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Abstract 

Hydraulic geometry describes the relations between a stream's discharge and its width, 

depth and velocity as a system. The continuity equation implies two cross-equation 

constraints, one of which is that the hydraulic exponents should sum to one. Traditional 

literature, using one-at-a-time estimation methods, have either ignored the constraints, 

or force the exponents to sum to unity by arbitrarily manipulating the estimates. By 

using a systematic approach called Seemingly Unrelated Regression(SUR), we are able to 

jointly estimate the relations and impose the constraints. The unrestricted and restricted 

estimates are computed from SUR method and Ordinary Least Squares(0LS). It is found 

that SUR and OLS yield identical unrestricted results when the sets of regressors are 

identical. Although SUR estimates are asymptotically at least as efficient as OLS, due 

to the finite sample sizes of our data, the restricted estimates from SUR generally have 

larger standard errors than the restricted OLS. 
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Chapter 1 

Introduction 

Leopold and Maddock (1953) describe the relationships between a stream channel's 

width, depth, velocity and its discharge by three power functions: 

where w is the wetted width; d is the mean depth, defined as the depth of a rectangular 

channel having the same surface width and cross-sectional area as the actual stream; v 

is the mean velocity, defined as the discharge per cross-sectional area of the stream; Q 

is the discharge or flow; and a,  c, k, b, f ,  m are the parameters of the relationship. 

These relationships are called hydraulic geometry, which has been used extensively 

to  describe the flow behavior of natural rivers in a variety of regions. Regional hy- 

draulic geometry curves are developed to  help regulatory agencies with river morphol- 

ogy assessment and instream ecology and river management. It "provides a promising 

method for making an initial assessment of environmental impacts of proposed flow 
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changes" (Babakaiff, 2004). 

Hydraulic geometry is measured in two ways: 'at-a-station' where discharge is mea- 

sured over time at  a given site, or 'downstream' where discharge is measured a t  various 

sites along a stream at  a given frequency. The parameters b, f ,  m are called hydraulic 

exponents. The continuity equation 

implies two constraints on the parameters: b + f + m = 1, which means hydraulic 

exponents are unit-sum constrained, and ack = 1. 

One way to estimate the parameters a ,  c, k, b, f ,  m is to use a log-linear model (LLM). 

If we take a log transformation of the variables in system (1.1) we obtain three linear 

functions: 

log w = a, + Pw log Q 

log d = ad + P d  log Q 

log u = a, + P, log Q 

In terms of the LLM, the two constraints become 

However, in the presence of a nonlinear relationship between channel roughness and 

discharge, the LLM can no longer describe hydraulic geometry sufficiently. Richards 

(1973) proposed a log quadratic model (LQM) defined by 
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By taking the first-order derivative of system (1.6) with respect to log Q, he incorrectly 

concluded that the continuity equation (1.2) implies 

so that hydraulic exponents are allowed to be negative. The correct set of constraints 

are 

Brush (1961) found that four streams in the Appalachians have negative velocity ex- 

ponents, which implies a downstream decrease in velocity. Fortunately, Richards (1973) 

pointed out that nonlinear systems occur only occasionally. Rhodes (1977) recommended 

a screening procedure which rejects hydraulic exponents whose sum is outside the range 

0.95 - 1.05, and Ridenour and Giardino (1991) suggested using this procedure to elimi- 

nate highly nonlinear systems. 

The current method of estimating the LLM model is to run three separate least- 

squares regression after the logarithmic transformation. More often than not, the unit- 

sum constraints specified in equation (1.4) and (1.5) are not satisfied. For example, 

Rhodes (1977) reported that out of 332 sets of equations inspected, only 125 sets of 

exponents summed to unity, and 17 sets had reported exponents whose sum was outside 

the range 0.95 - 1.05. In addition, no consideration seems to be given to the constraint 

specified in equation (1.5). 

Departure from the unit-sum constraint has been handled in two ways. Park (1977) 
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apportioned the deviation equally among the three exponents, i.e., if the hydraulic expo- 

nents sum to 0.9, then each value is divided by 0.9 such that their sum would be forced 

to 1. Rhodes (1977) excluded deviations greater than 0.05, and adjusted the values of 

,B2 and ,B3 since width is subject to the least measurement error. The adjustments were 

made by adding or subtracting values from ,B2 and ,B3 according to a table he presented. 

For example, if the exponents sum to 1.05, then ,B2 will drop by 0.02 and ,B3 will drop 

by 0.03. If the sum is 1.04, then ,B2 and ,B3 will both go down by 0.02. 

These two ad hoc approaches to treat departure from unity are problematic. They 

are incapable of estimating the standard errors of the estimates, nor can they test for 

the unit-sum constraint. Furthermore, they fail to account for the different precisions of 

the individual estimates. Rhodes (1977) tried to solve this problem by adjusting only 

the exponents for depth and velocity, but he also conceded that the adjusted values 

were only close estimates of the true parameters, and it is difficult to tell whether the 

adjustment were made in the right direction. Finally, both methods cannot be used 

to make inverse predictions to forecast discharge from given values of width, depth or 

velocity. 

This paper is concerned with only at-a-station hydraulic geometry. Chapter 2 dis- 

cusses a joint-equation estimation method, which allows for estimating a system of three 

equations with two restrictions. The method is compared to OLS and illustrated with 

numerical examples in Chapter 3. Finally, a brief summary is provided in Chapter 4. 



Chapter 2 

A Systematic Approach 

This chapter covers the following ground: 

1. Review of restricted and un-restricted single-equation estimation. Section(2.1) 

discusses the estimate under the assumption of spherical disturbances. The 

assumption will be relaxed in Section(2.2). 

2. Review of constraint testing in Section(2.3). 

3. Restricted and un-restricted joint-equation estimation. Section(2.4) shows the 

SUR method to  simultaneously estimate equations and to  impose restrictions 

across equations. 

4. Inverse prediction to  find inverse confidence intervals in Section(2.5). 



CHAPTER 2. A SYSTEMATIC APPROACH 

2.1 Single-Equation Constrained OLS Estimate 

Consider first the usual unconstrained OLS estimation. For a classical linear regression 

model y = XP + E where V(y1X) = a21 (a2 > 0), OLS estimation is equivalent to 

minimizing the following function of P 

The derivative of f (P) with respect to P is 

This leads to the familiar OLS solution that ,dola = (X'X)-lX'y with 

v(bOl,) = (XtX)-'a2. It is the best unbiased estimator when the errors are normally 

distributed. 

Since bola minimizes the residual sum of squares, any other estimator, say Ij, must 

yield a larger sum of squares. The disturbance vector associated with i j  is 

Y - XIj = Y - xbo1, - X(Ij - Pol,) 

and its sum of squares 

( Y  - Xfj)'(Y - Xfj) 

as X is orthogonal to (y - ~ b , ~ , ) .  Thus the excess sum of squares associated with fj  

is a positive definite quadratic form with X'X as its matrix and fj  - bola as its vector. 
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It will be assumed that y is of order n x 1 and X is a full-rank n x K matrix. 

Now suppose the arguments of f (P)  are subject to  certain linear constraints 

where -y and R are given matrices of order q x I and q x K, respectively. The 

constrained estimate can be obtained by constructing a function F(P, 4): 

By differentiating F(P, 4) with P and 4 and setting the derivatives equal to  zero, we 

obtain the following results: 

To get an estimate of 4, we pre-multiply both sides of equation (2.2) by 

R(x'x)-': 

Since R ( X t X ) - l X t X P  = RP = -y is the constraint, and ( X t X ) - l X t y  is the 

unconstrained estimate fiol,, 

The constrained OLS estimate &, is then found by pre-multiplying both sides of 

equation(2.2) by (XtX)-I and replacing 4 with the right hand side of equation(2.4): 
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The difference between &, and Bola is linear in the vector (y - Rfiola), and it 

measures the deviance of ,6,1. from the constraint. Hence, if ,bola happens to  satisfy 

the constraints y = RP, then and ,ijOl8 are identical. 

A 

is unbiased, for it can be written as follows: 

Based on equations (2.1) and (2.5), the excess sum of squares associated with &, 

is a positive definite quadratic form with [R(XfX)-'R']-' as its matrix and 

( y  - RP,~,) as its vector. This excess is caused by the linear constraints. 

The variance of &,, is 

Clearly, v(&,) is smaller than v(b,l,) by a positive semidefinite matrix. The 

variance reduction is the precision gained from imposing the constraint. Proof of 

equation(2.7) is left to  the next section. 
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2.2 Single-Equation Constrained GLS Estimate 

When the conditional variance matrix of y given X is not scalar, i.e., V(y1X) = a2V, 

where V is a symmetric positive definite n x n matrix, pols is still unbiased, but it no 

longer has minimum variance among all linear unbiased estimators. 

To find an estimator that is best in this situation, consider transforming the 

disturbance vector 6 such that its covariance matrix after transformation is scalar 

again. As V is symmetric and positive definite, there exists an n x n nonsingular 

matrix P such that P'P = V-l. It follows that E(Pe) = 0 and 

V ( P € )  = P V ( € ) P 1  = a2PVPf = a21. 

The best linear unbiased estimator is the solution that minimizes 

f(P) = (P€)'(P€) = (Py - PXP)'(Py - PXP) = (y - XP)'PtP(y - XP) 

= (y - xp) 'v- l (y  - XP) = ytv-lY - 2 y t v - l x p  + p'X'v-lXp 

The derivative of f (P) with respect to  ,L3 is 

Hence we obtain the GLS estimate 

and its variance 

If we incorrectly assume the errors are i.i.d when they are not, applying OLS has 

the following consequences: 

1 .  fi0l8 is unbiased, but inefficient relative to f ig la .  
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2. The variance of fior, is a2(X 'X)- 'XfVX(X'X)- '  instead of a2(X'X)-'.  

3. The OLS estimator of a2, (y  - ~ f i , ~ , ) ' ( ~  - ~ f i , ~ , ) / ( n  - K), is biased. 

If the same linear restrictions 7 = RP is imposed, the constrained GLS estimate is the 

solution that minimizes 

over p. Again we differentiate F (P ,  4 )  with respect to  P and A: 

aF 
84 
- = - (7  - R p )  = O  (2.11) 

To obtain 4, we pre-multiply both sides of equation (2.10) by R(X 'V- lX)- l ,  and 

replace (X'V-'X)-'X'V-'y with Dgle, RP with 7: 

The constrained GLS estimate &, is found by pre-multiplying both sides of 

equation(2.10) by (X'V-'X)-', and substituting the right hand side of 

equation(2.12) for 4. Thus, 

= &. + (X'V-'X)-'R' [R(x'v-'x)-'R']-'(~ - ~ f i , ~ , )  (2.13) 

Let C = (X'V-lX)- l ,  

P;,. = figl. + CR' (RCR') - l ( 7  - ~ f l , ~ . )  

= p + CXfV- l~  + CR'(RCR')- l (~p - RP - RCX'V-I€) 

= p + [C - CRt(RCR')-'RC]X'V-'E 

Obviously, &18 is also unbiased. Its variance is 



CHAPTER 2. A SYSTEMATIC APPROACH 

To prove eq~ation(2.14)~ let T = C - CRf(RCR')-IRC, 

v(&,) = E K &  - P)(&.!, - PYI 
= E [(TX'V-IE) (TX'V- l~) ' ]  

= TX'V-l ( a 2 ~ ) ~ - 1 ~ ~ '  = a2[C - CR'(RCR')-l RC] 

after some manipulation. Equation(2.7) is a special case of equation(2.14) where V is 

replaced by I. 

The estimator Dg1, does not minimize the residual sum of squares, but it minimizes 

the sum of squares of the transformed disturbance vector PE.  Any other estimator Q 

leads to an excess sum of squares, which is equal to ( f j  - f i g l s ) ' ~ ' ~ - l ~ ( Q  - &,).  

In a similar fashion to how we proved equation(2.6), the excess sum of squares 

associated with &, is 



CHAPTER 2. A SYSTEMATIC APPROACH 

2.3 Testing the Constraint 

2.3.1 Under OLS 

The likelihood ratio of the unconstrained maximum of the likelihood function to the 

constrained maximum is 

where the second line makes use of equation(2.1) and equation(2.6). 

If the constraints hold, y  - RbO1, = - R ( X t X ) - ~ X ' E .  Thus 

(7 - ~ b ~ ~ ~ ) ~ [ ~ ( x ~ x ) - ~  R I ]  - l ( y  - ~ b , ~ , )  
= ~ x ( x ~ x ) - ~ R ~ [ R ( x ~ x ) - ~  R I ]  - l ~ ( ~ t ~ ) - l ~ t E  

is a quadratic form with E as the vector. Its matrix 

X ( X t X ) - I  R t [ R ( X t X ) - l R t ]  -l R ( X t X )  - l X t  

is idempotent with rank q. 

Therefore, if the null hypothesis is true, ( y  - R ~ , ~ , ) ~ [ R ( X ~ X ) - ~ R ' ] - ~ ( ~  - R/?,~,) 

is distributed as oZX:. The denominator ( y  - x ~ ~ ~ . ) ~ ( ~  - ~ b , ~ . )  can also be 

written as a quadratic form y t M y  or  ME, where M  = [I - X ( X t X ) - l X t ]  is 

another idempotent matrix with rank n - K .  The denominator is distributed as 

In fact, it equals (n - K)s2  under the assumptions of a standard linear model. 

The two quadratic forms are independent, because the product of their matrices is 0. 

Hence the test statistic 

is distributed as F(q, n - K ) .  
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2.3.2 Under GLS 

Under GLS, the likelihood ratio is constructed as 

The denominator is also distributed as a2X:-K: 

Although the E'S are not i.i.d, after the transformation the PE 's  are standard normal 

covariates. ( y  - X B ~ ~ , ) ' V - ~ ( ~  - xBg1,) is again a quadratic form. Its matrix 

I - P X ( X t P ' P X ) - ' X ' P '  is idempotent of rank n - K. Its vector PE has a scalar 

covariance matrix a21, as shown earlier in section(2.2). 

If the null hypothesis is true, y - Rbgl, can be written as 

- R ( X t V - l X )  X 'P 'Pe ,  therefore 
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is another quadratic form distributed as o2x;. 

The two quadratic forms are independent, since it can be proven that the product of 

their matrices equals 0. Hence, the test statistic 

is distributed as F(q, n - K). 
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Seemingly Unrelated Regression Estimate 

So far, we have restricted our discussions to the single-equation case. But the hydraulic 

geometry problem requires estimating simultaneously the complete sets of parameters 

of the three equations in a system, and placing two constraints on coefficients across 

equations. 

Zellner(1962) developed a SUR method (Seemingly Unrelated Regression) to 

algebraically represent a multi-equation model in a single-equation form. It is a 

generalization of OLS for a multivariate regression model, and produces consistent and 

asymptotically efficient estimates for systems of regression equations. SUR refers to 

the fact that although the equations appear unrelated, they are in fact connected by 

correlations of the disturbances. An example discussed extensively was the application 

of Grunfeld's investment model (Grunfeld, 1958) to two firms in the same industry. 

Suppose real gross investment of a firm is determined by its market value and capital 

stock at the beginning of a period. It is reasonable to assume that common market 

forces will influence both firms, and likely the errors of the two regressions are 

correlated. Therefore, rather than running two separate regressions, it makes sense to 

treat them as a system and take into account the possible correlation among the 

disturbances. For multivariate Gaussian response, SUR has become a well-established 

procedure in econometrics. 

We are interested in using SUR because system(l.1) is a simplified summary of the 

complicated relations between discharge and channel characteristics. Many other 

factors, such as channel size, shape and slope, are considered implicitly. Therefore, the 

disturbances across equations are no longer independent. 

Let lw, Id, lv and F be the log values of width, depth, velocity and discharge, 
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respectively. Assuming n observations in each equation, one way to combine them is 

It should be pointed out that the set-up in equation(2.22) is specific to system (1.3). 

SUR method allows responses to depend on different sets of independent variables. 

The parameter estimates are subject to T = RP, if the constraints were true, where 

1 0 1 0 1 0  
T =  [;I ..dR= [ 1. 

0 1 0 1 0 1  

If each equation of system (1.3) satisfies the assumptions of a standard linear model, 

the disturbance vector E of equation(2.22) has the following characteristics: 

1. Elements of the vector have zero mean and different variances. It is reasonable to 

assume that generally speaking, a;, a; and a: are unequal. 

2. Disturbances at  different times in the same equation, eg.,  cwl and cw2, are 

uncorrelated. 

3. Disturbances at different times across equations, e.g., and cd2, are 

uncorrelated. 

4. If there is reason to believe that correlation exists between disturbances across 

equations at the same time, e.g., between cW1 and €dl,  their covariance, denoted 

as uwd, is the so-called contemporaneous covariance. 
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Therefore, the covariance matrix of E ,  in the presence of contemporaneous correlation, 

is block-diagonal with n diagonal sub-matrices: 

The diagonal elements of C are independent of time, since the disturbances are 

assumed homoscedastic within each equation. The contemporaneous covariances are 

time-invariant as well, which implies that the errors come from a multivariate 

distribution with zero mean and a constant covariance matrix. Other elements of the 

matrix are 0, since they correspond to covariance of disturbances at  different time 

points. 

In order to  make C nonsingular, we assume no linear dependence between any 

random pair of contemporaneous errors. The inverse of v ,  v-', is again a 

block-diagonal matrix with diagonal element 

A computationally more convenient procedure can be set up as follows: 

when the system has L equations to be estimated simultaneously. Each equation takes 

the form yi = Xipi + ~ i ,  i = 1 , .  . . , L, where yi is a vector of the dependent variable 

of the ith equation, Xi the corresponding values of explanatory variables, Pi the 

parameter vector and ~i the disturbance. The combined equations can then still be 

expressed as the basic form y = Xp + E.  
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For the hydraulic geometry problem, L = 3. The new set-up does not lead to 

different parameter estimates, however, the covariance matrix of E is no longer 

block-diagonal: 

cw(ei, e j )  is an n x n diagonal matrix with oij down the diagonal. The off-diagonal 

elements are zero, because they correspond to disturbances at different time points. 

It is convenient to express v in terms of Kronecker Product. The Kronecker 

Product of matrices A and B, denoted as A 8 B, is obtained by multiplying each 

element of A by the entire matrix B. Using this notation, 

and its inverse, v-', can be expressed as X-l 8 I. Clearly, E is the same as defined 

earlier. 

The computation of SUR estimate is identical to that of &,, as defined in 

eq~ation(2.8)~ except that V is replaced by v and a2 = 1. Linear constraints testing 

under SUR is also the same as under single-equation GLS, except that n - K is 

replaced by Ln - C Ki, where Ki is the number of regressors in the th equation. 

The SUR method proceeds as follows: starting with an initial OLS regression, it 

uses OLS residuals to estimate the cross-equation covariance matrix X. The estimator 
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of C is computed as: 

What will happen to SUR estimate in the absence of contemporaneous correlation? 

The short answer is that it leads to no gain over OLS, since the covariance matrix of E 

is then diagonal. The proof is simple: 

which is exactly the OLS estimate, and can be obtained from estimating the equations 

separately. 

Another case where SUR has no advantage over OLS is when responses depend on the 

same set of explanatory variables. To see this, we formulate our results in terms of the 
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Kronecker Product, and apply one of its properties 

The variance of SUR estimate is 

The SUR estimate can then be expressed as 

Therefore, when explanatory variables are identical, SUR leads to no gain over simple 

OLS. 

Since OLS is as capable and adequate as SUR in the case of identical regressors, why 

would we consider applying SUR to the hydraulic geometry problem? The answer is 

that the restricted estimates, as defined in equation(2.5) and (2.13), are likely different 

under OLS and SUR, and so are the respective conclusions associated with linear 

hypothesis testing. 
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2.5 Inverse Prediction 

It is of great interest to regulatory agencies to determine stream flow requirements for 

aquatic habitat protection. Such requirements might be obtained through inverse 

prediction from our hydraulic geometry model, if the model is well-calibrated to field 

observations. The advantage of inverse prediction is that it does not require stream 

flow records, and the stream flow requirements thus developed can be applied to 

hydrologically disturbed drainage basins and at gaged or ungaged sites. 

For a regression equation 

Y = Po +PIX 

that satisfies all assumptions of a standard linear regression model, the predicted mean 

value of y for a given Xo is 

YO = Do + + J O  

and its 95% confidence interval is given by 

After a regression line is fitted, the inverse estimate of X corresponding to a specified 

true mean value of y, say yo, is given by 

The lower limit of X ,  denoted XL, can be obtained from solving the equation 

where yxL = Po + P I X ~ .  Similarly, The upper limit of X ,  denoted Xu, is the solution to 
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where y,, = Po + PIXu. After some manipulation, XU and XL are found to be 

where 
t2 n - ~ , l - ; a  . s2 t2 n-K,1-$a t n - ~ , l - $ a  

- 
9 =  A 2  - = ( - l2 (2.27) 

PI C ( X i  - x ) 2  A2 t-statistic of Dl 

Clearly, the more precise is pl ,  the smaller is g. If the regression is not 

well-determined, then the confidence limits of Xo, as specified by equation(2.27), may 

not be real. Or the roots may be real but they fall on the same side of the regression 

line. The former case is illustrated with figure 2.1 on the next page. When true mean 

values of y are in the range of (-17, -12), the inverse confidence limits of X are not real. 

Such inverse prediction method has not been developed for multivariate responses with 

contemporaneous correlations. Therefore, for regression coefficients obtained from 

SUR, equation(2.27) is used to determine the inverse confidence intervals. The degree 

of freedom does not change, i.e., it remains to be n - K ,  where n is the sample size in 

a single regression, and K is the number of explanatory variables in that regression. 
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Figure 2.1: Inverse Regression Peculiarity: Complex Roots. The dashed lines represent 
the confidence intervals for the mean response at real value of x 
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Numerical Examples 

Table 3.1 provides raw data on cross-section 1 of Poole Creek located northeast of 

Pemberton in British Columbia, Canada. 

Time 

July 2, 2002 
Aug.14, 2002 
Oct.31, 2002 
Nov.21, 2002 
Feb.11, 2003 
May 11, 2003 
May 27, 2003 
May 29, 2003 
May 31, 2003 

Total Discharge Wetted Width 

(4 
11.60 
8.50 
4.90 
6.70 
5.30 
7.00 
9.25 
10.10 
10.55 

Mean Depth I Mean Velocity 

Table 3.1: Time Series Data on Poole Creek Cross-section 1 

Data collection was led by Scott Babakaiff a t  the BC Ministry of Water, Land and Air 

Protection. Once a cross-section was selected, they manually measured discharge using 

a rod-based current meter. Width was measured from bank to bank using a field tape 
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measure. Multiple measurements were taken of depth with the same measuring device 

to calculate the mean depth, as depth varied depending on which part of the stream 

was being measured. To obtain velocity data, they used a flowmeter and moved it 

around, as velocity also varied depending on which part of the stream was being 

measured. Mean velocity was calculated as the average reading of multiple 

measurements that encompassed all parts of the cross-section. 

The 27 observations are combined as follows: 

In terms of the basic form y = Xp + E, y is a 27 x 1 vector taking the log values of 

width, depth and velocity; X is of order 27 x 6 with 3 block diagonal matrix 

is a 6 x 1 vector of coefficients, and E is a 27 x 1 disturbance vector 
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The two linear constraints take the form 

3.1 Using Matrix Methods Directly 

The theory in Chapter 2 was used directly by programming in matrix manipulation in 

IML (SAS version 8.1, SAS Institute Inc., Cary, NC). IML code is attached in the 

Appendix, and estimates are presented in Table 3.2. 

Parameter Unrestricted 
2.0813 (0.0287) 

-1.4795 (0.0341) 
-0.5969 (0.0176) 
0.2157 (0.0221) 
0.3229 (0.0264) 
0.4581 (0.0136) 
0.0049 
0.9966 

Table 3.2: Estimates under OLS and SUR (standard errors in parentheses) for Poole 
Creek Cross Section 1 

Since the unrestricted estimates are the same for OLS and SUR, the estimate of 
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r - Rp is always 

The estimate of X under OLS is 
r 

0.0074 0 0 

S = 1 0.0r4 O.i28  1 
It is worth mentioning that S has been adjusted to account for the loss of degrees of 

freedom, because of the small sample size for the data in Table(3.1). Each equation 

has 9 observations and 2 explanatory variables, thus correcting for the degrees of 

freedom has an appreciable effect on the coefficient estimate. The adjustment becomes 

tricky when Ki is different for all i. If we were to  divide different elements of €'ME by 

different n - Ki, the resulting S is not necessarily positive definite (Davidson and 

Mackinnon, 2004). In large samples, however, such correction is unnecessary. 

Based on eq~ation(2.21)~ the observed test statistic on the joint constraints is 

The null hypothesis is unlikely to  be rejected as its pvalue is 0.99. 

Under SUR procedure, based on eq~ation(2.24)~ X is replaced by 

An indication of the presence of correlation is that the correlation coefficient between 

width and depth residuals obtained from separate OLS regressions is -0.84 with pvalue 
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0.005. The observed test statistic associated with SUR on the constraints is 

The data seems consistent with the null hypothesis, because the test statistic has a 

p-value equal to 0.086. 

The restricted estimates are very close to the unrestricted, and we fail to reject the 

restrictions. However, the restricted SUR estimates are less efficient than the restricted 

OLS. Theoretically, SUR estimates will always be at least as efficient as OLS. But the 

asymptotic efficiency of SUR estimators may not carry over to small samples, because 

of the variability introduced by the estimated C (Greene, 2002). 

Since all variables in the LLM model are expressed in logarithms, the estimated 

parameters can be interpreted independently of the unit of measurements. The slope 

coefficients in the LLM are rates of percentage change. Based on the restricted SUR 

model, about 45% of the increase in flow is accommodated by an increase in velocity, 

34% by an increase in depth and 21% by an increase in width. 

Figure 3.1 to 3.3 plot the three equations with the unrestricted fit, the restricted fit by 

OLS and the restricted fit by SUR superimposed. 
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, '7 - - -. Unrestricted 

OLS Restricted 
- - - - -  SUR Restr~cted 

+ 

Log of Mean Discharge 

Figure 3.1: The Width Model fitted With OLS and SUR 
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Figure 3.2: The Depth Model fitted With OLS and SUR 
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Figure 3.3: The Velocity Model fitted With OLS and SUR 
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3.2 Using the SYSLIN Procedure 

SAS also offers a standardized procedure called SYSLIN which estimates parameters in 

an interdependent system of linear regression equations. 

The estimation methods available to the SYSLIN procedure include OLS, SUR, Full 

Information Maximum Likelihood(FIML), etc. The STEST statement allows the user 

to test linear hypothesis on parameters in different models. The SRESTRICT 

statement imposes linear hypotheses on parameters in different models. The STEST 

statement and the SRESRTICT statement are not supported for the FIML estimation 

method. 

3.2.1 OLS Regression with Restrictions 

When no method of estimation is specified, PROC SYSLIN performs OLS regression: 

DATA POOLEl; 

SET POOLE; IF CROSSSECTION = 1; 

FLOW = LOG(D1SCHARGE); 

LW = LOG (WIDTH) ; LD = LOG (DEPTH) ; LV = LOG (VELOCITY) ; 

RUN ; 

PROC SYSLIN DATA=POOLEl; 

MODEL LW = FLOW; 

MODEL LD = FLOW; 

MODEL LV = FLOW; 

STEST LW.INTERCEPT + LD.INTERCEPT + LV.INTERCEPT, 

LW.FLOW + LD.FLOW + LV.FLOW = 1; 
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RUN ; 

PROC SYSLIN DATA=POOLEl; 

MODEL LW = FLOW; 

MODEL LD = FLOW; 

MODEL LV = FLOW; 

SRESTRICT LW.INTERCEPT + LD.INTERCEPT + LV.INTERCEPT, 

LW-FLOW + LD.FLOW + LV.FLOW = 1; 

RUN ; 

PROC SYSLIN with the STEST statement outputs unrestricted OLS estimates and 

tests the restrictions with an F test. When the STEST statement is in use with the 

SRESTRICT statement, the test statistic computed is conditional on the restrictions 

imposed. In our case, they cannot be used together, because then the F test will 

always be self-fulfilling. 

PROC SYSLIN with the SRESTRICT statement outputs restricted OLS estimates. 

The Parameter Estimate table for the restricted model contains two additional rows 

for the restrictions specified by the SRESTRICT statement. 

The SYSLIN Procedure 

Ordinary Least Squares Estimation 

Parameter Standard 

Variable DF Estimate Error t Value Pr > It 1 

RESTRICT - 1 2.237925 20.89819 0.11 0.9242 

RESTRICT - 1 -2.62484 27.05259 -0.10 0.9313 
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The parameter estimates for the restrictions are values of the Lagrange multipliers used 

to  impose the restrictions, and the test is a variant of the Lagrange Multiplier(LM) 

test. To see why it is called the LM test, consider a Lagrangian function: 

where 1(P) is the log-likelihood function. The solution (p*, i )  satisfies the first order 

conditions 

equals to  6 in equation(2.12) scaled by a factor i. This comes straight from the 

log-likelihood function: 

Therefore, 

where 0 is the unrestricted estimate. 

The covariance matrix of equals (RCRt) - l .  To see this, write fi as a function of 

the e's: 

X = -(RCR~)-~RCX'(X 8 I)-'€ 

Proof of its variance follows directly after the fact that the expectation of fi is 0. It 

then follows that the LM test takes the form 

Alternatively, the LM test can be expressed as 




















































