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Abstract 

Database front-end systems and Application Specific Query Languages are commonly 

used for various applications to best fit in users's special needs and performance re- 

quirements. A front-end system, the VPD system, is presented in this thesis. It is 

created for the Vancouver Police Department to query and display the crime distri- 

bution in the city of Vancouver. Determined by its usage, the VPD system mainly 

features spatiotemporal queries. The query language proposed for the VPD system 

is called ESQL (Extended SQL). This thesis concentrates on query optimizations for 

the VPD system. 

The VPD system is implemented on both Relational DBMS Sybase and Object- 

oriented DBMS Objectstore. Query performances on these two platforms are com- 

pared and factors affecting the performances are found out through a series of system- 

atic experiments and penetrating analysis. Certain techniques are applied to improve 

the VPD system's performance for processing general queries on Objectstore DBMS. 

In order to further enhance the speed of processing spatiotemporal queries, a multi- 

key index tree, the KDB+ - t ree  is proposed. Based on the KDB+ - t ree  indexing 

mechanism, the Spatiotemporal Query Processor (STQP) is introduced to the VPD 

system. The STQP can process any ESQL query yet favors spatiotemporal queries. It 

makes use of all the query optimization techniques proposed in the thesis and provides 

efficient query processing for the VPD system. 
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Chapter 1 

Introduction 

The VPD System 

The research in this thesis grows out from the development of a practical project. For 

this project, we created a specialized GIs (Geographic Information System) front- 

end system to query and display the crime distribution in the city of Vancouver. As 

this system is implemented for the Vancouver Police Department, we name it the 

VPD system. The data used for the VPD system enclose the information on crime 

incidents in Vancouver, including the type, location, time of the crime, etc. This set 

of data are all point data. The spatial attributes and temporal attributes in this data 

set represent points (geographical points and time points), instead of complex data 

structures, such as polygons or time intervals. 

Most of the desired queries would involve query constraints on spatial and temporal 

information. An example of a spatial query is to investigate all the crimes that 

occurred in a certain area, such as a rectangle, a circle, a buffer along a street or even 

an irregular-shaped area. An example of a temporal query is to inquire information 

on the crimes that occurred between every Friday 6:OOpm to Saturday 8:OOam from 

Jan. 15, 1991 to Feb. 22, 1991. In most cases, the user would query over both 

spatial and temporal information. We call such a query a spatiotemporal query. Of 

course, the query may also involve other non-spatiotemporal information, like the 

crime type, etc. In the VPD system, ~~a t io tempora l  queries account for the major 
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part of our users' need and, as I just mentioned, all these queries are to be performed 

over spatiotemporal point data, which are plain record data. 

In order to express these special purpose queries in a very concise and user-friendly 

way so that it would be easy and simple for users to use, especially for non-computer 

professionals, and also to make the system most efficient towards processing spa- 

tiotemporal queries, we believe that to build an application-specific query processing 

system is the best way to achieve the goal. This system would be a database system 

front-end on top of an existing Database Management System (DBMS). A front-end 

usually refers to an interface layer on top of a DBMS engine to provide the user with 

more convenient and efficient query facilities. Almost every front-end has its own 

query language. A front-end and its underlying DBMS form a virtually new DBMS 

from the user's point of view. In the VPD front-end system, a special type of query 

language, ESQL (Extended Structured Query Language), is designed as a CQL (Cus- 

tomized Query Language) to facilitate users with powerful query expression. The 

language's name comes from that it has extended ability to deal with spatial and 

temporal queries while keeping the basic features of SQL at the same time. 

The query performance is always very important for a front-end system. The 

VPD system is implemented on both object-oriented DBMS (OODBMS) and re- 

lational DBMS (RDBMS) platforms, which are Objectstore and Sybase in this case, 

respectively. Through the performance comparison and analysis of the speed-affecting 

factors, a series of query optimization techniques are developed to improve our sys- 

tem's performance, especially towards the spatiotemporal queries. 

1.2 Related Work 

My research is closely related to work done in two major database sub-areas: query 

language front-end and query optimization of spatiotemporal queries on 0 ODBMS 

and RDBMS. A database query language is a data manipulation language for end 

users to retrieve relevant information from databases. In most cases, it is a non- 

procedural language. Its basic tasks include selection, projection, join, etc. Originally 

developed in late 1970's by IBM's San Jose Research Laboratory, SQL (Structured 
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Query Language) has been successfully adopted by many database management sys- 

tems and been approved as a standard query language by ANSI (American National 

Standards Institute). 

However, with the development of database systems, especially with the fast evolu- 

tion of object-oriented concepts into DBMS, there are many cases when it is impossible 

or inconvenient to use SQL to do the query. Recently, a lot of studies and research 

have been done on designing and implementing various kinds of query languages and 

their corresponding front-ends to fit in different application requirements. Some of 

them are constructed as one part of general DBMSs. For instance, the object-oriented 

database system ORION developed by Dr. Won Kim's group[Bane88][Kim89] has its 

query language suitable for object-oriented queries. Some other systems build their 

own front-ends based on existing DBMSs. For instance, W. Meng et al[Meng93] in- 

troduced a relational front-end for an object-oriented database system. Interestingly, 

at the same time, V. Markowitz and A. Shoshani presented their object-oriented 

query front-end over relational DBMS and SQL. These systems are designed for cer- 

tain circumstances where the application can utilize both the expressive power of the 

front-ends and the processing power of the underlying DBMSs. 

Besides the above relatively general-purpose systems, there also exist a large num- 

ber of systems which are designed mainly for processing specific applications. In these 

systems, a CQL or so-called ASQL (Application-Specific Query Language) is needed. 

Just in the area of processing spatial and temporal queries, a lot of research and 

work have been done to develop various ASQLs. In [Arefgl], W. Aref and H. Samet 

developed their SAND (Spatial And Non-spatial Data) spatial data model and corre- 

sponding query language for spatial query. R. Snodgrass[Snod87] proposed TQuel to 

handle temporal data and queries by extending the standard query language Quel with 

some temporal features in Ingres. J. Wu[Wu92] introduced the "Block World" model 

and the DSQL (Dynamic Spatial Query Language) to execute 3-D spatial queries. 

W. Kafer and H. Schoning presented their MQL language for temporal queries upon 

their TMAD database model. X. Xu[Xu9O] presented her STSQL query language for 

spatiotemporal queries. Furthermore, almost all of these spatial/temporal systems 

consist of certain query optimization methods suitable for their special applications. 
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All these query language front-ends introduced before have very similar struc- 

tures. They are all made up of their own query languages, query parsers to parse 

these queries and query processors to execute queries. For most of them, various 

query optimization techniques are utilized to improve processing performance of their 

specific queries. Most importantly, the purposes of these front-ends are the same: to 

have a combination of the expressive query language and powerful query processor. 

All the previous work has inspired us to create our application-specific front-end sys- 

tem, the VPD system, and to develop certain optimization techniques to improve its 

spatiotemporal query performance. 

At present, object-oriented DBMS and relational DBMS are the two dominating 

database system branches. Most Database Management Systems (DBMSs) fall into 

these two categories. While more and more research and studies have applied object- 

oriented technology to database systems, object-oriented DBMSs are enjoying a great 

success in areas like CAD and CAM when processing large and complicated data, 

such as geometric elements like polygons, audio and video data, text and pixel map, 

etc. Quite a few of previous studies have demonstrated the efficiency of OODBMS by 

doing performance comparisons between OODBMS and RDBMS. R. Cattel[Catt91] 

used the benchmark 0 0 1  (Object Operations version 1) to show the performance 

superiority of an OODBMS against a RDBMS but he did not not disclose the names 

of these DBMSs. J. Wu[Wu92] and W. Zhou[Zhou93] also made use of Objectstore 

and Sybase, the same DBMS platforms as used by VPD system, to do the performance 

tests. They both showed that Objectstore has a better performance when handling 

complex data objects through navigational data access (to access data by pointers). 

Nevertheless, RDBMSs are still used by the majority of DBMS users whose data 

being processed are "ordinary" plain record data, as what happens in most business 

and office data processing. This is because that most OODBMSs still do not seem 

to be so efficient as RDBMSs when doing associative queries on set-oriented data. 

What puzzles us is that since object-oriented technology still supports simple for- 

matted record data well, why are their performances not very satisfying? What are 

the factors determining an OODBMS' performance, the way it organizes data, its 

architecture or something else? Driven by these questions, we test and compare the 
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performances of VPD system on OODBMS and RDBMS, using associative queries on 

plain record data. A series of experiments and research lead us to the secrets behind 

the performance and some effective solutions to improve the query performance. 

1.3 Objectives 

Query performance is a fairly practical issue and is determined by many factors. The 

goal of this thesis is to find these factors from experimental analysis and apply ap- 

propriate adjustments to them so as to optimize query performance. Because Sybase 

does not provide users with control over single data items and it makes use of a server- 

process-all clientlserver architecture, unfortunately, most of the query optimization 

techniques stated in this thesis can be only applied on Objectstore platform. We just 

use the VPD system's Sybase performance as a reference to its query performance on 

Objectstore. 

The optimization methods for the VDP system are developed by two steps. The 

first step is to improve Objectstore's general query performance. Both Objectstore's 

internal query strategy and external architecture are studied. Internally, Objectstore's 

query facility is still at an immature stage. It does not use the right strategy to 

utilize indexes. Neither is its retrieving method satisfactory. Index-rearranging and 

collection-sorting are adopted to overcome these Objectstore's defects to raise query 

speed. Externally, unlike Sybase, Objectstore relies on its client process and client 

cache to do all the processing, leaving its server only as a page server. In this case, 

choosing an appropriate client site configuration and managing to turn the client cache 

into a replicate database would greatly enhance the query performance. 

The second step is taken toward the optimization of spatiotemporal queries. In- 

dexes and the way of using indexes are very crucial to performance. A multi-key index 

on the commonly used spatial and temporal attributes would be the right approach 

to use. A lot of multi-dimensional index structures have been proposed, such as 

Bentley's KD-tree[Bent75], Samet's quatree[Same84], Robinson's KDB-tree[Robi81]. 

However, as neither of them can well fit in the VPD system, a new index structure, the 

K D B +  -tree,  derived from the KDB-tree, is presented. The use of the K D B +  -tree 
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further improves the VPD system performance towards sptatiotemporal queries and 

also partly eliminates the impact from Objectstore's index problem. 

Through this thesis, we show that from the performance's point of view, the 

architecture layout of a DBMS could be as important as the internal query processing 

method. Both of them are crucial for a good query speed. On the other hand, the way 

how to organize data, either through a table as in RDBMS or through a collection 

of pointers as in OODBMS, may not help to determine the performance. This may 

be well against the general intuition. However, since the object-oriented data model 

give users more control over each data object, it leaves us (more room for utilizing 

various optimization techniques. Making appropriate use of special properties of the 

underlying DBMS can lead to potential query processing optimizations of a database 

front-end. This would be a very useful hint for future query optimization if the 

outlined techniques cannot be reused directly. 

Outline 

The organization of the rest of the thesis is stated in the following. First, the structure 

and all the components of our VPD system will be discussed in Chapter 2, includ- 

ing the Graphical User Interface (GUI), the Query Parser, the Query Processor and 

the databases being used. Also we would introduce the sample queries and system 

configurations being used for our experiments. In chapter 3, we will be focusing on 

performance comparisons of the VPD system on Sybase and Objectstore. By analyz- 

ing a series of experiments on our sample queries, the major factors that affect the 

Objectstore associative query performance on flat record data will be discovered. By 

adjusting these factors, a much better performance will be achieved at the end of the 

chapter. 

However, the index problem is only temporarily solved in chapter 3. A multi-key 

index tree, the KDB+ - tree proposed by us will be presented in chapter 4 with its 

advantage in multidimensional queries over the KDB-tree, from which the KDB+ - 

tree is derived. The superior performance of the KDB+ - tree for spatiotemporal 

query processing will be demonstrated in chapter 5. Also in chapter 5, a sketch design 
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of the Spatiotemporal Query Processor, which is in favor of processing spatiotemporal 

queries, will be presented. Simulated experiments will be given to illustrate the high 

speed of this processor. Finally, the conclusion and future work will be discussed in 

Chapter 6. 



Chapter 2 

The VPD System 

The design and implementation of our VPD system is described in this chapter. This 

system is created for the Vancouver Police Department to query the crime rates in 

a specified region and within a certain time period. The VPD system consists of 4 

major parts, the GUI, Query Parser, Query Processor and the Databases. 

2.1 Overview of the VPD System 

The VPD system is composed of 4 major parts: Graphical User Interface (GUI), 

Query Parser, Query Processor and Databases, as shown in Fig. 2.1. The GUI is 

responsible for taking the queries input from the user and displaying their results. 

When the VPD system is started, the GUI will consult the Databases to get the 

geographical data for map of Vancouver and the boundaries for enumeration areas. 

An enumeration area ( E A )  is the smallest census survey unit according to Statistic 

Canada. Then the GUI displays the map and these about 800 EAs. On top of the 

map, a series of menu buttons are displayed for user to operate the VPD system. 

Some snapshots of the GUI can be found in Appendix A. The user can either type in 

his ESQL query in a pop-up window or use a combination of menus to input query 

constraints separately and let the GUI form the ESQL query. The ESQL query will 

then be sent to the Query Parser. After the query results are sent back to the GUI, 

they are displayed on the Vancouver city map by coloring the map. Different colors 
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are used to represent different crime rates in queried enumeration areas (This is why 

the projection predicate in our later sample queries is "EA"). This GUI is written in 

X window (XtIXlib), Open Look and HOOPS. 

The Query Parser follows the BNF of the ESQL to parse ESQL queries input 

from the GUI. Once an ESQL query is parsed, its query information is retained and 

stored in the parse tree, which is a tree structure broadly used for storing query 

conditions. Different from some other parse trees[Oren92][Wu92], our VPD parse 

tree also contains extra structure to contain spatiotemporal query constraints besides 

the normal conjunction-disjunction tree. After the parsing finishes, the parse tree is 

passed to the Query Processor and provides it with all the necessary information and 

values for query processing, such as the projection list, the table (collection) name, the 

selection criteria and spatiotemporal conditions, etc. More details will be discussed 

in Section 2.3. 

After the Query Processor receives the parse tree from the Query Parser, it will 

form actual DBMS queries utilizing the information stored in the parse tree and 

send these "real" queries to Databases. After the underlying DBMS executes these 

queries and retrieves information from databases, query results are sent back to Query 

Processor and then back to GUI for display. The design and implementation of 

the Query Processor relies on the underneath DBMS. Queries generated by Query 

Processor are subject to the DBMS being used. Even upon the same DBMS, different 

query approaches may also result in different implementations of the Query Processor. 

In this thesis, we present 3 versions of the Query Processor based on the DBMS 

platforms and query approaches being used: 

Utilizing SQL on Sybase platform. 

Utilizing Objectstore collection query facility on Objectstore platform. 

Utilizing self-designed query facility on Objectstore platform. 

The design and implementation of the Query Processor will be further described in 

Section 2.4 and Chapter 5. 

There are two major databases in the VPD system. One contains all the geograph- 

ical data for the map of city of Vancouver and all the EA boundaries. These data are 
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sent to GUI directly for drawing the user interface. The Query Processor does not 

need to access this database. The other database contains all the crime data, which 

will be used for executing queries from Query Processor. We mainly concern this 

database and when we talk about database in the rest of the thesis, we refer to this 

crime database. Two copies of the databases are created, one copy on top of Sybase 

and the other one on Objectstore platform. Both copies have identical contents, which 

will be talked about in next section. The structure of the whole system is shown in 

Fig. 2.1. 

Query Parser l - 7  
ESQL Query Parse Tree 

1 Databases I 
DBMS 

VPD System 

Figure 2.1: The Components of the VPD System 

2.2 The VPD Crime Database 

In this section, we will first give a brief introduction to the two types of DBMSs we 

are going to use: Sybase and Objectstore. Then we talk about the crime database 

used for VPD system, including its schema and data set. 
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2.2.1 Relational DBMS and Sybase 

Since the relational data model was proposed by E. F. Codd in the early 70s, relational 

DBMS (RDBMS) has been enjoying a great success[Silb91]. In the relational data 

model, data are organized into tables. Data records are represented as tuples in a 

table, which are rows of the table. The columns of a table represent attributes of 

data records. The user can only refer to a table. Any data record in the table can 

NOT be accessed directly. They can only be retrieved by queries. This is called the 

associative access, which is to look up a data record by the value of its attributes. 

Sybase is one of the most powerful and efficient commercialized relational DBMSs. 

Sybase DBMS server version 4.9.2 is chosen as the relational DBMS platform to 

implement our VPD system. Sybase uses Transact-SQL, which is an extended form 

of standard SQL, as its query language. 

Sybase uses a typical clientlserver architecture. The client program written in 

the host language (C in our VPD system) can send SQL queries using Sybase's DB- 

Library calls to a remote Sybase server through network. All the components in a 

SQL query, mainly including the projection predicates (select-clause), the table (s) 

to be used (from-clause) and the selection condition (where-clause), are sent to the 

server in one call. Then the client would wait for the final results from the server. 

The server is in charge of the whole query processing. It interprets the SQL query 

and chooses a right processing plan to execute it. After finishing, it will return the 

final results back to the client through network. Sybase server has a very powerful 

query optimizer and is very good at utilizing existing indexes. This will be discussed 

in detail later. Normally, all the databases reside on disks attached to the Sybase 

server site CPU so as to achieve good performance. Fig. 2.2 illustrates Sybase's 

client /server architect. 

2.2.2 Object-Oriented DBMS and Objectstore 

In the past several years, object-oriented approach has been adopted successfully in 

programming languages and database developments[Kim90]. It has introduced a lot 

of new concepts into computer world, such as object and its encapsulation, class and 
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Figure 2.2: The ClientIServer Architecture of Sybase 

class hierarchy through inheritance. These Object-oriented data management meth- 

ods gave birth to a new generation of DBMS, Object-oriented database management 

systems, OODBMS. OODBMS can more efficiently manage complex data objects, 

such as bitmaps, geometry data, texts, audio and video data, etc, than relational 

systems[Silb91]. Besides data associative access, OODBMS also supports data navi- 

gational access, which is to access data objects through pointers. 

Currently, there are quite a few well-known object-oriented database management 

systems available, e.g. Gemstone by Servio Corp.[Butt91], Objectstore by Object De- 

sign Inc.[Lamb91], 0 2  by 0 2  Technology[Deux91], France and Postgres by University 

of California, Berkeley[Ston91]. Each of these OODBMSs has its own advantages and 

disadvantages. No one is perfect yet. Among them, we find out that Objectstore has 

quite a lot of attractive features and is most appropriate for our use. Therefore, we 

choose Objectstore as the OODBMS platform to develop our VPD system. 

We use Objectstore version 2.0.1 by Object Design Inc. In our VPD system, 

we use C++ as the host language of Objectstore. Data actually stored in Object- 

store databases are called persistent data by declaring persistent. Data only exist in 

memory (like the variables used in ordinary C++ program) are called transient data. 

Objectstore provides a tightly integrated language interface to the database persis- 

tent storage. This means that,  C++ can define and handle persistent data objects 

in exactly the same way as transient data, except to put key word persistent and the 
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database name in front of the variable declaration. Objects of any C++ data type can 

also be stored in Objectstore database as persistent data. All the C++ operations 

that can be applied to ordinary transient data can be applied upon persistent data. 

Objectstore takes advantage of the native operating system's virtual memory man- 

agement to manipulate persistent data with low overhead. This technique is called 

Objectstore's Virtual Memory Mapping Architecture (VMMA). It enables users to 

have direct and transparent access to persistent data with the speed of accessing 

transient data (it is also due to Objectstore's caching mechanism). These features 

give Objectstore a fairly high data access speed, especially for navigational data ac- 

cess. 

Set-oriented data can be organized into a collection, a data structure provided 

by Objectstore. A collection contains a set of pointers to data objects of the same 

class. A collection has the functionality similar to a "table" in relational database 

but it contains the pointers to data objects instead of data themselves. The objects 

here can be of any class. The collection class in Objectstore supports a variety of 

member functions, such as inserting, removing, retrieving element pointers as well as 

set-t heoretic operat ions like intersection and union. 

Objectstore also supports associative queries, which are performed on collections. 

An Objectstore query is always applied on an Objectstore collection to return a sub- 

collection in which all the data objects qualify for the query conditions. The conditions 

are expressed in a string called the query string. The format of Objectstore query is: 

Result -collection = Original-collection.query ("Query String") 

query is a key word from Objectstore. The Original~collection is equivalent to the 

table name in SQL's From-clause. The Query String is a selection constraint, similar 

to the "where-clause" part of SQL. Some examples will be given later. Collections 

are declared as C++ variables and the query is executed as a C++ operation. 

We can see that an Objectstore query has different meanings from a SQL query. 

An Objectstore query does not contain the "select-clause" part as contained in a SQL 

query. Its result is a collection of pointers. In order to get desired attribute values, 

we have to dereference each pointer in the result collection. This operation is called 
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retrieving in this thesis. Therefore, one SQL query needs to be implemented by two 

steps in Objectstore, query and retrieving. Objectstore provides a function foreach 

() to go through all the pointers in a collection. Objectstore also provides B-tree as 

index to enhance the query performance. 

Objectstore is a client /server structured system, enabling distributed data access 

with concurrency control and recovery for transaction management. However, in 

contrast to Sybase, Objectstore executes all the queries in the client site. When a 

client process issues the first call to Objectstore server (normally the database open 

call), a file will be created as the client cache on the local disk of the client computer. 

A process called the cache manager will be created on the client site as well. The 

client cache is used to store all the persistent data needed by the client process, sent 

from the server. The cache manager is in charge of manipulating the client cache and 

coordinating with the Objectstore server, such- as transferring data and keeping the 

data in the client cache consistent with the data in the databases in the server site. 

When an Objectstore client process needs to access any persistent data, the cache 

manager will first check if all the data or collections required are in the client cache 

or not. If not, it will generate a page fault and inform the Objectstore server to fetch 

the necessary data from the database and transfer them to the client cache. After 

this, the query is executed exclusively in the client cache to generate the result for 

the client process. Fig. 2.3 illustrates this clientlserver architecture. 

Note in Fig. 2.3, "Query" may refer to either data associative access or naviga- 

tional access. In case of navigational access, the operation is dereferencing and the 

data objects to be de-referenced will be brought into client cache from database on the 

server site. For the associative access, the "Requested Data" are sent from the server 

to the client cache, containing the queried collection and some auxiliary data, such as 

the relevant indexes. Then the query is done at the client cache and a sub-collection 

is passed to the client process as the "Result". 

Here, we can see that both the internal and external structures of Objectstore 

differ very much from those of Sybase: 
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compno 

compdat e t  ime 

c l d a t e t i m e  

d i s p t  ime 

e n t r e t  

s c e n e t  

stname 

st number 

b e a t  

icompcod 

compcod 

pcode 

d i s p o s i t  

xcoord 

ycoord 

D e s c r i p t i o n  

----------- 

complaint  I D  

complaint  d a t e  and t i m e  

c l o s e  d a t e  and t i m e  

d i s p o s t  it ion  t ime  

t i m e  of 1st e n r o u t e  

t i m e  of 1st on scene  

s t r e e t  name of t h e  i n c i d e n t  

s t r e e t  number of t h e  i n c i d e n t  

p o l i c e  b e a t  

i n i t i a l  complaint  code 

complaint  code 

p r i o r i t y  

d i s p o s i t i o n  

x  c o o r d i n a t e  of t h e  i n c i d e n t  

y  c o o r d i n a t e  of t h e  i n c i d e n t  

Type 
------- 

I n t e g e r  

S t r i n g  

S t r i n g  

I n t e g e r  

I n t e g e r  

I n t e g e r  

S t r i n g  

I n t e g e r  

I n t e g e r  

S t r i n g  

S t r i n g  

I n t e g e r  

S t r i n g  

I n t e g e r  

I n t e g e r  

Table 2.1: The Original Data Attributes and Their Types 

While the meanings of most attributes are quite clear, further explanations of 

some of them are still necessary. compno is an 8-digit integer unique ID assigned to 

each incident by the Police. compdatetime and cldatetime refer to the date and time 

when an complaint is reported and when the complaint case is closed by the Police, 

respectively. They are represented by character strings. For instance, when the date 

and time are "February 10, 1991 l2:23:45", the string expression is "910210 l2:23:45". 

The disptime, entret and scenet all refer to the times on the same day as the day of 

the complaint. These times are expressed by 6-digit integers. For example, "16%: 15" 

would be expressed by "163215". stnumber and stname combined together are the 

street address of the incident. For an address like "1234 ABC St", the stnumber 
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would be "1234" and the s tname  is "ABC St". Complaint code means the type of 

the criminal incident. icompcod refers to the crime type being reported and compcod 

means the crime type determined by the Police, such as "THEFT", "ROBBERY", etc. 

xcoord and ycoord give the location of the crime. They are integer values measured 

by UTM, which is a world wide coordination system that can locate any spot in the 

world with X and Y coordinates. 1 unit of UTM means one meter. In the VPD 

system's crime database, the X coordinate is a 6-digit integer and the Y coordinate 

is a 7-digit integer. 

For the query efficiency of the VPD system, 6 new attributes calculated or ex- 

tracted from the original 15 attributes are added to the data set. They are: 

Abbreviat ion Desc r ip t ion  Type 

------------ ----------- ----- 

E A va lue  of t h e  enumeration a r e a  I n t e g e r  

compdat e complaint d a t e  I n t e g e r  

compt ime complaint t ime  I n t e g e r  

c l d a t  e  c l o s e  d a t e  I n t e g e r  

c l t  ime c l o s e  t ime  I n t e g e r  

weekday day of t h e  week I n t e g e r  

Table 2.2: The Complemented Data Attributes and Their Types 

EA means the value of enumerat ion  area. The whole Vancouver city is divided into 

several hundred of enumeration areas for administration use, with each enumeration 

area having about 300 households. compdate and compt ime are the date and time 

parts extracted from compdatet ime,  respectively. Both of them are represented by 

6-digit (at most) integers. As an example, When compdatet ime is "910305 06:34:05", 

the compdate is "910305" and the comptime is "63405". cldate and cltime are derived 

from cldatetime by the same principle. Certainly, the creation of these four attributes 

are replicate information and will bring some overhead to the space occupied by 

database. However, this will benefit and speed up the query processing, as some 

queries will query over just the date part or just the time part. weekday is the day of 



CHAPTER 2. THE V P D  SYSTEM 

week when the complaint is reported. Thus it is calculated through compdate. From 

Sunday to Saturday, weekday is represented by numbers from "0" to "6". 

Altogether these 21 attributes from Table 2.1 and Table 2.2 are put into 3 cate- 

gories: 

Temporal Attributes The attributes carrying date or time information. Here 

we have compdatetime, cldatetime, compdate, comptime, cldate, cltime, disptime, 

entret and scenet. In our VPD project, most of the queries will be focused on 

the time when the complaint is reported, which is well related to compdatetime, 

compdate and comptime. 

Spatial Attributes xcoord and ycoord are the spatial attributes. They can 

locate the accurate spot where a criminal incident happens. 

General Attributes All the other at t~ibutes provide us with general infor- 

mation about the incident. They do not include much spatial or temporal 

information. 

As we can see from above, these crime data records are just ordinary flat records 

with no complicated structures inside. All the attributes of them are eligible to be 

expressed by numbers or character strings. 

The data set for running the VPD system, called VPDSET, has 148280 data 

records. They are all the records of complaints that happened in the first 6 months 

of 1991, which means that the attribute "compdatetime" of VPDSET ranges from 

"910101 00:OO:OO" to "910630 23:59:59". We use exactly the same names and data 

types of the 21 attributes to define the schema of a Sybase table called VPDTBL. 

In Objectstore, we still use these attributes as data members to define a class, 

VPDDATA, keeping the same names and types of the 21 attributes. Each crime 

record is created as an object of class VPDDATA. An Objectstore collection VPD- 

COL is created to contain pointers pointing to objects of class VPDDATA. After the 

definition, the VPDSET is loaded into Sybase table VPDTBL. In Objectstore, we 

store all the pointers pointing to objects in VPDSET to collection VPDCOL. We can 

see that both VPDTBL and VPDCOL contain exactly the same amount of same type 

of flat record data. All of our following experiments will be based on them. 
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The data records in VPDSET are ordered by the value of attribute compdatetime. 

So when these records are loaded into databases (either Sybase or Objectstore), they 

have reference locality with respect to attribute compdatetime. This means that any 

two data records, if the values of their "compdatetime" are close to each other, their 

physical locations in the databases will also be close. Clustered index is created upon 

compdatetime for both VPDTBL and VPDCOL. Nonclustered indexes are created 

on comptime, xcoord and ycoord for both VPDTBL and VPDCOL. These 4 indexed 

attributes will appear in our sample queries' constraints. 

2.3 Query Parser 

This section introduces the design of ESQL language and the Query Parser. The 

ESQL query language is designed for the frontend VPD system because some of the 

spatiotemporal queries are quite hard to be expressed in SQL. In order to let the 

system "understand" these ESQL queries and therefore execute them, a query parser 

has to be implemented. 

2.3.1 Spatiotemporal Queries 

Besides general query conditions, ESQL can also carry out queries for crimes which 

happened within a specified area in a certain period of time. The area may be regular, 

may be not regular. The time period sometimes may also get quite complicated to be 

expressed in SQL. Basically, the geometrical shapes that are eligible to be expressed 

by ESQL and processed by the VPD system can be a square, a circle or a buffer. 

A buffer here refers to the area within a certain distance to a street segment. For 

example, the area within lOOm to street segment #200-#800 ABC St is a buffer. 

More spatial shapes may be added to the list in the future, such as a random 

polygon, etc. The following types of time constraints have been implemented into the 

ESQL and the VPD system: 

Time period: from the starting date and time to the ending date and time, 

such as, from "Jan. 23 1991 02:34:23" to "Feb. 10 1991 20:31:00". 
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Time Frequency: every day from a starting time to a ending time, such as, 

"every 10:OO - l3:34". 

Weekday frequency: every week from a starting day to a ending day, such as 

"every Wednesday" or "every Tuesday - Thursday". 

Two or three of the above temporal conditions can also be combined together to 

do the query. For example, one can issue a query constraint meaning "From March 

12, 1991 10:00:00 to May 20, 1991 23:12:00 every Fri. 15:30:00 - Sat. 5:30:00n. This 

query will return the records of all the criminal incidents which happened after Friday 

afternoon 3:30pm, before Saturday morning 5:30am and in the period from March 12, 

1991 10:OOam to May 20, 1991 ll:12pm. 

Obviously, these application specific spatiotemporal queries are fairly hard to be 

expressed directly in SQL. This is why the ESQL is created. Our ESQL adopts SQL's 

basic query format, the Select-From- Where clause. Extra query expressions are added 

to the ESQL to handle spatiotemporal queries required by the VPD system. The basic 

framework of an ESQL query is: 

SELECT selectionlist 

FROM database 

WHERE spatial-conditions general-conditions 

WHEN temporal-conditions 

2.3.2 Syntax of ESQL 

The ESQL is a case-independent non-procedural query language. Lower case letters 

and upper case letters are treated the same. The following is the BNF of the ESQL: 

SELECT <Selection-List> [ FROM <Database-List> ] [ WHERE <Where- 

Conditions> ] [ WHEN <When-Conditions> ] 

<Selection-List> ::= '*' I <Predicate-List> 

<Predicate-List > ::= < Aggr-Predicate> [ ',' < Aggr-Predicate> ] . . . 
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< Aggr-Predicate> ::= <Predicate> I <Aggregate> ' (' <Predicate> ')' 
<Predicate> ::= <Attribute> I <Database> '.' <Attribute> 

<Aggregate> ::= COUNT 1 AVG I MAX 1 MIN 1 SUM 

<Database-List> ::= <Database> [ ',' <Database> ] ... 
< Where-Conditions> ::= { <Spatial-Conditions> , <General-Conditions> 

1 
<General-Conditions> ::= <Comparison-Expression> [ { AND I OR ) 

< Comparison-Expression> ] . . . I ' ('<General-Conditions> ')' 
<Comparison-Expression> ::= <Attribute> <Comparison> { <STRING> 

I <NUMBER> I<Attribute> I "" <STRING> "" ) 
<Spatial-Conditions> ::= CENTER '= (' <NUMBER> ',' <NUMBER> 

')' RADIUS '=' <NUMBER> 

1 SQUARE '= (' <NUMBER> ',' <NUMBER> ',' <NUMBER> 

',' <NUMBER> ')' 

1 STREET <STRING> RANGE <NUMBER> '-' <NUMBER> 

DISTANCE <NUMBER> 

<When-Conditions> ::= { STARTING <Start-Time> [ FOR <Duration> 

] , EVERY <Period> ) 

<Start-Time> ::= '"' <Date> [ <Time> ] "" 
<Date> ::= <Month> <Day> ',' <Year> I <Day> '1' <Month-Number> 

'/' <Year> 

<Month-Number> ::= <NUMBER> 

<Duration> ::= { <NUMBER> YEARS, <NUMBER> MONTHS, <NUMBER> 

WEEKS, <NUMBER> DAYS, <NUMBER> HOURS, <NUMBER> MIN- 

UTES, <NUMBER> SECONDS ) 
<Period> ::= { <Time-Period>, <Day-Period> ) 
<Time-Period> ::= "" <Time> "' - "' <Time> "" 
<Day-Period> ::= <Weekday> '-' <Weekday> I <Weekday> "" <Time> 
0 1 7  6-1  <Weekday> "" <Time> "" 
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The above BNF follows most of the basic expression rules for grammar's BNF 

design. Here are some more explanations: 

Sharp Brackets (< >) mean the item enclosed is a non-terminal identifier. 

Braces ({ )) mean that the at least one of the items enclosed must be chosen. 

When items are separated by ( I ) ,  one and only one can be chosen. When 

separated by (,), one or more can be chosen. 

Brackets ([  I) mean that none, one or more of the items enclosed can be chosen 

for use. When items are separated by ( I ) ,  none or one of them can be chosen. 

When separated by (,), none, one or more of them can be chosen. 

Single Quotes (' ') enclose terminated symbols, which refer to symbols in 

ASCII table. Single quotes can be used with dash (-) to represent in ASCII 

table, all the symbols from the one before dash to the one after. For example, 

'a' - 'z' means all the 26 lower case letters. 

Ellipses (...) mean the last unit can be repeated as many times as you want. 
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2.3.3 Examples 

After introducing the syntax of the ESQL, let us look at some examples of how the 

ESQL queries really look like. "vpddb" is used for the database name of VPDSET. 

Examplel: Find all the EA ids of crimes that happened from March 23, 

1991 to May 10, 1991 from every Friday 8:30pm to Saturday 8:30am in the 

rectangle with lower-left corner being (483757 , 5455223) and upper-right 

corner being (487563 , 5458399) (which is UBC and its neighboring area). 

SELECT ea 

FROM vpddb 

WHERE SQUARE = (483757 , 5455223, 487563 , 5458399 ) 

WHEN STARTING "March 23, 1991 00:OO" FOR 1 MONTHS 17 DAYS 

EVERY FRIDAY "20:30n-  SATURDAY*"^:^^" 

ESQL uses a starting time and a duration to express a time period. In Appendix 

A, some snapshots are provided to illustrate how this ESQL query Example 1 is input 

from the VPD system's GUI by choosing various menu buttons and how its results 

are finally displayed on the GUI by coloring the map. They can give us a brief idea 

on the outlook of the GUI of the VPD system. 

Example2: Find all the locations of thefts happened within 500 meters to 

ABC St. #1200-#2000, for every week from Tuesday 16:30 to Wednesday 

8:15. 

SELECT xcoord, ycoord FROM vpddb 

WHERE STREET ABCSt  RANGE 1200 - 2000 DISTANCE 500 compcod 

= "theft" 

WHEN EVERY Tues "1 6:3OV - Wed "8:15" 

Note that in the ESQL, the comparison of character strings is expressed the same 

as the comparison of numbers, such as "compcod = "theft"". Here we use Example 2 

to illustrate the efficiency and necessity of the ESQL. A street segment may not be a 

straight line, such as the ABC St shown in Fig. 2.4. The shadow area in Fig. 2.4 is the 
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area to be queried by Example 2. Obviously, it would be very difficult and complicated 

for the user to use SQL or Objectstore's query string to express this spatial query 

constraint directly. However, it is quite straightforward to use the ESQL to express 

it. After this ESQL query is input from the GUI, the formidable task of executing it 

will be carried out by the VPD system's Query Parser and Query Processor. 

ABC St 

Figure 2.4: The Area To Be Queried by Example 2 

2.3.4 Parsing of ESQL Queries 

When an ESQL query is sent to the Query Parser to be parsed, all the informa- 

tion enclosed in the ESQL query will be recognized and saved in a structure, called 

the parse tree. This information basically includes the projection list, the database 

names and the selection constraints. The most complicated part is the selection con- 

straints. In the VPD system, these constraints are classified into two categories, the 

spatiotemporal constraints and the non-spatiotemporal constraints. The spatiotemporal 

constraints refer to those ESQL-specific spatial and temporal query information, such 

as the constraints following "SQUARE", "CIRCLE", "STREET" and "STARTING", 
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etc. The rest of the query would be similar to a normal SQL query, they are called 

the non-spatiotemporal constraints. The ~~a t io t empora l  constraints will be stored in 

special data structures, since these constraints occur very frequently and would be 

processed differently in the future. The non-spatiotemporal constraints are stored in 

an ordinary conjunction-disjunction tree (a binary tree whose internal nodes represent 

conjunctions or disjunctions and leaf nodes store comparison conditions). This tree 

and the spatiotemporal data structure make up the whole parse tree. The parse tree 

approach has been used in many systems[Oren92][Wu92]. Its detailed structure is not 

discussed here. 

In the Query Parser, we provide the BNF of ESQL for the syntax and grammar 

checking. Along with the BNF, we will also code in the parser all the actions written 

in C++ to restore and save the query information in the parse tree. Once the parsing 

is done, the parse tree is sent to the Query Pr6cessor to start query processing. The 

ESQL parser is written in the format required by bison++. Then bison++ will 

translate the parser into C++ program. bison++ (a compiler-compiler) is the GNU 

C++ version of YACC. 

2.4 Query Processor 

The Query Processor has 3 versions. Here we introduce two of them. One utilizes 

SQL to execute ESQL queries on Sybase platform. The other one uses Objectstore 

collection query facility. We will also talk about the hardware configuration used for 

the Query Processor. First, we will see some ESQL sample queries which will be used 

to illustrate the basic mechanism of our Query Processor. They are also used for 

future performance tests. 

2.4.1 Sample Queries 

We use four sample ESQL queries to do most of our tests. All of them are spatiotem- 

poral queries, featuring mainly on query spatial and temporal information, as desired 

by the VPD system. The 4 queries are named as QUERYI, QUERY2, QUERY3 and 
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QUERY4. All of the 4 queries will project over attribute EA, which is needed for 

counting the number of crimes that happened in each enumeration area. The table 

name for VPDSET will still be vpddb. The four queries are described in our ESQL 

language in the following. 

The first query, QUERY 1, queries over spatial attributes xcoord and ycoord and 

temporal attribute compdatet ime.  The number of data records in VPDSET that 

qualify for the selection criteria of QUERY1 is 4275. 

QUERY1: Find the EA IDS of all the crimes that happened in a square 

whose lower-left corner is (483700, 5449400) and upper-right corner is 

(498450, 5460094) within the time period from 00:OOam January 21, 1991 

to 10:OOam January 26, 1991. 

SELECT ea 

FROM vpddb 

WHERE SQUARE = (483700, 5449400, 498450, 5460094) WHEN START- 

ING " J a n  21, 1991 00:OO:OO" FOR 5 DAYS 10 HOURS 

QUERY2, QUERY3 and QUERY4 have the same query format. They all query 

over spatial attributes xcoord and ycoord and temporal attribute compt ime.  

QUERY2: Find the EA IDS of all the crimes that happened in a square 

whose lower-left corner is (488138, 5452243) and upper-right corner is 

(495764, 5457688) everyday from 10:OOam to 1l:OOam. It returns 3073 

data records, around 2% of the total records in VPDSET. 

SELECT ea 

FROM vpddb 

WHERE SQUARE = ( 4881 38, 5452243, 495764, 5457688) WHEN EV- 

ERY "1O:OO:OO" - "1 1:OO:OO" 

QUERY3: Find the EA IDS of all the crimes that happened in a square 

whose lower-left corner is (486658, 5451608) and upper-right corner is 

(497071, 5457598) everyday from 1:15pm to 5:20pm. It returns 14731 

data records, which is around 10% of the total of VPDSET. 
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SELECT ea 

FROM vpddb 

WHERE SQUARE = ( 486658, 5451 608, 497071, 5457598) WHEN EV- 

ERY "1 3:l5:OO" - "1 7:20:007' 

QUERY4: Find the EA IDS of all the crimes that happened in a square 

whose lower-left corner is (486227, 5452228) and upper-right corner is 

(495836, 5459609) everyday from 4:OOpm to 9:15pm. It returns 28776 

data records, which is around 20% of the total of VPDSET. 

SELECT ea 

FROM vpddb 

WHERE SQUARE = (486227, 5452228, 495836, 5459609) WHEN EV- 

ERY "1 6:00:007' - "21 :l5:OO" 

Sample queries can be chosen in many ways. The reason why we use these four is 

that they are all spatiotemporal queries, covering the 4 most commonly used spa- 

tiotemporal attributes. For the sake of future performance analysis, since queries on 

clustered index compdatetime can be quite efficient, we only have QUERY1 to show 

this. Queries over other attributes need to use certain techniques to have better per- 

formances. That is why we have 3 queries QUERY2 - QUERY4 with the same format 

but different sizes of results to illustrate the potential improvement on them. 

2.4.2 Two Versions of the Query Processor 

Both the GUI part and the Query Parser part of the VPD system are independent 

from the DBMSs being used. Therefore their implementations are identical on either 

Sybase or Objectstore platform. Nevertheless, the Query Processor's task is to gen- 

erate queries equivalent to ESQL queries and send them to DBMS. It relies on the 

underneath DBMS. Corresponding to Sybase table VPDTBL and Objectstore collec- 

tion VPDCOL, we have two versions of Query Processor, named SYQP and OSQP, 

respectively, running over the two DBMSs. The reason why we have two query pro- 

cessors is not just for the VPD system, but also for future performance comparison 

and query optimization. 
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After receiving the parse tree from the Query Parser, the Query Processor would 

make use of the facilities provided by the DBMS to generate queries based on the 

information contained in the parse tree. These queries should carry out the function- 

ality that the original ESQL queries are supposed achieve. The Query Processor then 

sends these queries to DBMS for execution. After the DBMS sends the execution 

results back to the Query Processor, it will forward the final results back to GUI. 

The Sybase Query Processor SYQP's strategy is rather straightforward. It gen- 

erates Sybase Transact-SQL queries from the parse tree, passes them to the Sybase 

server by Sybase DB-Library calls. After Sybase server finishes execution, SYQP will 

bind the returned result to a C language data structure and return the result back 

to GUI for display. Using the 4 sample queries as examples here, the SQL queries 

generated for our sample queries by SYQP are: 

For QUERYI: 

SELECT ea 

FROM VPDTBL 

WHERE xcoord >= 483700 AND xcoord <= 498450 AND ycoord >= 
5449400 AND ycoord <= 5460004 AND compdatetime >= "910121 00:OO:OO" 

AND compdatetime <= "910126 10:OO:OO" 

For QUERY2 

SELECT ea 

FROM VPDTBL 

WHERE xcoord >= 488138 AND xcoord <= 495764 AND ycoord >= 
5452243 AND ycoord <= 5457688 AND comptime >= 100000 AND comp- 

time <= 110000 

Since QUERY3 and QUERY4 have the same form as QUERY2, their SQL queries 

are generated with the same format as that of QUERY2. We can see that "vpddb" is 

translated to VPDTBL, which is the Sybase table name. All the spatial and temporal 

query expressions are rephrased in SQL format. 

As Objectstore only provides a relatively lower level collection query facility, the 

OSQP's structure and mechanism are a little more complicated. After getting the 
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parse tree, the OSQP takes two steps to accomplish the execution of an ESQL query. 

First an Objectstore query string is formed according to parse tree. Objectstore 

collection query is called upon the query string to get the result collection. This step 

is what we refer to as Objectstore Query. In the second step, the resulted collection 

will be gone through using Objectstore collection function foreach and the desired 

attribute (here is EA) is retrieved by dereferencing each pointer in the collection. The 

retrieved EA values will then be sent back to GUI. We call the second step Retrieving. 

Here are the Objectstore query strings generated by OSQP for our sample queries: 

For QUERYI: 

"xcoord >= 483700 && xcoord <= 498450 && ycoord >= 5449400 && 

ycoord <= 5460004 && strcmp (compdatetime, "910121 00:OO:OO") >= 
0 && strcmp (compdatetime, "910126 1&00:00") <= 0" 

For QUERY2: 

"xcoord >= 488138 && xcoord <= 495764 && ycoord >= 5452243 && 

ycoord <= 5457688 && comptime >= 100000 && comptime <= 110000" 

Query strings of QUERY3 and QUERY4 will be generated in the same way as for 

QUERY2. The Objectstore query string looks very similar to the where-clause part 

of the SQL query. 

2.4.3 Hardware Configurations 

In all of our performance tests, The Sybase server runs on a Sun Sparc 2 workstation 

with a 28.5 MIPS CPU and 32MB main memory. The Objectstore server runs on a 

SUN 41300. Its speed is 16 MIPS and it has 8M main memory. These two servers 

can be accessed by client processes through network. The type of network used for 

all my experiments is Ethernet, which is a LAN (local-area network). Because a large 

amount of data will be transferred through network, the experimental results would 

differ greatly, should the experiments be carried out in another type of network, such 

as WAN (wide-area network). 
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There are two ways of choosing the client computers for the performance testing. 

One is to use the same site as the DBMS server, the other is to use a remote computer. 

It is actually a trade off to choose to use either of them. By using the server computer 

also as the client site, it can improve performance by reducing network usage since 

the database is also on the local disk of the computer. However, this will let the 

client process compete with the server process on resources such as CPU runtime and 

main memory. On the other hand, using a remote computer as the client processor 

can improve performance by avoiding this competition on computer resources but will 

increase network communication delay. 

According to the argument in the last chapter, we know that the Sybase client 

computer plays an insignificant role in the query processing and the amount of data 

transferred through network is usually nominal. We decided to use a remote computer 

to run the client. The Sybase version of VPD front-end system is running on a SUN 

Sparc IPX workstation with a 28.5 MIPS CPU and 16 MB main memory. 

For the Objectstore query, there will be a huge amount of data being passed 

through network, we first chose Objectstore server also to run the client process. The 

Objectstore client cache's size can also be set by the user. At first, its size is set to 

be its default value, 8MB. 

After we set up our experimental environment, we can run the VPD system on 

both Sybase and Objectstore, record the run time of our 4 sample queries, then do 

performance comparisons between the two DBMSs. 

From the performance point of view, the times taken by the 3 parts (DBMS 

execution time is combined into Query Processor running time) of the VPD system 

differ each other a lot. The GUI takes very little time for input and about 2-3 seconds 

for displaying the result. The query parser takes around 3-5 seconds to compile the 

query and generate the parse tree. Most importantly, the time taken by these two 

parts are nearly constant, independent of the DBMS platform and the form of the 

query. The major part of time consumed by VPD system is the query processing time. 

It varies a lot (from several seconds to more than one thousand seconds), depending 

on the DBMS platform, the form of the query, the number of returned data items and 

many other database related factors, which will be discussed later in this thesis. Thus, 
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the following of the thesis will be focused on the performance of Query Processor and 

effective improvements. 



Chapter 3 

Query Optimizations for the VPD 

System 

In this chapter, I first test and compare the performances of the VPD system query 

processing on two platforms: Relational DBMS, Sybase and Object-oriented DBMS, 

Objectstore. Then I analyze the factors that affect these performances, especially 

those on Objectstore. I propose two major categories of improvements to optimize 

the VPD query performance on Objectstore. Internally, I rearrange indexes in VPD- 

COL and sort the object pointers before retrieving them to enhance query efficiency. 

Externally, improvements are made to the VPD system's client site environment us- 

ing Objectstore's client-processing-all feature and the "replicate database" approach 

to improve Objectstore's processing speed. As shown in the results, these optimiza- 

tion strategies have a tremendous impact on Objectstore performance and improve 

the VPD query speed on Objectstore dramatically. All the performance tests in this 

thesis are done at late night when the network traffic and impact from other users are 

minimized. All these tests exhibit fairly consistent speed from run to run. Through- 

out the thesis, once an improvement is made to the VPD system, it will be in effect 

for all the experiments after it. All the times in this thesis are measured in seconds. 
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3.1 Tests Comparisons between Sybase and Ob- 

jectstore 

In this chapter, all the tests are done using the four ESQL sample queries introduced 

in the last chapter. Table VPDTBL is used for tests on Sybase DBMS and collection 

VPDCOL is used for tests on Objectstore. The first set of tests is done on both 

Sybase and Objectstore. The system configurations are described in Section 2.5.3. 

The result is shown in Table 3.1. 

Table 3.1: Processing Time Comparison between the Sample Queries on Objectstore 
and Sybase. 

In Table 3.1, we compare the processing times of the 4 sample queries on Sybase 

and Objectstore. For Sybase query processing, since the database open and close 

time is very insignificant (usually within 3% of the whole processing time), they are 

combined into the total processing time instead of being listed separately. Also for 

Sybase processing, the selection and projection are done in one step, so in the table we 

only have one row for the total Sybase query time. The Objectstore query processing 

consists of 4 major steps: Database Open, Querying, Retrieving and Database Close. 

They are listed separately in the table. The "Total" row refers to the whole processing 

time. 

From Table 3.1, we can observe the following trends: 

For Objectstore queries, query and retrieving times count for the major part of 

the total processing time, yet the database open time is constantly fairly large 

QUERY3 

56.6 
29.4 

385.1 
167.4 

1.4 
583.3 

QUERY2 

45.7 
29.5 

,. 377.0 
72.3 
1.1 

479.9 

QUERY4 

60.7 
30.8 

458.3 
915.1 

1.2 
1405.4 

QUERY1 

5.0 
22.2 

715.2 
22.4 
2.9 

769.7 

Processing Time (sec.) 

Sybase Query 

Objectstore 

Query 

Database Open 
Query 
Retrieving 
Database Close 
Tot a1 
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too. 

0 Referring to QUERY2, QUERY3 and QUERY4, which are in the same query 

format, as the amount of returned results is increased, the processing times on 

both Sybase and Objectstore are increased. The increases are more dramatic 

for the retrieving times on Objectstore. 

0 Referring to QUERY1 and QUERY2, although QUERY1 returns more results 

than QUERY2 (4275 vs. 3073), QUERY1 takes much less time than QUERY2 

for Sybase query and Objectstore retrieving. This is because the data set is 

clustered along attribute compdatetime. This will be explained in more detail 

in next section. 

0 Overall speaking, the Objectstore processing time is much longer than that of 

Sybase. 

Recall the hardware configurations mentioned earlier, since the server computer 

for Objectstore is not as fast as that of Sybase, especially it has less main memory. We 

cannot just judge the performances of Objectstore and Sybase according to Table 3.1. 

In the condition that we cannot change the server computers, however, we will find 

out the factors affecting the performance and therefore improve it. 

3.2 Improving Internal Query Processing Tech- 

nique 

We will start from improving the internal query processing efficiency on the Object- 

store platform. Objectstore query processing is composed of two major steps: query 

and retrieving. As we can see from Table 3.1, they are also the most time-consuming 

steps. In the following sections, we will try to choose a better way to handle these 

two steps so as to reduce their overheads. 
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3.2.1 Improving Query Speed 

If we want to improve the efficiency of query, we would have to first study the query 

procedure in detail. We will use the computation time complexity to evaluate a query 

procedure. As we know, indexes always play a very important role in query processing. 

In most databases, including Objectstore and Sybase, indexes are implemented as B- 

trees. 

Our target is to improve the Objectstore query performance (when we say query 

we refer to only the selection procedure to get the result collection). Suppose we have 

a data record set D of which X and Yare two attributes. Indexes are created on these 

two attributes. Suppose the number of data records in set D is N. When the query is 

only over one attribute, such as "Xa 5 X < Xb" or "Ya 5 Y 5 Yb", using B-tree 

index, the query time complexity is O(1ogN). Without indexes, the query becomes 

linear search and its time complexity is O(N). 

When querying over more than one key, things become more complicated. First 

let us look at the case in which a range query is over two attributes. The selection 

condition of our query Q is "Xa 5 X 5 Xb && Ya 5 Y < - Yb". In set Dl  there 

are N, data records qualifying for the condition X a  5 X I: Xb and Ny data records 

qualifying for the condition Ya 5 Y 5 Yb. In the following, we introduce 3 types of 

basic methods which can be used for doing range query Q. 

Linear Search: This method searches all the records in set D one by one 

without the assistance of indexes to get the result collection qualified for the 

condition. The time complexity is O(N). 

Index-Search: This method consists of two steps. The first step is to use the 

index on either X or Y to get the intermediate result collection C, or C, which 

satisfies the condition X a  5 X 5 Xb or Ya < Y 5 Yb, respectively. The 

time used is O(1ogN). In the second step, a linear search has to be executed 

on this intermediate result to get the final result which also satisfies the other 

selection condition. The time complexity for this step is O(N,) for C, or O(N,) 

for Cy. The total time used for the whole procedure is O(logN) + O(N,) or 

O(1ogN) + O(N,), depending on whether the first step is done on X or Y, 
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respectively. 

Index-Intersection: This method also consists of two steps. The first step is to 

use the indexes on X and Y separately to get the intermediate result collections 

C, and Cy such that C, satisfies the condition X a  5 X 5 Xb and Cy qualifies 

for Ya 5 Y 5 Yb. In the second step, the two intermediate collections are 

intersected to generate the final result. The time complexity for the whole 

process is O(1ogN) + O(N, * N,). If the two intermdiate collections can be 

sorted along a certain key before the intersection, then the intersection will take 

O(1ogN) + 0 (N,log N,). N, is the smaller one among Nx and Ny . 

In most cases, N, and Ny are both much smaller than N. So usually, the Index- 

Search method is the fastest query strategy. Using this method, by choosing the 

smaller one between Nx and Ny and using the corresponding attribute's index in the 

first step, we can further optimize the query processing. 

When the number of attributes being queried gets larger (our sample queries used 

in practice all have 3 attributes in query), the time complexity of Linear Search 

remains to be O(1ogN). For Index-Search, the query time is no more than the time 

used for query over 2 attributes. If we have the ability to choose the optimistic index, 

then the processing time could even be decreased. However, for the Index-Intersection 

method, the more attributes and indexes are involved in query processing, the longer 

is the computation time. For queries over multiple attributes, if there is an index 

available for each attribute, the Index-Intersection method becomes the worst among 

the three methods. 

As stated in the last chapter, for both our VPDTBL and VPDCOL, we have 

already created indexes on all the attributes which will appear in the query selection 

conditions. Virtually, each of the above 3 methods is eligible to be used. 

Sybase[Syba91] has a very powerful query optimizer and is fairly efficient in utiliz- 

ing indexes. It uses the Index-Search method to do the query. It can also find out the 

best index to use. For each index created for a Sybase table, a distribution of data 

records is built and maintained. The whole data set is divided into equal-sized pieces, 

called steps, each of which contains a certain number of records. Statistics co-exist 
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with each index, recording the range of the indexed attribute value in each step and 

the number of data records in each step. When Sybase is given a range query, the 

Sybase server will consult the index statistics of each queried attribute and calculate 

the approximate number of records returned from the query over each index. Then 

it will choose the index which returns the least number of records. Using this index 

with the Index-Search algorithm would result in the best query performance. This 

guarantees that the Sybase query has a comparably good performance, as shown in 

Table 3.1. 

We also investigate the way how Objectstore handles queries by using of indexes. 

After experimentations and discussions with Object Design Inc., we found out the 

principles that Objectstore uses to process a query: 

When there is no index available, Linear Search would be used. 

When there is only one index available for a query, Index-Search will be used 

on this index. 

When there are multiple indexes available, Objectstore will use the Index- 

Intersection method to get the result. If there are still some other attributes in 

the condition without index, the above result is only an intermediate one and 

it will be scanned to get the final result qualified for the entire condition. 

For QUERY1 - QUERY4 in Table 3.1, each query involves 3 attributes in the 

selection criteria. Each attribute has index. In this case, Objectstore would generate 

3 intermediate collections using 3 indexes and then intersects the 3 collections into 

the final one. This process, as mentioned before, is very time-consuming. This is why 

the "Objectstore Query" row in Table 3.1 takes such a long time. 

In view of this Objectstore's drawback on query optimization, we decide to delete 

the indexes built on xcoord and ycoord in VPDCOL. Therefore, for QUERYl, there is 

only one index on compdatetime and for QUERY2, QUERY3 and QUERY4, only the 

comptime's index is available. In this way, Objectstore will be forced to use Index- 

Search method, which is the fastest, to execute the query. After the indexes deletion, 

we repeat our tests with the other conditions remaining unchanged. Since Sybase 
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does not have the index problem, we only did our tests on Objectstore and listed the 

results in Table 3.2. 

Table 3.2: The Query Processing Time after Index Re-arrangement on 0 b jectstore 

Comparing Table 3.2 with Table 3.1, we can get the following facts: 
* 

0 The database open and close times have not changed significantly. 

0 The most changed row, as we predicted, is the query time. The deletion of 

some indexes forces Objectstore to use the more efficient Index-Search query 

strategy. This greatly increases the query speed. For QUERY2, QUERY3 and 

QUERY4, their speeds are increased by around 3 times compared to Table 3.1. 

For QUERY1, the increase is even much bigger. This is because the database is 

clustered on the attribute compdatetime. We will elaborate this point later. 

0 The data attribute retrieving times are also generally reduced for the four 

queries. This is also a result from clustering and will be explained later. 

Processing Time (sec.) 

Database Open 

Query 
Retrieving 
Database Close 
Tot a1 

There are two types of indexes, clustered and non-clustered. An index is called a 

clustered index when the actual data of a table or collection are physically stored in the 

order of this index. This means that the data items' logical order with respect to the 

clustered index is the same as their physical order in the database. For example, two 

data items would reside side by side if their values on the clustered index are next to 

each other. For a table or collection, there can exist only one clustered index. When 

the clustered index is implemented by B-tree, the actual data items themselves can 

be used as the leaf level of the tree. On the contrary, non-clustered index means that 

the index order is independent of the physical order of actual data. When two data 
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items have close non-clustered index values, they do not have to be located closely in 

database. The leaf nodes of the B-tree index contain pointers to real data. 

The query time consumed by using the Index-Search range query method on clus- 

tered index and non-clustered index is calculated below. The first step is to generate 

the intermediate result, say R1, by index. In this step, more nodes (leaf level nodes) 

need to be visited for the non-clustered index approach. This is because for clustered 

index tree, the leaf level is the actual data. However, the non-clustered index tree's 

leaf level nodes contain pointers to real data. Both the pointers in the leaf nodes and 

the real data would have to be visited for generating R1. 

The second step shows more significant timing differences. The intermediate result 

R1 will be scanned through according to the index order. When the index is clustered, 

R1 exhibits a locality of reference. For the same amount of data, they occupy the 

least possible number of pages since they resideclose to each other. Furthermore, the 

data items will be fetched into memory and examined in the order of their physical 

location. Data in the same page, which is the unit for data transferring between 

memory and secondary storage, will be visited together. Once a page is discarded 

by memory, its data will not be visited again. However, for non-clustered index, R1 

does not have locality of reference any more. The same amount of data may reside 

in many more pages. As data visiting order has nothing to do with their location, 

even data in the same page are visited separately. When the memory size is smaller 

than database size, which is the usual case, one page may have to be fetched into 

memory several times because the page may have been swapped out after the first 

visit and before the next one. In this case, a lot of page faults may happen and could 

even cause thrashing. Overall, in the second step of Index-Search for range query, 

using non-clustered index would cause many more 110s than using clustered index. 

As we all know, 1 / 0  speed is much slower compared to CPU computation time. For 

Objectstore, more 110s also mean more network communications between server and 

client. 

From both steps of the Index-Search query method, we can conclude that using a 

clustered index would be much faster than using a non-clustered index. Clustered in- 

dex is created on attribute compdatet ime for both VPDTBL and VPDCOL. QUERY1, 
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which uses this clustered index, costs much less time than the other 3 queries. This is 

clearly demonstrated in the Sybase Query time in Table 3.1 and Objectstore Query 

time in Table 3.2. 

In the Ob jectstore Retrieving procedure, the collection resulted from Query is 

scanned again to do the projection on the desired attributes (Locality of reference 

resulted from index clustering will also take effect). Although there are more data 

records being retrieved for the results from QUERY1 than QUERY2, these data are 

clustered in physical storage and therefore ocupy less pages than the results from 

QUERY2. In Table 3.2, this causes the retrieving time for QUERY1 to be much 

smaller than that of QUERY2. 

In the experiments in Table 3.1, Index-Intersection strategy is used for query. 

Only pointers to data objects need to be used for intersection and actual data objects 

are not brought into cache and main memory*in query time. Therefore they have 

to be brought in at the retrieving time. For the experiments in Table 3.2, Index- 

Search method is used for query. Actual data objects are fetched into memory and 

client cache in query time already. Thus, data transferring would take less time in 

the retrieving procedure. This is why the Objectstore Retrieving times for the four 

queries in Table 3.2 are all shorter than those in Table 3.1. 

The deletion of indexes brings some improvement to query processing. However 

we have to realize that this is not practical since there may exist all kinds of queries. 

Apparently, no combination of indexes can guarantee that there would be one and 

only one index available for any query so as to force Objectstore to use the Index- 

Search query method. To solve this problem, a multi-dimensional index tree will be 

introduced in the next chapter. 

3.2.2 Improving Retrieving Speed 

Inspired from the discussion in last section, we start thinking that the bad performance 

of Objectstore retrieving may very likely be related to too many I/O operations. Let 

us call the collection returned from Objectstore query collection C. The number of 

pages occupied by data in collection C is fixed. This would be the minimum number 
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of pages to be fetched into main memory. However, we can try to visit the data 

items in collection C in an order such that the data located in the same page will be 

visited consecutively. In this case, once the CPU finishes reading a page, it will never 

need the data on this page again. This means one page will only have to be brought 

into main memory once. We can achieve this order by using Objectstore facility to 

order collection C along at tribute compdatetime. But that will first involve attribute 

retrieval and will be very slow. 

We insert a sorting procedure in the Query Processor between query and retrieving. 

This procedure will sort all the data pointers contained in collection C, using the values 

of the pointers as unsigned integers. We choose the Quicksort[Corm90] algorithm to 

do the sorting. In collection C, pointers pointing to data in the same page must have 

consecutive values. Dereferencing the sorted pointers in collection C can guarantee 

that the number of pages brought into memory will be the minimum possible number. 

Keeping the indexes and other conditions the same, we sort the pointers in collec- 

tion C before the Retrieving. Obviously, this change will not affect the times used for 

database open, query and database close. Our experiments also proved this. Thus, 

in Table 3.3 we will only show the sorting time and the total retrieving time for the 

4 sample queries and omit the times used for other steps. 

Table 3.3: The Sorting and Retrieving Time for Sample Queries 

Processing Time (sec.) 

Sorting 
Retrieving Total 

When we compare Table 3.3 with the "Retrieving" row in Table 3.2, the following 

points are noted: 

0 The sorting time complexity is N(1ogN) , N is the number of pointers to be sorted. 

Since the sorting only uses the pointer values without dereferring the pointers, 

the sorting time accounts for a very insignificant part of the total retrieval time. 

It is negligible and will be omitted from tables later on. 
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For QUERY1, there is little improvement for the retrieving speed because in 

Table 3.2, the retrieving is done on a collection resulted from clustered index 

query. For QUERY2, QUERY3, QUERY4, the sorting helps to speed up the re- 

trieving. In particular when the retrieved data quantity is big, like for QUERY4, 

the retrieving speed is more than 6 times faster than the speed in Table 3.2. 

This further demonstrates that our previous analysis is correct. 

Our work has been concentrating on improving the VPD system's internal query 

processing technique, mostly improving the query and retrieval methods. The results 

accomplished are quite satisfying. In the next section, we will try to find some en- 

vironmental factors that may affect the VPD system's query processing performance 

on Objectstore platform. 

3.3 Improving External Environmental Factors 

3.3.1 Improving the Client Site Machine 

For Objectstore, query processing is done at the client site. As the database is a fairly 

big one (50MB), main memory becomes an important factor for performance. If the 

memory is not large enough, page swapping would be very often and even thrashing 

may happen. This will slow down the processing speed. It seems that if we want the 

VPD system to have a better performance, it needs a reasonably more powerful client 

host. 

Sybase7s query processing is done at the server site. For sake of fairness, we switch 

to run the VPD system's Objectstore version on a computer with the same system 

configuration as the Sybase's DBMS server computer. This assures that both the 

Sybase and Objectstore's actual query processing is done by the same CPU and main 

memory configurations. As a reminder, since we move the client process away from 

the host for Objectstore server, the network communication overhead will increase. 

Thus the performance result would be a compromise between a faster computer + a 

bigger memory and a slower data transportation through network. In this experiment, 
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the improvements on index and retrieving that we made previously will still be in use. 

The other experimental parameters remain untouched. 

The results of QUERY1 - QUERY4's processing time after the client site is switched 

are shown in Table 3.4. 

Table 3.4: The Sample Queries Processing Time after Client Host is Changed 

While we are analyzing the result in Table 3.4, we would also elaborate on how 

the four steps, i.e. database open, query, retrieving and database close are executed: 

QUERY4 

9.0 
97.8 
69.7 

0.2 
176.7 

database open: All the databases have to be opened before use. So normally 

they are the first Objectstore calls that an application process makes. For the 

first-so-ever database open call the process meets, a client cache will be created 

as well as a cache manager for the application process. They will be in use 

without being removed or re-created until the process ends, no matter how the 

databases and transactions are operated inside the process. Besides this, for 

each database open call, the cache manager will try to communicate with the 

Objectstore server to get the relevant information on that database, such as the 

database handler and schema, etc into the cache. After the application process 

is moved to a faster computer with bigger memory, the creation and running of 

the cache manager become faster. This brings the performance benefit as we 

can see from Table 3.4. The database open times are reduced to around 113 of 

those in Table 3.1 and Table 3.2. 

0 database close: Like closing a Unix file, mostly the work here is for the cache 

manager to inform the Objectstore server the closing of the database. Similar 

QUERY3 

8.6 
81.0 
51.7 

0.1 
141.4 

QUERY2 

6.9 
40.2 
0.3 
0.1 

47.5 

Processing Time (sec.) 

Database Open 

Query 
Retrieving 
Database Close 
Total 

QUERY1 

8.8 
12.4 
0.6 
0.1 

21.9 
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to the improvement in database open, the database closing time drops to a very 

small value when the process runs on the faster machine. Since the database 

close time becomes so insignificant, in the future it will be combined into the 

total processing time. 

query and retrieving: For the Objectstore query and retrieval, all the database 

contents that are needed by these operations, such as indexes and actual data, 

will be brought into the client cache from the Objectstore database by the client 

cache manager and the Objectstore server. These data will then be processed 

solely in the client machine. As we said before, the change of client machine 

provides a faster CPU, a bigger memory and a longer network delay. From 

Table 3.4, the time used for query and retrieval for each single query is less 

than the corresponding one in Table 3.2 and Table 3.3. This is because in our 

case, the improvement of CPU speed and memory size of the remote machine 

overcomes the delay caused by network communication. 

Total: The speed of each step of every query has benefited from the client 

machine change, the total speed is also faster. However, the total processing 

time for each query is still more than the processing time for Sybase. We will 

continue to reduce it in the next section. 

We also tested the Sybase performance after changing its client machine to an- 

other computer with different CPU and memory configurations, there is almost no 

impact. This demonstrates that all the Sybase queries are done in server site and 

their performances do not have much to do with client machine. 

3.3.2 Replicate Database 

From our previous analysis, we can see that most of the delay comes from data trans- 

ferring process which delivers data through a path database -> server site memory -> 
client cache -> client site memory. Due to its slow CPU and small main memory, the 

Objectstore server computer becomes a bottleneck. Network communication delay is 

also an important factor. If we want to further improve the performance, the main 
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concern is to reduce the time consumed in the first two steps of the data transferring 

path. 

One way of doing this is to use the idea of replicate database. If we could set up a 

local database for our application, we do not have to always consult the server and we 

can save a lot of network communications. Fortunately, the "client site processing" 

characteristic from Objectstore makes the replicate database technology possible. 

Every Objectstore application has a client cache, which can act as a replicate 

database under certain conditions. First, it has to have a certain size. It is better for 

the cache to be able to hold most of the data that the queries would need, such as the 

collections and the indexes on them, etc. Secondly, an Objectstore application would 

abandon its cache every time it finishes. Thus we need to keep the application process 

carrying Objectstore calls always alive to "protect" the client cache and the cache 

manager, even though we can still close all t h e  databases and stop the transactions 

when they are not in use. 

The above two conditions are also very practical for our application. As our 

Objectstore database VPDCOL is around 50 MB, we increased the size of the client 

cache from 8MB to 64MB, which is more than enough to hold the whole collection 

and all its indexes. This size is still quite affordable in terms of the hard disk size. 

For each single query, the process circle is Open database - S tar t  transact ion - Execute 

query - Finish  transact ion - Close database. In order to keep using the cache, we 

have to leave the main process running even after one query circle is finished, waiting 

for new queries to be input. This requirement wouldn't cause any problem for the 

VPD front-end system. The VPD system's main process starts from displaying the 

GUI and will keep running anyways, ready to accept and process new queries at any 

time. This process will keep VPD system's client cache and cache manager from being 

destroyed. 

The first query of an application will have to fetch data from server database 

VPDCOL to client cache. Since all the queries in the VPD system use the same 

collection, VPDCOL, and indexes facilities built upon it, once all (or most of) the 

necessary data are brought in by the first query, they can serve all the subsequent 

queries without many cache misses. Thus for the subsequent queries, the client cache 
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becomes the replicate database and all the data there are ready for use. The queries 

will be done locally. By using terms in [Gray91], the very first query of the application, 

which has to fill up the client cache with a replicate database, is called the cold query. 

The subsequent queries, which will occur on the existing client cache and cached 

database, are called warm queries. All the experiments we did before on Objectstore 

are cold queries. 

After we start the VPD system, we can manage to let the first issued query fill up 

the client cache with most of the data from VPDCOL for future use. This query is 

called the warm-up query. The following is the warm-up query WQUERY we use: 

SELECT ea 

FROM vpddb 

WHERE SQUARE = (0, 0, 8000000, 8009000) WHEN EVERY "0:00:00 

- 23:59:59" 

As 8,000,000 is far larger than the maximum X and Y coordinate values in VPD- 

COL, we can see that this query will need to query and retrieve the whole data set. 

By the end when it finishes, all the data in VPDCOL shall already be transferred to 

client cache from the server. Without stopping the VPD system, all the queries after 

WQUERY will be executed in the local cache and become warm-queries. Keeping all 

the improvements made before, we changed the client cache size to 64MB and test the 

warm queries on the replicate cached database. The results are shown in Table 3.5. 

Table 3.5: The Sample Queries' Warm Processing Time after Using the Client Cache 
as Replicate Database 

QUERY4 
0.3 

43.3 
4.6 

48.2 

QUERY3 

0.1 
27.7 
3.7 

31.5 

QUERY2 

0.1 
10.7 
0.6 

11.4 

Processing Time (sec.) 
Database Open 

Query 
Retrieving 
Total 

QUERY1 
0.3 
3.7 
0.6 
4.6 



CHAPTER 3. QUERY OPTIMIZATIONS FOR THE VPD SYSTEM47 

Let us first look at the improvements made from using warm query and changing 

the cache size by comparing the results with those in Table 3.4. 

0 Database Open: For the warm query database open, neither client cache nor 

cache manager needs to be created. Most of the database related information 

is already cached, e.g. the database schema. Thus the database open time 

becomes negligible. 

Query and Retrieving: Because the cache is big enough and holds the whole 

database before the query, the query and retrieving can be done almost locally 

in the cache with few cache misses and little data transportation. This improves 

the speed of these 4 sample queries, with more improvement for queries returning 

more data. 

0 Total: Comparing Table 3.5 with the Sybase performance in Table 3.1, it is seen 

that for all the four queries, the Objectstore performances in Table 3.5 are better 

than those of Sybase. This is because all the queries are executed in cached 

database on client site, like a local database. A lot of network communications 

are saved. For queries on Sybase, their results would still have to be sent back 

to client from server through network. 

As before, we also tried to find a similar way to improve the Sybase performance. 

Since there does not exist a client cache in Sybase and the Sybase server does all the 

query processing, we can't implement the replicate database strategy for Sybase and 

the warm queries used on Sybase bring in little benefit either. 

Here is a little reminder. Even after most of the interested data are cached in 

client site, for every Objectstore system call, such as database open and query, the 

cache manager still has to contact the Objectstore server to make sure that the cur- 

rent contents of the cache are most up-to-date and consistent with the database. In 

our experiments, only read accesses from a single user are involved. When there are 

multiple users and readlwrite operations, it is the server and cache managers' respon- 

sibility to keep the server database and all the cached databases update and consistent 

with each other. 
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Analysis 

In the previous sections, we improved the performance of our application on Object- 

store by making changes in two major areas: improving the Objectstore's internal 

query process mechanism and the VPD system's external environment. Throughout 

the series of improvements we made, our sample queries' processing speeds on Ob- 

jectstore have been raised by up to 180 times and exceed the speeds produced by 

Sybase. This even happens while the Objectstore server machine is slower and has 

less memory than the Sybase server computer. The following is the overview of the 

improvements we have made in this chapter: 

Internal process: Due to the lack of query optimization technique on Object- 

store system, we add some query optimization methods into our VPD system 

Query Processor. 

Index Rearrangement: By deleting some extra indexes in the VPDCOL, we 

force Objectstore to switch to use the correct query mechanism, the Index- 

Search method, from the Index-Intersection. This improves the Objectstore 

query speed. 

0 Result Sorting: By sorting the result collection according to the values of 

data pointers before the retrieval, we raise the result collection retrieving 

speed. 

External environment Our results also show that it is very important to 

realize the special features of Objectstore DBMS architecture. 

Client Site Changing client process away from the Objectstore server site 

gives the VPD system a faster CPU and a larger main memory. This 

obviously overcomes the disadvantage brought by more network communi- 

cat ions. 

client caching: The enlargement of the client cache size and the using of 

warm queries allow the client cache to act as a replicate database for the 

VPD system. This provides a dramatic performance improvement. 
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These results demonstrate to us that besides the importance of the data structure, 

which has been emphasized by the literature, the strategy for executing associative 

queries and the DBMS architecture are also very important elements of a DBMS. 

As they are always crucial for a good query performance, it is very necessary for a 

good DBMS to adopt the correct strategy and for the application users to take full 

advantage of the DBMS features in order to achieve a satisfying result. 

It should also be noted that all the improvements that have been made are quite 

practical and can be generally used on any applications, except that of the index 

change, which is only a temporarily solution. Currently there are two Objectstore 

system indexes on the attributes compdatetime and comptime. They work fine for 

our 4 sample queries since these two attributes do not appear in one query at the 

same time. However, it is possible that one query may contain both of them in the 

selection condition. In that case, the Objectstbre will adopt the Index-Intersection 

query strategy and the query processing will be slowed down. 

The solution for the index problem proposed by us is that we also delete the 

Objectstore index on comptime so that the clustered index on compdatetime will 

be the only system index left. This index is very efficient for queries containing 

compdatetime in selection constraint (shown by QUERY1). For other type of queries, 

user-defined indexes will be created and used to speed up query processing. These 

indexes include multi-key index, such as the KDB+ - tree that is to be proposed in 

detail in next chapter. How would the performance of these user-defined indexes be 

and how do we use them? This is what we are going to illustrate in the following 

chapters. 



Chapter 4 

A Multi-key Index: KDB+ - tree 

In the previous chapters, the VPD system: a system focusing on processing spatiotem- 

poral queries, was introduced. The query performance of this system was also tested 

and a lot of improvements were made to enhance the speed of query processing on 

Objectstore. One of the problems is that Objectstore uses Index-Intersection query 

strategy, which is a rather slow one. This problem was solved temporarily in the 

last chapter by deleting some indexes. To overcome this drawback from Objectstore 

and to achieve maximum performance for spatiotemporal queries, in this chapter, we 

present the KDB+ - tree as an indexing mechanism for multi-key spatiotemporal 

queries. 

4.1 Multi-key Index 

As introduced before, our VPD crime database is composed of discrete point data. 

The schemaof the database consists of 21 attributes, each attribute is either an integer 

or a string. There does not exist any complex structure within data objects, nor inter- 

object pointers exist. The queries are mostly spatiotemporal queries with constraints 

on X, Y coordinates and time, like our sample queries. A query which queries over 2 

or more attributes is called a multi-key query and we call the attributes being queried 

over the composite searching keys (or composite keys) of the query. For example, our 

sample queries are all multi-key queries querying over 3 attributes. xcoord, ycoord 
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and compdatetime are composite searching keys for QUERY 1. xcoord, ycoord and 

comptime are composite searching keys for the other 3 sample queries. 

As stated before, an Objectstore index is built on only one attribute and is effective 

only for the query over this very attribute. Even though the original collection may 

have several indexes, each time a query can just take advantage of only one of them. 

Then either Index-Search or Index-Intersection has to be used to finish the whole 

query. If we want to finish a multi-key query in only one round just by searching 

through an index, we need to build our own multi-key index on all the attributes that 

appear in this query. In our case, they are three-dimensional data: X, Y coordinates 

and time. As we all know, B-tree has become widely used and is the standard indexing 

method for one dimensional key. There have been substantial efforts for building 

indexes on multiple attributes. We classify the existent multi-dimensional indexes 

into 3 categories. 

The first category of indexing mechanisms are only used for organizing discrete 

points. We have the KD-tree by Bentley[Bent75] in 1975, the Conjugation-tree intro- 

duced by Edelsbrunner and Welzl[Edel86] in 1986 and the Two-Dimensional Orderings 

introduced in [Same891 by Samet in 1989. The second category of indexes can deal 

with not only points, but also other geometric primitives such as polylines, polygons. 

They are the Quadtree[Same84], the R-tree defined by Guttman[Gutt84] in 1984, the 

Grid File given by Nievergelt et al[Niev84] in 1984 and the Field-tree introduced by 

Frank et al. in [Fran83] and [Fran89]. The third category of index structures are only 

suitable for polygons. The Cell Tree belongs to this category. It was designed by 

Gunther [Gunt88] [GB88] [GuntgO] in 1988. 

Quite a few variations of the original index designs also exist. Different variations 

may have different advantages and disadvantages and may fit in different situations. 

Most of the indexing mechanisms proposed are only suitable for building indexes on 

two dimensional data while some others, such as KD-tree and Quadtree, can be used 

as indexes on more than 2 composite keys. 

After studying the advantages and disadvantages of the above three categories of 

indexing structures, We present our own tree index, the K D B +  - tree, for the use 

of the VPD system. KDB+ - tree is derived from Bently's KD-tree and Robinson's 
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KDB-tree. It also inherits some advantageous features from B-tree. It is designed to 

match the special features of queries in VPD system. 

For most indexing tree structures, including B-tree, KD-tree, KDB-tree and our 

I i 'DBf - t ree ,  one node in the tree normally occupies a page, which is the basic unit 

for data transferring between main memory and secondary storage. As data I/O takes 

much longer time than CPU calculation, the number of pages that have to be visited 

in an index search becomes the key measurement for searching performance. 

There are two broad classes of associative queries. One is called range query, or 

sequential query. The selection constraint of this kind of query covers a range instead 

of a point. The following is an example of a range query: "Find all the bus stations 

in the rectangle area of 100 < X < 200 and 150 < Y < 300". The other type of query 

is named as random query or find operation. In this thesis, it is also referred to as 

the exact match query. The selection constraint bf this kind of query specifies discrete 

values as constraints. For example, "Find the information about the bus station on 

the spot X=100 and Y=200n is a random query. The queries in VPD system mainly 

feature multi-dimensional range query over point data. 

The query performance proves to be very good for a balanced index tree with a 

lower-bound for the number of children that a node can have, such as the B-tree. 

Suppose an index tree of this kind is built for V data objects with all the pointers to 

data objects in the leaf level of the tree, Let d be the minimum children number of a 

node. The height of the tree is logdV. The number of nodes (pages) a random query 

has to access is only the height of the tree, logdV. For a range query, suppose M data 

items will be returned after the query, roughly O(M/d) tree nodes would be visited. 

If either the tree is not balanced or no such children number d can be guaranteed, the 

query performance would be much worse. Therefore, the two requirements, balanced 

tree and minimum children number, are the key factors for an index tree's success. 

Our K D B +  -tree also qualifies for these two conditions and has a very low searching 

overhead. It is built on multi-attribute keys. We start our discussion with the KD- 

tree, the origin of the KDB' - tree.  
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KD-tree was defined in 1975 by Bentley[Bent75]. It can be used for storing K- 

Dimensional points. In 1979, Bentley and Friedman[Bent79] gave a revised version of 

KD-tree. We take a 2D case to illustrate it. A KD-tree is a binary tree comprised of 

internal nodes and leaf nodes. Each leaf node of the tree contains a 2D data point. 

Each internal node contains a splitting point (which is chosen by a certain criteria and 

is not a real data point) and corresponds to a rectangle (We suppose the region of the 

2D data set is a rectangle or the out-bounding rectangle of it). The root of the tree 

represents the whole region to the interest. For each node on level L of the KD-tree 

(assuming the root is on level I ) ,  its corresponding region is divided into two parts by 

X coordinate if L is odd or by Y coordinate if L is even. A splitting point is chosen 

so that when its corresponding rectangle is divided into two by its X or Y coordinate, 

the number of data points in the two sub-regions are equal (or nearly equal). 

Let us look at the example in Fig. 4.1. The root corresponds to the whole region. 

We first sort the 8 points in the region according to their X coordinates, then we pick 

up a point a so that its X coordinate is smaller than 4 points' X coordinates and is 

larger than the other four's. We use this point a as the splitting point and divide the 

region by its X coordinate. We get 4 points A, D, E, F in the left sub-region and 4 

points B, C, G, H in the right sub-region. Using the same approach along Y axis, 

we get points b and c as splitting points for the left sub-region and right sub-region, 

respectively. Then we use the Y coordinates of points b and c to do the further 

dividing and so on, until in every region there is only one data point, which becomes 

a leaf node. 

In this way, the KD-tree built is a binary tree. Also, it should be balanced or 

almost balanced (the difference between the longest and shortest path from the tree's 

root to a leaf is at most 1). One of the drawbacks of this KD-tree is that every node 

has at most .two children. Not only will this increase the height of the tree, but also 

the node size will be much smaller than the page size. This will decrease the disk 

space usage and efficiency of secondary storage access. More pages will have to be 

accessed and more 110s will be needed for query. Another disadvantage is that the 
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a: 2D Data set and the Out Bounding Rectangle f a g 

b: The Splitting of the Data Set 

A-G: 8 Data Points 

x a-f: 7 Splitting Points 

a(x): Split the Region by Point a's X coordinate 

A D E  F B C H  G 

c: The KD-tree 

Figure 4.1: An Example of the KD-tree 
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creation of the tree is static. It would be very hard to dynamically insert or delete 

points while keeping the tree balanced. 

To cure the defects of the KD-tree, Robinson introduced the KDB-tree[Robi81] in 1981 

by making some modifications to the KD-tree. Firstly, the KDB-tree is completely 

balanced. The path length from the root node to every leaf node is the same. Secondly, 

it is a multi-way tree. Its each node may have multiple children nodes instead of just 

two. Thirdly, it is dynamically created and maintained. We will use a KDB-tree built 

on 2-dimensional composite searching keys for the purpose of illustration. The same 

principle can be expanded to multi-dimensional KDB-tree indexes. Suppose the 2D 

keys are X and Y. 

Each 2-dimensional  tree node represents a rectangle, which is called the 

node's rectangle. Each node can have multiple children. The maximum number 

of children that any node can have is called the bucket size of the'KDB-tree. No 

minimum children number is required. Each KDB-tree node is stored as a page in 

physical storage. Like the KD-tree, there are two types KDB-tree nodes, the internal 

nodes and the leaf nodes. Leaf nodes are also called point nodes. They are on the 

bottom level of the tree and a leaf node is composed of a collection of pointers to 

real data objects. For convenience, we also call each such pointer a child of the leaf 

node. Internal nodes are also called region nodes. The rectangle corresponding to an 

internal node is divided into several sub-rectangles. Each sub-rectangle is represented 

by a sub-node of that internal node. 

Fig. 4.2 illustrates a 2-dimensional KDB- tree example. 

In this 3-level KDB-tree, every node has up to 4 children nodes. The rectangle 

corresponding to each region is divided into smaller rectangles by X and Y coordinates 

alternatively. All the small regions resulted are DIRECT children of the split region 

page (the number of these small regions has to be equal or smaller than the predefined 

bucket size). 
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: region in the region page II . region not in the region page : point page 

Figure 4.2: An Example of a 2-Dimensional KDB-tree 
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The major operations that can be applied on a KDB-tree are: query, inser- 

tion, deletion and splitting. These operations use the mechanism similar to the B- 

tree's[Come79]. For retrieving, inserting or deleting a data item given its composite 

keys (Xa, Ya), the method is to start from the root, going down the KDB-tree along 

a certain path such that the point (Xa, Ya) is inside the rectangles represented by 

the nodes on the path. At last a leaf node will be reached where the data item can 

be retrieved, deleted or the pointer to a new data item can be inserted. 

As these operations deal with multiple dimensional keys, they have their own 

distinguishing specialty and are more complicated than operations on B-tree. Range 

query is to retrieve all the records in a specified rectangle R. The query mechanism is 

to start from the root of KDB-tree, go down the tree through paths on which all the 

nodes intersect with rectangle R, until leaf nodes are reached. In these leaf nodes, all 

the data which locate inside rectangle R can be retrieved. 

After inserting a data item, if the number of data in a node exceeds the bucket 

size, splitting would have to take place. Without loss of generality, we assume the 

node is to be split by X coordinate. The leaf node's rectangle will be divided into two 

along X, with each new rectangle containing half of data in the old leaf node. In the 

KDB-tree, the old leaf node will be replaced by the two newly generated leaf nodes. 

The children number of their parent node will be increased by one. This is illustrated 

in Fig. 4.3a. 

When the number of children of an internal node exceeds the bucket size, the node 

will also have to be split. Fig. 4.3b shows an example of splitting an internal node 

N. Suppose node N is split into two new nodes LeftN and RightN by a straight line 

L: X = Xo. The line is selected such that numbers of data items on both sides of the 

line are equal. For node N's each sub-node, SubN, it becomes a sub-node of LeftN if 

it is entirely to the left of L; it becomes a sub-node of RightN if it is entirely to the 

right of L. If line L goes through SubN's rectangle, SubN is also split by L into two 

new nodes. Its left part, node Left-SubN is a child of LeftN and its right part, node 

Right-SubN is a child of RightN. This splitting may go on all the way down to node 

N7s descendent leaf nodes. This splitting procedure results in the major drawback 

of KDB-tree: there is no guarantee that SubN can also be split evenly by line L. It 
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is even possible that one of Left-SubN and Right-SubN is completely empty and the 

other one has all the data items in SubN. In this case, there will be empty nodes in the 

KDB-tree and these empty nodes will still have empty sub-nodes and sub-sub-nodes 

as splitting of one node may cause the splitting of its descendent nodes. 

Left Node 

Splitting x 

.---------- 3- 
Right Node 

Before 

a: Splitting of a point page 

X 

After 

Splitting XO 
- . . - . - - - - - > Right-N 

Before After 

b: Splitting of a region page 

: Region not in the node. : Region in the node. S - : Child node to be split too. 

Figure 4.3: Examples of Splitting a KDB-tree Node 

There are more problems with deletion. After a number of data items are deleted, 

certain leaf nodes and internal nodes could have fewer and fewer children. Although 

Robinson's KDB-tree allows this (even empty nodes are permitted), he still proposes 

a method to improve this situation by borrowing B-tree's approach, combining some 

low-storage neighboring nodes into one. However, in KDB-tree, not any two neigh- 

boring sibling nodes7 rectangles can be combined into another rectangle, like R1 and 

R2 in Fig. 4.2. Nodes are called joinable if their rectangles can be combined into 

another rectangle. Therefore, sometimes more than two joinable nodes would have to 

be combined into a bigger one. In this case, the children number of this node may 

exceed the bucket size. Then splitting would have to be applied and new low-storage 

nodes may be generated. 
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Compared to KD-tree, Robinson's KDB-tree has certain advantages. It is dynam- 

ically created and maintained. It is balanced multi-way tree instead of binary tree. 

The major drawback of this data structure is that, unlike B-tree, it cannot guarantee 

the minimum number of children a node can have. For KDB-tree, since the children 

number d can be very small or even 0, there is no reasonable upper bound for the 

height of the tree. According to the analysis and calculation in Section 4.1, more 

pages will have to be accessed and more I/O operations have to  be executed. These 

will result in a very poor performance for both random and range query operations 

on the KDB-tree. Also, the page occupancy will be low and lots of disk and memory 

space may be wasted. 

Furthermore, sibling nodes can be different in each dimension of the composite 

keys. This would cost more calculation on each node to do exact point match or range 

intersection. In order to eliminate these drawbicks as well as to keep the advantages 

of the KDB-tree. I propose KDB+ - tree as a multi-key indexing mechanism. 

KDBS - tree 

Our KDB+ - tree is also a multi-way balanced tree. It eliminates the major defects 

of Robinson's KDB-tree. The nodes of a KDB+ - tree are constructed in such a way 

that all the sibling nodes only differ in one dimension and have the same range in 

the other dimensions. This makes the query much simpler since only one dimension 

needs to be checked for each node against the query range. Operation algorithms are 

all improved yet the biggest change comes from the revision of the splitting method. 

When splitting a KDB+ - tree node, all the data items in the node are redistributed 

and all the descendent nodes (to leaf nodes) are re-constructed in order to keep the 

children number of each node above a certain limit. None of the previous dividing 

boundaries are reused. This method eliminates the possibility of empty nodes and 

guarantees that the KDB+ - tree can keep a lower bound for its node's children 

number, besides the upper bound. Therefore, there is a lower bound for the tree's 

storage efficiency and an upper bound for the height of the tree. Query efficiency is on 

a higher level. A static creation algorithm is also proposed to create a KDB+ - tree 
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from static data. These changes in the structure of KDB+ - t r e e  make it one step 

closer toward the B-tree. Compared to the KDB-tree, the KDB+ - t r e e  is a lot more 

efficient, especially for query operation. 

4.2.1 Structure 

We still use X, Y as the 2-dimensional composite keys for the K D B f  - t ree  index. 

Like the KD-tree and KDB-tree introduced before, the nodes in the KDB+ - t r e e  

and their corresponding rectangular regions are also divided by X coordinate on the 

odd levels and Y coordinate on the even levels. Nevertheless, the most distinguishing 

feature of the KDB+ - t r e e  structure is that each region node and its corresponding 

rectangle is divided into a certain number of rectangles just along one dimension, i.e. 

only along X axis or only along Y axis, depending on the level of the node. In fact, all 

the nodes on the same level of the tree are split along this dimension. This dimension 

is called the designated dimension of these nodes and this level. In this way, all the 

sub-nodes of a K D B f  - t r e e  node only differ in one dimension (which is this node's 

designated dimension) yet have the same range in all other dimensions. Because the 

tree is a balanced tree, we can also define the level of the tree, we say that all the 

leaf nodes are at level 1 of the tree. All their parents are on level 2 and so on and so 

forth. Fig. 4.4 is an illustration of a 2-dimensional KDB+ - t ree .  

As shown in Fig. 4.5a, when an internal node has n separation keys, these n keys 

divide the region along its designated dimension into n+l  sub-regions. It has n+l  

pointers to these n+l  children nodes. In a K D B S  - t ree  of order d, except for the 

root node, each node can at most have 2d+l pointers and must at least have d+1 

pointers. This means a region node (except the root node) should have at least d keys 

and d + l  points and have at most 2d keys and 2d+l data objects. The root node can 

have at most 2d keys and 2d+l pointers too and must have at  least one key and 2 

pointers. 

Besides the composite keys, the schema of data objects may also contain other 

attributes. Different data items may have same composite keys. Therefore, unlike the 

KDB-tree, the K D B S  - t ree  allows duplicate composite keys. In this case, the range 
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: Region in the region node : Region not in the region node. : point node. 

Figure 4.4: An Example of a 2-dimensional KDB+ - tree  
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given by keys are always closed. For instance, the range between key; and key;+l 

should be [key;, key;+l] instead of (key;, 

v sub-node 2d sub-node 2d+ 1 
sub-node 1 sub-node 2 

+ 
a. A KDB -tree internal node of order d with 2d+l pointers to children nodes 

point object 1 point object 2 point object 2d+l 

+ 
b. A KDB -tree leaf node of order d with 2d+l pointers to point objects 

(multi-key 2d+l) 

Figure 4.5: The Internal Structure of a K D B +  - tree Node 

v 

... (multi-key 1) 

A leaf node in a K D B +  - tree contains pointers to data items and the composite 

keys of these data. Of course the number of data pointers and the number of composite 

keys are the same, shown in Fig. 4.5b (composite keys are called a multi-key there). 

In our example, the multi-key is composed of X and Y coordinates of the point. For 

a KDB+ - tree of order d, a leaf node should have at least d+1 keys and pointers 

and at most 2d+1 keys and pointers. 

Thus, each KDB+ - tree node (except the root node) is at least 112 full. For 

the example shown in Fig. 4.4, its corresponding KDB+ - tree's internal structure 

(multi-key 2) 

a 

is shown in Fig. 4.6. 



Root node 

53 

region node level. 
Splitted and ordered by Y coordinate 

Leaf node level, ordered by X coordinate. 

: A data object. 

Figure 4.6: The Internal Structure of the KDB+ - tree  Example in Fig. 4.4 



CHAPTER 4. A MULTI-KEY INDEX: K D B +  - TREE 64 

4.2.2 Query 

Due to the fact that all the sibling nodes differ only along their parent's designated 

dimension, the query algorithm, especially the range query of the KDBS - tree is 

more efficient than that of the KDB-tree. Using Fig. 4.5 as an illstration, a range query 

algorithm for a 2-dimensional K D B +  - tree is described by procedure RangeQuery 

(CurrentNode, qualify-info). CurrentNode can be any node in the K D B +  - tree, 

qualify-info is an integer. The query is started by calling RangeQuery (root-node, 0). 

Following is the description of the algorithm: 

GLOBAL : 

A 2-dimensional K D B f  - tree with root node being root-node. 

A rectangle query range on X and Y dimensions. 

INPUT : 

CurrentNode: K D B +  - tree node; 

qualify-info: integer; 

OUTPUT : 

A set of pointers to data objects that fall in the query range. 

BEGIN 

0 Q1: If CurrentNode is a leaf node, inspect all the multi-keys in CurrentNode 

and put all the qualified data pointers into query result. Terminate. 

0 Q2: Otherwise CurrentNode is an internal node. Suppose its designated dimen- 

sion is X-des and the other dimension is expressed as X-und, the query range 

on X-des is [QR-MIN, QR-MAX]. There are n keys in CurrentNode. Each pair 

of consecutive keys in CurrentNode forms a range [key;-l, key;]. This range 

corresponds to a pointer to sub-node; (See Fig 4.5). For each such pair of keys, 

do the following (assume -oo as keyo and +oo as key,+l): 

Q2.1: If range [key;-l, key;] does not intersection with [QRMIN, QR-MAX], 

ignore it. 
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Q2.2: If range key;] is contained in the range of [QRNIN,  QRMAX] 

(key;-, > Q R M I N  and key; < QR-MAX), this means sub-nodeils rect- 

angle qualifies for the query range on dimension X-des. 

Q2.2.1 If qualify-info shows that CurrentNodels rectangle already 

qualifies for dimension X-und of the query range, then sub-node;'s rect- 

angle qualifies for the whole query range. All the data items which are 

sub-nodei7s descendents are put into query result without further check. 
Q.2.2.2 Otherwise, store information "X-des qualifies" into qualify- 

info and execute QueryRange (sub-node;, qualify-info) 

Q2.3 If (keyi-,, key;) intersects with [QR-MIN, QR-MAX], execute QueryRange 

(sub-node;, qualify-info). 

END 

This algorithm is proposed for a 2-dimensional K D B S  - tree. It can be easily 

expanded for use of multi-dimensional KDB+ - trees. The basic principle behind 

this algorithm is to reduce calculation as much as possible. Following are the features 

present in the KDB+ - tree query mechanism but not in the KDB-tree one. First, 

for internal nodes, only range values on one dimension have to be checked. Secondly, 

once a node's rectangle is proved to be within the query region completely, all the 

data objects in this rectangle are sent to result automatically. This is what is done in 

step Q.2.2. These features result in the superiority of this algorithm over the query 

of KDB-tree. 

A B-tree range query can be carried out by two random queries, but this is not 

feasible for KDB+ - tree range query. The reason is that here we have composite 

keys which are made up of 2 or more attributes. Therefore, no order can be defined 

among data objects. Since B-tree only uses one key as index, it can order all the data 

items into a chain. Therefore, it can turn a range query into two exact-match queries. 

The exact match query using the KDB+ -tree is much simpler and is quite similar 

to that of the B-tree. It can also be done using the above algorithm by setting the 

query rectangle to be a point. 
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4.2.3 Static Creation 

If we know a region and have all the data objects in this region, we can create a 

KDB+ - tree from root to bottom instead of inserting the objects one by one. This 

is called the static creation of the tree. In the static creation, we can do some pre- 

processing using the number of data items that will covered by the K D B S  - tree to 

decide how many sub-nodes an internal node will roughly have and how many data 

objects a leaf node will have so the tree can be created once and will not involve all 

the re-organization that the insertion causes. This way it is faster to create the tree 

and the user can have a better control over the shape of the tree. 

For an order d II'DB+ -tree with N(N 2 1) levels (called an N-level d-order tree), 

its root node shall have at least 2 sub-nodes and at most 2d+l sub-nodes. Other nodes 

will have d+ l  to 2d+l sub-nodes. The capacity of this tree, which means the number 

of data objects that the tree can accommodate, is from 2(d + to (2d + I ) ~ .  

Therefore, when a K D B S  - tree is created as index for m data items, the order d 

and number of levels N of the tree can be chosen as long as they satisfy the condition 

2(d + l)N-l 5 m 5 (2d + I ) ~ .  

Definition 4.1 A strict KDB+ -tree is a KDB+ -tree whose root also has at least 

d + 1 sub-nodes. 

A subtree of a KDB+ -tree induced by an internal node other than the root node 

is a strict KDB+ - tree. In most cases, strict KDB+ - trees are formed to become 

branches of another KDB+ - tree. An N level strict KDB+ - tree with order d can 

be created for any m data items when (d + l)N 5 m 5 (2d + 
Even after we can decide the order d and level N of a KDB+ - tree, its shape 

can still vary. This is because the children number of any node can take any value 

from d+ l  to 2d+l. Which value to pick is up to the user. For static creation, we 

recommend to distribute the data evenly throughout the tree, which means every 

node has the same number of children (or the difference of children numbers between 

different nodes is at most one). This way keeps the tree most balanced and searching 

will be efficient. 
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After the children number NToot for the root node and NnonToot for every other 

node are decided, the actual creation of the KDB+ - tree is straightforward. First, 

the root node of the tree is created. The whole data set is sorted along the root 

node's designated dimension. Then it is divided into NyOot equal parts, with each 

part going to form a sub-tree of the root node. The separation key values and the 

pointers to these sub-trees are stored into the root node of the K D B +  - tree. Using 

the same method and children number NnonTOot, all the root node's sub-nodes and all 

their descendent nodes can be created recursively. Down to the leaf level, leaf nodes 

are not split anymore. Composite keys and corresponding pointers to data objects 

are stored in leaf nodes. 

Suppose the total number of data objects is V. For each level of the KDB+ - tree, 

the V objects will have to be sorted along the level's designated dimension. The 

computation complexity for doing this is o ( ~ I o ~ v ) .  The number of levels of the 

tree is. O(1ogV). Therefore the complexity for the K D B S  - tree static creation is 

0 (V( l0gV)~) .  

The static creation of the K D B +  - tree is most suitable when all or most of the 

data objects are ready for use before the creation of the K D B +  - tree. Compared 

to online insertion of the data objects, the static creation can greatly reduce the tree 

creation time and keep the shape of the tree in control. 

4.2.4 Splitting 

For a K D B +  - tree with order d, if the number of children of a node exceeds the 

bucket size of the node, which is 2d+l, the node needs to be split. Suppose in such a 

KDB+ - tree T,  node A is the node to be split. Node A's rectangle is region R and 

let the set of all the objects contained in region R be S. Without loss of generality, 

suppose node A and its sibling nodes differ on dimension X. Following is the algorithm 

to split node A.  

INPUT : 

A K D B +  - tree T with order d. Overflowing node A in tree T. 
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OUTPUT : 

A new K D B +  - tree T'  after the splitting. 

BEGIN 

Use an appropriate value xo in dimension X to split region R into two 

new regions R l  and R2 and at the same time split S into two sub-sets Sl 

and S2, such that the sizes of Sl and S2 differentiate from each other by 

less than 2. 

Case I: If node A is a leaf node, create two new leaf nodes A1 and 

A2 corresponding to regions R1, R2  to hold data sets S l ,  S2 respectively. 

Replace the old node A in the tree with the two newly generated nodes 

A1 and A2. This procedure is quite similar to that of the KDB-tree. 

Case 11: If node A is an internal node, suppose node A is on level 

N of the K D B +  - tree.  Based on regions R l  and R2, use the static 

creation technique introduced before to create two N-level d-order strict 

K D B +  - trees TI and T2 with root nodes being named as left-node and 

right-node. Replace node A with these two nodes so that the two new 

trees T1 and T2 serve as two sub-trees in tree T. The K D B +  - tree T is 

still balanced after the splitting. Let us prove that it is feasible to build 2 

N-level d-order sub-trees T I  and T2 out of node A's sub-tree. 

END 

Definition 4.2 The volume of any K D B +  - tree node is the total number of data 

objects which fall in  the node's region. The pointers to these objects are contained in  

the descendent leaf nodes of this node. The volume of its root node is also called the 

volume of the K D B +  - tree.  

Definition 4.3 A sub-chain of any K D B +  - tree node A refers to the path and all 

nodes in  the path from node A to one of its descendent leaf nodes, including node A 

itself and the leaf node. 
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rl levels 

I 
I 

I 
I 

I 1 
I ...... I... ...... ............ 

1 

the sub-chain of node-A 

on which each node has 2d+l sub-nodes 

Figure 4.7: The Sub-tree of Node A when It is Going to be split 

Let us see the volume of a KDB+ - t r e e  node A when it needs to be split. Besides 

the extra data objects to be added, all the nodes in one sub-chain of node A must be 

full, i.e. they all have 2d+l sub-nodes or data objects. This is the reason for splitting. 

The rest descendent nodes of A will have at least d+1 sub-nodes, as illustrated in Fig. 

4.7. By calculation, we get that the volume of the to-be-split node A will be at least 

2d(d  + I ) ~ - '  + 2d(d  + 1 ) N - 2  + ... + 2d(d  + 1 )  + (2d  + 1 )  + 1. We have the following 

Equation: 

Equation 4.1 2 d ( d + l ) N - ' + 2 d ( d + 1 ) N - 2 + . . . + 2 d ( d + 1 ) + ( 2 d + 1 ) + 1  = 2 ( d + 1 ) ~ ,  

d  and N are integers, d  > 0 and N > 0 .  

Proof: 
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According to Equation 4.1, when node A is split evenly into left-node and right-node, 

the volume of each of the two resulted nodes will be at least (d + l)N and obviously, 

no more than ( 2 d t  l ) N .  Therefore, the data objects contained by each of the left-node 

and right-node can form two new strict N-level d-order K D B +  - trees TI and T2. 

TI and T2 will serve as sub-trees of the original KDB+ - trees T. Thus, after the 

node A is split and replaced by left-node and right-node, the tree T is still balanced. 

The splitting of a node can be shown in Fig. 4.8. 

Split Splined - D 

Before After Before After 

: Nodes to be involved in splitting. : Nodes not involved in splitting. The order of the tree is 2. 

a. splitting of a point node. b. Splitting of a region node 

Figure 4.8: The Splitting of a KDB+ - tree Node 

Let us now compare this splitting procedure with that of the KDB-tree. For the 

KDB+ - tree splitting, the split node and the sub-tree underneath it are going to be 

discarded and replaced by two new nodes and two brand new sub-trees. All the data 

objects in the split area are re-distributed and re-organized into new nodes in order 

to keep data objects scattered evenly. But in KDB-tree, all the original boundaries 

of descendent nodes of the split node will be kept for use. The improvement of the 

splitting procedure gives our K D B +  - tree a big advantage. The minimum number 

of children for any node can always be kept above the order of tree. The height of 

the tree will therefore have an upper bound of 1 + l 0g~+~(V/2 ) ,  where d is the order 

of tree and V is the total number of data objects. On the contrary, because of the 
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splitting strategy adopted by KDB-tree, its nodes could have very few sub-nodes or 

be completely empty. No upper-bound for height of the tree can be given. 

When the volume of the split node is V, the splitting procedure is in fact static 

creation of two strict K D B +  - trees,  each of which has volume V/2. Therefore the 

computation complexity of the splitting algorithm is 0 (V( l0gV)~) .  In some cases, 

a K D B +  - tree node's splitting takes longer time than a KDB-tree (For example, 

when the dividing line of KDB-tree node A does not go through any of A's sub-nodes). 

However, when index is used, queries over the index are supposed to occur much more 

frequently than updating of the index. Improving query efficiency should have the 

highest priority. This is why we choose to adopt the K D B +  - tree approach. Since 

we know the splitting takes time, in the insertion of the K D B +  - tree we will try 

to use some special techniques to reduce possible splitting and the number of data 

objects involved in each splitting. 

4.2.5 Insertion 

First let us define the concept of concatenation and redistribution. On level N of a 

d-order K D B +  -tree T, for m consecutive sibling nodes A1, A2, ... , A, whose ranges 

differ only on one dimension, say X, the following process is called the concatenation 

and redistribution to these m nodes: 

As these m nodes' regions are all next to one another, we concatenate them into 

one region R, gather all the data objects residing in region R to be set S. Then along 

X, m-1 values xl, x2, ... , x,-~ are selected to divide region R into m regions and set 

S is divided into corresponding m sub-sets so that the number of data objects in each 

region varies by no more than 1. Based on the m new regions, we can use the static 

creation technique to create m N-level d-order strict K D B +  - trees T I ,  T2, .. . , T, 

with root nodes being A:, A',, ... ,A',. In tree T, replace A1, A2, ... , A, with nodes 

A:, A',, ... ,A; so the m new trees TI, T2, ... , T, serve as m sub-trees in tree T. The 

Ii'DB+-tree Tis balanced after the above concatenation and redistribution operation. 

When the total volume of all the nodes involved in concatenation and redistribution is 

V, the computation complexity is O ( V ( Z O ~ V ) ~ )  since the main operation is still static 
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creation. 

Definition 4.4 A node on level N of a d-order KDB+ - tree is said to be strictly 

full when its volume is (2d + 

In the insertion and deletion algorithms, we are going to use the methods of 

splitting, concatenation and redistribution discussed before. Once splitting is used, in 

KDB+ - tree T, the two new nodes A1 and A1 and their sub-trees will replace the 

split node A and it is original sub-tree. To do this, in node A's parent node B, the 

pointer to node A will first be deleted. Then the pointers to nodes A1 and A2 and the 

splitting key value are inserted into node B. Once concatenation and redistribution is 

used, in KDB+ - tree T,  the m new nodes A1 ', A2' ... Am ' and their sub-trees will 

replace the m concatenated nodes Al ,  A2 ... Am and their original sub-trees. To do 

this, in node Al's parent node B, the m pointers to nodes Al,  A2 ... A m  and m-1 

dividing keys between them will first be deleted. Then the m pointers to nodes A1 ', 
A2' ... Am' and the m-1 new dividing keys between them are inserted into node B. 

As a convetion, this replacing procedure will not be explained again in detail in the 

following algorithms. The following is the algorithm for inserting a data object whose 

k-dimensional composite key is (xl, 22, ... , xk) into a KDB+ - tree: 

INPUT : 

A k-dimensional K D B f  - tree T with order d. 

A data object to be inserted with composite key being (XI, 2 2 ,  ... , xk). 

OUTPUT : 

A new KDB+ - tree T'  after the insertion. 

BEGIN 

11: Do an exact match on (xl, 2 2 ,  ... , xk) and find the leaf node current-node 

where the new data object is supposed to reside. Insert pointer to this data ob- 

ject and its composite key into current-node. If current-node does not overflow, 

terminate. Otherwise go to step 12. 
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12: If the current-node is the root node, split current-node into two new nodes 

and create a new root node as the root of the newly created two sub-trees. 

Terminate. Otherwise go to 13. 

13: Let parent-node be current-node's parent node. If parent-node has less than 

2d+l sub-nodes, split current-node and do the replacing. Terminate. Otherwise 

go to 14. 

14: If parent-node is not strictly full, find current-node's closest sibling node A 

which is not strictly full. Do concatenation and redistribution to current-node 

and A and all their sibling nodes between them. Do the replacing in parent-node. 

Terminate. Otherwise, let current-node be parent-node and go to 12. 

END 

The major characteristics of this insertion algorithm is that it makes use of the 

concatenation and redistribution technique, which is not used by insertion algorithm 

of either the B-tree or the KDB-tree. Its use can reduce the number of data objects 

involved in most splitting procedures and can therefore improve the insertion speed. 

This technique guarantees that a single node is split only when it is strictly full, which 

means that its volume is (2d + I)*. As a matter of fact, the use of concatenation and 

redistribution is optional. Its execution can be omitted from step I4 without causing 

any problem. However, the omission will result in that more data objects will be 

involved in the splitting which is used to replace the concatenation and redistribution. 

Another feature of this insertion algorithm is that once splitting is decided to take 

place, it will not be spread to upper level nodes. In other words, we do not do splitting 

until we are sure that splitting the current node can solve the problem thoroughly 

and this splitting will not cause overflow to upper level nodes. It is guaranteed that 

no operation will be wasted. 

Suppose the volume of the KDB+ - tree is V when insertion happens. O(1ogV) 

operations are needed to locate the leaf node where the data item should be inserted. 

If no overflow occurs, that is the computation complexity of the insertion. When over- 

flow does occur, suppose V'data objects are involved in splitting or concatenation and 

redistribution, the complexity should be O ( V ' ( ~ O ~ V ' ) ~ ) .  Therefore, the computation 



CHAPTER 4. A MULTI-KEY INDEX: KDB+ - TREE 74 

complexity of insert may vary from O(1ogV) to O ( V ( ~ O ~ V ) ~ ) ,  depending on which 

level the overflow occurs. 

Now there are two ways to create a KDB+ - tree.  One is through the static 

creation, the other is through inserting all the data objects one by one. The static 

creation is faster and makes it easier to control the shape of the tree. However, it 

requires that all the data objects are available prior to the tree creation, which is not 

always possible. Using the insertion algorithm is more dynamic. These two methods 

can also be combined together for use. Data objects can still be inserted dynamically 

after the tree is built up by static creation. 

4.2.6 Deletion 

Opposite to the insertion procedure, the deletion of a data object may cause the 

volume of a leaf node to be less than the order d of the K D B +  - tree.  We say that 

such a node underflows. Certain actions have to be taken to keep up the children 

number for the KDB+ - tree node where deletion takes place. 

Definition 4.5 A node on level N of a d-order KDB+ - tree is said to be strictly 

poor when its volume is (d  + I ) ~ .  

The following is the algorithm for deleting a data object with k-dimensional com- 

posite key (xl,  x2, ... , xk) from a KDB+ - tree: 

INPUT : 

A k-dimensional K D B f  - t ree  T with order d. 

A data object to be deleted with composite key being (xl,  2 2 ,  ... , xk). 

OUTPUT : 

A new K D B +  - tree T' after the deletion. 

BEGIN 

Dl:  Do an exact match query for (xl, x2, ... , xlc) and search for the leaf node 

where this data object resides. If the search is successful, name the leaf node 



CHAPTER 4. A MULTI-KEY INDEX: KDB+ - TREE 75 

as current-node. Delete the pointer of this data object and its composite key 

from current-node. If current-node does not underflow or current-node is the 

root-node of the tree, terminate. Otherwise go to D2. If the searching is not 

successful, generate error message and terminate. 

D2: Let parent-node be the parent of current-node. If parent-node has sub- 

nodes which are still not strictly poor, find current-node's closest sibling node A 

which is not strictly poor. Do concatenation and redistribution to current-node 

and A and all their sibling nodes between them. Do the necessary replacing in 

parent-node, terminate. Otherwise go to D3. 

D3: If parent-node has more than d+1 sub-nodes or parent-node is the root 

node, combine current-node's region with one of its sibling node A's region (A 

must be strictly poor). Suppose current-node is on level N, this new region 

contains 2(d + l)N - 1 objects. Use static creation to create a strict N-level d- 

order KDB+ -tree rooted at node P (according to Equation 4. l ,  this is feasible). 

Replace current-node, node A and their sub-trees with the newly created node P 

and its sub-tree. If the parent-node is the root and node P becomes its only child, 

delete the parent-node so node P becomes the root node of the KDB+ - tree 

and terminate. Otherwise let current-node be the parent-node and go to D2. 

END 

Using the insertion and deletion algorithms can dynamically maintain a KDB+ - 

tree. Using the static creation can build up the tree in a shorter time. A better way 

to be used for creating and maintaining a KDB+ - tree is to combine them together. 

If by the tree creation time, there are quite a number of data objects available, the 

static creation can be used to set up the KDB+ - tree based on these data objects. 

Later, when there are data to be inserted or deleted, we can use the insertion and 

deletion technique to do the operation dynamically. 

The KDB+ - tree structure has several advantages. In particular, the query 

becomes more efficient. First, since all the children of a node only differ in one 

dimension (this node's designated dimension), when doing the comparisons between 

these children's internal keys and the query range, only coordinates in that dimension 
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need to be compared. But in KDB-tree, coordinates in all the composite dimensions 

have to be compared. Secondly and most importantly, besides the upper bound, 

KDB+ -tree always has the lower bound d for the number of children a node (except 

the root node) may have. On the contrary, the KDB-tree does not guarantee this lower 

bound. In other words, d may be very small or even zero. This difference results in a 

big difference for storage and query efficiency between a Ii'DB+-tree and a KDB-tree 

(Suppose both their volumes are V and each node occupies a page): 

1. The height of the tree is 1 + l 0 ~ ~ + ~ ( V / 2 ) .  Therefore the KDB+ - tree always 

has a upper bound for its height but the KDB-tree does not (since d may be 0). 

2. The number of pages that a random query has to access is the height of the tree. 

Therefore a KDB+ - tree random query only needs to access 1 + l0g~+~(V/2)  

pages but the KDB-tree random query would have to access many more. A 

bigger problem is that it does not know how many it would need, no upper 

bound can be given (even not by Robinson himself). 

3. Each K D B +  - tree node (except the root) is guaranteed to be at least half 

full. The storage efficiency is more than 50%. Any KDB-tree node could be 

completely empty. No lower bound for storage efficiency can even be given. For 

a certain amount of information, many more KDB-tree nodes would have to be 

accessed. More page accesses mean more 110 operations which mean more time 

will be spent. 

4. For a range query, suppose M data objects will qualify and be retrieved. The 

approximation of nodes (pages) being accessed is O(M/d). The KDB+ - tree 

has such a d but KDB-tree's d could be 0. The K D B +  - tree's range query is 

also much more efficient. 

The operations applied on the K D B +  - tree are quite different from those on 

the KDB-tree. All of them are made to present the KDB+ - tree a better structure 

and therefore a better query performance. For the creation of the KDB+ - tree, 

we introduced the concept of static creation. Other operations such as splitting, 
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concatenation and redistribution, insertion and deletion are all quite different from 

the notions used for the K D B  - tree.  Their algorithms are based on static creation, 

which becomes a major factor to differentiate them from the operations used for 

KDB-tree. As for most databases, the data objects are static, the combination of 

the static creation and the other algorithms cannot only make the creation of the 

tree faster and make the tree dynamically maintainable, but can also make the tree 

more symmetric than Robinson's KDB-tree and make the query more efficient, which 

is the most important factor for an indexing mechanism. In the next chapter, we 

will demonstrate on our VPD system that the KDB' - tree has a superior query 

performance. 



Chapter 5 

Spatiotemporal Query 

Optimizations 

In Chapter 3, we discussed various factors affecting the query speed of an Objectstore 

application. Here we further examine the index problem for Objectstore, which has 

not been completely solved. Objectstore is not able to choose the correct strategy 

for using index in query time. In the last chapter, we introduced KDB+ - tree 

as a multi-key index and presented the associated algorithms. In this chapter, we 

create a KDB+ - tree as an index for the Objectstore crime database VPDCOL 

to optimize the VPD system's spatiotemporal query processing. At the end of the 

chapter, we introduce the third version of the VPD system Query Processor, which 

uses a combination of KDB+ - tree index and the Objectstore system index and 

we argue that this hybrid version has both of their benefits. All experiments in 

this chapter continue to make use of the query optimization techniques described in 

Chapter 3. 

5.1 Creation of KDB+ - trees 

In the KDB+ - tree, pointers to the data objects need to be used. However, like 

most relational DBMSs, Sybase does not provide users with the addresses or pointers 

to data records. As an object-oriented database DBMS, Objectstore not only allows 
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this but also provides quite efficient data referencing and de-referencing operations. 

Therefore it is only possible to implement the KDBf  - tree on the Objectstore 

platform. 

The Objectstore crime data collection VPDCOL has 148280 data objects of class 

VPDDATA. Since all the data items are available for use, we use the static creation 

algorithm to create the K D B +  -tree as an index for the data in collection VPDCOL. 

As the data set VPDCOL will remain unchanged throughout all tests, no update is 

needed for the K D B +  - tree index. 

We created two K D B +  - trees for VPDCOL. One is a 2 dimensional tree over 

attributes xcoord and ycoord, the spatial elements of the data. We call this tree 

OS2DB+ - tree. The other is a 3 dimensional tree over spatial-temporal attributes 

xcoord, ycoord and comptime. This tree is called OS3DB+ - tree. We will use these 

two trees as indexes to execute some ~~a t i a l - t e r<~o ra l  queries and compare the results 

with those using the system-provided indexes from Sybase and Objectstore. 

In Objectstore, users do not have the control to page level, that is, users can not 

specify the contents of a page. All paging management is manipulated by Objectstore 

system itself. Therefore, we cannot use the page size to decide the order of the 

KDBf  - trees. Having done some tests and comparisons on different order values, 

we made both of our two trees have order of 14. Thus, each of their nodes (except 

the root nodes) can have 15 - 29 sub-nodes. In the creation procedure, we control this 

number to be around 22. 22 is in the middle of 15 and 29, and hence the tree is left in 

a status that it can handle more possible insertions and deletions of data objects with 

less structural changes (assuming the future insertions and deletions are random). A 

K D B +  - tree index for 148280 data items would have 4 levels when each node has 

about 22 sub-nodes. 

The procedure of the query process using the KDBf  - trees is also composed 

of 4 steps: database open, query, retrieval and database close, like the procedure 

using the standard Objectstore query functionality. While other 3 steps experience 

little modification, the query step is completely changed. It is done here without 

using Objectstore query facility and Objectstore index. In the query step, we use the 

KDB+-trees to search for all the data objects which qualify for the query constraints. 
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The pointers to these objects are put in the result collection. This collection is then 

sorted and used for retrieval. 

5.2 Performance Improvements on Spatiotempo- 

ral Queries 

In this section, we will use the three example queries that have been used before, 

QUERY2, QUERY3 and QUERY4, to test the spatiotemporal query processing per- 

formance using the OS3DB+ - tree. The selection conditions of these queries are 

based on the composite keys of the OS3DBt - tree: xcoord, ycoord and comptime. 

QUERYl's selection condition contains a constraint on compdatetime, on which a clus- 

tered index is built. As explained and demonstxated in Chapter 3, the performance 

is considerably good when querying over a clustered index. Therefore compdatetime 

was not used as one of the composite keys for our KDB+ - trees. 

Object store provides the concept of segment. When data elements are created, 

they can be stored in a single segment in the database. If any one data item in the 

segment is fetched from the database into the client cache, then the whole segment 

is fetched into the cache. Each of our KDB+ - trees is stored into one segment. 

Whenever the first search into the tree is issued, the whole tree will be brought to 

local cache so the consecutive query searching will happen locally. 

We still use the warm-up query WQUERY introduced in Chapter 3 as the first 

query to "warm-up" the client cache. Its execution will bring all the data in VPDCOL 

and the whole OS3DB+-tree into client cache so that the replicate database is loaded 

completely into the cache. 

As we found in Chapter 3 (see Table 3.5), the database open and database close take 

little time. As a consequence, we will not list the times used for these two operations, 

rather we combine them into the "Total" processing time. Table 5.1 shows the query 

processing time for QUERY2, QUERY3 and QUERY4 using the OS3DB+ - tree as 

index. 

Comparing the result in Table 5.1 with the Objectstore performance in Table 3.5 
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Table 5.1: The Query Processing Time for Using OS3DB+ - tree as Index. 

and Sybase performance in Table 3.1, we can conclude that the overall speed of 

spatiotemporal query processing using our OS3DB+ - tree is faster than both of the 

other two. Detailed analysis of Table 5.1 vs. Table 3.5 shows the following: 

QUERY4 

4.4 
16.8 
21.5 

0 The query time in Table 5.1 is reduced to 116 - 1/10 of the query time in Ta- 

ble 3.5. This demonstrates that our Ir'DB! - tree is a very efficient index struc- 

ture for spatiotemporal point data. The selection of related parameters, such as 

the order and level number of the tree, and the creation of the OS3DB+ - tree 

also seem to be very successful. Here, only the index tree would have to be 

searched to get the result collection. In Table 3.5, Objectstore uses the Index- 

Search query method. A fairly big intermediate collection of real data objects 

resulted from B-tree index would have to be searched. Since our 0S3DBS -tree 

contains only 3 attributes' values, actually, each internal node only contains one 

attribute value, the size of the tree in most cases is much smaller than the size 

of the intermediate result collection. Furthermore, only one part of the index 

tree will be searched. All these factors contribute to the large improvement to 

the query speed. 

0 In contrast, all the Retrieving time values in Table 5.1 are larger than those in 

Table 3.5. This is also due to the query procedure for the OS3DB+ - tree.  

Here, only the index tree is brought into main memory, i.e. without any data 

objects. In the experiments of Table 3.5, a large number of data objects are 

fetched into main memory for the Index-Search query. Thus, the Retrieving in 

Table 5.1 has to bring more data objects from disk cache to memory than the 

Retrieving in Table 3.5, although everything is already in client cache. 

QUERY3 

4.2 
12.9 
17.7 

Processing Time (sec.) 

Query 
Retrieving 
Total 

QUERY2 

1.6 
5.7 
7.4 
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0 The comparison of these two tables shows that the reduction in query time 

overcomes the increase in retrieving time. The overall performance is improved. 

This is because in the experiments of Table 3.5, many of the data items are 

accessed twice, once in the Index-Search, once in the retrieving. The use of 

0S3DBS - tree not only improves the query efficiency, but also reduces the 

number of data objects which need to be accessed. In fact, it guarantees that 

any data object need be retrieved at most once. 

We have illustrated the improved performance for the spatiotemporal sample 

queries using the OS3DB+ - tree. Following, we discuss how to take full advan- 

tage of this structure to benefit more potential queries for the VPD system. The 

0S3DBS - tree is still useful when only 2 of its 3 composite keys are present in 

the query constraints. Also, non-spatiotemporal conditions in conjunction with spa- 

tiotemporal queries can be handled. 

5.3 Processing 2D Spatial Constraints 

In this section, we will analyze the case when only 2 out of 3 composite keys of 

OS3DB+ - tree are present in a query constraint. A common example would be the 

spatial query, which only queries over xcoord and ycoord. We will use the 0S3DBf  - 

tree to execute some spatial queries. The OS2DB+ - tree is a spatial index built on 

xcoord and ycoord and therefore favors spatial queries. We will use OS3DB+ - tree, 

OS2DB+ - tree, Sybase system query and Objectstore system query to execute some 

sample spatial queries and then compare their performances. 

The format of our sample queries is: 

SELECT ea 

FROM vpddb 

WHERE SQUARE = (XI, Y1, X2, Y2) 

X1, X2, Y1 and Y2 are all integers within the X and Y domain, respectively. 

Y2 > Y1 and X2  > X1. We use 3 sample spatial queries, SPQUERYl, SPQUERY2 
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and SPQUERY3. The numbers of data records satisfying the selection constraints of 

SPQUERYl, SPQUERY2 and SPQUERY3 are 2%, 10% and 20% of the total data 

number in VPDCOL, respectively. 

Table 5.2 shows the performance comparisons of these 3 sample queries: 

Table 5.2: Query Processing Time for Spatial Queries 

From Table 5.2, we can make the following observations: 

The performances of spatial queries using OS3DB+ - tree are very similar 

to those of using OS2DB+ - tree.  Their Query times, Retrieving times or 

Total times are all similar. Both of their performances are quite competitive 

compared to the Sybase performance and superior to those using Objectstore 

provided query facility. This demonstrates that using OS3DB+ - tree to query 

over only two attributes xcoord and ycoord is also efficient. 

The Objectstore system-provided Query time is long because it does not have an 

index to use (The indexes on xcoord and ycoord were deleted in chapter 3. Too 

many indexes will force the system to use the very slow Index-Intersection query 

method). Therefore, Objectstore uses Linear Search to perform the queries. 

This is why we say no combination of Objectstore indexes can be always satis- 

factory. 

SPQUERY2 

66.8 
80.5 
14.7 
95.8 

6.7 
48.9 
57.3 

6.8 
45.7 
53.8 

SPQUERYl 
54.1 
70.2 
19.0 
90.3 
3.5 

25.0 
29.0 
2.9 

29.7 
33.7 

Processing Time (sec.) 

Sybase Query 

SPQUERY3 
63.6 
86.8 
21.8 

110.4 
7.7 

54.5 
63.8 
11.0 
54.2 
66.4 

Query 
Retrieving 
Tot a1 
Query 
Retrieving 
Total 
Query 
Retrieving 
Total 

Objectstore 

Platform 

System 

Provided 

OS2DB+ - tree 

OS3DB+ - tree 
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SPQUERYl, SPQUERY2 and SPQUERY3 return roughly the same amount of 

data as QUERY2, QUERY3 and QUERY4 in Table 3.5, respectively. However, 

the retrieving time that a query in Table 5.2 takes is much longer than the 

retrieving time of the corresponding query in Table 3.5. This is because that 

the data retrieved in experiments of Table 3.5 have better reference locality 

(resulted from the query on comptime). 

In this section, we demonstrated that even when not all of the composite keys of 

a K D B +  - tree are present in a query constraint, the performance of K D B +  - tree 

is still quite good. 

5.4 Processing Non-spat iotemporal Constraints 

In the following, let us study the case when the query constraint contains attributes 

besides composite keys of the OS3DB+ - tree. One way for us to implement this is: 

1. Separate the whole query constraint into two parts: C1, the spatiotemporal 

query part that involves in some or all of the composite keys and C2, the rest 

of the constraint. In the VPD system, the complete query is the conjunction of 

C1 and C2. 

2. Use OS3DB+ - tree to execute C1 to get intermediate collection 11. 

3. Use Objectstore query facility to execute C2 on I1 to get the final result collec- 

tion 12. 

4. Sort the pointers in I2 and do the retrieving and projection. 

However, this approach would be quite time-consuming because both collection I1 

and I2 will be completely searched. Moreover, the data in I2 would be fetched into 

memory and accessed twice (once in step 3 and the other time in step 4). To reduce 

this overhead, we can combine Step 3 and 4 into one step, which would be: 

3. Sort pointers in collection I1 and search through 11, for each data object 

which can satisfy C2, retrieve it and perform the required projection. 
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This new step 3 combines the condition check of C2 and projection together so 

that one linear search on I1 will be sufficient. As the Objectstore query facility is not 

able to carry out this kind of combination, we provide our own query facility. We 

make use of the C2 part of the parse tree generated by the Query Parser. Each data 

item in I1 will be checked using C2 and those which return TRUE for the condition C2 

will be projected over the required attributes. This approach has been used by many 

applications, one of the examples can be found in [Wu92]. Since this is not the focus 

of this thesis, a detailed description will not be given here. This user-defined query 

facility, called the secondary checker here, will be implemented in the VPD system in 

the future. Here, we will give simulated experiments to show that adding the checking 

of constraint C2 into retrieving will not affect the query processing performance much. 

The sample queries used for the testing originate from QUERY2, QUERY3 and 

QUERY4. We add the following selection criteria to each of the query as non- 

~~a t i o t empora l  condition: '( compcod = "HITRUN" OR compcod = "THEFT") 

AND weekday = 5'. The meaning of this condition is "the crime type is either 

hit-and-run or theft and the crime happens on Friday". The three new queries are 

named as QUERY2A, QUERY3A and QUERY4A, respectively. Their format can be 

expressed as: 

SELECT ea 

FROM vpddb 

WHERE SQUARE = (Xl,  Y1, X2, Y2) (compcod = "HITRUN" OR 

compcod = "THEFT") AND weekday = 5 

WHEN EVERY "TI" - "T2" 

For QUERY2A, QUERY3A and QUERY4A, the values of X1, X2, Y1, Y2, T1 

and T2 are the same as in QUERY2, QUERY3 and QUERY4. The results of the 

execution of the 3 new queries QUERY2A, QUERY3A and QUERY4A are shown in 

Table 5.3. 

Comparing Table 5.3 with Table 5.1, we see that the times used for the correspond- 

ing operations are quite similar to each other. The addition of the non-spatiotemporal 



C H A P T E R  5. SPATIOTEMPORAL QUERY OPTIMIZATIONS 86 

Table 5.3: Query Processing Time Using OS3DB+ - tree After Adding Non- 
spatiotemporal Condition Checking into Retrieving 

Processing Time (sec.) 

Query 
Retrieving 
Tot a1 

condition checking to the retrieving procedure does not affect the retrieving perfor- 

mance or the overall performance. The reason is that each data object in the collection 

I1 has to be brought into memory only once in either case, since the checking operation 

is followed directly by retrieving. 

Let us compare the numbers of operations in  detail. Suppose that there are N 

data items in 11, among which, M items qualify for condition C2. In the experiments 

in Section 5.2, retrieving operation is executed N times. In Table 5.3, the C2 will 

be checked N times and there will be M retrievals. In most cases, M is far less than 

N and time used for retrieving is equivalent to the time used for condition checking. 

Therefore we can see that the additional condition checking is not a large overhead. 

5.5 Spatiotemporal Query Processor 

QUERY2A 
3.2 
5.2 
8.9 

The three sample queries QUERY2, QUERY3 and QUERY4 only cover relatively 

simple forms of spatiotemporal queries. We would also like to discuss the processing 

strategy for some other types of ESQL queries. Besides square, the VPD system can 

also process spatial queries over different shapes, such as a circle or a buffer along 

a certain street. We proceed by first using our K D B +  - tree index to find out all 

the data items in the bounding rectangle of the area of interest. Further qualification 

checks, such as whether the data locates in the circle or buffer, are left to the secondary 

checker. 

Currently, we have 3 indexes available for VPDCOL: the Objectstore clustered 

index on compdatetime, the OS3DB+ - tree and the OS2DB+ - tree. As no more 

QUERY3A 
3.7 

13.4 
17.6 

QUERY4A 
6.7 

15.5 
22.6 
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Objectstore system-provided indexes can be created, in order for the VPD system 

Query Processor to also be able to process non-spatiotemporal queries efficiently, 

a non-clustered B-tree index[Come79] can be created for each of the most queried 

attributes in VPDCOL. The statistics on the distribution of data objects can be kept 

along with each B-tree so the most efficient B-tree can be selected when there are 

several available. A query optimizer is required to pick up the most appropriate index 

from so many types of indexes. Its decision strategy is described as: 

if a query contains compdatetime in its temporal condition, then Object- 

store index on compdatetime will be used; 

else if the query contains at  least 2 out of the 3 composite keys of the 

OS3DB+ - tree and the relationship between constraints is conjunction, 

then the OS3DB+ - tree is selected as index; 

else one of the available B-trees is chosen as index. 

Actually, whether to select the OS3DB+ -tree or the B-tree as the index depends 

on which index can return the smaller size of intermediate collection, 11. However, it 

is quite hard to predict the result from the OS3DB+ - tree. Since 0 S 3 D B f  - tree 

deals with the conjunction of several constraints on 2 or 3 attributes, presumably it 

returns a smaller size 11. This explains why we have its priority higher than B-tree. 

The query optimizer is also responsible for dividing the whole query condition into 

two conjunctions: C1 and C2. C1 is sent to an index to get the intermediate collection 

11. Both I1 and C2 are then sent to the secondary checker. 

If we call the retrieving part of the VPD system a retriever, we have briefly defined 

the third version of Query Processor as the data engine for our VPD system. We name 

it the Spatiotemporal Query Processor (STQP). It is a general-purpose query processor 

consisting of both system-provided and user-defined query facilities. It is built on top 

of the Objectstore persistent storage. The STQP can process any ESQL queries yet 

favors the processing of spatiotemporal queries. It is made up of 3 major parts: the 

query optimizer, secondary checker and the retriever. The detail of the design and 

implementation of the Spatiotemporal Query Processor is not going to be discussed 

here. Its performance, which is our major concern, can be guaranteed from the above 
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tests and analysis. Figure 5.4 illustrates the major components and basic mechanism 

of the STQP. 

To be retrieved Predicates 

/ 1 Objectstore system provided I I Index on rompdatetime I 
B-tree index 

Table 5.4: The Major Components and Basic Mechanism of the Spatiotemporal Query 
Processor 

Compared to its two ~recedents, the SYQP and the OSQP, the STQP features 

a higher performance for processing spatiotemporal queries resulted from the use 

of the KDB+ - tree indexing mechanism. This was demonstrated by the 50% to 

120% performance increase showed by our sample queries because of the use of the 

OS3DB+ - tree.  Therefore, it is the Spatiotemporal Query Processor that can put 

the KDB+ - tree into practical use and it is the KDB+ - tree that brings better 

performance to the STQP. Objectstore system-provided clustered index and user- 

created B-tree indexes are used for processing non-spatiotemporal query constraints. 

This makes the STQP efficient to process any ESQL queries and also solves the index 

problem brought by Objectstore. The STQP also adopts some behaviors from Sybase, 

like the selection of B-tree index based on data distribution. It continues to use pointer 

sorting, which is the VPD system's special feature, to speed up the secondary checking 

and retrieving. All these features bring better query performance to the VPD system 

and make the Spatiotemporal Query Processor superior than both SYQP and OSQP, 

which only use system-provided query facilities. 



Chapter 6 

Summary and Conclusion 

6.1 Summary 

The VPD system was designed to process queries about the crime distribution in 

city of Vancouver for the Vancouver Police Department. Most of the queries to be 

performed are spatiotemporal queries. The VPD system is composed of 4 major parts: 

the GUI, the ESQL Query Parser, the Query Processor and its Databases. We briefly 

introduced the GUI and presented a more detailed description for the ESQL query 

language and the ESQL Query Parser. As a customized query language, ESQL was 

designed to have more power for expressing spatiotemporal constraints. The Query 

Parser can parse an ESQL query sent to the VPD system and check its syntax. If it is 

correct, the Parser retrieves all the useful messages contained in the query and stores 

them in the parse tree, which is then passed to the Query Processor for processing. 

The major parts of the thesis concentrate on the performance study of VPD Query 

Processor. The Query Processor was implemented on two DBMS platforms: Sybase 

and Objectstore, which represent Relational DBMS and Object-oriented DBMS, re- 

spectively. Most of our studies and experiments were made for the query processing on 

the Objectstore platform, using query performance on Sybase platform as a reference. 

In order to compare the performances of these two DBMSs, the same data set 

and sample queries are used for the experiments on both platforms. The hardware 

configurations for running the clients and servers of these two DBMSs are also taken 
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into account. After a series of experiments, the characteristics of the two DBMSs 

are analyzed and several methods were derived to improve the VPD system's query 

performance on Objectstore. 

As Objectstore cannot use index in an appropriate way, we also developed our own 

multi-key index, the KDB+ -tree for use. Experiments were also done to demonstrate 

the superiority of this tree index in processing spatiotemporal queries. At last, a new 

Query Processor, the Spatiotemporal Query Processor, was proposed which combines 

the advantages of an Objectstore system-provided index and user-defined indexs. A 

more appropriate query strategy was adopted so that the maximum performance can 

be achieved for the VPD system. 

6.2 Conclusion 

One of the major focuses of this thesis is to improve the query speed of the VPD system 

on Objectstore. As an Object-oriented DBMS, Objectstore has its own specialty that 

distinguishes it from Relational DBMSs, such as Sybase. Taking advantage of these 

features makes it possible to achieve a great performance increase for processing the 

spatiotemporal queries in VPD system. From Table 3.1 to Table 3.4 and Table 5.1, 

our sample queries' processing enjoys a speed-up of between 35-180 times. 

Objectstore allows each object to be accessed by its pointer which is not feasible 

for Sybase. This feature makes it possible to sort all the resulting pointers before 

dereferencing them. It also enables us to use object pointers to create KDB+ - t ree  

as a multi-key index to replace Objectstore's inefficient system index. These internal 

improvements are crucial to the VPD performance. 

In terms of the clientlserver architecture adopted by both DBMSs, Objectstore 

puts all the query processing on the client site, but Sybase does everything on its server 

site. This characteristic of Objectstore caused a bad performance at first because for 

each query all the data needed for it had to be transferred from server to client cache. 

Knowledge of this special property of Objectstore led us to choose a more appropriate 

client computer with faster CPU, bigger main memory and client cache for the VPD 

system and to execute the queries without stopping the VPD system's main process 
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so that the data in the client cache can be reused. In this case, the client cache acts as 

a replicate database. These reforms greatly succeed in improving query performance 

as they mimic the nature of Objectstore DBMS. 

After all these improvements on both Objectstore's internal query processing 

mechanism to external configurations, the overall speed of the VPD system on Ob- 

jectstore becomes much faster than before and also faster than the speed on Sybase, 

even when the Objectstore server machine is slower and has less memory than the 

S ybase server computer. 

Moreover, our VPD system has proven to be a very efficient query processing 

system. This demonstrates that designing a customized query language and query 

processing front-end system for a special application can be a very effective approach. 

This way, we can generate an efficient and easy-to-use system to fit in users' specific 

needs, while the user need not be an expert in i h e  OODBMS being used. This will 

certainly improve the usability of OODBMS in general. 

We do not intend that our experiments and comparisons be used to serve as a 

benchmark. Neither do we wish to compare the quality and system performance be- 

tween Objectstore and Sybase. We only intend to use these experiments and analysis 

as a way to discover some of the common factors which can determine the query 

process performance, and how we can adjust them to speed up the processing. The 

improvements we made for the VPD system to enhance the performance of general 

types of queries on Objectstore platform includes: 

Rearranging Objectstore system-provided indexes; 

Sorting pointers in the result collection before retrieving; 

Adjusting Objectstore client machine's configuration; 

Making use of the "replicate database" technique by using client caching. 

To improve spatiotemporal query's performance, we relied on a multi-key index tree: 

the K D B S  - tree, which was for the first time proposed in this thesis. Building a 

multi-key I< D B S  -tree on the most often queried attributes can reduce the number of 

pages needed to be accessed and can therefore improve the query performance. As we 

can see, all the implementations of the changes are very practical. The improvements 
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and principles presented in this thesis can be applied to real life situations and other 

applications to speed up processing. 

Some of the issues proposed in this thesis are not covered in any formal Objectstore 

documents that we are able to find, such as how the index is chosen and how they 

are used, when the cache and cache manager are initiated and destroyed. These were 

discovered by persistent study and thousands of experiments in 15 months, as well as 

consultation with Object Design Inc. personnel. 

Sybase is a very mature and powerful DBMS. Its query facility is proved to be 

very efficient. Also, Sybase arranges all the processing done in its server site. All 

the Sybase databases are located at the server site, local to the server. As long as 

the server computer remains unchanged, the change of client environment does not 

have much impact on the performance. In this sense, Sybase performance is relatively 

consistent, as also proved by our tests. The following are some of the issues related 

to our previous discussion concerning different behaviors of Sybase and Objectstore: 

0 Both Sybase and Objectstore use clientlserver architecture. However, Sybase 

processes all the database calls by its server on the server site. For Objectstore, 

the real query processing is done on the client site. No approach is strictly 

better than the other. The Sybase architecture is more suitable for situation 

in which the DBMS server resides on a very powerful machine with the clients 

being spread over the network. Objectstore appears to be better when client 

processes run on powerful computers and the number of consecutive queries is 

relatively big so that client caching can be in effect. 

0 Users of Objectstore can use pointers to data objects and de-referencing opera- 

tions which do not exist in Sybase. This is a definite advantage of Objectstore. 

However, for queries, Sybase can execute both the selection and projection of a 

query in one step and return the final result to the users directly. In Objectstore, 

as we mentioned earlier, a query has to be done in two separate steps. First step 

is the selection after which a collection of pointers would be returned. Secondly 

the user has to go through the collection and de-reference all pointers to do the 

projection part. Usually, this is more time-consuming because all the data in 
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the result collection would have to be accessed twice, once in the selection pe- 

riod and another in the projection period. Nevertheless, we can take advantage 

of this property if we can guarantee that the query will be all done by index, 

without touching the bulky data set. Our experimental results demonstrated 

this. The multi-key index and the sorting of result pointers, which cannot be 

provided by Sybase, give a much better performance, as demonstrated by our 

K D B +  - tree index testings. 

Sybase uses Index-Search query strategy and uses index statistics to decide which 

index to choose during query run-time. Objectstore makes a bad choice. It 

adopts the inefficient Index-Intersection query method. 

Overall speaking, as a young OODBMS which ha,s definite defects, Objectstore 

is still capable of providing the same or even better associative query performance 

compared to the successful Relational DBMS, Sybase. The Object-oriented way of 

data organizing is by no means an obstacle to performance. On the contrary, if 

we can take advantage of the Object-oriented approach, we can greatly improve the 

performance, as we demonstrated in this thesis. At the same time, the architecture 

of the DBMS is also very crucial to performance. This is demonstrated in this thesis 

as well. In order to achieve optimized query performance, the query strategy has to 

match the application's requirement and special properties of an DBMS. 

Future Work 

Our sample queries can represent most of the queries being used on VPD system 

now and through the help of these tests, quite a few of techniques are developed 

for query optimization, which is still fairly adequate for the VPD system at present 

phase. However, in the Ob jectstore associative query optimization point of view, we 

have to admit that the performance testing here is not complete. As we mentioned, 

our approach is single user and read-only lookup operations on only one collection, 

concentrating on range queries with respect to spatial and temporal information. Most 

sample queries only have conjunction as the relationship between constraints. As the 
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development of the VPD system itself, I believe more performance study will be done 

in the future, such as the performance involving multiple users, multiple collections 

and join operation between them, "write" operations like insertion, correction and 

deletions of data, creation and deletion of indexes, a broader range of random and 

range queries, etc. Through these tests, potential problems are inevitable. More 

optimization techniques may also be discovered and applied. 

Also, our VPD system has a promising future and a lot of further evolution can 

be done. First, our ESQL can be expanded to cover more functionality and become 

more powerful and efficient. The GUI shall also be modified to allow corresponding 

input and display the result of operation. The core part of the VPD system, the 

Query Processor proposed in Chapter 6 shall be implemented and its function can 

also be extended to make the Query Processor be able to process more types of query 

operations more efficiently as the users' requirement goes forward. 
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GUI Snapshots 

In this Appendix, 8 snapshots are given to show the outlook of the VPD front-end 

system's Graphical User Interface(GU1). The ESQL example query Example 1 pre- 

sented in Section 2.3.3 is used to illustrate the inputing procedure of an ESQL query 

from the GUI and how the final results are displayed by the GUI. Fig. A . l  shows the 

look of GUI when the VPD system is first started. The GUI is generated as an X 

window. There are 12 menu buttons on the upper part of the window for accept- 

ing user operations. The lower part is the map of city of Vancouver. The map is 

composed of around 800 enumeration areas (EAs).  To start the example query, the 

"Date" button is used to input the starting date of the query, as shown in Fig. A.2. 

Fig. A.3 shows the inputing of the duration of the query by using menu provided by 

button "Interval". "Frequency" button is used to input what period of the week is 

to the query's interest. This is shown in Fig. A.4. Fig. A.5 shows how to use button 

"Zoomin" to specify the area of the query. After all necessary inputs are done, by 

clicking on button "ShowMapn, the corresponding ESQL query will be formed by the 

VPD system and displayed in an pop-up window. This is shown in Fig A.6. Clicking 

the "Input" button in this pop-up window inputs the ESQL query to the VPD system 

for execution. After the results are generated and sent back to the GUI, the specified 

area is colored, using different colors to represent different crime numbers occured in 

each EA. This is shown in Fig A.7. Fig A.8 shows the look of the whole map after 

"ZoomOut" button is clicked. On the right half of the map, there is the color scale 
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showing the number of crimes in an EA that each color represents. 
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Figure A . l :  The Initial Status of the GUI 
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Figure A.2: Inputing the Starting Date of the Query 
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Figure A.3: Inputing the Duration of the Query 



Figure A.4: Inputing the Weekday Frequency of the Query 



A P P E N D I X  A. GUI S N A P S H O T S  

Figure A.5: Specifying the Rectangle Being Queried 
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Figure A.6: Showing the GUI Formed ESQL Query 
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Figure A.7: Coloring the Map According to the Query Result 
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Figure A.8: Showing the Whole hlap and Color Scale 
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