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Abstract 

Multi-computers connected in various architectures are now commercially available and are being 

used for a variety of applications. Some of the most commonly used architectures are the binary 

hypercube, the binary tree, cube-connected cycles, the mesh, and multistage interconnection 

networks. All of these architectures have the major drawback that a single processor or edge 

failure may render the entire network unusable if the algorithm running on the network requires 

that the topology of the network is maintained. The failure of a single processor or a link between 

two processors would destroy the topology of these architectures. Thus, some form of fault- 

tolerance must be incorporated into these architectures in order to make the network of processors 

more reliable. 

While several fault-tolerance schemes have been proposed for specific architectures, these 

schemes are not general enough to provide fault-tolerance for other architectures. The goal of this 

thesis is to provide a more general approach that can be applied to several of these multi-computer 

network architectures with only minor modifications. 

A general scheme for constructing fault-tolerant multi-computer networks is proposed which uses 

switching networks to inter-connect the processors of the network. Two such switching networks 

are described in the thesis. The scheme can be used to provide k fault-tolerance with k spare 

processors. It compares favorably with other proposed schemes for fault-tolerant multi-computer 

networks, achieving higher reliability while using at most the same amount of extra hardware. 

A fault-tolerant multi-computer network constructed using the proposed scheme functions as if it 

was a non-redundant network. No extra control information is needed to ensure the fault-tolerant 

network functions properly. When a processor fails, the reconfiguring process can be initiated 

distributively. Fast context switching is provided to speed up reconfiguration. These properties 

iii 



together with the ability to provide high level of reliability for a long period of time make our 

scheme suitable for long-life unmaintained applications. 



To my wife L i y  and my daughter Lilian 
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Chapter 1 

Introduction and Related Work 

1.1. Introduction 

Multi-computers connected in various architectures are now commercially available and are being 

used for a variety of applications. Some of the most commonly used architectures are the binary 

hypercube, binary tree, cube-connected cycles, mesh, and multistage interconnection networks. All 

of these architectures have the major drawback that a single processor or edge failure may render 

the entire network unusable if the algorithm xunning on the network requires that the topology of 

the network does not change. The failure of a single processor or the failure of a l i i  between two 

processors would destroy the topology of these architectures. Thus, some form of fault-tolerance 

must be incorporated into these architectures in order to make the network of processors more 

reliable. 

Several fault-tolerance schemes have been proposed which can only be applied to a particular 

architecture. These proposed schemes are not general enough to provide fault-tolerance for any 

architecture. The goal of this thesis is to propose a more general fault-tolerant approach that can be 

applied to several of these multi-computer network architectures with only minor modifications. 

This scheme described in Chapter 2, provides higher reliability than the previously proposed 

schemes using at most the same amount of hardware. The scheme also allows distributed 

reconfiguration. Chapters 3 through 6 describe how the scheme can be used to produce fault- 

tolerant versions of particular topologies. Chapter 3 shows how the scheme can be applied to 

binary hypercubes. Chapter 4 describes how to apply the scheme to binary trees. Chapter 5 

describes how to apply the scheme to cube-connected cycles networks. Chapter 6 show hows the 

scheme can be applied to multistage interconnection networks. Finally, Chapter 7 is a brief 

summary of the results. 



1.2. Related Work 

1.2.1. Binary Hypercube 

A d-dimensional binary hypercube contains n=zd processors with each processor connected to d 

other processors. Each processor can be represented by a d-tuple (bd- ..., bo) where the bi 's are 

either 0 or 1. Two processors are connected together if their tuples differ in exactly one position. 

Figure 1-1 shows a 3-dimensional binary hypercube with each processor in the hypercube being 

labeled by its 3-tuple. 

0,LO lJ,O 

Figure 1-1: A 3-dimensional binary hypercube 

Hastad, Leighton and Newman [8] proposed a scheme that dlows degradation and does not 

require the use of redundant spare processors. This scheme includes a distributed reconfiguration 

algorithm. With high probability, this algorithm can reconfigure a d-dimensional binary hypercube 

to a (d-1)-dimensional binary hypercube provided that processors are faulty with probability 

p 9 0.5 and that the faults are independently distributed. However, communication between 

neighboring processors in the d-1-dimensional binary hypercube may require routing through other 

active or non-active processors. That is, the communication time between "neighboring" 

processors in the cube may be increased. Furthermore, there may be congestion since a particular 

l i i  may be used for communication between many pairs of "neighboring" processors. 



Rennels [15] proposed a scheme that uses spare processors for the reconfiguration. For systems 

that do not require very high reliability, he proposed a basic scheme which divides a d-dimensional 

binary hypercube with 2d processors into 2S subcubes. Each subcube has 2m processors where 

d=s+m. A spare processor is used to back up the processors in each subcube. Since the spare 

processor may be required to replace any processor in the subcube, the spare processor is connected 

to every processor in the subcube and each of their neighbors in the other subcubes. Two crossbar 

switches are employed for each spare processor to realize the necessary connections. The first 

crossbar has 2m+s inputs and d outputs. The second one has 2m inputs and s outputs. Each 

crossbar requires a few thousand gates to implement. Each processor also requires an extra port in 

order to connect to the crossbar switches. For long-life unmaintained systems where very high 

reliability is required, Rennels proposed a second, hierarchical approach. In this scheme, a spare 

processor is hooked up to each subcube of four processors via a high speed bus. The approach is 

applied recursively. For example, a spare group of five processors (one spare and four active) is 

used to back up four groups of five processors via a high bandwidth bus. This multi-level 

redundancy method provides high reliability. 
- 

In Chapter 3, new fault-tolerant binary hypercube zchitecmres are p r ~ p s e d .  h Section 3.1, we 

propose a new modular fault-tolerant scheme for binary hypercubes where each module has 4 

active processors and k spare processors. The scheme is generalized in Section 3.2 so that each 

fault-tolerant module has 2m active processors where 0 I m I d and d is the dimension of the 

binary hypercube. In Section 3.3, we calculate the reliability of the proposed scheme. In Section 

3.4, we compare the reliability of our generalized scheme with those of previously proposed 

schemes. 

1.2.2. Binary Tree 

Raghavendra, Avizienis and Ercegovac [14] proposed a level oriented scheme which uses one 

spare processor per level of the binary tree and can tolerate one fault per level. This scheme uses a 

structure which is very similar to the optimal one fault-tolerant binary tree constructed by Kwan 

and Toida [ll] .  Instead of using direct connections between the spares and the other active 



processors, they use two decoupling networks as switches to provide the appropriate connections. 

The lower levels of a large tree will have many nodes. In order to increase the reliability of the 

lower levels, this level oriented scheme can be applied to modules consisting of k=2' nodes of a 

given level. A single spare is provided for each module and the switches in the decoupling 

networks are controlled centrally through a host computer that uses the binary tree. 

Hassan and Agarwal[7] also proposed a modular scheme for fault-tolerant binary trees. Their 

approach uses fault-tolerant modules as building blocks to construct a complete binary tree. Each 

fault-tolerant module consists of four processors, three active and one spare. Soft switches provide 

connections between the active processors, the spare, and the rest of the tree. A distributed 

approach to reconfiguration is used in that the soft switches can be set locally in each module when 

failure occurs. 

Both the level oriented scheme (with or without modules at the lower level) and the modular 

approach provide only one spare per level (or module). Thus, the reliability that can be achieved 

by these schemes is insufficient for systems requiring very high reliability. Singh [16] suggested 

an improvement to Hassan and Agarwal's modular scheme by allowing the sharing of spares across 

module boundaries and allowing more than one spare per module. He showed that his scheme is 

best suited for binary trees having 31 to 255 nodes. 

For larger binary trees, Howells and Agarwal[9] devised a modular scheme that allows more than 

one spare per module. Each module in their scheme is a subtree. For example, a 10-level binary 

tree may be split into one 5-level subtree containing the root and 32 5-level subtrees. Each non- 

root subtree is a fault-tolerant module with its own spares. Each spare in a module may replace any 

active processor in the entire module. Each spare is connected to every processor in the subtree 

through direct links to each processor, soft switches, and three buses. Two of these buses are used 

to connect to the children of the processor being replaced and the last bus is used to connect to the 

parent. This technique cannot be used for the subtree containing the root node since its leaf nodes 

must be connected to the root nodes of the other fault-tolerant non-root subtrees. Fortunately, the 

subtree containing the root node can employ other schemes to provide fault-tolerance. Besides 



improving reliability, both Singh's and Howells and Agarwal's schemes also improve the yield for 

binary trees implemented in a single chip. 

Lowrie and Fuchs 1121 also proposed a subtree oriented fault-tolerance (SOFT) scheme which 

they show to be better than the schemes of Raghavendra, Avizienis and Ercegovac and of Hassan 

and Agarwal. In their scheme, up to 2' spares, where 0 I t 5 d-2, are connected to the leaf nodes 

of a d-level binary tree. The number of connections between a spare and the leaf nodes depends on 

t. An extra link is also used to connect the two children of a non-leaf node together. When a node 

becomes faulty, one of its children, s, will take over its task through the use of soft switches. The 

task of s will be taken over in turn by one of its children. This process is repeated until a spare 

takes over the task of a leaf node. The subtree oriented fault-tolerance scheme can also be 

extended to an m-ary tree. 

Chapter 4 concentrates on the binary tree architecture. In Section 4.2, we propose a new scheme 

for binary trees which is extended in Section 4.3 for m-ary trees. In Section 4.4, we compare the 

reliability and hardware costs of our proposed scheme with those of previous schemes. In Section 

4.5, we compare both the reliability and hardware costs of variants of our scheme. 

1.2.3. Cube-Connected Cycles 

Cube-connected cycles, proposed by Preparata and Vuillemin [13], consist of n=h2d processors 

with h 2 d .  This structure is easily obtained by replacing each vertex of an d-dimensional binary 

hypercube with a cycle of h processors, distributing the d edges incident on each vertex of the 

hypercube among the vertices of the corresponding h cycles. Figure 1-2 shows a cube connected 

cycle with h=4 and d=2. 

Banerjee, Kuo and Fuchs [2], and Banerjee [3] proposed two fault-tolerant schemes for cube- 

connected cycles. The basic scheme uses one redundant cycle to back up all of the cycles in the 

network. In this scheme, an extra port is required for every processor in order to connect the spare 

cycle to the rest of the network. For systems requiring higher reliability, they proposed a modular 

scheme which provides spares for each cycle and uses a local reconfiguration scheme to tolerate 



Figure 1-2: A cube-connected cycles with h=4 and d=2 

multiple faults within a cycle. The processors in each cycle are divided into subgroups and a spare 

is provided for each subgroup. Soft switches are used to provide connections between the spares 

and the rest of the cycle. 
. 

Chapter 5 presents new fault-tolerant cube-connected cycles architectures. In Section 5.2, we 

propose a new modular scheme for cube-connected cycles. This scheme is extended in Section 5.3 

so that the entire cube-connected-cycles network can be regarded as a single fault-tolerant module. 

In Section 5.4, we calculate the reliability of the proposed schemes. In Section 5.5, we compare 

both the reliability and hardware costs of our proposed schemes with those of previous schemes. In 

Section 5.6, we compare the two variants of our scheme. 

1.2.4. Multistage Interconnection Networks 

A multistage interconnection network (MIN) architecture can be characterized as having n=2m 

processors connected together by m stages of switching elements such that a processor in a MIN 

can be connected to any other processor through the m stages of switching elements. Some of the 

common multistage interconnection networks are the shuffle exchange network, the baseline 

network, the Omega network and the generalized cube. Figure 1-3 shows a shuffle exchange 

network with 8 processors. 



switching elements 

stage 0 stage 1 stage 2 

Figure 1-3: A shuffle exchange network with 8 processors 

Most previous work (see [1]) in the area of fault-tolerant multistage interconnection network 

architectures has been based on increasing the reliability of the network connections, Ignoring 

processing element failures and concentrating only on the switching element failures. For systems 

with a large number of processing elements, it is also important to consider processing element 

failures in order to achieve high reliability for the entire system. Jeng and Siegel [lo] proposed a 

fault-tolerant multistage interconnection network architecture called the Dynamic Redundant (DR) 

network that can tolerate processing element failures as well as switching element failures by using 

spare processors and switches. The DR network is based on a generalized cube network. A 

generalized cube network with n=Zm processors uses log2n stages where each stage consists of n 

switching elements connected by n links to the previous stage. The DR network with n active 

processors and k spares has the same number of stages, however each stage has n + k  switching 

elements rather than n. Each stage is connected to the previous stage using 3(n+k) links. A DR 

network can tolerate any single processor failure or any single switching element failure. It can, in 

fact, tolerate k faults provided that the faults all occur in adjacent rows. Jeng and Siegel show that 



a DR network with more than one spare is no better than a DR network with one spare due to the 

limited coverage on multiple faults. 

In Chapter 6, new multistage interconnection network architectures are proposed. In Section 6.2, 

we propose a new fault-tolerant scheme for multistage interconnection networks with k spare 

processors which can tolerate any k processor failures. In Section 6.3, we compare our scheme 

with Jeng and Siegel's DR scheme. The scheme is extended in Section 6.4 so that it can cover both 

processor failures and switching element failures. In Section 6.5, the extended scheme is compared 

to Jeng and Siegel's DR scheme. In Section 6.6, we compare the reliability and hardware 

requirements of two variants of the extended scheme. 



A General Fault-Tolerant Scheme 
for Multi-Computer Networks 

2.1. Introduction 

Our goal is to provide fault-tolerance in a multi-computer network by adding spare processors 

which can be used to replace failed processors. In particular, we want to design a method to 

connect spare processors to an existing network in such a way that the network topology can be 

maintained when a spare processor replaces a failed processor. One obvious approach is to connect 

each spare to a l l  the processors in the network using large cross-bar switches. This is not feasible 

for large networks. In order to overcome this problem, the entire network can be divided into 

modules such that each spare is used to back up the processors within a particular module. The 

fault-tolerant modules are then connected together to form the network Since a spare c m  be used 

to back up any processor in the module which may be connected to processors outside of the 

module, the spare must be able to connect to those external processors. These connections may be 

realized with smaller cross-bar switches. Although large cross-bar switches are not needed in this 

scheme, the number of spares required to provide the same level of system reliability increases as 

the number of processors in a module decreases. Thus, there is a trade off between the module size 

and the size of the cross-bar switches required by this approach. 

Rather than using spares to back up an entire module, we can use the spares to back up only a 

very small number of processors. These processors, in turn, can be used to back up other active 

. processors in the module. This process can be repeated until every processor is backed up. With 

this approach, cross-bar switches can be avoided entirely. 

We propose a new interconnection method in Section 2.2 which uses switching networks instead 



of cross-bar switches to connect fault-tolerant modules together. These networks can also be used 

to provide connections within a module. The approach can also be used so that the entire network 

is realized as a single fault-tolerant module. In Section 2.3, reliability estimates for our schemes 

are given. The switching networks used in our interconnection method are described in Sections 

2.4 and 2.5. Finally, a distributed reconfiguration scheme is given in Section 2.6. 

2.2. Using Switching Networks to Construct Fault-Tolerant Networks 

In constructing fault-tolerant networks, we will require a switching network with n incoming and 

n+ k outgoing links as shown in Figure 2-1. In particular, let a l ,  %, ..., an be a sequence such that 

1 I al < < ... < an I n + k .  We want to design a switching network which allows the n 

incoming links to be connected to any such sequence a l ,  %, ..., a, of outgoing links so that 

incoming link i is connected to outgoing link $. The detailed design of such switching networks is 

described in Sections 2.4 and 2.5. 

n incoming links 

n+k outgoing links 

Figure 2-1: A switching network with n incoming links and n+ k outgoing links 

In describing the construction of fault-tolerant networks, we use the term active processor to 

denote all the processors that participate in the execution of tasks. 

Let us, for the moment, assume that we can construct a fault-tolerant module with n active 

processors and k spare processors which functions correctly provided that no more than k 

processors fail within the module. Consider a network consisting of two fault-tolerant modules. 



module 1 

module 2 

Conceptual network - 6 processors in module 1 
connected to 6 processors in module 2 

I switching network I 

I switching network 

I I I I 

fault-tolerant network - 6 active processors in module 1 
connected to 6 active processors in module 2 

Figure 2-2: Using switching networks to connect two fault-tolerant modules 

Each module initially contains 6 active processors (numbered 1 through 6) and one spare processor 

(numbered 7) and the i h  active processors of each module are connected by a link. We now 

describe how to connect one module to the other using switching networks. Let al ,  $, ..., a6 be 

the numbers of the active processors in a module, ordered so that 1 I al < % < ... < a6 I 7. 

Incoming links 1, 2, 3, ..., 6 can be routed to any such sequence of processors al, %, ..., a6, 

respectively by using a switching network with 6 incoming links and 7 outgoing links (see Figure 

2-2). Each outgoing link of the switching network is connected to a processor in the module. Each 

incoming link is connected to a communication line that leads to the other module. Initially, these 

6 communication lines are connected to processors 1 through 6. When one of these processors 



fails, the switching network resets the connections so that the failed processor is disconnected and 

the 6 communication lines are routed to 6 non-faulty processors. For example, if processor 5 fails, 

processor 6 will be connected to communication line 5 and the spare processor (7) will be 

connected to communication line 6 .  In this simple example, each processor is connected to only 

one processor in another module. Additional switching networks could be utilized to allow 

multiple external connections. 

Figure 2-3: Using direct connection to construct a fault-tolerant cycle of six processors 

Now, we turn our attention to the connections within a given fault-tolerant module. Continuing 

with our example, we would like to construct a fault-tolerant 6 cycle. In particular, the 6 initially 

active processors must fonn a cycle by connecting processor i to processor i+ 1,  for 1 I i < 6 and 

processor 6 to processor 1. The fault-tolerant module is designed so that processor i (1 I i I 6) is 

"backed up" by processor i+ 1. That is, if processor i fails (or is called upon to replace yet another 

processor) then processor i+ 1 can replace processor i. To allow for these processors to replace 

each other in the event of a failure, additional connections must be added. One method to do this, 

which we call direct connection, is to connect processor i to i+2 for 1 5 i I 5 and processor 7 to 

processors 1 ,2  and 6 (see Figure 2-3). One drawback of this method is that the number of ports per 

. processor must increase with the number of spares. A second method is to use two cross-bar 

switches to connect the spare processor(s) to the cycle. As the number of spares becomes large, 

this method also becomes infeasible. A third approach which uses switching networks does not 

require the number of ports to increase with the number of spares and is described below. 



The connections between the processors in a module can be provided by connecting the incoming 

links of several groups of switching network. In our particular example, the connections between 

the processors within a module can be provided by two switching networks with 6 "incoming" and 

7 "outgoing" links. In this case, the 7 processors of the module are connected to the "outgoing" 

links while the "incoming" links are connected to each other. One switching network is used to 

connect processor i to processor i+ 1 for 1 I i 5 6 where i is odd. The second connects processor i 

to processor i+  1 for 1 I i 5 5 where i is even and processor 6 to processor 1. With these 

connections, the processors connected to the 6 "incoming" links form a cycle of six processors. 

The connections are shown in Figure 2-4. If processor 5 fails, processor 6 will take over the task of 

faulty processor 5 and the spare processor 7 will take over the task of processor 6. The switching 

networks can be set to bypass processor 5. In particular, "incoming" links 5 and 6 are reset to 

connect to "outgoing" links 6 and 7, disconnecting "outgoing" link 5. The details of this process 

are explained in Sections 2.4 and 2.5. After reseting the switching network, processors 1,2,3,4,6, 

and 7 form a cycle of six processors, connected through the switching networks. This same 

technique can be used to form different structures within the module as illustrated in Chapters 3,4, 

5, and 6. 

I I 1 I I I 
I switching network switching network 

Figure 2-4: Connecting a cycle with 6 active processors 
and 1 spare processor using two switching networks 

By using switching networks to provide connections between processors within a module and 



connections between modules, a fault-tolerant multi-computer network can be constructed as 

described above. We call this scheme modular sparing. In the above example, each spare can be 

used to replace any of 6 processors within its own module. Thus, the system can tolerate any single 

failure. It can also tolerate two failures if they occur in different modules. In order to tolerate any 

two failures in the network, we could use the above techniques to construct a single module 

containing 12 active processors (divided into 2 cycles of 6 processors each) and 2 spare processors. 

We call this scheme global sparing. 

As an example of global sparing, we show in Figure 2-5 an alternate implementation of the above 

example. As before, we want 2 cycles of 6 active processors and we allow 2 spare processors. 

Three switching networks are required to provide the connections. The first two switching 

networks are used to connect the processors to form two cycles of six processors using the same 

connection scheme as described above for providing connections for a cycle of six processors. The 

processors connected to "incoming" links 1 to 6 and 7 to 12 of both switching networks form two 

cycles of six processors respectively. Finally, the third switching network is used to connect the 

two cycles together. 

Using global sparing, k spares in the network can tolerate any k faults. Thus, it is optimal in the 

number of faults that any network with a given number of spares can tolerate. With global sparing, 

it is possible to achieve the same level of reliability as with modular sparing and other proposed 

schemes for various multi-computer network architectures as shown in Chapters 3, 4, 5, and 6 

while using significantly fewer spares. However, for networks with a large number of active 

processors, it may not be possible to implement the entire network on a single wafer. Smaller 

modules may be used to split a large network into fault-tolerant modules which can each be 

implemented on a wafer. 
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Figure 2-5: Connecting a network with two cycles of six processors 
and two spare processors using three switching networks 

2.3. Estimation of the Reliability of the Scheme 

Consider a fault-tolerant multi-computer network c o n ~ t ~ c t e d  using global sparing which contains 

n active processors and k spares. In our reliability analysis, we consider only processor failure. We 

do not consider the failures in the switching networks. These failures could be covered by 

duplicating the switching networks. Other types of failures, such as fault-detection failures and 

recovery failures, are accounted for by the coverage factor [l7] which is defined to be the 

probability that a failure is detected and the recovery is successful. If reconfiguration fails due to 

one of these failure types, the entire system is considered to be unreconfigurable. 

Let c be the coverage factor, k the number of spare processors in the network, n the number of 



active processors in the network, r= cXt the reliability of a single processor (where is a constant 

representing the failure rate of a processor over time t and t is time expressed in millions of hours), 

and Rk the reliability of a fault-tolerant network with k spare processors using global sparing. The 

reliability of a non-redundant network Ro is rn. For k= 1, the probability that the spare is needed is 

equal to the probability that an initially active processor has failed which is (;) rn-' (1 -r). The 

probability that a particular spare processor is reliable and can be switched successfully is rc. 

Thus, the additional reliability with one spare is rc(;)rn-'(1-r) and the reliability R1 is 

R1 = rn+(;)rn(l-r)c= R0+(;)rn(l-r)c. For k=2, the second spare is only used when there 

are exactly two faulty processors among the n initial active processors and the first spare. The 

probability that this occurs is (";'I rn-I (1-r12c. Thus, the reliability with two spares is 

R2 = ~ ~ + ( ~ ; l ) r " ( l - r ) ~ c ~ ,  

For arbitrary k, 

.- 

The reliability of a network using modular sparing can be calculated similarly. Let m be the 

number of active processors in each module, be the reliability of a module with k spares in 

each module, and Rp,m,k be the reliability of a network with p modules each having m active 

processors and k spares. 

2.4. Type A Switching Network Design 

A Type A switching network can be implemented using a group of decoupling networks. The 

group of decoupling networks maps n incoming links (numbered 1 to n) to n+ k outgoing links 

(numbered 1 to n+ k). Each outgoing link is connected to a processor. The use of decoupling 

networks has previously been proposed for other fault-tolerant multi-computer network 

architectures [14,4,5,6]. Figure 2-6 shows the connections for a group of 3 decouplig networks 

arranged in three levels as a Type A switching network. 
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Figure 2-6: 3 decoupling networks arranged in 3 levels 

The levels of each group of decoupling networks are numbered from 0 to 1-1 with level 0 

connecting to the outgoing links and level 1-1 connecting to the incoming links. Each level 

contains at most n+k-1 switches numbered from 1 to n+k- 1. The j th switch in level 1- 1 

connects to the j b  incoming link. It can be set to connect the j th incoming link te either the j th 

switch on level 1-2 or to the (j+ switch on level 1-2. In general, the j th switch on the i th 

level can be set so that it is connected to either the j th switch on level i- 1 or to the (j+ switch 

on level i- 1. The j th switch on level 0 can connect to either the j th outgoing link or the (j+ 

outgoing link. Initially, every switch j on level i > 0 is set to connect to switch j on level i- 1. 

Switch j on level 0 is initially set to connect to outgoing link j. 

Outgoing link i is connected to processor i. At any given time, n processors are active. We 

denote the active processors as al , ..., an with al < % c ... < an such that al is the number of the 

. lowest numbered active processor and an is the number of the highest numbered active processor. 

. In particular, ai= j indicates that processor j is the i rh active processor. 

When a processor fails, the failed processor has to be disconnected from the network and the 

spare has to be connected. As an example of the reconfiguration process, consider a module with 8 



active processors and 3 spare processors. If processor 3 fails, the switch in level 0 of the 

decoupling network that connects to processor 3 and all the switches to the right of it are switched 

to the right. In this way, processor 3 is disconnected and the first spare processor (9) is activated. 

Processor i+ 1 assumes processor i's previous role where 3 5 i 4 8. At this point, al = 1,  %=2, 

and ai= i+ 1 ,  for 3 4 i I 8 .  The new connection for one group of decoupliig networks is shown in 

Figure 2-7. If another processor fails subsequently, another reconfiguration must occur. The 

switch in level 1 of the decoupling network that connects to the failed processor and all the 

switches to the right of it are switched to the right. Figure 2-8 shows the structure as further 

modified after processor 1 becomes faulty and is replaced. In this figure, a1 =2, and ai=i+2,  for 

2 I i < 8. Finally, Figure 2-9 shows the result of processor 7 failing subsequently and is replaced. 

Afterreconfiguration,al=2,%=4,0[3=5, a4=6,  andai=i+3, for51 i I  8. 

incoming links 

level 2 

levd i 

level 0 

Figure 2-7: Connections after processor 3 has failed 

Consider one such k level decoupling network connected to n active processors and k spares. Let 

i be the number of processors that have failed previously, where 0 I i I k. If another active 

processor fails, the reconfiguring is done by switching the switch in level i that connects to the 

failed processor and all switches of the same level to the right of it one position to the right. For 

example, if the switches in level i are numbered 1 to n+k-i-1 from left to right and switch j 
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Figure 2-8: Connections after processor 1 and 3 have failed 
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Figure 2-9: Connections after processor 1 .3  and 7 have failed 

connects to the newly failed processor, then the reconfiguration consists of switching the switches 

from j to n+k- i -  1 at level i to the right. By doing so, the faulty processor is disconnected from 

the network, the spare processor immediately to the right of the rightmost active processor becomes 

an active processor, and the structure is reestablished. 



A Type A switching network consists of k decoupling network arranged in k levels. Incoming 

link i can be connected to any outgoing link j if j- i I k as shown in Lemma 1. Lemma 1 and other 

subsequent Lemmas described below are used to establish that a Type A switching network can be 

used to replace up to k faulty processors with spares. 

Lemma 1: In a Type A switching network, incoming link i (1 l i l n) can be 

connected to any outgoing link j where (i I j 5 i+ k) 

Proof: Let m=j-i .  At each level 1, 0 5  1 5 m, set switch number i+m-1-1 and all 

switches in that level to the right of switch i+m-1-1 to the right. This connects 

incoming link i to outgoing link j. 0 

Let a l ,  a,?, ..., an be a sequence such that 1 I al < a,? < ... < an 5 n+k. If the n incoming links 

can be connected to any such sequence al, a,?, ..., an of outgoing links so that incoming link i is 

connected to outgoing link 04- for 0 < i I n , a Type A switching network can be used to replace any 

group of up to k faulty processors with spares. In order to show that this is the case, we first prove 

Lemma 2 which shows that a Type A switching network can be used to connect incoming links i 

and p (p > i) to outgoing links j and q (q > j, q-p 2 j-i) , respectively so that the paths do not 

intersect. 

Lemma 2: In a Type A switching network, if incoming link i is connected to outgoing 

link j and incoming link p (p > i )  is connected to outgoing link q (q > J]  , and q-p 1 j-i, 

the switches used to connect i to j, and the switches used to connect p to q are all 

different. 

Proof: Let sl be the switch used in level 1 to connect i to j and let tl be the switch used 

in level 1 to connect p to q. Since p > i ,  in level k- 1 , tk- > sk- l .  If sk- is switched to 

the right, then tk- is also switched due to the reconfiguration scheme. Thus, in level 

k-2, tk-2 > s ~ - ~ .  The same argument can be repeated until level 0 is reached. Hence, 

t l>sl fo r05  IS  k-1. 

Theorem 3: Let a l ,  %, ..., an be a sequence such that 1 I al c < ... < an l n+ k. 

The n incoming links of a Type A switching network can be connected to any such 



sequence a l ,  a,?, ..., a, of outgoing links so that incoming link i is connected to outgoing 

linka,forOI i I  n .  

Proof: From Lemma 1, incoming link i  can be connected to ai for 1 I i l n. From 

Lemma 2, there will be no common switch used to connect incoming link i to outgoing 

link ai and incoming link i +  1 to outgoing link ai+l for 1 5 i S n-1 . Thus, the 

theorem is proved. 

For a Type A switching network with n incoming links and n + k  outgoing links, a level i  

decoupling network must have n+k- i -  1 switches. Thus, a Type A switching network has a total 
k of xj- - (n+ k-0 = k(2 n+ k- 1)/2 switches. For large k, the number of switches required for a 

Type A switching network increases rapidly. The hardware required to implement the switches 

may make this design infeasible. Furthermore, k levels of decoupling networks are used to add k 

spares. When k is large, the switching delay may be significant. Hence, a Type A switching 

network is not suitable when k is large. The next section presents a different design which requires 

a lot fewer switches and introduces less switching delays when k is large. However, when k is 

small, the simplicity of a Type A switching network makes it easier to implement than other more 

complicated designs. 

2.5. Type B Switching Network Design 

For large k, we propose a different switching network design called Type B that uses fewer 

decoupling networks and switches than Type A. Instead of allowing the j switch of level i to be 

c o ~ e c t e d  to the j switch or the (j+ switch of level i- 1, the j h  switch of level i may be 

connected to the j or the (j+2')& switch of level i- 1. The j th switch on level 0 can connect to 

either the j th outgoing link or the (j+ outgoing link. Initially, every switch j  on level i  > 0 is 

set to connect to switch j  on level i -  1 .  Switch j  on level 0 is initially set to connect to outgoing 

. link j. With this design, only I =  r1og2(k+ 111 levels of decoupling networks are required to 

incorporate k spares. 

The reconfiguring process of this design is slightly more complicated than for Type A. Consider 



one such 1 level decoupling network connected to n active processors and k spares. As before, we 

number the levels from 0 to I- 1,  the processors from 1 to n+k, and the active processors from orl 

to an. ai=j indicates processor j is the i th active processor. Initially ai=i for 1 I i I n. When 

the first active processor fails, the reconfiguration process is the same as for Type A. The switch in 

level 0 that is connected to the failed processor and all the switches to the right of it are switched 

one position to the right. However, when subsequent failures occur, each remaining active 

processor and the spares used to replace the failed processors must determine which switches to 

use. 

As an example, consider a module with 8 active processors and 3 spares. If processor 3 fails, the 

level 0 switch that connects to processor 3 and all the switches to the right of it are switched to the 

right. Processor 3 is disconnected from the incoming communication link to the decoupling 

networks. Processor i takes over the task of processor i-1 , for i=4, ... ,9. Figure 2-10 shows the 

connections of the Type B switching network after processor 3 has failed. Figure 2-1 1 shows the 

structure as further modified after processor 1 fails and is replaced. Figure 2-12 shows the 
,- 

structure after processor 7 fails subsequentlyand is replaced. 

Figure 2-10: Connections after processor 3 has become faulty 

. Suppose a i=j ,  the i th incoming link of the decoupling network should be connected to the jh 

outgoing lid, that is, to the j h  processor. In level 1-1, the highest level, the i th switch connects 

to the i incoming link. If j-i 2 2lv1, switch i will have to connect to the (i+21-1)th switch of 



Figure 2-11: Connections after processor 3 and 7 have become faulty 

Figure 2-12: Connections after processor 1,3 and 7 have become faulty 

level 1-2. Otherwise, no change is required and it remains connected to the i fh switch of level 

1- 1. ~ e t  j - i = ~ k : ~  a,,,2m where am is either 0 or 1 and I =  rlog2(k+ 1)l. If j-i 2 2'-l, al- = 1 .  

Otherwise, al-l=O. For level 1-2, the switch used in the connection from incoming link i to 

processor j depends on whether the switch used in level 1- 1 is switched or not. This information 

can be obtained from the value of ale If a[- = 1 ,  the (i+2'-I)& switch is used. Otherwise, the 

i" one is used. That is, the switch used in level 1-2 is the (i+a1-121-1)m switch. This switch is 

switched to connect to the (i+al- 121-1 +2lq2)" switch in level 1-3 if (1-0-a1-12'-1 2 2'-'. 

. That is, if al-2= 1. Otherwise, switching is not necessary. Hence, the switches used in the 

connection and the status &the switches used can be obtained from the equation j - i = ~ ! &  am2m 

with al=O to simplify the formulas below. In particular, i + ~ : = , + ~  ~ 2 ~ 2 ~  switch in level u is 



used to connect incoming link i to outgoing link j of the decoupling network. This switch is set to 
I connect to the (i+ xm- - am2m)" switch of level u- 1 (or the (i+ x:, , am2m)" outgoing link if 

u=O). With this switching scheme, the n incoming links of the i=rlog2(k+l)l levels of 

decoupling networks can be connected to n non-faulty processors if the number of faulty processors 

is less than or equal to k. Furthermore, no two connections between an incoming Sink and an active 

processor share a common S i  or common switch. 

In order to prove that the rlog2(k+ 1)1 levels of decoupling networks can be configured to handle 

any k processor faults, let al,  %, ..., a, be a sequence such that 1 I  al < 9 < ... < a, l n+k. If 

the n incoming S i s  can be connected to any such sequence al, 9 ,  ..., a, of outgoing links such 

that incoming link i is connected to outgoing link ai for 0 I  i I n, a Type B switching network can 

be used to replace any of up to k faulty processors with spares. In particular, incoming link i must 

be able to connect to any outgoing link j in the range i I j I i+k. This is proved in Lemma 4 

below. 

Lemma 4: In a Type B switching network incoming link i (1 I i S n) can be connected 
& 

to outgoing link j for any j where i I j I i+ k. 

Proof: Since i S j 5 i + k and xLi0 2m 212 k , j- i can be expressed as ~ l - 1  U-o a u 2U, where 

the a's are either 0 or 1 and c:.~ - Zrn 2 x::: ap". Using the connection scheme 

described above, incoming link i to the decoupling network is connected to outgoing link 

j = i + 2 Since i+ C~I: - a? I  i+ x L ~ ~  zrn, incoming link i can be connected 

to outgoing link j. 0 

Lemmas 5 and 6 establish that if any incoming link i is connected to outgoing link j, where 

i l j I i+k, incoming link i+ 1 must be able to connect to any outgoing link t  in the range 

j + l  I  t S  i+k+l  with no sharing of switches and no sharing of links between these two 

connections. Lemma 5 is a technical lemma useful in proving Lemma 6. 

I I I Lemma 5: If ~rn-sam2m>~mC,=sbrn2m - then ~ ~ - ~ a ~ 2 ~ - ~ ~ = ~ b ~ 2 ~ ~  - 2s where 

the a's and b's are either 0 or 1. 



Proof: Let 1' be the largest value 1 2 2' 2 s such that a p  by. Since we have assumed 
I that xm=sam2m > EL=, bm2m and all the a's and b's are either 0 or 1, it must be the 

r-1 
Since Ern=, am2" 2 0 and - bm2m 5 2s-2s, 

Y 
am2m-~m=,  bm2rn 2 P. o 

Lemma 6: For a Type B switching network, if incoming link i is connected to outgoing 

link j and incoming link p @ > i) is connected to outgoing link q, where q > j 

(q-p 2 j- i), the switches used to connect i to j, and the switches used to connect p to q 

are all different. 

Proof: Let j-i=;~:k-!~ bm2m and q-p=~k,-fo amZm, where the a's and b's are either 0 

I- 1 or 1 and l= rlog2k+ 11. Thus, z;io a,Zm-2 Em=o bm2m. At each level s, the 

connection fmm i to j utilizes switch i+c.kJs bm2" while the connection from p to q 

uses switch + am2m. These switches are clearly distinct if 

Suppose that for a particular s, ~ ~ ~ ~ b , 2 ~ > ~ ~ ~ ~ a ~ 2 ~ .  Since, 

p - 1  1-1 
m.O amZm 2 zmZO bm2m. therefore, 

ES- 1 I-' b 2m-z1-1 a 2m. zs-l a 2 m - ~ s - 1  b 2m>zm=, s- 1 
m = ~  m m = ~  m m=s m m=o am2m-xm=o bm2" is 

at most equal to xk-=l0 2m=2s- 1. From Lemma 5, xk,-fS - bm2m-~'-1 a 2m is at least m=s m 

2S. A contradiction occurs and hence the lemma is proved. 

Theorem 7: Let al, q, ..., an be a sequence such that 1 S al c % c ... c an l n+ k. 

The n incoming links of a Type B switching network can be connected to any such 



sequence al ,  %, ..., a, of outgoing links such that incoming link i is connected to 

outgoing link q for 0 I i 5 n. 

Proof: The proof follows from Lemmas 4 and 6. 0 

The number of switches required in each level of a Type B switching network depends on n and 

k. If processor n+k, the last spare, can be connected to the n th incoming link of the decoupling 

networks, the switches in the decoupling networks are sufficient to connect any incoming link i, 

1 I i I n, to any outgoing link j, i I j 5 i+k. With this observation, the total number of switches 

in a group of decoupling network can be obtained. Let k=x;Jo am2m, where the am's are either 0 

or 1 and al- l= 1. The level 1- 1 decoupling network has n switches which are connected to the n 

incoming links to the group of decoupling networks. The n th switch can connect to either the n th 

switch or the n+2'-l switch in level 1-2. Thus, the number of switches in level 1-2 is 

n+al-121-1. The last switch (n+a1-121-1) in level 1-2 is not required to connect to the 

n+21-1+21-2 switch in level 1-3 when al-2=0. In this case, not all of the switches have to be 

switchable. Figure 2-13 shows an example in which some switches do not have to be switchable. 
.- 

Hence, for level 1-3, the number of switches is n + ~ k L - ~  am2m. Similarly, for level i, the 

number of switches is n+zkJi+ a 2m. With this number of switches, the n fh incoming l i i  is 

able to connect to the last spare processor because k = ~ k ' ~  am2m. Thus, for a Type B switching 

network with 1 = rlog2k+ 1 1 levels, the total number of switches is nlc z;il rn~2,2~. 

2.6. Distributed Reconfiguration 

Consider a module with n active processors and k spare processors. The n+k processors are 

connected to the n+k outgoing links of a switching network and are numbered 1 to n+k 

corresponding to the numbers of the outgoing links. The active processors are denoted by a i ,  for 

1 5 i 5 n. ai=j indicates that processorj is the i th active processor. Initially, a i= i  for 1 5 i < n. 

In order to provide fast context switching and distributed reconfiguration, processor i is 

connected to processor i+ 1, where 1 5 i 5 n+k- 1, with soft switches used to bypass faulty 



non-switchable 
switches 

Figure 2-13: For n=8 and k=4, some switches do not have to be switchable 

processors. Figure 2-14 shows the connections and soft switches between the processors. When a 

processor is non-faulty, a signal is sent to its switches to keep them open. We assume that the fault 

detection of each processor is concurrently performed by means of some on-line self-testing 

circuits. Thus, when a proces-spr fails, it stops sending this signal and the processor to its right will 

be able to detect the failure and start the reconfiguration process. 

Figure 2-14: Connections between the processors 

When a processor ai=j fails, the network must be reconfigured to disconnect the faulty 

processor, connect a spare one and reassign tasks among the active processors. The non-faulty 

active processor ai+ immediately to the right of the faulty one initiates the reconfiguring process 

upon detecting that ai has failed. (If i = n ,  the lowest numbered spare processor m initiates the 

. reconfiguration process.) It starts by taking over the task of the faulty one and informs the non- 

faulty processor to its right about the starting of the reconfiguring process. Processor ai+ 's task is 

then taken over in turn by the non-faulty processor immediately to its right. This process is 



repeated until the spare processor m immediately to the right of the rightmost active processor (a,) 

becomes an active processor and takes over the task of its predecessor. That is, when processor aj 

fails, a sequence of task reassignments are performed until a non-faulty spare processor m which is 

connected to the processor a, is activated. First, aj's task is taken over by aj+l and aj+l 

becomes active processor aj. This processor's old task is given to aj+2 and orj+, becomes active 

processor aj+l. This continues until a, becomes active processor an- Finally, an's old task is 

taken over by the spare processor m and m becomes a,. 

The reassignment of tasks can be carried out efficiently through the connections between the 

processors if a parent-child relationship [18] is assumed between any two neighboring processors. 

The processor on the right assumes the role of the parent and keeps track of the state of its child. 

When a child fails, its parent can take over its task and can in turn inform its own parent of the 

reconfiguring process without any delay or rollback. For example, assuming that n= 8,  k=2  and 

ai= i, processor 10 is the parent of processor 9 initially and processor 9 is the parent of processor 8 

and so on. That is, processor i+ 1 is the parent of processor i initially, for 1 I i I 9. If processor 5 

fails, its parent, processor 6, can take over its task easily for processor 6 already has the current 

state of processor 5. The new child (processor 4) of processor 6 sends its cumnt state t~ processor 

6 and processor 6 informs its parent (processor 7) of the reconfiguration and sends its current state 

to its parent. This process is repeated until processor 9 takes over the task of processor 8 and sends 

its current state to its parent, processor 10. The above reconfiguring process can be carried out 

efficiently using the links between the non-faulty processors. The transfer of state information 

between the processors can be done almost simultaneously. 

This scheme can only handle either a single fault at a time or multiple faults at the same time if 

the faults are not adjacent to each other. For multiple faults not adjacent to each other, the 

reassignment process is still quite efficient although the state of more than one processor may be 

transferred between the non-faulty processors. If adjacent faults occur simultaneously, the 

reassignment of tasks will take more time since the entire system may have to restart at the 

previous check point instead of being able to continue its operation without rollback. 



After the reassignment of tasks is completed, the switching networks must also be reset as 

described in Section 2.4 or Section 2.5 to replace the failed processors with spares. For a Type A 

switching network, the control of the decoupling networks can be implemented at each spare 

processor. The first spale controls the level 0 decouplimg ne&ork and the i th spare controls the 

level i-1 decoupling network. For a Type B switching network, when processor j is required to 

take over the task of another processor to its right, it knows which active processor ai it will 

become and it also knows its own position. Thus, the values i and j are both known to processor j .  

Processor j calculates the coefficientsa, from the equation j - i = ~ k l ~  am2m and determines 

which switches are used and which must be switched for the connection. This information is sent 

to the decoupling networks to establish the connection from incoming link i to processor j. This 

switching scheme can be carried out distributively by each affected processor. After both steps of 

the reconfiguration process (reassignment of tasks and reseting the switching network) have been 

completed, the network can resume its normal operation. 



Chapter 3 

Binary Hypercube Architecture 

3.1. Introduction 

In this chapter, fault-tolerant binary hypercube architectures are proposed. In Section 3.2, a 

fault-tolerant biary hypercube architecture is proposed which uses fault-tolerant modules as 

building blocks to realize a binary hypercube. The use of fault-tolerant modules has previously 

been proposed for use in fault-tolerant binary tree architectures [5 ,7 ,9 ,  161. A fault-tolerant 

module contains four active processors and k spare processors configured so that each module can 

tolerate up to k faults. Let d be the dimension of a binary hypercube. In Section 3.3, we generalize 

the scheme so that each fault-tolerant module has 2m active processors, 0 I m S d,  and k spare 

-- processors. In Section 3.4, we calculate the reliability of the proposed scheme. With m=d, the 

entire biary hypercube is a single fault-tolerant module in whish the k spare processors car. k 

used to tolerate any k processor failures. In Section 3.5, we show that with this special case, it is 

possible to achieve the same level of reliability as with smaller modules while using significantly 

fewer spares. We compare this special case with RenneIs' schemes. The new scheme is more 

reliable than Rennels' basic scheme since the latter can tolerate only a single fault within a given 

module. Even with fewer spare processors, our scheme achieves higher reliability than does 

Rennels' hierarchical approach. Furthermore, the amount of extra hardware required for our 

scheme to achieve the same level of reliability as Rennels' scheme is much less than that required 

by Rennels' scheme. 



3.2. Fault-Tolerant Scheme For Binary Hypercubes 

A fault-tolerant binary hypercube can be constructed by using a number of fault-tolerant modules. 

We assume initially that each fault-tolerant module consists of 4 active processors and k spares, 

connected in a cycle to model a 2-dimensional binary hypercube. Since only four processors are 

active at any given time within each 2-dimensional binary hypercube, the spare and faulty 

processors must be bypassed. This can be done using soft switches in the cycle as shown in Figure 

3-1. These 2-dimensional hypercubes are connected together to form a d-dimensional binary 

hypercube. An alternative to the use of soft switches within each module is discussed in Section 

3.3 along with the generalization of this construction. The connections between the 2-dimensional 

binary hypercubes are realized by either a Type A or Type B switching network such that only 

those active processors in the 2-dimensional binary hypercubes are connected. 

soft switches 

Figure 3-1: A fault-tolerant module with k spares 

For a d-dimensional binary hypercube, d-2 groups of switching networks are required for each 

2-dimensional hypercube in the network. A group of switching networks is used for each 

dimension beyond the second dimension. The first group is used to connect a 2-dimensional binary 

hypercube to another 2-dimensional binary hypercube to form a 3-dimensional binary hypercube. 

The second group for each 2-dimensional hypercube in a 3-dimensional hypercube is used to 

connect to a 2-dimensional hypercube in another 3-dimensional hypercube, forming a 4- 

dimensional hypercube. Similarly, the i th (1 I i I d-2) group for each 2-dimensional hypercube 

in an i+ 1-dimensional hypercube is used to connect to a 2-dimensional hypercube in another 

i+ 1 -dimensional hypercube, forming an i+2-dimensional hypercube. Hence, a d-dimensional 

binary hypercube can be formed using 2d-2 2-dimensional hypercubes and 2d-2(d-2) switching 

networks. 



When a processor fails, the fault-tolerant module must be reconfigured to disconnect the faulty 

processor, connect a spare one, and reassign tasks among the active processors. The reconfiguring 

process is as described in Chapter 2. In addition, the faulty processor must also be disconnected 

from the cycle of active processors in its fault-tolerant module while the spare processor 

immediately to the right of the rightmost active processor becomes an active processor and is 

connected to the cycle of active processors. This is done using soft switches. The structure of the 

2-dimensional binary hypercube is now re-established. After the restructuring has been completed, 

the processor immediately to the right of the faulty one in the cycle of active processors, takes over 

the task of the faulty one. This processor's task will be taken over in turn by the active processor 

immediately to its right. This process is repeated until the newly activated processor takes over the 

task of its predecessor. At this point, the reconfiguration is completed and the binary hypercube 

can resume its regular operation. 

As an example of the reconfiguration process, consider a fault-tolerant module with 3 spare 

processors in a 3-dimensional binary hypercube as shown in Figures 3-2 through 3-4. If processor 

3 fails, the switch of level 0 that connects to processor 3 and a l l  the switches to the right of it are 

switched to the right. Processor 3 is disconnected from the cycle of active processors and the fist 

spare processor (5) is added to it. Processor 4 assumes processor 3's previous role in the cycle and 

processor 5 takes the previous role of processor 4. The new connections are shown in Figure 3-2. 

Figure 3.3 shows the structure as further modified after processor 1 fails and is replaced. Figure 

3.4 shows the result of processor 5 subsequently failing and being replaced. 

3.3. Generalized Scheme for Binary Hypercubes 

The scheme described in Section 3.2 has four active processors in each fault-tolerant module. 

With minor modifications to the scheme, the number of active processors in a fault-tolerant module 

can be any value 2m where d 2 m 2 0. 

In Section 3.2, we showed how to use Type A or Type B switching networks to connect one 

module of four active processors and k spares to another. The same technique can be used to 
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Figure 3-2: Connections after processor 3 has become faulty 
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Figure 3-3: Connections after processor 1 has become faulty 

connect modules with different numbers of active processors. In fact, a Type A or Type B 

switching network can be used to connect a module of 2m active processors and k spares to another 

identical module for any m 2 0 and m -< d,  provided that the number of incoming communication 

links in the switching network is 2m. Thus, if we can build fault-tolerant modules with 2m active 

processors, we can connect them together as described in Section 3.2 to form a d-dimensional 

binary hypercube. 



level 2 

level 1 

level 0 

Figure 3-4: Connections after processor 5 has become faulty 

In addition to these connections between modules, the processors of each module are also 

connected together. In particular, in Section 3.2, four active processors and k spares are connected 

in a cycle to model a Zdimensional binary hypercube with soft switches being used to bypass both 

faulty and spare processors. These soft switches can be replaced by two groups of either Type A or 

Type B switching networks. Figure 3-5 shows how to use two Type A switching networks to 

connect four active processon and one spare in a fault-tolerant 2-dimensional binary hypercube. 

1 2 3 4 5  1 2 3 4 5  
connect to processors as numbered 

Figure 3-5: Using 2 Type A switching networks to form a 
fault-tolerant 2-dimensional binary hypercube 

The first group is used to connect two neighboring active processors to form two 1-dimensional 

binary hypercubes. This is done by connecting the lSt and 2nd. and the 3" and 4& incoming 

communication links of a Type A or Type B switching network. The second group is used to 

connect these 1-dimensional binary hypercubes to form a Zdimensional binary hypercube by 



connecting the IS' incoming communication link to the 3rd and connecting the 2"d to the 4". This 

scheme can be extended to modules with more than four active processors or with more than one 

spare. For example, a module with eight active processors and k spares can be built by using three 

groups of either Type A or Type B switching networks. Figure 3-6 shows how to use three Type A 

switching networks to construct a fault-tolerant 3-dimensional binary hypercube with eight active 

processors and one spare. The first group is used to connect pairs of processors together to form 

1--1 

1 2 3 4 5 6 7 8 9  
connect to processors as numbered 

Figure 3-6: Using 3 Type A switching networks to form a 
fault-tolerant 3-dimensional binary hypercube 

1-dimensional binary hypercubes. This can be done by connecting the lSt and 2nd, 3rd and 4h, 5" 

and 6&, and the 7' and 8& incoming links of the fim group of Type A switching network. The 

four 1-dimensional binary hypercubes formed are then connected in pairs, creating two 2- 

dimensional binary hypercubes using the second group of Type A switching networks. This is 

done by connecting the lSt and 3rd, 2nd and 4&, 5h and 7&, and the 6" and 8& incoming links to 

form two 2-dimensional binary hypercubes. Finally, the lSt and 5&, 2nd and 6h, 3rd and 7&, and 

the 4& and 8" incoming links for the third group are connected to form a 3-dimensional binary 

hypercube. With the three groups of Type A switching networks, a fault-tolerant module with 8 

active processors can be built. 
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The group of switching networks used to connect pairs of processors together to form 1- 

dimensional binary hypercubes can be replaced by connecting processor i to i + l ,  where 

1 I i <  n+k-1 and n=2d. Initially, the 1-dimensional binary hypercubes are formed by the 

connection between processor 1 and 2, processor 3 and 4, processor 5 and 6, and processor 7 and 8. 

When a processor fails, it is bypassed using soft switches. The 1-dimensional binary hypercubes 

are then formed by the pairs of connected non-faulty processors. For example, if processor 6 has 

failed, the 1-dimensional binary hypercubes are processor 1 and 2, processor 3 and 4, processor 5 

and 7, and processor 8 and 9. These connections between the processors not only provide 

connections to form the 1-dimensional binary hypercubes, they can provide fast context switching 

during reconfiguring as described in Chapter 2. They can also enable the non-faulty processor to 

the right of the failed one to detect the failure and initiate the reconfiguring process. 

To construct a fault-tolerant module with 2m active processors for a d-dimensional binary 

hypercube, d- 1 groups of k level decoupling networks are used. The first m- 1 groups together 

with the connection between consecutive processors are used to form an m-dimensional binary 

hypercube within the fault-tolerant module, using one group for each dimension except for the first 

dimension. For the group that is used for dimension i, the j incoming link is comecbed to the 

(j+2'-')~' link if ((j- 1) mod 2') < 2j-I and to the (j-2j-I)s' link, otherwise. Together with the 

m-1 groups of either Type A or Type B switching networks and the connections between 

consecutive processors, each fault-tolerant module becomes an m-dimensional binary hypercube. 

The other Type A or Type B switching networks are used to connect the fault-tolerant module to 

other identical modules to form the d-dimensional binary hypercube as described in Section 3.2. 

The reconfiguration for this scheme is as described in Chapter 2. 

3.4. Reliability 

We explicitly consider only processor failures. If required, l i i  failures can be covered by 

duplicating the switching networks. Other types of failures can be accounted for by a coverage 

factor [17]. If reconfiguration fails due to these types of failures, the entire system is considered to 

be mconfigurable. 



Let c be the coverage factor, k be the number of spares per module, d be the dimension of the 

binary hypercube, m be the dimension of a module, and r be the reliability of a single processor. In 

each functioning fault-tolerant module, at least 2m processors must be non-faulty. We use RM, 
to denote the reliability of a module with 2" active processors and k spares. The reliability of a 

non-redundant module, RM, o, is r2"'. 

Using the same procedure as in Chapter 2, for arbitrary k, 

2"'+k- 1 RMmgk = R M , , , ~ - ~ + (  k ) r 2 m ( ~ - r ) k c k .  

The reliability estimate RSd,  for a d-dimensional binary hypercube with 2m active processors 

and k spares in each module, is simply the product of the reliabilities of all of the fault-tolerant 

modules. 

RS4,  = (RM, k)2d-m. 

3.5. Global Sparing 

In Section 3.3, we generalized the construction of Section 3.2. In this section, we consider the 

network constructed when m=d, that is, wher? the mere hypxw?x is a single fault-toierant 

module. We use the term global sparing to denote this special case. Using global sparing, a system 

with k spares can tolerate any k faults in the binary hypercube. This is clearly optimal in terms of 

the number of faults that a network can tolerate with k spares. 

The reliability RSd,d, of a d-dimensional binary hypercube with k spares using global sparing is 

given by RSd ,= r2d and 
* 9 

2d+k-1 2d 
RS4d,k=RSd,d,k-I+( k ) r  ( l - r ) k ~ k *  

In order to compare our scheme with Rennels' hierarchical scheme, we assume that the reliability 

of a single processor is r=  e-Xt where h is the failure rate of a processor over time t (see [17]) .  

Although Rennels does not calculate system reliability for his schemes, the system reliability of 

his basic scheme RBdPm for a d-dimensional binary hypercube with zd-* subcubes each of size 2m 



is [ ; - " + ~ ~ r ~ ~ ( l  -r) c ]~~-" .  Furthermore, the system reliability of his hierarchical scheme can be 

calculated as follows. For a d-dimensional binary hypercube, Ld/21 levels of sparing are used. A 

level one cluster consists of 5 processors, one of which is used as a spare. A level two cluster 

consists of 5 level one clusters, one of which is used as a spare cluster. In general, a level i cluster 

is made up of 5 level i-1 clusters, one of which is used as a spare. Let Ri denote the reliability of a 
4  

level i cluster. The probability that the spare is used in a level one cluster is (1)r3(1-r), so 

4  R1 = r + c (1) r (1 - r) . Let Fi denote the pmbability that a level i cluster is faulty, that is when at 

least two level i- 1 clusters within the level i cluster are faulty. The probability that at least two 

processors in a level one cluster are faulty is the sum of the probabilities that exactly two, three, 

four or five processors are faulty. The probability that exactly i processors in a level one cluster are 
5 

faulty is (i) r5-i(l-r)i for 2 I i I 5. Thus, the probability that a level one cluster is faulty is 

= ( )  ( 1  - r). Since a recovery must be done in order to reconfigure the system after each 

processor fails, the coverage factor c should be included with each (1-r) term. Thus, 
4 4 4  F = ( )  r5i(l-r)ici.  The reliability of a single level two cluster is R2=R1+(l) R1 F 

In general, we see that 

In Table 3-1, the number of spares required for global sparing to obtain approximately the same 

level of reliability as Rennels' basic scheme using m=3 is given for 4 I d I 10, with t=0.05 and 

c= 1. In Table 3-2, the same values are given for our scheme and for Rennels' hierarchical scheme 

with t= 1. With these values of t, the reliability for both schemes is still very high. It is clear that 

global sparing can achieve the same level of reliability as either of Rennels' schemes using only a 

fraction of the spares. Similar results hold for other times t I 1 and other values of c. In fact, for 

smaller c, even fewer spares are required. This is illustrated by Figure 3-7 in which the reliabilities 

of Rennel's hierarchical scheme with 369 spares and our scheme with 43 spares for n=8 are 

plotted for c= 1 and for c = 0.98. 



Switches 

Chau 

Reliability No. of Spares 

Chau Rennels 

0.9983 

0.9965 

0.9930 

0.9861 

0.9724 

0.9455 

0.8940 

Chau Rennels 

Table 3-1: Number of spares required for Rennels' basic scheme and our scheme 
to achieve the same level of reliability at time t=0.05 and c= 1 

No. of Spares Switches Reliability 

Rennels Chau Chau Rennels Chau 

Table 3-2: Number of spares required for Rennels' hierarchical scheme and 
our scheme to achieve the same level of reliability at time t= 1 and c= 1 

The number of decoupling networks required in our scheme depends on the number of spares k, 

the dimension of each fault-tolerant module m, the dimension of the binary hypercube d, and the 

type of switching network used. For a d-dimensional binary hypercube with k spare processors in 

each fault-tolerant module with 2m active processors, every module must be connected to d-m 

other modules so each module requires (d-m) switching networks to connect to the other modules. 

Furthermore, m- 1 switching networks are required to provide connections within the fault-tolerant 
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Figure 3-7: System reliability of Rennels' scheme with 369 
spares and our scheme with 43 spares for n= 8 

module. This gives a total of 2d-m(d- 1) switching networks for there are 2d-m fault-tolerant 

modules in a d-dimensional binary hypercube. The number of switches in a decoupling network 
. - 

depends on the types of the network. Let r1=2~,  I= rlog2k+ 11 and k = x i ~ i  ai2' where the ai9s  

are either 0 or 1. From Section 2.5, each Type B switching network has n l+ z:: : iai2' switches. 

If Type B switching networks are used, the total number of switches in the switching networks is 

~ ~ - ~ ( d - l ) ( n l + ~ ~ ~ :  iai2'). An additional 2(n+k-1) switches are required to connect 

consecutive processors together. Hence, the total number of switches required for the connections 

is 2 d - m ( d - l ) ( n l + ~ ~ ~ :  iai2')+2(n+k-1). From Section 2.4, each Type A switching network 

has (2n+k- 1) k/2 switches. If Type A switching networks are used, the total number of switches 

required is 2d-m-1 (d- 1)(2 n+ k- l)k+2 (n+ k- 1). Since the number of switches required for a 

Type B switching network is a lot less than a Type A switching network, the figures given below 

all assume that Type B switching networks are used. 

We assume a switch can be implemented by approximately ten gates. From Table 3-1, we see 

that a 7-dimensional binary hypercube constructed by our scheme using only 3 spare processors 



achieves a higher level of reliability than a similar network constructed by Rennels' basic scheme 

using 16 spare processors. Our scheme requires approximately 18,000 gates to implement the 

necessary decoupling networks. Since a single processor can be implemented with roughly 20,000 

gates [l7], the additional hardware required for our scheme is approximately 3% of the total 

hardware requirement for a non-redundant 7-dimensional binary hypercube. Using Rennels' basic 

scheme to construct a 7-dimensional binary hypercube, one spare is added to each group of 8 active 

processors. Each spare requires two additional crossbar switches. Without counting the extra 

hardware required for the cross-bar switches, the 16 spares already amounts to approximately 12% 

of the total hardware of a non-redundant 7-dimensional binary hypercube. We see that the amount 

of extra hardware required by our scheme to achieve the same reliability level is much less than 

that used by Rennels' basic scheme. 

Similarly, our scheme requires less additional hardware to achieve the same reliability level as 

Rennels' hierarchical scheme. For example, Table 3-2 shows that a 7-dimensional binary 

hypercube constructed by our global sparing scheme using only 21 spare processors achieves a 

higher level of reliability than Rennels' hierarchical scheme using 122 spare processors. Using 

calculations similar to the above, our scheme uses extra hardware which is roughly 20% of the total 

hardware requirement while Rennels' hierarchical scheme uses at least 95% additional hardware. 

Let us compare the hardware requirements of the global sparing scheme with those of the 

modular scheme with two modules. We assume that a processor can be implemented with 20,000 

gates [17] and that a switch can be implemented with 10 gates. Table 3-3 shows the amount of 

hardware required to implement a fault-tolerant d-dimensional binary hypercube (4 I d I 10) with 

reliability of at least 0.98 at t=0.1 using each of the schemes. The table shows the number of 

spares required for each scheme, the reliability achieved, and the amount of hardware needed. The 

amount of hardware is measured in "processor equivalents", that is, the total number of gates 

divided by 20,000. 

From the values in Table 3-3, we observe that global sparing requires less hardware than the 

scheme with two modules, for d l  10. This is also true for different values of t and for different 



No. of Spares 

Modular Global 

Extra Hardware Reliability 

Modular Global 

0.9878 

0.9953 

0.9954 

0.9893 

0.983 1 

0.9830 

0.98 1 1 

Table 3-3: Extra hardware required for global sparing and modular sparing with 2 
fault-tolerant modules having a reliability of at least 0.98 at t=0.1 and c= 1 

reliability requirements. With global sparing, the number of spares (hence, the number of 

switches) required to achieve a given reliability for small values of d is small. Due to 

computational difficulties, we have not calculated the same values for d 2 11 . For d 2 11, the 

modular scheme using two modules may use less hardware since the number of switches required 

by the global scheme increases rapidly as the number of spares increases. In spite of the fact that 

the number of spares required by the globd scheme remains srnaiIer than the number required for 

the modular scheme, the saving in the spares may not be able to offset the rapid increase in the 

number of switches. 

We have calculated these same values for modular schemes with 4, 8, and 16 modules and the 

results are listed in Table 3-4. The total hardware required for these schemes is greater than that 

for the two module scheme for d S 10. As above, these schemes require many more spares to 

achieve a given level of reliability and the additional spares require larger numbers of switches. 

Similar results are observed when these same values are calculated for different values of t and for 

different reliability requirements. In fact, global sparing is seen to be better than modular for any 

d < 10 when either a smaller value of t or a higher reliability requirement is used. In summary, 

global sparing seems to be preferable when the dimension of the hypercube is d I 10. 



No. of Spares Extra Hardware Reliability 

Table 3-4: Extra hardware required for modular sparing with 4, 8, and 16, 
fault-tolerant modules having a reliability of at least 0.98 at t=O.l and c= 1 



Chapter 4 

Binary Tree Architecture 

4.1. Introduction 

In this chapter, a new fault-tolerant binary tree architecture using either Type A or Type B 

switching networks, is proposed. In particular, we are concerned with processor failures and do not 

consider the possibility of link and switch failures. The new scheme uses k spare processors that 

can be used to replace any k faulty processors in the network. Using fewer spare processors, this 

global sparing scheme has higher reliability than other proposed fault-tolerant binary tree 

architectures. In Section 4.2, we propose the new fault-tolerant scheme for binary trees which is 

extended in Section 4.3 for m-ary trees. In Section 4.4, we compare both the hardware cost and 

reliability of our scheme with those of other proposed schemes. Finally, in Section 4.5 we compare 

the hardware costs of global sparing and modular sparing. 

4.2. New Fault-Tolerant Scheme For Binary Trees 

A fault-tolerant binary tree can be constructed by using either Type A or Type B switching 

networks to connect the processors together to form a binary tree. Three groups of either Type A 

or Type B switching networks are used to connect the processors together. The first group is used 

to connect each processor to its parent. The second, and the third group are used to connect the 

processors to their left and right children, respectively. For a binary tree with d levels, we number 

the initially active processors in level order from 1 to 2d-1 and the spare processors from 2d to 

2d- 1 +k. That is, the processors are numbered from left to right in each level from the root down 

For a d-level binary tree, the first group of switching networks has 2d- 1 incoming links and the 

processors are connected to its out-going links. For the second and third groups, only 2d-1-1 

incoming links are necessary and only the first 2d-1 - 1 + k processors are connected to the out- 



going links. The i th incoming link of the second group (which connects a processor to its left 

child,) is connected to incoming link 2 i of the first group. The i rh incoming link of the third group 

(which connects a processor to its right child,) is connected to incoming link 2i+ 1 of the first 

group. Finally, the first incoming link of the first group is connected to an external link that 

provides input to or accepts output from the root of the tree. The connections between the three 

groups of decoupliig networks forming a Type A switching network, and those between the 

decoupling networks and the processors for a 3-level binary tree with 1 spare are shown in Figure 

1 2 3 4  

Figure 4-1: A fault-tolerant 3-level binary tree with 1 spare 

connections to 

When a processor fails, each of the three groups of decoupliig networks must be reconfigured to 

remove the faulty processor, activate a spare processor and reassign tasks among the active 

processors. In order to provide fast context switching and distributed reconfiguration, consecutive 

processors are connected together as described in Section 2.6. That is, processor i is connected to 

processor i- 1 for 1 < i S 2d- 1 +k. Soft switches are used in these connections to bypass faulty 

processors. The reconfiguring process for a fault-tolerant binary tree is the same as described in 

Chapter 2 except that all three switching networks used in the connection must be reconfrgured 

simultaneously. 
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As an example of the reconfiguration process, consider a fault-tolerant 3-level binary tree with 2 

spares using Type A switching networks for the connections. The initial configuration is shown in 

Figure 4-2. If processor 3 fails, the links that connect processor 3 in level 0 of the decoupling 

networks and all the links to the right of them are switched to the right. Processor 3 is disconnected 

from the incoming communication link to the three decoupling networks. Processor i takes over 

the task of processor i-1 , for i=4, ... ,8. Figure 4-3 shows the connections in the binary tree after 

processor 3 has failed. Figure 4-4 shows the structure as further modified after processor 7 fails 

and is replaced. 

connect to processors as numbered 

1 2 3 4 5  

Figure 4-2: A 2-fault-tolerant 3-level binary tree 



connect to processors as numbered #+ 
- 

Figure 4-3: Connections in the fault-tolerant 3-level binary tree 
with 2 spares after processor 3 has become faulty 

4.3. Extension to m-ary Trees 

In the previous section, three groups of Type A or Type B switching networks are required for a 

d-level binary tree with k spares. The first group is used to connect processors to their parents 

while the second and the third group are used to connect the processors to their left and right 

children, respectively. The same scheme can be extended to construct an m-ary tree. We number 

the children of each processor in an m-ary tree 1, 2, ..., m from left to right. For an m-ary tree, 

m+ 1 groups of either Type A or Type B switching networks are used. As before, the first group 

connects processors to their parents. Each of the remaining m groups is used to connect the 

processors to.their j th children where 1 5 j I m . 

m d-m 
Similarly to the d-level binary ~ e e ,  the first group has +1 incoming links and each of the 



-- 
Figure 4-4: Connections in the fault-tolerant 3-level binary tree 

with 2 spares after processors 3 and 7 have failed 

processors in the network is connected to the appropriate out-going link. For the other groups, only 
rnd-1-m md-1-m 

m- 1 +1 incoming links are necessary and only the first m-l +k+l processors are 

connected to its out-going links. The i th incoming link of the j+ 1 St group (which is used to 

connect a processor to its j th son,) is connected to the (im+l)-(m-j)fi incoming link of the first 

group. As before, the first link of the first group is connected to an external link which provides 

input to or accepts output from the root of the tree. The connections between the four groups of 

switching networks and those between the switching networks and the processors of a 2-level 3-ary 

tree with 1 spare, are shown in Figure 4-5. 



connect to processors connections to the connections to the connections to the 
as numbered first son second son third son 

Figure 4-5: A fault-tolerant 2-level 3-ary tree with 1 spare 

4.4. Comparison with Previous Schemes 

The fault-tolerant d-level binary tree constructed using our scheme contains 2d-1 active 

processors and k spares. In our reliability analysis, we consider only processor failure. Other types 

of failures may be accounted for by the coverage factor [17]. If reconfiguration fails due to these 

failures, the entire system is considered to be unreconfigurable. 

Let c be the coverage factor, k be the number of spares, d be the level of the binary tree, n = id- 1, 

and r be the reliability of a single pmcessor. We define the reliability R4 of our fault-tolerant 

d-level binary tree scheme with k spares to be the probability that the particular d-level binary tree 

structure remains intact. The reliability RdV0 of a d level non-redundant binary tree is equal to rn 

since the failure of any single processor destroys the binary tree structure. For arbitrary k, the 

reliability R4 can be obtained using the same procedure as described in Section 2.3. 

The comparison of our scheme with the previously proposed scheme is done assuming that the 

reliability of a single processor is r=e-k where h is the failure rate of a processor over time t. 

Given that r=e-k, the reliability of an d-level binary tree using our scheme with k spare processors 

is 



In Figures 4-6 and 4-7, the system reliabilities of an 8-level full binary tree using Singh's scheme, 

Howells and Agarwal's scheme, Lowrie and Fuchs's SOFT scheme and our scheme are plotted for 

h= 0.1 with c= 1 and c = 0.95, respectively. The number of spares used by each scheme is slightly 

different. For Lowrie and Fuchs's scheme, 64 spares (the maximum allowable) are used. Since the 

only accurate reliability equation given in their paper is for a 4-level tree, the reliability values used 

in the figures are approximate and have been obtained by averaging the upper and lower bounds 

that they give for their scheme. The lower bound, given in their paper, is the reliability of a 

modular tree where each module has three active processors and one spare. The upper bound is the 

reliability of a modular tree where each module has three active processors and two spares. This 

upper bound (suggested by Howells and Agarwal[9]), is justified because at most two failures can 

be tolerated for a node and its two children. With Singh's scheme, 127 spares are used which gives 

one spare to each module. This number is the smallest possible number of spares for his scheme 

and is already twice as many spares as used by Lowrie and Fuchs's scheme. For Howells and 

Aganval's scheme, 48 spares are used. The entire 8-level binary tree is split into a 4-level subtree 

containing the root and sixteen 4-level non-root subtrees. The subtree containing the root is 

assumed to be implemented using Lowrie and Fuchs's SOFT approach with the spares provided by 

the non-root subtrees. The 48 spares are divided equally among the sixteen subtrees so that three 

spares are allocated to each non-root subtree. With this number of spares, Howells and Agarwal's 

scheme is more reliable than the other two schemes. With our scheme, 25 spares are sufficient to 

achieve a higher reliability than the other schemes. 

For the range of t shown in Figures 4-6 and 4-7, our curves always lie above the curves of the 

other schemes even though our scheme uses fewer spares. At various points in the range 1 < t I 2 

there are crossover points where the reliability of the new scheme drops below that of the other 

schemes. This must occur eventually since the other schemes use many more spares than our 

scheme. However, our scheme can achieve a higher level of reliability than the other schemes 

using only a fraction of the spares that are used when t l 1. Intuitively, our scheme is more 

reliable since it treats the entire binary tree as a single fault-tolerant module, that is a system with 

only k spares can tolerate any k faults in the binary tree. Thus, it is more flexible in its use of 
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Figure 4-7: System reliabilities of the four schemes 
for an 8-level binary tree using c= 0.95 

spares than the other schemes and is optimal in terms of the number of processor failures that a 

network can tolerate. 



We have also calculated the reliabilities obtained by our scheme and by Mowells and Agarwal's 

scheme for an 8-level binary tree with ~ ~ 0 . 9 5  and c = l  when both schemes use 48 spares 

(approximately 20% of the number of active processors). In this comparison, our scheme achieves 

a higher reliability over the range 0 < t 5 2.5. The same result is obtained when we compare our 

scheme and that of Lowrie and Fuchs's (with 64 spares each) and when comparing our scheme 

with Singh's (with 127 spares each). 

The hardware requirements of the different schemes are discussed in terms of two measurements - 
the number of spares and the number of switches. A clear comparison can be made with the 

number of spares required since the hardware required for a spare processor is the same for all the 

schemes. The complexity of the switches used by various schemes differs considerably and, thus, 

simply counting them is not sufficient. For example, the switches used in our scheme are simpler 

than those used in either Lowrie and Fuchs's scheme or in Howells and Agarwal's scheme. 

In order to construct a d-level fault-tolerant binary tree, three groups of switching networks are 

required. The first one has 2d- 1 incoming links and 2d+ k- 1 outgoing l i i .  The other two have 

2d- ' - 1 incoming links and 2d- l +  k- 1 outgoing links. From the calculations given in Section 

2.4, a Type A switching network has (2 n+ k- 1) kj2 switches. If Type A switches are used, the 

total number of switches required is k(2(2d- - 1)+ k-1)+ k/2 (2 (2d- 1) + k-1)+2 (2d+ k-2) 

= k(2df 2+3 k-9) +2 (2d+ k-2), where 2 (2d+ k-2) is the number of soft switches required to 

connect consecutive processors together. Let l= rlog2(k+ 111 and k=$;k iai l i ,  where the ai 's 

are either 0 or 1. From the calculations given in Section 2.5, a Type B switching network has 

( n l + ~ ? - '  r = l  iai2j) switches. If Type B switching networks are used, the total number of switches 

required for our scheme is 2 ~ ( 2 ~ -  - 1) + 1(2d- I)+ 3 ~f:: i~~2 '+2(2~-2) .  Since a Type B 

switching network uses a lot less switches than a Type A switching network, the comparisons given 

below assume that Type B switching networks are used. 

In Table 4-1, the number of spares and switches required for our scheme to obtain approximately 

the same level of reliability as Lowrie and Fuchs's scheme is shown for 4 I d l  12, with t=0.2 
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Table 4-1: Hardware requirements for Lowrie and Fuch's SOFT scheme 
and our new scheme to achieve the same level of reliability at r=0.2 

No. of Spares ( No. of Switches Reliability 
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3 304 

4 624 

6 1264 

9 2544 

14 5 104 
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42 20464 
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0.9957 

0.9956 

0.9893 

0.9828 

0.9608 

0.8965 

0.7392 

0.5803 

0.3282 

Singh Singh 

Table 4-2: Hardware requirements for Singh's scheme and our new 
scheme to achieve the same level of reliability at r=0.2 

and c = l .  Tables 4-2 and 4-3 compare our scheme to Singh's scheme and to Howells and 

Agarwal's scheme, respectively. It can be seen that for 4 1 d 1 12, our scheme uses only a 

fraction of the spares used by the other schemes. For d 2 8, our scheme uses roughly 10% of the 



spares required by the other schemes and this percentage decreases as d increases. For smaller 

values of d, the percentage is somewhat higher but the improvement is still significant. Ford I 10, 

the number of switches required is roughly the same as the other schemes. The number of switches 

does increase more rapidly for our scheme than Lowrie and Fuch's scheme, and Singh's scheme 

when d 2 10. However, the savings in the number of spares when d 2 10 should offset this 

increase. For Howells and Agarwal's scheme, the number of switches increases even more rapidly 

than our scheme for d 2 10. Thus, the hardware requirement for our scheme is no more than for 

the other proposed schemes for 4 I d I 12. 

No. of Spares 
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No. of Switches 
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Reliability 
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0.9957 

0.9956 

0.9580 

0.8803 

. - 
0.9926 

0.9800 

0.9920 

0.98 18 

0.9767 

TabIe 4-3: Hardware requirements for Howell and Agarwal's scheme and our 
new scheme to achieve the same level of reliability at t=0.2 

Table 4-4 lists the number of spares required for our scheme to achieve a reliability of at least 

0.98 at time t=0.4 for 4 I d I 11. It also lists the same values for Howells and Agarwal's scheme 

to achieve a reliability of at least 0.98. If a reliability of 0.98 is not achievable, the reliability of 

having 100% spares for the sub-trees are listed. The values in Table 4-1, Table 4-2, and Table 4-4 

show that our scheme can achieve higher reliability for a longer period of time when d is large. 

Thus, it is more suitable for long-life unmaintained systems than the other proposed schemes for 

binary trees with a large d. 



No. of Spares 
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Table 4-4: Hardware requirements for Howell and Agarwal's scheme and our 
new scheme to achieve a reliability of at least 0.98 at t=0.4 

4.5. Modular Sparing 

It may not be possible to implement an entire binary tree on a single chip. We could use Howells 

and Agarwal's scheme to split the binary tree into subtrees with one subtree containing the root. 

Each subtree could then be placed on its own chip. The global sparing scheme described in Section 

4.2 can be applied to each of the subtrees with additional switching networks used to connect the 

leaf nodes of the mot's subtree to the roots of the other subtrees. When a spare processor is used to 

replace a failed active processor in the root's subtree, the leaf nodes of the root's subtree will still 

be connected to the appropriate roots of the rest of the subtrees. 

The connection between the leaf nodes of the root's subtree and the roots of the rest of the 

subtrees can be constructed using two groups of switching networks. Let f be the number of leaf 

nodes in the root's subtree and k be the number of spare processor in the root's subtree. Both 

groups have f incoming links and f+k outgoing l i i .  For the first group, the f incoming links are 

connected to the left children of the leaf node of the root's subtree. For the second group, the f 

incoming links are connected to the right children. The outgoing links of both groups are 

connected to the leaf nodes and the spare processors of the root's subtree. The reconfiguration for 

this scheme is the same as described in Chapter 2. 



Let p=rd/21 level and q=L-j/2J. Assume that we split up a d-level binary tree into a mot's 

subtree of one p level and 2P q level subtrees. Each subtree has k spare processors. Using the 

same procedure as described in Section 2.3, the reliability of a fault-tolerant binary tree constructed 

using the modular scheme is 

The number of switches required for this scheme is the sum of the number of switches required to 

implement a p level biiary tree, the number of switches required to implement 2P q level binary 

trees, and the number of switches required to implement two switching networks with f incoming 

links and f+ k outgoing links. The total number of switches required is 2 /(V-l- 1) + l(2P- 1) 

3 r = 1 2 +2(2p+k-2) +~(21(2 '7-~-1)  +1(2q-1) +3~:1f.=: iai2' +2(2q+k-2)) 

No. of Spares 

Modular Global 

Extra Hardware 

Modular 

8 .O 

16.1 

24.1 

48.2 

64.6 

161.1 

193.8 

45 1.6 

Global 

Reliability 

Modular Global 

Table 4-5: The amount of extra hardware required to achieve the same level 
of reliability for the modular and for the global scheme at t=0.4 

In Table 4-5, the amount of extra hardware required to achieve the same level of reliability using 

modular sparing by splitting an d level biiary tree into one p level subtree containing the root and 

2P  q level subtrees and using global sparing is shown. The amount of hardware is given in 

"processor equivalents", that is the total number of gates divided by 20,000. Each switch is 



assumed to be implemented with 10 gates. The values given in Table 4-5 show that global sparing 

can achieve the same level of reliability as modular sparing with less hardware. Thus, if possible, 

global sparing should be used instead of modular sparing. Furthermore, the values also show that 

the extra hardware required to implement the switching network is small compared with the 

hardware required to implement the active processors. 



Chapter 5 ' 

Cube-Connected-Cycles Architecture 

5.1. Introduction 

- As described in Section 1.2.3, a cube-connected cycles (CCC) network consist of n=h2d 

processors with h 2 d. In this chapter, a fault-tolerant CCC architecture is proposed. The proposed 

scheme uses fault-tolerant modules as building blocks to realize a CCC. In our construction, we 

add spare processors to each cycle of the CCC so that each cycle is a fault-tolerant module. A 

module with k spares can tolerate up to k faults. Using the same number of spares, the new scheme 

is more reliable than Banerjee's schemes [2]. The new modular scheme can also be extended to a 

global sparing scheme where the entire CCC can be regarded as a single fault-tolerant module. 

That is, the k spare processors in the network can be used to replace any of the active processors in 

the ~etwcrk. Wit! global sparing, it is possibie to achieve the same level of reliability as modular 

sparing while using significantly fewer spares. In Section 5.2, we propose the new modular 

scheme for CCC which is extended in Section 5.5 such that the entire cube-connected-cycles can be 

regard as a single fault-tolerant module. In Section 5.3, we present the reliability estimate of the 

new modular scheme. In Section 5.4, we compare the reliability of the new modular scheme with 

other proposed schemes. In Section 5.6, we compare the reliability and hardware costs of the new 

global sparing scheme with those of the new modular sparing scheme. 

5.2. New Fault-Tolerant Scheme for Cube-Connected-Cycles 

A fault-tolerant CCC can be constructed by connecting fault-tolerant cycle modules together. For 

a CCC of 2d cycles where each cycle has h processors, the fault-tolerant CCC consists of 2d 

fault-tolerant cycle modules. Each fault-tolerant cycle module has h active processors and k spares, 

where k 2 1 .  



The h active processors and k spares of a module are connected together to form a cycle. Since 

only h processors are active at any given time, spare processors and faulty ones are bypassed using 

soft switches in the cycle as shown in Figure 5-1. These fault-tolerant cycles are connected 

together to form a fault-tolerant CCC. 

The connections between the fault-tolerant cycle modules are realized by using either a Type A or 

a Type B switching network such that only active processors in the cycle are connected to other 

cycles. The reconfiguration process is as described in Chapter 2. In addition, the faulty processor 

must also be disconnected through the use of soft switches from the cycle while the spare processor 

immediately to the right of the rightmost active processor becomes an active processor and is 

connected to the cycle. 

soft' switches 

Figure 5-1: A fault-tolerant cycle with k spares 

5.3. Reliability Estimate of the Scheme 

The fault-tolerant CCC constructed using our modular sparing scheme is a fault-tolerant system 

consisting of a series of homogeneous subsystems. Each subsystem is a fault-tolerant cycle with h 

active processors and k spare ones. In our reliability analysis, we consider only processor failure. 

Other types of failures are accounted for by the coverage factor [17]. If reconfiguration fails due to 

the above failures, the entire system is considered to be unreconfigurable. We first give a 

reliability analysis of a fault-tolerant cycle. 

Let c be the coverage factor, k be the number of spares per cycle, h be the number of active 



processor in a cycle, and r be the reliability of a single processor. In each fault-tolerant cycle, at 

least h processors must be working. The reliability of a non-redundant cycle RCo is equal to rh.  

Using the same procedure as described in Chapter 2, for arbitrary k, 
h+k-1 h R C ~ = R C ~ - ~ + (  k ) r  ( ~ - r ) ~ c ~ .  

If the failure rate of a processor is a constant h, the reliability of a single processor is r=e-k. 

The reliability of a single module for arbitrary k is 
h+k-1 R C ~  = R C ~ - ~ + (  ) (e-9h(l-e-qkck. 

Finally, the reliability estimate RSd h,k of a CCC with 2d cycles, h active processors and k spare 

ones in each cycle, is the product of the reliabilities of a l l  the fault-tolerant cycles. 

RSd, h, = (R~k)2d- 

5.4. Comparison with Previous Schemes 

The reliability of a system depends on the number of redundant processors being added. 

Although system reliability is not directly proportional to the number of spare processors, the 

amount of extra hardware does affect the reliability of a system. If the coverage factor is very close 

to one, a higher number of spare processors implies higher reliability. Therefore, we will only 

compare reliabiity for systems that use the same number of spare processors. We will compare the 

system reliability of our scheme with Banejee's basic and modular schemes. The equation to 

calculate the reliability of Banerjee's basic scheme [2] is 

d h 2 ' ~ h  (!)rh-i(l-r)ici. Rk,=trh)' +2 ( r )  i=1 

Let g be the number of processors in a module for Banejee's modular scheme and assume that 

h=ig where i  and g are integers. The reliability of a fault-tolerant cycle using Banerjee's modular 

. scheme [2] is 

Rcycle= (rg+grg(l-r)c)i. 

The reliability of the entire network is 

Rvs = ( ~ ~ ~ ~ l ~ ) ~  



Using h=0.1, c= 1 and k= 1, Figure 5-2 shows the system reliability of Rane jee's basic scheme 

and our scheme for fault-tolerant CCC with d= 3 and h= 8, and d= 5 and h= 32. 

New scheme ' 

d = 3  
Banerjee's basic scheme - - - - - - 
New scheme 

Reliability 

0.04 0.08 0.12 0.16 0.20 Time 

Figure 5-2: Comparing system reliability of Banerjee's basic scheme and 
our scheme with d= 3 and h= 8, and d=5 and h= 32 

Similarly, using h=0.1, c = l ,  k=2 and g=h/2, Figure 5-3 shows the system reliability of 

Bane jee's modular scheme and our scheme for fault-tolerant CCC with d=5 and h=6, and d= 6 

and h= 8. Figures 5-2 and 5-3 show that our scheme has higher reliability than Bane jee's scheme 

when the same number of spares are used. 

Each fault-tolerant cycle requires only one switching network and there are 2d fault-tolerant 

cycles. Thus, the entire network has 2d switching networks, Assuming that Type A switching 

networks are used, the total number of switches required is 2d-1 (2h+ k- 1) k. A switch can be 

implemented with approximately ten gates. For a cube-connected cycle with h=4 and d=3 which 

has 32 active processors, with 2 spare processors in each fault-tolerant cycle, that is 16 spares for 



New scheme 
d = 5  Banerjee's modular scheme - - - - - - 

New scheme 

t Banerjee's modular scheme - - - - - - 
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Figure 5-3: Comparing system reliability of Bane rjee's modular scheme using 
g=h/2  and our scheme withd=5 and h = 6 ,  and d=6 and h=8 

the entire system, the additional hardware required will be approximately 360 gates. If Type B 

switching networks are used instead of Type A switching networks, the total number of switches 

used will be even less. A single processor can be implemented with roughly 20,000 gates. The 

amount of extra hardware required is minimal for our scheme. 

5.5. Global Sparing for Cube-Connected Cycles 

The new fault-tolerance scheme described in Section 5.2 requires that each fault-tolerant module 

must be a cycle. With minor modifications to the scheme, the entire CCC can be a fault-tolerant 

module. That is, we can have global sparing where the k spares in the network can back up any k 

faults. 

In Section 5.2, each module must be a cycle. The fault-tolerant cycles are connected together 

through the use of switching networks. The same interconnection technique used to connect fault- 



tolerant cycles together can be applied to connect processors together to form a cycle. The 

connection of processors into cycles can be realized by at most three groups of switching networks. 

For example, for a cycle with four processors, two switching ,networks are sufficient to connect the 

processors in a cycle as shown in Figure 5-4. This is done by connecting the lSt and 2nd, and the 

31d and 4" incoming communication links of the first switching network. The second group is 

used to connect the 2nd incoming communication link to the 31d and connecting the lSt to the 4fh. 

Using the two switching networks, processors 1, 

extended to cycles with any number of processors. 

2, 3 and 4 form a cycle. This scheme can be 

connections to the processors as indicated by the number 

Figure 5-4: Using 2 Type A switching networb to connect 
4 processors together to form a cycle 

We now describe how to connect any number of processors together to form cycles. For even h, 

two groups of either Type A or Type B switching networks are required. We number the incoming 

links to the switching network from 1 to h2d. For the first group, the i incoming link is 

connected to the i+ 1 St incoming link if i is odd. For the second group, the i St incoming link is 

connected to the i+ 1 St incoming link if i is even and i f 0 mod h.  If i = 0 mod h then it is 

connected to the (i-h+ 1) St link. 

For odd h, three groups of either Type A or Type B switching networks are required. For the first 

group, the i " incoming link is connected to the i+ 1 St incoming link if i mod h is odd. For the 

second group, the i rh incoming link is connected to the i+ 1 st incoming link if i mod h is even and 

is not equal to zero. For the third group, the i h  incoming link is connected to the i+h-lst 

incoming link if i 5 1 mod h .  These connections will connect the processors into 2d cycles with h 



processors in each cycle. For example, in Figure 5-5, processors 1 to 5 and processors 6 to 10 are 

connected as cycles through the three switching networks. 

- - - - ' first group 

. .  b . . \ . . .  
\ \ \ \ \ \ \ \ \ \  
\ \ \ \ \ \ \ \ \ \  I 

I 

- - - - second group 

connect to processors as numbered 

Figure 5-5: Connecting 10 processors into 2 cycles with 5 
processors each using 3 switching networks 

After the processors are connected to form cycles, one more switching network is required to 

connect all the cycles together to form a CCC. Let i = j mod h .  For this switching network, the i th 

incoming link, if it is not already connected to another incoming link, is connected to the (2j-l h) 

incoming link where 1 I j I d .  In addition to the switching networks, consecutive processors are 

connected together as in Chapter 2 to provide fast context switching and distributed 

- reconfiguration. Finally, the reconfiguration for this global sparing scheme is exactly the same as 

. the one using a cycle as a fault-tolerant module. 

A CCC with d=2, h=4 and 1 spare for the entire network is shown in Figure 5-6. Three Type A 

or Type B switching networks afe required. The first two are used to create the connection for the 

four cycles and the third is used to connect the cycles together to form the fault-tolerant CCC. 



connect to processors as numbered 

Figure 5-6: A fault-tolerant CCC with 
d= 2, h =4 and 1 spare for the entire network 

5.6. Comparing Global Sparing with other Proposed Schemes 

Let c be the coverage factor, k be the number of spares for the entire CCC, and r be the reliability 

of a single processor. Using the same procedure as described in Section 2.3, the reliability RGk of 

a fault-tolerant CCC with 2d cycles each has h active processors and k spare processors using 

global sparing is 

h2d+k-l h2d R G ~ = R G ~ - ~ + (  k ) r  (I-rlkck. 

Although any fixed reliability, say 0.999, may not be achievable due to the coverage factor c [17], 

global sparing achieves the highest reliability possible. In Table 5-1, the number of spares required 

for global sparing to obtain the same level of reliability as Banerjee's modular scheme with t=0.1 

and c = l ,  is given for 2 <  d l  8, g=2 and h=d if d is even or h=d+l  if d is odd. From the 



values given in Table 5-1, it is clear that global sparing can achieve the same level of reliability as 

Banerjee's modular scheme or our modular scheme using only a fraction of the spares used by 

those schemes. 

No. of Spares Reliability 

Bane rjee 

8 

16 

32 

64 

128 

256 

512 

Global B anerjee Global 

Table 5-1: The number of spares required to achieve the same level of 
system reliability for Banerjee's modular sparing scheme and the 

global sparing scheme using h= 0.1 , t= 0.1 , c = 1 
and h=d if d is even or h=d+ 1 if d is odd 

,.- 

Fcr even d, thze g m p s  ~f switchiiig neiw~ikS are required to construct the fault-tolerant cube- 

connected-cycles. For odd d, four group are required. Let 1 = log2 k+ 1 and k = ~ i l i  ai2', where 

the ai9s are either 0 or 1. From Section 2.5, each Type B switching network has n l + ~ f . i :  iai2' 

switches. Hence, if Type B switching networks are used for the construction and d is even, the 

total number of switches required is 3 (2dhl+%;: iai2i)+2(2dh+ k- 1). If d is odd, the total 

number of switches required is 4 ( 2 d h l + ~ i ~ :  iai2i)+2(2dh+ k- 1). 

We assume that a processor can be implemented with 20,000 gates [17] and a switch can be 

implemented with 10 gates. In Table 5-2, the number of spares and the amount of extra hardware 

required for global sparing to obtain the same level of reliability as the modular scheme using a 

cycle as a fault-tolerant module with t = 0.1 and c = 1 is given for 2 I d I 8, h = d and 2 spares per 

module. The amount of extra hardware is given in "processor equivalents", that is, the total 

number of gates divided by 20,000. The values in Table 5-2 shows that the amount of hardware 
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used for the connection is least for the modular scheme. It also indicates that global sparing can 

achieve higher reliability than modular sparing while using a lot less extra hardware. 
- -- 

No. of Spares 

Modular Global 

Extra Hardware 

Modular Global 

Reliability 

Modular Global 

Table 5-2: The number of spares required to achieve the same level of 
system reliability for the new modular sparing scheme and the 

global sparing scheme at t=0.2 and h =d 



Chapter 6 

Multistage Interconnection Networks 

6.1. Introduction 

As described in Section 1.2.4, a multistage interconnection network (MIN) architecture can be 

characterized as having n=2m processors connected together by m stages of switching elements. 

In this chapter, a new fault-tolerant multistage interconnection network architecture that can 

tolerate processor failures as well as connection failures is proposed. The proposed scheme can 

provide coverage either for processor failures or for both processor and connection failures. 

Furthermore, other previously proposed schemes could be used to provide coverage for connection 

failures while the new scheme is used to provide coverage for processor failures. Our new scheme 

can be used to incorporate k spare processors in the network which can tolerate any k processor 

failures. In comast, Jeng a ~ d  Siegel's OR scheme c a ~  only tolerate a single processor failure or 

very limited instances of multiple failures for the entire network (or for a given module) if more 

than one spare processor is used. 

In Section 6.2 a new fault-tolerant scheme for multistage interconnection network architecture is 

proposed which uses the switching networks described in Chapter 2. In Section 6.3, we compare 

the reliability of our scheme with that of Jeng and Siegel's DR scheme. The scheme is extended in 

Section 6.4 to cover both processor failures and switching element failures. In Section 6.5, the 

extended scheme is compared to Jeng and Siegel's DR scheme. Finally, the hardware requirements 

for variants of our scheme are discussed in Section 6.6. 



6.2. New Fault-Tolerant Scheme For Multistage Interconnection 
Networks 

In this section we propose a new scheme that provides coverage for processor failures. A 

multistage interconnection network or a fault-tolerant multistage interconnection network that can 

tolerate switching element failures and link failures, can be realized by different kinds of 

interconnections [I]. The new scheme can be applied to almost all of the previously proposed 

non-fault-tolerant or fault-tolerant interconnection schemes. 

A multistage interconnection network can be characterized as having n=2m processors connected 

together by log2n stages of switching elements as shown in Figure 6-1. If we only consider 

processor failures, a fault-tolerant MIN functions properly when its input and output links are all 

connected to non-faulty processors. When a processor fails, if we can disconnect it from the input 

and output links of the h4IN and reconnect the links to a new non-faulty processor, the MIN will 

function properly. This can be done by inserting either Type A or Type B switching networks 

between the processors and the m stages of switching elements as shown in Figure 6-2. 

connections to the processors as numbered 

- - - 
n m 

Figure 6-1: A multistage interconnection network 

We construct a k fault-tolerant MIN with n active processors and k spare processors using two 

groups of either Type A or Type B switching networks. One group is used to connect the input 

links of the stages of switching elements to the processors while the other group connects the 

output links of the stages of switching elements to the processors. These two switching networks 

log n stages of 
switching elements 

- 

- - 
C 

n 



log n stages of 

switching elements 

switching networks 

C 

* 
- - - - - - 

- T 
* 

connections to the links 
processors as numbered 

Figure 6-2: A fault-tolerant multistage interconnection network 

are used to replace faulty processors with spare ones if required. We number the processors from 1 

to n+ k such that processor i is connected to processor i-1 , where 1 c i I n+ k. Soft switches are 

used to bypass faulty processors as described in Section 2.6. When a processor fails, the 

reconfiguring process described in Chapter 2 is initiated. With our scheme, no extra control 

information is needed for the fault-tolerant MIN to function properly. The fault-tolerant MIN can 

operate as if it is a non-redundant MIN and no modification to the routing is required. Hence, our 

scheme is more adaptable than other schemes such as the DR network which requires additional 

routing tags to be added. 

6.3. Reliability Estimation of the Scheme 

The fault-tolerant MIN constructed using our scheme contains n active processors and k spares. 

In analyzing its reliability, we consider only processor failure. The failure of switching elements 

can be covered by other proposed methods [I]. Let c be the coverage factor, k be the number of 

spares processors in the MIN, n be the number of active processors in the MIN, s be the reliability 

of a single switching element, w be the reliability of a row of switches used in the DR network, 

sO=snI2 be the reliability of a stage of switching elements in a MIN with no spare switching 

element, r be the reliability of a single processor and m= log2n. The reliability of a non-redundant 

MIN Ro is rns;. 



Using the same calculations as in Section 2.3, for arbitrary k, 

m n+k-1 
Rk= Rk-l+So ( k ) rn( l -r )kck.  

Jeng and Siege1 [ lo]  showed that the optimal number of spares in a DR network is one in that no 

further improvement in reliability can be achieved with more spares. However, with our scheme, 

the optimal number of spares depends on the value c and is much larger than one. Thus, our 

scheme can achieve higher reliability than Jeng and Siegel's scheme by using multiple spares. In 

fact, our scheme with only two spares provides higher reliability than Jeng and Siegel's DR 

network when n 2 200 and r=0.99 even though our scheme only provides coverage for processor 

failures. 

Lemma 1: Assuming that w 2 r and c= 1 ,  our scheme with two spares has a higher 

reliability than the DR network with one spare processor and one extra row of switching 
2f 

elements when n > =- 1 .  

Proof: As shown in [ lo] ,  the reliability of the DR network with one spare is 

(rw)"+(n+ l)(rw)"(l-rw).  

The reliability of our scheme w i a  t w  s p m s  is 

We now show that (2) > (1). 

Since $ = (sf l )*  2 w ", we can divide ( 1 )  by (rw)" and (2) by rns;. 

Since w 2 r ,  ( 1  -r) 2 ( 1  -w). Thus, we can divide the RHS by ( 1  -w) and the LHS by 

( 1  -r) and simplify both sides further. 
LHS=(n+ 1)(1-r)/2. 
RHS=r. 

Putting n on the LHS. 
LHS=n. 



Thus, the LHS is greater than the RHS. 0 

According to this lemma, for low values of r (such as 0.9) our scheme using two spares and no 

switching element coverage is more reliable than the DR network with one spare processor and one 

spare row of switching elements when n 2 18. For higher values of r, the value of n has to be 

higher for our scheme to be more reliable than the DR network. For example, when r= 0.99, n 

must be greater than 198. However, when directly comparing the computed reliabilities of both 

schemes, our scheme with two spare processors actually achieves higher reliability for smaller n 

and larger r since some of the cancellations in the proof of the Lemma are biased towards Jeng and 

Siegel's scheme. 

Let r=e -q t  and s=e-%' [17] where kp is the failure rate of a processor over time t and ks is the 

failure rate of a switching element over time t [17]. Table 6-1 shows the system reliability of Jeng 

and Siegel's scheme with one spare processor and one spare row of switching elements, and the 

system reliability of our scheme with two spare processors with $=O.l and h,=0.01. According 

to these figures, our scheme is better for r S 0.99 when n 2 32 and for r in the range 

0.99 I r I 0.999, our scheme is better for n 2 512. Our scheme can achieve even higher system 

reliability with more than two spare processors and by adding other proposed schemes to cover 

switching element failures. Thus, our scheme should be able to achieve higher reliability than the 

DR networks for smaller n and larger r. 

6.4. Extension to Cover Switching Element Failures 

In Section 6.2, switching networks are used to provide coverage for processor failures. The same 

technique can also be applied' to provide coverage for switching element failures on a variety of 

MINs such as the generalized cube, the omega network, the shuffle exchange network and the 

baseline network. In this section, we show how the technique can be applied to cover switching 

element failures in shuffle exchange networks. Figure 6-3 shows a shuffle exchange network with 

eight processors. A shuffle exchange network has the nice property that the connections between 



System Reliability 
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0.9996 

0.9988 

0.9968 

0.9920 

0.9809 

0.9559 

0.9006 

0.7820 

0.5484 

0.2151 

0.0192 

Chau 

Table 6-1: The system reliability of Jeng and Siegel's DR scheme 
and our new scheme with k=2 

any two stages of the switching elements are exactly the same. Hence, we only have to show how 

the technique can be used between any two stages. Figure 6-4 shows the connection between two 

stages of switching elements in a shuffle exchange network with 8 active processors and one spare 

switching element in each stage. 

Fault-tolerance in the switching elements can be provided by inserting four groups of switching 

networks between two stages of switching elements. In this case, the switching networks serve to 

collect the outputs from the active switching elements in stage i and direct them to the active 

switching elements in stage i+  1. Collecting the outputs from the active switching elements in 

stage i is done by the first and second group of switching networks, the first one dealing with the 

first output of each switching element and the second one dealing with the second output of each 

switching element. Similarly, the third and fourth groups of switching networks are used to direct 

these outputs to the inputs of the active switching elements of stage i+ 1 - the third group for the 



switching elements 

stage 0 stage 1 stage 2  

Figure 6-3: A shuffle exchange network with 8 processors 

connections to switching elements in stage i 

1 2 3 4 5  1 2 3 4 5  

1 2 3 4 5  1 2 3 4 5  

connections to switching elements in stage i+l 

second group 

fourth group 

Figure 6-4: The connection between 4 groups of switching networks 

first inputs and the fourth group for the second inputs of the switching elements. The standard 

shuffle exchange interconnection is used to connect these four groups of switching networks. In 

general, for a shuffle exchange network with n processors, the i fh output link of the first group of 



switching network is connected to the (2i- input link of the third group if 2i I n/2. Otherwise, 

it is connected to the (2i- 1 -n/2)h input link of the fourth group. Similarly, the i th output link of 

the second group is connected to the 2i th input link of the third group if 2i 5 n/2. Otherwise, it is 

connected to the (2i-n12)~ input link of the fourth group. 

Between the processors and the switching elements, two additional groups of switching networks 

are required to provide coverage for stage 0 and the last stage. The first group connects the first 

input or output links of the switching elements to the processors depending on whether it is the first 

or the last stage and the second group connects the second input or output links. The connections 

between the processors and the two groups of switching networks are similar to the connections 

between the four groups of switching networks for any two stages. The i th link of the first group is 

connected to the (2i- processor and the i th link of the second group is connected to the 2i th 

processor. With these switching networks and f spare switching elements in each stage, each stage 

of switching elements can tolerate up to f switching element failures. Furthermore, the shuffle 

exchange MIN can tolerate up to k processor failures using the scheme described in Section 6.2. 

This technique can clearly be applied to other types of MIN's besides the shuffleexchange 

networks and no additional control information is required by the fault-tolerant MIN. 

6.5. Reliability of the Extended Scheme 

The fault-tolerant MIN constructed using our extended scheme can tolerate both processor 

failures and switching element failures. In our analysis, we do not consider the failures in the 

switching networks. However, these failures can be covered by duplicating the switching 

networks. 

Consider a MIN with n active processors and k spares, n switching elements and f spare switching 

elements in each stage of switching elements. Let c be the coverage factor, m= log2n be the 

number of stages of switching elements, s be the reliability of a switching element, and r be the 

reliability of a single processor. The reliability Po of n processors with no spare is rn .  The 

reliability So of a stage of non-redundant switching elements is snf2.  The reliability Rope of a 



non-redundant MIN is P ~ s ~ .  Using the the same procedure as described in Section 2.3, the 

reliability Rt is given by 

Rk = ~ $ 7  
where 

pk = ck L = O  (n+f-l)rn(l-r)ici 

and 

f ("2tf-1 4 2  1 ici sf=Z,=o , )s - . 

Assuming that the switching elements used in the DR network and our scheme have the same 

reliability, and Xp=O.l and h,=0.01, the system reliabilities of both schemes with one spare 

processor and one switching element per stage are listed in Table 6-2. The values show that our 

scheme is at least as good as the DR network when t is small and is better for larger t. 

System Reliability 

Chau Chau Chau 

Table 6-2: The system reliability of Jeng and Siegel's DR scheme and our new 
scheme with one spare processor and one spare switching element per stage 



In general, the amount of extra hardware used in our scheme is k spare processors, f logzn spare 

switching elements and 410g2n groups of switching networks. With k=f=l,  each group of 

switching network has n/2 switches. The total number of extra switches used in our scheme is 

2nlog2n. For Jeng and Siegel's DR scheme with k=f= 1, the number of extra links required is 

(n+3)log2n. Thus, our scheme uses slightly more extra hardware than Jeng and Siegel's DR 

scheme but our scheme can achieve higher reliability using the same number of spare processors 

and spare switching elements. Furthermore, with k > 1 and f > 1, our scheme can provide multiple 

fault coverage for processors and switching elements. In fact, with k spare processors, our scheme 

can tolerate any k processor failures. Similarly, with f spare switching elements in each stage, our 

scheme can tolerate any f switching element failures in any stage. 

Table 6-3 lists the system reliability of MINs using different values for k and f with hp=O.l and 

hs=O.O1 at t=0.01 and t=0.1. The values clearly show that significant improvement can be 

achieved by using more than one spare processor and one spare switching element per stage. For a 

MIN with 4,096 processors, the reliability at t=0.01 can be improved from 0.08455 for a MIN 

with 1 spare processor and 1 spare switching element per stage to 0.99 by using 9 spare processors 

and 9 spare switching elemems per stagc. 

Table 6-4 shows the number of spare processors and the number of spare switching elements per 

stage required to achieve a reliability of at least 0.98 at t=0.01 and t=0.1 for different values of n. 

The values in Table 6-4 shows that our scheme can provide high reliability for MDTs with large 

numbers of processon and for a longer period of time compared to other proposed schemes by 

incorporating more than one spare processor and more than one spare switching element per stage. 

The reliability that can be achieved by our scheme is only restricted by the value of the coverage 

factor c [17]. Hence, our scheme with multiple spare processors and multiple spare switching 

elements is well-suited for use in long-life unmaintained applications. 



System Reliability 

Table 6-3: The system reliability of our new schezne with different values of k and f 

6.6. Modular Sparing 

For a MIN with a large number of processors, it may not be feasible to implement an entire MIN 

on a single chip. It may be necessary to split up the MIN into smaller modules and connect these 

modules together to form the MIN. Our new schemes can be applied to each module. 

Let g be the number of modules, rn be the number of active processors in a module, k be the 

number of spare processors in each module, Z= rlog2k+ 11, and k = ~ : i :  ai2' where the ai 's are 

either 0 or 1. The number of switching networks required to provide processor failure coverage 

depends on the number of module used. Each module requires 2 switching networks. Hence, 2g 

switching networks are required. Since a Type B switching network has a lot less switches than a 

Type A switching network, we assume that the fault-tolerant MINs are implemented using Type B 

switching networks. From Section 2.5, a Type B switching network has ( n l c ~ ; ~ :  - inizi) 



Reliability 
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1.0000 

1.0000 

0.9999 

0.9995 

0.9980 

0.9923 

0.9977 

0.9846 

0.9959 

0.9815 

0.9905 

Reliability 

Chau 

Table 6-4: The number of spare processors, k, and spare switching element, 
f, per stage required to achieve a reliability of at least 0.98 

switches. The total number of switches required to implement a fault-tolerant MIN is 

2g(ml+g1: - iai2i)+2g(m+k-l), where 2g(m+k-1) is the number of switches required to 

connect consecutive processors together in each module. 

Let d= log2n and f be the number of spare switching elements in each module. For the extended 

scheme, each module requires 4d switching networks. The total number of switches required to 

implement all the switching network is 4 g d ( l m ~ + ~ : ~ :  - ioi2{). An additional 2g(m+ k- 1) 

switches are required to connect the consecutive switching elements together. The total switches 

required for the extended scheme is the sum of the number of switches given above together with 

the number required to provide coverage for processor failures. The total number of switches 

required for the extended scheme is (4gd+2g)(ml+~:~: - iai2i) + 2g(m+k-1) + 2gd(m+f-1). 

For the scheme that provides coverage for processor failures only, the amount of extra hardware 



required for modular sparing is always greater than that of global sparing. In Table 6-5, the amount 

of extra hardware required to achieve the same level of reliability for global sparing and for 

modular sparing with 2 and 4 modules respectively at t=0.01 is shown. The amount of extra 

hardware required is given in "processor equivalents", that is the total number of gates divided by 

20,000, and each switch is assumed to be implemented with 10 gates. The values clearly shown 

that global sparing is better for n I 4096. 

No. of Spares Extra Hardware 

Global 

1 

1 

1 

1 

2 

3 

4 

5 

7 

9 

13 

Global Global 

0.9996 

0.9988 

0.9967 

0.9915 

0.9809 

0.9562 

0.9027 

0.7942 

0.5993 

0.3242 

0.0856 

Reliability 

Table 6-5: Extra hardware required for global sparing and modular sparing 
with 2, and 4 modules having the same level of reliability at t=0.01 and c= 1 

For the extended scheme, the situation is more complicated due to the small size of a switching 

element. That is, the savings in the number of spare switching elements for global sparing cannot 

offset the extra number of switches required. Table 6-6 and Table 6-7 list the same values as in 

Table 6-5 using the extended scheme for t=0.01 and t=0.1, respectively, where a switching 

element is assumed to be implemented with 100 gates. The values show that it is better to split the 

MIN into more modules as n increases. 



No. of Spares 

Global 

Extra Hardware 

Global Global 

1 .m 
1 .m 
0.9999 

0.9995 

0.9980 

0.9923 

0.9977 

0.9846 
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0.9905 

Reliability 

rable 6-6: Extra hardware required for global sparing and 
modular sparing using the extended scheme at t=0.01 and c= I 



No. of Spares 

Global 

82 

Extra Hardware 

Global Global 

Reliability 

Table 6-7: Extra hardware required for global sparing and 
modular sparing using the extended scheme at t= 0.1 and c = 1 



Chapter 7 

Conclusion 

Two types of switching networks and a scheme for constructing fault-tolerant multi-computer 

networks using these switching networks to interconnect the processors have been proposed. The 

scheme can be applied to several types of multi-computer network architectures with only minor 

modifications. With our scheme, we can provide global sparing in which the network is 

k-fault-tolerant with only k spares. This is clearly optimal in terms of spares required to achieve 

k-fault-tolerance. Our global sparing scheme compares favorably with other proposed schemes for 

multi-computer networks. It can achieve higher reliability than the other proposed schemes using 

no more extra hardware. In most cases, it only uses a fraction of the extra hardware required by the 

other schemes to achieve the same level of reliability as the other schemes. Furthermore, the 

amount of extra hardware used is small compared to the hardware requirements of a non-redundant 

network. 

If a network is too large to be implemented as a single fault-tolerant module, a modular approach 

can be used using the same technique. In most architectures where the number of switches 

required to implement the network is small, global sparing can achieve the same level of reliability 

as modular sparing using only a fraction of the extra hardware used for modular sparing. However, 

for architectures that require a large number of switches in the connection, the result is not as clear. 

In particular, modular sparing may be better when the network has a large number of active 

promssors. 

A fault-tolerant multi-computer network constructed using our new scheme functions as if it was 

a non-redundant network. No extra control information is needed to ensure the fault-tolerant 

network bctions properly. When a processor fails, the reconfiguring process can be initiated 



distributively. Fast context switching is also provided to speed up reconfiguration. These 

properties together with the ability to provide a high level of reliability for a long period of time 

make our scheme suitable for long-life unrnaintained applications. 
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