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ABSTRACT 

Cellular automata (CA) are suitable for modelling complex geographic and 

ecological processes such as forest insect infestations; however, problems exist with 

understanding the complexity of insect-host interactions through geospatial data. The 

objective of this research was to develop a fuzzy-constrained approach for a GIs-based 

CA model of forest insect infestations. The methodology was tested with a case study of 

the mountain pine beetle, Dendroctonus ponderosae Hopkins, in the central interior of 

British Columbia, Canada. Fuzzy sets were used for obtaining information on the 

susceptibility of trees to attack, while CA was employed for modelling MPB-induced 

patterns of tree mortality. This research contributes in the advancement of CA models by 

using fuzzy sets and GIs for addressing uncertainty of dynamic spatial phenomena, and 

provides a novel approach for modelling MPB outbreaks that is useful to forest 

management. 
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CHAPTER 1 - INTRODUCTION 
- 

1 .  Introduction 

Complexity characterizes various geographic, ecological, economic, political and 

biological processes where numerous components locally interact to produce emerging 

patterns. Complex systems theory has materialized in recent decades as a framework for 

understanding these processes and how emerging patterns are produced. The main 

element of complex systems is the relationships between the individual components 

(Manson 2001); as the relationships change so do the emerging patterns. 

One of the most prominent mechanisms for understanding complex systems are 

spatially explicit models. While numerous spatially explicit modelling frameworks have 

been developed, cellular automata (CA) have surfaced as some of the most diverse and 

applicable models for complex systems (White and Engelen 1993). These models are 

developed in order to determine how the relationships between numerous components 

result in various spatial patterns over time. Simple rules or algorithms explaining the 

relationships are computationally defined, and the model is performed for a number of 

iterations, resulting in various patterns. One of the main benefits of CA models is that 

relationships can be easily altered in a raster-based GIs framework in order to display 

and visualize the various simulation outcomes. This serves as a utility for spatial decision 

support systems (SDSS) where interested parties inquire about different potential 

scenarios. 



According to White and Engelen (2000), CA consist of five main components: 1) 

a grid of cells, 2) cell states, 3) the neighbourhood, 4) transition rules that determine how 

cells change from one state to another at each time step, and 5) the number of time steps 

for which the model is run. The grid is composed of a number of cells that are typically 

identical in size and shape. Cells can take on an infinite number of states that are 

traditionally represented as discrete. The neighbourhood implies the surrounding area that 

influences the future of each cell at the next time step. For example, the neighbourhood 

of cell i j  (i.e. located at xi yj coordinates) is four cells if only the adjacent cells influence 

the state of cell i j  at the next time step. The transition rules express how the states of each 

cell in the neighbourhood influences the future state of cell ij from one time step to 

another. The number of iterations expresses the temporal extent of the model so that each 

time step represents a specific time frame (e.g. one year). 

The origin of CA dates back to the 1950's and John von Neumann's theory of 

parallel processing units; however the application of CA wasn't popularised until the 

presentation of John Conway's game Life by Gardner (1 970). Conway's CA version 

described a grid of cells that were either active (alive) or non-active (dead), and the 

possibility of the cell dying, becoming alive or remaining in the same state was subject to 

a series of local rules. Since then, CA has expanded into numerous fields, from 

mathematics (Wolfram 1983) to physics (Zhu and Liu 2000), geography (Couclelis 1985, 

Batty and Xie 1994), biology (Ermentrout and Edelstein-Keshet 1993), ecology (Jeltsch 

and Wissel 1994) and forestry (Jeltsch and Wissel 1994). 

The discrete nature makes CA an attractive method for spatially explicit 

modelling in both conceptual and practical terms. Conceptually, it is simple to understand 



a model if space is represented by an array of discrete units that change in distinct time 

steps. In practical terms, the framework of CA facilitates integration with modelling in a 

geographic information system (GIs) raster-based environment where a landscape is 

described as a static grid of square cells. GIs and CA serve as complements with regards 

to spatio-temporal modelling as the former provides the spatial framework for geographic 

data while the latter contributes the temporal dimension for describing change. For this 

reason, numerous studies have coupled CA with raster-based geospatial data in order to 

model various processes. 

The utility of CA with geographic applications was first discussed by Tobler 

(1 979), however it wasn't until the following decades that their potential for real-world 

systems was realized (Couclelis 1985, Deadman et al. 1993, White and Engelen 1993, 

Batty and Xie 1994). CA have become increasingly common in geographical applications 

where neighbourhood effects are present. Coupling CA and GIs has proved successful 

for numerous land use change models of urban growth where discrete landforms occupy 

various spaces over time. Neighbourhoods can be conceptualised as the cells of the grid, 

and growth patterns imbedded in urban dynamic theory can be explained by simple 

transition rules. For example, a loose-coupled CA-GIs model was developed by Clarke 

and Gaydos (1 999) for modelling urban growth in San Francisco Bay region in California 

and the Washington/Baltimore corridor in the Eastern United States. Various issues such 

as calibration and data requirements were discussed as integral components of the 

modelling process. Batty et al. (2000) presented ways in which existing urban activities 

spawn locations for new activities through definitions of various decision rules that 

embed distance, direction, density thresholds, and transition or mutation probabilities into 



the model's dynamics. The authors also presented numerous hypothetical simulations of 

urban land use in order to illustrate the diversity of model types that can be handled with 

CA. In addition, combining CA with or within other types of models has also been tested, 

such as White and Engelen's (2000) application where CA modelled the demand for 

urban space based on policy and planning goals defined by a regional-scale model. 

Furthermore, CA have also been combined with neural networks by Li and Yeh (2002) 

for modelling land use change in China. 

Similar to land use change scenarios, ecological processes can be modelled with 

CA by representing a landscape as an array of cells that change over time based on the 

state of cells present in a given area. Discrete cell states are advantageous for modelling 

ecological processes because state transition can be governed by a probability distribution 

that is based on the initial state of each cell in the grid. This type of probability transition 

for stochastic processes is represented with a Markov chain, which can be used for 

defining species competition paradigms, migration patterns, and resource allocation 

(Baltzer et al. 1998). The discrete value of a cell can represent the presence or absence of 

a species, or the number of individuals located in a particular area. Furthermore, cell 

states can also represent a concept such as the susceptibility of a tree in a forest to insect 

attack at a particular location. 

1.2 Research Problem 

Forest insect infestations are complex systems as insects and trees interact at the 

local micro-level (i.e. the scale of an individual tree) to produce emerging patterns at the 

global macro-level (i.e. the scale of a landscape). Insects travel through a forest seeking 

potential host trees to attack for food or even kill in order to reproduce. The insect-host 



relationship is comprised of numerous components that act simultaneously to drive insect 

population levels and the damage or mortality of trees. Such is the case with outbreaks of 

the mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, the most serious 

pest of the pine forests of western North America (Safranyik 1988). MPB attack 

susceptible lodgepole pine, Pinus contorta, and ponderosa pine, Pinus ponderosa, with 

the intention of causing tree mortality in order to successfully reproduce. MPB outbreaks 

are governed by different components such as temperature, humidity, susceptible trees, 

the diversity of forest stands and MPB population levels, all of which interact at the scale 

of individual trees to produce complex spatial patterns of tree mortality at the landscape 

scale over time. 

CA are ideal for GIs-based modelling of spatial patterns for MPB-induced tree 

mortality over time. Each tree in a forest can be represented by a single cell, and the state 

of each cell could be either 1 or 0 representing a susceptible or non-susceptible tree, 

respectively. Additional states could be introduced to represent the location of trees 

already attacked by MPB; the more MPB infested trees in the neighbourhood would 

increase the probability of a susceptible tree becoming attacked, which would be 

governed by the transition rules. Furthermore, each time step of the CA could represent a 

single-life cycle of the MPB. Therefore, the rules of the CA would define how attacking 

insects, susceptible trees and non-susceptible trees interact at the local level to produce 

global patterns of tree damage and mortality over time. However, while CA appear to be 

applicable for modelling insect infestations, two main problems exist with representing 

susceptibility to attack as a discrete state. 



The first problem with representing susceptibility as a discrete state resides in the 

definition of the term 'susceptibility'. It is difficult to use contemporary approaches to 

this problem such as defining a tree as either susceptible or not susceptible, or deriving 

the probability of a tree becoming attacked. This is due to the fact that insect disturbances 

are driven by numerous components of the insect-host relationship that are difficult to 

understand independently, let alone together. Appreciating this relationship is further 

complicated by the presence of numerous climatic variables such as temperature, wind, 

humidity and precipitation, which, coupled with the geographic variation of a species' 

life cycle, produce varying results and incomplete knowledge on insect behaviour. 

Therefore, considering a raster-based geospatial data representation of a forest landscape, 

significant uncertainty is present when attempting to assign a discrete binary or 

probability value to a cell describing a tree's susceptibility to attack. 

This issue is further complicated by a second problem, which is obtaining 

information for defining cell states in a GIS from remote sensing (RS) images, such as 

satellite imagery or aerial photography. As forests are continuously changing over space 

and time, the value given to a cell through classification procedures only represents that 

location for the moment in time when the data were acquired. Local processes change the 

appearance of the forest canopy as captured by RS data, thus causing significant 

difficulty in defining heterogeneous areas such as the borders between forest stands 

(Lowell and Gold 1995). Therefore, when obtaining information from RS imagery, 

intermediate zones exist between forest stands of different sizes and different species 

where a discrete and certain definition of a cell cannot be provided. 



From examining these problems, it is clear that a significant barrier exists with 

defining discrete cell states for modelling the attack of trees in a forest by an insect based 

on susceptibility. Therefore, a method is required for determining susceptibility of trees 

based on available knowledge and existing certainty in order to utilize the benefits of 

coupling GIs and CA for spatio-temporal modelling. This research examines the use of 

fuzzy set theory for providing such a method. Fuzzy set theory was originally developed 

by Zadeh (1965), and is often used by geographers in order to deal with incomplete 

knowledge or vagueness for determining the class of an object (Robinson 1988, Wang et 

al. 1990, Hall et al. 1992). Traditional crisp set theory states that an object either fully 

belongs or does not belong to a class of objects, thus membership to a class is represented 

by either 0 or 1. Conversely, fuzzy sets allow for partial membership to a class of objects 

based on the available knowledge or expert opinions on the nature of an object, resulting 

in values from 0 to 1. It is believed that fuzzy sets are ideal for defining the susceptibility 

of trees to insect attack for use in a spatially explicit CA model. Thus far, the use of fuzzy 

sets for defining cell states for spatio-temporal modelling has received limited attention 

(Dragicevic 2004). 

1.3 Research Objectives 

The main objective of this thesis is the development of a GIs-based methodology 

coupled with CA theory for modelling complex dynamic process such as insect 

infestation in order to address the described problems. This will be addressed through two 

parts: 



1. Derive information on forest insect infestation from high-resolution remote 

sensing images using fuzzy set theory to determine susceptibility to insect attack 

at the individual tree level. 

2. Develop a spatially explicit fuzzy-constrained CA to model MPB-induced 

mortality patterns in a forest. 

The developed concepts were applied to MPB outbreaks because 1) patterns of MPB- 

induced mortality are applicable to the modelling logic of CA, 2) there exists uncertainty 

and incomplete knowledge with defining cell states based on susceptibility to MPB 

attack, 3) current MPB outbreaks are having serious ecological, economic and social 

consequences, and 4) the availability of high-resolution RS data of forests affected by 

MPB. 

1.4 Study Site 

High-resolution images previously collected (Roberts et al. 2003) for two sites 

were used for developing the susceptibility maps. The sites are located in the central 

interior of British Columbia: Site 1 centred at 53O38'45"W and 123"26'20"N, and Site 2 

centred at 53•‹29'07"W and 125"06'40"N. The size of each site is approximately 750 m x 

750 m in which there is minimal variation in elevation. The forest in these areas is 

dominated by lodgepole pine, and contains a relatively small composition of white 

spruce, Picea glauca, Douglas fir, Pseudotsuga menziesii, and trembling aspen, Populus 

tremuloides. The sites also contain roads and open areas that were previously created for 

forestry operations and forest management. 



1.5 Background 

Ecological processes such as insect infestations are traditionally modelled with 

the use of partial differential equations (PDE), as they are able to incorporate numerous 

variables into an equation and analyse changes in the system through time (Aassine and 

El Jai, 2002). However, PDE on their own may fail to produce realistic results when the 

difference between individual properties and local interactions play a significant role in 

determining the relationship between populations as well as between species and their 

surrounding environment. Furthermore, PDE are limited to analysis in a temporal 

dimension as they are strictly aspatial. 

CA can be considered the spatial equivalent to PDE and can provide benefits for 

ecological modelling (Wang et al. 2003). The first benefit is that CA are a spatial 

modelling concept that allows for examination of the model throughout space and over 

time; thus, researchers can visually analyze the process at each time step and allow for 

complete integration in a GIs environment. Secondly, explicit knowledge of the system is 

not required for creating a valid ecological model with CA because the necessary 

information for the modelled process is included in the form of rules rather than 

mathematical equations. This allows for direct incorporation of knowledge from experts 

that is not necessarily restricted to hard data. This is particularly useful when attempting 

to model problems that are extremely complex (Jeltsch et al. 1996). Third, compared to 

PDE, CA have more flexibility to implement individual property differences and local 

interactions, and it is suggested that this is especially evident with the use of object- 

oriented programming (Chen et al. 2002). There have been attempts to model PDE using 

CA (Keymer et al. 1998) in order to utilize both types of models, however, PDE can be 



computationally inefficient when approximated on a grid, especially compared with 

computing CA alone (Darwen and Green 1996). Lastly, CA are a suitable modelling 

approach for ecological dynamics because it has the ability to incorporate numerous 

simultaneous interactions at various locations in a landscape leading to results that may 

be difficult to predict. For these reasons, a CA approach was chosen for modelling MPB- 

induced tree mortality in a GIs environment. However, the problems regarding 

uncertainty and incomplete knowledge in defining cell states needed to be addressed. 

One approach for dealing with uncertainty and incomplete knowledge in GIs and 

RS has been the use of fuzzy set theory, which was introduced to the field of geography 

by Bezdek's (1 984) fuzzy c-means algorithm (Robinson 2003). The application of fuzzy 

set theory has received substantial attention within the realm of GIs and RS research, 

such as defining characteristics of geographic objects (Burrough 1996, Wang and Hall 

1 996), defining soil classes (Burrough et al. 1992, Davidson et al. 1994), spatio-temporal 

and temporal interpolation (Dragicevic and Marceau 1999, 2000), and RS classification 

(Wang 1990, Foody 1996, Cheng et al. 200 1). With regards to applications with forest 

landscapes, fuzzy sets have been used to appropriately define stand boundaries from 

digital thematic maps (Lowell and Gold 1999, identifying forest types (Brown 1998) and 

identifying individual trees (Brandtberg 2002). 

1.6 Thesis Overview 

This thesis is composed of four chapters. After the Introduction, chapter two 

explains the development of the initial input for the CA model. The value of a cell state in 

the input information was based on the certainty that a tree inhabiting the cell was a 

member of the set of susceptible trees. Membership to a set was determined by a fuzzy 



membership function that was constructed with the use of expert knowledge and 

available data. The fuzzy values derived from the process were used to determine the 

susceptibility of different areas in the forest to attack. The susceptibility data were 

validated using the frequency of observed attack locations, where the maps were 

considered valid if areas containing high susceptibility trees were attacked more 

frequently than areas containing trees of lower susceptibility. While the initial purpose of 

this section was to develop the input for the CA mdoel, the final product could prove to 

be useful for forest management to evaluate strategies in the presence of potential MPB 

infestations. 

Chapter three is based on the development and understanding of a CA for 

modelling patterns of MPB-induced tree mortality. The input for the model is based on 

fuzzy cell states that represent individual tree susceptibility to attack. The main objective 

was to explore a method for handling fuzzy cell states in the CA transition rules. The 

rules for the model explain that trees of high susceptibility require fewer insects present 

in the landscape than trees of low susceptibility in order for them to become attacked. As 

MPB population increases, less susceptible trees are attacked. The logic of the model is in 

accordance with MPB attack behaviour as described by Safranyik et al. (1999a). The 

model parameters were calibrated by comparing modelled and observed attack locations. 

Chapter four is the concluding section of the thesis, and summarizes the results 

from completed research, discusses the potential and limitations of the employed method, 

and provides suggestions for future work. 



1.7 References 

Baltzer, H., P. W. Braun, and W. Kohler. 1998. Cellular Automata models for vegetation 
dynamics. Ecological modelling 107: 1 13-1 25. 

Batty, M., and Y. Xie. 1994. From cells to cities. Environment and Planning B: Planning 
and Design 2l:53 1-548. 

Batty, M., Y. Xie, and Z. Sun. 1999. Modeling urban dynamics through GIs-based 
cellular automata. Computers, Environments & Urban Systems 23:205-233. 

Bezdek, J. C., R. Ehrlich, and W. Full. 1984. FCM: The fuzzy c-means clustering 
algorithm. Computers and Geosciences 10: 19 1-203. 

Brandtberg, T. 2002. Individual tree-based species classification in high spatial resolution 
aerial images of forests using fuzzy sets. Fuzzy Sets and Systems 132:371-387. 

Brown, D. G. 1998. Mapping historical forest types in Baraga County Michigan, USA as 
fuzzy sets. Plant Ecology 134:97-111. 

Burrough, P. A. 1996. Natural objects with intermediate boundaries. in A.U. Frank, 
editor. Geographic Objects With Intermediate Boundaries. Taylor and Francis, 
London. 

Burrough, P. A., R. A. MacMillan, and W. V. Deursen. 1992. Fuzzy classification 
methods for determining land suitability from soil profile observations and 
topography. Journal of Soil Science 43: 193-2 10. 

Chen, Q., A. E. Mynett, and A. W. Minns. 2002. Application of cellular automata to 
modelling competitve growths of two underwater species Chara aspera and 
Potamogetonpectinatus in Lake Veluwe. Ecological modelling 147:253-265. 

Cheng, T., M. Molenaar, and H. Lin. 2001. Formalizing fuzzy objects from uncertain 
classification results. International Journal of Geographical Information Sciences 
15:27-42. 

Couclelis. 1985. Cellular Worlds: a framework for modelingmicro-macro dynamics. 
Environment and planning A l7:585-596. 

Darwen, P. J., and D. G. Green. 1996. Viability of populations in a landscape. Ecological 
modelling 85: 165-1 71. 

Davidson, D. A., S. P. Theocharopoulos, and R. J. Bloksma. 1994. A land evaluation 
project in Greece using GIs and based on Boolean and fuzzy set methodologies. 
International Journal of Geographical Information Systems 8:369-384. 



Deadman, P., R. D. Brown, and H. R. Gimblett. 1993. Modeling rural residential 
settlement patterns with cellular automata. Journal Of Environmental 
Management 37: 147- 1 60. 

Dragicevic, S. 2004. Fuzzy sets for representing spatial and temporal dimensions in GIs 
databases. G. Bordogna, editor. Spatio-temporal Databases: Flexibility Quering 
and Reasoning. Springer-Verlag, pp. 1 1-28. 

Dragicevic, S., and D. J. Marceau. 1999. Spatio-temproal interpolation and fuzzy logic 
for GIs simulation of rural-to-urban transition. Cartography and Geographic 
Information Systems 26: 125-1 37. 

Dragicevic, S., and D. J. Marceau. 2000. A fuzzy set approach for modelling time in GIs. 
International Journal of Geographical Information Science 14:225-245. 

Ermentrout, G. B., and L. Edelstein-Keshet. 1993. Cellular automata approaches to 
biological modeling. Journal of Theoretical Biology 160:97-133. 

Foody, G. M. 1996. Approaches for the production and evaluation of fuzzy land cover 
classifications from remotely-sensed data. International Journal of Remote 
Sensing 17: 13 17-1 340. 

Gardner, M. 1970. Mathematical games: the fantastic comination of John Conway's new 
solitaire game "life". Scientific America 223: 120- 123. 

Hall, G. B., F. Wang, and Subaryono. 1992. Comparison of Boolean and fuzzy 
classification methods in land suitability analysis using geographical information 
systems. Environment and Planning A 24:497-5 16. 

Jeltsch, F., S. J. Milton, W. R. J. Dean, and N. Van Rooyen. 1996. Tree spacing and 
coexistence in semiarid savannas. Journal of Ecology 84:583-595. 

Jeltsch, F., and C. Wissel. 1994. Modelling dieback phenomena in natural forests. 
Ecological modelling 75-76: 1 1 1-1 2 1. 

Keymer, J. E., P. Marquet, and A. R. Johnson. 1998. Pattern formation in a patch 
occupancy metapopulation model: a cellular automata approach. Journal of 
Theoretical Biology 194:79-90. 

Li, X., and A. G.-0. Yeh. 2002. Neural-network-based cellular automata for simulating 
land use changes using GIs. International Journal of Geographical Information 
Science 16:323-343. 

Lowell, K., and C. Gold. 1995. Using a fuzzy surface-based cartographic representation 
to decrease digitizing efforts to natural phenomena. Cartography and Geography 
Information Systems 22:222-23 1. 

Manson, S. M. 2001. Simplifying complexity: a review of complexity theory. Geoforum 
32:405-414. 



Roberts, A., S. Dragicevic, J. Northrup, S. Wolf, Y. Li, and C. Coburn. 2003. Mountain 
pine beetle detection and monitoring: Remote sensing evaluations. Department of 
Geography, Simon Fraser University, Burnaby, British Columbia. 

Robinson, V. B. 1988. Some implications of fuzzy set theory applied to geographical 
databases. Computers, Environment and Urban Systems 12:89-97. 

Robinson, V. B. 2003. A perspective on the fundamentals of fuzzy sets and their use in 
geographical information systems. Transactions in GIs 7:3-30. 

Safranyik, L. 1988. Mountain pine beetle: Biology Overview. in Symposium on the 
Management of Lodgepole Pine to Minimize Losses to the Mountain Pine Beetle, 
Kelispell, USA. 

Safranyik, L., H. Barclay, A. Thomson, and W. G. Riel. 1999. A population dynamics 
model for the mountain pine beetle, Dendroctonus Ponderosae Hopk. 
(Coleoptera: Scolytidae). Information Report BC-X-326, Pacific Forestry Centre, 
Victoria. 

Wang, F. 1990. Improving remote sensing image analysis through fuzzy information 
representation. Photogrammetric Engineering and Remote Sensing 56: 1 163-1 169. 

Wang, F., and G. B. Hall. 1996. Fuzzy representation of geographical boundaries in GIs. 
International Journal of Geographical Information Systems 10:573-590. 

Wang, F., G. B. Hall, and Subaryono. 1990. Fuzzy information representation and 
processing in conventional GIs software: database design and application. 
International Journal of Geographical Information Systems 4:26 1-283. 

Wang, J., M. J. Kropff, B. Lammert, S. Christensen, and P. K. Hansen. 2003. Using CA 
model to obtain insight into mechanism of plant population spread in a 
controllable system: annual weeds as an example. Ecological modelling 166:277- 
286. 

White, R., and G. Engelen. 1993. Cellular automata and fractal urban form: a cellular 
modeling approach to the evolution of urban land-use patterns. Environment and 
planning A 25: 1 175-1 199. 

White, R., and G. Engelen. 2000. High-resolution integrated modelling of the spatial 
dynamics of urban and regional systems. Computers, Environments & Urban 
Systems 24:383-400. 

Wolfram, S. 1983. Statistical mechanics of cellular automata. Reviews of Modern 
Physics 55:601-644. 

Zadeh, L. A. 1965. Fuzzy Sets. Information and Control 8:338-353. 

Zhu, Z., and C. Liu. 2000. Micromachining process simulation using a continuous 
cellular automata method. Journal of Microelectromechanical Systems 9:252-261. 



CHAPTER 2 - INTEGRATING HIGH-RESOLUTION RS, 
GIs AND FUZZY SET THEORY FOR 
IDENTIFYING SUSCEPTIBLITY AREAS 
OF FOREST INSECT INFESTATIONS' 

2.1 Abstract 

The use of fuzzy set theory has become common in remote sensing (RS) and 

geographic information system (CIS) applications to deal with issues surrounding 

uncertainty of geospatial datasets. The objective of this study is to develop a model that 

integrates the concept of fuzzy set theory with RS and CIS in order to produce 

susceptibility maps of insect infestations in forest landscapes. Fuzzy set theory was 

applied to information extracted from multiple-year high resolution RS data and 

integrated in a raster-based CIS in order to create a map indicating the spatial variation of 

insect susceptibility in a landscape. Variable-specific fuzzy membership functions were 

developed based on expert knowledge and existing data, and integrated through a 

semantic import model. The results from a case study on mountain pine beetle 

(Dendroctonus ponderosae 1-Iopkins) illustrate that the model provides a method to 

successfully estimate areas of varying susceptibility to insect infestation from high- 

resolution remote sensing images. It was concluded that fuzzy sets are an adequate 

method for dealing with uncertainty in defining susceptibility variables. The 

I The following chapter has been submitted to the International Journal of Remote Sensing under the co- 
authorship of Suzana Dragicevic and Arthur Roberts. 



susceptibility maps can be utilized for guiding management decisions based on the spatial 

aspects of insect-host relationships. 

2.2 Introduction 

High-resolution remote sensing (RS) images of forest landscapes can provide 

resource managers with important information regarding insect infestations. Images 

captured over multiple years can be used to investigate the spatial dynamics of a variety 

of forest pests, especially those that have significant effects on the forest canopy. While 

numerous attempts at detecting damage caused by insects have proved successful 

(Gimbarzevsky et al. 1992, Franklin et al. 2003, Roberts et al. 2003, Skakun et al. 2003, 

Nelson et al. 2004, Riel et al. 2004), research that utilizes high resolution RS data and the 

analytical tools of geographical information systems (GIs) for estimating the 

susceptibility of forests to various insects is not extensive. This is because forests are 

complex systems that are heterogeneous and continuously changing over space and time. 

Therefore, it is difficult to capture the dynamic nature of forests in RS images at 

appropriate spatial and temporal resolutions to be able fully analyze the data in a GIs. 

Understanding the complexity of forest systems is also limited by the lack of multiple 

year RS data at an established study site in order to provide information on the nature of 

insect infestations through time. Furthermore, insect behaviour varies across space and 

time causing uncertainty in quantitatively describing how specific variables affect 

susceptibility. Despite existing methods developed in the RS and GIs literature to deal 

with uncertainty of spatial data (Foody 1996, Cheng 2002) little has been done in relation 

to the heterogeneous and continuous nature of forest processes (Brown 1988, Lowell 

1996). 



Uncertainty in Geographical Information Science (GIScience) refers to the degree 

of inexactness when assigning precise values to both locations and attribute that define 

geographical data (Robinson 2003). For example, defining boundaries between forest 

stands in a GIs from RS data may include uncertainty because the exact boundary 

between two stands cannot be precisely determined, or bias may be introduced when 

defining the stands as either deciduous, coniferous or mixed (Lowell and Gold 1995) . 

This explains why the majority of susceptibility mapping to date, that integrates RS and 

GIs, has focused on processes governed by larger spatial and temporal scales such as 

landslides (Van Westen 2000, Cevik and Topal 2003, Sarkar and Kanungo 2004), while 

less research has been performed on short-term dynamic process with greater spatial 

heterogeneity such as insect infestations (Luther et al. 1997). Uncertainty can also be 

caused by a lack and insufficiency of relevant data that are necessary to study geographic 

phenomena. In the absence of sufficient data it is difficult to measure how various 

elements influence the spatial variation of concepts such as susceptibility. Therefore, 

there is a need for methods that acknowledge uncertainty in extracting information from 

RS data for developing susceptibility maps of potential insect disturbance. A method 

using fuzzy set theory to address this need is proposed in this study. 

Fuzzy set theory,' developed by Zadeh (1 965), has played a role in dealing with 

uncertainty in RS and GIs since Bezdek (1 984) introduced the fuzzy c-means algorithm 

(Robinson 2003). The use of fuzzy sets and fuzzy logic reasoning was found suitable to 

address the nature of geographic boundaries and the fact that spatial objects do not 

always precisely fit into the classes in which they are assigned by traditional RS or GIs 

procedures. Fuzzy set theory is useful for applications in forestry (Lowell and Gold 1995, 



Brown 1998, Brandtberg 2002) and in dealing with uncertainty in defining areas of 

potential insect infestations. 

In order to address these issues, the main objective of this study was to develop a 

model that integrates the concept of fuzzy set theory with RS and GIs in order to define 

the susceptibility of different areas to insect infestation in forest landscapes. High- 

resolution data play an important role in this model because forest infestation is often 

studied at the individual tree level. Higher pixel resolution records more precise detail 

and information about the site areas than low-resolution. For example, susceptibility to 

infestation is affected by variables such as the number of host trees in a stand, the 

locations of trees attacked in the previous year, physical constraints, and biological 

characteristics of trees, among others, depending on the insect-host relationship as well as 

the population dynamics of the insect itself. Each of these variables can in some form be 

measured from high-resolution images in RS and GIs systems. Sensors fixed on satellites 

and airplanes have the ability to capture images with resolutions higher than lm; 

however, few studies such as Bentz and Enderson (2004) have utilized high-resolution 

images for predicting patterns of tree mortality due to insect infestation. 

The proposed model for defining the susceptibility of areas in a forest first 

extracts information regarding susceptibility from multiple-year high-resolution RS data 

of a site in order to create a raster GIs database. Fuzzy set theory was used to define how 

various characteristics of a forest affect susceptibility to insect infestation, and to define 

the spatial elements of the variables involved in the infestation process. By using fuzzy 

operators, information from each variable was integrated to produce a final map defining 

areas represented by level of susceptibility. While modifications will have to be made to 



the model to fit different forest insects in different geographical locations, the overall 

framework is applicable to numerous scenarios due to similar life cycle characteristics. In 

this study, the model was tested with a case study of the mountain pine beetle 

(Dendroctonus ponderosae Hopkins) in the central interior of British Columbia, Canada. 

2.3 Background to Fuzzy Set Theory 

Fuzzy sets allow for partial membership to one or more classes, thus objects are 

represented by a value based on a membership continuum between 0 and 1. Conversely, 

crisp sets either fully contain or do not contain an object, which is reflected in the fact 

that membership to a class is binary and represented by either 0 or 1 (Zadeh, 1965). The 

membership function of an element x belonging to a fuzzy set A is represented by p~ : U 

+ [0,1], where U is the universal set of x. This explains that the function associates a 

graded membership with each point x in U. The development of the fuzzy membership 

function is an important component of using fuzzy sets, and is accomplished using expert 

opinion and available data to define the function. 

Traditionally, applications in RS and GIs have operated with crisp sets, where 

spatial information taken from the real world is represented as discrete objects in space 

with a discrete definition. Fuzzy sets are employed to handle problems with accuracy and 

precision as well as a lack of sufficient data when defining objects and their attributes. 

These problems create difficulties when attempting to represent spatial entities as discrete 

objects in a computer. As a result, the idea of fuzzy objects and fuzzy attributes was 

developed so that entities could be described as belonging to a particular class. The 

application of fuzzy set theory has received substantial attention within the realm of 



GIScience. Specifically, the concepts of fuzzy sets have been employed for defining the 

spatial and attribute characteristics of geographic objects (Burrough 1996, Wang and Hall 

1996), soil classes (Burrough et al. 1992, Davidson et al. 1994), temporal interpolation 

(Dragicevic and Marceau 2000), and enhancing classification of remote sensing images 

(Wang 1990, Zhang and Foody 1998, Brandtberg 2002, Lucieer and Kraak 2004). With 

regards to applications with forest landscapes, fuzzy sets have been used to deal with 

issues surrounding digitizing objects from thematic maps (Lowell and Gold 1995), 

identifying forest types (Brown 1998) and identifying individual trees (Brandtberg 2002). 

The challenge still exists to use fuzzy sets for developing a realistic representation of 

susceptibility to various spatial phenomena. 

The need for fuzzy sets in developing susceptibility maps can be better 

understood by considering an application with the mountain pine beetle (MPB) as an 

example of forest infestation. A review of this insect's life cycle suggests that a large pine 

tree within a pure stand of pine trees close to a previous attack, and distanced from large 

constraints, is more likely to be susceptible than the opposite for each given variable. 

However, a problem arises when attempting to define how the terms large, all, close and 

distanced affect susceptibility due to the issues regarding representation of reality from 

RS images in a GIs. With fuzzy sets and fuzzy logic reasoning, membership functions 

can be developed to explain how these variables affect susceptibility based on existing 

knowledge. Instead of defining each location in space as either, for example, a large tree 

or not a large tree, close to a previous attack or not close, etc., each location receives a 

membership based on the degree to which they represent such variables. As a result of 



combining these variables, the value representing susceptibility is continuous between 0 

and 1 instead of defined as either susceptible or non-susceptible. 

2.4 Methodology 

This section is divided into two parts. The first presents the model framework for 

integrating fuzzy sets with multiple-year high-resolution RS data and GIs operations in 

order to produce susceptibility maps of insect infestation in forest landscapes. The second 

part is a case study applying the model to MPB infestations. 

2.4.1 Model for Fuzzy Susceptibility Mapping 

The procedure that defines the model for developing susceptibility maps is 

illustrated in figure 2.1 where grey boxes indicate processes and the white boxes 

represent the inputs and outputs of the processes. The first step includes identification of 

the variables responsible for susceptibility to insect infestation that can be measured from 

RS images. In the second step, the initial-year image is interpreted in order to integrate 

these variables in a raster-based GIs. This can be accomplished by either combining 

image interpretation techniques with ground truth data or by using existing image 

classifications. This results in multiple layers of information that correspond to different 

variables. 

For the third step, each layer enters a fuzzification process to assign a value that 

represents both the susceptibility variable and the positional uncertainty of intermediate 

objects. The susceptibility variables were fuzzified using specifically constructed fuzzy 





membership functions in order to assign a value to each variable that represents the 

degree to which they belong to a particular set that has an influence on susceptibility. The 

fuzzy functions are developed using the semantic import model (Robinson 2003) which 

uses accumulated expert knowledge of particular insects and the nature of infestations to 

assign the membership grade. Robinson (2003) provided a discussion on the different 

types of functions commonly used for geographic phenomena. The output from this stage 

is layers with information corresponding to each fuzzy variable. 

With regards to positional uncertainty, forest stands are considered intermediate 

objects because the boundary between two different stands cannot be precisely 

determined. Therefore, the fuzzy area between stands can be defined based on its degree 

of belonging to either adjacent stand. A fuzzy membership function for belonging to a 

stand is developed by assigning those cells that are definitely in the stand a value of 1 for 

full membership, and those cells that are definitely in the adjacent stand a value of 0 to 

represent non-membership. Each cell in the transition zone receives a value based on its 

distance to a stand and the susceptibility of that stand to attack, which is given by the 

equation 

where p(Su)&TZ is the fuzzy membership of susceptibility of a cell in transition zone TZ, 

p(Sustand) is the fuzzy value for susceptibility of the stand, and p(DStand) is the inverse 

distance D to the nearest cell in that stand. Stands i and j are the two stands joined by the 

transition area. The equation states that susceptibility of a cell in a transition zone obtains 



a value based on the product of p(Su) of the adjacent stand and the inverse distance to the 

nearest cell in that stand. Each cell in the transition zone will have two values because it 

is a member of two stands; the maximum value is obtained in order to represent the 

higher level of susceptibility. This stage completes the development of the susceptibility 

map. 

The fourth step includes the use of fuzzy operators in order to combine all fuzzy 

variables into one layer to represent the overall susceptibility in the landscape. The 

operator computationally obtains one value from the raster layers for each cell location 

for the output layer. GIs applications traditionally rely upon minimum or maximum 

operators; however, while their use remains valid for a variety of applications, minimum 

and maximum for combining susceptibility variables will reflect the worst and best case 

scenarios, respectively. This can limit the ability to detect the influence of the values 

from each layer, and can also create problems when calibrating values or performing a 

sensitivity analysis, because changes in values that are not the minimum or maximum 

remain unnoticed. A simple solution to this problem is to obtain the algebraic product 

(i.e. multiplicative operator) of each cell location from the raster layers (Robinson, 2003). 

This ensures that the susceptibility of each cell takes into account all the variables used in 

the operation. Therefore, if any membership value has a value of 0, the final value for a 

cell will be represented by 0, and only when all membership values are 1 will a cell be 

represented with a value of 1. The result from this step is a single raster layer containing 

the susceptibility of each cell p(Su) to insect infestation based upon the defined variables. 

The fifth and final step of the susceptibility model represents the model validation 

procedure and can be performed if the RS data for consecutive years are available. The 



validation procedure can by comparing the observed locations of attack at Ti+ I with the 

susceptibility map of Ti+, in order to determine if higher susceptibility areas experienced 

a higher frequency of MPB attack than lower susceptibility areas. A statistical test such 

as a large-sample test comparing two population proportions (McClave and Sincich 

2000) can be used to determine if a significantly higher proportion of attack occurred in 

areas of higher susceptibility than lower susceptibility. 

2.4.2 Case Study: Mountain Pine Beetle in British Columbia, Canada 

MPB is the most serious insect disturbance agent of mature lodgepole pine, Pinus 

contorta, ponderosa pine, Pinus ponderosa, in western North America (Safranyik 1988). 

Trees killed by this insect can be readily detected by high resolution RS imagery as they 

exhibit a red colour in the year following a mortal attack (Wulder and Dymond 2004). 

The susceptibility model can be customized for MPB susceptibility as illustrated in figure 

2.4.2.1 Step I. Identify Susceptibility Variables 

The first step is to identify the variables that define the forest's susceptibility to 

MPB. A life cycle review demonstrates that species diversity within a stand (Amman and 

Baker 1972, Shore et al. 2000), distance to trees attacked in the previous year (Thomson 

199 1, Safranyik et al. 1999b)' and host tree diameter (Mitchell and Preisler 199 1, Moeck 

and Simmons 199 1, Perkins and Roberts 2003) are significant indicators of susceptibility 

to attack. Exploratory analysis of the data revealed that distance to large deciduous stands 

also played a role in influencing areas attacked by MPB. These four variables can be used 

in the model in order to develop maps of forest susceptibility. 



2.4.2.2 Step 11. Image Interpretation 

The high resolution multi-spectral aerial photographs used for this study were 

collected in 2002 and 2003 at a pixel resolution of 15cm (Roberts et al. 2003). The 

ground truth data for the aerial photographs were collected in 2001 by the British 

Columbia Ministry of Forestry (BC MoF), and in 2002 by Simon Fraser University and 

BC MoF. The sites are located in the central interior of British Columbia: Site 1 centred 

at 53'38'45"W and 123'26'20"N, and Site 2 centred at 53'29'07"W and 125'O6'4O1'N 

(Figure 2.3). The size of each site is approximately 750m2 in which there is minimal 

variation in elevation. The forest in these areas is dominated by lodgepole pine, and 

contained a relatively small composition of white spruce, Picea glaucu, Douglas fir, 

Pseudotsuga menziesii, and trembling aspen, Populus tremuloides. The sites also 

contained roads and open areas that were previously created for forestry operations and 

forest management. 

The images were interpreted to specify the four variables and produce GIs raster- 

based information for (1) Attacked Trees variable - polygons indicating trees attacked by 

MPB at Ti (2000), T,+, (2001) and Ti+2 (2002); (2) Constraints variable - polygons 

representing water bodies, open areas and deciduous stands; (3) Species Diversity 

variable - polygons defining stands of deciduous and coniferous trees and individual 

coniferous trees found in deciduous stands; (4) Tree Size variable - polygons defining the 

density of coniferous areas (i.e. high, medium and low). The values for density in this 





Figure 2-3. Study sites in central interior of British Columbia, Canada. 

layer were used to construct information on tree size. After digitizing was completed, 

each layer was converted to raster files in order to perform cell-based operations. 



A resolution of Im was chosen during the conversion to raster files because the smallest 

significant tree crowns were estimated to occupy this area. The choice to use this spatial 

resolution inflicted some bias in the procedure because the original image resolution was 

significantly higher. 

2.4.2.3 Step 111. Fuzzification 

In this step specific fuzzy membership functions were developed in order to 

assign a value that represented both the susceptibility variable and the positional 

uncertainty of the intermediate objects. 

The Species Diversity variable was used to define the proportion of host trees in a 

stand. A stand is considered more susceptible if it only contains lodgepole pine. First, all 

deciduous and coniferous stands were identified and digitized, and an estimation of the 

proportion of each species in each stand was obtained from the ground truth data. A fuzzy 

membership function for pure lodgepole pine stand p(LP) was then developed using 

expert knowledge. An increase in the proportion of host trees in a stand leads to a higher 

membership of p(LP), which corresponds to an increase in susceptibility (Amman and 

Baker 1972, Thomson 199 1, Shore and Safranyik 1992). Figure 2.4a illustrates this 

relationship that is defined by the location of dl and d2 on the x-axis. A shift in dl to the 

right increases the influence of non-host trees to susceptibility. This means that 

susceptibility does not change as the proportion of lodgepole pine becomes higher until x 

reaches dl. Conversely, a shift in d2 to the left dampens the effect of diversity on 

susceptibility. The fuzzy membership function is defined by 
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Figure 2-4. Potential fuzzy membership functions for susceptibility p(Su) to mountain pine beetle 
attack based on (a) species diversity p(LP), (b) distance to attackp(AT), (c) distance to large 
deciduous stands p(CD), and (d) tree size p(LP). 



The Attacked Trees variable was used to build layers representing trees attacked 

in c ,  c+, and (the latter two are used to develop susceptibility maps for subsequent 

years and for validation). A standard distance function was performed on the layer 

containing trees attacked in Ti. This provides the distance between each location in space 

and the nearest attacked tree. Next, a fuzzy membership function was constructed in 

order to assign each cell a value representing the degree to which it is close to a cell 

attacked in the previous year p(A7'). Thomson (1 991) explained that MPB first attack 

trees in a small patch, then move outwards to other areas, then outside the stand. This 

suggests a negative relationship between susceptibility and distance to attacked trees. 

This is supported by Shore and Safranyik's (1992) rating system where the likelihood of 

attack is considered greater the closer a tree is to the nearest infestation. However, the 

results from some studies suggest that this relationship is not linear (Safranyik et al. 

1989), which is potentially due to a constant occurrence of attack within a certain 

distance from previously attacked trees, followed by a non-linear decrease as distance 

increases. This type of relationship can be represented using a j-shaped function shown in 

figure 2.4b, which is expressed as 

where x is the distance between an infested tree and a susceptible host, dl is the location 

on the x-axis where p(A7') begins to deviate from 1, and dz indicates the position of the 

curve where p(AT) = 0.5. As dl shifts to the left, the distance of constant occurrence of 



attack decreases, and the slope also shifts to the left. A shift of d2 in either direction 

changes the nature of the curve. 

The Distance to Constraints variable was used to obtain information on the 

impact large deciduous stands on susceptibility. Observations from images for both sites 

indicated that the attack was relatively low close to the large deciduous stands. This was 

characterized by positive relationship between increasing infestation and distance. An 

analytical procedure was performed to determine the distance over which large deciduous 

stands affect MPB, and the nature of this relationship. This information was then used to 

build a fuzzy membership function in order to assign a value to each cell representing 

proximity to large deciduous stands p(CD). Figure 2 . 4 ~  illustrates a linear function that 

can be explained by 

for x < d ,  1 
x - d,  

for dl  I x I d ,  
d2 - dl 

for x > d ,  J 
As dl moves to the right, the distance over which the beetle does not attack near large 

deciduous stands increases. As d2 moves to the left, attack will occur closer to large 

deciduous stands. 

The Tree Size variable was used to develop information regarding the overall tree 

size of a stand. The larger the trees in a stand, the more susceptible that stand will be to 

attack. The frequency of tree size is generally a function of stand density, which can be 

visually interpreted from the images. Stands exhibiting high density are younger stands 

that have yet to experience competitive exclusion, thus there are many trees of relatively 



small diameter. Conversely, low-density stands contain larger and older trees that have 

out-competed other trees, which in turn decreased the number of trees. Ground truth data 

were used to confirm if the visually defined levels of stand density contained different 

tree size distributions, and individual stands were then digitized and defined accordingly. 

Next, a fuzzy membership function was developed that represented membership 

for the class of large trees p(L7'). The MPB susceptibility of a tree increases as diameter 

increases (Shore and Safranyik 1992, Hindmarch and Reid 2001). This was supported by 

the ground truth data. The value of p(L7') is represented by a positive linear fuzzy 

function (figure 2.4d) which is explained by 

0 for x < d ,  

x - d, 
for dl I x I d2 

d2 - dl 

1 for x > d, 

Shifting dl to the left increases the size range of trees that are susceptible to attack. 

Moving d2 either direction will affect the size of trees that are most susceptible. The 

degree of membership values for p(L7') were then used in equation 2.6 to obtain a single 

fuzzy value for belonging to a stand with large trees: 

wherep is the proportion of each tree size in the frequency distribution provided by the 

ground truth data. The products o f p  and p(LD) are summed in order to represent the 



susceptibility given by the entire distribution of trees. The sum is multiplied by two in 

order to exaggerate the difference between stand susceptibility. 

The final process in Step 111 was to transform the discrete boundaries of the forest 

stands into fuzzy boundaries. Applying equation 2.1 to the fuzzified Species Diversity 

and Tree Size layers ensured that all forest stands contained fuzzy boundaries that 

represented their intermediate nature. 

2.4.2.4 Step IV. Fuzzy Operator 

The four layers with fuzzy values were then combined using the operator 

mentioned in section one of methods. The result was a single map for each site showing 

the estimated degree of susceptibility p(Su) of the various site areas in the forests for the 

The fuzzy operator for p(Su) is expressed as 

2.4.2.5 Step V. Validation 

In order to validate the susceptibility maps for each site, the raster layer 

containing observed locations of insect attack for the year T;+1 was overlaid on the map of 

susceptibility at T,+, to visually and statistically determine if the maps appropriately 

estimated areas of susceptibility. The susceptibility values from 0.1 to 1 were classed into 

low, medium, and high, susceptibility for the statistical analysis. A large-sample test 

comparing two population proportions (McClave and Sincich 2000) was used to 

determine if a significantly higher proportion of cells were attacked in areas of higher 

susceptibility than areas of lower susceptibility. The null and alternate hypotheses are 

therefore 



wherep] and p2 are the proportion of a higher susceptibility class and a lower 

susceptibility class, respectively. For this test, observed attack locations in areas of high 

susceptibility were compared with areas of medium susceptibility, areas of medium 

susceptibility were compared with areas of low susceptibility, and low susceptibility was 

compared to zero susceptibility. The test is described as 

where the null hypothesis is rejected if z > z, . 

The entire procedure for this case study was repeated with replacing the T, attack 

locations raster layer with the z+I attack locations layer in order to develop a 

susceptibility map for Ti+2. 

2.5 Results 

2.5.1 Fuzzy Membership Functions 

The values for dl and d2 were assigned for each variable based on expert opinion 

and information from research literature. Figure 2.5 depicts these values for each variable 

with the respective function. For membership in ,u(LP), dl = 0 and d2 = 1 were selected 

to represent a 0.1 increase in susceptibility with every 10% increase in lodgepole pine 

trees in the stand. Therefore, the influence of the presence of host trees was directly 

proportional to the number of host trees present. 



With regards to membership in p(AT), this study used information from a 

collection of resources to derive a j-shaped function where dl = 50m and d2 = 60m. This 

function explains that susceptibility due to dispersal behaviour is high over the first 50m, 

and then decreases non-linearly over the remaining dispersal range. 

The values for dl and d2 for p(DC) were determined from an analysis of ground 

truth data. Figure 2.6 reveals that minimal attack occurs close to deciduous stands greater 

than 300 cells (1 7.32m2) in size, and observations of attack increase linearly up to 

approximately 50m from the these stands. This information suggest that for membership 

in p(CD), dl = 0 because the attacked cell itself is not susceptible, and d2 = 50m as it is 

this distance that specifies observations of attack become independent from the distance 

to large deciduous stands. 



I k ' Distant to Deciduous 
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Figure 2-5. Actual fuzzy membership functions for susceptibility p(Su) to mountain pine beetle 
attack based on (a) species diversity p(LP), (b) distance to attackp(AT), (c) distance to large 
deciduous stands p(CD), and (d) tree size p(LP). 



Distance to Deciduous Stand (m) 

Figure 2-6. Relationship between number of trees attacked and distance to large deciduous stands. 

Finally, information regarding membership in p(LS) was gathered from the 

literature and also collected from ground truth data (see Figure 2.7). As previous 

literature suggests (Amman and Baker 1972, Shore and Safranyik 1992, Preisler and 

Mitchell 1993, Mata et al. 2003), larger trees were attacked more frequently than smaller 

trees. Although very large trees were underrepresented in the ground truth data, there did 

exist an obvious linear increase for those age classes that were sufficiently represented. 

This suggests a linear fuzzy membership function for p(LS). No trees in the ground truth 

data less than 15cm in diameter at breast height were attacked, dl = 14cm. All trees in the 

ground truth data larger than 46cm in diameter were attacked, therefore dz = 47cm. 



The results from the GIs overlay procedure produced the fuzzy susceptibility 

maps for T,+, (2001) and (2002) are shown in figures 2.8a-b. These maps were then 

used with the original RS data for model validation. 

DBH (cm) 

Healthy 

Attacked 

Figure 2-7. Ground truth data for the proportion of trees attacked (heavy and moderate) per age 
class. 

2.5.2 Susceptibility Map Validation 

In order to validate the model, the Ti+l and Ti+2 attack layers were overlaid onto 

the appropriate susceptibility maps for both sites. Figure 2.9a-d provides for a visual 

comparison between the estimated areas of susceptibility and the observed locations of 

attack. The locations of attack in the high-resolution RS images are observed in Figure 

2.10. Small areas of each site were magnified in order to illustrate the patterns of MPB 



attack over the two years. The images from 2002 show red trees that were killed by MPB 

in 200 1, and grey trees killed by MPB before 200 1. The 2003 images show red trees that 

were killed by MPB in 2002, and grey trees killed by MPB before 2002. The images 

illustrate that more attack was observed in areas of higher susceptibility at Z+I, but attack 

became present in areas of lower susceptibility at Z+2. 

Site 1 Site 2 

Figure 2-8. Susceptibility NSu) maps, resulting *om fuzzy operations for Site 1 and Site 2. Dark 
tones indicate no susceptibility (i.e. mads and clear cuts) and light tones indicate high susceptibility. 



Site 1 at Ti+1 (2001) 

Site 2 at &+I (2001) 

Site 1 at &+2 (2002) 

Site 2 at Ti+2 (2002) 

Figure 2-9. Validation of susceptibility maps using observed attack locatio~ld) from aerial imagery 
for Site 1 at TM1, Site 1 at THZ, Site 2 at TH1, Site 2 at TH2. Red cells indicate trees attacked by 
mountain pine beetle. 



Site 1 in 2002 Site 1 in 2003 

Site 2 in 2003 

Figure 2-9b. Magnitied aerial imagery of Site 1 and Site 2 from 2002 and 2003. For the 2002 
imagery, trees attacked in 2001 appear red; trees attacked before 2001 appear grey. For the 2003 
imagery, trees attacked in 2002 appear red; trees attacked before 2002 appear dark red or grey. 
Diierent stands can be visually distiqybhed based on tree size; larger trees are more snseeptiible 
and therefore are attacked sooner and more frequently. 



Next, the proportion of attacked cells in each susceptibility class was tabulated. 

Figure 2.11 a-b shows the proportion of cells attacked in each susceptibility class, which 

indicated that the high susceptibility class had the highest proportion of attack, and the 

proportion gradually decreased with a decrease in susceptibility rating. The one exception 

was for the zero susceptibility class for Site 2 at Ti+2, 

Site 1 Site 2 

2001 

Year of Altack 

2001 2002 

Year of Attack 

Zero Susceptibility Low Susceptibility Medium Susceptibility High Susceptibility 

Figure 2-10. Proportion of cells attacked in each susceptibility class at Ti+, (2001 attack) and Ti+z 
(2002 attack) for Site 1 and Site 2. 

The significance of these observations was statistically evaluated in the test for 

the hypothesis (pl -pz) .  The z-scores from the test are presented in Table 2. In order to 

reject the null hypothesis with 95% confidence, z > 1.96. These results indicate that 

most of the higher susceptibility classes contain a significantly greater proportion of cells 



that were attacked by MPB than lower susceptibility classes, with the exception of the 

difference between the medium and low susceptibility classes and low and zero 

susceptibility classes for Site 2 in Ti+, . Therefore, the null hypothesis was rejected for ten 

of the twelve tests. 

Table 2.1. Proportion scores (z) for the large-sample test comparing two proportions (McClave and 
Sincich 2000). The z values indicate the proportional difference of MPB attacked cells in adjacent 
susceptibility classes. With 95% certainty, higher susceptibility classes experience significantly more 
attack if z > 1.96. 

High vs Medium 
Medium vs Low 
Low vs Zero 

Site 2 

High vs Medium 
Medium vs Low 
Low vs Zero 

2.6 Conclusion 

The results indicate that the methods in this study were mostly successful at 

classifying levels of susceptibility to MPB attack in the two sites. An issue of concern 

exists, however, with the locations of attack in areas of zero and low susceptibility for 

Site 2 at Ti+2, which were not significantly different from each other. A visual analysis of 

the original RS images confirms that pine beetle attack did occur in areas estimated as 

zero susceptibility, which were mostly single or small groups of lodgepole pine trees that 

were located within large deciduous stands. Due to digitizing errors, these trees were not 

properly identified. Furthermore, there appeared to be several attacked trees that were 



located on the perimeter and also within open areas. It should also be noted that the 

presence of attacked trees in the low susceptibility areas did not come as a surprise 

because it was expected that trees of lower susceptibility will eventually become attacked 

once higher susceptible trees are killed (Safranyik et al. 1999a). 

The quality of the model stems from the ability to identify the degree of 

susceptibility of various areas coupled with acknowledging the uncertainty involved in 

model development. Although some may argue that probability theory could have been 

used to produce values from 0 to 1, fuzzy set theory was considered necessary in order to 

deal with the level of available data and available information for defining susceptibility. 

The spatial and temporal extent of the data was a main contributing factor in limiting the 

knowledge of MPB attack behaviour. With regards to the spatial extent, small study sites 

make it difficult to determine if there were attacked cells adjacent to the site boundary 

that could play an important factor in determining susceptibility. Furthermore, a limited 

spatial extent made the presence of clear-cut patches more significant. Clear-cuts 

occurred in some areas between the two years when the images were collected which 

removed important data components. 

The fact that high resolution RS data on MPB infestations exists for a limited 

temporal frame limits the ability to monitor and study insect infestations over time. Long- 

term projections of susceptibility can be restricted by lack of information regarding insect 

locations for each year. The success of the model proposed in this study was partly due to 

knowing the locations of insects from the ground truth data in the year previous to when 

susceptibility was estimated. Susceptibility maps can, however, play a significant role in 

long-term forecasting when used as data sources in spatio-temporal models. These 



models would require greater knowledge of insect population dynamics in order to 

estimate their infestation behaviour over periods of time. Spatio-temporal models are 

commonly used in analyzing vegetation dynamics, but their use with datasets based on 

fuzzy sets has been largely unexplored. 

The model explained in this research can be presented to forest management as a 

spatial decision support system (SDSS) that will allow forest managers to input spatial 

data of their forest areas in order to determine areas of potential infestation. Once a 

decision support framework is created, managers could test how different management 

scenarios affect susceptibility levels, such as sanitization through clear-cutting or 

selective logging. 

The use of fuzzy set theory for GIs and RS applications can play a significant role 

in forestry research with numerous natural disturbance agents where dynamic complexity 

creates a situation where empirical results are not always consistent or readily available. 

For example, it is difficult to produce consistent results on insect dispersal when wind 

and temperature play a significant role. Such difficult issues can be addressed with the 

use of fuzzy sets derived from general expert knowledge. Applications for developing 

susceptibility maps with fuzzy sets can go beyond insect dispersal to include phenomena 

such as susceptibility to wildfire, wind, diseases and invasive species by having adequate 

data and information regarding the development of these specific membership functions. 

Integrating fuzzy set theory with GIs can also act as a decision support tool for forest 

management as landscapes can be digitally manipulated in order to find optimal practices 

in light of potential disturbances. 
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CHAPTER 3 - A SPATIALLY EXPLICIT FUZZY- 
CONSTRAINED CELLULAR AUTOMATA 
MODEL OF FOREST INSECT 
INFESTATIONS~ 

3.1 Abstract 

Geographical and ecological processes are complex systems where individual 

elements interact to create complex behaviour. These systems can be examined with 

spatially explicit models such as cellular automata (CA) that explain how interactions at 

the local level lead to global patterns. Tree mortality patterns caused by forest insects 

provide a good case for CA as local interactions lead to changes at the landscape level. 

However, problems exist with defining aspects of insect-host relationships that explain 

the susceptibility of a tree to insect attack. The main objective of this study is to develop 

a GIs-based CA model of forest insect infestations that incorporates fuzzy set theory in 

order to obtain information from high-resolution remote sensing (RS) images. The model 

is based on tree mortality patterns caused by outbreaks of mountain pine beetle (MPB), 

Dendroctonus ponderosae Hopkins, in the central interior of British Columbia, Canada. 

Fuzzy sets are used in order to quantify the susceptibility of trees to MPB attack and to 

acknowledge the uncertainty inherent in dealing with geospatial data. Fuzzy values 

provide the input for the CA model where MPB attack behaviour is constrained by the 

susceptibility level of trees. The results reveal that CA modelling with fuzzy-based 

The following chapter has been submitted to the journal Ecological Modelling under the co-authorship of 
Suzana Dragicevic and Arthur Roberts. 



information can produce realistic patterns of MPB-induced tree mortality. Furthermore, 

fuzzy-constrained CA modelling can provide useful information for forest management 

in the presence of insect outbreaks. 

3.2 Introduction 

Geographical and ecological processes are complex dynamic systems with an 

inherently spatial nature. The complexity is manifest in the numerous elements that 

interact locally to produce global patterns that are difficult to predict, while the spatial 

nature is apparent in the significance of scale, distance and spatial arrangement of the 

interacting elements. Complex systems theory is suitable for incorporating both the 

complexity and spatial significance in ecological processes, and can provide results that 

enhance ecological knowledge for decision support systems. One class of complex 

system models that has recently gained recognition in ecology is cellular automata (CA) 

(Cannas et al. 1999, Grist 1999). 

CA are dynamic models that are discrete in time, space, and state (Baltzer et al. 

1998). CA models typically consist of five main components: 1) a grid of cells, 2) cell 

states, 3) the neighbourhood, 4) transition rules that determine how cells change from one 

state to another at each time step, and 5) the number of time steps for which the model is 

run (White and Engelen 2000). The grid is composed of a number of cells'that are 

typically identical in size and shape. Cells at initial time Ti can take on an infinite number 

of states that are traditionally represented as discrete. The neighbourhood refers to the 

cells in a defined area surrounding each individual cell that will have an influence on the 

state of that cell at the next moment in time (i.e. Ti+,). The transition rules express how 

the state of each cell in the neighbourhood influences the future state of a cell from one 



time step to another. A CA model can be formulated as 

T#+ I  
s, = f (s:, , N:, 1,  

where s; and s;:' are the states of cell at a location described with x and y coordinates at 

time Ti and T,+,, respectively; N:; represents the neighbourhood surrounding cell xy; f 

represents the transition rules that explain how the initial state will change in the next 

time step. The number of time steps refers to the temporal extent of the model. 

The discrete nature of cell states makes CA attractive for spatio-temporal 

modelling in a geographic information system (GIs) raster-based environment, which 

describes the world as a static representation based on a discrete array of cells. GIs and 

CA are complementary with regards to spatio-temporal modelling as the former provides 

the spatial framework for geographic data while the latter contributes the temporal 

dimension for describing change. Furthermore, the ability to develop realistic spatial 

models within a GIs environment has progressed due to the increasing availability of 

remote sensing (RS) data. In geography, GIs-based CA have proven especially 

successful in simulations of urban dynamics (White and Engelen 1993, Batty and Xie 

1994, Couclelis 1997, Clarke and Gaydos 1998), rural residential settlement patterns 

(Deadman et al. 1993), and socio-environmental systems (Engelen et al. 1995). CA 

models have also gained popularity in the field of ecology as discrete cell states can 

represent the presence of organisms at a given location which can change over time due 

to competition and resource allocation (Cannas et al. 1999, Grist 1999). Balzter et al. 

(1998) explain that discrete cell states are advantageous for modelling ecological 



processes because discrete state transition can be governed by a probability distribution 

based on the initial state of each cell. 

While CA are applicable for modelling numerous ecological scenarios, problems 

exist when examining complex processes where cell states cannot be readily defined as 

discrete. A good example is representing a tree in a forest by its susceptibility to attack by 

an insect, whereby susceptibility is defined by numerous variables of the insect-host 

relationship. In such cases, two main problems exist with providing a binary definition 

(i.e. susceptible or not susceptible to attack by an insect). 

The first problem concerns the issue of uncertainty in defining susceptibility. It is 

difficult to use traditional approaches to this problem such as defining a tree as either 

susceptible or not susceptible, or deriving the probability of a tree becoming attacked. 

This is due to the fact that insect disturbances are driven by numerous components of the 

insect-host relationship that are difficult to understand. Appreciating this relationship is 

further complicated by the presence of numerous climatic variables such as temperature, 

wind, humidity and precipitation, which, coupled with the geographic variation of a 

species' life cycle, produce varying results and incomplete knowledge on insect 

behaviour. Therefore, considering a raster-based representation or a forest landscape, 

significant uncertainty is present when attempting to assign a discrete binary or 

probability value to a cell describing a tree's susceptibility to attack. Furthermore, 

deriving probabilities requires sufficient data that illustrate the types of trees that are most 

likely to be attacked. However, the often-inappropriate spatial and temporal resolutions 

of commonly used geospatial data hamper the ability to study and understand the forest 



infestation process. Thus, it is difficult to determine attack patterns with large-scale 

images collected over a short or inappropriate time period. 

The second problem is the inherent uncertainty in classifying RS data of forest 

landscapes in a GIs in order to obtain information on the susceptibility of trees in a forest 

(Lowell and Gold 1995). As forests are continuously changing over space and time, the 

value given to a cell through classification procedures only represents that location for 

the moment in time when the data were acquired. Processes such as insect infestations 

operate at refined spatial and temporal scales. The process itself is difficult to capture by 

remote sensing imagery due to the continuous change of an individual tree's appearance 

in the canopy at the local level. This leads to uncertain transition zones between forest 

stands of different sizes and different species where a discrete definition of a cell cannot 

be provided 

As a solution to these two problems, fuzzy set theory has been suggested in 

situations where the presence of uncertainty prevents a discrete definition of cell states 

(Brown 1988, Robinson 1988) . Fuzzy sets, developed by Zadeh (1 965), allow for 

membership to one and/or several sets, thus objects in space are represented by a fuzzy 

value between 0 and 1. The membership function of an element x belonging to a fuzzy set 

A (e.g. A = susceptibility of a cell to insect attack) is represented by p(A) : U + (0,1), 

where U is the universal set of x. This explains that the function associates a graded 

membership with each point x in U. Therefore, trees can be represented by 'fuzzy' values 

from 0 to 1 based on membership its the fuzzy set of susceptible trees. Many applications 

with fuzzy sets have proven useful in geography for defining soil classes (Burrough 

1989), RS classification (Foody 1996), explaining sediment dynamics (Cheng 2002) and 



temporal interpolation (Dragicevic and Marceau 1999). Fuzzy sets have also been utilized 

in forestry for distinguishing stand boundaries (Brown 1998), digitising forest types 

(Lowell and Gold 1995) and identifying individual trees from high-resolution images 

(Brandtberg 2002). 

The objective of this paper was to develop a fuzzy set theory driven methodology 

for developing a GIs-based CA model of insect-induced tree mortality patterns. The 

methodology used derived values of tree susceptibility to attack by mountain pine beetle 

(MPB), Dendroctonus ponderosae Hopkins, in the central interior of British Columbia, 

Canada where MPB commonly attack susceptible lodgepole pine, Pinus contorta. 

Outbreaks of MPB in recent decades have generated interest in understanding the 

behaviour of the insect and the patterns of tree mortality that it inflicts on a landscape. In 

particular, studies have examined the use of partial differential equations (Bolstad et al. 

1997, Logan et al. 1998, Powell et al. 2000), climate models (Jackson and Murphy 2004), 

remote sensing techniques (Franklin et al. 2003, Roberts et al. 2003) landscape-scale 

spatial analysis (Fall et al. 2004, Nelson et al. 2004) and spatio-temporal models (Riel et 

al. 2004). This study employed the use of a fuzzy-constrained CA model because patterns 

of MPB-induced mortality are applicable to the modelling logic of CAY and also to 

incorporating existing uncertainty and incomplete knowledge with a definition of trees7 

susceptibility to MPB attack. 



3.3 Discrete versus Fuzzy CA 

The use of discrete cell states for CA modelling has been suitable for a variety of 

ecological applications where cells represent the presence or absence of organisms in 

order to model different forms of species competition (Jeltsch et al. 1996, Wilson and 

Nisbet 1997, Grist 1999). Furthermore, discrete states are easily determined when the 

initial CA grid is either developed from field data (Matsinos and Troumbis 2002) or 

from a hypothetical study site (Darwen and Green 1996, Jeltsch et al. 1996, Cannas et al. 

1999, Grist 1999). Discrete cell states are considered appropriate in both situations 

because the information for the initial grid was not obtained from a time-dependant 

"screenshot" of an ecological landscape. 

The notion of relaxing traditional CA characteristics to accommodate non-discrete 

or continuous components was introduced independently in the 1970's through various 

computer applications and remained strictly theoretical (Wolfram 2002). More recently, 

non-discrete cell states were used in the field of physics (Cattaneo et al. 1997) where the 

limitations of traditional CA were examined in order to develop 'continuous-states' that 

produce chaotic properties. Following this, Zhu and Liu (2000) used a continuous state 

CA for simulating crystalline etching whereby the authors found improved results over 

conventional CA methods. 

Parallel to the use of non-discrete cell states in these fields was the development 

of CA models using fuzzy sets and fuzzy logic for defining transition rules in biological 

and land use applications. Ito and Gunji (1 997) provided an explanation of using fuzzy 

logic for describing the intrinsic ambiguities in non-linear biological systems with CA as 

the model framework. A CA wildfire model was developed by Mraz et al. (1999) using 



fuzzy logic in order to drive the decision process for determining cells to be burned by a 

spreading fire. Furthermore, Wu (1998) and Liu and Phinn (2001) explored the use of 

fuzzy reasoning for controlling transition rules for modelling urban encroachment on 

rural land in a GIs environment. These studies illustrate the utility of using fuzzy 

approaches for acknowledging uncertainties in developing CA models. Coupled with the 

notion of non-discrete cell states, these studies demonstrate that the traditional discrete 

definition of CA components can be altered in order to provide realistic results. 

3.4 Methods 

The fuzzy-constrained CA for MPB-induced tree mortality patterns was 

conducted using high-resolution RS images collected in 2002 and 2003 at a spatial (pixel) 

resolution of 15 cm from two forest sites in the central interior in British Columbia. Site 1 

is centred at 53"38'45"W and l23"26'2O"N, and Site 2 centred at 53"29'07"W and 

125"06'401W. Each site is approximately 750 m x 750 m, in which there exists minimal 

variation in elevation. The forests are dominated by lodgepole pine, and contained 

relatively small proportions of white spruce, Picea glauca, Douglas fir, Pseudotsuga 

menziesii, and trembling aspen, Populus tremuloides. Roads and open areas without trees 

are also present in the sites that were previously constructed for forestry operations. 

The methodology for this study was composed of two main parts (Figure 3.1). 

Part I consisted of the development of the Susceptibility Model, and the static output was 

combined with a map of observed MPB attack as input for the CA model. Part I1 was the 

development and calibration of the dynamic CA for modelling patterns of MPB-induced 

tree mortality. 
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3.4.1 Part I - Susceptibility Model 

The first objective of the Susceptibility Model was to identify the locations of 

trees killed by MPB in 2000, 2001 and 2002. Trees attacked in the year previous to when 

the images were collected exhibit an observable red colour; trees attacked before the 

previous year exhibit a grey colour. The locations of MPB-induced tree mortality that 

occurred in 2000 and 2001 were obtained from the 2002 imagery, while tree mortality in 

2002 was identified from the 2003 imagery. A 1 m cell resolution was selected to 

represent the information that was aggregated from the high-resolution RS images to fit 

the scale of the size of the average interpreted tree crown surface. 

The second objective of the susceptibility model was to develop a fuzzy set-based 

representation of each site based on the susceptibility of each tree to MPB attack. The 

2002 imagery was used to distinguish the difference between those cells that contain 

living lodgepole pine trees and those cells that do not. Cells not containing living 

lodgepole pine trees were assigned a value of 0 to represent a constant zero susceptibility 

to MPB attack. All cells containing living lodgepole pine were assigned four separate 

values indicating susceptibility to MPB attack. The four variables were: 1) the proportion 

of lodgepole pine trees in the stand in which the tree is located, 2) the distance to the 

nearest large deciduous stand, 3) the distance to the nearest tree attacked in the previous 

year (i.e. the year 2000), and 4) the size of the tree. The justification for using these 

variables is provided below. The four values for each cell were transformed into a fuzzy 

membership value between 0 and 1 using a semantic import model based on expert 

knowledge. The semantic export model uses expert knowledge in order to construct fuzzy 

membership functions that determines the fuzzy value that corresponds to each value for 



a specific variable (Robinson 1988). The first value of susceptibility was the proportion 

of lodgepole pine trees in a stand. A greater proportion of lodgepole pine trees would 

increase the susceptibility of trees in the stand (Amman and Baker 1972, Thomson 1991). 

Stands were identified as having a low, medium or high proportion of lodgepole pine. 

The ground truth data provided an estimated proportion of lodgepole pine associated with 

the different levels. Each cell was assigned a value based on the estimated proportion of 

lodgepole pine in the stand in which the cell is located. Membership to as stand of Pure 

Lodgepole Pine ,U (LP) was represented by a linear function where a 0.1 increase in 

susceptibility coincided with a 10% increase in lodgepole pine trees in the stand (Figure 

3.2a). Therefore, the influence of the presence of host trees was directly proportional to 

the number of host trees present. The equation for the membership function for ,U (LP) is 

thus described with 

where, for a positive linear membership function, d l  represents the location on the x-axis 

where the function begins to diverge from 0, and dz represents the location on the x-axis 

where the function begins to diverge from 1. 

P ( L P  I = <  

-7 

0 for x < d l  

x - d ,  
for d l  I x~ d p > ,  

d2 - dl 

1 for x > d 2  
J 



o v  
0 Proportion of 1 

Lodgepole Pine O Distant to Deciduous 
Stands (m) 

Figure 3-2. Fuzzy membership functions for susceptibility ,u(Su) to mountain pine beetle attack based 
on (a) species diversity ,u(LP), (b) distance to attack,u(AT), (c) distance to large deciduous stands 
,u(CD), and (d) tree size ,u(LP). 

The second value of susceptibility was the distance of the cell to the nearest large 

deciduous stand (Figure 3.2b). Image analysis of both sites indicated that the frequency 

of MPB attack was relatively low close to large deciduous stands that were greater than 

17.32m2. An analysis of the ground truth data revealed that the frequency of attack was 

minimal close to large deciduous stands and increased linearly to a distance of 50 m. 

Therefore, the degree to belonging to the set of lodgepole pine trees Close to a Large 

Deciduous Stand p(CD) was defined by a linear membership function as explained by 



The third susceptibility value was the distance between the cell and the nearest 

tree that was attacked in the previous year. Studies suggest that lodgepole pine experience 

a higher frequency of attack the closer they are to infested trees (Thomson 199 l), 

therefore a shorter distance to an attacked tree would result in a higher susceptibility. 

This value was obtained by calculating the distance from each susceptible tree to the 

nearest tree attacked in 2000. However, the relationship between frequency of attack and 

trees previously attacked is not necessarily linear (Safranyik et al. 1989), which is 

potentially due to a constant occurrence of attack within a certain distance from 

previously attacked trees, followed by a non-linear decrease as distance increases. 

Therefore, the degree to belonging to the set of trees Close to a Previously Attacked Tree 

,u(AT) was defined by a j-shaped function (Figure 3 .2~) .  This function explains that 

susceptibility due to dispersal behaviour is high over the first 50m, and then decreases 

non-linearly over the remaining dispersal range. The membership to ,u(AT) is given by 

the equation 

> .  P ( C D ) = <  

0 for x < d l  

X - d l  
for d l  I x I d ,  

d2 - 4  

1 for x > d ,  I 



where d l  is the location on the x-axis where the membership function begins to diverge 

from 1, and d2 is the point where the function crosses the fuzzy value of 0.5. 

The fourth value of susceptibility was an estimate of the size of the tree, as larger 

diameter trees are more susceptible as they are older and less able to resist mass attack by 

MPB (Shore and Safranyik 1992, Hindmarch and Reid 2001). Tree size was estimated 

based on a visual interpretation of the density of trees in a stand. Stands exhibiting a 

relatively high density of trees were considered younger stands that have yet to 

experience competitive exclusion, thus there are many trees of relatively small diameter. 

Low-density stands contain larger and older trees that have managed to out-compete 

other trees, which decrease the density of trees in a stand. Stands containing lodgepole 

pine were digitised based on low, medium and high tree density. The ground truth data 

provided a sample of tree sizes located in the stands of different density levels. The tree 

size of a tree was based on an estimate of the overall frequency distribution of tree sizes 

in a stand given the density of that stand. The ground truth data then provided 

information regarding the frequency of tree sizes that were attacked by MPB. This 

information was used to develop the fuzzy membership function to define the degree of 

belonging to the set of Large Trees p (LT). This information coupled with knowledge 

from the literature suggested a linear fuzzy membership function for ,u ( L T )  (Figure 

3.2d), which is explained by 



I 0 for x < d ,  1 
{ I  for x > d 2  J 

The uncertainty in defining the boundaries between stands of different tree sizes 

and different species was introduced in the functions of p(LT) and p(LP).  Fuzzy 

boundaries were developed to acknowledge the area between stands where difficulty 

arises when defining the state of the cell. In order to accomplish this, the p(LT) and p(LP)  

values of a cell in the fuzzy zone (represented by pFz(LT) and pFz(LP) was a function of 

the inverse distance to the nearest cell in an adjacent stand and the p(LT) or p(LP)  value 

of that cell. This is explained for p(L7') by the equation 

where p(LT,)  and p(LT,) are the values of the nearest cell in adjacent stands i and j, 

respectively, and D is the distance to the nearest cell the adjacent stands. Each cell in the 

fuzzy zone will have two values as it is a member of two stands; therefore, the maximum 

value is obtained in order to represent the higher level of susceptibility. At the completion 

of this procedure, each cell in the dataset contained either a p(LT) value or a pFz(LT) 

value to represent membership to the set of large trees depending on if the cell was 

located in the fuzzy zone. Similarly, the value of a cell in the transition zone between 

stands of different species was defined by 



Therefore, a cell contained either a p(L7') value or a pFz(L7') values to represent 

membership to the set of pure lodgepole pine stands. 

The four variables for each cell were combined using an algebraic operator which 

resulted in a single value representing the susceptibility p(Su) of a tree. The operator is 

defined as 

The final output of the Susceptibility Model was a map for each site indicating the 

susceptibility values p(Su) of each tree to MPB attack. The locations of trees killed by 

MPB in the year 2000 were integrated into the susceptibility maps in order to be used as 

the initial input for the fuzzy-constrained CA model at time Ti as presented in Figure 3.1 

(Part I). 

3.4.2 Part I1 - Cellular Automata Model 

The intention of the model is to emulate tree mortality pattern based on the 

premise provided by Safranyik et al. (1 999a) that highly susceptible trees are attacked 

sooner and more frequently than less susceptible trees. Figure 3.1, Part I1 illustrates the 

three main components of the CA model: MPB winter mortality, the MPB Dispersal CA 

sub-model, and the MPB Attack CA sub-model. One complete cycle of the CA model 



simulation is at the temporal scale of one year, which is the lifespan of MPB in the 

British Columbia interior. A complete cycle is referred to as a time step; the number of 

time steps can be specified before running the model. Each component is explained in 

detail below. 

3.4.2.1 Modelling MPB Winter Mortality 

The input dataset for the fuzzy-constrained CA enters the model in the fall when 

tree mortality from MPB attack of that year has been intiated. At this point, female 

beetles have begun constructing vertical egg galleries in the phloem of the attacked tree, 

and eggs are laid and hatched within a couple of weeks. The various growth stages of 

MPB development (i.e. the larvae and pupae stages) take place over the winter months as 

the beetles feed on the phloem of the tree (Safranyik 1988). During the winter months, 

the larvae and pupae are vulnerable to declining temperatures that can cause large-scale 

mortality. Acute cold temperature events (i.e. -30 CO) in late autumn (i.e. October to mid- 

November) or early spring (i.e. March) have the most significant effect on MPB survival 

because during these times the insects are at a particular stage when they are not cold- 

tolerant (Bentz et al. 2001, Jenkins et al. 2001). Such events can lead to MPB mortality of 

approximately 98% or higher (Safranyik 2004). Conversely, severe cold temperatures 

occurring for several days between mid-November and February may not have a 

significant impact on MPB mortality as it is during this period that the insects are most 

cold-tolerant (Carroll and Safranyik 2004). In the absence of severe cold events during 

late autumn or early spring, winter mortality can decrease to 80% which can lead to 

landscape-scale outbreaks of MPB (Safranyik 2004). 



A generalized winter temperature component was integrated in the model where 

either a Cold Winter Sub-Model or a Mild Winter Sub-Model was selected depending on 

minimum temperatures reached during late autumn or early spring. Minimum 

temperatures were examined from data provided by a nearby weather station 

(Environment Canada 2003) for the years when the RS images were collected. If 

temperatures reached -30 CO during vulnerable periods, the Cold Winter Sub-Model was 

used to inflict a 98% mortality during that winter. Conversely, if the -30 CO threshold was 

not reached over the specified time period, then the Mild Winter Sub-Model was used to 

inflict a mortality level of 80%. Winter mortality was performed in each model by 

eliminating a percentage of random infested trees from the forest. The term 'elimination' 

means that the MPB in the tree are killed, however the tree remains in the forest and is 

still considered dead but are no longer infested. 

The output from the MPB Winter Mortality was a layer representing the location 

of MPB who had reached adulthood. This layer also contained the degree of 

susceptibility p(Su) values representing the susceptibility of non-attacked lodgepole pine 

trees to attack in the coming summer. However, the p(Su) values required updating at this 

point because the distance to attacked trees had changed as some of the previously 

attacked trees no longer contained MPB after the Winter Mortality Model. In order to 

accomplish the updating of susceptibility values p(Su), the value for p(A7J was 

recalculated and equation 2.7 was applied. The result was a data layer of susceptible trees 

and trees containing pre-emerged adult MPB. 



3.4.2.2 Modelling MPB Dispersal at Global Scale 

Adult MPB usually mature in late July to early August when, weather permitting, 

they synchronically emerge from host trees. Female beetles emerge first and disperse 

varying distances in search of a tree to attack. MPB Dispersal was depicted using a 

Dispersal CA sub-model (Figure 3.1, Part 11) that operates at the global scale of the entire 

study site. The constraint of the model was that the initial female MPB could only 

disperse within the stand or to a nearby stand; however it was considered that female 

MPB could not disperse outside of the study area nor could other beetles disperse from 

outside the study area. The maximum distance between stands in the study area was 

calculated from the RS images to be 250 m. Therefore a large neighbourhood of 500 x 

500 cells was used in order to depict the pattern of MPB dispersal behaviour. 

The transition rules of the Dispersal CA sub-model were governed by a function 

that described the relationship between the degree of susceptibility ,u(Su) of a tree and the 

number (calculate in percentage) of trees in the neighbourhood that contained MPB 

adults (NMPB). Higher values of p(Su) required a lower NMpB in order for a successful 

attack to become initiated, while lower ,u(Su) values required a larger NMpe. This logic is 

consistent with the explanation that highly susceptible trees require less MPB in order to 

overcome the tree's defensive mechanisms (Safranyik et al. 1989). Difficulty arose when 

determining the function that defined the transition rules because the function shape had 

to consider MPB dispersal and attacking characteristics. Therefore, three functions were 

tested to determine their suitability for modelling the dispersal of MPB: (1) linear 

function, which is a straight line given by the equationfix) = ax + b; (2) exponential 

function, which, given by the equationfix) = ex, raises the mathematical constant e to a 



variable power, and (3)power function (otherwise know as an allometric function), which 

raises a variable number by a fixed power and is represented by the equationf(x) = xu . 

The shapes of the functions are presented in Figure 3.3. The CA rules state that a 

successful attack of cell at coordinates x,y will be initiated if NMpB of cell xy is equal to or 

greater than the function for a given value of p(Su). This is illustrated in Figure 3.3, 

where a p(Su) value of 1.0 only requires that NMPB = 2% when using any of the 

functions. However, as p(Su) values decrease, the difference between NMPB for each 

function increases. For example, for p(Su) = 0.4, the linear function requires NMpB = 

50%, the exponential function NMPB = 25%, and the power function NMPB = 10%. The 

Dispersal CA sub-model was run for one time step, which is the equivalent of the time 

needed for female MPB to disperse and begin attacking susceptible trees. The output of 

this sub-model was the location of trees under attack by MPB. 

3.4.2.3 Modelling Attack at the Local Scale 

As the initial attack resumes on a new host, the female beetles begin to release 

chemical plumes called pheromones into the air that act as an attractant to other beetles 

(both male and female) that have emerged from their hosts. The goal of attracting other 

beetles is so that they congregate in mass numbers in order to overcome the host's 

defensive mechanism (Powell et al. 1998). Once the threshold of beetles is reached on a 

particular host, the insects begin to release verbenones, a repellent, that directs beetles to 

search for other hosts in the local vicinity of the tree (Huber and Borden 2001). This 

typically leads to the growth of local infestations, otherwise known as spot growth 

(Carroll and Safranyik 2004). Mass attack is usually completed within one to two days, at 

which point tree mortality begins (Safranyik 1988). Spot growth was modelled using an 



Attack CA sub-model that depicts MPB attack behaviour at the local scale (Figure 3.1, 

Part 11). 

Figure 3-3. Function curves for transition rules a) linear function, b) exponential function, and c) 
power function. Dotted lines indicate the number of MPB-attacked trees in neighbourhood (NMPB) 
required in order for a tree with a specific ,csu, value to become attacked. 

The Attack CA sub-model used a small neighbourhood of 25 x 25 cells in order to 

represent the area over which spot growth was estimated to cover. The transition rules 

were governed by the same function as the Dispersal CA sub-model, however the 

function for the Attack CA sub-model described the relationship between the percentage 

of trees currently under attack by MPB in the neighbourhood (instead of NMPB) and the 

susceptibility p(Su) value of the cell. The three functions in Figure 3.3 were also tested in 



order to determine which one best represented local patterns of MPB attack. The number 

of time steps for the local Attack CA sub-model was decided based on heuristic 

calibration in order to represent the time over which MPB successfully attack and kill 

their host tree. All trees previously attacked at Ti would become vacant of any beetles, 

and because they were now dead they could not be attacked in the following time step. 

The entire CA model was run for z+2 in order to calibrate the model. 

3.4.3 Model Calibration 

Calibration was performed in order for the model to simulate patterns of MPB- 

induced tree mortality similar to the patterns that were extracted from the RS images. The 

first step was to visually determine which of the three functions presented results that 

were most similar to the observed attacked trees. The second step was to determine the 

appropriate height of the selected function, which was accomplished in two parts. The 

first part assessed how the height of the function changed the location of the trees 

attacked in the simulated results. In order to do this, the average distance between each 

simulated attacked tree and the nearest actual attacked tree was calculated. The model 

simulated results more similar to reality as the average distance between simulated and 

attacked trees decreased. The second part was to determine how the height of the function 

altered the number of trees attacked per susceptibility level. Susceptibility levels were 

defined as low susceptibility (,u(Su) = 0.01 - 0.35), medium susceptibility (,u(Su) = 0.36 - 

0.70), and high susceptibility (,u(Su) = 0.71 - 1.00). As the function height changed, the 

number of trees attacked in each susceptibility level changed. 

Once the model was calibrated in order to simulate results similar to the MPB- 

induced tree mortality patterns extracted from the RS images, a five-year simulation was 



performed in order to determine if the fuzzy-constrained CA approach produced results 

that are in accordance with MPB attack behaviour. It was expected that highly susceptible 

trees should be attacked first and more frequently, and less susceptible trees should be 

attacked once MPB populations increase to a level that allows them to overcome the 

stronger defensive mechanisms of these less susceptible trees. 

3.5 Results 

3.5.1 Part I - Susceptibility Model 

The Susceptibility Model based on fuzzy sets generated susceptibility maps for 

Site 1 and Site 2 (Figure 3.4 a and b). The state of each cell in the map for each site was 

represented by the fuzzy values from 0 to 1. A cell received a value of 0 if it was 

completely not susceptible to MPB attack. This would include a cell representing a road, 

open area, deciduous tree, or a non-susceptible lodgepole pine. Cells that represented 

susceptible lodgepole pine received a value between 0.0 1 and 1 based on susceptibly 

value p(Su) derived from the semantic import model. For the final stage of the 

Susceptibility Model, the location of MPB-induced tree mortality that occurred in the 

year 2000 (i.e. of the model) was integrated into the susceptibility map as shown in 

Figure 3.4 c and d, and the result was used as the input for Part I1 of the model. 

3.5.2 Part I1 - Cellular Automata Model 

The decision on the appropriate function for the model was carried out by visually 

comparing the similarity of actual attack locations at T,+2 (i.e. year 2002) and the 

observed simulation results at Ti+2 using each function (Figure 3.5 a to c). Each function 

controls the transition rules and results in a variation of simulated attack patterns. The 



paverfirnction generated results that were visually the most similar to actual attack 

locations. 

I a) site 1 b) site 2 I 

c) site 1 d) site 2 - 

Figure 3-4. Susceptibility MSu) maps for a) site 1 and b) site 2, and the location of MPB attacked 
trees at THz for e) site 1 and d) site 2. Dark tones indicate no susceptibility (i.e. roads and clear cuts) 
and light tones indicate higb suseeptibi19ty. Red cells mdicate attacked trees two years after 
susceptibility evaluation. 



Site I Site 2 I 

Figure 3-5. CA simulation resalts after two years (TH?) for three different functions: a) linear 
fpnction, b) exponentinl function, and c) power function. 



Further in the calibration procedure the power function was tested by altering the 

value of the exponent a in the equation. Figure 3.6 depicts the sensitivity of the function 

on the decrease of the value of the exponent a. For the first part of the calibration of the 

power function, Figure 3.7 a and b illustrates the how a change in the exponent a affects 

the average distance between simulated and actual locations of MPB killed trees. The 

results indicated that a decrease in the exponent a caused the average distance between 

simulated and actual locations of tree mortality to increase, therefore generating 

modelling results that were less similar to reality. For the second part of the power 

function calibration, Figure 3.8 depicts how changes in the exponent a affects the number 

of simulated trees killed by MPB for each susceptibility level. The figure shows that as a 

increases, the proportion of the total number of simulated MPB-killed trees belonging to 

each susceptibility level became increasingly different from the number of actual trees 

killed per susceptibility level. Therefore, for both parts of the power function calibration, 

an increase in a produced simulated results that were increasingly different than the 

actual patterns of MPB-induced tree mortality as extracted from the RS images. 

Figure 3.9 a and b present the five-year simulation of MPB-induced tree mortality 

patterns using the fuzzy-constrained GIs-based model for site 1 and site 2, respectively, 

that was performed after model calibration. The simulation was developed using Idrisi 

Kilimanjaro's Macro Modeller, which provides a framework for GIs-based CA 

modelling (Eastman 2003a). The model was performed for five time steps in order to 

represent a time period of five years from 2000-2005. 



i) a = -1.00 
ii) a = -1.11 

iii) a = -1.23 
iv) a = -1.30 

Figure 3-6. The relationship between the shape of the curve of the power function and different 
values for the exponent value a. The graph shows that as a decreases the curve shifts up. 



a) Site 1 

b) Site 2 

Figure 3-7. Relationship between the value of the power function exponent a and the average 
distance between simulated and actual locations of MPB-attacked trees for a) site 1 and b) site 2. 
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Figure 3-8. Comparison of the proportion of actual (left) and simulated (right) MPB-killed trees in 
each susceptibility level for different values of thepower function exponent a for a) site I and b) site 
2. 







3.6 Conclusion 

This study revealed that MPB-induced mortality patterns can be modelled using 

the fuzzy-constrained GIs-based CA. The obtained simulation results showed that higher 

susceptible trees were attacked sooner and more frequently, and less susceptible trees 

became attacked as MPB population levels increased as the outbreak proceeded through 

time. Coupling fuzzy sets with CA for developing a complex systems model addressed 

the problems of defining susceptibility and extracting information from RS imagery of 

forest landscapes. The first problem was significantly more apparent as the incomplete 

knowledge concerning MPB attack behaviour prevented the representation of susceptible 

trees in a discrete manner. The acknowledgement of the second problem also played an 

important role in the outcome of the model. The fuzzy transition zones that were 

developed between stands of different tree sizes and different proportions of lodgepole 

pine allowed for a gradual transition of MPB from areas of higher susceptibility to areas 

of lower susceptibility. In the absence of these transition zones, MPB dispersal would be 

confined by unrealistic discrete-state boundaries that would prevent penetration into 

stands with less susceptibility. 

The ability of the CA to appropriately model MPB-induced mortality was also a 

result of the nature of the function that governed the transition rules. The function 

allowed for trees of different susceptibility to be attacked at different rates. The 

importance of this finding is that typical growth curves that explain the number of trees 

killed per year (Shore and Safranyik 2004a) can be extended to incorporate tree mortality 

based on susceptibility level. The rules as expressed by the power function can be 

translated into a different growth rate for each susceptibility level. Figure 3.10 a shows 



the power function that was used to explain the relationship between the susceptibility 

level of a tree and the number of MPB-killed trees required in the neighbourhood in order 

for the susceptible tree to be killed. This power function can be translated into three 

separate curves as shown in Figure 3.10 b depicting the conceptual rate of trees killed by 

MPB for each susceptibility level. 

The use of the power function in the modelling procedure permitted the 

representation of the non-linearity of complex systems, which was illustrated by the fact 

that the power function and the exponential function produced results more similar to 

reality than the linear function. Furthermore, the results obtained form the two 

calibration procedures clearly indicated that an increase in the exponent a of the power 

function produced results that were more similar to the actual patterns of MPB-induced 

mortality that was extracted from the RS images. The decreased value of the exponent a 

required more NMpe in order for a tree to become attacked. As the exponent a drops 

significantly, there would not be sufficient MPB in the neighbourhood, therefore the low 

susceptible trees would not become attacked. 

This study contributes methods and discussion for addressing the issue of 

uncertainty in developing a GIs-based CA model of complex systems. While uncertainty 

has received substantial attention in the fields of GIs and RS, discussion of uncertainty 

with spatial modelling has been limited to the definition of rules or reasoning that defines 

the relationship between interacting components in a complex system. Therefore, this 

research addresses incorporating the uncertainty inherent in geospatial into a CA model. 

Furthermore, this research has contributed the method of CA for modelling MPB 

outbreaks. Traditionally, MPB-induced tree mortality has be modelled with partial 
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Figure 3-10. Graphical characterization of susceptibility explaining the relationships between a) the 
power function transition rules and b) conceptual MPB-induced tree mortality curves over time. 

differential equations, and only recently have spatial models been employed. The use of 

CA and fuzzy sets for defining cell states could also be applied to other insect infestation 



scenarios. For example, it could be useful for modelling applications where insect attack 

does not inflict mortality on a tree, as the fuzzy value could represent the degree to which 

the tree is attacked or damaged. The conceptual methods of this study could be extended 

to other ecological applications of forest disturbances where difficulties persist in 

defining the variables for cell states that change over time. Furthermore, fuzzy logic 

reasoning can be useful for defining transition rules, time steps and neighbourhoods when 

developing CA models that acknowledge the complexities and uncertainties of various 

phenomena. 
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CHAPTER 4 - CONCLUSIONS 

4.1 Conclusions 

The main focus of this research was to develop a GIs-driven methodology for 

constructing a spatially explicit fuzzy-constrained CA model for insect infestations. This 

was successfully accomplished by addressing the two main components of the research. 

First, information of the susceptibility levels of trees for forest insect infestation 

was determined from high-resolution RS images using fuzzy set theory, which was the 

focus of chapter two. Idrisi Kilimanjaro, a GIs software developed by Clark Labs 

(Eastman 2003b), was used for implementing the methods of the study. The images were 

interpreted to determine the variables that represent susceptibility to insect attack. The 

variables underwent a fuzzification procedure where membership functions derived from 

expert knowledge transformed discrete values into continuous values indicating a tree's 

susceptibility to attack. Fuzzy sets were an effective method for handling the uncertainty 

of defining of cell states as the fuzzification process produced outputs that were able to 

significantly distinguish between areas of low, medium and high susceptibility. Areas 

that were estimated as highly susceptible were attacked sooner and more frequently than 

areas estimated to be of lower susceptibility. This finding, which is in accordance with 

empirical results from the literature, explains that lower susceptibility areas require 

higher populations of MPB in order for them to become attacked. 



The success of this procedure was mainly due to the use of the semantic import 

model that facilitated the transfer of expert knowledge from the literature into fuzzy 

membership functions that define how different variables of the insect-host relationship 

relate to susceptibility. Another leading contributor to the success of the procedure was 

the selection of the algebraic operator for combining the different variables of 

susceptibility. Instead of using a minimum or maximum operator, the study multiplied the 

values representing all four variables (i.e. tree size, stand diversity, distance to nearest 

large deciduous stand, and distance to the nearest previously attacked tree) for each cell 

in order to provide a more detailed representation of susceptibility. While some problems 

existed regarding digitizing accuracy, the overall framework presented in chapter two 

was successful at meeting the stated objective. 

The second component of the research was to develop a fuzzy-constrained 

approach for a GIs-based CA to model insect-induced mortality patterns in a forest at the 

individual tree level (the focus of chapter three). The fuzzy cell-state layers produced in 

the previous chapters were used as the initial input in the GIs-based CA model that was 

developed in the Macro Modeller module in Idrisi Kilimanjaro. Macro Modeller provides 

a graphical user interface for constructing the components of a CA model. The main 

objective in the development of the model was to determine how fuzzy states can be 

governed by the transition rules in order to provide realistic results. This was 

accomplished by testing three different functions that defined the population of MPB 

required in order to attack trees at a specific level of susceptibility. Inverse functions 

were selected to represent the notion that less MPB are required to attack trees of higher 

susceptibility. The power function was selected as the best representation of this 



relationship as it produced results that were most similar to reality. The non-linearity of 

MPB outbreaks is illustrated by the improvement of the results when using the power 

function compared to the linear function. The calibration procedure demonstrated that the 

model parameters (i.e. the height of the function) can be altered in order to have the 

results more similar to observed MPB-induced tree mortality patterns. This was a positive 

finding as it indicated that the results of the model can be controlled by the input 

parameters that govern the transition rules. Finally, the results from the five-year 

simulation showed that more susceptible trees were attacked sooner and more frequently 

than less susceptible trees, which is congruent with MPB outbreak behaviour as 

explained in the literature. Overall, the fuzzy cell states were successfully implemented in 

the CA model and the results indicate that the method employed can be useful for 

understanding the complex nature of MPB outbreaks. 

4.2 Contributions 

The method and results derived from this research provide a significant 

contribution to the literature pertaining to GIs-based CA modelling of complex 

geographic phenomena and the modelling of MPB outbreaks. The main contribution with 

regards to GIs-based CA modelling was 1) the use of fuzzy set theory for developing 

information for input into a CA model, and 2) the handling of fuzzy-constrained data by 

the transition rules. The use of fuzzy sets provided a method to overcome the limitations 

faced in defining tree susceptibility to insect infestations. This was partially due to the 

use of datasets that were spatially and temporally limited. The RS data were spatially 

limited as each study site was 750 m x 750 m, however this made it possible to focus on 

MPB outbreaks at the individual tree level. 



Fuzzy set theory also served as a utility for dealing with a temporally limited 

dataset. As it is difficult to gain an understanding the complex nature of MPB infestations 

from data collected over two years, expert knowledge was utilized through fuzzy sets in 

order to explain the susceptibility of trees to attack. A collection of high-resolution RS 

images over several years would greatly assist research in defining the patterns of MPB 

outbreak. However, long-term forest data collection is subject to anthropogenic landscape 

manipulation such as clear-cutting practices to harvest trees. Such practices interfere with 

understanding the true nature of MPB-induced tree mortality; therefore, MPB research 

would benefit from long-term data collection of areas that are void of human influence. 

With regards to modelling MPB outbreaks, only recently have spatial techniques 

been used to understand the morality patterns inflicted by MPB (Fall et al. 2004, Nelson 

et al. 2004, Shore and Safranyik 2004b), but only a few address the dynamic component 

of MPB outbreaks (Jackson and Murphy 2004, Riel et al. 2004). However, spatio- 

temporal studies have yet to focus on MPB outbreaks at the individual tree level. While 

this research does not fully explore the relationship between the species or age 

composition of forest stands and MPB attack, it does introduce a suitable method for 

modelling and understanding MPB-induced tree mortality patterns. The reason why CA 

have not yet been applied for modelling MPB outbreaks is due to the difficulties with 

defining cell states at the individual tree level and computational problems with using a 

large number of cells in the CA iterative modelling process. As the use of fuzzy sets has 

addressed this issue, CA should be considered in the future due to the parallels between 

MPB outbreak behaviour and the logic of CA transition rules. 



4.3 Future Directions 

This research can be extended to model tree mortality patterns at larger scales 

while still focusing individual tree mortality. This can be accomplished at the landscape 

level in order to determine how large-scale variables such as average temperatures, 

elevation, and species composition affects MPB outbreak behaviour. The methods could 

be extended to model at the regional level in order to determine tree mortality patterns 

across a province; however both high-resolution RS data for larger areas and the work to 

conduct the analysis on large datasets are costly. Hypothetical regional datasets could 

also be used with CA modelling in order to evaluate the consequence of various forestry 

strategies in the presence of MPB outbreaks over long periods of time (i.e. 20 years). For 

example, different harvesting practices such as clear-cuts, thinning and variable retention 

(i.e. retaining certain biological characteristics of the forest) can be compared based on 

how they affect MPB dispersal and attack behaviour. Alternatively, the ecological 

consequences of increasing species diversity and uneven-aged stands can be evaluated 

based on mediating the severity of MPB outbreaks. However, if long-term models of 

MPB outbreaks are to be successful they will have to consider the fact that the 

susceptibility of trees will change as time passes. One of the main contributors to a tree's 

rating of susceptibility is the size of the tree which is an indication of age. As non- 

attacked stands of host trees age they will become more susceptible to MPB attack. 

Therefore, a long-term CA model must incorporate a component that is able to alter 

susceptibility over time. 

Although the spatially explicit fuzzy-constrained CA model was developed 

specifically for emulating patterns of MPB-induced tree mortality, the conceptual 



framework can be applied to other insect infestation scenarios. For example, fuzzy sets 

can be used for defining the degree of insect-induced damage in situations where insects 

do not kill the tree that they are attacking. Cell values of 0 to 1 could represent the degree 

of damage that would allow forest management to make decisions for prioritizing areas 

that require attention. The methods can also be manipulated in order in order to be used 

for modelling land use change. Fuzzy sets could be employed when the motivations of 

different interest groups conflict and cause uncertainty in the future state of land parcels. 

Fuzzy values can also be used to represent the degree to which land parcels are 

developed, and the resulting information can be used to project land use change with a 

fuzzy-constrained CA. 

In closing, the methods presented in this research demonstrated that the presence 

of uncertainty and incomplete knowledge inherent in geospatial data do not have to 

restrict the type of applications that can be performed in GIs research. Regardless of the 

quality of the data used for spatio-temporal modelling, some degree of uncertainty will 

persist in terms of what exists at particular locations in space. Knowledge of spatio- 

temporal processes will never be complete. Therefore, it is necessary to acknowledge the 

presence of these issues and to develop suitable techniques in order to overcome the 

obstacles that they present. Remarkable advances have been made within RS and GIs 

over recent decades due to the ability to utilize methods and techniques from various 

fields of research in order to solve problems that can otherwise hinder the progress of 

GIScience. The future of both RS and GIs will thus only be limited by the creativity 

responsible for its progress. 
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