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ABSTRACT

Given two varieties  and 7~ of inverse semigroups, define Wr( %, #°) to be the
variety of inverse semigroups generated by wreath products of semigroups in ¥ with
semigroups in 7. The principal result of this‘ work is a description of the fully invariant
congruence on the free inverse semigroup corresponding to Wr( %, #7) in terms of the
fully invariant congruences corresponding to  and ?; where Z and 7~ are varieties of
inverse semigroups. This description makes use of a graphical representation of inverse
semigroups with presentations, due to Stephen, which is the inverse semigroup theoretic
analogue to the Cayley graphs of group theory. We further show that Wr, considered as a
binary operator on the lattice £(_#) of varieties of inverse semigroups, is associative.
Thus, the lattice of varieties of inverse se_migroups is a semigroup (£(.#), Wr ) under the
operation Wr. |

Using these results we’investigatev properties possessed by varieties of the form
Wr( %, 7). We show that when  is a group variety, Wr( %, #°) is the more
familiar Mal'cev product variety % o . The principal result also provides us with a
solution to the word problem for the relatively free objects in Wr( %, ) given solutions
to the word problem for the relatively free objects in the varieties  and . We show that
when the varieties # and 7" have E-unitary covers ovér the group varieties #~ and 2,
respectively, then Wr(#%, ) has E-unitary covers over the group variety
Wr( %, & ). Further properties of varieties of this form are presented as well as a°
discussion of the basic properties of the semigroup (£(.#),Wr). We conclude this work
by showing that several special intervals in £(.#) corresponding to v-classes and whose
. maximum member is of the form Wr(¥, #1) are infinite, where ¥ is a variety of abelian
groups and & ! is the variety of invcrsé semigroups generated by the five element Brandt

semigroup with an identity adjoined.
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CHAPTER ONE

Introduction

An inverse semigroup S is a set with an associative binary operation, usually
referred to as multiplication, and a unary opcrétion of inversion which satisfies the property
that every element of S has a unique inverse in the sense of von Neumann. V.V. Wagner
in 1952 was the first to study inverse semigroups, though he called them 'generalized
groups' and defined them as regular semigroups in which the idempotents commute. In

1953 Liber proved that the two definitions are in fact equivalent. Preston later (and

independently) rediscovered this class of semigroups and called them 'inverse semi-

groups', the name most widely used today.

Every inverse semigroup is isomorphic to a semigroup of partial one-to-one
transformations on a nonempty set. This is the substance of the Wagner Representation

Theorem which is the inverse semigroup theoretic analogue to the.Cayley Representation

~ Theorem of group theory. Indeed, the Wagner representation of a group is the Cayley

representation of that group.' Thus, just as we often find it convenient to think of groups as
permutations, we often think of inverse semigroups as semigroups of partial one-to-one
transformations.

Given two inverse semigroups, a new inverse semigroup can be obtained by

forming their wreath product. By the wreath product S wr (T,I) of S and T, where Tis a

semigroup of partial one-to-one transformations on the set I, we mean the set of pairs (y,3)
where B € T, v is a mapping from I into S and the domains of v and B are equal, with
products defined by

(W1.BDOW2,B2) = (W1Plyo,B1B2) ((y1.BD.(y2.B2) € S wr (T.D)
where, for all i in the domain of B1B2, iyiBlys = (iy1)(iB1ys). Note that, given any two

inverse semigroups S and T, we can always form the wreath product of S and T by taking
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the Wagner representation of T. Wreath products are of fundamental importance in the
study of inverse semigroups and play a cehtral role in our investigations.

Inverse semigroups are determined by associativity and the laws xrlx = X,
(x-1)-1 = x and xx-lyy-1 = yy-1xx-1. Thus, the class of inverse semigroups (considered as
algebras of type (2,1)) forms a variety and we may approach the study of inverse
semigroups from the perspective of their lattice of varieties. This approach not only
suggests a possible framework from which we may tackle classification problems, but it
has proved itself essential in the study of the structure of inverse semigroups by the
identities they satisfy.

The focus of our investigations is a binary operator Wr on the lattice of varieties of
inverse semigroups. Given two varieties # and %~ of inverse semigroups, we define
Wr(%,?) to be the variety generated by wreath products of members of  with members
- of 7/» which are represénted as partial one-to-one transformations on some nonempty set.
The principal result of this thesis is a characterization of the fully invariant congruehce on
the free inverse semigroup corresponding to Wr(#,?) in terms of the fully invariant
congruences corresfonding to Z and 7, where Z and ¥~ are varieties of inverse
semigroups. Our motivation for studying this class of varieties is essentially twofold.
First of all, every completely semisimple inverse semigroup is .a subdirect product of
inverse subsemigroups of wreath products of the form G wr F (1), where G is a group and
J(I) is the inverse semigroup of all partial one-to-one transformations on the nonempty set
L. Thus, every variety whose free objects are completely semisimple (and they are many) is
generated by inverse subsemigroups of wreath products. Secondly, the relation v defined
on the lattice of varieties of inverse semigroups by ¥ v 7” if and only if ¥ m % =
INFandZv% =7 v, where ¥ is the variety of all groups, is a congruence
[K1] and, by a result due to Reilly [Rel], if 7" is a combinatorial variety, the v-class of
7 v %, for some variety of groups %, is the interval [¥'v ¥, ¥ o 7], where ¥ o ¥ is

) :



the Mal'cev product of # and 7. It turns out that whenever ¥ is a variety of groups,
Wr(Z,7) =% o 7, and s0 a description of the fully invariant congruence corresponding to
Wr(%,7) is of some interest.

There is a connection between these two motivating factors and this connection

forms the basis for our principal result, which vis generalized Beyond the specific classes of -

varieties mentioned above. The first factor is closely related to representations by right
translations, which we must 'decode' in order ‘to determine the laws-of the varieties
mentioned in the second factor. This 'decoding' is made possible by yet another
representation of inverse semigroups, this time as directed inverse word graphs over some
label set X. This representation, due to Stephen [S], is called the Schiitzenberger
representation and is the inverse semigroup analogue to the Cayley graphs of group theory.
Unlike the group case, in which there is one underlying graph representing a group with
respect to some presentation, 'an inverse Asemigroup (with presentatién) has one underlying
graph fdr each & -cléss. When considering whether the variety Wr(,%) satisfies the
identity u = v, where u and v are words over some alphabet X, we look at, first of all,
whether the variety 7 satisfies u = v and if so, whether  satisfies an identity determined
by the paths labelled by u and v in the Schiitzenberger representation of u and v relative to
the presentation (X;p(?)), where p(?) is the fully invariant congruence on the free inverse
semigroup corresponding to 7.

It turns out that Wr is an associative operator on the lattice of varieties of inverse
semigroups which, when restricted to the lattice of varieties of groups, is the well-known
product operator. While the lattice of varieties of groups under Wr is freely generated by
its indecomposable members, the same cannot be said for the lattice of varieties of inverse
. semigroups. We can however, use our description of the fully invariant congruence

corresponding to Wr(%,%) to discover some interesting results concerning familiar classes



of varieties, including Mal'cev products of the form # o~ where Zisa variety of groups
and varieties whose free objects are E-unitary and their subvarieties.

The following is a brief outline of each chapter of this thesis.

Chapter 2 is devoted to preliminary material required in the sequel including
fundamental results and definitions of inverse semigroup theory as well as the basics on the
Wagner representation, the Translational Hull of an inverse semigroup, Varieties of inverse
semigroups and Schiitzenberger graphs. '

Since wreath products figure prominently in our investigations, Chapter 3 is
concerned with the basic results we will require in subsequent chapters on this subject.
The first section of this chapter deals with the definition of wreath product. Section 2 deals
with showing that completely semisimple inverse semigroups are isomorphic to subdirect
products of inverse subsemigroups of semigroups of the form G wr (T,I) where G is a
group and T is an antigroup. The final section of chapter 3 presents some basic facts
concerning wreath products of inverse semigroups.

In Chapter 4 we present our Main Theorem which characterizes the fully invariant
~ congruence on the free inverse semigroup corresponding to Wr(%,%) in terms of the fully
invariant congruences corresponding to  and 7, for varieties ¥ and 7" of inverse
semigroups. The first section introduces the notion of the doubly labelled Schiitzenberger
graph and from it we define, for any given word w and variety 7, an associated word
dependent upon 7 called the derived word of w with respect to 7. The derived word of w
with respect to 7 is an ‘encoding’ of the path labelled by w in the Schiitzenberger graph of
w with respect to 7. We use this encoding in our Main Theorem, which is the subject of
Section 2. Section 3 is concerned with basic properties of varieties of the form Wr(%,?),
. including the result that, when  is a group variety, Wr(¥,?) =.?/ o 7, the Mal'cev
product of Z and 7. The last section of this chapter deals with the associativity of the Wr

operator.



Consequences of the Main Theorem are presented in Chapter 5. In section 1 we
show that the Wr(%,%)-free semigroups have solvable word problem if both the -free
and the 7-free semigroups have solvable \\:vord problem and also that Wr(%,?) is locally
finite if and only if both  and #” are locally finite. Section 2 contains results concerning
E-unitary covers which utilize a graphical déscription, due to Meakin and Margolis, of
varieties of the form Zmax = [w = w2 : w = w2 is a law in ], where ¥ is a variety of
groups. The third section is devoted to results concerning varieties of the form Wr(%,%).
It turns out that Wr(%,?) is the largest variety satisfying those identities w = w2 that are
satisfied by 7. This chapter concludes with some basic results concerning the semigroup
of varieties of inverse semi groﬁps under the operatioh of Wr.

In the final chapter we look at the intervals [ v.& L, ¥ o #1] where ¥ is a
variety of abeliém groups and # 1 is the variety generated by a special six-element inverse
semigroup (the five-element Brandt semi groﬁp With an identity adjoined). For each of
these intervals, we construct an infinite chain of varieties using only a minimal knowledge

of the relatively free object on a countably infinite set in the variety % 1.



CHAPTER TWO

Preliminaries

The fundamental definitions and results of inverse semigroup theory which are
required in the sequel are presented in this chapter. The principle source used is Inverse
Semigroups by Mario Petrich [P]. For the fundamentals of semigroup theory, the reader is
rcferred' to Clifford ﬁnd Preston [CP]. The material on Schiitzenberger graphs cofncs from
Stephen [S]. For basic universal algebraic results concerning varieties, we refer the reader
to either Burris and Sankapanavar [BS] or Gritzer [G). It is assumed that the reader is
familiar with the notion of a lattice and the basic definitions and results concerning lattices.
A standard text on this subject is Birkhoff's Lattice Theory [Bil]. Most of the results of
sections 2.3 through 2.7 can be found in [P]. We will cite the reference to [P] when the - ‘

result is stated and provide the original source in the final paragraphs of these sections.

2.1 Semigrdups

A semigroup is a pair (S,) where S is a set and - is an associative binary
operation, usually referred to as multiplication. Unless there is the possibility of
ambiguity, we denote the semigroup (S,:) by S and denbte products in S by juxtaposition.
A familiar example of a semigroup is the set of functions on a nonempty set X under the
operation of composition.

A semigroup may possess special elements which are distinguished by certain
characteristics. Let S be a semigroup.

An element s € S is an identiry if sx =xs = x, forallx € S. If S possesses an
identity then it is unique and is denoted by 1 or 1g if we wish to emphasize that it is the

identity of S. A semigroup which has an identity is called a monoid. Given an arbitrary
| 6



serriigroup S, we define S1 to be S if S is a monoid or (S U {1}, - ) with 1.x =x-1 = x,
for all x € S, if S is not a monoid. It is easy to see that S1is a monoid.

Anelementse Sisazeroif sx=xs=s,forallx e S;MIf S possesses a zero then
it is unique and is denoted by 0 or Og if we wish to emphasize that it is the zero of S. The
semigroup SO is defined to be S, if S possessés a zero, or (SU {0},c ) withO-x=x-0=
0, for all x € S, otherwise. If T is a subset of S, but not a semigroup with 0, and T
satisfies the property that, for any a,b,c € T, ab and (ab)c are elements of T if and only if
bc and a(bc) are eleménts of T, then we define TO to be the set T L {0} with multiplication
- given by t1-ty =tity if tjtg € T, t1- t2 = 0, otherwise and 0t =t;- 0 =0, for all
t1,t2 € T. One easily verifies that TV is a semigroup.

An element e € S is an idempotent if e = e2. The set of idempotents of S is denoted
Es. The relation < on Eg defined by e < f if and only ife = ef = fe, for all e,f € Eg, is a
partial order and is called the natural partial order of Es. If S has no zero, an idempofen’t
e e Es is primitive if it is minimal in the natural partial order of Eg. If S has a zero,

e € Eg is primitive if it is minimal in Eg \ {0}.

2.2 Inverse semigroups
Let S be a semigroup. An element s € S is regular if there exists an x € S such that
s = sxs. The semigroup S is said to be regular if all its eiements are regular. The element x
is an inverse of s if s = sxs and x = xsx. |
| A regular semigroup whose idempotents commute is an inverse semigroup. An
equivalent definition of inverse semigroup is a semigroup in which each element has a
unique inverse [P;II.1.2]. The former definition is due to Wagner [Wal] who was the
. first to study inverse semigroups, though he called them 'generalized groups'. The latter

definition is due to Liber who, in [L], showed that the tWo definitions are equivalent. An



inverse semigroup which is also a monoid is called an inverse monoid. For any ciement s
in an inverse semigroup S, we denote the unique inverse of s by s-1.

The set of partial one-to-one transformations on a nonempty set X under the
operation of composition is an important example of inverse semigroups. This semigroup
is called the symmetric inverse semigroup oﬁ X and is denoted by #(X). It is easy to
verify that if S is an inverse 'semigroup then both S! and SO are inverse semigroups.
Moreover, if T is a subset of S such that t € T implies that t-1, tt-1 € T, and T satisfies the

property mentioned in the definition of TO, then T is an inverse semigroup.

2.3 Fundamentals
Throughout this sec;ﬁon S is an inverse semigroup.
Inverse semigroups are partially ordered algebras. Define the relation <on S by
| s<t cbs=etvfo-r'someeeEs . (ste S).
It is a simple task to verify that < is a partial order on S. lThe relation < is called the natural
~ partial order on S. The following are equivalent characterizations of < (See [P;IL.1.6)):
s<t < s=te forsomee € Eg
& s=sslt
& s=tsls (s,te S).
Observe that the natural partial order on S restricted to Es coincides with the natural partial
order on Eg defined in the previous section.
Let S be an inverse semigroup. A subset T of S is an inverse subsemigroup of S if
T is closed under the operations of S; that is, for all t;,tp € T, tjtp € Tand t;-l € T. Itis
not true in general that a subserm'group of an inverse semigroup is an inverse semigroup.
. An example which illustrates this is T = { (1 — 2), & }, where (1 — 2) is the member of
F({1,2}) with domain {1} which maps 1 to 2. T is a subsemigroup, but not an inverse

subsemigroup, of #({1,2}). If S is a monoid and T is a subsemigroup of S such that
8



1s € T, then T' is an inverse submonoid of S. If K is a subset of S then the inverse
subsemigroup of S generated by K is the‘interse_ction of all subsemigroups of S containing
K. We say that the inverse subsemigroup T of S is full if Eg ¢ T, and we say that T is
closed if, forallx e T,y e S, x <y implies that y € T. The closure of T in S, denoted
Tw,istheset { se S:s>t forsome te T } If Tow = T then we say that T is closed.
A nonempty subset I of S is a right ideal if

IS={ts:se S,te I} clL.
A nonempty subset I of S is a left ideal if

SI={st:se S,te I} cl.
A subset I of S is a (two-sided) ideal of S if it is both a right ideal and a left ideal.
Equivalently, I is an ideal of S if

SIS = {slts_z :s1,s2€ S,te 1},
For any. element s € S, thé principal right ideal generated by s is the infersectibn of all right

ideals containing s and is denoted by R(s). The principal left ideal generated by s and the

principal ideal generated by s are defined similarly and are denoted by L(s) and J(s), -

respectively. It is not difficult to show that R(s) = sS, L(s) = Ss and J(s) = SsS.

An inverse semigroup is simple if it has no proper ideals. If S has a zero, then S is
O-simple if S2# 0 and S has no proper nonzero ideals. A simple inverse semigroup
‘possessing a primitive idempotent is called a completely simple inverse semigroup and
likewise, a O-simple inverse semigroup possessing a primitive idempotent is called a
completely O-simple inverse semigroup. The intersection, if nonempty, of all ideals of S is
called the kernel of S. Note that the kernel of S, if it eﬁ;ists, is a simple semigroup.

The relations %, %, 7, # and & on S, called Green's relations, are of
. fundamental importance and are defined as follows. For alls,te S,
st < R(s)=R@);
st & L(s)=L(1);



sf t & I(s)=1(t);
St & sHt ands.Sf‘t;
s Pt & thereexistsanx € S suchthat s % x and x £t.

Clearly, %, &£, ¢ and # are equivalence relations. Furthermore, it can be shown
that & is an equivalence relation which can cqﬁivalently be defined by s @ t if and only if
there exists an x € S such thats ¥ x and x % t.

For any % e (% £ £ 9 }, define the FH-class of s S by
Ks={xe S:s #x}. For ¥e {%£,%,) there is a partial order on the
J~classes of S given by Kg <K if and only if K(s) ¢ K(t).

The following is a list of basic results concerning Green's relations in inverse

semigroups.

Lemma 2.3.1. Let S be an inverse semigroup.
a) Every & -class and every #-class of S contains exactly one idempotent [P;I1.1.2];
b) If eis an idempotent of S then Hp is a maximal subgroup of S and conversely, if G is a
maximal subgroup of S then G is an #-class of S [P;1.7.5,1.7.6]; ) |
c¢) Foranys,¢te S,
SHEt < ssl=trl,
st o sls=tl,
s @t < thereexists an x € S such that ss”! = xx-1 and x-1x = t-It;
d) Foranye,fe Eg, J(e) cI(f) if and only if e =aa-l anda-la<f, forsomeae S.
( both (c) and (d) are from [P;IL.1.7])

In fact, property a) is an equivalent definition of an inverse semigroup.

A homomorphism from S into a semigroup T is a function ¢ such that, for all
s;t € S, (s9)(t9) = stg. Any homomorphic image of an inverse semigroup is necessarily

10



an inverse semigroup [P; I1.1.10]. Furthermore, by the definition of inverse semigroup,
homomorphisms preserve inverses.‘ That is, if ¢ is a homomorphism of S into T and
s € S, then s'1¢ = (sd)-1.

A congruence p on S is an equivalence relation satisfying the property that, for all
s,,x € S, spt implies that xs p xt and sx p tx. If p is a congruence on S then S/ p is
an inverse semigroup with multiplication given by (sp)(tp) =stp. S/p is called the
quotient semigroup induced by p. We denote by @ and € the universal relation on S and
the identical relation on S, respectively. The set of all congruences on an inverse
semigroup S forms a complete lattice under inclusion with greatest element  and least
element €.

There is a strong connection between congruences and homomorphisms. Given a
homomorphism ¢ : S — T, there is an associated congruence ¢* on S defined by s ¢* t if
and only if s¢ = td, forall s,t € S. Conversely, given a congruence p on S, there is an
associated homomorphism p# : § — S/ p given by sp# = sp, forall s e S. |

Because congruences (and hence homomorphisms) play such an important role in
our investigations, we present 4here some basic facts concerning congruences and list some
special types.

Any congruence on an inverse semigroup S is uniquely determined by the union of
its classes which contain idempotents and by its restdctibn to Eg. Let p be a congruence on
S. Define the trace and kernel of p by |

tr p=p N (Es xEg)

kerp={se S:spe forsomeee Eg},
respectively. p is the unique congruence on S with trace equal to tr p and kernel equal to
. ker p [P;II.1.5]. If we think of tr as a mapping from the lattice of congruences on S into

the lattice of congruences on Eg, then tr is a complete lattice homomorphism [P;IIL.2.5].

11



Likewise, ker, considered as a mapping from the lattice of éongruences on S into the lattice
of kernels (of congruences) of S, is a complete M - homomorphism [P;I11.4.8].

For any congruences p and T on S such that p < 1, define the relation T/ p on
S/p by (xp) (t/p) (yp) if and only if xTy. Then T/pis a confruence on S/p
and (S/p)/(t/p)=S/t, [P;1.4.15].

Let I be an ideal of S. Then the relation pyon S defined by

spit & stelors=t (ste S)
is a congruence and is called the Rees congruence on S relative to I. The quotient
semigroup S/ p1 induced by pj is called the Rees quotient semigroup (See [P;1.5.3]).

A congruence p on S is idempotent separating if, for any e,f € Eg, e p f implies
that e = f. Thus, p is idempotent separating if and only if tr p = ¢, the identical relation.
Equivalently, p is idempotent separating if and only if p < # [P;I11.3.2]. We denote by
Mg the greatest idempotent separating congruence on S. That g exists is guaranteed by the
fact that it is characterized by being the greatest congruence on S contained in ##. A further
characterization is given by

sust < sles=tlet forallee Eg (s,te S).

A congruence p on S is idempotent pure if Eg is the union of p-classes. That is, p
is idempotent pure if for all s € S,e € Eg, sp e implies that s € Eg. Thus p is
idempotent pure if and only if ker p = Eg. A useful characterization is p is idempotent
pure if and only if p N &% = ¢, [P;I11.4.2].

A congruence p on S is a group congruence if S/p is a group. The least group
congruence on S, denoted G, is given by

sOost & se=te forsomee e Eg
& s2x,t 2x forsomexe S (ste S) [P;II1.5.2].

The last concept which we introduce in this section is that of direct product. If |

{Si}iei is a family of inverse semigroups, their direct product is the inverse semigroup
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with underlying set the Cartesian product [J;e1Si and coordinatewise multiplication. If,
forallie I, S; =S, then we write S, and call this direct product the direct power of S by
I.

An inverse semigroup S is a subdirect product of an indexed family {S;j};e1 of
inverse semigroups if |

i) S isan inverse subsemigroup of [TieI Si;

i) (S)m;=S;for eachie I where =; is the ith projection map.
An embedding o : S — [Tie1 Si is a subdirect embedding if (S)a. is a subdirect product of
the S;.

Green's relations are named for J.A. Green who introduced them in 1951 [GrJ].
The natural partial order on inverse semigroups was introduced by Wagner in [Wal]. He
was also the first to show that a congruence on an inverse semigroup is completely
determined by its classes containing‘idempotents [Wa2]. The kernel-trace approach to the
» study of congruences on an inverse semigroup is due to Scheiblich [Sc]. This approach
differs from the traditional 'kernel normal system' approach which we do not use here.
That tr is a homomorphism was proved by Reilly-Scheiblich [RS] and D.G. Green
showed that ker is a m-homomorphisni in [GrD]. Munn [Mu2] showed that idempotent
separating congruences are contained in # and Howie [Ho] pfoved the existence of L, the
greatest idempotent separating congruence. The characterizations of ¢ are due to Munn

[Mul] and Wagner [Wa2].

2.4  Special Classes
There are several important classes of inverse semigroups which we find necessary
, to distinguish. The following is a list of those classes which figure prominently in our

investigations.
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2.4.1. Groups. It is immediate from the definition of an inverse semigroup that all
groups are inverse semigroups. Furthermore, the class of completely simple inverse

semigroups coincides with the class of groups. We denote the class of all groups by ¥%.

2.4.2, Semilattices and Clifford semigroups. A semilattice is an inverse
semigroup in which every element is an idempotent. Such a semigroup is called a
semilattice because under the natural partial order it forms a meet semilattice. Moreover,
any meet semilattice Y is a semilattice under the operation given by e- f = e A f, for \all
e.f € Y. Note that, for any inverse semigroup S, Es is a semilattice.

A Clifford semigroup is an inverse semigroup which is a semilattice of groups.
That is, the inverse semigroup S is a Clifford semigroup if there is a congruence p on S

such that S / p is a semilattice and each of the p-classes is a group.

2.4.3. Brandt semigroups. A cbmpletely 0-simple inverse sémig.roup is a Brandt
| semigroup.
Let G bea grbup and I a nonempty set. Let B(G,]) =1 x G xIu {0}, where
0 ¢ Ix G x I, with multiplication (i, g,j) (j,h,k)=(i,gh,k) and all other
products equal to 0. It is a simple task to verify that with this multiplication B(G,]) is an
inverse semigroup. In fact, an inverse semigroup S is a Brandt semigroup if and only if S
is isomorphic to B(G,I) for some group G and nonempty set I [P;I1.3.5]. The 'smallest'
Brandt semigroup which is not a semilattice of groups is isomorphic to B(G,I) for
G = {1} and Il = 2, and is denoted by B;. We sometimes refer to B as the five-element
Brandt semigroup.
An inverse semigroup which is a subdirect product of Brandt semigroups and/or
groups is called a strict inverse semigroup. A property that characterizes strict inverse
semigroups is & -majorization : For any ef,ge Eg,e>f,e2g, f & g implyf=¢

14



[P;I1.4.5]. Note that, in particular, if e and f are two comparable idempotents belonging

to the same 9 -class thene =f.

2.4.4. Completely semisimple inverse semigroups. Let S be an inverse
semigroup. For every a € S, define I(aj =J@)\Ja={se J@):J(s)#J)}.
Whenever I(a) # &, I(a) is an ideal of S. The Rees quotient semigroup J(a) / I(a), where
J(a) / @ = J(a), is called a principal factor of S. A semigroup in which eirery prinéipal
factor is completely simple or completely Oésimple isa completely semisimple semigroup.
Thus, an inverse semigroup is completely semisimple if and only if all of its principal
factors are Brandt semigroups or groups. Indeed, at most one principal factor of a -
completely semisimple inverse semigroup can be a group and that is the kernel, if it exists.

Note that in a completely semisimple inverse semigroup & =_¢.

2.4.5. Combinatorial inverse semigroups. An inverse semigroup is combinatorial

if the Green's relation # is the identical relation. That is, an inverse semigroup is

‘combinatorial if its maximal subgroups are trivial.

2.4.6. Cryptic inverse semigroups. An inverse semigroup is cryptic if the Green's

relation # is a congruence.

2.4.7. Antigroups. An inverse semigroup S is an antigroup if € is the only
congruence on S contained in #. Equivalently, S is an antigroup if and only if pug = €.
Note that all combinatorial inverse semigroups are antigroups and a cryptic inverse
. semigroup is an antigroup if and only if it is cbmbinatorial. We denote the class of all

antigroups by .o
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2.4.8. E-untary inverse semigroups. An inverse semigroup S is E-unitary if and
only if, foralla € S, e € Eg, a 2 e implies that a € Eg. Equivalently, S is E-unitary if and

only if G, the least group congruence on S, is idempotent pure.

Semilattices of groups were introduced by Clifford in [Cl]. In the same paper,
Clifford also showed that Brandt semigroups are isomorphic to B(G,I) for some group G
and some nonempty set I, though he was considering Brandt groupoids (first studied by H.
Brandt in 1927) with a zero adjoined with all undefined products set to zero. Munn
[Mu2], was the first to recognize that Brandt semigroups (that is, Brandt groupoids with a
zero adjoined and all undefined products set to zero) were precisely the inverse completely
0-simple semigroups. What we call antigroups was introduced by Wagner, though another
terminology, ‘fundamental inverse semigroup', was coined by Munn. E-unitary inverse
semigfoups'we;ré first s'tu.died by Saitd [Sa] who caiied them proper and lafer by, among
others, McAlister [McA1], who called them reduced inverse semigroups. A great deal of
research has concerned itself with E-unitary inverse semigroups; we mention only the work
doné by McAlister on the P-representation of E-unitary inverse semigroups

[McA1,McA2].

2.5 The Wagner representation

A fundamental result in group theory is the Cayley representation theorem which
states that every group is isomorphic to a permutation group. The analagous result in the
theory of inverse semigroups is the Wagner representation of an inverse semigroup by
partial one-one transformations of a set. Every inverse semigroup is isomorphic to an
. inverse semigroup of one-one partial transformations on a nonempty set.
For any B e #(X), the symmetric inverse semigroup on X, we denote by dp and

rp the domain of B and the range of B, respectively.
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Theorem 2.5.1 [P;IV.1.6]. Let S bé an inverse semigroup. For each s € S, let
Bs € HA(S) be defined by
xBs = Xs [x e dBg=Ss1].
Then the mapping |
| B:S — #(S) defined by sP =g
is an embedding of S into #(S).

The Wagner representation of S restricted to a given % -class provides another
representation of S, though in general it is not faithful (that is, not one-to-one). For a given
S -class R of S, we call the following representation the Wagner representation of S

restricted to R.

Theorem 2.5.2. Let S be an inverse semigfoup and let R be a fixed .# -class of S. For
each s € S, let 0 € F(R) be defined by

X0 = XS [xedog={ye R:yse R}]
Then the mapping

o:S — F#R) defined by so = 0y
is a homomorphism.
Proof: Lets e S and suppose that for some x,y € dog= {ye R:yse R},
x0s = yos. Then xs = ys and x,y and xs = ys are .% -related. But then
x = xx"1x = (xs)(x8)"1x = xss-1x-1x = xs5-1 = yss-1 = yss-ly-ly = yy-ly = y. Therefore, 05
is indeed an element of #(R).

Lets, te S. In order to show that o is a hbmomorphism we must show that

050 = Olgp.  We first compare their domains.

17



dag = {ye R:yse R}

do

{yeR:yte R}

dog = {ye R:yste R }.
Therefore, dosos={ ye R:yse Rand yste R } and this is a subset of dogt. On the
other hand, if y € dog, then y and yst are ﬂ-fclated and so there is some z € S such that
ystz =y. But then y and ys are % -related and so y € dogo;. Thus, ag0; and o have
identical domains. Since (xs)t = x(st) for all x in their common domain, 0g0; = Olgr. As a

result, & is a homomorphism. : .

The Wagner representation. is due to Wagner [Wal] and was discovered

independently by Preston [Pr].

2,6 The trahsl‘ational hull of .an inverse sémigroup

Though it plays a minor role in our investigations, the translational hull of an
inverse semigroup has strong connections with thc; Wagner representation and the
Schiitzenberger representations (discussed below in §2.8), both of which figure
prominently in the sequel.

Let S be an inverse semigroup. A transformation p on S is a right translation of S
if, for all x,y € S, (xy)p = x(yp). Likewise, a transformation A is a left. translation if
A(xy) = (AX)y, for all x,y € S. If, in addition, the left translation A and the right.
translation p satisfy x(Ay) = (xp)y, for all x,y € S, then the two are linked and the pair
(A,p) is a bitranslation. The set of all bitranslations on S under the operation of
_ componentwise composition is an inverse semigroup and is called the translational hull of S
[P;V.1.4].‘ We denote this semigroup by Q(S)', We note that either of the projection
maps on (S) is a monomorphism [P;V.1.2].
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For any s € S, the functions Ag and ps defined by Asx = sx and xps = xs, for all
x € S, are left and right translations, respectively. In fact, (Ag,ps) is a bitranslation and
so is a member of £(S). The mapping
15— (As,Ps) (se S),
is a monomorphism of S into Q(S) and is calied the canonical homomorphism of S into
Q(S).
It turns out that (S) is isomorphic to the idealizer of the Wagner representation of
S in #(S) [P;V.1.3]. Thatis, Q(S) is isomorphic to the largest inverse subsemigroup of
J#(S) containing the Wagner representation of S as an ideal. Perhaps more to the point,
€(S)-is isomorphic to the idealizer of the Wagner representation of S in the inverse
semigroup of all one-to-one partial right translations on S (a partial one-to-one right
' translation on S is a right translation whose domain is a left ideal of S; see [P;V.2]). Itis
this fact which makes plain the connection between the translational hull of S and both the
 Wagner representation and the Schiitzenberger representations of S.
If S is an ideal of the inverse semigr_oup V then V is an ideal extension of S (by the
Rees quotient semigroup V / S ). The translational hull is particularly useful when
considering ideal extensions of inverse semigroups S for which we know Q(S).
Let V be an ideal extension of S. For each v € V, define
AVs = Vs and spV=sv ~ (se S).
Then the mapping
T(V:S): Vo Q(S)
defined by
vi(V:S) = (AV,pY) (ve V)
. is a homomorphism of V into (S) which extends . Moreover, T(V:S) is the unique
extension of ® to a homomorphism of V into Q(S) [P;1.9.2]. T(V:S) is called the

canonical homomorphism of V into (S).
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Theorem 2.6.1.- Let S be a completely semisimple inverse semigroup and let D be a
-class of S which is not the kernel of S. LetI={xe S:Jx2 D }. Then S /Iis an
ideal extension of the Brandt semigroup DO and the image of S /I in Q(D9) under the
canonical homomorphism is isomorphic to thev Wagner representation of S restricted to any
& -class belonging to D.

Proof: First of all, identify S /I with (S\I)0.

Let R be an %Z-class of S contained in D. Let o be the Wagner representation of S
restricted to R and denote so by o, for all s € S. Let T be the projection of 7(S /I : DY)
onto its second coordinate. The elements of T are right translations of the form pV, for
v e S/1. We first prove the following statement:

Let ¢:S — S/I be the natural homomorphism of S onto the Rees quotient semigroup
S/L Letste S. Then o=y if and only if ps® = pto.

First of all, observe that if é. and as both belong to the same & -class in a
completely semisimple inverse semigroup, then a % as. This is because aa-l > ass-1a-1
’and Do0 is a Brandt semigroup (‘and hence satisfies @'-majorization) and so
aa-l = ass-la-1. Secondly, observe that if s € S\1I then {xe R:xse R} # @. To
see this, note that D ¢ J(s) and so, by Lemma 2.3.1 (d), there is an ae D such that
a-la < ss-l. Thus, a-la = a-lass"1 and as # 0. But if a and as both belong to the Brandt
semigroup DO, then a & as. Lety € R be such thaty ¥ a. Theny .% ys and, as a result
the set {xe R:xse R} is nonempty.

If ps® =pt then for all x € DO, xs¢ = xt¢. If s e I, then
{xe R:xse R} # D and for all xe {x € R:xs e R}, xs¢ #0. Thus,
. 8¢ =0 if and only if t¢ =0. | If s ¢ I then we must have xs = xt for all
x € {x e R:xse R} since ¢ is one-to-one on S\I. Likewise, we must have that

xs =xtforallx € {x € R:xte R}. Therefore,

20



-{x e R:xs e'R'} ={xe R:xte R} and ag=0y. Ifse ithen s¢ = 0 and so,
for all x € DO9,.0 = xs¢ = xt¢. Consyequently,
{(xe R:xse R} ={xe R:xte R}=J, and ag = o4.
. Conversely, if o = o then for all

x € {xe R:xse R} =(x¢€ R : xte R}, xs=xt. If s € 1 then
{(xe R:xse 'R} ={xe R:xte R} = G andsote I. Thensp=tdp=0 and
pst =p ¥, So suppose thats ¢ I and hence thatt & 1. Letx € DOand lety e R be such
that y & x. Now ys € D if and only if ys € R and so ys = yt. Since y £x, x = xy-ly
and so xs = xy-lys = xy-lyt = xt. Therefore, pS¢ = pt¢ and the claim is proved.

By what we have just done, it follows thatthe mapping

. @ : a5 — pso ’ (seS)

is a well-defined bijection from the restricted Wagner representation onto the image of the
projection onto t_hé second coordinate of Q(S /I). Since ¢ is a homomorphism, so is @
The projection map of Q(S /1) onto its second coordinate is an isomorphism and so the

desired result is obtained. ‘ o

The connection between the Wagner representation restricted to an % -class R and
the translational hull of a semigroup related to the @ -class containing R was made in a

more general setting by Petrich (See [Pel] or [Pe2] ). |

Ponizovskii [Po] first proved that the translational hull of an inverse semigroup is
an inverse semigroup. The relationship between the translational hull of an inverse
semigroup S and the semigroup of all one-to-one partial right translations on S was

. established by McAlister by way of Schein's work on permissable subsets.
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2.7 Varieties

A nonempty class of algebras & of the same type is a variery if it is closed under
subalgebras, homomorphic images and direct products. By a theorem due to Birkhoff, an
equivalent definition of variety is an equationally defined class of algebras of the same type.
That is, if % is a nonempty family of cquatiohs over a language %, then the class 7 of all
algebras of type ¥ satisfying each identity in % is a variety.

If  is a variety contained in the variety # then & is a subvariety of 7. Itis
apparent from the definition of variety that the intersection of a nonempty family of varieties
contained in the variety # is also a variety contained in . Consequently, the collection of
subvarieties of a variety 7~ forms a complete lattice under inclusion, which we denote by
L(7).

Giye_n a class & of algebras, each member of which belongs to the variety 7 the
variety generated by ¥ is the iﬁtersccﬁon of all varietie;v. contained in 7 Which contain €.
We write ( € ‘) to denote this variety. If € consists of the single algebra S, we write { S )
instead of ( ¥ ). If  is a subvariety of 7" defined by the equations T then we write
Z=[ZXZ]. IfZis a finite set of equations {uj = vy,...,up = vp} wé will often write
% =[u1 = v1,...,un = vp] instead of [ £ ]. We sometimes refer to the equations £ which
define the variety 7~ as laws. |

A refinement of our first definition of variety is the so-called HSP Theorem. If € is
a class of algebras belonging to the variety #; the variety ( % ) consists of homomorphic
images of subalgebras of direct products of algebras in €.

If 7 is a variety and X is a noﬁempty set then 7~ possesses a free algebra F#1X)
on X which has the universal mapping property. In fact, up to isomorphism, this free
. algebra is the unique algebra in ~ with the universal mapping property freely generated by
a set of génerators of size [XI. Thus, F#TX) may be defined as the unique algebra F in 7;

up to isomorphism, which satisfies: Let.: X — F map X injectively onto a set of
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generators of F. Then for any S € #” and any mapping ¢ : X — S, there is a unique |
homomorphism ¢* : F =S which cxtcnds ¢. That is, there is a unique homomorphism
¢* : F — S such that, for all x € X, x¢ = x: O*.

The class of all semigroups forms a variety as does the class of all monoids
(considered as algebras with a binary opcratioﬁ and a nullary operation (constant)). The
free semigroup on the set X consists of all nonempty finite sequences of elements of X,
called words, over X, called an alphabet, given the multiplication of concatenation (or
juxtaposition). We denote the free semigroup on X by X*. The free monoid on X,
denoted X*, consists of all words over X including the empty word, which serves as the
identity of X*,

An inverse semigroup S is subdirectly irreducible if for every subdirect embedding
o : S = JTie1 Sj there is an i € I such that an; is an isomorphism. '

The following is an equivalent definition 6f subdirectly irreducible and cé.n be 'foﬁnd inany -

Universal Algebra text.

Theorem 2.7.1 [BS;I1.8.4]. An inverse semigroup S is subdirectly irreducible if and
only if S is trivial or there is a minimum congruence in €(S)\{€} where €(S) is the lattice

of congruences on S and € is the equality relation.

The following useful theorem is due to Birkhoff.

Theorem 2.7.2 [BS;IL.9.7]. Every variety " of inverse semigroups is completely

determined by its subdirectly irreducible members.

Inverse semigroups, considered as algebras with a binary operation and a unary
operation, is determined by associativity and the equations x = xx-1x, (x-1)-1 = x and
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x-Ixy-ly = ylyx-Ix. Consequently, the class of all inverse semigroups forms a variety and
we may consider the lattice of varieties of inverse semigroups.

Let X-1 denote a set disjoint from X and in one-to-one correspondence with X via
x ¢ x-1. This correspondence can be extended to a unary operation on ( X U X-1)* ;t)y
defining (x-1)-1 = x and (ab)-! =b-la-l forallx € X, a,b e (X U X-1)*, Throughout
(X u X-1)* will denote the free semigroup on X U X-1 with involution -1. The
Wagner congruence is the least congruence p on (X U X-1)* such that (a,aala) e p
and (aa-1bb-1,bb-laa-1) e p, forall a,b e (XU X-1)*. If p is the Wagner congruence,
then (X U X-1)t/ p is the free inverse semigroup on X [P;VIIL.1.1]. For any word w
over X U X-1 we will write w for wp and refer to elements of the free inverse semigroup
on X as words over X U X-1. For any word w e ( X U X-1)*, we define the content of
wbyc(w)={xe X:xorx1loccursinw }.

A congruence p on an inverse semigroup S is fully invariant if it is invariant under
all endomorphisms of S. That is, if u p w and ¢ is an endomorphism of S, then
(ud) p (wo). The set of all fully invariant congruences on S, denoted F_#(S), is a
complete sublatﬁcé of the lattice of congruences on S. Let X be a countably infinite set and
consider the free inverse semigroup F.#(X). For any variety 7 of inverse semigroups, the
relation p(?) defined on F.#(X) by u p(?) w if and only if u = w is a law in 7" is a fully
invariant congruence on F.#(X). Conversely, given a fully invariant congruence p on
F#(X), let #1p) be the variety of inverse semigroﬁps determined by the set of identities
u= w, where u p w. Then the mappings p : #— p(?) and 7: p — Z(p) are
mutually inverse order antiisomorphisms of #(.#) and F#(F.#(X)) [P;I.11.11_]. We
sometimes refer to p(?) as the fully invariant congruence corresponding to 7. We will
_ often find it necessary to consider fully invariant congruences on F._#(Y), for some set Y,
and F#(X) at the same time. Under these conditions, we will write py(?) to mean the

fully invariant congruence on F.#(Y) corresponding to %; and simply p(?) for the fully
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invariant congruence on F.#(X) corresponding to . Throughout, X is assumed to be a
fixed countably infinite set, unless otherwise stated.

The variety 7” of inverse semigroups is said to be combinatorial if all the members
are combinatorial. Equivalently, " is a combinatorial variety if and only if
¥ % = 7, the trivial variety (defined by the law x =y) if and only if
7 c [x" = x0+1], for some n € @ [P;XII.1.10]. Likewise, the variety 7 is
completely semisimple or cryptic if every member of ¥ is completely semisimple or
cryptic, respectively.

Let S and T be inverse semigroups and let G be a group. T is an E-unitary cover of
S over G if T is E-unitary, there exists an idempotent separating homomorphism of T onto
Sand T/or=G. f % is a variety of groups then the inverse semigroup variety 7 has
E-unitary covers over ¥ if, for every S € 7] there is a group G € .?/ for which there is an
" E-unitary cover of S over G. A variety 7” of inverse sémigroups has E-unitary covers if, .

for every S € 7] there is an E-unitary cover of S in 77

Theorem 2.7.3 [PR;3.3,5.4]. Let #° be a variety of inverse semigrouf)s. Then the
following statements are equivalent:

1) 7 has E-unitary covers;

ii) the 7-free objects in 7" are E-unitary;

iii) the #-free object on a countably infinite set is E-unitary;

iv) 7 has E-unitary covers over 7" N ¥.
Theorem 2.7.4 [PR;5.7]. Let 7° be a variety of inverse semigroups and # a variety of
groups. Then 7 has E-unitary covers over Z if and only if

c[u2=u:u2=uisalawin & ].
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We will use the following notation. If  is a variety of inverse semigroups, we
denote by #Max. the variety of inverse semigroups [ u2=u:u2=uisalawin ]

and by ¥)ymax the variety of inverse monoids [ U2 =u:u2=uisalawin& ].

LetZ and 7~ be varieties of inverse seliligroups. The Mal’ cev product of  and 7,

denoted by o 7] is the collection of those inverse semigroups S for which there exists a
congruence p on S with the property that ep €  for all e € Eg and S/p € 7; we say that
p witnesses thatSe ¥ o 7- ' '

In general, Z o 7 is not a variety. For example, if #” is any nontrivial group
variety and Z = %, the variety of semilattices, then the five element Brandt semigroup B2
is a member of (% o 7°) but B2 is not a member of # o . Tosee that By ¢ ¥ o %
observe that any congruence p for which Bo/p is a group must be the universal relation and
hence any idempotent p-class is just Bo which is not a semilattice. On the other hand, since

B9 has an E-unitary cover over any noritrivial group variety ([PR] or [P;XIIL.9.8]),
Bo2e (¥ o 7)) ([PR] or [P;XII.9.11]).

However, when  is a variety of groups, % o 7" is a variety [See [P; XII 8.3] or

[Ba]]l. Note that, if ” and #~ are varieties such that #”C %~ then, for any variety ¢,
Yo7 Q¥UoWW and P o ¥ CH¥ o ¥.

Lemma 2.7.5. Let  be a variety of groups and let ” be a variety of inverse

semigroups. Then S € ¥ o 7" implies that S/us € #. Moreover,
T p(?) =tr p(Z o 7).
Proof: If p witnesses that S € Z o 7] then p is idempotent separating and so p C Us.
. Now, S/us is isomorphic to (S/p)/(us/p) and S/p 7f so we may conclude that
Sluse 7.
If A is an antigroup belonging to o 7; then A/us = A € 7. Thus,

26



@oNNASP N Since 7S ¥o¥, we have ¥'N o/ C (¥ 0 7) N .
Therefore, (¥ o ?)N & =7 N & . It follows from [P; XIL2] that
Vv =(Zo7)v¥,and hence, r p(?) =tr p(% o 7). , °

Mal’cev products play an important role in the study of varieties of inverse
'semigroups. For example, if  is a group variety and 7" is a combinatorial variety, then
Z o 7" is the maximum variety in the v-class of v 7, where v is the congruence on
£(F) defined by 77V 73 ifandonlyif 1N =%NY and 73 v?=7f2vy,for
all 77,72 € £L(F), (See, for e.g., [P; XIL2, XIL3]). For strict inverse varieties it
turns out that the v-classes are trivial (and in fact Z(%.#) is isomorphic to three copies of
£(%), the so-called 'first three layers' of (%)) [P;XIL.4.16], but this is by no means
true throughout £%(.#) as we shall see in Chapter Six. For further information on Mal’cev

products we refer the reader to [P] or [R1].

Before we proceed, we provide a list of notation introduced in this section as well

as the notation we will use for certain special varieties and classes of inverse semigroups.

Varieties and classes:
F  — the variety of all inverse semigroups |
J — [x=y] the trivial variety
%  — [xxl=yy1] the variety of all groups
¥ — [x=x2] the variety of semilattices
S — [xx1=x1x,ugvgl = (ugvel )2 Jaea the variety of semilattices

of groups in  (Clifford semigroups over ) where

% =lug =valoecA
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S — [xx1=x1x] the variety of Clifford semigroups or the variety of
semilattices of groups
& — (Ba)=[xyxl=(xyx1)2] the variety generated by the five-

element Brandt semigroup

FF — [ yx)xyxl)] = (xyx-l)l(xyx-1) ] the variety of strict inverse
semigroups |
F1 — (Bjl) the variety generated by the five-element Brandt semigroup
with an identity adjoined
&fp — the variety of abelian groups of exponent n

&% — the variety of abelian groups
%n — [x0=x0*1] for every natural number n
gmax — [u2=y:ul=uisalawinZ]

% o7"— the Mal'cev product of the varieties  and 7~ (not necessarily a .

variety)
& — the class of all antigroups (not a variety)
Further Notation
L(7) — the lattice of all subvarieties of 7~
(¥) — the variety of inverse semigroups generated by the nonempty
class & of inverse semigroups; when @ = {S}, we write (S )
instead of (¥ )
[Z] — the variety of inverse semigroups satisfying u = w for all equations
u=winX
we E — the equation w = w2

F71X) — the 7-free inverse semigroup on X
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c(w)  — foraword wover X U X-1, the content of w
p(?) —- foravariety 7 of inverse semigroups, the fully invariant

congruence on F.#(X) corresponding to 7~

Many of the results we have mentioned here are of a fundamental nature and can be '
found in virtually any text on Universal Algebra ([Gr] or [BS], for example); we do,
however, mention Birkhoff's important paper [Bi2] of 1935 in which he proved his
famous theorem that #” is a variety if and only if " is an equational class. The Wagner
congruence is, of course, due to Wagner [Wa3]. Completely semisimple varieties were
studied by Reilly [Re2]. The congruence v was introduced by Kleiman who is responsible
for the result cited on the first three layers of (%) [K1]. Reilly [Re2] also studied the
congruence v and showed that £(_#) is not a modular lattice. For results concerning the
Mal'Cev product of inverse semigroup .'\-/arieties we refer the reader to Reilly [Rel], and for

results concerning E-unitary covers we refer the reader to [PR].

2.8 Presentations and Schiitzenberger graphs

A presentation of an inverse semigroup is a pair P = (X;R) where R is a binary
relation on F.¥ (X). If P = (X;R), the inverse semigroup presented by P is
F#(X) / 6 where 6 is the congruence on F_.#(X) ‘gener'ated by R. Equivalently, we may
consider P = (X;R), where R is a binary relation on ( XuX-1 )"*. Then the inverse
semigroup presented by P is ( X\X~! )*/ 1, where 7 is the congruence on ( XuX-1)*
génerated by R U p. We will consider only those presentations for which R (and hence

0 ) is p(?) for some variety 7~ of inverse semigroups.

The definitions and results of this section can be found in Stephen [S] to which we
refer the reader for additional information concerning Schiitzenberger graphs.
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A labelled digraph T over a nonempty set X consists of a set of vertices V(I') and a
set of edges E(I'), where E(I') ¢ V x X x V. Anedge (v1,x,v2) € E(T) is labelled by x -
and directed from v1 to vo. We call vy the initial or start vertex and v the terminal or end
vertex of the edge (v1,X,v2). A path p is a sequence of edges such that the end vertex of
an edge in the sequence is the start vertex of the next edge in the sequence.

T is strongly connected if, given any two vertices vi, va € V(I'), there is a path p
from v to vo. We will often call a path from v; to v a vi-va walk . An inverse word
graph T over XUX-1is a strongly éonnected labelled digraph over X\UX-! satisfying the
condition: (vi,x,v2) € E() implies (v2,x-1,vi) e E[), for all

'x € XUX-1. An inverse word graph I is deterministic if all edges directed away from a
vertex are labelled by different letters, and injective if all edges directed toward a vertex are
labelled by different letters. Thus, a deterministic inverse word graph over XUX-1 is
necessarily in'jecti‘ve.

IfI" and I'" are inversé word graphs over XUX-1, a V-homomorphism ¢: I — I™
is a map on the vertices of I" which preserves incidence, orientatioh and labelling. More
precisely, ¢ is a pair of functions ¢y: VI') = V(') and ¢g: E(I') = E(T"") such that
(VL,X,V2)0E = (Vi0v,x,v20Vv). ¢ is a V-monomorphism if it is one—one on the vertices of
T; a V-epimorphism if it is surjective on both the set of edges and the set of vertices of "; a
V-isomorphism if it is both a V-monomorphism and a
V-epimorphism. An inverse birooted word graph is atriple ('s,I",e) where I' is an
inverse word graph and s and e are distinguished vertices called, respectively, the szart and

end vertices .

Let P = (X;R) be a fixed present_dtion of the inverse semigroup S with T the
corresponding congruence on F.#(X). Let w € S and Ry, the % -class of win S. The
Schiitzenberger graph of Ry, with respect to P is the labelled digraph I'(w), where

30



V{I'(w)) =Ry,

E(TW)) = { (v1,X,v2) : v1,v2 € Ry, x € XUX-1 and vi(xT) =v2 }.
Dually, we define the Schiitzenberger graph of Ly, with respect to P to be the labelled »
digraph A(w) with

V(A(W)) = Ly

E(AW)) = { (V1,X,v2) : V1,2 € Ly, x € XUX-1 and (xt)vi =2 }.

Lemma 2.8.1[S; 3.1]. Let ve S, I'(v) be the Schiitzenberger graph of Ry with
respect to P, vi,vo,ve Ry,e= vv~land w e (XUX)*.

a)f(v)isa detérministic inverse word graph;

b) v1(wT) = v2 if and only if w labels a vi-vo walk;

¢) (wt) 2 v if and only if w labels an e-v walk;

The lemma above can be dualized for A(v) for any Z-class Ly of S. We remark
that if S is a group, then for any w € S, I'(w) is the Cayley graph of S (See .[S;_3.7]).
For a discussion of Cayley graphs, we refer the reader to [W].

The following lemma characterizes Green's relations on S in terms of the

Schiitzenberger graphs of S.

Lemma 2.8.2 [S; 3.4]. Let vi, vo € S and let € = vivy~! anf f = vovo~1. Then

a) v1 9 v2if and only if there exists a V-isomorphism ¢ : I'(v)) = T'(v2);

b) vi % vy if and only if there exists a V-isomorphism ¢ : I'(vy) = I'(v2) such that
ep =1.

¢) vi1.Z£ vy if and only if there exists a V-isomorphism ¢ :T (v1) = I'(vp) such that
vid = va. |
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d) vi# vy if and only if there exist V-isomorphisms ¢,y : I'(vi) = I'(v2) such that

e =f and viy = va.

€) vi = vy if and only if there exists a V-isomorphism ¢ : I'(v1) = I'(v3) such that

edp =fand vip =va.

For any v € S, the Schiitzenberger repre&entation of v (with respect to P ) is the

- birooted inverse word graph (vw—1,I'(v),v). We w111 also use I'(v) to denote the birooted
graph and specify the roots whenever required. We are considering presentations in which

the relation R is always a fully invariant congruence on F.#(X) corresponding to some
variety 7. Thus, for any word w € (X UX-1)* and congruence p(%), we will write I'(w)

(or I'g-(w) if we wish to emphasize the variety being considered) to denote

(ww-1p (), T(wp(?)), wp(?)) with respect to P = (X; p(9)), and call I's(w) the

Schiltzenberger representation of w with respect to #. We remark that the Schiitzenberger

representation of the free inverse semigroup is the representation of F.#(X) by birooted

inverse word trees, which is due to Munn '[Mu4] (See Stephen [S] for the connection

between Schiitzenberger graphs of the free inverse semigroup and Munn trees). For

further properties of Schiitzenberger graphs, we refer the reader to Stephen [S].

The following result will be used throughout, but is presented here so that we may
look at what are probably the simplest examples of Schiitzenberger graphs relative to some

variety.

Proposition 2.8.3. If we (X U X-1)*, then g (W) is just a single vertex with 2lc(w)l
* loops. For each x € c(w) there is precisely one loop labelled x and one loop labelled x-1.
Proof: For any u,v € (XU X-1)*, up(%) vif and only if c(u) = c(v). Furthermore,

up(¥) F uap(S), for some ae (X U X-1)*, if and only if a or a-! is an element of
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c(u). From these two facts and the definition of Schiitzenberger graph, one easily obtains

thc desired result. J

X1,X2,X3

Examples. 1)

Figure 2.1. Schiitzenberger graphs in the free semilattice on three generators.

The graphs above in Figure 2.1 form the collection of 'Schiitzenberger graphs (up to
V-isomorphism) of the free semilattice on three generators (see Proposition 2.8.3). We
follow the standard practice of providing edges labelled by x € X but not edges labelled
by elements of X-1 as these edges are implicitly determined by those edges labelled by
elements of X. Also, we follow the convention of drawing a single edge with more than

one label if there are several edges between two given vertices.

. 2) Figure 2.2 is the Schiitzenberger graph of the word w = x1x2x1-1x2-1 with respect

to the variety & 1. The proof of this can be found in Theorem 6.1.7.
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5 5
y, O >,

Figure 2.2. The Schiitzenberger graph I g-(w).

This example will be used again in the sequel to illustrate concepts related to

Schiitzenberger graphs.
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CHAPTER THREE
Wreath Products

In this chapter we present the definition of the wreath product of two inverse
senligroups. Our definition is a slightly more general definition than that of Houghton [H]
and a generalization to arbitrary inverse semigroups of Petrich's definition of the (right)
wreath product of a group and an inverse semigroup [P]. The restriction to groups of our
definition is dual to the definition of standard (unrestricted) wreath product found in
Neumann [N], as Neumann writes her operators on the left and we write our operators on
the right. The only material of this chapter required for the sequel can be found in section
1. The material in section 2 serves as motivation for the work in subsequent chapters,
~ particularly chapter 6. The third section contains some structural results concerning wreath
products and, while these results are of indepcndent interesf, they are not required for the

‘remaining chapters.

3.1 Definition of wreath product
Let S and T be inverse semigroups and suppose that T is an inverse subsemigroup
of #(I), the symmetric inverse semigroup on I. Let IS denote the set of functions (written
on the right) from subsets of Iinto S. For any y € IS, denote the domain of y by dy.
Define a multiplication on IS by
ey =Gy Gy) e dynayl.
Forany B e #(I) and y e IS, we define a mapping By by
| i By) = By lie dB.ife dy).
. The (right) wreath product of S and T is the set
SwrT={(y,p)eISxT:dy=dp )
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with multiplication given by
(:B) ~ ("B = (why . BB").

If T is an inverse subsemigroup of #(I), we will sometimes write (T,I) for T if we wish to
emphasize the set I on which T acts. We will write (T,T) to denote the Wagner
representation of T by partial rigﬁt translations. |

Our definition of wreath product follows that of Houghton [H]. In [H] the wreath
product W(S,T) of inverse semigroups S and T is, in our notation, S wr (T,T) where T is
given the Wagner representation by partial right translations. Our notation follows Petrich

[P;V.4].

Proposition 3.1.1. Let S and (T,I) be inverse semigroups.
a) S wr (T,]) is a semigroup;
b) S wr (T,]) is regular; |
¢) If (y,B) € S wr (T,D) then (y,B) is an idempotent if and only if ‘[3 is the identity map
on df and for all i € dB, iy € Eg.
d) S wr (T,I) is an inverse semigroup. If B e S wr (T.,I) then the inverse of (y,83)
is the pair (y~1,8-1) where B-! is the inverse of B in (T,I) and for all i € dB-!,
iy-1 = [iB-ly]-1.
Proof: a) Let (¥,B), (W",B") € S wr (T,I).
Then-
iedyPy” & iedy and ie dBy’
| «@ iedy=df and ife dy =dp’
< ie dBB .
. Therefore, (y,B)(y",B") = (WBy’,BB) € S wr (T,I) and S wr (T.]) is closed under the
operation defined above.
Next, let (y1,B1), (W2,82) and (y3,83) € S wr (T.D).
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Then
(w1Bly2,B1B2)(w3,B3)
((w1Ply2)B1B2ys3,(B1B2)B3)

[(W1.B1)(W2,2)1(w3,83)

and
(W1.BDIW2,B2)(w3,B3)] = (w1,B1)(w2P2y3,B2B3) = (w1B1(y2B2y3),B1(B2B3)).
Since (B1B2)B3 = B1(B2B3) and S wr (T,]) is closed under the operation, we need only
check that the first components agree on dB31B2B3. Letie dB;1B2B3. Then
i(y1BlyPP2ys = (iy1Bly2)([B1B2w3) |
- = [GyDEB1yIB1B2Y3)

= (iyD[P1y2)(iB1B2y3)]  (associativity of S)

= (iy1)[iB1(y2B2y3)]

= i[y1PL(y2P2y3)].
It follows that the operati_on is associative and so S wr (T,I) is a semigroup.
b) Let (w,B) € S wr (T,]). Define '(W’,B’) by setting B’= B-1, dy’ =dp’ and
jw =[B-lyl-! for all j € dB”. It is immediate that (y’,8) € S wr (T,]). We have
VBB )W.B) = (wByBBy,BBB). Since B*=p-1, PB'B =B and PP” is the identity
map on df. Therefore, forallie df = dBRB = dyBy BBy,

iyPy BBy = Gy)ABy ) w)

= (y)BB1w)-1Gy)

= (y)Aw)-1Gy)

= iy.
It now follows that (y,B)(yv”",B)(W.B) = (v.B) and so S wr (T,]) is regular.
c) Let (w,B) € S wr (T,]). Then (y,B) is an.idempotent in S wr (T,I) means that
. (wBy,BB) = (v, B). Bu‘t BB =B and yBy =y if and only if [ is the identity map on its
domain and for all i e dB = dy, iy € E(S). '
d) If (y,B) and (y”,p") are idempotents in S wr (T.I), then
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W)W B = yhy BB
| = (yv'86")
= ypP)
=y By.pP
= (V" .BIW.B).
Therefore, the idempotents of S wr (T,I) commute which, combined with the fact that S
wr (T,D) is regular, implies that S wr (T,I) is an inverse semigroup.
If (y,B) e S wr (T,I) then define (y,B)-1 to be the pair-(\y—l,B-l) where
w1 e IS and B-1e T are defined by
df-l=dy-l={if:ie dp},
B-11is the inverse of B in T and
iy = (if-ly)-1 (ie dp-1).
~We have seen in the proof of the regularity of | S wr (T,I) that
VBB 1w, B) - (V,B). We also have that |
W.B) 1w B(w,B)1 = (1 Bly B-1By-1,B-1Bp-1)
= (y1 Bhyy1,8°1).
For any i e df-1,
iy-1 Blyy1 = Giy-)B-Ty)iy-1)
= (B-1y)1B-1y) By
= (iB1yy!
= Gy).
Therefore, (y-1,B-1) is the inverse of (y,B) in S wr (T,I). Note that we may equivalently
define y-1 by

By1=(jy)1 (je dp). ’ .
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Remark. For any (y,B) belonging to S wr (T,I), we have written (y,B)-1 as (y-1,3-1)
even though thé definition of y-1 depends on B. This is not to suggest that if (y,B") is
andther member of S wr (T,I), then the first coordinate of (y,°)-! is the same as the first ‘
coordinate of (y,B)-1. We use y-1 to avoid notational difficulties and simply note that

when -1 is used, the member of (T,I) to which it is paired will be understood.

In [N], Neumann defines the (unrestricted) wreath product A Wr B of the groups A

and B as follows.

AWrB=BxAB
with products defined by

(b,0)(c,y) = (bc,¢%y)
where, for ally € B, ¢(y) = ¢(yc1).
Let Ad be the gfoup defined as A with multiplication . given by, for all gh € A,
g +h = h-g, with this lé.st product as in A. Then A Wr B is antiisomorphic to
Ad wr (B,B) using the definition in section_ 3.1 with B given its Wagner (Cayley)
representation:

Define ® : A Wr B —» Ad wr (B,B) by setting (b,0)® = (¢",0p-1) where @ is
defined by y¢” = @(y) for all y € B and -1 is the permutation corresponding to b-! in the
Wagnef representation of B. T’hen for all (b,p),(c,w) € A WrB,

C¥)O®,0)0 = (Y,0c-1)(9",0p-1) = (Y %19, 0te-1p-1)
while

(be,y)@ = ((9°¥)",0ic-1p-1).
Forally € B,

YO = 9oy(y) = p(ycl) - w(y)
with this productin A and

Yy’ Oerle” = (yy )x(ye 1) = (W(y)+(@@eD)) = p(ye ) - y(y).
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Thus, (c,¥)O(b,9)® = (bc,p¢y)0. © is easily seen to be a bijection and so © is an
antiisomorphism.

As a consequence of these remarks, the results concerning wreath products of
groups' and product varieties of groups found in [N] are valid in the context presented here.

We conclude this section with a remark concerning wreath products of semi groups.
In the study of finite semigroups and automata theory wreath products play a significant
role (see, for example, [E]). In general, however, the definition of wreath product for
semigroups does not ensure that ihe wreath product of two inverse semigroups will be an
inverse semigroup, as Houghton points out in [H]. In fact, the wealth of research on
wreath products and pseudovarieties of semigroups did not serve as motivation for our
investigations, though some of the ideas presented here have their analogues in finite

semigroup theory.

3.2 Subdirectly irreducible inverse semigroups in completely semisimple
varieties
The principal factors of a completely semisimple inverse semigroup S are Brandt
semigroups and groups. In fact, at most one principal factor of S can be a group and this is
the case only if S possesses a minimum ideal which is a group. If D is a_g-class of S, but
not the minimum _#-class of S, then the Rees quotient semigroup corresponding to the
ideal of S consisting of those elements x for which_#x 2 D is an ideal extension of the
Brandt semigroup DO. The canonical homomorphism of this ideal extension of DO into the
translational hull Q(D9) of DY is one-to-one on D. Consequently, it can be shown that S
. can be subdirectly embedded into a product of inverse subsemigroups of Q(Dg), where the
D¢ are the non-minimum j-classés of S, and possibly a group. For aﬁy non-minimum
S-class Dq of S, the translational hull of Dg is a wreath product of a group G and .#(1),
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where G and I depend on Dg. Thus, wreath products play an important role in the study
of completely semisimple inverse semigroups. In fact, as we will discover in subsequent
chapters, wreath products of inverse semigroups in general prove to be useful tools in

studying varieties of inverse semigroups.

The following two theorems make clear the connection between wreath products

and completely semisimple inverse semigroups and are of fundamental importance.

Theorem 3.2.1 [P;V.4.6]. For any Brandt semigroup S = B(G,I), we have
Q(S) = G wr #(0).

In light of Theorem 3.2.1, wreath products of the form G wr _#(I) are related to
ideal extensions of Brandt semigroups. The following result is a general description of
ideal extensions of Brandt semigroups which we will find useful. For a semigroup S with

zero, we denote S with its zero removed by S*.

Theorem 3.2.2[P;V.4.7]. Let S = B(G,I) be a Brandt semigroup and Q be an inverse
semigroup with zero disjoint from S. Let ¢ :Q* - G wr #(I), denoted by
¢ : g = (Wg,Bq), be a partial homomorphism such that IdBgB < 1if gr=0in Q. On
V =8 U Q* define a multiplication * by : for q,r € Q*, (i,g,j) € S,

(i, 8 ) *q= (i, gG¥q), By - ifje dpyg,
q* (i, g j) = (iBg’L, (Bqlwg)e. )) ifie rfyg,
aﬁd ifqr=0inQ,
q 1 =(kBq'l, KBy wg)y), kfy) if (k) = rBq N dBr,

a*b=ab if a,be S, or a,be Q* and ab=0,
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and all other products equal to zero. Then V is an ideal extension of S by Q. Conversely,

every ideal extension of S by Q can be so constructed.

The first result of this section states that every completely semisimple inverse
semigroup is isomorphic to a subdirect product of ideal extenxions of Brandt semigroups.
This is nothing new. We refer the reader to [Pel] and [Pe2]. We use the teﬁn kernel of S
in this section to mean the intersection of all nonzero ideals of S. That is, the kernel of S is

the minimum nonzero ideal of S, if it exists.

Lemma 3.2.3. Let S be a completely semisimple inverse semigroup. Then S is
isomorphic to a subdirect product of ideal extensions of Brandt semigroups and possibly a
gioup. Each of these ideal extensions of Brandt semigroups is an inverse subsemigroup
of G wr #(I) where G and I are determined by kernel Brandt semigroup.

~ Proof: Let {Dg, :Aoc € A} be the-collection of & -classes (or equivalently, 2 -Classes) of
S. Foreacha e A,letly={xe S:Jx 2Dy}. Then I, is an ideal of S and the Rees
quotient S / Iy is an ideal extension of D(& or Io = . Observe that if I = &, 4thevn Dy is
the kernel of S and so must be a group. As S is completely semisimple, Dg is a Brandt

semigroup for each o in A. Suppose that D&): B(Gg,Kqg). Let

To : S /Ig = Gg wr F(Kq) be the canonical homomorphism of S / Iy into the
translational hull of Dg. If S possesses a kernel group Dy, thén T, is understood to be the
canonical rhapping of S into (Dq) = Dg. Recall that for each @, Tq is one-to-one on Dy,
Let ¢ be the natural homomorphism of S onto S/ Iy, for each o in A. Define
®:8 - JJaca (S /1n) € [T oe 4 (o Wr F(Ko))
by (s®)nq = shqTa, Where if Dy is the kernel of S, Go wr F#(Kg) is understood to be
Gq. @ is clearly a homomorphism. Let x,y € S and suppose that x® = y®. If J, # Jy
then either Jy ® Jy or Jy 2 Jx. .If Jx 2Jyand y € Dg then x¢qTo # YPoTe and so
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x®@ # y®d. Likewise, if Jy * J; then x® # y®. IfJy =Jy and x,y € Dgq, then
Xx¢oTa = Yo To implies that x = y as ¢y Tq is one-to-one on Dy,.- It follows that & is an

embedding which is rather obviously subdirect. °

We will call an inverse subsemigroup S of G wr #(I) k-full if it contains all
(v.B) € G wr #(I) such that IdBl = Idy! < 1. That is, S is a k-full subsemigroup of

G wr #(I) if S contains the Brandt semigroup of which G wr _#(I) is an extension.

Lemma 3.2.4. Let S be an ideal extension of B(G,I) and let ¢ be a congruence on G.
Define a binary relation ¢* on S by
xo*y < i) x,ye B(G]),x=(0,gj), y=Ghj)andg¢oh, or
il) x=y.
Then ¢* is a congruence on S. Moreover, if 6* is a congruence on S and 9 is its
restriction to some group #-class of B(G,I), then i) ¢ < 6 implies that ¢* < 6*; and
ii) 6* < ¢* implies that 6 < ¢.
Proof: It is easy to see that ¢* is an equivalence relation. Suppose that x ¢* y and let
ze S. If x =y then zx = zy and xz = yz. If x = (i,g,j) and y = (i,h,j) with g (p h then
a) if z=(i",g",j") then zx @¢* zy and xz @* yz because ¢ is a congruence; b) using Theorem
3.2.2, xz = (i,g(jW¥2),jBz) and yz = (i,h(Gy2),jBz) where (Wz,Bz) € G wr #£(J). Since ¢
is a congruence, xz @* yz. Likewise, Theorem 3.2.2 also implies that zx @* zy. Thus,
©* is a congruence.
Let ©* be a congruence on S and suppose that 6 is the restriction of 6* to the group

Z-class H = {(i,g,i) : g€ G}. If x,y € S and x @* y then either x =y, in which case x

6* y, or x=(j,g"k), y = (,h" k) and g" ¢ h”". Butif g" ¢ h” then (i,g",i) 6 (i,h",i) and so
| for any jk € I, (G,g".k) = (.1G.1)(1,8",1)(1,1g.k) 0* (,1G,i)(1,h%i)(4,1G.k) = (,h"k).
Therefore, ¢* < 6*. Now suppose that 8* < @*. From the definition of ¢* we have that
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¢*lg = ¢. That is, (i,g,i) @* (i,h,i) if and only if g @ h. Thus, 6* < ¢* implies that
0 < . . | .

Theorem 3.2.5. Let S be a completely semisimple inverse semigroup. Then S is
subdirectly irreducible if and only if S is a subdirectly irreducible group or S is a k-full
inverse subsemigroup of G wr #(I) for some set I and some subdirectly irreducible group
G.

Proof: Let S be a subdirectly irreducible completely semisimple inverse semigroup. By
Lemma 3.2.3 above, S is isomorphic to a k-full inverse subsemigroup of Q(DY) for some
D-class D of S or S is a group. If S is a group then it is a subdirectly irreducible group,
so assume that S is isomorphic to a k-full inverse subsemigroup of Q(D0) where
DO = B(G,]), since S is completely semisimple. By Theorem 3.2.1, we need only show
that G is subdirectly irreducible. -‘ Let O be the mihimtim non-equality congruence on S
(where we think of S és a k-full inverse subsemigroup of Q(B (G,I))). Then 6 is contained
in the Rees congruence relative to DO, If (x,y) generates 8 and x is not 5#-related to y then
it is not difficult to show that 6 must be the Rees congruence relative to DO,
[If x = (i1,g1,j1) and y = (i2,82.j2) then for any (i3,£3.j3) € B(G,I),

(i3,83.j3) = (i3.8381°1,11)(11,81,)1)(1,1G.j3) and

(i3,g321°L,i1)(11,81,j1)G1,16G.j3) 0 (i3,83817L,i1)(12,82,i2)(j1,1G.i3) # O if and only if
i} =iz and j; = jo if and only if x #y. Therefore, every (i3,g3,j3) € B(G,I) is 8-related
to 0 and so 6 is the Rees congruence relative to D0.] By Lemma 3.2.4, G must be simple
and hence subdirectly irreducible. So suppose that (x,y) generates 6 and x # y. Let @ be
any non-identity congruence on G. Then 6 < ¢* and so by Lemma 3.2.4 (ii), the
‘restriction of 6 to any group #-class, 8* ¢ ¢. Thus, G has a minimum non-identity

congruence and so must be subdirectly irreducible.



Conversely, suppose that S is a k-full inverse subsemigroup of G wr #(I) wheré G
is subdirectly irréducible. We identify the minimum non-zero ideal of S with B(G,I). Let
¢ be the minimum non-identity congruence on G. We claim that @* is the minimum non-
identity congruence on S. Let 6 be the non-identity congruence on S generated by the pair
(x,y). Since S is k-full and x # y, there is a z € B(G,]I) such that z <x, z£ y (or z <y,
z £x). Then z=2z"1x 0 zz'ly # z and z and zz-ly are D-related. If z and zz-ly are not #
-related then it is not difficult to show that 6 contains the Rees congruence relative to the
ideal B(G,I) which in turn contains @*. If z # zz'ly then suppose that z = (i,g,j) énd
zz-ly = (i,h,j) where g # h. Then (,g,i) = (,,£,)G,1G.i) 6 (1,h,))G,1G,1) = (i,h,i) and so
8 restricted to the group #-class H = {(i,g,i) : g € G} is not the equality. Therefore, @ is
éontained in O restricted to H and so by Lemma 3.2.4, ¢* < 6. It now follows that S is

subdirectly irreducible. o

The subdirectly irreducible completely semisimple inverse semigroups are not only
inverse subsemigroups of wreath products of the form G wr #(I) for some subdirectly
.irreducible group G, but in fact inverse subsemigroups of wreath products of the form G

wr (T,I) where G is a subdirectly irreducible group and (T,]) is a k-full antigroup.

Lemma 3.2.6. Let S be a k-full inverse subsemigroup of G wr _#(I), for some group
G and some nonempty set I, and let & denote the natural homomorphism of S into #(I)
given by (y.B)n =P forall (y,B) € S. Then St is an antigroup.
Proof: Let L denote the greatest idempotent separating congruence on S% and suppose
that B1 u B2 for some B1,B2 € St. Since B < #, B1 # P2 and, as a consequence
B1B11 = B2B2L, whence dB; = df.
| Letie dB; =dy. Since S is a k-full inverse subsemigroup of G wr #(I), the
element B of #(I) defined by df = {i} and if =i, is an idempotent of St. By the
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definition of p, B1-1BB; = B2-1pP2. Now iBj e dB;-1BB1 and so
(iB1)B171BB1 = (iB1)B2-1BB2. But (iB1)B1-!BB1 =iPP1 =iB; and, in order for
(iB1)B2-1BP2 to be defined, we must have that (iB1)B2-1 =i and so
(iB1)B2-1BP2 = iBP2 =iB2. Thus, iB1 = iB2 and, since our choice of i was arbitrary, it

follows that B = B2. Consequently, S7 is an antigroup. , o

Theorem 3.2.7. Let ° be a completely semisimple variety of inverse semigroups.
Then 7" is generated by those members of 7~ which are subdirectly irreducible groups and
inverse subsemigroups of wreath products of subdirectly irreducible groups and k-full
antigroups.

Proof: 7" is completely determined by its subdirectly irreducible members. By Theorem
3.2.5, these are subdirectly irreducible groups and k-full inverse subsemigroups of wreath
products of a subdirectly irreducible group and #(I) for some I. A k-full iﬁverse
subsemigroup of a wreath product of a subdirectly irreducible group and #(]) is an inverse

subsemigroup of a wreath product of a subdirectly irreducible group and a k-full antigroup,
by Lemma 3.2.6. . | .

3.3 Isomorphic wreath products and connections with varieties
This section contains some structural results concerning wreath products of inverse

semigroups and some connections with varieties.

Lemma 3.3.1. Let T and A be inverse semigroups. Then T wr (A,A) can be embedded
in AT x A).
Proof: Define © : T wr (A,A) = F(T x A) by (y,B)® =£(y,p) where
dfy,)={ (ta): ae dB and t € T(ay)-1)
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and '
(L)fy,p) = (t(ay),aP).

We first show that f(y g)ye F(T X A). Suppose that for some
(t1,21),(t2,22) € df(y,p) we have that (t1,a1)f(y,B) = (t2,22)fy,B). Then (t1(a1y),a1B) =
(t2(a2y),a2B) and so ty(ary) = to(a2y) and aiB = asP. Since B is one~to—one, it follows
thataj =ap = a, say. As a consequence, we have that both t; and t3 belong to T(ay)~1 and
that tj(ay) = tp(ay). Therefore, t; = tyj(ay)(ay)-! = tx(ay)(ay)-1 = t. Thus,
(t1,a1) = (t2,a2) and so f(\If,B) i_s one—to—one and f(\,,,B) e (T x A).

Let (W1,B1),(W2,82) € T wr (A,A). Let fj denote (y1,81)0, f2 denote (y2,82)@
and f3 denote (\|fll31\|12,[31[32)®. In order to show that ® is a homomorphism we must

show that f1f2 = f3. Our first step is to show that dfif2 = df3. From the definition of @

we have that
. dfj={(ta):ae dBandte T(ayy)-!),
. dfy={(t,a):ae dBzandt e T(ay2)-! }.,
df3 = {(ta) :a € dBiB and te T(a(y1Ply2))1 }.
It follows that . |

dfifo = {(ta) : a € dB1,te T(ay1)~! and (t(ayi),aP1) € dfs }

{(ta) : a € dP1, af1 € dB2,te T(ay1)-1 and
t(ay1) € T(aPry2)-1}
{(t,2) : a e dB1P2, t € T(ay1)-! and t(ay1) € T(aPry2)-1 }.

If (t.2) € df3 then t € T(a(y1Bly2))1 = T((ay1)(aB1y2))~! = T(aB1y2)-1(ay1)~1 and so
te T@yp-! and tay1) e T(@Brya)-lay-lay)) =
T(@aBry2)~Lay)-1ay1)(aB1y2)(@B1y2)-1 < T(aB1y2)-1. Moreover, a € dB1B2 and so
‘ (t,a) € dfi1f2. On the other hand, if (t,a) € dfif, thent € T(a\|11)"1_ and
t(ay) € T(aB1y2)-! and so
t=tay(ay) ! € T(aPry2)lay1) ! = Ta(y1Bry2)L.
47



Alsoae d[31[32‘and so (t,a) € df3. Therefore, df1fz = dfs.
Let (t,a) e dfifz =df3. Then
(ta)tifz2 = (ttay1),aB1f2
= ((ay1)(@P1y2), aP1B2)
= (a(y1P1y2)).aB1B)
= (t,a)fs.
It now follows that ® is a homomorphism.
Finally, we show that © is one~to-one. Suppose that (¥1,51)® = (y2,82)0 =f.
Then df = {(t,a) :a € dBj andt € T(ay1)-! } = {(t,a) :a e dB2 and t € T(ay2)-1 } and
(t,a)f = (t(ay1),aP1) = (t(ay2),aB2). Letae df; = dvyi. Then ((ay1)-1,2) € df and so
a e dfs whence dB; < df;. Symmetrically, we obtain that dB, < dfi; and so
dB; =dBs. Forany ae dB; =dp,, |
(ayn)-La)f = ((ay1)-1(ay1).aB1) = ((ay1)-1(ay2),aB2).
Thus, aB; = aP3; and so B = Bp. Furthermore, '
" (ay1)-1(ay1) = (ay1)~1(ay2) and we can likewise obtain
| (aipz)-l(awz) = (ayp)~I(ay) by considering ((ay2)-1,a)f. We thus have that
ay1 = ayp@ynlayr)
= (ayn@y)ay2)
= (ayn@y)-lay) @y -1ay2)
= @yDayDlay)Ey) L@y
= (ay2)@y2)-lay)@ayn)-1@y)
= (ay2)(ay2)~l(ay1)

(ay2)(ay2)-l(ayr)
= ayn.
Therefore, 1 = 3 and as a consequence, © is a monomorphism.

Thus, © is an embedding of T wr (A,A) into F(T X A). o
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We will call the representation of T wr (A,A) described in Lemma 3.3.1 the

cartesian representation of T wr (A,A) and write (T wr A, T X A) to denote this

representation,

Lemma 3.3.2. Let S,T and A be inverse semigroups. Then
| [S wr (T,T)] wr (A,A) = S wr (T wr AT x A).
Pfoof: Let (¥,B) € [S wr (T,T)] wr (A,A). Set a¥ = (y¥3,Ba), for all a e d¥ =dB.
LetI' e A(Tx A) be deﬁﬁed by setting dI" = {(t,a) : ae dB and t € df}; } and defining
(t,a)T" = (tBa,aB). Define ®, a partial map from T x A to S by setting d® = dI" and
defining (t,a)® = tya. Now I corresponds to the pair (y’,B) in the cartesian representation
of T wr A, where for all a € dB, ay” is the elemei;t of T which maps to B, in the Wagner
representation of T. Thus, the pair (@,I) € S wr (T wr A,Tx A). |
Define © : [S wr (T,T)] wr (A,A) » S wr (T wr A,T X A) by mapping (‘F,B) to
(®,I), as above.
We first show that © is a homomorphism.

Let (¥1,B1), (¥2,B2) € [S wr (T,T)] wr (A,A) and set (¥1,B1)® = (®1,I'1),
(¥2,B2)0® = (P7,I7) and (¥1B1¥3,B1B2)® = (®3,I'3). We must show that
(@171, I2) = (®3,I3). Forallae dBjset a¥ = (yi,Bi), i=1,2, and set
a(¥1B1¥2) = (Ya.Ba).

dl'y = {(t,a):ae€ dByandte dfj, },

dI'; = {(ta):ae dBaandte dfy, },

dI'3 = {(t,a) :ae dB1Baandte df; }.
Now ‘

dI' Ty = {(t,a) : a€ dBy, aB; € dBs, te dPy, and tB;, € dB2 }, where
¢ = aB1, while for all ae dB1B2,
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a(¥1P1¥2) = @¥1)(@B1¥2)
= (y1,,B1,)(v2,.B2,)
= (y1, Py ,B1,B2)
and so, as a consequence,
dl3 = {(t,2) :ae dB1Bz and t € dfy B2, } =dlI.
Also, for any (t,a2) € dI'jIy = dT'3, (t,2)I'3 = (B1 B2,, aB1B2), while
(t,a)['12 = (tB1,,aB1)T'2 = (tB1,B2,, aB1B2) and so I'1I'2 =T'3. Moreover, for any
(t,a) e dT'1 I =dI'3, ‘
(t,a)® 111Dy = (t,2)®; (t,a)1P2
= (ty1,)(tB1,.)P2
= (ty1,)(tB1,v2)
and
- (ta)@3 =tya
= t(y1,Plays)
= (ty1,)(tB1,¥2)- _
Therefore, ®3 = ®;T1®, which combined with '3 = I'1T'» implies that © is a
homomorphism.

Let (¥1,B1), (W¥2,B2)e [S wr (T,T)] wr (A,A) and suppose that
(¥1,B1)© = (®,') = (¥2,B2)®. For all a e dBy set a¥; = (y1,,81,) and for all
a € dBaset a¥2 = (y2,,B2,). By the definition of ®, we have

dI" =((ta):ae dBjandte df, }
={(t,a):ae dB2andte df, },
and for all (t,a) e dI"
(tB1,.aB1) = (tB2,,aB2),

t\Vl, =ty2,.
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Since T is given the Wagner representation in S wr (T, T), for all a € dBj, dp;, # @ and
forallae dBé, dB2, # &. Thus, given a € dBj thereisate dBj, so that (t,a) e dI’
and so aB; = aB3. Therefore, dB; < dB; and B; and B, agree on the domain of Bj.
Symmetrically we obtain that dB2 < dB and Bj and B> agree on the domain of B, and
so, as a consequence, B; = Bo. Moreover, we have that d¥; = d¥>, and so in order to
show that © is a monomorphism, it remains to show that for all ae dBj = dB»,
(\yla,Bla) = (y2,,82,). From the definition of I" we have that t € dB_ if and only if (t,2) €
dT if and only if t € dBy, and so dB;, = dB2,. Furthermore, for any te dBj, = dB2, by
the definition of ©, tf1, = tB2, and so B1, = B2,. Also, dB;, = dB2, implies that dy, =
dy, and again by the definition of ©, y1_ =2 It follows that a¥'; = a¥,. Therefore,
(¥1,B1) = (¥2,B2) and © is a monomorphism. |
Finally, we show that © is surjective. Let (®,f) € S wr (T wr A, T X A) and
suppose that f = f,g) for some (\y,.B) € T wr A. Consider the pair (¥,3) where, for all
ae dB, a¥ = (Ya,Ba) and dB, = {t e T: (t,2) € df } and tB; = t(ay), ty, = (t,a)P. Now
Ba is the representation of (ay) in (T,T) and so (W,,Ba) € S wr (T,T). Also, B e (A,A)
and so (¥,B) € [S wr (T,T)] wr (A,A). We claim that (¥,B)® = (®,f). Set
(¥,B)0© = (¥0,B80). Then
dBO ={(t,a) tae dfandte dB,}
={(t,a):ae dB and (t,a) € df }
= {(t,a) : (t,a) € df }
= df,
and, for all (t,a) e df = dBO,
(ta)p® = (tBa.aP)
= ((ay),aP)
= (t,a)f.

51



Also, for all (t,a) € d® =df =dBO =d(¥0), (1,a)¥O = ty, = (t,a)P. It follows that

(¥,B)® = (®,f) and so O is surjective. Therefore, © is an isomorphism. ]

The following proposition is a collection of simple properties of wreath products

which suggest a connection between A wr B and the variety it generates.

Proposition 3.3.3. Let A and B be inverse semigroups and let {A;};c1 be a collection
of inverse semigroups.
a) If S isan inverse subsemigroup of A then S wr B is an inverse subsemigroup of
A wr B. | ‘
b) f a: A— S is an epimorphism then there exists an epimorphism
};L: AwrB — S wrB. | |
¢) [TierAi wrB can be embedded in [ [ (Ai wr B).
Proof: a) If (v,f)e S wrB then dP = dy and for alli e dB, iy € S < A. Therefore,
(v,8) € A wr B. Since S wr B is an inverse semigroup, it is an ‘inverse subsemigroup of
A wr B.
b) . Define u: A wr B = S wr B by (y,B)n = (w*,B) where y* is defined by setting
dy* = dp and for all i € dy*, defining iy* = (iy)a. Itis clear that (y*,B) € S wr B. It
follows from the definition of the multiplication in wreath products that L is a
homomorphism provided that for any (y1,B1),(w2,82) € A wr B, we have
y1*Blyo* = (y1Bly2)*. From the definition of the multiplication we have that
dy1*Biyo* = d(y1Piyp)* = dB1P2. Letie dBiBa. Then
iwiPry)* = [i(y1Pryn))a
= [GyDGBry2)la
= (lypa (Bry2)o
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(w1 *)((B1W2*)
= i(yr*Bryo®).
Therefore, | is a homomorphism.

Let (W,B) € S wr B. Define (y",) € A wr B by, forallie dB, iy’ e (iy)a-l.
Then (y*,B)K = (W ")*,B) and for all i € dB, i(y)* = (iy)et = iy. Thus, p is an
epimorphism. o
c) Define ®: (] [icjAi) wrB — []ic1(Ai wr B) by

W.R)® = (vi,Pier
where if i € dP and iy = (aj)je1, then iyj = aj.

Suppose that (y1,51),(w2,B2) € (Hie fAi) wr B. In order to show that ® is a
homomorphism, we must show that for all j € I and for all i € dB1B2,
i((y1)B1(y2))) = i(y1Bry2);. Suppose that iw1 = ()jer and (B)y2 = (bj)je1. Then
i(y1)j = aj-and (iB1)(y2); = bj and so 1((\!!1)3131(\1’2)3) = 1(\1’ Dj(iB1)(w2)j = ajbj. On-the
other hand, i(y1B1y»); = jth coordinate of iy1Bly, = jth coordinate of (iy1)(iBry2). But
this is just the jth coordinate of (ajje1 *(bj)je1 which is simply ajbj. Therefore, @ is
indeed a hc;momorphism.

Suppose now that (y1,01)® = (y2,B2)®. From the definition of ® we obtain that
B1=P2and forallj € I, (y1)j = (y2)j. Forallie dB;=dPy, i(y1); is the jth coordinate
of iy and i(y»); is the jth coordinate of iy2. Therefore, iy and iy2 agree in each of their

coordinates and so iy = iyp. This is true for all i € df; = df; and so it follows that @ is
a monomorphism. Thus, (Hiel Aj) wr B can be embedded in

HieI(Ai wr B). ;0

Corollary 3.3.4. Let " be a variety of inverse semigroups and suppose that A

generates 7. ThenforanySe 7, SwrBe (AwrB).
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Proof: IfS e 7" then S is a homomorphic image of an inverse subsemigroup T of a

direct power Al of A, for some index set I. By Proposition 3.3.8 (c), Al wr B can be

embedded in (A wr B)! and as a consequence, Al wr B &€ ( A wr B). By Proposition

3.3.8 (a), T wr B is an inverse subsemigroup of Al wr B, since T is an inverse

subsemigroup of Al. Thus, TwrB e ( A wr B ). S is a homomorphic image of T and so,

by Proposition 3.3.8 (b), there is an epimorphism of T wr B onto S wr B. Therefore,
SwrBe (AwrB). o
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CHAPTER FOUR
The Principal Result

Given two varieties # and ° of inverse semigroups, denote by Wr(%,?) the
variety genefated by wreath products of sefnigroups in  with semigroups in 7. The
principal result of this chapter is a description of the fully invariant congruence on F_#(X)
corresponding to Wr( #, 77) in terms of p(%) and p(?) for any pair of varieties.% and 7 of
inverse semigroups. Our description makes use of the Schiitzénberger graphs of the
7-free inverse semigroup given by the presentation P = ( X; p(?) ). For any words w
and v 6ver X, Wr(# ,7) satisfies the equation w = v if and only if 7~ satisfies w =v and
Z satisfies an equation dependent upon the paths in the Schiitzenberger representation of w
(and hence v) relative to 7" labelled by w and v. Given two varieties % and ¥, we can thus
describe a more ‘complicated’ variety both in terrﬁs of its generators and the equations it -
satisfies if we know the equations satisfied by # and 7.

The first section of this chapter deals with associating the path labelled by w in the
Schiitzenberger representation of the word w relative to the variety ~ with a word over
some alphabet Y. This enables us to prove the main result of this chapter which is
concerned with describing the fully invariant congruence corresponding to Wr(%,%) in
terms of the fully invariant congruences cofrespondihg to  and 7. The third section
concerns itself with basic properties of the Wr operator, including the result that when  is
a group variety then Wr(%,?) is the more familiar Mal'cev product Qan'ety % o 7. Finally,
it is shown in the fourth section that Wr is an associative operator and so £(.®) is a

semigroup under the operation of Wr.
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4.1 Doubly Labelled Schiitzenberger Graphs
For any word w over X we require an 'encoding' of the path labelled by w in the

Schiitzenberger representation of w with respect to #” as a word over some alphabet Y. In
order to do this we extend our definition of Schiitzenberger graph to what we call the

doubly labelled Schiitzenberger graph .

Definition 4.1.1. Let " be a variety of inverse sgmigroups and p the fully invariant

congruence on F.#(X) corresponding to #. Letw € (XuX—l)“' and let T’y (W) be the _
Schiitzenberger graph of w in the #~free inverse semigroup on X. LetY be a countably

infinite set and Y-1 a set disjoint from Y and in one-to-one correspondence with Y via

y © y~1. Assume that XUX-1 and YuY-1 are disjoint. From [g{(w) we obtain the
doubly labelled Schiitzenberger graph T'o{w) of w relative to 7, as follows:
Ty w) = (Tgw), A )
where
Aw: B(Ty(w) ) = YUY-1
satisfies
(i) (v1,x,v2) € E(I'3(w) ) and x € X implies that Aw(v1.x,v2) € Y;
@) Aw(v2,xLv1) = w(vix,v2)] L

(ii)Aw(v1,X,v2) = Aw(Vv3,Z,v4) implies that v) =v3, v2=v4, and x = z.

We call x the primary label and Aw(v1,X,v2) the secondary label of the edge (v1,Xx,v2).
Condition (iii) says that no two distinct edges haQe the same secondary label, condition (ii)
says that inverse edges have inverse secondary labels and condition (i) is just convenient.
. Thus, the doubly labelled Schiitzenberger graph of w is just I'y,(w) with a secondary label
attached to each edge such that inverse edges have inverse secondary labels and no two

distinct edges have the same secondary label.
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We define the derived word dg(w) of w relative to 7 as follows:

Let v an&«vz be the start and end vertices respectively, of the Schiitzenberger graph
I'y(w) of w relative to 7. Then w labels a vi-v2 walk in IW by primary labels, by
Lemma 2.8.1 (b) and the definition of the Schﬁtzenberger representation of w with respect
to 7. Letej,...,en be the edge sequence corresponding to this walk. Define
dgAw)=Aw(e1)Aw(€2)... Aw(en) € (YUY-1)*. That is, dgAw) is just the word obtained by
taking the secondary labels from each edge in our v1-vy walk.

Note that if w = aj...ak, 3; € XuX-1 fori = 1,....k, and d9(w) = by...bn,
b;j € YUY, then m = k and if e is the edge corresponding to a; in the start-end path
labelled by w in I'y(w) then b; = Aw(e) is the secondary label of e in I—‘;(_VT) Note also
that w is an instance of its derived word dy(w) relative to . That is, w can be obtained

" from dy{w) by a substitution of variables.

Example.
X
A 1 V3
SEE—
% 1Y Y2 | %
¥
e 50,

1 2

X

Figure 4.1. The doubly labelled Schiitzenberger graph I' g 1(w).

" Figure 4.1 is the doubly labelled Schiitzenberger graph of the word w = x1xox1-1xp°1

relative to the variety & 1, the variety of inverse semigroups generated by the five-element
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Brandt semigroup with an identity adjoined. Both the start vertex and the end vertex are
vi1. Reading directly from the graph, we have that the derived word of w with respect to

" Flisdg1(w) = y1y2y3-lysl.

Proposition 4.1.2 Let % be a variety of inverse semigroups and let w € XuUX-1.
Suppose that w p(?) w2. Then dgA(w2) = [dgA(w)]2. |

Proof: Let the two roots in the Schiitzenberger representation of w with respect to 7" be s
and e. Since w p(?) w2 we have that w p(?) ww-! and so, as a consequence,
s = e. By Lemma 2.8.1 (c), w and w2 both label s-s walks in m by primary labels.
By Lemma 2.8.1 (a), I',(w) is deterministic which implies that the s-s walk labelled by w2

is just the s-s walk labelled by w taken twice. Thus,

dy(w2) = [dy(w)]2, as required. | .

Proposition 4.1.3. Let 7° be a variety of inverse semigroups and let v and w be
words over X U X-1. Then v p w if and only if dgAv) p dyA(w), where p is the Wagner
congruence.
Proof: The Wagner congruence p is generated by the relation

o={(aala,a):ae XuUXDHY} U (aalbblbblaal):abe XuXDH)
[P;VIIL.1.1].

Now, w pvifand onlyifw=vor

w

X1C1¥1

x1d1y1 = x2c2y2

x2d2y2 = x3C3y3
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Xkdkyk = v,
for some words x;,y;,cj,dj such that ¢; ¢ ‘di or dj @cj, fori=1,... k. v

If w =v, then dyAw) = dsAv) and so dp(w) p dy(v). Otherwise, we proceed by
- induction on k.

If w = x1c1y1, X1d1y1 =vand c1 @ d1 then w p v implies that w p(#) v and so
both w and v label s-e walks in I's{w). Because I's(w) is deterministic, dgAw) = xcy
and dgA(v) = xdy, where x,y,c,d € (Y U Y-1)* and c,d depend upon the paths labelled by
c1 and d; in the Schiitzenberger graph of w with respect to . If ¢; = a and dj = aa-la
then d = cc-le since I'yAx1c1y1) is deterministic. That is, the path labelled by d1 must be’
the path labelled by ¢ followed by the path labelled by c; in reverse followed by the path
labelled by cj. Likewise, if d; = a and ¢ = aa-la then ¢ = dd-1d. Thus, in this case,
doA(w) = xcy p xdy = dgAv). If c1 = aa-1bb-1 and d; = bb-laa-1 then c= ujui-lugus-1 and
d = uguz-luju;-l; again because I'y(x1c1y1) is deterministic and the paths labelled by aal
and bb-l both start and end at the same vertex. Thus, dy(W) = xujug-luguz-ly p
xuguz-lujui-ly = dgAv). In either case, we have that dgA(w) p dgAv).

If k > 1, then dgA(w) p dy(xkckyk) and dy(xkckyk) p d#(v), by the induction
hypothesis, and so dgAw) p dsAv).

Conversely, w and v are instances of dy(w) and dy(v), respectively, whence

dy(w) p dgA(v) implies that w p v. | -

In the following lemma and throughout this thesis we use the following shorthand
notatiori, For any words v and w over some alphabet Z and any variety  of inverse
semigroups, we write w <g-v to mean wp(?) < vp(?) in the natural partial order on the

. 7-free object over the set Z.
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Lemma 4.1.4. Let w =a;...ax and v =d1...dm With w p(?) v. Set dgp(w) = b1...bx
and dgAv) = C1...cm, Where we construct both dy(w) and dg-(v) from the same doubly
labelled Schiitzenberger graph m). Then

a)bj=c; ©w <y a1...ai_1dj...dmb and aj = d;

b) b; = ¢l ow sy a1...aidj...d,r; and a; = dj~!

& W Sy a1...8-1dj+1...dm and aj =dj~L.

Proof: The proofs of a) and b) are similar. We provide a proof of a). Let s and e be the
start and end vertices, respectively, corresponding to w and v in f‘_y/(_w) (and so also in
Tgyf{w)). If bj = cj then aj and dj are primary labels for the same edge in I‘g'/(_w) and so
aj = dj. Moreover, aj...3j-1d;...dm must label an s-e walk by primary labels in m)
and so, by Lemma 2.8.1 (¢), aj... ai_1dj... dm 2 w. Conversely, if aj = dj and
a1...ai_1dj...dm._27rw then, by Lemma 2.8.1 (c),' a1...ai_,1d'j>...dm must 1ab¢1 an s-e walk
. by primary labels IW Since both' w and v label s-€ walks by primary labels
in m) and since I'yAw) is deterministic by Lemma 2.8.1 (a), we must have that a; and

dj are primary labels for the same edgé. It follows that b; = ¢;j. ' .

Remark. If we take v = w in Lemma 4.1.4 we obtain
a) bj = b; & W <y aj...3j-13j,, .2 and a; = aj,
b)bi=bjl oW <y aj...a59)... 2, and aj = aj]

& W Sy a]...3j-13j+1...2k, and a; = ajL.
4.2 The Main Theorem

Definition 4.2.1. For every pair  and 7° of varieties of inverse semigroups, let

Wi, 7)=(Swr(T,):SeZandTe ¥).
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Varieties of the form Wr(%,?) will be the focus of our investigations throughout
this chapter and chapter five. Our first task is to describe the fully invariant congruence on
the free inverse semigroup corresponding to Wr(%% in terms of the fully invariant
congruences corresponding to the varieties % and 7. Observe that, for any varieties

and 7° of inverse semigroups, #, 7" < Wr(#, 7). This fact will be used throughout

. this text without explicit reference.

Definition 4.2.2. LetZ and 7~ be varieties of inverse semigroups. Define a relation

O&,7) on F.#(X) as follows:

ud@Z,7)w < up(?)w and dy(u) py(@) dy(w) )

where dgA(u) and dg(w) are both obtained from the same doubly labelled Schiitzenberger

graph I'g(w).

Observe that ®(%,?) is an equivalence relation. We will see in Theorem 4.2.3
that it is not only an equivalence relation, but a fully invariant congruence on F_#(X).
Note that, if we think of ®(%,?) as a relation on (X U X-1)*, then by Proposition 4.1.3,
the Wagner congrﬁence p € ©#,?) and so, as a relation on F A(X), ®(,?) is well-
defined. |

Example. If we let 77 be the variety . of semilattices and  be any variety of inverse
. semigroups then dg~(u) py(%) dy(w) if and only if u p() w because d(u) is just a

relabelling of u, for any word u over X (see Proposition 2.8.3 and the example which
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accompanies it). Thus, u ®&,%) w if and only if u p(?) w and u p(&) w. Thatis, @

is just p(& v Z) in this case.

- Example. If 7 is any variety of inverse semigroups then u ®(#,?) w if and only if
up(?) w and dg(u) p de(w), where p is the Wagner congruence. By Proposition
4.1.3, dgAu) p deAw) if and only if u p w. Thus, u ®(F,¥) w if and only if
up(F v 7)w. That is, ®(F,?) is just p.

The following is the principal result of this work. It connects the variety Wr(%,%)

to the relation ®(%,%).
Theorem 4.2.3. Let Wi@,?)=(Twr(FD):Te % Fe 7). Then
O,7) = p(Wr(Z,7)).

Proof: For ease of notation, set ®#,?) = ® and p(Wr(¥,?)) = p.

We first show that @ < p. Suppose that u @ w. We will show that u = w is a law
in Wr(%,%). 1t is sufficient to show that every S = T wr (F,I) which is in the generating set
of Wr(¥,?) satisfies u = w. '

Let

u = u(Xi,...,Xp) = aj...ax and w = w(xi,...,Xp) =di...dm
where

cu) U c(w) = ‘{x1,...,xn] and aj, dj € XuX-lfori=1,...k% andj=1,...,m.

Let S =T wr (F,]) where Te Z and Fe 77 Let (y1,81)...,(Wn,Pn) € S and
suppose that |

ul(y1,B1)s....(Wn.Bu)] = (¥.B),
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W[(\Vl ’B'].),' . "(WD,BD)] = (W”B’)'

Let ©:S — F be given by = : (9, o) = &, for all (¢, @) € S.
Then & is an epimorphism of S onto F which we shall call the natural homomorphism of S
onto F. Since F e 7] it follows from the hypbthesis that F = Sw satisfies u = w.
Therefore,
B = [u((W1.BD:....(¥n,Ba))]m

= u[(Y1,BD7,....,(Wn,Bn)7]

= wl(y1,BDT,....,(Wn.Bn)n]

= [W((y1.B1)s....(Wn,n))Im

=pB".
Thus, B = B and dy = dp = dB’ = dy’, so that all we need to show is that iy =iy~ for all

ie dy.
We will write
_ )V if aj = x;
Va {Wj‘l  if aj = x5!
_|Bj if aj = xj
Pa, = {Bj‘l if aj = xj~1

We will also write Ba,,..a, for Ba,Ba,... Ba, Observe that with this notation

Wai'l = Wal—l and Bai..l = Bai—l.

Let dy(u) = by...bx and dgAw) = c1...c;p. Letie dy =dp. We first prove the
follqwing statements.
Dbp=bj = GBa..ap Ve, = (Bay..a Ve
2 bp=bil = (Ba..a Ve = [GPa,..s JWal;
Dbp=cj = (Pa...a,IVa, = (Bd,...a )Va;
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4bp=cil = (Ba..a IVa = [ABa,...d Vel
S)ep=c¢j = (iBa,...q,)¥4,

G)cp=cjl = (B,...4,)V4,

(iBd,...d,)Wd;
[GBq,...d.,)Wa] L.

1) Suppose that by = bj for p < j < k. Then ép =aj and u” = aj...ap-13j...ax 2 U, by
Lemma 4.1.4. Again Ste ? andso B = Bal---ap—laj-“ak > Ba,...a, = B. This means
that df < dB"" and B and B°” agree when both are defined, and so i = if”". But then,
(iBal...aj_l)Baj...ak =i =if" = (iﬁﬁl...ap_l)ﬁaj...ak- Since Baj...ak is one-to-one,
we have iBa,... aj.q = iBa,... a, ;- This, combined with ap = aj, gives

(iBay...a, )Wa, = (iBa,...a, VWa,

2) Suppose that bp = bj~1 with p <j <k. Then ap = aj~! and u” = ay...apaj...ax 2y u, by
Lemma 4.1.4. Agaﬁn Ste 7 andso B = Bal-.-apa,-.-.ak 2 Ba;...a, = B. This means that
dB < df " and [3 and B°° agree when both are defined. As in 1) we obtain
iBal...ap = iBal'...aj_l- Then

[(iBal...aj_l)\Vaj]‘l = [(i[35a1...a,,)\lfap-ll’1
= [(Ba,.. -a,,)\lfap_l]—1
= [[(iﬁal...ap_l)\lfap]—l]_l (definition of \Vap_l)
= (iBal...ap_l)\Vap- |

3) Suppose that bp =cj. By Lemma 4.1.4, ap =d; and u’ = aj...ap.1dj...dm 29 u.
Since Sm e 7, we have that B = Bal---ap-ldj---dm 2 Ba,...a, = B. This means that
dB < dB”” and both B and B”” agree on df. In particular, iB** =if =if”". But then,
(iBay...a,)Bd;...d, =" = iB" = (Bq,...q,,)Bd,...d,,- Since Pg;..d, is one-to-one,
iBa,...a,, =iBd,..d;,- Combining this with the fact that ap = dj gives
(iBay...a, )W, = (Bd,...q, )V,
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4) Suppose that' bp =cjl. By Lemma 4.1.4, ap =dj! and u” = aj...apd;...dm 2% u.
Again St € 7 implies that B = Bax...apd,-...dm 2 Ba,...a, =B. This means that
dB < dB”” and both B and B*" agree on dB. In particular, iB”* = if3 =iB". But then,

- (iBa,...a)Bd;...d,, =iB"" = iB" = (Bq,...d;,)Bd;...d, Since Bq,...d,, is one-to-one,
iBa;...a, =iBd,...d;;- |

[(Bd,...q JWal? = [(Bay...a)Wa, 11
' = [(iBa,-- oap)\l’ap'l]'1
= [[Ba,...a, ,)Wa 11~ (definition of 1)
= (iBal...aP_l)\Vap-

5) and 6) The proofs use Lemma 4.1.4 and are similar to the proofs of 1) and 2).

Multiplying u[(¥1,B1)s...(Wn,Br)] from left to right we obtain

i\V = (i\lfal)(iBal\Va2)(iBala2\Va3)- . '(iBal. . .ak_l\lfak)~
Likewise, we obtain

iy’= (iyq,)(Ba, Vd,) (B4, d,Vdy)- --(Bd,...d_ ,Va )-

By 1)-6) above, the expressions on the right-hand side are instances of dy(u) and dgAw)
by the same substitution of variables. Since T € Z, T satisfies d(u) = d{(w) and so, as a
consequence, iy =iy”. It now follows that (y,B) = (y",B") and hence that T wr (F,I)
satisfies u = w. Therefore, the generating semigroups of Wr(%,?) satisfy u = w and so

Wr(Z,7) also satisfies u = w, whence ® ¢ p.
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Before we prove that p ¢ @, we require a construction and a preliminary lemma.

Construction 4.2.4. Let w,u e (X U X)* be such that w p(%) u and let Ty{(w) be

their doubly labelled Schiitzenberger graph relative to 7. Let s and e be the start and end

vertices, respectively, corresponding to w (and u) in I'9Aw) and let V denote the set of
vertices of I'gA(w). Suppose that c(w) U c(u) = {x1,....,Xm} and

Q(dyx(w)) U c(dy(u))= {y1,...,.¥n}, where x1,...xm € X and y1,...yn € Y. Here X is
the set of primary labels and Y is the set of secondary labels in I'y{w). Let T be any

inverse semigroup and let ty,...,tn € T. We use { X1,....Xm }» { ¥1,-..,¥n } and tj,...,ty to

construct an inverse semigroup S as follows.

Fori=1,..,m lets; = (yi,Bp) where yj € TV, Bj € F(V) are defined by:
dBi=dyi={ve V:(vx,v)e E(T"g(w)) for some v" e V}

and for v e dfj = dy;,

vBi=v’ where (v,xi,v") € ETgA(w)),
t if Aw(V,Xi,v") = vk,
vyi= { k . w( i ’) Yk
t lf )\,w(V,Xi,V ) -3 {YI,---,Yn}-

Here, t is some fixed element of T.

Thensje T wr A(V), fori=1,.. .,m.. Let S be the inverse subsemigroup of
T wr #(V) generated by {si,...,sm}. Note that S depends on T, ty,...,tn,

{ X1y.++sXm }s { YInn,Yn } and F%W).
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Observe that if u is a word in { X1seeosXmoX1" 1., xm~! }* and (y,B) = s is the
element of S obtained from u by substituting s; for Xj,j = 1,....m, then forall v e dB, u

labels a v-v* walk by primary labels in Tgy{w) if and only if v = v".

Lemma 4.2.5. Let 7" be a variety of inverse semigroups and suppose that T is an
inverse semigroup. Let u, w € (X U X)* be such that u p(?) w and set F = F¥(X).
Let S be as constructed in 4.2.4 using any t1,...,tn € T and I'g(w). Let (F,F) be the

Wagner representation of F by partial right translations. Then S € (T wr (F,F) ). If Tisa
member of the variety  then S € Wr(%,%).
Proof: Let Ry be the & -class of wp(%) in FZTX).
Define
0:T wr (F,F) » T wr £(Ry) by
0 : (v,B) = (v6,36) where |
dy6=dp6={ue dB:ue Ry, uP e Ry, } and for all u € dp6, up® = uf, uyd = uy.
We first show that 0 is a homomorphism. Observe that 6 as defined maps
T wr (F,F) into T wr #(Rw). Let (W1, B1), (w2, B2) € T wr (F,F). Now F is given the
Wagner rqprescntation by partial right translations of itself, so there exist
v1, v2 € F such that df; = Fvy~1, df2 = Fvy-1 and for all v in the domain of Bj,
vP1 =vvi and for all v in the domain of B2, vf2 = vva. |
Since (y1,81)0 (w2,82)8 = ( w16 P18y26, $16B26) and
‘(\Ifl,Bl)(\lfz,Bz)G = ((w1P1y)8, B1B26), we must show that
B1B26 = B16PB26 and 16 B18y20 = (y1B1y)e.
The domain of B16B26 is the set { u:ue Ry, uB1 € Ry and uB1B2 € Ry },
. while the domain of $1B26 isthe set { u:ue Ry and ufipfz € Ry }. Butifue Ry and

uPBif2 € Ry then u € Ry, and uvivy € Ry and so uvi € Ry. As a consequence,

dB1B26 = dB16B26 and so, for all v e dB1B20, vB1P26 = vB1B2 = vB16B26.
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Since dB1B26 =dP16B26 we have dy16 B16y»0 = d(y1B1y2)6. For any
v € dB1B26, v(¥1B1y2)8 = v(y1Bly2) = (vy1)(vB1y2), while vy 16 B10y,6 =
(vy10)(vB16y20) = (vw1)(vB1y2) since v € dB16B‘26 implies that vB16 = v and
(vB1)W26 = vB1w2. Therefore, 16 319\|f26 (y1B1y2)0. It now follows that 6 is a
" homomorphism.
We now . claim that S is an inverse subsemigroup of the image of 0 in
T wr F(Ry). It is enough to show that each generator of S is in the image of ©. Let
si = (Vi,Bi) be a generator of S. Then,
dy;=dp; ={ve Ry: (v,xl,v)e E( Fy/(w)) for some v’ € Ry }

={ve Ry:vxip@) e Ry }

c Exilp®),
where the last containment follows from the more general fact that if a and ax are
% -related elements of the same mverse sermgroup, then a = axx~1.

We choose (y,B) € T wr (F,F) as follows. Let B be the representation in the
Wagner representation of F of x;jp(?) so that d = in‘lp(7/). Let y be any mapping from
dp into T such that, for any v € Ry N dp such ﬁat vB € Ry, vy = vys;. Such a  exists
since dyj < dB. We clearly have that (y,p) € T wr (F,F).

Consider now (y,B)0 = (y0,p0), where

dyo=dp6 ={vedf:ve Rwandee Rw }
={ve df:ve Ryand vxip(?) € Ry, }
= {ve Fxi1p(®) : ve Ry and vxip(?) € Ry }
={ ve Ry:v=vxixi-1p(®) and vxip(?) € Ry }
={ve Ry:vxip?) € Ry }
= df; = dy;.
Moreover, for any v € dB6, vB6 = vB = vxjp(?) = vB;j and vy = vy = vy;j by our
choice of (y,B).
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Thus, (W,B)0 = (y;,B;) and so S is an inverse subsemigroup of the image of 6 in T
wr F(Ry). It follows that S € { T'wr (F,F) ). If T is a member of the variety ¥ then
T wr (F,F) e Wr(#,?) and so we also have that S € Wr(#,?). °

We now show that p < ®. Suppose that u = w is a law in Wr(%,?). Since
7 < Wr(¥,?), ¥ satisfies u = w. Therefore, to prove the theorem, we need only show
that dgAu) py(#) deAw).

Suppose that c(u) U c(w) = {X1,...,Xm} and that '
c(dgAu)) U c(dAw)) = {y1,...,yn}. Let T be any generator of  ( for e.g., we may take
T = FZ(X) ). Itis sufficient to show that T satisfies dg(u) = dgAw).

Let ty,...,tn € T, and let S be the inverse semigroup which is constructed as in
4.2.4 using tj,...,tn and I_'JVV). By Lemma 4.2.5, S € Wr(,?) and so S satisfies
u=w. Therefore; with sj = (\;ii,Bi), u(sy,....Sm) = W(s1,...,Sm) = (V,B), say. Let v be
the start vertex of u and w in T’;{V) (u and w have the same start vertex in f;/_(;v-) since
u p(?) w). Setu=dj...dg, where dje X U X-1.

As before, we write

_J¥ if dj = x;
Ve {\yj—l ifdj= x_i'l
_ I Bj if dj = xj
Pa, {Bj"l if dj = x;~1

Again, we write 4, .. g, for Bq,Bd,..-Bd;

Now u labels a v-vB walk in IgA(w) (see the observation made after the
construction) and the edge sequence corresponding to this walk is (v,d1,vBd,),

+ (vBa,»d2,vBd,d,)» (VBd,d,:d3,vBd,dydy)s----(VBad,...d, -dk:VB4,...q,)- By definition, for any
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i<k, vBq,...q, Vg = tq if and only if the edge between vBq, ...4,, and vB4,...q, with primary

label d; has secondary label yq. Thus,

v =vyd)vBa,Va,)(VBd,dVd,)---(vBd,...4. ,Va,)
= dgA(u)[t1,...,ta]. |

Similarly, we obtain vy = dg (W)[ty,...,tn] and so we conclude that
dy-(W[t1s....tn] = dg-(W)[tLs....tn]. Since the t; were chosen arbitrarily, we have T

(and hence ) satisfies dg(u) = dgA(w). Therefore, dg(u) py(@) dz(w) andu P w. o

Theorem 4.2.6. LetZ and 7 be varieties of inverse semigroups. Let (FZ1X),F71X))
be the Wagner representation of F#{X) by partial right translations. If T generates  then
T wf (F71X),F71X)) generates Wr(%,%). In particulalj, '
FZ(X) wr (F71X),F71X)) geﬁerates Wi ,?).
Proof: Clearly ( T wr (FZ1X),F71X)) ) € Wr(%,?). Thus, to prove the corollary we
need only show that if T wr (FZ1X),F7(X)) satisfies the equation u = w then 7~ satisfies
u=wand Z satisfies dgfu) = dg(w).

Since F1X) € ( T wr (FZ1X),FZ1X)) ) we have that
7 c{ T wr (F?1X),F#1X)) ) and so ¥ satisfies u = w. Since T generates ¥, it is
sufficient to show that T satisfies dg{u) = dg{w). We may now use the proof of
p € @ in Theorem 4.2.3 to demonstrate this, noting that any semigroup S, as constructed
in 4.2.4, which is used in this proof is a member of the variety ( T wr (F?1X),F71X)) )
by Lemma 4.2.5. .
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Remark. We ca,nnotv in general replace F#{X) in Theorem 4.2.6 by an arbitrary inverse
semigroup which generates 7. An example well known to group theorists illustrates this
(cf [N;22.23]):

Let &2 be the variety of abelian groups of exponent 2 and let Cy be the cyclic
group of order 2. Far?(X) wr Ca is nilpoteht of class 2 and so satisfies the identity
[[x,yl,z] = [[x,y],z]2. On the other hand Wr(2,72) does not satisfy this identity. One
can demonstrate this directly by showing that Ferp wr C»2 does not satisfy
[[x,y1,z] = [[x,y],z]2 or, by appealing to Theorem 4.2.3, one can simply note that .7
does not satisfy the identity yi1y2y3—lys-lysygy7ys—lyo-lys—1 e E: that is,
d.er;( [[x,y),2] ) is not a law in .=/?.

Example. The following diagram (Figure 4.2) is the Schiitzenberger graph of
" w = x1x2x1-1xo~! relative to the variety .ﬁ’ 1, where vi = s = e, the start and end vertices
corresponding to w. Here doAw) = y1y2y3-lys-L. | |

From this we can conclude that, for any nontrivial group variety 7,
W%, F1)=% o &1 does not satisfy the equation

x1xox1~Ixo™l = (xpxox171x271)2,

since no group variety other than the trivial variety satisfies the equation
y1y2y3-lys! = (y1y2y3-lys-1)2. Moreover, Wr(¥%,%) does not satisfy
x1x2Xx1°1x2-1 € E whenever 7 o &1 and ¢ {.7,.%). This is a consequence of
the fact that only .9~ and . satisfy the equation y1y2y3-ly4-! € E and Proposition 4.3.1,

the first result of the next section.
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Figure 4.2. The doubly labelled Schiitzenberger graph I' g 1(w).

4.3 Basic Properties of Wr(_,_ )
| This section is devoted to several consetluences of the main theorem discussed in

the previous section. We first present some properties of Wr(%,%?) and then show that

when Z is a group variety", Wr(Z,?) is the more familiar variety o 7] -the

Mal’cev product of ¥ and 7~

Proposition 4.3.1. Let %, 7; # and & be varieties of inverse semigroups. If
YcCc¥ and 7 &, then Wr(%,?) ¢ Wr(#,Z).
Proof: This is immediate from the definition of Wr(_,_). e

Proposition 4.3.2. LetZ and # be varieties of inverse semigroups. Then
{Swr(T):Se % Te 7}c ¥ o7 and hence, Wr(%,?) (¥ o 7).

* Proof: Let S and (T,I) be inverse semigroups with S € % and (T,]) € 7. Let & be the

natural map of S wr (T,I) onto T and let p be the congruence induced by n. Lete € Es.
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Then e = (y,B) where for all i € dy = dg, i =i and‘i\y € Es. Therefore,
ep={ (y,B):dy’=dp }. Since f is the identity map on its domain we have, for all
v,y with dy’= dy”" = df, that (\|I’,}B)(\|I",[3) = (y"y"°,B). Therefore, the map
O:ep— SdB defined by (¥’,B)¢ =y~ is a homomorphism. It is clearly one~to-one and

so the fact that S4B e % implies that ep e ¥. Since
S wr (TY)/p=Te #7, we have that S wr (T,]) € ¥ o 7. Since Wr(%,?) is

generated by { Swr (T, )): Se ¥, Te 7}, it follows that Wr(%,?) (% o 7). °

When #Z is a group variety it turns out that o " is a variety and

Wr(%,7) =% o 7. In order to show this, we require a special case of a result due to

Houghton.

Lemma 4.3.3 [H]. Let S be an inverse semigroup and let p be an idempotent separating
homomorphism of S onto T. Then there is a monomorphism of S into

(ker p) wr (T,T) where T is given the Wagner representation by partial right translations.

Theorem 4.3.4. LetZ be a variety of groups and 7" a variety of inverse semigroups.
Then Wr(,7)=% o 7.

Proof: Note that, in the setting of the theorem, ¥ o 7" is a variety.
Let S € Z o 7 and let p be the congruence which witnesses this. Then p is
idempotent separating and so, by Lemma 4.3.3, S can be embedded in (ker p) wr S/p,

where S/p is given its Wagner representation. Since ker p is a semilattice of groups

belonging to #, (ker p) wr S/p € Wr(9%,%) and hence S € Wr(%,%). Therefore,
YooY C Wi, Y).

Now, Wr(%,?) c % o 7, by Proposition 4.3.2 and ¥ o7 < Wr(9%,%).
By Theorem 4.2.3, ker p(Wr(%%,7)) = ker p(Wr(%,?)) since dA(w) p(&) dg(w?2) if
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and only if deAw) p(.%/) d}(wz). Therefore, ker p(¥ o #) = ker p(Wr(¥,?)).
But, ¥ Wr@,%) C% o7 and tr p(¥) = tr P(% o) by Lemma 2.7.5, so that
tr p(Wr(%,?)) = tr p(¥ o 7). It now follows that p(Wr(%,?)) = p(% o ) and hence
that Wr@, %) =% o 7. ‘ : o

It is not true in general that Wr#,?) = (¥ o ") for varieties ¥ and 7" of

inverse semigroups, as the following example illustrates.

Example. LetZ = &, the variety of inverse semigroups generated by the five element
Brandt semigroup B2 and let 7= .%, the variety of semilattices. % is defined by the
identity xyx-1 = (xyx-1)2 (See [P;XIL.4.8],[K1] or [R2]). Let w = xyx~1. Now
w p(&) w2 and dg(w) is just a relabelling of w since the Schiitzenberger graph of w
relative td < has no two edges with the same (pﬂﬁaw) label. (In fact, 'g/(w) is just a
single vertex with four loops labelled by x,y,x-1,y-1 — .see Proposition 2.8.3. )
Therefore, dg(w) p(F) ds(w2). By Theorem 4.2.3, Wr(&F ,.%) satisfies the equation
w = w2, and so Wr(#,%) c #. Clearly & c Wr(%,%), and so

F.= Wr(F,%). But F1, the variety of inverse semigroups generated by the five

element Brandt semigroup with an identity adjoined, denoted by B% , 18 contained in

(F o ¥) since le is a semilattice of By and-{1}. Since & # &1, we have

Wr(ZF,9) #{ F o %).

Proposition 4.3.5. Let ,7 and #~ be varieties of inverse semigroups. Then

W v 7, % )=Wr¥, %) v Wr(7f,- V).

‘ Proof: Setp=p(Wr& v 7, %#")). Then, for any u,ve X U X-D)* we have

upv @ up@’)v and dyp ) p& v ?)dyg (v) (Theorem 4.2.3)
S up@’)v and dy () p@) N p(?") dy(v)
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< up@?)v and dy-(u) p@) dy (v) and dgp-(u) p(?") dyp-(v)

& upWr@,#7))v and up(Wr(7;,#7)) v (Theorem 4.2.3)

< upWr&, #) Np(Wr(Z, #) v

< upWr, %) v Wi(Z, %)) v. °

We do not know whether Wi, %) A W7, %) = W& A 7, %) for
arbitrary varieties , 7~ and %; but the equality does hold when & and " are varieties
of groups and #~ is a combinatorial variety. The proof of this requires further results
which are presented in the following chapter and so we leave this proposition until section
5.3. Another case in which this equality holds is wheﬁ ¥,7 and #~ are varieties of

groups [N;21.23].

Remark. Let %,7 and % be varieties of inverse semigroups. Tt is not true in general '
that Wr@ ., 7 A #°) = Wr(¥ ,.7f) A W&, %), nor is it true in general that
Wi, 7v %) =Wr&, 7)) v W&, %#").

Consider Wr(#, & A &), where ¥ is the variety of semilattices, & is the variety
of groups and & is the variety of inverse semigroups generated by the five element Brandt
semigroup.

WIS, AF)=WI(Z, T)=5,
while

WIS, Z) AW, B)=FMBANFMX = FANF =F 7.
( We will prove in Theorem 5.3.3 that, for any variety of inverse semigroups 7,
Wr(%, '7/) = ymax )

Now consider Wr(%, &2 v «/3) where «7 and .»¢3 are , respectively, the variety
of abelian groups of exponent 2 and the variety of abelian groups of exponent 3. Itis clear
that Wr(%, &) v Wr(¥, &3) € WI(¥, o2 v 3) = WI(Z, o), where & is the
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variety of abelian groups of exponent 6. The containment is proper however, as both
- WI(Z, o2) and Wr(%, s3) satisfy the equation x3 = x9, while Wr(%, s) does not
satisfy x3 = x9. This can be seen by considering the Cayley graphs of Z5, Z3 and Zg and

using Theorem 4.2.3.

Lemma 4.3.6. Let T be a full, closed inverse subsemigroup of S. Then og saturates T

and T/oT is isomorphic to the subgroup of S/Cs consisting of those Gg—classes contained

in T.

Proof: Lett;,tp € T. By the definition of s, t; O5 t2 if and only if for some idempotent e-
in §, tje = tge. Since T is full, it follows from the definition of ot that t o tp if and only

if t; oT to. Thus, og restricted to T is oT. If t 05 s forsomete T and s € S then for
some idempotent € in S, we have te = se <s. Since T is full, te € T and so, since T is

closed, s € T. Thus, o5 saturétes T and these os—classes form a group isomorphic to

T/oT. ' , o o

Theorem 4.3.7. Let% and 7 be varieties of inverse semigroups. Then
WrZ7)NG =WtZ NZ, 7NZ)=UNE)e I NE)=(Y7)NZ.

Proof: Let S € Z o 7 and let p be the congruence on S which witnesses this. We
consider S/cs, the maximal group homomorphic imagé of S. Now 65 £ p v o5 and so
p v Os /Os is a congruence on S/O's. Moreover, (S/65)/(p v 65/065)= S /p v o5 and
S/pvos =@/p)/(pvosl/p)e ¥, since S/p € . Therefore,

(S/0s)/(p v 6s/6s) € 77 N ¥ . The single idempotent (p v Os /os)—class is just
ker (p v 65/0s) = { x05 : x € (ker p)w } since ecs (p v Os /cs)'xcs if and only if
e (p v 6s) x ; that is, x6g € ker (p v 65 /os) if and only if

x € ker(p v 0g) = (ker p)w [P;III.5.5]. Now (ker p)w is a closed, full inverse
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subsemigroup, of S and so it follows from Lemma 4.3.6 that
ker (p v 05/05) = (ker p)® / Oker p)o- 3

We claim that (ker p)® / O(ker p)w = ker p / Oker p). To see this observe that if
s € (ker p)w then there is a t € ker p such that t <s. But this means that t = se for some
idempotent € in (ker p)w and hence in ker p Thus, te = see = se and SO t G(ker p)® S.
Moreover, for any tj,t2 € ker p, tj G(ker p)w t2 if and only if t; Oker p t2 since ker p is full.
It follows from these remarks that

(ker P)O / O(ker pyo =Ker p /Oker p) € W o F)NF =2 N K.

It now follows that ker (p v 05/0s) €  N¥. Thus, the congruence p v 65 /05 on
S/os witnesses that S/6s € X NF) o (" N Z).

LetGe Wr@,7)N¥%. ThenGe (¥ o7 )NFZ. Since % o 7 is closed under
the formation of direct products and subsemigroups [P;XIL.8.2], G = S§/p for some
S e ¥ o7. We have just shown that S/6s€ X NZ)o (7" NZ) soi we must have that
Ge & A %) o (77 N %) since G is a homomorphic imagé of S/og. Therefore,

WI@Z7)NE (o7 )NZC@NZ)e (T NE)=WIZ NZ, 7 N%)

by Theorem 4.3.4. It follows immediately from Proposition 4.3.1 that
Wi N7 NL)cWr@,7)Nng

and so
W@ 7)NE=WrZ NZ 7 NZ) = NZ) e (T NZ)=(¥o7 )NZ. o

4.4 The Associativity of Wr
The binary operator Wr on the lattice of varieties of inverse semigroups is, in fact,

an associative operator and so (£(.#),Wr) is a semigroup. The proof of this makes use of

Theorem 4.2.2 — the description of the fully invariant congruence on the free inverse

semigroup corresponding to Wr(¥%, 77), for any pair of varieties Z and ” of inverse
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semigroups, and Lemma 4.1.4 — the description of the derived word relative to the variety

7.

We say that the two equations uj = up and vy = v are equivalent if each is a
consequence of the other. Another way of saying this is u; = up and vy = v are equivalent
if and only if, for any variety  of inverse semigroups,  satisfies the equation u; = us if

and only if Z satisfies the equation vy = vs.

Lemma 4.4.1. Let Z and # be varieties of inverse semigroups and let
v,w e (X U X'1)+ be such that wp(Z)v and dg(w) p(?) dg(v) (or,
equivalently, w p(Wr(?#, &) v ) Set ’
W = a]...an, V =bi...bn, where aj,bje XU X-li=1,..n,
 j=1,...m. |
dé/(w) = cl...én, dg(v) =dj...dm, where both worcis are constructed from the
same doubly labelled Schiitzenberger
graph Ty (w).
dy(dy(w)) = e1...en, dy(dy(V)) = f1...fm,
where both words are constructed from the
same doubly labelled Schiitzenberger
graph Ty {dgy (w)).
dwrrz)(W) = g1...8n, dwr(z;z)(V) = h1...hm,
where both words are constructed from the
- same doubly labelled Schiitzenberger
graph Fwr(rz) ().
Then the equations dg(dg(w)) = dy(dy(v)) and dWrty,y)(w) = dwr(zz)(v) are

equivalent.
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Proof: We prove the stronger statement that each of the two equations is a one-to-one
relabelling of the "orhcr. That is, we prove the following statements.
For all i,j,
1) gi=hj & eji=fj
2) gi=hjl @ e=fl;
3) gi=g S ei=¢j
4 gi=gil © ei=¢jl
5) hij=h; & fi=1;
6) hi=hj'1 = fi=fj'1.
1) First of all, observe that
gi=hj & Ww<wroy)al...ai-1bj...bm and aj=b;j
( Lcmma 4.1.4 since w p(Wr(7, '?/)) v)
&  wp(Wi(7; %)) wwlaj...ai1bj...bm and aj = bj
o wp®) wv§'1a1...ai-1bj...bm,'
dy(w) p(?) dy(ww-laj...aj.1bj...bm) and aj = b;
( Theorem 4.2.2 ) '
Next, observe that
ei=fj << dy(w) $p c1...¢i-1dj...dm and cj = d; |
| ( Lemma 4.1.4 since dg (w) p(?) dg(v) )
& (e1...c0) P@) (€1...ca)(C1. ..o Ler...Cic1d...dm and ¢ = d
& (c1...cn) P(?) (C1...Cn)(C1...Cn)le1. . Cio1d;...dm ‘
W <y a]...3j-1bj...bm and aj =b;
(Lemma 4.1.4 since w p(&) v).
& (c1...cn) p(?) (C1...cn)(C1...cn) ler.. .Ci1dy.. .dm

w p@) wwlaj...ai.1bj...bm and aj=b;
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By the hypbthesis w p(&) v and so if w p(&) WW'1a1...ai-1bj...bm we must have
that dg(ww-laj...aj.1bj...by) = (cl...c'n)y(cl...cn)'lcl...ci-ldj...dm. This is because each

of w, v and WW'1a1...ai-1bj...bm label s-e paths in I'9/(w) by primary labels. It is clear

that ww-1laj...a;.1 corresponds to the path labelled (c1...cn)(C1...cn)"1c1. . .Ci-1 by secondary

labels, since I'g/(w) is deterministic. While there may be many paths in I'g/(w)

labelled bj...bm, the part of WW'lal...ai_lbj...bm' labelled bj...bm ends at vertex e. Since
the s-e path labelled v ends at e, both the bj...by of v and the bj...by of
WW'lél. ..8j-1bj...bm must correspond to the same edges, since —I‘;;Z;v_)_ is deterministic. It
follows that dg(ww-1aj...aj.1bj...bm) = (c1...Cn)(C1...cn) lc1...Cj-1d)...dm. From these
remarks we have that
w p() WW'lal...ai-lbj...bm, dy(w) p(#) dy(WW‘lal...ai-lbj...bm) and aj = bj
o
(c1...cn) P(?) (cl...cn)(cj..;cn)'lcl...ci-1dj...dm, w p(¥) ww-lay...ai.1bj...bm
and aj =Db;. | |
From this it follows that gj =h; if and only if ej =fj.
2) We proceed in a similar manner:
gi=bjl © w<wroy)ai...aibj...bm and aj= byl
( Lemma 4.1.4 since w p(Wr(?, %) v )
o wpWr(?, %) WW'1a1...aibj...Bm and aj = byl
& wp@) wwlaj...ajbj...b,
dy (w) p(?) dg(ww-la]...aibj...by) and aj =bj’l
( Theorem 4.2.2 )

ei=fj'1 <  dg(w) Sy c1...cidj...dm and ci=dj'1

( Lemma 4.1.4 since dg(w) p(?) dg(v) )
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& (c1..:cn) PP (c1...cn)(c1...cn) le1.. .cidj...dm and ¢; = dj!
& (C1...cn) PP) (c1.‘..cn)(cl...cn)'lcl...cidj.;.dm
W <y a]...ajbj...bn and a; = byl
(Lemma 4.1.4 since w p(&) v ).
& (c1...cn) p@) (c1...cn)(c1...cn)'1c1...cidj...dm
w p(&) ww-laj...aibj...bym and aj =byl.

We have by the hypothesis w p(%) v and so if w p(&) WW'1a1...ai-1bj...bm we
must have, as in 1), that dy/(WW'lal...aibj...bm) = (c1...cn)(c1...cn)'1c1...cidj...dm. It
follows that

w p@) wwlaj...ajbj...bm, dy(w) p(?)dg(wwla;...ajbj...bm) and a;= bj!
N

(c1...cn) P(?) (c1...Cn)(C1...Cn) e . .cidj...dm, W p@) wwla;...ajbj...by

_and aj = by’L.

Consequently, g; =h;1 if and only if e;=fj1.

The proofs of 3), 4), 5) and 6) are similar, noting the remark immediately following

Lemma 4.1.4. ®

Theorem 4.4.2. The operator Wr is associative.
Proof: Let #; 7" and  be varieties of inverse semigroups. For any w, v € F.#(X),
' W p(WI# WP ) v & w p(WH(ZZ)) v and
dwr(#z)(W) p(#) dwr(zz)(V)
( Theorem 4.2.3)
< wp@) v, dy(w) p(?) dg(v) and
dwr(%2)(W) p(#) dwr () (V)
(Theorem 42.3)
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& wp@) v, dy(w) p(?) dy(v) and
 dy(dg (W) p(#) dsldy (V)
(Lemma 4.4.1)
& wp@) vand
dz(w) p(Wr(#79)) dz (V)
( Theorem 4.2.3 )
& w p(Wr(Wr(#7).%)) v.
Therefore, p(Wr(#,Wr(7,%))) = p(Wr(Wr(#.7),%)) and as a consequence,
Wr(#Wr(7,%)) = Wr(Wr(%,%),%). Thus, the operator Wr is associative. e

Theorem 4.4.3. £(.#) is a monoid with zero under the operation Wr.

Proof: That (£(.¥), Wr) is a semigroup is a consequence of Theorem 4.4.2. Since
Wr(¥%,.7) = Wi(.9.%) =%, for any Qari.ety'?/, the variety .9~ is an identity for
(&(FA),Wr) and so (L(F),Wr) is a monoid. For any variety Z of inverse semigroups,
Wr(fF %) = Wr(%,#) =% and so £ is a zero of the monoid (£(#),Wr). .

There are several natural questions which arise as a result of Theorem 4.4.3. For
example: Which varieties are idempotents? Which varieties, if any, can be expressed as a
product of two non-trivial varieties? Which familiar classes of varieties of inverse
semigroups form a subsemigroup of (£(#),Wr)? What is the structure of the semigroup |
(Z(HA),Wr)? Is it free? Many of these problems do not have obvious solutions. In
Chapter 5, once we have equipped ourselves with some facts, we discuss some of these

questions.

We conclude this section with some results concerning generators of varieties of the

form Wr(¥,?).
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Theorem 4.4.4. - F(Wr(Z,7))(X) can be embedded in F@) wr (F(¥), F(?)).
Proof: Setp =p(Wr(¥,?)). Let X={xj:ie ® }and
Y =u { xi :ue F?xi1p(?) }, where the union is over all i € ..
Define
0 : F(Wr(@,7)X) — F@)(Y) wr (F)(X).F()(X))
as follows:
Foreachie o, set
(xiP)® = (v;,B1)
Here B; corresponds to xjp(?); that is,
dBi = F@)xi"1p(?)),
uPi =uxip(?) (ue dB;),
uy; =xi,p@) . (ue dB;).
. It is immediate that ® maps { xjp:i€ ® } into
F@)(Y) wr (F()(X),F(?)(X)). Since F@)(Y) wr (F(?)(X),F(7)(X)) is a member of -
Wr#,?) and FWr(% ,7))(X) is Wr(¥,?)—free, we let @ be the unique extension of © thus
far defined, to F(Wr(#,?)).
Let w = aj...ap and v = b;...by where aj,bje X U X-1,i=1,...,n and

j=1,...,m. Suppose that wp® = vp®. As before we write

_JY if dj = x;
\C {\Vj‘l ifdj = xJ"l
_ |Bj if dj = xj
Bdi_{ﬁj‘1 if dj = xj!

Again, we write By, .. g, for Bg,Bd,...Bd;
Now
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WP =(Ya,,Ba)). .. (Wa,.Pa,)
= (i, Parysy Parazysy,. . Bar.. w1y, Ba,...a)
and
vpO = (Yp,,Bb,)-- - (Wb,»Bb,,)
= (Yo, Pory, Porbay,. . Bor...borysp, , B, .. b,,)-
First of all, Ba,...a, = Bb,...b,, and so w p(?) v. Secondly, observe that
ww1p(?) = vwIp(?) € dBa,...a, = dBp,...b,. Thus,
[ww1p(7)1ya, Pary Parenysy,.. Par...sorysy
= [wwlp@)a llww 1p(#)Ba,Way). .. [ww 1p(#)Ba, .0, Wa,]

¥1..-Yn p&), where yj = WW'IP(%Bal...a,--l‘Vai eYuyl
[ww-1p(#) 1y, Porys, Porbays, . . Bor.. by,
[ww1p(?)p, JIww 1p(7)Bo, Wb, ). ..[ww1p(#)Bp,...b,  Wb,]

21...zm P&), where zi = ww-1p(#)Bp,...b. Wb, € Y U Y1,
Now observe that |
Vi = zj wwlp(?)Ba,.. .0, Wa = WW1p(7)Bb,...b,, Wb,
ww-lay...ai1p(P)a, = WW'1b1...bj.1p(7/)\|ibj
aj = bj and ww-laj...a;.1p(?) ww-1b1...bj1

aj = bj and ww-lay...ai.1bj...bm pP)Wwwlv p(?) w

g 8¢ ¢ 3

aj=bjand aj...aj.1bj...bm 29w
and

Vi=zi wwlp(7)Ba,...a, Wa; = [Ww1p(#)Bb,.. b, Wb
wwla)...2i1p(?)Ya = WWlb1...bj-1p(7)Bo Wb, !
ww-lay...ai1p(?)y,, = ww-lby.. bip( ;-1
aj=bj-land ww-laj...ai.1p(?) wwlby...b;

aj=bjland ww-la;...aj.1bjs1...bmp(?) wwlv p(?) w

g ¢ ¢ ¢ 8¢

aj=bjland aj...aj.1bj+1...bm 2w
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We similarly obtain
Yi=yj <> aj=ajandaj...aj13j...ap 29 W
Vi=yj! & aj=ayland a1...ai-1éj+1...an 29w
Zi=7 & bj=bjandbj...bi1bj...bm 29w

zi=2z1 & bj=bjland b1..;bi-1bj+1..,bm 29~ W

Since yj...yn p(¥) z;...z;ym we have by the above and Lemma 4.1.4 that
doAw) p(&) dg(v). It now follows from Theorem 4.2.2 that w p v and hence that © is a
monomorphism. Thus, ® 1is an embedding of F(Wr (%, #))(X) into

F@) wr (E(7), F(?)). : .

Corollary 4.4.5. Forvany pair of varieties Z and #° of inverse semigroups, the
variety Wr(?,?'/) is generated by F(%) wr (F(%, F(?)).

Proof: By the definition of Wr, F(%) wr (F(?), F(?)) e Wr(%,% and so

( F@) wr (F?), ) ) € Wr(%,?). On the other hand, by Theorem 4.4.4,
F(Wr(@,7))(X) € ( F&) wr (F(?), F(?)) ), and so

Wr(@,7) ¢ ( F@) wr (F(?), F(?)) ). Thus, ( F@) wr (F(?), F(?)) ) = Wr(Z.,?). e

Lemma 4.4.6. Let A and S be inverse semigroups and suppose that T is an inverse

subsemigroup of S. Then

1) If T” is isomorphic to T then A wr (T, T") is isomorphic to A wr (T,T);

2) Awr(T,T) e ( Awr(S,5)).

Proof: 1) Let @ be the isomorphism from T to T". Let (y,B) € A wr (T,T) with

" df = Tt'1 (and so B corresponds to t € T). Define (y",B") € A wr (T",T") by setting

dp” = T’(t1)® and defining up’ = (ud-1B)d = u(t®) (and so B~ corresponds to t®) and

uy’ =ud-ly (forallue dB”). The map which sends (y,B) to (y",B") is the desired
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isomorphism: Let (y,B),(¢,0) € A wr (T, T). To see that this map is a homomorphism, it
is enough to show that B'o” = (Ba); and that wB'¢" = (wBop)”. It is clear that
B'a’ = (Ba), soletu e dB’a’ = d(Be)”. u(yBe) = d-LyyBe = (ud-lyj(ud-1Bo),
while u(y B¢ = (wy)(uP’p") = (d-1y)(ud-1BOD-1p) = (ud-ly)(ud-1Bp). Thus, the
map is a homomorphism. Since @ is an isomorphism, it is not difficult to varify that this
map is indeed a bijection and hence, an isomorphism.

2) If (y,B) € A wr (T,T) then B corresponds to some te T Sand df =Ttl. Let " be
the element of (S,S) corresponding to t. Then dB”=St1 2 Tt'l and it follows that there
exists a ¥~ such that (y",B") € A wr (S,S) and y~ restricted to Tt-! is y. Given any
identity satisfied by A wr (S,S) to see that A wr (T,T) satisfies this identity, observe that
for any substitution of variables from A wr (T,T), say (W1,B1),....(Wn,Bn), the identity
holds by substituting (y1°,17),...,(Wn",Bn") and so it must hold when substituting

(WI,B].),---,(WII,BD)- . : . : °

Theorem 4.4.7. Let Z,7 and #~ be varieties of inverse semigroups. Then

(F(X) wr FWr(7:%")) ) = (FZ(X) wr (FTX) wr F#"(X), F7TX) wr F#" (X)) )
= (FZ(X) wr (F71X) wr F#"(X), F7TX) x F#"(X)) )
= ( [FY(X) wr (F71X),F7TX))] wr (F# (X).F# (X)) )
= { F(Wr@,7))X) wr (F#1X),F#1X)) )

Proof:
Wr@ Wr(#%) = (FZX)wr FWr#%"))
c (FZ(X) wr (F7TX) wr F#"(X), F7TX) wr F7" (X))
( Theorem 4.4.4 and Lemma 4.4.6 )
c W@ ,Wr(7:%")) (by the definition of Wr )
and,
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Wi Wi@,2)9) = ([FZ(X) wr (FY)FPT0)] wr (B (). F# (X)) )
B = (Fr(X) wr (FYTX) wr F¥(X), F¥(X) x F#" (X)) )
| ( Theorem 3.3.3)
c W@, W@ w)).

Theref.ore, by the associativity of Wr, all of these varieties are the same.
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CHAPTER FIVE

Consequences

Armed with the main result of the previous chapter, we set about proving various
properties of Wr(%,?) for a given pair of vaﬁeties Z and 7. We first discuss general
properties preserved under the Wr operation. Included among these are that the Wr(%,%)-
free semigroups have solvable word problem (or, Wr(%,?) has decidable equational
theory) whenever the #-free semigroups and the #-free semigroups have solvable word
problem. Also, if  and ?” are locally finite then so is Wr(%,%). In the second section we
discuss properties preserved under Wr which are more inverse semigroup related.
Included here are results concerning E-unitary covers. The penultimate section is devoted
to showing that Wr(%,%) is in fact the largest variety of inverse semigroups satisfying the
same idempotent laws as 7" | In the final section we look at some basic properties of the

semigroup (5?(J’),Wr).
5.1 Further properties of Wr

Theorem 5.1.1. Let % and 9 be varieties of vinverse semigroups. If F(X) and F#1X)
have solvable word problems then so does FWr(%,?” )(X).
Proof: By Theorem 4.2.3, we need only show that we can determine whether or not
dg(w) p(¥) dz(u) whenever w p(?°) u.
Suppose that w = aj...a;m and u = d;...dx where c¢(w) U c(u) = {x,...,Xn} and
aj,dj € X U X-1. We construct words vi = bj...by and v2 = ¢1...ck over X U X-1
.satisfying: fori<j<m,
bj = bj < aj=ajand al...aj-13j...am 2y al...am,
bi=bj! & aj=ajland al...2j3j...am 2y a]...am,
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fori<j <k, '
Ci =¢;j < dj=djanddj...dj-1d;j...dx 23 di...dy,
Ci= Cj‘l & di= dj‘l and d1...didj...dk 29~ di...dy,
and for-any i,j,
bi = ¢; & aj=djand a1...ai_1dj...dk 29 aj...ag,
bi=cjl & a;=dj!andaj...ad;...dx _>_f aj...a.
It is clear from Lemma 4.1.4 that v1.and v are one-to-one relabellings of dgA(w)
and dy(u) via the correspondence
Aw(ea) <> b
Mw(ed) € ¢
where e, (Cdj) is the edge_in T';(Tv_) corresponding to a; (d;) in the path in I'g(w) labelled
by w (u). It fqllows that v1 p(%) vz if and only if dg(w) py(%) dy(u)_. Since FZ (X) has
solvable.word Iﬁroblem, we can deterinine whether or not vi p(%) v2 and hence, whether or
not dgAw) py(%) de(u). Therefore, if FV‘(X) and FZ (X) have solQable word problems
then so does FWr(Z,7")(X). |
We have used the fact that, if 7~ has solvable word problem, then the natural partial

order <y is solvable, since w <y-u if and only if w p(?") ww—1lu. ®

Corollary 5.1.2. IfZ is a group variety and 7 is any variety of inverse semigroups,
then FZ07°(X) has solvable word problem if both F#(X) and F?"(X) have solvable word

problems.

Proof: This follows immediately from 4.3.4 and 5.1.1. °

A variety 7" is said to be locally finite if every finitely generated member of 7 is
finite. Equivalently, " is locally finite if and only if every #-free inverse semigroup on a

finite set of generators is finite.
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Theorem 5.1.3. Wr(#,?") is locally ﬁnife if and only if both  and 7~ are locally finite.
Proof: Since both  and 7" are contained in Wr(?,?'/), if Wr(%,?") is locally finite then
so are  and 7.

Suppose that  and 7~ are locally ﬁhite but Wr(%,?") is not. Then for some
n € o, the Wr(%,7" )—free inverse semigroup on n generators is not finite. Let X, be a
subset of X of cardinality n. It follows that there exists an infinite set of words
{wirie 0} ovef XnpuXg-1 éuch that, for all i,j € w, wj is not p(Wr(%,?"))-equivalent
to wj. Since 7 is locally finite, we have as a consequence of Theorem 4.2.3 that there
exists an infinite subset { Wij :jew }of { witie w } such that, for all j,k € ©,
Wi p(7") wj, but d( Wi ) is not p(¥)—equivalent to d( wi, ).

Let V be the set of vertices and E the set of edges incident to any of the paths from s
toein I 7/(Wij) labelled by the wj,, k € ®, where s and e are the start and end verticés,
reépectively, of I 7/(wij).

Let v e V. Then for some wij,, v is incident to the path from s to e in Fy/(Wij)
labelled by wij,. Thus, thére is an initial segment w” of wi, such that w” labels an s—v walk
in T'gr(wy). It follows from the definition of Schiitzenberger graphs that
wikwik"lw’ p(7/) v. Since ¢( wikwik‘lw’ ) € Xp and since F#(X) is finite by our
hypothesis, there can only be finitely many members of V

Let (v1,z,v2) € E. Thenvy,voe Vandze { xy,...,xp,x171,...,x,~1 }. Since V
is finite, we have | E 1< |V 12 2n and so E is finite.

Since E is finite, it follows from the definition of the derived word that there exists

an m € O such that c( d(wij) )S{¥1,.-:;¥m } = Ym for all j€ . Therefore,
A d(wi) p() : j€ o} is contained in the #—free inverse semigroup on Y. Since  is

locally finite, the # —free inverse semigroup on Yy, is finite and as a consequence,
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{ d(wij) p():je o } must be finite, contradicting the assertion above that, for all
jke o, d( Wi ) is not p(%)-equivalent to d( wj_ ).

Therefore, if # and 7 are locally finite then Wr(%,?") is locally finite. .

In [K1], Kleiman proved that £(&.#), the lattice of varieties of strict inverse
semigroups, is isomorphic to three copies of £(¥), the lattice of group varieties and that
every strict inverse variety 7" is equal to (N %) v (N F). As a consequence, the v-
class of a strict inverse variety is trivial. Thus, for any group variety %, Z o =% v % =
Wr#Z,?)and Yo F =% v F = Wr#,%). This is also an immediate consequence of

Theorem 4.2.3 , Proposition 2.8.3 and the following result.

Theorem 5.1.4 [Re3]. The collection of Schiitzenberger graphs corresponding to the
variety & is the collection of all finite birooted inverse word graphs in which each label

(from X U X-1) occurs at most once.

Reilly in fact sho§ved that the % -free semigroup on countably infinite X can be
represented faithfully by birooted labelled digraphs which, as it turns out, are the
Schiitzenberger graphs of F# (X). Stephen showed directly that the Schiitzenberger
graphs of F# (X) are the ones mentioned above. We remark that, in the following
theorem, we do not need to know what the Schiitzenberger representation relative to & of a
given word is, but simply that in its Schiitzenberger representation relative to & each label

occurs at most once.

Theorem 5.1.5. If ¥ € { 7.9.% } then Wr(%,7") =% v " for any variety Z of

inverse semigroups.
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Proof: It follows from the definition of the derived word, Theorem 5.1.4 and Proposition
2.8.3 that for 7" € { 7.9, F }, do(w) is a relabelling of w in Y U Y-1 for any word
we (X UX1y*. It follows from Theorem 4.2.3 that Wr(%,%) =% v ¥. .

5.2 E-unitary covers

The results of this section are concerned with conditions under which varieties of
the form Wr(7.%") have E-unitary covers and E-unitary covers over some group variety.
If we are to use Theorem 4.2.3 in this effort, we require some information about the
Schiitzenberger graphs of Wmax(X), for  a variety of groups. This information is
provided by a graphical representation of FZ,™*(X) due to Meakin and Margolis [MM]
which we present forthwith.

LetZ bea variety of groups. Then P =(X;p@))isa présentation of F (X) for
which { xp(%) : x € X } freely generates FZ(X). Let I'( X; p(f’/) ) denote the Cayley
graph of FZ(X) relative to P. |

Let M(X;p@))={(T,2):ge FZ(X) and I is a finite connected subgraph of
I'(X; p(Z) ) containing 1 and g as vertices }, where 1 is the identity of FZ(X). For each
finite subgraph I'" of I'( X ; p(%) ) and each g € FZ (X), let gI"” be the subgraph of
I'( X; p(Z) ) obtained by acting on I"” on the left. The set of vertices of gI""is { gh: h is
a vertex of I'} and the edges of gI"” are of the form ( gh, x, ghx ) whenever ( h, x, hx ) is

an edge in ™", Observe that gI™” is V-isomorphic to T,
- On M(X; p(%) ) define a multiplication by setting
(I, g)(T",g")=(Tugl”,gg")
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where I U gI'” is the graph whose vertices and edges are the union of the vertices and

edges of I' and gI'™".

Theorem 5.2.1 [MM] . M( X ; p(&) ) is an E-unitary inverse monoid generated by the
graphs ( I'x, xp(&) ) for x € X, where Iy is fhe graph with vertex set { 1, xp(%) } and
(directed) edge set {(1, x, xp(&)), ( xp(¥), x-1, 1)}. Furthermore, M( X ; p(%) ) is
(isomorphic to) the relatively free X-generated inverse monoid in the variety #y™2%.
M(X; p(@) ) satisfies the following properties :

i) (I,g)Z (I'",g")ifandonlyif ' =TI";

ii) (T, g) £ (T, g")if and only if g-1T" = (g")-1I";

iii) (I', g ) & (I'", g”) if and only if I"is V-isomorphic to I'";

iv) (T, g) is an idempotent if and only if g = 1.

We are interested in varieties of inverse semigroups (as opposed to monoids) and

so to make use of Theorem 5.2.1, we require the following result.

Lemma 5.2.2 . Let? be a variety of groups. Then FZ™#(X) is isomorphic (as inverse
semigroups) to FZM™2(X)\ {1}, where 1 is the identity of F#/y™(X).

Proof: We first must show that S = FWMmax(X)\ {1} is an inverse semigroup. If S is
not an inverse semigroup then thefe isaw e (X uX-D7t such that ™2 satisfies the
equation w = 1. Letae X U X1 be the initial letter in w; that is, w = aw” for some

max

w” e (X U X-1)* Then, since aa-l is a left identity for w, #m™>* must satisfy the

maX we must have vv-1 = 1 and

equation aa~l = 1. But then for any v € ¥y

. v=lv =1 (by substituting v for a in the first case and v-1 for a in the latter case). Thus,
F#ym™2*(X) has a single #-class and so must be a group. Since this is not the case,
F/M™*(X)\ {1} must be an inverse semigroup.
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If T € ™, then the monoid T! € #M™®*. This follows from the observation that
the set of identities { u = u2 : u=u2 is a law in '} is closed under deletion. | That is, if
Ac c(ﬁ) and u, is the word obtained from u by déleting all occurrences of x and x-1inu
forallx € A, thenuy =up2isalawinZ.

Finally, we show that S is free in ™%, Let T be an inverse semigroup in ¥™M2%
and let f : X — T be a function. Then T! € #,™®* and f can be extended uniquely to a
homomorphism y of FZ™*(X) into T!. Since S and T are inverse semigroups, ¥ maps
S into T and hence maps only the identity of FZy™2*(X) onto the identity of T. Thus,
y=Wylsisa homomorphism of S into T which extends f. If 6 is another homomorphism
of S into T extending f, then the uniqueness of y implies that 6 =%. Therefore, ¥ is the

unique homomorphism of S into T extending f. It follows that S = FZ™¥*(X). e

Remark. The argument above can be extended in the obvious way to obtain the followin g
result. If 7} is a variety of inverse monoids which is nb’t a variety of groups, then
1) for all w e (X UX-1)+, %3 does not 'satisfy the equation w = 1;
2) if X is a basis of identities for #3 such that no equation in X contains an
occurrence of 1, then F#y(X) \ {1} is isomorphic to the relatively free

object on X in the variety of inverse semigroups defined by X.
It is not difficult to verify that the identity of M( X ; p(&) ) is (I'1,1), where I'y is
the graph consisting of the single vertex {1} and no edges. Thus,
M(X; p(&) )\ {(I'1,1)} is isomorphic to F¥™3*(X) via the map % which takes

(Tx, xp@) ) to xp(@™*) forall x € X.

Lemma 5.2.3. Let w € (X U X~1)* and suppose that
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(T, g) e M(X;p@))\{(T1,1)} is such that (T, g)x = wp(Z™2*). Then the
Schiitzenberger graph I'ymax(w) of w rclaﬁve to ™ is V-isomorphic to T".
Proof: By Theorem 5.2.1, (T, g) % (1'",. g’ )ifand only if I' = I"” and so there is a
one-to-one correspondence between the vertices of I and the members of the % -class of
( f, g). Let the vertex sét of T, V(I")v = {g1,...,8n}. Then the function
¢y : V(I') > V(Tymax(w)) defined by gj ¢y = (T, g) %, i = 1,...,n, is a one-to-one map of
the vertices of I onto the vertices of Igmax(w). We then define
¢ : ET) > ECymax(w)) by (g X, g)¢g = ((T,g)%, X, T,gjx ), for all edges
(g X, g)) inT". Now,

( 8i» %, gj) € E(I) gj=gixp@)
(T, g)(T'x, x) = (T U gilx, gixp@)) = (T g)
(T, gx (I'x, x)x = (T, gjx
(T, gdx xp(@mex) = (T, g)x.
= (T, g% %, (T, g)x) € E(Tgmax(w)).

6 U Ul

Thus, ¢g maps edges of I to edges of ré(max(w). Clearly ¢g is one-to-one. To see that ¢g
is onto, let ( v1, X, v2) be an edge in Tgmax(w). Then vi = (T, g)x and
v2 = (T, gj)x, say. By the definition of Schiitzenberger graph, (T, g})x xp(¥max) =
(T, gj)x which implies that (T, g;) (T, x) =(T, gj) since X is an isomorphism and maps
(Tx, x) onto xp(@™ax), But then, (I' U gilx, gix) = (T, gj) and so ' U gilx =T and g;
xp(¥) = gj, whence ( g, x, gj) is an edge in I'. Since ( g, X, gj) ¢ =
T, gy, x, (T, gj)x) = (v1, X, v2), we have that ¢ is surjective. Therefore,
¢ = (¢v, ¢E) is a V-isomorphism of T onto [ymax(w). Finally, gog = wp(@™2*) and
1og = (T, 1)x = ww-lp@™2aX), since % is an isomorphism and so must map the
_idempotent of the -class of ([,g) onto the idempotent of the .%Z-class of
T.8)x = wp(@™#). Thus, ¢ is a V-isomorphism which maps roots to roots, as required.
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If (T,g) and (T, g") are members of M( X; p(%)) then both " and " are
V—embeddable in I' U gI™, since gI"" is V-isomorphic to I'". Lemma 5.2.3 then says that if
u and w are words in X, then ['gmax(u) and I'gmax(w) are both V:embeddable in

I'ymax(uw). Indeed, we have the following:

Lemma 5.2.4. Let #° be a variety of inverse semigroups which has E-unitary covers
over its groﬁp part and let & be a variety of groups. Letu,w e X U X+, If
dgmax(uw) p(?) dgmax(uw)2 and dgmax(u) p(?) dgmax(u)?2
then
dgmax(W) p(?) dymax(w)2.

Proof: Let y be the isomorphism which maps M( X; p@ )\ { (IT1, 1A) } onto -
Fy/max(j()‘ Let up(?max) = (T',g)x and wp(Zmax) = (I'",g”)x. Then uwp(¥max) =
Tugl',gg)x. Now both T and gI"* are V-embeddable in I" U gI"* and so by Lemma
5.2.3, I'ymax(u) and I'ymax(w) are V-embeddable in I'gmax(uw). Let Y1,Y2 and Y3 be the

secondary label sets of I'ymax(u), I'ymax(w) and Im), respectively. We may
assume that Y1 and Y are disjoint.

Define f: Y1 U Y7 — Y3 as follows:

If y € Y; then y labels an edge ey, in Fymax(u). Since Tymax(u) is
V-isomorphic to T, ey, corresponds to an edge ey, in I which in turn corresponds to an
edge ey, in I' U gI'” via the obvious embedding. Since I' U gI'* is V—isomorphic to
Tymax(uw), ey, corresponds to an edge ey, in I'ymax(uw). Define yf to be the secondary
label Ayw(ey,) in Tymax(uw).

Ifye Y2 then y labels an edge ey, in Igmax(w). Since I'gymax(W) is
V—isomorphic to I'”, ey, correspond to an edge ey, in I'” which in turn corresponds to an

edge ey, in gI'” via the obvious V-isomorphism. Now, ey, corresponds to an edge ey, in
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I'u gI'” via the obvious embedding and since I' U gI"” is V-isomorphic to
I‘y;nax(uw), ey, corresponds to an edge ey, in I'ymax(uw). Define yf to be the secondary
label Ayw(ey,) in Ty max(uw). |

It follows that f is one—to—one on Y1 and one-to—one on Y2 (but not necessarily
one-to—one on Y1 U Y»). Furthermore, f maps Y1 U Y3 onto Y3 which is a consequence
of Lemma 5.2.3 and the fact that the edge set of 'UgI™ is the union of the edge sets of I"
and gI'". Also, f extends uniquely to a homomorphism (also denoted f) which maps
(Yiu Y2)* onto Y3+. It follows from our definition of f that dymax(ﬁw) =
(dgmax(u)f)(dgmax(w)f). By the hypothesis, ~dgmax(uw) p(¥") dgmax(uw)2 and
dgmax(u) p(?) dymax(u)2 and so, dgmax(u)f p(?) (dgmex(u)f)2, since f is one-to-one
on Yi. Thus, dymax(uw) <9~ dgmax(W)f. By Theorem 2.7.3, F#"(Y3) is E-unitary and so,
as a consequence, dgmax(W)f p(?) (dgmax(w)f)2. But f is one-to-one on Yo, 50

dymax(W) p(7/) dimax(W)z. ; , . ®

Corollary 5.2.5. Let 7" be a variety of inverse semigroups which has E-unitary covers
(over 7N &) and let Z be a variety of groups. Then FWr(?Z/max)(X) is E-unitary. |
Proof: Set p(Wr(%;#m2x) = p and write d(_) for dgmax(_).

Let e,w € (X U X~1)* be such that e p ew where e p 2. By Theorem 4.2.3 we have
e p(¥max) ew, e p(¥max) e2, d(e) p(?) d(ew) and d(e) p(¥) d(e?) = d(e)? with this last
equality holding by Proposition 4.1.2 since e p(m2x) ¢2, Now F¥max(X) is
E-unitary by Theorems 2.7.3 and 2.7.4, so w p(¥max) w2, But d(e) p(?) d(e)? and |
d(ew) p(?°) d(e) which implies d(ew) p(?") d(ew)2. Thus, by Lemma 5.2.4,
d(w) p(?) d(w)2 = d(w2) where again the last equality holds by Proposition 4.1.2.

. Theorem 4.2.3 now gives w p w2, Therefore, FWr(7,#max)(X) is E-unitary. ]
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Corollary 5.2.6, Let 7" be a variety of inverse semigroups which has E-unitﬁry covers
and let Z be a variety of groups. Then Wr(7,Zmax) has E-unitary covers (over
Wr(7,Zmax) N ¢). |

Proof: By Corollary 5.2.5 and Theorem 2.7.3. | : o

Theorem 5.2.7. LetZ and 7” be varieties of groups and let & and %~ be varieties of

inverse semigroups such that £ has E-unitary covers over Z and #~ has E-unitary covers

over 7. Then Wr(2Z,%") has E-unitary covers over Wr(%,?") =%,

Proof: We know that Wr(Z,%#") ¢ Wr(¥max y max) by the hypothesis and

Proposition 4.3.1. The theorem will follow from Corollary 5.2.6 and Theorem 2.7.4 if

we cah show that Wr(zmax 7 max) N & = Wr(%,7"). This follows immediately from
Theorem 4.3.7, however, we include the following argument as it deals with this specific

case and provides us with a better 'intuitive feel' for why this result should be true.

SetU={we XUX)t:wisalawin#} and
V={we XuXDt:wisalawin 7'}.

Let U(V) = { u(viy,...,vp) : u=u(xy,....xp) € Uand vy,...,vype V }.

Our first claim is that Wr(¥max,ymax) ¢ [ w = w2: we U(V) ). It is sufficient
to show that S wr (T,]) satisfies w = w2 for all S € ¥max (T,]) e ymax and w € U(V).
Let w € U(V), say w = u(vy,...,vn), where vj = vi[x1,...,xm()], for i=1,...,n, and
u = ufxy,...,Xp]. Suppose that for an arbitrary substitution of variables, v; takes the value
(¥i,Bi) in S wr (T,I), fori = 1,...,n. Since T € ¥Max and ymax gatisfies the identities
. Vi =vi2, fori = 1,...,n, each PBj is an idempotent in (T,I). That is, each B; is the identity
map on its domain. We wish to show that u[(y1,81),...,(yn,Bn)] is an idempotent in
S wr (T,I). Letu = aj...ax. Using the same notation as before, we wish to show that
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(Wa,Parysa,.. Baraciysy By ... is an idempotent in S wr (T,I). Since each of the B;S is an
idempotent, we have that Ba,...a, is an idempotent. Moreover, for alli e dBa,...a,.

(o, Peryay. . Pt sy, ) = (o, JiBaVay)- - @Bay - a1 Wa) = (Wa) (V). (W)
since each Bj is the identity map on its domain. Since S € gmax, § satisfies the equation ,
u=u2. Thus, (iWa,)iWa,)...(iya) and hence, i(ya Parysy,...Bar..ac1ysy ) is an idempotent of
S. It follows froin Proposition 3.1.1 (¢) that u[(y1,B1),-..,(Wn,Bn)] is an idempotent of
S wr (T,I). Therefore, S wr (T,I) satisfies the equation w = w2, From this we obtain that
Wr(ymax ymax) c [w=w2: we UWV) ]

Our second claim is that [ w =w2:we UV)] N g = ?/ o 7. Observe that
Up@)={up(@):ue U} and Vp(&) ={ vp(¥) : ve V } are the fully invariant
subg;oups of FZ(X) corresponding to  and 7, respectively. It follows from Neumann
[N;21.12] that { w=w2:w e U(V) } U { xx~1 = yy~1} forms a basis of identities for
%o | | |
We may now conclude that

Wr@maxgma) ng clw=w2:we UV)]NZ =% o7
By Theorem 4.3.4 and Proposition 4.3.1,
Yo ? =Wr(%,7) ¢ Wr(Zmax,rmaxy n &,

Thus, Wr(Zmax 7 max) N & = Wr(%,7") and so Theorem 5.2.7 is proved. °

Corollary 5.2.8. Let 7 be a variety of inverse semigroups.
1) If " has E-unitary covers then, for any group variety Z,
YoV =T NZ)VT.
2) If 7 has E-unitary covers over the group variety Z then, for any group variety %,
FY)N T =F oY) W o). | |
Proof: 1) By Theorem 5.2.7, % o 7" has E-unitary covers over o (N ¥). Therefore,
Yo (P NGV TS [Zo(FNG)MX Bt % o (FAF)CZ o FNF) VT
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and o (FAL)IVY C¥o? Vo (FNF)max, Thus, ker p(% o ") =
ker p(% o (N ) v #). On the other hand, (%) = t( & > ") by Lemma 2.7.5 and
r p(Z e TN Z)vZ)=tulp(Zo N Z))n p(¥)] =
Tp(Zeo@NE))Nup@andtaep(Z o (FNE))N ap(?)=trp(¥). Thus,
(X o )=up(Zo(FNE)Vv ). Wethusvobtain?/o‘7=Wo(me)vV.

2) By Theorem 5.2.7, # o " C (# o Z)™MaX and by the hypothesis ¥"¢C #MaX and
hence, ¥’C (F o ¥)MaX, Thus, ¥ o ¥ C (F o ¥)v ¥ C (¥ o ¥)M2axX and
W ol C Wo¥)v (W o¥) c Wo¥)M2X, Therefore, ker p((F o) v ¥) =
ker p( (#o%)v (o ?) ). On the other hand, tr p[ F o ¥)Vv 7] =
tr [ p'(Wo )N p(M) 1=t p(FoZ)nNn trp(¥) =1tr p(?¥) and
Tp[F o)y H o) ]=t[pH o )NPHFH o) ]=tt p(H oY) NI pH o ?) =
tr p(# o %) A tr p(¥) (by Lemma 2.7.5) = tr p(?). It now follows that (#"o &).v "=
F o)V F o). o | -

53 Wr(&#, 7))

The principal result of this section is the following. For any variety 7 of inverse
semigroups, Wr(%#,7) is the largest variety of inverse semigroups which satisfies the
equations w = w2 whenever 7~ satisfies w = w2. Throulghout this section we will use the
following convention. If we (X U X-1)* and 7" is a variety of inverse semigroups, we

will write we- to denote wp(?f).
Theorem 5§.3.1. LetZ c 7 be varieties of inverse semigroups and let p be the
. congruence on F?"(X) such that F7"(X) /p = FZ(X). Then p is idempotent pure if and

only if for every w e (X U X-1)*, T'y(w) is V-embeddable in Ty (w).
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Proof: Suppose that p is idempotent pure and let w € (X U X-1)*, Define a map ¢ on
F wy- the set of vertices of I'y(w), by sétting v =Vp. Green's relation % is preserved
under homomorphism so ¢ maps % Wy 10O 5 wy 0, which is the vertex sét of I'y»(W) since,
forany ve X UX-)*, vgp =vy. If (v1,x,v2) is an edge in I'y(w) then vixy-= v and
so (v1p)(x#p) = (v2p). But this means tﬁat ‘(v1¢)xz/ = vo¢ from which it follows that
(V19,x,v20) is an edge in I'y(w). Therefore, ¢ is a V-homomorphism.

Suppose that vi$ = v2¢ for some vi,v2 € Hw,. Then vy p vz and so vy =v2
sincep N\ % =¢ whenevef p is idempotent pure. Thus, ¢ is a V-embedding of I'gA(w)
into 'y (w).

Conversely, suppose that I's-(w) is V-embeddable in I'gy(w) for every
we (XuXDt Leteae (Xu X' be such that ey-= e7; and ey~ p ag~. Then

ay =aa-ly. If ¢ is the V-embeddigg of T'g(a) into I'y (a) then ag-¢ = ay and
| aaly ¢ = aa'lz_/,_ since ¢ maps roots to roots. Since ¢ ié one-to-one on the vertices of

I'y(a) and ag = aa-ly, we must have that ag-= aa-ly- and so p is idempotent pure. o

Lemma 5.3.2. LetZ ¢ 77 be varieties of inverse semigroups and suppose that
gmax = ymax_ If p is the congruence on F#1X) such that FTX) / p = FZ (X) then p is
idempotent pure.

Proof: Let w,ae (X U X-1)* be such that wy-= wg2 'and Wy p ay.

Then ag-p ag?; that is, ay = ag’2. But then agrmax = agmax2 and so, since

¥ ¢ y'max = ymax_we have that ag-= ag< and as a consequence, p is idempotent

pure. : ' } .

. Theorem 5.3.3. Let " be a variety of inverse semigroups. Then Wr(%,7") = 'max,
Proof: First of all, observe that Wr(.%,2") € "™Max because, for any w € (X U X-1)¥,
w p(Wr(#,7°)) w2 if and only if w p(?") w2 and do(w) p(%) deAw2) = do(w)2, by
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Theorem 4.2.3 with the last equality by Proposition 4.1.2, and so w p(Wr(#,7")) w2 if
and only if w p(¥) w2. |
Let p1,p2 be the congruences on FVM(X) such that
Fymax(X) / 01 = FWr(%,7")(X)
 FYMXX) /pp=FY(X)
and let p3 be the congruence on FWr(%,7” )(X) such that
FWr(#2)(X) / p3 = F7 (X).
From the preceding lemma we obtain that p,p2 and p3 are idempotent pure and so, by the
theorem above, for all w € XU X'1)_+, I'ymax(w) is V-embeddable .in
I'wr(s,9)(w) which in turn is V-embeddable in I'y- (w). Letw,ue (XU X-1)* be such
that wymax = Wymax2, ugmax = ugmax2 and Wymax p1 uymax. By Theorem 4.2.3,
wy=uy and c(dg(w)) = c(dyA(u)). It follows that I'y{w) = I'sy(u) and both u and w label
VAVW'IV- wg- paths in 'I‘y(w)-. Moreover, the ww-1lg- - 'warr path labelled by u in-I‘y(w)
uses only the edges in the ww-ly - wy path in I'gA(w) labelled by w. Thus, u 'Iabcls a
ww-lg- we path in the subgraph of I' g~ (w) consisting of the
ww-lg- - wy- path labelled by w. Since TI'ymax(w) is V-embeddable in I'g-(w), this
subgraph is V-embeddable in I'ymax(w) and so u labels a ww-lgmax - wymax path in
I'ymax(w). By Lemma 2.8.1 (c), we have that upmax = wymax. In a similar fashion we
may demonstrate that wygmax = ugmax and so obtain that wymax = upmax. As a
consequence, we have that p; is an idempotent separating congruence. But the only
idempotent pure and idempotent separating congruence on any inverse semigroup is the
“identical relation €. Thus, p; = € and FFmax(X) = FWr(%,7)(X). Therefore, Wr(%,7")
= (FWr(&7)(X) ) = ( Fymax(X) ) = ymax, .

We now present some immediate consequences of the preceding Theorem in light
of some of the principle results obtained thus far.
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Corollary 5.3.4. Let % and 7 be varieties of in_verse se;rxigroups.

a)
b)
c)
d)

e)

[Wr®,7)]max = Wr(Zmax,77);

If ¥ =maX then [Wr(¥,?")]max = Wr(%,7");

Wi, 7 M) =Wr¥ v %, ) = Wr(W,V) v ymax,

If  is not a variety of groups then Wr(%,7 ' MaX) = Wr(¥, 77);
[Wr(%,7")Jmax = W(y/max,y-max);

Proof: a) [Wr(&,?)]max = Wr(%, Wr(#,?7")) by Theorem 5.3.3. Since Wr is

b)

d)

e)

associative, we have Wr(%, Wr(%,?7")) = Wr(Wr(%%),7") = Wr(¥™maX 27), again
by Theorem“5.3.3.

If ¥ =2max then [Wr(%,7")|maX = Wr(Z™max "), by part a) and

Wr(?maxyf ) = Wr(%,7") by our assumption. |

Wr(&, 7 max) = Wr(¥, Wr(%,7")) by Theorem 5.3.3. By the associativity of Wr
we have that Wi, Wr(#9")) = We(Wr(Z,5),%") and

Wr(Wr(#,9),7") = Wi v %, ") by Theorem 5.1.5. By Proposition 4.3.5,
Wi v L) =Wr&.,7)v Wi(%, 7)) =Wr(&,7") v ymax,

If  is not a variety of groups then ¥ v ¥ =%. By part ¢) above,

Wr(¥ , 7 max) = Wr(%,7").

For any variety Z of inverse semigroups, ZmaX jg nota variety of groups. By part
d) above, Wr(Zmax y max) = Wr(Zmax 77) and so, by part a),

[Wr(Z,77)]max = Wr(Z/max p max), o

If we let Z and 7~ be varieties of groups in Corollary 5.3.4 (e), then we have that

. (% oy)max = Wr(max y max) Thus, if the variety & has E-unitary covers over ¥

and the variety #~ has E-unitary covers over 7” then & ¢ #Mmax and %~ ¢ ymax

and so Wr(Z,%#") ¢ Wr(¥max y'max) = (¥ o )max,  Consequently, Wr(Z,%")
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has E-unitary covers over o 7= Wr(Z,?). As a result, Theorem 5.2.7 is just a

special case of the results of this section.

Corollary 5.3.5. Let #" and & be non-trivial varieties of inverse semigroups and

suppose that %~ is a strict inverse semigroup with group part Z and combinatorial part 77

a)

b)

c)

If Z is not a group variety then Wr(2°, #7) = Wr(2’, ) unless = . in which
case Wr(Z, %) =2 v 7. If & is a group variety then

Wr(&Z, %) = Wr(Z, vy

If # is not a group variety then Wr(#, 2 ) =Wr@ . Z)vWr(¥, Z). If # isa
group variety then Wr(¥%; 2 ) = Wr(% .2 ).

If & is a strict inverse variety with group part #* and combinatorial part 7" * then
DWr#, Z ) = Wr(&,7*) v 77* if %" is a group variety;

ii) Wr(#; &) = Wi, ¥*) if % is not a group variety and 2* = .7

i) WKW, &) =% v-& if ¥ is not a group variety and ¥* = 7

Proof: It follows from [K1] (See [P;XII.2 and XIIL.3]) that if %~ is a strict inverse

variety with group part  and combinatorial part " then # =% v 7.

a)

. D)

Wr(Z,# )=WiZ,Zv 7 ) =Wr(Z, Wr(#,7 )) by Theorem 5.1.5 and
Wi(&, Wr(¥,7")) = Wr(Wr(2°,%),7") by the associativity of Wr. Also from
Theorem 5.1.5 we have that Wr(Wr(2,%),7) =Wr(Z.%) v?. If £ isnota

group variety then ¥ < 2 and so 7 € Wr(%,%) whenever  is not trivial since ¥
has E-unitary covers over every nontrivial group variety and so is contained in

max by Theorem 2.7.4. But Wr(%,%) c Wr(Z,%) and as a consequence,
Wr(Z2)v¥Y =Wr(Z%). If ¥ istrivial then Wr(&ZX)v? =& v 7.

Wr#, &) =Wt v 7, Z) = Wi, &) v Wr(?, &) by Theorem 5.1.5 and
Proposition 4.3.5. If %" is a group variety then'7/ =.9 and so Wr(¥, &) = &.

Therefore, Wr(¥, 2) v Wr(7, 2)=Wr¥, 2)v £ =Wr¥, &).
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o UZ=Z*v7*and¥ is a group variety then by part b),

Wi, &) = Wr@, 2* v 7°%) = W@ Wr@*7"*)) by Theorem 5.1.5 and by the
associatitvity of Wr, Wr@, Wr@*%°*)) = Wri(Wr(Z,Z*),7*). But
Wr(Wr(Z,2*),7*) = Wr(@,%*) v 7 *. On the other hand, if Z=%* v Z* and %~
isnota group variety then by part b), |

WI(#, &) = Wi, %* v %) v Wr(?, Z* v 7°*). Using Theorem 5.1.5 and the
associativity of Wr, we obtain Wr(¥#, &) = W@, ¥*) v 7% v Wr(7, ¥*) v 7 *,

But if #” is not a group variety then #'# .9~ and so, as in part a), if Z* is not

trivial, we have that * ¢ Wr(?; Z*) and so

Wr#, &) =Wr@, ¥*) v Wr(?, %*) = Wi v 7 ¥¥) = Wi, ¥*%). f*is
trivial then Wr(#, 2) =% v ¥ *v ¥ =%"Vv Z. ’ _ o

Proposition 5.3.6. Let %, | and %~ be varieties of inverse se.migroup-s. If # isnota
variety of groups then #mMmax = y"mMax jmplies that Wr(?V, ) =Wr(#, 7). |

Proof: If #Max =y max then Wr(%; #max) = Wr(%, ¥ MaX) and so, by Theorem 5.3.3
and the associativity of Wr, Wr(Wr(¥#; %),%) = Wr(Wr(¥%#, #),?"). By Theorem 5.1.5,
Wr#, ) =% v % =% since #  is not a variety of groups. Therefore,

Wr(#, %) =Wr(¥%, 7). °

Proposition 5.3.7, Let #,7" and #~ be varieties of inverse semigroups. If

ymax = y'max then Wr(#%, % )max = Wr(7/, #)max_but the converse is not true.

Proof: By Corollary 5.3.4, Wr(%, % )Max = Wr(¥max %") and

Wr(Zmax,37) = Wr(7"max %7) by the hypothesis. Again by Corollary 5.3.4,
Wr(y'max 7)) = Wi(%, #7)MaX, and so Wr(@, % ")max = Wr(¥, #")Mmax, As for the
converse; consider the wreath-closed variety €2 = [ x2 =x3 ]. Now & and %! are both
contained in &>, yso. WI(F ,€2) = €2 = Wr(F1,%) but Fmax = @ » (g 1)max .
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Theorem 5.3.3 deals with varieties which satisfy the same 'kernel identities'; that
is, identities of the form w = w2. The following results deal with 'trace identities' and are

the companion results to Theorem 5.3.3.

Theorem 5.3.8. Let ¥,7 and %~ be varieties of inverse semigroups. If
tr p(?) = tr p(Z) then tr p(Wr (¥, #)) = tr p(Wr(7 . %)).

Proof: Let v and w be idempotents in F.#(X) and suppose that v p(Wr(Z,%#)) w.
Then, by Theorem 4.2.3, v p(#) w and dgAv) p(#) dgp(w). By Lemma 4.1.3, both
dgA(v) and dy(w) are idempotents of FJ(Y). Consequently, v p(#) w and
degAVv) p(?) dg(w), and so v p(Wr(?,%#)) w. Similarly, v p(Wr(7,%#)) w implies that
v p(Wr(Z,#)) w, and. the result follows.. » | e

~ Corollary 5.3.9. For a;ny varieties  and 7~ of inverse semigroups,
r p(Wr(@,?) =t p(Wr (& v &, 7)),
and
Wr@,7)v¥% = Wr(¥v ¥, 7).
Proof: By Theorem 5.3.8, since tr p(%) = tr p(¥ v &) for any variety Z of inverse
semigroups [P;XIL.2.2]. Also by [P;XIL2.2],
W) v =W VvE, 7)ve= W@ v 7). .

It is just a conjecture that Wr(%1 A %2, %) = Wr(@1, ) A Wr(&2, ), for

varieties #1,%2 and 7, but we do have ihe following special case, as promised at the end

. of section 4.3.
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Proposition 5.3.10. Let %, and ¥2 be varieties of groups and let 7" be a
combinatorial variety of inverse semigroui)s. Then
Wr( %1 A%, ?) = Wr%1, 7)) A Wiz, 7).
Consequently, the mapping | _
1y: LF) > L(F) defined by ¥— Wr@.,9) (¥ e £(F))
is a lattice homomorphism. Moreover, Xy is one-to-one and so is an embedding of
£(¥%) into £ (7).
Proof: First of all, Wr(%1 A %2, ) € Wr(%1, ¥) A Wr(%2, #), by Proposition
43.1. Now,

Wr(Z1, ) A W2, 7)N% = (Wi#1,7) N ¥) N (Wr(?z, 7)N %),
and by Theorem 4.3.7, this expression is ¥; A 2. Therefore, both Wr(%'1 A %2, 7)
and Wr(%1, 7) A Wr(%, ) have the same group parts. By Corollary 5.3.9, A

WIZ1A?2,7)vE = WiZ,?) |
and

(Wr@1, ) A Wi@2, P) VY = W@, ) v %) A W22, ) v F)
([P;XI11.2.8])
= Wr(%,?).
It follows that both Wr(%'1 A %2, 7) and Wr(¥1, 7) A Wr(Z2, 7) belong to the same
v-class and so Wr(%1, ) A Wr(@2, 7) € Wr(Z1 A ?2, 7), since Wr(%1 A %2, 7) is
the maximum member of its v-class. Therefore,
W1 A Y2, 7) = WH(¥1, 7)) A WI (@2, 7).

By Proposition 4.3.5 and what we have just done, the map Yy is a
homomorphism. To see that it is one-to-one, observe that Wr(%1,7") = Wr(%2,77)
. implies that 1 = Wr%1, 7)) NY = Wr(%2, 7)) N ¥ = ¥2, by Theorem 4.3.7,

since 7 is combinatorial. ]
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5.4 Some facts about the semigroup (£(%),Wr)

Before we address some of the questions concerning the monoid (£(.#),Wr)
alluded to at the end of the previous chapter, we introduce some terminology and notation.

Following the standard nomenclature of group theory, we call a variety of inverse
semigroups indecomposable if it cannot be written as the product of two non-trivial factors.
An obvious example is the variety =, the variety of abelian groups of exponent p, for
some prime p. If & = Wr(Z,7) then both  and 7~ are subvarieties of &/, and hence
each must be either & or 9. Since Wr(«p,op) # ), it follows that w7 is
indecomposable. A less obviotis class of indecomposable varieties is the class of nilpotent
varieties of groups [N;24.34].

We define a variety #” of inverse semigroups to be wreath-closed if for every pair
of -varictics /4 4 c_; ¥, W@ %) = 7. The most obvious ckample of a wreath-closed

variety is .#, the variety of all inverse semigroups.

Proposition 5.4.1. Let  be a variety of binvcrsc semigroups. Then 7 is an
idempotent in (Z(.#),Wr) if and only if 7" is wreath-closed. |
Proof: If 7 is an idempotent then Wr(?, ) =%. f ¥,% < 7 then
Wr % #)c Wr(Z,%)=% and so ¥ is wrcath-closéd. On the other hand, if 7 is
wreath-closed then, in particular, Wr(?7,%) < 7. Since " < Wr(?,7), we have that

Wr(7,%) = 7, and 7" is an idempotent. ]
Exactly which varieties are wreath-closed is not obvious, though we can narrow
- down the class of candidates significantly. In the process we discover a familiar class of

varieties which forms a subsemigroup of (£(.#),Wr).
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Proposition S4.2. If  and 7” are combinatorial varieties of inverse semigroups, then
Wr(,7") is combinatorial. The only non-combinatorial varieties which are wreath-closed
are ¥ and .#. Included among the combinatorial Wreath-closed varieties are .7, & and %
for all n € ® (we remind the reader that ?0 =.9 and ?1 =.%).
Proof: Letne w. It is not too difficult to see that the Schiitzenberger graph of xn
relative to the variety €, is just a single vetex with loopS labelled x and x-1. It follows that
de (xM) is y? and dg (x0*1) is yn*! for somey € Y U Y-L. It then follows from Theorem
4.2.3 that Wr(?n,%’n) satisfies the equation xM = xP+1 and hence that
Wr(€n,én) S %n. As aresult, not only have we shown that €y, is wreath closed for all
n € , but, since every combinatorial variety is contained in some ¥y, for some
m € ®, we have that if  and #” are combinatorial varieties then so is Wr(?/,?f ).

Since Wr(#,.F)=F vF =F,F is a wreath-closed variety. Since
Wr& ,7/) is a group variety if and only if % and 7~ are both group Qarieties, Zisa wreath-»
closed variety. Clearly both 9~ and .# are wreath-closed varieties. Suppose that 7 is
some arbitrary wreath-closed variety. If 7” is a group variety then " is wreath-closed if
and only if =% or 9" [N;23.32]. LetZ =7 N ¥ be the group part of . Since
W@ 2)cWr(7,7)N%E =7 NY =%, we must have that  is a wreath-closed variety
and so must be either ¥ or 9. Since Wr(&#,¥) = ¥max = £, the only wreath-closed
varieties containing & are ¥ and ¥ itself. It now follows that all wreath-closed varieties

which do not belong to {¥,.# } are combinatorial varieties. |

Corollary 5.4.3. The class of combinatorial varieties of inverse semigroups forms a
subsemigroup of (Z(.#),Wr).

. Proof: By Proposition 5.4.2, the class of combinatorial varieties forms a subsemigroup

 of (A(F),Wr). o
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The definition of wreath-closed suggests the following connection between wreath-

closed varieties and certain subsemigroupé of (A(A),Wr).

Proposition 5.4.4. If 7 is a wreath-closed varioty then the interval [(Z, 7] is a
subsemigroup of (£(.#),Wr). Moreover, 7 is a zero of this subsemigroup.

Proof: By the definition of wreath-closed, [.7, 7" ] is closed under the operation Wr.
That 7 is a zero for [.9, 7" ] follows from the fact that, for any ¥ € [ 7, 7],
Y WHZX) S and ¥ Wr@ ) 7. | e

Corollary 5.4.5. The lattice of varieties of groups forms a subsemigroup of
(£(#),Wr) with identity 7 and zero ¥. For each n € ®, the interval [F, ¥p] is a

subsemigroup of (£(£),Wr) with identity 9~ and zero €n. Also (T, % F)is a

subsemigroup of (Z(.#),Wr) which is also a fhrce-element chain (semilattice).

Proof: This follows from Propositions 5.4.2 aod 5.4.4. That {.9’, P Flisa

semilattice follows from Proposition 5.4.1 and the fact that each variety is wreath-closed.
From Proposition 5.4.4 we obtain that & is a zero for & which in turn is a zero for 9 and

hence, {7, %, & } is a chain. L

Not all subsemigroups of (£(#),Wr) have a direct connection with wreath closed

varieties, as the following illustrates.

Theorem 5.4.6. Let %7 be a subsemigroup of (£(¥),Wr) and let 73 be the family of

varieties of inverse semigroups which have E-unitary covers over some variety in %7.

. Then % is a subsemigroup of (£(.#),Wr).

Proof: Let¥, 7 € 93 and suppose that  has E-unitary covers over # € 91 and
has E-unitary covers over & € %;. By Theorem 5.2.7, Wr(%,?) has E-unitary covers
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over Wr(#, & ). Since ¥ is a subsemigroup of Z(¥), Wr(#,&Z )e F1 andasa

consequence, Wr(%,%) e F. »

Proposition 5.4.7. Let 7” be a variety of inverse semigroups. The interval [ ;. .#] is
a subsemigroup of (£(#),Wr). If ¥'=F or? then? isa right identity of the
semigroup [ %, #]. Consequently, the only indecomposable varieties in £(#) are the
indecomposable group varieties. ‘
Proof: If  and #~ are varieties in the intérval [, F]lthen ¥ ¥ c Wr (&, %)
and so [ 7; #] is closed under the operation Wr. By Theorem 5.1.5, if 7 is either % or
& then, forany ¥ e [ 7, F], Wr @&, ) =% v 7 =%. As a result, any variety 7
which contains .¥ cannot be indecomposable since Wr(?7,.%) = 7. That is, the only

indecomposable varieties are the indecomposable group varieties. ®

Some familiar classes of varieties of inverse semigroups do not form a -

subsemigroup of (Z(F),Wr).

Proposition 5.4.8. Wr(%,7") need not be completely semisimple if both  and 7~ are
completely semisimple. Wr(#%,7") need not be cryptic if both  and ¥~ are cryptic.
Proof: Consider Wr(%, %¢). Both of & and & are completely semisimple cryptic

varieties but Wr(.%, &) = # which is neither completely semisimple nor cryptic. .

As far as Green's relations are concerned, we have the following. By a_#-trivial

semigroup we mean a semigroup S in which s_¢ t implies thats = t, forall s,t € S.
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Theorem 5.4.9. (£(#),Wr) is a_g-trivial semigroup.

Proof: If the variety Z is in the principé.l ideal generated by the variety 7 then 7’
by the definition of the operator Wr. Thus, if # ahd 7" are_g-related in (.?(J),Wr) then
¥ = 7. Therefore, (£(F),Wr) is _g-trivial. - ' : °

A well-known result from the study of varieties of groups is that the semigroup of
group varieties other than & is freely generated by the indecomposable varieties [N;23.4].
That is, every variety of groups can be uniquély factored as a product of non-trivial
indecomposable varieties. This is not true for £(.#), nor is it true for any of the intervals

[(9,€n),ne .

Proposition 5.4.10. (£(.#),Wr) is not freely generated by its indecomposable
members. None of the Subsemigr_oups [.Z, €nl, n 2 2, is freely génerated by its
indecomposable members. |

Proof: Consider the variety #!. ¥ &1 = (& 1)Max and so, by Proposition 5.3.6,
Wf(.ﬁ’l,.ﬁ’ 1) = Wr(# 1,(g 1)max) and so none of the semigroups mentioned in the
statement of the theorem possess the property of unique factorization. As a result, none of
the semigroups mentioned in the theorem are freely generated by their indecomposable

members. _ o °

Theorem 5.4.11. (£(¥),Wr) is a homomorphic image (as well as a subsemigroup) of
(L(F),Wr). |

‘ Proof: Define the mapping © : £(f) = L(¥) by 70 =7 n ¥. Since
WrZ NN =W N%.7Nn%), for all ,7 € L(F), it follows that ©

is a homomorphism. Since (%) c L(#), O is surjective. .
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Since £(¥) is freely generated by its indecomposable membérs, the free
semigroup on the indecomposable varieties of groups is a homomorphic image of
(£(A),Wr). | '

While the relation v on the lattice of varieties is a congruence, the relation v on the

semigroup (¥(.#),Wr) is only a right congruence.

Theorem 5.4.12. The relation v on £(#) is a right (semigroup) congruence but not a'
(semigroup) congruence.
Proof: Let Z and 7 be varieties of inverse semigroups and suppose that v 7"

Then, for any variety %,

WHZ,#)NE =WH(ZNZ, % NE) (Theorem43.7)

Wi NG, % AF) (since V)

=WH7 #)Ng (Theorem 4.3.7)
and
W&, % )v¥ =Wi(ZvE,¥%) (Corollary 5.3.9)
=Wr( 7 v %) (since  v7 )
=Wr( 7,9 )v ¥ (Corollary 5.3.9).

Therefore, Wr( %, #) v Wr( 7, % ) and so v is a ﬁght (semigroup) congruence.

To see that v is not a sérnigroup congruence, consider the following variefies.
Since #! is combinatorial, the v-class of o v F, where 53 is the variety of abelian
groups of exponent two, is the interval [ w2 v F1, 20 F1]. Thus, o5 v F1and
o2 0 F1 are v-related. ‘We claim that Wr(SZ, o2 v #1) is not v-related to the variety
- Wr(&, o2 0 F1). First of all, by Theorem 5.3.3,

Wr(&, o2 v B) = (a2 v F1)max = opmax

and, by Theorem 5.3.3, the associativity of Wr and Theorem 4.3.4,
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W(Pstro B ) = We(P, W2, B 1) = Wr(Wi( s2), B 1) = Wr(srpmax, ).

Let w be the word x1x9x1°-1xp-1. Now s/2™MaxX satisfies the identity ww-1 = w-lw. This
can easily be seen by considering the Cayley graph of the «5-free group and using
Theorem 4.2.3. &1 also satisfies this identity as it is contained in w2maX, The
Schiitzenberger graph of ww-1 (and w-1w) is‘the oné given in Figures 2.2, 4.1 and 4.2.
From the Schiitzenberger graph we read dg(ww-1) = y1y2y3-lys-lyaysyz-ly;-! and
dgA(w-1w) = yay3y2-ly1-ly1yays-lys-l. While it is true that w7 satisfies the identity
dy(ww-1l) = dy(W'lw), sf»oMax does not. This is because in the Cayley graph of the
«-free group on {yi1,y2,¥3,y4} (which is a 4-cube), the paths corresponding to
dy(ww-1) and dg(w-1w) do not use precisely the same set of edges. It follows that
Wr(sr2max g 1) does not satisfy the identity ww-1 = w-lw. Therefore, the fully invariant
. congruences corresponding to Wr(&, «/2 v & 1y and Wr(&, o2 0 #1) do not have
 the same trace and, as a consequence, these two varieties cannot be v-related. It follows

* that v is not a semigroup congruence on (£(.#),Wr). 4 .
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CHAPTER SIX

An Infinite Chain of Varieties

As was pointed out in the previous chapter, Kleiman [K1] showed that £#(%.#)
- is isomorphic to three copies of £(¥) and thatv each of the intervals [#, ¥ v %] and
[#,% v ¥] is isomorphic to £(¥) (and so, as a consequence, L(¥#) is a modular

lattice). A(FF) is sometimes referred to colloquially as the first three layers of the lattice
Z(7). 'fhe 'fourth' layer, [F1, #1 v &), is not nearly as nice. While it is a moduiar
lattice (the collection of congruences on an inverse semigroup which have the same trace
forms a complete modular sublattice of the lattice of congruences on that semigroup), the v-
classes of its members are not all trivial and, as a result, A(&F1 v %) is not modular,
~ and hence Z%(.%) is not modular ([Re2] provides one example). In this chapter we show
that the v-class of & ! v &, for any abelian group vaﬁety <&, contains an infinite chain of
varieties and so is far from being trivial. The techriique used is interesting in that we ar

only required to know the Schiitzenberger graphs of a given collection of words with
respect to F 1 (and not the entire % 1-free object on countably infinite X) in order to
construct inverse semigroups which are then shown to generate distinct varieties. We
remark that the variety # ! has proved to be rather enigmatic. Even though it is generated
by a small (6-element) inverse semigroup and L(F1) is just a 4-element chain, its
members are not easily characterized and, as Kleiman proved in [K2], it is not defined by a

finite set of identities.
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6.1 The variety &1

In this secfion we construct inverse semigroups which belong to the variety %1
which, in subsequent sections, will be used to construct inverse semigroups in Wr(%, % 1),
where ¥ is a variety of abelian groups of exponent n, for some'n € ©. These semigroups
will be used to define an infinite collection of varieties in the interval
[% v 1, Wi(#,#1)]. Throughout the remainder of this chapter p will denote the fully
invariant congruence on F#(X) corresponding to % 1. d |

Before we proceed, we require some notation. For any word w e X U X-1, denote

by wa the word obtained from w by deleting all occurrences of variables not in A. For

example, (x1x2x171x3x2x1)(x,} is the word x1x171x1.

Lemma 6.1.1. Let w and v be words over X (U X-1. Then w p v if and only if
| c(w) =c(v) and for al]l A g c(w), A= D, wA P(F) vA.'

Proqf: w p v if and only if B% satisfies the equation w = v. Since B% pOssesses an
identity, B% satisfies the equation w = v if and only if B satisfies wa = vp for all .
A < c(wp) = c(va). This is equivalent to c(w) =c(v) and for all A < c(w), A # I,

wA P(F) va. °

Corollary 6.1.2. Let w and v be words over X U X-1. Then w p v if and only if
c(w) =c(v) and for all A ¢ c(w), A= D, WA P Va.

Proof: If wp v then by Lemma 6.1.1, c(w) =c(v) and for all A c c(w), A =3,
wa P(F) va. But then for any A g c(w) =c(v), forall B ¢ A, B= &, wp p(#F) vB and
so by Lemma 6.1.1, wa p vaA. On the other hand, if c(w)=c(v) and for all
"Ac cw), A% D, wap VA, then for all A < c(w), A # D, wa p(F)va. Asa

consequence of Lemma 6.1.1, w p v. .
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Lemma 6.1.3. If Se &1 thenSle &L '

Proof: Suppose that &1 satisfies the equation w = v, where

c(w) = c(v) = {x1,...,xn}. Let s1,...,5n be arbitrarily chosen elements of S1 with
repetitions allowed. Suppose that s;,,...,Si, are each the identity of S1. Then S! satisfies
w([s1,...,8n] = V[s1,...,8n] if S satisfies wa[si,...,8n] = va[si,...,Sp] where
A = {X1,e... X0 \MXj,....,X3 ). Since S € F1, S does satisfy wa[s1,...,Sn] = VA[S1,...,Sn]
by Corollary 6.1.2 and so, as a result, W[s1,...,Sp] = V[S1,...,8p] is true in S1. Since the s;

were chosen arbitrarily, S1 satisfies the equation w = v. Therefore, Sl € #F1. .

We require some further notation for this section. Letwe (X U X-H)t. We write
w =V to mean w and v are identical words, letter for letter, over a common alphabet (in this
case X U X-1). We say the word v is a cyclic shift of w if w =uju2 and v = upu; for
words ui,up over the alphabet of w. For each n € ®, we denote by T, the equation
X1X2... X nxll'l‘xz'l... xn-1l € E. Observe that if w is the word
X1X2...XpX1-1x2-1...xp°1 then ahy cyclic shift of w can be written y1y2...yny1-ly2-l. ..yl

The remainder of 6.1 is devoted to a construction of a family of inverse semigroups
{S(tn): n € ®} each of which belongs to the variety # 1. For each n e co,' S(tp) is
obtained from the & l-free inverse semigroup by first identifying the ideal consisting of
those elements whose #-class does not lie above the #-class of
X1X2...XpX171x2-1...xy"1p (which results in an ideal extension of the & -class of
X1x2...XpX171x271...xp"1p, a Brandt semigroup) and then mapping this semigroup into fhe
translational hull of the principal factor corresponding to the F-class of
X1X2.. .xnxl‘ixz'l.. .xp"1p. In order to do this we require some knowledge of the & -class

© of x1x2...xpx171x2°1. . xp"1p.
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Lemma 6.1.4. Let w = x1X2...XpXx1"1x2-1...x,-1 and suppose that
v = y1y2...yny1-ly2:L...yn-l is a cyclic shift of w. Letae X U X-1.

a) vp is an idempotent;

b). (vap) &£ (vp) if andonly if a=y; or a=yn.

Proof: a) #! has E-unitary covers over the variety »/% of abelian groups of exponent
two and so is contained in s/5MaX, Since /7 satisfies the equation v = v2, /5Max and
hence #! satisfies v = v2. Thus, vp is an idempotent.

b) Since vp is an idempotent, if a = y1 or a = yp then (vap) & (vp). On the other hand,
suppose that (vap) % (vp). Then vaa-lv-1 p vv-l and so c(va) = c(v). Thus, a c(v).
But (vap) % (vp) also implies that vaa-l p v. If a = yi'1 for some i, then
(vaa'l)(y,} = yivi'lyi'lyi p# yi2, while viy) = yiyi'l p.# yi2 and so, by Lemma 6.1.2,
vaa-l g v. Therefore, a = y; for some i. If 1 < i < n then
(vaa D)y, yiy,) = Y1¥iyay1lyi-lynlyiyi! and vy, y.y.) = y1yiyayr-lyilynl. If ais any
non-idempotent element of By, then substituting a for y; and yp, and substituting a-1 for yj,

yields that (vaa'l){yl YiYa) P2 Viy.y.y.)- Asaconsequence, yj must be either yj or yp. ®

Lemma 6.1.5. Letw = x1x2..;xnx1'1x2'1...xn'1 and suppose that u is an initial segment
of wwithw=uu’". Letae XU X-l. Then wup # wuap if and only if a is the initial
letter of u” or a-! is the terminal letter of u, unless u is the empty word, in which case a-! is
the terminal letter of u”.

Proof: First suppose that wup % wuap. wup = uu’up £ u’up since u’u is a cyclic
shift of w and any cyclic shift of w is an idempotent modulo p. Therefore,
wup % wuap if and only if u“up % u’uap. (This follows from the more general result
* that t £ s implies that t.% ta if and only if s % sa) Since u’u is a cyclic shift of w, we
have by Lemma 6.1.4 that a is either the initial letter of .u’ or a-1 is the terminal letter of u.
For the converse, first note that if a is the initial letter of u” then ua is an initial segment of
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w and so, since wp is an idempotent, wup % wuap. If a-lis the tenninal letter of u then
letting u = u*a-l we obtain that wua = wu*a-la = u*a-lu'u*a-la. Since a-luu*isa cyclic
shift of w, a-lu ‘u*p is an idempotent by Lemma 6.1.4 (a) and as a result,
wua = wu*a-la = u*a-lu‘u*a-la p u*a-laa-lu’u* p u*a-lu'v* = uu'u* = wu*. It is now
immediate that wup £ wu*p = wuap. Note that if u is the empty word then the statement
becomes wp % wap if and only if a is the initial 1etter of w or a-1 is the terminal letter of

w (which is the terminal letter of u’, in this case), by Lemma 6.1.4. ‘ .

Lemma 6.1.6. Let w = x1X3...xnXx1-1x2-1...x5°1. For any word v over X U X-1,
wp % vp if and or/liyrr if v p wu for some iriitial segment u of w.

Proof: Suppose that wp S vp, say waj...ak p v, where aj,...,ak € X uX-1. We
prove by induction on k that waj...ax p v implies that waj...ax p wu for some initial
segment u of w. If k = 1 then wajp % wp implies by Lemma 6.1.4 that-aj = x1 or Xp. If
a = x| then aj is an initial segment of w a]ready. If a) = xp, then waj p wwxp.

Now WwXp = X1...XpX1 L...Xp 17 UXp 11, .. XpX17 L. Xpo17xp1xg

X1...XnX1 L. Xpo17 1 xn 1%, . . XpX17L. . .xp.171] since [xn'lxl;..xnxl'l...xn-l'l] is a cyclic
shift of w and so [xn"1x1...xpx171...xp.1-1]p is an idempotent.

But xj...xpx1°1...Xp-171[xn71x1.. . Xpx17L. . X171 = wxl...xnxl'l...xn-l'l and so as a
consequence, vV p wx1...XpX1"l...xp.1"1. Now suppose that k > 1. waj...axp & wp
implies that wp 2 waj...ak.1p and so, by the induction hypothesis, waj...ak.1 p wu for
some initial segment u of w =uu’. By Lemma 6.1.5, wup % wuagp implies that ak is the
initial letter of u” or ax-! is the terminal letter of u. If a is the initial letter of u” then
v p waj...ax p wuag and uay is an initial segment of w. If a1 is the terminal letter of u
" then settin.g u = by...by, we obtain that v p way...ax p wuax and wuak = wbj...bmbpy-1
=bj...bm-1[bmu” b1...bm-11bmbm™! p b1...bm-1[bmu” b1...bm-1] since [bpmu” b1...bm-1] is
a cyclic shift of w and so must be an idempotent modulo p. But
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b1...bm-1[bmu’ b1...bp-1]1 = wby...by.1 and so v p wbi...by-1 and bj...by.1 is an initial

segment of w. Since wp is an idempotent, the converse is immediate. °

Schiitzenberger graphs provide a concise, visual representation of a &-class.
Because of this, in the following theorem we describe the @-classes of the words

{x1X2...XpX1-1x2°1...xy7l : n € ®, n > 1} relative to the variety #! in this way.

Theorem 6.1.7. Let w = x1x2...XpX1-1x2-1...xp"1. The following graph is

V-isomorphic to the Schiitzenberger graph of w relative to & 1, where v is both the start

and end vertex.
n W w
Xi X 5o X3
Xn
>0 »0 - - - -
Xn Xn2 .
Van . Vnd Van2 Vn2 Val Vn

Figure 6.1. The Schiitzenberger graph of w = x1x3...Xpx1"1x7-1...xp"1

with respect to &1,

Proof: By Lemma 6.1.6 there are at most 2n vertices in the Schiitzenberger graph I" of w
relative to F1 as there are 2n initial vsegments of w not identical to w. It is a simple
exercise to;verify, using Lemma 6.1.1, that if u and u” are two proper initial segments of w
(that is, u nor u” is identical to w) then wu p wu” implies that u = u”. By Lemma 6.1.5,
(wuip, x , wugp) is an edge of I if and only if x-1 is the terminal letter of i11 or X is the
initial letter of u;*, where uiul ‘=w, If x is the initial letter of u;”, then wus and wu;x

are p-equivalent with both u1x and uj initial segments of w. Thus, ujx = up. If x-1is the
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terminal letter of uj then u; = ui*x-1 and wur*x-lx p wuz. Since
wui*p & wuj = wui*x-1p, we have that wuy* p wup*x-1x p wup. Since both up*
and uy are initial segments of w, wu;* = wuy and so wuzx-1 = wu;. Finally, if uj is the
empty word and x-1 is the terminal letter of w then x-1 is the terminal letter of
ww = ww*x-1 p w and hence, ww*x-1x p wuz. But, ww*x-1x p ww* and both w*
and uj are initial segments of w, so wus = ww*, whence wusx-1 = ww.

It follows from these remarks that I is V-isomorphic to the graph described above

via the map which sends wup to viyl+1, for all proper initial segments u of w. °

Definition 6.1.8. Let F be the & 1-free inverse semigroup on X = {xj:ie ®}. Let wy
be the word x1...xpx1°1...xp°1 for each n € . Denote the ideal {ve F:Jy 2 Jy_p} of F
by I(tn) and let J(Tp) = F/ I(Tg). Now J(tnj is an ideal extension of an% which is. .
isomorphic £o B({ll },2n). Let S('I:n) be the' image of J (fn) under the canonical

homomorphism intd the translational hull Q(J. w:)p Yof J W,?P-

Lemma 6.1.9. S(tp) € &1 and S(tp)le #Fl,forallne ®,n=2.
Proof: S(tp) is a homomorphic image of the & 1-free inverse semigroup on X and so is

an element of #1. S(1y)! € F1 by Lemma 6.1.3. )
In the following section we will use the S(T,) to construct a family of inverse
semigroups which belong to Wr(.o/m,# 1) but not to =/ v F 1, form € ®. Before we do

so, we describe the S(tp).

 Lemma 6.1.10. S(7y) is isomorphic to the Wagner representation of the % 1-free

inverse semigroup on X restricted to Ry p.
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Proof: By Theorem 2.6.1, since the & l-free inverse semigroup is completely

semisimple. °

An added advantage to using the Schiitzenberger graph description in
Theorem 6.1.7 is that we can read directly from the graph the image of any word of J(Tp)
under the canonical homomorphism into Q(Jw?p )I = F(Rw,p)- S(Tn) is generated by the
irﬂage of the x;j under the canonical homomorphism and, for each i = 1,...,n, the domain of
the image of x; is the set of vertices v for which there is an edge labelled by x; starting at v
and v is mapped to the terminal vertex of that edge. It is straightforward to vérify that S(Tp)
is (isomorphic to) the inverse subsemigroup of #(Rw p) generated by {cj : i = 1,...,n}
where for each i,

do; = {WnX]...Xi-1P, WnX1...Xpx1"1...xi"1p}
and |
WpX1...Xi-1P04§ = WpX]1...Xip
WnX1...XnX1" L. X7 1pe = wpxp...xpxilooxglxg

P Wnx1...xpx17l...xj17L

6.2 Inverse semigroups in Wr(efp,#1)

The semigroups constructed in section 6.1 can be used to construct semigroups in
Wr(efm,F1) form e w. By Lemma 6.1.10, S(t,) can be represented as an inverse
subsemigroup of #(Ry,) for all n € w. Thus, for any group G belonging to m, M E O,
G wr (S(Tn).Rw_) € Wr(e/m, & 1), The semigroups we construct in this section are
" inverse subsemigroups of semigroups of this form and so belong to Wr(s/m, F1).

For eachn € ®, n 2 2, let C;, denote the cyclic group of order n.
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Definition 6.2.1. Let m,n € o, m,n 2 2. Let 1 denote the identity of Cm andletgbea
generator of Cm. Let Amn < Cm wr (S(Tn).Rw,) be defined as follows:

Let {0 :i=1,...,n} be the generators of S(Tp) as described at the end of the
previous section. Fori=1,...,n-1, define the map ¢; from Ry, into Cy, by setting
d¢; = doj = {wpX1...X{-1P, WnX1...XnX1°1...xi"1p} and defining (Wpx1...Xj-10)0i = 1,
(WnX1...Xpx1"L...x{"1p)dj = 1. Define the map ®n from Ry, into Cr, by setting
dén = dotg = {WpX1...Xp-1P, Wwnp} and defining (WpXj...Xp-1P)0n = 1, (Wnp)dn = &.
Then (¢3,0%) € Cy Wr (S(Tn),Rw,) fori=1,...,n.

Let Ampn = {(y,B) € Cm wr (S(Tn).Rw,) : ldyl =1dBI <1}

v {0 :1i=1,...n}.
Define Tm,n to be the inverse subsemigroup of Cp wr (S(Tp),Rw,_) generated by Am n.
Observe that Tpy, j is an ideal extension of a Brandt semigroup over the group Cp. It is not
difficult to see that Tp, , is in fact the following: ‘ |
{(w,B) € Cm wr (S(n).Rw) : ldyl=1dBI<1} U
(05,06, (05,01, (03,06 (03,061, (05,0) 1 (05,0) * i = 1,....n).

Lemma 6.2.2. For each m,n € ®, mn > 2,

a) Tmpne Wrem,F)but Tmne F1;

b) Thn€ Wr(e/m &) but Thn ¢ F;

¢) omVFlc(Tmn) S Wrletm,F);

d) &mvFlc (Tr}m Y Wr(ofm, F ).

Proof: T,},,n is an inverse subsemigroup of Cm wr (S(Ta)!,Ry ) and S(tp)! € F1 by
Lemma 6.1.9. Thus, T,},,n € Wr(s/m, &) by the definition of the Wr operator. As a
* consequence, Tmn € Wr(sfm, & 1) since Tm,n is an inverse subsemigroup of T,},,n . On
the other hand, Tr 5, is an ideal extension of a Brandt semigroup over Cp, and so contains a
subgroup isomorphic to Cry. Thus, Tmp € #1 since F1 is a combinatorial variety. Since

123



Tm,n is an inverse subsemigroup of Tnll,n, we also have that Tn},ne & 1. This
prbves both a) and b).

Both T&m and Ty, p contain subgroups isomorphic to Cy, and 50 &/, < T,}m )
and o/m & Tmn ) since sy, is generated by Cp. The natural homomorphism onto the
second coordinate maps T n Onto an inverse sgmigroup isomorphic to S(tp) € #1, and
maps T n onto an inverse semigroup isomorphic to S(tp)! € F1. Since both S(t,) and
S(Ty)! contain copies of B%,it follows that &1 < ( Tml,n) and F1 < (Tm,n).

Consequently, we have that o/ v F!1 C(Tmn)and omv Flc (Tml,n ). Ttis
| immediate from parts a) and b) that (Tm,n )< Wr(em,®!) and
(T,}l,n Y S Wr(sefm,#1). This completes the proofs of ¢) and d). °

Lemma 6.2.3. Let myn € ®, m,n 2 2. Neither Ty n nor T,}l,n satisfies the equation
o

Proof: Substitute (¢;,a) for xj,1 = 1,...,n. o

In the following lemma we use the term kernel to mean the minimum nonzero ideal of

an inverse semigroup, if it exists.

Lemma 6.2.4. Let m,n € ®, mn 2 2. Tpy p satisfies the equation tx for k < n.
Proof: Towards a contradiction, suppose that Tpy n does not satisfy T for some k < n.
Assume that k is the least such integer and let (y1,B1),...,(Wk,Bx) € Tm,n be such that
X1...XkX1"L X {(W1,B1),- -, (Wi, BiOT = (,B) is not an idempotent in Ty p.

We first make a few observations.
i) Idpl=1: IfdBl = O then we irhmediately have that (y,B) is an idempotent. If
~ |dBl = 2 then the (y;,By) all belong to the same & -class, namely, the & -class D of (y,p).

[This is because Ty n is completely semisimple and so & =_¢. Thus, the 9-class of

124



(y,B) is contained in the @ -class of (;,B;) for all i. Butif idpl = 2, then the & -class of
(y,B)isa maxirﬁal 9 -class in Ty p and so (W,B) is & -related to (y;,p;) for alli.] ButDO
is a Brandt semigroup and as such satisfies 7Tyg. Since
X1 XkX17 L Xk (W 1,B1)s- ..o (WK Br)] = (W,B) in DO and (y,B) # 0, we conclude that, in
this case, (y,) is an idempotent. The only remaining possibility is that Idpl = 1.

iiy Ifdp = {v} then vB =v. We know that B is an idempotent of (S(tn),Rw, ) since the
natural homomorphism of Tm p 6nto its second coordinate has image S(t,) which, by
Lemma 6.1.9, is a member of #! and .# 1 satisfies the equation tx. Thus, vp = v.

iti) If (y,B) is not an idempotent then for any cyclic shift yj...ypy1-l...yn"1 of
x1...xkx171...xk"! we have that yi1...yny1-l...yn 1 [(W1,B1)s...,(Wk,PK)] is not an
idempotent. To see this note that if yj...yny17l...yn! is a cyclic shift of xq...xxx1"1...x1
then y1...yny1l...yn"{(W1,B1):--.(Wi:B1)] = (y",B") can be expressed as (91,Y1)(02,72)
where (y,B) = (©2:¥2)/(@1.1). If (v} = dP then vyz & dP’ because vyaviy2 = vz since
vy = vB =v. Then vioy” = (vi2@1)(V12Y192) = (V1201)(V$2) = (v2)(vY291) since Cy

is abelian. But (v2)(vy201) = vy which is not an idempotent and so, as a result, (¢,
is not an idempotent.

iv) For someie {1,...k}, (¥i,Bi) = (0n,0n) or (¢n,an)-l. By ii), if dB = {v} then
vB=v. Thcrgforé, if (y,B) is not an idempotent then vy is not the identity of Cpy. The
only elements of T n which can contribute non-identity elements to vy are those (y,p3) for
which 1dB! =1, (¢p,0y) and (¢p-l,ap-1). Now vy = (vwi1)(vB1v2) ...
(vB1..-Pr-1WIOVB1. .. By (V1. . PiBrlya ). (vBi1.. . BiPr-L.. P17y D). IF (i B)
is such that Id [3 il = 1, then in this factorization of vy, y; contributes
vBi1...Bi-1¥i = g, say, and vBi1...BkB17L...Bi-1- 1yl = g-1, since g-1 is the only element of
ry;-l. Thus, the contributions to this factorization of vy by yj cancel and so, if (y,B) is

not an idempotent, one of the (;,B;) must be (¢n,0n) or (On,0tn)-1.

125



v) None of the (y;,B;) is an idempotent. This follows from the general observation that if
e=e2and aebec is not an idempotent then aebec = aea-1(abc)c-lec and so abc cannot be an
idempotent. Thus, (y;,;) an idempotent contradicts the minimality of k.

Asa consequence of the aforernentibned observations, the following assumptions
concerning the (yi,Bi) can be made. First of all, by iii) and iv) we may assume that
(V1.B1) = (¢n,dn). Secondly, assume that the k-tuple {(¥1,B1),----(Wk,BK)) contains a
maximal number of elements from the kernel of T,  among the collection of k-tuples from
Tm,n whose first element is (¢n,0n) and which witness that Tm,n does not satisfy .

There are two stages to the remainder of the proof. The first stage is showing that
exactly one of the (\;, ;) is a member of the kemnel of Tm,n. We do this in four parts. o
1) Foranyie {1,...,k}, both (yi,B;) and (i+1,Bi+1) do not belong to the kernel of

Tm,n. _ _
Suppose that.both (vi,B1) and (Wi+1,Bi+1) belong to the kernel of Ty . If dfj = {vi) and
dBi+1 = (Vis1) then viB; = vis1 since BiBis1 # 0 and vis1Bis1 = vi since i 1Bis17120. It
follows that |
viBiBis1 =vi and  vi+1Bir1Pi = vis1
and
ViV DB D = GiBiyiDvivierD)
= (viy) 1 viBis1 e
= iy visvis)
= (Vi+1Vi+1) 1 (viy)! (since Cp, is abelian)
= [(viy) (Vi1 Wis1)]L
As a consequence of this we have that
X1-w Xi1Xi42- - XRX 1L X o i O, B, - (Wi 1Bi- 1D (Wis 2, Bis2) - (Wi Bo]
is equal to-(w,B), which is not an idempotent by assumption. Thus, T n does not satisfy

the equation k.2, contrary to our choice of k. Note that under these conditions, k 2 3, by
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observation iQ).' In the case k = 3, the conclusion is that Ty, p does not satisfy T1 which is
absurd since all inverse semigroups satisfy the equation xx-1 € E. |
2) If (yi,B;) is an element of the kernel then

i) if dBj = {wx)...xjp}, then wX1...XjpBi = WX]...XnX1'1..'.Xj’1p;

i) if dfj = {wx1...xnx1°L...x571p}, then wxi...xnX1"L...x57 1B = wWx1...Xjp;
i) We have assumed that (y1,B1) = (¢n,Bn) aﬁd soi# 1. LetdBi.1 = {vi,v2} By (1)
idBj.1! = 2), and suppose that v1Bi.1 = u; and voPBi.1 = uz. Now, Bj.1B; # 0 so one of u;
and up must be wxl...kjp, say u] = Wx1...Xjp. Also, Bi-1-1Bi1 # 0 so one of v; and v2
must be wx1...xjpBi. If vi = wxj...xjpPB; then (yi-1,Bi.1) can be replaced by (¥, B) where
d B ={v1}and v1 [3 =1uj and vi¥ = viyi-1. This new substitution witnesses that Ty
does not satisfy tx which contradicts 1), above (that is, this new substitution yields Tmn
does not satisfy Tx.2 following the argument in (1), above). Thus, vy = wx1...xjpBi. By
observation (v), PBj-1 ‘is dp’ or ap'l for some p € {1,...,n}. 4If Bi-1 = ap then
v1Bi-1 = wx1...xjp implies that vixpp = wx1...xjp and hence that either p=jorj = n,
p=1 and vy p WX1...Xj.1 Or vi p WX1...xpXx1°l. Thus, wxy...xjpBj = vz =
wx1...XxnX171...xj1p, by the definition of oy or wx1...xnpPj = v2 = wp, which is what
we want to prove.. |

If Bi-1 = apl then v1Pi1 = wxi...xjp implies that vixp'lp = wx1...xjp and hence

that vy p wxj...Xp and p =j + 1. Note that in this case j # n since if u is an initial segment
of w, then wuxp'1 P WXi...Xp is impossible by Lemma 6.1.5. Therefore, wxl...ijBi =
va = WX1...XnX1"L...Xp.11p wx1...xnx1°L...xj7], by the definition of a1

ii) As in (i) we can assume that dBj.1 = {v1, WX]...anl'l...Xj'lpBi} and that
v1Bi-1 = wx1...xpx1°L... x_i'lp. Again, by observation (v), we may assume that
Bi-1 = ap or ap-l. If Bi.p = 0tp then vixpp = wxi...xpx1°l...xj1p and hence p =j + 1

and v1 p wx1...xnX17L...xj41°1. Note that if j =n, wx1...xax17L...xj"lp w and so for any
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initial segment u of w, wuxp p w is impossible, by Lemma 6.1.5. Therefore, by the
definition of ap,‘wxl...xnxl'l...x_i'lpﬁi = WX]...Xjp.

If Bj.1=o0apl then vixp-lp = wxj...xpx1"l...xj"1p and so p = j and
v1p wxi...xpX1"l..xj1lorj=n,p=1, vi p wxi. By the dcﬁnition of ep-l,
wx1...XnX1 1. X5 1pBi = wx1...xjp and if j = n, p = 1, wpBj = v2 = wx1...Xpp.

3) At most one of the (y;,B;j) belongs to the kernel of Tm,n. Suppose that (y;,5;) and
(\pj+p,Bj+'p) are two members of the kernel of Ty j and they are the first two such elements
appearing in the sequence {(W1,81),...,(Wk.BK)). Let dBj = {v1), dBjsp = {u1},
v1Bj = v2 and v1yj = g1, and u1Bj+p = u2 and u1Yj+p = g2. The claim is that if (y,B) is
not an idempotent then neither is the following:
X1+ Xjo1X5+1 7 L K- 17 Xjapa 1. XkX1 7L X1 1X54 1 Xap-1Xape 17 Xkl when (i, By)
is substituted for x; for all x; appearing in the expression. If the claim is correct then T p
does not satisfy Tk.2, contrary to our assumptions. Since (wj,Bj) and (\Vj+p:Bj+p) dp not
contribute to vy (where v = d}B) it is sufficient to show that the above expression in the
second coordinate is identical to . Now, with d = {v}

vB1...Bj-1=v1;

v1 € dxjs17L . Xjap-1" (W51, B+ 1s- - - (Wjsp-1,Bj+p-1)] and

viBjrl.. Bjsp1l =uy |

u2 € dXjsp+1...XkX1" Lo X 1 L (Witp+1Bjtp+ 15 o (Wi B (W 1.B 15 - o (W5-1,B5-1)]

WBjsp+1..-BkB1l...Bj1l = v

v2 € dxj+1.. Xjsp-1lWj+1,Bj+1)s- - - (Wjsp-1,Bj+p-1)] and

v2Bi+1-..Bj+p-1 = u1;

uj € dxj+p+1'l~--xk'l[(\lfj+p+1,ﬁj+p+1),---,(\Ifk,ﬁk)] and

111Bj+p+1'1---Bk'1 =vB=v.

It now follows that at most one of the (vi,B1) belongs to the kernel of Ty p.
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4) Exactly one of the (y;,3;) is a member of the kernel of Tp, ,. First of all, observe that
if none of the (;,B;) belong to the kernel then each (y;,By) is (0p,0ip) or (¢p,0xp)-1 for
some p. By the definition of the oy, ifv[31.;.[3k € d[31'1» then vB1...pxB1-! =v. Thisis
because if v = wup for some initial segment u of w then vB1...Bx = wu’p for some initial
segment u” of w and the difference between the lengths of u and u” is not greater than k and
hence strictly less than n. It follows that vBl. . .Bk must be vB;. By the same reasoning we
can conclude that, for all 1 <i <k, vB1...BB1L...Bi’! = vB1...Bi-1. Since dB = {v}, we
can replace each (wi,Bi) with an element of the kernel and conclude that if (y,B) is not an
idempotent then neither is the result of this new substitution. But this cannot be since the
kernel of Tm n is a Brandt semigroup over an abelian group and so satisfies the equation .
Therefore, exactly one of the (y;,B;) belongs to the kemel of Ty n. This completes the first

stage of the proof.

Let (¥j,B;) be the oniy member of {(y1,B1),...,(Wk.Bkx)} which belongs to the
kernel of Tmn. Let dBj={v1}, viBj=v2 and viyj = g1. We consider the following two
cases: i) v1p WxX1...xp; and ii) vip wxi...xpx17l.. . xp7L.

i) If vi p wx1...xp then v2 = wx1...xpx1°1...xp"1p by the first stage, part 2). S'ince
(¥1,B1) = (¢n,0n) and k < n, by the constraints on the (\yi,Bi) discussed thus far, for some
1<q<j, (Wg:.Bg = (¢n,0n)-1. Assume q is the least such integer. Because k <n and
each of the (vi,By) is either (op,0tp) or (dp,0th)"!, for some h, for 1 <i < g, as a
consequence of the definitions of the (¢n,0n), we have that vPj... Bg=v and
VW1D(vB1y2)...(vB1...Bg-1¥g) = 1. In a likewise manner we obtain that
(vB1...BB1L...8q L = vB1...Bx
and | '

[vB1..-Bow1 V1. BBr- o 1. . [(vB1...BB1 ... Bgrlyg ] = 1.
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As aresult, Xgi1...XkXg+1"1.. X" [(Wg+1,Bg+1)s- - -»(Wk,BK)] is not an idempotent if (y,B) is
not an idempoteht, contrary to our choicc; of k.

ii) If vi p wxj...xpX1"l...xp"l then vp p wxj...xp. Using a similar argument to that used
in (i) above, we can assume that (y1,81) is the only (yi,B;) equal to (¢n,0tn) for i< j.
Moreover, the same argument can be used to show that at most one of the (y;,B;) is equal
to (¢n,0ty) for j <i <k. In this case, by the constraints on the (vi,Bi) and the definitions of
the (¢j,0i) and their inverses, (Wx,Bk) is equal to (¢n,0n). Thus, the only (y;,B;) equal to
(6n,Cin) are (W1,B1) and (Wx,Bx). But for any inverse semigroup, axaa-lya-11s not an
idempotent implies thaf Xy is not an idempotent. It would then follow that T, n does not
satisfy the equation Tk.2, a contradiction.

The proof is cofnplete if we can show that, for n > 2, Ty, p satisfies 2. This is not
difficult to verify directly:  Suppose that (¢,B) € Tm,n is such that
(n,%n) (W, B)(9n,tn)-1(y,B)-1 is not an idempotent. Since F1 does satisfy T2, we have
that .anBan'IB'l is an idempotent. Thus, for all v € dapfon-1p-1 ¢ day,
 vonBog 1Bl =v. Therefore, both v and vot, (which are not equal) are in the domain of
B. For either v in the domain of ay, there is no pair (y,B) in T n such that

dB = {v,van}. It follows that Ty must satisfy T2. ' °

Lemma 6.2.5. Let m,n € ®, m,n = 2. T,,ll,n satisfies the equation Tk for k < n, but
T,%l,n does not satisfy the equation Ty for k = n.

Proof: This is an immediate consequence of Lemma 6.2.4. o

Remark. The only property of the varieties .« that we used in the construction of the
Tmn's was that they each satisfied the equations T, n € . This is also true of the variety
4, the variety of abelian groups. Thus, in a similar way, we can construct a family of

inverse semigroups { T111 } such that , for each n, T,11 satisfies the equations Tk, for k <n,
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but T% does not satisfy the equations Tx, for k 2n. Moreover, for each n € ®,

AF v B (Tl c g o FL.

6.3 A class of varieties in the interval [/, F1]

The inverse semigroups defined in the previous section can be used to define an
infinite collection of varieties in the interval [.élm,ﬂ 1]. Once it is established that the
interval [/, % 1] is infinite, it can then be shown that other intervals which coincide with

v-classes are infinite.

Notation 6.3.1. Letm € w. For each n € o, define the variety #i,,, to be the variety

of inverse semigroups generated by { TS k:k2n}.

Prbposition 6.3.2. Letmn e o, withmpn > 1.
a) ?m.n satisfies T;j for j <n;
b) ?m,n does not satisfy 7; for j 2 n;
¢) Zman O Zmn+l-
Proof: a) By Lemma 6.2.5, Tnll,k satisfies Tj for j < k. Therefore, each generator of
Zm,n satisfies Tj for j <n, and hence #1 p satisfies 1 for j <n.
b) By Lemma 6.2.3, T,},,n does not satisfy . Since Tnll,n is a generator of ?py p, the
equation Ty is not satisfied by 7 p.
¢) {Tmk:k2n}>{Thx:k>n+1}andso

7fm,n=(Tnl],k:k2n)D(T,}1,k:k2n+1)=7fm,n+1. .

As a consequence of Proposition 6.3.2, the collection of varieties of inverse

semigroups { mn :n > 1} forms an infinite chain in the lattice of varieties of inverse
semigroups. Furthermore, by Lemma 6.2.2, s v F! € ¥mn < Wr(e/p, F1). Since
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Wr(fm, F) = ofme FL, by Theorem 4.3.4 , and the v-class of o/ v #1 is the

interval [/ vV @& 1.y © F1], we have the following result.

Theorem 6.3.3. The v-class of the variety =/m v F ! possesses an infinite descending

chain of varieties.
Using Theorem 6.3.3, we can show that other intervals in #(#) are infinite.

Lemma 6.34. Let 7€ [/m v & 1, ofy o F1], where oy is the variety of abelian
grou;;s of exponent m, and let % e [m Vv Z, o/mMa]. Then

kerp( v ?)=kerp(?) and trp@v?)=trp@).
Proof: «/m < 7" and so o/mMax ¢ yMaX, Therefore,

' Y CUNY C Ay P C YMEX P = Pmax,

Since ker p(?) =ker p(%‘nax); it follows that ker p(Z v ") = ker p(?).

Also,

wc;wvsffg;wvs’/fvy;wv(,(a/,,nvgﬁ'l)vy=yvy°

Since tr p(%) = tr p(¥ v &), we have that tr p(Z v 77) = tr p(¥). .

Theorem 6.3.5. Let¥ € [/ v F 1, «/m™M3X]. Then the interval [¥, (&/m °© F!) v ¥]
contains an infinite descending chain.

Proof: The function 0 : [/ vV F 1, ofm o F1] = [¥, (&m0 F) v Z] defined by
70 =%'v ¥ is one-to-one on [&m vV F 1, ofm o F1] by Lemma 6.3.4 and the} fact
that all varieties " in this interval are such that tr p(?) = tr p(sfm v F1). Clearly 0 is

order-preserving, and the result follows from Theorem 6.3.3. .

132




Corollary 6.3.6. Let Z be a combinatorial variety contained in »/™3% and containing
ZF1. Then the V-class of ¥ v o, that is, [¥ v o, &y o %], contains an infinite

descending chain.

Proof: By Theorem 6.3.5 since Vv ofm S [m vV F1, srpmMmax]. | d

Remark. The results of this section are true for the variety «% as well. That is,
defining the variety 73 to be the variety of inverse semigroups generated by
{ TY:k=2n}, the 'analogous results to Proposition 6.3.2 hold and replacing «/m by

2% in the remaining results of this section yields valid statements.
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