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ABSTRACT
In this thesis we investigate binary self-dual codes. We give a new method
to construct self-dual and self-orthogonal codes. We prove that almost every
self-dual code must be indecomposable. We also investigate the automorphism
groups of self-orthogonal codes. We prove that a self-orthogonal code with
minimum distance four cannot have trivial automorphism group and we give
" an example of a self-orthogonal code with trivial automorphism group. In the

last chapter we make some observations on the Barnette conjecture.
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CHAPTER 1

INTRODUCTION

In this thesis we investigate self-dual codes. Self-dual codes constitute one of
the most interesting families of codes. Many celebrated codes are self-dual,
e.g., the extended binary Hamming code, the extended Golay code, and certain

quadratic residue codes.

In Chapter 2 we present some known methods of constructing self-dual
codes. There are only a few of these. If we restrict ourselves to the binary
codes, these make use of designs or Hadamard matrices. We present a theorem
of Asmuss et al. which gives constructions of self-orthogonal and self-dual codes
obtained from symmetric designs. Then we consider Hadamard matrices and
present two different approaches to constructing self-dual codes from them.
One method is to consider the row space of a Hadamard matrix whose order
is divisible by a prime p but not by p2. Since the order of a Hadamard matrix
must be divisible by four this method is not useful for constructing binary self-
dual codes. The second method is due to Ozeki. In this method Hadamard
matrices of order n are used to construct binary self-dual codes, provided = is
not divisible by eight. Also, certain quadratic residue codes are self-dual codes.
We state a theorem about such codes. Finally using the Kronecker product of
generator matrices of self-dual codes we give a way of combining two self-dual

codes to obtain another self-dual code.



In Chapter 3 we present a new method to construct binary self-dual codes.
We prove tha.t\ the row space of the face-vertex incidence matrix of a cubic planar
bipartite graph is a binary self-dual code. This depends on a characterization
of the minimal dependent subsets of the set of faces of these graphs. These
sets are obtained as the union of pa.irwisé colour classes of the proper 3-face
colouring of the graph. An interesting result is that there is a relation between
connectivity of the graph and the decomposability of the code obtained from
the graph: the code obtained from the graph is indecomposable if and only if
the graph is 3-connected. With our method we can construct all self-dual codes
up to length 20. In Appendix B we give the list of the graphs corresponding to

these codes.

We also give a lower bound for the rank of the face-vertex incidence matrix
of a cubic planar graph. Since a cubic planar graph on n vertices has % +2 faces,
the rank of the face-vertex incidence matrix of cubic planar graphs is less than
or equal to % +2. We prove that the rank is greater than or equal to §. The
embedding of cubic graphs on surfaces other than the plane can also be used
for constructing self-orthogonal and self-dual codes. At the end of the chapter

we give two examples of such constructions.

In Chapter 4 we give an enumeration theorem for self-dual codes. Then
we prove that the ratio of the number of indecomposable self-dual codes of
length n to the number of all self-dual codes of length n goes to zero as n
goes to infinity. In other words almost all self-dual codes are indecomposable.
We then prove that a self-orthogonal code of minimum distance four cannot
have trivial automorphism group. Since the self-orthogonal codes of minimum
distance two cannot have trivial automorphism group, the smallest possible
minimum distance for a self-orthogonal code with identity automorphism group
is six. Then we construct a self-orthogonal code of minimum distance six which
has trivial automorphism group. For this construction we use the face-vertex

incidence matrix of a planar cubic graph which has trivial automorphism group.

In Chapter 5 we give some early results about the Barnette conjecture.

This conjecture states that every 3-connected cubic planar bipartite graph is
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Hamiltonian. We present a different approach to this conjecture, which uses
the fact that ény cubic planar bipartite graph is 3-face colourable. The proper
3-face colouring of a cubic planar bipartite graph corresponds to a proper 3-
vertex colouring of its dual. A bicoloured subgraph of G* is a subgraph of G~
which contains vertices coloured by two of the three colours. We prove that an
induced bicoloured tree in the dual graph G* corresponds to a cycle in the graph
G which passes through all vertices of G that lie on faces of G corresponding to
the vertices of the tree. With this result we present a conjecture that implies
the Barnette conjecture. As an application of the above result we prove that
every vertex-transitive cubic planar bipartite 3-connected graph is Hamiltonian.

(The classification of these graphs has been done in [8].)



CHAPTER 2

CONSTRUCTIONS

In this chapter we will give some methods to construct self-dual codes (see
Appendix A for definitions). These methods make use of Design Theory and
Hadamard matrices. In certain cases quadratic residue codes are also examples

of self-dual codes. We will concentrate on binary codes.



2.1 Codes from designs

Let P be a set of v objects. A 2-(v,k,A) design based on P is a collection of
k-subsets of P with the property that for any two elements z and y of P the
subset {z,y} is contained in A of the k-subsefs and each object belongs to » of
the k-sets. The elements of P are called the points of the design and k-subsets

in the collection are called the blocks of the design. If the number of blocks of a
| 2-design is equal to the number of points then it is called a symmetric design.
Symmetric designs with certain parameters can be used to construct self-dual
codes. We will need the following definition from linear algebra. Two matrices
D and M are called elementarily equivalent if there exists matrices P and @

with determinant equal to 1 such that PMQ = D.

2.1.1 Lemma. Let M be an n x n matrix. There exists a diagonal matrix
D = dvag {d1,d,,---,dn} such that d; divides d;, for all v in {1,2,---,n -1} and

which is elementarily equivalent to M.
We start with the following theorem.

2.1.2 Theorem. (Assmus et al. [3].) Let p be a prime and D be a (v,k,))
symmetric design with incidence matrix M.
(1) If k =X =0 (mod p), then the row space of M over GF(p) is a self-

orthogonal code.

(2) Ifpi(k-A), and p fk, then let G be the v x (v + 1) matrix defined as

>
G:= \/_—k M

vk
If —k is a quadratic residue with respect to p, then the row space of G is
a self-orthogonal code over GF(p). If —k is not a quadratic residue with
respect to p, then the row space of G is a self-orthogonal code C over
GF(p?). Moreover, if p* J(k —X), then it is a self-dual code.
(3) Ifp|A and k = -1 (mod p), let G be the v x 2v matrix defined as

G:=(I M)

5



Then the row space of G over GF(p) is a [2v,v] self-dual code.
(4) Ifp=2, X is odd, and k is even, let G be the (v + 1) x (2v + 2) matrix

defined by
o1 1 . .1

Then the row space of G over GF(2) is a [2v + 2,v + 1] self-dual code.

Proof. We will give the proof of (2). Others are just routine calculations.
The first assertion is clearly true. Since C is self-orthogonal, rankp(G) < 241,
where F' is GF(p?). Now we will prove that det(M) = k(k — )\)15'1‘ For this
first observe that

koA A
A koA A
M~ | A Xk A
AA ALk

We calculate the determinant of MTM as follows, subtract the first column of

MTM from every other column. We get

A~k A=k . . A-k
k—A

S

k+(@@-1A 0 0 0
A k-A 0 0
A 0 k-A 0
X 0 0 . . k-)

The determinant of MT M is equal to the determinant of the above matrix, and

hence
det(MTM) = [k + (v - 1)A|(k = A)*~1.

6



Since A(v — 1) = k(k - 1) and
det(MT M) = det(MT) det(M) = det(M )?

we get

det(M) = \/k2(k - A\)o-1 = k(k - \)'7".

Now let D be the diagonal matrix D = diag {dy,ds, --,d+} elementarily equiv-
alent to M. Then

rankp(G) =rankp(M) :rankF(D)Zv_”gl _ v—;—l)

when p? J(k — ). Hence rankp(G) = 231 and C is self-dual in this case. =

For non-trivial examples of (1) with p = 2 we can take any of the three
(16,6,2) designs. For the second method we can take any projective plane of
order divisible by the prime p. Or we can take the unique (11,5, 2) design with
p = 3 and produce the ternary (12,6] Golay Code. In (3) we can take any (v, k, 2)
design with k odd, e.g, if we take all 3-subsets of a 4-set we obtain the [8,4]
Hamming Code. For a non-trivial example of (4) we can take the symmetric
(11,6,3) design to obtain the [24,12] binary Golay Code. (The designs referred

to can be found, for example, in Husain [15].)



2.2 Hadamard matrices"
A Hadamard ﬁwtm'z H of order n is an n x n matrix with each element either
1 or -1, which satisfies

HHT =nl.
A class of self-dual codes can be obtained. by considering the row space of an
n x n Hadamard matrix over GF(p), for some prime p dividing n such that p2

does not divide n. Another construction is given in Ozeki [20].

2.2.1 Theorem. Let H be a Hadamard matrix of order n and and let p be a
prime such that pin and p? does not divide n. Then the row space of H over

GF(p) is a self-dual code over GF(p).

Proof. Let D be the diagonal matrix D = diag {d;,ds,--,dy} elementarily
equivalent to H. So we have det(H) = det(D). Now we will find the de-
terminant of H. Since H is a Hadamard matrix we have HHT = nl hence
det(H )det(HT) = n™. Suppose n = pg. Since p? does not divide n, it follows
that p and ¢ must be relatively prime. So we have
det(D) = det(H) = n™? = p*/2¢q"/2.

Since d; divides d;;, at most n/2 of the diagonal terms are divisible by p. So
the rank of H over GF(p) is at least n/2. But HHT = pql =0 in GF(p). So
the rank of H over GF(p) is at most n/2. Hence

and the row space of H is a [n,n/2] self-dual code over GF(p). =

2.2.2 Definition. Two Hadamard matrices H() and H(2) of the same order
n are said to be equivalent if H(2) is obtained from H() by a sequence of
operations of exchanging two rows (or columns) of H(!) or multiplying some
rows (or columns) of H() by —1. It is easy to see that any Hadamard matrix

1s equivalent to a matrix of the form

-11 1 . . .1
1
1



We will call a Hadamard matrix of this form as standardized Hadamard matriz.

The following theorem is due to Ozeki. By J, we denote the n xn matrix whose

all entries are 1.

2.2.3 Theorem. (Ozeki [20].) Let Hn be a standardized Hadamard matrix of
order n, let Kn = 1/2(Hp + Jp) and Cp, = (In : Kz). If n @4 (mod 8), then
- Chr generates a doubly even self-dual code of length 2n. Moreover, equivalent

Hadamard matrices give equivalent codes.

2.3 Other constructions
Now we will consider the quadratic residue codes. Quadratic residue codes are
cyclic codes of a prime length p over a field GF(l), where [ is a prime which is
a quadratic residue modulo p. If we consider the binary case, i.e., [ = 2, this
means that p has to be a prime of the form 8m +1 (for a proof see, e.g., Apostol
[2: p. 181]). Some of the best known codes are examples of quadratic residue
codes, e.g., the binary [7,4,3] Hamming code, the binary [23,12, 7] and ternary
[11,6,5] Golay codes.

Let p be a prime, let @) denote the set of quadratic residues modulo p and
N the set of nonresidues. Let a be a p** root of unity. Define g(z) and n(z) as

g(z) = [[(z-a") and n(z) = [] (z - a")

Te@ neN
Then the quadratic residue codes @, Q, N, N are cyclic codes with the generator

polynomials ¢(z), ¢(z)(z — 1), n(z) and n(z)(z - 1) respectively.

2.3.1 Theorem. Ifp= -1 (mod 4) then the extensions of the quadratic residue
codes Q and N by a parity check digit are self-dual.

For a proof see MacWilliams and Sloane [17: p. 490].

Now we will see that, using the Kronecker product of the generating matrices

of self-dual codes, we can construct new self-dual codes. The Kronecker product

of two matrices Apxm 1= [az-j] and B is defined as
(111B (112B e almB
a9q a22B e . Qom
A® B =
anlB anzB . . . ant

9



2.3.2 Theorem. If (I} : A;] and [I; : A,] are generator matrices for self-dual
codes, so is [I}; : A1 ® As]

Proof. We should prove that A;® A, is also a self-orthogonal matrix. We have
(Al ® Az)(Al ® Az)T = (Al ® 1‘12)(1‘1%1 ® A{) = 1‘1114%1 ® AzAT = Ik ® Il = Ikl)

5o [I}; : A; ® Ay] is a generator matrix for a self-dual code of length 2kl. =

10



CHAPTER 3

A NEW CONSTRUCTION

In this chapter we will give a new construction method for self-dual codes. This
method uses cubic planar bipartite graphs. We will give some examples of this
construction. We will also give a lower bound for the rank of the face-vertex

incidence matrix of any cubic planar graph.

3.1 Self-dual codes from cubic planar bipartite graphs

Let G be a connected cubic planar bipartite graph with vertex set {1,2,.--,n}.
We define the face-vertex incidence matrix D = (d;;) of G as the matrix with

columns indexed by the vertices 1,2,---,n of G, rows indexed by the faces

f1,fa,-+ fs of G with d;; defined by
4o — { 1, if j is incident with f;;
Y 0, otherwise.

For a face f of G the corresponding row of D will also be denoted by f. We
thus identify subsets of faces of G with corresponding subsets of the rows of
D. The support of a face f which is denoted by supp(f) is the set of vertices
incident with the face. The degree of a face is the number of elements of its
support. Our main result is that the row space of D over GF(2) is a binary
self-dual code of length n.

We will begin by characterizing the minimal linearly dependent subsets of

the the row space of D over GF(2). We need the following lemma.

11



3.1.1 Lemma. A connected cubic bipartite graph has no cut-edge.

Proof. Assume that L is a connected cubic bipartite graph with a cut-edge e.
Consider a component H of L—e. The graph H has one vertex of degree two and
all other vertices of degree three. But H is a bipartite graph say with partition
(X,Y). Without loss of generality assume that the vertex in H of degree two
is in X. Then the sum of the degrees of the vertices in X is congruent to 2
(modulo 3), but the sum of the degrees of vertices in Y is equal to 0 (modulo

3). This is impossible. =

So any edge of a cubic planar bipartite graph must be incident with two
faces; otherwise it would be a cut-edge. Two faces of a planar graph are said
to be adjacent if they share an edge.

We also need the following lemma.

3.1.2 Lemma. A cubic planar graph is 3-face colourable if and only if it is
bipartite.

For a proof see, e.g, Wilson [30: p. 91].

3.1.3 Lemma. Let G be a cubic planar bipariite graph with vertex set
{1,2,---,n} and with its faces properly coloured with three colours. The only
minimal dependent subsets of the faces of G are pairwise unions of two colour

classes.

Proof. Let M be a minimal dependent set of faces. First observe that since
the sum of the elements of M is zero, every vertex of G is incident with an even
number of faces in M. Since G is a cubic graph, we have only two choices for
these even numbers — 0 and 2. We will prove two claims that will imply that

M is a union of two colour classes.

(a) Every vertex of the graph is incident with exactly two elements of M.

Let X be the set of vertices incident with two elements of M. If X # V(G)
then V(G) — X # ¢. Since G is connected there exists some y in V(G) - X
which is adjacent to some z in X. The two face adjacent to the edge zy are

not in M implying the third face incident with z is not in M which contradicts

12



€ X. Hence X = V(G). So if M is a nonempty minimal dependent subset of

M, every vertex of G must be incident with exactly two elements of M.

(b) Suppose the faces of G are coloured by the colours a,b,c. If M contains a -
face coloured by a then it contains all faces coloured by a.

Let f € M and suppose that f is coloured by a. Every face adjacent to f must
~ have colour b or c. Also the sum of the elements of M is zero. A vertex z of f
1s incident with at least one element of M, namely f, so there must be exactly
one more face in M which is incident with z. Therefore of the faces adjacent
to f, the minimal dependent set M must contain all those coloured by b or all
those coloured by c. Assume M contains those faces adjacent to f which are
coloured by b. Now let f be a face of G coloured by b and adjacent to f. By
the same reasoning we conclude that all faces of G that are adjacent to f and
that are coloured by a, must be in M.

Hence to conclude that all faces of colour a are in M, we have to prove
that between any face of colour a and f, there is a chain of adjacent faces of
colours a and b. To prove this we will consider the dual graph G* of G. In
this case G* is a connected triangulation with its vertices 3-coloured by {a,b,c}.
The required chain of adjacent faces of G, corresponds to a walk in G* whose
vertices are coloured by a and b. So the result will follow if we can show that
any two vertices coloured by a are joined by a walk using only vertices with
colours a and b. Let x,y be any two distinct vertices- of G* with colour a. Since
G* is connected, there is a walk joining = and y. If this walk contains a vertex
z coloured by c, consider the set N(z) of vertices of G* which are adjacent to .
The subgraph of G* induced by N(z) is a cycle whose vertices are coloured by
a and b. Using the appropriate part of this cycle we can find a walk joining =
and y which does not contain z, and hence we can get the required 2-coloured
walk. This implies that any face coloured by a or b must be in M.

Together (a) and (b) imply that M is union of two colour classes: by the
second claim all faces coloured by a and b are in M and by the first claim any
vertex is incident with exactly two element of M. Hence M cannot contain any

face coloured by c as otherwise the vertices of this face would be incident with

13



three elements of M. =

Now we will prove that the row space of the face-vertex incidence matrix of

a connected cubic planar bipartite graph is a self-dual code of length n.

3.1.4 Theorem. Let G be a connected cubic planar bipartite graph with vertex
set {1,2,---,n} and face-vertex incidence matrix D. Let fy, fo be any two faces
of G of different colours in a 3-face co]ouriﬁg of G. If we delete the rows
corresponding to f; and fy from D, the resulting matrix is a generator matrix

for a self-dual code of length n. Moreover, this code is independent of the choice

of faces f1, fo.

Proof. Let S be the matrix obtained by deleting the rows corresponding to f;
and fy from D. We will prove that the rows of S form a basis for the row space
of D and then we will prove that S is a generator matrix of a self-dual code.
Since the set of rows of S does not contain the union of any two colour classes,
from Lemma 3.1.3 we see that it is linearly independent.

We will now prove that the row space of S is equal to the row space of D.
Since every row of D other than f; and f, is also a row of S, to prove this
equality it is enough to prove that there are two minimal dependent subsets M;

and M, of the set of faces of G such that:

(a) f1eM; and fy ¢ My,
(b) fi1¢M;and fy € M,.

For if (a) holds then f; is a linear combination of the rows of D that correspond

to the elements of M1 — {f1}. The set M1 —{f1} is a subset of the rows of S,
therefore f; is in the row space of S. Similarly (b) will imply that f; is a linear
combination of the elements of My — {f5}.

We can choose M; to be the union of two colour classes that do not contain
“f, and M, to be the union of two colour classes that do not contain f;. This
implies that f; and f, are in the row)v space of S and hence that the row space
of S is equal to the row space of D. It also proves that the row space of S is
independent of the choice of faces fi, fs.

To prove that S is a generator matrix of a self-orthogonal code, we have to

14



prove that the rows of S are orthogonal to each other. Since G is bipartite, every
tow of S has even weight and hence each row of S is orthogonal to itself. Since
G 1s cubic, two faces of G cannot have an odd number of vertices in common: if
two faces have a vertex z in common, then they share an edge incident with z.
Again, since G is cubic, they cannot share two adjacent edges. Hence any two
adjacent faces of a cubic planar graph share some edges which are not adjacent
to each other. So these two faces must have an even number of vertices (the
endpoints of the shared edges) in common. So, any two rows of § must be
orthogonal and hence the row space of S is a self-orthogonal code.

A self-orthogonal code is self-dual if and only if its dimension is equal to
half of its length. To complete our proof now we will prove that the dimension
of the row space of S is equal to half of its length. The graph G has n vertices
so the length of the row space of S is n. Let us denéte the set of edges of G by
E and the set of faces of G by F'. We have |E| = 3n/2. By Euler’s formula

no =2

Hence

n
=5 +2.

So S has n/2 rows. We conclude that S is a generator matrix for a self-dual
code of length n, and this code is independent of the faces deleted provided

they are coloured differently in the 3-face colouring.l .

15



3.2. Remarks

In this section we will mention some relations between the graph and the code
obtained from the graph. We will also give some examples. By F(G) we denote
the set of faces of the graph G and by V(f) we denote the set \'/ertices incident
with the face f. |

The self-dual code C obtained from a cubic planar bipartite graph must

have minimum distance two or four. We prove this in the following form.

3.2.1 Lemma. A cubic planar bipartite graph G, must have at least six faces

of degree four.

Proof. To see this we will prove the following.

> (IV(f)-6) =-12. (1)

feF(G)

This will imply the lemma because the only faces that contribute negative num-
bers to the summation are faces of degree four, and each such face contributes
-2.

Counting the pairs consisting of a vertex and an incident face in two different
ways, we obtain } ¢ p(g) [V (f)l = 3]V(G)|. By Euler’s formula we have |F(G)| =
'—‘ﬂzg)—’ + 2. It follows that

. (V(-6)= > V(£I-6IF(G)

FeF(G) feF(G)

and therefore

3WV(G)| - 6(——= +2)=-12.
The proof is completed. «

The fact that the minimum distance is less than or equal to four can also be
proven as follows. Let S be the generator matrix of C obtained by deleting two
suitable rows of the face-vertex incidence matrix D of the graph. Since D has
exactly three 1’s in each column, S has at most three 1’s in each column and
strictly less than three 1’s in some columns (because of the deleted faces). If we

denote the minimum distance of C' by d then by counting the nonzero entries

16



of S in two different ways, we get 3n > (n/2)d, where n = |V(G)|, which that
implies d < 6. We deduce d =4 or d = 2. We also remark that if the graph has

multiple edges, our theorem is still valid.

If the graph has connectivity two, it yields a decomposable code. So if the
code obtained from the graph G is indecomposable then G is 3-connected. It is
quite interesting to see that there is a relation between the connectivity of the
graph and indecomposability of the code. For the converse we give the following

lemma.

3.2.2 Lemma. Let G be a 3-connected cubic planar bipartite graph with vertex
set {1,2,---,n}. The self-dual code C obtained from G is indecomposable.

Proof. First we claim that any two faces of G share one or no edge. Assume
by way of contradiction that e; and e, are two edges shared by two faces f;
and f, of G and consider the graph G — {ej,es}. Let F(G) be the set of faces
of the graph G. We define f to be the face of G — {e;,e,} whose edge set is
E(f1)UE(fy)—{e1,ea}. The set of faces of G — {ey,e5} 1s

F (G —{er,e2}) = (F(G) - {f1, f2)) u{f }.

From this we see that the graph G — {ej,e5} has one less face than G. Now G
has n vertices, 3 edges and % + 2 faces. So G - {ej,e,} has n vertices, 32
edges and % + 1 faces. If G — {e;,e,} were connected, applying Euler’s formula

to this graph we would get

3n

n-(F-2)+y+1=2

2

which would imply 1 is equal to 0, a contradiction. Hence G — {e1,es} is not
connected and so if G is 3-connected, any two faces can share at most one edge.

Now let f be a face of G and let S be a proper subset of supp(f). We
prove that S cannot be the support of any codeword. For suppose that S is the
support of a codeword u. Choose a vertex z ;)f f which is not in S. Let y be a
vertex of f adjacent to z and let f be the face which shares the edge zy with f.
Since C is a self-dual code supp(f ) and supp(u) must have an even number of

common points. Now supp(u) is a subset of supp(f) so this intersection must be
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a subset of {z,y}. We have chosen z outside of the support of u hence the only
| possibility we are left with is that the intersection of supp(u) with supp(f') is
empty. So y is not an element of the support of v which is S. Now if we choose
¢ as vertex of f which is adjacent to an element of S we get a contradiction.
Hence a proper nonempty subset of supp(f) cannot be a codeword.

If C is decomposable then we can partition V(G) into sets V; and V,. We

can find sets of codewords
U= {ul)u27 7ut}

and

W= {wlwaJ 7w8}

such that supp(u;) C Vi, where 1 <7 <t, and supp(w;) C V3, where 1 < j <t,
and UUW is a basis. Let f € F(G). Then

£ = (O ) + (3 g

Now, u = Yt Au; is a codeword with supp(u) C V;. Since supp(u) C
supp(f) we conclude that u = 0 or f = 32f_, A;u;. Thus, every face of G has all
of its vertices in one of V} or V,. This implies that there is no edge from any
vertex in V] to any vertex in V. If both V; and V3 are not empty we conclude
that G is disconnected. Since this is contrary to the hypothesis, C(G) has only

one component and is indecomposable. =

Since a self-dual code of minimum distance two is decomposable 3-connected
cubic planar bipartite graphs yield self-dual codes of minimum distance four. If
G is a connected cubic planar bipartite graph then C (G) will denote the self-dual
code generated by the face-vertex incidence matrix of G. We will prove that if
self-dual codes C; and Cy are obtained from cubic planar bipartite graphs then
their composition C; @ Cy can also be obtained from a cubic planar bipartite
graph. First we give the following definition. Let G; and Gy be connected cubic
planar bipartite graphs and let ,y; be an edge of the outside face of G; and
T9yy be an edge of outside face of G5. We define a graph G; @ G4 as follows:

V(G110 G,y) =V(G1)uV(G,)
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E(G1@G,) =[E(G1)VE(G3) - {z1y1,22y2} U {z122,¥1¥2}-

(Graphs G| ® G, is dependent of the edges we use. But they yields the same
code.) We will give an example.

3.2.3 Example. Consider the following two cubic planar bipartite graphs G,
and Gy, where ; =9 ,y; =19,z =1,y = T.

Figure 2. G180 G,
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3.2.4 Lemma. Let G; and G4 be two cubic planar graphs. The graph G, 9G,

is also a cubic planar bipartite graph and
C(G1eGy) =C(G1) o C(G,).

Proof. Obviously G; @ G, is cubic and planar. To show that it is bipartite all
we have to prove is that all faces of G; ® Gy have an even number of edges. Let
f1 be the outside face of G; and f; be the faée of Gy that shares the edge z1y;
with f;. Also, let fy be the outside face of Gy and f, be the face of G, that
shares the edge 9y, with f;. Now we describe the set of faces of the graph
G1 @ G4 which are not faces of the graphs G; or Gy, by their edge sets. The
outside face f3 of G; @ G4 has edge set

E(f3) = [E(f1) VU E(f2) — {z1y1, T2y} U{z122,Y1¥2}-
The other face f:; is the one with edge set
E(f3) = (E(f1) ~ {21y} ]V [E(f2) ~ {zayp}]) Y2129, 9192}
The set of faces of the graph G; @ G4 is
F(Gy0Gq) = (F(G1)UF(Gy)) = {f1, f1, f. F}) U {fs, f3}-

Now since |E(f,)| and |E(fy)] are even, so are {E(f3)| and |E(f,)]. Hence
the graph G @ G, is bipartite.

We claim that for any choice of edges z,y; and z4y, we have,
C(Gl @Gz) = C(G])@C(Gz)

To show this it is enough to make the following observation. Let A be the gener-
ator matrix of C'(G;) obtained from the face-vertex matrix of G; by deleting the
rows corresponding to fi and f;. Also let B be the generator matrix of C(Gy)

obtained from a face-vertex matrix of Gy by deleting the rows corresponding f,

o (4 B)

The rows of D are elements of C(G;® G5) and they are linearly independent.

and f,. Consider the matrix

Hence D is a generator matrix for C(G; @ G3). This completes the proof. m
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We will illustrate this with an example.
3.2.5 Example. Let G| and Gy be the graphs in Figure 1. Then a generator
matrix of the code C(G,) is

1 111
11 1 1
11 11
1 11
1 1

—_

1
1 1 1 1 1

(the blank spaces contain zero, the rows corresponding to the outside face and
to the face with the support {9,11,13,15,17,19} are deleted from the face-vertex

incidence matrix of G;). A generator matrix of C'(Gs) is

11

11
. 111
B:= 1 1 1

1

—

1 1

(the rows corresponding to the outside face and to the face with the support
{1,2,7,8} are deleted from the face-vertex incidence matrix of G3). A generator

matrix for C(G1 ® Gy) is

11 11 \
11 11
1 111
1 1 1 1
o 11 11
D= 1 1 11
1111
1 1 11
1111
1 1 1 1 1 1

(the rows corresponding to the outside face and to the face with the support
{1,2,7,8,9,11,13,15,17,19} are deleted from the face-vertex incidence matrix
of G;®@G,y). Now D is of the form

Hence C(G; @ G,y) = C(G1) @ C(Gy).

Non-isomorphic graphs may yield the same code. The graphs Syp and S
are examples (see Appendix B Figure 18 and Figure 19.) It can be seen that
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every face of the graph Syq is orthogonal to every face of the graph §’, and
hence they génerate the same code, altough they are not isomorphic. (Two
non-isomorphic 3-connected cubic planar bipartite graphs with less than 20
vertices yield different codes.)

In Appendix B we list the cubic planar bipartite graphs which yield all
self-dual codes up to length 20.

3.3 Self-orthogonal codes from cubic planar graphs

We can use any cubic planar graph (not necessarily bipartite) to construct self-
orthogonal codes. From Euler’s formula, we know that a cubic planar graph on
n vertices must have n/2 + 2 faces. We will prove that the rank of the face-
vertex incidence matrix of such a graph is greater than or equal to n/2. For

this we first give the following lemma.

3.3.1 Lemma. Let G be a planar 2-edge connected graph on n vertices such
that G has maximum valency 3 and has some vertex u of degree 2. Let F(G)
be the set of faces of G. If f is a face incident with u then F(G) -~ f is an
independent subset of [GF(2)]".

Proof. The proof is by induction on the number of faces. If the graph is a
cycle the claim is obviously correct. Now assume that the graph has more than
two faces. Say u is incident with the faces f and f. Now consider the graph G’
which we obtain from G by deleting all vertices of f which are only incident
with faces f and f'. We see that '

F(G')=F(G)-{f,fYu{f}

where f" is the face of the graph G' whose edge set is the symmetric difference
of the edge sets of f and f . ’The vertices of G' which are adjacent to the
deleted vertices of G have degree 2 in G' (becouse maximum valency is 3 and
G is 2-edge connected) and these vertices are incident with the face f'. So G’
satisfies the induction hypothesis and |F(G')| < |F(G)|. Hence by induction
F(G')-{f"y= F(G)-{f,f'} is independent.

Now we will prove that the minimal dependent subsets of F(G) - {f, f'} are
the minimal dependent subsets of F(G) - f. (This will imply that F(G) - f
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is also linearly independent.) Again consider the vertex u. Since u is incident
with only one face in F (G) - f, namely f, it follows that f* cannot be in any
minimal dependent subset of F(G)— f. (If f were in some minimal dependent
subset M, then M should contain another face from F(G)~ f which is incident
with u.) Therefore the set of minimal dependent subsets of F(G) — f is equal
to the set of minimal dependent subsets of F(G) - {f,f }. =

3.3.2 Corollary. Let G be a connected cubic planar graph on n vertices and

let D be its face-vertex incidence matrix. Then the rank of D is at least n/2.

Proof. Let e be an edge of G. Consider the graph G —e. Let f be the face of
G — e which is not a face of G, i.e., f is the face whose edge set is the symmetric
difference of the edge sets of the faces incident with e. Then by the above
lemma, F(G -¢€)- f is linearly independent. This set is a subset of F(G) hence,

rank(D)> |F(G —¢)-fl=n/2. u

Let G be a planar graph with ¢ faces of odd degree. Let D be the face-vertex
incidence matrix of G which has the faces of odd degree in its first ¢t rows. We

define the matnx D* as

[ .
| 0
l

It is easy to see that any two rows of D* are orthogonal to each other so we

have the following theorem.

3.3.3 Theorem. Let G be a cubic planar graph. Then the row space of D* is

a self-orthogonal code.
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3.4 Some applications of the face-vertex incidence matrix

We also can use the face-vertex incidence matrix of a graph which is embedded
on a surface other than the plane. We will give two examples.

In [21], Pless has classified all self-dual codes of léngth less than or equal to
20. The self-dual code of minimum distarice 4 which is called Myq in [21], has
only five codewords of weight 4, while it is known that a connected cubic planar
bipartite graph must have at least six faces of degree 4 (see Lemma 3.2.1). So
the self-dual code My, cannot be obtained from a cubic planar bipartite graph.

Now we will obtain this code from a non-planar graph.

3.4.1 Example. Consider the graph of Figure 3, embedded on the Mobius

strip (which is same as embedding on the projective plane).

Figure 3. Mzo

Let M be the matrix that we obtain from a face-vertex incidence matrix of
the embedding by deleting the row corresponding to the face which is not of

degree four or six. Thus

111 1
111 1
111 1
1111
111 1
M = 11 11 11
11 ] 11 1
11 11 11
111 1 11
11 11 11



We will show that M is a generator matrix of the self-dual code Myy. In her

paper a generator matrix of My is given as

1 111
1 111
1 111
' 1 111
1 1 11
A= 1 1 11 1 1
1 1 11 11
1 1 11 11
11 11 1 1
11 11 1 1

. The Tt* row of M is the sum of the 4t*, 5t* and Tt* rows of A, the 9t* row of M
is the sum of the 9t and 27¢ rows of A, 10 row of M is the sum of the 10t
and 4% rows of A. All other rows of M and A are same. Hence the row spaces

of M and A are same. So M is a generator matrix for Myy.

3.4.2 Example. We can also consider face-vertex incidence matrices of cubic
graphs embedded on the projective plane. As an example, we will give the
embedding of the Petersen graph on the projective plane.

Consider the following embedding of the Petersen graph on the projective

plane.

Figure 4. The Petersen graph on the projective plane.

Let F' be the following face-vertex incidence matrix of this embedding.
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1111100000
060 01 1.00O0OT1T11
F=]0 001111100
10 1 1 00 1 10 01
10001 1 0011
1100001 110

As we can also see from the graph, any two faces of the embedding share two
vertices and hence any two distinct rows of F' are orthogonal to each other.
 Now we define the matrix A as 4 := [F: Ig). Then the code C generated by G
is a self-orthogonal [16,6] code. We have found the weight distribution of this
code to be

AO = Alﬁ = 1, Aﬁ = AlO = 16, As = 30

The codewords of weight six are the blocks of a symmetric (16,6,2) design.
The codewords of weight ten are the blocks of the complementary design. So
using the face-vertex incidence matrix of certain graphs, we can also construct
symmetric designs.

The codewords of weight eight are the blocks of a 2-(16,8,7) design. Each

codeword of weight eight is the sum of two or four distinct rows of A.
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CHAPTER 4

THE ENUMERATION AND -
AUTOMORPHISMS OF
SELF-DUAL CODES

In this chapter we first will give an enumeration theorem for self-dual codes.
We will prove that almost all self-dual codes are indecomposable. Then we will
mention the work done by Huffman, Yorgov and Pless under the assumption of
the existence of an automorphism of odd order. In Section 4.3 we will prove
that a self-orthogonal code with minimum distance four cannot have trivial
automorphism group. In Section 4.4 we will construct a self-orthogonal code

with trivial automorphism group.

27



4.1 Enumeration and related results
This section presents theorems on the enumeration of binary self-dual codes.
4.1.1 Theorem. (MacWilliams et al. [18].) Let n be even and suppose C is a

binary [n,k| self-orthogonal code containing the all-one vector, with k > 1. Then

the number of binary self-dual codes containing C is

0of3

B
(2 +1)

1=1

Proof. Let oy m, for k <m < n/2, be the number of {n,m] self-orthogonal codes
which contain C. We establish a recursion formula for o m. Let D be an [n,m)]
self-orthogonal code containing the C'. First we count the number of ways D can
be extended to an [rn,m + 1] self-orthogonal code containing the all-one vector.
Now D can be extended by adjoining an element of D+ not already in D. Since
dim D = m, we have dim D+ =n — m. Consider the cosets of D in D+. There

are lDll/lDl =2n-m [9m — 2n-2M cosets. Say
DJ‘:DU(hl+D)U(h2‘|—D)U“-U(hl+D),

where [ = 27~2m _ 1. Clearly any two extensions of D obtained by adjoining u
and v are different if and only if v and v belong to different cosets. Hence we

have exactly 2*~2™ — 1 extensions, namely
Du(h; + D) for j=1,2,.,1

Now all we have to do is to find the number of [n,m] subcodes containing C in

an extension. Since an extension D U (h; + D) is of dimension m + 1 then
ID U (hj + D)|/|C| = 2m+1/2k = 2m+1-k

so there are 2m+1-% _ 1 subcodes of D U (h; + D) properly containing C. Thus

fork<m<n/2,
2n—2m -1
Tnm+1 = Onm - Smiik _ 1

Starting from o, j, = 1 gives the result. u
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4.1.2 Corollary. The number of binary self-dual codes of length n is

-1

1@ +1).

1=1
Proof. In the above theorem, take C to be the self-orthogonal code of length n

which consists of the all-one vector and the zero vector. =

If a self-dual code is decomposable, then each component must be self-dual.
Indeed, let C' be a decomposable self-dual code. Without loss of generality we

can assume that C has a generator matrix of the form

43
0 B/

To prove the claim it is enough to prove that the submatrix A generates a self-
dual code. Let Cy be the code generated by A and Cy be the code generated by
B. Let k be the length of C;. So the length of C3 is n — k. Since C is a self-dual

code, €1 and Cy must be self-orthogonal codes. So we have

dim(Cy) < 5 1
and
dim(Cy) < M- k. (2)
We have

dim(C1) + dim(Cy) = dim(C) =

So the equalities must hold in (1) and (2). Hence C is a self-orthogonal code
of length k and dimension £. This implies that C; is a self-dual code.

Using this and a counting argument we can prove the following theorem.
4.1.3 Theorem. Almost all self-dual codes are indecomposable.

Proof. Let G, be the number of self-dual codes of length n and C, be the
number of indecomposable self-dual codes of length n. We define Gy to be 1.
By counting the self-dual codes of length n with a distinguished coordinate place
in two different ways we will show that

nf2

n
nGn = 3 (3) 2 CasCoas 3)
=1
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Indeed, we can choose any of n coordinate places as the distinguished coordinate
‘place so we have nGy, self-dual codes of length n with a distinguished coordinate
place. On the other hand, the distinguished coordinate place must occur in a
component of length 2k, where ke {1,2,3,.--,%}. The binomial coefficient (1)
is the number of ways to select 2k coordinate places for the coordinate places of
the component containing the distinguished coordinate place. Since any one of

2k coordinate places may be the distinguished one, we have

(;k> % C,y,

choices for the component that contains the distinguished coordinate place. The
remaining n — 2k coordinate places determine a self-dual code of length n — 2k.
So any of G,,_; self-dual codes may occur in the remaining n - 2k coordinate

places. Thus the sum
n/2

). (;2,) 2k O Gp_ak»

k=1
also counts the self-dual codes of length n with a distinguished coordinate place.

This proves the equality.

3
~
V]

_ n 2]9 Gn_zk
L= Z(?k) w C% G
k=1
— & (n—1> Cok Gn-2kGak
_ Cn + & n -1 ) Coj, Gn_2tGox
G, Z 2k -1/ Gy, Gn
Set
F, (n/zz%_l (n -1 ) Cat Gn_2t Gax
n 2k - 1) Gop, Gn
k=1
So we have (n/2)-1
ST (n =1\ G0 Gox
s 3 (goh)
k=1
Now since




unless k = n/4 the term —G—G"‘z"G% will occur twice in the summation
o n

(n/i)_l (n - 1> Gr_2kGag .

= 2k -1 Gn

The coefficients of these occurences are (21;;11) and (,,"5," 1) Soif n is not divisible

by four we have

(n/2)-1 (n/4 |
n—1\Gp 0tGor _ n-1 n-1 Gr_2tGax
g; Gk—J__Gn'"_23<QM—1>+CVQk—J) G
(n/4]
_ 1 n—1\\ Gr_2xGa
=3 () + (")) =

— U%H (n) G 2t Gok
= 2k Gn

If n 1s divisible by four, similarly we see that
("/22%‘1 (n— 1) Go Gt _ ("‘ l)g‘%G% . “‘/f:‘l (n) Cn_sCot.
= 2k -1 Gn 2-1) Gq = 2k Gn

Since

~~
3 3
|
—_
~——
Sl
TN
S
NS |
—_
Na——
AN
~—
IR
S——”’

in both cases we have

(n/2)-1
n—1\Gn_21Go n\G,_ 2kG2k
£<%ﬁ Cn <§@0 G

So for any n we have

Also
G, G Gy

Gn G’n/Gn 2k
i (2 +1)
Mo (2 +1)

ok
{n-2k)k *

22
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Since k < 2, we have 22t > ? and thus
1)V 7 2734

ok 211 Y
2 m k= 3.0tk 2%%-17
We also have () < n?*. Hence we get
ln/4] . In/4)
1 k(1 \k n?
Fa<s ) m (2%_1) < 2(2?‘_1)'

Since limp—oo (ﬁéT) = 0 we can choose n so large that (ﬁéi) < 1. Hence

for sufficiently large n we have

o 2 . 2 1
Fos Y (ergV <YV ==
"] ng 217 " 21 T - +5
If n > 64 and n large enough that /4 - < 1, then L < 2, and hence for
5
such n we have ’
Fp<2 (2
n < (2%_1)'

By taking the limit of both sides, we see that

l‘Lm Fn - 0.

n—00
Using the equality 1 = %LL + Fp and the above result, we conclude that

lsz =1 u

n—oo G
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4.2 A Search for codes using their automorphism groups

Self-dual codes through length 30 and doubly even self-dual codes of length 32
have been completely enumerated in Pless [21], Pless and Conway [5], and Pless
and Sloane [23]. This seems infeasible for any greater length because of the large
number of such codes; there are at least |
e
n!

inequivalent codes of length n. For example, we would have at least 17,000
inequivalent codes of length 40. However, those of largest minimum distance,
called extremal codes, seem relatively rare among these codes. (We should re-
mind the reader that some authors define extremal codes to be the self-dual
‘codes whose minimum distances realizes the bound given by the Gleason the-
orem. See Appendix A.) In particular, there are one extremal self-dual doubly
even code of length 8, two of length 16, one of length 24, and five of length 32.
Only one is known of length 48 and it is the extended quadratic residue code.
An interesting observation is that each of these codes possesses a nontrivial
automorphism of odd order.

The existence of an odd automorphism leads to a decomposition of the
doubly even codes into shorter self-dual codes and therefore the classification
problem reduces to a simpler case. To show this we need the following definitions.
Let C be a self-dual code of length n and let o be an automorphism of C' of
prime order p. Suppose in the cycle decomposition of o there are ¢ cycles of
length p and f fixed points. Denote the cycles by ;,Q,,---,8 and the fixed
points by Q1,09+, s The subspace E,(C) is defined to be the set of
codewords v such that |supp(v)n ;| is even for 1 <i < c+ f. We define F,(C)
to be the set of codewords which are fixed by o. If v € F5(C), then the entries

of v are constant on each cycle {2;. We define 7 as follows
1 Fo(C) = (GF(2))°+f
((v))i =v;
for jeQ;, i=1,2,---,c+ f. The following was proveci in Huffman [13]. We
present it in a different form.

33



4.2.1 Lemma. If C is a self-dual code, then the subspaces F,(C) and Es(C)
have no common element other than zero, and span C. The code 7(F5(C)) is a

self-dual code of length ¢ + f.

In Huffman [13] it is proven that an extremal doubly even code of length
48 with a nontrivial automorphism of odd order is equivalent to the extended
quadratic residue code. In Pless and Conway [6], Huffman and Yorgov [14],
Pless [22] and Pless and Thompson [24] the assumption of the existence of an
automorphism of odd order has been used to search for a [72, 36, 16] doubly even
code. The use of the assumption is, if the code C has an automorphism of odd
order then it is spanned by two subcodes. One of these subcodes, namely F5(C),
can be determined from 7 (F,(C)) which is a self-dual code of a shorter length.
So the problem reduces to the existence of a shorter self-dual code. In [1] Anstee,
Hall and Thompson have used the same idea to search for the projective plane
of order 10. In Yorgov [28] all extremal even self-dual codes of length 40 which
have an automorphism of order a prime greater than 5 are obtained. The same
author [29] has also classified all extremal doubly even self-dual codes of length
56 with an automorphism of order 13. (There are sixteen such inequivalent

codes.)

4.3 Self-orthogonal codes with distance four

In this section we will prove that a self-orthogonal code of minimum distance
four cannot have trivial automorphism group. For this we will make use of the
classification of the self-orthogonal codes generated by codewords of weight four.
All indecomposable, self-orthogonal codes which are generated by codewords of
weight four are described in Pless and Sloane [23] using the following notation.

Forn = 4,6,8,---, we define dy, to be the self-orthogonal [n,$n —1] code with

a generator matrix

1111
The self-orthogonal [7,3] code e; has the following generator matrix
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(It is the self-dual [8,4] Hamming code.)
We define Z, as the group of integers modulo n and define S, as the sym-

metric group on n elements. The automorphism group of d, is
Aut(d4) = 54

and if n is greater than four, then Aut(d,) is the wreath product of Z; by S'n,/Z'
(See Pless and Sloane [23].)

The automorphism group of ey is PSL4(7) which has 168 elements [22]. It is
also known that Eg has an automorphism group of order 1344, namely GL3(2).
Now we will define some vectors of length n and using them describe the

duals of the above codes. For even n greater than four,
an :=1010---10

by, :=1100---00

@y = an + by = 0110101 - 10

and

eq = 1111111,

We know that
dy =dn U (an +dn) U (b +dn) U(ay, +dn)
er =erU(cr +eq).

Since Fjg is self-dual we have:
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4.3.1 Lemma. (Pless and Sloane [23].) If C is a self-orthogonal code containing

Eg as a subcbde, then C is decomposable.

Proof. Without loss of generality we can assume that C has a generator matrix

of the form

l
|
l
|
A= |
||
I
|

Since C is self-orthogonal each row of R must be in the dual of Eg. But Ej is
self-dual, hence each row of R is in Fg. Therefore any row of R can be written
as a linear combination of the rows of Eg. So if in the matrix A we replace the
submatrix R with the zero matrix, we still have a generator matrix of C. From

this we conclude that C' is decomposable. u

Now we can state the theorem characterizing indecomposable self-orthogonal

codes generated by codewords of weight four.

4.3.2 Theorem. (Pless and Sloane [23].) An indecomposable self-orthogonal
code C of length n which is generated by codewords of weight four is either d,
(n = 476787 )7 ey or EB'

So if we have a self-orthogonal code C' of minimum distance four, the subcode

generated by codewords of weight four must be of the form
dr, @dr,® - 0dry, 070700710 E30 L0 0 Ey

for some integers rq,79,---,7;. In the above direct sum e; occurs m times and
Eg occurs k times (say).

Let C be an indecomposable self-orthogonal code of minimum distance four
and let C" be its subcode generated by codewords of weight four. From Theorem

4.3.2 and Lemma 4.3.1 we know that C' must be a direct sum of the form

C’ :drl@...edrlee,?@...@e,?_
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Then C has a generator matrix A of the form

| | | | | ! |
dry | i | | | | !
— = l ! l l !
| dr, | | 0 I |
| | | | | |
| | | ! | | |
| | | — | I |
| | | dry | I I |0
| | I | l
0 I | oer | | I - (1)
| | | = I |
l I | | | | |
l | l l | |-
| | | | | | er |
M e
l l | | | | I

Note that any row of R; must be in df, for i € {1,2,---,l}, and any row of M;

must be in e+ for j € {1,2,---,m}. Now we are ready for the following lemma.

4.3.3 Lemma. Let C be an indecomposable self-orthogonal code of minimum
distance four and A be a generator matrix of C in the above form. Let m be a

permutation of the first r; columns of A such that,

(a) =¢ Aut(d:,), and
(b) for any row u of Ry, the image m(u) belongs to the same coset of d,, in df,

as u.
Then 7 is an automorphism of C.

Proof. Observe that if any row v of R; is replaced by some element in the coset

v +d,, in df , we still have a generator matrix for C. =

Now all we have to do is to find a nontrivial automorphism of d,; which

satisfies the hypothesis of Lemma 4.3.3.

4.3.4 Theorem. A self-orthogonal code with minimum distance four cannot

have trivial automorphism group.

Proof. Let C be an indecomposable self-orthogonal code of minimum distance

four and A be its generator matrix of the form given in (1). We can assume
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that the rows of the matrix R; are all in the set {O,a,-l,b,.l,a',.l}. Now we can
easily prove that the permutation 7 = (13)(24) is an automorphism of d, for
any value of ;. Moreover we can also see that it satisfies the second requirement
of Lemma 4.3.3:

7(ar, ) =m(1010-.-10) = ar,

7(br,) = w(1100---00) = 0011 --- 00 = by, 4 111100 ---00 € by, + dy,

7(a,,) ==(0110---10) = 1001--- 10 = @, + 111100---00 ¢ yp, + dy,

©(0)=0
So by Lemma 4.3.3 7 € A(C). If e; occurs in the matrix A, then the auto-
morphism group of C contains a copy of PSLy(7), since we can assume that
the rows of the matrix M; are elements of the set {0000000,1111111} and any
automorphism of e; fixes these two vectors. Hence the automorphism group of

C is nontrivial. =

If a self-orthogonal code has minimum weight two, the two columns that
correspond to the support of a codeword of weight two must be the same. So
the transposition interchanging these two columns must be an automorphism
of the code. Hence a self-orthogonal code with minimum distance two cannot
have trivial automorphism group. Therefore a self-orthogonal code with identity

automorphism group must have minimum distance at least six.
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4.4 A self-orthogonal code with trivial automorphism group

. From the last section we know that a self-orthogonal code of minimum distance
less than or equal to four cannot have trivial automorphism group. In this section
we will construct a self-orthogonal code with trivial automorphism group. For
this we will use a cubic planar graph with trivial automorphism group.

The following graph G has trivial automorphism group (Faulkner [7}):

Figure 5. A graph with trivial automorphism group.

This graph has 34 vertices and 19 faces. Let F' be the following face-vertex

incidence matrix of G.
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, the it* row is the only row

T4

For 1<i1<14

( 1100000111000000000000000UO00O0T0O00 00000
01100000011100000000000000GO0GO00 0000O 0\
00110000000111000000000O0O00O0TO0TG00 00000
00001100000000001110000000000O00 0000
00000110000000000011100000000000 00
1000001100000000000011000000000 000
00000000111000000000000011000000 00
00000000001110000000000001100000 00
0000000000001110000000D000D0T110000 00
000000000000000111000000000000T1]1 00
000000D00D000000O0O00O011100000000O00O00GCO01 10
00000000000000O0DODO0OO0O0OOO0OO0OOO0OO0GOT1TI171 11
000000000000 0O0O0O0COOO0OO0O110000O0T1100 01
1111111000000000000000000000000GO0GO00
000000D00D00D00D0OO0DO0OO0OO0O0OO01111000000000T11
0000000110000 000000001111000000000
06000000000000C00O0O0O0CO0O0CO0O0O0OOT11111100000

\0 000000000000011000000000O0O01111000
0001100000000111100000060606000G0O0GO00O00 0/

Proof. We first prove that the rows of A are linearly independent. The proof

In the matrix F' the first thirteen rows correspond to the faces of degree five and
4.4.1 Theorem. A is a generator matrix for a [48,19] self-orthogonal code with

is by contradiction. Let S be a subset of the set of rows of A. If S is a minimal

the fourteenth to the face of degree seven. We define the matrix Ayg, 43 as

trivial automorphism group.
dependent subset then ¥, .su = 0.

Iy

which has 1 in the (34 + i) column, so none of the first fourteen rows can be

in S. Hence S must be a subset of the last five rows. But in the support of any

one of the last five rows, there is a coordinate place which does not belong to
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the support of the other four. So there is no subset of the last five Tows whose
sum is equal fo zero. Hence the last five rows are linearly indépendent and A is
of rank 19.

To prove that the row space C of A is self-orthogonal all we need to observe
is that any two rows of A are orthogonal to each other. This follows as any two
faces of G share two or zero vertices. Each row of A has even weight, so any
row is orthogonal to itself. This proves that C' is a self-orthogonal code.

Now we will prove that C has trivial automorphism group. Using the com-
puter we have determined the weight distribution of C as Ag = 1, Ag =
18, Ag =45, Ay =136, Ay = 572, Ay = 2154, A = 7915, A =
25310, Agg = 60740 , Ay = 103454 , Ayy = 123598 (since all-one vector is in
C we have A; = Ay ; for © = 0,2,-..,24). So the only codewords of weight six
are the eighteen rows of A of weight six, i.e., all rows except the fourteenth row.
We conclude that any automorphism of C must permute these eighteen rows.
There are 45 codewords of weight eight. Observe that the sum of any two rows
of weight six that correspond to two adjacent faces of G is a codeword of weight
eight. The number of such pairs is just the number of edges not on the boundary

face. So we have

|E(G)| ~T=44

pairs of adjacent faces whose sums give codewords of weight eight. With the row
corresponding to the outside face, we have 45 codewords of weight eight. So we
see that a codeword of weight eight is either the row corresponding to the outside
face or the sum of two rows that correspond to adjacent faces of degree five or
six. From this it follows that the fourteenth row is the only codeword of weight
eight that covers the last coordinate place. There are no codewords of weight six
which cover the last coordinate place and the last column is the only coordinate
place which is not covered by codewords of weight six. So the last column must
be fixed under every automorphism of C'. Thus the fourteenth row must be fixed
under any automorphism of C. We conclude that any automorphism of C' must
result in a permutation of the rows of A.

We partition the coordinate places into two parts X and Y by defining
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X to be the set of the first 34 coordinate places and Y the set of remaining
coordinate plaées. We first prove that the parts X and Y are fixed under any
automorphism of C'. We have already proven that the last coordinate place
must be fixed under any automorphism of C. Any i € X is covered by at least
two codewords of weight six, while if ; € Y and j # 48 then it is covered by
exactly one codeword of weight six. So no automorphism of C' can interchange
“any element of X with any element of Y. Hence X and Y are fixed under any
automorphism of C. Now let 7 be an automorphism of C. We will consider

three cases.

(1) Assume 7 fixes every element of X.

If  is not the trivial automorphism, then it must move some elements of Y. Say
7(35) = j. So the support of the image of the first row under 7 is {1,2,8,9,10,7}.
But there is no codeword with this support in C' unless 7 = 35. So we conclude

that in this case 7 must be the trivial automorphism.

(2) Assume  fixes every element of Y.

We already know that = must permute the rows of A. So in this case m must
permute the rows of the submatrix /. This means m must be an automorphism
of the graph G. Since G has trivial automorphism group we conclude that =

must be the trivial automorphism.

(3) Assume m moves points of both of X and Y.

Then again = must permute the rows of F' and we already know that the par-
tition (X,Y") is fixed under any automorphism of the code. So the restriction
of m to first 34 coordinate places must be an automorphism of the graph G.
Since G has trivial automorphism group this restriction must be the trivial au-
tomorphism. But this shows that the action of # on Y 1s trivial too because
supp(r;)n{1,2,---,34} determines the support of »; and since each row of F is

fixed then each row of A is also ﬁxed. "
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CHAPTER 5

THE BARNETTE
CONJECTURE

In this chapter we will make some observations about cubic planar bipartite
graphs. We will survey some approaches to the Barnette conjecture and give a
new conjecture which implies it. We will also give an infinite family of Hamil-

tonian cubic planar bipartite graphs.

5.1 The Barnette conjecture and early results

Problem 5 in Tutte [25: p. 343| states what has become known as the Barnette
conjecture. The conjecture states that every cubic 3-connected bipartite planar
graph is Hamiltonian. A famous result of Tutte [27] shows that the 4-connected
planar graphs are Hamiltonian. In [26] Tutte also showed that some 3-connected
planar graphs are non-Hamiltonian. That the same is true for bipartite cubic
3-connected graphs is shown by a graph of Horton, see Bondy and Murty [4:
p. 240]. Recent work has been expended on trying to determine the order
of the smallest non-Hamiltonian cubic 3-connected planar graph. Lederberg,
Bosék and Barnette (see Grunbaum [10]) have constructed a non-Hamiltonian
cubic 3-connected planar graph of order 38. Okamura [19] has shown that the
smallest non-Hamiltonian cubic 3-connected planar graph has order at least 34.
In [12] Holton and McKay have shown that the conjecture is true for graphs of
order up to and including 64.
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A different approach to the Barnette conjecture can be found in Hakimi and
‘Schmeichel [11] The vertez arboricity of a graph G is defined as the minimum
number of subsets into which V(G) can be partitioned so that each subset
induces an acyclic graph. In [11] the planar graphs with vertex arboricity two

are characterized in terms of their dual graphs.

5.1.1 Theorem. (Hakimi and Schmeichel [11].) Let G be a planar graph.
Then the vertex arboricity of G is equal to two if and only if the dual of G

contains a connected Eulerian spanning subgraph.

Proof. Suppose that the vertex arboricity of G is equal to two. Let {Vi,V5}
be an acyclic partition of G (i.e., the graphs induced by V; and V, are acyclic).
Let E(V;,V,) denote the edges in G joining a vertex in Vj to one in V5, and
consider the corresponding set of edges F' in G~. Let H denote the subgraph
of G* induced by E'; we will show that H is a connected Eulerian spanning
subgraph of G*.

Since E(Vi,V,) is an edge cut in G, the graph H is Eulerian. Since every
cycle of G contains an edge of E(V},V,), every face of G contains one or more
edges of E(V;,V,), and hence H is spanning in G*. If H were disconnected,
then G* would contain an edge cut E containing none of the edges of E'. But
then the corresponding set of edges £y in G would induce an Eulerian subgraph
G in G containing none of the edges in E(V1,V}), contradicting the assumption
that {V1,Vs} is an acyclic partition in G.

Conversely, suppose G* contains a connected Eulerian spanning subgraph
H'- Let H denote the subgraph induced by the corresponding set of edges in
G. Since H' is Eu‘lerian, the edges of H form an edge cut £(V},V,) in G. Since
every edge cut in G* contains at least one edge of H', every cycle in G contains
one or more edges of E(V},V;). Thus the graph induced by V; is acyclic for

i = 1,2, and so the vertex arboricity of G is equal to two. =

Since a connected Eulerian spanning subgraph in a cubic graph is a Hamil-
tonian cycle, using the above theorem Barnette’s conjecture can be reformulated

as, “Every Eulerian planar triangulation has vertex arboricity equal to two”.
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5.2 Another approach to the Barnette conjecture

In Chapter 3 we have shown that the minimal dependent subsets of the faces of
a cubic planar bipartite graph are the pairwise unions of the colour classes of
the faces (see Lemma 3.1.3). In this section we will use these sets again. Let G
be a 3-connected cubic planar bipartite grép}L whose faces are properly coloured
by the colours 1, 2 and 3. This colouring gives a proper vertex colouring of the
dual graph G*. We define G; to be the subgraph of G- induced by the vertices
coloured j and k where {1,5,k} = {1,2,3}. Clearly G3, G; and G} are bipartite
subgraphs of G*. We will call these graphs the minimal dependent graphs of
G. The symmetric difference of a collection of sets {4; : 1 =1,2,---,n} is
defined as the set of elements z such that z belongs to exactly one A;, where

i=12-n.

5.2.1 Lemma. Let G be a 3-connected cubic planar bipartite graph and let
G; be a minimal dependent graph of G. Let T be an induced subgraph of
G: which is a tree. Define the subgraph C' of G by its edge set E(C) as the
symmetric difference of the set {E(f): f ¢ V(T*)}. Then C is a cycle in the
graph G which passes through all vertices of the graph G which lie on faces of

G corresponding to the vertices of T*.

Proof. The proof is by induction on the number of edges of T~. If |E(T*)| =1

then T* corresponds to two adjacent faces f;, f9 of G. In this case

E(C) = E(f1) U B(f) - [E(f,) 0 E(fy)]

is a cycle and the lemma holds. Now assume T is an induced subgraph of G;

which is a tree with ¢ + 1 edges. Let ; be a vertex of 7~ of degree one and
e* be the unique edge of T* which is adjacent to z. Let e be the edge of G
corresponding to the edge e*. Now Tonsider the subgraph Ty of G; which is
induced by the vertex set V(T*) —z. The tree T; is an induced subgraph of
G; with k edges. So by the induction hypothesis the set of edges that are in
the symmetric difference of the set {E(f): f e V(Ts)} is a cycle C' in G that
passes through all vertices of the graph G which lie on faces corresponding to

the vertices of T;. Now e € E(C") and since T* is an induced subgraph of G,
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the vertex z of T* is adjacent to exactly one vertex of 7. So the symmetric

difference of the set {E(f): feV(T")}is equal to
B(C) = (B(C') - {e3) U (B() - ).

Obviously C is a cycle in G passing through all vertices of the graph G which
lie on faces of G corresponding to the vertices of 7. This completes our proof.

Since G is a cubic graph, every vertex must be incident with a face of each
colour in the proper face colouring of G. So if G* has an induced subgraph
T~ which is a bicoloured tree and V(T*) contains a colour class, then G is
Hamiltonian.

Now we will give two lemmas about minimal dependent graphs.

5.2.2 Lemma. A minimal dependent graph of a 3-connected cubic planar bi-

partite graph is a 2-edge connected planar bipartite graph.

Proof. Let H* be a minimal dependent graph of a 3-connected cubic planar
bipartite graph G. We already know that H* is connected (by the proof of
Lemma 3.1.3). Now we will prove that any edge of H* is shared by two distinct
faces of H*, i.e., H* has no cut edge. The vertices of H* correspond to the
union of two colour classes of the proper 3-face colouring of G. Say the faces of
G are coloured by the colours a,b and ¢ and V(H*) is the union of colour classes
a and b. Let e* be an edge of H* between vertices. # and y. Now = and y are
two faces of G that are coloured (distinctly) by a and b (as G is 3-connected).
Let e = (v1,vs) be the edge of G corresponding to e*. The vertex vy is incident
with the faces ¢ and y. Let f be the third face of G which is incident with vy.
The face f must be coloured by c. Also the vertex vy is incident with the faces
z and y. Let f be the third face of G which is incident with vy. The face f
must be coloured by c too (the faces f and f* must be different because G is
3-connected). Let N(f) be the set of faces adjacent to f. In the dual graph G~,
the subgraphs induced by N(f) and N(f') give the two faces of H* that share

e*. Hence e cannot be a cut-edge. So the proof is completed. =

On the other hand we have the following lemma.
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5.2.3 Lemma. If H* is a 2-edge connected planar bipartite graph, then it is a
minimal dependent graph of some 3-connected cubic planar bipartite graph G

on 2|E(H*)| vertices.

Proof. We define the graph G* with its vertex and edge sets as follows,
V(G )=V(H")uF(H")

and

E(G)=E(H")u{(z,f) : ccV(f) and fe F(H")}.

Then the dual G of G* is a 3-connected cubic planar bipartite graph and one

of its minimal dependent graphs is H*. =

From the construction in Lemma 5.2.3 we can see that if the bipartite graph
H~ with the bipartition (X,Y) is a minimal dependent graph of G, then the -

other two minimal dependent graphs H; and Hj of G are given as
V(H;)=XUF(H")

T

E(H])={(z,f) : feF(H") and ze(XnV(f))}

and

V(H;) =Y UF(H")

E(H3) ={(y,f) : feF(H") and y e (Y nV(f))}-

Now we can state the following conjecture which would imply the Barnette

conjecture.

5.2.4 Conjecture. Let H* be a 2-connected planar bipartite graph with the
bipartition (X,Yf Let H; and H; be defined as above. Then one of the
bipartite graphs H*, H;, H; has an induced subtree containing one of X and

Y in its vertex set.

As an application of Lemma 5.2.1 we will prove the following lemma. We
already know that a cubic planar bipartite graph must have some faces of degree

four.
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5.2.5 Lemma. Let G be a 3-connected cubic planar bipartite graph. If every
‘vertex of G is incident with exactly one face of degree four, then G is Hamilto-

nian.

Proof. Let G be such a graph. First we will prove that in the proper 3-colouring
of the faces of G, all faces of degree four must have the same colour. Consider
the set S of all faces of degree other than four. Exactly two elements of S are
incident with each vertex of the graph. Hence S is a minimal dependent subset
of faces and is the union of two colour classes (the minimal dependent subsets
of faces are characterized in Lemma 3.1.3). This proves our claim.

Now by X let us denote the colour class of all faces of degree four and let ¥
be another colour class of G. Consider the subgraph H* of G* induced by XuY,
1.e., H* is a minimal dependent graph of G. Now H* is a 2-connected planar
bipartite graph with the partition (X,Y") and all vertices in X have degree two.
Let f be the boundary of the infinite face of H*. If H* has no cycle other than
f, then, by deleting a vertex of f which belongs to X, we obtain an induced
tree containing all vertices in Y. If H* has some cycle ' other than f, then
delete a vertex z € Cn X. Clearly H* — is a connected graph which has fewer
cycles than H* has. If H* —z is a tree we are done, if not by repeating this we
will get a tree which contains all vertices in Y. So G* has an induced subgraph
which is a tree and contains all vertices in one colour class. This implies by

Lemma 5.2.1 that G is hamiltonian. =

All connected simple planar vertex-transitive graphs are determined by
Fleischner and Imrich [8]. Without using this classification, as a consequence

of Lemma 5.2.1 and Lemma 5.2.5 we can prove the following.

5.2.6 Theor®m. Every vertex-transitive cubic planar bipartite 3-connected

graph is Hamiltonian.

Proof. Let G be such a graph. We know that G has some faces of degree four.
Since G is vertex transitive, every vertex is adjacent to the same number of
faces of degree four. If this number is one the result follows from Lemma 5.2.5.

So we have two cases remaining:
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(a) Each Vertéx is incident with three faces of degree four.
This implies that all faces of the graph are of degree four. Then the equality
(see Lemma 3.2.1)

> (V(f)-6)=-12

feF(G)
implies that the graph G has six faces and therefore has eight vertices. The
- only cubic planar bipartite 3-connected graph on eight vertices is the cube and

it 1s Hamiltonian.

(b) Each vertex is incident with two faces of degree four.

First we count the number of faces of degree four. Each vertex is incident
with two faces of degree four, and each face of degree four is incident with
four vertices. By counting the pairs (f,v), f € F(G) and f is of degree 4 and
v € V(f) in two different ways, we find that number of faces of degree four is
equal to Q/—%Cﬁ The graph G has K—g—;ﬂ + 2 faces. So it has two faces which
are not of degree four. These two faces cannot be adjacent, because otherwise
any vertex that these two faces share would be incident with two faces which
are not of degree four. Since each vertex is incident with exactly two faces of
degree four, the set of faces of degree four is a union of two colour classes of the
graph G (Lemma 3.1.3). Now consider the subgraph C of G* which is induced
by the vertices corresponding to the faces of G of degree four. We know that
C is 2-edge connected (Lemma 5.2.2) and every vertex of C' is of degree 2. So
C must be a cycle. Let z be any vertex of this cycle. The graph C — {z} is an
induced subgraph of G* which is a tree and it covers one of the colour classes

of G. Hence by Lemma 5.2.1, G is Hamiltonian. =
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APPENDIX A

A REVIEW OF
CODING THEORY

A linear binary code of length n and dimension k is a k-dimensional subspace
of [GF(2)]™ and is called a binary [n,k] code. The elements of the code are called
codewords. The distance between two codewords is the number of coordinate
places in which they differ. The weight w(u) of a codeword wu is the distance
between v and 0. Observe that for a linear code C, the smallest nonzero weight
is the smallest nonzero distance that occurs between codewords. The support
of a codeword 1s the set of non-zero coordinate places. Let |z| denote the
greatest integer less than or equal to z. The following theorem emphasizes the

importance of the minimum distance of a code.

1. Theorem. If d is the minimum distance of a code C, then C can correct

(d -1)/2] or fewer errors, and conversely.

The dual C® of a code C is defined as
Ct:={welGF2)® : wv=0 foralluecC},

where the multiplication is the ordinary dot product, modulo 2. If C C C+, C
is called a self-orthogonal code and if C = C*, C is called a self-dual code. If C
is a linear code of length n then

dim(C)+dim(C+)=n
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So if C is a self-dual code, the dimension dim(C) of C must be half of its
length. Hence\ the length of a self-dual code must be even and every codeword
must have even weight. A matrix which has a basis of the code C as its rows
is called a generator matriz of the code C. Since any element of a code is a
linear combination of the rows of a generéting matrix of the code we have the

following theorem.

2. Theorem. If the rows of a generator matrix G for a binary [n,k] code C
have even weight and are orthogonal to each other, then C is self-orthogonal,

and conversely.

A binary self-dual code C is called doubly even, or just even if the weight of

every codewords is divisible by 4. We state the following theorem from Gleason
[9].

3. Theorem. A doubly even code of length n exists if and only if n is divisible
by 8.

4. Lemma. The largest minimum distance d a self-dual code of length n can

have is as follows.

(a) A self-dual rode over GF(2); d =2|n/8] + 2.
(b) A doubly even code over GF(2); d =4|n/24| + 4.
(c) A self-dual code over GF'(3); d = 3|n/12] + 3.

We call a self-dual code that has the largest possible minimum weight an
extremal code. At the time this thesis is written 72 is the smallest number
divisible by 24 for which it i1s not known whether or not an extremal, doubly
even [72,36] code of minimum distance 16 exists. A code C of length n and
dimension k is said to be the direct sum of two codes C; and Cy and denoted

by C; @ Cy, if it has a generator matrix of the form

(A O
4= ( 0 Az) ’
where A1 and A2 are generator matrices for C1 and C2 respectively. The codes

C, and Cy are components of C. If a code cannot be written as a direct sum of

subcodes, it is called indecomposable, and otherwise decomposable.
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The weight distribution of a code is the number of codewords of any weight
in the code. This is often described by the list of numbers A;, where A; is the
number of codewords of weight 7 in the code. Another way to view the weight
distribution is as polynomials called weight enumerators. Let C' be a code of
length n with A; again the number of vectors of weight i. A polynomial in z
and y is homogeneous of degree n if the powers of z and y in each term add
up to n. Define the weight enumerator of C to be the following homogeneous

polynomial.
Wel(z,y) = Agz™ + A1z™ ty + Ayz™ 2y% 4 - + Any™.
In [16] MacWilliams has proven that

We. =|71|Wc($+y,iv )

or, if we denote the number of codewords of weight 7 in C+ by B;,
n .y 1 & . .
D Byt =g D Ajle + ) (@ —y)
=0 . j=0
Hence MacWilliams equation establishes a very interesting relationship between
the weight distribution of a code C' and the weight distribution of the dual code
C+t.
A binary cyclic code of length n is an ideal of the ring

(GF(2))[=]/(z" - 1).

The generator of this ideal is called the generator polynomial of the cyclic code.

An automorphism of a code C 1s a permutation of the columns of a generator
matrix of C' which gives another, or the same, generator matrix of C'. It is
easy to eee that the set Aut(C) of all automorphisms of C, is a subgroup of
the symmetric group S,, where n is the length of C. The group Aut(C) is
called the automorphism group of C. The two codes C'; and C, are said to be
equivalent if we can get a generator matrix of C'y by permuting the columns of a
generator matrix of C;. If C; and C, are equivalent then Aut(C;) and Aut(C;)

are conjugate in Sy, i.e., there is an element 7 of S, such that

Aut(Cy)=m"1. Aut(Cy) -7
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If H and K are groups we write H x K for their direct product, H* for
H x H x--- x H (k factors), and H - K for a semidirect product. The following

two lemma are in Sloane and Pless [23].

5. Lemma. IfC =C,0Cy®--- @ (), where C; are indecomposable and equiv-
alent, then

Aut(C) = Aut(C;)F - Sy

6. Lemma. Let C = Do Dyo--- © D; where each D, is a direct sum of

equivalent codes, and for 1 # 7 no summand of D; is equivalent to a summand

of D;. Then

Aut(C) = ﬁ Aut(D;).
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APPENDIX B

CLASSIFICATION

In {20], Pless has classified all self-dual codes of length less than or equal to
20. With one exception, we can construct all these codes from the face-vertex
incidence matrices of cubic planar bipartite graphs. (The exception, denoted
My in [20] was constructed from a cubic bipartite graph embedded on the
Mobius strip, as Example 3.4.1.) We now give the list of graphs generating all
self-dual codes of length less than or equal to twenty, other than Myy. It is
enough to give the graphs corresponding to the indecompbsable self-dual codes

(see Lemma 3.2.4).
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Figure 7. A

Figure 8. Bis
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