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ABSTRACT 

Given two varieties % and %" of inverse semigroups, define Wr( Z, %") to be the 

variety of inverse semigroups generated by wreath products of semigroups in % with 

semigroups in K The principal result of this work is a description of the fully invariant 

congruence on the free inverse semigroup corresponding to Wr( 8, 7 )  in terms of the 

fully invariant congruences corresponding to % and %", where % and T are varieties of 

inverse semigroups. This description makes use of a graphical representation of inverse 

semigroups with presentations, due to Stephen, which is the inverse semigroup theoretic 

analogue to the Cayley graphs of group theory. We further show that Wr, considered as a 

binary operator on the lattice Y(3) of varieties of inverse semigroups, is associative. 

Thus, the lattice of varieties of inverse semigroups is a semigroup (Y(3), Wr ) under the 
. . 

operation Wr. . . . 

Using these results we investigate properties possessed by varieties of the form 

W r  Z, T ) .  We show that when % is a group variety, Wr(Z, T )  is the more 

familiar Mal'cev product variety % 0 K The principal result also provides us with a 

solution to the word problem for the relatively free objects in Wr( Z!, %") given solutions 

to the word problem for the relatively free objects in the varieties % and K We show that 

when the varieties % and Y have E-unitary covers over the group varieties 5V and 2, 

respectively, then Wr( Z,  T )  has E-unitary covers over the group variety 

Wr( 52"). Further properties of varieties of this form are presented as well as a 

discussion of the basic properties of the semigroup (Y(3,Wr). We conclude this work 

by showing that several special intervals in Y(.Y) corresponding to v-classes and whose 

, maximum member is of the form Wr(Z, 9 1) are infinite, where Z is a variety of abelian 

groups and 33' 1 is the variety of inverse semigroups generated by the five element Brandt 

semigroup with an identity adjoined. 

... 
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CHAPTER ONE 

Introduction 

An inverse semigroup S is a set with an associative binary operation, usually 

referred to as multiplication, and a unary operation of inversion which satisfies the property 

that every element of S has a unique inverse in the sense of von Neumann. V.V. Wagner 

in 1952 was the first to study inverse semigroups, though he called them 'generalized 

groups' and defined them as regular semigroups in which the idempotents commute. In 

1953 Liber proved that the two definitions are in fact equivalent. Preston later (and 

- - independently) rediscovered this class of semigroups and called them 'inverse serni- 

groups', the name most widely used today. 

Every inverse semigroup is isomorphic to a semigroup of partial one-to-one 

transformations on a nonempty set. This is the substance of the Wagner Representation 

Theorem which is the inverse semigroup theoretic analogue to the Cayley Representation 

Theorem of group theory. Indeed, the Wagner representation of a group is the Cayley 

representation of that group. Thus, just as we often find it convenient to think of groups as 

permutations, we often think of inverse semigroups as sernigroups of partial one-to-one 

transformations. 

Given two inverse semigroups, a new inverse semigroup can be obtained by 

forming their wreath product. By the wreath product S wr (T,I) of S and T, where T is a 

semigroup of partial one-to-one transformations on the set I, we mean the set of pairs (y,P) 

where p E T, y is a mapping from I into S and the domains of y and P are equal, with 

products defined by 

(WI,P~)(UC~.P~) = (~ lP1~2 ,P lP2)  ( (~l ,P1) , (~2$2) E S wr (TJ) 

where, for all i in the domain of f3&, iy1P1y2 = (iyl)(iP1y2). Note that, given any two 

inverse semigroups S and T, we can always form the wreath product of S and T by taking 
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the Wagner representation of T. Wreath products are of fundamental importance in the 

study of inverse semigroups and play a central role in our investigations. 

Inverse semigroups are determined by associativity and the laws xx-lx = x, 

(x-1)-l = x and xx-lyy-1 = yy-lxx-1. Thus, the class of inverse semigroups (considered as 

algebras of type (2,l)) forms a variety and we may approach the study of inverse 

semigroups from the perspective of their lattice of varieties. This approach not only 

suggests a possible framework from which we may tackle classification problems, but it 

has proved itself essential in the study of the structure of inverse semigroups by the 

identities they satisfy. 

The focus of our investigations is a binary operator Wr on the lattice of varieties of 

inverse semigroups. Given two varieties V and T of inverse semigroups, we define 

Wr(V,n to be the variety generated by wreath products of members of V with members 

of T which are represented as partial one-to-one transformations on some nonempty set. 

The principal result of this thesis is a characterization of the fully invariant congruence on 

the free inverse semigroup corresponding to Wr(V,n in terms of the ful1y.invariant 

congruences corresponding to V and T ,  where V and T are varieties of inverse 

semigroups. Our motivation for studying this class of varieties is essentially twofold. 

First of all, every completely semisimple inverse semigroup is a subdirect product of 

inverse subsemigroups of wreath products of the form G wr 3(I), where G is a group and 

3(I) is the inverse semigroup of all partial one-to-one transformations on the nonempty set 

I. Thus, every variety whose free objects are completely semisimple (and they are many) is 

generated by inverse subsemigroups of wreath products. Secondly, the relation v defined 

on the lattice of varieties of inverse semigroups by V v T if and only if V n y = 

, T n  9 and V v  y = T v y ,  where y is the variety of all groups, is a congruence 

[Kl] and, by a result due to Reilly [Rel], if T is a combinatorial variety, the v-class of 

T v  Z,  for some variety of groups 8 ,  is the interval [Z v  K V o T I ,  where V o T is 



the Mal'cev product of 2 and T. It turns out that whenever Z is a variety of groups, 

Wr(Z,T) = Z 0 and so a description of the fully invariant congruence corresponding to 

Wr(Z,T) is of some interest. 

There is a connection between these two motivating factors and this connection 

forms the basis for our principal result, which is generalized beyond the specific classes of 

varieties mentioned above. The first factor is closely related to representations by right 

translations, which we must 'decode' in order .to determine the laws-of the varieties 

mentioned in the second factor. This 'decoding' is made possible by yet another 

representation of inverse sernigroups, this time as directed inverse word graphs over some 

label set X. This representation, due to Stephen [ S ] ,  is called the Schiitzenberger 

representation and is the inverse semigroup analogue to the Cayley graphs of group theory. 

Unlike the group case, in which there is one underlying graph representing a group with 

respect to some presentation, an inverse semigroup (with presentation) has one underlying 

graph for each 33-class. When considering whether the variety Wr(Z,Y) satisfies the 

identity u = v, where u and v are words over some alphabet X, we look at, first of all, 

whether the variety T satisfies u = v and if so, whether % satisfies an identity determined 

by the paths labelled by u and v in the Schiitzenberger representation of u and v relative to 

the presentation (X;p(T)), where p ( n  is the fully invariant congruence on the free inverse 

semigroup corresponding to K 

It turns out that Wr is an associative operator on the lattice of varieties of inverse 

semigroups which, when restricted to the lattice of varieties of groups, is the well-known 

product operator. While the lattice of varieties of groups under Wr is freely generated by 

its indecomposable members, the same cannot be said for the lattice of varieties of inverse 

, semigroups. We can however, use our description of the fully invariant congruence 

corresponding to Wr(8,T) to discover some interesting results concerning familiar classes 



of varieties, including Mal'cev products of the form % 0 Y where % is a variety of groups 

and varieties whose free objects are E-unitary and their subvarieties. 

The following is a brief outline of each chapter of this thesis. 

Chapter 2 is devoted to preliminary material required in the sequel including 

fundamental results and definitions of inverse semigroup theory as well as the basics on the 

Wagner representation, the Translational Hull of an inverse semigroup, Varieties of inverse 

semigroups and Schiitzenberger graphs. 

Since wreath products figure prominently in our investigations, Chapter 3 is 

concerned with the basic results we will require in subsequent chapters on this subject. 

The first section of this chapter deals with the definition of wreath product. Section 2 deals 

with showing that completely semisimple inverse semigroups are isomorphic to subdirect 

products of inverse subsemigroups of semigroups of the form G wr (T,I) where G is a 

group and T is an antigroup. The final section of chapter 3 presents some basic facts 

concerning wreath products of inverse semigroups. 

In Chapter 4 we present our Main Theorem which characterizes the fully invariant 

congruence on the free inverse semigroup corresponding to Wr(%,Y) in terms of the fully 

- invariant congruences corresponding to % and "y; for varieties % and T of inverse 

semigroups. The first section introduces the notion of the doubly labelled Schiitzenberger 

graph and from it we define, for any given word w and variety T ,  an associated word 

dependent upon Ycalled the derived word of w with respect to X The derived word of w 

with respect to Y is an 'encoding' of the path labelled by w in the Schiitzenberger graph of 

w with respect to X We use this encoding in our Main Theorem, which is the subject of 

Section 2. Section 3 is concerned with basic properties of varieties of the form Wr(2,7;1, 

t including the result that, when 8 is a group variety, Wr(2,V = 2 o Y, the Mal'cev 

product of 2 and X The last section of this chapter deals with the associativity of the Wr 

operator. 
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Consequences of the Main Theorem are presented in Chapter 5. In section 1 we 

show that the Wr(Z,Y)-free semigroups have solvable word problem if both the Z-free 
\ 

and the T-free semigroups have solvable word problem and also that Wr(Z,7;? is locally 

. finite if and only if both Z and Y are locally finite. Section 2 contains results concerning 

E-unitary covers which utilize a graphical description, due to Meakin and Margolis, of 

varieties of the form Zmax = [w = w2 : w = w2 is a law in 21, where Z is a variety of 

groups. The third section is devoted to results concerning varieties of the form Wr(9 ,v .  

It turns out that Wr(9,Y) is the largest variety satisfying those identities w = w2 that are 

satisfied by 'K This chapter concludes with some basic results concerning the semigroup 

of varieties of inverse sernigroups under the operation of Wr. 

In the final chapter we look at the intervals [Z v S 1 ,  Z 0 9 1 1  where Z is a 

variety of abelian groups and 9 is the variety generated by a special six-element inverse 

semigroup (the five-element Brandt semigroup with an identity adjoined). For each of 

these intervals, we construct an infinite chain of varieties using only a minimal knowledge 

of the relatively free object on a countably infinite set in the variety 9 1. 



CHAPTER TWO 

Preliminaries 

The fundamental definitions and results of inverse semigroup theory which are 

required in the sequel are presented in this chapter. The principle source used is Inverse 

Semigroups by Mario Petrich [PI. For the fundamentals of semigroup theory, the reader is 

referred to Clifford and Preston [CP]. The material on Schiitzenberger graphs comes from 

Stephen [S]. For basic universal algebraic results concerning varieties, we refer the reader 

to either Burris and Sankapanavar [BS] or Gratzer [GI. It is assumed that the reader is 

familiar with the notion of a lattice and the basic definitions and results concerning lattices. 

A standard text on this subject is Birkhoffs Lattice Theory [Bill. Most of the results of 

sections 2.3 through 2.7 can be found in [PI. We will cite the reference to [PI when the 

result is stated and provide the original source in the final paragraphs of these sections. 

2.1 Semigroups 

A semigroup is a pair (S,.) where S is a set and . is an associative binary 

operation, usually referred to as multiplication. Unless there is the possibility of 

ambiguity, we denote the semigroup (S,.) by S and denote products in S by juxtaposition. 

A familiar example of a semigroup is the set of functions on a nonempty set X under the 

operation of composition. 

A semigroup may possess special elements which are distinguished by certain 

characteristics. Let S be a semigroup. 

An element s E S is an identity if sx = xs = x, for all x E S. If S possesses an 

identity then it is unique and is denoted by 1 or 1s if we wish to emphasize that it is the 

identity of S. A semigroup which has an identity is called a monoid. Given an arbitrary 
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semigroup S, we define S1 to be S if S is a monoid or (S u { I ) ,  . ) with 1.x = x.1 = x, 

for all x E S, if S is not a monoid. It is easy to see that S1 is a monoid. 
- 

An element s E S is a zero if sx = xs = S, for all x E S. If S possesses a zero then 

it is unique and is denoted by 0 or 0s if we wish to emphasize that it is the zero of S. The 

semigroup SO is defined to be S, if S possesses a zero, or (S u {O),. ) with 0- x = x . 0 = 

0, for all x E S, otherwise. If T is a subset of S, but not a semigroup with 0, and T 

satisfies the property that, for any a,b,c E T, ab and (ab)c are elements of T if and only if 

bc and a(bc) are elements of T, then we define TO to be the set T u (0) with multiplication 

given by tl t2 =tl t2 if tit2 E T, ti. t2 = 0, otherwise and 0-ti = t i .  0 = 0, for all 

tl,t2 E T. One easily verifies that TO is a semigroup. 

An element e E S is an idempotent if e = e2. The set of idempotents of S is denoted 

Es. The relation I on ES defined by e 5 f if and only if e = ef = fe, for all e,f E Es, is a 

partial order and is called the natural partial order of Es. If S has no zero, an idempotent 

e E ES is primitive if it is minimal in the natural partial order of Es. If S has a zero, 

e E ES is primitive if it is minimal in ES \ (0). 

2.2 Inverse semigroups 

Let S be a semigroup. An element s E S is regular if there exists an x E S such that 

s = sxs. The semigroup S is said to be regular if all its elements are regular. The element x 

is an inverse of s if s = sxs and x = xsx. 

A regular semigroup whose idempotents commute is an inverse semigroup. An 

equivalent definition of inverse semigroup is a semigroup in which each element has a 

unique inverse [P;II.1.2]. The former definition is due to Wagner [Wall who was the 

, first to study inverse semigroups, though he called them 'generalized groups'. The latter 

definition is due to Liber who, in [L], showed that the two definitions are equivalent. An 



- 
inverse semigroup which is also a monoid is called an inverse monoid. For any element s 

in an inverse semigroup S, we denote the unique inverse of s by s-1. 

The set of partial one-to-one transformations on a nonempty set X under the 

operation of composition is an important example of inverse semigroups. This semigroup 

is called the symmetric inverse semigroup on X and is denoted by 3(X). It is easy to 

verify that if S is an inverse semigroup then both S1 and SO are inverse semigroups. 

Moreover, if T is a subset of S such that t E T implies that t-1, tt-1 E T, and T satisfies the 

property mentioned in the deftnition of @, then @ is an inverse semigroup. 

2.3 Fundamentals , 

Throughout this section S is an inverse semigroup. 

Inverse semigroups are partially ordered algebras. Define the relation 5 on S by 

s I t  e s = e t  f o r s o m e e ~  ES . ( s,t E S ). 

It is a simple task to verify that 5 is a partial order on S. The relation I is called the natural 

partial order on S.  The following are equivalent characterizations of I (See [P;II.1.6]): 

Observe that the natural partial order on S restricted to ES coincides with the natural partial 

order on ES defined in the previous section. 

Let S be an inverse semigroup. A subset T of S is an inverse subsemigroup of S if 

T is closed under the operations of S; that is, for all tl,t2 E T, tlt2 E T and tl-1 E T. It is 

not true in general that a subsemigroup of an inverse semigroup is an inverse semigroup. 

, An example which illustrates this is T = { (1 + 2), 0 }, where (1 + 2) is the member of 

3({1,2)) with domain { 1) which maps 1 to 2. T is a subsemigroup, but not an inverse 

subsemigroup, of 3({1,2}). If S is a monoid and T is a subsemigroup of S such that 



1s E T, then T is an inverse submonoid of S. If K is a subset of S then the inverse 

subsemigroup of S generated by K is the intersection of all subsemigroups of S containing 

K. We say that the inverse subsemigroup T of S is full if ES E T, and we say that T is 

closed if, for all x E T, y E S, x 5 y implies that y E T. The closure of T in S, denoted 

To,  is the set { s E S : s 2 t for some t E T }. If T o  = T then we say that T is closed. 

A nonempty subset I of S is a right ideal if 

I S = { t s : s ~  S , ~ E  I ) E I .  

A nonempty subset I of S is a left ideal if 

S I = { s t : s ~  S , ~ E  I ) E I .  

A subset I of S is a (two-sided) ideal of S if it is both a right ideal and a left ideal. 

Equivalently, I is an ideal of S if 

SIS = (s1ts2 : Sl,Q E S, t E I). 

For any element s E S, the principal right ideal generated by s is the intersection of all right 

ideals containing s and is denoted by R(s). The principal left ideal generated by s and the 

principal ideal generated by s are defined similarly and are denoted by L(s) and J(s), . 
respectively. It is not difficult to show that R(s) = sS, L(s) = Ss 8nd J(s) = SsS. 

An inverse semigroup is simple if it has no proper ideals. If S has a zero, then S is 

0-simple if S2 # 0 and S has no proper nonzero ideals. A simple inverse semigroup 

possessing a primitive idempotent is called a completely simple inverse semigroup and 

likewise, a 0-simple inverse semigroup possessing a primitive idempotent is called a 

completely 0-simple inverse semigroup. The intersection, if nonempty, of all ideals of S is 

called the kernel of S. Note that the kernel of S, if it exists, is a simple semigroup. 

The relations 9, Y , z ,  3? and 23 on S, called Green's relations, are of 

fundamental importance and are defined as follows. For all s,t E S, 

s 9 t e R(s) = R(t); 

s Y t @ L(s) = L(t); 



Clearly, S ,  3 , X  and % are equivalence relations. Furthermore, it can be shown 

that 9 is an equivalence relation which can equivalently be defned by s 9 t if and only if 

there exists an x E S such that s 3 x  and x St t. 

For any XE {S, 9 ), define the 3 - c l a s s  of s E S by 

K s  = {x E S : s X x  ). For 3 E {9,3# ) there is a partial order on the 

3-classes of S given by Ks I Kt if and only if K(s) G K(t). 

The following is a list of basic results concerning Green's relations in inverse 

semigroup s. 

Lemma 2.3.1. Let S be an inverse semigroup. 

a) Every S-class and every 3-class of S contains exactly one idempotent [P;II.1.2]; 

b) If e is an idempotent of S then H, is a maximal subgroup of S and conversely, if G is a 

maximal subgroup of S then G is an %-class of S [P;I.7.5,1.7.6]; 

c) For any s,t E S, 

s 9 t u ss-1 = t t l ,  

s 3 t -- s-1s = t-It, 

s 9 t m there exists an x E S such that ss-1 = xx-1 and x-lx = t-It; 

d) For any e,f E Es, J(e) E J(f) if and only if e = aa-1 and a-la 5 f, for some a E S. 

( both (c) and (d) are from [P;II.1.7] ) 

In fact, property a) is an equivalent definition of an inverse semigroup. 

A homomorphism from S into a semigroup T is a function @ such that, for all 

s,t E S, (s@)(t@) = st@. Any homomorphic image of an inverse semigroup is necessarily 
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an inverse semigroup [P; II.1.101. Furthermore, by the definition of inverse sernigroup, 

homomorphisms preserve inverses. That is, if + is a homomorphism of S into T and 

s E S, then s-l+ = (@)-I. 

A congruence p on S is an equivalence relation satisfying the property that, for all 

s,t,x E S, s p t implies that xs p xt and sx p tx. If p is a congruence on S then S / p is 

an inverse semigroup with multiplication given by (sp)(tp) = stp. S / p is called the 

quotient semigroup induced by p. We denote by o and e the universal relation on S and 

the identical relation on S, respectively. The set of all congruences on an inverse 

sernigroup S forms a complete lattice under inclusion with greatest element o and least 

element E. 

There is a strong connection between congruences and homomorphisms. Given a 

homomorphism + : S + T, there is an associated congruence $* on S defined by s $* t if 

and only if s+ = t+, for all s,t E S. Conversely, given a congruence p on S, there is an 

associated homomorphism p# : S -+ S / p given by sp# = sp, for all s E S. 

Because congruences (and hence homomorphisms) play such an important role in 

our investigations, we present here some basic facts concerning congruences and list some 

special types. 

Any congruence on an inverse semigroup S is uniquely determined by the union of 

its classes which contain idempotents and by its restriction to Es. Let p be a congruence on 

S. Define the trace and kernel of p by 

t r p = p N E s x E s )  

k e r p = { s ~  S : s p e  f o r s o m e e ~  Es), 

respectively. p is the unique congruence on S with trace equal to tr p and kernel equal to 

, ker p [P;III.l.S]. If we think of tr as a mapping from the lattice of congruences on S into 

the lattice of congruences on Es, then tr is a complete lattice homomorphism [P;III.2.5]. 



Likewise, ker, considered as a mapping fiom the lattice of congruences on S into the lattice 

of kernels (of congruences) of S, is a complete n - homomorphism [P;III.4.8]. 

For any congruences p and z on S such that p r r ,  define the relation z / p on 

S 1 p by (xp) (z / p) (yp) if and only if x z y. Then z 1 p is a confruence on S / p 

and (S / p)  / (z 1 p )  s S / r ,  [P;I.4.15]. 

Let I be an ideal of S. Then the relation p~ on S defined by 

s p ~ t  u s , t ~  I o r s = t  ( s,t E S 

is a congruence and is called the Rees congruence on S relative to I. The quotient 

semigroup S / p1 induced by p~ is called the Rees quotient semigroup (See [P;I.5.3]). 

A congruence p on S is idempotent separating if, for any e,f E Es, e p f implies 

that e = f. Thus, p is idempotent separating if and only if tr p = E, the identical relation. 

Equivalently, p is idempotent separating if and only if p E Z [P;III.3.2]. We denote by 

ps the greatest idempotent separating congruence on S. That ps exists is guaranteed by the 

fact that it is characterized by being the greatest congruence on S contained in Z. A further 

characterization is given by 

s ps t e s-les = t-let for all e E ES ( s,t E S ). 

A congruence p on S is idempotent pure if ES is the union of p-classes. That is, p 

is idempotent pure if for all s E S, e E Es, s p e implies that s E Es. Thus p is 

idempotent pure if and only if ker p = Es. A useful characterization is p is idempotent 

pure if and only if p n 9 = E, [P;III.4.2]. 

A congruence p on S is a group congruence if S / p is a group. The least group 

congruence on S, denoted os, is given by 

s os t u se = te for some e E ES 

u s 2 x, t 2 x for some x E S ( s,t E S ) [P;III.5.2]. 

The last concept which we introduce in this section is that of direct product. If 

{Si)iE I is a family of inverse semigroups, their direct product is the inverse semigroup 
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with underlying set the Cartesian product ni, ISi and coordinatewise multiplication. If, 

for all i E I, Si = S, then we write S1, and call this direct product the direct power of S by 

I. 

An inverse semigroup S is a subdirect product of an indexed family {Si)iE I of 

inverse semigroups if 

i) S is an inverse subsemigroup of n i c ~  Si; 

ii) (S)Z~ = Si for each i E I where Xi is the ith projection map. 

An embedding a : S + n i E ~  Si is a subdirect embedding if (S)a is a subdirect product of 

the Si. 

Green's relations are named for J.A. Green who introduced them in 195 1 [GrJ]. 

The natural partial order on inverse semigroups was introduced by Wagner in [Wall. He 

was also the first to show that a congruence on an inverse semigroup is completely 

determined by its classes containing idempotents [WaZ]. The kernel-trace approach to the 

study of congruences on an inverse semigroup is due to Scheiblich [Sc]. This approach 

differs from the traditional 'kernel normal system' approach which we do not use here. 

That tr is a homomorphism was proved by Reilly-Scheiblich [RS] and D.G, Green 

showed that ker is a n-homomorphism in [GrD]. Munn [Mu21 showed that idempotent 

separating congruences are contained in Z and Howie [Ho] proved the existence of p, the 

greatest idempotent separating congruence. The characterizations of o are due to Munn 

[Mull and Wagner [Wa2]. 

2.4 Special Classes 

There are several important classes of inverse semigroups which we find necessary 

, to distinguish. The following is a list of those classes which figure prominently in our 

investigations. 



- 
2.4.1. Groups. It is immediate from the definition of an inverse semigroup that all 

groups are inverse semigroups. Furthermore, the class of completely simple inverse 

semigroups coincides with the class of groups. We denote the class of all groups by y. 

2.4.2. Semilattices and Clifford semigroups. A semilattice is an inverse 

semigroup in which every element is an idempotent. Such a semigroup is called a 

semilattice because under the natural partial order it forms a meet semilattice. Moreover, 

any meet semilattice Y is a semilattice under the operation given by e. f = e A f, for all 

e,f E Y. Note that, for any inverse semigroup S, ES is a semilattice. 

.A Clifiord semigroup is an inverse semigroup which is a semilattice of groups. 

That is, the inverse semigroup S is a Clifford semigroup if there is a congruence p on S 

such that S / p is a semilattice and each of the p-classes is a group. 

2.4.3. Brandt semigroups. A completely 0-simple inverse semigroup is a Brandt 

semigroup. 

Let G be a group and I a nonempty set. Let B(G,I) = I x G x I u {0),  where 

0 E I x G x I, with multiplication ( i , g , j )a ( j , h , k ) = ( i , gh , k ) and all other 

products equal to 0. It is a simple task to verify that with this multiplication B(G,I) is an 

inverse semigroup. In fact, an inverse semigroup S is a Brandt semigroup if and only if S 

is isomorphic to B(G,I) for some group G and nonempty set I [P;II.3.5]. The 'smallest' 

Brandt semigroup which is not a semilattice of groups is isomorphic to B(G,I) for 

G = { 1 ) and III = 2, and is denoted by B2. We sometimes refer to B2 as the five-element 

Brandt semigroup. 

An inverse semigroup which is a subdirect product of Brandt semigroups andfor 

groups is called a strict inverse semigroup. A property that characterizes strict inverse 

semigroups is 23-majorization : For any e,f,g E Es, e 2 f, e 2 g, f 23 g imply f = g 
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[P;II.4.5]. Note that, in particular, if e and f are two comparable idempotents belonging 

to the same 9-class then e = f. 

2.4.4. Completely semisimple inverse semigroups. Let S be an inverse 

semigroup. For every a E S, define I(a) = J(a) \ Ja = { s E J(a) : J(s) # J(a) ). 

Whenever I(a) # 0 ,  I(a) is an ideal of S. The Rees quotient semigroup J(a) / I(a), where 

J(a) / 0 = J(a), is called a principal factor of S .  A semigroup in which every principal 

factor is completely simple or completely 0-simple is a completely semisimple semigroup. 

Thus, an inverse semigroup is completely semisimple 'if and only if all of its principal 

factors are Brandt semigroups or groups. Indeed, at most one principal factor of a 

completely semisimple inverse semigroup can be a group and that is the kernel, if it exists. 

Note that in a completely semisimple inverse seniigroup B =z. 

2.4.5. Combinatorial inverse semigroups. An inverse semigroup is combinatorial 

if the Green's relation Z is the identical relation. That is, an inverse semigroup is 

combinatorial if its maximal subgroups are trivial. 

2.4.6. Cryptic inverse semigroups. An inverse semigroup is cryptic if the Green's 

relation A? is a congruence. 

2.4.7. Antigroups. An inverse semigroup S is an antigroup if E is the only 

congruence on S contained in Z. Equivalently, S is an antigroup if and only if ps = E. 

Note that all combinatorial inverse semigroups are antigroups and a cryptic inverse 

, semigroup is an antigroup if and only if it is combinatorial. We denote the class of all 

antigroups by d. 



2.4.8. E-untary inverse semigroups. An inverse semigroup S is E-unitary if and 

only if, for all a E S, e E Es, a 2 e implies that a E Es. Equivalently, S is E-unitary if and 

only if os, the least group congruence on S, is idempotent pure. 

Semilattices of groups were introduced by Clifford in [CI]. In the same paper, 

Clifford also showed that Brandt semigroups are isomorphic to B(G,I) for some group G 

and some nonempty set I, though he was considering Brandt groupoids (first studied by H. 

Brandt in 1927) with a zero adjoined with all undefined products set to zero. Munn 

 MU^], was the first to recognize that Brandt semigroups (that is, Brandt groupoids with a 

zero adjoined and all undefined products set to zero) were precisely the inverse completely 

0-simple semigroups. What we call antigroups was introduced by Wagner, though another 

terminology, 'fundamental inverse semigroup', was coined by Munn. E-unitary inverse 

semigroups were first studied by Saiti3 [Sa] who called them proper and later by, among 

others, McAlister [McAl], who called them reduced inverse semigroups. A great deal of 

research has concerned itself with E-unitary inverse semigroups; we mention only the work 

done by McAlister on the P-representation of E-unitary inverse semigroups 

[McAl,McA2]. 

2.5 The Wagner representation 

A fundamental result in group theory is the Cayley representation theorem which 

states that every group is isomorphic to a permutation group. The analagous result in the 

theory of inverse semigroups is the Wagner representation of an inverse semigroup by 

partial one-one transformations of a set. Every inverse semigroup is isomorphic to an 

, inverse semigroup of one-one partial transformations on a nonempty set. 

For any p E 3(X), the symmetric inverse semigroup on X, we denote by dp and 

rp the domain of p and the range of p, respectively. 
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Theorem 2.5.1 [P;IV.1.6]. Let S be an inverse semigroup. For each s E S, let 

Ps E 3 ( S )  be defined by 

xps = xs [ x E dPs = SS-1 1. 

Then the mapping 

p : S + 3(S)  defined by sp = ps 
is an embedding of S into 3(S). 

The Wagner representation of S restricted to a given 2-c lass  provides another 

representation of S, though in general it is not faithful (that is, not one-to-one). For a given 

%-class R of S, we call the following representation the Wagner representation of S 

restricted to R. 

Theorem 2.5.2. Let S be an inverse semigroup and let R be a fixed %-class of S. For 

each s E S, let as E 3 (R)  be defined by 

xas = xs [ X E  d a , = { y ~  R : y s ~  R ) ]  

Then the mapping 

a : S + 3 ( R )  defined by s a  = 

is a homomorphism. 

Proof: Let s E S and suppose that for some x,y E d a s  = { y E R : ys E R 1, 

x a s  = y a s .  Then xs = ys and x,y and xs = ys are 2 -related. But then 

x = xx-lx = (xs)(xs)-lx = xss-lx-lx = xss-1 = yss-1 = yss-ly-ly = yy-ly = y. Therefore, as 

is indeed an element of 3(R). 

Let s, t E S. In order to show that a is a homomorphism we must show that 

asat = ast. We first compare their domains. 



d a ,  = { y e R : y s ~ R )  

dat  = { Y E  R : y t ~  R )  

dast = { y E R : yst E R ). 

Therefore, dasat  = { y E R : ys E R and yst E R ) and this is a subset of dast. On the 

other hand, if y E dast, then y and yst are *-related and so there is some z E S such that 

ystz = y. But then y and ys are 9 -related and so y E da,at. Thus, asat and aSt have 

identical domains. Since (xs)t = x(st) for all x in their common domain, asat = ast. As a 

result, a is a homomorphism. 0 

The Wagner representation is due to Wagner [Wall and was discovered 

independently by Preston [Pr]. 

2.6 The translational hull of an inverse semigroup 

Though it plays a minor role in our investigations, the translational hull of an 

inverse semigroup has strong connections with the Wagner representation and the 

Schiitzenberger representations (discussed below in •˜2.8), both of which figure 

prominently in the sequel. 

Let S be an inverse semigroup. A transformation p on S is a right translation of S 

if, for all x,y E S, (xy)p = ~ ( y p ) .  Likewise, a transformation h is a left translation if 

h(xy) = (hx)y, for all x,y E S. If, in addition, the left translation h and the right 

translation p satisfy x(hy) = (xp)y, for all x,y E S, then the two are linked and the pair 

(h,p) is a bitranslation. The set of all bitranslations on S under the operation of 

componentwise composition is an inverse semigroup and is called the translational hull of S 

[P;V.1.4]. We denote this semigroup by G(S). We note that either of the projection 

maps on Q(S) is a monomorphism [P;V.1.2]. 
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For any s E S, the functions hs and ps defined by h,x = sx and xps = xs, for all 

x E S, are left and right translations, respectively. In fact, (hs,ps) is a bitranslation and 

so is a member of Q(S). The mapping 

: s + (Lps)  ( s ~  S ) ,  

is a monomorphism of S into Q(S) and is called the canonical homomorphism of S into 

W ) .  

It turns out that Q(S) is isomorphic to the idealizer of the Wagner representation of 

S in 3 (S)  [P;V.1.3]. That is, Q(S) is isomorphic to the largest inverse subsemigroup of 

3 ( S )  containing the Wagner representation of S as an ideal. Perhaps more to the point, 

Q(S) is isomorphic to the idealizer of the Wagner representation of S in the inverse 

semigroup of all one-to-one partial right translations on S (a partial one-to-one right 

translation on S is a right translation whose domain is a left ideal of S; see [P;V.2]). It is 

this fact which makes plain the connection between the translational hull of S and both the 

Wagner representation and the Schiitzenberger representations of S. 

If S is an ideal of the inverse semigroup V then V is an ideal extension of S (by the 

Rees quotient semigroup V / S ). The translational hull is particularly useful when 

considering ideal extensions of inverse semigroups S for which we know Q(S), 

Let V be an ideal extension of S. For each v E V, define 

hVs = vs and spv=sv ( S E  S) .  

Then the mapping 

2(V:S) : v + Q(S) 

defined by 

v%(V:S) = (hv,pv) ( V E  V )  

is a homomorphism of V into Q(S) which extends n:. Moreover, T(V:S) is the unique 

extension of n: to a homomorphism of V into Q(S) [P;I.9.2]. 2(V:S) is called the 

canonical homomorphism of V into Q(S). 



Theorem 2.6.1. Let S be a completely semisimple inverse semigroup and let D be a 

97-class of S which is not the kernel of S. ~ e t 1 =  { x E S : Jx P D ). Then S / I is an 

ideal extension of the Brandt semigroup DO and the image of S / I in IR(D0) under the 

canonical homomorphism is isomorphic to the Wagner representation of S restricted to any 

5%'-class belonging to D. 

Proof: First of all, identify S / I with (S \ 1)O. 

Let R be an 9-class of S contained in D. Let a be the Wagner representation of S 

restricted to R and denote s a  by as, for all s E S. Let T be the projection of z(S / I : DO) 

onto its second coordinate. The elements of T are right translations of the form pV, for 

v E S 1 I. We first prove the following statement: 

Let $ : S + S / I  be the natural homomorphism of S onto the Rees quotient semigroup 

S /I. Let s,t E S. Then as = at if and only if ps@ = pt@. 

First of all, observe that if a and as both belong to the same 97-class in a 

completely semisimple inverse semigroup, then a 5%' as. This is because aa-12 ass-la-1 

and D,O is a Brandt semigroup (and hence satisfies 97-majorization) and so 

aa-1 = ass-la-1. Secondly, observe that if s E S \ I then {x E R : xs E R) # 0. To 

see this, note that D EE J(s) and so, by Lemma 2.3.1 (d), there is an a E D such that 

a-la I ss-1. Thus, a-la = a-lass-1 and as # 0. But if a and as both belong to the Brandt 

semigroup Do, then a 3 as. Let y E R be such that y Y a. Then y 5%' ys and , as a result 

the set {x E R : xs E R)  is nonempty. 

If p s @  = p t @  then for all x E DO, XS$ = xt$. If s e I, then 

{ x  E R : xs E R )  # 0 and for all X E  { X  E R : xs E R) ,  xs$ z O .  Thus, 

s$ = 0 if and only if t@ = 0. If s e I then we must have xs = xt for all 

x E { X  E R : xs E R) since $ is one-to-one on S \ I. Likewise, we must have that 

xs = xt for all x E { X  E R : xt E R ) .  Therefore, 
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for all x E DO, 0 = XS$ = xt$. Consequently, 

{ x  E R :  xs E R )  = { x  E 'R :  xt E R )  = 0 ,  and as =at.  

Conversely, if as = at then for all 

x E { X  E R :  X S E  R )  = { x  E R :  x t ~  R) ,  x s = x t .  If s E I then 

{ X E  R : X S E  R ) = { x E  R : x t ~  R ) =  0 a n d s o t ~  I. T h e n s $ = t $ = O  and 

ps@ = p t@. So suppose that s e I and hence that t G I. Let x E DO and let y E R be such 

that y 2 x. Now ys E D if and only if ys E R and so ys = yt. Since y Y x ,  x = xy-ly 

and so xs = xy-lys = xy-lyt = xt. Therefore, pS@ = pt@ and the claim is proved, 

By what we have just done, it follows that-the mapping 

O : as + ps@ S )  

is a well-defined bijection from the restricted Wagner representation onto the image of the 

projection onto the second coordinate of Q(S 1 I). Since $ is a homomorphism, so is O. 

The projection map of Q(S / I )  onto its second coordinate is an isomorphism and so the 

desired result is obtained. 

The connection between the Wagner representation restricted to an 2-class R and 

the translational hull of a semigroup related to the 9-class containing R was made in a 

more general setting by Petrich (See [Pel] or [Pe2] ). 

Ponizovskii [Po] first proved that the translational hull of an inverse semigroup is 

an inverse semigroup. The relationship between the translational hull of an inverse 

semigroup S and the semigroup of all one-to-one partial right translations on S was 

, established by McAlister by way of Schein's work on permissable subsets. 



2.7 Varieties 

A nonempty class of algebras V of the same type is a variety if it is closed under 

subalgebras, homomorphic images and direct products. By a theorem due to Birkhoff, an 

equivalent definition of variety is an equationally defined class of algebras of the same type. 

That is, if X is a nonempty family of equations over a language 9, then the class Y of all 

algebras of type Y satisfying each identity in 9- is a variety. 

If % is a variety contained in the variety Y then % is a subvariety of Y. It is 

apparent from the definition of variety that the intersection of a nonempty family of varieties 

contained in the variety Y is also a variety contained in K Consequently, the collection of 

subvarieties of a variety Y forms a complete lattice under inclusion, which we denote by 

Y(V. 

Given a class V of algebras, each member of which belongs to the variety 'Y; the 

variety generated by V is the intersection of all varieties contained in Y which contain V. 

We write ( V ) to denote this variety. If V consists of the single algebra S, we write ( S ) 

instead of ( V ). If % is a subvariety of Y defined by the equations Z then we write 

% = [ Z 1. If Z is a finite set of equations {ul = vl,. . .,un = vn) we will often write 

% = [ul = vl, ..., un = vn] instead of [ C 1. We sometimes refer to the equations C which 

define the variety Y as laws. 

A refinement of our first definition of variety is the so-called HSP Theorem. If V is 

a class of algebras belonging to the variety K the variety ( V ) consists of homomorphic 

images of subalgebras of direct products of algebras in V. 

If Y is a variety and X is a nonempty set then Y possesses a free algebra FVX) 

on X which has the universal mapping property. In fact, up to isomorphism, this free 

, algebra is the unique algebra in Y with the universal mapping property freely generated by 

a set of generators of size 1x1. Thus, F W )  may be defined as the unique algebra F in K 

up to isomorphism, which satisfies: Let i : X + F map X injectively onto a set of 



generators of F. Then for any S E T and any mapping @ : X -+ S, there is a unique 

homomorphism @* : F -+ S which extends @. That is, there is a unique homomorphism 

@* : F -+ S such that, for all x E X, X@ = m@*. 

The class of all semigroups forms a variety as does the class of all monoids 

(considered as algebras with a binary operation and a nullary operation (constant)). The 

free semigroup on the set X consists of all nonempty finite sequences of elements of X, 

called words, over X, called an alphabet, given the multiplication of concatenation (or 

juxtaposition). We denote the free semigroup on X by x'. The free monoid on X, 

denoted X*, consists of all words over X including the empty word, which serves as the 

identity of X*. 

An inverse semigroup S is subdirectly irreducible if for every subdirect embedding 

a : S + nie~ Si there is an i E I such that axi  is an isomorphism. 

The following is an equivalent definition of subdirectly irreducible and can be found in any 

Universal Algebra text. 

Theorem 2.7.1 [BS;II.8.4]. An inverse semigroup S is subdirectly irreducible if and 

only if S is trivial or there is a minimum congruence in V(S)\{e) where V(S) is the lattice 

of congruences on S and E is the equality relation. 

The following useful theorem is due to Birkhoff. 

Theorem 2.7.2 [BS;II.9.7]. Every variety T of inverse semigroups is completely 

determined by its subdirectly irreducible members. 

Inverse semigroups, considered as algebras with a binary operation and a unary 

operation, is determined by associativity and the equations x = xx-lx, (x-1)-1 = x and 
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x-lxy-ly = ylyx-lx. Consequently, the class of all inverse semigroups forms a variety and 

we may consider the lattice of varieties of inverse semigroups. 

Let X-1 denote a set disjoint from X and in one-to-one correspondence with X via 

x o x-1. This correspondence can be extended to a unary operation on ( X u X-1)' by 

defining (x-1)-1 = x and (ab)-1 = b-la-' for all x E X, a,b E ( X u X-1)'. Throughout 

( X u ~ - 1 ) +  will denote the free semigroup on X u X-I with involution -1. The 

Wagner congruence is the least congruence p on ( X u x-~)' such that (a,aa-la) E p 

and (aa-lbb-1,bb-laa-1) E p, for all a,b E ( X u X-1)'. If p is the Wagner congruence, 

then ( X u x-~)+I p is the free inverse semigroup on X [P;VIII.l.l]. For any word w 

over X u X-1 we will write w for wp and refer to elements of the free inverse semigroup 

on X as words over X u X-1. For any word w E ( X u X-I)', we define the content of 

wbyc(w)= { X E  X:xorx-loccursinw ). 

A congruence p on an inverse semigroup S is fully invariant if it is invariant under 

all endomorphisms of S. That is, if u p w and + is an endomorphism of S, then 

(u@) p (w+). 'The set of all fully invariant congruences on S, denoted F 3 ( S ) ,  is a 

complete sublattice of the lattice of congruences on S. Let X be a countably infinite set and 

consider the free inverse semigroup F>(X). For any variety Yof inverse semigroups, the 

relation p ( n  defined on F>(X) by u p(Y) w if and only if u = w is a law in Y is a fully 

invariant congruence on F3(X). Conversely, given a fully invariant congruence p on 

F3(X), let q p )  be the variety of inverse semigroups determined by the set of identities 

u = w, where u p w. Then the mappings p : Y+ p ( n  and Y: p + y(p) are 

mutually inverse order antiisomorphisms of Y(Y) and F3(FY(X))  [P;I. 11.1 11. We 

sometimes refer to p(T) as the fully invariant congruence corresponding to 5T We will 

often find it necessary to consider fully invariant congruences on F3(Y), for some set Y, 

and F3(X) at the same time. Under these conditions, we will write p y ( v  to mean the 

fully invariant congruence on F3(Y) corresponding to Y, and simply p(Y) for the fully 
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invariant congruence on F>(X) corresponding to 7. Throughout, X is assumed to be a 

fix'ed countably infinite set, unless otherwise stated. 

The variety 7 of inverse semigroups is said to be combinatorial if all the members 

are combinatorial. Equivalently, 7 is a combinatorial variety if and only if 

7 n  y = cSPl the trivial variety (defined by the law x = y) if and only if 

7~ [xn = xn+l], for some n E o [P;XII.1.10]. Likewise, the variety 7 is 

completely semisimple or cryptic if every member of 7 is completely semisimple or 

cryptic, respectively. 

Let S and T be inverse semigroups and let G be a group. T is an E-unitary cover of 

S over G if T is E-unitary, there exists an idempotent separating homomorphism of T onto 

S and T I GT z G. If 2! is a variety of groups then the inverse semigroup variety 7 has 

E-unitary covers over 2! if, for every S E K there is a group G E 52( for which there is an 

E-unitary cover of S over G. A variety 7 of inverse semigroups has E-unitary covers if, 

for every S E Y; there is an E-unitary cover of S in ?T 

Theorem 2.7.3 [PR;3.3,5.4]. Let Y be a variety of inverse semigroups. Then the 

following statements are equivalent: 

i) 7 has E-unitary covers; 

ii) the 7-free objects in 7 are E-unitary; 

iii) the 'ylfree object on a countably infinite set is E-unitary; 

iv) 7 has E-unitary covers over 7 n y. 

Theorem 2.7.4 [PR;5.7]. Let 7 be a variety of inverse semigroups and 7Y a variety of 

, groups. Then 7 h a s  E-unitary covers over 2! if and only if 

7~ [ u 2  = u :  u2 = u i s  a l a w  in 2 ! ] .  



We will use the following notation. If Z  is a variety of inverse semigroups, we 

denote by Zmax the variety of inverse semigroups [ u2 = u : u2 = u is a law in Z  ] 

and by Z~max the variety of inverse monoids [ u2 = u : u2 = u is a law in Z  1. 

Let Z! and T be varieties of inverse semigroups. The Mal'cev product of Z  and K 
denoted by Z  o K is the collection of those inverse semigroups S for which there exists a 

congruence p on S with the property that ep E Z! for all e E ES and Slp E Z we say that 

p witnesses that S E 2! o K 

In general, Z  o T is not a variety. For example, if T is any nontrivial group 

variety and Z  = 9, the variety of semilattices, then the five element Brandt semigroup B2 

is a member of ( 2 o T )  but B2 is not a member of Z  o T. To see that B2 G Z  o Y 

observe that any congruence p for which B7jp is a group must be the universal relation and 

hence any idempotent p-class is just B2 which is not a semilattice. On the other hand, since 

B2 has an E-unitary cover over any nontrivial group variety ([PR] or [P;XII.9.8]), 

B2 E ( Z  0 T )  ([PR] or [P;XII.9.11]). 

However, when Z  is a variety of groups, Z  o T is a variety [See [P; XI1 8.31 or 

[Ba]]. Note that, if T and W  are varieties such that TG W  then, for any variety 9, 

Z o T 5 ; g o W  a n d T o Z ~ W o Z .  

Lemma 2.7.5. Let Z  be a variety of groups and let T be a variety of inverse 

semigroups. Then S E Z  0 T implies that SIPS E 5T Moreover, 

tr p(Y) = tr p ( Z  o T ) .  

Proof: If p witnesses that S E Z  0 T, then p is idempotent separating and so p c ps. 

Now, Sips is isomorphic to (S/p)/(ps/p) and SIp E T so we may conclude that 

SIB E ?? 

If A is an antigroup belonging to 9 o K then AJps 2 A E K Thus, 



( i Y o n n d ~ 7 " n d .  S i n c e 7 " ~ % 0 7 " , w e  have 7 " n d ~  ( Z o n n d .  

Therefore, (% 0 7") n d = Tn d .  It follows from [P; XII.21 that 

Y v Y = ( Z o g ; ? v Y ,  and hence, t r p ( Y ) = t r p ( Z o T ) .  

Mal'cev products play an important role in the study of varieties of inverse 

sernigroups. For example, if Z is a group variety and T is a combinatorial variety, then 

Z 0 T is the maximum variety in the v-class of iY v 7", where v is the congruence on 

Y(3)definedby Y1v7"2 ifandonlyif Tl ny=yiny a n d T l v y = T 2 v ~ , f o r  

all Yl,T2 E .Y(9), (See, for e.g., [P; XII.2, XII.31). For strict inverse varieties it 

turns out that the v-classes are trivial (and in fact Y(9.Y) is isomorphic to three copies of 

Y P ) ,  the so-called 'first three layers' of Y(3)) [P;XII.4.16], but this is by no means 

true throughout Y(3) as we shall see in Chapter Six. For further information on Mal'cev 

products we refer the reader to [PI or [Rl]. 

Before we proceed, we provide a list of notation introduced in this section as well 

as the notation we will use for certain special varieties and classes of inverse semigroups. 

Varieties and classes: 

3 - the variety of all inverse semigroups 

Y - [ x = y ] the trivial variety 

- [ xx-l = yy-1 ] the variety of all groups 

9 - [ x = x2 ] the variety of semilattices 

- [ X X - ~  = x-~x ,  uava-l = ( uava-' )2 IaEA the variety of semilattices 

of groups in Z (Clifford sernigroups over Z) where 

Z = [ua = v a l a ~  A 



- [ xx-l = x-lx ] the variety of Clifford semigroups or the variety of 

semilattices of groups 

9 - ( B2 ) = [ xyx-l = (xyx-I)2 ] the variety generated by the five- 

element Brandt semigroup 

9.9 - [ (xyx-l)(xyx-1)-l = (xyx-1)-l(xyx-1) ] the variety of strict inverse 

semigroups 

9 1 - ( B21 ) the variety generated by the five-element Brandt semigroup 

with an identity adjoined 

dn - the variety of abelian groups of exponent n 

+ - the variety of abelian groups 

Vn - [ xn = xn+l] for every natural number n 

P a x  - [~2=u :u2=u i sa l awinZ! ]  

Z! 0 T - the Mal'cev product of the varieties Z! and T (not necessarily a 

variety) 

d - the class of all antigroups (not a variety) 

Further Notation 

( - the lattice of all subvarieties of Y 

( V ) - the variety of inverse semigroups generated by the nonempty 

class V of inverse sernigroups; when V = {S ), we write ( S ) 

instead of ( V ) 

[ Z ] - the variety of inverse semigroups satisfying u = w for all equations 

u = w i n Z  

w E E - the equation w = w2 

FVX) - the T-free inverse semigroup on X 



c(w) - for a word w over X u X-1, the content of w 

p(T) - for a variety Y of inverse semigroups, the fully invariant 

congruence on F3W) corresponding to T 

Many of the results we have mentioned here are of a fundamental nature and can be 

found in virtually any text on Universal Algebra ([Gr] or [BS], for example); we do, 

however, mention Birkhoffs important paper [Bi2] of 1935 in which he proved his 

famous theorem that T is a variety if and only if T is an equational class. The Wagner 

congruence is, of course, due to Wagner [Wa3]. Completely semisimple varieties were 

studied by Reilly [Re2]. The congruence v was introduced by Kleiman who is responsible 

for the result cited on the first three layers of Y(3) [Kl]. Reilly [Re21 also studied the 

congruence v and showed that Y(3) is not a modular lattice. For results concerning the 

Mal'cev product of inverse semigroup varieties we refer the reader to Reilly [Rel], and for 

results concerning E-unitary covers we refer the reader to [PR]. 

2.8 Presentations and Schiitzenberger graphs 

A presentation of an inverse semigroup is a pair P = W;R) where R is a binary 

relation on F 3  (X). If P = (X;R), the inverse semigroup presented by P is 

F>(X) / 8 where 8 is the congruence on F3(X) generated by R. Equivalently, we may 

consider P = (X;R), where R is a binary relation on ( XUX-1 )+. Then the inverse 

semigroup presented by P is ( XUX-1 )+ / z, where z is the congruence on ( XUX-1 )+ 

generated by R u p. We will consider only those presentations for which R (and hence 

8 ) is p(fl for some variety Y of inverse semigroups. 

The definitions and results of this section can be found in Stephen [S] to which we 

refer the reader for additional information concerning Schiitzenberger graphs. 
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A labelled digraph over a nonempty set X consists of a set of vertices V(T) and a 

set of edges E(T), where E(T) E V x X x V. An edge (vl,x,v2) E E(T) is labelled by x 

and directed from vl to v2. We call vl the initial or start vertex and v2 the terminal or end 

vertex of the edge (vl,x,v2). A path p is a sequence of edges such that the end vertex of 

an edge in the sequence is the start vertex of the next edge in the sequence. 

r is strongly connected if, given any two vertices vl, v2 E V(T), there is a path p 

from vl  to v2. We will often call a path from vl to v2 a vl-v2 walk. An inverse word 

graph over XuX-I is a strongly connected labelled digraph over XUX-I satisfying the 

condition: ( v l , x , v 2 ) ~  E(T)  implies ( v 2 , x - l , v l ) e  E(T),  for all 

x E XUX-1. An inverse word graph T is deterministic if all edges directed away from a 

vertex are labelled by different letters, and injective if all edges directed toward a vertex are 

labelled by different letters. Thus, a deterministic inverse word graph over XuX-1 is 

necessarily hij ec tive. 

If r and T' are inverse word graphs over XUX-1, a V-homomorphism $: T -+ T' 

is a map on the vertices of T which preserves incidence, orientation and labelling, More 

precisely, $ is a pair of functions $v: V(T) -+ V(T') and $E: E(T) + E(T') such that 

(vl,x,v2)$~ = (vl$v,x,v2$~). $ is a V-rnonomorphism if it is one-one on the vertices of 

C a V-epimorphism if it is surjective on both the set of edges and the set of vertices of T; a 

V - i s o m o r p h i s m  if i t  i s  both a V-monomorphism and a 

V-epimorphism. An inverse birooted word graph is a triple ( s, T, e ) where I' is an 

inverse word graph and s and e are distinguished vertices called, respectively, the start and 

end vertices . 

Let P = (X,R) be a fixed presentation of the inverse semigroup S with z the 

corresponding congruence on F3(X). Let w E S and Rw the 9-class of w in S. The 

Schiitzenberger graph of Rw with respect to P is the labelled digraph T(w), where 

30 



V(T(w)) = Rw 

E(T(w)) = ( (vl,x,v2) : vl,v2 E Rw, x E XUX-I and vl(xz) = v2 ). 

Dually, we define the Schiitzenberger graph of L, with respect to P to be the labelled 

digraph A(w) with 

Lemma 2.8.1 [S; 3.11. Let v E S, T(v) be the Schutzenberger graph of Rv with 

respect to P, vl,v2,v E Rv, e = wl and w E (XuX)+. 

a) T(v) is a deterministic inverse word graph; 

b) vl(wz) = v2 if and only if w labels a vl-v2 wdlk, 

c) (wz) 2 v if and only if w labels an e-v walk, 

The lemma above can be dualized for A(v) for any 9'-class Lv of S. We remark 

that if S is a group, then for any w E S, T(w) is the Cayley graph of S (See [S; 3.71). 

For a discussion of Cayley graphs, we refer the reader to [WJ. 

The following lemma characterizes Green's relations on S in terms of the 

Schutzenberger graphs of S. 

Lemma 2.8.2 [S; 3.41. Let vl, v2 E S and let e = vlvl-l anf f = v2v2-l. Then 

a) v l 9  v2 if and only if there exists a V-isomorphism @ : T(v1) + T(v2); 

b) v l  S v2 if and only if there exists a V-isomorphism @ : T(v1) + T(v2) such that 

e$ = f. 

c) v l  9 v2 if and only if there exists a V-isomorphism @ : r(v1) + T(v2) such that 

v1@ = v2. 



d) v l  X v2 if and only if there exist V-isomorphisms $,y : r(v1) -+ r(v2) such that 

e$ = f and v l v  = v2. 

e) v l  = v2 if and only if there exists a V-isomorphism 41 : r(v1) + r(v2) such that 

e@ = f and vl$ = v2. 

For any v E S, the Schiitzenberger representation of v (with respect to P ) is the 

birooted inverse word graph (wl,r(v),v). We will also use T(v) to denote the birooted 

graph and specify the roots whenever required. We are considering presentations in which 

the relation R is always a fully invariant congruence on F3(X) corresponding to some 

variety "Y: Thus, for any word w E (X uX-I)+ and congruence p ( n ,  we will write T(w) 

(or r T ( w )  if we wish to emphasize the variety being considered) to denote 

( w w - l p ( v ,  r ( w p ( n ) ,  wp(Y')) with respect to P = (X; p(Y')), and call T d w )  the 

Schiitzenberger representation of w with respect to "Y: We remark that the Schiitzenberger 

representation of the free inverse semigroup is the representation of F.Y(X) by birooted 

inverse word trees, which is due tc Mum [Mrr4] (See step he^? [S] for the ccmection 

between Schiitzenberger graphs of the free inverse semigroup and Munn trees). For 

further properties of Schutzenberger graphs, we refer the reader to Stephen [S]. 

The following result will be used throughout, but is presented here so that we may 

look at what are probably the simplest examples of Schiitzenberger graphs relative to some 

variety. 

Proposition 2.8.3. If w E (X u X-I)', then ry (w) is just a single vertex with 21c(w)l 

loops. For each x E c(w) there is precisely one loop labelled x and one loop labelled x-1. 

proof: For any u,v E (X U X-l)', u p(9' ) v if and only if c(u) = c(v). Furthermore, 

u p ( q  3 ua p ( n ,  for some a E (X u X-l)', if and only if a or a-1 is an element of 

32 



c(u). From these two facts and the definition of Schiitzenberger graph, one easily obtains 

the desired result. 

Examples. 1) 

Figure 2.1. Schiitzenberger graphs in the free semilattice on three generators. 

The graphs above in Figure 2.1 form the collection of Schutzenberger graphs (up to 

V-isomorphism) of the free semilattice on three generators (see Proposition 2.8.3). We 

follow the standard practice of providing edges labelled by x E X but not edges labelled 

by elements of X-l as these edges are implicitly determined by those edges labelled by 

elements of X. Also, we follow the convention of drawing a single edge with more than 

one label if there are several edges between two given vertices. 

, 2) Figure 2.2 is the Schutzenberger graph of the word w = xlx2xl-lx2-1 with respect 

to the variety 9 l. ~ h e ' ~ r o o f  of this can be found in Theorem 6.1.7. 



Figure 2.2. The Schutzenberger graph Ty(w). 

This example will be used again in the sequel to illustrate concepts related to 

Schutzenberger graphs. 



CHAPTER THREE 

Wreath Products 

In this chapter we present the definition of the wreath product of two inverse 

semigroups. Our definition is a slightly more general definition than that of Houghton [HI 

and a generalization to arbitrary inverse semigroups of Petrich's definition of the (right) 

wreath product of a group and an inverse semigroup [PI. The restriction to groups of our 

definition is dual to the definition of standard (unrestricted) wreath product found in 

Neumann [N], as Neumann writes her operators on the left and we write our operators on 

the right. The only material of this chapter required for the sequel can be found in section 

1. The material in section 2 serves as motivation for the work in subsequent chapters, 

particularly chapter 6. The third section contains some structural results concerning wreath 

products and, while these results are of independent interest, they are not required for the 

remaining chapters. 

3.1 Definition of wreath product 

Let S and T be inverse semigroups and suppose that T is an inverse subsemigroup 

of Yo), the symmetric inverse semigroup on I. Let IS denote the set of functions (written 

on the right) from subsets of I into S. For any y E IS, denote the domain of y by dy. 

Define a multiplication on IS by 

i ( y  + y' ) = (iy) . (iy') [ i ~  dyndyf '] .  

For any p E >(I) and y E IS, we define a mapping Py by 

i (PY) = ($)w [i E dp, ip E d y  1. 

, The (right) wreath product of S and T is the set 

S w r T = { ( y , p ) ~  I S x ~ : d y f = d p }  



with multiplication given by 

(y,P> (v',P'> = (yPv',PP'>. 

If T is an inverse subsemigroup of To), we will sometimes write (T,I) for T if we wish to 

emphasize the set I on which T acts. We will write (T,T) to denote the Wagner 

representation of T by partial right translations. 

Our definition of wreath product follows that of Houghton [HI. In [HI the wreath 

product W(S,T) of inverse semigroups S and T is, in our notation, S wr (T,T) where T is 

given the Wagner representation by partial right translations. Our notation follows Petrich 

[P;V.4]. 

Proposition 3.1.1. Let S and (T,I) be inverse semigroups. 

a) S wr (T,I) is a semigroup; 

b) S wr (T,I) is regular; 

C) If (y$) E S wr (T,I) then (y$) is an idempotent if and only if P is the identity map 

on dp and for all i E dB, i y ~  Es. 

d) S wr (T,I) is an inverse semigroup. If (y,P) E S wr (T,I) then the inverse of (y$) 

is the pair (y-l,P-l) where P-1 is the inverse of p in (T,I) and for all i E dp-1, 

i y l =  [iP-1y]-1. 

Proof: a) Let (y,P), (y',P') E S wr (T,I). 

Then 

i ~ d @ y l  o i s d y a n d i s d P y e  

i~ d y ~ = d p  and i p ~  dy'=dP' 

o i s  dPP'. 

, Therefore, (y,P)(y',P ') = (u/Py',PP ') E S wr (T,I) and S wr (T,I) is closed under the 

operation defined above. 

Next, let ( ~ i , P i ) ,  (v2$2) and (y3$3) E S wr (T,I). 



Then 

r(wl~Pl)(y2,P2)1(~3.P3) = (w1p1w2,P1P2)(v3.P3) 

= ((WI~~W~)~~~~W~,(PIP~)P~) 

and 

(~l,P1)[(~2,P2)(~3,P311 = ( v . I , P ~ ) ( w ~ ~ ~ Y ~ , P ~ P ~ )  = ( ~ 1 ~ ~ ( ~ 2 p ~ ~ 3 ) r P 1 ( P 2 P 3 ) ) .  

Since (P&)P3 = Pl(P2P3) and S wr (T,I) is closed under the operation, we need only 

check that the first components agree on dP1P$3. Let i E dP1P2P3. Then 

i(d1y2)p1p2~3 = (iylp W2 )(iPlP2~3) 

= [(iyl>(iPly2)I(iPlP2~3) 

= (ivl)r (iP1~2)(iPlP2~3)1 (associativity of S) 

= (iy l)[iPl ( ~ ( 2 ~ 2 ~ 3 ) l  

= i[Yf1p1(\lr2p2~3)1 

It follows that the operation is associative and so S wr (T,I) is a semigroup. 

b) Let (y,P) E S wr (T,I). Define (y8,P') by setting P'= P-1, d y ' =  dp '  and 

jy '  = LjP-ly1-l for all j E dp'. It is immediate that (y',P') E S wr (T,I). We have 

(y,P)(y',P')(y,P) = (@y8pp'y,PP'~). Since P' = P-1, PP'P = P and PJ3' is the identity 

map on dp. Therefore, for all i E dp = dPP8P = dypy'pp'y, 

i Wpv/.pp 'y~ = (iy) (iPyP)(iy) 

= (i~)<iPP-~w)-'(iy) 

= (iw)(iw)-l (iw) 

= iy. 

It now follows that (v,P)(y',P')(y,P) = (y,P) and so S wr (T,I) is regular. 

c) Let (y,P) E S wr (T,I). Then (y,P) is an idempotent in S wr (T,I) means that 

, (vpv,PP) = (v,P). But PP = P and @y = y if and only if P is the identity map on its 

domain and for all i E dp = dy, i y  E E(S). 
, 

d) If (y,P) and (y',P') are idempotents in S wr (T,I), then 



= (y'P;v,P'P> 

= (w',P'><w,P). 

Therefore, the idempotents of S wr (T,I) commute which, combined with the fact that S 

wr (T,I) is regular, implies that S wr (T,I) is an inverse semigroup. 

If (v$) E S wr (T,I) then define (y,P)-l to be the pair (y-1,P-1) where 

yrl E IS and p-1 E T are defined by 

d p - l = d y r l = { i p : i ~  d p ) ,  

J3-1 is the inverse of p in T and 

i y l  = ( iP-1y)-1 ( i E dP-1). 

We have seen in the proof of the regularity of S wr (T,I) that 

(~$)(w$)-~(y,P) = ( ~ $ 9 .  w e  also have that 

(w,P)-'(w ,P)(w,P)-' = (yrl p-'w ~'~ur',p-'pp-') 

= (yr' P-'y.qrl,p-l). 

For any i E dp-1, 

i y l  P-'yny-1 = (iyrl)(iP-lv)(iyrl) 

= (iP-lw)-l(iP-lw) (ip-1 y)-1 

= (iP-lw)-l 

= (iyrl). 

Therefore, (yrl,P-1) is the inverse of (I/@) in S wr (TJ). Note that we may equivalently 

define yrl by 

j P y l  = ( jw >-l ( j  E dP ). e 



Remark. For any (v,P) belonging to S wr (T,I), we have written (v,P)-1 as (w-1,P-1) 

even though the definition of v-1 depends on P. This is not to suggest that if (y,P') is 

another member of S wr (T,I), then the first coordinate of (v,PP)-1 is the same as the first 

coordinate of (yr,P)-1. We use v-1 to avoid notational difficulties and simply note that 

when y-1 is used, the member of (T,I) to which it is paired will be understood. 

In [Nl, Neumann defines the (unrestricted) wreath product A Wr B of the groups A 

and B as follows. 

A W r B = B x A B  

with products defined by 

(b,@)(c,v) = (bc,4)CW) 

where, for all y E B, @c(y) = $(yc-1). 

Let Ad'be the group defined as A with multiplication * given by, for all g,h E A, 

g * h = hag, with this last product as in A. Then A Wr B is antiisomorphic to 

. Ad wr (B,B) using the definition in section 3.1 with B given its Wagner (Cayley) 

representation: 

Define @ : A Wr B + Ad wr (B,B) by setting (b,cp)@ = (q',ab-l) where cp' is 

defined by ycp' = cp(y) for all y E B and ab-1 is the permutation corresponding to b-1 in the 

Wagner representation of B. Then for all (b,cp),(c,v) E A Wr B, 

(c,v)O(b,cp)O = (v',aC-i)(cp',ab-1) = (w' ac-lcpO,ac-ib-1) 

while 

(bc,cpCy)@ = ((~p~~)',%-lb-l). 

For all y E B, 

y(cpCw)' = cpCW(~) = cp(yc-9 - W(Y) 



Thus, (c,v)O(b,cp)O = (bc,cpcy)O. O is easily seen to be a bijection and so O is an 

an tiisomorp him. 

As a consequence of these remarks, the results concerning wreath products of 

groups and product varieties of groups found in [N] are valid in the context presented here. 

We conclude this section with a remark concerning wreath products of semigroups. 

In the study of finite semigroups and automata theory wreath products play a significant 

role (see, for example, [El). In general, however, the definition of wreath product for 

semigroups does not ensure that the wreath product of two inverse semigroups will be an 

inverse semigroup, as Houghton points out in [HI. In fact, the wealth of research on 

wreath products and pseudovarieties of semigroups did not serve as motivation for our 

investigations, though some of the ideas presented here have their analogues in finite 

semigroup theory. 

3.2 Subdirectly irreducible inverse semigroups in completely semisimple 

varieties 

The principal factors of a completely semisimple inverse semigroup S are Brandt 

semigroups and groups. In fact, at most one principal factor of S can be a group and this is 

the case only if S possesses a minimum ideal which is a group. If D is a/-class of S, but 

not the minimum/-class of S, then the Rees quotient semigroup corresponding to the 

ideal of S consisting of those elements x for which/, B D is an ideal extension of the 

Brandt semigroup DO. The canonical homomorphism of this ideal extension of DO into the 

translational hull Q(D0) of DO is one-to-one on D. Consequently, it can be shown that S 

, can be subdirectly embedded into a product of inverse subsemigroups of Q ( D ~ ) ,  where the 

Da are the non-minimum/-classes of S, and possibly a group. For any non-minimum 

/-class Da of S, the translational hull of D; is a wreath product of a group G and 3(I), 



where G and I depend on D;. Thus, wreath products play an important role in the study 

of completely semisimple inverse semigroups. In fact, as we will discover in subsequent 

chapters, wreath products of inverse semigroups in general prove to be useful tools in 

studying varieties of inverse semigroups. 

The following two theorems make clear the connection between wreath products 

and completely semisimple inverse semigroups and are of fundamental importance. 

Theorem 3.2.1 [P;V.4.6]. For any Brandt semigroup S = B(G,I), we have 

Q(S) s G wr >(I). 

In light of Theorem 3.2.1, wreath products of the fonn G wr >(I) are related to 

ideal extensions of Brandt semigroups. The following result is a general description of 

ideal extensions of Brandt semigroups which we will find useful. For a semigroup S with 

zero, we denote S with its zero removed by S*. 

Theorem 3.2.2[P;V.4.7]. Let S = B(G,I) be a Brandt semigroup and Q be an inverse 

semigroup with zero disjoint from S. Let cp : Q* + G wr >(I), denoted by 

cp : q + (vq,Pq), be a partial homomorphism such that ldPqPrl b 1 if qr = 0 in Q. On 

V = S u Q* define a multiplication * by : for q,r E Q*, (i,g,j) E S, 

( i, g, j) * q = ( i, gtivq), jPq> i f j  E dPq, 

q * ( i, g, j) = ( iPq% (iPq-lvq)g, j) if i E rPq, 

andifqr=OinQ, 

q * r = ( kPq-', (kPq-'\yq)(Wr), k b )  if {k} = rPq n dBr, 

a * b = ab if a,b E S, or a,b E Q* and ab # 0, 



and all other products equal to zero. Then V is an ideal extension of S by Q. Conversely, 

every ideal extension of S by Q can be so constructed. 

The first result of this section states that every completely semisimple inverse 

semigroup is isomorphic to a subdirect product of ideal extenxions of Brandt semigroups. 

This is nothing new. We refer the reader to [Pel] and [Pe2]. We use the term kernel of S 

in this section to mean the intersection of all nonzero ideals of S. That is, the kernel of S is 

the minimum nonzero ideal of S, if it exists. 

Lemma 3.2.3. Let S be a completely semisimple inverse semigroup. Then S is 

isomorphic to a subdirect product of ideal extensions of Brandt semigroups and possibly a 

group. Each of these ideal extensions of Brandt semigroups is an inverse subsemigroup 

of G wr Y(I) where G and I gre determined by kernel Brandt seinigroup. . 

Proof: Let {Da : a E A) be the,collection of 8-classes (or equivalently,z-classes) of 

S. For each a E A, let I, = {x E S : Jx 2 Da). Then I, is an ideal of S and the Rees 

quotient S / I, is an ideal extension of D: or Ia = 0. Observe that if I, = 0 ,  then Da is 

the kernel of S and so must be a group. As S is completely semisimple, D! is a Brandt 

0 semigroup for each a in A. Suppose that Da = B(Ga, K a). Let 

Ta : S / Ia + Ga wr 3 ( K a )  be the canonical homomorphism of S / Ia into the 

translational hull of DO, If S possesses a kernel group D,, then za is understood to be the 

canonical mapping of S into Q(Da) = Da. Recall that for each a ,  2, is one-to-one on Da. 

Let be the natural homomorphism of S onto S / I,, for each a in A. Define 

: S + n a e  A za(S I 1,) G naE, (Ga wr 3(Ka))  

by (s@)xa = s$azcx, where if Da is the kernel of S, Ga wr >(I&) is understood to be 

G,. @ is clearly a homomorphism. Let x,y E S and suppose that x@ = y@. If Jx it Jy 

then either Jx k Jy or Jy B Jx. If Jx B Jy and y E Da then xea.r, # yeara and so 
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xiP # y o .  Likewise, if Jy P Jx then xiP # y@. If Jx = Jy and x,y E Da, then 

x@aza = yQaza implies that x = y as Qaza is one-to-one on Da. It follows that @ is an 

embedding which is rather obviously subdirect. 0 

We will call an inverse subsemigroup S of G wr 3 ( I )  k-full if it contains all 

(y,P) E G wr 3 ( I )  such that ldPl = l d ~ l  I 1. That is, S is a k-full subsemigroup of 

G wr 30) if S contains the Brandt semigroup of which G wr 3 ( I )  is an extension. 

Lemma 3.2.4. Let S be an ideal extension of B(G,I) and let cp be a congruence on G. 

Define a binary relation cp* on S by 

x cp* y u i) x,y E B(G,I), x = (i,g,j), y = (i,h,j) and g cp h, or 

ii) x = y. 

Then cp* is a congruence on S. Moreover, if 8*  is a congruence on S and 8 is its 

restriction to some group %-class of B(G,I), then i) cp G 8 implies that cp* G 8"; and 

ii) 8* E cp* implies that 8 G cp. 

Proof: It is easy to see that cp* is an equivalence relation. Suppose that x cp* y and let 

z E S. If x = y then zx = zy and xz = yz. If x = (i,g,j) and y = (i,h,j) with g cp h then 

a) if z = (i8,g',j') then uc cp* zy and xz cp* yz because cp is a congruence; b) using Theorem 

3.2.2, xz = (i,gCjyz),jpz) and yz = (i,h(i yz),jPz) where (vZ,Pz) E G wr Y(1). Since cp 

is a congruence, xz cp* yz. Likewise, Theorem 3.2.2 also implies that zx cp* zy. Thus, 

cp* is a congruence. 

Let 8* be a congruence on S and suppose that 8 is the restriction of 8* to the group 

%-class H = {(i,g,i) : g E G). If x, y E S and x cp* y then either x = y, in which case x 

8* y, or x = (i,g',k), y = (i,h8,k) and g' cp h'. But if g' cp h' then (i,g',i) 8 (i,h',i) and so 

for any j,k E I, (j,g',k) = ( i , l~ , i ) ( i ,g' , i ) ( i , l~ ,k)  8* (j,1G,i)(i,h8,i)(i,1G,k) = U,h8,k). 

Therefore, cp* c 8". Now suppose that 8* c cp*. From the definition of cp* we have that 
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c p * I ~  = cp. That is, (i,g,i) cp* (i,h,i) if and only if g cp h. Thus, 8* E cp* implies that 

8 E cp. 0 

- 

Theorem 3.2.5. Let S be a completely semisimple inverse semigroup. Then S is 

subdirectly irreducible if and only if S is a subdirectly irreducible group or S is a k-full 

inverse subsemigroup of G wr >(I) for some set I and some subdirectly irreducible group 

G.  

Proof: Let S be a subdirectly irreducible completely semisimple inverse sernigroup. By 

Lemma 3.2.3 above, S is isomorphic to a k-full inverse subsemigroup of Q(D0) for some 

g-class D of S or S is a group. If S is a group then it is a subdirectly irreducible group, 

so assume that S is isomorphic to a k-full inverse subsemigroup of Q(DO) where 

DO z B(G,I), since S is completely semisimple. By Theorem 3.2.1, we need only show 

that G is subdirectly irreducible. Let 8 be the minimum non-equality congruence on S 

(where we think of S as a k-full inverse subsemigroup of Q(B(G,I))). Then 8 is contained 

in the Rees congruence relative to DO. If (x,y) generates 8 and x is not %-related to y then 

it is not difficult to show that 8 must be the Rees congruence relative to DO. 

[If x = (ii,gi,ji) and y = (i2,g2,j2) then for any (i3,g3,j3) E B(G,I), 

(i343j3) = (i3,g3gi-19il)(ii,gi,ji)til,l~,j3) and 

i l i i i i t i i ~ , j  0 (i3,g3gi-1,ii)(i2,g2,j2)ti1,1~,j3) # 0 if and only if 

i l  = i2 and jl = j2 if and only if x 3? y. Therefore, every (i3,g3,j3) E B(G,I) is @-related 

to 0 and so 8 is the Rees congruence relative to DO.] By Lemma 3.2.4, G must be simple 

and hence subdirectly irreducible. So suppose that (x,y) generates 8 and x 2t' y. Let cp be 

any non-identity congruence on G. Then 8 c cp* and so by Lemma 3.2.4 (ii), the 

restriction of 8 to any group %-class, 8* c cp. Thus, G has a minimum non-identity 

congruence and so must be subdirectly irreducible. 



- 
Conversely, suppose that S is a k-full inverse subsemigroup of G wr >(I) where G 

is subdirectly irreducible. We identify the minimum non-zero ideal of S with B(G,I). Let 

cp be the minimum non-identity congruence on G. We claim that cp* is the minimum non- 

identity congruence on S. Let 0 be the non-identity congruence on S generated by the pair 

(x,y). Since S is k-full and x # y, there is a z E B(G,I) such that z Ix,  2% y (or z Iy,  

z % x). Then z = zz-lx 8 zz-ly # z and z and zz-ly are g-related. If z and zz-ly are not Z 

-related then it is not difficult to show that 8 contains the Rees congruence relative to the 

ideal B(G,I) which in turn contains cp*. If z Z zz-ly then suppose that z = (i,g,j) and 

zz-ly = (i,h,j) where g # h. Then (i,g,i) = (i,g,j)(j,l~,i) 0 (i,h,j)(j,l~,i) = (i,h,i) and so 

8 restricted to the group Z-class H = {(i,g,i) : g E G )  is not the equality. Therefore, cp is 

contained in 8 restricted to H and so by Lemma 3.2.4, cp* E; 0. It now follows that S is 

subdirectly irreducible. 

The subdirectly irreducible completely semisimple inverse semigroups are not only 

inverse subsemigroups of wreath products of the form G wr 3 ( I )  for some subdirectly 

irreducible group G, but in fact inverse subsemigroups of wreath products of the form G 

wr (T,I) where G is a subdirectly irreducible group and (T,I) is a k-full antigroup. 

Lemma 3.2.6. Let S be a k-full inverse subsemigroup of G wr >(I), for some group 

G and some nonempty set I, and let n: denote the natural homomorphism of S into >(I) 

given by (y,P)n: = P for all (y,P) E S. Then Sn: is an antigroup. 

Proof: Let p denote the greatest idempotent separating congruence on Sn: and suppose 

that p 1 p P2 for some Pl,P2 E Sn. Since p E Z, P 1 Z P2 and, as a consequence 

PIPI-I = P2Py1, whence dP1 = dP2. 

Let i E dP1 = dP2. Since S is a k-full inverse subsemigroup of G wr 3(I) ,  the 

element p of 3 ( I )  defined by d p  = {i) and iP = i, is an idempotent of Sx. By the 



definition of p ,  P 1 - 1 P P 1  = P 2 - l P P 2 .  Now $1 E d P 1 - l P P 1  and so 

( iPl)Pl- lPPl  = (iPi)P2-lPP2. But (iPi)Pl-lPPl = iPPl = $1 and, in order for 

( i P l ) P 2 - l P P 2  to be defined, we must have that ( iPl)P2-1 = i and so 

(iP1>P2-lW2 = iPP2 = $2. Thus, $1 = $2 and, since our choice of i was arbitrary, it 

follows that P1 = P2. Consequently, Sn is an antigroup. 

Theorem 3.2.7. Let Y be a completely semisimple variety of inverse semigroups. 

Then T is generated by those members of Y which are subdirectly irreducible groups and 

inverse subsemigroups of wreath products of subdirectly irreducible groups and k-full 

antigroups. 

Proof: Y is completely determined by its subdirectly irreducible members. By Theorem 

3.2.5, these are subdirectly irreducible groups and k-full inverse subsemigroups of wreath 

products of a subdirectly irreducible group and 3 ( I )  for some I. A k-full inverse 

subsemigroup of a wreath product of a subdirectly irreducible group and 3( I )  is an inverse 

subsemigroup of a wreath product of a subdirectly irreducible group and a k-full antigroup, 

by Lemma 3.2.6. 

3.3 Isomorphic wreath products and connections with varieties 

This section contains some structural results concerning wreath products of inverse 

semigroups and some connections with varieties. 

Lemma 3.3.1. Let T and A be inverse semigroups. Then T wr (A,A) can be embedded 

in 3 ( T  x A). 

Proof: Define 8 : T wr ( A h )  + 3 ( T  x A) by (y,P)B = f('v,p) where 

df(,+,,p) = { (t,a) : a E dp and t E T(ay)-1 } 
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and 

(t,a)f(v,p) = (t(av),aP). 

We first show that f(v,p) E 3 (T x A). Suppose that for some 

(ti,ai),(t2,a2) E df(v,p) we have that (t19al)f(v,p) = (t2.a2)f(v,p). Then (ti(aiv),aiP) = 

(t2(a2v),a$) and so tl(aly) = t2(a2y) and alp = a$. Since P is one-to-one, it follows 

that a1 = a2 = a, say. As a consequence, we have that both tl and t2 belong to T(ay)-1 and 

that t l ( ay )  = t2(av). Therefore, ta = t1(av)(av)-1 = t2(ay)(av)-1 = t2. Thus, 

(tl,al) = (t2,a2) and so f(,,,p) is one-to-one and f(v,p) E 9 ( T  x A). 

Let (vi9Pi),(v2,P2) E T wr (&A). Let f i  denote ( v i , P M ,  f2 denote (~2,P2)@ 

and f3 denote ( ~ Q P ~ ~ ~ , P ~ P ~ ) O .  In order to show that O is a homomorphism we must 

show that flf2 = f3. Our first step is to show that dflf2 = df3. From the definition of O 

we have that 

dfl = {&a) : a E. dP1 and t E T(ayl)-l ), 

df2 = { (t,a) : a E dP2 and t E T(av2)-1 }, 

df3 = {(t,a) : a E dP1P2 and t E ~ ( a ( v ~ p l w ) ) - l  }. 

It follows that 

df1f2 = {(t,a) : a E dP1, t E T(av1)-1 and (t(ayl),aP1) E df2 ) 

= {(ha) : a E d p l ,  a p l  E d p 2 , t ~  T ( a y l ) - 1  and 



Also a E dPlP2 and so (t,a) E df3. Therefore, dflf:! = df3. 

Let (t,a) E dflf2 =df3. Then 

(t,a)fif2 = (t(avl),aPi)f2 

= (t(awl)(aPlw2), aP1P2) 

= (t(a(wlPlw2>>9aPlP2> 

= (t,a)f3. 

It now follows that O is a homomorphism. 

Finally, we show that 63 is one-to-one. Suppose that (~yi,Pi)O = (~2,P2)@ = f. 

Then df = {(t,a) : a E dP1 and t E T(aw1)-l ) = {(t,a) : a E dP2 and t E T(aw2)-l ) and 

(t,a)f = (t(ayfl),aPl) = (t(ay~),aP2). Let a E dP1 = dyq. Then ((avl)-1,a) E df and so 

a E dP2 whence d P  1 E dP2. Symmetrically, we obtain that dP2 dP 1 and so 



We will call the representation of T wr (A,A) described in Lemma 3.3,1 the 

cartesian representation of T wr (A,A) and write (T wr A, T x A) to denote this 

representation. 

Lemma 3.3.2. Let S,T and A be inverse semigroups. Then 

[S wr (T,T)] wr (A,A) E S wr (T wr A,T x A). 

Proof: Let (Y,B) E [S wr (T,T)] wr (A,A). Set aY = (ya,Pa), for all a E d Y  = dB. 

Let E 3 ( T  x A) be defined by setting dT = {(t,a) : a E dB and t E dpa ) and defining 

(t,a)r = (tPa,aB). Define 0 ,  a partial map from T x A to S by setting d@ = dT and 

defining (t,a)@ = ya. Now r corresponds to the pair (y',B) in the cartesian representation 

of T wr A, where for all a E dB, ay'  is the element of T which maps to pa in the Wagner 

representation of T. Thus, the pair (0,I') E S wr (T wr A,T x A). 

Define O : [S wr (T,T)] wr (A,A) =+ S wr (T wr A,T x A) by mapping (Y,B) to 

(@,r), as above. 

We first show that O is a homomorphism. 

Let (Yi,Bi), (Y2,B2) E [S wr (T,T)I wr (&A) and set = (@i,W, 

(Y2,B2)0 = (@2,T2) and (Y1BlY2,B1B2)0 = (@3,r3). We must show that 

(@ir102,r1r2) = (@3,r3). For all a E dBi set aYi = (yia7Pia), i = 1,2, and set 

a('3'iB1'W = (~a,Pa). 

d r 1  = {(t,a) : a =  dB1 a n d t ~  dPla ), 

dlr2 = {(t,a) : a E dB2 and t E dP2a ), 

dT3 = {(t,a) : a E dBlB2 and t E dBa ). 

Now 

d r 1 r 2  = {(ha) : a E dB1, aB1 E dB2, t E dPla and tPla E dP2,), where 

c = a B l , w h i l e f o r a l l a ~  dLB1B2, 



= t(v1,Plav2J 

= (V1J(tPlav2,). 

Therefore, @ 3  = 0 ir1o2 which combined .with r3 = T 1 r 2  implies that O is a 

homomorphism. 

Let (Y 1 ,B I) ,  (Y 2,B 2)  E [S wr (T,T)] wr (A,A) and suppose that 

(Y1,Bl)O = (@,T) = (Y2,B2)0. For all a E dB1 set aY 1 = (vla,Pla) and for all 

a E dB2 set aY2 = (~2,,P2,). By the definition of O, we have 

dr = {(t,a): a~ dB1 a n d t ~  dPla ) 

= {(t,a) : a E dB2 and t E dP2a 1, 

and for all (t,a) E dT 

(tPl,,& 1) = (tP2,,aB2), 



Since T is given the Wagner representation in S wr (T,T), for all a E dB1, dP1, t 0 and 

for all a s dB2, dP2, + 0. Thus, given a s dB1 there is a t E dP1, so that (t,a) s dT 

and so aB 1 = aB2. Therefore, dB1 E dB2 and B 1 and B2 agree on the domain of B 1. 

Symmetrically we obtain that dB2 G dB1 and B1 and B2 agree on the domain of B2, and 

SO, as a consequence, B1= B2. Moreover, we have that dY1= dY2, and so in order to 

show that O is a monomorphism, it remains to show that for all a E dB 1 = dB2, 

(yla,Pla) = (y2,$2,). From the definition of we have that t E dP1, if and only if (t,a) E 

dl? if and only if t a dP2, and so dP1, = dP2,. Furthermore, for any t E dPla = dP2, by 

the definition of 8 ,  tPla = tP2, and so Pla = P2,. Also, dPla = dP2, implies that dy1, = 

d w a  and again by the definition of O, yla = It follows that aY 1 = aY2. Therefore, 

(Yii,Bi) = W2,B2) and O is a monomorphism. 

Finally, we show that O is surjective. Let (0,f) E S wr (T wr A, T x A) and 

suppose that f = f(~,,,p) for some (v,P) E T wr A. Consider the pair (Y$) where, for all 

a E dp, aY = (ya,Pa) and dPa = {t E T : (t,a) E df } and tPa = t(ay), va = (t,a)@. Now 

Pa is the representation of (ay) in (T,T) and so (ya,Pa) E S wr (T,T). Also, P s (A,A) 

and so (Y ,P) E [S wr (T,T)] wr (A,A). We claim that (Y ,P)O = ( 0  ,f). Set 

(Y,P)O = (YO,pO). Then 

dPO = {(t,a) : a E dp and t E dPa ) 

= {(t,a) : a E dp and (t,a) E df } 

= {(t,a) : (t,a) E df } 

= df, 

and, for all (t,a) E df = dPO, 

(t,a)PO = (tPa,aP) 

= (t(aW>,aP> 

= (t,a)f. 



Also, for all (t,a) E dQ, = df = dPO = d(Y?O), (t,a)YO = w, = (t,a)Q,. It follows that 

(Y,P)@ = (Q,,f) and so O is surjective. Therefore, O is an isomorphism. 

The following proposition is a collection of simple properties of wreath products 

which suggest a connection between A wr B and the variety it generates. 

Proposition'3.3.3. Let A and B be inverse semigroups and let {Ai)iE I be a collection 

of inverse semigroups. 

a) If S  is an inverse subsemigroup of A then S  wr B is an inverse subsemigroup of 

A wr B. 

b) If a: A -+ -S is an epimorphism then there exists an epimorphism 

p : A w r B + S w r B .  

C) niE I ~ i  wr B  can be embedded in niE I ( ~ i  wr B ) . 

Proof: a) If (y,P) E S  wr B then dp = d y  and for all i E dp, iy E S  c A. Therefore, 

(y,P) E A  wr B. Since S  wr B is an inverse semigroup, it is an inverse subsemigroup of 

A  wr B. 

b) . Define p: A wr B  + S wr B by (y,P)p = (y*,P) where y *  is defined by setting 

d y *  = dB and for all i E dy*, defining iyl' = (iy)a. It is clear that (y*,P) E S wr B. It 

follows from the definition of the multiplication in wreath products that p is a 

homomorphism provided that for any ( y  1 ,P i),(y2,P2) E A wr B, . we have 

~ i * P ~ y 2 *  = (y1P1y2)*. From the definition of the multiplication we have that 



= (iyl*)((iPi)~2*) 

= i ( y l * P l ~ * ) .  

Therefore, p is a homomorphism. 

Let (y$) E S wr B. Defme (y',p) E A wr B by, for all i E dp, iy' E (iy)a-l. 

Then (y',p)p '= ((yO)*,P) and for all i E dp, i(y')* = (iy')a = iy. Thus, p is an 

epimorphism. 

C) Define O: ( n i ,  I ~ i  ) wr B -t ni, wr B) by 

(Y,P)O = (~i,P>ie I 

where if i E dp and i~ = (aj)jE1 , then iyj = aj. 

Suppose that (vl,Pl),(y2,P2) E ( niE I ~ i  ) wr B. In order to show that O is a 

homomorphism, we must show that for all j s I and for all i E d P  1 P2, 

indeed a homomorphism. 

Suppose now that (y1,Pl)iD = (y2,P2)iD. From the definition of O we obtain that 

Pi  = P2 and for all j E I, ( ~ l ) j  = (y2)j. For all i s dP1 = dP2, i(yl)j is the jth coordinate 

of iy1 and i(y2)j is the jm coordinate of iy2. Therefore, iy1 and iryz agree in each of their 

coordinates and so iy1= iy2. This is true for all i s dP1 = dP2 and so it follows that iD is 

a monomorphism. Thus, ( n i E  I Ai ) wr B can be embedded in 

niE 1 ( ~ i  wr B e 

Corollary 3.3.4. Let Y be a variety of inverse semigroups and suppose that A 

generates K Then for any S E K S wr B E ( A wr B ). 



Proof: If S E T then S is a homomorphic image of an inverse subsemigroup T of a 

direct power A1 of A, for some index set I. By Proposition 3.3.8 (c), A1 wr B can be 

embedded in (A wr B)I and as a consequence, A1 wr B E ( A wr B ). By Proposition 

3.3.8 (a), T wr B is an inverse subsemigroup of A1 wr B, since T is an inverse 

subsemigroup of AI. Thus, T wr B E ( A wr B ). S is a homomorphic image of T and so, 

by Proposition 3.3.8 (b), there is an epimorphism of T wr B onto S wr B. Therefore, 

S W B E  ( A w r B ) .  



CHAPTER FOUR 

The Principal Result 

Given two varieties Z and T of inverse semigroups, denote by Wr(%,n the 

variety generated by wreath products of semigroups in % with semigroups in ?T The 

principal result of this chapter is a description of the fully invariant congruence on F3(X) 

corresponding to Wr( Z, T) in terms of p(Z) and p ( v  for any pair of varieties,% and Yof 

inverse semigroups. Our description makes use of the Schiitzenberger graphs of the 

7;T-free inverse semigroup given by the presentation P = ( X; p('7) ). For any words w 

and v over X, Wr(%,7;1 satisfies the equation w = v if and only if Y satisfies w = v and 

2 satisfies an equation dependent upon the paths in the Schiitzenberger representation of w 

(and hence v) relative to T labelled by w and v. Given two varieties % and K we can thus 

describe a more 'complicated' variety both in terms of its generators and the equations it 

satisfies if we know the equations satisfied by Z and ?T 

The first section of this chapter deals with associating the path labelled by w in the 

Schiitzenberger representation of the word w relative to the variety 7;T with a word over 

some alphabet Y. This enables us to prove the main result of this chapter which is 

concerned with describing the fully invariant congruence corresponding to Wr(Z!,Z;? in 

terms of the fully invariant congruences corresponding to % and Y. The third section 

concerns itself with basic properties of the Wr operator, including the result that when Z! is 

a group variety then Wr(%,n is the more familiar Mal'cev product variety % 0 ?T Finally, 

it is shown in the fourth section that Wr is an associative operator and so Y(3)  is a 

semigroup under the operation of Wr. 



4.1 Doubly Labelled Schiitzenberger Graphs 

For any word w over X we require an 'encoding' of the path labelled by w in the 

Schiitzenberger representation of w with respect to T as a word over some alphabet Y. In 

order to do this we extend our definition of Schiitzenberger graph to what we call the 

doubly labelled Schiitzenberger graph . 

Definition 4.1.1. Let T be a variety of inverse semigroups and p the fully invariant 

congruence on F>(X) corresponding to 'Y: Let w E (XUX-I)+ and let TAW) be the 

Schiitzenberger graph of w in the T-fiee inverse semigroup on X. Let Y be a countably 

infinite set and Y-1 a set disjoint from Y and in one-to-one correspondence with Y via 

y o y-l. Assume that X U X - ~  and YUY-~ are disjoint. From Tdw)  we obtain the 

doubly labelled Schiitzenberger graph TAW) of w relative to T ,  as follows: 

satisfies 

(i) (vl,x,v2) E E( r d w )  ) and x E X implies that hw(vl,x,v2) E Y; 

(ii) hw(v2,x-l,v1) = rhw(vl,x,v2)l-l; 

(iii)hw(vl,x,v2) = hw(v3,z,vq) implies that vl = vg, v2 = v4, and x = z. 

We call x the primary label and hw(vl,x,v2) the secondary label of the edge (vl,x,v2). 

Condition (iii) says that no two distinct edges have the same secondary label, condition (ii) 

says that inverse edges have inverse secondary labels and condition (i) is just convenient. 

, Thus, the doubly labelled Schiitzenberger graph of w is just TAW) with a secondary label 

attached to each edge such that inverse edges have inverse secondary labels and no two 

distinct edges have the same secondary label. 
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We define the derived word dy(w) of w relative to T as follows: 
- 

Let vl and v2 be the start and end vertices respectively, of the Schiitzenberger graph 

r d w )  of w relative to Y'. Then w labels a vl-v2 walk in r.y(w) by primary labels, by 

Lemma 2.8.1 (b) and the definition of the Schiitzenberger representation of w with respect 

to Y'. Let el, .  . . ,en be the edge sequence corresponding to this walk. Define 

ddw)=hw(el)hw(e2). . .Aw(%) E (YuY-I)+. That is, ddw)  is just the word obtained by 

taking the secondary labels from each edge in our vl-v2 walk. 

Note that if w = a1 . . . ak, ai E XVX-1 for i = 1 ,. . .,k, and dr(w) = bl . . . bm, 

bi E YUY-I, then m = k and if e is the edge corresponding to ai in the start-end path 

labelled by w in TAW) then bi = hw(e) is the secondary label of e in T.y(w). Note also 

that w is an instance of its derived word ddw) relative to K That is, w can be obtained 

from ddw) by a su-bstitution of variables. 

Example. 

Figure 4.1. The doubly labelled Schiitzenberger graph rs i(w). 

' Figure 4.1, is the doubly labelled Schiitzenberger graph of the word w = xlx2xl-1x2-1 

relative to the variety 9 l, the variety of inverse semigroups generated by the five-element 



- 
Brandt semigroup with an identity adjoined. Both the start vertex and the end vertex are 

vl. Reading directly from the graph, we have that the derived word of w with respect to 

Proposition 4.1.2 Let T be a variety of inverse semigroups and let w E XUX-1. 

Suppose that w p(Y) w2. Then d.v(w2) = [d.v(w)12. 

Proof: Let the two roots in the Schiitzenberger representation of w with respect to %" be s 

and e. Since w p(Y) w2 we have that w p(Y) WW-1 and so, as a consequence, 

s = e. By Lemma 2.8.1 (c), w and w2 both label s-s walks in r d w )  by primary labels. 

By Lemma 2.8'.1 (a), TAW) is deterministic which implies that the s-s walk labelled by w2 

i s  just the s-s walk labelled by w taken twice. Thus, 

d.v(w2) =, [d.v(w)]2, as required. 

Proposition 4.1.3. Let T be a variety of inverse semigroups and let v and w be 

words over X u X-1. Then v p w if and only if d d v )  p d.v(w), where p is the Wagner 

congruence. 

Proof: The Wagner congruence p is generated by the relation 

cp = { (aa-la,a) : a E (X u x - ~ ) +  ) u { (aa-lbb-1,bb-laa-1) : a,b E (X u ~ - 1 ) +  ) 

[P;VIII.l.l] . 
Now,w pv i fandon ly i fw=vor  

w = X l C l Y l  

~ l d l ~ l  = x2c2y2 

x2d2y2 = X3C3Y3 



~kdkyk = v, 

for some words xi,yi,ci,di such that ci 9 di or di qci, for i = 1,. . .,k. 
If w = v, then d d w )  = d d v )  and so d d w )  p ddv).  Otherwise, we proceed by 

induction on k. 

If w = xlclyl, xldlyl = v and c l  cp dl then w p v implies that w p(7J v and so 

both w and v label s-e walks in TAW). Because TAW) is deterministic, d d w )  = xcy 

and d d v )  = xdy, where x,y,c,d E (Y u Y-l)+ and c,d depend upon the paths labelled by 

c l  and d l  in the Schiitzenberger graph of w with respect to YT If cl  = a and dl = aa-la 

then d = cc-lc since r d x l c l y l )  is deterministic. That is, the path labelled by dl must be 

the path labelled by cl  followed by the path labelled by cl  in reverse followed by the path 

labelled by cl. Likewise, if dl  = a and cl  = aa-la then c = dd-Id. Thus, in this case, 

d d w )  = xcy p xdy = ddv).  If cl  = aa-lbb-1 and d l  = bb-laa-1 then c = and 

d = u 2 u ~ l u l u l - ~ ,  again because Tdxlcly1) is deterministic and the paths labelled by aa-1 

and bb-1 both start and end at the same vertex. Thus, d d w )  = xulu l-1u2u2-1y p 

xu2u2-1ulul-1y = dAv). In either case, we have that d d w )  p ddv) .  

If k > 1, then d d w )  p ddxkckyk) and ddxkckyk) p d d v ) ,  by the induction 

hypothesis, and so d d w )  p ddv) .  

Conversely, w and v are instances of d d w )  and ddv) ,  respectively, whence 

d d w )  p d d v )  implies that w p v. 

In the following lemma and throughout this thesis we use the following shorthand 

notation. For any words v and w over some alphabet Z and any variety 'T of inverse 

sernigroups, we write w I y v  to mean wp(V) < vp(V) in the natural partial order on the 

Ff ree  object over the set Z. 



Lemma 4.1.4. Letw =a1 ... akandv=d  1...dm with w p(7)v. Set ddw)  = bl ... bk 

and dAv) = cl . ..em, where we construct both ddw) and ddv)  from the same doubly 

labelled Schiitzenberger graph Thw). Then 

a)bi=cj u w  Iyal...ai-ldj...dmandai=dj 

b) bi = cj-' u w Sy a1 . . .aidj.. .dm and ai = dj-1 

u w ST a1 . . . ai-ldj+l.. .dm and ai = dj-1. 

Proof: The proofs of a) and b) are similar. We provide a proof of a). Let s and e be the 

start and end vertices, respectively, corresponding to w and v in Tyfw) (and so also in 

Tdw)). If bi = cj then ai and dj are primary labels for the same edge in T d w )  and so 

ai = dj. Moreover, a1 . . .ai-ldj.. .dm must label an s-e walk by primary labels in T d w )  

and so, by Lemma 2.8.1 (c), a1 . . . ai-ldj.. . dm 2~ w. Conversely, if ai = dj and 

al.. . ai-ldj.. .dm 2y w then, by Lemma 2.8.1 (c) ai . . .ai-ldj.. .dm must label an s-e walk 

by primary labels T d w ) .  Since both w and v label s-e walks by primary labels 

in T d w )  and since T d w )  is deterministic by Lemma 2.8.1 (a), we must have that ai and 

dj are primary labels foi the same edge. It follows that bi = Cj. 0 

4.2 The Main Theorem 

Definition 4.2.1. For every pair Z! and Y of varieties of inverse semigroups, let 

Wr(Z!,V= ( S wr (T,I) : S E Z! and T E Y). 



Varieties of the form Wr(2,V) will be the focus of our investigations throughout 

this chapter and chapter five. Our first task is to describe the fully invariant congruence on 

the free inverse semigroup corresponding to Wr(2,V) in terms of the fully invariant 

congruences corresponding to the varieties 2 and X Observe that, for any varieties 2 

and T of inverse semigroups, P, T Wr(2, T ) .  This fact will be used throughout 

this text without explicit reference. 

Definition 4.2.2. Let 2 and 'T be varieties of inverse semigroups. Define a relation 

Q(2,V) on F3@) as follows: 

where ddu)  and ddw) are both obtained from the same doubly labelled Schiitzenberger 

graph ryw. 

Observe that Q(2,V) is an equivalence relation. We will see in Theorem 4.2.3 

that it is not only an equivalence relation, but a fully invariant congruence on F3(X). 

Note that, if we think of Q(2,V) as a relation on (X u x-~)', then by Proposition 4.1.3, 

the Wagner congruence p c @(Z,V) and so, as a relation on F3(X), @(P,V) is well- 

defined. 

Example. If we let T be the variety 9 of sernilattices and 2 be any variety of inverse 

, semigroups then dAu) py(Z) ddw)  if and only if u p(Z) w because dg(u) is just a 

relabelling of u, for any word u over X (see Proposition 2.8.3 and the example which 



accompanies it). Thus, u Q,(V,Y) w if and only if u p(Y) w and u p(2) w. That is, Q, 

is just p(9' v 2 )  in this case. 

Example. If T. is any variety of inverse semigroups then u iP(>,gi? w if and only if 

u p(Y) w and d d u )  p ddw) ,  where p is the Wagner congruence. By Proposition 

4.1.3, d d u )  p d d w )  if and only if u p w. Thus, u Q, (9,Y) w if and only if 

u p(> v T )  w. That is, Qi(9,Y) is just p. 

The following is the principal result of this work. It connects the variety Wr(%,Y) 

to the relation O(2,Y). 

Theorem 4.2.3. Let Wr(Z,gi? = ( T wr (FJ) : T E 2, F E T ) .  Then 

Proof: For ease of notation, set Q,(%,gi? = @ and p(Wr(2,Y)) = p. 

We first show that Q, E p. Suppose that u Q, w. We will show that u = w is a law 

in Wr(2,V. It is sufficient to show that every S = T wr (F,I) which is in the generating set 

of Wr(2,Y) satisfies u = w. 

Let 

u = u(x1, ..., x,) = a1 ... ak and w = w(x1, ..., x,) = dl ... dm 

where 

C(U) v C(W) = {XI ,..., xn) and ai, dj E XUX-1 for i = 1 ,... k and j = 1 ,..., m. 

Let S = T wr (F,I) where T E 2 andF E ?T Let (vl,P1),...,(vn,Pn) E S and 

suppose that 

u[ (~ l ,P l ) , .  .,(vn,Pn)I = ( ~ $ 1 ,  
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Let TC : S + F be given by n: : (cp, a) + a, for all (cp, a) E S. 

Then n: is an epimorphism of S onto F which we shall call the natural homomorphism of S 

We will write 

We will also write Pal .. . ai for Pal Pa,. .. Pa;. Observe that with this notation 

ys;i = yql and Pa;l = Pa;l. 

Let dAu) = bl.. .bk and dAw) = cl.. .cm. Let i E d y  = dp. We first prove the 



1) Suppose that bp = bj for p < j I k. Then ap = aj and u' = al.. .ap-laj.. .ak 2~ u, by 

Lemma 4.1.4. Again S a  E 'Y and SO P " = Pa,. . .+laj.. .ak 2 Pal.. .ak = P. This means 

that dp dp" and J.3 and p" agree when both are defined, and so iP = iP". But then, 

($a ,... aj-,)Paj...ak = iP = iP " = ($a ,... a,, )Pa,... a,. Since Pa,.. . a, is one-to-one, 

we  have i8al...aj-l = iPal...ap-l. This, combined with ap = aj, gives 

($al.. .a,JYfBI = ($al.. . r b l ) ~ q  

2) Suppose that bp = bj-1 with p < j S k. Then ap = aj-I and u' = al.. .apaj.. .ak 2~ u, by 

Lemma 4.1.4. Again S a  E 'Y and SO P" = Pa ,... vj,. .ak 2 Pa;.. .ak = P. This means that 

d p  d p  " and p and p " agree when both are defined. As in 1) we obtain 

a .  = a a 1  Then 

[($al.. .a,-ll~lsl-l = [(iPal.. .%)~$-1l-' 

= [(iPal.. +@~<ll-l 

= [[($a,.. .+ , )vd- l~-~  (definition of w$-l) 

= (iPa,.. .+Jvq 

3) Suppose that bp = cj. By Lemma 4.1.4, ap = dj and u' = a1 . . . ap- 1 dj.. . dm 25v. u. 

Since S a  E K we have that P" = Pal...ap-ldj...dm t Pal...ak = P. This means that 

dB c dp" and both P and P" agree on dp. In particular, iP" = iP = iP'. But then, 

(@al.. .aPl)Pdj.. . dm = iP " = iP ' = ($dl .. .dj.,)Pdj.. . dm. Since Pd,.. .dm is one-to-one, 

a l a P l  = iPd ,... dj.l- Combining this with the fact that ap = dj  gives 

($al.. . b l ) ~ a ,  = (iPdl. . .dkl l~dj-  
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4) Suppose that bp = cj-1. By Lemma 4.1.4, ap = dj-1 and u' = al.. . apdj.. .dm 2r U. 

Again Sn E 'Y implies that P " = Pal...apdj.. .dm 2 Pal.. .ak = P. This means that 

dj3 E dp" and both P and P" agree on dp. In particular, iP" = iP = iP'. But then, 

(@a l...ap)Pdj...dm = iP" = iP' = (iPd ,... dj-,)Pdj...dm- Since Pd j...dm is one-to-one, 

iPa1.*.ap = iPdl...dj-,. 

[@dl.. .%,)w~I-~ = [@al.. .a$if$_ll-l 

= [($ar 

= [[(iPal.. . + , ) ~ d - ~ ] - ~  (definition of ~ % - l )  

= ( i R . . . + , l ~ ~  

5) and 6) The proofs use Lemma 4.1.4 and are similar to the proofs of 1) and 2). 

Multiplying u[(y~,P~),.  . ( y ~ ~ , P a  from left to right we obtain 

By 1)-6) above, the expressions on the right-hand side are instances of d d u )  and d d w )  

by the same substitution of variables. Since T E Z, T satisfies dAu) = dAw) and so, as a 

consequence, iy = iy'. It now follows that (y$) = (y',P') and hence that T wr (F,I) 

satisfies u = w. Therefore, the generating semigroups of Wr(Z,Y) satisfy u = w and so 

Wr(Z,T) also satisfies u = w, whence E p. 



Before we prove that p a, we require a construction and a preliminary lemma. 

Construction 4.2.4. Let w, u E (X u X)+ be such that w p(V) u and let ' r f iw)  be 

their doubly labelled Schiitzenberger graph relative to K Let s and e be the start and end 

vertices, respectively, corresponding to w (and u) in T d w )  and let V denote the set of 

vertices of T d w ) .  Suppose that c(w) u c(u) = 1 ,  . , x } and 

c(dy(w)) u c(dy(u))= {yl,. . . ,yn}, where xi,. . . xm E X and yl,. . .yn E Y. Here X is 

the set of primary labels and Y is the set of secondary labels in ryfw). Let T be any 

inverse semigroup and let tl, ..., tn E T. We use { xi ,..., xm 1, { yl, ..., yn } and ti ,..., tn to 

construct an inverse semigroup S as follows. 

..For i = 1,. . .,m let Si = (vi,P$ where vi E TV, pi E 3(V) are defined by: 

dpi = dvi = {V E V : (v,x~,v') E E ( r f i ~ ) )  for some V" E V) 

and for v E dpi = dvi, 

V P ~  = V' where (v,x~,v') E I2 (Tfiw)), 

Here, t is some fixed element of T. 

Then si E T wr 3(V), for i = I,. . .,m. Let S be the inverse subsemigroup of 

T wr 3 (V)  generated by {sl, ..., sm). Note that S depends on T, tl, ..., tn, 



Observe that if u is a word in { xl ,..., xm,xl-l ,..., xm-1 )+ and (y,P) = s is the 

element of S obtained from u by substituting sj for xj, j = 1, ..., m, then for all v E dp, u 

labels a v-v' walk by primary labels in ryfw) if and only if vp = v'. 

Lemma 4.2.5. Let T be a variety of inverse semigroups and suppose that T is an 

inverse semigroup. Let u, w E (X u X)+ be such that u p(V) w and set F = FT(X). 

Let S be as constructed in 4.2.4 using any ti, ..., tn E T and T d w ) .  Let (F,F) be the 

Wagner representation of F by partial right translations. Then S E ( T wr (F,F) ). If T is a 

member of the variety 2 then S E Wr(2,Y). 

Proof: Let Rw be the 9-class of wp(V) in F m ) .  

Define 

8 : T wr (F,F) + T wr .Y(Rw) by 

We first show that 8 is a homomorphism. Observe that 8 as defined maps 

T wr (F,F) into T wr .Y(Rw). Let (y1, Pi), (y2, P2) E T wr (F,F). Now F is given the 

Wagner representation by partial right translations of itself, so there exist 

v l ,  v2 E F such that dP1 = Fvl-l, dP2 = Fv2-l and for all v in the domain of PI, 

vpl = wl and for all v in the domain of P2, vP2 = w2. 

Since (yi,P1)8 (v2,P2)8 = ( v i e  Pleyfz8, Pl8P28) and 

( W ~ , P I ) ( V ~ , P ~ ) ~  = ( (~1P1~2)8 ,  P1P28), we must show that 

PlP28 = PleP2e and w e  Pley28 = (ylPly2)e. 

The domain of P18P28 is the set { u : u E Rw, UP E Rw and UP 1P2 E Rw ), 

while the domain of P1P28 is the set { u : u E Rw and uP1P2 E Rw ) . But if u E Rw and 

uPlP2 E Rw then u E Rw and uviv2 E Rw and so uvl E Rw. As a consequence, 

dPiP28 = dPleP28 and so, for all v E dPlP28, vPlJ.320 = vP1P2 = vP18P20. 
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liomomorphism. 

We now claim that S is an inverse subsemigroup of the image of 8 in 

T wr 3(Rw). It is enough to show that each generator of S in the image of 0. Let 

si = (vi,Pi) be a generator of S. Then, 

dv i  = dpi = { v E Rw : ( V, xi, v') E E( Tfiw)) for some v' E Rw } 

where the last containment follows from the more general fact that if a and ax are 

&-related elements of the same inverse, serrdgroup, then a = axx-I . 
We choose (y,P) E T wr (F,F) as follows. Let P be the representation in the 

Wagner representation of F of xi~(Y) so that dp = ~ x i - l p ( n ,  Let y be any mapping from 

dp into T such that, for any v E Rw n dp such that vp E Rw, V\II = V v i .  'such a y~ exists 

since dyi  G dp. We clearly have that (y,P) E T wr (F,F). 

Consider now (y,P)8 = (y8,P8), where 

di@=dP8 = { V E  d p : v ~  R , a n d v p ~  R w }  

Moreover, for any v E dp8, $8 = vp = vxip(Y) = vpi and V \ I I ~  = v v  = vvi  by our 

choice of (yr,P). 
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Thus, (v,P)8 = (vi,Pi) and so S is an inverse subsemigroup of the image of 8 in T 

wr 3 ( R w ) .  It follows that S E ( T w  (F,F) ). If T is a member of the variety % then 

T wr (F,F) E Wr(%,Y) and so we also have that S E Wr(2,Y'). 0 

We now show that p r 0. Suppose that u = w is a law in W r ( 2 , n .  Since 

Y E Wr(%,n, Y satisfies u = w. Therefore, to prove the theorem, we need only show 

that M u )  P Y ~ )  d"y(w). 

Suppose that c(u) u c(w) = {xi,. . .,xm) and that 

c(d%.(u)) u c(d.y(w)) = {yl,. . .,yn). Let T be any generator of 2 ( for e.g., we may take 

T = W(X) ). It is sufficient to show that T satisfies d d u )  = d.y(w). 

Let ti,  ..., tn E T, and let S be the inverse semigroup which is constructed as in 

4.2.4 using ti,. . . ,tn and T d w ) .  By Lemma 4.2.5, S E W r ( Z , n  and so S satisfies 

u = W. Therefore, with si = (vi,pi), u(s1,. . .,sm) = w(s1,. . .,sm) = (v,P), say. Let v be 

the start vertex of u and w in T d w )  (u and w have the same start vertex in Tyfw) since 

u p(Y) w). Set u = dl.. . dk, where di E X u X-1. 

As before, we write 

Again, we write Pd,. ..4 for Pd,Pd2.. $4. 

Now u labels a v-vp walk in T d w )  (see the observation made after the 

construction) and the edge sequence corresponding to this walk is (v,dl,vPdl), 

I (vPdl,d23vPdld2)r (vPdld2,d3,vPdld2d3)~ - - -r(~Pdl...dk_l,dk,~pdl. ..dk). By definition, for any 



i e k, vPdl. . .qw1 y~ = fq if and only if the edge between vPdl. . .g, and vpd,. . .a with primary 

label di has secondary label yq. Thus, 
.- 

Similarly, we obtain v y  = d y  (w)[tl , . . . , tn] and so we conclude that 

dsY(u)[tl,. . . ,tn] = drv(w)[tl,. .. ,tn]. Since the ti were chosen arbitrarily, we have T 

( and hence Z ) satisfies d d u )  = ddw).  Therefore, d d u )  py(Z) d d w )  and u @ w. 0 

Theorem 4.2.6. Let V and Y be varieties of inverse semigroups. Let (FnX),FnX)) 

be the Wagner representation of F q X )  by partial right translations. If T generates Z then 

T w i  (FY(X),FY(X)) generates Wr(V,Y). In particular, 

FZ(X) wr (FY(X) ,FqX))  generates Wr(Z,Y). 

Proof: Clearly ( T wr (FflX),FqX)) ) E Wr(Z,v. Thus, to prove the corollary we 

need only show that if T wr (FT(X),Fm)) satisfies the equation u = w then Y satisfies 

u = w and Z satisfies dy(u) = d d w ) .  

Since FflX) E ( T wr (FY(X),FT(X)) ) we have that 

Y ( T wr (FnX),FflX)) ) and so Y satisfies u = w. Since T generates V, it is 

sufficient to show that T satisfies dy(u) = dy(w). We may now use the proof of 

p 4! in Theorem 4.2.3 to demonstrate this, noting that any semigroup S, as constructed 

in 4.2.4, which is used in this proof is a member of the variety ( T wr (FqX),FflX)) ) 

by Lemma 4.2.5. 



- 
Remark. We cannot in general replace F n X )  in Theorem 4.2.6 by an arbitrary inverse 

semigroup which generates 7T An example well known to group theorists illustrates this 

(cf [N;22.23]): 

Let d 2  be the variety of abelian groups of exponent 2 and let C2 be the cyclic 

group of order 2. Fd2(X) wr C2 is nilpotent of class 2 and so satisfies the identity 

[[x,y],z] = [[x,y],z]2. On the other hand W r ( d 2 , 4 )  does not satisfy this identity. One 

can demonstrate this directly by showing that F a  wr c12 does not satisfy 

[[x,y],z] = [[x,y],z]2 or, by appealing to Theorem 4.2.3, one can simply note that 4 

does not satisfy the identity yly2y3-ly4-l y5y6y7y8-1yg-ly5-l E E; that is, 

dd,(  [[x,y],z] ) is not a law in 4. 

Example. The following diagram (Figure 4.2) is the Schiitzenberger graph of 

w = xlx2xl-1x2-1 relative to the variety 9 1 ,  where v l  = s = e, the start and end vertices 

corresponding to w. Here d d w )  = y1y2y3-1y4-1. 

From this we can conclude that, for any nontrivial group variety %, 

r l )  = 0 9 does not satisfy the equation 

x 1x2x l-lx2-1 = (x lx2xl-lx2-1)2, 

since no group variety other than the trivial variety satisfies the equation 

y iy2~3'ly4'~ = Moreover, Wr(Z(,v does not satisfy 

xlx2xl-1x2-1 E E whenever T 2 9 1  and Z( P (z9'). This is a consequence of 

the fact that only Y and 9' satisfy the equation yly2y3-ly4-1 E E and Proposition 4.3.1, 

the first result of the next section. 



Figure 4.2. The doubly labelled Schiitzenberger graph Tg i(w). 

4.3 Basic Properties of Wr(-,-) 

This section is devoted to several consequences of the main theorem discussed in 

the previous section. We first present some properties of Wr(P,V) and then show that 

when e( is a group variety, Wr(P,Y) is the more familiar variety P o Y, .the 

~ a l ' c e v  product of P and 'Y: 

Proposition 4.3.1. Let P ,  V and 2' be varieties of inverse semigroups. If 

e( G .W and YG 2, then Wr(P,V) c Wr(W,Z). 

Proof: This is immediate from the definition of Wr(-,-). 

Proposition 4.3.2. Let 8 and Y be varieties of inverse semigroups. Then 

{ S wr (T,I) : S E P,  T E Y )  G Z o Y and hence, Wr(8 ,v  G ( 2  0 7). 

' Proof: Let S and (T,I) be inverse semigroups with S E P and (T,I) E 7T Let n; be the 

natural map of S M (T,I) onto T and let p be the congruence induced by n;. Let e E Es. 



Then e = (y,J3) where for all i E d v  = d p ,  iP = i and i v  E Es. Therefore, 

ep = { (y',p) : dvO= dp ) . Since f3 is the identity map on its domain we have, for all 

w',w'~ with dv'= dv ' /  = dp, that (v',P)(v",P) = (vOv",P). Therefore, the map 

@ : ep + S" defined by (v8,f3)@ = v0 is a homomorphism. It is clearly one-to-one and 

so the fact that Sd p E 2 implies that e p  E 2. Since 

S wr (T,I) / p z T E 'Y; we have that S wr (T,I) E 2 0 X Since W r ( 2 , v  is 

generated by { S wr (T,I) : S E 2, T E Y ) ,  it follows that Wr(2,Y) E ( 2 o Y). e 

When 2 is a group variety it turns out that 2 o Y is a variety and 

Wr(%,Y') = 2 o ?? In order to show this, we require a special case of a result due to 

Houghton. 

Lemma 4.3.3 [HI. Let S be an inverse semigroup and let p be an idempotent separating 

homomorphism of S onto T. Then there is a monomorphism of S into 

(ker p) wr (T,T) where T is given the Wagner representation by partial right translations. 

Theorem 4.3.4. Let 2 be a variety of groups and T a variety of inverse semigroups. 

Then Wr(%,V = 2 o Y. 

Proof: Note that, in the setting of the theorem, 2 o Y'is  a variety. 

Let S E % 0 'T and let p be the congruence which witnesses this. Then p is 

idempotent separating and so, by Lemma 4.3.3, S can be embedded in (ker p) wr Slp, 

where S/p is given its Wagner representation. Since ker p is a semilattice of groups 

belonging to Z, (ker p) wr S/p E Wr(%,Z;? and hence S E Wr(%,Y). Therefore, 

Z o 'Tc Wr(%,n.  

Now, W r ( Z , v  E Z 0 'Y; by Proposition 4.3.2 and & OYC W r ( % , n .  

By Theorem 4.2.3, ker p(Wr(%,Y)) = ker p(Wr(Z,7;1) since d d w )  p (Z) dy(w2) if 
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and only if dAw) p (S) ddw2).  Therefore, ker p (8 o 'Y) = ker p (Wr(%,T)). 

But, 'Y"G Wr(%,Y) G % 0 'Y" and tr p(Y') = tr p( % 0 Y) by Lemma 2.7.5, so that 

tr p(Wr(%,Y')) = tr p(% o Y). It now follows that p(Wr(%,Y)) = p(% o 7') and hence 

that Wr(%,Y) = % o 'Y: 

It is not true in general that Wr(%,Y') = ( P  0 'Y") for varieties % and 'Y" of 

inverse semigroups, as the following example illustrates. 

Example. Let % = 9 ,  the variety of inverse semigroups generated by the five element 

Brandt semigroup B2 and let 'Y"= 9, the variety of semilattices. 9 is defined by the 

identity xyx-1 = (xyx-1)2 (See [P;XII.4.8],[Kl] or [R2]). Let w = xyx-1. Now 

w p(Y) w2 and dy(w) is just a relabelling of w since the Schiitzenberger graph of w 

relative to 9' has no two edges with the same (primary) label. ( In fact, rp(w) is just a 

single vertex with four loops labelled by x,y,x-1,y-1 - see Proposition 23.3. ) 

Therefore, dp(w) p ( 9 )  dp(w2). By Theorem 4.2.3, W r ( 9 , f l  satisfies the equation 

w = w2, and so Wr(9 ,9 ' )  G 9. Clearly 9 G W r ( 9 , Y ) ,  and so 

9. = W r ( 9  ,Y). But 9 1, the variety of inverse semigroups generated by the five 

element Brandt semigroup with an identity adjoined, denoted by B$ , is contained in 

( 9 0 9') since B ~ '  is a semilattice of B2 and (1). Since 9 # 9 1 ,  we have 

W r ( 9 $ ' )  # ( 9  09'). 

Proposition 4.3.5. Let %,Y and 2Y be varieties of inverse semigroups. Then 

Wr(% v r V) = Wr(%, V) v W r ( r  T). 

Proof: Set p = p(Wr(% v K V)). Then, for any u,v E (X u X-1)' we have 

u p v a u p(W) v and dv(u) p(P v 'Y") d v  (v) (Theorem 4.2.3) 

u p(Y) v and d d u )  p(%) n p('Y"> d d v )  
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We do not know whether Wr(%, W )  A Wr(T  W) = Wr(% A Y, Y )  for 

arbitrary varieties 8, Y and % but the equality does hold when % and Y are varieties 

of groups and W is a combinatorial variety. The proof of this requires further results 

which are presented in the following chapter and so we leave this proposition until section 

5.3. Another case in which this equality holds is when %,Y and W are varieties of 

groups [N;21.23]. 

Remark. Let Z,Y and W be varieties of inverse semigroups. 1 t  is not m e  in general 

that Wr(%,T A W ) = Wr(%,Y) A Wr(%,W ), nor is it true in general that 

Consider Wr(9, y A B ) ,  where 9' is the variety of semilattices, y is the variety 

of groups and 9 is the variety of inverse semigroups generated by the five element Brandt 

semigroup. 

Wr(9',y A B ) = W ~ ( ~ ' , Y ) = L ?  

while 

W r ( 9 , y )  A Wr(9' ,9) = y m a x  A 9max = 3 A B = 9 # 9'* 

( We will prove in Theorem 5.3.3 that, for any variety of inverse semigroups Y, 

Wr(9', T )  = F a x .  ) 

Now consider Wr(9', d 2  v d 3 )  where d 2  and d 3  are , respectively, the variety 

of abelian groups of exponent 2 and the variety of abelian groups of exponent 3. It is clear 

that Wr(9, d 2 )  v Wr(9, d 3 )  G W r ( 9 , 4  v d 3 )  = Wr(9, d 6 ) ,  where d 6  is the 
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variety of abelian groups of exponent 6. The containment is proper however, as both 

Wr(9,  d 2 )  and Wr(9, d 3 )  satisfy the equation x3 = x9, while Wr(9, d 6 )  does not 

satisfy x3 = x9. This can be seen by considering the Cayley graphs of Z2, Z3 and Z6 and 

using Theorem 4.2.3. 

Lemma 4.3.6. Let T be a full, closed inverse subsemigroup of S. Then os saturates T 

and T/OT is isomorphic to the subgroup of S/os consisting of those og-classes contained 

in T. 

Proof: Let tl,t2 E T. By the definition of os, tl os t2 if and only if for some idempotent e 

in S, tie = t2e. Since T is full, it follows from the definition of o~ that tl os t2 if and only 

if t l  o~ t2. Thus, os restricted to T is o ~ .  If t os s for some t E T and s E S then for 

some idempotent e in S, we have te = se I s. Since T is full, te E T and so, since T is 

closed, s E T. Thus, os saturates T and these og-classes form a group isomorphic to . 

T / ~ T .  

Theorem 4.3.7. Let 2Y and T be varieties of inverse semigroups. Then 

W r ( P , T ) n y  = W r ( 2 Y n ~ , T n ~ ) = ( 2 Y n ~ ) o ( T n ~ ) = ( 2 Y o T ) n ~ .  

Proof: Let S E P 0 T and let p be the congruence on S which witnesses this. We 

consider Slos, the maximal group homomorphic image of S. Now os E p v os and so 

p v os 10s is a congruence on S/os. Moreover, (S/os)/(p v os /US) m S 1 p v os and 

S / p  v o s  G (Slp)  / ( p  v o s / p )  E T ,  since S/p E 7. Therefore, 

(S/os)/(p v os 10s) E T n y . The single idempotent (p v os /os)-class is just 

ker (p v os 10s) = { xos : x E (ker p ) o  ) since eos  (p v os 10s) xos if and only if 

, e ( p  v o s )  x ; that is, x o s  E ker (p v o s  1 0 s )  if and only if 

x E ker(p v o s )  = (ker p ) o  [P;III.5.5]. Now (ker p ) o  is a closed, full inverse 



subsemigroup of S and so it  follows from Lemma 4.3.6 that 

ker (p v o s / o s )  n (ker p ) o  / o(kerp)w. 
- 

We claim that (ker p)w / b(ker p)w 2 ker p / G(ker p). TO see this observe that if 

s E (ker p)o  then there is a t E ker p such that t 5 s. But this means that t = se for some 

idempotent e in (ker p )o  and hence in ker p. Thus, te = see = se and so t p)w s. 

Moreover, for any tl,t2 E ker p, t i  o(ker p)w t2 if and only if ti oker p t2 since ker p is full. 

It follows from these remarks that 

(ker p ) ~  / o(ker p ) ~  n ker p / o(ker E ( 2  o 9) n y = 2 n ye 

It now follows that ker (p v os 10s) E 2 n y. Thus, the congruence p v os /os on 

S/os witnesses that S/os E ( 2  n y) o ( T  n y). 
Let G E Wr(2,T) n y. Then G E ( 2 o T ) ny. Since 2 o Y is closed under 

the formation of direct products and subsemigroups [P;XII.8.2], G = S/p for some 

S E 2 Y? We have just shown that S/os E ( 2 - n  y )  o ( T  n y )  SO we must have that 

by Theorem 4.3.4. It follows immediately from Proposition 4.3.1 that 

W W  n y,Y n y )  c W % T )  n 

4.4 The Associativity of Wr 

The binary operator Wr on the lattice of varieties of inverse semigroups is, in fact, 

an associative operator and so (Y(Jt),Wr) is a semigroup. The proof of this makes use of 

Theorem 4.2.2 - the description of the fully invariant congruence on the free inverse 

semigroup corresponding to Wr(2, T ) ,  for any pair of varieties Z and F of inverse 



sernigroups, and Lemma 4.1.4 - the description of the derived word relative to the variety 

Y* 

We say that the two equations ul = u2 and v l  = v2 are equivalent if each is a 

consequence of the other. Another way of saying this is ul = u;! and vl = v2 are equivalent 

if and only if, for any variety 8 of inverse semigroups, 8 satisfies the equation ul = u2 if 

and only if 8 satisfies the equation vl = v2. 

Lemma 4.4.1. Let 8 and Y be varieties of inverse semigroups and let 

v ,  w E (X u ~ - l ) +  be such that w p ( 8 )  v and dp(w) p (n dr (v) (or, . 

equivalently, w p(Wr(K %') v ). Set 

w =a1 ... an, v =  bl,..bm, where ai,bj E X u X-1, i = 1 ,..., n, 

dz(w) = c l  ... cn, @(v) = dl  ... dm, wherebothwordsareconstructedfromthe 

same doubly labelled Schiitzenberger 

where both words are constructed from the 

same doubly labelled Schiitzenberger 

where both words are constructed from the 

same doubly labelled Schiitzenberger 

Then the equations dddg(w)) = dddp(v)) and dwr(r3)(w) = dwr(yz)(v) are 

equivalent. 
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Proof: We prove the stronger statement that each of the two equations is a one-to-one 

relabelling of the other. That is, we prove the following statements. 

For all i j ,  

1) gi = hj ei = fj; 

2) gi = hj-1 u ei = fj-1; 

3) gi = gj U ei = ej; 

4) gi = gj-l 0 ei = ej-l; 

5) hi=hj  u fi=fj; 

6 )  hi = hj-1 u fi = fj-1. 

1) First of all, observe that 

gi = hj u w I w r ( ~ y )  al.. .ai-lbj.. .bm and ai = bj 

( Lemma 4.1.4 since w p(Wr("Y; Z)) v ) 

u w ~ ( W ~ ( K ~ ) ) W W - l a  l...ai-lbj...bm and a i=b j  

u w ~ ( 2 )  WW-lal.. .ai-1bj.. .bm, 

dp(w) p(Y) dp(ww-lal.. .ai-lbi.. . bm) and ai = bi 

( Theorem 4.2.2 ) 

Next, observe that 

e i=f j  d ~ ( w )  ST cl  ... ci-ldj ... dm and c i = d j  

( Lemma 4.1.4 since dg(w) p(2/3 dg(v) ) 

u ( ~ 1  ... cn)p(2/3(c l... cn)(c l...~n)-l~l..s~i-ldj...dm andci=dj 

(cl ... c n ) ~ ( V ( c  cn)(c l...~n)-l~l...~i-ldj...dm 

w 5% a1 ... ai-lbj ... bm and ai = bj 

( Lemma 4.1.4 since w p(Z) v ). 

( ~ 1  ... cn)p(YJ(c cn)(c l...~n)-l~l...~i-ldj...dm 

w p(Z) WW-lal.. .ai.1bj.. .bm and ai = bj. 



By the hypothesis w p(I)  v and so if w p( I )  ww-la l...ai-lbj...bm we must have 

that dp/(ww-'al.. .ai.1bj.. . bm) = (~1 . .  .cn)(cl.. .cn)-'cl.. .ci.1dj. . .dm. This is because each 

of w, v and ww-lal .. .ai.lbj.. .bm label s-e paths in r2(w) by primary labels. It is clear 

that ww-lal.. .ai-l corresponds to the path labelled (cl.. .cn)(cl.. .cn)-lcl.. .ci-l by secondary 

labels, since T I ( w )  is deterministic. While there may be many paths in TI (w)  

labelled bj.. .bm, the part of ww-lal.. .ai.lbj.. .bm labelled bj.. . bm ends at vertex e. Since 

the s-e path labelled v ends at e, both the bj.. . b m of v and the bj.. . b m  of 

ww-lal.. .ai-lbj.. . bm must correspond to the same edges, since I'I(w) is deterministic. It 

follows that dp/(ww-lal.. .ai.1bj.. . bm) = (~1 . .  .cn)(cl.. .cn)-lcl.. .ci-ldj.. .dm. From these 

remarks we have that 

w p(w w - l a l . .  .ai-lbj.. .bm, dp/(w) p(Y) dp/(ww-lal.. .ai.1bj.. .bm) and ai = bj 

U 

(cl...cn) p(Y) ( ~ 1  ... C~)(CI  ...~~)-~~~...c~.~dj...d~, w p(I)  ~ w - l a ~ . . . a ~ . ~ b j . . ~ b ~  

and ai = bj. 

From this it follows that gi = hj if and only if ei = fi. 

2) We proceed in a similar manner: 

gi = hj-' u w S ~ ~ ( 9 - 8 )  a1 . . . aibj.. . bm and ai = bj-1 

( Lemma 4.1.4 since w p(Wr(T, I )  v ) 

u w p(Wr( r  I )  w - l a l . .  .aibj...bm and ai = bj-I 

w p(w WW-lal.. .aibj.. .bm, 

dp/(w) p(Y) ~*(ww-'al...aibj...bm) and ai = bj-' 

( Theorem 4.2.2 ) 

Also, 

ei=fj-' o d p / ( w ) i ~ c l  ... cidj ... dm and ci=dj- '  

( Lemma 4.1.4 since dp(w) p(Y) dg(v) ) 



u (~1. .  .cn) ~ ( n  (~1..  .cn)(cl. . .cn)-'cl.. .cidj. .dm and ci = dj-1 

u ( ~ 1  ... cn) P(M (C l... cn)(c l...~n)-l~l...~idj...dm 

w + al...aibj...bm and ai= bj-' 

( Lemma 4.1.4 since w p (%) v ). 

u ( ~ 1  ... c ~ ) P ( ~ ( c  cn)(cl ...cn)-1c1...cidj...dm 

w ~(8)  WW-lal.. .aibj.. .bm and ai = bj-1. 

We have by the hypothesis w p(Z) v and so if w p(Z) ww-lal.. .ai.lbj.. . bm we 

must have, as in I), that dp(ww-lal.. .aibj.. .bm) = (CI . . .cn)(cl.. .cn)-lcl.. .cidj.. .dm. It 

follows that 

w p(Z) WW-'a i... aibj ... bm, dp(w) ~ ( 7 )  d%(ww-la i... aibj ... bm) and ai = bj-1 

e 

(~1. .  .cn) p ( n  (~1..  .cn)(cl.. .cn)-lcl.. .cidj.. .dm. w p(%) WW-'al.. .aibj.. . bm 

and ai = bj-'. 

Consequently, gi = hj-1 if and only if e.i = fj-1. 

The proofs of 3), 4), 5) and 6) are similar, noting the remark immediately following 

Lemma 4.1.4. 0 

Theorem 4.4.2. The operator Wr is associative. 

Proof: Let K Y and Z be varieties of inverse semigroups. For any w, v E Fy(X), 

w p(Wr(KWr(KZ))) v u w p(Wr(KZ)) v and 

dwr(%%)(w) P(W dwr(~,p>(v> 

( Theorem 4.2.3 ) 

w I>(%) v, d d w )  p(7) d%W and 

dwr(%%)(w) P (W)  d ~ r ( ~ , k ' , ~ / > ( v >  

( Theorem 4.2.3 ) 
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Theorem 4.4.3. Y ( 3 )  is a monoid with zero under the operation Wr. 

Proof: That ( Y ( 3 ) ,  Wr) is a semigroup is a consequence of Theorem 4.4.2. Since 

wr(,%,YJ = Wr(Z%) = Z!, 'for any kaxjety %, the variety Y is an identity for 

(Y(ye),Wr) and so (Y(ye),Wr) is a monoid. For any variety % of inverse semigroups, 

W r ( 3  ,%) = Wr(Z!,3 ) = 3 and so 3 is a zero of the monoid (Y(3),Wr). 

There are several natural questions which arise as a result of Theorem 4.4.3. For 

example: Which varieties are idempotents? Which varieties, if any, can be expressed as a 

product of two non-trivial varieties? Which familiar classes of varieties of inverse 

semigroups form a subsemigroup of (Y(ye),Wr)? What is the structure of the semigroup 

(Y(Y),Wr)? Is it free? Many of these problems do not have obvious solutions. In 

Chapter 5, once we have equipped ourselves with some facts, we discuss some of these 

questions. 

We conclude this section with some results concerning generators of varieties of the 

form Wr(Z!,Y). 



Theorem 4.4.4. F(Wr(%,Y))(X) can be embedded in F(%) wr (F(Y), F ( n ) .  

It is immediate that O maps { xip : i E o } into 

F(%)(Y) wr (F(n(X),F(v(X)). Since F(%)(Y) wr (F(n(X),F(n(X)) is a member of 

Wr(%,Y) and F(Wr(%,V)(X) is Wr(%,Y)-free, we let O be the unique extension of O thus 

far defined, to F(Wr(%,Y)). 

Let w = a1 ... an and v = bl ... bm where ai,bj E X u X-1, i = 1 ,..., n and 

j = 1, ..., m. Suppose that wpO = vpO. As before we write 

Now 



-- 

and 

and 



- 
We similarly obtain 

Since yl ... y n  p (Z)  zl ... z, we have by the above and Lemma 4.1.4 that 

dAw) p(Z) dAv). It now follows from Theorem 4.2.2 that w p v and hence that O is a 

monomorphism. Thus, O is an embedding of F ( W r ( , ) ( X )  into 

Corollary 4.4.5. For any pair of varieties Z and Y of inverse semigroups, the 

variety Wr(Z,Y) is generated by F(Z) wr (F(V), F(n) .  

Proof: By the definition of Wr, F(Z) wr (F(q ,  F(V) E Wr(Z,Y) and so 

( F(Z) wr (F("1"), F ( n )  ) c Wr(Z,V). On the other hand, by Theorem 4.4.4, 

Lemma 4.4.6. Let A and S be inverse semigroups and suppose that T is an inverse 

subsemigroup of S. Then 

1) If T' is isomorphic to T then A wr (T0,T') is isomorphic to A wr (T,T); 

2)  A wr (T,T) E ( A wr (S,S) ). 

Proof: 1) Let Q, be the isomorphism from T to T'. Let (v,P) E A wr (T,T) with 

dp  = Tt-1 ( and so p corresponds to t E T). Define (yO,P') E A wr (TO,T') by setting 

dp' = ~'(t-l)Q, and defining up' = (uO-lp)Q, = u(tQ,) (and so P' corresponds to tQ,) and 

uy'  = u0-lyf (for all u E dp' ). The map which sends (w$) to (y0,P') is the desired 



isomorphism: Let (y,P),(q,a) E A wr (T,T). To see that this map is a homomorphism, it 

is enough to show that f3 'a' = (pa) '  and that y'P'q ' = (@q)'. It is clear that 

p'a' = (pa)', so let u E dp'a' = d(pa)'. u(yPq)' = (u@-1)yPq = (~@-~yl)(u@-lpq),  

while u(y8P'q') = (uy')(up'q') = (u<li-1y)(uQ>-lp@@-1q) = (u@-ly)(u@-lpq). Thus, the 

map is a homomorphism. Since @ is an isomorphism, it is not difficult to varify that this 

map is indeed a bijection and hence, an isomorphism. 

2) If (y$) E A wr (T,T) then fl corresponds to some t E T E S and dp = Tt-l. Let p' be 

the element of (S,S) corresponding to t. Then dp' = S t 1  2 Tt-1 and it follows that there 

exists a y' such that (y',P') E A wr (S,S) and y' restricted to ~ t - 1  is yl. Given any 

identity satisfied by A wr (S,S) to see that A wr (T,T) satisfies this identity, observe that 

for any substitution of variables from A wr (T,T), say (yl,Pl), ...,(yn,Pn), the identity 

holds by substituting ( ~ 1  ',Pi '),. ..,(yn',pn') and so it must hold when substituting 

Proof: 

and, 



Therefore, by the associativity of Wr, all of these varieties are the same. 



CHAPTER FIVE 

Consequences 

Arrned with the main result of the previous chapter, we set about proving various 

properties of Wr(2,Y) for a given pair of varieties 2 and Y. We first discuss general 

properties preserved under the Wr operation. Included among these are that the Wr(2,9;3- 

free semigroups have solvable word problem (or, Wr(2,V has decidable equational 

theory) whenever the Y-free semigroups and the 2-free semigroups have solvable word 

problem. Also, if 2 and T are locally finite then so is Wr(2,Y). In the second section we 

discuss properties preserved under Wr which are more inverse semigroup related. 

Included here are results concerning E-unitary covers. The penultimate section is devoted 

to showing that Wr(9,7') is in fact the largest variety of inverse semigroups satisfying the 

same idempotent laws as ?T In the final section we look at some basic properties of the 

semigroup (Y(9), Wr) . 

5.1 Further properties of Wr 

Theorem 5.1.1. Let 2 and Y be varieties of inverse semigroups. If W(X) and F q X )  

have solvable word problems then so does FWr(%,Y)(X). 

Proof: By Theorem 4.2.3, we need only show that we can determine whether or not 

d d w )  p(2) d d u )  whenever w p(Y) U. 

Suppose that w = al.. .am and u = dl.. .dk where c(w) u c(u) = {XI,. . .,x,) and 

ai,dj E X u X - l ,  Weconstructwordsvl= bl ... bmandv2=cl  ...ckoverXuX-I 

, satisfying: for i < j Im, 

bi = bj ai=ajandal ... ai-laj ... am 2~ a1 ... am, 

bi = bj- 1 o ai = aj-1 and a1 . . . aiaj. . .am 2~ a1 . . .am, 
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for ic j* ,  

ci = Cj U di = dj and dl.. .di-ldj.. .dk l$i* dl.. .dk, 

ci = cj-l u di=dj-1 anddl ... didj ... dk L$i* dl ... dk, 

and for any i j ,  

bi = cj ai=djandal ... ai-ldj ... dk 2$i* a1 ... ak, 

It is clear from Lemma 4.1.4 that vl  and v2 are one-to-one relabellings of d d w )  

and d d u )  via the correspondence 

where eq (e@ is the edge in T d w )  corresponding to ai (dj) in the path in T d w )  labelled 

by w (u). It follows that v l  p(Z) v2 if and only if d d w )  py(Z) ddu) .  Since W(X) has 

solvable word problem, we can determine whether or not vl p(Z) v2 and hence, whether or 

not d d w )  py(Z) dsv(u). Therefore, if F q X )  and W(X)  have solvable word problems 

then so does FWr(%,T)(X). 

We have used the fact that, if T has solvable word problem, then the natural partial 

order IT is solvable, since w I y u  if and only if w p(T) w l u .  a 

Corollary 5.1.2. If Z is a group variety and T is any variety of inverse semigroups, 

then WoT(X) has solvable word problem if both W(X) and FY(X) have solvable word 

problems. 

Proof: This follows immediately from 4.3.4 and 5.1.1. 

A variety T is said to be locallyfinite if every finitely generated member of Y is 

finite. Equivalently, T is locally finite if and only if every T-free inverse semigroup on a 

finite set of generators is finite. 



Theorem 5.1.3. Wr(I,Y) is locally finite if and only if both I and Y are locally finite. 

Proof: Since both I and Y are contained in Wr(I,Y), if Wr(I,Y) is locally finite then 

so are I and K 

Suppose that I and Y are locally finite but Wr(I ,Y)  is not. Then for some 

n E 0, the Wr(I,Y)-free inverse semigroup on n generators is not finite. Let Xn be a 

subset of X of cardinality n. It follows that there exists an infinite set of words 

{ Wi : i E w ) over XnuXn-l such that, for all i j  E w, Wi is not p(Wr(I,Y))-equivalent 

to wj. Since Y is locally finite, we have as a consequence of Theorem 4.2.3 that there 

exists an infinite subset { Wij : j E w ) of { Wi : i E w ) such that, for all j,k E w, 

wij p(Y) Wik but d( wij ) is not p(I)+quivalent to d( Wik ). 

Let V be the set of vertices aqd E the set of edges incident to any of the paths from s 

to e in rg/(wij) labelled by the wik, k E w, where s and e are the start and end vertices, 

respectively, of rdwij) .  

Let v E V. Then for some wik, v is incident to the path from s to e in ry(wij) 

labelled by wik. Thus, there is an initial segment w' of wik such that w' labels an s-v walk 

in r g ( w i j ) .  It follows from the definition of Schiitzenberger graphs that 

wikwik-' W' p ( n  V. Since C( wikwik-l w' ) E Xn and since FY(Xn) is finite by our 

hypothesis, there can only be finitely many members of V. 

Let (vl,z,v2) E E. Then vl,v2 E V and z E { xl ,..., xn,xl-1 ,..., xn-' ). Since V 

is finite, we have I E I I I V 12 -2n  and so E is finite. 

Since E is finite, it follows from the definition of the derived word that there exists 

an m E w such that c( d(wij) ) G { yl,. . .,ym ) = Ym for all j E w. Therefore, 

, { d(wij) p( I )  : j E w ) is contained in the I-free inverse semigroup on Y,. Since I is 

locally finite, the I-free inverse semigroup on Y, is finite and as a consequence, 
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( d(wij) p(Z) : j s w ] must be finite, contradicting the assertion above that, for all 

j,k E W, d( wij ) is not p(Z)-equivalent to d( wik ). 
- 

Therefore, if Z! and T are locally finite then Wr(%,T) is locally finite. 

In [Kl], Kleiman proved that Y(9'3), the lattice of varieties of strict inverse 

semigroups, is isomorphic to three copies of Y V ) ,  the lattice of group varieties and that 

every strict inverse variety T is equal to ( T n  9) v ( T n  9 ) .  As a consequence, the v- 

class of a strict inverse variety is trivial. Thus, for any group variety Z, % o 9'= Z v 9' = 

Wr(%,m and % 0 9 = % v SY = Wr(Z,9). This is also an immediate consequence of 

Theorem 4.2.3 , Proposition 2.8.3 and the following result. 

Theorem 5.1.4 [Re3]. The collection of Schutzenberger graphs corresponding to the 

variety 9 is the collection of all finite birooted inverse word graphs ,in which each label 

(from X u X-1) occurs at most once. 

Reiliy in fact showed that the 9- f iee  semigroup on countably infinite X can be 

represented faithfully by birooted labelled digraphs which, as it turns out, are the 

Schutzenberger graphs of F 9  (X). Stephen showed directly that the Schutzenberger 

graphs of F 9 ( X )  are the ones mentioned above. We remark that, in the following 

theorem, we do not need to know what the Schutzenberger representation relative to 9 of a 

given word is, but simply that in its Schutzenberger representation relative to $8 each label 

occurs at most once. 

Theorem 5.1.5. If Y E { Z 9 ' , 9  ] then Wr(%,Y) = % v T for any variety % of 

inverse semigroups. 



- 

Proof: It follows from the definition of the derived word, Theorem 5.1.4 and Proposition 

2.8.3 that for T E { Z.Y,S? ), ddw)  is a relabelling of w in Y u Y-1 for any word 

w E (X U X-l)'. It follows h m  Theorem 4.2.3 that Wr(%,T) = % v T. 

5.2 E-unitary covers 

The results of this section are concerned with conditions under which varieties of 

the form Wr(cV)  have E-unitary covers and E-unitary covers over some group variety. 

If we are to use Theorem 4.2.3 in this effort, we require some information about the 

Schiitzenberger graphs of Wmax(X), for V a variety of groups. This information is 

provided by a graphical representation of FfcMrnaX(x) due to Meakin and Margolis [MM] 

which we present forthwith. 

Let % be a variety of groups. Then P = ( X ; p(%) ) is a presentation of W(X) for 

which { xp(P) : x E X ) freely generates W(X). Let T( X ; p(%) ) denote the Cayley 

graph of W(X) relative to P. 

Let M( X ; p(V) ) = { (T,g) : g E W(X) and T is a finite connected subgraph of 

T( X ; p(%) ) containing 1 and g as vertices ), where 1 is the identity of W(X). For each 

finite subgraph T' of T( X ; p(%) ) and each g E W(X), let gT' be the subgraph of 

T( X; p(%) ) obtained by acting on I?' on the left. The set of vertices of g r '  is { gh: h is 

a vertex of T') and the edges of gT' are of the form ( gh, x, ghx ) whenever ( h, x, hx ) is 

an edge in T'. Observe that gT' is V-isomorphic to T'. 

On M( X ; p(%) ) define a multiplication by setting 



where T u gr '  is the graph whose vertices and edges are the union of the vertices and 

edges of T and gr'. 

Theorem 5.2.1 [MM] . M( X ; p(%) ) is an E-unitary inverse monoid generated by the 

graphs ( T,, xp(Z) ) for x E X, where Tx is the graph with vertex set { 1, xp(Z) ) and 

(directed) edge set {(I, x, xp(%)), ( xp(%), x-1, 1)). Furthermore, M( X ; p(%) ) is 

max (isomorphic to) the relatively free X-generated inverse monoid in the variety ZM . 

M( X; p(%) ) satisfies the following properties : 

i) ( T , g ) S  (T',g')ifandonlyifT=T8; 

ii) ( r ,  g ) 5? ( r', g' ) if and only if g-1T = (g')-IT'; 

iii) ( T, g ) 9 ( r', g' ) if and only if T is V-isomorphic to I?'; 

iv) ( r ,  g) is an idempotent if and only if g = 1. 

We are interested in varieties of inverse semigroups (as opposed to monoids) and 

so to make use of Theorem 5.2.1, we require the following result. 

Lemma 5.2.2 . Let% be a variety of groups. Then FWmax(x) is isomorphic (as inverse 

semigroups) to FZMmaX(x) \ { 1 ) , where 1 is the identity of FWMmaX(x). 

Proof: We first must show that S = FWMmax(x) \ { 1 ) is an inverse semigroup. If S is 

not an inverse semigroup then there is a w E (X u X-l)+ such that gMmax satisfies the 

equation w = 1. Let a E X u X-1 be the initial letter in w; that is, w = aw' for some 

w' E (X u X-I)*. Then , since aa-1 is a left identity for w, WMmax must satisfy the 

equation aa-1 = 1. But then for any v E gMmax we must have VV-1 = 1 and 

, \rlv = 1 (by substituting v for a in the first case and v-1 for a in the latter case). Thus, 

F % ~ " ~ ~ ( X )  has a single &"-class and so must be a group. Since this is not the case, 

FZMmaX(X) \ { 1 ) must be an inverse semigroup. 
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If T E zmax, then the monoid T1 E zMmax. This follows from the observation that 

the set of identities ( u = u2 : u = u2 is a law in iY') is closed under deletion. That is, if 

A G c(u) and UA is the word obtained from u by deleting all occurrences of x and x-1 in u 

for all x E A, then UA = uA2 is a law in %. 

Finally, we show that S is free in zmax. Let T be an inverse semigroup in Vmax 

and let f : X + T be a function. Then T1 E zMmax and f can be extended uniquely to a 

homomorphism v of WMmax(X) into TI. Since S and T are inverse semigroups, v maps 

S into T and hence maps only the identity of FWMmax(~) onto the identity of T. Thus, 

x = y Is is a homomorphism of S into T which extends f. If 9 is another homomorphism 

of S into T extending f, then the uniqueness of v implies that 8 = X. Therefore, x is the 

unique homomorphism of S into T extending f. It follows that S = FWmaX (X>. 

Remark. The argument above can be extended in the obvious way to obtain the following 

result. If Y j j  is a variety of inverse monoids which is not a variety of groups, then 

1) for all w E (X uX-I)+, YM does not satisfy the equation w = 1; 

2) if Z is a basis of identities for FM such that no equation in I: contains an 

occurrence of 1, then FYjM(X) \ (1)  is isomorphic to the relatively free 

object on X in the variety of inverse semigroups defined by X. 

It is not difficult to verify that the identity of M( X ; p(%) ) is (Tl,l), where T1 is 

the graph consisting of the single vertex (1)  and no edges. Thus, 

M( X ; p(8 )  ) \ {(T1,1)} is isomorphic to FZmax(x) via the map x which takes 

( r x ,  xp(2) ) to xp(zmax) for all x E X. 

Lemma 5.2.3. Let w E (X u X-I)+ and suppose that 



( r ,  g) E M( X ; p(2)) \ ((T1,l)) is such that ( T, g ) ~  = wp(iYmax). Then the 

Schiitzenberger graph Tgmax(w) of w relative to %/- is V-isomorphic to I?. 

Proof: By Theorem 5.2.1, ( T, g) 2 ( T', g' ) if and only if T = T' and so there is a 

one-to-one correspondence between the vertices of T and the members of the 2-class of 

( T , g). Let the vertex set of T , V(T) = ( g 1 ,'. . . ,gn ). Then the function 

Qv : V(T) + V(T%max(w)) defined by gi $V = ( I?, gi) X, i = 1,. . .,n, is a one-to-one map of 

the vertices of T onto the vertices of Tgmax(w). We then define 

$E : E(r) + E(rg.max(w)) by ( gi, x, gj)$E = ( ( r , g i ) ~ ,  x, ( r , g j ) ~  1, for all edges 

( gi, x, gj) in r. NOW, 

( gi, x, gj) E(T) * gj = gi X P ( ~ )  

( r ,  gi)( rx, X) = ( r u girx, gi xp(W) = ( r, gj) 

* ( r ,  gi)X ( rx, X)X = ( r ,  g j ) ~  

( r ,  g i ) ~  xpWmax) = ( r ,  g j ) ~  

(( r ,  gik, x, ( r ,  g j ) ~ )  E E( rgmax(w)>. 

Thus, $E maps edges of T to edges of T*max(w). Clearly $E is one-to-one. To see that $E 

is onto, let ( vl , x, v2) be an edge in Tgmax(w). Then vl = ( r ,  g i ) ~  and 

v2 = ( T, g j ) ~ ,  say. By the definition of Schiitzenberger graph, ( T, g i ) ~  xp(iYmax) = 

( T, g j ) ~  which implies that ( T, gi) ( Tx, x) = ( T, gj) since x is an isomorphism and maps 

( Tx, X) onto xp(iYm=). But then, ( T u giTx, gjx) = ( T, gj) and SO T u giTx = I' and gi 

xp  ( 8 )  = gj, whence ( gi, x, gj) is an edge in T.  Since ( gi, x, gj) bE = 

(( T, g i ) ~ ,  x, ( T, g j ) ~ )  = ( vl, x, v2), we have that $E is surjective. Therefore, 

$ = ($v, $E) is a V-isomorphism of T onto Tgmax(w). Finally, g $ ~  = wp(iYmax) and 

l $ ~  = (T,l)x = ww-lp(iYmaX), since x is an isomorphism and so must map the 

, idempotent of the 9-class of (T,g) onto the idempotent of the *-class of 

(T,g)x = ~ p ( % / ~ ~ ) .  Thus, $ is a V-isomorphism which maps roots to roots, as required. 
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If ( T,g) and ( T', g') are members of M( X; p(P)) then both I? and T' are 

V-mbeddable in T u gr', since gT' is V-isomorphic to T'. Lemma 5.2.3 then says that if 

u and w are words in X, then Tymax(u) and Tymax(w) are both Vsembeddable in 

Tpnax(uw). Indeed, we have the following: 

Lemma 5.2.4. Let T be a variety of inverse semigroups which has E-unitary covers 

over its group part and let P be a variety of groups. Let u,w E (X u X-I)+. If 

dg(max(uw) p(V d p m x ( u ~ ) ~  and dg(max(u) dmax(u)2 

then 

Proof: Let x be the isomorphism which maps M( X; p (P)) \ { (TI, 1) ) onto 

FPmax(X). Let up(%max) = (T,g)x and wp(Pmax) = (I",g')%. Then uwp(2Pax) = 

(TugT8,gg')x. Now both T and gT' are V-embeddable in T u gr '  and so by Lemma 

5.2.3, Ty-(u) and Ty-(w) are V-embeddable in Tzmax(uw). Let Yl,Y2 &d Yg be the 

secondary label sets of Tgmax(~), Tgmax(~) and Tpmax(uw), respectively. We may 

assume that Y 1 and Y2 are disjoint. 

Define fi Yl u Y2 + Y3 as follows: 

If y E Y1 then y labels an edge eyl in Tgmax(u). Since Tymax(~) is 

V-isomorphic to T, eyl corresponds to an edge ey2 in T which in turn corresponds to an 

edge ey, in I' u gT' via the obvious embedding. Since T u gT' is V-isomorphic to 

Tgmax(~~), ey3 corresponds to an edge ey4 in Tg;lmax(uw). Define yf to be the secondary 

label huW(ey4) in Te/rnax(~w). 

If y E Y2 then y labels an edge eyl in Te/max(~). Since Te/max(~) is 

V-isomorphic to T', ey, correspond to an edge ey2 in T' which in turn corresponds to an 

edge ey, in gT' via the obvious V-isomorphism. Now, ey, corresponds to an edge ey, in 



T u gT" via the obvious embedding and since T u gT' is V-isomorphic to 

Tpmax(uw), ey, corresponds to an edge ey5 in Tpmax(~~). Define yf to be the secondary 

label hw(ey5) in rgmax(uw). 

It follows that f is one-to-one on Y 1 and one-to-one on Y2 (but not necessarily 

one-to-one on Y1 u Y2). Furthermore, f maps Y1 u Y2 onto Yg which is a consequence 

of Lemma 5.2.3 and the fact that the edge set of TugT' is the union of the edge sets of T 

and gT'. Also, f extends uniquely to a homomorphism (also denoted f )  which maps 

(Y 1 u y2)+  onto y3+. It follows from our definition of f that dpmax(uw) = 

(dpmax(u)f) (dpmax(w)f). By the hypothesis, dprnax(u w ) p (T)  dpmax(u w)2 and 

dpmax(u) p(Y) dgmax(~)2 and so, dpmax(u)f ~(7') (dpmax(~)f)2, since f is one-to-one 

on Y1. Thus, dpmax(uw) I f y  dpmax(w)f. By Theorem 2.7.3, FT(Y3) is E-unitary and so, 

as a consequence, dpmax(w)f p(S;? (dpmax(~)f)2. But f is one-to-one on Y2, so 

dpmax(w) p(Y) dpmax(w)2. a 

Corollary 5.2.5. Let T be a variety of inverse semigroups which has E-unitary covers 

(over Tn y )  and let 2! be a variety of groups. Then FWr(Wma)(X) is E-unitary. 

Proof: Set p(Wr('y;Pa) = p and write dC) for dgmax(-). 

Let e,w E (X u X-I)+ be such that e p ew where e p e2. By Theorem 4.2.3 we have 

e p(.Tmax) ew, e p(2!max) e2, d(e) p (Y) d(ew) and d(e) p (Y) d(e2) = d(e)2 with this last 

equality holding by Proposition 4.1.2 since e p(%max) e2. Now F.Tmax(X) is 

E-unitary by Theorems 2.7.3 and 2.7.4, so w p(gmax) w2. But d(e) p(T) d(e)2 and 

d(ew) p (T)  d(e) which implies d(ew) p (T)  d(ew)2. Thus, by Lemma 5.2.4, 

d(w) p(Y) d(w)2 = d(w2) where again the last equality holds by Proposition 4.1.2. 

Theorem 4.2.3 now gives w p w2. Therefore, FWr('y;tP=)(X) is E-unitary. 



Corollary 5.2.6. Let "1T be a variety of inverse semigroups which has E-unitary covers 

and let 2! be a variety of groups. Then Wr(Y,Zcmax) has E-unitary covers (over 

Wr(Y,%max) n ). 

Proof: By Corollary 5.2.5 and Theorem 2.7.3. 

Theorem 5.2.7. Let 2! and Y be varieties of groups and let 2' and Y be varieties of 

inverse semigroups such that 2' has E-unitary covers over Z and Y has E-unitary covers 

over X Then Wr(8,Y) has E-unitary covers over Wr(Z,Y) = Zc o ?T 

Proof: We know that Wr(%",Y) G Wr(2!max,Ymax) by the hypothesis and 

Proposition 4.3.1; The theorem will follow from Corollary 5.2.6 and Theorem 2.7.4 if 

we can show that Wr(Pax,Ymax) n = Wr(Zc,Y). This follows immediately from 

Theorem 4.3.7, however, we include the following argument as it deals with this specific 

case and provides us with a better 'intuitive feel' for why this result should be true. 

Se tU= { W E  (XUX-I)+: w i s a l a w i n ~ }  and 

V =  { W E  (XUX-I)+: w i s a l a w i n ~ } .  

Let U(V) = { u(v~,.  . . ,vn) : u = u(x~,.  . . ,xn) E U and vl,. . . ,Yn E V ) . 

Our first claim is that Wr(Zmax,Pax) E [ w = w2 : w E U(V) 1. It is sufficient 

to show that S wr (T,I) satisfies w = w2 for all S E Zmax, (T,I) E F a x  and w E U(V). 

Let w E U(V), say w = u(v1, ..., vn), where vi = vi[xl, ..., xm(i)], for i =l,.,.,n, and 

u = u[xl,. . .,xn]. Suppose that for an arbitrary substitution of variables, vi takes the value 

(vi,Pi) in S wr (T,I), for i = 1,. . .,n. Since T E F a x  and F a x  satisfies the identities 

, vi = vi2, for i = 1,. ..,n, each pi is an idempotent in (T,I). That is, each Pi is the identity 

map on its domain. We wish to show that u[(vl,P1),...,(vn,Pn)] is an idempotent in 

S wr (T,I). Let u = al.. . ak. Using the same notation as before, we wish to show that 
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(valPa1va2. .pal..~a-lvat,~al.. is an idempotent in S wr (T,I). Since each of the Pi' is an 

idempotent, we have that Pal.. .,, is an idempotent Moreover, for all i E dpal.. .%, 

i ~ ~ a ~ p ~ l ~ a ~ .  .pal--~-lvgt) = (ival)(iblva2). . .(ibl.. .,,v4) = (i%)(iva2). . . ( i W  

since each pi is the identity map on its domain. Since S E Zmm, S satisfies the equation , 

u = u2. Thus, (ival)(iva2). . . (iy4) and hence, i(vapalva2.. . p a l - a - 1  vak) is an idempotent of 

S. It follows from Proposition 3.1.1 (c) that u[(vl,P1),...,(vn,Pn)] is an idempotent of 

S wr (T,I). Therefore, S wr (T,I) satisfies the equation w = w2. From this we obtain that 

Wr(Zmax,Fax) E [ w = w2 : w E U(V) 1. 
Our second claim is that [ w = w2 : w E U(V) ] n y = Z o ?T Observe that 

Up@?) = { up@?) : u E U ) and Vp@?) = { vp 9) : v E V ) are the fully invariant 

subgroups of v ( X )  corresponding to Z and T,  respectively. It follows from Neumann 

[N;21.12] that { w = w2 : w E U(V) ) u { xx-1 = yy-1) forms a basis of identities for 

% 0 Y. 

We may now conclude that 

~ r ( P ~ , ~ m m ) n y r [ w = w ~ : w ~  U(V)] n y = Z o K  

By Theorem 4.3.4 and Proposition 4.3.1, 

2 0 T = Wr(Z,T) r Wr(%mm,Tma) n y. 

Thus, Wr(Pax,Tmm) ny = Wr(2,T) and so Theorem 5.2.7 is proved. 

Corollary 5.2.8. Let T be a variety of inverse sernigroups. 

1) If T has E-unitary covers then, for any group variety Z, 

Z o T = Z o ( T n y ) v ? T  

2) If T has E-unitary covers over the group variety Z then, for any group variety W; 

( % ~ ) v T = ( ~ o % ) v ( ~ o Y ) .  

Proof: 1) By Theorem 5.2.7, Z o T has E-unitary covers over Z o ( Y n  y ) .  Therefore, 

Z ~ ( T n y ) ~ Z o T ~ [ Z o ( T n y ) ] m a x .  But Z o ( T n Y ) c Z o ( T n y ) v Y  



a n d Z o ( Y n y ) v Y  E ; Z O Y ~  [ Z o ( T n y ) I m a x .  T h u s , k e r p ( Z o Y )  = 

ker p( e/ 0 (Yn y) v Y). On the other hand, tr(n = tr( e/ o T )  by Lemma 2.7.5 and 

tr p (  Z 0 ( Y n  y )  v  Y )  = tr [ p (  Z 0 ( Y n  y)) n p ( T ) ]  = 

t r p ( Z o ( Y n y ) ) n t r p ( r ; ? a n d t r p ( Z o ( Y n y ) ) n t r p ( n = t r p ( V .  Thus, 

t r ( V ~ T ) = t r p ( Z o ( Y n y ) ~ Y ) .  Wethusob ta inZoY=Zo(Yny)vZ  

2) By Theorem 5.2.7, TO TG ( T o  Z)max and by the hypothesis YE Zmax and 

hence, YE ( Y o  Z)max. Thus, T o  Z 5;; ( T o  Z )  v YG ( T o  Z)max and 

T o  8 G  ( T o  Z) v ( T o  '7) E ( Y o  Z)max. Therefore, ker p( ( T O  Z) v Y) = 

ker p ( ( Y o  e/) v  (Y o T) ). On the other hand, tr p  [ (TO e/) v T ] = 

tr [ p ( T o  Z )  n p ( T )  ] = tr p ( T o  Z) n tr p ( T )  = tr p ( T )  and 

t r ~ [ ( Y o Z ) v ( Y o Z ; 1 ] = t r [ p ( T o Z ) n p ( T o r ; ? ] = t r p ( T 0 Z ) n t r p ( Y 0 ~  = 

tr p(Yo Z) n tr p ( V  (by Lemma 2.7.5) = tr p(Q. It now follows that (YO Z) v  Y= 

( T o  Z) v ( T o  fY). 

5.3 Wr(9, T )  

The principal result of this section is the following. For any variety Y of inverse 

semigroups, Wr(9,Y) is the largest variety of inverse semigroups which satisfies the 

equations w = w2 whenever Y satisfies w = w2. Throughout this section we will use the 

following convention. If w E (X u ~ - l ) +  and Y is a variety of inverse semigroups, we . 

will write wfy to denote wp(T). 

Theorem 5.3.1. Let Z G Y be varieties of inverse semigroups and let p  be the 

, congruence on FT(X) such that FT(X) I p  E W(X). Then p  is idempotent pure if and 

only if for every w E (X u ~ - l ) + ,  W w )  is V-embeddable in rp(w). 



Proof: Suppose that p is idempotent pure and let w E (X u X-1)'. Define a map @ on 

Sw,, the set of vertices of TAW), by setting v@ = vp. Green's relation S is preserved 

under homomorphism so @ maps Sw, into S w # ,  which is the vertex set of rg(w) since, 

for any v E (X u ~ - l ) + ,  V ' ~ P  = v*. If (v~ ,x ,v~)  is an edge in TAW) then vlxp- = v2 and 

so (vlp)(x'y~) = (v2p). But this means that (vl$)xg = v2@ from which it follows that 

(vl$,x,v2$) is an edge in T*(w). Therefore, @ is a V-homomorphism. 

Suppose that vl@ = v2@ for some vl,v2 E Sw,. Then vl  p v2 and so v l  = v2 

since p n S = E whenever p is idempotent pure. Thus, @ is a V-embedding of T d w )  

into Tg(w). 

Conversely, suppose that Ty(w) is V-embeddable in Tg(w) for every 

w E (X u ~ - l ) + .  Let e,a E (X u X-1)' be such that ep- = e 4  and ep- p ap-. Then 

a* =aa-1%. If @ is the V-embedding of Tp-(a) into T g  (a) then ap-@ = a* and 

aa-lp-@ = aa-lg, since @ maps roots to roots. Since @ is one-to-one on the vertices of 

T d a )  and ag = aa-I*, we must have that ap-= aa-lT and so p is idempotent pure. . 

Lemma 5.3.2. Let 2! Y be varieties of inverse semigroups and suppose that 

Pax = Tmax. If p is the congruence on FVX) such that F W )  I p E W(X) then p is 

idempotent pure. 

Proof: Let w,a E (X u ~ - 1 ) +  be such that wp-= w$ and wp-p a s  

Then ap- p a$; that is, a* = ag2. But then Wmax = a*rnax2 and so, since 

Y G T m a x  = %'max, we have that ap- = a$ and as a consequence, p is idempotent 

pure. 

, Theorem 5.3.3. Let Y be a variety of inverse semigroups. Then Wr(9,Y) = Ymax. 

Proof: First of all, observe that Wr(9,T) G Tmax because, for any w E (X u X-I)+, 

w p(Wr(9,T)) w2 if and only if w p (T)  w2 and dAw) p ( 9 )  dAw2) = d ~ w ) ~ ,  by 
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Theorem 4.2.3 with the last equality by Proposition 4.1.2, and so w p(Wr(Y,T)) w2 if 

and only if w p(T) w2. 

Let p1,p2 be the congruences on FTmax(X) such that 

and let pg be the congruence on FWr(Y,T)(X) such that 

From the preceding lemma we obtain that p1,p2 and p3 are idempotent pure and so, by the 

theorem above, for all w E (X u x-~) ' ,  r p n a x ( ~ )  i s  V-embeddable in 

rwr(g,y)(w) which in turn is V-embeddable in T y  (w). Let w,u E (X u X-1)' be such 

that wpnax = wpnax2, upnax = uymax2 and wpnax p l  upnax. By Theorem 4.2.3, 

w y =  uyand c(d.v(w)) = c(d.u(u)). It follows that r.v(w) = r d u )  and both u and w label 

ww-ly - w y  paths in TAW), Moreover, the ww-ly - w y  path labelled by u in TAW) 

uses only the edges in the k w - l y  - w y  path in r d w )  lab&ed by w. Thus, u labels a 

w w - 1 y - w y  path in the subgraph of I' y (w) consisting of the 

ww-1 y - w y  path labelled by w. Since r p a x ( w )  is V-embeddable in ry(w) ,  this 

subgraph is V-embeddable in r p a x ( w )  and so u labels a WW-lymax - W p a x  path in 

r ~ a x ( w ) .  By Lemma 2.8.1 (c), we have that upnax 2 w p m .  In a similar fashion we 

may demonstrate that w p a x  2 u p a x  and so obtain that wymax = U p a x .  AS a 

consequence, we have that pl  is an idempotent separating congruence. But the only 

idempotent pure and idempotent separating congruence on any inverse semigroup is the 

identical relation E. Thus, pl = E and FTmax(X) G FWr(Y,T)(X). Therefore, Wr(9,T) 

= ( FWr(Y,Y)(X) ) = ( FYmax(X) ) = Tmm. 

We now present some immediate consequences of the preceding Theorem in light 

of some of the principle results obtained thus far. 
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Corollary 5.3.4. Let % and Y be varieties of inverse semigroups. 

a) CWr(Z,Y)lma = Wr(%-,Y); 

b) If % = P a x  then [Wr(%,Y)]ma = Wr(%,T); 

C) Wr(Z,Yma) = Wr(% v 9 , Y )  = Wr(%,Y) v Yma; 

d) If % is not a variety of groups then Wr(Z,Tmm) = Wr(%, Y); 

e) [Wr(%,Y)lms = Wr(W,Y-); 

Proof: a) mr(%,Y)]mm = Wr(9, Wr(%,Y)) by Theorem 5.3.3. Since Wr is 

associative, we have Wr(9, Wr(%,Y)) = Wr(Wr(9,QY) = W r ( P a , Y ) ,  again 

by Theorem 5.3.3. 

b) If Z = P a  then [Wr(%,Y)]ma = Wr(%m=,Y), by part a) and 

Wr(Pax,Y) = Wr(%,Y) by our assumption. 

c) Wr(%,Yma) = Wr(%, Wr(9,Y)) by Theorem 5.3.3. By the associativity of Wr 

we have that Wr(%, Wr(9,Y)) = Wr(Wr(%,Y),T) and 

Wr(Wr(%,fl,Y) = Wr(% v 9 ,  Y )  by Theorem 5.1.5. By Proposition 4.3.5, 

Wr(% v 9 ,  Y )  = Wr(%,Y) v Wr(9, Y )  = Wr(%,Y) v Y m a .  

d) If Z is not a variety of groups then Z v 9 = 8. By part c) above, 

Wr(Z,Ymax) = Wr(Z,Y). 

e) For any variety % of inverse semigroups, Pa  is not a variety of groups. By part 

d) above, W r ( P a , T m a )  = W r ( P a , Y )  and so, by part a), 

[Wr(%,Y)]mm = Wr(%ma,Yma). 

If we let % and Y be varieties of groups in Corollary 5.3.4 (e), then we have that 

, (8 o vmax = Wr(%max,Ymax). Thus, if the variety 2' has E-unitary covers over % 

and the variety 7Y has E-unitary covers over Y then &? G P a x  and 5V c ' F a x  

and so Wr(&?,T) c Wr(Zmax,Ymax) = (% 0 y)max.  Consequently, Wr(.X,Y) 
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has E-unitary covers over g o Y= Wr(Z,fY). As a result, Theorem 5.2.7 is just a 

special case of the results of this section. - 

Corollary 5.3.5. Let "kc and 2' be non-trivial varieties of inverse semigroups and 

suppose that "kc is a strict inverse semigroup with group part Z and combinatorial part K 

a) If 2' is not a group variety then Wr(Z, "kc) = Wr(%", Z) unless Z = Y in which 

case Wr(2', "kc) = 2' v K If 2' is a group variety then 

Wr(%", "kc) = Wr(%", Z) v X 

b) If "kc is not a group variety then Wr(K 2' ) = Wr(Z,Z ) v Wr(K LZ" ). If 3T is a 

group variety then Wr(K LZ" ) = Wr(ZJ?' ). 

c) If a" is a strict inverse variety with group part Z* and combinatorial part Y *  then 

i) Wr(K 2' ) = Wr(Z,P*) v T *  if 3T is a group variety; 

ii) Wr(K 2' ) = Wr(K Z*) if "kc is not a group variety and Z* z F, 

iii) Wr(K LZ" ) = 3T v LZ" if T is not a group variety and Z* = 3? 

Proof: It follows from [Kl] (See [P;XII.2 and XII.31) that if Y is a strict inverse 

variety with group part Z and combinatorial part Y then Y = 2 v Ye 

a) W r  (Z, "kc ) = Wr(a", Z v T ) = Wr(%", Wr(Z,Y )) by Theorem 5.1.5 and 

Wr(2', Wr(Z,Y)) = Wr(Wr(LZ",P),T) by the associativity of Wr. Also from 

Theorem 5.1.5 we have that Wr(Wr(%,%),Y) = Wr(a"3) v K If 2' is not a 

group variety then 9' c 2' and so T G W r ( 9 3 )  whenever Z is not trivial since Y 

has E-unitary covers over every nontrivial group variety and so is contained in 

Zmax by Theorem 2.7.4. But Wr(9,Z) Wr(2',Z ) and as a consequence, 

Wr(%,Z) v T = Wr(%",P). If Z is trivial then Wr(Z3)  v T = 2' v X 

b) Wr(K &?) = Wr(Z v Y, &?) = Wr(Z, v Wr(Y, &?) by Theorem 5.1.5 and 

Proposition 4.3.5. If Y is a group variety then Y= 3'- and so Wr(T 2') = a". 

Therefore, Wr(Z, a") v Wr(K 2') = Wr(Z, Z') v a" = Wr(Z, 2'). 



c) If 2' = Z* v Y *  and Y is a group variety then by part b), 

Wr(K = Wr(Z, Z* v Y*) = Wr(Z,Wr(Z*,T*)) by Theorem 5.1.5 and by the 

associatitvity of Wr, Wr(Z,Wr(Z*,Y*)) = Wr(Wr(Z,Z*),T*). But 

Wr(Wr(Z,Z*),Y*) = Wr(Z,Z*) v Y*. On the other hand, if 2' = Z* v Y *  and W 

is not a group variety then by part b), 

Wr(X A?) = Wr(Z, Z* v T * )  v Wr(K Z* v Y*). Using Theorem 5.1.5 and the 

associativity of Wr, we obtain Wr(K Z) = Wr(Z, Z*) v T *  v Wr(K Z*) v T*.  

But if Y is not a group variety then Y +  Y and so, as in part a), if Z* is not 

trivial, we have that Y *  W r ( 7  Z*) and so 

Wr(X &?) = Wr(Z, Z*) v Wr(K Z*) = Wr(Z v K Z*) ' Wr(K Z*). If Z* is. 

trivialthen W r ( K & ? ) = Z v Y * v Y = Y v % " .  

Proposition 5.3.6. Let Z , T  and Y be varieties of inverse semigroups. If W is not a 

variety of groups then Zma = Ymm implies that Wr(K Z) = Wr(K Y). 

. Proof: If Pa  = Tmm then Wr(W; Pa) = Wr(X Ymax) and so, by Theorem 5.3.3 

and the associativity of Wr, Wr(Wr(X Y),Z) = Wr(Wr(K 3 , T ) .  By Theorem 5.1.5, 

Wr(K 9) = Y v 9' = Y since Y is not a variety of groups. Therefore, 

Wr(% Z )  = Wr(Y, Y ) .  

Proposition 5.3.7. Let Z,Y and W be varieties of inverse semigroups, If 

= Tmm then Wr(Z,Y)ma = W r ( r  Y ) m a ,  but the converse is not true. 

Proof: By Corollary 5.3.4, Wr(Z,Y)ma = Wr(P",Y) and 

W r ( P a , Y )  = Wr(Tma,W) by the hypothesis. Again by Corollary 5.3.4, 

Wr(Yma,Y) = Wr(K Y ) m a ,  and so Wr(Z,W)ma = Wr(K Y)mm. As for the 

converse, consider the wreath-closed variety W2 = [ x2 = x3 1. Now 9 and 9 1 are both 

contained in P2, so Wr(S,P2) = 9 2  = W r ( 9  l,W2) but STma  = 9 + ( 9  l)ma. 



Theorem 5.3.3 deals with varieties which satisfy the same kernel identities'; that 

is, identities of the form w = ~ 2 .  The following results deal with 'trace identities' and are 

the companion results to Theorem 5.3.3. 

Theorem 5.3.8. Let Z , T  and Y be varieties of inverse semigroups. If 

tr p(Y) = tr p(%) then tr p(Wr(Z,W)) = tr p(Wr(TW).  

Proof: Let v and w be idempotents in F3(X) and suppose that v p(Wr(%,W)) w. 

Then, by Theorem 4.2.3, v p ( V  w and d d v )  p(%) d d w ) .  By Lemma 4.1.3, both 

d d v )  and d d w )  are idempotents of F3(Y).  Consequently, v p(W) w and 

d d v )  p ( n  d d w ) ,  and so v p(Wr(zW)) w. Similarly, v p (Wr(xm)  w implies that 

v p(Wr(V,m) w, and the result follows. 

Corollary 5.3.9. For any varieties Z and T of inverse semigroups, 

and 

Wr(Z,s;3 v = Wr(Z v y, T ) .  

Proof: By Theorem 5.3.8, since tr p(Z) = tr p(% v y )  for any variety % of inverse 

semigroups [P;XII.2.2]. Also by [P;XII.2.2], 

. Wr(Z,Y) v = Wr(Z v y, T) v y = Wr(% v y ,  T). 

It is just a conjecture that Wr(Z1 A Z2-, Y) = Wr(Z1, T) A Wr(%2, T ) ,  for 

varieties %1,%2 and Y, but we do have the following special case, as promised at the end 

, of section 4.3. 



Proposition 5.3.10. Let z1 and Z2 be varieties of groups and let Y be a 

combinatorial variety of inverse semigroups. Then 

w r ( Z l  A Z2, V )  = Wr(Zl,V) A WW2, n. 
Consequently, the mapping 

Xy:YW)+44(3 ' )  definedby P+ Wr(Z,Y) ( Z E  Y ( y ) )  

is a lattice homomorphism. Moreover, ~y is one-to-one and so is an embedding of 

Y e )  into Y ( 3 ) .  

Proof: First of all, Wr(Z1 A Z2, gi? E Wr(Z1, V )  A Wr(Z2, V) ,  by Proposition 

4.3.1. Now, 

Wr(Z1,V) A WrW2, V )  n y = (Wr(Z1, n n y )  n (Wr(Z2, Y >  n y > ,  

and by Theorem 4.3.7, this expression is Z1 A Z2. Therefore, both Wr(Z1 A Z2, '7) 

and Wr(Z1, v A Wr(Z2, gi? have the same group parts. By Corollary 5.3.9, 

w r w 1  A Z2, V )  v y = WrW,Yl 

and 

(Wr(Z1,V A W W 2 , V )  v y  = (Wr(Z1,V) v y !  A (Wr(Z2, v v y )  

([P;XII.2.8]) 

= Wr@?,V. 

It follows that both Wr(P1 A 22, V)  and Wr(Z1, gi? A Wr(Z+, belong to the same 

v-class and so Wr(Z1, V )  A Wr(Z2, V )  E; Wr(Z1 A Z2, V),  since Wr(Z1 A 82, 2;3 is 

the maximum member of its v-class. Therefore, 

Wr(Z1 A Z2, gi? = Wr(Z1, 7') A Wr(Z2, V. 

By Proposition 4.3.5 and what we have just done, the map ~y is a 

homomorphism. To see that it is one-to-one, observe that Wr(Z1,T) = Wr(Z2,Y) 

, implies that Z1 = Wr(Z1, Y) n 9 = Wr(Z2, T )  n $2 = 82,  by Theorem 4.3.7, 

since Y is combinatorial. 0 



5.4 Some facts about the semigroup (Y(>),Wr) 

Before we address some of the questions concerning the monoid (Y(Y),Wr) 

alluded to at the end of the previous chapter, we introduce some terminology and notation. 

Following the standard nomenclature of group theory, we call a variety of inverse 

semigroups indecomposable if it cannot be written as the product of two non-trivial factors. 

An obvious example is the variety d p ,  the variety of abelian groups of exponent p, for 

some prime p. If dp = Wr(%,q then both % and 2' are subvarieties of d p ,  and hence 

each must be either dp or Y. Since W r ( d p , d p )  # d p ,  it follows that dp is 

indecomposable. A less obvious class of indecomposable varieties is the class of nilpotent 

varieties of groups [N;24.34]. 

We define a variety 2' of inverse semigroups to be wreath-closed if for every pair 

of varieties Z , Y  E 2', Wr(%,Y) E 2'. The most obvious example of a wreath-closed 

variety is 3, the variety of all inverse semigroups. 

Proposition 5.4.1. Let 2' be a variety of inverse semigroups. Then 2' is an 

idempotent in (Y(Y),Wr) if and only if 2' is wreath-closed. 

Proof: If 2' is an idempotent then Wr(2',Z;3 = "y: If % , Y  c 2' then 

Wr(Z ,m E Wr(KT) = T and so 2' is wreath-closed. On the other hand, if T is 

wreath-closed then, in particular, Wr(2',q E 2'. Since 2' c Wr(2',2;3, we have that 

Wr(K'7') = Y; and 2' is an idempotent. 

Exactly which varieties are wreath-closed is not obvious, though we can narrow 

down the class of candidates significantly. In the process we discover a familiar class of 

varieties which forms a subsemigroup of (Y(Y),Wr). 



Proposition 5.4.2. If Z and Y are combinatorial varieties of inverse semigroups, then 

Wr(Z,Y) is combinatorial. The only non-combinatorial varieties which are wreath-closed 

are y and 3. Included among the combinatorial wreath-closed varieties are Z 9 and Vn 

for all n E 61 (we remind the reader that Q o  = Y and V1 =. 9 ) .  

Proof: Let n E o. It is not too difficult to see that the Schiitzenberger graph of xn 

relative to the variety Vn is just a single vetex with loops labelled x and x-1. It follows that 

dvn(xn) is yn and dvn(xn+l) is yn+l for some y s Y u Y-l. It then follows from Theorem 

4.2.3 that Wr(Vn,Vn) satisfies the equation xn = xn+l and hence that 

Wr(Vn,Vn) 5;; Vn. As a result, not only have we shown that Vn is wreath closed for all 

n E 0 ,  but, since every combinatorial variety is contained in some Vm for some 

m E 0, we have that if Z and Y are combinatorial varieties then so is Wr(Z,Y). 

Since W r ( 9  , 9 )  = 9 v 9 = 9 ,  9 is a wreath-closed variety. Since 

Wr(Z,Y) is a group variety if and only if Z and Y are both group varieties, y is a wreath- 

closed variety. Clearly both Y and 3 are wreath-closed varieties. Suppose that Y is 

some arbitrary wreath-closed variety. If Y is a group variety then Y is wreath-closed if 

and only if Y = y or Y [N;23.32]. Let Z = Y n y be the group part of Y. Since 

Wr(Z,Z) c Wr(K Y)  n y = Y n y = Z, we must have that Z is a wreath-closed variety 

and so must be either y or 5 Since Wr(9,y) = y m a x  = 3 ,  the only wreath-closed 

varieties containing y are 3 and itself. It now follows that all wreath-closed varieties 

which do not belong to { y , 3  ) are combinatorial varieties. 

Corollary 5.4.3. The class of combinatorial varieties of inverse semigroups forms a 

subsemigroup of (Y(4,Wr). 

, Proof: By Proposition 5.4.2, the class of combinatorial varieties forms a subsemigroup 

of ( w a , W r ) .  



The definition of wreath-closed suggests the following connection between wreath- 

closed varieties and certain subsemigroups of (Y(Y),Wr). 

Proposition 5.4.4. If T is a wreath-closed variety then the interval [Z TI is a 

subsemigroup of (Y(Y),Wr). Moreover, T is a zero of this subsemigroup. 

Proof: By the definition of wreath-closed, [L4pl TI is closed under the operation Wr. 

That T is a zero for [Z T ] follows from the fact that, for any 2 E [Z TI, 

T(r; Wr(T,2) E T and T5;; Wr(2,Y) E T. 

Corollary 5.4.5. The lattice of varieties of groups forms a subsemigroup of 

(Y(,a),Wr) with identity r and zero y. For each n E a, the interval [Z Vn] is a 

subsemigroup of (Y(Y),Wr) with identity r and zero Vn. Also {x 9 ,  J ) is a 

subsemigroup of (Y(Y),Wr) which is also a three-element chain (semilattice). 

Proof: This follows from Propositions 5.4.2 and 5.4.4. That (Z 9, 9 ) is a 

semilattice follows from Proposition 5.4.1 and the fact that each variety is wreath-closed. 

From Proposition 5.4.4 we obtain that J is a zero for 9 which in turn is a zero for r a n d  

hence, {Z 9, J ) is a chain. 

Not all subsemigroups of (Y(Y),Wr) have a direct connection with wreath closed 

varieties, as the following illustrates. 

Theorem 5.4.6. Let Fl be a subsemigroup of (Y@),Wr) and let f i  be the family of 

varieties of inverse semigroups which have E-unitary covers over some variety in F l .  

, Then X 2  is a subsemigroup of (Y(Y),Wr). 

Proof: Let 2 ,  T E 552 and suppose that 2 has E-unitary covers over 7Y E Fl and Y 

has E-unitary covers over 2' E F l .  By Theorem 5.2.7, Wr(2,T) has E-unitary covers 



- 

over W r ( X  LZ" ). Since Sl is a subsemigroup of Y e ) ,  Wr(% LZ" ) E Sl and as a 

consequence, Wr(%,Y) E gZi. 

Proposition 5.4.7. Let T be a variety of inverse semigroups. The interval [ K 9 ]  is 

a subsemigroup of (Y(A,Wr). If T= 9 or 9 then T is a right identity of the 

semigroup [ % 9 1 .  Consequently, the only indecomposable varieties in Y(3) are the 

indecomposable group varieties. 

Proof: If Z and W are varieties in the interval [ KY] then YE Z G Wr(Z,Y)  

and so [ 3 1  is closed under the operation Wr. By Theorem 5.1.5, if T is either 9 or 

9 .then, for any % E [ % 3 ] ,  Wr(Z,OY) = % v Y = Z .  As a result, any variety T 

which contains 9 cannot be indecomposable since Wr(K9) = T. That is, the only 

indecomposable varieties are the indecomposable group varieties. 

Some familiar classes of varieties of inverse semigroups do not form a 

subsemigroup of (Y(4,Wr).  

Proposition 5.4.8. Wr(%,Y) need not be completely semisimple if both Z and Y are 

completely semisimple. Wr(%,T) need not be cryptic if both Z and Y are cryptic. 

Proof: Consider Wr(9, y ). Both of 9 and y are completely semisimple cryptic 

varieties but Wr(9, y) = 9 which is neither completely semisimple nor cryptic. 

As far as Green's relations are concerned, we have the following. By ax-trivial 

semigroup we mean a semigroup S in which s x  t implies that s = t, for all s,t E S. 



Theorem 5.4.9. (Y(,a),Wr) is a/-trivial semigroup. 

Proof: If the variety % is in the principal ideal generated by the variety T then TE P 

by the definition of the operator Wr. Thus, if P and T are/-related in (Y(a,Wr) then 

% = Y? Therefore, (Y(Y),Wr) is/-trivial. 9 

A well-known result from the study of varieties of groups is that the semigroup of 

group varieties other than y is freely generated by the indecomposable varieties [N;23.4]. 

That is, every variety of groups can be uniquely factored as a product of non-trivial 

indecomposable varieties. This is not true for Y(*, nor is it true for any of the intervals 

[Z VnIr n E 61. 

Proposition 5.4.10. (Y(a ,Wr)  is not freely generated by its indecomposable 

members. None of the subsemigroups [x Vn], n 2 2, is freely generated by its 

indecomposable members. 

Proof:. Consider the variety SY1. 9 ' ~  9 1  # (91)max and so, by Proposition 5.3,6, 

W r ( 9  1,91) = Wr(Sl,(SYl)max) and so none of the semigroups mentioned in the 

statement of the theorem possess the property of unique factorization. As a result, none of 

the semigroups mentioned in the theorem are freely generated by their indecomposable 

members. 9 

Theorem 5.4.11. (Y@),Wr) is a homomorphic image (as well as a subsemigroup) of 

( H n W r ) .  

Proof: Define the mapping O : Y ( 4  -+ Y@?) by T O  = T n y. Since 

Wr(%,Y) n y = Wr(% n y , T n  y ) ,  for all %,Y E Y ( a ,  it follows that O 

is a homomorphism. Since Y@) t Y ( a ,  O is surjective. 



Since 29) is freely generated by its indecomposable members, the free 

semigroup on the indecomposable varieties of groups is a homomorphic image of 

( y ( a 9 w r ) .  

While the relation v on the lattice of varieties is a congruence, the relation v on the 

semigroup (9(9),Wr) is only a right congruence. 

Theorem 5.4.12. The relation v on Y(9) is a right (semigroup) congruence but not a .  

(semigroup) congruence. 

Proof: Let 2 and T be varieties of inverse semigroups and suppose that 2 v T. 

Then, for any variety % 

,Wr( 2 ,  V )  n y = W Z n , W n ) (Theorem 4.3.7) 

= W r (  T n y , V  n 9 ) (since 2 v  T ) 

= W r ( K  V ) n y  (Theorem 4.3.7) 

and 

W r ( 2 , V ) v y  = W r ( % v Y , V )  (Corollary 5.3.9) 

= W r (  T v y ,  V ) (since 2 v T ) 

= Wr(  T ,  V ) v (Corollary 5.3.9). 

Therefore, Wr( 2 ,  V )  v Wr( K V )  and so v is a right (semigroup) congruence. 

To see that v is not a semigroup congruence, consider the following varieties. 

Since 9 1  is combinatorial, the v-class of d 2  v 9 1 ,  where d 2  is the variety of abelian 

groups of exponent two, is the interval [ d 2  v 9 l, d 2  0 9 1 1. Thus, d 2  v 9 and 

d 2  o 9 1 are v-related. We claim that W r ( 9 , d 2  v 9 1 )  is not v-related to the variety 

W r ( 9 , d 2  0 9 l ) .  First of all, by Theorem 5.3.3, 

and, by Theorem 5.3.3, the associativity of Wr and Theorem 4.3.4, 



W r ( 9 , d 2 ~ 9 1 )  = W r ( 9 , w r ( d 2 , 9 1 )  = Wr(Wr(S?d2),91) = Wr(d2max,91). 

Let w be the word xlx2xl-1x2-1. Now d i m a x  satisfies the identity ww-1 = w-lw. This 

can easily be seen by considering the Cayley graph of the d2-free group and using 

Theorem 4.2.3. 9 1  also satisfies this identity as it is contained in d2rnax.  The 

Schiitzenberger graph of ww-1 (and w-lw) is the one given in Figures 2.2, 4.1 and 4.2. 

From the Schiitzenberger graph we read ddww-l)  = y1y2y3-ly4-1y4y3y2-lyl-1 and 

ddw- lw)  = y4y3y2-lyl-lY1Y2Y3-1y4-~. While it is true that d 2  satisfies the identity 

ddww-1) = ddw-lw), d2max does not. This is because in the Cayley graph of the 

d2-free group on {yl,y2,y3,y4) (which is a 4-cube), the paths corresponding to 

d d w w - l )  and dAw-lw) do not use precisely the same set of edges. It follows that 

Wr(d2*=,91) does not satisfy the identity ww-1 = w-lw. Therefore, the fully invariant 

congruences corresponding to W r ( 9 , d i  v 9 1) and Wr(9, d 2  o 9 1) do not have 

the same trace and, as a consequence, these two varieties cannot be v-related. It follows 

that v is not a semigroup congruence on (Y(fl,Wr). 



CHAPTER SIX 

An Infinite Chain of Varieties 

As was pointed out in the previous chapter, Kleiman [Kl] showed that Y(9Y) 

is isomorphic to three copies of Y@') and that each of the intervals [ 9 , 9 v  y ]  and 

[ 9 , 9  v y] is isomorphic to A?@') (and so, as a consequence, Y(YY) is a modular 

lattice). Y(Y,a> is sometimes referred to colloquially as the first three layers of the lattice 

Y(Y). The 'fourth' layer, [ g l ,  SF v y ] ,  is not nearly as nice. While it is a modular 

lattice (the collection of congruences on an inverse semigroup which have the same trace 

forms a complete modular sublattice of the lattice of congruences on that semigroup), the v- 

classes of its members are not all trivial and, as a result, Y ( 9 1  v 9) is not modular, 

and hence Y(3) is not modular ([Re21 provides one example). In this chapter we show 

that the v-class of 5V v d, for any abelian group variety d, contains an infinite chain of 

varieties and so is far from being trivia!. The technique used is interesting in thzt we m 

only required to know the Schiitzenberger graphs of a given collection of words with 

respect to 9 1  (and not the entire SF1-free object on countably infinite X) in order to 

construct inverse semigroups which are then shown to generate distinct varieties. We 

remark that the variety 9 1 has proved to be rather enigmatic. Even though it is generated 

by a small (6-element) inverse sernigroup and Y(91)  is just a 4-element chain, its 

members are not easily characterized and, as Kleiman proved in [K2], it is not defined by a 

finite set of identities. 



6.1 The variety 281 

In this section we construct inverse semigroups which belong to the variety 9 

which, in subsequent sections, will be used to construct inverse semigroups in Wr(%,91), 

where % is a variety of abelian groups of exponent n, for some n E a. These semigroups 

will be used to define an infinite collection of varieties in the interval 

[% v 9 1 , W r ( ~ , 3 1 ) ] .  Throughout the remainder of this chapter p will denote the fully 

invariant congruence on FY(X) corresponding to 9 l. 

Before we proceed, we require some notation. For any word w E X u X-1, denote 

by WA the word obtained from w by deleting all occurrences of variables not in A. For 

example, (xlx2xl-lx3x2xl) (,, ) is the word xlxl-lxl. 

Lemma 6.1.1. Let w and v be words over X u X-1. Then w p v if and only if 

C(W) = C(V) and for all A E c(w), A # 0 ,  WA p ( 9 )  VA. 

1 Proof: w p v if and only if B: satisfies the equation w = v. Since B2 possesses an 

1 identity, B2 satisfies the equation w = v if and only if B2 satisfies v r ; ~  = VA far a!! . 

A c c ( w ~ )  = ~(vA) .  This is equivalent to c(w) = c(v) and for all A c c(w), A # 0 ,  

WA ~ ( 9 )  VA. 

Corollary 6.1.2. Let w and v be words over X u X-1. Then w p v if and only if 

c(w) = c(v) and for all A E; c(w), A # 0 ,  WA p va. 

Proof: If w p v then by Lemma 6.1.1, c(w) = c(v) and for all A E c(w), A # 0 ,  

WA p ( B )  VA. But then for any A 5; c(w) = c(v), for all B c A, B # 0, wg p ( 9 )  vg and 

so by Lemma 6.1.1, WA p VA. On the other hand, if c(w) = c(v) and for all 

' A c c(w), A t 0, WA p VA, then for all A c c(w), A # 0, WA p ( 9 )  VA. As a 

consequence of Lemma 6.1.1, w p v. 



Lemma 6.1.3. If S E 9 1  then S1 E 9 l. 

P r o o f :  Suppose that 9 1 satisfies the equation w = v, where 

C(W) = C(V) = {xi,. . . ,xn). Let sl,. . . ,s, be arbitrarily chosen elements of S1 with 

repetitions allowed. Suppose that si,,. . .,sik are each the identity of S1. Then S1 satisfies 

w[s17...,sn] = V [ S ~  ,..., sn] if S satisfies W A [ S ~  ,..., sn] = v ~ [ s l ,  ..., sn] where 

A = {X~,...,X~)\{X~,, ..., xi,). Since S E s l ,  S does satisfy WA[S[,. ..,sn] = VA[S~,. ..,sn] 

by Corollary 6.1.2 and so, as a result, w[sl,.. .,sJ = v[sl,.. .,sn] is true in S1. Since the si 

were chosen arbitrarily, S1 satisfies the equation w = v. Therefore, S1 E 9 1 .  

We require some funher notation for this section. Let w E (X u ~ - 1 ) + .  We write 

w E v to mean w and v are identical words, letter for letter, over a common alphabet (in this 

case X u X-1). We say the word v is a cyclic shift of w if w =ulu2 and v = u2ul for 

words ul,uz over the alphabet of w. For each n E w, we denote by zn the equation 

x ~ x ~ . . . x ~ x ~ - ~ x ~ - ~ . . * x ~ - ~ E  E. Observe that if w is the word 

~1x2.. .xnxl-1x2-1.. .x,-1 then any cyclic shift of w can be written ~ 1 ~ 2 . .  .y,yI-1y2-1.. .y,-1. 

The remainder of 6.1 is devoted to a construction of a family of inverse semigroups 

{ S (zn): n E a )  each of which belongs to the variety 9 1. For each n E a, S (zn) is 

obtained from the 91-free inverse semigroup by first identifying the ideal consisting of 

those elements whose 2 - c l a s s  does not lie above the .%?-class of 

~ 1 x 2 . .  . xnxl-1x2-1.. . x n - 1 ~  (which results in an ideal extension of the 9-class  of 

~1x2. .  .xnxl-lx2-1.. .xn-'p, a Brandt semigroup) and then mapping this semigroup into the 

translational hull of the principal factor corresponding to the g -c l a s s  of 

~1x2. .  .xnxl-lx2-l.. .xn-lp. In order to do this we require some knowledge of the 9-class 

1 
I of ~1x2. .  .xnxl-lx2-l. . .xn- P. 



Lemma 6.1.4. Let w = x l  x 2  ... x nx 1 - l x  2-1 ..* x and suppose that 

v = ~ 1 ~ 2 . .  . Y ~ Y ~ - ~ Y ~ ~ .  . .yn-l is a cyclic shift of W. Let a E X u X-1. 

a) vp is an idempotent; 

Proof: a) 28'1 has E-unitary covers over the'variety d 2  of abelian groups of exponent 

two and so is contained in d2max. Since s/2 satisfies the equation v = v2, d2maX and 

hence 28' 1 satisfies v = v2. Thus, vp is an idempotent. 

b) Since vp is an idempotent, if a = yl or a = yn then (vap) S (vp). On the other hand, 

suppose that (vap) S (vp). Then vaa-lv-1 p w-1 and so c(va) = c(v). Thus, a E c(v). 

But (vap) S (vp) also implies that vaa-1 p v. If a = yi-1 for some i, then 

1 1  (vaa-')(yi) = YiYi- Yi- Yi P J yi2, while v(yi) = yiyi-' @J yi2 and SO, by Lemma 6.1.2, 

non-idempotent element of B2, then substituting a for yl  and yn and substituting a-1 for yi, 

yields that (vaa-l) (yl,yi,yn) 6s v(y1,yi,yE). As a consequence, yi must be either yl or yn. 

Lemma 6.1.5. Let w = ~1x2. .  .xnxl-1x2-1.. .xn-l and suppose that u is an initial segment 

of w with w E UU'. Let a E X u X-1. Then wup S wuap if and only if a is the initial 

letter of u' or a-1 is the terminal letter of u, unless u is the empty word, in which case a-l is 

the terminal letter of u'. 

Proof: First suppose that wup S wuap. wup = uu'up Y u'up since u'u is a cyclic 

shift of w and any cyclic shift of w is an idempotent modulo p. Therefore, 

wup S wuap if and only if u'up S u'uap. (This follows from the more general result 

I that t Y s implies that t S ta if and only if s S sa) Since u'u is a cyclic shift of w, we 

have by Lemma 6.1.4 that a is either the initial letter of u' or a-1 is the terminal letter of u. 

For the converse, first note that if a is the initial letter of u' then ua is an initial segment of 
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w and so, since wp is an idempotent, wup 9 wuap. If a-1 is the terminal letter of u then 

letting u E u*a-1 we obtain that wua r wu*a-la r u*a-lu'u*a-la. Since a-lu'u* is a cyclic 

shift of w, a-lu'u*p is an idempotent by Lemma 6.1.4 (a) and as a result, 

wua E wu*a-la i u*a-lu8u*a-la p u*a-laa-lu'u* p u*a-lu'u* E uu'u* a wu*. It is now 

immediate that wup 9 wu*p = wuap. Note that if u is the empty word then the statement 

becomes wp 9 wap if and only if a is the initial letter of w or a-1 is the terminal letter of 

w (which is the terminal letter of u', in this case), by Lemma 6.1.4. 

Lemma 6.1.6. Let w = xlx2.. .xnxl-lx2-1. ..xn-l. For any word v over X u X-1, 

wp 9 vp if and only if v p wu for some initial segment u of w. 

Proof: Suppose that wp 9 vp, say wal ... ak p v, where a1 ,..., ak E X uX-1. We 

prove by induction on k that wal.. .ak p v implies that wal . . .ak p wu for some initial 

segment u of .w. If k = 1 then walp 9 wp implies by Lemma 6.1.4 that.al= xl or xn. If 

a = xl then a1 is an initial segment of w already. If a1 = xn then wal p wwxn. 

1 NQW wWn E XI.. .xnx1-l.. . x ~ , ~ - ~ [ x ~ - ~ x ~ .  . .xnx1-l.. . x ~ _ ~ - ~ ] x ~ -  X, 

xi.. .xnxl". . .xn-1-l [xn-'xl.. .xnxl". . .x~,~- ']  since [xn'lxl.. .xnxl-'. . .x~,~"] is a cyclic 

shift of w and SO [xn-lxl.. .xnxl-l.. .x~,~- ']  p is an idempotent. 

But xl.. .xnxl'l.. . x ~ - ~ - ~ [ x ~ - ~ x ~ .  . .xnxl-l.. . X I  W X ~ . .  .xnxl-l.. . ~ ~ _ ~ ' 1  and SO as a 

consequence, v p W X ~ . . . X ~ X ~ - ~ . . . X ~ - ~ - ~ .  Now suppose that k > 1. wal ... akp 9 wp 

implies that wp 9 wal . . .ak-lp and so, by the induction hypothesis, wal.. .ak-1 p wu for 

some initial segment u of w r uu'. By Lemma 6.1.5, wup 9 wuakp implies that ak is the 

initial letter of u' or ak-1 is the terminal letter of u. If a is the initial letter of u' then 

v p wal.. .ak p wuak and uak is an initial segment of w. If ak-1 is the terminal letter of u 

' then setting u E bl . . . bm we obtain that v p wal . . .ak p wuak and wuak = wbl.. . bmbmml 

E bl ... bm-1[bmu8 bl...bm-l]bmbm-l p bl ... bm-l[bmu' bl ... bm-11 since [bmuO bl ... bm-11 is 

a cyclic shift of w and so must be an idempotent modulo p .  But 
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bl.. .bm-l[bmu' bl.. .bm-l] wbl.. .bm-1 and SO v p wbl.. .bm,l and bl.. .bm-1 is an initial 

segment of w. Since wp is an idempotent, the converse is immediate. 

Schutzenberger graphs provide a concise, visual representation of a L3-class. 

Because of this, in the following theorem we describe the 9-classes of the words 

(xlx2.. .xnxl-lx2-l.. .xn-l : n E a, n > 1 ) relative to the variety 9 in this way. 

Theorem 6.1.7. Let w = xlx2 ... xnxl-1x2-1 ... xn-1. The following graph is , 

V-isomorphic to the Schutzenberger graph of w relative to 9 1, where vl is both the start 

and end vertex. 

Figure 6.1. The Schutzenberger graph of w = ~1x2..  .xnxl-lx2-I.. .xn-l 

with respect to 9 1 .  

Proof: By Lemma 6.1.6 there are at most 2n vertices in the Schutzenberger graph r of w 

relative to 9 1  as there are 2n initial segments of w not identical to w. It is a simple 

exercise to verify, using Lemma that if u and are two proper initial segments 

(that is, u nor u' is identical to w) then wu p wu' implies that u = u'. By Leinma 6.1.5, 

(wulp, x , wu2p) is an edge of r if and only if x-1 is the terminal letter of ul or x is the 

initial letter of ul ', where ulul ' s w. If x is the initial letter of ul ', then wu2 and wulx 

are p-equivalent with both ulx and u2 initial segments of w. Thus, ulx s u2. If x-2 is the 



terminal letter of u l  then ul  = u 1 * x - l  and wul* x -1x p wu2. Since 

wul*p 9 wul E wul*x-lp, we have that wul* p wul*x-lx p wu2. Since both ul* 

and u2 are initial segments of w, wul* = wu2 and so wu2x-1 H wul. Finally, if ul is the 

empty word and .x-1 is the terminal letter of w then x-1 is the terminal letter of 

ww E ww*x-1 p w and hence, ww*x-lx p wu2. But, ww*x-lx p ww* and both w* 

and u2 are initial segments of w, so wu2 E WW*, whence wu2x-1 E ww. 

It follows from these remarks that r is V-isomorphic to the graph described above 

via the map which sends wup to vlul+l, for all proper initial segments u of w. 

Definition 6.1.8. Let F be the 91-free inverse semigroup on X = {xi : i E a). Let wn 

be the word xl...xnxl-l.. .xn-l for each n E W. Denote the ideal {v E F : JV B Jwnp] of F 

by I(zn) and let J(m) = F / I(zn). Now J(zn) is an ideal extension of J ~ , $  which is 

isomorphic to B((1),2n). Let S(zn) be the image of J(zn) under the canonical 

0 homomorphism into the translational hull R(J,$ ) of Jwnp. 

Lemma 6.1.9. S(zn) E 9 1  and S(zn)l E 9 l, for all n E 0, n 2 2. 

Proof: S(zn) is a homomorphic image of the 91-free inverse semigroup on X and so is 

an element of 9 1 .  S(zn)l E 9 1  by Lemma 6.1.3. 

In the following section we will use the S(zn) to construct a family of inverse 

semigroups which belong to W r ( d m , 9  1) but not to dm v 33'1, for m E O. Before we do 

so, we describe the S(zn). 

Lemma 6.1.10. S(zn) is isomorphic to the Wagner representation of the SF1-free 

inverse semigroup on X restricted to Rwnp. 



Proof: By Theorem 2.6.1, since the 9 1-free inverse semigroup is completely 

semisimple. 

An added advantage to using the Schiitzenberger graph description in 

Theorem 6.1.7 is that we can read directly from the graph the image of any word of J(zn) 
0 under the canonical homomorphism into Q(Jwnp ) z 3(Rwnp). S(zn) is generated by the 

image of the xi under the canonical homomorphism and, for each i = 1,. . .,n, the domain of 

the image of xi is the set of vertices v for which there is an edge labelled by xi starting at v 

and v is mapped to the tenninal vertex of that edge. It is straightforward to verify that S(zn) 

is (isomorphic to) the inverse subsemigroup of 3(Rwnp) generated by {ai  : i = 1,. . .,n} 

where for each i, 

dai=(wnxl ... x i - ~ ~ , w n x l  ...xnx1-l...xi-lp) . 

and 

6.2 Inverse semigroups in Wr(dm,SYl) 

The semigroups constructed in section 6.1 can be used to construct semigroups in 

W r ( d m , 9  1) for m E O. By Lemma 6.1.10, S(zn) can be represented as an inverse 

subsemigroup of 3(Rwn) for all n E O. Thus, for any group G belonging to .dm, m E 0, 

G wr (S(zn),RWJ E wr(dm,9 ' ) .  The semigroups we construct in this section are 

' inverse subsemigroups of sernigroups of this form and so belong to Wr(.dm,91). 

For each n E 0, n 2 2, let Cn denote the cyclic group of order n. 



Definition 6.2.1. Let m,n E a ,  m,n 2 2. Let 1 denote the identity of Cm and let g be a 

generator of Cm. Let Amt, Cm wr (S(2n),RWn) be defined as follows: 

Let {q : i = 1,. . .,n) be the generators of S(zn) as described at the end of the 

previous section. F O ~  i = I,.. . 3-1, define the map $i from Rwn into Cm by setting 

d$i = da i  = { w ~ x ~ . .  .x i , l~ ,  wnxl.. .xnxl-l.. .xi-lp) and defining (wnxl,. .xi-l~)$i = 1, 

(wnxl. . .xnx I-'. . . p)& = 1. Define the map $n from Rwn into Cm by setting 

d$n = d a n  = {wnxl.. .xn,lp, wnp) and defining (wnxl.. . ~ ~ - l p ) $ ~  = 1, (wnp)$n = g. 

Then ($i,ai) E Cm wr (S (zn) ,Rwn) for i = 1 ,. . . ,n. 

Let A m ,  = {(wP) E Cm WT (S(zn),RWn) : Idyl = ldPl I 1) 

U {($i,tXi) : i = l,...,n}. 

Define Tm,n to be the inverse subsemigroup of Cm wr (S(zn),RWn) generated by Am,n. 

Observe that Tmt, is an ideal extension of a Brandt semigroup over the group Cm. 11 is not 

difficult to see that Tm9 is in fact the following: 

Lemma 6.2.2. For each m,n E a ,  m,n 2 2, 

a) Tmyn E Wr(dm,S1) but TmpP 9 l ;  

b) T& E W r ( d m , 9  l) but TA, P 9 1 ;  

c) d m  v 9 C Vm,n  ) E Wr(Jm,s l); 

d) d m  v 9' G V&,n ) E Wr(Jm791). 

Proof: TA,, is an inverse subsemigroup of Cm wr (S(%)~,R,~) and S(~n) l  E 9 by 

Lemma 6.1.9. Thus, ~ r f i ,  E Wr(.dm,9 1) by the definition of the Wr operator. As a 

consequence, TmVn E Wr(sdm,9 l) since Tmyn is an inverse subsemigroup of T A , ~  . On 

the other hand, Tmt, is an ideal extension of a Brandt semigroup over Cm and so contains a 

subgroup isomorphic to Cm. Thus, Tmp P 9 since S? is a combinatorial variety. Since 
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1 TmSn is an inverse subsemigroup of Tm,n we also have that ~ 2 , ~ s  9 1. This 

proves both a) and b). 

Both T A , ~  and Tm,n contain subgroups isomorphic to Cm and SO dm E ( TA,, ) 

and dm E ( Tm,n ) since .dm is generated by Cm. The natural homomorphism onto the 

second coordinate maps Tm,, onto an inverse semigroup isomorphic to S(Zn) E SW1, and 

maps onto an inverse semigroup isomorphic to S(Z)' E 9 1 .  Since both S(T)  and 

S(Zn)' contain copies of B:, it follows that .%'I G ( ~ 2 , n )  and 9 l  E ( Tm,n ) *  

Consequently, we have that dm v 9 1  G (Tm,n ) and . d m  v 9 G ( ~ 2 ,  ) It is 

immediate from parts a) and b) that (T  m ,n ) E ( d m  1 )  and 

( T ,  ) ( d m  1). This completes the proofs of c) and d). 

1 Lemma 6.2.3. Let m,n E o, m,n 2 2. Neither Tmtn nor Tm,n satisfies the equation 

Tn. 

Proof: Substitute (&,ai) for xi, i = 1 ,..., n. 

In the following lemma we use the term kernel to mean the minimum nonzero ideal of 

an inverse semigroup, if it exists. 

Lemma 6.2.4. Let m,n E a, m,n 2 2. Tm,n satisfies the equation ~k for k < n. 

Proof: Towards a contradiction, suppose that Tm,, does not satisfy zk for some k < n. 

Assume that k is the least such integer and let (vl,Pl), ...,(vk,Pk) E Tmp be such that 

xi.. .xkx1'l.. .xk-l [(vl,h),  . . .,(vk,Pk)] = (M) is not an idempotent in Tm,n. 

We first make a few observations. 

i) ldPl = 1: If ldPl = 0 then we immediately have that (v,P) is an idempotent. If 

ldPl= 2 then the (vi,Pi) all belong to the same 9-class, namely, the 9-class D of (v,P). 

[This is because Tm,, is completely semisimple and so 9 =J. Thus, the 9-class of 



(y$) is contained in the 9-class of (yi,/3i) for all i. But if ldPl= 2, then the ST-class of 

(y$) is a maximal 9-class in Tm,, and so (y$) is 9-related to (yi,Pi) for all i.] B U ~ D O  

i s  a Brandt semigroup and as  such satisfies z k .  Since 

xi.. .xkxi-1.. .xk-l[(y1$1),. . .,(yk,Pk)l = (y,P) in DO and (\y,p) # 0, we conclude that, in 

this case, (y$) is an idempotent. The only remaining possibility is that ldPl= 1. 

ii) If dJ3 = {v) then vp = v. We know that p is an idempotent of (S(zn),Rw,) since the 

natural homomorphism of Tm,, onto its second coordinate has image S(zn) which, by 

Lemma 6.1.9, is a member of 9 1  and 9 1  satisfies the equation zk. Thus, vp = v. 

iii) If (y$) is not an idempotent then for any cyclic shift yl.. . ynyl-1.. . yn-1 of 

x i  ...x kxl' l... xk'l we have that yl...ynyl-l...yn-l[(yl,P1) ,..., (yk,Pk)] is not an 

idempotent. To see this note that if y 1.. . yny l-1.. . yn-1 is a cyclic shift of xl . . .xkxl-1. . .xk-1 

then ~l..-~n~l-~...~n'~[(~l,Pl),...,(yk,Pk)~ = (y',p? can be expressed as ((Pi7~1)((P2,'y2) 

where (y$) =?(P~.*R)((P~,~I). If {v) = d$ then vy2 E dp* because vyzyly2 = since 

is not an idempotent. 

iv) For some i E {1, ..., k),  ( ~ i , P i )  = ($,,an) or ($n,an)-l. By ii), if d p  = {v) then 

vp = v. Therefore, if (y$) is not an idempotent then qt is not the identity of Cm. The 

only elements of Tm,, which can contribute non-identity elements to v y  are those (y,P) for 

vP1 . Pi-1~i  = g, say, and v P ~ . .  .JkP1-l.. . Pi-l-l~iil  = g-1, since g-1 is the only element of 
' 

ryi-l. Thus, the contributions to this factorization of v y  by Wi cancel and so, if (v,P) is 

not an idempotent, one of the (yi,Pi) must be ($,,an) or (Qn,an)-l. 



v) None of the (vi,Pi) is an idempotent. This follows from the general observation that if 

e = e2 and aebec is not an idempotent then aebec = aea-l(abc)c-lec and so abc cannot be an 

idempotent. Thus, (vi,Pi) an idempotent contradicts the minimality of k. 

As a consequence of the aforementioned observations, the following assumptions 

concerning the (vi,Pi) can be made. First of all, by iii) and iv) we may assume that 

( 1 )  = ( )  Secondly, assume that the k-tuple ((vl,P1),...,(vk,Pk)) contains a 

maximal number of elements from the kernel of TmJ, among the collection of k-tuples from 

Tm,, whose first element is (@,,an) and which witness that Tm,, does not satisfy zk. 

There are two stages to the remainder of the proof. The first stage is showing that 

exactly one of the (vi,Pi) is a member of the kernel of Tm,,. We do this in four parts. 

1) For any i E { l,...,k), both (vi,Pi) and (vi+l,Pi+l) do not belong to the kernel of 

Suppose that both (\lri,Pi) and ( ~ ~ + l , P i + ~ )  belong to the kernel of Tm,,. If dpi, = {vi) and 

follows that 

and 

= (since Cm is abelian) 

As a consequence of this we have that 

is equal to (v,P), which is not an idempotent by assumption. Thus, Tm,, does not satisfy 

the equation zk-2, contrary to our choice of k. Note that under these conditions, k 2 3, by 
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observation iv); In the case k = 3, the conclusion is that Tm;, does not satisfy zl  which is 

absurd since all inverse semigroups satisfy the equation xx-1 E E. 

2) If (vi,Pi) is an element of the kernel then 

i) if dpi = { w x ~ .  . .xjp), then .xjpPi = wl.. .xnxl-l.. .xj-'p; 

ii) ifdPi= { ~ ~ l . . . ~ n ~ ~ - l . . . ~ j - 1 p ) ,  then w ~ . . . x ~ x ~ - ~ . . . x ~ - ~ ~ ~ ~  = W X ~  ... xjp; 

i) We have assumed that (vl,P1) = (qn,Pn) and so i # 1. Let dpi-1 = {vl,v2) (By (1) 

idPi-ll = 2), and suppose that v ~ P ~ - ~  = ul and ~ 2 P i - ~  = ~ 2 .  NOW, Pi-lPi # 0 SO one of ul 

and ~2 must be wxl ... xjp, say ul = wxl ... xjp. Also, Pi-1-'J3i-' # 0 so one of v l  and v2 

must be W X ~ .  . .xjpPi. If v l  = wxl.. .xjpPi then (vi-1,Pi-1) can be replaced by (q, 8) where 

d = {vl )  and v l  B = ul and v l v  = vlvi-1. This new substitution witnesses that TmVn 

does not satisfy zk which contradicts I), above (that is, this new substitution yields Tm,n 

does not satisfy Tk-2 following the argument in (I), above). Thus, v2 = wxl.. .xj~Pi. By 

observation (v), Pi-1 is ap or ap-1 for some p E {1, ..., n). If Pi-1 = ap then 

vlPi-1 = wxl ... xjp implies that vlxpp = wxl...xjp and hence that either p = j or j = n, 

P = 1 and V I  p w x l  ... xj.1 or v l  p wxl ..,x,xl-1. Thus, wx l saex jpP i  = v~ = 

W X ~  .. .xnxl-l. ..xjj-lp, by the definition of ap or wxl.. .xnpPi = v2 = wp, which is what 

we want to prove.. 

If Pi-1 = ap-I then vlPiml = wxl ... xjp implies that vlxp-lp = wl ... xjp and hence 

that v l  p wxl.. .xp and p = j + 1. Note that in this case j # n since if u is an initial segment 

of w, then wuxp-l p wxl.. .xn is impossible by Lemma 6.1.5. Therefore, wxl.. .xjppi = 

~2 = W X ~ .  . .xnxl-l. . . ~ p - ~ - l p  W X ~  . . .xnxl-'.. .xj-l, by the definition of ap-la 

ii) As in (i) we can assume that dJ3i.l = {vl, wxl ... xnxl-1 ... xj-lpbi) and that 

vlPi-1 = wxl.. . xnx 1-l. .. xj-lp. Again, by observation (v), we may assume that 

' Pi-1 = a p  or If Pi-1 = ap then vlxpp = wxl.. .xnxl-1.. .xj-'p and hence p = j + 1 

and vl P W X ~ . .  .xnxl-l.. .xj+l-'. Note that if j = n, wxl.. .xnxl-'. . .xj-lp w and so for any 



initial segment u of w, wuxp p w is impossible, by Lemma 6.1.5. Therefore, by the 

definition of %, W X ~ .  . .xnxl-l.. .xj-lpPi = W X ~  . . .Xjp. 

If Pi-1 = ap-1 then vlxp-lp = wxl.. .xnxl-l . . .xj-lp and so p = j and 

v l  p wxl  ... ~ n x l - l . . . ~ j . ~ - '  or j = n, p = 1, vl  p wxl. By the definition of ap-1, 

W X ~ . . . X ~ X ~ - ~ . . . X ~ - ~ ~ P ~  = W X ~  ... xjp and if j = n, p = 1, wpPi = ~2 = W X ~  ... xnp. 

3) At most one of the (vi,Pi) belongs to the kernel of TmSn. Suppose that (vj,Pj) and 

(vj+p,Pj+p) are two members of the kernel of Tmp and they are the first two such elements 

appearing in the sequence {(~rl ,Pi), . . . , (~k,Pk)).  Let dpj  = {w}, dPj+p = I u l ) ,  

vlPj = ~2 and V l v j  = gl, and ulPj+p = u2 and ulvj+p = 82. The claim is that if (u/,P) is 

not an idempotent then neither is the following: 

xl.. . ~ j . ~ ~ j + ~ - ' .  . . ~ j + p - ~ - ~ ~ ~ + p + ~ .  . .xkxl-'. . . . x ~ + ~ - ~ x ~ + ~ + ~ - ~ .  . .xkml when (vi,pi) 

is substituted for xi for all xi appearing in the expression. If the claim is correct then T,,, 

does not satisfy Zk-2, contrary to our assumptions. Since (vj,pj) and (~j+p,pj+p) do not 

contribute to (where v = dp) it is sufficient to show that the above expression in the 

second coordinate is identical to la, Now, with dp = {v) 



4) Exactly one of the (vi,Pi) is a member of the kernel of TmVn. First of all, observe that 

if none of the (vi,Pi) belong to the kernel then each (vi,Pi) is (Op,ap) or ($p,ap)-l for 

some p. By the definition of the ap if vPl.. . pk E dP1-1 then vP1.. .PkP1-1 = v. This is 

because if v = wup for some initial segment u of w then $1.. .Pk = wu'p for some initial 

segment u' of w and the difference between the lengths of u and u' is not greater than k and 

hence strictly less than n. It follows that $1.. .Pk must be $1. By the same reasoning we 

can conclude that, for all 1 I i I k, v P ~ . . . P ~ P ~ ' ~ . . . P ~ "  =vP l...Pi-i. Since dp = {v), we 

can replace each (vi,Pi) with an element of the kernel and conclude that if (v,P) is not an 

idempotent then neither is the result of this new substitution. But this cannot be since the 

kernel of Tmp is a Brandt semigroup over an abelian group and so satisfies the equation zk. 

Therefore, exactly one of the (vi,Pi) belongs to the kernel of Tm,. This completes the first 

stage of the proof. 

Let (vj,Pj) be the only member of {(vl,Pl),. . .,(yk,Pk)} which belongs to the 

kernel of Tmp. Let dpj = (vl), vlPj = v2 and V I W ~  = gl. We consider the following two 

cases: i) vl p wxl.. .xp; and ii) vl p wxl.. . X ~ X ~ - ' . . . X ~ - ~ .  

i) If vl p wxl.. .xp then v2 = wxl . . .xnxl". . .xp-lp by the first stage, part 2). Since 

(vl,P1) = ($,,a,) and k < n, by the constraints on the (vi,Pi) discussed thus far, for some 

1 < q < j, (%,Pq) = ($n,~)- ' .  Assume q is the least such integer. Because k < n and 

each of the (vi,Pi) is either ($h,ah) or ($h,ah)-', for some h, for 1 < i 5 q, as a 

consequence of the definitions of the ($h,kh), we have that vP l... Pq = v and 



As a result, x q + l  .xkxq+1-l.. .xk-l[(vq+l.Pq+l).. . .,(wI;$~] is not an idempotent if (y$) is 

not an idempotent, contrary to our choice of k 

ii) If v l  p w ~ . . . x ~ x ~ - ~ . . . x ~ - ~  thenv2 p wxl...xp Using a similar argument to that used 

in (i) above, we can assume that ( ~ ~ $ 1 )  is the only (vi,Pi) equal to (+,,an) for i < j. 

Moreover, the same argument can be used to show that at most one of the (vi,Pi) is equal 

to (+,,a,) for j < i I k. In this case, by the constraints on the (vi,Pi) and the definitions of 

the (+i,ai) and their inverses, (vk,J3k) is equal to (+,,an). Thus, the only (vi,Pi) equal to 

(+,,an) are (v1,Pl) and (~k,Pk). But for any inverse semigroup, axaa-lya-1 is not an 

idempotent implies that xy is not an idempotent. It would then follow that T,,, does not 

satisfy the equation a-2, a contradiction. 

The proof is complete if we can show that, for n > 2, T,,, satisfies 22. This is not 

difficult to verify directly: Suppose that ( v  ,P )  E Tm,n is such that 

(+n,an)(v,P)($n,an)-l(v,P)-l is not an idempotent. Since 9 1  does satisfy 22, we have 

that a n p a n - l p - l  is an idempotent. Thus, for all v E da ,Pa , - lP- l  c da, ,  

vanpa,-lp-1 = v. Therefore, both v and van  (which are not equal) are in the domain of 

p. For either v in the domain of a,, there is no pair (v ,P)  in T,,, such that 

dp  = {v,va,). It follows that T m ,  must satisfy 22. e 

Lemma 6.2.5. Let m,n E w, m,n 2 2. T satisfies the equation .rk for k c n, but 

TA,, does not satisfy the equation Q fork 2 n. 

Proof: This is an immediate consequence of Lemma 6.2.4. 

Remark. The only property of the varieties .dm that we used in the construction of the 

' Tm,,'s was that they each satisfied the equations Tn, n E a. This is also true of the variety 

e, the variety of abelian groups. Thus, in a similar way, we can construct a family of 

inverse semigroups { T: ) such that , for each n, T; satisfies the equations Q, for k < n, 
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but T,' does not satisfy the equations ~ k ,  for k 2 n. Moreover, for each n E a ,  

d y v 9 1 G ( ~ , ~ ) ~ ; ~ o 9 ~ .  

6.3 A class of varieties in the interval [dm,S1] 

The inverse semigroups defined in the previous section can be used to define an 

infinite collection of varieties in the interval [ d m , 9 l ] .  Once it is established that the 

interval [ d m , 9  11 is infinite, it can then be shown that other intervals which coincide with 

v-classes are infinite. 

Notation 6.3.1. Let m E a. For each n E a, define the variety Tm,n to be the variety 

of inverse semigroups generated by { T A ~  : k 2 n }. 

Proposition 6.3.2. Let m,n E a ,  with m,n > 1. 

a) satisfies Tj for j < n; 

h) Ym,, not satisfy Tj for j 2 n; 

C) ym,n 2 ym,n+l. 

Proof: a) By Lemma 6.2.5, T& satisfies Tj for j < k. Therefore, each generator of 

%,, satisfies Tj for j < n, and hence ymSn satisfies Tj for j < n. 

b) By Lemma 6.2.3, T& does not satisfy Tn. Since Ti,, is a generator of Tm,n, the 

equation Tn is not satisfied by Ymp. 

C) { ~ r f i , ~ : k ~ n ) ~ { ~ ~ ~ : k 2 n + l } a n d s o  

1 1 Ym,n=(Tm,k:k2n)~(Tm~:k2n+ l )=ym,n+l.  

As a consequence of Proposition 6.3.2, the collection of varieties of inverse 

semigroups { Ym,n : n > 1 } forms an infinite chain in the lattice of varieties of inverse 

semigroups. Furthermore, by Lemma 6.2.2, dm v 9 1 G Ym,n E Wr(dm,9  l). Since 
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'wr(dm,SY1) = dm 0 9 l ,  by Theorem 4.3.4 , and the V-class of dm v 9 1  is the 

interval [ d m  v 9 ',,,dm 0 9 11, we have the following result. 

Theorem 6.3.3. The v-class of the variety d m  v 9 possesses an infinite descending 

chain of varieties. 

Using Theorem 6.3.3, we can show that other intervals in Y(e) are infinite. 

Lemma 6.3.4. Let Y E  [ d m  v 9 1, dn o 911, where dm is the variety of abelian 

groups of exponent m, and let % E [ d m  v 9 1 ,  Then 

Proof: dm E Y and so d m m a  E Fa. Therefore, 

Since ker p ( q  = ker p ( V ) ,  it follows that ker p(% v Y) = ker p(V. 

Also, 

~ E ~ ~ Y E % V Y V ~ = % V ( ~ ~ V ~ ~ ) V ~ = % V ~ ~  

Since tr p(%) = tr p(% v y ) ,  we have that tr p(% v Y) = tr p(%). 

Theorem 6.3.5. Let % E [ d m  v 9 1, dmma].  Then the interval [Z, (dm 0 9 l )  v %I 

contains an infhite descending chain. 

Proof: The function 8 : [ d m  v 9 1, dm o 9 11 -+ [%, (dm o 9 1) v 21 defined by 

Y e  = T v  % is one-to-one on [ d m  v 9 1, dm o 9 1 1  by Lemma 6.3.4 and the fact 

that all varieties Y in this interval are such that tr p ( q  = tr p ( d m  v $1). Clearly 8 is 

' order-preserving, and the result follows from Theorem 6.3.3. 



Corollary 6.3.6. Let % be a cornbinatorid variety contained in dmmax and containing 

9 l. Then the V-class of % v d m ,  that is, [%' v d m ,  dm 0 81, contains an infinite 

descending chain. 

Proof: By Theorem 6.3.5 since % v dm S; [ d m  v 9 1 ,  dmmax]. e 

Remark. The results of this section are true for the variety as well. That is, 

defining the variety Tn to be the variety of inverse semigroups generated by 

{ T: : k 2 n}, the analogous results to Proposition 6.3.2 hold and replacing dm by 

+ in the remaining results of this section yields valid statements. 
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