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ABSTRACT 

Results are   resented regarding trees, orders, and forcing. To begin, the rich 

play between trees and orders is observed. A number of theorems on properties 

that transmit between trees and orders are spread out. The question as to which 

trees have branches added by forcing with a stationary subset of w l  is asked. A 

theorem stating that trees whose levels are of size less than 2 N ~  get no new branches 

gives partial information. The development of an interior operator to describe this 

situation in more detail is presented, followed by a useful monotonicity theorem. 

Finally, a result concerning universal elements for certain classes of trees and orders 

is documented; for example, it is shown that there are no universal separable linear 

orders of size 2 N ~ .  
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INTRODUCTION 

Trees furnish the natural setting for investigation of any number of mathemat- 

ical questions. Revealing questions concerning the real line have been tackled with 

much success through the analysis of different species of trees. The Souslin problem 

springs to mind immediately [DeJ]. Two cardinal theorems in model theory often 

depend on the knowledge of whether or not a given tree exists [ChK]. Questions in 

Boolean algebra and linear order theory can be echoed quite precisely through the 

terminology of trees - see Chapter 1. 

Chapter 1 offers a tying together of various mathematical structures closely 

akin to the tree. An idea of what sort of formal properties transmit between the 

tree and the considered structure is given. For example, a result on the N1-Baire 

property is supplied. 

Chapter 2 asks which trees have no new branches added when shooting a club 

through a stationary subset of w l ?  Some results are displayed in answer to this; 

namely, it is shown that trees that cannot support the cardinal arithmetic necessary 

.to add a new branch will not have any branch added. 

Chapter 3 contains examples which illustrate the role played by the N1-Baire 

property when dealing with trees that have branches added by shooting a club 

through a stationary set. 



Chapter 4 describes an interior operator, constructed as an attempt to analyse 

the situation in Chapters 1 and 2 in more detail. Algebraic facts about the interior 

operator are spread out and a reasonable monotonicity result is documented. This 

section is also populated with elementary facts about stationary sets. 

Chapter 5 seeks, using the relationships established in Chapter 1, to demon- 

strate that certain classes of linear orders do not have a universal element. The 

main theorem relies on an idea located in [HVa]. 



CHAPTER f 

TREES AND ORDERS 

Connections between trees and linear orders have been noted for quite some 

time [Kup]. The play between the two is rich enough to offer translations of many 

problems from the language of the one to the language of the other. Other math- 

ematical structures provide yet another setting in which to discuss trees. This 

chapter explores what can be developed along this line. 

Most of what is said is confirmed in [Torl,Tor2], but a fuller picture is described 

albeit in quicker fashion. In addition some observations are placed as to what kind of 

properties are preserved when shifting between different structures; in particular, a 

generalization of an implicit result of [Torl] is presented alongside some easy results 

of similar nature. The usual notation of ZFC set theory is adopted and is like that 

found in [Torl] ; or for that matter, any standard text in set theory or topology. 

A tree is a poset (T, >) such that bt = {s E T : s > t )  is well-ordered by 

> for every t E T. To be consistent with the convention for posets, trees will 

go downward. ht = tp(bt, >) is the height of t. The a' th level of T is the set 

. , R , T = { t ~ T : h ~ = a ) , a n d t h e h e i g h t o f T i s h ~ = m i n { a : R , T = 0 ) .  If 

hT = a then T is called an a-tree; however, a short N1-tree refers to an wl-tree that 

has cardinality N1 and has no uncountable branches. Note that the usual definition 
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of HI-tree has the further restriction that all levels are countable. Furthermore, 

assume all trees are pruned to the extent that they satisfy V a  < ,f3 < hT Vx E 

R,T 3y,z E RBT s.t. y < x, z < x, and y I z where y I z says that x and y 

have no common extension; s f  course, distinct elements on a given level have no 

common extension. 

A filter S on w l  is a collection of subsets of w l  closed under finite intersection 

such that if A E S and A C B C w l  then B E S. To avoid trivialities 0 # S. A filter 

A on wl is a-complete if A is closed under countable intersections; A is normal if 

A is closed under diagonal intersections - see [Ku]. The dual to the notion of a 

filter on w l  is an ideal on w l .  

A subset S of w l  is said to be closed and unbounded (club) if S is unbounded 

in w l  and for any countable T S, sup(T) E S. ,4 subset S E w l  is stationary if 

it has non-empty intersection with every club in w l .  The set of all non-stationary 

subsets of w l  form a a-complete normal ideal. 

Let T be a tree and well-order the nodes of T by a well-order < A  of order type 

IT\. An order is placed on T as follows: 

ii) x < y if x I y and z(x,y) < A  z(y,x). 

Here z(x, y) is the >T-least element of {b : x >T b )  \ {b : y ZT 6) .  Now to 

every tree there is a corresponding class of linear orders. Conversely, given an order 
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L a class of trees can be constructed, using recursion on levels, from the non-empty 

convex subsets of L such that each tree T satisfies: 

i) Ro = {L) 

ii) I E R,T + 3s C R,+lT of pairwise disjoint sets with U S  = I 

iii) If b C T is a chain in T and if 0 b # 8 then 0 b E T 

Clause (ii) assures that such a construction will not be unique. For a short 

N1-tree the associated orders are of size N1 and are first countable - every point 

has a count able neighbourhood base [Torl] . Naturally, the Dedekind completion 

of such an order has cardinality 2 N ~  and inherits the first countability property. 

In this way a class of continua can be connected with a short N1-tree. Heading 

in another direction, an N1-tree can be densely embedded into a complete Boolean 

algebra [Ku]. Yet another approach, mentioned for sake of completeness, is to define 

a notion of stationarity for N1-trees (Torl] and reach some sort of classification of 

such trees by proving results analogous to those proved concerning stationary sets. 

For an N1-tree, let L(T), C(T), and B(T) respectively denote members from 

the class of linear orders, continua, and Boolean algebras that can be associated 

with T in a manner already detailed. 

Definition 1. A topological space is N1-Baire if the intersection of any countable 

collection of open dense sets is dense. 

Let a ,  b E L(T). Define a relation a E b if and only if (a, b) is countable. Note 



is an equivalence relation with convex equivalence classes. Let [a] denote the 

equivalence class of a E L ( T ) .  The induced order is placed on L ( T ) /  s. As the set 

of elements below any given node in T forms an uncountable open set in L ( T ) ,  the 

size of L ( T ) /  must be N1. 

Lemma 1. If 0 is open dense in T ,  {[a] : a E 0 )  contains an open dense set in 

L ( T ) /  =. 

Proof : Let [a] < [b], note (a ,  b) in L ( T )  is uncountable. Pick c, d  E (a ,  b )  with 

c  < d and c  I d. Note that { x  : x  <T d )  c (c,d).  Now choose e  E O n  { x  : x  <T d )  

and observe that { x  : x  <T e )  c 0 and { [ X I  : x  <T e) E ( [a] ,  [b] )  in L ( T ) .  As 

{ x  : x  <T e )  is open in L ( T ) ,  so must { [ X I  : x  <T e )  be open in L ( T ) /  r. 

Lemma 2. If 0 is open dense in L(T)/  r, thee (JO contains 2s cpeE deme set 

in T .  

Proof : For t E T choose a,  b  E { x  : x  <T t )  with a I b, a  < b, and ( [a] ,  [b]) # 

0. Choose ([c] ,  [dj) ( [a] ,  [b]) n 0 and observe that {[XI : x  <T d )  C ( [c] ,  [dl). 

Theorem 1. T is N1-Baire if and only if L ( T ) /  E is N1-Baire. 

Proof : Lemma 1 and 2. 

Theorem 2. Let T be a short N1-tree; T satisfies the N1-Baire property if and 

only if B ( T )  does. 



Proof : Select f: T -, B(T)  a dense embedding. Note that if 0 is open dense 

in T then f (0) is open dense in B(T). Also, if 0 is open dense in B(T)  then, using 

the fact that f is a dense embedding, f (0) contains an open dense set in T .  

Undefined terms in the statement of Theorem 2 can be located in Chapter 5. 

Theorem 3. Let T be an wl -tree; T satisfies a) the c.c.c or b) separability property 

or c) the short order property iff each of the following do: 

i) L(T)/ E 

ii) The dedekind completion of L(T)/ r 

iii) B(T).  

Proof : There are eighteen statements to be proved all of which make a good 

exercise for the reader. 



CHAPTER 2 

SHOOTING CLUBS AND N1 - TREES 

Passing a club through a stationary set has no effect on a certain class of 

short Ha-trees; namely, those trees which cannot support the cardinal arithmetic 

neccessary to add new long branches. Presented are two results of this nature. 

Also, there are a number of ways to pass a club through a stationary set. Various 

properties of forcing notions which do the job are investigated. A short proof of 

the N1-Baire property for T(S) - defined below - is introduced; this and other 

basic results about T(S) were first proved in [BHK]. To set the stage prerequisite 

knowledge is discussed. 

Familiarity with the technique of forcing is assumed. M denotes a countable 

transitive model of ZFC, P a poset in M commonly refered to as a forcing notion, 

and G a M-generic filter on P. M is the ground model and M[G] is its extension 

by G. The relation p IF $ reads "p forces $" or "p E G +- $J is true in M [GI" ; of 

course, such a forcing language can be formalised in M. 

P satisfies the K-C.C. iff there is no pairwise incompatible subset of P of cardi- 

. nality r;. The wl-C.C. is refered to as the C.C.C. P is K-closed iff all chains in P of 

cardinality < K have lower bounds. P is N1-Baire iff the intersection of countably 

many open dense sets in P is dense - basic open sets are of the form { x  : x 5 p )  
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for p  E P. Consequences of these properties are assumed and can be found in [Ku]. 

What model theory is present is basic and can be found in any standard text in 

logic - for example [ChK]. 

There are two basic methods by which to pass a club through a stationary set 

S. Define p E P(S) iff p is a finite collection of closed intervals in wl  such that: 

i) [a,@] E p +- a E S 

ii) If [a,@], [a1,$] E P then a = a' or [a,@] n [a1,@'] = 0. 

The order on P is by inclusion. Now if G is an M-generic filter over P then 

C = {a : for some @ and p  E G, [a, @] E p )  is a club subset of S and P does not 

collapse cardinals. A more detailed account of this notion can be located in [AbSh] . 

There is a more natural way to shoot a club through a stationary set S - i.e. put 

a club inside S in the generic extension. Let p E T(S) if and only if p  is a countable 

closed subset of S. The order on T(S) is by end extension. If G is an M-generic 

filter over P then U G c S is a club - the unboundedness follows from a simple 

density argument while closed follows from the fact that G is a branch of T(S). In 

addition, T(S) is N1-Baire as demonstrated in the upcoming theorem. Notice that 

if CH is assumed T(S) will not collapse any cardinals - this follows from Theorem 

1 and the fact that T(S) has size N1. 

Theorem 1. T(S) is N1-Baire. 

Proof : Let {Di : i < w )  be a collection of open dense sets and let p E T(S) .  
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Our wish is to show n i < ,  Di contains some element below p. Let { M a  : a! < w l )  

be a continuous elementary chain of countable elementary submodels of H ( K )  for 

some K. large enough so that all the previous sets may be elements of Mo - see [Ku] 

for an account of ( H ( K . ) ,  E).  Also, stipulate that Ma E Mp for a! < P and choose 

a limit a E { p  : M p  f l  w l  = p ,  ,B < w l )  n S. Let {a i  : i < w )  be cofinal in a! and 

define {pi : i < w )  satisfying: 

The elementarity of the Ma's makes the construction proceed. Clearly Ui<, pi 

~ { a ! )  E T(S) and is an element of ni<,  Di. 

Theorem 2. If forcing with the tree T(S) puts a branch through a tree T then 

some level of T contains 2N0 elements. 

Proof : As before let {Ma : a < ul) be a continuous elementary chain of 

countable elementary submodels of H ( K )  for some large enough K. to embrace the 

definitions of the proof with Ma E Mp for a < P. Again choose a! E S such that 

Ma n w l  = a ,  and let {ai : i < w )  be cofinal in a!. Let b be the name for an 

uncountable branch in T. By induction on the levels of (FW,  E) define sequences 

{p,  : s E 2<W) and {x, : s E 2<,) of elements from T(S) and T respectively so 
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that: 

i) PO E Ma0 

ii) PO IF b is a branch of size N 1  through T, b E M 

iii) t extends s =+ p, 5 pt 

iv) t extends s + x, <T xt 

v) x,,o and xs,l are incompatible 

vi) ps IF xs E b 

vii) r =length(s) =+ p,, x, E Ma, 

viii) r =length(s) + S U P ( M ~ ~ - ~ )  5 max(p,) 

The only problem that may need addressing regarding the construction is v).In 

particular, assume the const~xtion failed at stzge n with x, and p,. The set 

L = {x x < x,, p < p,, p x E b} is therefore a chain in M. So p, (x < x, 

and x E b) if and only if x E L - i.e. T(S) has an uncountable branch. 

Now for each s E 2" let ps = UB<WptTB U {a) .  Note that for s E Q W ,  p, E T(S) 

and that {x, : s E 2<W) is tree isomorphic to 2<W. Observe that there is some 

ordinal ,G' such that the constuction of the x,'s lie above level ,G' of T. Index the 

branches of {x, : s E 2 < W )  with 2W and pick x, E T extending the branch associated 

, with s E 2" such that there is q, < p,  with q, IF x, E T and x, lies at level /3 + 1 - 
recognize this is possible as b is an uncountable branch. However, the obligation 

requiring 2 N ~  elements at level ,G' + 1 of T gives the desired conclusion. 
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Corollary 1.. Forcing with the tree T(S) does not put a branch through a short 

N1-tree whose levels are countable. 

Proof : Apply Theorem 2. 

Corollary 2. If 1CH then forcing with T ( S )  does not put a branch through a 

short N1 -tree. 

Proof : Apply Theorem 2. 



CHAPTER 3 

N1 - BAIRE N1 - TREES 

For a stationary set S c wl the associated tree of countable closed subsets of 

S ordered by end extension has the N1-Baire property. If a club is shot through S 

then the wish is characterize those short N1-trees which accept a new branch. The 

question arises as to whether the N1-Baire property plays a part here, or whether 

it can be forgotten in some way? It seems likely that short HI-trees with branches 

added by forcing with T(S) are in some primitive way similar in structure to T(S) 

but the connection is not at all transparent. Examples to clarify the role played by 

the N1-Baire property are presented, and as a result, two distinct classes of short 

NI -Bake N -trees are defined. 

Definition 1. A Souslin tree is an N1-tree satisfying the countable chain condition. 

Lemma 1. A Souslin tree is N1 - h i r e .  

Proof : Observe that every open dense set is of the form {a: : c E A,x 5 c )  

where A is a maximal antichain. Let Oi<,  be a countable collection of open dense 

, sets of the form Oi = (x : c E Ai,  x 5 c}  where A; is a maximal antichain. The size 

of each A; is countable by the c.c.c. As the collection Oi<,  is countable there is 

some a! < w l  such that all elements in each Ai lie above level a! of the tree. Clearly 



all elements below level a will be in n,,, 0; as each element below level a! must 

be in each Oi by the maximality of Ci. 

For the rest of this section fix a stationary co-stationary subset S  of wl. Note 

that the existence of Souslin trees is independant of the usual axioms of set theory. 

This and other facts about Souslin trees can be found by consulting [J]. 

Theorem 1. It is consistent that there is a short N1-tree that is N1-Baire such that 

for all stationary sets E of wl no branches are added by forcing with T ( E ) .  

Proof : The fact that T ( E )  is Baire ensures that no new countable branches 

are added. Now a Souslin tree has the N1-Baire property and all levels are countable; 

by Theorem Chapter 2, no branches of length wl are added. 

Assume S contains only limit points in wl and that T  is also stationary with 

no successor points and disjoint from S; also assume that S  U T  has a complement 

that is stationary. Let A be the set of all closed bounded sets contained in S  U T .  

Let t E AE C A if for all a! 5 max(t), S n t n a and T  n t n a! are not both cofinal 

in a. An order < is placed on AE: s < t iff t is an end extension of s. Refer to 

Theorem 2. There is a short N1-tree that is not N1-Baire such that branches are 

added by forcing with T(S) .  



Proof : .Note that forcing with T(S) trivially puts a branch through AE as 

T(S) can be thought of as a subtree of AE. It remains to show that AE is not N1- 

Baire. Choose a maximal antichain Do such that each element t E Do satisfies t n S 

is not cofinal in max(t). Pick Dl such that each element t E Dl properly extends 

an element in Do, Dl is a maximal antichain, and t E Dl satisfies t n T is not cofinal 

in max(t). In this way construct D2, and D2n+l. Set 0; = {a: : d E D i , x  5 d) 

and notice 0; is open dense. The claim is that ni<, 0; is empty. However, if 

a E ni<, Oi then there is di E Di with di < dj < a for i < j < w and a end extends 

Ui<, d;, but this means a @ AE as both S and T are cofinal in ni<, di. 

Lemma 2. There is a short N1 -tree that is N1 -Baire such that b r ~ c h e s  are added 

by forcing with T(S). 

Proof : T(S) trivially fits the requirement. 

Definition 2. A tree T is called special if there exists a map f :  T + w such that 

s < t implies f(s)  # f(t). 

Note that short HI-trees that are special exist; for example, the set of bounded 

subsets of the rationals ordered by end extension. 

Lemma 3, There is a short N1-tree that is not N1-Baire such that no branches are 

' 
added by forcing with T(S) . 

Proof : Putting a long branch through a special tree would collapse N1. 



CHAPTER 4 

INTERIOR OPERATORS 

Shooting clubs only adds long branches to short N1-trees whose levels all have 

size N1 if CH is true - see Chapter 2, Theorem 2. Consequently, for the rest 

of the chapter CH is assumed. The question arises as to which nodes in a tree 

permit long branches to pass through. An interior operator of sorts can be set up 

describing precisely this state of affairs. As a result, a context is provided to discuss 

the larger question, an eventual aim of this line of work, as to which trees accept 

long branches via the killing of a stationary set. Various results about the interior 

operator are laid down including a useful monotonicity theorem. 

Let S be a stationary set and T be an N1-tree. Define Is(T) = {x E T : 3p E 

T(S) s.t . p 11- x E b where b is a branch of size HI) .  For S and R stationary, define 

S =NS R iff ( S  \ R) U (R \ S) is non-stationary. 

Theorem 1 proves a homogeneity property of T(S) which is to be thought of 

as folklore. 

Theorem 1. If p IbT(S) ?,b then 0 IbT(S) ?,b where ?,b is a first order sentence with 

no names outside V .  

Proof : Let G is T(S)-generic and let H = {(s \p)  u p  : s E G). To show that 
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H is T(S)-generic pick a > max(p) with a E S and let G, = {s : s E G; s extends 

U G  n a u {a}} and define Ha similarly. Note the trees Is : s E ~ ( s )  extends 

U G n a U {a)} and {s : s E T(S) U fl a U {a}} are equal. Note that G 

must hit every dense set in at least NI places, and so G, must hit every dense set 

as well since it differs from G by only a countable set. Therefore as G, intersects 

any dense set in T(S), H, must do so as well. Lastly note that M[G] = M[H] and 

apply definition of forcing. 

Lemma 1. i) Is(T) T 

ii) Is(Is(T)) = Is(T) 

iii) Is(T(S)) = T(S). 

Proof : Trivial. 

Theorem 2. i) R LNs S + IR(T(S)) = T(S) 

ii) R SNS S + IR(T(S)) = 0. 

Proof : i) Trivial. 

ii) It suffices to show that R \ S  remains stationary in M[G]. Suppose not; 

let C name a club such that p E T(R) withpIkCn(R\S) = 0. Fix {Ma : cr < wl} as 

inTheorem 1, Chapter 2, andlet a E {p:  MBnw1 = ,B, ,8 < wi}n(R\S) bealimit. 

- Let {ai : i < w) be cofinal in a. Choose pi E Ma,+, with sup(Mai n WI) 5 sup(pi) 

so that pi I t  xi E C n R, sup(Mai n wl) 5 S U ~ ( X ~ ) ,  xi < zii-1, and Pi < pi+l. 

Recognize that Ui<,p; U {a} It a E c n ( R  \ S)  leading to a contradiction. 
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Lemma 2. Let T be a tree such that T does not embed the tree 2<W1, then forcing 

with an wl  -closed poset does not add any new branches in the generic extension. 

Proof : A name for an uncountable branch b, and the wl-closed property 

allow the construction of a subtree of T isomorphic to 2<wl much along the same 

vein as Theorem 2, Chapter 2. A similar result can be located in [Tor.2]. 

It is worthwhile to note that the above lemma goes through for posets that are 

strategically closed, a strictly weaker not ion than wl -closed. 

Theorem 3. i) S INS R * IR(T) c Is(T).  

Proof : Assume x E IR(T) and x 4 Is(T) for sake of contradiction. Let G x H 

be T ( S )  x T(R)-generic over M. Let Tz = (y : y <T x) and observe that Tz has no 

new branches added in M[G]. Now T(R)  M[4 = T ( R ) ~  as no new countable sets 

are added, and I ~ ( T ) ~  I ~ ( T ) ~ [ ~  as T ( R )  is essentially closed in M[G]. Again, 

since T ( R )  is essentially wl-closed in M[G], and using Lemma 2, Tz has no new 

branches added in M[G] [HI. However, H is also generic over M and so x @ IR(T). 

Proof : Recognize that if U i E  Ri contains a club then IUi , ,~ ,  ( T )  = 0; oth- 

erwise, apply Theorem 3. 



CHAPTER 5 

UNIVERSAL ORDERS 

A class of structures C is said to have a universal element if there is a U E 

C such that for all X E C there is a monomorphism F: X r U .  Regarding 

linear orders, Shelah has shown the consistency of "ZFC+2N~ = N2+there exists a 

universal linear order of power HI". It has also been observed by Shelah that the 

addition of N2 Cohen reals to the universe will destroy all universal linear orders 

[Sh.l]. However, it is demonstrated in this section that certain classes of linear 

orders have no universal elements in an absolute sense. In particular, it is shown 

that there is no c.c.c or separable universal linear orders of power 2'0. 

Fix a linear ordered set (L, <). Let W(L) be the set of all well-ordered subsets 

of L. For S, T E W(L) let S re T if both S and T are cofinal in each other. 

Clearly, s, is an equivalence relation on W(L). For A E W(L) let [A] ,  denote its 

corresponding equivalence class. Now let A, B E W(L)/ s, and let A <w B if for 

each S E A  and T E B thereis a t  E T such that for all s E S, s < t. 

Lemma 1. (W(L)/ =,, <,) is a linear order. 

For the remainder of the chapter assume (L, <) is a linear order with no un- 

countable well-ordered subsets such that I L I= K where K E {K : K'O = K). Observe 
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I W ( L )  I= K'.O = K .  To further set the stage, a proof is given that there is no order 

preserving embedding F : W ( L ) /  =,I+ L. The proof is taken directly from [HVa] 

and has been trivially modified to work for linear orders. Aside from a few technical 

calculations, most of the results of the chapter flow easily from this fact. 

Theorem 1. There is no order preserving embedding F: W(L)/  -,+ L. 

Proof : Assume G: W ( L )  + L is such an embedding. Define {a; : i < w l  ) 

and {bi  : i < w l  ) by recursion as follows: 

A simple induction on ,8 using the fact that G is order preserving gives that for 

all a E ap, a < L  G([aple).  This shows that for all ,O < w l  , ap+l is an end extension of 

up. So a < w1 implies that [a,], E W ( L )  and thus G(a,) = b, < bp  = G(ap)  E L. 

However, L has no uncountable well-ordered subset. 

Definition 1. A linear order satisfies the C.C.C. condition if and only if it does not 

contain an uncountable collection of open disjoint sets. 

Definition 2. A linear order is separable if and only if it possesses a countable 

dense subset . 



Definition 3, A linear order is termed short if and only if it contains no uncount- 

able well-ordered subset. 

Observation: A linear order that satisfies any combination of conditions appearing 

in the above definitions is neccessarily short. 

Theorem 2. The set {[{a)]e  : a  E L )  is dense in W ( L ) /  re. 

Proof : For A <w B where (A, B) # 0 choose a  E A and b E B. Now pick 

c E b \ a that is bigger than every thing in a  but not maximal in b. Observe that 

A < B  [{all, <W B. 

Lemma 2. L  is C.C.C. implies W ( L )  is C.C.C. 

Proof : Apply Theorem 2. 

Lemma 3. L  is separable implies W ( L )  is seperable. 

Proof : Apply Theorem 2. 

Lemma 4. L  is short implies W ( L )  is short. 

Proof : Apply Theorem 2. 

Theorem 3. Each of the following classes has no universal element where = K :  

i) c. C.C. linear orders of size K 

ii) separable linear orders of size K 

iii) C.C.C. + separable linear orders of size K 



iv) shori linear orders of size tc . 

Proof : Observation + Lemma 1,2,3,4,5 + Theorem 1. 

Note that the following result is due to [HVa]. 

Theorem 4. Given CH the class of short N1-trees has no universal element. 

Proof : For a given tree T the successor tree can be defined as the set of all 

branches of T. Observe that in the presence of CH the successor of a short N1-tree 

is also a short N1-tree. Now apply the argument given in Theorem 1 in the natural 

way. 



CONCLUSION 

The interior operator of Chapter 4 provides an instrument for the recovery of 

more aetailed information on which trees accept long branches via the killing of a 

stationary set. One may ask if there is a stationary set S such that for all R L N S  S 

IR(T) maintains a constant value, or is there a stationary set S such that for all 

S LNS R, IR(T) is of constant value? 

Chapter 5 has on display various classes of linear orders of power K which 

have no universal element with the added proviso that K ~ O  = K .  Yet nothing has 

been established when the proviso is removed. Also, it is known that there is no 

universal short N1-tree in the presence of CH. However, the argument turns on 

shallow considerations. Is it possible that there is a universal short N1-tree given 

that CH is violated? 
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