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ABSTRACT 

In this thesis we investigate binary self-dual codes. We give a new method 

to construct self-dual and self-orthogonal codes. We prove that almost every 

self-dual code must be indecomposable. We also investigate the automorphism 

groups of self-orthogonal codes. We prove that a self-orthogonal code with 

minimum distance four cannot have trivial automorphism group and we give 

an example of a self-orthogonal code with trivial automorphism group. In the 

last chapter we make some observations on the Barnette conjecture. 
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CHAPTER 1 

INTRODUCTION 

In this thesis we investigate self-dual codes. Self-dual codes constitute one of 

the most interesting families of codes. Many celebrated codes are self-dual, 

e.g., the extended binary Hamming code, the extended Golay code, and certain 

quadratic residue codes. 

In Chapter 2 we present some known rrzethcds of constructing self-dual 

codes. There are only a few of these. If we restrict ourselves to the binary 

codes, these make use of designs or Hadamard matrices. We present a theorem 

of Asmuss et al. which gives constructions of self-orthogonal and self-dual codes 

obtained from symmetric designs. Then we consider Hadamard matrices and 

present two different approaches to constructing self-dual codes from them. 

One method is to consider the row space of a Hadamard matrix whose order 

is divisible by a prime p but not by p2. Since the order of a Hadamard matrix 

must be divisible by four this method is not useful for constructing binary self- 

dual codes. The second method is due to Ozeki. In this method Hadamard 

matrices of order n are used to construct binary self-dual codes, provided n is 

not divisible by eight. Also, certain quadratic residue codes are self-dual codes. 

We state a theorem about such codes. Finally using the Kronecker product of 

generator matrices of self-dual codes we give a way of combining two self-dual 

codes to obtain another self-dual code. 
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In Chapter 3 we present a new method to construct binary self-dual codes. 

We prove that the row space of the face-vertex incidence matrix of a cubic planar 

bipartite graph is a binary self-dual code. This depends on a characterization 

of the minimal dependent subsets of the set of faces of these graphs. These 

sets are obtained as the union of pairwise colour classes of the proper 3-face 

colouring of the graph. An interesting result is that there is a relation between 

connectivity of the graph and the decomposability of the code obtained from 

the graph: the code obtained from the graph is indecomposable if and only if 

the graph is 3-connected. With our method we can construct all self-dual codes 

up to length 20. In Appendix B we give the list of the graphs corresponding to 

these codes. 

We also give a lower bound for the rank of the face-vertex incidence matrix 

of a cubic planar graph. Since a cubic planar graph on n vertices has % +2 faces, 

the rank of the face-vertex incidence matrix of cubic planar graphs is less than 

or equal to $ + 2. We prove that the rank is greater than or equal to ;. The 

embedding of cubic graphs on surfaces other than the plane can also be used 

for constructing self-orthogonal and self-dual codes. At the end of the chapter 

we give two examples of such constructions. 

In Chapter 4 we give an enumeration theorem for self-dual codes. Then 

we prove that the ratio of the number of indecomposable self-dual codes of 

length n to the number of all self-dual codes of length n goes to zero as n 

goes to infinity. In other words almost all self-dual codes are indecomposable. 

We then prove that a self-orthogonal code of minimum distance four cannot 

have trivial automorphism group. Since the self-orthogonal codes of minimum 

distance two cannot have trivial automorphism group, the smallest possible 

minimum distance for a self-orthogonal code with identity automorphism group 

is six. Then we construct a self-orthogonal code of minimum distance six which 

has trivial automorphism group. For this construction we use the face-vertex 

incidence matrix of a planar cubic graph which has trivial automorphism group. 

In Chapter 5 we give some early results about the Barnette conjecture. 

This conjecture states that every 3-connected cubic planar bipartite graph is 
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Hamiltonian.' We present a different approach to this conjecture, which uses 

the fact that any cubic planar bipartite graph is 3-face colourable. The proper 

3-face colouring of a cubic planar bipartite graph corresponds to a proper 3- 

vertex colouring of its dual. A bicoloured subgraph of G* is a subgraph of G* 

which contains vertices coloured by two of the three colours. We prove that an 

induced bicoloured tree in the dual graph G* corresponds to a cycle in the graph 

G which passes through all vertices of G that lie on faces of G corresponding to 

the vertices of the tree. With this result we present a conjecture that implies 

the Barnette conjecture. As an application of the above result we prove that 

every vertex- transitive cubic planar bipartite 3-connected graph is Hamiltonian. 

(The classification of these graphs has been done in [8].) 



CHAPTER 2 

CONSTRUCTIONS 

In this chapter we will give some methods to construct self-dual codes (see 

Appendix A for, definitions). These methods make use of Design Theory and 

Hadamard matrices. In certain cases quadratic residue codes are also examples 

of self-dual codes. We will concentrate on binary codes. 



2.1 Codes from designs 

Let P be a set of v objects. A 2-(v, k, A )  design based on P is a collection of 

k-subsets of P with the property that for any two elements x and y of P the 

subset {x, y) is contained in A of the k-subsets and each object belongs to r of 

the k-sets. The elements of P are called the points of the design and k-subsets 

in the collection are called the blocks of the design. If the number of blocks of a 

2-design is equal to the number of points then it is called a symmetric design. 

Symmetric designs with certain parameters can be used to construct self-dual 

codes. We will need the following definition from linear algebra. Two matrices 

D and M are called elementarily equivalent if there exists matrices P and Q 

with determinant equal to 1 such that PMQ = D. 

2.1.1 Lemma. Let M be an n x n matrix. There exists a diagonal matrix 

D = diag {dl,d2, ... ,d,) such that di divides d;+l for all i in {1,2, . - .  , n  - 1) and 

which is elementarily equivalent to M . 

We start with the following theorem. 

2.1.2 Theorem. (Assmus et al. [3].) Let p be a prime and D be a (v, k,X ) 

symmetric design with incidence matrix M. 

(1)  If k 2 X 2 0 (mod p), then the row space of M over GF(p) is a self- 

orthogonal code. 

(2) If pl(k - A),  and p l k ,  then let G be the v x (v + 1) matrix defined as 

If -k is a quadratic residue with respect to p, then the row space of G is 

a self-orthogonal code over GF(p). If -k is not a quadratic residue with 

respect to p, then the row space of G is a self-orthogonal code C over 

GF(p2). Moreover, i fp2 i((k - A ) ,  then it is a self-dual code. 

(3) If plA and k 2 -1 (mod p), let G be the v x 2v matrix defined as 



Then the'row space of G over GF(p)  is a [2v,v] self-dual code. 

(4) If p = 2 ,  X is odd, and k  is even, let G be the (v  $ 1) x (2v + 2 )  matrix 

defined by 

Then the row space of G over GF(2)  is a [2v + 2,v + I ]  self-dual code. 

Proof. We will give the proof of (2) .  Others are just routine calculations. 

The first assertion is clearly true. Since C is self-orthogonal, rankF(G) 5 q, 
where F is GF(p2) .  Now we will prove that de t (M)  = k(k -A)?.  For this 

first observe that 

We calculate the determinant of M ~ M  as follows, subtract the first column of 

M ~ M  from every other column. We get 

Then adding all rows to the first row we get 

The determinant of M T M  is equal to the determinant of the above matrix, and 

hence 

det ( M T  M )  = [k + ( v  - l )X](k  - A)'-'. 

6 



Since A(v - 1) = k(k - 1) and 

det ( M ~ M )  = det(MT) det(M) = det(M)2 

we get 
v -  1 

det(M) = 4- = k(k - A)T. 

Now let D be the diagonal matrix D = diag {dl, d2, - .  . , d,) elementarily equiv- 

alent to M .  Then 

when p2 ,(k -A). Hence ranlcF(G) = and C is self-dual in this case. 

For non-trivial examples of (1) with p = 2 we can take any of the three 

(16,6,2) designs. For the second method we can take any projective plane of 

order divisible by the prime p. Or we can take the unique (11,5,2) design with 

p = 3 and produce the ternary [12,6] Golay Code. In (3) we can take any (v, k, 2) 

design with k odd, e.g, if we take all 3-subsets of a 4-set we obtain the [8,4] 

Hamming Code. For a non-trivial example of (4) we can take the symmetric 

(11,6,3) design to obtain the [24,12] binary Golay Code. (The designs referred 

to can be found, for example, in Husain [15] .) 



2.2 Hadamard matrices 

A Hadamard matrix H  of order n is an n x n matrix with each element either 

1  or -1, which satisfies 

H H T  = n I .  

A class of self-dual codes can be obtained by considering the row space of an 

n x n Hadamard matrix over G F ( p ) ,  for some prime p dividing n such that p2 

does not divide n. Another construction is given in Ozeki [20]. 

2.2.1 Theorem. Let H  be a Hadamard matrix of order n and and let p  be a 

prime such that pln and p2 does not divide n .  Then the row space of H  over 

G F ( p )  is a self-dual code over G F ( p ) .  

Proof. Let D  be the diagonal matrix D = diag {d l , d2 ,  . - .  , dn )  elementarily 

equivalent to H .  So we have d e t ( H )  = det (D) .  Now we will find the de- 

terminant of H .  Since H  is a Hadamard matrix we have H H T  = n I  hence 

de t (H)de t (HT)  = nn .  Suppose n = pq. Since p2 does not divide n,  it follows 

that p  and q  must be relatively prime. So we have 

de t (D)  = d e t ( H )  = nnl2 = pn/2qn/2. 

Since di divides di+l, at most n/2 of the diagonal terms are divisible by p. So 

the rank of H  over G F ( p )  is at least n / 2 .  But H H T  = pqI = 0  in G F ( p ) .  So 

the rank of H  over G F ( p )  is at most n / 2 .  Hence 

~ a n b ~ ~ ( ~ ) H  = n / 2  

and the row space of H  is a [ n , n / 2 ]  self-dual code over G F ( p ) .  . 
2.2.2 Definition. Two Hadamard matrices H ( l )  and H ( ~ )  of the same order 

n are said to be equivalent if H ( ~ )  is obtained from H ( l )  by a sequence of 

operations of exchanging two rows (or columns) of H ( l )  or multiplying some 

rows (or columns) of H ( l )  by -1. It is easy to see that any Hadamard matrix 

is equivalent to a matrix of the form 



We will call a Hadamard matrix of this form as standardized Hadamard matrix. 

The following theorem is due to Ozeki. By Jn we denote the n x n matrix whose 

all entries are 1. 

2.2.3 Theorem. (Ozeki [20].) Let Hn be a standardized Hadamard matrix o f  

order n,  let Kn = 1/2(Hn + Jn) and Cn = (In : Kn).  I f  n 4 (mod 81, then 

Cn generates a doubly even self-dual code o f  length 2n. Moreover, equivalent 

Hadamard matrices give equivalent codes. 

2.3 Other constructions 

Now we will consider the quadratic residue codes. Quadratic residue codes are 

cyclic codes of a prime length p over a field GF(I),  where 1 is a prime which is 

a quadratic residue modulo p. If we consider the binary case, i.e., I = 2, this 

means that p has to be a prime of the form 8rn k 1 (for a proof see, e.g., Apostol 

[2: p. 1811). Some of the best known codes are examples of quadratic residue 

codes, e.g., the binary [7,4,3] Hamming code, the binary [23,12,7] and ternary 

[ll, 6,5] Golay codes. 

Let p be a prime, let Q denote the set of quadratic residues modulo p and 

N the set of nonresidues. Let a be a pth root of unity. Define q(x) and n(x)  as 

q(x) = (x - aT) and n(x)  = 11 (x - an) 

T E Q  n~ N 

Then the quadratic residue codes Q, Q,  N, N are cyclic codes with the generator 

polynomials q(x), q(x)(x - I),  n(x)  and n(x)(x - 1) respectively. 

2.3.1 Theorem. I f p  = -1 (mod 4) then the extensions o f  the quadratic residue 

codes Q and N b y  a parity check digit are self-dual. 

For a proof see MacWilliams and Sloane [17: p. 4901. 

Now we will see that, using the Kronecker product of the generating matrices 

of self-dual codes, we can construct new self-dual codes. The Kronecker product 

of two matrices Anxm := [aij] and B is defined as 



2.3.2 Theorem. If [Ik : All and [Il : A2] are generator matrices for self-dual 

codes, so is [Ik1 : Al o A2] 

Proof. We should prove that A1 @ A 2  is also a self-orthogonal matrix. We have 

so [Ik1 : A1 o A2] is a generator matrix for a self-dual code of length 2 k l .  rn 



CHAPTER 3 

A NEW CONSTRUCTION 

In this chapter we will give a new construction method for self-dual codes. This 

method uses cubic planar bipartite graphs. We will give some examples of this 

construction. We will also give a lower bound for the rank of the face-vertex 

incidence matrix of any cubic planar graph. 

3.1 Self-dual codes from cubic planar bipartite graphs 

Let G be a connected cubic planar bipartite graph with vertex set {1,2, ... ,n) .  

We define the face-vertex incidence matrix D = (dij) of G as the matrix with 

columns indexed by the vertices 1,2, . . . , n of G, rows indexed by the faces 

fl ,  f 2 ,  ... , fs of G with dij defined by 

d . .  := 1, if j is incident with f;; 
zJ { 0, otherwise. 

For a face f of G the corresponding row of D will also be denoted by f .  We 

thus identify subsets of faces of G with corresponding subsets of the rows of 

D. The support of a face f which is denoted by supp(f) is the set of vertices 

- incident with the face. The degree of a face is the number of elements of its 

support. Our main result is that the row space of D over GF(2) is a binary 

self-dual code of length n .  

We will begin by characterizing the minimal linearly dependent subsets of 

the the row space of D over G F  (2). We need the following lemma. 



3.1.1 Lemma. A connected cubic bipartite graph has no cut-edge. 

Proof. Assume that L is a connected cubic bipartite graph with a cut-edge e. 

Consider a component H of L-e. The graph H has one vertex of degree two and 

all other vertices of degree three. But H is a bipartite graph say with partition 

(X,Y) .  Without loss of generality assume that the vertex in H of degree two 

is in X .  Then the sum of the degrees of the vertices in X is congruent to 2 

(modulo 3),  but the sum of the degrees of vertices in Y is equal to 0 (modulo 

3). This is impossible. . 
So any edge of a cubic planar bipartite graph must be incident with two 

faces; otherwise it would be a cut-edge. Two faces of a planar graph are said 

to be adjacent if they share an edge. 

We also need the following lemma. 

3.1.2 Lemma. A cubic planar graph is 3-face colourable if and only if i t  is 

bipartite. 

For a proof see, e.g, Wilson [30: p. 911. 

3.1.3 Lemma. Let G be a cubic planar bipartite graph with vertex set 

{1,2,... ,n) and with its faces properly coloured with three colours. The only 

minimal dependent subsets of the faces of G are pairwise unions of two colour 

classes. 

Proof. Let M be a minimal dependent set of faces. First observe that since 

the sum of the elements of M is zero, every vertex of G is incident with an even 

number of faces in M. Since G is a cubic graph, we have only two choices for 

these even numbers - 0 and 2. We will prove two claims that will imply that 

M is a union of two colour classes. 

(a) Every vertex of the graph is incident with exactly two elements of M. 

Let X be the set of vertices incident with two elements of M. If X f V(G) 

then V(G) - X f 4. Since G is connected there exists some y in V(G) - X 

which is adjacent to some x in X. The two face adjacent to the edge sy are 

not in M implying the third face incident with x is not in M which contradicts 



x E X. Hence X = V(G). So if M is a nonempty minimal dependent subset of 

M, every vertex of G must be incident with exactly two elements of M. 

(b) Suppose the faces of G are coloured by the colours a ,  b,c. If M contains a 

face coloured by a then it contains ail faces coloured by a .  

Let f E M and suppose that f is coloured by a. Every face adjacent to f must 

have colour b or c. Also the sum of the elements of M is zero. A vertex x of f 

is incident with at least one element of M, namely f, so there must be exactly 

one more face in M which is incident with x. Therefore of the faces adjacent 

to f, the minima1,dependent set M must contain all those coloured by b or all 

those coloured by c. Assume M contains those faces adjacent to f which are 

coloured by b. Now let f be a face of G coloured by b and adjacent to f. By 

the same reasoning we conclude that all faces of G that are adjacent to f' and 

that are coloured by a ,  must be in M. 

Hence to conclude that all faces of colour a are in M, we have to prove 

that between any face of colour a and f, there is a chain of adjacent faces of 

colours a and b. To prove this we will consider the dual graph G* of G. In 

this case G* is a connected triangulation with its vertices 3-coloured by {a, b, c ) .  

The required chain of adjacent faces of G,  corresponds to a walk in G* whose 

vertices are coloured by a and b. So the result will follow if we can show that 

any two vertices coloured by a are joined by a walk using only vertices with 

colours a and b. Let x, y be any two distinct vertices of G* with colour a.  Since 

G* is connected, there is a walk joining x and y. If this walk contains a vertex 

z coloured by c, consider the set N(z )  of vertices of G* which are adjacent to z. 

The subgraph of G* induced by N(z)  is a cycle whose vertices are coloured by 

a and b. Using the appropriate part of this cycle we can find a walk joining x 

and y which does not contain z ,  and hence we can get the required 2-coloured 

walk. This implies that any face coloured by a or b must be in M. 

Together (a) and (b) imply that M is union of two colour classes: by the 

second claim all faces coloured by a and b are in M and by the first claim any 

vertex is incident with exactly two element of M. Hence M cannot contain any 

face coloured by c as otherwise the vertices of this face would be incident with 
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three elements of M .  rn 

Now we will prove that the row space of the face-vertex incidence matrix of 

a connected cubic planar bipartite graph is a self-dual code of length n .  

3.1.4 Theorem. Let G be a connected cubic planar bipartite graph with vertex 

set {1,2, . .  . , n )  and face-vertex incidence matrix D. Let f l ,  f 2  be any two faces 

of G of different colours in a 3-face colouring of G. If we delete the rows 

corresponding to f l  and f 2  from D, the resulting matrix is a generator matrix 

for a self-dual code oflength n. Moreover, this code is independent of the choice 

of faces f l ,  f2 .  

Proof. Let S be the matrix obtained by deleting the rows corresponding to fl 

and f 2  from D. We will prove that the rows of S form a basis for the row space 

of D and then we will prove that S is a generator matrix of a self-dual code. 

Since the set of rows of S does not contain the union of any two colour classes, 

from Lemma 3.1.3 we see that it is linearly independent. 

We will now prove that the row space of S is equal to the row space of D. 

Since every row of D other than f l  and f 2  is also a row of S, to prove this 

equality it is enough to prove that there are two minimal dependent subsets M1 

and M2 of the set of faces of G such that: 

For if (a) holds then f l  is a linear combination of the rows of D that correspond 

to the elements of MI - {fl). The set Mi - {fi) is a subset of the rows of S, 

therefore f l  is in the row space of S .  Similarly (b) will imply that f 2  is a linear 

combination of the elements of M2 - { f2). 

We can choose M1 to be the union of two colour classes that do not contain 

. , f 2  and M2 to be the union of two colour classes that do not contain f l .  This 

implies that f l  and f 2  are in the row space of S and hence that the row space 

of S is equal to the row space of D. It also proves that the row space of S is 

independent of the choice of faces f l ,  f2. 

To prove that S is a generator matrix of a self-orthogonal code, we have to 



prove that the rows of S are orthogonal to each other. Since G is bipartite, every 

row of S has even weight and hence each row of S is orthogonal to itself. Since 

G is cubic, two faces of G cannot have an odd number of vertices in common: if 

two faces have a vertex x in common, then they share an edge incident with x. 

Again, since G is cubic, they cannot share two adjacent edges. Hence any two 

adjacent faces of a cubic planar graph share some edges which are not adjacent 

to each other. So these two faces must have an even number of vertices (the 

endpoints of the shared edges) in common. So, any two rows of S must be 

orthogonal and hepce the row space of S is a self-orthogonal code. 

A self-orthogonal code is self-dual if and only if its dimension is equal to 

half of its length. To complete our proof now we will prove that the dimension 

of the row space of S is equal to half of its length. The graph G has n vertices 

so the length of the row space of S is n .  Let us denote the set of edges of G by 

E and the set of faces of G by F. We have I E 1 = 3n/2. By Euler's formula 

Hence 

So S has n/2 rows. We conclude that S is a generator matrix for a self-dual 

code of length n ,  and this code is independent of the faces deleted provided 

they are coloured differently in the 3-face colouring. 



In this section we will mention some relations between the graph and the code 

obtained from the graph. We will also give some examples. By F ( G )  we denote 

the set of faces of the graph G and by V(f)  we denote the set vertices incident 

with the face f .  

The self-dual code C obtained from a cubic planar bipartite graph must 

have minimum distance two or four. We prove this in the following form. 

3.2.1 Lemma. A cubic planar bipartite graph G, must have at least six faces 

of degree four. 

Proof. To see this we will prove the following. 

This will imply the lemma because the only faces that contribute negative num- 

bers to the summation are faces of degree four, and each such face contributes 

-2. 

Counting the pairs consisting of a vertex and an incident face in two different 

ways, we obtain xf tF(G) IV( f ) I  = 31V(G)/. By Euler's formula we have F(G)I  = 

t 2. It follows that 

and therefore 

The proof is completed. . 
The fact that the minimum distance is less than or equal to four can also be 

. , proven as follows. Let S be the generator matrix of C obtained by deleting two 

suitable rows of the face-vertex incidence matrix D of the graph. Since D has 

exactly three 1's in each column, S has at most three 1's in each column and 

strictly less than three 1's in some columns (because of the deleted faces). If we 

denote the minimum distance of C by d then by counting the nonzero entries 



of S in two different ways, we get 3n > (n/2)d, where n = IV(G)I, which that 

implies d < 6. We deduce d = 4 or d = 2. We also remark that if the graph has 

multiple edges, our theorem is still valid. 

If the graph has connectivity two, it yields a decomposable code. So if the 

code obtained from the graph G is indecomposable then G is 3-connected. It is 

quite interesting to see that there is a relation between the connectivity of the 

graph and indecomposability of the code. For the converse we give the following 

lemma. 

3.2.2 Lemma. Let G be a 3-connected cubic planar bipartite graph with vertex 

set {1,2, . . . , n). The self-dual code C obtained from G is indecomposable. 

Proof. First we claim that any two faces of G share one or no edge. Assume 

by way of contradiction that el and e2 are two edges shared by two faces fl 

and f 2  of G and consider the graph G - {el, e2). Let F (G)  be the set of faces 

of the graph G. We define f' to be the face of G - {el, e2) whose edge set is 

E(fl) u E(f2) - {el,e2}. The set of faces of G - {el,e2) is 

From this we see that the graph G - {el, e2)  has one less face than G. Now G 

has n vertices, % edges and + 2 faces. So G - {el, e2) has n vertices, 9 - 2 

edges and + 1 faces. If G - {el, e2) were connected, applying Euler's formula 

to this graph we would get 

which would imply 1 is equal to 0, a contradiction. Hence G - {el,e2) is not 

connected and so if G is 3-connected, any two faces can share at most one edge. 

Now let f be a face of G and let S be a proper subset of supp(f). We 

. , prove that S cannot be the support of any codeword. For suppose that S is the 

support of a codeword u. Choose a vertex x o f f  which is not in S. Let y be a 

vertex o f f  adjacent to x and let f '  be the face which shares the edge zy with f .  

Since C is a self-dual code supp(fl) and supp(u) must have an even number of 

common points. Now supp(u) is a subset of supp(f) so this intersection must be 



a subset of {x, y ) .  We have chosen x outside of the support of u  hence the only 

possibility we are left with is that the intersection of supp(u) with supp( f' ) is 

empty. So y is not an element of the support of u  which is S .  Now if we choose 

x as vertex of f which is adjacent to an element of S we get a contradiction. 

Hence a proper nonempty subset of supp(f) cannot be a codeword. 

If C is decomposable then we can partition V ( G )  into sets Vl and V2. We 

can find sets of codewords 

U = {211,~21... ,%I 

and 

such that supp(ui) c Vl ,  where 1 5 i 5 t ,  and supp(wj) c V2, where 1 5 j 5 t ,  

and U u W is a basis. Let f E F(G). Then 

Now, u  = cF=~ Aiui is a codeword with supp(u) c Vl.  Since supp(u) g 

s u p p ( f )  we conclude that u  = 0 or f = ~ f = ~  Xiui. Thus, every face of G has all 

of its vertices in one of Vl or V2. This implies that there is no edge from any 

vertex in Vl to any vertex in V2. If both Vl and V2 are not empty we conclude 

that G is disconnected. Since this is contrary to the hypothesis, C(G)  has only 

one component and is indecomposable. m 

Since a self-dual code of minimum distance two is decomposable 3-connected 

cubic planar bipartite graphs yield self-dual codes of minimum distance four. If 

G is a connected cubic planar bipartite graph then C(G)  will denote the self-dual 

code generated by the face-vertex incidence matrix of G. We will prove that if 

self-dual codes C1 and C2 are obtained from cubic planar bipartite graphs then 

their composition C1 CB C2 can also be obtained from a cubic planar bipartite 

graph. First we give the following definition. Let G1 and G2 be connected cubic 

planar bipartite graphs and let x l y l  be an edge of the outside face of G1 and 

x2y2 be an edge of outside face of G2. We define a graph G1 CB G2 as follows: 



(Graphs GI  @ G2 is dependent of the edges we use. But they yields the same 

code.) We will give an example. 

3.2.3 Example. Consider the following two cubic planar bipartite graphs G1 

and G2, where x1 = 9 , y l  = 19 ,z2  = 1 ,y2= 7. 

Figure 1. GI  a d  G2. 

Now G1 e G2 is the following graph shown in Figure 2. 

Figure 2. GI @ G 2  
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3.2.4 Lemma. Let G1 and G2 be two cubic planar graphs. The graph Gl ceG2 

is also a cubic planar bipartite graph and 

C(G1 EEJ G2) = C(G1) CB C(G2). 

Proof. Obviously G1 EEJ G2 is cubic and planar. To show that it is bipartite all 

we have to prove is that all faces of G1 EEJ G2 have an even number of edges. Let 

f l  be the outside face of G1 and f; be the face of G1 that shares the edge xlyl 

with f l .  Also, let f 2  b e  the outside face of G2 and2f; be the face of G2 that 

shares the edge x2y2 with f2. Now we describe the set of faces of the graph 

G1 EEJ G2 which are not faces of the graphs G1 or G2, by their edge sets. The 

outside face f3  of G1 EEJ G2 has edge set 

E(f3) = [E( f l )  u E(f2) - {xlYl,x2~2)1 U { x l x 2 , ~ 1 ~ 2 ) .  

The other face f j  is the one with edge set 

E ( f i )  = ( [E( f l )  - { ~ l Y l ) l  P ( f 2 )  - { ~ 2 ~ 2 ) 1 )  { x l x 2 , ~ 1 ~ 2 ) -  

The set of faces of the graph G1 EEJ G2 is 

Now since lE(fl)l and IE(f2)l are even, so are lE(f3) 

the graph G1 EEJ G2 is bipartite. 

We claim that for any choice of edges xlyl and x2y2 we have, 

To show this it is enough to make the following observation. Let A be the gener- 

ator matrix of C(G1) obtained from the face-vertex matrix of G1 by deleting the 

rows corresponding to f l  and f;. Also let B be the generator matrix of C(G2) 

obtained from a face-vertex matrix of G2 by deleting the rows corresponding f 2 

and f;. Consider the matrix 

The rows of D are elements of c(G1EEJ G2)  and they are linearly independent. 

Hence D is a generator matrix for C(G1 EEJ G2). This completes the proof. rn 



We will illustrate this with an example. 

3.2.5 Example. Let G1 and G2 be the graphs in Figure 1. Then a generator 

matrix of the code C(G1) is 

(the blank spaces contain zero, the rows corresponding to the outside face and 

to the face with the support {9,11,13,15,17,19) are deleted from the face-vertex 

incidence matrix of GI).  A generator matrix of C(G2)  is 

(the rows corresponding to the outside face and to the face with the support 

{1,2,7,8) are deleted from the face-vertex incidence matrix of G2). A generator 

matrix for C(G1 CB G2) is 

(the rows corresponding to the outside face and to the face with the support 

{1,2,7,8,9,11,13,15,17,19) are deleted from the face-vertex incidence matrix 

of G1 EB G2).  Now D is of the form 

Hence C(G1 EB G2) = C(G1) EB C(G2). 

Non-isomorphic graphs may yield the same code. The graphs Szo and S' 

are examples (see Appendix B Figure 18 and Figure 19.) It can be seen that 



every face of the graph S20 is orthogonal to every face of the graph St, and 

hence they generate the same code, altough they are not isomorphic. (Two 

non-isomorphic 3-connected cubic planar bipartite graphs with less than 20 

vertices yield different codes.) 

In Appendix B we list the cubic planar bipartite graphs which yield all 

self-dual codes up to length 20. 

3.3 Self-orthogonal codes from cubic planar graphs 

We can use any cubic planar graph (not necessarily bipartite) to construct self- 

orthogonal codes. From Euler's formula, we know that a cubic planar graph on 

n vertices must have n /2  + 2 faces. We will prove that the rank of the face- 

vertex incidence matrix of such a graph is greater than or equal to n/2. For 

this we first give the following lemma. 

3.3.1 Lemma. Let G be a planar 2-edge connected graph on n vertices such 

that G has maximum valency 3 and has some vertex u of degree 2. Let F ( G )  

be the set of faces of G. I f f  is a face incident with u then F ( G )  - f is an 

independent subset of [GF(2)ln. 

Proof. The proof is by induction on the number of faces. If the graph is a 

cycle the claim is obviously correct. Now assume that the graph has more than 

two faces. Say u is incident with the faces f' and f . Now consider the graph G' 

which we obtain from G by deleting all vertices of f '  which are only incident 

with faces f and f ' .  We see that 

where f" is the face of the graph G' whose edge set is the symmetric difference 

of the edge sets of f and f ' .  The vertices of G' which are adjacent to the 

deleted vertices of G have degree 2 in G' (becouse maximum valency is 3 and 

G is 2-edge connected) and these vertices are incident with the face f" .  So G' 

satisfies the induction hypothesis and IF(G1)I < IF(G)I. Hence by induction 

F ( G 1 )  - {f") = F ( G )  - {f, f ' )  is independent. 

Now we will prove that the minimal dependent subsets of F ( G )  -{f, f ' )  are 

the minimal dependent subsets of F ( G )  - f .  (This will imply that F ( G )  - f 



is also linearly independent.) Again consider the vertex u. Since u is incident 

with only one face in F (G) - f , namely f '  , it follows that f' cannot be in any 

minimal dependent subset of F (G) - f .  (If f' were in some minimal dependent 

subset M, then M should contain another face from F ( G )  - f which is incident 

with u.) Therefore the set of minimal dependent subsets of F ( G )  - f is equal 

to the set of minimal dependent subsets of F ( G )  - {f, f'). rn 

3.3.2 Corollary. Let @ be a connected cubic planar graph on n vertices and 

let D be i ts  face-vertex incidence matrix. Then  the rank o f  D is at least n/2. 

Proof. Let e be an edge of G. Consider the graph G - e. Let f be the face of 

G - e which is not a face of G, i.e., f is the face whose edge set is the symmetric 

difference of the edge sets of the faces incident with e. Then by the above 

lemma, F ( G  - e) - f is linearly independent. This set is a subset of F (G)  hence, 

Let G be a planar graph with t faces of odd degree. Let D be the face-vertex 

incidence matrix of G which has the faces of odd degree in its first t rows. We 

define the matrix D* as 

It is easy to see that any two rows of D* are orthogonal to each other so we 

have the following theorem. 

3.3.3 Theorem. Let G be a cubic planar graph. Then the row space o f  D* is 

a self-orthogonal code. 



3.4 Some applications of the face-vertex incidence matrix 

We &Is0 can use the face-vertex incidence matrix of a graph which is embedded 

on a surface other than the plane. We will give two examples. 

In [21], Pless has classified all self-dual codes of length less than or equal to 

20. The self-dual code of minimum distance 4 which is called M20 in [21], has 

only five codewords of weight 4, while it is known that a connected cubic planar 

bipartite graph must ,have at least six faces of degree 4 (see Lemma 3.2.1). So 

the self-dual code Mzo cannot be obtained from a cubic planar bipartite graph. 

Now we will obtain this code from a non-planar graph. 

3.4.1 Example. Consider the graph of Figure 3, embedded on the Mobius 

strip (which is same as embedding on the projective plane). 

Figure 3. MZ0 

Let M be the matrix that we obtain from a face-vertex incidence matrix of 

the embedding by deleting the row corresponding to the face which is not of 

degree four or six. Thus 



We will show that M is a generator matrix of the self-dual code M20. In her 

paper a generator matrix of M20 is given as 

The 7th row of M is the sum of the 4th,  5th and 7th rows of A, the gth row of M 

is the sum of the gth and 2nd rows of A, loth row of M is the sum of the loth 

and 4th rows of A. All other rows of M and A are same. Hence the row spaces 

of M and A are same. So M is a generator matrix for M20. 

3.4.2 Example. We can also consider face-vertex incidence matrices of cubic 

graphs embedded on the projective plane. As an example, we will give the 

embedding of the Petersen graph on the projective plane. 

Consider the following embedding of the Petersen graph on the projective 

piane. 

Figure 4. The Petersen graph on the projective plane. 

Let F be the following face-vertex incidence matrix of this embedding. 



1 1 1 1 1 0 0 0 0 0  
0 0 1 1 0 0 0 1 1 1  
0 0 0 1 1 1 1 1 0 0  
0 1 1 0 0 1 1 0 0 1  
1 0 0 0 1 1 0 0 1 1  
1 1 0 0 0 0 1 1 1 0  I 

As we can also see from the graph, any two faces of the embedding share two 

vertices and hence any two distinct rows of F are orthogonal to each other. 

Now we define the matrix A as A := [F : 16]. Then the code C generated by G 

is a self-orthogonal [16,6] code. We have found the weight distribution of this 

code to be 

A. = AI6 = 1, A6 = Ale = 16, A8 = 30. 

The codewords of weight six are the blocks of a symmetric (16,6,2) design. 

The codewords of weight ten are the blocks of the complementary design. So 

using the face-vertex incidence matrix of certain graphs, we can also construct 

symmetric designs. 

The codewords of weight eight are the blocks of a 2-(16,8,7) design. Each 

codeword of weight eight is the sum of two or four distinct rows of A. 



CHAPTER 4 

THE ENUMERATION AND 
AUTOMORPHISMS OF 
SELF-DUAL CODES 

In this chapter we first will give an enumeration theorem for self-dual codes. 

We ~ i l l . ~ r o v e  that almost all self-dual codes are indecomposable. Then we will 

mention the work done by Huffman, Yorgov and Pless under the assumption of 

the elristence of an automorphism of odd order. In Section 4.3 we will prove 

that a self-orthogonal code with minimum distance four cannot have trivial 

automorphism group. In Section 4.4 we will construct a self-orthogonal code 

with trivial automorphism group. 



4.1 Enumeration and related results 

This section presents theorems on the enumeration of binary self-dual codes. 

4.1.1 Theorem. (MacWilliams et al. [18].) Let n be even and suppose C is a 

binary [n,k] self-orthogonal code containing the all-one vector, with k > 1. Then 

the number of binary self-dual codes containing C is 

Proof. Let u,,,, for k 5 m < 7x12, be the number of [n,m] self-orthogonal codes 

which contain C. We establish a recursion formula for unlm.  Let D  be an [n,m] 

self-orthogonal code containing the C. First we count the number of ways D can 

be extended to an [n,m + I ]  self-orthogonal code containing the all-one vector. 

Now D can be extended by adjoining an element of DL not already in D .  Since 

dim D  = m, we have dim D L  = n - m. Consider the cosets of D  in D L .  There 

are ~ D ~ I / ~ D I  = 2n-m/2m = 2n-2m cosets. Say 

D L  = D  u ( h ,  + D )  u ( h 2  + D )  u u (h l  + D ) ,  

where 1 = 2n-2m - 1. Clearly any two extensions of D obtained by adjoining u 

and v are different if and only if u and v belong to different cosets. Hence we 

have exactly 2n-2m - 1 extensions, namely 

Now all we have to do is to find the number of [n,m] subcodes containing C in 

an extension. Since an extension D u (hi + D )  is of dimension m + 1 then 

so there are 2m+1-k - 1 subcodes of D u ( h j  + D )  properly containing C .  Thus 

Starting from unlk = 1 gives the result. 



4.1.2 Corollary. The number of binary self-dual codes of length n  is 

Proof. In the above theorem, take C to be the self-orthogonal code of length n  

which consists of the all-one vector and the zero vector. rn 

If a self-dual code is decomposable, then each component must be self-dual. 

Indeed, let C be a decomposable self-dual code. Without loss of generality we 

can assume that C has a generator matrix of the form 

To prove the claim it is enough to prove that the submatrix A generates a self- 

dual code. Let C1 be the code generated by A and C2 be the code generated by 

B. Let k be the length of C1. So the length of C2 is n  - Ic .  Since C is a self-dual 

code, C1 and C2 must be self-orthogonal codes. So we have 

and 
n-k  

dim(C2) 5 T .  

We have 

So the equalities must hold in (I) and (2). Hence C1 is a self-orthogonal code 

of length k and dimension 5. This implies that C1 is a self-dual code. 

Using this and a counting argument we can prove the following theorem. 

4.1.3 Theorem. Almost all self-dual codes are indecomposable. 

Proof. Let Gn be the number of self-dual codes of length n  and Cn be the 

number of indecomposable self-dual codes of length n. We define Go to be 1. 

By counting the self-dual codes of length n with a distinguished coordinate place 

in two different ways we will show that 



Indeed, we can choose any of n coordinate places as the distinguished coordinate 

place so we have nGn self-dual codes of length n with a distinguished coordinate 

place. On the other hand, the distinguished coordinate place must occur in a 

component of length 2k, where k E {1,2,3, . . . , % ). The binomial coefficient (Fk) 
is the number of ways to select 2k coordinate places for the coordinate places of 

the component containing the distinguished coordinate place. Since any one of 

2k coordinate places may be the distinguished one, we have 

choices for the component that contains the distinguished coordinate place. The 

remaining n - 2k coordinate places determine a self-dual code of length n - 2k. 

So any of self-dual codes may occur in the remaining n - 2k coordinate 

places. Thus the sum 

also counts the self-dual codes of length n with a distinguished coordinate place. 

This proves the equality. 

Dividing both sides d (3) by nGn, ~e obtain 

Set 

So we have 

Now since 



unless k = n/4 the term Gn-zG2k will occur twice in 
n 

the summation 

The coefficients of these occurences are (;:Il) and (n-n&L1). So if n is not divisible 

by four we have 

If n is divisible by four, similarly we see that 

Since 

in both cases we have 

So for any n we have 

Also 



Since k 5 ;,'we have .> 2 and thus 

We also have (&) < n2k.  Hence we get 

n2 Since l i m n f m  (-) = 0 we can choose n so large that (-&) < 1. Hence 

for sufficiently large n we have 

If n 2 64 and n large enough that & < 1, then ---1-- < 2, and hence for 
1 - n 2  

2 % - l  
such ri we have 

By taking the limit of both sides, we see that 

l i m  Fn = O .  
n-+cc 

Using the equality 1 = 2 + Fn and the above result, we conclude that 



4.2 A Search for codes using their automorphism groups 

Self-dual codes through length 30 and doubly even self-dual codes of length 32 

have been completely enumerated in Pless [21], Pless and Conway [5], and Pless 

and Sloane [23]. 

number of such 

This seems infeasible for any greater length because of the large 

codes; there are at least 

inequivalent codes of length n. For example, we would have at least 17,000 

inequivalent codes of length 40. However, those of largest minimum distance, 

called extremal codes, seem relatively rare among these codes. (We should re- 

mind the reader that some authors define extremal codes to be the self-dual 

codes whose minimum distances realizes the bound given by the Gleason the- 

orem.. See Appendix A.) In particular, there are one extremal self-dual doubly 

even code of length 8, two of length 16, one of length 24, and five of length 32. 

Only one is known of length 48 and it is the extended quadratic residue code. 

An interesting observation is that each of these codes possesses a nontrivial 

automorphism of odd order. 

The existence of an odd automorphism leads to a decomposition of the 

doubly even codes into shorter self-dual codes and therefore the classification 

problem reduces to a simpler case. To show this we need the following definitions. 

Let C be a self-dual code of length n and let a be an automorphism of C of 

prime order p. Suppose in the cycle decomposition of a there are c cycles of 

length p and f fixed points. Denote the cycles by R1, R2, ... , fl, and the fixed 

points by Rc+l, . . , Rc+ f .  The subspace Eu(C) is defined to be the set of 

codewords v such that Isupp(v) n Ril is even for 1 5 i < c + f .  We define Fu(C) 

to be the set of codewords which are fixed by a. If v E F,(C), then the entries 

of v are constant on each cycle 0;. We define .rr as follows 

T : F&) ( ~ ~ ( 2 ) ) ~ + f  

( ~ ( v ) ) ;  = vj 

for j E R; , i = 1,2, . . , c + f . The following was proved in Huffman [13]. We 

present it in a different form. 



4.2.1 Lemma. If C is a self-dual code, then the subspaces Fu(C) and Eu(C) 

have no common element other than zero, and span C .  The code .rr(Fu(C)) is a 

self-dual code of length c + f .  

In Huffman [13] it is proven that an extremal doubly even code of length 

48 with a nontrivial automorphism of odd order is equivalent to the extended 

quadratic residue code. In Pless and Conway [6], Huffman and Yorgov [14], 

Pless [22] and Pless and Thompson [24] the assumption of the existence of an 

automorphism of odd order has been used to search for a [72,36,16] doubly even 

code. The use of the assumption is, if the code C has an automorphism of odd 

order then it is spanned by two subcodes. One of these subcodes, namely Fu(C), 

can be determined from n(F,(C)) which is a self-dual code of a shorter length. 

So the problem reduces to the existence of a shorter self-dual code. In [I] Anstee, 

Hall and Thompson have used the same idea to search for the projective plane 

of order 10. In Yorgov [28] all extremal even self-dual codes of length 40 which 

have an automorphism of order a prime greater than 5 are obtained. The same 

author [29] has also classified all extremal doubly even self-dual codes of length 

56 with an automorphism of order 13. (There are sixteen such inequivalent 

codes.) 

4.3 Self-orthogonal codes with distance four 

In this section we will prove that a self-orthogonal code of minimum distance 

four cannot have trivial automorphism group. For this we will make use of the 

classification of the self-orthogonal codes generated by codewords of weight four. 

All indecomposable, self-orthogonal codes which are generated by codewords of 

weight four are described in Pless and Sloane [23] using the following notation. 

For n, = 4,6,8, . . . , we define d, to be the self-orthogonal [n, i n  - 11 code with 

a generator matrix 

1 1 1 1  
1 1 1 1  

dn := . . . .  
. . . .  

1 1 1 1  

The self-orthogonal [7,3] code e7 has the following generator matrix 



e7 := 1 1 1 1  ( : ' Y  1 1 

Finally, E8 has the generator matrix 

(It is the self-dual [8,4] Hamming code.) 

We define Zn as the group of integers modulo n and define S, as the sym- 

metric group on n elements. The automorphism group of dn is 

and if n is greater than four, then Aut(dn) is the wreath product of Z2 by Sn/2. 

(See Pless and Sloane [23].) 

The automorphism group of e7 is PSL 2(7) which has 168 elements [22]. It is 

also known that E8 has an automorphism group of order 1344, namely GL3(2). 

Now we will define some vectors of length n and using them describe the 

duals of the above codes. For even n greater than four, 

and 

We know that 

d$ = dn u (an + dn ) u (bn + dn ) u (dn + dn ) 

Since E8 is self-dual we have: 
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4.3.1 Lemma. (Pless and Sloane [23].) I f C  is a self-orthogonal code containing 

E8 as a subcode, then C is decomposable. 

Proof. Without loss of generality we can assume that C has a generator matrix 

of the form 

Since C is self-orthogonal each row of R must be in the dual of E8. But E8 is 

self-dual, hence each row of R is in E8. Therefore any row of R can be written 

as a linear combination of the rows of E8. So if in the matrix A we replace the 

submatrix R with the zero matrix, we still have a generator matrix of C. From 

this we conclude that C is decomposable. 

Now we can state the theorem characterizing indecomposable self-orthogonal 

codes generated by codewords of weight four. 

4.3.2 Theorem. (Pless and Sloane [23].) An indecomposable self-orthogonal 

code C of length n which is generated by codewords of weight four is either d, 

(n = 4,6,8, ...), e7 or E8. 

So if we have a self-orthogonal code C of minimum distance four, the subcode 

generated by codewords of weight four must be of the form 

for some integers T I ,  T%,  . . . , ~ 1 .  In the above direct sum e7 occurs m times and 

E8 occurs Ic times (say). 

Let C be an indecomposable self-orthogonal code of minimum distance four 

and let C' be its subcode generated by codewords of weight four. From Theorem 

4.3.2 and Lemma 4.3.1 we know that d must be a direct sum of the form 



Then C has'a generator matrix A of the form 

Note that any row of R; must be in d,lz for i E {1,2,... ,1), and any row of Mj 

must be in e;t for j E {1,2,  -.. ,m). Now we are ready for the following lemma. 

4.3.3 Lemma. Let C be an indecomposable self-orthogonal code of minimum 

distance four and A be a generator matrix of C in the above form. Let T be a 

permutation of the first TI columns of A such that, 

(a) ~ ~ A u t ( d ~ , ) ,  and 

(b) for any row u of R1, the image ~ ( u )  belongs to the same coset of dTl in d,ll 

as u. 

Then IT is an automorphism of C. 

Proof. Observe that if any row v of R1 is replaced by some element in the coset 

v + dTl in d,ll, we still have a generator matrix for C. 

Now all we have to do is to find a nontrivial automorphism of d,, which 

satisfies the hypothesis of Lemma 4.3.3. 

4.3.4 Theorem. A self-orthogonal code with minimum distance four cannot 

have trivial au tomorphism group. 

Proof. Let C be an indecomposable self-orthogonal code of minimum distance 

four and A be its generator matrix of the form given in (I). We can assume 
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that the rows of the matrix R1 are all in the set {O,a,,, b,, , a;,). Now we can 

easily prove that the permutation n = (13)(24) is an automorphism of d,, for 

any value of T I .  Moreover we can also see that it satisfies the second requirement 

of Lemma 4.3.3: 

~ ( a , , )  = ~ ( 1 0 1 0  ... 10) = a,, 

n(b,,) = ~ ( 1 1 0 0  ... 00)  = 0011 ... 00 = b,, + 111100 ... 00 E b,, + d,, 

*(a;,) = ~ ( 0 1 1 0  ... l o )  = lOOl... 10 = 4, + 111100 ..-OO E a;, + d,, 

n ( 0 )  = 0 

So by Lemma 4.3.3 n E A ( C ) .  If e7 occurs in the matrix A, then the auto- 

morphism group of C contains a copy of PSL2(7) ,  since we can assume that 

the rows of the matrix M I  are elements of the set {0000000,1111111) and any 

autornorphism of e7 fixes these two vectors. Hence the automorphism group of 

C is nontrivial. 

If a self-orthogonal code has minimum weight two, the two columns that 

correspond to the support of a codeword of weight two must be the same. So 

the transposition interchanging these two columns must be an automorphism 

of the code. Hence a self-orthogena! cede with mkimnm distance two cannot 

have trivial automorphism group. Therefore a self-orthogonal code with identity 

automorphism group must have minimum distance at least six. 



4.4 A self-orthogonal code with trivial automorphism group 

From the last section we know that a self-orthogonal code of minimum distance 

less than or equal to four cannot have trivial automorphism group. In this section 

we will construct a self-orthogonal code with trivial automorphism group. For 

this we will use a cubic planar graph with trivial automorphism group. 

The following graph G has trivial automorphism group (Faulkner [7]): 

Figure 5. A graph with trivial automorphism group. 

This graph has 34 vertices and 19 faces. Let F be the following face-vertex 

incidence matrix of G. 



In the matrix F the first thirteen rows correspond to the faces of degree five and 

the fourteenth to the face of degree seven. We define the matrix A19x48 as 

4.4.1 Theorem. A is agenerator matrix for a [48,19] self-orthogonal code with 

trivial au tomorphism group. 

Proof. We first prove that the rows of A are linearly independent. The proof 

is by contradiction. Let S be a subset of the set of rows of A. If S is a minirrial 

dependent subset then Cues u = 0. For 1 5 i 5 14, the ith row is the only row 

which has 1 in the (34 + i)th column, so none of the first fourteen rows can be 

in S. Hence S must be a subset of the last five rows. But in the support of any 

one of the last five rows, there is a coorditlate place which does not belong to 



the support of the other four. So there is no subset of the last five rows whose 

sum is equal to zero. Hence the last five rows are linearly independent and A is 

of rank 19. 

To prove that the row space C of A is self-orthogonal all we need to observe 

is that any two rows of A are orthogonal to each other. This follows as any two 

faces of G share two or zero vertices. Each row of A has even weight, so any 

row is orthogonal to itself. This proves that C is a self-orthogonal code. 

Now we will prove that C has trivial automorphism group. Using the com- 

puter we have determined the weight distribution of C as A. = 1 , A6 = 

18 , A8 = 45 , Alo 136 , A12 = 572 , Alq = 2154 , AI6 = 7915 , A18 = 

25310 , = 60740 , = 103454 , A2* = 123598 (since all-one vector is in 

C we have A; = for i = 0,2, ,24). So the only codewords of weight six 

are the eighteen rows of A of weight six, i.e., all rows except the fourteenth row. 

We conclude that any automorphism of C must permute these eighteen rows. 

There are 45 codewords of weight eight. Observe that the sum of any two rows 

of weight six that correspond to two adjacent faces of G is a codeword of weight 

eight. The number of such pairs is just the number of edges not on the boundary 

face. So we have 

pairs of adjacent faces whose sums give codewords of weight eight. With the row 

corresponding to the outside face, we have 45 codewords of weight eight. So we 

see that a codeword of weight eight is either the row corresponding to the outside 

face or the sum of two rows that correspond to adjacent faces of degree five or 

six. From this it follows that the fourteenth row is the only codeword of weight 

eight that covers the last coordinate place. There are no codewords of weight six 

which cover the last coordinate place and the last column is the only coordinate 

place which is not covered by codewords of weight six. So the last column must 

be fixed under every automorphism of C. Thus the fourteenth row must be fixed 

under any automorphism of C. We conclude that any automorphism of C must 

result in a permutation of the rows of A. 

We partition the coordinate places into two parts X and Y by defining 
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X to be the set of the first 34 coordinate places and Y the set of remaining 

coordinate places. We first prove that the parts X and Y are fixed under any 

automorphism of C. We have already proven that the last coordinate place 

must be fixed under any automorphism of C. Any i E X is covered by at least 

two codewords of weight six, while if j E Y and j f 48 then it is covered by 

exactly one codeword of weight six. So no automorphism of C can interchange 

any element of X with any element of Y. Hence X and Y are fixed under any 

automorphism of C. Now let n be an automorphism of C. We will consider 

three cases. 

(1) Assume n fixes every element of X. 

If n is not the trivial automorphism, then it must move some elements of Y. Say 

7435) = j . So the support of the image of the first row under n is {I, 2,8,9,10, j). 

But there is no codeword with this support in C unless j = 35. So we conclude 

that in this case n must be the trivial automorphism. 

(2) Assume n fixes every element of Y. 

We already know that n must permute the rows of A. So in this case n must 

permute the rows of the submatrix F. This means n must be an automorphism 

of the graph G. Since G has trivial automorphism group we conclude that n 

must be the trivial automorphism. 

(3) Assume n moves points of both of X and Y. 

Then again n must permute the rows of F and we already know that the par- 

tition (X,Y) is fixed under any automorphism of the code. So the restriction 

of n to first 34 coordinate places must be an automorphism of the graph G. 

Since G has trivial automorphism group this restriction must be the trivial au- 

tomorphism. But this shows that the action of n on Y is trivial too because 

supp(r;) n {1,2, ..., 34) determines the support of r; and since each row of F is 

. , fixed then each row of A is also fixed. 



CHAPTER 5 

THEBARNETTE 
CONJECTURE 

In this chapter we will make some observations about cubic planar bipartite 

graphs. We will survey some approaches to the Barnette conjecture and give a 

new conjecture which implies it. We will also give an infinite family of Hamil- 

tonian cubic planar bipartite graphs. 

5.1 The Barnette conjecture and early results 

Problem 5 in Tutte [25: p. 3431 states what has become known as the Barnette 

conjecture. The conjecture states that every cubic 3-connected bipartite planar 

graph is Hamiltonian. A famous result of Tutte [27] shows that the 4-connected 

planar graphs are Hamiltonian. In [26] Tutte also showed that some 3-connected 

planar graphs are non-Hamiltonian. That the same is true for bipartite cubic 

3-connected graphs is shown by a graph of Horton, see Bondy and Murty [4: 

p. 2401. Recent work has been expended on trying to determine the order 

of the smallest non-Hamiltonian cubic 3-connected planar graph. Lederberg, 

Boshk and Barnette (see Grunbaum [lo])  have constructed a non-Hamiltonian 

cubic 3-connected planar graph of order 38. Okamura [19] has shown that the 

smallest non-Harniltonian cubic 3-connected planar graph has order at least 34. 

In [12] Holton and McKay have shown that the conjecture is true for graphs of 

order up to and including 64. 



A different approach to the Barnette conjecture can be found in Hakimi and 

Schmeichel [ l l ] .  The vertex arboricity of a graph G is defined as the minimum 

number of subsets into which V(G) can be partitioned so that each subset 

induces an acyclic graph. In [ll] the planar graphs with vertex arboricity two 

are characterized in terms of their dual graphs. 

5.1.1 Theorem. (Hahmi and Schmeichel [ I l l . )  Let G be a planar graph. 

Then the vertex arboricity of G is equal to two if and only if the dual of G 

contains a connected Eulerian spanning su bgraph. 

Proof. Suppose that the vertex arboricity of G is equal to two. Let {Vl,V2) 

be an acyclic partition of G (i.e., the graphs induced by Vl and V2 are acyclic). 

Let E(Vl, V2) denote the edges in G joining a vertex in Vl to one in V2, and 

consider the corresponding set of edges E' in G*. Let H denote the subgraph 

of G* induced by E'; we will show that H is a connected Eulerian spanning 

subgraph of G*. 

Since E(Vl, V2) is an edge cut in G,  the graph H is Eulerian. Since every 

cycle of G contains an edge of E (Vl, V2), every face of G contains one or more 

edges of E(V;, V2), and hence H is spanning in G*. If H were disconnected, 

then G* would contain an edge cut E; containing none of the edges of E ' .  But 

then the corresponding set of edges El in G would induce an Eulerian subgraph 

GI  in G containing none of the edges in E (Vl, V2), contradicting the assumption 

that {Vl, V2) is an acyclic partition in G. 

Conversely, suppose G* contains a connected Eulerian spanning subgraph 

H'. Let H denote the subgraph induced by the corresponding set of edges in 

G. Since H' is Eulerian, the edges of H form an edge cut E(Vl, V2) in G. Since 

every edge cut in G* contains at least one edge of H' , every cycle in G contains 

one or more edges of E(Vl,V2). Thus the graph induced by V,  is acyclic for 

i = 1,2, and so the vertex arboricity of G is equal to two. . 
Since a connected Eulerian spanning subgraph in a cubic graph is a Hamil- 

tonian cycle, using the above theorem Barnette's conjecture can be reformulated 

as, "Every Eulerian planar triangulation has vertex arboricity equal to two". 



5.2 Another approach to the Barnette conjecture 

In Chapter 3 we have shown that the minimal dependent subsets of the faces of 

a cubic planar bipartite graph are the pairwise unions of the colour classes of 

the faces (see Lemma 3.1.3). In this section we will use these sets again. Let G 

be a 3-connected cubic planar bipartite graph whose faces are properly coloured 

by the colours 1, 2 and 3. This colouring gives a proper vertex colouring of the 

dual graph G*. We define G; to be the subgraph of G* induced by the vertices 

coloured j and k where {i, j, k )  = {1,2,3). Clearly G:, G; and G j  are bipartite 

subgraphs of G*. We will call these graphs the min ima l  dependent graphs of 

G. The symmetr ic  d i e r e n c e  of a collection of sets {A; : i = 1,2, . . .  , n )  is 

defined as the set of elements x such that x belongs to exactly one A;, where 

i = 1,2,. . .  , n .  

5.2.1 Lemma. Let G be a 3-connected cubic planar bipartite graph and let 

Gf be a minimal dependent graph of G. Let T* be an induced subgraph of 

G; which is a tree. Define the subgraph C of G by its edge set E ( C )  as the 

symmetric difference of the set {E(f )  : f E V(T*)). Then C is a cycle in the 

graph G which passes through all vertices of the graph G which lie on faces of 

G corresponding to the vertices of T*.  

Proof. The proof is by induction on the number of edges of T*.  If IE(T*)I = 1 

then T* corresponds to two adjacent faces f l ,  f 2  of G. In this case 

is a cycle and the lemma holds. Now assume T* is an induced subgraph of Gf 

which is a tree with k + 1 edges. Let be a vertex of T* of degree one and 

e* be the unique edge of T* which is adjacent to x. Let e be the edge of G 

corresponding to the edge e*. Now*consider the subgraph T; of Gf which is 

induced by the vertex set V(T*) - z. The tree T; is an induced subgraph of 

G; with k edges. So by the induction hypothesis the set of edges that are in 

the symmetric difference of the set {E(f) : f E V(T,*)) is a cycle C' in G that 

passes through all vertices of the graph G which lie on faces corresponding to 

the vertices of T;. Now e E E ( C 1 )  and since T* is an induced subgraph of Ga, 



the vertex of T* is adjacent to exactly one vertex of T;. So the symmetric 

difference of the set {E(f ) : f E V(T*)) is equal to 

E(C) = (W') - {el) u (E(f) - {el).  

Obviously C is a cycle in G passing through all vertices of the graph G which 

lie on faces of G corresponding to the vertices of T*. This completes our proof. 

Since G is a cubic graph, every vertex must be incident with a face of each 

colour in the proper face colouring of G. So if G" has an induced subgraph 

T* which is a bicoloured tree and V(Te) contains a colour class, then G is 

Hamiltonian. 

Now we will give two lemmas about minimal dependent graphs. 

5.2.2 Lemma. A minimal dependent graph of a 3-connected cubic planar bi- 

partite graph is a 2-edge connected planar bipartite graph. 

Proof. Let H* be a minimal dependent graph of a 3-connected cubic planar 

bipartite graph G. We already know that Hx is connected (by the proof of 

Lemma 3.1.3). Now we will prove that any edge of H* is shared by two distinct 

faces of H*, i.e., H* has no cut edge. The vertices of H* correspond to the 

union of two colour classes of the proper 3-face colouring of G. Say the faces of 

G are coloured by the colours a ,  b and c and V(H*)  is the union of colour classes 

a and b. Let e* be an edge of H* between vertices. x and y. Now x and y are 

two faces of G that are coloured (distinctly) by a and b (as G is 3-connected). 

Let e = (vl , vz ) be the edge of G corresponding to e* . The vertex vl is incident 

with the faces x and y. Let f be the third face of G which is incident with vl. 

The face f must be coloured by c .  Also the vertex v2 is incident with the faces 

x and y. Let f' be &e third face of G which is incident with vz. The face f' 

must be coloured by c too (the faces f and f '  must be different because G is 

3-connected). Let N (  f ) be the set of faces adjacent to f . In the dual graph G* , 
the subgraphs induced by N(f)  and N(f ) give the two faces of H* that share 

e*. Hence e* cannot be a cut-edge. So the proof is completed. 

On the other hand we have the following lemma. 
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5.2.3 Lemma. If H* is a 2-edge connected planar bipartite graph, then it is a 

minimal dependent graph of some 3-connected cubic planar bipartite graph G 

on 21E(H*)I vertices. 

Proof. We define the graph G* with its vertex and edge sets as follows, 

and 

E(G*)  = E(H*)  u {(x, f )  : x E V(f)  and f E F(HX)). 

Then the dual G of G* is a 3-connected cubic planar bipartite graph and one 

of its minimal dependent graphs is H *  . . 
From the construction in Lemma 5.2.3 we can see that if the bipartite graph 

H* with the bipartition (X,Y)  is a minimal dependent graph of G, then the 

other two minimal dependent graphs H ;  and H; of G are given as 

and 

Now we can state the following conjecture which would imply the Barnette 

conjecture. 

5.2.4 Conjecture. Let H* be a 2-connected planar bipartite graph with the 

bipartition (X,Y Let H; and H; be defined as above. Then one of the 

bipartite graphs H*, HT, Ha has an induced subtree containing one of X and 

Y in its vertex set. 

As an application of Lemma 5.2.1 we will prove the following lemma. We 

already know that a cubic planar bipartite graph must have some faces of degree 

four. 



5.2.5 Lemma. Let G be a 3-connected cubic planar bipartite graph. If every 

vertex of G is incident with exactly one face of degree four, then G is Hamilto- 

Proof. Let G be such a graph. First we will prove that in the proper 3-colouring 

of the faces of G,  all faces of degree four must have the same colour. Consider 

the set S of all faces of degree other than four. Exactly two elements of S are 

incident with each vertex of the graph. Hence S is a minimal dependent subset 

of faces and is the union of two colour classes (the minimal dependent subsets 

of faces are characterized in Lemma 3.1.3). This proves our claim. 

Now by X let us denote the colour class of all faces of degree four and let Y 

be another colour class of G. Consider the subgraph H* of G* induced by X U Y ,  

i.e., H* is a minimal dependent graph of G. Now H* is a 2-connected planar 

bipartite graph with the partition ( X , Y )  and all vertices in X have degree two. 

Let f be the boundary of the infinite face of H*. If H* has no cycle other than 

f , then, by deleting a vertex of f which belongs to X, we obtain an induced 

tree containing all vertices in Y. If H* has some cycle C other than f ,  then 

delete a vertex x E C n X. Clearly H* - x is a connected graph which has fewer 

cycles than H* has. If H* - a :  is a tree we are done, if not by repeating this we 

will get a tree which contains all vertices in Y. So Gy has an induced subgraph 

which is a tree and contains all vertices in one colour class. This implies by 

Lemma 5.2.1 that G is hamiltonian. rn 

All connected simple planar vertex-transitive graphs are determined by 

Fleischner and Imrich [8]. Without using this classification, as a consequence 

of Lemma 5.2.1 and Lemma 5.2.5 we can prove the following. 

5.2.6 TheorCln. Every vertex-transitive cubic planar bipartite 3-connected 

graph is Harnil t onian . 

Proof. Let G be such a graph. We know that G has some faces of degree four. 

Since G is vertex transitive, every vertex is adjacent to the same number of 

faces of degree four. If this number is one the result follows from Lemma 5.2.5. 

So we have two cases remaining: 



(a) Each vertex is incident with three faces of degree four. 

This implies that all faces of the graph are of degree four. Then the equality 

(see Lemma 3.2.1) 

implies that the graph G has six faces and therefore has eight vertices. The 

only cubic planar bipartite 3-connected graph on eight vertices is the cube and 

it is Hamiltonian. 

(b) Each vertex is incident with two faces of degree four. 

First we count the number of faces of degree four. Each vertex is incident 

with two faces of degree four, and each face of degree four is incident with 

four vertices. By counting the pairs (f ,v) ,  f E F ( G )  and f is of degree 4 and 

v E V(f)  in two different ways, we find that number of faces of degree four is 

equal to q. The graph G has q! t 2 faces. So it has two faces which 

are not of degree four. These two faces cannot be adjacent, because otherwise 

any vertex that these two faces share would be incident with two faces which 

are not of degree four. Since each vertex is incident with exactly two faces of 

degree four, the set of faces of degree four is a union of two colour classes of the 

graph G (Lemma 3.1.3). Now consider the subgraph C of G* which is induced 

by the vertices corresponding to the faces of G of degree four. We know that 

C is 2-edge connected (Lemma 5.2.2) and every vertex of C is of degree 2. So 

C must be a cycle. Let x be any vertex of this cycle. The graph C - {x) is an 

induced subgraph of G* which is a tree and it covers one of the colour classes 

of G. Hence by Lemma 5.2.1, G is Hamiltonian. . 



APPENDIX A 

A REVIEW OF 
CODING THEORY 

A linear binary code of length n and dimension k is a Ic-dimensional subspace 

of [GF (2)] and is called a binary [n, k ]  code. The elements of the code are called 

codewords. The distance between two codewords is the number of coordinate 

places in which they differ. The weight w(u) of a codeword u is the distance 

between u and 0. Observe that for a linear code C, the smallest nonzero weight 

is the smallest nonzero distance that occurs between codewords. The support 

of a codeword is the set of non-zero coordinate places. Let 1x1 denote the 

greatest integer less than or equal to x. The following theorem emphasizes the 

importance of the minimum distance of a code. 

1. Theorem. If d is the minimum distance of a code C, then C can correct 

~ ( d  - 1)/2] or fewer errors, and conversely. 

The dual @ of a code C is defined as 

CL := {V E [GF(2)ln : u . v  = O  for all U E C  ), 

where the multiplication is the ordinary dot product, modulo 2. If C c CL, C 

is called a self-orthogonal code and if C = CL,  C is called a self-dual code. If C 

is a linear code of length n then 



So if C is a self-dual code, the dimension dim(C) of C must be half of its 

length. Hence the length of a self-dual code must be even and every codeword 

must have even weight. A matrix which has a basis of the code C as its rows 

is called a generator matrix of the code C. Since any element of a code is a 

linear combination of the rows of a generating matrix of the code we have the 

following theorem. 

2. Theorem. If the rows of a generator matrix G for a binary [n, k] code C 

have even weight and are orthogonal to each other, then C is self-orthogonal, 

and conversely. 

A binary self-dual code C is called doubly even, or just even if the weight of 

every codewords is divisible by 4. We state the following theorem from c leas on 

191. 

3. Theorem. A doubly even code of length n exists if and only if n is divisible 

by 8. 

4. Lemma. The largest minimum distance d a self-dual code of length n can 

have is as follows. 

(a) A self-dual code over GF(2); d = 21n/8] + 2. 

(6) A doubly even code over GF(2); d = 4 1n/24j + 4. 

(c) A self-dual code over GF(3); d = 31n/12J $3.  

We call a self-dual code that has the largest possible minimum weight an 

extremal code. At the time this thesis is written 72 is the smallest number 

divisible by 24 for which it is not known whether or not an extremal, doubly 

even [72,36] code of minimum distance 16 exists. A code C of length n and 

dimensiozk is said to be the direct sum of two codes C1 and C2 and denoted 

by C1 $ C2, if it has a generator matrix of the form 

where A1 and A2 are generator matrices for Ci and C2 respectively. The codes 

C1 and C2 are components of C.  If a code cannot be written as a direct sum of 

subcodes, it is called indecomposable, and otherwise decomposable. 



The weight distribution of a code is the number of codewords of any weight 

in the code. This is often described by the list of numbers A;, where A; is the 

number of codewords of weight i in the code. Another way to view the weight 

distribution is as polynomials called weight enumerators. Let C be a code of 

length n with A; again the number of vectors of weight i. A polynomial in x 

and y is homogeneous of degree n if the powers of x and y in each term add 

up to n. Define the weight enumerator of C to be the following homogeneous 

polynomial. 

In [16] MacWilliams has proven that 

or, if we denote the number of codewords of weight i in CL by B;, 

Hence MacWilliams equation establishes a very interesting relationship between 

the weight distribution of a code C and the weight distribution of the dual code 

C L .  

A binary cyclic code of length n is an ideal of the ring 

The generator of this ideal is called the generator polynomial of the cyclic code. 

An automorphism of a code C is a permutation of the columns of a generator 

matrix of C which gives another, or the same, generator matrix of C. It is 

easy to me that the set Aut(C) of all automorphisms of C ,  is a subgroup of 

the symmetric group Sn, where n is the length of C .  The group Aut(C) is 

called the automorphism group of C .  The two codes C1 and C2 are said to be 

equivalent if we can get a generator matrix of C2 by permuting the columns of a 

generator matrix of C1. If C1 and C2 are equivalent then Aut(C1) and Aut(C2) 

are conjugate in Sn, i.e., there is an element n of Sn such that 



If H and K are groups we write H x K for their direct product, Hk for 

H x H x ... x H ( k  factors), and H . K for a semidirect product. The following 

two lemma are in Sloane and Pless [23]. 

5. Lemma. I f  C = C1 e C2 e . . . e Ck where C; are indecomposable and equiv- 

alent, then 

A u t ( C )  = A U ~ ( C ; ) ~  . Sk .  

6. Lemma. Let C = Dl e D2 B ... e Dl where each Di is a direct sum o f  

equivalent codes, and for i # j no summand o f  D; is equivalent to a summand 

o f  D j .  Then 



APPENDIX B 

CLASSIFICATION 

In 1201, Pless has classified all self-dual codes of length less than or equal to 

20. With one exception, we can construct all these codes from the face-vertex 

incidence matrices of cubic planar bipartite graphs. (The exception, denoted 

M20 in [20] was constructed from a cubic bipartite graph embedded on the 

Mobius strip, as Example 3.4.1.) We now give the list of graphs generating all 

self-dual codes of length less than or equal to twenty, other than M20. It is 

enough to give the graphs corresponding to the indecomposable self-dual codes 

(see Lemma 3.2.4). 
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