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Abstract 

Geometric intersection problem is a well developed topic in computational geometry 
which deals with pairwise intersections among a set of planar objects. A great num- 
ber of algorithms for detecting whether two objects in the plane intersects have been 
proposed in the literature. While most of the objects involved in those algorithms are 
simple objects such as line segments, rectangles and circles, the intersecting properties 
among polygons are still relatively unknown. In this thesis, we will consider a special 
case of polygon intersection problems which is called planar subdivision intersection 
problem. Specifically, given two maps or planar subdivisions of simple polygons, we 
are required to report all the pairwise intersection of polygotis when one is overlayed 
on top of the other. This problem arises in spatial databases applications and the 
popular way to handle this is by means of spatial indexing. In this thesis, we will 
apply the technique of conlputational geometry to solve the problem. An algoritlim 
proposed by Mairson reports pairwise intersections between two sets of disjoint line 
segments in opti~nal time. However, this algorithm does not extend for the polygon 
case. We propose a generalization of Mairson's algorithm to solve the planar subdivi- 
sion intersection problem. An implementation of the algorithm is presented and the 
empirical results are analyzed. 
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Chapter 1 

Introduction 

1.1 Background 

Computational geometry, as a field of study of computational complexity of finite 

geometric problems, emerged in the early seventies. Since Shamos [22] first gave the 

discipline its name in 1975, a large number of scientists have been attracted to this 

area. One of the major areas in computational geometry is known as the geomet- 

ric intersection problem. This problem deals with the computation of intersection 

among sets of interesting planar objects such as line segments, rectangles and circles. 

The geometric intersection problem arises in many disciplines such as VLSI design 

(do any conductors cross?), architectural design (are two items being placed in the 

same spot), computer graphics (one object on the 2-D screen can be obscured by the 

other), etc. These problems are all due to the simple fact that two planar objects 

can not occupy the same region in the plane. As the need for industrial application 

grows, faster algorithms are needed for reporting intersecting or overlapping objects. 

A number of algorithms for computing the union or intersection of sets of geometric 
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objects and for counting and reporting all intersecting pairs in sets of such objects 

have been discussed by Shamos and Hoey [Z] and later Bentley and Ottmann [4]. 

Since the motivation for studying the complexity of the intersection algorithm is 

so strong, the topic has been well-developed ever si11c.e the day the problems emerged. 

However, most of the effort was devoted to those simple objects such as line seg- 

ment, rectangle, circle, etc., i.e., the objects whose descriptions take O(1) space per 

object[5, 181. However, not much is known about the intersection properties among 

polygons. More recently, as spatial databases have become a very active research 

topic, the problem of intersecting polygons has become increasingly important. The 

importance of the problem is enhanced by the fact that polygon is a frequently used 

object to represent spatial relationship in the plane. So far, most of the spatial 

database research has concentrated on the data modeling aspects, especially on the 

design of access methods to support spatial operations by indexing or the like. In 

this thesis we investigate this problem using techniques developed in computational 

geometry. 

1.2 Problem defined 

1.2.1 Definition of the Problem 

A map or a planar subdivision can be viewed as a portion of the plane which is de- 

fined by a straight line planar embedding of a planar graph. Therefore, a polygonal 
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subdivision consists of a set of nonoverlapping polygonal regions. 

This thesis will focus on a special case of the polygon intersection problem, whic:h 

we shall call the planar subdivision intersection problem. Specifically, given two 

maps or planar subdivisions of simple polygons, we are required to report all the 

pairwise intersections of polygons when one is overlaid on top of the other. We will 

attempt to find a time and space efficient algorithm for this problem. 

1.2.2 Previous Studies 

The problem defined above arises in spatial database application. Spatial information 

is usually stored as maps. Maps are organized into layers such as streams, soils, world 

cities, crop productivity, and administrative boundaries such as land uses, time zones, 

trading areas, and political areas, etc. While each map is nothing but a set of poly- 

gons, queries such as "find out all the states in each time zone" will require us to find 

out all the pairwise intersections of polygons in the time zone map and political areas 

map. A naive method of solving this problem is to test all the possible intersection 

pairs even though the actual number may be small. When the number of polygons 

in the map is small, this solution is usually good enough. However, as the number of 

regions gets larger and larger, faster algorithms become essential. 

In 1982, H. Mairson [19] proposed an algorithm which can report all pairwise in- 

tersections between two sets of disjoint line segments in O(n log n + I) where I is the 
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total number of intersections, 72. is the number of line segments in each set. This al- 

gorithm is optimal. Consequently, if all the pairwise edge intersections are computed, 

pair-wise polygon intersection can then be deduced. However, this solution has two 

shortcommings: First, we are not able to  report the intersection if one polygon is 

totally enclosed inside the other. Second, there might be far more edgewise in te rm-  

tions than polygon-wise intersections. See Figure 1 .l. 

Figure 1.1: Example of redundant testing of polygon intersection 

Hong Fan [ll] in her M.S. thesis developed several practical ways to solve the 

problem. These methods are based on spatial indexing methods, where the under- 

lying data structure usually is It-Tree [16] which represents hierarchical space. An 

R-tree is a structure that is based on a hierarchy of nested rectangles. It is derived 

from B-tree but can handle 11-dimensional objects. To solve the problem, an R-tree 

for one of the maps is first built; then for each polygon in the other map, all its over- 

lapping polygons are determined by spatial indexing through the use of the It-tree. 

While these indexing methods are ideally suited for use by the database applications 
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due to the database rnarlagernent , they also suffer serious perfor~narlce penalties, as 

we c-odd find many more rectangle intersections than the actual polygon interse(.- 

tion(figure 1.2). 

Figure 1.2: Unnecessary testing for polygon intersections 

1.2.3 General Idea of the Thesis 

Note that the line segment intersection problem is very similar to  our problem; the 

only difference is that the objects dealt with are different. However, the algorithm of 

Mairson[l9] does not extend to  polygons. We first extend the algorithm[l9] to report 

efficiently the pair-wise intersections of two planar subdivisions where each polygon 

in the subdivisions is  non not one in one common direction. Later we show that the 

algorithm developed for monotone planar subdivision can be used to  determine effi- 

ciently the pairwise intersection of two general planar subdivisions. 
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1.3 Thesis outline 

The organization of the rest of the thesis is as follows: In chapter 2, we introduce 

the geometric terms used in the thesis. We also describe several methods to gener- 

ate random monotone planar subdivisions. In chapter 3, we develop our algorithm 

for the monotone planar subdivision by modifying the line segment intersection algo- 

rithm of Mairson. In chapter 4, we further modify the algorithm of chapter 3 such 

that it has a better average running time. In chapter 5 ,  we use the algorithm to 

report pair-wise intersection for general planar subdivision by partitioning a general 

polygon to monotone pieces. In chapter 6, we describe the experimental setup in 

terms of hardware and software, together with the empirical results and their analy- 

sis. The conclusion of this thesis and open problems are also presented in this chapter. 



Chapter 2 

Geometric Preliminaries 

In this chapter, we first present the basic definitions and notations being used in this 

thesis. Then we present the data structure for representing a planar subdivision. Fi- 

nally, we develop the algorithms for generating various types of planar subdivisions 

randomly. 

2.1 General definitions and notations 

The objects considered in this thesis are normally points, lines, and polygons in the 

2-D plane. A point is represented as a vector of two dimensions. A line segment 

then is represented as two extreme points. A polygon is a set of line segments such 

that each end point of the segment is shared by exactly two segments and no subset 

of the segments has the same property. These line segments of a polygon are also 

called edges. The polygon which is of most interest in our thesis is simple polygon. 

A polygon is s i m p l e  if it has no two edges intersecting with each other. Henceforth, 
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by polygon, we mean simple polygon unless otherwise specified. 

Two special kinds of polygons needed to be mentioned here are convex polygon 

and monotone polygon. A Convex Polygon is a polygon whose interior is a convex 

set. A convex set D is a set of points where for any two points p, q E D, segment 

from p to q is also in D. A simple polygon P is said to be monotone with respect 

to a line L if P intersects any line normal to L in one contiguous part. 

Figure 2.1: Monotone polygon with respect to horizontal line 

A polygon monotonic with respect to the horizontal line is shown in Figure 2.1. 

Note that not every polygon is monotone with respect to some line; and some poly- 

gons are monotone with respect to several lines. 

Another term frequently used in the thesis is Planar Subdivision or Map. A 

planar subdivision or a map is a subdivision where all the regions are divided only by 

straight lines. It is also called polygonal subdivision since all the regions of it must 

be a polygon except the open region. 
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There are many different kinds of planar subdivisions. If all the regions in a planar 

subdivision are convex polygons, we call it a Convex Subdivision; if all the regions 

in the subdivision are   no not one polygons with respect to  a common line, we call it a 

Monotone Subdivision. 

2.2 Represent at ion of a Planar Subdivision 

There are many different data  structures that can be used to  represent a planar siibdi- 

vision. In our implementation, a widely used data  structure called double-connected- 

edgelist(DCEL)[20] is used. Given a planar subdivision C: = (V, E), V = (vl . . . v,,) 

and E = (el . . . e,,,), the main component of the DCEL is the edge node, i . c ,  each 

edge is represented exactly once by an edge node. An edge node consists of four infor- 

mation fields, &, V2, S1 and ,S2, and two pointer fields rL and p. A planar subdivision 

can be implemented as an array of all the edge nodes. The meanings of the fields are 

as follows. The  first two fields and V2 contain the origin and terminus of the edge 

respectively. The  fields PI and P2 contain the names of the polygons which lie respec 

tively on the left and on the right of the edge oriented from Vl to  V2. The  V and P 

fields can be taken as integers. The  pointer rL points to  the edge node containing the 

first edge encountered after edge ( K ,  Vz) when one proceeds counterclockwise around 

Vl. The  pointer p points to the edge node containing the first edge encountered after 

edge (V2, &) when one proceeds counterclockwise around V2. As an example, a frag- 

ment of a graph and the corresponding fragment of the DCEL are shown in Figure 2.2. 
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Figure 2.2: Double connected edge list 

Some features of the DCEL method are worth mentioning here. From the DCEL, 

we can get an array of all vertices of the graph G in which each vertex node keeps 

all the edges incident on it in time O ( N ) ,  where N is the number of vertices in G'. 

We c,an also get the array of the polygons(regions) in time O ( N )  from the DCEL. It 

is also easy to  travel from edge to  edge in the graph using DCEL. These features of 

DCEL influence us to use it for representing a planar subdivision in this thesis. 

2.3 Constructing Convex Subdivisions 

We will now start the discussion on random constructing planar subdivisions. In this 

section, we present the construction of planar subdivisions consisting of only convex 

polygons. 

The  c.onstruction of a convex planar subdivision turns out to  be relatively easy 



C H A P T E R  2. G E O M E T R I C  PRELIMINARIES  

due to a well-known geometric object called the Voronoi diagram. A Voronoi diagram 

is an unbounded geometric object which reflects the proxi~nity relations among a set 

of points in Euclidean space, see Figure 2.3. The points in the set are called sites. 

A Voronoi diagram divides the plane into Voronoi regions in which all the points 

inside the region are closer to its site than any other sites. The precise definition by 

Preparata and Shamos of Voronoi region regards it as the intersection of half-planes. 

We consider only the Voronoi diagram in a two-dimensional space. Since each voronoi 

region is a convex region, the Voronoi diagram is therefore a planar subdivision of con- 

vex polygons. 

Figure 2.3: Voronoi diagram 

Voronoi digram is useful in its own right, and much research has been devoted to 

the computation of these diagrams. Several practical algorithms have been proposed. 

We chose Fortune's algorithm[l2], which takes O(rz log n)  time to generate the dia- 

gram. Our approach of generating convex planar subdivisions then consists of two 

stages. The first stage will generate a set of random points on the plane. The number 

of points determines the  lumber of polygons we will get. The second stage will apply 
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Fortune's algorithm to generate the Voronoi diagram of the given set. 

2.4 Constructing Monotone Subdivisions 

Monotone polygon plays a fundamental role in developing our algorithm. Therefore 

maps consisting of only monotone polygons are also constructed to test the algorithm. 

K-D tree data structure is used to generate random monotone planar subdivision. K- 

D tree was first introduced by Bentley[3] as a multidirnensional binary search tree in 

1975. We will give a brief description of K-D below. 

(4 (b) 

Figure 2.4: Example of K-D tree 
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K-D tree is designed to solve the range search problem where there is a set of 

points on the plane. As in a standard binary search tree, the root of K-I) tree con- 

tains one point of the set and the remaining points are assigned to the subtrees above 

or below according to whether they are above or below a horizontal line. The node 

chosen as the root is the one whose Y-coordinate separates the two subtrees. Unlike a 

standard tree, however, the node c,hoseu as the root of the subtree is not the one whose 

Y-coordinate separates the two subtrees, but rather the one whose X-coordinate sep- 

arates the two subtrees. The rest of the points in the subtree are assigned to the left 

and right tree according to whether they are to the left or to the right of the vertical 

line passing through the root node of its subtree. The same process is applied to all 

the subtrees recursively. The process stops when there is no point left in the subtree, 

and the corresponding node is a leaf of the tree. See the sample K-D tree in Figure 2.4. 

Now, we examine the construction of a planar subdivision of monotone poly- 

gons. Without loss of generality, we assume that each polygon is monotone in the 

x-direction. The whole process consists of three steps (Figure 2.5 shows one map 

generated in this way): 

(a): Generate a number of points on a two dimensional square and compute their 

K-D tree. The number of points is equal to the number of polygons in the map. 

(b): Randomly put some points into each rectangle of the K-D tree. Sort the points 

inside each rectangle in increasing X-coordinate order. Then link the points to 

its adjacent points. 
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( c ) :  Delete the horizontal edges of the tree. Note that each polygon in the map has 

at  least two vertical boundary edges. 

(c) 

Figure 2.5: Planar subdivision of monotone polygons 

2.5 Constructing Polygonal Subdivision 

The random generation of polygonal subdivision is complex. We shall discuss several 

methods in this section that we have tried. 
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2.5.1 Generation from convex polygons 

A. Random deletion and merging 

Figure 2.6: Example of hanging edges after deletion of the common edge 

Two adjacent convex polygons can be merged into one simple polygon by removing 

their common edge. The same is true if we remove a conlmon edge of two simple 

polygons except that there might be some dangling edges that should be removed 

later. In Figure 2.6, a and d are dangling because the removal of c,  d and e, f .  These 

dangling edges, however, can be detected and further removed. Therefore, starting 

from a planar subdivision of only convex polygons, we can obtain a planar subdivision 

consisting of simple polygons by removing edges from the graph randomly. 

The removal of the hanging edges is accomplished by the "merge and find set" 

from Aho, Hopcroft & IJllman['L]. The basic idea is that each edge belongs to two dif- 

ferent regions. Once an edge is deleted, its two regions are merged into one. Any edge 

belonging to the same region after merging should be deleted. Hence the algorithm 
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consists of two steps: First, generate a convex planar subdivision. Then, randomly 

delete some edges and remove those dangling edges. Figure 2.7 is a graph generated 

by this method. 

Figure 2.7: Planar subdivision after deletion of the common edge 

B. Deleting edges by randomly generated K-D tree 

Looking at the K-D tree in Figure 2.4, if we consider each rectangle as a simple poly- 

gon and the edge of the rectangle as a boundary chain of the polygon, we will see a 

more natural looking map of simple polygons. Thus if we put a K-D tree on top of a 

Voronoi diagram and delete those edges intersecting with the boundary of the tree as 

well as those edges which are not linked to any deleted edges, we can get a r~atural  

looking map. The method therefore includes three steps: the first step is to generate 

a random Voronoi diagram. The second step generates a random K-D tree. The last 

step considers each rectangle as the boundary of a simple polygon, puts the K-D tree 

on top of the Voronoi diagram, and deletes all the edges inside the polygon exc,ept 



C H A P T E R  2. G E O M E T R I C  PRELlMlNARIES'  17 

those boundary ones. In order to be able to make meaniilgful deletions, the ratio of 

total nu~nber of rectangles to the total number of sites in the Voronoi diagram should 

he very small. Figure 2.8 is a map generated this way. 

Figure 2.8: Planar subdivisions generated by k-d tree 

2.5.2 Generation from a set of straight lines 

In order to build up an experimental environment in which the main empirical results 

can be obtained, Hong Fan [ l l ]  described in her Master thesis how random polygonal 

maps are generated under different distributions. The basic steps are, first t o  generate 

a set of straight lines in a square 011 the plane with the endpoints of the lines lying 

on the square boundary, then to find out all the intersection points of those lines 

and replace the intersected line segments with an arbitrary number of edges. Several 

parameters including the ratio of the largest polygon to the smallest one are used to 

adjust the appearance of picture. This approach is straightforward and can be used 
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to generate very large maps. In fact, we used tl: 

ES 18 

lis method and generated several sets 

of data which are used in our experiment. Further information about this can be 

found in chapter 2 of Fan's thesis. Figure 2.9 shows one of the maps generated by 

this method. 

Figure 2.9: Planar subdivisions generated from a set of straight line 



Chapter 3 

Monotone Subdivision Intersection 

In this chapter we present an algorithm which solves a special case of the planar 

subdivision intersection problem efficiently both in terms of time and storage space. 

The polygons in the subdivisions are all   no no tonic along a common direction. With- 

out any loss of generality, we always assume that polygons in the subdivisio~ls are 

monotonic along the X-direction. The proposed algorithm is an extension of Mair- 

sion's line segment intersection algorithm[l9]. The running time of our algoritlmi is 

O(n1og n + I log") where 11 is the total size of the planar subdivisions and I is the 

rlumber of polygon intersections reported. 

The organization of this chapter is as follows: Section 3.1 describes the algorith~n 

of Mairson[l9] and introduces the terminology used. Section 3.2 discusses a modifi- 

c,ation of Mairsion's algorithm which allows us to design an algorithm for monotone 

subdivision. The algorithm for monotone subdivisions is described in Section 3.3. 
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3.1 Mairson's Line Segment Intersection Algorithm 

Given two sets of line segments S and T such that the segments in each set are pair- 

wise disjoint, Mairson[lS] discovered an elegant optimal algorithm that can report all 

the intersecting pairs (s, t) ,  s E S, t E T in O(nlog TL + I) time where n is the total 

number of line segments, I is the total number of intersecting pairs between ,5' and T.  

Mairson's approach is based on a well-known technique in computational geometry 

called plane sweep technique[18]. The description of the algorithm in this section will 

be rather intuitive. A more formal description is presented in[19]. The primary step 

of the algorithm is to sweep a vertical line through the end points of the line segments 

in S U T .  During the sweep we maintain two sets of line segments SA and TA, one 

for S and the other for T ,  in which we keep all the segments currently intersecting 

the sweeping line. We call SA(TA) active edge list or sweep table of ,S(T). Initially 

the sweep tables are empty. When a left end point of a line segment is encountered 

during the sweep, say from S(T) ,  we insert the segment into the corresponding sweep 

table ,SA(TA). When a right end point of a segment, say from S ( T ) ,  is encountered, 

we deactivate it by removing it from the table for ,SA(TA). Just before a segment 

from SA(TA) is removed, we can detect and report all its intersection by comparing it 

with all the segments in the other set TA(SA) in a brute force manner. The problem 

with this implementation is that it would take O(n) time per segment in the worst 

case, independent of the number of intersections between ,S and T .  This therefore 

results in an O(n1og n+lSI(TI) algorithm where n = ISUTI, IS1 indicates the size of 5'. 
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Two line segments A and B in the plane are said to be comparable if there exists 

a vertical line, say at 2, that intersects both of them. When A and B are comparable, 

we can define a geometric relationship above. We say that A is above B ,  if the inter- 

section point of A with the vertical line lies above the intersection point of B with 

that line. In Figure 3.1, segment A, B ,  C are comparable, C is above B, B is above 

A, C: is also aboveA. D is only comparable with B, and it is above B. 

Figure 3.1: Edges in order 

Note that the relation above is transitive and hence defines a total order. It is 

easy to locate the line segments immediately above and below the end point of any 

specific segment given the active edge list. When the right end point of a segment, 

say s from S, is processed, it would be nice if all the T segments intersected by s were 

consecutive elements in the active edge list TA. In this case, we start from the two 

TA segments right above or below the right end point, and test against the segment 

upward or downward along the list. We terminate the search in each direction at the 

first segment which does not intersect with s.  In Figure 3.2, s1 is from ,5', tl . . . t6 are 

from T. When sl is leaving, we can detect all its intersections with segments in TA 
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starting from TI and moving upwards. 

Figure 3.2: Finding all intersection when a segment is leaving 

Figure 3.3: Blocking S-T intersection being detected 

Unfortunately, there is a situation in which one segment can block other possible 

intersections to be reported. In Figure 3.3, s is from SA,  tl . . . ts  are from TA.  When 

the rightmost end point of s is encountered, t;? will block segment tl and t5 will block 

t6 from being detected. 
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A segment r can block an S-T intersection from being detected by the linear search 

described above only if its left endpoint sits in a particular region which is bounded 

above and below by two intersecting segments s and t extending to the right of its 

intersection, this region is called a S-T cone. See the example in Figure 3.4. 

I- 
S-T cone I S 

Figure 3.4: A S-T cone and the removal of it 

The idea in [I91 is to detect and destroy each S-T cone by splitting one of the 

two intersecting segments at some point to the right of the intersection as soon as r 

is encountered. After the splitting, r can no longer block the intersection of s and t. 

Therefore every time a new right end point is going to be processed, it is guaranteed 

that there are no segments in the active edge list being blocked from a possible inter- 

section. 

Fortunately, it is not difficult to test whether a new left end point p sits in a S-T 

cone or not. It is obvious that all the S-T cones containing p must consist of either an 
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upper side in TA and lower side in ,C;A or the other way around, and those segments 

form a cone must be consecutive segments immediately above or below y. 

Figure 3.5: Another S-T cone formed by t and s' after splitting s 

It does not matter which side of the cone we split; the algorithm in [19] is as 

follows: whenever a new left end point p of a line segment is encountered during the 

sweeping, locate the four segments immediately above and below it from both sets ,% 

and TA. It is not important which set the new line segment is from. Test the upper 

segment in SA against the lower segment in TA and the lower segment in ,SA against 

the upper segment in TA. If any two intersect, split the upper side at a point just to 

the right of the intersection, as indicated in the Figure 3.4. Splitting of .f; produces two 

segments sl and s 2 .  Besides replacing s with s z ,  we also report all the intersections 

of s l  with the consecutive segments in TA since this part s l  of s will no longer remain 

active. Note that after splitting s ,  t can still intersect line segments in ,SA and thereby 

forming another S-T cone(see Figure 3.5). We remove these S-T cones by splitting 

,SA edges until no more intersection is found. It takes O(1ogn + k) time to destroy 
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S-T cones for each left end point, where k is the number of intersections reported. 

O(1og n) time is needed to determine the position of the entering line segment in 5";' 

and TA. Similarly it takes O(1ogrz. + k )  to report k intersections when a right end 

point is encountered. So tlie total running time of algorithni is O(rz log r~ + I )  where I 

is the total number of intersecting pairs. Clearly, the total storage space requirement 

is O(rz. + I ) .  

3.2 A modification of Mairson's algorithm 

Mairson's algorithm[l9] reports all tlie pairwise segment intersections in optimal time. 

Since a planar subdivision can be viewed as a set of disjoint line segments, where two 

segments sharing the same endpoint are not considered intersecting, we can solve the 

planar subdivisio~i intersection problem by applying Mairson's algorithm to find out 

all the edge-wise intersections. We can then convert the edge-wise intersection result 

into polygon-wise intersection result. Unfortunately, this approach has a few draw- 

backs. One of them is that Mairson's algorithm[l9] reports all pairwise intersections 

of line segments, but we only need to detect all the polygonal intersections(see Fig- 

ure 1.1). In this case, the running time of the algorithm is determined by the number 

of edge intersections, not by the number of polygon intersections. This makes it less 

desirable. Moreover, the algorithm in [19] cannot report the containment relationship, 

i.e., if one polygon is totally enclosed by the other. 

We now discuss our approach to extend Mairson's algorithm so that we can report 
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all pairwise polygon intersections in m o ~ ~ o t o n e  subdivisions. Our objective is to design 

an algorithm whose worst case running time is a function of the nurnber of pair-wise 

polygon intersections being reported. 

3.2.1 Line Segments Properties 

Let us first take a closer look at Mairson's algorithm. The correctness of Mairson's 

algorithm is dependent on three properties of line segments. The same algorithm 

might be used to solve intersection problems of other objects as long as those objects 

have the three properties as well. 

Property PI : Any vertical line through the object intersects the object exactly 

once, i.e., the intersections of a vertical line with the object is either empty or con- 

tiguous. 

Property P2 : For any disjoint pair of objects intersecting the same vertical 

line, it is possible to determine the above-below relationship in constant time. This 

relationship does not change for any other vertical line. 

Property P3 : The intersection of any two objects is either empty or connected. 

Property P I  ensures that an order relation above will exist among the objects for 

any vertical line. Property P2 ensures that the relation can be computed. Property 
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Pi3 guarantees that the same intersection will be detected only once. Thus if a class 

of objects has properties PI-P3, all the intersection pairs among two sets of disjoint 

objects can be reported by modifying Mairson's algorithm easily. 

As described earlier, we assume that all the polygons are monotone along the X- 

axis. We observe that a vertical line intersects a monotone polygon in one continuous 

part, thus satisfing Property 1. We also observe that an order relation can be defined 

on non-intersecting monotone polygons, not just on line segments. We say that two 

non-intersecting monotone polygons are comparable if they do not intersect and there 

is a vertical line intersecting both of the polygon. Given two comparable monotone 

polygons A and B, either A is above B or B is above A. And for any disjoint monotone 

polygons, the above relationship will not change while the vertical moving along the 

x-axis. See Figure 3.6, A is above B, B is above C, A is above C, and the order will 

not change. 

Figure 3.6: Order of Monotone Polygons 
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Property 3 requires that the intersection of two objects is connected or empty. 

But the intersection of two monotone polygons need not be connected. However this 

will only result in one intersecting pair being reported more than once. Given the 

above observations, we may thus employ Mairson's line segment algorithm to solve 

the monotone planar subdivision intersection problem. 

In the following we propose an algoritllm which modifies Mairson's algoritl11n[l9]. 

The modified algorithm is then extended to determine pairwise intersection of mono- 

tone polygonal subdivisions. 

3.2.2 Removing the S-T cone by Linked List 

In Mairson's algorithm, an S-T cone is removed by cutting off one of the intersecting 

line segments right after the intersection point. While cutting a line segment is a 

trivial operation which takes constant time, cutting a polygon is not trivial. In this 

section we will propose another method to destroy each S-T cone by a 4-way con- 

nected linked list. The resulting algorithm is still optimal. 

The 4-way connected linked list is to keep all the intersections being found. Each 

node of the list represents an intersection. It has six fields: s ,  t ,  n,, I,, nt, It. s and t 

are the two edges forming the intersection. n, is the next intersection node of .s, I, is 

the last intersection node of s .  nt, l t  have similar meaning as n,, 1,. Each segment has 

a pointer pointing to the node representing the latest intersection which corresponds 
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to the last cut in Mairson's algorithm. Initially it is empty. Given the linked list, 

before testing whether any two line segments (say .s and t )  intersect, we need to check 

whether there is a node (.s, t )  in the list; if it is in, that means ( s ,  t )  formed a S-T cone 

and it had been detected, we can stop the linear searching. Testing whether any pair 

( - 5 ,  t )  is in the list can be done by checking both the head of s's linked list and the 

head of t's linked list. If neither of them is ( s ,  t ) ,  the pair is not in the list. When a 

right end point of the line segment e is encountered, we delete all the nodes connected 

with e and report the intersections. The time needed is proportional to the number of 

intersections reported. Figure 3.7 is the picture of S-T cones and the related linked list. 

nil nil nil 

Figure 3.7: S-T cones and related linked list 

The storage space needed for the linked list method is O(n+ I) where 7~ is the total 

size of the planar subdivisions and I is the number of intersections reported. Thus 

the modified Mairson algorithm takes O(n log 72 +I) running time and O(n + I) space. 
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3.3 Intersecting Monotone Subdivisions 

3.3.1 Problem of the 4-way linked list: h,idden intersection 

The linked list method in the last section is designed for the line seg~nent intersec-tion 

problem. In that algorithm, when we are testing one line segment from one set with 

the active segments in the other set for intersections upward or downward, we stop 

the linear searching as soon as we hit the first iritersection recorded in its intersection 

list. However this is not always true in case of monotone polygons. There might be 

a new intersection hzdden behind the first intersection which has already been found 

before. See the example in Figure 3.8. 

Figure 3.8: Example of hidden intersectio~~ 

There are two sets of polygons in the picture: one is depicted by a different grey 

level, labelled as s l ,  s;! and ss. The polygons in the other set are depicted by tl . . . t6. 

When the sweeping line moves to the position Ll , intersection pairs (sz, t3), ( s ~ ,  t5)  
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and (sz, ts)  are detected because p lies in their S-T cones. The intersection list of .r;z 

is: t6, t5,  t3. After several steps, the sweeping line moves to L2. In this case, polygon 

.s2 is leaving. The intersection list of .sz is still: t6, t5, t3. We find the right end point 

of s2 sitting in t6 and start the linear searching from polygon t6 both upward and 

downward. The first polygon in the upward search is t5 and it is in the intersection 

list of sz. In case of line segments, we stop the upward search for intersections because 

there will be no new intersections above t5. However, there is a polygon p4 above t5 

which intersects s 2  but has not been detected yet. We call ( t4 , s2 )  a h idden  inter- 

section. The underlying reason for the h i d d e n  intersection is that two line segments 

can intersect at no more than one place, but two monotone polygons can intersect at 

more than one place. In the example, t4 is h i d d e n  from s 2  because t5 intersec,ts s;? 

in two seperated parts. We now modify the 4-way linked list imple~nentation of thr  

intersection list to accommodate mo~lotone polygons. 

3.3.2 Operations on 2-3 tree 

A 2-3 tree[l] is a tree in which a non-leaf node has 2 or 3 children, and every path from 

the root to a leaf is of the same length. Note that a single node is also a tree. 2-3 tree 

is used to store the active polygons during the sweep. The active polygons are stored 

in the leaf nodes. They are ordered from left to right by increasing Y-coordinate 

order. We will also use a 2-3 tree to store the intersection list. 111 this subsection, we 

present some interesting results about the 2-3 tree. 

We already know that the insertion and deletion operations on a 2-3 tree with rz. 
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leaves can be executed in at most O(1og n )  time. We now define two operations C O N -  

C A T E N A T E  and S P L I T  on 2-3 tree. The operation C O N C A T E N A T E ( T l ,  T2) 

takes as input two 2-3 tree TI and T2 such that every element in TI is less than every 

element in T2. We then combine Tl and T2 into one single 2-3 tree T, and maintain 

the order of all the elements. The operation S P L I T ( a ,  T) is to split a 2-3 tree T into 

two 2-3 trees TI and T.L such that all leaves in TI are less than a ,  and all the elements 

in T.L are greater than a ;  a can be in either tree depending on the specific situation. 

Previous studies[l] show that both C O N C A T E N A T E  and S P L I T  operations can 

also be executed in O(1ogn) time. We will not present the algorithm of the two op- 

erations nor prove them in this thesis, the result being presented here merely for our 

analysis. 

Given any 2-3 tree, we can also get the number of its leaves by storing the number 

in its root node. This number can be correctly maintained during all the operations 

mentioned above without increasing the coniplexity of these operations. In each non- 

leaf node of a 2-3 tree, we always stores the smallest element of its second child node. 

This eleme~it therefore can be used to split the 2-3 tree into two subtrees with al~nost 

equal number of elements. Thus we can also split a 2-3 tree into two subtrees of 

comparable size in O(log n )  time. 

3.3.3 Find the hidden intersections 

To detect the hidden intersections when we are testing for intersections of one poly- 

gon from one set with the active polygons from the other set, a naive implementation 
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is to  test all the polygons in the active polygon list until a failure occurs, regardless 

whether the intersections have been reported or not. Obviously this causes lots of 

redundant tests. With reference to the example in Figure 3.8, when polygon s . ~  is 

leaving, we start our searching upward along the active polygon list in the order of 

tG, t5,  t4, t3, tl .  A~nong  them, t5  and t3 have already been reported intersecting. If we 

can jump over to  the first polygon which is not in the intersection list directly, it will 

save a lot of computations. This leads to  the following discussions: 

Let the active polygons of the subdivisions ,S and T be stored in the 2-3 trees As 

and AT respectively. Let p be the leftmost vertex of a new active polygon. We now 

test for new S-T cones in which p lies. Let A:(p) and A;(p) be the set of active 

polygons of ,S which are above and below y repectively. A?(p) and are defined 

similarly. Consider any polygon in A;(p), say Ps. We are interested in determining 

the first polygon in A?(y) whose intersection with Ps needs to  be tested. See Fig- 

ure 3.9. Intersections between A:(p) and can similarly be determined. 

Figure 3.9: Picture of two subdivisions when p is encountered 

Let ~ ' : ( p )  be the polygons in Alf(p) whose intersections with Ps are present in 
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the intersection list of Ps. The intersection list of any active polygon is also stored in 

a 2-3 tree. The polygons in A;(p) and ~ ' ; ( p )  are ordered along the positive direction 

of the Y-axis. Once p is known, the lists A?(p) and ~ $ ( p )  can be determined in 

O(1og r z )  time. 

We know that bisection is crucial to the development of any optimal searching 

algorithm. It is natural to try to generalize bisection for our problem. What bisection 

does is to split a set of objects into two equal size parts. Next, one of the two parts 

is chosen and split again. The splitting process repeats until it cannot be split any 

more. In our case, however, we will split the two sets ~ ' ; (p ) ,  A;(p) simultaneously. 

The process is described by the following procedure: 

We first split ~':(p) into two subtrees of comparable size. Let the two subtrees be 

At1 and At2. The polygons in A{ are below the polygons in A;. Let the last polygon 

in A: be PI. We then split A?(p) into two subtrees Al and A2 by PI. The polygons in 

Al are always below the polygons in A2. If IAi 1 = IAll, all the active polygons in Al 

are in the intersection list. The first missing polygon must he in A2. We then choose 

A2 and A; for further splitting. If [A: I # IAll, there must be a polygon in Al which is 

not in A:. We choose Al and A: for further splittings. The splitting procedure stops 

when the each subtree has only one polygon. 

An example of searching by splitting the two 2-3 trees is illustrated in Figure 3.10. 

There are 17 polygons 1 . . . 17 in the active list AY(p) and 9 of them are in the in- 

tersecting list ~':(p). Ps  is a polygon from As. It is below polygon 1 at point p. 
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Its intersection list is A1?(p). Our goal is to find the first polygon above p which is 

not in In the picture, we denote a 2-3 tree with a triangle. The numbers 

beside the arrows indicate the sequence of splitting. We first split A': into two sub- 

trees. The polygon used for the splitting is polygon 7. Then we also use polygon 

7 to split A; into two subtrees. After co~nparing the number of polygons in each 

subtree, we choose to split their left subtrees. Polygon 5 is chosen to split the sub- 

trees and so on. In the end, we find that polygon 1 is the first missing polygon above p. 

list of Ps 

Figure 3.10: Searching for the first polygon not been reported 

Each round of the splitting in the above procedure takes at most O(1ogn) time 

where n is the number of polygons in the subdivisions. Since the number of t i~nes  

of splitting A': is at most O(logn), the loop will be executed at most O(1og n )  time. 
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Therefore the execution time of the above approach to find the first missing polygon 

is  log"^). 

The above procedure finds the first missing polygon by splitting the 2-3 trees into 

two subtrees of cotl~parable size. After finding the first missing polygon, we should 

concatenate the smaller trees together into the original tree again. This can be done 

by concatenating those smaller trees in the reverse order of the splitting process. Since 

both splitting and conc,atenating of 2-3 tree run in time logarithm to the size of the 

tree, the complexity of restoring the original tree is the same as that of splitting the 

trees. So the total time needed to find the first missing polygon for a given p is at 

most  l log"^) where n is number of polygons in the subdivisions. 

3.3.4 Monotone Subdivision Intersect ion Algorithm 

The only question that remains is: how to determine whether two selected rnonotone 

polygons P and Q intersect or not. This can be done in O(IP1 + IQI) time. So the 

worst case complexity to determine I intersections this way would be 0(1 x n). We 

now show that this can he reduced to O(n log rx + I log n)  where n is the total number 

of edges in the two subdivisions. We first state an interesting result from (Ihazelle 

and Guibas 181: 

Lemma 1. We can preprocess a polygon Q in O(IQ1 log IQI) time requiring O(IQ1) 

space so that it is possible to determine in O(1og IQI) time whether an arbitrary given 
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line segment intersects Q 

A monotone subdivision can be viewed as a set of disjoint polygons, see the exam- 

ple in Figure 3.1 1. We decompose each monotone polygon into two chains, the upper 

chain and the lower chain. This is done by splitting it at its leftmost and rightmost 

vertices. 

Figure 3.1 1: A planar subdivision and its polygonal chains 

Viewing the monotone subdivision as a set of disjoint monotone polygons, the 

problem becomes of one testing one polygon with a set of polygons. Let us refer to 

the example in Figure 3.12. Polygons t l ,  t2, ts, t4 are from map T, and the shadowed 

polygon .sl is from another map S. We use s;L, S; to denote the upper chain and lower 

chain of sl. tu and tf are defined similarly, i = 1 . . .4. We assume that no S-T cone 

has occurred so far. This means that the intersection list of sl is empty. When s l  is 

leaving, first we find its right end point v lying inside polygon t l ,  and report (.sl, t l )  

as an intersection pair immediately. Next we start searching intersections along the 

active polygon list of T both upward and downward until we find a polygon not in- 

tersecting with sl. Obviously, the top chain s: should be used during the upward 

testing, and the bottom chain s: should be used during the downward testing. We 
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only consider the downward searching. The upward searching is conducted similarly. 

Since the intersecion list of sl is empty, the first missing polygon below t l  is obviously 

tP. The next missing one is tS, and so on. We start the searching by comparing si with 

t2. Here we use the algorithm of Chazelle and Guibas [8] to determine the intersection 

of si with t2. It is as follows: 

Figure 3.12: Testing the bottom chain of .sl with polygons t2 ,  t3, t4 

First of all, we represent each polygonal chain as a linked list of its edges from 

right to left. This edge list can be easily built while we are sweeping all the vertices 

from left to right. To detect the intersection of chain .si with polygon t2,  we test 

all the edges of s: from right to left against tP ,  one at a time. According Lemma 

1, given O(ltzl log It2\) time to compute a data structure of t2,  we can determine the 

intersection of each edge with t2 in O(1og Ita/) time. Then we continue the search by 

comparing sl with t3. Let pl be the intersection point of .si with t2. If no intersec- 

tion is found, we stop the downward searching. Since the part of s{ from pl to  ,u 
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is above t3, we can continue our testing of .si with ts from pl instead of v .  Finding 

the intersection point p, of s l  with t3, again we continue the testing from pz with t4 

until we encounter a polygon which does not intersect with .s:. As a result, we are 

guaranteed that when .sl is leaving, each segment in sl is visited only once except 

that this segment intersects a polygon in the other set. 

However, when an S-T cone is formed, we also test the intersection of a chain with 

the polygons in the other set edge by edge. Thus an edge may actually he visited 

many times before it leaves. This situation can be resolved by adding an field to each 

chain to record its rightmost point which has been visited before. In a later testing 

event, we stop the test once we hit that point. Thus we are guaranteed that each 

edge is visited only once to test the intersections unless it is found intersecting with 

a polygon in the other set. 

The time we need to co~npute the data structures of all the polygons in the sub- 

division according the algorithm of Chazelle and Guibas [8] is O(n log n)  where n is 

the total number of edges in the subdivisions. The total number of times we call the 

algorithm of Chazelle and Guibas[8] to determine the intersection of an edge with a 

polygon is n + I where I is the number of intersections reported. So the total time 

we spend on testing all intersections is (n log 72. + k log n). 

During the implementation stage of the algorithm, we found yet another differ- 

ence between line seg~nent intersection and polygon intersection. In the line segment 

intersection algoritlm, to test if a new left end point sits in an S-T cone, we first find 
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out the edges immediately above and below the point in the two active edge lists. 

Then we test the above edge S, against the below edge Tb. If they intersect, an S-T 

cone is formed. Otherwise, we test the below edge Sb against the above line segment 

T,. In this case, if one pair of the segments intersect, the other pair cannot intersect. 

But in case of polygons, it is possible that both pairs of polygons intersect. See the 

example in Figure 3.13. When the sweeping line hits the leftmost end point of . s : ~ ,  

two intersection pairs (sl, t l )  and (.q2,t2) are found. So we need to test both pairs no 

matter the first pair intersect or not. 

Figure 3.13: A left end point sits in two cones 

We now detail the algorithm. The inputs of the algorithm are the DCEL edges 

of two monotone subdivisions. To simplify the processing, we still store all the active 

edges in a 2-3 tree although the objects which we are dealing with now are mono- 

tone polygons. This still complies with our algorithm since we can easily locate the 

polygon from an edge in O(1) time. Without of loss of generality, we also assume 
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that no two vertices can lie on the same vertical line. Unlike the algorithm of line 

segnents where there are only two types of end points, there are four types of event 

vertices, illustrated in Figure 3.14. Suppose that v lies between edges c and d,  and 

n > 2, r n  2 2, L is the sweeping line. 

Figure 3.14: Four types of vertices 

Algorithm 1 . Reporting all the pairwise intersections of polygons in two monotone 

planar subdivisions. 

Input: two planar subdivisions of monotone polygons in DCEL form. 

Output: all the pairs of polygon intersection. 

Step 1. sort all the vertices in the planar subdivisions from left to  right. 

Step 2. initialize the active edge lists with two edges -00 and +m. 

Step 3. FOR each vertex v DO (see Figure 3.14 for different cases) 

CASE 1: v has only two edges t l ,  t2 incident 011 it. t l  is to  the left of i t ,  

t 2  is to  the right of it. 
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- Remove t l  from the active edge list. 

- Insert t 2  into the active edge list. 

a CASE 2: v is a vertex with one edge to the left of it and nL edges to the 

right of it. 

- Delete the edge to the left of it from the active edge list. 

- Insert the new edges into the active edge list. 

- Find the intersection as new polygons come in. 

a CASE 3: v is a vertex with one edge to the right of it and 7n edges to the 

left of it. 

- Delete all the edges to the left of v from the active edge list. 

- Insert the new edge into the active edge list. 

- Find the insertions as some of the polygon are leaving. 

a CASE 4: v is a vertex with m edges to the left of it ,  72 edges to the right 

of it .  (This is a general case of 2 and 3) 

- Delete all the edge to the left of v from the active edge list. 

- Insert all the edges to the right of v into the active edge list. 

- Find all the intersections as some polygons are leaving. 

- Find all the intersection as some new polygons coming in,i.e., an S-T 

cone is formed. 

a END CASE 

Given two maps with 7~ edges, Step 1 of the algorithm can be executed in O(TL log n ) ,  

Step 2 can be executed in constant time. Step 3 consists of two parts: testing polygon 
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intersections runs in O(?L log 7~ + k log 71) time where k is the total nurnber of intersec- 

tion pairs; and the total time to find which polygons should be tested for intersections 

is O(k  log"^). SO the total running time of Algorithm 1 is O ( n  log n + k   log"^). Clearly 

the space needed is O(TL + k) .  

Figure 3.15: Proof of the algorithm 

The algorithm detects and reports the intersections when a polygon is leaving or 

an S-T cone is formed. It can report all the intersecting pairs. If not, there must 

be an intersecting pair (s E S, t  E T )  not reported. Let s leave before t .  Since they 

intersect, when s leaves, t  must be in the active edge list. The right end point of .s 

is either above t  or below t ;  it cannot be in t  since the intersection is not reported. 

Suppose it is above t .  There must be a polygon t' which is above t not intersecting 

.s, otherwise t  would be found intersecting s when we are testing .s with the active T 

edges downward. We can also prove that the left end point of t' is to the right of both 

the left end points of s and t .  See Figure 3.15, since all the polygons are monotone 

with respect to the X-axis, there is no way for s to intersect t  if the left end point of 

t' is to  the left of either the left end point of s and t .  And the intersection of s and 
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t n nu st be to the left of t'. Now back to the moment when the left end point of t' is 

hit by the sweeping line. We find all the S-T intersections which are blocked by t'. If 

( s t )  is not reported this time, there milst be another polygon z which is to the left 

of t' which is blocking (.s, t )  being reported. Since the number of polygons in each set 

is limited, we will evently come down to a point where the intersection of (-7, t )  should 

be found if they actually intersect. 

We state the above result as a theorem: 

Theorem 1. Algorithm 1 finds out all the pairwise polygon intersection of two 

planar monotone subdivisions. The  total running time is: O(n  log rz + I  log%^), and 

the total storage space needed is O(n  + I), where 7~ is the total number of vertices in 

the two subdivisions, I is the total number of intersection reported. 



Chapter 4 

A Practical Algorithm 

The algorithm proposed in the last chapter solves the monotone subdivision inter- 

section proble~n in o(7~ log 7z + I  log2 7 ~ )  time where n is the total number of edges in 

the subdivisions and I  is the  umber of intersecting pairs reported. The algorithm is 

complex and the overhead of manipulating the data structures is high. In this chap- 

ter, we modify the algorithm so that it is simple and has a low overhead cost. We 

will show that the algorithm has O ( n  log n + I )  running time under the assumpt io~~ 

that each polygon can intersect no more than a constant nu~nber of other polygons. 

This chapter is organized as follows: in section 4.1, we describe the general idea of 

the algorithm. In section 4.2, we describe the details of the algorithm. In section 4.3, 

we analyze the running time of the modified algorithm under the condition mentioned 

above. 
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4.1 General Ideas 

The idea of the algorithm remains the same as that of the algorithm given in the 

last chapter. Given two monotone subdivisions S and T, we sweep through all the 

vertices in both subdivisions from left to right. During the sweep, we maintain two 

separate lists of all the active polygons for each subdivision. The active polygons of 

,5' and T are stored in two 2-3 trees As  and AT respectively. The  active polygons 

in the 2-3 trees are ordered by the increasing Y-coordinate. For each active polygon 

p, we also maintain a list I,. I, records all the polygons which are found intersect- 

ing p when an S-T cone happens. We stop the sweep a t  each vertex to update the 

data  structures and to detect the intersections. Stopping at a vertex is called an event. 

There are four types of vertex events, as shown in Figure 3.14 of the last chapter. 

In the first case, we need only to  replace the leaving edge with the incoming edge. In 

the second case, a new polygon is becoming active. We need to find whether the new 

vertex is lying in some S-T cones or not. If it is in some S-T cone, we will destroy 

the S-T cone by detecting all the intersections blocked by it. The  new polygon is also 

inserted into the corresponding active polygon list. In the third case, a polygon is 

leaving, we detect all its intersections with the polygons in the active list and report 

them. And we also delete it from the active polygon list. The last case is simply the 

combination of the second and third cases. 

There are two improvements we will make in this chapter. One is how to  determine 

whether two polygons intersect. In the last chapter, we use the algorithm of Chazelle 
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and Guibas [8] to compute the intersection in logarithmic time. The preprocessing 

cost and the execution time of that algorithm are very high. The other is how to 

locate the next possible intersecting polygon while we are searching along the active 

polygon list. This is done in the last chapter by splitting and concatenating 2-3 trees. 

Obviously the overhead of manipulating the trees is also very high. In this chapter, 

we will find alternatives for them. 

4.2 The New Algorithm 

Before the sweeping starts, we first initialize the active polygon lists and the inter- 

section list of each polygon to empty. Whenever we find a new intersecting pair (.s, t )  

where s E ,S and t E T during the sweeping, we insert s into It and t into Is respec- 

tively. When a polygon p is leaving, we report ( q ,  p) as intersections for every q in I,. 

We also delete all the ps from every I,. I,  is implemented as a linked list of polygons. 

A monotone polygon consists of two monotone polygonal chains: the upper chain 

and the lower chain. Let pu and p1 be the upper chain and the lower chain of any 

polygon p. We can compute the intersec.tion of any two polygon pl and pa by com- 

paring pi against pg or p;" against p i .  If we apply this method to test the intersection 

between polygons, an edge may be tested many times. In our algorithm, we will not 

test any particular edge more than once. 

Intersections between polygons are detecked when a polygon is leaving during the 
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sweeping or when a polygon is entering during the sweeping. Wefirst consider the 

case when a polygon is leaving. 

4.2.1 When a polygon is leaving 

In Figure 4.1, the dashed polygon sl ,  s2, .SS are from S ,  polygons tl . . . t5 are from T. 

v is the right most vertex of sl .  When the sweeping line moves to v ,  we need to report 

the intersections between sl and the active polygons in AT. Let AF(v) and A$(cl) 

be the polygons in As which is above and below the point v respectively. A ~ ( v )  and 

Ag(v)  are defined similarly. We can detect all the i~rtersections of sl with polygons in 

AT by testing s: with the polygons in Ag(v) and si with the polygons in A;(v). Herr 

we consider testing the lower chain si with the polygons in A;(v). The intersections 

between s;L and A ~ ( v )  can be computed similarly. 

Figure 4.1: A polygon is leaving 

We first find v lying inside the polygon t l .  We then detect the intersections by 
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testing sl  with polygons in A;(v) fro111 tl  downward until we find a polygon not inter- 

secting with .sl. However, some intersections may have already been detected because 

of S-T cones. We need to check I,, before we actually test their polygonal chains. If 

the pair has been reported intersecting, we move downward to the next polygon in 

A ~ ( v ) .  If it has not been reported intersecting, we will test their polygonal chains for 

intersection. Without loss of generality, we assume that the intersection list of sl is 

empty. We report (s l ,  t l )  as an intersecting pair immediately. 

Each polygonal chain is represented as a linked list in a way that we are able to 

visit all its edges from right to left. We compute the intersection between si  and t i  

by testing the their edges starting from right to left. Let the first intersection point 

we detected be pl. We report ( s l ,  t2) as an intersecting pair. If there were no other 

,S polygons between .si and ty, the part of ty which has just been visited from vl to 

pl could be removed since it can not intersect any other polygons. Since the starting 

point of the chain and the intersection point are known, the removal of partial chain 

takes only O(1) time. In this way, each edge of the chain will be visited only once 

except when it is cut. 

However, there are two other S polygons between s i  and ty. If we remove the 

visited part of t;, the intersections of t2  with s 2  and sg will not be detected. To re- 

solve this problem, before testing t2 with s l ,  we first test the S polygons immediately 

above t2. In our case, s3 is the first polygon above t2. SO we test s$ against ty. Let 

their intersection be p'. The visited chain from p' to vl now can be removed safely. 

The visited chain from y' to dl can also be removed. We continue testing t2  upward 
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with the polygons in Az(vl) until we hit .sl. Ihr ing  the testing, once we find an S 

polygon which does not intersect t2, we stop the searching since .sl can not intersect 

t2.  After we find s~ intersecting t 2 ,  the next polygon we need to test against .sl is ts. 

Again, before testing the intersection between .sl and t3, we first test t3 with those 5' 

polygons which is above t3, and so on. 

L 

Figure 4.2: S-T cone happens when a new polygon is coming 

4.2.2 When a new polygon is entering 

The above case is when a polygon is leaving. The same technique also applies to the 

case where a new polygon is coming in, i.e., when an S-T cone is detected. Let us refer 

to Figure 4.2. In the picture, there are four S polygons sl . . . s4, depicted by solid 

lines. There are four T polygons tl  . . . t4 depicted by dashed lines. When sweeping 

line L moves to v, a new polygon sl is coming in. We detect all the S-T cones by 

testing polygons in Az(v) against polygons in Ag(v) and polygons in Ag(v) against 
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polygons in A:(V). Here we consider testing the polygons in A;(V) against polygons 

in A ~ ( v )  only. The intersection between Ag(v) and A ~ ( v )  can be computed similarly. 

The polygons in Ay(v) are always above the polygons in Ag(v). Therefore we 

will use the lower chain of a S polygon and the upper chain of a T polygon to test 

for intersection. We start the testing from sa against t 2 . .  . t 4 .  If sz intersects one of 

them, we continue our testing with sg against t 2 . .  . t q ,  and so on. The intersections 

of any S polygon with the T polygons can be detected by the same way we test them 

when the 5' polygon is leaving. 

4.3 Running Time of the Algorithm 

We now analyze the performance of the algorithm assuming that any polygon can 

intersect at most C other polygons where C is a constant number. We will show that 

under this condition the running time of the algorithm is 0 ( n  log 7~ + I) where 7~ is 

the total size of the two maps and I is the intersecting pairs reported. 

The algorithm c,onsists of two parts. The first part is to sort all the vertices, which 

takes 0 (n log  7 ~ )  time where n is the total size of the two subdivisions. The second 

part is to sweep through all the vertices and report the intersections. There are two 

types of vertices: extreme point(1eft or right) of a polygon or just a co~lnection point. 

If the vertex is a connection point, we only need to update the polygonal chain, which 

takes O(1) time. However, it is more complex if the vertex is an extreme point. We 
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discuss it in the following: 

1. The vertex v is the right extreme point of a polygon s, s E S. The polygon 

.s is leaving. According to the algorithm, we first take O(logr~)  time to locate the 

polygon t of AT where v lies in. We then start searching for intersections from t both 

downward and upward along AT. Before testing s with any polygon in AT, we check 

the intersection list I, to see if the pair has been reported. In the worst case, all 

the polygons which intersects s can be in I,. Since s can intersect no more than C;' 

polygons, I, has a size of C. As a result, it takes constant time to go through all 

the intersected polygons. If there is a polygon t' intersecting .s but it is not in I,, 

we should test the polygonal chains of them. Before testing the intersection between 

s and t', we locate the first S polygon above(be1ow) t' and check if they intersect. 

Under our assumption, s can only intersect C number of T polygons. If there are 

more than C number of S polygons bet ween .s and t', s and t' can not intersect. To 

find the first 5' polygon above(be1ow) t', we start searching along As from .s down- 

ward(upward) until we hit t'. If we visited C number S polygons and did not hit t', 

we stop right here because s can not intersect t' under our assumption. As a result, 

this process takes only constant time. So besides the time spending on testing the 

edges for intersections, the total time spending at a left extreme point is O(1og r~ + I,,) 
where rL is the total size of the subdivisions and I, is the number of intersections found. 

2. The vertex v is the left extreme point of a polygon s, s E S. In this case, we 

need to find the S-T cone and destroy it by detecting all the intersections bloc,ked by 

it. We spend O(1og r ~ )  time to insert the new polygon into the active polygon list. 
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In the worst case, we also spend O(C) time to go through all the intersections w1iic:h 

have been reported. The rest process is similar to that of the case when a polygon is 

leaving. The resulting running time at this type of vertex is also O(1og n + I,) besides 

the time spending on testing edge by edge for intersections. 

The time we spend on testing intersections edge by edge is linear to the number 

of edges we visited. As we mentioned in the last section, each edge is visited only 

once unless it is found intersecting with other polygon. So the total time spending on 

testing for intersections is O(?L + I ) .  As a result, the total running time of the modi- 

fied algorithm is O(?L log 7~ + I) under the condition that any polygon can intersect no 

more than C number other polygons where C: is a constant, T L  is the size of the two 

subdivisions, I is the number of intersecting pairs reported. 



Chapter 5 

The General Algorithm 

I11 the last two cl~apters, we have successfully solved the monotone subdivision inter- 

section problem. In this chapter, we will extend the algorithms to general subdivisions 

l)y partitioning the simple polygon into monotone pieces and applying last two chap- 

tc.r's algorithms to the nlollotone pieces. Given two polygonal subdivisions S and T of 

size 1 1 ,  we first transfor111 the111 to two monotone subdivisions ,$I and T' of size O ( n )  

in O(n log 1 1 )  time. Then we apply the last two chapters' algorith~ns to report the 

intersections between ,5" and T' in O(n log 7~ + I' log%$) time or O(n log 7~ + 1') time 

under certain condition. Here I' is the number of pairwise intersections of n~onotolie 

pieces. We show that the result of lnonotone piece wise intersection then can be con- 

verted to polygon wise intersection in 0 ( 1 1 )  time. 

This cl~apter is organized as follows: in section 5.1, we present the partitioning of 

a polygonal subdivision into a monotone subdivision. Section 5.2 describes how to 

report each intersection only once. I11 section 5.3, we present the data structure used 

in the algorithm. Finally section 5.4 contains the conlplete algorithnl. 
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5.1 Part it ioning general planar subdivision to mono- 

tone planar subdivisions 

A planar subdivision consists of a set of simple polygons. To partition the polygonal 

subdivision to a monotone subdivision, we first consider the partitioning of one single 

polygon into monotone pieces. 

5.1.1 Partitioning one single polygon into monotone pieces 

The partitioning of a simple polygon is itself a considerably interesting topic, and a 

lot of algorithms[9, 10, 13, 171 have been proposed over the past years. One approach 

which is of particularly interest to us is based on the plane sweep technique too. Thr  

algorithm works as follows: we sweep a vertical line L over the polygon from left to 

right, stopping at each vertex. During the sweep, we keep all the edges intersecting 

with L in some type of data structures. These edges currently intersecting with the 

sweeping line L are called active edges; the data structure which keeps all the active 

edges is called a sweep table. The discrete vertices of the polygon are called events. 

Both the polygon partitioning and the sweep table updating occur at each event ver- 

tex. 

We now detail the update at each event. There are three possible types of events, 
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illuskated in Figure 5.1. a ,  b, c ,  d  are edges of the polygon. L is the sweeping line. 

Suppose that v lies between edges a and b, and v is shared by c and d. 

1 .  c  is to the left of L and d is to the right. Then delete c and insert d ,  nothing 

else needs to be done. 

2. Both c and d are to the right of L. The11 insert both of them into the sweep 

table; split n into a1 and n2,  add a new edge e into the polygon. Now we have 

two more monotone pieces to the right of the sweep line. 

3. Both c and d are to the left of L. Then delete both of them from the sweep 

table; split edge b into bl and b2,  add a new edge e into the polygon. Now we 

have two less monotone pieces. 

(1)  (2) 

Figure 5.1 : Sweeping 

In order to sweep r n  vertices from left to I 

line events 

ight,  we sort the vertices by the X- 

coordinate, since the polygon is general, this requires O(m1ogm) time. The sweep 

table can be implemented as a height-balanced tree or a 2-3 tree(this is possible due 

to the same reason we mentioned in last chapter, that the active edges can be totally 
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ordered). Therefore a t  each vertex, we spend O(1og rrz) accessing and(or) updating 

of the sweep table. So the total running time is O(nz1ogm). It is obvious that the 

storage space used is linear to the size of the polygon. We state this fact as a theorem 

for our future referencing. 

Theorem 4.1 An m vertices polygon can be partitioned to monotone pieces in 

0 ( m  log m) time and 0 ( m )  space. 

5.1.2 Part it ion a planar subdivision 

The above algorithm successfully partitions one single polygon of size nz, to several 

monotone pieces in 0 ( m  log m)  time. It is obviously not effic,ient to partition a planar 

subdivision by partitioning each single polygon separately. However, partitioning a 

set of polygons si~~~ultaneously is not difficult. The algorithm is almost identical to 

the single polygon algorithm except that there are six types of events now. See Fig- 

ure 5.2, where x, y > 2. 

1. c is to the left of L and d is to the right. Then update the sweeping table by 

deleting c and inserting d; nothing else needs to be done. 

2. There are nz, edges to the right of L. Insert all of them into the sweep table; split 

a into al and a2,  and add a new edge e. There are rrz more monotone pieces in 

the picture. 
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3. There are nz edges to the left of L. Delete all of them from the sweep table; 

split Z, into bl and b2 ,  and add a new edge e to the polygon. There are nl less 

monotone pieces now in the picture. 

4. This case is similar to case 1 except that there are more than one edge to the 

right of L. So besides updating the sweep table, we should also report the new 

monotone pieces. 

5. This case is also similar to case 1 except that there are more than one edge to 

the left of L. Besides updating the sweep table, we should also report some 

monotone pieces leaving. 

6. This case is actually a generalized case of the last two. We need only to up- 

date the sweep table, and report some new monotone pieces and some leaving 

monotone pieces. 

Figure 5.2: Partition a Planar Subdivision 

Figure 5.3 is an example of the partition of a planar subdivision. To move the 

sweep line from left to right, we should sort all the vertices along the X-axis. For a 
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subdivision of size n,  it takes O(n log n) time. With a little effort, the processing at 

each vertex can be done in O(1og n) time, so the total running time is O(n log n). The 

total space needed is obviously O(n). This leads to the following theorem: 

Figure 5.3: A Picture of a partitioned subdivision 

Theorem 3.2. An 72, vertic,es general planar subdivision can be partitioned into 

a O(n) vertices monotone planar subdivision in O(nlog n)  time. 

5.1.3 Part it ioning and Reporting Intersect ions Concurrently 

The polygon partitioning and the intersection detecting can be easily processed si- 

~liultaneously during the same sweeping process, i.e., it is not necessary to partition 

the map into monotone pieces first, then find the intersection pairs by applying the 

special case algorithni of last chapter. This is possible due to the fact that both 

partitioning and intersection detecting process maintain the same active edge lists. 

During the intersections finding process, we only consider the polygons to the left of 
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the sweep line. Therefore, it requires that only the portion of the planar subdivision 

which is to the left of the sweep line be monotone. This condition is guaranteed by the 

above mentioned partitioning algorithm. Now it remains to be shown in the following 

sections that it is possible to maintain a dynamic data structure of the map during 

the sweep, and that we can report all the intersections exactly once. 

5.2 Reporting the Intersections Exactly Once 

The edges of two polygons can intersect in more than one places. If we report every 

edge intersection once it is found, we will probably report the same polygon inter- 

section pair many times. In the case of monotone polygons, we take care of the 

duplicates by the linked list, i.e. the intersections are kept in a list and only reported 

when the sweep passes the monotone pieces. However, a simple polygon can be split 

into many monotone pieces and two intersecting pieces can have exactly the same 

intersection polygons. One way to identify these duplications is to store all the inter- 

section pairs in a two-dimensional array, and report them after all the intersections 

have been detected. Although efficient, it becomes less desirable when the mmber  

of polygons in the map gets larger, since the storage space requirement is quadratic. 

In this section, we propose an algorithm which requires space only linear to the to- 

tal number of intersection pairs O( I ) ,  at the cost of an slightly increased running time. 

To achieve the above goal, the intersections we found during the sweep are kept 

by each monotone piece temporarily. However, they are not reported at the time the 
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monotone piece is leaving, but they are reported at the time all the monotone pieces 

of a polygon become inactive, i.e., the sweep line passes over the entire polygon, and 

no part of it will enter any more. Moreover, when reporting the intersections, we 

will not report all the intersections kept by the monotone pieces; we only report the 

intersections between the active polygons. By active, we mean that the sweep line 

still intersects at least one monotone piece of the polygon. This again prevents the 

same intersection from being reported twice by the polygon it intersects. 

? The polygon 

Figure 5.4: Reporting intersections when a polygon is leaving 

To eliminate the duplicate intersections generated by different monotone pieces 

when we are reporting the intersections of a polygon, a temporary one dimensional 

array is used. The size of the array is the number of the polygons in the subdivisions. 

And the value of array can only be zeros and ones, we call the array a filter (See 
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Figure 5.4). 

When the program starts, the filter is initialized with zeros. When a polygon is 

leaving, we go through all its intersecting polygons and set the corresponding cell 

of the filter to 1. After we have gone through all the intersections, we report them 

according to the value in the filter then reset the filter to zero for the next polygon 

to use. To report all the intersection stored in the array, we build up a link list for 

all the 1s in the array. We insert a node into the list at the same time we change the 

value of a cell from 0 to 1; we delete a node of the list when we report an intersection 

and change the value from 1 back to 0. As a result, we are guaranteed that each 

intersection pair be reported only once, and the total cost of reporting(not including 

detecting) is only proportional to the total number of intersections. By Theorem 3.2, 

we are also guaranteed that all the intersection can be found. The only part remains 

is to show how to keep the map in a dynamic data structure during the sweep, which 

is the content of the following section. 

5.3 The Dynamic Data Structure of the Maps 

5.3.1 Data Structure of a Monotone Piece 

The input of our algorithm does not contain any explicit information about monotone 

pieces. Therefore all the monotone pieces must be dynamically allocated during the 
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partitioning process. In our algorithm, given an edge, we need to locate the corre- 

sponding polygons right away. From the I)(:EL, all we know is which polygo~~ the 

edge belongs to, but what we really need to know is which monotone pieces it belongs 

to. This is done by attaching the monotone pieces to all it boundary edges when they 

bec,ome active. The data structure of a monotone piece is as follows: 

Monotonepiece: ( 

Chain* Upperchain; / / p o i n t e r  t o  i t s  upper  c h a i n ( 1 i n k  l i s t  of edge) 

Chain* Bottomchain; / / p o i n t e r  t o  i t s  bottom c h a i n  

i n t  Act ive  ; / / f l a g  t o  i n d i c a t e  i f  it i s  s t i l l  a c t i v e  

Tree* i n t e r s e c t T r e e ;  / / t h e  i n t e r s e c t i o n  l i s t  

5.3.2 Data Structure of Simple Polygon 

We create a polygon object when the sweeping line encounters a new polygon, and 

the object is deleted when the sweeping line passes over it. The polygon object is 

used to  keep track of all its  non not one pieces, it has two objects: one intersection list, 

one counter which keep the number of the current active pieces. During the sweep 

process, when a new monotone piece is created, the counter is increased by one; when 

a monotone piece is deactivated, the counter is decreased by one, and all the monotone 

piece's interseckion list is added to the polygon object. If the counter becomes zero, 

which means the sweeping line passes the entire polygon, we report the intersections 

and delete the polygon. The data structure of a polygon object is as follows: 

Polygon ( 
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L i s t *  

i n t  

i n t e r s e c t L i s t  / / t h e  l i s t  of a l l  i t s  i n t e r s e c t i o n s  

ac t ivecoun t  //number of a c t i v e  p i e c e s  

5.4 The Final Algorithm 

Now we shall summarize our approach of reporting the pairwise intersection of two 

planar subdivisions as Algorithm 2. 

Algorithm 2 . Reporting all the pairwise polygon intersections of two planar sub- 

divisions. 

Input: two planar subdivisions of monotone polygons. 

Output: all the pairs of polygon intersection. 

Step 1. sort all the vertices in the planar subdivisio~ls in increasing order by the 

X-axis. 

Step 2. initialize the sweep table with two edges -co and +m. 

Step 3. FOR each vertex v DO (see Figure 5 . 2  for different cases) 

CASE 1: v is simply a vertex of c and d. 

- Remove c from the sweep table. 

- Insert d into the sweep table. 

0 CASE 2: v is the left end point of all its edges. 
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- Split the polygon to make it monotonic. 

- Insert all the new edges into the sweep table. 

- Find all the intersections as a left end point of a polygon coming in, 

i.e. an S-T cone is formed. 

CASE 3: v is the right end point of all its edges. 

- Split the polygon to make it monotonic. 

- Remove those leaving edges from the Sweep Table. 

- Find all the intersecting polygons of the leaving monotone pieces. If 

the leaving of any monotone piec,es causes the leaving of the whole 

polygon, report the intersection of this polygon. 

0 CASE 4: v is a connection vertex with one edge to its left and arbitrary 

number of edges to its right. 

- Insert all the new edges into the Sweep Table. 

- Find the intersections as new polygons coming in, i.e. an S-T cone is 

formed. 

0 CASE 5: v is a connection vertex with one edge to its right and arbitrary 

number of edges to its left. 

- Remove those leaving edges, insert the new coming edge. 

- Find the intersection of those leaving monotone piec,es. If any of those 

polygons becomes in-active, report its intersections. 

0 CASE 6: v is a connection vertex with arbitrary number of edge to both 

of its sides. 

- Remove the leaving edges and insert the new edges. 
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- Find all the intersectiorls as an S-T cone is formed and some of the 

monotone pieces leaving. If any polygon becomes in-active, report its 

intersections. 

END CASE 

The correctness of the algorithm has already been shown. However, since our 

algorithm employed partitioning simple polygons into  non not one pieces, in which one 

polygon can have as many as O ( n )  pieces or as few as one piece, the total running 

time of the algorithm is unknown in terms of its output size. 



Chapter 6 

Implementat ions and Conclusions 

This chapter presents our implementation of the planar subdivision intersection al- 

gorithm given in chapter 4. It contains a brief introduction to the implementation 

environment in which the main empirical results are obtained, the special case policy, 

the empirical results, and finally, the conclusions. 

6.1 Implement at ion Environment 

We ran our program and performance test 011 Sun SparcStations IPX running SunOs4.1. 

The program is written in C++. The code is compiled by SUN C++ 2.0. Perfor- 

mance was measured by the CPLJ running time. The testing data is stored in the 

IJnix file system. 

Six different sets of data are tested in the experiment, with two maps in each 
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set of data. The number of polygons in each set ranging from 200 to 21,000. These 

data set are generated randomly using the straight line method from Hong Fan. The 

algorithm, however, is designed flexibly for maps with arbitrary ~nm-lber of polygons. 

6.2 Special Case Policy 

Most geometry algorith~ns need to deal with special cases, so ours is no exception. As 

you may have already noticed, the sweep line technique e~nploys a vertical line sweep- 

ing through the plane from left to right; so what if there are two points on the same 

vertical line'? For dealing with special cases, four major method may be distinguished: 

1. Rule them out: require that the input data be restricted such that the special 

case never happen. 

2. Write extra code to handle the special cases properly. 

3. Find a different geometric system in which the special cases disappear. 

4. Find another representation of the same idea to avoid the special case. 

Since we are not to apply our algorithm to a real world application, to simplify 

our implementation, we adopt the ruling out (1) policy. This does not mean that our 

algorithm cannot deal with the special cases. With a little care, these cases can be 

solved without increasing the complexity of the algorithm. 
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6.3 Empirical Results 

The test results are listed in Table 6.1 and Table 6.2. Table 6.1 shows the data size 

and the outcome of the testing. Each set of data has two maps. The first two columns 

shows the number of edges and number of polygons in each map. In our algorithm, 

we need to partition the polygon into monotone pieces. The third column records 

the number of the monotone pieces we generated from the original map. This m m -  

ber of monotone pieces is almost eight times the number of polygons. The rest of 

the colunms shows the rlurnber of intersection reported. The fourth column shows 

the number of monotone pieces intersections. It is almost five times that of polygon 

intersections. Which means that there is a fair arnount of redundant testing in our. 

algorithm. 

Table 6.2 shows the running time of our algorithm comparing with Mairson's line 

segment intersection algorithm. Both algorithms read in the same data files. The data 

file stores the array of DCEL edges in each planar subdivision. We do not include the 

110 time here. The running time is the sum of user time and sy s t em time. 

The table lists the running time of each stage of the algorithms. Each algorithm 

has been divided into three stages: preprocessing, sorting and sweeping. The pre- 

processing of Mairson's algorithm involves initilization of the results space. The pre- 

processing of our algorithm involves extracting the vertex information from the input 

file. From Table 6.2, we can see that the preprocessing time of Mairson's algorithm 

is a little more than our algorithm. The reason is that the storage space needed to 
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Table 6.1: General planar subdivision intersections 

Data 
Set 
1 

Table 6.2: Running time of general planar subdivision i~itersections 

be initilized is 0(n2). The sorting time of Mairson's algorithm is also more than that 

of our algorithm. The reason for this is that each vertex is considered only once dur- 

ing the sorting in our algorithm, but it is considered v number of times in Mairson's 

algorithm where v is the number of edges incident on that vertex. Our algorithm 

is faster in sweeping too. Also, Mairson's algorithm only reports edge intersections. 

Extra effort is needed to convert the edge intersection results to polygon intersections. 

From the result, we can also see that the running time of the program does not 

Input Size 
Edge 

328, 812 

Intersection Report 
Pieces 

623 
Polygon 
19, 4;3 

Monopieces 
145, 339 

Edge 
132 

Polygon 
1 :39 
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increase very fast as the size of the data sets increases. This is a very import feature 

we always want from our algorithm. 

6.4 Conclusion 

In this thesis, we have proposed an algorithm to solve the planar subdivision problem. 

We have also shown several ways to construct planar subdivisions randomly. In case 

of monotone planar subdivision with n edges and I intersection pairs, we have pro- 

posed an algorithm that runs in O(n1og TL + I log2 r ~ )  time, and take O(n + I) storage 

space. We have also proposed a practical algorithm which has a 0 ( n  log 72. + I) worst 

case running time under the condition that any monotone polygon can not intersect 

more than constant number of other polygons. We use this algorithm to solve the 

general planar subdivision intersection algorithm by partitioning the simple polygons 

into monotone pieces. But the output sensitive running time of the general planar 

subdivision case is unknown. The experimental results indicates that the algorithm 

has a satisfactory performance. 

A few open problems emerge as the results of this thesis. One is that whether it is 

possible to find an O(n log 72. + I) running time algorithm to report the intersections 

between two monotone subdivisions under no conditions. The other is to analyze the 

running time of the algorithm given in chapter 5. Finally, what is the best ru~mirlg 

time to report the intersections between two general subdivisions. 
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