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Abstract 

An important class of non-constant solutions of differential equations is periodic. In 

some cases a periodic solution can be written as the sum of a countable number of periodic 

functions each of whose periods is an integer combination of some base frequencies. The 

number p of base frequencies gives a p-periodic solution. Two-periodic solutions occur in 

both autonomous and non-autonomous systems. In this thesis we consider three methods 

for locating this behaviour. The first is a generalization of finite differences and uses the 

algorithm proposed by Kevrekidis which was later modified by van Veldhuizen. The second, 

similar to the first, uses the idea of the Hadamard graph transform. The third, the partial 

differential equation approach, solves a system of partial differential equations subject to 

periodic boundary conditions. The three methods are contrasted using simple dynamical 

systems. The Hadamard graph transform approach does very well on the van der Pol 

oscillator problem and the delayed logistic map but has some difficulties with the coupled 

oscillators problem. We also use computer graphics to illustrate dynamics on a two-torus. 

iii 



Acknowledgements 

I would like to take this chance to express my appreciation to  Prof R. D. Russell for his 

excellent supervision on the preparation of this thesis and for helping me go through this 

program. 

I would like to  thank Dr M. Trummer, Dr P. Cahoon, L. Liu, M. Fankboner and S. 

Holmes who in one way or the other helped me during my studies here. Finally, my 

appreciation t o  the Department and the University as a whole for giving me the opportunity 

to study here. 



Dedication 

To my Parents. 



Table of Contents 

. . Approval .......................................................................... 11 

... Abstract .......................................................................... 111 

Acknowledgements ................................................................ iv 

Dedication ........................................................................ v 

Table of contents ................................................................. vi 

... List of Tables .................................................................... vlu 

List of Figures .................................................................... ix 

Introduction ....................................................................... 1 

Chapter 1 Some basic concepts in the theory of ode's and dynamical systems ....... 3 

1.1 Autonomous and Non-autonomous systems .............................. 3 

1.2 Poincark map ........................................................... 4 

1.3 Stability of a fixed point ................................................. 6 

1.4 Normal forms ........................................................... 7 

1.5 Rotation numbers ...................................................... 12 

1.6 Dynamics on the torus ................................................. 14 

Chapter 2 Computer graphics .................................................... 16 

2.1 Computer graphics ..................................................... 16 

Chapter 3 The Poincard map method ............................................. 24 

3.1 Coordinates ............................................................ 24 

3.2 General format for the Poincark map methods .......................... 25 

3.3 Newtons Method (Kevrekidis) .......................................... 33 

.............................. 3.4 The Hadamard graph transform approach 34 

vi 



Chapter 4 The pde approach ..................................................... 37 

4.1 The pde approach ...................................................... 37 

...................................... Chapter 5 Comparison of the three methods 41 

.............................................. 5.1 The van der Pol oscillator 41 

5.2 The coupled oscillator .................................................. 47 

5.2 The delayed logistic map ............................................... 49 

Chapter 6 Some other methods of computing a torus .............................. 52 

......................................................... 6.1 Chan's Method 52 

6.2 Thoulouze Pratt and Jean method ...................................... 55 

6.3 The method of spectral balance ........................................ 55 

Chapter 7 Conclusion ............................................................ 58 

.................................................................... Bibliography -59  

vii 



List of Tables 

Table 1: Comparism of the three methods using the van der Pol oscillator . . 45 

.................. Table 2: Comparism using two coupled oscillator equation 48 

........................... Table 3: Comparison of the delayed logistic map 53 

viii 



List of Figures 

1.1 The Poincard map of PA for a third-order autonomous system with limit 

cycle r ............................................................................... 6 

2.1.1. A HOOPS plot ...................................................... 20 

2.1.2. A HOOPS plot ..................................................... -21  

...................................................... 2.1.3. A HOOPS plot 22 

2.1.4. A HOOPS plot ...................................................... 23 

3.2.1: The construction of H . The point Hx is indicated above . The projection 

of x on the plane formed from the successive points xk, x[. x, is y ..................... 27 

3.2.2: Example of Kl with N=6 . The vertex x; lies on the spoke 0; indicated by 

the non-shaded dots . The points Klx; are indicated by the shaded dots ............... 29 

3.2.5. An example of K with 11 = IT1 ....................................... 30 

3.3.1. Due to rotational effect of P, P(x) # x for all x E 7 .................. 33 

3.2.2: (a) The structure of the Jacobian . (b) The Jacobian after convergence 

when there is a fixed point on the invariant curve ..................................... 34 

3.3.4: The PoincarC map of the points xk. xk+l with angular parts Ok. Ok+l 

respectively .......................................................................... 35 

3.3.5. The point x maps to y ............................................... 36 

5.1.1: The invariant circle of the van der Pol oscillator with parameters as shown 

above ................................................................................ 41 

5.1.2: The invariant circle of the van der Pol oscillator with the transformation 

x = y . y = a ( l  - x2)y - x + P C O S ( W ~ )  ............................................... 42 

5.1.3: A portion of the a. tc plane from Guckenheimer and Holmes . The region 

I-IV are the same as in the text . The dotted line a = 0.55 is our line of interest . the region 

............................................................ I11 has an invariant torus 42 



5.1.4: The invariant circle of the van der Pol oscillator using the pde approach 

43 

5.1.5: The invariant curves computed by van Veldhuizen [VVHl] ........... .43 

5.1.6: The invariant circles using Hadamard Graph Transform ............. . 44  

5.1.7: The invariant circles using Hadamard Graph Transform ............. . 44  

5.2.1: The invariant curves computed using the Hadamard Graph Transform 

approach for the 6 values 0.0, 0.05, 0.10,0.15 ........................................ .47 

5.2.2: The invariant curves computed using the pde approach for 6 = 0.23 . . 48  

5.3.1: The invariant curves for the delayed logistic map for the a values 2.18 and 

5.3.2: The invariant curves for the delayed logistic map for the a values 2.18 by 

van Veldhuizen ...................................................................... 50 

5.3.2: The invariant curves for the delayed logistic map using direct iteration of 

the map by Aronson et al. [ACHM]. Each circle needed 1000-2500 iterates of the map .51 



Introduction 

Problems of dynamics have been with mankind for ages. The study of dynamic models 

has led to the theory of differential equations. There seems to  be a fairly complete theory 

for linear ordinary differential equations, whereas much remains to  be done in non-linear 

differential equations. Perhaps, the only known method developed so far is the use of 

perturbation methods for weakly nonlinear problems. 

PoincarC showed ( late 19 th century ) that perturbation methods may not yield correct 

results in all cases, because the series used in such calculations diverge. He went on to  

relate analysis and geometry in his development of a qualitative approach to the study of 

differential equations. Some early workers in this area are PoincarC (1880, 1890, 1899), 

Birkhoff (1927) Andronov et al. (1937, 1966, 1971, 1973), Arnold (1973, 1978, 1982) and 

Smale (1967). 

The solutions to  dynamical systems lie frequently on a manifold (where a k-dimensional 

manifold M is a set of points that locally resembles R~). One such important manifold is 

the torus. The main motivation for the computation of invariant circles and thus a torus 

is to  use computer graphics to explain the geometry of the dynamics on the torus. 

The purpose of this thesis is to  compare three methods of computing an invariant torus 

for some simple dynamical systems. Apart from these three methods we mention briefly 

others by Thoulouze -Pratt and Jean [TPJM], Chan [CHA] and Parker [PTCL]. The process 

described in [TPJM] may fail for problems with an almost rational rotation numbers. Chan 

based one of his methods on the collocation approximation of the invariant curve and in 

the process the curve was parameterised such that the circle map becomes a rigid rotation. 

The process described in [PTCL] using the spectral balance approach is for equations with 

two or more periodic forcing terms of incommensurate frequencies. It involves solving a 

linear system of equations with columns whose orthogonality depends on the discretization 

of time. 

There were some early works like the direct iteration of the map which was generally 



used for computing invariant circles in [ACHM]. This method fails when the invariant 

circles are repelling. Also Iooss G, Arneeodo A, Coullet P, and Tresser C. [IACT] tried to 

obtain an explicit analytic expression of the invariant circles for a general 2-dimensional 

diffeomorphisms but it turned out to be too complicated. The work by Levison [LEN] gives 

a good introduction to  the existence theory for invariant curves. His work was followed by 

that of Hale [HJK]. 

In chapter one, basic terms used in the qualitative theory of dynamical system are given 

with emphasis on their definitions and their interpretation in the physical world. Chapter 

two gives an insight into HOOPS graphics system which was used to draw the diagrams in 

this thesis. In chapter three we discuss the methods of Kevrekidis, van Veldhuizen and the 

Hadamard graph transform approach. The three methods use a polygonal approximation 

to the invariant curve that is to be computed. Chapter four discusses the pde approach. 

This involves solving a system of partial differential equations subject to periodic boundary 

conditions. In Chapter five we compared the results obtained using the Hadamard graph 

transform approach to that obtained by van Veldhuizen and the pde approach. Chapter 

six gives a brief discussion of the methods of Chan, Thoulouze Pratt and Jean, the spectral 

balance method and finally some conclusions are given in chapter 7. 



Chapter 1 

Some basic concepts in the theory 

of ode's and dynamical systems 

1.1 Autonomous and Non-autonomous systems 

The state equation 

where f : Rn -+ Rn (vector field) is called an nth - order continuous autonomous dynamical 

system. Let 4t(xo) denote the solution to (1.1.1) at time t and satisfying the initial condition 

such that the solution at time t = to is xo (q5t,(xo) = xo) and also satisfying the condition 

&+t2 = q5tl~q5t2. The trajectory through the point xo is the set {+t(xo) : -m < t < m). 

The one-parameter family of mappings 4t : Rn ---t Rn is called the flow. 

In the non-autonomous case, we have 

and the solution is q&(xo, to). We assume that for any t ,  &, and &(., to) are diffeomorphisms. 

A smooth map 4 : x - y is a diffeomorphism if it is invertible and if the inverse map 

4-I : y - x is also smooth. A map f : V - RP is smooth if it possesses continuous 



derivatives of all orders, where V C Rm is an open set. 

1.2 Poincarh map 

In this section instead of considering the bifurcation problem from a periodic solution 

to an invariant tori in an ordinary differential system, we will reduce it to the simpler 

bifurcation problem from a fixed point to an invariant circle in 2-dimensional diffeomorphic 

maps. This is done with the idea of the Poincar6 map. A periodic solution corresponds to 

a fixed point x* of the Poincar6 map and an invariant torus corresponds to  an invariant 

circle of the associated PoincarC map. Bifurcation to an invariant circle from a fixed point 

is only one of the many types of dynamical behaviours that have been observed [GIMC]. 

An nth order non-autonomous system with minimum period T can be transformed into 

an (n + l) th order autonomous system in the cylindrical state space Rn x S1 where 

s1 := [0,2n). 

Using the transformation 8 := 2nt/T, equation (1.1.2) becomes 

x = f (x, 8T/2n), x(to) = so. 

6 = 2n/T, 8(t0) = 2nto/T. 

Considering the hyperplane 

then for every time T the trajectory 

intersects (1.2.4). 

The map 



defined by PN(x) := ~ $ ~ , + ~ ( x ,  to) is called the PoincarC map. The set 

is called the corresponding orbit. Since q5t is a diffeomorphism for any fixed t ,  it follows 

that PN(x) is also a diffeomorphism [PTCL]. 

For the PoincarC map of an nth order autonomous system, denoted PA, the PoincarC 

map corresponding to a limit cycle I' (where a limit cycle is an isolated periodic solution 

of an autonomous system and where an autonomous periodic solution q&(x*) is such that 

&(x*) = 4t+T(x*) for Some minimun periodic T > 0) is as follows: 

Let x* E I' and C be an (n- 1)- dimensional hyperplane transversal to I' at  x* with 

T the minimum period of the limit cycle. Two manifolds, Mal C Rn and Ma2 C Rn, 

are said to be transversal if for each x E Mal n Ma2, Tz(Mal) + Tz(Ma2) span Rn where 

T,(M) is the tangent space of M at x. Since 4t is continuous with respect to the initial 

conditions, the trajectories starting on C in a small neighborhood of x* will intersect C in 

the vicinity of x* in approximately T seconds. The PoincarC map PA consisting of 4t and 

C defines a mapping PA : U - V where x* E U C C and PA(X*) E V C C. 

Some remarks: 

0 PA is defined locally in the neighborhood of x*. In this case it is guaranteed that the 

trajectory emanating from any point on C will intersect C . 

In Euclidean state space, bt(x) must pass through C at least once before returning 

to V. 

a PA is a diffeomorphism. The proof of this is in [PTCL]. 

PA can be determined if one has a knowledge of the position of the limit cycle. 



Fig. 1.1 : The Poincare map PA for a third-order autonomous system with limit cycle I'. 

1.3 Stability of a fixed point 

An invariant circle may be spawned as a fixed point loses stability through a Hopf 

bifurcation (Hopf bifurcation is described in section 1.4). In this section we look at the 

stability of a fixed point. 

The set of all eigenvalues of a linear transformation G : Rn - R n ,  a ( G ) ,  is called the 

spectrum of G. Let x* be a fixed point of a Poincar6 map P and T be the period of the 

system. In the non-autonomous system 

and 

@ T ( x * , ~ o )  =: DPN(x*)  = DzqhT(x*,tO) 

where Qt(xo,  to )  is called the fundamental solution matrix of (1.3.10). Thus 

~ ( @ T ( x * ,  to))  = ~ ( D ~ N ( X * ) ) .  

In the autonomous case 

@T(x*)  = D,(P(x*)) 



and 

u(@T(x*)) = u((DP(x*)) U (1). 

The term @t(xo, to) is determined as follows: 

From (1.1.2) we get 

&(xo, to) = f ( ~ ( X O ,  to), t), 4to(xo, to) = 50, (1.3.10) 

and taking the derivative of (1.3.10) with respect to x at xo we get 

This can be written as 

and is called the variational equation of (1.3.10). For the autonomous system, the varia- 

tional equation is given by 

From (1.3.11) and (1.3.12) we get at(xO, to) and @t(xO) respectively. 

Let the eigenvalues of DP(x*), called the characteristic multipliers, be given by m; i = 

1, ..., n. Then the fixed point is asymptotically stable if ]mil < 1 for all i and is non-stable 

if for some i, lmil < 1 and for some i, [mil > 1. It is unstable if /mil > 1 for all i. The fixed 

point is hyperbolic if lm;l # 1 for all i. It is then said to be generic and structurally stable. 

The characteristic multipliers (eigenvalues) in the autonomous case are independent of the 

position of the cross-section C and in the non-autonomous case they are independent of 

the choice of to. On the other hand, the eigenvectors depend on the position of C in the 

autonomous case and on to in the non-autonomous case. 



1.4 Normal forms 

Here we introduce the concept of Kopf bifurcation and give a series of transformations 

that reduce our map to a simple form called the normal form to which the Hopf bifurcation 

theorem is applied. Consider the map 

In polar coordinates this family of maps can be written as 

T l  = AT + pr3 

O1 = B + a. 

This map has an invariant circle given by r = d ( 1 -  A)/. provided (1 

,O < 0 and X > 1, 

the invariant curve is attracting and when 

p >  0 and A <  1, 

(1.4.14) 

A)/. > 0. When 

the invariant curve is repelling. The eigenvalues of the system (1.4.13) at  the fixed point 

(0,O) are -A  and A. And at X = 1 the eigenvalues cross the unit circle. When X < 1 the fixed 

point is attracting and when X > 1 the fixed point is repelling. Therefore, as an attracting 

fixed point becomes repelling, an invariant circle is created. The bifurcation which occurs 

at  X = 1 is called Hopf bifurcation. In general, using Taylor series, any nonlinear mapping 

F, which fkes the origin (F(0) = 0) may be put in the form 

x1 = a x  - p y  + O(2) 

$1 = P x  + aY + 0(2) ,  

where the expression O(2) indicates terms of degree two or more, i.e. 

a 1 x 2  + a 2 x y  + a 3 y 3  + ... . 

8 



Letting p = a + iP and z = x + iy, then (1.4.15) becomes 

By a judicious choice of conjugacy near the origin, we can eliminate some higher order , 

terms (using a nonlinear coordinate transformation). 

Definition 4 Let f : A - A and g : B --+ B be two maps. f and g are said to be 

topologically conjugate if there exists a homeomorphism h : A ---+ B such that, 

h o f = g o h. The homeomorphism h is called a topological conjugacy.4 

Theorem 1.31 

4 Suppose FP(z) = pz + 0(5),  where p is not a kth root of unity for k=1, ..., 5. Then 

there is a neighborhood U of 0 and a diffeomorphism h on U such that the map h-loF,oh 

assumes the form 

zl = pz + p(p)z2z + 0(5) .4  

In polar coordinates 1.4.17 becomes 

where p = lpleia and ,f?, 7 are constants. O(5) are terms of 5th and higher powers of 

r. Equation (1.4.17) and (1.4.18) are in normal form. For the proof we use the following 

propositions which form the general procedure of reducing a map to a normal form. 

Proposition 1 

4 Let F, be a map of the form 

where p # 0. Then there exists a neighborhood Ul of 0 and a diffeomorphism L1 : Ul --+ R2 

such that L ~ ~ O F , O L ~  assumes the form G, given by 



provided p is not a kth root of unity where k = l  or 3. 4 

Proposition 1 eliminates the O(2) terms in the map (1.4.19).  

Proposition 2 

4 Let G, be a map of the form 

where p # 0 .  Then there exists a neighborhood U2 of 0 and a diffeomorphism L2 : U2 - R2 
such that L;'OG,OL~ assumes the form H, given by 

provided p is not a kth root of unity for k=2 or 4 .  4. 

Proposition 2 eliminates some of the O ( 3 )  terms in the map (1 .4 .20) .  

Proposition 3 

4 Let H, be a map of the form 

where p # 0 .  Then there exists a neighborhood U3 of 0 and a diffeomorphism L3 : U3 --+ R2 

such that L,'OH,OL~ assumes the form 

provided p is not a kth root of unity for k=3 or 5. 4 

Remark: 

Suppose 

F : R ~ - R  2 

satisfies F ( 0 )  = 0 and D F ( 0 )  has an eigenvalue p where pk = 1, k > 3. Then a sequence 

of transformations from propositions 1,2, and 3 allows us to put F in the form 

zl = pz + P ~ ~ z ~ ~ z  + ~ ~ 1 . ~ 1 ~  + ... + P,IZ~~'Z + yik-l + ~ ( k )  (1 .4 .22)  

10 



where pl,P2, ...,@, 7 are constants and 1 is the fractional part of (k-2)/2. Equation (1.4.22) 

is the generalized normal form. For the complete proof see [DRL]. In the case of a flow, 

the idea of successive coordinate transformations to simplify the analytic expression of 

a general problem forms the basis of the Kolmogorov-Arnold-Moses (KAM) theory for 

studying quasiperiodic phenomena. To get the normal form for flows see [GJHP]. 

4 Theorem 1.2 (Hopf bifurcations for maps) 

Let f, : R2 -+ R2 be a one-parameter family of mappings which has a smooth family 

of fixed points x(p) at  which the eigenvalues are complex conjugates X(p), i (p) .  Assume 

P(Po)~  = 1 7  but Xj (~o)  # 1, for j = 1,2,3,4 (1.4.23) 

d 
- ( W ) l )  = d # 0. (1.4.24) 
~ C L  

Then there is a smooth change of coordinates h so that the expression of hf,h-' in polar 

coordinates has the form 

h f,h-'(r, 9) = (r(1 + d(p - po) + ar2), 9 + c + br2) + higher order terms. (1.4.25) 

(note: X complex and (1.4.24) imply larg(X)I = c and d are nonzero.) If, in addition, 

then there is a two-dimensional surface C (not necessarily infinitely differentiable) in R2xR 

having quadratic tangency with the plane R2x {pO) which is invariant for f. If C n(R2x{p)) 

is larger than a point, then it is a simple closed curve 4 . 

The signs of a and d determine the direction and stability of the periodic bifurcating 

orbit, while c and b give information on rotation numbers. The equation (1.4.25) is the 

normal form. If $ ~ ~ ( p ) l  > 0 when X = 0 then the eigenvalues cross from the inside to the 

outside of the unit circle as p increases. 

The centre manifold theorem enables us to extend the 2-dimensional Hopf bifurcation 

to higher dimension. It reduces an infinite dimensional problem to a finite dimensional one. 



Theorem 1.3 (Centre Manifold Theorem for a map) 

/ Let h be a mapping of a neighborhood of zero in a Banach space B into B. Assume 

h is Ck+' and h(0)  = 0. Further assume that the spectrum of h'(0) is contained in the 

unit circle and the spectrum splits into two parts where one pair is on the unit circle and 

the remaining part is at  a non-zero distance from the circle. Let Y denote the generalized 

eigenspace of h'(0) belonging to the part of the spectrum on the unit circle. Assume that 

Y has dimension d < oo. 

Then there exists a neighbourhood V of 0 in B and a Ck submanifold M of V of dimension 

d, passing through 0 and tangent to Y at 0 such that 

(1) Local invariance: If x E M and h ( x )  E V, then h ( x )  E M. 

(2) Local attractivity: If hn(x )  E V for all n=0,1,2, ... Then H(hn(x), M) - 0 as 

n - co, where H is the Hausdorff distance. / 

Definition: 4 A subset S of a normed linear space E is called a submanifold of E if S 

has the following property: For each x E S, there is a neighborhood U of x in E and a 

diffeomorphism $ : U -+ V, where V is an open set in E such that 

$ ( S n  U) = L n V  

where L is some affine subspace of E. $ is called a chart of S. / 

1.5 Rotation Numbers 

The dynamics on the torus is determined by the rotation number of the associated 

invariant circle. In this section we give the definition of rotation number and then its 

properties. 

Let us denote an invariant circle by S1  and consider the diffeomorphism 



I f f  is an orientation preserving diffeomorphism, then for x < y < z ,  

f b )  < f(y) < f ( +  (1.5.27) 

The diffeomorphism f can be "lifted" to a map F : R - R which covers f via the covering 
, 

projection 

U : R - S '  

defined by 

a(t)  = exp(2nit). 

It is clear that a maps R around S1. 

Definition 

4F : R - R is a lift of f : S1 - S1 if 

There are many lifts for a given map f : S1 - S1 and any two lifts of f differ only by 

translation (integer) [NIN]. If F is the lift o f f  then we must have F1(x) > 0 so that F is 

increasing and furthermore, F(x + 1) = F(x) + 1 or in general F(x + Ic) = F(x) + k for any 

integer k. 

Definition 

4 The rotation number of f ,  py(f), is the fractional part of po(F) for any lift F of f. 

That is, p( f )  is the unique number in [0,1) such that po(F) - py( f )  is an integer where 

Second definition 

4 We pick an arbitrary x E S1 and partition S1 into two arcs I. = [x, f(x)) and 

I; = [ f (x), x). For any point y E S1, we define the rotation number 

pY( f )  = lim l/n[Cardinality { f'(y)l0 < i < n and f'(y) E lo}]. 
n+w 

(1.5.30) 



Intuitively, py ( f )  is the asymptotic proportion of the points on the trajectory which lie 

on lo. 

Some properties of p,(f) are: 

p,(f) exists and is independent of y. 

p,( f )  is rational if and only if f has a periodic orbit. 

If the conditions of the Hopf bifurcation theorem for diffeomorphisms are satisfied 

then P,( fx) is a continuous function of the variable A. [IOG] 

The inverse of the rotation number indicates how many time intervals of length T (the 

period) are necessary to map a point xo on the invariant curve to itself by using it as an 

initial vector for the differential equation at time t=O. 

1.6 Dynamics on the torus 

Possible location of invariant tori 

Consider the system 

R = F(X,P),  (1.6.31) 

where p = (pl, p2, ..., ) are parameters and X E Rn, F : Rn x Rn -+ Rn. Let us adjoin 

the equation 

8 = w  (1.6.32) 

where w  is constant dependent on T and 8  E T a circle of circumference 2nlw to the 

periodic system of (1.6.31). The system (1.6.31) - (1.6.32) is defined in the phase space 

RnxT and a periodic orbit of (1.6.31) becomes an invariant torus of (1.6.31)-(1.6.32). If 

(1.6.31) displays a period-doubling cascade as we vary p suitably, (1.6.31)-(1.6.32) will 

exhibit a corresponding sequence of period doublings of invariant tori. 

Now consider (1.6.31) and (1.6.32) coupled together by 

R = F(X, p) + ~f (X, 8 )  

14 



where E > 0 as a parameter. For sufficiently small c the invariant tori of (1.6.31) and 

(1.6.32) can still persist when it has a normal hyperbolicity. 

Also some parameters may introduce frequency lockings which is the occurance of pe- 

riodic orbits on the tori. As the parameter E increases the tori may begin to deform. This 

situation was observed for example in the ODE 

by Arneodo, Coullet and Spiegel [ASC]. 



Chapter 2 

Computer Graphics 

2.1 Computer Graphics 

Computer graphics is probably the most versatile and most powerful means of com- 

munication between the computer and the human being. The value of a picture as a means 

for communicating information quickly and accurately has long been recognised. As the 

ancient Chinese proverb goes "a picture is worth a thousand words" helps to explain the 

use of computer graphics in academic life. Computer graphics today is largely interactive, 

involving the technology of using computer-driven displays to control the contents, struc- 

ture and appearance of objects. Computer graphics can be used in various aspects of our 

life and some of which is as follows: 

Computer aided design (CAD) in the manufacture of wireframe drawings can be 

displayed on a video screen to test the appearance of body shapes, e.g. automobiles, 

airplanes etc. 

Architectural design for room arrangement, door and window placement, or the loca- 

tion of various facilities. 

Educational applications utilize computer graphics in classroom demonstrations, com- 

puter generated exams, and self-study programs. 



Computer graphics is an integral part of many people's life. The merging of analysis 

and geometry in dynamical systems (Poincard) has created a new area of application for 

computer graphics. Many software systems have been developed to assist in the study of 

dynamical systems. e.g. DYNPAQ, KAOS, CHAOS, AUTO, DSTOOL and so on. 

Hoops Graphics System 

Hierarchical Object Oriented Plotting System (HOOPS) from Ithaca software is a sys- 

tem for creating interactive graphics applications. Its database is organised as a tree-shaped 

hierarchy which is similar to a file directory tree in the unix systems. The database has units 

which are called segments, and the segment's data consists of geometrical primitives, cam- 

eras, lights, rendering and modelling attributes, and application-specific information. The 

segments have a hierarchical structure organisation which makes them easy to manipulate. 

0 Suppose one wants to display the objects 

car1 denoted by segA, 

car2 denoted by segB, 

tires denoted by segC, 

then one begins by declaring a HOOPS picture segment that will define segA, segB, 

and segC. One way of doing this is 

0 one creates ?Include/Library/tires which includes a database segment that contains 

the graphical definition of tires. 

0 one creates the segA. 

0 one creates the segB. 

0 one includes segC in segB, and segA. 



A 'C' code for what is described above 

Open-Segment ("?Picture"); 

Open-Segment(" tires"); 

4 Make-tires(); 

Close-Segment (); 

Open-Segment ("segAV ); 

4 Make-part-carlo; 

Include-Segment("segCV ); 

4 Open-Segment("segBn); 

4 Make-part -car2(); 

Include-Segment ("segCW ); 

Close-Segment (); 

Close-Segment("?Picture"); 

Hoops subroutines can be used on the unix machine, DOS machine using microsoft C 

and DOS machine with VGA graphics card. In the work in this thesis we have used HOOPS 

in a unix environment on the Mathematics department's sparc stations and the Computer 

Science department's silicon graphics terminal (iris). The HOOPS programs were written 

in C and the program which generated the data were written in Fortran. The figures below 

are used to explain some geometry of the torus using computer graphics. 

We consider these two forms of the van der Pol equation to draw the figures that follow. 



y = -x + 0.32cos(sqrt(0.84) * t). (2.1.1) 

Fig 2.1.1 and 2.1.2 show invariant tori for (2.1.1) computed by the techniques explained 

in the next chapter. Fig 2.1.3 show solution trajectories computed using (2.1.1) and dis- 

played on the spac station. For Fig 2.1.4 we use equation (2.1.2). 



Y-axis 

Invariant Clrcle 

Shaded Form Ordinary 



Fig 2.1.2 A trajectory on a torus 



Fig 2.1.3 The flow on a torus 



Fig 2.1.4 The flow on a torus 



Chapter 3 

The Poincar6 map method 

This chapter deals with methods that use a polygonal approximation to approximate 

an invariant circle. Suppose that the Jordan curve y is an invariant curve of the map 

4 : Rd - Rd , then let it be pararneterised by r  - u(r). By a Jordan curve we mean a 

homeomorphic image of the circumference of a circle. 

3.1 Coordinates 

In the error analysis done by van Veldhuizen in (VVHZ), he worked with two types 

of coordinates described below. 

Assumption 3.1.1 tubular coordinates 

/ Any vector x in an annular neighborhood of 7 E Rd can be written as 

x = u(r) + Z ( T ) E  (3.1.1) 

where r  E [O,27r), E E Rd-l ,  and z(r) is a d x ( d  - 1) matrix with orthonormal column 

vectors. In addition, all columns of z(r) are orthogonal to the vector $ ( T ) .  We may even 

assume that the length of the vector % ( r )  is independent of r / .  

In the new coordinate transformation x -+ ( r ,  E ) ,  the invariant curve is given by r  - 
(r,O). In R2 the matrix z reduces to the normal vector to the curve y and the distance 



d(x; 7)  of the vector x to y is given by the Euclidean norm ))e)1. The invariant curve 7 is 

attractive if there exists a constant 0 5 x < 1 such that for all x in the neighborhood of y 

Assumption 3.1.2 radial coordinates 

(SI In an annular neighborhood of the curve 7 the nonlinear coordinate transformation 

is a smooth invertible map, with r(8) > 0. In particular, the Jacobian matrix of the 

transforming map should be invertible with uniformly bounded inverse along y(SI 

The curve y can be written as 

If d=2 then $ is absent in (3.1.3) and (3.1.4) and the two equations simplify. 

3.2 General format for the Poincar6 methods 

Let the vectors 

x1, x2,53,. . , XN 

be the N vertices of a polygonal approximation to the invariant curve y of the system 

(1.1.2). The polygon p({xi)~?!l) is the set of segments [xl , z2], [xz, ss], . . ., [XN-1, XN] and 

[xN, xl]. The polygon P ( ( x ; ) ~ l )  is the initid approximation of the invariant curve y at t=O 

and is mapped to the polygon ~ ( { P x ~ ) ~ , ) .  If the curve y is attracting then the sequence 

of points Pnxi,  i=l ,  2, ... gets closer to the curve 7 and sometimes may converge to a point 

on the curve y . We therefore find a way of redistributing the points after each mapping. 

The algorithm consists of 3 parts: 

1. Compute images of the vertices of current polygonal approximation p({x;)~l) .  



0 2. Project old vertices onto polygon p({~x;)~V,l). 

0 3. Define new polygons by taking the projection as new vertices. 

Let 

Now define K as the composition of P and some projection map. Different K maps have 

been investigated by others as we discuss below. Let x; be a vertex of p ( { ~ ; ) ~ ~ )  and the 

angle 8 be determined such that 

where x, is the centre. Let the vertices of the polygon p ( { ~ x ; ) ~ l )  be written as 

and the j th approximation of the polygon be given by 

where 0; is independent of the number of iterations. some cases for mixed ones. 

3.2.1 method 1 by van Veldhuizen 

The approximation to y is the solution to the set of equations 

solved by iteration. The first nonlinear mapping K = H is described in [VVHl]. Let x E R2 

be one of the points P(x;) i = 1, ..., N, in the neighborhood of p({x;)z1). Assume that 

the minimal distance of x to xi is at  most two points. That is, there exists XI such that 



S 

Fig. 3.2.1 : The construction of H. The point Hx is indicated above. The projection of x  on 

the plane formed from the successive points xk,  X I ,  x ,  is y. 

If there are two minimizing adjacent indices x1 and x ,  for x ,  where m = (I + l ) m o d ( N  + 
I ) ,  then 

H X  = l / 2 ( x l  + xm).  (3.2.9) 

In the case where we have only one minimizing vector the determination of H x  is as follows: 

Let y be the Euclidean projection of the point x  onto the 2-dimensional linear manifold 

determined by the vertices xk,  X I  and x,. Let S be the centre of the circumcircle through 

the triangle xkxrx, . Van Veldhuizen made the assumption that the angle between the line 

segments of the polygon at X I  is obtuse. H x  is defined as the intersection of the halfline Sy 

with the polygonal line segment [ x k ,  xr]  or [ x l ,  x,]. 

Lemma 3.1.0 4 Let p ( { x i ) ~ V = , )  be a given polygon and x  a vector such that 

The Euclidean distance of x  to the polygon p({x ; ) zV , l )  is small enough; 

0 The angle between any two successive line segments in the polygon is obtuse. Then 

the nonlinear projection x  -+ H z  described above is well-defined, and H is a continuous 



Proposition 3.1.1 4 Assume that for all x in a tubular neighborhood of 7 we have 

d(Px; 7 )  5 rcd(x;r), with 0 5 K < 1 .  If Hz; E [ P x j ,  P X ~ + ~ ]  for all i and if the x;  are 

close enough to y then 

The proof is in [VVHl]. From this proposition we see that if the sequence x i ,  H x ; ,  H2xi,  ... 
converges for all i then the limiting polygon differs from 7 by at most 0 ( h 2 ) ,  where 



3.2.2 Other methods by van Veldhuizen 

Other types of possible non-linear projection are described as follows: 

Fig 3.2.2 Example of Kl with N = 6. The vertex xi lies on the spoke Bi indicated by the 

non-shaded dots. The points Klxi  are indicated by the shaded dots. 

(i) This method is defined by the operator K = KI.  The method is second order, 

however; it is not exact if y is a circle. The projection of a point x is defined as the 

intersection of the half-line in the direction of 0; and the line segment [ P x j ,  P X ~ + ~ ]  and is 

given by 

K l x i  = (215 = X ,  + r(cos(B;), fI [ P x j ,  P X ~ + ~ ] .  (3.2.11) 



(ii) In this and the next two cases, the projection is done using piecewise polynomial 

interpolation. We interpolate in the radial coordinates with abscissae on the 0 -axis. First, 

the ith vertex Kx; of ~ ~ ( { x ; ) ~ ~ )  is obtained using piecewise linear interpolation operator 

111 at the point 0;. The approximation error is given by 

fig.3.2.5 An example of K with 11 = TI1. 

(iii) Here we use II = TI3, the piecewise cubic Lagrange interpolation polynomial such 



that 

If we assume that 
O j  - O j - l  

p = maXj,k=jf i - 
Ok - Ok-1 

then it is shown in [VVH2] that 

The error is given by 

o ( m a ~ l 6 j  - jj+114). 

e( iv )  The last projection operator 11 = 11, is the cubic spline interpolation polynomial. 

Let 

then the norm of the spline interpolation operator is bounded by 

We consider Ill,  113, TZ, as projection operators in the Banach space of continuous 

functions on [ O ,  27r) equipped with the usual supremum norm of functions. 

K has the following properties: 

Lemma 3.2.1 (FC There exists a constant Cd >_ 1 such that for all x in an annular 

neighborhood of 7, we have 

The constant Cd depends on the position of x ,  in the interior of the projection of 7 onto R 

and the size of the annular neighborhood. 4 

The distance dTad(x; y) is the radial coordinate distance from x = (O,p, v )  to y and is 

given by the Euclidean length of the vector ( p ,  v ) .  



Lemma 3.2.2 / For ~({x;):~) close enough to y 

Theorem 3.2.3 / If ~c~lIIl < 1 and if the interpolation error is sufficiently small, 

then the equation p({x;)z1) = p ( { ~ x i ) ~ V = l )  has at least one solution in the closure of an 

annular neighborhood of 7. The radial distance from points in this neighborhood to y is 

bounded by 

Theorem 3.2.4 / In addition to the assumptions of Theorem (3.2.3), let I I  be the 

piecewise linear interpolation operator (on the abscissae ej), and let the interpolation error 

be sufficiently small. Then the equation has a unique solution p({3i}zl) and the se- 

quence p({x;)~l) ,  p ( { ~ x ; ) ~ l )  ,p({~2x;)z1),... converges to it with a convergence factor 

< XI, where Cd x < X' < 1. / 

Assumption 3.2.5 / In a sufficiently small annular neighborhood of 7 we have 

for x, y vectors with the same 0 - coordinate ( on the same half-line centered in x,)./ 

Theorem 3.2.6 / Under the above assumption, in particular assumption 3.2.5, let 

P({x;)z1) belong to a sufficiently small annular neighborhood of 7. Let TI be the operator 

defined by piecewise linear interpolation. Let >7.1111m < 1. Then the sequence ~({x;):~), 

P({Kxi)z1), P ( { K ~ X ; ) ~ ~ )  ,... converges to a unique polygon ~({ii?:~)). The discretiza- 

tion error satisfies the estimate 



3.3 Newton's Method (Kevrekidis) 

r7 

fig.3.3.1 Due to the rotational effect of P, P(x)  

The Newton-Raphson method can be used to solve the system 

p ( { x i } E l >  = P ( { K x ~ ) Z , ) .  

Define rk := ~ ( 8 ~ )  for k=1, ..., N where ek = 2n(k - 1 ) l N .  Let i : S1 - R+ be the radius 

function obtained by interpolation of Fk and 8 k 7  that is 

F k  = P o ~ ( 8 ~ )  = ~ ( e k ) ,  

and 

The function F is based on interpolation of Fk and is denoted by F(8 : T I ,  r2, ..., r N )  and 

aF(ej) 
hik = 6jk - --- 

ark 



where is dependent on the interpolation used. For linear interpolation 

where & < Oj < &+I and 

DH is sparse and has a non-zero band which is of a special interest. The band lies away 

from the diagonal of the matrix due to rotational effect of P. If, however, it does cross the 

1 
- 7  say, then there is a fixed point on the invariant curve. diagonal, at  row j on convergena 

fig.3.3.2 (a) The structure of the Jacobian. (b) The Jacobian after convergence when there 

is a fixed point on the invariant curve. 

3.4 The Hadamard graph transform approach 

This is a variation of the PoincarC map methods and was proposed by Dieci, Lorenz 

and Russell [DLR]. In this case the non-linear map involves solving a boundary value 

problem and the set of equations 



is also solved by iteration. This algorithm works for attracting or repelling invariant curves 

as in the general Poincard map methods and can be modified to work for the mixed ones. 

Fig 3.3.4 The Poincare map of the points xk, xk+l with angular parts Bk, Bk+1 

respectively. 

Let the image of xk, xk+l with angular parts Bk, Bk+1 be Pxk, Pxk+l with angular 

part pk,and p k + l  respectively. We then parameterised the segment [xk, xk+1] in 8 and 

interpolate r along this segment . Using bisection or the secant method we can find the 

point x which integrates to y with angular part Bj. (See fig 3.3.5) 

The algorithm is as follows: 

Choose 

(a) an initial polygon p(xiz1) 

(b) 6 tolerance 

(c) M,,, maximum number of iterations 

Compute ~(PX$!~) by integrating the differential equation (1.1.2) using the standard 

integrators like RKF45 and ODE. 



to 
Fig 3.3.5 The point x maps onto y .  

0 Find the two points xk,xk+l with angular parts Bk and Bk+1 respectively which 

integrate to  Pxk,  Pxk+l with angular parts cpk and yk+l respectively such that 

(qk,  c p k + 1 )  contains B j ,  the angular part of the point to be updated. 

0 For each B j  find a point x dong the half-line Bk and Bk+1 which integrates to y with 

angular part Bj. The point x along Bk and Bk+l has the radial part interpolated using 

linear interpolation. 

Let Gx = y. If M > M,,, or maxlGx; - xil < to1 update the polygon and exit; else 

goto step 2. 



Chapter 4 

The pde approach 

4.1 The pde approach 

The method is introduced by Dieci, Lorenz and Russell in their paper[DLRR]. In this 

approach they compute an invariant manifold for a finite dimensional dynamical system by 

assuming that the manifold can be parameterised over a torus in terms of subset variables. 

The approach then involves solving a system of partial differential equations subject to 

periodic boundary conditions. 

Consider the autonomous system 

dw' - = fp), 
dt 

f: Rn - Rn is smooth. Assume there is a smooth manifold M c W invariant under the 

flow (4.1.1). If St is the solution operator of (4.1.1) and 

then the solution is 

We are interested in the special case where (4.1.1) may be written in the form 

dii 
- = I(.', q 
dt 



dv' 
- = {(Z, v')), 
dt 

w'=( i i , v ' ) )EUxV=W.  

There exists a manifold 

M = {(ii, @(ii)) : ii E U )  

which can be parameterised over U. Let v'= Q(ii), then 

Letting dim U = p and dim V = q then (4.1.5) is a system of partial differential equations 

for 

@1(~1 ,  u2 7 ...up) 7 @q("~7 u2 ...up). (4.1.6) 

To solve (4.1.5), we discretize on a fixed grid by the leap frog scheme and then solve with 

Newton's method. This approach can give convergence independent of the attractivity of 

M. The stability of the discretization and its independence of attractivity properties was 

proved for simple models in [DLRR]. 

For the case where U is a 2-torus and V is the real line, (4.1.5) is linear and is related to 

the Poincard map for the original equation. By parameterizing (4.1.4) and solving (4.1.5) 

approximately linearised by the method of characteristics we retrieve the method of van 

Veldhuizen. In the case where U is a p-torus denoted by 

equation (4.1.4) becomes - 

dr' - = ij(& F) where (G7 r' E TP x Rq). 
dt 

The manifold M given by 

can be determined by solving the pde 



subject to the periodic boundary conditions 

i = l ,  ..., q, k = l ,  ..., p 

for the unknown (smooth) function r' : TP -4 RQ. For the case p=2 and q= 1 we obtain 

We linearize (4.1.12) and use Newton's iteration starting with TO = TO($) which satisfies 

(4.1.12). Then r1 is also a solution of (4.1.12) and 

where 

bl(8') := fl(8; TO), b1(87 := f2(8, rO), 

In the case p=2 q=2 we obtain 



Chapter 5 

Comparison of the three Methods 

The programming in this section was done on the Mathematics department Sparc 

stations and the plots were done using the software Gnuplot. I obtained the pde program 

from Dieci et al. and the Hadamard graph transform program was written in conjunction 

with Russell and McCorquadale (currently a student at  the Mathematics Dept, Univ of 

Berkeley, California). 

The methods considered were applied to 

(1) the van der Pol oscillator. 

(2) the Coupled oscillator. 

(3) the Delayed logistic map. 

5.1 The van der Pol Oscillator 

The van der Pol oscillator equation arose as a model in electric circuit theory (1927). 

Van der Pol used it to model an electric circuit with a triode valve. The resistive properties 

of the valve change with the current such that low current negative resistance becomes 

positive as the current increases. The single degree of freedom limit cycle oscillators are 

similar to the unforced van der Pol system which occur in 



0 models of wind-induced oscillations of buildings due to vortex shedding. (Novak, 

Davenport [I9701 etc.). 

0 in stability studies of both tracked and rubber tired vehicles. 

certain models of chemical reactions. 

The equation is given by 

2 + a (x2 - 1 ) i  + x = Pcos(wt). 

Under the transformations 

p(x) = x3/x - x 

y = i + +p(x), 

we obtain 

fig 5.1.1 The invariant circle of the van der Pol oscillator with parameters as shown 

above. 



\\ 

fig 5.1.2 The invariant circle of the van der Pol oscillator with the transformation j. = 

We now apply the method of van Veldhuizen, the pde method and the Hgt approach to 

a deforming torus for the van der Pol equation (5.1.2). Fig(5.1.3) is from (VVH1). 

. 

fig 5.1.3 A portion of the a, K plane from Guckenheimer and Holmes. The nqion I-IV 

are the same as in the text. The dotted line a= 0.55 is our line of interest. The region III 



has an invariant torus. 

The invariant curves for the K values (0) 0.4925 (1) 0.49, (2) 0.48875, (3) 0.48750, (4) 

0.48625, (5) 0.485, (6) 0.48375 (7) 0.4825 (8) 0.48, (9) 0.475. with u = 0.55 and a = 0.4 

were used as our test problems. When we tried the pde code for this problem, we had , 

convergence for the K value 0.475(9) only. This may be due to the poor initial guess for r. 

a = 0.4, K = 0.475(9), u = 0.55 

Y 
\\ 

-1.5 I I I I I 

fig 5.1.4 The invariant circle of the van der Pol oscillator using the pde approach. 

fig 5.1.5 The invariant curves computed by  van ~eldhuizen .[VVHI]. 



Deformation of a torus 

fig 5.1.6 The invariant circles using Hadamard Graph Transform. 

Deformation of a torus 
-0.4 1 I I I I I I 

fig 5.1.7 The invariant circles using Hadamard Graph Transform. 

With the Hadamard Graph Transform we were able to compute the invariant circle for 

K = 0.4925 which was a step further than the results of [VVHl] in the direction of the 

deforming torus. The Hadamard graph transform used less computer time compared to the 

other two. 



0.475 Not done Converged 

Converged Converged 

11 0.4825 1 Converged I Converged 

11 0.48375 1 Converged I Converged 

11 0.485 1 Converged I Converged 
I I 

0.48625 Converged Converged 

0.48750 Converged Converged 

0.48875 Converged Converged 

0.49 Converged Converged 

0.4925 Converged Converged 

pde approach 

Did not converge 

Did not converge 

Did not converge 

Did not converge 

Did not converge 

Did not converge 

Did not converge 

Did not converge 

Did not converge 

Converged 

Table 1. Comparison of the three methods using the van der Pol oscillator. 



5.2 Coupled Oscillators 

The next problem we consider is that involving the coupled oscillator equation. It is 

used to model a wide variety of systems in the biological and physical sciences. They arise 

for example in the study of 

oscillating organic reactions in models of neutral network and intestimal waves. 

0 circadian rhythms and cell-cycle phenomena in pattern formation. 

Here we consider the dynamics of 2-coupled planar oscillators which give rise to a system of 

ordinary differential equations in R4. Each oscillator has a unique periodic solution that is 

attracting and the coupled product system has a unique invariant torus that is attracting. 

The torus persists for weak coupling and contains 2-periodic solutions when the coupling is 

linear and conservative. However the torus disappears for strong coupling. Thus we want 

to understand the behaviour during the deformation stage. 

The equation is given by 

The symbol S is the coupling parameter. When S = 0 the two oscillators have dis- 

tinct attracting limit cycles given by x: + y: = a; .  Making the transformation x i  = 

ricosO; and yi = -r;sinOi i = (1,2) and using -0 we obtain 



The Hadamard graph transform approach was used to compute the invariant circles for 

the parameter values a1 = a2 = 1 ,  ,8l = ,B2 = 0.55, and 6 = 0.0, 0.05, 0.10, 0.15. 
The cross-section r1 ( 0 ,  82) 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

The cross-section r2(0,  6'2) 

Fig 5.2.1 The invariant curves computed using the Hadamard Graph Transform 

approach for the S values 0.0, 0.05, 0.10, 0.15. 



The pde approach [DLRJL] was used to compute the invariant circles at the parameter 

values 6 =. 0.23 - 0.2252'7 and using a second transformation 

The results of the Ifadmard graph transform approach begin to dl& from the pde ap- 

proach at values of 6 higher t h w  0.1 The EIadamard graph transform used far less computer 

time compared to the pde approach. 

Fig 5.2.2 The invariant 

6 1 Agt approach I pde approaeh 

Table 2. Comparison using two coupled oscillator oquation. 



5.3 Delayed Logistic Map 

This model is used in population dynamics and is given by 

where Nn is the population in the nth generation. If we set 

we obtain 

F a ( ~ n ,  Yn) = (xn+ltYn+l) = (~n,aYn(l-O- ~n)). 

The fixed points (x*, y*) of the map Fa is given by 

Solving (5.3.8) we get (x*, y*) = (0,O) or e ( 1 , l ) .  The fixed point 9 (1,l) is stable for 

1 < a 5 2. It losses stability and spawns an invariant circle via a Hopf bifurcation as the 

parameter a passes through 2. 

The program using the Hadamard graph transform approach was applied to the delayed 

logistic map 

(5, Y) ---+ @(x, Y) = (Y, ay(1- 2)) (5.3.9) 

which for values of a > 2.17 has invariant curves that are topologically circles. 



Fig 5.3.1 The invariant curves for the delayed logistic map for the a values 2. 18 
4" 

and 2.27. 

Fig 5.3.2 The ;tor a = 2.15 by van 

Veldhuizen. 



Fig 5.3.3 The invariant curves for the delayed logistic map using direct iteration 

of the map by  Aronson et al. [ACHM]. Each cixle needed 1000-2500 iterates of the map. 

With our program we were able to compute the circle for a = 2.27. Van. Veldhuizen 

was able to get the invariant curves to only a = 2.18. For these two methods we required 

a good initial guess for the first iterate. In the case of storitge Van Veldhuizen used 1400 

points to compute the invariant circle at a = 2.18 while our method used 50 points to get 

almost the same curve. 

Van Veldhuizen 

Converged 

Converged 

Converged 

Not done 

Converged 

Converged 

Converged 

Converged 

Table 3. Comparison of the delayed logistic map. 



Chapter 6 

Other methods of computing a 

torus 

In this section we mention other possible numerical methods. While these have not 

proven to be competitive with those previously mentioned (eg. [VVHl]), it may be that 

suitable modifications would lead to significant improvement in their performance. 

6.1 Chan's Method 

He proposed two methods, one of which uses the concept of rotation numbers and ap- 

proximates the invariant circle by a truncated Fourier Series and was modified using a cubic 

B-splines representation. The second is similar to the first but with some modifications. 

In the Fourier series approach he represents the invariant circle by a truncated Fourier 

series 

Let 1C, be a two-dimensional diffeomorphism 11 : R2 - R~ such that $(u(t)) is a rotation 



on the circle u(t)) and let T be the rotation number of the circle u(t) so that 

Using 2m + 1 equally spaced time step collocation points with ti = idt, i=1, ..., 2m+l and 

dt = 2n/(2m + I) ,  we obtain the discrete system 

Equation (6.1.3) has 2(2m + 1) equations and 2(2m + 1) + 1 unknowns. We need one 

more equation. If u(t) = v(t) is an invariant circle, then so is u(t) = v(t+r), for any r. 

Chan considered 3 ways of getting this last equation. 

to  fix one of the components of u at t=O to some constant c, where 

min u(t) < c 5 max v(t). 

0 to seek a circle v(t) that minimizes 

over r where G(t) is the previous circle that has been computed. Setting the derivative 

of (6.1.4) with respect to r to zero we get 

and substituting for u(t) we get 

0 the third is the continuation method. 

This method produces a full Jacobian matrix, which has an operation count of order 0 ( n 3 )  

where n is the size of the matrix, and for a modification to this, he used cubic B-splines 

interpolation instead of the Fourier series. Let 



be a partition on [O, 2n). Adding t-3, t-2, Ll, t,+~, tm+2,  tm+3 we can define the normalized 

cubic B-splines as 

Bi(t) = (t;+4 - t;)[t;, ..., ti+4](s - t)3 f or all t E R 

The invariant circle can be written as 

with u,a; E R2, i=-3, -2, -l,...,m-1. Since B;(t) is identically zero outside the interval 

[t;, ti+4], the coefficient ai is effective only in this interval. Thus the Jacobian matrix of the 

resulting system has a band structure which therefore reduces the operation count of the 

system. 

For his second method for computing invariant circles, he considered a new form of 

equation (6.1.2) 

$~(u( t ) )  = ~ ( t  + T I  (6.1.10) 

where 

Equation (6.1.11) ensures that every point remains on the invariant circle after the action 

of $A. Using 2m+l collocation points we get 

where a; = u(ti) i = 1, ..., 2m + 1 with 2(2m+l) equations with 3(2m+l) unknowns. We 

introduce 2m+l equations with 1 unknown d as 

i = 1, 2, ... 2mf l  thus enforcing the invariant circle corresponding to the time steps to be 

equally distanced according to the Euclidean norm. The last equation for the unknown d 



is given by 

L 2 * @ ( t )  - ir1(t))ir1dt = 0. (6 .1 .14)  

One can represent u ( t )  by either Fourier series or B-splines, although Chan did not test the 

method with B-splines. 

6.2 Thoulouze Pratt and Jean method 

In R2 the approach can be summarised as follows: Let I be a point in the interior 

of an invariant Jordan curve y of the system (1 .1 .2)  and 0 be a point outside y. Let x 

be a point on the half-line I 0  and compute the iterates p i x  for i = 1 , 2 ,  .... If x is on the 

invariant curve 7 and the rotation number is irrational, then there is a first index i > 1 

such that the line segment [ p i x ,  pi+'x] cuts the half-line I 0  (at the point X ( x ) ) .  One then 

solves 

x = X(x)  

for x on 10. The invariant curve can then be computed from the point x .  For the details 

see Thoulouze-Pratt [THP] and [TPJM]. 

6.3 The method of Spectral Balance 

The spectral balance method is a generalization of the harmonic balance method 

discussed in [PTCL]. In this case the two-periodic solution is a solution of a system with 

two forcing terms of incommensurate frequencies. The method can be generalized to the 

case of K incommensurate forcing terms. Consider 

x = f ( x )  t & ( t )  t U2( t )  (6 .3 .15)  

where Ul and U2 have wl and  w2 incommensurate frequencies respectively. Let the set of 

the linear combination of the frequencies be given by 

A := {Iklwl + k2w21 : k l ,  k2 = 0, f 1, ...I. 

55 



Then x(t) is quasi-periodic and does not have Fourier representation but instead has a 

Fourier Transform F(x(t)) which is zero everywhere except on the set A (i.e. at the Fourier 

frequencies in A). Let X(k) := Fx(T)) and let elements in A be given by wo(= 0), wl, w2, .... 
Divide X(k) into three parts: XO denotes the wo = 0 coefficient X(O), XC(k) denotes the 

vector of cosine coefficients, and XS(k) denotes the vector of sine coefficients. Thus we can 

represent x(t) by 

This is not the Fourier series because the wk are not all harmonics of a single fundamental 

frequency. Thus the name spectral balance rather than harmonic balance is used. Substi- 

tuting (6.3.17) into (6.3.15) we get 

where R := diag(wl,w2, ...), F := FO foF-l,  Ul := F(ul),  and U2 := F(u2). 

Truncating the series to K frequencies we get 

where OK := diag(wl, ... w ~ ) ,  and FK := FKO~OFI;;'. 

Equation (6.3.19) is 2k+l nonlinear equations in 2k+l unknowns. If FK can be evalu- 

ated then we can solve (6.3.19) using Newton-Raphson iterations. The FK can be obtained 

in the time domain as follows: 



Since x(t) is not periodic, the discrete Fourier Transform cannot be used. Choosing N 

distinct time points t l  , ..., t~ we get 

where := cos(wktj)  and a;k := s in(wkt j ) .  We have N equations in 2k+l unknowns. 

If N= 2k+l and the 2 k t l  time steps are chosen appropriately, the matrix will be well- 

conditioned. FE' can be obtained by inverting the matrix. The algorithm for choosing 

the 2k+l time points that gives nearly orthogonal columns is presented in Kundert et al. 

[KKSG]. In [USCH], Ushida and Chua choose N>2k+l evenly-spaced time points with the 

overdetermined system solved by least-squares. Since this method works for a system with 

two or more forcing terms with incommensurate frequencies, it is not widely used. 



Chapter 7 

Conclusion 

In this thesis, we have looked at various ways of computing invariant circles and 

invariant tori. A periodic solution either bifurcates to a period-2 solution through period 

doubling or bifurcates to an invariant torus through a Hopf bifurcation. Instead of looking 

at the study of bifurcation of a periodic solution to an invariant torus, we generally look 

a t  the corresponding bifurcation of a fixed point to an invariant circle of the associated 

Poincar6 map of the flow. 

The method proposed by van Veldhuizen and the pde approach of [DLRR] were de- 

scribed. The method of Van Veldhuizen works for both attracting and repelling circles and 

the pde approach works for the mixed invariant circles as well. Our main interest here has 

been to compare the results for these two methods with the Hadamard graph transform 

method [DLRR2] which we have implemented. The method has proven to be very accu- 

rate and efficient in most cases. When the method is applied to the van der Pol equation 

and the delayed logistic map the results compares nicely with the results of the other two 

methods. For the coupled oscillators the results seem to differ from that computed by the 

pde approach and more study of this problem is needed. Future work includes extending 

the program to higher dimensional maps (for which the standard Poincarh map approach 

of [VVHl] is apparently not applicable) and to use arc-length parameterization, if r is 

multi-valued. 
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