instance creation operation defined on these 

types. Because for all the predefined basic types, the instances of them are 

literals (i.e. instances without OIDs). That is the reason why we use l i t e r a l  

as the meta operation name. 

3.9.2 Predefined Type Generators 

Only the predefined basic types are not enough for built ding a rich type system. 'I ! su- 

dly? an object-oriented system also pro\-ides se~eral predefined type generators. Hence 

in our system, we also provide the corresponding abstract. components for type gen- 

erator specification. Figure 3.4 ihstrates the basic hierarchy of our meta type gen- 

erators. Usually, an enumeration gencates a type which defines a list of names, any 

instance of this type will only have the value of these names, and haye no other 

properties. Operations defined on the enumeration type are based on the equality of 

the names themselves arrd the total ordered relatonship between the names in the 

List.. Our metatype genetatcx ENUhfER,%TION embeds the bzsic semantics of general 

enumerations, and provides some ways to customize the concrete form of enumeration 

in the specified languages. 
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efined Type Constructor 

Figure 3.4: Predefined Type Generator 

A structure generates a type which defines a fixed number of pairs of names and 

types. It is used to aggregate attributes, but is not like a new type definition in which 

other characteristics like relationships or operations are usually also defined. General 

operations defined on a structure are get-value, set-value of the member attributes, 

as for the attributes in an object type. Some systems also provide copy operation to 

copy one instance of the structure into another. In our system, a meta type gener- 

ator STRUCTURE is provided for the specification of the specified type generator 

structure. 

Template type generators, or parameterized types, are type generators which ac- 

cept some types as parameters and then generate different types according to the 

different type parameters. Reference type generators and collection type generators 

are two kinds of commonly used template type generators and most of the object 

oriented systems provide them as predefined type generators. Some systems even al- 

low user to define their own new template type generators. For simplicity, we do not 
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consider this kind of functionality right now in our model. 

Reference generators form types which define references to other objects of the 

specified types, usually the OIDs of that objects. 

Collection generators are perhaps the most important type generators in an object- 

oriented data model. A collection object is used to group together other objects. All 

of which should be of the same type at some level. There are several attributes of 

a collection, like unordered or ordered, duplicated elements are allowed or not, etc. 

Because of the importance and complexity of collections, they will be discussed in a 

later section. 

Specification and Explanation 

Since the members of a structure are quite similar to the attributes in a type, and 

reference is rather simple, we will only describe the specification of ENUMERATION 

in our meta system: 

ENrnERATION ( 

TYPE-IDENTIFIER Name ; 

list (IDENTIFIER) Elements ; 

ENUMERATION("enum", Name, "{" , Elements, "3") ; 

BOOLEAN operator== (Elements . ele , Elements . ele) 

(Elements. ele, "==" , Elements . ele) ; 

1 

There is nothing new to be explained in this specification . 
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Predefined Structured Type 

Figure 3.5: Predefined Structured Types 

3.9.3 Predefined Structured Types 

Most systems now provide not only the predefined basic types and predefined type 

constructors, but also some commonly used structured types (including some basic 

operations for these types) as predefined for the convenience of users. As illustrated 

by the Figure 3.5 in our system, we have a sub-tree of meta structured types that 

can be tailored or customized by language specifiers. But here for simplicity, we will 

not go into detail of the discussion and specifications about them. 

3.10 COLLECTION 

As we mentioned before, a collection object is used to group other objects together. 

Although in real situations, people seldom define collection types separately, collection 

type generators are heavily used in the domain definition for attributes or elements 

in the definitions of other types or structures. Defining named persistence collection 

object is also an important part in schema definition. This is because the names of 

persistence collection objects are often used as entry points to databases. Table defi- 

nition based on an ADT in systems like SQL3 is actually a kind of named persistence 
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collection object definition. 

In this section, we will discuss b0t.h collection type definition and collection object 

creation. Collection object creation can be the same as other kinds of object creation 

in the specified language. But it can also be different, as we mentioned in the section 

on object discussion. Language specifiers can provide special collection object creation 

operations to override the default object creation operations, providing some initial 

values to the collection attributes, for example ordered tag, or other constraints. 

3.10.1 Basic Attributes 

We consider the foliowing basic attributes of collections: 

Name: This is t.he name of the collection type. Usually a collection type is 

constructed without a name. 

Element Type: This is the type of the element in the collection. It is a 

parameter passed to the collection constructor when defining a collection type. 

Objects of sub-types of the element type can also be elements in the collection. 

Cardinality: This records how many elements in the collection. For the end 

users, this is a read-only attributes, and it is usually retrieved by a public 

function like count(). 

Ordered Tag: This records whether the objects in the collection are ordered 

(usually according to the insertion or not, but it can also be ordered according 

to  the values of some attributes) 
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e Duplicated: This records whether the collection allows duplicated elements or 

not. 

e Constraints: This specifies some special constraints for the collection, for ex- 

ample, some fields must be unique, like keys, etc. 

There are some ot.her storage and performance related attributes that can be 

attached to the collect.ions, for example, index, clustering pragma, etc. Again, for 

simplicity, we will not discuss these aspects in this thesis. 

3.10.2 Basic Operations 

Operations defined on a colkction object are: 

e create: Create a collection of the parameterized type. Some parameters which 

give some hints on performance, like clustering, may also be provided when the 

collection is created, but we will not consider this in our model right now. 

e delete: delete the collection. 

0 insert: insert an object into the collection. 

e remove: remove an object from the collection. 

e contain: test whether or not a given object is in the collection. 

3.10.3 Specification and Explanat ion 

According to the above discussion, COLLECTION as the meta type abstracted for 

the collections in ordinary OODBh4S's is defined as follows: 
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COLLECTION ( 

TYPE-IDENTIFIER 

TYPE 

TypeName ; 

ElementType; 

// instance properties: 

IDENTIFIER Name ; 

Integer 

ORDER-TAG 

DUPLICATED-TAG 

Cardinality; 

OrderTag ; 

DupTag ; 

// a collection type creation 

create( "collection", "<", ElementType, ">"); 

// collection instance creation. 

instance-create("create1', "collect ion", "<" , ElementType, ">" , Name); 

// operations on collection object , not collection type. 

void insert(ele:ElementType, col:COLLECTION<ElementType>) 

("insert", e1e:QUERY-EXP, "into", co1:QUERY-EXP); 

void remove(ele:ElementType, col:COLLECTION<ElementType>) 

("remove", e1e:QUERY-EXP, "from", co1:QUERY-EXP); 

Boolean operator in (ele : ElementType , col : COLLECTION<ElementType>) 

(e1e:QUERY-EXP, "in", co1:QUERY-EXP); 

ENUM ORDER-TAG ( 

KEYWORD Ordered; 

KEYWORD Unordered; 

default (Unordered) ; 
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0rdered("orderedU); 

~nordered("not", "ordered"); 

ENUM DUPLICATED-TAG { 

KEYWORD Duplicated ; 

KEYWORD UnDuplicated; 

default (Duplicated) ; 

Ordered ("dup") ; 

~nardered("not", "dup") ; 

3 

There are several points that should be explained for the above specification: 

We define two different create operations. One is for collection type specification, 

which will be part of the type system; another is for collection instance creation, 

which actually creates a collection object. 

In the signature of insert, remove, and the operator in, we used COLLECTION 

<ElementType> to represent the collection type generated according to the ele- 

ment type in the specified language. This is similar to the specification of the 

numeric operators. 

3.10.4 Predefined Sub-types of Collection 

There are some predefined sub-types of collection in most of the OODBMS's we stud- 

ied. In our meta system, to represent these concepts, we also have the corresponding 

meta structures for these sub-types. They are Set, Bag, List and Array, as illustrated 
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in the Fig. 3.5 

A Set is an unordered collection that does not allow element duplication in the col- 

lection. Sets inherit and refine all the attributes and operations defined on collections 

and add some more operations usually defined as set operators: like union, intersec- 

tion, difference, assignment, and the relational operators like subset, proper-subset, 

etc. 

A Bag is a unordered collection that allows duplicated elements. So a bag should 

also maintain the number of occurrences of each element. All operations available to 

a set are available to a bag, but they are based on the numbers of the occurrences of 

the elements in the bag. 

A List is an ordered collection which allows duplicated elements, and the order is 

maintained by the user when elements are inserted into the list. The default order 

is based on the insertion time. There is one more property defined on List, i.e the 

current-position as integer, which is similar to the cursor. There are also some other 

operations defined on List based on the position: such as insert-after, insert-before, 

remove-at, etc. 

An Array is a one dimensional array with fixed or varying length. So we have 

some more properties about length defined on an array, such as the maximum length, 

All these sub-types of collection can be analyzed in a similar way as we did for 

collection. For simplicity, we omit these details in this thesis. 
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3.11 User Defined Components for ODL 

From the above discussion we can see that the specification of a query language is 

a mapping from the concepts used in the specified object model and query language 

to the concepts in our predefined meta system. Sometimes, when a concept in the 

specified system is not easily mapped onto that in our meta system, the lmguage 

specifiers can construct some new meta types for this concept. Constructing new 

meta types is quite similar to class definition in C++. For example, as we mentioned 

above, in some 00DBMS7s, the concept class which has both intent and extent is 

used instead of type, and until now we do not have a corresponding component defined 

for class. The following is our specification as a user defined meta type: 

CLASS ( 

TYPE Intent ; 

persistent COLLECTION<Intent> Extent ; 

// constructors for the meta type CLASS: 

CLASS ("classf1, Intent .Name, Intent. Inheritance, "{" 

Intent. Characteristics, "3" ) 

C Extent.Name = 1ntent.Name; 3 

This means that a class consists of a type as the intent, and a persistent collection of 

its intent as the extent, The semantics of class creation is equivalent to the creation 

of this intent and extent; and the syntax is similar to type creation with the extent 

collection name the same as the intent type name. 



Chapter 4 

OQL and META-OQL 

While the Object Definition Language provides the facilities of the database schema 

definition, the Object Query Language deals with the general object operations: such 

as object create, delete? update, and retrieve. Most of the operations on objects 

have actually been defined in the corresponding type definitions of the objects, and 

OQL basically provides some kind of command, function or operator format for these 
- 

operations. Some statements may involve arbitrary types of objects, such as select- 

from-where statement. They have not been defined within any type of objects and 

should be defined specially in OQL. 

In this chapter, we will discuss our common components abstracted from the 

Object Query Languages of ordinary object-oriented database systems. Again, we 

will not describe a complete abstract query language, but rather only include the 

basic aspects of object maaipulation itse!f. 
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Figure 4.1 : Query Expression Classification 

4.1 General Discussion 

Generally, object manipulation includes object creation, retrieval, update (such as 

changing the state of an object, inserting an object into a collection, etc). According 

to our studies of different query languages, we abstracted the meta type Query Expres- 

sion to represent the basic unit of OQL. Furthermore, we classified Query Expression 

into the following sub-types which represent different kinds of query expressions: (see 

Fig. 4.1) 

Elementary Expressions: These kinds of expressions mainly include literals 

of the predefined basic types and object names. 

Operational Expressions: These kinds of expressions mainly include arith- 

metic, relat?ional and lo$c operational expressions. 

e Constructing Expressions: These kinds of expressions mainly include diEer- 

ent kinds of abject creation. For example, creating objects of user defined types, 

instances of some structures, sets, and lists, etc. 

0 Path Expressions: These kinds of expressions include expressions for accessing 

attributes, relationships, and operations of an object. 
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Collection Expressions: These kinds of expressions mainly include expres- 

sions based on different types of collection objects. For example, how to manip- 

ulate sets, lists, etc. 

Conversion Expressions: These kinds of expressions include expressions of 

conversions between different types. This is one of the important parts of the 

type system for the 00DBMS's. 

Select Expressions: These kinds of expressions are based on the select-from- 

where expressions in traditional SQL. It provides a mechanism to manipuiate 

objects of more than one type (which are not directly related in the schema 

definition) in one statement. 

r User-defined Expressions: These are the mechanisms for language specifiers 

to const.ruct some special kinds of expressions for their CQLs. For example, the 

MOVE statement of DSQL. 

From the above, we can see that most of the query expressions only deal with object 

creation and retrieval, none of them deals with update and delete. This is because we 

can build these statements or expressions based on the above query expressions. Hence 

in our later discussion, we will only concentrate on create and retrieval statements or 

expressions of OQL. A similar approach can be used for update and delete expressions, 

and we will not discuss these further. 

In the following sections, we will discuss our common components for all of these 

sub-types of the Query Ezpression. A Query E x ~ T ~ s s ~ o I ~  can be formed recursively, 

as we wiU see later. For convenience, we 157ill use QUERY-EXP to represent the meta 



type in our meta language (As we have already mentioned in Chapter 3 ) .  Each sub- 

meta-type of Querz; %'xpression also has a s~-mbol in our meta language, which will be 

discussed in the following sections. But before the detailed discussion of these Query 

Expressions, we should have a general discussion about query languages and query 

expressions. 

In traditional SQL for RDBhlS, a data retrieval statement is usually only in the 

format, of the select-from-where st aternent,. In some OODBRIS's, although they also 

include the select-from-I\-here statement, for some simple situations they also allow 

some more concise formats of the expressions. For example, suppose we have an entry 

name, say Student, as the name of a persistence collection. Then the entry name 

Student itself forms a query expression, and the result of this query expression is 

the collection of instances of Student. Actually, we can let any of the above query 

expressions be a single object retrieval statement. 

Usually, each querj- expression has a result, which is also the output of the query. 

Query results can be of all different types, such as instances of user defined types, 

literals of predefined basic types, constructed types, etc, depending on the query 

expression itself. Most of them are obvious, and we will explain this later when we 

discuss each sub-type of the Query E~pr~ssion.  But for select-from-where statement, 

the situation is more complex. In traditional SQL, the result of a select-from-where 

statement is also an ordinary relation. This property is usually referred as the 'cClosure 

Property". In some of the query languages of OODBMS, the result of a select-from- 

where statement- can also be of different types depending on the result part cf the 

statement ~tself. Here, i t  seems that the "Closure Property" is not retained. But 

actually, this is because in OQL there are more types which can be used in query 

expressions, The results of query expressions (including select-from-wherej can be 



used in other query expressions as ordinary query expressions, as long as the types 

of the expressions are compatible with other expressions. We will discuss more about 

that in the section about select-from-where expression. 

4.2 Basic Expressions 

The basic query expressions include literals of predefined basic types, such as integers, 

strings, etc, and the object names, which are similar to variable names in ordinary 

programming languages. Whatever t.he format of the object names and the literals 

of the predefined basic types have already been defined as in the corresponding meta 

type definitions by the language specifiers (or if they use the default formats of our 

default query language). the concept of basic expression will include them. That is 

to say that a basic expression BASIC-EXP, includes: 

OBJECT.Name //defined i n  meta type  OBJECT. 

(Literal-Exact> / /defined i n  meta type  Exact. 

(Li te ra l - In teger>  / /defined i n  meta type  In t ege r .  

By default, a BASIC-EXP can form a statement in OQL. That is to say, whatever 

kind of formats of the object name or the literals of the predefined basic types, they 

wiI1 be one kind of query statement. 



4.3 Operational Expressions 

For the predefined basic types. we assume that m-e have already defined all the basic 

operations in the corresponding meta types.. For example, for the Numeric ADT, we 

defined all the arithmetic and relational operators, and how to form the operational 

expressions, such as QUERY-EXP + QUERY-EXP, QUERY-EXP - QUERY-EXP, etc. 

Operational expressions can be formed recursively, as we can see from the above 

operator definitions. The operands for these operators are QUERY-EXPs, which in 

turn can be any of the sub types of query expressions, including literals, operational 

expressions, path expressions, etc, as long as the types of the operands are compatible. 

So whatever kind of operators and expression forms are specified for the predefined 

basic types, they will be part of the operational expressions of the specified query 

language. Hence OPER-EXP, which represents Operational Expression in our meta 

system includes: 

<Query-Exp> == <Query-Ex?> / /  defined i n  meta type  OBJECT. 

<Query-Exp> + <Query-Exp> // defined i n  meta type  Numeric 

<Query-Exp> - <Query-Exp> // defined i n  meta type Numeric 

All the operators for the predefined types have the default priorities as in ordinary 

programming languages, and parenthesis can be used to change the order of the 

calculations. Right now, we do not provide mechanisms for customization of operator 

prisrit-ies in our system, hut it can be done (using priority orders) in a similar way as 

we did for other concepts. 



4.4 Object Constructing Expressions 

,411 the data and objects in the database should be created in some kind of format. 

In ordinary object-oriented programming languages, such as C++,  objects and data 

are usually created by some data definition statements. In query languages, these are 

done through some types of "create" statements. No matter what kind of format it 

may be, the underlying semantics are quite similar. Usually, for object creation, the 

system will invoke the constructors, either user defined or system default, of the type 

for t,his object, passing some corresponding parameters. 

There are two kinds of parameter passing styles for operations. In ordinary pro- 

gramming languages, the parameters are passed according to position. That is to say 

that t-he meaning of the parameters are decided by their positions in the operation 

parameter list. The users of the operations should understand and remember the 

position conventions specified by the implementation of these operations. While in 

some query languages, for object creation operations, the parameters are passed by 

the attribute name and value pairs, which is much easier for ordinary users to use. 

In our system, we provide both of these styles for object creation. For example, if we 

have defined type Student with some attributes such as name, student-no, age, etc. 

We can use 

Student(nane: "Mike", student-no:"94Q00-OOOO", age:20); 

t o  create an instance of Student. If in the definition of Student, the user has defined 

a constructor in the format: 

Student (char* st-no, i n t  age, char* name) ; 
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then the statement 

will also create the same instance of Student. 

However, the above two kinds of object creation expressions should not be mixed 

in one operation. For each operation. only one style can be used. From the point of 

internal processing, these tn-o kinds of parameter passing styles can he distinguished 

easily according to their "signatures" because we can treat the first kind of object 

creation as a special kind of operation with a special signature. 

The second kind of object creation is just an ordinary operation invocation. So it 

must he based on the user defined constructors for this type. And the actual format of 

the operation invocation must be consistent ~ r i t h  the operation invocation convention 

in the specified query language. In our system: the first style is the default object 

creation format for all the user defined types. The actual format of the invocation 

can be specified by the language specifiers in the meta type TYPE definition by the 

instance-creation operation as follows: 

// default instance creation operation for all the user defined types. 

?YPE: :instance-create(Name, "(", ( 

(Attributes-ele.Name, ":", QUERY-EXP), 

Sl i  , $1 ), 11) 11) ; 

For predefined types, we have discussed instance creation for the predefined basic 

types in an elementary expression (the literal definition is of this kind of operation). 

For predefined structured types, the creation of a structure instance is similar to that 

of object creation. Since there are no user-defined constructors for the instance of a 
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structure, and the instance of a strl ~ c t u r e  type is literal, we can only provide a general 

literal creation operation for all user defined structure types. 

// d e f a u l t  l i t e r a l  constructor  f o r  a l l  t h e  s t r u c t u r e  types .  

STRUCTURE : : L i t e r a l  (Name, " ( " , ( 

(Members.ele.Name, ":", QUERY-ExP), s" , "  

Sometimes, we majT need to dynamically creat.e a temporary structure type (with or 

without a type name) and then create instances of this type. For example, 

s t r u c t  (name : "Mike", age : 20) ; 

may be used to create a no name type of structure, and also create a literal instance 

of this type. And 

s t r u c t  person(name: "Mike", age:20); 

will create a structure of type person, and at the same time create an instance for 

this type. 

The operation of dynamically creating a temporary structure type is very useful 

for storing the result returned by a complex query, especially when used in the select- 

from-where statement. We call this operation temporary structure type and instance 

creation. The actual format of this can be specified by the language specifier under 

the meta function name temp-struct. And the default format is: 

/ f d e f a u l t  l i t e r a l  constructor  f o r  a l l  t h e  s t r u c t u r e  types .  

STRUCTURE::temp-str~ct(~*struct", [Mame,] "(", ( 

(Members.ele.Name, ":", QUERY-EXP), s"," 3, It)"); 
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For other predefined structured types, such as list, set, bag etc, the constructing 

expressions are defined in their instance-creation rneta operation in the corresponding 

meta types, and we will not go into details of them here. 

4.5 Path Expressions 

Bath expressions are used to access the characteristics of a type. Usually there are 

two types of path expressions: one is so called a dot expression., and the format is 

OBJECT. Name DOT CHARACTERISTIC. Name where DOT is usually specified as DOT(". ") 

in the meta system. Another one is so called a scope expression. and the format is 

TYPE. Name SCOPE-SIGN CHARACTERISTIC. Name where SCOPE-SIGN is usually specified 

as SCOPE-SIGN(" : : "). Language specifiers can specify their own format of DOT or 

SCOPE-SIGN themselves if they like. 

4.6 Collection Related Expressions 

Collection Related Expression basically have been defined in the meta type COLLEC- 

TION and its subtypes, such as SET, LIST, etc. For example, we have defined the 

operator i n  to  test the contain relationship between an element and a collection in- 

stance in the meta type definition of COLLECTION. Here we will not discuss these 

operations further. 
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4.7 Type Conversion Expressions 

Although, according to the principles of the object-oriented approach, different types 

should not be mixed in a calculation, sometimes users may still want to convert an 

instance of one type to  an instance of another type in a reasonable way. Usually 

type conversions are only within the predefined types (including the predefined basic 

types, predefined st,ructured types and types constructed through the predefined type 

constructors) and the conversion are also predefined in some reasonable way. This is 

because it may not make sense if we permit conversions between arbitrary types. 

Type conversion operations are defined on two different types, and usually they are 

treated as some kind of top level meta operation, instead of an operation of one type. 

Here we will not enumerate all possible type conversion operations in an ordinary 

query language, but rather use one example: the operation of converting a bag into a 

set, to illustrate the basic ideas of this kind of expression: 

// default  bag t o  s e t  conversion operation. 

Bag Bag2Set (Set) ("bagtoset", " ('I, QUERY-EXP, ") ") ; 

The meta definition of this meta operation is quite similar to  the operations we 

discussed in the Numeric ADT and we will not give any more explanation here. 

Users can also construct new type conversion operations between any two different 

types. Since it is the same way as constructing other new operations, so we will not 

discuss this further here. 
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4.8 Select Expressions 

4.8.1 Genera1 Discussion 

In traditional SQL, the select-from-where statement is the main data retrieval state- 

ment. Because of the popularity of SQL, most query languages of 00DBhISYs also 

have similar structures. and usually use similar sj-ntax appearance. Basically, this 

structure reflects the followi~g three aspects of a dat alobject retrieval statement: 

Result Clause: This clause describes what kind of dataJobject must be re- 

trieved by the query statenent. In traditional SQL, this part consists of a list 

of expression, and each expression is only based on the data whose level is no 

more than column level (no structures or relations can he used here). But in 

most query languages of OODBMS's, all different expressions or sub-query ex- 

pressions can be used here as long as the computation is permitted by the type 

system. 

Range Clause: This cla.us-e describes against which part of the database the 

query is done. In traditional SQL, this part binds the tuple variables (if there 

is any) to the relations, specifying against which relations the query is issued. 

In object-oriented query languages, this clause also binds different variables to 

different domains which usually are collections. Again, sub-query expressions 

can be used here as long as t.he type system permits. 

Condition Clause: This clause describes what kind of dataJobjects are qual- 

ified for the result, and i t  is just like a filter. Usually i t  is a kind of logic 

expression in which different predicates may appear. In a broad sense, it is a 
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kind of constraint specification of the variables appearing in the result and range 

clauses. 

In some cases. the range clause can be omitted if from the result clause we can 

know against which part of the data we are issuing the queries. -4 condition clause 

can also be omitted when there is no condition specified. For example, if we have a 

persistent collectmion named Student, select Student itself is very clear about the 

range and condition. 

4.82 Basic Semantics 

The basic semant.ics for the select-from-where statement is that, for each range vari- 

able (including all the implicit range variables in the statement): we will generate a 

foreach loop (nested if some loops have been already generated) to scan all the in- 

stances in the rollection of this range. In the inner loop, we check the conditions of 

the condition clause: and filter out a subset (or sub-bag of the cartesian product 

of all the range variables that satisfy all the conditions. We then evaluate the query 

expressions in the result part for all the filtered instances of the cartesian product. 

foreach v1 in coll 

foreach v2 in co12 

'If any coIlection is a bag, then the result may also be a bag. The cartesian product of bags is 
defined similar to the cartesian product as set. For example, coll = { 1, 2, 3 ), and co12 = { a, b, a 
1, then the cartesian product of coll and co12 is ( (1, a), (2, a), (3, a), (1, b), (2, b), (3, b), (1, a), 
P, 4 ,  (%a) 1 



Here, the expressions cond (v I ,  v2, . . . ) and r (v I ,  v2, . . . ) represent the condi- 

tion and the result evaluated 1%-ith the range variables replaced by the current instances 

in the collections. 

The above code schema only represents the basic semantics of the select-froin- 

where expression. Usually some optimizations must be done to make the code more 

efficient. For example, if a sub condition expression in the condition clause is only 

restricted to one collection and is easily be tested, then we may first evaluate this 

condition: and get another smaller collection COLl to replace the original c o l l .  Some 

optimization strategies for relational queries are still useful for object-orient ed query 

expression evaluations, but in many cases the optimization algorithms for object- 

oriented query expressions are more complex than those for the simple traditional 

queries. In this thesis, we will not discuss this aspect of query language processing. 

4.8.3 Specification 

According to the above discussion, we have the following specification for the select- 

from- where expression: 

SELECT-EXP ( 

list (QUERY-EXP) Result ; 

list (RANGE-EXP) Range ; 

1 ist (QUERY-EXP) Condition; 

// default consf;ructor for  the  SELECT-EXP; 

SELECT-EXP("se1ect" , Result, ["from" , Range] , ["where" , Condition] ) ; 



RANGE-EXP { 

IDENTIFIER Range-var ; 

QUERY -EXP Domain ; 

RANGE-EXP (Domain, ['\ :" Range-varl ) ; 

// other format : ODMG-93 

RANGE-EXP(Range-var , "in", Domain ) ; 

The specification here is similar to those specifications we presented above and no 

more explanation is needed. 

4.9 User-defined Expressions 

As we mentioned above, language specifiers can construct some new statements to 

represent the new components which are not easily expressed in the basic meta com- 

ponents we provided. X new component is usually in the format of a new statement, 

and in the new statement specification; language specifiers describe how the new 

statement can be mapped on some basic meta components. Here we use an example 

taken from DSQL and specify the "move" statement a s  follows: 

EW-STBTIMXi' : :KCIYE("moseil, TYPE .%me : tl , " : " , IDENTIFIER: VI 

tttott lYPE.Nme:t2, ":", IDENTIFIER:v2, 

SELECT-EXP . Conditions : c 1) 

< 
foreach ( (vl, v2) in 



(select vl, v2 from tl:vl, t2:v2 where cl) ) 

move (vl , v2) ; 

3 

We assume that the language designers provided their own underlying "move'? function 

here. This specification actually mapped the new statement "move" to the meta 

structures we provided in our meta system. f oreach is a rneta structure representing 

a loop over a collection object, and the select statement represents the meta select- 

f r~m- \~here  structure in our system that d l  return a coltection. 5sing the named 

parameters, the relationship between the parameters in the new components and the 

parameters in the meta structures can he re\-ealed clearly. This idea is similar to 

those we used in Chapter 3. 



Chapter 5 

System Implement at ion 

After the above discussion about our design, in this chapter we will give a more 

mce a detailed discussion of how our system n-orks and how it can be implemented. S: 

complete language definition and practical implementation of our system would have 

too many technical details, we will use some small examples to show how a language 

can be specified in our system; and how the specification of the language can be 

used to generate a query processor for this language. The implementation described 

here is based on our test implementation of our system, which is mainly based on 

YACC/LEX, C, C++ and one OODBMS: Objectstore. 

5.1 Examples 

The examples we niU use are taken from [j], which are basically two typical dass 

definition statements in 02. 

class Ci%y 
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type tuple(name: string, 

map: Bitmap, 

hotels: set (Hotel)) 

method how-many ,vacancies (star : integer) : integer , 

build-new-hotel(h: Hotel) 

end ; 

class Tourist-City inherit City 

rename build-new-hotel as new-equipment 

/* rename to a more appropriate one */ 

type tuple (hotels : set (Hotel-Restaurant) , /* attribute overriding */  

what-to-see: set (monument)) /* new attribute */ 

method new-equipment(e: Hotel-Restaurant) 

/* method overriding (build-new-hotel in fact) */ 

end; 

The meaning of the examples is quite obvious. The first statement defines a 

class named City with 3 attributes and 2 methods. The second statement defines 

a class named Tourist-City which is a sub-class of City. One more attribute is 

defined for this sub-class. It also redefines one attribute hotels and one method 

build-new-hotel. In the following: we mill describe the specification for this part of 

0 2  based on our system. The semantics 1f7e assume here may not be strictly consistent 

with the original 0 2  specification because of our illustrative purpose. We will point 

out these difference when it is necessary later. 
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In the following specification, the numbers before each meta statement are used 

for reference to our explanation. They are not part of the specification. Neither is 

the comments. 

(1) TOKEN TYPE-IDENTIFIER [A-Z](letter-or-digit)* 

(2) CLASS: : creat~("c1ass" , Type .Name, [Type. ~nheritance] , 

"type", "tuple", "(", Type.Attributes, ")", 

[Type. Operat ions] , "end" ) ; 

(3) TYPE : :Name (TYPE-IDENTIFIER) ; 

(4) CLASS. Type. Attributes. sep = I t ,  " ; 

(5) INHERITANCE : : INHERITANCE ("inherits" , 

SuperTypes , ["rename", Renames] ) ; 

(6) OPERATION::OPERATION("method", Name, 

"(", Parameters, ")", It: " ~eturnType) ; 

PARAMETER : : PARAMETER ( [VarName , " : "1 , paramet e r ~ ~ ~ e )  ; 

(7) ATTRIBUTE::ATTRIBUTE(Name, ":", Domain); 

(8) /* predefined types and type constructors */ 

(a) VARCHAR : : vARCHAR (I' str ing" ) ; 

(b) VARBITSTRING : : VARBITSTRING ("Bitmap" ) ; 

SET::SET("setU, "(", TYPE, ")"I; 

Meta statement (I) is a token definition example in our system. It defines a token 

TYPE-IDENTIFIER which starts with an upper case letter and follows with letters or 

digits. This token definition is used in (3) which specifies that a type name should be 
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in the format of this token. In 0 2  this is not the case, here we use this as an example 

of defining tokens and how to use the defined tokens. 

"%%'/,:' after the token definition is a kind of separator between the first part (token 

definition) and the second part of a language specification. It is a kind of syntactic 

sugar in our meta language and has a simiiar function as that in YACC programs. 

The second '7%'' is similar. 

Meta statement (2) is the overriding of the class (not type) creation meta operation 

(the meta type CLASS and the meta operations defined on CLASS are defined in 

Section 3.11) which actually specifies how a class definition should look like in 02.' 

INHERITANCE specification in meta statement (5) is almost the same as the 

default one except that in 0 2  they use "inherits" instead of ":" to lead the inheritance 

definition. The rename clause is also the same as the default one (please see section 

3.4.3.) 

Meta statements (4) and (7) specify how attributes (see Section 3.6.3) of a class 

should be defined in 02.  The separator between the attribute definitions is "," instead 

of the default ";". And for the definition of each attribute, the format is defined as 

(7) instead of being the default one. 

Meta statement (6) specifies how operations of a class can be specified in 02 .  

They are overriding the predefined constructors of the meta type OPERATION and 

PARAMETER (see Section 3.8.2). 

 o or the simplicity of our example, we use this'kind of specification here. Again, it may not be 
strictly consistent with the actual semantics of the 0 2  language. A better specification can keep the 
concept of tuple and map it onto the structure in our system, but we will not go into details of this 
here. 
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h4eta statements in (8) specify how the predefined types and type constructors 

in 0 2  should be mapped onto the predefined types and type constructors in our 

abstract Object Model. Each of them corresponds to the overriding of the constructor 

of the corresponding meta type. (The specification is similar to other meta type 

constructors.) 

5.2 How Our System Works 

From the above example we can see that, since we have provided a general abstract 

Object Model and Default query language, ordinary query languages for object ori- 

ented database systems can be specified based on our system in a simple way. As we 

mentioned above, since query language specifiers can reuse a lot of common compo- 

nents provided by our system, usually what they have to do is t o  provide some special 

feature descriptions for their query languages. This kind of specification is usually 

much shorter and clearer than an ordinary language specification. 

5.2.1 Language Specification 

Basically, a language specification consists of the following three kinds of specifications 

(see figure 5.1). 

1. Token Definition: provides the special lexical elements (token definition us- 

ing regular expressionsj for the specified languages. In the above example, meta 

statement (1) belongs to  this category. In our system, we have already defined 

some default tokens (with the default lexical rules) for the language specifiers, 
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Language Specification 

I 1. Token Definitions 

2. Predefined Meta-Operation 
Overriding Specification 

1 3. New Componect 
I Specification ' I 

Generated LEX & YACC 

Program 

Lexical Rules For LEX 1 
*I Token Definition For YACC 1 

Parser Stack Definition 

Syntax Rules Hooked With 
Semantics Actions I 

YACC 
C Compiler 

Query Processor 1-1 

on Objectstore 

Figure 5.1: How Our System Works 



such as TOKEN-INTEGER, which represents the digit string, and TOKEN- 

IDENTIFIER, which represents how an identifier should be composed. Lan- 

guage specifiers can directly use these default tokens, but they can also provide 

their own token definitions. Since right now our system implementation and 

part of the presentation of our system design are based on the YACC and LEX 

programs, in some way our system is influenced by YACC and LEX. We use the 

same token definition conventions as YACC ([21]) and LEX ([22]). LEX pro- 

grams can also be used with our system because of this reason 2 .  As in YACC, 

token definition is the first part of our specification ad is separated from the 

next part of the specification by %%. 

2. Overriding Predefined Meta Operations: According to our design, most 

of the basic concepts of Object Model and query languages are defined in 

meta types/objects. If language specifiers want to customize or tailor the se- 

mantics/syntax of the query languages, they can override the default meta- 

operations (usually the constructors) defined in the corresponding meta types/objects. 

Actually, providing these kinds of meta operations is one of the main kinds of 

language specification. In the above example, most of the meta statements be- 

long to this category. Statement (3) and (4) provide overriding of an attribute 

domain and default separator of a meta list. They are also used in generating 

YACC programs for the specification. 

3. Constructing New Components: Language specifiers can also define their 

own meta types and meta operations (either for some meta types or not) using 

the predefined meta types for some special components in their query languages 

'So we can declare the tokens without providing the regular rules in this specification and provide 
a LEX program to our system. 



in a similar way of the definition to the predefined meta types (seeSection 3.11 

and Section 4.9). After being defined, these meta types and objects can be 

used in the same manner as the predefined ones. Xew component constructions 

are another main kind of language specificat,ion. They can be mixed with the 

specification of overriding the predefined rneta-operations. 

5.2.2 Processing the Language Specificat ion 

From the above three kinds of specification provided by the language specifiers, we 

can then generate YACC and LEX programs. With YACC, LEX, C, C++ compil- 

ers etc, we can further generate a query processor for the specified query language 

automatically. The whole process is illustrated in figure 5.1. 

The token definition part will be transformed into a LEX program segment and 

then merged into our predefined LEX program (in which some keywords and other 

default token definitions are dealt with). It will also be used to generate part of token 

definitions that will be merged into the token definition part of our YACC program. 

These two kinds of transformation are quite straight forward because we use the same 

conventions as LEX and YACC. Here we only use the a b o ~ e  example to  show the 

basic idea of this transformation without going into more technical details. 

In our predefined LEX programs, we have the following LEX definition: 

letter [a-zA-Z-1 

digit [O-91 

letter-or-digit [a-zA-Z-0-91 
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white-space 

..., ' . .  

Language specifiers can use these definitions to define their tokens in regular ex- 

pressions. In the above example, we have 

TOKEN TYPE-IDENTIFIER [A-Z] ( l e t t e r - o r - d i g i t > $  

We can generate the following LEX program segment from the above definiti~n:~ 

[A-Z] ( le t  t er-or-digit)* 

< 
y y l v a l . s t r  = malloc(strlen(yytext)+f); 

s t r c p y ( y y l v a l . s t r ,  y y t e x t ) ;  

r e t u r n  t oken(TYPE-IDENTIFIER) ; 

3 

which will be merged (or replace the corresponding default token definition) into the 

rule part of our predefined LEX program. 

The above definition also generates the following YACC program segment 

%token <str> TYPE-IDENTIFIER 

which will be added to the token definition of the YACC program generated by our 

system. 

31n our test implementation, the user defined tokens are of the type of string, so we only save the 
string value in the parser stack of YACC. See the following YACC program segment generated by 
the above definition. 



The main part of the whole process is to generate the two main parts of the YACC 

program from the operation specifications and new component constructions of the 

specification: (1) syntax rules and semantics actions hooked to the rules; (2) parser 

stack definition and type definitions for symbols appearing in the syntax rules. We 

will describe the algorithm for these parts of our system in the next section. 

Right now, the query processors generated by our testing system work in a dif- 

ferent way from traditional query processors. Queries input by the users will first be 

processed and transformed into C++ programs based on Objectstore OODBMS; then 

the programs will be compiled into a dynamic link library. Dynamically linked and 

run wit-h our predefined main program, query results for the queries can be produced 

and returned to the users. 

5.3 Implementation of Our System 

In this section, we will describe our basic algorithms of how to generate YACC pro- 

grams from the specification of overriding the predefined meta-operations and con- 

structing new components. This process itself is again based on the YACC and LEX 

tools. That is to say, we will use YACC and LEX programs to generate YACC and 

LEX programs. 

5.3.1 BNF for the Meta Operations 

In our system, the basic unit of the specification is in the form of so-called ('nzeta- 

operationsn. The form of this meta-operation specification is similar to C++ function 

prototype definition. The difference is that the parameters to the meta-operation are 



CHAPTER 5. SYSTEM IMPLEMENTATION 107 

in the form of "Comma Expressions" which are recursively defined as following: 

a A string enclosed by double quotes is a Comma Expression, which represents the 

direct TOKEN in the target language (i.e. this component will match exactly 

the string in the quotes in the target language). This kind of Comma Expression 

is called a String Comma Expression. 

e A Meta Path Expression is a Comma Expression, which represents the concept 

represented by the Meta Path Expression in our meta language. It usually 

represents another component in our meta language. This kind of Comma 

Expression is called a Path Comma Expression 

A Comma Expression enclosed by '[' and 'I' is a Comma Expression, which 

represents that this parameter may or may not appear in the target language. 

This kind of Comma Expression is called an Optional Comma Expression 

e A Comma Expression and a String Comma Expression separated by a comma 

and enclosed by '{' and ' ) ' ,  is also a Comma Expression which represents a list 

of the Comma Expression separated by the String Comma Expression. This 

kind of Comma Expression is called a List Comma Expression 

A list Comma Expression separated by vertical bars (' I ') is also a Comma Ex- 

pression which represents that it may be any of the Comma Expression in the 

list. This kind of Comma Expression is called a Selection Comma Expression 

A list Comma Expression separated by commas (',') and enclosed by '(' and ')' 

is also a Comma Expressionl which represents the aggregation of the Comma 

Expression enclosed. This kind of Comma Expression is called an Aggregational 

Comma Expression 



The Meta Path Expression we mentioned above is similar to an ordinary path 

expression in ordinary object-oriented languages. It may or may not. start with a 

scope name (meta type name) and dot ('.'I is the separator along the path expression. 

The BNF rules (in a format similar to the rule format of YACC programs) for a 

meta operation can be described as following: 

<meta-operation> : <~yPE-Name> " : : "  <function-spec> ' ; '  

1 <f unct ion-spec> ' ; ' 

3 

<TYPE-Name> : IDENTIFIER; 

/* it can be a pre-defined meta-type name; */ 

/* or a new meta-type name of new components in the CQL; */ 

<function-spec> : <f unction-name) ' ( ' <parameter-list> ' ) ' 

•÷ 

(function-name> : IDENTIFIER; 

// usually it is some predefined operation name for 

// this meta-type. 

// the parameter is the so-called "comma expression" 

// in our system. 

<parameter> : <comma-expression> <action> 

<comma-expression> : STRING 

/ I  ordinary string def . , treated as a meta token. 
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f <met a-path-expression> 

1 coption-expression) 

// represents the optional in the language spec. 

// represents the repeat components in the language spec. 

1 (selection-expression> 

// represents the select component in the lag. spec. 

f ' ( ' <parameter> ' ) ' 

// represents the aggregation of the components in the lang. 

J 

<att ribut e-name> : IDENTIFIER; 

// usually the attr. in the meta type. 

(attribute-name-list> 

: Cattribute-name> 

I (attribute-name-list> '.' (attribute-name> 

* 

coption-expression3 : OPTION-BEGIN <parameter> OPTION-END 

* 

// OPTION-BEGIN is usually "[" 

I /  OPTION-END is usually "1" 

<list-expression> : LIST-BEGIN <parameter> "," <list-separator> LIST-END 



// LIST-BEGIN i s  usua l ly  " (" 

// LIST-END is usua l ly  ")" 

f LIST-BEGIN <parameter> LIST-END 

// us ing  t h e  d e f a u l t  l i s t  sepa ra to r  o r  t e rmina to r  

< l i s t - s e p a r a t o r >  : "s" STRING 

// which means t h e  s epa ra to r  of t h e  e l e .  is t h e  s t r i n g  

I "e" STRING 

// which means t h e  te rmina tor  of each ele.  is t h e  s t r i n g  

: <parameter> SELECTION-SEP <parameter> 

<select ion-expression> SELECTION-SEP <parameter> 

// SELECTION-SEP usua l ly  i s  " 1 "  

I 

5.3.2 Algorithms for Generating YACC Rules 

The above BNF rules represent our basic ideas about meta operations and the Comma 

Expression for the parameters of the meta operations '. The algorithms for generat- 

ing the BNF rules in YACC program format for the target language from the meta 

operations defined above are as follows: 

(A) From a meta-operation definition, a top level BNF rule can be generated for 

this meta operation. The left hand side of this top level BXF rule is generated by 

4Here for simplicity we omit the definitions of <action> and parameter naming mechanisms which 
aEe quite easy to process- 



combining the meta type name (if none, use -GLOBAL as the default type) and the 

meta operation name of the meta-operation, and the right hand side consists of the 

elements generated by the parameters for the meta operation. 

For example, &om meta statement (2) in the above example, our system will 

generate the fol!owing EN7 rules: 

CLASS-create : "class" TYPE-IDENTIFIER 

CLASS-create-option1 "type" "tuple" 

" (" ATTRIBUTE-list "1 " CLASS-create-option2 

"end" 

CLASS-create-option1 : I* null */ 
i INHERITANCE 

ATTRIBUTE-list : ATTRIBUTE 

1 ATTRIBUTE-list "," ATTRIBUTE 

The left hand side symbol for the top level syntax rule (the first rule) generated by 

our system is CLASS-create, 

[B) Generating the right hand side elements from the parameters in the meta 

operation. Each parameter will generate a symbol with zero or more BNF rules for 

this symbol according to the following rules: 

1, If the parameter is a STRING, the symbol generated is this STRING itself, and 
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no more BNF rule ~ i l i  be generated for t,his parameter; In the above example, 

"class",  "type", ...$ fall into this category. And in the generated YACC rules, 

"class",  "type" are the  symbols for the corresponding parameters. 

2. If the parameter is a meta-path-expression, we have to look at the domain of 

this meta path expression. There are several cases: 

fa) If the domain is TOKEN (TYPE.Name in statement (2) falls into this cat- 

egory because the domain of Kame in meta type TYPE definition is TOKEN), 

our system will check to see if there is any further specification about the domain 

(in our example, the domain of Name is further specified as TYPE-IDENTIFIER). 

The symbol generated by this parameter will be the most specific TOKEN do- 

main. Corresponding semantics checking actions may also be generated to check 

along the path as we mentioned in Chapter 3. 

(b) If the domain is another meta type, the syn~hol generated will he the symbol 

representing this meia type. In the above example, the domain of Inheritance 

is INHERITANCE, so the symbol in the second clause of TYPE-create-option1 

is INHERITANCE, 

(c) If the domain is a list of Comma Expressions, then the symbol will be 

generated according to the rules for the list which will be described later. The 

default separator or terminators will be inserted into the rules generated by the 

Iist parameters. fn the above example, the domain of At t r ibutes  is a list of 

3. Pf the parameter is an optional-expression, we will generate a symbol for this 

option, which is the type name of the operation combined with the digit string 

representing the current aumber of option expressions in the type. For a meta 
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operation without a type, we just assume a -GLOBAL type. 

symbol will represent the parameter in the original rules, and 

for the symbol will be generated as follows: 

<option> : /* null */ 

The generated 

two more rules 

In the above example, TYPE. Inheritance falls into this category. The symbol 

generated for this option is CLASS-create followed by optionl. Two more 

rules are also generated for this symbol, one is null, the other is the symbol 

generated by TYPE. Inheritance, which, according to the above rules, should 

be INHERITANCE. 

If the parameter is a list-expression, first we have to  check the domain 

the element in the list, and generate a symbol for this domain (denoted 

<symbol-f or-this-domain> here). The symbol generated for the list is then 

<symbol-for-this-domain>-list; and two more rules will be generated for 

this symbol: 

According to the d e s  about the the list separator or terminator, we should 



CHAPTER 5. SYSTEM IMPLEAIENTATION 

also insert corresponding symbols in the above rules. Corresponding semantics 

action for the domain checking also be attached to the rules. 

In the above example, Attributes is the same as l i s t  (ATTRIBUTE), so it falls 

into this category. First we generate the symbol ATTRIBUTE-list,  and then two 

more rules are also generated for ATTRIBUTE-list.  

5. If the parameter is a selection-expression, then similar to the optional-expression, 

a new symbol in the format of <type-name>-selection-<number> will be gen- 

erated for this parameter, and one more rule for this symbol will also be gener- 

ated: 

6. If the parameter is an aggregation of several comma expressions, we will generate 

a new symbol in the format of <type-name>-aggreg-<number>, and one more 

rule for this symbol will also be generated: 

> 

From the above BNF rule definitions for the meta operations and algorithms to 

generate BNF forms in the format of YACC rules from the meta operations, we can 

see that a YACCILEX can be eady  constructed to implement the algorithm. 



5.3.3 Semantic Actions Hooked to the Syntax Rules 

For each generated YACC rule, some semantic actions are also generated and attached 

to the corresponding part of the rule. The following is one of the above rules hooked 

with some semantic actions for this rule:5 

{ /* allocate a new class entry in the symbol table, etc */ 

current-new-class-entry = malloc(sizeof(ClassTypeInfo)); 

"class" "type" TYPE-IDENTIFIER 

{ /* store the string value of this TYPE-IDENTIFIER */ 

/* in the class entry in the symbol table. */ 

current-new-class-entry -> Name = $4; 

( /* store the inheritance info. in the table */ 

3 
tttype1t ~ ~ ~ ~ l ~ t ~  II ( 11 ATTRIBUTE-list 'I) " TYPE-creat e-opt ion2 

"end" 

{ f* create a class in the meta schema */ 
'The following actions are based on our test implementation. We assume the variable 

current-nev-class-entry points to the current entry of the dass symbol table. ClassTypeInf o 
is a type defined for storing information of class definition. Please refer to the YACC manual for 
details. 
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/* depends on the underlying OODBMS */ 

We can see that these actions are mainly dependent on the semantics of the meta 

operations that generate the rules. Since the basic semantics of each meta operation 

is predefined and well-known to our system, these semantic actions can be generated 

automatically by our system. In the above algorithm for generating of the YACC 

rules, we also mentioned how to generate some constraint checking semantic actions. 

Language specifiers can also provide their own semantic actions to some meta 

operations or the Comma Expressions in the meta operations, and these actions can 

be mapped to the actual YACC semantic actions in a straight forward manner. A 

more formal system for t,he semantic action description is omitted in this thesis. 

5.3.4 Parser Stack Design and Type Definition for the Sym- 

bols 

In an Y A W  program, besides the syntax rules, we also have t.0 define what kind of 

information we should keep track of for the symbols appearing in the syntax rules. 

This is done through the parser stack design and type definitions for the symbols. 

A parser stack is usually a union of the types defined for the symbols, and types 

for the symbols are decided according to our meta type definitions and what kind 

of information we should keep track of for the meta operations for the meta types. 

For example, for the symbol generated from the meta constructor for the meta type 
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INHERITANCE, we have to record all the information about INHERITANCE. Hence, 

we have the following definition in our YACC program: 

%type<inheritance~nfo> INHERITANCE 

where inheritanceInfo is a member of the union for the parser stack. The type of 

inheritanceInfo is InheritanceInfo which is actually some kind of direct transla- 

6 tion from our meta type definition for INHERITANCE, 1.e. 

InheritanceInf o C 

We actually have predefined elements in the parser stack and type definitions for all 

the predefined meta types and meta operations in this way. For the new components 

constructed by the language specifiers, we can define the parser stack and types for 

the symbols in a way similar to that of the predefined meta types. This is because the 

new components are built on the predefined meta types (domains) and operations. 

Detailed description is omitted here. 

6Here, we use Objectstore collection constructors for our test implementation, but actually, we 
can use simple C and C++ structure to represent this. 



Chapter 6 

Conclusions and Further Research 

6.1 Summary 

The rapid development in OODBAfS and query languages for OODBMS during the 

past few years has presented two important problems to researchers and industry. One 

is the inter-operability between different systems in the multidatabase system envi- 

ronment. Even for the relational database systems, the problem of inter-operability 

is also a very important one. A lot of front end systems between the systems from 

different RDBMS vendors have come out and some standard connection protocols 

such as ODBC (Open DataBase Connection, a database inter-operability standard 

by Microsoft) have been proposed and developed. Since there are many more variants 

of OODBMS's and all of them are much more complicated than RDBMS's, we believe 

that the inter-operability between different OODBMS's will be more important to the 

Another problem is the development of Customized Query Languages. 

118 

Because 
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of the complexity of OODBMS and the variants of OODBMS applications, CQL's 

are more suitable interfaces for ordinary end users of many OODBMS applications. 

Generally, development of a moderate complex CQL directly based on the basic ser- 

vices provided by a general OODBMS needs a lot of expertise about the underlying 

OODBMS, formal language specification, compiler techniques, query processing and 

optimization. The development also takes a lot of time and effort. Hence the develop- 

ment tool for CQL's based on OODBMS is very important for OODBMS application 

developers. 

In this thesis, we proposed a new approach for OODBMS query language front end 

development which can help systematically solve the above two problems together. 

We suggested and also provided a concrete design of a genera1 framework for query 

language front end specification based on an abstract Object Model and abstract 

query language. A lot of different CQL's and query languages of different systems 

can be specified based on our systems. A specification based on our system will 

be object-oriented, using message passing instead of a formal grammar specification. 

Language specifiers can reuse a lot of common components pre-built in our system, 

dramatically reducing the work of specification. Most of the specification itself is also 

the "implementation" in the sense that our system understands the syntax as well as 

the semantics of the specification, hence a query processor for the specified query lan- 

guage can be directly generated from the specification. So the language specifiers do 

not have to know very much about formal language specification, compiler techniques, 

query processing. We can also generate several query processors based on several dif- 

ferent underlying OODBMS's for the specified query language so that the query based 

on the specified query language can actually run on different underlying platforms. 

At the same time the query language developers may not have to understand all the 
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underlying OODBMS's at an expert level. 

Our work combined the techniques and research results from several different ar- 

eas. First one is the rapid development of OODBMS's. Most of basic concepts and 

functionalities of OODBMS are accepted widely, and object models and query lan- 

guages have come to a mature stage. Combining the features from the most important 

systems and standards, we proposed a general abstract object model, and this model 

is the corner-stone of our whole system. 

Another important technique used in our system is the formal language specifica- 

tion, compiler techniques and automatic pr0gra.m generation. Since our system is a 

tool for query language specification, we have to consider all the basic aspects of for- 

mal language specification and try to make the task of language specification easy and 

convenient for ordinary developers. LEX and YACC are two basic general tools for 

formal language specification and automatic compiler generation. The concrete design 

and implementation of our system is actually based on these two tools, although in 

the user interface, we use some quite different formats. Therefore the concrete design 

of our system is heavily influenced by 'YIACC and LEX, and the implementation of 

our system is also based on them (but the basic design idea is not dependent on these 

tools. Our design should also be able to be implemented by other compiler-compiler 

tools). 

The most important feature of our system, also one of the main contributions 

of our research is that we used an object-oriented methodology in the design of the 

whole system, combining the above two main kinds of techniques in a seamless way. 

The interface provided to the language specifiers is also in object-oriented way. We 

abstracted the common components from different systems and used object oriented 
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way to analyze the abstract components. So the abstract object model is pre-built 

in our system in an object-oriented manner. Object-oriented style is also used in 

the formal language specification. Syntax appearance and the semantics aspect of 

the formal language become different facets of the abstract objects in our system, 

and the syntax specification usually also serves as the semantics specification of the 

same components. To our knowledge, our work is the first one to use object-oriented 

methodology in formal language design (including specification and implementation). 

Our object-oriented design and presentation of the interface of our system also 

reflects the object-orientation of the design and the implementation of our system. 

Actually, some of the basic meta-types and objects have the corresponding inter- 

nal meta-types and almost all the meta-operations defined on the abstract objects 

have the corresponding internal met a-operations. For example, the meta-type TYPE 

presented to the language specifiers has a corresponding meta-type "type" in our im- 

plementation. All the meta-operations of TYPE also have the internal representation, 

like the meta-operation TYPE : : create presented to the language specifiers has the in- 

ternal corresponding meta operation type::create( ...), which will be mapped onto any 

actual underlying OODBMS in which the generated query processor will run. These 

internal representations are defined in an object-oriented way and are some general 

abstractions of meta-types and operations of different underlying OODBMS's. When 

the language specifiers want to generate the query processor running on a certain un- 

derlying platform, the general abstraction of these meta types/objects and operations 

wiif then be mapped onto the actual types/objects and operations of that underly- 

ing OODBMS. So our meta system serves as a shield between the front end query 

languages and the underlying database sys tems. 
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6 2  Future Research 

There are some area of research that can be done in the near future along the direction 

of this thesis. 

e Prototype Irnplementaf,ion: Although we have partially implemented our 

system based on Objectstore, there is still some more work to do for a proto- 

type system of our design. In our current design, we had to  ignore some features 

of query languages, such as virtual attributes specification, transactions man- 

agement, etc. Also, our design of the whole system is still not very exquisite. For 

a more realistic prototype, a more careful and comprehensive design is needed. 

Our current testing experiment is only based on Objectstore. That is to  say, we 

only generate different query front cads (query processors for different query 

languages) on Objectstore. Although, according to our studies, generating 

query processors for other OODBMS's from the query language specifications 

based on our system should be quite similar to our current test, more com- 

plete inter-operability between query languages of several different, OODBMS 

can only be implemented if we implemented our system on several other pop- 

ular OODBhIS's, such as 02 ,  Objectivity, etc. So prototypes based on other 

0CDBMS7s should also be constructed. 

Graphic User Interface for Query Language Specification: Although 

we used object-oriented style in our interface to the language specifiers, and 

the language specification in our system is easier than that in ordinary for- 

mal grammar, a more friendly graphic user interface can be designed based on 
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our abstract meta components. In the graphic user interface, all the prede- 

fined meta-types/objects and meta-operations can be displayed to the language 

specifiers. Customization and tailoring can be done directly by changing the 

corresponding parts on the meta-operations displayed in the GUI. Through this 

kind of graphic user interface, the language specifiers can have a better global 

understanding of our system and they can use our system more efficiently. 

Query Optimization: In our t.hesis, we have not considered query optimiza- 

tion strategies in detail. But query optimization is one of the crucial parts of 

query processing. Although a lot of query optimization strategies for traditional 

SQL may still be applicable to the query languages of OODBMS's, there are 

a lot of more complex situations where we have to consider some new opti- 

mization algorithms. Since current optimization algorithms are mainly based 

on the predefined operations for the predefined types in the system, while in 

object-oriented query languages a lot of user defined operat.ions are involved, 

some optimization hints provided by the designers based on the operation spec- 

ification/implementation should be very useful to the system. Rules (operation 

algebraic rules: logic rules or code segment transformation rules) will be some 

kinds of vehicles for language specifiers to provide these hints. Because cf the 

complexity of the object manipulation language, optimization algorithms used 

in compiler systems for ordinary program languages may also be very useful for 

the complicated query languages of OODBMS's. This area is a kind of inter- 

discipline of OODBMS and programming languages. A lot of research is needed 

in this area. 
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00 Design of Generic Language Specification: Formal language specifi- 

cation is very important in a lot of application areas. And traditional formal 

language specification is too cornplficated for ordinary developers. Our thesis 

proposed a new way for formal language specification, especially for the formal 

specification of a language family based on some similar semantic models. An 

abstract semantic model and a default language (or a language with abstract 

syntax) can be predefined in an object-oriented way. Each language in the lan- 

guage family will be one kind of concrete appearance of the abstract language. 

With the help of compiler techniques and aut0mat.i~ program generation, the 

languages can be implemented by a predefined system for this language family. 

For example, in the telephone network, different digital switches may be used, 

and different switches from different manufactures use different sets of switch 

commands. But the underlying semantics of these switch commands are quite 

similar. We believe that our design idea can be used for the inter-operation of 

these different. switch commands. 
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