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Abstract 

Many truck scheduling problems are computationally intensive. Furthermore, the be- 

haviour of sites to be serviced by the truck is often unpredictable, making it impossible to 

define an "exact" solution to the problem. 

This thesis examines one such practical scheduling problem. The problem is shown to 

be difficult to solve. Possible approaches to solving the problem are discussed, followed 

by the description of a randomized heuristic algorithm which was developed to efficiently 

solve the problem. The implementation of the algorithm in a simulation program is 

described, followed by the simulation results which support the claims made about the 

algorithm. 

A powerful "Algorithm Performance Visualization Tool" is then described. This tool 

was constructed to allow the algorithm development to proceed more quickly. With minor 

modifications it could be used to aid in the development of algorithms for other vehicle 

scheduling problems. 
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Chapter 1 

Introduction 

1.1 Schedule optimization problems 

A schedule is a plan which indicates a sequence of events, usually in such a manner as to 

satisfy a set of constraints (call such a schedule a feasible schedule). Often the constraints 

are such that very few schedules satisfy them, and often finding these schedules is straight- 

forward. For example, any sequence of events which depend on each other in a linear way 

(i.e. A must be done before B, B must be done before C, etcetera) have only one feasible 

schedule - do A, then B, then C, and so on. 

If the constraints are less stringent then many feasible schedules may exist, and thus 

the issue of the relative merit of a feasible schedule must be addressed. Suppose, for 

example, that you need to go to the bank (B), the grocery store (G) and the library (L), 

starting and ending at home (see Figure 1.1 for a diagram showing these locations), with 

the only constraint being that you need money from the bank before going to the grocery 

store. Your objective is to minimize travel time. 

There are 3! possible orderings of B, G, L, but half of these put G before B, so there 

are only three feasible schedules: BGL, BLG, LBG. Clearly LBG will take longer than the 

other two feasible schedules, and thus it is not an optimal schedule. Both BGL and BLG are 

optimal schedules, however, since there is no feasible schedule with a shorter travel time. 



CHAPTER 1. INTRODUCTION 

Gamma Street 

0 Delta Street 

Epsilon Street 

Figure 1.1: The neighbourhood 

How do we determine an optimal feasible schedule for a given problem? We could 

use the brute force method of determining the feasibility and "goodness" of every possible 

schedule, then pick the best feasible schedule. This exhaustive search method only works 

for small problems, however. As the problem gets larger, it becomes necessary to "prune 

away" obviously bad schedules quickly. 

In the example above, half of the possibilities could be ruled out immediately since 

they were not feasible. Such "intelligent" observations may make it possible to determine 

an optimal schedule in a reasonable time for some problems (i.e. ad hoc is often a good 

technique!). 

For many problems, however, finding an optimal solution is not practical, so instead 

we have to try to find a good solution - one which is likely to be optimal or close to 

optimal. Algorithms for finding such solutions are called heuristic algorithms. 

1.2 A sample problem 

Suppose you are the coordinator of the 42nd Annual Convention of The Society for Having Fun 

Watching Movies which is being held at your university. You have access to a large number 
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of identical rooms which are suitable for movie viewing, but the university administration 

would like you to minimize how many rooms you reserve so that they can also accomrno- 

date classes and the competing Convention of The Association for Serious Film Studies. Your 

convention lasts one day (8 hours, say) and hopes to show n movies, of varying lengths. 

How do you schedule the movies so as to minimize the number of rooms required? 

1.3 Complexity of algorithms which compute exact solutions 

The sample problem seems simple enough (i.e. it does not seem to be a particularly difficult 

schedule optimization problem), but it belongs to a class of problems called NP-complete 

problems. It is not currently known if there are any polynomial time algorithms for NP- 

complete problems. Many people believe that no such algorithms exist, in which case the 

movie allocation problem would be called an intractable problem. 

A polynomial time algorithm is one which takes a length of time which is a polynomial 

function of the input length of the problem. Polynomial time algorithms are generally re- 

garded as "reasonable" algorithms (and thus the problems they solve are termed tractable), 

whereas algorithms which do not run in polynomial time (exponential time algorithms) are 

quite "unreasonable". Thinking of the difference between the value of n2 and 2n as n grows 

larger should give a hint as to the validity of this distinction between "reasonable" and 

"unreasonable" algorithms. See Chapter 1 of [6] for a full discussion of the above concepts. 

Readers familiar with issues of computational complexity will undoubtedly recognize 

the sample problem as the optimization version of the classic bin packing problem, which 

has been proven to be NP-complete. Section 2.3 will show that the sample problem above 

is no more difficult to solve than the problem which is central to this thesis (described in 

Chapter 2) by reducing the former problem to the latter. 
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1.4 Heuristics 

Although the sample problem is NP-complete (and thus no polynomial time algorithm is 

currently known for it), a schedule for the movies is still required. The natural alternative 

to constructing an algorithm to solve the problem exactly is to try an approach which seems 

intuitive. The result may not be the optimal solution, but it might be good enough. 

In fact, there is an intuitive algorithm for the bin packing problem which comes re- 

markably close to generating an optimal solution. The algorithm is as follows: sort the 

movies so that they are in decreasing order, then assign e a ~ h  movie (in order) to the first 

room which has enough time left unassigned to show that movie. It has been proven (see 

[6], page 126) that the resulting solution is guaranteed never to be more than about 22% 

worse than optimal ( e g .  if an optimal solution uses 50 rooms, then the solution generated 

by this approximation algorithm will use somewhere between 50 and 61 rooms). 

1.5 Randomization 

The problem to be solved in this thesis is more complicated than the bin packing problem. 

Thus, we must use a heuristic, perhaps one similar to that for the bin packing problem. One 

problem with a deterministic algorithm is that of pathological1 cases which can make the 

algorithm perform poorly. It may be possible to alleviate this by the use of a randomized 

algorithm. 

An example of this behaviour can be seen by examining the standard deterministic 

Quicksort algorithm (see [3], page 161), which has an average case time complexity of 

O(n log n) but a worst case time complexity of 0(n2) (where n is the number of elements 

to sort). Inputs which result in the worst case time performance tend to be those with 

structure; in this case, partially sorted lists. Unfortunately, these tend to be the inputs 

which arise in practice. 

'The word pathological, when used in a mathematical context, has a meaning similar to that of the word 
"deviant". 
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These pathological inputs make up only an exponentially small portion2 of all possible 

inputs, however. By mapping an input to an equivalent randomly chosen input (i.e. by 

permuting the elements in the original input) before running the Quicksort algorithm, the 

expected running time is reduced to O(n log n) time.3 This algorithm is called randomized 

Quicksort. 

In effect, the algorithm is protecting itself against pathological inputs which may occur. 

This is important for our problem because the input seems likely to be structured (cities 

are not randomly organized), and thus may cause worst case performance. &-I example 

which shows how our randomized algorithm handles one such pathological input is given 

in Section 3.2.3. 

Few randomized algorithms have been formally analyzed because of the difficulty of 

such analysis. Randomized Quicksort has been analyzed, however; see Chapter 1 of 1151. 

1.6 Related work 

1.6.1 The Vehicle Routing Problem 

Both the movie scheduling problem and the problem which is central to this thesis are 

instances of a general problem called the vehicle routing problem (VRP). The general vehicle 

routing problem involves a set of vehicles, a set of customers, a depot, and a set of delivery 

and/or pickup requirements. An optimal solution to the vehicle routing problem is a 

set of routes which is feasible (satisfies all constraints) and which minimizes an objective 

function, such as travel time or number of vehicles required. 

The movie scheduling problem, although not phrased in terms of vehicles, can be seen 

to be a vehicle routing problem if a correspondence is made between vehicles and rooms, 

with rooms "picking up" movies until they are "full" (all the time that room is available 

has been allocated). The objective is to minimize the number of vehicles (rooms) required. 

'1n other words, if there are n possible inputs, only O(1og n) of these would be pathological. 
3~he re  is a deterministic sorting algorithm whose worst case time complexity is B(n logn), but in practice 

the algorithm is slow, since the "hidden constant" is large. 
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Considerable research has been done on algorithms to solve the vehicle routing prob- 

lem, since the problem is commonplace, and improvements to ad hoc solutions can provide 

significant environmental and economic  advantage^.^ 

A more formal description of the vehicle routing problem can be found in [2]. Examples 

of many different types of vehicle routing problems are given in [5], as part of an explanation 

of the authors' proposal of a classification scheme for vehicle routing problems. 

A very detailed survey of the vehicle routing problem and other related problems, such 

as crew scheduling, is given in [I]. The authors discuss theoretical problems and results, as 

well as current implementations of systems designed to solve practical problems. A very 

large bibliography (699 references) is given. 

1.6.2 Methods for solving the VRP 

The vehicle routing problem is a generalization of the travelling salesperson problem (TSP). 

This problem is to find the minimum cost tour of a set of points. See [lo] for a detailed 

survey of work on the TSP. 

The TSP is known to be a very difficult problem to solve (it is an NP-complete problem), 

and thus the VRP is also a very difficult problem to solve. In practice, "VRPs are in general 

much more difficult to solve than TSPs of the same size" ([9]). 

One approach to solving the VRP is to use an algorithm which is guaranteed to provide 

an optimal solution. Such an algorithm is called an exact algorithm. 

The other approach is to use an algorithm which provides approximate solutions; ones 

which are not guaranteed to be optimal. At present this is the only feasible option for 

problems of considerable size, such as the one which will be presented in this thesis. 

A recent survey of both exact and approximate algorithms for the VRP can be found in 

181. 

4 ~ h e s e  advantages are due to reducing energy use (and hence pollution produced) by using vehicles less 
frequently, and/or having to own and maintain fewer vehicles. 
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Exact algorithms 

A survey of exact algorithms for the VRP is given in [9]. The authors categorize exact 

algorithms for the vehicle routing problem as being one of: 

direct tree search methods 

dynamic programming 

integer linear programming 

and conclude that "exact methods can only handle problems of relatively modest dimen- 

sions". 

The current (as of 1992) meaning of "relatively modest dimensions" can be seen in [4], 

in which the authors state that their algorithm (for a related problem) "was capable of 

optimally solving 100 customer problems. This problem size is six times larger than any 

reported to date by other published research." 

Approximate algorithms 

Our algorithm uses the idea of sequentially building a route. An early example of this type 

of algorithm is described in [Ill. A more recent example of a route building algorithm 

(extended to run in parallel) can be found in [14]. The problem to be solved by that 

algorithm (the VRP with time windows) is not quite the same problem that we are solving, 

however. See [19] for a survey of algorithms for the VRP with time windows. 

A description of the implementation of an algorithm for a problem which is similar to 

ours (refuse collection) can be found in 1131. 

No mention of randomized algorithms for the vehicle routing problem was found in 

the literature, and indeed it seems that the use of randomization has not been pursued thus 

far ([121, [ l a .  
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1.7 Organization of this thesis 

A description of the particular scheduling problem considered in this thesis is given in 

Chapter 2. Possible approaches to solving the problem are explored in Chapter 3. An 

algorithm which efficiently solves the problem is given in Chapter 4. The implementation 

of this algorithm in a simulation program is given in Chapter 5, with results of running the 

simulation program given in Chapter 6. 

Chapter 7 describes an "Algorithm Performance Visualization Tool" which allowed for 

rapid development of the algorithm presented. Conclusions are found in Chapter 8. 



Chapter 2 

The Problem 

2.1 Description of the problem 

The schedule optimization problem to be solved can be stated in terms of an unending 

producer-consumer process. There is one consumer (we will call the consumer's location 

the depot) and many producers distributed over southwestern British Columbia. The exact 

number of producers n varies from day to day. 

Each producer has a standard capacity bin to store the commodity it produces. The 

producer at location 1 fills its bin on average every p ( l )  days; the rate at which commodity is 

produced varies from day to day and is assumed to be approximately normally distributed.' 

Producers notify (complain to) the consumer when their bin has become full. Commodity 

produced after the bin is full (after an overflow occurs) is discarded. 

The consumer removes the commodity by truck (we will call this a pickup) and processes 

it. At the time of pickup, all commodity that has accumulated in a bin must be removed.' 

The time taken to empty a bin is independent of its fullness. The truck has a fixed capacity 

C and the driver has a fixed maximum working time T. It is assumed that only one truck 

'By "approximately" we mean that the distribution is assumed to be symmetric about a mean value in a 
manner similar to that of a normal distribution except that there are no "tails" - there cannot be a negative 
amount produced, for example. 

 his is an important consideration; most vehicle routing problems do not have this constraint. 
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is available. 

A schedule, or route, for a given day is an ordered list of locations < 11, 1 2 , .  . . , lm > 
(where m 5 n) whose bins are to be emptied. A truck following such a schedule begins 

and ends at the depot (by convention we will call this lo). A schedule is feasible if it 

is possible to fit all the commodity from the specified locations into the truck (the space 

constraint) and it is possible for the driver to take the truck from the depot to the locations 

and perform the pickups in the time available (the time constraint). 

The space constraint is satisfied if the sum of the amounts in the bins at the locations is 

less than the capacity (C) of the truck. Commodity amounts will be expressed in units of 

"bins", since this is a more directly useful measure than mass or volume. Thus, C is also 

an upper bound on the number of bins the truck can empty in one day. 

The time constraint is satisfied if the time after the last pickup (represented by the 

tap function) plus the travel time to the depot (given by the tt function) is less than the 

maximum working time (T). Of course, the time after the last pickup is simply the time 

before the last pickup (represented by the t b p  function) plus the time required to perform 

the pickup (represented by the t p  function). This time is equal to the time after the second 

last pickup, plus the travel time from that location to the location of the last pickup. This 

recursive definition continues until the starting point, which occurs at time 0 at the depot, 

is reached. The reason for this being stated in what seems to be a complicated manner is 

that the time taken to perform a pickup or to travel between two places depends in general 

on the time of day. This is a complication which most city dwellers are familiar with! 

More formally, a schedule is feasible if it satisfies the space constraint 

where 
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a ( t ,  1 )  is the amount of commodity in the bin at location 1 

tp( t ,  1 )  is the time it takes to pick up the contents of location 1's bin at time t 

t t(t ,  a ,  b) is the travel time from location a  to location b  starting at time t 

tt(O,lo, 11) for i = 1 
t b p ( i )  = is the time before pickup i. 

a - 1) + ( a  - 1 )  i ) for 1 < i 5 rn 

t a p ( i )  = t b p ( i )  + t p ( t b p ( i ) ,  l i )  is the time after pickup i. 

The consumer can only estimate the amount in a bin unless it has been told the bin 

is full. In other words, it is necessary to be at location 1 at time t to know a ( t ,  1 )  unless 

a ( t ,  I )  = 1. Thus, an estimate g ( t ,  1 )  of a ( t ,  1 )  must be made given the period p(1) and the 

assumed commodity production rate distribution. 

In constructing daily schedules, or routes, the main objective is to minimize the number 

of overflows which occur. Other objectives include minimizing the overall time and the 

number of days the truck is in use, and minimizing the distance travelled. 

Minimizing a quantity over one day and minimizing that quantity over all future days 

is not the same thing! Changng a route one day can have far reaching effects. For example, 

removing one producer from a route will improve the route with respect to the "minimize 

time the truck is in use" objective on that day, but it may in fact cause an overall increase in 

the time the truck is in use if that same producer needs to be visited on a later day when it 

is less convenient to do so. 

2.2 Simplifying assumptions 

In solving the problem described above, we made certain simplifying assumptions: 

The time taken to pick up a bin does not depend on the location. This assumption is 

only necessary because the data regarding how pickup time varies by location was 

not available; the change required to handle this properly is straightforward. 

The time taken to pick up a bin does not depend on the time of day. In fact, it does 

depend quite significantly on the time of day but in a manner which is roughly 
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uniform across all locations. Thus, there will be a bad time to visit any location which 

will happen every day - there is not much that can be done about this except to 

try to account for it by using an appropriately conservative value for the mean time 

taken to pick up a bin. 

Travel time does not depend on the roads used, except for the fact that barriers 

(eg. mountains, the ocean, rivers, lakes, bogs) may only be crossed (if at all) in 

designated places (e.g. bridges or tunnels). This could be remedied by the use of a 

more accurate model of the road system which would take into account the actual 

geographical structure and the actual speeds expected on each road. Such a model is 

very expensive to produce, but could easily be incorporated. 

0 Travel time does not depend on the time of day. Modelling travel times that vary 

depending on the time of day is extremely difficult and not likely to be accurate in 

any event. 

0 Travel time is symmetric (i.e. the travel time from location A to location B is always 

the same as the travel time from location B to location A). This follows from the 

previous two assumptions. 

One day's commodity accumulation is generated all at once before the truck starts 

its route. This introduces a small error in the amount of commodity at a location 1: 

in the worst case. This error is overwhelmed by the next assumption: m 
The commodity production rate distribution at a location remains constant. There 

are, in fact, seasonal variations, but for the purpose of evaluating possible algorithms 

this is not a complication that needs to be considered. 

0 The variance of the commodity production rate at each location is known. It is 

assumed to be non-zero, and is selected to be large enough to make it impossible for 

an algorithm to predict commodity levels extremely accurately, but small enough to 
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make scheduling fea~ible.~ 

The number of producers, n, is fixed throughout the simulation run. Once again, it 

is much easier to see what is going on if this assumption is made. 

As a result of the above, a and tt functions "lose" their time argument4 and tp  becomes 

a constant. The constraints are now much simpler; the space constraint is 

and the time constraint is 
m 

where lm+l = lo. Recall that lo refers to the depot. 

2.3 Complexity of related problems 

(Note: this section may be skipped without affecting understanding of the rest of the 

thesis.) 

The problem, with simplifying assumptions given in Section 2.2, is an "on-line" prob- 

lem; it continues indefinitely. As such, it cannot be stated in terms of being a problem in 

NP, although two simpler variants of the problem can be. 

The first variant is as follows: Given a list of locations to pick up on a given day, what 

is the minimum time required to visit the locations? 

This variant is simply the travelling salesperson problem, which has been proven to be 

NP-complete (see [6] or [lo]). 
The second variant (call it "CLEANUP") is as follows: Given an initial amount of 

commodity a1 at each location 1 and a commodity production rate of zero at each location, 

3 ~ h e  ability to predict the amount of commodity at a location decreases as the variance of the production 
rate increases. With a large enough variance all algorithms are effectively working "in the dark". 

4Actually, a is independent of the time of day, but it is still a function of the day. For correctness, assume 
that a refers to a particular function only on a certain day; the next day a refers to a different function. 
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what is the minimum number of days required to pick up the commodity at each location 

(with the constraints as given above)? 

Theorem 1 CLEANUP is NP-complete. 

Proof: Consider the decision problem version of CLEANUP, namely instead of asking for the 

minimum number of days simply ask whether all locations can be picked up in no more than 

k days. Stated formally, the problem is as follows: Given a set of amounts {al ,  a2, . . . , a,), 

a function tt : (0 , .  . . , n )  x (0, . . . , n )  -+ R+ satisfying the triangle inequalif$ (tt is meant 

to be the travel time between any two locations, with location 0 being the depot) and 

constants tp ,  C,  T E W, is there a partition of { I ,  . . . , n )  into disjoint subsets {S1,  S2, . . . , Sk )  

and a set of k permutations I ;  : { I , .  . . , IS;[) -+ S; such that 

for each day i in the range 1  to k. 

This problem is clearly in NP, since a nondeterministic algorithm can guess a Ic-day 

schedule and check in polynomial time whether 

the schedule is feasible; i.e. for each day verify that 

- the sum of the amounts picked up is not more than C 

- the sum of the travel and pickup times is not more than T 

the schedule will involve visiting all n  locations 

We will transform the (decision version of the) bin packing problem to the decision 

version of CLEANUP. The bin packing problem, formally stated, is as follows: Given a 

'~arnely, t t ( a ,  b) + tt (b,  c )  2 t t ( a ,  c )  for any three locations a ,  b, and C .  
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finite set U = {u l ,  u2, . . . , u,) of items and a size s (u)  E Z+ for each item u E U,  a positive 

integer bin capacity B, and a positive integer K, is there a partition of U into disjoint 

subsets Ul, U2,.  . . , Uk such that the sum of the sizes of the items in each Ui is B or less? 

Each item ul in U will correspond to a location, with ar = s(ur) .  The bin capacity B will 

correspond to the truck capacity C. The partition of U into disjoint subsets will correspond 

to the assignment of each location to the unique day that the location is picked up. The 

travel and pickup time will be assumed to be zero. This transformation is basically a 

change of notation, and thus can clearly be done in polynomial time. 

It then follows that there is a k-day schedule for {al ,  a2, . . . , a,) if and only if there is 

a satisfying partition of U .  Showing this formally is an exercise in symbol manipulation 

and would not make anything clearer; the correspondence between bin packing and this 

problem should be intuitively clear. 

Since the decision problem version of CLEANUP is NP-complete, it follows that 

CLEANUP itself is NP-complete - see [6],  page 19. 

2.4 The problem is difficult to solve exactly 

From the previous section it seems clear that the problem at hand is very difficult to solve. 

The "CLEANUP" problem is very similar but is simplified in that no commodity is being 

added to the system. Adding this complexity does not result in an easier problem. 

The fact that the amount of commodity being produced is not known precisely does 

not seem to be a major factor in making the problem hard. It seems clear from the above 

arguments that even if the commodity production rate were a constant, thus making it 

possible for an algorithm to have an exact knowledge of the future, the problem would 

still be difficult to solve. 
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Possible approaches to solving the 

problem 

3.1 Fixed schedules 

One possible solution to the truck scheduling problem described in Chapter 2 is to deter- 

mine a set of schedules for the next k days such that all locations are visited at least once 

and each location 1 is visited every v(1) days, where v(1) < p(1). Then on day i simply 

perform the schedule for day i mod k. 

Schedules resulting from this approach are often of a form that "sweeps" around the 

service area. One way to construct such a schedule is to "slice" the "pie" defined by the 

depot at the centre and the outermost producer on the outside in such a manner as to give 

equal length routes in each slice, while somehow taking the commodity production rates 

at the locations within that slice into account. See [17] for the description of an algorithm 

of this type. 

There are three problems with this approach. First of all, it may not be possible to 

satisfy the restriction v(1) < p(1) since there are just too many locations to satisfy with 

geographically pleasing routes. In fact, if it is possible to satisfy this requirement then it is 

likely that the variance in production rates is small (making it a simpler problem) or there 
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is more truck capacity than required. 

The second problem is that the production of commodity over the next k days may turn 

out to be very different than predicted, due to the rate at which new producers come into 

existence and old producers disappear.' 

The third problem is that total production rates within geographic areas change over 

time, necessitating constant reshuffling of the routes. 

3.2 Greedy heuristics 

Instead of determining a sequence of schedules for k days, we could simply determine a 

schedule each day, constructed by starting with an empty schedule and adding locations 

which are chosen in some manner. 

One manner in which to choose locations is to use a heuristic which estimates the benefit 

of visiting a particular location at a particular time. This heuristic is given as a weighting 

function which determines the weighting for each 10cation.~ It is a simple manner to then 

choose the location which seems best at the time. This is termed a greedy approach, since 

we are always taking the best thing we can get, perhaps at the expense of overall benefit. 

The issue, then, is determining an appropriate weighting function. 

3.2.1 Simple greedy heuristic 

Two simple greedy heuristic algorithms are obvious: one is greedy with respect to space 

(i.e. the weighting assigned to a location is proportional to the amount of commodity at 

that location), the other is greedy with respect to time (i.e. the weighting assigned to a 

location is inversely proportional to the travel time required to reach that location). 

One way of implementing a greedy algorithm with respect to space would be to sort the 

locations in descending order of g(1) (or, alternatively, in ascending order of the estimated 

'This is not allowed under the simplifying assumptions presented, but it does occur in the actual problem. 
The algorithm presented later handles this without difficulty. 

'The weighting is a non-negative real number which indicates the benefit of adding that location to the 
schedule. 
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time before an overflow is expected), then visit locations as they appear on the list until 

running out of space or time. The problem, of course, is that the locations which make 

it to the head of the list may be geographically scattered, resulting in the truck spending 

an inordinate amount of time travelling. Even if the order of the locations which can be 

visited is optimized (or at least made close to optimal) as locations are added to the list, the 

truck may still travel excessively due to the distance between the furthest locations. The 

result is that the truck will usually return with a load much smaller than is possible. 

A possible greedy algorithm with respect to time would simply choose the closest 

location I with g ( I )  > x for some threshold value x, then add locations which minimize 

the added time required to visit them. The problem with this approach is that time will be 

wasted visiting locations which do not have much commodity. The end result is similar to 

that for the greedy algorithm with respect to space. 

The actual performance of these greedy algorithms is shown in Section 6.2.1. 

3.2.2 Sophisticated greedy heuristic 

It is clear that being greedy with respect to either space or time alone will not work because 

both considerations are important. 

If we could find a function which weighs these two factors appropriately we could 

hopefully avoid the problems inherent in ignoring space or ignoring time. 

But how do we balance the relative importance of space and time? Intuitively, it seems 

that the desirability of visiting location 1 is directly proportional to g(1) and inversely 

proportional to how long it takes to get to location I .  But how long it takes to get to location 

I depends on the current candidate locations to visit. 

The idea, then, is to somehow select a location as a "seed", then add locations until 

a maximal route is achieved; i.e. until it is no longer possible to add a location without 

making the resulting route infeasible. The weighting function will have to be recomputed 

at each step in order to take into consideration the locations which have been chosen 

previously. 
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There is now an issue of how the depot is treated: is it always implicitly on the list, 

or is it not on the list? If the former, then the weighting function may be biased towards 

choosing locations close to the depot. 

The issue of whether the depot is "on the route" also determines the method by which 

the "seed" location is selected. If the depot is implicitly on the list, then the same weighting 

function can be used to select the seed as is used in later steps of the algorithm. This will 

provide a severe bias towards the depot, however. The alternative is to use a different 

weighting function for selecting the seed, namely one which is independent of the travel 

time from the depot. This alternative was chosen. 

3.2.3 Randomized sophisticated greedy heuristic 

Instead of always picking the location with the highest weighting, we could randomly 

select a location based on the computed weightings. In other words, if the weighting for 

location 1 is weight(l), choose it with probability 

But what possible advantage is there in allowing the algorithm to choose a location 

which does not have the highest weighting? In general, the advantage is that the loca- 

tion with the highest weighting may not be the most desirable, no matter how good the 

weighting function is, due to the existence of a group of locations which together are more 

desirable. The following example will illustrate this concept. 

Suppose there are 7 locations, labelled A through G, distributed as shown in Figure 3.1. 

For ease of exposition, suppose that travel can only be accomplished along the lines indi- 

cated, and that travel times are as shown. The fullness of the bin at each location is given 

in Figure 3.2 and is indicated in Figure 3.1 by a rectangular box beside each location label. 

Suppose that the truck has a capacity of 2 bins, it takes 6 minutes (0.1 hours) to pick 
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I 0.1 hours 

Figure 3.1: Sample world 

Location identifier 
A 
B 
C 
D 
E 
F 
G 

Amount of commodity 
1.0 
0.3 
0.3 
0.3 
0.7 
0.6 
0.6 

Figure 3.2: Bin fullness 
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Location identifier 
A 
B 
C 
D 
E 
F 
G 

Amount of commodity Weighting 
0.0 0 (already visited) 
0.3 0.310.6 = 0.5 
0.3 0.310.5 = 0.6 
0.3 0.310.6 = 0.5 
0.7 0.711.0 = 0.7 
0.6 0 (cannot reach in time remaining) 
0.6 0 (cannot reach in time remaining) 

Figure 3.3: Weightings after truck picks up bin at location A 

up a bin, and the driver only works 4 hours per day.3 Suppose further that the weighting 

function to be used is a(l)/t(l), where a(l) is the the amount of commodity in location 1's 

bin, and t(1) is the time to location 1 from the current truck location. 

Consider what will happen if the deterministic algorithm is used. The truck will travel 

to A first, since it is full. Now the weightings are as given in Figure 3.3, and the truck is 

committed to working 2.1 hours (1 hour to A, 1 hour to return to the depot, plus 0.1 hours 

to pick up the bin at A). At this point it is not feasible to reach location F or location G since 

that would require at least a 4 hour round trip plus some time to pick up bins. 

The location with the highest weighting is location E, and thus the truck now goes to 

location E. At this point, the route involves picking up 1.7 bins with 3.2 hours of work. 

Since the closest location to A or E is at least half an hour away (necessitating a 1 hour 

round trip), it is now impossible to add any other locations. 

The next day the truck will go to location G. Once there, it can only reach location F 

in the time remaining, and hence will service location F. The result is 2.4 hours of work to 

pick up 1.2 bins. 

On the third day the truck will service locations B, C, and D, taking 3.7 hours to pick 

up 0.9 bins. 

The randomized algorithm is likely to do a better job on this example. It starts out 

servicing location A since it has overflowed. Now it chooses a location according to the 

weightings given in Figure 3.3. Thus, for example, location E is chosen with probability 

3~hese  constants are unrealistically small, but this is necessary in order to avoid an unwieldy example. 
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0.712.3 x 0.3, since the sum of the weightings is 2.3. 

The decision to service E next was the downfall of the deterministic algorithm, since 

it then committed itself to spending two more days to service the remaining locations. It 

chose to go to a location with a large amount of commodity, but in so doing it left behind 

a group of locations (i.e. locations B, C, and D) with an even larger amount of commodity. 

The randomized algorithm will choose one of B, C, or D with probability 0.7 (approx- 

imately). If it does choose one of these locations, then it will be in a position where the 

only remaining locations it can reach are in the group B, C, D. In this case it will end up 

servicing locations A, B, C, and D, taking 3.8 hours to pick up 1.9 bins of commodity. 

The next day the truck will be able to service the remaining locations (E, F, and G), 

taking 3.5 hours to pick up 1.9 bins of commodity. 

Thus the randomized version manages to service all locations in 2 days with probability 

70% (it will take 3 days with probability 30%), whereas the deterministic version always 

requires 3 days. We have therefore shown that there are cases in which the randomized 

algorithm will do no worse than the deterministic algorithm, but in fact can do better. 

Performance of the actual randomized and deterministic algorithms is discussed in 

Section 6.4.4. 
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The Algorithm 

4.1 Overview 

In order to solve the problem outlined in Chapter 2 we must construct a route selection algo- 

rithm which will provide a route to perform on a given day when all relevant information 

which is known by the consumer at that time is provided as input. This "relevant information" 

is given in Figure 4.1. 

Some of the information used as input to the algorithm could be inaccurate. Thus, we 

cannot expect the algorithm to produce a route which, in practice, will be seen to have 

been the best possible choice. The route may not even turn out to be feasible; for example, 

Description 
number of producers 
maximum working time 
travel time between any two locations a and b 
time to pick up a bin at a location 
truck capacity 
estimated amount in bin at location 1 
period with which bin at location 1 fills up 
fullness threshold below which truck should not be sent out 
set of locations whose bins are full 

Figure 4.1: Input to route selection algorithm 
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if more commodity existed at the locations chosen than was estimated, it is possible that 

the total amount of commodity to be picked up will exceed the truck capacity. 

More importantly, however, the information used only provides an estimate of the true 

system state. The system state is a snapshot of the state of all entities in the "system", and 

in this case consists solely of the fullness of the bin at each producer's location. 

What is needed, therefore, is a simulation algorithm which will maintain the true sys- 

tem state and the information required by the route selection algorithm. The simulation 

algorithm uses the route selection algorithm to select a route, then "performs" the route 

by modifying the state of the locations on the route appropriately, while enforcing the con- 

straints of the problem. The simulation algorithm then adds commodity to each producer's 

bin according to that producer's production rate. This process repeats indefinitely. 

4.2 Description of route selection algorithm 

A high level description of the selection algorithm which was implemented is shown 

in Figure 4.2. The algorithm requires knowledge of the quantities given in Figure 4.1. 

The output of the algorithm is an ordered list of locations R =< 11, 12,. . . , E m  >. The 

order given in this list is not guaranteed to provide the minimum travel time since this 

would necessitate solving the TSP. In reality, the actual order with which the locations are 

processed is decided upon by the driver. 

The algorithm begins by selecting a "seed" location if there are no overflows, or else 

creating a route out of the locations which have overflows. The notation approx-tsp(F) is 

meant to refer to a list which is the result of applying a TSP approximation algorithm to a 

list containing the elements of F. 

This initial route is extended by adding locations which are selected by the function sl. 

These locations are (conceptually) added at an appropriate place1 in the list by the add-loc 

function. 

'Once again, it is not possible to say "in the optimal order" since that would involve solving the TSP. 
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i f F = 0  
R t  

else 
R t  

then 
< sl(<>) > 

I f  there are no overflows, then 
pick a seed location. 
I f  there are overflows, then 
start with them. 

while sufficient space and time remain do While there are still possibilities, 
R t addJoc(s l (R) ,  R ) )  add a location 

if F = 0 and amount to pick up < f x C then I f  the route isn't worthwhile doing, then 
R t<> don't send the truck ou t. 

Figure 4.2: The route selection algorithm 

The function sl works by computing a weighting for all locations, then choosing the 

location with the largest weighting (the deterministic version) or selecting a location ran- 

domly based on the weightings (the randomized version). The weighting given to a location 

1 is likely to be2 a function of many factors, including the additional travel time from R to 

1. 

The definition of the travel time from a route (list of locations) to another location is 

discussed in Section 5.1.2. Intuitively, what is meant is the difference between the time 

required to process route R and the time required to process the shortest route containing 

R and the new location. 

Locations already in R, or which cannot be reached in the time remaining, or which 

have more commodity than the space remaining in the truck, are assigned a zero weighting 

and thus cannot be chosen. This is in fact how the "sufficient space and time remaining" 

condition of the loop is implemented; it is true if and only if there is at least one location 

with a positive weighting. 

Once the loop is completed, the algorithm decides whether the route it has selected 

is worthwhile. With an appropriate threshold value f, truck usage is minimized while 

providing adequate service. If the threshold is zero, then the truck will be sent out every 

'Various weighting functions were tried. These will be described in more detail later in the thesis. 
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day. This is undesirable if the total system commodity production rate is significantly 

lower than the truck's capacity, since in that case no producers will ever come close to 

filling their bins. It would be better to visit locations less often, and thus a higher threshold 

should be chosen. If too high a threshold is chosen, however, the truck may be prevented 

from servicing locations until overflows occur. The threshold value chosen is determined 

experimentally. 

4.3 Algorithm features 

Here are some important things to note about the route selection algorithm: 

Overflows are always handled immediately after they occur.3 This corresponds with 

the desired real world behaviour. 

The seed location 1 is chosen randomly on the basis of g(1) and p(1) only. (The quantity 

g(1) is calculated from the current day, the last day the bin at location 1 was picked 

up, and p( l ) . )  This means that the algorithm is not inherently biased towards any 

geographic area; it decides to try an area based on the amount of commodity in bins 

at locations in that area. 

The calculation of the weightings can be done in an intelligent manner in order to 

avoid recalculations. See Chapter 5. 

The algorithm automatically adjusts to different total commodity production rates. 

3~ctually, to be more precise, overflows are handled as quickly as possible, since it is possible for more 
overflows to occur all at once than can be handled in one day. This usually only occurs when the production 
rate is higher than what the algorithm can handle. See Section 6.1.3 for more details. 
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4.4 Algorithm extensions 

4.4.1 Avoiding overflows 

With the algorithm presented in Figure 4.2, it is possible that an overflow will occur on a 

later day as a result of not sending the truck out. Clearly this is undesirable. One method 

to alleviate this is to make the decision of whether to go out dependent on a projection 

of what will happen in the future. If the algorithm could "look ahead" and see that not 

sending the truck out today would cause an overflow before the next day the truck is not 

to be sent out, then clearly it should send the truck out today. 

Such an extension could be incorporated into the existing simulation algorithm. The 

new simulation algorithm would have a loop with the following body: 

a Run the simulation until a day in which the truck is not to be sent out. Save the 

simulation state. 

a Run the simulation until a day in which either 

- one or more overflows occur, or 

- the algorithm decides not to send the truck out 

a If the first condition occurs (i.e. overflows occurred before the next day the truck was 

not to be sent out), then reset the simulation state to the saved state and force the 

truck to go out on that day. 

4.4.2 Scheduling more than one truck 

Another useful extension to the algorithm would be the ability to use more than one truck. 

This problem naturally decomposes into two subproblems: choosing the locations, and 

assigning the chosen locations to different trucks. The latter problem is a generalization 

of the travelling salesperson problem called the multiple travelling salesperson problem. An 

algorithm exists which can transform an instance of the multiple TSP to an instance of the 

TSP; see pages 23 - 25 of [lo]. 
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One possible way to choose locations is to simply run the basic algorithm i times, each 

time only considering the locations which have not yet been selected. Another possibility 

is to use the algorithm with a truck capacity equal to i x C and a maximum working time of 

i x T. Note that it may not be possible to visit all locations which are chosen in this manner; 

some method is needed to allow the "dropping" of some locations so that i feasible routes 

can be generated. 

In short, it seems as though the multi-truck problem adds significant complexity. The 

basic algorithm, however, would probably remain a useful part of a multi-truck algorithm. 



Chapter 5 

The Implementation 

5.1 Implementation of the route selection algorithm 

The route selection algorithm given in Section 4.2 was implemented in ANSI C on a Sun 

workstation. Several issues which were not addressed in the high level description of the 

algorithm given in Section 4.2 are addressed here. 

5.1.1 User defined formula for the weighting function 

The weighting function is specified at run time (and can in fact be changed at the start 

of any simulated day) by a formula given as a string, each character of which is either a 

number, the standard operators +, -, *, / with their standard meanings, the operator A for 

exponentiation, - for integer exponentiation (allowing quicker running time when raising 

to an integer power), # for duplicating the top of stack (the formula is evaluated using a 

stack), or one of the following letters: d, e, g, p, t. These letters, when the formula is being 

applied to compute the weighting for location 1, refer to the following values: 

d -estimated number of days before an overflow will occur at 1, or 1 if the estimated 

number of days is less than one. We shall refer to this value as d(1) .l 

 h his definition is due to a desire to avoid negative weightings and divide by zero errors; d(J)  usually 
appears in the denominator of weighting functions. 
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e - time to empty a bin. This is the same as t,. 

g - estimated amount in the bin at a location. This is the same as g(1). 

p - period of filling (ie. assumed number of days after pickup before location will 

fill its bin). This is the same as p(1). 

t - additional time required to service a location. This is the same as t(l), a variable 

whose value will be defined in Section 5.1.2. 

p(1) -d(l) Some letters are redundant; for example, the value of g(l) is always the same as 
p ( l )  

for all locations 1, and thus only two of the three letters dl g, and p are required. The added 

letters are there for convenience in formula entry. 

This primitive input specification was adequate for the task at hand, and allowed for 

an extremely simple and quick "parser". 

5.1.2 Definition of t(1) 

Ideally, t(1) should be defined to be t, plus the difference between the total travel time 

for the current route and the total travel time for the shortest possible route after adding 

location I. This definition requires solving the travelling salesperson problem, however, 

and thus is not practical. 

A good approximation to this definition is that t(1) is the shortest additional time 

required to go to location 1 if it were inserted into the route.2 Formally, 

(where < 11, 12,. . . ,1, > is the current list of locations on the route, and lo and lm+l 

refer to the depot). 

'The difference between this definition and the "ideal" one is that for the ideal, the ordering of the locations 
on the route can change arbitrarily when a new location is added. 
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Figure 5.1: Time to the route 

The following is a method for quickly recomputing t(1) after a location l j  is added to 

the route (resulting in a route < 11, . . . , l j - l ,  l j ,  lj+l, . . . , 1, >): 

compute the travel times t,,,,, tnew, tneZt, tj-1 and t j  according to Figure 5.1. 

compare tbefore with the current value of t(1). If it is smaller, then set t(1) equal to 

tbefoTer and set inser ta  fter to j - 1. 

compare tatteT with the current value of t(1). If it is smaller, then set t(1) equal to 

taf teTf  and set inser ta  fter to j .  

As long as the order of the previously chosen locations is not changed: this recompu- 

tation will ensure that the value stored as t(1) is as defined above at all times. 

Consider the following alternative definition of t(1): 

3The order is, in fact changed whenever the TSP approximation algorithm is used. This necessitates 
recomputing t(1) for each location I. 
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This is the smallest time from location 1 to a location which is already on the route, plus 

the time to service location 1. With this definition the value of t(1) is independent of the 

order of the locations already chosen. Thus, after adding a location I j ,  it is only necessary 

to compute t t  ( 1 ,  1 j )  and set t(1) to the minimum of this value and t ( 1 ) .  

We chose this definition of t(1) since it yields comparable results to those obtained 

using the previous definition, but has the advantage of being simpler, being independent 

of order, and taking significantly less time to compute. 

5.1.3 Maintaining an ordered list of locations 

The method by which locations are added into the list depends on the definition of t(1) 

chosen. With the definition which depends on the list order, it is necessary to maintain 

a variable inser ta  fter(1) for each location 1 so that the algorithm will know where that 

location should be inserted into the list if it is chosen. After adding a number of locations 

in this manner, however, the route may not be a very efficient one. 

These complications are avoided by using the definition of t(1) which does not depend 

on list order. This allows the algorithm to simply add new locations to the head of the list. 

5.1.4 Computing a time estimate 

There is one required quantity which does depend on list order: the estimate of the time 

required to complete the route. This estimate is not relevant, however, until the route is 

large enough that the estimate becomes close to T. This is because the only use of the 

estimate is in determining whether the time constraint is respected. 

The definition of "close to T" is a bit vague; what is meant is that the time estimate is 

4 ~ h i s  is important because it means that times do not have to be recomputed after the TSP approximation 
algorithm is used. 
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Before edge exchange After edge exchange 

Figure 5.2: Sample route improvement 

large enough that it may become larger than T after another location is added. A sufficient 

condition to ensure that the time estimate is not "close to T" is for the estimate to be greater 

than T - tlOngest, where tlOngest is the round trip travel time from the depot to the producer 

which it takes the longest time to reach. 

Once the time estimate becomes relevant, an attempt is made to improve it by using 

an approximation algorithm for the travelling salesperson problem. The algorithm works 

by exchanging two edges of a route whenever doing so would improve the overall travel 

time. Figure 5.2 shows a sample route which is improved by swapping two edges. See [I81 

for a full description of the algorithm used. 

5.1.5 Efficient computation of weightings 

The efficient computation of weightings is a prime consideration in the implementation of 

the algorithm, since it is something which is done ve y frequently, and thus is the major 

determinant of the overall computation time required. Computing weightings inefficiently 

( e g .  by solving the travelling salesperson problem after each location is added to determine 

the optimal route, then recomputing the weighting for each location) would take far too 

much real time to be practical. 

The value of d(1) and g(1) are fixed on any particular day while the route selection 

algorithm is e~ecuted.~ The definition of t(l), however, changes as a route is constructed. 

5 ~ t  is confusing to talk about a function value which changes. Of course, d, g and t are really functions of a 
location and a time argument. The time argument is not mentioned because it is always implicitly "now". 
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Thus the value of the weighting function at location 1 need only be recomputed when the 

value of t (1) changes. 

5.2 Computation of travel times 

Travel times between locations are required so frequently in computations that it makes 

sense to pre-compute all travel times and store them in a matrix. 

The program which does this computation was written on the assumption that rectilin- 

ear distance estimates6 are sufficiently accurate. This is a reasonable assumption for much 

of the area in question, since there is a large road grid oriented north-south and east-west. 

The only tricky part is that it is not always possible to get between two locations in the 

rectilinear distance, due to the existence of barriers such as the ocean, mountains, lakes, 

rivers, bogs, and large parks. These barriers were digitized by hand from maps, and were 

represented as a list of coordinates which implicitly defined a closed polygon. Roads 

which cross barriers (i.e. bridges and tunnels) were also digitized and represented as a list 

of coordinates which implicitly defined line segments. 

The program begins by allocating enough memory for a bitmap (the "barrier" bitmap) 

to hold a description of the area of interest at the specified resolution. Initially all pixels in 

the bitmap are set to zero. A pixel with value zero (hereafter called a "go" pixel) defines an 

area it is possible to travel over. A pixel with value one (hereafter called a "no go" pixel) 

means there is a barrier in the square7 defined by that pixel precluding travel through that 

area. 

The program then reads in a description of the barriers and sets all pixels lying within 

the barrier polygons to have a value of one. The description of crossings is then read and 

lines of value zero are drawn. The result is a bitmap specifying "go" and "no go" pixels 

according to whether it is assumed there is a road network in the area corresponding to 

the pixel. 

6 ~ h e  rectilinear distance between two points A at (x., y.) and B at (zb ,  yb) is lxb - X, 1 + I y b  - y. 1 ,  
7And occupying more than half the area of the square. 



CHAPTER 5. THE WLEMENTATION 35 

Figure 5.3: Illustration of distance calculation algorithm 

To determine the distances from a producer location 1 to all other producer locations, 

the algorithm, in effect, labels the "go" pixels adjacent (i.e. to the left, right, up or down) to 

that in which location 1 lies as being reachable from the starting point in one distance unit. 

Each pixel which was reached is checked for the existence of a location on the list? and if 

one is found the distance is entered in the matrix. This step is repeated recursively until 

all locations on the list have been found, or else the bitrnap has been completely searched. 

The latter condition can only occur if there is at least one location which is unreachable 

from the starting point - this is likely an indication of an error in the input. 

See Figure 5.3 for an illustration of the rectilinear distances computed from a given 

point (labelled zero and shaded grey) in the presence of barriers (solid black). 

Once distance calculations have been done for all new locations, the resulting distance 

matrix is written out in a compressed format (2 bytes per matrix entry, with only the lower 

triangleg of the matrix stored since the matrix is symmetric about the main diagonal). A 

utility was written to print the compressed format in a human readable form. 

The program also handled the addition and deletion of locations in an efficient manner. 

 he locations are presorted and entered on linked lists, one per y coordinate, for increased efficiency. 
'To be more precise, all entries D; of the distance matrix D such that i > j. The main diagonal is composed 

entirely of zeroes, and thus is not stored. 



CHAPTER 5. THE WLEMENTATION 36 

A deletion involves removing a row and column from the distance matrix, whereas an 

addition requires adding a row and column and computing the distances to the new 

location. 

A resolution of 100 m was chosen, resulting in bitmaps of about 250 000 pixels (50 km 

by 50 km becomes 500x500). This technique obviously has severe scaling problems! 

For example, computing the distance matrix for roughly 500 locations on a 575x430 

bitmap took about 20 minutes on a SPARC-10. Improving the resolution to 50 m would 

mean that the computation would take 80 minutes. For the task at hand, however, the 

memory and time requirements are reasonable, especially considering the fact that the 

initial distance matrix computation need only be done once. 

Another problem with the algorithm is the possibility of an insufficiently fine resolution 

being specified, resulting in an impassable barrier in the bitmap where none exists in reality. 

This will occur if two barriers are within one half pixel width. 

Algorithms exist which can compute shortest paths in the plane in the presence of 

barriers without discretizing the barriers. One such algorithm is given in [7]. It has a 

worst-case time complexity of 0 (n log2 n)  and a worst case space complexity of 0 (n  log n) 

where n is the total number of vertices in the obstacle polygons. 

While such an algorithm would likely have been preferable to the one which was 

implemented,10 it is undesirable because it does not solve the problem that needs to be 

solved! What is really required is the travel time between any two locations, not the distance 

between any two locations. Computing the time from the distance necessitates assuming 

an average speed. It is possible to assume different average speeds depending on location, 

but such a scheme is not very accurate; it would seem better just to set a pessimistic average 

speed. The best solution is to model the actual road system as a graph (nodes of the graph 

would represent intersections, and edges would represent roads, with edge weights being 

the average speed along that edge), then compute shortest paths on this graph. A "time to 

get to the nearest intersection" could be computed based on a pessimistic average speed 

''In terms of accuracy and speed of execution, but not necessarily in terms of speed of implementation! 
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and the geographic distance to the nearest node on the graph. 

Such an algorithm would allow more accurate time estimates. But the algorithm 

which was implemented, together with a pessimistic average speed estimate, provides a 

sufficiently good time estimate in most cases, and overestimates the times required for 

longer distances and for trips which could in reality be done on "diagonal" roads (i.e. 

roads which are not oriented north-south, or east-west). Thus, improving the travel time 

estimates would only improve the performance of the algorithm of Figure 4.2. In any 

event, it must be recognized that the variance in travel times along roads is very large at 

times due to construction, collisions or queuing delays, and thus there is a limit to how 

well one can estimate travel times. 

5.3 Implementation of the simulation algorithm 

As explained in Chapter 4, the simulation algorithm has a simple structure. The 

outer structure is a loop, whose body is executed once per simulated day. The body 

of the loop adds commodity to each location's bin based on the assumed commodity 

production distribution,ll then uses the route selection algorithm to determine a route 

which is processed in such a manner that the constraints imposed are satisfied. Enforcing 

the constraints of the problem is necessary because it is possible for the route selection 

algorithm to specify an infeasible route, due to its imperfect knowledge of the state of 

the system. Such infeasible routes should be extremely rare, however, if conservative 

assumptions are made. 

Useful statistics such as the number of overflows, the amount of commodity at the 

producers, and the distance travelled, are kept. After a predetermined number of days 

(the warmup period - see Section 6.1.1), the statistics are "reset" (i.e. totals are set to zero, 

maximums are set to minimum possible values, etc) and the simulation continues for some 

"The amount added is a random variable which is the result of summing a number of random variables 
which have a uniform distribution over a finite interval. Thus, due to the central limit theorem, the amount 
added is approximately normally distributed. The range of possible values, however, is finite, and only 
includes non-negative numbers. 
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SUMMARY 

Number of locations: 452 
Simulation over 1000 days 
Truck operated on 982 days 

Assumptions: 
Truck capacity: 20.00 bins 
Truck speed: 35.00 km/h 
Pickup time: 12.00 minutes 
Max allowed working time: 7.50 hours 
Min fullness to pick up: 0.25 bins 
Min fullness to go out: 70.00% 
Prob truck is operable: 1.00 
Work on: Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
Formula: gdt*/#*#*#*#* 

Statistic Total Mean Minimum Maximum Per? 

New overflows 42 
Overflows 42 
Days of overflow 0 
Pickups 23896 
Amount picked up 17973.6 
Hours working 7113.4 
Distance travelled (km) 81723.6 
Amount generated 17983.4 
Amount lost 0.6 
Fullness/bin/day 186850.5 

0.04 0 3 day 
0.04 0 3 day 
0.00 0 0 overflow 

24.33 16 31 workday 
18.30 13.57 20.00 workday 
7.24 5.60 7.50 workday 

83.22 24.20 147.20 workday 
17.98 17.44 18.51 day 
0.00 0.00 0.08 day 
0.41 0.38 0.48 day 

Figure 5.4: Sample text-based simulation output 
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other number of days. At this time the value of the statistics is printed. These values can be 

compared with the values obtained by running the simulation with different parameters 

to determine relative performance. 

A sample printout is shown in Figure 5.4. This example used data (consumer locations 

and rates of production) provided by the local company. With this data (i.e. with n = 452) 

the simulation program ran at the rate of roughly 0.3 seconds per simulated day on a lightly 

loaded SPARC-10 computer. 

As can be seen by examining the sample printout, many simulation parameters (as- 

sumptions about the real world) need to be specified. These include the truck capacity and 

speed, the time it takes to empty a bin ("Pickup time"), the total time the driver can work 

("Max allowed working time"), the minimum amount allowed to be picked up at any one 

10cation'~ ("Min fullness to pick up"), the minimum amount of commodity expected to be 

picked up before allowing the truck out ("Min fullness to go out"), the probability of the 

truck and driver being available on any given day ("Prob truck is operable"), and the days 

on which the truck is supposed to be available. 

The truck goes out (i.e. the route selected is performed) if and only if 

The day of the week is a day on which the truck and driver are available. 

AND 

The truck is in operating condition. This is simulated by the condition U > P 

where U is a uniformly distributed random variable on the interval [0,1) and P is the 

parameter "Prob truck is operable". 

AND 

0 The expected amount of commodity to be collected on the selected route is greater 

than that specified by "Min fullness to go out", OR, there are one or more locations 

which have overflowed. 

12~his parameter exists because the current practice is to ignore a bin which is mostly empty rather than take 
the time to empty it. This sort of situation is very unlikely with our algorithm. 
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Some of the statistics shown in the sample printout require further explanation. "New 

overflows" refers to the number of times a location changed from having a less than full 

bin to having a full bin (with excess commodity being "lost"). "Overflows" refers to the 

sum over all days of the number of locations with full bins. These two quantities will be the 

same if overflows are handled immediately (as they are with our algorithm). If a location 

has to wait k days on average after having filled its bin before being picked up, then one 

would expect the "Overflows" figure to be k times higher than the "New overflows" figure, 

and the "Days of overflow" mean would show as k. 

As will be explained in Section 6.1.1, the simulation starts with all locations having 

empty bins. Thus, at any given time the total amount of commodity generated must 

equal the amount picked up plus the amount lost plus the amount currently in storage 

in bins. This is in fact the case, but it doesn't appear to be so when the statistics shown 

in the sample printout are examined. The discrepancy occurs because the values shown 

are for that portion of the simulation which occurred after the warmup period. Thus, the 

difference between the amount generated, and the sum of the amounts picked up and lost, 

is simply the amount which has been added or removed from the system from the day at 

which the simulation statistics were reset. 
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Simulation results 

6.1 Preliminary comments 

Some issues need to be addressed before presenting the actual results. 

6.1.1 Simulation "warmup" 

The state of the system (i.e. the amount of commodity in each producer's bin) changes 

over time as commodity is created and removed. In time, however, the system state will 

become relatively stab1e;l the amount removed from bins over a period of time will be 

approximately the same as the amount that is added over the same period.2 It is the 

behaviour of the algorithm once the system reaches this steady state that is of primary 

interest. 

But the steady state for a given algorithm and parameter setting is not known in 

advance. How do we get the algorithm to a steady state so that we can begin "recording" 

its behaviour? 

The only possible answer is to run the simulation to determine the steady state, then 

'Assuming a reasonable algorithm! 
' ~ o t e  the use of "added to bins" as opposed to "produced". In the case of the system reaching a steady 

state of all bins full, the amount produced will likely be greater than the amount added to bins, with the excess 
being "lost". 
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begin "recording" (accumulating relevant statistics) once steady state is reached. The initial 

part of the simulation run is called the warmup period . 
There may, however, be more than one possible steady state for the system, depending 

on the initial state. For example, if the simulation is started with all bins full, it is likely 

that the steady state will be "all bins full"! If the simulation is started with all bins empty, 

then hopefully the steady state which is reached will be one in which the bins are less than 

fulL3 It is the latter steady state which is of interest. 

The initial system state which was chosen was for all the bins to be empty. This can be 

seen by observing the extreme left of the graph of "Mean Fullness/Binn in Figure 7.4. It is 

also evident, on examining the first half of this that the mean fullness per bin rises 

quickly until it reaches a certain point, and shortly after this the system seems to be in a 

steady state. 

This brings us to the final issue, which is how long the warmup period should be. This 

can be determined by looking at graphs as described above and determining a point at 

which the simulation seems to have reached a steady state. A margin .of safety is then 

added, since it is always safe to err on the side of making the warmup period too long; the 

only penalty is increased computation time. 

The length of the warmup period needs to be determined for each different algorithm 

and set of parameters. By examining graphs for many such circumstances, however, 

it became clear that steady state was always reached relatively quickly - within 200 

days, certainly. A very conservative warmup period of 1000 days was selected, since the 

computation time involved (about five minutes) was relatively small. 

6.1.2 Length of simulation run 

Once the length of the warmup period has been decided, the length of the simulation run 

after warmup must be decided upon. Choosing too short a time may cause results which 

3~ecall that overflowing bins are to be avoided at all costs. Too many bins too close to being full results in 
overflows. 

4The second half demonstrates behaviour when parameters are changed. 
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Figure 6.1: Sample overflow recovery 

are not statistically significant. Choosing too large a time may be an unnecessary waste of 

computational effort. 

Once again, by observing graphs of simulation statistics, it became clear that the al- 

gorithm does not have any extremely long term cycles? but does, in fact, appear to have 

events of a period on the order of a year and a half (with the data used). A length of 1000 

days was then chosen so as to ensure the inclusion of at least one of these events. 

6.1.3 Instability of algorithms with respect to overflows 

Any algorithm for the problem will be unstable as the production rate reaches a critical 

value. This is due to the fact that overflows are often costly to handle, since the truck may 

'On one occasion the algorithm was run for 100 000 days (approximately 274 years). 



CHAPTER 6. SIMULATION RESULTS 44 

have to travel a long distance if the overflowing locations are geographically dispersed. 

Thus, the existence of overflows causes less efficient servicing, which results in more 

 overflow^.^ 

It is possible, therefore, for circumstances to conspire to cause a sudden influx of 

commodity to the system which pushes the system "over the edge". An example of this 

occurring, and a miraculous recovery (due to circumstances conspiring to help the system 

back from the edge!) is shown in Figure 6.1. 

The main reason for pointing this out is that the number of overflows per day is a very 

unstable value once it reaches a certain point with increasing commodity production. Any 

commodity production rate beyond this point should be considered impractical to handle 

with the given assumptions. Of course, in reality, if this situation arose then a decision 

would be made to buy an additional truck! 

6.1.4 Comparability of results 

In order to fairly compare the results of algorithms which use pseudo-random number 

generators, it is necessary to ensure that the same random number streams are used for 

different runs. It is also necessary to check that the results are not unduly dependent 

on the particular random number stream chosen. One important technique that is used 

is to use separate random number streams for separate purposes to ensure the two uses 

are independent. In our case, one stream is used for determining the actual commodity 

production, and one is used in generating routes. 

It is also important that the data used (producer locations and production rate distri- 

butions) are the same. This is really another facet of the same problem - in short, in order 

to have comparable results from two algorithms, they must be given the same input! 

All these issues were taken into consideration. 

6 ~ h i s  is reminiscent of a service guarantee which the Toronto-Dominion Bank currently makes: if a customer 
is delayed more than 5 minutes then she or he is entitled to $5. Of course, getting the $5 involves the teller 
getting a form which has to be filled out and which the customer has to sign, which delays customers currently 
in the line, which ... 
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6.2 Results 

Unless stated otherwise, simulation results presented below are the result of running for 

1000 days after a 1000 day warmup period. The following parameter values were used: 

Truck capacity 20 bins 

Truck speed 35 km/h 

Pickup time 12 minutes 

Maximum allowed working time 7.5 hours 

a Minimum bin fullness in order to pick up 0.25 bins 

Minimum expected fullness of the truck in order to go out 70% (14 bins) 

a Probability truck is operable 1 

Work 7 days per week 

The producer locations and production rates used were as given by the local company. 

There are 452 producers distributed unevenly through a region of approximately 2500 km2. 

Approximately half (214) of these had filling periods (inverse of commodity production 

rate) of 35 days, one quarter (121) filled in 70 days, and one quarter (117) filled in 105 days. 

These production rates are uniformly adjusted to achieve the desired overall production 

rate. Without adjustment the overall production rate is 8.96 bins per day; thus, if the 

desired production rate is 18 bins per day, actual production rates would be double those 

specified, and thus filling periods would be 17.5,35, and 52.5 days. 

6.2.1 Simple greedy heuristic results 

As (strongly) hinted at in Section 3.2.1, simple greedy approaches to the problem do not 

work well. Simulation results confirm this hypothesis. The results presented below are 
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based on averages of four simulation runs with different seeds for the random number gen- 

erator which is used to generate the commodity. The algorithm itself made deterministic 

choices for these trials. 

Amount in bin 

Using the deterministic version of the algorithm (Figure 4.2) with formula g ( l )  (amount 

in bin) gives the same result as would the greedy heuristic outlined in Section 3.2.1 with 

respect to the amount in a bin. 

The results are shown in Figure 6.2. The bottom graph shows that there is more than 

one new overflow per day once the production rate reaches 40% of truck capacity. This is 

an unacceptably high rate. 

Once the production rate surpasses 70% of truck capacity, there are so many overflows 

occurring that more than a quarter of the truck's schedule7 is predetermined every day, 

since overflowing locations must be serviced immediately. Once the production rate 

surpasses 80% of truck capacity, the number of overflows levels off because the system 

has reached the saturation point - the truck spends every day picking up overflows and 

never catches up. 

The other important thing to note in Figure 6.2 is that the top graph shows that the 

mean amount of commodity picked up per workday remains roughly constant no matter 

what the overall production rate is. This happens because of the fullness threshold f given 

by the "minimum expected fullness of the truck in order to go out" parameter. At low 

production rates the algorithm will fail to produce a route which is expected to result in 

the truck being more full8 than f (set to 70% in this case). This results in the truck not being 

sent out on that day. The idea is that if the overall production rate is, say, 50% of the truck 

capacity, then the truck should only have to go out every other day9 instead of going out 

7 ~ i t h  the assumptions presented and the data used it is common for the truck to pick up approximately 20 
locations per day. 

'as a ratio of truck capacity 
'At a minimum; if the truck only went out every other day then it would always have to return full. 
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Overall production rate (% of truck capacity) r-7 Maximum 
M Mean 
M Minimum 

Figure 6.2: Results of simple greedy approach with formula g(1) 
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every day and returning half full. 

The minimum amount picked up per workday can be less than the "minimum expected 

fullness of the truck in order to go out" since the truck is forced to do the route chosen on 

a day in which an overflow has occurred. 

If the algorithm is allowed to send the truck out every day to pick up from any set of 

 location^,^^ then it performs better at low production rates; it can handle a 20% production 

rate without incurring overflows. Once the production rate reaches 40%, however, the 

average number of overflows per day is greater than one. After this point the performance 

is essentially the same as with the parameter settings used above. 

Days before overflow expected 

Using the formula & (inverse of days to overflow) instead of g(1) gives roughly the same 

results. Thus, the comments made in the previous section apply here as well. 

Travel time 

Using the deterministic version of the algorithm (Figure 4.2) with formula & gives 

roughly1' the same result as would the greedy heuristic outlined in Section 3.2.1 with 

respect to time. See Figure 6.3 for the results. 

As one might expect, the truck travels a smaller distance when the algorithm is run with 

formula 1- than when run with formula g(1). This smaller distance results in more time 
t ( ' )  

being available to do pickups, resulting in a higher mean amount picked up per workday. 

This means the truck goes out on fewer days to do the same job. 

The number of new overflows per day shown in Figure 6.3 is about the same as that 

shown in Figure 6.2. Both are unacceptably high. 

Interestingly, allowing the algorithm to send the truck out every day (as mentioned 

above with respect to the formula g(1)) does not improve performance significantly. The 

1•‹i.e. if "Minimum expected fullness of the truck in order to go out" and "Minimum bin fullness in order to 
pick up" are both set to zero. 

"The difference is in the method of choosing the seed location. 
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Overall production rate (% of truck capacity) \ ,.......... "7 v Maximum 
Df3 Mean 
A-79 Minimum 

Figure 6.3: Results of simple greedy approach with formula -L 
t(') 
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algorithm cannot even handle a production rate of 10% without incurring overflows. This 

clearly shows that ignoring the amount of commodity at locations is a bad idea! 

6.2.2 Sophisticated greedy heuristic results 

Motivation 

The poor performance of the simple approaches imply that it is necessary to consider more 

than one of the 3 criteria simultaneously. The three criteria are: amount in bin, days before 

overflow, and travel time. It is clear that the probability of visiting a location should be 

proportional to the first criterion, and inversely proportional to the second and third. It is 

also clear, upon reflection, that all three criteria are required. 

Travel time is definitely an important criterion because ignoring travel time will result 

in the truck travelling longer than necessary. The extra time spent travelling will result in 

less time being available to actually service the locations. 

But why do we need to consider both the amount in a bin and the number of days 

before overflow? What is the difference between these two quantities, anyway? 

As mentioned in Section 5.1.1, these two quantities are related by the period of filling 

for the location. Thus, for a location which fills its bin every 10 days, being 5 days away 

from overflow means the bin is half full. A location which fills its bin every 100 days 

and is 5 days away from overflow, however, is 95% full. Thus, for example, considering 

only the number of days before overflow would result in these two locations being treated 

equally, even though the latter location is better in terms of picking up a large amount of 

commodity. 

Only considering the amount of commodity in a bin causes problems, however, since 

a location which fills in 10 days and which is 70% full (and thus will overflow in 3 days) 

is rather more important to pick up than one which fills in 100 days and which is 70% full 

(and thus will overflow in 30 days). 

But how are they to be combined to produce one result? Two immediately obvious 

possibilities are to sum them together, or to multiply them together. 
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"Additive" formula 

If the quantities are summed together, then there is a question of the relative importance 

of each quantity. The quantities must be scaled to reflect this. 

In order to do this we must first know the range of the quantities to be considered. The 

quantity t(1) was defined in such a way that the smallest value possible is t,, corresponding 

to a location which is distance 0 away (i.e. right next door). The quantity g(1) was defined 

to take values 0 (bin is empty) to 1 (bin is full). The quantity d(1) was defined in such a way 

that the smallest value possible is 1 (any location which is one day away from overflowing 

is thus considered equivalent to a location which has overflowed). 

Since the formula is to include terms which are inversely proportional to t(1) and d(l), 

and since we know the minimum values t(1) and d(1) may have, we know the maximum 

values these terms can have. The minimum value the terms can have is greater than zero, 

since t(1) and d(1) are both positive for all locations 1 at all times. 

The formula includes a term proportional to g(l), and we know the maximum and 

minimum value it can have. Thus, for example, we could throw the three simple terms 

together to get 

and know that each term is in the range 0 to 1. This would mean that the value of the 

formula for a location a whose bin is full (g(a) = 1) and which is expected to overflow 

(d(a) = 1) but which is a very long way away (t(a) is very large) would have a value of 

2. This would make it an equally likely location to visit as a location b which is right next 

door (t(b) = t,), half full (g(b) = 0.5) and expected to overflow in two days (d (b)  = 2). 

Whether this relative weighting of the three terms is "good" is not immediately clear. 

There does not seem to be any objective measure of the "goodness" of any particular 

relative weighting of the terms aside from the effect the overall formula has within the 

algorithm. After much experimentation, the best formula determined was 
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The results of running the algorithm with this formula are shown in Figure 6.4. Note 

the drastic improvement of the algorithm with this formula relative to the algorithm with 

the "simple" formulas. New overflows have been cut to zero up until the production rate 

reaches 65% of truck capacity. 

"Multiplicative" formula 

If the quantities are multiplied together, then very small values of one quantity have a very 

large effect on the overall value. This means that if any of the three quantities is extremely 

small (indicating that the location is undesirable from the point of view of that quantity), 

then the overall weighting will be small. 

The simplest possible such formula, namely 

works amazingly well. The results of running the algorithm with this formula are shown 

in Figure 6.5. Note that almost no overflows occur with the production rate equal to 90% 

of the truck capacity! 

6.2.3 Randomized heuristic results 

All the results presented thus far have used the deterministic version of the algorithm. 

Similar results are obtained using the randomized version. 

Using the randomized version, however, brings up the issue of scaling of weightings. 

With the deterministic version the location with the largest weighting is chosen, and thus 

the difference between the largest weighting and other weightings is not relevant. This 

difference is relevant for the randomized version! 

Suppose, for example, that there are 990 locations with weighting 1 and one location 
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Overall production rate (% of truck capacity) +-7 Maximum 
Mean 

&-A Minimum 

Figure 6.4: Results of greedy heuristic with "additive" formula 
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Overall production rate (% of truck capacity) c- Maximum 
Mean 

D--f\ Minimum 

Figure 6.5: Results of greedy heuristic with "multiplicative" formula 
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with weighting 10. Then the location with weighting 10 has only a 1% (&) chance of 

being chosen, despite the fact that it is obviously the superior choice. 

One solution is to raise the original formula to some "appropriate" power, so that the 

difference between the good and the bad is greater. If, for example, the above weightings 

were squared, then the "good" location would have a weighting of 100, and would thus be 

chosen with probability 9% (actually G). If the weightings were again squared, then the 
10000 "good" location would now be chosen with probability91% (rn). Clearly this process can 

continue indefinitely, but in the limit specifying such a formula results in the randomized 

algorithm behaving in the same way as the deterministic one would (i.e. the location with 

the largest weighting is chosen with probability 1). 

Thus, the exponent with which to raise the original formula must be chosen by trial 

and error to achieve a balance between the deterministic12 version and a version with 

insufficient spread between "good" and "bad" weightings. 

For the multiplicative formula with the data used (e.g. mean number of days to fill bin) 

the exponent 16 seemed to provide good results. See Figure 6.6 for the results of running 

the randomized algorithm with formula 

Despite the fact that the bottom graph in Figure 6.6 shows a very large number of over- 

flows at a production rate of 90%, in certain cased3 the algorithm can handle a production 

rate of 90% without experiencing a large number of overflows. Figure 5.4 gives the textual 

output for one such execution of the algorithm, showing that only 42 new overflows oc- 

curred on 1000 days, or roughly one every 3 weeks on average. This rate is acceptable in 

practice, and is certainly better than what the company is experiencing at present with a 

production rate of roughly 50%, not 90% ! 

This example can also be used to illustrate just how well the algorithm can do relative 

12Practically speaking, of course, there is a limit to how large the exponent can be before inaccuracies occur 
due to the finite representation of real numbers within a computer's memory. 

13i.e. when the simulation runs with certain random number seeds 
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Overall production rate (% of truck capacity) F-7 Maximum 
W Mean 
k - f l  Minimum 

Figure 6.6: Results of randomized greedy heuristic with "multivlicative" formula 
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to the theoretical limit. In order to handle a 90% production rate with a truck capacity of 

20 bins (in other words, a production rate of 19 bins/day) without overflows, a truck must 

visit, on average, at least 19 locations per day. At 12 minutes per pickup, this translates into 

3 hours and 48 minutes spent picking up commodity, leaving 3 hours and 42 minutes for 

travel. At 35 km/h, this means the truck can travel a maximum distance of 129.5 km. It is 

difficult to determine what the smallest mean travel time achievable is, but it is important 

to note that there are producers which are situated more than 64.75 km away from the 

depot! Thus, clearly it is not possible to pick up 19 bins of commodity on days in which 

these distant locations must be visited, simply because there is not enough time to get there 

and back and pick up the commodity at 19 locations. 

Even with a "perfect" algorithm, then, it may not be possible to prevent overflows 

occurring, since there must be days in which more commodity is produced than collected. 

This means that the flexibility required to select the "best" route may be lost due to an 

overflow occurring at an inopportune location.14 

It must be admitted that the example chosen was one of the best. possible for the 

algorithm. Due to the difficulty which any algorithm will encounter with recovering from 

overflows, (as explained in Section 6.1.3) it would be unwise to claim that the algorithm can 

handle a production rate close to the "critical" area. A reasonable claim, then, is that the 

randomized heuristic algorithm can handle a production rate of 80%. The probability of the 

algorithm entering an unrecoverable state at this production rate seems, from observation 

of many simulation runs, very low. 

6.2.4 Comparison of results presented thus far 

One important way to characterize the performance of the algorithm with different formu- 

las is by the number of new overflows which occur per day. This appears as the bottom 

graph in Figures 6.2,6.3,6.4,6.5, and 6.6. 

In order to aid in making comparisons, these five curves are plotted together on the 

14For example, a producer which is situated in an isolated area or in an area which has recently been serviced. 
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same graph. See Figure 6.7 for the result. 

The graph clearly shows how superior the "sophisticated" greedy heuristics are relative 

to the "simple" greedy heuristics. It also shows that the sophisticated heuristics seem to 

each perform extremely well up until a certain point at which the performance becomes 

terrible. This is due to the instability described in Section 6.1.3. This "critical" production 

rate seems to be lower for the additive formula than for the multiplicative (and hence the 

multiplicative is better). 

One important thing to note from the graph is that the difference in performance be- 

tween the deterministic multiplicative heuristic and the randomized multiplicative heuris- 

tic may not be as clear cut as is shown. The simulation results used to determine the values 

in the graph showed that the deterministic version handled the 90% production rate well 

in all cases, but the randomized version only handled it well in half the cases. Perhaps 

with a larger sample size or a longer simulation length the deterministic version would 

have done poorly sufficiently many times that the graph values for the deterministic and 

randomized would be approximately the same. The result would be that the two graphs 

would then appear to be identical. Thus, the best conclusion that can be made is that the 

deterministic version does no worse than the random version in this case. 

In any event, as stated earlier, not much confidence can be put in the ability of an algo- 

rithm to work without many overflows at a production rate close to the highest possible. 

To be safe, the algorithm should be used with a production rate slightly below this "critical 

value". 

Actually, the "critical" production rate is ill defined; the ability of an algorithm to work 

well depends on the actual events which occur. Many sets of events which correspond 

to the same production rate will produce radically different results. For example, one 

producer located 50 krn away from the depot suddenly producing 50% more commodity 

per day than usual will likely cause more problems than a producer located 10 km away 

doing the same thing. 
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&-O Simple greedy - amount in bin 
-1 Simple greedy - travel time 

Overall production rate (% of truck capacity) 

Figure 6.7: Comparison of results 
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6.3 Results with different assumptions 

The previous section demonstrated how well the algorithm does with a particular set of 

assumptions. In order to demonstrate that this performance is not in some way related to 

the assumptions made, we must investigate the performance of the algorithm under other 

assumptions. 

6.3.1 Assumptions about pickup time and truck speed 

The assumptions made about pickup time and truck speed are critical to the feasibility of 

servicing the locations given. With the sample data the algorithm performs approximately 

25 pickups per day (at 12 minutes per pickup this is a total of 5 hours), and travels about 80 

km (about 2.5 hours). Thus, increasing pickup time by, say, 2 minutes, would result in an 

additional 50 minutes being required to do the same number of pickups. This additional 

time required simply is not available within the days the truck already goes out. Thus, the 

algorithm can only cope by sending the truck out on more days. 

Similarly, decreasing truck speed from 35 km/h to 25 km/h requires an extra 55 minutes 

per day. Reducing to 30 km/h requires an extra 23 minutes. 

Test runs were made with various values of truck speed and pickup time. These tests 

showed that the heuristics which performed best previously still perform best, but in many 

cases there simply is not enough "room to maneuver" to allow the algorithm to perform 

well. 

In other words, if the assumptions about these critical quantities are invalid, then the 

algorithm will not perform well, but then neither will any algorithm. 

Note that the assumed maximum working time is directly related to the assumptions 

about pickup time and truck speed; i.e. assuming a greater length of time is required 

to perform duties gives the same result as restricting the total length of time required to 

perform those duties. 
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6.3.2 Assumptions about truck availability 

All results presented thus far presume that the truck is always available. In real life, of 

course, this is often not the case; five day work weeks are common, drivers are occasionally 

sick, and trucks occasionally break down. How well does the algorithm perform under 

these conditions? 

Commodity which collects on days for which a truck is unavailable must be collected at 

a later date. Thus on those days that the truck does work, there must be more commodity 

picked up than is generated. 

This behaviour can be seen by examining the "mean amount per bin" graph. The mean 

amount per bin increases when the truck does not go out, and (hopefully!) decreases when 

the truck does go out. The result is a sawtooth shaped curve. 

The peak value of the "mean amount per bin" is important, because large values tend 

to be well correlated with overflows occurring. This is the problem with not sending the 

truck out every day; it is more likely that overflows will occur. If the days the truck does 

not go out are regular (e.8. the truck stays at the depot on weekends), then the problem 

could be avoided somewhat by using the "lookahead" extension proposed in Section 4.4.1. 

If the days the truck does not go out are random, there is not much any algorithm can do 

to "protect itself". 

Running the simulation with various truck availabilities gave evidence that this factor 

does not affect algorithm performance significantly. 

6.3.3 Rural setting 

In order to show that the algorithm's performance was not in some way related to the 

geographic distribution of producers in the sample data provided by the local company, 

many tests were run on data which is of a more regular nature. This could be argued as 

being a test of the performance of the algorithm in a rural setting (one which is characterized 

by regularly spaced clusters of similar numbers of producers) rather than an urban one (one 

which is characterized by irregularly spaced clusters of varying numbers of producers). 
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Unfortunately, it is difficult to determine what data would result in a fair comparison. 

How can the travel time among two different data sets be compared? What about the 

geographical distribution of production rates? 

One data set which was used was simply a set of 400 producers spaced at 1 km intervals 

on a 20 km by 20 km grid with the following coordinates: 

{(x, y)lx € {-lo, -9,. . . , -1,1,2,. . . ,9, lo}, y € {-lo, -9,. . - ,  -1,1,2,. . . ,9,10}} 

The depot was given the coordinates (0,0), and all producers were given the same 

production rate. No barriers existed, and thus the distance to any given location (x, y) was 

simply x + y. With this data set the algorithm could handle very high (greater than 90%) 

production rates with no overflows. 

This data set seemed to be a slightly unfair comparison in terms of travel time required, 

however. Thus, a data set with the coordinates multiplied by two (i.e. 400 producers on a 

40 krn by 40 km grid) was constructed. With this data set a production rate of 80% could 

be handled with very few overflows. This data set would seem to involve more travel time 

than the "urban" data set provided by the local company. 

6.4 Other results 

This section presents other significant findings which resulted from testing the algorithm. 

6.4.1 Best performance possible 

Figure 6.8 demonstrates how well the randomized algorithm can do. The assumptions 

made were the same as those listed in Section 6.2 except that the truck speed was increased 

from 35 km/h to 50 km/h, and the pickup time was decreased from 12 minutes to 9 minutes. 

Under these more favourable assumptions the algorithm (using the same multiplicative 

formula as used earlier) was able to service all locations for 1000 days without any overflows 
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occurring, with a commodity production rate of 98% of the truck capacity. 

6.4.2 Adaptability 

On many occasions while running the simulation, critical parameters such as the commod- 

ity production rate were changed by sigruficant amounts. The result was usually a "spike" 

in the graph of the number of overflows, followed by a quick settling down into a stable 

pattern. 

In real life such rapid change is very rare. If critical parameters were changed in stages 

- for example, raising the production rate from 60% to 70%, waiting 30 days, then raising 

it to 80% - rather than all at once, no overflow "spike" was observed. 

The real world problem allows for the addition and deletion of producers. Given the 

number of producers the company deals with (roughly 500), it is unlikely that a 10% change 

in production rate will happen quickly, since this is likely to require 50 new producers. 

Thus, it seems fair to claim that the algorithm is able to adapt to changing requirements 

quickly enough. 

6.4.3 Algorithm running time 

One important aspect of the algorithm which should be emphasized is its speed, which 

allows it to handle very large problem sizes. 

To demonstrate this, a data set consisting of 2000 producers was constructed. With 

this many producers it took approximately 2 seconds (on a SPARC-10 computer) for the 

algorithm to construct a route. The running time of the algorithm seems to be linearly 

related to the number of producers. 

The speed with which solutions can be generated allows our algorithm to be used in 

ways that slower algorithms cannot. For example, our algorithm can be used interactively, 

allowing the user to investigate how changing conditions will affect the performance of 

the system. 
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SUMMARY 

Number of restaurants: 452 
Simulation over 1000 days 
Truck operated on 1000 days 

Assumptions: 
Truck capacity: 20.00 bins 
Truck speed: 50.00 km/h 
Pickup time: 9.00 minutes 
Max allowed working time: 7.50 hours 
Min fullness to pick up: 0.25 bins 
Min fullness to go out: 70.00% 
Prob truck is operable: 1.00 
Work on: Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
Formula: gdt*/#*#*#*#* 

Statistic 

New overflows 
Overflows 
Days of overflow: N/A 
Pickups 
Amount picked up 
Hours working 
Distance travelled (km) 
Amount generated 
Amount lost 
Fullness/bin/day 

Total 

0 
0 

33069 
19596.9 
6751.4 

90067.6 
19590.8 

0.0 
154006.7 

Mean Minimum Maximum Per? 

33.07 2 7 42 workday 
19.60 15.67 20.00 workday 
6.75 5.55 7.50 workday 

90.07 36.60 148.20 workday 
19.59 18.96 20.42 day 
0.00 0.00 0.00 day 
0.34 0.32 0.36 day 

Figure 6.8: Results of simulation with more favourable parameters. 
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6.4.4 Performance of randomized versus deterministic algorithm 

Results given earlier in this chapter indicate that the randomized version of the algorithm 

performs almost but not quite as well as the deterministic version. Why consider using 

the randomized version then? 

This question was answered earlier in the thesis (see Section 1.5, for example) by stating 

that, theoretically, the randomized version had the advantage of robustness; it is less likely 

to encounter a "pathological" input which causes it problems. 

To show this, a specific "pathological" input was constructed using the example given 

in Section 3.2.3 as a basis. The locations given in that example were used, with relative 

filling periods in the same relationship as shown in Figure 3.1. A set of locations which 

filled slightly faster than location A of Figure 3.1, and which were located just under 

two hours travel time away from the depot, were added. These locations are effectively 

isolated, in that it is not possible to service more than one location on any given day.15 The 

idea is that the extra days available to the randomized algorithm due to its more efficient 

servicing of the locations given in Figure 3.1 could be put to use servicing these remote 

locations. 

The results confirm the reasoning presented. For example, with a production rate of 

80% the deterministic version encounters approximately 0.27 overflows per day (1.35% 

of all locations), whereas the randomized version only encounters 0.11 overflows per day 

(0.55% of all locations). 

I5~ecall that the maximum working time was set to 4 hours for the example. 



Chapter 7 

Algorithm Performance Visualization 

Tool 

7.1 The need for graphics 

The main problem with a text based simulation program is that it is very difficult to see 

what is happening as a simulation progresses. This is due to the amount of information 

required in order to see the state of the system, and the difficulty in seeing trends within a 

list of numbers. 

This problem can be solved by graphing the value of a statistic over simulated time. 

By comparing graphs of different statistics it becomes possible to see relationships among 

statistics and between statistics and simulation events. For example, Figure 6.1 clearly 

shows the impact overflows have on the number of pickups, the amount picked up, the 

distance travelled, and the mean fullness per bin. 

Other uses for graphics may arise depending on the simulation model. Often it is useful 

to depict the state of the system graphically as the simulation progresses. Simulations of 

factory floor movements, for example, benefit from doing this. In our case it is very 

useful to see the route chosen as a series of line segments and dots on a map depicting the 
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geographical area.l 

7.2 The need for an interactive tool 

It is also possible to quickly see the effects simulation parameters have if parameters can 

be changed interactively and the effects shown graphically. This is especially important 

for our problem, because it allows for quick comparisons of weighting functions, and the 

selection of other experimentally determined values such as the threshold below which 

the truck should not be sent out. Development of a correct and effective algorithm would 

have been much more difficult without this ability. 

Another justification for constructing an interactive graphical program is that it can 

be used to give demonstrations of the algorithm. Showing a printout or graph of the 

results of simulation runs is not as impressive or comprehensible as giving an interactive 

demonstration of the algorithm, with graphical results (such as the routes displayed on a 

map) which can be grasped immediately. 

7.3 The design 

For the reasons given above an "Algorithm Performance Visualization Tool" was con- 

structed. It is important to note that this tool was created for a specific purpose, not as 

a polished, general purpose tool. Thus, there are some "rough edges" and some features 

which should be added. 

The idea for the design of this tool is fundamentally simple: a panel with buttons must 

exist to allow control of the simulation (run, stop, single step, the setting of simulation 

parameters) and to allow viewing of simulation data in various ways. 

A user should be able to create and destroy windows which provide these "views". 

There should not be any preset limit on the number of views that can exist at one time. 

'The line segments only indicate an ordering of the locations; they do not indicate the actual roads to be 
used. This can be changed if a detailed description of the road network is obtained. 
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Figure 7.1: Algorithm Performance Visualization Tool main window 

The interface between the visualization tool and the simulation program is simple and 

well defined. No change to the source code for the simulation program is required in order 

to compile it into either a text-based simulation or a graphical simulation program. 

7.4 The implementation 

The visualization tool was written in ANSI C using Sun's XView library. The tool has a 

main window (see Figure 7.1) with buttons allowing the simulation to be started, stopped, 

or single stepped through one day a button labelled "Parameters ..." and a button labelled 

"View...". Text indicating the number of days the simulation has been run, and whether 

the simulation is running or not, appears at the bottom of the main window. The button 

labeled "Update" causes the information in view windows (see below) to be updated. 

Upon pressing the "Parameters ..." button, a window appears showing the parameters 

of the simulation which the user can change. Figure 7.2 shows the parameters window 

with the user in the process of changing the mean amount of commodity generated per 

day. 

Upon pressing the "View. .." button, a window appears showing the options available 

for viewing data regarding the simulation (see Figure 7.3). There are three possible types 

of views: 

"Specified Statistics", which shows the mean, minimum, maximum, and days valid2 

'The "days valid" idea is a method of cleanly dealing with statistics which are only really meaningful on 
certain days. For example, the number of pickups statistic is only valid on workdays. 
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Figure 7.2: Parameters window 
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Figure 7.3: View window 
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for each variable selected, along with an optional graph and histogram (see Fig- 

ure 7.4). 

"Routes on map", which shows routes as dots connected by lines on a map of the 

area3 (see Figure 7.5). 

"Route list", which shows route data in a summary textual form. 

For any of these views, the desired days to view, and conditions which must be satisfied 

for certain variables in order to view, may be selected. For example, it is possible to request 

a route list for the last 100 days which had overflows, or routes which are longer than 100 

km and have more than 20 pickups. The number of views which can be created is not 

artificially limited; it is possible to show more maps on the screen than is useful! Figure 7.3 

shows the view selection window with the user selecting a graph, along with summary text 

(i.e. minimum, maximum, mean), of "Hours Working", "Distance Travelled" and "Mean 

Fullness/Binn for days in the range 42 to 1041 on which there were at least 2 overflows and 

for which the truck worked less than 7.2 hours. 

In order to implement the view windows it is necessary for the visualization tool to 

store all pertinent data for each day the simulation runs. Thus the memory requirements 

of the simulation grow monotonically with time. This does not turn out to be a problem 

because the data stored per day is reasonably small - after running the simulation for one 

century (of simulated time!) the program used less than 8MB of memory. 

See Figure 7.6 for a sample snapshot of the program in execution. This sample is 

intended to show some features of the visualization tool, and is thus not necessarily a 

useful setup. In the top left of the sample is a map which is zoomed in to show most 

of Burrard Inlet, with the routes selected for the last 5 days. To the right is a map of the 

whole region showing the route selected for the last day. To the right is the simulation 

main window, showing that it is currently running the simulation. Below that is a route 

3Yes, this map was also digitized by hand. The 15 hour effort was definitely worthwhile, because demon- 
stration programs with nice detailed maps get noticed! 



CHAPTER 7. ALGORlTHM PERFORMANCE VISUALIZATION TOOL 

Figure 7.4: Sample graph 
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Figure 7.5: Sample route on map 
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list window. There is another route list window on the left. Below are two windows 

showing statistics; one is very large and partially covered, showing graphs, and the other 

shows just textual information about selected values. By inspecting the graph one can see 

that the total system commodity production rate was dramatically increased at one point, 

co-incident with the days of operation being increased from 4 days/week to 7 days/week 

(this is not shown). 

View windows are only updated when the simulation stops at the day selected, or when 

the "Update" button on the main window is pressed. Thus, as is shown in the sample, it is 

possible for the view windows to not be synchronized. This was allowed due to the time 

required to update each window each day, which would typically be longer than the time 

it takes to run the simulation for one day! 

7.5 Future uses 

The general structure of the visualization tool matches the requirements of many simula- 

tions. The tool could be used to investigate other algorithms for vehicle routing problems, 

for example, by changing the list of simulation parameters available. New view types can 

be added without too much difficulty, as well - first, add an option to the view selec- 

tion window to allow creation of the new type, then add the code to implement the new 

window type. 

Some of the existing tool could be incorporated in a "production" version of the program 

(i.e. a version which would allow the algorithm to be used for the actual real life operation 

instead of a model of the operation). The current tool records the route which was actually 

run by the simulation algorithm. In a production version, the route which was run in 

actuality must be recorded. A method of manually specifymg the locations which were 

visited would be required. 

Once this is in place, however, the view windows (routes portrayed on a map, tex- 

tual lists of routes, and graphical displays of route statistics) would all remain useful for 

displaying historical data. The parameters window would be simplified due to certain 
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Figure 7.6: Sample simulation run 
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simulation parameters no longer being relevant (eg .  probability of the truck breaking 

down). The "simulation control" part of the tool would be changed to allow the following 

operations: 

"generate a route", which would suggest a route to perform based on the current 

system state. 

"input actual route", which would alter the system state to reflect the locations which 

were actually visited. An empty route would correspond with the truck not having 

run that day. The actual value of statistics concerning the route which were estimated 

(i.e. total time and amount picked up) could be entered. 

The only thing left to do, then, is implement an interface which allows the addition 

and deletion of locations.* This could be done in many ways. The location to add or 

delete could be specified by using a pointer device on the map window. Or perhaps the 

coordinates could be entered manually. The best solution for adding locations, of course, 

would be a database which allows a translation from easily obtained information, such as 

the postal code or street address, to coordinates. If such a facility was available then the 

user would only have to specify the new location's name, address, and expected initial rate 

of production. 

One important possible extension to the tool would be one which would support a 

multi-truck algorithm. This would mainly involve changing the way in which data is 

presented; instead of one route being displayed on a map for one day, multiple routes 

would need to be displayed indicating the route for each truck. It would be a good idea to 

display each truck's route in a colour which is unique to that truck. 

A feature which could be useful would be one which allows the user to query the 

algorithm as to why it chose a particular location. In addition, a facility for allowing 

manual modification of a route could be useful in order to learn the tradeoffs inherent in 

route selection. 

4This could either be a separate program or an extension of the current interface. 
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Conclusions 

8.1 Summary of thesis 

This thesis presented one particular vehicle scheduling problem. The problem was shown 

to be one which is difficult to solve optimally. Some possible approaches to solving the 

problem approximately were given. A route selection algorithm which was developed to 

solve the problem was described, followed by a description of its implementation and a 

presentation of performance results obtained from a simulation program. Finally, a tool 

which was constructed to aid in the development of the algorithm was described. 

This thesis makes three main contributions to the vehicle routing literature. First, it 

gives a simple, efficient algorithm which solves a practical problem much better than the 

method currently in use. Second, the idea of using a randomized. algorithm is explored, 

something which apparently has not been pursued thus far. Third, a useful tool for 

development of vehicle routing algorithms was presented. 

8.2 Discussion of algorithm strengths and weaknesses 

The strengths of the route selection algorithm are as follows: 

It quickly provides excellent solutions. 
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It is quite simple in structure. This makes comprehension of the algorithm easier, 

and allows for quick implementation and efficient operation. 

It is able to adapt to changing requirements. 

It is flexible enough to handle many different situations; e.g. both rural and urban 

settings. 

It is applicable, with minor changes, to a variety of similar vehicle scheduling prob- 

lems. 

It is able to provide superior solutions to pathological examples due to its use of 

randomization. 

The algorithm's main weakness is that it relies on a weighting function which must be 

carefully chosen in order to provide good results. Very little theoretical justification has 

been provided for the weighting function which was chosen, and no procedure is evident 

for the selection of a good weighting function aside from the "trial and error" method. 

8.3 Usefulness of the algorithm performance visualization tool 

The visualization tool allowed extensive experimentation with possible algorithms, and 

thus permitted development of a working algorithm in less time than would otherwise 

have been possible. The tool was also invaluable in allowing demonstrations of the problem 

and the algorithm constructed to solve the problem. 

Despite being constructed for a single purpose, the tool is in fact generally useful. With 

modifications it could be made to work with a different scheduling algorithm or with 

different vehicle routing problems. 
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8.4 Practical results and future work 

Plans are currently being made by a local company to make use of these results. It is likely 

that the algorithm will first be run "in parallel" with the current system, after which routes 

suggested by the algorithm will be run and evaluated. The company's current system 

achieves roughly 50% capacity (ie. trucks come back, on average, half full). 

The program implemented to test the algorithm is not directly usable. A method for 

adding and deleting locations from the database is required, as is a method of informing 

the algorithm of the locations actually visited by the truck. In other words, the simulated 

"real world" has to be kept synchronized with the real "real world"! This is a matter of 

replacing the simulation algorithm and altering the user interface. 

We are hopeful that the assumptions made about real world parameters were conser- 

vative enough that the company will in fact find that the algorithm works extremely well. 

Hopefully, the look-ahead extension described in Section 4.4.1 can be implemented quickly, 

resulting in even more impressive performance. Other simple ideas, such as selecting the 

"best" among a set of routes generated using different random number seeds, could be 

explored. After achieving some success with the single truck version, an attempt should 

be made to implement an algorithm to solve the multi-truck version of the problem. 

Other possible areas of investigation include determining a procedure for selecting a 

weighting function, investigating a theoretical basis for the performance of the algorithm 

(including perhaps determining a performance bound), improving the algorithm used to 

compute travel times, and investigating modifications of the algorithm which would allow 

it to solve related problems such as the vehicle routing problem with time windows. 
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C (truck capacity), 9,23 space, 10,13 

T (maximum working time), 9,23 time, 10,13 

a (amount of commodity in bin), 11,13 consumer, 9,23 

f (fullness threshold), 23,46 consumer-producer process, 9 

g (estimated amount of commodity in bin), 
decision problem, 14,15 

11, 17,18 

n (number of producers), 13,23 

p (period of filling), 11,12,16,23 

tt (travel time), 30,32 

tap (time after pickup), 11 

tbp (time before pickup), 11 

t, (time to pick up), 11,13,23 

tt (travel time), 11,13,23 

algorithm 

exponential time, 3 

multi-truck, 28,76,79 

polynomial time, 3 

route selection, 23,24,26,29,37,77 

simulation, 24,37,74 

bin packing problem, 3,4,14 

intuitive algorithm for, 4 

constraints, 1,13,24,37 

depot, 5,9,14,16,19,30,33,57,58,61,62, 
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bias towards, 19 

exhaustive search method, 2 

exponential time algorithm, 3 

feasible, 1,10,13,14 

greedy, 17,17,18,45,46,48 

heuristic, 2,4,17-19,46,48 

infeasible, 18,37 

intractable, 3 

look-ahead, 27,79 

neighbourhood, 2 

NP-complete, 3,13,14 

optimal route, 33 
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optimal solution, 2,4 multiple, 27 

overflow, 18,25,29,37,42,43,46,48,50 
Vehicle Routing Problem, see VRP 

pickup, 5,9,68 VW, 5,79 

polynomial time algorithm, 3 
warmup period, 37/42/45 

producer-consumer process, 9 
weighting, 17,19,51,52 

production rate, 9,ll-13,17,26,39,45,46, 
weighting function, 17-19,29,34,78,79 

50,52,55,57,58,62,63,65 
weightings, 26,33 

constant, 15 

critical, 43,44,57 

initial, 76 

low, 46 

total system, 26/74 

Quicksort, 4 

randomized, 5 

randomized Quicksort, 5 

route, 10, 16, 18, 23, 24, 28, 30-33,37, 39, 

44,46,57,63,66,71, 74,76,79 

route selection algorithm, 23,24,26 

schedule, 1,3,4,9-11,14-17 

simulation algorithm, 24 

space constraint, 10,13 

steady state, 41 

system state, 24,41 

time constraint, 10,13 
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