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ABSTRACT 

A brief description of boundary value problems and initial value problems for 

ODES is given. Our particuiar interest is to solve large singularly perturbed boundary 

value problems, where both boundary layers and interior layers are expected After 

we present the theoretical framework, we propose a method of obtaining the mesh for 

singularly perturbed boundary value problems by solving a differential Riccati 

equation. The solution is then computed by any standard numerical method (here, we 

use spline collocation). The numerical examples show that the mesh we obtained by 

this procedure is a good one. 
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1. INTRODUCTION 

Nowadays, there are a lot of Boundary Value Problems (BVPs) arising from 

application areas such as chemical kinetics, pollution modeling, fluid dynamics and 

biology, to name a few. It is important to study the theory of BVP as well as its 

numerical solution. This thesis is devoted to the numerical solution of BVPs. 

Generally speaking, two kinds of methods are developed to solve BVPs. The 

first kind is so-called global methods or direct methods (e.g. collocation method, finite 

difference method and finite element method), which is characterized by solving global 

(linear) algebraic systems for the discrete solution. The second kind of methods is 

characterized by the association of the BVP with certain auxiliary Initial Value 

Problems (IVPs), they are called sequential methods or indirect methods (e.g. 

shooting methods, Riccati method, orthogonalization methods and invariant imbedding 

method). 

The multi-shooting method which require .s solving IVPs as well as algebraic 

systems, may be regarded as a hybrid method between global and sequential. The 

sophisticated package BOUNDPAC of Mattheij and Staarink [25] is based on this 

method For the collocation method and f ~ t e  difference method, there are the well 

known programs COLSYS [I] and PASVA [26] available. All of the programs can 

hm&e two-point BVPs with mild boundary layers. 

For stiff two-point BVPs, both boundary layers and interior layers are 

expected There are some dSiculties in dealing with them by the Global method. The 

difficulties arise when trying to cope with the fast and slow modes of BVPs equally, 

or to select meshes without enough information about the layers. On the other hand, 



most of the sequential methods can transform BVP into two classes of IVPs, which 

are solved with bi-directional strategies. Unfortunately, there is no sophisticated 

software based on these methods available. However, a solver of Differential Riccati 

Equation @RE) has been developed by L. Dieci [ I l l .  

Bath kinds of methods are well-represented in the literature. The relationship 

between these m e w  is expfwed in [2, 171. The motivation of this thesis is to 

solve stiff two-point BVPs and to solve large BVPs efficiently. Our approach is to get 

a good a priori mesh for global methods, especially COLSYS, by solving Dm. In this 

thesis, we consider mostly the stiff linear two-pint BVPs with separated boundary 

conditions (BCs). 

In chapter 2, we review some analytical results for IVPs and BVPs. The 

standard forms of IVP and BVP are given to strengthen the understanding. The well- 

known existence and uniqueness theorem for the solution of IVPs is presented for 

completeness. Since it is very difficult to give an existence and uniqueness theorem 

far the solution of general BVPs, we only mentioned the existence and uniqueness 

theorem for the solution of linear BVPs. Fur some restricted results about the 

existence of solutions of nonlinear BVPs, one can refer to [83 and the references 

therein. The stability (well-poseness) and the stiffness of IVPs are also presented. 

The stability (well-conditioning) of the solution of BVPs depends on the dichotomy of 

the fundamental solution as well as the BCs, which is also briefly reviewed in this 

chapter. 

chapter 2 we know that the numerical solution of BVPs could be much 

maze ciiEicdt than W of APs. Even f w  a finear BVP for which we can guarantee the 

existence and uniqueness of its solution, this solution could be ill-conditione& Even 



for well-conditioned BVPs, its solution can consist of boundary and/or interior layers if 

this BVP is stiff (or this BVP is a singularly perturbed problem). Chapter 3 provides 

one approach to  solve stiff BVPs. Section 3.1 restates the idea of theoretical multiple 

shooting of [7, 81 which serves as a framework for analyzing the stability of numerical 

methods for stiff BVPs. The framework requires a segmentation of the interval where 

we want to find the solution of a stiff BVP. This segmentation identifies the layer 

regions and smooth regions. Section 3.2 describes the way in which [3] gets this 

segmentation. In section 3.3, after analyzing the Riccati method for solving stiff 

BVPs, we propose an idea of getting the segmentation for the interval of interest via 

solving the Differential Riccati Equations (DREs). Chapter 4 describes DRE and the 

numerical methods for solving DREs. The D R .  solver DRESOL, which we used to 

get a DRE mesh, is also introduced here. We present the method of getting the 

simple DRE mesh, combined DRE mesh and mmmed DRE mesh. All the examples 

are given in chapter 5. Erom the numerical results we know that the trimmed DRE 

mesh is the mesh we desired= 



2. Basic Theory 

A general first order Ordinary DifF~rential Equation(0DE) can be written as a 

first-order system: 

Y' = fky) ,  a < x < b  (2.1) 
T 

where y(x)=(y 1 (x), y2(x), ..., yn(x)) is the unknown function, f(x,y) =(f 1 (x,y), 

f2(x,y),...,fn(xyy))T is a vector-valued function. If f is nonlinear in y, it refers to a 

nonlinear problem. Otherwise the ODE relates to a linear problem, which can be 

simplified to the following form: 

where A is an nxn matrix function of x, q is an nxl vector function of x. In both linear 

and nonlinear cases, the interval ends a and b can be finite or infinite. As is well- 

known, high order ODEs can usually be converted to first order systems by a standard 

transformation or special ones. Without loss of generality, we consider only first order 

linear ODEs here. When q(x) = 0, the ODE is called homogeneous', otherwise it is 

nonhomogeneous. 

A boundary value problem for an ordinary differential equations on a given 

interval includes two parts: 

1. differential equations 

2. explicit conditions that a solution of the ODEs must satisfy at one or 

several points, which are called Boundary Conditions(F3Cs). 

If there am n BCs specified at two end points of the interval, these BCs are 

eatled Two-Point Boundary Conditions(TPBCs), which can be written as 

g(y(a)J(b)) = 0, (2.3) 



T where g = ( gl, g2, . . . , g, ) is a vector function. It is generally nonlinear. If it is a 

linear WBC, the general form is 

Rayfa> + Bw@) = P, (2.4) 

where B ,  Bb E R~~ axid P E R". Since the information of BCs given at two points is 

c wpled together, these BCs are called non-separated BCs. The following are called 

separated BCs: 

B1yfa) = P1, 

B2y(b) = I323 

with Bl E Rbrn, B2 E R (n-k)xn , PI E R ~ ,  p1 E R".~. We can derive the concept of 

separated BC for nonlinear BC similarly. If g can be reduced to the special form 

y(a) = a, 

that is, the condition is specified at only one initial point, then we refer to this as an 

Initial Value Problem(NP). 

In section 2.1 we summarize some basic results about IVPs, including 

existence, uniqueness, stability and stiffness. In section 2.2 we list some limited 

results about BVPs, including existence, uniqueness, stability and dichotomy. 

2.1 Initial Value Problem 

Standard form of IVP 

yf=f(x,y), a < x < b ,  (2.5a) 

y(a) = a (2.5 b) 

The theory and numerical techniques dealing with IVPs are matured comparing with 

those of BVPs. A unique solution is guaranteed to exist under very mild assumptions. 

We state the theorem 



Existence and Uniqueness 

Theorem 2.6 Suppose that f(x,y) is continuous on D = {(x,y) : 

a 5 x 5 b, I y - a I 5 pJ for some p>O, and suppose that f(x,y) is Lipschitz 

continuous with respect to y: i.e. there exists a constant L>O such that for any (x,y) 

and (x,z) in D: 

I f(x,y) - f(x,z) l c LI y - l 

If f(x,y) is bounded by M > 0 on D, and c = mint b-a , p/M ), the IVP has a unique 

solution for a < x < a+c. If the Lipschitz condition holds uniformly for all y and z, then 

the IVP has a unique solution for all x > a. 

While we know the fundamental solution Y(x)=Y(x;a) of the corresponding 

homogeneous ODES: 

Y'(x;a) = A(x)Y(x;a), a c x < b ,  (2.7a) 

Y(a;a) = I (2.7b) 

it is easy to show that the solution of TVPs is 
r 7 

If Y(a)#l, we can get a more general form of solution: 

where the matrix function G(x,t) is defined as 



Y (X)Y - '(1) if t s x  
G(x,t) = 

1 0  if t > x  

Stability and stiffness 

Definition 2.11 A solution y(x) is said to be stable if given E > 0, there is a 

6 > 0 such that any other solution $(XI of the IVP satisfying 

I y(a)-j(a) I 5 6, 

also satisfies 

I y(x)-g(x) l 5 E for a11 x > a, 

y(x) is asymptotically stable if it further satisfies 

I I y(x)-g(x) -10 a x  -*-, 

y(x) is uniform stable if given E > 0, there is a 6 > 0 such that any other solution ;(x) 

of IVP satisfying 

I y(c)-j(c) 1 $6, 

at some point c 2 a also satisfies 

I y (x)-~(x)  l S E for all x > c, 

The concept of asymptotic uniform sability can be defined in a similar way. 

Let y(x), f(x) be solutions of y' = A(x)y + q(x) , then the difference 

z(x)=y(x) - ?(x) is a solution of z' = A(x)z. This means that only the homogeneous 

problem matters for stability. In order to state the stability properties of IVP, we 

introduce the following concept 

Definition 2.12 The ODES y' = A(x)y and w' = V(x)w are kinematically 

similar if there is a differentiable transformation T(x) E R ~ " ,  with cond(T;x,t) = 



I1 T(x)ll IIT ' (t)ll uniformly bounded for x > t, and if w(x) = T'(X)~(X), then 

W' = V(x)w x x ,  

where V ( X ) = T ~ ( ~ ) [ A ( ~ ) T ( ~ )  - ~ ' ( x )  ] 

when V(x) is upper triangular form. Its diagonal elements are called the kinematic 

eigenvalues corresponding to T(x). 

Theorem 2.13 Suppose that the homogeneous ODEs y' = A(x)y and 

w' = V(x)w are kinematically similar with V(x) upper triangular, and IIA(x)ll, IIT(x)ll 

are uniformly bounded in x, I l j  is kinematic eigenvalues corresponding to T(x). Then 

the solution of y' = A(x)y is uniformly asymptotically stable iff there are positive 

constants c and k such that 

Re( 1 Ii(s)ds) < -I(x-t) for X-t > c 
t 

In the special case where A(x) is a constant matrix, its solution is asymptotically 

stable iff the real parts of eigenvalues of A are negative. 

Many applications involve initial value problems y' = f(x,y) with fast and slow 

&cay rates, especially in chemical kinetic problems and for the system of ODEs 

derived from PDEs discretized in space. This means that the solution contains 

different time scales, where one may change much faster than the others. This kind of 

problems which can cause in getting its numerical solution is called stiff. 

Stiffness can be expressed more accurately in terms of the Jacobian matrix J(x*,y*). 

Definition 2.15 An initial value problem y'= f(x,y) is stiff at apoint x = x*, 

y = y*, if the eigenvdues of the Jacobian matrix differ m a t l y  in magnitude. 



2.2 Boundary Value Problems(BVPs) 

Standard form of BVP 

y' = f(x,y), a < x < b ,  

g(y(a),y(b)) = 0 (2.16) 

This is generally a nonlinear BVP. For linear ODE with linear two point boundary 

conditions, we have the following linear BVP: 

Y' = A ( ~ ) Y  + q(x), a < x < b ,  

Ba~(a )  + Bby(b) = (2.17) 

Existence and uniqueness 

The existence and uniqueness determination of the solution of a BVP is much 

more difficult than that for M s .  Generally speaking, there is no guarantee of the 

existence for a solution of a nonlinear BVP (2.16). Even if a solution of (2.16) exists, 

the uniqueness of it can only be guaranteed locally under certain assumption. 

However, if the BVP is a linear equation with linear BCs, we have the following 

theorem to g u m t e e  the existence and uniqueness of its solution. 

Theorem 2.18 Suppose that A(x) and q(x) in the linear differential equation 

(2.2) are continuous. The BVP (2.17) has a unique solution y(x) iff the matrix 

Q = BaY(a) + BbY(b), (2.19) 

is nonsingular, and the solution is 

y(x) = Y(x)Q" 
a 

where Y(x) is any f-rindarnentaf. solution of the corresponding homogeneous differential 

equation. 

Let 8(x) = y(x)Q-'. The solution of (2.17) can be simplified to 



with G(x,t) being the nxn Green's matrix function, defined as 
@(x)~,@(a)@-'(t) if t <x 

-@(x)~@(b)@-l(t) if t > x  

Stability and dichotomy 

Stability which describes the asymptotic behaviour of the solution is an 

important concept for initial value problems. However the sensitivity of BVPs on 

finite intervals is more appropriately described in terms of conditioning. Since the 

1 
ICI = I I  @(x)ll, = II Y(x)Q- II,, 

K2 = sup 11 G(x,t) 11, 
alx.Mb 

and K = max( I C ~ ,  KZ} may be called the conditioning constant. It gives a bound on 

how perturbations in data and q may be amplified. 

The stability of IVPs requires that all modes of the solution are decreasing. In 

the case of BVP, both decreasing and increasing modes can be involved. To make 



sure the BVP is stable, it is natural to require that the increasing and decreasing 

modes be bounded. The splitting of the solution is called dichotomy. 

Definition 2.24 Suppose Y(x) is a fundamental solution for the linear ODE 

y' = NX)Y 

where A(x) is a continuous mamx function. The ODE has an exponential dichotomy if 

there exists a constant orthogonal projection matrix P E RnXn of rank r, 0 i; r 5 n,  and 

positive constants K, k, p with K of moderate size, such that 

I IY  (X)PY-' (t)ll 5 Ke -?L(x-t) for x > t (2.2%) 

IIY(X)(I-~)Y-'(t)ll < ~ e - ~ ( " ~ )  for x 5 t (2.25b) 

for a < x, t I b. It is said to have an ordinary dichotomy if (2.25) holds with h = 0 

and/or p = 0. 

Suppose that the ODE y' = A(x)y has an exponential dichotomy. Let P be the 

projection such that (2.25) holds. Denote the solution space S = (Y(x)c; c E R"), and 

let Sz = {Y(x)Pc; c E R") and S1 = (Y(x)(I-P)c; c E R") , then S = S1 8 S2, and we 

have 

Theorem 2.26 Any solutions u(x) E S 1 and w(x) E S2 satisfy 

for x > t 

for x < t 

This means that in a rough sense there we r increasing and n-r decreasing 

fundamental solution components. 



3. Framework of numerical method 
for solving stiff BYPs 

Stiff ODES often have solutions with boundary and/or interior layers. In the 

layer regions, which are usually narrow, the solution varies rapidly compared to the 

other regions. When solving such a problem numerically, If we use a uniform mesh, 

we must have a dense mesh because of the fast modes, which are very expensive to 

calculate; if we do not use a uniform mesh, and try to use a dense mesh in the layer 

regions, we have to identify the layer regions. This is the purpose of this thesis. 

We consider the ODE subject to well-scaled boundary conditions: 

yt = A(x)y + q(x), a a x a b, (3.1 a) 

Bay@) + %by@) = P (3.1 b) 

where B,, Bb e R"". We assume that [Ba, Bb] has orthonormal rows. It is 

convenient to assume that A(x) and q(x) depend on a small parameter e, and as 

E 3 0 , A(x), q(x) may become unbounded. But the well-conditioning of the BVP is 

assumed to be independent of E, i.e. the condition constant K is of moderate size 

independent of E, where 

K = m W  ~ 1 ~ ~ 2 1 ,  

K1 = 11 ll[a,b] , 

K2 = 11 G ll[a,b] . 
O(x) is the fundamental solution of yt=A(x)y, satisfying %,@(a) + BbO(b) = I. 

Suppose the solution of the stiff BVP has boundary layers and/or interior layers 

connecting longer subintervals where the solution varies sIowly. We hope to find a 

segmentation of the interval [e,b] 

a = t l < t 2 < . . . c t ~ < t ~ + 1 = b  



such that on each subinterval [tj, tj+l], precisely one of the following occurs: 

(i) The solution has a boundary layer, then j=1 for left boundary layer or 

j=M for right boundary layer, and tj+l - tj + 0 as E 4 0. 

(ii) The solution has an interior layer, 1 < j < M and tj+l - tj + 0 as E + 0 

(iii) The solution is smooth on the subinterval, i.e. for some positive integer 

P : 11 y(v) 111~j,~j+l] f const for v =0,1,2, ... , p 

where const is independent of e. 

The determination of this kind of segmentation can be identified from the sign 

and size of the eigenvalues A of A(x). Basically, three types of solution modes can be 

identified: fast decreasing modes corresponding to Re(&) < 0, I Re(&) 1 >> 0; fast 

increasing modes corresponding to Re(&) > 0, I Re(&) I >> 0; and slow modes for 

which I h I << K, K is a constant of moderate size. The fast modes must contribute 

very little to the solution in segments where it is smooth, so they need not necessarily 

be approximated weii. 

Once we find the segmentation (3.2), we can use a dense mesh in a 

subinterval of type (i) and (ii), while on an interval of type (iii), we can have a mesh 

with hllA(x)ll >>l. Now to solve the problems, one can use a collocation method, 

difference method etc. In section 3.1, the framework of [7,8] for numerical methods 

based on the segmentation(3.2) is provided. We discuss the segmentation obtained 

by KNB [3] in section 3.2. In 3.3, we propose a method for getting the segmentation 

by solving a differential Ricczi equation. 



3.1 Theoretical multiple shooting 
In this section, we will describe the theoretical multiple shooting given by 

[7,8], which serves as a framework for analyzing numerical methods for stiff BVPs. 

Theoretical multiple shooting 

Suppose we know the segmentation (3.2). On each segment [tj,tj+l], we have a sub 

BVP which is defined as: 

Y' = A(x)y +cl(x), tj I x 5 tj+l, (3.3a) 

I3 ljY(tj) + %jY(tj+l) = sj (3.3b) 

where Bu, B2j E R~~~ and the vector sj E R" is to be determined, and [Bu, Bzj] is 

assumed to have orthonormal rows. 

Let @j(x) be the fundamental solution of (3.3) and v~(x) be particular solution 

of the ODE, satisfying 

1 j@j(tj) + &j@j(tj+l) = 1, 

Bljvj(tj) + B2j~j(tj+l) = 0 

Then the solution of (3.3) can be written as 

Y(X) = @j(x)sj + v~(x) t j I x S t j + l ,  1 I j I M  

If we require y(x) to be a solution of (3.11, we can patch together the pieces through 

~ ( t j )  = ~(t;) 2 1 j I M  

which can be written as: 

B$WI)SI  + B ~ @ M ( ~ M + ~ ) s M  = PM = P - B~avi(ti) - B b v ~ ( t ~ + i )  
T Then we get a system of nM linear equations for sT = ( slT, ... , s~ ). which is 



This looks like the well-known multiple shooting method, which is why it is 

called the theoretical multiple shmting method. The difference between them is that 

one does not numerically integrate the sub BVP (generally it is not even an initial 

value problem). 

Stability and error analysis 

Let @(x), G(x,t) be a fundamental solution and the Green's function of (3.1). 

We have the following relation: 

@,(XI = @(x)[ Blj@(tj) + ~2j@(tj+l)]-'. I I j  5 M (3.5a) 



This means that if the original BVP (3.1) is well-conditioned ( ~ 2  is of moderate size), 

and if we choose local BCs fm the sub BVPs properly to make K l j  of moderate size, 

then the sub BVPs will be well-conditioned. 

Suppose the BVP (3.1) has dichotomic structure (2.25) with 

nx(n-k) Then 8(x )  = ( al(x) I ~ ~ ( x )  ) with d ( x )  E R~~ and g2(x) E R denote the 

mndecreitsing and noninneasing modes respectively. Let QU E R& and 

Qj E R ~ ~ ' ~ * ~ )  be two matrices with urthonormal columns such that 

Then defining 

we have 

Klj 1 2K, K2j I K. 

See [7,8] for a proof. The result above can be summarized as a theorem: 

Tfteorem 31 Suppose that the BVP (3.1) is well conditioned ( ~ 2  is of 

moder;rte size) and has dichmmic sm- (2.25). If the local BC for sub BVP (3.3) 

is chsen as in f 3.7), then the fohwing hold: 

(i) 'Ihc sub BVP (3.3) are well-conditioned with 1~1j S 2K K2j < K 

(ii) The theoretical multiple shooting method is stable: there is a moderate 

size canstant KI = ~ K K  such that cond(A) 5 KIM 



(iii) The vector s is bounded in terms of the original data by 

Isl 5 r[ll$ll + 2r(1+4w)llqlll] 

Up to now, all the quantities in the theoretical multiple shooting method are 

exact. Suppose @(x), &x) are approximations to @,(x) and v~(x) respectively , 

and sh solves A ~ S  = bh. Then the numerical solution yh(x) is given by 

y h ( ~ )  = Q?(X)S? + Vjh(X), tjSxStj+l, 1 5 j S M  

This process of approximation (depending on the numerical method for (3.3) and mesh 

point tj) may be called approximate theoretical multiple shooting. If we know the error 

of the approximations @t(x) and v)'(x), we can obtain a localized error estimate for 

yh(x) and she 

Theorem 3.9 In addition to the assumptions of theorem 3.8, suppose that 

there are constants 81,Cj2 > 0, such that 

I t - j j  I ,  I1 Qjh(tj+l) - aj(tj+l) I1 ti1 (3.9a) 

2Kk1ti1 = : y e 1  (3.9b) 

h I t - j t j  I II V j  (tj+l) - ~j(tj+l) II S 62.  (3.9~)  

h h  Then the A , s , yh(x) is well defined and 

This theorem gumantees that approximate multiple shooting is well defined and 

stable, It encompasses different numerical schemes with different meshsizes in 

different segments. To get a unifurmly accurate approximate solution on [a,b], we 



must have a fine mesh in layer regions with hi = O(E), while in the smooth regions hi 

>> E is enough. If @j(x) is not approximated well at mesh points of a segmentation 

(tj,tj+l] with a smooth solution, then in general (3.9a,b) do not hold. In this case, one 

should consider a three-way splitting of modes into rapidly increasing, rapidly 

decreasing and slow ones. For details of the stability framework, one may refer to 

section 10.2.3 of 181. 

3.2 Result of KNB 

KNB[3] gave a practical procedure t construct th e segme ntation (3.2). B 

on this segmentation, they &rived a mesh for a difference method. On each mesh 

ased 

point they use either implicit Euler method or the trapezoidal rule. This combination 

method can deal with stiff problems with boundary layers and interior layers. 

Mesh construction 

Division of the eigenvalues of A(x) into subsets: Since the solution modes 

are related to the sign and size of the eigenvalues of A(x), [3] divided the eigenvalues 

of A(x) into different subsets ~ ( j ) ,  where in each subset ~ ( j ) ,  the eigenvalues are 

of the same magnitude. This can be done as follow: Let K, 6 9  with 0 I Kh << 1 be 

constants. Then k E M(') if either 1 h I S K or there exists a XE M(*) such that 

I d ~ l ~ l  I s ~ ( I A I + I X I ) .  (3.10) 

7, E do), thcn tk cons-& of MU) is dwe. Othenvise let 51, ..., ;Cm be the 

remaining eigenvalues, and let 1 5 I = min I Xv I. Then the set M(') can be formed by 
l<v<~n 

talring A.j E M'~), h E M(') if Re@j)Re(k) 2 0 and then is a X E M") such that 

(3.10) holds. This can be done recursively until each eigenvalue of A(x) is in one 



Cj) subset. The number of elements in M ~ )  depends on x. M may have different 

numbers of elements at different points. 

Since 3, is continuous with respect to the elements of A(x), we can assume 

that X is continuous with respect to x. Thus we can further divide the interval [a, bl 

into a finite number of subintervals: Ci I x I Ci+l such that on each subinterval the 

number of elements of M ~ )  is constant. This process is referred to as blocking 

subintervals by KNB[3]. This segmentation is not fine enough to be the segmentation 

of (3.2). To refine it, KNB[3] transform A(x) into block diagonal form. In intervals 

where the solution is not smooth, it is refined by stretching the variable x. 

Transform A(x) into block diagonal form: This step is to find a 

transformation S(x) such that 

.actly the eigenvalues in ock diagonal form, and the eigenvalues of Aj(x) are ex 

M@. The construction procedure of S(x) is as follows: 

(i) Find a unitary matrix U(a) (by QR method) such that 



(ii) Find i ( a )  such that 

S (a) = 

A (a) = S- ' (a )~ (a )~ (a )  = 

where S(a) = ~(a )Qa) .  

(iii) A(x)=&(a)+B(x) ,B(a)=O, 

(iv) By using an algebraic Riccati transformation ( see KNB[3] for details ), 

one can construct S(x), such that 

9 where S(x) = S(a) (x). 



Up to now, S(x) has been constructed in a neighburhood of x=a. One can 

continue the construction as long as the block structure does not change, say far 

a I x I cl. Letting S_(cl) = lim S(x) at cl, one can change S(x) from S,(cl) to S+(cl) 

in the following way: 

(i) (1) If two sets of M merge, S does not change, 

ti) ( 2 )  If set M splits into subsets, S+(cl) can be computed in the same way 

as S(a). 

One can construct S(x) for [cl, c21, and so on. This completes the construction of 

S(x). Now, one gets a new system of ODES on each subinterval [ci,cj+l]. ' = &x)y + H ( x ) ~  + G(x) dx (3.1 1) 

where 

Stretching variable: In one blocking subinterval, the smoothness property of 

the solution may still be different. One needs to refine the blocking subinterval [ci, 

ci+l] further. Suppose [ci, ci+l] is being divided into s 2 1 stretching subintervals: 

cij < x < cij+l, j = 0, 1, . . . , S-1, With ci = C ~ O  < cil < . . . C Cis = Ci+l. 

If cia, cil, . . . , Cij have been determined, then cij+l is determined as follows: Let x be 

a new stretching variable such that x-cij = aijx , O S 5 1, and the ODE (3.1 1) 

becomes: 



where a = ai,i with 0 < a I ci+l - ci, ( an approximation to ) the largest value 

satisfying: 
1 d " ~  

(aMjl +l 1 a $1 )" (Kxs 1 

bm a ~ ( x ) l  
SP for all eigenvalues k(x) of A(x) . (3.13d) 

I~eak(x)l+ Cl/p 

Once a has been determined, we can set cij+l = cij + a. Here (3.13d) guarantees that 

the problem is not highly osciliatory. The other conditions guarantee that the solution 

of (3.12) is smooth on the new stretching interval. 

If cij+l < ci+l, this procedure can be repeated until the endpoint ci+l is reached. 

This procedure can be repeated until all blocking subintervals are divided into an 

appropriate number of stretching intervals. The new mesh of [a, b] can be denoted by 

(3.2). On every subinterval, the smoothness property is the same, so one can use a 

uniform meshsize h with Kh << 1 and employ the combination difference 

approximation (KNB[3]) using the Euler scheme or trapezoidid rule according to the 

size of lhaiil at mesh win$ tj, or one can ern@o~ collocattiun method or other  bust 

methods on each suitrin~w&. 



Practical considerations 

In practice, the blocking and stretching subintervals are determined 

simultaneously. Stretching with the left end point x = a =tl, and working to the right, 

[a,b] can be divided into stretching subintervals with end points tl, t2, . . . . The 

stretching parameter for [tj, tj+1] is denoted by aj. The block structure of the 

coefficient matrix is monitored as one proceeds, and appropriate points tj are 

designated as blocking endpoints of subintervals when the structure changes. The 

mesh given here is a good mesh for difference schemes. Since at every mesh point, it 

is required to compute the eigevalues of matrix A(x), so getting this mesh as an 

initial mesh (for programs like the COLNEW) is expensive, especially when the BVP 

is large. 

3.3 Riccati Method 
Riccati method 

The BVP(3.1) can be transformed to a BVP with separated boundary condition 

C8,181 

B l ~ ( a )  = $1, B2~(b) = I%,? 
whexe y E Rn, Dl E R ~ ,  & E R ~ - ~ .  We consider the linear BVP 

y' = A(x)y + q(x), a I x I b, (3.14a) 

B I Y ( ~ )  = pi, B2y(b) = B2. (3.14b) 

We assume that the BVP has a unique d u d o n  and is well-conditioned. 

Let T(x) be a linear .transformation of the form 



with R(x) being an (n-k)xk matrix to be determined later. Define 

y(x) = T(x)w(x) 

Then w' = U(x)w + g(x) 

where U(x) , T(x) and g(x) satisfy 

T = A T - T U ,  g(x) = ~-'(x)q(x) 

i.e. W l  = Y I P  w2 = -R(x )~ l  + Y2, 

gl =q1, g2 = -Rooql +q2 

If we require that U be " block upper triangular " corresponding to the 

dimension of R(x), i.e. 

with U I ~ E  R", ~ 2 2 ~  R (n-k)x(n-k) UI2 Rb(n-k), UZ1 = 0 E R (n-k)xk 
9 

this gives the Riccati differential equation for R(x) 

R' = A2i + A22R - RA11 -RA12R. (3.16) 

The block form of U(x) is given by 

The transformed ODE can be written in the decoupled form: 



Now if we know a proper initial condition for (3.16) we can solve it via an IVP 

solver. Further, if we know the initial value for (3.17b). we can get the solution of w2, 

and then the solution of wl via (3.17a). Finally, we can get the solution of y(x). This 

gives an outline of the Riccati method. For BVP (3.14), if we assume that 

B1 = ( Bl1 I B12) with B12 being a nonsingular kxk matrix then the boundary condition 

B ly(a) = yields 

Bllyl(a) + B12y2(a) = $1. 

From (3.15) we know that w2(a) = -R(a)y l(a) + y2(a), 

and if we choose R(a) = (3.18) 

then w2(a) = ~ 1 2 - l ~ ~  (3.19) 

Upon making this choice, we can find R(x) and w2(x). After finding R(b), w2(b), we 

can find wl(b) from the boundary condition (3.14b), and then solve (3.17a). 

If we transform the ODE(3.14a) to a lower block triangular system, we can 

analogously &fine a linear transformation: 

with S(x) being a kx(n-k) matrix to be determined later. Then 

a' = V(x)w + f(x) 

where V(x) , T(x) and g(x) satisfy 

T = A T -  TV, f(x) = T-'(X)~(X) 

i.e. 21 = N - S Y ~ ,  z2 = Y27 

fi = q1-sq2, f2 = q2, 



The requirement that V(x) be lower block triangular yields the differential 

Riccati equation 

St = A12 + AllS -SA22 - SA21S, b 2 t 2 a, (3.20) 

S(b) = - B ~ ~ - ~ B ~ ~  

and for particular integral z(t) 

21' = (All - SA21 )zl +fl(x) b 2 t 2 a ,  

z m  = ~21-lI32. 

z2' = (A22 +A2iS)z2 + A2121 + f2(x), 

zz(a) = [BIZ + BiiS(a) 1%i - Biizi(a) I. 

Properties of Riccati method 

Provided the BVP is well-conditioned, from theorem 3.107 in [8] we know the 

range of iR:.)1 should induce initial values for nonincreasing modes only. Hence the 

choice of R(a) gives a satisfactory initial value for w2(a) as well as a stable algorithm. 

The kinematic eigenvalues of Ull(x) can be expected to have positive real parts. To 

analyze the pmperties of the Riccati method, let us consider a fundamental solution for 

(3.14) with the first k columns being nonincreasing modes. 

such that 



For stability of the Riccati method we need 

Y l l ( ~ )  

Range [ ] = Rmge [R:xj. y2 1 (x) 

This implies that Y ll(x) must be nonsingular, and 

R(x) = ~ 2 l ( x ) ~ ~ l l ( x ) l - '  

Analogoasly, if [ Y-(x)] are nondecreasing modes with Y22(x) nonsingular, then 

S(x) = ~ 1 2 W  [y22(x)l- 

This links the stability question of the method with the feasibility of integrating 

the nonlinear Riccati equation (3.16) starting with (3.18). If [yl  l(x)]-l is bounded, 

the Riccati method is stable [8, chapter 10, section 10.4.21. If difficulties arise, we can 

detect it when integrating for R(x). In general, difficuities in integrating the Riccati 

equation may certainly occur, i.e. Y (x)-' becomes unbounded or Y 1 1 (x) becomes 

singular. Since Y(x) is nonsingular over [a,b], Y+(x) has k linearly independent rows 

at any x E [a,b], and we can reorder Y(x) at a trouble point to make the new Y 1 1 (x) 

nonsingular. This idea sometimes is referred to as "reimbedding" [5,6,8,15], and the 

reordering is corresponding to permutation of the original BVP. This idea can be put 

into practical use because of the following result due to Taufer 1281, and we restate it 

here in the form given by [5]. 



Theorem 3.22 If Y(x) is fundamental solution (3.21) with 

N N 
then there exist a finite set of open intervals { Ih ) h = l ,  where u h = l  Ih cover [a,b] (a E 

11, b E IN ) and Ih nIh+l# 0, h=l, 2, . . . N-1 and such that on each subinterval Ih 

there is a permutation matrix ph for which 

h where Y11 (x) is nonsingular. 

Mesh from DRE 

From the discussion of the previous section, we know the solution of the 

differential Riccati equation is closely related to the fundamental solution of (3.14a). 

There is no doubt that the variation of the solution of (3.14) can be reflected somehow 

by the solutions of differential Riccati equations (3.15, 3.20), i.e. when the solutions of 

the differential Riccati equations R(x), S(x) are smooth, the solution of (3.14) is 

smooth, and when the solutions R(x), S(x) vary fast, the solution of (3.14) possibly 

has a fast variation. Since R(x), S(x) are solutions of initid value problems, they are 

easy to obtain using an I W  solver. While solving R(x), we get a mesh as described 

below 

a = r l  <r2<  ... < % = b  (3.23) 

generated by the IVP solver. The mesh for getting S(x) through the IVP solver is 

a = s y < s 2 < - . .  < s ~ = b  (3.24) 



The union of (3.23) arid (3.24) is denoted as 

a = u l c u 2 c , . .  c u ~ = b  (3.25) 

We may refer these meshes as differential Riccati equation meshes or DRE meshes 

for short. For these DRE meshes, we have the following strategies: 

(i) Meshes 3.23, 3.24, 3.25 can be used as segmentation (3.2) 

(ii) We can feed the DRE meshes into programs for BVP based on a global 

method to get the solution of (3.14) 

(iii) W e  can use the DRE mesh as an initial mesh for programs based on 

global methods. 

The details of getting a DIE mesh is given in chapter 4. 



4. DRE and DRE mesh 

Differential Riccati Equations ORES) are well-known matrix quadratic 

equations. They arise quite often in the mathematical and engineering literature 

f22,23,24], e.g when studying transmission line phenomena, theory of noise and 

random processes, variations theory, optimal control theory, diffusion problems and 

invariant imbedding, Re~ddless of the particular applications in which they arise, 

DREs are always the expression of a time dependent change of variables which 

&couples a linear system of ordinary differential equations. Given a linear system, 

&rough a proper transformation of variables there is a unique associated DRE; but 

bere is no unique way to associate a given DRE to a given linear system. Because of 

this fact, we consider the DRE from the system viewpoint. In this chapter, we only 

consider the DRE as used in the two-point boundary value problems, although it can 

be used as a general decoupling tool for all ODES. We do not emphasize the 

properties of the solution of DREs, neither do we emphasize the numerical methods 

far solving them. Ratha-, we focus on the mesh points which a DRE solver generates 

while solving the DRE. From this mesh we get a DRE mesh, and use it as an initial 

mesh for a global method for ttie corresponding BVPs. 

4.1 Differential Riccati Equations 
As we considered in section 33,  for a given two-point boundary value 

problems with separated boundary conditions: 



where Ails ~hl: A 2 2 ~  R (n-k)x(n-k) 
9 A12E R kx(n-k) , A 2 1 ~  R (n- k)xk 9 

yl' R ~ ,  y 2 ~  R'"-~), b€ R'"-~, Ple R', B ~ E  R (n-k)x(n-k) . B2l E Rk*, 

we can get a decoupled system w' = Aw + g(x) in a new variable w = r l y  with 

transformation: 

This is true if and only if R(t) satisfies the Dm: 

R' = A21 + A z R  - RAll-  RA 12R =: F(t,R), (4.3a) 

R(a) = b (4.3b) 

horn section 3.3 we knew that a good choice for & is % = -B]~-'B 

An important special case of (4.3) is the symmetric DRE: 

R' = A21 - A ~ ~ ~ R  - RAII - RA~zR, R(a) = R,(= bT) 

which arises when the matrix A(t) is Hamiltonian: 

AU solutioos of (4.4) are symmetric , ItT = R. This special DRE is widely used in 

apt;m& mnmf appEcahns, a& its solution !xis some special properties. But in this 

thesis, we will not give any special treatment far this DRE. We consider DRE (4.3) 

wi&out assuming speciat stmame for matrix A(t), i.e. A(t) is a continuous dense 

mmilL 



4.2 Numerical methods for DREs and DRESOL 

Numerical methods for DREs 

Vector method. The typical way to integrate the DRE(4.3) numerically is to 

rewrite it as an k(n-k)-vector differential equation, and then to apply available initial 

value problem softwm to this differential equation. This can work well [6] as long as 

the dimensions of the problems are small and the DRE is not stiff. If k or n-k is large, 

and the DRE is stiff, and we have to use an implicit scheme, this approach becomes 

extremely expensive because of the frequent factorization of the Jacobian matrix which 

costs O( [k(n-k)]3 ) flops at each step. This is not a promising approach. 

Semi-implicit scheme. Babuska and Majer [ 181 proposed a semi-implicit 

scheme for solving DRE (4.3), which is: 

where tm = ti+1/2 is the middle-point of interval [ti, ti+l]. The cost of this method is 

0( k3 + (n-k13 ) flops at each step. [18] reports that the scheme can handle stiff 

DREs successfuI1y. However, this scheme is only of mder 2. Although one can 

achieve high order accuracy through extrapolation, it requires an expensive stepsize 

se-Iectiort procedure, iind it does not seem suitable for exploiting the special structure 

of the symmetric DRE(4.4). As for the stability, it is prone to the same 

(superstabiIit)o problems of &er implicit schemes [lo]. 

Implieit scheme, Dieci [lo] proposed an implicit scheme for solving DRE, 

which is to appIy the backward difference f m u l a  (BDF) to the DlRE (4.3): 



This is an algebraic Riccati equation (ARE) for Rk+l. This ARE can be solved by a 

Newton type iteration. The expense of this scheme implemented by [18] is also 

0(k3 + (n-k13 ), regardless of the order of the method. This idea can be adapted to 

the trapezoidal and implicit midpoint rules as well as other implicit integration 

schemes. For the symmetric DRE (4.41, this scheme can preserve the Hamiltonian 

structure [18]. 

DRESOL 

DRESOL is a numerical integrator for the initial value problem of the 1st order 

DRE (4.3). It is an implementation of the implicit method proposed by [lo]. It is 

written in FORTRAN77 and can integrate stiff or nonstiff DREs of symmetric and 

unsyrnmetric type. The basic IVP solver on which DRESOL based is the well-known 

integrator LSODE [27]. DRESOL keeps the original structure of LSODE and its 

criteria for order selection and local truncation error estimation (hence stepsize 

selection). However, DRESOL has a new linear algebra part, which keeps the 

problem in matrix form and solves it via efficient matrix algorithms. 

The DRESOL package is a collection of subroutines for the direct numerical 

integration of DREs. It comprises 3 1 subroutines and two sets of block-data. The 

hierarchy chart of the subroutines is: 



qrstep T-i 



The call sequence for the solver DRESOL is: 

CALL DRESOL(NEQ, NEQLEN, X, NX, Y, NY, MF, T, TOUT, RTOL, ATOL, 

ITASK, ISTATE, IOPT, RWORK, LREX, IWORK, LIW, PROBL, RARR, IARR) 

The input parameters are: NEQ, NEQLEN, NX, NY, MF, TOUT, RTOL, 

ATOL, ITASK, IOPT, LREX, LIW, PROBL, RAW, IARR. The input/output 

parameters are: X, T, ISTATE. The working arrays Y, RWORK, IWORK, can be used 

for conditional input and output. To call DRESOL one has to 

1. Provide a subroutine of the form SUBROUTINE PROBL (T, A, RARR, 

IARR) specifying the matrix A(t) in A. 

2. Write a driver which calls subroutine DRESOL once for each point 

where a solution of R which is stored in X in DRESOL is required. Set 

the necessary parameters here. 

For more explanation of DRESOL, see [10,12] and the documentation in the code. 

4.3 Mesh from DRESOL 

In this section, we discuss the DRE mesh (3.23), generated by DRESOL. We 

call it the simple DRE mesh. From now on, when we mention the simple DRE mesh 

we refer to the mesh (3.23) from DRESOL unless stated otherwise. Denote the 

simple DRE mesh as: 

a = r l  < r 2 c  . . .  c r , = b  

We computed the simple DRE mesh for some examples in section 5.1. 

Generally speaking, the simple D M  is a good initial mesh for global methods for 

solving BVP (4.1), especially for stiff BVP with narrow layers. For stiff BVPs with 

narrow layers, the simple DRE mesh obtained from DRESOL with larger tolerance, 



such as at01 = rtol = is a better choice. Since this mesh is not well treated, it can 

have a few problems: 

1. The DRESOL may miss the right boundary layers (see examples 8,9). 

2. The simple DRE mesh may consist of too many mesh points. 

3. The DRESOL may generate an artificial layer (see example 11). 

Problem 1 is largely caused by the fact that the DRE involves only stable left 

to right integration. To recover the potential right boundary layer information, we can 

integrate (3.20) from right to left, i.e. from b to a. This requires setting a driver for 

DRE (3.20), which is tedious. An alternative way is to integrate (4.3) from right to 

left. Since we need only to recover the potential right boundary layer information, the 

right to left integration can be done for only a portion of the interval [a, b], say one 

tenth of the interval: [a-+0,9*(b-a), b]. The union of the mesh for the right portion of 

the interval and the simple DRE mesh can serve as the DRE mesh. 

Problem 2 is a computer dependent problem, since the maximum number of 

mesh points that a global BVP solver can handle depends on the machine to some 

degree. One choice is to pick some mesh points f'rom the DRE mesh as a new DRE 

mesh which the global method can handle. The simplest choice is to pick a certain 

number of mesh points from the DRE mesh, say 50 mesh points. 

Problem 3 is caused by improper choice of the fundamental solution of y' = Ay. 

If Yll(x) becomes almost singular where the BVP does not exhibit an layer, the DRE 

will give an artificial layer. This problem is not so important as Iong as the BVP is not 

too stiff, so the variation of R(x) in this region could not be too fast. However, if the 

BVP is too stiff, the DRE mesh from DRESOL may be totally misleading due to the 

artificial layer (see example 11). This problem can be solved by a reimbedding 



strategy. Roughly speaking, the reimbedding strategy is to reorder the fundamental 

solution of y' = Ay to make Yl  l(x) nonsinguiar when the magnitude of R kcomes 

large. 

4.4 More on DRE mesh 

When we generate the simple DRE mesh, or the DRE mesh ( with a right to 

left integration option), we extract the layers information for the BVP (4.1) from the 

DRE (4.3)- While doing this we just ignore the nonhomogeneous term q(x), since the 

DRE (4.3) has nothing to do with q(x). However, ignoring q(x) may lose some 

information about the layers of the BVP (4.1). To take q(x) into account, let us recall 

the Riccati method discussed in section 3.3. The Riccati method solves the BVP via 

three initial value problems. Two of them involve integration from right to left: 

DRE: 

R' = A21 + AnR - R A l l -  R A I ~ R ,  

R(a) = - B 12-lB 

Particular integration: 

This is  a DRE corresponding to the system 



with 

We can integrate the DRE (4.5) to get a simple DRE mesh. We can also get a DRE 

mesh from (4.5) with the right to left integration option. Let us call this DRE mesh 

the Combined DRE mesh. In section 5.3, we give some numerical example for the 

combined DRE meshes. 

Since the number of mesh points in a combined DRE mesh could be as many as 

3000, it is more than sufficient. If we pick up some mesh points, say no more than 50, 

from the combined DRE mesh to form a sub DRE mesh, we call it a Trimmed DRE 

mesh. We give some numerical example of trimmed DRE meshes in section 5.3, 

which shows that for a proper number of mesh points, the trimmed DRE mesh is the 

mesh we desire. Here the points of the trimmed DRE mesh we obtained is equally 

distributed among the combined DRE mesh. One idea that has not been tried is that 

the mesh points of trimmed DRE mesh is distributed among the combined DRE mesh 

according to some density function. 



5. Numerical Examples 

This chapter consists of some numerical examples. Examples of the simple 

DRE mesh are ghen in section 5.1. Section 5.2 consists of examples of the combined 

mesh. The examples of the trimmed mesh are presented in section 5.3. The DRE 

meshes were obtained with the single precision FORTRAN77 code DRESOL. The 

solutions of BVPs were generated with the double precision FORTRAN IV code 

COLNEW. All computations were performed on SPARC STATIONS at Simon Fraser 

University. 

5.1 Simple DRE mesh 

The examples in this section can be divided into 4 groups. Examples 1 to 4 are 

BVPs with smooth solutions. For this kind of problems, most global methods work 

well, and there is basically no merit to getting the BRE mesh from DRESOL. 

Examples 5 to 7 are stiff EVPs. For E not too small, COLNEW (and other global 

methods) can work well. For small E (say E = ), the layer region is narrow, the 

variation is fast, and COLNEW cannot work as desired with a uniform initial mesh. If 

we get an initial mesh for COLNEW from DRE (which is the simple DRE mesh in this 

section), then COLNEW works well. Examples 8 to 10 are stiff BVPs with right 

boundary layers. For these three examples, the simple DRE mesh missed the right 

boundary layer. Example 1 1 to 12 are stiff BVPs, the DRE mesh for these two 

examples consists of an aIxii3cial left boundary layer. 

The computation for each example was summarized in the corresponding table. 

E (or b) is the papameter in the BVP which is given in the first row of the table. The 

row labeled by at01 = rtol is the tolerance used in computations ( to get the simple 



DRE mesh and to find the solution of the BVP). In the row of COLNEW, the mesh 

sequence generated by COLNEW with a uniform initial mesh (10 subintervals) is 

given. The row of DREnaesh + colnew gives the mesh sequence generated by 

COLNEW with the simple DRE mesh as initial mesh. DRE mesh double means that 

COLNEW computes the solution on the mesh points of the simple DRE mesh and the 

doubled DRE mesh. The row of cpu gives the cpu time for each computation and the 

estimated error in the solution y-err is provided by COLNEW for each rm. The dot 

line in the summary tables means that there is no information available. 



Example 1. Consider the BVP 

u" -(l+t2)u = 0, 0 c t <b 

u(0) = 1, u(b) = 0. 

This is example 1 of 16-4. This BVP has the exact solution 

y(t)= exp(t2/2)( 1 -erf (t)/erf(b)). 

It is smocth throughout the entire interval. The reduction y = (u', u ) ~  gives DRE 

2 2 R' = 1 - (l+t )R , R(0) = 0. 

The simple DRE gives correct layer information of the BVP. 

Table 1 

y-err 

y-err 

DREmesh 
double I 

1 y-err 



Figure 1.1 Solution 
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Figure 1.2 Simple DRE mesh: atol=l .e-2 T=0.20 
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Example 2. Consider the BVP 

This is example 1 of [153. This BVP has the exact solution 

It is smooth throughout the whole interval. The DRE is given by the reduction 

y = (u, ul, u " ) ~ .  The simple DRE mesh gives correct layer information of the BVP. 

Table 2 



Figure 2.1 Solution 

Figure 2.2 Simple DRE mesh: atol=l .e-2 T=0.13 
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Example 3. Consider the B W  

d4) = (t4 + 14? + 49? + 321 -12 )exp(t), O < t < l  

u(0) = u'(0) = i?, 

u(1) = u'(1) = 0. 

This is example 2 of [15]. ahis BVP has the exact solution: 

It is smooth throughout the whole interval. The DRE is given by the reduction 

y = (u", u"', u, u' The simple DRE mesh gives correct layer information. 

Table 3 

atol=rtol 

COLNEW 
cpu 
y -err 

DRE mesh +colnew 
cpu 
y-err 

DRE mesh double 

y-err 

1030 
0.84 
0.17d-9 

7,4,8 
0.54 
0.2761-7 

7,14 

1 1030 
0.85 
0.17d-9 

14,7,14 
0.96 
0.90d-9 

1428 

1 o - ~  

10,20 
0.84 
0.17d-9 

21,11,22 
1.47 
0.73d- 10 

2 1,42 
0.60 11.16 
0.618-7 f 0.24d-7 

1.73 
0.1 Od-7 

A 



Figure 3.1 Solution 
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Figure 3.2 Simple DRE mesh: atol=l.e-2 T=0.13 
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Example 4. Consider the BVP: 

This is example 6 of [15]. This BVP has the exact solution 

It is smooth throughout the whole interval. The reduction y = (u', ulT gives DRE 

R' = 1 - ~ O Q R ~ ,  R(0) = 0 

The simple DRE mesh gives correct layer information. 

Table 4 

COLNEW 
cpu 
y-err 

DRE mesh+colnew 
cpu 
y-err 

t 

y-err IO.13d-1 1 0.15d-3 f 0.26d- 3 I 

10,20 
0.34 
0.88d-5 

I 

10,20 
0.34 
0.88d-5 

61,31,62 
1.66 
0.46d-8 

I 

27 34,108 
1.96 

DRE mesh double 
m1: 

J 
10,20,40 
0.76 
0.2 1d-6 

8,4,8 
0.23 
0.1 2d-2 

61,122 
1.89 

8,16 
0.28 

27,14,28 
0.74 
0.1 ld-5 



Figure 4.1 Solution 

*- 
Figure 4.2 Simple DRE mesh: atol=l.e-2 T=0.12 



Example 5. Consider the BVP: 

This is example 2 of [6]. This BVP has the exact solution 

This example has a left boundary layer. The reduction y = (&ul+u, ulT gives DRE: 

The simple DRE mesh gives correct layer information. The following is a summary 

table of the computation. 

Table 5 



figure 5.1 Solution: eps= l .e-6 

Figure 5.2 Simple DRC mesh: eps=l.e-6 atol=l .e-2 T=0.20 
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Example 6. Consider the BVP: 

i t  is example 9 of [6]. This example has exact solution 

This example has a left boundary layer and interior layer at t = 0. The DRE is given 
t 

by the reduction y =(&zl, EU*+T U, Z, ulT. The simple DRE mesh gives correct layer 

information. We get a sub DIE mesh of 70 subintervals from the simple DRE mesh 

with atol=rtol and &=lod. With this sub mesh, COLNEW spent 14" to achieve 

the accuracy lo4 for u and for z (we requested 10-6). 

Table 6 

I COLNEW 

DaEmesh 
double 



Figure 6.2 Simple DRE mesh: eps=l .e-6 atol=l .e-2 T=3.53 
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Figure 6.4 Trimmed DRE mesh of 49 subintervals 
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Example 7. Consider the BVP: 

EU*' + (t3 - ~R)u* - u a, -1 c t c 1, 

( 1  1 u(1) = 2. 

This is example 6 of [6]. This BVP has turning point behaviour at 

t = - fin, 0, */2. The reduction yl= EU' + (t3-t/2)u, y = (y1, u ) ~  gives the DRE: 

The simple DRE mesh gives correct layer information. 

Table 7 

atol=rtol 

COLNEW r 
I y-err 

I y-err 



Figure 7.1 Solution: eps=l .e-6 
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Figure 7.2 Simple DRE mesh: eps=l.e-6 atol=l .e-2 T=1.57 
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Example 8. Consider the BVP: 

This is example 3 of 163. This BVP has the exact solution 

rl = -0.5 - d G  r2 = -0.5 + 4: 0.25 + - This example has two boundary 

layers. The reduction y = (EU'+EU, ulT gives the Dm: 
1 

R = -  - R - R ~ ,  R(O)=O 
E 

The simple DRE mesh missed the right b o u n h y  layer. 

COENEW 

CDU 
- 

y-err 

DREmes h 
+colne w 

cpu 
y-err 

DREmes h 
double 

Table 8 



Figure 8.1 Solution: eps=l .c-6 
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Figure 8.2 Simple DRE mesh: eps=l.e-6 atol=l .e-2 T=0.35 



Figure 8.3 Combined DRE mesh 
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Example 9. Consider the BVP: 

E U " - ? U + E ~ ~ = O ,  -1 < t < 1, 

This is example of [3, P3331. This example has two boundary layers and one interior 

layer around 0. The reduction y = ( EU'+ d R t  , ulT gives the DRE 
1 R' = - - 3 ~ 2 ,  
E 

R(-1) = 0. 

The simple DRE mesh missed the right boundary layer. The computations for a=1.0 

and b a . 5  are summarized in the following table. 

Table 9 

E 10-3 
atol=rtol i0-2 

10,20 
COLNEW 

y-err 1 0.35d-6 



Figure 9.1 Solution: eps=l .e-6 
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Figure 9.2 Sin~ple DRE mesh: eps=l .e-6 atol=l .e-2 T=1.06 
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Figure 9.3 Combined DRE mesh 
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Example 10. Consider the BVP: 

This is example 4 of [15]. This BVP has the exact solution 

This example has two boundary layers. The DRE is given by the reduction 

y = ( y, z', z, y')T. The simple DRE mesh missed the right boundary layer. 

Table 10 

I t 

COLNEW 1 10,20,10,2010,20,40 1 10,20,40,23,46, 1 10,20,40,40,80,80, 1 

I t I 

DRE mesh double 1 36,72 184 1181 I 

cpu 
y-err 

DRE mesh +colnew 

cpu 
y-err 

1 4.68 - - - - - - - -  - - - - * - - -  

v-err - - - - - - - -  - - - - - - - -  I 

4.43 
0.80d- 3 

36,18,36,18,36 

4.8 
OS3d-5 

23,46 

5.08 
0.484-4 

84,42,84 

5.0 
0.29d-5 

86,160,99,198,99, 
l98,99,198 
16.95 
0.59d-4 

181,99,198,89,198, 
99,198 
12.44 
0.58d-4 



Figure 10.1 Solution 

Figure 10.2 Simple DRE mesh: atol=l .e-2 T=O.56 
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Example 11. consider the BVP: 

EU" + tu l=O,  -1 < t < 1, 

u(-1) = 0, u(1) =l. 

This is example 7 of [6]. This BVP has the exact solution 

u(t) = 0.5 + erf(t /6)/2erf(l&). 

It has an interior layer around 0. The reduction y = (&u1+u, ulT gives the DRE 
1 t 

R'=- - - R - R ~ ,  R( - i )=o .  
E E 

The simple DRE mesh contains an artificial left boundary layer. For a small E, if the 

tolerance is large, the simple DRE mesh is still ok, but if the tolerance is small, the 

simple DRE mesh will be misled by the artificial left boundary layer. This problem is 

caused by the large magnitude of R. It can be fixed by the reimbedding strategy. 

Table 11 

cpu 
y-err 

DREmesh 
+colne w 

0.53 
0.20d-3 

78,39,78 

1.01 
0.14d-4 

157,79, 
158 

cpu 13.11 3.72 
0.376-1 1 

157 

- - - - - - - -  

y-err 

DREnes h 
d&x&de 

1.6 
0.16d-6 

259 

1 0.29d-9 

78,156 

- - - - - - - -  f - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - -  - 

- - - - - - - -  
- - - - - - - - 

259 

C pu ) 3.75 
, y-err 10,19d-6 

99,198 
18.95 
0.62d-2 

128,64, 
128 

& 
- - - - - - - -  

5.6 
0.39d-9 

128 

99,198 
23.67 
0.1 ld-3 

142,7 1,142 
99,198,99, 
198,99,198 

8,99,198 
20.74 
0.1 ld-3 

523 

12.16 
0.37d-1 

142 

- - - - - - - -  
- - - - - - - - 

523 



Figure 11.1 Solution: eps=l.e-6 

Figure 1 1.2 Simple DRE mesh: eps=l .e-6 atol=l .e-2 T= 1.59 



Figure 1 1.3 Combined DRE mesh 

Figure 1 1.4 Trimmed DRE mesh 
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Example 12. Consider the BVP 

&d4)+ u =0, 0 < t < 1, 

u'(0) = 0, u"'(0) = 0, 

u(1) = 1, uW(l) = 0. 

This is example 15 with k=0 of [15]. This example has a mild right boundary layer. 

The DRE is obtained fran the reduction y = ( y, y", ye, y"')T. The simple DRE mesh 

missed the right boundary layer and consisted of an artificial left boundary layer. 

Table 12 

COLNEW 

t 

DREmesh 1 27,14,28 

v-err 0.74d-7 



Figure 12.1 Solution: eps=l .e-6 
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-- Figure 12.2 Simple DRE mesh: eps=l .e-6 atol=l .e-2 T=0.60 



Figure 12.3 Combined DRE mesh 
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Example 13. Consider the BVP 

EY' = A(t)Y +&(A(t)g)' - g =0, 0 c t < 1, 

( v* 1 )yfO) = 0, 

(vcos 1 -sin1 , -vsin l -cos 1 )y(l) = 0 

-8sin2t -(1+8cos2t) 

where A(t) = 
1 -8cos2t Osin2t 

This is example 7 of 1151. This BVP has the exact solution Y(t) = ~( t ) "~( t ) ,  which 

is smooth throughout the entire interval. The simple DRE mesh consisted of a mild 

artificial left boundary layer. 

Table 13 

COLNEW 

cpu 
y-err 

DREmesh 
+colnew 
cpu 
y-err 

DREmesh 
double 

cpu 
y-err 



Figure 13.1 Solution 
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Figure 13.2 Simple DRE mesh: atol=l.e-2 T=0.28 



ExzrmpSe 14. Consider &e BVP 

uf4) -3u"' -63u" -85ui +150u = -1500t +15850, 0 c t c 1 

u(O)= loo, u"(0) =o, 

u(1) = 90, ~"'(1) = 0. 

This is example 9 of 1151. This BVP has the exact solution u(t) = 100-lot, which is 

smooth throughout the whole interval. The DRE is given by the reduction 

y = ( u"', u', u", u ) ~ .  The simple DRE mesh consisted of a mild left artificial boundary 

Iayer. 

Table 14 

I ,t01=~t01 

COLNEW 
cpu 
y -err 

DRE mesh +colnew 

DRE mesh double 

lo-2 

1 2.82 - - - - - - - -  
1 0.236- 1 2 - - - - - - - -  

lo4 

- - - - - - - -  
- - - - - - - -  - 

lo4 

10,20 
1.08 
0.16d-12 

146,73,146 

1030 1 1030 
1.08 1 1.08 
0. 1 56-12 0.16d-12 

2.4 1 5.19 1 6.07 
27,14,28 1 85,43,86 

0.24d- 1 2 0.6361- 12 0.14d-12 

2 7 3  I 85 146 



Figure 14.1 Solution 

- 

- 

97 - - 

96 - - 

95 - - 

94 - - 

93 - - 

92 - 

91 - 

90 0- - 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 14.2 Simple DRE mesh: atol= 1 .e-2 T=0.44 
1 t I I I I t I 

+ + + +  + + 

# t a I 
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 I 

7 3  



5.2 Combined DRE mesh 

From the examples in this section, we can see that the combined DRE mesh is 

a good mesh for a given stiff BVP, except for some cases where there may be too 

many mesh points. For example 6 with we get the combined DRE mesh with 

atol-ltl The combined DRE mesh detects the layer information and consists 

of 27 1 subintervals, which is a little expensive for COLNEW, The visual pattern of 

this combined DRE mesh is given in figure 6.3. 

For example 8 with &=lo4, we get the combined DRE mesh with atol=rtol 

The combined DRE mesh detects the layer information of the BVP and 

consists of 91 subintervals. With this mesh, COLNEW spent 2.31" to achieve the 

accuracy lo-'* (we requested 103. The visual pattern of this combined DRE mesh is 

given in f i g w  8.3. 

For example 9 with &=I 04, we get the combined DRE mesh with atol--1 

=lo-*. The combined DRE mesh detects the layer information of the BVP and 

cmsists of 150 subintervals- With this mesh, COLNEW spent 3.78" to achieve the 

accuracy 1W9 (we requested 103. The visual panem of this combined DRE mesh is 

given in figure 9.3. 

For example 1 1 with €=lo4, we get the combined DRE mesh with atol==rtol 

=10-*. The combined DRE w s h  detects the layer information of the BVP and 

consists of 186 subintc:rvds, With this mesh, CO-W spent 3.6" to achieve the 

accuracy 1U8 (we nquestcd 103. The visual paarm of this combined DRE mesh is 

gjven in figme 11.3. 



For example 12 with &=lo6, we get the combined DRE mesh with atol=rtol 

The combined DRE mesh detects the layer information of the BVP and 

consists of 65 subintervals. With this mesh, COLNEW spent 5.14" to achieve the 

accuracy lo-' (we requested 10-5. The visual pattern of this combined DRE mesh is 

given in figure 12.3. 

5.3 Trimmed DRE mesh 

The examples in this section are numerical experiments on the sub mesh of the 

combined DRE mesh, wbich afe called trimmed DRE meshes. For example 6 with 

&=lo4 we get a trimmed DRE mesh of 49 subintervals. With this mesh, COLNEW 

spcnt 13.26" to achieve the accuracy lo4 for u and 10.' for z(we q u e s t e d  10.9. We 

get another trimmed DRE mesh of 74 subintervals. With this mesh, COLNEW spent 

14" to ZCFGCVC EX-Y lod fa u and loe8 for s (we nqwstcd 109. Thc visual 

patterns of these combined DRE meshes are given in figun 6.4,6.5. The difference 

between these two trimmed meshes suggested that for BVPs with n m w  layers, the 

mesh should not oaJy detect right layer infarmation, but atso havc enough mesh points 

in the layer regions. 



For example 11 with E = we get a trimmed DRE mesh of 49 subintervals. 

With this mesh, COLNEW spent 10.34" to achieve accuracy lo-" (we requested 

1 0 9 .  The increase in time spent by COLNEW when compare with the combined 

DRE mesh means that this BVP has a very narrow layer (which is The visual 

pattern of this trimmed DRE mesh is given in figure 11.4. 

For example 12 with E = 10-q we get a trimmed DRE mesh of 49 subintervals. 

With this mesh, COLNEW spent 3.87" to achieve accuracy loe8 (we requested lod). 

The visual pattern of this trimmed DRE mesh is given in figure 12.4. 

5.4 Future Wwk 

There is still a lot of work to be d one c g the Riccati differential 

equatim. C h  logical extension of this thesis is to implement the reimbedding 

strategy for DRESOL and perform some more numerical experiments. 

We had only considered l i n e s  BVPs with separated BCs. If the BVP has 

non-separated BCs, the Ricxati trarrsfmation still helps. However, it is not clear 

how to detennine the d i m e n s h  of it, i.e. h d  out the dimension of nonincreaskg and 

nondeaeasing subspaces. 

The extension of rhe Riccati transformation to the nonlinear case is a natural 

idea, where a quasilinearizadoa procedure has to be used 
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