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Abstract

Hydraulic geometry describes the relations between a stream’s discharge and its width,
depth and velocity as a system. The continuity equation implies two cross-equation
constraints, one of which is that the hydraulic exponents should sum to one. Traditional
literature, using one-at-a-time estimation methods, have either ignored the constraints,
or force the exponents to sum to unity by arbitrarily manipulating the estimates. By
using a systematic approach called Seemingly Unrelated Regression(SUR), we are able to
jointly estimate the relations and impose the constraints. The unrestricted and restricted
estimates are computed from SUR method and Ordinary Least Squares(OLS). It is found
that SUR and OLS yield identical unrestricted results when the sets of regressors are
identical. Although SUR estimates are asymptotically at least as efficient as OLS, due
to the finite sample sizes of our data, the restricted estimates from SUR generally have

larger standard errors than the restricted OLS.
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Chapter 1

Introduction

Leopold and Maddock (1953) describe the relationships between a stream channel’s

width, depth, velocity and its discharge by three power functions:

w = aQ®
d=cQ’ (1.1)
v=kKQ"

where w is the wetted width; d is the mean depth, defined as the depth of a rectangular
channel having the same surface width and cross-sectional area as the actual stream; v
is the mean velocity, defined as the discharge per cross-sectional area of the stream; ()

is the discharge or flow; and a,c, k,b, f,m are the parameters of the relationship.

These relationships are called hydraulic geometry, which has been used extensively
to describe the flow behavior of natural rivers in a variety of regions. Regional hy-
draulic geometry curves are developed to help regulatory agencies with river morphol-
ogy assessment and instream ecology and river management. It “provides a promising

method for making an initial assessment of environmental impacts of proposed flow
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changes” (Babakaiff, 2004).

Hydraulic geometry is measured in two ways: ‘at-a-station’ where discharge is mea-
sured over time at a given site, or ‘downstream’ where discharge is measured at various
sites along a stream at a given frequency. The parameters b, f, m are called hydraulic

exponents. The continuity equation
Q = wdv (1.2)

implies two constraints on the parameters: b + f + m = 1, which means hydraulic

exponents are unit-sum constrained, and ack = 1.

One way to estimate the parameters qa, ¢, k, b, f, m is to use a log-linear model (LLM).
If we take a log transformation of the variables in system (1.1) we obtain three linear

functions:
log w = ay, + By log @

log d = aqg+ (4 log Q (1.3)
log v =0, + 0, log @
In terms of the LLM, the two constraints become
Buw+PBatBy=1 (1.4)

oy +oag+oa, =0 (1.5)

However, in the presence of a nonlinear relationship between channel roughness and
discharge, the LLM can no longer describe hydraulic geometry sufficiently. Richards
(1973) proposed a log quadratic model (LQM) defined by

log w = f + B, log Q + fs(log Q)?
log d = fy + f2 log @ + f(log Q)2 (1.6)

log v = my +ma log @ + m3(log Q)?
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By taking the first-order derivative of system (1.6) with respect to log @, he incorrectly

concluded that the continuity equation (1.2) implies
B+ f+m =0 (1.7)

By + fo+my+2(8s + f3+m3)(log Q) =1 (1.8)

so that hydraulic exponents are allowed to be negative. The correct set of constraints

are

Gi+fi+m =0
Bot+ fat+tmy=1

Bs+ fz+msz=0

Brush (1961) found that four streams in the Appalachians have negative velocity ex-
ponents, which implies a downstream decrease in velocity. Fortunately, Richards (1973)
pointed out that nonlinear systems occur only occasionally. Rhodes (1977) recommended
a screening procedure which rejects hydraulic exponents whose sum is outside the range
0.95 - 1.05, and Ridenour and Giardino (1991) suggested using this procedure to elimi-

nate highly nonlinear systems.

The current method of estimating the LLM model is to run three separate least-
squares regression after the logarithmic transformation. More often than not, the unit-
sum constraints specified in equation (1.4) and (1.5) are not satisfied. For example,
Rhodes (1977) reported that out of 332 sets of equations inspected, only 125 sets of
exponents summed to unity, and 17 sets had reported exponents whose sum was outside
the range 0.95 - 1.05. In addition, no consideration seems to be given to the constraint

specified in equation (1.5).

Departure from the unit-sum constraint has been handled in two ways. Park (1977)

ey
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apportioned the deviation equally among the three exponents, i.e., if the hydraulic expo-
nents sum to 0.9, then each value is divided by 0.9 such that their sum would be forced
to 1. Rhodes (1977) excluded deviations greater than 0.05, and adjusted the values of
(B2 and 3 since width is subject to the least measurement error. The adjustments were
made by adding or subtracting values from 3, and 33 according to a table he presented.
For example, if the exponents sum to 1.05, then 3, will drop by 0.02 and 33 will drop
by 0.03. If the sum is 1.04, then 3, and ;3 will both go down by 0.02.

These two ad hoc approaches to treat departure from unity are problematic. They
are incapable of estimating the standard errors of the estimates, nor can they test for
the unit-sum constraint. Furthermore, they fail to account for the different precisions of
the individual estimates. Rhodes (1977) tried to solve this problem by adjusting only
the exponents for depth and velocity, but he also conceded that the adjusted values
were only close estimates of the true parameters, and it is difficult to tell whether the
adjustment were made in the right direction. Finally, both methods cannot be used
to make inverse predictions to forecast discharge from given values of width, depth or

velocity.

This paper is concerned with only at-a-station hydraulic geometry. Chapter 2 dis-
cusses a joint-equation estimation method, which allows for estimating a system of three
equations with two restrictions. The method is compared to OLS and illustrated with

numerical examples in Chapter 3. Finally, a brief summary is provided in Chapter 4.



Chapter 2

A Systematic Approach

This chapter covers the following ground:

1. Review of restricted and un-restricted single-equation estimation. Section(2.1)
discusses the estimate under the assumption of spherical disturbances. The

assumption will be relaxed in Section(2.2).
2. Review of constraint testing in Section(2.3).

3. Restricted and un-restricted joint-equation estimation. Section(2.4) shows the
SUR method to simultaneously estimate equations and to impose restrictions

across equations.

4. Inverse prediction to find inverse confidence intervals in Section(2.5).
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2.1 Single-Equation Constrained OLS Estimate

Consider first the usual unconstrained OLS estimation. For a classical linear regression
model y = X3 + € where V(y|X) = ¢%I (6% > 0), OLS estimation is equivalent to
minimizing the following function of 3
fB)=(y—XB)(y—XB)=vy'y—2¢y'XB+ B X'XP
The derivative of f(3) with respect to 3 is
f'(B)=—2X'y+2X'Xp3

This leads to the familiar OLS solution that B = (X’'X)™1 X'y with
V(Bois) = (X’X)~102. It is the best unbiased estimator when the errors are normally

distributed.

Since Bo1s minimizes the residual sum of squares, any other estimator, say 7}, must

yield a larger sum of squares. The disturbance vector associated with 7 is
y— X0 =y — XBos— X (1 — Bots)
and its sum of squares
(y — X0)'(y — X))
= (¥ — XBots)' (Y — XBots) + (1 — Bots)' X' X (1) — Bots)

_2(ﬁ - Bols),X,(y - XBols)
= (¥ — XBots)' (¥ — XBots) + (11 — Bots) X' X (11 — Bots)

(2.1)

as X is orthogonal to (y — X ﬁols). Thus the excess sum of squares associated with 9

is a positive definite quadratic form with X’X as its matrix and ) — Bols as its vector.
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It will be assumed that y is of order n x I and X is a full-rank n x K matrix.

Now suppose the arguments of f(3) are subject to certain linear constraints

v=R3

where v and R are given matrices of order ¢ x 1 and ¢ x K, respectively. The

constrained estimate can be obtained by constructing a function F(3, ¢):

F(B,¢)=(y— XB)(y — XB) —¢'(v — RB)

By differentiating F(3, ¢) with 3 and ¢ and setting the derivatives equal to zero, we

obtain the following results:

gg — _2X'y+2X'XB+ R'¢p =0 (2.2)
oF
36 ~(vy—RB)=0 (2.3)

To get an estimate of ¢, we pre-multiply both sides of equation (2.2) by
R(X'X)™"

—2R(X'X)'X'y + 2R(X'X)'X'XB + R(X'X)"'R'¢p = 0

Since R(X’'X)™'X’'X 3 = R = ~ is the constraint, and (X’'X)~' X"y is the

unconstrained estimate ﬁozs,
é = —2[R(X'X)"'R']™ (7 — RBoi) (2.4)

The constrained OLS estimate B;l o is then found by pre-multiplying both sides of
equation(2.2) by (X’X)~! and replacing ¢ with the right hand side of equation(2.4):

Biis = Bows + (X'X) ' R'[R(X'X) ' R'|7} (v — RBoss) (2.5)



CHAPTER 2. A SYSTEMATIC APPROACH 8

The difference between ,[:];l , and ,[:]ol s is linear in the vector (y — R[‘]oz s), and it
measures the deviance of 3,15 from the constraint. Hence, if Bots happens to satisfy

the constraints v = R, then 'B;ls and Bols are identical.
[:];ls is unbiased, for it can be written as follows:
Bi. =B+ (X'X) X'e+ (X'X)'R[R(X'X) 'R~
(RB — RB — R(X'X)™'X'e)

=B+ [(X'X)™! — (X’X)'R'[R(X'X) " 'R|'R(X'X) "X e

Based on equations (2.1) and (2.5), the excess sum of squares associated with 8%,

(Birs — Bote) X' X (B, — Biys)

= (v — RBaw)'[R(X'X) 'R R(X'X) 7 X' X (X'X) 'R/ 26)
[R(X'X)™ R ™ (v — RBow,)

= (v — RBota) [R(X'X) ' R'|" (v — RPots)

is a positive definite quadratic form with [R(X’X) ' R’]~! as its matrix and

(v — R[:]Ols) as its vector. This excess is caused by the linear constraints.

The variance of 3, is

V(B = (X'X)'o® — (X'X)'R[R(X'X) 'R R(X'X)1o? (2.7)

ols

Clearly, V(B2,.) is smaller than V(Bots) by a positive semidefinite matrix. The

L
ols
variance reduction is the precision gained from imposing the constraint. Proof of

equation(2.7) is left to the next section.
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2.2 Single-Equation Constrained GLS Estimate

When the conditional variance matrix of y given X is not scalar, i.e., V(y|X) = ¢%V,
where V is a symmetric positive definite n X n matrix, ,Bola is still unbiased, but it no

longer has minimum variance among all linear unbiased estimators.

To find an estimator that is best in this situation, consider transforming the
disturbance vector € such that its covariance matrix after transformation is scalar
again. As V is symmetric and positive definite, there exists an n X n nonsingular
matrix P such that P’P = V1 [t follows that E(Pe) = 0 and
V(Pe) = PV (e)P' = ¢*PV P’ = ¢I.

The best linear unbiased estimator is the solution that minimizes
7(8) = (PeY(Pe) = (Py — PXB)'(Py — PXP) = (y — XB)'P'P(y — XB)
=(y—XB)V N y—-XB)=y'V 7y —-2¢y'VIXB+ A XVXP
The derivative of f(3) with respect to 3 is
fi(B)=—-2X'Vly4+2X'V1Xp
Hence we obtain the GLS estimate
Bote = (X'VTHX) X'V Ny (2.8)

and its variance

V(Bgts) = X (X'P'PX) ' = 0*(X'V1X)™! (2.9)

If we incorrectly assume the errors are i.i.d when they are not, applying OLS has

the following consequences:

1. ﬁols is unbiased, but inefficient relative to Bgls.
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2. The variance of Bu, is 02(X’X) 1 X'V X (X’X)~! instead of 02(X’X)™L.
3. The OLS estimator of 02, (y — Xﬁo;s)'(y — Xﬁols)/(n — K), is biased.

If the same linear restrictions v = R is imposed, the constrained GLS estimate is the

solution that minimizes

F(B,¢)=(y — XB)V ' (y — XB) — ¢'(v — RB)

over 3. Again we differentiate F'(3, ¢) with respect to 8 and A:

g_g = 2X'V 1y 4+ 2X'VIXB+ R¢p=0 (2.10)
oF
%z—(q—Rﬂ)=0 (2.11)

To obtain ¢, we pre-multiply both sides of equation (2.10) by R(X’V~1X)~!, and
replace (X’V~1X)"1 X'V 1y with By, RB with ~:
¢ = —2[R(X'V'X)'R|7 (v — RBa,) (2.12)
The constrained GLS estimate ﬂA;l , is found by pre-multiplying both sides of
equation(2.10) by (X’V~1X)~!, and substituting the right hand side of
equation(2.12) for ¢. Thus,
By, = Bgts + (X'VIIX)'R[R(X'VIX) 'R (y — RBais)  (2.13)
Let C = (X'V-1X)~,
'é;ls = ,égls + CR,(RCR,)_I (7 - R,égls)
=B+ CX'V'e+ CR'(RCR')(RB — R3 — RCX'V'¢)
=pB+[C—-CR/(RCR)'RC|X'V~1e

Obviously, ﬂ;z , 18 also unbiased. Its variance is

V(B3,,) = 0*[C — CR(RCR')~'RC] (2.14)
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To prove equation(2.14), let T'= C — CR/(RCR')'RC,
V(B2 = El(Bhs — BB, — B
= E[(TX'V~1e)(TX'V1e)]
= TX'V7(*V)VT' XT’' = ¢*|C — CR/(RCR')™'RC]

after some manipulation. Equation(2.7) is a special case of equation(2.14) where V' is

replaced by I.

The estimator Bgls does not minimize the residual sum of squares, but it minimizes
the sum of squares of the transformed disturbance vector Pe. Any other estimator 7
leads to an excess sum of squares, which is equal to (77 — Bgls), X'VX () — Bys).
In a similar fashion to how we proved equation(2.6), the excess sum of squares

associated with :3;13 is

(r — RBy,) [R(X'VX)'R|7*(r — RB,1) (2.15)
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2.3 Testing the Constraint

2.3.1 Under OLS

The likelihood ratio of the unconstrained maximum of the likelihood function to the

constrained maximum is
[(y — X Bots)'(y — X/Bols)]n/2
(v — XB5.)' (v — XB.)
(r — RBots)'[R(X'X)'R']" (v — RPots)
(¥ — X Bots)' (¥ — X Bots)
where the second line makes use of equation(2.1) and equation(2.6).

(2.16)
=1+

]—n/2

If the constraints hold, v — RB,, = —R(X’X)X’e. Thus

(v — RBows)' [R(X'X) " R 7} (v — RBots)

= X(X'X)'RIR(X'X)'R)T'R(X' X)X e
is a quadratic form with € as the vector. Its matrix
X(X'X)'RIRX'X)'RT'R(X'X) X’

is idempotent with rank q.

Therefore, if the null hypothesis is true, (Y — RBos)’ [R(X'X) 1 R']" (v — RfBo1)
is distributed as o?x2. The denominator (y — X Bots)' (y — X Bots) can also be
written as a quadratic form y’ My or €’ Me, where M = [I — X (X'X)71X'] is
another idempotent matrix with rank n — K. The denominator is distributed as

02x2%_g. In fact, it equals (n — K)s? under the assumptions of a standard linear model.

The two quadratic forms are independent, because the product of their matrices is 0.

Hence the test statistic

(’7 _ RBols),[R(X,X)_lRI] -1 (’7 - RBola)/q

s2

(2.17)

is distributed as F(q,n — K).
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2.3.2 Under GLS

Under GLS, the likelihood ratio is constructed as
[(y "' X.Bgls),v_l(y _ X,@gls)]n/z
(y — XB;,)' V" (y — XBy,)
(v — RBgis) [R(X'V 1 X) 'R~ (v — RBgis)
(y - X,Bgls),v_l (y - X.Bgls)

(2.18)
=[1+

]—n/2

The denominator is also distributed as o2x2_:

(y — XBgs)' V" (y — X Bgis)
C[XB4e—XB— X(X'VIX) 'V UXB+ € — XB — X(X'V1X) ¢
_ I — X(X'VIX) VT — X(X'VIX) e
— [V - VX (X'VIX)IX'V e
= (Pe)'[I — PX(X'P'PX)'X'P']|(Pe)
(2.19)

Although the €’s are not i.i.d, after the transformation the Pe’s are standard normal
covariates. (y — X ,égls)’ Viy—-X ,égls) is again a quadratic form. Its matrix
I - PX(X'P'PX)~1X'P’ is idempotent of rank n — K. Its vector Pe has a scalar

covariance matrix 021, as shown earlier in section(2.2).

If the null hypothesis is true, vy — R[igl,, can be written as
~R(X'V~1X)~1X'P’Pe, therefore
(v — R:égls),[R(X,V_IX)~1R’]_1('7 - R.égls)
= —e¢P'PX(X'VIX)'RR(X'V!X) 'R (—R(X'VX)' X'P' Pe)
= (Pe)’PX(X'VIX)'R[R(X'VIX) 'R R(X'VIX) ' X'P'(Pe)

(2.20)
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is another quadratic form distributed as o2x2.

The two quadratic forms are independent, since it can be proven that the product of
their matrices equals 0. Hence, the test statistic
n-K (v- RBq,)'[R(X'V1X)'R'| 7 (7 — RBg.)
q (y - X,Bgls)lv_l (y - X,Bgls)
is distributed as F(q,n — K).

(2.21)
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2.4 Seemingly Unrelated Regression Estimate

So far, we have restricted our discussions to the single-equation case. But the hydraulic
geometry problem requires estimating simultaneously the complete sets of parameters
of the three equations in a system, and placing two constraints on coeflicients across

equations.

Zellner(1962) developed a SUR method (Seemingly Unrelated Regression) to
algebraically represent a multi-equation model in a single-equation form. It is a
generalization of OLS for a multivariate regression model, and produces consistent and
asymptotically efficient estimates for systems of regression equations. SUR refers to
the fact that although the equations appear unrelated, they are in fact connected by
correlations of the disturbances. An example discussed extensively was the application
of Grunfeld’s investment model (Grunfeld, 1958) to two firms in the same industry.
Suppose real gross investment of a firm is determined by its market value and capital
stock at the beginning of a period. It is reasonable to assume that common market
forces will influence both firms, and likely the errors of the two regressions are
correlated. Therefore, rather than running two separate regressions, it makes sense to
treat them as a system and take into account the possible correlation among the
disturbances. For multivariate Gaussian response, SUR has become a well-established

procedure in econometrics.

We are interested in using SUR because system(1.1) is a simplified summary of the
complicated relations between discharge and channel characteristics. Many other
factors, such as channel size, shape and slope, are considered implicitly. Therefore, the

disturbances across equations are no longer independent.

Let lw, ld, lv and F be the log values of width, depth, velocity and discharge,
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respectively. Assuming n observations in each equation, one way to combine them is

(zwl\ 1F10000\ [ et
Oy

ldl 0 0 1F10 0 ﬁ\ €d1

In, 0000 1R “ €or
(04

=|: S S (2.22)

B4

lw, 1 F, 0 0 0 0 €un
Qy

ld, 00 1F 0 0 €dn
\ 5

\w. /] \0 000 1F \ €

It should be pointed out that the set-up in equation(2.22) is specific to system (1.3).

SUR method allows responses to depend on different sets of independent variables.

The parameter estimates are subject to 7 = R, if the constraints were true, where

0 101010
r= and R =

1 010101

If each equation of system (1.3) satisfies the assumptions of a standard linear model,

the disturbance vector € of equation(2.22) has the following characteristics:

1. Elements of the vector have zero mean and different variances. It is reasonable to

assume that generally speaking, 02, ¢ and o2 are unequal.

2. Disturbances at different times in the same equation, e.g., €,,; and €,;, are

uncorrelated.

3. Disturbances at different times across equations, e.g., €,; and €4, are

uncorrelated.

4. If there is reason to believe that correlation exists between disturbances across
equations at the same time, e.g., between €, and €4, their covariance, denoted

as 0,4, is the so-called contemporaneous covariance.
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Therefore, the covariance matrix of €, in the presence of contemporaneous correlation,

is block-diagonal with n diagonal sub-matrices:

¥ 0 ... 0 R
Ow Owd Owv
0 % ... 0
V= . . . , where ¥ = Owd 0'3 O 4y
2
Owv Ogdy g,
0O 0 ... X

The diagonal elements of ¥ are independent of time, since the disturbances are
assumed homoscedastic within each equation. The contemporaneous covariances are
time-invariant as well, which implies that the errors come from a multivariate
distribution with zero mean and a constant covariance matrix. Other elements of the
matrix are 0, since they correspond to covariance of disturbances at different time

points.

In order to make ¥ nonsingular, we assume no linear dependence between any
. . _1 . .
random pair of contemporaneous errors. The inverse of v, ™", is again a

block-diagonal matrix with diagonal element X1

A computationally more convenient procedure can be set up as follows:

U X, 0 ... 0 B €1

0 X2 ... O €
i o I | i Y I 229
YL 0 0 XL ,81, €r

when the system has L equations to be estimated simultaneously. Each equation takes
the form y; = X;06; + €;,i =1,..., L, where y; is a vector of the dependent variable
of the i, equation, X; the corresponding values of explanatory variables, 3; the
parameter vector and €; the disturbance. The combined equations can then still be

expressed as the basic form y = X3 + €.
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For the hydraulic geometry problem, L = 3. The new set-up does not lead to
different parameter estimates, however, the covariance matrix of € is no longer

block-diagonal:

CO’U(El, 61) CO’U(El, 62) CO’U(El, 63) 0'11I 0'12.[ 0'13I
v = cov(er,€z) cov(€z,€z) cov(ea,€g) | = | 012l 092l o3l
cov(€y, €3) cov(€zy €3) cov(es,€3) o1l o3l o331

cov(€;4y €5) is an n x n diagonal matrix with o;; down the diagonal. The off-diagonal

elements are zero, because they correspond to disturbances at different time points.

It is convenient to express v in terms of Kronecker Product. The Kronecker
Product of matrices A and B, denoted as A ® B, is obtained by multiplying each

element of A by the entire matrix B. Using this notation,

011 012 013

v=X®I, where ¥ =\ g, 02 093
013 023 033

and its inverse, 1, can be expressed as X! ® I. Clearly, X is the same as defined

earlier.

The computation of SUR estimate is identical to that of Bg;a, as defined in
equation(2.8), except that V is replaced by v and o2 = 1. Linear constraints testing
under SUR is also the same as under single-equation GLS, except that n — K is

replaced by Ln — 3 K;, where K is the number of regressors in the #* equation.

The SUR method proceeds as follows: starting with an initial OLS regression, it

uses OLS residuals to estimate the cross-equation covariance matrix X. The estimator
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of ¥ is computed as:

[ n n n 7
€€y €16 D€y,
]Zl le ]zl

1
S == deyey; D €€y D €€y (2.24)

n , n , n ,
Zfljf.'ij D €2j€3; D _€3j€y;

L j=1 j=1 7j=1 i

What will happen to SUR estimate in the absence of contemporaneous correlation?
The short answer is that it leads to no gain over OLS, since the covariance matrix of €

is then diagonal. The proof is simple:

,égls — [XIV—IX]—IXIV—ly

X, 0 0 oI 0 0 X, 0 0
0 X} 0 0 o%I 0 0 X 0
0 0 X} 0 0 oltr 0 0 XL

X, 0 0 ol 0 0 I

0 X2 0 0 0'221 0 Y2

0 0o ... X 0 0 | YL

(X1 X1)" ' X[y
(XéXg)_IXng

| (X1 Xp)™'Xpyr |
=(X'X)"'X'y
which is exactly the OLS estimate, and can be obtained from estimating the equations

separately.

Another case where SUR has no advantage over OLS is when responses depend on the

same set of explanatory variables. To see this, we formulate our results in terms of the
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Kronecker Product, and apply one of its properties

AR(BRC)=(ARB)RC

The variance of SUR estimate is
V(Bas) = (Xv7'X) = [(I®@2) (37 @ (I ®x)] 7' =2 @ (a'z)
The SUR estimate can then be expressed as
Bgls — (X,V—IX)_IX,V._ly
=[E® (@) |I®z)(E 7 @ Ny =[IQ («z) 2y
= (X'X)' Xy
Therefore, when explanatory variables are identical, SUR leads to no gain over simple

OLS.

Since OLS is as capable and adequate as SUR in the case of identical regressors, why
would we consider applying SUR to the hydraulic geometry problem? The answer is
that the restricted estimates, as defined in equation(2.5) and (2.13), are likely different
under OLS and SUR, and so are the respective conclusions associated with linear

hypothesis testing.
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2.5 Inverse Prediction

It is of great interest to regulatory agencies to determine stream flow requirements for
aquatic habitat protection. Such requirements might be obtained through inverse
prediction from our hydraulic geometry model, if the model is well-calibrated to field
observations. The advantage of inverse prediction is that it does not require stream
flow records, and the stream flow requirements thus developed can be applied to

hydrologically disturbed drainage basins and at gaged or ungaged sites.

For a regression equation
y =0+ hX

that satisfies all assumptions of a standard linear regression model, the predicted mean

value of y for a given X, is
Yo = fo + F1Xo
and its 95% confidence interval is given by

. 1 (Xo=X) 112
YoEt, ki-la 3{; + m}

After a regression line is fitted, the inverse estimate of X corresponding to a specified

true mean value of y, say yo, is given by

Xo = (30~ fo)/ B (2.25)

The lower limit of X, denoted X, can be obtained from solving the equation

1 XL —X)?
Yo = Yz, — tn—K,l—%cx ' S{; + Z((X _ X’)2}1/2

where y;, = fo + /1 X. Similarly, The upper limit of X, denoted Xy, is the solution to

1 (Xv
Yo = Yoy + tn—K,l—%a : 3{; +

_______i}l/i’
(X — X)?
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where Y, = Bo + /1 Xy. After some manipulation, Xy and X are found to be

o (Xo—X)gty it 5/Bi{(Xo — X)?/ X (Xi — X) + (1 — g)/n}!/?

2.2
Yot l1—g ( 6)
where ) \ \
4= tn—K,l_%a ° S B tn—K,l—%a _ tTl—K,l—%a 9 (2 27)
BT (X - X 8 t-statistic of '

s2/ 3 (X, — X)?

Clearly, the more precise is ﬁl, the smaller is g. If the regression is not

well-determined, then the confidence limits of Xj, as specified by equation(2.27), may
not be real. Or the roots may be real but they fall on the same side of the regression
line. The former case is illustrated with figure 2.1 on the next page. When true mean

values of y are in the range of (-17, -12), the inverse confidence limits of X are not real.

Such inverse prediction method has not been developed for multivariate responses with
contemporaneous correlations. Therefore, for regression coefficients obtained from
SUR, equation(2.27) is used to determine the inverse confidence intervals. The degree
of freedom does not change, i.e., it remains to be n — K, where n is the sample size in

a single regression, and K is the number of explanatory variables in that regression.
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—5—

—106

—2 -1 o 1

Figure 2.1: Inverse Regression Peculiarity: Complex Roots. The dashed lines represent
the confidence intervals for the mean response at real value of x
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Numerical Examples

Table 3.1 provides raw data on cross-section 1 of Poole Creek located northeast of

Pemberton in British Columbia, Canada.

Time Total Discharge | Wetted Width | Mean Depth | Mean Velocity
(m®/s) (m) (m) (m/s)
July 2, 2002 2.76 11.60 0.26 0.92
Aug.14, 2002 2.00 8.50 0.30 0.79
Oct.31, 2002 0.13 4.90 0.13 0.21
Nov.21, 2002 0.29 6.70 0.15 0.29
Feb.11, 2003 0.17 5.30 0.12 0.26
May 11, 2003 0.44 7.00 0.16 0.39
May 27, 2003 2.61 9.25 0.34 0.82
May 29, 2003 3.74 10.10 0.37 1.01
May 31, 2003 3.35 10.55 0.35 0.92

Table 3.1: Time Series Data on Poole Creek Cross-section 1

Data collection was led by Scott Babakaiff at the BC Ministry of Water, Land and Air
Protection. Once a cross-section was selected, they manually measured discharge using

a rod-based current meter. Width was measured from bank to bank using a field tape

24
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measure. Multiple measurements were taken of depth with the same measuring device
to calculate the mean depth, as depth varied depending on which part of the stream
was being measured. To obtain velocity data, they used a flowmeter and moved it
around, as velocity also varied depending on which part of the stream was being
measured. Mean velocity was calculated as the average reading of multiple

measurements that encompassed all parts of the cross-section.

The 27 observations are combined as follows:

log(11.60)\ 1 log(276) 0 0 0 0 \ eM\
[ o
10g(10.55) 1 l0g(335) 0 0 0 0 €us
Buw
log(0.26) 0 0 1 log(2.76) 0 0 €
Qg
. — +
Ba
log(0.35) 0 0 1 log(3.35) 0 0 €do
Ay
10g(0.92) 0O 0 0 0 1 log(2.76) e
: : B :
k 10g(0.92) Lo 0 0 0 1 log(3.35) ) kevg )

In terms of the basic form y = X3 + ¢, y is a 27 x 1 vector taking the log values of
width, depth and velocity; X is of order 27 x 6 with 3 block diagonal matrix

1 log(2.76)

1 log(3.35)

B is a 6 x 1 vector of coefficients, and € is a 27 x 1 disturbance vector.
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The two linear constraints take the form

Qryy

B
101010 Oy

{010101} B4
Oy

\ 4 )

3.1 Using Matrix Methods Directly

(3.1)

The theory in Chapter 2 was used directly by programming in matrix manipulation in
IML (SAS version 8.1, SAS Institute Inc., Cary, NC). IML code is attached in the

Appendix, and estimates are presented in Table 3.2.

Parameter Unrestricted OLSg SURR
Qy 2.0813 (0.0287) | 2.0795 (0.0230) | 2.0898 (0.0282)
od -1.4795 (0.0341) | -1.4820 (0.0240) | -1.4989 (0.0322)
Q, -0.5969 (0.0176) | -0.5976 (0.0164) | -0.5909 (0.0173)
B 0.2157 (0.0221) | 0.2169 (0.0177) | 0.2098 (0.0218)
B4 0.3229 (0.0264) | 0.3246 (0.0185) | 0.3363 (0.0248)
By 0.4581 (0.0136) | 0.4585 (0.0127) | 0.4539 (0.0134)
Ya 0.0049 0 0
B 0.9966 1 1

Table 3.2: Estimates under OLS and SUR (standard errors in parentheses) for Poole

Creek Cross Section 1

Since the unrestricted estimates are the same for OLS and SUR, the estimate of
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r — R is always

R 0 0.0049 —0.0049
r— RB= — =
1 0.9966 0.0034
The estimate of X under OLS is
0.0074 0 0
S = 0 00104 0
0 0 0.0028

It is worth mentioning that S has been adjusted to account for the loss of degrees of
freedom, because of the small sample size for the data in Table(3.1). Each equation
has 9 observations and 2 explanatory variables, thus correcting for the degrees of
freedom has an appreciable effect on the coefficient estimate. The adjustment becomes
tricky when K; is different for all i. If we were to divide different elements of €’ Me by
different n — K;, the resulting S is not necessarily positive definite (Davidson and

Mackinnon, 2004). In large samples, however, such correction is unnecessary.

Based on equation(2.21), the observed test statistic on the joint constraints is

3><9—2—2—2x0.0198

= 0.0099
2 21 0

The null hypothesis is unlikely to be rejected as its p-value is 0.99.
Under SUR procedure, based on equation(2.24), X is replaced by

0.0074 —-0.0074 -0.0001
S =1 -0.0074 0.0104 —0.0028
—0.0001 —-0.0028  0.0028

An indication of the presence of correlation is that the correlation coefficient between

width and depth residuals obtained from separate OLS regressions is -0.84 with p-value
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0.005. The observed test statistic associated with SUR on the constraints is

3x9-2-2-2 ><5.5349
2 21

= 2.7674

The data seems consistent with the null hypothesis, because the test statistic has a

p-value equal to 0.086.

The restricted estimates are very close to the unrestricted, and we fail to reject the
restrictions. However, the restricted SUR estimates are less efficient than the restricted
OLS. Theoretically, SUR estimates will always be at least as efficient as OLS. But the
asymptotic efficiency of SUR estimators may not carry over to small samples, because

of the variability introduced by the estimated ¥ (Greene, 2002).

Since all variables in the LLM model are expressed in logarithms, the estimated

parameters can be interpreted independently of the unit of measurements. The slope
coefficients in the LLM are rates of percentage change. Based on the restricted SUR
model, about 45% of the increase in flow is accommodated by an increase in velocity,

34% by an increase in depth and 21% by an increase in width.

Figure 3.1 to 3.3 plot the three equations with the unrestricted fit, the restricted fit by
OLS and the restricted fit by SUR superimposed.
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Figure 3.1: The Width Model fitted With OLS and SUR
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Log of Mean Depth

-10

-12

-14

-16

-18

20

Log of Mean Discharge

Figure 3.2: The Depth Model fitted With OLS and SUR
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Figure 3.3: The Velocity Model fitted With OLS and SUR
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3.2 Using the SYSLIN Procedure

SAS also offers a standardized procedure called SYSLIN which estimates parameters in

an interdependent system of linear regression equations.

The estimation methods available to the SYSLIN procedure include OLS, SUR, Full
Information Maximum Likelihood(FIML), etc. The STEST statement allows the user
to test linear hypothesis on parameters in different models. The SRESTRICT
statement imposes linear hypotheses on parameters in different models. The STEST
statement and the SRESRTICT statement are not supported for the FIML estimation
method.

3.2.1 OLS Regression with Restrictions
When no method of estimation is specified, PROC SYSLIN performs OLS regression:

DATA POOLEL;

SET POOLE; IF CROSSSECTION = 1;

FLOW = LOG(DISCHARGE);

LW = LOG(WIDTH); LD = LOG(DEPTH); LV = LOG(VELOCITY);
RUN;
PROC SYSLIN DATA=POOLE1;

MODEL LW = FLOW;
MODEL LD = FLOW;
MODEL LV = FLOW;

STEST LW.INTERCEPT + LD.INTERCEPT + LV.INTERCEPT,

LW.FLOW + LD.FLOW + LV.FLOW = 1;
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RUN;

PROC SYSLIN DATA=POOLE1;

MODEL LW = FLOW,;
MODEL LD = FLOW;
MODEL LV = FLOW;

SRESTRICT LW.INTERCEPT + LD.INTERCEPT + LV.INTERCEPT,
LW.FLOW + LD.FLOW + LV.FLOW = 1;

RUN;

PROC SYSLIN with the STEST statement outputs unrestricted OLS estimates and
tests the restrictions with an F test. When the STEST statement is in use with the
SRESTRICT statement, the test statistic computed is conditional on the restrictions
imposed. In our case, they cannot be used together, because then the F test will

always be self-fulfilling.

PROC SYSLIN with the SRESTRICT statement outputs restricted OLS estimates.
The Parameter Estimate table for the restricted model contains two additional rows

for the restrictions specified by the SRESTRICT statement.

The SYSLIN Procedure

Ordinary Least Squares Estimation

Parameter Standard
Variable DF Estimate Error t Value Pr > |t
RESTRICT -1 2.237925 20.89819 0.11 0.9242
RESTRICT -1 -2.62484 27.05259 -0.10 0.9313
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The parameter estimates for the restrictions are values of the Lagrange multipliers used
to impose the restrictions, and the test is a variant of the Lagrange Multiplier(LM)

test. To see why it is called the LM test, consider a Lagrangian function:

L(B) — N(RB — )

where [(8) is the log-likelihood function. The solution (3*, A) satisfies the first order

conditions
8[(13“') 'y
98 RA=0
R,@"' —~=0

X equals to ¢ in equation(2.12) scaled by a factor 5. This comes straight from the
log-likelihood function:

n

18) = -5

log(27) — Zlog((S @ T)) - 3((y — XB)(Se Iy (y — XB)]  (32)
Therefore,

A=2d=—(RCR)™(y— RD) (3.3)
where ,5 is the unrestricted estimate.

The covariance matrix of A equals (RC R’ )~L. To see this, write X as a function of

the €’s:
A= —(RCR)'RCX'(E®I) e
Proof of its variance follows directly after the fact that the expectation of Xis 0. It

then follows that the LM test takes the form
MN[(RCR)™Y7'X = YRCR'A (3.4)

Alternatively, the LM test can be expressed as

aL(B")
G)Yeg

aL(B*)
ap

(8" (3.5)
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where I(3) is the information matrix of 3. The underlying motivation of the test is
that if the restrictions were true, the restricted estimate should be close to the
unrestricted, and 81(3*)/88 should be close to 0. The LM test is in essence Rao’s

Score test and is distributed as xg where ¢ is the number of constraints.

Since.the likelihood functions of the restricted and the unrestricted estimates are the
same, their information matrices must be the same. Therefore I(3*)~* = I(3)~! =

V(B) = C. The two forms of the LM test are further connected by the fact that
al(3*)/98 = R’ A, which comes directly from the first order conditions.

The SYSLIN procedure with SRESTRICT statement uses the first form to separately
test the restrictions. The computation is the standard t test where the numerator is an
individual Lagrange multiplier estimate and the denominator is the square root of the

corresponding diagonal element of (RCR')™*.

The p-value reported for a restriction is computed from a beta distribution rather than
t-distribution, because the numerator and the denominator of the t-ratio for an
estimated Lagrange multiplier are not independent (LaMotte, 1994). The p-values for
restrictions seem highly insignificant, which imply that the data are consistent with the

restrictions.
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3.2.2 SUR with Restrictions

The SUR estimates are produced when the estimation method is specified as SUR.

PROC SYSLIN DATA=POOLE1 SUR;

MODEL LW = FLOW;
MODEL LD = FLOW;
MODEL LV = FLOW;

STEST LW.INTERCEPT + LD.INTERCEPT + LV.INTERCEPT,
LW.FLOW + LD.FLOW + LV.FLOW = 1;
RUN;

PROC SYSLIN DATA=POOLE1 SUR;

MODEL LW = FLOW;
MODEL LD = FLOW;
MODEL LV = FLOW;

SRESTRICT LW.INTERCEPT + LD.INTERCEPT + LV.INTERCEPT,
LW.FLOW + LD.FLOW + LV.FLOW = 1;
RUN;

PROC SYSLIN first produces unconstrained OLS results, because SUR. requires OLS
residuals to compute its covariance matrix. The output contains an estimate of the
cross-model covariance X, which has been presented in the previous section. The
output also contains an estimate of the cross-model correlation of the disturbances, as
an indication of the strength of contemporaneous correlation. The correlation between
width and depth seems particularly strong, yet the correlations between the other pairs

are either moderate or weak.
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The SYSLIN Procedure
Seemingly Unrelated Regression Estimation

Cross Model Correlation

1w 14 1v
1w 1.00000 -0.84153 -0.02557
14 -0.84153 1.00000 -0.51243
1v -0.02557 -0.51243 1.00000

37

The Parameter Estimate table contains separate tests on the constraints. The

constraints seem much weaker than under the OLS assumptions, although both

p-values are moderately large.

The SYSLIN Procedure

Seemingly Unrelated Regression Estimation

Parameter Standard
Variable DF Estimate Error
RESTRICT -1 626.5841 349.6839
RESTRICT -1 -734.914 452.6639

t Value Pr > |t]|
1.79 0.0650
-1.62 0.1056
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3.3 Results from Eight Other Cross Sections

OLS and SUR methods are applied to eight other cross sections on five creeks. Data
was obtained from Scott Babakaiff at the BC Ministry of Water, Land and Air
Protection. In all cross sections, at least one response pair exhibited significant
contemporaneous correlation (Table 3.3). In particular, cross section 3 on the Poole
Creek and cross section 1 on the Mashiter Creek had significant correlations among all
responses. We would expect greater variance reduction from SUR in these two cross

sections.

Cross Section | Width, Depth Width, Velocity Depth, Velocity
Poole 1 -0.84  (0.005) - -

Poole 2 - -0.77 (0.01) -

Poole 3 -0.86  (0.001) 0.70 (0.03) -0.96 (<0.0001)
Poole 4 - -0.96 (0.0002) -
Stawamas 1 - -0.996 (<0.0001) -
Mashiter 1 -0.96 (<0.0001) | 0.91 (0.0006) | -0.99 (<0.0001)
Owl 1 - -0.92 (0.001) -

Gold 2 -0.81 (0.008) - -0.80  (0.01)
Gold 3 - - -0.99 (<0.0001)

Table 3.3: Significant Contemporaneous Correlations among

sponses (p values in parentheses)

all Possible Pairs of Re-

Table 3.4 summarizes hydraulic geometry estimates from OLS and SUR. SUR cannot
be applied to cross sections 2 and 3 on the Gold Creek, because their contemporaneous

covariance matrices of € are singular.
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Table 3.4: Summary of Hydraulic Geometry Estimates

(standard errors in parentheses)

39

Cross Section | Parameter | Unrestricted OLSg SURR

Poole 2 Ot 2.2612 (0.0286) | 2.2608 (0.0226) | 2.2662 (0.0264)
Qg -1.3435 (0.0199) | -1.3436 (0.0180) | -1.3420 (0.0196)
a, -0.9167 (0.0312) | -0.9171 (0.0233) | -0.9242 (0.0266)
B 0.1886 (0.0223) | 0.1880 (0.0177) | 0.1958 (0.0206)
B4 0.2591 (0.0155) | 0.2589 (0.0140) | 0.2612 (0.0153)
B, 0.5537 (0.0243) | 0.5531 (0.0181) | 0.5430 (0.0207)
Yoo 0.0010 0 0
Y0 1.0014 1 1

Poole 3 0y 2.0297 (0.0098) | 2.0296 (0.0095) | 2.0329 (0.0087)
g -0.9547 (0.0367) | -0.9563 (0.0235) | -0.9576 (0.0364)
a,, -1.0723 (0.0290) | -1.0733 (0.0230) | -1.0753 (0.0287)
Bu 0.0605 (0.0071) | 0.0605 (0.0070) | 0.0606 (0.0063)
B 0.2910 (0.0268) | 0.2910 (0.0171) | 0.2910 (0.0266)
B 0.6486 (0.0211) | 0.6485 (0.0168) | 0.6485 (0.0209)
Sa | 0.0027 0 0
8 1.0001 1 1

Poole 4 Cw 1.9744 (0.0060) | 1.9745 (0.0059) | 1.9734 (0.0058)
g -1.5088 (0.0219) | -1.5075 (0.0168) | -1.5176 (0.0188)
Qy -0.4687 (0.0255) | -0.4670 (0.0170) | -0.4559 (0.0195)
Bu 0.1612 (0.0045) | 0.1611 (0.0045) | 0.1628 (0.0044)

continued on next page
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continued from previous page
Cross Section | Parameter | Unrestricted OLSg SURR
B 0.4707 (0.0167) | 0.4687 (0.0128) | 0.4843 (0.0143)
B 0.3728 (0.0194) | 0.3702 (0.0129) | 0.3530 (0.0148)
SSa | -0.0031 0 0
S8 1.0048 1 1
Stawamus 1 tw 2.9962 (0.0095) | 2.9962 (0.0095) | 2.9923 (0.0081)
g -1.4757 (0.1011) | -1.4788 (0.0715) | -1.4806 (0.1009)
Qy -1.5142 (0.1007) | -1.5174 (0.0715) | -1.5118 (0.1006)
Bu 0.0389 (0.0107) | 0.0389 (0.0107) | 0.0474 (0.0091)
B 0.5592 (0.1136) | 0.5661 (0.0804) | 0.5700 (0.1134)
By 0.3881 (0.1132) | 0.3950 (0.0804) | 0.3826 (0.1131)
SSa | 0.0063 0 0
8 0.9862 1 1
Mashiter 1 Cw 2.3430 (0.0248) | 2.3431 (0.0245) | 2.3404 (0.0235)
g 11,4126 (0.1138) | -1.4115 (0.0722) | -1.4074 (0.1126)
ay -0.9323 (0.0900) | -0.9316 (0.0712) | -0.9330 (0.0900)
Bu 0.0409 (0.0482) | 0.0405 (0.0475) | 0.0598 (0.0456)
B 0.4716 (0.2208) | 0.4637 (0.1400) | 0.4343 (0.2186)
By 0.5007 (0.1746) | 0.4957 (0.1382) | 0.5058 (0.1746)
e  |-0.0018 0 0
S4 | 1.0132 1 1
Owl 1 Ot 2.3468 (0.0227) | 2.3469 (0.0216) | 2.3459 (0.0220)
aq -1.3196 (0.0412) | -1.3192 (0.0343) | -1.3247 (0.0284)
continued on next page
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continued from previous page

Cross Section | Parameter | Unrestricted OLSg SURE
Qy -1.0284 (0.0573) | -1.0277 (0.0364) | -1.0212 (0.0385)
Buw 0.1474 (0.0207) | 0.1462 (0.0197) | 0.1567 (0.0201)
Ba 0.2565 (0.0376) | 0.2525 (0.0313) | 0.3090 (0.0259)
B, 0.6091 (0.0524) | 0.6014 (0.0332) | 0.5343 (0.0351)
S« -0.0013 0 0
S8 1.0129 1 1
Gold 2 Oty 3.3071 (0.0275) | 3.3071 (0.0242) -
oy -1.5245 (0.0436) | -1.5245 (0.0288) -
y -1.7826 (0.0267) | -1.7826 (0.0237) -
Buw 0.0717 (0.0204) | 0.0717 (0.0180) -
Ba 0.3579 (0.0324) | 0.3579 (0.0214) -
B, 0.5703 (0.0199) | 0.5703 (0.0176) -
Ya 0 0 -
NG 1 1 .
Gold 3 C 3.2400 (0.0136) | 3.2400 (0.0135) -
oy -1.7261 (0.0897) | -1.7261 (0.0661) -
Qy -1.5140 (0.0969) | -1.5140 (0.0662) -
Buw 0.0269 (0.0107) | 0.0269 (0.0107) -
Ba 0.5228 (0.0711) | 0.5228 (0.0524) -
B 0.4503 (0.0769) | 0.4503 (0.0525) -
S 0 0 -
S8 1 1 -
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Contrary to our expectations, restricted SUR didn’t gain much efficiency over the
unrestricted estimates for cross section 3 on Poole Creek, except in the width equation,
although the slope coefficients in all equations are significant. Restricted OLS achieved
greater variance reduction in the depth and velocity equations than restricted SUR.
This also occurred in cross section 1 on the Mashiter Creek, but there, only the
velocity equation is relatively well-determined. As Davidson and Mackinnon (2004)
have pointed out, replacing X with an estimator based on OLS estimates inevitably

degrades the finite-sample properties of the SUR estimator.

Amemiya (1985) proposes a solution to the singularity problem. Suppose that the rank
of ¥ is T < Ln and A is a diagonal matrix consisting of the T positive characteristic
roots. Then there exists an orthogonal matrix H = (H;, Hy), where H, is Ln x T and
H; is Ln x (Ln — T), such that H{XH,; = A, H{XH, = 0, and H,XH, = 0. If we
premultiply both sides of equation y = X8 + € by H’, the resulting equation can be
partitioned into two parts:

Hy=H, X3+ Hje (3.6)

Hy = HyX (3.7)

Hje is a zero vector because E(Hyee’'Hy) = HyXHj = 0. The best linear unbiased

estimator of 3 is SUR applied to equation(3.6) subject to linear constraints in

equation(3.7). Equivalently, it is OLS applied to
AV H y = A"V2H X8+ A7V/?H e (3.8)
subject to the same constraints.

In terms of linear hypothesis testing, under OLS, the two constraints are always
consistent with the data. However, with SUR, the unit-sum constraint does not hold

for cross section 1 of the Owl Creek. The reason behind rejection is not clear, given
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that all hydraulic relations are fitted well with SUR. One possible explanation is the
cross section’s unique morphology. The Owl Creek is characterized by a mean
elevation (1138m) well above the other four creeks, and a much steeper gradient (3.6%)
in the study reach. Its cross section 1 is further featured with a low-elevation side bar.

Table 3.5 reports p values of individual restrictions.

Cross Section p value of Ay, p value of Ay g
under OLS under SUR | under OLS under SUR

Poole 1 0.9242 0.0650 0.9313 0.1056
Poole 2 0.9883 0.7551 0.9737 0.4771
Poole 3 0.9586 0.5099 0.9965 0.9568
Poole 4 0.9198 0.3639 0.8636 0.0829
Stawamas 1 0.9910 0.8445 0.9479 0.2181
Mashiter 1 0.9930 0.8181 0.9676 0.2631
Owl 1 0.9655 0.6586 0.8642 0.0271

Gold 2 1.0000 - 1.0000 -

Gold 3 1.0000 - 1.0000 -

Table 3.5: p values of Individual Restrictions under OLS and SUR (\ stands for Lagrange
multiplier of an individual restriction)



CHAPTER 3. NUMERICAL EXAMPLES 44

3.4 Application of Inverse Prediction

Of the hydraulic exponents estimates, i.e., ﬁw, ﬁd and ﬁv, ﬁv is the only exponent
significant in all nine cross-sections, and in six cross-sections it’s the most significant
exponent. In cross-section 3 of the Gold Creek, {3, has the smallest p value, and in
cross-section 4 of the Poole Creek, such significance goes to B.. This is the consensus
reached by OLS and SUR. In cross-section 1 of the Stawamus Creek, Bw is the most
significant exponent from restricted SUR and Bd is the most significant exponent from

restricted OLS.

In cross-section 1 of the Poole Creek, all regressions are well-fitted with restricted
SUR, in that the t-statistics of Bw, [3,1 and Bv are 9.6, 13.6 and 33.9, respectively. It is
then interesting to see that for an inverse estimate of discharge at 2 m3/s, how the

95% confidence limits obtained from the three equations would differ.

Figure 3.4 plotted the log of depth against the log of discharge, a straight line fitted
with restricted SUR and 95% confidence interval of the true mean values of log depth.
Based on equation(2.25), an inverse estimate of discharge at 2 m3/s corresponds to a
true mean depth of 0.282 meter.We draw a horizontal line at a height log(0.282). The
intersections of the horizontal line and the confidence bands of y give us the inverse
confidence interval of log(discharge). Solving for z;, and zy in equation(2.26), the
inverse CI of log(discharge) is (0.43, 1.00), and the corresponding inverse CI of
discharge at a mean depth of 0.282 meter is (1.54 m3/s, 2.72 m3/s).
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Figure 3.4: The fitted regression line ( —— ) log(depth) -1.4988 +

0.3363*log(discharge) and 95% confidence bands ( - - - ) of mean log(depth) — A re-

stricted SUR model was used to fit the model.



CHAPTER 3. NUMERICAL EXAMPLES 46

When we repeat the same procedure with the width model, for an estimated discharge

at 2 m3/s, its log of CI is (0.35, 1.13) which yields an inverse 95% CI of (1.42 m3/s,
3.10 m3/s).

£ R -
= ’ .
Ca. ,
2 e
T T T T
—2 —1 [o] log2 1
Log of Mean Discharge
Figure 3.5: The fitted regression line ( —— ) log(width) = 2.0898 +
0.2098*log(discharge) and 95% confidence bands ( - - - ) of mean log(width) — A re-

stricted SUR model was used to fit the model.
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Using the velocity model, for an estimated discharge at 2 m?/s, its log of CI is (0.59,
0.80) which transforms to a CI of discharge equaling (1.80 m3/s, 2.23 m3/s).

_ g
%
2

/|’ T 1 T

—2 -1 o log2 1

Log of Mean Discharge

Figure 3.6: The fitted regression line ( —— ) log(velocity) = -0.5909 +
0.4539*log(discharge) and 95% confidence bands ( - - - ) of mean log(velocity) — A

restricted SUR model was used to fit the model.

The scatter of the dots around the fitted line is directly related to the width of the
confidence band, and to width of the confidence interval for the inverse prediction.
When width, depth and velocity data are all available and at equal cost, velocity seems

a preferable choice under most circumstances for inverse prediction purpose. That
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being said, the t-statistic of §, in the velocity model is 33.9, which is highly significant.
Consequently, the predicted inverse CI of discharge from the velocity model seems

pretty narrow.



Chapter 4

Summary

In this paper, we have showed how to perform joint-equation estimation and place
linear constraints across equations. Traditional literature, using single-equation
estimation method, have either ignored the constraints, or force the exponents to sum
to unity by arbitrarily manipulating the estimates. By using a systematic approach
called Seemingly Unrelated Regression(SUR), we are able to jointly estimate the
relations and impose the constraints. Seemingly Unrelated Regression method was

compared to Ordinary Least Squares.

The advantage of SUR is that it allows for correlations across equations, it is
capable of estimating simultaneously the complete set of parameters in the system, and
it makes it possible to test and impose cross-equation constraints. The major drawback
of SUR, and other systematic approaches, is that the consequence of misspecification,
such as leaving out important explanatory variables or including redundant variables in
the model, is more severe under SUR than single-equation estimation technique. With
SUR method, if one equation is misspecified, the poor estimates for that equation may

contaminate estimates for other equations, whereas if equation-by-equation OLS is

49
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employed, only the estimates of that equation are affected.

It 1s well known that if the errors across equations are uncorrelated or if the sets of
regressors are identical, the unrestricted SUR has no payoff against the unrestricted
OLS. On the other hand, the greater the correlation of the error and the less the

correlation of the regressors, the greater the efficiency gain (Greene, 2002).

Theoretically, SUR is at least as efficient as OLS. In finite samples however,
estimating the cross-equation covariance from OLS residuals increases the sampling
variation of the covariance, thus SUR may be less efficient. Zellner(1963) investigated a
two-equation system for which the regressors of different equations are orthogonal. He
stated that “only for contemporaneous correlation in the neighborhood of 0 and/or
small values of n”, where n is the sample size after correcting for the degree of
freedom, “that the single-equation OLS estimator is slightly superior”. He also
conceded that when the orthogonality condition is not met, “there will be some
reduction in the gain to be realized by application of the joint estimation procedure”.
It is suggested that when the sample size is small and the cross-equation correlations

are small, OLS is preferable to SUR.

We also briefly investigated the possibility of inverse prediction. When regression
models are well-determined, i.e., when the explanatory variables are statistically
significant, calibration of discharge from hydraulic geometry produces quite narrow

inverse confidence intervals.

After relations of hydraulic geometry for a number of creeks are established, it will
be interesting to see whether cross-sections estimates on the same creek can be
combined, and if they are, whether some “regional” relations of hydraulic geometry

can be developed from averaging the results.



Appendix: SAS IML Code

DATA POOLE1;
SET POOLE; IF CROSSSECTION = 1;
FLOW = LOG(DISCHARGE);
LW = LOG(WIDTH); LD = LOG(DEPTH); LV = LOG(VELOCITY);
RUN;
PROC IML;
USE POOLE1L;
READ ALL VAR {FLOW} INTO XVAR; READ ALL VAR {LW LD LV} INTO YVAR;
y = YVAR[,1]//YVAR[,2]1//YVAR[,3];
* Design matrix of dependent variables in joint regressions;
XX = (j(nrow(XVAR),1,1)||XVAR);
* Design matrix of independent variables in a single regression;
mat0 = {00, 00, 00, 00, 00, 00, 00, 00, OO0}
X = (XX| ImatO| Imat0)//(matO| |XX| Imat0)//(matOl ImatO| |XX) ;
* Design matrix of independent variables in joint regressions;
sr ={0, 1}; R={101010, 01010 1};
* Matrices to impose restrictions;
DF_OLS = nrow(YVAR[,1)) - ncol(XX);

* Degrees of freedom in a single regression;
* Single-equation OLS regression;
B_OLS_1w = (inv(t(XX)*XX)*t(XX)*YVAR[,1]); * Width regression;

RES_OLS_1w = YVAR[,1] - XX*B_OLS_lw;

91



APPENDIX 92

STD_B_OLS_lw = sqrt(vecdiag(inv(t (XX)*XX)*ssq(RES_OLS_1w)/DF_QOLS));
B_OLS_1d = (inv(t(XX)*XX)*t(XX)*YVAR[,2]); * Depth regression;
RES_OLS_1d = YVAR[,2] - XX*B_OLS_1d;
STD_B_OLS_1d = sqrt(vecdiag(inv(t(XX)*XX)*ssq(RES_OLS_1d)/DF_OLS));
B_OLS_1v = (inv(t(XX)*XX)*t(XX)*YVAR[,3]); * Velocity regression;
RES_QOLS_1v = YVAR[,3] - XX*B_0LS_lv;
STD_B_OLS_1v = sqrt(vecdiag(inv(t (XX)*XX)*ssq(RES_OLS_1v)/DF_OLS));
B_OLS = B_OLS_1lw//B_0OLS_1d//B_0LS_1v;

* Combine single-equation estimates;
STD_B_OLS = STD_B_OLS_lw//STD_B_0LS_1d//STD_B_OLS_lv;

* Combine single-equation standard errors;

* Joint-equation OLS regressions:
parameter estimates, standard errors, t-stats and p-values;

B_OLS_2 = inv(t(X)*X)*t(X)*y;

RES_OLS = y - X*B_OLS;

STD_B_OLS_2 = sqrt(vecdiag(inv(t(X)*X)))#(sqrt((ssq(RES_OLS[1:9])
//ssq(RES_OLS[1:9])//ssq(RES_OLS[10:18]) //ssq(RES_OLS{10:18])
//ssq(RES_0OLS[19:27]1)//ssq(RES_OLS[19:27]1))/DF_0OLS));

T_B_OLS = B_OLS#(1/STD_B_OLS);

PVAL_B_OLS = 1 - probF(T_B_OLS#T_B_OLS, 1, DF_OLS);

* Inverse of estimator of Sigma assuming no correlation.
The matrix is diagonal;

INVDIAGS = inv(((ssq(RES_OLS[1:91)110110)//(0l|ssq(RES_OLS[10:18]1)
[10)//(0110] Issq(RES_OLS[19:27])))/DF_OLS)QI(9);

* Joint GLS regressions assuming no correlation;

B_OLS_3 = inv(t (X)*INVDIAGS*X)x*t (X)*INVDIAGS*y;

STD_B_OLS_3 = sqrt(vecdiag(inv(t(X)*INVDIAGS*X)));

* F test on the joint restrictions under OLS regression;
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F_TEST_OLS = t((sr-R*B_OLS))*inv(R*inv(t(X)*INVDIAGS*X)*t(R))
*(sr—R*B_0LS) / (t (RES_OLS) *INVDIAGS*RES_OLS) *DF_0LS*3/2;
PVAL_F_OLS = 1-probF(F_TEST_OLS, 2, DF_OLS*3);

* Restricted OLS estimates;

B_OLS_R = B_OLS + inv{(t(X)*INVDIAGS*X)*t(R)*inv(R*inv(t(X)=*
INVDIAGS*X)*t (R)) *(sr-R*B_QOLS) ;

STD_B_OLS_R = sqrt(vecdiag(inv(t(X)*INVDIAGS*X) - inv(t(X)*
INVDIAGS#*X) *t (R)*inv (R*inv (t (X) *INVDIAGS*X)*t (R) ) *R*inv (t (X)
*INVDIAGS*X))) ;

T_B_OLS_R = B_OLS_R#(1/STD_B_QOLS_R);

PVAL_B_OLS_R = 1 - probF(T_B_OLS_R#T_B_OLS_R, 1, DF_OLS);

* t-test on the individual restrictions under OLS;

LAMDA_OLS = -inv(R*inv (t (X) *INVDIAGS*X)*t(R))*(sr-R*B_0OLS) ;
STD_LAMDA_OLS = sqrt(vecdiag(inv(R*inv(t(X)*INVDIAGS*X)*t(R))));
T_LAMDA_OLS = LAMDA_OLS#(1/STD_LAMDA_OLS);

PRINT B_OLS STD_B_OLS B_0LS_2 STD_B_OLS_2 B_0OLS_3 STD_B_OLS_3;

PRINT T_B_OLS PVAL_B_OLS F_TEST_OLS PVAL_F_0OLS;

PRINT B_OLS_R STD_B_OLS_R T_B_OLS_R PVAL_B_OLS_R LAMDA_OLS
STD_LAMDA_OLS T_LAMDA_OLS;

* Inverse of the estimator of Sigma allowing for contemporaneous
correlation. The matrix is NOT diagonal;

INVGLSS = inv(((ssq(RES_OLS[1:9])||sum(RES_OLS[1:9]#RES_OLS
[10:18]) | | sum(RES_OLS[1:9]1#RES_0LS[19:271))//(sum(RES_OLS
[1:9]#RES_OLS[10:18]) | |ssq(RES_OLS[10:18]) | | sum(RES_OLS
[10:18]1#RES_OLS[19:271))// (sum(RES_OLS[1:9]1#RES_OLS[19:27])
| Isum(RES_OLS[10:18]1#RES_OLS[19:27]) | |ssq(RES_OLS[19:27]1)))
/DF_OLS)@I(9);
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* Joint GLS regressions assuming contemporaneous correlation:
parameter estimates, standard errors, t-stats and p-values;

B_GLS = inv(t(X)*INVGLSS*X)*t(X)*INVGLSS*y;

STD_B_GLS = sqrt(vecdiag(inv(t(X)*INVGLSS*X)));

T_B_GLS = B_GLS#(1/STD_B_GLS);

PVAL_B_GLS = 1 - probF(T_B_GLS#T_B_GLS, 1, DF_OLS);

* F test on the joint restrictions under Joint GLS regressions;
F_TEST_GLS = t((sr-R#B_GLS))*inv (R*inv(t (X)*INVGLSS*X)*t (R))x*

(sr-R*#B_GLS) / (t (RES_OLS) *INVGLSS*RES_0OLS) *DF_0LS*3/2;
PVAL_F_GLS = 1-probF(F_TEST_GLS, 2, DF_OLS*3);

* Restricted Joint GLS estimates;

B_GLS_R = B_GLS + inv(t(X)*INVGLSS*X)*t(R)*inv(R*inv(t (X)*
INVGLSS*X) *t (R) ) * (sr-R*B_GLS) ;

STD_B_GLS_R = sqrt(vecdiag(inv(t(X)*INVGLSS*X) - inv(t(X)=*
INVGLSS*X) *t (R) *inv (R*inv (t (X) *INVGLSS*X) *t (R) ) *R*inv (t (X) *
INVGLSS*X)));

T_B_GLS_R = B_GLS_R#(1/STD_B_GLS_R);

PVAL_B_GLS_R = 1 - probF(T_B_GLS_R#T_B_GLS_R, 1, DF_QOLS);

* t-test on the individual restrictions under Joint GLS;
LAMDA_GLS = -inv(R*inv(t(X)*INVGLSS*X)*t (R))* (sr-R*B_GLS);
STD_LAMDA_GLS = sqrt(vecdiag(inv(R*inv(t(X)*INVGLSS*X)*t(R))));
T_LAMDA_GLS = LAMDA_GLS#(1/STD_LAMDA_GLS);

PRINT B_GLS STD_B_GLS T_B_GLS PVAL_B_GLS F_TEST_GLS PVAL_F_GLS;
PRINT B_GLS_R STD_B_GLS_R T_B_GLS_R PVAL_B_GLS_R LAMDA_GLS

STD_LAMDA_GLS T_LAMDA_GLS;

* Inverse prediction of CI when discharge = 2;
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X0 = log(2); t_value = tinv(0.975, 7);

Xbar = sum(XVAR)/9; Sxx = ssq(XVAR - Xbar);

s_Width = sqrt(ssq(RES_OLS[1:9]1)/DF_OLS);

s_Depth = sqrt(ssq(RES_OLS[10:18])/DF_OLS);
s_Velocity = sqrt(ssq(RES_OLS[19:27])/DF_OLS);

print X0 t_value Xbar Sxx s_Width s_Depth s_Velocity;

g_Width= (t_value/T_B_GLS_R[2])*(t_value/T_B_GLS_R[2]);

Xu_Width= X0 + ((X0 - Xbar)*g_Width - (t_value*s_Width/B_GLS_R[2])
*sqrt ((X0 - Xbar)*(X0 - Xbar)/Sxx + (1-g_Width)
/nrow(YVAR[,11)))/(1-g_Width);

X1_Width= X0 + ((X0 - Xbar)*g_Width - (t_value*s_Width/B_GLS_R[2])
*sqrt ((X0 -~ Xbar)*(X0 - Xbar)/Sxx + (1-g_Width)
/nrow(YVAR[,1])))/(1-g_Width);

Xuw = exp(Xu_Width); Xlw = exp(X1_Width);

print g_Width X1_Width Xu_Width Xlw Xuw;

g_Depth= (t_value/T_B_GLS_R[4])*(t_value/T_B_GLS_R[4]);

Xu_Depth= X0 + ((X0 - Xbar)*g_Depth + (t_value*s_Depth/B_GLS_R[4])
*sqrt ((X0 - Xbar)*(X0 - Xbar)/Sxx + (1-g_Depth)
/nrow(YVAR[,1])))/(1-g_Depth) ;

X1_Depth= X0 + ((X0 - Xbar)*g Depth - (t_value*s_Depth/B_GLS_R[4])
*sqrt ((X0 - Xbar)*(X0 - Xbar)/Sxx + (1-g_Depth)
/nrow(YVAR([,1])))/(1-g_Depth);

Xud = exp(Xu_Depth); X1d = exp(X1l_Depth);

print g_Depth X1_Depth Xu_Depth X1ld Xud;

g_Velocity= (t_value/T_B_GLS_R[6])*(t_value/T_B_GLS_R[6]);

Xu_Velocity= X0 + ((X0 - Xbar)*g_Velocity + (t_value*s_Velocity
/B_GLS_R[6])*sqrt ((X0 - Xbar)*(X0 - Xbar)/Sxx + (1-g_Velocity)
/nrow(YVAR[,11)))/(1-g_Width);
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X1_Velocity= X0 + ((XO - Xbar)*g_Velocity - (t_value*s_Velocity
/B_GLS_R[6])*sqrt((X0 - Xbar)*(X0 - Xbar)/Sxx + (1-g_Velocity)
/nrow(YVAR[,1])))/(1-g_Width);

Xuv = exp(Xu_Velocity); Xlv = exp(X1_Velocity);

print g_Velocity X1_Velocity Xu_Velocity Xlv Xuv;

QUIT;
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