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e vertxccs recetve ad1acem colours)s We stndy the complcxxfy ef the H"-colouring

g pmblem- 1vcn adlgraph G does there exlst an H—cobunng of G‘? - }

L

a0 . "L"

,,.

Lo L S e Wc prcscnt.,.smne newﬂconstrucuons that arc useful in estabhshmg NP-

T e ’i“;'—

|9
‘,g. The majonty of the t.hc51s is devoted to

= complcténcss results for H—cc%f

- . Th&re is, at present, no gcneral conjecmre as to exa,ctly which H—c01

. Hcll, cf below, proposmga classxﬁcauon for a broacl. bu' 'msmctcd. famaly o_.

s“,’

o chgraphs ) Somc order is introduced whcn we mvcstxgatc‘ the classof dire» ted

graphs H thh thc propcrty that the presence of Hasa subdlgraph of a ‘d1graph Gis
sufﬁcxent for tﬁq G-colonnng problem to be NP-complete In this context it
becomcs possﬂ)lc to. conjecnn'c precisely which H—colounng problems arc
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" 1. Introduction. . ,'

&

The problem of deciding whether k colours suffice to colour\a glven graph 1s
one of the bas1c NP-completc problcms [Karp, 1972]. In fact, it is belleved that
unless P-NP no polynomxal time algorithm can guarantee to colour an arbltrary

ngraph w1th at most,c tlmcs the minimum number of colours, for any constant ¢. This

has, fo. datc been proved oniy for small values of ¢ [Garey & Johnson, 1976 &

- 1979] It has, however been proved that any known polynomial time colouring

?-v'.,algonthm uses .Q( n(log’ Iog n)2/(log n)2) colours on*some n-vertex three-colourable

| .fjv,graph [WIdgerson, 1983].

¥

Gxaph colouring has also been stud1ed in a variety of other contexts. Among

L ‘thosé of a practical nature are scheduling and storage problems [eg. Levin, 1973;

Lelghton, 1979], printed cm{:mt testing [Garey et al., 1976], and combinatorial

games [Nowakowsln & Winkler, 1983]. Toplcs of theoreucal mterest can be found o
in [Albertson et. al., 1985; Higgkvist et al., 1988; etc.). H—colounngs have been of

mtcrest bécause of their relauonsh}p/to grammars and mterpretauons [Maurer et
al., 198 1] Other generahsed colounngs have anscn in ‘the study of resource |

a]loeauon tChung et al., to appear], and the fom—colour-conjecture [Hell, 1974].

Let G and H be directed graphs (all graphs cons1dered in this thesis are
fimte) A homomorphism of G to H is a function :V(G) -)V(H) such that f{g)f(g’) is
" anarcof H whenever gg’ is an arc of G. (The existence of a homon@phlsm of G to
H is sometimes denoted by G — H, or when we want to emphasize that the

mapping is accomplished by the fonoﬁon f, by £:G —H) The definition is similar

AN
R



‘when G and H are und.n'ected graphs "'Sinz:é;;u'lﬁn colouring of a graph Gis justa

'a homomorphism G — H. o
. o~

S “homomorphism G = K-t thc term H-colouring of G has been employed to describe . |

In this thesis we study the H-colouring problem; o | v

H-COL (H-colouring)
INSTANCE: A directed graph G.
QUESTION: _Does there exlst an H-colounng of G?

Each H-colouring problzg\ciearly belongs to NP.

The complexity of the undirected H-colouring problem (i.e., the version of
the problem when G and H are undlrected graphs) was mvesngated by Several
authors [Maurer et al., 1981; Ne'sethl 1982 “Hell & Nc&ctﬁl 1986] and was
completely detcrmmed by Hell and Ne!;etﬁl [Hell & Ne!;ethl 1986], who proved
that H-COL is NP-complete for any fixed non-bapamtc graph H and 1s polynomlal

otherwise. -

Most early work on the complexity of the directed H -colburing,problem

.mvolved polynomlal time algorithms when H was a member of some fairly 31mple

| _ class of digraphs. For cxamplc, H~COL is polyno:mal if Hisa dn'ected path a

directed cycle, or a transmve toumament [Maurer et al,, 1981] Some NP-compIeteg L

instances of the H-colouring problem are described in [Hell & Nc‘sethl 1986
Maurer et al,, 1981]. S

-
Ty
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o Figure 1.1 An oscillating sequence.

EA 'Bcforc proceedmg further we dcﬁnea spcc1al type of homomorplnsm that “_ ST

) 'ﬁ»plays an 1mponant role. f Hisa subdlgraph ofH' a retractiouofH'toH 1s a T

R

= homomorplnsm r of H'to H such that r(h ) h forall vcmces h of H »

S~

! o Other results have appeared in the htcrature durmg the prepabauon of this

' ‘,‘,"thesls [Bang-Jensen & Hell 1988 Gut]ahr 1988 Gut;ahr et al., 1988 Guqahr '

5 'y“ .



'_y;\fdevelopment is the followmg conjecture from [Bang—Jensen & Hell, 1988]t

WL -~ ‘, b

R Ll Con jecture. LetH be a connected d1rected graph in whrch each vertex has in-

o degree at least one, and out-degree at least one. IfH does not admit a retractxon to

SR f?-.ia drrected cycle, then H- COL is. NP-complete (wrth reSpect to Tunng reductwn)

o all of t.he prmcrpal construcuons due to other authors can be derived as spccxal

»Otherwxsé H COL 1s polynormal

Y

: a -
- -0 N >

(The last statement follows easrly from ’I‘heorem 2. 2 2.) Thrs conjecture postulates
a sufﬁcrent condtuon for NP-completeness of the H—colourmg problem m a o
: substannal pomon of the set. of dlret:ted graphs The maJonty of this the81s is

o devoted to venfymg Conjecture 11 for many large classes of dlgraphs S

Iﬂ chipter three we descnbe our tools Some of these are due to other o

‘ authors, and some are new. Of partlcular mtenest isa new construcuon from whrch

cases. i : : R R
Chapter four focusses on directed graphs H with the property that the Ga :

h colounng problem is NP-complete (sometimes with respect to Tunng reductlon)

whenever H is a subdigraph of G. These are the "hereditarily hard" H-colourmg

problems previously mentioned. Each theorem in this chapter venfies Con_]ecture

<1, 1 for infinitely many dn'ccted graphs, and also lmphes NP-completehess of &

e mfimtely many H-colounng problems nct covered by the conjectur/e/

—



q Several large families of digraphs are classﬁied by complexlty in chapter

, ﬁve, including seml-complete dlgraphs vertex-transitive dlgraphs pamuonable

" digraphs (a family which we introduce), and directed cycles with two chords,

, Classxﬁcatxon of the vcrtéx-tx‘ansmve digraphs affirmatively answers a qucsnon
due- to E Welzl (whethcr,vertcx transitive digraphs could be classified), and )
classxficanon of the last family extends a result from [Bang-Jensen & Hell, 1988].' |
Each major theorem in this chapter verifies Conjecture 1.1 for a fann}y qﬁ»dlrccted

graphs.

Finally-,"‘in chaptér six, we direct our anenﬁog;ictdWérd acyclic‘;“nc_i; sznicy;:ﬁc
digraphs. We describe new infinite families of such'digraphs for wﬁicj:h"thc H-
colouring problem is polynomml and others for which it is NP—complcte ’In so domg
we shed somehght on the nature of the sequence of dxgraphs in figm'e 1. 1



_vertices x and y.

2. Preliminaries.

'\/" e
This chapter presents the definitions, terminology, and preliminary results
' needed. | |
2.1. Definitions and Terminology. i o :

For concepts in the theory of directed graphs we use the nofaiioﬁ and
terminology of [Bondy &’Murty,il‘976], subject to the additions ard exceptions,
mentioned below. Since we assume that the reader is familiar with most basic .

definitions regarding directed graphs, we are briefly.

 Adirected graph (or digraph) is an ordéred pair D = (V(D), E(D))

con51st1ng of a ﬁmtc set V(D) of veruces, and a set E(D) of ordered pairs of (not

nccessanly &isnnct) vertices of D called arcs fa=xy 1s an arc of D, then g is sa1d o

- to join x and y; X is thc tail of a, % is its head We also say that x is. adlacent to y, s

and that y is adjacent from x. The arc a is sald to be mculent with each of the

a

-

Throughout this section we let D be a directed graph.

A loop is an arc w of D. If D has a loop, any directed graph is D-colourable;
map all vertices to a v&tex with a loop. Thus the question arises as t'c'; whéihcr to

assume omj/d,i(r,q,ctcd graphs are lé_op“less. IfDisa given digraph for which we



explore the complexlty of D-COL, we assume that D has no Ioops because -

otherwise the D-colom'mg problem is u'nnally polynomxal On the other hand, 1f the .-

digraph D is the result of a constructlon descnbed m Chapter three we allow -

loops, since in these instances the presence of a loop in D md1cates that the

construction has failed in a specific way, which i is often a useful piece of information. S

~ A walk mD is.a fimte sequence W= vl, al, V2, Ggsey Gy l,v n whose terms :
are altemately vemces and arcs, such that, for i = 1 2,..,n1, elther a;= v;v,+1 or
a;=v ,+1v, . We usually represent a walk by its vertex sequence alone We

sometimes treat walks as dlgraphs in their own right; thus we may talk abom

W W) the vertex-set of W,or E(W), the arc-set of W, etc.. The vertex vl is tne ‘
“originof W; v, is 'its terminus. Any other vertex belongmg to W is an internal e

" vertex of W. We ‘sometimes call W a (vl, v,,) walk. An arc of the type v,v,+1 1s a’ :

forward arc of W, while an arc or the type v,+1v, is a backward arc of w. The net :

length of W, denoted nl(W), is the nnmber of forward arcs of W minus the number of | o :

backward arcs of W.

A path (or oriented path) inDisa walk whose vertices are dlstmct If such o
a path has ongm u and terminus v, we somenmes call it a (u V)- p&th A directed

Mpath of lengt.h nin D (or a directed n-path) is a path P = VooV <oV e such-that, for 7 o

i=0,2, .., n1,v;is adjacent to v;,;. Let u and v be vemces of D. The distance

dp(u, v) from u to v in D is the smallest k for whxch Lhere isa dn'ected (u, v)-path of':

length k. If no such dn'ected path ex1sts we define dD(u, v)to bc lnfimte We u3c R

P, to denote the dlrected path of length n, that is, the d1rected graph w1th vertex
set V(P, )= (0, 1, ..., n}, and arc set E(P, ) = {z(;+1). i=0,1, n-l} ‘f:-
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A clo.;ed walk in D is a walk whose ongm and terminus éeilfcide. A cycle
(or oriented cycle) is a closed walk all of whose vertices, except the origin and
terminus, are distinct. A dtrected cycle of length n (or dzrected n-cycle) inD is a
cycle C = vo,vl, sV a1» Vo Such that, for i=0, 1 ,‘n 1, v; is adJacent to Vi
(where subscnpts are interpreted’ medulq n). Observe that a leOp is a directed
cycle of 1en§th ohe We sometimes refer to a. directed three-cycle as a directed
trzangle. We use C to denote the dlrected cycle of length n, “that i is, the directed
graph with v vertex set V(C )= {O 1 n-l}md arc set
| E(C, )- {i(i+1):i=0, 1, ves. n-l} where addmon is modulo n.
~ The directed girth of a directed graph is the length of its shortest dlrected o
cycle If a digraph D has no cycles, we definc the directed girth to be infinite. The
odd directed girth.of D (resp. even directed girth of D) is the length of the |
shortest directed cycle in D with odd (resp even) length. If D has no directed odd ‘ :
""Acycle (resp. directed even cycle), we define the odd directed girth (resp. even
directed girth) to be infinite. ’ '
) A subdigraph of D isa d1rected graph D’ such that V(D) o V(D’), and

E(D ) 2 E(D ‘). We also say that D is a superdigraph of D’. We also say thatD
contains D, and that D’ is contained in D. The digraph D’ is a proper subdtgraph'
‘of Dif D’isa subdigraph, but D’ is not equal to D. A spanning subdlgraph ofD is )
a subdlgraph D’ of D for which V(D) = V(D). ‘ .

-



S Let Xbea subset of VD). The dxrected graph thh vertex-set“X and whose \i/
arc set consxsts of those arcs of D wrth both ends rn X LS qalled the subdlgrapl(of
| '.D mduced by X, and is denoted D[X]. We use D X to denote the mduced

B - subd1graph D[V(D) - X] If X consists only of the vertex x we ‘write D - - X ms:ead

_\.,;_';_.‘ofD (x).- - . 25 L e
Similarly, let Y be a subset of E(D). The directed graph with arc-set Y and
whose vertex-set consists of all veruces of D incident with an arc in Y is called
the subdigraph of D induced by Y and is- denOted D[Y]. We use D - Y to denote
the spanning bdlgraph with arc set E(D) Y. The directed graph obtained from

Dby addmgasetZof arcs is denoted byD +Z As above, we wnteD afor

D- {a},and D + afor D + {a}.

A directed gr‘nphb is conneet(ed;‘iy'f,‘ for any two vertices 4 and v, there is a
: (u,,_v')-,walk; otherwise D is disconnected. A maximal connected sutgdigr\aph of Dis
called n‘,eonnected component of D. Similarly, D is strongly connecfed if, for any pair
,'i ofvernces 4 and v, there is a directed (4, v)-path. We sometimes abbreviate
- 'éuongly connected to ntrong A maximal strong‘subdigraph of D is called a strong
component of D. D sausﬁes the further condition that for any vertex x of D, the

- directed graph D-xis strong, we say that Dis 2-connected
: L

T

A vertex that is the head of an arc m‘?l\mﬂ v is an out-neighbour of v; a
. vertex that i is the tail of an arc with head v is an in-neighbour of v. We use N*p(v)

(resp. N‘D(v)) to denote the set of out-neighbonrs (resp: in-neighbours) of v. We
extend this idea by eﬁnmg N+kp(v) = {x: 3 directed (v, x)-walk of length lc} |



Similarly, N-%p(v) = [x 3 directed (x,,v)—walk of 1ength Ic] ’I'he out-degree d+D(v)

of a vertex ofv in D 1s the number of arcs with tail v, that is, d+D(v) = W+D(v)l, the ‘

in-degree dp( v) of vin D is the number of arcs wuh head v, that is, '
D(v) = (v)l When the context is clear, we drop the subscnpt D; thus we

wnte d+(v) instead ofd (v) and d-(v) mstead of d"p(v), and soon C

;"4 .
. - M &
SRR * -
FI PN

A source of D is a':vertex with in-degree zero; a sink is’éﬁeﬁex with out-
degree zero. Directed graphs mtl% no sources and no sinks play a major role in this
thesis. Hence we define a smooth digraph to be a directed graph with no sources

and no sinks.

A subset I of V(D) is an independent set if no two vernces in I are joined by
an arc of D. We w111 say that D is bzpartzte if V(D) can.be pamnoned into two
mdependent sets X and Y, i.e., so that every arc of D has one end in X and the

" other end in Y. We observe that a dlrected graph is: bxpartlte if and only if it admits

"
R

a homomorphlsm to C,. }.’1.’-"

If G is an undirected graph, the equivalent digraph of G is the directed
graph With, vertex set V(G) and arc set{xy, yx: [x, y] e E(G)}. The graph G is the
underlying graph of its equivalent dig;aph It should be clear that a graph G admits
a homomorphism to a gr ph H lf and only if the eqmvalent dlgraph of G admits a
homomofphism to the eqmvalent ngraph of H " )

If both xy and yx are arcs of D, we sometimes‘say- that x and y are joined by

a double arc or an undirected edge; this situation is iiehbtedrﬁy‘[x, yl. The

i

T
£

L o | 10



A

undirected part of D, undir(D), is the subdigraph of D induced by the set of double

arcs. Observe that undir(D) is the equivalent digraph of an undlrected graph. We \

often treat-undir(D) as an undirected graph we M@ about und ed_paﬂls and

‘cycles in D, about whether undir(D) is bipartite, etc.. In our fig duble arcs are

.drawn as undirected edges. . L :

o If G is an undirected graph, we can construct & d1graph by assigning a
o dxrecﬂon or orientatwn to each edge of G A d1rected graph constructed in this

TR

- manner is somcumes called an oriented graph A tournament is an oriented

'*'complete graph. A tournament is transitive if it eeneams no dn'ected cycle. A
transitive triple is 2 transitive tournament on three vertices. A bipartite

tournament is an orientation of a complete bipartite graph.

The term homomozphzsm was defined in the introduction. t that timc.we
- 4also noted that homomorphlsms are a generalisation of the usual graph colouring.
By a partial colouring of D we mean a partial mapping of D to some directed graph
H. Since we think of the vertices of H as colours, we can imagine that this situation .
represents assigning colours to some of the vertices of D. A partial colouﬁng of D
can be extended to an H-colouring of D if the remaining (i.e., uncoloured) vertices <

f
of D can be mapped to vertices of H so that the result is a homomorphxsm D — H.

Let H' be a dlrected graph and let H be a subdigraph of H'. A retraction of
H'’ to H was also dcﬁned in the introduction. If H * admits a retraction to H “‘we say
o ‘that} '_.H‘ is a retract of H'. A directed graph is retract-free (or a core [Hell &
x : _N e§étﬁl, 1986}, or a minimal graph [Welzl, 1982]) 1f it does not admit a retraetion

A
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'to a proper subdlgraph Every dxrected graph H contains a unique (up to
1somorph1sm) subdlgraph C which i s reu'aCt-free and for which there is a retracnon

. of Hto C [Welzl, 1982]. Followmg [Hr.lL & Nekethl, 1986] we call C the core of H.

S :"IfH is a retract of H’, ihc,re are homomorphism i: H— H’ (the inclusion) and

S r. H’ —HA(a retracnon) thus a given d1graph is H -colourable if and only if it is H-

colourable. This aHOWS\uS, when we choose, to restrict our attention to retract-free

. digaphs. el

We now éc'.luﬂcsto oui; ﬁnal graph _theoretic definition. An automorphism of D
is a one-to-one. onto function f: V(D) — V(D) such ihat f(x)f(y) is an arc of D if and
only if xy is xm arc of D. The set of all automorphisms of D is a group, called the

automor_phtsm group of D, and denoted by Aut(D). n '

Let H be a retract—free digraph. We show that every homomorphlsm of H to
,, '“'1tself s an onto mapping that preserves arcs, that is, an automorphlsm of H.

o Supposc not, and let f be a homomorphism of H properly into itself. Since H is

Loy

finite, there exists n such that the subdigraph C which results from the compositioni\'

- of f with.itself, n nmes is isomorphic to the subdigraph which results from the
',composmon of f with itself k times, for all k& 2 n. By relabelling the vertices of C we

obtam a retraction of H to C, contradicting our hypothesis that H is retract-free c

Let H be a retract-ﬁ'ee digraph. Suppose that H is a subdxgraph of H', -
Consxderahomomorphlsmf H' — H. The restriction g of f to the copy omeH’ls
a homomorphism of H to itself, i.c., an automorphism of H. It is not difficult to see

that the function r = g'lo f is a homomorphism of H’ to H such that r(h) = h, for all

12



vertices h of H. That is, r is a retraction of H' to H. Therefore, a retract-free digraph
H is a retract of a.digraph H' if and only if H is both a subdigraph of H’ and a

homomorphic image of H". g ., h

We now turn our attention to the concepts we need from the theory of .-
= . computauonal complexity. We use the definitions and termmology from [Garey & |

| Johnson, 1979] subject to one exception (Turing reduction, cf. below).

A decision problem is a problem whieh has a yes or no answer. The theory
of NP-completeness is concerned only with decision problems (although the
implications of the theory extend beyond this class of problems) Thus we
abbreviate decrsron ‘problem to problem Generally speaking, a problem consists of
a general questlon which has a yes or no answer, and a collectron of parameters ‘ /
whose value is not specified. (In the H-colourmg problem (cf Chapter one) the
parameter whose value is not spec1ﬁed is the directed graph G. The questlon 1s
"does there exist an H-colouring of G?7".) When we specrfy values for all of the ~‘
parameters of a problem we obtam an instance of the problem (We have an o
- mstance of the H-colounng problem whenever we consrder a partlcular dtgraph G. )
‘We say that a function f(n) is O(g(n)) if there are constants-‘:el‘ and ¢, such
that lfin)l < ¢,lg(n)l + ¢4 for all n 20. An algorithm is O(f(n)) ifthenumber'of
computanonal steps required by the algorithm is 0(f( n)), where n'is a "reasonable
measure of the problem size. (We will not attempt to define reasonable" ‘instead
we refer the reader to [Garey & Johnson, 1979).) If there 1s a polynémlal p such s
that the number of computanonal steps requlred by the algonthm is O(p(n)), then } | ,



the algorlthm is a polynomzal ume algonthm We use P to denote the set of
decisiorn problems. whxch are solvable in polynomxal time, i.e., admit solutlon by a
polynomial time algonthm. We sometlmes say that a problem e Pi is polynomlal

Let 2 and ITbe problems A polynomml transformatwn from Eto H lS a
function f that maps the. set of i mstances of 2 to the set of mstances of H and :
satisfiés two condmons.,(x) a -"yes instance of 2 maps . toa yes instance of H |
and a "no" mstance GE X maps toa no mstance of I, and (u) f is computable by a | : r _‘;_j.
polynomial time algonthm. If there emsts a polynomral time transformatlon from 2 }
to I, we say that X polynomially transforms to IT and write 2 o I'I 'I'he CXIStchv e
of a polynomial time transfoniatton from 2 to ITimplies that if [T P, then 2 € P
. because a composmon of polynomxal tlme algorithms is a polynomxal ume o

e algorithm.

: we d°“°t° by NP the set of demsron problems solvable in polynomxal time )
by a non-determnmsnc algorithm. It is clear that Pi 1s contamed in NP ‘One of the _

fundamental quesuons in theoretical computer scrence is whether P =N>. “ e

. Let H be a decision problem. We say that ITis NP-complete if I1 belongs to V
NP and, for any other problem Ze NP, Zo IT Let ¥ be an NP-complete problem.
Since every problem in NP polynomially transforms to ¥, in order to prove that a’

problem ITis NP—complete it suffices to show ¥ a IT. Furtl_:_ermore, if some NP-
| complete problem belongs to P, then P =NP. |
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| o LetZ aodﬁ pe-‘iﬁoblem.s;t}\ polynomial time Turing reduction from Zto IT.
[isa ,function;f tharmapsthe set of instances of £ to the power set of igstances of IT
R ‘and satisfies two conditions: (i) a "yes" instance of £ maps to a set of instances of
. ITthat contains at least one "yes" instance of I7, and a "no" instance of £ nréps to
a set of "no" linsta’nces of IT, and (ii) f is computable by a polynomial time |
algorithm. If there exists a polynomial time '.I'lrr}lhitrepucﬁon from X to IT, we say
B that X Turing reduces to IT and write Z o IT. The e';cistence of a polynomial time

Turing reduction from  to IT implies that if ITe P, then Ze P.

‘ We say that a problem IT € NP is NPT-comnIete (NP-complete with -

" respect to Turmg reducuon) if every problem in NP Turmg reduces to it. (Note that
any NP-complete problem can be consrdered to be NPy-complete.) Let ¥ be an
NPT-complete problem. Since every problem in NP Turing reduces to ¥, in order to
. prove that a problem IT is NPp-complete it suffices to show ‘P aq- II. Moreover, if
any NPr-complete problem belongs to P, theo P=NP. .- . .

A polynomial transformation is a one for one u'é;isformation; it takes as
input one instance of a particular problem, and produces as output one instance of
i v, another problem (for which that answer to the question is the same). The
mquipmenr that only one‘instance of the target problem be produced is sometimes
" restrictive. In some of our theorems we are able to describe a one to many
'mansformatiron (e, a Turing reduction) to the problem in question, but we are P
unable to desbribe a poly‘nomiai transformation. Ithshould be noted, however, that

‘all of our -H-colouring problems are in NP, and all of our NPr-complete H-colouring

problems are at least as hard as any other problem in NP.



- We conclude this section by describing some basic NP-compIete problems

~ that will be used in our transformations. N

k-SATISFIABILITY (k23 ﬁxed) (k-SAT) [Cook 1971] PEACHE Tk i"'}g :
INSTANCE: A set U of boolean vanables, and a collecuon C of (conjuncnve)

. clauses over U such that each clause ¢ € C involves k vanabIes
QUESTION: Is there a satisfying truth assignment.fp;{ C?
NOT-ALL-EQUAL k-SAT (k 2‘3 fixed) [Schaefer, 1978]
INSTANCE: A set U of variables, and a collection C of clauses over U such that -
each clause c € C involves k variables. e

| QUESTION Is there a satisfying truth assxgnment for C in which each clause

contains at least one true literal and at least one false literal? .

Comment The problem remains NP—complete even if no clause contams a negated N

literal [Lov4sz, 1973]. In this case it is the problem of two-colouring a k-regulax oo

hypergraph.

ONE-IN-k-SAT (k 2 3 fixed) [Schaefer, 1978]
INSTANCE: A set U of variables, and a collection C of clauses over U such that
each clause ¢ € C involves k variables.

QUESTION: Is there a satisfying truth assignment for C in whrch each clause
s S

- contains exactly one true literal? : AT o
Comment: The problem remains NP-complete even if no clause contains a negated = "¢
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' 2.2.1. Theorems [Hell & Ne¥etfil, 1:986] Let g be a fixed graph IfH contams an-

2.2. Prevlous work L .‘

L T

The launchmg pomt for tlus thesxs is the followmg result of'Helli and R e

N esethl which completely determmed the complexlty of the undxrected H-colourmg/\“
T ’ - . problcm . - R \r t‘, ;v ' : ,.1 N . ' “ B ) _ ,:‘ .

i .odd cycle: then the H-colouring problem is 1‘“"'003119lete Otherwise (H 15 bxpamte) -
"\"_the H-colourmg prob’fem is polynomlal " | |

Aﬁennon subsequently shlfted to classifymg dn'ected H—colourmg problems
accordmg to then' comple:uty The purpose of thls secnon 1s  to bneﬂy survey these

results T S el e e e

Hell and Nesethl [Hell & Nele, 1986] remark that the mdlcator :
construction (cf. Lemma 3.8) can be used to construct NP-complete dlrected H-
colouring problems Mo(r:over, the dJrected graph H' ean be made to satlsfy some
addmonal condmons, in pamcular, there are. balanced acychc dlgraphs H for wh1ch

the H~colounng problem is NP-complete (a dlgraplr is balanced if every oriented

cycle has net length Zero). S S

In their 1981 paper, Maurer, Sudborough and Welzl [Maurer et al 1981] N \ :

‘, ',-';clasmfied all three-vertex digraphs H ‘accordmg to the complemty ot' the H - '
. colounng problem. Gut]ahr has reccntly classxﬁed all four-vertex dxgraphs [Gutjahr
- .’ 17” | s




" theorem. , o

o 2.2 2 Theorem. [Maurcr et al 1981] Thc H-colounng problcm 1s polynormal for '
B i any d1graph H beIonging to thc folIowmg classcs of dmecxef graphs o

o ‘somc substanual NP-complctencss results conccrmng both sparse and densc

Polynomlal ume algorxthms for several classes of dlrected graphs werc -

descnbcd in [Maurer ct al 198 1]' These results are summanzed in the followmg

(a) dlrecw& Patﬂs, n ;_’ J P | f
(b) irect cyccs ‘and

s T

(c) transmve tournaments -

Smce 1t sufﬁces to cons1der retract-frec ngraphs thq, H—colburmg problem R
is polynomlal if any dlgraph f0r whlch H—COL 1s polynom1a1 is. a retract of H In |

:-pamcular t}us is truc 1f a d1rected path dlrected cycle, or transmve toumament 1s a

retract of H

, Pcrhaps the mOSt s1gmﬁcant contrxbutxon from the paper of Bang'Jcnsen an d )
| Hell [Bang-Jensen & Hell 1988] is Con_]ecture 1. 1 Th1s paper a.lso COntam ed L

dxgraphs Conjecturc 1. 1 ‘was venﬁed for many dlgraphs w1th premsely two dlrccted o
| *cycles, and also for bxparntc toumamcnts (1 e orxcntanons of comple:e blparnte o

graphS), .

R By far the strongcst result on the polynotmal s1dc is duc to GutJahr Wclzl
and Woegmgcr [Gut_]ahr et al 1988] They deﬁne an X-graph to be a dlrected



graph for Wthh there is an enumeration v;, v,, ... Vi of“the vertices such that if A7
and Vv, are arcs of D then so is v,,,,,,(, k) Vminyj, 1)+ Thc mam result in theu' paper :s
the following. . o S

2. 2.3 ﬁeorem [Gut]ahr et al., 1988] If H is an X- graph then the H- cole\mng
| émblem is polynomial. g -

e It is not difficult to see that every oriented paﬂyx is an X-graph. Hence it
- folléiivS from Theorem 2.2.3 that the H-colouring problem is polynomial whenever |
H 'is an oriented path. This was a long standing open problem in H-colouring.

There exist infinitely many oriented cycles which are not X-graphs.
Nevertheless, Gutjahr [Gutjahr, 1989] has proved that the H-colouring problem is
also polynomial whenever H is an oriented cycle. | ‘

On seeing Theorem 2.2.3, one might be inclined to conjecture that the H-
colouring problem is polynomial whenever H is an oriented tree. One of the most
surprising results regarding the complexity of Iﬁpolouriﬂg is this is not the case.
2.2.4. Theorem. [Gugahr et al.,, 1988] There exxsts an onented tree T for whach :.."f |
the T-colouring problem is NP-complcte » - ' .' ‘.
% } -

The smallest such tree found to date has 288 vertices. Theorem 2.2.4
suggests that a complete classification of the complexity of directed H-colouring
prdblems may be difficult to accomplish. -

™
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3. \Tools.h

In order to prove tha: a.given prbblex;z A e NP is NP-complete (resp. NPy-
compléfe). éné must first select an NP-cémplétc (resp. NP-[-;complete) problem
B, and then describe a polynomial time transformation (resp. polynomial time
Turing reduction) from B to A. When A is an H-colouring probiem, it is frequently
the case that B is also an H-colouring problem. That is,_4new NP-completeness

(resp. NPy-completeness) results for H -CbL ¢an be derived from oid.

The purpose of thls chapter is to describe some generic transformauons
between H—colounng problems The threc main transformauons are the md1cator
‘construction, the sub-md1cator constructlon and the edge Sub-mdxcator o
construction [Hell &. Ne§etﬁl 1986] (cf. Lcmma 3.1.8,3.1.9, and 3.1. 10
respectively). We introduce a general construction, (cf. Lemma 3.1.11) from
which all of these can be derived as speclal cases. In the final secaon of this

chapter we discuss a consequence of the indicator constructxon. ‘

t -0~

- Lo

3.1. Generic Polynomial-time Reductions.

=,
. "

Let G and H bc directed graphs. It was noted in Chapter one that if H is a
retract of G, then a given digraph is G-colourable if and only if it is H—colourablc
Thus G-COL and H-COL are polynomially equivalent; if one of them is polyhonnal

(resp. NP-complete, NPr-complete), then so is the other. We reiterate that this

-
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S~

allows us, when we choose, to restrict out attention to rcu'act:&eé digraphs.. .= i

Our first Lemma is used implicitly throughout the entire thesis, ’ .

3.1.1. Lemma. [Bang-Jensen & Hell, 1988] Let H 1 and H,be dls_mmt derCth
graphs such that H = H 14 u H, is retract-free. Then H-COL o H-coL,

fori=1,2.m

Hence if H,-COL of H,-COL is NPy-complete then so is H-COL. On the
other hand, if H-COL and Hy-COL. are both polynomial, then there is a

- polynomlal algorithm for H-colourmg given an mput digraph D test whethcr cach

*component of D is H; -colourable for at least oné . It thercfore sufﬁccs to consider
connected digraphs. o o
-~ Some preparation is required before the next reducnon can be described.
THe following lemmas concern the existence of certam directed cycles and .
d1rect9d }alks :The_y are also used elsewhere i in this thesis.

L L
3.1.2, Lemma. [Hﬁégkvist et al, 1987] There is a homomorphism of a directed
. graph Hto Cd if and only if the net length of every (oriented) cycle is divisible by

dl

Therefore a given directed graph do'g;é not admit a homomorphism to C,, just
.if it has a cycle of net length not divisibﬂleA byn, and does not admit a_ ‘
- homomorphism to any directed cycle of iexig;h greater than one if and only if it has
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" collection C', C%, ..., Ct o£Cycles such that ged(nl(C): i=1, 2, ..., k}=l.

-, B D S . A
; : i I L c e

(313 Lemma. LetHbestrong;There1snohomomorph1smothoCd1fandonly .

' if thcre exists an integer k- such that 4 does not divide %, and there isa

homomorphxsm of Ck to H.

Proof . , 5
(=>) Suppose H does not adxmt a homomorphxsm to C,. Let Whea closed

walk in H-with net length not d1v1$1ble by d (the walk W exists by Lemma 3 1.2), “ -

and wnh the mmlmum number of backwards arcs among all such closed walks. If

W has no backwards arcs there is nothmg to prove, so we may assume that W-
Ahas—er\l,east one backwards arc xy say.. Smce H 1s strong, there 1s a dlrected
(y, x)-path P. By our assumpuon on W, the length of the dlrected closed walk
P+xy i is a muluple of d say qd. Let W' =w-xy (i. €. d( e (x, y)-sectlon of W) Then
WP is a closed dxrected walk with one fewer backwards edge than W and
. P) = ni(W) + 1+(qd-1} :
: _which is not divisible by d. This contradlcts the cholce of W and completes the
.proofofthexmphcamn I R
(¢=) Thc 1mage of C,inHisa union of dlrected cycles Smce d docs not
—' dnnde k thc dlgraph Hhasa cycle of lengtb not d1v1s1ble by d. Consequently
._‘therexsnohomomorphlsmometoCd “ e e e

o | \I‘,'emma 31\3 yields a strengthening of Lemma 3.1.2 for strong digraphs.

3 1L 4 Corollary Let H be su'ong There is ahomomorphxsm of H into Cd if and
only if the length of every directed cycle is d1v131ble by d. - . ' '

SF
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{ 'Ihérefore a given strong dlgraph docsnot admit a hdmomorphism to C, just
. *"rif it has a directed cycle of net lcngth not divisible by n, and does not admit a
‘ homomorphlsm to any directed cycle of length greater than one if and only if it has
a collecnon CL, C?, ..., C* of directed cycles such that gcd[nl(C‘) i=1,2, ..., k}=1
Let H be a s;nooth digraph. Tﬁen H has'a.d'ixi'ectéd cytcle Let g be the
- directed glrth of H. Since no, dn'ected cycle admits 2 a homomorphism to, a larger

directed cycle, H is not C,,-colourable for any n greatcr than g. Th:ls, toélct:/ryh
 the observation that any directed graph is Cl-’colour,able, allows us to about

the largest d for which there isa homomorphism of H to C,. (In particular, we

note-that a strong digraph is smooth.) |

e 3.1.5. Lemma. Let H be sn'bi;g, and iet d be the largest integer such that there

isa homomorphism f of H to 'Cd For any vertexvof H there is an integer /,
.(resp b,) such that, for every vertcx x in f'l(f(v)), thcrc is a directed (v, x)-walk
. ‘, of length I, (resp. directed (x v)—walk of length b,,) '
- Proof.
We prove only the ex1stence of l,; the exlstence of b, may be establlshed
E 'mtmlarly First we ﬁnd an mteger I such: that there is a directed (v, y)-walk of
~ length [ for every vertex y u} {v}U N*¥(v)". We then use ! to define /,. |
By Corollary 3.1.4 the digraph H has a collection CL, 2, ..., C™ of directed
cycles such that gcd{IV(Ci)l: i=1, 2’ . n}-—d Since H is strong, the vertex v lies

T on a directed cycle K of length kd for some k. Let <d> denote thc subgroup of Z;,

* generated by d. Then <d> = <{IV(CiJl:i=1, 2, ..., n}>, 50 there exist directed
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cycles.tD*li , D2, Dte (C!, C2, ..., C"} (not neééssarily;‘-éll disgi{ct) such that
. W o+ V(D?)l+ ...41V(DY) =d (mod kd). )
For ]-I 2 .1, let v; be a vertex on DJ, let Wibe a (v, vj)-path, and let X/ be a
(vj, v)- path Define |
| = WV(D)+IV(D2)l+ .. -HV(D‘)I
+ IV(W1)|+|V(W’Z)I+ +|V(W’)|
+|V(Xt)|+|V(X2)|+ +|V(X‘)|
; It is not ha.rd to see that § = W1D1X IW2D2X2 ... WDIX*.i is a directed (v,v)-walk
. of lcngtlrl Let u € N*9(v). There is a directéd (v,u)-walk of length /, namely *
o1 WIXIW2XZ . WIXtP, where P is the (v,u)-walk of length
1 ‘lV(Dl )I+IV(D2)I+ +|V(D‘)Iifo;'med by 'traversing K repeafedly, and then using

- thc last d arcs of P to traverse a (v, u)-path of length d.

o Next we define /
', I,=1-max{k : 3 u such that d(v, u) = k}.

Let x be in £1(f(v)). Then d(v, x) is divisible by d There is clearly a directed

(v, x)-walk of length I, formed by traversing S / -d(,v\;,lx) times, traversing T-P
d(v, x) nmes, traversmg K repeatedly, and then using the last d(v, x) arcs to
traversc a dJrected (v, x)-path of length d(v, x) The result follows. |

3.1.6. Lemma ‘LetH bea strong component of a retract-free dxgraph D, Thcn
H-COL aq- D-COL Furthermore, if H does not admit a homomorpmsm to a

directed cycle of length greater than one, H-COL o D- COL.



Proof. A LRI

Let d be the largest integer such that there isa homomorphxsm of HtoC &
and fix a homomorphism f: H — Cj. Let G be a gtvcn dlgraph We define a
collection of digraphs, G,, Gy, ...,.G4,’ §poh{ ma;.;llem is a homomorphism of G toH
“if and only if there is a homomorphism"’ot; somo G,- to D. -
" There exists in 4 a directed path v, v, ..., v Then f assigns a different
~ colour to each of these vertices. For i=1, 2, ..., d let [, and b; be the lengths from
Lemma 3.14 correspondmg to v;. If G admits a2 homomorphism to H, then there is
a homomorphism of G to C. Since .the 'Cd-colom'ing problem is polynomial, it may
be assumed that a C;-colouring m otr' Gis l;;nown. The digraph G; is constructed
from the disjoint union of G and D by adding directed paths as follows: Let g be a
vertex of G, and suppose that m(g)=x. Let ‘k = i+x (mod d). Add a directed |
(g, vp)-path of length b, and a directed (v, g)-path of length /;. The digraph G;
results from applymg thls construction to every vertex of G.

CLAIM There is a homomorphism of G to H if and only if therc isa
homomorphism of some G; to D,

PROOF.

(=») Let h be an H-colouring of G. Then ¢ = fo h is a Cy-colouring of
G. Let g be a vertex of G aod, without loss of generality, suppose m(g) = 0. Let
¢(g) = j. Consider a homomorphism of G; to D. Since D is a retract-free, the copy
of D in G is mapped identically otito D Each vertex of G maps to its imagc in the
H-colouring of G and, by Lemra 3 1 5 this partial colourmg can be extcnded to
all of the paths Hence G; = D. ‘ R
(=) Without loss of generality assume that G; admits a

homomorphism to D. Since D is retract-free, we know that G, maps onto D. As
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H U G is contained in a strong component of Gy, it is mapped to a strong
componeht ofD Since D is retract-free, this component is isomorphic to H.
Hence there is a homomorphism of G to H. |

Since the colléction G1, G, ...,G4 can be constructed in polynomial tinie,'»the ‘
result follows. Furthermore, if H does not admit a homomorphism to a directed
cycle of length greater than one, then d=1 and the construction described above is

- a polynomial transformation. m

Hence whenever we prove that H-COL is NPr-complete for some strong
digraph H, we obtain, via Lemma 3.1.6, an infinite family of NPr-complete H-

colouring problems. This is not always noted in the text.

Let H be a directed graph. The digraph H~ (resp. H* ) is obtained from H
by adjoining a new vertex x and adding all arcs belonging to {vx: v € V(H)} (resp.
(xv:ve V(H))). |

3.1.7. Lemma [Gutjahr et al., 1988 Bang-]ensen et aL, 1988] Both

 H-COLw H-COL and H-COL o H=-COL. (Slmﬂarly, both H“ -COL a H-COL and s

Proof. ‘ | .

A given input digraph G admits a homomorphism to H if and ‘only" if G~

admits a homomorphism to H-. Therefore H-COL o H=-COL.
On the other hand, suppose that an instance of H=-COL (ic., a digaph D)



s given. Let D- be the dlgraph obtamed by deletmg all sources of D. We claim
that D admts a homomorphlsm to' H~ if and only 1fD' ' admits a homomorphism
to H. To extend an H-colouring of D" to an H“‘-colourmg of D map all sources of
D of the vertex wh1ch was adjomed to. H to gct H"’ (no two such, vemccs are
adjacent and every vertex of H 1s an admxssxblc image for any of their
neighbours). Conversely, in :ny H"’-colounng of D, only sources can map to the

vertex in H-H. chce D- — H. This completes the proof. g

Thus the H-colouring problem and the H™-colouring problem are
polynomially equivalet;t: if either is polynoniial (or NP-complete, or NPp-
complete), thgn so is the other. Therefore sourbcs (résp. sinks) whose
neighbourhood spans the set of all other vertices may‘ be discarded.

Let / be a fixed digraph, and let 4 and v be distinc; vertices of /. The
indicator construction with respect to (I, u, v) transforms a given digraph H into
the digraph H*, defined to have the same vertex ‘lset;as H, and to have as the arc
set all pairs hh’ for which there is a homomorphist of I'to H taking u to & and v to
" k. The ﬁ'iple (1, u, v) is called an indicator, and if the digraph H* is loopless (i.e.,
if no homomorphism of I to H can map u and v to the same vertex), it is called a
goc;d indicator. If some automorphism of / maps 4 to v and v to u, we say that the
indicator (I, u, v) is sjmmetric. (The result of the indicator construction with |
respect to a symmetric indicator is the equivalcht digraph of an undirected graph,
~ and can be defined to be an undirected graph [Hell & NeSetfil, 1986].) Other,

-

" more specialized, indicators are defined later.
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1

N\ 3.1.9. Lemma. {Hell & NeSettil, 1986). H--COL o. H-COL.

3.1.8. Lemma. [Hell & NeSetil, 1986]. H*-COL a H-COL.

~

In applymg Lemma 3 1 8 care must be taken to assure that H* has no loops,
ie., that (1 u, v) 1s a good md1cator IfH‘ has a loop, then there is a polynom1a1

R

‘time algont.hm for 1’7!"f§:olour_1ngt t_nap “all vertices of G:_ ;o a vertex with a loop.

Lct J be a ﬁxed d1graph w1th specxfied vertices x and J1s Jas s Jp. The sub-
imiicator constructwn with respect 10 (J, X, Jis Jas wes JO), and by, By ooy By
transforms a gwcn retract-free digraph H with specxﬁed vertices hl, hy, ..., B, tO

s subdlgraph H- induced by the vertex set V- defined as follows. Let W be the
R dlgraph obtamcd from the drs;omt union of J and H by identifying j; and h;,

1-1 2,..,t AvertexvobeelongstoV"Justlfthere is a retraction of W to H

. which maps x to v. The structure (J, x,jy, j, ..., Ji) is called a sub-indicator. The

- digraph J is not required to be connected. If the vertices j;, ja, ..., ji- are all

isolated, the outcome of the sub-indicator eonstruction is independent of the
choice of hy, by, ... h,. In this case we call 1, x4, Jas - Jy) 2 free sub-indicator
and, in order to reflect the mdependence of the specified vertices, refer to it as the

sub—indicator construction with respect to (J, x, free).

.,

Similarly, let J be a fixed: dlgraph wrth a specified arc xy and spccxﬁed

‘ Yeruces J1, Ja» -r jp. The edge®: sub-indu:ator construction with respect to et

J, xy, Jv J2s «es Jo)» and hl, hz, s By transforms a given retract-free dlgraph

- H with specified vertices hy, h2, vy h, into its subdigraph H* induced by the arcs of
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H wluch are 1mages of the arc xy under retractions of W (as defined above) to H.

The structum J, xy, Jl, Jas - Jy) is called an edge sub-indicator. A free edge-
sub-indzcator is defined and denoted similarly to the above.

N\ .

3.1.10. Lemma. [Hell & NeSetfil, 1986) H'-COL o H-COL. |

' We now describe a general construction which includes the indicator
construction, the sub-indicator construction ‘and ‘the cdge-sub-indicatoi' |
construction as specml cases. Let G and J be fixed digraphs with specified
veriices g1, g2, .-, 8» and U, v, jy, ja, ..., Jp reSpccnvely Thc HSI construction with
fé’spect to (G, gl,_'g'z, s 8¢ and (J,:u, ¥ J1s J2s wes j) transforms a given
directed graph H into the dlrected graph H!, defined as follows. Let hom(G, H)
denote the set of homomorphismsoof G to H. The vertex sét V(H') consists of
\hom(G, H)| copies of V(H). Let f; be a homomorphiém of G to H, and let W, be the
digraph constructed from H U J by identifying jyand f{(gy), k=1, 2, ... £ There is
an arc from x to y in the copy of V(H) (in V(H')) corresponding to f; just 1f there is
a retraction of W; to H which maps « to x and v to y. (Perhaps it iS best to thmk of
the construction as having three phases; a Homomorphism phase wherein G ifsA /
mapped to H, a Sq_b-i'ndicator phase wherein W; is constructed and then ren-acted ,

to H, and an Indicator phase which defines the arcs of H'.)
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A

3.1. 11 Lemma H' coL aH-COL

Suppose an instance of H'-COL, i.e., adlgraphD 13;81 n Wlth_,m: _Oss'of

" generahty, D is connected (otherwise apply the consn'ucn(?m 'below to each

| component) Construct a digraph 'D from V(D), G, and IE(D )l copics ofJ say

B S AR A Jig(p)» as follows. For i=1, 2, .., t identify g; and all IE(D)I copies of j Ji I

x}_'is,the kt arc of D, then identify the vertices u and v in the & copy of J with

the vertices x and y in the copy of 1;'(D )y respéctively. Clearly the construction

may be carned out in polynomlal txme -
We claim that ‘D —->H1fandonly ifD > H.

Suppose f-'D — H. The restriction of f to the copy of G in ’D 1s a

homomorphism of G to H, say f;. We show that the restriction of f to V(D ) ,yields
a homomorphlsm D — H!. Let dd’ be an arc of D. We must show that there is a -
retraction of W; (as defined above) to H in which d maps to f(d) and d’ maps to

f(d’). This is equivalent to finding a homomorphism g of I to H such that

g = k=1,2,..,1 g(d) = f(d) and g(d’) = f(d’). The res 'cnon of f to the

copy of J corresponding to dd’ in ‘D is such a mapping, as u was identified with d

‘and v was identified with d’. Therefore there is a homomgrphism D }oH’.

- Suppose f:D - H. Since D is éonnected, it maps to ;f:onnected component . :
of H!, and hence to the subd1graph of H! induced by some copy of V(H ), say F, the - 3

taking u to h and v ‘0 ’? 5%,""”' : "':}a:«ti . o



The functlon g is defined as follows o f‘-‘"?‘I'l, .

| el ~f(g) ’_ge V(G)
A, d €V(D), and i
(w}“r(w), . hnfwe Vi - (V(G) v V(D)), J-—I 2 ‘lE(D)l
Then g: V(’D) - V(H) Smccf f,,andr G=1,2,.. ,\E(D}) are homomorphrsms

and each pair agrees on the mtersectron of the1r domams, the functlon g 1s a

’ ¢~‘.’ o

homomorphism. The result follows 1

'''''''

Derivation of the indicator constructlon Let H be a fixed di'ghraphv'ahdblet' -
(I, u,v) be an mdrcator Let H‘ be the -result of applymg the indicator construcuon q ‘_
with respect 0 (1 u v) to H and et H' be the result of applymg the HST
constructlon wrth respect tao (Kl, x) and (I uK 10 u, v y) to H where { {x} z) and
({y}, @) are COPICS ole Smce u and v are not m the same component as y, and
since there is at least one homomorphrsm of K 1] mto H the Homomorphrsm and
Sub—mdlcator parts of the construcuon are effectrvely ehmmated. It 1s not hard te

see that H! consists of |V(H)l copxes of H" so H‘ is a retract of H. SR

Derivation of the sub-indicator construction. SuppOsejtﬁat Hfis a mmi-' o
free digraph, and let (J, X, j1, jz, ---» Ji) be & sub-indicator. Let J* be the drgraph

constructed from two copres of J by 1denufymg the correspondmg vemces _," o o T

‘-1 2,..,tLetu,vbe the two copres of the vertex x and add the arc uv ta J ’ Let

B H‘~ be the result of applymg the sub—mdrcator constructron w1th respect to: -

(.I le,Jz,._ ,J,)andhl,h,, h4t0H andletH’betheresultofapplﬁngthe _
HSI construcuon wrth respectto(H hl,h2 . hy) and (J'; u, v,h Ja - ,J,) toH

| Smce His retract-free every homomorphlsm of H to ltself is an automorpthm It - o

a1 ;f' R
(



Derlvatlon of the edge-sub-mdtcator constmctron Suppose that H 1s‘a

) retract-ﬁ'ee dlgraph and let (J xy, 11,12, y j,) be an edge snb-mdscator Let H~ "

o be the result of applymg the- edge sub—mdlcator constructxon W1th respect to S

. (J xy,_]l,jz, e ,j‘) and hl, h2, , by to H and let H’ be the result of applylng the

. HSI constmcnon wnh respect to (H hl» hz: o hr) and (J x, )', }1.12, s O tOH

"‘ “ As above, H! consrsts of lAut(H )N dls_]omteopres of H” s0 H" 1s a retract of H - ‘)

BT \:"'

3.2. On the Outcome of theIndlcator Constructlon
In this short secuon we prove a useful lemma that glves mformanon about
‘the dlgraph H* that results from the mdscator constructxon As a consequence we .

~are able to show that ConJecture l 1is eqmvalent toa specral case of 1tse1f

3.2, l. Lemma Let H be a connected smooth d1graph Let d be the largest
posmve mteger such that His Cd-colburable Suppose Cyi 1s not a retract of H -
“ Then the result H' of applymg the mdxcator construotlon thh respect to (Pd, O d)
| to H is a .smooth dagraph wuh exactly d connected components, none of which. f
o ‘adrmts a homomorphxsm to a dnected cycle of length greater than one, Moreover, v |

. v- if H is strong then $0 1s each component of H‘

B "'\‘Proof : " - e ‘
o Ifd—l H-—H‘ Hence assume d>1

2



 Since oF is retract-free; it is a rétract of H if and only if it is both a

subdigraph of H and a homoxnorphic image of H. By hypothesis, C, isan image of f‘ -

H, but it is not a retract. Hence H has no directed d:cycie. Therefore H*is ..
loGpless. - o . o
Fix a Cd—colounng f of H. Let [1] denote the set of all vemces of H wh1ch
are mapped by fto vertex j of Cd Any two adjacent vemces of H * recewe the
‘.same colour under f because they must be joined in H be a dJrectcd path of length : .7
d. Therefore H* has at least d connected components
We now prove that H* has preclsely d connected components
HO, H1, ..., H41, where Hii is the subd1graph of H* induced by [j1. Letu, w be
distinct vertices in [/]. Since H is connected, there exists a (y,w)—path P. Let v
be the first vertex in P which is dlfferent from u, and belongs to Ul Let Q bc the

(u, v)-section of P. It suffices to show that H* contains a (u, v)-walk.

~ Let us call an intermiediate vertex of Q.a source of Q (resp: sink of Q)ifitis o

the tail (resp head) of two consecutive arcs of Q. We also call u a source,' of Q
(resp. sink of Q) if it is the tail (resp. we first arc of Q Smnlarly, vis
called a smk of Q (resp. source of Q) 1f it is the head (resp tail) of the last arc of
Q. Let sg, 51, ..., 5 be the list of sources and sinks of Q in the order they are -
encountered when traversmg Q (thus u=s, and v=s,;): Fori=0,1,.., k1, the' |
s; s,-+1)-section of Q is a directed path. Let /; be the lengtlt of the (s;, 5;41)-
sec‘tion’ of Q, and let /; = 0. Our choice of v implies that each of these directed 4
paths has length less than 4, and furthertnore, that S; & b i= 1,2,. k;l For ;
i=1, 2, ..., k-1, define the vertex.¢; as follows. If the (s; , :,;\ee\non of/ Qisa

directed (s;_y, s,)-path of length [;, let ; be any vertex for which there exlsts a
directed (s;, £;)-path of length d - [;;-1;,y , and if the (s;,, 5;)-section of Q i is a
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directed (s;, 5;.1)-path of length /;, let #; be any vertex for which there exists a

directed (t;, s,-)-path of length d - ;- ;,; . The vertex ; always exists since H is N o
smooth, and that always t; € [ o j, - | V | J

Itis not dtfﬁcult to see from the deﬁmtlons that, fori=1, 2' Jk-1,¢and
t;,1 are lomed in H by a directed path of length d. Therefore they are adjacent in

H*. It is also clear that the arcs uf, and t,,,lv ex1st (since u = so and v = sp). Thus

there ex1sts a (u, v)-walk in H ¢ It follows that [i] mduces a connected

component of H*. Moreover, if H 1s strong, then the path P can be chosen tobea

directed path Hence each component of H‘ is also strong :
We now show that no component of H*® admits a homomorphlsm to a

- . directed cycle of length greater than one. Assume that u xs a source of 0, the

argument bemg s1m1lar if u is a sink of Q. By our chowe of v (cf above), the path Q- S

has net length. zero or d. The veruces 505 S1s -ees Sk are altetnately sources and

sinks of Q or sinks and sources on LetT = u 15 83, oy Bh.1, V be the denved Walk‘ | L

inH*. By definition of H*, the (u t,)-sectlon of T has 1 net length zero when i is °

o {'ieven and net length ‘one when i is odd, for i = L2, "k L

Suppose first that n/(Q) = 0. Then among Sor sl, “ ‘, s; there is one more

source of Q than sink,of Q. This 1mp11es that k must be even. Hence k-1 is odd and C

. nI(T )= 0.
- Now suppose that nl(Q) = d Then among 505 sl, ., S there are an equai
number of sources and smks of Q. This tmphes that k is odd. Hence k-1 is even
vandnl(T)-l - R

Therefore every walk W in H Whose ongm and terminus belong to [j] gives
nse to a walk in HJ thh net length (1/,) nl(W)

By Lemma 3.1.2, H coatains acollecnon of —closed walks, W, W,, ...W,,

“. “ . ::.”..‘v, ‘. " 34 .



: such that ged{nl(W;) : i—l 2, ..,n} =d. By the¢ above argument, each of these
glves rise to a closed walk W;;in Hi such that nI(W,J) =( 1/4) nl(W;). Therefore, for
' any j, ged{Wy;: i=1, 2, ..., n}=1, so HJ does not admit a homomorphlsm toa 'f P

directed cycle of length greater than one. co o o
Fmally, since H is smooth, every vertex 1s the ongm of a dlrected path of

alength d and the terminus of a directed path - of length d Hence each HJ is 3180 i o *

smooth “This completes the proof. m

3.2.2. Corollary It suffices to prove Conjecture I 1 for digraphs that adxmt a”

homomorphmm to no directed cycle of length greater than one.
Proof. . o
Suppose Conjecture 1.1 is true for all connected smooth ngraphs that do not
admit a homomorphism to a directed cycle of length greater than one. Let H be a |
connected smooth digraph, and let d be the largest posmve -mteger such that-
there is a homomorphism of H to C,. Let H* be the result of applymg the indicator

construction with respect to (P,, 0, d) to H. By Lemma 3. 2 1 the dlgraph H‘ has Eh

exactly d connected components, none of *vhlch admxt a homomorplusm toa
directed cycle of length greater than one. Let K be a connected component of. the
core of H*. Then K is smooth and does not admit a homomorphism toa d1rected
cycle of length greater than one. By hypothesis, K -COL 1s NPT-complete

\
Therefore the H-colourmg problem is NPT-complete by Lemmas 3 18,321, and

FO

3.1.1. This completes the proof. g \‘, RN .

In the next chapter, we see how the above lemma extends the 1mpllcanons

of Conjecture 1.1 to digraphs that are not smqoth oo
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4. Hereditarily Hard.H#colourinngrOb[em.,.f SR

. Let C’ be'an undirected odd cycle Then the C-colourmg problem is NP-

7 complete [Maurer et al.,, 1981; Hell & Nesethl 1986] Moreover the theorem of
- Hell and Nesethl asserts that tht the G-colourmg problem is NP-complete for

. 'any graph G contammg C (cf Theorem 22. 1) In a sense, we can say that the

NP-cOmpleteness of C-COL is heredxtary in that it 1s mhented by any supergraph .

of C. Upon careful conmderatton of the proof of the above theorem, one can |
"observe the followmg The ﬁrst step in the proof is equ1valent to showmg that it
suffices to prove the result for graphs that contam a three-cycle The remamder of i

" . the proof is equivalent to showmg that the NP-completeness of K -COLis

IfPlsnotequaltoNP therearemanymrectedgmpthforwhlchtheNP- |
. completeness of H-COL is not hcredttary m the above sense. For example, if H}s
" the d1graph consu'ucted from Csu C6 by 1denufy1ng a vertex on each directed
cycle, then H-COL is NP-complete [Bang-Jensen & Hell, 1988 Gutjahr et al
1989] On the other hand, C; is a retract of the d1graph (H U Cz) hence

, (H v CQ-COL is polynomial. | ' '

-

There is, at present, no general conjecture regardmg preclsely whlch H- .
g oolounng problems are NPT-completc (On the other hand, we show in th1s 7

| chapter how Conjecture 1.1, wluch proposes a clasmﬁcanon of smooth dlgraphs, _
1mp11es a sufﬁctent condition for NP—completeness of H-COL. for many dxrected

graphs H which are not smooth. ) The fact that there are trees T for whxch T-COL ,
‘ : : - S 36



is NP-complete suggests that a complete class1ficanon may be difficult to
accomphsh The concept of heredttanly hard H-colouring problems introduces
some order mto this s1tuauon We present a conjecture as to exactly which H-
coloring problems are heredltanly hard (cf. Con]ecture 4.1. 5'), and prove that it is
equlvalent to Conjecture 1. 1 Tlns provides some hope that a clasmﬁcauon of
heredxtanly hard H-colounng problems may be easier to. accomphsh than a
classﬂicauon by complextty of all H-colourmg problems We identify structural -
propemes of these ' superhardz",dt’graphs‘, and 1dent1fy infinite families of them. -

o~

_ 4.1. The Definition and Some Properties.

Mouvated by the undirected case, we say that an H—colounng problem is

o ;,heredztanly hard if G COL is NP-I-complete whenever Hisa subdtgraph ofa

I loopless d1graph G (Tflat is, ,if the H-colourmg problem is so hard that the

. 'presence of H as a sudegraph of G is sufficient for G- COL to'be NPrcomplete )
We call such a dlgraph H superhard ) .

Our ﬁrst proposmon describes an infinite faxmly of superhard digraphs.

ﬂ

- Other famxhes of superhard dlgraphs are descnbed in secnon 4 5

4. 1 1 Proposntion. Let H be the equlvalent dlgraph of an undxrected odd cycle.
N ThenH is superhard



Proof.
Suppose that H is a subdigraph of G. Let G* be the undirected graph that

results from applymg the indicator construction with respect to_( C2, 0, 1) to G.
Since G" contains an odd cycle, G‘-COL is NP-complete (Aceordmg to our

~ definitions, G' is actually the equivalent drgraph of an undn'ected graph This is
- not a problem, smce we have already observed (cf section 2. 1) that a graph F

3adm1ts a homomorphlsm to the underlymg sxmple graph corresponding to G* 1f C

and only if the eqmvalent dlgraph of F admits a homomorphism to G*.) The result ;

~v"novsr,ltv'olk!)ws from Lemma 3 1,7. ]

Therefore the eqmvalent dlgraph of any non-bipartite undlrected graph is (/ :

. superhard

The set of directed graphs is partially ordered with respect to inclusioh';“ that .- ,~_'
’ s, G'< HifGisa subdigraph of H. The set of superhard digraphsis, by =~ =~ .-
) definmon an upper order ideal (or filter) with respect to this order.

Homomorphlsgs yield another parnal order on the set of directed graphs, that is, *
G<,H if there isa homomorph1sm H -*G It follows from the next result that the

. sct of superhard graphs is an 1deal w1th respect to this order .

-~

4.1.2. Proposition. These are equivalent: _
(1) The G-colouring problem is NPp-complete whenever G contains H

(1 e., H is superhard).
(2) The G-colouring problem i is NPT-complete whencver H admits a

homomorphism to G.
38
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- also NPr-complete.

Proof.
( i) = (2) Assume ( 1), and suppose that there is a homomorphism of H to
G. Consider G+ = G U H. Then H is a subdigraph of G+, so the G*-colouring -

problem is NPr-complete. Since G is a retract of G+, thg.q-col\op_ring problem is

N
<

(2) = (1) The inclusion map i:H =G is a homomorphism. m

ot

We now introduce a concept which is complementary to supérhﬁl:&h‘e‘ss.' A

polynomial extension of a digraph H is a loopless superdigraph G of H for which

_G-COL is polynomial. If P = NP, a directed graph H is superhard if and only if it
; has no polynomial extension. |

Suppose that D-COL is polynomial. If there is a homomorphism of; ad;lgraph
H toD then the digraph D is a retract of (H U D). Therefore the (H v D);
colouring problem is polynomlal Thus (HUD)isa polynormal extension of H.

Hence any ngraph that admxts a homomorpmsm toa dtrected cycle of length

:greater than one has a polynomial extension. The complementary statement, that

if H does not admit a homomorphism to a directed cycle of length greater than one
then H is superhard, turns out to be equivalent to Conjecture 1.1 (cf. Theorem
4.1. 6) - ’

“In the next two lemmas we éxplore the structure of minimal superhard

digraphs.
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4.1.3. Proposltlon. Let H be a digraph w1th connected components, N
Cl, C?, ..., C™. Then H is superhard if and only 1fC' is- superhard, for some |
ie {1, 2 n}.
Proof. | o

(=) If P=NP, eVerydxgraph is superhard, so there is nothing to prove.
Other.wisc, assume that P is not equal to NP, and suppose H is superhard but
theréisnoie (1,2, .., n} such that Ciis supcrhard Thus, for i=1, 2 ,n,Cihas
a polynomial extension X‘ But then H'=Hu Xlu qu .V Xnis a pblynoxmal ’
extension of H (becauscH Ulcicn (Ciu Xi) and fori=1, 2, ..., n, the (Ciu Xi)-
| colouring problcm is polynomml), a contradiction.

() Obvious. g

4.14. Proposmon. Let v be a source (sink) of H. Then H is superhard if and
only if H-v is superhard
Proof. .~

(=») If P=NP, there is nothing to prove. Assume that P # NP, and suppose
that H-v is not superhard. Thus it admits a polynomial extension G. But, since H
is a subdxgraph of G~ and G-COL is polynomlal by Lemma 3.1.7, H also has a
polynomial extension. This contradiction proves the 1mphcauon o

(&) Obvious. g

Suppose P # NP, and consider a minimal (with respect to inclusion)
superhard digraph H. By Pmposition 4.1.3 the digraph H is connected and, by
rProposmon 4.1.4, it is smooth. Hence no acyclic or unicyclic dxg;raph is superhard ..
and therefore every superhard digraph has at least two dn'ected cyclcs It can be
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noted in [Maurer et al. 1981; Gutjahr 1988; Bang-Jensen and Hell 1988; Bang- ‘
Jensen et al. 1988; Gutjahr et al, 1989] that the pmseoce of two directed cycles in
a digraph H is often sufﬁclent for H-COL to be NP-complete Fm'ther results of
this type are proved in Chapter five. Also note that all of the digraphs covered by
Conjecturc 1.1 have at least two directed cyclos_.

Every smooth digraph which we know to hove a polynomial extension
admits a homomorphism to a directed cycle of length greater than one. Included in
this class are smooth digraphs H such that H-COL is NPr-complete.
Furthermore, we know of no smooth digraph which does not admit a

: homomorphism to a directed cycle of 1ength {gxreatcr than one and which has a
polynomial extension. We make the following conjecture.

; _ Y

4.1.5. Conjecture. Let H be a connected smooth digraph. If H does not admit a
homomorphism to a dn‘ectod cycle of length greatcr than one, then H is superhard
(the H-colouring problem is hereditarily hard). Otherwise H has a polynomial
extension. ~
z'
Conjecture 4.1.5 can also be formulated in tc‘rn':isﬁof oigraphs which may have
sources or sinks. Let H be a digraph. Let R(H), the r:eduction of H, be4 the result
of applying the sub-indicator construction with reépcct o (Pyyays IV(H), free) to
'H (a similar use of the sub-indicator construction apl;ears in [Bang-Jensen,
1989]). By its definition, R(H) is unique. Furthermore, R(H) is smooth. (The |
digraph R(H) may also be derived from H by iteratively deleting all sources and
sinks, until a smooth digraph femains.) )
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. By Proposmon 4. l 4 Hi 1s superhard if and onlyaf~R(H ) is superhard. (It

- should be clear r.hat, ‘by Lemma 3.1.9, if R(H)-COL is NP-complete (resp. NPr-
complete), then so is H-COL. S‘mcc there are acyclic digraphs H for which H-COL
is NP-complcte (cf Chapter sut), and the reduction of an acyclic digraph is an
empty d1graph the converse of the previous statement is false.) We have the

following eqmvalent statemcnt of Conjecture 4.15.

. 4. l 5' Conjecture LetH be a ccmnected dlgraph IfR(H) does not admit a
‘homomorphlsm to a d1rected cycle of length greater than one, then H is superhard
(the H-colourmg problem is heredltanly hard) Otherwise H. has a polynomxal

CXtCl’lSlOl’l

L The teduction ff}l canbe usedto expand the implications of Conjecture 1.1
Wch are not smooth. Since R(H) is obtained from H via the sub-

indicator construction, Lemma 3.1.9 asserts that if R(H )-COL is NPrepmplete,

then so is H-COL. Hence we have an extension ef t.he \N‘P-completenéglsb ‘paft"_fof |

Conjecture 1.1.

1.1'. Conjecture. Let H be a connected diér'aph‘. If the core of R(}] )“iis ‘anfa R

directed cycle, then H-COL is NP-complete.

4

The principal difference between conjectures 4.1.5' and 1. 1'is that the former,_ N

proposes a complete classification of all H—colourmg problems, while the latter - -

proposes only a sufficient condmon for NP-completeness. of some H-colouring
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- problems. As was mentioned before, the conjectures on, which these two

conjectures are based are equivalent, which we now prove. e

4.1.6. Theorem. Conjecture 1.1 and Conjecture 4.1.5 are equivalent.
Proof.. | _

(4 1. 5) = (1 1) Assume Conjecture 4.1.5 is true, and let H satisfy the
hypotheses of Conjecture 1.1. If H does not admit a homomorphism to a du'ected
_cycle of length greater than one, there is nothing to prove. Hence assume that H
admts a homomorphism to such a directed cycle. Let 4 be the largest positive
mteger such that there is a homomorphmm of H to C, (see the comment precedmg
Lemma 3.15 regardlng the emstence of d). The digraph H has no directed d—
cycle, otherwise C, would be a retract of H. Let H* be the result of applymg the
. indicator constructlon with respect to (P4 0,d)to H. Let HObe a connected -
component of H*. By Lemma 3.2.1 the digraph HO is smootlr, and does not admit a
homomorphism to a directed cycle of length greater than one. Hence it satisfies
the hypotheses of Conjecture 4.1.S. Thus H9-COL problem is NPr-complete, and
therefore so is H-COL. _

(1.1) = 4. 1 .5) Assume that Conjecture 1.1 is true, and le: H’ sansfy the
hypotheses of Conjecture 4.1.5. Let G’ be a digraph that contains H’, and let G be
“the core of G". It is not hard to see that G contams a homomorphm mage H of H'.
Consider R(G). Smce H 1s smooth R(G ) contams H Hence R(G) does not adet a
retraction to a directed cycle Moreover, smce R(G) is_ smooth it sausﬁes the
hypotheses of Conjecture l 1.-Since Con]ecture l 1 1s true, R(G)-COL is NP
complete. Therefore the G-colourmg problem is also NP-r-complete Tlns |
completes the proof "
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The implications of Conjecture 1.1 extend beyond the class of smooth
digraphs. Taken together, Theorem 4.1.6 and Corollary 3.2. 2 assert that: these

more general results may be obtained by provmg that the H—colourmg problem 1s
NPT-complete for each smooth digraph which does not adm1t a homomorphlsm to

adirected cycle, instead of proving that the G-colourmg problem is NPT-complete 3

whenever G contains such a digraph.

~ 4.2, An Extension of Superhardness.

LetHbea digfaph that admits a homomorphism to a dlrected cycle of Iength o
n. Then H has a polynomial extension, namely H U C,,. Thus H~COL1snot B .
'heredit'arily hard unless P = NP. In this section we introduce a generali’sétitoti_of | -
superhardness that enables us to establish complexity theorems for :
superdigraphs of H that are similar to superhardness.

Our strategy is to impose enough restrictions on the superdlgraphs of H to S
be considered so that the presence of H as a subdlgraph of a digraph G, in thls - :«L %
restricted famlly of digraphs, is sufficient for G-COL to be NPT-complete For e
example, let H be the digraph conftructed from the equivalent digraph of .K3' by
subdividing every arc. Suppose Gisa soperdigraph of H that contains no directed
_two-cycle Then (C4, 0,2) is a good mdlcator The result G* of applying the

indicator construcuon with respect to (C4, 0, 2) to G contains an undirected three-

L
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Tlus 1s not the case if H 1s"§uperhard thh reSPCCI to an arbm'ary collectmn Qf

cycle. By Proposmon 4, l l the G“-colourmg problem is NP-complete. If we
restrict our attennon to dxgraphs with no d1rected two-cyéle the G colounng

. problemis NP-complete for any supei‘dlgraph G ofH (More cxamples are glm -

- ,jm secuon 4 5 }

Monvated by the above chscussmn, we make the fol{\‘ g definition. Let &

bc a set of propcmes A d1graph H is superhard with respect to. & if the. follow*mg
. two conditions are satisfied: (i) the G-colouring problcm is NPT-complete |

" whenever H is a subdigraph of a loopless dxgraph G whxch has all ptopernes m 9 g

and (ii) at least one such G ex1sts. (A dlgraph H supei‘hard 1f and only 1f lt 1s )

x"'

superhard with respect to the empty collecnon of properues ) If

F= Py, *P2, s }é we sometlmes abuse our notation and say that H is

It follows 'ﬁ'om the definition that 1f Hi is superhard, H—C‘OL is NPT-complete o

pemes For example, it is proved in secuon 54 that any onented odd cycle 1s : o )

superhard with respect to the property "G is paruuonable" On the other hand,
Gutjahr has recently been proved that C-COL is polynomlal for any onented cycle
C [GutJahr 1989]

N RN

The concept of a polynomml extension can also be generahsed. Let 5' bc a

set of propemes A dlgraph G is called a polynomml extension of H with respect !
to #if G has all properues m 5'1the d1graph Hisa subdlgraph ofG and the G- .

colounng problem is P°1Yn0mlal It is clear that if P 1s nOt cqual to NP ‘a dxgraph




- is superhard with respect_.to & 1f andonlyxfrthas no polynom1a1 extensxonWI

4
B

-

‘ . . . :— N
Most of the results in secuon 4 3 hold in thxs more general settmg, although

' not necessanly for arbltrary property sets (some statements may not make |

o ‘,:specxﬁcally, Proposmuns 4 1 A

| ‘sense w1th respect to property sets wtuch forbld some of the hypotheses) More
and 4“.»1-}3 hold foranyproperty set & such "that

R "G U H has all propemes in ﬁwhkge:/er G and H both have all properties m.? S

e ) Proposmon 4.14is true for the property G has no closed directed walk of length

e k", and others In all mstances, the modrficauons needed to the proofs are mmor, SR

L _and the reader should have lmle drfﬁculty addmg the missing details.

4.3 Some Families of Superhard Digraphs.

ﬂ The purpose of this secuon is to give some examples of the dxgraphs
= chscussed in sections 4. 1 and 4 2. Although the focus is on superhard digraphs,

© e also give sbme examples of dlgraphs whrch are superhard with respect to the

. property Ly: "G has no closed directed wa]_k of length £

Let'.?, be a set of properties: An"sh-iﬁdicator' with respecf to & is an

indicator (L, u, v) such that every !l'oopvle'ss drgrath that contains a homomorphic
.image of I in which u and v are ,ioenﬁfie'd either lacks a property in & or is

superhard vsithrespeét to & (That is , if G has all properties in & and G* has a
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loop, then G is superhard with respect to &%) An sh-indicator is an indicator :
(I, u, v) such that every loopless digraph G that contains 2 homomorphic image of |
I in which u and v are identified is superhard. .

The importance of sh-indicators is illustrated in the following lemma.

s °4.3.1. Lemma. Let 4 u, v) be an sh-indicator with respect to & Let H* be the )

~ .

d’igraphv tha_t results from applying the indicator construction with-respect to

(I u, v) to H. Tf H* is superhard, then H is superhard with respect to &

Proof.' |

- Let G be a digraph which has all of the properties in &, and suppose Hisa = °

sﬁbdjgraph of G. Let G* be the result of applyiné the indicator construction with

rcs;pect to (I, u, v) to G. There are two possibilities, depending on whether G*

contains a loop. If G* contains a loop, then G must contain a subdigraph which is

a hmOMMc imégc of I such that u and v map to the same vertex, since
Q(I, u,v)is an_sh-indicator. Thus G is superhard with respect to & and so G-COL
is NPT-con:nplétc. Otherwise, G* is a loopless digraph that contains the superhard
.; digraph H*, so the G*~colouring problem is NPr-complete. Consequently G-COL

&

~ is also NPy-complete. This completes the -proof. i ‘ -

, Lemma 4.3.1 can be used to construct new superhard digraphs from old. For
cxamplc, let H be the undirected three-cycle with V(H) = (0, 1, 2.] and
E(H) = ([0,-1], 1, 2], 2, 0]). Let 3 be a new vertex, and set I-= (H - 01) + 03 (see
figure 4.3.1). Then any homoﬁlorphic image of / in which the vertices 1 and 3 are
identified is also an image of an*undirected threecycle. Hence, by Proposition ‘
47

~



4.1.2, (l 1, 3) is an sh-mdlcator Let G H, and let G’ be the dlgraph constructed "
byreplacmg each arc xy of G byacopyofl andxdenufymg 1 w1thxand3 w1t.by
The result of applying the indicator construction with respect to (1 1 3 ) to’ G’ is G

: (an undlrectcd three—cycle) Hence G'is superhard.

Figure 4.3.1. An examﬁie sh—it;dipétor.

The general procedure is as follows Suppose H is superhard, and let wu be .
an arc of H. Letv be a new vertex, and set [ = (H wu) + wv. Any homomorphlc
1magc oflm wh1ch u and v are identified is also an 1mage of% Thus, by
| Pmpomuon 4.1.2, (I, u, v) is an sh-indicator. Now let G be superhard, and let G’
- be the dlgraph obtamed by replacing each arcxyobey acopyofl and
idepufymg u with x, and v with y. The result of applymg the indicator construction

With respect to (1, 'u, v) to G’ contains G. Hence G' is superhard.



2 e
It may also be possible to use Lemma 4.3.1 to consn;ﬁét"di"’"ﬁ pﬁs*wiﬁcﬂ ;re f
‘superhard with respect to a glvcn property set & The procedlhevxs analogous to
the above. We use Lemma 4.3.1- te construct a digraph H which is superhard with
| respect to the property L,: "G has no closed directed walk of length two". Since .
- any loopless homo%orphrc image of C,4 in which vernces 0 and 2 are idefitified
necessanly contains a two-cycle, (Cs4, 0, 2) is.an- sh mdlcator“%h respect to L2
Let H‘ be the undirected 3-cycle, and let H be the dlgraph obtained by replacmg
cach arc xy of H"* by a copy of Cy, 1dent1fy1ng 0 w1th x and 2 with y (see figurc
4.3.2). Since H has property L,, there exists q superdxgraph of H with the
appropriate property. It is easy to verify that the result of applying the indicator
constmcnon with respect to (Cy, O, 2) to H contains an undirected 3-cycle which

is superhard. Thus H is superhard w1th respe.ct to L,.

=

[

Figure 4.3.2. The digraph H*.
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| The general procedure is as follows. Let (I u, v) be a sh—mdxcator w1th
e respect to .9’ ‘and let H* be a superhard dxgraph Let H be the dxgraph whxch

o :'-}results from replacmg every arc xy of H* by & copy of @, u, v), and. 1den /ymg the

pau's of vemcesu x and v,y It is not difficult to see that the resuIt of applymg

B _fi V,the mdlcator construcnon w1th respect to (1 u, v) to H contams H‘ Itis,
- however not clear that there i is a supegdlgraph of H w1th all propernes in® .

- ,»Suppose such a digraph G exists. Leti’.? be the result of applying the decator S

A ",construclJon with respect to (1 u, v) to G. Smce (I, u, v)is an sh-mdlcator G*i is
,‘ loopless Furthermore G‘ contains H‘ Therefore His superhard with respect to

- : ° R : N B . A. . . .
L 5'1— . . - e - .« . -~ "
v g - : A N ‘
e : . - . s *

5

We uow descnbe several mﬁmte famthes of superhard dxgraphs Each such
'dlrected graph glves rise to a collectlon of mfimte fam1hes of superhard dxgraphs | ‘
(constructed as above, via Lemma 4 3 1), and also to the. mfimte famlly of |
' .superhard digraphs that contain xt. ' IR

| | Le}t' 7 be an integer greater than or equal to three The digraph W,, the

: wheel with n spokes is defined to be the digraph constructed from Cn U [v} b) )
. adding the undlrected edges ([v, c} cin V(C,l)} The dxgraph W4 is shown in |

figure 4.3.3. |
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" Figure 4.3.3; The digraph W,

4. 3.2 Theorem. I r nis not d1v151ble by four then W, is superhard.
Proof " ‘ ’ ' ‘
Let (I u, v) bc the symmetnc mdlcator shown in figum 4.3.4 with 1—0 The
- digraph that rcsults from 1denufymg u and v s an undirected three cycle. 'I'hus any
looplcss homomorphxc image of (1 u, v) m which u and v are identified is also an
image of an und:xrccted three-cyclc, and is thcrefore superhard. Smce thcre 1s. an '
' automorphxsm of 1 that cxchangcs uandv, (I, u, v) is a symmctnc sh-mdlcator
a Thc result W,* of applymg the mdxcator constructlon with respect to (7, u, v)to : '
W, is thc undlrected gmph w1th edge-sct {xy y-x (mod n) = 2). If n is‘odd," W °
s an undlrccted n-cyclc, and 1f n=2 (mod 4) it is the umon of two undlrcctcd '
. .("/2) cycles. Since undn'ected odd cycles are superhard (cf Proposmon 4.1, 1),
\the result follows from Lemma 431w S

- We believe that 4k-wheels are also superhard.



Figure 4.3.4. A useful symmetric indicator.

Let i be an integer greater than or equal to one. The digraph X; is
constructed from the equivalent digraph of an undirected cyclé ‘with vertex-set
(0,1, ..., 4i+1) by adding the arcs 02i), (2i)(4i), (4i)(6), .. (2i+2)0, where
computations are modulo 4i+2. The dxgrapth is shown in ﬁgure 4.3. 5

4.3.3. Theorem. The digraph X, is superhard. -~ © ' *
_ Proof. | ) | | ,. 'Y
The arguincgt is similar to Theorem 4.3.2. Let (I, », v) be the sh-ihdicator
shown in figure 4.3.4 (the digraph that results fro'm identifying u and v is an
undu'ccted (2i+1) -cycle). Let X be thc dlgraph whxch results from applymg the
indicator construction with respect to (1, u, v) to X It is not hard to check that
X;* contains the undirected (2i+1 )—cycle 0,21, 2z+2,0..Th9refore X,
superhard, and the result follows from Lemma 4.3.1. m |

,
%
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"~ Figure 4.3.5. The digraph X,.

Sxmllarly, let Tj be a dlgraph constructed from C,;,, by adding the arcs

| (0 2]), (2),4j), ... (21+2,0) /g}nd undnected odd paths between vertices 1 and 2j+2,
* 3 and 2j+4, ..., 4j+1 and 2j. A prototype of T is shown in figure 4.3.6.

4 3.4. Theorem. Any dlgraph T is. superhard.

j Proof

The proof is 51m11ar to the proofs of the prevmus two theorcms Let the

longest of the undirected odd paths havc lcngth 2i+1, and let (I u) v) be the sh-

indicator shown in figure 4.3.4. The rcsult T’ of applying the indicator -

construcnon with rcspect to (1, u, —v) to T contams the undirected odd cyclc 0 21,

2,+2 0, wh:ch is supcrhard. A

53
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 Figure 4.3.6. A prototype of Ty.

""" - The last examples in this section concern ‘di‘grap'hs which aresuperhard with

* " respect to the property L,: "G has no closed directed walk of length k" The set of

 digraphs with property L, is precisely the set of Oﬁgntations of s:imple graphs. a

 LetGbea digraph. An arc uv of G is said to be bypassed if there is a vertex
" w such that the arcs uw and wv exist. Let i be an mwgﬂ‘gfchﬁr:ﬁgﬂ or equal to
bfle. Let By, be a digraph constructed fron C,;,, by adding a bypass to at least

one out of every i consecutive arcs (of the (2i+1)-cycle).

*4.3.5. Theorem. Any digraph B,;,, is superhard with respect to L;, ;.
- Proof.

Any homomorphic image of Cy;, in which vertices 0 and i+1 are identified
contains a closed directed wﬁk of ien'gth i+1. Hence (C3;,2,0,i+1)isa

-y
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symmetric sﬁ’mdmatOr w1th respect to L,+1 Lct B* be the result of applymg the,.
indicator constmcnon w1th respect to (C2,+2, i+1) to Bg,.,.l Since, for any x, the
directed (x, x+¢+1 )-path along: C2;+2 contains at least one bypassed arc,.the
und1rected edge [x+z+1,x] is present in B‘ Thus B* conta:ﬁfg/::cctcfi
(2i+1)-cycle 0, i, 2i, ..., i+1,0 . Smce ugduected odd cycles are §ﬁperhard,‘ the‘y
result follows from Lemma 4.1.3. g '

Our final result of this section provides a method to construct digraphs that
are superhard with respect to property sets other than the ones considered so far.
In Lemma 4.3.1 we showed that if ihe result pf the indicator construction (with
respect to a sh-indicator) is superhard, then H is superhard with respect to a
given property set. In Lemma 4.3.6 below, we show that if the result of the
indicator construction is a superhard digraph, then we can find a property set &
such that H is superhard with respect to &

4.3.6. Lemma. Let (1, u, v) be an indicator. Let H* be ;hc result of applying the
indicator construction with respect to (I, 4, v) to H. If H* is superhard, then H.is =

superhard with respect to the property P: "G contains no homomorphic image of 7 7

in which u and v are identified” (or any other set of properties which define the-
same class of digraphs). | | "
Proof. ;

Since H* has no loops, H has propcrty P. Furthermorc, H COL is NPT-
complete. Let G be a superdigraph of H. Let G* be the result of applying the

indicator construction to G. Then two possibilities arise; either G‘_ has a loop, in .' o
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. which caseG contains a homomor;)hicimaée of I in which u and v are identified, or
G* is supcrhard. That is, the G-colouring problem is NP-complete whenever H

is a subdxgraph of G and G has property P Therefore H is superhard with respect
‘ /:toP Thxs completes the proof . '_ L '

* ‘We conclude this section with an example of the construction from Lemma

4. 3. 6 LetI be. the four-vertex onented path with arc set ux, xy, vy, and let H be

s the dxgraph constructed from an undtrected thrce cycle by replacing each arc xy

vw1th a copy ofJ and 1dent|fymg u with X, and 17 w1th y . The result H* of applying
the mdxcator constmcuon with respect to (I, u, v) to-H is an undrrected three-
cycle, which is superhard. Thus H is superhard with respect to "G contains no
homomorphic tmagc of in which u and v are identiﬁed" Thisyproperty is
evidently equivalent 0 "G has no transmve tnple" Thus the G-colounng problem
is NP-complete whenever the loopless du'ected graph G COntams H “and has no

transitive triple. -

4.4. f Basis for the Superhard Digraphs.

:'I"he purpose of this section is to describe a family & of directed graphs with |

the followmg property adlgraph D satisfies the conditions of Conjecture 4.1.5 1f
andonly1fsomememberof.9’adm1ts ahomomorphrsmtoD ByTheorem4 12it -
wou}d:fsgfﬁcc to prove Con]ecture 415 for the digraphs in 5 Therefore the -
‘- n)initrlhl'elements of & with respect to the homomorphism order can be viewed as -
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- a basis for the set of superhard digraphs or, equivalently, as the minimal

 hereditarily hard H-colouring problems.
" LetDbeangraph andletheadnectedcyclemD Avertexof Cisa

| ivertex of attachment if it is adjacent with some vertex in D-C. If every strong
| - component of D is a vertex or a directed cycle, and every duected cycle has

E exactly one. venex of attachment, then D is called singly attached The set &

conmsts of all smgly attached smooth digraphs which do not admit a
homomorphxsm to a directed cycle of length greater than one. By definition, each
| member of & satisfies the hypotheses of COD]CCtlll’C 4.1.5. )

A maximal strong ca;tlponent (resp. minimal strong component) of a digraph g
G isa strong compone;t C of G such that there exists no arc dc (resp. cd), where«
cisin C and d is in G-C. Every maximal strong component of a smooth digraph G
. contains a directed c&cle, as does every minimal strong component of G.

4. 4 l Theorem Suppose =D sausﬁes the condmons of Conjecture 4.1. 5 Then
there is a digraph H in .9’Wh10h adtmts a homomorpmsm H - D.

Proof. ,_ )

By Lemma 3.1.2 the d1graph D has a collecuon Wi, W2, .., Wof closed
walks such that gcd{nl(W?) : i=1, 2, ..., t}=1. Since D is connected, it has a
spanning closed walk WO, For i'=O,M2, .., t,let Li be an oriented V(Wi )|-cycie
such that there is a homomorphism f; of Li onto W-. VTh_e‘n '
ged(nl(Li): i=0,2, .., 1}=1. Let M1, M2, .., M" (resp. N', N2, .., N%) be a

collection of directed cycles, one from each maximal (resp. mxmmal) strong -

37



. e

component of D. For i=1,2,..,rletm; be a vertex on Mi and, similarly,:for .
j-l 2, ..., 5, let nj be a vertex on NI, The ngraph Hi 1s constructed from = ,,
M, M2 M, N\, N2, .., Ns, L, Ly, . Lt by adding directed paths as follows
Fori=0, 1, .., 1, let v be a source of Li, or a sink of Li. Fork=1,2, ... r, 1fthere |
is a directed (fi(v), m,‘)-path of length / in D, then add a path of length Ifrom mk

to v in H (all added paths are disjoint, and add /-2 new vertices to H). Slmx%arly,

for j=1, 2, ..., s, if there is a directed (n;, fi(v))- path of length lin D, then add a

directed path of length Ifrom v to n;in H. No new directed cycles are created. E
Then H is in & by constructxon Moreover, them is a homomorphism of H

onto D (every vertex of H corresponds, in a natural way, with a vertex of D, and

if two vertices are adjacent in H, the vertices to which the'y correspond are

adjacent in D). This completes the proof. @ =

-

%c utility of Theorem 4.4.1 in settling Con_]ecture 4.1.5 is debatable, but the

existence of the set .9’ is mtereslmg
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5. Di-grap‘iis ﬁith_’.'l’wo Du'ectedCyclw

EN - Y
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In this chapter we prove that ConJecmre 1 1 1s true for several la.rge classes A
of dlgraphs In section 5.1 we vcnfy the conjecmre for dlgraphs that have a | | n
spanning tournament. Tourrnaments were, in fact, the ﬁrst large class of digraphs
for which the complexity of the H-colouring problem was completely determmed
[Hell & MacGillivray, 1987]. The results in this section precedcd Conjecture 1 1 S .
and were the initial evidence that led to its formulation. Secuon 5.2 (;ontams a L
classification by complexity of vertex-transitive digraphs, and of arc-transmve
digraphs. We also derive necessary and sufﬁcxent conditions for a Cayley dxgraph
to adnntahomomm'phxsmtoa dlmctedcycle Asacorollary necessaryand |
sufficient conditions are obtmned for the core of a Ceyley d1gEaph to be a d1rected o
cycle. In section 5.3 we investigate the complexlty of the H-colouring problem ST BN
when undir(H) is bipartite. (By Lemma 4 1. 1 1f undir(H) is not bipartite, then H~
COL is NP-complete.) We introduce the class of "partitionable dlgraphs"," andg o " e

completely classify them by complexity. Finally, in section 5.4, we generalise a . ‘ & -
result from [Maurer et al., 1981], and afiother from [Bang-Jensen & Hell, 1988]. . * =% -
-5.1. Semi-complete Digi'aphsf_,

A Semi-complete digraph isa dlrected graph such that for all vertwes x and

y, at least one of the arcs xy and yx exlsts In other words. a seml-complete

d1graph isa dlgraph w1th a spanmng toumament.
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In thxs secuon we class1fy all sem1—complete digraphs H accordmg to the '

i f/‘::complemty of the H-colounng Pmblcm In pamcular we prove the followmg

. ’j'theorem R | . : R

, {':‘5 1 1. Theorem. Let H be a seml-complete digraph. If H is acychc or umcychc,«
o i'then H-COL is polynom1al Otherwme (H has at least two duected cycles) H—COL
1s NP-complete . _ O | SR

‘ Conjecture 1z I for semt-complete dlgraphs follows from Theorem 5 1 1
. ‘Although there are semt-complete dtgraphs with sources or sinks, Lemma 3 1. 7
= implies that these vemces need not be cons:tdered Hence it suffices to prove the
o 'theorcm for senn—compfete ngraphs that satlsfy the hypotheses of the ’;

| conjecture B ) o R S s

We first prove the first statement of Theorem 5.1.1.

s. 1 2. Lemma [Maurer, et al,, 1981] If H isa transmve toumament (1 e., an

acychc setm-complete ngraph), then H-COL i is polynomlal " IR

" Maurer, Sudborough and Welzl proved Lemma 5.1.2 by describmg a’ ﬁ -
polynom1al time algonthm for H—colounng It also follows from Lemma 3 1 7 as
does the remainder of. the first statement of Theorem 511 - o

Our proofs will use some well known facts about tournaments In -

parncular, a tournament is strong if and only if it is harmltoman a,nd 1f a,

,'.' »



tqurnament has a directed cycle of length [ 2 3, then, it has a directed cycle o_f/\
length k, fork = 3, 4, ..., L. For more details the reader should consult [Moon,
1968; Bondy and Murty, 1976]. Since a semi-complete diéraph has a spanning

tournament the above conclusions are also valid for semi-cqmplete digraphs.

5.1.3. Lemma. If H is a semi-éomplete digraph with a,unique directed cycle, then )
H-COL is polynomial. . | |
PI:OOf. ooz

Since H has a spanning toumament, we know that if H has directed cycle of
length k >3 then it has directed cycles of all lengihs I, 3 SIS k. Furthermore,
each non-trivial strong component of H has a directed Hamilton ctycle. It follows
that the unique directed cycle in H has length two or three, and that all other
strong components of H are trivial. That is, H may be obtained from the directed
‘cycle by adding a sequence of sources and sinks.The result now follows from

Taken together, Lemma 5.1.2 and 5.1.3 prove the first part of Theorem
5.1.1. The proof of the second part requires some preliminary lethmas.

§8.14. Lemm&.\EMaurcr etal, 19811 If H is a‘scmi-compgte digraph on three
vertices with at least two directed cycles, then H-COL is NP-complete. g
% | : . |
'Thg‘next lemma follows from Gutjahr's classfﬁcition by complexity of all
four vertex digmphs [Gutjahr, 1988].

~

<
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’

5.1.5. Lemma. IfH is‘a semx-completc%graph on four vertices w1th at least two ‘

directed cycles, then H-COL is NP-complete. g
‘Our‘ncJ_tt ’rgsultA is of interest in its own right, as it does nét“d‘é%l pxcvlusively
with semi-complete digraphs. Let D(k, /) denote the digraph cqﬁst};ucted from
C, UC, by adding the arcs (xy: x € V(Cy), y € V(Cy). '
- 5.1.6. Theorem. Ifk 12 2, then D(k, 1)-COL is NP-complete Otherw:;se
D(k, I)-COL is polynornial. B
Proof. ) L
t = We first prove the second statement. If k = 1 or / = 1, then D(k, L) has a
100p otherwise k = [ = 0 and D(k, 1) is just a single arc. In both mstances D(k l)-
COL is polynomial. ' \\\ .o
- We now prove the first statement. Call C, the upper directed cycle andC,
_the lower directed cycle. -

Let X and Y be the digraphs shown in figure 5.1.1 (a) and (b), respectively.

CLAIM In any D(k, I)-colouring of X, exactly one of [u,v} is coloured on
the upper directed pyclc. and the other is coloured on the low;:'r directed cycle.
Moreovei', any assignmex;t of colours to u and v that satisfic§ ‘thc former
condmon can be. cxtcnded toa D(Ic [)-colouring of X. |

PROOF )

Suppose to the contrary that both vertices are colourcd on the ‘
upper (resp. lower) directed cycle. Then the entire outer (resp. mncr) onentcd
cycle of X (cf. figure 5.1.1) must be coloured by the upper (resp. lower) directed

B
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~ The lransformauon is from 3- SAT Accordmgly, suppose we are glven an,
instance of 3-SAT; with vanables X1, X2y wes Xpy and clauSes Cl, C?, .., Ca. \
Construct a digraph G from p coples of X,and¢q coples of Y, as. follows. Each |
variable x; (=12, ..,p) corresponds to a copy Xi of X, and each clause CJ “
=1, 2 " q) corresponds to a copy YJ of Y. For each. clause CI = 11 vip v 13

| U=1,2, .., q) identify each vertex of Y7 labelled l with vertex u of Xkif I; is xk,

and with vertex v of Xk if l; is —.x‘,. Clearly, the constructxon may be carned out in . T

polyngmml me.

-CLAIM. The d1graph G is D(k 1)-colourable if and only 1f the clauscs ‘_ ;
Cl C2 ,, C9 are s1multaneously satisfiable. "

B -

PROOF L . |
(=>) Define a tmth ass1gnment as follows Set xX= T (i=1, 2 )ﬁ |
JUSt if the vertex u € V(Xi) is coloured on the upper dn:ected cycle (recall that the
vertex v € V(X‘) must be coloured on the other du'ected cycle) Conmder Yi. At |
least one of its three labellcd vertices must be coloured on the upper dlrected
cycle. In other words the clause CJ contains at least one true hteral Hence the

~clauses are simultancously satisfiable.

(=) Deﬁneapamalcolounngasfollows For i= 1, 2 ,p,'if,{i—';'[“_«"' |

colour verlex u (resp. v) of Xi by vertex 0 on the upper (resp. lower)ﬂ directed e

cycle and, if x;=F, colour vertex u (resp. v) of Xi by vertex 0 on the lower(résp. L L

upper) directed cycle. Since all clauses are sausﬁable, every copy YiofY .
(=1, 2, .., g) has a labelled vertex whxch is colouredon the upper directed cycle
By thc clmngs, this partial colouring can be extended to a D(k, I)-colouring of G.



“The result now follows. m
> ' I

Smce a seml-complete dxgraph has a spanmng tournament, there isa
naturaI total order on its strong components namely A < B if and only if every
- vertex in B is adjacent to a vertex in Al therefore makes sense to. talk about.

“the ﬁrst strong component, or the next strong component, etc.. When we number

the strong components of a semt-complete digraph as C1, C2, ..., Ck, say, we

always assume that C1 is the first strong component, C2 is the second stmng

component, and S0 on,

K ~— 5.1.7. Corollary Let H be a seml-complete dtgraph in which every strong

: component is a vertex or a dtrected cycle If H has at least two dtrected cycles. ‘
" then H- COL is NP-complete |
Proof. o | | |

 We first show that itis enough to conmder the case where H has exactly

'two non-tnv1al strong components Suppose to the contrary that H has at least
three non-tnwal strong components Consxder the third non-tnvxal strong

:component, and let [_11, 12, wer Ji) be its vertex set. Let J be the digraph thh
vertex-set {x, ly, by, ...,1,1,_], and arc-set {x/;: i=1, 2, ..., t}. Let H* be the result of
applying the sub-mdlcator constructron w1th respect to (J;x, Iy, Iy, ... l,) and

Ji 12, i j, to H. Then H" is the setm-complete digraph induced by the Verttc‘es

) belongmg to those strong components of H up to, but not mcludmg, the th.ttd

nontnvral strong component_ Thus H* has precisely two non-trivial strong

&

components It follows from Lemma 3.1.8 that it is. sufficxent to show that H‘

@&
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COL i§ NP-complete. . | = | =

K

~ We now prove the result for semi-complete digraphs G with exactly twor
nontrivial su'ong components. Let r and s be the length of the ﬁrst and second
directed cycle in G, respecuvely Let G‘ be the result of applymg the sub-
mdlcator consu'ucuon w1th respect to (C,,,,. 0, free) to G. (Ri:call that each non-
l:nvml strong component of Gi isa dtrecwd cycle. ) The 1tﬁage of C,+_,°m Gi 1s a umon
of du'ected cycles That is, the trivial sirong components are ehmmated by the .
sub-md1cator constmc‘uon. Smce G has exactly two (disjoint) directed cycles, it
follows that G* is D(r, s) Smce ¥, s 22, the D(¥, s)-colourmg problem is NP-
complete Therefore H—COL is also NP-compleZe u,

v

“ _4.
- . .
o . ' SR T T

Let Ty, Ty, ..., Ts be the tounaments shown in figure 5.1.2.

SR

FY
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5.1.8 Lemma. Fori = 1,2, ..., 5, the T;-colouring problem is NP-complete.

~ Proof.

If i=1, the result T,* of applym; the sub-mdlcaﬁor construction with respect

to (Pg, 0, 6) and z to T is a four-vertex tournament with two- dlre(:ted cycles.

~ Hence T;-COL is NP-complete by Lemmas 3.1.8 and 5.1.5.

Similarly, if i=2, 3, 4, the result T;* of applying the sub-indicator -

construction with respect to (P, 0, 4) and z to T; is a four-vertex tournament

with two directed cycles. As above, T,~C02. is NP-complete by Lemmas 3.1.8

and 5.1.5. o o
It remains to prOvé iﬁaﬁ-Ts-COL is NP-complete The prbof is similar to -~

* Theorem'S.1.6, except that thc ‘transformation is ﬁ-om 4-SA'I‘ We will simply -

state the necessary clalms which can be easﬂy venﬁed.

" CLAIM. In the tournament Ts, B
| N+3(i) = V(Ts), i #4, and
N+3(4) = V(Tg)}‘_[jol.’

‘Let X aad ¥ be the digraphs shown in figure 5.1.3 (a) and (b), respectively.
. CLAIM. In any T's~colouring of X, one of the following holds:
(a) colour(u) 4, and colour(v) € [1 2,3},or
. (6) colowr(v) = 4, and colour(u) € (1 2,3).
Moreover. the partial coloring of (a) or (b) can be extended to Ts-

. colourings oTX | o



CLAIM. There is no Ts-colouring of ¥ in which I; Ly, b, and Iy areall
coloured by 4. On the other hand, any partial colouring of ll, 12, 13, and I by
colours in [l 2, 3, 4} which uses at least one colour in' { 1 2, 3} can be extended

to a Ts-colouring of Y.

IR

. Having established these claims, the reader should have little difficulty in

completing the proof. g

X . Y

Figure 5.1.3. The digraphs X and Y. .
5.1.9, Lemma. Let T be a strong tournament with at least five vertices. Then
either -
(a) 'I'here exlsts a, vertex v such that one of T[N+(v)], T[N+2(v)] TIN-(v)],
T[N'2(v)] has at lcast two directed cycles, or
(b) T is one of‘T;, T,, ..., Ts (see figure 5.1.2).
Proof :

Assumc (a) does not hold. Wc show that T isone of Ty, T, ..., Ts. (It is
| 69



easy to check that (a) does not hold for T}, Tz, wor T5.) - -
Suppose first that T is not two-connected. Thus there-exists a'Vertex 1.,
such that T-x is not su'ong Let C', C?, ..., Ck (k 22) be the strong components of :
L ‘T?x- Since T is strong, some vertex of C! (resp. C* ) is adjacent from .(re'sp t0) x.
. 'Every vertex of C! (resp. C* ) is adjacent to (resp. from) all vertices belongmg to | ,@ »
-CzuC:‘u .VUCk@esp. ClUCZUL . uC"-l) Since (a)does nothold, ..
- I,V( Chl £3,i=1, 2, ..., k (since any strong tournament with at least fomﬂvergices"'
has as least two directed cycles). , o “ q ;
" We claim that T-x has at most one non-u'mal strong component. Suppose N
C.Cr and Cs, r < s, are both non-trivial strong components If r> 1, thenitis easy to s
" check that () holds when v is any vertex of C. Thus r=1. Similarly s=k, and . ”
. therefore IV(Ci)l = 1, 1<i<k. Let C! be the directed three-cycle a, b, ¢, a, and let
. ;\' C* be the directed three-cycle d, e, f d Recall that x is adjacent to a vertex: a of

| Ct, and is ad]acentfromavertexdofc" Then N+2(a)2({x, d, e, f}, soeandfalso

7 | are adjacent to x (otherwise T[N+2(a)] contams two directed cycles) Sxmllarly X ;"'é
U is adjacent to b and c. But then N+2(J):2 [x, 4, b ¢, f}, so T[N+2(d)] has two -

: "‘,~4d1rected cycles, a contradxcnon. Thus T-x has at most one non-trmal strong

component. R Co Tl -
Suppose first that C1 is the dxrected three-eycle a, b ¢ a, and let

V(C")— {y} Then, as above, x is adjacent to a, b, and o If IV(T)I-S then T-Ts ‘ |

Hence assume IV(T)I 26, so that k23 and let C2=(z}. Then N+2(a ):2 {c, X, % 2z}, g

which induces more than one directed cycle, leddmg o a comradlctlon The case

where C" is a directed three cycle is similar, and also' leads only to T-Ts . »
Nowsupposethatforsomezl<z<k C'xsthedn'ectedthreecycle -

a,b,c, a. Let V(C! )-jy}, and let V(Ck)={z). Since T is strong, z is adjacent to X,
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and xis adJacent to y. Slnce N+2(y) 2 {a, b, c, x], and (a) does not hold ettherx
is adjacent to a, b and ¢, or x is adjacent from ab and c. In the first case
N-2(c)2{a, x,y, z}, and in the second case N+2(q) : {c, Xy, z). Both of these

- sets of vertices mduce at least two dlrected cycles, contrary to our assumptlon T

» ~ Thus T-x is a transmve tournament. Let V(Ci)={v;}, i= 1 2 k SmCe T 1s a
o ;:f_ffstt'ong, x is adjacent to v, and v; is adjacent to X. Suppose lV(T)I 5 If 7
.xvz, xV3 € V('.T), or 1fv2x, VX € V(T), then T=T,. lf xv5, vix € V(T), then T-T2 X o
Finally, lfxvz, Vax € V(T), then (a) holds, because N*2(v,) = {x, i, v3, v4} .
‘ which induces more than one directed cycle. Suppose now that IV(T)I 2 6 Then X :1,
is adjacent to vy; otherwise N+2(v,) 2 {vy, Vii, Vi X}, and thJS set mduces more .
than one directed cycle. Stm:larlygc is adjacent to v3; othermse R 4 | .
N+*2(v3) = {v,, vy, v}, X}, and this vertex set induces more than one’ directed B
cycle But now N+2(v1 ) = {v3, V4, ..., ¥, X}, Which induces more than oée dtrected
cycle. ,ThJs completes the proof, in the case where Tis not two-connected. |

Now suppose that T is two-connected If IV(T) = 5, then T,-T3 smce iti ts
the only two-connected toumament on five vertlces Hence assume T has at
least six vertices. We show: that 1f @ does not hold, then T= T4 o |

Let x-be a vertex of maxxmumout-degree in T We show N+2(x) : N'(x)
By ou;' choice of X, W+(x)I 23. Moreover, every vertex m N‘(x) 1s adJacent tox. 7 |
If some vertex y in N’(x) is also adjacent to every vertex m N*(x), then )
- IN*+(y)l > lN*(x)l“ contradicting the maxlmahty of d+(x) Thus every vertex m
N-(x) is adjacent from a vertex in N*(x). tor “

“LetI, B, .., [P, p21, and O}, 0%, ..., 04, ¢21, be the strong components of
T[N‘(x)] and T[N+(x)], respecuvely Since (a) does not hold, each of these " ‘
tournaments has at most one non-trivial strong component.

A
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~ strong component. |

Lo sn.
. b 3 * - N e

-

Suppose IV(O')! 23. Then, since every vertex in N-(x) is adJacent froma Sl

vertex in N*(x), and every vertex in N+(x) is adjacent from a vertex in 0l
N+2(x)-V(T)-x Since T-x is strong, this vertex-set mduces a strong toumament

~with several directed cycles, which is a contradiction. Hence O! is trivial. Let .f'

o yoY)=( ol}. Then N+*(x)=V(T)-(x, 0,}, and thus T-x has at most one non—trméf

o

"~ We claim that T[N-(x)] is transitive. Suppose not, and let /; be the umque ,

strong component of T{N(x)]. Suppose ji>1, and let Iy = (i, }. Theu
N*2(i,)) 2 N+(x) U I, which induces a tournament with at least two du'ected

cycles, a contradxcuon. Hence j=1. If some vertex belongmg to N*(x) ol 1s

LY

adjacent to a vertex belongmg to I, then N+2(x) contains at least two dtrected

A

cycles. Since every vertex belonging to /; must be adjacent from a vcrtex m i -

N*(x), the vertex o, is adJacent to every vertex in /;. But then, smce or ls
adJacent to all out-nelghbours of x except itself, d*(o,) > d*(x), whxch isa
contradlctlon. Thxsprovesthe claim. Letl;=i; (= 1,2, .., p).

Next we show that 2 €d°(x) £ 3. Since T is two-connected, every vertex‘
has in-degree at least two (and out-degree at least two) Thus IN- (x)l 2 2
Suppose that d-(x) > 3 Then N*2(i; ) 2 N*(x) U {x} U (is, igy ouos l

vertex belonging to N+(x) - 01 is adjacent to a vertex belonging

then N+2(i, ) contains at least two dtrected cycles ‘Since every vertex belongmg

to /; must be adjacent from a vertex in N*(x), 0, is adJacent to every vertex m

{13. i4s .. ip). Since we must have d*(0;) < d*(x), this set has sue at most one, B

thatls,ps3

We claim that IN*(x)i = 3, and IN“(x)l = 2. Suppose not. Let r be a vertex in .

O, and let 5 be a vertex in N+2(o, ) that is adjacent to r. Since T is two-connected,

139 l4,~ :lp}’ ' s
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e r has out-degree at least two. Suppose ru ) E(T) Note that u € N'(x) If 0, 1s
L ad}acent to any vertex belongmg to N°(x), then N +2(0i5l§ {r.s,u, x}, meh

. mduces at least two dlrected cycles. Thus every vertex belongmg to N‘(x) ts
adjacent to o,. fuis adjacent to.a vcrtex vin 02, agam it 1s easy to see that

N+2(x) contams at least two d1rected cycles Therefore e‘very vertex in 02 is

s adjacent to u. There exists a vertex z € 0, for whxch there 1s a directed (z r) path

E - of length two But then N+2(z) 2(ru x 0}, wh1ch mduces at least two dlrected

| ":}cycles Therefore lN‘(x)l Smce T has at least six vertices, we must have

IN'(x)I 3 and lN‘(x)l 2. The claim is now proved:

Fmally we prove that T =T,. It has been shown that N*(x) and N’(x) both;;'-f -

R mduce transmve tom'naments LetO = {o,} l--l 2, 3 It remams to determme .' .

: the onentatxons of the arcs between N+(x} and N‘(x) Smce T is two-connected
d+(o3) 22 a (ol) 22 and d*(o,) 22. Thus o5 is adjacent to both i; and iy, 0, 1s
:adjacent from at least one of iy and i,, and o, is adjacent to at least one of i, and
i If oy is adﬁ?”?” one of i) and ip, N*%(0)) 2 (x, iy, i3, 03}, wiligh induces at
 least two directed cycles. Therefore 0, is adjacent to both i, and i,. Similaly, if
i1x € E(T)‘ then‘Ntzfx) induces a strong tournament, and if i,x € E(T), then
N+2(tl ) mduces a strong toumament. Thercfore o, is adjacent to both ll and 12,
CadTe=Te R
 The proofof k.emma 5. 1 9 is now complete . B

Lemma 5 1 9 asserts the exlstence of a vertex v such that one. of T[N*z(v)}

and T[N'2(v N has at least two dn'ected cycles If there i$ a vertex x such that

, N+(3t) (resp N'(x)) mduces at least two dtrected cycles, v cag be chosen to be an -

t'(‘
. qr‘ L :

-neighbour (resp out-netghbour) of x)

3
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e a \ The proof is by strong mductxon on IV(T)I

5 1 10. Theorem If Ti 1s a toumament w1th at least two dlrected cycles then T-
COL is NP-complete = o
Proof )

R BASIS By Lemmas 5.1.4 and 5.1.5 fhe S‘a“’m"“‘ is true ‘f 'Vm ! 54

R 'cycles

‘_INDUCTION Assume the statement is true for all toumammts ‘on at most k

o _vemces, and let T be a (k+1 )-vertex toumament w1th at least two d1rected

Suppose ﬁrst that T is not strong If every strong component of Ti isa

o ; vertex or a directed cycle, the result follows from Corollary 5 1.7. Othel'WlSC, T .

has a strong compenent C w1th at least four vertices (and therefore wnh at least -

, : l'two dtrected cycles) Smc.e C does not admit a homomorphlsm toa dlrected cycle,

and smce the C-colourmg problem is NP-complete by the mducuon hypothCSlS

| T—COL is NP-complete by Lemma 3.1.6. »
R

Now suppose that T is strong. If T is of@ of T, Tz, T5, the result folIows —

L from Lemma 5. 1 8 Otbemse, let v be a vertex such that one of T[N+”2(v)] and

1l7‘[N‘2(v)] has at least two directed cycles. Suppose the former case holds the ]

- latter case bemg similar. Let T* be the result of applymg the sub-mdtcator

o constructmn with respect to (P, 2,0) and vtoT. Then T‘—T{N+2(v)] 50 the

Ny

toumament T* has at least two dirested cycles Moreover ve V(T* ), SO T‘ has at
most k vertices. By the mducuon hypothes1s, the T*-colouring problem is NP—
complete Hence T-COL is also NP-complete S

. Tbe result now follows by strong induction. "}

. ﬁ«,



“is ,not empty. Also, W N+(a)

. L4
- : :-} -~ - £
/’_\ ) - "
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. . e R T\
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" 5.1.11. Theorem. Let T be a semi-complete digraph with at least two directed

cycles and a unique two-cycle. Then T-COL is NP-complete
_ Proof. | o ‘ “ B
The proof is by strong mductxorr on |V(T)l ~c

. BASIS. By Lemmas 5.1.4 and.5.15 the staterment is true if T has at most four

veruces , B

INDUCTION. Assumé the statement is true for all such semi-complete digraphs
v('ith at most & vertices LetT be a”(k+ 1 )-vene'x semi-cOmplere digraph with at
least two directed cycles, and a umque two-cycle {a b]l. If T is not strorl§ then
the result follows using the 'samé argument as in the analogous case of 'Theorem
5 1.10. We may therefore assume that T is strong. 'I'here are two cases to
cons1der. |

| CASE 1. There exists a vertex v which is adjaceﬁt to both ahan_d;"b-, ora
vertex v  which is adjacent from both a and b. o -
‘ We prove the result on the assumpuon that v exlsts, as the other

case is 31m11ar Let J; be the digraph constructed from C, U {x, y} by adding the i
arcs y0, yl, and Qx Let T- be the result of applying the sub-indicator construction

with respect to (Jl, x,y) and v toT

t V(T"): [a, b} L W. Since T is strong, W
N+(b), and v e W (hence Wisk).IfET- has at
least two directed cycles the result follows, from the mducnon hypothesis. Hence % -
we may assume that [a, b] is the unique directed cycle in T"' Therefore the B

toumament induced by W is transitive, and aand b are each adjacent to every

vertex of W. Let J; be the converse of J;. LetwbemW andletT""betheresult

, of applymg the sub-indicator construction w1th respect to (Jz, X, y) andwtoT.
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Let V(T—)={a, b} U Y;NQ:@ ;h'z}t Y= N‘(;z) U N:(b),and that we Y. The set Y
is not empty because v € Y. H;:ncc 3<5IV(T—) sk. IfT'“» has at least two
directed cycles, the result follows from the induction hypothesm Hence we may
assume that [a, b] is the unique dm:cted cycle in 7=, It follows that Y mduces a
transitive tournament, and that every vertex of Y is adjacent to both a and b.
Since every vertex in V(T) - b is either adjacent to a, or from a,

V(T) = {a, b} VW UY.

Suppose IWI>1. Since T is strong, some vcrtcx'w € W is adjacent to a
vertex y € Y. If y is adjacent to some other vcrtcx w'e W thcn N-2(w’) contains
{a, b, w,y}. Since this set induces more than one dmcctcd cycle we havc a
contradiction. Therefore every vertex of W is ad_]accnt to'y. It is easy to see that
N+*2(a) contains {a, y} U W. Moreover, b & N+%(a). Let T-— be the result of
vapplying the sub-indicator construction with respect to (P,, 0, 1) and a to T. Then
T— = TIN*%(a)],so b & ;,V(T}"’"" ):Thus T-— is a tournament w1th at least two
dlrected cjcles, and‘so the T~—-colouring problem is NP-compiete by Theorem
5.1.10. Therefore T-COL is also NP-complete. It remains to consider the case
Wi=1. A siﬁ:ilar argument shows that we may assume Y] = 1. But then T has
only four vertices, whence the rcsult follows ﬁ'om Lemma 5.1.5. This completes

the proofofcasc I.

CASE 2. No vertex is adjacent to both a and b, and no vertex is adjacent
from both a and b. | el _\ . |
. LetA=N*a)-b,and B = N+(b) '-.}a;"‘l'iien V(T)=A v By da, b},
every vertex ian is adjacent‘ to b, and evéry vertex in B is adjacent to a.

Suppbse neither A nor B is empty. Assume first that Al > 1. Let x be a
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vertex of the m;mal strong componcnt of T[A] Then N*2(x) contams {a, b] v B

'_ but not x. The result T" of applymg the sub-mdlcator constructxon with respect to
(P5, 0,2 ) andxto T is T[N*z(x)] The tournament T~ has at least two dn'ected '

cycles. Thus T~ -COL is NR-complete. Hence T-COL is also NP-complete. Thus -

_ we may assume 4l = 1. A similar argument shows that we may also assume

e T 1Bl = 1. But then T has only four vertices, whence the result follows from Lemma

5.1.5.

#+

Now Suppose that one of A and B i 1s empty. Without loss of gcneralny B is .

-

‘empty. If Al = 1 or2, thcrcsultfollows from Lemma 5.1.4 or 5.1.5, respectively. ©

Supposc that IAI 23. Letubea vertcx m the 1mt1al strong component of T[A]
There exists a vertex v €A such that therc is a dlrcctcd (4, v)-path of lcngth

two. Therefore N*2(u) 2 {a b v}, which induces two directed cyclt:s Smcc u

eN+2(u) the result follows as before, from the sub-indicator construcuon and the ¥ - "

mducnon hypothesis. o o | ST

The result now follows by strong induction. gy

1

1

4

i,
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Proof of Theorem 5.1.1.

S

Suppose the statement is false, and let T be a counterexample Wlth the |
mmxmum number of vertices. That i 1s, Tisa mnumum vertex senn»complete ‘

dlgraph w1th at least two directed cycles for- wlnch the T-colom'mg problem 1s not

NP-complete We denve some structural propernes of T and ulumately a .

contradlcnon

,It follows from Theorems 5 1.10 and 5. 1 11 that T has at least two double

arcs, and by Lemmas 514 and5 1 5, at least five vemces Ifevery strong - B
component is a vertex or a cycle, T-COL is NP-complete by Corollary 5.1.7. .
Otherwise T has a strong component C with at lcast two dlrected cycles By the ;
mxmmalxty of IV(T)I the C-colounng problem is: NP-complcte Smce C does not “

map to a directed CYC1e. T-COL is NP-complete by Lemma 3 1 6 which is a L '4‘ S
’ conn'adxcnon Hence T is strong By Lemma a. 1. 1 undlr(T) is blparnte. o

(l) No vertex v of T has more than one dlrected cycle in T[N+( v)] or -

Suppose there exxsts a vertex v such that N*(v) mduces more than one

duected cycle, the other case bemg similar. Let T’ bc the result of applymg the

sub-mdxcator consu'ucnon W1th respect to (Pl, 0 1) and v toT. Then \ 'f e

T" T[N*(v)] Since the sem—complewmgraph T~ has at least two dlrected
cycles, and ve V(T") the T--colouring problem is NP—complete Hence T-COL 1s

. 3150 NP-complete Whlchlsacontradxcnon« A 36
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(2) Every veriex of Tis mcident w:th exactly one double arc.
First suppose there 1s a vertcx v that is not-incident w1th a double. a.rc Let

T" be thc result of applymg the sub-indicator construction with rcspect to

oo y (Cz, 0 free) to T ‘ThenT~is a scmx-complctc digraph with at least two double

‘:..*,larcs (and hence more than one dn'ected cycle), and fewer vemces tban T (smce
o ve V(T")) By our choice of T, the T"-colom:mg problem i is NP-completc Thus T-
: CoL is also NP-cOmplctc whlch isa cbntradlcnon Thcrefore evcry vertex is

S v'mmdcnt thh at least one donble arc.

Now suppose that bis a vertex of T wluch is’ mcndcnt with the doublé arcs

. [a, b] and [b, c] Since undtr(T) is blparnte c and c are not Jomed by a doublc arc.

;“'Athout 1oss of gencrahty a 1s adjacent toa Lct T' be thc sexm-cbmplete dlgraph

| ‘-;r-(a,b c] e . ;j‘ : .

_ Snpposc there i is a vertcx 12 of T whlch is adjaccnt from both a and c. If
.,'bv €. E(T). then N+(v) 2 {a, b c] WhiCh mduceg morc than one dlrected cyclc -
' Otherw1se vb € E(T) and N+(a) 2 (b c, v] whlch also mduccs more. than one h

du'ected cycle T , - ‘
Sxmxlarly no vertex of T’ is” adjacent to both a and c R \ |
| Supposc there is a vertcx u of T" such that ais adjacent o u and uis i b
adjacent to c.fube E(T) thcn N-(c) comams {a, b, u] contrary to (1) On the
kothcr hand, if ub € E(T) thenN*‘(a) contams [b c, u} whxch also mduces at lcast
two dn-ected cycles, agam a contradxcuon 'I’hus for cvery vcrtex tof T', the vcrtex
cis adjacent to t and: t is adgacent;o a. Furthermorc. by the above argumcnt .
: 'therc are 1o other arcs between V(T’) and. fa, b] o AR
- " Suppose there is a vcrtex x of T’ and a. double ax'ci [x, b] Since T has at

leaSt ﬁve vertices, therc 1s a vertex y in T’-x‘ Let [y, 2] bc the double arc mc1dem o

’
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: w1thy We know thatz #cC and z ;a. Buf theanﬂ&);é&ntains the double arcs

. [b x] and [y, z], contrary to (1). Thus undi'r(T’) is a spanning subgraph and, since

“eis adjaccnt to every vertex of V(T‘), T’ consists of a single double arc [k, /]. By

(1) enhcr thc vertex b i is ad_laccnt to both k and I, or is adjacent from both of

them. In the former case N*‘(b)={a, C, k 1},<4nd in the latter case

- N‘(b )={a, _c, k l} Smcc this set of vertices induces more than onc dlrected cycle,

we have a cbntradlcuon

-y

~ This completes the proof of (2).

Let WT) = (a,, b;: i=1, 2; ..., 7}, where [a,, bJ 1sad0ublearr:1 1,2,.

SmceV(T)>4 r23

i

(3) The only posmble eonﬁguratlons for the arcs between two double arcs ..

/i} -

areshown in i‘igureSld ' o C e
Let [a, b}, and [c, d] be double arcs. SuppOs‘c that ¢ is adjacent to both -
and d Then, smce N*(a) ;) (b, c, d} (1) nnphcs that exthcr b is adjaccnt to both c

| and d or i$ adjacent from both of them. Thus wc havc conﬁguratlon (1) or (n)
Sxmﬂarlyﬁ&f both ¢ and d are adjacent toa, the same two conﬁgurauons arlse If |

. .no vertex is adjaccnt to both vemaes of a double arc : and no vertex is adjacent :

- f from bOth vemccs of a doublc anf: thc only possiblhty is configurauon (m)
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",._(4) For every vertex v of T, d*(v) d"( v) = r

i . 5:: .',.j ) (u)
k Flgure 5 1 4 All possxble conﬁguranons.

1“{

Smce nelther N+(v) nor N-(v) mduces more than one doubl:e arc,

o r-1 < d+(v), d‘(v)s r+1. 1t suffices to prove tha: no vertex has out—degree r+1
' i.‘}Suppose to the contrary that d+(a1)-r-+1 Wlthout loss of genera.hty, e
L N*@y) = (ay @y, ... 0, by) and N*(by) = (s by by by). Let J be'the digraph

~ constructed from C, U {v} by addmg the arc.v0. Let T" be the resalt of applymg

the sub-indicator construction wnh respect to (.7 l v) and al to T Then A

W:r )=(by, by, ..., byray, a2}, 50 T- Cpntams the directed two-cycle [a;, b2] T

;‘ . ‘has anothet dxrected cycle, then the choice of T implies that T~-COL is NP-

F

complete, whence TPCOL is also NP-complete. Hence [ay, b,] is d'le umqueﬂm-a

| dlrected cycle in T" “Therefore b; is adjacent to az and by, j=3, 4, . o r If there

emsts k 35k s r, such that b;b, € E(T), then N+(bk) contains [al,* , br, b},
which mduces morg than one directed cycle, contrary to (1). Thus b, wadjacent
to by, b4, b Mo:eover a, is ad_]acen o by; otherw1se N'(az) contains

{ay, by, bs) whxgh mduces two dlrected ycles, comra.ry to (1). Let T- be the

result of applying the sub-indicator construction with respect to (J, 1, v) and by to

-T. Then a, ¢ V(T‘;') 2 (b, by, by, a,). Since T~ has at léast two directed cycles
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~ with respect to (/, v, u) and a, to T. It is easy to check ;hat =T-a, and as )

and fewer vcrticc; )thanAT. the T~—"-colouring problem is NP-cox;iplcte. Therefore

T-COL is also NP-complete, a contradiction. This completes the proof of (4).

(5) Every vertex of T is adjacent to exactly one vertex of each double arc

(that is, the arcs between any two double arcs form configuration (iii)).
Supposc not. Assume t.hat a is adjacent to a and b,y. If a, also is adjacent
to a, or b for some i, 3 i S r, we cqn obtain a contradlcuon by arguing as in (4)
Thus a, is adjacent from (ay, by, ay, by, ..., 4, b,}. ‘By.(4), r—3 By applylﬂg () to
the doublc arcs [a,, b;] and [az, b2], gnd thcn applymg (4) we see that T is
cither Tg or T (cf. figure 5.1.5). B |
i Suppose*T:T,;. It is easy to check that the result T~ of applying the sub- v
indicator construction with respect to {Pz, 2,0)and ay to T is T-by. Smcc T-has -

two dxrectcd cycles and fewer vertices than T the T'-colounng ptoblbm is NP-

complete Thus T-COL is also NP-complctc, whxch isa contradxcuon

Supposc T=T;. LetJ bc the digraph constmcted from Cy {u, v} by addmg

. the arcs uO and 1v. Let T~ be the result of applying the sub-indicator construction T

above, we have a contradiction.

“ Thisdompl§p9$ the proof of (5. - - ‘>
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" Figure 5.1.5. The tournaments T and T+.

LetJ be the diglaph constructed from C, U {u, v} by addmgt.hc arcs u0 and
1v. Let T~ be the result of applying the sub-indicator construction with rcspcc't‘tp
(1, u, v) and a, to T. It follows from the first paragraph of the proof of (5) that a; is
not in T~, undir(T) is a disjoint union of double arcs, and g, is not ad;acem to both
_ ends of any double arc. Since, by (5), every vertex of T is adjacent to-one vertex
of eachrdoublc arc, T-=T-a;. As r 23, the digraph T- has at least two dlrectcd :
cycles By our choice of T, the T~-colouring problem i xs NP~completc Thcrefore ]'
COL is also NP-complete. This contradiction completcs the proof of Thcorem
51.1.m :

Thw
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5.2. Transitive Digraphs.

In this section @é’émﬁpletcly classify the complexity of H-CbL y:ffhcn‘ T B *»4

e

the directed graph H is vertex-transitive or arc-transitive. For vertex- W

transitive digraphs, we prove that the H-colouring problem is NP-complete
unless H admits a retraction to a directed cycle (cf. Theorem 5.2.4). This
verifies Conjecture 1.1 for vertex-transitive directed graphs. Since there are

,, arc-transitive digraphs with sources or sinks, their classification is slightly

- different (cf. Corollary 5.2.5). Note, how;ever, that our classification implies

E \C'on_]ecturc 1.1 for arc-transitive digraphs. In addition, we characterize, via

conditions on the symbol, those Cayley digraphs that admit a 4

homomorphismi to a directed cycle (cf. Lemma 5.3.7). As a corollary,

- rncccssary And,:éuf_ficicnt conditions are obtained for a Cayley digraph to

h n:tract toa duected cycle (cf. Corollary 5.3.8). Thus we give a structural

’élassiﬁcatic?n of the complcxity’of H-colouring by Cayley digraphs. ‘}
The followmg three lcmmas are essennal to thc proof of the main

result of this section;

[ "‘ e "
&

- 5.2.1L Lemma.‘ "The core of a venex-;ransitive; digxa{ph is vertex-transitive.
- Proof o | ‘

LctHbcthccorcofG Then there is a retraction r:G —H. Letxand b

ybcverucesofH andletfbcanautomagﬂpismostuehthatf(xFy Then
rOflsahomomorphlsmothoHand as H is retract-free, anautomorphlsm

of H. Since r(f(x))=r(y)=y, we have that H is vertex-transitive. g
&
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5.2.2. Lemma. LctH be a directed graph and let I v) be an indicator.
Let H* be the d1graph that results from applymg thc mdxcator construction

N

with respect to (I, 4, v) to H. Then Aut(H) is a subgroup of Aut(H*).
Proof. | | | .

Since Aus(H) is a group it suffices to prove that Amut(H') contgins
Aut(H). Let f be an automorphism of H and let ab bean arc of H *. Then
there is a homomorpilism hd YH such that h(u)=a an;i h(v)=b. The fiinction o =
foh is also a homomorphxsm ofI to H andf(h(u))=f(a) andﬂ'h(v))*— b)

chcc f(a)f(b) is also an arc of H' Smce fisa onc-to-onc arc prcscrvmg

-

map, it is an automorphism of H*. @

LS
-

~
w

By Lemma 5.2.2, the digraph that results from applyuig an mdlcator .

i

construction to a vertex-transitive dlgraph is also vertcx-transmvc

'
£ e
-

We now define a special type of indicator that plays a central role in

ereis a vertex z that is the only nelghbour of v (the vertex z ‘may be an in-
nclghbour of v or, an out-nelghbour of v).If z i is an m~tie1ghbour of v, we
sometimes call (I, u, v) an in-z-mdicator—and Slmxlarly, if z 1s an qQut-
neighbour of v, we sometimes cal] (I u, v) an out-z-mdicator Thcsc

' specxal ;ndlcatorS are 1mportant in our work on vertex-transitive digraphs

because of the following lemma. - Bt
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5.2.3. Lemma Let H be a vertex-transitive digraph and let (7, 4, v) be an

o m-z-mdxcator ('resp out-z-mdlcator) If there exlsts a vertex x of H, and )

homomorplnsms h and h, of I to H such that hl(u)-hz(u) x and
h (z)at hzfz), then either ' :
(@) [E(H*)! > \E(H)I, or T
(b) E(H*) = \E(H)|, and N* y(h,(2)) = N*4(hy(2))
- (resp. N'y(hy(2)) = N"y(hy(2))).
Proof. o |

. . Since H 1s vertex—transmve, every vertex lS a homomorphlc image “of

- A'the vertex 2. Thus. for every vertex a, there is a vertex b such that

(b) 2 N*H(a) I-Ience the outvdegree of a vertex does not decrease e o

(Every vertex v of a vertex-transitive digraph has d*(v) = d*(v) = ¢ for some B

constant £.) Therefore H‘ has at least as many arcs as H. Suppose equahty

holds. Let r be the outvdegree of every vertex of H and H*. But smce

 N*je(x) contains both N*y,(hy(z)) and N* ,(hy(z)), the vertex x has

d*ye(x) = r justif these two F-sets are equal. @

5.2. 4 Theorem Let H be a vertex-transitive dlgraph with at least one

arc: Then the H—colourmg problem i is NP-complete unless H admits a .

* retraction to a directed cycle In the latter case H-COL is polynonnal

Proof

We have previousl_v"'noted the second statement (cf. the remark

followingv'l’heorem 2.2:2). The first assertion is proved by eomradic—non Let =

Hbeacoummxamplemththemmmumnumberofvemcesmd,mﬂunau

counterexanples on W(H )I vernces, one with the maximum number of arcs
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R "~a d:reeted cycle,md for whxch the H-colourmg pmblem is nat NP

© By Lemma4.1. 1 thatH is not the eqmvalent digraph Of a complete graph.”
‘ V’V‘Furthermore, the mmnnahty ef IV(H)I xmphes that H 15 retract—free

(Otherw1se the core H ! of H is a vertex-u'ansmve dlgraph w1th fewer

_vertices than H, and Wh.lCh dees not retract to adlrected cche By our ehoxce

of H, the H'- colounng problem is NP—complete Consequently H COL is

[Maurer et al.,, 1981; Gut_]ahr 1988] (cf. Sectxon 2.2), we may assume that H

has at Ieast five veruces We may also assume without loss of generahty

that H is copnected. Smce H is not a directed cycle, each vertex has out-

rdegree at least two. We make the followmg sequence of assertions about

the dxgraph H~

(1) H does not map to a directed cycle of lengtll greater than one. |
| Assume H maps toa dlrected cycle of length greater than one and let .

k be the largest positive mteger such that H = C. The mteger k exlsts
because H is strong, (cf. the comment preceding Lemma 3 1.5). Smce t.he

retract-free it is a retract of a given directed graph G if and Only if it is both
a subdxgraph of Gand a homomorphxc 1mage of G) Thus(P O, k) is a good

mdicator Let H* Benote the result of applymg the mdlcator constmcnon e

with respect to (P, 0, k) to H. By\LemmaSZZ H"tsvertextrmsrttve
SinceHissn'ong,eachcolourclassoftheCk-colémihgmdneesaeonneeted

component of H*. Thus H* has precisely k isomorphic connected

«

.That 1s, H is a vertex u'ansmve rhgraph that does noc adrmt a retractm te

core of H is not a directed cygle, C, is not a subdigraph of H (since Ce is

wooa
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‘1\"

components, and so the core of,fH’ is a vertex-trar‘ls‘itivé‘ digraph”With,'fewer
vertices than H. - | A o |
We claim: ‘that the core of H' is not a du'ected cycle. By the chowe of
k, the digraph H has a collection C!, C2, ..., C™ of directed cyclcs such that N
gcd{IV(C¥): i=1, 2, ..., m}=k. Each C’ gives rise to a directed cycle C*in H*
of length (/)IV(CY). Hence ged{IV(C™)i: i=1, 2, ..., m)=1, and H* does not _
map to a directed cyclc; of length greater than one. Thercfore H* does not
retract to a directed cycle. Thus the H ‘-qolcmring problem is }\IP;complete
(by the choice of H), and so H-COL is also NP-corpplétc. This completes

the proof of (1). !

By (1), H is not an orientation of a bipartite graph.

¥ o -

v . ,
In the remainder of this section, we omit from our proofs the

- observation that the d:graph which results from applying the mdmator

aConstruction to a vcrtex -transitive digraph 1s itself vertex- transmve

(2) Every vertex of H is incident with a double arc.
Since H' is vertex-transitive, it suffices to prove that H has a double
arc. Suppose not. Then (P,, 0, 2) is a good in-z-indicator. Let H* be thc
. result of applying the indicator construction thh rcsfiect to (P,,0,2) to H.
We %eum that H* does not retract to a directed cycle. Since H is~
strong and does not map to a directed cycle of length greater than one, ft has
a collection C1, C?, ..., C™ of directed cycles such that
gcd{IV(Ci)l i=1, 2, ..., m)= d. Each C' gives rise to a directed cycle C** in H".

4

N

88



If IV(C*)l is odd, IV(C*)I=IV(C?)l, and IV(C™*)i=(/,)IV(C)l otﬁérwisc: )

Therefore g(:';i[IV(C“‘)I: iél,Z, ..., m}=1. This pfoves the claim:
By Lemma 5.2.3(a), H® has at least as many arcs as H. If IE(H*)l > |[E(H)|, g
the H'mloﬁng problem is NP-complete by the maximality of |E(H)), and‘so’H-
COL is zﬂso’NP-complcte, which is again a contradiction. .Suppos'é that eqﬁality
holds. Let x, y, z be vertices of H such that x and y are both adjacent from z, By
Lemma 5.2.3(b), N;\H(x)=N+H(y). Similarly, it follows from considering the indicator"
construction with respect to the out-z-indicator (P2 2 0) that N‘H(x)-N y(y). Ifx
and y are non-adjaccnt, there is a retraction”H — H-x which maps xtoy, -
contradxcung the fact that H is retract-free. If x and y are adjacent, N * (%)= (y)
implies that if .ry (resp. yx)is an arc, then s& is yx (resp. xy), contrary to our

assumption that H has no double arc. This éompletes the proof of (2).

m——

' . @, (b)T,

Figure 5.2.1. Subdigraphs from (3)._
(3) H contains T, and T, (ses figures 5.2.1(a) and (b), respectively).
Assume H does not contain T,. Then the symmetric indicator (7, u, v)

shown in figure 5.2.2(a) is good. Let H* be the result of applying the W
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indicator constmcuon w1th respect to d, u, v) to H. Then H* is loopless and
undirected. Since undzr(H) is spanmng, H* is thc eqlvalcnt digraph of the
underlying graph correspondmg to H. Since H is not an orlcntauon ofa
bipartite graph, H* has an odd cycle, whence the H* -colourmg problem 15
NP-con%pléte. 'f'herefore H-COL is also NP-complete, which is a
contradiction. | | |

If H does not contain T, the é{gumcnt is similar (the appropriate

indicator is shown in figure :5.2‘.2(b')\). - \

~ (a) ; ' (b)

i( Figure 5.2.2. Indicators from.(3). B

N . \ "

(4) Every vertex of H is incident with-at le;lst two double arcs.
Supposeto the contrary that undir(H) is a disjoint union of double

. arcs. Then the indicator (/,, u, v) shown in figure 5.2.3(a) i§ a good in-z-

indicator. Let H* be the result of applying the indicator construction with

respect to (I}, &, v) to H. It is not hard to see that H* contains a transitive .

triple and, therefore, does not admit a retraction to a directed cycle. By
Lemma 5.2.3 the digraph H* has at least as many arcs as does H. If

\E(H* )I>IE(H)), then the H*-colouring problem is NP-complete because of |
our choice of H and, consequcx{dy, H-COL 1s also NP-complete. Suppose
that [E(H*)I=|\E(H)\. Let [x, y] be a double arc. Then Lemma 5.2.3 asserts

Y

\

~ .

pReot 2



that N* y(x)=N"* (5). - e o o

Let (I,, u, v) be the m-z-mdlcator shown in ﬁgure 5.2. 3(b), and let
H** be the result of applying the indicator construction with respect to
(I, u, V) to H. By (2), E(H"*) contains E(H). o

Supposc‘ H** has a loop. As H** i§ vertex-transitivc, 'ev’cryr;rertcx is
incident with a loop In particular, there is a loop at y. Thus H contains a
directed path of length two from x to y, say x,w,y. But, since N* ,(x)=N*(y),
if xw is an arc of H, so is yw Therefore undir(H) is not a. d;s;omt union of -
double arcs, which is a conua@iction. Hence H** is loopless. Since H does -
not map to a directed chcle of length greater than one and E(H**) 2 E(H),
the digraph H** does not retract to a directed cycle. |

As above, we achieve the contradiction that the H-colouring problem:
is NP-complete when |E(H**)l > \E(H)I. |

Suppose that E(H** )-E(I-I) Then, by Lemma 5.2.3, for any vertex ¢
such that xt is an arc of H, N*(1)=N*(y). But yx 1; an arc of H, so tx must .,
also be an arc of H. Since there exists at least one vertex ¢ in N*H(i)\[)’]:
undir(H) is not a disjoint union of double arcs. This completes the proof of
4). . |

'j :
(5) H contains C,* (see figure 5.2.4). | .

Supposc not. Thcn the z-mdlcators (Il, u, v) and (12, u, v) shown in -
tigures 5.2 5(a) and 5.2.5(b), rcspectxvely, are good. Let H* and H** denote
_the result of applying the mdxcator construction with respect to- (1}, u, v) and
(1,, u, v), respectively, to H. Both E(H*) and E(H**) contain E(H). If either

containment is proper, we reach the contradiction that the H-colouring
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K]

+
A

#

(a) . ()

: 4
. - Figure 5.2.3. Indicators from (4).

t

»

Figure 5.2.4. The digraph C,".
| | %1 )
Suppose that E(H)=E(H")=E(H**), and let x, y, z be an undirected
path of length two in H. Then, by Lemma 5.2.3, N*(z)=N*y(x) and
N"1(2)=N"y(x). Since H does not contain C3‘, neithc; zx no%is an arc of

F

H. Therefore there is a retraction H — H - z which maps z to x, contradicting
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the fact that H is retract-free.
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Figure 5.2.6. Subdigraphs from (6). °

(6) H contains A, or-A, (see figures 5.2.6(a) and (b), respectively).

4 Suppose not. Then the z-indicators (1, u, v) and (I,, u, v) shown in
figures 5.2.7(a) and 5.2.7(b), respectively, are good. Let H* and H** denote
the restlt of applying the indicator construction with respect to (I, 4, v) and
(1,, u, v), repectively, to H. By Lemma 5.2.3, both E(H*) and E(H**) contain

E(H). If either containment is proper, we have a contradiction. Suppose that

et
iy
f5
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E(H)=E(H")=E(H"). Consider a homomorphic image of (I,, u, v)'in H, such
that the vertex u maps to x, and z maps to y#x (the vertex y ex15ts by- 4)).
By Lemma 5. 23, N*H(x) N"H(y) Since there also exists a homomorphlsm
_ of (1,, u, v)/ toH such that # maps to x and z maps to y, we also have

N"y(x) = N"y(y). But then there is a retraction # — H - x that maps x toy,

which is a contradiction. This completes the proof of (6).
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Figure 5.2.7. Indicators from (6).

(7) H contains at least one of X, X,, X;, X,, ‘Xs (‘scc figures 5.2.8(a),
(b), (c), (d), (e), respectively). | ~

~ Suppose first that H contains A,, but none of X,, X,, X,. Then the
indicators (/,, u, v) and (/,, 4, v) shown in figures 5.2.9(a) and (b), i
. agspecnvely, are good. The remaining details are similar to those in (§), and

v
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(e) X4 ) L.

. Figure 5.2.8. Subdigraphs from (7) through (11).
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(a) (b)

'Figure 5.2.9. Indicators from (7).

T

Similarly, if H contains A, but none of X,, X,, X, the indicators
(I5, u, v) and (I, u, v) shown in figures 5.2.9(a) and (b), res?ectivcly, are

L4

good. The details are again left for the reader. . S

8 H contains neither X, nor X,.

We prove that if H contains X, orX‘S, then the H-colouring probletii
is NP-complete. Since Xj is the converse of X 1 it suffices to prove the
result-when H contains X .

Let x and y be vertices of H as shown in figure 5.2.11(a). Let -

(I, u, v) and (Iy, u, v) be the z-indicators shown in figures 5.2.11(b) and

(o), reépcctively.
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@ (b)

Figure 5.2.10. More indicators from (7).

¢
Suppose first that both indicators are good, and let H* and H"

denote the result of applying the mdlcator construcuon with respect to

(. u,v) and (Z,, u, v), respectlvely, to H. Both E(H‘ ) and E(H** )econtam .

E(H). If cither containment is proper, the result follows ﬁ'om Lemma 3.1.8 .

and our choice of H. Hence assume E(H )—E(H‘ )-E(H‘ "). Then, by Lemma
5.2.3, N*({x)=N"*(y) and N" ((x)=N"1(y). There_fore, either x and y are

joined by a double arc, or there is a retraction H>H-x which'maps x to.y. -

In the former case H contains an undirected ﬁve-cycle‘, and we are done by

| Lemma 4.1.1. The latter case contradicts the fact that H is reqact—ﬁee. )
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‘Now sﬁppo‘se that one of the indicators is not good. We may
assume that undir(H) is blpamte, otherwise H-COL is NP-complete by
Lemma 4.1.1. Let C be a component of undtr(H) and let (R, B) be a two-
colouring of C. Then H[R] is a vcrtex-tranmtxvc graph with fewer vertices
than H. If there exists a ‘hqxﬁomofébism of either I, or I, to H such that u
and v map to the. same vertéx, H [Rj contains a trariéitibe vfri’plc Therefore
HI[R] does not map. to a duected cycle of length greater than one. By our
choice of H, H[R]-COL is NP-complete Let r € R. There exists an even
‘ integer k such that for every vertex x in R, there is an undirected (r, x)-walk
of lehg;ﬁ k. Let P be (the equivalent digraph of) an undirected path of length
k, with origin a and terminus b. Let H~ be the result of the applying the sub-
indicator copsujuction with respect to (P, a, b) and r to H. Then H~=H[R],

and so the resﬁlt follows from Lemma 3.19.

(9) H does not contain Xj.
Suppose H contains X3 We show that H-COL is NP-complete Let
x and y be vemces of H as shown in figurc 52, 12(a). Let (I}, u, v) be the

in-z-indicator shown in figure 5.2. 12(b) and let H* be the result of applying
the indicator construction with respect to (I, u, v) to H. Then E(H*)

contains E(H)
Suppose that E(H*) = E(H). Then, by Lemma 5.2.3,N* (x) =N*y(y).

But xy is an arc of H, therefore H has a loo\t b A wlnch is a contradiction.

37 -

*
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(c)

Figure 5.2.11. Configuration and indicators from (8).

Thus E(H*) properly contains E(H). If H* has no loops, then the H-
colouring pfoblicm is NP-complcte by Lemma 3.1.8 and our choice of H.
Hence we niay assume that H* has a loop. Thus H contains an undirected
triangle or the graph shown in figure 5.2.13(a). In the former case H-COL is
NP—complctc by Lemma 4.1.1. In the latter case, let (15, &, v) be the
~ R 99
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indicator shown in ﬁgure 5:2.»1 3(b), and let H"‘* be the result of applymg the

indicator construcuon w1th respect to (I, u, v)to H. Note that E(H**) ) Y

. Contalns E(H) ) - , :ﬁy T"‘;' :

Suppose E(H") E(l:(i/*‘hen, as above, we see that H has a loou at
¥, which 1s a contradiction. |

- Thus E(H*) properly contains E(H). IfH"has noloops, the H- =
colourmg problem is. NP-complete by Lemma 3.1.8 and our choice of H.
Hence. we may assume that H** has a loop. Then H contams an und1rected
mangle, the dlgraph Xf, or the dtgraph shown in Figure 5.2. 14 (a). In the
first case H-COL i is NP-complete ’I'he second case conxradlcts (8). It
remains to consider the last case. Let (13, u{‘ y)ﬁb_e ttxe symmetric indlcator
shown in figure 5.2.14(b). We may assume thatH does not contain an
undirected three-cycle; otherwise H-COL is N?-t:omplete by Lemma 4.1.1.
Let H*** be the digraph that results from ,applyinglthe indicator construction
with respect to (I, u,V)toH . It may be ditectly verified that H*** contains
an undirected five-cycle (Observe that smce (I3, u, v) isan sh-mdxcator .

this means that the dxgraph H**?® is superhard) “This completes the proof of S

. B enes
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Figure 5.2.12. Configuration and indicator from (9).

z
o’

(a) . (b)
Figure 5.2.13. Subdigraph and indicator from (9). )
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(a) o (b)

Figure 5.2.14. Subdigraph and symmetric indicator from 9).

(10) H does not contain X,.

Supposé to the contrary that H contams X,. We show that H-COL is .

NP-complete. It may be assumed that H does not contain X, X5 or X5. Let
x and y be vertices of H as shown in figure 5.2.15. Let (I, 4, v) be the
indicator shown in figure 5.2.9(a), and let H* be the result of applying the
indicator construction with rcspect’ to (1, u, v) to H. Since neither X, nor X,
is a subdigraph of H, the digraph H® is loopless, unless H contains an
undirécted triangle, in which case we are done by Lemma 4.1.1. Note that
E(H*) contains E(H). If the containment is proper, the result follows from
Lemma 5.2.3 and our choice of H. Hence assume that E(H*) = E(H). Then
by Lemma 5.2.3, N* ,(x)=N"* (y). Thercfore yx is also an arc of H, and so

contains an undirected triangle. The result now follows from Lemma 4.1.1.:
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- Figure 5.2.15. Configuration from (10). .
(11) H does not contain X,.
The proof is similar to (10). The indicator needed is shown in figure

o

5.2.9(b). The details are omitted.

—

Hence the digraph H ca,n'no(’exist. This completes the proof of
Theorem 5.2.4. m o
5.2.5. Corollary. Let H'be an arc-transitive digraph wnh at least one arc.
Then the H-colouring problem is NP-complete, unless H admits a retraction
to C, or P,. In the I:ﬁa case H-COL is polynomial.
Proof. | |

We have already noted the second statement (cf the comment
following Theorem 2.2.2). Let H be an arc-transitive digraph with ai least -
ohc arc. We may assume without loss of generality that H has no isolated
_vertices. Then ci_thcf H is smooth, or every vertex of H is a source or a sink.

In the former case H is vertex-transitive, so the result follows from

Theorem 5.2.4. In the latter case P, is a retract. This completes the proof. g

-
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Since a connected vertex transmve dxgraph His su'ong, _1t admlts a

retraction to a duected cycle if and only if the length of every dxrected cycle

in H is divisible by the dxrected girth of H. When H is a Cayley digraph on a

finite group we are able to give another characteﬁsation.

Let I' be a finite group. We denote by I(S) the Cayley digraph with
symbol S. That is, the digraph with vertex-set I" and arc-set
E(I(S))={xyl yx1 e S}.

It is well known that a Cayley digraph I7S) is connected just if the

set S generates I'. Since. Cayley digraphs are vertex-transitive (because,
R

for any a € T, the mapping x — xa is an automorphism), a connected Cayley

digraph is strong. °

5.2.6. Lemma: Suppose S generates ["and H is a non-trivial normal
subgroup of I' of index A. If S is a union of cosets of H, then the Cayley
digraph IiSip) is a retract of I7S) (S/y = {Hx: Hx is a subset of S}).

Proof.

»

Let S=Hx, U Hx, U ... U Hx,, and let the collection of all cosets of
Hbe Hxl, Hx,, ..., Hx,. We ﬁrst show that I/ S/y) is an induced
subdigraph of I1S). There is an arc from x; to x; in I7S) if and only if
x}x,-'l € Hx,, for some m between 1 and k; equivalently, x;x; is an arc if and
~ only if I-Lerx,-'1=I-er. Therefore (x,, x,, ..., x,} induces a copy T of

I (S/y) in I(S). It remains to show that there is a retraction £I(S) = T.
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Foreachge I, yletf(g) be the unique veriéx x; such that g is in Hx; Then f
fixes V(T). Let ab be an arc of ITS) and f(a)=x, and f(b)=x,. It is not hard to
see that Iiba'1=PIx,x,’1. Therefore xx,! is in S, and x x, is an arc of T.

Hence f is a homomorphism. This completes the proof. 7- ' ‘
5.2.7. ‘Lemma. Let\%- generate I'. There is a homomorphism of IS) to C,, if

and only if S is contained in a coset of a normal subgroup of I" with index h.

# Proof.
(=») Suppose f:IT (S) - C,. Without loss of generality the identity e of
I has fle)=1. Let H=f!(1). Let a, b be in H. Since I(S) is connected, there
is a directed (e,a)-path of length zero miodulo h, and a directed (e,b)-path of
length zero modulo k. Consequently there is a directed ( b,ab)-path of length
zero modulo h, and a directed (e,ab)-walk of length zero modulo A. Since a
C),-colouring of a connected digraph is completely determined by the colour

assigned to a single vértcx, we deduce that f(ab):l, that is, ab € H. Hence
H is a subgroup. | | \
~ Letg e I'and let x € H. There exists a directed (e;x)-path of length
zero modulo A, a directed (e,g)-path of length r modulo k, and a directed
(e,g"))-path of length (-r ) modulo h (because there is a directed (g°\.¢)-path
of length r modulo A and a ciosed directed walk containing both e and g’! has
length zero modulo k). Therefore there is a directed (e, §'lxg)-walk of length
zero modulo h, that is f{g lxg)=1. Thus His normal.
Let s be in S. The automorphism x—xs maps each (i) to f1(i+1),

i=1, 2 ..., h, with addition modulo h. Hence each colour class of the C-

colouring is a coset of H. Since there are h cosets and S is contained in
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F1(2), the proof of the implication is complete.
(=) Without loss of generality S=Hx. The result follows from
Lemma 5.2.6 (the graph I7 1(S/1) is connected because I(S) is strong). n

5.2.8. ‘CQm!Igry.‘ Suppose th?t S generates' I The core of IS) is a directed
cycle if _and only if S is contained in a coset of a normal subgrqup of index
" equal to the directed girth of ITS). m -
. * , .
We conclude this section by mentioning the group-theoretic analog
of Lemma 5.2.6: If H is a normal subgroup of a finite group I, then [7pgis \\

cyclic if and only if there exists an x € I" such that I'=<Hx>.

106



5.3. Superdigraphs of Bipartite Graphs.

Let H be a given directed graph. By proposition 4.1.1, if undir(H) is not

' bipartite, H-CbL is NP-complete. Thus, in order to complete the classification by

complexity of all digraphs, it remains to consider those digraphs for which
undir(H) is bipartite. In this section we prove some NP-éompletencss results
concerning digraphs for which undir(H) s bipartite, and is also a spanning
subdigraph. That is; digraphs H constructed from (the equivalent digraph of) an |
undirected bipartite graph by adding some arcs.

We begm by proving some general results in section 5.3.1. Each theorem
classifies‘infinitely. many ::-:Glouring problems. We are, unfortunately, unable to
compl;wly classify all directed graphs such that undir(H) is spanning and
conngcted. In section 5.3.2 wé restrict our focus a little more, and introduce the
fafniiy of "partitionable" digraphs. We are able to give a complete classification in

this latter class.

Let D be a directed graph. It follows from the sub-indicator construction
(withh resp\cct to (C,, 0, free)) that if V(undir(D)) induces a subdigraph D~ for
which D~-COL is NP-complete, then D-COL is also NP-complete. Hence the
implications of the NP-completeness results in this section extend to directed
graphs for which undir(D) is not spanning. (It is, however, possible for the D-
colousing problem to be NP-complete CVeh though D~-COL is polynomial.)

Since undir(D) is spanning, the digraph D is $mooth. Thus each theorem in
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this sectian verifies Conjecture 1,1-for infinitely many directed graphs.

5.3.1. Sufficient Conditions.

Let D"be a directed graph and let (R, B) be a two-colouring of undir(D’).
(We often refer to these colour chsscs as "red" and "blue", rcspcctivcly.) If D is
a subdlgraph of D’ and all vertices of D are in the same colour class, we say that
D is monochramutic If it is important to dlstmgmsh which of the colour classes
R and B contains D, we use the terms "red D" and "blue D", respectively.

It is clear that C, is a retract of any bipartite digraph tha: contains it. Hence
we may assume throughout this section that H is not bipartite; otherwise the H-
colouring problem is polynomial. We are aple to prove, for non-bipartite digraphs,

that the problem is NP-complete in a wide variety of circumstances.

We begin this section by considering those digraphs D for which there
exists a two-colouring of undir(D) with no monochromatic C; or no

monochromatic transitive triple.

5.3.1. Lemma. Let D be a digraph and C be a component of undir(D). Suppose
that, with respect to the ﬂniquc two-colouring (R, B) of C, the BfR]-colouring
problem (resp.- D[B]-colouring problem) is NP-complete. Then D-COL i§ also
NP-complete. . |
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Proof. _ |
| .It suffices to prove the resplt when the D[R]-colouring problem is NP-

complete. Let v'e R. Since C is connected, there is an (even) integer k such that
for every vertex xe€ R the:e is an.undirected (v,x)-walk of length k.LetP
denote the equivalent digraph of an undirected path of length k, with
V(P)=[0; 1 .., k}, and E(P)={[i, i+1): i=0, 1, ..., k-1}. The result of aﬁplying the
sub-inclicatoxl l:onstruction with réspect to‘ (P, 0, k), and v fo D is the digraph

D[R]. The result now follows.m = -

A dlrected graph that plays a central role in tlus section is the bﬁ% tnangle
C,*, which is constructed from an undirected path of length two, say'x, Y, z, by
adding the arc zx, which is called the szngle arc of C,* (cf. figure 5.2.4).

5.3.2. Theorem. I.r;'ct‘D be a digraph that contains a basic triangle. Suppose
there exists a two-colouring (R, B) of undir(D) such that D[R] is an independent
set and D[B] contains no C, (résp no transitive triple). Then D-COL is NP-
complgte.
Proof.

Suppose D[B] has no C; (the proof being similar when D[B] has no
transitive triple). The transformation is from ONE-IN-THREE-SAT without
negated variables. Suppose an instance of ONE-IN-THREE-SAT without

negated variables is given, with variables x,, x, ..., x, and clauses K 1, K2, .., K™

* Let X be the digraph shown in figure 5.3.1 with p = 1. Construct a digraph G from

{x1, x5, ..., x,} and m copies of the digraph X , say X,, X, ..., X,,, as follows. If

K'i=x;vx;vx,, identify the vertices !}, I, I3 in X; with Xj, Xy, X}, respectively.
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Clearly, the digraph G can be constructed in polynomial time.

11
Q@ e mmeme—=Sia

Undirected path of
length p ‘

Figure 5.3.1. The digraph X. \

CLAIM. The digraph G is D-colourable if and only if there is a truth
assignment such that each clause contains exactly one true variable. |

PROOF.

(=) Suppose G is D-colourable. Consider a copy X; of X. Since

D[R] is an independent set, at most one of /,, /5, /3 is coloured by a vertex in B.
Furthermore, since D[B] has no Cj, at least one of /,, l,, I3 is coloured by a
vertex in B. Therefore, exactl); one of l,, I, I3 is coloured by a vertex in B. Define
a truth assignment by setting x;=T just if x; is coloured by a vertex in B. By the

above argument, each clause contains precisely one true variable.
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(&) Suppose there is a truth assignmcm_ such that evéry c!ausé
contains exéctly one true variable. Let A' be a ﬁxed basic ﬁiiangle. Then A has
necessarily the vertex set {by, by, r}, where by, b, € B,r € R, and single arc
b,b,. Define a pam\a.l colouring of G by assighing colour(x;)=b just in case x;=T,
and colour(x;)=r otherwise. It may be verified that, given a copy X; of X and a
partial colouring of /,, /,, /5 with colours from {r, b;} in which exactly one of h, b,
l; is coloured b,, the partial colouring can be extended to a D-colouring of X; (in

fact, to an A-colouring of X;). Hence G is D-colourable.
The claim implies that D-COL 1is NP-complete. @

§.3.3. Theorem. Let D be a digraph such that undir(D) is a sﬁmning
subdigraph. Suppose that D contains C3, but no two-colouring of undir(D) has a

monochromatic C5. Then the D-colouring problem is NP-complete.
Proof.
Let (R, B) be a two-colouring of undir(D). There are two cases to consides.
8
CASE 1. Some component of undir(D) induces a subdigraph which contains
three-cycles ry, ry, b, ry and by, by, r, by, where r,r, €R, and by, b, € B.

The transformation is’ from NOT-ALL-EQUAL-THREE-SAT
without negated variables. Suppose an instance of NOT-ALL-EQUAL-THREE-
SAT without negated variables is given, with variables x,, x,, ..., X, 3nd clauses
K1, K2, .., K™. LetY be the digraph shown in figure 5.3.1, where p is chosen to
be an odd integer such that there is an undirected walk of length p from r to each
of b, by, b,, and from b to each of r, ry, r,. Construct a digraph G from
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{x1, X2, ..., X} and m copies of Y, say f"l,'()y’z, - Y,,;, as follows. IfE":xjvx,‘vx,,
then identify vér;iccs '11, Iy, I3 in Y;with x;, xp, X}, respectively. Cleafly the digraph
G can be constructed in polynomial time.

CLAIM. e digraph G is D-colourable if and only if there is a satisfying
truth assignment in which each clause contains at least one true variable and at

least one false variable.

.

S

PROOF. o )

(=) Suppose that G is D-colourable. Coqéidgr Y;. Since D has no
monochromatic C;, not all of the vertices /;, /5, I3 can be coloured by members of
R. Similarly, these vertices can not all be c;)loured by members of B. Thus two of
I}, b, I3 are coloured by members of R and the remaining one is coloured by a
vertex in‘B, or vice-versa. Define a truth assignment by setting x;=T just if
vertex x; is coloﬁred by a member of R. By the above argument, every clause
contains a true variable and a false variable.

(<) Suppose there is a truth assignment such that every cl_ausé
contains at least one true variable, and at least one false variable. Define a
partial colouring of G by assigning colour(x;)=b just in case x;=T, and colour(x;)=r
otherwise. It may be directly verified that, given a copy ¥; of ¥ and a partial
colouring of /y, 5, I3 with colours from (r, b} in which at least one, but not all of /;,
[, 13, is coloured b, the partial colouring can be extended to a D-colouring of Y;.

Hence G is D-colourable.

This completes the proof of case 1.
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- CASE 2. The subcfingaph induced by every component of undir(D) contains |

only three-cycles w1th two vertices from R .and one vertex from B, or vice-versa.
By sw1tchmg colour; in some components of undir(D), it may be assumed'

that every three-cycle -has two vertices in R and one vertex in B. Let A =ry, Iy, b‘:
be a fixed copy of Cj in the subdigraph induced by some component of undir(D),
wherer;,7,€ Randbe B.LetY be the digraph shown in figure 5.3.1, and choose
p such that there /1; an undirected walk of length p from b-to r; and to rz.‘The
transformation is once again from ONE-IN-THREE-SAT without negated
variables. Suppose an instance of ONE-IN-THREE-SAT without negatéd
variables is given, wiihvariables X1y Xy ceer X and clauses K 1 K2, .., Km,
Construct a digraph G from {x,, x,, ..., x,} and m copies of Y, say ¥,, Y,, ..., ¥,,,
as follows. If Ki=x;vx,vx;, then identify vertices hy, b, I3 in Y; with x;, x, x;,

| reipectively. Clearly, the digraph G can be constructed in polynomial time.

CLAIM. The digraph G is D-colourable if and only if there is a truth
assignment such that each clause contaihs, exactly one true variable.

PROOF.
(=») Suppose G is D-colourable. Consider a copy Y; of Y. Since

D[R] has no three-cycle, at least one of /;, l,, I is coloured by a vertex in B.

Since D[B] has no three-cycle, at least one of I;, ,, I3 is coloured by a vertex in
B. Moreover, since there is no diree—cycle which has two vertices in B, exactly.
~ one of Iy, by, 13 is coloured by a vertex in B. Define a truth ‘a_s‘signment by setting
x;=T just if x; is coloured by a vertex in B. By the above argument, each clause

contains precisely one true variable.
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7  (&=) Suppose there is"a truth assignment such that cvcry clause
contams exactly one vanable with the value T. Deﬁré} parual colourmg of G by

assxgnmg colour(x1)=r1 just in case xJ—T and colour(xj) =b othcrmsc It may be

directly verified that, given a copy Y;of ¥, and a parual colourmg of Iy, Ig, 13 thh “

%

colours from (r,, b} in which exactly one of Iy, ky, lyis coloured i the partial

coib’uringv can be extended to aD-colouring of Y;. Heﬁc&G ?is““D-Cblourable'. L

© This completes the proof of case 2. @

The next result generalises Theorem 5.3.2.
5.3.4. Theorem. LetD be a dlgrap; such that undir(D) is a spanning | .
subdigraph. Suppcsc that D contains a basic triangle: IfD‘ does not contain a
monochromatic transitive triple, the D-colouring ‘problem is NP-complete.
Proof. N - B

The proof is similar to the proof of Theorem 5.3.3. The componcnt which
corresponds to each clause is shown in figure 5.3.2. The details are left F; the
reader. m ‘ ' o

| We now turn our attention to superdlgraphs of undirected bipartite graphs

that contain the dlgraph Bj, the d1rccted tnangle with all arcs bypafsed, dcﬁned
in section 4.3. (Recall that an arc xy 1s saxd to be bypassed if there is a vertex z.
such that the arcs xz and zy both exist. The vertcx zis called a bypass vertex for -
xy.) We have already proved that B; is superhafd um.h respect to the property :
.-G has no directed two-cyc}é"_ (cf. Lemma 435) We show that B is also ‘

'
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superhard with :éﬁf)ccirto the property "undir(G) is spanning and pohrigscted"f.

i

b
— .

__________ ———-
P .

1

Undirected path of
length p

Figure 5.3.2: Clause component for Theorem 5.3.4.

5.3.5. Lemma. LetD be a digraph such that undir(D) is a connected spanning
subdigraph.u Suppose there exists a two-colouringj(k, B) of undir(D ) such that
there is a mongchrt;maﬁc C; in which all arcs are bypassed. If the bypass vertices
Xy, Xz, X3 are all in the same colour class, then D-toL is NP-complete. |
Proof. o

Wi@out loss of generality assume the Cj in the sﬁtement of thcrthcorcm is

red. If.tl, X3, X3 € R, then the D[R]-colouring problem is NP-complete by
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Lemmas 5.3.1 and 4.3.5. Consequently the D-colouring ;i_oblem is also NP-
completc. Suppose that xl, Xy, x3 are in B. Then the D-colouring problem is NP-
complete by Lemma 4.%.4 (each x; is joined to every vertex on the three-cycle by
an undirécted odd path because Mﬂ G) is spanning and connected). m

5.3.6. Theorem. Let D be a digraph siich that undir(D) is spanning and
connected. Suppose that (R,B) is a two-colouring of undir(D) such that there is a
monochromatic C; in which all arcs are bypassed. TheipD-COL is NP-complete.
Proof. ' | s

.There are three cases to consider.

CASE 1. There is a monochromatic Cs in which all arcs are bypassed, and

the bypass vertices are all in the same colour class.

Then D-COL is NP-complete by Lemma 5.3.5.

CASE 2. There are monochromatic three-cycles C;C’ with bypass vertices
a, b, ¢, and a’, b’, ¢’, respectively, where g, b ,c’ € R, and a’, b’, c € B. |

| It may be assumed that case 1 does not hold simultaneously. ; The
transformation is from NOT-ALL-EQUAL-THREE-SAT without negated
variables. Let Z be the digraph 'éhowh in figure 5.3.3, ‘whcrc pis choscn so that
any two verticés in the same colour class are joined by an undirected walk of |
length p (the (even) length p exists because undir(D) is spanning and
connected). Let an instance of NOT-ALL-EQUAL-THREE-SAT without
negated variables be given, with variables x,, x,, ..., x, and clauses !

K., K2, .., K™ Constructa digraph G from ({x,, x,, ..., x,} and m copies of Z, say
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(6]

2,2, .. Z,,, » as follows” Suppose K vxpvx,. Then 1denufy the vertices [, /,,
l; in Z; with x;, X}, x,, rcspecnvely Clearly, the digraph G can be constmctcd in -

polynomxal umc:“‘

Undirected path
-of length p

Figure 5.3.3. The digraph Z.
o ' .
CLAIM The digraph G is D-colourablc if and only if there is a sausfymg
truth assignment in which each clause has at least one true variable, and at least
- one false yimablc:. , - /_
PROBF.
Consider a D-colouring of G. It is not hard ‘to see that the three-
cycle in each copy o£ Z must be mondchmma;ic (it must map into the same colour

class as z). The rcméining details are similar to the proof of the analogous claim
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in Theorem 5.3.3, and are left to the reader.

\

i - ) .
4 - . . N

This éompietcs the proof of case 2. ‘ \ \ -

CASE 3. Every monochrb;ﬁatic C5 with bypasses on all arcs has red two
” -
bypass vemces and one blue bypass vertex, or vice-versa.

'[hc trausformauon is from ONE-IN-THREE- SAT without negated

variables. The construction of the digraph G is identical to case 2 The remaining

details are similar to: those in the analogous case of Theorem 5.3.3, and are left

to the readcr

All three cases have been considered, and the result follows. m

5.3.7. Theorem. Let D be a digraph such that undir(D')vi“s a connected spanning '
subdigraph. If D contains Bj, then the D-colouring problem is NP-complete. _

(That is, the digraph B; is superhard with respect to the property "undir(D) is

spanning and connected".) -
Proof. |

By Theorem 5.3.6, it suffices to consider the case when no copy of 85 inD
contains a monochromatic C3. The proof is identical to the proof of Theorem 5.3.3,
except that bypasses must be added to all arcs of the three cycle in the digraph
in figure 5.3.1. The details may be easily supplied by the reader. g
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Let n>1 and let F,,, the n-fan, be the digraph with vertex set {0, 1, ..., n},
and arc set {Ql, 10, 02, 20, ..., On, nO} w {12, 23,. (n l)n} The followmg
corollary is useful in the next section. o
5.3. 8 Corollary For any n > 3, the ngraph F, is superhard with Tespect to
undzr(D ) is spanmng and connected"”.
Proof. ’

If n>3, then F, contains B;. m

- 5.3.2. Partitionable Digraphs.

In thxs subsection we mtroducc a sub-class of superdigraphs of blpartlte '
graphs wlnch we call "pamuonable" We give a complete classification by
complexity of the digraphs in this class.

Throughout t.hlS sectxon, a smgle arc of a digraph D is an arc xy € E(D) i
such that yx ¢ E(D).

We say that a digraph D is partitionable if the following two ‘conditions are
satisfied: |

(i) undir(D)isa spahning Subdigraph of D, and

(ii) There is a two-colouring of undir(D), such that every single arc is

monochromatic.
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'Another way to express condition (ii) is thé follb\;\}ing: There exists a two-
colouring of undir(D) such that all undirected edges are between the colour
classes and all single arcs are within the colour classes. Partitionablc digraphs
are precisely the digraphs obtained from (the equivalent digraph of) an undirected

bipartite graph by adding monochromatic arcs.

Let D be a partitionable digraph. We haye previously noted that D may be
assumed to be non-bipartite, otherwise D-COL is polynomial (cf. page 112). In
the remainder of this section we show that the D-colouri;g problcm is NP-
complete for all non-bipartite partitionable digraphs D. We prove the following
theorem.

=

kY

5.3.9. Theorem. Let D be a partitionable digraph. If D is bipartite, then D-COL
is polynomial, Otherwise (D contains an oriented odd cycle), D-COL ig NP-

complete.

The proof requires some preliminary lemmas. Recall the digraph T; defined
‘ in section 5.2 (cf. figure 5.2.1(a)).

5.3.10. Lemma. Let D be a digraph for which undir(D) is a spanning subdigraph,
and suppose T} is not a subdigraph of D. If D is not bipartite, then the D-
cofouring problem is NP-complete.
Proof.
This is assertion (3) in the proof of Theorem 5.2.1. g |
s 120
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5.3.11. Corollary. If D is a non-bipartite partitionable digraph that does not

~ contain a basic¢ triangle, then the D-colouring problém is NP-complete.

Let (J, x, z) and (J,, x, z) be the sub-inditators shown in figure 5.3.4.

These are important in the proof of 'I;ﬁbg;ew 5.3.9.

X OO o z
Jl

X O —C) Q z
I,

Figure 5.3.4. Important indicators.

5.3.12. Lemma. LetD be a partitionable digraph, and let (R, B) be a two-
colouring of undir(D). Letr € R ,and leti e {1,2}. Let D~ be the result of
applying the sub-indicator construction with respect to (7;, x, z), and r.toD. If r'
is ared vertex that belongs toV(D~)-r , then there is an undirected path of length
two in D joining r and 7’ . | '
Proof.

This follows immediately from the definition of a partitionable digraph. il
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There are obviously other versions of Lemma 5.3.12 corresponding to the
possible cases that arise when the sub-indicator is (J;, z, x), or the construction
takes place with respect to a vertex in B. For brevity, these are not stated, but

they are used.

Proof of Theorem 5.3.9.

It i"ema.ins to show that if D is a partitionable digraph that contains a basic
trianéle, l;hen the D-colouriﬁg problem is NP-complete. Suppose that D is a
counterexample with the minimum number of vertices. That is, D is a
partitionable digraph that contains a basic triangle, with the minimum number of
vertices such that the D-colduring. problem is not NP-complete.

We would like to use the sub-indicator construction to deduce various
structural properties of D. There is, unfortunately, a difficulty: Let D~ be the
result of applying a sub-indicator construction to D. The digraph undir(D~) may
not be spanning, consequently D~ may not be partitionable. This is not a severe

handicap, as the following fact (*) tumns.out to be sufficient.

(*) Suppose that the result D~ of applying a sub-indicator construction to D
contains a basic triangle. Then D =D~.

Proof of (*).

-

Let D~ be the result of applying the sub-indicator construction with respect
to (Cy, 0, free) to D~. Then D~ is a partitionable digraph (it is an induced \
subdigraph of D, and, by the construction, uhdir(D"") is a spanning subdigraph)
that contains a basic tnangle Shpp_ose D~ is a proper subdigraph of D. Then our
choice of D im?r:s that the D~-colouring problem is NP-complete. Hence the
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D-colouring problem is also NP-complete, a contradiction. Therefore D=D~.

| The theorem follows from the sequence of claims below in which we use (*)

to derive some structural properties of D and, ultimately, a é;;nu'adiction.

(1) The digraph undir(D) is connected. |

Let C be a fixed basic triangle. Without loss of generality, assume that the
single arc pq of C is red. Let b be the third vertex of C. Let D~ be the result of ‘
applying the sub-indicator construction with respect to (J;, 2, x), and r to D. Then
D~ contains a basic triangle and By (*), D=D~. Hence, by Lemma 5.3.12, there is
| in D an undirected path of length two from .r to any other red vertex. Therefore
there is also an undirected path of length one or three from r to any blue vertex.
This completes the proof of (1).

The next two cléims concern forbidden subdigraphs of D. Recall the digraph
F, defined in section 5.2 and the digraph W defined in section 4.3.

(2) The digraph D contains neither Fynor Wj,
The digraph W3 is superhard, and the F, is superhard with respect to
"undir(D) is spanning and connected" (cf Theorem 4.3.2, and Corollary 5.3.8,

respectively).

(3) The digraph D does not contain F;.
Suppose D contains a copy of F5 labelled as shown in figure 5.2?.5. Since D
contains neither F4 nor W3, there is no vertex p such that pr, [p, q] € E(D). Let

”
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D~ be the result of‘ applying the indicator construction with respect to (Jy, x, z),
and q to D. Itis not hard to check that g, s,t € V(D~), but r ¢ V(D~). Hence D~
contains a basic triangle and has fewer vertices than D, By our choice of D, the
D~-colouring problem is NP-complete. Therefore the D-colouring problem is also

NP-complete, which is a contradiction.

r s t

Figure 5.3.5. Configuration for (3). .

(4) If abis a single arcin a bgsic triangle of D, then there is no d (resp. x)

in V(D) such that bd (resp. xa) is also a single arc. |
We piove only that the vertex d can not exist. Let ¢ be the thi1"d vertex of

the basic triangle. Suppose to the contrary that d exists. Let D~ be the result of
applying the sub-indicator construction with respect to (J/,, z, x), and b to D.
Since D~ gontains the basic triangle induced by {a, b, ¢}, we have by (*) that
D=D~. Since D is partitionable, this implies that there exists a vertex e¢ and
double arcs [b, e] and [d, e]. By (3), e #c. Let D~~ be the result of appling the

sub-indicator construction with respect to (J,, x, z) and ¢ to D~ . Then
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b, d ee V(b”"), but since D~ does not contain Fia é V(D"" ) . Hence D~
contains a basic triangle (induced by (b, d, e)), and has fewer vertices than D.
By our choice of D, the D~-colouring problemis NP-con;plcte. Therefo_i-e D-COL

is also NP-éomplcie. This contradiction completes the proof of (4).

We define a red basic tri}angle'( resp. blue basic triangle) to be a basic

triangle in which the single arc is red (resp. blue).

«
(5) Let r € R. Then there is a red basic triangle C, with V(C)={r,, ry, b},
and ryr; € R, such that [r, b] is a double arc.

The statement is true if 7 is in a red basic triangle. Suppose that r is not in a
red basic triangle. Let Cbe a red basic triangle and let V(C’)={r’, r", b’}, with
single arc r7”. Let D~ be the result of applying the sub-indicator construction
with respect to (J, z, x) and r’ to D. Then D~ contains a basic triangle, so by (*),
D=D~ and hence r and r’ are jqiiled by an undirected path of length two, say r’, b,
r. If b and r” are adjacent the proof is complete. Suppose that b and r” are not
adjacent. Since b is a vertex of D~, the definition of V(D~) implies that there
exists a vertex r’”, an arc r'r’”, and a double arc[r””, b). The 3-set {r’, r'”, b)

induces the desired basic triangle.

(6) Let b € B. Then there is a blue basic triangle C, with V(C)={b,, b,, r},
and byb; € B such that [b, r] is a double arc.

The proof is similar to (5).
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()] If D has a red basic triangie (resp. blue basic tiangle). then b[R] (resp.
D[BY)) has no directed path\ of length two. ‘ ‘

We prove the result on the assumption that there is a red basic triangle (the
proof of the other case being similar). Suppose to the contrary that D has a red
basic mangle and Dd?] has a directed path of length two, say r, r’, r" By (5)
there exists a red basic triangle C, w1th vertex set {u, v, b}, b € B, single arc uv,
and such that there is a double arc [r, b]. Let D~ and D~ denote the result of
applying the sub-indicator construction wn.h respect to (J,, 2, x) and r,, and
(J3,2,x)and ry to D, respecuvely. Since .both D~ and D~ contam the basic
triangle C, (*) implies that D=D~=D~~. By Lemma 5.2.12 there is an undirected
path of length two between u and r’, an(i also between v andir'. Let D~ be the
result of applying the sub-indicator construction with respect to (J,, z, x) and‘ r to.‘
D. Then D~ contains the basic triangle C,so (*ffimplies that D-—=D. Hence
there is also an undirected path of length two joining r”and r”, say r’, b’, r”. Thus
{r’, r”, b} induces a basic triangle. But rr’ € E(D), contrary to (4). This
completes the proof of (7). |

(8) Neither R nor B is an independent set.

IfR i.s an independent set, then D satisfies the hypotheses of Theorem
5.3.2; it contains a basic triangle and, since D[B] has.no directed path of length
two, it doe} not contain a transitive triple. Hence the D-colouring problem is

NP-complete, which is a contradiction.
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- (9) Suppose D contains a red (resp-.‘k blue) basic triangle; Then every vertex

in B (resp. R) is in a red (resj). biﬁe) basic triangle. |

. Suppose that {ry, rp, b'), b’ e B, induces a red basic triangle. LetbeB. Let
- D~, and D~ be':;the result of applying the sub-indicator construction with respeét}hiﬂ"" -
to (jl, 2,x}and ry, and (J,, z, x) a'nd r, to D, respectively. Since both V(D~) and
V(D~) contain the basic triangle induced by {rl\, ry, b'}, (*) implies that

‘D= D~=D~. Thus there exists a vertex r’ suc':h.that ryr'is an arc and [r',b ] is a

" double arc. Moreover there is an undirected path of length iwo joinitig r, andr’,

and another such path joining r, and 7’. Let D~ be the result of applying the
sub-indicator construction with respect to (/,, z, x) and r’ to D. Since r, ry, b
EVV(D"*'), the digraph D~ contains a basic triangle, hence (*) impl{es that

D~=D . Therefore there exists a vertex r” such that "7’ is an arc and r” is

adjacent to b via a double arc. But now (7', r”, b} induces a red basic triangle.

This completes the proof of (9).

(10) The digraph D contains a red basic triangle and a blue basic triangle.

Without loss of gerprality, suppose there is a red basic triéngie. Let bb’ be
an arc of D[B] (the existence of such an arc is guaranteed by (8)). By (9), every
vertex in B is in a red basic triangle. Suppose {r,, r,, b} and {r’, r”, b’} each
induce a basic triangle, with single arcs ryrp and f’r", respectively. Let D~ be the
result of applying the sub-indicator construction with respect to V1, 2, 7) and r,
toD. Sinbce ry, r2, be V(D~), (*) asserts that D=D~. Consequently there is an
undirected path of length two joining r; and r’, and another such path between r, |
and r”. Let D~ be the result of applying the sub-indicator construction with

'Vrespect to (J2, x, z) and ry to D (=D-). Then r’, r”, b € V(D~~), so (*) implies that
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s R '~:~:‘" . _*"'.

D=D"". Since be V(D~), there is a vertex B such thatblb is an arc, and [bl, rl] _'{;}7 L

is a double arc. The 3-set {by, b, rl} mduces a blue basm tnangle s

ot

By (10), D has no monochromaue dlrected path of length two Hence D
satisfies the hypotheses of Théorem 5. 3 3 leading to the contradlcuon that the \
D-colouring problem is NP-complete. This completes the proof of Theorem
53.10.m | -

As a corollary we derive an NP-completeness result for a class of dlgraphs |
@at are not partitionable, and that do not necessarily have the property that -
undir(D) is spanning. For all » > 2, the digraph W, (cf Lemma 4.3.2) belongs to
this class. Let 0 Sa; < dy < ... < a <n be integers and PW(a;, @y, ..., a) be
the digraph constructed from C,, U {v} by adding the double arcs
{[v, a]]: i=1, 2, ...y 1}. We call PW(a,, a,, ..., a)) apartial wheel.

b
Ya

T |
5.1.13. Corollary. If PW(a,, a,, ..., a,) is bipartite, then PW(a,, a,, ..., a)-COL is

polynomial. Otherwise PW(a,, a,, ..., a,)-COL is NP-complete.
Proof. '

We have previobsly noted the first statement (cf. the second paragraph of
Section 5.3.1). Suppose PW(a,, aj, ..., a,) is not bipartite. Then there exists i -
such that a;,,-a; is odd. Let k = min {a;,1-a;: 1 Sj <t and a;,,-a;is odd}. Let
(1, u, v) be the indicator constructed by adjoining two-cyclés to the endvertices u
and v of a directed path of length k. Let H* be the result of applying the indicator
construction with respect to (7, u, v) to H. If n=2k, the djgiaph H* is an undirected |

~ triangle. Otherwise, the core of H* is a partitionable digraph that contains a basic
- ‘\
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; . tnangle In both cases H‘-COL 1s NP-complete Thereforc H COL is also NP-
complete ;‘ o “ :

In this chaptcr we have descnbed a variety of sufficient conditions for NP-
| complcteness of the D-colourmg problem when D is a superdigraph of an
) undjrected blparute graph. Based on our results, we make the followmg
conjecture.
5.1.14. Conjecture. Let D be a superdigraph of an u;dire;:tcd bipartite graph,
and suppose that undir(D) is a spanning subdigraph. If D is not bipartite, then D-
COL is NP-complete. Otherwise D-COL is polynomial. -

‘We note that this is a special ,caéé of Conjecture 1.1. Evc;:n this restricted
conjecture seems difficult. As a next step, one might try to shdw that it is true in
the presence of the additional Condition "undir(D) is connected”. By using the
indicator cons&ucﬁon in a manner sumlar to [Hell & Nekétﬁl, 1986], it can be
shown that it would suffice to prove the latter su'engthenéd conjecture for
digraphs that contain a basic triangle. Other results .in' this thesis can be uﬁed to
deduce a variety of structural l;ropertieg of a hypothetical counterexample to

Conjecture 5.3.14.
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* 5.4, More on the Effect of Two Directed Cycles.

4

In this section we generalise a result of Maurer, Sudborough and Welzl
[Maurer et zil, 195 1], and also a result of B g-Jcnscn and Hcll [Bang-Jensen & .
- Hell, 1988; Gutjahr et al., 1989]. Our resulty add to the list of sparse digraphs H |
with t§vo directed cycles for which the H lburing problem is NP-complete.

. ‘ " .

We begin by extending some work of Maurer, Sudborough and Welzl. Let
Cp, & be a digraph obtained from a directed n-cycle by replacing k arcs with
double arcs. It has been proved [Maurer et al, 1981] that if n is odd, then C, ;-
~ COL is NP-complete. When n is even ,the core of C,, ; is a directed two-é&cle. :
-Thus C, ,-COL is polynomial. A complete classification of the complexity Of Cox

b}

COL is given below.

5.4.1. Theorem. If n is even or k=0, then C, ;,-COL is polynomial. Otherwise
(n is odd and & > 0) gﬂ-C%L is NP-complete.
Probf.

It remains to prove that if n is odd and 2 < k <n, then C, ,-COL is NP-
complete. Let C* be the digrapl; that results from applyihg the indicator
construction with respect to (P, 3, 0, n-1) to C, ;. Since the directed odd girth of
Ch.t is n, the digraph C* is loopless. Furthermore, each double arcge of C,, ; is
also a double arc of C*.

We claim that the vertices incidént with double arcs induce a semi-

complete digraph. Suppose [4,v] and (x,y] are distinct double arcs. The arcs of |
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C, « belonging to the directed n’cycle give rise to-a direbted (u.x)-path and a
directed (x,u)-path. Mo:eovcr, exactly one of these paths has odd length. Since
both u and x are incident with double arcs, this implies that there is eithér a
directed (u,x)-walk of length n-2 or a directed (x,u)-walk‘ of length n-2. Hence one
of ux and xu is an arc of C*. Tl}vls proves the claim.

Let ¢ be any vertex of C and C*~ be the digraph which results from
applying the sub-indicator construction with respect to'(Cz, 0, free) to C‘; Then
C*~ is a semi-complete digraph with at least two directed cycles, and ﬂlereforé,
by Theorem 5.1.1, C*~-COL is NP-complete. Thus C,,;-COL is also NP-

- complete. This completes the proof. @

We now generalise the following result.
5.4.2. Theorem. [Bang-Jensen & Hell; 1988; Gutjahr et al., 1989] Let H be a
digraph of the form D, or D, (see figure 5.4.1). If H does not admit a retraction to
a directed cycle, then H-COL is NP-complete. Otherwise, H-COL is
polynomial. m "

‘ _

Theorem 5.4.2 states, as a special case, that if D is a digraph constructed
from a directed cycle by adding a chord, then D-COL is NP-complete unles; D
admits a retraction to a directed cy%le. That is, Conjecture 1.1 is true for directed |

cycles with one chord.

131



'q

D, D,

Figure 5.4.1. Digraphs with two directed cycles.

Let H be a directed graph constructed i'rom a directed n-cycle by adding two
chords. Then, depending on the relative orientation of the chords, H is of one of
four types; an example of each type is showa in figure 5.4.2. We now prove _th;it
the H-colouring problem is NP-complete unless H retracts to a directed cycle. N

That is, Conjecture 1.1 is true for directed cycles with two chords.
5.4.3. Theorem. Let H @pe a directed graph that is constructed from a directed

cycle by adding two chords. If H does not admit a retraction to a directed cycle,
then H-COL is NP-complete. Otherwise, H-COL is polynomial.
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Figure 5.4.2. The four possible orientations of the chords.

We have previously noted the second statement. The proof of the first
statement is divided into four lemmas, depending on the type of H.
, | _ L

5.4.4. Lemma. If H is of type I and does not admit a retraction to a directed -

cycle, then H-COL is NP-complete.

Proof.

Let H be of type I. Then H has exactly three directed cycles, say of lengths
n, a, and b, respectively. Without loss of generality assume n>a>b. Supposé that
H does not admit a retraction to a directed cycle. Then b do;s not divide both a
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and n. There are two cases to consider.

CASE 1. b does r;ot ‘di;ide a.

Lct H* be the result of ‘applying the sub—mdxcator constructlon w1th
~ Tespect to (C, 0, free) to H. Then H* is the subdlgraph of H induced by the vertex
~ set of the directed a- cyclg. Smce b does not divide a, the digraph H* does not
| admit ‘a retraction to a dJrected cycle. Hence H*-COL is NP-complete by Theorem

- 5.4.2, and therefore H-COL is also NP-complete.

CASE 2. b divides a.

" Since the directed b-cycle is not a retract of H, b does not divide n.
Let H~ be the result of applying the edge sub—indicator construction with ?‘eépect
t0 (Cp4p, 0, free) to H. 1t is ¢lear that every arc, except the chord e that forms the
directed a-cycle, belongs to a closed directed walk of length n+b. If e also
belongs to such a closed walk, then there are integers & and B such that
n+b=aa+pb=1b. Therefore b divides n, which is a contradiction. Hence
H‘ = H-e, and so H"-COL is NP-complete by Theorem 5.4.2. Therefore H-COL is

also NP-complete.
All cases have been considered. g
- I NEN)

5.4.5. Lémma. If H is of type II and does not admit a retraction to a directed
cycle, then H-COL is NP-compﬁ:te.
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Proof.

Let H be of type IL The digraph H can havc three or four directed cycles.
When H has four directed cycles, the chords have both endpoints in comxhon. In
this» case, H is also of type IV We defer consideration of this case to Lemma
'5.4.7. Hence assume H has., exaétly three directed cycles, say of length », a, and
b. Without loss of generality n>a2b . Suppose that H does not admit a retraction
toa dn'ected cycle.Then b does not divide both a and n. Let the directed n-cycle

be O,i,...,n-l, 0. There are four cases to consider.

‘_‘CASE 1.. b does not divide a. |
Let uv (resp. xy) be the chord that Belongs to the directed a-cycle

(resp. directed b-cyéle).Without loss of generality assume u # y; otherwise

consider the converse of H. ‘Let J bejthe directed graphA constructed by idcntifying‘@
the terminal vertex of a directed path of lengthfn-a-i w1th avertex on a directed
a-cycle. Let 0 be the label of the initial vertex of the directed path. Let H* be the
result of applying the sub-indicator construction with respect to (J, 0, free) to H.
It is not hard to see that the core of H* is of the form D,. Since b does n;t divide

a, H*-COL is NP-complete by Theorem 5.4.2. Hence H-COL is also NP-complete.

CASE 2. b divides a, and b<a.
Since the directed b-cycle is not a retract, b does not divide n. Let e
be the chord that belongs to the directed a-cycle. Every arc except e belongs to a
closed directed walk of length n + b. If the arc e alsc; belongs to such a closed
directed walk, then either n+a < n+b, or a divides n+b. The former case is

impossible since a>b, and the latter case is also impossible since, if b divides a,
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then b divides n. Let H~ be the result of applying the edge sub-indicator
construction with respect to (C,,4, 0, free) to H. Then H~ = H-e, where e is the

chord of tthe n-cycle that forms the g-cycle. Since H is of the form D), and does °

not admit a retraction to a ggm
SN

ted cycle, H~-COL is NP-complete by Theorem
5.4.2. Therefore H-COL is also NP-complete.
' CASE 3. a=b, and there exists a vertex x on an a-cycle such that the

vertex x+a is also on an a-cycle. A
Since C, is not a retract, the digfaph H is retract-free. Relabel‘iﬁé

vertices so that x is labelled 0, x+1 is labelled 1, and so on. (That is, subtract x

from the label of each vex?tex, where computations are modulo ».) Let k 2 0. If u is

a vertex on a directed g-cycle then the set of vertices reachable from u by a

directed walk of 1ei1gth ka is {0, g, 2a, ..., ka}. Let m be the order of the element g

in Z,. Note that m>2 (if m=2 then 2a=n, whence C, is a retract). |
We show that NOT-ALL-EQUAL m-SAT without negated

Yariables polynomially transforms to H-COL. Suppose an instance of NOT-

ALL-EQUAL m-SAT without negated variables is given, with variables

X1s X, -y Xp, and clauses K1, K2, ..., K4. Construct a digraph G from H,

{x1, X3, ..., X,}, and q copies of C,, say C, C2, C4, by adding directed paths as

follows. Vertex 0 in H is joined to each vertex xj G =1,2, .., p) by adirected

path of length a. Vertex @ in H is also joined to vertex 0 on each C!

(I=1,2, .., g by adirected path of length ma. If the r* variable in clause K* is x,,

then join x, to vertex ra of C* by a directed path of length (m-2)a. Clearly the

digraph G is constructible in polynomial time. ...,
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CLAIM. G is H-colourable if and only if there is a satisfying truth
assignment in which each clause contains at least one trﬁe variable and at least
one false variable.

PROOF.

(=) Consider a homomorphism of G to H. Since H is retract-free,
the copy of H in G must map onto H. We may therefore assume that every vertex
of H maps to itself. Thus each vertex x; (i=1, 2, ..., n) maps to 0 or a. Moreover,
each C/ maps onto the directed n-cyclé in H (because a does not divide n), and
vertices {0, g, 24, ..., (m-1)a} of C! map, in cyclic order, to the corresponding set of
- ’ve‘x:ticcs of H. Define a truth assignment be setting x;=T just if x; maps to 0.”
Consider C. Recall that there is no directed (0, -a)-walk of length (m-2)a . Let v
be the vertex of C* that maps to -a, and let x, be the vertex joined to v by a copy
of P(.2)- Then x, must map to a. Hence K* contains a false variable. Similarly Ks
contains a true variable.

(<) Suppose such a truth assignment exists. Define an H-
colouring of G as follows. Every vertex of the éopy of H | is coloured by itself. For
i=1,2,..,¢if x; = T, then colour x; by 0, otherwise colour x; b); a. This partial
colouring extends to all of the dn‘ected paths joining the x;'s to the‘copy of H.
Consider K*. There exists ¢ such that the #** variable /, in K* is true, and the
(r+1)% vaﬁable li+1 is false. Colour vertex la of C* by (-2a) and vertex (I+1)a of C*
by (-a). this completely &termin_cs the colouring of C*, Furthermore, this parual
colouring can be extended to all of the directed (m-2)a-paths joining C* to x!

(xi € K%), and to the directed m-path joining H to C*. Therefore G is H-colourable.

This completes the proof of case 3.
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CASE 4. a=b and for every vertex x on a directed g-cycle the vertex x+a is
not on a directed a-cycle.
_ Without loss of generality, the vertex 0 is on a directed a-cycle.
Since C, is ot a retract, the digraph H is retract-free. Let m be the order of the
element g in Z,. Note t}lat m>2 (if m=2 then 2a=n, whence C, is a retract).
f/n

CLAIM. Each directed a-cycle contains at least two elements
of <a>.

PROOF.

Each directed a-cycle contains the same number of
elements of <g>. If this number is one, then a divides n and C, is a retract, which
is a contradiction. ,

) Let / be the directed graph constructed from a directed path of
length (m-1)a as follows. Identify vertex O (on the path) with a vertex on a
directed a-cycle, and identify (m-1)a with a vertex on a second directed a-cycle.
For i=1,2, ..., a, add a directed path of length n-1 from i to i-1. Let H* be the
result of Aapplying the indicator\construction with respect to (/, 0, 1) to H. There is
no H-colouring of / such that the vertex a is coloured by a vertex on a directed a-
cycle (otherwise colour(0) and colour(0)+a = colour(a) are vertices of H that are
both on a directed a-cycle, which is a contradiction). Let A be the set of vertices
of H which are on directed a-cycles. Let x € A and consider an H-colouring of /
such that colour(0)=x. Since vertex a of I does not map to a vertex on a directed
a-cyélc, the possible images of vertex (m-1)a of I are those vertices which also

lie on a directed a-cycle, and are reachable from vertex x+a of H by a directed .
walk of length (m-2)a. Thus colour(ma)e (x+2a, x+3a, ..., x+(m-1)a} N A, so
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coloyr((m-2)a)#colour(0). Thus H* is loopless. Moreover the vertex (m-1)a can be
coloured by any vertex in the set (<a>+x)-{x}. The claim now implies that H*
contains an undirected K4. Thus H*-COL is NP-complete, a::d so H-COL is also

NP-complete. | | .
All cases have been considered. m '

5.4.6. Lemma. IfH is of type III and does not admit a retraction to a directed
cycle, then H-COL is NP-complete.
Proof. : N

Let H be of type III. ";hcn H has three directed cycles, say of lengths n, a,
and b. Without loss >of generality assume n > a 2 b. Suppose that the core of H is
not a directed cycle. We jm’ay further assume that the chords have no cbmmom |

vertex, since this occurrance is covered under Lemmas 5.4.4 and 5.4.7. There are

three cases to consider.

"CASE 1. b does not divide a.

The argument is similar to case 1 of Lemma 5.4.5, and uses the

same sub-indicator.
" CASE 2. b divides g, and b < a.

Since the directed b-cycle is not a retract, b does not divide n. The
remaining details are identical to those of case 2 of Lemma 5.4.5.
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CASE 3. a=b.
Then there is a vertex x on a directed a-cycle such that x+a is also
-on a directed a-cycle. The remaining details are identical to those of case 3 of

Lemma 5.4.5. -
Thé result now follows. g

' 5.4.7. Lemma. If H is of type IV and does not admit a retraction to a directed
cycle, then H-COL is Ni’-complete.
Proof. |

The digraph H has four directed cycl;:s. say of lengths n, a, b, and c.
-Without loss of gcnérality assume n > a 2 b > c. Note thaf n=a+b-c. Suppose

that the core of H is not a directed cycle. There are four cases to consider.

CASE 1. c divides b.
Then the subdigraph of H induced by the vertex set of the directed
a-cycle is a retract. Since C, is not a retract of H, ¢ does not divide a.
Consequently the core of H is of the form D, and H-COL is NP-complete by
Theorem 5.4.2. ‘

CASE 2. ¢ does not divide b,and b<a.
Let H~ be the result of applying the sub-indicator construction with
respect to (Cy, 0, free) to H. Then H~ consists of a directed b-cycle plus a chord
that belongs to the directed c-cycle. That is, H is of the form D,. Since ¢ does not

, ‘ &
divide b, H~-COL is NP-complete by Theorem 5.4.2, and therefore H-COL s also
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NP-complete. S

CASE 3. a=b and c does not divide n.

Since C, is not a retract, ¢ does not divide a.‘Lct m be the order of
the element a in Z,,. If m=2, then 2a=n, and hence c=0, which is a contradiction.
Therefore m>2. Let Q, (r 2 a-1) dcnotcl the (r+1)-vertex digraph constructed
from P, by adding the arcs {i(i-a+1): i= a-i, a, ..., r}. Since any a-1 consecutive
arcs along the directed r-path ﬁmst belong to an image of a dirgcted a-cycle and ¢
does not divide a, no image of Q, in H contains a directed c-cycle. This effectively .
eliminates the use of the directed c-cycle. The transformation is from NOT-ALL-
EQUAL m-SAT without negated variables, and is identical to case 3 of Lemma
5.4.5, except that wherever P,'appcars in the consmcﬁon, Q, should be used.

CASE 4. a=b, and c divides n.
Since C, is not a retract, ¢ does not divide a. Let J be the directed
graph constructed by identifying the initial vertex of a directed path of length g-2
with a vertex on a directed a-cycle. Let x be the terminal vertex of the directed
path. Let the vertices of H be numbered cyclically such that vertex O is the
terminal vertex o‘ ne of the chords. Let H~ be the result of applying the sub-
\dicator construction with res’pect to (J, x, free) to H. It may be directly verified
- that H-=H-{2a-1}. Consequently the core of H~ is of the form D, and, since ¢
does not divide a, H~-COL is NP-complete. Therefore H-COL is also NP-

complete.

All case$ have been considered. m »
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Theoreth 5.4.3 generalises Theorem 5.4.2 for digraphs of the form D; (cf.

.figure 5.4.1). Our next result generalises the same theorem for digraphs of the

form D,. Let Q = qq, qi, - qq be an oriented path, and let 7 and s be integers. Let
H be the digraph constructed from C, uVC, L @ as follows. Let |
V(C,)={rg, 1, ..., Tr.1 ), and E(C,)={r;r; 12 i=0, 1, ..., r-1}. Similarly, let |
V(Cg)={50, 51, s S5y} and E(Co={s;5;,4: i=0, i, ..., §-1}. Identify the vertices ¢,
and ¢, with 7o and s, respectively. That is, H is of the form D, except that the

directed path has been xi'Cpli'a'ced by an oriented path.

5.4.8. Theorem. If r divides s or s divides r, then H-COL is polynomial, /
Otherwise (r does not-divide s and s does not divide r) H-COL is NP-complete. ‘
Proof.

0 If r divides s, then the d1rectcd r-cycle is a retract, and if s divides r, then
the directed s-cycle ig a retract. In either case, the H-colourihg problem is
polynomial.

Suppose 7 does not divide s and s does not divide r. By Theorem 5.4.2 we
may assume that:‘Q is not a directed path. Let k=n/(Q), and let a and b be any
integers such that a, b > W(Q)I, a = 1-k (mod rs), and b =0 (mod rs). Let I be the
oriented path constructed from P, U P, U Q by identifying the terminal vcrtc;x of
P, with go, and the initial vertex of P}, with q,. Then nl(f) =1 (mod rs). Let u be |
the initial vertex of P, and let v be the terminal vertex.of P;. Let H* be the result
of applying ’the indicator construction with respect to (/, u, v) to H. We make the
following aésert‘)ions about the digraph H*. '
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(1) Every intemal‘ vertex of Q is either isolated, a source of H *,ora
sink of H*. o t
~ Let g; be an internal vertex of Q. If there' is no directed path

betv;reen q} and eith& 9o of-\q,, then the vertex g; is isolated in H *, since there is
Do, homomorphism of P, to Q that maps u to q;. Suppose there is*a directed path
from g; to q,. Since Q is not a directed path, there is no directed walk of length b
that ends at ¢;. Similarly, if there is é. directed péth from g; to gy, there is no
directed walk of length b that ends at g;. Hence g; is a source of H*. The
~ existence of a d1rec?c§i path from g or g, to ¢; similarly impies that g; is a sink of

H*. |
(2) H* is loopless.

By (1) no intemai vertex of Q is incident with a loop. Suppose ; is
incident with a loop. Then there is a hdhomorphism of I to H which takes both u
and v to r;. Let W be the walk in H detérmined by the image of /. Since / and Q
have the same number of sources (and sinks), no vertex of W is on the directed A
s-cycle. That is, W is contained in the subdigraph (C, U Q)-q,,. Since the net |
length of each (qq, gp)-section W is zero, it folldws that nl(W) =0 (mod r), which
is a contradiction (recall that nl(I) = 1 (mod rs)). Similarly, no vertex of C; is
incident with a loop.

(3) H® contains both C, and C,.
This is clear since nl(I) =1 (mod rs).
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(4) Neither C, nor C, hss a chord. |
Consider a homomorphism of / into H that takes & to 7; and v to 7,
By (2) i=. Arguing as in (2), the image of [ is contained in the subdigraph
(C, v Q)-qq. Since the net length of each (g, go)-section of the imagc'of I is zero,
the net length of the walk defined by image of / is congruent to (j - i) modulo r.
~ Therefore j =i + 1 (mod r), and C; has no chord. Similarly C, has no chord.
(5) The arc s,_k:.iro exists.
We describe the n€cessary homomorphism of / to H. Map u to
Ssk+1- Since @ = 1-k (mod rs) the first vertex in the copy of Q in I maps to S0=4o-
Now map each vertex of the cop; of Q in / to the corresponding vertex of Q, land

map the copy of Py in I to C,. Since b =0 (mod rs), the vertex v maps to r,,.

(6) The arc r, ;,15q exists if and only if Q is self-converse.

(=) If the arc exists, then the copy of Q in / must map onto the

copyof O-linH.
(¢=) The argument is similar to (5.
G ‘ .
If Q is self-converse, then nl/(Q)=0. Hence the arcs from (5) and (6) are
____Ss170 and r,_l‘so, respectively. . , >

(7) There are no other arcs between C, and C,.
Consider a homomdrphism of I to H in which u maps to a vertex on
one of the directed cycles and v maps to a vertex on the other directed cycle. It is
not hard to see that the copy of Q in / niusn,map onto Q. Since homomorphisms to
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directed cycles are cbmplct'ely determined by the image of a single vertex, this
forces u to map to 5.y ‘and v to map to g, or 4 to'map to 7., and v to map to sg,

(depending on the orientation of the supposcd arc).

’l}&us the structure of H‘ is completely determined. Let H*~ be the result of
applying the sub-indicator construcuon with respect to (P, 1, free) to H*. Then
H*- is the subdigraph of H* induced by V(H*)-(q,, q5, ..., dg1 }- It Q is not self-
converse, H*~ Consists of a directed r-cycle and a directed s-cycle joined by an
arc. Since r does not divide s and s doés not divide r, H*~-COL is NP-coxhpletc by
Theorem 5.4.2. On the other hand, if Q is self converse, H*~ co@siéts of a directed
cycle with two chords and is of type II. The lengfhs of the cycles are r;+s, r, and s.
Since r does not divide s and s does not divide , H"'-COL is NP-complete by
Theorem 5.4.3. Thercforc H-COL is also NP-completc‘.. This completes the

proof. m
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6. Acyclic and Unicyclic Digraphs.

i‘a

In t.he previous two chapters we have concentrated on complexity ‘resu_lts for
smooth digraphs. As we have seeﬁ, there are several naturél conjéctures about
which of these H-cqlouring problems are NPT-comﬁlete. There are, however, many
digraphs with sources or sinks, and at present there are very few cémplexity

results for digraphs in this class (cf. Section 2.2).

This chapter is devoted to extending the collection of cotxiplexity results for
H-colouring by acyclic or unicyclic digraphs. We identify infinite families in each of
these classes of digraphs for which H-COL is NP-complete, and others for which it
- is polynomial. In so doing we shed some lignt on the sequence of digi'aphs in
lChaptcr one, where the complexity of the H-colouring problem was oscillatory (cf.
figure 1.1). We also describe an acyclic digraph D with six vertices and seven arcs
for which D-COL is NP-complete. This is the smallest such digraph discovered so
far.

&

Letn 23,121, and let gy, a,, ey be integers such‘élthat ‘

0<ay <\a2< w<a<n-l o
The digraph U(n; ay, ay, ..., a) is constructed from C, U {v.}' by adding the
-arcs {va;: i=1, 2, ..., t}. When the context is clear, for brevity we denote this
digraph by U. Note that U is unicyclic. If the integers d; = a;,,-a;, are all equal
(i=1, 2 ..., 1, and subscripts modulo #), we say that U is symmetric, and we use

d to denote the common value of a;,-a;.
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Suppose'D — H. We denote by [ily the set of all ves ’ce;s of D that map to
~ vertex iof H. If H ==é,,, this ncl;atib(ni;s abmed to [i], ; in this case we also
| use X; (resp. ¥;) to denote the set of sources (resp sinks) in [i]. Whevn‘thge |
cOntext is clear, the subscript is omitted.
6.1. Lemmi. Let U be symmetric and let G be a digraph._ Then a connected
digraph G —U if and only if G — C, and there exists i such that G-X; - C,.
Proof. , | }
(=) Cleéﬂy G-oU- C;,. Suppose v € [i], then, since only sources of G
can map to v,G-X; - U-{v} =C,. »

(=) Congidcr a fixed Cgcolouring c“of G. Without loss of generality assume

i = 0. Any vertex that is adjacent from a vertex in X;, belongs to [1],.

Furthermore, d divides the net length of any péth between two vertices in (1],

Hence, in any C,-colouring of G-X,, the colours assigned to these vertices can be

assumed to differ by a multigle of d. If X is empty, tin G — C,, — U. Otherwise,
consider a vertex x € X, and let y be an out-neighbour of x. Choose a C,-
Eolouring of G-X, such thaty € [a,],. Every element of N+(x) is coloured by a
vertex in {ay, @y, ..., a,4]). If we give all vertices in X, colour v, the result is a

U-colouring of G. m

6.2. Corollary. If U is symmetric, then U-COL is polynomial.
Proof. . |

The algorithm is implie& in the above proof. It is described more formally in
figure 6.1. Each step may clearly be carried out in polynomial time. g
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1. Find a C colouring of G.
2. Fori=0, 1, ..., d-1 do
© 7 FindX;.
Find G-X;
If G;X,; is C-colourable then answer YES and stop.
3. Answer NO.
Figure 6.1. Polynomial algerithm for U-colouring.

Our next lethma classifies many non-symmetric U(n; ay, a,, ..., @,)-colouring
problems. Certain special oriented paths play a central role in its proof. Let Z be
the four vertex oricnted path shown in figure 6.2 (a). More generally, let Z, be the

oriented path formed by juxtaposing r copies of Z and identifying the
corresponding endpoints. The digraph Z; is shown in figure 6.2 (b).

®Z=2,

Figure 6.2. Sample "zigzag" paths.
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6.3. Lemma. Let U = U(n; 0, 1, a3, a, ..., a,). Suppose there is a unique i such
that &, = r = max(d;: j=1,2, .. 1). Then | |

| (a) a partial colouring of Z,, in which"colour(s)=a,-_ and colour(f)#a;,,-1, v
can be extended to a U-colouring of Z,, ,, . i

(b) there is no U-colouring of Z,, ; in which colour(s)=q; and
colour(f)=a;,;-1 or v; and _

(c) a partial colouring of Z,, ; in which colour(s):a,— and colour(z)# v can be |
extended to a U-colouring of Z,, .. |

Proof.

Direct verification. m

6.0. Lemma. If max(dy: k=1, 2,./, 1} is unique, then U(n; 0, 1, a3, ag, ..., 2)-COL
is NP-éomplctc. ,‘,;

" Proof. |

| Suppose the unique maximum value is d;. The transformation is from

n-SAT. Suppose an instance of n-SAT is givc,n‘, with variables x;, x,, ..., x;, and

clauses K1, K2, ..., K4. Construct a digraph G as follows. Each variable (resp. each i
’ - oy

clause) corresponds to a directed n-cycle, say X1, X2, .. XP (resp.

C1, C?, .., C9). We make connections between these directed cycles by addix}g
copies of Z,,.;, as described below. (When we “join" a vertex in-X* to’a vertex in
C* by a copy of Z,,.;, we identify the vertex s of of Z,, ; with the vertex belonging
to X¥, and we identify the vertex ¢ of E_l with thc’vertex belonging to C%.)
Suppose that KV = [ v lyv v In. If I, is x, then join the m™ vertex on CV to all

vertices on X4 which have opposite parity from a;. Otherwise the m™ vertex on CJ

149

- -

>



"is joined to all vertices on X with the same parity as a;.

CLAIM. The digraph G is U-colourable if and only if the clauses
K1, K2, ..., K7 have é‘sat‘isfying truth assignment.
}  PROOF. o |
| W (=) Suppose there is a homomorphism f: G — U. Each directed n-
cycle ‘bf G must map ,6nton the directed n-cycle of U. Define a truth assign@cnt;by
setting x,=T just if the parify 6f the label of the unique vertex of X2in [a,-]é is
- diffcrcﬁt from the parity of a;. The colour z assigned to the mt vertex y of C/ must
be compatible with the colours given to all of the vertices joined to it by copies of
27,_1. That is, there must be a homomorphism of Z,,_, to H taking s to colour(y)
and ¢ to z. If a vertex joined to y is coloured a; then colour(y) # a;,,-1. That is, if
the corresponding literal is faise, then the colour of the mt vertex of CJ is not a;.
Since a colouring exists, not all literals in any clause can be false.
(<) Suppose there exists a satisfying truth assignment. Define a

colouring as follows. If x,=T, then colgur Xa so that the unique vertex coloured a; ..
has different parity from ;. Since each clause contains a true literal, each directed
cycle O has a vertex which is not joined to a; by a copy of 22,_1. By Lemma 6.3,

this partial colouring can be extended to a U-colouring of G.

Since the digraph G can be constructed in polynomial time, the result
follows. g

We are now in a position to give a classification of all digraphs U(n, a,, a;)
and U(n; a,, a,, a3). (It is.clear that if r=0 or 1, then C,, is a retract, implying that
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U-COL is polynomial.)

76.5. Corollary. Let 2 <¢ S3.If U(n; a,, @y, ..., a) is symmetric, then
U(n; ay, ay, ..., a)-COL is polynomial. Otherwise U(n; ay, a3, ... a)-COL is NP-
complete.

Proof. ®

The ﬁrsf statement follows immediately from Theorem 6.3. The case ¢=2
follows from Lemma 6.4 because if U(n; a,, a,) is not symmetric, then max{d,,
- dy} is uniquely achieved.

Cons%da U(n; ay, ay, a3). If max{d,, d,, d3} is uniquel_y‘achieved, the result
follows from Lemma 6.4. Otherwise, we may assume without loss of generality
that = dy = dy > dy. Let U be the result of applying the indicator construction
with respect to (P,, 0, r) to U(n; a,, a;, a;). We show that U*-COL is NP-
complete. , |

Suppose first that gcd{r, n} = 1. Then U* = U(n; 1, 2, p). If p-2 #1-p (mod n),

| ﬁicn max{1, p-2, 1-p} is unique, whence the result follows from Lemma 6.4. If
p-2 = 1-p (mod n), we must have p-2 = (r+1)/,_ Let U** be the result of applying

the indicator construction with respect to (P(Mi y2 0, (7+1/5) to U”. Since
| ged{(n+1)/,, n}=1 and 2-p = p-1 = (r+1)/,, the digraph U™** is isomorphic to
U(n; 1, 2, 3). Therefore the U**-colouring problem is NP-complete, so U*-COL is
also NP-complete. |

Now suppose that gcd{r, n} =Vk. Let n’ ="/, Since U is not symmetric

n’ > 3. It is easy to see that the directed cycle in U* has length n’. If the vertices
ai, ay, aj all belong to the same connected component of U*, the result follows via

an argument similar to the above. Otherwise, the core of U* is isomorphic to
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U(n’; 1, 2), whence U*-COL is NP-complete by the argument in the first

paragraph. .
We have shown in all cases that U*-COL is NP-complete. Therefore U-COL

is also NP-complete. @ -
Conjecture. If U is asymmetric, then U-COL is NP-complete.

We now turn our attention to acyclic digraphs. In analogy with the unicyclic
digraphs discussed above, let n 23,21, and let a;, @, ..., a, be integers such
that | |

0<a;<ay<...<a,<n
The digraph A(n; a,, a,, ..., @) is constructed from P, {v} by adding the arcs |
{va; i=1, 2, ..., t}. When the context is clear, for brevity we denote this digraph
by A. Note thatsA is acyclic. If the integers d; = g;,,-a;, are ali edual
(i=1,2, ..., 1), we say that A iS symmetric, and we denote by d to denote the
common value of a;,4-a; (where a, - a, is calculated modulo n). Each digraph A
may be obtained from a symmetric unicyclic .digraph of the type described above
by splitting vertex 0 into two independent vertices , say 0' ahd 0", adding the arcs . .

n0’' and 0"1 and, if vO was an arc of U, also the arcs v0' and v0". -
We first describe an infinite class of polynomial A-colouring problems.

6.6. Lemma. Let A be symmetric. Then a digraph G — A if and only if
G - U(n,0,d, 2d, ..., (n-1)d) and there exists i such that i = @, (mod d) and (i]y

contains only sources and sinks.

152



Proof. | | ‘

(=) This is clear, since A— U, and only sources of G (resp. sinks of G) can
map to vertex O (resp. n) of A.

(<) Suppose ‘G — U and there exist i such that i = ag (mod d) and [i]
contains only sources and'sinks. We cpn define an A-colouring of G by mapping
 the sources in [z“j ‘t0'.vertex 0 of A, the sinks in [i] to vertex n+1 of A, [v] to .

vertex v of A, and for j = i+1, i+2, ....?i-l, mapping (/] to vertex j-i of A. A

moments reflection should convince the reader that this is an A-colouring of G. g
6.7. Corollary. If A is symmetric, then A-COL is polynomial.g

We now describe an infinite family of NP-complete A-colouring problems.
The smallest of these .digraphs'A has six vertices and eight arcs, and is the
sniallest acyclic digraph for which the H-éoloming problem is known to bc NP-
complete. Gutjahr has proved that there is no such digraph on four vertices
[Gutjahr, 1988].

6.8 Theorem. Let A be the digraph constructed from P, U (v} by adding the
arcs (v0, v1, v3, v4}. Then A-COL is NP-complete.

Proof. 7

«  The transformation is from ONE-IN-THREE SAT without negated
variables. Accordingly, let an instance of ONE-IN-THREE SAT without negated
variables be given, with variables xy, x,, ..., x,, and clauses C!, C?, ..., C4.
Construct a digraph G from {x1, Xa, ..., X, } and g copies of the digraph Y shown in
figure 6.3 as follows. If Ci = livipvly (1 Si < q) then identify the vertices y,, y,,

4
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and y; in the ik copy of Y with l;, ly, and J5, respectively. Clearly the digraph G

can be constructed in polynomial time.

CLAIM. The digraph G is A-colourable if and only if there exists a truth
assignifent in which each clause has exactly one true variable. )
PROOF.
(=) In any A-colouring of Y, the vertices z,, z, z3 are coloured by a
vertex on P, and one of these vertices is coloured by 2. Thus exactly one of y,,
5, s is coloured by 1. Define a truth assignment by setting x;=T just if
colour(x;)=1. By the above argument, eabh clause contains exactly one true
variable. -
(¢=) Define a partial colouring of G by setting colour(x;)=2 if x;=T,
and colour(x;)=v otherwise. This partial colouring can be extended to an

A-colouring of each copy of Y, and hence to an A-colouring of G.

The result now ngollows. ]

Figure 6.3. The digraph Y.
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Let A+ be any digraph constructed from P, U {v} by adding some arcs from
v to the directed n-path and such that A+ contains H.

6.9. Corollary.' The A+-colouring problem is NP-complete.

Proo?.

The proof is almost identical to Theorem 6.8, only‘ihe' digraph Y is different.
We only sketch the argument, the remaining details may be easily supplied by
the reader. Suppose that there is a copy of A induced by vertices
{v,k, k+1, ..., k+4}. Let r = kif x1 is an arc of A+ and k # 1 and (k-1) otherwise.
Let s=n-k-4. The digraph Y+ is constructed from P,, P,, and Y by idegtifying vertex
r of P, with z;, and vertex 0 of P, with z3. In any A*-colouring of Y+, vertices z,,
2y, and z; are colomgby { k,o k+1, ..., k+4}, and exactly one of them is coloured
k+2. Conversely, any partial colouring of y,, ,, y3 by k+2, and v such that

exactly one yi(lsjs 3) is coloured v can be extended to an A*-colouring of Y+ .

Gutjahr has recently proved that A(4; 0, 2, 3)-COL is polynomlal [Gutjahr,
1989). This provides an example of a polynomxal asymetnc A-colounng problem

and another mystery to solve.

In this chapter we have contributed to the study of the H-colouring problem
when the digraph H is acyclic or unicyclic. There is some suggestion in our results

that the automorphism group may play a role in any classification.

&
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