
IMPLEMENTATION OF AN 802.1X SUPPLICANT

FOR INTERNET TELEPHONY

Jerry Wong

B.A.Sc., Simon Fraser University, 2000

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

IN THE SCHOOL OF ENGINEERING SCIENCE

O Jerry Wong 2005

Simon Fraser University

Spring 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Implementation of an 802.1X Supplicant for Internet Telephony

Approval

Name: Jerry Wong

Degree: Master of Engineering

Title of Project: Implementation of an 802.1X Supplicant for Internet Telephony

Examining Committee:

Chair:

Senior Supervisor:

Dr. Dong In Kim

Dr. Jim Cavers
Professor
School of Engineering Science, SFU

Technical Supervisor:
~ ~p

Mr. Andy Fung
Engineering Manager
Broadcorn Canada Ltd.

1
Date Approved: A

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf
or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work
for scholarly purposes may be granted by either the author or the Dean of
Graduate Studies.

I t is understood that copying or publication of this work for financial gain shall
not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming part of this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Implementation of an 802.1X Supplicant for Internet Telephony

Abstract

To prevent unauthorized devices from accessing private Local Area Networks (LANs),

the IEEE 802.1 X standard combined with the related Internet Engineering Task Force

(IETF) RFC specification, the Extensible Authentication Protocol (EAP), provide an

access control mechanism for IEEE 802 LANs. EAP-enabled networks allow

administrators to ensure that devices such as PCs and IP phones are authorized and

authenticated to access the enterprise's LAN environment. These devices are also known

as supplicants in 802.1 X terminology.

This is a report on the implementation of an 802.1X supplicant for the BCM91101

reference IP phone platform at Broadcom Canada Ltd. This report includes a study of

the 802.1 X framework and the EAP, as well as a review of the supplicant software

development process including design, implementation and testing. The test results

indicate that the implemented supplicant software consumes 983kB with the EAP-TLS

method and 61kB with the EAP-MD5 method, with negligible CPU usage.

Implementation of an 802.1X Supplicant for Internet Telephony

Acknowledgements

First of all, I would like to thank Mr. Andy Fung for letting me to work on this exciting

and challenging project, giving me all levels of freedom from design to implementation

to testing. I also wish to thank Dr. Jim Cavers being my academic supervisor for this

project and for giving his time and energy to review this work. I am grateful to Mr. Bob

Lukas for inspiring me to work on the protocol field. I would like to thank my wife,

Winnie, for her support and understanding. I want to thank my parents for their patience

and encouragement on my academic studies. Last but not least, I would like to thank my

friends, especially Nelson and Bennett, for their support.

Implementation of an 802.1X Supplicant for Internet Telephony

Table of Contents
. .

Approval ... 11

...
.. Abstract 111

Acknowledgements .. iv

Table of Contents ... v
...

List of Figures .. vill

List of Tables ... ix

... Abbreviations x

.. Chapter 1 : Introduction 1

... 1 . 1 The 802.1 X Framework 1

1.2 IP Telephony .. 2

... 1.3 Document Outline -3

Chapter 2: Background .. 4

2.1 802.1 X and EAP .. 4

2.1 . 1 Authentication Process .. 4

2.1.2 EAP Encapsulation over LANs (EAPOL) ... 6

2.1.3 Authentication Methods ... 9

.. 2.2 PhonexChange Architecture 13

2.2.1 VxWorks .. 15

... 2.2.2 Boot up sequence 16

2.2.3 Provisioning ... 16

2.2.4 The Two-port Ethernet Switch .. 18

... Chapter 3: Design and Implementation 19

... 3.1 Design Considerations 19

.. 3.1.1 802.1 X Requirements 19

3.1.2 Configurations ... 19

3.1.3 Memory Footprint .. 19

... 3.1.4 Programming Language 20

3.2 High-level Design .. 20

Implementation of an 802.1X Supplicant for Internet Telephony

... 3.2.1 Supplicant Module 20

... 3.2.2 Provisioning 23

3.2.3 The Ethernet Driver and the two-port Switch .. 25

3.2.4 Data Store .. 25

... 3.3 Interface Design 25

3.3.1 Interface Specification ... 25

3.3.2 Detailed Interface Description ... 27

... 3.4 Internal Architecture -29

3.4.1 The Interface Layer .. 29

.. 3.4.2 The Wind NET Supplicant Stack 30

3.4.3 The EAP-TLS Handler .. 33

.. 3.5 Summary 35

Chapter 4: Testing .. 36

... 4.1 Test Setup and Tools 36

4.1.1 The Authentication Server ... 37

4.1.2 The Authenticator .. 37

4.1.3 The Supplicant .. -38

4.1.4 The Observer ... 38

4.1.5 Ethereal .. 39

4.1.6 H yperTermina1 .. -39

4.2 UnitTests ... 40

... 4.3 Performance Tests 41

.. 4.3.1 Memory Performance 41

4.3.2 CPU Performance .. 43

4.3.3 Time Performance ... 44

4.4 Interoperability Tests ... 44

Chapter 5: Conclusion ... 46

... References -48

Appendix A: 802.1X Supplicant State Machine .. 49

... Appendix B: Detailed Supplicant API Description 50

Implementation of an 802.1X Supplicant for Internet Telephony vii

suppInit .. 50

SUPPSTATUS Enum .. 50

EAP Method Enum ... 50

suppSetParm ... S O

EAP-MD5 Credential Structure ... 51

EAP-TLS Credential Structure .. 51

suppGetParm .. 52

802.1 X Supplicant Status Structure ... 52

802.1X Supplicant Statistics Structure .. 53

suppstart .. 53

supps top .. 53

SUPPEVTCB Event Callback ... 54

... SUPPSTATES Enum 54

Appendix C: The TLS Client Wrapper .. 55

tlsInit .. 55

.. tlsconfig 55

TLS Configuration Block . TLSCFG .. 56

tlscreate ... 56

tlsProcess ... 56

tlsDelete ... 57
. . .. tlsDeinit 57

Appendix D: Unit Test Cases .. 58

Implementation of an 802.1X Supplicant for Internet Telephony

List of Figures

...
V l l l

Figure 1 :

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 1 1 :

Figure 12:

Figure 1 3 :

Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 2 1 :

802.1 X framework .. 2

Before authentication .. 5

After successful authentication ... 6

EAPOL frame format for Ethernet .. 7

Basic 802.1X call flow .. 8

The TLS handshake process .. 12

The BCM9I 101 reference IP phone .. 13

PhonexChange architecture ... 14

Wed-based provisioning with the reference design IP phone 17

PhonexChange architecture along with the supplicant module 21

802.1 X supplicant provisioning (EAP-TLS) ... 23

Supplicant module - interface specification .. 26

Components of the supplicant module .. 30

Internal architecture of the Wind NET supplicant stack 31

Supplicant task flow chart ... 32

State machine of the EAP-MD5 handler ... 33

.. EAP-TLS state machine 35

Supplicant test setup .. 37

Ethereal showing a network capture for EAP-MD5 39

The memShow command on Vx Works showing the memory consumption
with the supplicant software .. 41

Supplicant state machine ... 49

Implementation of an 802.1X Supplicant for Internet Telephony

List of Tables

Table 1 :

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

Table 10:

Table 1 1 :

EAP packet types .. 7
. .

Supplicant state transition table ... 9

802.1 X supplicant configuration parameters .. 24

APIs correspond to the interfaces .. 27

The TLS client wrapper API ... 34

Unit test cases .. 40

........ Peak allocated memory in bytes with different 802.1 X configurations 42

Memory footprint of the supplicant software .. 43

Time performance of the EAP-MD5 and EAP-TLS methods with different
supplicant software .. 44

Acceptable parameter types for suppSetParm() .. 51

Acceptable parameter types for suppGetParm() ... 52

Implementation of an 802.1X Supplicant for Internet Telephony

Abbreviations

AES

API

DHCP

DNS

DSP

EAP

EAPOL

HTML

HTTP

IEEE

IETF

IP

IPSec

LAN

MAC

NVRAM

0s
PAE

PEAP

PEM

PKI

QoS
RADIUS

RFC

RTOS

SDRAM

SSL

TCP

TFTP
TLS

TTLS

VoIP

Advanced Encryption Standard

Application Programming Interface

Dynamic Host Control Protocol

Domain Name Service

Digital Signal Processing

Extensible Authentication Protocol

Extensible Authentication Protocol over Local Area Network

Hypertext Markup Language

Hypertext Transport Protocol

Institute of Electrical and Electronics Engineers

Internet Engineering Task Force

Internet Protocol

IP Security

Local Area Network

Media Access Control

Non-volatile Random Access Memory

Operating System

Port Access Entity

Protected Extensible Authentication Protocol

Privacy Enhanced Mail

Public Key Infrastructure

Quality of Service

Authentication Dial-In User Service

Request For Comments

Real Time Operating System

Synchronous Dynamic Random Access Memory

Secure Socket Layer

Transmission Control Protocol

Trivial File Transfer Protocol

Transport Layer Socket

Tunneled Transport Layer Socket

Voice over Internet Protocol

Implementation of an 802.1X Supplicant for Internet Telephony

Chapter I : Introduction

In recent years, network security has become a major issue for network administrators.

They are increasingly concerned about security threats such as virus attacks, worms and

undesirable network activities such as music file sharing. There are also security

breaches that either originated or aided by internal users putting corporate data into

jeopardy. Both of these make network access control one of the most important means to

defend a network.

The IEEE 802.1X standard combined with the related Internet Engineering Task Force

(IETF) RFC specification, the Extensible Authentication Protocol (EAP), provides an

access control mechanism for IEEE 802 Local Area Networks (LANs). EAP-enabled

networks allow administrators to ensure that individual users are authorized to access the

enterprise's LAN environment. 802.1X is particularly beneficial in a campus type

network where users connect from random locations or where guests will access the

network; however, it is becoming more prevalent in mainstream enterprises along with

many other security initiatives.

I . f The 802. f X Framework

The IEEE 802.1X standard specifies an architectural framework for authentication of

devices attached to ports on IEEE 802 LANs such as the 802.3 for wired Ethernet, and

the 802.1 1 for wireless Ethernet [I]. It also defines requirements for the protocol

exchange between the entities involved in the framework. The IETF RFC 2284 [2]

defines the EAP that hlfills the protocol requirements defined by 802.lX. The EAP is a

generic protocol that supports multiple authentication methods such as the MD5

message-digest (EAP-MD5) [3] and the Transport Layer Security (EAP-TLS) [4]

authentication methods.

The 802.1X framework defines three roles: a supplicant, an authenticator, and an

authentication server. The supplicant is an entity, such as a PC or an IP phone, which

Implementation of an 802.1X Supplicant for Internet Telephony

requires access to the network for use of its services. The authenticator is a network

entry point that the supplicant physically or logically connects, typically a managed

switch for Ethernet or a wireless access point for wireless 802.1 1, and acts as a proxy

between the supplicant and the authentication server. The authenticator is responsible for

controlling port access of the supplicant(s) based on the grant status from the

authentication server. The authentication server, typically a Remote Authentication Dial-

In User Service (RADIUS) server, performs the actual authentication, allowing or

denying access to the network based on the supplied credentials from the supplicant. The

802.1X framework is depicted in Figure 1.

Authenticator

Supplicant Over Authentication RADIUS 1 Server

Figure 1: 802.1X framework

1.2 lP Telephony

As the name implies, IP telephony is a term that is used to describe the transport of

telephone calls over the Internet, and IP phones are devices that transmit voice over the

IP network. The voice over IP technology has been an emerging market as of late in both

the residential and enterprise markets as it promotes data convergence. Unlike traditional

enterprise phones which have separate wirings from the data network, IP phones can be

operated in the same network within an enterprise, hence reducing the wiring cost of

installing and running a phone system. IP telephony also promotes the support of

enhanced call features such as video conferencing, web casting, etc, that is otherwise

unachievable with traditional phones.

Implementation of an 802.1X Supplicant for Internet Telephony

In light of this market, the Broadcorn BCMI I01 silicon was developed for enterprise IP

phones. This single-chip solution integrates a 15OMHz MIPS processor, a 108MHz ZSP

DSP processor, a two-port 1 OObaseT Ethernet switch, and controllers for peripherals such

as SDRAM, keypad, etc. The BCM91101 is a reference platform for the BCMIIOI

silicon that serves as a proof of concept to potential customers and as well as a software

development platform for developers.

The MIPS processor software contains device drivers, network services and call-signaling

software, and is responsible for managing voice calls while the DSP software manages

the voice codec algorithms. New features are implemented based on marketing needs.

As security initiatives such as access control becoming more prevalent, it becomes

natural that 802.1 X should be supported for the reference software.

The objective of this project is to implement an 802.1 X supplicant on the BCM91 I01

reference IP phone platform, supporting the EAP-MD5 and EAP-TLS authentication

methods.

1.3 Document Outline

This document describes the design, implementation and testing of the 802.1X supplicant

software. Chapter 2 provides the background information for the 802.1X standard and an

overview of the IP phone software architecture. Chapter 3 describes the design and

implementation of the supplicant software integrated to the IP phone software. Chapter 4

describes the test plan and presents the test results. Finally, Chapter 5 concludes the

report by summarizing the supplicant software implementation and the test results.

Implementation of an 802.1X Supplicant for Internet Telephony

Chapter 2: Background

This chapter provides the background information for the project and is organized into

two sections. The 802.1 X protocol along with the EAP would be described and

explained in Section 2.1. The IP phone software architecture would then be explored in

Section 2.2.

2.1 802. I X and EA P

The 802.1 X standard specifies encapsulation methods for transmitting EAP messages

over different 802 media types such as over wired LAN 802.3 and over wireless LAN

802.1 1. As mentioned earlier, the 802.1X standard defines the supplicant, the

authenticator and the authentication sever roles. The supplicant is the device that requires

accessing the network. The authenticator is typically a managed switch that is physically

or logically connected to the suppliant acting as a proxy between the supplicant and the

authentication server. The authentication server typically a RADIUS server provides

authorization.

The encapsulation method, called the EAP over LAN (EAPOL), is used between the

supplicant and the authenticator. The authenticator and the authentication server

communicate using the RADIUS protocol with EAP messages transmitted over

RADIUS. The authenticator is not aware of the content of EAP messages; it just supports

the 802. l X process by relaying EAP frames.

In remaining of the section, the authentication process would be described. The EAPOL

packet format and the supplicant state machine would then be presented. Finally, the

EAP authentication methods would be studied.

2.1 .I Authentication Process

As mentioned previously, the authenticator controls the supplicant access to the network.

Once the 802.1X authentication hnction is enabled on the authenticator, a s u c c e s s ~ l

Implementation of an 802. IX Supplicant for Internet Telephony

authentication must occur before any network traffic is allowed to transmit from the

supplicant. That includes critical traffic such as DHCP' requests regardless of whether

link is established between the supplicant and the authenticator. This strict constrain

ensures that unauthorized devices would not gain network resources until authentication

is granted.

2.1.1.1 Before Authentication

To ensure that no unauthorized traffic is transmitted before a successful authentication,

the authenticator's port is set to uncontrolled. The only packets that will be accepted

from the client are EAP requests which will be forwarded to the authentication server

(see Figure 2).

Authenticator
(Switch)

Authentication
Server I

(RADIUS) 1

Uncontrolled
(EAP only)

Supplicant
(Device)

Figure 2: Before authentication

2.1.1.2 Authentication

Upon receiving the supplicant's EAP messages, the switch will forward the request to the

authentication server without changing its content. Even though the EAP contents are not

1 DHCP, or Dynamic Host Control Protocol, is a protocol for dynamically assigning IP addresses and

related network information to devices.

Implementation of an 802.1X Supplicant for Internet Telephony

changed, the encapsulation must be translated from the originating EAP message to a

RADIUS request.

Upon receiving the RADIUS request, the authentication server will either grant or deny

access to the network. A RADIUS response will then be transmitted back to the switch

which keeps the port in an uncontrolled state if access is denied, or changes to a

controlled state if access is granted (see Figure 3).

Although the supplicant is the device that requires authentication, either the supplicant or

the authenticator can initiate the process. This decision is based on timers which are set

in both the supplicant and the authenticator's state machines.

Authenticator

Figure 3: After successful authentication

2.1.2 EAP Encapsulation over LANs (EAPOL)

EAP packets are encapsulated by Ethernet frame when they are transmitted through

Ethernet between the supplicant and the authenticator. The EAPOL frame format is

shown in Figure 4. The important fields such as the Ethernet payload type, packet type

and the packet body are described in the next sections.

Implementation of an 802.1X Supplicant for Internet Telephony

Ethernet payload type 2 bytes

Protocol version

I Packet type 1 Packet body length

Figure 4: EAPOL frame format for Ethernet

2 bytes

Packet body

2.1.2.1 Ethernet Addressing

N bytes

An EAP packet is encapsulated on an Ethernet header that contains source and

destination Ethernet MAC addresses of the packet. For media where the MAC address of

the authenticator is not previously known, a standard 802.1 X MAC address 01 -80-C2-00-

00-03 would be used as the destination address. This special address is one of the

reserved addresses that switches should not forward [8]. The Ethernet type contains the

protocol type of the EAP packet, which is set to Ox888E. An 802.1X capable

authenticator would limit network traffic to only packets with Ethernet payload type set

to Ox888E before the supplicant is authenticated.

2.1.2.2 EAP Packet Types

The various EAP packet types defined by the 802.1X standard are listed in Table 1.

Table 1: EAP packet types

EAP packet type Description %

,-&;:
I t(.

EA P-Packet EAP packets (EAP-Request, EAP-Response, EAP-Success, EAP-

EAPOL-
Encapsulated-A SF-
Alert

Failure).

Packet sent by supplicant initiating the 802.1X handshake process.

An explicit logoff request issued by the supplicant. Set the
authenticator back to uncontrolled state.

Optional frame used to transmit session key information to encrypt the
data channel. Typically used for wireless LAN only.

Used for allowing alerts (e.g., specific SNMP traps, warning
messages, etc) to be forwarded through a port that is in the
unauthorized state.

Implementation of an 802.1X Supplicant for Internet Telephony

A typical call flow of the 802.1X authentication showing how a supplicant is granted

network access is shown in Figure 5. The supplicant issues an EAPOL-Start, followed by

a number of EAP-Request /Response pairs, and finally an EAP-Success (or EAP-Failure)

to complete the process. For wireless LAN where packets can easily be eavesdropped on

open air, a symmetric session key could optionally be delivered from the authenticator

through the EAPOL-Key frame. The key can then be used to encrypt the data channel.

Supplicant Auther

Acces:

EAP-Response (cred) P
EAP-Success

Acces! .
ticator

Blocked

Auther
Se

tication
ver

Radius-Access-Request
b

Radius-Access-Challenge
4

Radius-Access-Reauest

Radius-Access-Accept -
Granted

Figure 5: Basic 802.1X call flow

2.1.2.3 Supplicant State Machine

The IEEE 802.1X-2001 specification defines a set of state machines that a supplicant

implementation should comply with. The state machines define a set of timers and

events that the supplicant should react to. For example, at start up in the Connecting

state, the supplicant sends the EAPOL-Start packet maxStart number of times each with

startperiod duration. When the counter has reached maxStart, the supplicant changes the

state to Authenticated, meaning that the supplicant is not in an 802.1X network. Table 2

summarizes the operations of the state machine in various states. For completeness, the

core supplicant state machine is included in Appendix A.

Implementation of an 802.1X Supplicant for Internet Telephony

Table 2: Supplicant state transition table

Connecting

Authenticated

Acquired

Authenticating

Held

Logoff

operable.

Attempting to acquire an
authenticator. An EAPOL-Start
packet is transmitted to the
authenticator. Set the startwhile
timer to startPeriod. Set maxCount to
maxstart.

Authenticated by authenticator, or
network is not 802.1 X aware.

Sends an EAP-ResponseAdentity to
authenticator. Set the authwhile
timer to authperiod.

Supplicant is authenticating to the
authenticator. Sends an EAP-
Response frame. Set the authwhile
timer to authperiod.

Authentication failure signaled by the
receipt of an EAP-Failure. This state
provides a delay period before the
supplicant will reattempt to acquire an
authenticator. Set the heldwhile
timer to heldPeriod.

User has requested an explicit logoff.
EAPOL-Logoff packet is transmitted.

2.1.3 Authentication Methods

Connecting

Connecting (the startwhile timer
expires)
Authenticated (number of
EAPOL-Start frame sent has
passed maxstart)
Acquired (received an EAP-
RequesVldentity)

Acquired (received an EAP-
RequesVldentity)

Connecting (the authwhile timer
expires)
Authenticating (received an
EAP-Request that is not EAP-
RequesVldentity)

Connecting (the authwhile timer
expires)
Held (received an EA P-Failure)
Authenticated (received an EAP-
Success)
Acquired (received an EAP-
RequesVldentity)
Authenticating (received an
EAP-Request)

Connecting (when the heldwhile
timer expires)
Acquired (received an EAP-
RequesVldentity)

Disconnected

An important policy decision with authentication is which EAP authentication method to

deploy. The supplicant and the RADIUS server must support the same authentication

method. (The authenticator is not aware of the EAP authentication method; it only has to

Implementation of an 802.1 X Supplicant for Internet Telephony 10

support the 802.1 X authentication process.) If the supplicant supports more than one

EAP protocol, the RADIUS server must select an initial EAP protocol with which to

proceed when receiving an authentication request with EAP credentials. Selecting an

incorrect EAP protocol is not fatal; the client simply sends and EAP-NAK in response to

the server's EAP-Request with the selected protocol and suggests an alternative one.

After one additional network round trip, the correct EAP protocol becomes active.

The MD5 message-digest algorithm takes an input message of variable length to create a

16-byte "digest" or fingerprint of the input. The algorithm is computationally infeasible

to reproduce the original message given a 16-byte digest. The MD5 is designed and

intended for digital signature application to authenticate the identity of the sender.

EAP-MD5 is based on the Challenge-Handshake Authentication Protocol (CHAP) [5] for

message exchange and Message Digest 5 (MD5) for authentication. The authentication

method operates in a challenge-response manner, with the supplicant responding to the

authentication server's challenge. The authentication server sends a challenge within an

EAP packet along with a variable stream of octets called Challenge Value. Upon

receiving the challenge, the supplicant responds with clear text of the user name, along

with the user name, password and challenge message digested using MD5 into a 16-byte

text.

The advantage of the EAP-MD5 method is that it is fast and simple; the CHAP

transaction only takes a round-trip of handshake. However, EAP-MD5 suffers from brute

force attach that the message digested text can be guessed eventually. It is important that

the password be changed periodically if the EAP-MD5 authenticated method is selected.

Also, EAP-MD5 is vulnerable to man-in-the-middle attack2 because the authentication is

one way and a malicious authenticator could trick the device to redirect all the packets.

Man-in-the-middle attack is a terminology commonly used in cryptography to describe a security

vulnerability which an entity in between the supplicant and authenticator could silently hijack all the

packets sent from the supplicant.

Implementation of an 802.1 X Supplicant for Internet Telephony 11

To get around this problem, more secured methods such as the certificate based EAP-

TLS authentication are developed.

2.1.3.2 EAP-TLS

The EAP-TLS method uses the Transport Layer Security, version I (TLSvl) protocol

that is based on concept of Public Key Infrastructure (PKI) to provide mutual

authentication. The PKI is a management system designed to administer asymmetrical

cryptographic keys and public key certificates.

2.1.3.2.1 Asymmetric Cryptography

With symmetric encryption, both parties share the same key (or password) to encrypt and

decrypt data. Conversely, with asymmetric encryption, a pair of keys called public and

private keys is used; data encrypted with a public key can only be decrypted with its

private key and vice versa. The primary disadvantage of symmetric key algorithms is

that the security system is compromised once the key is exposed, making key distribution

difficult. With a public and private key pair, only the public key for encrypting data is

distributed. Since only the private key can decrypt the data and the key is never

distributed, the encryption would not be compromised.

Asymmetric key encryption still suffers from man-in-the-middle attack; someone could

intercept the public key and replaces the key, and would then be able to read the

messages between the two parties. Public key infrastructure and digital certificates are

developed to solve this problem.

2.1.3.2.2 Public Key Infrastructure and Digital Certificates

The PKI introduces the concept of having a trusted third party called the Certificate

Authority (CA) to issue digital certificates that associate a person's or device's identity

with a public-private key set. The certificate is signed by the issuer's private key with a

validity period (typically in order of years), and anyone with the issuer's public key can

verify the certificate's authenticity. For the 802.1 X, the CA and the authentication server

can possibly be the same entity.

Implementation of an 802.1X Supplicant for Internet Telephony

2.1.3.2.3 The TLS Protocol

Developed by the IETF networking working group, the TLSvl protocol is specified in

RFC 2246 [4] and is currently a draft standard. The TLS protocol is inherited heavily

from the Secure Socket Layer, version 3 (SSLV~), which is a standard developed by

Netscape to secure HTTP connections for web pages [6]. Even though the TLS protocol

was designed to operate above the transport layer using the Transmission Control

Protocol (TCP), the same mechanism can be used for the 802.1X / EAP. The TLS

protocol establishes a secured tunnel with the client and server mutually authenticating

each other's certificates by verifying PKI signatures of certificates and the validity

period. Both sides also agree on an encryption method used for the session. Figure 6

illustrates the TLS connection establishment operation with the TLS client initiating the

handshake.

Server (Authentication Server) Client (Supplicant)

Generate Client Random
ClientHello

Generate Sewer Hello Data
sewer random

Certificate Verify Sewer Identity (PKI signature of Certificate)
SewerKeyExchange Decrypt Sewer Proposed Key (sewer random)

Certificate Request
Generate Session Key
Update Handshake authentication state

SewerHelloDone

Certificate Deliver public portion of Certificate

Verify Client Certificate Sign Handshake authentication state (private key)

Verify Client Finished Generate Finished Message (keys, state)
Certificateverify

ChangeCipherSpec

Finished (Client)

Generate Sewer Finished

ChangeCipherSpec
Verify Sewer Finished Message

Finished (Sewer)

Figure 6: The TLS handshake process

2.1.3.2.4 Advantages and Disadvantages of EAP-TLS

The EAP-TLS method has an advantage that mutual authentication can be supported

(comparing with EAP-MD5's one-way authentication). The use of certificates and keys,

Imple~nentation of an 802.1 X Supplicant for Internet Telephony 13

howevcr, make it difficult to provision offline (e.g., close impossible to provision through

keypad). A related consequence with the provisioning problem is that unless the

certificate is preloaded to the supplicant, i t is bc impossible to provision the certificates

over an 802.1 X nctwork because the supplicant is not yet authcnticatcd. Finally, the

extra message exchanges with the supplicant and the authentication server slows down

the authentication process comparing with simpler method such as the EAP-MD5 method

described earlier.

2.2 PhonexChange Architecture

PhoncsChangc is the IP phone software suite for the BCM91101 reference 1P phone

platform. The reference platform includes an 8MB SDRAM, a 2MB flash, a 2 x 16 LCD

display, a keypad, indicators, a handsct and a speaker 1 microphone set, as shown in

Figure 7. The reference platform, along with Phonen-Change, serves as a reference

implementation of an enterprise 1P phone for the BCMI 101 silicon.

Figure 7: The BCM9IIOI reference IP phone

The PhonexChangc software consists of a set of device drivers, voice processing

software, call signaling protocol stacks, provisioning software and reference call client

applications. The software runs on a multitasking environment provided by the VxWorks

embedded Real-time Operating System (RTOS). Most of the software was written in

ANSI C although some of the third-party call-signaling protocol stacks were written in

C++. The timing critical drivers and DSP software were respectively written i n MIPS

and ZSP assembly languages.

Implen~entation of an 802.1X Supplicant for Internet Telephony

Figure 8 illustrates a high level overview of the PhoncxCliangc software architecture.

The PlzonexCI~ange architecture is presented as a set of interdependent tasks interacting

with each other via the set of well-defined callback functions and data buffers.

KBD

T

Figure 8: PhotwxCi~ui~g~. architecture

The call client module can be considered as the brain of the PhorzexChangc software. It

contains the necessary callback functions and set the callback function pointers when

initializing with the corresponding software components. The call client module directly

synchronizes the activity of the following PhonexChange software components.

PROVE - NVRAM 1 DHCP configuration provisioning module

HTTP - HTTP server provisioning module

RTPT - RTPIRTCP voice stream stack.

Implementation of an 802.1X Supplicant for Internet Telephony

EPT - Endpoint module. DSP resource management.

DIS - Display driver

KBD - Keypad driver scans keypad events

IND - LED indicator driver

Driver and library callback functions may execute in the context of an unknown task

defined in the corresponding software component. To provide synchronization, each

callback function provided by the call client posts the function's type and parameters as a

message to a common call client event message queue. The main task loop in the call

client then dispatches events to appropriate handlers as new messages arrive. A timeout

on the queue provides for periodic timer processing.

2.2.1 VxWorks

The PhonexChange software runs on the Wind River Vx Works operating system.

Vx Works is a Linux-like RTOS that comes with a complete set of network services such

as a TCP/IP stack, a Telnet server, a FTP server, etc. The faster context switches and

interrupt processing comparing with the Linux operating system makes Vx Works a more

suitable operating system for embedded systems [7] . The OS comes with cross-

compiling tools allowing users to develop software on Windows and other contemporary

operating systems.

The latest Vx Works offering, the Platform for Consumer Device (PCD) version 2.0,

bundles additional features that are suitable for consumer devices such as IP phones,

printers, handset, etc. The bundled features include a fault-tolerant file system, an

802.1X supplicant stack (Wind NET supplicant), a graphics library for rendering fonts

and graphics (Wind ML), an IPSec / IKE security stack, etc, that help shorten

development time. Most of the components are written in C and are delivered as source

format so custom changes can be implemented quite easily.

Implementation of an 802.1X Supplicant for Internet Telephony

2.2.2 Boot up sequence

Both the boot up code and the phone application code operate on the Vx Works 0 s . The

boot up code is responsible for decompressing the application to SDRAM and executing

it at the start address. The code also contains the TCPIIP network stack, an Ethernet

driver and a file system. When the device is booted up, depending on the configuration,

the application code could be downloaded via TFTP or via the flash memory to the

SDRAM for decompression. Once the application code is executed and upon

initialization of the operating system, the call client application would gain ownership of

the system. The call client first initializes the event queues and buffer pools. After that,

it initializes the drivers, hardware subsystems, and begins the provisioning process.

2.2.3 Provisioning

The PROVIS module is responsible for provisioning and retrieving system configuration

parameters via the non-volatile flash memory (NVRAM), key pad (user input) or DHCP.

Configuration parameters such as network settings (IP address, subnet mask, default

gateway, DNS IP, etc) and application settings (phone number, call server address, Type

of Service (TOS) settings, etc) can be provisioned.

At startup, the call client application prompts the user for provisioning over keypad. If

the user chooses not to modify the settings, then the PROVIS module may retrieve data

from either the NVRAM or DHCP, depending on the configuration. The call client

application then proceeds with starting up the rest of the system such as initializing the

DSP software, drivers, signaling protocol stack, etc. Typically upon successful

registration with the call server, the phone is ready for phone calls. The PROVIS module

is not designed to be accessed beyond startup.

The HTTP module implements a HTTP server that allows users to provision the

configurations via web forms with a HTML browser on a PC, as shown in Figure 9.

Multiple web forms have been setup to configure network and application settings as for

the case with the PROVIS module. Additionally, it is capable of performing silicon self-

test and application firmware upgrade.

Implementation of an 802.1X Supplicant for Internet Telephony

The previously stored configuration parameters are retrieved directly from the NVRAM

and are displayed on the web forms. The user can choose to modify the default

parameters and submit the form. The modified data would then be validated and stored

in the NVRAM, overwriting the old configuration. The newly provisioned parameters

would be used upon the next boot cycle.

Web-based provisioning is advantageous because web forms are versatile. A web form

could easily be extended to provision configurations that involve large data that are

impossible or at least inconvenient to provision using the phone's keypad. User

certificates and private-public key pairs used for 802.1X make good use of web forms.

On the other hand, web-based provisioning could introduce security threats. For

example, someone could capture the web traffic on the network to obtain the credentials

of the phone. Nevertheless, secure provisioning methods vary with customers and

therefore is out of the scope of this project.

Hardware
Firr~iwara

FlaTior'm
Startun

Reset

Test Call Client Provisioning

Enter test call client settings:

IP Address 110.1 36.64.202

IP Subnet 255 255 254 0

Gateway lP 1 0 1 3 6 6 4 1

DNS IP 7
Domain Name 7
r Use DHCP

Broadcorn IP Phone Web Client V1 0
02002 Broadcom Corporat~on, All rights reserved

Contact: BCMI 100 su~por t~broadcorn corn

Figure 9: Wed-based provisioning with the reference design IP phone

Implementation of an 802.1X Supplicant for Internet Telephony

2.2.4 The Two-port Ethernet Switch

The BCMllO1 chip contains a two-port Ethernet switch that is designed to have one of

the ports connected to the LAN while the other one is connected to the PC. The Ethernet

driver within PhonexChange is responsible for sending and receiving Ethernet frames

between the Vx Works TCPIIP stack and the two-port switch. The switch manages most

of the packet routing on its own, except when the destination MAC address matches the

list of reserved switch specific MAC addresses including the 802.1X special address that

is defined in the 802.1D specification [8]. The Ethernet frames with the special MAC

address as destination are forwarded to the Ethernet driver for further processing. The

Ethernet driver currently tosses all these packets.

Implementation of an 802.1X Supplicant for Internet Telephony

Chapter 3: Design and Implementation

Based on the design requirements, decisions were made when developing the supplicant

software. This chapter presents the design of the supplicant in a top-down approach.

Section 3.1 discusses the design considerations. Section 3.2 presents the high level

design of the supplicant for the PhonexChange software. Section 3.3 describes the

interface design of the supplicant software. Section 3.4 details the internal architecture of

the supplicant software. Finally, Section 3.5 summaries this chapter.

3.1 Design Considerations

The goal of the project is to implement the 802.1X supplicant for the PhonexChange

software on the BCM91 I01 reference IP phone platform. The software design is

constrained by the hardware platform (memory, processor speed, etc), standard protocol

specifications, customer requirements and existing software conventions. This section

discusses these factors.

3.1 . I 802.1X Requirements

The software would support the standard 802.1X-2001 supplicant specification. The

requirements include supporting the supplicant state machine as well as the timers and

counters that the state machine defines. The EAP-MD5 and EAP-TLS authentication

methods would be supported.

3.1.2 Configurations

The user should be able to enable or disable the supplicant software both at compile time

and at run time. Also, the authentication method and credentials should be configurable

at run time.

3.1.3 Memory Footprint

The BCM91101 reference platform includes 8MB of SDRAM and 2MB of non-volatile

flash memory. The application code and data without the 802.1 X supplicant occupy 4MB

of SDRAM and IMB of flash. The supplicant code must fit into the remaining memory.

Implementation of an 802.1X Supplicant for Internet Telephony

3.1.4 Programming Language

Similar to the majority of the PhonexChange software, the supplicant software would be

written in standard ANSI C.

3.2 High-level Design

This section presents the high level design of the supplicant software for the

PhonexChange architecture. The interaction between the supplicant software with the

rest of the system will be introduced.

3.2.1 Supplicant Module

The supplicant software fits into the PhonexChange architecture by following its

convention. In particular, a supplicant (SUPP) module dedicated to the supplicant

functionality is designed and is shown in Figure 10. The supplicant module hides the

protocol details while giving the application the flexibility to control (such as proper error

handling) and interact with it. Similar to the other modules, the supplicant module

interacts with the call client application to access the other PhonexChange components

such as the provisioning module.

The supplicant module contains well-defined public function calls or Application

Program Interfaces (APIs) and event notification functions. While the supplicant module

was integrated with the example reference design, well-defined interfaces help customers

as their applications would be using it. Defining the interface also minimize software

maintenance effort and improve software portability. The supplicant module APIs are

protected by semaphores to ensure that the module is thread-safe3. The design of the

supplicant module interfaces are described in Section 3.3.

Thread-safe is a term to describe that the software contains a mutex such that it is possible for multiple

threads to access the supplicant module at the same time without causing data inconsistency.

Implementation of an 802.1X Supplicant for Internet Telephony

Direct Function Calls

_____ I . '- - - - - ,' Callback Functions

Figure 10: PhonexChange architecture along with the supplicant module

The supplicant module accesses the Vx Works TCP/IP stack directly to send and receive

EAP packets. The software invokes appropriate API calls to bind itself with the TCP/IP

stack so that Ethernet packets with the EAP payload type would be forwarded to the

supplicant.

3.2.1.1 The 802.X Protocol Stack

Due to time and resource constrain, third party implementations are preferred over in-

house, given that the third party implementation match the requirements and justify the

cost.

The Wind NET supplicant from PCD 2.0 implements the supplicant state machine from

the 802-1X specification. The timer constants and retry counts with the supplicant state

machine are configurable at run time during startup. The supplicant supports only the

Implementation of an 802.1X Supplicant for Internet Telephony 22

LEAP authentication method4, though the software can be extended to support additional

EAP methods.

An alternative is the x-supplicant software, which is a GNU Public License-based open

source implementation that supports 802.1X along with many EAP methods such as

EAP-MD5, EAP-TLS, EAP-TTLS, PEAP, LEAP, etc. The software is primarily written

for Linux. Due to licensing issue and the fact that the software has to be ported to

Vx Works, the Wind NET supplicant was chosen to be used instead.

3.2.1.2 The TLS Protocol Stack

In additional to supporting the 802.1X protocol, the supplicant module supports the EAP-

MD5 and EAP-TLS authentication methods. The EAP-TLS authentication in particular

needs to support the TLS protocol. There are a few third party implementations available

(such as the OpenSSL and MatrixSSL software) each with their advantages and

drawbacks. Therefore, a TLS interface was defined to decouple the dependent of the

supplicant module with a specific TLS protocol stack. For the PhonexChange software,

the OpenSSL software was chosen as the TLS stack because it is field-proven.

The OpenSSL software is an open-source software written in ANSI C. The OpenSSL

software implements the Secure Socket Layer (SSLv21v3) and Transport Layer Security

(TLSvl) protocols, along with full-strength standard crypto algorithms such as RSA,

SHA, AES, Blowfish, IDEA, etc [lo]. Originally developed by Eric A. Young and Tim

J. Hudson, the OpenSSL project is managed by a worldwide community of volunteers.

The software comes with a command-line based tool for the crypto operations, as well as

static libraries and header files that an application can be linked and built with. While

some of the crypto algorithms such as the Blowfish are subjective to export restrictions,

the OpenSSL software itself is licensed under an Apache-like license, that is, the software

is free for distribution in both source and binary forms as long as the distributor

acknowledges the use of the software in the documentation.

4 LEAP or light weight EAP is a proprietary EAP method developed by Cisco.

Implementation of an 802.1X Supplicant for Internet Telephony

3.2.2 Provisioning

At startup, the call client initializes the device drivers and retrieves the 802.1X

configurations through the PROVIS module. Depending on the configuration, the call

client may choose to enable with a specific EAP method, or to disable 802.1X supplicant.

The call client application then proceeds with the rest of the startup process.

Due to the large size of the key and certificates, the HTTP server on the IP phone is

chosen for provisioning the 802.1 X configurations. As shown in Figure 1 1, an html page

was created for the 802.1 X supplicant that allows the user using a web browser to enable

the supplicant with an EAP method (MD5 or TLS), or to disable it. The EAP method

parameters, such as the password, the private key, the certificates, are available for

configuration once an EAP method is selected.

802.1 X Supplicant Provisioning

Enter 802 1X settlngs

EAP method

Identity

Pr~vate key (PEM format)

Personal cert~f~cate (PEM format)
LZx~cmluYSOyazNzZXJ2ZS5wcm90b2NvbHRlc3QuYnJvYWR]b2OuY29tX3R1~3Qu ;]
Y ~ J O M C ~ G A ~ U ~ J Q Q ~ M C A G C ~ ~ G A Q Q B ~ J C K A W Q G C C ~ G A Q U F B ~ M E B ~ ~ ~ B ~ E F B Q C D A] A ~

Figure 11: 802.1X supplicant provisioning (EAP-TLS)

Table 3 lists the 802.1X supplicant parameters to provision. To simplify the provisioning

process for the reference design, the local certificate is assumed to inherit directly from

Implementation of an 802.1X Supplicant for Internet Telephony 24

the root certificate with only one trusted certificate. The limited provisioning is sufficient

to verify the supplicant software's operation and is a typical setup for a private CA in a

corporate LAN. It is expected that customers may further enhance the provisioning for

their products5.

Once the user has submitted the 802.1X html form, the phone stores the new

configurations to the NVRAM, which would be effective after reboot.

Table 3: 802.1X supplicant configuration parameters

Category Parameter J .v Desdptlon
,I

General

EAP-MD5

EAP-TLS

802.1X supplicant feature Choices: Disable 1 Enable (EAP-MD5) / Enable
(EAP-TLS).

Identity

Password

Identity to be sent as part of the EAP-
ResponseAdentity frame.

MD5 password to be message digested for the
EA P-Response.

Local certificate Phone's local certificate in Privacy Enhanced Mail
(PEM) format.

Private key Private key of the local certificate in PEM format.

Root certificate Root certificate of the local certificate in PEM
format.

Trusted certificate Trusted certificate in PEM format.

5 Depending on the configuration, the local certificate may be inherited from one or more intermediate

certificates in a hierarchy along with the root certificate. In order for the authentication server to validate

the local certificate, the certificate's signature, which is signed by the issuer's private key, is examined

using the issuer's public key. The validity period of the certificate is also verified. The root certificate

must be within the list of trusted certificates.

Implementation of an 802.1X Supplicant for Internet Telephony

3.2.3 The Ethernet Driver and the two-port Switch

Since EAP packets, at least for the initial ones, contain the same standard 802.1 X

destination MAC address (01-80-C2-00-00-03), the topology creates an interesting

scenario with both the IP phone and the PC act as a supplicant seeking for an

authenticator on the LAN port. The switch routes all frames with the special MAC

address as destination to the Ethernet driver and three special rules are created.

1 . EAP packets received fiom the PC port are sent only to the LAN port.

2. EAP packets received fiom the phone are sent only to the LAN port.

3. EAP packets received fiom the WAN port are copied to both the phone and the

PC port.

The last rule is necessary because it is unknown if the packet is intended for the phone

supplicant or for other supplicants on the PC port.

3.2.4 Data Store

The supplicant software uses data storage for storing EAP credentials, states, and

counters. With the exception of the third party software, all the data structures were

chosen to be static allocated. Using static data store has an advantage that the data store

is readily available. The disadvantage is that static data that is not used otherwise would

be wasted.

3.3 lnterface Design

This section presents the interface specification and the API function calls of the

supplicant module defined based on the high-level design. A typical usage of the

supplicant API would then be described.

3.3.1 Interface Specification

The interfaces of the supplicant module can be categorized into three types: the

application interfaces (upper-edge), the transport interfaces (lower-edge), and the control

interfaces (side-edge) (see Figure 12). The application interface enables the application

Implementation of an 802.1X Supplicant for Internet Telephony 2 6

to notified with state change with the supplicant state machine. It allows the application

to send command (i.e., Sending off an EAPOL-Logoffrequest). The transport interface

provides the ability for the supplicant module to send and receive EAP packets over

Ethernet. This interface would be interacting directly with the TCPIIP stack. Finally, the

control interface enables run-time initialization and configuration of the supplicant

module.

- Logoff Command
- Status Query

- Event - Statistics Query

- Receive Packet - Send Packet

A Application
Configuration . . lnterface
Interface .

III, API Call

- Configurat~on
- Enable 1 disable b

. . . . , Event Callback

Supplicant
Module

Figure 12: Supplicant module - interface specification

Each bullet in Figure 12 represents an interface with the supplicant module. A solid line

represents an API call whereas a dotted line represents an event callback. In order to

avoid the overhead of having the application handle the various supplicant states, the

supplicant module would be hiding this to within the module while notifying the

application whenever the supplicant state changes.

4 7

.

The APIs that realize the interfaces are listed in Table 4. Note that the supplicant module

accesses the Vx Work TCPIIP stack directly and therefore no interfaces were designed for

the transport interface.

"

Transport . v lnterface .

Implementation of an 802.1X Supplicant for Internet Telephony

Table 4: APIs correspond to the interfaces

Interface - API

Enable / disable supplicant supplnit() - ln~tialize supphcant
suppStart() - Start service
suppStop() - Stop service

Configuration suppSetParm(XXXCRED1TS) - Set credentials
suppGetParm(XXXCRED1TS) - Get credentials

Statistics query suppSetParm(RESETSTATS) - Reset statistics
suppGetParm(STATS) - Query statistics

Status query suppGetParm(STATUS) - Query status

Logoff command suppStop() - Send EAPOL-Logoff before
stopping service

Event SUPPEVT(prevEvent, newEvent)

3.3.2 Detailed Interface Description

This section describes the typical usage of the supplicant API. The detailed API

definition for the supplicant module is included in Appendix B.

3.3.2.1 Configuration

suppInit0 is expected to be the first API to invoke. The API initializes the 802.1X

supplicant service with an EAP method (EAP-MD5 or EAP-TLS). An event callback

function pointer is also supplied for notifying the client application when there is a state

change in the EAP supplicant state machine as defined in 802.1X-2001 and listed in

Table 2. The routine also starts a timer that wakes up every second to check for the three

timers defined by the state machine.

When the event callback function is invoked, both the original and new states are

reported. Monitoring the state change gives the application an idea of the current state of

the 802.1X service. It is up to the application how to react to the state change. For

example, the application might hold on to the rest of system start-up until it received a

state change from Authenticating to Authenticated (i.e. supplicant authenticated) or a

Implementation of an 802.1X Supplicant for Internet Telephony 28

state change from Connecting to Authenticated (i.e. authenticator not responding I does

not exist).

suppSetParm0 provisions the authentication information for the specific authentication

method. For example, when EAP-MD5 is used, it is expected that

suppSetParm(SUPPPARM - MDSCREDITS) be called with the identity 1 password

credentials before the supplicant service is started.

3.3.2.2 Operat ions

suppStart0 enables the 802.1X supplicant service. In particular, the function associates

the supplicant module with the VxWorks TCPIIP stack so that 802.1X packet (i.e.,

packets with Ethernet payload type set to the EAP packet type Ox888E) would be routed

to the service. The supplicant service then begins the supplicant state machine in the

Connecting state. As discussed in Section 2.1.2.3, the supplicant starts sending EAPOL-

Start frames, either to wait for the retransmission timer start When to expire, or to wait for

the authenticator to send an EAP-RequestLdentity frame. Note that the EAP method

parameter must be provisioned with suppSetParm0 before the supplicant service is

started so that the supplicant could supply the identity and credential information for the

specific EAP method.

suppGetParm(BSWPARM - STATUS) can be used to query the state of the supplicant

state machine as well as the (default) value of the start While, auth While and heldWhile

timers, and the start When counter. In addition, suppGetParm(BSWPARM - STATS) can

be used to query the supplicant statistics such as packet sent I received, source MAC of

the last received 802.1X packet, etc. suppSetParm(SUPPPARM - CLEARSTATS)

resets the collected supplicant statistics.

Finally, suppStop0 disables the 802.1 X supplicant service and removes the 802.1 X

service from the TCPIIP stack. An EAPOL-Logoff is sent before the supplicant service is

stopped. Then, the timer tick is turned off. If the client application wish to opt for

Implementation of an 802.1X Supplicant for Internet Telephony

another EAP method, at this point it could invoke suppInit0 for the desired EAP

method.

3.3.2.3 Error Handling

Errors are reported synchronously upon the return of the APIs. An error is returned when

the user has specified an invalid parameter, or an API is invoked at an unexpected state

(e.g., suppStop0 invoked before s u p p h i t o is invoked). Protocol-level failures and

timer expiries are conveyed through the event callback function. For example, state

transition from Authenticating to Held indicates that an EAP-Failure packet is received.

The statistics returned from suppGetParm()

3.4 Internal Architecture

This section details the internal architecture of the supplicant module. The supplicant

module is organized into three main components: the interface layer, the Wind NET

supplicant stack and the EAP method handler (see Figure 13). The interface layer

implements the API and event callback function for the supplicant module, ensuring that

the supplicant module conforms to the PhonexChange architecture. The Wind NET

supplicant stack implements the 802.1X supplicant state machine and handles EAP

packets with the Vx Works TCPIIP stack. Finally, the EAP method handler manages the

EAP method specific EAP-Request packets from the authenticator. Since the supplicant

module uses the Wind NET supplicant stack, the design of the supplicant module is

influenced by the Wind NET supplicant.

3.4.1 The Interface Layer

The interface layer relays API calls and events synchronously between the client

application and the Wind NET supplicant. It ensures that the interface of supplicant

module conforms to the PhonexChange architecture. Specifically, all APIs are protected

by a semaphore so that only one task can access the internal data at a time. The interface

layer also simplifies and separates the call client's interaction with the Wind NET module.

Implementation of an 802. I X Supplicant for Internet Telephony

I W o r k s TCPllP Stack I

Interface Layer
I
I

I I : EAP Method Handler : ;
I I
I I
I I

Ethernet Driver

Wind NET Supplicant Stack

Figure 13: Conlponents of the supplicant module

I I

EAP-MDS
Handler I I

I I
I I
I I
I I

EAP-TLS
Handler

3.4.2 The Wind NET Supplicant Stack

The Wind NETsupplicant stack contains a number of passive components and is

designed to be event-driven. The components generally belong to the supplicant state

machine parsing and processing inbound EAP packets, and creating outbound EAP

packets, as shown in Figure 14.

At startup, a task is created to listen for incoming events (incoming EAP packets, user

event, timer tick, etc), a system message queue is created for queuing events in first in,

first out order, and a system timer is configured to generate a timer event to the message

queue every second fi-om an unknown system task. When an EAP packet arrives, the

packet would be parsed and if valid, would be inserted to the message queue. The

internal task, which is waiting for incoming events, wakes up and processes the packet.

Depending on the packet type, the state machine may updated, in which case would

generate a state change event to the application.

A I I I

, -

EAP packets

v

I - - - - - - - - - - - - - - - - - - - I
I .

--.- . - . - ... ,. 1

Implementation of an 802.1X Supplicant for Internet Telephony

Configuration

Tx
Packet

Application 1 Network . - - - - - - - - - - - - - - - - - - .

Rx
Packet

State Change
Event

Figure 14: Internal architecture of the Wind NET supplicant stack

The Wind NET supplicant stack handles only generic EAP packets such as EAPOL-Start,

EAP-RequeMdentity, EAP-Response/Identity, EAP-Success, EAP-Failure and EAPOL-

Logo8 EAP specific requests are handled by the EAP method handler. Figure 15 shows

the call flow of the Wind NET supplicant.

3.4.2.1 The EAP Method Handler

While the Wind NET supplicant stack handles only generic EAP packets, the EAP

method handler manages all (non EAP-Request/Identity) EAP-Request packets from the

authenticator and generates appropriate EAP-Responses. For this project, the EAP-MD5

and EAP-TLS methods are required, and hence the EAP-MD5 and EAP-TLS handlers

were implemented. At initialization when the suppInit() invoked with the EAP method

configured, the supplicant stack setup the method handler to use so that when an EAP-

Request frame is received, it would be passed to the method handler.

The actual payload contents within the EAP-Requests and EAP-Responses are specific to

the authentication method used, and the number of EAP-Request / Response pairs could

go from one to as many as the authentication method needs. EAP-TLS, for example,

normally involves five transactions. In order to properly manage the EAP transaction

sequences, a mini state machine was implemented for each handler to handle the specific

EAP-Request / EAP-Response sequences. The mini state machine operates in

conjunction with the supplicant state machine to complete the authentication process. An

Implementation of an 802.1 X Supplicant for Internet Telephony 3 2

EAP specific data structure was also created to store its current state and credential

information. For all EAP methods, the authenticator completes the negotiation process

by indicating the authentication status with either an EAP-Success or an EAP-Faihrre.

initializes

.1

I Wait for event to
arrive

Received an event

onfiguration 0 yes 14
Timer event? 0
EAP packet

received

Process state
machine

Yes

Process in EAP
specific handler

event?

Generate state 1 1 yes

Yes , Update timer
variable

Send the EAP
packet

Figure 15: Supplicant task flow chart

Implementation of an 802.1 X Supplicant for Internet Telephony

3.4.2.2 The EAP-MDS Handler

As discussed earlier, MD5 is a challenge-response authentication method. The

authentication server sends an EAP-Request along with a challenge token and the EAP-

MD5 handler composes a response based on the challenge token, the user identity and the

user password, digested with MD5.

Figure 16 illustrates the state machine of the EAP-MD5 handler. At initialization, the

handler allocates a MD5 data block to store the current state of the handler. The state

machine then enters the WAIT - FOR - CHALLENGE state. When an EAP-Request frame

with the challenge token is received, the handler generates the response, and is

transitioned to the WAIT - FOR - SUCCESS state. Finally, the state machine transitions to

the AUTHENTICATED state when an EAP-Success frame is received. Note that EAP-

Request /Identity reset the state machine, and the EAP-Failure fiame is processed by the

main supplicant state machine.

EAF-Request ldent~ty recewec

ln~t~al~zat~on
EAF-Request ldent~ty recewec

WAIT-FOR-CHALLENGE WAIT-FOR-SUCCESS
AUTHENTICATED

EAF-Request MDE-Challenge received /
Generate EAP-Respones MCE-Response

Figure 16: State machine of the EAP-MD5 handler

EAF-Success received

3.4.3 The EAP-TLS Handler

The EAP-TLS handler implements a TLS client (as oppose to the TLS server at the

authentication server). Essentially, the handler establishes a TLS connection with the

authentication server over EAP via the authenticator. Establishing the TLS connection

Implementation of an 802.1X Supplicant for Internet Telephony 3 4

ensures that both the client and server are mutually authenticated as the peer certificate

can be verified against the trusted list of certificates locally.

The EAP-TLS handler uses the OpenSSL library as the TLS stack. As discussed earlier,

while the OpenSSL library contains industrial strength crypto algorithms and a complete

SSLITLS stack, its memory (code, static and dynamic data) footprint of -800kB on

Vx Wor-ks can discourage some customers with devices with small memory footprints. To

ease the portability of the supplicant software to use another TLS implementation, a TLS

client wrapper was written to abstract the OpenSSL library from the EAP-TLS handler.

The wrapper contains only standard ANSI C data types, making it easier to integrate with

other TLS solutions. The wrapper is also generic that its use is not limited to the

supplicant software. The TLS client wrapper API is summarized in Table 5, and its

detailed description and usage are included in Appendix C.

Table 5: The TLS client wrapper API

until deleted with tlsDeinit(). The context stores connection specific
preferences and certificate-related information.

Configures the TLS stack with the created context. Information such as
certificates, private key, and authentication preference can be
provisioned.

Creates a TLS session based on the context. The TLS session
represents the TLS connection.

Processes an incoming TLS frame and generate a response packet (if
any).

Deletes the created TLS session.

Delete the created TLS context and de-initializes the TLS stack.

Figure 17 describes the state machine of the EAP-TLS handler. At startup, the EAP-TLS

handler initializes the TLS stack and allocates a TLS data block to store the current state

of the state machine and credential information. The state is then set to

Implementation of an 802.1X Supplicant for Internet Telephony 35

WAITFOR-TLS-START. TLS-Start is a special flag in the first octet of the EAP-Request

payload from the authenticator, which is normally sent after the EAP-Request /Response

Identity transaction. When an EAP-Request with the TLS-Start flag set is received, the

TLS client initiates a TLS connect request and transitions to the

HANDSHAKE - PROCESS state. The client then begins the TLS handshake process with

the server as already introduced earlier in Figure 6. Note that the entire handshake

process is transported through the EAP-Request and EAP-Response packets respectively

for the authenticator and the supplicant. In other words, the TLS client must be the peer

sending an EAP-Response to complete the transaction. Therefore, as the handshake

process completes, if the TLS client has no more data to send, it simply sends an EAP-

Response with the TLS-Ack flag set. Finally, the state machine transitions to the

AUTHENTICATED state when an EAP-Success is received.

EAP-Request Identity received

ln~t~ahzatron
EAP-Request ldent~ty rece~ved EAp-Request TLS

WAIT-FOR-TLS-START HANDSHAKE-PROCESS
AUTHENTICATED

EAP-Request TLS start received 1
Generate EAP-Response to establ~sh TLS connectlon EAP-Success rece~ved

Figure 17: EAP-TLS state machine

3.5 Summary

Based on the various design considerations, the supplicant module was designed and

implemented for the PhonexChange software on the IP phone reference platform with the

role of an 802.1X compliant supplicant. The implementation was then tested with

different test cases to ensure proper functionality. The test setup, test scenarios and

results are described and discussed in the next chapter.

Implementation of an 802.1X Supplicant for Internet Telephony

Chapter 4: Testing

The goal of testing for this project is to verify that the implemented supplicant is

functional on the reference IP phone platform. To verify the supplicant's functionalities,

a simple 802.1 X framework was setup. The setup consists of an authentication server, an

authenticator, a supplicant (the reference IP phone) and an observer. Test cases were

then manually applied to the supplicant and the results were observed and analyzed.

The test cases can be classified into three main categories: unit tests, performance tests

and interoperability tests. Unit tests were conducted to ensure that the implementation

follows supplicant state machine operations. Performance tests were performed to ensure

that supplicant is operational with the system load and memory availability. The

implementation was also compared with other supplicants to confirm that its performance

is competitive. Finally, a limited interoperability test with another authentication server

was conducted

In this chapter, the test setup and tools would first be introduced. The procedures and

results for each test categories would then be described and presented.

4. I Test Setup and Tools

A simple 802.1X framework was setup for testing and is shown in Figure 18. The setup

contains an authentication server (a PC with the RADIUS server installed), an

authenticator (a managed switch), a supplicant (the reference IP phone) and an observer

(PC equipped with a network analyzer). Commercial equipments were chosen to be used

instead of simulators sending and receiving scripts because commercial equipments

resemble a real enterprise network. Commercial equipments also ensure that the

implementation is functional and interoperable, at least with the equipments tested. With

scripts, for example, the server password check could be wrongly written that it never

fails. Furthermore, commercial equipments are relatively easy to setup. However, the

disadvantage is that only features available for the equipments can be used which could

Implementation of an 802.1X Supplicant for Internet Telephony 3 7

hinder some of thc test scenarios or setup, for cxamplc, when customer reports an

interoperability problem using another authenticator with specific timing.

,-.I. , .

over Ethernet , --

I -

Authenticator
Hub

EAP .. Radius
over RADIUS * PKI

Authentication Authentication
Server Service

Observer

Figure 18: Supplicaiit test setup

4.1 . I The Authentication Server

The authentication server is a PC with the Microsqft bv indo~~s Server 2003 OS installed

and the RADIUS server service configured. The EAP-MD5 or EAP-TLS authentication

method can be chosen to be used with the credentials configured. A CA service was also

installed to issue a certificate / key set to the phone prior to testing. The authenticator

server owns the root certificate, which can be configured to be part of the phone's trusted

certificate list for peer authentication.

4.1.2 The Authenticator

The authenticator is a D-Link Layer-2 managed switch (DES-3226). The switch is an

enterprise grade 24-port nlanaged switch that contains Level 2 (Ethernet I 802.1 level)

features such as 802.1 X (access control), 802.1 pq (QoS), etc. Bridging the authentication

server and the supplicant, the switch was configured to require 802.1 X authentication for

all its downstream ports, including the port that is connected the IP phone. The RADIUS

server is connected to the upstream port and does not require authentication. The current

state of the supplicant can be audited through the web server on the switch.

Implementation of an 802.1X Supplicant for Internet Telephony

4.1.3 The Supplicant

The supplicant is a reference IP phone that includes the 802.1 X supplicant software.

Recall the IP phone contains a 2-port Ethernet switch that is intended to connect to the

LAN for one port, and optionally to a PC (or a network of PCs) for the other. The IP

phone is connected to the managed switch from its LAN port via a hub. The purpose of

the hub is to bypass the managed switch and to allow the observer PC to communicate

with the IP phone even without being authenticated.

4.1.4 The Observer

The observer is a PC with the Microsoft Windows XP OS with the network analyzer

Ethereal installed. The observer can be setup in two different ways depending on the

situation. For the first case, the PC is connected to IP phone and the managed switch via

an 8-port hub6. When a hub is used, unlike a switch which sends traffic only to the

destined port(s), traffic is broadcasted to all other ports including the observer PC. The

hub allows the observer PC to capture the network traffic between the IP phone and the

managed switch, particularly the 8O2.lX network traffic. A very similar setup was used

during development as it allows the phone to download the binary image for the

application using TFTP via the hub without being authenticated. The phone can also be

provisioned this way without being authenticated.

For the second case, the PC is connected directly to the PC port of the switch on the IP

phone (supplicant) so that the 802.1 X activities through the PC port is recorded. This

setup is useful, for example, when verifying that EAP packets from the supplicant on the

phone are sent only to the LAN port.

A hub contains a number of interconnected ports. When an Ethernet packet arrives at one port, it is

copied to the other ports so that all segments in the LAN receive the packet. Hub is an old Ethernet

switching technology that can be inefficient because of all the collisions and is now being replaced by

switches. On the other hand, because of the nature of hub that packets are copy to all ports, it is usehl for

network packet capturing.

Implementation of an 802.1X Supplicant for Internet Telephony

4.1.5 Ethereal

Ethereal is a network packet analyzer that captures network traffic. This open source

software runs on Windows, Linux and other flavors of operating systems. Depending on

the settings, Ethereal can capture packets in promiscuous mode where all packets that the

network interface card receives are captured. With Ethereal, all the packets between the

authenticator and the supplicant can be captured and time stamped. Figure 19 shows a

filtered network capture showing the EAP-MDS authentication handshake between the

supplicant and the authenticator. Ethereal serves as the primary tool for verifying the

supplicant software, as well as a useful debugging tool to aid development.

,..,..*
D Frame 19822 (60 byces on wi re . 60 byces captured)
o Ethernet 11, Src: 00:08:02:95:6d:36, Dsr: 01:80.c2:00:00:03

Des t i na t i on : 01:80:c2:00:00:03 (01:80:c2:00:00:03)
source: 00:08:02:95:6d:36 (00:08:02:95:6d:36)
Type: 802.1x n u t hen t i c a t i on (Ox888e)
T r a i l e r : 74657374000000000000000000000000.. .

v 802. l x n u t hent i c a t i on
ve rs i on : 1
Type: EAP Packet (0)

Code: Response (2)
I d : 3
Length: 22
Type: MD5-Challenge CRFC37481 (4)
va lue-s ize : 1 6
va lue: 704A399BBFFD3E5F6DEEF4C425979822

Figure 19: Ethereal showing a network capture for EAP-MD5

4.1.6 HyperTerminal

In additional to using Ethereal, the serial port output from the IP phone is displayed using

HyperTerminal on the observer PC. In particular, all the state change event of the

Implementation of an 802.1X Supplicant for Internet Telephony 40

supplicant module is logged for analysis. Also Vx Works shell commands can be executed

from HyperTerminal for performance profiling.

4.2 Unit Tests

The unit tests were primarily used to verify that the supplicant implementation conforms

to the 802.1X specification and the EAP operations. The unit tests also serve as a

baseline for the supplicant feature as the IP phone software continues to evolve in the

future. For each test, specific steps were performed with its network trace captured by

Ethereal. The trace was then analyzed manually to verify that the supplicant

implementation behaved expectedly. For example, at start up, it is expected that the

supplicant would send out the EAPOL-Start packet for maxstart (3 by default) number of

times that are startperiod (5 seconds by default) apart. Table 6 contains the list of test

cases used for testing. Appendix D describes the procedure and expected observation of

each test case in detail. The supplicant implementation passed all the unit tests.

Table 6: Unit test cases

Test Case Description . . ,

,_: . .
1 ~uthentication using EAP-MD~ (correct credentials).

2 Authentication using EAP-MD5 (incorrect credentials).

3 Authentication using EAP-TLS (correct credentials).

4 Authentication using EAP-TLS (incorrect credentials).

5 Configure the supplicant and authentication server to use different EAP
methods.

6 Authentication with a wrong identity.

7 Supplicant without an authenticator.

Although it is sufficient to execute the test cases and verify the results manually, the

verification process can be tedious and error prone. Automated test with the aid of a

scripted authenticator may be implemented in the future to enhance the process.

Implementation of an 802.1 X Supplicant for Internet Telephony

4.3 Performance Tests

Performance tests are divided into two portions. First, the performance of the supplicant

implementation was profiled to ensure that it performs within the memory and CPU

usage performance requirements. The memory and CPU usage would also be compared

against the same system without the supplicant software. The time performance of

supplicant is then measured and is compared with two other supplicant implementations.

4.3.1 Memory Performance

The memory usage was measured using Vx Worh console command rnemShow. An

example console output of rnernshow is shown in Figure 20. This command shows the

available system heap memory in bytes for dynamic memory allocation (e.g., malloc() in

C) and the heap memory that is already allocated. Since the SDRAM is shared, the

amount of system heap memory actually varies based on the size of the code and static

data memory consumption; the larger the code or static data size, the less system heap

memory is available. In other words, when referencing the heap memory numbers with

the same software without the supplicant, the memory foot print of the supplicant

software can be determined.

-> memShow
status bytes blocks avg block max block
------ - - - - - - - - - - - - ------- - - - - - - - - - - ----------

current
free 1679520 6 279920 1593568
alloc 1 4 1 0 7 0 4 9 1 2 1 5 4 6 -

cumulative
alloc 2 4 4 1 7 6 0 1 1 0 5 2 2 0 9 -

Figure 20: The memShow command on VxWorks showing the memory consumption with the
supplicant software

By executing the rnernShow command within the application, the memory consumption

was measured every 200 ms with and without the supplicant software7. The peak

memory consumptions with the various setup were recorded, which is shown in Table 7.

7 A sampling rate is chosen because the authentication process can vary from 2 seconds up to 15 seconds to

complete. 200ms appears to be a reasonable sampling rate.

Implementation of an 802.IX Supplicant for Internet Telephony

Three images were built for the comparison. For the first and second configurations, an

image was built with full 802.1 X support including the OpenSSL library. For the third

and fourth configurations, an image was built without EAP-TLS support (and hence the

OpenSSL library was not included). For the last configuration, the 802.1X software was

not included in the image. Note that each image has the same total heap memory

regardless of the configuration because they consume the same amount static and code

space. Using the figures in Table 7, it is possible to determine the memory footprint of

the supplicant software. For example, the static data and code size of the supplicant

software can be found by subtracting the heap size of the full supplicant software

(3,084,5 12 bytes) with the heap size without it (3,876,688 bytes). Table 8 summarizes

the results.

Table 7: Peak allocated memory in bytes with different 802.1X configurations

EAP-TLS 1,467,712 1,616,800

EAP-MD5 (with OpenSSL) 1,646,416 1,438,096 3,084,512

Disabled (with OpenSSL) 1,658,752 1,425,760

EAP-MD5 (no OpenSSL) 2,389,456 1,438,096

Disabled (no OpenSSL) 2,401,792 1,425,760

Disabled (no 802.1 X) 2,450,928 1,425,760

Implementation of an 802.1X Supplicant for Internet Telephony

Table 8: Memory footprint of the supplicant software

. . ;:'\.,. .. Authentication StaUc Data, Dynamic Total (bytes)
- .Mehod

. .
code @Vtes) (bytes)

Full supplicant EAP-TLS 792,176 191,040 983,216

Full supplicant EAP-MD5

Full supplicant Disabled

Supplicant (no OpenSSL) EAP-MD5

Supplicant (no OpenSSL) Disabled

Note that the full supplicant software is as much as 934kB larger than the supplicant

without EAP-TLS support. That is solely because of the OpenSSL library. As discussed

earlier, the EAP-TLS implementation accesses the OpenSSL library through a wrapper.

If the large memory footprint becomes an issue in the future, the OpenSSL library can

easily be replaced with a smaller TLS solution.

4.3.2 CPU Performance

The CPU % usage is measured using the Idle CPU Profiler (ICP) tool developed in-

house. The profiler measures the number of CPU ticks that the CPU stays idle during the

time of measurement. Essentially, the profiler enters a training stage at startup keeping

track of the number of ticks it runs. This counter is treated as the reference count for the

rest of the process. The profiler then creates a task using the lowest priority of the 0 s .

The task contains a simple loop with a counter that increments as it runs. Since the task

is the lowest priority of the system, it is executed only when the CPU is idle. Based on

the reference and idle counters, the % of CPU usage can be calculated. For example, an

idle counter of 300 and a reference count of 100 indicate that the CPU is idle for 30%

within the duration. The increase in task context switch has certainly added extra

overhead to the CPU. Experiment shows that the extra overhead takes up approximately

0.5% of the CPU cycle.

Using the ICP, the CPU % was measured every 200 ms with and without the supplicant

software. The peak CPU consumption is roughly 45.87 % and 46.25 % with EAP-MD5

Implementation of an 802.1 X Supplicant for Internet Telephony 44

and EAP-TLS respectively comparing with 45.77 % with the supplicant disabled, which

are well within the requirement. The result also shows that the CPU consumption of the

supplicant software is negligible.

4.3.3 Time Performance

In this test, the timing performance of the supplicant software is measured. In particular,

the time it takes to successfully complete the 802.1X authentication process with the two

EAP methods were measured based on the network capture. In order to make the time

performance measurement meaningful, the supplicant software was compared against the

same authentication process with two other implementations - one supplicant runs on the

observer using a third party supplicant developed by Meetinghouse, and the other

supplicant runs a Linux device using the open source x-supplicant.

Table 9 lists the measured time performance with the EAP-MD5 and EAP-TLS methods.

The results with the EAP-MD5 method are very close while the results with the EAP-

TLS method vary possibly due to different number of TLS handshake operations.

Furthermore, upon analyzing the network capture, it was found that much of the delay

comes from the RADIUS server. It typically takes less than 10ms for the supplicant to

respond whereas it takes as much as 1.5s for the RADIUS server to respond.

Table 9: Time performance of the EAP-MDS and EAP-TLS methods with different supplicant
software

Windows XP / Meetinghouse 2.28s 7.31 s

Linux / x-supplicant

4.4 In teropera bility Tests

The purpose of interoperability tests is to exercise the supplicant software with different

brands of 802.1X switches and RADIUS servers (authentication server) to ensure that the

Implementation of an 802. IX Supplicant for Internet Telephony

supplicant is interoperable. At this moment, only another RADIUS server, the

FreeRadius that runs on the Linux OS, was setup for testing. It is expected that more

devices would be added to the profile in the future.

Implementation of an 802.1X Supplicant for Internet Telephony

Chapter 5: Conclusion

The 802.1X standard combined with the EAP defines a framework to provide access

control for devices. Client devices known as supplicants (in 802.1 X terminologies)

connect to an 802.1X aware network require authentication from the RADIUS server, via

an 802.1 X aware switch.

In this project, the supplicant software was implemented for the BCM91101 reference IP

phone. The interfaces and internal architecture design of this software were based a list

of design requirements to make it both modular and suitable for the PhonexChange

software. Finally, the supplicant software was functionally tested and performance tested

to make sure it is up to standard and meets the requirement specified.

As mentioned in the previous chapter, the test results show that the supplicant software

was successfully implemented. The supplicant matches the requirements with a peak

memory consumption of 983kB with the supplicant with the EAP-TLS method and 61kB

with only the EAP-MD5 method. The CPU usage of the supplicant software is slightly

less than 1%, which is negligible and does not interfere with the rest of the

PhonexChange software.

In future releases, the test methodologies can be further enhanced such as automated

testing in a simulated 802.1 X environment, as well as introducing different reference

authenticator and authentication server devices and/or software to improve the supplicant

interoperability.

Although the supplicant software was successfully implemented, much work remains to

be done. There has been interest to implement an authenticator for the two-port switch

on the BCMI 101. Such configuration must be carefully evaluated for its impact with the

supplicant software. Furthermore, the emerging PEAP method backed by Microsoft,

Implementation of an 802.1X Supplicant for Internet Telephony

Cisco, and RSA Security appear to be gaining popularity. It is unquestionable this

emerging method should be considered in future releases of the supplicant software.

Implementation of an 802.1X Supplicant for Internet Telephony

References

[1] "802. lX: Port-Based Network Access Control", IEEE, October 2000.

[2] Blunk, Vollbrecht , "RFC 2284: PPP Extensible Authentication Protocol (EAP)",

IETF, March 1998.

[3] Rivest, "RFC 132 1 : The MD5 Message-Digest Algorithm", IETF, April 1992.

[4] Dierks, Allen, "RFC 2246: The TLS Protocol Version 1 .On, IETF, January 1999.

[5] Zorn, Cobb, "RFC 2433: Microsoft PPP CHAP Extensions", IETF, October 1998.

[6] Frier, Karlton, and Kocher, "The SSL 3.0 Protocol", Netscape Communications

Corp., November 1996.

[7] Ip, "Performance Analysis of Vx Works and RTLinux", Languages of Embedded

Systems, December 200 1.

[8] "802.1 D: Media access control (MAC) Bridges", IEEE, June 2004.

[9] "Protected Extensible Authentication Protocol (PEAP)", Symbol

http://www.symbol.com/products/wireless/peap.html, accessed: March 2 1, 2005.

[lo] Viega, Messier, and Chandra, "Network Security with OpenSSL", O'Reilly, June

2002.

Implementation of an 802.1X Supplicant for Internet Telephony

Appendix A: 802.1X Supplicant State Machine

The supplicant state machine as specified in the 802.1 X specification is shown in Figure

2 1. The operation of the supplicant with the different events and states is specified in

Table 2.

(userLogoff 88 !logoffsent) 88
!(initialize 11 !portEnabled) Initialize (1 !portEnabled

I I

heldwhile = heldperiod
eapFail = FALSE
eapsuccess = FALSE
suppstatus = Unauthorized

reqld

I

eapsuccess = FALSE
eapFail = FALSE
startcount = 0
logoffsent = FALSE
previousld = 256

txLogoff
suppstatus = Unauthorized

suppstatus = Unauthorized

1
startwhen = startperiod
startcount = startcount + I
reqld = FALSE
txS tart

I I (st rtWhe I == 0) && I
I

(st rtCoun < m a x ~ t a r l
1 r eq ld eapsuccess && 1 ' ' 1

eapsuccess = FALSE
eapFail = FALSE

authwhile = authperiod
startcount = 0
reqld = FALSE
reqAuth = FALSE
txRspld(receivedld, previousld)
Previous = receivedld

reqld
authwhile == 0

I 7

authwhile = authperiod
reqAuth = FALSE
txRspAuth(receivedld, previousld)
previousld = receiveld

Figure 21: Supplicant state machine

I I

authwhile == 0
reqAuth

reqld

Implementation of an 802.1X Supplicant for Internet Telephony

Appendix B: Detailed Supplicant API Description

This appendix defines the set of command and query functions available to the client

application.

supplnit

This hnction is used to perform global initialization of the supplicant module, including

setting the EAP method to use and an event callback function which will receive

asynchronous event notifications from the supplicant module. The function returns the

status synchronously through the return code.

suppInit - - Initialize the supplicant module

PARAMETERS:
eapMethod - EAP method to use
suppevt - Callback function for event notification

RETURNS:
SUPPSTATUS

. /
SUPPSTATUS suppInit(SUPPEAPMETH0D eapMethod, SUPPEVTCB *suppevt) ;

SUPPSTATUS Enum
typedef enum SUPPSTATUS
I

SUPPSTATUS-SUCCESS,
SUPPSTATUS-BADPARM, / * Bad input parameter * /
SUPPSTATUS-INTERR, / * Internal error * /
SUPPSTATUS-NOTINIT / * Supplicant not initialized * /

} SUPPSTATUS;

EAP Method Enum
typedef enum SUPPEAPMETHOD

SUPPEAPMETHOD-MD5, / * EAP-MD5 method * /
SUPPEAPMETHOD-TLS / * EAP-TLS method * /

} SUPPEAPMETHOD;

suppSetParm

This hnction configures 802.1X parameters. Specifically, it provisions the EAP specific

credentials such as EAP-TLS credentials, as well as letting the client application to clear

the collected 802.1X statistics. Please see Table 10 below for the acceptable parameter

types for suppSetParm0.

Implementation of an 802.1X Supplicant for Internet Telephony

* suppSetParm -- Configure 802.1X parameters
*
* PARAMETERS:
* type - Parameter type to set
* val - Pointer to the value to set
*
* RETURNS:
* suppSTATUS
*
.
SUPPSTATUS suppSetParm(SUPPPARM type, void *val);

Table 10: Acceptable parameter types for suppSetParm()

Parameter id Description
1

. I

SUPPPARM-MD5CREDITS Set EAP-MD5 credentials (must be set before suppStart() is called)

SUPPPARM- TLSCREDI TS Set EAP-TLS credentials (must be set before suppStart() is called)

SUPPPARM-CLEARSTATS Clears the collected 802.1X statistics. The 802.1X statistics is defined
in IEEE 802.1X-2001 Section 9.5.2.1.3.

EAP-MD5 Credential Structure

/ *
* * username - user identity
* * password - md5 password
* /
typedef struct SUPPMD5CREDITS

char username [SUPP-MAX-STR] ;
char password[SUPP-MAX-STR];

} SUPPMD5CREDITS;

EAP-TLS Credential Structure

/ *
* * username - user identity
* * privatekey - private key in PEM format (0-terminated)
* * localcert - local certificate associated with the private key in PEM
* * format (0-terminated)
* * certchain - list of certificate chain associated with the local cert
* * in PEM format (0-terminated)
* * certchainNum - number of certificates in the list
* * trustedcerts - list of trusted certificates (peer authentication) in
* * PEM format (0-terminated)
* * trustedcertsNum- number of trusted certificates in the list
* /
typedef struct SUPPTLSCREDITS
1:

char privatekey[SUPP-MAX-KEYLEN];
char localcert[SUPP-MAX-CERTLEN];

Implementation o f an 802.1X Supplicant for Internet Telephony

int certchainNum;
char c e r t c h a i n [S U P P - M - C E R T C H A I N] [SUPP-MAX-CERTLEN];
int trustedcertsNum;
char trustedcerts[SUPP-MAX-TRUSTEDCERTS] [SUPP-MAX-CERTLEN];
char username[SUPP-MAX-STR];

} SUPPTLSCREDITS;

This hnction is used to retrieve the stored EAP specific credentials, the 802.1X statistics,

and the 802.1 X status. Please refer to Table 1 1 for the list of acceptable parameter types

for suppGetParm0.

* suppGetParm - Retrieve 802.1X parameters
*
* PARAMETERS:
* type - Parameter type to get
* val - Pointer to the value to get
*
* RETURNS:
* SUPPSTATUS

.
SUPPSTATUS suppGetParm(SUPPPARM type, void *val);

Table 11: Acceptable parameter types for suppGetParm().

. . . .:
, :?,c> ... Paranwfer Id . , . , . Descrjption ' "".I.'-;. '.."*'*, - '

, , '.' , .
. ,.

. ,. . , : ,'; ,' '.
, b

SUPPPARM-MDSCREL~TS Get the provisioned EAP-MD5 credentials

SUPPPARM-TLSCREDITS Get the provisioned EAP-TLS credentials

SUPPPARM-STATUS Get 802.1X status. The 802.1X statistics is defined in IEEE 802.1X-
2001 Section 9.5.1 .I .3.

SUPPPARM-STATS Get collected 802.1X statistics. The 802.1X statistics is defined in
IEEE 802.1X-2001 Section 9.5.2.1.3.

802.1X Supplicant Status Structure

/ * Supplicant status, 802.1X, 9.5.1 * /
typedef struct SUPPSPSTATUS
I

/ * Supplicant PAE state, 802.1X. 8.5.10 * /
SUPPSTATE state; / * Supplicant PAE state * /

/ * Supplicant Constants, 802.1X, 8.5.10.1.2 * /
int authperiod; / * authwhile timer init value, in secs * /
int heldperiod; / * heldWhile timer init value, in secs * /

Implementation of an 802.1X Supplicant for Internet Telephony

int startperiod;
int maxstart;

} SUPPSPSTATUS;

/ * startwhen timer init value, in secs * /
/ * Max number of EAPOL-Start messages * /

802.1X Supplicant Statistics Structure

/ * Supplicant statistics, 802.1X, 9.5.2 * /
typedef struct SUPPSTATS
I

unsigned int packetRx; / * EAPOL frames of any type received * /
unsigned int packetTx; / * EAPOL frames of any type sent * /
unsigned int startTx; / * EAPOL Start frames sent * /
unsigned int logoffTx; / * EAPOL Logoff frames sent * /
unsigned int respIdTx; / * EAPOL Resp/Id frames sent * /
unsigned int respTx; / * EAPOL Response (non-Id) frames sent * /
unsigned int reqIdRx; / * EAPOL Request/Id frames received * /
unsigned int reqRx; / * EAPOL Request (non-Id) frames received * /
unsigned int invalidRx; / * Invalid EAPOL frames received * /
unsigned int 1engthErrorRx; / * EAP length error frames received * /
unsigned char 1astVersionRx; / * Last EAPOL frame version * /
unsigned char lastSrcMac[61; / * Last EAPOL frame source MAC address * /

} SUPPSTATS;

This function starts the 802.1X supplicant service and binds the service with the TCPIIP

stack for receiving EAP-type packets. Once the supplicant service is started, it would

immediate send an EAPOL-Start to the authenticator (MAC destination

* suppstart -- Starts the 802.1X supplicant service
*
* PARAMETERS :
* None
*
* RETURNS:
* SUPPSTATUS
*
.
SUPPSTATUS suppStart(void);

suppstop

This function stops the 802.1X supplicant service and unbinds the service from the TCP/IP stack

from receiving EAP-type packets.

* suppstop - Stops the 802.1X supplicant service
*
* PARAMETERS:
* None
*
* RETURNS:
* SUPPSTATUS
*
.
SUPPSTATUS suppStop(void);

Implementation of an 802.1X Supplicant for Internet Telephony

SUPPEVTCB Event Callback
.
*
* SUPPEVTCB - Notify client application state change of service
*
* PARAMETERS :
* prevstate - previous state
* newstate - new state
*
* RETURNS:
* SUPPSTATUS
*
.
typedef void (*SUPPEVTCB) (SUPPSTATE prevstate, SUPPSTATE newstate);

SUPPSTATES Enum
/ * Current state of the supplicant PAE state machine, 802.1X, 8.5.10 * /
typedef enum SUPPSTATE
{

SUPPSTATE~DISCONNECTED,
SUPPSTATE-LOGOFF,
SUPPSTATE~CONNECTING,
SUPPSTATE-AUTHENTICATING,
SUPPSTATE-AUTHENTICATED,
SUPPSTATE-ACQUIRED,
SUPPSTATE-HELD,
SUPPSTATE-MAX

1 SUPPSTATE;

Implementation of an 802.1X Supplicant for Internet Telephony

Appendix C: The TLS Client Wrapper

Because of the relatively large size of the OpenSSL memory footprint (roughly -800kB

on Vx Works depending on the components included), some customers may choose to opt

for other TLS implementations with a smaller footprint and feature set. The TLS client

wrapper is created with this in mind. This section describes the API of the TLS wrapper

in detail. Note that the TLS wrapper is designed to be generic so that it is not restricted to

be used for 802.1 X.

tlslnit

This function initializes the TLS stack and creates a TLS context. On success, an

unnamed pointer to the created TLS context would be returned synchronously. This

context would be used throughout the course of the TLS connection. Note the TLS

wrapper owns the created context that needs to be freed through tlsDeinit() later when

the TLS operation ends (e.g., received EAP-Success).

.
*
* tlsInit - - Initialize the TLS stack and create a TLS context
*
* PARAMETERS:
* context - Pointer to the unnamed TLS context to be created
*
* RETURNS:
* int - 0 - success, otherwise failure
*
.
int tlsInit(void **context);

tls Con fig

This function configures the created TLS context. Essentially it provisions the private

key 1 certificates to be used for the TLS session to be created with tlsCreate0.

tlsconfig -- Initialize the TLS stack and create a TLS context
*

PARAMETERS:
* context - Pointer to the created TLS context
* config - TLS configuration block
*
* RETURNS:
* int - 0 - success, otherwise failure
*
.

Implementation of an 802.1X Supplicant for Internet Telephony

int tlsConfig(void *context, TLSCFG *config);

Note this function must be called before the TLS session is created with tlsCreate0. The

content of the TLSCFG configuration block is copied and can be deleted once the

function returns.

TLS Configuration
typedef s truct
(

char *privateKey;
char *localCert;

char **certChain;

Block - TLSCFG

/ * Private key in PEM format (0-terminated) * /
/ * Local certificate associated with

the private key in PEM format (0-termianted) * /
/ * List of certificate chain in PEM format for the

local certificate. The list is 0-terminated. * /
char **trustedCerts; / * List of trusted certificates in PEM format to

validate the server certificates * /
int verifypeer; / * Indicates if the peer certificate would be

verified or not (1: verified, 0: bypass) * /
1 TLSCFG;

tls Crea te

This function creates a TLS session using the configured context information.

* tlscreate -- Create a TLS session using the configured context
* in•’ ormation
*
* PARAMETERS:
* context - Pointer to the created TLS context
* session - Pointer to the unnamed TLS session to be created
*
* RETURNS:
* int - 0 - success, otherwise failure
*
.
int tlsCreate(void *context, void **session);

Note tlsConfig() must be called prior to calling tlsCreate().

tls Process

This function processes an incoming TLS packet and returns the client response. If the

incoming TLS packet is NULL, the function would assume that the user would like the

client to initiate a TLS connection with the provisioned context information.

* tlsprocess -- Process an incoming TLS packet and return the client
* response
*

Implementation of an 802.1X Supplicant for Internet Telephony

* PARAMETERS:
* session - Pointer to the TLS session
* inData - Input TLS server packet
* insize - Size of the input packet
* outData - Pointer to the output TLS client packet
* outsize - Size of the output packet
*
* RETURNS:
* int - 0 - success, otherwise failure
*
.
int tlsProcess(void *session, unsigned char *inData, unsigned int insize,

unsigned char **outData, unsigned int *outsize);

Note that returning an outsize is 0 means that there is no TLS client response. The

session handle has the ownership of outData, which will be deleted when the TLS

session is deleted through tlsDelete0.

tls Delete

This function deletes the created TLS client session.

* tlsDelete -- Delete the created TLS session
*
* PARAMETERS:
* session - Pointer to the TLS session
*
* RETURNS:
* int - 0 - success, otherwise failure
*
.
int tls~elete(void *session);

tls Deinit

This function fi-ees the TLS context and cleans up the TLS stack.

* tlsDeinit - - Free the TLS context and cleanup the TLS stack
*
* PARAMETERS:
* context - Pointer to the TLS context
*
* RETURNS:
* int - 0 - success, otherwise failure
*
.
int tlsDeinit(void *context);

Implementation of an 802.1X Supplicant for Internet Telephony

Appendix D: Unit Test Cases

This appendix contains the list of unit test case procedures and expected observation in

detail. The unit tests were executed and verified manually although automating the unit

tests has been planned for the project.

Case 1: Successful authentication using EAP-MDS

Procedure:

Configure the RADIUS server and the supplicant to use the EAP-MD5 method along with the

correct credentials. Unplug and plug the Ethernet connection between the hub and the switch

(authenticator) to trigger the beginning of the 802.1X process.

Observations:

- Authenticator should generate an EAP-RequesWldentity packet. Supplicant state transitions

to Acquired.

- Supplicant should then generate an EAP-Response/ldentity packet with the Identity set to the

provisioned value.

- Authenticator in response to the EAP-Response/ldentity, initiates a challenge EAP-Request

with MD5 as the EAP type. Supplicant state transitions to Authenticating.

- Supplicant should generate an EAP-Response to the MD5 challenge.

- Authenticator generates EAP-Success. Supplicant state transitions to Authenticated.

Case 2: Successful authentication using EAP-TLS

Procedure 1 Descri~tion:

Repeat Case 1 except configure the RADIUS server and the supplicant using the EAP-TLS

method.

Case 3: EAP-MD5 authentication with the wrong credentials

Implementation of an 802.1X Supplicant for Internet Telephony 5 9

Procedure:

Configure the RADIUS server and the supplicant to use the EAP-MD5 method along with the

wrong credentials (e.g. wrong password). Unplug and plug the Ethernet connection between

the hub and the switch (authenticator) to trigger the beginning of the 802.1X process.

Observations:

- Authenticator should generate an EAP-Request4dentity packet. Supplicant state transitions

to Acquired.

- Supplicant should then generate an EAP-Response/ldentity packet with the ldentity set to the

provisioned value.

- Authenticator in response to the EAP-Response/ldentity, initiates a challenge EAP-Request

with MD5 as the EAP type. Supplicant state transitions to Authenticating.

- Supplicant should generate an EAP-Response to the MD5 challenge.

- Authenticator generates EAP-Failure. Supplicant state transitions to Held

Case 4: EAP-TLS authentication with the wrong credentials

Procedure I Description:

Repeat Case 3 except configure the RADIUS server and the supplicant using the EAP-TLS

method.

Case 5: Use a different EAP method for the supplicant and authentication server

Procedure:

Set the EAP method of the supplicant to EAP-TLS, and the EAP method of the authentication

server to EAP-MD5.

Observation:

- Authenticator should generate an EAP-Request4dentity packet. Supplicant state transitions

to Acquired.

- Supplicant should then generate an EAP-Response/ldentity packet with the Identity set to the

provisioned value.

-Authenticator in response to the EAP-Response/ldentity, initiates a challenge EAP-Request

Implementation of an 802.1X Supplicant for Internet Telephony

with MD5 as the EAP type. Supplicant state transitions to Authenticating.

- Supplicant should generate an EAP-NAK. Supplicant state transitions to Acquired.

-The Authenticator may reinitiate an EAP-Request another authentication method.

Case 6: Authentication with the wrong identity

Procedure:

Setup the supplicant with a different credential than what the RADIUS server expects.

Observation:

- Authenticator should generate an EAP-RequestYldentity packet. Supplicant state transitions

to Acquired.

- Supplicant should then generate an EAP-Response/ldentity packet with the Identity set to the

provisioned value.

- Authenticator should not respond to the EAP-Response/ldentity.

Case 7: Supplicant without an authenticator

Procedure:

Unplug the authenticator from the hub, and then start the supplicant.

Observations:

EAPOL-Start packets should be sent maxStart times with startperiod apart. Supplicant state

transition from Disconnected to Connecting, then from Connecting to Authenticated

