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Abstract 

Probability plots have a long history in statistics. Such plots should, if the observations 

are from a proposed distribution, appear to be close to a straight line. Nevertheless, actual 

tests, based on the use of polynomial regression models to  detect non-linearity in proba- 

bility plots have until now been studied for the normal distribution only. Some empirical 

results were given by LaBrecque(l977). The asymptotic theory of the normal case was 

given by Stephens(l975) but the asymptotic results are related to asymptotic properties 

of the covariance matrix of the normal order statistics and therefore are not applicable to 

other distributions. A unified approach to the theory for goodness-of-fit based on the use 

of polynomial regression models from probability plots is presented and asymptotic results 

are given, valid for any sufficiently regular distribution in the location-scale family. In par- 

ticular, two methods for estimating the parameters in the model are compared, namely, 

generalized and ordinary least squares, and test statistics are proposed. As an illustration 

of the techniques, asymptotic results are obtained for the logistic distribution. A test of fit 

for the Gumbel distribution, based on polynomial regression, is also developed, with special 

attention to the more practical aspects of the test. An empirical power study to assess the 

performance of the proposed tests is presented. 

Within the same general approach, a method to construct tests of fit for distributions which 

depend on an unknown threshold parameter, such as the three-parameter Weibull and the 

three-parameter log-normal is proposed. The technique is also applied to construct a test 

of bivariate normality. 

Finally, tests of fit based on the empirical distribution function (EDF) statistics are de- 

veloped for two cases of practical importance: The three-parameter Frechet ( or type I1 ) 

distribution, and the Gumbel distribution when parameters are estimated from a type 11 

censored sample. 
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Chapter 1 

Tests based on polynomial 

regression 

1.1 Preliminaries 

Let Yl, . . . , Yn be a random sample from an absolutely continuous distribution Fo(y) and 

let Y(,), . . . , Y(,) denote the corresponding order statistics. 

Here, Fo is assumed to be of the form F(x) where x = (y  - a)/P. Hence if XI , .  . . , X ,  

is a random sample from F(x) and X(l),  . . . , X(,) are the order statistics, we can express 

E(Y(;)) = a + /? m; where m; = E ( X ( ; ) )  (1.1) 

If we are interested in testing the null hypothesis that Yl, . . . , Yn is a random sample from 

Fo( y), a common approach is to test how well the data fit the model ( 1.1). Goodness of fit 

tests of this type have been developed for several distributions and the reader is referred to 

Stephens [17, Chapter 51. 

The model ( 1.1) can be extended to: 

where ao, al, . . . , a, are constants and +O(m;), +l(m;), . . ., +,(mi) are certain functions of 

mi. If the null hypothesis is true, we choose $O(rn;) to be a constant function and $l(mi) 
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must be a linear function of mi. The functions g2(.) ,  g3(.), . . . are chosen to be certain non 

Linear functionsfor which the extended model is expected to provide a better fit than ( 1.1) 

under departures from the null hypothesis. 

Suppose that Vx is the covariance matrix of vector xT = (x(~),  . . . , x ( ~ ) ) ,  let VY be 

the covariance matrix of vector' yT = ( q l ) ,  . . . , Then, under the null hypothesis, 

VY = p2vx. 

The estimates lij of the constants in the model can then be obtained and a test of fit 

becomes a test of 

H o : a 2 = a 3 =  ... = 0 

An easy choice of $j(m;) is a polynomial of degree j ,  which is also the usual way for 

testing linearity of the model. LaBrecque [32] has shown that, for a test of the normal 

distribution, models containing polynomials up to order three provided a better fit under 

several alternatives considered in his work. LaBrecque [32] pointed out that the optimal 

choice of the functions $j(.) for the normal or any other distribution remains an open 

question; however, here we adopt the above approach and take $j(.) to  be a polynomial of 

degree j. 

1.2 Generalized least squares estimators 

Let 

aT = (a0, .  . . , a p )  

and write the model ( 1.2) as 

E ( Y )  = *a 

The generalized least squares (GLS) estimate of a is given by: 
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with variance 

V a r ( c i  ) = p2 [ P ~ v ~ ~ P ] - '  

Definition 1.1 Let A be a n by n symmetric matrix. The two vectors $; and $ j  will be 

said to be A-orthogonal if 

$ ; T A $ ~  = 0.  

The estimates of the constants in the model ( 1.2) will be uncorrelated if the polynomials 

T,!Jj are chosen to be ~; '-ortho~onal.  

Suppose 

j-1 
$j(m;) = mi + a j ( j - l )mi  + aj(j-2)m:-2 + . . - + a j ( ~ )  j = 0 , 1 , 2 , . .  

T T  and mT = (mi ,  ..., mn) . 

Note that here we take a j ( j )  = 1. 

Starting with T,!Jo(mi) = a00 = 1 , we find the coefficients aj(,) ( T  = 0 ,  I , . .  . , j - 1 )  of 

the j-th polynomial &(.) by simultaneously solving the system of j ( j  > 1 )  equations: 

aj(,)a*(,) (mr) v i 1 r n S  = 0 for k = 0 , .  . ., j - 1 . 
r=O s=O 

(1.6) 

The generalized least squares estimator of crj is then 

From ( 1.7), it follows that, under Ho, 

If we define 



C H A P T E R  1. T E S T S  BASED ON POLYNOMIAL REGRESSION 

we have, asymptotically, 

ncjj 

P2 VUT (Gj) % - 
ncjj 

A test of crj = 0 can be based on the quantity: 

When the value of P is unknown, it must be estimated from the sample in order to be able 

to compute the test statistic defined above. 

If Var (X)  = a;, then Var(Y) = P20$. Hence, P2 can be estimated unbiasedly using 

where 

The test statistic then becomes 

Under certain conditions, use of a result by Stigler [66] ( Theorem 9.6.1 in David [20] , see 

also Chernoff, Gastwirth and Johns [14]) shows that, if 

then 
j u 

P +N(o,c$) for j 2 2 

It follows that 
v 

Tj + x%, 9 j t 2 

- P Moreover, since P2 -4 P2, by Slutsky's theorem 
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This gives 

A test of a2 = 

v 
Tj - ~ 6 ) .  

= ak = 0 can be based on the quantity 

T23...k = T2 + T3 + - + Tk 

and its sample value compared with critical points from a xtk-,) distribution. This follows 

from the asymptotic independence of the terms involved in each of the above sums. 

1.3 Ordinary least squares estimators 

The calculation of the covariance matrix Vx of the order statistics X(l), . . . , X(,) is often 

difficult. 

A simpler approach to derive test statistics is to estimate the constants in the model ( 1.2) 

by ordinary least squares. The ordinary least squares (OLS) estimator of a in the model 

The estimators of aj are easier to work with if the matrix !PT8 is diagonal. This will be the 

case when the polynomial functions are chosen to be I-orthogonal ( or simply orthogonal ), 

that is 

+iT+j = 0 for i # j 

Thus, the coefficients of the j-th polynomial must satisfy 

The ordinary least squares estimator of aj can then be written as 

Then, 

E(Gj )  = 0 for j > 2 
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and, 

By defining 

and 

we can write, asymptotically, 

In this case, a test of c r j  = 0 is based on 

By assuming some regularity conditions, 

Therefore, the test statistic 

where 

w .  - ,*. 
3 - j j l d j j .  

A P 
Since P2 - P2, we also have 
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The estimators of the parameters in the model will be, in general, correlated, and so will 

the testsforcrj ( j = 2 , 3 ,  ...) In fact, 

Cov (&;, hi)  cc . I I ~ ; ~ v ~ . I I ~ ~  . 

The right hand side of the above expression is not necessarly zero because the polynomials 

were not chosen to be Vx-orthogonal. 

More precisely, the asymptotic covariance matrix of a is 

pc*. '3 

C = ( u ; ~ )  where a , .  '3 - - -. nd . .d . .  
$ 8  1 3  

The limiting covariance matrix of T* = (t2,. . . , .fklT is 

A natural statistic for testing a2 = a3 = = ak = 0 is then 

To find the limiting distribution of T13...k we require the following: 

v 
Proposition 1.1 Under the conditions described above, T* - h/k-l(O, Q).  

Proof: 

For any non-null (k-1)-dimensional vector a, W = a T ~ *  can be written as a linear combi- 

nation of the order statistics, namely 

with zero mean and limiting variance 

Since R is positive definite and ( 1.15) is a finite linear combination of finite quantities, it 

follows that 0 < o& < oo. 
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Application of theorem 9.6.1 in David [20], now gives: 

D w - N(0,  a&). 

Since ( 1.16) is true for any a # o , it follows, via the Cram& Wold device, that the limiting 

distribution of the vector T * is multivariate normal 

The limiting distribution of T;3...k is then that of a quadratic form in normal variables 

with zero mean and covariance matrix R. 

It follows ( Scheff6 [48]) that 

where X1, . . . , Xk-l are the eigenvalues of the matrix R. 

When /3 is unknown, we use the quantity 

which, by Slutsky7s theorem, has the same limiting distribution. 

1.4 OLS Test for symmetric distributions 

If the distribution is symmetric, the matrix R will be diagonal. This comes from the condi- 

tions: 

For j even, $J~(.) will be a polynomial in even powers of mi only. Therefore, due also to  the 

double symmetry of Vx, it follows that, for a symmetric distribution, Xj-1 = wj. 

1.5 Asymptotic calculations 

As we have seen in sections 1.2 and 1.3 we require the calculation of quantities of the form: 
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( m T ) T ~ i l m s  
lirn 

n+m n 

( m T ) T ~ x m S  
li m 

n--rco n 

In order to  compute these limits, we will make use of the well 

( see Cramer [16, p.3691 ) 
i 

F ( m i )  x - 
n + l  

We now examine the limits required in ( 1.17)- ( 1.19). 

Consider the limit in ( 1.17). 

n i 
mr z [ T 1 ( t i ) ]  Ati ,where t - - 

' - n + l  
and 

n 
k l  

(1.18) 

(1.19)  

known asymptotic results 

(1.20) 

,for i 5 j (1.21)  

Equation ( 1.22) has the form of a Riemann sum. Hence, letting n -, oo and replacing the 

sum by an integral, we obtain 

k 00 

lim C:=l mi = l1 ~ - l ( ~ ) d t  = xk f  ( z ) ~ x  = E ( x ~ ) .  
n+co n 

For limits of the form ( 1.18) we use the following result : 

Proposition 1.2 (Stephens [64]) Let u be a n-dimensional vector with elements u;  = 

g ( m ; )  k l , .  . . ,n and let v be the vector whose elements are v; = h ( m ; ) .  Also define 

lirn v* = lirn v* = 0 
x+-00 X'CO 

lirn u* = lirn u* = 0 
x+-00 1'00 

Then 
uT VY'V " du* dv* 1 

lim d x  
n+m n d x  d x  f ( x )  
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In particular, for g(m;)  = mi and h ( m i )  = mf 

li m 
( m T ) T ~ i 1 m 3  

= T S E  ~ ~ + 3 - 2  + ( r  + S ) ~  
n-oo n [ I dx 

Stephens also shows 

Proposition 1.3 

Finally, the limits appearing in ( 1.19 ) are found using the following: 

Proposition 1.4 Let u and v be two n-dimensional vectors with components u; = g(mi)  

and v; = h ( m ; )  respectively, for i = 1,. . . , n and let U S  define 

G ( x )  = / g(x)dx , H ( x )  = J h(x)dx 

lim G ( x ) F ( x )  = lirn G ( x )  [1 - F(x ) ]  = 0 
I+-00 1'00 

lim H ( x ) F ( x )  = lirn H ( x )  [1 - F(x ) ]  = 0 
I-+-00 1'00 

Then 
uTv*vT 

lirn 
n+m 

= Cov [ G ( X ) ,  H ( X ) ]  
n 

Proof: 
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Using ( 1.20) and ( 1.21), asymptotically, 

If we put x = mi, y = mj, let n -+ cw, and replace the sums by integrals, we obtain: 

We now must show that the above sum of integrals equals the right hand side of ( 1.26 ). 

In fact, let us consider 

Using two different expressions for J f ( x ) d x  , namely F ( x )  and - [ I -  F ( x ) ] ,  integration by 

parts gives: 

Similarly, 
x 

LOO H ( Y ) f  ( Y ) ~ Y  = H ( x ) F ( x )  - / x  h(Y)F(Y)d?l (1.29) 
-00 

Multiplying ( 1.29) and ( 1.29) by E [ G ( x ) ]  expressed as an integral, we obtain: 

I Adding the above two equations we have that 
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Now, changing the order of integration, the two double integrals above are, respectively, 

equal to 

and 

Finally, substitution of ( 1.31) and ( 1.32) into 

In particular, when g(m;)  = mf , h ( m ; )  = m:, 

where 1.1: denotes the j-th non-central moment 

( 1.30) gives the right hand side of ( 1.26) 

equation ( 1.26) gives: 

of the random variable X. 

The above expression is an extension for second-order moments of results given by Burr 

P11- 

The asymptotic coefficients of the j-th polynomial in the GLS fit are obtained by solving: 

Similarly, for the OLS fit, the asymptotic coefficients will be the solution of 

1.6 Tests for the Logistic distribution 

In this section, the theory is illustrated by deriving asymptotic results of the tests for the 

Logistic distribution 
ex 

F ( x )  = - - oo < x < oo 
1 + ez 

Here, quadratic and cubic polynomials are taken as alternative models. 
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1.6.1 Test based on GLS 

Using the change of variable w = e x ,  the limits in ( 1.24) can be expressed as 

( m r ) T ~ i l m s  
lim d w + 2 r s i  O0 l n ( ~ ) ~ + ~ - ~  w 

n+m n 
dw 

(1 + w ) ~  

Hence, we have the following results: 

lTvil  1 
lirn 

n+00 
= 113 

n 
i T ~ ~ l m a  - T 

lim - - - 213 
n+cu 9 

mT vi1m3 - - 7 n 4  n2 
lirn --- 

n+oo 45 3 

( m a ) T ~ i l m a  
lim - 

7 n4 
n--00 n 45 

(m3) V; m3 
lirn - - 31n6 7n4  

n+cu n 63 15 

In general, due to the symmetry of the distribution, the limit equals zero whenever T + s is 

odd. 

The coefficients of the polynomials were obtained by solving ( 1.34). The results are: 

We also find from ( 1.8 ), ell = 1.43 , cg2 = 14.5979 and c33 = 329.1965. 
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1.6.2 Test based on OLS 

The first three non-zero moments about the origin required to solve ( 1.35) are: 

The asymptotic coefficients for the OLS fit then give: 

Also, using ( 1.33)) we find: 

n 
iT VXma 

lim = 77r4/45 
n+oo n 

mTVxrn 
li m = 4s4/45 

n+m n 

mT Vxm3 
lim 

n-+m 
= 52s6/315 

n 
( m a ) T ~ X m a  

lim = 31s6/189 
n-oo 72 

( 7 7 ~ 3 ) ~  vxm3 
lim = 116s8/225 

n-oo 12 

from which the quantities ( 1.12) and ( 1.13 ) are c;l = 8.659 , ~ * 2 ~  = 93.5956 , c& = 

2159.1679 ; d l l  = 3.2899 , dz2 = 34.6343 , d33 = 791.086. 

The matrix $2 defined in ( 1.14) is 

,- 7 
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1.6.3 Asymptotic relative efficiency of OLS-GLS estimators 

We can now find the asymptotic relative efficiency of the OLS estimators with respect to 

those obtained by GLS. This is 

Thus, we have: 

In all the three cases above, the asymptotic relative efficiency of the OLS to the GLS 

estimators is greater than 80%. Considering that the calculation of OLS estimators does 

not require the calculation of Vx, these results show that in many situations the simpler 

procedure may be preferred without too much loss of efficiency. 

1.6.4 Final remarks 

As early as 1952, Gupta [26] proposed the simplified approach of taking Vx = I; that is, to  

estimate the location and scale parameters in the model ( 1.1) by ordinary least squares. 

( cf. David [20] ) For the normal case, the simplified approach was shown to give sur- 

prisingly good results in estimating a, the scale parameter. Shapiro and Francia [50] later 

used this fact and proposed a simplified test statistic for normality. In his 1975 paper, 

Stephens [61] provides a theoretical explanation of this phenomenon by showing that the 

j-th asymptotic eigenvector of Vx is a Hermite polynomial of degree j in mi, and that there- 
T -1 fore $; Vx $ j  = 0 . So, for the normal distribution, the estimators obtained by ordinary 

and generalized least squares are asymptotically equivalent. 

For other distributions which are sufficiently regular, the asymptotic relative efficiencies 

can be calculated following the procedure described above, and a choice between the OLS 

or GLS-based tests can be made. 



Chapter 2 

Polynomial tests for the Gumbel 

distribution 

The importance of the Gumbel distribution is due to  its many practical applications, where it 

has been used as a parent distribution as well as an asymptotic model in different situations. 

References to  applications are given in Castillo [13]. They include: extreme wind speeds ( 

Thom [68], [69] ; Simiu et al [52], [53], [54], [55], [56], [57]; Grigoriu [23] ), sea wave heights 

( Longuet-Higgins [37], [38] ; Dattatri [19]; Borgman [9], [lo] ; Battjes [6] ), floods ( Shane 

and Lynn [49]; Benson [7]; Reich [47]; Todorovic [71], [72], [73], [74]; North [42] ), rainfall 

( Hershfield [29]; Reich [47] ), age at death ( Gumbel and Goldstein [25] ), minimum tem- 

perature, rainfall during droughts, electrical strength of materials, air pollution problems 

(Singpurwalla [58]; Barlow and Singpurwalla [5] ), geological problems, naval engineering, 

etc. 

In this chapter, tests of fit for the Gumbel distribution 

x - a  
F ( x ; a ,  P) = 1 - exp(-exp(-)) , - w < x < w 

P (2.1) 

are given. 

The tests are based on the technique described in chapter 1. Here, we consider the fit 

of second and third-order polynomial regression models by both generalized and ordinary 

least squares estimation methods. 
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\ 

The motivation' of the regression tests comes from the technique of probability plots, which 

has been used by statisticians for many years to judge a distribution. For location and scale 

parameters unknown, the regression line should be a straight line, and this was often judged 

by eye. In order to illustrate the polynomial tests given here, we give Q-Q plots for Weibull 

distributions against Gumbel quantiles. Clearly, if the data were Gumbel, we should expect 

a straight line when the ordered data are plotted against Gumbel quantiles. However, the 

Q-Q plot W(3), for example, shows the type of curve that we might expect when the true 

distribution is Weibull with shape parameter 3. We can see that close approximations to 

these curves could be given by polynomials, and this motivates the test procedure to decide 

if a polynomial fit is better than a straight line. The Q-Q plots are given in figure 2.1. 

Note that the quantiles were standardized by subtracting the median and dividing by the 

interquartile range. 

Plot for a data set . Figure 2.2, shows a plot of the order statistics of the data set 4 ( 

given in appendix A ) against Gumbel quantiles. Again, the figure shows that a polynomial 

model could give a better approximation to describe the curve. 

2.1 Tests based on GLS estimators 

Taking w = ex, we can now express the limits ( 1.24) as 

The above integrals can be evaluated in terms of the I? function and its derivatives, since 
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Standardized Gumbel Quantiles 

Figure 2.1: Q-Q plots of the Gumbel against Weibull for different values of the shape 
parameter 

Gumbel quantiles 

Figure 2.2: Gumbel probability plot for data set 4 
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where I'lk](t t 1) denotes the k-th derivative of the T. function evaluated at  ( t  + 1). 

We then find: 

lTv;l1 
lim = 1 

n-oo n 
iTv;'m 

lirn 
n--roo 

= 1 - 7 x 0.4228 
n 

rTvilma 
lim - - 

A 
- - 2 y + y 2 z 0 . 8 2 3 7  

n--roo n 6 
iTv~ 'm3  - 7r2 

lim - - - 2 ( ( 3 ) -  - + 3 7 2  A27 - y 3 x  0.4895 
n+oo n 2 2 - 

mTv,-'m 7r 
lim = 1 - 2 ~ + - + ~ ~ ~  1.8237 

n+co n 6 
mTvilma 

lirn 
7r 

n--roo n = 3 7 2 - 7 3 +  (-2-:)l+T-2((3);r-0.6650 

mT ~ i ' m 3  
lim 

n-oo = 7'- ' lT3+ ( 3 + ~ ~ ) 7 ~ +  ( 8 ( ( 3 ) - 2 ~ ~ ) ~  
7r2 37r4 +-+-- 
2 20 

8 ((3) x 7.7163 

( m 2 )  ~i ' ma 
lim 

n+oo n = 7 4 - 4 7 3 +  (7r2+4)-y2+ ( 8 ( ( 3 ) - 2 r 2 ) 7  
2 n 2  37r4 +-+-- 

3 20 
8((3) x 9.6944 

( m a ) T ~ i 1 m 3  
lirn 

n+oo n = 514-15+ ( - 6 - ? ) 7 l +  ( in2-20( (3) )7 '  
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where y % 0.5772 is Euler's constant and ( ( n )  denotes the Riemann's Zeta function. For a 

definition of these quantities, see, for example, Abramowitz and Stegun [I]. 

If we take 

+o(m;) = 1 

the solution of ( 1.34) gives, asymptotically, 

We also find from ( 1.8), ell = 1.6449 , c22 = 8.3918 and egg = 88.9159. 

2.2 Tests based on OLS estimators 

The first eight non-central moments for this distribution, required to  compute the limits in 

( 1.17) and ( 

E [ X ]  = 

E [ x 2 ]  = 

E [ x 3 ]  = 

E [ x ~ ]  = 

E [ x 5 ]  = 

E [ x 6 ]  = 

E [ x ~ ]  = 

1.19), are: 

-7 = -0.5772 
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From which we obtain: 

l T V X l  - 7r 
- - = 1.6449 

n 6 

lim ( ~ ) ~ v x m  - - --- 
n+~o n lr27 ((3) = -2.1515 

6 
i T ~ X m a  - - 7r2y2 

lirn 
7r4 

n+w 
- + 2 ( ( 3 ) ~  + - = 6.8062 

n 6 20 
iTvxm3 7r2y3 

lirn - --- 3 7r4y 
7 ~ + ~  n 3 <(3)y2 - - ((3)r2 = -26.0598 

6 C(5) - 6 

( m ) T ~ x m  - - nzy2 
lirn 

11 7r4 

n--+co 
- 4.9121 

n - + 2 ( ( 3 ) ~  + - 
6 

(m)T vxma - - 7r2y3 
lirn --- n4y C(3)7r2 

n+cu 6 
- -17.8448 3 ((3)y2 - g - 4 ((5) - 7 - 

n 
(m)T  ~ x m 3  - 7r2y4 29 7r4y2 - lim 

n--roo n - + 4 ( ( 3 h 3 +  120 6 18 ((5) + i(:)"2) y 

71 7r6 +- + 5 ((3)' = 83.5575 
1680 

(ma)T  vxma - 7rzy4 2 lr4y2 - lirn 
n+Oo n - + 4 ((3)y3 + g + (16 ((5) + 2 ((3)7r2) Y 

6 
61 n6 +- + 4 ~ ( 3 ) ~  = 76.1579 
1512 

( m a )  vx m3 - - 7r2y5 23 7r4y lirn 
lt--00 n 6 

+ 

3 
17" '( ) = -407.6300 -605(7) - 2o 

(m3) vx m3 - n2y6 
lirn 

n+Oo 
- - + 6 ((3)y5 + 7 

n 6 
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The solution of( 1.35) yields: 

$o(m;)  = 1 

$ l ( m ; )  = m;  + 0.5772 

$2(m;)  = m: t 2.6160 m;  - 0.4681 

$3(m;)  = m;  + 6.3936 m: + 4.3124 mi - 4.7132 

The required quantities defined by ( 1.12) and ( 1.13) are now, 

c;, = 2.976 c;, = 15.67 cZ3 = 168.71 c ; ~  = -27.88 

d l l  = 1.6449 d22 = 8.39 d33 = 88.92 

In this case, matrix defined in ( 1.14) is then 

L A 

whose eigenvalues are: X 1  = 2.9036 and X 2  = 0.8614. 

2.3 Asymptotic relative efficiency 

The asymptotic relative efficiency of the OLS estimators with respect to  those obtained by 

GLS is 

Thus, we have: 

Roughly, twice the sample size is required in order for the variance of the OLS estimators 

to be comparable to  those from the GLS fit. 
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2.4 Numerical calculations 

The calculation of the test statistics involves the values of the mean vector and covariance 

matrix of the order statistics. For the Gumbel distribution, expected values and variances 

for n = 1(1)20 are given (for instance) in White [76]. Tables for covariances have been given 

by Lieblein and Zelen [33] for n 5 6, White [75] for n _< 20 and by Mann [39] for n 5 25. 

In this thesis, the expected values and covariances of the order statistics were obtained 

by numerical integration using subroutines DQDAGI and DTWODQ from IMSL and by 

using a Taylor's series expansion of the inverse cumulative distribution function ( David 

and Johnson [21] to  order (n + 2)-3) a;s an approximation. 

It is worthwhile to examine the accuracy of the approximation. The following compara- 

tive results are given for sample sizes 5 and 10. Here, m and Vx denote the parameters 

computed by numerical integration whereas ni and vx denote the corresponding approxi- 

mations. 

For n = 5, the results were: 
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2.5 Test procedures 

vx = 

The following subsections describe the procedure for testing the null hypothesis, Ho, that 

the random sample Yl, . . . , Y,, with order statistics Y(l), . . . , Y(,), came from the distribution 

( 2.1). 

- - 
1.6180 0.6122 0.3567 0.2414 0.1754 0.1324 0.1016 0.0779 0.0581 0.0396 

0.6393 0.3740 0.2536 0.1846 0.1395 0.1071 0.0821 0.0614 0.0417 

0.3945 0.2683 0.1956 0.1480 0.1137 0.0873 0.0653 0.0444 

0.2861 0.2091 0.1584 0.1220 0.0937 0.0701 0.0477 

0.2261 0.1716 0.1323 0.1018 0.0763 0.0520 

0.1891 0.1461 0.1126 0.0845 0.0577 

0.1655 0.1279 0.0962 0.0659 

0.1517 0.1146 0.0788 

0.1488 0.1031 

0.1732 - - 

2.5.1 GLS-based Tests 

The above results show that the approximation appears to  produce reasonable results even 

for values of n as low as 5. 

For a given value of n, the coefficients of the second and third-order polynomials are found 

by solving ( 1.6). The test statistics 

T~~ = T2 + ~3 

are then calculated. Note that 0% = a 2 / 6 .  
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For values of n = 10(10)100 10,000 samples were generated and the empirical percentage 

points obtained. The smoothed points are given in tables ( 2.2) to ( 2.4). 

From these tables it can be seen that the empirical percentage points converge quickly 

to their asymptotic values, so that the x;,, and approximations can be used with good 

accuracy for small n. 

An approximation to the standard errors of the estimated quantile 1 - a , say [I-,, can 

be obtained by using the asymptotic expression: 

where f(&-,) can be estimated by approximating the derivative of the CDF using two 

quantiles adjacent to f (&-,). 

For example, from table 2.2 the approximate standard errors of the quantiles are about 

0.02 for a = 0.25, 0.03 for a = 0.15 and about 0.12 for a = 0.01. These approximations 

correspond to  typical values for a given significance level, since little change was observed 

for different values of n. 

2.5.2 OLS-based Tests 

In this case, the coefficients of the polynomials were found by solving ( 1.11 ) for a given 

value of n, and the following test statistics calculated: 

The empirical percentage points were also found using 10,000 simulated samples. The re- 

sults showed that the convergence of these points to their asymptotic values was extremely 

slow. Even for values of n as large as n = 1000, the difference between the empirical and 

the asymptotic percentage points was still considerable. 
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The problem appeared to be the slow rate of convergence to their limits, of the quantites 

In the next section, a practical solution to overcome this problem is presented. 

2.5.3 Modified OLS-based tests 

Consider the quantity, 

Under the null hypothesis, 

2 - z )  2  tj -- X ( I ) *  

Note that tf depends on Vx only through the value of the quadratic form ~ 5 ~ ( n ) .  

Thus, if an approximation h j j ( n )  of ~ ; ~ ( n )  can be found, we can define the modified test 

statistics: 

for j = 2,3 and i23 = i2 + i3. 

Note that ( 2.3 ) corresponds to the square of the quantity defined in ( 2.2 ) with the 

only difference that t+bj vx$j has now been replaced by the approximation n h j  ( n ) .  

Exponential fits of cTj(n) were considered by regressing in (y) against nl/j for val- 

ues of n = 10(5)200. 

For j = 2 ,3  the following approximations were obtained. 
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hz2(n) = c ; ~  exp ( - 8 . 8 2 4 / a  

hs3(n) = c : ~  exp ( - 1 2 / m  

In both cases, the fit was found to be very accurate. 

The limiting distribution of the vector tT = (&, 6 )  is then bivariate normal with mean 

vector zero and covariance matrix 

It follows that the limiting distribution of the test statistic iZ3 = i2 + i3, is that of a weighted 

sum of two independent xf,) variables, where the weights correspond to  the eigenvalues of A. 

The critical points of the distribution of iZ3 were calculated using Imhof's [30] method. 

The simulation study was now carried out for the modified test statistics. The empirical 

percentage points are given in tables ( 2.5) to ( 2.7). These tables show a quick convergence 

of the empirical percentage points to  their asymptotic values. 

2.6 Empirical power study 

A simulation study was conducted to  estimate the power of the tests proposed against some 

selected alternatives: Weibull with shape parameter 8 (W(8)); Normal (Af); Logistic (L); 
Uniform (U); Double exponential (DE) and X&-,,. Table 2.1 shows the percentages of re- 

jections from 1000 simulations for each test. The tests were done using a significance level 

of 10%. 

For comparison purposes, available tests for the Gumbel distribution, based on the fol- 

lowing statistics were also included: 
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a)  The correlation coefficient ( Stephens [17, section 5.141 ). 

where Y denotes the vector of order statistics, and H is an approximation to the vector 

of expected values of the order statistics in a sample from a standard Gumbel distribution 

whose i-th component is H; = In {-In [l - i / ( n  + I)]). 

b) Statistics based on the empirical distribution function. 

Anderson-Darling: 

The Watson statistic: 

u2 = w2 - n ( 2  - 0 . 5 ) ~  

where Z(,) = F ( q ; ) ;  8 ,  ,8) and 8 ,  denote the maximum likelihood estimators of the location 

and scale parameters respectively. Tables of percentage points of the above EDF statistics 

for testing goodness of fit for the Gumbel distribution have been given by Stephens [63]. 
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/' 

Table 2.1: Empirical power (in percent) of tests based on polynomial regression; size of the 

The results indicate that the statistic ~2 based on the second-order polynomial is in 

general the most powerful ( but note the Uniform exception ). This can be explained by the 

fact that the kind of departure from linearity in the Gumbel probability plot, when the true 

distribution is Weibull or Frechet, is approximately a quadratic pattern ( see, for example 

Castillo [13, section 6.21 ). 
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2.7 Conclusions 

1. The test statistic T~ is recommended when Weibull alternatives are of interest. This 

is, for instance, the case in extreme value problems where the non-rejection of the 

Gumbel model, when the true parent distribution is Weibull, is considered the most 

serious error and therefore the most powerful test available should be used. 

2. In general, the test statistic ~2~ can be used as an overall test statistic. According 

to the simulation results obtained here, the power of this test statistic appears to be 

greater than any of the EDF statistics w 2 ,  and u2. It must be remarked, however, 

that more extensive comparative studies are needed. 

3. The test based on the correlation statistic Z ( Y ,  H), appears to be a biased test, in 

the sense that its power is less than the significance level of the test, for Weibull 

alternatives with a large value of the shape parameter. This also appears to be the 

case for the regression statistics which involve a third order polynomial. Thus, use of 

these statistics is not recommended. 
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Table 2.2: Empirical percentage points of T ~ .  Gumbel distribution 
Significance level 

Table 2.3: Empirical percentage points o f f  
Significance lev 
1 0.100 1 0.050 

Gumbel distribution. 
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Table 2.4: Empirical percentage points of ~ 2 3 .  Gumbel distribution. 
Significance level 

Table 2.5: Empirical percentage points of i2. Gumbel distribution. 
significance level 

0.150 

2.08 
2.07 
2.07 
2.07 
2.07 
2.07 
2.07 
2.07 
2.07 
2.07 

2.072 

0.100 

2.70 
2.70 
2.70 
2.70 
2.70 
2.70 
2.70 
2.70 
2.70 
2.70 

2.706 

0.050 

3.79 
3.82 
3.83 
3.83 
3.83 
3.84 
3.84 
3.84 
3.84 
3.84 

3.841 

0.025 

4.89 
4.98 
5.00 
5.01 
5.01 
5.02 
5.02 
5.02 
5.02 
5.02 

5.024 

0.010 

6.36 
6.56 
6.60 
6.61 
6.62 
6.62 
6.63 
6.63 
6.63 
6.63 

6.635 
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Table 2.6: Empirical percentage points of &. Gumbel distribution. 
~mificance level 

Table 2.7: Empirical percentage points of iz3. Gumbel distribution. 
~ ienkcance  level 



Chapter 3 

Maximum-correlat ion estimates 

and tests of fit 

3.1 The three-parameter Weibull 

A random variable Y is said to have a Weibull distribution if its cumulative distribution 

function is given by 

where a, > 0 and 0 > 0 are parameters. 

When a is known the distribution ( 3.1)  is known as the two-parameter Weibull distribution 

and Z = ln(Y - a )  has the Gumbel distribution 

It is also well known that ( 3.2)  is the limiting form of ( 3.1)  as 0 tends to infinity ( see, for 

example, Johnson and Kotz [31] ). 

Hence, the null hypothesis that the random sample Y I ,  . . . , Y, comes from ( 3.1)  may be 

made by testing the null hypothesis that the transformed observations Z1,. . ., 2, were 

drawn from the population ( 3.2 ). When the parameter a is not known, estimates of the 
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parameters are difficult to obtain and many problems arise. 

In maximum-likelihood estimation, for 8 < 1 , the likelihood function can be made infi- 

nite when ii = ql). For this reason and due to  the fact that some regularity problems occur 

for 1 < 6 < 2 , the maximum-likelihood method is difficult to apply for ~ e i b u l l  populations 

with 8 < 2 . (See Castillo [13] and Lockhart and Stephens [35], [36] ) 

In this chapter an estimation method is presented, based on a regression technique, which 

appears to  avoid many of the difficulties arising when MLE is used. 

The method is illustrated using some examples taken from the existing literature and 

goodness-of-fit procedures are given. 

3.1.1 Parameter estimation: Method A 

Suppose that Yl, . . . , Yn is a random sample from the distribution ( 3.1). We can write7 

E [q;,] = a + Pm;(B) (3.3) 

where mite) denotes the expected value of the i-th order statistic, in a sample of size n, 

from a standard ( cu = 0 , /3 = 1 ) Weibull distribution with parameter 8. 

The correlation cmficient R(X, Y )  between two vectors X and Y , where xT = (XI,  - . - 7  X n )  

and Y T  = (Yl, . . . , Yn) is defined as 

@:=,(xi - x ) ~  x:., (Y,  - Q2 

In ( 3.3 ), different choices of 8 will produce different degrees of linear relationship between 

Y and mT(8) = (ml(8), . . . , mn(8)). 

A "good" estimate should then produce a high degree of finear association as measured 

by R2(Y, m(8)). This consideration leads us to  the following 
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Definition 3.1 The Maximum Correlation Estimator (MCE) of 0 is the value of 0 , 8 ,  
which maximizes 

R2 ( 8 )  = R2 ( Y ,  m ( 0 ) )  (3.5)  

Estimates of a and p will then be obtained by fitting the model ( 3.3) with m ; ( 8 )  replaced 

by m;(8). This method of estimation will be referred to as method A. 

3.1.2 Parameter estimation: Method B 

A similar approach for estimating the parameters when a is known, is based on the fact 

that the substitution of Z = ln(Y - a )  in ( 3.1) gives the Gumbel distribution ( 3.2). Thus, 

estimates of the parameters can be obtained by fitting the model: 

where mT = (ml,  . . . , m,) are the expected values of the order statistics from a standard 

Gumbel distribution. 

The mi now do not depend on an unknown parameter, and estimates of the parameters 

in the Gumbel fit may be obtained, for example, by ordinary least squares (OLS). Then we 

can make use of the relations: 

1 
PG = - 9 (3.8) 

to  compute estimates of the parameters of the Weibull distribution ( 3.1). 

The same procedure can be used when a is not known, provided that a good estimate 

of this parameter is used in transforming the original observations. Let zT = (21,.  . . , 2,) 

where 2; = ln(Y, - a )  and let us define 

Definition 3.2 The maximum correlation estimate of a is defined as the value of a ,  &, 

which maximizes the correlation coeficient ( 3.9). 

This method will be referred to  as method B. In this case, estimates of a~ and PG are now 

obtained by fitting the model ( 3.6) with a replaced by &, and then estimates of P and 8 

follow from ( 3.7) and ( 3.8). These will be called maximum correlation estimates (MCE). 
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3.1.3 Remarks 

Remarks on the asymptotic distribution of the maximum-correlation statistic: 

Method B 

Consider the model 

E ( Y ; ) )  = a + pmi (3.10) 

When the parameters a and ,L? are unknown, the correlation statistic Tn = n [l - R ~ ( Y ,  m)] 

is equivalent to 

where 6 and /j are the ordinary least squares estimators of the parameters a and ,L? in 

the model ( 3.10). 

When some of the parameters are specified by the null hypothesis, the correlation statistic 

takes the more general form 

where a*, p* and p denote suitable consistent estimators of the parameters, or their values 

specified by the null hypothesis. 

Asymptotic normality of the correlation test statistic from a Gumbel parent: 

If the sample comes from a Gumbel distribution, it has been shown in McLaren [40] and 

McLaren and Lockhart [41] that 

McLaren [40] also showed that the above result holds regardless of which parameters in 

( 3.10) are estimated. 
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On the asymptotic normality of the maximum-c0rrelation test statistic for the 

Weibull distribution: In order to simplify the notation, let us define: 

and 
n [I - R2((r)] - log n 

Tn(a) = 

where R2((r) is defined as in ( 3.9). 

In this new notation, test statistic based on method B is then Wn(h). 

By writing 

Tn(b) = T,(a) + (4 log n)-k n [ ~ ~ ( a )  - ~ ~ ( h ) ]  

we can show that 

Tn(h) ~ ( 0 ~ 1 ) ~  

by showing that the second term of the right hand side of the above equation is o,(l), so 

that the result will follow by application of Slutsky's theorem. 

From a practical point of view, the proof of the asymptotic normality of the correlation 

test statistic becomes less important due to the fact that the rate of convergence to normal- 

ity of this type of statistic is extremely slow; this makes the approximation inappropriate for 

practical use. In the exponential case, Lockhart [34] shows that the normal approximation 

with n = el6 x 9 x lo6 , gives P (R2  > 1) x 0.023. 

In this work, the percentage points of the test statistic were obtained by simulation based 

on 10,000 samples, and are given in table 3.8. 

On the asymptotic means and variances 

In order to  investigate the properties of the estimators obtained by maximum correlation 

method B, 1000 samples from a Weibull distribution with a = 0 , P = 1 and different values 

of 8 were simulated, the location parameter estimated by method B, and then estimates 

of the parameters in the Gumbe1 model ( 3.6) calculated by ordinary least squares. The 
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estimates of the parameters of the Weibull distribution were then found by direct use of the 

relations ( 3.7) and ( 3.8). It was found that, for values of t9 < 2 ,  ti was very close to its true 

value and therefore the variance of the estimators was well approximated by the variance of 

these estimators when the the location parameter a is known. 

The ordinary least squares estimators of a~ and PG in ( 3.6 ) are: 

where Z; = ln(Y, - a) and y x 0.5772 is Euler's constant. 

Using the results from chapter 2, we find the following asymptotic expressions for the vari- 

ances of the OLS estimators in the Gumbel model ( 3.6). 

1.1 
Var  (bo) " -@ 

1.1678 
Var (tiG) x - 

nt92 

From ( 3.7) and ( 3.8) we have: 

* A 

f i  = e h ~  and 0 = pzl 

Expansion in Taylor series of the above expressions gives: 

and 
1.1e2 

E (ti)  x t9 (I + c) , Var ( e )  = - 
n n 
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3.1.4 Examples 

In this section, the methods described above are illustrated by analyzing some particular 

data sets, given in the appendix. These have been discussed by Lockhart and Stephens [36] 

in connection with Maximum Likelihood estimation (MLE) of the parameters. The MLE 

results are given also when available. Plots of the trial values of the parameter versus the 

correlation coefficient, for methods A and B, are shown in figures ( 3.1 ) to ( 3.16 ). 

a) Data set 1, from Cox and Oakes [15, table 1.31 consists of 10 values of the number 

of cycles to  failure when springs are subjected to various stress levels. For these data, the 

stress level is 950N/mm2 and the values are in units of 1000 cycles. 

Table 3.1: Results for Data set 1 

[I Estimate I Method A 

120.08 
3.056 

A2 0.24 

For this data set both methods give similar estimates producing nearly the same fit as 

measured by the Anderson-Darling statistic. The value of A2 is here used as a measure 

of goodness of fit relative to  the parameters used and a significance level is not associated 

with test statistic as its distribution will depend upon the method of estimation used. 

b) Data set 2 consists of 15 times to failure of air conditioning equipment in aircraft. These 

values were taken from a table given in Proschan [46, table 11. 

In this case, method B appears to  be clearly a better option as it gives a smaller value of 

A2 . In addition, the estimates of the parameters are consistent with the MLE results. 

c) Data set 3 was artificially constructed by Lockhart and Stephens [36] to  illustrate some 

problems in MLE estimation. For this example, no MLE exists and they recommend fitting 

a Gumbel distribution. This data set has 20 observations. 
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Table 3.2: Results for Data set 2 

n Estimate I Method A I Method B I MLE fl 

Table 3.3: Results for Data set 3 

0 Estimate I Method A I Method B I MLE [I 
-9.10 
10.44 
25.14 

A2  0.50 

The estimates of the parameters obtained by method A, suggest that a Gumbel fit would 

be appropriate as it yields a large value of 8. Method B however produces estimates of the 

parameters which appear to  be more consistent with a Weibull fit. Even though the value 

of A2 is smaller when the parameters obtained by method A are used, method B might be 

preferred if a Weibull fit is the primary choice. 

d) Data set 4 is taken from Castillo [13]. It consists of 60 distances in miles to  a nu- 

clear power plant of the most recent 8 earthquakes of intensity larger than a given value. 

The data are needed to evaluate the risk associated with earthquakes ocurring close to a 

central site. It is known that a fault is the main cause of earthquakes in the area and the 

closest point of the fault is 50 miles from the plant. 

This data set must be more carefully dealt with since there are some practical considerations 

which have to be taken into account. Method B appears to  give the best results since the 

location parameter is associated with the nearest distance to the fault. Method A produces 

a negative estimate of the location parameter, which might have some geological explanation. 



C H A P T E R  3. MAXIMUM-CORRELATION ESTIMATES  A N D  T E S T S  O F  FIT 43 

Table 3.4: Results for Data set 4 

Estimate 1 Method A I Method B I MLE n 
182.49 

3.18 
A2 0.83 

e) Data set 5, from Castillo [13], consists of fatigue strengths t o  failure of 35 specimens 

of wire. The aim of the study was to  find a design for fatigue stress. 

Table 3.5: Results for Data set 5 

Estimate I Method A 1 Method B 1 MLE 1 

1.13 1.32 1.24 
A2 

This example shows that method A requires the use of a restricted maximization procedure 

as it can give unacceptable solutions in the sense that the estimate of the location parameter 

is sometimes greater than the minimum sample value: In this case, the minimum value is 

equal to  39611, and it is greater than this number. Method B gives a good solution. 

f )  Data set 6 consists of 41 failure times of an electronic module. Analysis of these data 

appeared ip Ansell and Phillips 141. 

. Again, the solution given by method A is not acceptable as the minimum failure time is 

Table 3.6: Results for Data set 6 

Estimate Method A 

I it 6.39 

Method B I MLE 1 

45.86 43.51 

0.23 0.22 
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equal to 1.4 and & is greater than this number. 

g) Data set 7 consists of strengths of glass fibers of length 15 cm. from the National 

Physical Laboratory in England. 

h) Data set 8 consists of strengths of glass fibers of length 15 cm. from the National 

Physical Laboratory in England. 

Data sets 7 and 8 have been used by Smith and Naylor [60] to  illustrate problems in MLE 

estimation. In their paper, they suggest the use of Bayesian methods for handling likeli- 

hoods of unusual shape. The problem of specifying an appropriate prior distribution could 

be assessed by studying the sensitivity of the analysis to the choice of the prior. 

For these data sets, no maximum can be found as the value of R2(a)  can be made as 

close as we wish to the value of R2 obtained for the model ( 3.14) , by making a tend to 

-00 . For these two situations, the maximum correlation method indicates that the best fit 

will be obtained for the Gumbel distribution ( 3.2). Problems of this type are discussed in 

the next section. 

From practical considerations, method B appears to be better than method A for two 

major reasons: (a) it implies the use of an unrestricted maximization procedure ( the con- 

straint that the location parameter is less than the minimum sample value is recognized 

when the interval for a, for the search, is given ) and (b): it does not require the calcula- 

tion of expected values of order statistics for every value of the shape parameter, as is the 

case for method A. The expected values of order statistics of the Gumbel distribution for 

a sample of size n are more easily calculated and can be reused for different values of the 

trial parameter. Also, the analysis of the data sets suggests that method B produces better 

estimates which are consistent with results obtained by MLE . 
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shape parameter 

Figure 3.1: Plot of R2(0 )  vs 8 - l .  Data set 1, Method A 

shape parameter 

Figure 3.2: Plot of ~ ~ ( 0 )  vs 8 - l .  Data set 2, Method A 
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shape parameter 

Figure 3.3: Plot of R2(8)  vs 8-'. Data set 3, Method A 

shape parameter 

Figure 3.4: Plot of ~ ~ ( 8 )  vs 8-' . Data set 4 ,  Method A 
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shape parameter 

Figure 3.5: Plot of R 2 ( 8 )  vs 8-l. Data set 5 ,  Method A 

shape parameter 

Figure 3.6: Plot of R 2 ( 8 )  vs 8-l.  Data set 6 ,  Method A 
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shape parameter 

Figure 3.7: Plot of R 2 ( 8 )  vs 8-l .  Data set 7 ,  Method A 

shape parameter 

Figure 3.8: Plot of ~ ~ ( 8 )  vs 8-'. Data set 8, Method A 
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location parameter 

Figure 3.9: Plot of R2(a)  vs a . Data set 1, Method B 

11.0 11.1 11.2 11.3 11.4 

location parameter 

Figure 3.10: Plot of R2(a) vs a . Data set 2, Method B 
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location parameter 

Figure 3.11: Plot of R 2 ( a )  vs a . Data set 3, Method B 

location parameter 

Figure 3.12: Plot of R 2 ( a )  vs a . Data set 4, Method B 
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location parameter 

Figure 3.13: Plot of R~(CY) vs a . Data set 5, Method B 

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 

location parameter 

Figure 3.14: Plot of R2(a) vs CY . Data set 6, Method B 
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location parameter 

Figure 3.15: Plot of R2(a) vs a . Data set 7, Method B 

location parameter 

Figure 3.16: Plot of R2(a)  vs a . Data set 8, Method B 

3.1.5 Practical problems for estimation 

When 8 < 1, the maximum correlation method produces estimates without any apparent 

difficulty. However, if 8 > 1, simulations show that there are samples for which the methods 
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(either A or B ) find no maximum (see table 3.7 ) . This can be regarded as a shortcom- 

ing of the method; the same problem appears when the maximum likelihood method is used. 

For large values of 8, the Weibull distribution becomes close to  the Gumbel distribution 

( in a well defined mathematical sense ). Suppose then that we approximate the expected 

value of the i-th order statistic from the Weibull distribution ( 3.1 ), m;(O), by the quantity 

and consider its Taylor's expansion about (1) = 0. Then, approximately 

n 1 - - is an approximation to  the expected value of the i-th order where H ,  = ln (- 1 ( 
n : l ) )  

statistic in a sample from the a standard Gumbel distribution. 

Hence, for large 8, a Gumbel distribution with parameters ( a  + P) and $ will provide a 

good fit to  the data. 

The frequency with which this situation occurs is summarized in table 3.7 , based on 

a Monte Carlo study using 1000 samples. It can be conjectured that, for fixed n, the per- 

centage of "Gumbel-type" samples will approach fifty percent as 118 tends to zero, the 

reason being that the two distributions will be indistinguishable from one another. On the 

other hand, for fixed 8, the frequency with which these samples appear will approach zero 

( slowly for large 0 ) as n tends to  infinity. 

3.1.6 Existence of a maximum 

Here we describe a procedure that can be used to  detect the ocurrence of figures 3.15 and 

3.16, produced by data sets 7 and 8, in which R2(a)  increases by letting a + -00. 
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First, we compute the quantity 

For a given value of at, D is proportional to the derivative of the function R2(a)  at that 

point. Thus, a negative value of D will indicate the ocurrence of a plot similar to 3.15 and 

3.16. In this case, a Gumbel fit for the original observations is the solution given by the 

maximum correlation method B. 

The derivation of the quantity D, is described in the next section. 

3.1.7 Derivation of D 

The approach used to obtain D consists of examining the behaviour of the function 

For a large negative value of a, we use the approximation 

Thus, if we let Rt = r:=, (mi - m) we obtain the following approximations: 

Since 
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We will also make use of 

Using the above approximations, as a + -oo, we can write 

and consequently, 

Clearly, a negative value fo the derivative is obtained when the top term in the above 

expression is negative, that is, when 

as in equation ( 3.16). 

From equation ( 3.17) , it also follows that 

2 
[EL1 (mi - 4 yi)] 

lim ~ ' ( a )  = 
a+-00 E:=l(m; - i i ~ ) ~  C:=l(yi) - Y)2 

that is, the correlation coefficient between the vector m and the vector Y, of the original 

observations. 
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On the other hand, as a -, ql), we have 

n ( m l  - m)2 
lim ~ ~ ( a )  = 

( n  - 1)  C:=l (mi - m)2 

In fact, for a = ql) - E  ( E  > O), 

n n 

(mi - m) ln (Y(;) - a )  = (ml - m )  ln(6) + x ( m j  - r i l )  ln [qj) - ql) + €1 
i = l  j=1 

The result ( 3.17) is then obtained by substituting the above expressions into the definition 

of R 2 ( a )  and taking the limit as E tends to zero. 

Table 3.7: Percentage of samples for which (1/8^) = 0. Method B 
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3.1.8 Test procedures 

We now move to tests of fit. The test will be based on using method B to estimate the 

parameters. 

a)  First, find & using method B, using Hi in ( 3.14) as an approximation to m; 

b) Compute the test statistic: 

W,(&) = n I 1 - R ~ ( & ) ]  

c) Refer to  table 3.8 for the appropriate sample size. If the value of the test statistic is 

greater than the value given for level p, the null hypothesis is rejected at level p. 

Ezample: Data set 1. 

For data set 1, we find R2(&) = 0.9713 producing a value for the test statistic of T = 0.287. 

The p-value is > 0.50, so the fit is good. 

Ezample: Data set 2. 

In this case, R2(&) = 0.9367 and the value of the test statistic is T = 0.95. Linear in- 

terpolation from table 3.8 gives 0.05 <p-value< 0.10 . 

Ezample: Data set 3. 

For the third data set we obtain R ~ ( & )  = 0.9416, T = 1.168. For n = 20 we find 0.025 <p- 

value< 0.05 which suggests the rejection of the Weibull model. This agrees with the analysis 

of this data set in Lockhart and Stephens [36]. 

Example: Data set 4 .  

R2(&) = 0.9558 and T = 2.65. Since the p-value is < 0.01 the Weibull fit should be 

rejected. As an illustration, figures 3.17 and 3.18 show the probability plots obtained by 
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maximum correlation for this data set, using methods A and B. From these plots, it can be 

seen that ,  even after selecting the best value of the parameters, based on maximizing the 

correlation coefficient, the probability plots still show departures from linearity in the lower 

and upper tails. 

0.4 0.6 0.8 1 .O 1.2 1.4 1.6 

quantiles 

Figure 3.17: Weibull probability plot, method A, for data set 4. Weibull quantiles found 
using maximum correlation estimates 

Example: Data sets 5 and 6. 

These data sets both give a value of R2(&) = 0.9997 indicating almost a perfect fit. The 

test statistic is not significant a t  level 0.50. 

Data sets 7 and 8 produce values of R2 for the model ( 3.14) respectively equal t o  0.9995 

and 0.9997, indicating a very good fit to  the Gumbel distribution. A test of fit can then be 

carried out using the method given in Lockhart and Stephens [36]. Figure 3.19 shows the 

corresponding Gumbel probability plot for data set 8. 
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quantiles 

Figure 3.18: Gumbel probability plot, method B, for data set 4. Observations transformed 
using maximum correlation estimates 

quantiles 

Figure 3.19: Gumbel probability plot for original observations. Data set 8 
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Table 3.8: Empirical percentage points of the correlation statistic 
Significance level 

3.2 The t hree-parameter lognormal distribution 

Let X be a standard normal random variable and let 

Y is then said to have a lognormal distribution with parameters a, P and 8 .  

When 9 is known, the distribution is c d e d  the two-pammeter log normal. 

The null hypothesis that a random sample Yl , . . . , Y, comes from a two-parameter lognor- 

mal distribution can be made by testing that the transformed observations 2; = ln(Y, - 8 )  

is a sample from a normal distribution. A review of several procedures for testing normality 

can be found in D7Agostino and Stephens [17, chapter 91. 

If 8 is unknown, the distribution is called the three-parameter lognormal. In this case, 

the estimation procedures present considerable difficulty. As pointed out in Johnson and 

Kotz [31], accuracy in the estimation of 8 is not important in tests of fit. This is because 

large variations in the value of 8 lead to small changes in the percentage points of the dis- 

tribution when in its standard form ( i.e., a and P are chosen so that the distribution has 

mean zero and unit variance ). 
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The three-parameter log normal is then another distribution for which the maximum cor- 

relation method gives a relatively simple approach for constructing a test of fit. 

If . . . , Y(,) are the order statistics and Z, = In(?;) - 8), then 

where m; denotes the expected value of the i-th order statistic in a sample of size n from a 

standard normal distribution. 

Here, the maximum correlation estimator of 8 is the value 8 which maximizes 

~ ~ ( 8 )  = ~ ~ ( 2 ,  m). 

As in the case of the three-parameter Weibull distribution, it is possible to find samples 

for which the maximum value of R2(8) is obtained by making 8 tend to  -00. However, a 

Monte Carlo study based on 1000 simulations revealed that this situation appear to  occur 

only for n < 30. In fact, the results of the study using o = 0 and P = 1 produced 6% of 

such samples for n = 10 and 0.3% for n = 20. A plot of 8 vs R2(d) in this situation will 

look like figure 3.15. 

3.2.1 Test of fit for the lognormal distribution 

A test of fit can be based on the quantity 

Empirical percentage points of the test statistic T were obtained empirically from 10,000 

simulations. The results are shown in table 3.9 

3.3 A test of multivariate normality 

Roy's union-intersection principle can be applied to construct a test of multivariate normal- 

ity based on any test statistic used for the univariate case. In this section, the maximum 

correlation test statistic is shown to  be useful for testing multivariate normality. The tech- 

nique is illustrated by considering a test for bivariate normality. 
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Table 3.9: Empirical percentage points of T. Log-normal distribution. 
Significance level 

3.3.1 Test statistic 

Let X I , .  . . , X, be a p-variate random sample from a normal population with mean vector 

p and covariance matrix C. Also, define Z, = c T x i  , where c is a p-dimensional non- 

random vector. 

Then, if Z(l), . . . , Z(,) are the ordered transformed observations we have, for all non null 

where mT = (ml, . . . , m,) is the vector of expected values of the order statistics from a 

standard normal distribution. Note that the mean value of the m; is zero. 

Then, define R(c) to  be the correlation coefficient between 2, the vector of order statistics 

corresponding to  the transformed observations, and m. Thus 

The correlation R(c) is then independent of the parameters of the distribution, and Roy's 

union intersection principle can be applied to this situation by finding the vector c* so that 

R2(c*) is a minimum. 

The null hypothesis of multivariate normality will then be rejected for small values of the 
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correlation or, equivalently, large values of the test statistic 

3.3.2 Test of bivariate normality 

We illustrate the use of R(c) for dimension two. For this case, the minimization process re- 

duces to  a simple unidimensional search of the normalized vector c*. Using polar coordinates 

we can write the normalized vector c as 

cT = (sin 9, cos 9) 

Hence the problem reduces to  find the value 9* which minimizes ( 3.18). 

Empirical percentage points of the distribution of the test statistic 

were obtained empirically from ten thousand simulations and are shown in table 3.10. 

In the following four examples, simulated data sets are analyzed. In each case, a search 

in the interval [0•‹, 180') was conducted using increments of one degree. This magnitude for 

the increment produces a precision greater than 0.01 in the calculated value of 9*. 

a)  The first data set consists of 20 observations from a Normal distributions with zero 

mean vector and identity covariance matrix. A plot of R2(0) vs 0 is shown in figure 3.20. 

In this case, the minimum value of the correlation is 0.8856. 

b) In the second simulated data set the first component of the vector was sampled from 

a chi-squared distribution with one degree of freedom. A plot of R2(9) vs 9 is shown in 

figure 3.21. The minimum value of the correlation for this sample is 0.7048. 

c) Figure 3.22 shows the plot for the third simulated data set consisting of 20 vectors, 

in which both components of the vector were sampled from a chi-squared distribution with 

one degree of freedom. Here, the minimum value of the correlation was 0.7070 



C H A P T E R  3. MAXIMUM-CORRELATION ESTIMATES AND T E S T S  OF FIT 64 

angle 

Figure 3.20: Plot of R2(8) vs 8. Simulated data set 1 

angle 

Figure 3.21: Plot of ~ ~ ( 8 )  vs 8. Simulated data set 2 
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angle 

Figure 3.22: Plot of R2(0)  vs 0.  Simulated data set 3 

d) The fourth data set was constructed to illustrate the situation in which the compo- 

nents of the random vector are marginally normal but not jointly normal. Two independent 

standard normal values u and v were first generated. The second component of the vector 

was set equal to  v whereas the first component was set equal to u, if uv > 0 or -u if uv < 0. 

A sample of twenty vectors was simulated. The corresponding plot is shown in figure 3.23. 

The minimum correlation for this data set was found to  be 0.8653. 

The type of plot illustrated in figures 3.20 to 3.23 is a useful tool to summarize relevant 

information about the type of departure. For example, non normality in the first component 

translates into a significant drop of ~ ~ ( 0 )  in the neighbourhood of 90" ; non-normality of 

both comp'onents will produce significant drops in the neighbourhoods of 0" and 90•‹, etc. 

Hence, the test based on the maximum correlation method combines simultaneously the 

properties of graphical and formal statistical methods. 
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angle 

Figure 3.23: Plot of R2(8) vs 8. Simulated data set 4 

Table 3.10: Empirical percentage points of T for bivariate normality. 
Significance level 



Chapter 4 

EDF Tests for the Frechet 

distribution 

4.1 Introduction 

Three important distributions arise as limiting distributions for extreme values. These are 

the Gumbel, Weibull and Frechet distributions. Tests of fit based on the empirical distribu- 

tion function (EDF) statistics w2, and u2 have been given for the first two distributions 

by Stephens [63] and Lockhart and Stephens [35] when the location parameter is unknown. 

The Frechet distribution ( or Type I1 extreme value distribution ) has gained importance 

in practice and it has been applied, for instance, to  sea waves and wind speeds Thom [67], 

[68], [69], [70]. In this chapter, goodness-of-fit tests for this distribution are presented. 

Suppose that XI , .  . . , X, is a random sample; X(l), . . . , X(,) are the corresponding order 

statistics and that we are interested in testing the null hypothesis Ho : that the sample has 

been drawn from the distribution 

where a ,  ,D > 0 and m > 0 are parameters. The parameter a is known as the location 

parameter whereas ,D and m are referred to as the scale and shape parameters respectively. 

Plots of the standard form of the density (a = 0, ,D = 1) are shown in figure 4.1 for selected 

values of the shape parameter m. Note that the mode decreases as m increases. The tests 
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-3.0 -2.5 -2.0 -1.5 -1 .O -0.5 0.0 

X 

Figure 4.1: Frechet densities with parameters m=0.5, 1 ,3,  5. 

of fit are based on the EDF of the quantities z; = F(xi; a,P, m), the Probability Integral 

Transformation, (PIT) where estimated values of the unknown parameters are inserted into 

F(.) if they are not known. Using the same notation as in Lockhart and Stephens [34], [35] 

we will distinguish eight cases for the test of Ho according to which parameters must be 

estimated in (4.1). These are: Case 0: none; Case 1: a ; Case 2: P ; Case 3 a, P ; Case 4: 

m ; Case 5: a, m ; Case 6: p, m ; Case 7: a, p, m. 

For cases 2, 4 and 6, where a is known, the transformation Y = -log(a - X) can be 

made and the y-sample can be tested to come from a Gumbel distribution with location 

and scale parameters o c  and pc respectively. The relationship between the parameters of 

the Gumbel and the Frechet distribution are : ac = - log(@) , pc = l /m. Tests for this 

situation are described in Stephens 1621 or Stephens[l6, section 4.101. For case 0, the reader 

is referred to Stephens [ l G ,  section 4.41. 

Thus, in this chapter we consider tests for cases 1, 3, 5 and 7. The estimation will be 

done by maximum likelihood. 
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4.2 Maximum likelihood estimation 

The log-likelihood for the sample X I , .  . . , xn is: 

from which the likelihood equations are: 

Depending on which parameters are unknown, the above equations are solved to  obtain the 

MLE estimates for any given case. 

For case 1, & is obtained from ( 4.2). In case 3, ( 4.3) gives 

and this is substituted into ( 4.2). For cases 5 and 7, equations ( 4.2) and ( 4.4) are solved 

using the known value of @ or by making use of ( 4.5) to eliminate @ from these equations 

when it is unknown. For case 7, ( 4.5) is substituted into ( 4.2) and ( 4.4) to give 

ax - - 1 Cy=l(a - xi)-m In(a - x;) Cr=l ln(a - xi) 
- - +  - = 0 

dm m C Z 1 ( a  - n (4.7) 

When a is unknown, support of the probability density function depends on an unknown 

parameter. In such cases, the classical regularity conditions for maximum likelihood esti- 

mation (MLE) are not satisfied. However, we make use of the results by Smith [59] which 

show, in particular, that for the Frechet distribution, the solutions of the likelihood equations 

produce estimators for which the classical properties of the MLE's are still valid. 
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4.2.1 The profile-likelihood approach 

This approach has been proposed by Lockhart and Stephens [36] for the three-parameter 

Weibull distribution. 

The profile-likelihood L*(at) is the likelihood L maximized with respect to  ,f3 and m, for 

a fixed value a = a t .  Hence, 

where P(at)  and m(at)  denote either a known value of the parameter or the solution of the 

corresponding likelihood equation. For computational purposes, it is often convenient to 

work with 

!(at) = logL*(at). (4.8) 

In case 7, for a particular value at of a, equation ( 4.7) can be solved iteratively to  obtain 

m(at)  and then obtain @(at) from ( 4.5). The MLE of a is then the value which maximizes 

( 4.8). There appear to be only two possible shapes of ! = !(at) which are shown in figures 

4.2 to  4.3. 

Figure 4.2 corresponds to  data set 9, from Castillo [13], and are yearly maximum wind 

speeds in miles per hour registered at a given location during fifty years. In this case, there 

is a MLE solution. 

The plot shown in figure 4.3 was constructed using data set 10, which consist of maxi- 

mum wave heights in a certain location, taken from Castillo [13]. For this situation, the 

likelihood can be increased by letting a tend to co. Here, no MLE solution exists and a 

Gumbel fit of the original observations is recommended. 

4.2.2 Detection of figure 4.3 

In order to  find a maximum for !, we must solve equations ( 4.6) and ( 4.7). Let m,(at) be 

the solution of ( 4.6) and mm(at) the solution of ( 4.7). Sometimes they will be abreviated 

as m, and m,. When m, = m, for a given at, we know that we have a solution of the 

likelihood equations. Corresponding to the log-likelihood plots, there will be two plots when 
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location parameter 

' Figure 4.2: log-profile likelihood e, for wind data 

location parameter 

Figure 4.3: log-profile likelihood e, for wave data 
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From figure 4.4 we can see that a MLE solution exists since the line mff  intersects the 

line m,. Data set 9, from Castillo [13], are yearly maximum wind speeds in miles per hour 

registered at a given location during fifty years. Here, a test of fit for the distribution of 

the maximum is required. The test is then based on the transformed observations Xi = -Xi. 

The maximum likelihood estimates are ti = -16.04, = 12.06 and 7iz = 2.38 which produce 

the following values of the test statistics: W2 = 0.0244, A2 = 0.16, u2 = 0.024. 

None of the test statistics is significant at 50% level, so the fit is considered very good. 

Figure 4.5 shows that, for the case of the wave data, these two lines appear to  be parallel ( 

with mff(a t )  < m,(at) ) and no MLE exists. One can interpret the figure as suggesting that 

the MLE of m will be infinite: then the limiting Frechet, namely the Gumbel distribution, 

should be fitted to  the data. Note that in these figures the lines tend to  parallel lines as 

at + co. This appear to be always the case. We can therefore discriminate between the 

two plots by using the asymptotic gap A between the lines. 

Let us define, 

A = lim (mf f (a t )  - mm(at)) 
fft+cQ 

to be the limiting gap between these lines. The value of A is found as follows, using a 

procedure proposed by Lockhart and Stephens [36] to address a similar situation arising for 

the case of the three-parameter Weibull distribution. The derivation of the procedure is 

described in the next section. 

Let 3 = n-lC:=l x,, s = n-I CTZl x: and T, = CT=l xTexp (yx;), where y is the solu- 

tion of 

The value of y can be obtained by iteration using an initial approximation yo in the right- 

hand side of the above equation. 
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The value of 7 is the limiting slope of the two lines and 

$ (T2 - STO) - ZTo 
0 = 

2To - 7 (T2 - %Ti) 

Thus a negative value of A implies the occurrence of figure 4.3. 

Note that the quantity, 

-A = %To + (STO - 7'2) 
%To - 7 (T2 - 2Tl) 

when 7 < 0, corresponds to the expression obtained by Lockhart and Stephens [36] for the 

case of the Weibull distribution. If we denote by A(7) the value of A for a given value of 7, 

obtained by solving ( 4.9), we have that the corresponding value of A, for the Weibull case, 

location parameter 

Figure 4.4: Lines m, and m, for wind data. 

4.2.3 Derivation of A 

Suppose that as a -t oo, the solution of the equations ( 4.6) and ( 4.7) is of the form 

m = 7a + bo + bl/a. The coefficients 7 ,  bo and bl will now be obtained for m, and m,, the 

solutions corresponding to ( 4.6) and ( 4.7), respectively. 
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location parameter 

Figure 4.5:  Lines ma and m, for wave data. 

Since (a-xi)-' = a-' ( 1  - 2)-', we want to examine the quantity ( 1  - O)-m as a -r m. 

To do this, we write (1 - %)-m as exp ( - m  In ( 1  - x ; / a ) ) .  Hence, up to terms of order three, 

Thus, 

- .  

Retaining terms up to order 2 ,  we can approximate it by 

If we put 
y x : / 2  + box; y x 3 / 3  + box:/2 + b lx ;  v = 

a 
+ 

a2 

the second term in the right-hand side of ( 4 .10 )  is eV, which can be expanded about zero 

to obtain, as a new approximation, 

which yields 



C H A P T E R  4. EDF T E S T S  F O R  T H E  FRECHET DISTRIBUTION 

Using the above approximation, and defining T, = Cy=l xTe+fxl, we then have: 

where 

Similarly 

where 

Also, 

We now use the above results in equation ( 4.6), which can be written as 

Thus, we have: 

2 where a: = n-' Cy'l x; and s = n-' Cy=l xi. 

Equating the coefficients of the constant term, we obtain the following equation for the 
I 



CHAPTER 4. EDF TESTS FOR THE FRECHET DISTRIBUTION 

Equating now the coefficients of lla, we have 

The solution of ( 4.11) for y and ( 4.12) for bo which here will be denoted by 6,, give the 

coefficients of the asymptote m, = y a  + 6,. 

We now write equation ( 4.7) as 

Expanding, we have: 

Substitution of the above expression into ( 4.13) gives 

Equating the constant terms, we arrive a t  the same equation in y obtained previously, that 

is. 

so that the two lines will be parallel. After some algebra, we also obtain 

The solution of ( 4.15) for bo now gives 6,, the constant term in the asymptote m, = 

ycr + 6,. Finally, using ( 4.12) and ( 4.15) we obtain the following equation for A = 6, - 6,, 

namely, 
7' 

(6, - 6,) [ZTo - yT2 + yZTl] = - (7'2 - ST') - ZTo , 2 

which then gives A as in the above section. 



CHAPTER 4 .  EDF TESTS FOR T H E  FRECHET DISTRIBUTION 

4.3 Test procedures 

Let 8 denote the vector of unknown parameters and e its MLE estimate. The test procedure 

can be summarized as follows: 

a) First, the MLE of 8 must be found as described above. 

b) Compute z; = F(xi;  8 )  for i = 1,. . . , n. 

c) Calculate the EDF statistics: 

d) Using the value of m or m refer to tables 4.6- 4.17 for the appropriate case and test 

statistic. If the value of the test statistic is greater than the value given for level p, the null 

hypothesis is rejected at level p. 

4.4 Asymptotic theory 

In this section, the process of finding the asymptotic distributions of the EDF statistics is 

briefly summarized. For a more detailed treatment of the subject, the reader is referred to 

Durbin [22] and Stephens [62]. 

Let Fn(x) stand for the empirical distribution function calculated from the sample and 

denote by e the MLE of the vector of p parameters with estimates where necessary. 

Following Durbin 1221 the process 

~ i i  {Fn(r) - F(x; e)} evaluated at i = F(x; e )  
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converges weakly to  a Gaussian process {Z(t)  : t E ( 0 , l ) )  which has zero mean and covari- 

ance function: 

p(s, t) = min(s, t )  - s t  - gT(t)~-1(6)g(t)  (4.16) 

where I(6) is Fisher's information matrix (per unit sample) and g(t)  is the vector 

evaluated a t  the point t = F(x; 6). 

The three statistics W2,  A2 and U2 are functionals of this process. 

Let pk(s, t )  be the covariance function for case k. Then 

and( see for example Durbin [22]) 

where y , Y, . . . are independent Xtl) variables and Xl, A?,  . . . are the eigenvalues of the in- 

tegral equation 

Similarly, 

where 

and 

Here, A;, A;, . . . are the solutions of the integral equation ( 4.18) with pk(s, t )  replaced with 
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Finally, U 2  is asymptotically the integral over ( 0 , l )  of the square of the process 

which has, as covariance function, 

1 1 

PL(S, t)dsdt - 1 ~ k ( %  t)ds - PI(% t)dt (4.20) 

The solutions of equation ( 4.18) with p;*(s, t )  replacing pk(s, t) are, in this case, denoted 

by Xi*, A;*, . . . 

4.4.1 Case 7 

Consider, as an illustration, the most complicated situation where all the parameters are 

unknown: 8 = (a, p ,  m). 

The elements of vector ( 4.17) are: 

EE 
m(l  - s) [- ln(1 - s)] 

91(s) = - P 

Using the transformation Y = - In(a - X), we also obtain: 
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d2 In f (x) mpm-' ln(a - x) - mpm-' l n p  - Pm-' 
= p-' + 

dpdm (a - zIrn 

Using the fact that Y has a Gumbel distribution with location and scale parameters re- 

spectively equal to - In P and l l m ,  whose moment generating function (MGF) is given 

with first and second derivatives at  t 

the Fisher's Information matrix is found to be 

where r denotes the Gamma function and I?', r" its first and second derivatives. A defini- 

tion of these functions can be found, for instance, in Abramowitz and Stegun [I]. 

For W2, the above expressions are inserted into ( 4.16) to obtain p k ( s , t )  and use of ( 4.19) 

gives the covariance function for A2. 
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Finally, for U2, ( 4.20) takes the form: 

p;'(s, t) = min(s, t )  - st + 1/12 - 1/2[t(l - t )  + s(1 - s)] 

where 6'j denotes the (i, j)-th element of I-'(O), and gl(t), gz(t) and g3(t) are the com- 

ponents of the vector g(t). 

The integrals involved in calculating p;*(s, t) are: 

4.5 Calculation of asymptotic percentage points 

Equation ( 4.18) is difficult to  solve analytically and the following technique was employed. 

A grid of 50 points equally spaced in (0 , l )  was used for values of s and t, as the integrals 

were approximated numerically. Also in the 50 by 50 grid, the covariance functions pk(s, t), 

p;(s, t), p;*(s, t) were evaluated, and the eigenvalue problem solved for several values of the 

shape parameter m. After the eigenvalues A;, Xf and Xf*  were obtained the asymptotic 

percentage points were calculated using Imhof's method [30]. The above procedure was 

repeated using 100 equally spaced points in the unit interval and the results compared. The 

tables obtained were almost identical except for a few discrepancies of less than two units 

in the third decimal figure. The percentage points given are those obtained using the larger 

grid. From the tables of asymptotic percentage points of the EDF statistics considered here, 

some equivalences between limiting cases of the Frechet and Gumbel tests can be deduced. 

Using the notation in Stephens [17, section 4.101, consider the following cases of a test 
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of fit for the Gumbel distribution, according to which parameters must be estimated. Case 

0: none; case 1: a ; case 2: ,D ; case 3: a, p. 

Based on the asymptotic percentage points of the EDF statistics for the Frechet distri- 

bution in the limiting cases m = 0 and m = co, we can establish a correspondence between 

the different cases of the Frechet and the Gumbel tests. They are summarized in table 4.1. 

An heuristic explanation for these equivalences can be given as follows: 

Table 4.1: Equivalent cases of the Frechet and Gumbel tests 

a) m - oo. 
For large m, it is known that the Frechet distribution is close ( in a well defined mathe- 

matical sense ) to a Gumbel distribution with parameters ac = (a - /3) and PG = Plm. 

Depending on which parameters of the Frechet distribution are unknown, these relations 

between the parameters can be used to deduce the corresponding case of the Gumbel test. 

m 
0 

m 

b ) m - 0  

When the shape parameter m is close to zero, the mode of the distribution becomes very 

close to the value of a, producing a MLE estimate whose variance decreases with m. When 

this is the case, the transformed observations can be regarded as if they were calculated 

using the true value of the location. Thus, the null hypothesis that the sample came 

from a Frechet distribution, will be equivalent to testing that the transformed observa- 

tions 2, = - ln(a - x), are a random sample from a Gumbel distribution with parameters 

aG = -In /3 and PC = l lm.  From these relations, the corresponding Gumbel case can be 

inferred from a given case for the Frechet test. 

Frechet case 
1 
3 
5 
7 
1 
3 
5 
7 

Gumbel case 
0 
1 
2 
3 
1 
3 
3 
3 
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4.6 Small sample distributions 

In order to investigate the speed of convergence of the empirical percentage points to their 

corresponding asymptotic limits, a simulation study was conducted for case 7. One thousand 

samples from a standard Frechet distribution were simulated for some selected values of m 

and n, and the percentage points were recorded. The results are shown in tables 4.3, 4.3 

and 4.5. These results indicate that the distribution of the EDF statistics converge very 

quickly to their asymptotic distributions and can be used with good accuracy for n > 20. 

The same remarks on accuracy of the nominal a apply as were made in section 2.5.1. 

4.6.1 Empirical significance level of the tests 

A question that arises is whether the significance level of the tests are mantained when m, 

rather than m, is used to obtain the percentage points from the tables for a given size of 

the test. It can be seen from tables that, for m > 2, the asymptotic percentage points vary 

little with m and it can be conjectured that the use of m should not affect the significance 

level of the tests. A Monte Carlo experiment was done to  verify this. 

For selected small values of m, and for n = 40, 1000 samples were simulated and the 

tests carried out at significance levels of 5% and 10%. For each sample simulated, the per- 

centage points for estimated m were obtained from the asymptotic tables by using linear 

interpolation in l j m .  The overall proportion p of rejected samples was then recorded, for 

nominal levels 0.05 and 0.10. The results are given in table 4.2. It can be seen that the 

significance levels of the tests are close to p; however, the tests appear to be conservative, 

with p less than p. This may be explained by the fact that the asymptotic percentage points 

were used in the simulation process. 

4.7 Conclusions 

Tests of fit for the three-parameter Frechet distribution, based on the EDF statistics w * , A ~  

and U 2  have been presented and the asymptotic distributions of the test statistics have 

been found. Simulation results obtained for the case when the three parameters are known, 

indicate that the usual property of fast convergence of these test statistics to their asymp- 

totic distribution, observed for distributions in the location-scale family, is preserved. Even 
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Table 4.2: Empirical significance level of EDF tests. n=40. Case 7 

Table 4.3: Empirical percentage points of W2: Case 7 
Significance level 

though the asymptotic distribution of the statistics depends on the value of the shape pa- 

rameter rn, the empirical study shows that the use of the estimate of the shape parameter 

to  carry out the test, produces little effect on the significance level when interpolating in 

1/m SO that this dependence does not represent an objection for their use. This is of impor- 

tance due to the fact that many studies have indicated that the tests based on the the EDF 

statistics, specially the test based on A ~ ,  are powerful against a wide range of alternatives 

and therefore their use is recommended. 
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Table 4.4: Empirical percentage points of A2: Case 7 
- signifiEaice level 
0.150 1 0.100 1 0.050 1 0.025 1 0.010 u 

Table 4.5: Empirical percentage points of U 2 :  Case 7 
Significance level 
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Table 4.6: Asymptotic percentage points of w2: Case 1 
Significance level 

Table 4.7: Asymptotic percentage points of W2:  Case 3 
Significance level 

0.025 

0.270 
0.251 
0.222 
0.198 
0.181 
0.150 
0.142 
0.141 
0.142 
0.142 
0.143 
0.144 

0.250 

0.115 
0.108 
0.098 
0.090 
0.084 
0.074 
0.071 
0.071 
0.071 
0.071 
0.072 
0.072 

0.100 

0.174 
0.162 
0.145 
0.131 
0.122 
0.104 
0.099 
0.099 
0.099 
0.100 
0.100 
0.100 

0.150 

0.148 
0.138 
0.124 
0.113 
0.105 
0.090 
0.087 
0.087 
0.087 
0.087 
0.088 
0.088 

0.050 

0.221 
0.206 
0.183 
0.164 
0.151 
0.127 
0.120 
0.120 
0.120 
0.121 
0.122 
0.122 
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Table 4.8: Asymptotic percentage points of W2: Case 5 
Significance level 

Table 4.9: Asymptotic percentage points of W2: Case 7 
Significance level 



C H A P T E R  4. EDF T E S T S  F O R  T H E  FRECHET DISTRIBUTION 

Table 4.10: Asymptotic percentage points of A2: Case 1 
Significance level 

Table 4.11: Asymptotic percentage points of A2: Case 3 
Ice lev 
0.050 
1.316 
1.245 
1.133 
1.041 
0.973 
0.827 
0.770 
0.759 
0.755 
0.754 
0.753 
0.753 



C H A P T E R  4. EDF TESTS  FOR T H E  FRECHET DISTRIBUTION 

Table 4.12: Asymptotic percentage points of A2: Case 5 
Significance level 

Table 4.13: Asymptotic )ercentage points of A2: Case 7 
lce level ignifici 

0.100 
0.630 
0.593 
0.557 
0.535 
0.522 
0.505 
0.506 
0.509 
0.511 
0.513 
0.515 
0.517 
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Table 4.14: Asymptotic percentage points of U2: Case 1 
Significance level 

Table 4.15: Asymptotic percentage points of U2: Case 3 
level 
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Table 4.16: Asymptotic percentage points of U2: Case 5 
Significance level 

Table 4.17: Asymptotic )ercentage points of U2: Case 7 
ignificance level 
mq - 



Chapter 5 

EDF tests for the Gumbel 

distribution 

5.1 Introduction 

Tests of fit based on the empirical distribution function (EDF) statistics A2, W2 and U2 

are developed for the problem of testing goodness-of-fit for the Gumbel distribution when 

the parameters are estimated from a sample censored at the right. The type of censoring 

considered here is known as type II, which corresponds to  the situation in which, for fixed 

r, the (n - T )  largest observations are missing. 

Such a problem has some importance due to its applications in extreme-value problems 

where it is often required to test goodness of fit for the tails of the distribution. In par- 

ticular, the Anderson-Darling statistic is known to be a powerful statistic for detecting 

departures in the tails from the hypothesized distribution, which makes it a natural choice 

to be applied in this situation. 

The distribution of a modified form of the Anderson-Darling and Cram&-von Mises statis- 

tics A2 and W2 has been empirically investigated in papers by Wozniak and Li [77] and 

by Aho, Bain and Engelhardt [2], [3] in connection with tests of fit for the two-parameter 

Weibull distribution. In the last two papers referenced above, the formula used to compute 

W2 is that for the uncensored case and its use was proposed as a simplified form of the 
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statistic. Tables obtained by simulation are given for some selected significance levels and 

censoring rates. In Wozniak and Li [77], a table of empirical percentage points of was 

given for selected censoring rates and a significance level 5% only. Although the formula 

for used in the simulations was not given, we believe ( due to similarities in the results 

reported ) that the formula for the uncensored case was also used. 

5.2 Estimation and Test procedures 

Let x(,), . . . , x(,) denote. the order statistics in a random sample of size n and suppose that 

we want to test the null hypothesis that the random sample was drawn from the distribution: 

based on the T smallest order statistics x ( ~ ) ,  . . . , x(,) only. 

The distribution ( 5.1) is known as the Gumbel or Type I extreme-value distribution for the 

minimum. 

The test of fit will be based on the quantities z, = F (z(;), &,$), the probability integral 

transformation with the parameters estimated by Maximum Likelihood. For the right- 

censored sample, the log-likelihood is given by 

A = - r l n p - x  
a - X(*) - X ( r )  [" + exp ( )I - (n - T) exp ( ) (5.2) 

i=l 

The maximum likelihood estimators (MLE) are then the solutions of 

..P(~(,)/P> + ( n  - r )  exp(x(r)/P) 
a - p l n  I = 0 (5.3) 

T 

Equation ( 5.4) does not depend on a and it is solved, usually by iteration, to obtain ,b. 
The estimator of a is then obtained by substituting into ( 5.3). 
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Once the parameters have been estimated, a test of fit can be carried out as follows: 

a). Compute zi = F (xci), &, ,d) 

b). Calculate the EDF statistics in their version for a type I1 right-censored sample ( 

see Stephens [17, Section 4.71 ), namely 

1 
A:, = -- x ( 2 i  - 1) [ln qi) - ln{l - 

n .  
z = 1  
T 1 

-2 x ln{l - yi)} - - [(T - n)'ln{l- z,) - r 2  1n zr + n2zr 
i=l n I 

T w,?. = 2 (qi) - y) + - + 1 (+) - 33 
i=l 12n2 3 

c). Using the value q = 1 - r l n ,  the percentage of right-censoring, refer to  the tables 

given. If the value of the test statistic exceeds the value from the table, reject the null 

hypothesis a t  the corresponding significance level. 

5.3 Asymptotic distributions 

The asymptotic theory of the EDF-based statistics A2, U2, W2 for doubly censored samples 

with known parameters (case 0) has been given by Pettitt and Stephens [43]. Pettitt [44] 

modified the theory given in Durbin [22] for testing normality from censored samples with 

parameters estimated by maximum likelihood. Here, the same procedure can be applied to 

find the asymptotic distribution of the test statistics for the Gumbel distribution. 

In order to  derive the asymptotic distribution of the test statistic it will be assumed that 

q = 1 - p ( with p = r ln ) ,  the proportion censored, remains constant as n tends to infinity. 

For a singly right-censored sample, the process : 

fi {fn(x) - f (x; 6 ,  ,dl) 
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evaluated at i = F(x;  B, p), converges weakly to a Gaussian process {Y(t) : t E (O,p)} whose 

covariance function is given by: 

p(s, t )  = min(s, t) - st - gT(s)vg(t)  for 0 5 s ,  t 5 p. 

where V = nI-'(a,P) denotes Fisher's information matrix for the censored case, and g is 

the vector with components: 

evaluated at  t = F(x; a ,P) .  

For the Gumbel distribution ( 5.1 ), the following quantities A11,A12,A21 and A22 were 

given in Harter and Moore [28]. 

P2 All = lim --E 
n+co n [El = 1 - q  

P2 A12 = A21 E lim --E = rLhq(2)  - qlnqln(-lnq) 
n+w n 

P2 d2X 
Ai2= n+co lim --E[w] n = q - q l 1 n ~ l n ( - l n ~ ) [ 2 + l n ( - l n q ) ]  

where 

rw(z)  = lw ~ ' - ' e -~dy  

and I'L, r':, denote the first and second derivatives of rw(z)  with respect to  z. 

If we let 

then the asymptotic covariance matrix of the maximum likelihood estimators is CA-'. 

We also have: 
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(1 - t )  ln(1 - t )  In(- ln(1 - t)) 
g2(t) = P 

Since p(s, t )  will not depend on the parameters, we take P = 1 to obtain: 

The statistics w,?,, A:,, and U:, are, asymptotically, functions of the process {Y(t)}, that 

is, 

where 

and 

are Gaussian processes defined in (0, p) with zero mean and covariance functions respectively 

equal to 

Let p*(s, t)  denote the covariance function of the asymptotic process for a given statistic. 

The limiting distribution of the test statistic ( see for example Durbin [22] ) is that of 

where vl, v2,. . . are independent Xfl) variables and A;, A;, . . . are the eigenvalues of the in- 

tegral equation 
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5.4 Calculation of asymptotic percentage points 

The percentage points of the asymptotic distribution of the test statistics were found nu- 

merically using 50 points in ( 0 , p )  to approximate the integral and solve ( 5 .5 ) .  In the 50 

by 50 grid, the appropriate covariance function was evaluated and the eigenvalue problem 

solved for values of p = 0.05(0.05)0.95. Once the eigenvalues were obtained, the asymptotic 

percentage points were calculated using Imhof's method [30]. The results are shown in ta- 

bles 5.1 to  5.3. As a check of accuracy, the procedure was repeated using a 100x 100 grid 

and the results compared. The maximum difference encountered was less than one unit in 

the fourth decimal place, except for a few values corresponding to  p > 0.9. 

Table 5.1: Asymptotic percentage points of A:,,, for values q = 1 - r / n  
Significance level 
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Table 5.2: Asymptotic percentage points of U;, , for values q = 1 - r / n  
Significance level 

Table 5.3: Asymptotic percentage points of W,?,, for values q = 1 - r ln  
Significance level 

-l-Kmir 
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5.5 Small sample distributions 

In order to investigate the speed of convergence to the asymptotic points, a simulation study 

was conducted using 10,000 samples. The results showed that the speed of convergence 

decreases as the rate of censoring increases. From tables 5.4 - 5.6, it appears that when 

the percentage of censoring is not too large ( say, q < 0.7 ) the asymptotic tables can be 

used with good accuracy for n > 20. For heavily censored samples ( q 2 0.7) larger sample 

sizes will be required, but of course one would expect difficulties in testing for a distribution 

with over 70% of the observations censored. 

Table 5.4: Empirical percentage points of W,?, 
Significance level 
m q  - 
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Table 5.5: Empirical percentage points of A;,, 

Table 5.6: Empirical percentage points of U z ,  
Significance level 



Appendix A 

Data sets 



APPENDIX A. DATA SETS 

Table A.l: Data set 1: Cycles to failure of springs 

Table A.2: Data set 2: Times to  failure of air conditioning equipment 

Table A.3: Data set 3: Artificial 

Table A.4: Data set 4: Distances to  a nuclear power plant 
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Table A.5: Data set 5: Fatigue strengths of wire 

Table A.6: Data set 6: Times to failure of an electronic module 

Table A.7: Data set 7: Strengths of glass fiber ( 15 cm.) 
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Table A.8: Data set 8: Strengths of glass fiber ( 1.5 cm.) 

Table A.9: Data set 9: Wind speeds 

Table A.lO: Data set 10: Sea waves 
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