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Abstract 

This thesis is concerned with solving the steady two dimensional Navier-Stokes equations 

using finite difference methods. It has been discovered that although central difference 

approximations are locally second-order accurate they often suffer from computational in- 

stability and the resulting solutions exhibit nonphysical oscillations. Although first-order 

and second-order upwind difference approximations are computationally stable, the result- 

ing solutions exhibit the effects of artificial viscosity. As a result of this, there has been 

great interest in recent years to investigate high-order schemes. 

In this thesis, two fourth-order accurate finite difference schemes are obtained for the 

Navier-Stokes equations expressed in streamfunction alone. The first one is the conventional 

fourth-order central difference scheme with a stencil extending over 29 points. The second 

one is of compact type with a stencil extending over a 5 x 5-square of points. This method is 

more efficient for solving the discrete non-linear system by Newton's method. We consider 

a number of test problems, including the driven cavity problem, to compare the two fourth- 

order schemes to each other, as well as second-order and fourth-order benchmark solutions. 

In spite of its wider stencil, it is found that the conventional scheme has sufficiently lower 

error for high Reynolds number than the compact scheme, making up for its greater width. 

The effects of numerical boundary conditions on convergence are also investigated. 
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Chapter 1 

Introduction 

. . 
In many physical problems, systems of partial differential equations may be derived from 

basic principles to  accurately model the behavior of the physical system under consideration. 

Unfortunately in many fields of study, particularly that of fluid dynamics, these systems of 

partial differential equations are non-linear and may not be solvable in closed form, forcing 

one to  rely on approximate techniques. 

Finite difference methods may be used to  reduce a non-linear partial differential equation 

to a system of non-linear equations with a finite number of unknowns, which must then be 

solved to  obtain the desired approximate solution. These methods begin with a discretization 

of the domain, that is they place some grid over the domain, and apply Taylor series to the 

partial differential equation a t  each grid point. This procedure, which results in an equation 

to  be solved at  each grid point in the domain, is named the scheme. As well as giving 

approximate solutions, these methods provide a bound for the inaccuracy of the obtained 

solution due to  the particular scheme and grid used. The order of accuracy is defined by the 

manner in which the error decreases as the grid is uniformly refined. A scheme is said to be 

n-th order accurate, if for sufficiently small h, Error = Chn,  where h is some representative 

grid spacing and C, which is independent of h, is a constant with respect to the problem. 

Initially first and second order accurate schemes were widely used, but disadvantages 

such as the requirement of a fine mesh, and hence many equations to be solved in order 

to obtain accurate solutions, have motivated researchers to obtain better schemes. It be- 

came clear that schemes with a higher order of accuracy were needed, but they required 
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a larger computational stencil causing a substantial decrease in the efficiency in obtaining 

a solution for the resulting system. It was found that by careful use of differential exten- 

sions of the original partial differential equations, higher order schemes, named compact 

schemes, could be obtained, giving a higher order of accuracy without significantly altering 

the computational stencil. 

When modelling fluid flow phenomena, it is found that these compact schemes give good 

agreement with experimental data for low to  mid-velocity flows, even using a relatively 

coarse mesh. However high-velocity flows require a fine mesh for reasonable agreement. 

In this thesis we shall compare the accuracy for a wide and a compact scheme at a 

range of flow velocities, beginning with a scalar form of the Navier-Stokes equations which 

is not commonly used. These schemes are derived analytically, and alternatively by use of 

a symbolic programming language such as Maple. The use of symbolic derivation can allow 

the programmer to  constrain the scheme in such a way that desired properties, such as 

compactness and diagonal dominance, may be obtained. This strategy also has advantages 

for long or complex schemes as it may be made to  output the schemes in the form of the 

language used for computation, as well as avoiding a long analytic derivation. A close 

examination of the effects of boundary conditions and the efficiency of solution techniques 

will also be presented. 

We begin with a review of known work in Chapter 2, first presenting the governing 

equations, and the underlying assumptions used to obtain them in Section 2.1. We then 

proceed with a detailed description of the derivation of difference formulae, and two widely 

used solution techniques for large systems of equations in Section 2.2. The advantages and 

disadvantages of finite difference schemes which have been successfully used to compute 

flows are then discussed in Section 2.3. 

Chapter 3 begins with the derivation of the wide and compact schemes and boundary 

conditions to  be studied, and symbolic derivations are presented as an alternative to  the 

more popular analytic derivation of schemes in Section 3.1. The model problems used t o  test 

the schemes, as well as solution techniques, and scheme-boundary condition combinations 

are presented in Section 3.2. The results obtained by application of the schemes to problems 

for which the solutions are known are then discussed with regards to accuracy, boundary 

conditions and efficiency in Section 3.3. Comparisons of these schemes applied to  a driven 
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cavity problem with known benchmark solutions are presented in Section 3.4 discussing the 

difference between our compact and wide schemes. 

Finally the discussion and conclusions are presented in Chapter 4. 



Chapter 2 

Governing Equations and Solution 

Met hods 

2.1 Governing Equations 

In order to provide physical background for the equations to be solved, we begin with a 

description of the governing equations of fluid dynamics, explaining the assumptions inherent 

in their derivation. We then narrow the class of solutions of those we study, also providing 

a physical interpretation for the restrictions required to do so. 

2.1.1 Continuum Hypothesis and Conservation Principles 

Although the mass in a fluid is concentrated in the nuclei of the atoms composing it, 

description of the flow from this microscopic viewpoint would be impossible due to  the 

large number of molecules present even in a small quantity of fluid. In order to obtain the 

equations describing the macroscopic behavior of a fluid, one must define a fluid element 

as a small volume, and define any macroscopic properties of that element in terms of an 

average of the microscopic properties of the molecules within that volume. This viewpoint 

gives continuously distributed properties to a flow, and is called the continuum hypothesis. 

In this way, molecular velocities are broken down into two properties, flow velocity, which is 

the average velocity of the molecules, and temperature, which takes the energy due to  the 
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purely random velocities of the molecules into account. A purely microscopic phenomenon, 

such as diffusion, may be described in terms of one or more macroscopic phenomena, such 

as viscosity and thermal conductivity. For the definition of a fluid element to be valid, 

each element must contain a large number of molecules, otherwise defining the properties of 

that element as averages over the molecules in that volume would not be meaningful. This 

condition is reasonable for nearly all flows except those of rarefied gases. 

We also note that we will be dealing with only Newtonian fluids, that is fluids for which 

the relation between the stress acting on the fluid, and the rate of strain is linear. For a 

detailed discussion of this property see Batchelor [2]. 

We now introduce the material or convective derivative of a quantity 4 ,  where 4 repre- 

sents a local property of the fluid. This is defined by 

where u is the local velocity of the fluid. This derivative represents the time rate of change 

of 4 moving with the fluid. This notation is useful for derivation of, and understanding of 

the governing equations. 

Application of conservation of mass to a small volume element V yields the integral 

equation 

where p is the density of the fluid, and n is the outward normal of the surface S of the 

volume being considered. This equation simply states that the total change in mass in a 

given volume is equal to  the mass flux on the surface of that volume. Using the divergence 

theorem and the fact that the volume is arbitrary yields the equation 

which is named the continuity equation. 

Conservation of momentum gives us the vector equation 

where repeated indices are summed, Fi represents the i-th component of the body force act- 

ing on the fluid, p is the kinetic pressure, p is the coefficient of viscosity, e,; = $ (% + %) 
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is the rate of strain tensor, and A = e, ,  = V . u is the rate of expansion. This equation is 

named the Navier-Stokes equation and may be interpreted as a balance of forces acting on 

an element of the fluid. We now give a physical interpretation of each term in (2.4). The 

term on the left describes the mass times the acceleration of a given particle of fluid. The 

first term on the right represents the effect of all body forces (such as gravity and electro- 

magnetism), the second term on the right represents the force due to a pressure gradient, 

and the last term represents the force due to a non-isotropic stress in the fluid (such as 

shearing motion or a coupled tension-compression). 

Conservation of energy gives an equation involving temperature, density, and stresses. 

When coupled with an equation of state, closure of the system is obtained. Since we are 

concerned with flows for which temperature variation has little effect on density, pressure, 

and viscosity, or flows for which the temperature is nearly uniform, these equations are not 

presented here. 

2.1.2 Incompressibility 

Flows for which the density of a given element of fluid remains constant throughout its 

motion are called incompressible flows. This can be described mathematically as 

and can greatly simplify the calculation of fluid flows. The conditions which must be met 

for incompressibility are derived and discussed in great detail in Batchelor [2] and will be 

presented briefly here. 

One condition which arises frequently in practice is on the ratio of the velocity U to  the 

velocity of sound in the fluid c. This ratio is termed the mach number and denoted M ,  and 

the condition is 

where the largest value of 11.11 is chosen for U ,  and some representative value of c is used. 

For oscillatory flow fields, where n is the dominant frequency, and L is a representative 

length scale, the condition 
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must be met. 

For atmospheric flows it is also required that the difference in static fluid pressures 

between the top and bottom of the region of interest is small compared to the absolute 

pressure. Near sea level this means the region of interest must be small compared to 8.4 

km. 

Given that none of these conditions are violated, the flow will behave incompressibly, 

and the continuity equation (2.3) becomes 

v - u  = 0, (2.5) 

and the Navier-S tokes equations become 

2.1.3 The Two-Dimensional Streamfunction Vorticity Equations 

Many problems for which there is some degree of translational symmetry can be reduced 

to  two dimensions. In this case a simple non-dimensional form of the Navier-Stokes equa- 

tions can be obtained. Without loss of generality we choose the direction of translational 

symmetry to be z and set u = (u, v,O). Equation (2.5) becomes 

which suggests the existence of a streamfunction. We introduce the non-dimensional stream- 

function ?I, and the vorticity [ as new variables where their relationship to  the non-dimensional 

velocities u and v is given by the relations 

We now consider that we are interested in the large time behavior, or 

ior, of flows being acted upon by purely conservative forces. Using 

conjunction with (2.7) gives the equations 

steady-state behav- 

this information in 
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where Re = is the non-dimensional Reynolds number, U and L are characteristic 

velocity and length scales for the flow, and v = 5 is the kinematic viscosity. Equations 

(2.8) and (2.9) are known as the steady, two-dimensional, incompressible Navier-Stokes 

equations in  streamfunction-vorticity form. 

Some difficulties may arise in numerically solving (2.9) as the boundary conditions are 

generally given in terms of $ and 2. In order to avoid this an equation for $ alone can be 

derived by substitution of C in (2.8) into (2.9) giving 

which is named the pure streamfunction form of the steady, two-dimensional, incompressible 

Navier-Stokes equations. This equation may also be written in the form 

a2  aZ where variable subscripts denote differentiation, and A = G + G is the Laplacian 

operator. This derivative notation will be used from this point forward. 

2.2 Difference Approximations and Solution Techniques 

2.2.1 Finite-Difference Formulae 

In order to  obtain approximate solutions for systems of P.D.E's a discretization of the domain 

of interest must be used. Using the values of the unknowns at the grid points defined by 

this discretization, approximations to the derivatives may be obtained using finite difference 

formulae. The following difference formulae are derived in [ll] for an equal spaced grid with 

spacing h. All are centered differences written as 1-D stencils. 
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Many methods may be used to derive these difference formulae, such as Taylor series 

and polynomial interpolation, but all are fairly straightforward. A code which derives these 

formulae has been written in the symbolic programming language Maple, and has been 

included in Appendix 1. We now proceed with a short description of the code and its use. 

The code uses Taylor series to obtain an approximation for the value of a one-dimensional 

derivative at x = 0. The command used to call the routine is 

> findif(derivonler,pointslist, remainders(optional)); 

where derivorder is the order of the derivative to be approximated, pointslist is a list of the 

x-coordinates of the function values to be used (given in grid spacings), and remainders is 

the number of remainder terms to be retained for output (default is 0). As an example the 

call 

> findif(2,f-l,0,1], 1); 

gives the approximation 

giving the form of the second-order error term for this approximation in (2.11). 

As another example, we examine the accuracy of a variable position finite difference 

approximation. Although it is well known that central differences are generally more accu- 

rate than one-sided differences, it may be useful to obtain the dependence of the accuracy 

on displacement from the center point of the approximation. To obtain a variable position 
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5-point approximation for U, we use the call 

> findif(1, [-2 - n ,  -1 - n ,  -n, 1 - n,  2 - n] ,  1);  

where the resulting expression may be interpreted as an approximation to U,(nh), given 

the values u(-2h),  u ( -h ) ,  u(O), u (h ) ,  and v(2h).  We may write this approximation as 

where the superscript c refers to the use of the central difference approximations given in 

(2.11). We may now use the form of this error term to obtain a ratio of the error for an 

approximation at x = nh to that of the centered approximation at x = 0. This ratio r is 

given by 
5 

T = 1 + -n2(n2 - 3).  
4 

For the value n = 2, which corresponds to  a one-sided approximation, we see that r =r6, 

clearly demonstrating the increase in error resulting from the use of this approximation 

instead of a centered approximation. 

Throughout this thesis we will denote fourth-order accurate differences with a D, and 

second-order with a D,. Our fourth-order accurate discrete Laplacian is denoted nh = 

D,, + D,, 

2.2.2 Successive Over-Relaxation (S.O.R.) 

S.O.R. is an iterative method which may be used to  obtain solutions for discretized eUiptic 

problems. Although S.O.R. requires relatively little memory and can be very efficient, diag- 

onal dominance of the overall system is necessary to guarantee convergence to the solution. 

A sufficient condition for diagonal dominance which may be obtained using matrix methods 

follows (see, e.g. [30]). Writing an n point scheme in the form c;$; = b where b is 

independent of all $; gives this condition as 

which must be satisfied for all equations in the system. 

As an example we consider the Poisson equation 
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in a rectangular domain with fixed boundary conditions. Using central differences we dis- 

cretize to second-order accuracy obtaining 

where h is the step size. Noting that co = -4 and cl = c2 = cs = c4 = 1 shows that the 

condition for diagonal dominance (2.12) is met. S.O.R. proceeds from some initial guess $fj 

by looping through all points i, j in the domain, replacing each $kj with a corrected value, 

$::I. This process is repeated until 

where 6 is a fixed iterative error tolerance. The order in which the values are corrected has an 

effect on the efficiency of the process, and the standard ordering, called lexographic ordering, 

consists of an inner loop on i, and an outer loop on j (note: for a rigorous discussion of the 

effects of ordering on the nine-point Laplacian see [I]). Using this ordering, the formula for 

the corrected values may be written 

where X is termed the relaxation parameter, and $:,yT is the difference between the value 

of $,,j which would satisfy (2.14) and +tj. 
When X = 1, this reduces to  the Gauss-Seidel method, and each +tj is being replaced by 

the value obtained by solving (2.14) for $;,j. The advantage of the S.O.R. method is that 

we may choose 1 < X < 2 with the assumption that overshooting the estimate for will 

converge to  the solution more rapidly. This has proven to  be the case for many problems, 

and when X is chosen optimally, the number of iterations required to obtain convergence is 

dramatically reduced. 

Further analysis of (2.16) shows that it may be viewed as a second-order accurate dis- 

cretization of the equation 

This equation has a steady-state solution consistent with with a time step size At = m. 
(2.13), and the $xt and ?,bYt terms are residual terms which result from the ordering used. 
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For a fixed h,  the optimal value of X can now be viewed as a balance between slow change 

due to a small time step, and the instability resulting from using too large a time step for 

an explicit numerical method. 

One final consideration is application of S.O.R. to  problems with derivative boundary 

conditions. For example we choose 4, = g(y) along the x = 0 boundary which gives the 

first-order discretization 

giving our S.O.R. formula as 

where p is the boundary relaxation parameter. In some problems the application of deriva- 

tive boundary conditions leads to  instability of the S.O.R. algorithm. In these cases if p is 

chosen to  be small enough, the process will converge. This reduction in p is called boundary 

damping, and though S .O .R. now converges, it is slowed considerably. 

2.2.3 Newton's Method 

Newton's method with LU-decomposition is a direct solution method used to obtain solutions 

for systems of non-linear equations. Although this method converges quadratically when 

close to  the solution, it requires a sequence of matrix decompositions to  do so, and for this 

reason it is considered computationally inefficient. Our description of the method begins 

with the system of equations to be solved: 

f;(9) = 0 for i = l...n 

where 9 = ($1, $2, ..., &) are the unknowns to  be solved for. With an initial guess Q O ,  a 

sequence of approximations for the solution of (2.17) is defined by 

where QCoTr is a correction for ak. This correction is obtained as the solution of the lin- 

earization of (2.17) about !Dk which is given by 
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where ~ ( 9 ~ )  = ( f i ( @ k ) ,  f i ( @ k ) ,  ..., f n ( @ k ) ) ,  and J ( @ ~ )  is the Jacobian matrix of F  evaluated 

a t  ak.  This process (i.e. application of equation (2.19) followed by equation (2 .18 ) )  is 

continued until C:=L=l Iq5yTT 1 < E ,  where E is an error tolerance. 

An improvement of this method was used by Schreiber and Keller [28] in which the same 

Jacobian is used for several steps. In many cases only one or two matrix decompositions were 

required t o  obtain a solution. The steps for which the previously calculated decomposition 

is used to  obtain a new correction are called chord iterations, and since their computational 

expense is nearly negligible compared to  matrix decomposition, they make Newton's method 

more practical for large systems of equations. 
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Figure 2.1: Computational stencil 

2.3 Numerical Met hods 

We now discuss numerical methods which have been successfully used to  compute flows for 

the steady, two-dimensional, incompressible Navier-Stokes equations, and their advantages 

and disadvantages. The notation in Figure 2.1 will be used for schemes with no more than 

nine points, while the notation in Section 2.2.1 will be used for the remaining schemes. 

2.3.1 Second-Order Discerizat ion and Upwind Scheme 

Application of second-order accurate central differences to (2.8) and (2.9) yields the schemes 

where u o  = ($2 - $4)/2h and vo = ($9 - $ ~ ~ ) / 2 h  are the second-order accurate discretizations 

of the velocities in the x and y directions respectively. Although this scheme has truncation 

error 0 ( h 2  Re ), difficulties arise in obtaining the solution of the system. In order to solve 

the system efficiently it is preferable to use relaxation methods; however, these methods 

require diagonal dominance of the system for convergence. Using condition (2.12), there is 

clearly no difficulty for (2.20), but (2.21) gives the following conditions on the grid spacing h 

which can be very restrictive for large values of Re. 
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For this reason an upwind scheme was developed for (2.9).  To illustrate the effect of this 

scheme we discretize the x-derivatives of C as follows 

Re huo 
+(2a - 1)- 

2 ixx + 0 ( h 2  Re)  

where a linear combination of one-sided derivatives was used for (',, and a is a free parameter. 

Clearly setting a = $ gives a central difference scheme as used in (2.21). From this result 

we see that if uo > 0, setting a = 0 gives the following condition for diagonal dominance 

which is satisfied. For uo < 0 a similar result can be obtained by setting a = 1.  he 
y-derivatives of (' behave in an analogous way, and the same result follows. This method is 

called upwinding and stated simply it requires that the direction of one-sided discretization 

of CX and CY be in the opposite direction of the fluid motion. 

One major disadvantage of this method is its local truncation error of O ( h  Re ), which 

indicates that a fine grid is required to  obtain a reasonably accurate solution. Viewed in 

another way, this scheme can be seen as a discretization of the equation 

with a local truncation error of 0 ( h 2  Re ). In a region where lul z lvl and denoting the 

effective Reynolds number Re ,ff we observe 

which shows that the Reynolds number is being modified. This departure of the effective 

Reynolds number from the given Reynolds number is termed artificial viscosity. Allowing 

for no more than 12% reduction in Re the approximate relation 

may be obtained indicating a stronger restriction than that for diagonal dominance of the 

central difference scheme in (2.22). 
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2.3.2 Dennis and Hudson Scheme 

In order to obtain diagonal dominance for the discretization of (2.9) the scheme 

with y = 2 was derived by Dennis and Hudson in [7]. It can be shown that for this value of 

y ,  each coefficient of ('; for i = 1 , .  . ., 4 is of the form 1 + 2 a  + 2a2 = (1 + a ) 2  + a2 > 0 for 

suitable choice of a ,  and the scheme is diagonally dominant for all values of uo,vo, and Re. 

This scheme is consistent with (2.9) with a truncation error of 0 ( h 2  Re2), and has been 

successfully used for a number of flows(see, e.g. [9, 21, 221). 

One disadvantage of this method becomes apparent for large Re flows. Bramley and 

Sloan [4] used a modification of the Dennis and Hudson scheme which reduces the error by 

a constant multiple. They used (2.24) with y = $ which is also diagonally dominant as the 

form of the coefficients of c; for i = 1, .  . , 4  is (1 + a )2  + $a2 > 0 for suitable choice of a. 

Comparison of this method with (2.21) showed the central difference scheme to be a t  least 

two orders of magnitude more accurate for Re > 500. The central difference scheme is not 

diagonally dominant and required Newton's method to solve. It has a local truncation error 

of 0 ( h 2  Re ), and was only used for comparison purposes due to its computational expense. 

Further examination of the modified scheme shows that it can be viewed as a discretiza- 

tion of the equation 

with a local truncation error of 0 ( h 2  Re ). Following the same line of reasoning as for the 

upwind scheme one may obtain 

Limiting the reduction of Re to  no more than 12% gives the approximate relation 
1.2 

h 5 -  
Re lul ' 

which is again a stronger restriction than that for diagonal dominance of the central differ- 

ence scheme in (2.22). 
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2.3.3 Boundary Conditions 

One difficulty with the streamfunction-vorticity formulation involves the application of no- 

slip boundary conditions to the vorticity equation. There are many techniques available 

for derivation of these boundary conditions and they are discussed in detail in [26]. One 

example is the Woods formula [31], given by 

where the subscript i, j is used as a grid coordinate. This formula has been successfully used 

in many calculations (see, e.g. [9, 22, 211). Unfortunately, this boundary scheme has been 

shown to require large amounts of boundary damping in [17], and hence results in slower 

convergence than other boundary schemes. 

An alternative technique has been suggested by Huang and Yang [20], where two bound- 

ary conditions are applied on the streamfunction, but the streamfunction-vorticity form of 

the equations are still used. This eliminates the difficulties for application of boundary con- 

ditions on the vorticity, while maintaining a form of the Navier-Stokes equations for which 

S.O.R. may be used. This technique has been successfully applied in Li et al. [23]. 

A discussion of convergence rates for high Re cavity calculations using a transformed 

version of the Navier-Stokes equations may be found in Benjamin and Denny [3]. A detailed 

comparison of many different boundary schemes can be found in Gupta and Manohar [17], 

and this work strongly suggests that boundary schemes which give better accuracy are less 

efficient as they require a larger number of iterations for convergence. These considerations 

give us motivation to examine pure streamfunction methods. 

2.3.4 Pure Streamfunction Difference Formulation 

The scheme resulting from application of second-order central differences to  (2.10) was 

studied by Schreiber and Keller in [28]. The major disadvantage of this scheme is its lack 

of diagonal dominance, thus forcing one to use a direct solver, such as Newton's method, 

to  obtain a solution. In general, compared with iterative methods, direct methods are 

considered less efficient as they require more memory and more c.p.u time. 

When assessing the value of this method, a number of advantages must also be taken 

into consideration. The vorticity is not present in the discrete formulation which may have 
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advantages for problems in which it is singular (for example, driven cavity problems, and 

sudden compression problems). Application of boundary conditions has now become identi- 

cal to that of the biharmonic problem, and straightforward interpolation and extrapolation 

may be used. The local truncation error for this scheme is 0 ( h 2  Re) which has advantages 

over the upwind scheme and the Dennis and Hudson scheme at large Re.  And finally since 

a direct solver is being used, convergence rates due to  the boundary schemes need not be 

considered. 

Using this scheme, Reynolds number continuation, and an efficient combination of New- 

ton decompositions and chord iterations, Schreiber and Keller [28] were able to  obtain solu- 

tions using only a few matrix decompositions at  each Re. Reasonable results were obtained 

for up to  Re = 10000. 

Schreiber and Keller demonstrated in [28] that, for large h, spurious solutions exist 

for the above method. A convincing argument for the existence of spurious solutions is 

paraphrased as follows. [A system of N quadratic equations actually has 2N solutions. 

Fortunately a great number of these solutions are complex, and cannot be reached with real 

calculations, but certainly a few exist.] In that paper they outlined a procedure for obtaining 

spurious solutions using arc-length continuation in Re and +,, where +, is the value of + at 

the center of the primary vortex. This allowed them to study the behavior of the spurious 

solutions in detail, providing information regarding the limitations and strengths of their 

method in this area. This procedure may be useful to adapt to  other schemes, as it may be 

used to examine the behavior of their existing spurious solutions. 

2.3.5 Fourth-Order Compact Schemes 

The approximation 

to (2.8) is probably the best known example of the Mehrstellenverfahren [6]. Although the 

left and right hand sides separately are only second-order accurate approximations if applied 

to  arbitrary functions + and (', the approximation (2.26) is fourth-order accurate when 

applied to any solutions to equation (2.8). A number of schemes have been found which are 
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computationally efficient and yield highly accurate numerical solutions [5 ,  8, 16, 231. Gupta 

et. a1 [18], Dennis and Hudson [8], Gupta [16], and Li et. a1 [23] note that this technique 

can be generalized to provide a fourth-order accurate (9-point) compact scheme to (2.9). 

Each of these schemes has a local truncation error of 0 ( h 4  Re 2) ,  and although there is no 

rigorous proof for diagonal dominance, S.O.R. can be used for reasonable Re. For high 

Re direct solution methods may be necessary. All schemes, with the exception of Li et al. 

require values of 11; which lie outside the 3 x 3 stencil, and all are lengthy so they will not 

be presented here. One key point to  mention is that the the error term for each of these 

schemes indicates that reasonable results may be obtained for low to  mid Reynolds number 

flows, but for higher Re the results may not be very accurate. 



Chapter 3 

Wide and Compact Scheme 

3.1 Difference Formulations 

In this section we derive the compact and wide schemes for the steady-state streamfunction 

equation. We do this using well known difference formulae (2.11) and a method which 

may be easily adapted to  other elliptic equations. Derivations involving Maple, a symbolic 

programming language, are also presented. 

3.1.1 Wide Scheme 

Using the central difference approximations of the previous section we discretize (2.10) 

directly to  fourth-order accuracy: 

This gives a fourth-order scheme for the streamfunction equation. The computational 
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stencil for this equation looks like: 

[ N S ]  = 

with 

Y 
x x x x x  

x x x x x  

p x x x x x C Y  

x x x x x  

x x x x x  

6 

This method gives a 29-point stencil for calculation of the streamfunction. This may have 

disadvantages for the solution of the discrete system of equations when the scheme is applied 

at  each point in the interior. It raises the question of how to deal with points near the 

boundary, and its width gives us motivation to derive a compact scheme as we do in the 

next subsection. 

3.1.2 Compact Scheme 

In order to derive the compact scheme on a 5 x 5 computational stencil we need to eliminate 

the outliers (i.e. a,P,-y, and 6 ) using derivatives of the streamfunction equation. The 

analytic derivation of this subsection is from [12]. 

We will use the following difference approximations for which all derivatives higher than 

second-order are approximated by second-order differences, and all others by fourth-order 

differences: 
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with 

X X X X X  1 

X X X X X  

X X X X X  

C x x x x x E 

X X X X X  

with 

$ =  O(Re h 2 ) ,  

X X X X X  

x x x x x 

X X X X X  

X X X X X  

X X X X X  

8 

h h h  h h  [ANSI = A A A $ + R ~ ( D , $  DyA A + - D,$ D,AhAh$ 

+ 2DXx+ D , , A ~ +  - 2DXy+ D , ,A~$  

+ 2 D x y $  DY,Ah+ - 2&,$ D X Y A ~ N ,  (3.7) 
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I 2 x  x  x  x  

x x x x x  

P  I 
with 

1 R ~ D , +  
A = - - +  

1 Re D,$ 
p = - -  

h6 2h5 h6 2h5 

Combining these difference schemes in such a way that the outliers are eliminated gives the 

equation 

which forms a fourth-order approximation to  (2.10) on a 5 x 5 square of grid points. 

Although the symbolic derivation methods presented in the next subsection can be very 

useful, an O(Re h4) scheme extending over the 5 x 5 grid of points used above could not 

be found. A number of forms for this difference approximation were used, and this result 

strongly suggests that the compact scheme given above has the lowest Re power for the 

given grid. 

3.1.3 Symbolic Scheme Derivation 

The schemes derived in Sections 3.1.1 and 3.1.2 may be derived using a symbolic language 

such as Maple. There are many techniques available to  obtain these schemes, two of which 

will be presented here. 

The first technique is most useful in obtaining the highest order possible for a scheme 

using the coordinates of the grid points to  be used, and the user allowed form of the scheme. 

As an example we look at equation (2 .8 ) .  We define E by 
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and form the difference approximation 

using the n allowed grid points. We now take the difference between the method and the 

equation, 

taking all differential consequences (derivatives of E) into account up to r ,  the predicted 

order of accuracy. Efficient substitution of appropriate order Taylor series into R gives a 

large expression involving the derivatives of T+!J and C, powers of h,  and the variables a;,j, b;, 

and ci. Requiring that all terms vanish to  the desired order of accuracy yields a set of 

linear equations in a;,j, b;,  and c,  which must be solved to  obtain the desired difference 

approximation. If this system is consistent then the difference approximation is given by E, 

where all remaining variables may be treated as free parameters. 

Application of this technique to our example equation using the standard 9-point stencil 

gives us the fourth-order accurate approximation 

where a is a free parameter. The code and relevant calls are located in Appendix 2. One 

restriction on the parameter cu is that it must be at least 0 (1) ,  as if it were O(k), the scheme 

(3.10) would be only third-order accurate. 

Dealing with non-linear equations, such as (2.10), is slightly more difficult. In this case 

we use the approximation 

- 1 
E = -  

h4 

which has a much greater number of unknowns, and the Taylor series approximations must 

be done carefully to  prevent expression explosion. When the difference is taken, and the 

linear equations are solved to fourth-order accuracy, it is found that there remain 280 free 

parameters. This allows for a great many schemes, and finding one which can be coded 
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reasonably may be difficult. The code and commands for this derivation may be found in 

Appendix 3. 

For the compact scheme, up to  cubic terms may be present, hence the approximation 

n-1 i  n - l i  j  

C Qi+i  + Re C C G , j $ i + j  + Re2 C C C d i , j , t + i $ j + k  
a=o j = o  i = o  j = o  k=O I 

must be used, and including all differential consequences can be quite difficult. These 

considerations motivate us to find a different method of scheme derivation for non-linear 

equations. 

The second technique uses known difference formulae to  obtain a scheme, and closely 

follows the analytic derivation used in Section 3.1.2. The resulting code is less procedural, 

requiring substantially more user input, for example which differential consequences t o ~ b e  

used, and the way in which they are used must be supplied by the user. Each derivative 

is approximated by a linear combination of known differences. As an example we represent 

the derivative +xx as 

where the notation of Section 2.2.1 is used for the differences. This process is performed 

for each derivative required by the method, including those derivatives required by the 

differential consequences, and the resulting parameters may be used to obtain some desired 

property for the scheme, such as elimination of certain outliers and/or diagonal dominance. 

A sample code using no free parameters is given in Appendix 4. In addition to deriving 

the Wide scheme in Section 3.1.1, this code produces Fortran expressions used to  calculate 

the difference approximations, and the Jacobian elements required for use of the scheme. 

This tmnslatlon code is scheme dependent and must be significantly altered for use in 

derivation of other schemes. One other detail is that all parameters must be fully determined 

and substituted into the appropriate expressions before the Fortran code can be written. 

To demonstrate the potential value of this technique a 33-point scheme.having a width 

of 7 was obtained having a local truncation error of 0 ( h 6  Re ). 
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singular o m . .  - moving boundary 

' t " '  
' t " '  

stationary boundary ' T " '  
Figure 3.1: Compact Method with Corner Singularity 

3.1.4 Rectangular-Domain Boundary Conditions 

Application of normal derivative boundary conditions for rectangular domain problems may 

be done in a number of ways, but in the case of a driven cavity problem care must be taken in 

the corners as singularities may be present (for an analytic description of these singularities 

see [24]). Straightforward application of either scheme at each point in the domain results 

in a system for which finite differences are taken across singularities with no obvious way 

of determining the exterior corner values (see Figure 3.1). Using interpolation for the first 

interior points along the boundary avoids this difficulty as the exterior corner values are 

no longer required for either scheme. We may use any of the following relations for this 

purpose: 

The exterior points required for the wide scheme may be determined by extrapolation using 

any of the following relations: 
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$ = ( - 3 $ - 1  - ~ O $ O  + 18q1  - 6+2 + ~ k ) / l 2 h  + 0 ( h 4 )  ( 3 . 1 7 )  

$x = ( -12+-1  - 65+0 + 120+1 - 6O$2 + 20& - 3&) /60h  + 0 ( h 5 )  ( 3 . 1 8 )  

Here $; denotes the function value at the i-th interior point from the boundary, denotes 

the first exterior point from the boundary, and h is the step-size. 

There is some ambiguity in the evaluation of the interior corner points as there are 

two boundary conditions to be applied at  each. To obtain a relation for these points we 

take the two boundary 

(+c  - f ~ ( $ ; , j ) ) ~  + (+c  - 

conditions, namely +, = f i ( + ; , j )  and = f 2 ( $ ; j )  and minimize 

f 2 ( + ; , j ) ) 2  with respect to +,. The resulting relation is then simply 

The combination of the above boundary conditions with the wide and compact schemes 

determines a unique relation for each point in the rectangular domain. 

3.2 Model Problems and Computational Methods 

In this section we describe the model problems used to test the wide and compact schemes, 

three of these with exact solutions, and the shear-driven cavity problem. We also discuss 

the computational methods used to obtain solutions of the resulting non-linear system of 

equations, and the combinations of schemes and boundary-conditions to be used. 

3.2.1 Exact Model Problems 

In order to  test the accuracy of our schemes we use the following exact solutions to  the 

streamfunction equation: 

Problem 1  

$ ( x ,  y )  = a ( x 2  + y 2 )  + b ( x 2  + y 2 )  ln (x2  + y 2 )  (3 .19)  

( G Y )  E [ lJI  x [I, 21 a,b E R 

Problem 2  
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secondary 
vortex 1 

secondary 
vortex 3 

secondary 
vortex 2 

Figure 3.2: Driven cavity 

These are straightforward generalizations of the test problems introduced by Richards 

and Crane [27]. In Problems 1 and 2 we choose a = and b = -i, here we note that 

Problem 2 possesses a weak singularity a t  the point (0,O) which may give some insight as to  

the behavior of the schemes when a corner point singularity is present. For Problem 3 we 

choose a = $ and b = 5 yielding a solution for which higher derivatives decrease in value 

geometrically. 

3.2.2 Driven Cavity 

As a practical model problem, we consider the steady flow of an incompressible viscous 

fluid in a square cavity (0 5 x 5 1,O 5 y  5 1 ) .  The flow is induced by the sliding 

motion of the top wall ( y  = 1) from right to left (see Figure 3.2) and is described by the 

streamfunction equation. The boundary conditions are those of no slip: on the stationary 

walls u = a+/ay = 0 and v = -d+/ax = 0; on the sliding wall u = -1 and v = 0. This 

problem has been used frequently as a model problem for testing and evaluating numerical 
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techniques, in spite of the singularities at two of its corners. Highly accurate benchmark 

solutions of this problem are available in the literature (see, e.g. [13, 14, 281). 

3.2.3 Computational Methods 

To solve these non-linear problems we apply Newton's method to the equations resulting 

from the finite difference approximations in Section 3.1. The sequence of linear systems is 

then solved using a banded LU-decomposition routine with partial pivoting. For efficiency 

we use the algorithm suggested by Schreiber and Keller in [28], performing several chord- 

iterations per decomposition, only re-evaluating and decomposing the Jacobian when chord- 

iteration convergence becomes slow. In the course of the calculations it is found that at most 

two decompositions are required for each continuation calculation. 

For the driven cavity problem, Reynolds number continuation is used to obtain the coarse 

grid solutions, and a bi-quadratic interpolation routine is used to obtain a first estimate for 

finer grids. Calculations are performed for Reynolds numbers 100, 400, 1000, 3200, and 

5000 requiring two continuations between each. The calculation at  Reynolds number 100 is 

done with first approximation $i, j  = 0. 

Three combinations of boundary conditions and schemes are used in all calculations; 

these are as follows: 

W4: Wide scheme with fourth-order accurate interpolation (3.13) and extrapolation 

(3.17) 

W5: Wide scheme with fifth-order accurate interpolation (3.14) and extrapolation (3.18) 

C4: Compact scheme with fourth-order accurate interpolation (3.13) 

For the wide scheme we may use up to  fifth-order accurate boundary conditions without 

significantly changing the bandwidth of the Jacobian, while the compact scheme is restricted 

to  fourth-order or less to  maintain compactness. The banded structure of the Jacobian 

matrix for W4 is illustrated in Figure 3.3. 

For the exact model problems three additional methods are used: 

Wb: Wide scheme with exact boundary conditions 

Cb: Compact scheme with exact boundary conditions 
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half bandwidth 
< t 

Figure 3.3: Jacobian Band Structure for W4 

Sz: Second-order scheme with second-order accurate extrapolation (3.15) 

The first two schemes use exact boundary conditions fixing the points determined by 

approximate boundary conditions in the original three schemes to exact solution values. 

These methods are useful for comparison of the error resulting from the schemes to  the 

error resulting from the boundary conditions. The remaining scheme is the second-order ac- 

curate scheme used by Schreiber and Keller in [28]. This scheme uses second-order accurate 

centered differences to discretize (2.10), applying it a t  all interior points, and second-order 

accurate extrapolation for the boundary conditions. 

Two other schemes were originally used, and these were the wide scheme with sixth- 

order accurate boundary conditions, and the second-order scheme with third-order accurate 
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boundary conditions. It was found that in using Newton's method and LU-decomposition 

with partial pivoting, Newton iteration only converged for very low Re. It is suspected that 

the higher order boundary conditions caused the resulting Jacobian matrix to have a large 

condition number, requiring full pivoting to  perform the decomposition. An exception to 

this behavior is Ws where partial pivoting had no adverse effect on the convergence of the 

Newton iterations. Since the expense of full pivoting is prohibitive, the schemes were not 

used. 

3.3 Results for Exact Model Problems 

In this section four sets of results are presented for the exact model problems using the 

methods outlined in the previous section. These calculations were performed for grid spac= 
1 ings from to & on a SPARC 10. First the schemes which may be implemented on 

practical problems are compared and some conclusions are reached, next the effects of the 

approximate boundary conditions are discussed, and finally efficiency results are presented 

and the methods are discussed with all results in mind. 

3.3.1 Accuracy of Schemes 

For Problem 1, L2-error calculations obtained for Re = 100 are displayed in Figure 3.4. The 

smallest error (by a factor of 10) was obtained using W5, followed by C4, W4, and S2. For 

h=&, S2 has three orders of magnitude greater error than each of the fourth-order accurate 

schemes. It is also worth noting that increasing the accuracy of the boundary conditions 

from 0(h4)  to 0 (h5 )  (i.e. W4, and W5) reduced the error by approximately & in the region 

plotted. 

Increasing Re from 100 to  5000 shows an increase in the error for C4 by a factor greater 

than 15, while the errors for W4, W5, and S2 changed very little, which is consistent with 

each scheme's respective truncation error. 

For Problem 2, results are presented for Re = 100 and Re = 5000 in Figure 3.5. 

Although the wide and compact methods have overall fourth-order truncation error, the 

results obtained have only third-order accurate behavior. Comparison of these results to 

Problem 1 leads us to  the conclusion that this loss of order is a result of the weak singularity 
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present at the origin. For Re = 100 , C4 displays the smallest error, and S2 the largest. 

All four practical schemes remain within an order of magnitude of each other in the region 

plotted, indicating that for Re = 100 efficiency may be the larger consideration. Comparison 

of the results for Re = 100 to Re = 5000 again indicates a larger increase in the error for 

C4 than for W4, W5, and S2. At Re = 5000 Ws has the smallest error being approximately 

1. 5 that of C4, and again the least accurate scheme is S2. 

Results for Problem 3 are nearly identical to  those for Problem 1 and are not presented 

here. 

Using the information presented in this subsection we can obtain some conclusions about 

the relative accuracy of the practical schemes. The largest error in all cases was obtained 

by S2, even for the relatively coarse meshes used for these results. Refinement of the mesh 

will increase the accuracy of the other schemes considerably faster than for S2, so in this 

respect the fourth-order schemes are always more accurate than S2. For smooth problems 

(i.e. Problems 1 and 3) and low Re,  W5 is slightly more accurate than C4, but when the 

singularity was present, C4 gave more accurate results. However for higher Re,  C4 has a 

much larger error, and the most accurate method is W5. In all cases W5 produced less error 

than W4 indicating that this higher order boundary condition only seeks to  reduce the error, 

and may be beneficial to use whenever possible. 
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Figure 3.4: L2 Errors for Test Problem 1 

Figure 3.5: L2 Errors for Test Problem 2 
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3.3.2 Effects of Numerical Boundary Conditions 

Comparing the schemes using exact boundary conditions (i.e. Wb and Cb) to those using 

approximate boundary conditions (i.e. W4, W5 and C4) in Figures 3.4 and 3.5 shows that 

the approximate boundary conditions generate a great deal of error. For the compact 

schemes and Re = 5000, the errors for C4 and Cb are nearly equal, indicating that the 

largest contribution to  the error is due to the scheme; but for the wide schemes, it may 

be seen that the methods using approximate boundary conditions produce an error from 

10 to  500 times as large as those using exact boundary conditions. We note here that 

this effect is sometimes observed when row-scaling is not used on the Jacobian matrix. 

This is not the case as the dependence of the scheme points on the boundary points is 

eliminated before decomposition of the matrix. The large error resulting from the boundary 

conditions becomes significant when one considers that 0 ( n 2 )  points are determined by the 

scheme while only O(n) points are determined by the boundary conditions. This observation 

illustrates the potential importance of boundary conditions relative to  the schemes. To 

further emphasize this point, all results display the expected order of accuracy with the 

exception of Ws for Problems 1 and 3, where it appears to  be an 0(h5)  method. A reasonable 

explanation for this behavior is that the coefficient of the fifth-order error term corresponding 

to the boundary conditions is much larger than the coefficient of the fourth-order error term 

for the scheme. The actual fourth-order behavior of the method would then not become 

apparent until h was very small. In light of this result we conclude that for the wide scheme, 

any improvement in the accuracy of the boundary conditions will give a corresponding 

improvement in the global accuracy of the computation. For the compact scheme this effect 

will only be noticed for low Re. 

3.3.3 Efficiency of Methods 

In using Newton's method, the most expensive step is the LU-decomposition of the Jacobian, 

requiring 0(n4)  operations, where n is the number of grid points along the side of the square 

domain. The C.P.U. time required by this step is primarily dependent upon n, and the 

bandwidth of the Jacobian, so the decomposition should require the same time for W4,Ws, 

and Wb. In Figure 3.6, C.P.U. times are plotted against n for S2, Cb, and Wb, and verify 

the fourth-order dependence of the C.P.U. time on n. The times as a function of n for 



C H A P T E R  3. W I D E  A N D  COMPACT SCHEME 35 

S2 and Cb are nearly equal, as their bandwidths are 4n - 3 and 4n + 1 respectively, and 

only differ by a constant quantity. The wide scheme, Wb, with a bandwidth of 6n - 5 takes 

approximately 2.5 times the Cb C.P.U. time for a given n. Combining this information with 

that  of the two previous subsections tells us that  it is efficient to use C4 when Re is small, 

but for larger R e ,  Ws is the best method, making up for any inefficiency by a significant 

increase in accuracy. 

1.2 1.3 1.4 1.5 1.6 1.7 1.8 
Iw-0 

Figure 3.6: C.P.U times for Ss,Cb,and Wb 
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3.4 Results for Driven Cavity Problem 

For the driven cavity problem results are presented for Re = 1000, 3200, and 5000. Ter- 

mination of Newton's method is achieved when the L2 residual drops below lo-''. The 

computed results are compared with those of Ghia et al. [13], Schreiber and Keller [28], and 

Nishida and Satofuka [25]. 

Table 3.1: Vortex data for Re =I000 

I source 1 primary vortex I secondary vortex 1 I secondary vortex 2 

w5 

In Table 1 we present the vortex data for Re =I000 for W4,W5, and C4 using 65 x 65 

grids. The results compare well with the known benchmark solutions, with the primary 

vortex and its co-ordinates for these methods being within 2% of the benchmark values. 

The streamlines for W5 and C4 are presented in Figure 3.7, and it is observed that they 

are graphically indistinguishable. Other calculations using 97 x 97 grids indicate a 0.2% 

deviation from each other. 

c4 

65 x 65 
Ghia et a1 
129 x 129 

Schreiber et a1 
141 x 141 

Nishida et a1 
129 x 129 

location 
0.11698 

0.11672 
0.4697,0.5678 

0.11816 
0.4695,0.5658 

0.11603 
0.4714,0.5643 

0.11882 
0.4687,0.5625 

location 
-1.7579(-3) 

location 
-2.2276(-4) 

-1.7424(-3) 
0.1410,0.1123 

-1.7510(-3) 
0.1406,0.1094 

- 1.7000(-3) 
0.1357,0.1071 

-1.7238(-3) 
0.1406,0.1094 

-2.0886(-4) 
0.9184,0.0783 

-2.3113(-4) 
0.9141,0.0781 

-2.1700(-4) 
0.9143,0.0714 

-2.3153(-4) 
0.9141,0.0781 
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Table 3.2: Vortex data for Re =3200 

I source ( primary vortex I secondary vortex 1 I secondary vortex 2 1 secondary vortex 3 1 

w5 
97 x 97 
w4 

97 x 97 

For Re =3200, 97 x 97 grids were used to obtain the data in Table 2. In this case the 

W4 and Ws results are within 1% of the benchmark solutions , while the C4 results have 

slightly larger deviation. This is expected as for high Re the compact scheme was shown 

to have greater error for the test problems. The streamlines for W5 and C4 are shown in 

Figure 3.8. It may be observed that the general shape of the two contour plots differ little, 

but the primary difference is present in the value of 11, at the vortices. 

location 
0.11870 

0.4819,0.5408 
0.11980 

0.4805.0.5394 
c4 

97 x 97 
Ghia et a1 

129 x 129 
Nishida et a1 
129 x 129 

-2.8750(-3) 
0.1892,0.0863 
-3.1396(-3) 
0.1875,0.0859 
-2.7897(-3) 
0.1719.0.0859 

I 

0.11793 
0.4833,0.5456 
0.12038 

0.4835,0.5496 
0.12072 

0.4844,0.5391 

location 
-2.8906(-3) 
0.1783,0.0848 
-2.7837(-3) 
0.1714.0.0858 

-9.3701(-4) 
0.9176,0.1142 
-9.7823(-4) 
0.9141,0.1094 
-1.0859(-4) 
0.9219.0.1250 

location 
- 1.0739(-3) 
0.9166,0.1165 
-1.1277(-3) 
0.9153.0.1190 

-5.1456(-4) 
0.9520,0.8898 
-7.2768(-4) 
0.9453,0.8984 
-7.2887(-4) 
0.9453,0.1016 

location 
-6.3025(-4) 
0.9493,0.8927 
-6.1421(-4) 
0.9499.0.8924 
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Table 3.3: Vortex data for Re =5000 

source ( primary vortex I secondary vortex 1 ( secondary vortex 2 1 secondary vortex 3 1 

w5 
97 x 97 
w4 

97 x 97 

For Re =5000, 97 x 97 grids were used to obtain the data in Table 3. The wide 

- - 

C4 
97 x 97 

Ghia et a1 
257 x 257 

schemes were calculated using continuation on 65 x 65 grids, with continuation steps at 

Re =3200,4000, and 5000. A solution for the compact scheme could not be obtained past 

Re =4600 on this coarse mesh, and the continuation behavior, in combination with the work 

of Schreiber and Keller in [29], leads us t o  suspect a spurious bifurcation is present. Re- 

finement eliminated this difficulty allowing us to obtain a 97 x 97 solution. The primary 

vortex data for the wide schemes is within 2% of the benchmark data, while the compact 

scheme is slightly less accurate. Reasonably good agreement with Ghia's results using less 

than the grid points indicates the value of these schemes. The streamlines for Ws and 

Cq with 97 x 97 grids are shown in Figure 3.9. There is a noticeable difference in the levels 

locat ion 
0.11799 

0.4838,0.5350 
0.12053 

0.4810.0.5327 

of the streamlines for the primary vortex as well as the positions of the secondary vortices. 

Secondary vortex 1 is too large for C4, but is much closer to the benchmark solution for 

W5. Secondary vortex 2 and 3 are too small for the compact scheme, and again the wide 

0.11531 
0.4870,0.5487 

0.11897 
0.4883.0.5352 

scheme is closer to the benchmark streamlines. 

location 
-3.1365(-3) 

0.1900,0.0738 
-2.8381(-3) 

0.1744.0.0701 
-3.1914(-3) 

0.2234,0.0842 
-3.0836(-3) 

0.1914,0.0742 

location 
-1.3587(-3) 

0.9257,0.1372 
-1.4770(-3) 

0.9284.0.1428 

location 
- 1.2655(-3) 

0.9406,0.9023 
- 1.2292(-3) 

0.9413.0.9023 
-9.3084(-4) 

0.9224,O. 1296 
- 1.3612(-3) 

0.9297,0.1367 

-9.3058(-4) 
0.9447,0.8969 

- 1.4564(-3) 
0.9375,0.9102 
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Figure 3.7: Streamlines for Ws(left) and C4(right) at Re = 1000 

Figure 3.8: Streamlines for Ws(left) and C4(right) at Re = 3200 

Figurc 3.9: Streamlines for Ws(left) and C4(right) at Re = 5000 



Chapter 4 

Conclusions 

In this thesis a fourth-order wide scheme and a fourth-order compact scheme for the two- 

dimensional steady state Navier-Stokes equations were derived using both analytic tech- 

niques and the symbolic programming language Maple. Although these methods require 

direct solution techniques, which are considered inefficient, they have a number of factors 

working in their favor. Application of boundary conditions is greatly simplified, as we are 

only dealing with the streamfunction $. This may also have advantages when working with 

problems for which the vorticity is singular. We expect good agreement with the bench- 

mark solutions for the schemes, as the truncation errors are fourth order, and the Reynolds 

number dependence of the truncation errors may also provide some insight for general wide 

and compact schemes. 

Our exact problem calculations show that in some cases with low Re,  the compact 

scheme has less error than the wide scheme, but for high Re the wide scheme is orders of 

magnitude better. The driven cavity calculations support this result, as the wide scheme 

gives good agreement with the benchmark solutions for all Re tested, while the compact 

scheme agrees only for lower Re. This behavior may be easily predicted from the form of 

the truncation errors, being 0 ( h 4  Re ) for the wide scheme, and 0 ( h 4  ~e 2, for the com- 

pact scheme. Both schemes compare well with their second-order counterpart on the exact 

problems, having notably less error for even relatively large h. 

Boundary conditions were found to have a significant impact on the error of the approx- 

imate solutions. Using fifth-order boundary conditions with a fourth-order scheme (i.e. W5)  
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clearly demonstrated fifth-order error. Comparison of the solutions using exact values in 

the place of boundary conditions to those using approximate boundary conditions verified 

this, in some cases indicating that the scheme error was negligible in comparison with the 

boundary condition error. The significance of this result may only be fully appreciated 

when it is observed that only O(n)  values are determined by the boundary conditions, while 

0 ( n 2 )  values are determined by the scheme, where n  is the number of grid points along the 

boundary. 

Some possible extensions of this research are given below. 

Application of a transformation to the equation, and discretization using a wide-type 

scheme to  further investigate the error resulting from boundary condition approxima- 

tions. 

Analysis of the 0(h6  Re ) method briefly mentioned in Section 3.1.3. 

Possible improvements in dealing with point singularities which occur in many prob- 

lems such as driven cavity problems and sudden compression problems (see, e.g. 

[9, 211). 

Extension of the wide and compact schemes to  the time-dependent Navier-Stokes 

equations. 

Extension of compact schemes to three dimensional problems. 



Appendix: 1 

findif:-proc(ord,pt) local pts,inds,eqn,seqns,x,i,j; 
t 
# This code uses values of U at the points in the list 'pt' to obtain the 
t highest order finite difference approximation to the 'ord' derivative of 
t U with respect to x. A third arguement(optiona1) is the number of Taylor 

series terms to be retained for output. 
# 

if type(pt,list) then pts:-pt; 
elif type(pt,integer) then pts:=[seq(i,i--pt..pt)l: 
else ERROR('1ncorrect input parameter for second arguement8) fi; 
if nargs>2 then keep:-args[3]: else keep:-0 fi: 
inds:-[seq(cat (c,i),f-1. .nops(pts))l; 
seqns:-inds; 
0 ;  eqn:-0: rem:-0; 
while eqn-0 and i<100 do 

if i-0 then 
eqn:-sum(seqns['j'],'j'-1. .nops(pts) 1 :  

else 
eqn:-sum(seqns[' jt]* (pts[' jt])^i,' j'-1. .nops(pts)) : 

fi; 
if i-ord then eqn:=eqn-1: fi; 
eqn:-simplify (eqn) ; 
for j to nops(inds) do 

if has (eqn, inds [ j] ) then break; fi; 
od; 
if j<-naps (inds) then 

eqn: -inds ( j] -solve (eqn, inds [ j 1 )  r 
seqns:-subs (eqn, seqns) ; 
eqn: -0; 

f i; 
if eqn<>O and keep>O then 

rem: -rem-eqntcat (u, x$i) *hA (i-ord) *ord! /i! : 
eqn:-0 : 
keep:-keep-1: 

fi: 
i:-i+l; 

od: 
eqn:-1; 
for j to nops (seqns) do eqn:-ilcm(eqn, denom(norma1 (seqns [ j] *ord! ) ) ; od: 
inds :-0; 
for j to nopstpts) do 

inds:-inds+eqn*ord!*seqnsIj]*u(pts[jl): 
od : 
inds :-cat (U, x$ord) -inds/ (eqn*h^ord) +rem+O (h* (i-ord-1) ) ; 
RETURN (inds) ; 

end: 
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tay :-proc (ord, var) local expr, i, j : 
# 
# This routine generates an 'ord' order taylor series in V(x,y) 
# 

c1ist:-NULL: 
expr :-0 : 
for i from 0 to ord do 

for j from 0 to i do 
c1ist:-clist,V([var,i-j, j],x,y) : 
expr:-expr+XA(i-j)*Y^(j)*V([var,i-j, j],x,y)/((i-j) !*(j)!): 

od : 
od : 
c1ist:-[clistl: 
expr ; 

end: 

'dif f/VS:-proc 0 local 1: 
I 
I This routine tells maple how to differentiate V(x,y) 
# 

1:-args[ll : 
if arqs[narqs]-x then V(subsop(2-(1[2]+1),l),x,y): 
elif &gs[nargs]-y then ~(sub~o~(3-(1[31 +I), 1) , x ,  y) : 
fi : 

end: 

buildeqns :-proc (nn, pts) 
# 
# This routine builds a structured list of linear equations which must be 
(i solved to obtain difference approximations to the linear 2-D p.d.8. 'eqn'. 
# Equations are generated to give an error term of O(hAnn). 
# 
local tl,t2,cc,eqn,numl,expr,vars,dexpr,dvars,points,i, j ,k:  

# 
# 

lprint('Bui1ding Taylor Series:'): 
expr:-0: vars:-NULL: 
t1:-collect (subs (X-il*h, Y- jl+h,tay (nn+l, 1) 
t2:-op(c1ist) : 
for i to nops(pts) do 

expr:-expr+cat (b, i-1) *subs (il-pts [il [ll 
vars:=vars, cat (b, i-1) : 



od: 
t1:-collect (hA2*subs (X-il*h,Y-jl*h,tay ( n n - 1  h : 
c1ist:-[t2,op(clist) 1 : 
for i to nops(pts) do 

expr:-expr+cat (c, i-1) *subs (il-pts [i] (11, jl-pts[iJ [Z], tl) : 
vars:-vars, cat (c, i-1) : 

od : 
expr:-collect (expr, h) : 

# 
# Here the contribution and differential extension of the PDE is 
# taken into account 
# 

lprint('Adding contribution of PDE to system'): 
dexpr:-eqn: dvars:-NULL: 
for i from 1 to nn-1 do 

lprint (cat ( 'At order ', i) ) ; 
for j from 0 to i do 

cc:-x$ (i-j), ys j: 
dexpr:-dexpr+cat (a, cc) *dif f (eqn, cc) *hAi: 
dvars:-dvars,cat (a,cc) : 

od: 
od : 
dexpr:-collect(dexpr,h): 

# 
# Here the final system is put into output format. 
# 

expr:-collect(expr+hA2*dexpr,h): 
lprint('Combining System into Final Array'): 
- eqns:-array(l..num): 
- coeff:-array(l..num): 
~oints : -NULL : 
j:=l: 
for k from 0 to nn+l do 

coef f (expr, h, k) : 
collect (",clist,distributed) : 
cc:-[coeifs(",clist,'t2') I : 
t2:-(t21: 
for i to nops (cc) do 

- eqns[ j] :-cc(i1: 
- coeff [ j] :-t2[i] : 
j:-j+l: 

od: 
points:-points, j-1: 

od : 
[ [points], [varsl , [dvarsll 

end: 

solveme :-proc (ptl, orrd) 
# 
# This routine solves the system output by 'buildeqns', and saves it 
# as each order of accuracy greater than or equal to 'orrd' is passed. 
# These systems are stored in 'ERROR(order).ml where (order) refers to 
# the local truncation error order. This is continued until an 
# inconsistent equation is found, or all relations are satisfied. 
# 
local neqns,unks,incons,ceqn,seqn,cord,tonext,eqn,unnum,var,sol,ilag,i: 

for i to 1000 do 
if not (assigned (-eqns [i] ) ) then break : fi: 

od: . 
neqns : -i-1 : 
unks:=[op(ptl[2]),0p(pt1[31) 1: 
- seqns:-array (1. .1000) : 
incons:-NULL: 
ceqn:-1: seqn:-0: cord:-0: 



tonext:-ptl[ll [cord+l]: 
flag:-false: 
while not(f1ag) and ceqn<-neqns do 

if not (-eqnsrceqnl-0) then 
eqn:--eqns[ceqn]: 
unnum:-f indnum(eqn,unks) : 
if unnum-0 then 

incons:-incons, [ceqn,~coeff[ceqnl,eqnl: 
print ( 'inconsistent equation: ', eqn) ; 
print('inconsistent coefficient:',-coeff[ceqn]); 

else 
var:-unks[unnum]: 
sol :-var-solve (eqn-0, var) : 
lprint (cat ( 'Solved #',ceqn, ' for ',var, ' Total of ', seqn+l, ' solved ' 
if seqn>O then 

for i to seqn do 
if has (-seqns [i], var) then 

simplify (subs (sol,-seqns [ill ) : 
- seqns [i] :-": 

fi: 
od : 

fi: 
seqn:-seqn+l: 
- seqns[seqnl:-sol: 
for i from ceqn to neqns do 

if has (-eqns [il ,var) then 
simplify (subs (sol,-eqns [ill ) : 
-eqns [i] : -": 

fi: 
od : 

fi: 
fi: 
if ceqn-tonext then 

lprint(cat('***Equations for order ',cord-2,' completed8)): 
incons:-[incons]: 
cord:-cord+l: 
if cord-2>-orrd then 

lprint ( 'Saving . . . ' 1  ; 
save -seqns,-eqns,-coeff, incons, seqn, ceqn, 'ERROR' .cord. ' .m': 

fi: 
if incons<>[] then flag:-true: fi: 
i ncons :lop (incons) : 
if nops (ptl [ll ) >cord then 

tonext:-ptl[ll [cord+l] : 
else 

flag:-true: 
fi : 

fi: 
ceqn:-ceqn+l: 

0d: 
if incons-NULL then 

lprint(cat('Number of solved equations:',seqn)): 
lprint (cat ( *Number of free parameters: ', nops (unks) - s e w )  ) ; 

fi: 
cord : -NULL: 
for i to seqn do 

cord: -cord,-seqns [il : 
od : 
[cord] : 

end : 



findnum:-proc(eqn,unks) local i: 
for i to nops (unks) do 

if has (eqn, unks [i] ) then break: f i: 
od : 
if i>nops (unks) then 0: 
else i; 
fi; 

end: 
# 
# The following are the procedure calls which derive the scheme 
# 
pts:-I [0,01 I 
Il,Olt [Otllt I-ltoI, lo,-llr 
[l,ll, [-ltll, [-1,-11, [11-11 I: 
pt1:-buildeqns (4,pts) : 
save eqns,-coeff ,ptl, 'buiItsys .m8: 
solsy;:-solveme(pt1,2); 
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tay :-proc (ord) local expr, i, j : 
# 
# This routine generates an 'ordt order taylor series in V(x,y) 
# 

c1ist:-NULL: 
expr : -0 : 
for i from 0 to ord do 

for j from 0 to i do 
c1ist:-clist,V([i-j, jl ,x,y): 
expr:-expr+XA(i-j)*Y^(j)*V([i-j, j],x,y)/((i-j)!*(j)!): 

od : 
od : 
c1ist:-[clistl: 
expr ; 

end: 

'diff /V' : =proc ( ) local 1 : 
t 
i This routine tells maple how to differentiate V(x,y) 
# 

1:-argslll : 
if ar~s[narqsl-x then V(subso~(l-(l[lI+l),l)~x,~): 
elif args [na~gs]-~ then ~(sub~o~(2-(1[21+1) ,1) ,x,y) : 
fi : 

end : 

buildeqns :-proc (nn, pts, oeq, leq, nleq) 
# 

This routine builds a structured list of linear equations which must be 
solved to obtain difference approximations to a 'oeq' order equation 
with linear part 'leq', and quadratic part 'nleq8, using the grid points 
in the list 'pts'. The taylor series will be calculated up to 'nn8 order. 

local tpl, tp2,tl, t2,cc, lu,nlu,uu,pn,pl, numn,numl, nnon,nlin, lexpr, nlexpr, i, j: 
I 
# These variables define the maximum number of equations which may be derived 
# 

num1:-150: numn:-800: 
# 
# Here the grid taylor series for the linear and quadratic terms are obtained. 
# 

lprint('Bui1ding Taylor Series:*): 
tpl: -tay (nn) : 
t1:-collect (subs(X-il*h,Y-jl*h,tpl) ,h) : 
t2:-collect (subs (X=i2*h,Y-j2*h,tpl) ,h) : 



tp1:-collect (subs (X-iOth,Y- jOth, tpl) ,h) : 
tp2:-collect (tl*t2, h) : 

Here the quadratic taylor series is split into the terms which will 
become our equations, and the pointer list is constructed. 

lprint('Seperating Taylor Series:'): 
joints:-array (0.. nn, 1.. 2) : 
- nleqns : -array (1. . numn) : 
- tn1eqns:-array(l..numn): 
- nlcoeff :-array (1. .numn) : 
):-I: 
for i from 0 to nn do 

t2:-coeff (tp2,h,i) : 
t2: -collect (t2, clist,distributed) : 
cc:-[coeff~(t2,clist,~t2~ )] : 
t2:-[t2]: 
for k to nops(t2) do 

- nleqns[ jl :-0: 
- tnleqns[ j] :-cc[k] : 
- nlcoeff[j]:-t2[k]: 
j:-j+l: 

od: 
joints [i,2] :-j-1: 

od : 
nnon:-j-1: 

Here the linear taylor series is split into the terms which 
become our equations, and the pointer list is constructed. 

will 

- 1eqns:-array (1. .numl) : 
- t1eqns:-array (1. .numl) : 
- 1coeff:-array(l..numl): 
j : -1 : 
for i from 0 to nn do 

t1:-coeff (tpl,h, i) : 
t1:-collect (tl, cli~t~distributed) : 
cc:-[coeffs(tl,clist, 'tl')] : 
t1:-[tl] : 
for k to nops(t1) do 

- leqns [ j] :-0: 
- tleqns[ j] :-cc[k] : 
- lcoeff [ j] :-tl [k] : 
1:-j+l: 

od: 
goints [i, 11 :-j-1: 

od : 

lprint icat ( 'There are *, nlin, * linear and *, nnon, * non-linear equations') ) : 

Here the points are looped though, and the linear equations are constructed. 

lprint('C0mbining Linear Components'); 
lu :-NULL : 
for i to nops(pts) do 

lprint (cat ( 'At point # ',i-1) ) : 
teqns:-subs (i0-pts[i] [1], j0-pts [il [2] ,copy (-tleqns) ) : 
for k to nlin do 

- leqns [k] :--1eqns [k]+cat (c-, i-1) *teqns[kl : 
od: 
1u:-lu, cat (c-, i-1) : 

od: 
lprint('Combining Non-Linear Components'): 
n1u:-NULL: 
for i to nops(pts) do 

teqns:-subs (il-pts [i] [1], jl-pts [i] [2] ,copy (-tnleqns) ) : 



for j to i do 
lprint (cat ('At point #', i-1, ' x ' ,  j-1) ) : 
teqns2:-subs (i2-pts [ j] [1] , j2-pts [ jl [21 ,copy (teqns) : 
for k to nnon do 

- nleqns [k] :--nleqns [k]+cat (c-, i-I,-, j-1) *teqns2 [k] : 
od : 
nlu:-nlu, cat (c-, i-I,-, j-1) : 

od : 
od : 
1u:-[lu]: n1u:-(nlu]: 

t 
# Here the PDE is used, and differential consequences of the PDE are taken 
# into account. 
t 

uu :-NULL : 
if oeq<-nn then 

lprint('Adding contribution of PDE to system'): 
for i from oeq to nn do 

lprint (cat ( 'At order ', i) ) : 
if i-oeq then 

tl :--1eq: 
t2:--nleq: 

else 
t1:-0: t2:-0: 
for j from 0 to i-oeq do 

cc:-xS (i-oeq-j),ySj: 
t1:-tl-cat (a,cc) *diff (leq,cc) : 
t2 :-t2-cat (a, cc) *dif f(nleq, cc) : 
uu:-uu,cat (a,cc) : 

od : 
fi: 
t1:-collect (t1,clist) : 
t2:-collect(t2,clist,distributed): 
cc:-[coeffs(tl,clist,'inds8)l: 
inds:- [inds] : 
for j from goints [i-l,l]+l to goints [i, 11 do 

if member (-lcoeff [ jl, inds,'k8 ) then 
-leqns[jl:- leqns[jJ+ccIkl: 
cc :-subsop &NULL, CC) : 
inds :-subsop (k-NULL, inds) : 

fi: 
od : 
if inds<>[] then ERROR(*Not all linear terms present for PDE'); fi: 
cc:-[coeffs(t2,clist,'inds')l: 
inds : - [inds] : 
for j from goints[i-1,21+1 to goints[i,2] do 

if member (-nlcoef f [ j] , inds, ' kt ) then 
-nleqns[ j] :- nleqns[jl+cc[kl: 
cc :-subsop GNULL, CC) : 
inds : -subsop (k-NULL, inds) : 

Fi : 
od : 
if inds<> [ 1 then ERROR ( 'Not all non-linear 

od; 
fi : 
uu : - [uu] : 

# 
# Here the final system is put into output format. 
# 

lprint('Combining System into Final Array'): 
- eqns :-array (1. . (numl+numn) ) : 
- coeff:-array(l..(numl+numn)): 
points:-NULL: 
j:-1: 
pn:-0: 
p1:-0: 

terms present for PDE'); fi: 



for k from 0 to nn do 
for i from pn+l to goints[k,2] do 

- eqns[ jl :--nleqns[i] : 
- coeff[jl:--nlcoeff[i]: 
j:-j+l: 

od: 
pn:-i-1: 
t2:-j-1: 
for i from pl+l to goints [k, 11 do 

-eqns [ j I, : --leqns [i ] : 
- coeff [)I :--1coeff [i] : 
j:-j+l: 

od : 
p1:-i-1: 
points:-points, [t2, j-11 : 

od : 
[[points],lu,nlu,uu]; 

end : 

solveme :-proc (ptl, orrd) 
# 
# This routine solves the system output by 'buildeqns', and saves it 
# as each order of accuracy greater than or equal to 'orrd' is passed. 
# These systems are stored in 'ERROR(order).mS where (order) refers to 
# the local truncation error order. This is continued until an 
# inconsistent equation is found, or all relations are satisfied. 
# 
local neqns,unks,incons,ceqn,seqn,cord,tonlin,tolin,eqn,unnum,var,sol,flag,i: 

for i to 1000 do 
if not(assigned(-eqns[il)) then break: fi: 

od : 
neqns:-i-1: 
unks:-~o~(~tl~3l),o~(ptl~2l),o~(~tl[41)1: 
- seqns :-array (1. .1000) : 
incons:-NULL: 
ceqn:-1: seqn:-0: cord:-0: 
ton1in:-ptl[l] [cord+l] [I] : 
to1in:-ptl [l] [cord+l] [2] : 
flag:-false: 
while not (flag) and ceqnc-neqns do 

if not (-eqns [ceqnl-0) then 
eqn:--eqns[ceqn]: 
unnum: -f indnum(eqn, unks) : 
if unnum-0 then 

incons:-incons,[ceqn,~coeff[ceqnl,eqnl: 
print('inconsistent equation: ', e?n) ; 
print('inconsistent coefficient: ,-coeff[ceqnl): 

else 
var : -unks [unnum] : 
sol :-var-solve (eqn-0, var) : 
lprint (cat ( 'Solved # ', ceqn, * for ', var) ) 
lprint (cat ( 'Total of ', seqn+l, ' solved ',-coeff [ceqn] ) ) ; 
if seqn>O then 

for i to seqn do 
if has (-seqns [i], var) then 

simplify (subs (sol,-seqns [ill ) : 
- seqns [i] :-": 

fi : 
od : 

fi: 
seqn:-seqn+l: 
- seqns[seqn]:-sol: 
for i from ceqn to neqns do 

if has (-eqns [il , var) then 



simplify (subs (sol,-eqns [il)) : 
- eqns [i] :-": 

fi : 
od : 

fi: 
fi: 
if ceqn-tonlin then 

lprint (cat ( '***Nan-Linear equations for order ',cord, \ completed') ) : 
elif ceqn-tolin then 

lprint(cat(****Linear equations for order ',cord,' completed')); 
incons:-[incons]: 
cord:-cord+l: 
if cord>-orrd then 

lprint ( 'Saving . . . ' )  ; 
save -seqns,-eqns,-coeff, incons, seqn, ceqn, 'ERROR8 .cord. '.m8 : 

fi: 
if incons<>[] then flag:-true: fi: 
incons : -op (incona) : 
if nops (ptl [l] ) >cord then 

ton1in:-ptl [l] [cord+l] [I] : 
to1in:-ptl[l] [cord+l] [21 : 

else 
flag:-true: 

fi: 
fi: 
ceqn:-ceqn+l: 

od : 
if incons-NULL then 

lprint (cat ( 'Number of solved equations: ', seqn) ) ; 
lprint(cat('Number of free parameters:',nops(unks)-seqn)): 

fi: 
cord; 

end : 

findnum:-proc(eqn,unks) local i: 
for i to nops (unks) do 

if has (eqn,unks [i] ) then break: f i; 
od; 
if i>nops (unks) then 0: 
else i; 
fi: 

end : 
# 
# The following are the procedure calls which'derive the 
# 
pts:-[ lo, 01, [l,OI, [Otll, [-lrOl,[O*-11, 
[l#ll, [-l,ll, [-1,-11, [I,-11, 
[2,01, [0,211[-2,011 lo,-21, 
12,-11, [2,11, [1,21, r-1,21, [-2,11, [-2,-11, ~-1*-21, [1,-21, 
[2,21, [-2121, [-21-211[2,-21, 
[3,Ol, [O,3l, [-3,01, [O,-3Il: 
leq:-V(~4,011x,~)+2*V([2,21,x,~)+V([0141,x,y : 
nleq:-V([l,0llx,y)*(~(~2,ll,x,~)+V([0,31,x,~~~ 
-v(~O,ll,x,y)*(v([3,OIrx,y)+V(~l,21,~,~)~: 
ptl :-buildeqns (7, pts, 4, leq, nleq) : 
save -eqns,-coeff ,ptl, 'builtsys .m8: 
so1sys:-solveme (ptl, 4) : 

scheme 



check:-proc  (1) 
# 
# T h i s  p r o c e d u r e  c o n s t r u c t s  s e c o n d - o r d e r  o r  f o u r t h - o r d e r  a c c u r a t e  c e n t r a l  
# d i f f e r e n c e  schemes f o r  up t o  s i x t h  o r d e r  d e r i v a t i v e s .  
# 
l o c a l  d l  cm, il, i, j, k: 
# 

d : - a r r ay [ l . . 2 ,0 . . 6 ] :  
d [1 ,01 : - [  0, 0,  0,  1, 0, 0,  01; 
d [ l , l ]  : - [  0, 0,-1/2,  0,  1 / 2 ,  0,  01: 
d [ 1 , 2 ] : - [  0, 0,  1, -2, 1, 0, 01; 
d [ 1 , 3 ] : - [  0,-1/2, 1, 0 ,  - 1  1 01; 
d [ 1 , 4 ] : - [  0, 1, -4, 6 ,  -4, 1, 01; 
d [ 1 , 5 1  :-1-1/2, 2,-5/2,  0,  5 /2 ,  -2, 1 /21 ;  
d [ 1 , 6 ]  :-[ 1, -6, 15 ,  -20, 15 ,  -6, 1 1  ; 
d [ 2 , 0 ] : - [  0,  0 ,  0,  1, 0,  0,  01: 
d [ 2 , 1 ]  :=[ 0,1/12, -2 /3 ,  0 ,2 /3 , -1 /12,  01: 
d [ 2 , 2 ]  :-[ 0 ,  -1 /12,  4 /3 ,  -5 /2 ,4 /3 , -1 /12,  01 ; 
d [ 2 , 3 1  :-[ 1 / 8 ,  - 1 1 3 ,  0,-13/8,  1,-1/81: 
d [ 2 , 4 ]  :-[-1/6,  2 , -13/2 ,28/3 , -13/2 ,  2,-1/61: 
c m : - a r r a y ( l . . 8 , 1 . . 7 ) ;  
f o r  i t o  7 d o  

f o r  j t o  7 d o  
c m l i ,  j l  :-0: 

od;  
od: 
f o r  i t o  7 d o  

f o r  j t o  7 d o  
f o r  k t o  noDs( l1  d o  

od; 
od: 
i1 : -0 ;  
f o r  i t o  7 d o  

c m [ 8 , i ]  :-0: 
f o r  j t o  7 d o  

i 1 : - i l + c a t  (-temp_, 1-4,-, 4- j) *cm[ j, i ]  ; 
od; 

od; 
normal  (il) : 
cm[8,1]  :-denom(");  
RETURN (copy (cm) ) : 

end :  



# Here the difference schemes for the required derivatives are obtained, 
# printed to 'file.gt, and stored as global variables for later use in the 
4 following procedure calls. 
# 
writeto('fi1e.g') : 
11:-[[1,2,4,01, [2,2,2,2], [1,2101411: 
av:-check (11) ; 
11:-[[1,2,3,0] 
bvl :-check (11) 
11:-[[1,2,2,1] 
bv2 :-check (11) 
11:-[ [1,2,1,0] 
DVX:-check (11) 

# All parameters must be determined here, as the following code is 
# constructed for constant coefficient schemes. 

sd:-proc (indl, ind2) 
I 
t This procedure constructs the Jacobian element for the (indl*hrind2*h) 
# point using the difference schemes previously derived, and ouputs it 
# in double precision Fortran code. 
I 
local aa,bb, tl, t2,t3, t4,t5, t6; 
# 

aa :-4-ind2; 
bb:-4+indl: 
t1:-av[aa,bb] : 
t2:-bvl[aa,bbl: 
t3:-bv2 [aa,bbl : 
t4 :-pvx [aa, bb] : 
t5:-pvy[aa,bb]: 
t6:-tl+Re*(t3*px+t4*b2-t2*py-t5*bl); 
tt :-denom(norma1 (t6) ) : 
if tt<O then tt:--tt; fi: 
t1:-tt*av[aa,bb]: 
if t1<0 then t1:--cat(-t1,DO): 
elif t1>0 then t1:-cat(t1,DO) fi: 
t2:-tt*bvl [aa,bb] : 
if t2<0 then t2:--cat(-t2,DO): 
elif t2>0 then t2:-cat (t2,DO) fi; 
t3:-tt*bv2 [aa,bb] : 
if t3<0 then t3:--cat(-t3,DO): 

fi: elif t3>0 then t3:-cat(t3;~0j 
t4:-tt*pvx[aa,bb] : 
if t4<0 then t4:=-cat(-t4,DO) 
elif t4>0 then t4:-cat(t4,DO) 
t5:-tt*pvy [aa, bbl : 
if t5<0 then t5:--cat(-t5,DO) 
elif t5>O then t5:-cat (t5,DO) 
if tt-1 then 

fi: 

t6:-tl+Re*(t3*px+t4*b2-t2*py-t5*bl): 
else 

t6:-(tl+~e* (t3*px+t4*b2-t2*py-t5*bl) )/cat (tt,DO) : 
fi: 
if t6o0 then 

lprint ( *  ', jel(indl,ind2)-t6) : 
fi: 

end: 



makeproc: -proc (nam, gr) 
t 
# This procedure inputs a difference grid 'grl, and outputs fortran code 
t required to evaluate the difference scheme. 
t 
local 1,ll. cc, i, j, k,m: 

1 :-NULL: 
for m from 1 to 7 do 

for k from 1 to 7 do 
1:-l,abs(gr[k,m] ) :  

od: 
od; 
1:-(1) minus (0): 
while l<>() do 

cc:-max(op(l) 1:  
1:-1 minus (cc): 
11:-0: 
for m to 7 do 

for k to 7 do 
if abs (gr [k,m) )-abs (cc) then 

if 11-0 and abs (gr [k,ml) o g r  lk,ml and cc<>l then 
CC :--cc: 

fi; 
ll:=ll+gr(k,m]/cc*psi(i+m-4,j+4-k): 

fi: 
od: 

od; 
cc:-cc+gr [a ,  11 : 
if c o o  and ccol then 

if type(llI8+') then 
lprint (cat ( *  ',nam, *-* ,  nam, '+*,cc, 'DO* ( ')  ,11, ') ') : 

else 
lprint (cat ( * ', nam, *-', nam, *+ ', cc, 'DO* '), 11) : 

f i: 
elif cc<O then 

if type(ll,'+') then 
lprint(cat(* ',nam, 8=',nam,cc, 'DO* ( ' 1  ,11, ') : 

else 
lprint (cat ( '  ', nam, ' 0  ', nam, cc, 'DO*'), 11) ; 

fi; 
else 

lprint (cat ( *  \,nam, '-',nam, ' + ' I  ,111: 
fi: 

od: 
lprint (cat ( ' ' , nam, *-',nam, * /  ',gr [a, 11, 'DO ') ) : 
lprint ( 1  ; 

end : 

writeto ( 'fi1e.f ') : 
# 
# Here the difference schemes are constructed and output to 'file.•’' 
t 
makeproc ( 'a 8,,av) : 
makeproc ( 'bl , bvl ) ; 
makeproc ( 'b2 ' , bv2 ) : 
makeproc ( 'px',pvx) : 
makeproc ( 'py ',pvy) ; 



t 
t Here the Jacobian elements are constructed and output to 'file.fl 
D 
ord:-[[0,0], 

[l,OI, [-l,OI, [O,lI, lo,-11, 
[ltll, [-I, 11, [-1,-ll,[l,-11, 
[2,01, [-2,011 [0,21. [O,-21, 

for i to nops(ord) do 
sd(op(ord[il)) : 

od: 
writeto (terminal) : 

Here we present the listing of *file.•’' when the above code is executed. 

These are the required differences for the Wide scheme 

a-a+2244DO* psi(i, j) 
a-a-948DO* ( psi (i-1, j) +psi (i, j+l) +psi (i, j-1) +psi (i+l, j) 
a-a+256DO* ( psi (i-1, j+l) +psi (i-1, j-1) +psi (i+l, j+l) +psi (i+l, j-1) ) 

a-a+174DO* ( psi(i-2, j) +psi(i, j+2)+psi(il j-2)+psi(i+2, j) ) 
a-a-16DO* ( psi (i-2, j+l)+psi(i-2, j-l)+psi (i-1, j+2)+psi(i-1, j-2) 

+psi (i+l, j+2) +psi (i+l, j-2) +psi (i+2, j+l) +psi (i+2, j-1) ) 

a-a-12DO* ( psi (i-3, j)+psi(i, j+3) +psi(i, j-3)+pSi(i+3, j) 
a-a+ psi (i-2, j+2)+psi(i-2&2) +psi (i+2,j+2)+psi(i+2, j-2) 
a-a/72DO 

bl-b1+474DO* ( S - 1  p I j) ) 
bl-bl-174DO* ( psi(i-2, j) -psi (i+2, j) ) 
bl-bl-128DO* ( psi (i-1, j+l) +psi (i-1,j-1) -psi (i+l, j+l) - p i  + - 1  ) 

bl-bl+l8DO* ( psi (i-3, j) -psi (i+3, j) ) 
bl-bl+l6DO* ( psi (i-2, j+l) +psi (i-2, j-1) -psi (i+2, j+l) - p i  2 - 1  ) 

bl-bl+8DO* ( psi (i-1, j+2) +psi (i-1, j-2) -psi(i+l, j+2)-p I -2) ) 

bl-bl-lDO* ( psi (i-2, j+2) +psi (i-2, j-2) -psi (i+2, j+2) -psi (i+2, j-2) 
bl-b1/144DO 



C 
c These are the Jacobian elements for the Wide scheme 
C 

jel(0,O) - 187D0/6DO 
jel(1,O) - (-316DO+Re* (16DOfb2+79DO*py) ) / 2 4 ~ O  
jel(-l,O) - (-316DO+Re* (-16DO*b2-79DO*py) ) / 2 4 ~ O  
jel(0,l) - (-316DO+Re*(-79DO*px-l6DO%l))/24DO 
jel(0,-1) - (-316DO+Re*(79DO*px+16DO*b1))/24DO 
jel(1,l) - (32DO+Re* (8DO*px-8~O*py) ) /9DO 
jel(-l,l) - (32DO+Re* (8DO*px+8DO*py) ) /9DO 
jel(-1,-1) - (32DO+Re* (-8DO*px+8DO*py) ) /9DO 
jel(1, -1) - (32DO+Re* (-8DO'px-8DO*py) ) /9DO 
jel(2,O) - (58DO+Re*(-2DO*b2-29DO*py))/24DO 
jel(-2,O) - (58DO+Re* (2DO*b2+29DO*py) ) /24DO 
je1(0,2) ( ~ ~ D O + R ~ * ( ~ ~ D O * D X + ~ D O * ~ ~ ) ) / ~ ~ D O  
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