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Abstract 

This thesis consists of two parts. In Part I, we study concurrency control of distributed 

database systems with emphasis on availability, and in Part 11, we study semantically-based 

concurrency control for a centralized database system. 

In Part I, we concentrate on concurrency control schemes for replicated database systems. 

We start with a slight generalization of the virtual partition protocol by El Abbadi and Toueg, 

which we call Generalized Partition Protocol (GVP). We then show some existing protocols and 

some new ones that are members of the GVP family. We introduce a mathematical structure, 

called bi-coterie, to investigate read quorum and write quorum sets. Next, we introduce the 

Transaction Replication Scheme. Transaction replication eliminates the need for locking remote 

data as required in some conventional concurrency control schemes for distributed database 

systems. 

In Part I1 of this thesis, as an example of a semantically-based concurrency control and a 

proof technique for such schemes, we study nested transaction accessing B-trees. We employ the 

110 automaton model introduced by an MIT research group in the specification and correctness 

proof of this fairly complicated concurrency control scheme. 
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CHAPTER 1 

INTRODUCTION 

Designing a highly available and reliable distributed database system has been an elusive goal for 

the past several years. Similarly, potential concurrency beyond that achieved by the classical locking 

scheme hasn't been fully exploited. In our view, the latter situation is partly due to lack of widely- 

accepted and clear-cut correctness criterion such as serializability as well as lack of a suitable modeling 

technique. As a result, both comct implementation of a new scheme and its correctness proof become a 

rather difficult task. This thesis consists of two parts. In part I, we study concumncy control of distri- 

buted database systems with emphasis on availability, and in part 11, we study semantically-based con- 

currency control for a centralized database system. 

In part I, we concentrate on concurrency control schemes for replicated database systems. There 

are two major advantages in having replicated data in a wide-area distributed system: 

(I) We can improve the reliability of a system since the replicated data act as backup for each other. 

(2) we may improve the response time and reduce the communications cost for read-only transactions 

when we can access global data from the local copy instead of requesting the data from another 

site. 

We start with a slight generalization of the virtual partition protocol by [ElT86], which we call 

the Generalized Virtual Partition Protocol (GVP, for short). This is not so much a concurrency con- 

trol scheme as a paradigm for designing quorum-based schemes with different properties. We then show 

some existing protocols and some new protocols that are members of the GVP family. In GVP, as well 

as in the Dynamic Quorum Adjustment (DQA) scheme due to [Her87], one needs to have a set P of 

read quorums and a set Q of write quorums such that each element of P intersects each element of Q .' 
This condition is satisfied if I H I + I G I > n (X) for each H E P and G E Q ,  where n (X) is the 

Some protocols require that each logical write operation first access a read quorum in P before writing a 
write quorum in Q . 
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number of copies of data object X . There are other (perhaps more desirable in some cases) choices for P 

and Q satisfying the above condition. We introduce a mathematical suucture, called bicoterie to inves- 

tigate such pairs (P ,Q ). 

An old idea that had been totally ignored in database applications until recently is the replicated 

executions of transactions. Transaction replication eliminates the need for locking remote data as 

required in the conventional schemes. While this Transaction Replication Scheme (TRS) eliminates 

the need for remote locking and saves on communications cost, it pays in terms of replicated, redundant 

computations. Therefore, TRS is more suitable for "hot-spot" data that require simple computation, for 

example, the seating plans of an airline reservation system. 

In combining GVP and DQA mentioned above (Section 4.8.4), we find that things get quite com- 

plicated. We feel that on the basis of informal arguments, we may not ,be able to convince ourselves that 

the scheme is correct. Hence we looked into more formal proof techniques. First of all, we made use of 

formalisms based on logic but found that not only are the resulting proofs difficult to read, but also that 

they are very long even for simple protocols. We then studied the I/O automaton model introduced by 

an MIT research group for the specification and correctness proof of concurrency control protocols. It is 

more comprehensible and yields proofs less lengthy than the logic-based approach. 

Although we leave the correctness proof for the combination of GVP and DQA based on the VO 

automaton model for future research, we do make use of the 110 automaton model in part 11. As an 

example of a semantically-based concurrency control and a proof technique for such schemes, we study 

nested transactions accessing B-trees. This scheme is a generalization of the resilient Zphase locking 

. [Mosgl] applied to the B""' tree [Sag86]. We have been able to use the I/O automaton model in the 

. correctness proof of this moderately complicated concurrency control scheme. 

Next we shall give more detailed summaries of the contributions of this thesis. 
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1.1. Quorum-Based Protocols for Partitioned Replicated Database 

We first study the conventional quonun based protocols for partitioned replicated database systems 

[ElT86, ElT891. 

An important result is the derivation of a set of basic criteria necessary for the correctness of any 

protocol that deals with partition failures by using the following techniques: 

(1) quorum consensus, 

(2) virtual partition (each transaction executes with a certain "sequence vector" and there is a different 

quorum assignment for each sequence vector). 

(3) any output schedule has an equivalent 1-copy serial schedule that orders the transactions according 

to the "sequence vectors" with which they are executed. 

The sequence vector of a transaction identifies the "vieww2 of the transaction. For a given repli- 

cated data object X , let rq (v) and wq (v) denote the read quorum set (i.e., the set of read quorums) and 

the write quorum set (i.e., the set of write quorums) for X in "view" v , respectively. Our main criteria 

are: 

Criterion 1: When X is read in view v , at least one copy in each read quorum in v has the most 

up-to-date value in the previous view v' if no writing on X has committed in view v . 

Criterion 2: A view v' is write-disabled for data object X (i.e., no writing on X is allowed in view 

v' ) if X was read in some later view v (i.e., a view v with a "greater" sequence vector than v'). 

We show that the existing protocols such as the virtual partition protocol and dynamic quorum 

assignment [Her871 satisfy these criteria. 

In the original virtual partition scheme [ElT86,ElT89], quorums are restricted to have some 

minimum sizes so that the sum of the sizes of two quorums is greater than the number of copies of the 

The use of the term "view" here is different from that in Chapter 4. 
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data (globally or within a virtual partition). We restate the requirements in terms of intersection of 

quorums and derive new classes of quorums, which give rise to new members of the GVP family. One 

such new class is derived from the theory of finite projective planes [AlS68] (a quorum corresponds to a 

line if the set of copies are taken as points in a finite projective plane). It has the advantage of requiring 

only M physical read/write accesses for each logical read/write access, where n is the number of 

copies of a data object. 

In the quest to find useful members of GVP, we study read quorums and write quorums as abstract 

mathematical objects. The most basic requirement is that each read quorum intersect each write quorum. 

We define an abstract structure called a "bicoterie" as follows: Let U be a set of elements and let A = 

(P ,Q ) be a pair of sets of groups of elements from U . A forms a bicoterie if 

(1) for each group G in P or Q , G # @, 

(2) for each group G in P and each group H in Q , G n H # @. 

(3) for any two groups G and H E P , G r$ H , and for any two groups G and H E Q , G & H . 

Our intention is to use U, P, and Q to model the copies of X ,  the read quorum set and the write 

quorum set, respectively. One desirable property for a bicoterie is to be non-dominated (cf. [GaB85]). 

We show that the classes of quonun set pairs derived from the theory of finite projective plane are not 

dominated by any group of size 6 or less, where n is the number of elements. 

1.2. TRS: Transaction Replication Scheme 

The basic assumptions of the system are the following: 

(1) There is an upper bound of M-delay (sec) on message transmission delay between any two sites. 

(2) Each site has a clock and the clocks at any two sites are synchronized to within C-difS (sec). 

(3) Each site has a unique ID. 
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There are two types of data objects: a data object may be private to one site, that is, only that site 

can update the data object but other sites may read it; or a data object may be public and every site can 

read andlor write it. Transactions are then divided according to the type(s) of data objects they access 

and the way they access the data. In conventional replicated database models, data are all public and 

every transaction can read and write them. Therefore, we first concentrate on systems with only such 

data. 

At regular time intervals, each site broadcasts all transactions submitted at the site during the last 

interval to every other site. If no transactions are submitted, then the null message is broadcast. When a 

site has received all transactions or null messages from all other sites that are sent in the same interval, it 

can start executing the transactions by scheduling them according to a commonly agreed-on total order: 

for example, the submission time concatenated with the submission site ID. The execution can be con- 

current within a site according to a special timestamping scheme which will not abort scheduled transac- 

tions. 

Some related work can be found in [GPD86], [PiG87] and [PiG89], where a Triple Modular Redun- 

dant Database System is designed to achieve high reliability. 

13. Concurrency Control of Nested Transactions accessing B-trees 

Work has been done to enhance concurrency by using the semantics of particular structures of data 

such as B-tree, hashed file, etc. ([LeY81], [Sag86], [Ell87], [VLS87], [ShG88]). However, most such 

semantically-based concurrency control schemes make the simplifying assumption that a transaction 

consists of a single decisive operation [ShG88], such as read, insert or delete. We deal with a more 

realistic and more complicated model, where a database is a collection of search structures ( B - ~ s ) ,  and 

each transaction may be nested and may perform more than one decisive operation. 

Among the known concurrency control schemes for B-trees, the one due to Sagiv [Sag861 can 

probably achieve the highest degree of concurrency. He makes use of the B~ tree proposed in [LeYBl]. 
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A B~ tree is obtained from a B-tree by adding to each vertex a pair (k, p), where k is the highest key 

stored in the subtree rooted at the vertex, and p is a pointer to the next vertex at the same level, called a 

link. In [Sag86], there is no need for 2-phase locking to ensure serializability, since his transactions 

have at most one decisive operation. Search, split and merge operations are non-decisive. 

link We consider nested transactions [LyM86] accessing B-trees, combining the B tree algorithm 

with 2-phase locking. As in [MosSl], a transaction can acquire a lock only if all the holders of 

conflicting locks are its ancestors. (Initially, the root transaction holds all locks.) In applying 2-phase 

locking, in order to take advantage of the B~ tree algorithm, we want to lock the individual vertices and 

keys of a B-tree. 

Serializability is a widely accepted criterion for correctness for conventional schedules. But when 

the semantics of transactions and data are considered, some non-serializable schedules can be considered 

"correct". We propose a correctness criterion, called "strongly-serially correct", which basically says that 

a schedule a is correct if there is a serial schedule P such that no committed "user-visible" transaction 

can tell the difference between a and P. 

We use the YO automaton model [LyM86] to formally describe our system and in proving its 

correctness. Both transactions and data objects are represented by 110 automata. Some of our results 

were presented at the 1989 PODS [Fu89]. 

1.4. Organization of the thesis 

As we mentioned above, the thesis contains two parts. Part I consists of Chapters 2 to 6: Chapter 2 

is a review of the theory of serializability in concurrency control of database systems. Chapter 3 is a 

review of related work, including 2-phase locking, timestamping, and replicated database protocols. 

Readers who are familiar with these areas may skip these chapters. Chapter 4 describes the generalized 

virtual partition protocol (GVP) and related results. Chapter 5 contains a study of bicoteries. Chapter 6 

describes the transaction replication scheme (TRS). Part I1 of this thesis consists of Chapter 7 and 
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addresses concurrency control of nested transactions accessing B-trees, with specification and proofs by 

means of the UO automaton model. 
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CHAPTER 2 

THEORY OF SERIALIZABILITY 

2.1. CONCURRENCY CONTROL 

Concurrency control is concerned with the synchronization of concurrent transaction operations on 

a database. The objective is to preserve "consistency" of the database. Let us illustrate with an example. 

Example: We consider an on-line airline seat reservation system. Suppose that two customers A 

and B who want to book a seat are simultaneously accessing the seat-plan of flight 100 by execution of 

the following two transactions. 

Customer A: read the seat-plan of flight 100, if there is some vacant seat, then mark the seat as reserved 

and assign it to A. 

Customer B: read the seat-plan of flight 100, if there is some vacant seat, thcn mark the seat as reserved 

and assign it to B. 

In the absence of concurrency control, these two transactions could interfere with each other as fol- 

lows: Suppose there is a vacant seat X on flight 100. A's transaction reads the seat-plan, and finds that X 

is vacant. Next B's transaction reads the seat-plan, and also finds that X is vacant. Then A's transaction 

reserves the seat X and assigns it to A. Finally B's transaction also reserves the seat X and assigns it to 

B. Both customers A and B now think that they have seat X which should not happen. 

In the above example, consistency of the database requires that a seat be reserved by at most one 

customer at any time. This example shows why concurrency control is necessary in database manage- 

ment. We also see that if A's transaction and B's transaction are executed serially one after the other, 

then consistency can be preserved. In fact, one widely-accepted criterion for correctness of a concurrency 

control scheme is that a concurrent execution should be equivalent to some serial execution. This is 
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known as "serializability" and will be formally defined next. 

2.2. SERIALIZABILITY IN A SINGLE-SITE DATABASE SYSTEM 

A database system consists of a set D of data objects and a set of transactions T = 

{To, TI, T,, . . . , Tf ). To and Tf are two fictitious transactions called the initial transaction and the 

final transaction, respectively. Transaction To is a write-only transaction that "writes" all the data 

objects in D before any other transaction starts, and Tf is a read-only transaction which "reads" all data 

objects after all other transactions have completed. A read operation Ri [XI of transaction Ti returns a 

value of data object X , and a write operation Wi [XI of transaction Ti updates the value of X . 

The execution of a transaction Ti E T is modeled by a totally ordered set Ti = (Ci , <i), where Xi is 

the set of read and write operations issued by transaction Ti, and <i is a total order on Xi, representing 

the order in which these operations are executed. 

A log (or history or schedule) over a set of transactions T is a totally ordered set L = (C(T), < ), 

where 

(1) T ( T ) = ~ ( , Z ~ ;  

f (2) yi& c < ; 

(3) f o r e ~ e r y A [ X ] ~  G a n d e v e r y B [ Y ] ~  %T)-G,A[X]<B[Y]holds; andforeveryA[X]~ Cf 

and every B [Y] E %T) - Cf , B [Y] <A [XI holds. 

Two operations on the same data object are said to conflict, if one of them is a write operation. For 

two operations A and B in m), we say that A precedes B in L if A < B . 
, , 

Two logs L and L are said to be equivalent, written L E L , if for each data object X and indices i 

and j ,  transaction Ti reads X from transaction Ti in L if and only if Ti reads X from Ti in L . A serial 

log is a log such that for every pair of transactions Ti and Ti, either all of Ti 's operations precede all of 
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Ti *s, or vice versa. A log L is serializable if there exists a serial log L such that L = L . 

22.1. Read-From Graphs and DITS 

The transaction read-from graph (TRF graph, for short) [IKM87] for log L over a set T of tran- 

sactions, denoted by TRF(L), has a node set T and an arc set A. If a transaction Ti reads X from Ti in L,  

an arc (Ti, Ti) E A labeled by X is introduced. This arc is denoted by (Ti ,Ti)%. There are no other 

nodes or arcs in TRF(L). An interval of a TRF graph is a set of all arcs that have the same label and ori- 

ginate from the same node. 

The transaction I 0  graph (TI0 graph, for short) for log L over a set T of transactions, denoted by 

TIO(L), is an arc-labeled directed graph with the node set T u T', where T' consists of dummy nodes as 

defined below, and the arc set A. If Ti reads X from Ti, there is an arc (Ti, Tj) E A labeled by X. If 

Wi [Y] is a useless write (i.e., it creates a value that is overwritten without being read by another transac- 

tion), then we introduce a dummy node Ti ' E T' together with a dummy arc from Ti to Ti ' labeled by Y. 

There is no other node or arc in TIO(L). 

Definition 2.1: ([IKM87]) Let L be a log over a set T of transactions. A total order << on the node 

set of TIO(L) is a disjoint-interval topological sort (DITS, for short), if it satisfies the following two 

conditions: 

(1) if Ti << Ti, then there is no path from Ti to Ti in TIO(L), and 

(2) if Th << T, and there are two arcs labeled by X from Th to Ti and Ti to T, in TIO(L) # h ), then 

Ti << Ti. 0 

Intuitively, if TIO(L) has a DITS, then it can be ordered linearly by the order <<, so that all the arcs 

are directed from left to right (condition (I)), and no two intervals labeled with the same data object 

overlap (condition (2)). 
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Theorem 2.1: [IKM87] A log L is serializable if and only if TIO(L) has a DITS which orders To 

first and Tf last. 

22.2. Serialization under Conflict-Preserving Constraints 

It is shown in [Pap791 that testing whether a given log is serializable is, in general, NP-complete. In 

[IKM87], some conflict-preserving constraints on serialization order are imposed so that testing if a 

given log is serializable under some such constraints can be performed in polynomial time. The follow- 

ing is the definition of the constraints. 

Definition 2.2. Let h = (Z(T),<) be a log, X be some data object, 

(a) [ww-constraint] If Wi [XI < W, [XI, then Ti must be serialized before Ti. 

(b) [wr-constraint] If Wi [XI < R, [XI, then Ti must be serialized before T, . 

(c) [rw-constraint] If Ri [XI < W, [XI, then Ti must be serialized before T, . 

(d) [IT-constraint] If Ri [XI < R, [XI, then Ti must be serialized before T, . 

A log L is said to belong to classes WW, WR, RW, and RR, respectively, if L is serializable under 

constraints (a), (b), (c), and (d). The set of serializable logs satisfying both the wr- and rw-constraints is 

called WRW (also called DSR in [Pap791 and CSR (conflict serializable) in [BHG87]) and it properly 

includes WW. WRW can be recognized in polynomial time. Recognizing WR, RW, RR is NP-complete. 

. 23. SERIALIZABILITY IN A REPLICATED DATABASE SYSTEM 

In a distributed database system, data objects may be replicated at different sites. The copy of a 

data object X at site i is denoted by Xi. A data object and its copies are called logical data object and 

physical data objects, respectively. The user, when writing transactions, specifies accesses to logical 
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objects. When a transaction Ti executes, the system uses a translation function zi to translate logical 

operations into a set of one or more physical operations, i.e., Wi [XI is translated to Wi [Xu], Wi [X,], 

. . - , Wi [X, 1, where Xu, - - . , X, are some copies of X and Ri [XI is translated into Ri [X, ] for some copy 

X, ofX. 

The execution of a set of transactions in a distributed database system with replicated data objects 

can be modeled by a replicated log (or rd log) [BeGSl]. A replicated log over a set T of transactions {Ti 

= ( Ci :ii )) is a partially ordered set L = (m, <) such that 

f 

(1) Z(T) = u 2i p i ) ,  where zi is the translation function for Ti ; 
i=o 

(2) for each i and any two operations pi and qi in Ci, if a E T~ (pi ), b E zi (qi) and pi <i qi , then 

(3) all pairs of conflicting physical operations are < related (two physical operations conflict if they 

operate on the same physical copy of a data object and at least one of them is a write operation); 

and 

(4) T contains two fictitious transactions To and Tf . To is translated into a set of physical write opera- 

tions, one for each copy of each data object, and these precedes all other physical operations. Tf is 

translated into a set of physical read operations, one for each logical data object, and these are pre- 

ceded by all other physical operations. 

A transaction Tj reads X from another transaction Ti in a rd log L = (VT), <) if there exists a 

copy Xu such that (1) Wi [Xu 1 and R, [Xu 1 are operations in VT); (2) Wi [Xu ] < Rj [Xu 1; and (3) there is 

no Wk [Xu ] such that Wi [X, ] < W, [Xu ] < R, [Xu 1. 

A rd log L ,  is equivalent to another log L,, if both L ,  and L2 have the same read-from relation. A 

rd log is one-copy serializable (1C serializable) if it is equivalent to a 1 copy serial (1C serial) log over 

the same set of transactions. 
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If in a rd log L = mT), <) transaction Ti reads X from Ti, then the arc from Ti to Ti in TIO(L) 

should be labeled by X ,  i.e. , the arc is labeled by a logical data object. The TI0 graph of a rd log is 

defined in the same way as the TI0 graph of a log in a single-site database. 

Theorem 22: [Che88] A rd log L is serializable if and only if TIO(L) has a DITS which orders To 

first and Tf last. 0 
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CHAPTER 3 

RELATED WORK 

3.1. CONCURRENCY CONTROL PROTOCOLS 

3.1.1. 2-PHASE LOCKING (2PL) 

Two phase locking (2PL) was introduced in [EGL76]. The basic 2PL follows the two phase rule 

which states that once a transaction releases any lock, it may not subsequently obtain any more locks. To 

avoid deadlocks, transactions may obtain all the locks before execution; this is conservative 2PL. In 

this variation, if a transaction Ti is waiting for a lock held by T, , then Ti holds no lock, and deadlock is 

not possible. Cascading aborts occur if a transaction T, has read from a transaction Ti which aborts, so 

that T, must also abort. In order to avoid cascading aborts, we may use Strict 2PL, where a transaction 

Ti keeps all its locks until it aborts or commits so that no transaction Ti can read from Ti until Ti com- 

mits. 

3.1.2. TIMESTAMP ORDERING (TO) 

The basic TO dictates that if an operation of Ti arrives after some conflicting operation of another 

transaction T, has been scheduled and Ti has a greater timestamp than T i ,  then Ti is aborted and resub- 

mitted with a greater timestamp. To avoid cascading aborts, we may use Strict TO, where in writing a 

data object X ,  a transaction would mark the object inaccessible to subsequent reads until it aborts or 

commits. This is similar to write-locking the data object X . 

In a distributed system, to avoid aborting scheduled transactions, we can use Conservative TO 

[BeG81]. As with Conservative 2PL, one assumes that transactions predeclare their readsets and 
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writesets. An operation of a transaction is always scheduled after all conflicting operations of transac- 

tions with smaller timestamps. TO is simpler than distributing 2PL, where coordination among all sites 

is needed to handle distributed deadlocks. 

3.2. COPING WITH FAILURES: A REVIEW 

In a distributed database system, different kinds of failures can occur. One of them is a site failure, 

which can be either fail-stop or a Byzantine failure. 

In fail-stop failures, a site just crashes, losing all the information it had in volatile memory before 

the crash; thereafter no transaction operation takes place at the site until it is repaired. In general, fail- 

stop can be handled by using checkpoints and a transaction log to recover a consistent state of the data- 

base [BeG83, Gra791. A database is in a consistent state, if the values of all its data objects are the same 

as the results of serially executing each transaction completely before starting a new transaction. 

In [NeT88], a hierarchy of failure severity is described as follows: 

Crash failure: (or fail-stop failure) A faulty processor fails by halting prematurely. It may lose the 

data contained in main memory, but the data contained in stable storage [LaS76] is unaffected by 

the failure. There are a number of techniques for increasing the probability that a site behaves as if 

it failed only in the fail-stop mode [ScS83]. 

Send-omission failures: A faulty site may fail not only by halting, but also by occasionally omit- 

ting to send some of the messages that it should send. 

General-omission failures: A faulty site may fail by halting, or by omitting to send and/or receive 

messages. 
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Arbitrary (or Byzantine) failures with message authentication: A faulty site may deviate arbitrarily 

from its prescribed behavior. However, sites use a message authentication mechanism so that 

faulty sites or links can neither alter messages nor spontaneously generate spurious messages that 

claim to be from other sites. 

Arbitrary (Byzantine) failures: A faulty site can have arbitrarily behavior and sites do not have 

access to built-in message authentication. 

With Byzantine failures, no assumption is made about the behavior of a faulty site. Many existing 

replicated database protocols (e.g., protocols to be discussed later in this section) cannot cope with 

Byzantine failures. Instead, fail-stop failures are usually assumed. With Byzantine failures, a set of 

faulty sites might cooperate to disrupt correct communication among other sites. There has been a great 

deal of research on the theoretical aspect of the problem. In this thesis, however, we shall not consider 

Byzantine failures, since the overhead of coping with such general failures are normally too high to be 

practical. In practice, therefore, some provisions are often made to convert those failures which are 

difficult to cope with into fail-stop failures. In the rest of this chapter, we shall discuss partition failure 

handling with replicated data. 

Network partitioning may be caused by l i i  failures or site failures. A link failure occurs when the 

direct (i.e., not going through other sites) physical connection between from one site a to another b has 

broken down. A link failure is clean if it disrupts the direct physical connection from a to b and that 

from b to a at the same time. 

To make these definitions more formal, we define relation R between two sites a and b as follows: 

a R b iff messages from a can reach b within a time-out period. 

A link failure has occurred if for some a and b , a R b has been true and is now false. Thus, link failures 

are clean iff relation R is reflexive (i.e., a R b implies b R a ) .  We say that partition failures are clean 

iff relation R is reflexive and transitive (i.e., a R b and b R c implies a R c ) .  
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When a partition failure occurs, we say that each site a is in a "partition seen by a", which is the set 

of sites x such that a R x and x R a .  Therefore, in a clean partition failure, the partition seen by two 

sites will be either disjoint or identical, and any two sites in the same partition can communicate and any 

two sites in different partitions cannot communicate. In an unclean partition failure, it may happen that a 

site a can communicate with b and with sites in a set P , while b cannot communicate with P . In this 

case, the partition seen by a contains b and P . while the partition seen by b contains a but not P . 

It is not possible for a site to instantaneously track the partition failure accurately. Since partition 

failures occur dynamically, while a site a thinks that it can communicate with a group of sites S ,, a link 

might have failed or have been repaired so that the group of sites it can communicate with is actually S, 

#S,. 

A partitioned database protocol must solve two problems: 

(1) Correctness must be maintained within the part of the database operated on by the sites comprising 

the partition, and 

(2) Correctness must be maintained across all partitions, despite dynamic changes of the topology of 

the network. 

Many solutions are based on the simple observation that a sufficient (but not necessary) condition 

for correctness is that no two partitions execute conflicting data operations (in addition to the use of a 

correct algorithm within each partition). 

A partition-handling strategy must also solve the following two problems. 

. (1) Atomic Commit: The database is faced with the problem of atomically committing ongoing tran- 

sactions in spite of the partitioning. This problem arises in any distributed database system 

whether it is partitioned or not. 

(2) Recovery: When partitions are reconnected, mutual consistency between copies in different parti- 

tions must be reestablished. That is, the updates made to a logical data object in one partition must 
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be propagated to its copies in the other partitions. 

The second problem may be solved by extra bookkeeping whenever the system partitions. For 

example, each update applied in a partition can be logged, and this log can be sent to other partitions 

upon reconnection. Such a log may be integrated with the recovery log that is already kept by many sys- 

tems. Hence an efficient solution is likely to depend on the normal recovery mechanisms. 

In [Che88], there is a discussion on prevention protocols, which are protocols that make sure that 

the global execution consisting of a l l  the operations granted in individual partitions is serializable. These 

are pessimistic strategies as classified in [DGS85]. 

In this section, we review the handling of partition failures by prevention protocols. 

PREVIOUS WORK 

The general strategy used for prevention protocols is to define a mutually exclusive condition for 

read and write operations on the copies of the same logical data object. If a write operation on a data 

object is allowed in one partition, then usually any read or write operation on copies of the same logical 

data object is not permitted in any other partition. 

(1) Primary Sitelcopy [Alsberg and Day 1976; Stonebraker 19791 

Alsberg and Day [AID761 used the notion of "primary site" to implement read-write exclusion. In 

their primary site model, a single site is designated as the primary site and every readlwrite access to 

any data object must first be granted by the scheduler at that site. In the original proposal, locking was 

used by the scheduler. However, this scheme is too centralized, causing a bottleneck at the primary site. 

Also, a failure of the primary site will jeopardize the whole system. In the case of a partition failure, only 

the transactions submitted in the partition which contains the primary site can be executed. 
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Stonebraker modified the idea of primary site by "distributing" the primary site. Instead of one pri- 

mary site, one copy of each data object is designated as the primary copy [St0791 of that data object and 

these primary copies are distributed at different sites. Any access to a data object must be preceded by 

the locking of its primary copy. In this scheme, there are no longer severe bottlenecks. Moreover, in the 

case of a partition failure, more than one partition might be able to execute transactions. However, this 

scheme also has some shortcomings. 

(1) There might be distributed deadlocks. 

(2) If the access demand on a primary copy within the partition in which it resides is relatively low in 

comparison with that from other partitions, then availability degrades. 

(3) This approach works well only if site failures are distinguishable from network failures. If this is 

the case and the primary copy site for a data object fails, a new primary copy can be elected (for a 

discussion of election protocols, see [Gar82]). However, if it is uncertain whether the primary copy 

site failed or the network failed, the assumption must be that the network failed and no new pri- 

mary copy can be elected. 

(4) This approach cannot take advantage of local copies for logical read operations. 

(2) Voting [Thomas 1979; Gifford 19791 

The first voting approach was the majority consensus algorithm [Tho79]. Gifford [Gif79] 

presents a generalization of that algorithm which uses a simple and elegant "voting scheme" to enforce 

read-write exclusion. In this approach, every copy of a replicated data object is assigned some number of 

votes. Every transaction must collect a read quorum of q, (X) votes to read a logical data object X and a 

write quorum of q, (X) votes to write the logical data object X . In other words, a transaction at a site si 

can execute a read (write) operation on logical data object X only if there are at least qr (9,) votes of X 

located within the partition to which si belongs. In order to achieve mutual exclusion, 
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(1) q, + q, must exceed the total number of votes v assigned to the object. 

(2) q, > v/2 

The first condition ensures that read and write operations on the same data object are not performed 

in two different partitions. The second condition guarantees that a write operation on a data object done 

in one partition will exclude any write operation on the same logical data object in the other partitions. If 

read operations are much more frequent than write operations, then a "read-one write-all" approach can 

be applied, where each read quonun consists of only a single element, and hence the local copy of a data 

object can always be chosen as the read quorum for a logical read operation. The voting approach has the 

following weaknesses: 

(1) There might be distributed deadlocks. 

(2) Availability degrades if the access demand on a data object within the majority partition is rela- 

tively low in comparison with that from other partitions. 

(3) Suppose that data objects are fully replicated and each copy has a vote of one. In order to accom- 

modate partition failures where the size of the majority partition may be close to n/2 (n is the 

number of sites), the write quorums must have close to n/2 votes, so that the read quorums also 

have close to n 12 votes. This means that read-intensive databases cannot really take advantage of 

the local copies. 

(3) Missing Writes [Eager and Sevcik 19831 

To fix the last disadvantage above, Eager and Sevcik [East331 have proposed the missing writes 

algorithm which is a variant of Gifford's voting scheme. In this scheme, a transaction normally consid- 

ers a read operation as the reading of any copy and a write operation as the writing to all the copies. 

However, this is only possible when there is no partition failure. Once a partition failure is detected, the 

system goes into the "partition mode", in which Gifford's scheme of mutually exclusive quorums is 

used. If some c o ~ v  cannot be u~dated. a transaction T becomes "aware" of a missing: u~date and must 
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run in the "partition mode". Quorums must now be obtained for each data object. This missing update 

iMormation is then passed along to al l  subsequent transactions that need the information. These transac- 

tions also become aware of missing updates and must run in the "partition mode". Missing update infor- 

mation is posted at sites, along with a description of what transactions need the information The major 

advantage of this scheme is a reduction in the overhead of reading when there is no failure. One disad- 

vantage is that during a partition failure, each logical read has to access a read quonun of data copies, 

thus reducing availability. 

(4) Virtual Partition [El Abbadi et al. 19861 

Abbadi, Skeen and Christine [ESC85], and later El Abbadi and Toueg [ElT86], modified Gifford's 

scheme to the "virtual partition scheme". They attempt to track changes in the network topology as 

closely as possible without being constrained by the need to cope with the changes instantaneously. A 

virtual partition as seen by a site is a set of sites the site assumes that it can communicate with. A data 

object is accessible in a virtual partition, if the partition has a majority of its copies. This scheme permits 

cheaper read operations. (We can choose to use the read-one write-all approach in a virtual partition.) In 

return, it must be made sure that all the copies have the most up-to-date value when a virtual partition is 

formed. This is done by a view-update transaction. Such bookkeeping incurs a lot of overhead when- 

ever there is any change in the network's topology. (See Section 4.2 for more details.) 

(5) Dynamic Quorum Adjustment [Herlihy87] 

In this protocol, each operation is associated with a set of quorums (a quorum being a set of data 

copies that the operation must access). Each object has a quorum assignment table which binds quorum 

assignment to each level (a row of the table). The most up-to-date version of the data object at each level 

is maintained. An object's quorum assignments must satisfy the following "quorum intersection invari- 

ant": Ifwrites to that object are enabled at level 1 ,  then each write quorum at level 1 must intersect each 

read quorum at levels greater than or equal to 1 .  A quorum assignment at a level can be used if a user 
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transaction can execute logical read (write) operations by selecting read (write) quorums from the 

quorum assignment at that level. If a partition failure occurs in such a way that a higher level assignment 

can be used in place of the current level, then no bookkeeping is necessary for the adjustment. The 

quorum assignment at a level may change via a "deflation" process which is similar in nature to a view- 

update transaction of the virtual partition protocol, but since the process is done on a per object basis 

instead of a per site basis, the overhead will be smaller. However, the overhead in storing the assignment 

tables for each object can be excessive. More details of this protocol are described in Section 4.8. 
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CHAPTER 4 

A FAMILY OF VIRTUAL PARTITION PROTOCOLS 

4.1. INTRODUCTION 

Replicated database systems hold a great potential for achieving higher database availability and 

faster accesses. The subject of replica control for replicated distributed database systems has recently 

been of intensive research interest (for surveys, see [DGS85], [BHG87] Chap. 8). In most known con- 

currency control schemes for replicated distributed database systems which are resilient to partition 

failures, transactions in only one partition with the majority of "votes" for a logical data object X are 

allowed to read and write X.  In particular, if each data object is replicated at all sites and each site has 

one vote for each data object, then only the partition with the majority of sites can write any data object. 

This is the case for such schemes as weighted voting [Gif79], missing writes [EaS83] and virtual parti- 

tion [ESC85]. This restriction is undesirable in many applications since, if the network is partitioned into 

three or more groups, each having only a minority of sites, then no partition will be able to write any data 

object. Even if the network is always partitioned in such a way that the majority partition exists, minority 

partitions suffer. We are interested, therefore, in protocols that do not give the sole right to the majority 

partition. 

The major motivation behind the work reported in [ESC85] and [ElT86] was to make read opera- 

tions (which are more numerous than write operations in most applications) less expensive in the face of 

partition failures. The virtual partition protocol (VP) of [ElT89] presents the most recent results by El- 

Abbadi and Toueg in this direction. Here we carry these efforts a step further. We propose the general- 

ized virtual partition protocol (GVP), abstracting and generalizing the idea behind VP. GVP is 
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presented in terms of general conditions to be satisfied. The main concept is that of a read (write) 

quorum for a data object X, which is a set of copies of X that need to be accessed in order to perform a 

logical read (write) operation on X. (See Sec. 4.2.) Therefore, GVP can be considered both as a paradigm 

for, and as a family of, replica control protocols, and different protocols can be derived from it by choos- 

ing appropriate quorums, depending on the needs of particular applications. We also present a simple 

correctness proof for GVP. 

As an example of a protocol belonging to GVP, we then design a new protocol, called the small 

partition protocol (SP), combining the ideas of primary copy [St0791 and quorum consensus. As in the 

primary copy scheme, each data object X is "owned by one site S(X). While in [St0791 S(X) is 

selected dynamically to be the lowest-ordered copy of X (the copies of each data object are totally 

ordered) in the majority partition, we assign S (X) statically. During a partition failure, only the partition 

containing the site S (X) is allowed to access X, and reading and writing within the partition is quorum- 

based. (Unlike the primary copy scheme, reading need not access the copy at S (X)). If the ownership of 

data object is evenly distributed, every partition will be able to access some data objects, and the amount 

of accessible data will be roughly proportional to the size of the partition. SP will work well if most 

transactions access only one data object. If a transaction accesses many data objects, however, the proba- 

bility that all of them are accessible within a partition will be small. 

We also design another protocol belonging to GVP, based on the theory ofjinite projective planes 

[AlS68]. A similar idea was used in [Mae851 for achieving mutual exclusion in decentralized systems. 

This results in the finite projective plane protocol (FP), which requires accesses to only 1-1 copies 

for each logical read or write access to data object X , where n [XI is the number of copies of X . 

VP and SP are also members of a family of Vote Assignment Protocols, VAP, which is a sub- 

family of GVP. Thus, the correctness of GVP implies the correctness of all its members, in particular, all 

protocols in VAP, and the three protocols, VP, SP and FP. 
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Virtual partitions, also called views in [ElT86], are defined as follows. Intuitively, the view of a 

site s contains all sites with which s assumes it can communicate, i.e., the partition that s thinks it 

belongs to, although it need not always reflect reality. We find this concept of virtual partition or view 

very helpful in partition handling. This is because the real partitioning is too elusive to keep track of; it is 

not possible for a site to always know what partition it is in. One approach is to make use of views and 

make the execution equivalent to a 1C serial schedule (recall the definition in Chapter 2) that orders tran- 

sactions according to a total ordering of the views. We derive some criteria which such protocols should 

satisfy and show that any member of GVP and dynamic quorum adjustment (with a proper definition of 

views in terms of the "levels" in the protocol) in [Her871 satisfy these criteria. 

4.2. REVIEW OF VIRTUAL PARTITION PROTOCOL (VP) 

In this section, we briefly review the VP protocol as presented in [ElT89]. Note that the terminol- 

ogy used here is somewhat diffcrcnt from the original and we present VP in a slightly generalized form 

(as pointed out later in this section). For each data object X , there are two positive integers, A, [X 1 and 

A, [XI, called read and write accessibility thresholds, respectively, satisfying 

where n [XI denotes the total number of copies of X. Thus, a set of copies of X of size A, [XI has at 

least one copy in common with any set of copies of X of size A, [XI. Each site maintains a set of sites 

called its view. Views are totally ordered according to their unique view-id's, which are non-negative 

integers. 

Each copy of a data object has a version number = cV-id, k>, indicating that it was last written in 

view V with view-id V - id and that its value is the result of the kth update in that view, where k = 0 

indicates the initial value written by the "view-update transaction" (see below). A "less than" (or "larger 
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than") relation is defined among version numbers by their lexicographical ordering. (I.e., a version 

number <V l-id, k is less than <V,id, k2> if V ,-id < V,id , or V ,-id = V,id and k < k2.) 

In view V, each logical data object X is assigned, if possible, read and write quorum sizes? 

q, [X ,V] and q ,  [X ,V], which specify, respectively, how many copies of X must be accessed to, respec- 

tively, read and write X in view V.  (An access operation on a copy may return only its version number, 

not its value. In this thesis, readindwriting a value is also called an access.) In our terminology, a view 

read (write) quorum for data object X in view V, is a set of copies of X that can be accessed to perform 

logical read (write) on X in view V. rq (X ,V) (wq (X ,V)) denotes the set of all view read (write) 

quorums for X in V. Let n [X ,V] be the number of copies of X that reside at sites in view V. The 

quorum sizes must satisfy the following conditions. For all X and V, 

These ensure that each view write quorum for X in V, if any, has at least one copy in common with each 

view read quorum for X in V (by Eq. (2)) and with any view which has at least A, [XI copies of X (by 

Eqs. (1) and (4)). If there are at least A, [XI copies of X in view V, then we say that X is inheritable4 in 

V. If n [X,V] < A, [XI, then there is no choice for q, [X,V] which satisfies Eq.(4); in this case both 

rq (X ,V) and wq (X ,V) will be 0. 

In [ElT891 q, [X .V] and q, [X ,V] are called quorums. 

This is our own terminology, not used in [ElT89]. 
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Consider a transaction T executing at a site s having view V with view-id V-id. (In this case we 

say that T executes in V .) It can read or write copies at another site s' only if s' also has view V with the 

same view-id. (Ways to relax this restriction are discussed in [ElT89].) If rq (X ,V) # 0 then the logical 

read operation RT [XI by transaction T executing in V with view-id V-id is implemented as follows (the 

steps R3 and W3 are justified in the paragraphs that follow): 

R1: Access all copies in a view read quorum in rq (X ,V) at sites having view V with view-id V-id, 

R2: Determine vnmax = 4 k h a x ,  k>, the maximum version number among the accessed copies, and 

R3: If V - id z Vidmax , then abort T, else read a copy in rq (X ,V) with version number vnmax. 

Note that in [ElT89], X cannot be read in V unless X is also inheritable in V. We relax this 

requirement by allowing a read operation on X in V once X has been "initialized" in V. (See condition 

(3) in Section 4.3.) This will make it possible for two concurrent partitions (under different views) to per- 

form both read and write operations on the same logical data, provided that some transaction has per- 

formed a write without read on the data. 

If wq (X ,V) + 0 for view V with view-id V-id , then the logical write operation WT [X ] by transac- 

tion T executing in V is implemented as follows: 

W1: Access all copies in a view write quorum in wq (X ,V) at sites having view V with view-id V-id , 

W2: Determine vnmax = <Vidmax, k>, the maximum version number among the accessed copies5, and 

W3 Update the copies in a view write quorum in wq (X ,V) and change their version numbers to <V-id, 

k+l>, if V - id = Vidmax and to 4 - id , l>  if V-id > Vidmax. 

A site may change its view from time to time. For example, a site may want to change its view 

when it notices a difference between its current view and the sites it can actually communicate with. 

Vidmax I V-id holds since each accessed site has view-id = G-id, and from step W3 and the "view-update 
transaction" to be discussed below, the view-id part of a version number of a copy is never increased beyond the 
view-id of the site that contains the copy. 
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Whenever a site s changes its view to a new view, s must execute a viewupdate transaction6 that 

updates data object copies stored at site s . Site s may decide on the members of a new view V based on 

its own information, in which case s is called the initiator of V. It may also decide to use a view V ini- 

tiated by another site, in which case, s adopts7 view V. 

Sites change their views atomically as follows. (For details, see [ElT89].) An initiator s of a new 

view V first assigns to V a unique view-id, new - v i ~ i d ,  that is larger than any other view-id that s has 

encountered. (Uniqueness of the view-id can be achieved by using the initiator's unique site ID 

(identification number) to be the least significant digits of the view-id.) Site s then executes a view- 

update transaction to update the local copy of each data object inheritable in V. For each such data 

object X , the view-update transaction reads the copy of X at S' (X), where S' (X) denotes a site in V that 

has a copy of X with the largest version number among a set of A, [X ] copies. The version number of X 

is set to be <nau_view-id, O>. If the view-id of S' (X) is not larger than new-view-id, then the value of 

X is copied from S' (X); otherwise, the view-update transaction is aborted. When this is repeated for all 

inheritable data objects X ,  the new view is installed at s . If a site s' accessed by the view-update tran- 

saction has a view-id less than nao_viao_id, then s' immediately adopts new - view-id. If a site 

accessed by the view-update transaction has a view-id greater than new-view-id, then the view-update 

transaction is aborted, in which case site s immediately adopts the greater view-id and initiates a view- 

update transaction with that view-id. 

Some comments are in order for the case where X is not inheritable in V, since unlike [ElT89], we 

may still allow reading of X in V . After V has been installed at some sites, but before any user transac- 

tion is executed in V, the copies of X at these sites, if any, have version numbers <V'-id, k >  such that 

V' - id < V-id. At this time, no user transaction should be allowed to read X (R3). However, X can be 
- - 

As against a user transaction. In [ElT89] it is called an update transaction. 

This is our own terminology, not used in [ElT89]. 
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written if wq (X ,V) # 0, and the first write on X in V will initialize8 X in V, by changing the version 

number of the updated copies to <V-id, I >  (W3). Thereafter, X can be read in V (R3). 

Definition 4.1: View V' precedes V if the view-id of view V' is smaller than that of V . View V' is 

the immediately precedes view of V if the view-id of view V' is the greatest among those of all views 

that precede V . 

43. THE GENERALIZED VIRTUAL PARTITION PROTOCOL (GVP) 

Let P and Q be two sets of groups (quorums) of elements (data object copies). If each quorum in 

P intersects each quorum in Q , then we say that P intersects Q group-wise. We call a pair (P , Q ) of 

quorums for a data object read quorum set and write quorum set, respectively, if P intersects Q 

group-wise. 

We now define Generalized Partition Protocol, GVP. The major difference from VP is the 

definition of a quorum as a set of copies and not by its size. This gives us much greater flexibility in 

selecting a (read quorum set, write quorum set) pair. In each view, a concurrency control protocol 

schedules the transactions executed in that view. Such a protocol is correct if any schedule it generates 

in the view is 1C-serializable. The following conditions for GVP are implementation-independent 

(except for condition (5)). Each condition is followed by comments which give intuitive meaning of the 

condition and also suggest some possible implementations. 

(1) [View-id and concurrency control] Each user transaction executes in one view at a site. Each view 

has a unique view-id, V-id, and a new view to be initiated or adopted by a site has a view-id not 

smaller than any view that the site has come across. The transactions executing in a view are con- 

trolled by a correct concurrency control protocol within the view and are committed atomically. 

* This is our own terminology, not used in [ElTS9]. 
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The concurrency control protocol is based on quorum consensus. Moreover, each logical write of 

transaction T must write a write quorum with a version number greater than that written by any 

logical write by another transaction T ' which commits before T commits. 

Comments: Let current-Vid and high-Vid be two mappings from the set of sites to the set of view-id's. 

current-Vid(s) changes whenever s installs a new view and takes as its value the view-id of the new 

view. If a site s receives at time t a message sent at time t ' from another site s ', then high-Vid (s) 

changes to Max {high-Vid (s) at time t , high-Vid (s ') at time t '1. Intuitively, high-Vid (s) is a "high 

water mark" of view-id's known to s . By definition, we have current-Vid(s) 5 high-Vid(s). One way to 

satisfy condition (1) is for a view initiator s to choose a new V-id greater than the current value of 

high-Vid (s) (high-Vid (s) then becomes V-id). A site s may also change its view by adopting 

high-Vid (s) when high-Vid (s) becomes greater than current-Vid (s). To achieve uniqueness of view- 

id, the site ID can be used as suggested in the previous section. 0 

(2) [Global read quorums] For each data object X, a global read quorum set RQ (X) is defined. X is 

inheritable in view V if V contains a global read quorum belonging to RQ (X). 

Comments: Let A, [XI satisfy the inequality (1) of Section 4.2. Then for VP, we have 

RQ(X)= { S  IS containsatleastA,[X]copiesofX}. 

(3) [View quorums] For each data object X in view V , a view read quorum set rq (X ,V) and a view 

write quorum set wq(X,V) are defined. Each view write quorum in wq(X,V), if any, intersects 

each quorum in RQ(X) and each view read quorum in rq(X,V), if any. If wq(X,V)#O 

(rq (X ,V) it a ) ,  X is said to be writable (readable) in V. 

Comments: Let q, [X ,V] and q, [X ,V] satisfy the inequalities (2)-(4) of Section 4.2. Then for VP, we 

have 

wq (X ,V) = { S s CP (X ,V) I S contains at least q, [X ,V] copies of X } , 

rq (X ,V) = { S r CP (X ,V) I S contains at least q, [X ,V] copies of X } , 
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where CP (X ,V) denotes the set of all copies of X stored at sites in V. 

Note that X may be readable in V even if X is not inheritable in V. In this case, a transaction executing 

in V can read X only if some other user transaction executing in V has "initialized X in V. (See condi- 

tion (5) below.) 0 

A transaction that writes the value of a data object copy for the first time in a new view is said to 

initialize the copy in the view. 0 

(4) [View updating] When changing its view to a new view V ', a site s ,  if possible, executes a view- 

update transaction in view V ', which atomically initializes its copy of each data object X inherit- 

able in V ' by reading the most up-to-date copy of X in a global read quorum in RQ (X) contained 

in V ', where each accessed copy must have a version number <V-id, k> with V - id 5 V '-id. 

Comments: Site s may not be able to initialize every inheritable data object. Skeen shows that there 

exists no commit protocol that is non-blocking to partition failures [Ske82b]. Therefore, after a partition 

failure, some transactions may be in the "blocked state, and cannot be committed or aborted. If such a 

transaction holds a write-lock on a data object copy, for example, then its value cannot be read to initial- 

ize other copies. 0 

Let update-Vid be a partial mapping from the set of all copies at all sites to view-id's defined as 

follows: update-Vid(X,s) is the largest view-id of any view such that its view-update transaction 

accessed a read quorum in RQ (X) which contained a copy of X at site s . (Initially update-Vid (X s ) 

(5) [Reading & writing] A logical write WT[X] by user transaction T executing in view V with 

view-id V-id is required to upciatehnitialize all copies in a view write quorum in wq (X ,V) (where 

each copy has a version number that contains a view-id I V-id), giving them the same new version 

number <V-id, k '> larger than their previous version numbers. T is committed only if 

update-Vid (X ,s ) I V-id at each accessed site s when T commits. The examination and writing 
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(if applicable) of the view write quorum must be executed as an atomic action. 

A logical read RT [XI by user transaction T is allowed in view V only if at least one copy of X 

accessed by RT [XI has been initialized in V. RT [XI proceeds according to steps R1 to R3 of Sec- 

tion 4.2. 

Comments: Note that we are in fact using the relaxed write rule in [ElT89]: we do not require that the 

view-id of the site storing a copy of X equal that of the view of a transaction T writing X, but once the 

copy is written by T, the new version number will prevent read operations on X by transactions execut- 

ing in views with older view-id's. 

An example of a correct concurrency control protocol is VP in [ElT86], which requires that each 

view write quorum in wq (X ,V) intersect every other view write quorum in wq (X ,V). (This is stated as 

an inequality: 2q, [X ,V] > n [X ,V].) Another example is a quorum-based protocol using wq (X ,V) and 

rq (X ,V) with the following modification. Since it is not required that each member of wq (X ,V) inter- 

sect every other member, a logical write W,  [XI should be implemented by steps R1 and R2 followed by 

W3 of Sec. 4.2. In this case, locking in R1 and R2 refers to write locks. This makes sure that two write 

operations on X in the same view discover conflict between them. Since transactions are executed atom- 

ically, the value written by a write operation is reflected in the database only if the writing transaction 

has committed. 

Having extracted the essential features of VP, we now have a great deal of flexibility in designing 

replica control protocols satisfying the conditions of GVP. VP is based on the vote assignment 

approach, where the vote given to each copy is one. GVP is based on the quorum assignment approach, 

which has been shown in [GaB85] to be more general than vote assignment. We shall discuss some 

members of GVP in Section 4.6. 
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4.4. CORRECTNESS PROOF FOR GVP 

Since view-update transactions readfwrite copies of data objects, we need to define "reads-from" 

relation that includes such operations. 

We say that user transaction T reads X from user transaction T ' if T reads X from T ' in the usual 

sense [BHG87] or if there exists a set UT of view-update transactions (TI, T,, ..., T, } , such that T, reads 

X from T, T2 readsX from TI, ..., and T '  readsX from T,. 

In a serial schedule a, transactions are serially executed, i.e., each transaction reads a data object X , 

from the transaction preceding and nearest to T in a. 

Lemma 4.1: If T reads X from T ', and T ' and T are not executed in the same view, then T exe- 

cuted in view V, is a view-update transaction writing the version <Vivid ,O> of X . 

Proof: Suppose T is a user transaction and the operation that reads X from T ' is logical operation 

R, [XI. From step R2 and R3, whenever RT [XI is successful, it will read from a version with version 

number containing V, - id. We see that in all conditions, a version number can become V,-id only by 

initiation, either by view-update transaction TI as in condition (4) or by a write operation of a user tran- 

saction T2 as in condition (3, and T, or T, must be executed in view V,. Therefore a user transaction 

executed in view V, always reads from another transaction in V,. Hence T '  cannot be from another 

view. 

The only remaining possibility is that T is an update transaction and from condition (4), T reads 

from the most up-to-date copy of X in a global read quorum, which will be written by some transaction 

in another view. 0 

Lemma 4.2: The commit of a transaction T in view V that writes X with a version number n must 

precede the commit of another transaction T ' in view V that writes X with a version number n' > n . 
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Proof: Assume not, that is, T commits after T '  has committed. From the requirement on the 

correct concurrency control protocol within view V in condition (1) of GVP, T must find out the max- 

imum version number vnmax written from among all transactions that have committed before T com- 

mits. Since T ' commits before T, vnmar 1 n' , T must write with a version number greater than vnmax . 
Hence n > n' , a contradiction. 

Lemma 43: Any schedule a, consisting of the operations of the view-update transactions as well 

as those of user transactions, generated by any member of GVP is equivalent to (i.e., has the same reads- 

from relation as) a 1 C serial schedule o. 

Proof: Let { T: I 1 5 i < m, ) be the set of all transactions that are executed and committed in view 

V. By condition (1) for GVP (Section 4.3), the schedule a, generated in view V is IC serializable 

v 
[BHG87]. Without loss of generality, let a, be equivalent to the serial schedule a, = T! T: . . . T- , a 

prefix of which contains all the is a view-update transactions executed in V by different sites. We claim 

that a is equivalent to o = a,, - . . oVm , where m is the number of views and V , j d  < VLid < - 

V, -id. To prove this claim, we show that for each transaction T and data object X , T reads X from T ' 

in a iff T reads X from T ' in o. If T ' is executed in the same view as T, then condition (1) for GVP 

guarantees this. 

From Lemma 4.1, if T ' and T are not executed in the same view, then in a, T executed in view Vj 

is a view-update transaction writing the version <Vieid, O> of X. This implies that X is inheritable in 

V, , and T copies the value of X written by T ' which executed in a view Vi such that among all copies of 

X in a global read quorum contained in V , the value had the largest version number <V. 1 - id, k > less than 

<V. id, O> at the time of copying. 
I - 

What remains to be shown is that, in o, T ' is the last transaction preceding T that writes X. Sup- 

pose not. Then either a version of X with version number larger than <V. 1 - id, k> is written in Vi, or 

there is a view Vl such that V. I - id < Vl -id < V,-id and X is written by a transaction executing in Vl . In 
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the first case, from Lemma 4.2, the transaction T" writing a new version of X with a version number > 

cV-id ,k> must commit after transaction T ' commits and also commit after transaction T has accessed a 

global read quorum contained in V (otherwise, according to R2 and R3, T would have read X from T" 

instead of from T I). To write X , T" accesses a view write quonun in wq (X ,Vi). Since T has success- 

fully read X, X is inheritable in view Vieid. Therefore, from condition (2), V, contains a global read 

quorum QR in RQ (X), which has been accessed by T according to condition (4). By condition (3), this 

write quorum has at least one copy (at site s ) in common with the global read quorum QR accessed by T 

to read X . At the time T" accesses X 's copy at s , update - Vid (X J ) 1 V,jd > since it has been read by 

T with view-id V,-id . Since Vj-id = V. I - id, we have update-Vid (X J ) 2 V. 1 - id, therefore T" could not 

have committed (according to condition (5) for GVP), a contradiction. In the second case, the transac- 

tion T" writing a new version of X in view Vl must also be committed after transaction T has accessed a 

global read quorum contained in V (otherwise, according to R2 and R3, T would have read from T" 

instead of from T '). With a similar argument, T" would not be able to commit, again a contradiction. 

Theorem 4.1 Any schedule a ,  consisting of operations of user transactions, generated by any 

member of GVP is 1C-serializable. 

Proof: It suffices to show that in the above scenario, view-update transactions do not "interfere" 

with the correct execution of user transactions. Note that a view-update transaction simply functions as a 

"relay", passing data object values written in a previous view to transactions in the current view. Sup- 

pose that in a a user transaction T reads the value of X written by another user transaction T '  via a 

view-update transaction. To show that T reads X from T ' also in the 1C serial schedule o', where o* is 

obtained from o by deleting the operations of all view-update transactions, we point out the following 

- characteristics. 

In the schedule o, a view-update transaction T" in view V always appears after all transactions in 

views preceding V and before all user transactions in V. Whenever T" executed at site reads X from T, 
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it also writes the value read into the local copy of X . If T" reads X from T, then transaction T ' reads X 

from T" implies that T ' reads X from T. 

In a, T" is committed after the commit of all transactions Tw that write X in views Vw preceding 

V (if T" commits before Tw , Tw will come across a copy with update-Vid > Vw -id and has to abort). 

T" locks and writes atomically a view write quorum before any transactions that reads X from itself in 

views 2 are committed. Hence if T" reads X from T,  then transaction T ' reads X from T" implies that 

T' readsX from T. 

It follows that the deletion of view-update transactions from both o and a preserves the 

equivalence in the read-from relations. Therefore, the schedule over the user transactions corresponding 

to a is equivalent to serial schedule o'. 0 

45. OPTIONS UNDER GVP 

This section closely follows the discussions in [ElT89] as most of the options open to W are also 

open to G W .  Some of them are intended to increase data availability, while others reduce the cost of 

view-update transactions. 

(1) Options for Changing Views. One strategy is called the aggressive tracking in [COK86]. It tracks 

changes in the network topology as closely as possible, and reduces the chance of aborting transac- 

tions that read or write data objects that are not physically accessible in the current view. If parti- 

tion failures are not frequent and a failure lasts for some time, then aggressive tracking is suitable. 

Another strategy is called the demand tracking in [ElT89], with which a view is changed only if 

some "high priority transactions" cannot execute in it, but would be able to execute in the new 

view. These strategies can be dynamically chosen to meet varying demands of the database sys- 

tem. If partition failures are frequent so that the network topology changes quickly, demand track- 

inn would ~mbablv be better than agrrressive tracking. 



Part I 

When an object initiates a view-update, other objects in the partition would execute view-update to 

adopt the new view. Actually since every site in the partition may detect the partition failure and 

probably initiate a new view (unique at each site or object), and since then only the initiator x with 

the highest ID will dominate, it may be wise for a site or object y with smaller ID to wait a while 

for x to do the initiation, and then adopt the new view. However, y may not hear from x because 

during view-update, x would only try to access a global read quorum, and may miss y , so that y 

has to initiate a view-update itself. Hence it would be helpful if x would also uy to inform every 

site in the new view. This is applicable to VP also. 

(2) Associating views with data copies. So far, we have considered a view as an attribute of a site. The 

view-update transaction initiated at a site s must update all the local copies of inheritable data 

objects in the new view. [Her871 performs updates on a per object basis, rather than per site. With 

GVP, we can similarly associate a view with each copy of an object instead of with each site. ( This 

is equivalent to considering each copy as residing on a "virtual site" of its own.) Then the view- 

update transaction for a data object X initiated at site s only updates the value of X, (the copy of X 

at s). Together with demand tracking, this policy will greatly reduce the cost of updates. How- 

ever, there will be overhead in storing views with each data copy. 

When views are no longer associated with sites, a site may still record all the views it has come 

across on behalf of the data object copies. A transaction submitted at a site may choose to be exe- 

cuted in the view with the highest view-id that the site has come cross. The read rules and write 

rules have not changed if we pretend that each copy resides on a virtual site of its own, so that the 

view of the data copy is the view of the virtual site. 

. (3) Options for Logical Read. In condition (5) of Section 4.3, we require that a logical read by a tran- 

saction T (executed in view V with view-id V-id) read copies in a view read quorum rq in 

rq (VB) which reside at sites with view-id equal to V-id. This will make sure that at least one of 

the copies in rq is written by the most recent logical write on X (either in V or in a preceding 
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view). 

An altemative is to require the above logical read to read the copies in a global read quorum RQ in 

RQ (X), residing on sites with views whose view-id's are I V - id. This also ensures reading from 

the most recent write on X because each quorum in RQ (X) intersects each view write quorum, if 

any, of every view. Once a copy X, is accessed by T, it rejects all write operations issued by user 

transactions executing in views with view-ids less than V-id [TI. 

There is a tradeoff between availability and cost in the above alternative. To increase data availa- 

bility, we would allow a user transaction executing in view V to read a logical data object X by 

accessing copies that reside on sites with views other than V. However, each read must now access 

a global read quorum in RQ(X), whose size is always greater than or equal to that of a view read 

quonun. 

(4) Reducing the Cost of View-Update Transactions. For each inheritable data object X , we previously 

required that all sites installing a new view V to independently access a global read quorum of X to 

initialize their local copies of X. To reduce the overhead, a single site could execute the view- 

update transaction, accessing a global read quorum to update its local copy of X, and then pro- 

pagate the updated value to all other sites that want to install the new view. We can choose the site 

with the greatest site ID within V to perform the view-update. 

(5) Using Multiple Versions. So far, we only kept the latest version of a data object. Sometimes we 

may find that a transaction T should be serialized into an equivalent 1C serial schedule before 

some other committed transactions, so that T may have to read from logical writes before the most 

recent logical writes (i.e., read from older versions). In such cases, since we do not store older ver- 

sions, we would have to abort T. With multiple versions, T can read older versions. To modify 

GVP to a protocol with multiple versions, we associate versions to views (or to view-id's of 

views). Now, each quorum is a set of data object copies, and each copy has multiple versions for 
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different views. 

The view-update transaction at site s for a new view V with view-id V-id accesses, for each data 

object X, a global read quonun in RQ (X) and updates the version of X associated with V using the 

copy in the read quorum that has the maximum version number with view-id I V-id. After the 

view-update, any write with view-id < V-id is rejected at the site. 

The scheduler assigns a view V to each user transaction T (T and its operations executes in V), 

which need not be the most recent view. However, if the data X written by a transaction T is 

inheritable in the most recent view, then T will be aborted if it is assigned a preceding view, hence 

in such cases, T should be assigned the most recent view. 

A logical write operation on X in a view V with view-id V-id (writing the version that is associ- 

ated with the view) is executed by accessing a view write quorum in wq (X ,V), examining the ver- 

sions associated with the highest view-id 5 V-id in the write quorum and writing with a version 

number greater than the maximum version number among them. 

A logical read RT [XI in a view with view-id V-id is executed by accessing a view read quorum in 

which at least one copy of X must have been initiated, and examining the version that is associated 

with V-id at each copy of the read quorum. The version with the maximum version number is 

chosen. 

4.6. MEMBERS O F  THE GVP FAMILY 

4.6.1. The Vote Assignment Protocol (VAP) 

This is a sub-family within the family of GVP. Let U be the set of copies of a logical data object 

X. A vote assignment is a function v : U -+ N, where N is the set of non-negative integers. v (x) 

denotes the number of votes assigned to copy x.  Let TOT(X) be the sum of v (x) for all x.  For each 

view V, let tot (X ,V) = v (a) and let rt (X ,V) and wt(X ,V) be the read threshold and the write 
U € V  
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threshold of the view V, respectively, such that rt (X ,V) + wt (X ,V) = tot (X ,V) + 1. Let RT (X) be the 

global read threshold which satisfies RT (X) + wt (X ,V) 2 TOT(X) + 1 for all V. 

We define RQ (X), wq (X ,V) and rq (X ,V) as follows. 

RQ(X)= { S  I v(a )2  RT(X)) 
a e S  

wq(X,V) = I S iz CP(X,V) I v(a) 2 wt(X,V) 1 
a  E S  

rq(X,V)= I S r CP(X,V) I v ( a ) 2  rt(X,V) I 
a e S  

where CP (X ,V) denotes the set of all copies of X stored at sites in V 

4.6.2. The Virtual Partition Protocol (VP) 

We show that VP of Section 4.2 is a member of GVP. Let A, [XI, A, [XI, q, [X,V] and q, [X ,V] 

satisfy the inequalities (1)-(5) of Section 4.2. Define 

RQ (X) = ( S I S contains at least A, [XI copies of X } , 

wq (X ,V) = { S r CP (X ,V) I S contains at least q, [X ,V] copies of X }, 

rq (X ,V) = { S G CP (X ,V) ( S contains at least q, [X ,V] copies of X 1. 

Then we have VP, if logical read and write are implemented as in Section4.2. The cost of write 

operations can be reduced if steps W1 and W2 are replaced by R1 and R2, and if for any view write 

quorum q there is a view read quorum not larger than q . 

We can easily see that VP is a special case of VAP, with a vote of 1 assigned to each copy of a data 

object X , RT(X) = A, [XI, wt (X ,V) = q, [X ,V] and rt (X ,V) = n [X ,V] + 1 - q, [X ,V], which, it is rea- 

sonable to assume, equals q, [X ,V l. 
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4.6.3. The Small Partition Protocol (SP) 

For each data object X, designate one site s (X) as the owner of X (cf. the primary copy [Sto79]). 

We define RQ (X), wq (X ,V) and rq (X ,V) as follows. 

RQ (X): consists of all groups of copies of X, containing the copy of X at s (X). 

Let q, [X ,V] and q, [X ,V] satisfy Eq. (2) of Section 4.2. For each view V , 

wq (X ,V): consists of all subsets of CP (X ,V) containing at least q, [X ,V] copies of X , one of which 

must be the copy at s (X). 

rq (X ,V): consists of all subsets of CP (X ,V) which contain either q, [X ,V] copies of X , or the copy of X 

at s (X). 

It is easy to see that each view write quorum in wq (X ,V) intersects each view read quorum in 

rq (X ,V) and each global read quorum in RQ (X). 

We claim that SP has a number of advantages over VP. We argue that for VP to be practical in a 

fully replicated database system, A, [X 1 would have to be close to half the total number of sites. If A, [X 1 

is too small, A, [XI will be large, meaning that data objects can be updated only when a partition failure 

results in a large partition with at least A, [XI sites. (See inequality (4) of Section4.2.) If A, [XI is 

almost half the total number of sites, however, then only the majority partition will be able to access X. 

SP, on the other hand, needs to access only the copy at s (X), which forms a read quorum by itself, in 

order to perform a logical read on X. Similarly, view-update transactions are less costly in SP than in 

VP. The main disadvantage of SP is that X is inaccessible in a large partition unless it contains s (X). 

We now show that SP is also a special case of VAP: Let X be a logical data object. For each copy 

of X at a non-owner site, assign a vote of one. For the owner site copy, assign a vote of n [XI, where 

n [XI is the total number of copies of X. Then TOT(X) = 2n [XI - 1. Let RT(X) = n [XI. For eachview 

V, set wt(X,V) = n[X] + w, for some parameter0 I w <tot(X,V)-n[X], and rt(X,V) = tot(X,V)- 

wt(X,V)+ 1 =tot(X,V)-n[X]-w + 1. 
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We see that RT(X) + wt(X,V)  = 2n [XI + w 2 TOT(X) + 1 for all values of w. 

4.6.4. The Finite Projective Plane Based Protocol (FP) 

The quorum sets in GVP can be defined in terms of a finite projective plane [AlS68]. This results 

in the finite projective plane based protocol (F'P) which requires accesses to only [m] copies for 

each logical read or write operation on data object X , where n [XI is the total number of copies of X. 

Definition 4.1. A mathematical system (plane) consisting of a set ll (of points) and distinguished 

subsets of ll (lines), G ,, G 2, .. ., is a projective plane if the following hold: 

(a) If a and b are any two distinct elements of ll, there is a unique distinguished subset Gi such that a 

E Gi and b E Gi . (Any two points are incident with exactly one line.) 

(b) If G , and G are any two distinct distinguished subsets of ll, there is a unique element a of ll such 

that a E G and a E G 2. (Any two lines intersect at exactly one point.) 

(c) There are four distinct elements a ,  b , c , d of ll such that no three of them are elements of a com- 

mon distinguished subset Gi of ll. (There exist four points, no three of which are colinear, that is, 

incident with a single line.) 

A finite projective plane is projective plane with a finite number of elements. As an example, sup- 

pose a finite projective plane has 7 points { 1,2, ..., 7 }. There are 7 lines on the plane as follows. 

(1, 2, 41 
I29 3, 51 
I3, 4, 6) 
I 4  5 ,  71 
Is, 6, 11 
{ 6, 7, 21 
I 7. 1, 3) 

For a linite projective plane with 13 points {I, 2, ..., 131, there are 13 lines as follows: 

{ 1, 2, 3, 41 
11, 5, 6, 71 
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[AS681 (Section 2.3) proves the following theorem. 

Theorem 4.1. ([AS68]) Let ll be a finite projective plane. Then there is an integer m such that 

(a) Every point (line) of Il is incident with exactly m +1 lines (points) of ll; 

2 
(b) Il contains exactly m + m + 1 points (lines). 0 

We say that the above finite projective plane is of order m . We can see that if N is the number of 

points on a finite projective plane, then a line on the plane has [fl] points. Thus, there could be projec- 

tive planes with N points, where N = 7, 13,21, 31,43,56, ... (corresponding to m = 2,3,4, ... ). There 

exist examples of projective planes with 21, 31, and 56 points (order 4,5,7), but it is known that there is 

no projective plane with 43 points (order 6). 

At the present, no efficient algorithm known for generating the lines on a finite projective plane of a 

given size (if one exists). If the number of data object copies, n , does not exactly match the number of 

points of any known finite projective plane, then there are two straightforward methods to construct a set 

of limes over I n points such that the they intersect each other. The first method is simply to take the 

lines in a finite projective plane of the highest order that has a number of points < n . 

The second method is to take a finite projective plane of the lowest order which has a number of 

points > n , and delete all superfluous points from each line. For example, for 8 points, we can take the 

projective plane of order 4 with points 1 to 13, and delete from each line any occurrence of points 9 to 
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13. Then, from the resulting set of lines, we delete any line if it is a superset of another line. The end 

Note that, for each line L in P7 (finite projective plane of order 3), there is a line in P8 which is a 

subset (some of these are proper subsets) of L , and there are lines in P8 which are not in P7. Therefore, if 

each line is taken to be a read or write quorum in a quorum consensus protocols, then there are more 

choices of quorums in P than in P7. In this sense, P is more attractive than P7. We conjecture that the 

second method always yields a more attractive quorum set than the first method in the above sense. 

(This idea of "more attractive" will be formalized in Chapter 5 .) 

In our application of finite projective planes, the set I3 of size n [XI is considered as the set of 

copies for a certain data object X.  The set RQ (X) of global read quorums is modeled by the set of all 

lines of ll. wq (X ,V) consists of all global read quorums in V , i.e., a subset of RQ (X), since any global 

read quorum in V intersects each element in RQ (X). rq (X ,V) consists of all subsets of V that intersect 

each write quorum in wq (X ,V). As an example, suppose that the copies of data object X are stored at 7 

sites, S = ( 1,2, ..., 7). We define RQ (X), wq (X ,V) and rq (X ,V) as follows. 

For any view V , 

wq (X ,V): consists of some or all quorums in RQ (X) that are contained in V. 

rq (X ,V): consists of all subsets of V each of which intersects every quorum in wq (X ,V). 
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In the next chapter, we shall see that no vote assignment can realize a pair of readwrite quorums 

derived from finite projective planes. This implies that FP is not a member of VAP. 

4.7. IMPLEMENTATION DETAILS 

We mentioned in condition (1) of G W  that the transactions executed in a view V are controlled by 

a correct concurrency control protocol and are committed atomically. Here we give some suggestions on 

the details of a possible implementation. 

As stated in Section 4.2, read operations use the version number associated with each copy to iden- 

tify (and read) the most "up-to-date" copy in a read quorum. For each data object X , let RQ (X) be a glo- 

bal read quorum set, and for each view V, let rq (X ,V) and wq (X ,V) be the view read quorum set and 

view write quorum set, respectively. Each site s keeps track of high-Vid(s), update-Vid(X,s) for 

object X, and current-Vid (s) as defined in the comments on condition (1) of GW.  Each message sent 

by s contains high - Vid (s). If high - Vid (s) deviates from current-Vid (s) during the execution of a tran- 

saction at s. then the transaction is aborted. Initially, all sites have a common view Vo with view-id 

V,id which consists of all sites, and all copies have version number <VLid, O>. We now describe 

how user transactions execute read and write operations under GVP. 

We assume that each transaction executes in two phases: the read phase followed by the write 

phase. All the logical writes of a transaction are reflected in the database atomically by means of a com- 

mit operation. Strict 2-phase locking (i.e., locks held by a transaction are released only after the transac- 

tion commits) is used to ensure serializability of the resulting schedules and to avoid cascading aborts9 

[BHG87]. Note that any given transaction can easily be transformed into this fonn by defemng its 

writes to the end. 
-- - - 

The data objects written by a transaction T are called dirry until T commits. If another transaction T ' 
reads dirty data and eventually T aborts, then T ' must also abort. This is an example of cascading aborts. With 
strict 2-phase locking, we can avoid this problem. 
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4.7.1. Logical Read 

Due to view-update transactions to be described in Section 4.7.3, a copy of a data object may be 

marked "unreadable", indicating that it is not accessible for reading. Suppose a transaction T is submit- 

ted at a site s, and s, has view V with view-id V-id when the execution of T is initiated. Then T exe- 

cutes a logical read operation R,  [XI on a data object X as follows: 

(1) If rq(X,V) = 0, then T is aborted. Otherwise, (the transaction manager at) so accesses a read 

quorum in rq (X ,V) as follows: so sends a readlock request message to each site s storing a copy 

in the read quonun. When site s receives such a message, if current-Vid (s ) is equal to V-id, then 

it tries to obtain a readlocklo on X. (If current - Vid (s ) # V-id or if s is not successful in getting a 

readlock, s may send a negative reply or do nothing.) After securing a readlock on X , site s returns 

a reply message containing the current value of X, the current version number of X, and 

current-Vid (s ). 

(2) If no reply comes from a site within a "timeout" period, then so assumes that the site has failed or 

is disconnected. In this case and in case a negative reply returns, so will access another copy in V 

until it accesses all copies in a read quorum. If not enough copies are accessible, then T is aborted. 

(When a transaction T is aborted, so sends out messages to release any lock that T may be hold- 

ing.) 

(3) When so has received a reply message from every site in a read quorum with the same view-id as 

so, provided that the maximum version number of X has a view-id = V - id, then T is given the 

copy of X with the maximum version number, otherwise T is aborted because X is not initialized. 

(4) If T is not going to write any data object, it enters the lock-releasing phase of 2-phase locking. so 

sends a commit message to each site in the read quorum to release the readlocks. Otherwise, the 

''AS usual, a readlock conflicts with a writelock on the same data object but not with other readlocks. 

46 
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steps of logical write in the next section are camed out. 

4.7.2. Logical Write 

A transaction T submitted at site so with view V executes the logical operation W, [XI on a data 

object X as follows: 

(1) If wq (X ,V) = 0, then T is aborted. Otherwise, so reads either a read quorum in rq (X ,V) or a 

write quorum in wq (X ,V) by readlocking the copies in it as in steps (1) to (3) of the logical read on 

X. If T is not aborted, let the returned maximum version number = <Vidmax ,k>. The version 

number to be used for the subsequent physical writes is <V-id ,k+l> if V-id = Vidmcrx; otherwise 

(i.e., V-id > Vidmax), <V-id,b should be used. The readlocks on X are held until the lock- 

releasing phase. 

(2) so selects a write quorum in wq (X ,V) and sends a writelock request message to each site in the 

write quorum. The value to be written is piggybacked on the message. When site s receives such a 

message, if current-Vid (s ) 5 V-id and update - Vid (X ,s ) I V-id (see GVP condition (5)), then it 

tries to get a writelock on its copy of X .I1 After securing the writelock on X, a tentative write on 

its copy of X is performed with the piggybacked value. (A tentative write of X stores a tentative 

value of X in temporary memory, which will be used to update the permanent copy of X only if the 

transaction writing X commits.) Site s then returns a reply message to inform so of a successful 

locking of X and of current-Vid (s ). Negative reply may also be used to speed up timeout. 

(3) If so does not receive a reply from a site s within a timeout period, or if it gets a negative reply, 

then it tries to access some other site to make up a write quorum. If this fails, then the transaction 

" A writelock conflicts with a readlock and another writelock. It also conflicts with view-update transac- 
tions, as we shall see later. 
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is aborted. 

(4) When T has locked all the data object copies it is going to write, it can enter the lock-releasing 

phase of 2-phase locking. Then T commits, sending a commit message to each site holding copies 

in the read-quorums and write-quonuns of the data objects it accessed. Upon anival of a commit 

message, site s copies the tentative write values into stable storage at s , and releases the readlocks 

and writelocks held by T. 

In the above protocol, we have combined the quonun consensus scheme, 2-phase locking, and 2- 

phase commit all into one package. For 2-phase commit, the sending of writelock requests and the 

replies constitutes the first phase, and the sending of commit messages is the second phase. The result is 

a concurrency control scheme that guarantees one-copy serializability in the face of partition failures pro- 

vided that no view changes take place. The next section describes the steps needed to cope with view 

changes, completing the description of an implementation of G W  that provides one-copy serializability 

in spite of partition failures and view changes. 

4.7.3. View-Update Transactions 

Views may change during transaction execution [ElT86]. As in W described in Section 4.2, when- 

ever a site s changes its view to a new view, s must execute a view-update transaction that updates data 

object copies residing at site s. Site s may change its view in two different ways. It may be the initiator 

and decide on the membership of a new view. It may also decide to adopt a view initiated by another 

site. A new view may be adopted in three different ways: first, when a site receives a readlock request, 

writelock request or reply message with a greater view-id; second, when a site receives a read request for 

a data object from a view-update transaction that is trying to introduce a greater view-id; and third, when 

an initiator comes across a greater view-id in executing its view-update transaction. 
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Informally, sites change their views as follows. 

When a site s decides to initiate a new view, it first assigns to the new view V a unique view-id 

new-view-id that is larger than any other view-id that it has encountered. We ensure uniqueness 

by using the site ID of the initiator as the least significant bits of new-view - id.  

Site s then executes a view-update transaction to update all the local copies of data objects that are 

inheritable in V. For each such data object X,  the view-update transaction accesses the copies in a 

global read quorum QR in RQ (X). Since every successful logical write on X has to write a view 

write quorum and every view write quorum for X intersects with every quorum in RQ (X) ,  we can 

be sure to get the most up-to-date value of X . If high-Vid ( s )  I new-view-id for each site s in QR , 

then the value of X is updated using the returned copy with the maximum version number. The 

updateid (X ,s ) of each site s in QR is now updated to new - view - id.  If this is the case for all X , 

the new view is installed at s . The view-update transaction then terminates successfully. (Any site 

s' with high-Vid ( s t )  < new-view-id adopts the new view by invoking a view-update transaction 

of its own using new - view-id.) However, if a site s' is accessed with high-Vid(s') > 

new-view - id,  then site s will adopt the view corresponding to high-Vid (s'). 

Next we consider the case where a view-update transaction at site s with new-view-id comes 

across a writelock L at a copy of data object X at site s' (s' may equal s )  holding a copy in a global read 

quorum in RQ ( X )  and the view-id of s' is not greater than new-view-id. The writelock indicates that a 

write is in progress or was interrupted by a partition failure. The view-update transaction then marks the 

copy of X at s unreadable so that no transaction in the new view will be able to read it. by a logical 

write operation in the new view. However, an unreadable copy can be initialized by write operation 

WT [XI; thereafter, the copy becomes readable. In this case, upon recovery, even if the previous write 

operation that holds the write lock L succeeds, update will not take place at s since it has been over- 

written by WT [X ] .  



Part I 

If there was a partition failure, then, on recovery, the sites in some partitions will undergo view 

changes. However, before the view change, any message that was lost (or when sender gets no ack- 

nowledgement) due to the partition failure should be retransmitted. In any event, all the sites with 

blocked transactions will be able to receive the reply messages and commit or abort, and the locked data 

objects will be able to receive the release-lock messages and hence release the locks. Such measures 

reduce the chance that the view change will come across locked data copy. 

4.7.4. Correctness 

Here we show that the above implementation satisfies the conditions of GVP. First part of condi- 

tion (1) is satisfied by the 2-phase locking and 2-phase commit protocol. Second part of condition (1) of 

GVP is satisfied because of the way that the view-id's are chosen by the view-update transaction. The 

initiator of a new view always chooses a view-id larger than any view-id it has come across, and with the 

site ID as the least significant bits, the chosen view-id will be unique. Conditions (2) and (3) are satisfied 

by assumption. Condition (4) is satisfied by the view-update transaction. To satisfy condition (5), step 

(1) of a logical write assigns a proper version number, for a logical read, step (1) accesses copies at sites 

with the same view-id as the site initiating the logical read, and step (3) chooses a copy with the max- 

imum version number. 

4.8. REVIEW OF DYNAMIC QUORUM ADJUSTMENT (DQA) 

In [Her871 Herlihy proposed a protocol called dynamic quorum adjustment (DQA, for short). In 

his terminology a quorum assignment associates each operation (read or write) on a data object with a 

set of quorums. The quorum assignment table for an object binds a quorum assignment to each level, 

where levels are numbered 1,2,3, .... The quorum assignment table for object X is stored with each copy 

of X and possibly at other sites where no copy of X is stored. Each transaction is assigned to a level, and 

for all data objects accessed by the transaction the quorum assignments bound to that level are used to 
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execute its operations. 

When a transaction begins execution, it chooses its level, which is the level of the quorum assign- 

ment tables of the data objects it accesses. Transactions at different levels are serialized in the order of 

their levels, and the transactions at the same level are serialized by timestamping. 

A mechanism similar to Reed's multiple version scheme [Ree79,Ree83] is used to ensure that 

lower level transactions are serialized before higher level transactions. Each copy of a data object main- 

tains several versions, at most one for each level, ordered by levels. If no write operation is performed 

on a data object at a level, then we say that the version is not installed at that level. Each copy also has a 

ratchet lock,'* which is a counter that records the highest level of a transaction that has read the copy. A 

logical write on object X is enabled at level 1 if all the ratchet locks in a write quorum for X at level 1 

have values I I. A write can be camed out only if it is enabled. 

Logical read: 

A level 1 transaction reads X by accessing a level 1 read quorum. At each copy in the read 

quorum, the version associated with the highest level 5 1 is chosen, among which the version with the 

highest level and latest is returned to the transaction. When the transaction commits, each 

ratchet lock in the read quorum is set to the maximum of its current value and the transaction's level. 

Logical write: 

A level 1 transaction writes X by accessing a level 1 write quorum. If none of the ratchet locks in 

the write quorum > I ,  then the version of X at level 1 at each copy of the write quorum is updated with 

its timestamp also updated to that of T. 

l2 A ratchet lock here is similar to update-Vid(X8) in GVP, which is the highest view-id of a view-update 
transaction that has accessed the copy of X at s . 

l3 Note that the role of the timestamp is similar to the role of version number in GVP. 
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Due to the "quorum intersection invariant" stated below, a read (write) quorum can grow (shrink) 

but cannot shrink (grow) as the level increases. Therefore, if a transaction T reads X, a lower level is 

preferable for T, whereas if it writes XI a higher level is preferable. Since reads are usually more frequent 

than writes, it is desirable to stay at a low level. However, as stated above, there is a lower limit on the 

level given by the ratchet locks of the copies of X to be written by T. 

An object's quorum assignment table must satisfy the following quorum intersection invariant: 

If writes to that object are enabled at level 1 ,  then each write quorum at level 1 must intersect each read 

quorum at levels greater than or equal to 1 .  

Quorum Inflation: A transaction that cannot access a write quorum because of failures (of sites or 

links) or ratchet locks may abort and restart at a higher level. 

Since a ratchet lock is non-decreasing, the lowest level available to a transaction in general 

increases with time, which means read quorums grow larger and larger. Therefore, we need a comple- 

mentary mechanism to inflation for "deflating" read quorums to make reads less expensive. Deflation for 

an object binds a new quorum assignment to a level of the object's quorum assignment table. Clearly, if 

the sites are partitioned, only sites in the same partition can be informed of the deflation. In the follow- 

ing definition, an old (new) quorum means a quorum for level 1 before (after) the quorum deflation at 

level 1 .  A coquorum for an operation is any set of copies which intersects every quorum for that opera- 

tion. The quorum deflation protocol at level 1 consists of the following steps, which are executed as a 

transaction. 

Quorum Deflation by object X at level 1 : 

(1) For each copy of X in an old read quorum, read the closest preceding version for level 1 ,  its times- 

tamp, and the copy's ratchet lock. If there exists an 1' , I >l' , such that writes are enabled at level l' , 

but some new read quorum does not intersect some level 1' write quorum, disable writes at level l' 

by advancing the ratchet lock beyond l' . 
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Copy the latest version of X among those read in step (1) and its timestamp to all copies of X in a 

new write quorum, and the highest ratchet lock value to all copies of X in a new read quorum. 

Update the quorum assignment tables at all the copies of X in an old q u o n u n  for read and write, 

by replacing the level 1 entries by the new sets of read and write quorums for X . 

Step (3) ensures that any new transaction T that is assigned to level I after the "committing" a 

deflation transaction will know about the deflation. To prove this claim, assume that transaction T suc- 

cessfully executes accessing the old read quorum rq and/or write quorum wq for level I. rq must inter- 

sect the old q u o r u m  for read operation that now posses new quorum assignment for level 1. Similarly, 

wq must intersect the old coquorum for write operation that now posses new quorum assignment for 

level I. Therefore, T will discover that level I has new quorum assignment, a contradiction. 

Other transactions can run concurrently with deflation transactions as long as the resulting schedule 

consisting of all the transactions is 1C-serializable. (Note that a quorum assignment table constitutes a 

part of a data object, which is read/written by transactions.) For example, a transaction cannot use an old 

quorum for some operations and a new quorum (installed by deflation) for some other operations. 

If deflation was necessary, then it would mean that the read quorums at the old level I were too big. 

By the quorum intersection invariant, the read quorums at level 1+1 would be even bigger. To avoid 

overhead of this "cascading" deflation (deflation at levels above 1 because of deflation at level I), we 

might execute a deflation that deflates multiple levels on the tables at the same time. 

4.8.1. Relation between Levels and Views 

We notice that levels at which transactions execute are similar to views in GVP. However, there is 

. a difference in that, over time, more than one quorum assignment may be bound to the same level by 

deflation, while a view has unique sets of read and write quorums. Therefore, we find it more appropriate 

to relate each quorum assignment, instead of a level, to a view of the object. Then the views of a data 

object (="virtual site", see Sec. 4.8.3) are ordered as follows: a view corresponding to a quorum 
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assignment at level i precedes any view corresponding to a quorum assignment at level i+l;  and two 

views corresponding to quorum assignments at the same level are ordered by their binding times to the 

level. We denote this precedence relation by <. 

Note that, in GVP, if an object X is inheritable, an old coquorum of write for X automatically gets 

the new view (hence the new quorum assignment), since a global read quorum of X is accessed by the 

view-update transaction. Unlike deflation in DQA, however, a view-update in GVP may not access any 

old coquorum of read for X . 

4.8.2. Improvement on DQA 

Borrowing an idea from GVP, we can improve on DQA and allow two concurrent levels in dif- 

ferent partitions to read and write a logical data object X provided that both partitions contain read 

quorums of X. The modification is as follows. 

(1) In performing deflation at lcvcl I ,  if no old read quorum is accessible, then skip the deflation step 

(1) and change the deflation step (2) as follows: A new write quorum is accessed and marked "non- 

inheritable",14 so that no transaction can read X at level I before a write takes place at level I. 

Deflation step (3) is camed out as usual. 

(2) Read on X by a transaction at level I succeeds if it does not come across any "non-inheritable" 

copy or if there is a read quorum containing some copy written at level 1. If it is successful, it 

updates the ratchet locks of all copies of X in the read quorum only if the quonun contains no copy 

that was written at level 1. 
- - 

l4 This marker gets erased when the copy is written at level I. The "non-inheritablen marker carries unique 
identity of the deflation transaction. The quorum assignment table also records the identity of the last deflation 
transaction, if any, at each level. If these identities do not match, the "non-inheritable" marker is obsolete and 
should be ignored or erased. 
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The reason for (2) is that if the read quorum contains some copy that was written at level I ,  then 

either X was initialized by deflation, in which case enough ratchet locks have been advanced already, or 

deflation did not initialize X but a write at level 1 did, in which case again there is no need to advance the 

ratchet locks. 

Note that this modification cannot improve the protocol if a transaction always reads a data object 

before it writes it. Note also that, if the set of all old coquorums of write equals the set of all old read 

quorums, then DQA does not improve with this modification. This is because, when no old read quorum 

is accessible, none of the old coquorums of write is accessible; therefore, the modification of (1) in the 

above has no effect. 

48.3. Comparison of GVP and DQA 

In light of our observation made in Subsection 4.8.1, we relate quorum assignments in DQA to 

views in GVP. Then we see that the two protocols are quite similar: they both use quorum consensus 

and generate 1C-serializable schedules that order transactions in the view order. The following are some 

differences between the two. 

One difference (as pointed out in [ElT89]) is that DQA utilizes multiple versions, although DQA 

need not be restricted to multiversion. If we simply keep only the most up-to-date version (at the highest 

level where transactions have been executed) and disallow any transactions at lower levels, we have a 

single-version protocol. In this case, the previous levels of the table need not be stored, since they will 

not be utilized any more. On the other hand, GVP can be modified to be multiversion (Section 4.5). 

Another difference is that DQA associates "views" with data object copies, whereas GVP associ- 

ates views with sites. Associating views with sites has the disadvantage (as discussed in [Her871) of 

costly view-update process, since at view-update, all copies of all data objects stored at a site are subject 

to updating (this corresponds to eager quorum adjustment [Her87]). In Section 4.5, we pointed out that 

GVP can also associate views with copies. The protocol and correctness proof remain much the same. 
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View-update is then on per data object basis and is much less costly, but to store a view with each data 

object copy would incur more overhead than storing a view with each site. We may associate a "virtual 

site" with each data object copy, however, even if we use "virtual sites", views must be defined in terms 

of real sites. 

From the above discussions, we conclude that neither single- versus multiversion nor copies versus 

sites to be associated with a view is a major difference between GVP and DQA. The important differ- 

ences between the two are the use of quorum assignment tables and deflation in DQA versus view-update 

using a global read quorum set in GVP. 

The use of quorum assignment tables in DQA provides some static global information about the 

whole network: if we do not consider deflation, then each site storing a copy of a data object X can know 

what quorums of X transactions executed anywhere in the network may access. Since GVP doesn't make 

use of any quorum assignment table, it cannot ensure that each view read quorum set in a view intersects 

pup-wise each view write quorum set in all previous views; e.g., the view of the sites in another con- 

current partition may be a previous view. Therefore, in GVP, a new view always has to secure the most 

up-to-date value through the view-update transaction, reading from a global read quorum, which is a 

coquorum of all write quorums. Hence, in changing views, GVP has the overhead of view-update tran- 

sactions, as compared to no overhead for inflation for DQA. 

[Her871 pointed out that quorum inflation and deflation can be combined to realize every quorum 

assignment permitted by VP as follows. Let V, be the first view of VP. Then each data object X binds 

read and write quorums of sizes q, [X ,V,] and qw [X ,V,], respectively, to level 1, and read and write 

quorums of sizes A, [XI and A, [XI to each higher level. A transaction can execute in a new view V by 

restarting at a level I > 1. A deflation transaction is executed to rebind read and write quorums of sizes 

q, [X ,V] and q ,  [X ,V], respectively, to this level. We can do something similar to simulate GVP by 

DQA as follows. Each data object X binds rq (X ,Vo) and wq (X ,Vo) to level 1, and RQ (X) and WQ (X) 
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to each higher level, where W Q  (X) intersects RQ (X) group-wise, i.e., W Q  (X) is the set of coquorums of 

global read (which uses quorums in RQ (X)). However, we show below that deflation is not the same as 

view-update. 

One significant difference between DQA and GVP is due to the notion of global read quorum set 

RQ (X) in GVP. With DQA, different "views" (quonun assignments) may be bound to the same level at 

different times through deflation. Hence we want to make sure that each transaction (including deflation 

transaction) executing at level 1 follows the most up-to-date binding of quorum assignment to level I. 

This is because, if a transaction reads a read quorum of an old assignment, it is only guaranteed the most 

up-to-date value from a previous level, i.e., not necessarily the most up-to-date value at the current level 

(with new assignment). If a transaction T uses an old write quorum at level I ,  a new read quorum may 

not intersect it and the write by T may not be read by subsequent transactions executing at level I. This 

stems from the fact that a new read (write) quorum after deflation at a level may not intersect an old write 

(read) quorum at the same level. In order to make transactions using an old quorum become aware of the 

deflation, DQA requires that, at deflation (step 3), the quorum assignment tables at an old coquorum for 

read and write be updated. Thus, deflation is more restrictive than view-update in GVP. As pointed out 

earlier, at a view-update in GVP, an old coquorum of write for an inheritable object automatically gets 

the new view, but there is no need to access any old coquorum of read. In other words, if a global read 

quorum is accessible, then X is inheritable and the most up-to-date value is read and copied to a view 

write quorum. If not, transactions executing in the new view cannot read the un-initialized data object 

copies, but they can still write those data objects whose view write quorum sets are non-empty. Once a 

data object is initialized by a write in the new view, it is also readable. The reason behind this is that, 

with GVP, the global read quorum intersects all view write quorums. 

With the improvement in Section 4.8.2, DQA may allow transactions in two concurrent partitions 

to read and write the same data object as in GVP. However, the necessity to access the old coquorums in 

deflation makes this improvement difficult to realize. 



Part I 

48.4. Combining GVP and DQA 

In view of the the advantages of having quorum assignment tables in DQA and the global read 

quorum set RQ (X) in G W ,  we propose here to combine the two ideas into one protocol. In this proto- 

col, we shall call a quorum assignment table a DQA table. There will be a DQA table for each object 

associated with each G W  view V at each site in V. However, since at any time a site has only one GVP 

view, at any time only one table is being used at the site. Informally, each user transaction accesses each 

logical data object using the quonun assignment of a level in a DQA table associated with a G W  view 

for that object. We denote the table of logical object X associated with view V at site s by TB (V ,X ,s). 

The quorums that appear in TB (V ,X ,s ) contains only copies of X that reside on sites in V. 

There is a static global read quorum set RQ (X) as in GW.  All write quonuns that might exist in 

the quorum assignment table TB (V,X ,s) for any view V must intersect groupwise RQ (X). 

Initially, the system starts with an initial G W  view Vo = all sites in the network, and TB (Vo,X ,s) 

is the initial DQA table associated with Vo for each object X at site s . Before any failures, transactions 

submitted at s accesses X under the quorum assignment at level 1 of TB (V,,X ,s ). If a partition failure 

occurs, so that only quorum assignment at higher levels in TB (Vo,X,s) can be used, then we apply 

"inflation" as in DQA on TB (Vo,X ,s ). 

If there is no level in the table of TB (Vo,X ,s ) at which a transaction can be executed as a result of 

partition failures, then X may choose to do a view update as in GVP based on the view as projected by 

the partition. 

Changing Views: 

View update is done on a per object basis. The copy of each object X at site s keeps 

current-Vid (X ,s ), high-Vid (X ,s ), and update-Vid (X ,s ), which are initially all 0. In addition, each site 

s keeps high-Vid (s ) which is the maximum of high-Vid (X ,s ) for all X 's that have a copy at s . When 
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the copy of X at s initiates a view-update, it creates a view with a unique view-id > high - Vid (s). If we 

imagine that each object copy resides on a virtual site, then the view-update transaction follows the 

view-update in GVP, with the addition that the DQA table associated with the view is also established. 

After view-update, the copy of X might send a message to inform every other copy of X in the new view 

that it should also adopt the new view. (This step only affects efficiency but not correctness.) 

User Transactions 

Each user transaction T at site s in view V executes read/write operations using quorums at a cer- 

tain level 1 of the DQA table TB (X ,VJ ). The same value of 1 and V will be used for operations of all 

data objects that T readslwrites. (T is said to execute at level 1 in view V .) The schedule for all transac- 

tions that execute at the same level in the same view must be 1C-serializable. To achieve this, either the 

timestamping mechanism in DQA or the mechanism in GVP using version number can be used. 

Since a user transaction executed in view V with view-id V-id at site s may access more than one 

data object, say X and Y,  if current-Vid (X J ) = V-id > current - Vid (Y ,s ), then Y must adopt the view 

current - Vid (X ,s ). Note that at this point, current-Vid (X J ) < high-Vid (s) may hold. 

When a transaction executes at level 1 of the table TB (V ,X J), it follows the rules of both DQA 

and GVP. 

(1) Logical Read: If multiple versions are used (the most up-to-date version for each level of 

TB (V ,X J )), then the procedure is the same as in DQA except that the read quorum accessed must 

reside on sites that has current-Vid = V - id. If only a single-version is used (the most up-to-date in 

all levels of TB (V ,X J )), then a logical read accesses a read quorum at level I and succeeds only if 

none of the accessed copies was last written by a transaction at a level > 1 .  When a transaction 

with a read commits, each ratchet lock in the read quorum is set to the maximum of its current 

value and the transaction's level. 
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(2) Logical Write: If multiple versions are used, then the procedure is the same as DQA except for the 

following. If a logical write on X by a transaction executing in a view with view-id V-id accesses 

a copy of X at site 4 and V-id < update-Vid (X $), then the logical write is aborted. This is analo- 

gous to the ratchet lock mechanism. If only a single version is used, then, in addition to the above 

requirements, none of the copies accessed should have been last written by a transaction at a level 

> I .  

Quorum Inflation: A transaction executing at level 1 of TB (V ,X ,s ) that cannot access a write 

quorum because of failures or ratchet locks may abort and restart at a higher level in TB (V ,X ,s ). 

Note that quorum deflation is possible but not necessary, since we can apply view-update instead. 

If indeed deflation of TB (V ,X ,s) is performed, then it is very similar to deflation in DQA except that the 

coquorum of read or write is restricted to a set of copies within V . 

In this combined strategy, the initial quorum assignment table may be fine-tuned to the most prob- 

able pattern of partition failures. The advantage of this strategy over GVP is that inflation (which incurs 

much less overhead than view-update) can be used when a partition failure creates partitions that contain 

quorums belonging to higher levels of the quorum assignment table. The advantage of this strategy over 

DQA is that deflation can be replaced by view-update, which we have seen in Section 4.8.3 to have some 

advantages over deflation. The extra restriction compared to DQA is the requirement that of each write 

quorum set in TB (V ,X ,s ) intersect groupwise the global read quorum set RQ (X). It remains for future 

research to compare the performance of these systems by simulation. 

48.5. Correctness of the GVP-DQA Combination 

Theorem 43: Any schedule a, consisting of the operations of user transactions, generated by the 

GVP-DQA combination of Section 4.8.4 is equivalent to (i.e., has the same read-from relation as) a 1C- 
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serial schedule o. 

Proof: Let (T~G' I 1 5 i 5 m, ) be the set of all transactions that are executed and committed in 

GVP view GV, that is, each T~G' submitted at site s uses the quorums at some level of TB(GV,Xs) 

when it operates on logical data X. By the conditions of DQA, the schedule aGV generated in GV is 

1 C-serializable. 

AU transactions that execute at the same level in the same view are 1C-serializable, and across dif- 

ferent levels in the DQA table associated with a view, the DQA mechanism ensures that the resulting 

schedule is lC-serializable. Hence, the schedule aGV generated in GV is 1C-serializable. 

GV GV GV Without loss of generality, let aGv be equivalent to a serial schedule om = T ,  T ,  ... T, , a prefix 

of which consists of all view-update transactions in GV. We claim that a is equivalent to 

o = om, . . - owm. where m is the number of views and GVl-id c GV2_id c ... < GV,-id. 

To prove this claim, we point out that all the conditions for GVP are enforced here if we imagine 

that each data object copy resides on a virtual site of its own. Hence the conditions for view-updates 

(e.g. assignments of new view-id), those for logical read (e.g. a read quorum must reside on sites with 

current-Vid = view-id of the transaction executed), and those for logical write are all satisfied (e.g., all 

the sites accessed must have update-Vid 5 view-id of the transaction executed). Therefore, any schedule 

generated by the combined protocol will be 1C-serializable. 

4.9. SEQUENCE VECTORS AND GLOBAL VIEWS 

We define the sequence vector of a transaction T as follows: the sequence vector, Vn, of a transac- 

tion T is an array of integer sequence numbers, Vn (X), one for each data object X that T operates on. If 

a data object Y is not operated on by T, then Vn (Y) is undefined. The set of sequence numbers for a data 

object X, of the form Vn (X) for some Vn , are totally ordered by the "less than" relation "c". We say that 
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Vn (X) precedes (equals) Vn'(X) if Vn (X) < (=) Vn'(X). Given two sequence vectors Vn and Vn' for 

two committed transactions, if there is a data object X such that both Vn (X) and Vn' (X) are defined and 

Vn (X) < Vn' (X), then we say that Vn precedes Vn' , written Vn << Vn' . 

4.9.1. Total Ordering of Sequence Vectors in GVP and DQA 

The sequence number of a data object corresponds to the view-id of a data object in GVP. Since a 

transaction always executes in a view in GVP, the sequence vector of a transaction always consists of 

sequence numbers which have an identical value (which is the view-id). We say that each view 

corresponds to a global view. 

For DQA, a sequence number Vn(X) corresponds to a "view of data object X", which is the 

quorum assignment at a certain level of a DQA table for the data object as defined in Section 4.8.1, and 

the "view-ids can be regarded as the sequence number of X. Then a global view is a combination of 

views of different data objects. In order to show the uniquc ordering on all sequence vectors that can 

occur in an execution, we need to show the following. 

Lemma 43: In any log generated by DQA, for any two sequence vectors Vn and Vn' of committed 

transactions T and T ' , respectively, if Vn (X), Vn' (X), Vn (Y) and Vn' (Y) are defined for different X and 

Y,  then Vn (X) < Vn'(X) implies Vn (Y) I Vn'(Y). 

Proof: Since each transaction executes at a certain level, all the levels are totally ordered by <, and 

since the "view-id"s are consistent with <, we need only consider the case where T and T ' are executed 

at the same level I. If Vn (X) < Vn'(X), then the quorum assignment corresponding to Vn'(X) must 

have been bound to level I by a deflation transaction Td after that corresponding to Vn (X) was bound. 

Since Td is atomic and it updates the quorum assignment table at a coquorum for both read and write 

operations of the previous assignment at level I ,  T must have been committed before Td, which in turn 

must have been committed before T ', so that the resulting schedule of user transactions and deflation 
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transactions is 1C-serializable. Assume that Vn'(Y) < Vn (Y). Then using an analogous argument, we 

conclude that T ' must have been committed before T, a contradiction. 0 

It follows that the set of sequence vectors used by all committed transactions of a log generated by 

either GVP or DQA is totally ordered by the precedence relation <<. A sequence vector is thus like a 

timestamp that helps us to schedule transactions. 

4.10. UNIFYING GVP AND DQA 

In this section, we derive a paradigm for any protocol that deals with partition failures by using the 

following principles, which have been extracted from GVP and DQA. 

4.10.1. Common Features of GVP and DQA c 

Let Vn be the sequence vector of any transaction T. 

virtual partition: For all objects X accessed by T, Vn (X) = v = view-id of the view (i.e. virtual par- 

tition) in which T executes. The set of sequence vectors of all committed transactions are totally 

ordered by the precedence relation << defined in Section 4.9. 

quorum consensus: For each data object X , there is a quorum assignment corresponding to Vn (X). 

any output schedule has an equivalent 1C serial schedule in which the transactions are serialized 

according to the precedence order <<. 

We have seen earlier that the set of sequence vectors used by all committed transactions of a log 

generated by either GVP or DQA is totally ordered by the precedence relation <<. 
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4.10.2. Paradigm for General Quorum-Based Protocols 

Consider two sequence vectors Vn and Vn' of two committed transactions in a log L generated by 

GVP or DQA. If Vn << Vn' and there is no committed transaction in L with sequence vector Vn " such 

that Vn << Vn " << Vn' , then we say that Vn immediately precedes Vn' in L. For a given replicated 

data object X , let rq (X ,Vn ) and wq (X ,Vn ) denote the read quorum set and the write quorum set for X 

corresponding to sequence vector Vn, respectively. This notation is justified, since a sequence vector 

uniquely specifies a global view. The following are the criteria of our paradigm. We show that they are 

satisfied by GVP and DQA. 

Criterion A: A correct quorum consensus based concurrency control protocol is used for con- 

currency control of all transactions with the same sequence vector. For any committed transaction with 

sequence vector Vn in a log L , and for each data object X , there is a unique final value of X denoted by 

final (X ,Vn). 

The final value is defined recursively as follows: 

if X is written by a transaction with sequence vector Vn , then final (X ,Vn ) is the unique value 

read by a fictitious final transaction with Vn that reads X after all user transactions with Vn have 

committed (as decided by the concurrency control protocol for the transactions with Vn), and 

before reading by transactions with Vn has been disabled by view-updates of higher view-id; 

if X is not written by a transaction with Vn , then f inal (X ,Vn ) equals final (X ,Vn' ) where Vn' 

immediately precedes Vn in L ; and 

final(X, V-,), where V-, is a fictitious sequence vector that immediately precedes the first 

sequence vector, equals the initial value of X . 

Criterion B: When a transaction with sequence vector Vn reads X ,  and if no transaction with 

sequence vector Vn writing X has committed, then at least one copy in each read quorum corresponding 

to Vn has the final value f inal (X ,Vn'), where Vn' immediately precedes Vn . 
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Hence the final value of a sequence vector is the "initial" value seen by transactions with the next 

higher sequence vector. One way to enforce Criterion B is to make a value read "final" by disabling 

further writes on the data object with preceding sequence vectors. Hence we can break this criterion into 

2 parts as follows: 

Criterion B1: When a transaction with sequence vector Vn reads X, at least one copy in each read 

quorum corresponding to Vn has the most up-to-date value written by transactions with sequence vectors 

<< Vn , provided that no transaction with sequence vector Vn writing X has committed. 

This can be satisfied in the following ways. 

The most up-to-date value written by a transaction with sequence vector Vn is stored at all copies 

in a write quorum corresponding to Vn . In GVP, each logical write executed in view V on data 

object X always increments the version numbers of the copies in a write quorum in wq (X ,V). A 

similar measure is taken in DQA. This makes sure that none of the copies in the write quorum 

which are updated by the most recently committed transaction with a logical write on it will be 

updated by a logical write operation executed in a view with a smaller view-id. 

During view-update of a site s in GVP, copies in a global read quorum in RQ (X) are accessed for 

each X so that each copy of inheritable data object X at s gets the most up-to-date value from the 

previous view (since RQ (X) intersects each write quorum in wq (X ,V) for all V). In step (2) of 

quorum deflation in DQA, the latest version is copied to all the copies in a new write quorum, 

which intersects each new read quorum. Hence the most up-to-date value is also obtained by 

operations extraneous to steps in executing user transactions. 

The alternate reading rule in GVP requires that a global read quorum in RQ (X) be accessed, which 

intersects each write quorum in previous views. For DQA, each read quorum at level 1 intersects 
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each write quorum at all preceding levels in which writes are enabled (i.e., transactions may exe- 

cute at such levels in the future). 

Criterion B2: No transaction with sequence vector Vn' is allowed to write on X if, for some 

sequence vector Vn where Vn' << Vn , X is read by a transaction with Vn . 

Write is disabled in two ways: 

(A) Implicit disable15. If, by the quorum intersection rule or invariant, each write quorum in 

wq (X,Vn') intersects each read quorum in rq (X ,Vn), then, when a reading operation accesses a read 

quorum in rq (X ,Vn ), X can no longer be written by transactions with Vn' . For example, this happens 

when a ratchet lock disables writes while inflating in DQA, and the alternate reading rule in GVP 

requires that a global read quorum RQ (X) be accessed, which intersects each view write quorum of X . 

(B) Explicit disable. If some write quorums in wq (X ,Vn') do not intersect some read quorums in 

rq (X ,Vn ), then we must explicitly disable writes on X by transactions with Vn' . One way is to access a 

set S of sites that contains enough copies to intersect each write quorum in wq (X ,Vn') and inform each 

site s in S that write is now disabled. Such a method may disable writes even if X has not yet been read 

by any transaction with sequence vector Vn . 

For example, in GVP, data object X is inheritable in view V only if V contains a global read 

quorum in RQ (X). Since the global read quorum intersects each previous write quorum, once a data 

object is initialized by the view-update transaction, writing initiated at an old view cannot p m e d  

because it will come across a copy at a site s with update-Vid (s) higher than the old view. In steps (1) 

and (2) of quorum deflation in [Her87], ratchet locks are advanced to inhibit writing, where appropriate. 

l5 By implicit disable, we refer to the disabling of writes by the normal steps of read and write in quorum 
consensus. By explicit disable, we refer to extra steps that are not part of the usual quorum consensus, such as 
view-update transactions and deflation transactions. 
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In step (3) of quorum deflation, the assignment tables at a coquorum of an old write quorum are updated, 

so that no transaction can write with the old write quorum. 

Note that any logical read RT [XI accesses a read quorum rq of X, and any logical write Rw [XI 

accesses a write quorum wq of X, and we often require that rq intersects wq . This intersection property 

of each read quorum with each write quorum of a data object achieves two objectives. First, RT [X 1 can 

always read the most up-to-date value because the read quorum that RT [XI accesses has at least one copy 

in common with the write quorum of copies written by the most recent logical write. Second, the read 

quorum that RT [XI accesses intersects each write quorum to be written by each logical write that follows 

the read, so that the RT [XI can inhibit writes by marking (e.g., by means of ratchet locks in [Her87]) the 

copies in the read quorum if necessary. 

4.11. CONCLUDING REMARKS 

We have defined a family of virtual partition protocols, GVP, which generalizes and improves on 

the virtual partition protocol VP [ElT89] by allowing two concurrent partitions to read and write the 

same logical data under certain conditions. We proved the correcmess of the members of GVP. We 

have also considered three members of GVP: VP, SP and FP, each having its own characteristics and 

suitable for different applications. The optimization methods, such as demand tracking [ElT89], are also 

applicable to the members of GVP. 

A replica control protocol interacts to some degree with concurrency control protocol. For exarn- 

ple, if Zphase locking is used together with GVP, then we must specify what a view-update transaction 

should do when it accesses a data object copy locked by a transaction. The transaction that is holding a 

lock on it may now be in a separate partition as a result of a partition failure. Such details have been 

worked out. 
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We compared GVP with the dynamic quorum adjustment (DQA) in [HerU], and extracted some 

wmmon principles and mechanisms shared by both. 

One way to compare VP, SP, and FP would be to compute the expected data availability under a 

given distribution of partition failures. Such analysis is left for the future. 
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CHAPTER 5 

BICOTERIES 

5.1. MOTIVATION 

As we have seen in our review on replicated database systems, quorum consensus is one major 

approach to concurrency control. However, there has not been much study on how to select quorums to 

implement the quorum consensus approach. We see from the previous chapter that the characteristics of 

protocols like VP, SP and FPP depend very much on what quorums are used. It would be useful to distin- 

guish good sets of quonuns from the rest and this would require a study of the properties of quorums. In 

this chapter, we make such an attempt by relating sets of read/write quorums to an abstract structure 

which we shall call a bicoterie. 

Among the first solutions proposed to the concurrency control problem based on quorum con- 

sensus was the vote assignment or majority voting technique [Gif79,Tho79], where each copy of each 

data object X is assigned a number of votes, and a logical operation on X is allowed only if it can lock 

enough copies that contain a majority of votes. As we have seen in previous chapters, vote assignment is 

a special case of quorum consensus, where a quorum is a set of copies which contains a certain number 

of votes. This idea was first introduced in [Lam78a], where each logical data is assigned a set of groups 

of copies. Each pair of groups of copies should intersect at at least one copy. As a simple example, sup- 

pose wehave 3 copies { I ,  2,3)  of adataobjectx. { {1, 21, {2,3),  {1, 3) } is a set ofgroups with the 

above intersection property. An operation on X is allowed only when either both 1 ,2  are locked, or both 

2,3 are locked, or both 1 ,3  are locked. 
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In [GaBSS], a set of groups of copies such as { { 1, 2), {2, 31, 11, 3) ) in the above example is 

called a coterie (see Definition 5.1 for a precise definition). Essentially, a coterie P is a set of groups of 

elements, such that each group in P intersects each other group in P . The intention is to use P to model 

the read quorum set and the write quorum set in quorum consensus. 

In the above example, the conditions for permitting operations are equivalent to a vote assignment 

that assigns a vote of one to each copy. It is shown in [GaB85] that some vote assignment can be 

improved if the total number of votes is even. The following example is given. Suppose we have a sys- 

tem with copies a ,  b , c , and d of X,  and a vote of one is assigned to each copy. Then three copies are 

needed for a majority, and the assignment is equivalent in effect to the following coterie: 

s = I  t a , b , c ) ,  I a , b , d ) ,  I a , c , d ) ,  I b , c , d l  I ,  

which is the set of all groups of three copies. 

Consider now the following coterie: 

R = I  { a , b ) ,  I a , c ) ,  t a , d ) ,  t b , c , d )  1. 

Each group still intersects each other group, but now three of the groups have one less element than 

before. This means that to achieve mutual exclusion, one less element need to be locked in three of the 

four choices. This is a better solution than the vote assignment in terms of both overhead of logical 

readlwrite and availability. 

In [GaB85], R is said to "dominate" S (see Definition 5.2). There is another way that a coterie 

"dominates" another. Consider a logical data X with three copies ( a ,  b , c ) and the coterie 

s = I  t a , b ) ,  I b , c )  1. 

. We observe that the following coterie is an improvement over S in terms of availability: 

R = {  { a , b ) ,  { b , c ) ,  { a , c )  1 .  

The reason is that we have one more group to choose from. So in case we have a partition failure where 

we have copies a and c in one partition, we will be able to operate on X with coterie R , but not with S . 
(In terms of overhead, R is a bigger set and it would require more memory to store R ,  but we shall 
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consider improving availability a more important objective.) 

Therefore, if a coterie R "dominates" another coterie S , then it is an improvement in availability if 

R instead of S is taken as the set of read/write quorums in quorum consensus. 

Let us define more formally the terms coteries and domination. 

Definition 5.1: [GaB85] Let U be the set of copies (sites)16 that compose the system. A set S of 

groups of elements from U is a coterie under U iff 

(1) G E S implies that G # 4. 

(2) (Intersection property) If G , H E S , then G and H must have at least one common element. 

(3) (Minimality) There are no G , H E S such that G c H . 

Definition 52: Let R , S be coteries (both under U). R dominates S if R * S and, for each H E S , 

thereisaG E R suchthatG E H .  

Definition 53: A coterie S (under U) is dominated if there is another coterie (under U) which 

dominates S . If there is no such coterie, then S is nondominated (ND, for short). 

The time complexity of the problem of deciding if a given coterie is dominated has been left as an 

open problem by [GaBSS]. (It is believed to be NP-complete (see Section 5.5).) There is a brute-force 

algorithm for NDness, which tries to reduce the size of each group in the given coterie P without violat- 

ing the intersection property, as well as generates all possible groups that intersect all groups in P and 

see if each one can be added to the given coterie without violating the minimality property. The time 

complexity of this algorithm is in general exponential in the input size. 

l6 In GVP, data object copies are considered, while in some other protocols, e.g., VP in [ElT86], sites are 
considered. We shall use the term "elements" to denote either data object copies or sites. 
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However, as shown by M.Yannakakis in [GaBSS], there are at least 22cn nondominated coteries 

under a universe of n elements for some constant c. Therefore, it is not enough to know how to distin- 

guish between a dominated coterie and a nondominated coterie. The more practical and also challenging 

2"" problem is how to choose "good" nondominated coteries from among the more than 2 nondominated 

coteries. We leave this problem for future research. Instead, we would like to address another issue that is 

not attended to in [GaBSS]. 

In the most general setting of the concurrency control problem, we assume only two conflicting 

operations on data: read operation and write operation. (With concurrency control for absfract data type 

[Her86, HeW881, other kinds of operations can be defined with corresponding properties of conflicts.) 

This is why in the quorum consensus protocol (Chapter 4), we have a read quorum set and a write 

quorum set. By defining only a coterie, [GaBSS] has actually restricted the solutions to those that use 

identical read quorum set and write quorum set. However, we have quonun consensus protocols that 

make use of different read quorum set and write quorum set. One example is the read-one write-all pro- 

tocol, where the read quorum set consists of all groups of one element, and the write quorum set consists 

of the single group that contains all elements. 

Therefore, we shall generalize the concept of coterie to that of bicoterie. A bicoterie is essentially 

a pair of sets {P , Q 1, of groups of elements, where each group of elements in P intersects each group of 

elements in Q . The intention is to model the read quorum set and write quorum set by P and Q , respec- 

tively.'' A coterie is then equivalent to a bicoterie {P , Q ] such that P = Q . 

l7 Imagine that instead of two conflicting operations of read and write, we have 3 operations Z , ,  Z,, and Z3 
. that conflict with each other, which require quorums (groups of elements) in QZ,, Qz; and Qz , respectively. Then 

3 

we require that each group in Q to intersect with each group in Qz,, where j # i . Hence we have something that 
Zi 

we may call a tri-coterie. This could be generalized to N operatio&, whence we shall have N-coteries. It could 
also be generalized to cases where the conflicts are between certain pairs of operations instead of any pairs of 
operations. A boolean relation then maps each pair of operations to true (they conflict) or false (they do not 
conflict). 
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In the following sections we shall give more fonnal definitions and prove some properties of 

bicoteries. We shall define domination of bicoteries similar to that of coteries, and we shall relate the 

results to the virtual partition protocols in the previous chapter. 

53. DEFINITION AND PROPERTIES OF BICOTERIES 

Definition 5.4: Let U be a set of elements and let A = (P ,Q ) be an ordered pair of sets of groups of 

elements from U . A forms a bicoterie under U if 

(1) for each group G in P or Q , G # @, 

(2) (Intersection property) for each group G in P and each group H in Q , G n H # @. 

(3) (Irredundancy) for any two groups G and H E P , G H , and for any two groups G and H E Q , 

G & H .  0 

Definition 55:  A bicoterie A = (P ,Q) is dominated by bicoterie B = (R S) (or B dominates A) if 

the following hold: 

(1) for every group G in P , there exists a group H in R such that H G G , 

(2) for every group G in Q , there exists a group H in S such that H r G , and 

(3) ( P , Q ) W S ) .  

The following lemma shows that whenever a bicoterie A = (P, Q)  is dominated, we can find a 

bicoterie B = (R , S ) dominating A , where either R = P or S = Q . 

Lemma 5.1: For a bicoterie A = (P , Q), if there exists a bicoterie B = (R , S)  dominating A and 

suchthatP #R andQ ;fS,then 
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(i) (P , S ) is a bicoterie dominating A . 

(ii) (R , Q ) is a bicoterie dominating A . 

Proof: (i) By definition, each group in R intersects each group in S . Since each group G in P has a 

subset H in R , and H intersects each group in S , G also intersects each group in S . Hence, (P , S ) is a 

bicoterie. It dominates (P , Q ) because (R , S )  dominates (P , Q ). 

Similarly for (ii). 

The following theorem, which can be proved as Theorem 2.1 in [GaB85], will provide us with a 

way to show whether a bicoterie is dominated or not. 

Theorem 5.1 A bicoterie A = (P , Q ) under U is dominated iff there exists a group G (c U) such 

that 

(i) G is not a superset18 of any group in P and G intersects every group in Q ; or 
(ii) G is not a superset of any group in Q and G intersects every group in P 

Proof: First we prove that the existence of G satisfying (i) or (ii) implies that A is dominated. 

Suppose there is a group G satisfying (i). If G is a subset of some groups H ,, H,, . . . H,, in P , then ( 

(P - {H ,, H,, ..., H, ) ) u (G ), Q ) dominates A . Otherwise ( P u {G 1, Q ) dominates A . Similarly 

for (ii). 

Second, we prove that A is dominated implies (i) or (ii). From Lemma 5.1, A is dominated either 

by bicoterie B = (R , Q ) or bicoterie C = (P , S ), where R # P , S + Q . Suppose A is dominated by B = 

( R , Q ). Since R # P , we must have either of the following: 

(1) there exists G in R such that G S H and H P G for any H in P , or 

(2) there exists G in R and H in P such that G c H . 

'* By definition, a set is a superset of itself. 
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In either case, G must satisfy (i) or else B would not be a bicoterie. 

Similarly if A is dominated by C = ( P , S ), except that (ii) instead of (i) will be satisfied 0 

We say that A is dominated by G in the above theorem. 

Definition 5.6: A transversal of a set of groups P is a group which intersects each group in P. A 

minimal transversal of P is a transversal of P such that no proper subset of it is a transversal of P . 0 

If M and N are 2 sets of minimal transversals of P,  then clearly M u N is also a set of minimal 

transversals of P . 

Lemma 5.2 (cf. Lemma 2.2 in [GaB85]): Let A = (P , Q )  be an ND bicoterie and G a transversal 

of P (Q ), then G is a superset of a group in Q (P ). 

Proof: If G is not a superset of a group in Q (P), then G can be added to Q (P) and we get a 

bicoterie that dominates A .  El 

Definition 5.7: MT (P ) denotes the set of all minimal transversals of P . 

Now we can define a way to check for domination of a given bicoterie in terms of minimal 

transversals. 

Theorem 5.2: A given bicoterie A = (P , Q ) is ND iff P = MT(Q ) and Q = MT(P). 

Proof: Follows directly from Theorem 5.1.0 

5.2.1. Modeling by Boolean Functions 

In order to prove properties of the transformation MT formally, we represent a set of groups by a 

boolean expression. Let universal set U = ( g g 2, ..., gn 1 ,  and consider each element of U as a boolean 

variable. Any group G of elements from U can be uniquely represented as the boolean product term of 

the elements of G .  Let P = { GI, G,, ... G, ), where Gi = ( gil, gi2, ..., 8% ), be a set of groups of 



Part I 

elements of U. Group G i  is thus represented by product PDi = gi , - g i2 . . . : g , .  (We also say that G i  is 
I 

the group corresponding to PDi .) We now represent P as a sum-of-products expression P = PD + PD 

+ ... + PD, . Observe that this representation is unique. Namely, for any set P of groups of elements of 

U, there is a unique positive19 boolean sum-of-products expression, and conversely. Applying formula 

A .A = A  or A + AB = A  to a boolean expression E is called a reduction step (E gets reduced by such a 

step). A sum-of-products boolean expression is said to be irreducible if it cannot be reduced further. 

Clearly an irreducible positive sum-of-products represents an imdundant set of groups. 

Two boolean expressions are said to be equivalent if they represents the same function. 

Lemma 53: For any given positive boolean expression E , there is a unique irreducible sum-of- 

products expression E' equivalent to E up to a permutation of product terms. 

Proofi Suppose there are two distinct irreducible sum-of-products expressions E l  and E2 

equivalent to E . Clearly both E l  and E are positive, since applying A .A = A or A  + AB = A  to E does 

not generate any complemented variable. Let PD be a "smallest" product term (i.e., a product term con- 

sisting of the smallest number of variables) that is in one of E ,, E2 but not in the other. Without loss of 

generality let PD be a product term in E l .  Assign value 1 to all variables in PD and 0 to all other vari- 

ables, and evaluate E l  and Ez.  For this assignment E yields 1 while E yields 0, a contradiction to the 

fact that E , and E are equivalent. O 

In boolean algebra, the dual of a boolean expression E ( denoted by dual(E) ) is obtained from E 

by interchanging the OR (+) and AND (-) operations and the constants 0 and 1, respectively. 

Let P be an irredundant set of groups as defined in Section 5.2 and let E be an irreducible boolean 

sum-of-products expression representing P . We now interpret the transformation M T ( P )  in terms of 

operations on boolean expressions. 

l9  A boolean expression is positive if no complemented variable appears in it. 
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Consider the dual of E ,  i.e., 

(g ,+g ,2+ - . . +g ,,) (g2,+g ,+. . . +g,? . . (g, ,+g,,+ . - . +g, I ). If we expand this expression, a 

sum-of-products expression SP results. Note that each term in SP contains one element from Gi,  

i = 1 ,  ..., m. Therefore, the group corresponding to any product in SP intersects group Gi for any i . 

Now reduce SP using the formulae A -A =A , and A +A .B =A . Intuitively, the reduction using 

A *A = A  corresponds to getting sets of elements instead of bags2' of elements. Applying A +A .B =A 

corresponds to obtaining the irredundant set of groups. Making the above arguments more formal, we 

can prove the following lemma. 

Lemma 5.4: Let E be an irreducible positive boolean expression representing an irredundant set P 

of groups under a universal set U. Let R = red (dual (E) ) ,  i.e., the irreducible sum-of-products expres- 

sion obtained from dual (E ) by reducing dual (E ). Then each term in R represents a set in MT (P ) and 

vice versa. 

The above relation between duality and minimal transversal leads to a proof for the following 

theorem, which will in turn lead to a way to derive some ND bicoteries that dominate a given non-ND 

bicoterie. 

Theorem 53: If P is an irredundant set of groups then P = MT (MT (P )). 

Proof: We bomw the principle of duality ([Ha1651 p.56, [Koh78] p.45) from boolean algebra, 

which says that the dual of a valid boolean statement is also valid. (The principle of duality stems from 

the symmetry of the postulates and definition of boolean algebra with respect to the two operations, + 

and -, and the two constants, 0 and 1.) Let M T ( P )  = Q , and EP and EQ be the irreducible boolean 

expressions representing P and Q,  respectively. From Lemma 5.4, M T ( P )  is represented by 

red (dual(EP)). Since M T ( P )  = Q , we have red(dual(EP)) = EQ . The equality here means that both 

20 A bag is a multiset. Thus a bag of elements may contain more than one sample of an element of the same 
identity. 
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sides are identical up to a permutation of product terms. Since red preserves equivalence of expressions, 

dual (EP) and EQ are equivalent. By the principle of duality, therefore, it follows that EP is equivalent 

to dual (EQ). Finally, by Lemma 5.3, we have EP = red (dual (EQ)). Substituting MTO for red (dual 0 )  

and sets of groups for boolean expressions in the above boolean statements, we obtain P = MT(Q) = 

m ( m ( p ) ) .  0 

Corollary 5.1: For each irredundant set P of groups (see Def. 5.4), there is an ND bicoterie 

(P, Q). This exhausts all ND bicoteries. 

Proo$ The first part follows directly from Theorem 5.3 since (P, MT(P)) is an ND bicoterie. By 

definition, for any bicoterie A = (P ,Q), P is an irredundant set of groups. Hence all irredundant sets of 

groups exhaust all possible choices for P .  By Theorem 5.2, A is ND iff P = MT(Q) and Q = MT(P). 

Suppose (P , Q and (P , Q 2) are both ND, where Q , and Q, are distinct sets of groups. This contrad- 

icts Lemma 5.2, which says that MT(P ) is unique for P . 

Corollary 5 2  A given bicoterie A = (P , Q ) is ND iff P = MT (Q ) or Q = MT (P ). 

Proof: This follows from Theorems 5.2 and 5.3. 0 

The following is a way to find an ND bicoterie that dominates a given bicoterie, 

Given a non-ND bicoterie A = (P , Q ), 

Choice (a): Find ( P , MT (P ) ). 

Choice (b): Find (MT(Q), Q ). 

We now show that either of the above choices indeed finds an ND bicoterie that dominates A .  For 

Choice (a): By Theorem 5.3, (P , MT(P)) is ND. By Lemma 5.2, each group in Q is a superset of a set 

in MT(P). Therefore, for each group G in Q , there exists a group H in MT(P ) which is a subset of G , 

i.e., A is dominated by (P ,MT (P )). 

Similarly for Choice (b). 
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Example5.1:LetA =(P,Q)beanon-NDbicoterie,whereP = { {a,b) ,  {a ,c)  ) , Q  = { { a )  ). 

C=(R,Q)whereR = (  { a )  ). 

The above method does not derive a l l  possible ND bicoteries that dominate a given non-ND 

bicoterie. This can be seen from the following example. 

Example 5.2: Consider a non-ND bicoterie A = (P , P )  under a universe U = { 1,2,3,4,5,6,7 }, 

where P consists of groups represented by rows of the following array. 

Using either Choice (a) or (b), we first derive Q = MT(P) = 

Then B = ( P , Q  ) o r C  = ( Q , P  )dominatesA. 

However, the ND bicoterie D = ( R , R ) where R is shown below, also dominates A : 
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I 
and D is not derived by either choice (a) or (b). 

Theorem 5.4 A bicoterie A = (P ,P), where P is a coterie, is ND iff P is ND. 
i 

Pro08 This follows from the fact that a coterie P is ND iff P = MT(P). 0 

53. FPP BICOTERIES 

In Section 4.6.4, we defined finite projective plane (FPP) and introduced the Finite Projective Plane 

Based Protocol (FP), in which the lines (sets of points or elements) on a finite projective plane are taken 

as the read/write quorums. Here we shall define a class of bicoterie based on FPP. 

Definition 5.8. Let P be a set of lines (groups)2' in a finite projective plane of order m . The coterie 

under a universal set U of m2 + m + 1 elements corresponding to P is called a FPP coterie of order m . 
A bicoterie A = (P , P )  under the universal set U is called a FPP bicoterie of order m 

From Theorem 5.4, a bicoterie composed of two ND coteries is ND. Therefore, to show that a FPP 

bicoterie A = (P , P ) is ND, we need only to show that the FPP coterie P is ND. 

Theorem 5 5 :  A FPP bicoterie of order m is not dominated by any line (group) with I m + 1 

points (elements). 

Proof: In a FPP ll of order m , each point lies on exactly m + l  lines, and each l i e  contains exactly 

m+l  points (Theorem 4.1). If the FPP coterie II is dominated, then there exists an element (a point) in 

every group (line) which together form a group (line) L, which is not a superset of any group (line) in P . 
Let us find the minimal number of points on such a line LM . Each point intersects m +1 lines, and there 

21 With FPP bicoteries, lines (sets of points) of a FPP corresponding to (sets of elements) in a coterie. We 
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2 
are in total m + m + 1 lines (Theorem 

points on LM . 

). Therefore, there must be at least [(m '+m +l) / (m +l)]  = m + 1 

It remains to show that a line containing m + l  points cannot dominate ll. Assume that a line LM 

containing m + l  points dominates ll. Since any two points must lie on exactly one line in II, there are at 

least two points x and x ,  common to lines Lk and LM for some line Lk in ll. Since LM is not equal to 

any existing l i e  in ll, there is at least one point y on l i e  Lk which is not on LM . Since II is a FPP of 

order m , y lies on m +1 lines, therefore, there are lines L ...., L,,, in addition to Lk, which pass through 

y . Each of these lines must have at least one point in common with LM , the point must be distinct for 

each line, and the point cannot be x ,  or x ,  (else the line becomes Lk). However, there are only m + l  

points on LM and we cannot find such a distinct point for each of L ..., L,,, . We conclude that our 

assumption cannot be true. 0 

Theorem 5.6: A FPP coterie of ordcr rn may be dominated by groups (lines) with more than rn +I 

points. 

Pro08 We prove by giving an example of a FPP coterie of order 3. Suppose the elements (points) 

of a FPP coterie are denoted by numbers 1 to 13, and let the groups (lines) in the FPP coterie be: 

1 2  3 4 
1  5 6 7 
1 8 9 10 
1 11 12 13 
2  5 9 13 
2  8 12 7 
2  1 1  6 10 
3  5 12 10 
3 8 6 13 
3  1 1  9 7 
4 5 8 1 1  

sometimes use the terms, lines and groups, interchangeably. 

81 
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Then the above FPP is dominated by the group (line) ( 5,6 ,7 ,2 ,8 , l l  ). 

Theorem 5.7: A FPP coterie of order 2 is ND. 

Pro08 Let & be a FPP coterie of order 2. From Theorem 5.5, any line dominating 112 has more 

than 3 points. Suppose & is dominated by a line Ld of 4 points. Since every two points on a FPP lie on a 

line, there are = 6 lines that have two points on Ld and one point outside. Since 112 has 7 lines, the 0 
remaining line must intersect with Ld at only one point and intersect at two points with lines other than 

Ld . There are 3 points outside Ld . From the above discussion, each of 6 lines goes through exactly one 

of these points, and one line goes through two points. The sum of degrees (i.e., the number of distinct 

lines that pass through a point) of these points is therefore 8. However, for Q, each point should lie on 3 

lines, and the sum of degrees of 3 points should be 9, a contradiction. It is not possible for a line contain- 

ing y points, y > 4, to dominate & because the number of l i e s  that it intersects at two points would be 

which is greater than 7 for y > 4. 

5.4. VOTE ASSIGNMENTS 

In Section 4.6.1, we introduced the vote assignment protocol (VAP), in which the readlwrite 

quorums were sets of copies with a total number of votes 1 read/write threshold. Here we define a more 

general vote assignment independent of "views" of GVP. 

Definition 5.9: Let U be the set of copies of a logical data object X. A vote assignment is a func- 

tion v : U + N. (N is the non-negative integers.) v (a) denotes the number of votes assigned to copy a .  

0 
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Definition 5.10: For a vote assignment v over U, TOT(v) is defined by 

Definition 5.11: For a vote assignment v over U,  we call RT(v) and W ( V )  a read accessibility 

threshold and a write accessibility threshold, respectively, if they satisfy RT(v) + W ( V )  = TOT(v) + 

1. 0 

Definition 5.12: Let v be a vote assignment over U . We say that v can realize bicoterie (P , Q ) if 

there are read and write accessibility thresholds, RT(v) and W ( V ) ,  respectively, such that P and Q are 

the minimal groups22 of P , Q' , respectively, where 

P ' = { G  c U  1 xv(a )2RT(v) )and  
a e G  

Q ' = { G  c U  I xv(a )2WT(v) ) .  
a e G  

0 

Definition 5.13 (cf. Definition 3.3. in [GaB85]): We say that a vote assignment v over U can real- 

ize a coterie Z if there is a value TH (v), MAJ(v) I TH (v) I T O T ( V ) ~ ~ ,  where MAJ(v) is ~(TOT(V )+1)/21, 

such that Z consists of the minimal groups of 2' , where 

In general, a given bicoterie may be realized by more than one vote assignment. For example, vote 

assignment v, v(a) = 1, v(b) = 1, v(c) = 1, withRT(v)= W ( V )  =2 ,  as well as voteassignmentv', 

22~amely, G E P' (Q' ) if G contains no other group of P (Q ). ((P , Q )] is a bicoterie since it satisfies the pro- 
perties of Definition 5.4. 

23 In [GaBW], TH (v) is fixed to be MAJ(v). 
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d ( a )  = 2, v'(b) = 2, v'(c) = 3, with RT(v') = WT(v') = 4 realize the same bicoterie. 

The following theorem shows that some ND bicoteries may not be realized by any vote assign- 

ment. 

Theorem 5.8: No vote assignment can realize a FPP bicoterie of order m 2 2. 

Proof: Each FPP bicoterie A of order rn (2 2) consists of two identical coteries P whose groups 
t 

correspond to the lines in the corresponding FPP. In general, if G = { a ,  b ,  c } u G is in coterie P ,  

then H = { a', b , c ) u G is not in P . This is because any two elements (points) appear together in one 

and only one group (line), hence b , c cannot appear in two groups (lines) in P . 

If the coterie can be realized by a vote assignment v , then we must have v (a) > v (a'), so that 

v (x) > v (x), and it is possible for the first sum to be 2 RT(v) or WT(v) while the second sum is 
xeG X E H  

not. 

Since each point in the FPP of P lies on rn +l lines, there must be a line (or group) to which a 

belongs,hencethereexists agroupJ = {a ' ,d ,e}  u$ inP.  ThenK = ( a , d , e  } u$ cannotbeinp, 

for the same reason as above. However, v(a)+v(d)+v(e)+ . , .  > v(a')+v(d)+v(e)+ and it 

is not possible for the total vote of J to exceed a threshold value while that of K does not, a contradic- 

tion. 0 

Theorem 5.9: There are ND bicoteries that cannot be realized by any vote assignment. 

Proof: From Theorem 5.7, FPP bicoteries of order 2 are ND, and from Theorem 5.8, such bicoteries 

cannot be realized by vote assignment. 0 

Theorem 5.10: Let A = (P, Q )  be a bicoterie under U realized by a vote assignment v, with read 

and write accessibility thresholds of RT(v) and W ( V ) .  Then A is nondominated. 

Proof: From Lemma 5.1, we can assume without loss of generality that A is dominated by B = 

(P , S). By Theorem 5.1, there is a group G E S that intersects all groups in P but is not a superset of a 
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group in Q . Since G d Q , by definition, G has less than W T ( v )  votes. Since RT (V ) + WT (V ) = TOT (V ) 

+ 1, U - G must have more than RT(v)  votes. Thus, U - G or a subset of it must be in P. This is a 

contradiction since G does not intersect U - G or its subsets, and hence does not intersect all groups in 

P. 0 

In [GaB85], TH ( v )  is always set to be MAI(v), both read and write must gather a minimum vote 

of TH ( v )  = TOT(v)/2 + 1 when TOT(v) is even. TH ( v )  cannot be used as RT(v)  and W T ( v )  because 

then RT(v)  + W T ( v )  # TOT(v) + 1. Theorem 3.3 in [GaB85] says that in this case, if vote assignment is 

augmented to v' so that TOT(v') is TOT(v) + 1, then the resulting vote assignment is nondominated. 

With Theorem 5.10, we can explain this fact because v' is a vote assignment and RT(v)=TH(v) and 

WT(v)=TH(v) satisfy RT(v)  + W T ( v )  = TOT(v) + 2 = TOT(v') + 1 .  

55.  RECTANGULAR BICOTERIES 

In the read-one write-all approach in replicated database concurrency control, implementing logical 

read is cheap but implementing logical write is costly. There is a trade-off between the overheads of log- 

ical read and logical write. With the read-one write-all approach, the relative overheads of the two opera- 

tions are 1 to n , where n is the number of copies. Now we want to generalize this ratio to c to rn 1c1, for 

any integer constant c I n. To this end, we now introduce a family of rectangular bicoteries. A rec- 

tangular bicoterie which realizes a trade-off factor of c to nlc between read and write will be called a 

rectangular bicoterie of order c . 

In general, if we have a set of data copies U = ( a a2, a,, ..., a, ), then a rectangular bicoterie A 

= ( P , Q ) of order c is constructed as follows: 

P = { { ai+l, ai, , - - ai, ) I i = 0, c , ..., k -c ), where k = rn lcl-1 , I J  
where if n is not a multiple of c ,  then the elements a,, where j > n ,  in the above are taken as the 

null element, i.e., the last group (with i = k-c) in P has less than c elements. Q is defined by 
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Q =MT(P). 

Since P is a set of disjoint groups, Q is the set of all combinations of choosing exactly one element 

fromeachgroupofP. Thatis,ifP = { G l , G 2  ,..., Grnlcl ) , t h e n Q = { { b l , b 2  ,..., brnlcl} I bit G i ) .  

As an example, if U = {a ,, a2, a,, a,, as}, then a rectangular bicoterie of order 2 is A = (P, Q), where 

P = {  { a l , a 2 ) , { a 3 , a 4 ) , I a 5 )  IandQ =MT(f')=I { a l , a 3 , a 5 ) , { a l , a 4 , a 5 ) , { a 2 , a 3 , a 5 ) , {  

a29 as  1' 

Q has at least c groups of rn lcl elements each. 

Theorem 5.11: Each rectangular bicoterie is non-dominated. 

Proof: If A = (P ,Q) is a rectangular bicoterie, then Q is constructed from P by Q =MT(P), hence 

by Corollary 5.2, A is nondominated. 

Theorem 5.12: No vote assignment can realize a rectangular bicoterie. 

Proof: Let A = (P , Q ) be a rectangular bicoterie of order c , and let groups G , = { a ,, a2, ... a, ), 

G2 = ( b ,, b2, ... b, ) be groups of P. Assume that A is realized by a vote assignment v. If v (a ,) 2 

v(b,), then the group H = { a ,, b2, ..., b, ) would have at least as many votes as G2, i.e., at least RT(v) 

votes, and hence a subset H' of H should be a group in P.  H' cannot contain a ,  since no element 

appears in two groups in P by definition. But then H c G2, and thus P is not irredundant, a contradic- 

tion. 

For a set P of groups of elements, let the size of P be the sum of the number of elements in each 

group of P . By definition of a rectangular bicoterie A = (P , Q ) under U , we see that size of P is equal to 

n , the number of elements in U , whereas the size of Q is exponential in n . Hence it will be expensive to 

remember the groups of Q by storing them in memory. One solution would be to store only P and to 

derive groups in Q algorithmically. In quorum consensus, it is enough if one group in Q is accessible 

(e.g., within a partition during a partition failure). The algorithm that searches for any one group in Q 

given P runs in linear time because it only has to check if there exists an accessible element in each 
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5.6. COUNTING BICOTERIES AND VOTE ASSIGNMENTS 

Theorem 5.13 (M.Yannakakis, Theorem 4.1 in [GaB85]): There are at least 2' ND coteries under 

a universe of n elements, where c is some constant. 

Corollary 53: The above value is a lower bound on the number of ND bicoteries under a universe 

of n elements. 

Pro08 It follows from the above theorem and from Theorem 5.4, which says that P is a ND coterie 

iff (P , P ) is a ND bicoterie. 

Theorem 5.14: The following formula gives a lower bound on the number of ND bicoteries under 

a universe of n elements. 

Proof: From Theorem 5.3, the number of ND bicoteries under n elements equals the number of 

irreducible sum-of-products boolean expressions formed from a set of n positive literals. We count the 

number of sum-of-products boolean expressions where all products contain exactly the same number of 

positive literals. There are re] different products of exactly i positive literals, and each sum-of-products 

["3 
expression has the choice of including or not including each of these products. Hence there are 2 - 1 

different sum-of-products boolean expressions with products of size i . Summing over all possible sizes 

(1 to n ) gives the lower bound. 
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n 
Since [ ] is of the order 2". this lower bound is at least as good as the one in Theorem 

r(n + 1 )121 

5.13. The advantage of above lower bound is that it does not contain an unknown constant c . 

Theorem 5.15 (M.Yannakakis, see Theorem 5.3 in [GaB85]): At most 2"' coteries can be realized 

by vote assignments, in a universe of n elements. 

Proof: See the proof in [GaB85]. 

2 2 

Theorem 5.16: At most 2" .2" different bicoteries can be realized by vote assignments, in a 

universe of n elements. 

Proof: The argument is similar to the proof of Theorem 5.3 in [GaB85]. We can view the possible 

subsets of the universal set U as the nodes of the n -dimensional unit hypercube. An n dimensional vec- 

tor represents a hyperplane that cuts the cube in two halves, and each vote assignment with a read (write) 

accessibility threshold corresponds to one such hyperplane. Hypercube nodes on one side of the vector 

represent thc groups of nodes that have total votes 2 read (write) accessibility threshold, and nodes on the 

other side are the remaining groups. Hence we have two hyperplanes, corresponding to the read thres- 

hold and the write threshold, respectively. If we move a hyperplane as much as possible without crossing 

of nodes of the hypercube on which to rest the hyperplane. For two hyperplanes, we have less than 
2 1 2n2 2" . 2" = 2 choices. 

5.7. COMPLEXITY OF RECOGNIZING BICOTERIE DOMINATION 

Lemma 5.6: If recognizing coterie domination is NP-complete, then recognizing bicoterie domina- 

tion is also NP-complete. 
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Proof: This follows from Theorem 5.4 which says that a bicoterie A = (P 9) (where P is a coterie) 

is nondominated iff P is nondominated. Therefore, we can transform the domination recognition prob- 

lem of a coterie P into that of bicoterie A = (P ,P ). 

In [GaB85], it is conjectured that the above recognition problem for coteries is NP-complete. They 

relate a coterie to a hypergraph where the coterie groups are the hyperedges (a hyperedge contains a set 

of points). It is shown that a coterie is dominated iff the corresponding hypergraph is 2-colorable, i.e., 

the nodes of the hypergraph can be colored by 2 colors so that every hyperedge has at least two colors. 

(Intuitively, all elements of one color can form a transversal of the coterie.) Recognizing 2-colorable 

hypergraphs is known to be NP-complete [Lov73], which is a reason why it is believed that the same is 

true for recognizing coterie domination. However, since the properties of intersection and irredundancy 

must be present, coteries correspond to special hypergraphs, hence the result cannot be directly extended 

to the problem of coterie domination, and it remains open. 

5.8. APPLICATION TO GVP 

In GVP, we have three types of quorum sets: RQ (X), the global read quorum set, and for each view 

V, rq (X ,V) and wq (X ,V), the view read and write quorum sets, respectively. The intersection require- 

ment for these sets are such that each quorum in RQ (X) intersects with each write quorum in wq (X ,V) 

for all V , and each read quorum in rq (X ,V) intersects each write quorum in wq (X ,V). Since the copies 

residing at the sites of V form a subset of the set U of all copies, we can satisfy the above requirement if 

(RQ (X), wq (X ,V)) forms a bicoterie under U for each V, and (rq (X ,V), wq (X ,V)) forms a bicoterie 

under V . 

Recall that all the protocols described in Chapter 4 make use of RQ (X), rq (X ,V) and wq (X ,V) 

having the above properties. 
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CHAPTER 6 

THE TRANSACTION REPLICATION SCHEME (TRS) 

6.1. INTRODUCTION 

Most replicated database management schemes execute each transaction once, and broadcast the 

results. We explore the alternative of "replicated transaction processing", meaning that a transaction is 

executed more than once. The basic idea is to broadcast the transactions instead of their updates; a set of 

transactions submitted in a short time interval are grouped together and broadcast in one single message 

and are executed at all the receiving sites. It turns out that replicated transaction processing has some 

features which may make it attractive in some applications [PiG87, PiG891. 

Here, we propose a distributed concurrency control scheme based on replicated transaction pro- 

cessing, called Transaction Replication Scheme, or TRS for short. TRS possesses the desirable pm- 

perty that read-only transactions can read from local data copies, making it suitable for read-intensive 

databases. 

The other main features of TRS compared with conventional concurrency control schemes are the 

following: 

(1) simplicity of global concurrency control, 

(2) reduction in the number of messages, and 

(3) faster response time. 

Section 6.2 describes the network model, followed by Section 6.3 which describes the data and 

transaction model. Section 6.4 presents the synchronous broadcasting scheme. Section 6.5 proves the 

correctness of the scheme and Section 6.6 contains comments on the scheme. 
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6.2. THE NETWORK MODEL 

Our system model consists of a set of processing sites (or nodes) connected through a communica- 

tion network. All processing needed by distributed applications is performed at sites, while any process- 

ing needed for communication (e.g., routing) is performed by the network. 

We make the following assumptions about the network and timing. 

Each site has its own memory and there is no shared memory. 

Each site has a unique ID. 

Message size is bounded by M-size (bytes). 

There is an upper bound24 of ~ - d e l 4 ~  (see) on the maximum message transmission delay 

between any two sites, measured by the clock of any site in the system. 

Each site has a local clock and the local clocks at any two sites are synchronized to within C-difl 

( ~ e c ) . ~ ~  Note that a tight value of C-diffdepends on a tight value of M-delay if clock synchroniza- 

tion is achieved via messages (see [Lam78b]). 

An upper bound of X-time (sec) on the longest execution time of any "batch of transactions at any 

site, measured by the clock of any site (see Section 6.4). This bound is merely to guarantee that no 

transaction batch will execute forever. 

24 We may treat message delay greater than this bound as an omission failure. 

25 In "The Cost of Messages" [Gra88] by Jim Gray, M-delay depends on the following : 

Message-Size(bytes ) 
Communication-Delay = Transmit-Delay + + CPU time, 

Bandwidth(bytes /second ) 

where CPU time is computation time in communication protocols for message handling. 

26 In practice, a signal from a very reliable clock can be periodically broadcast, e.g., by radio or dedicated lines, to 
synchronize the clocks. Alternatively, a reliable clock synchronization protocol can be used 
[DHSW, LaM84, LuL841. Failures may invalidate this assumption, but we assume that a failure recovery 
mechanism will restore the clock difference before normal transaction execution is resumed after a failure. 
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63. THE DATA AND TRANSACTION MODELS 

63.1. Data Model: Two Types of Fully Replicated Data 

We assume that a distributed database system consists of n processors at n sites, any two of which 

can communicate via the network with each other when there is no failure. 

The ultimate goal is to give each user the illusion that helshe is the only user accessing a central- 

ized database. (We shall see later that the user may be aware that other users can have access to the data- 

base and so data can be "private" or "public", but the user should not have to worry about concurrency 

when other users are accessing the data at the same time.) More formally, let us call the data objects as 

seen by the user the logical data objects We allow the system to keep more than one physical copy of 

any logical data object, usually at different sites. Such logical data objects are called replicated data 

objects, and each copy a physical data object. Replication should be transparent to the user. We con- 

sider only fully replicated data objects, i.e., logical data objects that have a copy at every site. 

In most replicated database systems, uscrs might want to have two types of data. (See below for 

possible reasons.) Each data object of the first type is private to a particular site, meaning that only tran- 

sactions from that site can modify the data object, but transactions from other sites may read it (possibly 

their local copy of the data object). The second type of data is public, meaning that these data objects 

can be read and modified by transactions from every site. 

As an example, consider an airline database system. There may be a site for accounting, a site for 

flight scheduling, and many sites for seat reservation. The accounting and flight scheduling data would 

be "private" to the accounting site and the flight scheduling site, respectively. The reservation sites may 

want to read flight schedules but they need not modify them. Such data are private data. The seat plan of 

each flight should be public among the reservation sites since every such site can book seats and modify 

the data. (We assume that customers can pick their seats at reservation sites instead of at the airport.) 

Such data are public data. 
! 
X 
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Our objective in considering private data is not to provide privacy, but rather to achieve efficiency. 

Since private data is updated by only one site, we might expect that simpler concurrency control is 

sufficient. In our system, we shall actually show that transactions accessing only private data can be exe- 

cuted and committed upon submission without waiting for any communication with other sites. 

Previous work on replicated distributed database systems did not distinguish or accommodate the 

above two types of data. Most popular methods using locking or timestarnping assume only the public 

data, so transactions from any site can read and write any data object. Such systems cannot take advan- 

tage of the property of private data that only transactions from one site can modify some data. More 

arguments that support private data can be found in [ClS80, GaK88, LiSSO]. Some researchers have pro- 

posed having only private data, e.g., the fragmented database model in [KoG87]. However, systems with 

only private data have limited applications. For example, they cannot handle concurrent seat reservation 

from multiple reservation sites. 

63.2. Transaction Model: Local Transactions and Global Transactions 

We assume that each transaction originates from a single site. A user transaction may access a data 

object X by operations READ (X ,y ) and WRITE (X ,V ). A READ (X ,y ) operation reads the value of X 

and returns it in variable y . WRITE (X ,v) changes the value of X to that of v . The set of logical data 

objects that the transaction reads (writes) is called its readset (writeset). In our model, each transaction 

predeclares supersets of its readset and writeset. 

We assume that the execution of each transaction is deterministic. That is, when a transaction T is 

executed under a certain initial state of the database and certain interaction with user, there is only one 

possible outcome: only one possible return value for T and one possible final state of the part of the data- 

base affected by T. In other words, transactions do not make random choices which may be different in 

different runs starting in the same initial database state. 
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We can now explain private data and public data in terms of transaction operations. Let a logical 

data object X be replicated at all the sites. The data object X can then be of either one of the following 

two types: 

0 Private data X -- only transactions submitted at one particular site s can perform WRITE (X ,v ) on 

them; transactions submitted at other sites may perform READ (X ,y ). We say that s is the owner 

site of X ." 

0 Public data X-- transactions submitted at any site can perform WRITE(X,v) as well as 

READ(Xy)onX. 

We now identify two main types of transactions: 

0 Local transaction- a transaction initiated at a site s accessing (i.e., reading and/or writing) only 

logical data objects that are private to site s . 

0 Global transaction- any non-local transaction. 

Assumptions and Objective 

Let us assume that we have only two types of global transactions: 

(1) type 1 global transactions: read-only global transactions, 

(2) type 2 global transactions: global transactions that may write only the public data. 

There can be other types of global transactions (e.g., global transactions that also write data private 

to the transaction submission site), but they would require more complicated management. We believe 

that it is realistic to build systems with only the above two types of global transactions. If other types of 

global transactions are required, we suggest to make all data public. The only disadvantage of this 

As we pointed out previously, replication of data should be transparent to the users. However, in the case 
of private data, we do not assume transparency of the network, which is a different issue. The owner site s of a 
private data object X understands that there are other sites who might read X but not write X . 
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approach is that local transactions become global and cannot enjoy the privilege of being executed 

without waiting (see the description of our protocol in Section 6.4). 

It is possible that in some applications, most of the global transactions are of type 2. For example, 

in an airline reservation system, a transaction may read a flight schedule private to another site, may 

readfwrite a public seat plan, but may not modify any private data. 

In some systems, local transactions may be more numerous than global transactions. For example, 

in a banking database system, stationary customers (i.e., customers who do not travel) need only to 

access private data. The transactions of such customers will be local and they may constitute the major- 

ity of transactions. In case such a customer travels, the system can send his/her transactions to the owner 

site to be executed as local transactions. The processing of local transactions may or may not be repli- 

cated; their results are broadcast. Note that for private data, the replication of data could be for the pur- 

pose of backup. 

We shall devise a protocol based on timestamping that gives priority to local transactions over glo- 

bal transactions, by letting local transactions preempt global transactions. 

6.4. SYNCHRONOUS BROADCASTING SCHEME 

Define A to be C-dl#+ M-delay. Let D be the average communication delay (or message transfer 

time) between two sites measured by the average clock rate over all clocks. The idea behind the scheme 

we propose in this section is as follows. Essentially, it uses the timestamps as a serialization order. We 

assume that the timestamps of all transactions in a set (batch) submitted during any period of time are 

greater than those in the batch submitted in any preceding period of time. Consider a short period of 

time, 6 (sec), and consider the batch B of transactions submitted during this period at aU sites. Among 

the transactions in B ,  suppose that each global transaction is given a timestamp larger than that of any 

local transaction. The local transactions are executed at their origin sites and their updates (private data) 

are broadcast to all other sites. The batch of global transactions submitted at each site, on the other hand, 
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is sent to all sites (including the sending site) and executed at the receiving sites when they amve there. 

This means that a local transaction and a global transaction in B are executed at different times, as much 

as A time units apart. 

Consider, for example, two sites s, and s2, and suppose that B consists of only two transactions, T, 

and T2, where T1 is a local transaction submitted at s,, and T2 is a global transaction submitted at s2' T1 

is executed immediately during the current period of length 6, while T2 is broadcast by s2 and will arrive 

at s, later. If T, writes a private data object X and T2 reads X, then T2 must read X from T1 (since T, is 

the only transaction in B that writes X). This implies that sl must remember the value of X updated by 

T, until T2 arrives. This value of X may become an old version in case it is overwritten by another local 

transaction Tg submitted at a later time at sl after TI, and before T2 arrives. In general, our scheme 

requires remembering old values (versions) of private data (updated by local transactions). Moreover, 

the updated value of X must be sent from s, to s,, so that T2 can be executed at s2 as well. 

We now discuss the details of our protocols. It will turn out that the local transactions can be 

scheduled without using timestamps. 

6.4.1. Basic Protocol 

6.4.1.1. Broadcasting 

The basic step of our protocol for each site s is: accumulate global transactions initiated at s for a 

time period of 6 = Alq , where q is a design parameter (integer)?8 and then broadcast them at the end of 

the period. 

28 Theoretically, A/q can be made arbitrarily small, but in some cases, smaller d q  will require the storage 
of more versions of some private data, as will be explained later. A small d q  could also lead to an excessive 
number of "null messages". 
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At the same time, the other sites send in their batches of global transactions from a previous period, 

which must be collected by s . After every 4 9  (sec), s starts the next period of global transaction accu- 

mulation and broadcast. For example, if 4 q  = 0.5, then each site broadcasts at times 0.5, 1 .O, 1.5,2.0, ..., 
of its local clock. If we attach the unique site ID to the end of the submission time of each transaction, 

then we get a globally unique timestamp for each transaction. The global transactions are assigned 

timestamps generated in this way. The timestamps provide a total ordering on all the global transactions. 

Before time t +A, probably around t+D , s should have received from all sites (including itself) the 

messages which were broadcast at time t according to each broadcasting site's clock. Once s has 

received a message from every site, it totally orders aU the received global transactions according to their 

timestamps, and executes them using this order as the serialization order (i.e., makes sure that the execu- 

tion is equivalent to a 1C serial schedule (see definition in Chapter 2) which orders the transactions 

according to the timestamps). 

6.4.1.2. Transaction Scheduling and Execution 

Local Transactions 

At each site s , during the first q  periods of 4 9  (sec) each (e.g., after a system restart and before s 

receives a message from every site), only local transactions are executed. s may have received some glo- 

bal transactions broadcast by some other sites by the end of the q  th period, but there is no guarantee that 

all such broadcasts have been received. In general, local transactions are executed immediately upon 

submission according to some local concurrency control scheme. At the end of each period, s broad- 

casts the final values of private data updated in that period together with the batch of global transac- 

tions accumulated during that period at s . 
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The value of a private data object X that is sent by s in each broadcast is stored as a version of X 

at s . At the end of the q th period, up to q versions of s 's private data may be stored at s . 

Type 2 Global Transactions 

After the first broadcast from every other site has arrived (probably at around time D and by time 

4 q  at the latest), site s examines the messages which have been received from the other sites, namely, 

the new versions of the senders' private data as well as a new batch of global transactions totally ordered 

by their timestamps. Site s then executes the type 2 global transactions in the batch. The execution can 

be concurrent as long as it is equivalent to a 1C serial schedule that follows the timestamp order. To 

ensure 1C serializability, we enforce the following rule. (We shall shortly see why this rule needs to be 

followed.) 

When a global transaction T ,  which is broadcast by a site s2 at time t and executed at site sl later, 

reads a private data object X ,  T should read the version of X that was broadcast at time t by some site 

s,, where S, = s2 or s3 = s1 is possible. 

This version is discarded when the execution of the batch of global transactions is completed. This 

implies that, in general, the oldest undiscarded versions of private data are consistent with the newest 

versions of global data. Note that if s, # s, and s3 # s,, then the version of X to be read by T arrived at sl 

in the same batch as T. If s:, = s2, on the other hand, then the version of X to be read by T arrived at sl in 

the same message as T. Otherwise, i.e., if s, = s,, the version of X (a private data object local to sl) to be 

read by T is the oldest version of X kept at s,. 

The situation is illustrated in Figure 6.1. In the figures in this chapter, a horizontal axis represents 

time measured by site s's clock, and the transmission of messages is indicated by a slanted arrow. The 

tail of an arrow rests on the time axis at the message sending time, and the head of the same arrow, when 

projected on the time axis, corresponds to the time (s 's clock) at which every message broadcast from 
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every other site si at time t (according to si 's clock) has arrived. In these figures, it is assumed that the 

clocks keep the same time and each broadcasting takes exactly A time units. Figure 6.1 shows that if 

each period lasts A/q time units, and if the execution of a batch of transactions can be completed in A/q 

time units, then in the worst case, q+2 versions of some local private data may be required. (In ideal 

timing, no extra versions of remote private data need to be stored; global transactions and the remote 

private data they may read arrive in the same batch.) The worst case is where message delay is A, and 

this requires the largest number of versions. If messages travel faster, some versions of local private data 

can be discarded earlier, and fewer versions may be needed. Local transactions can be executed any 

time; they may intermpt broadcasting or the execution of type 1 and 2 global transactions. 

In Figure 6.1, we assume a site s owns a private data object X with consecutive versions, 

x x2, x3, x4, x5, xg. When site s broadcasts a new version xi (as shown by a slanting arrow), it also 

broadcasts a new batch of transactions Bi submitted at s . In the figure, we have assumed that the clocks 

tic at the same speed and each broadcasting takes exactly A time units. A system with average transmis- 

sion time D can complete broadcasting in around D ( < A ) time units. In such a case, execution can be 

started once all the broadcast messages of a period are received at a site. For example, in Figure 6.1, a 

site can start executing a batch of global transactions B earlier than time t2, as long as it has received the 

message from every site si broadcast at t , (si 's time). 

Type 1 Global Transactions 

So far, we have described our scheme as if all global transactions were broadcast. However, type 1 

global transactions are not actually broadcast to other sites, since these transactions are read-only and do 

not affect the database. If such a transaction T needs to read local private data, then it reads their oldest 

undiscarded versions. Thus, T needs not wait before it executes and commit. As commented earlier, the 

oldest undiscarded versions of local private data are consistent with the newest versions of public and 

remote private data. Therefore, T reads a consistent set of private and public data. Note, however, that 
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in effect we have changed T's timestamp so that T is considered as old as the local transactions that 

created the oldest undiscarded versions of local private data. 

Important Subtype of Type 2 Global Transactions 

An important subtype of type 2 global transactions are those which redwrite only public data. It is 

important because, if all global transactions are of this subtype, there is no need to store multiple ver- 

sions of private data. Thus, we may set the time period A/q to be very small without the penalty of hav- 

ing to store many versions of private data. The advantage of introducing private data is that local tran- 

sactions can be executed without waiting, giving them a faster response than global transactions, which 

must wait for some multiples of communication delay time. 

6.4.2. Timestamp Ordering Algorithm without Transaction Abortion 

We propose to adopt a scheduling technique based on timestamp ordering. We need a protocol 

which does not rely on transaction abortion. For, if a transaction is aborted at one site, it has to be 

aborted at every other site, which means that we cannot commit a transaction until we are sure that no 

other site will abort it later on. We would thus need some commit protocol like two-phase commit or 

three-phase commit protocol [Ske82b], and end up with poor performance. 

CONSERVATIVE TIMESTAMPING TECHNIQUE 

As is well-known, concurrency control using conservative timestamp ordering [BeG81] does not 

require transaction abortion. We shall see that the synchronous broadcasting of transactions makes this 

approach easier because little waiting (at most A/q time units) is necessary for a site to make sure that no 

transactions with older timestamps from other sites will arrive. The crucial point is that each transaction 

T predeclares its readset and writeset, denoted by readset[T] and writeset[T], respectively. 
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Our approach is to preprocess all the transactions in each batch B to detect read/write and 

writelwrite conflicts Let T,, T,, ..., T,, be the transactions in B in the timestamp order. To simplify 

explanation we shall add an imaginary transaction To at the beginning. To writes every public data 

object. 

Our algorithm constructs the set PRECEDE [Ti 81 ,  which contains all transactions that should be 

executed before Ti. For each data object X , it examines each transaction Ti that reads or writes X. If Ti 

writes X , then the algorithm looks for the closest preceding transaction (in terms of timestamps) Ti that 

writes X and puts it in PRECEDE [Ti ,XI. All the transactions with timestamp between those of Ti and 

Ti that read X are also placed in PRECEDE [Ti $1. For each transaction T, in PRECEDE [Ti $1, Ti is 

inserted into the set INFORM [T,,X], so that Ti can inform Ti about the completion of T, when it 

finishes execution (see the next paragraph). If X is only read by Ti, then the algorithm looks for the 

closest preceding transaction (in terms of timestamps) T, that writes X .  T, is then placed in 

PRECEDE [Ti ,XI, and Ti is inserted into the set INFORM [T, $1. Note that the transaction manager 

('I'M) carries out these operations locally at one site. When T, "finishes execution", TM erases it from 

PRECEDE [Ti ,XI. Ti cannot access data object X unless PRECEDE [Ti $1 = 0. A formal description 

of our algorithm is given in Figure 6.2, which is started when a set of global transactions has been 

received from every site, forming a new batch {TI, T2, ..., Tk }. 

An important point in the above paragraph is the meaning of the phrase "finishes execution", which 

means "commits". We keep only one version of each public data object; a transaction executes by 

accessing a copy in its temporary work area, and when the execution is completed the copy in the work 

area is written into stable storage, from where later transactions will read the value of the data object. 

We assume that writing into stable storage is an atomic action, and is considered as part of the commit- 

ting action. The above scheme enforces timestamp order, therefore, no abortion is necessary. 
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- -  

Assume batch (TI, T,, ..., T, ] is ordered by timestamps. 

Preprocessing before execution: 
for all transactions Ti and data objects X in readset[Ti ] or writeset[Ti ] 

PRECEDE [Ti ,X 1 := 0 
INFORM [Ti ,XI := 0 

for each data object X and each transaction Ti, 
if X E writeset[Ti 1 
then 

j : = i - l  
COUNT := 0 
while X d writeset[T, ] 
do 

if X E readset[Tj ] 
then 

PRECEDE [Ti ,X ] := PRECEDE [Ti ,X ] u (Ti } 
INFORM [Ti ,X ] := INFORM [Ti ,X ] u (Ti ] 
COUNT := COUNT + 1 

j : = j - 1  

if (j # 0) and (COUNT = 0) * no read between two writes 
then 

PRECEDE [Ti ,XI := PRECEDE [Ti ,X j u {T, j 
INFORM [Tj ,X ] := INFORM [Tj ,X ] u {Ti } 

else 
if X E readset[Ti ] 
then 

j : = i - 1  
while X d writeset[T,] do j  := j - 1 
if j  # O  
then 

PRECEDE [Ti ,XI := PRECEDE [Ti ,XI u (T, ] 
INFORM [Ti ,X ] := INFORM [Ti ,X ] u {Ti } 

Necessary condition before a transaction Ti accesses X : 
PRECEDE [Ti ,X ] = 0 

After execution of a transaction Ti : 
For each Ti E INFORM [Ti ,X ] 

PRECEDE [Ti $1 := PRECEDE [Ti ,XI - (Ti ) 

Figure 6.2 Preprocessing. 
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Note that when we add a transaction Ti to PRECEDE [Ti ,X I, it is similar to locking the data object 

X so that Ti cannot access X until Tj "finishes execution". We say that X is virtually-locked by Tj in 

respect to Ti when X cannot be accessed by Ti in this sense. If Ti reads (writes) X , then we say that Ti 

has a virtual read (write) lock on X against Ti. Releasing a virtual lock in the above example 

corresponds to the removal of Ti from PRECEDE [Ti $1. 

6.4.3. Large Transactions and Long Transactions 

6.4.3.1. Large Transactions 

We assume an upper bound of M-size (bytes) on message size. This will be a problem for large 

transactions, where the size of the transaction > M-size. One solution is to break up a large transaction T 

into consecutive sub-transactions { TI, T2, ..., Tk ), so that each Ti is short enough to fit into one mes- 

sage. We assume that a large transaction T can predeclare its entire readset and writeset. Therefore, with 

the first subtransaction TI, it declares its readset and writeset. The subtransactions are broadcast in con- 

secutive message broadcasts. T is given a timestamp which is picked at the beginning of the period just 

preceding the broadcast of Tk. T1, T2, ..., Tk are not executed until all of them are received. Therefore, 

we are treating T as if it were submitted in its entirety at about the same time as those transactions which 

are broadcast in the same batch as Tk . 

6.4.32. Handling Overdue Global Transactions 

We have seen in Section 6.4.1.2 that q +2 versions of some private data may be needed if the exe- 

cution of a batch of global transactions can be completed within A/q seconds. Here we consider the case 

where the execution of batch global transactions requires more than A/q seconds. 

If a site s cannot finish the current batch of global transactions within a period of &q seconds, it 

may still broadcast the next batch of global transactions collected during the current period when the 



Part I 

broadcasting time comes. However, site s will have to try to finish the uncompleted transactions belong- 

ing to the current batch in the next period. In order to do this, s might have to keep one more version for 

some private data. We can see the reason from Figure 6.3, where an old transaction a is delayed from 

period [t ,, t,] to [t,, t,]. If a reads version x ,  of private data X , then we must keep it during the period 

[t,, t,] until a commits at site s .  From Figure 6.4, it is seen that if a site cannot finish a batch for k 

periods, it may have to keep k more (in addition to the q+2 versions which are normally required) ver- 

sions of some data. 

Moreover, since transactions are broadcast as usual, site s will be storing more and more global 

transactions to be executed. We therefore look for ways to reduce overdue transactions. 

There are two causes for overdue global transactions: 

(A) Too Many Global Transactions 

One possible reason why a site s takes so long to finish transactions is that there are too many glo- 

bal transactions arriving within a short period. One solution to this problem would be to limit the size of 

the batch in each period. For example, we may set an upper bound MB (maximum broadcast size) on 

the number of global transactions that a site can broadcast to others. If a site s has received N (>MB) 

global transactions from users within a period, then it must only broadcast the first MB transactions and 

store the rest for the next broadcast. If MB is set properly, then the total batch accumulated at each 

round is likely to be finished in one round at most sites. 

With this scheme, only site s stores delayed transactions submitted at site s . Without the limiting 

scheme, transactions would be stored at all sites, occupying much more storage space. If too many tran- 

sactions arrive at s and threaten to overload its storage, s can give feedback to the users to request a 

29 Another reason why there are too many global transactions in a time period is that a site may have to 
resynchronize its clock by advancing it, in which case, the current period is shrunk, and not long enough to exe- 
cute all transactions for that period. 
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I j slow-down on their side. 
i 
I 
i 

(B) Too Many Local Transactions 
I 
I 

There is another possible reason why a site s could not finish global transactions in time. There 

1 may be too many local transactions arriving at s within one period, or some local transaction taking up a 
I 

L lot of computation resources. Since local transactions have priority over type 2 global transactions, they 

' would be able to dominate the use of computation resources. Therefore we can simply raise the priority 

levep of long overdue global transactions at site s ,  in order that they get to use the computation 1 

resources. 

; 65. CORRECTNESS OF THE PROPOSED SCHEME 
L 

i Before presenting a formal proof of correctness of our scheme, we shall illustrate the idea behind 

the proof by an example. 

Example: Consider the execution shown in Figure 6.5, where each period is A/3 time units long. 

In the top part of the figure, the transactions are plotted on the horizontal time axis in the order they were 
i 

executed. All local transactions in this example (indicated by x in the figure) access only one local 

private data object X ,  and { x,, x,, x,, x4, x5, X6, x7, xg } are consecutive versions of X. The local tran- 

sactions a a,, for example, were generated between time t , and t 2, and they modified the value of X 

from x4 to x5. The global transactions a,, a 4  were executed in the same time period as a ,  and a,, but 

they had been broadcast at time t , - A. The global transactions e,, e, were generated between t l  and t2 

and broadcast at t,. 

30 SO far we have assumed that local transactions have priority over global transactions (see Section 6.4.1.2). 
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What we want to show is that the replicated log (or rd log, see Sec. 2.3) representing this execution 

is 1C serializable by finding a serialization order corresponding to an equivalent 1C serial log. Since glo- 

bal transactions a,, a4, b,, b,, c,, c3, d,, d4 use values, xl,  x,, x3, x4, they must be serialized before a l  

and a,. Hence the local transactions between t and t 2  are serialized after all global transactions broad- 

cast at time t (i.e., d,, dd .  (See the serialization order shown in the bottom half of Figure 6.5.) Global 

transactions e2 and e3 access the value xS, and thus should be serialized after a and a,, but before local 

transactions b ,  and b4 which modify xS to x,. Hence, the local transactions executed between t2 and t3 

(i.e., b and b4) are serialized after all global transactions broadcast at time t2 (i.e., e2 and e,) and before 

all global transactions broadcast after time t3 (i.e., f ,, etc). 

The crucial point to be observed in the above example is the fact that the serialization order among 

the (type 2) global transactions is the same as their timestamp order. As for the local transactions (e.g., 

a ,  and a,), they are serialized just before the (type 2) global transactions (e.g., e, and e3) which were 

generated in the same time period. Note that, in the above example, we only considered serialization 

order among the local transactions at one site and the (type 2) global transactions. Of course, we have 

also to consider the local transactions at other sites and type 1 global transactions. As for the latter, we 

have already shown that they read a consistent set of data values, which means they can be serialized at 

appropriate places in the serialization order. As for the former, local transactions generated at different 

sites do not conflict by definition. Therefore, it is easy to integrate them in the serialization order defined 

by the timestamps of the type 2 global transactions. 

We shall call the global transactions actually executed at each site accessing physical data copies 

the transaction replicas (or simply replicas) of the logical global transaction which is intended by the 

user to operate in the same way but on the corresponding logical data objects. 

We say that a TRS schedule (schedule of the TRS system) a is equivalent to a 1C-serial schedule P 

if fl contains all the logical global transactions and local transactions in a and the following conditions 
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hold. 

(1) A replica T, of logical global transaction T reads from T ', (a replica of the logical transaction T ') 

in a iff T reads from T ' in 8, and T, reads from local transaction T" in a iff T reads from T" in 9. 

(2) The read-from relation among local transactions are the same in a and 8. 

If a TRS schedule a is equivalent to a 1C-serial schedule, then a is said to be 1C-serializable. 

Theorem 6.1: If no failure occurs, then each committed schedule (consisting of transactions which 

have committed) generated by the above scheme is equivalent to a 1C-serial schedule in which all the 

local transactions committed in the period [ t i ,  ti+A/q] are scheduled after all the global transactions 

broadcast at time < ti and before all global transactions broadcast at time 2 ti+A/q, where all the time 

values are measured by the clocks of the corresponding transaction submission sites. 

Proof: In the conservative timestamp ordering scheme in Section 6.4.2, when a global transaction 

is committed at one site, it will also be committed at every other site, and all committed global transac- 

tions are committed in their timestamp order. 

Next we show that, in general, for any schedule a generated by the TRS system, there is an 

equivalent 1C-serial schedule in which the local transactions (LT) that commit in any scheduling period 

of the form [ t i ,  ti + A/q ] in a appear after all global transactions (B ,) in a broadcast at time ti and before 

all global transactions (B z) in a broadcast at or after ti + A/q . Suppose local transactions in LT update 

the value of private data object X from x ,  to x,. Then x2 is broadcast with the global transactions in B ,  

and when the transactions in B 2  are executed, they read the value of x,, that is, transactions in B 2  may 

read from transactions in LT. Hence the resulting execution of B ,  and LT will be equivalent to a 1C- 

serial schedule in which the transactions in LT appear before those in B2' Also, before x 2  and B 2  arrive, 

B  , will be executed and if transactions in B  , read X , they will read the value x Therefore, the resulting 

execution of B  , and LT is equivalent to a 1C-serial schedule where the transactions in B  , appear before 

those in LT. 
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6.6. COMMENTS ON THE SCHEME 

At the beginning of this chapter we listed some nice features of TRS. Here we can justify those 

claims with the details of the scheme. 

(1) Simplicity is a key requirement for practical systems both for implementation and for correctness. 

For TRS, there is no complicated global concurrency control; the broadcasting of transactions and 

synchronization of execution (enabled at each site if it receives broadcast from all other sites) are 

the means to ensure correctness. It is simpler than 2-phase locking because there is no explicit 

remote locking (i.e., explicit request of locks from a remote site), and there is no need for global 

deadlock detection. 

(2) TRS can provide savings on the number of messages for systems with heavy workload. At each 

site, at regular intervals, a set of transactions are broadcast in one single message to every other 

site. This compares favourably with the number of messages required for the usual locking 

schemes, where each reading or writing operation of a transaction requires its own locking, ack- 

nowledgement and unlocking messages. The number of messages in such a system may be 

reduced by concatenation of messages at lower levels of the network. However, concatenation of 

messages at lower level would require more total overhead then that at higher level. 

When the size of a transaction is smaller than the size of data update, and computation is not heavy, 

we also have an advantage in the size of transmitted data. A more detailed comparison by analysis 

or simulation is left for future research. 

(3) When there are no conflicts, a transaction under conventional locking or strict timestamp ordering 

scheme will need 2 message transmission delays before it can commit. A transaction in the TRS 

scheme waits for a short time period before broadcasting and then requires one message transmis- 

sion delay before it can commit. This waiting time before broadcasting can be made small, so that 

the TRS scheme outperforms the above schemes in terms of response time. 
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(4) There is one major problem with distributed (non-centralized) database systems with the currently 

known concurrency control schemes. It is the availability of data that is under great contention of 

updates by transactions, sometimes referred to as hot spot data3'. Most currently known schemes 

use either Zphase locking or timestamping. We can see that conventional timestarnping schemes 

which avoid cascading aborts also "virtually lock data because, if an update has not committed, 

other transactions should not see the new value. (See an overview of locking and timestamping 

mechanisms in Chapter 3.) With distributed systems, (explicit or virtual) locking lasts at least twice 

the message transfer delay time. One message delay is required to acknowledge the lock-request, 

another message delay is to confirm the commit of the transaction (possibly piggybacked with the 

update data). With "hot spot" data, we cannot afford to have each updating transaction hold the 

data for twice the message transfer delay time. This may be a reason why the existing systems like 

airline reservation systems still adopt the centralized approach, although the centralized approach 

has drawbacks like dependence of reliability on the central site. 

In TRS, conflicts between transactions are resolved with a timestamping method that will not cause 

abortion. Any locking of data in the general sense (i.e., in the sense that some transaction cannot access 

some data object until another transaction commits) is local rather then global. The key reason why we 

can achieve this is because each site knows about the complete set of transactions (i.e., all possible 

conflicts on accessing the data) in each time period, and we assume that each transaction declares its 

readset and writeset. 

Unfortunately, TRS also has disadvantages: 

31 If Writes are used to add and subtract from a data object, then we can replace Writes by increment and de- 
crement operations, which will be commutable, and hence set weaker locks than Writes (see 
[GaK85, PeR88, Reu821). 
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(1) When transactions involve intense computation, the savings on messages may not cover the 

expense in replicated computation. However, we have ways to get around this problem. In 

essence, for such a transaction, we broadcast the operations and data involved, but only one site 

will do the execution. Similarly, if the size of a transaction T is much greater than the update size, 

then we broadcast only the writeset (data to be updated), but only the origin site s will do the exe- 

cution. Other sites then know the data references and can prevent conflicting operations on those 

data from other transactions. In particular, the writeset of T will be "locked" (see Section 6.4.2.1) at 

every site (including s , even when s has finished executing T) throughout the period during which 

other sites do not know the outcome of T. The results are then broadcast to update every site along 

with the next batch of transactions B (s ) (portion of batch B submitted at s ). The lock on the wri- 

teset of T at a site is released before the execution of B . However, with this approach, there is a 

tradeoff between computation cost and reliability whose choice can be decided by the user. 

(2) In the scheme, each site collects and broadcasts transactions regularly. If no transaction has been 

collected during a period, a null message has to be broadcast anyway. The synchronous broadcast- 

ing scheme of TRS may cause excessive null messages (messages that have nothing to do with user 

transactions to be sent) if system workload is low. However, we argue that to enhance performance 

in an asynchronous broadcasting scheme, frequent null messages are also inevitable. 
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CHAPTER 7 

CONCURRENT NESTED TRANSACTIONS ACCESSING B-TREES 

7.1. INTRODUCTION 

Work has been done to enhance concurrency by using the semantics of particular data structures 

I 
such as B-tree, hashed file, etc. [KuL80], W Y 8  I], [Sag86], [Ell87], [GoS85], [ShG88]. However, most 

\ such semantically-based concurrency control schemes make the simplifying assumption that a transac- 

tion consists of a single decisive operation [ShG88], such as read, insert or delete. (Search, split and 

merge operations are non-decisive.) Here we deal with a more realistic and more complicated model, 

: where a database is a collection of search structures (B-trees), and each transaction may be nested and 

may perform more than one decisive operation. 

Among the known concurrency control schemes for B-trees, the one due to Sagiv [Sag861 probably 

can achieve the highest degree of concurrency since each read/write operation has to lock only one node 

in the B-tree simultaneously [JoS90]. He makes use of the B'~"' tree proposed in [LeY81]. A B~ tree 

is obtained from a B-tree by adding to each vertex a pair (k , p ), where k is highest key stored in the sub- 

tree rooted at the vertex, and p is a pointer to the next vertex at the same level, called a link (See Figure 

7.1). With this added structure, only a single vertex needs to be locked when an overflowed vertex is 

being split into two vertices. Suppose that a vertex v with parent u is split into two vertices v' and v", 

where v and v' have the same "address" as seen by u,  and that a concurrent search for a key in v has 

visited u before the splitting operation and follows the pointer to v' after splitting. Even if the key to be 

a&ssed now resides in v" , the link from v' to v" can be followed to read the desired key. Therefore, no 

backtracking is necessary for read accesses. In [Sag86], there is no need for 2-phase locking to ensure 

serializabiity, since his user transactions have at most one readwrite operation on data in the B-tree, 
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which is called a decisive operation. 

We consider nested transactions ILyM861 accessing B-trees, combining the B' tree algorithm 

with strict 2-phase locking [EGL76]. When transactions are nested, they can be represented by a transac- 

tion tree. As in [Mos81], a transaction can acquire a lock only if all the holders of the locks conflicting 

with it are its ancestors in the transaction tree. (Initially, the root transaction holds all locks.) Therefore, 

when a transaction A requires a lock on a data object X and a conflicting lock on X is held by another 

transaction B , A has to wait until B and all ancestors of B that are proper descendents of the least com- 

mon ancestor of A and B have committed. In applying 2-phase locking, in order to take advantage of 

link the B tree algorithm, we want to lock the individual vertices and keys of a B-tree. 

Serializability is a widely accepted criterion for correctness for conventional schedules. But when 

semantics are considered, some non-serializable schedules can be considered "correct". Another compli- 

cation is that two B-trees may contain the same set of data, although there is no one-to-one mapping 

between the l i i s  and vertices of the two B-trees. We consider two states of a B-tree to be "equivalent" 

if they contain the same set of data. We propose a correctness criterion, called "strongly-serially correct", 

which basically says that a schedule a is correct if there is a serial schedule P such that no "important" 

(user visible) transaction T can tell the difference between a and P from the data read by T. For such a 

and p, we show that each data object storing the value of a key is updated by a and P in exactly the same 

sequence. (Cf. [ShG88].) In other words, we ignore the non-decisive operations such as searching and 

vertex-splitting as well as the structures of B-trees, as long as they are equivalent. 

We use the I/O automaton model [LyM86] to formally describe our system and in proving its 

correctness. Both transactions and data objects are represented by I/O automata. I/O automata can natur- 

ally model object-oriented databases: each automaton can be seen as an object in which both data (con- 

stituting a part of an automaton's state) and allowable operations are defined. 110 automata interact by 

their output and input operations. 
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How to apply the I/O automaton model to describe and prove the comtness of semantically-based 

concurrency control schemes was given as an open problem in [FLM88,LyM86]. Our work is an 

attempt to address this open problem. It can also be considered as an extension to [HaH88], which con- 

siders concurrency control schemes for nested transactions accessing object bases. Our work also 

extends [FLM87]. (Due to the complexity of the system, parts of our discussion are going to be fairly 

informal.) 

7.2. THE MODEL 

Nancy Lynch, et al., at MIT have constructed the "theory of nested transactions", in which they for- 

malized the description of nested transaction systems in terms of I/O automata. We shall adopt their 

model. In this section we give a brief and informal review of 110 automata and nested transaction sys- 

tems based on [FLM87], [FLM88], [GoL87], and [LyM86]. 

7.2.1. Nested Transaction 

While a (conventional) transaction is just a partially ordered set of primitive operations (e.g., reads 

and writes on independent32 data objects) that are executed as a unit, a nested transaction has a hierarchi- 

cal structure: each nested transaction consists of either primitive operations or subtransactions which 

are themselves nested transactions. In a nested transaction system, each transaction instance T may 

create subtransaction instances, which become the child transactions of T. The transaction instances and 

their parent-child relationship form a transaction tree. A transaction can commit only if each of its des- 

cendents has either committed or aborted. For the many advantages of nested transactions, the reader is 

referred to [LyM86] and [Mos85]. 

321.e., not organized into a structure such as a B-tree. 
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72.2. I/0 Automaton Model 

An I/O automaton A is a 5-tuple (states(A ), sturt(A ), out(A ), in(A ), and steps(A )). states(A ) is 

the set of states of A, of which a subset start(A) is the set of start states. out(A) is the set of A 's output 

operations, and in(A ) is the set of A 's input operations. steps(A ) is the transition relation of A , which 

consists of triples of the form a ', IC, s >, where s ', s E states(A ), and IC E in(A ) u out(A ). This triple 

means that in state s ', automaton A can indivisibly perform operation a and change to state s . An ele- 

ment of the transition relation is called a step of A .  A state s ' may satisfy the preconditions of more 

than one operation, i.e., <s' ,as > and <s' ,K"J may both exist in steps (A ), in which case the system 

non-deterministically executes one of the enabled operations. 

An execution of automaton A is an alternating sequence so, a,, sl, %, ... IC, , S, of states and opera- 

tions of A, such that so E start(A) and <si, xi+,, si+p is a step of A for each i (0 I i I n-1). A 

schedule of A is the subsequence of an execution of A consisting only of operations. 

We describe a system in terms of interacting components, each of which is an 110 automaton. A set 

of I/O automata may be composed to create a system S ,  if the sets of output operations of the automata 

in the set are pairwise disjoint. (Thus, every output operation in S will be triggered by exactly one com- 

ponent.) A state of the composed VO automaton is a tuple of states, one for each component, and the start 

states are tuples consisting of start states of the components. The operations of the composed automaton 

are those of component automata. Each output operation of a component automaton is connected with 

the identically named input operation of another component automaton. In the resulting system, an out- 

put operation is generated autonomously by one component and is thought of as being instantaneously 

transmitted to the components having the same operation as an input; the input step is simultaneous with 

.- the output step. 
I 

I Let a be a schedule of a system with a component automaton A. The projection of a on A, 

j denoted a 1 A , is the subsequence of a consisting of all the operations of A . Clearly, aH is a schedule of 
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72.3. Nested Transaction Systems 

To model nested transaction systems, a system type, which is a four-tuple (T, parent, 0 ,  R )  is 

used. T is the set of transaction names organized into a tree by the mapping parent: T -, T, with To as 

the root. In referring to this tree, we use the traditional terminology, such as child, leaf, least common 

ancestor (lca), ancestor and descendent. (Note that a transaction is its own ancestor and descendent.) The 

leaves of this tree are called access transactions or simply accesses. The set 0 denotes the set of (data) 

objects; it partitions the set of accesses, where each partition block contains accesses to one particular 

object. R is the set of return values of the transactions. 

A system of a given system type is the composition of a set of YO automata. This set contains a 

transaction automaton for each internal (i.e., non-access) node of the transaction tree, an object automa- 

ton for each element of 0 and a scheduler automaton. A transaction automaton has just one start state, 

while an object automaton may have many start states, depending on the initial value of the data object. 

(We sometimes use an automaton to represent a set of data objects, instead of one automaton for each 

data object.) Serial systems ([LyM86], [FLM87]) are those in which the scheduler makes sure that only 

serial executions are allowed. In a serial execution, a transaction is created only when all its elder 

siblings have been aborted or have requested to commit. Each execution hence corresponds to depth-first 

traversal of the transaction tree. 

We investigate two systems that manage search structures. They are the flat file locking (FFL) 

system and the B-tree locking (BTL) system. Of main interest to us is the BTL system which controls 

concurrent execution of nested transactions in a database system with B-trees. The FFL system is intro- 

duced as a means to prove the correctness of the BTL system. The FFL system is the same as the R/W 

Locking system defined in [FLM87], except for the naming of objects (see the next section). We shall 

define a stronger correctness condition than that used in [FLM87] and prove the stronger correctness of 
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the FFL system, and then establish the correctness of the BTL system by showing that it "simulates" the 

FFL system. 

73. SERIAL SYSTEM 

The serial system is identical to the serial system described in [FLM87]. Readers familiar with the 

system may skip to Section 7.4. 

73.1. Transactions 

A non-access transaction T is modelled as an I/O automaton, with the following operations. 

Input Operations: 
CREATE(T) 
REPORT-COMMIT(T ',v ), for T ' a child of T, and v a value 
REPORT-ABORT(T '), for T ' a child of T 

Output Operations: 
REQUEST-CREATE(T '), for T ' a child of T 
REQUEST-COMMIT(T ,v ), for v a value 

The CREATE input operation "wakes up" the transaction. The REQUEST-CREATE output opera- 

tion is a request by T to create a particular child transaction. The REPORT-COMMIT input operation 

reports to T a successful completion of one of its children, and returns a value recording the results of 

that child's execution. The REPORT-ABORT input operation reports to T an unsuccessful completion 

of one of its children, without returning any other information The REQUEST-COMMIT operation is 

an announcement by T that it has finished its work, and includes a value recording the results of that 

i work. 

1 

i 
73.2. Basic Objects 

E 
I 

F Since access transactions model abstract operations on a shared data object, we associate a single 
L 

110 automaton with each object, rather than one for each access. Thus, a basic object X is modelled as an 
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automaton, with the following operations. 

Input Operations: 
CREATE(T), for T an access to X 

Output Operations: 
REQUEST-COMMITV ,V ), for T an access to X 

Although we give these operations the same names as the operations of non-access transactions, it 

is helpful to think of the operations of access transactions in other terms also: a CREATE corresponds to 

an invocation of an operation on the object, while a REQUESWOMMIT corresponds to a response by 

the object to an invocation. 

73.3. Serial Scheduler 

The serial scheduler is also modelled as an automaton. While the transactions and basic objects 

have been specified to be any I/O automata whose operations and behavior satisfy simple syntactic res- 

trictions, the serial scheduler is a fully specified automaton, particular to each system type. It runs tran- 

sactions according to a depth-first traversal of the transaction tree. The serial scheduler can choose non- 

deterministically to abort any transaction after its parent has requested its creation, as long as the transac- 

tion has not actually been created. Each child of T whose creation was requested must be either aborted 

or run to commitment with no siblings overlapping its execution, before T can commit. The operations 

of the serial scheduler are as follows. 

Input Operations: 
REQUEST-CREATE(T) 
REQUEST-COMMITV ,v ) 

Output Operations: 
CREATE(T) 
COMMIT(T), T # To 
ABORT(T), T # To 
REPORT-COMMIT(T ,V ), T # To 
REPORT-ABORT(T ,V ), T # To 
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To in the above definition is the root transaction in the transaction tree. The REQUEST-CREATE 

and REQUEST-COMMIT inputs are intended to be identified with the corresponding outputs of transac- 

tion and object automata, and similarly for the CREATE, REPORT-COMMIT and REPORT-ABORT 

output operations. The COMMIT and ABORT operations are internal, marking the point in time where 

the decision on the fate of the transaction is imvocable. 

A state s of the serial scheduler consists of the following sets: 

( 1 )  s.create-requested 
(2)  sxreated 
(3) sxommit requested 
(4) s.commiied 
(5)  shor ted  
(6) s.returned 

The set s.commit-requested is a set of (transaction, value) pairs. The others are sets of transac- 

tions. There is exactly one initial state, in which the set creute-requested is {To}, and the other sets are 

empty. 

The transition relation consists of exactly those triples (s' ,ZJ) satisfying the preconditions and 

generating the effects given below, where K is the indicated operation. For brevity, we include in the 

effects only those components of state s which may change with the operation. If a component of s is 

not mentioned in the effects, it is implicit that the component is the same in s' and s . 

Preconditions: 

Effects: 

s.commit - requested = s'.commit-requested u ((T ,v )} 



Part I1 

* CREATE(T) 

Preconditions: 

T E s'.create-requested - (s'.created u $.aborted) 

siblings ( T )  n $.created r $.returned 

Effects: 

sxreated = $.created u (T ) 

* COMMIT(T), T # To 

Preconditions: 

(T ,v )  E s'.comit-requested for some v 

T d s'.returned 

children ( T )  n ?.create-requested G ?.returned 

Effects: 

s.comrnitted = s'.comitted u { T  j 

s.returned = s'.returned u (T ) 

* ABORT(T), T # To 

Preconditions: 

T E s'.create-requested-(S'.created u s'dorted)  

siblings ( T )  n s'.created r s'.returned 

Effects: 

s.aborted = s'.aborted u (T ) 

s.returned = s'xeturned u {T } 
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Preconditions: 

T E d.aborted 

* REPORT-COMMIT(T ,V ), T + To 
Preconditions: 

T E d.committed 

(T ,v ) E s'.commit-requested 

The input operations, REQUEST-CREATE and REQUEST-COMMIT, simply result in the 

request being recorded. A CREATE operation can only occur if the corresponding REQUEST-CREATE 

has occurred and the CREATE has not already occurred. The second precondition on the CREATE 

operation says that the serial scheduler does not create a transaction until all its previously created sibling 

transactions have returned. That is, siblings are run sequentially. The preconditions on the COMMIT 

operation say that the scheduler does not allow a transaction to commit until all its children have 

returned. The preconditions on the ABORT operation say that the scheduler does not abort a transaction 

while there is activity going on on behalf of any of its siblings. That is, aborted transactions are dealt 

with sequentially with respect to their siblings. The result of a transaction can be reported to its parent at 

any time after the (purely internal) commit or abort has occurred. In particular, two siblings might run in 

one order and be reported to their parent in the opposite order. 

73.4. Serial Systems and Serial Schedules 

The composition of transactions with basic objects and the serial scheduler for a given system type 

is called a serial system, and its operations and schedules are called serial operations and serial 

schedules, respectively. 
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7.4. FLAT FILE LOCKING (FFL) SYSTEM 

Let X.k denote a key k in search structure X. Then D = {X.k for all X and k such that X is a 

search structure containing k ) forms a database similar to a conventional database, in which each data 

item is directly accessible. "Searching" is thus a single step. We shall call each object X.k in D a FFL 

object. 

To simplify the system, we model both insert and delete operations on a key by write operations. 

We achieve this by assuming that a key can take a fictitious value of "nil", which indicates that the key is 

actually absent from the search structure. Insert is then writing into a key which initially has value "nil", 

delete is assigning the value "nil" to the key. 

The generalized 2-phase locking mechanism [Mos85] is used on the objects in D , considered as 

independent data items. 

A FFL system consists of transaction automata and automata representing FFL objects communi- 

cating with a scheduler. The scheduler (automaton) controls communications among the other com- 

ponents, thereby controlling the order in which the transactions create child transactions or access 

objects. A FFL system is the composition of a set of I/O automata, and is identical to the R/W locking 

system of [FLM87], with the FFL object automata corresponding to the automata for R/W locking 

objects. The following is a detail description of a FFL system. Readers familiar with the R/W locking 

system may skip to the Section 7.5. 

7.4.1. Fn objects 

For each object X.k in D , we define a FFL object M (X.k) which provides a resilient lock-managing 

variant of X.k. It receives operation invocations and responds like a basic object in the serial system, and 

also receives information about the fate of transactions so that it can maintain its locking and state res- 

toration data. 
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M (X.k) has the following operations. 

Input Operations: 
CREATE(T), for T an access to X.k 
INFORM-COMMIT-AT@.k )OF(T), T # To 
INFORMABORT-AT@.k )OF(T), T # To 

Output Operations: 
REQUEST-COMMIT(T ,V ), for T an access to X.k 

A state s of M (X.k) consists of the following five components: 

(1) s.write-lockholders, 
(2) s.read-lockholders, 
(3) sxreate-requested , 
(4) s.run , which are sets of transactions, 
(5) s.map , which is a function from write-lockholders to states of X.k 

We say that two locks on the same object conflict if they are held by different transactions and at 

least one is a write-lock. The initial states of M (X.k) are those in which write-lockholders ={To) and 

map (Td is an initial state of the basic object X.k, and the other components are empty. The transition 

relation of M(X.k) is given by all triples (s',z,s) satisfying the following preconditions and effects, 

given separately for each z. As before, any component of s not mentioned in the effects is the same in s 

asins'. 

* CREATE(T), T an access to X.k 

Effects: 

sxreate-requested = s'xreate-requested u { T } 

* INFORM-COMMIT-AT@.k )OF(T), T # To 

Effects: 

if T E S' .write-lockholders then 

begin 

s.write-lockholder = (s' .write-lockholders - {T)) u {parent (T)} 
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s.map ( U )  = s'.mq ( U )  for U E s.write-lockholders - {parent(T)} 

s.map (parent (T ) )  = s'mq ( T )  

end 

if T E s' .read-lockholders then 

begin 

s.read-lockholders = (s'.write-lockholders - {T}) u parent ( T )  

end 

* INFORM-ABORT-AT@.k )OF(T), T # T o  

Effects: 

s.write-lockholders = s' .write-lockholders - {descendants(T)} 

s.read-lockholders = s'.read-lockholders - {descendants(T)} 

s.map (U ) = s'.mq (U ) for all U E s.write-lockholders 

* REQUEST-COMMIT(T ,v) for T a write access to X.k 

Preconditions: 

T E s'.create-requested - s'.run 

s' .write-lockholders u s' .read-lockholders c ancestors ( T )  

(st .map(least(s' .write-lockholders)), CREATE(T), t )  

and (t ,REQUEST-COMMIT(T ,v ),t ') 

are in the transition relation of basic object X.k , for some t 

Effects: 

s.run = s'.run u {T ) 

s.write-lockholders = s' .write-lockholders u { T } 

s.map ( U )  = s'.mq ( U )  for all U E s.write-lockholders - ( T  } 
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* REQUEST-COMMIT(T,v) for T a read access to X.k 

Preconditions: 

T E s'.create-requested - s'.run 

s' .write-lockholders r ancestors (T) 

(s' .map(least(s' .write-lockholders)), CREATE(T), t) 

and (t REQUEST-COMMIT(T ,v ),t j 

are in the transition relation of basic object X.k , for some 1 

Effects: 

s.run = s'.run u (T } 

s.red-lockholders = s' .red-lockholders u {T } 

When an access transaction is created, it is added to the set create-requested. A response, contain- 

ing return value v , to an access T can be returned only if (a) the access has been requested but not yet 

responded to, (b) every holder of a conflicting lock is an ancestor of T, (c) every holder of a conflicting 

lock is an ancestor of T, and (d) v is a value which can be returned by basic object X.k in the response to 

T from some state t ,  obtained by performing CREATE(T) in the state map(least(write-lockholders)). 

When a response is given, the access transaction is added to the set run and granted the appropriate lock, 

and if the transaction is a write access, the resulting state is stored as map (T). If the transaction is a read 

access, no change is made to the stored state of basic object X.k , i.e. to map. 

When the FFL object is informed of the abortion of a transaction, it removes all locks held by the 

descendants of the transaction. When it is informed of a commit, it passes any locks held by the transac- 

tion to the parent, and also passes the version stored in map , if there is one. 
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7.4.2. Generic Scheduler 

The generic scheduler is a very nondeterministic automaton. It passes requests for the creation of 

sub-transactions or accesses to the appropriate recipient, passes responses back to the caller and informs 

objects of the fate of transactions, but may delay such messages for arbitrarily long time or unilaterally 

decide to abort a subtransaction which has been created. 

The generic scheduler has nine operations: 

Input Operations: 
REQUEST-CREATE(T) 
REQUEST-COMMIT(T ,v ) 

Output Operations: 
CREATE(T ) 
COMMIT(T), T # To 
ABORT(T), T # To 
REPORT-COMMIT(T ,V ), T 7t To 
REPORT-ABORT(T), T + To 
INFORM_COMMIT-AT@)OF(T), T # To 
INFORMABORT-AT@ )OF(T), T # To 

These play the same roles as in the serial scheduler, except for the INFORM-COMMIT and 

INFORM-ABORT operations which pass information about the fate of transactions to the FFL objects. 

Each state s of the generic scheduler consists of six sets: 

(1) sxreate-requeste , 
(2) s.created , 
(3) xcommit-requested , 
(4) s.committed, 
(5) saborted , and 
(6) s.returned . 

The set s.commit-requested is a set of (transaction, value) pairs, and the others are sets of transac- 

tions. All are empty in the initial state except for create-requested , which is {To}. 

The operations are defined by preconditions and effects as follows: 
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Effects: 

s.create-requested = s'.create-requested u ( T J 

* REQUEST-COMMIT(T ,v ) 

Effects: 

s.commit-requested = s'.commit-requested u ((T ,v)j 

* CREATE(T), T a transaction 

Preconditions: 

T E s'.create-requested - s'xreated 

Effects: 

s.created = s'.created u ( T  J 

* COMMIT(T), T # To 

Preconditions: 

(T ,v ) E s'.commit-requested for some v 

T d s'.returned 

children ( T )  n s'.create-requested r s'.returned 

Effects: 

s.committed = s'.committed u ( T  j 

s.returned = s'.returned u ( T  j 

* ABORT(T), T # To 

Preconditions: 

s.aborted = s'.aborted u ( T  j 
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* REPORT-COMMIT(T ,V ), T # To 

Preconditions: 

T E s'.committed 

(T ,v ) E s'.commit-requested 

* REPORT-ABORT(T), T # To 

Preconditions: 

T E s'.aborted 

* INFORM-COMMIT-AT@)OF(T), T # To 

Preconditions: 

T E s'.committed 

* INFORM-ABORT-AT@)OF(T), T # T o  

Preconditions: 

T E s'.aborted 

7.4.3. FFL Systems 

The composition of transactions with FFL objects and the generic scheduler is called a FFL system. 

The main result of [FLM87] is a proof of serial correctness for the R/W locking system: Every 

schedule of the R/W locking system is serially correct for every non-orphan (see Section 7.6), non-access 

transaction. 
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The serial correctness of the FFL system follows directly from the above result. In Section 7.6, we 

shall define a stronger correctness condition and prove that schedules generated by the FFL system (and 

hence the RJW locking system) are correct in this new sense. 

75. B-TREE LOCKING SYSTEM 

75.1. B""~ tree 

A B*-tree [Wed741 serves as a dense index, i.e., the leaves contain pairs (k , p ), where p points to 

the record with key k .33 The internal vertices have i keys and i+l pointers, where c I i I 2c for some 

fixedc > l,e.g.,p,klplk, ... kipi. wherek, <k ,<  ... <ki. Duringasearchforakeyk,wefollow 

the link p j  provided that k, < k I k,,,, and we may assume that k, is -= and ki+, is +=. For each pair 

(pi, ki+l), ki+l is the highest key in the vertex pointed to by pi. 

The  tree [LeY81] are obtained from the B*-tree by adding to each vertex an additional pair 

(ki+l,pi+l). The key ki+l is the high key of the vertex, i.e., the highest key in the subtree rooted at that 

vertex. The pointerpi+, points to the next vertex at the same level, and we call it a link. Thus, starting at 

the leftmost vertex at any level, we can traverse all the vertices at that level by following the links. 

Another modification, proposed in [Sag86], is to allow intemal vertices to have less than c + l  children 

link 
temporarily. Figure 7.1 shows an example of B tree taken from [Vid87], where M is a marker indicat- 

ing a leaf vertex. 

We have taken some of the following definitions from [GoS85]. 

We assume the keys come from a possibly infinite, totally ordered set of keys called KeySpace(X), 

and values that are stored with keys come from a possibly infinite set called ValueSpace(X). A state of a 

33 We interpret p as the value associated with key k. 
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link 
B tree consists of a five tuple (V, E , root, contents, edgeset), where V is a set of ~ert ices?~ E is a set 

of directed edges, and root is a distinguished member of V. contents is a function from V to subsets of 

KeySpace (X) x ValueSpace (X). edgeset is a function from the edges in E to subsets of KeySpace (X). 

The global contents, GlobalContents(X), is the union of the contents in all the vertices, i.e., 

GlobalContents (X) = {contents(v) I v E V ) .  Let GCSpace(X) be the set of all possible 

GlobalContenrs (X)'s, and StateSpace(X) be the set of all possible states of X . 

Informally, contents(v) is a set of key-value pairs and tells us what is stored in vertex v, 

edgeset(e) tells us what range of keys can be found in the subtree reached by traversing edge e ,  and 

GlobalContentr (X) gives what is stored in the entire B" tree X . In the next section, we give a descrip- 

tion of the B' tm scheme in [Sag86]. 

75.2. B""~ tree Algorithm 

75.2.1. Concurrent Searches and Insertions 

The procedure for a search in a BWL tree is given in Figure 7.2 (it is taken fmm [Ley811 and 

[Sag86]). The function next(A ,k) accepts the data of a vertex A and a value k, and returns either a 

pointer to the next level or the link of A (if k is larger than the high key of A). The procedure movedown 

starts at the root, and moves down the levels of the tree (using pointers and links) until a leaf is reached. 

The procedure moveright follows links until the leaf where k belongs is reached. 

An insertion of a new record r ,  having a key value k, begins with a search for the leaf where k 

belongs (see Figure 7.3). The procedure rn~vedown~and-stack is similar to movedown with the addition 

of stacking a pointer to the last vertex visited at each nonleaf level. Once we reach a leaf, we lock it and 

check whether k should be inserted into that leaf. Insertion is done only if k is neither in that leaf nor 

3 4 ~ o  avoid confusion between the transaction tree and a B-tree, we use "vertex" instead of "node", 
which is reserved for the transaction tree. 
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procedure movedown ; 
begin 
Current := root ; 
A := get (current); 
while A is not a leaf do 

begin 
current := next (A ,k); 
(* the function next (A ,k) returns either a pointer to the next level 

or the link of A . *) 
A := get (current ) 
end; 

end; 

procedure moveright ; 
begin 
while t :=next (A ,k) is a link do 

begin 
current := t ; 
A := get (current); 
end; 

end; 

procedure search (k :keyvalue) 
begin 
movedown ; 
moveright ; 
if k is in A then return pointer to record 
else return nil (* not found *) 
end; 

Figure 7.2 Procedure for a Search (Read) 

larger than its high key. If k does not belong to that leaf, than we have to unlock it and call the pro- 

cedure moveright again. Whenever moveright finds the leaf, A ,  where k belongs, we lock A and check 

again whether k belongs to A ,  since A might be split between the time we first read it and the moment 

we lock it. 
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When writing into A, three cases are possible and they are handled by the procedures in Figure 7.4. 

If A is safe , i.e., has fewer than 2c pairs, then we call the procedure write-into-saf e . If A is unsafe, 

then splitting has to be done, creating a new vertex, and we have to insert another pair at the next higher 

level to point to the new vertex. A special case is where a new root has to be created, and this is handled 

by the procedure write-into-unsaf e-root . In this case we have to lock A until the new root is created, 

in order to avoid the creation of two roots simultaneously. If the next higher level already exists, then we 

call the p m d u r e  write-into-umaf e . The vertex where the next insertion takes place is either the parent 

vertex of A at the time of splitting (i.e., the one through which we came down, we store it on a stack) or 

further to the right as a result of vertex splitting. Thus, we pop the stack and repeat the main loop of the 

procedure write. There is one minor detail of handling the case where the stack is empty although an 

insertion at a higher level is required. This may occur when the number of levels in the tree has been 

increased while our process is running. Thus, if the stack is empty, then at the end of the procedure 

insert-into-unsa f e we assign current a pointer to the leftmost vertex at the next higher level. 

75.22. Concurrent Deletion 

Deletions are handled by removing the key value and the pointer of the deleted record from the leaf 

where they are stored. There is a special compression process that redistributes the data in the tree so 

that each vertex has at least k pairs. This process can run concurrently with searches, insertions and dele- 

tions. 

The idea is to lock a vertex F and two adjacent children of F, say A and B . If both A and B have 

fewer than c pairs, then the data in A and B are rearranged (and possibly B is deleted), and some 

required changes are made in F . Immediately after A and B are examined, we unlock F , A, and B , 

before locking F again and examining the next pair of children. This is done to ensure that insertion 

processes that have procedure compress-level (i), given in Figure 7.5, visit each vertex, F ,  at level i+l ,  
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procedure movedaun-and-stack ; 
begin 
initialize stack ; 
current := root ; 
A := get (current ); 
while A is not a leaf do 

begin 
t := current ; 
current := next (A 8); 
if current is not a link 
then push (stack ,t ); 
A := get (current ) 
end; 

end; 

procedure write (r  :key); 
begin 
p := pointer to record with key k ; 
completed := false; 
movedown-and-stack ; 
repeat 

repeat 
found := true; 
lock (current ); 
A := get (current ); 
if k > highkey ( A )  then begin 

unlock (current); 
found := false 
moveright ; 
end; 

until f ound; 
if A is safe then write-into-saf e 
else if A is not the root 

then write-into-unsa f e 
else write-into-unsa f e-root 

until completed ; 

Figure 7.3 Procedure for Write 



Part I1 

procedure write-into-saf e ; 
begin 
write the pair (k p ) into A ; 
(* that is, if k was not in A , then insert (k p ); 

if (k p' ) was in A , then replace p' with p *) 
unlock (current); 
completed := true; 
end; 

procedure write-into-unsa f e ; 
begin 
B := a new vertex; 
q := pointer to B ; 
A B := rearrange old A , adding (k p ); 
link of B := link of A ; 
link of A := pointer to B ; 
unlock (current); 
p := pointer to B ; 
k := highkey (A ); 
i f  stack is not empty 
then current :=pop (stack); 
else current :=pointer to leftmost vertex at next higher level; 
end 

procedure write-into-unsa f e-root ; 
begin 
B := new vertex 
q := pointer to B ; 
A ,B := rearrange old A , adding (k p ); 
link of A := pointer to B ; 
k :=highkey (A ); 
u :=highkey (B ); 
R := new root; 
R := (current ,k ,q ,u ,nil) 
update the information about the number of levels in the tree; 
unlock (current ); 
completed := true; 
end; 

Figure 7.4 Three cases in writing 
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and examine pairs of adjacent children of F . (If F has an odd number of children, then the last one will 

not be compressed even if it has fewer than c pairs.) The complete process consists of applying 

compress-level to all the levels of the tree, except for the root, starting at level 0 (i.e., the leaves). As for 

the root, after applying compress-level to the level below it, we examine the root and if it has only one 

child, then the root is removed and its child becomes the new root. 

Suppose that a tree T becomes empty as a result of deletions. One pass of compress-level over all 

the levels of T is not going to reduce the tree to a single vertex; rather, log,n passes over the tree are 

required, where n is the number of leaves in T. In a typical environment the number of insertions far 

exceeds the number of deletions, and running the compression process in the background as a low prior- 

ity job is expected to allow only a small percentage of the vertices to be less than half full. 

Some changes in the data structure are required. First, an additional bit is needed for each pointer 

stored in the tree. When the vertices A and B are examined, we mark the bits for the pointers to A and 

B that are stored in their common parent F .  Secondly, in each vertex we stored the high key of its left 

neighbor (denoted kd, and each vertex has a deletion bit indicating whether the vertex is deleted. 

The procedure compress-level (i  ) locks a vertex, F , at level i +1, and reads it. If F has a tail (on the 

right) of unmarked pointers, then compress-level chooses the leftmost pointer in the tail, locks the ver- 

tex, A , it points to, and then reads A .  The third vertex to be locked, B , is the one pointed to by the l i i  of 

A .  If F does not have a pointer to B , then two cases are possible depending on whether the pointer to B 

should be stored in F. If it should not, then we unlock all three vertices and move to the next vertex at 

level i +l. If it should, then all three vertices are unlocked and compress-level waits until the pointer to 

B is inserted into F. In practice, compress-level is stopped for a while before locking the three vertices 

again and checking that F has a pointer to B . It is possible that compress - level will be waiting forever, 

because of constant splitting of vertex A ,  but it is expected that the chances of that happening are minus- 

cule. Once the pointer to B is in F, we check whether A and B have to be rearranged. If so, then two 
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procedure compress-level (i  ); 
begin 
current := pointer to leftmost vertex at level i +l; 
while current # nil do 

begin 
lock (current ); 
F := get (current); 
i f  F has an unmarked tail then 
(* unmarked tail is sequence of unmarked pointers to children, 

where a pointer is marked if the corresponding child is examined *) 
begin 
P ,:= leftmost pointer in the unmarked tail of F ; 
lock (P ,); 
A := get (P 
P ,  :=link ofA; 
i f  P , = nil then return; 
lock (P ,); 
B := get (P ,); 
i f  P2 is in F then 

begin 
rearrange A and B if necessary; 
unlock (current); 
unlock (P ,); 
unlock (P ,); 
end 

else begin 
unlock (current ); 
unlock (P ,); 
unlock (P ,); 
i f  P ,  should be stored in F 
then wait 
else current := link of F ; 
end 

end 
else begin (* F has no unmarked tail *) 

unlock (current ); 
current := link of F ; 
end; 

end; 
end; 

Figure 7.5 Procedure for the compression process 
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cases are possible. 

(1) If there are no more than 2k pairs in A and B , then all the pairs from B are moved to A (including 

the high key and link of B), the deletion bit in B is set, the pointer and high key for A in F are 

updated, and the pointer to A in F is marked. Finally, F, A ,  and B are rewritten and unlocked in 

that order. 

(2) If there are more than 2c pairs in A and B , then A and B are rearranged so that each one will have 

at least c pairs, the high key of A is updated in A, B and F, and the pointers to A and B in F are 

marked. Finally, F , A, and B are rewritten and unlocked in that order. 

Immediately before any one of A, B and F is rewritten and after all of them are rewritten, the tree 

has a valid B-Tree structure. Further, insertion into or deletion from any one of A, B and F does not 

interfere with the rewriting of these vertices, since it requires a lock. Thus, we only have to consider 

what happens when a process reads one of A, B and F before it is rewritten and another process (that 

may be the same as the first process) reads one of A , B and F after it is rewritten Several cases are pos- 

sible, but the only two that cause a problem are as follows. 

(1) A process reads a deleted vertex. 

(2) A process reads a vertex in search of a value k , and k should be left to that vertex, i.e., k I k,. 

Obviously, both of these cases are easy to detect. If either one happens to any process, then the sim- 

plest solution is to backtrack to the previous vertex visited, and only if we cannot resume the search from 

that vertex, we should restart at the root. A process must be extremely slow compared to the compres- 

sion process in order for the backtracking to the previous vertex to fail (because the previous vertex may 

be compressed again, but the compression of the vertex takes place after all other vertices have been 

visited once by the compression process). 
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A minor detail is the following: When a vertex is deleted, we cannot remove it, because other pro- 

cess may have to read it. One solution is to record in the vertex the time of its deletion, and also store for 

each running process its starting time. A deleted record can be released when all the currently running 

processes have started after its deletion time. Another solution is to use a constant to, and restart a pro- 

cess that does not finish within to seconds (an insertion process is restarted as described earlier). In this 

way, a deleted vertex can be release after to seconds. 

7.5.3. Automaton Model of the B-link Tree Algorithm 

The B~ tree scheme in the previous section handles only simple operations of readhvrite of a sin- 

gle data object (key). The algorithm that we model using the VO automata is a modified version which 

handles nested transactions accessing B-trees. We have included a Zphase locking scheme for sub- 

transactions in the transaction tree. The resulting system is called a B-tree locking (BTL) system, which 

consists of a set of VO automata. This set contains a transaction automaton for each internal vertex 

(which represents a "non-access" transaction) of the transaction tree, a BTL object automaton for each 

link 
vertex in each B tree, and a scheduler. In this system, there are locks on individual keys stored in ver- 

tices as well as locks on vertices. 

75.3.1. Transactions 

As in [FLM87] the I/O automaton modelling a transaction T has the following operations. 

Input Operations: 
CREATE(T) 
REPORT-COMMIT(7' ', r ), where T ' E children (T) 
REPORT-ABORT(T '), where T ' E children ( T )  

Output Operations: 
REQUEST-CREATEV '), where T ' E children (T) 
REQUEST-COMMIT(T , r ) 
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The states and state transitions of a transaction depends on the function of the transaction and is left 

unspecified. 

link 
A transaction trying to access some key in a B tree creates a child transaction, which is either a 

read access manager or a write access manager. These transactions will in turn create access transactions 

to vertices of the B-tree (see Figure 7.6(a)). In the figure, E at the root stands for "environment", U 

stands for "user transaction", W-AM (R-AM) stands for write (read) access managers, and VM stands for 

vertex manager. 

The definition of the well-formed schedules of transaction automata is the same as that for a FFL 

system (or R/W locking system [FLM87]), except for a read or write access manager. A schedule of a 

read or write access manager is well-formed if it is serial in the sense of [FLM87] and all search 

accesses are created before the read or write access. 

75.33. Read Access Manager 

link Let X be a B tree. The purpose of a read access manager, R-AM(X), is to perform a rcad acccss 

to some key, X.k, in X. A R-AM(X), T, invokes search-read (search to read) accesses to BTL objects 

(i.e., vertex managers, see Section 7.5.3.4), VM (v ..., VM (v,) for some vertices v ..., v, in X , where 

v is the root of X and the last vertex v, is the one that holds the value of X.k if k is contained in X. 

Accesses to v ..., v,-~ are non-decisive search operations and the read access to v, is a decisive opera- 

tion. Note that (k , nil) in a vertex, if any, represents the fact that key k is not in X . 

R-AM(X) has the following operations. 

Input Operations: 
CREATE(T), with root (T) = root of X 
REPORT-COMMIT(T ',r ), with type(T')=search-read 
REPORT-ABORT(T ') 

Output Operations: 
REQUEST-CREATE(T '), with type(T')=search-read and key(T')=k 
REQUEST-COMMIT(T ,r ) 



In the above, when type(T')=search-read and key(T') = k, we mean that T '  is a "search-read" 

access (there are other types of accesses) to some vertex v ; T ' is searching for a key in vertex v and the 

key to look for is equal to k. Here we have adopted a different convention of expressing parameters of an 

operation so that when we state an operation as in REQUEST-CREATE(T '), with type(T')=search-read 

and key(T')=k it is same as if key(T') is passed as a parameter as in REQUEST-CREATE(T ',key) where 

T ' is a "search-read" access and key = k appears as a precondition. 

We assume that the scheduler maintains a list of pointers to the roots of all B-trees, which can be 

passed as a parameter root(T). Le., a state component of the scheduler is s.root-of- (X) for each B-tree 

X, and when the scheduler outputs CREATE(T), where T is a R-AM(X), the precondition that root (T) = 

st.root-of - (X) must hold. Transactions can modify B-trees but do not introduce new B-trees. 

A state s of transaction R-AM@) consists of the following components: 

(1) s.data 
(2) sphase , which can take one of "idle ", "searching ", or "finished ". 
(3) s.neXtvertex 
(4) s.created, a boolean variable. 

s.data will store the return value for the read access. s.nextvertex keeps track of the next vertex 

during the search for the desired key X.k, starting at the root of B' tree X. For the initial state so of R- 

AM(X), so.created = false and the other components are undefined. The transition relation of T = R- 

AM(X) is given by triples <s ', x, s > having the following preconditions and effects, given separately for 

each x, where T ' is an access that is a child transaction of T. 

* CREATE(T) with root(T)=root of X . 
Preconditions: 

S' .created =false 

Effects: 

sphase : = "searching" 

s.nextvertex := root(T) 
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1 s.data := nil 

b s.created := true 

i * REQUEST-CREATEV ') with type(T')=search-read and key(T')=k 

(Each access T ' with type(T') = search-read has an associated parameter of key (T '), which is the key 

to be searched for.) 

Preconditions: 
1 

I T' E accesses(sl .nextVertex) 

(* accesses(v) is the set of aU accesses to vertex v *) 

I s' .phase = "searching" 

k = k e y m  

4 * REPORT-COIvlMIT(T', r )  with type(T') = search-read and r = ( r ( l ) ,  r(2)) 

(r (1) and r (2) are returned by a "vertex manager" (see Section 7.5.3.4). r (1) = "found " means the 

key has been located.) 

Preconditions : 

s' .phase = "searching" 

Effects: 

if r(1) = 'Ifound" 

then { sghase := "jinished ; s.data := r(2) } 

if r(1) = "not-found" then s.nextvertex:= r(2) 

* REPORT-ABORT(T ') 

Effects: none 

* REQUEST-COIvlMIT(T, r )  

Preconditions: 

s' .phase = "jinished 



Part 11 

r = sl.data 

Effects: 

sphase := "idle" 

75.33. Write Access Manager 

The purpose of a write access manager, W-AM(X), for search structure X is either to store a new 

key or to change the value of an existing key in X . Each W-AM(X), T, has associated parameters key (T) 

and data (T). To delete key (T), data (T) = nil is stored with key (T). When the value of a key is nil, 

then the key is not counted in the "size" of the vertex (size is the deciding factor in the splitting and 

merging of vertices). A W-AM(X) invokes search-write (search to write) accesses to VM(v1), ..., 

VM (v,) for some vertices v ,, ..., v, in X , where v is the root of X and key (T) is to be stored or updated 

in the last vertex v, . Accesses to v ,, ..., v,-, are non-decisive, and the write access to v, is decisive. 

The operations of W-AM(X) are similar to those of R-AM(X) except that search-write accesses 

instead of search-read accesses appear in the REQUEST-CREATE and REPORT-COIMh41T operations. 

The state s of a W-AM(X) consists of the following components: 

(1) sghase, which takes one of "idle", "searching", "jinished or "split" 
(2) s.nextvertex 
(3) s.created 

For the initial state so of W-AM(X), so.created = false and the other components are undefined. The 

preconditions and effects of each transition a', A, s >  for each operation x are similar to those for R- 

AM(X), except that value to be written is a parameter, data (T '), of REQUEST-CREATE(T ') and 

r = nil is returned in REQUEST-COMMIT(T ', r ). We omit the details. 

75.3.4. B-tree Locking Objects (Vertex Managers) 

In our system both vertices and keys of B~ ~ e e s  are objects. Individual keys stored in a vertex, as 

well as vertices are lockable. Each vertex is represented by an UO automaton but individual keys in it 
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are not represented by automata. Instead, the automaton for a vertex also manages the keys in the vertex. 

Keys will be called user-visible objects and vertices user-invisible objects. (The notion of user- 

' visibility will be important in our definition of correctness.) We define, for each vertex v in a B tree 

X, a vertex manager automaton VM (v), which provides resilient lock management for the keys in the 

vertex. VM (v )'s for leaves v contain key-value pairs (k ,c ). 

Since a key X.k is a "resilient object" [LyM86], different transactions may "see" different versions 

of the same key (i.e., values associated with the key ). However, there is only one version of each 
link B tree structure. Therefore, at any time, the set of all keys contained in X is partitioned among the 

leaves of the current B' tree, and each key in a leaf has a set of versions associated with i t  When a key 

moves from a vertex to another as a result of splitting or merging operation (see Sections 7.5.3.4.2 and 

7.5.3.4.3), all its versions move with i t  

Most frequent accesses to vertex v are of type search-read or search-write, and they interact with 

automaton VM (v ) via the scheduler. (Later we shall see other accesses for vertex splitting and merging.) 

A search-read or search-write access T with key(T)=k to vertex v is also an access to key k if v is a leaf 

and key k currently resides in v . 

Unlike previous 110 automaton systems [FLM88], some objects, i.e., vertices, in a BTL system are 

not permanent. We allow search-write transactions to perform operations which may remove existing 

vertices and construct new ones. 

VM (v) has the following operations. 

Input Operations: 
CREATE(T), where T E accesses (v ) 
INFORM-COMMIT-AT@.k )OF(T), T # To 
INFORM-ABORT-AT(X.k )OF(T), T # To 

Output Operations: 
REQUEST-COMMIT(T ,V ), where T E accesses (v ) 

where To is the root transaction in the transaction tree and accesses (v ) is the set of accesses to vertex v . 
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A state s of VM (v) for a non-leaf v consists of the following components: 

(1) s.created: contains accesses to v that have been created. 

(2) s.run : contains accesses to v on whose behalf VM (v) has output a REQUEST-COMMIT. 

(3) s.status includes the following information: 

s.edges : consists of the edges emerging from v , it is sufficient to record the identities of vertices con- 

nected by outgoing edges from v , 

s.edgesets : consists of the edgesets of edges emerging from v , 

s.outdeg : the number of edges emerging from v , 

sparent : the parent vertex of v , 

s.next-neighbour : the vertex pointed to by the link. 

For each non-leaf vertex v that exists initially, so.statu.s reflects the initial state of v , and the other 

components are empty or undefined. A state s of VM (v) for a leaf v consists of the following com- 

ponents: 

(1) s.created: contains accesses to v that have been created. 

(2) s.run : contains accesses to v on whose behalf VM (v ) has output a REQUEST-COMMIT. 

(3) s.status includes the following information: 

s.keyset : keys that are in v (value of a key can be nil), 

s.next-neighbour : the vertex pointed to by the link, 

s.edgeset : the edgeset of the edge (i.e., link) to the right neighbour, 

sgarent : the parent vertex of v . 

(4)  s.map , which maps transactions to contents (v) 

(if (k ,c ) E s.map (T), then we sometimes write smap (T ,k) = c ; s.rnap (U ,k) = nil means that in state 

s , transaction U finds that key k is not present in v ) 

(5) s.map-size: maps each transaction T to the number of non-nil keys in v . 
(6) s.readlock-holders(k ), where k E s.keyset , 
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(7) s.writelock-holders(k), where k E s.keyset , 

For each leaf vertex v that exists initially, s,.status reflects the initial state of v, i.e., s,.readlock- 

holders(k) = so.writelock-holders(k) = {To} for all k E s,.keyset , so.map (To) and s,.map-size reflect the 

initial contents of v and the other components are empty or undefined. 

A new vertex v may be constructed by some search-write transactions T, , as a result of splitting 

(see below). Then the initial state of VM(v), so, is defined after the REQUEST-COMMIT of T,. The 

transition relation of VM (v) is given next. 

7.5.3.4.1. Transitions of VM(v) 

In the above, we defined the components of a state of VM (v) for v being a vertex in a B" tree. 

Here we define the transition relation of VM (v). The transition relation of VM (v) is given by all tuples 

<s ', x, s > satisfying the following preconditions and effects, given separately for each x. 

* CREATE(T) with key (T) = k 

Preconditions: T E accesses (v ) 

Effects: s.created := s' .created v {TJ 

To simplify the presentation, we define below two disjoint sets of preconditions for the same 

REQUEST-COMMIT with type search-read. It should be understood that an automaton triggers any 

transition whose preconditions are satisfied. 

* REQUEST-COMMIT(T, r ) with type(T)=search-read and key (T) = k 

Preconditions: 

v is a leaf 

T E S' .created - s' .run 

k E s'.keyset 

s' .writelock-holders(k) E ancestors(T) 
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r(1) = '[found" 

(* r(1) = 'Ifound" when the key required is in leaf vertex v ; 

r(2) then returns the value associated with the key. *) 

r(2) = s'.map(leart(s'.writelock-hol&rs(k)) 

(* lemt(s'.writelock-hol&rs(k)) refers to the least ancestor of T in the transaction tree among s'.wntelock- 

hol&rs(k). *) 

Effects: 

xreadlock-hol&rs(k) := s'.readlock-holders(k) u {T} I* readlock given to T 

s.run := s'.run v {T} 

* REQUEST-COMMIT(T , r ) with type(T)=search-read and key(T) = k 

Preconditions: 

v is not a leaf or k d sl.keyset 

r(1) = "not-found 

( I f  v is not a leaf, then r (2) returns the vertex whose key range k is in.) 

r(2) = v' if k E S' .edgeset(e) and e = [ v, v' ] 

Effects: 

s.run := sl.run V {T} 

Again, to simplify the presentation, we define below two disjoint sets of  preconditions for the same 

I REQUEST-COMMIT with type search-write. 

I * REQUESTCOMMIT(T, r ) with type(T)=senrch-write, key (T)=k , data ( T W  and r = (r  (I), r (2)) 
t 
i Preconditions: 

visaleaf 

T E S' .created - s' .run 

k E s'.keyset 

s' .map-size(T) < m a i z e  I* if not, see Splitting. 
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s'.writelock-holders(k) U s'.readlock-holders(k) E ancestors(T) 

r(1) = ' r o d  and r(2) = nil 

Effects: 

if s' .map(T,k)=nil then s.map-size(T):=s' .map-size(T)+l 

s.map(T) := s' .map(least(s' .writelock-holders)) 

s.map(T,k) := d 

s. writelock-holders(k):=s' . writelock-holders(k)u{T} 

s.run := s'.run u {T} 

* REQUEST-COMMIT(T,r ) with type(T)=search-write, key(T) = k, data(T)=d and r = (r(l),  r(2)) 

Preconditions: 

v is not a leaf or k $ s' .keyset 

r(1) = "not-found" 

r(2) = v ' 

where k E s'.edgeset(e), and e = [v,v'] is the lefunost edge from v that can lead to k 

Effects: 

s.run := s'.run V {T} 

* INFORM-COMMIT-AT(X.k )OF(T) 

Preconditions: v is a leaf containing X.k 

Effects: 

if T E S' .writelock-holders(k) then 

begin 

s.writelock-ho[ders(k) := (s' .writelock-holders(k) - {TI) u {parent(T)} /* lock passed to parent 

s.map(parent(T), k):=s' .map(T, k) /* "view" passed to parent 

end 

if T E s'.readlock-holdersfk) then s.readlock-holders(k) := (s' .readlock-holders(k) 
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- {TI) u {parent(T)} I* lock passed to parent 

* INFORM- ABORT-AT@. k )OF(T ) 

Preconditions: v is a leaf containing X.k 

Effects: 

s.wntelock-holders(k):=s' .writelock-hol&rs(k) - { descendants of T} 

s.readlock-hol&rs(k) := s' .readlock-holders(k) - { descendants of T} 

75.3.4.2. Splitting 

VM (v) may split itself in order to observe the size limit on vertices during insertion. Splitting a 

vertex v involves the construction of a new vertex v ' containing all the keys of v higher than a certain 

"splitkey". The augmentation to the transition relation of VM (v) needed to account for splitting is given 

in the following. 

* REQUEST-COMMIT(T, r ) with type(T) = search-write, key(T) = k, data(T)=d and T E accesses(v) 

Preconditions: 

T E S' .created - s' .run 

visaleafofx 

s'.writelock-holders(k) U s'.readlock-hol&rs(k) c ancestors(T) 

k E S' .keyset and s' .map(T,k) = nil 

s' .map-size(T) = maxsize 

r(1) := "split" 

r(2):=[s'.parent, splitkey, v'] 

(splitkey is a chosen key in s' .keyset(T), and v' is a new vertex; if v is the root, then s' .parent is nil.) 

Effects: 

1) VM(v') for a new leaf v ' is constructed with initial state so as follows: 

so.statur is the initial status of vertex v' which contains the keys higher than splitkey in sl.keyset and the 

151 
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corresponding edges and edgesets from s'.keysef. 

s,,.creared and so.run inherit their values from $.created and sl.run for transactions that access keys in 

s,.keyset . 

so.readlock-holders and so.writelock-holders also inherit their values from d . 

s,,.map(T ' , k ') := s' .map(T ' , k ') for all k' E so.keyset and for all T ' 

so.map-size(T ') := number of non-nil keys in so.map (T ') for all T '  

if k E s,,.keyset 

then 

s,.map-size(T):= spap-size(T) + 1; 

s,.map(T, k):= d 

s,,.writelock-holders(k):= s,,.writelock-holders(k) U IT} 

s,,.run:= s,,.run U {T} 

2) Changes to VM (v ) : 

s.stafus is the same as s'.status except that the keys higher than splitkey and the corresponding edges and 

edgesets are removed, and an additional edge [v , v '1 and the corresponding edgeset are added. 

sxreated and s.run inherit their values from sl.created and sl.run for transactions that access the keys in 

the new s.keyset . 
s.readlock-holders and s.writelock-holders also inherit their values from s' . 

s.map(T' , k '):=s' .map(T' , k ') for all k ' E s.keyset and for all T ' 

s.map-size(T '):= number of non-null keys in s.map(T') for all T '  

if k E s.keyset 

then 

s.map-size(T):=s.map-size(T)+l 

s.map(T,k):= d 
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s.writelock-holders(k):=s.writelock-holders(k)u (T) 

s.run:= s.run U (T) 

* REQUEST-COMMITV, r ) with type(T)=install-pointer, splitkey(T)=k, and newvertex(T) = v' 

Preconditions: 

T E S' .created - s' .run 

k E se.edgesets(e) for some emerging edge e 

r = nil 

s' .out&g c mazrize 

Effects: 

s.edges = s'.edges u {[v,v']} 

s.edgesets := $.edgesets u s.edgeset( [v,v'] ) 

where edgeset( [v,v'] ) is the set of keys 2 k 

s.outdeg := s' .outdeg + I 

s.run := s'.run u {T} 

* REQUEST-COMMITV , r ) with fjpe(T) = split-write, split-key(T) = k 

newvertex ( T )  = v' and r = (r  (l),r (2)) 

Preconditions: 

T E S' .create-requested - S' .run 

S' .outdeg = mazrize 

r(1) = "split" 

r(2) = [s' .parent, splitkey, v"] 

where splitkey is a chosen key in s'.keyset(T) and v" is a new vertex; if v is the root, then s'parent is 

nil. 

Effects: 

1) new non-leaf vertex v" is constructed with initial state of so: 
t 
! 
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so.statur is the status of a vertex which contains the st.edges and s'.edgesets with keys higher than k and 

includes the edge and edgeset for [v" ,v' 1 if k 1 splitkey 

so.create-requested and so.run inherit their values from the corresponding sets in s' . 

if k 1 splitkey, then s.run := s'.run u ( T )  

2) for vertex v : 

s.status is the status of s' after so.edges and so.edgesets are removed, and edge and edgeset for [v ,v'] 

are included if k < splitkey. 

s.create -requested and s.run are the values of s' after so.create -requested and so.run are removed. 

if k < splitkey, then s.run := s.run u (T } 

If vertex v is the root, then construct a new root v" with initial status of a root vertex that has two child vertices 

v andv". 

Next we include the additional state components and transitions that are required for a W-AM(X) to 

handle the splitting process in the B~ me algorithm. 

Additional state components: 

sphase : can take additional value of "split " 

s.split : a 3-tuple where s.split [ I ]  and s.split [3] are vertices and s.split [2] is a key. 

Additional transitions: 

* REPORT-COMMIT(T, r), with type(T) = search-write or split-write and r = (r (I), r (2)) and r (2) is a 3- 

tuple 

Preconditions: 

r(1) = "split" 

Effects: 

s.phase := "split" 

ssplit :=r(2) 
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* REQUEST-CREATE(T '), with type(T) = split-write, split-key(T) = a and newvertex(T ') = b 

Preconditions: 

s' phase = "split" 

T ' E accesses( s' .split[l] ) 

a = s'.split[2] 

b = s'.split[3] 

Effects: 

s.phase := "split-in-process" 

* REPORTTCOMMIT(T, r)  with type(T) = split-write 

Preconditions: 

r = nil 

s' phase = "split-in-process" 

Effects: 

s.phase := ''finished'' 

In the first REQUEST-COMMIT operation in the above, the preconditions test if an insertion is 

required at a leaf vertex which has reached the allowable maximum size (maxsize). If so, splitting is 

necessary. According to the B' ~ e e  algorithm, v ' is a new leaf with a link to the "right" neighbor of v . 

Vertex v must be "locked while it is being l i e d  to v '. This "locking" is implicitly enforced by the 

atomicity requirement on REQUEST-COMMIT by VM(v), i.e., all its effects must be implemented 

indivisibly. 

The parent vertex of v must be modified to include a new pointer to v '. For this purpose 

REQUEST-COMMIT(T ,r ) by VM (v ) returns r (2) containing s' .parent, the splitkey and v '. However, 

the pointer updating is not urgent since the path via v to v ' will serve as an indirect path for the time 

being. We give the responsibility for updating pointers to the root transaction To as follows. The 

REPORT-COMMIT passes these three parameters returned in r (2) .  To intercepts 
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REPORT-COMMIT-AT(X.k)OF(T) for the transaction T which caused splitting of v and issues a 

REQUEST-CREATE for transaction IP-TM(X) (install-pointer transaction manager) similar to the write 

access manager W-AM(X). IP-TM(X) will take the parameters of the REPORT-COMMIT and search for 

the vertex in which to insert a pointer to the new vertex v '. IP-TM(X) will create child transactions which 

are accesses to vertex managers. However, instead of searching from the root vertex of X, the first child 

transaction accesses s'.parent, and the sibling transactions continue from there to search for the appropri- 

ate vertex to insert the new pointer. The appropriate vertex will be the one that contains an edgeset in 

which the splitkey lies. This searching is necessary because the parent vertex s'.parent may have been 

split and no longer be the correct vertex to insert the new pointer. This procedure is very similar to 

search-write, although the search is only horizontally moving right on the same level. It stops at the ver- 

tex where the pointer should be added to. 

If level of the B-tree has been increased, there might be a need to add pointers to the newly 

installed levels near the root (a new root). 

When the vertex u in which to insert the pointer to v ' is found, the second REQUEST-COMMIT 

operation in the above inserts the pointer into the vertex. 

If v is the root vertex, a new root has to be constructed which has v and v ' as child vertices. The 

scheduler will be implicitly informed about the new root. I.e., when REQUEST-COMMIT(T,r) is input 

at the scheduler and T has constructed a new root, the effect at the scheduler is that s.root-of-(X) 

becomes the new root. Another REQUEST-COMMIT operation (not shown) is invoked when the inser- 

tion to the parent vertex requires the splitting of the parent vertex. It is analogous to the first 

REQUEST-COMMIT operation in in the above. 
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75.3.43. Vertex Merging 

There is a background maintenance process similar to the compression process [Sag86], which 

link reorganizes B trees when two adjacent vertices can be merged as a result of key deletions. We imple- 

ment this process as transactions, called the Merging Managers (MM's), which are children of the mot 

transaction. Informally, an MM searches through the whole tree, locking two adjacent vertices and their 

parent vertex at a time. If two adjacent vertices v and v ' contain too few elements, then the contents of 

v ' are appended to v , and the pointer to v ' in the parent is removed. (v ' is "removed' at this point.) The 

root should be merged with its child when the root vertex has only one child vertex left. 

When a vertex is "removed", we cannot immediately "discard" it, because some transactions may 

have to read it. One solution is to record the time of its removal, and also record the starting time of each 

running transaction. A "removed" record can be discarded when all the transactions that started before 

the "removal" time have committed. We leave the job to a garbage collector. 

Merging Manager MM(X) 

We have for each B-link tree X a Merging Manager MM (X). The mot transaction periodically 

invokes the REQUEST-CREATE input to MM (X). MM (X) invokes accesses to the vertex managers of 

the vertices in X. These accesses include merge-lock-parent, merge-jnd-size, merge-append, merge- 

remove, merge-update-parent, and merge-release, which are discussed in the next section. 

Input Operations: 
CREATE(T) 
REPORT-COMMIT(T ', r ), where T ' E children (T) 
REPORT-ABORT(T '), where T ' E children (T) 

Output Operations: 
REQUEST_CREATE(T '), where T ' E children (T) 
REQUEST-COMMIT(T , r ) 

A state s of MM (X) consists of the following components: 

( I )  s.created 
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(2 )  s.stage 

(3) s.lefwrtex, s.righmrtex and sparentvertex 

(s.leftvertex and s.rightvertex are two neighboring vertices in X and parentvertex is their parent ) 

(4)  s.left, s.righi and s.parent 

( to record the status of what is being done on leftvertex, rightvertex, and parentvertex ) 

(5) s.outdeg ( the total outkg of leftvertex and rightvertex ) 

(6) s.count-release and s.count-lock ( counters for locking and releasing locks) 

(7) s.relemed ( set of vertices whose locks have been released ) 

(8) s.append-elements ( new elements to be appended to a vertex ) 

(9) s.new-neighbor ( new neighbor to be attached to a vertex ) 

(10) s.ST ( contains a set of transactions ) 

After the merging some of the contents of the rightvertex is migrated to lef tvertex . There may still 

be transactions that are trying to access the rightvertex. For this reason, we do not discard the rightver- 

tex immediately after merging, but leave the job to a garbage collector, which we assume runs periodi- 

cally. The garbage collector will make sure that when it discards a vertex, no future transactions will 

access the vertex. We do not discuss the details. 

The initial states so of MM (X) are those in which so.created = false and the other components are 

empty. The transition relations of MM (X) is given by all triples <s ', x,  s> satisfying the following 

preconditions and effects, given separately for each x. 

The merging process goes as follows: first a parent vertex and two adjacent children are locked 

through the transactions of types merge-lock-parent and merge-find-size. These also return the sizes of 

the child vertices. If the sizes are not too small, then merge-release-lock transactions are execution to 

release the locks and merging is started with another three vertices. Otherwise, merge-remove transac- 

tion is created to remove the right child, which at the same time will return the contents of the right child. 
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A merge-append transaction will then append such contents to the left child. At the same time, a merge- 

; update-parent transaction can delete the pointer at the parent vertex to the right child. When all is done, a 

merge-lock-release transaction will release all locks and start merging with some other vertices. 

*CREATE(T) 

Preconditions: 

s' .created =false 

Effects: 

s.created := true 

s.count-lock := s.count-release := s.outdeg := 0 

xreleased := 0 

s.parentvertex, xleftvertex and uightvertex are the first parent and children triple 

we come across when we traverse B-link tree X in breadth-first order 

(*note that such a traversal requires some communications between MM (X) 

and the scheduler and between the scheduler and the VM (v' ) of some vertices 

v' in X . For simplicity, we omit the tedious and trivial description of such operations.*) 

if such vertices exists, then deft := s.right := s.parent := "get-lock" 

if no such vertices exists, then s.stage := "fznished" 

*REQUEST-CREATEV '), where type (T ')=merge-lock-parent and rightvertex (T ') = b 

Preconditions: 

s' .parent = "get-lock" 

T' E accesses(s' parentvertex) 

b = s' .rightvertex 

Effects: 
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s.parent := "locking-in-process" 

*REQUEST-CREATE(T '), where type (T ')=merge-fmd-size 

Preconditions: 

T' E accesses(s' .ItftVertex) 

s' .left = "get-lock" 

Effects: 

deft  := "locking-in-process" 

*REQUEST-CREATE(T '), where type (T ')=merge$nd-size 

Preconditions: 

T' E accesses(st .rightVertex) 

s'.right = "get-lock" 

Effects: 

s.right := "locking-in-process" 

*REQUEST-CREATE(T '), where type (T ')=merge-remove and Trans-set(T ') = TS 

Preconditions: 

s' .stage= "merge-remove" 

T' E accesses(sl .righwertex) 

TS = .ST ............................................................................................ see HI, P I  

(* TS is a set of transaction that may possibly access the removed vertex in the future, 

[I] is where st.ST is updated (by return value r ) , and [3] shows how r is acquired. *) 

Effects: 

s.stage := "remove-in-process" 
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*REQUEST-CREATE(T '), where type (T ')=merge-append, append-edges(T ')=a , 

append-edgesets(T ') = b and new-neighbor(T ')=c 

Preconditions: 

s' stage = "merge-append" 

T' E accesses(s' .k?ftve~te~) 

a = s' .append-edges 

b = s' .append-edgesets 

c = s9.new-neighbor 

Effects: 

sstage := "append-in-process" 

*REQUEST-CFtEATE(T '), where type (T ')=merge-update-parent and merge-elements(T ') = { a  ,b ) 

Preconditions: 

s' stage = "merge-update-parent" 

T' E acce~ses(s'.parentvertex) 

a = s'.leftvertex 

b = s'.rightvertex 

Effects: 

sstage := "update-parent-in-progress" 

*REQUEST-CREATE(T '), where type (T ')=merge-release-lock 

Preconditions: 
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*REPORT-COMMIT(T ', r ), where type (T ')=merge-lock-parent 

Preconditions: 

s'.parent = "locking-in-process" 

Effects: 

sprent  := "locked" 

*REPORT-COMMIT(T ' , r ), where type (T ')=merge-fmd-size 

Preconditions: 

s' .left = "locking-in-process" 

T' E accesses(st . h ? f ~ e ~ t e ~ )  

Effects: 

s.left := "locked" 

s.size := s'.size + r 

s.count-lock := sl.count-lock + I 

i f  s.count-lock = 3 

then 

if s.size < minsize ... ......................................................... similar to I21 
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*REPORT-COMMIT(T ' , r ), where type (T ')=merge-fmd-size 

Preconditions: 

s' .right = "locking-in-process" 

T' E accesses(s' .rightvertex) 

Effects: 

night := "locked 

ssize := s'.size + r 

s.count-lock := s'.count-lock + I 

if s.count-lock = 3 

then 

if s.size < mimize ... ......................................................... similar to [2] 

*REPORT-COMMIT(T ', r ), where type (T ')=merge-release-lock 

Preconditions: 

T' E accesses(v') and v' d s' .released 

Effects: 

s.count-release := s' .count-release - 1 

s.released := s' .released u {v'} 

if s.count-release = 0 

then 

s.leftvertex and s.rightvertex are assigned the next pair of sibling in the current level. 

(*The identities of these vertices can be obtained by accessing s.parentvertex and look for the 

next two outgoing edges to the right of sightvertex, we skip the details.*) 

I f  no such vertices exist then s.lef fvertex and s.rightvertex are assigned the first pair of 

siblings in the next level that have a common parent, and s.parentvertex is the common 
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parent. 

(*Again we skip the details of finding such vertices here.*) 

If such vertices can be found, then deft = s.right = s.parent ="get-lock" 

If no such vertices can be found, then s.stage = "jnished" 

*REPORT-COMMIT(T ', r ), where type (T ')= merge-remove and r = (r  (I), r (2),r (3))  

Preconditions: 

s' .stage="remove-in-process" 

Effects: 

s.append-edges := r(1) 

sqpend-edgesets := r(2) 

s.new-neighbor := r(3) 

sstage := "merge-append 

*REPORT-CaMMIT(T ' , r ), where type (T ')=merge-append 

Preconditions: 

s' stage = "append-in-process" 

Effects: 

if s' .parent = "updated 

then s.count-release := 3 and s.stage := "lock-release" 

else sstage := "appended" 

*REPORT-COMMIT(T ' , r ), where type (T ')=merge-update-parent 

Preconditions: 

s' .parent = "locked" 
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Effects: 

if s' .stage = "appended" 

then s.count-release := 3 and s.stage := "lock-release" 

else s.parent := "updated 

*REQUEST-COMMIT(T , r ) 

Preconditions: 

s'.stage = "jinished 

Effects: 

sstage := "commit-requested" 

Augmentation to Vertex Manager VM (v)  

When merging is performed concurrently with accesses, an access may need to read a "removed" 

vertex. This can happen to a read or write access invoked by a R-AM or W-AM, or an access by an 

install-pointer transaction. One solution is to backtrack to the parent of the removed vertex. Therefore, 

we need to augment the vertex managers to handle this backtracking. 

The following are the additional accesses to vertex managers. The additional state variables are: 

(I) s.merge-locked 
(2) s.split-locked 
(3) s.stage 
(4) s.ST 
(5) s.next-neighbor 

Here we state an additional requirement for the splitting process: the parent vertex of the splitted 

vertex should be locked (split-locked=true) before splitting takes place. Merging always locks the 

parent and two child vertices before the merge of the child vertices (merge-locked=true) and split-locks 

conflict with merge-locks. This is to prevent concurrent deletion of the parent vertex by merging during 
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splitting. The split-lock is released after the parent vertex is updated. Note that split-lock does not 

conflict with read-locks or write-locks. We omit the part of obtaining the split-lock. The following con- 

ditions of operations show how merging is done. To simplify the description, we shall omit the obvious 

precondition of REQUEST-COMMIT(T, r ) that T E s'.create -requested - s'.run and the obvious 

effect that s.run := s'.run u {T) . 

In the following, merge-lock-parent and merge-jind-size transactions will lock a parent and 2 child 

vertices and also return the sizes of the child vertices. If the size is too small merge-remove will remove 

the right vertex, returning the contents of the vertex. Then merge-append will add these to the left vertex. 

merge-update-parent deletes the pointer from the parent to the right vertex and merge-release releases 

the locks on the relevant vertices. 

*REQUEST-COMMIT(T, r ), where type (T)=merge-lock-parent and rightvertex(T)=b 

Preconditions: 

s' .write-lockhoiders(kj u s' .read-lockholdersfk) E ancestors(T) 

r = set of all transactions T' E st .create-requested and which were created at most t seconds ago 

(* We assume that all transactions commit or abort within t seconds after being created *) 

and type (T ') = search-read or search-write 

and key(T ') E s'.edgesets( [v,b] j ....................................... 131 

Effects: 

s.merge-locked := true 

*REQUEST-COMMIT(T, r ), where type (T)=merge-fmd-size 

Preconditions: 

s'.write-lockholders(k) u sl.read-lockholders(k) E ancestors(T) 

s' .split-locked = false 



Part I1 

r = s' .outdeg 

Effects: 

smerge-locked := true 

*REQUEST-COMMIT(T, r ), where type (T)=merge-remove, Trans-set(T) = ST 

and r = (r (11, r (21, r (3)) 

keconditions: 

r(1) = s8.edges 

r(2) = s' .edgesets 

r(3) = S' .next-neighbor 

Effects: 

sstage := "removed 

s.ST := ST 

(* s.ST holds the set of transactions that may access the removed vertex. The removed vertex is finally 

released when all the transactions in s.ST have informed the vertex about its commit (as follows). *) 

*INFORM-COMMIT-AT(N )OF(T ) 

Preconditions: 

s' .stage = "removed" 

T E s' .ST 

Effects: 

s.ST := s' .ST - {T} 

if s.ST n s.create-requested = 0 then sstage := "discarded" 
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*REQUEST-COMMIT(T, r ), where type (T)=merge-append, append-edges(T)=E , 

append-edgesets(T )=ES and new-neighbor (T) = v' 

Preconditions: 

s'.merge-locked = true 

Effects: 

s.edges := s' .edges V E V {v,v'} - { v, s' .next-neighbor } 

s.edgeset := s'.edgeset v ES 

s.edgeset(v') := s' .edgeset(s' .next-neighbor) 

s.next-neighbor := v' 

*REQUEST-cOMMIT(T, r ), where type (T)=merge-update-parent, merge-vertices(T)=(a ,b ] 

Preconditions: 

$.merge-locked = true 

Effects: 

s.edges := s' .edges - { [v,b] } 

edgeset of [v,b] is deleted in s.edgesets 

*REQUEST-COMMIT(T, r ), where type (T)=merge-release-lock 

Effects: 

s.merge-locked :=false 

For the REQUEST-COMMIT(T, r ) operations where the preconditions say that write-lockholders 

or write-lockholders u read-lockholders must all be ancestors of T,  an additional requirement is that the 

vertex not be merge-locked. 

When a search-read or search-write accesses a removed vertex, it has to backtrack to the parent ver- 

tex through s.parenn)ertex . 
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*REQUEST-COMMIT(T, r ), where type (T) = search-write 

Preconditions: 

s' .stage = "removed" 

r(1) = "not-found and r(2) = s'.parent 

75.35. Scheduler 

The B - ~ e e  locking (BTL) scheduler has the following operations: 

Input Operations: 
REQUEST-cREATE(T) 
REQUEST-COMMIT(T ,r ) 

Output Operations: 
CREATE(T) 
COMMlT(T), T # To 
ABORT(T), T # To 
REPORTTCOMMIT(T), T # To 
REPORT-ABORT(T), T # To 
INFORhLCOMMIT-AT@.k)OF(T), T # To 
INFORWBORT-AT@.k)OF(T), T # To 

These play roles analogous to those in the R/W locking scheduler [FLM87], except for the 

INFORM-COMMIT and INFORKABORT operations, which pass information about the fate of tran- 

sactions to the vertex managers that currently hold the keys involved. In particular, if splitting takes 

place after an access T, so that the key that T accessed is now in a new vertex, INFORM-COMMIT or 

INFORKABORT messages must be directed to the correct vertex manager. Each vertex manager 

examines the AT(X.k) field of the INFORM message and accepts a message if it currently holds key k. 

Also, the scheduler has the additional responsibility to keep track of the current root vertex of each B- 

tree in the system, as described above. 
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7.6. PROOFS OF STRONGLY-SERIAL CORRECTNESS 

Serial correctness is defined in [FLM87, LyM861 as follows: a schedule a of a system is serially 

correct for a transaction T if its projection on T, a (T,  is identical to PIT for some serial schedule P. a 

is serially correct if it is serially correct for every non-orphan, non-access transaction. (A transaction T 

is an orphan in a schedule a if the operation REPORT-ABORT(U) occurs in a for some ancestor U of 

T .) [FLM87] shows that any R/W locking schedule (i.e., schedule of a R/W locking system) is serially 

correct, which implies that any FFL schedule (i.e., schedule of a FFL system) is serially correct. Note 

that the above definition of serial correctness does not require the same serial schedule P satisfy alT = 

PIT for every non-access transaction T. We don't quite understand the intuitive significance of the above 

definition of correctness. Therefore, we shall adopt a stronger definition of correctness, which does 

require that p be the same for all T. 

7.6.1. Strongly-Serially Correct Schedules 

So far, we have considered two different systems, i.e., FFL system and BTL system. Notice that in 

the FFL system, each non-access transaction in the transaction tree is user-visible in the sense that all the 

subtransactions are invoked explicitly by the user within the user program. In the BTL system, however, 

the subtransactions which perform a search through a B' tree, for example, is probably not explicitly 

invoked by the user. In his program, the user explicitly requests a read/write access to a key, X.k, say, but 

the system may provide a set of operations (subtransactions) for actually locating X.k. Therefore, this 

kind of (sub)transaction is user-invisible. Similarly, we call an object user-visible if it is explicitly 

specified in a user-visible transaction. One important condition that all user-invisible transactions must 

satisfy is that they should not have "side-effects", namely, they must not alter any user-visible object in 

such a way that user-visible transactions can observe the change. 

We shall now address the question of how to define correctness for the schedules of a system (e.g., 

BTL system) with user-invisible transactions. We generalize the idea of an "extension" [GoL87] for our 
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purpose. A system type C' = (T', parent ', 0 ', R ') is an extension of another system type C = 

(T, parent, 0 ,  R ) if the transaction tree (T, parent) is a subtree of (T ', parent ') rooted at its root such 

that each user transaction in T corresponds to a user transaction in T *. For each access transaction T 

with parent parent (T) in T,  there is a subtree in T ' under the user transaction parent (T). R is a subset 

of R '. T and 0 may not be subsets of T' and 0 *, respectively. There is a natural mapping, i.e., the 

identity mapping, from C to C'. However, we find its inverse, F rz more useful: FrJ(x) = null for any 

argument (i.e., transaction, object, return value, and parent of a transaction) x that is in Z' but not in Z. 

Our intention is to consider a BTL system as an extension of a FFL system and show that a FFL system 

can correctly be "mimiced" (or "simulated") by a BTL system. Then, intuitively, the correctness proof 

for a BTL system is "reduced to that for a FFL system via a certain mapping. 

Since we are interested in mapping systems, we define mappings for automata and their operations. 

Let A (B ) be a system of system type C* = (T ', parent *, 0 ', R *) (C = (T, parent, 0 ,  R )) such that all  

transactions and objects of B are user-visible and the subset T of T' consists of all user-visible transac- 

tions of A .  We say that system A is an extension of system B if C' is an extension of C, and each non- 

access transaction of C is represented by the same automaton both in A and B . For system A which is an 

extension of B , we define the standard mapping, denoted FA B ,  from A to B . FA maps A 's automata 

and their operations to those of B. Instead of giving a formal definition, we present an example to 

explain the standard mapping for the case where A = BTL system and B = FFL system. 

In a BTL system, each object is not represented by a separate automaton, but instead an automaton 

represents a set of objects. However, in what follows, we pretend that there is an automaton for each 

object. Therefore, a vertex automaton plays the role of several automata, one for each key it contains, in 

addition to the role of the automaton for the vertex itself. 

Example: Consider a FFL system whose transaction tree T is shown in Figure 7.6(b), where a node 

I labeled "0" represents an access transaction. We have constructed this system, so that the BTL system 
I 
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with transaction tree T ' of Figure 7.6(a) is an extension of it. For each non-access transaction (labeled 

U (user) or E (environment)) in T ,  there is a corresponding transaction in T ' . The main idea is to make 

the interfaces shown by curved lines in Figures 7.6(a) and (b) the same as far as the user-visible transac- 

tions (U) are concerned. Therefore, we want to map a R-AM or W-AM T' in Figure 7.6(a) to the 

corresponding read or write access transaction T (labeled "0") in Figure 7.6(b), i.e., FA (T ') = T . 

All operations of user transactions in Figure 7.6(a) are mapped to the corresponding operations in 

Figure 7.6(b). All operations of transaction T ', which is a R-AM or W-AM, except for CREATE(T ') and 

REQUEST-COMMITV'), are mapped to the null operation. CREATE(T') and 

REQUEST-COMMITV') correspond to those of an access transaction in Figure 7.6(b), i.e., they 

represent an interaction with an object. In particular, REQUEST-COMMIT of a W-AM updating a key 

X.k is mapped to REQUEST-COMMIT of an access T which is a write access to X.k . We shall call both 

a W-AM and a write access write transactions on X.k . 

As for the operations of an object, INFORM_COMMIT-AT(X.k)-OF(T') and 

INFORKABORT-AT@.k)-OF(T') of an object X.k in the BTL system are mapped to 

INFORM-COMMITPT(X.k)PF(T) and INFORM-ABORT-AT@.k)-OF(T), respectively, where an 

access transaction T is the image of a R-AM or W-AM T '. COMMIT and ABORT operations of the BTL 

system are mapped to those of the FFL system. The remaining operations of the BTL system which are 

not mapped so far are mapped to the null operation. 

In the rest of this paper, we consider only standard mappings. Consider a system A which is an 

extension of B . Let a be a schedule of A and P be a schedule of B with A and B starting in the same 

initial state. From now on, by "starting in the same initial state" we mean that each data object is in the 

same start state in both A and B,  and To starts in its start state. We assume that the transactions and 

objects of B are user-visible. A schedule a of A is said to FA -simulate a schedule P of B (or a is an 

FA -simulation of p) if 
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(1) $ consists of the operations in {FA (x) 1 x is in a), 

(2) for each user-visible, non-orphan, non-access transaction U in a?5 $ I U = FA (a) I U , where 

FA (a) is obtained from a by deleting each operation x of a such that FA (x) = null, and 

(3) for each user-visible object X ,  a and $ are X-write-equal, i.e., the sequences of 

REQUEST-COMMIT'S of write transactions on X in a are the same as the corresponding 

REQUEST-COMMIT'S of write transactions on X in $. 

For a nested transaction system, we define the committed projection of a schedule a as the sub- 

schedule of a that consists of the operations of all non-orphan descendents of the committed children of 

the root transaction. 

Definition: Let a system A be an extension of a serial system B . A schedule a of A is strongly- 

serially correct if there exists a schedule $ of system B such that, starting at the same initial state, the 

committed projection of a FA -simulates $. 0 

If a is strongly-serially correct, then by condition (3) of FA& -simulation, the "effects" of a and 

serial schedule $ on the user-visible objects are the same. Hence, the definition of strongly-serial correct- 

ness reflects the intuition that each user-visible T should get the same response and produce the same 

effects as in a serial schedule. Note that condition (3) is called "WW-constraint" [IKM87] in the conven- 

tional serializabiiity theory. For more general purpose, condition (3) should not be included, i.e., condi- 

tions (1) and (2) only will be enough for strongly serial correctness. Such definition will then apply to 

quorum consensus in replicated database systems or cautious scheduling schemes that are not restricted 

by the WW-constraint. 

Our proof of strongly-serial correctness of the FFL schedules would thus involve showing that, 

given any such a, there existed a schedule $ of the serial system such that a Ffi -simulated $. In order to 

35U is thus a user-visible transaction of B. 



prove the strongly-serial correctness of schedules of the BTL system, we consider in Section 7.6.3 map- 

ping FBf (B-tree to flat) from the BTL system to the FFL system such that any committed projection y of 

the former system FBf -simulates a schedule a of the latter. The strongly-serial correctness of the com- 

mitted projections of a BTL schedule is then proved by composing the above two mappings FBf and 

Ffs. 

7.6.2. Strongly-Serial Correctness of FFL System 

A formal pmof of serial correctness of the R/W locking schedules (or FFL schedules) is given in 

[FLM87]. Here we outline a proof of the strongly-serial correctness of the committed projections of 

FFL schedules. 

First, we describe the standard mapping Ffs that maps the FFL system to the serial system 

[FLM87]. For every non-access transaction T in the FFL system, Ffi (T) = T. For every access W a c -  

tion T in the FFL system, Ffs (T) = nil. For every operation x of a non-access transaction of the FFL 

system, Ffs(x) = x, except that Ffi(XNFOR'M'MCOL~'MIT_AT@.k)OF(T)) = null, for all X.k and T, 

since there is no INFORM-COMMIT operation in the serial system. 

We say that T commits in a schedule a when COMMIT(T) occurs in a. We say that T *, a proper 

descendent of T, commits to T in a schedule a when COMMIT(T") occurs in a ,  where T is a child of 

T and an ancester of T ', provided that all the ancestors of T' that are descendents of T commit in a. 

Theorem 7.1: A well-formed R/W locking (or FFL) schedule is strongly-serially correct. 

Proof : Given any well-formed FFL schedule a ' ,  extract the committed projection a of a' contain- 

- ing all operations of the transactions committed to the mot To. Applying the procedure in Figure 7.7 to 

the sequence CREATE(TdaCOMMIT(Td, we construct a serial schedule CREATE(To)PCOMMIT(To) 

such that a Ffs -simulates P. 
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P t empty sequence 
delete all INFORM-COMMIT-AT@.k)OF(T) operations in a ;  
commit-depth-first-traversal( To ), 

where 
Procedure commit-depth-first-traversal(T) is : 
begin 

delete CREATE(T) from a and append it to P; 
while a has one or more operations of a child transaction of T 
do 
find the first operation z in a that is either REQUEST-CREATE(T ') 

or REPORT-COMMIT(T ', r ) or COMMIT(T ') of some child transaction T ' of T; 
if ~c is COMMIT(T ') 
then commit-depth-first-traversal(T ') 
else delete z from a and append it to P; 

endwhile; 
delete the REQUEST-COMMIT(T, r ) and COMMIT(T) operation from a and append it to P; 

end 

Figure 7.7 Procedure Commit-Depth-First-TraveIsal 

In the following, even though Ffs (T) = T for all T, we sometimes use different names for T and 

Ffs (TI. 

To show that p is a serial schedule, we need to show that P satisfies the following conditions (See 

the definition of a serial scheduler in [FLM87]): 

(1) The preconditions of each output operation36 of each non-access transaction are satisfied in P. 

(2) CREATE(T) occurs in P after the siblings of T that have been created have all committed, i.e., if 

T ' is a sibling of T and CREATE(T ') precedes CREATE(T) in P, then COMMIT(T ') should also 

precede CREATE(T). 

36 Note that there is no precondition for input operations since they are initiated by other automata. 
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(3) For each REQUEST-COMMITV,, r ) for a read access TR in P, the return value r is written by 

the last write access Tw to the same object that commits prior to REQUEST-COMMITfi , r ) in P 

The rest of the proof consists of a series of lemmas. 

Lemma 73: Condition (1) above is satisfied. 

Proof: B y  the construction of P, it is clear that the order in a of CREATE, REQUEST-CREATE'S, 

REPORT-COMMIT'S and REQUESWOMMIT for each non-access transaction is preserved in P. This 

implies that the preconditions of each output operation, REQUEST-CREATE or REQUEST-COMMIT, 

of the non-access transactions are satisfied in P since they are satisfied in a. 0 

Lemma 73: Condition (2) above is satisfied. 

Proof B y  the construction of P, all operations of all descendents of a transaction T are clustered, 

so that they all appear after CREATE(T) and before COMMIT(T), with no other operations in between. 

Therefore COMMIT(T) always follows CREATE(T) with no CREATE(T') of a sibling T' of T in 

between. Hence, condition (2) follows. 

Lemma 7.4: Condition (3) above is satisfied. 

We shall make use of Lemma 7.5 and Corollary 7.6 to prove Lemma 7.4. Recall the definition of 

"commits to" given earlier in this section. 

Lemma 75: If T, commits to Tb before Tc commits to Td in a ,  and Tb is an ancestor of T,, then 

T, commits before T, in P 

Proof: B y  the construction of P, the child T, of Tb that is an ancestor of Ta commits in P before 

the child T, of Tb which is an ancestor of Tc , is created. Since the CREATE'S of the transactions in P 

follow the depth-first order and COMMIT(T) always follows CREATE(T), Ta commits before T, com- 

mits in p. 0 
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Corollary 7.6: If Ta commits to Tb before Tc commits to Tb in a ,  then Ta commits before Tc in P. 

Proof: Follows from Lemma 7.5 by letting Tb = Td . 0 

Proof of Lemma 7.4: In P, each read access TR to a data object X.k returns the same value r as 

read by the corresponding read access in a. Because of the precondition of REQUEST-COMMIT(T, r ) 

of a read access T ,  which says that all holders of writelocks on the data object must be ancestors (in the 

transaction tree) of T ,  the write access Tw that writes r in a is the last one that commits to the common 

ancestor T" of TR and Tw before the REQUEST-COMMIT of TR in a. After T ', the ancestor of Tw 

F 
Ii which is a child of T" , has committed, INFORM-COMMIT-AT@.k)OF(T *) is issued by which the wri- 

I telock held by Tw and the value written by Tw are passed to T" . T" then becomes the least(write1ock- 

! 
I' holder) of the data object for TR . Hence the value read by TR is the one written by Tw . 
I 
? In order for f3 to be a serial schedule, r should be the value written by the write transaction Tw ' 
I 

which is the last write on X.k that commits before REQUEST-COMMIT(TR, r )  in P. It is sufficient to 

show that Tw ' = Tw . We shall prove by contradiction that Ff i  (Tw) = Tw '. Assume that Tw ' # T,  . 
%- 
I 
E Let T 1  be the least common ancestor of Tw and TR and let T 2  be the least common ancestor of Tw ' and 

TR . Since T 1  and T 2  are both ancestors of TR , either T 1  is an ancestor of T ,  or vice versa. 

First consider the case where T ,  is an ancestor of T There are two possible subcases for a. First 

(Figure 7.8(a), Tw ' commits to T 2  before Tw commits to T I  and Tw commits to T 1  before TR commits 

E 
to T ,. Second, (Figure 7.8(b) in a ,  Tw commits to T 1  before TR commits and TR commits before Tw ' 

i commits to T 2  From Lemma 7.5, Tw commits before TR in P in both cases. Because the commit order 

in P follows depth-first order of the transaction tnx, in both cases, Tw ' commits either before or after i 

both Tw and TR commit. Therefore, it is not possible for Tw ' to be the last write on X.k that commits 

before REQUEST-COMMIT(TR , r ) in P. 

Next consider the case where T I  is an ancestor of T2.  In a ,  there are two possible subcases. First, 

(Figure 7.8(c)) Tw ' commits to T 2  before Tw commits to T and Tw commits to T l  before TR commits. 



However, this is not possible because at the time when Tw ' has committed to T2 and TR has not com- 

mitted, the write lock on X is held by a descendent of T2, which is not an ancestor of T,. Therefore, the 

precondition of REQUEST_COMMIT(T,, r ) is not satisfied and the Tw cannot commit at this time. 

Second, (Figure 7.8(d)) Tw commits to T, before TR commits, and TR commits before Tw ' com- 

mits to TZ. Since the precondition of REQUEST-COMMIT(Tw ', r ) requires that all readlock-holders be 

ancestors of Tw ', TR must commit to T2 before Tw ' commits. This means that Tw ' commits to T2 after 

TR commits to T2 By Corollary 7.6, TR commits before Tw ' in P. Therefore, it is not possible for Tw ' 

to be the last write on X that commits before REQUEST-COMMIT(TR, r ). This completes our proof 

by contradiction. Hence we conclude that Tw = Tw '. 

The proof of Theorem 7.1 will be complete by proving the following: 

Lemma 7.7: Let be obtained from a by the procedure in Figure 7.7. Then a Ffs -simulates P. 

We shall apply the following lemma to prove Lemma 7.7. 

Lemma 7.8: Let T (# Ta , # Tb) be the least common ancestor of Ta and Tb . If Ta commits before 

Tb in P, then in a, Ta commits to T before Tb commits to T. 

Proof: By the construction of P, the child T1 of T which is an ancestor of Ta must commit before 

child T2 of T which is an ancestor of Tb is created. Since the order of commits among siblings is 

preserved, T2 commits after TI in a ,  and hence the lemma follows. 

Proof of Lemma 7.7: By construction of P, fl consists of operations Ff,  (n) for all x in a ,  and its 

projection on any user-visible transaction T, PIT, is equal to alT. We now show that the order of 

COMMIT'S for two write accesses to the same object in a are preserved in P. Let us assume the con- 

' trary. Let Ta and Tb be two write accesses which write the same object such that Ta commits to TI 

before Tb commits to T2 in a ,  and Tb commits before Ta in P. Let T" be the least common ancestor of 

T, and T2. In order for T, to commit, the preconditions require that the writelock held by Ta be passed 
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to T" . Therefore, in a ,  Ta commits to T" before Tb commits to T". However, since Tb commits before 

Ta in p, by Lemma 7.8, Tb must commit to T" before Ta commits to T" in a, a contradiction. Since, for 

the same object, the order of COMMIT'S of write accesses is the same as the order of 

REQUEST-COMMIT's of the same write accesses, we have proved that for the REQUEST-COMMIT'S 

of the write accesses to the same object, their order in a is preserved in 8. 

7.6.3. STRONGLY-SERIAL CORRECTNESS OF BTL SYSTEM 

In this section, we consider the BTL system with transaction tree Y and a set of B~ tms.  The 

link non-access transactions in the FFL system are user-visible. Let K be the set of keys of the B trees in a 

BTL system. Clearly, K is the set of user-visible objects. We now construct a FFL system such that the 

BTL system is an extension of the FFL system. Let FBf be the standard mapping from the BTL system 

to the FFL system. Thus, FBf maps the B~ trees in the BTL system to their identically-named flat files 

link in the FFL system. We shall refer to flat file FBf (X) as X for each B tree X. Also, FBf (T) = T if T is 

a non-access (user visible) transaction in the FFL system. 

For each transaction T of type R-AM@), FBf (T) is a read access in M (X.k) to flat file object X.k 

with k = key (T). For each transaction T of type W-AM(X), FBf (T) is a write access in M (X.k) to flat 

file object X with k = key (T) and which writes the value of data (T) into X.k. For an access (user invisi- 

ble) transaction T in VM (v), FBf (T) is the null transaction, which does nothing. 

For each operation x = CREATE(T) (REQUEST-COMMIT(T, r)) of a transaction T of type R- 

AM or W-AM FBf (n) is the CREATE(0) (REQUEST-COMMIT(0, r)) of 0 where 0 = FBf (T). 

Other operations of T are mapped to null. 

For each operation x =  REQUEST-CREATE(T') or REPORT-COMMIT(T', r )  or 

REPORT-ABORT(T ', r ), where T' is a child of a transaction T of type R-AM or W-AM, FBf (x) is the 

null operation, which does not change the state of the system. 
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For each operation n = INFORM_COMMITTAT(X..k)OF(T) of VM (v) for v in B~ tree X, if 

FBf (T) is not null, then FBf (n) is the operation INFORM_COMMITTAT(X..k)OF(FBf (T)), which is an 

operation of M (X.k); else FBf (x) is null. For each operation x = INFORM-ABORT-AT@.k)OF(T) of 

VM(v) for v in B ~ W  X, if FBf(T) is not null, then FBf(n) is the operation 

INFORMABORT-AT@.k)OF(FBf(T)), which is an operation of M (X.k); else FBf (n) is the null 

operation. For any other operation n of VM (v), FBf (n) is null. 

Theorem 7.9: A well-formed BTL schedule is strongly-serially correct. 

Proof: To show the strongly-serial correctness of the BTL schedules, we shall find, for each 

schedule y' of the system, a committed projection a in the FFL system such that the committed projec- 

tion y of y' FBf -simulates a. By transitivity of the "F -simulatesw relation, there exists a schedule with 

committed projection p in the serial system such that y FBs -simulates B, where FBs is FBf -Ffs, i.e., the 

composition of FBf and Ff, . 

By the above definition of mapping FBf , the only difference ktween schedules y and a is as fol- 

lows: for each read (write) access FBf (n) in a ,  n is the corresponding R-AM (W-AM) transaction which 

has sub-transactions that search fhmugh some vertices in the B' tree and finally perform read (write); 

there may be additional transactions for vertex splitting and merging in a. 

Therefore, if we can show that, in spite of concurrent splitting and merging, searching can lead to a 

successful read or write and that the read operation reads the value as seen by the least ancestor of the 

readhurite access that holds the writelock on the data object, then y FBf -simulates the committed projec- 

tion a. 

From the transition relation for search-read, the return value of a read operation is the value 

s.map(least(writelock-holder)) which is the value as seen by the least ancestor of the read transaction that 

holds the writelock on the data object [LyM86]. It remains to show that searching always leads to the 

vertex that contains the data object. In the following, we first list out the conditions necessary for 
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successful searching and then informally show that the BTL system satisfies the conditions. 

In [GoS85], Goodman and Shasha define the "good states" of a search structure. We shall rephrase 

their definition for B~ tree as follows. A good state for a 8' tree satisfies the following condition: 

(GS) each key is contained in exactly one leaf in the B" tree and is reachable from the mot. 

The necessary conditions guaranteeing successful searching are as follows. 

Each search structure begins in a good state and each operation (e.g., search-read, search-write, 

split) on the search structure maps a good state to a good state. 

No operation ~c reduces the set of keys reachable (through links or backtracking) from a vertex that 

is not discarded. 

No transaction accesses a discarded vertex. 

Condition (1) implies that when the search for a key starts from the root, and no othcr operations 

interfere with the search, then it always leads to the correct vertex. 

Condition (2) enables the continuation of search after being interrupted by other operations like 

splitting without having to backtrack the search. The additional links between vertices of the B~ Dee on 

the same "level" ensures that this condition is satisfied during splitting. 

Conditions (1) and (2) are similar to those stated in [GoSSS] and [ShG88] for the general link tech- 

nique. Condition (3) and the part on backtracking in Condition (2) are additional requirements when 

. concurrent merging operations are considered. Merging of two vertices removes one node and copies the 

. contents of the removed vertex to the other vertex. The parent vertex is then updated accordingly. If 

merging is an atomic action, then it maps a good state to a good state. Conditions (2) and (3) ensure that 

when search for a key is intempted by merging, the search will still succeed in finding the key. 

181 
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To show that Condition (1) is satisfied, we note that the initial state of each B~ me must be a 

good state by definition, and the only operations that affect the locations of keys are splitting and merg- 

ing. A splitting operation distributes some keys in a vertex v to a new vertex which is reachable from v 

through a link. The merging operation moves all the keys of one vertex v to a sibling vertex v ', and all 

those keys are reachable from the parent of v and v '. 

Condition (2) is satisfied because no operation reduces the set of keys reachable through l i  from 

an un-discarded vertex v . A splitting process only reduces the keyset of a vertex v , but the keys removed 

from v are still reachable from v through a link. 

Condition (3) is satisfied because the only operation which may remove a vertex is a merging 

operation. A merging operation copies all keys from a vertex v and appends them to a sibling vertex. 

Vertex v is kept until all transactions which might access v have committed. A write access to v after it 

is removed backtracks to the parent vertex of v , so that it can find the new location of the key it wants to 

write. 0 

So far, we have ignored transactions of type install-pointer and Merging Managers in the BTL sys- 

tem by mapping them to null. We need a more formal proof that they indeed perform their functions. 

7.7. CONCLUSION 

We have designed a concurrency control algorithm for a database system with B' trees as search 

structures accessed by nested transactions. We applied the idea of resilient 2-phase locking [Most351 for 

the resolution of conflicts between transactions and the B' tree technique in [Sag861 to handle accesses 

to B-trees. The 110 automaton model developed by an MIT group was used in the specification and 

proofs of correctness of the system. 

We have adopted the "strongly-serial" correctness as our correctness criterion, which, we believe, 

better captures our notion of correctness than "serially correct." We proved the strongly-serial comct- 

ness of both the FFL and BTL system. 
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There are tedious details in our work, but they are probably inevitable in any formal proofs of 

correctness for a complex system. We feel that automata are still more "comprehensible" than logic. In 

any case, the automaton model has forced us not to resort to hand waving. 

We believe our proof approach making use of a mapping from the target system to a system that 

has been proven to be correct is useful and can be applied to other semantically-based concurrency con- 

trol schemes. A similar approach has been used in [GoL87]. 

We addressed the issue of safety of our system but not that of liveness. Moss [Mod51 proposes a 

deadlock detection scheme for his nested transaction system, which should be applicable to our system. 

However, as pointed out in [LyM86], it is not easy to formalize the notion of liveness, which is the first 

step to be taken if we want to prove the correctness of the deadlock detection scheme using the VO auto- 

maton model. It is left as an open problem for future research. 

For future research, we also propose to eliminate the scheduler in the system. Right now every out- 

put (input) operation from a transaction automaton activates (is activated by) an input (output) operation 

of the scheduler automaton. Having this critical point in the scheduler automaton is in conflict with the 

principle of autonomy if we were to model a distributed system. Hence it would enhance the modelling 

power if we could distribute the control of the scheduler, in particular, the part that keeps track of the sta- 

tuses of create, commit or abort operations of different transactions in the system. 
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Figure 7.1 Part of a B~ me 



Figure 7.6 (b) Transaction tree of a FFL system 
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Figure 7.6 (a) Transaction tree of a BTL system 



Figure 7.8 Cases in the proof of Lemma 7.5 
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CHAPTER 8 

CONCLUSIONS 

In this thesis, we studied the concurrency and availability of replicated distributed database sys- 

tems. As the performance of any protocol designed for such systems very much depends on the charac- 

teristics of the system behaviour, there is unlikely to be a unique protocol which will meet the require- 

ment or function well for all different applications. We looked into two different protocols, the General- 

ized Virtual Partition Protocol (GVP), and the Transaction Replication System (TRS), which are quite 

different in nature, and which will be suitable for different applications. 

Given a complex system like GVP or TRS, it is important to give a rigorous proof of correctness. 

Therefore, the second major problem we attacked is the formal proof of correctness for complex proto- 

cols. We studied the formal modeling of database protocols, in the hope that it will lead to a satisfactory 

proof of correctness for the previously proposed protocols. Due to the complexity of the problem, we 

have not been completely successful in this effort. However, we have extended the work of some 

researchers at MIT, who make use of the 110 automaton model in the modeling and correctness proofs of 

database systems. In particular, we have tried the approach on concurrency control of nested transactions 

accessing B-trees. The notions of user invisible data and transactions are exhibited by the B-tree struc- 

tures and tree searching. Based on these notions, we revised the definition of serial-correctness for 

nested transactions, which we call "strongly serial correctness". Our work also demonstrated the power- 

ful concept of mapping from one system to another system, usually of less complexity, with the effect of 

simplifying the resulting proof. 
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