I* Nationai Library
of Canada

Acquisitions and

Bibiiothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Streel
Ottawa, Ontanio
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the ocriginal thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

1<k

anada

395. rue Wellinglon
Ottawa (Ontario)

Your Ide Voire telecerce

D e Natre reference

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a laide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

OBJECT-ORIENTED QUERY LANGUAGE SPECIFICATION
AND QUERY PROCESSOR GENERATION

by

Jibin Zhan
B. Sc., Peking University, China, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School

of

. . .
Computing Science

(© Jibin Zhan 1994
SIMON FRASER UNIVERSITY
June 1994

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without the permission of the author.

.*l National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
385 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa {Ontario)
K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-06882-X

~ Canad

Your file Volre référence

Ouwr file Notre rélérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE -
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

APPROVAL

Name: Jibin Zhan
Degree: Master of Science
Title of thesis: Object-Oriented Query Language Specification and Query

Processor Generation

Examining Committee: Dr. Hassan Ait-Kaci
Professor, Computing Science

Chair

Dr. Wo-Shun Luk
Professor, Computing Science
Senior Supervisor

Dr. Jiawei Han
Associate Professor, Computing Science
Supervisor

Dr. Warren Burton
Professor, Computing Science
Examiner

Juwe (7, (95

‘Date Approved:

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the r:ght to lend my thesis, project
or extended essay (the title of which is shown below) to users of the Simon
Fraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholatly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed
without my written permission.

Title of Thesis/Project/Extended Essay

Object-Oriented Query Language Specification and Query Processor Generation.

Author:

(signature)

Jibin Zhan

{name)

June 21, 1994

(date)

Abstract

In this thesis, we proposed a systematic approach for query language customization
which can lead to Customized Query Languages (CQL) and different query front
ends on new generation database systems in the heterogeneous database environ-
ment. Our approach is based on a core Object-Oriented data model and query model
that is derived from the data models of Object Management Group(OMG, 1990),
‘Object Database Management Group(ODMG-93) and some other Object-Oriented
and Extendéd Relational Database Systems, like O2, Orion, Postgres, and SQL3.
Object-Oriented methodology is used in designing and presenting the data model and
query model, i.e. all the basic components in the data model and query model are
abstracted into meta-objects and meta-types, for which some basic characteristics
and operations are defined. Special default “constructors” for all the meta-types are
provided to représent both the default semantics and syntactic appearance of the cor-
responding components in our default Object Definition Language(ODL) and Object
Query Language(OQL). Qﬁer}f language specifiers can provide their own “construc-
tors” for these meta-types to override the default ones in order to tailor the syntactic
appearance and /or semantics. New components and operations corresponding to some

new components in the specified query languages can also be defined in a similar way

iii

as the new types and functions defined in C++. Following this approach, a non-
procedural specification language is proposed which leads to automatic generation of

query langunage specific processor in LEX and YACC.

iv

Acknowledgements

I would like thank to my senior supervisor, Dr. Wo-Shun Luk, for his encouragement,
guidance, fruitful discussions and many other helps.4 Without his full support, this

thesis will be impossible. I would also like to thank Carlos Wong for his productive
discussions on my work.
Special thanks to Andrew Fall and Martin Vorbeck for their patient proof-reading

of my thesis.

Contents

Abstract i1
Acknbwledgements %
1 Introduction 1
1.1. New Generation Database Systems, 1
1.2 Query Language Issues for New Generation Database Systems 2
1.2.1 Declarative or Procedural 2

1.2.2 Standardization oL 3

1.2.3 Customization of Query Language 4

1.3 Current Research 5
1.3.1 Standard Worko 6

132 Front End Systems L 6

133 Customized Query Languages 7

1.4 Our Approach and Thesis Organization 8

vi

2 Design Overview 11

2.1 Front End Approach L. 12
2.2 Abstract Object Model and Query Language 16

2.3 Object-Oriented Design of the Abstract Object Model and Query Lan-

BUABE L e e e e e el e 18
2.4 Constr’ucting New Components for CQL 20
2.5 Implementation Consideration: Automatic Generation of Query Pro-
CESSOT & v v v v v v e e e e e e e e e e e e e e e e e 21
2.6 Language Specification Overview 22
2.6.1 Lexical Elements and Lexical Rules 24
2.6.2 Non-terminal Syntactic Symbols 25
2.6.3 SyntacticRules 26
2.6.4 Language Semantics 26
3 Abstract Object Model and ODL 28
3.1 Object-Oriented Data Model Overview 28
3.2 OBJECT 30
3.21 Basic Attributes. oo 31
3.2.2 Basic Opera;tions 33
3.2.3 Speciﬁcation and Explanation 34
3.’2;4" Examples of Modifications and Extensions 38

33 TYPE 39

vil

3.6

| 38

3.3.1 General Discussion
3.3.2 Basic Attributes.
3.3.3 Basic Operations
3.3.4 Specification and Explanation

3.3.5 Examples of Modifications and Extensions

INHERITANCE e 3
3.4.1 General Discussion S
3.4.2 Basic Attributes. | B
343 Specification and Explanation

3.4.4 Examples of Modifications and Extensions

CHARACTERISTIC and PROPERTY
3.5.1 Basic Characteristics
3.5.2 Specification and Explanation
ATTRIBUTE
3.6.1 Basic Attributes. o
3.6.2 BasicOperations
3.6.3 Specification and Explanation
RELATIONSHIP
3.7.1 Basic Attributes. L
3.7.2 Specification and Explanation

OPERATION

45

46

47

3.9

3.10

3.11

3.8.1 Basic Attributes and Operations
3.8.2 Specification and Explanation
TYPE, Type Generator and Type Hierarchy
3.9.1 Predefined Basic Types -
3.9.2 Predefined Type Generators . . . U
3.9.3 Predefined Structured Types . . . L

COLLECTION o e

3.10.2 Basic Operations
3.10.3 Specification and Explanation
3.10.4 Predefined Sub-types of Collection L.

User Defined Components for ODL

OQL and META-OQL

4.1

4.2

4.3

4.4

4.5

4.6

4.7

General Discussion, .
Basic Expressions

Operational Expressions

Object Constructing Expressions e »

Path Expressions
Collection Related Expressions

Type Conversion Expressions

X

76

78

80

81

4.8 Select Expressionso
4.8.1 General Discussion e
4.8.2 Basic Semantics oL e
4.8.3 Specification e e

4.9 User-defined Expressions oL

5 System Implementation

51 Examples

‘ 52 i—ioﬁr Our System Works o e e
5.2.1 Language Specification Ce

5.2.2 Processing the Language Specification S

5.3 Implementation of Our System
5.3.1 BNF for the Meta Operations

5.3.2 Algorithms for Generating YACC Rules

5.3.3 Seméntic Actions Hooked to the Syntax Rules

5.3.4 Parser Stack Design and Ty'pe Definition for the Symbols . . .

6 Conclusions and Further Research

6.1 Summary . . .

6.2 TFuture Research

..............................

101

101

104

106

106

110

115

116

118

List of Figures

I
[PV o

o
Y

!
ot

3.1

4.1

&‘J‘l
-3

Data Model Mapping From Front End to Underlying Platform 13

“Different Front Ends on One Underlying Platform ST 14

One Query Language Implemented on Different Underlying Platforms 15

Our Approach for Query Processor Development. 19
General Approach for Query Processor Development 22
Characteristics subtree of the metatypes 53
Type System L 66
Basic Predefined Data Type 67
Predefined Type Generator 72
Predefined Structured Types 74
Query Expression Classification 82
How Our System Works 102

e

Chapter 1

Introduction

1.1 New Generation Database Systems

Relational Database Systems, which mainly focused on business applications and only
provided simple data management have been proved inadequate for many advanced
applications, such as CAD(Computer Aided Design), CASE(Computer Aided Soft-
ware Engineering), GIS(Geographic Information System), etc. In the past decade, a
lot of research and development have been conducted and tried to bring the so-called

new generation database systems to these application areas.

There are several different approaches based on different data models to address
the problems of new generation database systems. The most obvious apprcach is
based on the extended relational data model which incorporates complex data types,
procedures and other new features into the basic relational data model. This leads to
the extended felational database systems, for example, Postgres. Another approach is

actually inspired by the Objecthriented Programming Languages. The data models,

CHAPTER 1. INTRODUCTION 2

which have complex data types and operations defined on the data types, are called
object-oriented data models, and the systems based on these models, such as 02,
Orion, Objectstore, etc are called Object-Oriented Database Systems. Most of the
current new generation database prototypes or commercial systems are based on these
two kinds of data models, although there are some others based on functional data

models or semantic data models.

Despite these different approaches, “There is a surprising degree of consensus on
‘the desired capabilities of these next-generation systems” [17]. As summarized in
[17], [4] (Chapter 6), etc, one of the primary gdraLls of the new generation DBMS |
~ is to support complex data management. This means that, first the DBMS should
provide facilities for directly describing complex data structures in a natural way for
the applications; and secondly the DBMS should also provide an efficient and natural
way to store and manipulate the complex data. From users’ perspective, this means
that the DBMS should provide an interface, usually in the form of query languages,
either declarative or procedural, stand-alone or embedded, that can deal with complex

data.

1.2 Query Language Issues for New Generation

Database Systems

1.2.1 Declarative or Procedural

Standard non-probedural query languages are one of the main reasons for the suc-

cess of relational database systems. For the new generation database systems, people

CHAPTER 1. INTRODUCTION 3

begin to agree that declarative data definition languages and data manipulation lan-
guages are still one of the most desirable features to the users. This is not only
because declarative languages are easy to learn and use, but also they can provide
more physical independence. In a lot of typical situations, performance of high-level
queries can be better than ordinary hand coded low level associative queries. This is
because the system itself knows more details of its implementation and there are a lot
of well-defined query optimization algorithms for these cases. This is quite similar to
the fact that people usually do not have to write programs in assembly languages if

~ there is a good compiler for a high-level language.

1.2.2 Standardization

- For relational database systems, the standard query language is based on the simple
relational data model, relational algebra or relational calculus, in which there are
only one structured type(relation) and three operations(selection, projection, and
join)r, which satisfy the database computational rcornipleteness [4] (i.e. in some sense,
all the computational tasks that on the information in the database can be done with
these operations). We can say that the origin of the relational query language is the

relational data model theory.

Unlike RDBMS’s(Relational Database Management Systems), the origin of declar-
ative query languages is the appliCation needs and the compatibility with SQL. But in
réality, there are a lot of difficulties in providing a general declarative query language
for all the new generation database systems. One of the main reasons is that there is

‘no single data model that is widely accepted for the new generation DBMS. Because

of the'complexity of the underlying data model, there are also a lot of variants even for

CHAPTER 1. INTRODUCTION 4

the same data model. For all these data models, none of them has a very solid theo-
retiéal foundation that is similar to that of the relational data model. As a result, the
query languages for the new generation databace systéms are quite different from one
to another. Right now, no standard query language for the new generation database
systems are widely accepted like SQL for RDBMS. Instead, different systems provide
their different query facilities, and some of the object-oriented database systems even

have not provided any declarative query language at all.

1.2.3 Customization of Query Language

Another problem related to the declarative query languages is that for many advanced
applications, there are a lot of application specific semantics in the data. When users
do the data entry, maintenance and manipulation, they want to use a query language
that embeds a lot of these semantics in it, so that it is much easier and convenient for
them to use. They may even want to use the vocabularies specific to the a,pplicatioris in
the query languages, nof only just the ordinary select;from—\vhere format. These kinds
~of query languages are called Customized Query Languages(CQL). CQLs usually are
defined and implemented by some application programmers on a certain underlying
platform. Usually, to provide a clearly defined and efficiently implemented CQL is

not an easy work for ordinary application programmers.

Although many end users may prefer CQL for many advanced applications and
they fhay‘ not want to use any general query facilities, the need for CQLs should not
Be'used as an argument against the need for general declarative query languages. This
is bécause rnany‘e’nd' uéers and application programmers still need query languages

“to phrase their ad hoc queries. CQL and the general query language are actually in

CHAPTER 1. INTRODUCTION 5

different layers of the database systems. As we can see later, usually a CQL should be
built based on the basic components of the general query languages instead of starting

" from scratch.

1.3 Current Research

There is a lot of research on query languages for the new generation database systems.
For the extended relational database systems, they mainly focus on the extension of
relational query languages by incorporating a lot of object-oriented concepts into
~ them. For example, Postquel(which is based on relational query language Quel of
Ingres) in Postgres. For the object-oriented database systems, they usually want to
adopt SQL-like format for some typical data manipulation patterns because of the
popularity of SQL. Several systems like O,, ORION, etc, provide stand alone query
facilities in the format similar to the standard SQL; and some others like Objectstore,
provided embedded declarative and/or associative query languages. Although, the
semantics and functionalities of the query languages are quite similar, there are still

a lot of differences between query languages of different systems.

The variants of the new generation systems and their query languages create a
lot of problems for the users. At the current stage, with a lot of network connections
and different database systems co-existing, users may have to learn different query
languages for different database systems. When they phrase the queries, they have to
knéw ‘what kind of database ;ystems'they are using. I they want to use customized
qu‘ery‘langyuages, then the application programmers may have to implement the lan-
‘ guagé on different plétforms, which may need a lot of expertise of different database

‘systems.

CHAPTER 1. INTRODUCTION 6

1.3.1 Standard Work

A lot of research has been done addressing these problems. One of the main efforts is
‘the standardization of the new generation database systems based on the researches
and development of a lot of different systems in the past decede. Nevertheless, current
étandards are only limited to several different data models, although they do absorb
some new concepts from other data models. Along the relational and extended re-
lational database systems, SQL3 is the on-going standard. Within object-oriented
database systems, there are several different groups working on their standards, such
as ANSI VObject-Oriented Database Task Group (OiODBTG,VlQQO)', Object Manage-
ment Group (OMG, 1990), and more recently Object Database Management Group
(ODMG, 1993), etc. Standardization remains a long-term goal. At least in the near

future, it may only reduce the problems, but will not eliminate it completely.

1.3.2 Front End Systems

Another approach isr trying to provide some facilities for users and systems to use
different platforms easily. Front end systems are ene of them. Actually, a query facility
that is provided to the users‘ is only a front end of the underlying database system.
The samge underlying platform can support several different front end query languages.
Even for relational database systems, because of SQL being developed by different
venders having'some different flavors and extensions, a lot of front end systems have
~ appeared on the market. For example, Sybase, as an underlying platform, may have
an “Ora,cle front, ‘ereld provided besides its own front end query languages. The data
| r.ﬁode] of a fiont end query fa,ci]ity"ma,y‘ also be different from the data model of the

‘underlying database system, although usually they are the same. Some research has

CHAPTER 1. INTRODUCTION 7

been done to build object-oriented front ends on relational database systems [13], and
there are even some commercial systems like Persistence”™ [16] in the market. There
is also some work trying to build relational front ends on object-oriented database

systems|[14].

1.3.3 Customized Query Languages

There are a lot application specific query languages, which have been defined and
- implemented on different database systems for some special applircations. For example, -
TQuel is a relational query language that can deal with temporal predicates and it
was ‘developed on the relational database system Ingres [19]. Geo++ is a GIS system
built on the extended relational database system Poétgres, and it provides a spatial
query language based on Postgres [15] [20]. DCQL, developed on the object-oriented
database system Objectstore, is a CQL that can manipulate 3-D objects in a blocks
world [11].

In relational database systems, the,query languagés usually do not support user
defined functions or predicates. If users want to use some new predicates in the query
language, like the temporal predicates in TQuel, the application programmers have to
do a lot of work. Not only do they have to define and implement the new predicates,
’but also the need to redo a lot of query processing work in his application programs,
~ even though most of the work, like parsing and optimization, is already done in
the 6riginal :query processor. - This is becausé the iriterface between the relational
| (viz‘a,tarbasey system and the user (including the application programmer) is quite simple

and limited. In extended rela;innal and object-oriented database systems, the query

languages directly support user-defined functions and predicates. It is much easier to

CHAPTER 1. INTRODUCTION 8

~ add new predicates into the query languages. For example, for the query language
in Geo++ system, the developers only have to define and implement the new spatial
predica.tes, and do not need to worry too much about how to integrate these new

predicates into the original query language Postquel.

But if the CQL that the user wants to use has some different components or
syntéctic appearance other than the basic query languages, the developers may still
have to redo a lot query processing work, like parsing, internal processing, overall
optimization, etc. For example, in the development of DSQL, the developers had to
define all the syntactic rules and do all the parsing work for the query, even though
most of them are quite similar to the ordinary qﬁery languages. In current research
#nd deVelopmént, there is still no systematic appfoé.ch forr developing such. kind of

CQLs on new generation database systems.

1.4 Owur Approach and Thesis Organization

Addressing the problems discussed above, in thié thesis, we propose a systematic
approach for query language specification a.an implementation which can help devel-
- opers build different query front ends and Customized Query Languages for different
applications on new generation database systems in the heterogeneous database en-

vironment.

- Based on @m studies of several popular new generation database systems and
standards, we abstracted a lot of common components in the abstract level from
the data models and query languages of these systems. These common components -

é,ctﬁélly consist of a.n abstract comrﬁdn object model and query model. Based on

CHAPTER 1. INTRODUCTION 9

these models, we also provide a default query language and some kind of mechanisms
for modifications and extensions to the default query language, both semantically
and syntactically. The description of the modifications and extensions consists of
~ the special feature specifications of the target query lémgua,ges users want to spec-
ify.r According to these specifications, our system can automatically generate query

processors for the target query languages.

For ease of use and understanding of our system, obj‘e"ct-oriented methodology is
used in our design of our abstract object model, default query language and the tools
for modifications and extensions. This is to say that all the common components in
the data model and default query language are represented by some kinds of meta-
objeéts. The design of these common corﬁponents embed the basic semantics of the
object model and query model. Syntax of query languages based on these models
are represented by the special kind of meta “constructors” of these meta objects.
Query language specifiers can provide their own “constructors” for the meta-objects
to override the default one in drder to tailor the syntactic appearance and/or semantics
of these components. New components and operations corresponding to some new
' components in the target query languages can also be defined through constructing
some new meta objects and meta operations in a similar way to the new types and
functions definition in C++. Since the whole query language specification is based
on the pre-defined basic components, we can understand the syntax as well as the

- semantics of the target query language. Hence a query processor for the specified |
J “language can be gene:a’géd' automatically.

~ In our approach, la,ngua.ge‘spe’criﬁers usually only have to specify their special
feé,turés (c(}mpa,ring to the default one we provi’ded) in their target languages. In this |

<, way, they actually éan réuse both the speciﬁ:ca,tionr and implementation of most of

CHAPTER 1. INTRODUCTION 10

the common components in query languages, and their work of building customized

query languages can be dramatically reduced.

~ Another more important advantage of our approach is'that in multidatabase envi-
ronment, our high level specification of a query language provides a high independence
for rthe implementation of the query processor for this query langﬁage from the un-
derlying platforms. Actually, language specifiers can concentrate on language design
itself, do not ha,ve to worry about how to implement it on different database systems.

Because our system can generate the query processor automatically for them.

“In the following chapters, Chapter 2 will give some more general overview of our
ra,pproach. Chapter 3 will concentrate on the common Components in the Object
DéscriptiOn Languages (ODL) and the object—oriéntéd specification of these compo-
nents. Chapter 4 is the counterpart of Chapter 3 fdr the OBject Query Languages
(OQL). In these two chapters, we also use a lot of lahguage, examples to illustrate the
functionality and flexibility of our language specification language. Implementation
algorithms are described in Chapter 5, and some testing examples are also discussed
in this chapter. Chapter 6 discusses our conclusions, and some further work is also

suggested.

Chapter 2

Design Overview

In this chapter, we will give a general overview of our approach and explain the basic

underlying philosophy of our system design. This mainly includes the following points:

1. Front End Approach: We separate query processors from the underlying
platform, so that different query front ends can be built on one underlying

platform.

2. Abstract Object Model and Query Language: We abstracted a lot of
basic components from the object models and query languages of different new
generation database systems, and these abstract common components formed

an abstract object model and query language.

3. Object-oriented Design of the Abstract Ob ject Model and Query Lan-
guage: All the components in the object model and query language are rep-
.. resented by meta objects and meta-types, for which meta attributes and meta

operations are defined. Language spéciﬁcrs can customize the object model

Bi

CHAPTER 2. DESIGN OVERVIEW 12

and query language into the query languages they needed by providing their
own “constructors” for these meta objects. These “constructors” actually pro-
vide some kind of mapping of the data models and query languages from the

7 speciﬁed query language to the abstract ones We provide in our system.

4. Constructing New Components for CQL: For cusfomized query languages,
there may bé some special components which are not easy to be mapped directly
onto the components of our abstract query language. Our system also provide
some ‘mechanisms to the language specifiers to construct these special com-

rrponents based on our abstract components iﬁ ther a,bstra,cf 7object model and
query language. These special component constructions actually serve as some
“complex mapping from these language specific componenté to some ordinary

components in our abstract query languages.

Automatic Generation of Query Processor for the Specified Query

S_J!

Languages: According to the specification of the query language based on
our system, our system can automatically generate a YACC/LEX program for

the specification and further generate a query processor for the specified query

language.

In the following subsections, we explain these points one by one.

2.1 Front End Approach

Query languages are interfaces of data definition and data manipulation provided
by database sys‘tems‘.'They can be treated as front ends of the underlying database

kpla,t‘foniis. :A tiuery Ia.nguage is ﬁsiially'ba.sed on a certain data model in which

CHAPTER 2. DESIGN OVERVIEW 13

Application Application Application
Data Model Data Model | Data Model
Front End Front End 1 Front End
Data Model Data Model ' Data Model
Underlying System
Supported
Data Model

y

System Implementation

Figure 2.1: Data Model Mapping From Front End to Underlying Platform

the users will define and manipulate their application data. The data model of the
front end should be close to that of the application so that the mapping between the
application data model to the front end data Ihodel can be natural and efficient. But
the data model of the front end need not be the same as the one of the underlying
platform, as long as we can have an automatic and efficient way to map the front end
;iata. model to that of the underlying database system (see figure 2.1). So the same
underlying database system may support different front ends (figure 2.2), and one
query language (including some CQL) can be implemented on different underlying

platforms (figure 2.3).

Our purpose of the separation of front ends from underlying platforms is to try to
provide a maximum insulation between the front end of the,database systems that the

user’s_use and the underlying platforms that may be different in the network. This kind

Front End Cuery
Processor For A

DB Calls To The
Underlying DBM

CHAPTER 2. DESIGN OVERVIEW

Front End Query
Processor For B

14

Queries
Language C

L §

DB Calls To The
Underlying DBM :

Front End Query
Processor For C

DB Calls To The
Underlying DBM.

RN

Underlying
DBMS X

Figure 2.2: Different Front Ends on One Underlying Platform

CHAPTER 2. DESIGN OVERVIEW

Queries
Language A
l | 4 l .
Front End For A Front End For A Front End For A
On DBMS X OnDBMS Y On DBMS Z

DB Calls To
- DBMS X

Underlying
DBMS X

Figure 2.3: One Query Language Implemented on Different Underlying Platforms

DB Caiils To
' DBMSY

Underlying
DBMSY

DB Calls To
DBMS Z

Underlying
DBMS Z

CHAPTER 2. DESIGN OVERVIEW 16

of insulation first can be very useful for the end users, because they only need to learn
one kind of front end query facility and phrase their queries in this query language,
even though they are actually using different platforms. For example, suppose a user
‘is familiar with O2 query language, and now he has to use a database system with
the underlying system of Objectstore (Which currently does not provide any stand-
alone query language). With an O2 front end buiit on VObjectstore, the user can use
Objectstore as if it were O2. Secondly, it is also good for the application developers:
when they develop a certain application specific query langudge (ASQL or CQL), they
dornot havé to ;nforry about the underlying platforms. Instead they can concéntraté
on the front end designing itself. Actually, a CQL can also be treated as a kind of
front end of the underlying platform. A query based on a CQL can be mapped onto
a query facility (stand-alone or embedded query languages with some help of other
components in the host language) of the underlying platform directly. We will explain

more about this later.

2.2 Abstract Object Model and Query Language

The problem of whether it is easy to support different query front ends on one under-
lying platform depends on how different the front end object models/query languages
are from those of the underlying systems. Although there are a lot of different new
generation database systems, and different sysfems have different data models and
query Vla.ngua.g'es, after our studies of several popular new generation database sys-
" tems a.nd s;tanda,rds, we found a lot“ of commonalities in most of the systems. The

reason for this phenomenon is that the main goals and desired capabilities of these

CHAPTER 2. DESIGN OVERVIEW 17

systems are quite similar. As summarized in [4], “The new data models generally pro-
v’ide similar functionality”. Especially in recent years, all the data models incorporate
a lot of object-oriented concepts into them to deal with the problems of complex data
man#gernent, and they began to merge into oné datar model. “The important ob-
servation to make from this confusion of data models is that many data models are
slowly converging on a single data model that has a combination of features.” So the
difference between the data models is superficial compared to the small difference of
the underlying semantics, and “The data model is most. useful as a way to distinguish
the genealogy of a system;”[4]. Different query languagés based on these data modéls
may have different flavors or dialects, but the differences are more in syntactic aspects

than semantic ones.

Frérn our studies, we abstracted a lot of common features from the data models and
query languages of different new generation database systems and standards. These
common features, which can be divided into two main parts, META-ODL and META-
OQL (corresponding to Object Description Languages and Object Query Languages),
capture the basic semantics of the data models and query languages of different new
generation database systems. In a sense, all these common components consist of a
core abstract object model and a kernel query language. But the core abstract object
model and the kernel query language are at an abstract level. Because the common
features are abstract structures which describe not only the basié common semantics,
but also the special features of different -systems. Based on the abstract object model

| énd query language, we can describe various object models And query languages by
pfoviding a specification of the special features of that query language and object

model.

CHAPTER 2. DESIGN OVERVIEW 18

2.3 Object-Oriented Design of the Abstract Ob-
ject Model and Query Language

There are a lot of basic common conﬁponentsr in thé abstract object model and query
~language. Among these components, there are a lof of different constraints and rela-
tionships. For the ease of use and understanding of the general ffa,mework for query
language specification, we used object-oriented methodology in designing and pre-
senfing the whole model. That is to say, aH the éompronents in the model and query
langﬁagé are abstracted into somé kind of meta;objeéts and meta-types. All these
meta-objects and meta-types have their own meta attributes. And we also define

some special meta-operations on them.

Different concrete query languages based on the object-oriented data model can
be specified by customizing some of the meta-objects and meta-types. The syntactic
appearance of query languages will be presented as a kind of special operations (which
are called meta-operations) defined on the méta,-objects. All these operations have
default formats derived from the cox;responding components in the popular query
languages, and these default formats actually consist of our default query language
for fhe new generation database systems. If any actual query language is only different
in some features, the language specifiers will only have to specify the differing parts
- by providing their own meta.—operatioﬁs to override the default ones. In this way, the

language speciﬁers will actually reuse a lot of work that is common to most of the
i qﬁer§ ianguages. |
| 7‘ _Sin‘ce:we understand the ﬁndeﬂying semantics of all the meta—ijects and meta-

types in dur‘abstrac‘:tvda.ta..model, the semantics of ‘a‘ny query la,ng‘ua,ge' ‘sp’eciﬁca,t'ion

CHAPTER 2. DESIGN OVERVIEW 19

System 1
Query Processor

- ‘ ™
Customized ODL
Components ,

L Description in Meta-ODL J NN Pre—der"med ' = System 2

p ~ S Query Proeessor o Query Processor
Customized OML Generator
Components
Description in Meta-OML

. J

System 3
Query Processor

Figure 2.4: Our Approach for Query Processor Development

that is based on the meta-objects and meta-types will be easily understood by our
system. So most of the syntactic appearance specification (in the form of overriding
of some meta operations) will also be some kind of semanfic specification. Language
specifiers will only provide some high-level semantic actions for some special mapping
of some components of object models and query languages if necessary, and our system
will be able to generate a query processor according to the specification. In some
sense, the language speciﬁcation will also be the implementation of itself. This will
dramatically reduce the amount of work for the language implementation. The general

'plcture of this process is illustrated by the ﬁgure 2.4.

L From the ﬁgure, we can also see that we can actually generate the query processors
for iﬁh’e language speciﬁcation on different platforms. This is because it is not difficult
o niap our abstract object model and query language to the object models and
'query la.nguages of those actual systems. In- thls thesm we w1ll not elaborate this in

~ deta.rl Instead we w111 use some examples to 111ustrate how we can map the common

- CHAPTER 2. DESIGN OVERVIEW 20

components of our model onto those of the Objectstore system, since the mapping

onto other OODBMS is quite similar to the mapping we described for Objectstore.

2.4 Constructing New Components for CQL

As we stated before, a customizéd qﬁery language usually has some special compo-
nents in the query language. For example in TQuel, they provide temporal predicates;
in Geo++, they provide spatial predicates; in DSQL they even used different vocab-

ularies of the commands, i.e. provide some other formats (which are Iﬁore ﬁatﬁra;l ”
for the application) of the data manipulation components, such as move, rotate, etc.
Some of the special éomponents can be easily fit into the ordinary generé,l query fa-
cilitiés provided by the underlying new generation database systems. But some of
them may not. If this is the case, then the developers of the CQL may have to redo a
lot of work even for some ordinary components in the query 1anguages, like parsing,
and more difficult, the internal processing and overall optimization. This is because,
although this work has been done for the general query facilities, it is not directly

available to the developers. This is one of the main reasons why currently there is no

sysfernatic way to specify and implement customized query languages.

In our system, since we treat a CQL as a front end of the underlying platform,
we also prbvide some facilities for CQL specification. Usually, the developers of a
CQL will only have to Specify the special components that are not easy to fit into
| the g'enere:ﬂ‘ query facilities. This f'is done thfough the construction of special com-
‘ponents based dﬁ our abétract object model. Since the construction of the special
Coihpdﬁénts is quiﬁé sirﬁilar to the new Vtyp:eyor new method definitions in ordina.ry

‘objethoriented progl.-zra,‘mn'lir‘lgr langﬁages, like C++, it will ‘n‘pt be difficult for ordinary

CHAPTER 2. DESIGN OVERVIEW 21

developers. And because the constructions of the special components will actually be
based on the pre-defined basic components, they will define the relationship between
the special components and the pre-built components in our system. This will reveal
the relationship of the CQL and the general query facilities, and the system will be

able to automatically generate a query processor for the CQL.

2.5 Implementation Consideration: Automatic Gen-

eration of Query Processor

Generally, if we want to build a query language on a new gene'r‘atio‘n database system,
first we have to formalrly specify the language in some format. Usually, an ordinary
formal language is specified in two parts: syntax and semantics. The syntax is speci-
fied in the general BNF or its variants’ format, and the semantics is described in the
semantic actions (described in a programming language) hooked to the BNF rules.
There are some compiler generator toois, like YACC which will help the implemen-
tation of the language. But it still involves a lot of work, from the parsing to the

internal processing and optimization. (see figure 2.5)

In our approach, as discussed above, it seems that we use a rather different way
to tackle this problem. But actually, there is a close relationship between these
two different approaches. From the implementation point of view, we’ﬁrst map the
spec‘iﬁrc;atio,n bdsed ,dn our framework onto the general approach. That is to say, we
will gén'erate thé BNF syntax rulés,and also semantic actions hooked to these rules
;fromlthé_s;‘)eciﬁcatiori ,'igivgn by the language specifiers. More specifically here, we

genera"ce a,"YACC prbgra,ni'for the speciﬁcétion. Then from the YACC program, we

CHAPTER 2. DESIGN OVERVIEW 22

-

(" . .
Semantics Actions

Query Language - Query Processor (End User Input
Specification Generation L Queries
{ ™
Syntax Rules —
_ : J Lex/Yacc
3 or other
\‘

Compiler tools

Hooked to the Rules ‘
— =

Interal Processing

and Optimization

Query Result

Figure 2.5: General Approach for Query Processor Development

can further generate a query processor for the specified query language.

To illustrate the relationship between our framework and the general formal lan-
guage specification, and also explainrsome basic céncepts that we will use in the
following chapters, in the next section, we will present an overview of general for-
mal language specification and how our framework deals with all these aspects of the

formal specification of query languages for new generation database systems.

2.6 Language Specification Overview

B Therspeciﬁcatidh of a linear (or one dimensional, not two dimensional like QBE)

: language should include the‘following aspects, from low level to high level:

CHAPTER 2. DESIGN OVERVIEW 23

‘1. Lexical Elements and Lexical Rules: Which include the specification of
character set (including some special characters, and some other features, like
case sensitive or not, etc), tokens, separators and literals; For the tokens, sepa-
rators and literals, some lexical rules are associated with them, describing how

the; are made from the characters in the character set.

2. Non-terminal Syntactic Symbols: Which represents the basic concepts in
the specified language. In ordinary programming language specifications, this
includes < Program >, < Function >, < Statement >, etc;;and in SQL, < Table
Deﬁnition >, < Column Definition >, < Query Expression > are some typical

syntactic symbols.

3. Syntactic Rules: Which describe the appearances of the syntactic symbols,
i.e. how the higher level concepts are made from the low level concepts in the

specified language.

4. Language Semantics: While the above three aspects only describe how the
language looks like, the language semantics will describe what is the aétual
meaning of the language. Although there are several formal methodologies of
defining the semantics of formal languages, such as Operational Semantics, De-
notational Semantics, Axiom Semantics, etc, usually it is not easy to do that.
In practice, nature languages are used in the language documents and semantic
actions described in some programming laﬁguages are used in some compiler

- generators, like YACC.
In our framework, we need to provide the corresponding facilities to the language
spééiﬁefs to describe the above aspects of the special formal languages: query lan-

gué,ges for object-oriented database systems.

CHAPTER 2. DESIGN OVERVIEW 24

2.6.1 Lexical Elements and Lexical Rules

Currently we assume our character set is the ordinary ASCII set, including some of
the non-visible characters, like “\n’, ‘\t’, etc. Although, other kind of character

~ sets can also be spéciﬁed easily, we will not conéider this in our thesis.

Tokens and separators are the basic lexical units in query languages. Tokens in-

clude keywords, regular identifiers, etc; separators include space, newline, comments.

‘Tokens and separators are usually associated with some kind of lexical rules. In our
system, we have some default rules for some default tokens and separators. Language -
speciﬁers can use the default tokens and separators, change the default lexical rules
of these default lexical urnrits, or define their own rt'okens and separators. Tokens and
separators declarations are the first part of a langua‘ge; specification, and in our system,
all of these can be done by the token declaration part at the beginning of a language

specification. For example, we can declare that
TOKEN IDENTIFIER {letter}{letter-or-digit}*

~ which means that IDENTIFIER is a TOKEN and it consists of a string of letters
or digits in our character set. The last part of the above declaration is in regular
expression format and means that the string corresponding to IDENTIFIER must
start with a letter. If the language specifiers will not give the regular expressions for
" the token here, we assume that he will provide the information of how the token is
cotmprosedrin another place. Having been declared, the TOKEN can be used in the
speciﬁéation. : Genérally, these kinds of lexical elements and lexical rules are dealt
- with in a way ‘sim‘ileir to YACC and LEX |

Literals include the literals of the built-in types and literals of the constructed

CHAPTER 2. DESIGN OVERVIEW 25

types defined by the users. A numeric literal is a literal of built-in types (INTE-
GER, FLOAT, etc). A string literal is usually also a literal of built-in types(CHAR,
VARCHAR, etc), which usually consists of a string body enclosed in double or single
quotes. These kinds of simple literals are also descfibed by lexical rules. For the
constructed types, we should provide some more corﬁpléx rules, usually in the format
of syntax rules, to construct the literals of these types. We will discuss this in the

following chapters.

2.6.2 Non-terminal Syntactic Symbols

Non-terminal syntactic symbols represent the basic concepts in the specified language.
In query languages conforming to the object models, we should already know most
of ,fhe basic concepts in them, according to our study of object models and query
languages. Here we use OO methodology to analyze and represent object models and
query languages. We can abstract the widely accepted concepts into a set of types

and objects. These are the meta-types and meta-objects.

The meta-types and objects are the center of our system. Most of the non-terminal
syntacti‘c‘symbols in the query languages that will be specified are objects or compo-
nents of objects in our system. When we describe any meta-types or objects, we list
all the components of the types. For each component, we define an attribute name
and a domain of this kattribute. The domains of the attributes in our meta objects
can be TOKENS, other meta-types or meta constructed types (like list) defined in our
. mbael. If fhe domain of an attribu£e is a TOKEN, then the language specifier can
' rédeﬁne the domain as another TOKEN defined before as a sub-type of TOKEN (for

éxaﬁiple IDEN TIkFI’ERr defined a.bovré)r.— Thé definition of the (meta-)attributes in the

CHAPTER 2. DESIGN OVERVIEW 26

meta objects using (meta-)domain actually reveals some aspects of the relationships

between the basic concepts in the specified languages. We will explain this further

with some examples.

2.6.3 Sjntactic Rules

Just like ordinary types and objects, all the rrnetzrl-rtypes aﬁd objects also have (meta-
)operatibns defined on them. These operations are in the special format, i.e. the
rprarameters of the operations are represented By lists of “Comma Ezpression”. Con-
strﬁétors of Vthe, meta—typés are one kindrof rsrpecial operatiéﬁs Which define how the
meta-objects are constructed from their components. And these just represent the
syntactic rules of how the higher level symbols are made from fhe—lower level symbols.
In Chapter 3, we have a lot of examples to illustrate how the meta operations and the
parameters to the meta operations look like. A rather formal description of them will
be presented in chapter 5. The algorithms of how syntactic rules in BNF format can
be generated from the operations defined on the meta-objects will also be described

there.

2.6.4 Language Semantics

Most partS of the semantics of the specified languages a.fe actually predefined because
of the predefined OO data model. The predqﬁﬁed meta-types, meta objects and
_their components actua;llyr represent- some semantics, and wherever they appear in
the target l;;nguage $peciﬁéation, the system understands what they sf.and for and
coﬁeéPondingéemanﬁC actions will lb’e performed in the generated query processor.

This is the same for the syntactfithru']és représented by the meta;operations piedeﬁned

CHAPTER 2. DESIGN OVERVIEW 27

on the meta types and meta objects. We will explain the corresponding semantics of
the components of our meta languages (i.e. in some sense, we provide some operational

semantics for the specified languages) in Chapter 3 and Chapter 4.

Language specifiers can also provide their own semantic actions in some special
c'aSés. This is because for some languages, the céncepts in their object model may
not be able to be mapped directly onto the concepts in the iject model we provide
here. Then the language specifiers must provide some more semantic actions for
_ some components, specifying the mapping methods from the concepts in the specified
laﬁgﬁage to the components éf, our abstract object model and query language. These
semantic actions are usually attached to the cornfna expressions or meta operations, -
reference some corresponding meta objects and in the fofrhat’ of C++ statement. We

will explain this more with some examples in the following chapters.

Chapter 3
Abstract Object Model and ODL

3.1 Object-Oriented Data Model Overview

The Data model is the basis of any database mahagement system. It is a logical
framework in which the real-world data will be represented by users, and it also
defines the framework of how a system will manage the application data. Allinterfaces
between a system and users, such as data definition and data manipulation language,

should conform to this model and are only some kinds of concrete forms of the data

model.

There is a lot of research on objeci—oriented data models in recent years, and
people begin to agree on most of the basic concepts, i.e. some “core concepts” of
the data models. The agreement on most of the basic concepts of object-oriented
data models p'rovidedrthe basis fbr the work of many commercial products of object-
oriented database 'S}fsﬁem and standardization efforts of these kinds of systems. From

- our studies of several object-oriented systems such as Objectstore, 02, Orion, some

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 29

extended relational database systems such as Postgres, and especially some of the
popular standards in these areas, such as SQL3, OMG, ODMG-93, we found that
there are a lot of common components in the data models and query languages at
an abstract level. These abstract common components formed an abstract object
model and an abstract query language based on rthis model. In this chapter, we
will analysis and define these common components in our object model and object

definition language.

7 For rtrherpurproses of this thesis, we will not describe a complete object model here.
But rather we only include some of the basic ra.spects of building general stand-alone
query facilities, i.e. basic components in Object Definition Language (without schema
~ evolution, version management, etc) and Object Query Language (query statements
themselves, without transactions management, etc). This chapter will describe ODL

part. The part for OQL will be left for the next chapter.

Generally, in an object-oriented data model, object is the basic unit of modeling.
Objects are classified into fypes, and types aré orgéﬁized into type hierarchy under
the ‘relationship of éuper/sub-type. As the bé,sic unit of ‘modeling the application
world, an object is characterized by a set of states and behaviors. Objects of the same
type have the same behaviors and the same set of state ranges, and these objects
are called instances of this type. Along the line of object and type, there are some
other basic components in an object model. For example, to represent the states of
‘azn' object, we have aftributes of the cbject, relation.éhips between objects; we have
bpefaiions to model the behaviors of objects. Between sub-type and super type, we
have inheritance to represent their relationship, etc. All these components have their
own éhara.cterikkstics.k For‘kexample,r an object has an object identifier, type, and lifetime,

etc. It also has a set of operations, such as create, delete, etc. All these represent the

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 30

basic concepts in an object model.

In the following sections, we will analyze the basic components abstracted from
‘these V‘basic concepts of general object models. Usually, in our abstract model, each
“abstract cdmponent is represented by a meta type which corresponds to a compo-
_ nent in some concrete object models and query languages. For example, we have an
abstract meta type OBJECT‘ which corresponds to the basic concept of object in ordi-
nary OODBMS’s, and we also have an abstract meta type TYPE which corresponds
to the concepts of type or part of class in different systems. For each of the basic
abstract 'éompdnénts, we will first give a,rgeneral'discussi()n about this component,
describe the basic functionalities of this abstraction, and its basic characteristics and
opérations that we provide to query language specifiers. Then we define this compo-
nent as a meta type in an object-oriented manner using our meta language. ! Finally,
when neéessary, we use some examples to illustrate how different modifications and
extensions can be done to this component of our object model and the part of the

corresponding ODL.

3.2 OBJECT

Object is the basic unit of application modeling and also the basic unit of data man-
agement. Although in most systems, most of the characteristics of an object are not

directly visible to end users through the Object Definition language, and most of the

The format of a definition in our meta language is quite similar to the format of a class definition
and function prototype. definition in C++. The only difference is that we use our meta types and
meta type consiructors instead of C++ types and constructors when we define the meta attributes of
the defined components, and use comma ezpressions as the parameters when we define all the meta
operations. Hence, we will not give a complete formal description of our meta language. Instead we
‘will‘ just explain the special features of our meta language along with some examples in the following
description. - B B : :

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 31

operations on objects are only part of the Object Query Language, which we will dis-
‘cuss in the next chapter, some of the basic semantics of object are important for the
following discussion of other components in ODL. Hence in this section we introduce
our meta type OBJECT as the abstraction of the concept of object. The basic at-
tributes and operations of OBJECT are based on the basic attributes and operations

of an object in most OODBMS’s.

3.2.1 Basic Attributes

An object in most systems has the following attributes, and in our abstract object

model and meta system we also support these basic semantic of objects:

® Object ID (OID): Each object has its own unique object identity, which is
usually called as an object identifier (OID). The OID of an object remains the
same even if the states of this object may change and an old OID will not be
used even if the associated object has been deleted from the system. In some
systems, the user can use OID function to get the OID of any object and then

the OID can be used to pin-point the object.

Usually, OID is not directly visible to end users, and the pattern of an OID
is also implementation dependent. We will not directly support any special

semantics of OID in our system.

. Typég Righfrnow,'in a.H the systems we have studied, each object has one and
only one the most specific type(MST, which means that if the object belongs to
any type, thén_thé MST of this object mﬁst be a sub-type of this type). When

an object is created, usually the type is also specified. In some systems, some

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 32

kind operations are also provided to the end users to get the MST of any object.

e Lifetime: Most systems assume that the lifetime of an object is orthogonal
to its type. It is either transient, which means that the object will not exist
any more affér' the procesé that creates rtherobject finishes; or persistent, which
means that the object will outlive the process and usually will be stored in a
non-volatile stofage. Lifetime of an object is usﬁally indicated when the object

is created.

® Names: In some systems, user can define names for objects. A nameis a kind
of meaningful identity of the named object so that after named, the object can
be referred later by this name. An object can have several different names, buit

it can have only one OID.

A name can be transient, like an ordinary variable name (but the name of
an object can nof be given to another object while a variable name can), or
persistent which means that we can use the same name to refer an object in
different processes. Right now most systems only support one single name space
within a database for the persistent names. This is to say, the same name must
refer to the same object in the whole database. So in our metd system, we only

directly support a single persistent name space.

~ Syntactically, a name of an ob ject is usually a string with a certain set of lexical

rules, or we say that it is a certain kind of TOKEN in our system. Usually we

- call this kind of TOKENS as IDENTIFIERs which: are a kind of sub-type of
~ TOKEN. |

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 33

3.2.2 Basic Operations

In our meta system and abstract object model, we have the following default built-in
operations for an object, reflecting the basic operations for objects in an ordinary

OODBMS:

‘e create: This operation will create an object according to the specified type and
lifetime (which are the two main parameters to the object creation operation).

In our meta system, there is a default bﬁiltr-in create operation which will be

' rnapped to the underlying database functions that will do the basic Work for
an object creation, such as OID generation, storage allocation, etc. In many
systems, different types can have their different instance creatjoh operations, i.e
“constructors”. These different constructors may override the default one and
ralso initialize some attributes of the object. But eventually they will call the
basic object creation operation. Special instance creation operations for some

‘types will be discussed later.

o delete: This is the countér operaﬁion of creaté operation. Although we have a
default built-in delete operationkfor all the objects, different types may define
their different delete operations which we call “destru‘ctors’. Usually these “de-
Astructors’i will override the default one, but again they will also call the basic
object delete operations eventually. Delete operations only need the OID 'or

‘name of the object that will be deleted

. equality: This is the function or operator which is used to test whether two
" parameters refer to the same 6bj,ect, i.e. the OIDs of the two objects are the

. same or not.

- CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 34

There are several different equality semantics in different object oriented data
models. In our thesis, for simplicity, we only consider this kind of OID equality.

Other kind of equality semantics can also be analyzed in a similar way.

e OID-function: This is the function that returns the OID of an object. In
' some systems, the OID is not visible to users and there may be no such a kind

of function provided to end users.

e MST-function: This is the function which returns the most specific type of an
object. This operation has to retrieve the meta knowledge, i.e. the schema of
the database. In object-oriented database systems, this kind of meta knowledge

is very useful to the users.

3.2.3 Specification and Explanation

According to the above discussion, a meta type OBJECT can be defined in our meta

system as follows:

OBJECT {
TYPE Type;
LIFETIME LifeTime;
1list (IDENTIFIER) Names;

// default built-in operati‘ons on OBJECT.
crreate("cre‘ate", LifeTime, Ngﬁes.elé, "of', Type);
‘delqete(“'dele‘te",‘ Names.ele);

0ID oyi‘c‘l(’"oid",' e, Namés.elg, "),

TYPE.Name MST(“type", "(", Names.ele, ")");

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 35

}
~ ENUM LIFETIME{
KEYWORD Persistent;
KEYHDRD Transient;

-// default built-in specification of KEYWORD.
Persistence("persistent"); |
Transient("transient");

// defining the default for a meta enumeration type.

‘Default(Transient);

As the first component specified in our meta system, there are a lot of places that
should be explained. But here we only explain the following basic points about the

specification. More explanations will be presented in our later examples:

1. The meta type definition consists of a list of meta attribute definitions and
a list of méta, ﬁperation definitions Which are the abstraction of the common
attributes and operations of objects in different OODBMS’s. Since OID is not
directly visible to fhe users, we only specified the other three attributes of the
meta type OBJECT.

2. The definition of each meta attribute consists of an attribute name in the right
side and a meta domain of this attribute in the left side. The definition of a

, meta, attribute usually has both semantic and syntactic meanings, which are
mainly dependent on the meta domain of this meta attribute. There are several
different kinds of meta domains, including TOKEN, ‘another meta type and

» conétructed meta type, etc. We will explain these with some examples later.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 36

3. The meta attribute Type represents the (most specific) type of the object, and
its meta domain is TYPE which represents all the possible type specifications
(both semantics and syntax) in the specified language collectively and we will

explain this corlcep,t later.

4. The meta attribute LifeTime represents the lifetime of the object, and its meta
domain is a meta enumeration type LIFETIME which is also defined above. The
meaning of this definition is obvious, it represents what kind of lifetime an object

- can have. More detailed discussion about meta enumeration type definition will

be- presented later. -

5. The meta domain of Names is a meta parameterized type 1ist (IDENTIFIER)
. which means that object can have a list of rlames, each ef which is an IDEN-
 TIFIER. IDENTIFIER as we declared in Chapfer 27, represerrts a kind of token

with a certain set of lexical rules. Meta type constructor list and several of its

operators (such as .ele used above) will be explained later, too.

6. We srpeciﬁed some default built-in operations for the meta type OBJECT. Se-
‘mantically, they specify what kind of operations are provided for objects in the
specified languages, and what kind of parameters are needed for these opera-
tions. Syhtactically,,they also represent what these operations look like in the
-specified language. So these specifications actually connect the syntactic appear-
ances of the operations with the underlying semantics in the specified language.

, rrAs we can see from the above example the format of the meta operation spec-
“ification is qulte 51m11ar to an ordinary C++ function 51gnature specification.
The only dlﬂerence is that each of the parameter for the operatlons is a Comma

—E:cpresszon as we mentloned in Chapter 2. We have several dlfferent kinds

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 37

of Comma Ezpressions which have different semantic and syntactic meanings.
Here we have three kinds of Comma Ezpressions. In the meta operation create
(which is the name of the meta operation), "create", "as" are called String
Comma FEzpressions which mean that they will 'appea,r themselves in the object
create statement in the specified (here is the default) query language. Type,
LifeTime are the meta attributes of the QBJECT, (and Names in Names. eleis
also an attribute of OBJECT, .ele is an :a.bbreviation of element, representing
the element in the list), they represent the corresponding semantic and syntactic

| - meanings of these meta attributes as we explaihed above. So we know that, for
example,rin this object creation statement, the last string should cbnform to
‘the lexical rules of Names.ele (i.e. IDENTIFIER), and should be saved as the

name of the created object.

According to the above specification, we know that there is an object create
statement in the default query language. The information needed by this state-
ment is the life time, type and the name of the created object. And also, we

know that the format of the create statement should look like:2
create [persistent | transient] <obj-name> of <type>

where the <obj-name> is an IDENTIFIER, and the format of <type> will be
described later on. The specification of other meta operations are similar to this

create statement.

2'We just use some simple forms which is similar to BNF rules to Hlustrate the format of the
statement. In chapter 5, we will describe how the syntax rules in YACC BNF format can be
generated from our specification.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 38

- 3.2.4 Examples of Modifications and Extensions

Sirnilaf to ofdinary Object-Oriented (OO) programming languages, such as C++,
laﬁguage specifiers can override the specification of the default built-in operations by
prox}iding their own specification for these operations. The overriding of a built-in
: oberation means that a similar operation does exist in therspeciﬁed language, but the
format (hence the syntai and also semantics) of the operation may be different from
the default one. Here we use a small examplé to show how some simple modifications
can be done to customize the default query language. For examplé, language specifiers

7ca,'nr pfovidé théir own objectr(r:reate operation to override the above defé;,urlt oﬁé in thér |

following format: .

OBJECT::create(LifeTime, Type, Names.ele);

where OBJECT : : specifies the scope of the meta operation create is within OBJECT.
According to this meta operation, in the specified query language, objécts are created

as follows:

[persistent | transient] <type> <obj-name>;

‘which is similar to the format in the Objectstore and O, system.

Some other variations can be done to the above specification, and a lot of more will
be done through the variations of the specification of the type system for the specified
; lailgua.ge‘,'which will be describgd,latef in the corresponding sections. But no matter

. what kind of specification it may be, we know that in the position of Names. ele, the

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 39

string is served as the name of the created object, in the position of Type, the part
 of specification will be processed as type information of this object, etc. And after
all, all these information will be passed to the creation operation of an object in the
underlying database system because we know that this is an object create statement
from the predefined meta operation name create. Sd we Caﬁ see that ’the specification

serves as both syntax format and semantics.

3.3 TYPE

- Although object is the basic unit of modeling in object models, objects are usually
groﬁped into types, and type is the basic way of defining the states and behaviors of
ijects. The type system is one of the most impdrtant part of any object-oriented
database system. Usually, there are some pre-defined basic types and type construc-
tors in an object-oriented database system. And the system also provides some kind
of mechanisms for new type definition. Schema definition through type definition is

_one of the central parts of ordinary Object Definition Language. Here we provide
the meta type TYPE to capture this basic concept, and provide it to language spec-
ifiers to specify those features of new type definitions in their query languages. The
corfesponding meta types for describing pre-defined types in the type system will be

described later in this chapter.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 40

3.3.1 General Discussion

- In the object-oriented field, including many object-oriented databa,se systems and
object-oriented programming languages, sometimes another concept class is used in-
~stead of type. In different syrsterns,':the concept class may have different meanings.
First, é class deﬁnes’ the intent of a type, i.e. it defines the characteristics, such as
states and behavirorsr of the objects éf this type. This is the basic meaning of a type.
Secondly, it may also define the eztent of the type, i.e. the set of all the instances of
this type. This is not an essential aspect of a type and may not be defined in the type
system in séme systems. For example iﬁ fnost OO programming languages, they do
not define nor maintain the extent of a type. Although in ordinary OODBMS’s, it is
important to maintain the extent of a type, we believe that it is better to separate the
extent specification from the intent speciﬁcatiof; of a type. So in our system, a type
only defines the intent. We will provide another concept, i.e. persistent collection, to
spécify an extent of a type, so we can even define more than one extent of a given
- type. This is quite similar to the idea in SQL3, which can define ADTs (types) and
more than one TABLE (persistent collections) for a given ADT. And a TABLE of an

ADT is actually an automatically maintained persistent collection of this type.

In some OODBMS’s, such as Objectstore, they can define some other attributes
or constraints on a type, for example keys. But this is because they mix the extent of
a type with the intent of the type. A keyis only meaningful when there is a collection
“of the insfance of that type maintained. Otherwise the system can not use the key
to"&"isrtinguis:h or retrieve the objects. So in our typé concept, we do not have these

* kinds of attributes or constraints.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 41

- 3.3.2 Basic Attributes

- The following is an outline of the basic attributes of the meta type TYPE abstracted
from various systems. They actually represent the basic characteristics of a type

definition that different object oriented query languages may have.

@ Name: Each type has a name which is the identifier of this type. It should be
unique within a certain name space. Right now, all the systems we have studied
use a single name space within each database. So in our meta system, we also

~“take this assumption. Similar to the names of objects, names of types are also
a kind of TOKEN with a certain set of lexical rules which may not be the same
as those for object names. For example, we fnay dse T\’PE-IDENTIF 1ER to
represent this kind of TOKENSs. . '

® Inﬁeritance: Types in an object-oriented system are organized into type hi-
erarchy under the relationship of sub-type and super-type. A type can specify
its super-types. This implies that it may inherit soine characteristics(i.e. at-
tributes, relationships and operatidns) from its super‘typeé. A trype’may have
more than one most specific super-typés in our system. All these kinds of fea-
tures about type definition will be described in Inheritance description of this
type. The details about inheritance description are abstracted into the meta

type INHERITANCE, which will be discusséd later in this chapter.

- Attributes: Usually a type has to define the states of its instances, and the
stéies of an instance include a list of attributes. Attributes in our meta type

B TYPE is used to capture this kind of features of type definition. The detail
: of how to deﬁlr)ve' each ;attrribute is abStraCted‘ii;to tﬁe meta type ATTRIBUTE,

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 42

which will be discussed later.

e Relationships: Relationships are also part of the state definition for the in-
stances of a type. They are used to represent the bihary relationships between
the deﬁnedrtype and another type. Relationship is 'oﬁe of the mechanisms of

maintaining referential integﬁty. Usually, a rrelja'rcionship is decomposed into two
parts for the two involved types. Each part is called traversal path in our sys-
tem (and some other systems, such as ODMG-93 etc). So actually, in a type
definition, we only define one part of a relationship, i.e. the traversal path in
this type, instead of the whole relationshib. | A tra{'ersal path can be used in
navigational retrieval from the instance of one type to the instances of the other
type. More discussion about that is under RELATIONSHIP component of our

abstract object model.

e Operation: Object behaviors are represented by a set of operations. An op-
eration specification usually can be divided into two parts: its signature, which
specifies the name of the operation, the parameter list and the type of the re-
turn value; and its implementation. Usually these two parts can be defined
separately, and even in different (programming or query) languages. More dis-

cussion about operations is under OPERATION component of our data model.

In some systems, the attributes and relationships are collectively called properties
of a type. Properties together with operations o, a type are called characteristics of
this type. In our system, we use meta types PROPERTIES and CHARACTERISTICS
to ‘represent these ﬁwo concepts respectively, and they will be discussed later in this

chapter.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 43

3.3.3 Basic Operations

The following operations are some default built-in operations on TYPE. They are
abstracted from the basic operations or functions on types provided to end users by
ordinary OODBMS’s. Through these operations, language specifiers can specify how
these operations can be provided to end users i‘n the query languages they want to

specify.

e create: Type creation forms a new type with a list of characteristics: i.e a list of
attributes, relationships and operations (signatures only) of the type. Usually,

a name is also provided when a user defined type is created.

e delete: This operation drops the type from the system. Usually, only the type

name is needed for this operation.

e supertype: This function returns all the immediate super-types of the type.

Usually, only the type name is needed for this operation.

Here, we do not include some advanced functions or operations, such as schema
evolution operations, etc. But these advanced functions can be analyzed in a similar

way as those above.

3.3.4 Specification and Explanation

According to our previous analysis, the meta type TYPE in our meta system is defined

as follows:

" TYPE {

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 44

TOKEN Name;
INHERITANCE Inheritance;
Vlist(CHARACTERISTICS) Characteristics;

// default TOKEN definition for Name;

Name (TYPE-IDENTIFIER) ;

create("create”, "type", Name, [Inherifance], e,
Characteristics, "}"); |

delete('delete"”, Name) ; ,

LIST(TYPE.Name) supertype("supertype", "(", Name, ")'");

// defauif separator of the list: ;

Characteristics.sep = ";" ;

There are several points we should explain for the above definition of the meta

type TYPE:

1. The meta domain for the meta attribute Name is TOKEN, which means that the
name of a type should be a token terminator in the specified language. In our
system, for all the meta attributes whose domains are TOKEN s, language speci-
fiers can override this by providing their own special TOKENS for this attribute.
For exarnple, we provide TYPE-IDENTIFIER as the default special TOKEN
domain for the attribute N ame, and we have defined TYPE-IDENTIFIER in the
TOKEN part of the language specification. All these definitions imply that type
names in the specified language should be formed according to the lexical rules

of TYPE-IDENTIFIER, and the string value of this TOKEN will be saved as

" type names in the schema.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 45

2. The meta domain for the attribute Inheritanceis a meta type INHERITANCE
whose definition will be discussed later. It implies that the information of in-

heritance of a type definition is decided by the definition of INHERITAXCE.

3. As we mentioned above, characteristics collectively represent the attributes, re-
lationships and operations of a type. Similar to the Names attribute in OBJECT,
the meta domain of the attribute Characteristics 1s a meta constructed type

1ist (CHARACTERISTICS) which represents a list of CHARACTERISTICS.

Here we explain some more about the meta type constructor 1ist. Semantically
it only includes the elements in the list. Syntactically, the elements may or may
not appear together in the specified language. But for specification convenience,
by default, the elements appear together and they are terminated or separated
by a string. (We only need either terminator or sepérator for a list here. A
separator is used to separate the elements in the list, while terminator is a
terminator of the element in the list.) Here the default separator is “;” as
specified in the above specification. (sep is an abbreviation of separator. We

also have some other notation of meta type constructor list) Language specifiers

can override all these defaults in the specification which we will explain later.

3.3.5 Examples of Modifications and Extensions

In Postgres, the type® create statement is in the following format,

"create" <type name>

"(" <characteristic> "," <characteristic> ... ")"

3IthOStgres,' the c0nc¢pt class is used instead of {ype, and a class has more meaning than a type,
as we discussed above. For illustrative purpose here, we just treat a class as a type.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 46

[<inheritance>]

so the corresponding create meta operation and list separator for characteristics def-

inition can be specified as follows:

TYPE: :create("create', Name,

"(", Characteristics, ")", [Inheritance]);

TYPE: :Characteristics.sep = *," ;

The difference between this create statement and the default one (at this level) are:
first, in this create statement, the inheritance info‘rme,tion‘irs described at the end of
the. etatement while in our default langua,ge, it is deecribed immediately after the
type name; second, the separator between each che,racteristic specification is “,” here
while in our default language, it is “”. Difference between these two type create
statements may also show in other levels: at the level of characteristic specification

and inheritance specification that will be described later.

3.4 INHERITANCE

3.4.1 General Discussion

As we explained befexe, INHERITANCE is an abstraction for inheritance specification
~ between types. Inheritance is not a “first class” object in ordinary object models. It
-can-not be defined independently and- does not have any operation on it. Instead, it

- must beka.ssocyia.ted'with type definitions. ,

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 47

INHERITANCE describes the relationship between a sub-type and its super-types.
Multiple inheritance is now widely accepted, hence the sub/super type relationship is

usually represented by a list of super-types specified in the sub-type.

Multiple inheritance may bring name conflicts in the case that more than one
super-types have the same name of characteristics(i.e. attribute, relationship or op-
eration). Right now, we, as many OODBMS'’s, suppose this kind of conflicts will be
resolved statically by users, using renaming to specify from which the characteristics

should be inherited.

‘Renaming can be used not only for the resolution of name conflict. Sometimes,
because of the application vocabulary, the end user may prefer different names for the

- characteristics of the sub-type and super-type.

3.4.2 Basic Attributes

In our system, INHERITANCE has the following components. They are provided to

the language specifiers to specify the corresponding features in their query languages.

» Super-types: which describes the immediate super types of this type. It is a

list of type names;

- Rename: which describes new names(of attributes, relationships, and opera-
tions) should be used for the cenﬂicting names. Usually it describes from which
super type the renamed characteristic should inherit, and actually the new name
can be the same as the inherited‘ name as long as the semantics is clear. How

: to descnbe rename clauses is abstra.cted into the meta type REN AME which

is a.lso described here

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 48

3.4.3 Specification and Explanation

According to the above analysis, INHERITANCE component is defined in our meta

language as following:

INHERITANCE {

1ist(TYPE.Name) / SuperTypeé;

1list (RENAME) Renames;

// default "constructor" for INHERITANCE.

-INHERITANCE(":*, SuperTypes, ["rename", Renames]);

// default separator or terminator for SuperTypes and Renames.
| kféuperTypes.sep =", -

“Renames.sep = ";"

and RENAME is defined as following:

RENAME {
TYPE.Name ; SuperTypeName,
CHARACTERISTIC .Name SuperTypeCharasName;
CHARACTERISTIC.Name NewCharasName;

// default "conmstructor" for RENAME.
RENAHE([([(SuperTypeName , DOT)], SuperTypeCharasName)],
 “as", NewAttributeName);

}

'There are several points we should explain for the above specification:

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 49

i. As we mentioned before, INHERITANCE is a non-first-class object, and the de-
scriptions of inheritance in specified languages (i.e. constructing the inheritance
components) are closely related to the type definition. For all these kinds of
non-first-class objects, we also have the default built-in operations for them and
the operation names are the components’ names themselves (corresponding to

constructors). For example, we have the above INHERITANCE and RENAME

operation specifications.

- 2. When we specify the domain of SuperTypes, we used the Meta Path Ezpression:
* TYPE.Name in the meta constructed type list (TYPE.Namé), which means thét
in the list, every element should be a type name. This not only specifies that
the domains of the elements are TOKENs (orr more speciﬁc according to our
default definition, TYPE-IDENTIFIER) since the domain of TYPE.Name is TO-
KEN(or TYPE-IDENTIFIER), but also put some kind of semantic constraints

on the meta domain, i.e. these TOKENs must be type names, not just any
string that conforms to the lexical rules of TOKEN(or TYPE-IDENTIFIER).
According to this specification, we can generate some constraints checking se-
mantic actions for this meta domain. The same idea for the domain definition

of SuperTypeAttrName in RENAME definition.

3. As we mentioned above, CHARACTERISTIC collectively represents attributes,
relationships and operations of a type. It is actually a meta super type of the
meta types ATTRIBUTE, TRAVERSAL—PATH(representing relationship) and

| 7(:);VPERAT‘ION.NameVV'is an attribute of CHARACTERISTIC, that is why we
can use CHARACTERISTIC .Name as a Meta Path Ezpression in defining the meta

doma.m of SupernyééChara.sNaJhé and NewCharasName.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 50

4. DOT in the RENAME constructor definition is another meta objéct in our system.
It repfesents the connector in the path expression in the specified language.
Usually, it is a dot(“.”). But some systems may want to use other form. The

7 point of this definition here is to keep consistency. Allr the path expressions in

the language should conform to the same format. DOT will be defined later in

our system.

3.4.4 Examples of Modifications and Extensions

In our above examples for type definition, we did not explain what the inheritance
looks like. Now, according to our default specification, we can see that the <inheritance>

shoulrd: be in the following format:
naw <type name list> ["rename" <rename clause list>]
and the <type name list> looks like:
<type name> ["," <type name> ...]
<rename clause list> looks like:

[<supertype name> "."] <old charas name> "as" <new charas name>

[";" [<supertype name> "."] <old charas name> "as" <new charas name> ...

wherej <0ld charas name> means the old characteristics name of one of the super
7 type, and <new charas name> represents the new name that will be used in the sub-

type.
In some systems, the inheritance is specified in some other ways, for example, in

02, we can specify the inheritancé as follows:

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 51

INHERITANCE: : INHERITANCE("inherits", SuperTypes, ['"rename'", Renames]);
‘which only differs in a very minor way, so the <inheritance> will look like as follows:

: "inherits" <type name list> [<rename clause list>]

And for SQL3, we can have the following speciﬁcafion:

INHERITANCE: : INHERITANCE("UNDER",
{ (SuperTypes.ele,
[»(*, “WITH", { Renames.ele
// attached actions to Renames.ele.
{Renames.ele.SuperTypeName = SuperTypes.ele},
s";" } |
]
), s,
});
RENAME::RENAME(SuperTypeAttrName, "as", NewAttributeName);

This specification is more complicated than the above specifications. Basically in

'SQL3, the specification of inheritance looks like:

UNDER <type name> ["(" WITH <old charas name> AS <new charas name> ...")"]

["," <type name> ["(" WITH <old charas name> AS <new charas name> ")"]]

In our @bQVe specification, we u,’selSuperTypes.ele to represent an element in the
SupérTypés which is a meta list of type name. So SuperTypes.ele represents a type
'name that will be in the super-type name list of this type. The same idea applies to

" Renames.ele.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 52

We also used a structure, List Comma Ezpression to represent the repeat struc-
tures in the specified language. For a List Comma Ezpression, we have two parts:
the first one is the element part which can be any kind of Comma Ezpression in our
system; and the Secoﬁd part specifies the separator/terminator for the list element,
* which in the form of s"string" or e"rstring"". So the string after s or t represents
~ the separafor or terniinator respectiveiy. In our abovg exarnble, Renames.ele is the
element part of thé List Comma Ezpression (at this moment please ignore the part

of attached actions), and s" ;" means that the separator for the element in the list is

in.n
ot

Aﬁother List Comma Ezpression in our above specification is more complex. The
element part is an Aggregational Comma Ezpression which consists of a pair of () and
a sequence of Comma Ezpressions. Here the sequen;e'of the Comma Fzpressions in
this Aggregationdl Comma Ezpression are SuperTypes.ele and an Optional Comma
- Ezpression (which again is an Aggregational Comma Ezpression). The separator for

the element in this List Comma Ezpression is "'," as specified above.

In our above specifications, we used a lot of meta type constructor 1ist. The
actual meaning of a meta list attribute is equivalent to a List C’dmma Ezpression in
the sense that whenever the meta attribute (for example Characteristic in TYPE)
appears in an meta operation (for example in TYPE: :create), it can be expressed in a
List Comma Ezpression consists of a pair of { } and two parts in { }: the first is the
attribute name followed with .ele (for exa.mpie;Characterist ic.ele), the second

' ‘pa,rt' is either a s or af followed by a string of separator or terminator of the list.

- The semantic action part for the Comma Ezpression Renames . ele is straight for-

. ward. Because the ;én’amé clause is.immediately after, the typé (represented by the

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 33

CHARACTERISTIC

/\

PROPERTY OPERATION

TN

ATTRIBUTE TRAVERSAL-PATH

Figure 3.1: Characteristics subtree of the meta types

type name) of which the old name will be renamed, and in the rename clause the type
~ name information is not specified anymore (The RENAME: : RENAME is also redefined as
in tﬁe above specification), we should record the type name in the SuperTypeName -
attribute of the rename structure. There are several other kinds of semantic action
formats in our system which can be attacﬁed to a- Comma Ezpression or a meta

operation. We will explain these later with some examples.

3.5 CHARACTERISTIC and PROPERTY

As we mentioned above, attributes and relationships are collectively called properties,
‘and together with operations, they are called characteristics of a type. To represent
these concepts and the relationship among them, in our meta system, we have a
meta type CHARACTERISTIC which has two sub meta types: PROPERTY and
OPERATION. Under PROPERTY, we again have two sub meta types: ATTRIBUTE
and TRAVERSAL-PATH (representing relationship). All these are illustrated by
fig. 3.1 |

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 54

3.5.1 Basic Characteristics

~ The basic attributes of Characteristics are the the common attributes of attributes,

traversal-paths and operations. They are name and encapsulation tag.

~ o Name: Name is the identifier of the charac'térirstircs'. Characteristics names are
not in the name space of the whole database. Instead, they are only unique
within the type definition itself. We use the ordinary name scope semantics

here. Syntactically, a characteristics name is also a string with a certain set

lexical rules, which is usually described by the TOKEN of IDENTIFIER.

e Encapsulation Tag: Encapsulation and information hiding is another impor-
tant concept in object-oriented paradigm. The basic idea is the separation of the
interface from the implementation of the objéct. In ODMG-93, they separate
type interface from its implementation. But they do not provide any concrete
mechanism to do that, and to our knowledge there is no system available now
that directly supports these concepts exactly. In our system, like many other
systems, Suéh as 02, Objectstore, SQL3, efc, We use the three level protection
mechanisr: to do that. For each type, we have a public interface which is accessi-
ble by all the objects, a protected interface which is only accessible by the objects
of sub-types, and a private characteristics which is only accessible by the objects
of this type itself. Public interface definition is corresponding to the interface
definition in ODMG-93, and private characterisfics defines the implementation
of the interface. Although ODMG-93 claim that they can provide more than
6ne im:pler‘rrientya,tions for the same interface without abusing sub-types, we think
there are somé problems if a type has some characteristics correspondihg to the

protg:cied interface. This is because the same object(type) may have different

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 55

interfaces to different objects. Generally, we have objects of the type itself, ob-
jects of its sub-types, objects of friend types, and objects of others types. The
interface may vary a lot between them. So the three level protected mechanism

is widely accepted in most of the OODBMS’s.

In our meta system, we use an encapsulation tag which is abstracted into the
meta type ENCAPSULATION-TAG to represent this encapsulation mechanism.
The tag can be any of the three levels, and the default one can be private, or

public.

3.5.2 Specification and Explanation

According to the above discussion, we have the following definitions in our meta

system:

CHARACTERISTIC {

IDENTIFIER Name;
ENCAPSULATION-TAG AccessTag;
} | .
ENUM ENCAPSULATION-TAG {
KEYWORD Private;
KEYWORD Protected;
’KEYHDRD Public;

// default format of the keywords
Private("private");
Protected("protected"”);

Public(??public") ;

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 56

A
I

// special meta operation of defining the default(mo tag).

Default(Private);

PROPERTY : CHARACTERISTIC {}

There are several points we should explain about the above specification

1. For CHARACTERISTIC, we do not have any constructor, because its different

sub-types may have their different constructors. But when we use CHARAC-

TERISTIC, then it means that it can be any- of its sub-types. For example,

‘we used 1ist(CHARACTERISTIC) in the meta type ‘deﬁnition, which means that

semantically and syntactically, the element in the list can be ATTRIBUTE,
TRAVERSAL-PATH or OPERATION. When we use CHARACTERISTIC.Name,
then the name of ATTRIBUTE, TRAVERSAL-PATH or OPERATION can be

fit in.

PROPERTY : CHARACTERISTIC means that PROPERTY is a sub meta type of

' CHARACTERISTIC. Here in PROPERTY, we do not have any more charac-

teristics which should be defined. So its definition is empty.

As we discussed above, the z;ccess of any characteristic is controlled in the form of
ENCAPSULATION-TAG, which is a meta enumerate type, as the LIFETIME
we discussed above. Here we explain more about the meta enumerate type.
Each attribute in the meta enumerate type is an element of the enumeration.
In our above definition, the meta enumerate type ENCAPSULATION-TAG has
three elements, and all of them are defined as KEYWORD. KEYWORD is
again a"sub type of TOKEN, which need to be specified by a special string used

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 57

as a keyword in the specified language. In our above specification, “private”,

“protected”, and “public” are these special strings.

For the meta enumerate type, we also define a special meta operation default,
which means that if none of the elements appears in the position, it is equivalent

to the default element.

3.6 ATTRIBUTE

3.6.1 Basic Attributes

Attribute is not a “first class” in ordinary object models either. They must be defined
for a type definition and exist with an object of this type. ATTRIBUTE is the
abstracted structure for attribute definition. Since ATTRIBUTE is a sub-type of
CHARACTERISTIC, it inherits all the characteristics of CHARACTERISTIC. In our
following discussion, we will only discuss those special characteristics of ATTRIBUTE.
Usually, an attribute definition includes the following aspects. So our ATTRIBUTE

also includes the following components.

¢ Name: (the same as that of CHARACTERISTIC)

e Domain: Domain components of an attribute specifies the type and value range
of the attributes. It is usually a type name either pre-defined in the system or

predefined by users. It can also be a type construction.

¢ Domain Constraints: which describe some constraints on the attribute. There
~ are two main kinds of domain constraint specifications. The simpler one is using

some constraint tags, and different types may have different constraint tags. For

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 58

example, for the type of CHAR, it may have the constraints of “NOT NULL”.
Another one is using some constraint functions. For exé.rnple, in ODMG-93, they
can define birthdate DATE CHECK (birthdate <> DATE’1992-01-01°), which
means that birthdate is of type DATE and with the constraint function CHECK.
Right now, for simplicity, we only consider some constraint tags. Constraint

functions can be analyzed in a similar way.

e Default-value: Default-value gives the attribute the initial value when the
instance of this type is created. Default-value should be literals of the type of
this attribute. Different types may have different literal construction formats,

we will discuss these in the corresponding pre-defined types.*

3.6.2 Basic Operations
For attributes, we usually have two basic operations:

e get-value(): which references the value. Usually we use the rvalue (right side
~value) of the attribute instead of this operation to retrieve the value, but we

can also define this method.

® set-value(): Similar to get-value(), deferences the value. Usually we use the

lvalue (left side value) to represent this method.

In most systems, these two operations are represented by the “dot expression”
uniformly. According to the context, the system can decide whether the “dot expres-

sion” is rvalue or lvalue of this attribute. “Dot expression” will be explained later in

4Right now, most of the systems assume one format of literal constructions for the user defined
types. Our meta system currently also takes this assumption, although it is not very difficult to let
users specify their special literal constructions for the types defined by them.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 29

Chapter 4.

3.6.3 Specification and Explanation

According to the above discussion, we have the following definition in our meta system:

ATTRIBUTE : PROPERTY {

TYPE Type;
1ist(DOMAIN-CONSTRAINT) ConstraintTags;
LITERAL Default-value;

ATTRIBUTE(Type, Name, ConstraintTags, Default-value);

// default build-in operations for attribute |

LITERAL get-value(Name) ("get-value", "(", Name, ")");

void set-value(Name, LITERAL) ("set-value", "(", Name, LITERAL, ")");

ConstraintTags.sep=","

The following points should be explained for the above specification:

1. ConstraintTags is defined as a list of DOMAIN-CONSTRAINT, because for
some types, there may be several constraints can be used together. DOMAIN-
CONSTRAINT is a concept representing all possible domain constrain tags for
different types. So it again depends on the language specification given by the
language desigﬁers for the specified language. Our system will automatically
collect all the domain constraint tags for the language specifiers. And at the
same time, our system can check automatically whether the constraint tags are

consistent or not with the type of the domain.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 60

2. Default-value is defined as a LITERAL. The situation here is quite similar
- to the above situation for DOMAIN-CONSTRAINT. Since LITERAL is a con-
cept representing all possible literal constructions in the specified language. The
format of a literal depends on its type and also depends on the language specifi-
cation. Our system will automatically édllect all possible literal constructions in
the specified language, and consistency (with the type) check can also be done

automatically by our system.

The default built-in operation get-value() returns the value of this attribute in the
spe'ciﬁed langUage; and rset.-value(‘) uses the value in the parameter to set the value of
the attribute. The format of the function in the default language is specified in the

the default specification for these two operations.

3.7 RELATIONSHIP

A relationship, like an attributes, is one of the characteristics of a type. It is defined
between two types of objects, and can be used to traverse from the object of one type
to the objects of the other, or vice visa, by the traversal path of the relationship. It
maintains the referential integrity because if an object in the relationship is deleted,
then it is automatically removed from the relationship so that there will not be any

dangling object in this kind of reference.

A relationship does not have a name itself, but the traversal paths of the relation-

ship have names.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 61

3.7.1 Basic Attributes

Meta type TRAVERSAL-PATH in our system is the abstract structure for traversal-
path definition in the specified query language, and it is consisted of the following

comp@nents: (Again, we omit the characteristics that are inherited from CHARAC-

TERISTIC)

¢ Name: (inherited from CHARACTERISTIC.)

‘e Type: The traversal path consists of the objects of the other type in the rela-
tionship. So the type of traversal path can be the other type in fhe relétiohship,

or some kind of collection of the objects of the other type in the relationship.

e Peer Type: To pair two direction traversal paths of the relationship, we have
to point out the inverse traversal path in the paired type. And actually, without
the inverse path specification, it will only be an ordinary attribute, since the
system has no way to maintain the reference integrity of the other side of the

o rélationship. Peerrr type specifies the type in which the inverse traversal path is

defined.

e Inverse Path Name: This specifies the traversal path name in the paired type

that is the other part of the relationship.

“Although there are a lot of different operations on relationship internally in most
- OODBMS, all the operations are not visible to end users. And traversal-paths are used
just as ofdina.ry attributes. So get-value, set-value and “dot ezpression” can actually

be spec:ﬁed for the PROPERT Y so that both ATTRIBUTE and TRAVERSAL-PATH

can inherit these operatlons

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 62

3.7.2 Specification and Explanation

According to the above discussion, we have the following definition in our meta system:

TRAVERSAL-PATH : PROPERTY {

TYPE ' Type ; |

TYPE.Name ‘ PeerType;
TRAVERSAL-PATH.Name PeerName;

-// comstructor of a traversal-path.

TRAVERSAL-PATH(Type, Name, "inverse', PeerType, SCOPE-SIGN, PeerName);

Several points about the above specification is explained as follows:

1. Similar to the specification of ATTRIBUTE, the meta type of Type is TYPE.
But the meta type of PeerName is only TYPE.Name. This is because it is only a

name of a user (already) defined type and can not be any new type construction.

PeerName is defined as TRAVERSAL-PATH .Name because the paired name can not

o

be anything else but another traversal path name. Some semantic actions can

be generated to verify this.

3. SCOPE-SIGN is similar to DOT in our previous specification. It represents the
symbol that used for the scope definition in the specified language. Usually it is

12”7 as in C++ or several other OO systems. SCOPE-SIGN will be specified later

in Chapter 4.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 63

3.8 OPERATION

3.8.1 Basic Attributes and Operations

In our system, we only consider the specification of the signature of an OPERATION.
The implementation of the operation may be described in other kinds of programming
languages, or in the query languages themselves. We will not go into details about

that here.

“Specification of an operation includes the following components:®

® Return Type: which specifies the type of the return value of the operation. It

can be any type in the specified language.

e Parameter List: which specifies the parameters to the operation. Each param-
eter in the list is a parameter which is described by the meta type PARAMETER

that is discussed as follows.

We also have some built-in operations on OPERATION, like invoke(), but they
usually should not be visible to end users of the interactive query facility. Using
the operation name with appropriate parameters is the simplest way to invoke the

operation.

3.8.2 Specification and Explanation

OPERATION {

TYPE ReturnType;

‘SAgain, we omit the characteristics inherited from CHARACTERISTIC.

- CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 64

invoke(Name, "(", {(Parameters.Name, '":", QUERY-EXP), s","},
}
PARAMETER {

TYPE 7 ParameterType;

IDENTIFIER Name; |

// parameter passing mechanism;

PARAMETER~-PASSTYPE PassType;

PARAMETER (PassType, ParameterType, [":", Name]);
}

1ist (PARAMETER) Parameters;

// default list separator:

Parameters.sep = "," ;

OPERATION(ReturnType, Name, "(", Parameters, ")");
// default invocation operation on the OPERATION.
invoke(Name, "(", {QUERY-EXP, s","}, ")");‘

// another format of invocation.

EXCLUSIVE-ENUM PARAMETER-PASSTYPE {

}

NO-TAG None;
IN-QUT-TAG InOut;
VAL-REF-TAG ‘ ValRef;

// ENUM type: all, or ome, here is one, and choose InOut;
// if no choose function, thenm all.

choose(In0ut);

ENUM IN-OUT-TAG {

||)u);

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 65

KEYWORD In;
KEYWORD Out;

//default In, Out specification.

In("in");
Out ("out");
}
VAL-REF-TAG ENUM {
KEYWORD Value;
KEYWORD Reference;

//default Value, Reference specification.
~Value("by", "value");

Out("by", "reference");

There are several points that should be explained:

1. In above specification, for the default invocation operation on OPERATION, we
used a list of QUERY-EXP as the actual parameters to the operation. QUERY-
EXP is a meta types defined for OQL which will be discussed in Chapter 4,

representing all possible kinds of query expressions.

2. We used another kind of meta enumeration: EXCLUSIVE-ENUM to represent the
exclusive choice of two different parameter passing mechanisms. Each element
in this kind of meta enumeration is similar to the element in ordinary meta
enumeration, but in the whole system, we can only chooée one element in the

,,speéiﬁcation, representing by the default operation choose.

’CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 66

TYPE
Predefined Predefined. Types Generated
Basic Types Constructed Type = by Predefined Type
Constructors

Figure 3.2: Type System

"3.9‘ TYPE, Type Generator and Type Hierarchy

As we stated before, all objects in an object-oriented system are cla,ssiﬁed:into types,
and all the tybes in the specified language form the type hierarchy of that languagé.
Inrthe above, we actually only analyzed the new type construction. But we can see
from the above discussion that we need some basic types and type constructors for the
attribute and relationship definitions in a new type constfuction. That is the reason
why all the systems have to provide some pre-defined types, such as integer, character,
etc, and some predefined type generators, such as array, structure, etc, by which end
users can define more user-defined new types. All the predefined types and all the new
types defined by end users consist of fhe whole type hierarchy of the application(see
figure 3.2). In this section,i'we will study what kinds of prédeﬁned types and type
, genei‘ators a system may need, and also provide the abstract structures of them to
language specifiers so that they can tailor or customize these components according

to the needs of their specified languages.

391 Predefined Basic Types

; Predeﬁnéd types in a system usually include predefined basic types and predefined

| structured typés. The predefined basic types are the lowest level in the type hierarchy.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 67

[Predefined Basic Type J

C Numeric) (Boolean U C Character) (

Bit

)

Exact) : (Approximate)

=

CFix Point Friction) GToat)

Integer

Figure 3.3: Basic Predefined Data Type

They are already implemented in the system for the end users and all the instances of
these fypes are also pre-existed. End users will only use these instances and can not
~create any new instances of these types. All the operations on these types are also
implemented in the system and end users can not redefine these operations. They can

not define any new operations for these types, either.

Figure 3.3 illustrates the predefined basic types that we provide for language
specifiers. All the inner nodes are Abstract Data Type (ADT) names and can not be
instantiated directly while all the leaf nodes are the instantiable types supported by

our system. But all these types can be customized by language specifiers.

Since there are so many different predefined basic types here, we can not analyze
all the features of them in this thesis. Instead, we will use the Numeric subtree to
‘Villustrate our ideas about these predefined basic types and how language specifiers

can customize them according to their needs.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 68

Discussion on Numeric ADT

- Numeric ADT has one common attribute: Signed Tag, which is used to specify the
numeric range, i.e. whether the numeric instance is signed or not. All the arithmetic
operations, for example, operators: +, —, *, /, etc.are also defined here so that all its
rsub-types can inherit these operations. Since nuiﬁefic'instances are totally ordered,

relational operators, such as >, <, <=,>=, =, etc are also defined for them.

Under Numeric, we have two sub-types, Eract and Approiimate. Under E':L'a’ct, we
have Fized pointed Ffacrt-ions, which only a few systems distiﬁguish them from float,
: ;and Integers; which in some systems may be divided into some sub-types according
to the value range or the length of storage, such as Inti(1 byte), Int2(2 bytes) and
Ini4(4 bytes). Different systemé may have different names of all these types, but we

usua.lly can customize the above type structures according to the specified languages.

Specification of Numeric ADT

Here are the specifications for the Numeric ADT and some of its sub-types.

Numeric : Predefined-Basic-Type {
SIGN-TAG SignTag;
// operators defined on numeric ADT.
Numeric operator+(op1:Numeric, op2:Numeric)
(opl:QUERY-EXP, "+" op2:QUERY-EXP);
"Numeric operator—(opizNuméric, op2:Numeric)
(oﬁl:QUERY-EXP, "-%_ op2:QUERY-EXP);

Numeric operator (op1:Numeric, op2 :Numeric)

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL

(op1:QUERY-EXP, "x", op2:QUERY-EXP));
Numeric operator/(opl:Numeric, op2:Numeric)

(op1:QUERY-EXP, "/", op2:QUERY-~EXP);
Boolean operator>(opl:Numeric, op2:Numeric)

(op1:QUERY-EXP, ">", op2:QUERY-EXP);

}

ENUM SIGN-TAG {
KEYWORD Signed;
KEYWORD Unsigned;

Signed("signed");
Unsigned("unsigned");

default(Signed);

}
Exact : Numeric {
TOKEN-INTEGER Precision;
TOKEN-INTEGER Scale;
Exact(SignTag, ("NUMERIC" | "DECIMAL" | "DEC"),

["{", precision, ["," , scalel, "}"]);
Exact(SignTag, ("NUMERIC" | “DECIMAL" | "DEC"))
{ Precision = 15; Scale = 6; }
literal (TOKEN-INTEGER, [".", TOKEN-INTEGER]):
}
Integer : Exact {

literal (TOKEN-INTEGER) ;

69

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 70

}
Intl : Integer {

Int1(SignTag, “tiny", "integer");

Explanation and Examples of Numeric ADT Specification

Most of the specifications are similar to the specifications we described before, and

" we only explain the following new features here:

1. In the specification of the operators for Numeric, the format is more complex
than other operation specification. The first part of the specification is exactly
the same as the signature specification of C++ operator, which fully expresses
the exact meaning of the operator. All the types in these part, although us-
ing the same name in our meta system, represents the types in the specified
language mapped from the meta type in our meta system. For example, the
return type Numeric represent the type in the specified language corresponding
to the Numeric type in our meta system. Starting from the second parenthe-
sis, specifications represent how these operators look like, similar to the other
specifications we mentioned before. The only difference is that we give each
parameter a name, and‘ use the name to represent the relationship between
the parameters in the original operator (or operation) signature and that in our
meta operation. Usually, when the semantics (the original signature of the oper-
ation and the relationship between the parameters in the original operation and

those in the meta operation) is clear, we always use simplified meta operation

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 71

specification format, as we used before.

2. There are two “constructors” for Fzact. The first specifies the precision and
scale for this exact fraction, while the second does not. But actually the second
format of Exact type specification takes default values for the precision and

scale. This is described by the semantic actions for the “constructor”.

3. We defined a kind of special meta operation:1iteral to specify the literal format
of this type. Actually this is an instance creation operation defined on these
types. Because for all the predefined basic types, the instances of them are
literals (i.e. instances without OIDs). That is the reason why we use literal

as the meta operation name.

3.9.2 Predefined Type Generators

Only the predefined basic types are not enough for building a rich type system. Usu-
ally, an object-oriented system also provides several predefined type generators. Hence
in our system, we also provide the corresponding abstract components for type gen-
erator specification. Figure 3.4 illustrates the basic hierarchy of our meta type gen-
erators. Usually, an enumeration generates a type which defines a list of names, any
mstance of this type will only have the value of these names, and have no other
properties. Operations defined on the enumeration type are based on the equality of
the names themselves and the total ordered relationship between the names in the
list. Our meta type generator ENUMERATION embeds the basic semantics of general
enumerations, and provides some ways to customize the concrete form of enumeration

in the Speciﬁed languages.

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 72

(Predeﬁned Type Constructor]

(enumeration) ‘ structure j

TypeTemplate

(set) (List) ((Bag)

Figure 3.4: Predefined Type Generator

A structure generates a type which defines a fixed number of pairs of names and
types. It is used to aggregate attributes, but is not like a new type definition in which
other characteristics like relationships or operations are usually also defined. General
operations defined on a structure are get-value, set-value of the member attributes,
as for the attributes in an object type. Some systems also provide copy operation to
copy one instance of the structure into another. In our system, a meta type gener-
ator STRUCTURE is provided for the specification of the specified type generator

structure.

Template type generators, or parameterized types, are type generators which ac-
cépt some types as parameters and then generate different types according to the
different type parameters. Reference type generators and collection type generators
are two kinds of commonly used template type generators and most of the object
oriented systems provide them as predefined type generators. Some systems even al-

low user to define their own new template type generators. For simplicity, we do not

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 73

consider this kind of functionality right now in our model.

Reference generators form types which define references to other objects of the

specified types, usually the OIDs of that objects.

Collection generators are perhaps the most important type generators in an object-
-oriented data model. A collection object is used to group together other objects. All
of which should be of the same type at some level. There are several attributes of
a collection, like unordered or ordered, duplicated elements are allowed or not, etc.
Because of the importance and complexity of collections, they will be discussed in a

later section.

Specification and Explanation

Since the members of a structure are quite similar to the attributes in a type, and
reference is rather simple, we will only describe the specification of ENUMERATION

n our meta system:

ENUMERATION {
TYPE-IDENTIFIER Name;
1list (IDENTIFIER) Elements;
ENUMERATION("enum", Name, "{", Elements, "}");
BOOLEAN operator==(Elements.ele, Elements.ele)

(Elements.ele, "==", Elements.ele) ;

There is nothing new to be explained in this specification .

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 74

(Predefined Structured Type

7

(Character String) Date

(Fixed Length) (Vartongh) (FixedLongth) (Varlength)

Figure 3.5: Predefined Structured Types
3.9.3 Predefined Structured Types

" Most systems now provide not only the predefined basic types and predefined type
constructors, but also some commonly used structuréd types (including some basic
operations for these types) as predefined for the convenience of users. As illustrated

- by the Figure 3.5 in our system, we have a sub-tree. of meta structured types that
can be tailored or customized by language specifiers. But here for simplicity, we will

not go into detail of the discussion and specifications about them.

3.10 COLLECTION

As we mentioned before, a collection object is used to group other objects together.
Although in real situations, people seldom define collection types separately, collection
type generators are heavily used in the domain definition for attributes or elements
in the definitions of other types or structures. Defining named persistence collection
object is also an important part in schema definition. This is because the names of
persistence collection objects are often used as entry points to databases. Table defi-

nition based on an ADT in systéms like SQL3 is actually a kind of named persistence

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 75

collection object definition.

In this section, we will discuss both collection type definition and collection object
creation. Collection object creation can be the same as other kinds of object creation
in the specified language. But it can also be different, as we mentioned in the section
on object discussion. Language specifiers can provide special collection object creation
B operations to override the default object creation operations, providing some initial

values to the collection attributes, for example ordered tag, or other constraints.

3.10.1 Basic Attributes

~ We consider the foliowing basic attributes of collections:

e Name: This is the name of the collection type. Usually a collection type is

constructed without a name.

e Element Type: This is the type of the element in the collection. It is a
parameter passed to the collection constructor when defining a collection type.

Objects of sub-types of the element type can also be elements in the collection.

e Cardinality: This records how many elements in the collection. For the end
users, this is a read-only attributes, and it is usually retrieved by a public

function like count().

® Ordered Tag: This records whether the objects in the collection are ordered
(usually according to the insertion or not, but it can also be ordered according

to the values of some attributes)

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 76

e Duplicated: This records whether the collection allows duplicated elements or

not.

o Constraints: This specifies some special constraints for the collection, for ex-

ample, some fields must be unique, like keys,r etc.

There are some other storage and performance related attributes that can be
attached to the collections, for example, index, clustering pragma, etc. Again, for

simplicity, we will not discuss these aspects in this thesis.

3.10.2 Basic Operations
Operations defined on a collection object are:

e create: Create a collection of the parameterized type. Some parameters which
give some hints on performance, like clustering, may also be provided when the

collection is created, but we will not consider this in our model right now.
e delete: delete the collection.
e insert: insert an object into the collection.
e remove: remove an object from the collection.

contain: test whether or not a given object is in the collection.

3.10.3 Specification and Explanation

According to fhe above discussion, COLLECTION as the meta type abstracted for

| . the collections in ordinary OODBMS?’s is defined as follows:

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 77

COLLECTION {
TYPE-IDENTIFIER TypeName;
TYPE ElementType;

// instance properties:

IDENTIFIER Name ;
Integer Cardinality;
ORDER-TAG OrderTag;
DUPLICATED-TAG DupTag;

// a collection type creation
create("collection”, "<", ElementType, ">");
// collection instance creation.
instance-create("create", "collection", "<", ElementType, ">", Name);
// operations on collection object, not collection type.
void insert(ele:ElementType, col:COLLECTION<ElementType>)
("insert", ele:QUERY-EXP, "into", col:QUERY-EXP);
void remove(ele:ElementType, col:COLLECTION<ElementType>)
("remove", ele:QUERY-EXP, "from", col:QUERY-EXP);
Boolean operator in(ele:ElementType, col:COLLECTION<ElementType>)

(ele:QUERY-EXP, "in", col:QUERY-EXP);

}

ENUM ORDER-TAG {
KEYWORD Ordered;
‘KEYHDRD Unordered;

,"default(Unordered);

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 78

Ordered ("ordered");
Unordered(*not", 'ordered");

}

ENUM DUPLICATED-TAG {

 KEYWORD Duplicated;

KEYWORD UnDuplicated;
default(Duplicated);
Ordered("dup");

Unordered("not", "dup");

There are several points that should be explained for the above specification:

1. We define two different create operations. One is for collection type specification,
which will be part of the type system; another is for collection instance creation,

~which actually creates a collection object.

2. In the signature of insert, remove, and the operator in, we used COLLECTION
<ElementType> to represent the collection type generated according to the ele-
~ment type in the specified language. This is similar to the specification of the

numeric operators.

~ 3.10.4 Predefined Sub-types of Collection

There are some predefined sub-types of collection in most of the OODBMS’s we stud-
ied. In our meta system, to represent these concepts, we also have the corresponding

~ meta structures for these sub—typés. They are Set, Bag, List and Array, as illustrated

CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 79

in the Fig. 3.5

A Set is an unordered collection that does not allow element duplication in the col-
lection. Sets inherit and refine all the attributes and operations defined on collections
and add some more operations usually defined as set operators: like union, intersec-
tion, difference, assignment, and the relational operators like subset, proper-subset,

etc.

A Bag is a unordered collection that allows duplicated elements. So a bag should
also maintain the number of occurrences of each element. All operations available to
““a set are available to a bag, but they are based on the numbers of the occurrences of

the elements in the bag.

A List is an ordered collection which allows duplicated elements, and the order is
maintained by the user when elements are inserted into the list. The default order
is based on the insertion time. There is one more property defined on List, i.e the
current-position as integer, which is similar to the cursor. There are also some other
operations defined on List based on the position: such as insert-after, insert-before,

remove-at, etc.

An Array is a one dimensional array with fixed or varying length. So we have
some more properties about length defined on an array, such as the maximum length,

etc.

All these sub-types of collection can be analyzed in a similar way as we did for

collection. For simplicity, we omit these details in this thesis.

 CHAPTER 3. ABSTRACT OBJECT MODEL AND ODL 80

' 3.11 User Defined Components for ODL

“From the above discussion we can see that the speciﬁcation of a query language is
a mapping from the concepts used in the specified object model and query language
to the concepts in our predefined meta system. Sometimes, when a concept in the
specified system is not easily mapped onto that in our meta system, the language
sp‘eciﬁers can construct some new meta types for this concept. Constructing new
meta types is quite simnilar to class definition in C++. For example, as we mentioned
above, in some OODBMS’s, the concept class which has both‘intent and extent is
used instead of t'ype, and until now we do not have a corresponding component defined

for class. The following is our specification as a user defined meta type:

CLASS {
TYPE Intent;
persistent COLLECTION<Intent> Extent;

// constructors for the meta type CLASS:
CLASS("class", Intent.Name, Intent.Inheritance, "{"
Intent.Characteristics, "}")

{ Extent.Name = Intent.Name; }

This means that a class consists of a type as the intent, and a persistent collection of
its intent as the extent. The semantics of class creation is équivalent to the creation
of this intent and extent; and the syntax is similar to type creation with the extent

collection name the same as the intent type name.

Chapter 4
OQL and META-OQL

While the Object Definition Language provides the facilities of the database schema
definition, the Object Query Language deals with the general object operations: such
as object create, delete, update, and retrieve. Most of the operations on objects
have actually been defined in the corresponding type definitions of the objects, and
OQL basically provides some kind of command, function or operator format for these
operations. Some statements may involve arbitrary types of objects, such as select-
from-where statement. They have not been defined within any type of objects and

should be defined specially in OQL.

In this chapter, we will discuss our common components abstracted from the
Object Query Languages of ordinary object-oriented database systems. Again, we
~will not describe a complete abstract query language, but rather only include the

basic aspects of ocbject manipulation itself.

81

CHAPTER 4. 0QL AND META-0OQL 82

Query Expression

Elementary Operational Constructing | Path Collection Conversion Select- User-Defind
Expression Expression Expression Expression Expression Expression Expression Expression

Figure 4.1: Query Expression Classification

4.1 General Discussion

Generally, object manipulation includes object creation, retrieval, update (such as

- changing the state of an object, inserting an object into a collection, etc). According
to our studies of different query languages, we abstracted the meta type Query Ezpres-
sion to represent the basic unit of OQL. Furthermore, we classified Query Ezpression

" into the following sub-types which represent different kinds of query expressions: (see

Fig. 4.1)

e Elementary Expressions: These kinds of expressions mainly inciude literals

of the predefined basic types and object names.

e Operational Expressions: These kinds of expressions mainly include arith-

metic, relational and logic operational expressions.

e Constructing Expressions: These kinds of expressions mainly include differ-
ent kinds of object creation. For example, creating objects of user defined types,

instances of some structures, sets, and lists, etc.

e Path Expressions: These kinds of expressions include expressions for accessing

é,ttributes, relationships, and operations of an object.

CHAPTER 4. OQL AND META-OQL 83

e Collection Expressions: These kinds of expressions mainly include expres-
sions based on different types of collection objects. For example, how to manip-

ulate sets, lists, etc.

e Conversion Expressions: These kinds of expressions include expressions of
conversions between different types. This is one of the important parts of the

type system for the OODBMS’s.

o Select Expressions: These kinds of expressions are based on the select-from-
where expressions in traditional SQL. It provides a mechanism to manipulate
objects of more than one type (which are not directly related in the schema

definition) in one statement.

o User-defined Expressions: These are the mechanisms for language specifiers
to construct some special kinds of expressions for their CQLs. For example, the

MOVE statement of DSQL.

| From the above, we can see that most of the query expressions only deal with object
creation and retrieval, none of them deals with update and delete. This is because we
can build these statements or expressions based on the above query expressions. Hence
in our later discussion, we will only concentrate on create and retrieval statements or
expressions of OQL. A similar approach can be used for update and delete expressions,

and we will not discuss these further.

In the following sections, we will discuss our common components for all of these
sub-types of the Query Ezpression. A Query Ezpression can be formed recursively,

as we will see later. For convenience, we will use QUERY-EXP to represent the meta

CHAPTER 4. OQL AND META-OQL 84

type in our meta language (As we have already mentioned in Chapter 3). Each sub-
meta-type of Query Frpression also has a symbol in our meta language, which will be
discussed in the following sections. But before the detailed discussion of these Query
Ezpressions, we should have a general discussion about query languages and query

expressions.

In traditional SQL for RDBMS, a data retrieval statement is usually only in the
format of the select-from-where statement. In some OODBMS’s, although they also
include the select-from-where statement, for some simple situations they also allow
some more concise formats of the expressions. For example, suppose we have an entry
name, say Student, as the name of a persistence collection. Then the entry name
Student itself forms a query expression, and the result of this query expression is
the collection of instances of Student. Actually, we can let any of the above query

expressions be a single object retrieval statement.

Usually, each query expression has a result, which is also the output of the query.
Query results can be of all different types, such as instances of user defined types,
literals of predefined basic types, constructed types, etc, depending on the query
expression itself. Most of them are obvious, and we will explain this later when we
discuss each sub-type of the Query Erpression. But for select-from-where statement,
the situation is more complex. In traditional SQL, the result of a select-from-where
statement 1s also an ordinary relation. This property is usually referred as the “Closure
Property”. In some of the query languages of OODBMS, the result of a select-from-
where statement can also be of different types depending on the result part cf the
statement 1itself. Here, it seems that the “Closure Property” is not retained. But
actually, this is because in OQL there are more types which can be used in query

expressions. The results of query expressions (including select-from-where) can be

CHAPTER 4. OQL AND META-OQL 85

used in other query expressions as ordinary query expressions, as long as the types
of the expressions are compatible with other expressions. We will discuss more about

that in the section about select-from-where expression.

4.2 Basic Expressions

The basic query expressions include literals of predefined basic types, such as integers,
strings, etc, and the object names, which are similar to variable names in ordinary
programming languages. Whatever the format of the object names and the literals
of the predefined basic types have already been defined as in the corresponding meta
type definitions by the language specifiers (or if they use the default formats of our
default query language). the concept of basic expression will include them. That is

to say that a basic expression BASIC-EXP, includes:

OBJECT.Name //defined in meta type OBJECT.
<Literal-Exact> //defined in meta type Exact.

<Literal-Integer> //defined in meta type Integer.

ey

By default, a BASIC-EXP can form a statement in OQL. That is to say, whatever
kind of formats of the object name or the literals of the predefined basic types, they

will be one kind of query statement.

CHAPTER 4. OQL AND META-OQL 86

4.3 Operational Expressions

For the predefined basic types, we assume that we have already defined all the basic
operations in the correspending meta types. For example, for the Numeric ADT, we
defined all the arithmetic and relational operators, and how to form the operational

expressions, such as QUERY-EXP + QUERY-EXP, OUERY-EXP - QUERY-EXP, etc.

Operational expressions can be formed recursively, as we can see from the above
operator definitions. The operands for these operators are QUERY-EXPs, which in
turn can be any of the sub types of query expressions, including literals, operational
expressions, path expressions, etc, as long as the types of the operands are compatible.
So whatever kind of operators and expression forms are specified for the predefined
basic types, they will be part of the operational expressions of the specified query
language. Hence OPER-EXP, which represents Operational Ezpression in our meta

system includes:

<Query-Exp> == <Query-Exp> // defined in meta type OBJECT.
<Query-Exp> + <Query-Exp> // defined in meta type Numeric

<Query-Exp> - <Query-Exp> // defined in meta type Numeric

“s

All the operators for the predefined types have the default priorities as in ordinary
programming languages, and parenthesis can be used to change the order of the
calculations. Right now, we do not provide mechanisms for customization of operator
priorities in our system, but it can be done (using priority orders) in a similar way as

we did for other concepts.

CHAPTER 4. OQL AND META-OQL 87

4.4 Object Constructing Expressions

All the data and objects in the database should be created in some kind of format.
In ordinary object-oriented programming languages, such as C++, objects and data
are usually created by some data definition statements. In query languages, these are
done through some types of “create” statements. No matter what kind of format it
may be, the underlying semantics are quite similar. Usually, for object creation, the
system will invoke the constructors, either user defined or system default, of the type

for this object, passing some corresponding parameters.

There are two kinds of parameter passing styles for operations. In ordinary pro-
gramming languages, the parameters are passed according to position. That is to say
that the meaning of the parameters are decided by their positions in the operation
parameter list. The users of the operations should understand and remember the
position conventions specified by the implementation of these operations. While in
some query languages, for object creation operations, the parameters are passed by
the attribute name and value pairs, which is much easier for ordinary users to use.
In our system, we provide both of these styles for object creation. For example, if we
have defined type Student with some attributes such as name, student-no, age, etc.

We can use
Student (name: "Mike", student-no:"94000-0000", age:20);

to create an instance of Student. If in the definition of Student, the user has defined

a constructor in the format:

Student (char* st-no, int age, char* name) ;

CHAPTER 4. OQL AND META-OQL 88

then the statement
Student (*'94000-0000", 20, "Mike™");

will also create the same instance of Student.

However, the above two kinds of object creation expressions should not be mixed
in one operation. For each operation, only one style can be used. From the point of
internal processing, these two kinds of parameter passing styles can be distinguished
easily according to their “signatures” because we can treat the first kind of object

creation as a special kind of operation with a special signature.

The second kind of object creation is just an ordinary operation invocation. So it
must be based on the user defined constructors for this type. And the actual format of
the operation invocation must be consistent with the operation invocation convention
in the specified query language. In our system, the first style is the default object
creation format for all the user defined types. The actual format of the invocation
can be specified by the language spzcifiers in the meta type TYPE definition by the

instance-creation operation as follows:

// default instance creation operation for all the user defined types.
TYPE: :instance-create(Name, "(", {
(Attributes.ele.Name, ":", QUERY-EXP),
s"," }, "M

For predefined types, we have discussed instance creation for the predefined basic
types in an elementary expression (the literal definition is of this kind of operation).
For predefined structured types, the creation of a structure instance is similar to that

of object creation. Since there are no user-defined constructors for the instance of a

CHAPTER 4. OQL AND META-OQL 89

structure, and the instance of a structure type is literal, we can only provide a general

literal creation operation for all user defined structure types.

// default literal constructor for all the structure types.
STRUCTURE: :Literal (Name, "(", {
(Members.ele.Name, ":", QUERY-EXP), s","
F,o;

Sometimes, we may need to dynamically create a temporary structure type (with or

without a type name) and then create instances of this type. For example,
struct(name: "Mike", age:20);

may be used to create a no name type of structure, and also create a literal instance

of this type. And
struct person(name: "Mike", age:20);

will create a structure of type person, and at the same time create an instance for

this type.

The operation of dynamically creating a temporary structure type is very useful
for storing the result returned by a complex query, especially when used in the select-
from-where statement. We call this operation temporary structure type and instance
creation. The actual format of this can be specified by the language specifier under

the meta function name temp-struct. And the default format is:

// default literal constructor for all the structure types.
STRUCTURE: : temp-struct ("struct", [Name,] "(", {

(Members.ele.Name, ":", QUERY-EXP), s"," }, ")");

CHAPTER 4. OQL AND META-OQL 90

For other predefined structured types, such as list, set, bag etc, the constructing
expressions are defined in their instance-creation meta operation in the corresponding

meta types, and we will not go into details of them here.

4.5 Path Expressions

Path expressions are used to access the characteristics of a type. Usually there are
two types of path expressions: one is so called a dot expression, and the format is
- OBJECT.Name DOT CHARACTERISTIC.Name where DOT is usually specified as DOT(".")
in the meta system. Another one is so called a scope expression, and the format is
TYPE.Name SCOPE~SIGN CHARACTERISTIC.Name where SCOPE-SIGN is usually specified
as SCOPE-SIGN("::"). Language specifiers can specify their own format of DOT or

SCOPE-SIGN themselves if they like.

4.6 Collection Related Expressions

Collection Related Ezpression basically have been defined in the meta type COLLEC-
TION and its subtypes, such as SET, LIST, etc. For example, we have defined the
operator in to test the contain relationship between an element and a collection in-
stance in the meta type definition of COLLECTION. Here we will not discuss these

operations further.

CHAPTER 4. OQL AND META-OQL 91

4.7 Type Conversion Expressions

Although, according to the principles of the object-oriented approach, different types
should not be mixed in a calculation, sometimes users may still want to convert an
instance of one type to an instance of another type in a reasonable way. Usually
type conversions are only within the predefined types (including the predefined basic
types, predefined structured types and types constructed through the predefined type
constructors) and the conversion are also predefined in some reasonable way. This is

because it may not make sense if we permit conversions between arbitrary types.

Type conversion operations are defined on two different types, and usually they are
treated as some kind of top level meta operation, instead of an operation of one type.
Here we will not enumerate all possible type conversion operations in an ordinary
query language, but rather use one example: the operation of converting a bag into a

set, to illustrate the basic ideas of this kind of expression:

// default bag to set conversion operation.

Bag Bag2Set(Set) ("bagtoset", "(", QUERY-EXP, ")");

The meta definition of this meta operation is quite similar to the operations we

discussed in the Numeric ADT and we will not give any more explanation here.

Users can also construct new type conversion operations between any two different
types. Since it is the same way as constructing other new operations, so we will not

discuss this further here.

CHAPTER 4. OQL AND META-OQL 92

4.8 Select Expressions

4.8.1 General Discussion

In traditional SQL, the select-from-where statement is the main data retrieval state-
ment. Because of the popularity of SQL, most query languages of OODBMS’s also
have similar structures, and usually use similar syntax appearance. Basically, this

structure reflects the following three aspects of a data/object retrieval statement:

e Result Clause: This clause describes what kind of data/object must be re-
trieved by the query statement. In traditional SQL, this part consists of a list
of expression, and each expression is only based on the data whose level is no
more than column level (no structures or relations can be used here). But in
most query languages of OODBMS’s, all different expressions or sub-query ex-
pressions can be used here as long as the computation is permitted by the type

system.

e Range Clause: This clause describes against which part of the database the
query is done. In traditional SQL, this part binds the tuple variables (if there
is any) to the relations, specifying against which relations the query is issued.
In object-oriented query languages, this clause also binds different variables to
different domains which usually are collections. Again, sub-query expressions

can be used here as long as the type system permits.

¢ Condition Clause: This clause describes what kind of data/objects are qual-
ified for the result, and it is just like a filter. Usually it is a kind of logic

expression in which different predicates may appear. In a broad sense, it is a

CHAPTER 4. OQL AND META-OQL 93

kind of constraint specification of the variables appearing in the result and range

clauses.

In some cases, the range clause can be omitted if from the result clause we can
‘know against which part of the data we are issuing the queries. A condition clause
can also be omitted when there is no condition specified. For example, if we have a
persistent collection named Student, select Student itself is very clear about the

range and condition.

4.8.2 Basic Semantics

The basic semantics for the select-from-where statement is that, for each range vari-
able (including all the implicit range variables in the statement), we will generate a
foreach loop (nested if some loops have been already generated) to scan all the in-
stances in the collection of this range. In the inner loop, we check the conditions of
the condition clause, and filter out a subset (or sub-bag !) of the cartesian product
of all the range variables that satisfy all the conditions. We then evaluate the query

expressions in the result part for all the filtered instances of the cartesian product.

foreach vli in colil

foreach v2 in col2

if (cond(vi, v2, ...)) {

r(vi, v2,...)

If any collection is a bag, then the result may also be a bag. The cartesian product of bags is
defined similar to the cartesian product as set. For example, coll = {1,2,3 },and col2 ={ a, b, a
}, then the cartesian product of coll and col2 is { (1, a), (2, a), (3, a), (1, b), (2, b), (3, b), (1, a),

(2,2),(3,3) }

CHAPTER 4. OQL AND META-OQL 94

Here, the expressions cond(v1, v2, ...) and r(vi, v2,...) represent the condi-
tion and the result evaluated with the range variables replaced by the current instances

in the collections.

The above code schema only represents the basic semantics of the select-from-
where expression. Usually some optimizations must be done to make the code more
efficient. For example, if a sub condition expression in the condition clause is only
restricted to one collection and is casily be tested, then we may first evaluate this
condition, and get another smaller collection COL1 to replace the original col1l. Some
optimization strategies for relational queries are still useful for object-oriented query
expression evaluations, but in many cases the optimization algorithms for object-
oriented query expressions are more complex than those for the simple traditional

queries. In this thesis, we will not discuss this aspect of query language processing.

4.8.3 Specification

According to the above discussion, we have the following specification for the select-

from-where expression:

SELECT-EXP {

1list (QUERY-EXP) Result;
1list (RANGE-EXP) Range;
1list (QUERY-EXP) Condition;

// default comstructor for the SELECT-EXP;

SELECT-EXP("select", Result, ["from", Rangel, [“where", Condition]);

CHAPTER 4. OQL AND META-OQL 95

}

RANGE-EXP {
IDENTIFIER Range-var,;
QUERY-EXP Domain;
RANGE-EXP(Domain, [":", Range-var]);
// other format: ODMG-93
RANGE-EXP(Range-var, "in'", Domain);

}

The specification here is similar to those specifications we presented above and no

more explanation is needed.

4.9 User-defined Expressions

As we mentioned above, language specifiers can construct some new statements to
represent the new components which are not easily expressed in the basic meta com-
ponents we provided. A new component is usually in the format of a new statement,
and in the new statement specification, language specifiers describe how the new
statement can be mapped on some basic meta components. Here we use an example

taken from DSQL and specify the “move” statement as follows:

NEW-STATEMENT : :MOVE("move", TYPE.Name:t1, ":", IDENTIFIER:vi
"to", TYPE.Name:t2, ":", IDENTIFIER:vZ2,

SELECT-EXP.Conditions:c1)

foreach ((vi, v2) in

CHAPTER 4. OQL AND META-OQL 96

(select vi, v2 from ti1:v1, t2:v2 where c1))

move(vl, v2);

We assume that the language designers provided their own underlying “move” function
here. This specification actually mapped the new statement “move” to the meta
structures we provided in our meta system. foreach is a meta structure representing
a loop over a collection object, and the select statement represents the meta select-
from-where structure in our system that will return a collection. Using the named
~ parameters, the relationship between the parameters in the new components and the
parameters in the meta structures can be revealed clearly. This idea is similar to

those we used in Chapter 3.

Chapter 5

System Implementation

After the above discussion about our design, in this chapter we will give a more
detailed discussion of how our system works and how it can be implemented. Since a
complete language definition and practical implementation of our system would have
too many technical details, we will use some small examples to show how a language
can be specified in our system, and how the specification of the language can be
used to generate a query processor for this language. The implementation described
here is based on our test implementation of our system, which is mainly based on

YACC/LEX, C, C++ and one OODBMS: Objectstore.

5.1 Examples

The examples we will use are taken from [5], which are basically two typical class

definition statements in O2.

class City

CHAPTER 5. SYSTEM IMPLEMENTATION 98

type tuple(name: string,
map: Bitmap,
hotels: set(Hotel))
method how_many_vacancies(star: integer): integer,
build_new_hotel(h: Hotel)

end;

class Tourist_City inherit City
rename build_new_hotel as new_equipment
/* rename to a more appropriate one */
type tuple(hotels: set(Hotel_Restaurant), /* attribute overriding */
what_to_see: set(monument)) /* new attribute */
method new_equipment(e: Hotel_Restaurant)
/* method overriding (build_new_hotel in fact) */

end;

The meaning of the examples is quite obvious. The first statement defines a
class named City with 3 attributes and 2 methods. The second statement defines
a class named Tourist_City which is a sub-class of City. One more attribute is
defined for this sub-class. It also redefines one attribute hotels and one method
build_new_hotel. In the following, we will describe the specification for this part of
02 based on our system. The semantics we assume here may not be strictly consistent
with the original O2 specification because of our illustrative purpose. We will point

out these difference when it is necessary later.

CHAPTER 5. SYSTEM IMPLEMENTATION 99

In the following specification, the numbers before each meta statement are used
for reference to our explanation. They are not part of the specification. Neither is

the comments.

(1) TOKEN TYPE-IDENTIFIER [A-Z]{letter-or-digitl}*
/42
(2) CLASS::create("class", Type.Name, [Type.Inheritancel,
"type", “"tuple", "(", Type.Atti'ibutes, AR
[Type.Operations], "end");
(3) TYPE::Name(TYPE-IDENTIFIER);
(4) CLASS.Type.Attributes.sep = "," ;
(5) INHERITANCE: : INHERITANCE ("inherits",
SuperTypes, ["rename", Renames]);
(6) OPERATION: :0PERATION("method'", Name,
#(", Parameters, ")", ":" ReturnType);
PARAMETER: : PARAMETER([VarName, ":"], ParameterType);
(7) ATTRIBUTE: : ATTRIBUTE (Name, ":", Domain);
(8) /* predefined types and type constructors */
(a) VARCHAR::VARCHAR("string");
(b) VARBITSTRING::VARBITSTRING("Bitmap");
(c) SET::SET("set", "(", TYPE, ")");

hh

Meta statement (1) is a token definition example in our system. It defines a token
TYPE-IDENTIFIER which starts with an upper case letter and follows with letters or

‘digits. This token deﬁnition is used in.(3) which specifies that a type name should be

CHAPTER 5. SYSTEM IMPLEMENTATION 100

in the format of this token. In O2 this is not the case, here we use this as an example

of defining tokens and how to use the defined tokens.

“y%” after the token definition is a kind of separator between the first part (token
| definition) and the second part of a language specification. It is a kind of syntactic
sugar in our meta language and has a simiiar function as that in YACC programs.

The second “%%” is similar.

Meta statement (2) is the overriding of the class (not type) creation meta operation
(the meta type CLASS and the meta operations defined on CLASS are defined in

Section 3.11) which actually specifies how a class definition should look like in 02.!

INHERITANCE specification in meta statement (5) is almost the same as the
default one except that in O2 they use “inherits” instead of “:” to lead the inheritance
definition. The rename clause is also the same as the default one (please see section

3.4.3.)

‘Meta statements (4) and (7) specify how attributes (see Section 3.6.3) of a class
should be defined in O2. The separator between the attribute definitions is ”,” instead
of the default ”;”. And for the definition of each attribute, the format is defined as

(7) instead of being the default one.

Meta statement (6) specifies how operations of a class can be specified in O2.
They are overriding the predefined constructors of the meta type OPERATION and
PARAMETER (see Section 3.8.2).

IFor the simplicity of our example, we use this'kind of specification here. Again, it may not be
strictly consistent with the actual semantics of the O2 language. A better specification can keep the
concept of tuple and map it onto the structure in our system, but we will not go into details of this
here.

CHAPTER 5. SYSTEM IMPLEMENTATION 101

Meta statements in (8) specify how the predefined types and type constructors
in O2 should be mapped onto the predefined types and type constructors in our
“abstract Object Model. Each of them corresponds to the overriding of the constructor

of the corresponding meta type. (The specification is similar to other meta type

constructors.)

5.2 How Our System Works

From the above example we can see that, since we have provided a general abstract
Object Model and Default query language, ordinary query languages for object ori-
‘ented database systems can be specified based on our system in a simple way. As we
mentioned above, since query language specifiers can reuse a lot of common compo-
nents provided by our system, usually what they have to do is to provide some special
feature descriptions for their query languages. This kind of specification is usually

much shorter and clearer than an ordinary language specification.

5.2.1 Language Specification

Basically, a language specification consists of the following three kinds of specifications

(see figure 5.1).

1. Token Definition: provides the special lexical elements (token definition us-
ing regular expressions) for the specified languages. In the above example, meta
statement (1) belongs to this category. In our system, we have already defined

some default tokens (with the default lexical rules) for the language specifiers,

CHAPTER 5. SYSTEM IMPLEMENTATION

Language Specification

1. Token Definitions

Z. Predefined Meta-Operation
- Overriding Specification

3. New Component
Specification

“Meta Language
~. _Processor _ .~

-~

Query Results

§

++ Programs based
on Objectstore

102

Generated LEX & YACC

Program

) Lexical Rules For LEX

%

Token Definition For YACC

Parser Stack Definition
Type Declaration For Symbols

B

Syntax Rules Hooked With
Semantics Actions

LEX
YACC

C Compiler
C++ Compiler

EQuery Processor)

_.(Query Processor

Figure 5.1: How Our System Works

CHAPTER 5. SYSTEM IMPLEMENTATION 103

such as TOKEN-INTEGER, which represents the digit string, and TOKEN-
IDENTIFIER, which represents how an identifier should be composed. Lan-
guage specifiers can directly use these default tokens, but they can also provide
their own token definitions. Since right now our system implementation and
part of the presentation of our system design are based on the YACC and LEX
programs, in some way our system is influenced by YACC and LEX. We use the
same token definition conventions as YACC ([21]) and LEX ([22]). LEX pro-
grams can also be used with our system because of this reason 2. As in YACC,
‘token definition is the first part of our specification and is separated from the

next part of the specification by %%.

2. Overriding Predefined Meta Operations: According to our design, most
of the basic concepts of Object Model and query languages are defined in
meta types/objects. If language specifiers want to customize or tailor the se-
mantics/syntax of the query languages, they can override the default meta-
operations (usually the constructors) defined in the corresponding meta types/objects.
Actually, providing these kinds of meta operations is one of the main kinds of
language specification. In the above example, most of the meta statements be-
long to this category. Statement (3) and (4) provide overriding of an attribute
domain and default separator of a meta list. They are also used in generating

YACC programs for the specification.

3. Constructing New Components: Language specifiers can also define their
own meta types and meta operations (either for some meta types or not) using

the predefined meta types for some special components in their query languages

- 280 we can declare the tokens without providing the regular rules in this specification and provide
a LEX program to our system.

CHAPTER 5. SYSTEM IMPLEMENTATION 104

in a similar way of the definition to the predefined meta types (see‘Section 3.11
and Section 4.9). After being defined, these meta types and objects can be
used in the same manner as the predefined ones. New component constructions
are another main kind of language specification. They can be mixed with the

specification of overriding the predefined ineta-operations.

5.2.2 Processing the Language Specification

From the above three kinds of specification provided by the language specifiers, we
can then generate YACC and LEX programs. With YACC, LEX, C, C++ compil-
ers etc, we can further generate a query processor for the specified query language

ziut’omatically. The whole process is illustrated in figure 5.1.

The token definition part will be transformed into a LEX program segment and
then merged into our predefined LEX program (in which some keywords and other
default token definitions are dealt with). It will also be used to generate part of token
definitions that will be merged into the token definition part of our YACC program.
These two kinds of transformation are quite straight forward because we use the same
conventions as LEX and YACC. Here we only use the above example to show the

basic idea of this transformation without going into more technical details.

In out predefined LEX programs, we Lave the following LEX definition:

.3 ‘..

letter [a-zA-Z_]
digit [0-9]

letter_or_digit [a-zA-Z_0-9]

CHAPTER 5. SYSTEM IMPLEMENTATION 105

white_space [\t\n]

A]

Language specifiers can use these definitions to define their tokens in regular ex-

pressions. In the above example, we have
TOKEN TYPE-IDENTIFIER [A-Z]{letter-or-digit}*

We can generate the following LEX program segment from the above definition:3

[A-Z]{letter-or-digitl}*
{

yylval.str = malloc(strlen(yytext)+1);
strcpy(yylval.str, yytext);
return token(TYPE-IDENTIFIER);

which will be merged (or replace the corresponding default token definition) into the

rule part of our predefined LEX program.

The above definition also generates the following YACC program segment
%token <str> TYPE-IDENTIFIER

which will be added to the token definition of the YACC program generated by our

system.

3In our test implementation, the user defined tokens are of the type of string, so we only save the
string value in the parser stack of YACC. See the following YACC program segment generated by

the above definition.

CHAPTER 5. SYSTEM IMPLEMENTATION 106

The main part of the whole process is to generate the two main parts of the YACC
program from the operation specifications and new component constructions of the
- specification: (1) syntax rules and semantics actions nooked to the rules; (2) parser
stack definition and type definitions for symbols appearing in the syntax rules. We

will describe the algorithm for these parts of our system in the next section.

Right now, the query processors generated by our testing system work in a dif-
ferent way from traditional query processors. Queries input by the users will first be
processed and transformed into C++ programs based on Objectstore OODBMS; then
' the programs will be compiled into a dynamic link library. Dynamically linked and
fun with our predefined main program, query results for the queries can be produced

and returned to the users.

5.3 Implementation of Our System

In this section, we will describe our basic algorithms of how to generate YACC pro-
grams from the specification of overriding the predefined meta-operations and con-
structing new components. This process itself is again based on the YACC and LEX
tools. That is to say, we will use YACC and LEX programs to generate YACC and

LEX programs.

5.3.1 BNF for the Meta Operations

In our system, the basic unit of the specification is in the form of so-called “meta-
operations”. The form of this meta-operation specification is similar to C++ function

kprototy‘pe definition. The difference is that the parameters to the meta-operation are

CHAPTER 5. SYSTEM IMPLEMENTATION 107

in the form of “Comma Ezpressions” which are recursively defined as following:

e A string enclosed by double quotes is a Comma Ezpression, which represents the

direct TOKEN in the target language (i.e. this component will match exactly

the string in the quotes in the target language). This kind of Comma Ezpression

1s called a String Comma Ezpression.

e A Meta Path Ezpression is a Comma FExpression, which represents the concept

represented by the Meta Path Ezrpression in our meta language. It usually

represents another component in our meta language. This kind of Comma

Ezxpression is called a Path Comma Ezpression

o A Comma Ezpression enclosed by °[" and ’]’ is a Comma FEzpression, which

represents that this parameter may or may not appear in the target language.

This kind of Comma Ezpression is called an Optional Comma FEzpression

e A Comma Ezpression and a String Comma Ezpression separated by a comma

and enclosed by ’{’ and ’}’, is also a Comma Ezpression which represents a list

of the Comma FEzpression separated by the String Comma Ezpression. This

kind of Comma FEzpression is called a List Comma Ezpression

o A list Comma Ezpression separated by vertical bars (’|’) is also a Comma FEz-

pression which represents that it may be any of the Comma Ezpression in the

list. This kind of Comma Ezpression is called a Selection Comma Ezpression

o A list Comma Erpression separated by commas (’,”) and enclosed by ’(’ and ’)’

is also a Comma Fzpression, which represents the aggregation of the Comma

Ezpression enclosed. This kind of Comma Ezrpression is called an Aggregational

Comma FEzpression

CHAPTER 5. SYSTEM IMPLEMENTATION 108

The Meta Path Ezpression we mentioned above is similar to an ordinary path
expression in ordinary object-oriented languages. It may or may not start with a

scope name (meta type name) and dot (’.’) is the separator along the path expression.

The BNF rules (in a format similar to the rule format of YACC programs) for a

meta operation can be described as following:

<meta-operation> : <TYPE-Name> "::" <function-spec> ’;’

| <function-spec> ’;’

<TYPE-Name> : IDENTIFIER;
/* it can be a pre-defined meta-type name; */
/* or a new meta-type name of new components in the CQL; */

<function-spec> : <function-name> ’(’ <parameter-list> ’)’

<function-name> : IDENTIFIER;
// usually it is some predefined operation name for
// this meta-type.
<parameter-list> : <parameter>
| <parameter-list> ’,’ <parameter>
// the parameter is the so-called "comma expression"
// in our system.
<paraﬁeter> : <comma-expression> <action>
<comma-expression> : STRING

// ordinary string def., treated as a meta token.

CHAPTER 5. SYSTEM IMPLEMENTATION 109

| <meta-path-expression>
| <option-expression>
// represents the optional in the language spec.
| <list-expression>
// represents the repeat components in the language spec.
| <selection-expression>
// represents the select component in the lang. spec.
| 7’ <parameter> ’)’
// represents the aggregation of the components in the lang.
<meta-path-expression>
: <attribute-name>

| <TYPE~-name> ’.’ <attribute-name-list>

<attribute-name> : IDENTIFIER;
// usually the attr. in the meta type.
<attribute-name-list>
: <attribute—name>

| <attribute-name-list> ’.’ <attribute-name>

<option-expression> : OPTION-BEGIN <parameter> OPTION-END
// OPTION-BEGIN is usually “["
// OPTION-END is usually “]"

<list—éxpreSSion> : LIST-BEGIN <parameter> "," <list-separator> LIST-END

CHAPTER 5. SYSTEM IMPLEMENTATION 110

// LIST-BEGIN is usually " ("
// LIST-END is usually ")"
| LIST-BEGIN <parameter> LIST-END
// using the default list separator or terminator
<list-separator> : "s'" STRING
// which means the separator of the ele. is the string
| "e" STRING
// which means the terminator of each ele. is the”string
<selection-expression>
: <parameter> SELECTION-SEP <parameter>
| <selection-expression> SELECTION-SEP <parameter>

// SELECTION-SEP usually is "|"

E

5.3.2 Algorithms for Generating YACC Rules

The above BNF rules represent our basic ideas about meta operations and the Comma
Ezpression for the parameters of the meta operations 4. The algorithms for generat-
ing the BNF rules in YACC program format for the target language from the meta

operations defined above are as follows:

(A) From a meta-operation definition, a top level BNF rule can be generated for

this meta ‘operationr. The left hand side of this top level BNF rule is generated by

, T‘He;-e for Simpliciiy we omit the definitions of <action> and parameter naming mechanisms which
are quite easy to process.

CHAPTER 5. SYSTEM IMPLEMENTATION 111

combining the meta type name (if none, use -GLOBAL as the default type) and the
meta operation name of the meta-operation, and the right hand side consists of the

elements generated by the parameters for the meta operation.

For example, from meta statement (2) in the above example, our system will

generate the following BNF rules:

CLASS-create : "class" TYPE-IDENTIFIER
CLASS-create-optionl "type" "tuple"
(" ATTRIBUTE-list ")" CLASS-create-option2
llendll
CLASS-create-optiont : /* null */
| INHERITANCE
ATTRIBUTE-1list : ATTRIBUTE

| ATTRIBUTE-list "," ATTRIBUTE

-
2

The left hand side symbol for the top level syntax rule (the first rule) generated by

our System 1s CLASS_create.

(B) Generating the right hand side elements from the parameters in the meta
operation. Each parameter will generate a symbol with zero or more BNF rules for

this symbol according to the following rules:

1. H the parameter is a STRING, the symbol generated is tbjs STRING itself, and

CHAPTER 5. SYSTEM IMPLEMENTATION 112

™o

no more BNF rule will be generated for this parameter; In the above example,
“class", "type", ..., fall into this category. And in the generated YACC rules,

“class", "type" are the symbols for the corresponding parameters.

If the parameter is a meta-path-expression, we have to look at the domain of

this meta path expression. There are several cases:

(a) If the domain is TOKEN (TYPE.Name in statement (2) falls into this cat-
egory because the domain of Name in meta type TYPE definition is TOKEN),
our system will check to see if there is any further specification about the domain
(in our example, the domain of Name is further specified as TYPE-IDENTIFIER).
The symbol generated by this parameter will be the rmostrspeciﬁc TOKEN do-
main. Corresponding semantics checking actions may also be generated to check

along the path as we mentioned in Chapter 3.

(b) If the domain is another meta type, the symbol generated will be the symbol
representing this meta type. In the above example, the domain of Inheritance
is INHERITANCE, so the symbol in the second clause of TYPE-create-optioni

is INHERITANCE.

(c) If the domain is a list of Comma Ezpressions, then the symbol will be
generated according to the rules for the list which will be described later. The
defaﬁlt separatdr or terminators will be inserted into the rules generated by the
list parameters. In the above example, the domain of Attributes is a list of

ATTRIBUTE, and sc it falls into this category.

. If the parameter is an optional-expression, we will generate a symbol for this

option, which is the typé:name of the operation combined with the digit string

- representing the current zumber of option expressions in the type. For a meta

CHAPTER 5. SYSTEM IMPLEMENTATION 113

operation without a type, we just assume a -GLOBAL type. The generated
symbol will represent the parameter in the original rules, and two more rules

for the symbol will be generated as follows:

<option> : /% null %/

| <symbol-generated-by-the-enclosed-parameter-recursively>

.
2

In the above example, TYPE. Inheritance falls into this category. The symbol
generated for this option is CLASS-create followed by optioni. Two more
rules are also generated for this symbol, one is null, the other is the symbol
generated by TYPE.Inheritance, which, according to the above rules, should

be INHERITANCE.

4. If the parameter is a list-expression, first we have to check the domain of
the element in the list, and generate a s’ymbol for this domain (denoted as
<symbol-for-this~domain> here). The symbol generated for the list is then
<symbol-for-this-domain>-1list; and two more rules will. be generated for

this symbol:

<symbol-for-this-domain>-list
: <symbol-for-this-domain>
| <symbol-for-this-domain>-list

<symbol-for-this-domain>

‘According to the rules about the the list separator or terminator, we should

CHAPTER 5. SYSTEM IMPLEMENTATION 114

also insert corresponding symbols in the above rules. Corresponding semantics

action for the domain checking will also be attached to the rules.

In the above example, Attributes is the same as 1ist (ATTRIBUTE), so it falls
into this category. First we generate the symbol ATTRIBUTE-1ist, and then two

more rules are also generated for ATTRIBUTE-1list.

5. Ifthe parameter is a selection-expression, then similar to the optional-expression,
 anew symbol in the format of <type-name>-selection-<number> will be gen-
erated for this parameter, and one more rule for this symbol will also be gener-

ated:

<type-name>-selection-<number> : <symbol-for-ist-selection>

| <symbol-for-2nd-selection>

6. If the parameter is an aggregation of several comma expressions, we will generate
a new symbol in the format of <type-name>-aggreg-<number>, and one more

rule for this symbol will also be generated:

<type-name>-aggreg-<number> : <symbol-for-ist-element>

<symbol~for-2nd-element> ...

-

- From the above BNF rule definitions for the meta operations and algorithms to
generate BNF forms in the format of YACC rules from the meta operations, we can

- see t‘hat‘ aYACC/ LEXca.n be easily constructed to implement the algorithm.

CHAPTER 5. SYSTEM IMPLEMENTATION 115

5.3.3 Semantic Actions Hooked to the Syntax Rules

For each generated YACC rule, some semantic actions are also generated and attached
to the corresponding part of the rule. The following is one of the above rules hooked

with some semantic actions for this rule:®

CLASS-create :

{ /* allocate a new class entry in the symbol table, etc */

current-new-class-entry = malloc(sizeof(ClassTypelInfo));

}
"class" "type" TYPE-IDENTIFIER

{ /* store the string value of this TYPE-IDENTIFIER */
/* in the class entry in the symbol table. */

current-new-class-entry -> Name = $4;

}
TYPE-create-optioni

{ /* store the inheritance info. in the table */

}
"type" "tuple" " (" ATTRIBUTE-list ")'" TYPE-create-option2
llendll, ,

{ /* create a class in the meta schema */

5The following actions. are based on our test’ implementation. We assume the variable
- current-new-class—entry points to the current entry of the class symbol table. ClassTypeInfo
is a type defined for storing information of class definition. Please refer to the YACC manual for
details. . : o : o ‘ : : . ‘

CHAPTER 5. SYSTEM IMPLEMENTATION 116

/* depends on the underlying OODBMS */

.2

We can see that these actions are mainly dependent on the semantics of the meta
operations that generate the rules. Since the basic semantics of each meta operation
is predefined and well-known to our system, these semantic actions can be generated
automatically by our system. In the above algorithm for generating of the YACC

rules, we also mentioned how to generate some constraint checking semantic actions.

7 Language specifiers can also provide their own semantic actions to some meta
operations or the Comma FEzpressions in the meta operations, and these actions can
be mapped to the actual YACC semantic actions in a straight forward manner. A

more formal system for the semantic action description is omitted in this thesis.

5.3.4 Parser Stack Design and Type Definition for the Sym-
bols

In an YACC program, besides the syntax rules, we also have to define what kind of
information we should keep track of for the symbols appearing in the syntax rules.
This is done through the parser stack design and type definitions for the symbols.
A parser stack is usually a union of the types defined for the symbols, and types
for the symbols are deéided according to our meta type definitions and what kind
of ihformatioxi we should keeptrack of for the meta operations for the meta types.

. For éxample, for the symbol generated from the meta constructor for the meta type

CHAPTER 5. SYSTEM IMPLEMENTATION 117

INHERITANCE, we have to record all the information about INHERITANCE. Hence,

we have the following definition in our YACC program:
%type<inheritanceInfo> INHERITANCE -

where inheritanceInfo is a member of the union for the parser stack. The type of
inheritancelnfo is InheritanceInfo which is actually some kind of direct transla-

tion from our meta type definition for INHERITANCE, i.e. ©

InheritanceInfo {
os_List<String*> *SuperTypes;

os_List<RENAME*> *Renames;

We actually have predefined elementsin the parser stack and type definitions for all
the predefined meta types and meta operations in this way. For the new components
constructed by the language specifiers, we can define the parser stack and types for
the symbols in a way similar to that of the predefined meta types. This is because the
new components are built on the predefined meta types (domains) and operations.

Detailed description is omitted here.

SHere, we use Ob_]ectstore collection constructors for our test 1mplementatxon but actually, we
- can-‘use sxmple C and C++ structure to represent this.

Chapter 6

Conclusions and Further Research

6.1 Summary

The rapid development in OODBMS and query languages for OODBMS during the
past few years has presented two important problems to researchers and industry. One
18 the inter-operability between different systems iﬁ the multidatabase system envi-
ronment. Even for the relational database systems, the problem of inter-operability
is also a very important one. A lot of front end systems between the systems from
different RDBMS vendors have come out and some standard connection protocols
- such as ODBC (Open DataBase Connection, a database inter-operability standard
by Microsoft) have been proposéd and developed. Since there are many more variants
of VOVODBMS’S and all of them are much more complicated than RDBMS’s, we believe
] : ‘th"al; the intef-bperabilify between different OODBMS’s will be more important to the
k usg:tsi |

: Alridpher"p'roblem is the dévelOpment of Customized Query Languages. Because

s

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 119

of the complexity of OODBMS and the variants of OODBMS applications, CQL’s
are more suitable interfaces for ordinary end users of many OODBMS applications.
Generally, development of a moderate complex CQL directly based on the basic ser-
vices provided by a general OODBMS needs a lot of ekpertise about the underlying
OODBMS, formal language specification, compiler techniques, query processing and
optimization. The development also takes a lot of time and effort. Hence the develop-
ment tool for CQL’s based on OODBMS is very important for OODBMS application

developers.

In this thesis, we proposed a new approach for OODBMS query language front end
development which can help systematically solve the 'ab’ove two problems together.
We suggested and also provided a concrete design of a general framework for query
language front end specification based on an abstract Object Model and abstract
query language. A lot of different CQL’s and query languages of different systems
can be specified based on our systems A speciﬁcation based on our system will
be object-oriented, using message passing mstead of a formal grammar spec1ﬁcat10n
Language spec1ﬁers can reuse a lot of common components pre-built in our system,
dramatically reducing the work of specification. Most of the specification itself is also
the “implementation” in the sense that our system understands the syntax as well as
the semantics of the specification, hence a query processor for the specified query lan-
guage can be directly generated from the specification. So the language specifiers do
not have to know very much‘about formal language specification, compiler techniques,
queryr processing. W’:e'ea.nalso generate several query processors ‘based on several dif-
ferent underlying OODBMS’S for the specified query language so that the query based

‘on the spec1ﬁed query la.nguage can actually run on drfferent underlylng platforms.

= ‘At the same tlme the query language developers may not have to understand all the

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 120

underlying OODBMS’s at an expert level.

Our work combined the techniques and research results from several different ar-
eas. First one is the rapid development of OODBMS’s. Most of basic concepts and
fﬁﬁctionalities ofVOODBMS are accepted widely, and object models and query lan-
guages have come to a mature stage. Combining the features from the most important
systems and standards, we proposed a general abstract object model, and this model

is the corner-stone of our whole system.

“Another important technique used in our system is the formal language specifica-
tion, compiler techniques and automatic program generatibn. Since our system is a
tool for query language specification, we have to consider all the basic aspects of for-
mal language specification and try to make the task of language specification easy and
convenient for ordinary developers. LEX and YACC are two basic general tools for
formal language specification and automatic compiler generation. The concrete design
- and implementation of our system is actually based on these two tools, although in
the user interface, we use some quite different formats. Therefore the concrete desi gn
of our system is heavily influenced by YACC and LEX, and the implementation of
our system is also based on them (but the basic design idea is not dependent on these
tools. Our design should also be able to be implemented by other compiler-compiler

tools).

The most important feature of our system, also one of the main contributions
of our research is that we used an object-oriented methodology in the design of the
‘wh’éle systerﬁ, cdmbiriing the above two main kinds of techniques in a seamless way.
The iﬁterfabe provided to the language speciﬁers is also in object-oriented way. We

abstracted the cofntnon components from different Systems and used object oriented

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 121

way to analyze the abstract components. So the abstract object model is pre-built
in our system in an object-oriented manner. Object-oriented style is also used in
the formal language speciﬁcation. Syntax appearance and the semantics aspect of
the formal language become different facets of the abstract objects in our system,
and the syntax specification usually aiso serves as the éemanticé specification of the
same components. To our knoWledge, our work is the first one to use object-oriented

methodology in formal language design (including specification and implementation).

Our object-oriented design and presentation of the interface of ourrsy'stern also
reflects the object-oﬁentation of the designrand the implementatibn of our system.
Actually, some of the basic meta-types and objects have the cofresponding inter-
nal meta-types and almost all the meta—operations' defined on the abstract objects
have the corresponding internal meta—operationé. For example, the meta-type TYPE
presented to the language specifiers has a corresponding meta-type “type” in our im-
plementation. All the meta-operations of TYPE also have the internal representation,
like the meta-operation TYPE: : create presented to the language specifiers has the in-
ternal corresponding meta operation type::create(...), which will be mapped onto any
actual underlying OODBMS in which the generated query processor will run. These
internal representations are defined in an object-oriehted way and are some general
abstractions of meta-types and operations of different underlying OODBMS’s. When
the language specifiers want to generate the query processor runnin‘g on a certain un-
derlying plafform, the geﬁeral abstraction of these meta types/objects and operations
}Wil'l thén be mapp'ed bhto’th‘e actual types/objects and operations of that underly-
ing OODBMS. So our meta system serves as a shield between the front end query

| ‘languages and thé'UBderIy'iﬁg daté;ba.ée systems.

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 122

6.2 Future Research

There are some area of research that can be done in the near future along the direction

of this thesis.

e Prototype Implementation: Although we have partially implemented our
system based on Objectstore, there is stillrsorﬁé more work to do for a proto-
type system of our design. In our current design? we had to ignore some features
of query languages, such as virtual attributes specification, transactions man-
agérnent; étc. Also, our design of the whole system is still not very exquisife. For

a more realistic prototype, a more careful and comprehensive design is needed.

Our current testing experiment is only based on Objectstore. That is to say, we
only generate different query front ends (query processors for different query
languages) on Objectstore. Although, according to our studies, generating
query processors for other OODBMS’s from fhe query language speciﬁcations
based on our system should be quite similar to our current test, more com-
plete inter-operability between query languages of several different OODBMS
can only be implemented if we implemented our system on several other pop-
ular OODBMS’s, such as 02; Objectivity, etc. So prototypes based on other
OODBMS’s should also be constructed.

. Graphic User Interface for Query Language Specification: Although
- we used object-oriented style in our interface to the language specifiers, and
the language specification in our system is easier than that in ordinary for-

| - mal grammar, a'more'f:iendly graphic user interface can be designed based on

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 123

our abstract meta components. In the graphic user interface, all the prede-
fined meta-types/objects and meta-operations can be displayed to the language
specifiers. Customization and tailoring can be done directly by changing the
corresponding parts on the meta.-operations,displa.yed in the GUIL Through this
kind of graphic user interface, the language specifiers can have a better global

understanding of our system and they can use our system more efficiently.

e Query Optimization: In our thesis, we have not considered query optimiza-
tion strategies in detail. But query optimization is dne of the crucial parts of
query processing. Although a lot of query optimization strategies for traditional
SQL may still be applicable to the query languages of OODBMS’s, there are
a lot of more complex situations where we have to consider sofne new opti-
mization algorithms. Since current optimization algorithms are mainly based
on the predefined operations for the predefined types in the system, while in
object-oriented query languages a lot of user defined operations are involved,
some optimization hints provided by the designers based on the operation spec-

 ification /implementation should be very useful to the system. Rules (operation
algebraic rules, logic rules or code segment transformation rules) will be some
kinds of vehicles for language specifiers to provide these hints. Because of the
complexity of the object manipulation language, optimization algorithms used
in compiler systems for ordinary program languages may also be very useful for
the complicated query languages of OODBMS’s. This area is a kind of inter-

discipline bf OODBMS and programming languages. A lot of research is needed

in this area.

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 124

® OO Design of Generic Language Specification: Formal language specifi-
cation i1s very important in a lot of application areas. And traditional formal
language specification is too complicated for ordinary developers. Our thesis
proposed a new way for formal language specification, especially for the formal
specification of a language family based on sorﬁe sirriilar' semantic models. An
abstract semantic model and a default language {or a language with abstract
syntax) can be predefined in an object-oriented way. Each language in the lan-
guage family will be one kind of concrete appearance of the abstract language.
With the help of compiler techniques and automatic program generation, the
languages can be implemented by a predefined system for this language family.
- For example, in the telephone network, different digitél é\vitches may be used,
and different switches from different manufa,'cﬁlfesiusre different sets of switch
commands. But the underlying semantics of these switch commands are quite
similar. We believe that our design idea can be used for the inter-operation of

these different switch commands.

1.

Bibliograph
grapiiy

[1] E. Bertino, M. Negri, G. Pelagatti, L. Sbattella, “Object-Oriented Query Lan-
| guages: the Notion and the Issues”, IEEE Trans. on Knowledge and Data Engi-

neering, Vol.4, No.3, June 1992.

, [2] P. Butterworth, A. Otis, J. Stein, “The Gemstone Object Database Management

System”, Communications of the ACM, Vol.34, No.10, October 1991.

[3] R.G.G. Cattell et al, “The Object Database Standard: ODMG-93", Morgan
Kaufmann Publishers, August 1, 1993.

[4] R.G.G. Cattell, “Object Data Management” Addison-Wesley Publishing Com-

pany, 1991.

[5] O. Deux et al, “The O, Systems”, Communications of the ACM, Vol.34, No.10,
October 1991.

' {6} K. Kulkarni, A. Eisenberg, “Evo]ution of the SQL Standare: SQL2 and SQL3”,
SIGMOD 92 Tutorial: Slides, June 3, 1992.

[7] K. Kulkarni, A. Eisenberg, “Introduction to SQL3", SIGMOD’92 Tutorial:
Slides, June 3, 1992. ' .

BIBLIOGRAPHY 126

[8] W. Kim, “A Model of Queries for Object-Oriented Databases™ Proc. of the 5th
Intel. Conf. on VLDB, 1989.

{9] W. Kim, “Object-Oriented Databases: Definition and Research Directions”,

IEEE Trans. on Knowledge and Data Engineering, Vol.2, No.3, September 1990.

[10] G. M. Lohman, B. Lindsay, H. Pirahesh, K. B. Schiefer, “Extensions to Starburst:
Objects, Types, Functions, and Rules”, Communications of the ACM, Vol. 34,
No.10, October 1991.

[11] W.S. Luk, A.Y.L. Choi “Dynamic Spatial Query Language: A Customized Query
Language for Object-Oriented Database Systems” IEFE COMPSAC, Tokyo,

September, 1991.

[12] J. Melton(Editor), “(ISO/ANSI) Working Draft Database Language
SQL(SQL3)” ISO, ANSI, July, 1992.

[13] V. M. Markowitz, A. Shoshani, “Object Queries over Relational Databases: Lan-

guage, Implementation, and Applications® IEEE Data Engineering, 1993.

[14] W. Meng, C. Yu, W. Kim, et al, “Construction of a Relational Front-end for

Object-Oriented Database Systems.” IEEE Data Engineering, 1993.

[15] P. Oosterom, T. Vijlbrief, “Building a GIS on Top of the Open DBMS ”Post-
gres””, EGIS’91, Brussels, Belgium, 1991.

[16] Persistence Software, Inc. “Persistence”™ User Manual Version: 1.27 Persistence

Softeare,‘ Inc. March 1993.

[17] The Commiﬁteefo'r,AdvancedDBMS Function, “Third-Generation Database Sys-
‘ tém Manifesto’,’ Sigmod Record, Vol.19, No.3, September 1990.

BIBLIOGRAPHY 127

[18] M. Stonebraker, G. Kemnitz, “The Postgres Next Generation Database Manage-
ment System”, Communications of the ACM, Vbl.34, No.1 0, October 1991.

[19] R. Snodgrass, “The Temporal Query Language TQuel” ACM Trans. on Database
Systems, Vol.12, No.2, June 1987. "

[20] T. Vijlbrief, P. Oosterom, “The GEQ-++ System :An Extensible GIS”, 1992.

[21] Sun Microsystems, Inc., “Lex- A Lexical Analyzer Generator”, Programming

Utilities for the Sun Workstation.

[22] Sun Microsystems, Inc., “Yacc- Yet Another Cémpiler Compiler”, Programming

Utilities for the Sun Workstation.

