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one of the hasic NP-complete problems [Karp, 19721. In fact, it is Glieveddh 
A .  , -  % . -  ._ ' " "' + I * 

unless P=N@, no polynomial time algorithm can guarantee to colour an arbitrary 

graph with at most; times the minimum numbez of colours, for any constant c.lIhis 
. , ' . -- * 

" 7  - 
- has, to a t e ,  been proved only for small values of e [Garey & Johnson, 1976 & % II 

1 t 

19791. It has, h&evr ,  been p&vdd that any known hlynomid time qolouring 
- -- 

' algorithm uses Qn(fog'log*n)2/(log n)2) colours onasome n-vertex ke-colourable 
" " 

P 
I - _  -. 

, ' 

I _  . , Graph colouring has also been studi& h a variety of other contexts. Among 
.. - . - '* - .- . 

,' those of a practical nature a .  scheduling and storage problems [eg. Levin, 1973; 

games ~owakowski & Winkler, 19831. Topics of theoretical interest can be found~ . a 

- 9  , '*- " .  - < 

+ - 
in [Albertson e t  al., 1985; mggkvist et al., 1988; etc.]. H-colourings have been of 

I .  

interest h a u s e  of their nlationshi 6 grammars ahd interpretations [Maurn et 4 ..- - 
- a  al., 19811. Other pneralised colo&ings had arisen in the s&dybof resouice 

all&atl"dn [ ~ h g  et d., to appear], and the four-colour-conjecture @IelI, 19741. 
' *- 

< 
Let G and H be directed graphs (all graphs consided in this thesis are . - 

P 

is- ' \ 

finitei A homomorphism of G to H is a functionfiV(G) +v(H) such that f(gN(g') is 

an arc of H whenever gg' is an arc of G. (The existence of a h o m o ~ h i s m  of G to 

H is sometimes denoted by G + H, or when we want to emphasize that the 

mapping is accbmplished by the function$ by$G +H) The defmition is similar 
B 



homomorphiSm G + K,, they& 8-coZourlng of G has been 
I. . . - 

a homomorphism G 4 H. 
2 

employ& to describe 

In this thesis we study the H-colouring problem; 

H-COL (H:colouring) a .  

INSTANCE: A directed graph G. . - 

QUESTION: ~ o e s  there exist an ~ - c o l o u r G ~  of G? 

Each H-colouring proble -&arly belongs to NP. i" - 

The- complexity of the undirected H-colouring problem (i.e., the version of 

the problem when G and H are undirected graphs) was investigated by , Several 

authors waurcr et al., 1981i NektH, 1982; Hell & NeSctfil, . . 19861% and %as. 
3 

completely deteTmined by Hell and NeFsetfil [Hell &.Ne&etfil, , .  1986J,.~hbp~0ved O 

a 
that H-COL is NPkomplete' for any fixed non-bip&tc -graph H ; bd is p&nbm&l r 

- 
" 9 

otherwise. I . 

Most early work ofi the complexity of the directed H-co~ouring~problem 

involved pdlynomial time algorithms when H was a member of some fairly simple . q ,. .W 

8 * 

class of digraphs For example, H-COL is polynomial a if H is a direct& pa&a - - 
- 5  -* .- *-. ?. 

directed cycle, or a transitive tomnamint muref et al., 1981J Some m+ompiete . . - , -  ,,. , . > I  ,I- - " 7  
I, * 

, " 

instances oithe ~ - c o l o u & ~  problem am described in [Hell & ~ t ~ e & l ,  i986; . -, . 5 - -  , 

, . * 

Maurer et al., 198 11. - .  
-. * -  - 

\I - 
% - - I .. 

- / ._  - 

* 

- 2 
, "  * 



Pdy"d:mial ' % 3  + -& 
NP-complete 

.' 
1 * - 

* Figure 1.r An oscillating sequence. - '  
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r- Before prc)ceeding further we define- a special type of homomdrpbism thw' " L'. - - 
. , - * r '  ? ... 

plays ah  porta ant ti ole. If H is a subdigraph of H', a t s taaf t l~rak~@t~ H is a ' 
3. 

- - A i L  - 
b ' .  . . I '.. - homomorp&sm f of H' to H such that f{h) = h for all vci&cg h of H. . , 

5 

. O" 

. -.-i 
% 

= 
' I  I - I rn' 

7 4 

. i 
I 

Qhcr results have appeared the lite&q-dt&ng the prepaIIpatioa of this ' . 
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4 ,  . b c 

'*  19891. Some of thehe are-mvi&~c$ in the gext cha&r,&rhaps themost;ii$portant 
I - , ,. 

development is the following c ture frsm [Bang-Jensen & Hell, 19883, 
-, . + 

' i  

* _  
i ,  

L1. Con]ecture. Let p be a condected directed $aph in which each vertex has in- - 
. - - - +  

degree at least age, and out-deg& at least one. Xf  docs riot admit a retraction to 

4 - - .  i 
A .  

a dincted cycle, hen H-COL is NWxxnplete (with nsp&t to Turing reduction). - 0 .  

: 0d;-sz H-m 4 polynomial. 
d 

% .c; - < <' 

a - 
C 

d 
. Cfht last statement follows easily b m  Theorem,2.2.2) This conjecture postulate$- 

I r 

a.sufEcient condition for NP-completeness of the ~-colo@ng problem in a - . 
r I .  

, substantial portion of the set of d h t e d  graphs. The of this &e~is is* 

devoted to verifymg Conjecture 1: 1 for many large classes of digr&hs:' ' , 
I 

t ,  

In chkpptcr three we describe 0~~too1s. Some of these are due to other 
. , * E 

f authors, and some are new. Of partic* hterest is a new construction from which. '- 
B 

all of the-principal constructions due to other authors can be derived as spct5al 
, . 

- 
cases. h . . 

P 
-% 

, 

... - Chapter four focusses on directed gaphi H with the property that the G- 
.I - ,  

colouring problem is NP-complete (sometimes with respect to Turing reduction) 

whenever H is a subdigraph of G. These are the "hereditarily W' H-coloqring 

@ problems previously mentioned. Each theorem in this chapter verifies Cpnjecture 
- 

+ - 1 .I for infinitely many d .  graphs, and also implies NP-completehey of r 

infinitely many H-colouring prob1ems' ndt caved by the conjecmr-** 
/ t 

& 



-. : : 

, *  

Several large families of digraphs are cl&sified by complexity in chapter - 
P 

five, including semi-complete digraphs, vertex-transitive digraph's, paktionable 
+' C ,t 

digraphs (a family which we introduce), and directed cycles with GO ihords. 

, Classification of the vertkx-transitive digraphs affirmatively answkrs a question /' 

/' 
d u e m  E. ,Welzl (whetherxrtex-transitive digraphs could be classified), a& . 

classification of the last f h y  extends a result from [Bang-Jensen & Hell, 19881. 
-+ 

Each major theorem in &is chapter verifies ~onj'ecture 1.1 for a family o? directed 
L 

I .  

. . 1 
graphs. 

I I . . , . 
* , 

.. . Finally,' in chapter six, we d i m  our attenti* toward acyclic bd unicyclic 

digraphs. Weddescribe new infinite families of suc~higraphs for which.the H- 

colouring problem is polynomial. an$ oth& for wh@ it is ~ ~ - c o m ~ l c i e .  In' so doing . - 
I 

we shed som$light on the nature of the sequence of digraphs in figure 1.1: 
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2. Preliminaries. t. , 

. .  . 

, . 
.r I .  

This chapter presents the definitions, terminology, aiid preliminary results 

needed. 

'2.1. Definitions and Terminology. a 
,- 

< 

For concepts in the theory of directed graphs we use the notaGon and 
r 

terminology of [Bandy CQ Murty, 19761, subject to the additions arid exceptions. 
$ .  

mentioned below. Since we assume that the reader is familiar with most basic a '. 

definitions regarding directed graphs, we are briefly. 
- 

A directed graph (or digraph) an ordered pair D = (V(D), E(D)) 

c&sisth j of a finite k t  V(D) 6f vertices; and a set E(D) of ordered pairs of (not 

necess&ily distinct) vertices of D called &cs. If a = xy is an an: of D, then a is said 
, , 

-- 
\ .  

to join x and y; x is the tail of a, )h is its head. We also say that x is. a@acent to yi , , . -,$ 

and that y is a&cent from x. The arc a is said to be incident with each of the 

vertices x and y. ! , . 
- -  tl 

. .. 
, ' I 

. .  - . -  

Throughout this section we let D be a directed graph. ,.. 
, I 

. . 

I A loop is an arc w of 4. If D has a loop, ky directed graph is D-colourabl~; 

map a l l  vertices to a vertex with a loop. Thus the question arises as to' whether to 

assume our directed graphs are loopless. If D is a given digraph for which we 
. ', 



* .  ~ - 7  

explon the complexity of D-COL. we assume that D has no loops because - -- - . , - + 
, , 

otherwise the D-colouring problem is brivially polpmial.bn the other hand, if the 
. - 

digraph D is the result of fonstruction described& ~ha$t& ,tW, we allow -,, 
' 

- ,  
?-- 

. - 
loops, since in these @stances the presence of a loop in D iddicates that the 

;. . < - 
' 1 

construction has failed in s specific way, which is often a useful piece of infomation. 

.- ' A walk in D is a finite sequence W = vl, al, v2, a2 ,.... an-l,v n, whose m s  I _ 
t 

are alternately vertices and arcs, such that, for i = 1,2, ..., n-1, either ai = vpi+l  or 
< 

ai = vi+lVi .. We usually represent a walk by its vmex sequence alone -We' . 
- * 

sometimes treat Hi& as digraphs in their ow. ri& thus we may talk about 

V(W), the varex-set of W, or E(W), @e =-set of W, etc.. The vertex vl is ?.he- " , . -  

a *' origin of W; Vn is its t e k n u s .  Any other vertex belonging to W is an intermzl . . .  . - 

vertex of W. We sometimes call W a (vl, v',>w& An an: of the type Vivi+*l is a ' . " I 

. ' 
forward a& of W, while ad an: or he type Vi+lVi  is a backward M of W .  The Get 

Zength of W, denoted nl(W), is the number of f m a r d  arcs of W minus the.nhber of 
7 .  - P 

backward arcs of W. 

>- 

A path (or oriented pdh) in D is a walk whose vertices are di'stinet. If such 

a path has origin u and terminus v, we somet-s call it a (u, v)-path. A directed L . 
path of length n in D (or a directed n-pmh) is a path P = v,vl, .., v such that, for 

A . 

i = 0.2, ..., n-1, Vi is adjacent to V i + p  Let u and v be vertices of D. The &iance 

dD(u, V) from u to v in D is the snklest k for which then is a directed (u, v)-path of 

length k. If no such directed path exists, we deb dD(u. V) to bc infinite. We.use 

P, to denote the directed path of length n, that is, the directed g i p h  with wertex 

set Wn ) = (0, 1. ..., n), and arc set E(Pn ) = (i(i+ 1): i = 0, 1. ..., n-1 ). - 



r - . 
' d  - 

,2.. -. 
1 -  

. *  - 
A cbsed wdk in D is a w& who& &rigin and terminus coidcide. A cycle . - 

I * ' ,  

(or oriented cycle) is a closed walk all of whose vertices, except the origin and , 

L 
. , 

< ,  - + > A  . . 
&nus, are distinct. A directed cycle of length n (or directed n-cycle) in D is a , . ., - 

7<+ -\ 

cycle C = vo,vl, ..,v,~, vo such that, for i = 0, 1, ..., n-1, vi is adjacent to v i + ~  

(where subscripts are interpntq mddulo n). Observe that a loop is a directed 

cycle of l e n d  one. We sometimes nfer to a- directeQ.,.three-cycle as a directed 
. . 

triangle* We use C,, to denote the directed cycle of length n,'hat is, the directed 
m 

graph with vertex set V(Cn)  = (0, 1, .:., n - 1 ) a d  arc set 

E(Cn ) =, (i(i+ 1): i = 0, 1, .., n-1 1, where addition is mdulo n. 

The dlrected girth of a directed graph is the length of its shortest diriected ; 

cycle. If a digraph D has no cycles, we d e h e  the directed girth to be infinite. The . L 

odci &scfcd girth of D (resp. even &ected girth of D )  is the length of the ,A I , .  

shortest directed cycle in D with udd (rev. even) length. If D has no directed odd 
f * 

cycle (resp. dirined even cycle), we define the odd directed ginh (resp. even 

directed girth) to be infinitk. , , 

, . 
= ', . - A subdi&aph of Q is a .directed graph D ' such that V(D) 2 V(D '),  and 

4 
C 

E(D) 2 E(D '). We also say that D is a superdigraph of D '. We also say that D 

contiins D ', and that D ' is contained in D. The digraph D ' is a proper subdigraph 

of D if D' is a subdigraph, but Do is not equal to D. A spanning subdf&mph of . .  D is + 

a subdigraph D' of D for which V(D') = V(D). , 

- <.- 

< 

. 



\ ' i E r  . , 
set consists &f those arcs of D with both ends * p & &llalled thqsubdi&p<of 

I 

D indUt:+d 'bi X ,  and is denoted D[Xj. We use D - X to denote the. *duced. -.- 
= -  , 

subdigraph D [V(D) - XI. If X consists bdy of the perten x $e'&te D - x inm , - * 
* -  - - * ,*. B. 

. o f 6  - {XI.. . ,- i . =  

9r ?- * 
-" 

- 1  

I h 'L- 

Similarly, let Y be a subset of E(D). The directed graph with arc-set Y and 

whose vertex-set consists of all vertices of D incident with an arc in Y is called 
I r 

the subdigraph of D induced by Y, a d  is denoted D[n. We use D - Y to denote 

i the spanning Migraph with &-set E(b) - Y. The dincted graph obtained from 

D by adding a set Z of arcs is denoted by D + Z. As above, we write D - a for 
( - .  

D - {a), andD + aforD + {a). 

A directed graph D is connected it; fA any two vertices u and v, there is a 

(u, v ) - w e  otherwise D is disconnected. A maximal connected subdigraph of D is 
J 

\ .  
n 

called a~connected component of D. Similarly, D is strongly connected if, fa any pair 
- 

of vertices u and v, then is a directed (u, v)-path. We sometimes abbreviate 

strongly C O M C C ~ ~ ~  to strong. A msximal strong-subdigraph of D is called a strong 

component of D. I f  D satisfies the further condition that for any vertex x of D, the 

directed graph D-x is strong, we say that D is 2-connected. 
P- 

C 

' 
A vertex that is the head of an an: ua tail v is an out-neighbour of v; a Y 

an arc with head v is an in-neighkur of v. We use N+D(~) 

the set of out-neighborn (rcsp: in-neighbours) of v. We . . 

extend this idea by hefining N+kD(v) = (x:  3 directed (v, x)-walk of length k). 
f, 4 

1 1-- 



of a vertex of v in D is%e number of arcs with tail v, that is, d+&) = & ~ + ~ ( v ) l :  the 
, -& 

in-d&me d b ( v )  of ;in D is the number of arcs with'head v ,  that is, 
1 - 

d-&) = W-D(~j l .  When the context is clear, the su&criPt,l); thus we 

Mte d+(!). instead of d+&) , and ds(v) instead of d-dv) ,  and so oa. . 
* _  

A source of D is a vertex with in-degree zero; a sink is d vertex with out- 

degree, zero. Directed graphs wiq no sources and no sinks play a major role in this 
- 

thesis. Hence we define a smooth &graph to be a directed graph with no sources 

and no sinks. 

B A subset I of V(D) is an independent set if no two vertices in I are joined 
B 

an arc of D. We will say that D is bipartite if V(D) can be paqitioned into two . 
independent sets X and Y, i.e., so that every an: of D has one end in X and the 

other end in Y. We observe that a directed graph is bipartite if and only if it admits 
< "  

/ \  2 

a homomorphism to C2. . ,. . -. . 

I f  G is an undirtcted graph, the equivalent digraph of G is the directed 

graph with vertex set V(G) and arc set {xy, yx: [x, y] e E(G)). The graph G is the 
d *, 

undsrlying gmph of its equivalent digraph. It should be clear that a graph G admits 

ph H ifand only if the equivalent digraph of G admits a - .-" 
di&h of H. : 1 

If both xy and yx are arcs of D, we sometimes say that x and y are joined by 

a double arc or an un&ected adga; this situation is 'denoted by .[x, y]. The 



_I. * urdirectedpmf of D, undir(D), is the subdigraph of D induced by the set of double 

arcs. Obsewe that undir(D) is &e equivalent digraph of an undirected graph. We 
P cr \ 

often mat  undir(D) as an undirected graph; we 

cycles in D, about whether undir(D) is bipartite, etc.. In our fi 

 drawn as undirected edges. 

If G is an undirected graph, we can consmot B digraph by assigning a 
- A  

ciirection or orientation to each edge of G.. A directed graph constructed in this 
<' * . J  - - .e 

manneris sometimes called an oriented graph. A lournament is an *~riented - - -- :*= - 

c&qlete graph. A tournament is trMSitive if it ee&&ns no direct& cycle. A 

transitive triple is B F s i t i v e  tournament on three v d c e s .  A bipartite 

tournament is an orientation of a complete bipartite graph. 

< - f 

The term homomorpihism :was defined in the t that time we 
4 - 

also noted that homomorphisms are a generalisation of the usual'graph colburing. 

By a pdd colouring of D we mean a partial mapping of D to some directed graph 

H. Since we think of the vertices of H as colours, we can imagine that this situation 

represents assigning colours to some of the vemces of D. A partial colouring of D 
* 

can be extended to an H-colouring of D' if the remaining (i.e., uncoloured) vertices 
r > 

of D can mapped to vertices of H so that the result is a homomorphism D + H. 

-" 
Let H' 6e a di&ted graph and let H be a subdigraph of H'. A re~ucrSon of 

* .  

H' to H was also defined in the introduction. If H* admits a retraction b H:we say 
1 

' that H is a retract of H'. A directed graph is retract-free (or a core well & 

~. Nebtfil, 19861. or a minimal gruph welzl, 19821) if it does not admit a retraction 



. * ?  
)_ _. - 

to a proper subdigraph. Every &ted , _ graph H contains a unique (up to . 
isomorphism) subdigraph C which Is retrabt-free, and for which there is a retraction 

* r< 

of H to C weld,  19821. Following [Hell. & NeSetm, 19863 we call C the core of H. - < 

If H is a rewct of H', there homo&&h~s& i: H + H' (the inclusion) and 
: <. , .?. 

n, H' + H (a retractib); thus a given digraph is H'-coloulable if and d y  if it is H- 
er 

colourable. This aIlows.~s, when we choose, to restrict our attention to retract-free 
. , 

digraphs. ', - .  . . - .  
I , -  

+ '.. . , , 
I - .? 

. We no* € o h  to our find graph-theoretic definition. An automorphism of D . * 

is a one-to-one. onto function f:V(D) + V(D) such ohat f(xy(y) is an arc of D if and .. .- 
I -  

-I < 

only if xy $ an ik of D. The set of all automorphisms of D is a group, called the +: v: . 

automorphism g r ~ u p  of D, and denoted by Aru(D). i a .  r . -  

.- 

Let H be a retract-free digraph. We show that every homomorphism of H to - - . 
it& is an onto mapping that preserves arcs, that is, an automorphism of H. 

Suppose no4 and let f be a homomorphism of H properly into itself. Since H is 
L ,  

f ~ t e ,  there exists n such that the subdigraph C which results from the composition 
- 

o f f  with-itselfn times is isomorphic to the subdigraph which results from the - 

composition off with itself k times, for all k I n .  By relabelling the v d c e s  of 6, we ' - 
- 

obtain a nmction of H to C, contradicting our hypothesis that H is =tract-free. 

Let H be a retract-frsc digraph. Suppose that H is aqsubcligraph of H: + 

Consider a homomorphismf: H' + H. 'Ibe resaiction g o f f  to the copy of &'in H' is 

a homomorphism of H to itself, i.e., an automorphism of H. It is not difficult to see 

that the function r = g-lo f is a homomorphism of H to H such that r(h) = h, for all 



. , 

vertices h of H. That is, r is a retraction of H' to H. Therefore, a retract-he digraph 
- *  . .  

I I I 

. .-. 
$ ,. - - '.-:, 

H is a retract of a.digraph H' if and only if H is both a subdigraph of H' and a 
." ' 

homomorph+ image of H: r . 

We now turn om attention to the concepts we need h m  the theory of *. ' , 

komputational complexity. We use the definitions and terminology from [Garey & 
1 - 

,; 5 - Johnson, 19791 subject to one exception (Turing reduction, cf. below). 
I .. 

. . 

A heision probkm is a problem which has a yes or no answer. The theory 

of NP-completeness is concerned only with decision problems (although the 
j .  

. . 
implications of the thebry extend beyond this class of problems). Thus we 

abbreviate dkision problem to irohZe&. Generally speaking, a. problem consists of 

a general question which has a yes or no answer, and a collection of pammcters ' ' /  

whose value is not specified (In the H-dolouring problem (cf. Chapter one) the 

parameter whose value is not specified is the directed graph G. The question is * 

"does there exist an H-colouring of G?".) When we specify values for al) of the 

parameters of a problem we obtain inslcmcc of the problem, (We have an 

instance of the H - c o l o h g  problem whenevk we consider a.partic&ar digraph G.) 

We say that a function f(n) is O(g(n)) if iherc arc constants GI and ci such 

that v(n)l S' cllg(n)l + cz for a l l  n 2 0. An algorithm is O(f(n)) if thenumber of 
, - 

computational steps required by the algorithm is Olf(n)), wheie n is a "reasonable" 
> - 

measure of the problem size. (We will not attempt to define "reason~bla"; instead 

we refer the rclider to [Gamy & Johnson. 19791.) If them is-a p6lynbmial p such 

that the number of computational steps required by the algorithm is O(p(n)), then . 



. : ,. . 

-.7. -_ 
. ,- 

2 

the algorithm. We use denote the set of 
. . . . . >  - c 

decision~problems which arc solvable ih po1'flomial time, i.e., admit sokion by a 
' Z  

I , -  

polynomial time algorirhin. we &sometimes say that a problem l 7 ~  P is pdynomid. - 
> .  -. -,. . 

*. - - .  
.. . < 

t Let Z and l7 be problems. A polynomial bonfumafion from Z to p i s  8 - : . 
function f that maps the set of instances of 2 to ihe set of instances of I7 and 

. . 
satisfitis two conditio&: (i) a "yes" hstance of J maps to a "yes" instance of a 
and a "no" insta&c df E maps to a "no" instank of l7, and (ii) f is computable by a * 

, - 
BI 

polynomial time algcnitbm If there e&k a polynomial time transformation from E .. 
to l7, we say @at ZpelyriomSaPPp transforms to l7 and write J a 31. m e  existence . ' 

b 
. . 

. . of a polynomial time transfurmation fFom E to nimplies that if l7 E P, then J E P 
* 

'4 - - , 

because a composition of polynomial time algorithms is a polynomial time- 
. . 

. , 
- .  . . ,  , , .  : .. 

. . 1 ,  algorithm. ., ... . . , ,  
, . ., . . . - 

. L . . ,  
. 1 , - .  . . 

We denote by NP the set of decision problems solvable in'polynomial time 
1 P 

by a non$etennini&ic d&mthrn. It is clear that P is co+ained in b. -one of the , . p 

' .  

fundamental questions in theoretical computer science is whether P = W. , 

- a  

< - 
.. 

La I7 be a decision problem. We sap that n i s  NP-complete if belongs to 

* and, for any other problem J E NP, J a l7. Let Y be an NP-complete prdlem. 
\ -  

Since every problem in NP polynomially transfor& to Y, in order to prove that a' 

problem n i s  NP-complete it suffices to show Y a c. Fm.gmore, if some NP- 
I 

- .. 

complete problem belongs to P, then B = NP. 



- Let Z and l7k pkblems. A polynomial t h e  Turing reduction from P to l7 
. - % 

is a functimf that .maps the set of instances of i to the power set of instances of l7 
.? 

&d satisfies two conditions: (i) a "yes" instance of Z: maps to a set of instances of 

n-that contains at least one "yes" instance of IZ and a "no" instance of J maps to 

a set of "no" instances of n, and (ii) f is computable by a polynomial time 

algorithrh. If there exists a polynomial time ~ & i u c t i o n  from P to we say 

that Z: Turing reduces to nand write Z: 9 l7. The +.istence of a polynomial time , 

Turing reduction from Z: to l7 implies that if l 7 ~  P, then PE P. 

< *  . 

- We say that a problem l7 E NP is NP+ornpIete (NP-complete with ,- 

respect to Turing reduction) if every problem in NP Turing reduces to it. (Note that 
-. 
any NP-complete problem can k considered to be NP~mple te . )  Let Y be an 

-complete problem. Since every problem in NP Turing reduces to Y, in order to 

prove that a problem l7 is N p ~ m p l e t e  it suffices to show Y l7. Mormver, if 
- - 

any w o m p l e t e  problem belongs to P, then P = NP. . . - . . .  

., 
A polynomial transformation is a one for one transfanation; it takes as 

input one instance of a particular problem, and prodws as output one instance of 

another problem (for which that answer to the question &the same). The 

requirement that only one instance of the target problem be produced is sometimes 
4 

restrictive. In some of our theorems we am able to describe a one to many 

transformation (i.e., a Turing reduction) to the problem in question, but we are 
d 

unable to d e e b  a polynomial transformation. It should be noted, however, that 
- 

all of our H-colouring problems am in NP, and all of our NPTcomplete H-colouring 

problems are at least as hard as any other problem in NP. 
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k-SATISFIABILITY (k 2 3 fixed) (k-SAT) [Cook, 197 I,];,.:, ., . . .: . :: :,, . - :. <.. . .  . .- ..:. -. . > . . .. 
. . .  . 

. .  - . .  - 

INSTANCE: A set U of boolean variables, and a colle&on C of (c~njunctive) * 

clauses over U such that each clause c E C involves k variabIes. 

QUESTION: Is there a satisfying truth assignment for C? 

NOT-ALL-EQUAL k-SAT (k 2'3 fixed) [Schaefm, 19781 
,.. 

-- MTANCE: A set U ,of variables, and a collection C of clauses over U such that , , - 
i - .  % -  

each clause c E C involves k variables. 

QUESTION: Is there a satisfying truth assignment for C in which each,$ause . . - . -+. 

k .  

*-. 
- %.. 

contains at least one true literal and at least one false literal? *, .- . . . = _  

Comment: The problem remains NP-complete even if no clause contains a negated 
, "  - 2 - - _ ,  

literal [Lov;Lsz, 19731. h this case it is the problem of two-colouring a k&g&u . 

hypergraph. 

ONE-IN-k-SAT (k 2 3 fixed) [Schaefer, 19781 ' 
- - -  

INSTANCE: A set U of variables, and a collection C of clauses over U such that 

each clause c E C involves k variables. 

QUESTION: Is there a satisfying truth assignment for C in which each clause 
B - .  

J contains exactly one true literal? b 

~ominen t :  The problem remains N&omplete even if n e  cliuse' contains a negated 
. 3 . .  

"C 

literal. . - 



Hell and Nektfil [Ha 8 N&tfil, 19861 remark -&at the indicator - .  
" 
t 

construction (cf. Lemma 3.8) can be5uSed to construct NP-complete &&td#- - 
2 A 

' .  
- 4  * .  

colouring problems. Moreover, the direned graph H can lk made to satisfy Some 
> < , * 

" 
" - 

= 

addition4 conditidns; in particular, 'there arc balanced acyclic digraphs H for which . . 
, . 

the H-colouring problerq is NP-compkte (a digraph. is bahncid if every dented  - * x\ 

cycle has net length zero). * 

I I' 
, . 

- u .< 

C 

- In their 198 1 paper, Maurer, Sudboro~gfr U d  W& [Maurer Lt &.," 198'11 
i 



* ,  %#=' I . "  . - >, 

-a 

. .. " i 
' 4.0 

r .  
< 

. .  - 

a 

~olynomial& aliorithms for sev&al classes of directed p p h s  were + 
, a -. 

- . describ$l & mulayer et al:, 198 11: These mults are summarized in the following - . 'A. . _ I L - ,  I *  

P theorem. F - " * Y < '  ' 
J ,. 

f 

A -. + 

. V h L <  

~, , . 

2.23. Theorem murer et al., 19811 The H-colouring probiem i! p0lynbmj&for * 
- 

. .. 
a 

- any .digraph H be&gtng to ihe EoUowing classes of d i r e ~ d & ~ h s :  .. , "' 

ia)'direcii piittls, P,, - , t 

, - ----. 
- (b) directed cycles, C,, and 

0 C .  . .  . . , 
(c) transitive tournaIhents. . , , 

> )  

/ 

" (  , ,, 
, - 

. .. 

Siqce it ~uffices to consider retract-free digqphs, thq H-cobuiing.problem 

is polydomiai it axiy digraph for which H - C ~ L  is &lynomial is a retract of H. In 
< 5 A 

particular, this is true if a directed path, directed cycle, or transitive tournkent is a. . 
. . - B 

r .  + 

&tract of H. 

+ d 
,' 

~e~hapd  the .most significant contribution f k r n  the paper of Bang-Jenscn and I I 

Hell (gang-Jensen & ~ e i ,  19883 is  ~onjeetuk 1.1,  his paper also contained -- .. 
0 - w , - . . . . - -, korhc- substantial NPsompleteness results concerning both sparse and dense , - .  

digraphs.  on& 1.1 Was verified for many digraphs with precisely two directed * 

cycles, and also forbipartite tournaments (i.e., orientations of complete b i p s t e  . . , k .i 

. - 
graphs) " 

- By far smngest result on ibe polynomia1,side is due to G.utjahr, weld, ' 

and Woeginger [Gutjahr et al., 19881. Thejr define an X-graph to be a di&mj 

- 1 8 i  . , 

1- - .  
b 
I 

1 ! I  



graph for which there is an enumeration vl, v2, ...;v. 6f the vertices such that if vivj 
. * 

and vkvl are aics'of Db, then so is vha(i ,  k)Vhn( i ,  1). The m&n result in their paper is 
, *  L' 

2.Z3. &;orem. [ ~ u i a h r  et al., 19881 If H is an X-graph; then-the H-cdauring 
3. 

blem is plynomid. . 
i 

It is not difficult t i  see that every oriented pa& is ah X-graph. Hence it ..- 

follows h m  Theorem 2.2.3 that the H-colouring problem is polynomial whenever 

H is an oriented path. This was a long standing open problem in H-colouring. 

There exist infinitely many oriented cycles which arc not X-graphs. 

Nevertheless, Gutjahr [Gutjahr, 19891 has proved that the H-colouring problem is 

also polyn&al whenever H is an orJented cycle. 

- 
On seeing ~ h e & m  2.2.3, one might be inclined to conjecture that the H- 

a 

colouring problem is polynomial whenever H is an oriented tree. One of the most 

surprising results regarding the complexity is this is not the case. 
.. r _ L  ' 

C .  

2.2.4. Theohm. [Gutjahi et al., 19881 There exists an okiented . A.1 

the T-colouring problem is ~'P-kom~lete. .. 
$ 

The smallest such tree found to date has 288 vertices. Theorem 2.2.4 . 

suggests that a complete .clqification of the complexity of directed ~-colo&g 

may be difficult to 8ccompkh. 

L * 
-I  - 

19 



.. 3. Tools. 
L .  

L. 
I . .  

. . 

In ordtir to prove that a given problem A , t . NP is NP-complete (rcsp. NPT- 

* complete), one must f iq t  select an NP-complete (resp. N-complete) problem 
- 

B, and then describe a polynomial time transformation (resp. polynomial time 

Turing reduction) from B to A. When A is an H-colouring problem, it is frequently 

the case that B is also an H-colouring problem. That is, new NP-completeness - 
(resp. NP+iknpleteness) rtsula for H-COL &n be d-ed from old. 

4 

. . 
. - 

The purpose of this chapter is to describe some generic transformations 

between<~colourin~ problems. The three main transformations are the indica~br 

aconstruction, the sub-indicator construction, and the edge sub-mdicator ' 

construction well & Ne'Setiil, 19861 (6. Lemma 3.1.8,3.1.9, and 3.1.10, 
I 

respectively). We idtroduce a general construction, (cf. Lemma 3.1.1 1) Etom 

which all of these &I be derived as special cases. In the final section of this 

chapter we discuss a consquence of the indicator constructiop. a 

d 

Let G and H be directed graphs. It was noted in Chapter one that if H is a 

retract of G, then a given digraph is G-colourablc if and only if it is &-colourablt. 

Thus G-COL and HCOL are polynomially equivalen~ if one of them is pblyhomial - 

(rcsp. NP-complete, mcomplete), then so is the other. We reiterate that this * .  - -  

.. 
* 3b 

1 ". 20 - r 



6 - . - allows us, when we choose, to resuict out attention to retractkec digraphs. - ?  -' 
. A  rr 

. . 
. 

Our first Lemma is used im&oitly throuihout the entire thesis, , - 
r , 

3.1.1. Lemma. [Bang-Jensen & Hell, 19881 Let Hl and H2 be disjoint directed % 

graphs such that H = H l  u Hz is retract-fkee. -Then H&OL a~ H-COL, 

for i=l, 2. . 
Hence if HI-COL or H;-COL is NP-pxrnplete then so is H-COL. On the 

&her hand, if HI-COL and H2-COL- are both polynomial, then there is a . P 

polynomial algorithm for H-colouring: given an input digraph D, test whethv each 
I .  

' component of D is Hi-colourable for at least one i. It thkfore suffices -to consider 
6 

connected digraphs. 
, . Q 

', 

- Some preparation is required before the next reduction can be described. 

- The following lemmas concern the existence of certain directed cycles and ,- 1 

k t @  walks. They are also used elsewhere in this thesis. 
-/- : i 

3.1.2. Lemma. miiggkvist et al, 19871 Therc is a homomorphism of a directed 

graph H to Cd if and only if the net length of every (oriented) cycle is divisible by 
. . 

Therefore a given directed graph docs not admit a homomorphism to C, just 
. - 

if it has a cycle of net length not divisible by n, and does not admit a 

homomorphism to any directed cycle.crf kngth greater than one if and only if it has 



. , *. 

- .  3.1.3. ~ e p b a .  La Htbe strong There is no hornomorphiSm of H to Cd if and only . '  ., . ". 
if there exists an integer k such that d does ~ 6 t  divide.k, and there is a 

.-- 
homomorphism of Ck to H. 

P .  + 

Proof. 

(a) Suppose H does not ac@iit a homomorphism to Cd. ki W be a closed 

walk in Hwith net length not divisible by d (the walk W exists by Lemma 3.12), 
I - 

and with the minimum number of backwar* am& a! such closed walks. If . . 
. * I .  

W has no backwards arcs them is nothing to prove, 'so we may assume that W . 
, 

v a s t  one backwards arc. xy say.. Since H is strong, there is a directed - 

(y, x)-path P. By our assumption on W, the length of the directed closed walk 

ti' 
. . 

P s x y  is a multiple of d, say qd. Let y=w-xy  (i.e., e (x. y)-sectidn of W). Then 
d 

W'P is a c l&d directed wa& with one fewer backwards edgehan W, and 

which is not divisible by d. This contradicts the choice of W, and completes the 

proof of the impliccttion. ' - 
< 

(e=) The image of Ck in H is' a hion of h t e d  cycles. Since # does not 

divide k, the digraph H has a cycle of length nor divisible by d. Consequently 

there is no homomaphim of H into Cd.. 5 

/ 
Lemma 3.113 yields a strengthening of hmma 3.12 for strong digraph$. 

3.1.4. Corollary. Let H be strong. There is aho&morphism of H into Cd if and 
+ 

s f  

only if the length af every directed cycle is dihsible by d. * 



! * 
+. 

L 

, . Therefore a given strong digraph does not admit a homomorphism to Cn just 

.-,. . " if it has a directed cycle of net length not divisible by n, and does not admit a B 

homomorphsm to any directed cyck of length greater than one if and only if it has 
. ' & ,  

a collection c l ,  C2, ..., Ck of directed cycles such that gcd(nl(~i): i= 1.2, ..., k)=l. 
-8, 

Let H be a smooth digraph,. ~i;en H has a directed cycle. L a  g be the 

directed girth of H. Since no directed cycle admits a homomorphism to ,a larger 
\ 

directed cycle, H is not ~~-coloufable for any n greater than g. This, 

the observation that any dincted graph is C1-colourable, allows us to 

the largest d for which there is a homomorphism of H to Cd. (In particular, we 

note- that a strong digraph is smooth.) , 

3.1.5. Lemma. Let H be strohg, and let d be the largest integer such that there 

is a homomorphism f of H to Cd. Fur any v&&hv\of H there is an integer 1, 

( m p .  6,) such that, for every vertex-x in f l#vJ), there is a dbcted (v, x)-walk 

of length 1, (resp. directed (x, v)-walk o f  length b,,). 

. Proof. 

We prove only the existence of 1,; the existence of bv may be established 

similarly. First we find an integer 1 such that the= is a directed (v, y)-walk of 

4 length 1 for every vertex y in ( v ) u  N~(v) ' .  We then use 1 to define 1,. 
,II 

cycles such that gcd( lV(Ci)I: i= 1.2, ..:, n ) 4. Since H is strong, the vertex v lies 

on a directed cycle K of length kd, fok s o w  k. Qt <d> denote & subgroup of Zld 

.. generated by d. Then <d> =s(Iv(C~,II: i= l, 2, .... n)>, so them exia dimted 
, . ' , .  I 

I . ,  

. . .  
/ . ' 

. . 

i 

" . -; 

r - . , 23 
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cycles Dl, @, ..., Dt E (Cl, @, ..., Cn} (not necessarily-& disphct) such that 
, - , . _  

tV(Dl)l+ IV(Dz)l+ ...+ IV(Dt)l= d (mod kd). 

j=L 2; ;.,t, let vj be a vertex on @, let Wj be a (v, vj)-path, and let be a 

+ IV~)I+IV(W2)1+ ... +IV{W)l 

+ l ~ ( x ~ ) i + l v ( ~ ) l +  -... +lV(Xt)l. 

It is not hard to see that S = w ~ z ) ~ x ~ W & X ~  ... WDtXt3.is a directed (v,v)-walk 

of lcngtirl, Let u E N+~(v). There is a dire& (v,u)-walk of length I, namely 

T = W X l W  ... W'XfP, where P is the (v,u)-walk of length 

'lV(fl)I+I~(@)k ... +IV(Dt)I formed by traversing K repeatedly, and then using 

the last d arcs of P to traverse a (v, u)-path of length d. 

Next we define f I ,= .max(k:3usuchthat&v, u)= k). 

Let x be in f lCf(v)). Then d(v, x) is divisible by d. There is clearly a directed 

(v, x)-walk of length I, formed by traversing s l,-d(v,~.) times, t&versing T-P 

d(v, x) times, traversing K repeatedly, and then using the last dfv, x)  arcs to 
' > 

traversaa dirdcted (v, i)-path of length d(v, x). Tbe result follows. . 
3-1.6. Lemma. Let H be a strong component of a retract-fm &graph D,  Then 

H-COL D&L. Furthermore, if H does not admit a homomorphism tea 
L a 

. t *  

directed cycle of length greater than one, H-COL a D-COL. 



Proof. 

Let d be the largest integer such -that there is a homomorphism of H to Cd, 
12 

and fix a homomaphismf: H + Cd. L& G b;. a'given digraph. We define a 
I 

collection of digraphs, G1, G2, .. .,Gd, stich @&.&ere is a homomorphism of G to H 
- <  

. . if and only if there is a homomorphism'of some Gi to D. 
I 

,. There exists in H a directed path vl, v2, ..., vd. Then f assigns a different 
- . ,  - 

Y 

colour to each of these vertices. For i= l ,2,  ..., d let li, and bi be the lengths from 

Lemma 3.1.4 corresponding to vb G admits a homomorphism' to H, then there is 

a homomorphism of G to Cd. Since the C~cdouring problem is polynomial, it may 

be assumed that a Cdcolouring m of is known. The digraph Gi is constructed 

from the disjoint union of G and D by adding directed paths as followsi Let g be a 

vertex of G, and suppose that m(g)=x. Let 'k = i+x (mod d). Add a directed 

(g, @path of length bb and a directed (vk, g)-path of length lk The digraph Gi 

results from applying this construction to every vertex of G. =. 
CLAIM: There is a homomorphism of G to H if and only if there is a 

homomorphism of some Gi to D, 

PROOF. 

(a) Let h be an H-colouring of G. Then c = fo h is a Cflolouring of 

G. Let g be a vertex of G and, without loss of generality, suppose m(g) = 0. Let 

c(g) = j. Consider a homomorphism of Gj to D. Since D is a retract-free, the copy 

of D in Gj is mapped identically onto D. Each vertex of G maps to its image in the 

H-colouring of G and, by Lemma 3.15, this partial colouring can be cxtendsd to 
.. .. 1 x- 

all of the paths. Hence GI + D. . a '- 
I '  , 

(t) Without loss of generality assume that G1 admits a 

homomorphism to D. Since D is retract-free, we h o w  that GI maps onto D. As 



H u G is contained in a strong component of G I ,  it is mapped to a strong . _-, 

component of D. Since D is retract-frcc, this component is isomorphic to H. 
\ 

b .  

Hence there is a homomafphism of G to H. \ .  t .  , . - 

Since the collection G I ,  Gz, ..., Gd can be constructed in polynomial tinie,-the 

result follows. Furthermore, if H does not admit a homomorphism to a directed 

cycle of length greater than one, then d=l and the construction described above is 

a polynomial transformation. . 
Hence whenever we prove that H-COL is NF+complete for some strong 

digraph H, we obtain, via Lemma 3.1.6, an infinite family of NP~fomplete H- 

colouring problems. This is not always noted in the text. 
- 

Let H be a directed graph. The digraph H-)  (resp. NC ) is obtained from H 

by adjoining a new vertex x and adding all a m  belonging to (vx: v E V(H)) (resp. 

(xu: v E V(H))).  

3.1.7. Lemma. [Gutjahr et al., 1988; Bang-Jensen et al,, 19881 Both 

H-)-COL a H-COL and H-COL a H4-COL. (Similarly, both Ht -COL a H-COL and 

H-COL a Ht -COL) 

Proof. 

A given input digraph G adhdts a homomorphism to H if and only if G4 

admits a homomorphism to P. Therefore H-COL a H-)-COL. 

On the other hand, suppose that aninstance of H+-COL (i.e., a digraph D) 



is given. Let D- be the digraph obtained by deletthg kll sources of D. We claim 

that D adrhits a homomorphism t ~ *  H4 if and only if b-admits a homomorphism 

to H. To extend an H-colouring of D' to an'H+-colouring of D map all sources of 
1 

D of the verteg whichmu adjoined m H' to get H+ (no two such,vertices arc 

adjacent and every vertex of H is an admissible image for any of their 

neighbours). Conversely, in any H4-colouring of D, only sources can map ko the 
Qd 

vertex in H+-H. Hence D- + H. This completes the proof. . 
Thus the H-colouring problem and the H4-colouring problem are 

polynomially equivalent: if either is polynomial (or NP-complete, or 

complete), then so is the other. Therefore sources (resp. sinks) whose 

neighbourhood spans the set of all other vertices may be discarded. 

* - 
3 

Let I be a fixed digraph, and let u and v be distinct vertices of I. The 

indicator.construckbn with respect lo (I, u, v) transforms a given digraph H into 

the digraph H*, defined to have the same vertex set as H, and to have as the arc 

set all pairs hh' for which there is a homomo'phism of J to H taking u to h and v to 

h'. The triple (I. u, v)  is called an indicator, and if the digraph H* is loopless (i.e., 

if no homomo'phism of I to H can map u and v to the same vertex), it is called a 

good indicator. If'som automorphism of I maps u to v and v to u. we say that the@ 

indicator (I. u, v )  is symmetric. (The result of the indicator construction with 

respect to a symmetric indicator is the equivalent digraph of an undirected graph, 

and can be defined to be an undirected graph well & NcSetlLil, 19861.) Other, 

more specialized, indicators are defined later. 
P 



3.1.8. Lemma. [Hell & NeJc ffil, 1 9 8 6 ] . ' ~ * - ~ 0 ~  h H~COL. - 
- 1 -  . ,* . 

. 
In npplying Lemma 3.1.8 care must be taken to assure that H* has no loops, 

is., gatV(lJ &, V J ' ~ S  a g d  indicator. If H* has a lwp, then there is a polynomial 
< - 

%me algorithm for H%olouring; al l  vertices of G to a vertex with a loop. 
Y ' 

Let J k a fixed &aph with specified vertices x and j l ,  jzJ ..., j,. The sub- 

._, \ 
inacator eo~t~truction WW, respect (J, x, jl, ja L, jd, and hl, 2 ,  .**? ht 

, its subdigraph H- induccdby the vertex set V- defined as folloys. Let W be the 

$graph obtained from the disjoint union of J and H by identifying ji and hi, 
<. 

i= l ,  2, ..., t. A vertex v of H belongs to Va just if there is a retraction of W to H 
1 

. which maps x to v. The structure (J, x h ,  j3 ..., jt) is called a sub-indicator. The 

digrapqJ is not required to be connected. If the vertices j l ,  j2, .... j,. ate all 

isolated, the outcome of the subindicator construction is independent of the 

choice of hl ,  b, ..., hc In this case we call (J, x h ,  j2, ..., jr) a free sub-indicator 
* 

and, in order to reflect the independence of the specified vertices, refer to it as the 

sub-indicator consmction with respect to (J, x, free). 
L. . - . .- 

I I I  

1 . . 
3.1.9. Lemma. {k?ell& Nektfil, i986J. H-COL a H-COL. 

Similarly, let J be a fixed digraph with a specified arc xy and s p c ~ l e d  
'1 

\ 

vertices j l ,  j3 ... . jp  The edge'su&in&ator construcPion with respect to . , c  

(J, m, jl, j* ..., jh, a d  hl, hD ..., ht transforms a given retract-free digraph 

H with specified vertices hlJ b. ..., ht into its suMjpph ~"hducedby the arcs of 



H which images of the mc xy under retractions of W (as defined above) to H. 

The skucaa (I, xy, A, j2, ..., jr) is called an edge sub-indcator. A free edge- 

subindicator is defined and denoted similarly to the abpve. 

., 1 
3.1.10. Lemma. well & NektlLil, 19863 El"-COL a H-COL. 

1 

i 

We now describe a general construction which includes the indicator 
< 

construction, the sub-indicator construction, and the edge-sub-indicator 

construction as special cases, Let G and J 'be fixed digraphs with specitled 

vertices gl, g2, ..., go and u, v, jl, jz, ..., respectively. Thc HSI c~nstnu:tbn 

directed graph H into the directed graph,H!, defined as follows. Let hom(G, H) 

denote the set of homomorphisms of G to H. The vertex set V(H!) consists of 

Ihom(G, H)I copies of V(H). Letf;: be a homomorphism of G to H, and let Wi be the 

digraph constructed from H u J by identifying jkand&{gA), k=l, 2, ..., t. There is 
e ' 

an arr: from x to y in the copy of V(H) (in V(H!)) corresponding tof;: just if there is 

a retraction of Wi to H which maps u to x and v to y. (Perhaps it is best to think of 

the construction as hating three phases; a Homomorphism phase wherein G is 

mapped to H, a Subindicator phase wherein Wi is constructed and then rqtracted 

to H, and an Indicator phase which defines the arcs of H!.) 
L 



c6mponent). Consrmct a digraph !D h m  V(D), G,  and IE(DJT cop& of J, say 
. . 

J,, J2, ..., JwDJ,, as follows. For i=l ,  2, ..., t identify-gi and all IE(D)I copies of jig If 

xy &.the kh arc of D,  then identify the vertices u and v in the Ph copy of J with 
i 

the vertices x and y in the copy of V(D), respectively. Clearly the construction 

may be carried out in polynomial time. - - -  

We claim that !D + H if and only if D + 
- 

7 - 
I- " 

Supposcj?D + H. The restriction off to the copy of G in !D is a 
> 

- <  - 
' . -  

homomorphism of G to H, say f;. . We show that the restriction off to ~ ( ~ ) & e l &  . ... . " 

a homomorphism D + H!. Let dd' be ad arc of 6. We must show that there is a ' -. . . ,-. 
% * 

3 * 
* 

retraction of Wi (as defined above) to H in which d maps to f(d) and d' maps- to 

f(d'). This is equivalent to finding a homomorphism g of I to H such that - 
g(jd = f&), k = 1,2, ..., t, g(d) = f(d) and g(d') = Rd'). The res 

copy of J corresponding to dd' in !D is such a mapping, as u w 

and v was identified with d: Therefore there is a homom&phisrn D AH!. 

SupposefiD + H!. Sin? D is connected, it maps to Gonnected component .. -- 
of H!, and hence to the subdigraph of H! induced by some copy of V(H), say F, the .. 

one corresponding tofi :We must co&truct a homomorphism g : ! ~  +- . ' 
. 

* 

the jLL arc of the component of H! induced by F, there is a retractio* 6 of Wito H : '" 

taking u to h and v to p. - 



(I, u, v )  be an indicator. Gt ~f,,&e,heaesult of applying the indicator cpnstruction : 
. " 

> * 
_ ,  C . ~  .. - with T e c t  to (I, a, v) to H;-and let h-' be the nsdt of applying the HSI ' . .. . + 

b " - -  . 

construction with respect to (Kl  , .xJ 'and (I uKI,  li,, v, y) to a, whe& ( { x )  $0) and 
* .  " - -.. 1 

*. . * 

( { Y } ,  0) arc copies of K*. since u iind v are not in ;he same cornpon~as  ?, &d. 

since there is at least one homb&xphistq of Kl inti . H, , the ~ o m o i k @ &  and 
. ,  .* 

-.. 
Sub-indicator parts of the consgrrction Jare effectively eliqhatcd It is h6t bard 'to - 

.. - , - _ I* 

see that H! consists of Il((HJ! copies of H*, qo fl is a retract of H!. " . , 

. . 

Derivation of the sub-indicator construction. Suppose that H Is a Ttract- 

free digraph, and let (J, x, j l ,  j2. ..., jb be a sub-indicator. Let J' be thc'digraph 

constructed h m  two copies of J by identifying the corresponding vertices ji, 
a . , - 1 

\ 7. 

i=l ,  2 ,  ..., t. Let u, v k the two copiesbf the vertex x. and add the an: uv td J: k t  . : .. 
9 

=B k the result of applying the ~ub~indicata ccmsuuctig~ with r&@ct to 
v u . , . .  

(J, x, j l .  j2, ..., j )  ' d ' h l ,  .... & ,c H, & kt H! be the mdt of @y&g the - 

: HSI coastructiod with respect to (H, hl,  h2, ..., ht) and (J', u, v, j l ,  k, ..., jt) tci H .  - 
i 

Since H is retwt-free, e v q  homomorphism of H to its& is -an automorphism. P ' - 



v , -, *I- , .  - _ -  , _ a. 

% 

. . . . 
t 1  - * - c- 

. T  . . ' L .  . ,. 
5 r 

w 
7 

- 7 

* (  r -. i i - , - f p  --. c 
- a. . i 

I 

.-- - 
t - +a . %  

. , 
, T , -. ' *;, - 9' 

is now sot difficalt to see th&* q&$sts of k r (~ j td i s jo@ copies of$-, $b H- ' . .  .- 
ill 

- 7 
& - 

, _I 

- ,  - A is a re& QLH~.  A . . " 

. - 

4 , . - I P 1 .  

Derivation of the edge-sub-indicator construction. Soppose that H is a .: - -: , 
. 

. . - 
. rerrac@& digraph, and lct'(~, xy, /,, j2, ..., jJ be an edge sub-indicat~': Let H  ̂ - 

, - . . 
be the wsult of applying the dp sub-indicator &nstruction with nspect €0 . + 

q i  .. 
' (J, XY, jl, j2, ..., jJ and hl, hz, ..., h, to i, and lct H? be the result of applying the [- - 

I I & - .  
F .. HSI consktion with respect to (H, hh hh* ..., 4) and (J, x, y, jl, j2, ...", jr) to H.- * " .  

. J  I 

As above, H! consists of IAut(H)I disjointeopies bf HA, so HA is a retract of H!. . 
. . '  

- C '  I 

r . * 
I .  

% -  

? 

- * 1 

3.2. OR the Outcome of the Indicator Construction. 

. ,  - i- -: 
In this short section we prove a *useful lemma. that. gives information about' 

the digraph H* that results from the indicator constiuction: As a consequence we 
, - 

an able to show that ~ n j e c t u n  1.1 is equivalent to a special case of itself. 
7 

, 
I . *  

- ,  

3.2.1. Lemma. Let H bc a connected s-th .digraph . Let d be the largest 

positive integer such,that H is Cdcolburabk. ~upposc Cd is not a retract of H. . + 

Then the result H' of applying the indicatbr oonst.n@tion kith respect - to (Pd, 0, d)  - - 

to H is a pooth digraph with exactly d connected c&ponents, none of which , - 

, I 

admits a h~momorphism to a directed cycle of length $;am than one, Moreover, 
, 

if H is strong then so is each compomt of IT. 

Proof. . a' 
I f  d=l, H=H". Hence &me d>l. 

32 
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- 
I . _  

Since Cd is retract-&, it is a &tract of H if and only if it is both a 

subdigraph of H and a homomorphic image of H. By hypothesis, C, isan image of , 

* ' 

H, but it,is not a retract. Hence H has no directed d-cycle. Therefore H* is .. 
, 

lo6pless. - 

Fix a chcolouring f bf H. Lst [n denote the set of all vertices of H. which . 

are mapped by f to vertex j oP Cd. Any two adjacent vertices of H* reqeive the 

same colour under f because they must be joined in H be ii directed path of length 
Q .  

d. Therefpre fl has at least d connected components. 
P 

We now pmve that has precisely d connected components, 
* 

HO, H? ..., Hd-1, where Hj is the subdigraph of H* induced by m. &t u., w be 
, 

i. 

distinct vertices in 07. Since H is com&ted, there exists a (@,k)-path P. k t  v ... 
-A 

. ). *> 

, 5 

be the first vertex in P which is different from u, and belongs to bl. Let Q be the 
, . 

(u, v)-section of P. It suffices to show that HZ contains a (u, v)-walk. 

Let us call an interr&diate vertex of 0.8 source of Q (resp. sink of Q) if it is , ' . 
. , 

the tail (resp. head) of two consecutive arcs of Q. We also call u a source'of Q 
d - 

(resp. sink of Q) if it is the tail (rcsp. E) of the frm arc of Q. Similarly, v is 
% 

called a sink of Q (resp. source of Q) if it is the head (resp. tail) of the last &c of 

Q. Let so, sl, .... st be the list of solnees ' and sinks of Q in the order they are . 
" 4 

encountered when traversing Q (thus u=so ad v=si). For i = 0, 1, ..., k- 1, theJ 

(sip s ~ + ~ ) - s c ~ ~ o ~  of Q is a directed path. Let li be the length of the (si, si+1)- 
. . 

section of Q, and let lo = 0. Our choice of v implies that each of these directed 

paths has length less than d, and furthwore, that'si e = 1, 2, ..., k-1. For , 

i=l ,2. .... k- 1, d e h e  the vertex ti as follows. If the (scl tim of Q is a 
-, l 

directed (s~.~,  si)-path of length lip l a  ti be any vertex for which t b  exists a- 
- 

directed (si, 9hpat.h of length d - li;-li+l , snd if the (scl, si)-section of Q is, a 



directed (si,  path of length li, let ti be any V-x for which there exists a 

directed (ti, si)-path of length d - li.- li+1 . The v e x  tinalways exiqs since H is , ' . - 
ZLr 

smooth, and that always ti E Ijl. 
- ". 

It is not difficult to see from the definitions that, for i = 1,2, ..., k- 1, ti and 

titl arc joked in H bi a directed path of length d. Themfore they arc adjacent in 

H*. It is also clear that the arcs ut, abd thlv exist (since u = so and v = sd. Thus , ':- 
.. 

there exists a (u, v)-w@ in H*. It follows that i~ induces a connected 

componeilt of H*. Moreover, if H is strong, then the path P can be chosen to be a .. - \ 

3 -  . 4 

directed path. Hence each component of H* is also strong. 

We now show that no component of He admits a homomorphism to a 

directed cycle of length greater than one. Assume that u is a source of Q, the 

- argument being similar if u is a side of Q. By our choice of v (cf. above), the path Q. 

has net length zero or d. The ve&& so, sl, ..., s k  arc altanately sources and 

sinks of Q or sinks and so&cs of Q. -Let T = u,tl, t2, :.., tk-~, v be the derived walk , 

in H* . By definition of H*, the (u, ti)-section of T has net length zero when i is * 

-L 

- .even, and net length one when i is odd, for i = 1,2, ..., k-1. 
C 

Suppose first that d(Q) = 0. Then among SO, sl. ..., st there is one more . * 

source of Q than sink;of Q. This implies that k'must be even. Hence k-1 is odd and 

. nl(T) = 0. 

Now suppose that nl(Q) = d. Then among so, sl, ..., sk there are an equal 

number of sources and sinks of Q. l3is in&ies that k is odd. Hence k-1 is even ' I -  

and nf(T) = 1. 
. 1 . . 

Therefore evay'walk Win H *hose origin and terminus belong to gives 

rise to a walk in Hj with ntt length nl(W). . 
, ., 

By Lemma 3.1.2, H co;r;ains a collecti&of closed walks, Wl, Wz, ..., W,, . . . , 



* 
e * .  

such that gcd(nl(Wi) : i=1.2. ..., n )  = d. By the above &*en& each of these 
., 

gives rise to a closed walk Wii in Hj such that nl(W,$ = (l/J d(Wi). Themfo~,  for - 
, . 

. ,  . any j, gcd{ WV: i=1,2, ..., n ) = 1 ,  so Hj does not admit a homomorphism to a - 

r .  

directed cycle of length greater than one. < ,  - 

Finally, since H is smooth, every vertex is the origin of a direct& pa& of , 

length d and the terminus of a directed path ,of length d. ~ & c e  each Hi is also - 

smooth. This completes the proof. . ' i 

3.2.2. Corollary. It suffices to prove Conjecture 1.1 for digraphs that admit a ' 

homomarphism to no d i r e a d  cycle of length gteater than one. , , 

Proof:. 

Suppose Conjecture 1.1 is true for all connected smooth digraphs that do not , 

admit a homomo~hism to a directed cycle of length greater than one. Let H be a . 
' 

connected smooth digraph. i d  let d be the largest positive inte&such that: , ,-, 

there is a homomorphism of H to Cd. Let H* be the result of'applyiiig the ikicitor 
. .- . .. 

consmction with respect to (Pd, 0, d) to H .  By Lemma 3.2.1, the digraph H* hi& . - - 
_ . .  I 

. - 

exactly d connected components, none of w.hicb admit a h&rnom&hism a 

directed cycle of length greater than one. L* K b;: a c o ~ e c t d  comppneat of the 

con  'of of. Then K is smooth and docs not admit a homomorphism'to a directed 
?. 

cycb of length greater than one. By hypothesis, R-COL is NPeomplete. 
\li Therefore the H-colouring problem is NPTcomplete by Lemmas 3.1.8.3.2.1, and 

3.1.1. This completes the proof. . - - ,  - . 

In tbe next chapter, we see how the above l e ~  extend the implications 

of Conjecture 1.1 to digraphs that art not smqoth. 
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' 1 

4. ,~ereditarilb Hard , . 8-&priag hobiem. .: . . : , . . i' , , 
\ -  ? , .  . . . .,A- , * .- _. . * . % 

,. . , . . ,. : , , .  ~ 

' 1  ..' - 
1 - '  . . 

. I, 

, . 
,. . 'I . . . . .: 

. ., 
. .. 

. 2 . . 

, k t  k a n  undirected odd cycle. Then the &olou&g problem is NP- 

conqilete mlver et al., 1981; Hell & Nektfil, 19861. m o v e r ,  the theorem of 

Hell and NeSetfil asserts that'thk the G-colouriog problem is NP-cdmplete for 

any ' p p h  G containingf (cf. T h m m  2.2.1). In a'sense, we can say that the . . 

-,- '  4 ~ ~ - b r n ~ l ' t e h e s s  of CCOL is hereditary, i.& that it .is inh&td by any s u p a p p h  

of C. Upon cmfbl ,  coisideratioi of the p&f of the ab& theorem, one can 

' observe @ follosving. The first step in the proof- is equivalent to showing that it 
4 .  

suffices to prove the result for graphs that contain a three-cycle. The remainder o f ,  

the proof is equivalent to showing that the NP-completeness of K,-COL is 
. . 

hereditary. 
- .  

1 
% 1 * 

~f P is not qua1 to NP: t h m  are many dinctedi graphs H for which the NP- 
' . 

completeness of H-COL is not henyl iw in the above sense. For 

the digraph constructed from C4 u C6 by identifying -a venex'on each directed 
4 - 5 

cycle, then H-COL is NP-complete pang-Jensen & Hell, 1988; Gujahr et al., 

19891. 0. the other hand, C2 is o retraCt-cjf thedigraph (H u . ~ z ) , '  henee - ,- . . . . . .  
. , i. < , Y .  

. . ) I 

- (H u C)-COL is polynomial. , . . , . , 

+ '. 
Thm is, at prcsent, no gened c o n j k  regarding precisely which H- % . ' 

colouring problems .arc NP+complete. (On the other h a d ,  we show in this - 
r - ' 

chapter how Conjeaurc 1.1, whi& pqoses a classification of smooih digraphs, , + 

A .  

implies a sufficient condition for NPoompletcncss of H-COL for m y  k t e d  

graphs H which art not smooth.) The fact that there are trtes T for which T-COL 

36 - 
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is NP-complete suggests that &complete classification may be dimcult to 
L ' 9  

accomplish. The concept of hBobitarily hard H-colouring problems introduces 

some order into this situai$n. WG present a conjecm as to exactly which H- . . 

coloring problems are h&t;irily hard (cf. Conjecture 4.1.57, and prove that it is 
. - 

equivalent to ~ o n j k  1.1, This provides some hope that a classification of - 

- / 

heredidy hard H-colouring problems kay be easier to-&xornpii&h than a , 
.* 

classi.&&n by &mplexiG of all H-colouring problems- we identify structural 
. . 

. . 

properties of these "superhard" digraphs, and identify infinite families of them. ; 
. . .  . . . . 

-. . , .  
. .  ' 

- ,  . . . . .  
- .  . . - /  

.' 

. . 
: - :  . . . . .  . .  

4 , . '  
. - . , . . *  i 

, + 

. . 

4.1. The ~efin6ion aa* SO& Properties. 

Motivated by the undincted case, we say that an H-colouring problem is - 

' , hen&d'- hard if G-COL is ~~+om$ete  whenever H is a ~ubdig&~h of a 
- 

loople& d i h p h  G. (That is, if the ~ko1'buri.n~ problem is so hard that the 

I presence of H as a subd&raph of G k sufficient for GG-OO t6. be NPrcomplete.) 

We call suph a digraph H superh4d. . 
I 

i 

Our first proposition describes an iafinite family of superhard digraphs. 
, 

. families i f  subhard digraplfs7k described in section 4.5. 

4.1.1. Proposititin. Let H be the eq&vdent digraph of an undirected odd cycle. 
I 

Then H is superhard. 



Proof. 

Suppose that H is a subdigraph of G. Let G* be the undirected graph that 

n s u l ~  from applying the indicator construction with respect to,(C2;0, 1) to G. 
I 

Since G* contains an odd cycle, G*-COL is NP-complete. ( ~ c c o r & ~  to our 
, . 

definitions, G8 is actually the equivalent digraph of qn undirccted'&qh. This is 
i 

f 

- , not a problem, since we have already observed (cf. section 2.1) that a graph F ' 

. .  - admits a homomorphism to the underlying simple graph corresponding to G*' if , 
?. 

I ' " I 
I .  

and only if the equivalent digraph of F admits a homomorphism to G*.) The r e h t  

now follows from L e m k  3.1.7. . 
, ' 

-* 

~herefaa' the equivalent digradh of any non-bipartite graph is 

superh&. \ - .  
, . . ; ..'" - , . I .  . . , - . Z  . . 

. i  . - .  

. . . . . - . . .. . 
? . . , . I .  ihC 

, > . - , . . .  * - . , 
. . 

. . .  , : 
. - 8  - 

. - j .  
- " - .  . :: 

. ~ . -  , . ,-, , . ,  . . , . . ' . The sn of directed graphs is partially ordered with &spect to inclusion; that . ., :, 
,' 

, . .. 
is, G gi H if G is a subdigraph of H. The set of superhard digraphs is, by . - 

definition, an upper order ideal (or filter) with respect to this order. . >  

Homomorphisv yield bother p d a l  order on the set of directed graphs, that is, 

G <A  H if there is a homomorphism H + G .  It follows fkom the next result that the 
. , - .  , , . 

set of stifierhard graph's is a j ~  ideal with respect tb this order. 
. . " .  1 L 

~. , . ~ . .  . 
. - . - 4 .  

. , - .  
I r' 

-< ; . 
. .  . , , ,  - I %  . , . . 

< 
. . , . ,  , 

F 
, . . .  - . . 

, .. '  . . 4.1.2. h.op&sition. These are equivalent: * I (  

f ., - 
1 

(1) The G-colourhg problem is NPwmplete whenever G contains H 
\ 

(i.e., H is superhard). 

(2) The Gsoloraing problem is N P w p l e t e  whenever H admits a 

homomorphism to G. 



Proof. 

( 1 )  * (2)  Assurne ( I ) ,  and suppose that there is a homomorphism of H to 

G. ConsiderG+ = G u H. Then H is a subdigraph of G+, so the G+-colouring . . 

problem is NPeomplete. Since G is a mract of G+, the ~ - c o l o ~ u r i n ~  problem is 
- 1  

(2) 3 ( 1 )  The inclusion map is +G is a homomorphism. . " 
J - -6 

" ,  

We now introduce a concept which is complementary to suprh&dni&. A 

pok'ynomid extension of a digraph H is a loopless superd@raph G of H for which 
I 

. G-COL is po&omial. If P # NP, a dLected graph H is su&hard if and only% it 
J 

. has no polynomial extension. 
1 ,. 

Suppose that D-COL is polynomial. If there is a homomorphism of a digraph 
I - 

H to D, then the digraph D is a retract of (H u D). Therefore the (H u D)- 

colouing problem is polynomial. Thus (H u D) is a polynomial extension of H. 
- 

. Hence any &raph that admits a homomorphism to a diiecred cycle of length 
1 

greater "than one has a polynomial extension. The complementary statementthat 

if H does not admit a homomorphism to a directed cycle of length greater than one 

then H is superhard, turns out to be equivalent to Conjecture 1.1 (cf. Theorem 

In the next two lemmas we explore the m c m  of minimal superhard 

digraphs: 



4.13. Proposition. Let H be a digraph with connected components, 

C1, dL. ..., P. Then H is superhard if and only if Ci 5s superhard, for some 

i E (1,2, ..., n}. ' . *  - .  A .- . .  

Proof. 

(a) If P=NP, &ery digraph is superhard, so there is nothing to prove. 

Otherwise, assume that P is not equal to NP, and suppose H is superhard but 

there is no i E ( 1,2, ..., n) such that Ci is superhard. Thus, for i= l , 2 ,  ..., n, Ci has 
% . * 

a polynomial extension Xi. But then H' = H u X l u  *U ... u Xn is- ap~~lynomial 

extension of H (because H' = ulSih ( Ci u X'J and, for i= 1,2, ..., n, the (Ciu Xi)- 
. . 

colouring problerh is polynomial), a contradiction. 

(e) Obvious. . 
, - 

4.1.4. Proposition. Let v be a source (sink) of H. Then H is superhkd if and 

only if H-v is superhard. 
. , F. 

Proof. " 

( )  If P=NP, there is nothing to prove. Assume that P # NP, and suppose 
e 

that H-v is not superhard. Thus it admits a polynofnial extension G. But, since H 
.+ 

is a subdigraph of G+ pad G+-COL is ~lynomial by Lemma 3.1.7, H also has a 

polynomial extension. This contradiction proves the implication. - & I  
b. : . L  .. , 

(*) Obvious. . 
Suppose P # NP, and consider a minimal (with respect to inclusion) 

superhard digraph H. By Proposition 4.1.3 the digraph H is connected and, by 

Proposition 4.1.4, it 

and therefore every 

is smooth. 

suwar d  

Hence no acyclic or unicyclic ciigpph is superhard., 
- <  . 

digraph has at least two directd cycles~ It can be 



noted in waurer et al. 198 1; Gutjahr 1988; Bang-Jensen and Hell 1988; Bang- 

Jensen et al. 1988; - Gu$& et al, 19891 Gat-the presence of two directed cycles in 

a digraph H is often sufficient for H-COL to bt NP-complete. Fm?her results of 
s 

this type arc proved in Chapter fivp. Also note that all of the digraphs covered by 

Conjecture 1.1 have at least two directed cycles. 

Every smooth digraph which we know to have a polynomial extension 

admits a homm&rphism .. to a directed cycle of length water than one. Included in 

this class are srhooth digraphs H such that H-COL is NPTcomplete. 

Furthermore, we know of no smooth digraph which does not admit a 

homomorphism to a directed cycle of length ter than one an-cl which has a $" . . 
polynomial extension. We make the following conjecture. 

4.1.5. Conjecture. Let H be a connected smooth digraph. If H does not admit a 
.. 

homomorphism to a direcd'cycle of length great6 than one, then H is superhard . . . 
t 

, . 

(the H-colouring problem is hereditarily hard). Otherwise H has a polynomial + 

-3 
ex tension. 

I 
, - 

i .  
2 

Conjecture 4.1.5 can also bc formulated in temhs of digraphs which may have 
<, 

sources or sinks. Let H be a digraph. Let R(H), the mhction of H, be the result 

of applying the subindicator construction with respect to (PUv(H)l, IV(H)l, free) to 
- 

H (a similar use of the subindicator construction appears in [Bang-Jensen, 
, 

19891). By its definition, R(H) is unique. Furthermore, R(H) is smooth. ('Fhe , 

digraph R(H) may also be derived from H by iteratively deleting all sources and 

sinks, until a smooth digraph remains.) 
> 



B~ ' Propositi0~4.1.4, H h superhard if and only-ifR(H) is superhard (It 
I .  

L 1 

shodd be c l e  t h a ~  'by ,learma 3.1.9, if R(H)-COL is NP-complete (resp. NPT 

complete), then? is H-COL. .Since there are acyclic digraphs H for which H-COL 

. is NP-complge (cf. Chaptp six), and the reduction of an acyclic digraph is an 

empty digraph, t?~~-conveqe of the previous statement is false.) We have the 

following equivalent statement of Conjecture 4.1.5. 

4.1.5'. Conjae. ht'~ be a ccpwcted digraph. If R(H) does not admit a 

*homomorphism to a direfpd cyclt of length greater than one, then H is superhard 

(the H-colourhg problem is hereditarily hard). Otherwise H has a polynomial 

extension.. 

.. , , 

The rcd&ion d H can'b us@ expand the implications of Conjecture 1.1 
/' 

";c--- 7 ch axe not smooth. Since R(H) is obtained from H via the sub- 

indicator construction, Lemma 3.1.9 assats that if R(H)-COL is NPTcomplete, 

then so is H-COL. Hence we have an extension of the w-completentss part ,of 

Conjecture 1.1. 

1.1'. Conjecture. Let H be a connected di&aP@. If the core of R(H) i$ not a - + 

directed cycle, then H-COL is NP-complete. - ,  

I .  The principal difference between eonjecturrs 4.1.5' and 1.1' is that the former 
- < <  

propc~~s  a complete classification of all H-colouring problems, while the latter 

proposts only a sufficient condition for NP-completeaess.of some H-colouring 



problems. As was mentioned before, the conjectures on-which these two 
, 

4 . \ 
conjectures are based are equivalent, which we now @rove. - .  

4.1.6. Theorem. Conjecture 1.1 and Conjecture 4.1.5 are equivalent. 

Pro.of. 
\ 

- (4. i -5) * (1.1) Assume Conjecture 4.1.5 is true, and let H satisfy the 

l ibtheses  of Conjecture 1.1. If H does not admit a homomorphism to a directed 

--cycle of length greater than one, there is nothing to prove. Hence assume that H 

admits a homomorphism to such a directed cycle. k t  d be the largcst positive 

integer such that there is a homomorphism of H to Cd (see the comment preceding 
- , . , , 

Lemma 3.1.5 regarding the & e & e  of d). The digraph H has no dincted d- ; . , 

cycle, otherwise Cd would be a retract of H. k t  H* be the result of applyingthe 

indicator construction with respect to (Pd, 0, d) to H. Let @ be a connected 
4 

component of fl. By Lemma 3.2.1 the digraph fl is smooth;-and doe$ not admit a 

homomorphism to a directed cycle of length greater than one. Hence it satisfies 

the hypothesc~ of Conjecture 4.1.5. Thus I#'-COL problem is NPwomplete, and 
\ 

therefore so is H-COL. * 
(1.1 * 4 1.5) Assum that Conjecture 1.1 is true, and let H* satisfy the 

hypotheses of Conjec~rc 4.1 3. Let G* be a ,&graph that contains H', and let G be 

the core of G'. It is not hard to see that O contains a homomorphic image H of H'. 

Consider R(G). Since H is smooth, R(G) mntains H. Hence R(G) does not admit a 

retraction to a dhkpd cycle. M~onovcr, sin& R(G) is. smooth, it satisfies the 

hypotheses of Conjecture 1.1. Since C c m ~  1.1 is true, R(G)-COL is NPT 

complete. Thercfm thc G-colouring problem is also hlPT-comphc. Tliis 

completes the proof. . 



' .' 
The implications of Conjecture 1.1 extend deydnd the &ss of smooth -' - -  . 

z A -  

digraphs. Taken together, Theorem 4.1.6 and Corollary 3.2.2 assert that. these - .. 
. . 

more general results may be obtained by proving that the H-colonring problem ia - - , .. -. , 
NPT-cornpletq for each smooth digraph which does not admit a homomorphis& to- :. . ' 

L '3 , - .  
'i+p - 

a directed cycle, instcad of proving that the G-colouring'prob1,em is NPT-com~letl'@~ , - -.- 2 

. _ I  - 
whenever G contains such a digraph. . - 

. - , ... 
.-- 4.2. An Extension of Superhardnea. . % >. 

i . I 

. . 
. , = 7 

J . .. -, ," * 
7, '; . .: < b -  , ' . ? ^  J' 

Let H be a d ipph that admits a homomorphism to a directed - . cy& . of, . lingth ,. : .' . - 
.,. ~ - .>-I " 

>" - d  

n. Then H has a polynomi@ extension, namely H u C,. Thus H-COL is not : -, - 
. * -. 

hereditkly hard unless P = NP. In this section we introduce a generalisation of % - .  *- . i 

- * 

- .  
superhardness that enables us to establish complexity theorems for 

superdigraphs of H that arc similar to superhardness. 

Our strategy is to impose enough restrictions on the superdigraphs of H. to - . . . 

* .  - ' -  
- - 

be considered so that the presence of H as a subdigraph of a digraph G, in this - ._ _. + 

- 7'  - *  . 
restricted family of digraphs, is sufficient for G-COL to be +com~letc,~or 

- ,  .,. example, let H be the digraph con tructd h m  the equivalent digraph of K3 by f . 
subdividing every arc. Suppose G is a superdi%raph of H that contains no directed 

' - twpcycle.'~hen (C4, 0,2) is a g o d  indicator. The result G* of applying the 

indicator construction with respect to (C4, 0,2) to G contains an undirected three- 
,- 

C '  

6 

44 
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. . .. ,: G 
. .  ..-". ' . . .  < : >. . ' 

.,. . . 
, ~ .~ - .. . ,. . . - 

+ >,, .- , , . . f L. . I . . 
'I . -. .' . .  ." ,.. . 
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. . I _  

-,. . . -  . L . <  .. - . .  ; .  I. , . - .  - I . > .. , . - :. .. 
,. ' 

. . ... . - + 

.% . . . . -  .-. . . -  
T... . ". . . : 

.. , .. - .' , .-.. 
, . : :>, . . 

.. - 
3 '  . .. .., ' I 

, : 
_ , I  . . . , ;. - . i 

. . ' , . '? .'< 
.< - .  

. . 
-. - 

cycle. By Reposition 4.1.1, the G'-colouring prob1em:is NP-complete. If we - :~, . , ,. ,,* 

- . _  ' 

. 1 +- .~ 
.? 

~ . ,  . 
<: ~ ' 

- ;. -. ' . . .  . . . ,#.  
,, , , 

.. - 
e - restrict our attention to digraphs with no c!irecred fwo-cyble, the G-colouriog - .  .+ 

- * 
P I-. , r  1 

L' - ,  - - 
, ' A 2- 

problem is NPcpmpiete for m y  supetdigkph G bf H. (Mort ekamples are gib=n ' - , .. .- , , 
. d 1 

in section A53. - . 1 ,.' , - - 
7 .. . , . 

* .  * 

Motivated by the above 'discussion, we make the f owing defbition. Let 9 
, " . *  - ".t 6 

be a set of propmties..~hipph H is superhard with respect to P if the following 
&. ' I Y -^ . 

. two conditions arc &tisfid: (i) the Gcolouring problern'is %complete 
. $ 

.. I T .  - 
whenever H is a subdigraph d a loopless digraph G which has all pmpenies h P. - 

i 
L .  

-. , and (ii) at least one such G existe (A digraph H iL.=- supefhard if and only if it is ' 

superhard witlr respect to the empty couecti~xs of properties.) If . _ ,  -, 

. . 
9= (PI, P2, ..., Pnk we sometimes abuse our notation and say that His  . , 

c .  

- - superhard with respect to P;, P2, ..., P i  I * i  . a 

, . <% - 
L .. ~. 

' I ( . _  - ,  

It followsbom the definition that if H is superhard, H-COL is NPTcompltw. . - 
_I ^ 

r .  
, * I  , " 

. ,  
This is n& the case if H is3uperhard with respect to.@ arbitrary collection of . - - 

I 
* L 

I I 

prope~as. For exampit; it is proved in section 5.4 that any orknted odd c& is , - ,. . 
a 

superhard with respec$ to ;he prop- 'G is partitionable". On the other hand, 
- 1  

+. 

Glnjahr has recently beeqpved that C-COL is p&moniial'for any oriented cycle 

The concept of a polynomial extension can Qso bc gendsed Let 9, beu@ 
L\ 

set of properties. A digraph G is called a po&nomi@ extension ox H with res& - ,*. - , .  i 

to 9 if G has a l l  properties iDa&%w digraph H is a subdigraphof G, and the G- 
" .  * 7 *  - 1  

colouriug problem is polynomial. It is clear that if P & not equal to NP,'a digraph 



is superhard with 

Most of the results in section 4.3 hold in this m a  general setting, although . - - 

not necessarily fbr arbitrajr pro& sets (&me statements may not-make 

sense with respect to property set& which hrbid some.of the hypotheses). More , 

specifically; Propositjons 4.1. 

GuH hasallpropaties i n 9 w  
1 

r'G and H both have all properties in 9. - 

Proposition 4.1.4 is true for the propeqnG has no closed directed walk of length 

k", and others. In a l l  instances, the itlodifications naded to the proofs are minor, 

: and the reader should h&ve little difficulty adding the missing details. 

4.3. some Families of Superhard Digraphs. , 
, I  

. - The purpose of this section is to give some examples of the digraphs 

discussed in seaions 4.1 and 4.2. ~ l t d o u ~ h  the focus is on superhard digraphs, 

: we also give sbme examples of digraphs which are superhard with respect to the 

property Lt: "G has no closed dirccted walk of length ky. 

Let 9 be a set of properties An slr-indicator with nspeci'to 9 is an 

indicator (I, u, v) such that every loopless digraph G that contains a homornorphic 

image of I in which u and v arc identified either lacks a property in 9 ,  or is 

superhard with rcsp&t to 9 mat is, if G has a l l  properties in 9 and G* has a 



loop, then G is superhard with respect to 9.) An sh-indicator is an indicator 

(I, u, V) such that every loopless digraph G that contains a homomorphic imageof 

I in which u and v are identified is superhard. 

m e  importance of sh-indicators is illustrated in the following lemma. 

4.3.1. Lemma. Let (I, u, v) be an sh-indicator with respect to 9 Let H* be the . 
% 

digraph that resuln from applying the indicator construction with-respcct to 
i 

(I, u, V )  to H. If H* is superhard, then H is superhard with respect to P 

Proof. 

Let G be a digraph which has all of the properties in 9, and suppose H is a = 

subdigraph of G. Let G* be the result of applying the indicator construction with 

respect to (I, u, v)  to G. There am two possibilities, depending on whether G* - 
contains a loop. If C* c o n k s  a loop, then G must contain a subdigraph which is 

a homomorphic image of I such that u and v map to the same vertex, since 

(I, u, V) is an sh-indicatoi. Thus G is superhard with respect to 9, apd so G-COL 
0 

is +complete. Otherwise, G* is a loopless digraph that contains the superhard 

digraph fl, so the G*-colouring problem is w o m p l e t e .  Consequently G-COL 

' is also NPTcomplete. This completes the proof. ; - 

Lemma 4.3.1 can be used to construct new superhard digraphs from old. For 
0 

example, let H be the undirrctcd three-cycle with V(H) = (0, 1,2) and 

E(H) = (LO,-f], 1,2], 2.01). Let 3 be a new vertex, and set I-= (H - 01) + 03 (see 

figure 4.3.1). men any homo&hic image of I in which the vertices 1 and 3 are 

identified is also an image of abundirc*ed threecycle. Hence, by Reposition 

47 



4.1.2, (I. 4, 3) is an sh-indicator. Let G = H, and Let G' be the digraph constructed , ' a 

. by replacing each arc of G by a copy of I, and identif@g 1 with x and 3 with y . 
b .  

The result of applying the indicator construction with respect to (I, 1, 3) to 'G' is G 

(an -undikted three-cycle). Hence Gl is su~ rhs rd  - , c 

Figure 4.3.1. An example sh-indic&. 
... . 

, .' : .  . 

The general procedure is as follo&. Suppose H is superhard, and let wu bi :' 

b 

an an: of H. Let v be a new va'tcx, and set I = (H -'wu) + wv. Any homomorphic 

image of I in which u and v are identified is also ,an image of 
, - 

Proposition 4.1.2, (I. u, v) is an sh-indicator. Now, let G be superhard, and let G' 

be the digraph obtained by replacing each arc ry of G by a copy of I, and 

ide&fying u with x, and v with y. The result bf apfil-g the indicator construction 

witb respect to (I. u, v)  to G' contains G. Hence G' is superhard. 
I 

3. 



i h -  
It may also be possible to use Lemma 4.3.1 to c o m q t  di&phs which are - 

. / 
* *  A * 

, superhaid with respect to a given-'pr6perty s e t k  The proc~;)6is analogous to 

the above. we' use Lemma 4.3.1 -to construct a digraph H which is superhard with 
L 

respect to the property &: "G h b  no closed directed walk of length two". Since - 

. - any loopless h o m b h i c  image of C4 in which vatices 0 and 2 are identified 
* 

necessarily contains a two-cycle, (C4, 0.2) ism sh-indica respect to L2. 
9 

Let H. be the undirected 3-cycle, and let f i  be the digraph obtained by replacing 

each arc xy of H* by a copy of C4, identifying (1 with x and 2 with y (see figure 

' 4.3.2). Shce H has property Lb there exists a su&rdigraph of H with the 

appropriate property. It is easy to verify that the result of applying the indicator 

construction with respect to (C4, 0.2) to H contains an undirecud 3-cycle. which . 

( is superhard Thus H is superhard with respeot to L2. 
' I  

Figure 4.3.2. The digraph H*. 
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, . :- Thegedefal procedure is as'follows. Let {I,. u, be a ~h4ndicator &tk-" , . . 

t .  

? . +  . 
. , I 

, , ,.' - .  

respcct to 3 and let H* be a superhard digraph. Let H be, the digraph which ; : 
I .  

results h m  replacing every arc xy of H. by a &py of ( .  u, v), yd.identif g the 
' * 

7 ,  
pairs of verticesu, x and v, y. ' It is not difficult to see that the result of applying 

, - 

the indicator construction witb respect to (I. u, v) to H contains 'H.. It is, 
I 

d.' 
however, not clear that there is a su*graph of H with all pioperties in 4! . + 

. . 
a i, Suppose such a digraph G exists. Let * be the result of applying the indicator . 

3 cons@uctioupith respect to (I, u, v) to G. Since (I, u, v) is an sh-indicatot, G* is 
, . 

' loopless. ~urthe&k, G* contains W .  Therefore H is superhard with respect to . 

- \I 

We now describe several infinite families of superhard digraphs. Each such " - 

directed graph gives rise to a collection of infinite families of su'perhard digraphs 

(constructed as a ~ n . " v i a  Lemma 4.3.1);and also to the infinite family of 

superhard digraphs that contain i< . . 

Let n be an integer greater than or equal to three. The digraph W,, rhe 

wheel with n spokes. is defined io be the digraph constructed from C, u { v )  by 

adding the undircct'ed edges ([v,c 1: c in V(C,,))., The digraph W4 is shown in 

figure 4.3.3. 



. , 

.< I , .  

Figure 4.3.3. The digraph W4- 
t ,  

4.33. i'heaexk If n is not divisible by four, then W, is superhard. . ' . 
. . .- -2 

Proof. I - 

kt (I, u, v)'bc the symmetric indi=ator shown in figd 4.3.4 with i=O. ~ h k  
1 

r ,  

digraph that res& from identi@hg u and v is an undirected three cycle. ?bus any 
- 

lwpless homomorphic image of (I,u, v) in which u and v are identified is  also, aa .-, 

image of an undircctcd three-cycle,'& is therefore superhard. Since thm is an -. 
automolphisrn ,of I that erchanges u and v, (I, u, v) is a symmetric sh-indicator. , : ' 

i h e  result W: of applying the indicator con&uction &th respect to (I, ; v )  to " - 
* 1 

Whis tbc undircctcdgraph witlfedge-set (&:yG(modn) = 2). I fn  is2&%%* 
I L 

is an undirected n-cycle, and if n 2 (hod 4) it is the union of two undirected - ' . . 
- 

9 

I I 

. . 
(n/&cycles. Since undirected odd cy&s are superhard Id. Proposition 4.1.11, . . -, 

the result foUows from &mma 4.3.1.1 

We believe that 4k-wheels are also superhard. , , 
* 



Figure 4.3.4. A useful symmetric indicator. 

Let i be an integer greater than or equal to one. The digraph Xi is 

constructed from the equivalent digraph of an undirected cycle with vertex-set 

(0 ,  1 ,  . . ., 4i+ 1 ) by adding the arcs O(2i). (2i)(4i), (4i)(6i), . . .,(2i+2)0, where 
I ,  

computations arc modulo 4i+2. l'he digrai,kX2 is shown in fig& 4-33, * . 

I - 
4.3.3. Theorem. The digraph Xi is superhard. 

Proof. 
. . ,  , : 

I 
- -  II ..,- 

The argument is similar to Theorem 4.3.2. Let (I; u, v)  be the sh-indicator 

shown in figure 4.3.4 (the digraph that results &om identifying u and v is an 
a .  li 

undirected (2i+ 1) -cycle). Let X; bb the digraph which results from applying the , 

indicator construction with respect to (7, ,r v)  to X; It is not hard to check' that , 

Xi. contains the u n w e d  (2i+ l)cyFle O,2& .;., 2i+2,0. Therefore Xi. is 

supexhid, and the result follows from &enrma 4.3.1. 
' 

' .  I '  I 



- - ,  Figure 4.3.5. The digraph X2. 

Similarly. let Tj be a digraph construnrd from C4j+2 by adding the arcs 

(O2j); (2j,4j). ..., (2j+2,0) and undirected odd paths between vertices 1 and 2j+2, 

$3 and 2j+4, ..., 4j+ 1 and 2j. A p@totypc of TI is shown in figure 4.3.6. 

4.3.4. Theorem. Any digmph.Ti is superhard. 

: Proof. 
, -  

The proof is similar to the proofs of the previous two theorems. k t  the 
- 

longest of the undirected odd paths have length 2+ 1, and Let (I, u; v) be the sh- 

indicator shown in figure 4.3.4. 'Ibe result q* of applying the indicatoi , 

construction with respect to (I,  u,'v) to Ti contains the undirected odd qc le  0,2j, 

4j, ..,, 2j+2,O, which is superhard. . 
. < 



The last examples in this section conem digraphs which arc superhard with 

respect to the property Lk: "G has no closed directed walk of length k". The set of 
1 

digraph with property 4 is precisely the &t ef orientations of simple graphs. 4 
, 

Let G be a digraph. +I arc uv of G is said to be bYPaked if thm is a vertex . 

w suvh that ;hc arcs uw and wv exist. Let i be an integer &ter than or equal to 

one. Let Bwl be a digraph constructed h n  C2i+l by adding bypass to at least- 

one out of every i consecutive arcs (of the (2i+l)-cycle): 

4.35. Theorem. Any digraph B2i+l is superhard with respect to Li+l. 

Proof. 

Any hsmomorphic image of CZi+2 in which vertices 0 and i+ 1 are identified 

contains a closed dirtcted walk of lengtb i+ 1. Hence (C2i+29 0, if 1) is a 



symmetric s&indicat~r with respect to Li+l. k t  B* be the result of applying the. 

indicator construction with'respect to (Cu+z, 0, i+ 1) to Bzi+l. Since, for any x, the 
w 

directed (x, x+i+ l)-path,a.I~ngC~+~ contains at kast onc byp&s&_pe& 
, 

undirdirected edge b+i+ 1 J] is present in B* . Thus B* con 

(2i+ 1)-cycle 0, i, 2i, ..., i+l, 0 . Since undirected odd cycles are superhard. the 

result follows from Lemma 4.1.3. 

Our final result of this section provides a method to construct digraphs that 

are superhard with respect to property sets other than the ones considered.so far. 

In Lanma 4.3.1 we showed that if the result of the indicator construction (with 

respect to a sh-indicator) is superhard, then H is superhard with respect to a 

given property set. In Lemma 4.3.6 below, we show that if the result of the 

indicaror construction is a superhard digraph, then we can find a property set 9 

such that H is superhard with respect 'to 9. 

4.3.6. Lemma. Let (I, u, v) be an indicator. Let H* be the result of applying the 

indicator construction with rcspen to (I, u, v) to H.  If H' is superhard, then H. is 

superhard with re- to the property P: "G contains no homomorphic @gc of I 

in which u und v are identified" (or any other m of properties which define the 
. - 

same class of digraphs). -. , , -  , 
' 1 ' <  

Proof. . L 

Since H* has no loops, H has property P. Furthennorc, H-COL is m- 
. - 

complete. k t  G be a superdigraph of H. Let G* be the result of applying the 

indicator construction to G. Then two possibilities a r k ,  either G* has n loop, in . .. 



. I .  

. which caseG contains a h o m o ~ h i c i m a g e  of I in which u and v are identified, or 
' 

G' is supe;hard. Tbat is, the G-coloming problem is WpI-complete wkmver H 

is a subdigraph of G and G has property P. Therefore H is superhard with respect 

4.3.6: Let I be the four-vertex. oriented path with arc set ux, xy, vY , and let H be 
.. - 

the digraph constructed from an undirected thra cycle by replacing each arc xy 

with a copy of$ and identifying u with x, and P with y . The result fl of applying 

the i.dicqtor k n s m t i o n  with nspect to (I, u, v) to-H is an undirected three- 

cycle, which is super$ard Thus H is superhard with respect to "G contains no 

homomorphic image of I in which u and v arc identified". This property is 
. . 

evidently equivalent toWG no transitive triple". Thus the G-colowing problem 

is NP-complete whenever the loopless directed graph G C~xltain4 H 'and has no 

transitive triple. * 

4.4. b~asis for the Superhard Digraphs. 
, 

The purposc of W section is to describe a family 9 of directed graphs with . , 
the following m: adigraph D satisfies the conditions of Conjecture 4.1.5 if 

N 

warlgsuflice . . to prove Conjecture 4.1.5 for the d i p p h s  in 9: Thercfm the 
. . .  

& elements of 9 with respect to the homom~rphism order can be viewed as 



a &is for the set of superhard digraphs or, equivalently, as the minimal 

hereditarily hard H-colouring problems. 

. ? . . - 

Let D be a digraph, and let C be a directed cycle h D. A vertex of C is a 

vertex of a#ach&nf if it is adjacent with some vertex in D-C. If every strong 
. , 

cbmpwcnt of D is a vertex or a directed cycle, and every directed cycle has 

exactly one vertex of attachment,"then D is called singly attached. The set 9 

consists of all h g l y  attached smooth digraphs which do not admit a 

homomorphism to a directed cycle of length greater than one. By definition, each . a 

m e m b  of 9 satisfies the hypotheses of Conjecture 4.1.5. I 

- 

A maximal strong compownt (resp. minimal strong component) of a digraph 
lil 

* - 
G is a strong component C of G such that there exists no am dc (resp. cd), where. 

c is in C a d d  is in G-C. Every maximal strong component of a smooth digraph G 

contains a directed c&, as does every minimal strong component of G. 

, 
4.4.1. Theorem. Suppose4 satisfies the conditions of Conjecture 4.1.5. Then 

' .  - .  there is a digraph H in 9 which admits a homomorphism H 4 D. 

Proof. 

By Lemma 3.1.2 the digraph D has a collection W, w, ..., W of closed 
, 

walks such that gcd(nl(Wi) : i=1,2, ..., t}=l. Since D is co~cctcd, it has a 
Y 

spanning closed walk W. For i=O, 2, ..., t , let Li be an dmted IV(Wi)l-cycle 

such that there is a homomorphisrnf;: of Li onto Wi. Then 

1 gcd(nl(Li): i=O, 2, ..., t}=l. Let MI, A@, ..., Mr (resp. N1, p, ..., Nq be a 

collection of w t e d  cycles, one from each maximal ( ~ s p .  &) strong 



. - 

component of D. For i= 1,2, ..., r. let mi be a vertex on Mi and, similarly,.for .- 
- > 

- > .  

y= 1.2, ..., s, let nj be a vertex on AkJhe digraph H is'conskcted edm . P - 
* -  .. * 

, . 
MI, M2, ..., Mr, N1, NZ, ..., NJ, LO, L1; A, Lt by adding d&cted paths as follows: . .. - - 

- .  , . - 
For i = 0, 1, ..., t, let v be a source ofLi, or a sink of Li. For k=l ,  2. ..., r, ifthk' - II 

. , (. ".. 
, 'i is a directed Cfi-(v), md-path of length 1 in D, then add a path of length I from;&. , 

to v in H (all added paihs are disjoint, and add 1-2 new vertices to H). ~i&$arl~. r .  
- %  

--- d \ -  

for j= l ,2, ..., s, if there is a directed (ni,fi(v))-path of length I in D, then add a - " - * 

1 - .E+ 

directed path of length I h m  v to nj in H. No new directed cycles are created. - 
d 

Then H is in 9 by construction. Moreover, there is a homomorphism of H '. 

onto D (every vertex of H corresponds, in a na& way, with a vertex of D, and 
: *. 

if two vertices are adjacent in H, the vertices to which they correspond - are 

adjacent in D). This completes the proof. . .*- 

-- 
2- 

e utility of Theorem 4.4.1 in settling Conjecture' 4.1.5 is debatable, but the 



spanning tournament. Tourmaments wen, in fact, the first large cl& of digraphs 
. L t '  

for which the complexity of the H-colouring problem was completely determined 

well & MacGillivray, 1987. The results in this section preceded Cqnjecture 1. l,? " 
, . 

. - 
and were the initial evidence that led to its formulation. Section 5 3  cantain$'-a . 

3 A - . a *  
. 

. . 
classification by complexity of vertex-transitive digraphs, and of --transitive - 

digraphs. We also derive necessary and sufficient conditions for a Caylcy digraph ' 

to admit a h o m o q h i s m  to a cycle. & COXQW, IWXSSUY and 
, 0 

sufficient. conditions are obtained fm +e.cqe of a caykY d i q p h  to be a directed - . , . 
.. - . . . . .  

cycle. In section 5.3 we investigate the complexity of the H-colouring problerh - ,  . . 
4 

, . when undir(H) is bipartite. (By Lemma 4:1.i, if undit(H) is not bipartite, then H- . 
a 

- 1  

COL is NP-complete.) We i n d u c e  the class of "partitionable digraphs"; 
' 

.. 
*. . . 

completely classifv them by Finally, in section 5.4, we generalise a .  L - . t _  ,, 

result from maurcr et al., fiom pang-Jensen & ~ e u ,  19881.' , - 

5.1. Semi-complete ~ i g r a ~ h s :  

, yA s~mi-eompletk digraph is a directed graph such &it for a l l  vatices x and 
! "  1 . 

y. at least one of the arcs ry a~$ p' exists. In othm.words. a se complete -.  ' 
I - . . .  . - 

digraph is a digraph with a spgmin~ taumament. - <  a 

i 
. I  



I .  .- 
I , .. 

I 

In this section we classify all semi-complete digraphs H according to the - 
* "  

c&mple~ty of the Hzolouring problem. In particular, we prove the foiloying 
', 

. then H-COL is  p o l ~ m i a l .  Otherwise (H has at least two directed cycles) H-CQL 

is NP-complete. 
4 

. . I  

I +  ' 

- Conjecmml .-I for semi-complete digraphs follows from Theorem 5.1.1. ' - 1 

_1 r 

' Although there are semi-complete digraphs with sources or sinks, Lemma 3.1:7 
+ , - 

(P- b 

b implies that these vertices'need not be considek. Hence it suffices to prove the. 
- . ' 

theorem for sexpi-codete digraphs that satisfy thc hypotheses of. the P- ' 

- We fitst prove the first statement of Theorem 5.1. I. 

5.1.2. Lemma. [~aurcr,'et %., 19811 If H is a transitive tournament (i.e.', an- 
d -  

acyclic semi-complete digraph), then H-CQL is polpornid. 4 
i 

- %  

Maurer, S u d h u @  and Wclzl proved Lemma 5.1.2 by describing a - 
4 

polynomial time a1gorit.b for H-colburing. It also folows from Lemma 3.1.7, as ' 

does the kmainder ofthe tirst slatemnt,of Theorem 5.1.1. 

E 

our proofs will use 'some well known fa& ak&t tournaments. h 

particular, a tournament is smng if and only if it is hamiltonian, qnd if a 

6 0 ,  



I 

ament has a directed cycle of length 1 2 3, then, it has a directed cycle of 
)7 

length k, for k = 3.4, ..., 1. For rn details the reader should consult Moon, .- 
... 

: - 3  

1968; Bondy and Murty, 19761. Since a semi-complete digraph has a spanning . 
'% 

tournament the above conclusions are also valid for semi-c mplete dijpphs. e. 
5.1.3. Lemma. If H is a semi-complete digraph with a unique directed cycle, then \ 
H-COL is polynomial ' ' ' i 

, - 
Proof. . .* 

' ,. 

Since H has a spanning tournament, we know that if H has directed cycle of 

length k 2 3 then it has directed cyc'ks of all Lengths 1,3 S 15 k. Furthermore, 

each non- vial strong component of H has a directed Hamilton'cycle. It follows 

that the unique direct& cycle in H has length two or three, and that all other 

strong components of H arc trivial. That is, H may be obtained from the directed 

cycle by adding a sequence of sources and sinks.The result now follows from 

Taken together, Lemma 5.1.2 and.S.l.3 prove the fvst pen of 'Iheorn. , 

5.1.1. The proof of the second part requires some preliminary leinmas. 

i 
ma- et al, 19811 If H is a semi-comp$m digraph on three 

Lem\ 
vertices with at least rwo directed- cycles, then H-COL is NP-complete. 

b ,  
* .  Q , I .  . 

The next lemma follows from Gutjahr's clas&c&tion by complexity of al? 

four vertex digraphs [Gutjahr, 19881. 
P 



-2 5.15. Lemma. If H is-a semi-complete graph on four vertices with at least two . . - : 

, . 2' 

directed cycl&, then H-COL is NP-complete. . * - . _ 

Iv 

Our next result is of interest in its ow* right, as it does nqt deal exclusively 
, <  

with semi-complete digraphs. Let D(k, I) denote the digraph constructed from 

I 

5.1.6. Theorem If k, 1 2 2, then D(k, 1)-COL is NP-complete. Otherwise 

Proof. 
- 

'1 We first prove the lsecond statement. If k = 1 or 1 = 1, then D(k, I )  has a - 
loop; otherwise k = I = 0 and D(k, I) is just a single arc. In both +stances D(k, I)- 

We now prove the first statement. Call Ck the upper mirected cyck a d  Cl 

the lower directed cycle. 

Let X and Y be the digraphs shown in figure 5.1,. 1 (a) an$ (b), respectively. 

I 

CLAIM. In any D(k, 1)colouring of X, exactly one of (u. v )  is coloured on 

the upper directed cycle, and the other is coloured on the lower directed cycle. 

Moreover, any assignment of colours to u and v that satisfies the former 

condition can be extended to a D(k, f)-colouring of X. 
' I 

- PROOF. . .. -, - 
suppose to the conwry that both vertices arc colourrd on the 

upper (nsp. lower) directed cycle. Then the entire o w  (resp. inner) oriented 

cycle of X (cf. figure 5.1.1) must be colound by the upper (resp. lower) directed 
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The transformation - is'from 3-SAT. Accordingly, suppose we are given an - 
. , . - - . instance of 3-SAT, with variables xl, x~ ..., x,, and chuses C1. c, ..., 0. 

- *: y - 
Construct a digraph G from p copies of X, and' q copies of Y, as. follows. Each '. 

variablexi(i=l, 2, ...,p)- comsponds~to acopy'Xiof;X,ahdeyh clause 0 ' 

u= 1, 2, .,.., q) corresponds to a copy Yi of Y. For e k h  clause Ci = ll v ly v l3 . 

u= 1, 2, ..., q) identify each vertex 0f.P labelled li with vertex u of Xk if li is & ' * 

> " 

and with v&x v of Xk if li is *b, Clearly, the c*nstruction may be c&ed out in 

' plyngmial time. _ 
2 

i \ 
r CLAIM. The digraph G is D(k, l)-colourable if and only if the clauses 

* 

_ * 
4. 

PROOF. , . -  

(a) Defmc a truth assignment as follows. Set X,:T (i= l ,2, .., p) . 

just if the vertex u E V(Xj) is coloure# on the upper directed cycle (recall thst the * .  

d 

vertex v E V(Xi) must be cdolrrrd oq the other dbxted cycle). Consider Yj. At 
I ,  

. A 

least one of its three labelled vertices must becolourcd on the uliper directed 
' 

- - , - 
cycle. In other words, the clause Ci contains at least one true literal. ~ e n c e  the '. 

4:clauses simultaneously satisfiable. 

(c=) Define a partiQl~010lning as follows. For i= l ,2, ..., p, if xi=T ' . 

colour vatex u (resp. v) of Xi by vertex 0 on the upper (nsp. lower) dincted - 

cycle and, if x,=F, colour vatcx u ( m p .  v) of Xi by vertex 0 on the lower(resp. - , - 
, , 

. . 
. upper) k t e d  cycle. Since all ClaYSU arc satXk&, every copy yi of Y . * 

(i= 1.2, ..., q) has a labelled vertex which is coloured on thc upper dircQcd cycle. .. 
"+ 

By the claims, this partial colouring can be extended to a D(k, 1)-colouring of G. . 
L 

- - 



i , C 

e ' 
4 

. , Since a semi-complete digraph ha; a spanning tournament, the; is a 
t 

vertex in B is adjaccat to a vatex in A. 1t thtnforc makes sense to.& about 4' 

the &st strong comp0nent;or the next strong component, etc.. When we number 
I 

+ " B I 

the strong components of a se&ornplete digraph as Cl. O, .... Ck, sayi-we 

alwayi assume that CI is the fi&t s&g component, C2 is the scdond.sfrong 
: 

componen~ andp= on. 

i . , 
5.1.7. Corollary. Let H be a semi-complete digraph in which every strong. . I 

I . .  

component is a vertex or a directed 'cycle. If H h h  at least two direcqed cyc1d, 
* 

then H--COL is NP-complete. . - 
0 

Proof. ' 
1 

We first show that it is ;nough to consider the case' where H has exactly- . . 
> 

two non-trivial, strong components. Suppose to the contrary that H bas at least 

three non-trivial strong componenp. Coasidcr the third nbn-trivial stroqg , 
P 

r 
.. 

component, and let' &, j2, ..., jr) Ik its vertex set Let J be the digraph wit6 ,. 
L- 

vertex-set (x ,  f l ,  f2, ..., f,), and arc-set (xli:  i= l , 2 ,  ..., t). Let H* be the result of 

applying the sub-indicator oonstru@on with respect to ( f i x ,  f l ,  12, .:., It) and. 

jl, ji, ..., j; to H. Then H* is the se&-complete digraph induced-by th= vertid& 

belongigg io those strong components of H up to, but not ipcluding, the third 

nontrivial kmng component Thus has precisely two non-oivial strong 
4 

components. It follows from Lemma 3.1.8 that it is suffiaent to SNOW that He- 
* 



COL is NP-kornplete. 
+. 

> 
I I 

*e ndw prove the result for semicomplete digraphs G with exactly twcy -. 
nontrivial strong components. Let r and s the length of th.e fim and second 

I 

t .  4 
*;*I 

directed cyble'h G; resp&tiv~ly Let G* the result of amiyidg the sub- . ' 
i s  2. 

indicator construdion && nspc* to (c,, 0. free) to G.  kcal all &t each mn- 
4 ' 8  

1 
6 'I VI ',% 

trivial shdng component of G is a,dhaed cycle.) 'Ibc &ge of C;+& G is a union. * 

i- . _ - .  
*. of directed cycles. That is. Be &vial strong componenir! an e b a t e d . b y  the : - - - . . 

sub-indicabr cbbsmrtion. Since G +s exactly two (disjoint) directed cycles, it , 

i 

t .: 

fobws that G* is b(r, s). Sin- k, s q, the D($, s)-colouring problem6is NP- 
* 'l V .( 

comblek. ~h&fore H-COL (is also NPkomplete. . , 
s . ,  

' _ .  Ib . . . r *  -, , T- 

\ .  Let TI, T2, ..., T5 bithe tournaments shown in figure 5.1.2. 
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5.1.8 Lemma. For i = 1,2,  ..., 5, the Ti-colouring problem is NP-complete. 

Proof. 

I f  i= 1 ,  the result TI* of a+lyin4 iha s u b - h d k a ~  cmsrmttioll with respect . - 
to (P6, 0 . 6 )  and z to TI is a four-vertex tournament with two &ec@ cycles. 

Hence TI-COL is NP-complete by Lemmas 3.1.8 and 5.1.5. . 
Similarly, if i=2 ,3 ,4 ,  the result Ti' ~f applying the sub-indicator * 

- r' 
constmction with respect to (P4 0,4) and-t to Ti is a four-vertex tournament 

"' 
b.. 

with nuo dircncd cycles. As above,' T,COL is NP-complete by Lemmas 3.1.8 

and 5.1.5. 
' - . . 

It =mains to prove that TS-COL is NP-complete. The proof is similar to ; . - - 
iheorcrn'5.1.6, except that the transf~tllliition is 'from CS AT. We will simply , 1 

state the necessary claims, which can be easily v e m d  
I 

C.CAIM. In the tournament T5, 

N 3  = V ) ,  i 4 ,  and 

C 

Lst X and Y be bce digraphs shown in figure 5.1.3 (a)  and @), rcspectivcly. 

i 

fltAIU In any T+olouring of X, one of the following holds: 

L, . > (a) colour(u) = 4, and colour(v) E ( 1 . 2 , 3 ) ,  or 
1 

, . (b) colourfv;= 4,  and colouy(9) "E [ 1,2,  3 ) .  

Mortover, the p s d d  coloring of ( a j k  (b) can be extended to T5- 
. I  - 

d c o l 0 ~ g s  $x. , 



CLAIM. There is no T5-colouring of Y in which II; 4, i3,aod an a l l  
6 

co1oure.d by 4. On the other hand, any partial colouring of ii,+ l*, 13, and l4 by 

colours in [ 1, 2, 3,4) which uses at least one cobur in 11, 2, 3) can be extended 
7.6 

Having established &ese c l b ,  the reader should have li&difficulty in 

completing the proof. . 

Figure 5.1.3. The digraphs X and Y. .. 

-, 

5.1.9, Lemma. Let T be a strong tournament with at least five vertices. Then 
i ,  

, either 

(a) There exists $ vertex v such that one of T[N+(v)], T[N+2(~)], TIN-(v)], 

T[W2(v)] has at least two directed cycles, or 

(b) T is one of TI; T2, ..., T5 (see figure 5.1.2). = -. 

Proof. - 
. " 

.Assume (a) does not hold. We show that T is one of TI, T2, ..., T5. (It is I 



. , 
i 

easy to check that (a) does not hold for T I ,  T2, ..., T5.) . -  eb 

4' 
X 

Suppow first that T is not two-com&ud Thus them exists i 'vmex xi , 
such that T-x is not &kg. Let Cl, 0, ..., c k  (k 22) be the stmng components of 

T-x. Since T  is strong, some vertex of Ct (resp. Ck ) is adjacent from (resp. to) x. 
. - I  

Every vertex of Cl (q. Ck ) is adjacent to (resp. from) all vertices belonfig to 

€2 u C3 u ... u Ck (rtsp. C1 u C2 u :.. u Ck-l). Since (a) does not hold, , -  

. IV(Ci)I S3, i= 1 ,  2, ..., k (since any strong tournament with at least four,vertices 
J ,:C' 

has as least two directed cycles). 

We claim that T-x has at most one non-trivial strong component. Suppose 
. >  . 

C ' 8  / 

Cr and CS, r < s, art both non-trivial strong components. If r > 1 ,  then it is easy ta. 
. > 

+, . 
check that (a) holds when v is any vertex of Cl. Thus r= 1. Similarly s=k, and . A 

* \ 

therefore lV(Ci)I = 1 ,  l< ick .  Let C1 be the directed three-cycle a, b, c, a, and let 

Ck be the directed thrce-cyclt d,  e , f ,  d. R d  that x is adjacent to a vertex iz of - ' 

5 

C1, and is adjacent from a vertex d  of Ck. Then N+2(ah {x ,  d ,  e, f), so c and f also 
. - 

8 _ . .  
'arc adjacent to x (othdwisc ~ N + ~ ( U ) I  contains two directed cycles). ~ imi l&l~  x  . . 

, I 

is adj-t to b and c. But tscn iv+qB) 7 (i, e, b, c,n,  so T[N+Z(d)] has two 
r; 
.* 

-.directed cycles, a contraditi02 'Thus ~ - x * h a s  at most one non-trivial strong 

- c'm 
v(Ck)= { y  ). Then, & above, x is adjacent tofa, b, &d 'c. d IV(T)CS, then T=& ' 

d b i 
$ 

. - 
Hence.assume IV(T)I 2 6, so that k23, and let c= ( I ) .  Then N+2(d {k; x, $ z), C 

.. 
which induces mnt than one dimad cycle, ledding to a contradiction. 'IEe caset 

.- 
where dk is a dirr*cd three cycle is six@ar, and also'lcads only to T=T5. 

Pbw suppose that for somc i, 1 < i < k, 0 is the directed three cycle - . % 

I 

a, b, c, a. kt V ( f l ) = J y ) ,  and let V(Ck)= { I ) .  Since T is stmng, z is adjacent to x, 
I 



- 3 ,. 
and x is adjaceht to y. sir& N+2{y) 2 {a, b, c; x}, a@ (a) doei not hold, either x - 

is adjacent to a, b and c, or x is adjacent fkom a, b and c. In the f&t case, 
-- 

N-2(c) 2 {a, x. y, 2) .  and in the second case N+2(a) 7 {c, x, y, I ]  ;-Both of *SC 
_ *  ' , ' 

sets of vertices induce at least two'dincrcd cy=les, con- to our &sumption. + 
I - Thus T-x is a transitive tournament. h V(C')= {vi], i= 1,2. ..., k., since T is , - ' 

9 ' _  

strong, x is adjacent to vl, and vk is adjacent to k. Suppose IVfl)I.=S. If. - - 

xv% xp3 E V(V, or if v g ,  v g  E V(T), then T=T1. Ifnt3, v g  E. Vv), then T=T2. 

Finally, if xv2, v g  a V(T), then (a) holds. because N+2(vz) = { x ,  vl, 4, v4) ,  

which induces mom tha. one directed cycle. Suppose now that IV(T)I 2 6. Thcn x 

is adjacent to v2; otherwise N+Z(vz) 2 (vl, 9 ~ 1 ,  IQ, x } ,  v d  this set induces mo& ' 

than one direct4 cycle. Similarly4 is adjacent to vvj; btherwise , 
L .  

- a  b 

N+2(v3) = {vl, v2, vb  x ) ,  and this vertex set induces m m t h k  ode-directed 
k1 cycle. But now N+z(vl) = [v3, v b  ..., vb  x}, which induces marc than-0x1 directed ' -. 

7 ' /  

cycle.J%is completes the proof, in the case where T not twoionne+te& 
> 

* 

Ndw suppose that .T ii twoannected. If IV(T)! r 5, then 3 % ~ ~  !&a it is . 
- - 

a , w  

the only two- con^ to+nt on five vertices. Hence assums T has at 

least six vertices. We slioy @t if (a) das not hold, then-T = Ti. 
, I  

L* x -tx a vertex of daximm oot~egrec in T: @e s ~ o w  N++) N-(x) . . - 
, + 

By oq choice of x, W+(x)l2 3: Moreover, e v ~ v m e x  in K ( x )  is Gjgcent to ii .+ 
I 

1 

. If some vertex y in ~ - ( x j  is also'adjacent to every vertex in N+(*), then* 
i < - 

b ' - W+(y)l> W+(x)I; contradicting the maximality of d+(x). Thus every yerttx in ' - 
- 1  11 r , . 

-I__ f .  . ' 
% 1 

, $' .. 
N-(x) is adjacent from'ayertex in N+(x). -. 

nN-(x)] k d  ~~+(x)] ,~resptct ivel~.  Since (a) does not hold, each of these'' * ' 

* _ -  
tournaments has at most one non-trivial strong component \ I  - 

. . 
C v 

A 
. < 

71 



- h 
\ 

Suppose IV(O1)I 2 3. Then, since every vertex in N-(x) is adjacent -8, 
I * . . 

L -. * * 

vertex in N+(x), and every vertex in N+(x) is adjacent h m  a vertex in Ql, . 
. - - F a.-- 

N+W=V(T)-x. Since T-x is strong, this vertex-set induces a strong tournarjoent . . 
. . % 

-with savcral clircncd cycles, which is a contradiction. Hence 01 is tri&. Let 

V(Ol)=(ol ). Then N+Z(x)=V(T)- (x, ol 1, and thus T-x has at most one non-trivid 1 

strong component. 
t 

-- 
We claim that T[N-(x)] is transitive. Suppose not, and let Ij be the d q u e  . - . , 

" 

strong component ofT[N'(x)]. Suppose j > 1, and let Il = (il ) . Then . . ; ,; . r: 

- - .  
N+2(il) 2 N+(x) u I,, which induces a solrmament with at least two di&ted . - - 1 

% 

* . -  
cycles, a contradiioh , Hence j = 1. If some vertex belonging to N+(x) - 'al is . 

? .  
I .. 

adjacent to a vertex belonging to 11, then N+2(x) contains at least * .  tsyd directed- . , 
. .  - . +  

cycles. Since every vertex belonging to Il must be adjacent from a vcIittx i& * 

. . 
N+(x),thcvmexol isadjacenttoevuyvertcxinIl.Butthen,sinceo,'is . - .. . 

adjacent to al l  out-neighburs of x except itself, d+(ol) > d+(x). which is a. : 
, 

d 

b w . * %, . . 
. - . . L '  

,I -. . - ,.. . ,  , . ,  

contradictioa This prwes the claim. I;it Ij = $ (J = 1,2, ..., p). : :::a ' . . , . . .  . . . .. < + _  _ .* 
\ A  

* ,. 

Next we show that 2 5 &(x) S 3. h c e  T is two-connected, .very vertex :. . -'. - ; , 
. . . > 
,,. ? . .. . . 

. 6 .  )I 2. . - ., ..- * .., m has in-degree at least two (and outdegree at least two). Thus . - 
." . .. - . - -  . - r 

. I  - 
. .. -. 

. - Suppose that b(x) > 3. 'Iben N+2(il)'i N+(x) u (x) u (is, id, . ~f some-.: . -' 
-x ,. " 

. - 
, . -. ' .  - '.., 

. -. . .  . . -. --. 
vertex belonging to N+(x) - ol is adjacent to a vertex belonging .id, ,i., ip f.;' ,:. * -  ,. - 

I . ,  , .  . . . . ., - 1 
. . 

then N+2(il) contains at least two directed cycles~Since every vertex b ~ l o n & ~  . . - a *  . 
-. . - "2 

' . to I1 must be adjacent h m  a vertex in N+(x), ol is adjacent to every vertex in. 
I 

, . 
w a. (is. id, ..., i p ) .  Since we must have d+(olJ S d+(x), this set has size at must one;. . 

" I ,  * , 

that is, p S 3. I 

L * . . 
. ip* Wc claim that W+(xJ = 3. aed W-(x)f= 2. S~tppesc not. Let r be a vatex in 

0,. and let s be a vertex in N+qol) that is adjacent to r. Since T is two-co~ected, 

- 7 2  

. , 
- * 

1 .  - 
I 



I * L 4 - C .  
. \ " 

r has out-degqe at least two. suppose ru Y E(T). Note-that u E N-(x). If ol i s  
= I '9 

r - .  . , . . " .<.- 
< 8 +.,- 

adjacent to any vostex &longing to N-&), thtn ~ 9 ;  f rF ;., u, XX), ~ ~ c h  -- . - - I% 

+, d ,  . . " * ?  J. - at shut two directed cycles. ~ h u s  mry vertex ~ ~ h g i n g  to ~-(x). $ ..* 4. - .- . ' -  

adjacent to ol. If u is adjacent m a  vertex v in 02 ,  agaiajt is easy to see ch'at 

N+2(~). contains at least kvb dircc&d'cycles. Therefore i$ery)wi& 0, is 
* .  2 

. . adjacent to u. There exists a verfex z E O2 for which t6m is a directed (r, r) path 
' *' 4 

of -l&gth.two. But then N+2(z) 7 ( r, u, x, 6; } , which induces at least two directed 
> Q k . *< 

cycles. There- W-(x)t Since T has at least six vertices. we must have 
\ 

W-(x)l = 3 , 4 d  WW-(;)I= 2. The claim is now proved, 
S 

Finally we pkv= that T ='T4 It has bed shown that N+(x) NN-(x) both, 
- 

induce transitive to&nts. Let Oi = (a i ] ,  i = 1.2, 3. 1t.rcmains to detemini . 

the orientations of the k c s  between N+(xJ and N-(x), Since T is two-confiected, 
'i 

d+(*) 2 2, d-(ol) 2 2 , and d+(o,) 2 2. 'Ibus 03 is adjacent to both il and i2, o1 is . . 

adjacent from at least one of i, and i2, and o, is adjacent to at least one of i1 and 

i2. If o1 is adjacent-to one of il and i2, N+Yo1) 7 (x, il, i2, u3), wnJl induces at 

. least twodirected cycler Themfore ol is adjacent to both il and&, Similatly. if 

ilx E &TI, thenN+2(x) induces a strong tournament, and if i g  E E(T). then 

N+Z(~,) induces a strong tournament. Therefore o, is adjacent to both il and i2, 

The proof of fcmxna 5.1.9 is now complete. . 
- ,  

L - .  " 

Lemma 5.1.9 asserts the existence of a vertex v such that one of T[N*Z(V)L i % 

- .  
B 

and T[N"(v)J has at least two ~ ~ ' c y c l e s .  If, tkrc i$ a vertex x such that 

N + w  (rev. N-(x)) inducts at l&t two kt& cycles. P cap be ch&ea ;o ly: a? 
+ 

- 

in-neighbwr (resp. out-neighbur) of x). . 
=4 - 



'Assume the statement is true for all t ~ m a n l e n ~ ~ o n  at most k 

vertices, and let T be a (k+ 1)-vertex tournament with at least two directed 

9 
cycles. 

J Suppose first that T is not strong. If every strong compohent of T is a . 
2 i 

vertex or a- k r e d  cycle, the result follows h m  Corollary 5.1.7. Otherwise, T : ' . . "". 

has a strong cornpent C with at least four vertices (and therefore with at least 
L b 

two directed since' c doe$ not admit a homomnphissl to- a dincted cycle, . " 

" 

&d since the C-colouring pr0b1,ern is Np-cdmplete by the induction hypothesis, , 

2 
T-COL is NP-complete by Lemma 3.1.6, b 

\: Now suppose thatthat T is strong. If T is o& of TI, T2, ..., T,, the result follows 
. *? 

from lhmna 5.1:8. Otherwise,. let v be a vertex such that one of TEN+2(~)] and % r x  

* 
8 

T[N'2(v)] has at least two directed kycles. Suppose the former case holds, the 
r 

latter case being similar. Let be thd result of applying the sub-indicaror 

constructidn with respect to (Pz, 2,O) and v to T. Then P=TEN+*(v)], so the 

tournament T" has at least two d i r e q d  cycles. Moreover ve ~ ( f  ), so f has at' 

most k vertices. By the induction hypothesis, the Z'kolouring problem is NP- 

complete. Hence T-COL is also NP-coxx$lete.' 

Ths d t  now f a o w  by strong inducti6n. . k 



' 5.1.11.  heo or ern. Let T be a &rni7complete digraph 4th at least tyo dincttd 

cycles aid a unique two-cycle. Then T-COL is NP-complete. 

Proof. 
, - . , 

. -. 

The proof is by strong inductiombn IV(T)I. ' +. 
BASIS. By Leqmas 5.1.4 and. s.rd the stat&ent is true if T has 8t most four 

. 6, % uemces. . ~ - 
INDUCI'ION. Assume tpc statement is true'for all such semi-complete digraphs 

&th at most k yertices. Let T be a '(k+ 1)-v'dx semi-complete digraph with at 
1 

least two directed cycles, and a unique two-cycle [a, b]. If T is not s t m y  then 
% 

i) 

. - - the result follows using the 'sank ar&ment nr in the analogous case of .Theorem 

5.1.10. We may therefore ass- that T i6 arong. Then are two cases to 

. . - .t . . . . . consider. ' 
, , ' >  ~8 . , 

. i" 
. 3. 

" T '  

..' 

CASE 1. Th- exists a vertex v which is adjacerit to both a andb; or a 

vertex v' which is adjacent from both a and b. 
* 

4 

We prove the result on the assumption that v exists, as the ether 

case is similar. Lct Jl  be the digraph consmcted fkom C2 u (x ,  y] by adding the 

arcs yO, yl ,  and &. Let T be the result of applying the sub-indicator consauction i 

* - 

with respect to (J l ,  x, y) and b) u W. Since T is strong, W 

is.not empty. Also, W = N+(a) b N+(b), h d  v e W (hence- lWI 5 k). If T hap at , . . *. 
r - 

least two directed cycles thk result foIlow~from the induction @thesis Hence , 
w 

' -+@ 

we may assume that [a, b] is the unique diredted c s l e  in p. Tberefofc the ' d 

- > 

tournament induced by W is transitive, and h and b arp each adjacent m every 

vertex of W. Let J2 be the converse of J1. Lct w be in W, and .kt T be the rest& ' ' 

> ,  

of applying the sub-indicator construction with respect to (52, X, y) and w to T. a 



Let V(T-)= (a, b) u Y, Mote that Y. = N-(a) u Nr(b), and that w e Y. The set Y 

is not empty because v E .Y. Hence 3 5 IV(T--) I; k. If T- bas at least two 

directed cycles, the result follows from the induction hypothesis. Hence we may 
P 

ass& that [a, b] is the unique directed cycle in T--. It follows that Y induces a 

qansitive tournament, and that every vertex of Y is adjacent to both a and b. 
'. 

Since every vertex in V(T) - b is either adjacent to a, or from a, 
*. 

Suppose IWb1. Since T is strang, some vertex w E W is adjacent to a .. 

vertex y E Y. If y is adjacent to some other vertex we E W, then N-2(w') contains 

(a, b, w, y). Since this set induces more than one W o t e d  bycle, wc have a 

contradiction. Therefore every vertex of W is adjacent to y, It is easy to see that 

N+2{a) contains (a, y ) u W. Moreover, b b ~+2(a). Let ? be the result of 

applying the sub-indicator construction with respect to (Pz,  0, 1) and a to T. Then 

T- = T[N+2(a)], so b e -Y(7'- ):Thus 1"- is a tournament with at least two 
4 

directed cycles, and so the 1"--colouring problem is NP-complEte by Theorem 

5.1.10. Therefore T-COL is also NP-cmpletc. It remains to consider the case 

IW = 1. A similar argument shows that we may assume In = 1. But then T has 

only four vertices, whence the result follows from Lemma 5.1.5. This completes 

the proof of case 1. 

r '  

CASE 2. No vertq is adjacent to .both a aid b, and no vertex is adjacent 

both a and b. * I 

I . . I 

, L u A  = N+(a)- b,andB =N+(b)*.+ThenV{T)=A UB* ,  b), 
+. 

every vertex in.h is adjacent' to b, and every vertex in B is adjacent to a. 

Suppose neither A nor B is empty. Assume first that MI> 1. Let x be a 



vertex of the initial gtmng component of nA]. Then N*Z(x) contains (a, b )  u B, 
. , 4 L 

but not x. The nsdt T of applyihg the subindicator construction with respect to 
- (Pa 0,2) aud x to T is T[N+z(M. The tournament T has at least two directed ' 

cycles. Thus P COL is NP-complete. Hence T-COL is also NP-complete. Thus 

we m y  assum IAl = 1. A similar argument shows that we may also assume 

: IBI = 1. But hen T has only 'four vemces, whence the result follows from Lemma 
- 

, , -  + 

Now suppose thk one of A and B i s  empty. Without loss of generality B is . + 
1 . - . 

empty. If IAl = 1 or 2, the result follows f;om Lemma 5.1.4 or 5.1.5, respectively. A 

.. Suppose that UI 2 3. Let u be a vertex . in @e . initial strong component of T ~ A ] .  
il *.? . ' 

There exists a venex v E A such th& tlierc is a directed (up v)-path of length 
w 

two. Therefore N+2(u) 2 (a, b, v ) ,  which induces two directed cyclcs: Since u 
a 

A" 

e N+~(u), the result follows, as before, from the subindieator construction and the i * 

, f 

induction hypothesis. I 



** 

Proof .o'T Theorem 5.1.1. . fl 

.- > 
Suppose the statement is false, and let T bc a ~ountcrcxar6~le Wth the . 

' . 
' i . >- & B " 

minimum number of vertices. That is, T is mihimum vertex semi+ornpbte ' . - 

digraih with at least two directed cycles fbr w k h  t h ~  T-colouringApmblem is n* 
* 

~~-cd&plete. We derive some structural propertie3 of T, and ultiqstely a 
L 

, -  
< .  

c - contradiction. * - * .- 
\ . . 

,It follops from Theonms 5.1.10 and 5.1.1 1 that T has 'at least G o  ddubk ' 
v < 

" .  . - .  L 

arcs, and, by Lnnmas 5.1.4 and 5.1.5, at lcast frvc <atices. If every strong' . t 

. . 

component is a vgnex or a cycle, I'-COL is k P - c ~ ~ l e t e  by ~ b ~ l l a . &  5.1.7. 
i 

Otherwise T has a strong componeht C with 6tktcast two directed cydes. By the' 
..-I 

I" . . 
rmrumalit);'of IV(?$ the C-colouring problem is# NP-complete. &ce c docs not - 

map to a directed c$rcle,' T-COL is NP-complete b;y '- :3.l i6, kwhh is* a , 
-8. 

1 
z .  

. . I I 
. . ,* 

" . 'Z. 

(1)'~; vertex v of T has more than one directed cycle in T[N+(v)] or , . 

Suppose pea exists a ymex v such that W(v) induces more than one. 
' 

a 

r .  
< " 

I ,  

A- 

- 
, dincted tycle, the other case being similar. L& .IL be the result of applying the 

r 
4 ,  

subindicator conhction. with respect to ( P I ,  0, 1) ind v to T.. Then - . A . , p 
tF t 

1 - -  * 
' \ T&=T[N;(V)]. Since the semi-completedigraph T has at ,least ,two directed , 

4. 

. cycles. !.and v r V[P)# . ,  the Palouring problem is NP-complett. H A C ~  T-COL is ' . : . 
< "3 . , 

- .  
, . 

, .  . , ::. - ., s - 6 ,  

. .  . 
, , .  also NPkom@ete, which is a contradiction$ . ' .- 

, .* L.L .fi:. . , , - . ,  ,. .; * . <  I : , '  . >. . .  
. . I *  t i' , . 

5 .  . * 8! .a .. . , . , % 

1 .  
. . ,  . . ,  

. . >  



L 
r*  

, - r .  

I - ,  , -  (2) ~ v e r y '  verfex of T is kldent with- exactly one double arc. - , 
.-< b * - 

First suppose there is a vertex v that is not incident wii a double arc. Let 
v 

T be the nsult of applying the sub-indicator construction with respect to . . .-.* 

. + - + . : (C,  0, frec) to T. Then T is a &miamplea  digraph with at least two double 

I .  
. arcs (and hence more thin one &cted cycle), and fewer vertices than  since 

%. > 

.ve Vfl-)). By our choice of I: the 7kblouring problcm NP-complete. Thus T- 

inciderq. rat least ~ n e  dopble arc. . 3 c' - 
. , - I  

/ 4%  . .  
a Now suppose that b is a vmex of T which is'kcident with the doubli arcs 

+ A .. 
I 

/ ~ ' r  

. [a, b] and [b, c]. Shce undirp) is bipete ,  a and c arc not joined by a?doublc arc. - + 

1 Q 
.-i Without loss of geMality a is adjacent t~,c Let T' be the semi-empletc digraph I . 

'7 

.. ' Suppose there is a v&x x of T' and a double am k b]. Since Thas at . *  ." 
least five vertices, t he  is a vertcx y in ?*;I. k t  Ly, z] be' jhe double arc incident , ' -  ' % 

d 3 ,, 



. .  , . . - 
t i  

* L 1  - - * r  

- .  s 

withap. We know that,z # c and z # a. But then, N+(c) contains the double arcs 
' [b, X] and fy, z], contrary to (1). Thus undir(T') is a sprinning subgraph and, since 

J 

c is adjacent to every vertex of V V ) ,  T consists of a single doubIc arc [k, a. By 

(1) either the vntei b is ad.accnt.to both k and I, or is adjacent k r n  both of ' 
5 - 

, . ; 
them in the former c& g4(b)i {a, c, k, 1)  . a d  in the latter case 

L.! 

N-(b)= (a, c, k, I J . S h e  this set of vertices induces more than ,we directed cycle, 
A 

we have a ~ntrajdiction. 

- This completes the proof of (2). 
. 3 .  

r r  

, ., 
.I Let V(T)= (ai, bi: i=l.;2; ..r, r!, where [a, bi]isadoubltarci=l. 2. ..., r . .  . 

I 

Since V(T) > 4, r 2 3. 
. . 

1 

3 

(3) The only possible eo@$urations for the arcs betweenJwo doubie arcs .I 
* ,  . j  

are shown' in hgure- 5.1.4. 
*b 

1 .  

r Let [a b], wd [c, dl be double arcs. SuppoSe that a is adjacent to both,c - 
h 

and d. Then, 'sinc&~+(a) 7 (h, c, d), (1) implies that either b is adjacent to both c 
, d * ' .  . 

and d cn is adjacent from both of them. Thus we have configuration (i) or (ii).- 
i t.-, 

Similarly& both c .~rd  d are ijacent to a, 'the sam two configurations arise. If 
, . - 9 

+ no vcrtw is dacent to both veitices of k h b l e  arc and no vertex is adjaderit 
'-" 

both vertices of a double PIC, the only possibility is fonfiguration (iii). 
J 'r 



~ i g u k  5.1.4. All poss$ble configurations. 
L 

4 . 
(4 '  or every vertex v of T, d+(v) =* &(v) = r. 

C 

. a  ." - ' r 
L .  

', Since neither N+(v) nor N-(v) induces more than one dou& arc, 

r.1 ~ , ' d y v ) ,  irfv) 4 r i  1. It suffice's-tq p ~ v e  that no vertex '4kout-degree r+l.  , . 

, Suppose to the contrary that d+&)=r+ i, Without loss ~i p&ity ,  
, r 

8 4 .  I 

, ? N+(al) = (%,a3, ..., ar, b l }  and N+(b2) = (b3. b, ..., b, bij. Let J be:the digraph + *  

constructed h m  C2 v { v } by adding the arc.v0. Let p- & the &&t if applying 
* s 

the sub-indicator construction with respect to (1, I+ ;) and" a1 to T. Then. . - I 

.*. * d 
. - 

- V(T-)= (b2, b3, ..., b,~a,, . 6  q), so T- @ataim the dixcctcd two-cy& [az, bJ.' If T- 
%, 

- h a  &other diraca cycle, th& the chkce of T implies that Tm-COL is NP- 
, - .  

complete, @hence KCOL is Plso NP-complete. Hence [az, bJ is the un&& . * I 
* *  I 

dirtcrcd cycle ki P ,. Therefore bj is adjacent tohi and b2, j=3.4, .., r., If then 
4 ,  ' ,.. b .  - 

exists k, 3 S k d r, such that b$, E E(T), then N+(bd contains (al &, br, b2), 
t 

which induces moq than one directed cycle, contrary to (1). Thus bl isadjacent , - 
* to 4, b4, .:., br. M-ver a2 is adjacen o bl; otherwise N-(ad contains 

P r c  P ' . *& 

*A (aJJ bl, 4) w&h induces two dire~ted!!~cles, contra~y to (1). Let T- be the 

n resat of applyin~the sub-indicator construction with respat to (J, 1 ,  v )  and b4 to 
* 5 

T. Then al c V(T-) 2 (b l ,  b2, 4, q). Since T- has at le'ast' two directed cycles 



md fewer vertices than T. the ?-colouring problem is NP-complete. Therefore 

T-COL is also 'kbcoxr$letc, a contradiction. This completes tbc proof of (4). .. 
, . 

", (5) Every vertex of T is adjacent to exactly one vertex of each double arc 

(that is, the arcs between any two double arcs form configuration (iii)). . , 
Soppose not. Assume that ol is adjacent to 02 and b2. If al also is adjacent 

, - , , b 

to ai or bi for some i, 3 S i S r,. we cqh: obtain a contradiction' by arguing as in (4). 

Thus al is adjacent h m  {a3. q. a4 bb* .... ar. br).*'Bys.{4), r=3. By  applying (3) to. . :; 
' <  - 

the double arcs [al. bl] and [a2. bJ1 @ , . then applying (4), we secihat T is 

, . .- b 

e l  Suppose T=%. It is easy to check that the result T- of applying the sub- 

indicator construction with rrspect to JP2, 2.0) and al to T is T-bl. Since T has 
J 

two dasted cycles and fewer vertices thPd T, the T-colouring .pimb&m is NP- . . k> 

complete. Thus T-COL is also NP-complete, which is a coqtradiction. 
. * 

Suppose T=T7. Let J.b the digraph constructed from C2 u (u. v )  by adding . ' 

I 

i -. e 

the arcs uO 'and lv.  Let Ta be the result of applying the sub-indicator construction 

with respect to (J, v, u) @ al to T. It is easy to check that T"=T-al and, as 
. 

above, we have a 'contradiction. Q 



figure 5.1.5. The tournaments T6 and T7. 

Let J be the digraph constructed from C2 u (u, v )  by adding tbe arcs uO and 
I- 

- .. , lv. Let T be the result of applying the sub-indicator construction with respect tp 

(J, u, VJ and a* to T. It follows from the first paragraph of the proaf of (5)  that al is 

not ih T-. undir(T) is a disjoint union of double arcs, and al is not adjacent to both 

ends of any double arc. Since, by (5). every vcrtcx of T is adjacent to one vertex 

of each doyblc arc, ' I C = T - ~ .  As r 2 3, the digraph T has at least two directed - 
1 

cycle;. By our choice of T, the ~ - c o l o ~ g  problem i s  NP-corr$letc. Tkefo& T- 
m 

+ 

COL is also NP-complete. This contradiction completes the proof of ~ h e m r n  



5.2. Transitive Digraphs. - - 
j g  < , 

-., 

P - '. . I .  

In this section ccl~~@etely classify the complexity of H-COL .when . , . .: 
J i * 

.I * * -  . c .  - B  - 
the directed graph H is ~ertex-tksitive or arc-transitive. For vertex- 

< * 
i . , .* A .  -. 

+i ik 

transitive digraphs, we prove that the H-colouring problem is -ate 1 

unless H admits a rttraction to a directed cycle (cf. Theorerxl 5.2.4). This . 
verifies Conjecture 1.1 for vertex-transitive directed graphs. Since there are 

. . +. , 
arc-transidve dig&hs with' jaums or sinks, their classification is slightly 

\ 

. different (cf. Corollary 5.2.5). Note, however, that our classification implies 

# .Conjecture 1.1 for arc-transitive digraphs. In addition, we characterize, via 

conditions on the symbol, those Cayley digraphs that admit a 

homomorphism to a directed cycle (cf. Lemma 5.3.7). As a cm11ary, 
i 

necessary mf sufficient conditions arc obtained for a Cayley digraph to 
S 

retract to a directed cycle (6. Corollary 5.3.8). Thus we give a structural i I t  

* I - -  classification of the complexity of H-colouring by Cayley digraphs. 

The following thne l& + are a e&ntial to the proof of &e main 
. , 

' . 
i z ' r  

, v 
E 

I * 

5.2.1. Q m a .  ' The core of a vertex-mtn&ivc, digqtph is vertex-transitive. 

. - 
b t  H be the core of G. Then there is a retraction r:G +H. Let x and " " - 

6 A *  

- + f  k - \ 

of H. Since r(f(x))=r(y)=y, we have that H is vertex-transitive. 
as 



-. 
- I ,- .-- 

h 

5.2.2. Lemma. &et H & a directed graph and let (I,  u, v) be an indicator. 
' 7 

Let fl be the digkph that results from applying the indicator conmction 
C 

with respect to (I, u, v)  to H .  Then Aut(H) is a subgroup of AU~(H*).  

Proof. 
% 4 . L 

fi 

Since Aur(H1 is a group it s&ces to prove that Aut{fT) contains - 

Aut(H). Let f be an automorphism of H and let ab be an arc of H*. Then 
I 

\ 1 

there is a homomorphism hY +H such that h(u)=a and h(v)=b. The 

, & 

. ,  
' , .  1 - .  

-. 
foh is also a homouxxphism of I to  and f(h(u))=f(a) 

\ A 

. r 
, r 

Hence f(oY(b) is also an arc i f  H*. Since f is a one-to-one arc pqspving / .  - 
- e l  .- 

9 map, it is an automerphism of H*. - . . 
- R h  - 

> - .  . - - . * 

By Lemma 5.22, the digraph that results from applyidg an indicator 
' 

' 

, .-- 
.I. , construction to a vertex-transitive digraph is also vertex-iradsitive. 

w e  noy dcfhc a special type of indicator that plays a central role in \: . - 7  - k 4  

c proof of 'lhorern 5.2.4. A z-indlcrxtor is an indicator (I, u, v) such that .. t 

there is a vertex I that is 'tip ody  neighbour of v (the vAex remay be an in- 
Y 

. 2 - .  
neighbour of v m,'m olt-neighhpur of v). If z is an in-deighbour of v, we t 

L I 

- .  1*'* 

sometimes call (I,  u, v )  an in-r-indicator-and, &arly, if z is &,out- + , * 

neighbour of v, H)e sometimes call [I, u, v )  an out%-indicut6~. Ti$& 
d 7 

' special'iodicators are import&~t,h ink work on vertex-transitive digraphs 

because of the following lemma. 



, 52J'Lemma. Let H be a vertex-transitive digraph and let (I, u, v )  be an 
v 

\. . -. - m-z-indicatbf (msp. out-z-indicator). If therc exists a vertex x of H, and 
- + 

homomorp@sms I ;  and 4 of I to H such that h,(u)=h@) = x and . ;: , , . -_ .&AL- _ .. 

* - I 

h, (z)# h2(z), then either 

(a) E(H*)I > E(H)I, or 

@) E(fl)I = E(H)I, and N+H(hl(~)) = NfH(&(z)) 
" 

. . 
. Since H is vertex-transitive, every vertex is a homomorphic image *of 

-. 
. . 

= .  . .. 
the v e x  I .   his, for every vertex a. therecis a vertex b~,such that . < -  . 

- A e hl+H'(b) 2 jVtH(a). Hence the out-degrte of a vertex docs not decrease. - J . . 
-, 

(Every v e x  v of a vertex-trans'itive digraph has d+(v) = &(v) = c fur -some 
k . .  

constant c.) Therefore H* has at least as many arcs as H. Suppose equality 
I 

holds. Let r be the outdegree of every vertex of H and H*. But since '- 

, N+&x) contains both N+H(hl(z)) and N + H ( b ( ~ ) ) ,  the vertex ; has 
, 

. '-. d+,.(x) = r just if these two t-s&arc equal. . - - 
, * l  

4 

2 .  
" J 

4 v 

5.2.4. Theorem. a Let H be' a vex-transitive dignph with at least one 
* 

1 ,  

arc. Tben the H-colouring problem is NP-complete unless H admits a - 
remkon to a dirmcd cycle. I .  the latter case H-COL is polynomial. - 
Proof. 

.C We have pmriousli noted the second st&ment (cf.-the remark 
* 

1 , ,  ., 
* followiagTheO?.cm 222). The first essertion is pove8ly eoeasdtcwn . . - . -  c 

. 

~ b c a c o b u e r t ~ a m p l t - & ~ l h s ~ ~ o f v ~ a n d , w i t h i n a l l  . . , -  .I 

. C 

coun.terexanples orj. IV(H)) vertices, one with the maximum number of arcs. 
n .  



has' at l i s t  five vertices. \Nc may also assum without loss ofrgenerality 

. - that H is copnccted. Since H is not a directed cycle, each vertex has out- 

d e w  at least two. We &e the following sequence of assations about 
9' - .  

a the digraph H. 

(1) H does not map to a directed cycle of length greater thm.one. 

Assume H maps to a dirccttd cycle of length greater than one and let 
% 

k be the largest positive integer such that H -i Ct. The integer k exists 

becaiise H is strong (cf. the awment  prcccding Lemma 3.1.5). since the 
'e+  < 

core of H is not a dirccttd c*, Ck is not a subdigraph of H (since Ck 16 
4 

retract-f!, it is a r c k  of n given directed graph G if and dnly if it is both 
. 

a subdigraph of G and a homomarphic image of G). Thus(P, Q:k) is a good 
d h . . 

indicator. Let H* enote the muh of &$ying the indicate; consbuc~on. . I/ i ,  

with respect to (Pk, 0, k) to H. BkLemtep 5.2.2, H' is wrtm-t~~~sititrr. = , 

component of H*. Thus has precisely k isomorphic connected 
, 



components, aud so the wre of H* is a vertex-transitive digraph with fewer 
, -  - 

vertices than H. - 
& 

We claim-that the corc of H* is not a direcud cycle. By thc choice of 
4 

k, the digraph H has a collection c', @, ..., C of directed cycles such that 

gcd{l~(~i)l: i=l, 2, ..., m}& Each d gives rise to a dinctcd cycle ci* in H' 

of lengtb (l/k)l~(Ci)~. Hence gcd(lv(Ci*)l: i=l, 2, ...,omJ=l, &d H* does not 
-, 

&p to a directed cycle of length greater than one. Therefore H' does not 

retract to a directed cycle. Thus the H*-colollring problem is NP-complete 

(by the choice of H), and so H-COL is also NP-compfete. This completes 

By (I), H is not an orieptation of a bipartite graph. 

% 
I .  the remainder of this section, we omit from our proofs the 

observation that ;he digraph which results from applying the indicator 
- 

Qt 

.construction to a veoex-transitive digraph is itself vertex-transitive. 

(2) Every vex& of H is incident with a double arc. 

Since H is vertex-transitive, it suflices to prove that H has a double 

arc. Suppose not. men (P2, 0.2) is a good in-z-indicator. Let H* bc the 

result of applying the indicator construction with resfkct to (P2, 0.2) H. 

We that H* docs not retract to a directed cycle. Since H is* 

strong and docs not map to a directed cycle of length greater th& one, it has e 

a collection C1, @, ..., C"' of d i .  cycles such that 

g c d ( l ~ ( ~ i ) ~ :  h l ,  2, ..., m}= d. Each gives rise to a directed cycle? in H*. 
P ? A  - .  .'-. 

4 / 
. %  s I 

88 



' If lv(Ci)l is odd, IV(C~')I=IV(C~)I, and I V ( ~ ~ ) I = ( ~ / ~ ) I V ( C ~ ) I  otherwise. 
4 

 heref forb gcd ( lv(be)l: i = 1 ~ ,  ..., m ]=l. This proves the claim: - 
1 

By Lemqa 5.2.3(a), H* has at least as many arcs as H. If E(H')I > E(H)I, a 

the He-colouring problem is N&omplete by the maximality of IE(H)I, and'so H- 

COL is also NP-wqlete, which is again a contradiction. Suppose that equality 

holds. Let x, y, z bt vertices of H such that x and y are both adjacent from z, By 
C\ - 

L a m a  5.2.3@), ~ + h x ~ + ~ ( y ) .  Similarly, it follows from considering the hdicator* 

construction with respect to the out-z-indicator (P; 2; 0)  that N'H(~)=N-H(y). I f x  
P 

and y are non-adjacent, there is a retractionaH + H-x which maps x to y, - 
a r 

contradicting the fact that H is retract-fke. If x anb y arc qdjacent, 

implies that if xy (rcsp. yxpis an arc, then si9 is yx (resp. xy), 
* 

assumption that H has no double arc. This completes the p m f  of (21. 

. , - 

(3) B contains TI and T2 (see figures 5.2.l(a) and (b), respectively). 

Assaun~ H does not contain Ti. Thcn the symmetric imlicator (I,  u, v) 

shown in figure 5.2.2(a) is good Let Ho be the result of applying the G 
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indicator construction with respect to (I,  u, v)  to H. Then H" is loopless and * +' * ,,- 

undirrcted. Since undir(H) is s p d g ,  Ho is the eqivalent digraph of the 

underlying graph corresponding to H. Since H is not an orientation of a 
d 

bipartite graph, H. has an odd cycle, whence the w-colouring problem is 

m-complete. Therefore H-COL is also NP-complete, which is a 
-I 

contradiction. 

If H do& not contain T2, the argument is similar (the appropriate 
'I 

indicator is shown in figure 5.22(b)). \ 

L 

Figure 5.2.2. Indicators fbm (3). b 

D 

(4) Every vertex of H is incident with,at least two double arcs. 

Su~pose'to + the c o n w  that undiifH) is a pisjoint union of double 

arcs. Then the indicator ( I l ,  u, v) shown in figure 5.2.3(a) is a good in-z- 

indicator. Let H* be the result of applying the indicator construction with 

respect to ( I I ,  r, v) to H. It is not hard to see that Ho contains a transitive 

triple and, therehre, does not admit a retraction to a directed cycle. By 

Lemma 52.3 the digraph H* has at least as many arcs as docs H. If 
il' 

E(H*)I>IE(H)I, &n the H*-colouring problem is NP-complete because of 
I 

our choice of I$ and, conseque&y, H-COL k also NP-complete. Suppose 
3 

that IE(Ho)I=IE(H)I. Let [x, y] k a double arc. Then Lemma 5.2.3 asserts 
k 90 

\\ 

e 
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d 
that N+H(x)=N+dy). 

Let (I,, u, v)  be the in-I-indicator shown in figure 5.2.3@), and let 

H" be the ksult of applying the indicator construction with respect to 

(I, u, 'v) to H. By (2). E(H**) contains E(H). 

Suppose H** has a loop. As H** is vertex-transitive, every vertex is 

incident with a loop. In particular, there is a loop at y. Thus H contains a 
i 

directed path of lengtli two from x toy, say x,w,y. But, since N+H(~)=N+H(y), 
- a -  

-* 

if xw is an arc of H, so is yw. Therefore undir(H) is not a disjoint union of I 

Y 
double arcs, which is a contradiction. Hence H** i s  loopless. Since H does 

not map 'to a dir;cted cycle of'length greater than one md E(H**) 9 E(H), 

the digraph #** does not retract to a directed cycle. 

As above, we @chieve the contradiction that the H-colouring problem 
L 

r 

is NP-complete when IE(fl*)I > E(H)I. 

Suppose that E(Ho*)=E(H). Then, by Lemma 5.2.3, for any vertex t 

such thatxt is an arc ofH,N+,(t)=N+,(y). Butyxis an ax of H, soa  must , 
also be an arc of H. Since them exists at least one vertex t in N+H(x)(y), 

undir(H) is not a 'disjoint union of double arcs. This completes the proof of 

(4). , 
* * 

j 

(5) H eontains C,* (see figure 5.2.4). = 

Suppose not. Then the z-indicatm (5, u, v) and (Iz, u, v )  shown in 

- figures 5.2.5(a) and 5.2.5@), respectively, are good Let H* and H** denote 
, 

the result of applying the indicator construction with respea to'(Il, u, v) and 

(I2, U, v), respectively, to H. Both E(fl) and E(P*) contain E(H). If either 

containment is proper, we reach the contradiction that tk H-colouring 



,, . Figure 5.2.3. Indicators from (4). 

Figure 53.4. The digraph C3. 

% 

Suppose that E(H)=E(H*)=E(H'*), and let x, y, z be an undirected 

path of length b o  in H. Then, by Lemma 5.2.3. N+H(z)=N+&) and 

NN&)=Wdx).  Since H does not contain C3', neither u n xz i s  an arc of "\ 
\ 

'4 

H.  Therefore there is a retraction H + H - z which maps z to x. contradicting 
92 



the fact that H is rckact-free. t , . 

Figure 5.2.5. Indicators from (5). 

Figure 5.2.6. Subdigraphs from (6). * 

(6) H contains Al  orAZ ,(see figures 5.2.qa) and (b), respectively). 

Suppose not. Then the z-indicators ( I I ,  u, v )  and (I2, u, V )  shown in 

figures 52.7(a) add 5.2.7(b), nspectively, are good Let H* and He* denote 

the ~ & l t  of applying the indicator construction with respect to ( I l ,  u, v) and , 

(I2, U ,  v), rcpectively, to H. By Lemma 5.2.3, both E ( W )  and E ( W * )  contain 

E(H). If eitber containment is proper, we have a contradiction. Suppose that 



E(H)= E(H.)= E(H.*). Consider a hoxpomorphic image of  (Il ,  u, v )  in H, such 

that fit vertex u maps to x, and z maps m y#x  (the vertex y exists by (4)). 

By Lemma 5.2.3, N+&) = N+&). Since there a l d  exisa a homoinorphism 
ii 

of (I2, u, v/to H such that u maps to x and z maps to y. we also have 

N-(xx) = N - ( y ) .  But then there is a ntraction Id + H - x that maps x to y, - -2. 

3 

i - 4. 

which is a contradiction. This completes the proof pf (6). ,+ 

Figure 5.2.7. Indicators from (6). 
' .  

7 a~n- at least one of XI, Xy Xy Xy XS (see figures 5.2.8(a), 

Suppose first that H contains At ,  but none of X,,  X2, X,. Then the 

indicators ( I I ,  u, v) and (I2, u, v) shown in figures 5.2.9(a) and (b), , $ 

. ~ ~ ~ p e c t i v e l y ,  am g e  The remaining details are similar to those in (3, and 
* 
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(e). X 5 

Figure 5.2.8. subdigraphs h m  (7) through (1 1). 



Figurc 5.2.9. Indicators from (7). 

Similarly, if H contairy A, but none of X3, X4, X5, the indicators 

(I3, U, v) and (I4, U, v) shown in figures 5.2.9(a) and (b), respectively, are 
I 

a good. The details art again left for the reader. . 

(8) H contains neither XI nor Xy 
+ 

We prove that if H contains XI or X5, then the H-colouring problem 

is NP-complete. Since 4 is the converse of X,, it suffices to prove the 

result0when H contains XI. 

Let x and y be vertices of H as shown in figure 5.2.1 l(a). k t  * 

(I,, u, v )  and (I,, u, v) be the z-indicators shown $ figures 5.2.11@) and -- 

(c), respectively. - 



Figure 5.2.10.  ore indicators from (7). 

B 
I 

Suppose first that both indicators are good, and let H* and Ha* 
'% 

denote the result of applying the indicator constrbction with respect to 
/ 

(I,, u, V )  and (Iz, u, v), respectively, to k Both E(W) and E(H.*)sontain . 

E(H). If either containment is proper, the re~ult follows from Lemma 3.1.8 

and our choice of H. Hence assume E(H)=E(W)=E(H.*). Then, by Lemma 

5.2.3, N+H(~)=N+H(~) and N-H(x)=N)=~(Y). Therefore, either x and y an , 

joined by a double arc, or there is a retraction H + H - x whichtmaps x toy. 

In the fomxr case H contains an undirected five-cycle, and we are done by 

Lemma 4.1.1. The latter case contradicts the fact that H is retract-free. 



NO; suppose that one of the indicators is not go@ We may 
e 

assume tluq undir(H) is bipartite, otherwise H-COL is NP-complete by* 

Lemma 4.1.1. Let C be a component of undir(~) and let (R, B) beca two- 

colouring of C. Then H[R] is a vertex-transitive graph with fewer vertices * 

than H. If then exists a hoxbmorphisrn of either Il or I2 to H such that u 
- - 

. . 
and v map to the same vertex, H[R] contains a transitive triple. Therefore 

H[R] does not map to aadirected cycle of length greater than one. By our 
, . 

-=I 

choice of H, H[R]-COL is NP-complete. Let r E R. There exists an even - * 

integer k such that for every vertex x in R, there is an undirected (r, x)-walk 
- - 

- L. 

of length k Let P be (the equivalent digraph of) an ~11- path of length 

k, with origin a and terminus b. Let H- be the result of the applying the sub- 

inkcator construction with nspect to (P, a, b) and r to H. Then HW=H[R], 

and so the n&lt follows from Lemma 3.1.9. 

(9) H docs not contain X3. 

- - Suppose H contains X3. We show that H-COL is NP-complete. Let 
I 7 - 

x and y be vekces of H as shown in' figure 5.2 l2(a). Let (I,, u, v) be the 

in-z-indicator shown in figure 52.12@), and let H* be the result of applying 

the indicator construction with respect to (Il, u, v) to H. Then E(W) dT 

contains E(H). 
- - 

Suppose that E ( P )  = E(H). Then, by Lemma 5.2.3, N+H(x) = N+$y). 
I 

\ ,$ 
But xy is an arc of H, ,therefore H has a loop t y, which is a contradiction. 



Figure 5.2.11. Configuration and indicators from (8). 

Thus E(W) properly contains E(H). If fl has no loops, then the H- 
k 

colouring pbblem is NP-complete by Lemma 3.1.8 and our choice of H. 

Hence we may assume that H. has a loop. Thus H yontains an undirected 

triangle or the graph shown in figure 52.13(a). In the former case H-COL is 

NP-complete by Lcrnmn 4.1.1. In the latter case, let (Iz, u, v )  be the 



9-- indicator construcion with respect to (I2, u, v)to H. Note that E(H**J Lb -, - . . 
L + 

* contains E(H). ; - -- 

Suppose E(H**) = E ( H ) . $ ~ ,  as above, we see that H has a loop' at 
- .  

y, which i s  a contradict@. d.. 
* 

Thus E(H**) properly . . contains E(H). IfH*'has no loops, the H- 
I 

colornitlg pioblem is ~P&mplete by Lemma 3.1.8 ;md our choice of H .  
\ 

Hence we may assume that H** has a loop. Then H contains an undirected 
- 

triangle, the digraph Xi=, or the digraph shogwn in Figure 5.2.14 (a). In ihe 

first Case H - C ~ L  is NP-complek. ~he*&ond case c&cts (8). It 

remains to consider the last case. Let (1%~) v) be the symmetric &cator - 
shown in figure 5.2. la). we may assume that H does not contain an 

undirected three-cycle; otherwise H-COL is k?-cornplcte by Lemma 4.1.1. 

Let H*** be the digraph that rcsults from applyinithe indicator construction 
." 

with respect to (I3, u, v) to H . It may be directly v&ed that Ha** contains 

an undirected fiw-cycle. (Observe that since (I3, u, v) is an sh-indicator, I .  - -" 

- 

this means that the digraph Ha*( is superhard.). This com&es the proof of - 

e 



Figure 5.2.12. Configuration and indicato~ from (9). 
* - 

Figure 52.13. Subdigraph and indicator from (9). 1 



Figure 5.2.14. Subdigraph and symmetric indicator from (9). 
\ 

--- 
< 

does not contain Xz. ( 

Suppose to the contrary that H contains X2. We show that H-COL is 

NP-complete. It day be assumed that H does not contain XI, X3 or X5. Let 

x and y be vertices of H as show in figure $2.15. Let (I, u, v )  be the 

indicator shown in figure 5.2.9(a), and let H" be the result of applying the 
C 

indicator construction with respect to (I, u, v) to H .  Since neither X1 nor X3 

is a subdigraph of H, the digraph fl is loopless, unless H contains an 

un-ted triangle, in which case we are d i e  by Lemma 4.1.1. Note that 

E ( p )  contains E(H). If the containmmt is proper, the result fo!lows from 

Lc- 5.2.3 and our choice of H. Hena assume that E ( P )  = E(H). Then 

by Lemma 5.2.3, N + H ( ~ ) ' N + H ( ~ )  'Iberefm yx is also an arc of H, and so B - 
contains m u n M  triangle. The result now follows from Lemma 4.1.1. - 



- F i p  5.2.15. Codguration from (10). -- 

. 
\ 

ZT / 

(11) H does not contain X,. 

The p f  is similar to (10). The indicator needed is shown in figiire 

5.2.9(b). The details are omitted. 

Hence the digraph H can nofeexist. This completes the proof of 
-- - 9- 

Theorem 5.2.4. 

a 

5.2.5. Corollary. k t  H be an arc-transitive digraph with at least one arc. 

Then the H-colouring problem is NP-complete, unless H admits a retraction 
.w 

,to C, or P,. In the latter cast H-COL is polynomial. 

Proof. 

We havi already noted the second statement (cf. the comment 

following Theorem 22.2). Let H be an arc-transitive digraph with at least a 

one arc. We may assume without loss of generality that H has no isolated 
* 

- - -vertices. Then either H is smooth, or every vertex of H is a source or a sink. 

In the former case H is vertex-transitive, so the result follows from 

Theorem 52.4. In the latter case P, is a retract. This completes the proof.. 



C 

Since a connected vertex-transitive digraph H is strong, it admits a 

retraction to a directed cycle if and only if the length of every & cycle 

in H is &visible by the w t e d  girth of H. When H is a Cayley digraph on a 

finite group we are able to give another characterisation. 
, . 

Let r be a finite group. We denote by T(S) the Cayley digraph with 

symbol S. That is, the digraph with vertex-set r and arc-set 

qc 
It is well known that a Cayley digraph US) is connected just if the 

set S generates r. Since Cayley digraphs are vertex-transitive (because, 
"2 

f a  any a E r ,  the mapping x + xa is an automorphism), a C O M ~ C ~ C ~  Cayley 

digraph is strong. " 

5.2.6. Lemm~. Suppose S generates and H is a non-trivial normal 

subgroup of Tof index h. If S is a union of cosets of H, then the Cayley 

digraph T/&S/W) is a retract of T(S) (SfH = (Hr: Eir is a subset of S)). 

Proof. 
b 4' 

Lct S=Ifirl u & v ... v fib and let the collection of all cosets of 

H be Eir,, 4, ..., 4. We first show that r/dSIH) is an induced 

subdigraph of US). There is an arc from xi to xj in US) if and only if 
/ 

xfil E hm, for some m between 1 and t; equivalently, xp-, is an arc if and 

only if hjHii-'=tir,. Therefore ( x l ,  +, ..., xh) induces a copy T of 

r/&/rr) in T(S). It remains to show that there is a retraction fir(S) + T . 



For each g E r, let f(g) be the unique vertex xi such that g is in Hx,. Then f 
d 

fues V(T). Let ab be an arc of T(S) and f(a)=x, and f(b)=x,. It is not hard to 

see! thst Hb~-~=hk?;~. Therefore x?;l is in S, and x?~ is an arc of T. 

Hence f is a homomorphism. This completes the proof. . 
\. 

52.7. Lernm. Let generate T. Thm is a homomorphism of T(S) to Ch if Y 
and only if S is contained in a coset of a normal subgroup of r with index h. 

Proof. 

(3) Supposefif(S) + Ch. Without loss of generality the identity e of 

r hasAe)=l. Let &fl(l). Let a, b be in H. Since T(S) is connected, there 

is a directed (e,a)-path of length zero modulo h, and a directed (e,b)-path of 

length zero modulo h. Consequently there is a directed (b,ab)-path of length 

zero modulo h, and a directed (e,ab)-walk of length zero modulo h. Since a 

Ch-colouring of a connected digraph is completely determined by the colour 

assigned to a single v&x, we deduce that f(ab)= 1, that is, ub E) R Hence 
I 

H i s  a subgroup: \ 

Let g E r and let x ,E H There exists a directed (ex)-path of length 

zero modulo h, a directed (e,g)-path of length r modulo h, and a directed 

(e,g'l)-path of length (-r ) modulo h (because there is a directed (g-lee)-path 

of length r modulo h and a closed dinctcd walk containing both e and g-I has 

length zero modulo h). ~hereforc't4m is a d .  (e, g-lxg)-walk of length 
9. 

zero modulo h, that is f(g1xg)=1. Thus His  nd. - 

Let s be in S. The automorphism x-rrr maps eachfl(i) tofl(i+ 1). 

i= 1.2, ..., h, with addition modulo h. Hence each colour class of the Ch- 

colouring is a coset of H Since there arc h cosets and S is contained in 



k 
f '(2), the proof of the &plication is complete. 

(e) Without loss of generality S=&. The result follows from 

Lemma 5.2.6 (the graph ~ ~ S I H )  is connected because T(S) is strong). p 

51.8. Corollary. Suppose that S generates T. The core of T'S) is a directed 

cycle if and only if S is cbntained in a =set of a normal subgroup of index 
q 

equal to the directed girth of US). 

9 

We conclude this section by mentioning the grouptheoretic analog 

of Lemma 52.6: If Hi s  a normal subgroup of a finite group T, then r/ is \ 
\ 

cyclic if and only if there exists an x E r such tZlat r=<Ib. 
I 



5.3. Superdigraphs of Bipartite ~radbs. 

Let H be a given directed graph. By proposition 4.1.1, if undir(H) is not 

bipartite, H-CQL is NP-complete. Thus, in order to complete the classification by 

complexity of all digraphs, it remains to consider those digraphs for which , 

,$ % 
undir(H) is bipartite. In this section we prove some NP-completeness results 

concerning digiaphs for which undir(H) is bipartite, and is aik a spanning - 

subdigraph. That is, digraphs H constructed from (the equivalent digraph of) an 

undirected bip&ite graph by adding some arcs. 

We begin by proving some general results in section 5.3.1. Each theorem 

classifies infinitely many ,E-:~louring problems. We are, unfortunately, unable to 

completely classify all directed graphs such that undir(H) is spanning and 

connected. In section 5.3.2 we restrict our focus a little more, and introduce the 

f d y  of "partitionable" digraphs. We arc able to give a complete classification in 

this latter class. 

Let D be a directed graph. It follows from the sub-indicator construction 

(with respect to (Cz, 0,fiee)) that if V(undir(D)) induces a subdigraph D- for 

which D--COL is NPcomplete, then D-COL is also NP-complete. Hence the 

implications of the NP-completeness results in this section extend to directed 

graphs for which undir(D) is not spanning. (It is, however, possible for the D- 

Q coloul-hg problem to be NP-complete even though DU-COL is polynomial.) 

Since undir(D) is spanning, the digraph D is dmooth. Thus each theorem in 



this section verifies Conjectwv 1 infinitely many directed graphs. 
0 

5.3.1. Sufficient Conditions. 

Let D' be a directed graph and let (R, B) be a two-colouring of undir(D'). 

(We often refer to these colour classes as "red" and "blue", respectively.) If D is 

a subdigraph of D' and al l  vertices of D arc in h e  same colour class, we say that 

D is monochramutic. If it is important to distinguish which of the colour classes 

R and B contains D, we use the terms "red D" and "blue D", respectively. 

R 6 

It is clear that C2 is a retract of any bipartite digraph that contains it. Hence 

we may assume throughout this section that H is not bipartite; otherwise the H- 

colouring problem is polynomial. We are able to prove, for non-bipartite digraphs, 
4 

that the problem is NP-complete in a wide variety of circumstances. 

We begin this section by considering those digraphs D for which there 

exists a two-colouring of undir(D) with no monochromatic Cg or no 

monochromatic transitive triple. 

53.1. Lemma. Let D be a digraph and C be a component of uradir(D). Suppose 

that, with respect to the unique two-colouring (R, B) of C, the m]-colouring 

problem (resp:- ~ [~ lco louring  problem) is NP-complete. Then D-COL is also 

NP-compkte. 



q Proof. 

It suffices to prove the result when ,the D[R]-colouring problem is NP- - 

complete. Let v E R. Since C is connected, there is an (even) integer k such that 

for every vertex x E R thert is ad undirected (vj)-walk of length k. Let P 
0 

B denote the equivalent digraph of ah undirected path of length k, with 
@ 

V(P)=(O, 1 ,  ..., k } ,  and E(P)=([i ,  i + l ] :  i=O, 1 ,  ..., k-1).  The result of applying the 
\ .  

sub-indicator construction with respect to (P, 0, k), and v to D is the digraph 

D[R]. The result now follows. .. 
- 

A directed graph that plays a ce- role in this section is the +- -- W n g l e  
- 

C3*, which is constructed from an undirected path of length two, sayry, z, by 

adding the arc a, which is called the single am of C3* (cf. figure 5.2.4). 

5.3.2. Theorem Let D be a digraph that contains a basic triangle. Suppose 
4 

there exists a two-colouring (R, B) of undir(D) such that D[R] is an independent 

set and D[B] contains no C3 (&. no transitive triple). Then D-COL is NP- 

complete. 

Proof. 

Suppose D[B] has no C3 (the proof being similar when D[B] has no 

transitive triple). The transformation is from ONE-IN-THREE-SAT without 

negated variables. Suppose an instance of ONE-IN-THREE-SAT without 

, negated variables is given, with variables xl ,  3, ..., x,, and clauses'K1, fl, ..., P. 
, - t) 

Let X be the digraph shown in figure 5.3.1 with p = 1. Construct a digraph G from 

( X I .  ~ 2 ,  ..., x.1 and m copies of the digraph X , say XI, Xu ..., X, as follows. If 



Clearly, the digraph G can be constructed in polynomial time. 

Undirected path of 
length P 

Figure 5.3.1. The digraph X. 1- 

CLAIM. The digraph G is Dsolourable if and only if there is a truth 

assignment such that each clause contains exactly one true variable. 

PROOF. 

(a) Suppose G is D-colourablc. Consider a copy Xi of X. Since 

D[R] is an independent set, at most one of l I .  12. l3 is coloured by a vertex in B. 

Furthermore, since D[B] has no C3, at least one of l I .  12, l3 is c o l o u .  by a 

vertex in B. Therefore, exactly one of l l .  1% $ is coloured by a vertex in B. Define 

a truth assignment by setting x,=T just if is coloured by a vertex in B. By the 

above argument, each clause contains precisely one true variable. 



( )  Suppose there is a truth assignment such that every clause 

contains exactly one true variable. Let A be a fixed basic &iangle. Then A has 
t 

necessarily the vertex set {bl ,  &, r ) ,  where bl,  b2 e B, r E R, and single arc 

L 
, 

blbz Define a parti colouring of G by assigning colour(xj)=bl just in case x,=T, 

and cofour(xj)=r otherwise. It may be verified that, given a copy Xi of X and a 

partial cololning of 11,  4, 13 with colours h m  {r,  b l )  in which exactly one of 11,12, 

l3 is coloured bl, the partial colouring can be extended to a Dcolouring of Xi (in 

fact, to an.A-colouring of Xi). Hence G is D-colourable. 

The claim implies that D-COL is NP-complete. . 
5.3.3. Theorem. Let D be a digraph such that undir(D) is a spanning 

subdigraph. Suppose that D contains C3, but no two-colouring of undir(D) has a - 
monochromatic C3. Then the D-colowing problem is NP-complete. . , 
Proof. 

Let (R, B) be a two-wlouring of undir(D). There are two cases to c o n s i k  

1 

CASE 1. Some'component of undir(D) induces a subdigraph which contains 

three-cycles rl,  r2, b, rl and bl, h, r, bl, when r l f i  E R, and bl,  b2 G B. 

The transformation iB from NOT- ALL-EQUAL-THREE-S AT 

without negated variables. Suppose an instance of NOT-ALL-EQUAL-THREE- 

B 
SAT without negated variables is given, &ith variables x l ,  x2, ..., x,, gnd clauses 

F, fl, ..., Kn. Let Y be the digraph shown in figure 5.3.1, whge p is chosen to 

be an odd integer such that thcrt is an u n M  walk of length p from r to each 

of b, bl, q, and from b to each of r, rl, r2 Construct a digraph G from 



-- 

(xl, j2, ..., xn} and m copies of Y, say YI, Y2, ..., Y,,,, as follows. If K~=x,vxkvxl, 

then identify vqices 11, 1% l3 in Ypith xi, xb xl, respectively. Clcafly the digraph 
7 

G can be constructed in polynomial time. 

digraph G is D-colourabk if an8 only if there is a satisfying 
> 

which each clause contains at least one true variable and at 

least one false variable. 
.k 

-\ 

PROOF. -- I 

(a) Suppose that G is D-colourable. codsider Yi. Since D h e  no 

monochromatic C3, not a l l  of the vertices 11, 12, l3 can be coloured by members of 

R. Similarly, these vertices can not all be coloured by members of B. Thus two of 

11, 1% l3 anz coloured by m e m h  of R and the remaining one is coloytd by a 

vertex in B, or vice-vem Define a truth assignment by setting xj=T just if 

vertex xi is c o l o ~  by a wmbcr of R. By the above argument, every clause 

contains a true variable and a false variable. 

( )  Suppose there is a truth assignment such that every clause 

contains at least one true variable, and at least one false variable. Define a 

partial colouring of G by assigning CO~OW(X~)=~  just in cas? xj=T, and colow(x,)=r 

otherwise. It may be directly verified that, given a copy Yi of Y and a partial 

colouring of 11, 12, l3 with colom from ( r, b )  in which at least one, but not all of 11, 

12, 4,. is coloured b, the partial colouring can be extended to a D-colouring of Yi . 
Hence G is D-colourable. 

This completes the proof of case 1. 



CASE 2. The sub&raph induced by every component of undir(D) contains 3 

only three-cycles with two vertices from R and one vertex from B, or vice-versa. 
C 

By switching colours in some components of undir(D), it may be assumed 

that every three-cycle has two vertices in R and one vertex in B. Let A = rl, r2, b 

be a fixed copy of C3 in the subdigraph induced by some component of undir(D), 

""7 , r2 E R and b E B. Let Y be the digraph &own in figure 5.3.1, and choose 
r 1 

p such that there is an u n c h a c d  walk of length p h m  b to rl and to r p  The 
\ 

transformation i s  once again from ONE-IN-THREE-SAT without negated 

variables. Suppose an instance of ONE-IN-THREE-SAT without negated 

variables is given, with variables xl,  x2, ..., x, and clausi?s K1, @, ..., P. 
Construct a digraph G Erom (x l ,  x2, ..., x,,) and m copies of Y, say Yl ,  Y2, ..., Y,, 
as follows. If K i = ~ j ~ ~ k ~ ~ l ,  then identify vertices 11, 12, I, in Yi with xi, xk, xl, 

respectively. clearly, the digraph G can be constructed in polynoqial time. 
L 

CLAIM. The digraph G is D-colourable i f  and only if there is a truth 

assignment such that each clause contains exactly one true variable. 

PROOF. 

( )  Suppose G is D-colourable. Consider a copy Yi of Y. Since 

D[R] has no three-cyclc, at least one of 11, 12, 13 is colourcd by a vertex in B. 

Since D[B] has no thne-cycle, at least one of 11, 12, I3 is coloured by a vertex in 

B. Momver, since there is no three-cycle which has two vertices in B, exactly 

one of 11, 12, f3 is colound by a vertex in B. Define a truth assignment by setting 
d 

x,=T just i f x j  is colourcd by a vertex in B. By the above argument, each clause 

contains pneisely .one true variable., 



( )  Suppose there is a truth assignment such that every$lause . 7  

. b 

contains exactly one yariable with the v*e T. De& partial colouring of G by 
L * - %. 

assigning C O ~ O ~ X ~ ) = ~ ~  just in case xj=T, sod C D ~ O W ( X ~ ) = ~  otherwise. It may be 
* -h 

directly verified that, given a copy Yi of Y, and a partial colouring of 11. l p  l3 with 
T- 

~olbufi from (r l ,  b} in which exactly one of 11, 1% 13 is coloured FI, the partial P (L . 
colouring can be extended to a D-colouring of Yi . Heii is D<olourable. 

This completes the proof of case 2. . 
The next result generalises Theorem 5.3.2. 

b 

5.3.4. Theorem. Let D be a digraph such that umiir(D) is a spanning + 

subdi&aph. Suppose that D contains a basic triangle. If D does not contain a 

monochromatic transitive triple, the D-colouring problem is NP-complete. 

Proof. 

The proof is siklar to the proof of T h m m  5.3.3. The component which 
I 

cornsponds to each clauw is shown io figure 5.3.2. The details are left to the 

reader. . 
We now tmn our attention to superdigraphs of undirected bipartite graphs 

that contain the di&aph Bs, the directed triangle with all arcs byp scd, defined "r 
in section 4.3. (Recall that an arc xy is said to be bypassed if there is a vertex z 

- 7  

su& that the arcs xz and zy both exist. The vertex r is called a bypass vertex for - _  
xy.) We have ahead? proved that B j  is superhard with respect to the property 

"G has no directed two-cycle". (cf. Lemma 4.3.5). We show that B3 is also 
% 



superhard with red@ecteto the property "undir(G) is spanning and connected"= 
* 

7 

Figure 5.3.2: Clause component for Theorem 5.3.4. 

+ 5.33. Lemme Let D be a digraph such that undir(D) is a connected spanning 

subdigraph. Suppose then exists a two-colouring (R. B )  of undir(D) such that 

there is a monochro~mtic C3 in which all arcs are bypassed. If the bypass vertices 

xl.  +, x3 are all in the same colour class, then D - ~ O L  is NP-complete. 

Proof. 
- 

Without loss of generality assume the C3 in the statement of the theorem is 



Lemmas 5.3.1 and 4.3.5. Consequently the D-colouring mblem is also NP- 

complete. Suppbse that xl ,  xz, x3 are in B. Then the D-colouring problem is NP- 

complete by Lemma 4.3.4 (each Xi is joined to every vertex on the three-cycle by .. 
* 

an undirected odd path because undir(G) is spanning and connected). . 
5.3.6. theorem. Let D be a digraph such that undir(D) is spanning and 

connected, Suppose that (RJ3) is a two-colouring of undir(D) such that there is a 

monochromatic C3 in which all a m  are bypassed. TbaD-COL is NP-complete. 

Proof. I 

There are three cases to consider. - .2 

CASE 1. There is a monochromatic C3 in which all arcs arc bypassed, and 
3 

the bypass vertices are all in the same colour class. 

Then D-COL is NP-complete by Lemma 5.3.5. 

CASE 2. There arc monochromatic three-cycles c, C' with bypass v d c e s  

1 a, b, c, and a', b', c', respectively, ywhere a, b ,c' E R, and a', b', c E B. 

It may Le assumed that case 1 does not hold simultaneously. a The 

transformation is from NOT-ALL-EQUAL-THREE-SAT without negated 

variables. Let Z bc the digraph shown in figure 5.3.3, where p is chosen so that 

any two vertices in the same colour class arc joined by an undirected walk of 

length p (the (even) length p e x h  because undir(D) is spanning and 

connected). Let an instance of NOT-ALL-EQUAL-THREE-SAT without 
4 

negated variables be given, with variables xl ,  XZ, ..., Xn and clauses 

K1, K2, ..., R. Construct a digraph G h m  (x l ,  x2, ..., xn] and m copies of 2, say 



Z,, &. ..., Zm , Ki=xJvxAvxI. Then identify the vertices 11, 12, 

1, in Zi with xj. the digraph G can be constructed in - * 

polynomial time? 

3%: 

. . . Undirected 
of length p ' 

\ ' ' -- ' ' ' ' ' 
\ 

h '\ 

D 

I t .  

Figure 5.3.3. The @graph 2. 

f- 
. 

CLAIM. The digraph G-is D-colourable if and only if thert is a satisfying 

truth assignment in which each clause has at least one true variable, and at least 

one false variable. )' 

PROOF. 

Consider a D-colouring of G. It is not hard to see that the three- 
L 

cycle in each copy of Z must be monochmmatic (it must map into the same colour 
/- 

class as z). The remaining details am similar to the proof of the analogous claim 



,' \ 

3 

in Theorem 3.3.3, and ire left to the reader. 

TU 'hpletes  the proof of case 2. 

CASE 3. Every monocGmatic C3 with bypasses on all arc; has red two 
lip" 

- 
bypass vertices and one blue bypass vertex, or vice-versa. 

The *msfomation is from ONE-IN-THREE-SAT without negated 

variables. The construction of the digraph G is identical to case 2 The remaining 

details are similar to those in the ahalogous case of Theorem 5.3.3, and are left 

to the &a. 

All three cases have been considered, and the result follows. . 
b 

5.3.7. Theorem Let D be a digraph such that undir(D) is a comected spanning 

subdigraph. If D contains 4. then h e  D-colouring problem is NP-complete. 

(That is, the digraph B3 is superhard with respect to the property "undir(D) is - 
spanning and connectql".) i I * 

Proof. 

By Theorem 5.3.6, it suffices to consider the case when no copy of B3 in D 

Ig 
contains a monochromatic C3. The pmof is identical to the proof of Theorem 5.3.3, 

except that bypasses must be added to all arcs of the three cycle in the digraph 

in figure 5.3.1. The details may be easily supplied by the reader. . 



Let n> 1, and let F,, the n-fan, be the digraph with vertex set (0, 1 ,  ..., n ) ,  

and arc set (01, 10,02,20, ..., On, no) u ( 12,23, ...(n -1)nJ. The following. 

corollary is useful in tht next sixtion. 

a 

5.3.8. Corollary. For any n > 3, the digraph F, is superhard with respect to 
- 

"undir(D) is spanning and connected". \ 

Proof. 

If n>3, then F,,contains B 3 . .  

P 

5.3.2. Partitionable Digraphs. 

In this subsection we introduce a sub-class of superdigraphs of bipartite 

graphs which we call "partiti~nable". We give a complete classification by 

complexity of the digraphs in this class, 

Throughout this section, a single cur of a digraph D is an arc xy e E(D) . 

such that yx Q E(D). 

We say that a digraph D is parfitionable if the following two conditions are 

satisfied: 

(i) unciir(D) is a spanning subdigraph of D ,  and 
I 

(ii) There is a two-colouring of undir(D), such that every single arc is 



Another way to express condition (ii) is the following: There exists a two- 
< 

colouring of undir(D) such that all undirected edges arc between the colour 

classes and all single arcs are within the colour classes. Partitionable digraphs 

are precisely the digraphs obtained from (the equivalent digraph of) an undirected 

bipartite graph by adding monochromatic arcs. 

Let D be a partitionable digraph. We have previously noted that D may be 

assumed to be non-bipartite, otherwise D-COL is polynomial (cf. page 112). In 
L 

the remainder of this section we show that the D-colouring problem is NP- 

complete for all noa-bipartite partitionable digraphs D. We prove the following 

theorem. 

',b b * 

5.3.9. Theorem. Let D be a partitionable digraph. If D is bipartite, then DjCOL 

is polynomial. Otherwise (D contains an oriented odd cycle), D-COL &6P- 

complete. 

The proof quires some preliminary lemmas. Recall the digraph T1 defrned 

in section 5.2 (6. figure 5.2.l(a)). 

5.3.10. Lemma. Let D be a digraph for which undir(D) is a spanning subdigraph, 

and suppose T1 is not a subdigraph of D. If D is not bipartite, then the D- 
A 

colouring problem is NP-complete. 

Proof. 

This is assertion (3) in the proof of Theorem 5.2.1. . 



5.3.11. Corollary. If D is a non-bipartite partitionable digraph that does not 

contain a basic triangle, then the D-colouring problem is NP-complete. 

Let (J1, x, z)  and (Jz, x, z)  be the shown in figure 5.3.4. 

These are important in the proof of 

Figure 5.3.4. Important indicators. 

5.3.12. Lemma. Let D be a panitionable digraph, and let (R, B) be a two- 

colouring of undir(D). Let r E R , and let i E ( 1.2). Let D- be the result of 

applying the sub-indicator construction with respect to (Ji, *: r), and r,  to D. If r' 

is a d vertex that belongs oV(D-)-r , them there is an undirected path of length 

two in D joining r and r' . 
Proof. 

This follows immediately from the defmition of a partitionable digraph. 



Then are obviously other versions of Lemma 5.3.12 comsponding to the 

possible cases that arise when the subindicator is (Ji, Z, x), or the construction 

W. ,.-& 
I takes place with respect to a vertex in B. For brevity, these are not stated, but 

they are used. 

Proof of Theorem 53.9. 

It remains to show that if D is a partitionable digraph that contains a basic 

triangle, then the D-colouring problem is NP-complete. Suppose that D is a 

counterexample with the minimum number of vertices. That is, D is a 

partitionable digraph that contains a basic trian"gle, with the minimum number of 

vertices such that the D-colouring problem is not NP-complete. 

We would like to use thc sub-indicator construction to deduce various * 

structural properties of D. There is, unfortunately, a difficulty: Let D- be the 

result of applying a sub-indicator construction to D. The digraph undir(Dm) may 

not be spanning, consequently Du may not be partitionable. This is not a severe 

handicap, as the following fact (*) turns out to be sufficient. 

(*) Suppose that the result D- of applying a sub-indicator construction to D 

b contains a basic triangle. Then D = D-. 

Proof of (*). 

Let D- be the result of applying the sub-indicator construction with respect 

to (C2, 0, free) to De. Then D- is a partitionable digraph (it is an induced 

subdigraph of D, and, by the construction, U1161ir() is a spanning subdigraph) 

that contains a basic @bngk. Suppose D-- is a proper subdigraph of D. Then our 

choice of D s that the D--colouring problem is NP-complete. Hence the 



D-colouring proMem is also NP-complete, a contradiction. Therefore DAD-. 

The theorem follows h m  the sequence of claims below in which we use (*) 
-7 

to derive some structural properties of D and, ultimately, a contradiction. 

(1) The digraph undir(D) is connected. 

Let C be a fixed basic triangle. Without loss of generality, assume that the 

single arc pq of C is .red. Let b be the third vertex of C. Let D- be the result of 

applying the sub-indicator coastruction with respect to (J1, z, x), and r to D. Then 

D- contains a basic triangle and by (*), D=DW. Hence, by Lemma 5.3.12, there is 

in D an undirected path of length two from r to any other red vertex. Therefore 

there is also an undirected path of length one or three from r to any blue vertex. 

This completes the proof of (1). 

The next two cldmn concern forbidden subdigraphs of D. Recall the digraph 

F,, defined in section 5.2 and the digraph W3 defined in section 4.3. 

(2) The digraph D contains neither F4nor Wi. 

The digraph W3 is superhard, and the F4 is superhard with respect to 

"undir(D) is spanning and connected" (cf Theorem 4.3.2, and Corollary 5.3.8, 

respectively). 

.4s 

(3) The digraph D does not contain Fj. 

Suppose D contains a copy of F3 labelled as shown in figure 5.3.5. Since D 

contains neither F4 nor W3, then is no vertex p such that pr, ip, q] E E(D). Let 



D- be the result of applying the indicator construction with respect to (J2, X ,  z), 
1 

and q to D. It is not hard to check that q, s,t E V(D-), but r e V(DV). Hence D- 

contains a basic triangle and has fewer vertices than D, By our choice of D,  the 

D--colouring problem is NP-complete. Therefore the D-colouring problem is also 

NP-complete, which is a contradiction. 

Figure 5.3.5. Configuration for (3). b 

(4) If a& is a single arc in a basic triangle of D, then there is no d (resp. x) 

in V(D) such that bd (resp. xu) is also a single arc 

We prove only that the vertex d can not exist. Let c be the third vertex of 

the basic triangle. Suppose to the conaary that d exists. Let D- be the result of 

applying the sub-indicator construction with respect to (Jz, z, x), and b to D. 

Since D- contains the basic triangle induced by (a, b, c), we have by (*) that 

D =D-. Since D is partitionable, this implies that there exists a vertex e and 

double arcs [b, e] and [d, el. By (3), e # c. Let Dm- be the result of appling the, 

sub-indicator construction with respect to (J2, x, z) and c to D- . Then 



4 

b, d e E V(D-), but since Do does not contain F3, a ei V(D-) . Hence D- 

contains a basic triangle (induced by (b, d, e)), and has fewer vertices than D. 

By our choice of D, the D--colouring problem& NP-coqplete. Therefore D-COL 

is also NP-wmpleie. This conMction completes the proof of (4). 

We define a red basic kr'atagle ( resp. blue basic triangle) to be a basic 

triangle in which the single arc is red (resp. blue). 
4 

(5) Let r E R. Then there is a red basic triangle C, with V(C)={rl, r* b), 

and rlr2 E R, such that [r , b] is a double arc. 

The statement is true if r is in a red basic triangle. Suppose that r is not in a 

red basic triangle. Let &',be a red basic triangle and let V(C')= (r', r", b'), with 

single arc r'r". Let D- be the result of applying the sub-indkator construction 

with respect to (J1,  z, x) and r' to D. Then D- contains a basic triangle, so by (*), 

D=D- and hence r and r' arc joihcd by an undirected path of length two, say r', b, 

r. I f  b and r" are adjacent the proof is complete. Suppose that b and r" are not 

adjacent. Since b is a vertex of Dm, the definition of V(D-) implies that there 

exists a vertex r"', an arc r'r"', and a double arc[rW', b] .  The 3-set ( r', r"', b )  

induces the desired basic triangle. 

(6) k t  b E 8. Then there is a blue basic triangle C, with V(C)={bl, b* r}, 

and blbz E B such that [b, r] is a double arc. 

The proof is similar to (5). 



(7) If D has a fed basic triangle (resp. blue basic triangle) then D[R] (resp. 
-P 

D[B]) has no directed path of length two. 

We prove the result on the assumption that there is a red basic mangle (the 

proof of the other case being similar). Suppose to the contrary that D has a red 

- basic triangle and D ~ P ]  has a -ed path of length two. say r, r', r". By  (5)  

there exists a red basic triangle C, with vertex set {u,  v,  b), b E B, single arc uv, 

and such that them is a double am [r, b]. L* D- and D- denote the result of , 
?" 

applying the sub-indicator construction with respect to (J1, z, x )  and r l ,  and 

(J2, I ,  x)  and rz to D, respe&vely. Sincehth Du and D-- contain the basic 

haflgle C, (*) implies that D=Du= D--. By Lemma 5.2.12 there is an undirected 

path of length two between u and r', and also between v and r'. Let D- be the 
, a 

result of applying the sub-indicator construction with respect to (J2, z, x)  and r' to 

D. Then Do-- eontains the basic triangle c,'& (*Fituplies that D-= D. Hence 
6 

there is also an undirected path of length two joining r%nd r", say r', b', r". Thus 

(r', rt', b )  induces a basic triangle. But rr' E E(D), contrary to (4). This 

completes the proof of (7). 

(8) Neither R nor B is an independent set. 

If R is an independent set, then D satisfies the hypotheses of Theorem 

5.3.2; it contains a basic triangle and, since D[B] h a n o  directed path of length 
b 

two, it does not contain a transitive triple. Hence the D-colouring problem is 

NP-complete, which is a contradiction. 



(9) Suppose D contains a red (resp. blue) basic triangle. Then every vertex 

in B (resp. R) is in a red (resp. blue) basic triangle. 

Suppose. that (r l ,  r2, b'), b' E B, induces a red basic triangle. Let b E B. Let 
- 

Dm, and D-- be the result of applying the sub-indicator construction with respect 
' 

to (J1, z, x) and rl, and (.Iz, z, x) iind r2 to D, respectively. Since both V(Dm) and 

V(D-) contain the basic triangle induced by {rl,  r2, be),  (*) implies that 
b 

D= Du=D--. Thus there exists a vertex r' such that rlr' is an arc and [rt,b ] is a 

double arc. Moreover there is an undirected path of length two joining rl and r', 

and another such-path joining r2 and-r'. Let D- be the result of applying the 

subhdicam consauction with respect to (J2, Z ,  x)  and r' to D. Since rl, ra b' 

E V ( D ) ,  the digraph D- contains a basic triangle, hence (*) implies that 

D-=D . Therefore there exists a vertex r" such that r"r' is an arc and r" is 

adjacent to b via a double arc. But now {r', rJ', b )  induces a red basic triangle. 

This completes the proof of (9). - 

(10) The digraph D contains a red basic triangle and a blue basic triangle. 

Without loss of generality, suppose there is a red basic triangle. Let bb' be 

an arc of D [B] (the existence of such an a& is guaranteed by (8)). By (9), every 

vertex in B is in a nd basic triangle. Suppose (rl ,  rz, b )  and (r', r", k )  each 

induce a basic triangle, with single arcs rlr2 and r'r", respectively. Let Du be the 

result of applying the sub-indicator construction with respect to (J1, z, x) and rl 
b 

to D. Since rl, r2. b E V(Da), (*) asserts that D=Dw. Consequently there is an 

undirected path of length two joining rl and r', and another such path between rl 

and r". Let D- be the result of applying the subindicator construction with 

respect to (J2, X ,  I )  and rl to D (=Do). Then r', r", b E V(D-), so (*) implies that 
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- 

D=D-. Since b E V(D-), thae is a vertex b1 suck thatbtb is an arc, and [bl, rl] - 
t - .  . 

is a double arc. The 3-set (b l ,  b, r l )  iniiuces a blue basic triangle. 

&" 

By (lo), D has no monochmatic directed path of length two. Hence D 

satisfies the hypYPotheses of Thtdrcm 5.3.3, leading to the contradictionthat the 

t 
D-colouring problem is NP-complete. This completes the proof of Theorem 

- - 

- As a corollary we derive an NP-completeness result for a class of digraphs. 
- *w 

&&at are not partitionable, and that do not necessarily have the property that 

undir(D) is spanning. For all n > 5 the digraph W,, (cf Lemma 4.3.2) belongs to 

this class. k t  0 S a l  < 4 < ... < a, < n be integers and P W ( a ,  %, ..., a& be 

the digraph constructed from C, u ( v )  by adding the double 

( [v ,  ail: i= 1, 2, ..., t ) .  We call PW(al, q, ..., a,) a partirrl wheel. 

f -" 
t' 

5.1.13. Corollary. If PW(al, q, ..., ad is bipartite, then PW(al, q, ..., ad-COL is 

polynomial. Otherwise PW(al, % ..., ad-COL is NP-complete. 

Proof. 

We have previously noted the first statement (cf. the second paragraph of 

Section 5.3.1). Suppose PW(al, a*, ..., a,) is not bipartite. Then there exists i . 
! such that aitl-ai is odd. Let k = min (aj+l-aj: 1 S j  S t  and aj+~-aj is odd). Let 

, 

(I, u, V )  be the indicator constructed by adjoining two-cycles to the endvertices u 

and v of a directed path of length k. Let H. be the result of applying the indicator 

construction with respeqx to (I, u, v)  to H. I f  n=2ks the digraph H* is an undirected 

triangle. Otherwise, the core of H* is a partitionable digraph that contains a basic 



* - - 

triangle. In bo& cases ff C O L  is NP-complete. Therefore H-COL is also Np- .<- 

complete. 
L. 

." 
I ,  

In this chapter we hay  described a variety of sufficient conditions for NP- 
- 

completeness of the D-colouring problem when D is a superdigraph of an 

undirected bipartite graph. Based on our results, we make the following 

conjecture. 
4 

A 
L 

5.1.14. Conjecture. Let D be a superdigraph of an undirected bipartite graph, 

and suppose that undir(D) is a spanning subdigraph. If D is not bipartite, then D- 

COL is NPcomplete. Otherwise D-COL is polynomial. 

We note th& this is a special case of Conjecture 1.1. Even this restricted 

conjecture seems As a next step, one might try to show that it is true in 
1 

the presence of fhe additional condition "undir(D) is connected". B y  using the 

indicator construction in a manner similar to well & ~e&tfil, 19861, it can be 
- shown that it would suffice to prove the latter strengthened conjecture for 

u digraphs that contain a basic triangle. Other results in this thesis can be used to 
9 -  

deduce a variety of structural properties of a hypothetical counterexample to 

Conjecture 5.3.14. 
e 



5.4. More on the Effect of Two Directed Cycles. 

0 

In this section we generalise a result of Maurer, ~udborou~h  and Welzl + 

mure* et al, 19811, and also a ~ s u l t  of B g-Jensen and Hell [Bang-Jenscn & - Y 
Hell, 1988; Gutjahr et aL, 19891. Our add to the list of sparse digraphs H 

- 

with two directed cycles for which problem is NP-complete. 

7- 

We begin by extending some work of Maurer, Sudborough and Welzl. Let 

C,, be a digraph obtained from a directed n-cycle by replacing k arcs with b 

double arcs. It has been proved [Maurer et al, 19811 that if n is odd, then C&- 

COL is NP-complete. When n is even ,the core of CnSk is a directed two-cycle. 

-Thus C,&OL is polynomial. A complete classifcation of the complexity of Cnk- 

COL is given below. 

5.4.1. Tbeomm. If n is even or k=O, then Cn,UCOL is polynomial. Otherwise 
4t. 

(n is odd and k > 0)  yCOL is NP-complete. 

Proof. 

It  mains to prove that if n is odd and 2 5 k 5 n, then CnPk-COL is NP- 

complete. Let C* be the digraph that results h m  applykg the indicator 

construction with respect to (PWz, 0, n-1) to C* Since the directed odd gvth of 

C,,& is n, the digraph C* is loopless. Furthermore, each double arcge of CnA is 

also a double arc of 'C. 

We claim that the vertices incident with double arcs induce a semi- 

complete digraph. Suppose [u,v] and [x,y] are distinct double arcs. The arcs of 



CKk belonging to the directed n&le give rise to,a directed ( ~ ~ ) - p a t h  and a 

directed (x,u)-path. Moreover, exactly one of these paths has odd length. Since 

both u and x are incident with double arcs, this implies that there is ei&r a 

directed (u;r)-walk of length n-2 or a directed (x,u)-walk of length n-2. Hence one 

of ux and xu is an arc of C*. This proves the claim. p 
Let c be any vertex of C and C*- be the digraph which results from 

applying the sub-indicator construction with respect  to'(^^, 0,free) to C*. Then 

C'- is a semi-complete digraph with at least two directed cycles, and therefore, 

by Theonem 5.1.1, c - -COL is NP-complete. Thus CKk-COL is also NP- 

complete. This completes the prmf. . 
We now generalise the following result. 

d 

5.4.2. Theorem. [Bang-Jcnscn & Hell, 1988; Gutjahr et al., 19891 Let H be a 

digraph of the form Dl or D2 (see figure 5.4.1). If H does not a&t a retraction to 

a directed cycle, then H-COL is NP-complete. Otherwise, H-COL is 
- . 

polynomial. . 
Theortm 5.4.2 states, as a special case, that if D is a digraph constructed 

from a dirccted cycle by adding a chord, then D-COL is NP-complete unless D 

admits a retraction to a directed cycle. That is, Conjecture 1.1 is true for directed 
6. 

cycles with one chord. 



Figure 5.4.1. Digraphs with two directed cycles. 

Let H be a directed graph constructed from a directed n-cycle by adding two 

chords. Then, depending on the relative orientation of the chords, H is of one of 

four types; an example of each type is shown in figure 5.4.2. We now prove that 

the H-colouring problem is NP-complete unless H retracts to a directed cycle. 

That is, Conjecture 1.1 is true for dirrcted cycles with two chords. 

5.4.3. Theorem. Lct H be a dirrctcdpph that is constructed from a directed 
e 

cycle by adding two chords. If H docs not admit a retraction to a directed cycle, 

then H-COL is NP-complete. Otherwise, H-COL is polynomial. 



' ,  
. c 

Figure 5.4.2. The four possible orientations of the chords. 

We have previously noted the second statement. The proof of the first 

statement is divided into four lemmas, depending on the type of H. 

3 

5.4.4. Lemma. If H is of type I and does not admit a retraction to a directed 

cycle, then H-COL is NP-complete. 

Proof. 

k t  H be of type L Then H has exactly three directed cycles, say of lengths 

n, a, and b, respectively. Without loss of generality assume n>a>h. Suppose that 

H dots not admit a retraction to a directed cycle. Then b does not divide both a 
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and n. There are two'cases to consider. 

CASE 1. b does not '&de a. , 
I 

Let fl be the result of applying the sub-indicator construction with 

respect to (C,, 0, free) to H. Then H* is the subdigraph of H induced by the vertex 

. set of the directed o-cycl;. sin& b does not divide a, the digraph H* does not 

admit a retraction to a directed cycle. Hence He-COL is NP-complete by Theorem 

5.4.2, and therefore H-COL is also NP-complete. 

CASE 2. b divides a. 
ri 

Since the directed b-cycle is not a retract of H ,  b does not divide, n. 
4 

Let H- be the result of applying the edge sub-indicator construction with respect 

to (Cn+b, 0, free) to H. It is clear that every arc, except the chord e that forms the 
x- 

directed a-cycle, belongs to a closed directed walk of length n+b. If e also 

belongs to such a closed walk, then there arc integers a and jl such that 

n+ b= aa+gb= 36. Therefore b divides n, which is a contradiction. Hence 

H- = H-e, and so H--COL is NP-complete by Theorem 5.4.2. Therefore H-COL is 

also NP-complete. 

All cases have been considered. .. 

5.4.5. Lemma. If H is of type II and does not admit a retraction to a directed 

cycle, then H-COL is NP-comp$te. 
- 



Proof. 

Let H be of type IL'The digraph H can have three or four directed cycles. 

When H has four directed cycles, the chords have both endpoints in common. In 

c' this cast, H is also of type IV. We defer consideration of this case to Lemma 

5.4.7. Hence assume H has exa&ly three directed cycles, say of length n, a, and 

b. Without loss of generality n>a2b . Suppose that H does not admit a retraction 

to a directed cycle.Then b does not divide both a and n. Let the directed n-cycle 

be 0, l,.. .,n- l ,O .  There iue four cases to consider. 
I \  

CASE1.bdoesnotdividea. - 
1 

Let uv @sp. xy) be the chord that belongs to the directed a-cycle 

(resp. directed b-cycle).Without loss of generality assume u +y; otherwise 

consider the converse of H. Let J be the directed graph constructed by identifying* 

the terminal vertex of a directed path of length n-a-1 with a vertex on a directed , \ 

a-cycle. Let 0 be the label of the initial vertex of the directed path. Let H* be the 
I - 

result of applying the sub-indicator construction with respect to (J, 0, free) to H. + 

It is not hard to see that the core of H* is of the form D2 Since b does not divide 

a. H'-COL is NP-complete by Theorem 5.4.2. Hence H-COL is also NP-complete. 

CASE 2. 6 divides a, and b<a. 

Since the directed 6-cycle is not a retract, b does not divide n. Let e 

be tee chord that belongs to the directed a-cycle. Every arc except e belongs to a 

closed dirrectcd walk of length n + b. If the arc e also belongs to such a closed 

directed walk, then either n+a S n+ 6, or a divides n+ b. The former case is 

impossible since a>b, and the latter case is also impossible since, if b divides a, 



then b divides n. Let HD be the result of applying the edge sub-indicator 

construction with respect to (Cn+b, 0,free) to H. Then H" = H-e, where e is the 

chord of tthe ncycle that forms the acycle. Since H is of the form Dl, and does 

not admit a retraction to ttd cycle, H--COL is NP-complete by Theorem 

5.4.2. Therefore H-COL is also NP-complete. 

CASE 3. a= b, and there exists a vertex x on an a-cycle such that the 

vertex x+a is also on an a-cycle. 

Since C, is not a retract, the digraph H is retract-free. Relabel the 

vertices so that x is labelled 0, x+ 1 is labelled 1, and so on. (That is, subtract x 
* 

h m  the label of each vertex, where computations are modulo n.) Let k 2 0. If u is 

a vertex on a directed q-cycle then the set of vertices reachable from u by a 

directed walk of length ka is {O, a, 2a. ..., ka). Let m be the order of the element a 

in Z,. Note that m>2 (if m=2 then h = n ,  whence C,  is a retract). 

We show that NOT-ALL-EQUAL m-SAT without negated 

variables polynomially transforms to H-COL. Suppose an instance of NOT- 

ALL-EQUAL m-SAT without negated variables is given, with variables 

XI, x2, ..., xp. and clauses K1, @, .... Kq. Construct a digraph G from H, 

{xl, + ..., xP), and q copies of Cn, say C1, c, .... Cq, by adding directed paths as 

follows. Vertex 0 in H is joined to each vertex xi (j = 1. 2, .:.. p) by a directed 

path of length a. Vertex Q in H is also joined to vertex 0 on each C' 

(1 = 1.2, ..., q) by a directed path of length ma. If the rth variable in clause Ks is x,. 

then join x, to vertex ra of CS by a directed path of length (m-2)a. Clearly the 
. b  

,+ 
digraph G is canstructible in polynomial time. ,+/- % 



CLAIM. G is-H-colourable if and only if there is a satisfying truth 

assignment in which each clause contains at least one true variable and at least 

one false variable. 

PROOF. 

(a) Consider a homomorphism of G to H. Since H is retract-free, 

the copy of H in G must map onto H. We may therefore assume that every vertex 

of H maps to itself. Thus each vertex xi (i= l , 2 ,  ..., n) maps td 0 or a. Moreover, 

each Ci maps onto the directed n-cycle in H (because a does not divide n), and 
* 

vertices (0, a, 2a, ..., (m- l)a } of Cl map, in cyclic order, to the corresponding set of 

. vertices of H. Define a truth assignment be setting xi=T just if xi maps to 0.- 

Consider CS. Recall that there is no directed (0, -a)-walk of length (m-2)a . Let v 

be the vertex of CS that maps to -a, and let x, be the vertex joined to v by a copy 

of P(,2b. Then 5 must map to a. Hence Ks contains a false variable. Similly Ks 

contains a true variable. 

(c=) Suppose such a truth assignment exists. Define an H- 

colouring of G as follows. Every vertex of the copy of H is coloured by itself. For 

i = 1,2, ..., t, if xi = T, then colour xi by 0, othewise eolour xi by a. This partial 

colouring extends to all of the dikzted paths joining the xis to the copy of H. 

Consider KS. There exists t such that the f lh variable lt in KS is true, and the 

(t+ lr variable 1,+1 is false. Colour vertex la of CS by (-2a) and vertex (I+ l)a of CS 

by (-a). Phis completely determines the colouring of CS. Funhermore, this partial 

colouring can be extended to all of the directed (m-2)a-paths joining CS to xi 

(xi E KS), and to the directed m-path joining H to Cs. Therefore G is H-colourable. 

This completes the proof of case 3. 



CASE 4. a=b and for 

not on a directed a-cycle. 

every vertex x on a directed a-cycle the vertex x+a is 

Without loss of generality, the vertex 0 is on a directed a-cycle. 

Since Ca is not a retract, the digraph H is retract-free. Let m be the order of the 

element a in 2,. Note that m>2 (if m=2 then 2a=n, whence Ca is a retract). - 

ii 

CLAIM. Each directed a-cycle contains at least two elements 

of <a>. 

PROOF. 

Each directed acycle contains the same number of 

elements of <a>. If this number is one, then a divides n and C, is a retract, which 

is a contradiction. 

Let I be the directed graph constructed from a directed path of 
- 

length (m- 1)a as follows. Identify vertex 0 (on the path) with a vertex on a 

directed a-cycle, and identify (m-l)a with a vertex on a second direced a-cycle. 

For i= l,2, .. ., a, add a directed path of length n- 1 from i to i- 1. Let H* be the 

result of applying the indicator construction with respect to (I, 0, 1) to H. There is 

no H-eolouring of I such that the vertex a is coloured by a vertex on a directed a- 

cycle (otherwise colow(0) and coloy(O)+a = colow(a) are vertices of H that are 

both on a directed a-cycle, which is a contradiction). Let A be the set of vertices 

of H which are on directed a-cycles. Let x E A and consider an H-colouring of I 

such that colozu(O)=x. Since vertex a of I does not map to a vertex on a directed 

a-cycle, the possible images of vertex (m-l)a of I are those vertices which also 

lie on a directed a-cycle, and are reachable h m  vertex x+a of H by a directed . 
P 

walk of length (m-2)a. Thus colour(mab @+a, x+3a, ..., x+(m- 1)a) n A, so 
I 



colour((m-2)a)*olour(O). Thus H* is loopless. Moreover the vertex (m-l)a can be 

coloured by any vertex in the set (<o>+x)-[XI. The claim now implies that H* 
d 

contains an undirected Ka. Thus H*-COL is NP-complete, &d so H-COL is atso 

NP-complete. 'p 

All cases have been considered. . 
5.4.6. Lemma. If H is of type III and does not admit a retraction to a directed 

cycle, then H-COL is NP-complete. 

Proof. 
, + - 

Let H be of type IIl. Then H has thqe directed cycles, s f i f  lengths n, a, 

and b. Without loss of generality assume n > a 2 b. Suppose that the core of H is 

not a directed cycle. We y further assume that the chords have no cbmmom J== 
vertex, - since this occurrance is covered under Lemmas 5.4.4 and 5.4.7. There are 

three cases to consider. 

CASE 1.6 does not divide a. 

. The argument is similar to case 1 of Lemma 5.4.5, and uses the 

same sub-indicator. 

CASE 2. b divides a, and b < a. 

Since the directed b-cycle is not a retract, b does not divide n. The 

remaining details are identical to those of case 2 of Lemma 5.4.5. 



CASE 3. a=b. 
, 

Thenthere is a vertex x on a directed a-cycle such that x+a is also 

a 'on a directed's-cycle. The remaining details are identical to those of case 3 of , . 
- .  - . . 

Lemma 5.4.5. , d~ 

- 

The result now follows.. 

6 - - 5.4.7. Lemma. If H is of type IV and does not admit a retraction to a directed 

cycle, then H-COL is Nb-complete. 

Proof. 
6 

The digraph H has four direct& cycles, say of lengths n, a, b, and c. 

*Without loss of generality assume n > a 2 b > c. Note that n=a+b-c. Suppose 

that the core of H is not a dincteh cycle. There are four cases to consider. 

CASE 1. c divides b. 

Then the subdigraph of H induced by the vertex set of the directed 

a-cyck k a retract. Since C, is not a retract of H, c does not divide a 

Consequently the core of H is of the form Dl, and H-COL is NP-complete by 

Theorem 5.4.2. 

CASE 2. c does not divide b, and b < a. 

Let H- be the result of applying the sub-indicator construction with 

respect to (Cb, 0, fnc) to H. Then H- consists of a directed b-cycle plus a chord 
k 

that belongs to the d i .  c-cycle. That is, H is of the form Dl. Since c does not 
d 

divide b, H--COL is NP-complete by Theorem 5.4.2, and thereforc H-COLis also 



NP-complete. 

CASE 3. a=b and c does not divide n. 

Since Cc is not a retrack, c does not divide a. Let m be the order of 

the element a in 2,. If m=2, then 2a=n, and hence c=O, which is a contradiction. 

Therefore m>2. Let Q, (r 2 a-1) denote the (r+l)-vertex digraph constructed 
w 

from P, by adding the arcs {i(i-a+ 1): i = a-1, a, ..., r} . Since any a- 1 consecutive - 
arcs along the dizected r-path must belong to an image of a directed acycle and c 

does not divide a, no image of Q, in H contains a directed c-cycb. This effectively 

eliminates the use of the d h % d  c-cycle. The transformation is from NOT-ALL- - 
EQUAL m-SAT without negated variables, and is identical to case 3 of Lemma 

5.4.5, except that wherever P, appears in the construction, Q, should be used. 

CASE 4. a=b, and c divides n. 
d 

Since Cc is not a retract, c does not divide a. Let J be the directed 

graph constructed by identifying the initial vertex of a dirccted path of length a-2 

with a vertex on a7iirccted a-cycle. Let x be the terminal vertex of the directed 

path. Let the ve s of H be numbered cyclically such that vertex 0 is the lli. 
terminal vatex o ne of the chords. Let  be the result of applying the sub- b 

cator construction with re&ct to (J, x,fnr) to H. It may be directly verified 

that H-=H- (Zn- 1 ) . Consequently the core of H- is of the form D and, since c 

does not divide a, H--COL is NP-complete. Therefore H-COL is also NP- 

complete. 

All c a d  have been considered. . 



Theorem 5.4.3 gen&ses Theorem 5.4.2 for dipphs  of thc foqn Dl (cf. 

figure 5.4.1). Our next result generalises the same theorem for digraphs of the I 

formD +etQ=qo.ql, . . . ,qq be~MiCMCdpth,andktrandsbeimcgas.Lct 

-r) 

H be the digraph constructed from Cr u C, u Q as follows. k t  
9 

V(Cr)={ro, rl,  ..., rr-l}, and E(Cr)=(riri+l: i=O, 1 ,  ..., r-I}.  Similarly, let 

V(C,)= (so, sl, . .., s,-l ) and E(C& (sisi+1 : i=O, 1 ,  . .., S-  1 ) . Identify the vertices qo - 

and qp with ro and so, respectively. That is, H is of the form D2 except that the 

b 
directed path has been replaced by an oriented path. 

5.4.8. Theorem. I f  r divides s or s divides r, then H-COL is polynomiai. _f 
Otherwise (r does not-divide s and s docs not divide r) H-COL is NP-complete. 

Proof. , 

If r divides s, then the directexl r-cycle is a retract, and if s divides r, then 

the directed s-cycle ig a retract. In either case, the H-colouring problem is 

polynomial. 

Suppose r does not divide s and s does not divide r. By Theorem 5.4.2 we 
a 

may assume that Q is not a directed path. Let k=nt(Q), and, let a and b be any 

integers such that a, b > IV@)I, a = 1-k ( d m ) ,  and b ap 0 ( m d  rs). Let I be the 

orient& path consrmcted from Pa u Pb u Q by identifying the terminal vertex of 
ED 

Pa with qo. and the initial vertex of Pb with qq Then d(I) I 1 (mod rs). Let u be 

the initial vertex of Pa and let v be the tenninh ~ertex~of Pb Let H. be the result 

of applying the indicator construction with respect to (I, u, v)  to H .  We make the 
pa a 

following assertions about the digraph HI. \ 



(1) Every internal vertex of Q is either isolated, a source of R*, or a 
- - 

I '  

* sink of H*. 
- 

Let qi an infernal vertex of Q. If there-is no directed path 

between qi and either qo or q ,  then the vertex qi is isolated in H*, since there is 

no homomorphism of Pa to Q that maps u to qi. Suppose there is% directed path 

from qi to qq. Since Q is not a directed path, there is no dimcted walk of length b 

that ends at qi. Similarly, if there is a directed path from qi to qo, there is no 

directed walk of length b that ends at q i  Hence qi is a source of H*. The 
'-Z 

P 

existence of a d i d  path fkom qo or q, to qi similarly impies that qi is a sink of 

(2) He is loopless. * - 
By (1) no internal vertex of Q is incident with a loop. Suppose ri is 

' 
incident with a loop. Then there is a hdmomorphism of I to H which takes both u 

and v to ri. Let W be the walk in H determined by the image of I. Since I and Q 

have the same number of sources (and sinks), no vertex of W is on the directcd~ - i 

s-cycle. That is, W is contained in the subdigraph (C, u Q)-qr Since the net 

length of each (40, qo)-section W is zero, it follows that nfw) 3 0 (mod r), which 

is a contradiction (recall that nl(I) 3 1 ( m d  rs)). Similarly, no vertex of C, is 

incident with a loop. 

(3) H* contains both C, and C,. 

This is clear since d(I) = 1 ( m d  rs). 



(4) ~ e i t h e i  C, nor C, hrs a chord. 

Consider a homomorphism of I into H that takes u to ri and v to rj. 
? 

By (2) i+j. Arguing as in (2). the image of I is contained in the subdigraph 

(C, u Q)-q,. Since the net length of each (qo, q&section of the image of I is z w ,  

the net length of the walk defined-by image of I is corigruent to (j - i )  modulo r. 

Therefore j = i + 1 (mod r), and C, has no chord. Similarly Cs has no chord. 

i 
J 

(5) The arc ss,&+lr@ exists. 

We describe the n&essary homomorphism of I to H. Map u to 

s,-A+I. Since a = 1-k (mod rs) the frrst v e x  in the copy of Q in I maps to so=qo. 
- ~ 

0 

Now map each vertex of the copy of Q in I to the corresponding vertex of Q, and 

map the copy of Pb in I to C, Since b SO (mod rs), the vertex v maps to b. 

(6) The arc r,k+lso exists if and only if Q is self-converse. 

(a) If the arc exists, then the copy of Q in I must map onto the 

copy of Q - 1  in H. 

(e) The argw&nt is similar to (5). 
0% 

If Q is self-converse, then nl(Q)=O. Hence the arcs from (5)  and (6) are 

s S-1 r o and rr_lso, respectively. C 

(7) There a n  no other arcs between C, and C,. 

Consider a homomorphism of .I to H in which u maps to a vertex on 

one of the dirtned cycles and v maps to a vertex on the other directed cycle. It is 

not hard to see that the copy of Q in I mustmap onto Q. Since homomaphisms to 



directed cycles arc completely determined by the image of a single vertex, this 

forces u to map to sSl and v to map to ro, or v to map to rP1 and v to map to so, 

(depending on the orientation of the supposed arc). 

$y the srmcture of * is completely determined. Let fl- be the result of 

applying the sub-indicator construction with respect to (P2, 1,free) to H*. Then 
+ .  - 

H*: is the subdigraph of !P induced by V(fl)-{ql, 92, ..., qql }. If Q is not self- 

converse, H*- donsists of a directed r-cycle and a directed s-cycle joined by an 
I 

arc. Since r does not divide s and s d a s  not divide r, W--COL is NP-complete by 
m 

Theorem 5.4.2. On the other hand, if Q is self converse, p- consists of a directed 

cycle with two chords and is of type IL The lengths of the cycles are r+s, r, and s. 

Since r does not divide s and s does not divide r, fl--COL is NP-complete by 

Theorem 5.4.3. Therefore H-COL is also NP-complete. This completes the 
\b 

proof. . 



6. Acyclic and Unicyclic Digraphs. 

In the previous two chapters we have concentrated on complexity results for 

smooth digraphs. As we have seen, there are several natural conjectures about 

which of these H-colouring problems arc ~~~-cornPlete.  There are, however, many 

digraphs with sources or sinks, and at present there are very few complexity 

results for digraphs in this class (cf. Section 2.2). 

This chapter is devoted to extending the collection of complexity results for 

H-colouring by acyclic oi unicyclic digraphs. We identify infinite families in each of 

these classes of digraphs for which H-COL is NP-complete, and others for which it 

is polynomial. In so doing we shed some light on the sequence of digraphs in 
- 

Chapter one, where the complexity of the H-colouring problem was oscillatory (cf. 

figure 1.1). We also describe an acyclic digraph D with six vertices and seven arcs 

for which D-COL is NP-complete. This is the smallest suck digraph discovered so 

far. 

@Y 
Let n 23, t 2 1, and let aal, 02. ..., a, be integers such ,that 

b 

0 S a t  < c ... < a, < n-1. 

The digraph U(n; all, az, ..., a& is constructed from C, u ( v  j by adding the 

arcs (vai: i= 1, 2, ..., t). When the context is clear, for brevity we denote this 
r- 

digraph by U. Note chat U is unicyclic. If b e  di = ai+l-ai, a r ~  all 

R 
(i= l ,2 ,  ..., t, and subscripts modulo t), we say that U is symmetric, and wc use 

d to denote the common value of ai+l-ai. 
e 



/ 

SupposciD + H. We denote by [aH the set of al l  
1 

vertex i of H. If H TCm this n o w  is ab this case we also 

use Xi (resp. Yi) to denote the set of sources (&p. sinks) in [a. When the 
2 context is clear, the subscript is omitted 

6.1. Lemma. Let U be symmetric and let G be a digraph. Then a ~ 0 ~ e C t e d  

digraph G j U  if and only if G + Cd and there exists i such that G-Xi + Cn . 
Proof. I 

(q) Clearly G + U + Cd. Suppose v E [iJ, then, since only sources of G 

can map to V, G-Xi + U- { v ) = C,. 

(e) Conbdcr a fixed C&olouring c of G. Without loss of generality assume 

i = O. ~ n y  vertex that is adjacent from a vertex in xo belongs to [ l ] &  

Furthermore, d divides the net length of any path between two vertices in [ I ] &  

Hence, in any C,%olouring of G-Xo, the colours assigned to these vertices can be 

&sum& to differ by a multi~le of d. If Xo is empty, fib G + C, + (I. Otherwise, 

consider a vertex x E X0, and let y be an out-neighbour of x. ChQuse a C,- 

colollring of G X o  s u ~ h  that y E [a,],. Evay element of N+(x) is colourd by a 

v e x  in (a l .  a*, .... add). If we give all vertices in .Xo colour v, the result is a 

63. Corollary. If U is symmhic, then (I-COL is polynomial. 

Proof. 

The algorithm is implied in the above proof. It is described more formally in 

figure 6.1. Each step may clearly be carried out in polynomial %time. . 



1. Find a Cbcolourhg of G. 

Find Xi .  

I Find G-Xi. 

If G-Xi is C,,-colourable then answer YES and stop. . 

3. Answer NO. 

Figure 6.1. Polynomial algorithm for U-colouring. 

Our next lemma classifies many non-symmetric U(n; 01. %, . .., ad-colouring 

problems. Certain special oriented paths play a central role in its proof. Let Z be 

the four vertex oriented path shown in figure 6.2 (a). More generally. let 5 the 

oriented path formed by juxtaposing r copies of Z and identifying the 

corresponding endpoints. The digraph 5 is shown in figure 6.2 (b). 

S t 

@ ) Z = Z 3  

Figure 6.2. Sample "zigzag" paths. 



6.3. Lemma. Let U = U(n; 0, 1 ,  a3, a4, ..., a$. Suppose there is a unique i such 

t& di = r = nuu(di- j= l,2. ..., t}. Then 

(a) a partial colouring of in which CO~OU~(S)-~, and ~010~r(t)-~+~-l, v 

can be extended to a U-colouring of 

(b) there is no U-colouring of Z2r-1 in which colour(s)=ui and 

col~ur( t )=a~+~ - 1 or v; and 

(c) a partial colouring of Z2_l in which colour(s)#ai and colour(t)+ v can be 

extended to a U-colouring of &-1. 

Proof. 

Direct verification. . 
4 

\ 
6.4. Lemma. If mar(dk. k= l,2,1, t) is unique, then U(n; 0, 1, a3, a& ..., aJ-COL % > 

is NP-complete. 

Proof. 

Suppose the unique maximum value is die The transfoxmation is from 

n-SAT. Suppose an instance of n-SAT is given, with variables X I ,  3, ..., xP and 
pr 

clauses F, fl, ..., Kq. Construct a digraph G as follows. Each variable (rcsp. each 
P 

clause) corresponds to a directed n-cycle, say X1, A?, ...,X" (resp. 

Cl, 0, ..., 0). We makc connections between these directed cycles by adding 

copies of as &Scribed below. (When we "join" a vertez in XW to a vertex in 

Ck by a copy of Z&-l, we identify the vertex s of of ZtPI with the vertex belonging 

to XW, and we identify the vertex t of &.l with the vertex belonging to Ck.) 

Suppose that KJ = ll v l2 v ... v 1, I f  1, is x, then join the rnm vertex on Ci to al l  

vertices on Xa which have opposite parity from ai. Otherwise the mh vertex on O 



' is joined to a l l  vertices on Xa with the same parity as ai. 
i 

CLAIM. The digraph G is U-colourable if and only if the clauses 

Kl, fi, ..., Kq have a satisfying truth assignment. 

) PROOF. 

(a) S-se there is a  homomorphism^ G c U. Each directed n- 

cycle  of G must map onto the directed n-cycle of U. Define a truth assi-nr by 

setting xa=T just if the parity of the label of the unique vertex of Xu in [aJH is 

different from the parity of ai. The wlour z assigned to the mh vertex.y of 0 must 

be compatible with the colours given to all of the vertices joined to it by copies of 

That is, there must be a homomorphism of Zz,,l to H taking s to colour(y) 

and t to z. If a vertex joined to y is coloured ai then colour(y) + ai+i- 1. That is, if 

the corresponding literal is false, then the colour of the rn& vertex of Cj is not ai. 

Since a colouring exists, not all literals in any clause can be false. 

- (-) Suppose there exists a satisfying truth assignment. Define a 

colouring as follows. If xa=T. then colour Xa so that the unique vertex coloured ai W, 

\ 

has different parity from ai. Since cach clause contains a true literal, each directed 

'cycle O has a vertex which is not joined m ai by a copy of By Lemma 6.3, 

this partial colouring can be extended to a U-colouring of G. 
@ 

Since the digxaph G can be constructed in polynomial time, the result 

follows. 

We are now in a position to give a classification of all digraphs U(n; al; oJ 
and U(n; al,  ar, a3). (It is. clear that if t=O or 1, then C, is a retract, implying that 



U-COL is polynomial.) 

6.5. Coroff ary. Let 2 5 t S 3. If U(n; al ,  %, ..., a& is symmetric, then 

U(n; a l ,  a2, ..., ad-COL is polynomial. Otherwise U(n; al ,  a2. ..., 4-COL is NP- 

complete. 

Proof. 

The first statement follows immediately from T h m m  6.3. The case t=2 

follows from Lemma 6.4 because if U(n; al, a2) is not symmetric, then max{dl, 

4) is uniquely achieved. 
I 

Consider U(n; at, e, a3). I f  max{dl, 4, d3) is uniquely achieved, the result 

follows from Lemma 6.4. Otherwise, we may assume without loss of generality 

% that r = dl = 4 > d3. Let be the result of applying the indicator construction 

with respect to (P,, 0, r) to U(n; a l ,  %, a 3 )  We shok that V-COL is NP- 
4 complete. 

Suppose first that gcd ( r, n ) = 1. Then U. = U(n; 1,2, p). If p-2 # '1 -p (mod n), 

then max( 1, p-2, 1-p) is unique, whence the result follows from Lemma 6.4. If 

p-2 = 1-p (d n), we must have p-2 = (n+1)l2. Let V* be the result of applying 

the indicator construction with respect to (P(n+lp 0, (n+1)l2) to U.. Since 

gcd((n+l)l2, n)  =l and 2-p = p-1 =(n+1)l2, the digraph (I.* is isomorphic to 

U(n; 1,2,3). Thercforc the W*-colouring problem is NP-complete, so v - C O L  is 

also NP-complete. 

Now suppose that gcd(r, n )  = k. Let n' = Since U is not symmetric 

n' 3: It is easy to see that the directed cycle in U* has length n'. If the vertices 

a,, 42, a3 all belong to the samo connected component of U', the result follows via 

an argument similar to the above. Otherwise, the core of is isomorphic to 



U(n'; 1,2), whence U*-COL NP-complete by the argument in the fitst 
* 

paragraph. 

We have shown in all cases that U*-COL is NP-complete. Therefore U-COL 

i s  also NP-complete. . 4 

Conjecture. If U is asymmetric, then U-COL is NP-complete. 
t- - 

We now turn our attention to acyclic digraphs. In analogy with the unicyclic 

digraphs discussed above, .let n 23. t  2 1 ,  and let alJ a2, ..., a, be integers such 

that 

The digraph A(n; al, az, ..., a$ is constxucted from P, u (v) by adding the arcs 

{ vai: i= l , 2 ,  .... t ) .  When the context is clear, for brevity we denote this digraph 
3 

by A. Note that A is acyclic. If the integers di = ai+l-ai, arc all equal 

(i= 1.2, ..., t), we say that A symmetric, and we denote by d to denote the 

common value of ai+*-ai (when al - a, is .calculated modulo n). Each digraph A 

may be obtained from a symmetric unicyclic digraph of the type described above 

by $fitting vertex 0 into two independent vertices , say 0' ando", adding the arcs - ; 

no' and 0 1  and, if vO was an arc of U, also the arcs vO' and vO". 

We first describe an infinite class of polynomial A-colouring problems. 

6.6. Lemma. Let A be symmetric. Then a digraph G + A if and only if 

G -, U(n;O, d, 2 4  ..., (n- 1)d) and ththm exists i such that i r a1 (mod d) and [ f l u  

contains only sources and sinks. 



Proof. 

(a) This is clear, since A+ U, and only sources of G (resp. sir& of G) can 

map to, vertex 0 (rcsp. n) of A. 

(e=) Suppose 'G + U and rhere exist i such that i = a,-, (mod d) and [ r )  

contains only sources and sinks. We cp define an A-cd@uring of G by mapping 

the sources in [a to vatex 0 of A, the sinks in [iJ to vertex n+ 1 of A, [v] to , 

vertex v of A, and for j = i+ 1, i+2, '- 1, mapping to vertex j-i of A. A -7' 
moments reflection should convince the reader that this is an A-colouring of G. 

6.7. Corollary. I f A  is symmetric, then A-COL is polyn~mial .~ 

We now describe an infinite family of NP-complete A-colouring problems. 

The smallest of these digraphs A has six vertices and eight arcs, and is the 

s W e s t  acyclic digr'aph for which the H-colouring problem is known to be NP- 

complete. Gutjahr has proved that there is no such digraph on four vertices 

[Gutjahr, 19881. 

6.8. Theorem. Let A be the digraph conspucted from Pq u { v )  by adding the 

arcs ( vO, v 1, v3, v4) .  Then A-COL is NP-complete. 

Proof. 

The transformation is from ONE-IN-THREE SAT without negated 

variables. Accordingly, let an instance of ONE-IN-THREE SAT without negated 

variables be given, with variables q, xa ..., xp and clauses C1,  0, ..., Cq. 

Construct a digraph G fk0i.u ( x l ,  a ..., x,) and q copies of the digraph Y shown in 

figure 6.3 as follows. If Ci = 11vlzv13 ( 1  S i S q) ,then identity the vertices y l ,  yz, 

4 

153 



a 
and y3 in the ith copy of Y with 1,. 12, and 13, respectively. Clearly the digraph G 

can be constructed in polynomial time. 

CLAIM. The digraph G is A-colourable if and only i f  there exists a truth 
6 

a s s i q n t  in which each clause has exactly one true variable. 

PROOF. 
3 

- (3) In any A-colouring of Y, the vertices 21, z2, 23 are coloured by a 

vertex on P4 and one of these vertices is c o l o d  by 2. Thus exactly one of y,, 

yz. y3 is colorncd by 1. D e b  a truth assignment by setting xi=T just if 

colour(x,)= 1. By the above argument, each clause contains exactly one true 

variable. 

(e) Define a partial colouring of G by setting co10ur(xi)=2 ifxi=T, 

and colour(xi)=v otherwise. This partial colouring can be extended to an 

Acolorning of each copy of Y, and hence to an A-colouring of G. 

The result nowf ollows. . 
4 

Figure 6.3. The digraph Y. 



Let A+ be any digraph constructed h r n  P, u {v) by adding some arcs Erom 

v to the directed n-path and such that A +  contains H. 

6.9. Corollary. The A+-colouring problem is NP-complete. 

The proof is almost identical to Theorem 6.8, only the' digraph Y is different. 

We only sketch the argument, the remaining details may be,easily supplied by 
0 

the reader. Suppose that there is a copy of A induced by vertices 

( v ,  k, k + l ,  ..., k+4) .  Let r = k if xl  is an arc of A+ and k + 1 and (k-1) otherwise. 
P 

Let s=n-k-4. The digraph Y+ is constructed from P,, P,, and Y by identifying vertex 
63 

r of P, with zl, and vertex 0 6f P, with q. In any A+-colouring of Y+, vertices zl, 

22, and z3 are c by (k, k+ 1, ..., k+4), and exactly one of them is coloured 

k+2. Conversely, any partial colouring of yl, y2, y3 by k+2, and v such that 

exactly one yj (I  S j S 3) is coloured v can be extended to an A +-colouring of Y+ . 

Gutjahr has recently proved that A(4; 0,2,3)-COL is polynomial [Gutjahr, 
* 

19891. This provides an example of a polynomial asyme&c A-colouring problem 

and another mystery to solve. 

In this chapter we have contributed to the study of the H-colouring problem 

when the digraph H is scyclid or unicyclic. There is some suggestion in our results 

that the automofphism group may play a role in any classification. 
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