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ABSTRACT

A brief description of boundary value problems and initial value problems for
ODE:s is given. Our particular interest is to solve large singularly perturbed boundary
value problems, where both boundary layers and interior layers are expected. After
we present the theoretical framework, we propose a method of obtaining the mesh for
singularly perturbed boundary value problems by solving a differential Riccati
equation. The solution is then computed by any standard numerical method (here, we
use spline collocation). The numerical examples show that the mesh we obtained by

this procedure is a good one.
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1. INTRODUCTION

Nowadays, there are a lot of Boundary Value Problems (BVPs) arising from
application areas such as chemical kinetics, pollution modeling, fluid dynamics and
biology, to name a few. It is important to study the theory of BVP as well as its

numerical solution. This thesis is devoted to the numerical solution of BVPs.

Generally speaking, two kinds of methods are developed to solve BVPs. The
first kind is so-called global methods or direct methods (e.g. collocation method, finite
difference method and finite element method), which is characterized by solving global
(linear) algebraic systems for the discrete solution. The second kind of methods is
characterized by the association of the BVP with certain auxiliary Initial Value
Problems (IVPs), they are called sequential methods or indirect methods (e.g.
shooting methods, Riccati method, orthogonalization methods and invariant imbedding

method).

The multi-shooting method which requires solving IVPs as well as algebraic
systems, may be regarded as a hybrid method between global and sequential. The
sophisticated package BOUNDPAC of Mattheij and Staarink [25] is based on this
method. For the collocation method and finite difference method, there are the well
known programs COLSYS [1] and PASVA [26] available. All of the programs can
handle two-point BVPs with mild boundary layers.

For stiff two-point BVPs, both boundary layers and interior layers are
expected. There are some difficulties in dealing with them by the Global method. The
difficulties arise when trying to cope with the fast and slow modes of BVPs equally,

or to select meshes without enough information about the layers. On the other hand,



most of the sequential methods can transform BVP into two classes of IVPs, which
are solved with bi-directional strategies. Unfortunately, there is no sophisticated

software based on these methods available. However, a solver of Differential Riccati

Equation (DRE) has been developed by L. Dieci [11].

Both kinds of methods are well-represented in the literature. The relationship
between these methods is explored in [2, 17]. The motivation of this thesis is to
solve stiff two-point BVPs and to solve large BVPs efficiently. Our approach is to get
a good a priori mesh for global methods, especially COLSYS, by solving DRE. In this
thesis, we consider mostly the stiff linear two-point BVPs with separated boundary

conditions (BCs).

In chapter 2, we review some analytical results for IVPs and BVPs. The
standard forms of IVP and BVP are given to strengthen the understanding. The well-
known existence and uniqueness theorem for the solution of IVPs is presented for
completeness. Since it is very difficult to give an existence and uniqueness theorem
for the solution of general BVPs, we only mentioned the existence and uniqueness
theorem for the soiution of linear BVPs. For some restricted results about the
existence of solutions of nonlinear BVPs, one can refer to [8] and the references
therein. The stability (well-poseness) and the stiffness of IVPs are also presented.
The stability (well-conditioning) of the solution of BVPs depends on the dichotomy of
the fundamental solution as well as the BCs, which is also briefly reviewed in this

chapfer.

From chapter 2 we know that the numerical solution of BVPs could be much
more difficult than that of IVPs. Even for a linear BVP for which we can guarantee the

existence and uniqueness of its solution, this solution could be ill-conditioned. Even



for well-conditioned BVPs, its solution can consist of boundary and/or interior layers if
this BVP is stiff (or this BVP is a singularly perturbed problem). Chapter 3 provides
one approach to solve stiff BVPs. Section 3.1 restates the idea of theoretical multiple
shooting of [7, 8] which serves as a framework for analyzing the stability of numerical
methods for stiff BVPs. The framework requires a segmentation of the interval where
we want to find the solution of a stiff BVP. This segmentation identifies the layer
regions and smooth regions. Section 3.2 describes the way in which [3] gets this
segmentation. In section 3.3, after analyzing the Riccati method for solving stff
BVPs, we propose an idea of getting the segmentation for the interval of interest via
solving the Differentiai Riccati Equations (DREs). Chapter 4 describes DRE and the
numerical methods for solving DREs. The DRE solver DRESOL, which we used to
get a DRE mesh, is also introduced here. We present the method of getting the
simple DRE mesh, combined DRE mesh and trimmed DRE mesh. All the examples
are given in chapter 5. From the numerical results we know that the rimmed DRE

mesh is the mesh we desired.



2. Basic Theory

A general first order Ordinary Diffcrential Equation(ODE) can be written as a

first-order system:

y' = f(xy), a<x<b (2.1)
where y(x)=(y1{x), y2(X),..-, y,,(x))'r is the unknown function, f(x,y) =(f;{x,y),
f2(x,y),...,f,,(x,y))T is a vector-valued function. If f is nonlinear in y, it refers to a
nonlinear problem. Otherwise the ODE relates to a linear problem, which can be
simplified to the following form:

y = A(X)y + q(x), a<x<b (2.2)
where A is an nxn matrix function of x, q is an nx1 vector function of x. In both linear
and nonlinear cases, the interval ends a and b can be finite or infinite. As is well-
known, high order ODEs can usually be converted to first order systems by a standard
transformation or special ones. Without loss of generality, we consider only first order
linear ODEs here. When g(x) = 0, the ODE is called homogeneous', otherwise it is

nonhomogeneous.

A boundary value problem for an ordinary differential equations on a given
interval includes two parts:

1. differential equations

2. explicit conditions that a solution of the ODEs must satisfy at one or

several points, which are called Boundary Conditions(BCs).

If there are n BCs specified at two end points of the interval, these BCs are
called Two-Point Boundary Conditions(TPBCs), which can be written as
g(y(a)y(b) = 0, (2.3)



where g = (g1, €2, .-, 8n )T is a vector function. It is generally nonlinear. If itis a
linear TPRC, the general form is

Bay(a) + Bpy(b) = B, (2.4)
where By, Bpe R™™ and B e R”. Since the information of BCs given at two points is
¢ “upled together, these BCs are called non-separated BCs. The following are called
separated BCs:

Biy(a) = By,

Boy(b) = B2,
with B; € RP", Bye R Bire RK, Bre R™X. We can derive the concept of
separated BC for nonlinear BC similarly. If g can be reduced to the special form

y(a) = a,

that is, the condition is specified at only one initial point, then we refer to this as an

Initial Value Problem(IVP).
In section 2.1 we summarize some basic results about IVPs, including

existence, uniqueness, stability and stiffness. In section 2.2 we list some limited

results about BVPs, including existence, uniqueness, stability and dichotomy.

2.1 Initial Value Problem

Standard form of IVP
y=f(x,y), a<x<b, (2.5a)
y(@@) =a (2.5b)

The theory and numerical techniques dealing with IVPs are matured comparing with
those of BVPs. A unique solution is guaranteed to exist under very mild assumptions.

We state the theorem



Existence and Uniqueness

Theorem 2.6 Suppose that f(x,y) is continuous on D = {(x,y) :
a<x<h, ly-a | < p] for some p>0, and suppose that f(x,y) is Lipschitz

continuous with respect to y: i.e. there exists a constant L>0 such that for any (x,y)

and (x,z) in D:
| f(x,y) - fx,2) | < LIy -z

If f(x,y) is bounded by M>0 on D, and ¢ =min{ b-a, p/M }, the IVP has a unique
solution for a < x < a+c. If the Lipschitz condition holds uniformly for all y and z, then

the IVP has a unique solution for all x > a.

While we know the fundamental solution Y(x)=Y(x;a) of the corresponding
bomogeneous ODEs:
Y'(x;a) = A(x)Y(x;a), a<x<b, (2.7a)
Y(a;a) =1 (2.7b)

it is easy to show that the solution of TVPs is

yx)=Y(x)| a+ I Y~ (q(nat (2.8)

If Y(a)#I, we can get a more general form of solution:

y(x)=Yx)Y ' (a)a + f Y(x)Y L(t)q(t)dt,
a

y(x)=Y(x)Y (a)a + rG(x,t)q(t)dt, (2.9)
a

where the matrix function G(x,t) is defined as



Y)Y () if t<x
G(X,t) = (2. 10)
0 if t>x

Stability and stiffness
Definition 2.11 A solution y(x) is said to be stable if given € > 0, there is a
6 > 0 such that any other solution S\V(x) of the IVP satisfying
| y(a)-y(a) | < 3,
also satisfies
| y(x)-Y(x) | < foran x> a,
y(x) is asymptotically stable if it further satisfies
y(x)-l)\r(x) l =0 asx — oo
y(x) is uniform stable if given & > 0, there is a & > 0 such that any other solution 9(x)
of IVP satisfying
lyerso 1 <5,
at some point ¢ > a also satisfies

I y(x)-l)\r(x) l <eg foralx>c,

The concept of asymptotic uniform stability can be defined in a similar way.

Let y(x), 9(x) be solutions of y' = A(x)y + q(x), then the difference
z(x)=y(x) - ')}(x) is a solution of z' = A(x)z. This means that only the homogeneous
problem matters for stability. In order to state the stability properties of IVP, we

introduce the following concept

Definition 2.12 The ODEs y' = A(x)y and w' = V(x)w are kinematically

similar if there is a differentiable transformation T(x) € R™", with cond(T;x,t) =



Il TN T () uniformly bounded for x > t, and if w(x) = T"'(x)y(x), then
w = VxX)w x>a,
where V=T ®[AXTE) - T'x) ]
when V(x) is upper triangular form. Its diagonal elements are called the kinematic

eigenvalues corresponding to T(x).

Theorem 2.13 Suppose that the homogeneous ODEs y' = A(x)y and
w' = V(x)w are kinematically similar with V(x) upper triangular, and IA(Il, IT ()l
are uniformly bounded in x, A; is kinematic eigenvalues corresponding to T(x). Then
the solution of y' = A(x)y is uniformly asymptotically stable iff there are positive

constants ¢ and A such that

Re( fh(s)ds) < -A(x-t) for x-t > ¢ (2.14)
t

In the special case where A(x) is a constant matrix, its solution is asymptotically

stable iff the real parts of eigenvalues of A are negative.

Many applications involve initial value problems y' = f(x,y) with fast and slow
decay rates, especially in chemical kinetic problems and for the system of ODEs
derived from PDEs discretized in space. This means that the solution contains
different time scales, where one may change much faster than the others. This kind of
problems which can cause difficulty in getting its numerical solution is called stiff.

Stiffness can be expressed more accurately in terms of the Jacobian matrix J(x*,y*).

Definition 2.15 An initial value problem y' = f(x,y) is stiff at a point x = x*,

y = y¥, if the eigenvalues of the Jacobian matrix differ greatly in magnitude.



2.2 Boundary Value Problems(BVPs)

Standard form of BVP
y' = f(x’Y): a<x<hb,
g(y(a),y(b)) = 0 (2.16)

This is generally a nonlinear BVP. For linear ODE with linear two point boundary
conditions, we have the following linear BVP:

y' = AX)y + q(x), a<x<b,

Bay(a) + Bpy(b) = (2.17)

Existence and uniqueness

The existence and uniqueness determination of the solution of a BVP is much
more difficult than that for IVPs. Generally speaking, there is no guarantee of the
existence for a solution of a nonlinear BVP (2.16). Even if a solution of (2.16) exists,
the uniqueness of it can only be guaranteed locally under certain assumption.
However, if the BVP is a linear equation with linear BCs, we have the following

theorem to guarantee the existence and uniqueness of its solution.

Theorem 2.18 Suppose that A(x) and q(x) in the linear differential equation
(2.2) are continuous. The BVP (2.17) has a unique solution y(x) iff the matrix
Q =B;Y(@a) + ByY(b), (2.19)

is nonsingular, and the solution is

y(x) = Y)Q | B - BbY (b)) Y (q(ode [+ Y(x)aY"mq(t)dt

where Y(x) is any fundamental solution of the corresponding homogeneous differential
equation.

Let ®(x) = Y(x)Q!. The solution of (2.17) can be simplified to



y(x)=®(x)p + JbG(x,t)q(t)dt (2.20)
a

with G(x,t) being the nxn Green's matrix function, defined as
O(x)B, 0 ()@ (1) if t <x
G(x,t) = (2.21)
-O(x)Bp®(b)® 1 (1) if t >x

Stability and dichotomy

Stability which describes the asymptotic behaviour of the solution is an
important concept for initial value problems. However the sensitivity of BVPs on
finite intervals is more appropriately described in terms of conditioning. Since the

solution of (2.17) is

y(x) = O(x)B + fG(x,t)q(t)dt,

a

if K1 = 1 ®Meo = | YX)Q Moo, (2.22)

1/q

K2 = sup ﬁl G(x,t) 1%t ,
a

1, (2.23)

T
W |

then we have llyil. < x11IB Il + x2liqllp

Choosing p =0, 1 respectively, we have
lylleo < x111B I + x2lIglleo, K2 = sup [ﬁl G(x,t) lldt },
X a
Iylleo < x11B 1l + x2liglly, x2 = sup Il G(x,t) Il,
a<x,t<b

and ¥ = max{ xi, x2} may be called the conditioning constant. It gives a bound on

how perturbations in data § and q may be amplified.

The stability of IVPs requires that all modes of the solution are decreasing. In
the case of BVP, both decreasing and increasing modes can be involved. To make

10



sure the BVP is stable, it is natural to require that the increasing and decreasing

modes be bounded. The splitting of the solution is called dichotomy.

Definition 2.24 Suppose Y(x) is a fundamental solution for the linear ODE

y' = A(x)y
where A(X) is a continuous matrix function. The ODE has an exponential dichotomy if

there exists a constani orthogonal projection matrix P € R

ofrankr,0 <r<n, and
positive constants K, A, p with K of moderate size, such that
Y (x)PY (ol < Ke** 9 for x >t (2.25a)
Y x)I-P)Y 1ol € Ke*®  for x <t (2.25b)
for a < x, t <b. It is said to have an ordinary dichotomy if (2.25) holds with A =0

and/or p = 0.

Suppose that the ODE y’ = A(x)y has an exponential dichotomy. Let P be the
projection such that (2.25) holds. Denote the solution space S = {Y(x)c; c € R"}, and
let S5 = {Y(x)Pc; c € R") and 81 = {Y(x)(I-P)c; c € R"}, then S =S; @ S;, and we

have

Theorem 2.26 Any solutions u(x) € S and w(x) € S3 satisfy

Gl Ak

i"lu(T))ﬁ < KeMxD for x >t (2.27a)
llw ()l (ex)

Tweon S Ke for x <t (2.27b)

This means that in a rough sense there are r increasing and n-r decreasing

fundamental solution components.

11



3. Framework of numerical method
for solving stiff BVPs

Stiff ODEs often have solutions with boundary and/or interior layers. In the
layer regions, which are usually narrow, the solution varies rapidly compared to the
other regions. When solving such a problem numerically, If we use a uniform mesh,
we must have a dense mesh because of the fast modes, which are very expensive to
calculate; if we do not use a uniform mesh, and try to use a dense mesh in the layer

regions, we have to identify the layer regions. This is the purpose of this thesis.

We consider the ODE subject to well-scaled boundary conditions:
y =AX)y +q(x), a<x<b, (3.1a)
Bay(a) + Bpy(b) = B (3.1b)
where By, By € R™™. We assume that [Ba, Bp] has orthonormal rows. It is
convenient to assume that A(x) and g(x) depend on a small parameter €, and as
€ — 0, A(x), q(x) may become unbounded. But the well-conditioning of the BVP is
assumed to be independent of &, i.e. the condition constant K is of moderate size
independent of €, where
K =max( X1, x2),
K1=Il®lp),
K2 =1 Glipap) -
®(x) is the fundamental solution of y'=A(x)y, satisfying B,&(a) + Bp®(b) = L.

Suppose the solution of the stiff BVP has boundary layers and/or interior layers
connecting longer subintervals where the solution varies siowly. We hope to find a

segmentation of the interval [a,b]

a=f)<t2<...<tM<tMs1=Db 3.2)

12



such that on each subinterval [tj, tj41], precisely one of the following occurs:
i) The solution has a boundary layer, then j=1 for left boundary layer or
j=M for right boundary layer, and tj;1 -tj— 0 as€ — 0.
(i)  The solution has an interior layer, 1 <j<Mand tj41 - tj—> 0 ase —> 0
(iii) The solution is smooth on the subinterval, i.e. for some positive integer
p: I y(v) g j+1] S const for v=0,1,2,...,p

where const is independent of €.

The determination of this kind of segmentation can be identified from the sign

and size of the eigenvalues A of A(x). Basically, three types of solution modes can be

identified: fast decreasing modes corresponding to Re(A) <0, | Re(A) | >>0; fast
increasing modes corresponding to Re(A) > 0, | Re(d) | >> 0; and slow modes for

which | A | << K, K is a constant of moderate size. The fast modes must contribute

very little to the solution in segments where it is smooth, so they need not necessarily

be approximated weli.

Once we find the segmentation (3.2), we can use a dense mesh in a
subinterval of type (i) and (ii), while on an interval of type (iii), we can have a mesh
with hllA(x)lIl >>1. Now to solve the problems, one can use a collocation method,
difference method etc. In section 3.1, the framework of {7,8] for numerical methods
based on the segmentation(3.2) is provided. We discuss the segmentation obtained
by KNB [3] in section 3.2. In 3.3, we propose a method for getting the segmentation

by solving a differential Riccaii equation.
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3.1 Theoretical multiple shooting

In this section, we will describe the theoretical multiple shooting given by

[7,8], which serves as a framework for analyzing numerical methods for stiff BVPs.

Theoretical multiple shooting
Suppose we know the segmentation (3.2). On each segment [tj,tj;1], we have a sub
BVP which is defined as:
y = A(x)y +q(x), < X < tjy, (3.3a)
Bijy(t) + B2jy(tj+1) = sj (3.3b)
where Byj, Byje R™ and the vector sj € R" is to be determined, and [B; j» Bajl is

assumed to have orthonormal rows.

Let ®;(x) be the fundamental solution of (3.3) and vj(x) be particular solution
of the ODE, satisfying
Bj®j(t)) + B2j®j(tjs1) = 1,
B1jvj(tj) + Bojvj(tj+1) =0
Then the solution of (3.3) can be written as
y(x) = @j(x)s;j + vj(x) tjisx<ty), 1<j<M
If we require y(x) to be a solution of (3.1), we can patch together the pieces through
y(tj) = y(t) 2<j<sM
which can be written as:
®j(tjs1)sj - Pjs1(tjr1)sje1 = Bj= vjsr1(tje1) - vj(tj+1) 1 <j< M-1
The BC is rewritten as:
Ba®1(t1)s1 + By®Mm(tM+1)sM = PMm = B - Bavi(t1) - Bpvm(tM+1)
Then we get a system of nM linear equations for sT =( slT, s sMT), which is
As = b, 3.4)

with b =1, ., BMD)

14



[ ®i(p)  -Dat2)

P7(13) -®3(13)

OM-1(tMm) -Om(tm)

_Ba®d1(t1) Bpdm(tm)

This looks like the well-known multiple shooting method, which is why it is
called the theoretical multiple shooting method. The difference between them is that
one does not numerically integrate the sub BVP (generally it is not even an initial

value problem).

Stability and error analysis

Let ®(x), G(x,t) be a fundamental solution and the Green's function of (3.1).

We have the following relation:

®j(x) = D[ By@(t)) + B2jd(t4)] - 1<j<M  (3.52)

Gj(x,r) = G(x,1) - ‘I’j(x)[B 1jG(tj,t) + szG(tj.,,],t)]. (3.5b)
ti+1

vi(x) = 1‘ Gj(x,s)q(s)ds. (3.5¢)
y

J

-1
sj = [ B1j®(t;) + B2j®(tj+1) ]{bél‘b-l(tj)(}(lj,tk)ﬂk +BMm}. (3.5d)

If we define the local condition constants
K1j = Il @; lj tj+13
K2j = Il Gj iy gj+1]

then we have

K2j < k2( 1 + 2K1j).
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This means that if the original BVP (3.1) is well-conditioned (x2 is of moderate size),
and if we choose local BCs for the sub BVPs properly to make x1j of moderate size,

then the sub BVPs will be well-conditioned.

Suppose the BVP (3.1) has dichotomic structure (2.25) with

Then ®(x) = (®!(x) | ®%(x) ) with ®1(x) € R™¥ and d%(x) € R™® ¥ denote the
nondecreasing and nonincreasing modes respectively. Let Qjje R™* and

Qe R™ X pe two matrices with orthonormal columns such that

Q@' =0, Q' ®%.)=0. (3.6)
Then defining
0 szT
Bjj= . Baj= , (3.7)
Qyj 0
we have

See [7,8] for a proof. The result above can be summarized as a theorem:

Theorem 3.8 Suppose that the BVP (3.1) is well conditioned (x7 is of
moderate size) and has dichotomic structure (2.25). If the local BC for sub BVP (3.3)
is chosen as in (3.7), then the following hold:

(i)  The sub BVP (3.3) are well-conditioned with K1j< 2K x2j<K

(i1)  The theoretical multiple shooting method is stable: there is a moderate

size constant Kj = 4xK such that cond(A) < K{M
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(iif)  The vector s is bounded in terms of the original data by
Isl < K[HBII + 2K(1+4K)”q"1]

Up to now, all the quantities in the theoretical multiple shooting method are
exact. Suppose (Djh(x), th(x) are approximations to ®;j(x) and vj(x) respectively,
and s" solves APs = b™. Then the numerical solution yh(x) is given by

yh(x) = <I>jh(x)5jh + vj'h(x), jSx<ty1, 1SjsM
This process of approximation (depending on the numerical method for (3.3) and mesh
point tj)) may be called approximate theoretical multiple shooting. If we know the error
of the approximations <I>jh(x) and th(x), we can obtain a localized error estimate for
yh(x) and st

Theorem 3.9 In addition to the assumptions of theorem 3.8, suppose that

there are constants 81 8 > 0, such that

1l &) - @) N, 1 dP (1) - Dj(tje1) 11 < 8y (3.9a)
2kMb; =ty < 1 (3.9b)
v - vi) I 1 vif(EGe0) - vt 1< 82 (3.9¢)

Then the AP, s", y(x) is well defined and

AP < IT“—;I(-
Ish-s Isﬁ(zxmaz +isl)
|y - yoo) | < Z2KMS, + ¥ + 1(@%00) - @500
+vh) - v | fj<x<ga 1sjsM
This theorem guarantees that approximate multiple shooting is well defined and

stable. It encompasses different numerical schemes with different meshsizes in

different segments. To get a uniformly accurate approximate solution on [a,b], we
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must have a fine mesh in layer regions with h; = O(€), while in the smooth regions h;
>> ¢ is enough. If ®j(x) is not approximated well at mesh points of a segmentation
[tj,tj+1] with a smooth solution, then in general (3.9a,b) do not hold. In this case, one
should consider a three-way splitting of modes into rapidly increasing, rapidly
decreasing and slow ones. For details of the stability framework, one may refer to

section 10.2.3 of [8].

3.2 Result of KNB

KNBJ[3] gave a practical procedure to construct the segmentation (3.2). Based
on this segmentation, they derived a mesh for a difference method. On each mesh
point they use either implicit Euler method or the trapezoidal rule. This combination

method can deal with stiff problems with boundary layers and interior layers.

Mesh construction

Division of the eigenvalues of A(x) into subsets: Since the solution modes
are related to the sign and size of the eigenvalues of A(x), [3] divided the eigenvalues
of A(x) into different subsets M(j), where in each subset M(j), the eigenvalues are
of the same magnitude. This can be done as follow: Let K, 6>0 with 0 < Kh << 1 be
constants. Then A € M(O) if either | A | <K or there exists a Ae M(O) such that

-} <a(mi+ ). (3.10)

By choosing & sufficiently small, all A e MO can satisfy |hAl << 1. If all eigenvalues
Ae M(O), then the construction of MG) is done. Otherwise let A1, ..., A be the
remaining eigenvalues, and let | Aj | = ;‘3;‘;, I Ay I. Then the set M(l) can be formed by
taking A; € M(l), A€ M(l) if Re(Aj)Re(A) > 0 and there is a Ae M(l) such that

(3.10) holds. This can be done recursively until each eigenvalue of A(x) is in one
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subset. The number of elements in M(j) depends on x. M(j) may have different

numbers of elements at different points.

Since A is continuous with respect to the elements of A(x), we can assume
that A is continuous with respect to x. Thus we can further divide the interval [a, b]
into a finite number of subintervals: ¢; £ x < cj41 such that on each subinterval the
number of elements of MY is constant. This process is referred to as blocking
subintervals by KNB[3]. This segmentation is not fine enough to be the segmentation
of (3.2). To refine it, KNB[3] transform A(x) into block diagonal form. In intervals

where the solution is not smooth, it is refined by stretching the variable x.

Transform A(x) into block diagonal form: This step is to find a

transformation S(x) such that

[ Ar(x)

_ Ar-l(x)
Ax) = STAX)S(x) =

L Ap(x)
is in block diagonal form, and the eigenvalues of Aj(x) are exactly the eigenvalues in
M, The construction procedure of S(x) is as follows:

(i) Find a unitary matrix U(a) (by QR method) such that

B A, Arr-i Aro ]
A te Ar10
UB@A@)UQ) =
| Ag _
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(ii)

(iii)

(iv)

Find S(a) such that

B I Sr r-1 P Sl’ 0 i
I Sr-10
S(a) =
.
AL -
. -1 Ar1
A(a) = S (a)A(a)S(a) =
| Agp_
where S(a) = U(a)S (a).
A(x) = A(a) + B(x), B(a) = 0,
[ B,
Br-l r
B(x) = S @)[ A(x) - A(a) 1S(a) =
N Bor

Brr1

Br-1r-1

Bor-1

Bt10

Boo

By using an algebraic Riccati transformation ( see KNB[3] for details ),

one can construct §(x), such that

Ar
Ara

Sl AX)S(x) = :

where S(x) = S(a) S(x).
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Up to now, S(x) has been constructed in a neighbourhood of x=a. One can
continue the construction as long as the block structure does not change, say for
a<x<cj. Letting S_.(cy) =1lim S(x) at cq, one can change S(x) from S.(cy) to S;(cy)
in the following way:

(1)  If two sets of M® merge, S does not change,

(2) If set M(j) splits into subsets, S;(c1) can be computed in the same way

as S(a).
One can construct S(x) for [c1, c2], and so on. This completes the construction of

S(x). Now, one gets a new system of CDEs on each subinterval [cj,ci+1].

~

& - A + Hwy + G) (3.11)
[ Ar(x)
where A(x) =
_ Ap(x)_
Heo = - 571 958 G =5'Fx),  y=sTly.

Stretching variable: In one blocking subinterval, the smoothness property of
the solution may still be different. One needs to refine the blocking subinterval [c;,
ci+1] further. Suppose [cj, cj+1] is being divided into s 2 1 stretching subintervals:
Cij £ X SCij+1, j=0,1,...,s-1, withcj=Cjp <Cj1 <...<Cjs =Ci+1.
If cip, cit, - - . » Cij have been determined, then cjj41 is determined as follows: Let x be
a new stretching variable such that x-cjj = ajjx , 0<x < 1, and the ODE (3.11)

becomes:

& 12

= aA(0X)y + CH(eX)Y + 0 G(aX) (3.12)
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where o = ajj with 0 < & < ¢j41 - ¢jj ( an approximation to ) the largest value

satisfying:
1 dvAj
Orsnxg (odAjl 1| = JSK, (3.13a)
Vv
max |« d,,lj <K, (3.13b)
0sxs1 dx

dVGG)

div

a

max {[maxaaGU)l, n]j! } <K (3.13c)

0sx<1

j=011’2,--"r, V=0,1,2’---’p;

Itm aA(x)l
lReal(x)l +C1/p

<p for all eigenvalues A(x) of A(x). (3.13d)

Once a has been detzrmined, we can set Cjj+1 = cij + o. Here (3.13d) guarantees that
the problem is not highly oscillatory. The other conditions guarantee that the solution

of (3.12) is smooth on the new stretching interval.

If cjj+1 < Ci+1, this procedure can be repeated until the endpoint cj41 is reached.
This procedure can be repeated until all blocking subintervals are divided into an
appropriate number of stretching intervals. The new mesh of [a, b] can be denoted by
(3.2). On every subinterval, the smoothness property is the same, so one can use a
uniform meshsize h with Kh << 1 and employ the combination difference
approximation (KNB[3]) using the Euler scheme or trapezoidal rule according to the
size of lhaj;l at mesh point tj, or one can employ collocation method or any other robust

methods on each subintervals.



Practical considerations

In practice, the blocking and stretching subintervals are determined
simultaneously. Stretching with the left end point x = a =t;, and working to the right,
[a,b] can be divided into stretching subintervals with end points t, tp,.... The
stretching parameter for [tj, tj+1] is denoted by aj. The block structure of the
coefficient matrix is monitored as one proceeds, and appropriate points t; are
designated as blocking endpoints of subintervals when the structure changes. The
mesh given here is a good mesh for difference schemes. Since at every mesh point, it
is required to compute the eigevalues of matrix A(x), so getting this mesh as an
initial mesh (for programs like the COLNEW) is expensive, especially when the BVP

is large.

3.3 Riccati Method

Riccati method
The BVP(3.1) can be transformed to a BVP with separated boundary condition
[8,18]
B1y(a) = B, Bay(b) = B2
whereye R", B1 e RE , pre R™X. We consider the linear BVP
Y =A®y +q(x), a<x<b, (3.14a)
Biy(a) = B, Bay(b) = B». (3.14b)

We assume that the BVP has a unique solution and is well-conditioned.

Let T(x) be a linear transformation of the form

T(x) =
Rx) 1



with R(x) being an (n-k)xk matrix to be determined later. Define

y(x) = T(x)w(x) .

Then w' = UX)w + g(x)
where U(x) , T'(x) and g(x) satisfy
T = AT - TU, g(x) = T (x)q(x)
ie. w1 =Y, w2 = -R(x)y1 + y2,
£1 =41, g2 = -R(x)q1 +q2
where
y1 w1 q1
y = s W= ] q = ?
y w2 q2

. K X
with y1, wy, q1, g1€ RS, y2, w, g, g€ R®P

(3.15)

If we require that U be " block upper triangular " corresponding to the

dimension of R(x), i.e.

Unx) U

U®x) =
U21(x)  Uz(x) J

with Ull € RRXk, U22 € R(n-k)x(n-k)’ U12 e RkX(n-k)’ U 21 = Oe R(ﬂ-k)Xk,

this gives the Riccati differential equation for R(x)
R'=Aj1 + A22R - RA11 -RA 2R

The block form of U(x) is given by

A11+A12R A12

0 A22-RA12

The transformed ODE can be written in the decoupled form:

(3.16)



w1 =Upnx)wy + Upa(x)wa + g1(x), (3.17a)
wa' = Uga(x)wa + ga(x). (3.17b)

Now if we know a proper initial condition for (3.16) we can solve it via an [VP
solver. Further, if we know the initial value for (3.17b), we can get the solution of wy,
and then the solution of wj via (3.17a). Finally, we can get the solution of y(x). This
gives an outline of the Riccati method. For BVP (3.14), if we assume that
B; = (B1; | B12) with B2 being a nonsingular kxk matrix then the boundary condition
By(a) = B yields

B11y1(a) + B12y2(a) = B1.
From (3.15) we know that wj(a) = -R(a)y1(a) + y2(a),
and if we choose R(a) = -B12 "By, (3.18)
then wa(a) = B2 1B. (3.19)
Upon making this choice, we can find R(x) and wo(x). After finding R(b), wa(b), we
can find wy(b) from the boundary condition (3.14b), and then solve (3.17a).

If we transform the ODE(3.14a) to a lower block triangular system, we can

analogously define a linear transformation:

I S(x)

T(x) = , y(x) = T(x)z(x)
0 I

with S(x) being a kx(n—k) matrix to be determined later. Then
z' = Vx)w + f(x)
where V(x) , T'(x) and g(x) satisfy

T = AT- TV, f(x) = T (x)q(x)
ie. z1 =y1 -Sy2, 2=y,
f1=q1-Sq2, h=a,



Y1 Z) q1 fi
where y= . z= R q= , f=
y2 ) q2 f

with Y1, z1, 491, fl € Rk’ Y2, Z2, q2, f2€ R(n_k).

The requirement that V(x) be lower block triangular yields the differential

Riccati equation

S'=A12+A11S -SA22 -SA31S, b2t=2a, (3.20)

S(b) = - By1'B2,
and for particular integral z(t)

z1' = (A11 - SAg) )z1 +H1(x) b2t2a,

z1(b) = Bo1 ' B,

zy' = (A22 +A218)22 + A2121 + fo(x),

23(a) = [By2 + B118(@) 17 [B; - B11z1a) .

Properties of Riccati method
Provided the BVP is well-conditioned, from theorem 3.107 in (8] we know the

range of should induce initial values for nonincreasing modes only. Hence the

R(a)
choice of R(a) gives a satisfactory initial value for wa(a) as well as a stable algorithm.
The kinematic eigenvalues of Uyj(x) can be expected to have positive real parts. To

analyze the properties of the Riccati method, let us consider a fundamental solution for

(3.14) with the first k columns being nonincreasing modes.

Yiux) Yix)
Y(x) = = [Y+(x), Y- (x)] (3.21)
Ya1(x)  Y22(x)

such that



Y11(a) I
Range
Y21(a) R(a)

i

Range
For stability of the Riccati method we need

Y11(x) I

Range = Range .
Y21(x) R(x)

This implies that Y11(x) must be nonsingular, and
R(X) = Y210[Y11(0)] ™
Analogously, if [ Y.(x)] are nondecreasing modes with Y22(x) nonsingular, then

S(x) = Y12(x)[Y22(x)]"!

This links the stability question of the method with the feasibility of integrating
the nonlinear Riccati equation (3.16) starting with (3.18). If [Y11(x)]'1 is bounded,
the Riccati method is stable [8, chapter 10, section 10.4.2]. If difficulties arise, we can

detect it when integrating for R(x). In general, difficulties in integrating the Riccati

equation may certainly occur, i.e. Y11(x)'1 becomes unbounded or Y;1(x) becomes
singular. Since Y(x) is nonsingular over [a,b], Y4 (x) has k linearly independent rows
at any x € [a,b], and we can reorder Y(x) at a trouble point to make the new Yp1(x)
nonsingular. This idea sometimes is referred to as “reimbedding” (5,6,8,15}, and the
reordering is corresponding to permutation of the original BVP. This idea can be put
into practical use because of the following result due to Taufer [28], and we restate it

here in the form given by [5].



Theorem 3.22 If Y(x) is fundamental solution (3.21) with

Ik Yi12(a)
Y(a) =
R@@) Y22(a)
then there exist a finite set of open intervals { I }hlil , where uhzllh cover [a,b] (a €

I, be In) and Iy Nlp412 &, h=1, 2, .. . N-1 and such that on each subinterval I,

there is a permutation matrix P" for which

Y11h(X) Y12h(X)
Yhx) = PYx) = [ Y "), Y0 1= el
Y21h(X) Y22h(X)

where Yllh(x) is nonsingular.

Mesh from DRE

From the discussion of the previous section, we know the solution of the
differential Riccati equation is closely related to the fundamental solution of (3.14a).
There is no doubt that the variation of the solution of (3.14) can be reflected somehow
by the solutions of differential Riccati equations (3.15, 3.20), i.e. when the solutions of
the differential Riccati equations R(x), S(x) are smooth, the solution of (3.14) is
smooth, and when the solutions R(x), S(x) vary fast, the solution of (3.14) possibly
has a fast variation. Since R(x), S(x) are solutions of initial value problems, they are
easy to obtain using an IVP solver. While solving R(x), we get a mesh as described
below

a=rn<n<...<ng=b (3.23)

generated by the IVP solver. The mesh for getting S(x) through the IVP solver is

a=s;<sp<... <sN=b (3.24)



The union of (3.23) and (3.24) is denoted as
a=uy <wm<...<uL=>b (3.25)
We may refer these meshes as differential Riccati equation meshes or DRE meshes
for short. For these DRE meshes, we have the following strategies:
(i) Meshes 3.23, 3.24, 3.25 can be used as segmentation (3.2)
(i1) We can feed the DRE meshes into programs for BVP based on a global
method to get the solution of (3.14)
(ili) We can use the DRE mesh as an initial mesh for programs based on
global methods.
The details of getting a DRE mesh is given in chapter 4.



4. DRE and DRE mesh

Differential Riccati Equations (DREs) are well-known matrix quadratic
equations. They arise quite often in the mathematical and engineering literature
[22,23,24], e.g when studying transmission line phenomena, theory of noise and
random processes, variations theory, optimal control theory, diffusion problems and
invariant imbedding. Regardless of the particular applications in which they arise,
DREs are always the expression of a time dependent change of variables which
decouples a linear system of ordinary differential equations. Given a linear system,
through a proper transformation of variables there is a unique associated DRE; but
there is no unique way to associate a given DRE to a given linear system. Because of
this fact, we consider the DRE from the system viewpoint. In this chapter, we only
consider the DRE as used in the two-point boundary value problems, although it can
be used as a general decoupling tool for all ODEs. We do not emphasize the
properties of the solution of DREs, neither do we emphasize the numerical methods
for solving them. Rather, we focus on the mesh points which a DRE solver generates
while solving the DRE. From this mesh we get a DRE mesh, and use it as an initial

mesh for a global method for the corresponding BVPs.

4.1 Differential Riccati Equations

As we considered in section 3.3, for a given two-point boundary value

problems with separated boundary conditions:

il [ An Az 1{wn] qQ1
y = = + , a<x<b (4.1a)
y2 A Ax Ly
( B11. B12)y(a) = By, (B21. B22)y(b) = B> (4.1b)



where Ajj € Rka’ Ay e R(n'k)x(n'k), Appe ka(n-k)’ A € R(n~k)xk’
y1e RS, yze R®9, g e RO By RN, Bjpe ROVD g, ¢ gR&,

we can get a decoupled system w' = Aw + g(x) in a new variable w=le with

transformation:
Ix 0
T(t) = . R e RV,
R(t) Ink
where
A11+RA12 An Ay Ap
A=TIAT-T!T)= = 4.2)
Az-A12R An

This is true if and only if R(t) satisfies the DRE:
R' = A1 + AR -RA11 - RA1pR = F(t,R), (4.3a)
R(@) =Ry (4.3b)
From section 3.3 we know that a good choice for Ry is Ry = »Blg'lBu.

An important special case of (4.3) is the symmetric DRE:
R'=Az1 - A11"R - RAj; - RAR, R(a) = Ro(= Ro") (4.9)

which arises when the matrix A(t) is Hamiltonian:

An A12

A() , n=2k, AytT=Ap, AnT=Ay"
Ayr  -Apnt

All solutions of (4.4) are symmetric , RT =R. This special DRE is widely used in
optimal control applications, and its solution has some special properties. But in this
thesis, we will not give any special treatment for this DRE. We consider DRE (4.3)
without assuming special structure for matrix A(t), i.e. A(t) is a continuous dense

matrix.
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4.2 Numerical methods for DREs and DRESOL

Numerical methods for DREs

Vector method. The typical way to integrate the DRE(4.3) numerically is to
rewrite it as an k(n-k)-vector differential equation, and then to apply available initial
value problem software to this differential equation. This can work well [6] as long as
the dimensions of the problems are small and the DRE is not stiff. If k or n-k is large,
and the DRE is stiff, and we have to use an implicit scheme, this approach becomes
extremely expensive because of the frequent factorization of the Jacobian matrix which

costs O( [k(n-k)]3 ) flops at each step. This is not a promising approach.

Semi-implicit scheme. Babuska and Majer [18] proposed a semi-implicit
scheme for solving DRE (4.3), which is:

1 -1 1
Riv12 {In'k'ihi(A22(tm)‘RiA 12(tm))] [Ri'ihi(RiA 1 1(tm)-A21(tm))]

1 1 -1
Ri+1=[Ri+1/2+§hi(A22(tm)Ri+ 1/2+A21(tm))IIk+§hi(All(tm)+A12(tm)Ri+1/2)]

where ty, = ti;12 is the middle-point of interval [1;, t;;1]. The cost of this method is
O( K3+ (n‘k)3 ) flops at each step. [18] reports that the scheme can handle stiff
DRE:s successfully. However, this scheme is only of order 2. Although one can
achieve high order accuracy through extrapolation, it requires an expensive stepsize
selection procedure, and it does not seem suitable for exploiting the special structure
of the symmetric DRE(4.4). As for the stability, it is prone to the same
(superstability) problems of other implicit schemes [10].

Implicit scheme. Dieci [10] proposed an implicit scheme for solving DRE,
which is to apply the backward difference formula (BDF) to the DRE (4.3):
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-1
Ris1 = 2, 0Ric.j + hBF(tk+1, Rk+1)
=1
or
-1
-Ri+1 +hB(A21+A20Rk+1-Rk+1A11-Rk+1A12Rk+1) + 2, 0iRkj
=1
This is an algebraic Riccati equation (ARE) for Rx4j. This ARE can be solved by a
Newton type iteration. The expense of this scheme implemented by [18] is also
O(k3 + (n—k)3 ), regardless of the order of the method. This idea can be adapted to
the trapezoidal and implicit midpoint rules as well as other implicit integration

schemes. For the symmetric DRE (4.4), this scheme can preserve the Hamiltonian

structure [18].

DRESOL

DRESOL is a numerical integrator for the initial value problem of the 1st order
DRE (4.3). It is an implementation of the implicit method proposed by [10]. It is
written in FORTRAN77 and can integrate stiff or nonstiff DREs of symmetric and
unsymmetric type. The basic IVP solver on which DRESOL based is the well-known
integrator LSODE [27]. DRESOL keeps the original structure of LSODE and its
criteria for order selection and local truncation error estimation (hence stepsize
selection). However, DRESOL has a new linear algebra part, which keeps the

problem in matrix form and solves it via efficient matrix algorithms.
The DRESOL package is a collection of subroutines for the direct numerical

integration of DREs. It comprises 31 subroutines and two sets of block-data. The

hierarchy chart of the subroutines is:
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The call sequence for the solver DRESOL is:
CALL DRESOL(NEQ, NEQLEN, X, NX, Y, NY, MF, T, TOUT, RTOL, ATOL,
ITASK, ISTATE, IOPT, RWORK, LREX, IWORK, LIW, PROBL, RARR, IARR)

The input parameters are: NEQ, NEQLEN, NX, NY, MF, TOUT, RTOL,
ATOL, ITASK, IOPT, LREX, LIW, PROBL, RARR, IARR. The input/output
parameters are: X, T, ISTATE. The working arrays Y, RWORK, IWORK, can be used
for conditional input and output. To call DRESOL one has to
1. Provide a subroutine of the form SUBROUTINE PROBL (T, A, RARR,
TIARR) specifying the matrix A(t) in A.

pA Write a driver which calls subroutine DRESOL once for each point
where a solution of R which is stored in X in DRESOL is required. Set
the necessary parameters here.

For more explanation of DRESOL, see [10,12] and the documentation in the code.

4.3 Mesh from DRESCL

In this section, we discuss the DRE mesh (3.23), generated by DRESOL. We
call it the simple DRE mesh. From now on, when we mention the simple DRE mesh
we refer to the mesh (3.23) from DRESOL unless stated otherwise. Denote the
simple DRE mesh as:

a=rp<n<...<Imm=>b

We computed the simple DRE mesh for some examples in section 5.1.
Generally speaking, the simple DKE is a good initial mesh for global methods for
solving BVP (4.1), especially for stiff BVP with narrow layers. For stiff BVPs with

narrow layers, the simple DRE mesh obtained from DRESOL with larger tolerance,

35



such as atol = rtol = 10'2, is a better choice. Since this mesh is not well treated, it can
have a few problems:
1. The DRESOL may miss the right boundary layers (see examples 8,9).
2. The simple DRE mesh may consist of too many mesh points.

3. The DRESOL may generate an artificial layer (see example 11).

Problem 1 is largely caused by the fact that the DRE involves only stable left
to right integration. To recover the potential right boundary layer information, we can
integrate (3.20) from right to left, i.e. from b to a. This requires setting a driver for
DRE (3.20), which is tedious. An alternative way is to integrate (4.3) from right to
left. Since we need only to recover the potential right boundary layer information, the
right to left integration can be done for only a portion of the interval [a, b}, say one
tenth of the interval: [a+0.9*(b-a), b]. The union of the mesh for the right portion of

the interval and the simple DRE mesh can serve as the DRE mesh.

Problem 2 is a computer dependent problem, since the maximum number of
mesh points that a global BVP solver can handle depends on the machine to some
degree. One choice is to pick some mesh points from the DRE mesh as a new DRE
mesh which the global method can handle. The simplest choice is to pick a certain

number of mesh points from the DRE mesh, say 50 mesh points.

Problem 3 is caused by improper choice of the fundamental solution of y' = Ay.
If Y)1(x) becomes almost singular where the BVP does not exhibit an layer, the DRE
will give an artificial layer. This problem is not so important as long as the BVP is not
too stiff, so the variation of R(x) in this region could not be too fast. However, if the
BVP is too stiff, the DRE mesh from DRESOL may be totally misleading due to the
artificial layer (see example 11). This problem can be solved by a reimbedding
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strategy. Roughly speaking, the reimbedding strategy is to reorder the fundamental

solution of y' = Ay to make Y1(x) nonsingular when the magnitude of R becomes

large.

4.4 More on DRE mesh

When we generate the simple DRE mesh, or the DRE mesh ( with a right to
left integration option), we extract the layers information for the BVP (4.1) from the
DRE (4.3). While doing this we just ignore the nonhomogeneous term q(x), since the
DRE (4.3) has nothing to do with q(x). However, ignoring q(x) may lose some
information about the layers of the BVP (4.1). To take q(x) into account, let us recall
the Riccati method discussed in section 3.3. The Riccati method solves the BVP via
three initial value problems. Two of them involve integration from right to left:
DRE:
R'= A1+ AR - RA;1 - RA)R,
R(a) = - B12" 1By

Particular integration:
V' = Apov- RAjov -Rq1 + q2,
v(a) = B121B;

where v = wp. These two initial value problems can be integrated together:

(R,v)" = (A21,81) +A22(R,v) - (R,v)(A11, 81) -(R,V) A012 (R,v), (4.52)
(R,V)x=a = -B1271(B11,$1) (4.5b)

This is a DRE corresponding to the system

7 =Az, as<x<b (4.6a)
(B11, -B1, B12)z(a) = 0, (4.6b)
(B21, 0, B22)z(b) = B2 (4.6¢c)



with z=(y1T, v, y2)T, and

Ain g1 Az

0 0 0

o~
i

. A1 g2 Axp
We can integrate the DRE (4.5) to get a simple DRE mesh. We can also get a DRE
mesh from (4.5) with the right to left integration option. Let us cali this DRE mesh
the Combined DRE mesh. In section 5.3, we give some numerical example for the

combined DRE meshes.

Since the number of mesh points in a combined DRE mesh could be as many as
3000, it is more than sufficient. If we pick up some mesh points, say no more than 50,
from the combined DRE mesh to form a sub DRE mesh, we call it a Trimmed DRE
mesh. We give some numerical example of trimmed DRE meshes in section 5.3,
which shows that for a proper number of mesh points, the trimmed DRE mesh is the
mesh we desire. Here the points of the trimmed DRE mesh we obtained is equally
distributed among the combined DRE mesh. One idea that has not been tried is that
the mesh points of trimmed DRE mesh is distributed among the combined DRE mesh

according to some density function.
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5. Numerical Examples

This chapter consists of some numerical examples. Examples of the simple
DRE mesh are given in section 5.1. Section 5.2 consists of examples of the combined
mesh. The examples of the trimmed mesh are presented in section 5.3. The DRE
meshes were obtained with the single precision FORTRAN77 code DRESOL. The
solutions of BVPs were generated with the double precision FORTRAN IV code
COLNEW. All computations were performed on SPARC STATIONS at Simon Fraser

University.

5.1 Simple DRE mesh

The examples in this section can be divided into 4 groups. Examples 1 to 4 are
BVPs with smooth solutions. For this kind of problems, most global methods work
well, and there is basically no merit to getting the DRE mesh from DRESOL.
Examples 5 to 7 are stiff BVPs. For € not too small, COLNEW (and other global
methods) can work well. For small € (say € = 100 ), the layer region is narrow, the
variation is fast, and COLNEW cannot work as desired with a uniform initial mesh. If
we get an initial mesh for COLNEW from DRE (which is the simple DRE mesh in this
section), then COLNEW works well. Examples 8 to 10 are stiff BVPs with right
boundary layers. For these three examples, the simple DRE mesh missed the right
boundary layer. Example 11 to 12 are stiff BVPs, the DRE mesh for these two

examples consists of an artificial left boundary layer.

The computation for each example was summarized in the corresponding table.
€ (or b) is the parameter in the BVP which is given in the first row of the table. The

row labeled by afol = rtol is the tolerance used in computations ( to get the simple
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DRE mesh and to find the solution of the BYP). In the row of COLNEW, the mesh
sequence generated by COLNEW with a uniform initial mesh (1@ subintervals) is
given. The row of DREmesh + colnew gives the mesh sequence genecrated by
COLNEW with the simple DRE mesh as initial mesh. DRE iesh double means that
COLNEW computes the solution on the mesh peints of the simple DRE mesh and the
doubled DRE mesh. The row of cpu gives the cpu time for each computation and the
estimated error in the solution y-err is provided by COLNEW for each run. The dot

line in the summary tables means that there is no information available.



Example 1. Consider the BYP
u' -(1+2u =0, O<t<b
u0) =1, u(b) = 0.
This is example 1 of [6]. This BVP has the exact solution

y(®)= exp(t3/2)(1-erf(t)/erf(b)).

It is smecoth throughout the entire interval. The reduction y = (u', u)T gives DRE

R' =1-(1+HR2, R(0) =0.

The simple DRE gives correct layer information of the BVP.

Table 1
b 5 5 5 10 10 10
atol=rtol | 107 107 10° 10 10 10°°
COLNEW| 10,20 10,20 10,20 10,5,10 10,5,10 10,5,10
cpu 0.30 0.31 0.32 0.26 0.26 0.26
y-err 0.36d-8 0.36d-8 0.36d-8 0.15d-6 0.15d-6 0.15d-6
DREmesh|17,9,18 45,23,46 92,46,92 |20,40 59,30,60 98,49,98
+colnew
cpu 0.44 1.07 2.13 0.6 1.38 2.30
y-err 0.12d-8 0.40d-11 }0.60d-13 [0.16d-6 0.26d-11 }0.89d-13
DREmesh | 17,34 45,90 92,184 20,40 59,118 98,196
double
cpu 0.5 1.26 2.53 0.6 1.65 273
y-err 0.78d-8 0.40d-11 10.154-12 |0.16d-8 0.12d-10 10.33d-12
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Example 2. Consider the BVP

1
t I’

(1] l 1" 1 r
u +tu -?u- 1<t<?2

u”(1) + 0.3u'(l) = 0,
u"(2) + 0.150'(2) =0,
u2) = 0.

This is example 1 of [15]. This BVP has the exact solution

1
u(t) = %m - (32 + %)@ - %?—mzlm ,% + % In2 +§—?(1n2)2

It is smooth throughout the whole interval. The DRE is given by the reduction

y=(u, 0, u")T. The simple DRE mesh gives correct layer information of the BVP.

Table 2

atol=rtol 10‘2 104 10’6
COLNEW 10,20 10,20 10,20
cpu 0.62 0.60 0.58
y-err 0.48d4-10 0.48d-10 0.48d-10
DRE mesh +colnew| 8,16 20,40 33,17,34
cpu 0.49 1.19 1.56
y-err 0.40d4-9 0.14d-11 0.25d-12
DRE mesh double |8,16 20,40 33,66
cpu 7 0.51 1.14 1.88
y-err 0.404-9 0.14d-11 0.26d-12
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Example 3. Consider the BVP
u® = (t4 + 148 +49¢ + 32 -12 )exp(t), O<t<«1
u0) =v'(0) = O,
u(l) =v'(1) = 0.
This is example 2 of [15]. This BVP has the exact solution:
u(t) = t2(1-t)Zexp(t)
It is smooth throughout the whole interval. The DRE is given by the reduction

y=@"u" u, v )L. The simple DRE mesh gives correct layer information.

Table 3
atol=rtol 1074 107 10
COLNEW 10,20 10,20 10,20
cpu 0.84 0.85 0.84
y-err 0.17d-9 0.17d-9 0.17d-9
DRE mesh +colnew|7,4,8 14,7,14 21,11,22
cpu 0.54 0.96 1.47
y-err 0.27d-7 0.90d-9 0.73d-10
DRE mesh double |7,14 14,28 21,42
cpu 0.60 1.16 1.73
y-€Ir 0.61d-7 0.24d-7 0.10d-7
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Example 4. Consider the BVP:
u" - 400u = 400(:082(1tt) + 21t2cos(21tt), O<t<l,
u(0) = u(1) =0.

This is example 6 of [15]. This BVP has the exact solution

-20
__€ 20t 1 200 . 2
u(t) 14208 720 cos“(xt)
It is smooth throughout the whole interval. The reduction y = (u', u)’ gives DRE
R' =1 - 400R?, RO0)=0

The simple DRE mesh gives correct layer information.

Table 4

atol=rtol 10‘2 10-4 10-6
COLNEW 10,20 10,20 10,20,40
cpu 0.34 0.34 0.76
y-err 0.88d-5 0.88d-5 0.21d-6
DRE mesh+colnew | 8,4,8 27,14,28 61,31,62
cpu 0.23 0.74 1.66
y-err 0.12d-2 0.11d-5 0.46d-8
DRE mesh double | 8,16 27.,54,108 61,122
cpu 0.28 1.96 1.89

-err 0.13d-1 0.15d-3 0.26d-3
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Figure 4.1 Solution

Figure 4.2 Simple DRE mesh: atol=1.e-2 T=0.12
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Example 5. Consider the BVP:
en"+u' =0, 0O<t<l1

u@® =0, u(l) =1,

This is example 2 of [6]. This BYP has the exact solution

u(t) = (1-exp(-t/e)/(1-exp(-1/€)).

This example has a left boundary layer. The reduction y = (gu'+u, )T gives DRE:

11
R=¢ -_R,

e R(0) = 0.

The simple DRE mesh gives correct layer information. The following is a summary

table of the computation.

Table 5
€ 10 10~ 10~ 10° 10° 10°
atol=rtol | 10 10 10°° 10 10 10°°
10,20, 10,20,11, |10,20,10, |10,20,40, |10,20,40, | 10,20.40,
10,20 22,1122 |20,10,20, {80,160, 180,160, |80.160,
COLNEW 10,20 99,198, 99,198, |99,198,
99,198, 199,198, |99,198,
99,198, 199,198 99,198
cpu 0.62 0.92 1.04 11.94 11.91 11.79
y-err 0.51d-2 |0.52d-5 |0.40d-8 ]0.20d-1 ]0.20d-1__[0.20d-1
DREmesh | 20,1020 49,2550 |90.180 | 26.13.26 |55.28.56 102,99,
+colnew 198,
cpu 0.46 1.04 2.33 0.61 1.19 3.41
y-err 0.22d-7 |0.52d-11 |0.51d-13 [0.51a7 |0.31d-11 {041d-14
DREmesh | 20,40 49,98 90,180 | 26,52 55,110 102
double
cpu 0.54 1.25 2.30 072 142 |--------
y-err 0.34d-8 ]0.49d-11 |051d-13 |0.33d-8 ]0.52d-11 |--------
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Figure 5.1 Solution: eps=1.e-6
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Example 6. Consider the BVP:

t t 1
-gu” - Eu' + z' 4z = 81[2COS(1tt) +5 (rt)sin(mt)
ez" -z =0
2
u(-1) = 1, z(-1) =1, u(l) = z(1) =cxp(—v€ ).

It is example 9 of [6]). This example has exact solution
u(t) = erf/2Ve)lerf(1/2Ve) + z(t) + cos(nt),  z(t) = exp(-(t+1)N€).
This example has a left boundary layer and interior layer at t =0. The DRE is given
t . .
by the reduction y =(gz/, eu‘-f-i u,z,u)l. The simple DRE mesh gives correct layer

information. We get a sub DRE mesh of 70 subintervals from the simple DRE mesh

with atol=rtol =10 and e=100. With this sub mesh, COLNEW spent 14" to achieve

the accuracy 10" for u and 10”7 for z (we requested 10'6).
Table 6
€ 10” 10~ 10 10°° 10° 10°°
atol=rtol | 10* 10 10° 102 10 10°°
10,5,10 10,5,10,20 | 10,8,16,32 | 10,20,40, ]10,20,40 | 10,20,40,
COLNEW 20,40,20, |20,40,20, | 35,70,39,
40 40 78,39,78,
39,78
cpu 0.86 1.57 2.30 6.50 6.50 18.61
y-err 0.45d-2 0.25d-3 0.34d-4 0.28d-3 0.28d-3 0.40d-5
DREmesh |78,39,78 | 186 337 178 297 32199
+colnew
cpu X I B B e Lr T L Tupupt DUpUpDIP, [EpUPIP
y-err 0.29d-7  J-------- feememeen e e e
DREmesh |78 186 337 178 297 32199
double
(51 I Rt e B D e
a2 I B e B e e
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Figure 6.1 Solution: eps=1.e-6
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Figure 6.3 Combined DRE mesh
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Example 7. Consider the BVP:

eu" + (t3 - t/2)u' - u =0,

u(-1) =1,

u(l) =2.

l<t<l,

This is example 6 of [6]. This BVP has turning point behaviour at

t=- \/5/2, 0, \[5/2. The reduction yj=¢€u' + (t3-t/2)u, y =(¥1, u)T gives the DRE:

1
R-€+

1

z—e(t-2t3)R2,

R(-1) =0

The simple DRE mesh gives correct layer information.

Tabie 7
€ 10~ 10~ 10 10°° 10° 10°°
atol=rtol | 10 10 10°° 10" 10 10°
10,20 10,20,10, |10,20,11, |10,20,40, |10,20,40, | 10,20,40,
COLNEW 20 22,44 80 80,160, 80,160,
99,198 99,198,
99,198,
99,198
cpu 0.53 1.06 1.98 2.61 6.34 12.42
y-err 0.11d-3 0.35d-5 0.11d-6 }0.94d-2 0.50d-4 0.13d-7
DREmesh | 82,41,82 208 348 205,103, 348 1752
+colnew 206
cpu 206 f-------e femmeee-- 405  J----e-ee fememmnan
y-err 0.62d-9 |-------- j-------- 0.31d-2  |-------- J--------
DREmesh | 82,164 208 348 205,410 348 1752
double
cpu P R Ll Ll Lttt LR Bttt
-erT 0.38d-6 J-------- }------- J------ouJoceoono fooooo---
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Example 8. Consider the BVP:

0 <t <1

1
u(l) =5

eu" +eu' -u=0,

u0 =1,

This is example 3 of [6]. This BVP has the exact solution

u(t) =ciexp(rit) + crexp(rat),

r =-0.5- \/ 0.25 +é, rn=-05+ \’ 0.25 +é‘. This example has two boundary

layers. The reduction y = (gu'+€u, u)T gives the DRE:

R’=é -R-R?, RO)=0
The simple DRE mesh missed the right boundary layer.
Table 8
€ 107 10> 10~ 10° 10° 10°°
atol=rtol | 10°* 10 10° 10 10 10°
10,20 10,20 10,20, 10,20 10,20,40, | 10,20,40,
COLNEW 10,20 20,40,20, | 23,46,
40 23,46,
cpu 0.34 0.35 0.64 0.32 1.93 2.18
y-err 0.45d-5 0.45d-5 0.92d-7 0.15d-1 0.22d-7 0.734d-8
32,16,32 |[55,28,56 |102,51 472448, 164,32,64, |111,56,
DREmesh 102 32,64,128 | 112,56,
+colnew 112,56,
112,56,
cpu 0.80 1.34 2.5 1.17 3.77 6.22
y-err 0.214-7 0.57d-9 0.15d-10 }0.594-2 0.10d-3 0.40d-10
DREmesh | 32,64 55,110 102 4794 64,128, 111
double
cpu 0.94 156  }-------- 1.38 1.8  j--------
-err 0.11d-4 0.34d-5 |-------- 0.11d-1 0.11d-1  }--------
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Figure 8.1 Solution: eps=1.¢-6
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Example 9. Consider the BVP:
en" - tu+el? =0, -1<t<1,
u(-1) = a, u(l) =b.

This is example of [3, P333]. This example has two boundary layers and one interior

layer around 0. The reduction y = ( eu'+ el , u)T gives the DRE

R'=é- - t°R?, R(-1) = 0.

The simple DRE mesh missed the right boundary layer. The computations for a=1.0

and b=0.5 are summarized in the following table.

Table 9
€ 10 10 10 10°° 10°° 10°
atol=rtol | 10 10 10° 107 10°* 10°
10,20 10,20 10,20,12, |10,20 10,20,40, | 10,20,40,
COLNEW 24.48 21,4221 | 403162,
422142 |31,62
cpu 0.51 0.52 1.2 0.34 2.72 2.97
y-err 0.87d-4 |087d-4 |0.39d-7 ]0.20d-1 _10.19d-5 10.254-6
DREmesh | 59,30,60 | 132.66. |233 103,52, | 19598, |343
+colnew 132 104 196
cpu 2.01 528 |-------- 257 479  |--------
y-err 0.94d-8 021d-10 |-------- 0.19d-3 |0.11d-5 |--------
DREmesh | 59,118 132 233 103 195 343
double
u 283 |------o- | e m
y-€errf 035d-6 |--------J-------- e foeeees e
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Figure 9.1 Solution: eps=1.e-6
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Figure 9.3 Combined DRE mesh
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Example 10. Consider the BVP:

u"=100u - u' - 100z,

z" = -10000u +10000z-2'

101

u@) + v'(0) = 3+~§0— e,

z(0) =1-2exp(-505),
101
u(s) - z(5) = ﬁ)‘(l-exp(-SOS)),

O0<t<5,

u'(s) + z(5) = 1+25%!7cxp(-505).

This is example 4 of [15]. This BVP has the exact solution

u(t) = 1-2exp(-t) + ( exp(100t-500) - exp(-101t) )/50

z(t) = 1-2exp(-t) - 2exp(100t-500) + 2exp(-101t)

This example has two boundary layers. The DRE is given by the reduction

y=(y,z,z, y')T. The simple DRE mesh missed the right boundary layer.

Table 10
atol=rtol 107% 107 107
COLNEW 10,20,10,2010,20,40 | 10,20,40,23,46, 10,20,40,40,80,80,
23,46 80,160,99,198,99,

198,99,198

cpu 4.43 5.08 16.75

y-err 0.80d-3 0.48d-4 0.59d-4

DRE mesh +colnew | 36,18,36,18,36 84,4284 181,99,198,99,198,
99,198

cpu 4.8 50 12.44

y-err 0.53d-5 0.294-5 0.58d-4

DRE mesh double | 36,72 84 181

cpu 468  j----e---  feeae----

y-err 0.17d-1  J--------  fo-------
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Figure 10,1 Solution
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Example 11. consider the BVYP:

eu"+ww=0, -1<t<1,

u(-1) =0,

u(l) =1.

This is example 7 of [6]. This BVP has the exact solution
u(t) = 0.5 + erf(t /N 2€)/2erf( 1/\/ 2¢).

It has an interior layer around Q. The reduction y = (€u'+u, u)T gives the DRE

1
R"e

t 2
-ER-R,

R(-1) = 0.

The simple DRE mesh contains an artificial left boundary layer. For a small g, if the

tolerance is large, the simple DRE mesh is still ok, but if the tolerance is small, the

simple DRE mesh will be misled by the artificial left boundary layer. This problem is

caused by the large magnitude of R. It can be fixed by the reimbedding strategy.

Table 11
€ 10~ 10 107 10° 10°° 10°
atol=rtol | 10* 10 10°° 104 10” 10°
10,20 10,20, 10,20, 10,20,40, | 10,20,40, | 10,20,40,
10,20 10,20, 80,160, |80,160,99, | 80,160,99
COLNEW 10,20 99,198, |198,99,198] 198,99,19
99,198 |99,198 8,99,198
cpu 0.53 1.01 1.6 18.95 23.67 20.74
y-err 0.20d-3 |0.14d-4 |0.16d-6 |0.62d-2 [0.11d-3 |0.11d-3
DREmesh | 78,39,78 |157,79, |259 128,64, |142,71,142| 523
+colnew 158 128 99,198,99,
198,99,198
cpu 3.11 372 |-------- 56 1216  |--------
y-err 029d-9 |037d-11 |-------- 039d-9 [0.37d-1 |--------
DREmesh | 78,156 157 259 128 142 523
double
C N e e e e ——
-€rT 0.19d-6 }-------- }--ccmcce e e f el
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Figure 11.3 Combined DRE mesh
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Example 12. Consider the BVP

Eu(4)+u=0, O<t<l,
u'(0) =0, u'"(0) =0,
u(l) =1, u"(1) =0.

This is example 15 with A=0 of [15]. This example has a mild right boundary layer.

The DRE is obtained from the reductior y =(y, y", ¥/, y'")T. The simple DRE mesh

missed the right boundary layer and consisted of an artificial left boundary layer.

Table 12
€ 10° 10 10~ 10° 10°® 10°
atol=rtol | 10 107 10°° 10 10 10°
70,20 10,20 10,20 10510  |10.8.16,32 | 10.10.10,
COLNEW 20,40,80,
58.116
cpu 1.64 1.84 1.20 1.24 2.88 9.97
y-err 0.62d-7 |0.62d-7 |0.64d-5 |0.44d+0 |0.11d-1_ |0.19d-2
DREmesh | 27,1428 | 57,29.58 | 104,52, |38.19.38 |89.4590 150,75,
+colnew 104 150
cpu 3.8 8.15 11.47 5.74 9.22 9.82
y-err 0.84d-8 |0.11a9 |0.17d-8 |0.15d-1 |0.36d-4 [0.81d-2
DREmesh | 27,54 57 104 38.76 89 150
double
cpu 465  J-------- }-------- 679  f-------- f--------
y-err 0.74d-7 f-------- J-------- 0.50d+2 f-------- fj--------
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Example 13. Consider the BVP
eY' = A()Y +e(A()g) - g =0, O<t<l,
(v, 1)y(0) =0,
(vcosl-sinl, -vsinl-cosl )y(1) = 0

-0sin2t -(1+0cos2t) sin(mt)

where A(t) = , gM)=
1-8cos2t Osin2t sin(mt)

6=u/\/u2-1, v=p.-\/p.2-1, H=m/2
This is example 7 of [15]. This BVP has the exact solution Y(t) = A(t)'lg(t), which

is smooth throughout the entire interval. The simple DRE mesh consisted of a mild

artificial left boundary layer.
Table 13
€ 10 107 10 10°° 107 10°°
atol=rtol | 102 10* 10°° 10°% 10 10
10,20 10,20, 10,20,11, | 10,20 10,20 10,20,40,
COLNEW 10,20 22,1122 80,160,99
198,99,
198
cpu 0.63 1.22 2.28 0.60 0.60 17.59

y-err 0.37d-3 0.86d-4 0.54d-6 |0.12d-5 0.124d-5 0.12d-5

DREmesh | 27,14,28 }69,35,70 | 133,67, 33,17,34 |76,88,76 155,78,
+colnew 134 156
cpu 1.39 3.29 5.8 1.73 3.62 6.73
y-err 0.16d-4 0.58d-9 0.13d-10 |0.12d-5 0.12d-5 0.15d-5

DREmesh | 27,54 69,138 133 33,66 76,152 155

double i
cpu 1.61 394  |----e--- 2.18 457  |--------
y-err 0.89d-4 0.33d-5 |-------- 0.11d-5 0.12d-5 |--------
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Example 14. Consider the BVP

u® 3y -63u” -85u’ +150u = -1500t +15850, O<t<1

u(0) =100, u"0) =0,

u1) =90, u"() = 0.
This is example 9 of {15]. This BVP has the exact solution u(t) = 100-10t, which is
smooth throughout the whole interval. The DRE is given by the reduction

y=(u", v, u", u)T. The simple DRE mesh consisted of a mild left artificial boundary

layer.

Table 14
atol=rtol 10°7% 10 10°
COLNEW 10,20 10,20 10,20
cpu 1.08 1.08 1.08
y-err 0.16d-12 0.16d-12 0.16d-12
DRE mesh +colnew | 27,14,28 85,43,86 146,73,146
cpu 24 5.19 6.07
y-err 0.24d4-12 0.63d-12 0.14d-12
DRE mesh double |27,54 85 146
cpu PR R e
y-err 0.23d-12  j--------  feeee----




Figure 14.1 Solution
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5.2 Combined DRE mesh

From the examples in this section, we can see that the combined DRE mesh is
a good mesh for a given stiff BVP, except for some cases where there may be too
many mesh points. For example 6 with €=10", we get the combined DRE mesh with
atol=rtol =10"2. The combined DRE mesh detects the layer information and consists

of 271 subintervals, which is a little expensive for COLNEW. The visual pattern of

this combined DRE mesh is given in figure 6.3.

For example 8 with €=10"°, we get the combined DRE mesh with atol=rtol
=10"2. The combined DRE mesh detects the layer information of the BYP and
consists of 91 subintervals. With this mesh, COLNEW spent 2.31" to achieve the
accuracy 1010 (we requested 10'6). The visual pattern of this combined DRE mesh is

given in figure 8.3.

For example 9 with =100, we get the combined DRE mesh with atol=rtol
=10"2. The combined DRE mesh detects the layer information of the BVP and
consists of 150 subintervals. With this mesh, COLNEW spent 3.78" to achieve the
accuracy 107 (we requested 10‘6). The visual pattern of this combined DRE mesh is

given in figure 9.3.

For example 11 with €=10"%, we get the combined DRE mesh with atol=rtol
=10"2. The combined DRE mesh detects the layer information of the BVP and
consists of 186 subintervals. With this mesh, COLNEW spent 3.6" 10 achieve the
accuracy 108 (we requested 10°). The visual pattern of this combined DRE mesh is

given in figure 11.3.
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For example 12 with e=10", we get the combined DRE mesh with atol=rtol
=102. The combined DRE mesh detects the layer information of the BVP and
consists of 65 subintervals. With this mesh, COLNEW spent 5.14" to achieve the
accuracy 10° (we requested 10‘6). The visual pattern of this combined DRE mesh is

given in figure 12.3.

5.3 Trimmed DRE mesh

The examples in this section are numerical experiments on the sub mesh of the
combined DRE mesh, which are called trimmed DRE meshes. For example 6 with
£=10° we get a trimmed DRE mesh of 49 subintervals. With this mesh, COLNEW
spent 13.26" to achieve the accuracy 10 for u and 10”7 for z(we requested 10%). We
get another trimmed DRE mesh of 74 subintervals. With this mesh, COLNEW spent
14" to achieve accuracy 10 for u and 108 for z (we requested 10'6). The visual
patterns of these combined DRE meshes are given in figure 6.4, 6.5. The difference
between these two trimmed meshes suggested that for BVPs with narrow layers, the
mesh should not only detect right layer information, but also have enough mesh points

in the layer regions.

For example 8 with € = 105, we get a rimmed DRE mesh of 49 subintervals.
With this mesh, COLNEW spent 1.25" to achieve accuracy 10”7 (we requested 10°).
The visual pattern of this tfrimmed DRE mesh is given in figure 8.4.

For example 9 with € = 10‘6, we get a rimmed DRE mesh of 49 subintervals.
With this mesh, COLNEW spent 2.29" 1o achieve accuracy 1078 (we requested 10°5).
The visual pattern of this trimmed DRE me=sh is given in figure 9.4.
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For example 11 with € = 100, we get a trimmed DRE mesh of 49 subintervals.
With this mesh, COLNEW spent 10.34" to achieve accuracy 10710 (we requested
10). The increase in time spent by COLNEW when compare with the combined
DRE mesh means that this BVP has a very narrow layer (which is 10'3). The visual

pattern of this immed DRE mesh is given in figure 11.4.

For example 12 with € = 10, we get a rimmed DRE mesh of 49 subintervals.
With this mesh, COLNEW spent 3.87" to achieve accuracy 108 (we requested 10'6).
The visual pattern of this trimmed DRE mesh is given in figure 12.4.

5.4 Future Work

There is still a lot of work to be done concerning the Riccati differential
equation. One logical extension of this thesis is to implement the reimbedding

strategy for DRESOL and perform some more numerical experiments.

We had only considered linea: BVPs with separated BCs. If the BVP has
non-separated BCs, the Riccati transformation still helps. However, it is not clear
how to determine the dimension of it, i.e. find out the dimension of nonincreas’ng and

nondecreasing subspaces.

The extension of the Riccati transformation to the nonlinear case is a natural

idea, where a quasilinearization procedure has to be used.
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