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Abstract 

Standard communication patterns may be grouped into two broad classifications, 

information disseminations or 'to-all' operations, and information permutations or 

'one-to-one' operations. Information collections or 'from-all' operations are grouped 

with disseminations since they are simply the inverse operations. In this thesis, we 

develop algorithms for each of the data movement patterns within both classifications 

on cycles, and 2- and 3-dimensional toroidal meshes. Our algorithms take advantage 

of a multiple port model with circuit- switched routing and virtual channels. A 

linear cost model is employed in our analysis of these algorithms which takes into 

consideration st art-up, switching and propagation costs. 

The operations in the information dissemination classification that we develop al- 

gorithms for are: broadcasting, scattering (gathering), gossiping and multi-scattering. 

Those which we develop algorithms for in the information permutation classification 

include: all the global I-, 2- and 3-dimensional permutations (e.g. reflections, rota- 

tions, translations, and transpositions), as well as several translation-based permuta- 

tions. In addition, lower bounds to these problems are set forth and a comparison 

is made between the multiple port algorithms and their single port counterparts. 

The techniques used to  perform the dissemination operations are based upon those 

which were developed for use with the one-port model. The technique used for the 

permutation operations is based on breaking each transformation down into simpler 

transformations. We show that 1-dimensional transpositions and translations can be 

efficiently combined or used to perform all global permutations as well as each of the 

special case permutations described in this thesis. 
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Chapter 1 

Introduction 

In any multiple processor system or multi-computer, a key issue that must be ad- 

dressed is that of providing an efficient means of communicating between processors. 

Building systems in which processors are directly connected to all other processors 

is prohibitively expensive and compromises have been made in which processors are 

connected via some interconnection network to all other processors. A popular inter- 

connection network which has been used in many cases is that of the torus, or toroidal 

mesh. The toroidal networks have received much attention due to their low degree 

and ease of layout. One disadvantage of the torus is its large diameter. However, 

using circuit-switched routing we are able to overcome many of the limitations placed 

on our communications because of the diameter. 

Communications patterns which occur most often can be broken down into a 

set of smaller structured communication problems. Providing good algorithms for 

these problems is key to providing an efficient means of communicating in the multi- 

computer. The structured communication problems that have received the most at- 

tention are broadcasting and gossiping. Several survey papers have been written 

which cover much of the known information about these two problems. A sampling of 

these surveys includes: Fraigniaud and Lazard [5], Hromkovii: et al. [9], Hedetniemi, 

Hedetniemi, and Liestman 171, and Krumme, Cybenko, and Venkataraman [l 11 . In 

each, the authors look at  the problems based upon a group of interconnection net- 

works and a specific cost model. Most of the previous work on these problems also 
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used the store-and-forward approach to routing as opposed to circuit-switched routing 

which is now available on many systems. 

This thesis looks at two main classifications of problems and analyzes them based 

upon a specific network and communications model. The models we use are based 

on those used by Fraigniaud and Peters [6] with the exception that each processor in 

the network has the capability of using all of its ports simultaneously as opposed to 

a single port. The details of our network and communications model are covered in 

the next chapter. 

Specifically, the information dissemination problems we study are: 

0 Broadcasting: A single processor sends the same message to all other processors. 

0 Scattering: A single processor sends a personalized message to every processor. 

Gossiping: All processors broadcast a message to all other processors 

Multi-scattering: All processors scatter personalized messages to all other pro- 

cessors. 

An additional problem, Gathering, is also studied as a part of this classification 

even though it is not a dissemination problem. Gathering (the inverse of Scattering) 

requires that a single node receive a personalized message from every other processor. 

Each of these five operations may also be performed on a subset of the network, 

allowing us to classify them as 'to-many' and 'from-many' operations as well. One 

reason why these problems have received so much attention is their generality to all 

interconnection schemes. 

A set of less studied structured communications are problems which rely on the 

network topology in order to  make sense. Information permutation problems or 'one- 

to-one' problems fit into this category. Examples of the permutation problems we 

provide algorithms for include: 

0 Transpositions on cycles and 2- and 3-dimensional toroidal meshes. 

0 Translations on cycles and combined translations to performs various other op- 

erations. 
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Rotations in 2 dimensions (f 90•‹ and 180") and in 3 dimensions (120" and 180"). 

Reflections through the mid-point in a d-dimensional toroidal mesh. 

In Chapter 2 we explain the network model including definitions of the toroidal 

mesh and circuit-switched routing. We also explain the communication model and 

provide citations to other work which use the same model. 

Chapter 3 examines the lower bounds of the problems in the information dis- 

semination classification as well as presents algorithms for each of the information 

dissemination problems. Our results which use an all-ports model are then compared 

with the results given by Fraigniaud and Peters [6] which use the one-port version of 

the same network and communications model. 

Chapter 4 examines operations in the information permutation classification. We 

first present the two most basic permutations, namely the 1-dimensional transposition 

and translation. Using a standard form of these two operations we are able to provide 

algorithms to solve all other information permutations. In general we divide the 

permutation problems we study into two types, those which are global permutations 

and those which are a combination of position dependent permutations. The lower 

bounds for single and multi-dimensional permutations are used in comparison to show 

the efficiency of our algorithms. Finally, in Chapter 5 we summarize the results of 

this thesis. 



Chapter 2 

Explanation of Model 

In this chapter we set forth the basics of our model including the network model on 

which the algorithms are based, the restrictions we place on the main components of 

the network, and the communication routing strategy employed. We also describe the 

linear cost communications model which we use to analyze our algorithms. 

Network Model 

The communication algorithms proposed in this thesis are based upon a d-dimensional 

toroidal mesh interconnection network. Toroidal meshes are not new to this thesis and 

have been studied by several authors in the presentation of communication algorithms 

[I,  2, 3, 5, 6, 10, 11, 13, 14, 151. The d-dimensional toroidal mesh can be embeddedon 

the surface of a torus. The basic units of a toroidal mesh are nodes and communication 

links. These can be modeled as the vertices and edges of a graph. Each node is 

represented as a vertex and consists of a processor, memory, and a router. Each link 

is represented by an edge and provides a connection between two nodes. 

A 1-dimensional toroidal mesh is a linear arrangement of n nodes with links in be- 

tween and an additional link joining the first node to the last node. In graph-theoretic 

terms, a 1-dimensional toroidal mesh is a cycle where each node j has neighbours la- 

beled ( j  - 1) mod n and ( j  + 1) mod n. A 2-dimensional toroidal mesh is the direct 

product of two 1-dimensional toroidal meshes. We define the direct product of two 
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graphs, G = (Vl, El) and H = (V2, E 2 ) ,  denoted by G x H, as follows. The vertex 

set is the cartesian product K x b. There is an edge between (vl, v2) and (vi, v i )  
when vl = vi and (v2, vi) E E z ,  or v2 = v: and (vl, vi) 6 El. Using our definition 

of direct product we define a d-dimensional toroidal mesh as the direct product of d 

1-dimensional toroidal meshes. 

As an example, we illustrate in Figure 2.1 the formation of a 2-dimensional toroidal 

mesh as the direct product of two 1-dimensional toroidal meshes (cycles), A and B. 

Each node is connected both horizontally and vertically to two neighbours. The 

pattern that emerges is one of a square mesh with additional edges which connect the 

left side to the right and the top to the bottom. The 3-dimensional toroidal mesh can 

be viewed as a cubic mesh with edges which wrap around from the front to the back, 

the left to the right, and the top to the bottom. In some cases our algorithms apply 

to d-dimensional toroidal meshes but for the most part we restrict our attention to 

I-, 2-, and 3-dimensional toroidal meshes. Since each toroidal mesh can be formed as 

the direct product of cycles, algorithms on cycles play a key role in the development 

of our algorithms for multi-dimensional toroidal meshes. 

A AxB 

Figure 2.1 : 2-dimensional Toroidal Mesh 

For our study, we assume that the cycles in each dimension of the toroidal mesh 

have the same number of nodes, n,  and that n is even unless otherwise stated. The 

total number of nodes for a toroidal mesh of d dimensions can then be written as 

N, where N = nd. Having the same number of nodes in each dimension is not a 
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necessary constraint in the dissemination algorithms but is useful in simplifying our 

presentation and analysis. This constraint, however, is necessary in the permutation 

algorithms since a number of permutations, rotations for example, only make sense 

on toroidal meshes with this property. The degree, or number of neighbours a node 

has, is twice the number of dimensions. The diameter, or maximum distance between 

any two nodes, in a d-dimensional toroidal mesh is d [:I. 
Communication algorithms depend on the capacities of the nodes and links. In 

particular for this thesis we assume multi-port communications which are also referred 

to in the literature as link-bounded [3] communications or shouting [7]. Multi-port 

communications allow each node to use all of its communication links simultaneously. 

In contrast, one-port (processor-bounded or whispering) communications permit the 

use of only one link at any given time. We also assume that the communication links 

are full-duplex so that messages can travel across the same link in both directions 

simultaneously. For each link that is connected to a node we consider the node to 

have an input port and an output port, such that messages received over the link enter 

the node through the input port and message to be transmitted over the link exit the 

node through the output port. Using this model, in any given round of operation a 

single node in a 2-dimensional toroidal mesh can send up to four messages out through 

its output ports and receive up to four messages through its input ports. The input 

and output ports of a node if not used in this manner may be used to route messages 

through the node. We assume that a node can switch through a message by connecting 

an input port to an output port. In the 2-dimensional toroidal mesh as many as four 

messages can be switched through a node. 

As part of this thesis, we compare information dissemination algorithms based on 

multi-port communications with those algorithms obtained by Fraigniaud and Peters 

[6] using one-port communications. We justify being able to make the comparison 

since the additional memory control costs required by multi-port communications are 

considered negligible [6] in comparison to other costs. 

Interconnection networks such as toroidal meshes are used because connecting each 

node to all other nodes is prohibitively expensive. Consequently, communications be- 

tween non-neighbouring nodes require messages to be switched through intermediate 
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nodes. Two main strategies are used for this routing between nodes: store-and-forward 

and circuit-switched. 

In store-and-forward routing messages are stored in buffers at  each intermediate 

node along the path to the destination node. Once the entire message is received 

by an intermediate node the message is forwarded on to the next node along the 

path. A variation on this is pipelined store-and-forward routing which uses the links 

more effectively by partitioning the message into packets that are sent one after the 

other along the path using store-and-forward routing. Many of the communication 

problems studied in this thesis have been studied previously using store-and-forward 

routing on the torus. Store and-forward algorithms for broadcasting and gossiping 

have been presented in [l, 3, 5, 7, 11, 15, 161 and store-and-forward algorithms for 

transpositions have been presented in [2, 101. 

In circuit-switched routing a header containing the destination address is sent to 

"build" a path. At each intermediate node on the path, the input port and output 

port used by the header are connected. Eventually, the circuit is complete and an 

acknowledgment is sent back informing the source node to begin sending the message. 

The message is sent in packets in a pipeline fashion and the final packet disconnects 

the input and output ports in the intermediate nodes as it passes through. In circuit- 

switched routing the message is not examined or stored at the intermediate nodes as it 

is switched through. A derivative of this circuit-switched routing is wormhole routing 

where a header is sent to build a path and instead of waiting for an acknowledgment 

the message packets are pipelined behind the header with the last packet releasing 

the switches as it passes through. 

Peters and Syska point out in [14] that the large diameters of the toroidal meshes 

are a disadvantage when store-and-forward routing is used because the communication 

time for store-and-forward routing is proportional to the diameter of the network. In 

many recent multi-computers such as the Intel Touchstone Delta, AP100, Symult 

2010, nCUBE-2 and iWARP store-and-forward routing has been replaced by circuit- 

switched routing. Circuit-switched routing is less dependent on the diameter of the 

network and for this reason is a practical choice. Circuit-switched routing can emulate 

store-and-forward routing by creating circuits of length one only. Store-and-forward 
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routing cannot emulate circuit-switched routing. 

When using circuit-switched routing for non-structured com~nunications one of 

the most important characteristics is that the routing is deadlock-free. To implement 

simple deadlock-free routing on most topologies, several virtual channels or links can 

be multiplexed onto a single physical link. Fraigniaud and Peters [6] discuss one im- 

plementation of virtual channels and use virtual channels in their study of structured 

communications. In this thesis our communication patterns are also structured and 

are deadlock-free. Virtual channels are useful even with structured communicaion 

patterns since they allow for more uniform communications. Links in high demand 

make full use of the virtual channels available while links in low demand require only 

a partial or minimal use of virtual channels. In our network we assume a constant 

number of virtual channels, q.  When q virtual channels are in use we can "simultane- 

ously'' transmit q different messages over the same link. The communication time to 

transmit q messages simultaneously is approximately q times greater than the time 

to transmit a single message. Our algorithms (with gossiping and multi-scattering as 

exceptions) can also be performed without the use virtual channels. 

Communication Model 

For each algorithm we present, we analyze the communication time using a linear 

cost model. Several of the previously cited papers using store-and-forward routing 

perform their analysis with a linear cost model [I, 2, 3, 51. The linear cost model we 

use for our circuit-switched algorithms has been described previously in [6, 141. 

For each of our algorithms the cost of the algorithm is the time required to perform 

the algorithm. In general, each algorithm consists of synchronous rounds of commu- 

nication where the total time is the sum of the maximum communication times in 

each round. 

Using circuit-switched routing, the time required to send a message of length L 

along i links takes time, a + iS + LT. a is the start-up time or the time required to 

set up the communications. It may include a hand-shaking protocol to insure that 

the receiver has enough memory to store the message. S is the switching delay, or the 
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time required by the router to establish communications (connect an input port to 

an output port) through a node. T is the propagation time, or the time required to 

send a single unit of information the length of the circuit. In practice, the propagation 

time, T ,  is proportional to the length of the message [6]. The length of the circuit (i.e. 

path) is considered to have little effect on the propagation time, thus we ignore the 

circuit length and consider the propagation time proportional only to the length of 

the message. In our model we assume uniform message lengths where each message 

contains L units of information. In order to provide a uniform propagation time of T 

we assume a uniform bandwidth of $ in the network. The bandwidth is the amount of 

information that can be transmitted on a link during a unit of time. Fraigniaud and 

Peters in [6] show that this is a reasonable model of real machines (i.e. iPSC/860). 

When q virtual channels are used to multiplex q messages across a physical link, 

the propagation cost is multiplied by a factor of q since virtual channels do not increase 

the bandwidth of the links. 

The cost of multiplexing the virtual channels is shown by Fraigniaud and Peters in 

[6] to be very minor in comparison to the start-up and propagation costs. As well the 

costs of sending the header packet and receiving the acknowledgment are also stated 

as being minor costs. In a related paper, Seidel [18] presents a larger list of additional 

cost factors which can affect real message passing networks. From his simulation 

results on the Intel Delta mesh he showed that these factors attribute very little to 

the overall cost and therefore are ignored in his analysis. Considering the a, 6, and T 

terms as the major factors affecting the time of our algorithms we ignore the minor 

costs associated with the other factors outlined in the papers cited above. 

It should also be pointed out that in most current machines, message transmissions 

are initiated in software and switching is done in hardware, so S is usually much smaller 

than a. In general it should be kept in mind throughout this thesis that, S << a + LT. 

In presenting our algorithms it is often the case that tradeoffs exist between the 

different factors. For example, the number of rounds can often be decreased by an 

increase in the propagation costs. The algorithms we present attempt to approach 

their lower bounds with the emphasis being on minimizing the number of rounds 

without causing more than a minor increase in the propagation cost. 



Chapter 3 

Informat ion Disseminations 

In this chapter we present the algorithms for the four basic information dissemination 

problems on circuit-switched toroidal meshes using the linear cost model for analysis. 

The communications problems of this designation are: Broadcasting (one-to-all com- 

munications), Scattering (one-to-all personalized communications), Gossiping (all-to- 

all communications), and Multi-Scattering (all-to-all personalized communications). 

Each of these can be used as stated or adapted for use on some subset of the entire 

network, making them one-to-many or many-to-many problems. A fifth operation we 

study in this chapter is the Gathering operation (all-to-one personalized communica- 

tions). Gathering is the inverse operation of Scattering and is covered in the same 

section (Section 3.3). 

In Section 3.1 we present the lower bounds of the all-ports model in comparison to 

those known for the one-port model for circuit-switched toroidal meshes. In Sections 

3.2 to 3.5 we present the algorithms for each dissemination problem. In the last 

section we present a summary of our results and compare these results with those 

already known for the one-port model. 

3.1 Lower bounds 

Fraigniaud and Peters [6] present algorithms and lower bounds for broadcasting, scat- 

tering, gossiping and multi-scattering on a cycle using the same model we use, with 
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the restriction of sending and receiving on one-port instead of all-ports. Table 3.1 

gives a summary of the one-port lower bounds from [6] in comparison to our all-ports 

lower bounds. The all-ports broadcasting lower bound is taken from [14] by Peters 

and Syska. 

Table 3.1: Lower Bounds on Communication Times on a d-dimensional Torus 

I Broadcasting I one-port I max {d log,+,(n)a, dF6, LT) 1 

I Scattering I one-port / max {d log,+,(n)a, d56, (N - 1)Lr)  I I all-ports 

I Multi-Scattering I one-port I maw {d log,+,(n)a, d56, LT) I 

rnax {d 1 0 g ~ ~ , + ~ ( n ) a ,  d56, Y L r )  

Gossiping 

c 

The lower bounds are presented as the maximum of three independent lower 

bounds since it very difficult to provide a cumulative lower bound. The three in- 

dependent lower bounds are based on the a, 6, and T terms. 

From the table we observe that the lower bound on the number of rounds (a term) 

is the same for all four operations using the one-port model. Similarly, this is true for 

the all-ports model. In all four cases, using either model, each source node must send 

a message (unique or not) to all other nodes. If we consider the one-port model, in the 

first round a single node can only inform one other. In each subsequent round each 

informed node can only inform one other and thus number of informed nodes at most 

doubles. In order for all nodes to be informed Clog, N1 rounds are required, where N 

is the total number of nodes. When we consider the use of q virtual channels we find 

that each node can inform q other nodes and that Clog,+, N1 rounds are required to 

inform all nodes. 

In the all-ports model during the first round the originating node can inform one 

node through each of its 2d ports. After the first round, 2d+l nodes have been 

one-port 

all-ports 

max {d log,+, (n )a ,  d56, (N - 1)L.r) 

rnax {d log,,,+,(n)a, d56, VL~)  
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informed and in each subsequent round each informed node can also inform 2d other 

nodes. Thus in order for all nodes to be informed using this model [ l ~ g ~ ~ + ~  N1 rounds 

are required. Again if we introduce q virtual channels each informed node can inform 

2dq other nodes and the total number of rounds required becomes [ l ~ g ~ ~ ~ + ~  N1. 

In Table 3.1 we use the substitution of N = nd in order to make the lower bounds 

comparable to the results listed in Table 3.2 at the end of this chapter. In addition to 

simplify the presentation of equations throughout this thesis we will ignore the ceiling 

and floor functions. 

For the lower bound on the switching delay (6 term), we note that since a single 

node must communicate with all other nodes, the lower bound can be calculated as 

the maximum distance between any two points in the torus (i.e. the diameter). The 

diameter of a d-dimensional torus is d;. Using virtual channels does not affect this 

bound nor does it affect the bound on the propagation cost since virtual channels do 

not shorten the distances between nodes nor do they increase the number of available 

ports. 

The lower bound which varies for these operations is the propagation time (7- 

term). In the one-port model, under broadcasting the source node must send at least 

one message of length L into a network of bandwidth $, resulting in a lower bound of 

LT. Using all-ports, the message may be broken up and sent by a node through all 

of its ports. Peters and Syska [14] give this broadcasting lower bound as $7. 

A similar result holds for scattering. In scattering the source node must send 

N - 1 messages, resulting in a lower bound of ( N  - 1)Lr for the one-port model. 

Assuming an all-ports model, the source node can divide the N - 1 messages evenly 

and scatter them through all of its ports resulting in a lower bound of YLT. The 

argument for gossiping is simply the scattering argument turned around. Each node 

must receive N  - 1 messages from a network with a bandwidth of :. When only one 

port is in operation at any given time the lower bound is ( N  - 1)Lr.  With all-ports 

in operation the destination node can receive the N - 1 messages through its 2d ports 

resulting in a lower bound of W L ~ .  
The arguments presented by Fraigniaud and Peters [6] for the multi-scattering 

propagation time apply directly to both the one-port and all-ports models. The term 
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~ L T  is derived from the communication capacity required (circuit lengths times ex- 
8~ 

pected traffic) divided by the total bandwidth available. The communication capacity 

required to perform a scatter from a node is ( k  EL, i r ( i )L  = YL), where D is the 

diameter, r ( i )  is the number of vertices at distance i from a given vertex and p is 

the number of ports (1 or 2d). Since the nodes within a torus are vertex transitive 

we know that the same cost applies to all nodes making the communication capacity 

required for the multi-scatter operation: N ~ L .  The total bandwidth available is 

2dN$ (the total number of links, both directions). 

3.2 Broadcast, one-to-all 

originator 

Figure 3.1: Broadcasting on a cycle 

Broadcasting is the operation where a single node (the originator) has a single 

message to send to all other nodes within the network, in our case within the torus. 

Broadcasting within the cycle using all ports is illustrated in Figure 3.1. In the first 

round the cycle is divided into three equal sections and the originator sends a message 

(distance g)  to the two sections it is not contained in. In each succeeding round, the 

sections are again divided into three and the informed node in the middle section sends 
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its message (distance $, where r is the round number) to the other two sections. This 

pattern of communication continues until each section only contains a single node. 

The paths used in each round are numbered on the diagram. The number of rounds 

required to inform the nodes of the cycle is computed as log,(n). The switching time, 

(6 term), is the sum of the distances traveled in each round (~29,3(") $ rn 5). Finally, 

the propagation cost, log,(n)Lr, is computed using the sum of the message lengths 

(L) transmitted in each round. 

If we allow the use of q virtual channels, it is possible that a node could inform 

2q other nodes within the cycle rather than just two. This would cause the number 

of rounds required to be log,,+,(n). The switching time is calculated using the same 

method as above and results in the same time. The propagation cost is q times 

the number of rounds since there are q messages in each round being multiplexed. 

This gives a total propagation cost of qlog,,+,(n). Formula 3.1 gives the cost of 

broadcasting in a cycle with q virtual channels. If we substitute q = 1 we have the 

cost of broadcasting where each physical link is used by only one channel (i.e. the 

virtual channel capability is not used). From the equation below we see a tradeoff 

in the use of virtual channels. Virtual channels reduce the number of rounds by 

increasing the propagation time. 

One method of broadcasting within a d dimensional torus is to perform a cycle 

broadcast in each of the dimensions sequentially, requiring d steps. Since we have use 

of all ports it is possible for us to broadcast in all dimensions using cycle broadcasts 

in each of the d steps required above. Using this algorithm we are able to establish 

d disjoint paths between the originator and any one destination. Thus we can reduce 

the propagation cost by a factor of d by dividing each of the messages into d parts 

and sending one part along each path. Fraigniaud [3] in his thesis used this same 

method of simultaneous broadcasts to perform broadcasting on a torus using an all- 

ports store-and-forward model. An example illustrates how this takes place. Let the 

node in the bottom left corner of a 2-dimensional toroidal mesh be the originator 

(this in fact could be any node since the torus is vertex transitive). The broadcast 
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will require, in this case, two sets of cycle broadcasts. In the first set the originator 

informs the row it is in of one half of the message and the column it is in of the other 

half of the message. In the second set of cycle broadcasts, each node in the bottom 

row broadcasts the half message it learned to its respective column, and each nodes 

in the left column broadcasts the half message it learned to its respective row. 

In d dimensions, we can use the tuple (ml,m2,. . . ,md) to represent which part 

of the message is being broadcast in each dimension. Since we want each part of 

the message broadcast in each dimension we can use the following scheme to achieve 

the broadcast: (1,2,. . . ,d), (2,3,. . . ,d,l), . . . , (d,l,. . . ,d - 1). Using this scheme, the 

number of rounds and switching cost are both d times larger than in a cycle since there 

are d sets of cycle broadcasts. The propagation cost is the same as in a cycle since 

the number of ports available also increases by a factor of d. Therefore broadcasting 

on a d-dimensional torus by this method results in a cost of: 

3.3 Scatter (Gather), one-to-all (all-to-one) per- 

sonalized 

The scatter operation involves a single originator sending individualized messages to 

each other node. In order to perform this operation on a cycle we use the same paths 

(see Figure 3.1) that were used in broadcasting but send bundles of messages along 

each path rather than just a single message. The bundles consists of all the messages 

that the receiving nodes will have to forward to other nodes (including itself). Thus 

to scatter, we send packets of decreasing size until in the final round we send packets 

of size L (i.e. :L, %L, $L, . . . , L). The number of rounds and switching cost are the 

same as those in the broadcast operation since the same pattern is followed. The 

propagation cost can be computed using the sum of the size of packets sent in each 

round multiplied by i ( n ( ~ F t ( ~ )  ,3(")ji)Lr = Y L r ) .  When virtual channels are used, 

the cost can still be computed in the same manner and results in the same cost since 

the decrease of q in the message size is offset by the added cost of multiplexing the q 
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virtual channels. The total cost for scattering in a cycle is: 

In order to perform the scatter operation on a d-dimensional torus (with N nodes 

where N = nd) we apply the same method that was used for broadcasting with the 

exception that the packets used in the scattering operations are of different lengths. 

In the first set of cycle scatterings we scatter bundles of messages of size (nd-l)$ 

since messages are of size 4 and each node informed during the first round will need 

to inform a torus with one less dimension in the following rounds. This results in 

a propagation cost of ( F ) ( n d - ' ) $ T  for the first set of cycle scatterings. In each 

succeeding set of cycle scatterings the bundle sizes are reduced by a factor of n since 

each informed node is required to scatter only in the remaining sets of cycle scatterings. 

Using this pattern we can calculate the total propagation cost using the following 

equation ( F  ni)4T = ~ L T .  The number of round s and the switching cost 

is the same as described for broadcasting in Formula 3.2. Therefore, the total cost for 

scattering in d dimensions is: 

The reverse operation, gather or all-to-one personalized, requires the same time as 

the scatter operation and is performed by simply reversing the steps described above. 

Gossip, all-to-all 

Gossiping is the operation where each node has a message it broadcasts to all other 

nodes in the network. Our approach to the problem follows the 2-phase gossiping 

scheme introduced by Fraigniaud and Peters [6]. Our network model differs from 

theirs only in the number of ports available, all ports instead of one port., Gossiping 

using the 2-phase scheme is only useful in the presence of virtual channels (q > 2). 

The general concept of the 2-phase gossip scheme is illustrated in Figures 3.2 and 

3.3. In the first phase, we divide the cycle into k virtual cycles (with X nodes in 
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Figure 3.2: Gossip - Phase 1 - Four virtual cycles of eight nodes each 

Figure 3.3: Gossip - Phase 2 - Eight sub-cycles with constant contention (q=2) 

each cycle) and gossip along the virtual cycle. Figure 3.2 illustrates how these virtual 

cycles are set up. After phase 1, each node contains messages. 

The cycles used in the second phase are created by combining k adjacent nodes, 

one from each of the k virtual cycles. In order to complete the cycle, we add a virtual 

path of length k - 1 to the cycle. This is illustrated in Figure 3.3. Once we have 

gossiped on the phase 2 cycles, each node has received the messages from all other 

nodes in the whole cycle ( k z  = n). 

How we gossip on these two sets of cycles determines our cost. The method used in 

the one-port model by Fraigniaud and Peters [6] is to exchange messages between pairs 

of nodes. On a cycle with an even number of nodes, the edges can be 2-coloured such 

that each node has a Blue and Red edge entering it (Blue and Red edges alternate 
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through the cycle). In the first round of gossiping each node exchanges a single 

message with its neighbour along the Blue edge. In the second round each node has 

two messages it can exchange with its Red neighbour. In each successive round we 

alternate between exchanging two messages along the Blue and Red edges. In total, 

rounds are required to complete gossiping in a cycle with p nodes, and there is no 2 

contention for links. 

An all-ports version of gossiping on the cycle allows each node to exchange a single 

message with both its neighbours in each round. In the first round a node exchanges 

its own message with each neighbour. In each successive round it passes the message 

it received from its left neighbour to its right neighbour and the message from its right 

neighbour to its left. Again a total of 5 rounds are required to complete gossiping in a 

cycle with p nodes, and there is no contention for links. The all-ports version has the 

advantage of sending only one message through a port in any given round reducing 

the propagation cost. 

When all-ports gossiping is used to implement phase 1 of our scheme the maximum 

number of virtual cycles we can use is q (i.e. k 5 q), where q is the number of virtual 

channels available. Each cycle in phase 1 has f nodes, thus $ rounds are required. 

The switching cost is : which is the maximum distance a message is switched. The 

propagation cost of this first phase, :LT is calculated as the number of rounds (g), 
multiplied by the contention (k), the message size1 (L), and r. The cost of phase 2  is 

calculated in the same manner, the number of rounds being 5 .  The switching term is 
k ,(k - 1) since in each round a message must travel along the virtual path which has 

length k - 1. The propagation term is calculated using the same method as above 

resulting in a cost of $ 2 2 ~  = nL. Using q = k, these total for a result of: 

The number of rounds in the above equation is significantly higher than the num- 

ber of rounds required when the one-port model is used (see Table 3.2). The increase 

is attributed to the first phase of gossiping where using the all-ports model we can 

'The message size is the size of the message being gossiped. In phase 1 each node is gossiping its 
own message. In phase 2 each node is gossiping the f messages of size L it learned in phase 1. 
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have at most q virtual cycles (every link is used in every round). Using the one-port 

model which uses alternating links in different rounds we can use approximately 2q 

virtual cycles. With more virtual cycles in the one-port algorithm we are able gossip 

in phase 1 using approximately half the number of rounds but with a propagation 

cost in each round of approximately double that of the all-ports algorithm (resulting 

in approximately the same total propagation cost). In total we find that a tradeoff 

exists between the two algorithms. The one-port algorithm for phase 1 requires ap- 

proximately half the number of rounds and the all-ports algorithm has a slightly lower 

propagation cost. Phase 2, however, is free from these problems since the contention 

is constant and the tradeoff between the a and T terms does not exist. Considering 

the reduction in the number of rounds greater than the reduction in the propagation 

cost in phase 1, we find that our best solution is a hybrid algorithm which uses the 

one-port algorithm in the first phase and the all-ports algorithm in the second phase. 

The cost of one-port gossiping in phase 1 is given as $0 + f 6 + (% + 2 - 5 - 1)L.r 

in [6]. Combining this with the cost of all-ports gossiping in phase 2 gives us a new 
k total cost for gossiping in the cycle. Formula 3.6 represents this cost where q = ,. 

Thus on the cycle we are able to maintain the number of rounds required by the 

one-port algorithm and reduce the propagation term from the one-port algorithm by 

approximately one quarter. 

In order to gossip on a d-dimensional torus, we use the same approach that was 

used to broadcast on a d-dimensional torus. Each message is again divided into d parts 

and we perform d sets of d simultaneous gossiping operations, one in each dimension. 

Once we have completed the first set of gossips, each node knows d: messages. After 

the second set each node knows d$ messages. Once the d sets are complete each 

node knows all d$ = N messages. Since we gossip using the cycle gossiping strategy 

d times, we simply multiply the number of rounds and the switching cost by d. The 

propagation cost is multiplied by a factor of a ~ f = ,  n' = $&, since in each set of 

cycle gossips the number of messages which each node must gossip increases by n. 

The factor represents that we originally divided the messages by d. Applying these 



C H A P T E R  3. INFORMATION DISSEMINATIONS 20 

factors to Formula 3.6 we present below the cost of gossiping on a d-dimensional torus. 

3.5 Multi-scatter, all-to-all personalized 

The multi-scatter problem is that of sending personalized messages from every node 

to every other node. By analogy to the broadcasting and scattering problems, we 

can apply the same method employed in gossiping to multi-scattering. The only term 

which is then affected is the propagation time due to the varying size of bundles. 

How we multi-scatter on the cycles in each of the phases determines our cost. 

Multi-scattering by the one-port algorithm [6] requires that each node exchanges half 

(:, where p is the number of nodes and p is even) of its messages with one of its 

neighbours. In the second round, each node exchanges the other half ( 5  - 1) of its 

messages plus the messages it learned in the first round (removing the message for 

itself) in the other direction. In each succeeding round the exchange edges alternate 

and each node forwards on the number of messages it receives minus the two for itself. 

The propagation cost, CLT, is determined as the sum of the messages moved in each 
1? 

round times r (;L + 2 C:=, (: - i)L = $L). 

Multi-scattering by the all-ports method requires that in the first round each node 

sends half (LEI, where p is odd) of its information out each port. In the second and 

each succeeding round each node forwards all the messages it received minus the one 

for itself in the same direction the messages were initially traveling. The propagation 

cost, (% - :)Lr, is again determined as the sum of the messages moved in each round 
LEI times 7 (LfJL + CiZl([:J - i)L 2 ~ :  ($ + 2)L). 

Applying these simple multi-scattering techniques in our 2-phase circuit switched 

algorithm we can determine the cost of the overall algorithm. For each phase all 

we have to calculate is the new propagation term since the number of rounds and 

switching time is the same as it was for gossiping. In Phase 1, the number of nodes,p, 

in the cycle is f .  In order to multi-scatter each node sends its messages in bundles of 

k so that in the second phase these messages can be multi-scattered to their correct 
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destinations. The total propagation cost using the one-port model, ($+$)LT, can be 
n 2 

determined as the sum of the message sizes moved in each round, (%L),  multiplied by 

the size of the message bundles and the contention, $ - 1. The total propagation cost 

using the all-ports model, ($ + T)LT, can be determined as the sum of the message 
n 2  n 

sizes moved in each round, ((5 + $ ) L ) ,  multiplied by the size of the message bundles 

and the contention, k. 

In Phase 2 the number of nodes, p, in the cycle is k .  From the multi-scatter in the 

first phase each node has a total of f messages which it must multi-scatter to every 

other node in its Phase 2 cycle. The total propagation cost using the all-ports model, 

($ + ;)LT, can be determined as the sum of the message sizes moved in each round, ((z + :)L), multiplied by the size of the message bundles, f, and the contention, 2. 

In Formula 3.5 we presented the cost of gossiping using the all-ports algorithm in 

both phases (9 = k) .  In Formula 3.8 we present the cost of multi-scattering using the 

same model. 

In order to reduce the number of rounds to the same level as was reported for one- 

port multi-scattering [6], we apply the same hybrid method we did for gossiping. Using 

the one-port algorithm in the first phase followed by using the all-ports algorithm in 

the second phase, we are able to multi-scatter in the same number of rounds. The 

cost for this hybrid multi-scattering is shown below, where q = $. 

When we apply multi-scat tering to the d-dimensional torus we multiply each term 

by the same factors we did for gossiping. For the number of rounds and switching 

term this is d. In the case of the propagation term, the size of the message bundles 

decreases by the same amount it increased for gossiping at each stage. This results 

in the same factor for multi-scattering. The results are shown in Table 3.2. 
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3.6 Summary 

Table 3.2 summarizes the results2 from this chapter. From an analysis of Table 3.1 

we see that in general terms the addition of multiple ports reduces the lower bounds 

on the number of rounds by a factor of dl%,+l (n) 

log2dq+l (n) = logq+,(2dq + 1). and on the 

propagation cost by a factor of 2d. With these reductions on the lower bounds we 

would expect similar reductions in the cost of our algorithms. 

Table 3.2: Dissemination Communication Times on a d-dimensional Torus 

Broadcast I one-port / d log,+, ( n ) a  +d;6 +dq k q + l  ( ~ ) L T  

Scatter 

all-ports 

Comparing the costs between the one-port and all-ports models we find that for 

both broadcasting and scattering the number of rounds is reduced by a factor of 

logq+,(2q + I),  where q is the number of virtual channels. The propagation term is 

also reduced by factors of 1.58d and 2d, for broadcasting and scattering respectively. 

Using the all-ports model it is possible to obtain better bounds for the broadcasting 

and scattering algorithms on a 2-dimensional torus. Peters and Syska [14], and Park, 

Lee, and Choi [13] present better 2-dimensional algorithms which take advantage of 

tiling patterns on the torus. In order to obtain these results the authors approach 

the torus as a 2-dimensional network and not as a product of cycles. We hypothesize 

'To simplify the presentation and analysis the ceiling and floor functions have been dropped. 

all-ports 

one-port 

d log2,+, (n)a+d;S + ~ L T  

Multi- 

Scatter 

d log,,+l (n)a+d;S $4 1%2,+1(n)L~ 

d log,+, (n )a  +d:S + ( N  - ~ ) L T  

one-port 

hybrid 

all-ports 

d ( 2  + q)a +d(; + q2)6 +((?)$ + * ) m L ~  4 n-1 

g+l n2 I ( Q + ~ ) ~ ) N - I  L~ d ( z  + q)a +d(: + 2q2 - q)6+(( , ) , 2 d(n-1) 

d($ + :)a +d(: + $ - 5)s +($ + q)fi~~ 
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based on these results that in order to obtain the optimal number of rounds on a 

d-dimensional torus, broadcasting and scattering algorithms must be based upon a 

d-dimensional not 1-dimensional pattern. 

For the gossiping and multi-scat tering algorithms the difference between the one- 

port and multi-port model is a tradeoff rather than a strict improvement. The tradeoff 

is in favour of the propagation term over the switching term, where the additive factor 

to the switching term3 is small (it depends only on d and q). In both operations the 

switching cost increases by an additive factor of (dq2 - dq)S and the propagation cost 

decreases by a multiplicative factor of approximately 1.33d and Id  for gossiping and 

multi-scattering respectively. 

Several methods were attempted to use an all-ports algorithm in phase 1 of the 

2-phase scheme for the 'all-to-all' operations. Of these, none outperformed the one- 

port algorithm already provided in [6] .  The problem that was found was that all- 

port algorithms created at least as much contention (if not double) as the one-port 

algorithm. By creating extra contention it was not possible to reduce the overall cost. 

The reason we were able to reduce the cost of phase 2 was because the contention was 

constant and the all-ports algorithm had a lower propagation cost. This translated 

into larger cost savings for gossiping since its propagation cost is higher in phase 2, 

and into a smaller cost savings for multi-scattering which has its higher propagation 

cost in phase 1 (which was not changed). 

From our study of these problems we hypothesize that the additional capabilities 

of multiple ports are best applied to problems that have bandwidth open for use as 

was the case in the 'one-to-all' problems. 

3The switching term in our communications model is also the smallest of the three cost terms. 



Chapter 4 

Informat ion Permutations 

In this chapter we present the algorithms for operations in the information permuta- 

tion classification on 1-,2- and 3-dimensional toroidal meshes. These operations can 

be divided into two types of permutations. The first type are called global permu- 

tations and are uniform permutations (e.g. rotations, transpositions, and reflections) 

on the cartesian axes. The second type are translation based permutations in which 

nodes vary the amount of translation they are required to perform based upon their 

position in the mesh or according to the dimensions of the mesh. Each permutation 

of either type can be performed as a combination of 1-dimensional transpositions or 

1-dimensional translations. 

Prior to the presentation of the algorithms we present the approach and common 

procedures followed in developing these algorithms. The basic 1-dimensional transpo- 

sition and the very closely related 2-dimensional transposition are presented in Section 

4.2. These operations are used extensively in Section 4.4 where we present the algo- 

rithms for the global permutations. The basic 1-dimensional translation is presented 

in Section 4.3. This operation has application to both types of permutations (Sections 

4.4 and 4.5). In Section 4.6 we present the lower bounds on d-dimensional permu- 

tations to act as a guide in determining the efficiency of our algorithms. Finally, we 

conclude this chapter with a summary of our results. Once again in this chapter we 

simplify the presentation and analysis of our results by ignoring the ceiling and floor 

functions. 
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4.1 Common procedures 

4.1.1 Labeling 

Figure 4.1: a) Natural and b,c) Symmetric labelings of Cs 

The labeling of nodes is an important issue in one-to-one operations. We will be 

using two types of labeling, natural and symmetric. Natural labeling of a cycle is 

done with labels starting with zero and increasing by one as they go around the cycle 

(i.e. from 0 to n-1, where n is the number of nodes). Symmetric labeling has several 

forms. We can perform the labeling by placing a mirror on the cycle. Those on one 

side of the mirror are labeled with increasing numbers starting at 1. Those in the 

reflection have negative labeling. Figure 4.1 depicts these two types of labeling. It is 

possible in symmetric labeling to have zero, one or two nodes on the line of reflection. 

If they are present, nodes on the line of reflection are labeled 0 and f 5 .  
Transpositions can also be thought of as reflections and are best described under 

symmetric labeling, that is 3 is mapped onto -3, and -3 is mapped onto 3 and so 

forth. Translations on the other hand are best described under natural labeling. A 

translation might be of the form newx = (x + 3) mod n. In this way each node 

communicates with the node ahead of it by three in the positive direction. 

Symmetric labelings on multi-dimensional toroidal meshes require that we fix the 

axes such that they divide each dimension in half (-;, -;, . . .) -+ (;, ;, . . .). Natural 

labelings require the toroidal mesh to be contained within the positive quadrant of 

the axes (O,O,. . .) t (n - 1, n - 1,. . .). 
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4.1.2 Problem reduction - Collection 

In dealing with permutation problems, a major obstacle that must be faced is the 

problem of contention for links in order to make circuits. Given that we are working 

with a model with only a constant number of virtual channels, we need to make the 

best use of those channels. One method is to use each of the virtual channels in 

each round to perform a task, say transpose a node in C, (a cycle with n nodes). In 

Section 4.2 we will show that of the nodes in a cycle want to transpose through 

the same point on the line of reflection in the same direction. Our first approach 

allows q nodes of the 2 to transpose in each round, resulting in a total of % rounds to 

complete the operation. This first approach is used by Fraigniaud and Peters in [6] to 

implement transpositions and translations with the one-port model. The approach we 

take in this thesis uses a collection algorithm to reduce the size of the problem until 

the permutation can be performed trivially on the nodes with collected information. 

Once these are permuted we reverse the collection (distribution) such that all collected 

messages are also permuted properly. The difference between using a one-port and 

all-ports model is discussed at the end of this section. 

Figure 4.2: Collection on f of Czoo (2 virtual channels) 

In order to reduce the problem by collection in this manner, we rely heavily on the 

ability to combine messages. Figure 4.2 illustrates how our reduction (collection) takes 

place on a section of 50 adjacent nodes. When two virtual channels are in use we can 

collect the information from the two left and right neighbours into the center nodes. 

In the second round of collection the collector nodes from the first round are collected 

into second round collector nodes. This procedure continues until the information 

from the section of the cycle being collected is reduced into at most q nodes. The 

number of rounds required to collect our example is calculated as where 

n = 200. Once collection is complete we are able to perform the desired operation (i.e. 
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transposition, translation etc.). Finally, we distribute1 messages to their respective 

destinations. This is made possible only on permutations that are neighbourhood 

preserving. We define neighbourhood preserving as those operations that map each 

source node and its neighbours onto a destination node and its neighbours. As we will 

prove later, each of our operations which use collection are neighbourhood preserving 

and thus our distribution operation is simply the reverse of the collection operation 

and takes the same time. 

In our example above we calculated the number of rounds based on sections of 

size 2 .  In general if we collect M adjacent nodes the number of rounds required is 

M. The switching time for each round can be calculated as q(2q + I)'-', where h32q+' q 

r is the round number (1,2,. . . ). Summing these distances and multiplying by two for 
log2 

the distribution phase results in a total switching cost of ( c , = ~ ~ ~ ~  q(2q + l)'-lS = 

(M - 1)S. The propagation cost is calculated in much the same manner. In each 
4 

round of collection the packet size is (2q + 1)'-'L. Summing these and multiplying by 

the contention q and by two for the distribution phase results in a total propagation 

cost of ( y  - 1)L.r. Therefore the total cost to collect and distribute messages from 

M adjacent nodes into at most q nodes results in a cost of: 

Most of the operations we will be dealing with will require collection on 2- and 

3-dimensional toroidal meshes. Collection on a 2-dimensional toroidal mesh, which we 

picture as a square mesh with wrap-around edges, is done such that we reduce both 

dimensions at the same time, resulting in the same number of collector nodes being 

present in each dimension. Collecting into diagonals2 is one way we can accomplish 

this purpose. Figure 4.3 illustrates this type of collection with no virtual channels. 

In the first step each diagonal collects the values of the diagonal on either side of it. 

In the second step these collected diagonals are again collected, reducing the number 

of nodes in any row or column to be two. Figure 4.4 shows how using two virtual 

We use the terms collect and distribute to avoid confusion with other terms such as gather and 
scatter which we relate to the general all-to-one and one-to-all operations (Section 3.3). 

2Collection can be done in either diagonal, only one is shown. 
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Figure 4.3: Collection pattern on a 2-dimensional torus, with no virtual channels 

channels, two diagonals on either side of the collector diagonal are collected. The thick 

lines collect information from the diagonals next to the collector diagonals, the thin 

lines collect information from the diagonals a distance of two away from the collector 

diagonals. 

Figure 4.5 shows the collection pattern on a 3-dimensional toroidal mesh, which 

we illustrate as a cube (again the wrap-around edges are not shown, simplifying the 

picture). In 3 dimensions we collect into planes perpendicular to the axis3 between 

opposite corners. The nodes shown in Figure 4.5 are those which would be considered 

the collector nodes. The other nodes in the mesh are not shown. 

The collection and distribution costs in d dimensions are very similar to those for 

the 1-dimensional case (Formula 4.1). In 2 dimensions we are collecting M adjacent 

diagonals into q diagonals and in 3 dimensions we collect M adjacent planes into q 

planes. Since each dimension is n nodes wide and there are n diagonals in the 2- 

dimensional case, the number of rounds required to collect using 1- or 2-dimensional 

collection is the same. This holds true in the d-dimensional case as well. In addition, 

since we collect adjacent diagonals (or planes) the switching distance in d-dimensions 

does not change from the distance we calculated earlier for collection within a cycle. 

31n 3 dimensions we have four different axes along which we can collect. 
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Figure 4.4: Collection pattern on a 2-dimensional torus, with 2 virtual channels 

Figure 4.5: Collection pattern on a 3-dimensional torus 

Each node on a diagonal (or plane) being collected is connected to d nodes on the 

collecting diagonal (or plane). Thus it sends only $ its information along each path 

reducing the propagation cost by a factor of d. In total the cost for collecting a 

d-dimensional toroidal mesh is: 

In the sections which follow, we show how these collection patterns are used to reduce 

the size of 2- and 3-dimensional permutation problems down to the point where these 

operations can be performed in one or two steps. 
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We note that the difference between the multi-port model and the one-port model 

with regard to collection is that the one port model will require 210gq+,(7) rounds 

and the propagation time will not be divided by the number of dimensions, since each 

node can only send and receive on a single port. With these changes, each of the 

algorithms presented in this chapter can be applied to the one-port model as well as 

to the all-ports model. 

4.2 Transposition 

4.2.1 1-dimensional Transposition 

Figure 4.6: 1-dimensional Transposition, (x) -+ (-x) 

Transposition on a cycle, (x)  + (-x), is illustrated in Figure 4.6. The maximum 

distance any message must travel is ;. From the diagram we note that the cycle can 

be divided into four quadrants (A, A', B, B') where each node in the quadrant sends 

its message in the same direction. 

Performing the transposition in this manner results in a contention of z .  With 

only q virtual channels, we must reduce the contention to q. Using our standard 

collection technique, we can collect 2q + 1 nodes into one node in each round. Since 

our goal is to reduce the contention from to q, we can replace M in Formula 4.1 

with 2 to give us the cost of collecting and distributing messages in order to transpose 

a cycle (Formula 4.3). 
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With only q nodes in each quarter of the cycle, it is then possible to perform the 

transposition in a single round. Since the same amount of information must pass 

through the bottleneck, regardless of the collection, the propagation cost is ~ L T .  An 

upper bound on the switching cost can be determined as the maximum distance, ;, 
which may exist between the collector nodes. Using these bounds, Formula 4.4 shows 

the cost of the transposition step and Formula 4.5 shows the total cost of transposing 

a cycle. This bound on the 1-dimensional transposition will be used in Section 4.4 and 

its sub-sections, where we combine 1-dimensional transpositions in order to provide 

solutions for multi-dimensional permutations. 

A better bound is possible on the switching term in the transposition step if we can 

make some further assumptions on what has happens in the collection rounds. During 
-- 1 

collection, the nodes have been collected a maximum distance of + (see Formula 

4.3). If we assume that the node furthest from the bottleneck (a distance of :) has 

been moved the maximum distance, we can say that the furthest collector node is now 
"-1 

a distance of 2 - + away from the bottleneck. During the transposition step then, 

the furthest distance a node has to travel is now twice this distance or ; - ( 2  - 1). 
49 

Due to our assumption earlier, this analysis is only useful when we do not combine 

transpositions and are able to ensure that the furthest node is collected as stated 

above. Using the newly calculated cost of the switching term in the transposition 

step we calculate the total cost of the 1-dimensional transposition to be: 

As was stated earlier, in order for the distribution step to work correctly we need 

to show that our operations are neighbourhood preserving. From the symmetric 

labeling associated with transpositions, it can be shown that any vertex i will be 

transposed onto the vertex -i and that the neighbours of i ,  (i + 1 and i - l), will be 

transposed onto the two neighbours of -i, (-i - 1 and -1 + 1). Since this holds for 
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any i,  (-: 5 i 5 :), we know that 1-dimensional transpositions are neighbourhood 

preserving. 

Finally, we present one other algorithm for performing a transposition on a cycle. 

This algorithm provides a better result than the algorithms already presented but lacks 

the flexibility which will be required of the 1-dimensional transposition algorithm in 

the following sections. The basic concept of the algorithm is that it combines the 

collection/distribution and transposition phases. Our previous algorithms only sent 

information through the bottleneck during the transposition phase. In this algorithm 

at the same time we are collecting and distributing information, we will transpose 

information as well. Due to the overlapping of phases in this algorithm, it is only 

useful for doing a single 1-dimensional transposition. Since a main focus of this thesis 

is to show how 1-dimensional transpositions can be combined we refer the reader to 

Appendix A for a complete discussion of the algorithm. The cost of performing the 

1-dimensional transposition by this algorithm is: 

4.2.2 2-dimensional Transposition 

There are two 2-dimensional transpositions, one in both of the main diagonals result- 

ing in permutations of (x, y ) -+ (- y , -2) and (x, y ) + (y , x). Each node exchanges 

its message with its reflection. The line of reflection for the (x, y) -+ (- y, -x) permu- 

tations is shown in Figure 4.7 a)  as the dashed line. Due to the wrap-around nature 

of the torus the line of reflection appears along the main diagonal and along the outer 

diagonals. Using the cycles depicted in Figure 4.7 b) we are able to connect each node 

to its reflection with a minimal distance path. The dotted line in a) is a line which 

is not crossed by any minimal distance paths and which divides the nodes into four 

sections A, A', B, and B'. Each node in each section sends its message in the same 

direction. 

The 2-dimensional transposition can be performed using n 1-dimensional transpo- 

sitions in parallel on the n cycles shown in Figure 4.7 b). In order to reduce the cost of 

this operation we associate half the nodes (nodes of the same colour according to the 
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Figure 4.7: 2-dimensional Transposition, (x, Y )  -+ (-y, -x) 

diagram) on each cycle to only one of the cycles. This reduces the number of nodes on 

each cycle from 2n to n but does not reduce the length of each cycle. Collection can 

occur along these cycles but collection using the standard 2-dimensional collection 

scheme (Formula 4.2, collection into diagonals) has a lower propagation cost since 

messages can be divided in two and sent. The amount of collection required using ei- 

ther method is nodes or diagonals collected into q nodes or diagonals. Using M = 2 
we find the cost to collect and distribute using the 2-dimensional scheme to be: 

Once the information has been collected into q nodes within each section the 

transposition step can take place along the cycles shown in Figure 4.7 b). Since the 

distance between nodes is double that of the 1-dimensional case the cost is essentially 

the same as in the 1-dimensional case (Formula 4.4), with the difference that the 

switching cost has increased to n. The other 2-dimensional transposition, (x, y) + 

(y ,  x),  can be performed by collecting and transposing with respect to the diagonal, 

y = x. The total cost for either 2-dimensional transposition is: 

n n n n l  
(210g, ,+ , (~)  + l)a + (n + (-) - 1))s + (- + - - p r  

4q 4 8q 

Again we need to prove that this operation is neighbourhood preserving for our 

distribution to work. Since the two 2-dimensional transpositions simply exchanges 
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cartesian axes or exchanges and negates the axes, it is easily shown that the two op- 

erations are neighbourhood preserving by choosing any point and showing its neigh- 

bours are preserved through the transposition. Knowing that the 1- and 2-dimensional 

transpositions are neighbourhood preserving allows us to make the statement that all 

the global permutations (Section 4.4) are neighbourhood preserving since each can be 

constructed as a combination of these two operations. 

In the same way we modified the 1-dimensional transposition in Formula 4.6, 

we can arrange collection on the 2-dimensional toroidal mesh in order to reduce the 

switching term to the diameter without affecting the other factors (a and 7) .  An even 

better solution in terms of tjhe number of rounds and propagation cost uses the 1- 

dimensional transposition algorithm described in Appendix A. Using this algorithm, 

the cost of the 2-dimensional transposition is calculated using n parallel 1-dimensional 

transpositions and is shown in Formula 4.10. The difference in cost between the 1- 

and 2-dimensional transpositions using the algorithm from Appendix A is simply a 

doubling in the switching factor since the distance between nodes is now doubled. 

Translation 

Translations are the second major method we use in this thesis to perform permuta- 

tions. Unlike transpositions for which there is only one form, (x) + (-x), translation 

distances vary and have the form, (x) -+ (x + i).  A translation on a cycle is the same 

as a rotation on a cycle where the angle of rotation is expressed as a distance. 

In this section the d-dimensional translations we study are of the form, (x, y, . . .) t 
(x + i, y + i ,  . . .). A translation of different distances in different dimensions can be 

performed as a combination of translations (see Section 4.5.1). 

We use the same general algorithm for translations as was described for transpo- 

sitions. First, we collect messages using our standard collection scheme until the con- 

tention is low enough such that we can perform a simple translation with contention q. 

After the translation we can then distribute the messages to their respective locations. 
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In order for this operation to work, translations must be neighbourhood preserving 

operations. This can be trivially shown, since performing a global translation adds 

the same value to all variables thus maintaining their relative positions. 

We analyze translations in two categories in the following subsections; i = ; and 

i < ;. 

4.3.1 Translations of i = 

The easier of the two cases to discuss is the : case, since each node has exactly two 

paths of the same distance in either direction along which it can send its message. 

When neighbouring nodes send in opposite directions, we reduce the contention to 2 
in both direction (as shown in Figure 4.8) for a propagation cost of :Lr. Trying to 

send half the message out both ports results in the same propagation delay and in 

the worst case (all virtual channels in use) doubles the number of rounds. For this 

reason sending single messages out one port is preferred. The cost of this operation is 

again based on collection and distribution plus the actual translation time itself. Since 

we have only q virtual channels the amount of collection required reduces messages 

from 2 nodes into q nodes (see Formula 4.1). Adding the cost of the translation step 

(la + 56 + TLr),  we find the total cost for a translation of distance : on a cycle is: 

Figure 4.8: Translation on CIs (i = ;), uses edges in both directions 

The complexity of translating on the d-dimensional toroidal mesh is not much 

different than on the cycle since we implement the translation on cycles of length dn. 
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We construct our cycles in d dimensions such that two nodes are connected in a cycle 

if and only if they are separated by a value of plus one in all dimensions. On the 3- 

dimensional toroidal mesh each cycle would be of the form: {(x, y , z), (x + 1, y + 1, z + 
1) , (x+2,  y+2,z+2) ,  . . . , (x+(n- I ) ,  y + ( n - l ) , z + ( n - l ) ) ) .  Between any two nodes 

on one of these cycles there exists d (d = 3 in this example) disjoint paths connecting 

them. An example of such a path which connects (x, y, z) to (x + 1, y + 1, z + 1) is 

(x ,y ,z )  + ( x + l , y , z )  + ( x + l , y + l , z )  + ( x + l , y + l , z + l ) .  Ifwechoose to 

use all d connecting paths we can establish d disjoint ways of connecting the same 

cycle. This at first appears good, as it would allow us to divide our messages and 

send them along disjoint cycles. However, each of the edges on the chosen paths are 

also used by d - 1 other cycles in the mesh, resulting in a contention of d if we were to 

use all connecting paths. It turns out to be less expensive if we choose only a single 

path to connect each cycle. In this manner every edge in the mesh is used in only 

one cycle resulting in no contention between translations on different cycles. Figure 

4.7 b) shows an example of these cycles on a 2-dimensional toroidal mesh. Choosing 

each cycle to only work with the four nodes of the same colour (see figure) results in 

the best solution we found. 

Using our standard multi-dimensional collection procedure (Formula 4.2) and 

our simple 1-dimensional translation (with the modification of a distance d between 

nodes), we present the cost of d-dimensional global translations where i=; as: 

4.3.2 Translations of i < 

A 1-dimensional translation of this variety can be thought of as any rotation around 

the cycle other than 180'. Translations of distances greater than are simply trans- 

lations of distances less than ; in the other direction. 

Multi-dimensional translations of this variety are not rotations. The relationship 

between 1-dimensional and d-dimensional translations which held for translations of 

" hold as well for these translations. Thus, The switching term of the translation step 
2 

increases by a factor of d and the propagation cost in the collection and distribution 
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phases is reduced by a factor of d. 

Translations of x -+ x + 1 have no contention and are the simplest to perform. 

Translations where the number of virtual channels (q) is greater than or equal to the 

translation distance (i) are also straightforward to perform. The cost of this type of 

operation is shown below: 

a + diS + iL r  (4.13) 

Figure 4.9: Translation on Cis (i = 4), a) one direction, b) both directions 

If the number of virtual channels (q) is less than the translation distance (i),  

collection and distribution phases are added to the translation. Collection takes place 

on sections of the cycles of size i and continues until the i nodes are reduced into 

at most q collector nodes. The cost of doing this can be calculated using Formula 

4.1. Once the collection is complete, we can translate the collector nodes according 

to Figure 4.9. Figure 4.9 a)  depicts this type of translation using edges in only one 

direction. Formula 4.14 represents the cost of this operation where i = E. 
n n n n n 1 

(21og,,+,(-) + l )a+ (d- + - - I ) & +  (- + - - -) LT (4.14) 
aY a aY a day d 

In order to make better use of edges without increasing the number of virtual 

channels we select a fraction of the nodes to perform their translations backwards. 

This method increases the switching term while decreasing the other two cost terms. If 
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we represent the translation distance i as :, then nodes will continue to translate 

their messages forward while : nodes will translate their messages backwards. The 

reduction in the number of rounds and propagation cost is indicated in Formula 4.15 

by the factor 5. The increase in the propagation cost is represented by the factor 

(a-1). Figure 4.9 b) depicts a translation of 2 where of the information continues 

forward while can be translated on the backward edges. The following formula gives 

the cost for this type of movement. 

4.4 Global Permutations 

With the algorithms and cost equations for the 1- and 2-dimensional transpositions 

and the 1-dimensional translations, we are able to present the algorithms and cost 

equations for all global permutations. Each global permutation can be represented as 

a permutation of the cartesian axes. 

Table 4.1 : Global Permutations, 1-dimensional 

Table 4.2: Global Permutations, 2-dimensional 

Operation 

Identity 
1D Transposition 

I Operation I Permutations I 

permutations 

(4 
(-XI 

I Identity 1 h ,  ?A I 

For the cycle there exist only two operations, the identity and the transposition 

(or reflection). These are listed in Table 4.1. A 2-dimensional toroidal mesh has eight 
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permutations (four choices for the first axis (f xand f y), and two for the second). 

Table 4.2 shows the permutations on a 2-dimensional torus and the operation associ- 

ated with each. In some cases there are more ways than one to perform the operation. 

We explore some alternatives and present the best algorithm found. An example of 

this is the 180" 2-dimensional rotation which can be performed as either a rotation 

(Section 4.4.2) or as a reflection through the mid-point of the toroidal mesh (Section 

Table 4.3: Global Permutations, 3-dimensional 

Operation Permutations 

Identity 

2D 90" Rotation* 
(x, -'1 - Y ) ,  (-Y, - ~ 7 ' ) 1  (-',Y, -x) 
(2, -z,Y), (-YA 4 1  (-z,Y,x), 

3D Transposition (type 1) 

Following the pattern above we present the 48 (6*4*2) permutations on the 3- 

(-2, - Y ,  -4, (-Y, -x, -4, ( - 2 1  -2, -Y) 
(-2, -x, -y),  (-y, -z, -x), (z ,x ,  -y), (y, -z, x), 

3D Transposition (type 2) 

dimensional toroidal mesh in Table 4.3. Again the permutations are broken down 

into respective operations by which they can be performed. 

Each operation listed in the three permutation tables can be performed using a 

combination of 1 and 2-dimensional transpositions. In some cases we find the cost of 

combining these operations expensive and turn to using translations as an alternative 

method which provides better results. A summary of the results of this section is 

given in Section 4.7. The two * operations in the table above are those which can be 

(2, -x, Y ) ,  ( -Y,  z , 4 ,  (-21 x1 Y ) ,  ( Y ,  z1-2) 
(-x, -z, y), (-3, z, -y),  (-z, -y, x), 
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performed more efficiently using translational rather than transpositional methods. 

In each of the following subsections, we describe the algorithm by which the trans- 

formation can be performed and the cost of performing it, the results of these are 

tabulated in Table 4.4. 

4.4.1 Reflections through the mid-point 

A reflection through the mid-point results in only one transformation. That transfor- 

mation being (x,  y, . . .) + (-x, - y, . . .). In one dimension this transformation is the 

same as the 1-dimensional transposition. In 2 dimensions it is the same as the 180" 

rotation discussed in the next section. 

> 

original transpose x transpose y 

Figure 4.10: 2-dimensional Reflection through the mid-point 

This transformation can be created by doing a 1-dimensional transposition in each 

dimension of a d-dimensional torus. In the case of 2 dimensions (as in Figure 4.10) 

we can ~e r fo rm  it by transposing dimension x followed by transposing dimension y ,  

at double the cost of a single transposition. 

If we perform the standard d-dimensional collection we find that there is no need 

to distribute and re-collect messages in between transposition steps since the initial 

collection reduced each dimension the same amount such that further reductions are 

unnecessary. Therefore we perform a standard d-dimensional collection at the be- 

ginning followed by the d transposition steps and then a d-dimensional distribution 

phase. 
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An improvement on this algorithm notices that the transposition steps are all 

one-to-one operations and can be combined into one large one-to-one step. This holds 

since each transposition is in a different dimension and thus the edges used are all 

disjoint. By transitivity then we can join the one-to-one functions creating one large 

one- to-one function. 

Combining d transposition steps into one requires us to sum the switching costs 

but not the propagation costs since the bandwidth demands are the same in each but 

the distances messages travel is cumulative. With this information and the cost of 

the single transposition in Formula 4.5 we find the cost of the combined transposition 

step to be: 

Adding to this the cost of the d-dimensional collection and distribution phases 

(Formula 4.2) gives us a total cost for this operation in d-dimensions. Reflection 

through the mid-point is the only permutation we analyze on d-dimensions. The cost 

of this operation is given below: 

4.4.2 2-dimensional Rotations 

180" Rotation 

The 2-dimensional 180" rotation as noted in the previous section is the same as a re- 

flection through the mid-point (x, y )  -+ (-x, -y). However, it can also be performed 

using a translation technique at a small increase in the cost. This translational al- 

gorithm is presented to provide a comparison between the two techniques and shows 

that the transpositional method is better due to its more regular pattern of collection. 

Figure 4.11 a)  depicts a set of twelve cycles, all of length 2n, which can allow us 

to perform this transformation by translation. The cycles are divided between two 

pictures to make it easier to see the pattern. 

In order to perform a translation on these cycles we cannot use the standard 

collection pattern on the 2-dimensional torus, rather we collect messages along the 
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Figure 4.11: a) Cycles used in the 2D 180" Rotation, b) partitioning 

cycles indicated using a 1-dimensional collection pattern on each cycle. Since each 

node in the 2-dimensional torus is on two of these edge disjoint cycles, we partition 

the nodes such that they will participate on only one of the cycles they appear on. 

In this manner we can reduce the number of active nodes on each cycle from 2n to n. 

Figure 4.11 b) illustrates how the nodes on the cycles can be partitioned. The lines 

indicate the general pattern that is followed to divide the nodes while the coloured 

points (one colour per cycle) show specifically which nodes are active on each cycle. 

At this point we can perform a translation of distance $, where N is 2n (the length 

of each cycle). Since the number of active nodes on each cycle is only n,  we obtain the 

same translation cost as is given in Formula 4.11, except that the translation distance 

is n and the switching cost is increased for collection and distribution since nodes 

are not adjacent. We approximate the switching cost for collection and distribution 

to be twice the standard cost since the average distance between nodes is doubled. 

Compared to the result given in the previous section, this result (Formula 4.18) is more 

expensive due to a less regular collection pattern being employed. For this reason we 

use the cost of the transpositional algorithm (2-dimensional reflection through the 

mid-point) for this operation in the summary table (Table 4.4). 
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90" Rotation 

Like the 180" rotation, the 90" rotation can also be performed using either transpo- 

sitional or translational methods. It differs in that it cannot be performed by two 

1-dimensional transpositions but by one 2-dimensional and one 1-dimensional trans- 

position. 

= ( x > Y )  (Y?') ( y l - ~ )  Or ( x ~ Y )  (-Y?-x) (Y>-x)  
-90" = (x ,Y)  + ( ~ 1 4  + ( - Y 1 4  or ( 2 1  Y )  -+ (-Y, -x) + ( - Y , X )  

Since one of the dimensions (x or y )  is used in both transpositions, the two trans- 

positions cannot be combined as they were in Section 4.4.1. Rather they must be 

performed one after the other. It is possible to perform the operation using a 1- 

dimensional transposition followed by a 2-dimensional transposition. In the examples 

above we have shown the 2-dimensional transposition being done first. 

Since both operations require the same amount of collection no additional distri- 

bution or collection steps are required between the two transposition steps. The total 

cost of this operation is easily calculated as the sum of Formulas 4.4 and 4.9 resulting 

in: 
n 3n n n l  

(2 log,,,, (q) + 2)a  + (-)6 + (- + - - -)LT 
2 2 8q 2 

Figure 4.12: a)  Cycles used in the 2D 90" Rotation b) partitioning 

We can obtain better results by using a translational method which requires only 

a single step in between collection and distribution. Figure 4.12 a) shows two sets 
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of edge disjoint cycles which we use to perform this operation. Unlike the 180" case 

where all cycles were of the same length, here we deal with the problem of cycles of 

different lengths (4 < N < 4n). 
Since each node appears on two cycles we can again divide the nodes such that 

only half the nodes on each cycle are active. The 90" rotation is accomplished by 

performing a translation of $ on each of the cycles, where N is the length of each 

cycle. The cost of this operation when only forward edges are used in the translation 

is: 

When we include the backward edges we can obtain a cost of: 

Again, we can do better than this. The methods described above divide the 

number of nodes evenly on all cycles. If we divide them unevenly we are able to reduce 

contention and reduce the cost of the operation. When translations are considered 

in the forward direction only, the contention in a translation of $ is the same as the 

number of active nodes on any quarter of the cycle. The cycles in the methods above 

have contentions ranging from 0 to :. Balancing the contention results in increasing 

the number of nodes which are active on the short cycles and reducing the number of 

nodes active on the longer cycles. It is not possible to evenly balance the contention 

since some cycles are too short. Figure 4.12 b) illustrates a possible partitioning 

of the nodes which takes into account this balancing. Using these short cycles it 

can be proved by induction that the maximum contention can be reduced from to 

([;I - p y J )  % "' ". 3 3 

The new maximumcontention, E, applies to translations using edges in the forward 

direction only. If we use backward edges as well we are able to reduce the contention 

to 2 (since $ * = 2). Since our cycles do not fit the standard translation algorithms 

we adapt the algorithms to come up with a cost equation. From the pattern shown 

in Figure 4.12 b) we see that the nodes to be collected are all adjacent and so we 

can use the standard collection formula (Formula eq:collectM) to determine the cost 



C H A P T E R  4. INFORMATION PERMUTATIONS 45 

where M = 2. The cost of the translation step is also straightforward. A single round 

is required to perform the translation and the switching cost is 3(n - 1)S (the length 

of the longest edge used). The propagation cost is determined using the maximum 

contention and is found to be ~ L T .  In total the cost of this operation using our 

balancing technique is: 

4.4.3 3-dimensional Rotations 

Figure 4.13: 3-dimensional Rotations, a)  120•‹, b) 180" 

120" Rotation 

The axis of rotation of a 120" 3-dimensional rotation is shown is Figure 4.13 a). There 

are four such axes between opposite corners and two rotations f 120" leading to the 

eight permutations listed in Table 4.3. 

As with the 90" 2-dimensional rotation discussed earlier, the 120" rotation can 

also be performed using two transpositions but a better method uses translations. 

It appears from these problems that the transpositional method works best if no 

dimension is used more than once. When one dimension is required to be used more 

than once it becomes a 2-phase transposition which nearly doubles the propagation 

cost. 

The 120" rotation can be performed as a combination of two 2-dimensional trans- 

positions, where one of the dimensions is used in both. In order to calculate the total 

cost (Formula 4.23) we sum the cost of collecting and distributing on a 3-dimensional 
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toroidal mesh and the cost of performing two 2-dimensional transposition steps. 

Figure 4.14: Cycles used in a 3-dimensional 120" Rotation 

Figure 4.14 depicts the pattern of cycles used in order to perform the rotation by 

translation. The cycles are broken into two pictures so that their pattern is more easily 

recognizable. The cycles can be used either clockwise for a 120" rotation or counter- 

clockwise for a -120" rotation. The edges in the diagrams which are curved are those 

which require the use of the wrap-around links in order to make the connection. The 

rotation is performed simultaneously on the front and back three faces of the cubic 

mesh around the axis of rotation. 

As shown in the diagram these cycles connect nodes appearing on the surface of 

the cubic mesh. Similar cycles are established on the surface of each cube recursively 

contained within the outer cube. The cycles on the surface of the outermost cube have 

a length of 3n, since the three groups of (n-1) links on the surface of the cube are 

connected by three wrap-around edges of length one. On the largest cube within the 

outermost cube the cycle lengths are still 3n, since the three groups of (n-3) links on 

the surface of that cube are connected with three wrap-around edges of length three. 
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The wrap-around edges of length three pass through two nodes on the outermost 

surface which simply route the messages through. In fact, for each cube recursively 

held within the outermost cube the cycle lengths are 3n. In addition, on all cycles, 

the distance between source and destination nodes is n. 

From the pattern in Figure 4.14 we also find that each node is a member of 

two cycles. Translating each node on only one of the cycles allows us to reduce the 

contention in the translation from n to ;. Using backward edges in the translation 

allows us to reduce the translation contention to :, since two-thirds of the nodes will 

continue to route their messages forwards, 3; = :. Using Formula 4.15 where = 

and 3n as the length of the cycles, we compute the cost of this operation to be: 

Again this result is better than the one produced by the transpositional method. 

We note that the switching cost is multiplied by two since the nodes on the cycles 

being collected are not necessarily adjacent. 

180" Rotation 

The axis of rotation for this operation is shown in Figure 4.13 b). The axis runs 

between opposite edge mid-points. There are six such axes leading to the six different 

permutations listed in Table 4.3. 

This transformation can be performed as a combination of a 2-dimensional and a 

1-dimensional transposition (e.g. (x, y, z) -+ (- y, -x, z) -+ (- y ,  -x, -z)). Since the 

transpositions can be chosen such that different axes are used in both we can combine 

the two transposition steps into one step. In addition, since the collection pattern is 

the same for the 1- and 2-dimensional transpositions we can perform this operation 

with a single collection and distribution phase. The cost of this transformation is 

shown below. 
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4.4.4 3-dimensional Transposit ions 

3-dimensional Transposition (type 1) 

The 3-dimensional transposition is best understood as a transformation of the form 

(x, y, z) -+ (-y, -2, -x) or (x, y ,  z) -+ ( - 2 ,  -x, -y). Figure 4.15 a)  and b) graphically 

depict these two transformations on one face of the cube. Table 4.3 lists the eight 

different permutations which fall into this category. 

Figure 4.15: 3-dimensional Transposition type 1, (one face shown) 

This operation can be performed by a 2-dimensional 90" rotation followed by a 

2-dimensional transposition. This provides us with the correct result but has two 

draw-backs. The first is that it requires a single dimension to be used twice (i.e. the 

middle steps must be performed sequentially). The second is that the best solution 

for the 90" rotation required a special collection procedure which does not match that 

required by the 2-dimensional transposition and thus a second collection step would 

be required as well. 

Using other combination choices we can eliminate the second problem but not 

the first. For example we could use a combination of a 3-dimensional 180" rotation4 

followed by a 2-dimensional transposition. Here, two dimensions are used twice but 

since we have to use at least one twice there is no additional cost for using two. 

Combining these two operations one after the other using our standard collection 

4Which is itself a 2-dimensional transposition followed by a 1-dimensional transposition 
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procedures results in the following cost: 

In an attempt to come up with a better solution using translational methods, 

we identified a set of cycles which appeared5 to perform the transformation. The 

number of rounds required was comparable to that given above while the propagation 

cost was approximately three times that above. Due to the added cost of performing 

this operation by this method and the complexity of the cycles we have not included 

diagrams or descriptions of these cycles. Another possible solution we looked at 

involved modifying the 90" rotation such that it could be used in conjunction with 

the 2-dimensional transposition in this special case. Again this solution required 

approximately the same number of rounds and increased the propagation cost by a 

factor of z .  
In the end we were unable to identify a better solution than the one presented 

in Formula 4.26. In order to be able to perform global permutations efficiently using 

translations it appears that the length of the cycles found must be relatively short. 

In the case of 3-dimensional rotations the cycles can be organized to circle the axis of 

rotation (maximum length 3n). In this operation the cycles found connected nodes 

on each face of the cube resulting in cycles of length at least 6n. 

3-dimensional Transposition (type 2) 

The final global operation appears to be very similar to the 3-dimensional trans- 

position (type 1) and for lack of a better name it is referred to here as the 3- 

dimensional transposition (type 2). Figure 4.16 shows the effect of this operation 

on a single face of a 3-dimensional toroidal mesh, under two different permutations 

a) (x, y, Z )  + ( 2 ,  -y, -x) and b) (x, y, z )  + ( - 2 ,  -y,x). It can be constructed by a 

3-dimensional 180" rotation followed by a 1-dimensional transposition (rather than a 

2-dimensional transposition in type 1). Table 4.3 lists the six permutations which fall 

into this category. 

5The cycles were only tested on a subset of 3-dimensional toroidal meshes. 
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original a> b) 

Figure 4.16: 3-dimensional Transposition type 2, (one face shown) 

Like the 3-dimensional transposition (type l), this operation requires two steps 

since it requires one dimension to be used more than once. Again standard collection 

patterns can be used since we are only dealing with 1 and 2-dimensional transpositions. 

The cost of this operation is: 

It would be ideal for this operation to use a 2-dimensional 90' rotation followed 

by a 1-dimensional transposition since this would only require a single middle step. 

As was pointed out earlier however, the solution for the 2-dimensional 90' rotation 

requires non-standard collection, and cannot be combined with other operations which 

require use of the standard collection scheme. 

A translational algorithm was not attempted for this solution due to its similarities 

with the previous operation where we were unable to find a better solution than the 

transpositional solution presented. 

A summary all the global permutations and their costs is provided in Table 4.4 

(Section 4.7). 

0 t her Translation- based Perrnut at ions 

There exist many other permutations which do not involve a permutation on the 

cartesian axes. The most common of these are discussed in this section. Each of 
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these operations is performed using translations only. 

4.5.1 Combination of Translations 

The most common application of combining translations involves performing a trans- 

lation of different distances in different dimensions. Translations of this nature can be 

performed in at most d steps, where d is the number of dimensions. We can perform 

a translation on each dimension sequentially or we can perform multi-dimensional 

translations on a decreasing number of dimensions. An example of both methods is 

shown below: 

Example: (x, y, z) + (x + 3, y + 9, z + 7) 

Method 1: dimension by dimension 

(x,y, 2 )  --t (x + 3,Y, z) -, ( x + 3 , y + 9 , z )  + ( ~ + 3 , Y + 9 , Z + 7 )  

Method 2: multi-dimensional translations 

( x , y , z ) +  ( x + 3 , y + 3 , z + 3 )  -, ( ~ + 3 , ~ + 7 , Z + 7 ) + ( ~ + 3 , ~ + 9 , ~ + 7 )  

The cost by either method involves summing the cost of the three individual 

translations. In Section 4.3 it was shown that the cost of performing multi-dimensional 

translations in terms of the cr and T terms is essentially the same as for a translation 

in a single dimension. With this knowledge it is clear that combining translations of 

different sizes is most efficiently handled by the second method. In the best case the 

two methods result in the same cost, in the worst case Method 1 costs d times that 

of Method 2 (in terms of cr and 7) .  

4.5.2 2-dimensional Shear 

Shear is an example in which translations of different sizes can be used together to 

produce a wanted effect. Figure 4.17 shows the effect of one type of shear, namely 

(x, y )  t (x + y, y). We restrict our attention in this section to 2-dimensional shears. 

It is possible however to extend this discussion to shears of higher dimension. 

More general shears can also be performed, for example (x, y)  -+ (x + cy, y ) ,  

where c is some constant. To measure the cost of these operations we consider which 
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original effect of shear result 

Figure 4.17: 2-dimensional Shear 

translation has the highest cost for each of the three factors. Each row of the mesh is 

translated a different distance from 0 to : (translations of over : are the same as a 

translation of less than :). Using Formula 4.15 where (1 5 5 ;) we find that the 

maximum for each factor results in the following equation. 

4.5.3 Other 2-dimensional Rotations 

There are many other 2-dimensional rotations, in addition to 90•‹, 180' and 270". The 

problem with these (e.g. 30•‹, 45") rotations is that the 'one-to-one' correspondence 

does not necessarily hold. For example, the rotation 6 could be modeled as (x, y )  + 

(x cos 6 - y sin 6, x sin 6 + y cos 6). Either we find that two nodes map to the same 

destination or if we start from the destinations we can find a source node which does 

not map to a destination node. In both cases we fail in our attempts to  make the 

problem 'one- to-one'. 

Another form of rotation, which is not perfect but is 'one-to-one', specifies the 

paths of rotation and then causes the rotation to occur within those specific paths. 

For example, we can assign each node to be a member of a cycle which has a specific 

radius from the center. Figure 4.18 illustrates one set of cycles which allow this type 

of rotation. The dotted lines in the figure show how the diagonal connections can be 

made. Using translations of Or (where r is radius and cycle number) on cycles 0-5, 

we are able to perform a basic rotation. Depending on the angle of rotation cycles 

6-7 (corner cycles) could be ignored or rotated as well. The algorithm for translating 

cycles 6-7 is more complicated since the nodes on the cycles are partially reversed. 
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f e 

Figure 4.18: 2-dimensional Rotation with cycles based on radius 

For the nodes to be in 'normal' order we would expect the cycle to be connected in 

the following manner: a to b, b to c, . . . , h to a. Instead they are connected as shown 

in the diagram since there are no remaining edges in the expected direction on which 

to run the cycle. 

The cost of this rotation (excluding the corner cycles) can be calculated as the cost 

of performing the translation on the longest cycle using either Formula 4.14 (forward 

edges only) or Formula 4.15 (edges in both directions). 

4.6 Lower bounds 

In order to show the efficiency of our permutation algorithms, in this section we present 

lower bounds on 1-dimensional transpositions, d-dimensional translations of distance 

" 2 and d-dimensional global permutations where pairs of nodes exchange messages6. 

As was the case with the dissemination algorithms we derive the lower bounds as the 

6Mid-point Reflections and 180' Rotations are two permutations which fit into this last category. 
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maximum of the lower bounds based on three independent terms (a, 6, and 7). 

For each of the operations mentioned above the maximum distance between an 

originating node and its destination node is the diameter of the network. Therefore, 

a lower bound on the switching cost for each operations is d:. The lower bound on 

the number of rounds follows from the work done with dissemination problems in the 

previous chapter. In those problems we looked at the total number of nodes that 

needed to receive a message from the originator and then determined the number of 

rounds based on the number of ports available. Since we have one-to-one pairing, a 

lower bound on the number of rounds is 1. 

In the 1-dimensional transposition and d-dimensional global permutation described 

above each node exchanges messages with its reflection. For the transposition, the 

line of reflection cuts the cycle at two points dividing the cycle into two equal parts. 

In order to transpose the cycle, all the information from one half must pass through 

one of the two dividing points. This gives us a lower bound on the propagation cost 

of: ~ L T  = ~ L T .  In the d-dimensional global permutation we again have a reflection 

where the network is divided into two equal parts and each node exchanges messages 

with its reflection in the other part. In order to disconnect the network into two 

equal parts 2ndM1 links must be removed (2 in 1 dimension, 2n in 2 dimensions etc.). 

Since the parts are equal we find that half the messages in the network must pass 

through the removed 2nd-I links resulting in a lower bound on the propagation cost 

of $(&)LT = ~ L T .  

In order to calculate the translation propagation cost for distances of : we refer 

to the method we applied to multi-scattering in Section 3.1. There we derived the 

lower bound on the propagation cost as the communication capacity required divided 

by the bandwidth available. Since the diameter,d:, is the distance each message 

(nd in total) is translated, the communication capacity required is ndd:L. The total 

bandwidth available is 2dnd$ (the total number of links, both directions). Dividing 

the communication capacity required by the total bandwidth gives us a lower bound 

on the propagation cost of ~ L T  for all d-dimensional translations of distance ;. 

For each of the three types of operations described in this section the lower bound 

is the same and is given as: max{a, d56, ~ L T ) .  
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Using our model the lower bound of one on the number of rounds is not achievable 

with a constant number of virtual channels. Since we are limited in the number of 

circuits that can be established we hypothesize that a better lower bound on the 

number of rounds when combined with the propagation cost would be logarithmic. 

This because in a single round we can at most cause a propagation cost of q (where 

for all but trivial problems q < 2) and the lower bound on the propagation cost is 2.  

4.7 Summary 

In this chapter we have presented algorithms and cost equations for all global 1, 2, and 

3-dimensional permutations and a collection of other translation-based permutations. 

A list of the cost equations for each of these algorithms is given in Table 4.47. 

Table 4.4: Permutation Communications Times on Toroidal meshes 

1D Transpose 

2D 90" Rotation* I (2 l ~ g ~ , + ~ ( $ )  + l)a + (3n + $ - 4)s + ( 2  + $ - 1)L.r 

3D 120" Rotation* 

3D Mid-point Reflection (210g,~+,($) + 1 ) a  + ($ + ' 4q - 1)s  + ( 2  + & - $)LT 

dD Translation (i = f )  I (2 log,,+,($) + 1)a  + (2  + $ - 1)s + ( 2  + & - :)LT 

3D 180" Rotation 

3D Transpose (type 1) 

3D Transpose (type 2) 

2D Shear 1 (210g2~+1($) + 1 ) a  + (n + $ - 2)6 + (2  + $ - 1)Lr 

(210g,,+~($) + l)a + (9 + 4q - 1)s + (a + $ - $)Lr 

(210g,~+,($) + 2)a  + (F + $ - 1)6 + ( f  + & - $)Lr  

(210g2,+,(2) + 2)a  + (2n + 2 - 1)6 + (: + $ - $)LT 

Since each operation in the table is a product of 1-dimensional transpositions 

(excluding translation and shear) we would expect the resulting costs to appear close 

7To simplify the presentation and analysis the ceiling and floor functions have been dropped. 
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to that of the d-dimensional mid-point reflection. 

In most cases this is correct. Two exceptions to the rule are the 1-dimensional and 

2-dimensional transpositions which can be performed by an algorithm which is more 

efficient than the general algorithm (see Appendix A). In these operations both the 

number of rounds and propagation costs are reduced at the expense of the switching 

term. Since the switching term is the least expensive term, an added cost there is 

generally acceptable. 

The two * operations are those for which a translational algorithm was found which 

is better than our standard transpositional algorithms. In these two operations and 

in the two 3-dimensional transpositions we found that the operations were sufficiently 

complex (each operation required using edges in some dimension more than once) 

such that the 1-dimensional and 2-dimensional transpositions could not be combined. 

In the case of the two * operations we were able to overcome this by finding paths on 

which a translation could be performed to accomplish the rotation in a single step. 

In the case of the 3-dimensional transpositions no such translation paths were found 

with better results, resulting in a sequential ordering of transpositions and therefore 

a doubling in the propagation costs. 

The costs of the d-dimensional translations of distance 5 and the 2-dimensional 

shear are given in the table as representatives of those operations using translations. 

Many permutations are based on translations which exhibit the same cost patterns 

as transpositions. Translations are useful for modeling many permutations which are 

not possible to model using transpositions. 

In our presentation we have tried to minimize the number of rounds while main- 

taining the propagation cost within a small factor, ?, of the lower bound. In most of 

our algorithms we have succeed in this goal provided that a cumulative lower bound 

using both the a and T results in the number of rounds being logarithmic instead of 

1. In addition for most algorithms the cost of the switching term is close to the lower 

bound, d;. 



Chapter 5 

Conclusions 

In this thesis we have been able to provide algorithms for performing each of the 

basic problems in the information dissemination classification and in the information 

permutation classification. These algorithms have been modeled on I-, 2- and 3- 

dimensional toroidal meshes using circuit-switched routing. 

In the dissemination classification we were able to show the benefits of the multiple 

port model over the single port model. The benefit of the multi-port model was most 

pronounced in the broadcasting and scattering algorithms where the number of rounds 

was decreased by a factor of logq+,(2q + 1) and the propagation time was decreased 

by a factor of 2d and 1.58d for scattering and broadcasting respectively. 

Gossiping and multi-scattering presented different problems and we hypothesized 

that the reductions were not as good as the 'one-to-all' operations due to the increased 

competition and usage of links. The algorithms for the 'all-to-all' operations provided 

no improvement in the number of rounds and decreased the propagation cost by 

factors smaller than their 'one-to-all' counterparts. From our study of these problems 

we hypothesize that the additional capabilities of multiple ports are best applied 

to problems which have bandwidth open for use as was the case in the 'one-to-all' 

problems. 

The operations in the information permutation classification presented several in- 

teresting results. First, it was noted that the lower bounds on several single and 

multi-dimensional permutations worked out to the same values. In addition each of 
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the global permutations were easily identifiable as a permutation on the axes and as 

such could be performed as a product of 1- and 2-dimensional transpositions. In order 

to provide efficient solutions we presented general algorithms for these two transpo- 

sitions which allowed the transpositions to be combined provided the permutations 

occurred on different axes. In cases where transpositions could not be combined 

efficiently, it was shown in some instances that the global permutations could be 

performed efficiently using parallel translations instead. Other permutations such as 

the 2-dimensional shear and 2-dimensional rotations (of degrees other than f 90" and 

180") were also shown to be possible and efficient using translations. 

A more efficient algorithm (in the case where transpositions are not combined) for 

the 1- and 2-dimensional transpositions was also presented and analyzed. This algo- 

rithm was able to improve upon the number of rounds and reduced the propagation 

cost to the lower bound. 

In general we were able to provide permutation algorithms at a cost near the lower 

bound (within a factor of F) with respect to the switching and propagation terms. 

We hypothesize that a logarithmic number of rounds is also good but this was not 

shown since our lower bounds treated each cost factor independently. 



Appendix A 

1-dimensional Transposit ion 

A better approach to the transposition problem allows messages in each round to 

pass through the bottleneck rather than collecting all the messages and sending them 

through at the same time. We show that by using this approach the propagation cost 

is reduced to the lower bound. 

The method of collection on the cycle is much the same as described for the 

standard case with the exception that at each step there are message bundles which 

are sent through the bottleneck rather than being collected. Figure A. l  depicts the 

movement of data in each round for one half of a cycle in one direction using two 

virtual channels (transposes quadrant I of the cycle into quadrant 11). 

In the first round since we have 2 (q in the general case) virtual channels, the two 

nodes closest to the bottleneck can be moved across the bottle neck and the remainder 

of the nodes in each quadrant can be collected into groups of 5 (2q+l in the general 

case). In the second round the two groups of 5 closest to the bottleneck can be moved 

across the bottleneck and the remainder can be collected into groups of 25. In the 

third round since there are no more nodes to collect we are able to move the groups 

of 25 over the bottleneck. In the fourth round we can start distributing the groups 

of 25 (as groups of 5 )  and move the remaining 2 groups of 5 over the bottleneck. In 

the fifth and final round we unpack all the groups of 5 and move the final 2 messages 

over the bottleneck. 

In total the algorithm takes 2 1 0 g , , + , ( ~ )  + 1 rounds. We derive this number 
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I 

Bottleneck occurs where 

Cycle crosses Line of Reflection 

Collect Distribute 

Round 1 Round 5 

Figure A. l :  1-dimensional Transposition, (combined phases algorithm) 
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from the following expression, where r is the number of rounds required to collect 

the information and 2r + 1 is the total number of rounds required to perform the 

transposition. 

The propagation cost, p, is also fairly easy to compute and turns out to be $. It 

is computed from the following expression: 

The switching cost, s, does not simplify as nicely. It is the sum of the maximum 

distances messages are switched in each round. Since the transposition distances are 

always greater than the collection or distribution distances we sum the transposition 

distances. The following equation is used to calculate the switching time. 

The equation above can be reduced to a closed form (below), which is still far too 

complicated. We approximate the switching time to be c ( Z ) ( n  + 4), where c 2 1. 

When q is relatively large we obtain results close to the lower bound :. When q is 

small we obtain results closer to n or a multiple of n. 

In total, the cost of transposing a cycle by this method is: 
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