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Abstract 

A descriptive and exploratory study aimed at uncovering genetic and morphe 

metric differences among ten geographical populations of Eastern White Pine 

(Pinus strobus L.) involves two data sets. The first data set contains mor- 

phological characteristics of 3000 Eastern White Pine cones, and the second, 

genetic information on 18 loci for each of 300 trees from which the 3000 cones 

were harvested. Using exploratory descriptive techniques, there is a suggestion 

of geographical population differences in cone morphometry. By a combination 

of multivariate techniques and ANOVA models, statistical analyses reveal that 

although cone morphometry of Eastern White Pine varies across geographi- 

cal populations, variation from this source accounts for only a small portion 

of the total morphometric variability exhibited by the species. Analyses on 

the genetic data set show that there is very little variation attributable to ge- 

ographical population differences. Finally, polychotomous logistic regression 

models are proposed to investigate the possible relationship between the ge- 

netic traits of the species and the morphometric measurements of its cones. 

The conclusion is that there exists only mild statistical evidence showing that 

the genotypes of certain loci studied depend on the morphometric meaaure- 

ments of the cones, especially on those of cone scales. 
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Chapter 1 

Introduction 

1.1 Background 

Eastern White Pine ( P i n w  strobw L.), an important commercial species which 

constitutes the most valuable softwood lumber resource in eastern Canada, is 

a characteristic tree in the Great Lakes - St. Lawrence Forest Region, but its 

range also extends into the southeastern parts of the Boreal Forest Region, 

eastward into the Acadian Forest Region and south throughout the Deciduous 

Forest Region. Because of its low shrinkage and uniform texture, it is used 

extensivelyfor patterns, window sashes and frames. It is also the tallest conifer 

in eastern Canada, commonly reaching heights of 100 ft. and diameters of 3 ft.. 
The crown of a mature tree growing in the open is composed of wide-spreading 

branches at approximately right angles to the trunk in its mid-portion. In the 

upper part of the tree the branches ascend, giving a broadly oval outline which 

often becomes irregular, or asymmetrical, owing to the effect of prevailing wind. 

In closed stands, the tree is often clear of branches over the lower two-thirds 

and the crown is columnar. It is found on many different soils[6]. 

In order to define the population structure of Eastern White Pine in Qukbec 



as well as in the other parts of eastern Canada so that several other studies 

can be conducted, research scientists at the Laurentian Forestry Centre of 

Forestry Canada are undertaking a study aimed at determining the nature 

and extent of the genetic variability of this principal coniferous forest species, 

creating improved synthetic varieties through the identification, selection, and 

hybridization of superior genotypes and populations, and refining forest tree 

breeding techniques for maximization of commercial yields [1 1] . 
In the natural population of living organisms, the range of genetic diversity 

is determined by concurrent or antagonistic forces, mainly mutation, recombi- 

nation, natural selection, gene flow, and random genetic derivation. Specific 

environmental conditions may also play a significant role in certain cases by 

causing disturbances that alter the spatial uniformity of populations. Depend- 

ing on the more or less dominant role played by one or more of the above ele- 

ment s, natural populations may exhibit greater or lesser genetic differentiation 

which may be observed at both the molecular and morphological levels[ll]. 

Two types of data are therefore collected in this study from a sample of 300 

Eastern White Pine trees. The first is the eight morphometric measurements 

of the species' cones, including cone length, cone width, number of scales on 

the cone, central scale length, central scale width, winged scale length, num- 

ber of sound seeds and number of empty seeds. The second captures genetic 

characteristics of the trees by recording the genotypes of eighteen chosen loci 

where the solutions in the lab are available. The data was then distributed 

among statisticians through the Case Study section of the 1993 Annual Meet- 

ing of Statistical Society of Canada held at Acadia University, Wolfville, Nova 

Scotia. 

This project began with participation in the Case Study organized by SSC 

in which participants were invited to address three clearly-defined questions 

(see Section 1.3). It is expansion of the two reports that I submitted to SSC 



1.2 Data Structure 

The method of data collection, or the sampling scheme, plays an important role 

in statistical modeling because model's validity relies on certain assumptions 

, about the data, and different models usually prespecify different data struc- 

tures. As Sir Maurice Kendall[7] noted: "... a point which is often ignored in 

the treatment of statistical data: the method of analysis depends on the model 

we have in mind; and this may depend on the way in which the data were ob- 

tained." Therefore a full underst anding of sampling scheme necessitates the 

right choice of statistical model. 

For this study, ten Eastern White Pine populations are sampled in Quhbec 

(Figure 1 . I ) .  Populations 1 to 4 are from the Ottawa valley, populations 5 
to 8 are from the St.-Lawrence lowlands, population 9 is from Anticosti, and 

population 10 from Abitibi. The last two populations are sampled at the 

margin of the natural range of the species; Antimti Island is furthest east 

and under the influence of a maritime climate, Abitibi is furthest west and 

under continental conditions. 

In each of the ten populations, 30 trees bearing mature cones are selected 

so as to cover the geographical area of the population; selected trees have a 

well developed crown and stand at least 30 meters apart to avoid inbreeding; 

selection is otherwise random. On each selected tree, a cone bearing branch 

which protrudes from the crown is shot down with a 12 gauge deer gun, and 

10 cones are randomly selected from it. For each of the 3000 cones harvested, 

8 morphometric measurements are taken: ' 
'Cone width is measured at the fattest point before scales opened to shed their seeds. 

A central scale is randomly selected along the cone circumference at cone mid-length; it is 
removed, and its length and width are measured. Eastern white pine see& have a wing 
which facilitates natural dissemination. When the winged seed is released from the scale, 
it leaves a scar from which the length of the winged seed can be measured directly on the 
removed central scale. (It is in fact the total length of the seed and its attached wing.) This 
measure thus is called winged scale length. Seeds from the middle of the cone are separated 
into sound and empty seeds with a seed blower, and examined by X-ray. 
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Not at ion 

Xl 
x2 

x3 

x4 

x5 

x 6  

x7 

xs 

Variable 

Cone length 

Cone width 

Number of scales 

Central scale length 

Central scale width 

Winged scale length 

Number of sound seeds 

Number of empty seeds 

Units 

mm 

mm 

Number 

mm 

mm 

mm 

Number 

Number 

Overall, we have 3000 cones in our first data set and each cone has eight 

measurements. 

For the second data set, we have only 300 records, one for each tree. They 

are the same trees as in the fist  data set. There are 18 variables in this data 

set, each standing for the genotype of a locus of the tree. (A locus is a location 

of enzyme on the chromosomes.) For each variable or locus, tree genotype is 

recorded as a pair of letters which correspond to the alleles this tree bears at 

the locus associated with the variable. Eastern white pine is a diploid species. 

Each individual has 12 pairs of homologous chromosomes on which its two 

alleles can be found for a given locus. In any population, there may exist 

several alleles. For this data set, however, we only observe three alleles A, B 

and C. An individual which is homozygous in a particular locus (i.e. both its 

alleles are of the same form in this locus) may be identified as AA, BB, or CC, 
depending on which form of the allele it bears. For certain loci (or variables), 

all 300 individuals are homozygous of the same type: all 300 trees are AA, for 

example. Such a locus is said to be fixed. A heterozygous individual (i.e. one 

which has two different alleles for a given locus) is coded AB, AC, or BC, for 

example, depending on which pair of alleles it has. In certain loci, some trees 

are homozygous, and some are heterozygous. All possible combinations of two 

alleles are not necessarily observed. Thus, we have 300 trees as our sampling 

units in this data set, and 18 loci as our variables for each unit. 



Appendix A illustrates the structures of these two data sets. 

Objectives 

The objectives of the statistical analysis are defined by the researchers and 

distributed by SSC. They are: 

1. To describe variability in Eastern White Pine cone morphometry within 

and between populations. 

2. To analyze genetic variability within and among Eastern White Pine 

populations. 

3. To investigate whether genetic characteristics depend on cone morphom- 

etry. (It is generally recognized that cone morphometry is subject to 

natural selection; the presence of a relationship between genetic traits 

and cone morphometry would suggest that the loci studied may also be 

the object of natural selection.) 

We will try to answer the above three questions through our data analysis. 

In Chapter 2 we will do some preliminary analysis to get a 'feeling' about the 

data. In Chapter 3 we will build our model framework based on the objective 

and our preliminary analysis. In order to overcome some technical difficulties 

in modeling the data which will be presented in Chapter 5, we need to do some 

further preliminary analysis in Chapter 4. Finally, in Chapter 6 the results of 

our analysis will be summarized. 



Chapter 2 

Preliminary Analysis: Part I 

Data analysis is a dynamic process. The first step in the process is a descriptive 

analysis, consisting of anomaly detection and data reduction. In this phase of 

the analysis, we keep in mind the ultimate objectives of the study, but we do 

not specify models, or attempt inferences. This step is an essential preliminary 

to the modelling process and inferential techniques. 

2.1 Morphometric Data Set 

2.1.1 Univariate Scanning 

Although this is a multivariate data set, we looked at the eight morphometric 

variates one by one first. 

Detecting Errors 

Initial scanning of the data set found only one mistake in this data set, i.e., 

the observation of X8, number of empty seeds, in the 3rd cone on the 17th tree 



of the 2nd population is recorded as -2. This is obviously a coding error. We 

think the most probable true value for this observation is 2, although our choice 

is not entirely objective. After all, it is computationally more economical than 

treating the observation as missing, in which case the design of experiment is 

unbalanced and incomplete. 

Descriptive Statistics 

After data correction, descriptive statistics are given in the Table 2.1. Note 

that except for X8 (number of empty seeds), the means and medians are very 
close for all variates, and the skewnesses are very small. These suggest that 

the distributions for these variates are almost symmetric and that there are 

probably not many abnormal observations in the data set. 

Table 1.1: Descriptive Statistics for Grand Population 
Mean Median Range SD Skewness Kurtosis 
127 126 72-211 18.6 .428 .383 
19.4 19.3 13.3-27.5 2.06 .208 - .003 
61.0 60.0 33-106 10.0 .569 .595 
27.6 27.5 18.8-38.1 2.89 .229 .I40 
14.1 14.0 9.30-19.3 1.33 .051 .262 
23.5 23.4 14.0-32.5 2.81 .I73 .207 
41.4 39.0 0-146 22.2 .430 -.lo1 
15.5 11.0 0-106 14.8 1.74 3.69 



Exploring Patterns 

The histograms of the eight morphometric variates were then plotted to see if 

there are any unusual patterns or outliers of observations. (See Figure 2.1 and 

Figure 2.2.) 

100 150 200 
XI: CONE LENGTH 

40 60 80 100 
X3: NUMBER OF SCALES 

15 20 25 
X2: CONE WIDTH 

20 25 30 35 40 
X4: CENTRAL SCALE LENGTH 

Figure 2.1: Histograms of the Morphometric Variates (Part I) 



From the histograms we can see that except for X8 (number of empty 

seeds), all other seven variates appear to have a bell-shaped normal distribu- 

tion with different parameters. Among them, XI (cone length), X3 (number 

of scales) and X7 (number of sound seeds) are slightly skewed to the right. Be- 
cause of the very large sample size, even negligible departure from normality 

may turned out to be highly significant and thus it is not necessary to test for 

normality formally. 

10 12 14 16 18 20 
X5: CENTRAL SCALE WIDTH 

0 50 100 150 
X7: NUMBER OF SOUND SEEDS 

15 20 25 30 
X6: WINGED SCALE LENGTH 

0 2 0 4 0 6 0 8 0 1 0 0  
X8: NUMBER OF EMPTY SEEDS 

Figure 2.2: Histograms of the Morphometric Variates (Part 11) 

10 



Visual Comparison Across Populations 

Boxplots for each of the eight morphometric variates across populations are 

presented in Figure 2.3 and Figure 2.4. We rearranged the ten populations 

according to the order for the medians of XI (cone length), a variate we feel 

the most important in characterizing cone morphometry. The order of the 

populations is 10, 7, 8, 4, 9, 6, 1, 3, 2, 5. 

Figure 2.3: Boxplots for Morphometric Variates across Populations (Part I) 



As can be seen from these boxplots, the ranking of populations on most of 

the variates are quite consistent with that of XI, most notably, on X4,XB and 

X2, X5. Also, population 10 differs from other populations most dramatically 

since its measurements on most of the morphometric variates are on the small 

side while its measurements on X2 (cone width) and X3 (number of scales on 
the cone) are the largest among all populations. The presence of vast amount 

of 'outliers' at the upper tail of the distribution of X8 may in fact be the 

evidence that X8 is not normally distributed. 

Figure 2.4: Boxplots for Morphometric Variates across Populations (Part 11) 

12 



2.1.2 Multivariate Exploration 

Correlation Structure and I ts  Implications 

A first step in exploring this nearly-normal multivariate data set is to examine 

its correlation matrix. The original correlation matrix for the entire data set 

of 3000 cones is presented as follows ( Table 2.2): 

Table 2.2: Correlation Matrix (rounding the figures to the 3rd digit) 
Xl x2 x3 x4 x5 x6 x7 x8 

Xl 1 
X2 .514 1 
X3 .570 .508 1 
X4 .626 .401 .I33 1 
X5 .521 .603 .293 .535 1 
X6 .597 .388 .lo8 .948 .532 1 
X7 .360 .281 .345 .I37 .258 .I22 1 
Xn .I82 .lo8 .228 .I30 .219 .I29 -.281 1 

In the case of a relatively small matrix it is often possible, by visual exami- 

nation of the elements, to discover subsets of variates which correlate relatively 

highly with each other. From the correlation matrix in Table 2.2, we can see 

that: 

1. The first six variates (XI - X6), most of them being measurements of 

the cone and its bearing scale, are generally moderately correlated with 

each other. However, the last two variates (X7 and X8), number of sound 

seeds and number of empty seeds, are loosely correlated with the first 

six. 

2. Among the first six, the correlation between central scale length (X4) 

and winged scale length (X6) is surprisingly high (0.948). 

When we rearrange the order of the variates in the matrix, and round the 



figures to the first digit, the structural relationship among the eight variates 

becomes more apparent ( Table 2.3). 

Moreover, we have the following observations and suggestions: 

Table 2.3: Rearranged Correlation Matrix(rounding the figures to the 1st digit) 

1. According to the magnitude of the correlations, the variates may be 

partitioned into three distinct groups namely (X4, Xs), (Xi, X2, X5, 

X3) and (X7, X8). 

2. Although variate X3 (number of scales) is in the second group, its cor- 

relations with the variates X4 and X6 may suggest that it could also be 

classified into the third group. This may be attributed to the fact that 

variate X3, like X7 and X8, is a 'count' observation. 

x7 x8 

1 

3. X4 and X6 have almost the same correlations with each of the other 

six variates, another piece of evidence suggesting that they are nearly 

perfectly linearly correlated with each other. ' 

XI x2 x5 x3 

1 
.5 1 
.5 .6 1 
.6 -5 .3 1 
.4 .3 .3 .3 

x4 

X6 
XI 
x2 
X5 
X3 
x7 

At last, we want to add that each of the ten populations exhibits very 

x4 x6 
1 
.9 1 
.6 .6 
.4 .4 
.5 .5 

.1 .1 

similar patterns of correlation structures, although small variations on certain 

cells (correlations) do exist. See Appendix B for the ten correlation matrices. 

'Based on the assertion: 



Multivariate Visual Exploration 

Star plots for the medians of the 10 populations on each of the eight morphe 

metric variates are shown in Figure 2.5. The radii are scaled into the interval 

[0.2,1] using a linear transformation, with the largest population having a ra- 

dius of 1 and the smallest population having a radius of 0.2. Thus a long radius 

on a star would be associated with a population having a relatively large value 

on that variate. 

Star symbol: @ 

Figure 2.5: Visual Comparison of Populations (based on scaled medians across 
populations) 



So we can envisage how populations differ from each other from the plot. 

What is immediately apparent is that population 2 and population 5 have 

relatively large morphometric measurements on most of the variates; while 

population 7 and population 10 have very small morphometric measurements 

on most of the variates. 

2.2 Genetic Data Set 

This data set contains the genotypes for the 300 trees on eighteen selected loci. 

The genotype for the first locus of tree 29 in population 3 is not given. We 
will treat it as missing since we could use the rest of our data set to calculate 

the genotypic frequency, on which most of our analysis is based. 

2.2.1 Descriptive Statistics 

Suppose different genotypes are considered to be different 'categories', and the 

number of possible genotypes on any locus is finite, then the trees sampled will 

essentially follow a multinomial distribution for any given locus. These distri- 

bution parameters are not necessarily the same from one locus to another. In 
some loci, the distributions may be reduced to binomial or degenerate distri- 

butions. The sample statistics for all 300 trees combined are calculated and 

presented in table 2.4. 

As can be seen from the table, there is always an apparent dominant geno- 

type on most of the loci studied (except for Loci 1 and 10 on which the dom- 

inant genotypes are not so apparent), such as genotype AA on Locus 2, or 

genotype BB on Locus 14. The trees which have the dominant genotype on a 

certain locus usually account for 75% to 100% of the total 300 trees sampled. 

The strong dominance is in fact the result of inbreeding in natural popula- 

tion. The fact that most dominant genotypes are homozygous (of the same 



allele) suggests there is not much heterogeneity among different geographical 

populations of trees. 

2.2.2 Genotypic Frequencies Across Populations 

The observed genotype frequency across ten populations is then portrayed 

in Table 2.5 to Table 2.18. These tables reveal genetic differences, if there 
exists any, among the ten populations for most of the loci studied. Based on 

these contingency tables, routinely, we should be able to perform xa tests of 

homogeneity of genotypic distributions across ten populations. However, due 

to the presence of vast amount of low frequencies in certain cells, x2 tests may 

not be valid here. (In fact, the presence of vast amount of low frequency cells 



and their consistency across populations can be regarded as an indicator of 

homogeneity of genotype distributions.) There is only one exception: Locus 5 

(Got-3) do not have many of such cells. The x2 test statistics on this locus is 

25.6 with 18 degrees of freedom, yielding a pvalue of 10.8%. We thus can not 

conclude heterogeneity in this case either. 

We thus decided to test the following hypotheses: that the proportions of 

trees with dominant genotype are the same across ten populations. The last 

row in each table shows the test result. 

Degenerate Case: 

On Locus 9 (Idh), Locus 12 (Mdh-3) and Locus 16 (6pg), all 300 trees are 

homozygous of the same genotype AA. These three loci furnish no information 

about the genetic variability among populations. See Table 2.4. 

Binomial Case: 

On Locus 3 (Got-1), Locus 4 (Got-2), Locus 7 (Fum), and Locus 17 (Pgi), we 

have two genotypes AA and AB (See Table 2.5 to Table 2.8). These loci are 

almost homozygous with genotype AA being the dominant one. Little genetic 

variability is expected across populations. 

Table 2.5: Locus 3(Got-1): Genotypic Frequency Across Populations 
Genotype 

AA 
AB 

Total 
test 

Population 
1 2 3 4 5 6 7 8 9 1 0  

30 29 30 30 30 30 30 30 30 30 
1 

30 30 30 30 30 30 30 30 30 30 

x2 = 0.05 p = 1.00 



Table 2.7: Locus 7(Fum): Genotypic Frequency Across Populations 
Population 

2 3 4 5 6 7 8 9 1 0  
28 30 29 30 30 30 30 28 30 29 

Table 2.6: Locus 4(Got-2): Genotypic Frequency Across Populations 

I I I 

I test I x2 = 0.4 p = 1.00 

Genotype 

AA 
AB 

Total 
test 

Table 2.8: Locus 17(Pgi- 1) : Genotypic Frequency Across Populations 

Population 
1 2 3 4 5 6 7 8 9 1 0  

29 30 28 29 29 29 30 27 29 28 
1 1 2 1 1 1 1 3 1 2  

30 30 30 30 30 30 30 30 30 30 
X 2  = 0.5 p = 1.00 

I Population 
1 1 2 3 4 5 6 7 8 9 1 0  

Trinomial Case: 

AB 
Total 
test 

Five loci (Hex,Got-3,G6p,Mdh-2 and Mpi) are found to have three genotypes. 

They are not the same three genotypes on all these loci. See Table 2.9 to 

Table 2.19. Note for Locus 13(Mpi), we only observe one allele A in the entire 

300 trees sampled. If this tree can be regarded as an outlier, the locus is 

degenerated into a binomial case. On the other hand, this also implies that 

the multinomial classification of loci based on the sample may not hold for the 

population due to chance error of sampling. 

2 3 3 2  1 2  
30 30 30 30 30 30 30 30 30 30 

x2 = 0.86 P = 1.00 



Table 

Table 2.9: Locus 2(Hex): Genotypic Frequency Across Popula 
Genotype 

AA 
AB 
BB 

Total 
test 

Population 
1 2 3 4 5 6 7 8 9 1 0  

27 23 27 22 21 17 28 28 21 22 
1 3 1 4 7 8 1 1 5 7  
2 4 2 4 2 5 1 1 4 1  
30 30 30 30 30 30 30 30 30 30 

x2 = 4.99 p = 0.835 

2.10: Locus 5(Got-3): Genotypic F'requency Across Populations 
Genotype 

AA 
AB 
BB 

Total 
test 

Table 2.11: Locus B(G6p): Genotypic Frequency Across Populations 

Population 
1 2 3 4 5 6 7 8 9 1 0  
8 9 6 7 4 9 3 4 4 6  
17 13 17 11 17 16 14 14 23 16 
5 8 7 1 2 9  5 1 3 1 2 3  8 
30 30 30 30 30 30 30 30 30 30 

x2 = 5.81 p = 0.759 

Genotype 

AA 
AB 
BB 

Total 
test 

Table 2.12: Locus 11(Mdh-2): Genotypic Frequency Across Populations 

Population 
1 2 3 4 5 6 7 8 9 1 0  

2 1 1 
6 8 7 6 9 6 4 2 8 9  
24 22 23 24 21 22 25 28 22 20 
30 30 30 30 30 30 30 30 30 30 

x2 = 2.08 p = 0.99 1 

Genotype 

AB 

Total 
test 

Population 
1 2 3 4 5 6 7 8 9 1 0  

1 1 

30 30 30 30 30 30 30 30 30 30 
x2=1.03 v = l  



4-nomial Case: 

Table 2.13: Locus 13(Mpi): Genotypic Frequency Across Populations 

On each of Locus 14(Pgm-1) and Locus 18(Pgi-2), four genotypes are observed. 
The contingency tables are Table 2.14 and Table 2.15. 

Genotype 

AA 
AB 
BB 

Total 
test 

Table 2.14: Locus l4(Pgm-1): Genotypic Frequency Across Populations 
I Genotype I Population I 

Population 
1 2 3 4 5 6 7 8 9 1 0  
1 
3 2 2 3 1 1 1 2 3 2  
26 28 28 27 29 29 29 28 27 28 
30 30 30 30 30 30 30 30 30 30 

y2 = 0.35 v = 1 

BB 
BC 
CC 

Total 
test 

.at ions 

28 28 26 25 26 29 30 30 27 29 
1 2 3 5 2 1  2 

1 
30 30 30 30 30 30 30 30 30 30 

y2 = 1.16 v = 0.999 

Table 2.15: Locus 18(Pgi-2): Genotypic Frequency Across Popu 

1 test X2 = 3.22 p = 0.955 I 

Genotype 

AA 
AB 
AC 
CC 

Total 

Population 
1 2 3 4 5 6 7 8 9 1 0  

20 25 25 28 26 27 27 29 21 28 
5 4 2 2 2 3 3 1 4 1  
4 1 3  2 5 1 
1 

30 30 30 30 30 30 30 30 30 30 



6-nomial Case: 

Locus 1 (Aco), Locus 6 (Ak), Locus 10 (Mdh-1) and Locus 15 (Pgm-2) exhibit 

the greatest diversity of genotypes - all six possible genotypes are presented 

on these loci. 

Table 2.16: Locus 1 ( Aco): Genotypic Frequency Across Populations 
Population Genotype 

AA 
AB 
AC 
BB 
BC 
CC I - 

I Total 1 30 30 29 30 30 30 30 30 30 30 
I 

test I x2 = 10.5 P = 0.302 

Table 2.17: Loc 

F 
1s 6(Ak): Genotypic Frequency Across Populations 

Population 
1 2 3 4 5 6 7 8 9 1 0  

1 
9 3 4 6 6 4 3 6 3 4  

1 
21 25 21 24 24 24 22 24 24 23 

2 5 1 5  3 1 
1 

30 30 30 30 30 30 30 30 30 30 



Table 2.18: Locus 10(Mdh-1): Genotypic Frequency Across Pop1 
Genotype 

AA 
AB 
AC 
BB 
BC 
CC 

Total 

test 

I Total 1 30 30 30 30 30 30 30 30 30 30 

Population 
1 2 3 4 5 6 7 8 9 1 0  

- 

1 2  1 1 
1 4  2 3 1 2 1 7  

6 5 3 7 7 8 8 4 9 5  
1 5 1 1 1 4 1  

12 12 9  12 6  8  11 9  10 8  
12 12 12 6  14 9  8  10 9  9  
30 30 30 30 30 30 30 30 30 30 

x2 = 4.69 p = 0.861 

Table 2.19: Locus 15(Pgm-2): Genotypic Frequency Across Pop1 

I test x2 = 2.65 p = 0.976 

Genotype 

AA 
AB 
AC 
BB 
BC 
CC 

lations 

Population 
1 2 3 4 5 6 7 8 9 1 0  

1 
3 2 1 2 1 4 2 1 3 1  
2  2  1 1  1 2  
15 14 18 14 18 14 19 20 16 15 
10 10 10 12 9  9  8  7  8 13 

2 1 1 1 2 1 1 1 1  

lations 

In short, we get a 'feeling' that the distributions of genotype are homoge- 

neous among ten populations. However, genetic differences across populations 

do exist. In Chapters 4  and 5, we will reveal these differences through more 

detailed analysis. 



Chapter 3 

Model Construction 

In this chapter, we intend to build the model framework necessary to answer 

the three questions raised by the researchers. 

3.1 Models Documenting Morphometric Vari- 
ability 

We have several approaches to the first question in our objectives: to describe 

variability in Eastern White Pine cone morphometry within and among pop- 

ulations. 

1. Given the design of the experiment and the multivariate nature of cone 

morphometry, a multivariate analysis of variance (MANOVA) model 

seems to be the appropriate one to first try here. Since we have not 

defined cone morphometry yet, we have at least two possible model con- 

structions: 

Define cone morphometry as a vector of the original eight mor- 

phometric variates and perform MANOVA based on this definition. 



By analyzing the original data set, we utilize all the information 

available. 

a Treat cone morphometry as latent variables whose indicators are 

the eight manifest morphometric measurements. And then perform 
MANOVA based on these latent variables (indices). By analyzing 

compressed data, we may lose some information. 

2. Since all MANOVA can do is to compare the mean vector of variates 

across populations, we wish we would be able to state quantitatively the 

relative cone morphometry variability within and between populations. 

If the cone morphometry is a one-dimensional variate, an ANOVA model 

will yield numerically the variability within and between populations. We 

will use this approach as well. 

3.1.1 MANOVA Model 

Let X = ( ~ ( l ) ,  ~ ( ~ 1 ,  . . . , ~ ( p ) ) ~  be the pdimensional random vector charac- 

terizing cone morphometry. By subscripts, Xjr denotes the cone morphom- 

etry for the rth cone on the j th tree in the ith population. We assume that 
PI T, X;jr has the distribution of MVN(p + a;, S;), where p = (#), p(2), ..., p( ) 

a; = (a!'), ai2), ..., and E; is a positive definite p x p matrix. Then the 

model is written as : 

with boundary condition C:!?, ai = 0. Because of the nested design of the 

experiment, Pj(;) is the random effect vector due to the the jth tree in the ith 

population; and Er(ij) is the random effect vector due to the rth cone on the 

jth tree in the ith population. Then p can be interpreted as the overall (fixed) 

mean vector for the grand population, and a; as the (fixed) effect vector due 

to the ith population. 



We want to test the simple hypothesis HO : a1 = a 2  = ... = a10 = 0. The 

assumptions underlying the model are: (1) multivariate normal distributions, 

(2) El = 112 = ... = Elo, i.e., the ten populations have equal covariance ma- 
tries, and (3) serially uncorrelated observations. We will check the assumptions 

(1) and (2) in our preliminary analysis in the next chapter. 

3.1.2 ANOVA Model 

Let X be the random variable for any aspect of the cone morphometry, ei- 

ther as one of the eight original morphometric measurements or as one of the 

constructed indices. Then the model is 

where p is the overall (fixed) mean of the ten populations; a; is the fixed effect 

due to the population i for these ten geographical populations are not a sample 

(with boundary constraint ~ i 2 ,  a; = 0); Pjfi) is the random effect due to the 

jth tree in the ith population; e,(;,) is the random effect due to the rth cone 

on the jth tree in the ith population. The usual assumptions for the model 

an: (1) Pjo has a normal distribution with mean 0 and variance 0;; (2) +(ij) 

has a normal distribution with mean 0 and variance u2. 

This is a two-stage mixed ANOVA model. Based on the model output, we 

can 

1. test the simple hypothesis Ho : a1 = a 2  = .. . = a10 = 0; 

2. test the hypothesis Ho : u$ = 0; 

3. estimate all the parameters in the model and thus obtain numerical com- 

parisons for cone morphometry both between populations and between 

trees; 



4. estimate the variance components for each variate and describe quanti- 

tatively the amount of variation exhibited either within a population or 

between populations. 

3.2 Models Documenting Genetic Variability 

In order to represent in a standardized way the amount of genetic variation, 

we need measures that allow us to quantify this information. The most com- 

monly used measure of genetic variation in a population is the amount of 

hetemzygosity. Because individuals in diploid species are either heterozygous 

or homozygous at a given locus, this measure preaents intuitively a biologi- 

cally useful quantity. The disadvantage of using these measures, however, is 

that they are not very sensitive to additional variation when the number of 

genotypes n is large, because the upper limit, unity, is the same for any n. 

The theoretical Hardy- Weinberg hetemzygosity (will be called hetemzygos- 

i ty  thereafter) of a population for a particular locus with n alleles is defined 

as: 
n 

where p; stands for the allelic frequency for allele i on the locus. The underlying 

interpretation of this definition is that heterozygosity is the probability that 

for a given locus, any two randomly chosen individuals from the population 

exhibit different alleles. 

In our analysis, we feel that it is necessary to make a minor modification 

'According to the definition, the upper limit of heterozygosity is: 



to the above definition. It seems to be more appropriate to use the geno- 

typic frequency instead of the allelic frequency. (And thus n is the number of 

genotypes on the locus.) The reasons for the modification are: 

1. Generally speaking, the information extracted from the allelic frequency 

is contained in the information extracted from the genotypic frequency. 

However, the reverse is not always right. 

2. The popularity of using allelic frequency in the definition of heterozy- 

gosity is largely due to an implication of the so-called Hardy-Weinberg 

Principle which reveals that for a random-mating population 2, we can 

use n alleles at a locus to describe, without losing any information, the 

genetic variation instead of the n(n + 1)/2 different genotypes formed by 

the n alleles. When the number of alleles in the population gets large, 

the computational advantage of using allelic frequency becomes appar- 

ent. In our data set, however, only 3 alleles and therefore 6 possible 

different genotypes are observed. 

3. Biologically, it may be the combinations of the alleles, rather than the 

alleles themselves on the loci, that are really important in determining 

the traits of the species. 

2 A  random-mating population is a group in which the probability of a mating between 
individuals of particular genotypes is equal to the product of their individual frequencies in 
the population. 



Models Connecting Genetic Traits and 
Cone Morphometry 

In this part of our analysis, we are asked to investigate whether genetic char- 

acteristics of Eastern white Pine depend on their cone morphometry. This 

question may seem, at first sight, nonsense as we all know that cone mor- 

phometry of a tree is controlled by its genetic structure. But in the long-term 

evolution process, survival of, say, AA cone is a prerequisite to observation of 

AA genotype in trees. So it can be considered dependence in this sense. In 

fact, the researchers justified their question by telling us the ultimate objective 

of the study: to investigate whether there exists any evidence suggesting that 

the loci studied may also be the object of natural selection since it is generally 

recognized that cone morphometry is subject to natural selection. Moreover, 

we feel that a dependence relationship does not necessarily imply a cause-and- 

effect relationship, as is the case with genetic traits and cone morphometry. 

The relationship between genetic traits and cone morphometry, if any being 

revealed through statistical analysis, is more of an association or prediction 

than a causation. 

The model we proposed here is a straightforward regression model, in which 

the genetic characteristics of the trees, or more specifically, the genotypes, are 

being treated as the response variables. Since the genotype is regarded as 

multinomial categorical variable, the polychotomous logistic regression model 

is constructed on a locus-tdocus base as follows: 

and 

P[y = i] = exp(a; + Pix) 
1 + e~p(cri + Pix) 

3F'rom statistical point of view, a cause-and-effect relationship can only be confirmed 
through carefully designed and controlled experiments. This study, however, is virtually 
observational and exploratory. 



where I is the total number of genotypes observed on the locus, and x is the 

vector of cone morphometry properly defined beforehand, a;'s and P i ' s are 

the parameters to be estimated. This model is compatible with the sampling 

scheme since each tree is treated as an observation in the regression and the 

total of 300 trees are a stratified random sample from the grand population. 

Several issues arise in connection with this model construction: 

1. Data Clumping: Since every cone on the same tree has identical geno- 

type and the each tree is being treated as one observation, we must find 

a representative cone for each tree. An obvious answer to this question 

is from the results of the ANOVA model set in Section 3.1.2. The mor- 

phometry of the representative cone for the j t h tree in the ith population 

is estimated as: 

 xi,) j)= P + ai + bj( i )  

In other words, we use estimated cone morphometry instead of the orig- 

inal measurements. 

2. Multicollinearity: As revealed in the previous chapter, the correla- 

tions among some of eight original morphometric variates are quite high. 

If they are used as the regressors in the above model, the presence of 

multicollinearity may inflate the variance of the least squares estimator 

and possibly any predictions made, and also restrict the generality and 

applicability of the estimated model. We should find way to eliminate 

the muticollinearity of the morphometric variables while still preserve 

as much information as possible before we model the data. Ideally, we 

should regress on uncorrelated morphometric variates. This, toget her 

with the consideration of indices construction, leads to the principal fac- 

tor analysis in the next chapter. 

3. Stepwise Selection: The only statistical software available to perform 

polychotomous logistic regression is the BMDP PR program. This pro- 

gram produces maximum likelihood estimation of the parameters in the 



above model by a stepwise forward selection procedure. My classmate, 

Jun Wu, gave a very crisp account for the details of the procedure in his 

Master's Project [l4]. What we are concerned with here is the specifica- 

tion of the constants in the program, i.e., pvalue limits controlling entry 

or removal of terms, convergence criterion for the likelihood function, 

and less importantly, number of iterations to maximize the likelihood 

function. 



Chapter 4 

Preliminary Analysis: Part I1 

Following the model construction, we found that we need to do some more 

preliminary analyses before modelling the data. These include, as a summary 

for the previous chapter and a preview for this chapter: 

construction of indices on the morphometric data set. The purposes 

of this analysis are: (1) to construct a few indices (latent variables) 

to characterize the cone rnorphomet ry; (2) to construct uncorrelated 

explanatory variables to be used in the logistic regression; (3) to reduce 

the number of the variates in the data set (dimension reduction). 

0 examination of the model assumptions mentioned in the previous chapter 

for the morphometric data set, including: multivariate normality and 

equal covariance matrices for the ten populations as required by the . 
MANOVA model. 

further exploratory analysis on the genetic data set by using the measure 

of heterozygosit y. 



4.1 Construct ion of Indices 

From the preliminary analysis in Chapter 2, we observed that among the origi- 

nal eight morphometric variates, X7 (number of sound seeds) and X8 (number 

of empty seeds) seem to be most different from the rest according to the cor- 

relations among the variates. Moreover, the histograms of these two variates 

showed that variate X8 (number of empty seeds) has an apparent departure 

from normality, and variate X7 (number of sound seeds) also departs markedly 

from the fit. These suggest that we should separate them out from our analy- 

sis. This is an appropriate thing to do in light of indices construction because 

these two variates together furnish information about the productivity of the 

species, an important aspect of cone morphometry. 

4.1.1 The First Set of Indices 

Given the first six cone measurements, the most important aspects of cone 

morphometry are probably the cone size and the scale size. Focusing on these 

two, we have the following objective approach of indices construction. 

Delete variate X6 (winged scale length) since we have obtained a lot of ev- 

idence in Chapter 2 that X4 (central scale length) and X6 are almost perfectly 

correlated with each other. Then, we define: 

cone size as the product of cone length and cone width: 

Yl = x1x2 

scale size as the product of central scale length and central scale width: 

Y2 = x4x5 
'Even when we look the ten populations one by one, the correlations between these two 

variates are consistently high, ranging from .916 to .967 (Appendix B). This implies that, by 
deleting one of them, we may not lose much information regarding the cone morphometry 
variabilities. 



0 keep number of scales, number of sound seeds and number of 
empty seeds and denote them in this set of indices as: 

Thus we have five indices in this set. The advantage of this construction is 

the easy interpretation of the indices. The shortcomings of this set of indices 

are (1) we have no idea about the amount of information lost through the 

construction; (2) it may fail to characterize the relevant shape of the cone, 

and (3) the correlations among the indices are still quite high and thus cannot 

be used as the regressors in the logistic regression analysis; see Table 4.1 for 

the correlation structure. 

Table 4.1: C d t i o n  M a k  for t h e i r s t  Set of Indices 
K Y 2 f i y 4 Y s  

K 1 

4.1.2 The Second Set of Indices 

Factor analysis is one of the most commonly used statistical techniques for 

constructing latent variables or indices. It aims at ascertaining whether the 

interrelations between a set of observed variables are explicable in terms of 

a small number of underlying, unobservable latent variables. We shall also 

2For example, two cones may have exactly the same cone size (X) index but one of them 
may be slimmer than another. 



use this subjective way to construct our indices. The advantages of this ap- 

proach are: (1) the quality of the analysis, justified by the amount of variation 

retained, will be known to the analyst and (2) the resulting factors are unwr- 

related. 

We shall perform factor analysis using principal components method. In 

practice, it is always important to consider the possibility, or desirability, of 

transforming the data before analysis. We shall use the most frequently used 

transformation of (natural) logarithms. The effect of the logarithmic trans- 

formation is to give measures with the same proportional variability the same 

variance. Moreover, since the resulting factors are all a linear combination of 

the variates used in the analysis, this transformation will facilitate the inter- 

pretation of the resulting components because it would be hard to interpret 

the meaning of the sum (or difference) of the original variates if we perform 

the analysis on (XI, X2, &, X4, XS , ~ 6 ) ~ .  

By minimum eigenvalue criterion, two factors are retained. They are, de- 

noted as Fl and F2: 

where a superscript t denotes the standardization of a random variable. The 

percentage of variation retained by the first factor is 58 percent, and retained 

by these two factors is 79 percent, which is acceptable. 

These two factors are also standardized random variables. The first factor 

Fl is easy to interprate because all its coefficients are positive. It is most 

appropriately interpreted as the latent variable of cone size. For the second 

factor, factor loadings are big on those of the scale morphometry, especially 

on the number of scales, winged scale length and central scale length. Thus 

this factor is mostly concerned with scale morphometry. The interpretation for 

this factor is not so straightforward: roughly speaking, the larger this factor 



is, the larger is the number of scales, or, the smaller is the scale size, or, both. 

(In some sense, this index is a mixture of & and 6 in the first set of indices.) 

Using an inverse transformation of log (i.e., exponential), we obtain the 

following set of indices to characterize the cone morphometry: 

cone size defined as: 

Zl = eF1 

scale factor defined as: 

keep number of sound seeds and number of empty seeds 

So we have in this set four indices to characterize cone morphometry. The 

disadvantage with this set of indices is that, as we have just seen, the meaning 

of the indices is not very crisp. The advantages are, as opposed to the first 

set of indices, (1) amount of variance being kept in this set of indices is known 

and acceptable; (2) the correlations among the indices are small (see Table 4.2 
for the correlation matrix) . 

Table 4.2: Corre- d Set of Indices 
Zl 2 2  23 24 

Zl 1 
z2 . O l  1 
Z3 .29 .18 1 
2, .I6 .06 -.28 1 
- --- - -- 

This set of indices will be used in our logistic regression. 



MANOVA Assumptions Check 

4.2.1 Multivariate Normality 

Many multivariate techniques rely on the assumption that the data comes 

from a multivariate normal distribution. Although moderate depart we from 

normality will not cause us a serious problem in the analysis and inferences 

because of the very large sample size we have, the quality of our analysis will 

be improved if we could find suitable transformations on the variates to make 

them resemble normal distributions more closely. 

We thus tried several common transformation on each of the original vari- 

ates and constructed indices. The best transformations we found are: 

natural logarithm transformation on XI - X4, Xs and K, Xi; 

square root transformation on X7. 

a no transformation is found to be able to give a better fit for X5, 

Quantile-quantile plots were applied on both the original Mltiates (left side 

of the figures) and the transformed variates (right side of the figures). They 

are presented in Figure 4.1 to Figure 4.9. So we can see that the transformed 

variates generally gave a better fit to a normal distribution. 



Figure 4.1: Probability Plots for Variates XI-  X4 and Their Transformations 



Figure 4.2: Probability Plots for Variates Xs - Xs and Their Transformations 



-2 0 2 
auantiles of Stendad Normal 

Figure 4.3: Probability Plots for Variates Yl, Y2 and Their Transformations 

Variates I test statistics 
/ orimnal I transformed 



Goodness-of-fit is a statistical techniques which is associated with the sta- 

tistical testing of hypothetical models with the data. Anderson-Darling statis- 

tics is a member of the group of goodness-of-fit statistics which has come to 

be known as empirical distribution function (EDF) statistics [13] because the 

measure the discrepancy between the empirical distribution function of a given 

sample and the theoretical distribution to be tested. More specifically, it is 

defined as: 

where F (x; 8) is the theoretical distribution under the null hypothesis, 

is a weight function giving greater importance to observations in the tail than 

do other EDF statistics, and F,(x) is the empirical distribution function based 

on the sample 

number of observations 5 x 
Fn(x) = , - c Q < x < o o  n 

Practically, the numerical calculation of Anderson-Darling statistics A2 is 
done by the following two steps[2]. 

2. Then the statistics is given by 

The improvement on the strength of fit through transformations is further be- 

ing confirmed by calculating the modified A' statistics[2] and t he corresponding 

pvalue for testing the sample is from a normal population. The results are 

shown in Table 4.3. 



4.2.2 Homogeneity of Covariance Matrices 

Bartlett's modification of the likelihood ratio test is used to test another im- 

portant assumption of MANOVA model, that covariance matrices are homo- 

geneous across populations. The result shows that for each of the three set of 

variables, we should reject the null hypothesis at a significant level of 0.1%. 

This is not surprising because (1) in general, many experimental conditions 

which leads to higher mean value may also produce responses with larger vari- 

ances; (2) our sample size is so large that it may contain a lot of evidence 

suggesting heteroscedasicity. 

Thus the choice of a robust test is important among over half a dozen 

MANOVA tests that are available. Olsen[9] has made a Monte Carlo study 

concerning robustness of six MANOVA tests. For general protect ion against 

departures from normality and from homogeneity of covariance matrices, he 

has recommended the Pillai V statistics as the most robust MANOVA test. 

We will briefly introduce the Pillai V test before we modelling the data in the 

next chapter. 



4.3 Heterozygosity Profiles 

Based on our definition of heterozygosity, we can calculate the amount of 
genetic variation for each locus for all ten populations combined. The results 

are shown in Table 4.4. 

Table 4.4: Ordered 

We can also calculate the amount of genetic variation for each locus across 
populations. The results are presented in Figure 4.2, where the profiles are 

arranged according the magnitude of heterozygosity in the Table 4.4. 

Jocus Heterozygosity 

On some loci, such as locus 2 (Hex) and Locus 18 (Pgi-2), locus heterozygm- 
ity varies greatly across populations; while on some other loci, all 300 sampled 

trees are almost homozygous, e.g., Locus 3 (Got-1) besides the obvious ones 

Locus 9 (Idh), Locus 12 (Mdh-3) and Locus 16 (6pg). 

Got-3(5) 
.61 

Mdh-2(11) 
.14 

Got-l(3) 
.01 

Pgm-2(15) 
.60 

Pgm-l(l4) 
.14 

Idh(9) 
0 

Aco(1) 
.79 

Hex(2) 
.36 

Got-2(4) 
.08 

3 ~ h e  numbers in the brackets identify the loci in the original file. 

43 

Ak(6) 
.37 

Mpi(l3) 
.13 

Mdh-3(12) 
0 

Mdh-l(lO) 
.73 

Pgi-2(18) 
.26 

b ( 7 )  
.04 



Figure 4.4: Heterozygosity Profiles 



Chapter 5 

Data Modelling 

5.1 Morphometric Variability 

In the previous chapter, we constructed two sets of indices to characterize cone 

morphometry, e.g., the Y-set and 2-set, from the original eight morphometric 

measurements, X-set. Each of the three sets of indices has its advantage and 

disadvantage. We will use them for different modelling purposes. 

5.1.1 MANOVA 

Recall the MANOVA model we specified in Chapter 3 is: 

According to this model, a vector of observations may be decomposed as 

shown in the following equation: 



i.e., any observation is an summation of the following terms: (1) overall sample 

mean X; (2) estimated population effect (Xi - X); (3) estimated tree effect 

(inside each population) - Xi); and (4) estimated cone effect or the 

residual term (X,(ij) - Xj(i)). 

This leads to a decomposition of the sum of squares and cross-products 

matrix 

in the following table: 

Table 5.1: MANOVA Table for Comparing Population Mean Vectors 
Source Matrix of Sum of Degrees 

of 
Variation 

Squares and Cross 
Products(SS&CP) Freedom 

POPU P = 300 Ctfl (Xi - X) (Xi - X)T 9 

Tree 

One test of Ho : a1 = a2 = ... = a10 = 0 was proposed by Pillai[lO] 

and known to have several optimal properties including robustness against 

departures from the usual population model, especially non-normality and 

heteroscedasicity. 

The statistic, usually denoted as V, is defined to be: 

Under the null hypothesis, (N  - r)V is distributed as a xi, for large sample 

size N. Here u is the number of variates in the random vector; and g is 9, the 

number of populations less 1; r is 11, the number of populations plus 1. 



Consequently, we reject Ho at significant level a if 

where X:,(a) is the upper (100a)th percentile of a chi-square distribution with 
gu degrees of freedom. 

MANOVA Results on the Original Variates: X-set 

V = 1.78 u = 8 g = 9 r = 11 p - value = .0001 



MANOVA Results on the First Set of Indices: Y-set 

The random vector is (In&, Inh,  In&, G, In(& + 1)).  

V = 1 . 1 1  u = 5  g = 9  r = 1 1  p-value=.0001 

MANOVA Results on the Second Set of Indices: 2-set 

The random vector is (FI , Fz, a, In(& + 1)).  

V = .99 u = 4 g = 9 r = 11 p - value = .0001 
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Conclusions from MANOVA Analysis 

For each of the three sets of indices, there is strong evidence that the popula- 

tion mean vectors are not the same across all ten populations. This suggests 

that there is a significant multivariate mean difference between at least two 

populations. This also suggests that there is a significant mean difference 

among at least one component of each set of indices and we should make the 

comparisons at a univariate level. 

5.1.2 ANOVA 

According to the model specifications in Chapter 3, the ANOVA model is 

essentially a part of the MANOVA model because each component of the 

observation &j) must satisfy the univariate model. 

The following three tables show the ANOVA results from the specified 

model. For each variate, the population effect is highly significant. The null 

hypothesis Ho : a1 = a2 = ... = a10 = 0 is rejected in favor of HA : ai # 0 

for at least one i = 1,2, ... 10. There is at least one significant mean difference 

among the ten populations. 

The second hypothesis of interest Ha : ui = 0 is also rejected in favor of 

HA : 0; > 0 for each variate. There is significant variation on each variate 

among the trees within populations. 



Tab 

Variate 

le 5.2: ANOVA Tables for X-set Vautes 
Sources of Degrees of Mean 
Variation Freedom Square F pvalue 

Popu 9 .393 3.9 0.0001 
Tree 290 .lo2 8.9 0.0001 
Error 2700 .011 
Popu 9 .481 8.6 0.0001 
Tree 290 .056 11.2 0.0001 
Error 2700 .005 
Popu 9 .457 4.2 0.0001 
Tree 290 .lo8 6.7 0.0001 
Error 2700 ,016 
Popu 9 .522 8.3 0.0001 
Tree 290 .063 16.8 0.0001 
Error 2700 .OM 
Popu 9 54.8 6.4 0.0001 
Tree 290 8.49 9.8 0.0001 
Error 2700 .866 
Popu 9 .586 7.1 0.0001 
Tree 290 ,083 15.4 0.0001 
Error 2700 .005 
Popu 9 102 5.2 0.0001 

ETr 229j 
it: 13.8 0.0001 

Popu 38.8 8.5 0.0001 
Tree 4.58 13.2 0.0001 
Error 2700 348 



2 

Variate 

ANOVA Tables for Y-set V e t e s  
Sources of Degrees of Mean 
Variation Freedom Square F pvalue 

Popu 9 341 3.8 0.0001 
Tree 290 ,219 8.0 0.0001 
Error 2700 .028 
Popu 9 1.34 8.8 0.0001 
Tree 290 ,152 11.2 0.0001 
Error 2700 .014 
Popu 9 .457 4.2 0.0001 
Tree 290 .lo8 6.7 0.0001 
Error 2700 .016 
Popu 9 102 5.2 0.0001 
n e e  290 19.6 13.8 0.0001 
Error 2700 1.42 
Popu 9 38.8 8.5 0.0001 
Tree 290 4.58 13.2 0.0001 
Error 2700 .348 

ANOVA 
I Sources of Degrees of Mean 

2;%i t: 9.2 0.0001 1 i;Tr 
Popu 49.2 10.0 0.0001 
Tree 290 4.92 11.8 0.0001 

Variate 

Error 2700 .418 
PODU 9 102 5.2 0.0001 

Variation Freedom Square F pvalue 
Popu 9 26.1 5.5 0.0001 

a 

h(Z4 + 1) 

TA 290 19.6 13.8 0.0001 
Error 2700 1.42 
Popu 9 38.8 8.5 0.0001 
Tree 290 4.58 13.2 0.0001 
Error 2700 .348 



Since differences do exist between populations we proceed to find out how 

the ten populations differ from each other. 

For each variate, based on the estimated mean, we can obtain the exact 

ranking for the count variates, i.e., number of scales(&), number of sound 

seeds(fi) and number of empty seeds(&). The results are shown in the fol- 

lowing table: 

Table 5.5: Ranking of Variates Y3, Y4 and Y5 
I Variate I population I 

For variates cone size(& and Zl) and scale size(& and Zz), because of two 

different ways of indices construction, the rankings are not entirely consistent. 

However, the following conclusions are consistent with both set of indices: 

Cone Size: population two and eight have the largest cone sizes, while 

population ten and four have the smallest cone size. 

Scale Size: population two and three have the largest scale sizes, while 

population ten has the smallest scale size. 

As a summary, the estimated mean vector of all the indices are plotted using 

~herndff's face techniques. See Figure 5.1. Two populations, population 10 

and population 2, are particularly noteworthy. Population 10, from Abitibi, 

has the smallest cone size, scale size, as well as number of scales. The number 

of sound seeds and the number of empty seeds are also small compared to 

'Ten other features of Chernoff's Face that can be used to represent extra variatea are: 
width of mouth; location, separation, angle, shape and width of eyes; location of pupil; 
location, angle and width of eyebrow. This graphical technique is moet useful in grouping 
subjects based on multivariate observations. 



Morphometric Characteristic of Eastern Whte Pine Tree Cane Among 10 Subpopllations(5 

Figure 5.1: The indices are constructed subjectively. The area of face is pro- 
portional to the cone size K ,  shape of face is for scale size & with population 
2 being the largest and population 10 the smallest, length of nose is propor- 
tional to the number of scales &, distance between the mouth and the nose is 
inversely proportional to the number of sound seeds K, and curvature of smile 
is for the number of empty seeds Y5 with population 8 being the largest and 
population 6 the smallest. Based on mean levels estimated from the ANOVA 
model. 



that of other populations as they are both ranked at 7. Population two, from 

Ottawa Valley, also distinguishes itself from others by the facts that its cone 

has the largest cone size, scale size as well as the number of sound seeds. Its 

number of scales is relatively large (ranked at 3) and its number of empty seeds 

is the second smallest. 

Furthermore, we find from this picture that populations 4, 6, 9 and 10, 

which are among the furthest north fringe of Eastern White Pine habitat, all 

appear to have small cone size as well as scale size. This may suggest that 

temperature may be one of the environmental factors that &ect the size of 

Eastern White Pine cone, the most important aspect of cone morphometry. 

However, there are no other spatial trends observed from this summary picture. 

Finally, we present the estimate of variation components from each of the 

three sources: variability due to the cone, variability due to the tree and the 

variability found between populations. We shall use 2-set indices for this 

purpose because the correlations among variates are the smallest in this set. 

The result of the estimation is shown in the following table: 

Table 5.6: Percentage of Variance Components 

7.8 14.7 10.2 13.2 
45.9 47.7 53.7 50.9 

cone 46.3 37.6 36.1 35.9 

From the table, we can conclude that roughly 10% of the total morphome- 

tric variability is found between Eastern White Pine populations. The rest is 

found within populations and roughly half of this variation is due to the tree 

variation and half is due to the cone variation. 

aThie is apparent if we could "move" the faces onto the map in Fagun 1.1, as I did in 
my Defense. 
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5.2 Genetic Variability 

5.2.1 Genetic Variability Across Populations 

In the preliminary analysis of the genetic data set in last chapter, we calculated 

the heterozygosity of each locus across the ten populations. In this section 

we shall calculate the heterozygosity for each population as an index for the 

comparison of genetic variabilities. 

We shall assume that these 18 locis studied are a simple random sample 
of all loci inherited in Eastern White Pine. Then we can estimate the het- 
erozygosity for each population as the average locus heterozygosity in that 

population. 

Based on the above formula, heterozygosity for each of the ten populations 

is calculated and we find that populations 1 and 3 have the largest genetic 

variability, while populations 7 and 8 have the smallest genetic variability. 

From the above table, it seems that heterozygosity exhibits a spatial trend 

among the ten populations: the amount of genetic variation in Eastern White 
Pine in Ottawa valley is generally greater than that in St-Lawrence lowland. 

We proceed to test this hypothesis. 

Table 5.7: Heterozygosity among Populations 

Viewing heterozygosity as a population parameter and again assuming that 

these eighteen loci studied are a simple random sample from all the loci in this 

species, we could combine populations 1 to 4 (from Ottawa valley) together 
to calculate the heterozygosity on each of the eighteen loci and use them as 

our observations. Similarly, we could obtain another set of observations by 

8 

.216 
H8l 

.279 
Hid 
.240 

HI, 

.213 
H e  
.272 

H I 1 0  

.247 
H e  
.263 .260 

H83 

.272 
H8S 

.254 



combining populations 5 to 8 (from St-Lawrence lowland) together. The fol- 

lowing table shows the locus heterozygosity for populations 1 to 4 combined 

(Ottawa Valley), populations 5 to 8 combined (St-Lawrence lowland) and the 

differences between these two. 

Locus 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Table 5.8: Heterozygosi 
Ottawa 

0.802 

Let h, and h, denote the heterozygosity of Eastern White Pine populations 

from Ottawa valley and St-Lawrence lowland, respectively. The hypothesis we 

want to test is the null Ho : h, - h, = 0 against the alternative HI : h, - h, > 0. 

A paired t-test is an appropriate test for this purpose. 

r of Two Combined Populations 

Since t-test is not very robust against departure from normality, we applied 

the modified A' statistics[2] first to test the assumption that these eighteen 
differences are from a normal distribution. We obtained a pvalue of 12.5% (the 

calculated statistic is 0.590). The differences between locus heterozygosity of 

these two combined populations can be regarded as from a normal distribution. 

St- Lawrence 
0.774 

Difference 
0.028 

- 



The calculated t-statistic is 2.604 yielding a pvalue of 0.9%. This strongly 

suggests that the heterozygosity of the four combined populations from Ottawa 

valley is higher than that from St-Lawrence lowland. The only caution in 

accepting this result is that we have made a somewhat unrealistic assumption 

that these eighteen loci are a simple random sample from all the loci inherited 

in Eastern White Pine. 

A final speculation: based on the two spatial trends we observed on cone 

morphometry and heterozygosity respectively, there is a suggestion that en- 

vironmental factors such as temperature may be more important in affecting 

cone morphometry while geographical proximity is more important in deter- 

mining the amount of genetic variation in Eastern White Pine. 

Figure 5.2: Heterozygosity across Ten Geographical Populations 



5.2.2 Genetic Variability Between and Among Popu- 
lat ions 

An average genetic variability of the ten populations can be calculated as 

And the total genetic variability of the whole population is calculated to 

be Ht = .261. Thus a measure of the amount of differentiation among the 

populations is defined and calculated to be 

The interpret ation is that only 3.5% of total genetic variability is found between 

populations in Eastern White Pine. 

The amount of heterozygosity for each of the ten populations are shown 

in Figure 5.2 so we can see that there is actually not much variation across 

populations. 



5.3 Relationship Between 

Cone Morphometry 

Genetic Traits and 

5.3.1 Initial Expository Analysis 

From the ANOVA on the 2-set of cone morphometric indices, we obtained a 

typical cone morphometry for every tree, i.e., 

As shown in Chapter 4, this set of indices retained most of cone morphom- 

etry information as contained in the original eight variates and their inter- 

correlations are generally small. We shall use this set of four explanatory 

variables in the polychotomous logistic regression model proposed in Chapter 

3 (x in the model). The dependent variable y in the model is the genotype, a 

categorical variable which assumes values 1,2, ..., I, where I is the total num- 

ber of genotypes observed on a particular locus. Notice that by treating it 

this way, we have implicitly assumed that the genotypes of the loci studied are 

known, i.e., all genotypes in the population are observed in the sample. 

Thus the model can be re-written as: 

and 
I-1 

P[y = I] = 1 - C P[y = i] 
n=l 

where A = (Pnl, Pn2, &, &A) and z = (21, ~ 2 ~ ~ 3 ,  ~ 4 ) ~  as defined in Section 
4.1.2. 

This model is built on a locus-to-locus base. However, since we have already 

known there are three loci that are degenerate, i.e., Locus 9 (Idh), Locus 12 



(Mdh3) and Locus 16 (6pg) are all homozygous of the same genotype, we 

actually need to run the regression 15 times. 

For most of the 15 loci on which we performed logistic regression analysis, 
we found that the pvalue for the likelihood ratio improvement from a null 
model to a one-variate model is quite high, which implies that none of the four 
variates can be judged as adequate explanatory variables. So there is hardly 
any chance that there will be a relationship between the cone morphometry 

and the genotypes of these loci. 

However, there are three aaes (Locus 5, 14 and 15) where the above p 

value is slightly less than 5% which is mild evidence for selecting the variate 
into the model. Interestingly, the variable entering the model in all the three 
cases is the same, the scale fact o r  Z2. The estimated model parameters are 
given in the following three tables. 

1. locus 5: the variate Z2 (scale factor) enters the model, giving a pvalue 

of 4.6% for testing the deviance drop. 

Table 5.9: Regression Result: Locus 5 (Got-3) 

2. locus 14: the variate Z2 (scale factor) enters the model, giving a pvalue 
for the deviance drop of 5.0%. 

- 
oii se(a;i) h2 se(h2) 

-.33 (.17) -.54 (.22) 
genotype 

AA 

Table 5.10: Regression Result: Locus 14 (Pgm-1) 

code(i) 
1 

genotype 
AB 

code(i) 
2 

aii se(4) fi2 4 6 2 )  
7.55 (5.25) 5.20 (2.82) 



3. locus 15: the variate Z2 (scale factor) enters the model, yielding a p 

value of 3.9% for the deviance drop. 

Table 5.11: Regression Result: Locus 15 (Pgm-2) 

5.3.2 Signal Amplifkat ion 

genotype 
AA 

Since Z2 is mostly concerned with morphometric measurements of the scales 

on the cone, the above finding suggests that these three loci would most proba- 

bly depend on the scale morphometry. However, the signal is very weak. This 

could be due to the masked effect of the principal components, e.g., we may 

lose some important information by using the principal components instead 

of the original variates as the regressors; or, if the hypothesis that these loci 
are depend on the scale measurements rather than other aspects of cone mor- 

phometry is true, using principal components could diminish this relationship 

because they are a mixture of all aspects of cone morphometry. 

Based on this suggestion, we performed further logistic regression analysis 

by using the original scale measurements X3, X4, and Xa . We deleted Xs again 

because it has a correlation of almost 1 with X4. The model used here is the 

same polychotomous logistic regression model. We rewrite it as: 

code(i) 
1 

and 

& m(4) 62 4%) 
-4.16 (2.36) 3.10 (1.56) 



where x = ( ~ 3 ,  ~ 4 ,  XS)*. 

Not surprisingly, our logistic regression results have been improved signifi- 

cantly. For each of the three cases, one scale measurement is able to enter the 
model. The following table shows the amplification of signal as justified by the 
improvement in pvalues. 

1. Locus 5: the variate, number of scales, enters the model with the cor- 
responding pvalue for the the likelihood ratio improvement from a null 
model to a one-variate model being 3.8%. 

Table 5.12: Summary of Signal Amplifications 

Table 5.13: Regression Result: Locus 5 (Got-3) 
a 

% 

- 

2. Locus 14: the variate, number of scales, enters the model with the 

genotype 
AA 

corresponding pvalue for the the likelihood ratio improvement from a 
nidl model to a one-variate model being 2.0%. 

" 

' 

Locus 

5 
14 
15 

(X3, X4,XdT 

Table 5.14: Regression Result: Locus 14 (Pgm-1) 

AB 
BB -37.14 (33.3) 0.86 (0.74) 

-40.81 (33.4) 0.87 (0.74) 

variate entered 
x3 
x3 
x4 

code(i) 
1 

pvalue 
3.8% 
2.0% 
0.6% 

2-set 

aii se(Q) ,& se(&) 
3.73 (1.62) -.067 (.027) 

variate entered 
22 
22 
22 

pvalue 
4.6% 
5.0% 
3.9% 



3. Locus 15: the variate, central scale length, enters the model with the 
corresponding pvalue for the the likelihood ratio improvement from a 

null model to a one-variate model being 0.6%. 

5.3.3 Conclusion and Discussion 

Table 5.15: Regression Result: Locus 15 (Pgm-2) 

From the above analyses, we could conclude that, although most of the loci 

studied have no relationship with the cone morphometry, there is some evi- 

dence suggesting that the genotypes on Locus 5 (Got-3), Locus 14 (Pgm-l) 

and Locus 15 (Pgm-2) might depend on the cone morphometry with the most 
important aspects being the scale measurements of the cone. 

genotype 
AA 
AB 
AC 
BB 
BC 

However, in drawing the above conclusion, several cautionary notes should 

be sound. 

1. The signal is too weak and it prevent us from drawing any more con- 
crete conclusions. Although the smallest pvalue we got is 0.6%, it was 

obtained only after running 15 logistic regressions. By the Bonferroni 

Inequality, the overall significant level will lie somewhere between 0.6% 

and 15 x 0.6% = 9.0%. 

code(;) 
1 
2 
3 
4 
5 

2. From previous analysis, we know that there is not much variation in 

the genetic structure of Eastern White Pine. Also, the morphometric 

variability among populations is also small. The homogeneous nature of 

" " 

i 8 2  =(Pa) 
43.96 (25.8) -1.90 (1.15) 
-2.43 (4.27) 0.11 (0.15) 
-1.47 (5.12) 0.045 (0.18) 

6.97 (3.59) -0.15 (0.12) 
5.11 (3.66) -0.11 (0.12) 



these two data sets may mask any relationship between these two and 

thus make statistical inferences more difficult. 

3. We still feel our analysis is worthwhile because this study is exploratory. 

Forward selection regression is an appropriate technique to use at this 

stage. The fact that in our initial logistic regressions on the 2-set, the 

variable entered the models on all these three loci is the same may help 

to reinforce that our marginally significant regression results are not just 

happened purely by chance. 

4. We feel our conclusion is meaningful and useful provided we regard it 

as expository and temporary and use it as a guidance and reference for 

future studies. 



Chapter 6 

Summary of Results 

6.1 Morphomet ric Variability 

Objective 

To describe variability in Eastern White Pine cone morphometry within and 

between populations. 

Results 

1. All the ten populations show a statistically significant difference for each 

of the cone morphomet ric measurements. 

2. In terms of indices cone size and scale size, all the ten populations also 

show a statistically significant difference. Eastern White Pine situated at 

the northern brink of its natural population appears to have a relatively 

small cone. 

3. Although cone morphometry of Eastern White Pine varies from popula- 

tion to population, variation from this source only accounts for a small 



portion (roughly 10%) of the total morphometric variability; i.e., most 

of the cone morphometric variation is from within populations. 

4. For the within population cone morphometric variation, the amount of 

variability due to tree-to-tree variation is roughly equal to that due to 

cone-to-cone variation. 

5. In some sense, the cone morphometric difference between Eastern White 

Pine trees are greater than the average cone morphometric difference 

between geographical populations. 

6. Eastern White Pine cones of population 2 (from Ottawa Valley) are 

noteworthy in that they have the largest average cone size and and scale 

size and the most number of sound seeds. The average number of scales 

on these cones is relatively large (ranks 3 among all ten populations) and 

the average number of empty seeds is the second smallest. 

7. Population 10 (from Abitibi) also distinguishes itself by the fact that its 

cone has the smallest average cone size, scale size and number of scales. 

Both its number of sound seeds and number of empty seeds are also on 

the small side (rank 7) among all populations. 

6.2 Genetic Variability 

Objective 

To analyze genetic variability within and among Eastern White Pine popula- 

tions. 

Results 

1. Genotypic dominance is a feature of most loci studied. 



2. Distributions of genotype on the loci studied are homogeneous across 

populations. 

3. On some loci studied, there is little or no genetic variation; however, 

some other loci studied exhibit very large genetic variation. 

4. There is a spatial trend in genetic variation: the amount of genetic varia- 

tion in populations 1 to 4 (from Ottawa Valley) is generally greater than 

that in populations 5 to 8 (from the St .-Lawrence lowlands). 

5. Only 3.5% of the total genetic variation is due to the population differ- 

ences of Eastern White Pine, i.e., the vast amount of genetic variation is 

found within populations. 

6.3 Relationship between Genetic Traits and 

Cone Morphometry 

Objective 

To investigate whet her genetic characteristics depend on cone morphometry. 

Results 

1. On most loci studied, there is no statistical evidence for the presence of 

a relationship between genetic traits and cone morphometry. 

2. On locus 5 (Aco), Locus 14 (Pgm-1) and Locus 15 (Pgm-2), however, 

there exists mild evidence showing that the genotype distributions do 

depend on some characteristics of the cone morphometry, with the most 

important aspects being the morphometric measurements of the scale on 

the cone. 



3. Our investigation is intended to be expository rather than authoratative. 

The result should be useful as a reference and guidance for further study. 



Appendix A 

Data Structure 

Morphometric Data Set 

popu tree cone X1 X2 
'I 



Genetic Data Set 

LOCI -------- 
M 

I D 
D H 
H 1 

AA BC 
AA CC 
AA AC 
AA BC 
AA CC 
AA CC 
AA BC 
AA BC 
AA CC 
AA CC 
AA AC 
AA CC 
AA CC 
AA CC 
AA AC 
AA BC 
AA BC 
AA AC 
AA CC 
AA BC 
AA BC 
AA BC 
AA BC 
AA AC 
AA AC 
AA CC 
AA CC 
AA BC 
AA BC 
AA CC 
AA BC 
AA AC 

.------ 
P P 
G G 
I I 
1 2  

AA AC 
AA AA 
AA AA 
AA' AA 
AA AA 
AB AA 
AA AA 
AA AB 
AA AA 
AA AA 
AA AA 
AA AA 
AA AA 
AA AA 
AA AC 
AA AA 
AA AA 
AB CC 
AA AA 
AA AA 
AA AA 
AA AA 
AA AB 
AA AA 
AA AB 
AA AB 
AA AB 
AA AA 
AA AC 
AA AC 
AA AA 
AB AA 



Appendix B 

Correlation Matrices 

Table B.l: Correlation Matrix for Population 1 

Table B.2: Correlation Matrix for Population 2 

x7 x8 

x4 

x7 x8 

x4 x6 

1 

xl x2 x5 x3 

x4 

xl x2 x5 x3 

x4 x6 

1 



Table B.3: Correlation Matrix for Population 3 

elation Matrix for Po ulation 4 

d 

x4 

X6 

Xl 
X2 
X5 

Table B.4: Cor 

x4 

x6 
XI 
X2 
X5 
X3 
X, 
x, 

x4 x6 

1 
.938 1 
.SO7 .474 
.498 .490 
.646 .616 

x4 X6 

1 
.965 1 
.725 .708 
.603 .568 
.546 349 
.I97 .I96 
.I36 .I46 

-.068 -.040 

Table B.5: Correlation Matrix for Population 5 

.373 .514 .091 1 

.307 .325 .I66 .434 

.046 .202 .202 .lo5 

x4 

X6 
XI 
X2 

1 
-.420 1 

xl x2 x5 x3 

1 
.562 1 
.393 .560 1 

x7 x8 

x4 X6 

1 
.944 1 
.648 .620 
A56 .416 

Xl x2 xs x3 

1 
.656 1 

x7 xs 



Table B.6: Correlation Matrix for Po~ulation 6 

Table B.7: Correlation Matrix for Population 7 

x4 

Table B.8: Correlation Matrix for Population 8 

x4 X6 

1 

x4 

xl x2 x5 x3 x4 x6 

1 

Xl xa x5 x3 

x7 x8 

x7 xs 



Table B.9: Correlation Matrix for Population 9 

x4 

X6 
XI 
X2 
X5 
X3 
X7 
x8 

Table B.lO: Correlation Matrix for Population 10 

Table B. 11: Correlation Matrix for Grand Population 

X4 Xe 
1 

.920 1 

.603 .492 

.386 .340 

.404 .415 

.I49 .028 
-.001 .060 
.327 .281 

x7 x8 xl x2 x5 x3 

x4 

x7 x8 

x4 

Xi X2 X5 X3 

1 
.522 1 
.462 .644 1 
.575 .649 ,416 1 
.247 -283 .407 .319 
.309 .315 -213 -292 

x4 x6 

1 

X7 Xs 

1 
-.065 1 

x4 x6 

1 
xl x2 x5 x3 



Appendix C 

Covariance Matrices 

?able C.l: Covariance Matrices for Population 1 
xl x2 x3 x4 x5 x6 x7 x8 

234 

Table C.2: Covariance Matrices for Population 2 
Xl x2 x3 x4 xs X6 X7 x8 

319 



Table C.3: Covariance Matrices for Population 3 
1 x2 x3 x4 x5 x6 x7 x8 

255 

Table C.4: Covariance Matrices for Population 4 
Xl x2 x3 x4 xs X6 x7 X8 
464 
27.4 5.01 
131 8.37 97.1 
47.1 4.08 5.89 9.10 
15.0 1.82 3.08 1.99 8.62 
45.1 3.76 5.73 8.62 1.96 8.77 
220 14.1 118 8.63 7.39 9.08 440 
7.80 2.45 19.5 -1.75 .601 -1.03 15.7 73.6 

Table C.5: Covariance Matrices for Population 5 

XI 
X2 
X3 
X4 
X5 
X6 
X7 
X8 

xl x2 x3 x4 x5 x6 x7 x8 

318 
22.9 3.84 
134 12.3 120 
30.9 2.39 7.08 7.17 
11.6 1.63 4.54 1.68 1.53 
29.0 2.14 5.24 6.26 1.65 6.88 
202 20.5 115 10.0 12.1 9.33 624 
67.5 3.47 44.6 6.64 2.13 7.67 -147 252 



Table C.7: Covariance Matrices for Population 7 

Xl 
X2 

X3 
X4 
X5 
x6 
X7 
Xs 

Table C.8: Covariapce Matrices for Population 8 

xl x2 x3 x4 x~ x6 x7 x8 

312 
19.6 3.29 
113 9.20 2.38 
26.4 2.38 6.08 4.51 
12.2 1.32 4.51 1.33 5.53 
24.2 2.14 4.97 5.53 1.27 5.90 
98.2 7.12 72.7 13.4 5.77 10.6 532 
82.0 3.08 52.6 -.476 4.72 1.43 -207 351 

' Xl 
XI x2 x3 x4 x5 x6 x7 x8 

273 



ble C.lO: Covariance Matrices for Population 10 
xl x2 x3 x4 x5 x6 x7 x 8  

364 

Table C.9: Covariance Matrices for Population 9 

: C.ll: Covariance Matrices for Grand Population 
Xl x2 x3 x4 x5 X6 x7 X8 

345 
19.6 4.22 
106 10.5 101 
33.6 2.38 3.86 8.34 
12.9 1.65 3.91 2.05 1.77 
31.1 2.23 3.04 7.69 1.98 7.88 
149 12.8 77.1 8.77 7.62 7.59 494 
50.3 3.28 34.0 5.56 4.32 5.39 -92.7 220 

Xl 
X2 

X3 
X4 
X5 
X6 
X7 
X8 

xl x2 x3 x4 x5 x6 x7 x8 

382 
19.5 3.66 
116 12.9 107 
32.9 2.06 4.31 7.79 
12.0 1.64 5.76 1.50 1.78 
24.7 1.67 .751 6.59 1.42 6.58 
90.6 10.2 62.1 -.075 10.2 2.90 352 
67.7 6.75 34.0 10.2 3.19 8.08 -13.6 126 
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