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Abstract

A descriptive and exploratory study aimed at uncovering genetic and morpho-
metric differences among ten geographical populations of Eastern White Pine
(Pinus strobus L.) involves two data sets. The first data set contains mor-
phological characteristics of 3000 Eastern White Pine cones, and the second,
genetic information on 18 loci for each of 300 trees from which the 3000 cones
were harvested. Using exploratory descriptive techniques, there is a suggestion
of geographical population differences in cone morphometry. By a combination
of multivariate techniques and ANOVA models, statistical analyses reveal that
although cone morphometry of Eastern White Pine varies across geographi-
cal populations, variation from this source accounts for only a small portion
of the total morphometric variability exhibited by the species. Analyses on
the genetic data set show that there is very little variation attributable to ge-
ographical population differences. Finally, polychotomous logistic regression
models are proposed to investigate the possible relationship between the ge-
netic traits of the species and the morphometric measurements of its cones.
The conclusion is that there exists only mild statistical evidence showing that
the genotypes of certain loci studied depend on the morphometric measure-

ments of the cones, especially on those of cone scales.
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Chapter 1

Introduction

1.1 Background

Eastern White Pine (Pinus strobus L.), an important commercial species which
constitutes the most valuable softwood lumber resource in eastern Canada, is
a characteristic tree in the Great Lakes - St. Lawrence Forest Region, but its
range also extends into the southeastern parts of the Boreal Forest Region,
eastward into the Acadian Forest Region and south throughout the Deciduous
Forest Region. Because of its low shrinkage and uniform texture, it is used
extensively for patterns, window sashes and frames. It is also the tallest conifer
in eastern Canada, commonly reaching heights of 100 ft. and diameters of 3 ft..
The crown of a mature tree growing in the open is composed of wide-spreading
branches at approximately right angles to the trunk in its mid-portion. In the
upper part of the tree the branches ascend, giving a broadly oval outline which
often becomes irregular, or asymmetrical, owing to the effect of prevailing wind.
In closed stands, the tree is often clear of branches over the lower two-thirds

and the crown is columnar. It is found on many different soils[6].

In order to define the population structure of Eastern White Pine in Québec



as well as in the other parts of eastern Canada so that several other studies
can be conducted, research scientists at the Laurentian Forestry Centre of
Forestry Canada are undertaking a study aimed at determining the nature
and extent of the genetic variability of this principal coniferous forest species,
creating improved synthetic varieties through the identification, selection, and
hybridization of superior genotypes and populations, and refining forest tree

breeding techniques for maximization of commercial yields[11].

In the natural population of living organisms, the range of genetic diversity
is determined by concurrent or antagonistic forces, mainly mutation, recombi-
nation, natural selection, gene flow, and random genetic derivation. Specific
environmental conditions may also play a significant role in certain cases by
causing disturbances that alter the spatial uniformity of populations. Depend-
ing on the more or less dominant role played by one or more of the above ele-
ments, natural populations may exhibit greater or lesser genetic differentiation
which may be observed at both the molecular and morphological levels[11].

Two types of data are therefore collected in this study from a sample of 300
Eastern White Pine trees. The first is the eight morphometric measurements
of the species’ cones, including cone length, cone width, number of scales on
the cone, central scale length, central scale width, winged scale length, num-
ber of sound seeds and number of empty seeds. The second captures genetic
characteristics of the trees by recording the genotypes of eighteen chosen loci
where the solutions in the lab are available. The data was then distributed
among statisticians through the Case Study section of the 1993 Annual Meet-
ing of Statistical Society of Canada held at Acadia University, Wolfville, Nova

Scotia.

This project began with participation in the Case Study organized by SSC
in which participants were invited to address three clearly-defined questions
(see Section 1.3). It is expansion of the two reports that I submitted to SSC

before the meeting.



1.2 Data Structure

The method of data collection, or the sampling scheme, plays an important role
in statistical modeling because model’s validity relies on certain assumptions
about the data, and different models usually prespecify different data struc-
tures. As Sir Maurice Kendall[7] noted:“... a point which is often ignored in
the treatment of statistical data: the method of analysis depends on the model
we have in mind; and this may depend on the way in which the data were ob-
tained.” Therefore a full understanding of sampling scheme necessitates the
right choice of statistical model.

For this study, ten Eastern White Pine populations are sampled in Québec
(Figure 1.1). Populations 1 to 4 are from the Ottawa valley, populations 5
to 8 are from the St.-Lawrence lowlands, population 9 is from Anticosti, and
population 10 from Abitibi. The last two populations are sampled at the
margin of the natural range of the species; Anticosti Island is furthest east
and under the influence of a maritime climate, Abitibi is furthest west and

under continental conditions.

In each of the ten populations, 30 trees bearing mature cones are selected
so as to cover the geographical area of the population; selected trees have a
well developed crown and stand at least 30 meters apart to avoid inbreeding;
selection is otherwise random. On each selected tree, a cone bearing branch
which protrudes from the crown is shot down with a 12 gauge deer gun, and
10 cones are randomly selected from it. For each of the 3000 cones harvested,

8 morphometric measurements are taken: !

1Cone width is measured at the fattest point before scales opened to shed their seeds.
A central scale is randomly selected along the cone circumference at cone mid-length; it is
removed, and its length and width are measured. Eastern white pine seeds have a wing
which facilitates natural dissemination. When the winged seed is released from the scale,
it leaves a scar from which the length of the winged seed can be measured directly on the
removed central scale. (It is in fact the total length of the seed and its attached wing.) This
measure thus is called winged scale length. Seeds from the middle of the cone are separated
into sound and empty seeds with a seed blower, and examined by X-ray.
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Figure 1.1: Ten Geographical Populations of Eastern White Pine




Notation Variable Units

Xy Cone length mm
X2 Cone width mm
X3 Number of scales Number
X, Central scale length mm
Xs Central scale width mm
Xe Winged scale length mm
X7 Number of sound seeds Number

Xs Number of empty seeds Number

Overall, we have 3000 cones in our first data set and each cone has eight

measurements.

For the second data set, we have only 300 records, one for each tree. They
are the same trees as in the first data set. There are 18 variables in this data
set, each standing for the genotype of a locus of the tree. (A locus is a location
of enzyme on the chromosomes.) For each variable or locus, tree genotype is
recorded as a pair of letters which correspond to the alleles this tree bears at
the locus associated with the variable. Eastern white pine is a diploid species.
Each individual has 12 pairs of homologous chromosomes on which its two
alleles can be found for a given locus. In any population, there may exist
several alleles. For this data set, however, we only observe three alleles A, B
and C. An individual which is homozygous in a particular locus (i.e. both its
alleles are of the same form in this locus) may be identified as AA, BB, or CC,
depending on which form of the allele it bears. For certain loci (or variables),
all 300 individuals are homozygous of the same type: all 300 trees are AA, for
example. Such a locus is said to be fixed. A heterozygous individual (i.e. one
which has two different alleles for a given locus) is coded AB, AC, or BC, for
example, depending on which pair of alleles it has. In certain loci, some trees
are homozygous, and some are heterozygous. All possible combinations of two
alleles are not necessarily observed. Thus, we have 300 trees as our sampling
units in this data set, and 18 loci as our variables for each unit.



Appendix A illustrates the structures of these two data sets.

1.3 Objectives

The objectives of the statistical analysis are defined by the researchers and
distributed by SSC. They are:

1. To describe variability in Eastern White Pine cone morphometry within

and between populations.

2. To analyze genetic variability within and among Eastern White Pine
populations.

3. To investigate whether genetic characteristics depend on cone morphom-
etry. (It is generally recognized that cone morphometry is subject to
natural selection; the presence of a relationship between genetic traits
and cone morphometry would suggest that the loci studied may also be

the object of natural selection.)

We will try to answer the above three questions through our data analysis.
In Chapter 2 we will do some preliminary analysis to get a ‘feeling’ about the
data. In Chapter 3 we will build our model framework based on the objective
and our preliminary analysis. In order to overcome some technical difficulties
in modeling the data which will be presented in Chapter 5, we need to do some
further preliminary analysis in Chapter 4. Finally, in Chapter 6 the results of

our analysis will be summarized.



Chapter 2
Preliminary Analysis: Part 1

Data analysis is a dynamic process. The first step in the process is a descriptive
~ analysis, consisting of anomaly detection and data reduction. In this phase of
the analysis, we keep in mind the ultimate objectives of the study, but we do
not specify models, or attempt inferences. This step is an essential preliminary
to the modelling process and inferential techniques.

2.1 Morphometric Data Set

2.1.1 Univariate Scanning

Although this is a multivariate data set, we looked at the eight morphometric

variates one by one first.

Detecting Errors

Initial scanning of the data set found only one mistake in this data set, i.e.,
the observation of X5, number of empty seeds, in the 3rd cone on the 17th tree



of the 2nd population is recorded as —2. This is obviously a coding error. We

think the most probable true value for this observation is 2, although our choice
is not entirely objective. After all, it is computationally more economical than
treating the observation as missing, in which case the design of experiment is

unbalanced and incomplete.

Descriptive Statistics

After data correction, descriptive statistics are given in the Table 2.1. Note

that except for X (number of empty seeds), the means and medians are very

close for all variates, and the skewnesses are very small. These suggest that
the distributions for these variates are almost symmetric and that there are

probably not many abnormal observations in the data set.

Table 2.1: Descriptive Statistics for Grand Population

Variates(unit) | Mean Median Range SD Skewness Kurtosis
X, (mm) | 127 126 72211 186 428 383
X;(mm) | 194 193 133-27.5 206 .208  —.003
Xs(no.) 61.0 60.0 33-106 10.0 .569 .595
X4(mm) 27.6 27.5 18.8-38.1 2.89 .229 .140
Xs(mm) 14.1 14.0  9.30-19.3 1.33 .051 .262
X¢(mm) 23.5 234  14.0-32.5 2.81 173 207
Xi(no) | 414 390  0-146 222 430 .10l
Xs(no.) 15.5 11.0 0-106 14.8 1.74 3.69




Exploring Patterns

The histograms of the eight morphometric variates were then plotted to see if
there are any unusual patterns or outliers of observations. (See Figure 2.1 and
Figure 2.2.)
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From the histograms we can see that except for X3 (number of empty
seeds), all other seven variates appear to have a bell-shaped normal distribu-
tion with different parameters. Among them, X, (cone length), X3 (number
of scales) and X7 (number of sound seeds) are slightly skewed to the right. Be-
cause of the very large sample size, even negligible departure from normality
may turned out to be highly significant and thus it is not necessary to test for

normality formally.
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Visual Comparison Across Populations

Boxplots for each of the eight morphometric variates across populations are
presented in Figure 2.3 and Figure 2.4. We rearranged the ten populations
according to the order for the medians of X; (cone length), a variate we feel
the most important in characterizing cone morphometry. The order of the
populations is 10, 7, 8, 4, 9, 6, 1, 3, 2, 5.
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Figure 2.3: Boxplots for Morphometric Variates across Populations (Part I)
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As can be seen from these boxplots, the ranking of populations on most of
the variates are quite consistent with that of X;, most notably, on X,, X and
X3, Xs. Also, population 10 differs from other populations most dramatically
since its measurements on most of the morphometric variates are on the small
side while its measurements on X, (cone width) and X3 (number of scales on
the cone) are the largest among all populations. The presence of vast amount
of ‘outliers’ at the upper tail of the distribution of X3 may in fact be the
evidence that X3 is not normally distributed.
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Figure 2.4: Boxplots for Morphometric Variates across Populations (Part II)
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2.1.2 Multivariate Exploration

Correlation Structure and Its Implications

A first step in exploring this nearly-normal multivariate data set is to examine

its correlation matrix. The original correlation matrix for the entire data set
of 3000 cones is presented as follows ( Table 2.2):

Table 2.2: Correlation Matrix (rounding the figures to the 3rd digit)

X1 X; X5 Xy X5 Xe X: X3
X1 1
X, 514 1
X3 .570 .508 1
X, .626 .401 .133 1
Xs .521 .603 .293 535 1
Xe 597 .388 .108 .948 .532 1
X7 .360 .281 .345 .137 .258 .122 1
Xs .182 .108 .228 .130 .219 .129 -.281 1

In the case of a relatively small matrix it is often possible, by visual exami-

nation of the elements, to discover subsets of variates which correlate relatively

highly with each other. From the correlation matrix in Table 2.2, we can see

that:

1. The first six variates (X; — Xs), most of them being measurements of

the cone and its bearing scale, are generally moderately correlated with

each other. However, the last two variates (X7 and X3), number of sound

seeds and number of empty seeds, are loosely correlated with the first

six.

2. Among the first six, the correlation between central scale length (X,)
and winged scale length (X) is surprisingly high (0.948).

When we rearrange the order of the variates in the matrix, and round the

13




figures to the first digit, the structural relationship among the eight variates
becomes more apparent ( Table 2.3).

Table 2.3: Rearranged Correlation Matrix(rounding the figures to the 1st digit)
Xe | Xi X2 X5 Xs3| X7 Xs

X4
Xq| 1
Xe! 9 1
X6 611
X, 4 4] .5 1
Xs! 5 5|5 6 1
Xs|].1 16 b5 3 1
X1 114 3 3 3|1
Xs| .1 1.2 1 2 2|-3 1

Moreover, we have the following observations and suggestions:

1. According to the magnitude of the correlations, the variates may be
partitioned into three distinct groups namely (X, Xs), (X1, X2, X,
Xa) and (X7, Xs)

2. Although variate X3 (number of scales) is in the second group, its cor-
relations with the variates X, and Xg may suggest that it could also be
classified into the third group. This may be attributed to the fact that

variate X3, like X7 and X, is a ‘count’ observation.

3. X, and X¢ have almost the same correlations with each of the other
six variates, another piece of evidence suggesting that they are nearly
perfectly linearly correlated with each other. !

At last, we want to add that each of the ten populations exhibits very
similar patterns of correlation structures, although small variations on certain

cells (correlations) do exist. See Appendix B for the ten correlation matrices.

1Based on the assertion:

p(Xa, Xs) = 1 <= p(X4,X) = (X6, X) VX rv.

14



Multivariate Visual Exploration

Star plots for the medians of the 10 populations on each of the eight morpho-
metric variates are shown in Figure 2.5. The radii are scaled into the interval
[0.2,1] using a linear transformation, with the largest population having a ra-
dius of 1 and the smallest population having a radius of 0.2. Thus a long radius
on a star would be associated with a population having a relatively large value
on that variate.

10

Figure 2.5: Visual Comparison of Populations (based on scaled medians across
populations) :

15




So we can envisage how populations differ from each other from the plot.
What is immediately apparent is that population 2 and population 5 have
relatively large morphometric measurements on most of the variates; while
population 7 and population 10 have very small morphometric measurements

on most of the variates.

2.2 Genetic Data Set

This data set contains the genotypes for the 300 trees on eighteen selected loci.
The genotype for the first locus of tree 29 in population 3 is not given. We
will treat it as missing since we could use the rest of our data set to calculate
the genotypic frequency, on which most of our analysis is based.

2.2.1 Descriptive Statistics

Suppose different genotypes are considered to be different ‘categories’, and the
number of possible genotypes on any locus is finite, then the trees sampled will
essentially follow a multinomial distribution for any given locus. These distri-
bution parameters are not necessarily the same from one locus to another. In
some loci, the distributions may be reduced to binomial or degenerate distri-
butions. The sample statistics for all 300 trees combined are calculated and
presented in table 2.4.

As can be seen from the table, there is always an apparent dominant geno-
type on most of the loci studied (except for Loci 1 and 10 on which the dom-
inant genotypes are not so apparent), such as genotype AA on Locus 2, or
genotype BB on Locus 14. The trees which have the dominant genotype on a
certain locus usually account for 75% to 100% of the total 300 trees sampled.
The strong dominance is in fact the result of inbreeding in natural popula-

tion. The fact that most dominant genotypes are homozygous (of the same

16




allele) suggests there is not much heterogeneity among different geographical

populations of trees.

Table 2.4: Frequency Table of Observed Genotypes

Percentage of Genotypes
Locus | Enzyme | AA AB AC BB BC CC | Total
1 Aco .070 .204 .090 .211 .311 .114 | 299
2 Hex |.787 .127 .087 300
3 Got-1 | .997 .003 300
4 Got-2 | .960 .040 300
5 Got-3 | .200 .527 273 300
6 Ak .003 .160 .003 .773 .057 .003 | 300
7 Fum |.980 .020 300
8 Gép 013  .217 770 300
9 Idh 1 300
10 Mdh-1 | .017 .070 .207 .047 .322 .337| 300
11 Mdh-2 .007 923 .070 300
12 Mdh-3 1 300
13 Mpi .003 .067 .930 300
14 Pgm-1 017 927 .053 .003 | 300
15 Pgm-2 | .003 .067 .030 .543 .320 .037 | 300
16 6pg 1 300
17 Pgi-1 | .957 .043 300
18 Pgi-2 |[.853 .090 .053 .003 | 300

2.2.2 Genotypic Frequencies Across Populations

The o'bserved genotype frequency across ten populations is then portrayed
in Table 2.5 to Table 2.18. These tables reveal genetic differences, if there
exists any, among the ten populations for most of the loci studied. Based on
these contingency tables, routinely, we should be able to perform x? tests of
homogeneity of genotypic distributions across ten populations. However, due
to the presence of vast amount of low frequencies in certain cells, x* tests may

not be valid here. (In fact, the presence of vast amount of low frequency cells

17



and their consistency across populations can be regarded as an indicator of
homogeneity of genotype distributions.) There is only one exception: Locus 5
(Got-3) do not have many of such cells. The x? test statistics on this locus is
25.6 with 18 degrees of freedom, yielding a p-value of 10.8%. We thus can not
conclude heterogeneity in this case either.

We thus decided to test the following hypotheses: that the proportions of
trees with dominant genotype are the same across ten populations. The last

row in each table shows the test result.

Degenerate Case:

On Locus 9 (Idh), Locus 12 (Mdh-3) and Locus 16 (6pg), all 300 trees are
homozygous of the same genotype AA. These three loci furnish no information
about the genetic variability among populations. See Table 2.4.

Binomial Case:

On Locus 3 (Got-1), Locus 4 (Got-2), Locus 7 (Fum), and Locus 17 (Pgi), we
have two genotypes AA and AB (See Table 2.5 to Table 2.8). These loci are
almost homozygous with genotype AA being the dominant one. Little genetic

variability is expected across populations.

Table 2.5: Locus 3(Got-1): Genotypic Frequency Across Populations
[ Genotype Population

1 2 3 4 5 6 7 8 9 10
AA 30 29 30 30 30 30 30 30 30 30

AB 1
Total 30 30 30 30 30 30 30 30 30 30
| test | x?=0.05 p=1.00 ]

18



Table 2.6: Locus 4(Got-2): Genotypic Frequency Across Populations

Genotype Population
1 2 3 4 5 6 7 8 9 10
AA 29 30 28 29 29 29 30 27 29 28
AB 1 1.2 1 1 1 1 3 1 2
Total (30 30 30 30 30 30 30 30 30 30
| test | x°=05 p=1.00 |

Table 2.7: Locus 7(Fum): Genotypic Frequency Across Populations

Genotype Population
1 2 3 4 5 6 7 8 9 10
AA 28 30 29 30 30 30 30 28 30 29
AB 2 1 2 1
Total |30 30 30 30 30 30 30 30 30 30
[ test | x?=04 p=100 T
Table 2.8: Locus 17(Pgi-1): Genotypic Frequency Across Populations
Genotype Population ]
1 2 3 4 5 6 7 8 9 10
AA 28 27 27 28 30 30 30 29 28 30
AB 2 3 3 2 1 2
Total {30 30 30 30 30 30 30 30 30 30
| test | x°=0.86 p=1.00 |

Trinomial Case:

Five loci (Hex,Got-3,G6p,Mdh-2 and Mpi) are found to have three genotypes.
They are not the same three genotypes on all these loci. See Table 2.9 to
Table 2.18. Note for Locus 13(Mpi), we only observe one allele A in the entire
300 trees sampled. If this tree can be regarded as an outlier, the locus is

degenerated into a binomial case. On the other hand, this also implies that

the multinomial classification of loci based on the sample may not hold for the

population due to chance error of sampling.
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Table 2.9: Locus 2(Hex): Genotypic Frequency Across Populations

Genotype Population
1 2 3 4 5 6 7 8 9 10
AA 27 23 27 22 21 17 28 28 21 22
AB 1 3 1 4 7 8 1 1 5 17
BB 2 4 2 4 2 5 1 1 4 1
Total 30 30 30 30 30 30 30 30 30 30
| test | x: =499 p=0.835 [

Table 2.10: Locus 5(Got-3): Genotypic Frequency Across Populations

Genotype Population
1 2 3 4 5 6 7 8 9 10
AA 8 9 6 7T 4 9 3 4 4 6
AB 17 13 17 11 17 16 14 14 23 16
BB 5 8 7 12 9 5 13 12 3 8
Total |30 30 30 30 30 30 30 30 30 30

[ test

I

x>=581 p=0.759 |

Table 2.11: Locus 8(G6p):

[ Genotype Population
' 1 2 3 4 5 6 7 8 9 10
AA 2 1 1
AB 6 8 7 6 9 6 4 2 8 9
BB 24 22 23 24 21 22 25 28 22 20
Total |30 30 30 30 30 30 30 30 30 30|
[ test | x> =2.08 p=0.99 ]

Table 2.12: Locus 11(Mdh-2): Genotypic Frequency Across Populations

Genotype Population
1 2 3 4 5 6 7 8 9 10
AB. 1 1
BB 25 27 26 29 27 30 28 28 27 30
BC 5 2 4 1 3 1 2 3
Total 30 30 30 30 30 30 30 30 30 30
[ test | x!=103 p=1
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Table 2.13: Locus 13(Mpi): Genotypic Frequency Across Populations

Genotype Population |

1 2 3 4 5 6 7 8 9 10 ‘
AA 1

AB 3 2 2 3 1 1 1 2 3 2

BB 26 28 28 27 29 29 29 28 27 28

Total 30 30 30 30 30 30 30 30 30 30

| test | x!=035 p=1 ]

4-nomial Case:

On each of Locus 14(Pgm-1) and Locus 18(Pgi-2), four genotypes are observed.
The contingency tables are Table 2.14 and Table 2.15.

Table 2.14: Locus 14(Pgm-1): Genotypic Frequency Across Populations

Genotype Population
1 2 3 4 5 6 7 8 9 10
AB 1 2 1 1
BB 28 28 26 25 26 29 30 30 27 29
BC 1 2 3 5 2 1 2 ]
CC 1
Total 30 30 30 30 30 30 30 30 30 30 :
| test | x‘ =116 p=0.999 |
Table 2.15: Locus 18(Pgi-2): Genotypic Frequency Across Populations “
Genotype Population i |

1 2 3 4 5 6 7 8 9 10
AA 20 25 25 28 26 27 27 29 21 28
AB 5 4 2 2 2 3 3 1 4 1

AC 4 1 3 2 5 1

CC 1

Total [30 30 30 30 30 30 30 30 30 30
[ test | x2=322 p=0955 |
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6-nomial Case:

Locus 1 (Aco), Locus 6 (Ak), Locus 10 (Mdh-1) and Locus 15 (Pgm-2) exhibit
the greatest diversity of genotypes — all six possible genotypes are presented

on these loci.

Table 2.16: Locus 1(Aco): Genotypic Frequency Across Populations

_C‘r_enotype Population
1 2 3 4 5 6 7 8 9 10
AA 2 2 2 3 1 0 3 2 2 4
AB 7 6 6 8 6 6 4 6 5 T
AC 4 1 5 4 3 1 4 2 2 1
BB 7 3 4 3 8 5 8 7 10 8
BC 8 11 9 8 7 18 6 10 7 9
CC 2 7 3 4 5 0 5 3 4 1
Total 30 30 29 30 30 30 30 30 30 30
[ test | x’=105 p=0302 ]

Table 2.17: Locus 6(Ak): Genotypic Frequency Across Populations

Genotype Population

1 2 3 4 5 6 7 8 9 10
AA 1
AB 9 3 4 6 6 4 3 6 3 4
AC 1
BB 21 25 21 24 24 24 22 24 24 23
BC 2 5 1 5 3 1

CC 1
Total {30 30 30 30 30 30 30 30 30 30

|  test | x*=0.76 p=1 |
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Table 2.18: Locus 10(Mdh-1): Genotypic Frequency Across Populations

Genotype Population
1 2 3 4 5 6 7 8 9 10
AA 1 2 1 1
AB 1 4 2 3 1 2 1 7
AC 6 5 3 7 7 8 8 4 9 5
BB 1 8§ 1 1 1 4 1
BC 12 12 9 12 6 8 11 9 10 8
CC 12 12 12 6 14 9 8 10 9 9
| Total 30 30 30 30 30 30 30 30 30 30
[ test | x? =4.69 p=0.861

Table 2.19: Locus 15(Pgm-2): Genotypic Frequency Across Populations

Genotype Population
1 2 3 4 5 6 7 8 9 10
AA 1
AB 3 2 1 2 1 4 2 1 3 1
AC 2 2 1 1 1 2

BB 15 14 18 14 18 14 19 20 16 15
BC 10 10 10 12 9 9 8 7 8 13

CC 2 1 1 1 2 1 1 1 1
Total 30 30 30 30 30 30 30 30 30 30
| test | x: =265 p=0.976 |

In short, we get a ‘feeling’ that the distributions of genotype are homoge-
neous among ten populations. However, genetic differences across populations
do exist. In Chapters 4 and 5, we will reveal these differences through more

detailed analysis.
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Chapter 3
Model Construction

In this chapter, we intend to build the model framework necessary to answer
the three questions raised by the researchers.

3.1 Models Documenting Morphometric Vari-
ability

We have several approaches to the first question in our objectives: to describe
variability in Eastern White Pine cone morphometry within and among pop-

ulations.

1. Given the design of the experiment and the multivariate nature of cone
morphometry, a multivariate analysis of variance (MANOVA) model
seems to be the appropriate one to first try here. Since we have not
defined cone morphometry yet, we have at least two possible model con-

structions:

e Define cone morphometry as a vector of the original eight mor-
phometric variates and perform MANOVA based on this definition.
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By analyzing the original data set, we utilize all the information

available.

e Treat cone morphometry as latent variables whose indicators are
the eight manifest morphometric measurements. And then perform
MANOVA based on these latent variables (indices). By analyzing
compressed data, we may lose some information.

2. Since all MANOVA can do is to compare the mean vector of variates
across populations, we wish we would be able to state quantitatively the
relative cone morphometry variability within and between populations.
If the cone morphometryis a one-dimensional variate, an ANOVA model
will yield numerically the variability within and between populations. We

will use this approach as well.

3.1.1 MANOVA Model

Let X = (XM, X®, .., X®)T be the p-dimensional random vector charac-
terizing cone morphometry. By subscripts, X;;, denotes the cone morphom-
etry for the rth cone on the jth tree in the ith population. We assume that
X,;, has the distribution of MVN(t + a;, %), where p = (™), u®, .., u®)T
a; = (a,(-l), afz), ...,a?’ ))T and X; is a positive definite p X p matrix. Then the

model is written as :
10 1 =1,2,...,10
Xijr = B+ ai+Bj6) + Erij) Y a;=0 Jj=12...,30
=1
r=12...,10

with boundary condition 3_!2, a; = 0. Because of the nested design of the
experiment, 3;;) is the random effect vector due to the the jth tree in the ith
population; and E, ;) is the random effect vector due to the rth cone on the
jth tree in the ith population. Then g can be interpreted as the overall (fixed)
mean vector for the grand population, and «; as the (fixed) effect vector due

to the ith population.
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We want to test the simple hypothesis Hp : @) = a3 = ... = a;0 = 0. The
assumptions underlying the model are: (1) multivariate normal distributions,
(2) £, = 33 = ... = X, i.e., the ten populations have equal covariance ma-
tries, and (3) serially uncorrelated observations. We will check the assumptions

(1) and (2) in our preliminary analysis in the next chapter.

3.1.2 ANOVA Model

Let X be the random variable for any aspect of the cone morphometry, ei-
ther as one of the eight original morphometric measurements or as one of the

constructed indices. Then the model is

10 t 1,2, ..., 10

Xijp = B+ ai + B + & (i) Za.-=0 1 =12 ...,30
=1

r 1,2, ...,10

1

-

where u is the overall (fixed) mean of the ten populations; a; is the fixed effect
due to the population ¢ for these ten geographical populations are not a sample
(with boundary constraint 12, a; = 0); Bj(;) is the random effect due to the
jth tree in the ith population; e, (;;) is the random effect due to the rth cone
on the jth tree in the ith population. The usual assumptions for the model
are: (1) Bji) has a normal distribution with mean 0 and variance o3; (2) €(;j)

has a normal distribution with mean 0 and variance o2.

This is a two-stage mixed ANOVA model. Based on the model output, we
can |

1. test the simple hypothesis Hp: @y = a3 = ... = ay0 = 0;

2. test the hypothesis Hp : 0} = 0;

3. estimate all the parameters in the model and thus obtain numerical com-
parisons for cone morphometry both between populations and between

trees;
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4. estimate the variance components for each variate and describe quanti-
tatively the amount of variation exhibited either within a population or

between populations.

3.2 Models Documenting Genetic Variability

In order to represent in a standardized way the amount of genetic variation,
we need measures that allow us to quantify this information. The most com-
monly used measure of genetic variation in a population is the amount of
heterozygosity. Because individuals in diploid species are either heterozygous
or homozygous at a given locus, this measure presents intuitively a biologi-
cally useful quantity. The disadvantage of using these measures, however, is
that they are not very sensitive to additional variation when the number of

genotypes n is large, because the upper limit, unity, is the same for any n. !

The theoretical Hardy- Weinberg heterozygosity (will be called heterozygos-
ity thereafter) of a population for a particular locus with n alleles is defined

as:

h=3 ppi=1-3p}

it i=1
where p; stands for the allelic frequency for allele i on the locus. The underlying
interpretation of this definition is that heterozygosity is the probability that
for a given locus, any two randomly chosen individuals from the popula.tlon
exhlblt different alleles.

In our analysis, we feel that it is necessary to make a minor modification

! According to the definition, the upper limit of heterozygosity is:

lim maxh = lim [1- Z( )2]-1 (1——)_1

n—oo p;
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to the above definition. It seems to be more appropriate to use the geno-
typic frequency instead of the allelic frequency. (And thus n is the number of

genotypes on the locus.) The reasons for the modification are:

1. Generally speaking, the information extracted from the allelic frequency
is contained in the information extracted from the genotypic frequency.
However, the reverse is not always right.

2. The popularity of using allelic frequency in the definition of heterozy-
gosity is largely due to an implication of the so-called Hardy-Weinberg

Principle which reveals that for a random-mating population 2

, We can
use n alleles at a locus to describe, without losing any information, the
genetic variation instead of the n(n +1)/2 different genotypes formed by
the n alleles. When the number of alleles in the population gets large,
the computational advantage of using allelic frequency becomes appar-
ent. In our data set, however, only 3 alleles and therefore 6 possible

different genotypes are observed.

3. Biologically, it may be the combinations of the alleles, rather than the
alleles themselves on the loci, that are really important in determining
the traits of the species.

2A random-mating population is a group in which the probability of a mating between
individuals of particular genotypes is equal to the product of their individual frequencies in
the population.
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3.3 Models Connecting Genetic Traits and
Cone Morphometry

In this part of our analysis, we are asked to investigate whether genetic char-
acteristics of Eastern white Pine depend on their cone morphometry. This
question may seem, at first sight, nonsense as we all know that cone mor-
phometry of a tree is controlled by its genetic structure. But in the long-term
evolution pfocess, survival of, say, AA cone is a prerequisite to observation of
AA genotype in trees. So it can be considered dependence in this sense. In
fact, the researchers justified their question by telling us the ultimate objective
of the study: to investigate whether there exists any evidence suggesting that
the loci studied may also be the object of natural selection since it is generally
recognized that cone morphometry is subject to natural selection. Moreover,
we feel that a dependence relationship does not necessarily imply a cause-and-
effect relationship, as is the case with genetic traits and cone morphometry.
The relationship between genetic traits and cone morphometry, if any being
revealed through statistical analysis, is more of an association or prediction

than a causation. 3

The model we proposed here is a straightforward regression model, in which
the genetic characteristics of the trees, or more specifically, the genotypes, are
being treated as the response variables. Since the genotype is regarded as
multinomial categorical variable, the polychotomous logistic regression model
is constructed on a locus-to-locus base as follows:

e:cp(a.- + ﬂ.-x)
1+ .50 ezp(as + Bix)

Ply=1i]= 1=1,2,..]-1

and
I-1

Ply=1}=1-3 Ply =1

1=1

3From statistical point of view, a cause-and-effect relationship can only be confirmed
through carefully designed and controlled experiments. This study, however, is virtually
observational and exploratory.
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where I is the total number of genotypes observed on the locus, and x is the
vector of cone morphometry properly defined beforehand, a;’s and S;’s are
the parameters to be estimated. This model is compatible with the sampling
scheme since each tree is treated as an observation in the regression and the

total of 300 trees are a stratified random sample from the grand population.

Several issues arise in connection with this model construction:

1. Data Clumping: Since every cone on the same tree has identical geno-
type and the each tree is being treated as one observation, we must find
a representative cone for each tree. An obvious answer to this question
is from the results of the ANOVA model set in Section 3.1.2. The mor-
phometry of the representative cone for the jth tree in the ith population
is estimated as:

E(Xy) = u+ai+Bi

In other words, we use estimated cone morphometry instead of the orig-

inal measurements.

2. Multicollinearity: As revealed in the previous chapter, the correla-
tions among some of eight original morphometric variates are quite high.
If they are used as the regressors in the above model, the presence of
multicollinearity may inflate the variance of the least squares estimator
and possibly any predictions made, and also restrict the generality and
applicability of the estimated model. We should find way to eliminate
the muticollinearity of the morphometric variables while still preserve
as much information as possible before we model the data. Ideally, we
should regress on uncorrelated morphometric variates. This, together
with the consideration of indices construction, leads to the principal fac-

tor analysis in the next chapter.

3. Stepwise Selection: The only statistical software available to perform
polychotomous logistic regression is the BMDP PR program. This pro-

gram produces maximum likelihood estimation of the parameters in the
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above model by a stepwise forward selection procedure. My classmate,
Jun Wu, gave a very crisp account for the details of the procedure in his
Master’s Project[14]. What we are concerned with here is the specifica-
tion of the constants in the program, i.e., p-value limits controlling entry
or removal of terms, convergence criterion for the likelihood function,
and less importantly, number of iterations to maximize the likelihood
function.
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Chapter 4
Preliminary Analysis: Part 11

Following the model construction, we found that we need to do some more
preliminary analyses before modelling the data. These include, as a summary

for the previous chapter and a preview for this chapter:

e construction of indices on the morphometric data set. The purposes
of this analysis are: (1) to construct a few indices (latent variables)
to characterize the cone morphometry; (2) to construct uncorrelated
explanatory variables to be used in the logistic regression; (3) to reduce
the number of the variates in the data set (dimension reduction).

e examination of the model assumptions mentioned in the previous chapter
for the morphometric data set, including: multivariate normality and
équa.l covariance matrices for the ten populations as required by the
MANOVA model.

o further exploratory analysis on the genetic data set by using the measure
of heterozygosity.
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4.1 Construction of Indices

From the preliminary analysis in Chapter 2, we observed that among the origi-
nal eight morphometric variates, X7 (number of sound seeds) and Xs (number
of empty seeds) seem to be most different from the rest according to the cor-
relations among the variates. Moreover, the histograms of these two variates
showed that variate Xg (number of empty seeds) has an apparent departure
from normality, and variate X7 (number of sound seeds) also departs markedly
from the fit. These suggest that we should separate them out from our analy-
sis. This is an appropriate thing to do in light of indices construction because
these two variates together furnish information about the productivity of the
species, an important aspect of cone morphometry.

4.1.1 The First Set of Indices

Given the first six cone measurements, the most important aspects of cone
morphometry are probably the cone size and the scale size. Focusing on these

two, we have the following objective approach of indices construction.

Delete variate Xg (winged scale length) since we have obtained a lot of ev-
idence in Chapter 2 that X, (central scale length) and X¢ are almost perfectly
correlated with each other. ! Then, we define:

e cone size as the product of cone length and cone width:

Yi=XX,

e scale size as the product of central scale length and central scale width:

Y; = XX

lEven when we look the ten populations one by one, the correlations between these two
variates are consistently high, ranging from .916 to .967 (Appendix B). This implies that, by
deleting one of them, we may not lose much information regarding the cone morphometry
variabilities.
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e keep number of scales, number of sound seeds and number of
empty seeds and denote them in this set of indices as:

Ys=X;3
Y= X7
Ys = X,

Thus we have five indices in this set. The advantage of this construction is
the easy interpretation of the indices. The shortcomings of this set of indices
are (1) we have no idea about the amount of information lost through the
construction; (2) it may fail to characterize the relevant shape of the cone, 2
and (3) the correlations among the indices are still quite high and thus cannot
be used as the regressors in the logistic regression analysis; see Table 4.1 for

the correlation structure.

Table 4.1: Correlation Matrix for the First Set of Indices
i ¥, Y, Y

i 1

Y; .11 1

Y; 62 24 1

Y, 38 .22 .35

Ys 17 19 23 -28 1

4.1.2 The Second Set of Indices

Factor analysis is one of the most commonly used statistical techniques for
constructing latent variables or indices. It aims at ascertaining whether the
interrelations between a set of observed variables are explicable in terms of

a small number of underlying, unobservable latent variables. We shall also

2For example, two cones may have exactly the same cone size (Y1) index but one of them
may be slimmer than another.
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use this subjective way to construct our indices. The advantages of this ap-
proach are: (1) the quality of the analysis, justified by the amount of variation
retained, will be known to the analyst and (2) the resulting factors are uncor-
related.

We shall perform factor analysis using principal components method. In
practice, it is always important to consider the possibility, or desirability, of
transforming the data before analysis. We shall use the most frequently used
transformation of (natural) logarithms. The effect of the logarithmic trans-
formation is to give measures with the same proportional variability the same
variance. Moreover, since the resulting factors are all a linear combination of
the variates used in the analysis, this transformation will facilitate the inter-
pretation of the resulting components because it would be hard to interpret
the meaning of the sum (or difference) of the original variates if we perform
the analysis on (Xi, X2, X3, X4, X5, Xe)7.

By minimum eigenvalue criterion, two factors are retained. They are, de-
noted as F; and F;:

Fy = .84(InX,)' +.73(InX3)} +.51(In X3)* +.84(In X, )* +.78(In X5)* +.83(In Xs)*

F, = .16(InX;)! +.38(In X5)* +.76(In X3)! —.48(In X, )* +.02(In X5)* — .50(In X )*

where a superscript ¢t denotes the standardization of a random variable. The
percentage of variation retained by the first factor is 58 percent, and retained
by these two factors is 79 percent, which is acceptable.

These two factors are also standardized random variables. The first factor
F} is easy to interprate because all its coefficients are posjtive. It is most
appropriately interpreted as the latent variable of cone size. For the second
factor, factor loadings are big on those of the scale morphometry, especially
on the number of scales, winged scale length and central scale length. Thus
this factor is mostly concerned with scale morphometry. The interpretation for
this factor is not so straightforward: roughly speaking, the larger this factor
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is, the larger is the number of scales, or, the smaller is the scale size, or, both.

(In some sense, this index is a mixture of Y; and Y3 in the first set of indices.)

Using an inverse transformation of log (i.e., exponential), we obtain the

following set of indices to characterize the cone morphometry:

® cone size defined as:
Z]_ = CFI

e scale factor defined as:
Zg = er

@ keep number of sound seeds and number of empty seeds
Z3 = X7

Zy=Xg

So we have in this set four indices to characterize cone morphometry. The
disadvantage with this set of indices is that, as we have just seen, the meaning
of the indices is not very crisp. The advantages are, as opposed to the first
set of indices, (1) amount of variance being kept in this set of indices is known
and acceptable; (2) the correlations among the indices are small (see Table 4.2
for the correlation matrix).

Table 4.2: Correlatiop Matrix for the Second Set of Indices
. Zl Zg Z3 Z4
Z; 1
Z, .01 1

Zs 29 .18 1
Zy .16 .06 —-.28 1

This set of indices will be used in our logistic regression.
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4.2 MANOVA Assumptions Check

4.2.1 Multivariate Normality

Many multivariate techniques rely on the assumption that the data comes
from a multivariate normal distribution. Although moderate departure from
normality will not cause us a serious problem in the analysis and inferences
because of the very large sample size we have, the quality of our analysis will
be improved if we could find suitable transformations on the variates to make
them resemble normal distributions more closely.

We thus tried several common transformation on each of the original vari-
ates and constructed indices. The best transformations we found are:

e natural logarithm transformation on X; - X4, Xs and 1), Y3;
e square root transformation on X7.

¢ no transformation is found to be able to give a better fit for Xj.
Quantile-quantile plots were applied on both the original variates (left side
of the figures) and the transformed variates (right side of the figures). They

are presented in Figure 4.1 to Figure {.3. So we can see that the transformed
variates generally gave a better fit to a normal distribution.

37



I
b .
£ X
wl Xe
: 3
b ;
ii [} : 3 .
2 ' 2 2 ' 2
Quantios of Swnderd Normal Qunties of Sandaxd Nownal
g ;
o
B3 :
‘\
5 g
§! }-.
) o
ﬂ; " o]
. o
2 ' 2 2 1 2
Cumfies of Stancar Noma Cumfles of Sunderd Nomal
% = s
) :
: ;
3
i L
H b
2% :
X 2 0 2 2 0 2
Quanties of Stndard Normal Cumfies of Sancand Nomal
I
g : '
“
o3 .
o
g :
£ 3l
0 2 0 2 2 0 2
Qutes of Swnded Nomal Qs of Sanderd Nowsal

Figure 4.1: Probability Plots for Variates X;~ X, and Their Transformations
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Figure 4.3: Probability Plots for Variates Y;, Y2 and Their Transformations

Table 4.3: Modified A? Statisti
Variates test statistics p-value
original | transformed | original | transformed

Xi 7.50 0.88 <05% | (1%, 2.5%)
X2 1.67 1.03 <0.5% | (1%, 2.5%)
X 12.0 2.01 < 0.5% < 0.5%
X4 2.64 0.94 <0.5% | (1%, 2.5%)
Xs 2.30 2.12 < 0.5% < 0.5%
X 11.3 7.60 <05%| <0.5%
Xs 142.0 8.06 <0.5% | <0.5%
Y 14.8 0.28 < 0.5% > 50%
Y; 3.27 1.80 <05% | <0.5%
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Goodness-of-fit is a statistical techniques which is associated with the sta-
tistical testing of hypothetical models with the data. Anderson-Darling statis-
tics is a member of the group of goodness-of-fit statistics which has come to
be known as empirical distribution function (EDF) statistics [13] because the
measure the discrepancy between the empirical distribution function of a given
sample and the theoretical distribution to be tested. More specifically, it is
defined as:

W = [ [Fa(z) - F(z; )% (2)ds
where F(z;0) is the theoretical distribution under the null hypothesis,

F(z;6)
¥(z) = 1 - F(z;9)

is a weight function giving greater importance to observations in the tail than
do other EDF statistics, and F,(z) is the empirical distribution function based
on the sample

number of observations < z
F.(z) = - , —00 <z <00

Practically, the numerical calculation of Anderson-Darling statistics A? is
done by the following two steps[2].

1. Calculate z; = F(z;;);0) i=1,2,..,n

2. Then the statistics is given by

2o (2 = Dlinz + In(1 = zap1-a)]
n

A= —

The improvement on the strength of fit through transformations is further be-
ing confirmed by calculating the modified A? statistics[2] and the corresponding
p-value for testing the sample is from a normal population. The results are
shown in Table 4.3.
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4.2.2 Homogeneity of Covariance Matrices

Bartlett’s modification of the likelihood ratio test is used to test another im-
portant assumption of MANOVA model, that covariance matrices are homo-
geneous across populations. The result shows that for each of the three set of
variables, we should reject the null hypothesis at a significant level of 0.1%.
This is not surprising because (1) in general, many experimental conditions
which leads to higher mean value may also produce responses with larger vari-
ances; (2) our sample size is so large that it may contain a lot of evidence

suggesting heteroscedasicity.

Thus the choice of a robust test is important among over half a dozen
MANOVA tests that are available. Olsen[9] has made a Monte Carlo study
concerning robustness of six MANOVA tests. For general protection against
departures from normality and from homogeneity of covariance matrices, he
has recommended the Pillai V statistics as the most robust MANOVA test.
We will briefly introduce the Pillai V' test before we modelling the data in the
next chapter.
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4.3 Heterozygosity Profiles

Based on our definition of heterozygosity, we can calculate the amount of
genetic variation for each locus for all ten populations combined. The results
are shown in Table {.4. 3

Table 4.4: Ordered Locus Heterozygosity

Aco(1) [ Mdh-1(10) | Got-3(5) | Pgm-2(15) [ AKk(6) G6p(8)
.79 73 61 .60 37 .36
Hex(2) | Pgi-2(18) | Mdh-2(11) | Pgm-1(14) | Mpi(13) | Pgi-1(17)
.36 .26 14 14 13 .08
Got-2(4) | Fum(7) | Got-1(3) Idh(9) |[Mdh-3(12) | 6pg(16)
.08 .04 .01 0 0 0

We can also calculate the amount of genetic variation for each locus across
populations. The results are presented in Figure 4.2, where the profiles are
arranged according the magnitude of heterozygosity in the Table 4.4.

On some loci, such as locus 2 (Hex) and Locus 18 (Pgi-2), locus heterozygos-
ity varies greatly across populations; while on some other loci, all 300 sampled
trees are almost homozygous, e.g., Locus 3 (Got-1) besides the obvious ones
Locus 9 (Idh), Locus 12 (Mdh-3) and Locus 16 (6pg).

3The numbers in the brackets identify the loci in the original file.
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Chapter 5

Data Modelling

5.1 Morphometric Variability

In the previous chapter, we constructed two sets of indices to characterize cone
morphometry, e.g., the Y-set and Z-set, from the original eight morphometric
measurements, X-set. Each of the three sets of indices has its advantage and
disadvantage. We will use them for different modelling purposes.

5.1.1 MANOVA

Recall the MANOVA model we specified in Chapter 3 is:

0 i=12..,10
Xijr = p+ai+Bi+Brj) Y =0 (j=12..,30
= 1,2 ..., 10

b

According to this model, a vector of observations may be decomposed as

shown in the following equation:
Xijr = X+ Xi - X) + Xjo) — Xi) + ey — Xy)
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i.e., any observation is an summation of the following terms: (1) overall sample
mean X; (2) estimated population effect (X; — X); (3) estimated tree effect
(inside each population) (Xji) — Xi); and (4) estimated cone effect or the
residual term ()_(,(-ﬁ) - Xj(i))-

This leads to a decomposition of the sum of squares and cross-products
matrix
10 30 10 _ o _
22 > Xey) — X)(Xegy) — X)T
i=1 j=1r=1
in the following table:

Table 5.1: MANOVA Table for Comparing Popula.tlon Mean Vectors

Source Matrix of Sum of Degrees
of Squares and Cross of
Variation Products(SS&CP) Freedom

Popu P=30T9,X; - X)(X; - X)T 9
Tree =105, ,-1(Xj(i) - X)Xy — Xi)T 290
Error 21 T2 02 Ky — X)) Xy — Xyep)” 2700

Total P+T+E=3x0 500 000, (Xeg) — X)Xrig) — X)? 2999

One test of Hy : @)y = a3 = ... = ayp = 0 was proposed by Pillai[10]
and known to have several optimal properties including robustness against
departures from the usual population model, especially non-normality and

heteroscedasicity.

The statistic, usually denoted as V, is defined to be:

V =trP(P+E)™

Under the null hypothesis, (N —r)V is distributed as a x2, for large sample
size N. Here u is the number of variates in the random vector; and g is 9, the
number of populations less 1; r is 11, the number of populations plus 1.
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Consequently, we reject Hy at significant level « if

(N =r)V > xgu(a)

where x2 () is the upper (100a)th percentile of a chi-square distribution with

gu degrees of freedom.

MANOVA Results on the Original Variates: X-set

The random vector is (InXy, InX;, InX3, InXy, X5, InXe, v/ X7,In(Xs + 1)).

( 30.7 15.0
15.0 13.4
28.9 16.9
109 7.19
152 111
11.6 7.93
174 124
\ 45.3 31.2

(353 —0.143
~0.143  4.32
0.0468  1.62

b 337 -113
20.1  6.72

3.69 —0.839

—0.718  0.305

\ 185 —9.82

28.8
16.9
43.7
7.95

131
8.24

176
52.3

0.0468
1.62
4.11

—-1.45
11.0
-1.15
-22.7
3.41

10.9
7.19
7.95

152 11.6
111 7.93
131 8.24

10.0 989 11.4
98.9 2340 114

11.4
79.0 1
18.2

3.37
-1.13
—1.45

4.69

33.2

4.81
~4.12

25.3

114 14.4
550 89.7
343 21.9

29.1

174
124
176
79.0
1550
89.7
3820
-13.7

3.69

6.72 —0.839

11.0
33.2
493
39.7
—346
349

-1.15
4.81
39.7
5.27

-12.1
27.8

453 )
31.2
52.3
18.2
343
21.9
—13.7

340

—-0.718
-9.82
—-22.7
—4.12

—346
-12.1
1080
—288

V=178 u=8 ¢g=9 r=11 p— value =.0001
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MANOVA Results on the First Set of Indices: Y-set

The random vector is (InY;, InYs, InYs, VY4, In(Ys +1)).

(742 37.1
37.1 36.6
E=| 458 17.3
299 191
 76.6 42.9

(757 478
478 12,0
P= 1.67 —0.681
—0.413 —29.4
\ 875 505 -

45.8
17.3
43.7

176
52.3

-0.681 -29.4 50.5

299  76.6 )
191 429
176 52.3
3820 —13.7

~13.7 940

1.67 —0.413 8.75 )

411 -227 341
22.7 1080 —288
341 -288 349 )

V=111 u=5g¢g=9 r=11 p— value=.0001

MANOVA Results on the Second Set of Indices: Z-set

The random vector is (F, F2,v/Za,In(Z4 + 1)).

1380 425
| 425 1120
| 1300 618
325 194
235 —151
| -1 442
T -113 -34.1
185 —182

1300 325
618 194
3820 -13.7
—-13.7 940
-113 185
-34.1 -182
1080 -—288
—288 349

V=9 u=4g¢g=9r=11 p- value=.0001
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Conclusions from MANOVA Analysis

For each of the three sets of indices, there is strong evidence that the popula-
tion mean vectors are not the same across all ten populations. This suggests
that there is a significant multivariate mean difference between at least two
populations. This also suggests that there is a significant mean difference
among at least one component of each set of indices and we should make the

comparisons at a univariate level.

5.1.2 ANOVA

According to the model specifications in Chapter 3, the ANOVA model is
essentially a part of the MANOVA model because each component of the
observation )-(,(m must satisfy the univariate model.

The following three tables show the ANOVA results from the specified
model. For each variate, the population effect is highly significant. The null
hypothesis Ho : a1 = a3 = ... = a0 = 0 is rejected in favor of Hg : a; # 0
for at least one : = 1,2,...10. There is at least one significant mean difference
among the ten populations.

The second hypothesis of interest Hy : 65 = 0 is also rejected in favor of
Hy : 0} > 0 for each variate. There is significant variation on each variate
among the trees within populations.
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Table 5.2: ANOVA Tables for X-set Vari

Sources of Degrees of Mean

Variate | Variation Freedom Square F  p-value

' Popu 9 393 3.9 0.0001

InX, Tree 290 102 89 0.0001
Error 2700 .011

Popu 9 481 8.6 0.0001

InX, Tree 290 056 11.2 0.0001
Error 2700 .005

Popu 9 457 4.2 0.0001

InX, Tree 290 108 6.7 0.0001
Error 2700 .016

Popu 9 522 8.3 0.0001

InX, Tree 290 .063 16.8 0.0001
Error 2700 .004

Popu 9 548 6.4 0.0001

Xs Tree 290 849 9.8 0.0001
Error 2700 .866

Popu 9 586 7.1 0.0001

InXe Tree 290 - .083 154 0.0001
Error 2700 .005

Popu 9 102 5.2 0.0001

vX7 Tree 290 19.6 13.8 0.0001
Error 2700 1.42

Popu 9 38.8 8.5 0.0001

In(Xsg+1) Tree 290 4.58 13.2 0.0001
Error 2700 .348
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Table 5.3: ANOVA Tables for Y-set Vagi

. Sources of Degrees of Mean

Variate | Variation Freedom Square F  p-value

Popu 9 .841 3.8 0.0001

InY; Tree 290 219 8.0 0.0001
Error 2700 .028

Popu 9 1.34 8.8 0.0001

ny; Tree 290 152 11.2  0.0001
Error 2700 .014

Popu 9 457 4.2 0.0001

InYs Tree 290 108 6.7 0.0001
Error 2700 .016

Popu 9 102 5.2 0.0001

VY, Tree 290 19.6 13.8 0.0001
Error 2700 1.42

Popu 9 388 85 0.0001

In(Ys +1) Tree 290 4.58 13.2 0.0001
Error 2700 .348

Table 5.4: ANOVA Tables for Z-set Vari

Sources of Degrees of Mean

Variate | Variation Freedom Square F  pvalue

Popu 9 26.1 5.5 0.0001

InZz, Tree 290 4.74 9.2 0.0001
Error 2700 .514

Popu 9 .49.2 10.0 0.0001

InZ, Tree 290 492 11.8 0.0001
Error 2700 418

Popu 9 102 5.2 0.0001

V23 Tree 290 19.6 13.8 0.0001
Error 2700 1.42

Popu 9 38.8 85 0.0001

In(Zy+1) Tree 290 4.58 13.2 0.0001
Error 2700 .348
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Since differences do exist between populations we proceed to find out how

the ten populations differ from each other.

For each variate, based on the estimated mean, we can obtain the exact
ranking for the count variates, i.e., number of scales(Y3), number of sound
seeds(Y;) and number of empty seeds(Y;). The results are shown in the fol-

lowing table:

Table 5.5: Ranking of Variates Y3, Y, and Y;

Variate population
1 23 45 6 7 8 9 10
Ys 739 8 2 451 6 10
Y, 5 1 8 4 6 3 2 9 10 7
Y; 5 9 4 2 6 10 8 1 3 7

For variates cone size(Y; and Z;) and scale size(Y; and Z;), because of two
different ways of indices construction, the rankings are not entirely consistent.

However, the following conclusions are consistent with both set of indices:

e Cone Size: population two and eight have the largest cone sizes, while
population ten and four have the smallest cone size.

"o Scale Size: population two and three have the largest scale sizes, while
population ten has the smallest scale size.

As a summary, the estimated mean vector of all the indices are plotted using
Chernoff’s face techniques. See Figure 5.1. * Two populations, population 10
and population 2, are particularly noteworthy. Population 10, from Abitibi,
has the smallest cone size, scale size, as well as number of scales. The number
of sound seeds and the number of empty seeds are also small compared to

1Ten other features of Chernoff’s Face that can be used to represent extra variates are:
width of mouth; location, separation, angle, shape and width of eyes; location of pupil;
location, angle and width of eyebrow. This graphical technique is most useful in grouping
subjects based on multivariate observations.
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Morphometric Characteristic of Eastem White Pine Tree Cone Among 10 Subpopulations(5

|
B M\
1 2 3 4 5

6 7 8 9 10

Figure 5.1: The indices are constructed subjectively. The area of face is pro-
portional to the cone size Y;, shape of face is for scale size Y, with population
2 being the largest and population 10 the smallest, length of nose is propor-
tional to the number of scales Y3, distance between the mouth and the nose is
inversely proportional to the number of sound seeds Y;, and curvature of smile
is for the number of empty seeds Y5 with population 8 being the largest and
population 6 the smallest. Based on mean levels estimated from the ANOVA
model.
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that of other populations as they are both ranked at 7. Population two, from
Ottawa Valley, also distinguishes itself from others by the facts that its cone
has the largest cone size, scale size as well as the number of sound seeds. Its
number of scales is relatively large (ranked at 3) and its number of empty seeds
is the second smallest.

Furthermore, we find from this picture that populations 4, 6, 9 and 10,
which are among the furthest north fringe of Eastern White Pine habitat, all
appear to have small cone size as well as scale size. ? This may suggest that
temperature may be one of the environmental factors that affect the size of
Eastern White Pine cone, the most important aspect of cone morphometry.
However, there are no other spatial trends observed from this summary picture.

Finally, we present the estimate of variation components from each of the
three sources: variability due to the cone, variability due to the tree and the
variability found between populations. We shall use Z-set indices for this
purpose because the correlations among variates are the smallest in this set.

The result of the estimation is shown in the following table:

Table 5.6: Percentage of Variance Components
sources variables

anl an2 Z3 Z4
popu 7.8 14.7 102 13.2
tree 45.9 47.7 53.7 50.9
cone 46.3 376 36.1 359

From the table, we can conclude that roughly 10% of the total morphome-
tric variability is found between Eastern White Pine populations. The rest is
found within populations and roughly half of this variation is due to the tree

variation and half is due to the cone variation.

2This is apparent if we could “move” the faces onto the map in Figure 1.1, as I did in
my Defense.
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5.2 Genetic Variability

5.2.1 Genetic Variability Across Populations

In the preliminary analysis of the genetic data set in last chapter, we calculated
the heterozygosity of each locus across the ten populations. In this section
we shall calculate the heterozygosity for each population as an index for the
comparison of genetic variabilities.

We shall assume that these 18 locis studied are a simple random sample
of all loci inherited in Eastern White Pine. Then we can estimate the het-
erozygosity for each population as the average locus heterozygosity in that

population.
_hi+hy+...4+ ks

H 18

Based on the above formula, heterozygosity for each of the ten populations
is calculated and we find that populations 1 and 3 have the largest genetic
variability, while populations 7 and 8 have the smallest genetic variability.

Table 5.7: Heterozygosity among Populations

(H,, | H, | Hy | Hyy | Hy | Hay | Huy | Hog | Hog | Huo
2791 2631 .272 | .260 | .254 | .240 | .213 | .216 | .272 | .247

From the above table, it seems that heterozygosity exhibits a spatial trend
among the ten populations: the amount of genetic variation in Eastern White
Pine in Ottawa valley is generally greater than that in St-Lawrence lowland.
We proceed to test this hypothesis.

Viewing heterozygosity as a population parameter and again assuming that
these eighteen loci studied are a simple random sample from all the loci in this
species, we could combine populations 1 to 4 (from Ottawa valley) together
to calculate the heterozygosity on each of the eighteen loci and use them as

our observations. Similarly, we could obtain another set of observations by

)



combining populations 5 to 8 (from St-Lawrence lowland) together. The fol-
lowing table shows the locus heterozygosity for populations 1 to 4 combined
(Ottawa Valley), populations 5 to 8 combined (St-Lawrence lowland) and the

differences between these two.

Table 5.8: Heterozygosity of Two Combined Populations

Locus | Ottawa | St-Lawrence | Difference
1 0.802 0.774 0.028
2 0.304 0.361 —0.057
3 0.017 0 0.017
4 0.064 0.080 —0.015
5 0.633 0.608 0.025
6 0.388 0.359 0.029
7 0.049 0.033 0.016
8 0.349 0.329 0.020
9 0 0 0
10 0.702 0.744 —0.042
11 0.195 0.111 0.084
12 0 0 0
13 0.168 0.080 0.088
14 0.196 0.081 0.116
15 0.612 0.568 0.045
16 0 0 0
17 0.153 0.017 0.136
18 0.317 0.169 0.148

Let h, and &, denote the heterozygosity of Eastern White Pine populations
from Ottawa valley and St-Lawrence lowland, respectively. The hypothesis we
want to test is the null Hy : h,—h, = 0 against the alternative H; : h,—h, > 0.
A paired t-test is an appropriate test for this purpose.

Since t-test is not very robust against departure from normality, we applied
the modified A? statistics[2] first to test the assumption that these eighteen
differences are from a normal distribution. We obtained a p-value of 12.5% (the
calculated statistic is 0.590). The differences between locus heterozygosity of
these two combined populations can be regarded as from a normal distribution.
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The calculated ¢-statistic is 2.604 yielding a p-value of 0.9%. This strongly
suggests that the heterozygosity of the four combined populations from Ottawa
valley is higher than that from St-Lawrence lowland. The only caution in
accepting this result is that we have made a somewhat unrealistic assumption

that these eighteen loci are a simple random sample from all the loci inherited
in Eastern White Pine.

A final speculation: based on the two spatial trends we observed on cone
morphometry and heterozygosity respectively, there is a suggestion that en-
vironmental factors such as temperature may be more important in affecting
cone morphometry while geographical proximity is more important in deter-
mining the amount of genetic variation in Eastern White Pine.

0.5

04

02

Population Heterozygosity
0.3

0.1

"0.0

Figure 5.2: Heterozygosity across Ten Geographical Populations

57



5.2.2 Genetic Variability Between and Among Popu-
lations

An average genetic variability of the ten populations can be calculated as

10
H,=)_ H,/10 = 252

=1

And the total genetic variability of the whole population is calculated to
be H; = .261. Thus a measure of the amount of differentiation among the
populations is defined and calculated to be

H; - H,

T, =.035

Gat =

The interpretation is that only 3.5% of total genetic variability is found between
populations in Eastern White Pine.

The amount of heterozygosity for each of the ten populations are shown
in Figure 5.2 so we can see that there is actually not much variation across
populations.
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5.3 Relationship Between Genetic Traits and
Cone Morphometry

5.3.1 Initial Expository Analysis

From the ANOVA on the Z-set of cone morphometric indices, we obtained a

typical cone morphometry for every tree, i.e.,

i=12..,10
E(Z;?P) = p++Biy {i=12...,30
p=12 .. 4

As shown in Chapter 4, this set of indices retained most of cone morphom-
etry information as contained in the original eight variates and their inter-
correlations are generally small. We shall use this set of four explanatory
variables in the polychotomous logistic regression model proposed in Chapter
3 (z in the model). The dependent variable y in the model is the genotype, a
categorical variable which assumes values 1,2, ..., I, where I is the total num-
ber of genotypes observed on a particular locus. Notice that by treating it
this way, we have implicitly assumed that the genotypes of the loci studied are
known, i.e., all genotypes in the population are observed in the sample.

Thus the model can be re-written as:

ezp(an + Pnz)
Ply=n|= =1,2,.1-
ly=nl=17 + 3> czp(an + Puz) I-1
and -
n=1

where B, = (Bn1, Bn2, Bn3, Pna) and z = (21, 23,23,24)T as defined in Section
4.1.2.

This model is built on a locus-to-locus base. However, since we have already

known there are three loci that are degenerate, i.e., Locus 9 (Idh), Locus 12
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(Mdh3) and Locus 16 (6pg) are all homozygous of the same genotype, we
actually need to run the regression 15 times.

For most of the 15 loci on which we performed logistic regression analysis,
we found that the p-value for the likelihood ratio improvement from a null
model to a one-variate model is quite high, which implies that none of the four
variates can be judged as adequate explanatory variables. So there is hardly
any chance that there will be a relationship between the cone morphometry

and the genotypes of these loci.

However, there are three cases (Locus 5, 14 and 15) where the above p-
value is slightly less than 5% which is mild evidence for selecting the variate
into the model. Interestingly, the variable entering the model in all the three
cases is the same, the scale factor Z;. The estimated model parameters are
given in the following three tables.

1. locus 5: the variate Z; (scale factor) enters the model, giving a p-value
of 4.6% for testing the deviance drop.

__Table 5.9: Regression Result: Locus 5 (Got-3)

genotype | code(s) a; se(d;) fa se(fa)
AA T (=33 (17) =54 (22)
AB 2 67 (14) —18 (.18

2. locus 14: the variate Z; (scale factor) enters the model, giving a p-value
for the deviance drop of 5.0%.

Table 5.10: Regression Result: Locus 14 (Pgm-1)

genotype | code(s) d; se(&;) B se(Bi)
AB 2 7.55 (5.25) 5.20 (2.82)
BB 4 11.57 (5.23) 5.03 (2.76)
BC 5 | 871 (5.24) 521 (2.78)
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3. locus 15: the variate Z, (scale factor) enters the model, yielding a p-
value of 3.9% for the deviance drop.

Table 5.11: Regression Result: Locus 15 (Pgm-2)

genotype | code(z) a; se(d;) B se(Bn)
AA T | —4.16 (2.36) 3.10 (1.56)
AB 2 55 (41) -.12  (.49)
AC 3 -11 (47 .51  (.58)
BB 4 279 (.34) .64 (41
BC 5 226 (.35) .63  (.42)

5.3.2 Signal Amplification

Since Z; is mostly concerned with morphometric measurements of the scales
on the cone, the above finding suggests that these three loci would most proba-
bly depend on the scale morphometry. However, the signal is very weak. This
could be due to the masked effect of the principal components, e.g., we may
lose some important information by using the principal components instead
of the original variates as the regressors; or, if the hypothesis that these loci
are depend on the scale measurements rather than other aspects of cone mor-
phometry is true, using principal components could diminish this relationship

because they are a mixture of all aspects of cone morphometry.

Based on this suggestion, we performed further logistic regression analysis
by using the original scale measurements X3, X4, and X5. We deleted X¢ again
because it has a correlation of almost 1 with X4. The model used here is the

same polychotomous logistic regression model. We re-write it as:

exp(ai + Bix)

== 1=1,2,..0 —
Ply = 1] 1+2{=_11 wzp(or + Bx) 1=12..01-1
and -
Ply=1j=1-3% Ply=i]
=1
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where x = (X3, X4, X5)T.

Not surprisingly, our logistic regression results have been improved signifi-
cantly. For each of the three cases, one scale measurement is able to enter the
model. The following table shows the amplification of signal as justified by the

improvement in p-values.

Table 5.12: Summary of Si

al Amplifications

Locus Z-set (X3, X4, X5)
variate entered | p-value | variate entered | p-value
5 Z, 4.6% Xs 3.8%
14 Z, 5.0% Xs 2.0%
15 Z, 3.9% X4 0.6%

1. Locus 5: the variate, number of scales, enters the model with the cor-
responding p-value for the the likelihood ratio improvement from a null
model to a one-variate model being 3.8%.

Table 5.13: Regression Result: Locus 5 (Got-3)

genotype | code(i) | & se(d:) Ba se(Ba)
AA T 1373 (L.62) —.067 (.027)
AB 2 |208 (128 —.022 (.021)

2. Locus 14: the variate, number of scales, enters the model with the
corresponding p-value for the the likelihood ratio improvement from a

null model to a one-variate model being 2.0%.

Table 5.14: Regression Result: Locus 14 (Pgm-1)

genotype | code(z) a&; se(a;) Pa se(Ba)
AB 2 -35.39 (33.5) 0.76 (0.74)
BB 4 |-3714 (33.3) 0.86 (0.74)
BC 5 | —40.81 (33.4) 0.87 (0.74)
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3. Locus 15: the variate, central scale length, enters the model with the
corresponding p-value for the the likelihood ratio improvement from a

null model to a one-variate model being 0.6%.

Table 5.15: Regression Result: Locus 15 (Pgm-2)

genotype | code(z) a; se(a;) Bia  se(Bia)
AA 1 43.96 (25.8) -—-1.90 (1.15)
AB 2 —2.43 (427) 0.11 (0.15)
AC 3 | -147 (5.12) 0.045 (0.18)
BB 4 6.97 (3.59) —-0.15 (0.12)
BC 5 511 (3.66) —0.11 (0.12)

5.3.3 Conclusion and Discussion

From the above analyses, we could conclude that, although most of the loci
studied have no relationship with the cone morphometry, there is some evi-
dence suggesting that the genotypes on Locus 5 (Got-3), Locus 14 (Pgm-1)
and Locus 15 (Pgm-2) might depend on the cone morphometry with the most

important aspects being the scale measurements of the cone.

However, in drawing the above conclusion, several cautionary notes should

be sound.

1. The signal is too weak and it prevent us from drawing any more con-
crete conclusions. Although the smallest p-value we got is 0.6%, it was
obtained only after running 15 logistic regressions. By the Bonferroni
Inequality, the overall significant level will lie somewhere between 0.6%
and 15 x 0.6% = 9.0%.

2. From previous analysis, we know that there is not much variation in
the genetic structure of Eastern White Pine. Also, the morphometric
variability among populations is also small. The homogeneous nature of
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these two data sets may mask any relationship between these two and

thus make statistical inferences more difficult.

. We still feel our analysis is worthwhile because this study is exploratory.
Forward selection regression is an appropriate technique to use at this
stage. The fact that in our initial logistic regressions on the Z-set, the
variable entered the models on all these three loci is the same may help
to reinforce that our marginally significant regression results are not just
happened purely by chance.

. We feel our conclusion is meaningful and useful provided we regard it
as expository and temporary and use it as a guidance and reference for

future studies.
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Chapter 6

Summary of Results

6.1 Morphometric Variability

Objective

To describe variability in Eastern White Pine cone morphometry within and

between populations.

Results

1. All the ten populations show a statistically significant difference for each
of the cone morphometric measurements.

2. In terms of indices cone size and scale size, all the ten populations also
show a statistically significant difference. Eastern White Pine situated at
the northern brink of its natural population appears to have a relatively

small cone.

3. Although cone morphometry of Eastern White Pine varies from popula-
tion to population, variation from this source only accounts for a small
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6.2

portion (roughly 10%) of the total morphometric variability; i.e., most
of the cone morphometric variation is from within populations.

For the within population cone morphometric variation, the amount of
variability due to tree-to-tree variation is roughly equal to that due to

cone-to-cone variation.

In some sense, the cone morphometric difference between Eastern White
Pine trees are greater than the average cone morphometric difference

between geographical populations.

Eastern White Pine cones of population 2 (from Ottawa Valley) are
noteworthy in that they have the largest average cone size and and scale
size and the most number of sound seeds. The average number of scales
on these cones is relatively large (ranks 3 among all ten populations) and

the average number of empty seeds is the second smallest.

Population 10 (from Abitibi) also distinguishes itself by the fact that its
cone has the smallest average cone size, scale size and number of scales.

Both its number of sound seeds and number of empty seeds are also on
the small side (rank 7) among all populations.

Genetic Variability

Objective

To analyze genetic variability within and among Eastern White Pine popula-

tions.

Results

1.

Genotypic dominance is a feature of most loci studied.
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2. Distributions of genotype on the loci studied are homogeneous across

populations.

3. On some loci studied, there is little or no genetic variation; however,

some other loci studied exhibit very large genetic variation.

4. There is a spatial trend in genetic variation: the amount of genetic varia-
tion in populations 1 to 4 (from Ottawa Valley) is generally greater than
that in populations 5 to 8 (from the St.-Lawrence lowlands).

5. Only 3.5% of the total genetic variation is due to the population differ-
ences of Eastern White Pine, i.e., the vast amount of genetic variation is
found within populations.

6.3 Relationship between Genetic Traits and
Cone Morphometry

Objective

To investigate whether genetic characteristics depend on cone morphometry.

Results

1. On most loci studied, there is no statistical evidence for the presence of

a i'elationship between genetic traits and cone morphometry.

2. On locus 5 (Aco), Locus 14 (Pgm-1) and Locus 15 (Pgm-2), however,
there exists mild evidence showing that the genotype distributions do
depend on some characteristics of the cone morphometry, with the most
important aspects being the morphometric measurements of the scale on

the cone.
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3. Our investigation is intended to be expository rather than authoratative.
The result should be useful as a reference and guidance for further study.
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Appendix A

Data Structure
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A.2 Genetic Data Set
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Appendix B

Correlation Matrices

Table B.1: Correlation Matrix for Population 1

Xe Xe | Xi Xu X5 Xs X: Xs
Xa| 1
Xe|.956 1
X;|.652 625 1
Xa | .547 5191 .626 1
Xs | 464 .450 | 418 551 1
X;{.174 .161|.599 .436 .122 1
Xr | .257 .270 (.313 .274 .359 .212 1
Xs | .055 .120|.194 .093 .050 .263 | —.201 1

Table B.2: Correlation Matrix for Population 2

X4 Xe X1 Xa X5 ,X3 X7 Xs
Xy 1
Xe | 953 1
X; | .623 .600 1
X, |.515 469 | 625 1
Xs|.537 524 | .579 699 1
Xz |.158 .119 |} .652 .579 .368 1
X7].301 .308 | .587 .490 .499 .467 1
Xg | .016 -—.009 |.055 .011 .044 .227 ]| -—-358 1
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Table B.3: Correlation Matrix for Population 3

X.| Xs X1 Xg X5 X3 X7 Xs
X4 1
Xs | .938 1
X; | .507 474 1
Xa | .498 490 |.562 1
Xs| 646 .616 |.393 .560 1
X3 | —.061 —.048( .373 .514 .091 1
X7 | .028 .017 | .307 .325 .166 .434 1
Xs| .039 .018 |.046 .202 .202 .105| —.420 1
Table B.4: Correlation Matrix for Population 4
X4 Xe | Xi Xa X5 Xa| Xr X
X, 1
Xe | .965 1
Xy | 725 .708 1
Xa| 603 568 | .569 1
Xs| 546 549 | .579 675 1
Xa| 197 196 | .617 .380 .259 1
X;] 136  .146 | .488 .301 .292 572} 1
Xs | —.068 —.040 | .042 .128 .058 .231|.087 1
Table B.5: Correlation Matrix for Population 5
Xs Xe | Xi X2 Xs Xa| X: X
X, 1
Xe| 944 1
X, [.648 620 1
X; | 456 .416 | .656 1
Xs | .507 .509 | .524 .67T4 1
X>|.242 .183 | .687 .572 .335 1
X7 |.150 .142 | .453 .419 .392 419 1
Xg | .156 .184 | .238 .112 .109 .257 | -.370 1
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Table B.6: Correlation Matrix for Population 6

X4 Xc Xl Xg X5 X3 X'r Xs
X, 1
Xe | .967 1
Xy | 590 565 1
X | 531 498 | .475 1
Xs| 592 564 | 493 .776 1
X3 | 224 .175] .618 .542 .341 1
- X7 | 143 099 | 457 363 311 .624| 1
Xs | —.006 .004|.066 .398 .294 .202|.018 1

Table B.7: Correlation Matrix for Population 7

X4 Xe X1 X'z Xs X3 X-( Xg
X, 1
Xe | .916 1
X;| 600 .564 | 1
Xp | 527 486 .612 1
Xs | 454 442 585 .616 1
Xz | .252 .211|.661 .523 .394 1
X7 | 232 .189|.241 .170 .212 .325 1
Xs | —.010 .031|.248 .091 .213 .290 | —.480 1
Table B.8: Correlation Matrix for Population 8
Xe Xe | Xi Xo Xs X35 | X: Xs
Xy 1
Xe|.932 1
X, |.542 530 1
Xz | 491 4771.521 1
Xs |.561 .494 | 451 .671 1
X3 | .173 .150 | .577 .558 .290 1
X7 |.044 .003 [ .272 .208 .293 .316 1
Xs |.209 .194 | .265 .270 .174 .356 | —.405 1
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Table B.9: Correlation Matrix for Population 9

X4 Xs X1 Xz X5 X3 X7 Xs
X4 1
Xe | .920 1
X, | 603 492 1
Xa| 386 .340| .522 1
Xs| 404 415 462 644 1
Xz | .149 .028 | .575 .649 416 1
X7 | —.001 .060 | .247 .283 .407 .319 1
Xs | 327 .281.309 .315 .213 .292| —-.065 1

Table B.10: Correlation Matrix for Population 10

X4 Xs Xi X7 X5 Xs| Xo Xs
Xe| 1
Xe | 960 1
X, | .676 .656 1
X;|.496 456 | 543 1
Xs|.506 .489 | .604 .7T13 1
X3 |.273 .245 | .609 .511 .322 1
X7 |.262 .231 | .486 .331 .446 .346| 1
Xs | .027 -.052|.194 .286 .361 .169|.082 1

Table B.11: Correlation Matrix for Grand Population

Xe Xe | Xi X3 X5 Xs X: Xs
Xe| 1
Xe| 948 1
X, |[.626 .597 | 1
X; | 401 .388 | .514 1
X; |.535 .632|.521 .603 1
X3 |.133 .108 | .570 .508 .293 1
X7 | 137 .122[.360 .281 .258 .345 1
Xs | 130 .129 | .182 .108 .219 .228 | —.281 1

74



Appendix C

Covariance Matrices

Table C.1: Covariance Matrices for Population 1

Xi

X3

X3

X4

Xs Xe X: Xs

234
16.9
82.7
30.1
.73
274
101
46.6

3.11
6.94
2.91
1.18
2.62
10.2
2.58

81.5
4.74
1.33
4.16
40.6
37.3

9.11
1.69
8.28
16.4
2.60

1.46

1.56 8.23

9.18 164 448
945 5.44 —66.9 247

Table C.2: Covariance Matrices for Population 2

X1

X3

X3

X4

Xs Xe X Xs

319
21.7
125
32.9
13.6
32.7
235
16.3

3.77
12.0
2.96
1.78
2.79
214
343

115
5.00
5.17
3.89

112
40.3

8.72
2.08
8.61
19.9
.802

1.72

210 9.34

147 215 505

961 467 -132 273
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Table C.3: Covariance Matrices for Population 3

X1 X Xs Xe X5 Xg X X
X1 | 255
X2 153 2.90
X3 {600 882 101
Xe| 215 225 -1.63 7.05
Xs |8.07 127 117 221 1.65
Xe 216 239 -138 7.13 226 8.18
X,[{939 106 839 143 4.08 .918 368
Xs 834 391 121 117 295 .560 -91.5 129

Table C.4: Covariance Matrices for Population 4

X1 X2 X X4 Xs Xe X Xs
X, | 464
X, | 274 5.01
X3 | 131 837 971
X, | 471 4.08 5.89 9.10
Xs|15.0 1.82 3.08 1.99 8.62
Xe | 45.1 3.76 5.73 8.62 196 8.77
X:| 220 141 118 8.63 739 9.08 440
Xs | 7.80 245 195 -1.75 .601 -—-1.03 15.7 73.6

Table C.5: Covariance Matrices for Population 5

X1

X2

X3

X4

X5 Xs X7 X8

318
22.9
134
30.9
11.6
29.0
202
67.5

3.84
12.3
2.39
1.63
2.14
20.5
3.47

120
7.08
4.54
5.24
115
44.6

7.17
1.68
6.26
10.0
6.64

1.53

1.65 6.88

121 9.33 624
213 7.67 -—147 252
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Table C.6: Covariance Matrices for Population 6

Xi X Xs X X5 X¢ X1 Xs
X, | 366
X3]189 435
X3| 101 9.62 723
X4]29.5 290 4.98 6.83
Xs 129 221 397 212 1.87
Xe | 272 261 374 635 1.94 6.32
X7| 174 151 106 7.45 8.48 496 398
Xs 892 588 122 -—-.111 2.84 .079 253 50.2

Table C.7: Covariance Matrices for Population 7

Xy X3 X; X4 Xs Xe Xo Xs
Xy | 312
X;|196 3.29
X3 | 113 9.20 238
X.[264 238 6.08 4.51
Xs | 122 132 451 133 5.53
Xe | 242 214 497 553 1.27 5.90
X7|982 712 72,7 134 5.77 106 532 _
Xs | 820 3.08 526 -—.476 4.72 1.43 -207 351

Table C.8: Covariance Matrices for Population 8

Xi

X3

X3

X4

Xs

Xe

Xr Xs

273
15.3
83.2
17.6
8.96
17.2
91.7
79.1

3.15
8.64
1.71
1.43
1.67
7.50
8.65

76.0
2.96
3.03
2.58
56.0
56.0

3.87
1.33
3.61
1.75
7.44

1.45
1.17
7.16
3.77

3.87
134
6.88

413
—149 326
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Table C.9: Covariance Matrices for Population 9

X1 X Xs X4 Xs Xs X Xs
X; | 382
X2 (195 3.66
X3 | 116 129 107
X329 206 431 1779
Xs[120 164 576 150 1.78
Xe | 24.7 1.67 .751 6.59 1.42 6.58
X7(90.6 102 62.1 -.075 102 290 352
Xs | 67.7 6.75 34.0 102 3.19 8.08 -—-13.6 126

Table C.10: Covariance Matrices for Population 10

X1

X,

X3

X4

Xs

Xe Xr Xs

X,
X
X3
X4
Xs
Xe
X7
Xs

364
20.6
115
313
15.3
29.0
170
39.8

3.94
20.0
2.40
1.88
2.10
12.0
6.11

97.8
6.58
4.22
5.64
62.8
18.0

5.93
1.63
5.43
11.7
719

1.76
1.51
10.8
5.15

5.39
9.84 336
-1.30 16.3 116

Table C.11: Covariance Matrices for Grand Population

Xi

X

X3

X4

Xs

XG X7 Xs

345
19.6
106
33.6
12.9
31.1
149
50.3

4.22
10.5
2.38
1.65
2.23
12.8
3.28

101
3.86
3.91
3.04
77.1
34.0

8.34
2.05
7.69
8.77
5.56

1.77
1.98
7.62
4.32

7.88
7.59
5.39

494
—-92.7 220
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