
Fault-Tolerance in Multi-Computer Networks

by

CHAU, Siu-Cheung

B.Ed., University of Lethbridge, 1983
M.Sc., Simon Fraser University, 1984

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy
in the School

of
Computing Science

O CHAU, Siu-Cheung 1989

SIMON FRASER UNIVERSITY

August 1989

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Siu-Cheung Chau

Degree: Doctor of Philosophy

Title of Thesis: Fault-Tolerance in Multi-Computer Networks

Dr. Pavol Hell, h a i m G

Dr. Artnur L. Liestman, Senior Supervisor

Er. J s ph Peters, Supervisor v

Dr. Ramesh ~rishnamurti, Supervisor

Dr. Frank Ruskey, ExtemAl Examiner

Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Univers i ty the r i g h t t o lend

my thesis, proJect o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Univers i ty Library, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r o ther educational i n s t i t u t i o n , on

i t s own behalf o r f o r one of I t s users. I fu r ther agree t h a t permission

f o r mu l t i p l e copying of t h i s work f o r scholar ly purposes may be granted

by me o r the Dean o f Graduate Studies. i t i s understood t h a t copying

o r pub l i ca t ion o f t h i s work f o r f i nanc ia l gain sha l l not be allowed

without my wr i t t en permission.

T i t l e o f Thes i s/Project/Extended Essay

Fault-Tolerance i n Mult i-Computer Networks.

Author: - --

(signature)

S iu-Cheung Chau

Abstract

Multi-computers connected in various architectures are now commercially available and are being

used for a variety of applications. Some of the most commonly used architectures are the binary

hypercube, the binary tree, cube-connected cycles, the mesh, and multistage interconnection

networks. All of these architectures have the major drawback that a single processor or edge

failure may render the entire network unusable if the algorithm running on the network requires

that the topology of the network is maintained. The failure of a single processor or a link between

two processors would destroy the topology of these architectures. Thus, some form of fault-

tolerance must be incorporated into these architectures in order to make the network of processors

more reliable.

While several fault-tolerance schemes have been proposed for specific architectures, these

schemes are not general enough to provide fault-tolerance for other architectures. The goal of this

thesis is to provide a more general approach that can be applied to several of these multi-computer

network architectures with only minor modifications.

A general scheme for constructing fault-tolerant multi-computer networks is proposed which uses

switching networks to inter-connect the processors of the network. Two such switching networks

are described in the thesis. The scheme can be used to provide k fault-tolerance with k spare

processors. It compares favorably with other proposed schemes for fault-tolerant multi-computer

networks, achieving higher reliability while using at most the same amount of extra hardware.

A fault-tolerant multi-computer network constructed using the proposed scheme functions as if it

was a non-redundant network. No extra control information is needed to ensure the fault-tolerant

network functions properly. When a processor fails, the reconfiguring process can be initiated

distributively. Fast context switching is provided to speed up reconfiguration. These properties

iii

together with the ability to provide high level of reliability for a long period of time make our

scheme suitable for long-life unmaintained applications.

To my wife L i y and my daughter Lilian

Table of Contents

Approval
Abstract
Dedication
Table of Contents
1. Introduction and Related Work

1.1. Introduction
1.2. Related Work

1.2.1. Binary Hypercube
1.2.2. Binary Tree
1.2.3. Cube-Connected Cycles
1.2.4. Multistage Interconnection Networks

2. A General Fault-Tolerant Scheme for Multi-Computer Networks
2.1. Introduction
2.2. Using Switching Networks to Construct Fault-Tolerant Networks
2.3. Estimation of the Reliability of the Scheme
2.4. Type A Switching Network Design
2.5. Type B Switching Network Design
2.6. Distributed Reconfiguration

3. Binary Hypercube Architecture
3.1. Introduction
3.2. Fault-Tolerant Scheme For Binary Hypercubes
3.3. Generalized Scheme for Binary Hypercubes
3.4. Reliability
3.5. Global Sparing

4. Binary Tree Architecture
4.1. Introduction
4.2. New Fault-Tolerant Scheme For Binary Trees
4.3. Extension to m-ary Trees
4.4. Comparison with Previous Schemes
4.5. Modular Sparing

5. Cube-Connected-Cycles Architecture
5.1. Introduction
5.2. New Fault-Tolerant Scheme for Cube-Connected-Cycles
5.3. Reliability Estimate of the Scheme
5.4. Comparison with Previous Schemes
5.5. Global Sparing for Cube-Connected Cycles
5.6. Comparing Global Sparing with other Proposed Schemes

ii
iii
v
vi
1

1
2
2
3
5
6

9
9

10
15
16
2 1
26

30
30
3 1
32
36
37

44
44
44
47
49
55

5 8
58
58
59
60
62
65

6. Multistage Interconnection Networks
6.1. Introduction
6.2. New Fault-Tolerant Scheme For Multistage Interconnection Networks
6.3. Reliability Estimation of the Scheme
6.4. Extension to Cover Switching Element Failures
6.5. Reliability of the Extended Scheme
6.6. Modular Sparing

7. Conclusion
References

vii

List of Tables

Table 3-1:

Table 3-2:

Table 3-3:

Table 3-4:

Table 4-1:

Table 4-2:

Table 4-3:

Table 4-4:

Table 4-5:

Table 5-1:

Table 5-2:

Table 6-1:

Table 6-2:

Table 6-3:
Table 6-4:

Table 6-5:

Table 6-6:

Table 6-7:

Number of spares required for Rennels' basic scheme and our scheme to
achieve the same level of reliability at time t= 0.05 and c = 1
Number of spares required for Rennels' hierarchical scheme and our scheme
to achieve the same level of reliability at time t= 1 and c= 1
Extra hardware required for global sparing and modular sparing with 2 fault-
tolerant modules having a reliability of at least 0.98 at t= 0.1 and c = 1
Extra hardware required for modular sparing with 4, 8, and 16 fault-tolerant
modules having a reliability of at least 0.98 at t=0.1 and c= 1
Hardware requirements for Lowrie and Fuch's SOFT scheme and our new
scheme to achieve the same level of reliability at t=0.2
Hardware requirements for Singh's scheme and our new scheme to achieve
the same level of reliability at t=0.2
Hardware requirements for Howell and Agarwal's scheme and our new
scheme to achieve the same level of reliability at t=0.2
Hardware requirements for Howell and Agarwal's scheme and our new
scheme to achieve a reliability of at least 0.98 at t=0.4
The amount of extra hardware required to achieve the same level of
reliability for the modular and for the global scheme at t=0.4
The number of spares required to achieve the same level of system reliability
for Bane rjee's modular sparing scheme and the global sparing scheme using
h=O.l, t=0.1, c= 1 and h=d if d is even or h=d+ 1 if d is odd
The number of spares required to achieve the same level of system reliability
for the new modular sparing scheme and the global sparing scheme at t=0.2
and h=d
The system reliability of Jeng and Siegel's DR scheme and our new scheme
with k=2
The system reliability of Jeng and Siegel's DR scheme and our new scheme
with one spare processor and one spare switching element per stage
The system reliability of our new scheme with different values of k and f
The number of spare processors, k, and spare switching element, f, per stage
required to achieve a reliability of at least 0.98
Extra hardware required for global sparing and modular sparing with 2, and
4 modules having the same level of reliability at t=0.01 and c= 1
Extra hardware required for global sparing and modular sparing using the
extended scheme at t=0.01 and c= 1
Extra hardware required for global sparing and modular sparing using the
extended scheme at t= 0.1 and c= 1

viii

List of Figures

Figure 1-1: A 3-dimensional binary hypercube
Figure 1-2: A cube-connected cycles with h =4 and d = 2
Figure 1-3: A shuffle exchange network with 8 processors
Figure 2-1: A switching network with n incoming links and n+k outgoing links
Figure 2-2: Using switching networks to connect two fault-tolerant modules
Figure 2-3: Using direct connection to construct a fault-tolerant cycle of six processors
Figure 2-4: Connecting a cycle with 6 active processors and 1 spare processor using

two switching networks
Figure 2-5: Connecting a network with two cycles of six processors and two spare

processors using three switching networks
Figure 2-6: 3 decoupling networks arranged in 3 levels
Figure 2-7: Connections after processor 3 has failed
Figure 2-8: Connections after processor 1 and 3 have failed
Figure 2-9: Connections after processor 1,3 and 7 have failed
Figure 2-10: Connections after processor 3 has become faulty
Figure 2-11: Connections after processor 3 and 7 have become faulty
Figure 2-12: Connections after processor 1 ,3 and 7 have become faulty
Figure 2-13: For n=8 and k = 4 , some switches do not have to be switchable
Figure 2-14: Connections between the processors
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:

Figure 3-6:

Figure 3-7:

Figure 4-1:
Figure 4-2:
Figure 4-3:

Figure 4-4:

Figure 4-5:
Figure 4-6:

Figure 4-7:

Figure 5-1:
Figure 5-2:

A fault-tolerant module with k spares
Connections after processor 3 has become faulty
Connections after processor 1 has become faulty
Connections after processor 5 has become faulty
Using 2 Type A switching networks to form a fault-tolerant 2-dimensional
binary hypercube
Using 3 Type A switching networks to form a fault-tolerant 3-dimensional
binary hypercube
System reliability of Rennels' scheme with 369 spares and our scheme with
43 spares for n= 8
A fault-tolerant 3-level binary tree with 1 spare
A 2-fault-tolerant 3-level binary tree
Connections in the fault-tolerant 3-level binary tree with 2 spares after
processor 3 has become faulty
Connections in the fault-tolerant 3-level binary tree with 2 spares after
processors 3 and 7 have failed
A fault-tolerant 2-level 3-ary tree with 1 spare
System reliabilities of the four schemes for an 8-level binary tree using
c= 1
System reliabilities of the four schemes for an 8-level binary tree using
c=0.95
A fault-tolerant cycle with k spares
Comparing system reliability of Bane jee's basic scheme and our scheme
with d=3 and h=8, and d=5 and h=32

Figure 5-3:

Figure 5-4:

Figure 5-5:

Figure 5-6:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:

Comparing system reliability of Banerjee's modular scheme using g=h/2 62
and our scheme with d=5 and h= 6, and d= 6 and h= 8
Using 2 Type A switching networks to connect 4 processors together to 63
form a cycle
Connecting 10 processors into 2 cycles with 5 processors each using 3 64
switching networks
A fault-tolerant CCC with d=2, h = 4 and 1 spare for the entire network 65
A multistage interconnection network 69
A fault-tolerant multistage interconnection network 70
A shuffle exchange network with 8 processors 74
The connection between 4 groups of switching networks 74

Chapter 1

Introduction and Related Work

1.1. Introduction

Multi-computers connected in various architectures are now commercially available and are being

used for a variety of applications. Some of the most commonly used architectures are the binary

hypercube, binary tree, cube-connected cycles, mesh, and multistage interconnection networks. All

of these architectures have the major drawback that a single processor or edge failure may render

the entire network unusable if the algorithm xunning on the network requires that the topology of

the network does not change. The failure of a single processor or the failure of a l i i between two

processors would destroy the topology of these architectures. Thus, some form of fault-tolerance

must be incorporated into these architectures in order to make the network of processors more

reliable.

Several fault-tolerance schemes have been proposed which can only be applied to a particular

architecture. These proposed schemes are not general enough to provide fault-tolerance for any

architecture. The goal of this thesis is to propose a more general fault-tolerant approach that can be

applied to several of these multi-computer network architectures with only minor modifications.

This scheme described in Chapter 2, provides higher reliability than the previously proposed

schemes using at most the same amount of hardware. The scheme also allows distributed

reconfiguration. Chapters 3 through 6 describe how the scheme can be used to produce fault-

tolerant versions of particular topologies. Chapter 3 shows how the scheme can be applied to

binary hypercubes. Chapter 4 describes how to apply the scheme to binary trees. Chapter 5

describes how to apply the scheme to cube-connected cycles networks. Chapter 6 show hows the

scheme can be applied to multistage interconnection networks. Finally, Chapter 7 is a brief

summary of the results.

1.2. Related Work

1.2.1. Binary Hypercube

A d-dimensional binary hypercube contains n=zd processors with each processor connected to d

other processors. Each processor can be represented by a d-tuple (bd- ..., bo) where the bi 's are

either 0 or 1. Two processors are connected together if their tuples differ in exactly one position.

Figure 1-1 shows a 3-dimensional binary hypercube with each processor in the hypercube being

labeled by its 3-tuple.

0,LO lJ,O

Figure 1-1: A 3-dimensional binary hypercube

Hastad, Leighton and Newman [8] proposed a scheme that dlows degradation and does not

require the use of redundant spare processors. This scheme includes a distributed reconfiguration

algorithm. With high probability, this algorithm can reconfigure a d-dimensional binary hypercube

to a (d-1)-dimensional binary hypercube provided that processors are faulty with probability

p 9 0.5 and that the faults are independently distributed. However, communication between

neighboring processors in the d-1-dimensional binary hypercube may require routing through other

active or non-active processors. That is, the communication time between "neighboring"

processors in the cube may be increased. Furthermore, there may be congestion since a particular

l i i may be used for communication between many pairs of "neighboring" processors.

Rennels [15] proposed a scheme that uses spare processors for the reconfiguration. For systems

that do not require very high reliability, he proposed a basic scheme which divides a d-dimensional

binary hypercube with 2d processors into 2S subcubes. Each subcube has 2m processors where

d=s+m. A spare processor is used to back up the processors in each subcube. Since the spare

processor may be required to replace any processor in the subcube, the spare processor is connected

to every processor in the subcube and each of their neighbors in the other subcubes. Two crossbar

switches are employed for each spare processor to realize the necessary connections. The first

crossbar has 2m+s inputs and d outputs. The second one has 2m inputs and s outputs. Each

crossbar requires a few thousand gates to implement. Each processor also requires an extra port in

order to connect to the crossbar switches. For long-life unmaintained systems where very high

reliability is required, Rennels proposed a second, hierarchical approach. In this scheme, a spare

processor is hooked up to each subcube of four processors via a high speed bus. The approach is

applied recursively. For example, a spare group of five processors (one spare and four active) is

used to back up four groups of five processors via a high bandwidth bus. This multi-level

redundancy method provides high reliability.
-

In Chapter 3, new fault-tolerant binary hypercube zchitecmres are p r ~ p s e d . h Section 3.1, we

propose a new modular fault-tolerant scheme for binary hypercubes where each module has 4

active processors and k spare processors. The scheme is generalized in Section 3.2 so that each

fault-tolerant module has 2m active processors where 0 I m I d and d is the dimension of the

binary hypercube. In Section 3.3, we calculate the reliability of the proposed scheme. In Section

3.4, we compare the reliability of our generalized scheme with those of previously proposed

schemes.

1.2.2. Binary Tree

Raghavendra, Avizienis and Ercegovac [14] proposed a level oriented scheme which uses one

spare processor per level of the binary tree and can tolerate one fault per level. This scheme uses a

structure which is very similar to the optimal one fault-tolerant binary tree constructed by Kwan

and Toida [ll] . Instead of using direct connections between the spares and the other active

processors, they use two decoupling networks as switches to provide the appropriate connections.

The lower levels of a large tree will have many nodes. In order to increase the reliability of the

lower levels, this level oriented scheme can be applied to modules consisting of k=2' nodes of a

given level. A single spare is provided for each module and the switches in the decoupling

networks are controlled centrally through a host computer that uses the binary tree.

Hassan and Agarwal[7] also proposed a modular scheme for fault-tolerant binary trees. Their

approach uses fault-tolerant modules as building blocks to construct a complete binary tree. Each

fault-tolerant module consists of four processors, three active and one spare. Soft switches provide

connections between the active processors, the spare, and the rest of the tree. A distributed

approach to reconfiguration is used in that the soft switches can be set locally in each module when

failure occurs.

Both the level oriented scheme (with or without modules at the lower level) and the modular

approach provide only one spare per level (or module). Thus, the reliability that can be achieved

by these schemes is insufficient for systems requiring very high reliability. Singh [16] suggested

an improvement to Hassan and Agarwal's modular scheme by allowing the sharing of spares across

module boundaries and allowing more than one spare per module. He showed that his scheme is

best suited for binary trees having 31 to 255 nodes.

For larger binary trees, Howells and Agarwal[9] devised a modular scheme that allows more than

one spare per module. Each module in their scheme is a subtree. For example, a 10-level binary

tree may be split into one 5-level subtree containing the root and 32 5-level subtrees. Each non-

root subtree is a fault-tolerant module with its own spares. Each spare in a module may replace any

active processor in the entire module. Each spare is connected to every processor in the subtree

through direct links to each processor, soft switches, and three buses. Two of these buses are used

to connect to the children of the processor being replaced and the last bus is used to connect to the

parent. This technique cannot be used for the subtree containing the root node since its leaf nodes

must be connected to the root nodes of the other fault-tolerant non-root subtrees. Fortunately, the

subtree containing the root node can employ other schemes to provide fault-tolerance. Besides

improving reliability, both Singh's and Howells and Agarwal's schemes also improve the yield for

binary trees implemented in a single chip.

Lowrie and Fuchs 1121 also proposed a subtree oriented fault-tolerance (SOFT) scheme which

they show to be better than the schemes of Raghavendra, Avizienis and Ercegovac and of Hassan

and Agarwal. In their scheme, up to 2' spares, where 0 I t 5 d-2, are connected to the leaf nodes

of a d-level binary tree. The number of connections between a spare and the leaf nodes depends on

t. An extra link is also used to connect the two children of a non-leaf node together. When a node

becomes faulty, one of its children, s, will take over its task through the use of soft switches. The

task of s will be taken over in turn by one of its children. This process is repeated until a spare

takes over the task of a leaf node. The subtree oriented fault-tolerance scheme can also be

extended to an m-ary tree.

Chapter 4 concentrates on the binary tree architecture. In Section 4.2, we propose a new scheme

for binary trees which is extended in Section 4.3 for m-ary trees. In Section 4.4, we compare the

reliability and hardware costs of our proposed scheme with those of previous schemes. In Section

4.5, we compare both the reliability and hardware costs of variants of our scheme.

1.2.3. Cube-Connected Cycles

Cube-connected cycles, proposed by Preparata and Vuillemin [13], consist of n=h2d processors

with h 2 d . This structure is easily obtained by replacing each vertex of an d-dimensional binary

hypercube with a cycle of h processors, distributing the d edges incident on each vertex of the

hypercube among the vertices of the corresponding h cycles. Figure 1-2 shows a cube connected

cycle with h=4 and d=2.

Banerjee, Kuo and Fuchs [2], and Banerjee [3] proposed two fault-tolerant schemes for cube-

connected cycles. The basic scheme uses one redundant cycle to back up all of the cycles in the

network. In this scheme, an extra port is required for every processor in order to connect the spare

cycle to the rest of the network. For systems requiring higher reliability, they proposed a modular

scheme which provides spares for each cycle and uses a local reconfiguration scheme to tolerate

Figure 1-2: A cube-connected cycles with h=4 and d=2

multiple faults within a cycle. The processors in each cycle are divided into subgroups and a spare

is provided for each subgroup. Soft switches are used to provide connections between the spares

and the rest of the cycle.
.

Chapter 5 presents new fault-tolerant cube-connected cycles architectures. In Section 5.2, we

propose a new modular scheme for cube-connected cycles. This scheme is extended in Section 5.3

so that the entire cube-connected-cycles network can be regarded as a single fault-tolerant module.

In Section 5.4, we calculate the reliability of the proposed schemes. In Section 5.5, we compare

both the reliability and hardware costs of our proposed schemes with those of previous schemes. In

Section 5.6, we compare the two variants of our scheme.

1.2.4. Multistage Interconnection Networks

A multistage interconnection network (MIN) architecture can be characterized as having n=2m

processors connected together by m stages of switching elements such that a processor in a MIN

can be connected to any other processor through the m stages of switching elements. Some of the

common multistage interconnection networks are the shuffle exchange network, the baseline

network, the Omega network and the generalized cube. Figure 1-3 shows a shuffle exchange

network with 8 processors.

switching elements

stage 0 stage 1 stage 2

Figure 1-3: A shuffle exchange network with 8 processors

Most previous work (see [1]) in the area of fault-tolerant multistage interconnection network

architectures has been based on increasing the reliability of the network connections, Ignoring

processing element failures and concentrating only on the switching element failures. For systems

with a large number of processing elements, it is also important to consider processing element

failures in order to achieve high reliability for the entire system. Jeng and Siegel [lo] proposed a

fault-tolerant multistage interconnection network architecture called the Dynamic Redundant (DR)

network that can tolerate processing element failures as well as switching element failures by using

spare processors and switches. The DR network is based on a generalized cube network. A

generalized cube network with n=Zm processors uses log2n stages where each stage consists of n

switching elements connected by n links to the previous stage. The DR network with n active

processors and k spares has the same number of stages, however each stage has n + k switching

elements rather than n. Each stage is connected to the previous stage using 3(n+k) links. A DR

network can tolerate any single processor failure or any single switching element failure. It can, in

fact, tolerate k faults provided that the faults all occur in adjacent rows. Jeng and Siegel show that

a DR network with more than one spare is no better than a DR network with one spare due to the

limited coverage on multiple faults.

In Chapter 6, new multistage interconnection network architectures are proposed. In Section 6.2,

we propose a new fault-tolerant scheme for multistage interconnection networks with k spare

processors which can tolerate any k processor failures. In Section 6.3, we compare our scheme

with Jeng and Siegel's DR scheme. The scheme is extended in Section 6.4 so that it can cover both

processor failures and switching element failures. In Section 6.5, the extended scheme is compared

to Jeng and Siegel's DR scheme. In Section 6.6, we compare the reliability and hardware

requirements of two variants of the extended scheme.

A General Fault-Tolerant Scheme
for Multi-Computer Networks

2.1. Introduction

Our goal is to provide fault-tolerance in a multi-computer network by adding spare processors

which can be used to replace failed processors. In particular, we want to design a method to

connect spare processors to an existing network in such a way that the network topology can be

maintained when a spare processor replaces a failed processor. One obvious approach is to connect

each spare to a l l the processors in the network using large cross-bar switches. This is not feasible

for large networks. In order to overcome this problem, the entire network can be divided into

modules such that each spare is used to back up the processors within a particular module. The

fault-tolerant modules are then connected together to form the network Since a spare c m be used

to back up any processor in the module which may be connected to processors outside of the

module, the spare must be able to connect to those external processors. These connections may be

realized with smaller cross-bar switches. Although large cross-bar switches are not needed in this

scheme, the number of spares required to provide the same level of system reliability increases as

the number of processors in a module decreases. Thus, there is a trade off between the module size

and the size of the cross-bar switches required by this approach.

Rather than using spares to back up an entire module, we can use the spares to back up only a

very small number of processors. These processors, in turn, can be used to back up other active

. processors in the module. This process can be repeated until every processor is backed up. With

this approach, cross-bar switches can be avoided entirely.

We propose a new interconnection method in Section 2.2 which uses switching networks instead

of cross-bar switches to connect fault-tolerant modules together. These networks can also be used

to provide connections within a module. The approach can also be used so that the entire network

is realized as a single fault-tolerant module. In Section 2.3, reliability estimates for our schemes

are given. The switching networks used in our interconnection method are described in Sections

2.4 and 2.5. Finally, a distributed reconfiguration scheme is given in Section 2.6.

2.2. Using Switching Networks to Construct Fault-Tolerant Networks

In constructing fault-tolerant networks, we will require a switching network with n incoming and

n+ k outgoing links as shown in Figure 2-1. In particular, let a l , %, ..., an be a sequence such that

1 I al < < ... < an I n + k . We want to design a switching network which allows the n

incoming links to be connected to any such sequence a l , %, ..., a, of outgoing links so that

incoming link i is connected to outgoing link $. The detailed design of such switching networks is

described in Sections 2.4 and 2.5.

n incoming links

n+k outgoing links

Figure 2-1: A switching network with n incoming links and n+ k outgoing links

In describing the construction of fault-tolerant networks, we use the term active processor to

denote all the processors that participate in the execution of tasks.

Let us, for the moment, assume that we can construct a fault-tolerant module with n active

processors and k spare processors which functions correctly provided that no more than k

processors fail within the module. Consider a network consisting of two fault-tolerant modules.

module 1

module 2

Conceptual network - 6 processors in module 1
connected to 6 processors in module 2

I switching network I

I switching network

I I I I

fault-tolerant network - 6 active processors in module 1
connected to 6 active processors in module 2

Figure 2-2: Using switching networks to connect two fault-tolerant modules

Each module initially contains 6 active processors (numbered 1 through 6) and one spare processor

(numbered 7) and the i h active processors of each module are connected by a link. We now

describe how to connect one module to the other using switching networks. Let al , $, ..., a6 be

the numbers of the active processors in a module, ordered so that 1 I al < % < ... < a6 I 7.

Incoming links 1, 2, 3, ..., 6 can be routed to any such sequence of processors al, %, ..., a6,

respectively by using a switching network with 6 incoming links and 7 outgoing links (see Figure

2-2). Each outgoing link of the switching network is connected to a processor in the module. Each

incoming link is connected to a communication line that leads to the other module. Initially, these

6 communication lines are connected to processors 1 through 6. When one of these processors

fails, the switching network resets the connections so that the failed processor is disconnected and

the 6 communication lines are routed to 6 non-faulty processors. For example, if processor 5 fails,

processor 6 will be connected to communication line 5 and the spare processor (7) will be

connected to communication line 6 . In this simple example, each processor is connected to only

one processor in another module. Additional switching networks could be utilized to allow

multiple external connections.

Figure 2-3: Using direct connection to construct a fault-tolerant cycle of six processors

Now, we turn our attention to the connections within a given fault-tolerant module. Continuing

with our example, we would like to construct a fault-tolerant 6 cycle. In particular, the 6 initially

active processors must fonn a cycle by connecting processor i to processor i+ 1, for 1 I i < 6 and

processor 6 to processor 1. The fault-tolerant module is designed so that processor i (1 I i I 6) is

"backed up" by processor i+ 1. That is, if processor i fails (or is called upon to replace yet another

processor) then processor i+ 1 can replace processor i. To allow for these processors to replace

each other in the event of a failure, additional connections must be added. One method to do this,

which we call direct connection, is to connect processor i to i+2 for 1 5 i I 5 and processor 7 to

processors 1 ,2 and 6 (see Figure 2-3). One drawback of this method is that the number of ports per

. processor must increase with the number of spares. A second method is to use two cross-bar

switches to connect the spare processor(s) to the cycle. As the number of spares becomes large,

this method also becomes infeasible. A third approach which uses switching networks does not

require the number of ports to increase with the number of spares and is described below.

The connections between the processors in a module can be provided by connecting the incoming

links of several groups of switching network. In our particular example, the connections between

the processors within a module can be provided by two switching networks with 6 "incoming" and

7 "outgoing" links. In this case, the 7 processors of the module are connected to the "outgoing"

links while the "incoming" links are connected to each other. One switching network is used to

connect processor i to processor i+ 1 for 1 I i 5 6 where i is odd. The second connects processor i

to processor i+ 1 for 1 I i 5 5 where i is even and processor 6 to processor 1. With these

connections, the processors connected to the 6 "incoming" links form a cycle of six processors.

The connections are shown in Figure 2-4. If processor 5 fails, processor 6 will take over the task of

faulty processor 5 and the spare processor 7 will take over the task of processor 6. The switching

networks can be set to bypass processor 5. In particular, "incoming" links 5 and 6 are reset to

connect to "outgoing" links 6 and 7, disconnecting "outgoing" link 5. The details of this process

are explained in Sections 2.4 and 2.5. After reseting the switching network, processors 1,2,3,4,6,

and 7 form a cycle of six processors, connected through the switching networks. This same

technique can be used to form different structures within the module as illustrated in Chapters 3,4,

5, and 6.

I I 1 I I I
I switching network switching network

Figure 2-4: Connecting a cycle with 6 active processors
and 1 spare processor using two switching networks

By using switching networks to provide connections between processors within a module and

connections between modules, a fault-tolerant multi-computer network can be constructed as

described above. We call this scheme modular sparing. In the above example, each spare can be

used to replace any of 6 processors within its own module. Thus, the system can tolerate any single

failure. It can also tolerate two failures if they occur in different modules. In order to tolerate any

two failures in the network, we could use the above techniques to construct a single module

containing 12 active processors (divided into 2 cycles of 6 processors each) and 2 spare processors.

We call this scheme global sparing.

As an example of global sparing, we show in Figure 2-5 an alternate implementation of the above

example. As before, we want 2 cycles of 6 active processors and we allow 2 spare processors.

Three switching networks are required to provide the connections. The first two switching

networks are used to connect the processors to form two cycles of six processors using the same

connection scheme as described above for providing connections for a cycle of six processors. The

processors connected to "incoming" links 1 to 6 and 7 to 12 of both switching networks form two

cycles of six processors respectively. Finally, the third switching network is used to connect the

two cycles together.

Using global sparing, k spares in the network can tolerate any k faults. Thus, it is optimal in the

number of faults that any network with a given number of spares can tolerate. With global sparing,

it is possible to achieve the same level of reliability as with modular sparing and other proposed

schemes for various multi-computer network architectures as shown in Chapters 3, 4, 5, and 6

while using significantly fewer spares. However, for networks with a large number of active

processors, it may not be possible to implement the entire network on a single wafer. Smaller

modules may be used to split a large network into fault-tolerant modules which can each be

implemented on a wafer.

I switching network I

connect to processors as numbered

I
switching network I

I
I

switching network 1

Figure 2-5: Connecting a network with two cycles of six processors
and two spare processors using three switching networks

2.3. Estimation of the Reliability of the Scheme

Consider a fault-tolerant multi-computer network c o n ~ t ~ c t e d using global sparing which contains

n active processors and k spares. In our reliability analysis, we consider only processor failure. We

do not consider the failures in the switching networks. These failures could be covered by

duplicating the switching networks. Other types of failures, such as fault-detection failures and

recovery failures, are accounted for by the coverage factor [l7] which is defined to be the

probability that a failure is detected and the recovery is successful. If reconfiguration fails due to

one of these failure types, the entire system is considered to be unreconfigurable.

Let c be the coverage factor, k the number of spare processors in the network, n the number of

active processors in the network, r= cXt the reliability of a single processor (where is a constant

representing the failure rate of a processor over time t and t is time expressed in millions of hours),

and Rk the reliability of a fault-tolerant network with k spare processors using global sparing. The

reliability of a non-redundant network Ro is rn. For k= 1, the probability that the spare is needed is

equal to the probability that an initially active processor has failed which is (;) rn-' (1 -r). The

probability that a particular spare processor is reliable and can be switched successfully is rc.

Thus, the additional reliability with one spare is rc(;)rn-'(1-r) and the reliability R1 is

R1 = rn+(;)rn(l-r)c= R0+(;)rn(l-r)c. For k=2, the second spare is only used when there

are exactly two faulty processors among the n initial active processors and the first spare. The

probability that this occurs is (";'I rn-I (1-r12c. Thus, the reliability with two spares is

R2 = ~ ~ + (~ ; l) r " (l - r) ~ c ~ ,

For arbitrary k,

.-

The reliability of a network using modular sparing can be calculated similarly. Let m be the

number of active processors in each module, be the reliability of a module with k spares in

each module, and Rp,m,k be the reliability of a network with p modules each having m active

processors and k spares.

2.4. Type A Switching Network Design

A Type A switching network can be implemented using a group of decoupling networks. The

group of decoupling networks maps n incoming links (numbered 1 to n) to n+ k outgoing links

(numbered 1 to n+ k). Each outgoing link is connected to a processor. The use of decoupling

networks has previously been proposed for other fault-tolerant multi-computer network

architectures [14,4,5,6]. Figure 2-6 shows the connections for a group of 3 decouplig networks

arranged in three levels as a Type A switching network.

incoming links

level 2

level 1

level 0

processors

Figure 2-6: 3 decoupling networks arranged in 3 levels

The levels of each group of decoupling networks are numbered from 0 to 1-1 with level 0

connecting to the outgoing links and level 1-1 connecting to the incoming links. Each level

contains at most n+k-1 switches numbered from 1 to n+k- 1. The j th switch in level 1- 1

connects to the j b incoming link. It can be set to connect the j th incoming link te either the j th

switch on level 1-2 or to the (j+ switch on level 1-2. In general, the j th switch on the i th

level can be set so that it is connected to either the j th switch on level i- 1 or to the (j+ switch

on level i- 1. The j th switch on level 0 can connect to either the j th outgoing link or the (j+

outgoing link. Initially, every switch j on level i > 0 is set to connect to switch j on level i- 1.

Switch j on level 0 is initially set to connect to outgoing link j.

Outgoing link i is connected to processor i. At any given time, n processors are active. We

denote the active processors as al , ..., an with al < % c ... < an such that al is the number of the

. lowest numbered active processor and an is the number of the highest numbered active processor.

. In particular, ai= j indicates that processor j is the i rh active processor.

When a processor fails, the failed processor has to be disconnected from the network and the

spare has to be connected. As an example of the reconfiguration process, consider a module with 8

active processors and 3 spare processors. If processor 3 fails, the switch in level 0 of the

decoupling network that connects to processor 3 and all the switches to the right of it are switched

to the right. In this way, processor 3 is disconnected and the first spare processor (9) is activated.

Processor i+ 1 assumes processor i's previous role where 3 5 i 4 8. At this point, al = 1, %=2,

and ai= i+ 1 , for 3 4 i I 8 . The new connection for one group of decoupliig networks is shown in

Figure 2-7. If another processor fails subsequently, another reconfiguration must occur. The

switch in level 1 of the decoupling network that connects to the failed processor and all the

switches to the right of it are switched to the right. Figure 2-8 shows the structure as further

modified after processor 1 becomes faulty and is replaced. In this figure, a1 =2, and ai=i+2, for

2 I i < 8. Finally, Figure 2-9 shows the result of processor 7 failing subsequently and is replaced.

Afterreconfiguration,al=2,%=4,0[3=5, a4=6, andai=i+3, for51 i I 8.

incoming links

level 2

levd i

level 0

Figure 2-7: Connections after processor 3 has failed

Consider one such k level decoupling network connected to n active processors and k spares. Let

i be the number of processors that have failed previously, where 0 I i I k. If another active

processor fails, the reconfiguring is done by switching the switch in level i that connects to the

failed processor and all switches of the same level to the right of it one position to the right. For

example, if the switches in level i are numbered 1 to n+k-i-1 from left to right and switch j

incoming links

level 2

level 1

level 0

Figure 2-8: Connections after processor 1 and 3 have failed

incoming links

level 2

level 1

level 0

Figure 2-9: Connections after processor 1 .3 and 7 have failed

connects to the newly failed processor, then the reconfiguration consists of switching the switches

from j to n+k- i - 1 at level i to the right. By doing so, the faulty processor is disconnected from

the network, the spare processor immediately to the right of the rightmost active processor becomes

an active processor, and the structure is reestablished.

A Type A switching network consists of k decoupling network arranged in k levels. Incoming

link i can be connected to any outgoing link j if j- i I k as shown in Lemma 1. Lemma 1 and other

subsequent Lemmas described below are used to establish that a Type A switching network can be

used to replace up to k faulty processors with spares.

Lemma 1: In a Type A switching network, incoming link i (1 l i l n) can be

connected to any outgoing link j where (i I j 5 i+ k)

Proof: Let m=j-i . At each level 1, 0 5 1 5 m, set switch number i+m-1-1 and all

switches in that level to the right of switch i+m-1-1 to the right. This connects

incoming link i to outgoing link j. 0

Let a l , a,?, ..., an be a sequence such that 1 I al < a,? < ... < an 5 n+k. If the n incoming links

can be connected to any such sequence al, a,?, ..., an of outgoing links so that incoming link i is

connected to outgoing link 04- for 0 < i I n , a Type A switching network can be used to replace any

group of up to k faulty processors with spares. In order to show that this is the case, we first prove

Lemma 2 which shows that a Type A switching network can be used to connect incoming links i

and p (p > i) to outgoing links j and q (q > j, q-p 2 j-i) , respectively so that the paths do not

intersect.

Lemma 2: In a Type A switching network, if incoming link i is connected to outgoing

link j and incoming link p (p > i) is connected to outgoing link q (q > J] , and q-p 1 j-i,

the switches used to connect i to j, and the switches used to connect p to q are all

different.

Proof: Let sl be the switch used in level 1 to connect i to j and let tl be the switch used

in level 1 to connect p to q. Since p > i , in level k- 1 , tk- > sk- l . If sk- is switched to

the right, then tk- is also switched due to the reconfiguration scheme. Thus, in level

k-2, tk-2 > s ~ - ~ . The same argument can be repeated until level 0 is reached. Hence,

t l>sl fo r05 IS k-1.

Theorem 3: Let a l , %, ..., an be a sequence such that 1 I al c < ... < an l n+ k.

The n incoming links of a Type A switching network can be connected to any such

sequence a l , a,?, ..., a, of outgoing links so that incoming link i is connected to outgoing

linka,forOI i I n .

Proof: From Lemma 1, incoming link i can be connected to ai for 1 I i l n. From

Lemma 2, there will be no common switch used to connect incoming link i to outgoing

link ai and incoming link i + 1 to outgoing link ai+l for 1 5 i S n-1 . Thus, the

theorem is proved.

For a Type A switching network with n incoming links and n + k outgoing links, a level i

decoupling network must have n+k- i - 1 switches. Thus, a Type A switching network has a total
k of xj- - (n+ k-0 = k(2 n+ k- 1)/2 switches. For large k, the number of switches required for a

Type A switching network increases rapidly. The hardware required to implement the switches

may make this design infeasible. Furthermore, k levels of decoupling networks are used to add k

spares. When k is large, the switching delay may be significant. Hence, a Type A switching

network is not suitable when k is large. The next section presents a different design which requires

a lot fewer switches and introduces less switching delays when k is large. However, when k is

small, the simplicity of a Type A switching network makes it easier to implement than other more

complicated designs.

2.5. Type B Switching Network Design

For large k, we propose a different switching network design called Type B that uses fewer

decoupling networks and switches than Type A. Instead of allowing the j switch of level i to be

c o ~ e c t e d to the j switch or the (j+ switch of level i- 1, the j h switch of level i may be

connected to the j or the (j+2')& switch of level i- 1. The j th switch on level 0 can connect to

either the j th outgoing link or the (j+ outgoing link. Initially, every switch j on level i > 0 is

set to connect to switch j on level i - 1 . Switch j on level 0 is initially set to connect to outgoing

. link j. With this design, only I = r1og2(k+ 111 levels of decoupling networks are required to

incorporate k spares.

The reconfiguring process of this design is slightly more complicated than for Type A. Consider

one such 1 level decoupling network connected to n active processors and k spares. As before, we

number the levels from 0 to I- 1, the processors from 1 to n+k, and the active processors from orl

to an. ai=j indicates processor j is the i th active processor. Initially ai=i for 1 I i I n. When

the first active processor fails, the reconfiguration process is the same as for Type A. The switch in

level 0 that is connected to the failed processor and all the switches to the right of it are switched

one position to the right. However, when subsequent failures occur, each remaining active

processor and the spares used to replace the failed processors must determine which switches to

use.

As an example, consider a module with 8 active processors and 3 spares. If processor 3 fails, the

level 0 switch that connects to processor 3 and all the switches to the right of it are switched to the

right. Processor 3 is disconnected from the incoming communication link to the decoupling

networks. Processor i takes over the task of processor i-1 , for i=4, ... ,9. Figure 2-10 shows the

connections of the Type B switching network after processor 3 has failed. Figure 2-1 1 shows the

structure as further modified after processor 1 fails and is replaced. Figure 2-12 shows the
,-

structure after processor 7 fails subsequentlyand is replaced.

Figure 2-10: Connections after processor 3 has become faulty

. Suppose a i=j , the i th incoming link of the decoupling network should be connected to the jh

outgoing lid, that is, to the j h processor. In level 1-1, the highest level, the i th switch connects

to the i incoming link. If j-i 2 2lv1, switch i will have to connect to the (i+21-1)th switch of

Figure 2-11: Connections after processor 3 and 7 have become faulty

Figure 2-12: Connections after processor 1,3 and 7 have become faulty

level 1-2. Otherwise, no change is required and it remains connected to the i fh switch of level

1- 1. ~ e t j - i = ~ k : ~ a,,,2m where am is either 0 or 1 and I = rlog2(k+ 1)l. If j-i 2 2'-l, al- = 1 .

Otherwise, al-l=O. For level 1-2, the switch used in the connection from incoming link i to

processor j depends on whether the switch used in level 1- 1 is switched or not. This information

can be obtained from the value of ale If a[- = 1 , the (i+2'-I)& switch is used. Otherwise, the

i" one is used. That is, the switch used in level 1-2 is the (i+a1-121-1)m switch. This switch is

switched to connect to the (i+al- 121-1 +2lq2)" switch in level 1-3 if (1-0-a1-12'-1 2 2'-'.

. That is, if al-2= 1. Otherwise, switching is not necessary. Hence, the switches used in the

connection and the status &the switches used can be obtained from the equation j - i = ~ ! & am2m

with al=O to simplify the formulas below. In particular, i + ~ : = , + ~ ~ 2 ~ 2 ~ switch in level u is

used to connect incoming link i to outgoing link j of the decoupling network. This switch is set to
I connect to the (i+ xm- - am2m)" switch of level u- 1 (or the (i+ x:, , am2m)" outgoing link if

u=O). With this switching scheme, the n incoming links of the i=rlog2(k+l)l levels of

decoupling networks can be connected to n non-faulty processors if the number of faulty processors

is less than or equal to k. Furthermore, no two connections between an incoming Sink and an active

processor share a common S i or common switch.

In order to prove that the rlog2(k+ 1)1 levels of decoupling networks can be configured to handle

any k processor faults, let al, %, ..., a, be a sequence such that 1 I al < 9 < ... < a, l n+k. If

the n incoming S i s can be connected to any such sequence al, 9 , ..., a, of outgoing links such

that incoming link i is connected to outgoing link ai for 0 I i I n, a Type B switching network can

be used to replace any of up to k faulty processors with spares. In particular, incoming link i must

be able to connect to any outgoing link j in the range i I j I i+k. This is proved in Lemma 4

below.

Lemma 4: In a Type B switching network incoming link i (1 I i S n) can be connected
&

to outgoing link j for any j where i I j I i+ k.

Proof: Since i S j 5 i + k and xLi0 2m 212 k , j- i can be expressed as ~ l - 1 U-o a u 2U, where

the a's are either 0 or 1 and c:.~ - Zrn 2 x::: ap". Using the connection scheme

described above, incoming link i to the decoupling network is connected to outgoing link

j = i + 2 Since i+ C~I: - a? I i+ x L ~ ~ zrn, incoming link i can be connected

to outgoing link j. 0

Lemmas 5 and 6 establish that if any incoming link i is connected to outgoing link j, where

i l j I i+k, incoming link i+ 1 must be able to connect to any outgoing link t in the range

j + l I t S i+k+l with no sharing of switches and no sharing of links between these two

connections. Lemma 5 is a technical lemma useful in proving Lemma 6.

I I I Lemma 5: If ~rn-sam2m>~mC,=sbrn2m - then ~ ~ - ~ a ~ 2 ~ - ~ ~ = ~ b ~ 2 ~ ~ - 2s where

the a's and b's are either 0 or 1.

Proof: Let 1' be the largest value 1 2 2' 2 s such that a p by. Since we have assumed
I that xm=sam2m > EL=, bm2m and all the a's and b's are either 0 or 1, it must be the

r-1
Since Ern=, am2" 2 0 and - bm2m 5 2s-2s,

Y
am2m-~m=, bm2rn 2 P. o

Lemma 6: For a Type B switching network, if incoming link i is connected to outgoing

link j and incoming link p @ > i) is connected to outgoing link q, where q > j

(q-p 2 j- i), the switches used to connect i to j, and the switches used to connect p to q

are all different.

Proof: Let j-i=;~:k-!~ bm2m and q-p=~k,-fo amZm, where the a's and b's are either 0

I- 1 or 1 and l= rlog2k+ 11. Thus, z;io a,Zm-2 Em=o bm2m. At each level s, the

connection fmm i to j utilizes switch i+c.kJs bm2" while the connection from p to q

uses switch + am2m. These switches are clearly distinct if

Suppose that for a particular s, ~ ~ ~ ~ b , 2 ~ > ~ ~ ~ ~ a ~ 2 ~ . Since,

p - 1 1-1
m.O amZm 2 zmZO bm2m. therefore,

ES- 1 I-' b 2m-z1-1 a 2m. zs-l a 2 m - ~ s - 1 b 2m>zm=, s- 1
m = ~ m m = ~ m m=s m m=o am2m-xm=o bm2" is

at most equal to xk-=l0 2m=2s- 1. From Lemma 5, xk,-fS - bm2m-~'-1 a 2m is at least m=s m

2S. A contradiction occurs and hence the lemma is proved.

Theorem 7: Let al, q, ..., an be a sequence such that 1 S al c % c ... c an l n+ k.

The n incoming links of a Type B switching network can be connected to any such

sequence al , %, ..., a, of outgoing links such that incoming link i is connected to

outgoing link q for 0 I i 5 n.

Proof: The proof follows from Lemmas 4 and 6. 0

The number of switches required in each level of a Type B switching network depends on n and

k. If processor n+k, the last spare, can be connected to the n th incoming link of the decoupling

networks, the switches in the decoupling networks are sufficient to connect any incoming link i,

1 I i I n, to any outgoing link j, i I j 5 i+k. With this observation, the total number of switches

in a group of decoupling network can be obtained. Let k=x;Jo am2m, where the am's are either 0

or 1 and al- l= 1. The level 1- 1 decoupling network has n switches which are connected to the n

incoming links to the group of decoupling networks. The n th switch can connect to either the n th

switch or the n+2'-l switch in level 1-2. Thus, the number of switches in level 1-2 is

n+al-121-1. The last switch (n+a1-121-1) in level 1-2 is not required to connect to the

n+21-1+21-2 switch in level 1-3 when al-2=0. In this case, not all of the switches have to be

switchable. Figure 2-13 shows an example in which some switches do not have to be switchable.
.-

Hence, for level 1-3, the number of switches is n + ~ k L - ~ am2m. Similarly, for level i, the

number of switches is n+zkJi+ a 2m. With this number of switches, the n fh incoming l i i is

able to connect to the last spare processor because k = ~ k ' ~ am2m. Thus, for a Type B switching

network with 1 = rlog2k+ 1 1 levels, the total number of switches is nlc z;il rn~2,2~.

2.6. Distributed Reconfiguration

Consider a module with n active processors and k spare processors. The n+k processors are

connected to the n+k outgoing links of a switching network and are numbered 1 to n+k

corresponding to the numbers of the outgoing links. The active processors are denoted by a i , for

1 5 i 5 n. ai=j indicates that processorj is the i th active processor. Initially, a i= i for 1 5 i < n.

In order to provide fast context switching and distributed reconfiguration, processor i is

connected to processor i+ 1, where 1 5 i 5 n+k- 1, with soft switches used to bypass faulty

non-switchable
switches

Figure 2-13: For n=8 and k=4, some switches do not have to be switchable

processors. Figure 2-14 shows the connections and soft switches between the processors. When a

processor is non-faulty, a signal is sent to its switches to keep them open. We assume that the fault

detection of each processor is concurrently performed by means of some on-line self-testing

circuits. Thus, when a proces-spr fails, it stops sending this signal and the processor to its right will

be able to detect the failure and start the reconfiguration process.

Figure 2-14: Connections between the processors

When a processor ai=j fails, the network must be reconfigured to disconnect the faulty

processor, connect a spare one and reassign tasks among the active processors. The non-faulty

active processor ai+ immediately to the right of the faulty one initiates the reconfiguring process

upon detecting that ai has failed. (If i = n , the lowest numbered spare processor m initiates the

. reconfiguration process.) It starts by taking over the task of the faulty one and informs the non-

faulty processor to its right about the starting of the reconfiguring process. Processor ai+ 's task is

then taken over in turn by the non-faulty processor immediately to its right. This process is

repeated until the spare processor m immediately to the right of the rightmost active processor (a,)

becomes an active processor and takes over the task of its predecessor. That is, when processor aj

fails, a sequence of task reassignments are performed until a non-faulty spare processor m which is

connected to the processor a, is activated. First, aj's task is taken over by aj+l and aj+l

becomes active processor aj. This processor's old task is given to aj+2 and orj+, becomes active

processor aj+l. This continues until a, becomes active processor an- Finally, an's old task is

taken over by the spare processor m and m becomes a,.

The reassignment of tasks can be carried out efficiently through the connections between the

processors if a parent-child relationship [18] is assumed between any two neighboring processors.

The processor on the right assumes the role of the parent and keeps track of the state of its child.

When a child fails, its parent can take over its task and can in turn inform its own parent of the

reconfiguring process without any delay or rollback. For example, assuming that n= 8, k=2 and

ai= i, processor 10 is the parent of processor 9 initially and processor 9 is the parent of processor 8

and so on. That is, processor i+ 1 is the parent of processor i initially, for 1 I i I 9. If processor 5

fails, its parent, processor 6, can take over its task easily for processor 6 already has the current

state of processor 5. The new child (processor 4) of processor 6 sends its cumnt state t~ processor

6 and processor 6 informs its parent (processor 7) of the reconfiguration and sends its current state

to its parent. This process is repeated until processor 9 takes over the task of processor 8 and sends

its current state to its parent, processor 10. The above reconfiguring process can be carried out

efficiently using the links between the non-faulty processors. The transfer of state information

between the processors can be done almost simultaneously.

This scheme can only handle either a single fault at a time or multiple faults at the same time if

the faults are not adjacent to each other. For multiple faults not adjacent to each other, the

reassignment process is still quite efficient although the state of more than one processor may be

transferred between the non-faulty processors. If adjacent faults occur simultaneously, the

reassignment of tasks will take more time since the entire system may have to restart at the

previous check point instead of being able to continue its operation without rollback.

After the reassignment of tasks is completed, the switching networks must also be reset as

described in Section 2.4 or Section 2.5 to replace the failed processors with spares. For a Type A

switching network, the control of the decoupling networks can be implemented at each spare

processor. The first spale controls the level 0 decouplimg ne&ork and the i th spare controls the

level i-1 decoupling network. For a Type B switching network, when processor j is required to

take over the task of another processor to its right, it knows which active processor ai it will

become and it also knows its own position. Thus, the values i and j are both known to processor j .

Processor j calculates the coefficientsa, from the equation j - i = ~ k l ~ am2m and determines

which switches are used and which must be switched for the connection. This information is sent

to the decoupling networks to establish the connection from incoming link i to processor j. This

switching scheme can be carried out distributively by each affected processor. After both steps of

the reconfiguration process (reassignment of tasks and reseting the switching network) have been

completed, the network can resume its normal operation.

Chapter 3

Binary Hypercube Architecture

3.1. Introduction

In this chapter, fault-tolerant binary hypercube architectures are proposed. In Section 3.2, a

fault-tolerant biary hypercube architecture is proposed which uses fault-tolerant modules as

building blocks to realize a binary hypercube. The use of fault-tolerant modules has previously

been proposed for use in fault-tolerant binary tree architectures [5 ,7 ,9 , 161. A fault-tolerant

module contains four active processors and k spare processors configured so that each module can

tolerate up to k faults. Let d be the dimension of a binary hypercube. In Section 3.3, we generalize

the scheme so that each fault-tolerant module has 2m active processors, 0 I m S d, and k spare

-- processors. In Section 3.4, we calculate the reliability of the proposed scheme. With m=d, the

entire biary hypercube is a single fault-tolerant module in whish the k spare processors car. k

used to tolerate any k processor failures. In Section 3.5, we show that with this special case, it is

possible to achieve the same level of reliability as with smaller modules while using significantly

fewer spares. We compare this special case with RenneIs' schemes. The new scheme is more

reliable than Rennels' basic scheme since the latter can tolerate only a single fault within a given

module. Even with fewer spare processors, our scheme achieves higher reliability than does

Rennels' hierarchical approach. Furthermore, the amount of extra hardware required for our

scheme to achieve the same level of reliability as Rennels' scheme is much less than that required

by Rennels' scheme.

3.2. Fault-Tolerant Scheme For Binary Hypercubes

A fault-tolerant binary hypercube can be constructed by using a number of fault-tolerant modules.

We assume initially that each fault-tolerant module consists of 4 active processors and k spares,

connected in a cycle to model a 2-dimensional binary hypercube. Since only four processors are

active at any given time within each 2-dimensional binary hypercube, the spare and faulty

processors must be bypassed. This can be done using soft switches in the cycle as shown in Figure

3-1. These 2-dimensional hypercubes are connected together to form a d-dimensional binary

hypercube. An alternative to the use of soft switches within each module is discussed in Section

3.3 along with the generalization of this construction. The connections between the 2-dimensional

binary hypercubes are realized by either a Type A or Type B switching network such that only

those active processors in the 2-dimensional binary hypercubes are connected.

soft switches

Figure 3-1: A fault-tolerant module with k spares

For a d-dimensional binary hypercube, d-2 groups of switching networks are required for each

2-dimensional hypercube in the network. A group of switching networks is used for each

dimension beyond the second dimension. The first group is used to connect a 2-dimensional binary

hypercube to another 2-dimensional binary hypercube to form a 3-dimensional binary hypercube.

The second group for each 2-dimensional hypercube in a 3-dimensional hypercube is used to

connect to a 2-dimensional hypercube in another 3-dimensional hypercube, forming a 4-

dimensional hypercube. Similarly, the i th (1 I i I d-2) group for each 2-dimensional hypercube

in an i+ 1-dimensional hypercube is used to connect to a 2-dimensional hypercube in another

i+ 1 -dimensional hypercube, forming an i+2-dimensional hypercube. Hence, a d-dimensional

binary hypercube can be formed using 2d-2 2-dimensional hypercubes and 2d-2(d-2) switching

networks.

When a processor fails, the fault-tolerant module must be reconfigured to disconnect the faulty

processor, connect a spare one, and reassign tasks among the active processors. The reconfiguring

process is as described in Chapter 2. In addition, the faulty processor must also be disconnected

from the cycle of active processors in its fault-tolerant module while the spare processor

immediately to the right of the rightmost active processor becomes an active processor and is

connected to the cycle of active processors. This is done using soft switches. The structure of the

2-dimensional binary hypercube is now re-established. After the restructuring has been completed,

the processor immediately to the right of the faulty one in the cycle of active processors, takes over

the task of the faulty one. This processor's task will be taken over in turn by the active processor

immediately to its right. This process is repeated until the newly activated processor takes over the

task of its predecessor. At this point, the reconfiguration is completed and the binary hypercube

can resume its regular operation.

As an example of the reconfiguration process, consider a fault-tolerant module with 3 spare

processors in a 3-dimensional binary hypercube as shown in Figures 3-2 through 3-4. If processor

3 fails, the switch of level 0 that connects to processor 3 and a l l the switches to the right of it are

switched to the right. Processor 3 is disconnected from the cycle of active processors and the fist

spare processor (5) is added to it. Processor 4 assumes processor 3's previous role in the cycle and

processor 5 takes the previous role of processor 4. The new connections are shown in Figure 3-2.

Figure 3.3 shows the structure as further modified after processor 1 fails and is replaced. Figure

3.4 shows the result of processor 5 subsequently failing and being replaced.

3.3. Generalized Scheme for Binary Hypercubes

The scheme described in Section 3.2 has four active processors in each fault-tolerant module.

With minor modifications to the scheme, the number of active processors in a fault-tolerant module

can be any value 2m where d 2 m 2 0.

In Section 3.2, we showed how to use Type A or Type B switching networks to connect one

module of four active processors and k spares to another. The same technique can be used to

level 2

level 1

level 0

Figure 3-2: Connections after processor 3 has become faulty

level 2 rtttt?
level 1

I I I I I I
level 0 0
c

Figure 3-3: Connections after processor 1 has become faulty

connect modules with different numbers of active processors. In fact, a Type A or Type B

switching network can be used to connect a module of 2m active processors and k spares to another

identical module for any m 2 0 and m -< d, provided that the number of incoming communication

links in the switching network is 2m. Thus, if we can build fault-tolerant modules with 2m active

processors, we can connect them together as described in Section 3.2 to form a d-dimensional

binary hypercube.

level 2

level 1

level 0

Figure 3-4: Connections after processor 5 has become faulty

In addition to these connections between modules, the processors of each module are also

connected together. In particular, in Section 3.2, four active processors and k spares are connected

in a cycle to model a Zdimensional binary hypercube with soft switches being used to bypass both

faulty and spare processors. These soft switches can be replaced by two groups of either Type A or

Type B switching networks. Figure 3-5 shows how to use two Type A switching networks to

connect four active processon and one spare in a fault-tolerant 2-dimensional binary hypercube.

1 2 3 4 5 1 2 3 4 5
connect to processors as numbered

Figure 3-5: Using 2 Type A switching networks to form a
fault-tolerant 2-dimensional binary hypercube

The first group is used to connect two neighboring active processors to form two 1-dimensional

binary hypercubes. This is done by connecting the lSt and 2nd. and the 3" and 4& incoming

communication links of a Type A or Type B switching network. The second group is used to

connect these 1-dimensional binary hypercubes to form a Zdimensional binary hypercube by

connecting the IS' incoming communication link to the 3rd and connecting the 2"d to the 4". This

scheme can be extended to modules with more than four active processors or with more than one

spare. For example, a module with eight active processors and k spares can be built by using three

groups of either Type A or Type B switching networks. Figure 3-6 shows how to use three Type A

switching networks to construct a fault-tolerant 3-dimensional binary hypercube with eight active

processors and one spare. The first group is used to connect pairs of processors together to form

1--1

1 2 3 4 5 6 7 8 9
connect to processors as numbered

Figure 3-6: Using 3 Type A switching networks to form a
fault-tolerant 3-dimensional binary hypercube

1-dimensional binary hypercubes. This can be done by connecting the lSt and 2nd, 3rd and 4h, 5"

and 6&, and the 7' and 8& incoming links of the fim group of Type A switching network. The

four 1-dimensional binary hypercubes formed are then connected in pairs, creating two 2-

dimensional binary hypercubes using the second group of Type A switching networks. This is

done by connecting the lSt and 3rd, 2nd and 4&, 5h and 7&, and the 6" and 8& incoming links to

form two 2-dimensional binary hypercubes. Finally, the lSt and 5&, 2nd and 6h, 3rd and 7&, and

the 4& and 8" incoming links for the third group are connected to form a 3-dimensional binary

hypercube. With the three groups of Type A switching networks, a fault-tolerant module with 8

active processors can be built.

36

The group of switching networks used to connect pairs of processors together to form 1-

dimensional binary hypercubes can be replaced by connecting processor i to i + l , where

1 I i < n+k-1 and n=2d. Initially, the 1-dimensional binary hypercubes are formed by the

connection between processor 1 and 2, processor 3 and 4, processor 5 and 6, and processor 7 and 8.

When a processor fails, it is bypassed using soft switches. The 1-dimensional binary hypercubes

are then formed by the pairs of connected non-faulty processors. For example, if processor 6 has

failed, the 1-dimensional binary hypercubes are processor 1 and 2, processor 3 and 4, processor 5

and 7, and processor 8 and 9. These connections between the processors not only provide

connections to form the 1-dimensional binary hypercubes, they can provide fast context switching

during reconfiguring as described in Chapter 2. They can also enable the non-faulty processor to

the right of the failed one to detect the failure and initiate the reconfiguring process.

To construct a fault-tolerant module with 2m active processors for a d-dimensional binary

hypercube, d- 1 groups of k level decoupling networks are used. The first m- 1 groups together

with the connection between consecutive processors are used to form an m-dimensional binary

hypercube within the fault-tolerant module, using one group for each dimension except for the first

dimension. For the group that is used for dimension i, the j incoming link is comecbed to the

(j+2'-')~' link if ((j- 1) mod 2') < 2j-I and to the (j-2j-I)s' link, otherwise. Together with the

m-1 groups of either Type A or Type B switching networks and the connections between

consecutive processors, each fault-tolerant module becomes an m-dimensional binary hypercube.

The other Type A or Type B switching networks are used to connect the fault-tolerant module to

other identical modules to form the d-dimensional binary hypercube as described in Section 3.2.

The reconfiguration for this scheme is as described in Chapter 2.

3.4. Reliability

We explicitly consider only processor failures. If required, l i i failures can be covered by

duplicating the switching networks. Other types of failures can be accounted for by a coverage

factor [17]. If reconfiguration fails due to these types of failures, the entire system is considered to

be mconfigurable.

Let c be the coverage factor, k be the number of spares per module, d be the dimension of the

binary hypercube, m be the dimension of a module, and r be the reliability of a single processor. In

each functioning fault-tolerant module, at least 2m processors must be non-faulty. We use RM,
to denote the reliability of a module with 2" active processors and k spares. The reliability of a

non-redundant module, RM, o, is r2"'.

Using the same procedure as in Chapter 2, for arbitrary k,

2"'+k- 1 RMmgk = R M , , , ~ - ~ + (k) r 2 m (~ - r) k c k .

The reliability estimate RSd, for a d-dimensional binary hypercube with 2m active processors

and k spares in each module, is simply the product of the reliabilities of all of the fault-tolerant

modules.

RS4, = (RM, k)2d-m.

3.5. Global Sparing

In Section 3.3, we generalized the construction of Section 3.2. In this section, we consider the

network constructed when m=d, that is, wher? the mere hypxw?x is a single fault-toierant

module. We use the term global sparing to denote this special case. Using global sparing, a system

with k spares can tolerate any k faults in the binary hypercube. This is clearly optimal in terms of

the number of faults that a network can tolerate with k spares.

The reliability RSd,d, of a d-dimensional binary hypercube with k spares using global sparing is

given by RSd ,= r2d and
* 9

2d+k-1 2d
RS4d,k=RSd,d,k-I+(k) r (l - r) k ~ k *

In order to compare our scheme with Rennels' hierarchical scheme, we assume that the reliability

of a single processor is r= e-Xt where h is the failure rate of a processor over time t (see [17]) .

Although Rennels does not calculate system reliability for his schemes, the system reliability of

his basic scheme RBdPm for a d-dimensional binary hypercube with zd-* subcubes each of size 2m

is [; - " + ~ ~ r ~ ~ (l -r) c]~~-" . Furthermore, the system reliability of his hierarchical scheme can be

calculated as follows. For a d-dimensional binary hypercube, Ld/21 levels of sparing are used. A

level one cluster consists of 5 processors, one of which is used as a spare. A level two cluster

consists of 5 level one clusters, one of which is used as a spare cluster. In general, a level i cluster

is made up of 5 level i-1 clusters, one of which is used as a spare. Let Ri denote the reliability of a
4

level i cluster. The probability that the spare is used in a level one cluster is (1)r3(1-r), so

4 R1 = r + c (1) r (1 - r) . Let Fi denote the pmbability that a level i cluster is faulty, that is when at

least two level i- 1 clusters within the level i cluster are faulty. The probability that at least two

processors in a level one cluster are faulty is the sum of the probabilities that exactly two, three,

four or five processors are faulty. The probability that exactly i processors in a level one cluster are
5

faulty is (i) r5-i(l-r)i for 2 I i I 5. Thus, the probability that a level one cluster is faulty is

= () (1 - r). Since a recovery must be done in order to reconfigure the system after each

processor fails, the coverage factor c should be included with each (1-r) term. Thus,
4 4 4 F = () r5i(l-r)ici. The reliability of a single level two cluster is R2=R1+(l) R1 F

In general, we see that

In Table 3-1, the number of spares required for global sparing to obtain approximately the same

level of reliability as Rennels' basic scheme using m=3 is given for 4 I d I 10, with t=0.05 and

c= 1. In Table 3-2, the same values are given for our scheme and for Rennels' hierarchical scheme

with t= 1. With these values of t, the reliability for both schemes is still very high. It is clear that

global sparing can achieve the same level of reliability as either of Rennels' schemes using only a

fraction of the spares. Similar results hold for other times t I 1 and other values of c. In fact, for

smaller c, even fewer spares are required. This is illustrated by Figure 3-7 in which the reliabilities

of Rennel's hierarchical scheme with 369 spares and our scheme with 43 spares for n=8 are

plotted for c= 1 and for c = 0.98.

Switches

Chau

Reliability No. of Spares

Chau Rennels

0.9983

0.9965

0.9930

0.9861

0.9724

0.9455

0.8940

Chau Rennels

Table 3-1: Number of spares required for Rennels' basic scheme and our scheme
to achieve the same level of reliability at time t=0.05 and c= 1

No. of Spares Switches Reliability

Rennels Chau Chau Rennels Chau

Table 3-2: Number of spares required for Rennels' hierarchical scheme and
our scheme to achieve the same level of reliability at time t= 1 and c= 1

The number of decoupling networks required in our scheme depends on the number of spares k,

the dimension of each fault-tolerant module m, the dimension of the binary hypercube d, and the

type of switching network used. For a d-dimensional binary hypercube with k spare processors in

each fault-tolerant module with 2m active processors, every module must be connected to d-m

other modules so each module requires (d-m) switching networks to connect to the other modules.

Furthermore, m- 1 switching networks are required to provide connections within the fault-tolerant

Reliability

- Rennels - Chau
= 0.98 ------ Rennels

0.7 -

0.0 0.2 0.4 0.6 0.8 1.0
Time

Figure 3-7: System reliability of Rennels' scheme with 369
spares and our scheme with 43 spares for n= 8

module. This gives a total of 2d-m(d- 1) switching networks for there are 2d-m fault-tolerant

modules in a d-dimensional binary hypercube. The number of switches in a decoupling network
. -

depends on the types of the network. Let r1=2~, I= rlog2k+ 11 and k = x i ~ i ai2' where the ai9s

are either 0 or 1. From Section 2.5, each Type B switching network has n l+ z:: : iai2' switches.

If Type B switching networks are used, the total number of switches in the switching networks is

~ ~ - ~ (d - l) (n l + ~ ~ ~ : iai2'). An additional 2(n+k-1) switches are required to connect

consecutive processors together. Hence, the total number of switches required for the connections

is 2 d - m (d - l) (n l + ~ ~ ~ : iai2')+2(n+k-1). From Section 2.4, each Type A switching network

has (2n+k- 1) k/2 switches. If Type A switching networks are used, the total number of switches

required is 2d-m-1 (d- 1)(2 n+ k- l)k+2 (n+ k- 1). Since the number of switches required for a

Type B switching network is a lot less than a Type A switching network, the figures given below

all assume that Type B switching networks are used.

We assume a switch can be implemented by approximately ten gates. From Table 3-1, we see

that a 7-dimensional binary hypercube constructed by our scheme using only 3 spare processors

achieves a higher level of reliability than a similar network constructed by Rennels' basic scheme

using 16 spare processors. Our scheme requires approximately 18,000 gates to implement the

necessary decoupling networks. Since a single processor can be implemented with roughly 20,000

gates [l7], the additional hardware required for our scheme is approximately 3% of the total

hardware requirement for a non-redundant 7-dimensional binary hypercube. Using Rennels' basic

scheme to construct a 7-dimensional binary hypercube, one spare is added to each group of 8 active

processors. Each spare requires two additional crossbar switches. Without counting the extra

hardware required for the cross-bar switches, the 16 spares already amounts to approximately 12%

of the total hardware of a non-redundant 7-dimensional binary hypercube. We see that the amount

of extra hardware required by our scheme to achieve the same reliability level is much less than

that used by Rennels' basic scheme.

Similarly, our scheme requires less additional hardware to achieve the same reliability level as

Rennels' hierarchical scheme. For example, Table 3-2 shows that a 7-dimensional binary

hypercube constructed by our global sparing scheme using only 21 spare processors achieves a

higher level of reliability than Rennels' hierarchical scheme using 122 spare processors. Using

calculations similar to the above, our scheme uses extra hardware which is roughly 20% of the total

hardware requirement while Rennels' hierarchical scheme uses at least 95% additional hardware.

Let us compare the hardware requirements of the global sparing scheme with those of the

modular scheme with two modules. We assume that a processor can be implemented with 20,000

gates [17] and that a switch can be implemented with 10 gates. Table 3-3 shows the amount of

hardware required to implement a fault-tolerant d-dimensional binary hypercube (4 I d I 10) with

reliability of at least 0.98 at t=0.1 using each of the schemes. The table shows the number of

spares required for each scheme, the reliability achieved, and the amount of hardware needed. The

amount of hardware is measured in "processor equivalents", that is, the total number of gates

divided by 20,000.

From the values in Table 3-3, we observe that global sparing requires less hardware than the

scheme with two modules, for d l 10. This is also true for different values of t and for different

No. of Spares

Modular Global

Extra Hardware Reliability

Modular Global

0.9878

0.9953

0.9954

0.9893

0.983 1

0.9830

0.98 1 1

Table 3-3: Extra hardware required for global sparing and modular sparing with 2
fault-tolerant modules having a reliability of at least 0.98 at t=0.1 and c= 1

reliability requirements. With global sparing, the number of spares (hence, the number of

switches) required to achieve a given reliability for small values of d is small. Due to

computational difficulties, we have not calculated the same values for d 2 11 . For d 2 11, the

modular scheme using two modules may use less hardware since the number of switches required

by the global scheme increases rapidly as the number of spares increases. In spite of the fact that

the number of spares required by the globd scheme remains srnaiIer than the number required for

the modular scheme, the saving in the spares may not be able to offset the rapid increase in the

number of switches.

We have calculated these same values for modular schemes with 4, 8, and 16 modules and the

results are listed in Table 3-4. The total hardware required for these schemes is greater than that

for the two module scheme for d S 10. As above, these schemes require many more spares to

achieve a given level of reliability and the additional spares require larger numbers of switches.

Similar results are observed when these same values are calculated for different values of t and for

different reliability requirements. In fact, global sparing is seen to be better than modular for any

d < 10 when either a smaller value of t or a higher reliability requirement is used. In summary,

global sparing seems to be preferable when the dimension of the hypercube is d I 10.

No. of Spares Extra Hardware Reliability

Table 3-4: Extra hardware required for modular sparing with 4, 8, and 16,
fault-tolerant modules having a reliability of at least 0.98 at t=O.l and c= 1

Chapter 4

Binary Tree Architecture

4.1. Introduction

In this chapter, a new fault-tolerant binary tree architecture using either Type A or Type B

switching networks, is proposed. In particular, we are concerned with processor failures and do not

consider the possibility of link and switch failures. The new scheme uses k spare processors that

can be used to replace any k faulty processors in the network. Using fewer spare processors, this

global sparing scheme has higher reliability than other proposed fault-tolerant binary tree

architectures. In Section 4.2, we propose the new fault-tolerant scheme for binary trees which is

extended in Section 4.3 for m-ary trees. In Section 4.4, we compare both the hardware cost and

reliability of our scheme with those of other proposed schemes. Finally, in Section 4.5 we compare

the hardware costs of global sparing and modular sparing.

4.2. New Fault-Tolerant Scheme For Binary Trees

A fault-tolerant binary tree can be constructed by using either Type A or Type B switching

networks to connect the processors together to form a binary tree. Three groups of either Type A

or Type B switching networks are used to connect the processors together. The first group is used

to connect each processor to its parent. The second, and the third group are used to connect the

processors to their left and right children, respectively. For a binary tree with d levels, we number

the initially active processors in level order from 1 to 2d-1 and the spare processors from 2d to

2d- 1 +k. That is, the processors are numbered from left to right in each level from the root down

For a d-level binary tree, the first group of switching networks has 2d- 1 incoming links and the

processors are connected to its out-going links. For the second and third groups, only 2d-1-1

incoming links are necessary and only the first 2d-1 - 1 + k processors are connected to the out-

going links. The i th incoming link of the second group (which connects a processor to its left

child,) is connected to incoming link 2 i of the first group. The i rh incoming link of the third group

(which connects a processor to its right child,) is connected to incoming link 2i+ 1 of the first

group. Finally, the first incoming link of the first group is connected to an external link that

provides input to or accepts output from the root of the tree. The connections between the three

groups of decoupliig networks forming a Type A switching network, and those between the

decoupling networks and the processors for a 3-level binary tree with 1 spare are shown in Figure

1 2 3 4

Figure 4-1: A fault-tolerant 3-level binary tree with 1 spare

connections to

When a processor fails, each of the three groups of decoupliig networks must be reconfigured to

remove the faulty processor, activate a spare processor and reassign tasks among the active

processors. In order to provide fast context switching and distributed reconfiguration, consecutive

processors are connected together as described in Section 2.6. That is, processor i is connected to

processor i- 1 for 1 < i S 2d- 1 +k. Soft switches are used in these connections to bypass faulty

processors. The reconfiguring process for a fault-tolerant binary tree is the same as described in

Chapter 2 except that all three switching networks used in the connection must be reconfrgured

simultaneously.

1 2 3 4 5 6 7 8

connect to processors as numbered

right sons

I

- m P J

\ \
\ \

\ \ \ \ \ \

\ \ \ \ \ \ \
\ \ \ \ \ \ \

I

,
\
\ I

I

1 2 3 4

connections to
left sons

I

I

As an example of the reconfiguration process, consider a fault-tolerant 3-level binary tree with 2

spares using Type A switching networks for the connections. The initial configuration is shown in

Figure 4-2. If processor 3 fails, the links that connect processor 3 in level 0 of the decoupling

networks and all the links to the right of them are switched to the right. Processor 3 is disconnected

from the incoming communication link to the three decoupling networks. Processor i takes over

the task of processor i-1 , for i=4, ... ,8. Figure 4-3 shows the connections in the binary tree after

processor 3 has failed. Figure 4-4 shows the structure as further modified after processor 7 fails

and is replaced.

connect to processors as numbered

1 2 3 4 5

Figure 4-2: A 2-fault-tolerant 3-level binary tree

connect to processors as numbered #+
-

Figure 4-3: Connections in the fault-tolerant 3-level binary tree
with 2 spares after processor 3 has become faulty

4.3. Extension to m-ary Trees

In the previous section, three groups of Type A or Type B switching networks are required for a

d-level binary tree with k spares. The first group is used to connect processors to their parents

while the second and the third group are used to connect the processors to their left and right

children, respectively. The same scheme can be extended to construct an m-ary tree. We number

the children of each processor in an m-ary tree 1, 2, ..., m from left to right. For an m-ary tree,

m+ 1 groups of either Type A or Type B switching networks are used. As before, the first group

connects processors to their parents. Each of the remaining m groups is used to connect the

processors to.their j th children where 1 5 j I m .

m d-m
Similarly to the d-level binary ~ e e , the first group has +1 incoming links and each of the

--
Figure 4-4: Connections in the fault-tolerant 3-level binary tree

with 2 spares after processors 3 and 7 have failed

processors in the network is connected to the appropriate out-going link. For the other groups, only
rnd-1-m md-1-m

m- 1 +1 incoming links are necessary and only the first m-l +k+l processors are

connected to its out-going links. The i th incoming link of the j+ 1 St group (which is used to

connect a processor to its j th son,) is connected to the (im+l)-(m-j)fi incoming link of the first

group. As before, the first link of the first group is connected to an external link which provides

input to or accepts output from the root of the tree. The connections between the four groups of

switching networks and those between the switching networks and the processors of a 2-level 3-ary

tree with 1 spare, are shown in Figure 4-5.

connect to processors connections to the connections to the connections to the
as numbered first son second son third son

Figure 4-5: A fault-tolerant 2-level 3-ary tree with 1 spare

4.4. Comparison with Previous Schemes

The fault-tolerant d-level binary tree constructed using our scheme contains 2d-1 active

processors and k spares. In our reliability analysis, we consider only processor failure. Other types

of failures may be accounted for by the coverage factor [17]. If reconfiguration fails due to these

failures, the entire system is considered to be unreconfigurable.

Let c be the coverage factor, k be the number of spares, d be the level of the binary tree, n = id- 1,

and r be the reliability of a single pmcessor. We define the reliability R4 of our fault-tolerant

d-level binary tree scheme with k spares to be the probability that the particular d-level binary tree

structure remains intact. The reliability RdV0 of a d level non-redundant binary tree is equal to rn

since the failure of any single processor destroys the binary tree structure. For arbitrary k, the

reliability R4 can be obtained using the same procedure as described in Section 2.3.

The comparison of our scheme with the previously proposed scheme is done assuming that the

reliability of a single processor is r=e-k where h is the failure rate of a processor over time t.

Given that r=e-k, the reliability of an d-level binary tree using our scheme with k spare processors

is

In Figures 4-6 and 4-7, the system reliabilities of an 8-level full binary tree using Singh's scheme,

Howells and Agarwal's scheme, Lowrie and Fuchs's SOFT scheme and our scheme are plotted for

h= 0.1 with c= 1 and c = 0.95, respectively. The number of spares used by each scheme is slightly

different. For Lowrie and Fuchs's scheme, 64 spares (the maximum allowable) are used. Since the

only accurate reliability equation given in their paper is for a 4-level tree, the reliability values used

in the figures are approximate and have been obtained by averaging the upper and lower bounds

that they give for their scheme. The lower bound, given in their paper, is the reliability of a

modular tree where each module has three active processors and one spare. The upper bound is the

reliability of a modular tree where each module has three active processors and two spares. This

upper bound (suggested by Howells and Agarwal[9]), is justified because at most two failures can

be tolerated for a node and its two children. With Singh's scheme, 127 spares are used which gives

one spare to each module. This number is the smallest possible number of spares for his scheme

and is already twice as many spares as used by Lowrie and Fuchs's scheme. For Howells and

Aganval's scheme, 48 spares are used. The entire 8-level binary tree is split into a 4-level subtree

containing the root and sixteen 4-level non-root subtrees. The subtree containing the root is

assumed to be implemented using Lowrie and Fuchs's SOFT approach with the spares provided by

the non-root subtrees. The 48 spares are divided equally among the sixteen subtrees so that three

spares are allocated to each non-root subtree. With this number of spares, Howells and Agarwal's

scheme is more reliable than the other two schemes. With our scheme, 25 spares are sufficient to

achieve a higher reliability than the other schemes.

For the range of t shown in Figures 4-6 and 4-7, our curves always lie above the curves of the

other schemes even though our scheme uses fewer spares. At various points in the range 1 < t I 2

there are crossover points where the reliability of the new scheme drops below that of the other

schemes. This must occur eventually since the other schemes use many more spares than our

scheme. However, our scheme can achieve a higher level of reliability than the other schemes

using only a fraction of the spares that are used when t l 1. Intuitively, our scheme is more

reliable since it treats the entire binary tree as a single fault-tolerant module, that is a system with

only k spares can tolerate any k faults in the binary tree. Thus, it is more flexible in its use of

Chau -
H & A ---

Figure 4-6: System ~liabilities of the four schemes
for an 8-level binary tree using c = 1

Reliability
0.8

Chau -
H & A ---
L&F -
Simgh - - -

Figure 4-7: System reliabilities of the four schemes
for an 8-level binary tree using c= 0.95

spares than the other schemes and is optimal in terms of the number of processor failures that a

network can tolerate.

We have also calculated the reliabilities obtained by our scheme and by Mowells and Agarwal's

scheme for an 8-level binary tree with ~ ~ 0 . 9 5 and c = l when both schemes use 48 spares

(approximately 20% of the number of active processors). In this comparison, our scheme achieves

a higher reliability over the range 0 < t 5 2.5. The same result is obtained when we compare our

scheme and that of Lowrie and Fuchs's (with 64 spares each) and when comparing our scheme

with Singh's (with 127 spares each).

The hardware requirements of the different schemes are discussed in terms of two measurements -
the number of spares and the number of switches. A clear comparison can be made with the

number of spares required since the hardware required for a spare processor is the same for all the

schemes. The complexity of the switches used by various schemes differs considerably and, thus,

simply counting them is not sufficient. For example, the switches used in our scheme are simpler

than those used in either Lowrie and Fuchs's scheme or in Howells and Agarwal's scheme.

In order to construct a d-level fault-tolerant binary tree, three groups of switching networks are

required. The first one has 2d- 1 incoming links and 2d+ k- 1 outgoing l i i . The other two have

2d- ' - 1 incoming links and 2d- l + k- 1 outgoing links. From the calculations given in Section

2.4, a Type A switching network has (2 n+ k- 1) kj2 switches. If Type A switches are used, the

total number of switches required is k(2(2d- - 1)+ k-1)+ k/2 (2 (2d- 1) + k-1)+2 (2d+ k-2)

= k(2df 2+3 k-9) +2 (2d+ k-2), where 2 (2d+ k-2) is the number of soft switches required to

connect consecutive processors together. Let l= rlog2(k+ 111 and k=$;k iai l i , where the ai 's

are either 0 or 1. From the calculations given in Section 2.5, a Type B switching network has

(n l + ~ ? - ' r = l iai2j) switches. If Type B switching networks are used, the total number of switches

required for our scheme is 2 ~ (2 ~ - - 1) + 1(2d- I)+ 3 ~f:: i~~2 '+2(2~-2) . Since a Type B

switching network uses a lot less switches than a Type A switching network, the comparisons given

below assume that Type B switching networks are used.

In Table 4-1, the number of spares and switches required for our scheme to obtain approximately

the same level of reliability as Lowrie and Fuchs's scheme is shown for 4 I d l 12, with t=0.2

Reliability No. of Spares No. of Switches

Chau

94

192

529

1051

2630

5224

12535

29290

67023

Chau Chau

Table 4-1: Hardware requirements for Lowrie and Fuch's SOFT scheme
and our new scheme to achieve the same level of reliability at r=0.2

No. of Spares (No. of Switches Reliability

Singh

3 304

4 624

6 1264

9 2544

14 5 104

23 10224

42 20464

78 40944

Chau

94

192

529

1051

2632

5232

12535

29290

66919

Chau

0.9957

0.9956

0.9893

0.9828

0.9608

0.8965

0.7392

0.5803

0.3282

Singh Singh

Table 4-2: Hardware requirements for Singh's scheme and our new
scheme to achieve the same level of reliability at r=0.2

and c = l . Tables 4-2 and 4-3 compare our scheme to Singh's scheme and to Howells and

Agarwal's scheme, respectively. It can be seen that for 4 1 d 1 12, our scheme uses only a

fraction of the spares used by the other schemes. For d 2 8, our scheme uses roughly 10% of the

spares required by the other schemes and this percentage decreases as d increases. For smaller

values of d, the percentage is somewhat higher but the improvement is still significant. Ford I 10,

the number of switches required is roughly the same as the other schemes. The number of switches

does increase more rapidly for our scheme than Lowrie and Fuch's scheme, and Singh's scheme

when d 2 10. However, the savings in the number of spares when d 2 10 should offset this

increase. For Howells and Agarwal's scheme, the number of switches increases even more rapidly

than our scheme for d 2 10. Thus, the hardware requirement for our scheme is no more than for

the other proposed schemes for 4 I d I 12.

No. of Spares

Chau

No. of Switches

Chau

Reliability

Chau

0.9957

0.9956

0.9580

0.8803

. -
0.9926

0.9800

0.9920

0.98 18

0.9767

TabIe 4-3: Hardware requirements for Howell and Agarwal's scheme and our
new scheme to achieve the same level of reliability at t=0.2

Table 4-4 lists the number of spares required for our scheme to achieve a reliability of at least

0.98 at time t=0.4 for 4 I d I 11. It also lists the same values for Howells and Agarwal's scheme

to achieve a reliability of at least 0.98. If a reliability of 0.98 is not achievable, the reliability of

having 100% spares for the sub-trees are listed. The values in Table 4-1, Table 4-2, and Table 4-4

show that our scheme can achieve higher reliability for a longer period of time when d is large.

Thus, it is more suitable for long-life unmaintained systems than the other proposed schemes for

binary trees with a large d.

No. of Spares

Chau

No. of Switches

Chau Chau

Table 4-4: Hardware requirements for Howell and Agarwal's scheme and our
new scheme to achieve a reliability of at least 0.98 at t=0.4

4.5. Modular Sparing

It may not be possible to implement an entire binary tree on a single chip. We could use Howells

and Agarwal's scheme to split the binary tree into subtrees with one subtree containing the root.

Each subtree could then be placed on its own chip. The global sparing scheme described in Section

4.2 can be applied to each of the subtrees with additional switching networks used to connect the

leaf nodes of the mot's subtree to the roots of the other subtrees. When a spare processor is used to

replace a failed active processor in the root's subtree, the leaf nodes of the root's subtree will still

be connected to the appropriate roots of the rest of the subtrees.

The connection between the leaf nodes of the root's subtree and the roots of the rest of the

subtrees can be constructed using two groups of switching networks. Let f be the number of leaf

nodes in the root's subtree and k be the number of spare processor in the root's subtree. Both

groups have f incoming links and f+k outgoing l i i . For the first group, the f incoming links are

connected to the left children of the leaf node of the root's subtree. For the second group, the f

incoming links are connected to the right children. The outgoing links of both groups are

connected to the leaf nodes and the spare processors of the root's subtree. The reconfiguration for

this scheme is the same as described in Chapter 2.

Let p=rd/21 level and q=L-j/2J. Assume that we split up a d-level binary tree into a mot's

subtree of one p level and 2P q level subtrees. Each subtree has k spare processors. Using the

same procedure as described in Section 2.3, the reliability of a fault-tolerant binary tree constructed

using the modular scheme is

The number of switches required for this scheme is the sum of the number of switches required to

implement a p level biiary tree, the number of switches required to implement 2P q level binary

trees, and the number of switches required to implement two switching networks with f incoming

links and f+ k outgoing links. The total number of switches required is 2 /(V-l- 1) + l(2P- 1)

3 r = 1 2 +2(2p+k-2) +~(21(2 '7-~-1) +1(2q-1) +3~:1f.=: iai2' +2(2q+k-2))

No. of Spares

Modular Global

Extra Hardware

Modular

8 .O

16.1

24.1

48.2

64.6

161.1

193.8

45 1.6

Global

Reliability

Modular Global

Table 4-5: The amount of extra hardware required to achieve the same level
of reliability for the modular and for the global scheme at t=0.4

In Table 4-5, the amount of extra hardware required to achieve the same level of reliability using

modular sparing by splitting an d level biiary tree into one p level subtree containing the root and

2P q level subtrees and using global sparing is shown. The amount of hardware is given in

"processor equivalents", that is the total number of gates divided by 20,000. Each switch is

assumed to be implemented with 10 gates. The values given in Table 4-5 show that global sparing

can achieve the same level of reliability as modular sparing with less hardware. Thus, if possible,

global sparing should be used instead of modular sparing. Furthermore, the values also show that

the extra hardware required to implement the switching network is small compared with the

hardware required to implement the active processors.

Chapter 5 '

Cube-Connected-Cycles Architecture

5.1. Introduction

- As described in Section 1.2.3, a cube-connected cycles (CCC) network consist of n=h2d

processors with h 2 d. In this chapter, a fault-tolerant CCC architecture is proposed. The proposed

scheme uses fault-tolerant modules as building blocks to realize a CCC. In our construction, we

add spare processors to each cycle of the CCC so that each cycle is a fault-tolerant module. A

module with k spares can tolerate up to k faults. Using the same number of spares, the new scheme

is more reliable than Banerjee's schemes [2]. The new modular scheme can also be extended to a

global sparing scheme where the entire CCC can be regarded as a single fault-tolerant module.

That is, the k spare processors in the network can be used to replace any of the active processors in

the ~etwcrk. Wit! global sparing, it is possibie to achieve the same level of reliability as modular

sparing while using significantly fewer spares. In Section 5.2, we propose the new modular

scheme for CCC which is extended in Section 5.5 such that the entire cube-connected-cycles can be

regard as a single fault-tolerant module. In Section 5.3, we present the reliability estimate of the

new modular scheme. In Section 5.4, we compare the reliability of the new modular scheme with

other proposed schemes. In Section 5.6, we compare the reliability and hardware costs of the new

global sparing scheme with those of the new modular sparing scheme.

5.2. New Fault-Tolerant Scheme for Cube-Connected-Cycles

A fault-tolerant CCC can be constructed by connecting fault-tolerant cycle modules together. For

a CCC of 2d cycles where each cycle has h processors, the fault-tolerant CCC consists of 2d

fault-tolerant cycle modules. Each fault-tolerant cycle module has h active processors and k spares,

where k 2 1 .

The h active processors and k spares of a module are connected together to form a cycle. Since

only h processors are active at any given time, spare processors and faulty ones are bypassed using

soft switches in the cycle as shown in Figure 5-1. These fault-tolerant cycles are connected

together to form a fault-tolerant CCC.

The connections between the fault-tolerant cycle modules are realized by using either a Type A or

a Type B switching network such that only active processors in the cycle are connected to other

cycles. The reconfiguration process is as described in Chapter 2. In addition, the faulty processor

must also be disconnected through the use of soft switches from the cycle while the spare processor

immediately to the right of the rightmost active processor becomes an active processor and is

connected to the cycle.

soft' switches

Figure 5-1: A fault-tolerant cycle with k spares

5.3. Reliability Estimate of the Scheme

The fault-tolerant CCC constructed using our modular sparing scheme is a fault-tolerant system

consisting of a series of homogeneous subsystems. Each subsystem is a fault-tolerant cycle with h

active processors and k spare ones. In our reliability analysis, we consider only processor failure.

Other types of failures are accounted for by the coverage factor [17]. If reconfiguration fails due to

the above failures, the entire system is considered to be unreconfigurable. We first give a

reliability analysis of a fault-tolerant cycle.

Let c be the coverage factor, k be the number of spares per cycle, h be the number of active

processor in a cycle, and r be the reliability of a single processor. In each fault-tolerant cycle, at

least h processors must be working. The reliability of a non-redundant cycle RCo is equal to rh.

Using the same procedure as described in Chapter 2, for arbitrary k,
h+k-1 h R C ~ = R C ~ - ~ + (k) r (~ - r) ~ c ~ .

If the failure rate of a processor is a constant h, the reliability of a single processor is r=e-k.

The reliability of a single module for arbitrary k is
h+k-1 R C ~ = R C ~ - ~ + () (e-9h(l-e-qkck.

Finally, the reliability estimate RSd h,k of a CCC with 2d cycles, h active processors and k spare

ones in each cycle, is the product of the reliabilities of a l l the fault-tolerant cycles.

RSd, h, = (R~k)2d-

5.4. Comparison with Previous Schemes

The reliability of a system depends on the number of redundant processors being added.

Although system reliability is not directly proportional to the number of spare processors, the

amount of extra hardware does affect the reliability of a system. If the coverage factor is very close

to one, a higher number of spare processors implies higher reliability. Therefore, we will only

compare reliabiity for systems that use the same number of spare processors. We will compare the

system reliability of our scheme with Banejee's basic and modular schemes. The equation to

calculate the reliability of Banerjee's basic scheme [2] is

d h 2 ' ~ h (!)rh-i(l-r)ici. Rk,=trh)' +2 (r) i=1

Let g be the number of processors in a module for Banejee's modular scheme and assume that

h=ig where i and g are integers. The reliability of a fault-tolerant cycle using Banerjee's modular

. scheme [2] is

Rcycle= (rg+grg(l-r)c)i.

The reliability of the entire network is

Rvs = (~ ~ ~ ~ l ~) ~

Using h=0.1, c= 1 and k= 1, Figure 5-2 shows the system reliability of Rane jee's basic scheme

and our scheme for fault-tolerant CCC with d= 3 and h= 8, and d= 5 and h= 32.

New scheme '

d = 3
Banerjee's basic scheme - - - - - -
New scheme

Reliability

0.04 0.08 0.12 0.16 0.20 Time

Figure 5-2: Comparing system reliability of Banerjee's basic scheme and
our scheme with d= 3 and h= 8, and d=5 and h= 32

Similarly, using h=0.1, c = l , k=2 and g=h/2, Figure 5-3 shows the system reliability of

Bane jee's modular scheme and our scheme for fault-tolerant CCC with d=5 and h=6, and d= 6

and h= 8. Figures 5-2 and 5-3 show that our scheme has higher reliability than Bane jee's scheme

when the same number of spares are used.

Each fault-tolerant cycle requires only one switching network and there are 2d fault-tolerant

cycles. Thus, the entire network has 2d switching networks, Assuming that Type A switching

networks are used, the total number of switches required is 2d-1 (2h+ k- 1) k. A switch can be

implemented with approximately ten gates. For a cube-connected cycle with h=4 and d=3 which

has 32 active processors, with 2 spare processors in each fault-tolerant cycle, that is 16 spares for

New scheme
d = 5 Banerjee's modular scheme - - - - - -

New scheme

t Banerjee's modular scheme - - - - - -

Reliability
0.8

Figure 5-3: Comparing system reliability of Bane rjee's modular scheme using
g=h/2 and our scheme withd=5 and h = 6 , and d=6 and h=8

the entire system, the additional hardware required will be approximately 360 gates. If Type B

switching networks are used instead of Type A switching networks, the total number of switches

used will be even less. A single processor can be implemented with roughly 20,000 gates. The

amount of extra hardware required is minimal for our scheme.

5.5. Global Sparing for Cube-Connected Cycles

The new fault-tolerance scheme described in Section 5.2 requires that each fault-tolerant module

must be a cycle. With minor modifications to the scheme, the entire CCC can be a fault-tolerant

module. That is, we can have global sparing where the k spares in the network can back up any k

faults.

In Section 5.2, each module must be a cycle. The fault-tolerant cycles are connected together

through the use of switching networks. The same interconnection technique used to connect fault-

tolerant cycles together can be applied to connect processors together to form a cycle. The

connection of processors into cycles can be realized by at most three groups of switching networks.

For example, for a cycle with four processors, two switching ,networks are sufficient to connect the

processors in a cycle as shown in Figure 5-4. This is done by connecting the lSt and 2nd, and the

31d and 4" incoming communication links of the first switching network. The second group is

used to connect the 2nd incoming communication link to the 31d and connecting the lSt to the 4fh.

Using the two switching networks, processors 1,

extended to cycles with any number of processors.

2, 3 and 4 form a cycle. This scheme can be

connections to the processors as indicated by the number

Figure 5-4: Using 2 Type A switching networb to connect
4 processors together to form a cycle

We now describe how to connect any number of processors together to form cycles. For even h,

two groups of either Type A or Type B switching networks are required. We number the incoming

links to the switching network from 1 to h2d. For the first group, the i incoming link is

connected to the i+ 1 St incoming link if i is odd. For the second group, the i St incoming link is

connected to the i+ 1 St incoming link if i is even and i f 0 mod h. If i = 0 mod h then it is

connected to the (i-h+ 1) St link.

For odd h, three groups of either Type A or Type B switching networks are required. For the first

group, the i " incoming link is connected to the i+ 1 St incoming link if i mod h is odd. For the

second group, the i rh incoming link is connected to the i+ 1 st incoming link if i mod h is even and

is not equal to zero. For the third group, the i h incoming link is connected to the i+h-lst

incoming link if i 5 1 mod h . These connections will connect the processors into 2d cycles with h

processors in each cycle. For example, in Figure 5-5, processors 1 to 5 and processors 6 to 10 are

connected as cycles through the three switching networks.

- - - - ' first group

. . b . . \ . . .
\ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ I

I

- - - - second group

connect to processors as numbered

Figure 5-5: Connecting 10 processors into 2 cycles with 5
processors each using 3 switching networks

After the processors are connected to form cycles, one more switching network is required to

connect all the cycles together to form a CCC. Let i = j mod h . For this switching network, the i th

incoming link, if it is not already connected to another incoming link, is connected to the (2j-l h)

incoming link where 1 I j I d . In addition to the switching networks, consecutive processors are

connected together as in Chapter 2 to provide fast context switching and distributed

- reconfiguration. Finally, the reconfiguration for this global sparing scheme is exactly the same as

. the one using a cycle as a fault-tolerant module.

A CCC with d=2, h=4 and 1 spare for the entire network is shown in Figure 5-6. Three Type A

or Type B switching networks afe required. The first two are used to create the connection for the

four cycles and the third is used to connect the cycles together to form the fault-tolerant CCC.

connect to processors as numbered

Figure 5-6: A fault-tolerant CCC with
d= 2, h =4 and 1 spare for the entire network

5.6. Comparing Global Sparing with other Proposed Schemes

Let c be the coverage factor, k be the number of spares for the entire CCC, and r be the reliability

of a single processor. Using the same procedure as described in Section 2.3, the reliability RGk of

a fault-tolerant CCC with 2d cycles each has h active processors and k spare processors using

global sparing is

h2d+k-l h2d R G ~ = R G ~ - ~ + (k) r (I-rlkck.

Although any fixed reliability, say 0.999, may not be achievable due to the coverage factor c [17],

global sparing achieves the highest reliability possible. In Table 5-1, the number of spares required

for global sparing to obtain the same level of reliability as Banerjee's modular scheme with t=0.1

and c = l , is given for 2 < d l 8, g=2 and h=d if d is even or h=d+l if d is odd. From the

values given in Table 5-1, it is clear that global sparing can achieve the same level of reliability as

Banerjee's modular scheme or our modular scheme using only a fraction of the spares used by

those schemes.

No. of Spares Reliability

Bane rjee

8

16

32

64

128

256

512

Global B anerjee Global

Table 5-1: The number of spares required to achieve the same level of
system reliability for Banerjee's modular sparing scheme and the

global sparing scheme using h= 0.1 , t= 0.1 , c = 1
and h=d if d is even or h=d+ 1 if d is odd

,.-

Fcr even d, thze g m p s ~f switchiiig neiw~ikS are required to construct the fault-tolerant cube-

connected-cycles. For odd d, four group are required. Let 1 = log2 k+ 1 and k = ~ i l i ai2', where

the ai9s are either 0 or 1. From Section 2.5, each Type B switching network has n l + ~ f . i : iai2'

switches. Hence, if Type B switching networks are used for the construction and d is even, the

total number of switches required is 3 (2dhl+%;: iai2i)+2(2dh+ k- 1). If d is odd, the total

number of switches required is 4 (2 d h l + ~ i ~ : iai2i)+2(2dh+ k- 1).

We assume that a processor can be implemented with 20,000 gates [17] and a switch can be

implemented with 10 gates. In Table 5-2, the number of spares and the amount of extra hardware

required for global sparing to obtain the same level of reliability as the modular scheme using a

cycle as a fault-tolerant module with t = 0.1 and c = 1 is given for 2 I d I 8, h = d and 2 spares per

module. The amount of extra hardware is given in "processor equivalents", that is, the total

number of gates divided by 20,000. The values in Table 5-2 shows that the amount of hardware

67

used for the connection is least for the modular scheme. It also indicates that global sparing can

achieve higher reliability than modular sparing while using a lot less extra hardware.
- --

No. of Spares

Modular Global

Extra Hardware

Modular Global

Reliability

Modular Global

Table 5-2: The number of spares required to achieve the same level of
system reliability for the new modular sparing scheme and the

global sparing scheme at t=0.2 and h =d

Chapter 6

Multistage Interconnection Networks

6.1. Introduction

As described in Section 1.2.4, a multistage interconnection network (MIN) architecture can be

characterized as having n=2m processors connected together by m stages of switching elements.

In this chapter, a new fault-tolerant multistage interconnection network architecture that can

tolerate processor failures as well as connection failures is proposed. The proposed scheme can

provide coverage either for processor failures or for both processor and connection failures.

Furthermore, other previously proposed schemes could be used to provide coverage for connection

failures while the new scheme is used to provide coverage for processor failures. Our new scheme

can be used to incorporate k spare processors in the network which can tolerate any k processor

failures. In comast, Jeng a ~ d Siegel's OR scheme c a ~ only tolerate a single processor failure or

very limited instances of multiple failures for the entire network (or for a given module) if more

than one spare processor is used.

In Section 6.2 a new fault-tolerant scheme for multistage interconnection network architecture is

proposed which uses the switching networks described in Chapter 2. In Section 6.3, we compare

the reliability of our scheme with that of Jeng and Siegel's DR scheme. The scheme is extended in

Section 6.4 to cover both processor failures and switching element failures. In Section 6.5, the

extended scheme is compared to Jeng and Siegel's DR scheme. Finally, the hardware requirements

for variants of our scheme are discussed in Section 6.6.

6.2. New Fault-Tolerant Scheme For Multistage Interconnection
Networks

In this section we propose a new scheme that provides coverage for processor failures. A

multistage interconnection network or a fault-tolerant multistage interconnection network that can

tolerate switching element failures and link failures, can be realized by different kinds of

interconnections [I]. The new scheme can be applied to almost all of the previously proposed

non-fault-tolerant or fault-tolerant interconnection schemes.

A multistage interconnection network can be characterized as having n=2m processors connected

together by log2n stages of switching elements as shown in Figure 6-1. If we only consider

processor failures, a fault-tolerant MIN functions properly when its input and output links are all

connected to non-faulty processors. When a processor fails, if we can disconnect it from the input

and output links of the h4IN and reconnect the links to a new non-faulty processor, the MIN will

function properly. This can be done by inserting either Type A or Type B switching networks

between the processors and the m stages of switching elements as shown in Figure 6-2.

connections to the processors as numbered

- - -
n m

Figure 6-1: A multistage interconnection network

We construct a k fault-tolerant MIN with n active processors and k spare processors using two

groups of either Type A or Type B switching networks. One group is used to connect the input

links of the stages of switching elements to the processors while the other group connects the

output links of the stages of switching elements to the processors. These two switching networks

log n stages of
switching elements

-

- -
C

n

log n stages of

switching elements

switching networks

C

*
- - - - - -

- T
*

connections to the links
processors as numbered

Figure 6-2: A fault-tolerant multistage interconnection network

are used to replace faulty processors with spare ones if required. We number the processors from 1

to n+ k such that processor i is connected to processor i-1 , where 1 c i I n+ k. Soft switches are

used to bypass faulty processors as described in Section 2.6. When a processor fails, the

reconfiguring process described in Chapter 2 is initiated. With our scheme, no extra control

information is needed for the fault-tolerant MIN to function properly. The fault-tolerant MIN can

operate as if it is a non-redundant MIN and no modification to the routing is required. Hence, our

scheme is more adaptable than other schemes such as the DR network which requires additional

routing tags to be added.

6.3. Reliability Estimation of the Scheme

The fault-tolerant MIN constructed using our scheme contains n active processors and k spares.

In analyzing its reliability, we consider only processor failure. The failure of switching elements

can be covered by other proposed methods [I]. Let c be the coverage factor, k be the number of

spares processors in the MIN, n be the number of active processors in the MIN, s be the reliability

of a single switching element, w be the reliability of a row of switches used in the DR network,

sO=snI2 be the reliability of a stage of switching elements in a MIN with no spare switching

element, r be the reliability of a single processor and m= log2n. The reliability of a non-redundant

MIN Ro is rns;.

Using the same calculations as in Section 2.3, for arbitrary k,

m n+k-1
Rk= Rk-l+So (k) rn(l -r)kck.

Jeng and Siege1 [lo] showed that the optimal number of spares in a DR network is one in that no

further improvement in reliability can be achieved with more spares. However, with our scheme,

the optimal number of spares depends on the value c and is much larger than one. Thus, our

scheme can achieve higher reliability than Jeng and Siegel's scheme by using multiple spares. In

fact, our scheme with only two spares provides higher reliability than Jeng and Siegel's DR

network when n 2 200 and r=0.99 even though our scheme only provides coverage for processor

failures.

Lemma 1: Assuming that w 2 r and c= 1 , our scheme with two spares has a higher

reliability than the DR network with one spare processor and one extra row of switching
2f

elements when n > =- 1 .

Proof: As shown in [lo] , the reliability of the DR network with one spare is

(rw)"+(n+ l)(rw)"(l-rw).

The reliability of our scheme w i a t w s p m s is

We now show that (2) > (1).

Since $ = (sf l)* 2 w ", we can divide (1) by (rw)" and (2) by rns;.

Since w 2 r , (1 -r) 2 (1 -w). Thus, we can divide the RHS by (1 -w) and the LHS by

(1 -r) and simplify both sides further.
LHS=(n+ 1)(1-r)/2.
RHS=r.

Putting n on the LHS.
LHS=n.

Thus, the LHS is greater than the RHS. 0

According to this lemma, for low values of r (such as 0.9) our scheme using two spares and no

switching element coverage is more reliable than the DR network with one spare processor and one

spare row of switching elements when n 2 18. For higher values of r, the value of n has to be

higher for our scheme to be more reliable than the DR network. For example, when r= 0.99, n

must be greater than 198. However, when directly comparing the computed reliabilities of both

schemes, our scheme with two spare processors actually achieves higher reliability for smaller n

and larger r since some of the cancellations in the proof of the Lemma are biased towards Jeng and

Siegel's scheme.

Let r=e -q t and s=e-%' [17] where kp is the failure rate of a processor over time t and ks is the

failure rate of a switching element over time t [17]. Table 6-1 shows the system reliability of Jeng

and Siegel's scheme with one spare processor and one spare row of switching elements, and the

system reliability of our scheme with two spare processors with $=O.l and h,=0.01. According

to these figures, our scheme is better for r S 0.99 when n 2 32 and for r in the range

0.99 I r I 0.999, our scheme is better for n 2 512. Our scheme can achieve even higher system

reliability with more than two spare processors and by adding other proposed schemes to cover

switching element failures. Thus, our scheme should be able to achieve higher reliability than the

DR networks for smaller n and larger r.

6.4. Extension to Cover Switching Element Failures

In Section 6.2, switching networks are used to provide coverage for processor failures. The same

technique can also be applied' to provide coverage for switching element failures on a variety of

MINs such as the generalized cube, the omega network, the shuffle exchange network and the

baseline network. In this section, we show how the technique can be applied to cover switching

element failures in shuffle exchange networks. Figure 6-3 shows a shuffle exchange network with

eight processors. A shuffle exchange network has the nice property that the connections between

System Reliability

Chau Chau

0.9996

0.9988

0.9968

0.9920

0.9809

0.9559

0.9006

0.7820

0.5484

0.2151

0.0192

Chau

Table 6-1: The system reliability of Jeng and Siegel's DR scheme
and our new scheme with k=2

any two stages of the switching elements are exactly the same. Hence, we only have to show how

the technique can be used between any two stages. Figure 6-4 shows the connection between two

stages of switching elements in a shuffle exchange network with 8 active processors and one spare

switching element in each stage.

Fault-tolerance in the switching elements can be provided by inserting four groups of switching

networks between two stages of switching elements. In this case, the switching networks serve to

collect the outputs from the active switching elements in stage i and direct them to the active

switching elements in stage i+ 1. Collecting the outputs from the active switching elements in

stage i is done by the first and second group of switching networks, the first one dealing with the

first output of each switching element and the second one dealing with the second output of each

switching element. Similarly, the third and fourth groups of switching networks are used to direct

these outputs to the inputs of the active switching elements of stage i+ 1 - the third group for the

switching elements

stage 0 stage 1 stage 2

Figure 6-3: A shuffle exchange network with 8 processors

connections to switching elements in stage i

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

connections to switching elements in stage i+l

second group

fourth group

Figure 6-4: The connection between 4 groups of switching networks

first inputs and the fourth group for the second inputs of the switching elements. The standard

shuffle exchange interconnection is used to connect these four groups of switching networks. In

general, for a shuffle exchange network with n processors, the i fh output link of the first group of

switching network is connected to the (2i- input link of the third group if 2i I n/2. Otherwise,

it is connected to the (2i- 1 -n/2)h input link of the fourth group. Similarly, the i th output link of

the second group is connected to the 2i th input link of the third group if 2i 5 n/2. Otherwise, it is

connected to the (2i-n12)~ input link of the fourth group.

Between the processors and the switching elements, two additional groups of switching networks

are required to provide coverage for stage 0 and the last stage. The first group connects the first

input or output links of the switching elements to the processors depending on whether it is the first

or the last stage and the second group connects the second input or output links. The connections

between the processors and the two groups of switching networks are similar to the connections

between the four groups of switching networks for any two stages. The i th link of the first group is

connected to the (2i- processor and the i th link of the second group is connected to the 2i th

processor. With these switching networks and f spare switching elements in each stage, each stage

of switching elements can tolerate up to f switching element failures. Furthermore, the shuffle

exchange MIN can tolerate up to k processor failures using the scheme described in Section 6.2.

This technique can clearly be applied to other types of MIN's besides the shuffleexchange

networks and no additional control information is required by the fault-tolerant MIN.

6.5. Reliability of the Extended Scheme

The fault-tolerant MIN constructed using our extended scheme can tolerate both processor

failures and switching element failures. In our analysis, we do not consider the failures in the

switching networks. However, these failures can be covered by duplicating the switching

networks.

Consider a MIN with n active processors and k spares, n switching elements and f spare switching

elements in each stage of switching elements. Let c be the coverage factor, m= log2n be the

number of stages of switching elements, s be the reliability of a switching element, and r be the

reliability of a single processor. The reliability Po of n processors with no spare is rn . The

reliability So of a stage of non-redundant switching elements is snf2. The reliability Rope of a

non-redundant MIN is P ~ s ~ . Using the the same procedure as described in Section 2.3, the

reliability Rt is given by

Rk = ~ $ 7
where

pk = ck L = O (n+f-l)rn(l-r)ici

and

f ("2tf-1 4 2 1 ici sf=Z,=o ,)s - .

Assuming that the switching elements used in the DR network and our scheme have the same

reliability, and Xp=O.l and h,=0.01, the system reliabilities of both schemes with one spare

processor and one switching element per stage are listed in Table 6-2. The values show that our

scheme is at least as good as the DR network when t is small and is better for larger t.

System Reliability

Chau Chau Chau

Table 6-2: The system reliability of Jeng and Siegel's DR scheme and our new
scheme with one spare processor and one spare switching element per stage

In general, the amount of extra hardware used in our scheme is k spare processors, f logzn spare

switching elements and 410g2n groups of switching networks. With k=f=l, each group of

switching network has n/2 switches. The total number of extra switches used in our scheme is

2nlog2n. For Jeng and Siegel's DR scheme with k=f= 1, the number of extra links required is

(n+3)log2n. Thus, our scheme uses slightly more extra hardware than Jeng and Siegel's DR

scheme but our scheme can achieve higher reliability using the same number of spare processors

and spare switching elements. Furthermore, with k > 1 and f > 1, our scheme can provide multiple

fault coverage for processors and switching elements. In fact, with k spare processors, our scheme

can tolerate any k processor failures. Similarly, with f spare switching elements in each stage, our

scheme can tolerate any f switching element failures in any stage.

Table 6-3 lists the system reliability of MINs using different values for k and f with hp=O.l and

hs=O.O1 at t=0.01 and t=0.1. The values clearly show that significant improvement can be

achieved by using more than one spare processor and one spare switching element per stage. For a

MIN with 4,096 processors, the reliability at t=0.01 can be improved from 0.08455 for a MIN

with 1 spare processor and 1 spare switching element per stage to 0.99 by using 9 spare processors

and 9 spare switching elemems per stagc.

Table 6-4 shows the number of spare processors and the number of spare switching elements per

stage required to achieve a reliability of at least 0.98 at t=0.01 and t=0.1 for different values of n.

The values in Table 6-4 shows that our scheme can provide high reliability for MDTs with large

numbers of processon and for a longer period of time compared to other proposed schemes by

incorporating more than one spare processor and more than one spare switching element per stage.

The reliability that can be achieved by our scheme is only restricted by the value of the coverage

factor c [17]. Hence, our scheme with multiple spare processors and multiple spare switching

elements is well-suited for use in long-life unmaintained applications.

System Reliability

Table 6-3: The system reliability of our new schezne with different values of k and f

6.6. Modular Sparing

For a MIN with a large number of processors, it may not be feasible to implement an entire MIN

on a single chip. It may be necessary to split up the MIN into smaller modules and connect these

modules together to form the MIN. Our new schemes can be applied to each module.

Let g be the number of modules, rn be the number of active processors in a module, k be the

number of spare processors in each module, Z= rlog2k+ 11, and k = ~ : i : ai2' where the ai 's are

either 0 or 1. The number of switching networks required to provide processor failure coverage

depends on the number of module used. Each module requires 2 switching networks. Hence, 2g

switching networks are required. Since a Type B switching network has a lot less switches than a

Type A switching network, we assume that the fault-tolerant MINs are implemented using Type B

switching networks. From Section 2.5, a Type B switching network has (n l c ~ ; ~ : - inizi)

Reliability

Chau

1.0000

1.0000

0.9999

0.9995

0.9980

0.9923

0.9977

0.9846

0.9959

0.9815

0.9905

Reliability

Chau

Table 6-4: The number of spare processors, k, and spare switching element,
f, per stage required to achieve a reliability of at least 0.98

switches. The total number of switches required to implement a fault-tolerant MIN is

2g(ml+g1: - iai2i)+2g(m+k-l), where 2g(m+k-1) is the number of switches required to

connect consecutive processors together in each module.

Let d= log2n and f be the number of spare switching elements in each module. For the extended

scheme, each module requires 4d switching networks. The total number of switches required to

implement all the switching network is 4 g d (l m ~ + ~ : ~ : - ioi2{). An additional 2g(m+ k- 1)

switches are required to connect the consecutive switching elements together. The total switches

required for the extended scheme is the sum of the number of switches given above together with

the number required to provide coverage for processor failures. The total number of switches

required for the extended scheme is (4gd+2g)(ml+~:~: - iai2i) + 2g(m+k-1) + 2gd(m+f-1).

For the scheme that provides coverage for processor failures only, the amount of extra hardware

required for modular sparing is always greater than that of global sparing. In Table 6-5, the amount

of extra hardware required to achieve the same level of reliability for global sparing and for

modular sparing with 2 and 4 modules respectively at t=0.01 is shown. The amount of extra

hardware required is given in "processor equivalents", that is the total number of gates divided by

20,000, and each switch is assumed to be implemented with 10 gates. The values clearly shown

that global sparing is better for n I 4096.

No. of Spares Extra Hardware

Global

1

1

1

1

2

3

4

5

7

9

13

Global Global

0.9996

0.9988

0.9967

0.9915

0.9809

0.9562

0.9027

0.7942

0.5993

0.3242

0.0856

Reliability

Table 6-5: Extra hardware required for global sparing and modular sparing
with 2, and 4 modules having the same level of reliability at t=0.01 and c= 1

For the extended scheme, the situation is more complicated due to the small size of a switching

element. That is, the savings in the number of spare switching elements for global sparing cannot

offset the extra number of switches required. Table 6-6 and Table 6-7 list the same values as in

Table 6-5 using the extended scheme for t=0.01 and t=0.1, respectively, where a switching

element is assumed to be implemented with 100 gates. The values show that it is better to split the

MIN into more modules as n increases.

No. of Spares

Global

Extra Hardware

Global Global

1 .m
1 .m
0.9999

0.9995

0.9980

0.9923

0.9977

0.9846

0.9959

0.9815

0.9905

Reliability

rable 6-6: Extra hardware required for global sparing and
modular sparing using the extended scheme at t=0.01 and c= I

No. of Spares

Global

82

Extra Hardware

Global Global

Reliability

Table 6-7: Extra hardware required for global sparing and
modular sparing using the extended scheme at t= 0.1 and c = 1

Chapter 7

Conclusion

Two types of switching networks and a scheme for constructing fault-tolerant multi-computer

networks using these switching networks to interconnect the processors have been proposed. The

scheme can be applied to several types of multi-computer network architectures with only minor

modifications. With our scheme, we can provide global sparing in which the network is

k-fault-tolerant with only k spares. This is clearly optimal in terms of spares required to achieve

k-fault-tolerance. Our global sparing scheme compares favorably with other proposed schemes for

multi-computer networks. It can achieve higher reliability than the other proposed schemes using

no more extra hardware. In most cases, it only uses a fraction of the extra hardware required by the

other schemes to achieve the same level of reliability as the other schemes. Furthermore, the

amount of extra hardware used is small compared to the hardware requirements of a non-redundant

network.

If a network is too large to be implemented as a single fault-tolerant module, a modular approach

can be used using the same technique. In most architectures where the number of switches

required to implement the network is small, global sparing can achieve the same level of reliability

as modular sparing using only a fraction of the extra hardware used for modular sparing. However,

for architectures that require a large number of switches in the connection, the result is not as clear.

In particular, modular sparing may be better when the network has a large number of active

promssors.

A fault-tolerant multi-computer network constructed using our new scheme functions as if it was

a non-redundant network. No extra control information is needed to ensure the fault-tolerant

network bctions properly. When a processor fails, the reconfiguring process can be initiated

distributively. Fast context switching is also provided to speed up reconfiguration. These

properties together with the ability to provide a high level of reliability for a long period of time

make our scheme suitable for long-life unrnaintained applications.

References

G . B. Adams, D. P. Agarwal and H. J. Siegel.
A Survey and Cornparsion of Fault-Tolerant Multistage Interconnection Networks.
Computer : 14-27, June, 1987.

Prithviraj Banerjee, Sy-Yen Kuo, and W. K. Fuchs.
The Cubical Ring Connected Cycles: A Fault-Tolerant Parallel Computation Network.
In Digest of papers of the International Symposium on Fault-Tolerant Computing, pages

286-291. The Computer Society, IEEE, 1986.

Prithviraj Banerjee.
The Cubical Ring Connected Cycles: A Fault-Tolerant Parallel Computation Network.
IEEE Transactions on Computers c-37(5):632-636, May, 1988.

Siu-Cheung Chau and Arthur L. Liestman.
A Proposal for a Fault-Tolerant Binary Hypercube.
In Digest of papers ofthe International Symposium on Fault-Tolerant Computing, pages

323-330. The Computer Society, IEEE, 1989.

Siu-Cheung Chau and Arthur L. Liestman.
A Fault-Tolerant Binary Tree Architecture.
Technical Report CMlT TR 88-8, School of Computing Science, Simon Fraser

University,December, 1988.

Siu-Cheung Chau and Arthur L. Liestman.
A Fault-Tolerant Multistage Interconnection Network Architecture.
Technical Report CMPT TR 89-1, School of Computing Science, Simon Fraser

University,March, 1989.

A. S. M. Hassan and V. K. Agarwal.
A Fault-Tolerant Modular Architecture for Binary Trees.
IEEE Transactions on Computers c-35(4):356-361, April, 1986.

J. Hastad, T. Leighton and M. Newman.
Reconfiguring a Hypercube in the Presence of Faults.
Proceedings of Principles of Distributed Computing Conference :274-284,1987.

M. Howells and V. K. Agarwal.
A Reconfigurating Scheme for Yield Enhancement of Large Area Binary Tree

Architectures.
IEEE Transactions on Computers c-37(4):463-468, April, 1988.

M. Jeng and H. J. Siegel.
Design and Analysis of Dynamic Redundancy Networks.
IEEE Transactions on Computers c-37(9):1019-1029, September, 1988.

C. L. Kwan and S. Toida.
Optimal fault-tolerant realizations of hierarchical tree systems.
In Digest ofpapers of the International Symposium on Fault-Tolerant Computing, pages

176-178. The Computer Society, IEEE, 198 1.

Mathew B. Lowrie and W. Kent Fuchs.
Reconfigurable Tree Architectures Using Subtree Oriented Fault Tolerance.
IEEE Transactions on Computers c-36(10): 1172-1 182, October, 1987.

F. P. Preparata and J. Vuillemin.
The Cube-Connected Cycles. A Versatile Network for Parallel Computation.
Communications of the ACM :30-39, May, 1981.

C. S. Raghavendra, A. Avizienis and M. D. Ercegovac.
Fault Tolerance in Binary Tree Architecture.
ZEEE Transactions on Computers c-33(6):568-572, June, 1984.

David A. Remels.
On Implementing Fault-Tolerance in Binary Hypercubes.
In Digest of papers of the International Symposium on Fault-Tolerant Computing, pages

344-349. The Computer Society, IEEE, 1986.

Adit D. Singh.
A Reconfigurable Modular Fault Tolerant Binary Tree Architecture.
In Digest of papers of the International Symposium on Fault-Tolerant Computing, pages

298-304. The Computer Society, IEEE, 1987.

D. P. Siewiorek and R. S. Swarz.
The Theory and Practice of Reliable System Design.
Digital Press, Bedford, MA, 1982.

Raif M, Yanney and John P. Hayes.
Distributed Recovery in Fault-Tolerant Multiprocessor Networks.
ZEEE Transactions on Computers c-35(10):871-879, October, 1986.

Raif M. Yanney and John P. Hayes.
Fault Recovery in Distributed Processing Loop Networks.
Computer Networks and ISDN Systems (1 5):229-243,1988.

