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ABSTRACT 

Completely regziiar semigroups are semigroups which are unions of groups. They 

form a variety ' B E  of unary semigroups, determined by identities ur-lx = x, ( x-I )-' = x 

and x i 1  = x*'x. The lattice of subvarieties of W will be denoted by 4P(W). 

Given 8, YE F(W ), their Muf'cev product VoY consists of those completely 

regular semigroups S which possess a congruence p such that S/p E Y and ep € 8  

( $ = e ). In general POT need not again be a variety. We &fine < VoP> to be the 

variety of completely regular semigroups generated by POX This thesis is &voted to a 

detailed study of the varieties of this form. 

Chapter 1 provides an introduction. Chapter 2 contains all the preliminary 

material needed in this thesis. The first section of Chapter 3 studies joins of 

congruences on Rees matrix semigroups, This enables us to extend a result of Jones 

[JS] by showing that % o Y  is again a variety if V E  Y(V) and T E 4P (W ), where V 

denoies the variety of all central completely simple semigroups. We also introduce the 

concept sf CR-relational morphism in this chapter. This makes it possible to describe 

the varieties of the form < lor>. This description plays an important role in 

subsequent chapters. 

Chapter 4 is devoted to study the varieties of the form < goy>, where 

denotes the variety of all groups. We first study the least full and self-conjugate 

subsemigroup c*(s) of a completely regular semigroup S. This enables us to introduce 

the operatot c*, and characterize < 8%' >. The operator C* h considered in detail. As 

a consequence, we extend a result of Petrich and Reilly [PR7] by showing that the well 

known operator C is a complete endomorphism of Y(g ), where denotes the 

variety of al l  orthogroup. By restricting C' to completely simple semigroup varieties. 

we show that th ordcr of C* is infinite and the Mal'cev product is not associative on 



Y(W). The semigroup generated by the operators C* and C is determined here. We 
* i 

also &scribe dC ) , le [m, %9"J and i 2 0, in terms of 2-invariant normal subgroups 

of the free group over a countably infinite set. 

Chapter 5 is devoted to study the varieties of the fornls < 40Y> with T E  { S, 

4PX, ). We first provide descriptions for these varieties. Qxrarors on Y(= 3 

related to these varieties and various relationships between these operators *.re 

studied in &tail throughout the rest of this chapter. 

As consequences of results obtained in the previous chapters, we describe the 

varietiesof the f m s  < % o F > w i t h F ~ { ~ , ~ , ~ , ~ , ~ , H , B  } in 

the f d  chapter. 
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Chapter 1 

Introduction 

Conqpletety regdm semigroups arc semigroups which unions of groups. This 

conception unifies many important classes of semigroups, such as idempotent 

semigroups, groups and completely simple semigroups, etc. Basic information about 

such semigroups can be found in Howie [Howl). The fundamental structure theorem for 

compktcly regular semigroups, due m Ciifford, states that a semigroup S is completely 

regular if and only if S is a semilattice of completely simple semigroups. This theorem is 

the corntrstont of the whdt thwry. From their inception to the present day, completely 

regular stmigroups have attracted a wide attention among researchers in semigroups, 

particuMy in recent ytars. 

A variety is a class consists of similar algebras which is cfosed for taking 

homomqhic images, direct products and subalgebras. By a famous theorem, due to 

Birkfioff, an equivalent definition of variety is an equationally defined class of similar 

algebras. It is rather easy to see that the class %?9 of all mpEetely regular semigroups 

is closed with respect to hmomorphic images and direct products. However, the 

additive group sf integers is completely regular but has the infinite cyclic semigroup of 

positive integers, which is not completely ngular, as a subsemigroup- Thus Wt do not 

constitute a variety of semigroups. Fortunately, the class of all completely regular 

semigroups, considerad as algebras with the binary operation of multiplication and the 

unary operation of inversion within each subgroup, is a variety determined by the 

identities : x o  = (xy)z, x = n- lx ,  (x-l)-' = x and xx-I = r lx.  Thus, the study of 



ccanpkaly regular sernigronps may be approreched fiom tfte perspective of their lattice 

of varieties. The lattice Y(%9 ) of all subvarieties of Wf has k e n  the subject of 

intensive study in recent years. Many auhxs have investigated varieties of completely 

regular semigroups. Various approaches to these investigations showed that Y(Gt3 ), 

even though compltx, can be saccessfoiIy staditd both localty and globally, For an 

extensive bibliography up to 1989 see EJ-R Reilly [Rei3]. The present thesis is a 

co~~tribution to this subjec~ 

Given subvarieties V and Y of W , their Mal'cev p r e t  V a r  consists of 

rhoae completely regular scmigmaps S which possess a congmeaa p such that S/p E Y- 

and each class ep E 8 ( $ = e ). In general POT is a quasivaritty, and wed not again 

be a vahiety. Rut it has k e n  shawed that in many important cases a variety is &tab&. 

Mal'cfv prodrrcts arc sf fubdamtnml impartana in the study of the lattice Y(W ) of all 

subvarittks of 5tX and play a central role in our investigations. 

Given two varieties P and 7 of compIttcly rtgutiir scmigtoups, we define 

< l o r >  to be ttrt variety of campleteiy regular semigroups g i t m f c d  by the Mal'ccv 

product of Z and !Y. Tbis tbesis is &d to a detailed stuciy of tht varieties of 



fVf ), w b  5f dt-s tbt vmiety of mnaf completely simple semigoups. Section 

3 prcrcntr aitmutivc dcrriptims of the operaton Tt. T, T, K. TI' and T,' in terms of 

W m v  products a d  kkntitics. Scction 4 inh-uduces the concept of CR-relational 

morphism, and cstab.Iishcs a number of  properties of CR-relational m q h i s m s .  The 

firral section of &is chapter pncsents a useful description of the varieties of the form 

< i t f o r >  ia t m s  of CR-relational morphisms. This description will be used in 

substqukiat chapters 

Chapter 4 is devoted to study the varieties of the form < POP>, where 

dcnotcs the variety of dl groups. The first section studies the least full and self- 

coojogate subscrnigmrp ?@) of a eomp*rcly regular sernigruup S. Section 2 presents 

thc description of the feast group, semilattice of groups and orthogroup congruences on 

~ i n t n m s d ~ * ( ~ ) . h ~ c c t i 0 u 3 a r c s h o w t h a t 1 ~ * = (  S E W  I c*(s) EP/ ) = 

< V y  > fra any V EL$'(-), by using the description obtained in Chapter 3. Section 4 

w vith showing mat tht  pera at or C' ammotes with the operatm K, T,, T,, T. T,' 

and T:. By rwaicdng our amcntiw ta 2((45P). SCCtion 5 extends a result of Petrich and 

Rcilly IPR7J by showing chat the operatop C is a complete cndomorphism of 4 P ( q ) ,  

where 9 dcnorcs ~€IC v&ty of all u&qpmps Though the action of C* on Y(W) is 

compkaad. a number of inmatiag and important results about C* on Y(W) are 

obtained in Scction 6, where W denotes the varier3 of all completely simple 

~ i ~ p r .  I. parcicoIarf we show that the order of the ope- C* is infinite and the 

W~pfodflctisnoo~veon2(W).F&er,for~~[[,W ] a n d n 2  1, 

we describe IX* ia tmm of 2-invariant oonnal subgroups of the fkee group over a 



Z. 9pemtors on Y ( a  ) related to these varieties and various relationships between 

these operators are studied in details throughout the rest of this chapter. 

As consequences of results obtained in the previous chapters, we describe the 

varietiesofthefoms<eCo9r>with9Y~f ~ , ~ , ~ , ~ , ~ , S % 9 , & ? 8  ) in 

ttte f ind chapter. 



Chapter 2 

Preliminaries 

The fundamental defmitions and results of completely regular semigroup theory 

which required in the sequel are presented in this chapter. For the fundamentals of 

semigoup theory, the reader is referred to Clifford and Preston [CP], Howie [Howl] 

and Petrich [Pel]. For background on varieties of algebras the reader is refened to 

Bums and Sankapanavar [BS], Griltzer [Gr2], and McKenzie, McNulty and Taylor 

[MMT]. For background on varieties of semigroups, the reader is referred to Evans 

[Ev]. The reader is assumed familiar with the fundamentals of lattice theory ( see 

Gr2ltzer [Grl] for the appropriate background ). Most of the results in Section 8 2.6 can 

be found in Pastijn and Petrich [PP2]. 

8 2.1 Semigroups 

A semigroup S is a pair ( S, ) where S is a nonempty set and is an 

associative binary operation, usually referred to as multiplication. Unless there is the 

possibility of arnbiguiy, we denote the semigroup ( S, ) by S and denote products in S 

by juxtaposition. 

Throughout the rest of this section S is a semigroup. 

Certain elements of a semigroup have special properties relative to the 

multiplication and play an bport;mt role in the study of the subject. 

An element e o f S  is a ltrfr(n'ght) identity of S if ex = x (xe =x),forall x ES; a 

hucz-skkd idenzizy ( or simply an i&&ry ) of S if it is both a left and a right identity of 



S. If S possesses an identity then it is unique and is denoted by 1 or 1, if we wish to 

emphasize that it is the identity of S. We define S' to be S if S has an identity or 

S u ( 1 )  with lx = xl  = x, for all x E S, if S does not have an identity. A semigroup which 

has an identity is called a monoid. 

An element z E S is a zero if nc = xz = Z, for all x E S. If S possesses a zero then 

it is uniqte and is denoted by 0 or 0, if we wish to emphasize that it is the zero of S. 

The semigroup S0is defined to be S, if S possesses a zero, or Su{O) with Ox = xO = 0, 

for all x E S, otherwise. 

An element s E S is regular if there exists an x E S such that s = sxs. S is called 

regular if every element of S is regular. 

Let s E S. An element x of S is an inverse of S if s = sxs and x = xsx. For any s 

E S denote by V(s) the set of inverses of s in S. S is called an inverse semigroup i f  

1 V(s) I = 1 for every s E S. 

Let s, t E S. Then s and t are said to commute with each other if st = ts. S is 

called commutative if all of its elements commute with each other. An element of S 

which commutes with every element of S is called a central element of S .  The set of all 

central elements of S is either empty or a subsemigroup of S, and in the latter case is 

called the centre of S. 

An element e E S is an idempotent if e = e2. The set of idempotents of S is 

denoted by E(S). The relation 5 on E(S) defined by e 5 f if and only if e = ef = fe, for all 

e, f EE(S), is a partial order and is called the mnual partial order of E(S). An element e 

of S witbut zero is primitive if it is mirimal relative to the partial onkr on E(S); i.e., 

fL= f = ef = fe implies f = e. An idempotent semigroup, a simply a band, is a semigroup 

in which all elements are idempotent. A commutative band is a semilattice. We denote 

by 9 a n d  Sf, respectively, tht classes of all semilattices and all bands. 



S is lefr cancellattve if for any a, b, x E S, xa = xb implies a = b; rig& cancellative 

if ax = bx implies a = b; cancellative if it is both left and right cancellative; weakly 

cancellarive if ax = bx and xa = xb imply a = b. S is left reductive if for any a, b E S, xa = 

xb for all x E S implies a = b; right reductive if ax = bx for all x E S implies a = b; 

reductive if it is both left and right reductive; weakly reductive xa = xb and ax = bx for 

all x E S imply a = b. 

A nonempty subset T of S is a subsemigroup of S if it is closed under the 

operation of S; i.c., if a, b E T then ab E T. If A is an arbitrary nonempty subset of S, then 

the set 

{ s, .,, s, I s ieA andm is arbitrary ) 

is the subsemigroup of S generated by A, &noted by [ A 1. If S = [ A ] we shall say 

that A is a set of generators for S of a generating set of S. 

A nonempty subset T of S is a left ideal of S if s E S, t E T imply st E T; T is a 

right ideal if s E S, t E T imply ts E T; T is a two-sided ideal ( or simply an ideal ) if it is 

both a left and right ideal. An i&al of S different from S is a proper ideal. The 

intersection of al l  left ideals of S containing a nonempty subset T of S is the left ideal 

generated by T. A left ideal generated by a one-element set ( a ) is the principal lefr 

ideal generated by a, and will be denoted by L(a). The corresponding definitions are 

vdid for right ideals with notation R(a), and two-sided ideals with notation J(a). If a 

ES, then L(a) = S1a, R(a) = aS1 and J(a) = S1aS1. 

Let S and T be semigroups. A mapping cp : S + T is a hommophism of S into 

T if for di a, b E S, we have (acp)(btp) = (ab)cp. If cp is one-to-one, then 9 is an 

i s o m o r p ~  or embedding Q# S into T, and S is said to be embedduble in T. I f  there is a 

bomorphism of S into T, T is a homomorphic image of S; further, S and T are 

isomorphic if there is an isomorphism of S onto T; if so, we write S = T. A 



homomorphism of S into itself is an endomorphism; a one-to-one endomorphism of S 

onto itself is an autonwrphism. 

If { S, ),, is a famiIy of semigroups, their direct product is the semigroup 

defined on the Cartesian product nae1S, with coordinatewise multiplication. The 

notation for the direct product is n,,S, except when I is finite, say I = { 1, 2, ..., n ), in 

which case we write S, x S,x ... x S,. Any semigroup isomorphic to a direct product of 

semigroups S, is itself a direct product of S ,  a E I. 

Let { S, )a,I be a family of semigroups, let S = n, ,S, and n, denote the 

projection homomorphism IT,: S - S,. Any semigroup S' isomorphic to a 

subsemigroup T of S such that Tn, = S, for al l  a E I is a subdirect product of semigroups 

S ,  a E I. A semigroup S is subdirectly irreducible if it has the property : whenever S s 

n,,S, is a subdirect product, then one of the projection homomorphisms x,is one-to- 

one. 

Note that if S is a subdirect product of semigroups { S, I,,*, then each S,is a 

homomorphic image of S. 

The following result is of universal-algebraic character, and is useful. 

Theorem 2.1.1 [Pel]. Every semigroup is a subdirect product of subdirectly 

irredncible semigroups. 

The above theorem remains valid if in it we substitute " the class of all 

Semigroups " by any class of semigroups closed under taking homomorphic images. For 

example, it follows that every ( idempotent, commutative, or both ) semigroup is a 

subdkzt product of subdindy irreducible ( idempotent, commutative, or both ) 

semigroups. 



A binary relation p on a set S is a subset of the Cartesian product S x S. We 

will write a p b and say that a and b are p -related if ( a, b ) E p and p call simply a 

relation. 

If p and a arc relations on S, their composition poo is defined as follows: 

(a, b ) ~ p o a i f  andonlyifthereexists c ES  suchthat ( a , c ) ~ p  and(c, b)~a. The 

binary operation is associative. 

A relation p on S is 

reflexive if a p a, 

s y l l ~ n e ~ c  if a p b implies b p a, 

transitive if a p b and b p c imply a p c 

for all a, b, c E S. 

A reflexive, symmetric, transitive relation p is an equivalence relation; its 

classes are p -classes and the p -class containing an element a will be denoted by ap. 

The relation p on S for which a p b if and only if a = b is the equaliry relation on S and 

will be &noted by eS; the relation p on S for which a p b for dl a, b E S is the universal 

relaion on S and will be denoted by as. Both es and are cquivdence relations. We 

den- by C(S) the set of equivalence relations on S. 

Also,forany l , p ~  XS),wewillwrite[A;p]={ a d ( S ) I  k s o c p  ). 

An equivalence relation p on a semigroup S is a lefo congruence if for all a, b, c 

E S, a p b implies ca p cb, a right congruence if a p b implies ac p bc; p is a congruence if 

it is both a left and a right congruence. We &note by A(S) the set of congruences on S. 

Let p, a be relations on a set [ semigroup ] S. The equivalence relation 

[ congmnce ] generated by p is the least equivalence relation [ congruence ] on S 

containing p; it is denoted by p*. The join p v a of p and a is the equivalence relation 

[ congruence 1 generated by p u a. 



Both C(S) and A(S) are closed under intersections. If S is a semigroup, then 

A(S) is a  sublattice of the lattice C(S). The reader is referred to Howie [Howl1 for 

more information about those two lattices. 

Lemma 2.2.1 [Howl]. If p  is an equivalence on a semigroup S, then 

p 0 = ( ( a , b ) e  S X S  I xaypxby f o r a l l x , y ~ S ~  ) 

is the largest congruence on S  contained in p. 

Lemma 2.2.2 [Howl]. Let p, be a  reflexive symmetric relation on a semigroup S. Let 

p  consist of all pairs ( a, b ) such that there exist si, 4, pi, q E S1 with pi po qi ( i = 1, ... , 

n ) and 

Then pis the congruence on S generated by p,. 

Lemma 2.23 [Howl]. Let p, a be equivalences on a set S [ congruences on a 

semigroup S 1. If a, b E S, then a  pva b if and only if for some n there exist elements x,, 

x,, ... , in S S U C ~  that 

a p x l  ,x,ax2, x2px3, ... , % - l a b .  

Let p be a congruence on a semigroup S. Then the set S/p of all p-classcs with 

the multiplication (ap)(bp) = (ab)p is the quotient semigroup relative to the congruence 

P- 



Lemma 2.2.4 [Howll. For any congruences p and 0 on a semigroup S such that p 

a, define a relation alp on SIP by 

tap) Wf?i (bp) o a o b *  

Then alp is a congruence on SIP and (Slp)/(~lp) e Slo. 

There is a strong connection between congruences and homomorphisms. Given a 

homomorphism 9 of a semigroup S i n ~ o  a semigroup T, there is an associated 

congruence $# on S defined by a $# b if and only if a@ = b@, for all a, b E S. Conversely, 

given a congruence p on a semigroup S, there is an associated homomorphism 

p# : S s SIP given by sp# = sp, for all s E S (Howl]. 

Let I be an ideal of a semigroup S. Then the relation p,on S defined by 

ap Ib  u a , b ~  I o r a = b  ( a , b ~ S )  

is a congruence and is called the Rees congruence on S relative to I. The quotient 

semigroup SIP, induced by pI is called the Rees quotient semigroup relative to I and is 

denoted by S h  [Pel]. 

Lemma 2.2.5 ( Lallement's Lemma ). Let p be a congruence on a regular semigroup 

S and a E S be such that ap EE( Sip ). Then ap = ep for some e E E(S). 

The close correspondence between congruences and homomorphisms enables us 

to obtain the following alternative version of Lallernent's Lemma: 

Lemma 2.2.6 [Howl]. Pf$ : S - T is a homomorphism from a regular semigroup S 

onto a semigroup T, Then St# is regular. If f E EfT) then there exists e E E(S) such that 

e$ = f. 

If p is a congruence on a semigroup S and T is a subsemigroup of S, p I will 



&note the restriction p n Q T x T ) of p to T. 

The following two concepts will be used exten.sively. 

If W is any class of semigroups, S is a semipup and p is a congruence on S, 

then p is a W -congnrence if Sip E W. If Vis the class of all semilattias. 9 -congruences 

are called semilamce congruences; one defines analogously b u d  congruences, left zero 

congruences, etc. 

For example, a congruence p on a semigroup S is a semilattice congruence if and 

only if for al l  x, y E S, xy p yx, x2 p x. Similar expressions hold for other conpnces.  

Let W be a class of semigroups. A semigroup S is a semilattice of semigroups 

bebnging to W if there exists a semilattice congruence on S all of whose classes belong 

to 5K The concepts: a band of ur a lefr zero sernigroups of sernigroups belong to W, are 

&fined analogously. 

The following result will prove useful. 

Lemma 2.2.7 [PC!!]. Let ( pa ),I be a family of congruences on a semigroup S such 

that naE pa = es. Then S is a subdirect product of smigmups S/p,. u E 1. 

8 23 Green's relations 

Grten's relatious are named for J.A. Green who introduced them in 195 1 fGrel. 

Thest reM0lls have played a funeamental role in the development of semigroup theory. 

In my semigroup S ,  the relations 8, S, fl  , Z and 9 defmed on S by 

a 9 b c=, aS1 = bS1, 

a 9 b m S1a=S1b, 

a b e SaS1 = S1bS1, 

% = Y e  and 9 = S o * ,  



are Creeds relations ( or equiwzlences ) on S .  Note that 2 is a left congruence and Y 

is a right congruence; further, S and 9 commute, and that 9 = 209 = 9 o Y  is an 

equivalence relation [CP]. 

F o r a n y X ~ (  Y,*,,p ,Z,9 ),&fine t h e 3 - c l a s s s f s ~ S  by&= { x E S I  

s ~ x ) .  

The next lemma is known as Green's Lemma. 

Lemma 23.1 [Gre]. Let a and b be A? -related elements of a semigroup S. By 

hypothesis therc exist s, s' E S' such that as = b and bs' = a Then the mappings 

Q :  X ---4 XS ( x E ~ ) ,  

6: y ys'  YE^), 

arc mutuatly inverse, A? -related preserving, one-to-one mappings L, onto Lb , and of 

onto L, , respectively. 

The next result is known as Green's Theorem. 

h m c r  23.2 [Gre]. If a, b and ab ail belong to the same %-class H of a semigroup S, 

then H is a subgroup of S. In particular, any Zclass  containing an idempotent is a 

subgroup of S. 

Lemma 2 3 3  m. Every idempotent e in a semigroup S is a left identity of &, a right 

identity of L, and the identity of &. 

Lemma 23.U [Howl]. Let e, f be i&mpoonts in a semigroup S. Then 

(i) t Y f  i f a n d d y i f  ef=e,fe=f; 

@) e S f  ifandonlyif ef=f,fe=e; 



(iii) e 9 f if and only if there exists a E S and a' E V(a) such that e = aa', f = a'a; 

m e r ,  if e 9 f, then M, s Hf. 

Lemma 2.3.5 [Howl]. In a regular semigroup each S -class and each 9'-clas s 

contains at least one idempotent. 

Lemma 23.6 [HI]. Let S be a regular subsemigroup of a semigroup T. Then Green's 

relations Y,S, Z on S are the restrictions of those on T. 

5 2.4 Completely simple semigroups 

Let S be a semigroup. Then S is simple if 1 = S x S; and S is completely simple 

if it is simple and contains a primitive idempotent. 

The next two results give some useful characterizations of completely simple 

semigroups. 

Lemma 2.4.1 [Pel]. The following conditions on a semigroup S are equivalent. 

(i) S is completely simple. 

(ii) S is regular and all its idcmpotents arc primitive. 

(iii) S is regular and weakly cancellative. 

Lemma 2.43 []Pel]. Let S be a completely simple semigroup and let e, f E E(S). Then 

the following statements hold. 

6) Z is a congruence on S, d H, = aSa = Ga - the maximal subgroup of S 

am-g a 

For any a, b E S, ab E Ge implies aSb G G,. 

(ii) ef = e implies fe = f, 



(iv) ef = f implies fe = e. 

We &note by W the class of al l  completely simple semigroups. 

For any 4-tuple (Go, I, A; P) where G is a group, I and A are nonempty sets and 

P :  p i  i s a ~ c t i o n f i o m A x I t o G , l e t M ( G ; I , A ; P ) = G x I x A  together 

with multiplication 

(g; i ,x)(h;j ,p)=(mqki,p)-  

It is a straightforward exercise to show that M(G; I, A; P) is a completely simple 

stmigroup. This construction is due to Rees [Re] and M(G; I, A; P) is therefore called 

the Rees I x A matrix semigtokp over the group G with tk sandwich matrix P.  For 

convenience, we sometimes write [ 1, i ] for px. We will usually call such a semigroup 

a Rees matrix semigroup. However, Rees matrix semigroups are much more than 

examples of completely simple semigroups. 

Theorem 2 4 3  [Pel]. Let S be a completely simple semigroup; fix g EE(S), and let G 

=Gg* 

I =  (eeE(S) I e g = e  ), A =  ( feE(S) I gf=f ), 

P = ( ph ) where pfe = fe. Thtn the mapping x defined by 

% : a  - (=e , f )  ( a e W  

whtrt ag E Ge, ga E Gf, is an ismnarphizgn of S onto T = MG; I, A; P). 

Lu S = M(e, I, A; P) be a Rets matrix semigroup. The d w i c h  m;d%rix P is 

n o d i z e d i f t h c n  exists 1 E I n  Asucb t h a t ~ , = e = p , ~ , f o r a l l X ~ A a n d i ~ I ,  where 

e denote the identity of G. A pint which will be of importance in 5 3.1, is that the 

sadwicb ma& P defined in T h m  2.4.3 is normalized. 

We can sum up the stmcmc theorem of completely simple semigroups in the 

fW$ farm 



T h m  2.4.4 well, Tbe following conditions on a semigroup S arc equivalent, 

(i) S is compktely simple. 

(ii) S is isomorphic to a Rees matrix semigroup with normalized sandwich matrix. 

(iii) S is isomorphic to a Rees matrix semigroup. 

Lemma 2-4.5 [Pel]. Let S = M(G; I, A; P) be a Rees matrix semigroup and a = 

( g ; i , l ) ~ S .  Then 

(i) L= ((g'; j , W g ' ~ G , j ~ 1  j- 

(ii) R,=l  ( g ' ; i p ) l g ' ~ G p f A  1- 
(iii) H,= ( ( g ; i , % ) i g " ~ G ) .  

TIE following useful result can bt &rived easily fr;om Howie [HOW~]. 

Lemma 2-4.6 [How2], Let S = H(G; I, A; P) be a Rtes matrix semigroup with 

normalized P. Then [ E(S) ] = M{< P >; I, A; P) where < P > is thc subgroup of G 

gmemed by the entries of P. 

We now introduce some rather specid yet important classes of completely 

simple semigronps. 

ASemigronpSisarectan~band~aba=a,foralla,b~S.AstmiproupSisa 

rectangular group if it is isonsorphic to thc cfirer=t product of a rectangular band and a 

groupgroup The class of all rtctaagular group [ rectangular band ] will k denoted by 

I=@ I. 



Lenrnro 2.4.8 [HawlL Thc following ccwditions on a semigroup S are equivalent. 

( S is a kft f right ] gnnrp. 

(ii) S is completely simple and E(S) is a Ieft f right ] zero $tmi$ronp. 

(iii) S i s 1 1 t g u f a r r u a d 4 P = S x S [ ~  = S x S ] .  

An elanent a of a semi- S is completely reg& if a = am and ax = xa for 

soo~c x E S; S is mnpletely regrrirP if alI its elements are compkteIy regular. 



Lermma 25.2 [PelL Tk following conditions on a semigroup S arc equivalent. 

(i) S is completely regular. 

(ii) For every a E S, a E aSa2, 

(iii) S is a union of ( disjoint ) groups. 

(iv) Every Z-class of S is a group. 

IRt Wi! &note tk class of all completely regular semigroups and for any a E S 

EW, let a-I dcnotc the inverse of a in the ( group ) X-class H, and let a0 denote the 

element m1 = a%, the identity of the group I&. 

Let S be the disjoint union of the semigroups S, ( a EY ), where Y is a 

semilattice and S& Sap. 'Ilm S is said to be a semilattice of the semigroups S,. 

a EY, md we write S = u,, S,, and refer to the semigroups S, as the components 

of S, The importance of this concept in the theosy of completdy regular semigroups was 

revealed by the folIowing tkmm. 

Theorem 2.53 [CPj. Let S E-. Then 9 = p is a congruence, each f -class is a 

compktely simple semigroup and Sb is a semilattice. Thus S is a semilamce of its g 

Eclr use in later chapters, we gather the following basic properties of completely 

regular semipups. 

Lemma 25.4. k t  S E- and let T be a subsemigroup of S. Then T E %3V if and only 

ifTisdoscdarrdetinvet~es; that is, a - l ~ T f i a a n y  aeT. 



Lemma 2.5.6. Let S, T E= and cp : S ---+ T be a su jective homomorphism of S 

onto T. Then 

(i) a-lcp = ( aQ)" for any a ES. 

(5) For any t E T, thert exists s E S such that scp = t and s-lcp = t-I. 

By the above facts, is closed with respect to products and homomorphic 

images. However, is not closed under subsemigroups. Thus W is not a variety of 

semigoups. However, 5C5f may be regarded as a class of algebras with the operations 

of ( binary ) multiplicadon and ( unary ) inversion. As such '33 forms a variety defined 

by the identities 

x(yz) = (xy)z, x = u- 'x ,  x-lx = xx-1, (x-')-I = x. 

With the earlier notation, we shall write xo = x-lx = xx-l. 

One observation that is sometimes helpful is the following. 

Lemma 25.7 [PR3]. The variety %S satisfies the identity 

0 1 0 - 1  (xyY1 = by) y- (yx) x @Y)O 

For any S E-, let C(S) denote the subsemigroup of S generated by the 

idempatents of S, i.e., C(S) = [ E(S) 1. 
%. 

Lemma 25.8 m]. For any S E m, C(S) E W?! 

As a particular case of [ H2, Theorem 2 1, we have the following useful 

observation. 

Lemma 25.9. For S = U, S, E WF , we have C(S) = V- &(Sa). 



The rest of this section is devoted to several important classes of completely 

regular semigroups. 

Lemma 2.510 [Pel]. The following conditions on a semigroup S are equivalent. 

(i) S is a band of groups. 

(ii) S is completely regular and Z is a congruence. 

(iii) S is ngular and a2bs = abS, ~abZ = Sab for all a, b E S. 

We denote by Ai$!? the class of all b a d  of groups. 

A completely regular semigroup S is an orthogroup if E(S) forms a 

subsemigroup. We denote by t$$? the class of all orthogroups. 

Lemma 2S.11 [Pel]. The following conditions on a semigroup S art equivalent. 

(i) S E ~ .  

(ii) Every 9 -class is a rectangular group. 

Let denote the class of all semilattices of groups. Then we have the 

following result. 

Lemma 25.12 [Howl]. The following conditions on a semigroup S are equivalent. 

(i) S E ~ .  

(ii) S is regular and its idempotents lie in its centre. 

(iii) S is isomorphic to a subdirect product of a group and a semilattice. 

5 2.6 Congruences on completely reguiar semigroups 

Throughout this stction, let S denote a completely regular stmigoup. 



Let p be a congruence on S. Then the kernel of p is 

k e r p = [ a € S  I apaO 1 

= "E as) ep 

and the trace of p is 

@ P = P ' ~ S ) -  

The key observation about the kernel and trace of a congruence is that in 

combination they completely determine the congruence. 

Lemma 2.6.1 [PP2]. Let p be a congnrence on S. Then, for any elements a, b E S ,  

a p b # a0 tr p bO and ab-I E ker p . 

This leads to natural questions concerning the nature of those subsets of S 

which are kernels of congruences and those equivalence relations on E(S) which are the 

traces of congruences. 

A subset K of S is said to be a n o d  subset of S if it satisfies the following 

conditions: 

(i) E(S) E K, 

(ii) ~ E K  a k - l ~ K ,  

(iii) x y ~ K  y x ~ K  ( x , y ~ S ) ,  

(iv) x , x v ~ K  + x y e K  ( x , y ~ S ) .  

Fbr any subset K of S, we denote by % the largest congruence on S for which K 

is a union of % -classes. Then 

nK= ( ( a , b ) ~ S x S  I X ~ Y E K  ifandonlyif x b y ~ & f o r ~ l l x , y ~ ~ ~  }. 

Theorem 2.6.2 fPP2J. Let K be a subset of S. Then the following statements are 

equivalent. 

(i) K is a nomd subset of S, 



(ii) K is the kernel of some congruence on S, 

(iii) K is the kernel of A~ 

When (i) - (iii) hold, ( ( k, ko) I k EK )* is the smallest congruence and aK is the 

largest congruence on S with the kernel K. 

Let 7 be an equivalence relation on E(S). Then z is a normal equivalence if it 

satisfies the following condition: 

e l f  o ( X ~ ~ ) ~ T ( X ~ ~ ) O  ( x , y ~ S l ) .  

Theorem 2.6.3 [PP2]. Let 7 be an equivalence relation on E(S). Then the following 

conditions are equivalent. 

(i) .r is a normal equivalence. 

(ii) .r is the trace of some congruence on S. 

(iii) Z = ST*. 

When (i) - (iii) hold, then z* is the smallest congruence and ( %ozo~)O is the 

largest congruence on S with trace T. 

We refer the reader to either Pastijn and Petrich [PP2] or Reilly [Rei3] for 

results concerning when a normal subset and a normal equivalence can be com bind to 

the h e 1  and trace of a single congruence. 

Let the kernel relation K and the uace relation T be defined on A(S) as follows: 

S K p  e kerL=kerp (X,peA(S)), 

S T p  u u h = t r p  ( h , p ~ A ( s ) ) -  

Clearly, K and T art both equivalence relations, and K n T = e, the identical 

relation on A(S). We have the following interesting observations. 

Lemma 2.6.4 PP2I. Let I,  p E h(S). Then 



(i) XKp e k n Z = p n Z .  

(ii) A T p  e X v Z = p v Z .  

Let NS) denote the set of all normal subsets of S ordered by set theoretic 

inclusion. Then as) is a complete lattice with respect to the operations 

K , A K , = K , ~ K ,  and K , v K , = n ( K ~ a s )  I K p &  SIC) .  

Theorem 2.6.5 [PP2]. The mapping 

ker : p ----+ ker p ( p EA(S) ). 

is a complete n-homomorphism of A(S) onto a s )  which induces the relation K on 

A(S). For all p E A(S) the K -class of p is an interval [ p, , pK] , where p, = ( p ~ ) *  

 and^^=^^. 

Unfortunately, K is not always a congruence [Rei3]. 

Let 7(S) denote the set of all normal equivalence relations on E(S). Then ?(S) 

is complete lattice with respect to the operations 

G A T = Q ~ T  and a v z = n ( p ~  qS) I d u ~ s p ) .  

Theorem 2.6.6 [PP2), The mapping 

tr:p - trp (p€A(S)). 

is a complete homomorphism of A(S) onto 1(S) inducing the relation T on A(S). 

Moreover, for each p EA(S), the T -class of p is an interval [ pT , pT], where pT = 

(trp). and pT= ( p v ~ ) ' .  

In contrast to the fact that R need not be a congruence on A(S), we have that T 

is a complete congruence on A(S), by Theorem 2.6.6. 



Two additional relations on A(S) associated with the other Green's relations 2 

and 9 are defined as follows: 

5 Ti P ( )  s and Pl(pnX) s (f ( X. p E A(S) ). 

1 T, p X/(hp)  s * and Pl(pnX) s 9 ( 5, p E A(S) ). 

We refer to Tl as the left trace relahn and to T, as the right truce relation on A(S). 

For any congruence p E A@), the lefi m e  and righz trace of p an defined to be 

l t r p = ( p v Y ) O  and r t r p = ( p v l ) O .  

Then an equivalent characterization of the relations TI and T, is given by the following: 

for X, p E N S ) ,  

XTlp rn laA=l t rp  and XTrp w r t r h = m p .  

The parallelism between the relations T, TI and T, is brought out strongly in the 

next result. 

Theorem 2.6.7 [PP2]. The mappings 

p ----, p v %  p - p v Y ,  p ---, p v 9  

are complete homomorphisms of the lattice A(S) into the lattice Z(S) inducing the 

relations T, Ti and T,, respectively. Consequently, the relations T, Tl and Tr are 

complete congruences on A(S). 

Since TI and T, are complete congruences, it follows that all the T1 -classes and 

T, -classes are intervals. For any p E A(S), we define PT, , PT , pT1 and pTr by setting 
r 

P T I = I P T ~ , P ~ ~ I  a d  P T ~ = [ P T , , P ~ ~ I -  

In order to give more explicit descriptions of the endpoints of T1 - and T, - 

classes, it is convenient to introduce the following relations. Define 

e S, f w e=ef  (e,ftzE(S)) 

and define the relation S dually. 



The next result sets out some important basic connections between the 

relations K, T, T1 and T, 

Lemma 2.6.9 [PP2]. Let p eA(S). Then 

(i) p K ~ P T = p = p K ~ p T .  

(ii) pr, v PT, = & and pT1 n pTr = pT. 

(iii) Tl n T, = T. 

This leads to the following diagram from [PP2]. 

Figure 2.1. 



As we will see later, the most important applications of these concepts are in 

the lattice of varieties of completely regular semigroups. 

In the remainder of this section we briefly discuss several congruences on S ,  

which will be needed in the sequel. 

Let p E A(S). Then p is idempotent pure if ker p = E(S); p is idempotent 

separating if tr p = e or, equivalently, p s Z. 

The following observation is straightfoward. 

Lemma 2.6.10. Let p EA(S). Then p is idempotent pure if and only if p n 2t" = es. 

Let p = pS be the largest idempotent separating congruence on S, and let .r = zs 

be the largest idempotent pure congruence on S. 

Lemma 2.6.11 [H2 and JS]. Let S E-. Then 

p=& 

= ( ( a , b ) ~ S x S  I aO=boand a%= b- ' eb fo ra l l e~E(S) , e5a~)  

= ( ( a , b ) ~ S x S  I a-l(aOeaO)Oa=b-l(bOebO)%foralle~~(~) ). 

It is not hard to see that 

T =  { ( a , b ) ~ S x S  I xayeE(S) ifandonlyif x b y ~ ~ ( S ) , f o r a l l x , y ~ S '  ). 

Whilst this description is not very useful in practice, the following simple description of 

z n 9 will be needed in the sequel. 

Lemma 2.6.n [JS]. Let S E W. Then 

z n O = (  ( a , b ) ~ 9  I ( x . a y ) ( ~ b ~ ) - ~ ~ ~ ( ~ ) f o r a l l ~ , ~ ~ ~  ). 

Lemma 2.6.B. Let S E 5W. Then 



(i) 9 = ( ( a , b ) ~ S x S  i ( ~ a ) ~ = ( x a x b ) ~  and ( x b ) * = ( ~ b x a ) ~  

foral lx€S1) 

= (  ( a b ) ~ S x S  ixa=xa(xb)O and xb=xb(xa)O fo ra l lxsS1) .  

(ii)*o = ( ( a , b ) ~ S x S  l ( ~ ) O = ( b x a x ) O  and ( b ~ ) ~ = ( a x b x ) '  

f o r a l l x ~ S ~ )  

= ( ( a , b ) ~ S x S  lax=(bx)'ax and bx=(ax)'bx f a a l l x ~ S ~ } .  

Proof. (i) Since S EW, then for any a, b E S, we have 

a Y b  w a Z a b  and b Z b a  

u a = a P  and b=baO.  

Note that 2 is a right congruence, then for any a, b E S, we have 

a 9  b * x a p x b  f o r a l l x ~ s l  

w x a z x a x b  and x b z x b x a  

o (xa)'=(xaxb)' and ( ~ b ) ' = ( x b x a ) ~  forallx.S1 

o xa=xa(xb)O and xb=xb(xa)O forallxeS1. 

Hence, (i) is obtained. 

(ii) Tlhis is the dual of (i). # 

5 2.7 Varieties of completely regular semigroups 

We begin with some familiar but necessary background on varieties of algebras. 

The -reader is referred to Burris and Sankappanavar [BS], GrPtzer [Gr2], and 

McRenzit, McNulty and Taylor m] far details. 

By an algebra, we will mean a nonernpty set together with one or more 

operations. Familiar examples are groups, lattices, semigroups, etc. By a variety or 



equationul class of algebras we shall mean a class of algebras of the same type defined 

by a set of identities. 

For any class W of algebras, let 

P W = the class of all direct products of members in V 

H W= the class of all homomorphic images of members in V 

S W = the class of all subalgebras of members in W. 

The next result is known as ~irkhofls  Theorem. 

Theorem 2.7.1 [Gr2]. Let V be a class of algebras of the same type. Then W is a 

variety if and only if W = HSP W. 

One useful consequence of ~irkhoff's Theorem is a characterization of the 

variety generated by a class of algebras of the same type. 

Lemma 2.7.2 (Gr21. For any class Wof algebras of the same type, the smallest 

variety containing W is HSP V. 

We call HSP W the variety generated by W and denoted by < W >. Thus < W> = 

HSP W. If V consists of the single algebra S, we write < S > instead of < W >, and call 

this the variety generated by S. 

If % is a variety defined by the identities T, then we write V = [ C 1. If X is a 

finite set of identities ( u, = v, , ... , y, = v, ) we will often write V =  [ u, = v, , ... , 
n, = v, ] instead of [ C 1. We sometimes refer to the identities which define the variety Z' 

as laws. 

If V is a variety contained in the variety T then V is a subvariety of Y. For any 

variery T, it is easily verified that the subvarieties of 4iv constitute a complete lattice 

with respect to the operations 



We shall denote this lattice of subvarieties of Y by Y(m. 
Let Ybe a variety of algebras, X be a nonempty set, F = F(X) be an algebra in S' 

generated by X and 8 : X ---, F be the embedding of X into F. If, for all algebras A in y 

and all mappings a : X ---+ A, there exists a unique homomorphism $ : F + A which 

"extends" a, that is, such that xep = x a  , for all x E X, then F is said to have the 

universal mapping property for Yover X or to be afiee object in Srover X .  In fact, up to 

isomorphism, such free object in r o v e r  X is unique. 'Fhis leads us to refer to the free 

object in Y over X, or the relatively free object in 'Y" over X, and to be denoted by 

FAX). Then for any S E T and any mapping 9 : X ---+ S, there is a unique 

homomorphism @*: F f i )  + S which extends $. 

P is an operator if for every class K of algebras, K P is also a class of algebras. 

As we mentioned in 8 2.5, completely regular semigroups, considered as 

algebras with the binary operation of multiplication and the unary operation of inversion 

within each subgroup, is a variety determined by the identities 

(1) x(yz) = (xy)z, x = xx-'x, x-'x = xx-1, (x-1)" = X. 

Consequently we may consider the lattice of varieties of completely regular semigroups. 

Let X be a nonempty set. Thefree semigroup on X consists of all nonempty f ~ t e  

sequences of elements of X, called words, over X, called an alphabet, given the 

multiplication of conc8tenation. We denote the free semigroup on X by x+. The free 
mmid over X, denoted by x*, consists of all words over X including the empty word, 

which saves as the identity of x*. 
The description in [C] and fRei2) of the free completefy regular semigroup 

F d ) ,  that is, the fnc object in the variety Wt over X is via a description of the free 

unary semigroup U over X, that is, the free object over X in the variety of all semigroups 

with a unary operation. Let Y = X u ( ( , )*I ), where " ( " and " )-' " are two distinct 



elements not in X. By Cliffosd fC], U is the smallest submigrwtp of the fize semigtoup 

Y+ an Y such that X c U and (w)'*s U for a l l  w E U. As a notational convenkncc we 

write w-I instead of (w1-l in U. Let 5 be the conpence on U generated by the pairs 

( w, ww% ), ( war1 . w-Iw ) and ( (d)-' , w ) for all w E U. Then F&) = U/c 

( [C], ma]). Every dement of F a  can be written in tbc form w with w E U. We 

henceforth assume that w = v in F a  if and only if the identity w = v is a 

consequence of the identities x = u - l x ,  r l x  = xx-l, (rlyl = x. Thus if T is a 

subvariety of WE, &en we sbdl write tk ideatities that hold in T i n  the form w = v 

where w,v EU, 

A congruence p on a completely reregular semigroup S is fu ly  inmiant if it is 

invariant under all endomorphisms @ of S, that is, if a p b implies (a*) p (b4) for all 

endomorphisms $ of S. The set of all fully invariant congruences on S, denoted by 

FCON(S), is a complete subIa#ice of tht lattice of congruences on S. 

Fundamentd to the discussion of varieties is the standard correspondence 

between varieties and m y  invariant congnrcncts. 

Theorem 2.73 ( [GrZ]. ). Let X be a nonempty set. Fur any Y E  Y(=), let 

&-=n(y€NFFCI(X)) I F&Yr~YI. 

Then pr is a fully invariant congruence on F d X )  and, identifying x with xpp, 

F&/p, is the free object in Tovef X 

kt X be infinite and far any fully invariant congruence p on F d X ) .  let 5 



are mutually iinverse order anfi-isomclrphisms between thc lattices xm and 

FeON( F a  1. 

We sometimes rder to pr and a as thc fully invariant congruence comsponding 

to 7 and thc variety c w n d i n g  to the fully invariant c o n p e n c e  p, respectively. 

ThPMlghoUt the rest of tbiS thesisr X is 8 ~ s u m e d  to be a f& countably infinite set, 

unless otkmisc stat& artd I' the lattice of fully invariant cangmences on F d X ) .  

In Theorem 2-67, we saw that the relations T, T1 and T, are complete 

congruences on A(S) far any S E- . A notable absentee fhm this list was K. We now 

have: 



are complete n-endornorphisms of Y(=) but are not v-homomorphisms. 

Surprisingly, the mapping 

ZT ( Z E Y ( W ) )  

is not an endomorphism of Y(W ) ( see Petrich and Reilly [ PRS, Proposition 7.6 ] ). 

It will be important to p int  out that K, Ty T1 and T, art all idempotent operators on 

Y(WZ ). A h ,  more discussion about these operators will take place later in this 

thesis. For more information, the reader is also referred to Pastijn [PI, Pol& ( [Pol], 

  PO^], [Po31 ), Petrich and Reilly ( [PR6], [PRS] j. 

One question about 9'(- ) that remained ur.answercd for a considerable time 

was whether or not it is a modular lattice ( a lattice L is modular if a 5 y * av( p ~ y  ) 

= ( avp )AT, a, $, y EL ). Rasin fR2] showed that Y ( W  is modular. Hall and Jones 

[HJ1 showed that 9(-) is modular. The question was finally answered with the aid 

of PoWs Theorem by Pastijn: 

Theorem 2-7.6 [PI. Y(W) is modular. 

Far conveniemx we provide a Iist of notation introduced in this chapter as well 

as the d o n  we witl use in the rest of this thesis. 

The following special subvarieties of '3W will be involved in this thesis: 

- tfre variety of one element semigroups = [ x = y 1. 

- t h e v s t r i e t y o f ~ = [ x * = & x y = y x ] .  

- thievarietyofk•’kzen,semigroups=[xy=x]. 

- thev~ty~rightzerosemigroaps=[xy=y] .  



39 - the variety of rectangular bands = [ x2 = x, xyx = x 1. 

5%?8 - the variety of left normal bands = [ x2 = x, xyz = xzy 1. 

9%?@ - the variety of right normal bands = [ x2 = x, xyz = yxz 1. 

- the variety of nonnal bands = [ x2 = x, axya = ayxa 1. 

23U7 - the variety of left regular bands = [ x2 = x, xyx = xy 1. 

3 3 Z 9  - the variety of right regular bands = [ x2 = x, xyx = yx 1. 

- the variety of regular bands = [ x2 = x, axya = axaya 1. 

- the variety of bands = [ x2 = x 3. 

- the variety of groups = [ x0 = yO 1. 

- the variety of abelian groups = [ x0 = p, xy = yx 1. 

- the variety of abelian groups of exponent n = [ x0 = yO , xy = yx, xn = x0 1. 

- the variety of left groups = [ x4r0 = x0 1. 

- the variety of right groups = [ x y  = f 1. 

- the variety of rectangular groups = [ xOfiO = x0 1. 

- the variety of completely simple semigroups = [ (xyz)O = (xz)O]. 

- the variety of completely simple semigroups over abelian p u p s  

= [ (xyz)O = (xz)O , xOyx = xyxO 1. 
- the variety of central completely simple semigroups 

= [ (xy2)O = (xz)O, xOy% = xy"xO 1. 
- the variety ( S E W I [ E(S) ] E J# ) 

= [ (xyz)O = (x& xyOxOz% = X Z O X ~ ~ X  1. 

- the variety of stmilattices of groups = [ xOyO = y4r0 1. 

- the varicty oi orthogroups = [ x y  = (xOy@f']. 

- the variety of ban& of groups = [ (xoYO)O = (xYl0 1. 

- the variety of ngular orthogroups =[ x4.0 = (xW0,  axOyOa = ax0a4pa 1. 

- the variety of m a 1  bands of groups = [ (axya)' = ( ayxa)' 1. 



- the variety of those bands of p u p s  such that SlZ E P/ E Y(A? ). 

- the variety of completely regular semigroups. 

Moreover, 

2(%) - the lattice of subvarieties of g. 

c V >  - the variety of completely regular semigroups generated by the 

nonempty class of completely regular semigroups W. 

POT - the Mal'cev product of the varieties % and Y ( not necessarily a 

variety ). 

[ u, = v, : a E I ] - the variety of all completely regular semigroups 

satisfying the identities u, = v, ( or E I ). 

[ A, B ] - the interval of a lamce with minimum A and maximum B. 

X - a fixed countably infinite set. 

U - the free unary semigroup over X. 

C(U) - the set of variables from X appearing in u E U. 

F&C) - the free object in the variety % over X. 

r - the lattice of fully invariant congruences on F d X ) .  

* - the fully invariant congruence on F d X )  corresponding to the variety K' 

5 - the variety corresponding to the fully invariant congruence p on 

F&). 

Further notation 

Z(S) - the lattice of equivalences on the set or semigroup S. 

A(S) - the lattice of congruences on the semigroup S. 

FCON(S) - the lattice of fully invariant congruences on the semigroup S. 

E(S) - the set of idempotens of the semigroup S. 



C(S) - the subsemigroup of S generated by E(S). 

c*(s) - the least full and self-conjugate subsemigroup of S. 

V(a) - the set of inverses of a in S. 

xO= X-'X =xX' , for itfly x ES E-. 

CR(S, T) - the set of CR-relational morphisms from S into T ( S, T E Wt! ). 

End S - the stmigroup of all endomorphisms of the semigroup S. 

C1 - the largest idempotent separating congruence on S. 

2 - the largest idernpotent pure congruence on S. 

% - the least congruence on S such that Slog E P/ EY(W). 

E - the identity relation. 

@ P  - the trace of the congruence p. 

ker p - the kernel of the congruence p. 

Y, 2, Z, and 9 - Green's relations. 

- the largest congruence contained in the equivalence relation p. 

- the congruence generated by the relation p. 
- the restriction of the relation p to T. 

- the equivalence relation on A induced by the mapping 8 of the set A. 

- the ft.ee semigroup on the nonempty set Y. 

- the free monoid on the set Y. 

- the first variable which appears in w E Y+( w E U ). 

- the last variable which appears in w E Y+( w E U ). 

- the semigroup of all transformations on the set Y. 



Chapter 3 

Mal'cev Products and CR -relational Morphisms 

Given two varieties % and 7 of completely regular semigroups, denote by i Y o T  

the class of all completely regular semigroups S on which there is a congruence p such 

that the idernpotent p -classes are in D and Sip E 9: The class 8 o ' P  is said to be the 

Mal'cev product of % and T in 5St . Our definition is a specialization of Mal'cev's 

original definition [MI. In general %W need not again be a variety. We &fine < 

to be the variety of completely regular semigroups generated by g o y .  

The first section of this chapter studies joins of congruences on Rees matrix 

semigroups. This enables us to extend a result of Jones [JS] by showing that g o y i s  

again a variety if %E Y(V ) and YE Y(Wt). We introduce the concept of CR-relational 

morphism in the fourth section. This makes it possible to describe the varieties of the 

form < %or>. This description will plays an important role in subsequent chapters. 

8 3 1  Congruences on Rees matrix sernigroups 

Congruences on Rees matrix semigroups have been described completely in 

terms of the admissible triples. The details of this treatment can be found in either 

Howie [Howl} or Lallement fLl]. Here we present a special form of such description 

discovered by Tamura n]. 



Let S = M(G; I, A; P) be a Rees matrix semigroup with normalized sandwich 

mamx P. Let N be a normal subgroup of G. Define PN and aN on I and A respectively, 

as follows: 

i P N j  o P u P A i l ~ ~  foreveryh~h;  

AnNp o P u P p ; l ~ ~  foreveryi~1. 

Then PN and xN are equivalence relations on I and A respectively. Let P s PN and x G 

T[N be equivalence relations on I and A respectively, and defme the relation ( N, P, n ) 

We then have 

Theorem 3.1.1 [TI. The relation ( N; P, x ) is a congruence on S. Conversely given a 

congruence 8 on S there exists N a G, P E PN and ~r E % such that 0 = ( N; P, n ). 

The following useful result can be &rived easily from Howie [Howl]. 

Lemma 3.1.2 [Howl]. Let S = M(G; I, A; P) be a Rees matrix semigroup with 

normalized P. If a = ( Na; Pa , xa ) and p = ( Np; Pp , np ) rn congruences on S. Then 

(O asp @ P a ~ P p , n , ~ ~ p  and N a s N C  

(ii) a n p = ( N a n N p ; P a n P p , n a n x p ) .  

(iii) a v p = ( NUNp; Pa v PO, n, v np ). 

Lemma 3.1.3. Let 0 = ( N; P, x ) be a congruence on S = M(G; I, A; P) with 

normalized P. Then 

(i) 8 is idempoteat pure N = ( e 1, where c denotes the identity of G. 

(i) 0 is idempotent separating o P = %, E = eA. 



Proof. (i) Necessity. Assume that N t ( e 1, then then exist g,, g2 E N such that 

g,+&and N g , = N g & e t i ~ I a n d b ~ A , t h e n ( g , ; i , h )  and(&;i,1)antwodistinct 

elements of S such that ( g,; i, h ) 9 n ( &; i, h ), and so O n  2' # es , a contradiction, 

by Lemma 2.6.10. 

Suffciency. It suffices to show that Bn X = eS. Let ( gl ; i,, 1, ) O n  X ( g, ; i,, A,). 

By Lemma 2.4.5, we have i, = i2 and h1 = &. Since ( gl ; i,, A1 ) 0 ( g2 ; i2, ), then Ng , = 

Ng,  so that g1 = &. Hence 8 n = eS. 

(ii) Necessity. Assume that P # el, then there exist il, i2 E I such that i1 # i2 and 

i, P i, Let h EA, e = ( pUl-l; i,, 5 ) and f = ( py-l; i ,  A ). Then e and f are two distinct 

- 1 - idempotents of S. Since i, P i,, then p ~ i , P ~ j ~ ' l  E N, so that pAi pAil - 2 
- 1 -1 -1 

plil ( p ~ , p A i 2  )pAil EN,  since N a G. Thus Nplil = N ~ ~ ~ , - ' ,  and so e 0 f, a 

contradiction. Hence P = eI. in a similar way, one can show that n = E*. 

Sufficiency. Note that E(S) = { ( i, 5 ) I i E I, h E A ), the assertion follows 

easily. # 

The following straightforward corollary will be used throughout this section 

without explicit reference. 

Corollary 3.1.4. Let 9 = ( N, P, . ~ t  ) be a congruence on S = M(G; I, A; P) with 

normalized P and e = ( i, li ) and f = ( pp{l; j, p ) EE(S). Then e fl f if and only if 

Lemma 3.1.5. Let S be a completely simple semigroup and let a, p EA(S), with p 

idempotent pure. Then for any e E E(S), we have H, n e( a v p ) = H, n ea . 
Proof. By Theorem 2.4-3, we may assume that S = M(G; I, A; P) with normalized P. 

By Theorem 3.1.1 and Lemma 3.1.3 (i), we may assume that a = ( N,; Pa , n, ) and p 

= ( (el; Pp , YC,, ) . It foliows fmm Lemma 3.12 (iii) that 



a v p = ( N a ; P a v P p , n , v n p ) .  

~ o r a n ~ c ~ ~ ( ~ ) , w e h a v e e = ( ~ ~ ~ ' ; i , ~ ) f a s ~ m e i ~ ~ a n d ~ e ~ . B y T h e o r e m  3.1.1, 

H , n e ( a v p )  = ( ( i , )  I g ~ ~ a P l i - l  } 

Definition 3.1.6. Let 8 E '3?9 am 

for each e E E(S). 

d TE~@W).  A congruence p  on S is over T if ep E Y 

The next result can be derived easily from Jones [J•˜]. We sketch the proof for 

completeness. 

Lemma 3.1.7 [JS]. Let S  E- and let a, p  E A(S), with p idempotent pure. Then for 

a n y Y ~ ( W . q . y  ) , a i s o v e r ~  implies ( a v ~  i s o v c r ~ .  

Proof. (i) Y= . To show that ( a P  )lp is over e, it suffices to show that 

( a P )jp s 9, by Lemma 2.4.8. So let a, b  E S, with ( ap, bp ) E ( a P )/p, that is, 

a ( a v p  ) b. Then there exist ai , bi E S ( i = 0, 1, ... , n ) such that 

a = a , a b , p a l a b ,  ... a , a b n = b ,  by Lemma 2.2.3. 

Since a sY, then ai 2' bi , and SO ( sip ) Y ( bip ) in Sip. Thus 

ap = ( Y( bop = ( alp W b,p = ... = ( a,p Y( bnp ) = bp, 

and whence ( ap ) Y( bp ) in Sip, as required. 

(ii) T = q. This is the d d  of (i). 

(iii) 9r = y. Since = w, the assertion follows easily. # 

Before proceeding, we need some preparation. 



Notation 3.1.8. Let d denote the variety of all completely simple semigroups with 

abelian groups. 

We here provide some simple characterizations of the variety d. 

Lemma 3.1.9 ([PRS], [R2]). The following conditions on a completely simple 

semigroup S are equivalent. 

(i) S ~ d .  

(ii) S satisfies the identity x 9 x  = xyxO. 

(iii) S satisfies the identity x2yx = xyx2. 

Definition 3.1.10. A completely simple semigroup S is central if the product of any two 

idempotents of S lies in the centre of the containing maximal subgroup. We denote by W 

the variety of all central completely simple semigroups. 

Lemma 3.1.11 [PM]. The following conditions on a completely simple semigroup S 

are equivalent. 

(i) S is central. 

(ii) In every ( respectively, some ) Rees matrix representation M(G; I, A; P) of S 

with normalized  all entries of P lie in the centre of G. 

(iii) S satisfies the identity xOy?x = xfiO. 

(iv) S E& v y. 

The Mce of all subvarieties of W has been described completely by Petrich and 

Reilly PR41 in the f o l 3 0 ~ g  way. 



Notation 3.1.12. For YEY(W), let I( T )  denote the class of all idempotent 

generated members of Yand let < I( Y) > denote the variety of completely simple 

semigroups generated by I( Y).  

Notation 3.1.13. Let 4 denote the variety of al l  abelian groups. For each k 2 1, 

let dk &note the variety of abelian groups of exponent k. 

Lemma 3.1.14 [N]. (i) ~ $ 7  = [ x0 = fi xy = yx 1. 
(ii) d k = [ x O = f i  xy=yx,xk=xO], k21. 

(iii) Every subvariety of J?YP is either J?YP or dk for some k 2 1. 

Theorem 3.1.15 [PR4]. The mapping 

c :  Y--+ ( Y n 3 9 , < I ( Y ) > n ~ , Y n ~ )  ( T E Y ( O )  ) 

is an isomorphism of 9(V)  onto the subdirect product 

( (RiY;a','.y)~ Y ( ~ ) x Y ( . q y ) x 4 P ( ~ )  I B s y , w * ~  * Z = Y ) .  

Moreover, if YE Y ( W )  and Yc = ( W, Z, ), then 

T={SEW I Slir ~~,~ubgr~~psof[E(S)]liein~,sub~upsofSliein~ ). 

In the next proposition, the case Y= has been obtained by Jones fJ51. 

Here we provide an alternative proof of this fact. 

hmtim 3.1.16. Let S be a completely simple semigroup and let a, p EA(S), with 

p idempotcnt pure. Then for TE ( w, Q ), a is over Y implies that a v p is over Y .  

Proof. By Theorem 2.4.3, we may assume that S = M(G; I, A; P) with normalized P. 

By Theorem 3.1.1 and Lemma 3.1.3(i), we may assume that a = ( Na; P, , x, ) and p = 

( (e);Pp.~p).Ihu~,a~p=(Na;Pa~Pp,~a~rrp) byLnnma3.1.2(iii).Leteand 



f be two arbitrarily elements of E(S) with e ( a v p ) f. Then there exist ei, fi E E(S) 

( i  = 0, 1, ... , n )  such that 

e = %a f ,  p el a fl ... en a fn = f, by Lemma 2.3.3; 
-1. -1. where, ek = ( P h 4  ik, Xk ) a d  fk = ( phjk , jk, ph ), k = 0, 1, ... , n. 

Since fk p ek+l ( k = 0, 1, ... , n-1 ), then we have 

(1) P a  = Pa,,+l&+l ; 

(2) Plj, = P;14+, for all X E A, since jk Pp ik+l; 

(3) PM = P\+j  for all j E I, since pk np Xk+l. 

Since ek a fk ( k = 0, 1, ... , n ), then we have 

(4) P~kPAkkl E Na fm all X E A; 

(5) P n J P u - l ~ ~ a  fo ra l l j s1 .  

Case 1: T = . To show that a v p is over , it suffices to show that 
-1. . -1. ef=(plao * b . & ) ( ~ ~ ,  91n.p~) 

='p&j,, - 1 %Qcmin -I; b, ) 



Thus, we have proved that 
- 1 -1, 

(7) Phi, - Pki, f o r a l i k ~ ( 0 ,  1 ,..., n ) .  

- - ...... ( repeating the same procedure for k = 1, 2, ... , n-1 ) 
- - pp&l( FA,&p&l) 

-1 
=P& PUP,,& * by (3) 
- - 1 
-pbb by (7). 

The proof of Case 1 is completed. 

Case 2: Y = W . By Corollary 3.1.4, we have 

(8) N , ~ ~ ~ - ~  = N,~,;' for all i, j E I and 5 ,  p E A, with i ( PavPp ) j and 

5 ( n , v 7 $ , ) ~  

To show that a v p  is over W , it suffices to show that 

ef = ( --lpXQnP&-l; i,,, & ) 

is in the centre of &fne(avp).  Note that 
-1 & f n d a r v p ) = {  ( s b & ) l g o  N&hb 



( P P ~  -I; j, p ). Then e*, f ' E E(S) d e' a f *, by Corollary 3.1.4. Since a is over W. then 



Lemara 3.1.68 [Pm The fobwing c ~ t i o f l s  on a completely simple semipup S 

[ii) In tvery ( rqcuively same ) Rees matrix representation of S with a 



LRmm 3,1.19. Let S be a completely simple semigroup and let a E A(S) be such that 

a is over 9. Then for any k 2 1, the following two conditions are equivalent. 

(i) For any e, f E E(S), c a f implies ( ef )k = ( ef )O. 

(ii) For any e E E(S), subgroups of [ E( ea ) ] lie in dk . 

Proof. (i) implies (ii). Far any e E E(S), we have ea E 9, sina a is over 37. Let H be 

the maximal subgroup of ea containing e and let 

Ie=(ei~E(ea) I ete=e' ), A e = [  ~ E E ( M )  Ief=f 1, 

P, = ( pW ) where pfe. = fe'. By Theorem 2.4.3, e a  r M( H; I,, h,; Pe ), and so 

[ E( ea ) n M( ~ ( c  Pe >; I,, he; Pe ) by Lemma 2.4.6, where < Pe > is the subgroup of 

H generated by the entries of Pe. From Lemma 3.1.18, < Pe > E .c@ , and so < P, > 

tzdt: since ( fe' )k = ( few )' = e for all f E A,, e' E I,. Hence. subgroups of [ E( e a  ) ] lie 

in dk . 
(ii) implies (i). This is straighdorward. # 

Propition 3.1.20. Let S be a completely simple semigroup and let a, p E A@), with 

p idernpotent pure and a v p is over W. Then for any k 2 I, the following two 

statements are equivalent. 

(i) For any e e E(S), subgroups of E( e( a v p ) ) ] lie in dk 

(ii) For any e E E(S), subgroups of [ E( ea ) ] lie in dL. 

ProoZ (i) implies (ii). Tbis is obvious. 

Cri) @dies (i). In terms of the discussion at the beginning of the proof of Proposition 

3-1-16, we may mke S = M(G; I, A; P) with nomalized P, a = ( N,; Pa , a, ) and p = 

( (c); Pp.zp). so thatav p=(N,; P,vPp,n,v zp). For anye, f EE(S) with 

eCavp)f ,  thereexiste,,f,~&S) ( m = 0 , 1 ,  ... ,n) such that 

e=%ahpe,af, ... e,afn=f, 



0, 1, ... , n-1 }, we have 
- for all j EI; (a) k = p Q l  f m a l l 5 ~ A a n d p ~ = p ~ + ~ ,  

a n d f o r m ~ ( 0 ,  1,2 ,..., n ),wehave 

(b) pypxk-l E N, for all 1 E A and pQrB-l E Na for all j E I. 

By Lemma 3.1.19, it suffices to show that ( ef )l= ( ef )O . Since 
-1. ( e f ) k = [ ( ~ % - l ; & , h ~ ( ~ l b j .  , jn ,pn)1 ~r 

- 1 - )$ -I; &, I$,) =' (pa&, P&Pp& Pp& ),& 

%id -1. (eflo=(plbb ,b,pn),  
- 1 - 1 k -1 , - 1 it remains to show that ( p% p a p a  phio ) phio - p , or equivalently 

)k=lo,thei&ntityofG. ' P+,&-~P~,&P,,.& Pyhb 

F o r a n y i , j ~ I a n d A , p ~ h , w i l h i P , j  and X X a p , l e t e ' = ( P u - l ; i , ~ ) a n d f ' =  

( P P ~  -I; j, p ). Then e', f ' EE(S) and e' a f ', by Corollary 3.1.4. By (ii) and Lemma 3.1.19, 

Since a v p is over V, then from the proof of Case 2 of Proposition 3.1.16, we have 

Further, we have 



- - ...... (repeating the same prwedure form = 2, ... , n ) 
- -1 -1 -1 -1 k - 1  - 1 ( P~ pkh X Pp+l PClrjl .** ( Pa Pprk )( P a  Plhb ) I Phb 
- -1 k -1 P -(P* Pp&P,,& y,&, ,q,, 

since Pr,j, = Phj,,,+l ( m  =O, 1.2 ,... ,n-1 ), by (a). 



by applying (g) with r = 1 

- - ...,.. ( repeating the same procedure 

which completes the proof of (ii) implies (i). # 

We are now ready for the main result of this section. C.A. Vachuska also 

obtained this result in [V]. 

Theorem 3.1.21, For YE [ 99 , W ] and S E W. Let a, p E A(S), with a over Tand p 

idempotent pure. Then a v p is over Y. 

Proof. To show that a v p is over Sv, it suffices to show that e( a v p ) E Yfor a l l  e 

E E(S). 

S k c e 5 W ~  9V, then by Thcortrn 3.1.15, Fc = (S9,2Y,Y ), where iVs TE 

Y(3) and8 E T ( ~ ) .  FrOm kmma 3.1.14, we have%! =* orsJkfor somek2 1. 



Let e E E(S). To show that e( a v p ) E Y ,  and by Theorem 3.1.15, it suffices to 

show the following three statements: 

(a) C ( ~ V P ) / ~ E ~ P ~ ~ .  

This is obvious, since e( a v p ) E W.  

(b) Subgroups of [ E( e( a v p ) ) ] lie in I. 

Since a is over 7, and by Theorem 3.1.15, subgroups of [ E( f a  ) ] lie in 8 for all 

f E E(S). By Proposition 3.1.16, a v p is over W, so that e( a v p ) E V; and thus by 

Lemma 3.1.1 1, subgroups of [ E( e( a v p ) ) 1 lie in 4. It follows that (b) holds for %' 

= S@ . If % = dk for some k 2 1, then by Proposition 3.1.20, subgroups of 

[ E( e( a v p ) ) ] lie in .dk. which completes the proof of (b). 

(c) Subgroups of e( a v p ) lie in Z 

Since a is over Sv; then e a  E T.  By Theorem 3.1.15, subgroups of S lie in % and 

SO 

H e n e ( a v p ) = H e n e a  by Lemma 3.1.5 

it follows that, subgroups of e( a v p ) lie in W. This completes the proof of this 

theorem. # 

The next corollary will be useful in Section 3.2. 

Corollary 3.1.22. Far YE Y(V)  and S E W. Let a ,  p E A(S), with a over Y and p 

idempotent pure. Then ( a P is over r on Sip . 
Proof. I~TE[B,%P 1, then ( a v  P )/p is over Y, by Theorem 3.1.21. Otherwise, T 

E Is, ] u [ S?X, J u 5?(y). We consider the following three cases: 

(a) 'TE[~Z,@']. By Lemma 3.1.7. ( a  V P is over e. For 7 #  , i t  

remains to show that (ep)[ ( a P I/,-, ] n H(ep) E T for all e E E(S). Let e E E(S). 

SincepnZ=&,wed#nhave 



(ep)[ ( a I) )/p I n H(,,,) z He n e( a v p ) 

=& n ea  by Lemma 3.1.5 

EY since a is over Sv. 

(b) TE [ 2 X ,  1. This is the dual of (a). 

(c) ' Y E Y ( ~ ) .  Note that Y= ( 5% v T ) n ( SX v T ). Combining (a) with (b), 

we have (c). # 

Whether Corollary 3.1.22 holds for every variety YE Y(W) we do not know. 

# 3.2 The Mal'cev product on 2(-) 

We now introduce the most important definition of this thesis, the Mal'cev 

product. This product has proved useful in many considerations concerning the lattice of 

subvarieties of a variety of algebras. The following is a specialization of Mal'cev's 

original definition [MI. 

Definition 3.2.1. Lea P and Y be any classes of completely regular semigroups. The 

class of all completely regular semigroups S for which there exists a congruence p on S 

with the property that aIl idempotent p classes are in P/ and S/p E T i s  the Mal'cev 

product of V and T,  &noted by VoT. 

Notation 3.2.2. For any YE Y(= ) and S E WP , a congruence p on S is an Y - 
congruence if s/p E K at. wil l  denote the least 7- congruence on S. 

The next result is obvious. 



Lemma 333. FOP any V, PE Y(W),  POT = ( S E I ~ r p -  is over 8 ) . 

As we shall see in Lemma 3.2.6, the Mal'cev product of varieties 2V and Y'need 

not be a variety. However, it does have the following property. 

Lemma 3.2.4 [MI. If P, Y E  Y(W ), then l o r  is closed under direct products and 

completely regular subsemigroups. 

Proof. Let S, E POT for a E I, and for each a E I, let pa be a congruence on S, figuring 

in the definition of the Mal'cev product. On S = naEI S, define a rciation p by 

( a , ) p ( b , )  if %p,a, f o r a l l a d .  

Then p is a congruence on S such that for all ( e, ) E E(S), ( e, )p z n,, I e,p, and 

Sip = n, , SO that s E Z ~ O P .  

Next let S EPOY with the corresponding congruence p, and let T tx a completely 

regular subsemigroup of S. Then p' = p I is a congruence on T which gives T E l o ? ?  

It is important to point out the fact that 2V E V W  and YE V W  for any V, YE 

F(W. The general form of the next lemma is proven in [ha]. We sketch the proof for 

completeness. 

Lemma 335. For any g, K Y in Y(W),  we have 

P o (  TOW) E; ( 2YoY)oK 

Proof. Let S E go( 45Y). Then there exists 0 E A(S) such that S/0 E Toyand eB €8  

for each e E E(S). That Sle E %Yimplies that there exists p E A( Sle ) such that 

('B)/~EIY. and(e8)p ~ 4 .  facache6 EE(S /~) .  Define p o n s  by 

a p b if (aB)p(bB).  



Then p is a congruence on S such that 8 E i, and ( S/e )Ip = - S/fi E SY: Moreover, for 

each e E E(S), 8 I ep is a congruence on ep such that e31e Z ( e0 )p E r a n d  ft3 E I for 

each f E E( cp ) . Hence S E ( V O Y ) O ~ V ,  as required. # 

Jones [J5] showed that the Mal'cev product is not associative on [9, %2% 1, even 

when all pamal pducts  are agdn varieties. In Corollary 4.6.12, we shall see that the 

Mal'cev product is not associative on Y'(W either. 

Some important observations about the Mal'cev product on Y(= ) are adapted 

from Jones [JS] and stated in the following lemma. The proof of this lemma is also 

included for com ple mess. 

Lemma 3.2.6 [JS]. Let V, TE Z(Wt ). 

(i) If YE [9, %f9 1, then @or= ( V A W )W for any V . 
(ii) If YELP(W) and %E [Y, W 1, then loYcanYt be a variety except in the 

degenerate instances when POT= 8. 

Proof. (i) If YE [Y, %9 1, then on any completely regular semigroup ST ar E. 2V = og . 

Thus if S E Vor so that cry is over V, then ar is over V n W 9 .  

(ii) Since V E [Y, WS], then % contains the two-element semilattice Y = { 0, 1 ), 

0 < 1. Suppose that T E VoY, T c l. Then Y x T E %Wand consists of the two 9- 

classes { 0 } x T and ( 1 } x T. Now the Rees quotient A modulo the ideal ( 0 ) x T 

does not belong to 8, since T does not, and the only %congruence on A is the universal 

congruence. Thus A e %OK and so is not a vanety. # 

It fo~lows from the above lemma that only products whose first factor is in 

Y ( W )  are of interest. Thus we may restrict attention to VE Y(W). Under this 



restriction, Jones [JS] established a necessary and sufficient condition for the Mal'cev 

product to be a variety. We state this condition in the next lemma. 

Lemma 3.2.7 [JS]. Let ,?YE Y(W)  and YE 9(W). Then POT is a variety if and only 

if for each S E 8o'Y; for each 9-class D of S, and for each congruence p s 9whose 

restriction to D is idempotent pure, ( OTV P is over I on %. 

In [J5] Jones showed that ZoT is indeed a variety in many important instances. 

He also raised the following question: whether % o r  is always a variety when %E 

Y(W ). Corollary 3.1.22 enables us to extend Theorem 5.1 of Jones [JS]. This result 

was also obtained by C.A. Vachuska [V]. 

Theorem 3.2.8. If a/€ Y(V)  and YE Y(W) ,  then ZoY is again a variety. 

Proof. Let S E %oY, put a = ~ g -  ( ~9 ), let D be a 9 -class of S and let p E A(S) be 

contained in 9 and idempotent pure on D. By Lemma 3.2.3, a is over ,?Y, and so 

( a p )/p is over P on D/p by Corollary 3.1.22. Hence POT is a variety, by Lemma 

3.2.7. # 

Notation 3.2.9. For any ZE 5?(9), we write 

CS(Z) = ( S EW I all subgroups of S lie in Z ). 

It is easily verified that CS(Z) = Z o S W  , and so CS(Z) is a variety. 

The prmf of Theorem 4.1 in [ JS] motivated the following result. 



Proof. We apply Lemma 3.2.7. Let S E CS(Z)oY, put a = cry( s9), let D be a 2V - 

class of S and let p EA(S) be contained in 9Y and idempotent pure on D. It remains to 

show that ( a P )/p is over CS(8) on D$. For any e E ED), we have 

e ( a v p ) n H e = e a n H ,  byLemma3.1.5 

E X  since a is over CS(a,  

that is, e( a v p ) E CS(Z). Thus a v p is over CS(dP) on D, whence ( a P )/p is 

also over CS(X) on Dip , as required # 

As a consequence of Theorem 3.2.8, the next corollary will be useful in the 

sequel. 

Corollary 3.2.11 1553. For any %E 2'(%2%? ), then 5@ oV, 0% and YoV are again 

varieties. 

Theorem 3.2.12 [ J5]. If V, YE Y(m, then VoY E Y ( W .  

Proof. Let 2' = V n y, then J!?" s 8 s CS(Z) and yn CS(Z) = A?, so by Theorem 

2.7.6, we have 8 = ( f/ v ) n CS(Z), whence g o y =  ( V v ) o T n  CS(&P)oK The 

cases  YE Y(V)  were treated in Theorem 3.2.8. By Proposition 3.2.10, we therefore may 

assume that V contains q. 
N o w i f ~ ~ Y m ~ ~ ' J i " , t h e n l o ~ = ~ o Y o r ~ o O r , s o  that %oYEY(W). 

Thus we may assume that YE Z(3). We now apply Lemma 3.2.7. Let S E l o r ,  put a 

= ay and let p be an idempotent pure congruence on S. It remains to show that 

( a P is over I on S/p. Note that 

k e r ( a v p ) = ~ , ~ ~ )  I H , n e ( a v p ) I  

' "~E(S) ( H p e a )  by h n m a  3.1.5 



Thus for an y e  EE(S), we haveea = kera = ker ( a v  p ) = e ( a v  p ) € V ,  since u i s  a 

group congruence over I. Thus u v p is over P/ on S. and therefore ( a V P is over P 

on sip, as required # 

3 3  The operators TI, T,, T, K, TI' and T,* 

In this section we present alternative descriptions of the operators in the title in 

terms of Mal'cev products and identities. Most of descriptions about these operators TI, 

Tp T and K are taken from Jones [JS], Pastijn [PI, and Petrich and Reilly [PRS]. 

Lemma 33.1. Let* = [ u , = v , ] , ~ E Y ( ~ ) .  Then 

*='I TI= 3 0 %  

= {  SE- I S I ~ E I  } 

0 = [ ( xua )O = ( xuaxva lo, ( xva lo = ( xvaxua ) la, A 

0 0 = [ Xua = xua( XVa ) 9 XVa = xva( XUa I,, A, 

wherexe c ( u , ) u c ( v , ) ~ o ~ ~ ~ ~ u E A .  

Proof. The equality gT1 = e o %  was established in [ P, the dual of Lemma 3 1. Let S 

E ~ o I .  Then C F ~  is over q ,  and so crps Y. But then crps Y o  and S/20  is a 

hornomorphic image of S/% and thus SIP E V. Conversely, if a I, then S E 0% 

since 9 is evidently over 9. This establishes the second equality. The third and 

fourth equalities in the statement of the lemma are simple consequences of Lemma 

2.6.13. This completes the proof. # 

The next lemma is the dual of Lemma 3.3.1. 

Lemma 33.2. Let l = [ u, = v, E Z(5W). Then 



wherex,ye c ( u a ) u c ( v a ) f o r a l l a ~ A .  

Proof. By Lemma 2.6.9, pT = pT1 pTr 

= q ~ i V  n q V  by Lemmas 3.3.1 and 3.3.2 

= y o 9  since = n w, 
this establishes the first equality. The same p of argument as in the second part of 

the proof of Lemma 3.3.1 yields the second equality in the statement of this lemma. The 

q d t y  ( S E%R i S/p E I ) = [ uaO = vaO, ( XU& )O = ( X V ~  )OlaE A W" established 

in C Reil, Theorem 3.9 1. The last qual i t y  in the statement of the lemma is a simple 

cons tq~nce  of Lemma 2.6.1 1. The proof is completed. # 



= f  ( x ~ d l ( x v d y ) - ' ~ ~ ~ ,  

wherex,ye c ( u a ) u c ( v , ) f o r ~ a ~ ~ a n d w ~ E r n e a n s w 2 = w .  

Proof. The equality pK = 9 o( P/ v Y ) war eastablishcd in [J5, Proposition 7.2 (ii) J. 

The equality 9 o( iV v 9 ) = 39 o( % v 9' ) folhws from Lemma 3.2.6 (i). The same 

type of argument as in the second part of the p m f  of Lemma 3.3. f yields the third and 

fourth equalities in the statement of this lemma. The last equality in the statement of 

the lemma is a simple consequence o f  Lemma 2.6.1 2. # 

Notation 3.3.5. For  YE Y(m ), k t  
4 * 

= kSCor and 8Tr = mag. 

By Theorem 3.2.8, T: and T,' are two operators on Y(=). 

In order to describe TI' and T:, we require some preliminary observations. 

Lemma 33.6. Let S E W, then 

(i) z n y  = f ( a , b ) ~ S x S  f x a = x b f o r a U x ~ S ) .  

(G) ~ n s = ( ( a , b ) € S ~ S  a x = b x f o r d x € S  1 .  

Proof, (i) ~ e t a ( z n ~ ) b a a d x ~ ~ . ~ n x a . r x b a n d x a ~ x b . ~ h u s ( x a ) ~ =  

(xaxb)O=(xb)O SO thafxaZxb. Since ? n Z = e S ,  hence xa = xb. 

Conversely, suppose that xa = xb for ali x E S. Then tab)'= (aa)' = a0 and @a)' = 

( bb )O= bo, so that a Y b. ~ e t  x,  ES. I fxay EE(S), then xby = xay EE(S). If xa 

EWS), then xb = xa EE(S). Next assume ths ay E E(S). By Lemma 2.3.3, ay is a right 

identity of by = by , SO that ( by 12= byby = byay = by, that is, by E E(S). Hence 

a r b , a n d s o a ( 1 . n 4 P ) b , ~ ~  

(ii) This is ttoe dual d (i). # 





W e  complete this section by providing a basis for the identities of S v  @, which 

wiII be useful in Section 5.2. 

Lemma 33-10, Let S E - .  Define a relatior 3c. on S by 

a k b  ax=bx foralIx~S.  

Then k is the least right reductive congruence on S. 

Proof. See [ Pe2, the dual of exercise m. 7.6.7 1. 

Lemm33,fl. .@'09= f S E W  I E (S)EBW 1 
0 0 0 , 0 0  = f  x y x  - x y  f.  

Proof. See [ Pel, Theofem IV. 3-10 1. # 

0 0 0  h m n  33.12. Let S E [ x  y x z = xoyOz 1. &fie p on S by 

a p b  cs n = c b  forsomec~s. 

Then p is the least right group congruence on S. 

Prod. To show that p is a congmence on S, it suffices to show that p is transitive and 

k~comptible.Let(a,b),(b,c)~p,~nxa=xbandyb=ycforsomex,y~S, thus 

~~a=x%a~d~Ob=yOe,andso 

yOxOa = 

O O a b  =YxY 

= Y%oYO~ 

= fXac, 

~ l r t ( & c ) ~ p d p b ~ t i v e . ~ e t ( ~ . b ) ~ p a n d c ~ ~ , ~ ~ ~ a = ~ O b f o r ~ ~ m e  

x ~ S , s u t h a t  

( xac-' )ca = xOc% 

0 0 0  = x c x a  

= #cox% 



= xOc% 
0 -1 b = ( x c  )c , 

and so ( ca, cb ) E p and p is left compatible. Hence p E A(S). 

For any a, b E S, we have ( aob0)aob0 = ( aObO )bO so  that ( aObO, ba ) E p. By 

Lallcment's lemma, E( Sfp ) E S , and so Sip E w. 
Let a be any right group congruence on S and let a, b E S such that ( a, b ) E p, then 

cOa = cob far some c E S, and so 

a a  = (aOa) (  a a )  

= ( cOa )( aOa )( aa ) since E( S/, ) E E 

whence p s a as required. # 

Proposition 33.13. If VE Y(Wf ) and % = [ u, = v, I,, A, then 

. - @ X v V = [ ~ = v ~  

whtr tye  c ( u , ) u c ( ~ , ) f o r a l l a ~ A .  

Rod. aePly S v  I s [ uoy = v d  1, A. For the opposite inclusion, we consider in 

thee cases separately. 

Case I. 3Z s iV. Straighgonvard 

C k  2. SE 9(m. This fdlows immediately from Lemma 3.3.7 (ii). 

( h e 3 -  S Q I  andYs8. T h e n % ~ ~ o 9 s o t h a t [ u , y = v , y ] ~ ~ ~ ~  
0 0 0  [ x  y x z=xoy% ] . L e t S ~ [ w = v &  ](IEA,aodletk be thecoognmceoo S defined 

in  emm ma 3.3.10. ~ k a r t ~ ~ ~ ~ ~ . ~ ~ ~ e a e h ~ - c l a r r ~ o f  S,  let^^= { ~ E S  : & 2 ~  1. 

'Ibco FD is a compierdy regular subsemigroup of S, and so FD E [ = v g  A. Let 



pD be the congruence on FD defined in Lemma 3.3.12. Since [ uay = vay 1, Any= 
iYn y, then we can easily see that FD/pD E SY v I. and so does ( F ~ / p D  )O . Define 

sp, i fs€FD; 

0 otherwise. 
FD/ )O. Define It is easily verified that v is a homomorphism of S into nm sl,( 

pD 
FD/ 1," 0 :  S s/xxnks,,( p, 

by s@ = ( sl., ssy ). Then @ is a homomorphism of S into S / x  x nD, Sl,( F~/p,  )I. If S. 

~ E S  ands@=t@,thensL=tkand s ~ = n y . T h u s x s = x t f o r a l l x ~ S , a n d s o D , =  Dt 

and sc = tc for some c E F . Since D, is the least 9-class of FDs, we have sc = tc for % 
some c E DS . By Lemma 2.4.1 (iii), Ds is weakly cancellative, this implies that s = t. 

Hence @ is injective, and whence S ESZV 2 , as required. # 

Obviously Proposition 3.3.13 has its left-right dual. We may use this dual result 

widrout further notice. 

The concept of relational morphism, intraduced by Tilson [ E, Chapters XI and 

MI: 1, is a very useful and powerful tool in the study sf Mal'cev products of 

pseudovarieties of finite semigroups ( monoids ). The reader is referred to 

Pin ( md], @W] ) and T i  for the basic definitions and results on this subject. 

In order to study the Mal'cev products of varieties of completely regular 

semigrclups effectively, this section introduces the concept of CR-relational morphism 



for completely regular semigroups. It is an analogue of the concept of relational 

morphism for semigroups ( monoids ). 

Definition 3.4.1. Let S, T E-. A relation r : S ---+ T is a function from S into P(T), 

the set of subsets of T. The graph of the relation 7 is the subset graph(r) = { ( s, t ) I t 

E sr ) of S x T. The inverse of r is the relation %-l : T + S defined by t ~ "  = { s E S I 

t E ST ). The relations r and r-I can be extended to functions from P(S) into P(T) 

[ respectively from P(T) into P(S) ] by setting 

X r = u X E X x r  f ~ s - ' = u , ~ ~  xr-l]. 

Definition 3.4.2. Let S, T E %9 . A completely regular relational morphism ( CR- 

rel~rional morphism for short ) r : S ---+ T is a relation satisfying the following 

conditions: 

(i) for every s E S, ST t 0, 

(ii) for every s, t E S, ( ST)( t~ ) s ( st )Z, 

(iii) graph(z) is a completely regular subsemipup of S x T. 

Equivalently, a CR-relationat morphism r : S ---+ T is a relation such that graph(r) is 

a completely regular subsemigroup of S x T and the projection of graph(?) into S is a 

surjective homomorphism. 

Notation 3.43. For S, T E Wf, we denote the set of all CR-relation J morphisms of S 

into T by CR(S, T). 

DeQrnitiun 3.4.4. Let S, T E W and let z E CR(S, T). Then s  is called injective if the 

codtion ss n t7 z 0 implies s = t ( or equivalently, if the relation is a partial 

funeticm ). r is called surjective if a-l# 0 for every t E T. 



It is very important to point out the foliowing property of CR-relational 

morphisms. Let S, T E ~  and let T ECR(S, T). Then its graph graph(z) = ( ( s, t ) E 

S x T I t EST ) is a completely regular subsemigroup of S x T and the projections S x T 

---+ S and S x T ---+ T induce homomorphisms a : graph(s) + S and P : graph(.r) 

---+ T such that 

(i) a is a surjective homomorphism, 

(ii) s = a-1$. 

The factorization S graph@) -b T is called the ccmnonical f~torizcuion of r. 

Proposition 3.45. For S, T and let ? : S ---+ T be a homomorphism of S into T. 

Then T E CR(S, 7'). 

Proof. To show that T ECR(S, T), it suffices to show that 

g r a p h ( s ) = ( ( s , t ) ~ S x T  I t = s z )  

is a completely regular subsemigroup of S x T. Clearly, graph(?) is a subsemigroup of 

S x T. For any ( s, t ) E graph@), we have sr = t and s-'t = f1 by Lemma 2.5.6. Thus 

( s, t )-I = ( s-I , t -I ) E graph(?) for any ( s, t ) E graph(?). It follows from Lemma 2.5.4 

that graph(z) is completely regular, so that T E CR(S, T). # 

Proposition 3.4.6. For S, T E '33 and let S -(LI:  graph(^) -fb T be the canonical 

factorization of a CR-relational morphism T : S --+ T. Then 

(i) 7 is injective if and only if f3 is injective. 

(5) .r is surjective if and only if $ is surjective. 

P m f .  (i) Suppose that B i s  injective and let sl , s2 E S be such that s ls  n S2T f 0. 

Then s l a - * ~  n s2a-l$ + 0, whence slael n %a-1 t 0 since is injective. Since a is 

a faaccion, it follows that sl = 92. 

Conversely, suppose that z is injective and let rl, r2 E graph(@ be such that rl P = 



r2$. Since rl E rlaa-l and r2 E r2aa-l it follows that rlar n r2a2 t 0, whence r l a  = 

r20 since z is injective, but rl = ( rl a ,  rip ) is therefore equal to r2 = ( r2a, r2P ). 

(ii) This is obvious. # 

Proposition 3.4.7. Let S, T, R E-. If 21 ECR(S, T) and 22sCR(T, R) , then 

5122 E CR(S, R). If in addition zl and 22 are injective, so is 2122. 

Proof. To show that 2112 ECR(S, R), it suffices to show that graph(.clr2) E %3i? . 

Clearly, graph(zl.r2) is a subsemigroup of S x 8. For any ( s, r ) E graph(rlz2), there 

exists t E T such that t E S Z ~  and r E t22, that is, ( s, t ) E graph(.cl) and ( t, r ) E 

graph(%& Since graph(rl), graph(r2) EW, then ( s, t )-I = ( s-l, r1 ) E graph(sl) and 

( t, r )-I = ( t-l, r-I ) E graph@*), so that t-I E s - l ~ ~  and r-l E rllz Thus r1 E S - ~ T ~ T ~ ,  

and whence ( s, r )-I = ( s-l, f 1  ) E graph(qr2). Therefore graph(rlr2) e m  , and the 

fmt assmion follows. 

Suppose that 11 and 22 arc injective, If s l ~ 1 ~ 2  n ~22122 # 0, there exist tl E slzl 

and t2 E ~ 2 - r ~  such that tlzz n t ~ 2  # 43. From the injectivity of z2 we have tl = t2 and 

therefa slzl n s2z2 1: 0, whence sl = % from the injectivity of zl, # 

Proposition 3.4.8. Let S, T E W , and let T E CR(S, T) be surjective. If S' is a 
* 

cumpletely regular subsemigrotlp of S, then S'T is a completely regular subsemigroup of 

T. If T is a completely regular subsemigroup of T, then TT-I is a complercly regular 

subsemigrroup of S. 

Proot. Fur any t ~ ,  t2 E ST, thtrc exist sl, s;? E S' such that tl E SIT and t2 E s22, so that 

tltz E ( s ~ t  )( S ~ T  ) t ( 5152 s S'?, and therefore S'r is a sabsemignwp of T. Far any 

t E ST, them exists s E S such that ( s, t ) E graph(?). Since graph(%), S' E , then 

( s t )-I = ( s-l, f1 ) E graph(s) and C' E S', and whence t-l E ST . Therefore S'r is 

mpEttcly regular. 



For any sl, % ~T'r- l ,  then there exist tl, t2 ET such that tl E s1.r and t2 E S ~ T .  From 

this it follows as above that t l t z ~ (  sls2)r. whence s l s z ~ (  tlt2)r-I c TT-I and Tt-I 

is a subsemigroup of S. For any s E ~ r - l ,  there exists t E T such that ( s, t ) E graph(r). 

Then ( sml, t-l ) E graph(r) and t-I E T, whence s-l E TT-I and ~ r - l  is completely 

regular. # 

Corollary 3.4.9. Let S, T EW. Then the following two statements are equivalent: 

(i) There exists an injective CR-relational morphism from S into T. 

(ii) S is a homomorphic image of a completely regular subsemigroup of T. 

P r d .  (i) implies (ii). Let r : S ---+ T be an injective CRdational morghism and let 

r = a-l$ be the canonical factorization of r. By Proposition 3.4.6 (i). : graph(%) ---+ T 

is an injective homomorphism, that is, graph(%) is isomorphic to a completely regular 

subsemigroup of T, Moreover, S is a homomorphic image of graph(.t). Therefore, (ii) 

holds. 

(ii) implies (i). Suppose that (ii) holds, then there exist a completely regular 

subsemigroup T of T and a surjective homomorphism a : T + S. Let B : T ---, T be 

the embedding of T into T. Then r = a-l$ is a CR-lclational morphism from S into T, 

since graph(%) r T E Wt . By Proposition 3.4.6 (i), 7 is also injective. # 

In Lemma 3.2.6 we saw that the Mal'cev product nced not be a variety in 

g e d .  However, it is of intemst and imponant to study the variety < P a 7 5  generated 

by tk M&ev product ZoTof8aad T. This will be the focus of our investigations 

tbnwlghout the rest of this tbh. Our gad in this section is to establish the connection 

with the C R - a I a t i d  nmphus. 



The CR-relational morphisms enable us to introduce a new operation on 9(W ) 

as follows. 

Definition 35.1. For any I, S~EY(%~E'), let 

CR( I, T )  = ( S EW I exist T E Tand z ECR(S, T) such that z is 

surjective and e r 1  E % for any e E E(T) ) . 

Then we "have the following fact. 

BtoBogiti~n 3.5.2. For any 8, YE 9(-), we have CR( I, Y )  E 9'(%3). 

Proof. Let I, YE Y(WV ). To show that CR( V, T )  is a vdety, it s ~ i c e s  to show 

f h t  CR( V ,  Y )  is closed under direct products, completely regular subser~~igroups and 

hanomorphic images. 

(i) Ca( U, Y )  is c l d  under &rtxt products. 

Let Sa E CR( I, F) for a E A, and for each a E A, let Ta E Yand CR(Sa, T$) 

figuring in Definition 3.5.1. Then s = n, : n, n, ,Ta is a sujective 

CR-relational morphism such that for any ( ea ),,A E E( n, *Ta ). [ ( eo: ),. A IT-' 

z IT,A%~aol €I andnEATa~9L. SO that n m A S O ~ C R ( I .  r). 

(ii) CR( 8, Y )  is c M  uodtr compktely regular subsemigroups. 

Lets ECR(V,~") witb tfre comsponding T E T  andz~CR(S,  T), andlet S' be 

a completely regular subsemigroup of S. Let tp be the embedding of S' into S. By 

~ropssioion 3.4.5, q ECR(S. s). n u s  by +ition 3.4.7, E CR(S, T). k t  s 2% 
gsph(qr)g - -r  T be the canonical factmintion of qs, mi let T = [ graph(9r) ]P. 
Since gmpB(qr~) E W and $ is a bomomorphisrn, then T is a completely regular 

suwgraug of T, so &at T E 9v d qvz E CR(S', T) is sujective. For any e E E(T), 

e(w~'=GC-'n SEQ: S~O~CC'E%. 1 1 e ~ 3 e  S.ECR(PY, T). 

@) CR( I, 7)  is c l d  u m k  quaieats 



Let S E CR( I, Y )  with the corresponding T E r.and s E CR(S, T), and let rp : 

S --+ S' be a homomorphism of S onto S'. Clearly, cp-I : S' ---+ S is an injective and 

surjective CR-relational morphism. By Proposition 3.4.7, cp-l? E CR(S',T) and cp-lr is 

surjective. For any e E Em, e( cp-lt )" = ( e r l  )(P EZ,  since e r l  E Y. Hence S' E 

v, TI. # 

We are now ready for the desired result. 

Theorem 35.3. Let %, YE Y(W). Then < g o y >  = CR( g ,  T). 

Proof. Let S E CR( Z,T).  Then there exist T E Y and a surjective CR-relational 
1 

morphism t : S - T such that tx-l E I f a  any c E E O .  Let S a> graph(%) 2- T 

be the canonical factorization of t. Since : graph(z) + T is a surjective 

homomorphism of graph(r) onto T such that, for any e E E O ,  e$-l= ( ( s, c ) E S x T I 

e 9 ss ) 5 am' E Y ,  thus graph(%) E POX Mmover, a : graph(7) -4 S is a surjective 

homomorphism, so that S E < goy>. Hence CR( I, Y )  s c SOY>. 

For the opposite inclusion, it suffices to show that CR( I, Y). Let S E g o y .  

Then the= exists p E A(S) such that SIP E rand ep E 8 for any c E E(S). Let t : S --+ 

S/p be defined by ST = sp. Then by Proposition 3.4.5.7 E CR(S, Sip) and t is surjective. 

For any f E E( Sip ), we have f ~ - '  = ep E@ for some c E E(S). Thus S E CR( 23'. T), and 

whence < POT> c CR( I, T), is r q u M  # 

T h m m  3.53 shows that CR-relational morphisms play an important role in the 

study of varieties of the f m  < I o T > ,  This description will prove very useful in the 

sequel. 



The next corollary will be needed in the sequel. 

Corollary 3.5.5. For any %,9v and W" in Y(Wt ), we have 

< go< TOY >> << % W > O ~ > .  

Proof. It is enough to show that g o <  TOT> t cc % o Y > o Y > .  Let S E%O< TOW>.  

Then there exists p E A(S) such that Sip E < TOW > and ep E P/ for all e E E(S). By 

Theorem 3.5.3, there exist T E T and r E CR(S/~, T) such that r is surjective and ffl 

E Tfor all f EE(T). kt pW : S d Sip be the surjective homomorphism defined by spX 

= sp. It follows from Propositions 3.4.5 and 3.4.7 that pYr ECR(S, T )  and per is 

su jectivc. Let f E E(T). Define Of : f ( pXr )-' - f r-' by sOf = sp. Clearly, Qf 

E CR( f ( pXr ) -I ,  f f '  ) and Of is surjective. Moreover, for any h E E( f f1 ), and by 

Lemma 2.2.5, we have h = cp for some c E E(S), so that h@jl = ep E 8. By Theorem 

# 1 3.5.3, f ( p z )' E < SOY>, and whence S E <c VoY >ow>, as required. # 

As the following example shows, the opposite inclusion in Corollary 3.5.5 need 

not be me. For an alternative example, see [ J5, Proposition 6.6 1. 

Corollary 3-55 enables us to provide an alternative description of the operator K. 





Chapter 4 

Varieties of The Form e 2Y.Y > 

In this chapter we restrict our attention to varieties of the form < goy>. We 

first study the least full and self-conjugate subsemigroup c*(s) of a completely regular 

semigroup S. This enables us to introduce the operator c*, and characterize 

c % o y  >. The operator C* is considered in detail. As a consequence, we extend a 

result of Petrich and Reilly [PR7] by showing that the well known operator C is a 

complete endomorphism of 9(g). By restricting the operator C* to completely simple 

semigroup varieties, we show that the order of C' is inffite aad the Mal'cev product is 

not associative on Y(W). The semigroup generated by the operators C* and C is 

determined here. We also &scribc I(c*)~, IE [ 39 , W ] and i 2 0, in terms of E- 

invariant normal subgroups of the fiee group over a countably infinite set. 

8 4.1 The subsemigroup c*(s) 

Definition 4.1.1. Let S E %% . A subsemigroup T of S is full if E(S) 5;; T; T is self - 

conjugme if amlT'a E T far each a E S. 

Mmitioo 4.1.2. For my S E- , let C(S) &note the least full and self-conjugate 

subsemigroup of S. Thus 

c*(s) = wi 2 *Vi , 

where V, = C@) and, for i 2 0 



Vi+l = [ v, a-lvi a]. 

Lemma 4.13. Let S E WP . Then c*(s) E a. 
Proof. Since Vi Vi+,, for i 2 0 and c*(s) = ui oVi, it suffices to show that by 

induction on i that each Vi is a completely regular subsemigroup of S. By Lemma 2.5.8, 

Vo= C(S) E- . Assume &at Vi E , we are going to show that Vi+l E . By 
Lemma 2.5.4, it remains to show that v-I E Vi+l for any v E Vi+l. Let v be an arbitrary 

element of Vi+l. Then there exist u,, ... . u, E Vi and a,. ... . a, E S ( n 2 1 ) such that vj = 

1 a-- u-a- ( j = I, 2, ... , n ) and v = v, ... v,. By induction again, this time on n, we are going 
J J J  

to show that v-I E Vi+l. lhiS will be done in the following two steps. 

(i) E n  = 1, then 

"-1 = vl-l = ( a 1 

= ( a,-h,a, )'al-'( aI0ul )Of al-lu1 )-I( al-lulal )O by Lcrnma 2.5.7 

= veal-l( ax0 ul )'al-'( ulal-' )'al( a,-lul )OvO by Lxmma 2.5.7 

E Vi+l, Sinn  ul-' E Vi+l and C(S) s Vi G Vi+, . 
(2) Assume that ( v, ... v,-~ )-' E Ykl, then 

v -1 - -1 - ( Vr --- Vn-rvn Z 
=v"v;'(v,v ,... v,,)'(v ,... ~, -~) - 'v"  byLcmma2.5.7 

E V ~ + ~ ,  ~iDCev;~,(v , . . . V ~ - ~ ) - ~ E V ~ + ~  and C ( S ) S V ~ + ~  

By induction, v-I E V*l for a l l  v E Vbl, that is. Vi+, EW. The~tfore, C* (s) = ui oVi 

E w, q* # 

Lemma 4.1A [RS]. If S e 417, then c*(s~ = C(S) = E(S). 

Ekmf. Since S E@', &en E@) is a subsemigroup of S, so that C(S) = E(S). To show 

tbat c*(s) = E(S), it suffices ro show that E(S) is closed under conjugation, that is, 

a - ' ~ ( ~ ) a  s E(S) for any a E S. Let e E E(S) and a E S. Thcn ao = id E E(S) and 



therefore ax" e EEQS). Thus a-lea = ( xiaa-l )ea = a-I( aa-le )a = a-I( aa-le )2a = 

a-'aa-'eaa-%a = ( a% )2. Y) Ijla a-'ea E E(S). Hence C* (s) = E(S). # 

Lemma 4.f5, Let S = %{ G; f, A; P ) be a Rees matrix semigroup whose matrix P is 

normalized with rtspca to some 1 E I, 1 0 A. T k n  c*(s) = N; I, A; P ) where N is 

tttc normal subgroup of G gtmerawf by the entries of P. 

Proof. Let H = ( x e G  I ( x ;  1.1 ) +EC*(S) ), and kt c denote the e n t i t y  of G. Then 

H is a subgroup of G, since 6C@) is a cmplctely simple subsemipup of S. For any 

( x ; i , k ) w i t h x ~ H , w e h a v c  

( x; i ,  A ) = ( e; i, 1 X E 1. I )( e; 1, b ) E c*(s). 
sfrrtx(t;i, 1),(e; ~ ,X)EE[S) .T~USWH;I ,A;P)=  ( ( x ; i , L ) i  ~ E H , ~ E I , X E A )  

E c*(s). By the same type of argument, we can show that P(S) s !M( H: I, A; P ), w 

h r  c*(s) = M(K( II,A; P). For any y EG. 

(~1,1)-1((x;l.l)lx~H)(~l~1)=((y-1xy;1,i)l~~H)~~*(~) 

implies tha~ y - l ~ y  t H, and w, H is a normal subgroup of G. By Lemma 2.4.6, H 

conjugation. By tbe de- of P(S), N I, A; P ) = c*(s), as required # 

hmuaur 4.f .& Let S, T EW, and kt cf, : S ---+ T be a smjective homomorphism of S 

oam T. 6 . c ~ ~  = 6.0. 
plooc. Nore &at c'(s) = y, &, and C*O = u, 



whereVo=C(S)and&=CQ'3.fornI0 

VW1 = f ~ ~ ~ a ' ~ ~ ~ a ]  and UWl =[wk7.b-'~,b].  

To show that C*(SW = ~*m, it suffices to show that V,+ = U, fa all n 2 0. This will 

be done by induction on n. By Lemma 2.2.6, VoQI = &. So assume that Vn$ = U, , we 

are going to show that Vml+ = UWI . For any a E S, we have 

( a-lxa I XEV. )#=(a-1+){ 16 i XEV" ) ( a # )  

= ( 3 I-'V,O( a0 by kmrna 2.5.6 

= ( a* )''u,( 3 1. 

Moreover, for any b ET and by Lemma 25.6, there exists a E S such that at) = b and 

re'+ = b-l, so that ( r x x a  I x E V. )$ = *b, and  therefor^ V,,, = Un+ . as 

As a consequence of Lemmas 4.1 -4 and 4.1.6, we have 

Lamma 4.19. For any S E W, thtre exist G €9 With identity 1 and a homomorphism 

9 : s - - + G  suchfhatC?(~)=l+'. 



Proof. By Lemma 4.1.5, c*(s) is a self-conjugate completely simple subsemigroup of 

S, a d  so by h m m a  4.1.8, thm exists a group congruence o on S such that ker o = 

c*(s). Lct G = and tp : S --t G = S/a be the canonical epimorphism. Then lcp-* = 

lrcr o = c*(s), where 1 is ~ I C  identity of G. # 

As a conscquerace of h m a  4.1.9, we have 

Cordlory 4.1.10. For any S E W, thcn c'(s) is the kernel of the least group 

corrmn# on S. 

The next lemma, adapted fiom Ljapin [ Lj, Chapter Va Section 5.5 1, will be 

wed in the proofsf Pqmsiticsn 4.1.12. 

Lemma 4.1.11 [LjJ. If T is an ideal of a semigroup S and q : T + M is a * 

f r o m v h i s m  of T aam the m0w)id M. 'Ifren there exists a homomorphism \y : S -+ 
M o f S ~ ~ ~ t ~ M ~ ~ h t h a r t ~ l ~ = ~ ,  

4.1.12. Fbr any S = u, S, E a. we have C*(Q = uaY c*( S, ). 

bf. a e a ~ ~ y ,  C.(S) = u,, y[ S, n c*(s) 1. ~t remains to show hat S, n c*(s) = 

C'i~,)forary QEY. 

Lcta~Y.ThtnS,e%Y- B y k m m a d f . 9 , k ~ ~ ~ t G ~ y  witbidentity 1 anda 

homomorphism 9 : S, - G of S, mu, G such that c*( S, ) = I#- Let F( S, ) = 

($:$~Yanda$~) .hiscasyu,seematf iS , ) i sanidcPldS,aodsoisF(S, )  

u S, Extend p to cp : F( S,) w S, ----+ GO, the group G with a zero adjoined, by 

~ S , ) p = ( ~ ) . ~ b ~ ~ ~ i s a h o m a n o r p h i o m o f ~ ( ~ ~ ) u ~ , o a t o a m d & ~ ~ . ~ ~  



Lemma 4-1-11, there exists a homomorphism : S ---+ ~ O o f  S onto @such that 

~ l ~ f ~ , ) ~ ~ ,  = q. By Lemmas 4.1.4 and 4.1.6, C*(S)W = c*( G O )  = ( 0. 1 ). so that 

c*(s) s ( 0, 1 1qr-l . and so S, n c*(s) s 1q-l = c*( S, 1. Clearly. c*( s,) 

S, n c'(s). and themfore S, n c'(s) = C?( S, ), as required. # 

Proposition 4.1.12 enables us to simplify the expression of c*(s) in Definition 

4. I .2. 

Corollary 4.1.13. For any S E %X . C(S) = V1, where V1 = [ u, a-lC(S)a 1. 

Proof. By Propositiw 4.1.12, it s f l i e s  to show that c*(s) = V1 for any S E W. Let S 

E~%Y- Witbout loss of generality, we assume that S = M( G, I, A; P ) whose sandwich 

matrix P is normalized with r w p t  to some 1 E I, 1 E A, by Th+omn 2.4.3. Thus CfS) = 

M( < P >; I, A; P ) and c*(s) = M( N; I, A; P ), by Lemmas 2.4.6 and 4.15, 

respectively, where < P > f N f is the subgroup f normal s u b g ~ ~ ~ p  J of G generated by 

rhe entrias of P. Clearly C(S) i V1 5 c*(s). It is easily verified that N = 

E w g € ~  g - k  P >g 1. From the pooC of Lemma 4.1.3, V1 E %3! so hat VI is a completely 

simple subsemigroup of S. Thus H = ( x E G I ( X; 1 ,1 )  E V1 1 is a subgroup of G, and 

< P > c H s N .  Foraay(x; i k )  w i t h x ~ H ,  we have 

( x ; i , l ) = ( e ; i , l X x ; l ,  I X c ;  ~,X)EV, 

sioa ( e; i, 1 ), ( c; 1. k ) E C(S). where c i s  rhc identity of G; it follows that V1 = 



Notation 4.2.1. For S = u,, S, E %9 , denote by a, $ and y the least group, 

semilattice of groups and onhogroup congruences on S and by a,, 8, and y, those on 

S, , respectively, a EY. 

The next lemma extends a result of Reilly [ Rei1;Lemma 2.9 ] for completely 

simple semigroups. 

Eemma 4.2.2. Let S E q. Then 

y =  ( ( a , b ) ~  S X S  I a O = b O a n d a b - ' ~ ~ * ( ~ )  1 

and lrcr y = C.(S). 
Proof. La a = ( (a, b )  E S x S I a0 = b0 and ab-I EC*(S) 1. Clearly a is an 

cqlrivalcnccrtlatimm~.~owkt(a,b)~adletxbeanychtntofS.Thena~= 

b 0 s o t h a t a ~ b , t h u s a x ~ b x a r d x a ~ x b s o t h a t ( a x ) 0 = ( b x ) 0 a n d ( x a ) 0 = ( x b ) 0 ,  

since K is a conpnce  on S. Since aO= bOand ab*' E c*(s) n Ha, then a = nb wirh n = 

mwbet on S. 

Sou f a a n y  e, f E E(9,  d~ c*(s) so that (-)(fa)= (&)a= ( e f ) ' ~  E 

wSla& 'I'hus, by Lemma 225. Sfa is anorthogKWp, and ro ysor  On ibc other 

dorr sfT is pn , by Lcmmu 4.1.4 and 4.1.6, @(s@ = C'(s/r) = 

E(S/~) ,  arbich implies dm ( n . n ' ) ~ y f o r a ~ ~ n  EP*(S).HCODC~~K(~, b )  EQ says = 



nb where n = ab-* E c*(s) A H, and e = a'= bO, a = nb y nOb = b. Thus a s y. and 

therefore y = a. IXe equality ker y = c'(s) is straigigbtforward. X 

Notation 4.2.3. FOP S = uaEY Sac W , denote by F [ rcsp. Fa 1 the smditst 

subsemigroup T of S [ rcsp S, ] containing E(S) [ resp. E( S, ) 1, and such that 

a ' T a s T  f o r a l l a ~ S { r c s p , a ~ S , ] , a ' ~ V ( a ) .  

Lemma 4.2.4 1521. Far S = u, S, E W!, we then have 

G )  B = u,, oa . 
(ii) F = k e r ~ = k e r y = ~ ~ ~ ~ k e r o ~ = u , ~ F , .  

Ccmllary 4.25. For any S E %W, we have C'(S) = F. 

h m f .  Since S E %Z, then S = u, S,. For each a E Y, by Lemmas 4.2.2 and 4.2.4 

* * * (ii),C (S,)=kery,=F,.ThusC ( S ) = u W y C  ( S , ) = u a E y F , = F .  # 

Cw0IIa-y 4.2.5 enables us to adapt the descriptions about these c m p n a s  a, 

f3 aod y from Feigenbaum fF], laTom ([Lal], ELa21) and Trotter ([TtIJ, [TrZ), 

[Tr31). For details or alternative descriptions of these congruences, the reader is 

referred to the above ref- and Pirnot [Pi 1. 



Let S E W . Defm a relation zs on E(S) as follows: ( e, f ) r xS if and only 

if ihm exist yi E S, % E E(S) and hi E c*(s), 1 5 i S n for some n, where Tot each i 

k-hS0= I I 4 = yi%i . eyl-lklhlyl ... yi-l-'ki-lhi-lYi-l Y y i l ~ i  

and 

eyl-'klhlYl ... y = - l k , ~ n  = f. 

Dually &fine I C ~ .  Ltt a = 0 xP. We then have the following nsult 

Let S, E pC* fw Q ~k O. S = n,,,$,, it is casy m scc that C(S) = 

neA~*(~,).x,ttmt~(~)~ S , ~ ~ ~ C C C ~ ( S ~ ) E  g f f o r a a E ~ . ~ b u s  s E &. 
~ * ~ E ~ * g n d k t ~ b ~ a c a n p f e t ~ l ~ f t g i l l a r g u b s t m i ~ o l ~ . ~ b l l r ~ ~ i i r a  

eomp*cely regular mbsemigtaop of C*(S). by Lemma 4.1.3. aad so E%. Hence 

SE 

LXSE f l ~ d k t ~ b c a  s f S  mtoT. C k s l y , T ~ W .  By Lemma 

4-1.6, ~ [ S M  =ern. ~ioa P(S) E g, '.mm E 8, aod wheoee T E fl. # 



Lemma 433. For any V E 5%- 1, < I09 > G fl*. 
Proof. It suffices to show that 19 E pC* - Let S E g o y .  Then *ere exists a group 

congruence o on S such &at ea = ker o E ~ Y  for any e E E(S). Clearly, C(S) E; kcr a. For 

any a E S and x E ker a, we have ( a-lxa )a = ( a - k  )( xo )( a a  ) = aoa = kcr o, since 

x~ = ker c is the identity of the p u p  S/a . It follows that xlxa E ker a . Thus c*(s) S 

km o. and so c'(s) EY. Hem S E $*, ard the inclusion follows. # 

The main objeaive of this section i s  to establish the quality in Lemma 4.3.3, 

which gives a description of the varieties of the form < w. In order to Bo so, we 

aeed some preparation. 13rst, we have the following direct coosequence of Theorem 

3.5.3, 



Our next god is to establish the opposite inclusion in Lemma 4.3.5. The 

techniques used here are modified from Ash [A], Birget [BMR] and Pin [Bi2]. 

Definition 43.6. F m  now on, until Progosition 4.3.13, let S E '3W and let R be an 9 

-class of S. Define an apivafence refation = on R as follows: 

a=b  ifandmlyif a x = b ~ d b ~ = a f o r p o r n e x , ~ ~ ~ ' ( ~ ) .  

Lemma 4.3.7. Let a, b E R and s E S be such that as, bs E R, Then a = b if iuui only if 

as = bs. 

Prwf. Necessity. Since b S bs, there exists x E S such that b = bm, so that b = 

b( sx )'. Also, a a.. b implies that a = by for some y E c*(s). Thus as = bys = 

b( sx )Oys = bsw fa som w = x( n )-lys. By Lemma 2.5.7, 

w = I( sx p y s  
0 -1 = X( OX ) X ( xs )Os-I( , )Oys 

E c*(s). 
in s symmc& way ooc tin& an cjemm d EC*(S) such that br = a d .  T ~ U S  as = bs. 

SuBtielry. Since as = br, there exists x E c*(s) such that as = bsx. Also, a *as 

impties that a =asy  f a r s o w y ~ ~ .  s a t h a a = ~ s Y ) ! ~ w = s x f i  ry)-', ttrn 

w = my( sy r' 
Q 1 = ay( sy ) y- ( ys )Or"( sy )O by Lemma 2.5.7 

E c*(s). 
d a = bw. In a sy~lnmetric way onc finds an clement w' EC*(S) such &at b = aw'. 

Thusasb. # 



For each s E S, define sR : R/, + R/= - by 

1 as 1 if as E R; 
[a,sR = { 

undefined otherwise. 

Lemma 4.3.9. For each s c S, sR : R/, - R/, is a partial function which, in 

addition, is injective. 

Proof. Clearly, sR is well defined, so that sR is a partial fimctim. If [ a 1, [ b ] E R/z 

are such that [ a ]sR = [ b 18, then as, b E R a d  as bs. By Lemma 4.3.7, a a b. that 

is, [ a J = [ b 1, and thcreforc, % is injective. # 

Notation 43.10. For each a E S, let 

I3orn(sR) = {  [a]€R/,  f [a]sRisdefined ] 

= (  [ a ] ~ ~ ; ~  l a s ~ R  } 

be the domain of sR : R/= ---t Rf= . 

R R Lemma 4.3.11. For my s,, %ES, we nave Dom( s, s, ) = D 
R R ( S1S2 )R = Sl s2 * 

El R Proof. L c t [ a ] ~ D o m (  s, s2 ),tkn[a]~&m( ~ , ~ ) a n d [ a ] s ~ ~ ~ ~ o m (  3:). 

Now[af~Dom(s,')im~licsthatas,~~and[a]s,~=[as,].~~~[a]s,~=[~,] 

~ D o m (  SF ) implies as,s, E R and [ as, 1s; = [ as,p]. Thus [ a E ~ o m ( ( s , s d ~ )  

and ( a s,% 1' = [ asp2] = [ a IS,%>. ~ ~ ~ e r s e l y ,  let [ a 1 E  DO^( ( s,s2 )I1 1, LCO 

as,s, E R and [ a ]( r,s,}' = [ as,s,]. Sincc a 9 as,s,, thcn it is easy to see that 

ar,Sas,s,, sot hat as,^^ ~ e r [ a ]  ~ D o r n (  3,') and[a ]slR=[as,]~Dorn( s:), 

R P R R andso[al~Dom( s, s, ). Thexefore,Dom(s, s2 )=~om((s,s~)~)and(s,s,)~ 
R R =sl % ' # 



Lemma 4.3.12. If a, s E S, then a, as-' E R imply that asp E R and [ a@] = [ a 1. 

Proof. Since as-' = asOs-I and as0 = as-Is, then as0 9 as-', so that as@ E 9 . Also, 

as0 * a  implies that a = as0x for some x E S, and so a = a( sox )O . Thus a = as0w and 

as0 = ass0, where so E c*(s) and w = x( sox )-I = x( sox )Ox-*( sox )O E c*(s), 
by Lemma 2.5.7; it follows that as0 = a. Hence [ a@] = [ a 1. # 

We are now ready for the desired result. 

Proposition 43.13. For any S E Wf , we have 

c*(s) = n ( t r l  I G EY with identity 1 and s E CR(S, G )  ). 

Proof. F a  convenience. kt K(S) = nl 1%-I I G EY and T a CR(S, G) ). By Lemma 

4.3.5, it suffices to show mat if r E S, then r E K(S) implies that r E c*(s). 

Let r E K(S), and let R be the S -class containing r, Let G be the group of all 

bijections on R/,. We define r : S --+ G by 
R ST=( GEG I c I D w n ( ~ ) = s  ) ( s E S ) .  

Clearly, n t O f o r a n y s ~ ~ [ w h e ~ s r = ~ i f ~ m ( s R ) = O ] . ~ o r m y s I , s , ~ S ,  and 
R kt a, E s,r and a2 E s,s, then o, l ,la) = s, and o I 2 DoaLcszR> = TR. BY hmma 

4-5-11. it is easy to pa that o,o,l mw ( ,l%p) = ( s,s2)", so that G,G~E ( s,s,)r, 

and whence ( s p  )( qt ) ( s1s2)5. Let s E S and CF EG be such Ehat ( s, a ) E 

g a p h ( t ) , r h e n o ~ ~ P ) = % . k a n y [ a ] ~ ~ [ ( r l ) R ] = (  [ale%', I as-' 

ER 1, aad by Lcmmr 4.1.12. as0 = as-% E R, so that [ as-' ] ~ D o m (  sR ) aad [ as-l lo 

-1 R = I as-' ]sP = [ as-% ] = [ d] = [ a 1, thus [ a ]a-I = [ a d  ] = [ a I( s ) , and so 

~ h e n o - ' ~ ( d ) ~ ,  , ~ ~ ~ ~ ( s , G ) - ' = ( s - ~ , c s - ' ) E  

~ p h ( t ) .  By Lemma 2.5.4, graph(%) E- . TktestSare s E CR@, G). 

S h r ~ K ( S ) , t h r n l  ~ r r = ( o ~ G  I c r ! m ( p ) = ~ } , a n d s o ~ h a p a r t i d  

identity on R/, Let c be an idempotent of R By Lemma 2.3.3, a = r, so that [ c ] E 



* Dom( P). Thus [ e ]P = i e 1, and whence r = e. Hence r = ex for some x E C (S). so 

that r E c*(s). Therefore K(S) 5 c*(s), and so K(S) = c*(s). # 

We are now ready to prove the principal result of this section. 

Theorem 43.14. For any  YE Y(W ), we have 

< goy > = gc' 

= { sE  a 1 c*(s)€ % ). 

Proof. By Lemma 4.3.3, it remains to show that %c* < lay >. Let S eeC*, then 

c*(s) E IY. TO show that S E < Ioy >, it suffices to show that there exists a CR- 

relational morphism t : S ---+ G for some G E Y with identity 1 such that c*(s) = 

IT-', by Corollary 4.3.4. Let { T, : S ---+ Ga )a,A be all distinct CR-relational 

morphisms of S into p u p s .  Set G = nEA G ,  and dcfine I : S * G by setting 

s % = n a c A S h  for any s E S. 

1 r = c*(s) It is easy to see that G EY and z E CR(S, G), so that 1 8  = A,, A a 

[ 1 is the identity of G, and for each a a A, la is the identity of G, 1, by Proposition 

4.3.13. This proves the themern. # 

The next corollary is essentially contained within the proof of Theorem 4.3.14. 



5 4.4 Commutativity bedmeen operators 

We begin this section with the following notation. 

Notation 4.4.1, For % E 9(= ), let 

f l={s~%C9t  1 C ( S ) E I  ). 

Since HSP( yC ) = sC, as is easily verifia it follows that ,?Ye E Y(= ). Thus C is an 

operator on Y(W ). Clearly ( vC )' = zc so that cZ = C. The operator C was 

considered in detail by Petrich and Reilly (PRQI, [PR7 J) and Pol& [Po3]. In the test 

of this chaptcr we shall see Sathat the operator c*, introduced in Section 4.3, is similar to 

C in many ways. . 

The next lemma is a direct collsequence of Lemma 4.1.4, 

Howewr. as w &all see in CoroIlay 4.6.12, C* + C on 3?(=). 



Lemma 4.4.4. pR6]. C commutes with K . TI, Tr and T. 

The main purpose of this section is to prove the next theorem, which is the 

analogue for C* of Lemma 44.4. 

Tlrwrem 4.4.5. C* comntes  with K , TI, Tr , T, TI * and T,*. 

In order to prove the above themem, we need some preparations. 

Lemma 4.4.6. Let S E a and C* = C* (s). Then 
(%p23)lc*=.tC*n9K 

Proof. The proof is similar to the proof of [ PR6, Lemma 5.1 1. For convenience, let z = 

( .ts n 9) i C* and o = 'rc* n g. ClearIy z s cr. Since s and a are idempotent pure, it 

suffices to show that tr o = tr T. So let e, f E E(S) and e o f. Let x, y E 5' be such that 

xey E E(S). Then 

( eyx p = cy( xey )x = ey( xey )% = ( eyx l3 

so that, since eyx lies in s subgmup, eyx E E(S). Thus c( eyx ) E E( C* ) and so, since 

e a f and eyx E c*, we must have f( eyx ) E E( C* )= E(S). Hence 

(yxW=yx(feyn Xfeyx )fe=yx( feyx )fe= (yxfcP 

and yxfe E E(S). Thus ( ynfe )c EE( Cf ) ud. again since e o f and yrrfe E c*, we have 

yxfef E E( C* ) = E@). But r S f  so that f Z fef. Since e sc* f and IC* restricted to any 



The next two lemmas will be needed in the p m f  of Lemma 4-4.9. 

Lemma 4.4.7 fJ31, The mapping P ---+ Z n %Y ( PE S W  ) ) is an endomorphism 

ofY(sw ). 

Lemma 8-43 [Pel J. The following conditions on a completely regular semigroup S = 

u,, S, are equivalent. 

(i) S is a normal band of groups. 

(ii) S E  W v X  

(iii) S is a subdirect prodwt of completely simple semigroups with a zero possibly 

adjo-med. 

(iv) For any a. $ EY with $ 5  a and any e E E( Sa ) there exists a unique f E 

E( Sp ) such that f 5 e. 

Lemma4.4.9. L e t e / ~ Y ( ~ ) . T h e n c ( % v 9 ) o ~ > = < Z o ~ > v < Y o ~  > 

= < v o y > v 9 .  

Proof, The proof is similar to the proof of [ PR6, Lemma 5.2 1. We clearly have 

<zoy > v 9  s ; ; < 1 o y > v < 9 o y > ~ < ( % v ~ ) o y  >. 

It suffices to show that c ( %' v Y)oy > c 2Yoy > v 9. The claim is trivial if 9 8. 

So suppose that 9 & Y so that V E Y (W'). Let S E < ( 9/ v 9 ) o y  >. Then C* (s) E 

I v Y and thus c*(s) is a normal band of groups. By Lemma 4.4.8 (iv), S itself is a 

normal baod of groups. If D is a 9-class of S, then by Proposition 4.1.12 and Lemma 

4.4.7, we obtain 

c*@)=c*(s)~DE(%vY)~w=(P~w)v(sP~w)=%. 

Therefore D E < Pay > and so DO E < > v 9 for each completely simple 

component D of S. By Lemma 4.4.8 (iii), we have S E < g o -  > v 9'. # 



hoof. F k t  jet S E 5fZ and define a mapping x by 
X :  a(4"9)---+ ~ ( S ~ ~ B ) ~ C * ( S )  (~Ec*(s)) .  

Lemma 4.4.6 asserts rhat C TS f i  9) J C* = TC* n 9 which then implies that x is a 

* S bijection of C ( /(,s n?a ) onto c*(s) /  t ~ ~ *  nsf 1 by Lemma 4.1.6. It now follows by 

* S Lemma 4.4.6 that x is also a homomorphism. Therefore C ( /(a nla ) Z 

For 8 EY(=), and by Corollary 3.5.5, it suffices to show that < c J o g > o y  > 



Proof. me proof is similar to the proof of [ PR6, Lemma 5.4 1. Consider 9. Clearly 

iL"O I CI r ( YC* )O. SO let a, b E c*(s), a ( 5Yp)'b and x. y E s'. Then xOayOYC* 

x0by0, and xOay 2 x%y since 2 is a right congruence on S. But clearly 

xay 5? &y, xby Y x%y 

so that xay Y xby. Thus a ( 91 ~ 1 )  b and 9 1 = ( YC* )* . Similarly for S and 1 

Proposition 4.4.12. Let I E Y(Wt ). Then 

Proof, Let S E Wt . From Lemma 4.4.11, it follows that 

= C*(S)/ c*c s/,, ) - 
( +(s, lo. 

For any 2Y E Y(W ), we then obtain 

u c * ( S / ~ ) E P /  

o S / p  c < g o y  > by Theorem 4.3.14 

u S E e o c  Zoy > by Lemma 3.3.1, 

and therefors 5$?0< Zoy > = c ( )oY >. The rest of the equalities can be proved 

similarly. # 



Proof. For %E Y{%Z ), and by Corollary 3.5.5, we have & F o <  g o y  > 

< (SO%' )0y >. For the opposite inclusion, let S E %%, we then obtain 

Se<(SoeC&+> =r C*(S)E=O~ by Theorem 4.3.14 

Similady for the second equality. # 

Proof of Theorem 4.4.5. For any 1 E 5?(%9), we hen obtain 

P/c*K=<so&> byCmoilary3.5.7 

= <So<%y > by'I'he~rem4.3.14 

=<<SoV>ay > byPLcoposition4.4.10 

=<VKoy+> 

- - %KC* 

and therefa C*K = KC?. Similarly for TI, T, , T, TI * and T,* by applying Proposition 

4.4.12 and Carollary 4.4.13. # 

Notation 4A.f 5, For any I E 9(9 ), we write 

- = ( S E ~  I S I ~ E O ) .  



Rcealling the faft that C = C* on Z(v) from Section 4.4. Thc main purpose of 

this =..tion is to show that C is a complete endomorphism of 2'(9). 

Lenonra 45.1 [ PR7, Lemma 4.4 1. Let 8 E Y ( ~ ) .  Then 

6 =& 

= ( l n  J ) ~  

=(  S E ~  I E ( S ) ~ z n 9  ). 



Lemma 4.5.2 f PR7, Lemma 4.5 1, Let % ~4P(e) and 

I n 9  =[ xa=x,u(xl ...., ~ ) = v ( x l  ,..., x,) 1. 

The" $ = f i e  
0 = [ xoyO= (xoy0)5 u(xIo, .-. , x,') =v(xl$ .-. , X, ) 1. 

Definition 453. Let S E-. Then S is E-unitary if e E E(S), a E S, ea E E(S) imply a 

E E(S). 

Lemma 45.4. The following conditions on a completely regular semigroup S are 

equivalent. 

(i) S is E-1mitary. 

(ii) S is an orthogroup awl ker a = E(S). 

(iii) S E 9 $9. 

Proof. (i) implies (ii). Let e, f E E(S). Then ef( ef )-' = ( ef )O E E(S). By hypothesis, 

f( ef )-' E E(S), and so ( ef )-' E E(S). Thus ef E E(S), and therefore S is an orthogroup. 

Cleady E(S) s La a. By Lemma 4.1.4, c'(s) = E(S). Let a E ker a, then ( a, e ) 

E CT far m e  e E E(S), it follows from Lemma 4.2.6 that fa = ef ' for some f, f ' E E(S). 

Thus f, fa E E(S) so that a E E(S) by hypothesis. We conclude that ker o = E(S). 

(ii) implies (iii). Trivial, 

(iii) implies (i). If S E J o y ,  then there exists a congruence p cn S such that Sip E 

g and ep = E(S) is the identity of S/p for any e E E(S). If e, ea eE(S), then ep = ( ea )p 

= ( ep )( ap ) = ap, so that a E E(S). Hence S is E-unitary. # 

Defmition 4.5.5, Let S, T' . A homomorphism cp sf S into T is idempotent 

separcariRg iffarany t,f eE(S),ee,=f cpimpliese=f. S iscalledfundamentalif~=& 



We now give an alternative: proof of [ PP1, Corollary 6.39 ] for orthogroups. 

Proposition 4.5.6 @PI]. Every orthogroup is an idempotent separating hommorphic 

image of an E-unitary orthogroup. 

Proof. Let S E @ .  By Lemma 4.5.1. S E sC*= C R ( 9 ,  y), and so there exist G EY 
with identity 1 and a surjective r E CR(S, G) such that 1 % -  E 9 . Let S & 
graph(r)-& G be the canonid factorization of z. Then : graph(%) ----t G is a 

-1 , homomorphism of graph(%) onto G such that la = 1%-I ~ 9 ,  which implies rhat 

graph(.t) E 9 o y ,  and so by Lemma 4.5.4, graph(%) is an E-unitary orthogroup. On the 

other hand, since E( graph(%) ) = ( ( e, 1 ) I e E E(S) ) and a is the projection of 

graph(.t) onto S, thus a : graph(%)- S is an idempotent separating homomorphism 

of graph@) onto S. This completes the proof. # 

Corollary 45.7. Every E-unitaxy orthogroup is a subdirect product of a fundamental 

orthogroup and a group. 

Rmf. Let S be an E-unitary orthogroup. Then ker (a n p) s ker a = E(S) by Lemma 

4.5.4, and tr (o n p ) c tr p = e, thus o n p = E. Hence, S is isomorphic to a subdirect 

product of Sip and S/(I, where SlP is a fundamental orthogroup and S/a is a group. 

# 

Lemma 4.5.8. Let S, T E and let cp be an idempotent separating homomorphism of 

Sonto'F,Thenforalla,b~S,~pb ifandonlyif (acp)p.(bcp). 

Proof. By Lemma 2 5.6, ( aq )-I = a-%p for all a E S. The direct implication is obvious. 

Let(aqk)p(bq).SioccT~qJP and byL,emma2.6.l1, we have (acp)-*(ecp)(ap)  = 

( btp )-I( ccp )( @ ) for all c EE(S), so bat ( amlea )cp = ( b-'eb )cp for all e E E(S). 

Since 9 is idempent separating and a-lea, b-leb E E(S), we must have a-lea = b-le b 

for all e EE(S). Hknce, by Lemma 2.6.11, a p b. # 



'Ihe following resuit d l  be needed in the proof of Proposition 4.5.10. 

Lemma 4.53. For e v q  S E @' there exist a group G,  a ( completely regular 

semigroup ) subdirect product T of SIP and G, and an idernpotent scpararing 

fromomorphisin q~ of T mu, S. 

Proof. Let S E q. By Proposition 4.5.6, there exist an E-unitary orthopup T and an 

idernjmrent separating homomorphism tp : T- S of T onto S. It follows from Corollary 

4.5.7 k t  T is a subdinct pahct of and G = T/=. By Lemma 4.5.8, T/), 2 , 

and the asstrtion follows. # 

P r a p d t h  43.14). Far any V E 5 ? ( q ) ,  we have 

9/vy=%TngF 

= (  Sc4jP I S I ~ E Z ~ ~ ~ E ( S ) E ~ ~ S  1 

Proof. Clearly 1 v s pT n n. F a  the opposite inclusion, let S E gT n %IC, then S 

€4 and SIP E I. By Lemma 4.5.9. thm exist an orthogroup T, which is a subdirect 

product of SIP and a group G, and an irlmpotent separating homomorphism cp of T onto 

S. Thus T E % v y,  and so S E% v 9. This proves the first equality. The second equality 

is an immediate consequtwx of Lcmmas 3.3.3 and 4.5.1. # 

Th+ Mice 2(S) of subvarieties of the variety 9 of all bands is pfesented in 

Figurc 4.1, as determined by Birjakov [Bi], Fenntmore [Fe] and Gerhard [GI. 

However, thd description of the vertices as 1Mal'cev products is due to Pastijn PI. 

By simple iaspmtim of Figure 4.1, the next lemma follows. 

Lemma 4-5.11. Let 1, YE [9,9 1. Then iY & 7 and T d  1 imply that 1 v Y  = 

S Z o %  n 9 9 X W  or -0% n S O T .  





Ndatiorn 43.1 3, W e  denote by S C 9  the variety of all regular bands. Then = 

f ao = a, axya = axaya 1. 

Lemma 45.14 (PR7, Lenrclla 4.6 1. For any P(, YE 5?(5SW). ( 9Y v 4. )c = & v yc. 

by Corollary 4.4.13 

by Lemma 4.5.12- 



Lemma 4,517. For %a E Y(S ), cr E A, then J = v,, A 9, implies that PjP = 

~ ~ ~ ( 8 ~ ) ~ -  

Proof, In order to establish the assertion, it suffices to show that F (k) E 

v,, A ( 4, )C for all positive integers k, whcrc F (k) is the free csrthogroup on k CY 
$enefabor~ ( see [GP] ). TSKn the same type of argument as in the last part of the proof 

k 
of [ PR6, 'Ihconm 4.6 ] yiclds that Fbg(k) E Y ( =lTr ) for all positive integers k. 

TT )IC + k  
Let k 2 1. From Lemma 45.16, it follows that Y ( 1 r n 9 = 9 ( T?T~ ) , and so 

* k  
C( Fq(k) ) = E( FV$) ) E 9' ( T?T~ ) . Since 9 = v,, A Z,, and by inspection of 

* k  
Figure 4.1, there must exist $ E A such that 9' (T?T~ Thus C( Fq (k) ) E lp, 

which then implies that F (k) E ( Og )C v, A ( %, )C, as required. f5' # 

Cordlary 45.18 The restriction of C to Y(9) is  a complete- monomorphisrn of 

Z(9) into Y(qy). 
Rool. Clearly I --t & is a cmplete n-homomorphism of V ( J )  into Y ( 9 ) .  Let 

I, E Y(S) fm a E A. By inspection of figure 4.1, we then have v,, A %, = J or 

vaEAZa=vi -  - 1 , n  I a, -forssmefiniteset(al ,..., a , ! s A . F o r t h e f m e r c a s e , i t  

f d b ~ ~ f r o m h n m a ~ 4 . 5 . ~  ~ 4 . 5 . 1 7 t h ~ ( ~ , , ~ ~ , ) ~ = ~ , , ~  ( I, )C. For the 

lener ease, it fobws hxn Propsition 4.5.15 and induction on i that ( v,, A I, )C = 

- ) C = ~ i = I , o (  ai ( V i = l . n  a, = v a t A  ( I, )C. ~ h u s  I ---, yC is also a 



complctc v-hanomaphism of Y(S) into Y(e). Ihe hjectivily of C on Y(S)  follows 

from Lemma 4.5.1. lkdixc the rcsaictioa of C to Y(S) is a complete moa~nwphism 

of YW) into 2(@). # 

We ate now ready for the main result of this section, which extends the last 

assertion of [ BR7, TLmtorem 4.1 1. 

Theorem 4.5.20. The restriction of C to 4P(e ) is a complete endomorphism of 

Y@y)- 

BPoot. F C K % ~ E ~ ' ( ~ ) . ( X E  &weget 

( v ~ ~ ~ % ~ ) ~ = [ ( V , ~ % , ) ~ S ] ~  byLnnma4.5.1 

=[v,,&V,nJ)lC byLemma4.5.19 

= V , ~ ( * , ~ J ) ~  b y C o r o ~ 4 . 5 . 1 8  

= ~ ~ ~ ~ ( & h ) ~  by Lemma 4.5.1 

and 

However, the operamr C is not a v-homomorphism of Y(W ), the reader is 

ref& to Peaich aud Reilly fPRq for details. 



In this section we consider the operator C* on P(W) in detail. As 

consequences, we determine the semigroup generated by the operators C* and C. and 

show that the W c e v  product is nc# associative on Y(%W). 

Delinition 4.6.1. Ler S r =d let (C')'(S) = S. Then for n 2 I ,  define (c*)"(s) by 

* n-1 ( c ~ ' ( s )  = c*((c ) (5)). This gives a sequence of subsemigroups of S : 

s 2 c*(s) 2 ( C ~ ( S )  2 ..*... * 

We now have the following observations. 

f d l o a n .  M-ver, C(S) 5 ( ~ ) O ( S )  for any S E %'9 and n 2 0, whence G 6 for 

a ~ n ~ ~ , w , r n a t ~ , ~ , d c * ~ " ,  6- 
" c* JT* n C* 

(iii) ~ c a r l y  ~ , , ~ d c * % ~ v , , ~ d ~ )  - - 1 . L ~ S  E[v,,~o(L ) 1 . then 

c*@) E V, , - Y(~*Y.  By @)). VV, 20 I('*)' = Y ( ~ * Y ,  W that c*(s) E dC*)' 

foe- n~ 1, thus s ~d~)Df', a d  whence s E V , ~ ~ # ~ .  # 



Zn Propifion 4.6.1 I, we shdl see &at the ascending sequence in Lemma 4.6.2 

fil) is stria in s ~ m e  Tbc next kmma follows easily h r n  Corollary 4.1.13, 

For any subvariety of W, tfpe quality in Lemma 4.6.3 will be established in this 

section. 

whcre P is wrmalizcd Let < P > and N be tbt subgroup and ttic m m a l  subgroup of G 

gtnmucd by thc enOicr of P rrspectivcly. By Lcmma 4.1.5. P(s) = M(N; I, A; P) E W, 



so &at c*(s) = H@l; 1. A; P). Let i, j E I. 1, jl E A  and g E G. Since S satisfies the 

identity xayl b•‹F-la0x = x-'aox y-lbOyxO, we then have 

( e; 1, k )'( g; 1, p I-? e; j, 1 lo( g; 1, p X e; 1, k e; i, 1 lo( e; 1, h ) 

= (e; 1, U%; i, 1 lo( e; 1, X X  g 1, p e; j, 1 lo( g; 1, p e; 1, x lo, 
where e is the identity of G, so that ( g-lPlrjgpAi; 1, h ) = ( hig1pPjg; 1, 2. ), whence 

pU( g-lppjg ) = ( g-lppjg )ai. Taking inverse and conjugating by pii, we have that 

pxi( g-lpp;lg ) = ( g-'pp;lg )ai. It follows tbat fii lies in the centre of N. since N = 

[ WgEG g-'< P >g 1, a d  therefore dl entries of P lie in the centre of N. By Lemma 

3.1.11 (ii), c*(s) = M(N; I. A; P) EI SO that S E WC* = dC*. Hence Y G dC*, which 

completes the proof. # 

Corollary 4.6.5. For any I E Y(e), we have ye*= ( p/ n d )c*. 

Pr&30fo This is immediate firm Lemma 4.6.4, # 



0 c* @=,C'*[ xm=x ] 

A* r~ [ ( y-'xuy jm = ( y-'xoy )O 1 by Lemma 4.6.3 

= J* n [ ( y-%Oy jrn = yo 1 . 
Indeed, I = d,GW . Let S E dc* n [ ( y-lxoy )m = yo 1. Without loss of 

generality, we may assume that S = M(G; I, A; P) where P is normalized, thus by 

Lemma 4.1.5, c*(s) = M(N; I, A; P) where N is the normal subgroup of G generated by 

the entries of P. Since c'(s) ~ d ,  then N E Jlq? To show that c*(s) E P/ it suffkes to 

show that N Since N is generated by the set { g-lplig , g-lpl(lg I g E G, i  E I 

and k E A  ), and noting that ( g-lpA;lg )m = [ ( glpAig )m I-', it remains to show that 

(g-'pUg ) * = e , f o r a l l g ~ G , i ~ I a n d  A E A .  whereeistheidentityofG.Let g ~ G , i  

= ( e; 1% 1, 
whence ( g-IpAig )m = e, as required # 

The next corollary is a simple consequence of Lemma 4.5.1. 

Cordlary 4.6.8. For any V E Y(w), we have 

Rasin [R2] has obtained a description of the subvarieties of sf ( see also [ J1, 

Theorem 4.2 1 ). We state this result in the next theorem. 



Theorem 4.6.9 [R2]. Let 2' E Y( d ). Then 

either (i) % E Y( vdE@ ), 

or (ii) z =d, 

a ( i i i ) Z = s / n [ ( ~ ~ ~ ) ~ = ( x ~ ) ~ ]  for some k 2 1, 

or (iv) % = d n [ xm = x0 1 for some m 2 1, 

or (v) Z = ~ / ~ [ ( X ~ ~ ~ ) ~ = ( X ~ ) ~ , X ~ = X ~ ]  forsomem,kZlwithkIrn. 

Combining Theorem 4.6.9 with the above facts, we deduce easily the following. 

Proposition 4.6.10. If % = [ u,( 3 ) = va( 3 ) Ias A E Y ( W ) ,  then 

-1 0 -1 0 "'*=[ ua(yi yi)=va(yi  xi y i )  IaEA, 
where for each xi , 3  o yi is one-to-one, and yi c c( u, ) u c( va ) for all a E A. 

The next proposition shows that the order of the operator C* is infinite. 

Proposition 4.6.11. The varieties d C * l n ,  n I? 0, form a strictly ascending sequence 

s/ c src* c ... c d(C* ) "  c ... c s/c = 9T, 

"n20 sd(C')n c 9. 

Proof. Let S = M(G;  I. I; P ) ,  where I = { 1,2 ), G = S3 andP = 

Lemma 3-1-18. S E& = 9. Since the normal subgroup of S3 generated by the set 

( (1). (12) ) is Sg itself, it follows from Lemma 4.1.5 that c*(s) = S, and so (c*)'(s) = 

S for all n 2 0. Thus S e.dC*In for all n 5 0, since S3 e 4 . By Lemma 4.6.2, S e 

LetT=wS3;I , I ;P) ,wheref= { 1 , 2 }  andP= 1. Since the normal 

subgroup of S3 generated by { (I), (123) ) is N = ( (I), (123), (132) 1, it follows from 



Lemma 4.1.5 that c*(T) = M( N; I, I; P ), whence c*(T) ~d so that T E &*. But T e 

For each n 2 1, let S,= M( Gn; I, I; P ), where I = ( 1,2 ), Gn = D2"+1 = < a, b : 

p + 1  
a = e = b2, ba = a-lb > - the dihedral group of order 2=+" [ Hu, Theorem 

1.6.13 1, and P = [ 1 1. ~ l u  normal subgroup M, of G, generated by the entries of P 

is precisely the subgroup of G, generated by the elements b and a*, i.e., M, = 

< b, a2 >. It is easily verified that Z Gn-l if n 2 2 and M1 = < a, b : a2 = e = b2, ab = 

ba >. By Lemma 4.1.5, C'(s1) = MI; I, I; P ) ~d since MI E 4. For each n 2 2, it 

follows that c*(s,) = M( 4; I, I; P ) Z M( GG1; I, I, P ) = Sn-* , thus 

(c*)"(s,) 2 c* (s~ )  ~d 

and 
* n-1 (C ) ( S , ) E S 2 0 d  

* n-1 
since GI e 4, and so S, E and S, e dC ) . Therefore, by Lemma 4.6.2, 

sr<~*)"-l c &C*)" far all n 2 2. # 

Corollary 4.6.12. (i) C* # C. 

(5) The W c e v  product 0 is not associative on Y(%Y). 

Proof. (i) This is an immediate consequence of Proposition 4.6.1 1. 
* 2 

(ii) By Proposition 4.6.1 1, we have ( d o 3  ) o y  = d (C ) + d * = g/ 09 = 

Jrfo(yoy ), so that ( d ~ y  ) o y  f do(yoy ), and therefore " 0 " is not associative on 

%rn. # 



Corollary 46.14. The semigroup generated by the operators C* and C is isomorphic 

to the infinite cyclic semigroup with a zero adjoined, 

Proof. This is a consequence of Lemma 4.4.3 and Proposition 4.611. # 

The rest of this section is devoted to characterizations of %(c*)~, YE [ S 3 ,  W] 

and i 2 0, in terms of %-invariant normal subgroups of the free group over a countably 

infinite set. We need some preparation. 

Lemma 4.6.15 [Rl]. Let S = rM( G; I, A; P ) where P is normalized. Let cp E q, o E 

End G, v E IA be such that 

[~,i]o=[l~,lp][hw,lO]~'[~,icp][lw,icp]~' ( 5 ~ h . i ~ I ) .  ( 1 )  

Then 8 = 6( o; p, y ) defined by 

( 9; i, 116 = ( r 1 ~ 2  icp I-? go 1r 1y. 19 I[ XW, 19 1-l; icp. hy 

is an endomorphism of S. Conversely, every endomorphism of S can be so written 

uniquely. 

The following is a construction of the Rees matrix repmsentation of a free 

completely simple semigroup. 

Lemma 4.6.16 ([C], ml]). Let X = ( xi I i E I ) be a nonempty set, fix 1 E I and let I' 

= I \ (  I ).Let 

Z = ( % I  i ~ I ) u ( [ j , k ]  I j , k ~ r ) ,  

F Z k  thefreegrouponZ,aridletP= ([j, k] )with [ 1, k] = [ j, 11  = 1, theidentityof 

FZ Then 

F = M( FZ; I, I; P ) 

is a free completely simple semigroup over X, with embedding xi---+ ( qi; i, i ). 



Notation 4-6.17. We fix a countably infinite set X, and in addition to the above 

notation, introduce 

F p = c [ j , k ]  I j , k ~ r >  

the free subgroup of FZ generated by the set ( [ j, k I I j, k E I' 1. 

By Theorem 3.1.1 and Lemma 3.1.3 (ii), we have the following . 

Lemma 4.6.18. Let S = M( G; I, A: P ) where P is normalid. If N is a normal 

subgroup of G, then pN defined on S by 

( g ; i p ( j )  o g h - ' ~ N , i = j , l i = p  

is an idernpotent separating congruence on S, and every such congruence is obtained in 

this way. Write P/N fm the A x I matrix with the ( j, k )-th entry equal to the ( j, k )-th 

entry of P modulo N, SlpN is isomorphic to H( =IN; I, A; P/N ). 

Notation 4.6.19. Let 

4 FZ ) = ( o E End FZ I there exist q, yf E 3 such that (1) holds ) . 
Then E( FZ ) consists precisely of endomorphisms of FZ that arise in association with 

Lemma 4.6.20 [RI]. Let N be a normal subgroup of Fz. Then pN is fully invariant if 

a n d d y i f N o s N  f o r a l l o ~ @ F ~ ) .  

Definitiaa 4.6.21. A mid subpop  of FZ is E -invariant if it is invariant under all o 

E 'EE FZ ). The set of a i l  E-invariant normal subgroups of FZ will be denoted by N. 

It is clear that is a sublattice of the lattice of a l l  normal subgroups of Fz 



Theorem 4.4.22 mPj. The interval [ S9Y , W ] is anti-isomorphic to the lattice N. 
In particular, %E [ my W ]  if and only if pg is idempotent separating and so is of the 

form pH, N EN. The mapping p,, ---+ N, where pa = pN, is an isomorphism of the 

lamce of fully invariant idempotent separating congruences on F onto N .  

A 
Notation 4.6.23. For any subgroup H of FZ, we will denote by H the normal closurt of 

H in FZ. 

Notation 4.6.24. For any subgroups H and K of a group G, we denote by [ H, K ] the 

subgroup of G generated by the elements of the form [ h, k ] = h-lk-lhk. when h E H, k 

EK. 

Definiti~n 4.6.25. Let Mg = FZ. Then for i 2 1, &fine M, to be the normal closure of 

Fp in %-1 . This gives a sequence of subgroups of FZ, each normal in the preceding 

Lemma 4.6.26. For i 5: 0, we have M,o E Mi for all o E FZ ). 

Proof. Ifi=O,thenMo=FZ, m t h a t M g o = F Z w ~ F Z = M g f o r a l l ~  a ( F Z ) .  

Assume that M i o  M i  for all o E a( FZ ). It is easy to see that Mkl = 

[ UgEM- g*l~pg 1, thus fm any o E 2( Fz ), we have 
1 

Mi+1o = UgE M. I g*lFpg 10 

= 1 ( g o  ) - l ~ p N  g o  I 

s Up M. I g - l ~ p g  1 since Fpa s Fp and Mia s Mi 

= 

By induction, the assertion fdlows. # 



Lemma 4.6.27. For any 0 E 2( FZ ), there exist two unique endomorphisms el and e2 
of FZ S U C ~  that 

(i) 8 ,1x=81x and 8 1 1 y = ~ y ;  

(ii) 8, 1 = ex and e 2 i y = 0 I Y ;  

(iii) ~ , , 4 3 , ~ 2 ( F ~ )  and 0=e2el;  

whereX= ( x i  I ~ E I )  andY= ( [ j , k ]  I j , k ~ I '  ) asintroducedinLemma4.6.16. 

Proof. Since FZ is the fkee group on Z = X u Y, thus the existeme and uniqueness of 

0, and e2 follows easily. Clea~ly el satisfies the condition (1) in Lemma 4.6.15 with cp 

= ry = , and so 0,  E E( Fz ). Since 8 E z( FZ ), there exist cp, w E % such that the 

condition (1) holds, thus O2 satisfies the condition (1) with the same cp and y, and 

whence e2 E 2( FZ ). Clearly, 9 I = e201 1 , which implies that 8 = ez81 . # 

Definition 4.628. Let N  E N, Far any subgroup M of FZ, we define 

%(M)=< U N O :  0 ~ 2 ( F ~ ) s u c h t h a t F @ c M a n d o I  F~ - - E ~ p  Fp- 

Ciearly VN( M ) is a subgroup of FZ such that VN( M ) N n M . 

We are now ready to prove the last main result of this section. 

Theorem 4.6.29. For V E [ 39, Wl with pg = p ~ ,  we have 

pdc?,' = hi for all i 2 0, 
A 

where Ni = VN( 4 ). 
A 

Proof. For i = 0, we clearly have that No = VN( FZ ) = N, so that py(~*)o = pIY = p~~ . 

Let i 2 1. To show that Ni E it suffices to show that VN( M, )0 s VN( Mi ) fa all 

8 ~ ' E ( F ~ ) . L e t 8 ~ 1 E ( F ~ ) , a n d l e t a ~ ~ ( F ~ ) b e s u c h t i r a t F ~ o ~ M ~ a n d o I  = 
F~ 

E . Thus Xo s Mi, which implies that X d  MiQ s Mi by Lemma 4.6.26, so that 
FP 



X( oB ), E Mi. On the Mher hand, Y( oB ), s F, s Mi. Then Z( a9 ), = X( dl ), u 

Y( oB ), c Mi. and so  FZ( oB ), r Mi. Hence 

and whence VN( Y )8 c %( ). Therefore Ni E N. 
To show that pdc*)i = PNi . it suffices to show the following two statements: 

(a) FlpN- = M( FdN. ; I I; PIN. ) E d c * l i .  
1 1 1 

* i  F In order to show that F/pN- EZ(C*)~. it suffices to show that (C ) ( /P ) = 
1 N i 

w " i / ( ~ i n ~ i  1; I , I ; P / ( ~ . n ~  1 1  ) ) E Z  b y h m m a s  4.1.5 and4.6.2. 

Let o* : X ---+ Mi be a bijection; since both X and M, arc countably infini tc. 

such a o* must exist  Extend w' to o* : 2----t Mi by [ j. k lo' = [ j. k ] for any [ j. k ] 

E Y. Then there exists a unique homomorphism o : FZ ---t Mi of FZ onto Mi such that 
* (i) o l = o and o l Fp = eFP; 

(ii) o E Z( FZ ); since w satisfies the condition (1) with cp = = el; 

(iii) NO FZO = Mi. 

Thus N o  s VN( M, ) Ni, and so No E M, n Ni. Defme 

6 : F/pN M ~ ~ I ( ~ ~ ~ N ~  ); 191; ' I ( M . ~ N ~  1 ) )  

by ( gN; i j )@ = [ ( go )( Mi n Ni); i, j 1. It is a straightfoward verification that 0 is 

a homomorphism of FlPN onto M( Mi/( M~ n N~ 1; I, I; M~ n N~ ) ). and whence 
* i  F 

(' ) (  IpN ) E P / 7 a s q u i n d  
i 

(b) ~f N E wi& F/pN CE z(c*)~* then N~ E, N. 
* i  F Since FlpW = M( FZiN~; I, I; 'IN*) E z(c*)~, ~hcn T = (C ) ( /pN, ) = 

Mi/( N n M, 1; I. I; P/( N n M- ) E 8 by Lemmas 4.1 -5 and 4.6.2. Define 
1 

9 :  M M i ; I I ; P ) +  T 



by ( g; i, j )<p = [ g( N' n Mi ); i, j j. It is easily verified that cp is a homomorphism of 

M( 6; I, I; P)ontoT. Form E!E( FZ) with F Z o s M i a n d  oIFp =eFp,  we define 8 : 

F ---+ M( 4; I, I; P ) by ( g; i, j )8 = ( gw; i, j ). Then 8 is a homomorphism of F inro 

M( y; I, I; P ). It follows that etp : F  ---+ T ( E % ) is a kmomorphism of F into T, so 

that pN 5 G. Let g EN. Si;xe ( g; 1, 1 ) p~ ( 1; 1, 1 ), thus ( g; 1, 1 )Bp = ( 1; 1, 1, )8p, 

that is, [ ( g o ) ( N ' n M i ) ;  1,1] = ( N 1 n M i ;  1, 1 ), so that g o  EN' A Mi. Then No Z; 

N ' n M i ~ N ' f o r a l l o ~ 2 ( F Z )  and whence Ni E; N' 

by rhe of Ni, as required, # 

It is a simple consequence of Theorem 4.6.29 that 

F/pN* = M( ' ~ l j ~ .  ; 1.1; 'jN. ) 
1 1 1 

is a relatively fiee object in p / ( ~ * ) ~ ,  for all I E [ SeJB , YPY] with pg = pN and i 5 0. 

CoroUary 4.6.30. pP,(c*+ = p A for a l l  i 2 0. 
Eq.41 

Proof. From [ PR5, Proposition 7.2 1, N = [ FZ, FZ] E and p,, = % By Theorem 

A 
4-6-29, it suffices to show that Ni = [ 4, % J fm all i 2 0. 

The case is trivial for i = 0. Far i 2 1, we then have 

%(Mi) = < V IFZ, FZ]o : o E E (  Fz) with FZW E Mi 

and o I Fp = eFp > 

c < V[Fp,Ffl]: o ~ E ( F ~ ) w i t h F ~ ~ s M ~  

and o I Fp = eFp > 

rWi, %I, 

P. n 
so that Ni = VN( Mi ) s [ h$, M, 1. On the other hand, from the proof of Theorem 

4.629, there exists o E 'L( FZ ) roch that Fz~, = Mi and I = eFP; this implies that 
F~ 



for any a, b E Mi, thert exists u, v E FZ such that a = u o  and b = vw, thus a-'b-lab = 

( u-'y-'uv )o E [ FZ, FZ 10 s VN( Mi ), SO that [ Mi, Mi] s VN( Mi), and whcace 

Corollary 4.6.31. The subgroups M, of FZ, i 2 8, fcnns a strictly descending sequence 

Fz = Mg > MI > M2 > ... > Mi > ... > Fp. 

Proof. This is an immediate consequence of Proposition 4.6.11 and Corollary 4.6.30. # 

8 4.7 Concluding remarks on the operator C* 

We conclude this chapter by gathering together some supplementary facts about 

the operator C* in the next result. 

Theorem 4.7.1. The operator C* is a co:nplete n-endomorphism of Y (m ). Its 

restriction to Y(q) is a complete endomorphism of Y(q). 
Proof. For V, E 9(W) with a E A, and let S c Wf , we then have 

s ~ ( A ~ ~ ~ z ~ ) ~ *  c*(s)~n,~r,  

o c*(s) for all a E A 

* S E ( I ~ ) ~ *  f a  d l  a EA 

r F*, S € n O I E A (  a 

whence C* is a complete n-endomorphism of Y (%3t ). The last assertion is a 

consequence of Lemma 4-4.2 and Theorem 4.5.20. # 

It remains an open question whether or not the operator C* is a ( complete ) v- 

homomorphism of Y(S3t). 



Chapter 5 

Varieties of The Forms < % o r >  

With Y E { # F , S ! ! , ~ W  } 

This chapter is &voted to study the varieties of the forms < %or> with fY 

E { , , ). We fmt provide descriptions of these varieties < >, 

< 1 o S X  > and < Yo- >. The operators h, Lr and L* on Y(%3E ) associated with 

these varieties are introduced and studied. We also obtain some general relationships 

between the operators 4.4. L' and the well Loom openuor L. 

In this section we give &scriptions of the varieties of the forms < >, 

< > and < Po- >. We require some preliminary observations. 

Lemma 5.1.1. If S E 'iBV , then eS, Sf and eSf are members of %W for any e, f E E(S). 

Proof. Let e, f E E(S). Clearly eS is a substmigroup of S. To show that eS E W , by 

Lemma 2.5.4 it sass to show that a-I E eS for any a E eS. Let a = ex E eS with x E S, 

then 

,-I = ( ex )-' 

= ( ex )%-I( x&)Oe-'( ex )O 

= e[ X( ex )-lx-l( xe )Oe( ex )O] 

E eS, 

by Lemma 2.5.7 



whence eS EW. The casc of Sf is syrnmctzic and the case of cSf follows from thcse 

two cases, since eSf = eS n Sf. # 

The above lemma enables us to introduce three operato~s on 2'(= ) defined as 

follows : for any % E 5?(-), 

= (  S E W  I c S ~ Y f o r a n y e r E ( S )  1, 

Lemma 5.1.2. Let 2Y E Y(5ZZ). Then 

Proof. (i) If S E & , T is a amplctely regular subsemigroup of S and c E E(T) then e 

E E(S) and eT is a completely reptar subsemigroup of eS and so belongs to %, whence 

T E . E T is a homomorphic image of S, uoder 0, say, and e E E o  then by Lemma 
L 2.2.6, e = e'@ for some e* E E(S), whence eT = ( e'S )$ E%. That ?I is closed under 

direct products is immediate upon noting that an element of a direct product of 

w m i p p s  is idemp~ent if aod only if tach of its components is idernpotent. Hcncc d'~ 
is a variety, ie., & L Y ( ~ ) *  

(ii) This is the dual of ti). 



[iii) The proof of this is entirely similar to that of (i). # 

Let X be a noncmpty rer For any u EX+. we denote by h(u) and t(u) 

respectively the first and ttre last variables which appear in u. We define three relations 

The main p q m c  of this section is to establish the following result. 



L Proof. (i) By Lemma 5.1.2 (i) it remains to show that V r < 8 0 s  >. Let S E gL1 . 

Let X denote the alphabet whose letters are elements of S. There results the usual 

surjective homomorphism d semigroups 

a: x+- s 
+ 

which maps each letter of X into itself. By Lemma 5.1.3 (i), T = I P ,  E #and 

p : x+- T becomes a surjective homomorphism by defining wp = wP,. Let T = 

a-lp. Clearly r : S - T is a relational morphism of S onto T. For any t E T, there 

exists w E X+ such that t = wel, and by Lemma 5.1.3 (i) we have that wP, = h ( w ) ~ * ,  

whence 

11-1 = ( w& IT-.-' 

= ( h ( w ) ~ *  )a 

= SS where s = ( h(w) )a 

= sos, 

mi therefore n-I E P/ since S E&I . TO complete the proof of this part, by Theorem 

3.5.3 it suffices to show that graph(?) E=. Let ( s, t ) E graph(r), then s E eS and t C 1  

= eS, where e = so, it follows from Lemma 5.1.1 that s-' E eS, so that ( s, t V 1  = 

( s-l, f ) = ( s-', t ) E graphfr), and therefore graph(?) E W , as required. 

(ii) This is dual to (i). 

(iii) The p m f  of this part is entirely similar to that of (i). # 

The next carom is a simple consequence of Theorem 5.1.4. 



The next corollary is essentially contained within the proof of Theorem 5.1.4. 

Corollary 5.1.6. Let S E-. Then 

(i) There exist T E 5Z and s E CR(S, T) such that 2 is surjective and for any t E T, 

tzel= eS for some e E E(S). 

(ii) There exist T E 3E and .t E CR(S, T) such that z is surjective and for any t E T, 

tz-I = Se for some e E E(S). 

(iii) There exist T E B € F  and z E CR(S, T) such that 2 is surjective and for any t E T, 

M-I = e•̃ f for some e, f E E(S). 

Q 5 2  The operators L, and L, 

In this section we consider the operators and L, in &tail. We only study the 

operator 4 instead of L1 and 4. since 4 is dual to L1 . 

Lemma 52.1, The qmam 4 is a closwe opwatm on le(5fR). 

Broof. Lct P/, YE 2(- ). Qearly I & , and Y 4. implies that E PL' . If S 
E d 4 ) * a o d e  EE(S) then eS E % L 1 . ~ o t e s E ( e ~ )  and sees EY. Thus s 



whence gL1 = I( L1 j2. Therefore Ll is a closure operator on 4P(%W), by Lemma 5.1.2 

(ih # 

Before proceeding, we require some preparation. 

Definition 5.2.2 [BR7]. Let d be a class of completely regular semigroups. Call its 

members d-semigroups. We will say that d is a pre-image class if it is closed under 

direct products and homomorphic images and has the following property : 

for any epimorphisrn 8 : S ---+ T, where S E EeW and T E d,  

(p) there is a completely regular subsemigroup R of S with R ~d 

and R8 = T. 

A subclass SYof d is an sd -variety if it is closed under the formation of c h ~ c t  

products, homomorphic images and d-subsemigroups. Denote the class of all d- 

varieties by Y-'(%Yt 1. 

Clearly, all d-varieties are varieties if d = . 

Lemma 5.23 [ BR7, Proposition 2.2 1. Let d be a pre-image class of completely 

regular semigroups. 

(i) Y'(W) is a complete lattice. 

is a complete homomorphism of Y(W)  onto Y'@??Z). 

The following result of a lattice theoretical nature will be useful. 



Lemma 5.2.4 [ PP2, Lemma 4.10 1. Let p be a complete congruence on a complete 

lattice L. For each x E L, let x* be the least element of xp. Then for any A t L, we have 

VSA x* = ( VXEA x 1'- 

Notation 5.2.5. We &note by 2MS? the class of all completely regular semigroups 

with left identity. Clearly, Z4%9 = ( eS I S E 5W and e E E(S) 1. Also if 8 is a 

mapping of a set A, then 5 denotes the equivalence on A induced by 0. 

Theorem 5.2.6. (i) Z&M is a pre-image class. 

(ii) The mapping 

€I-: %--+%nAWa! ( 

is a complete homomorphism of 44(- ) onto 2'- ('39 ). Moreover, for any % 

Proof. (i) Clearly Z4Wf is closed under direct products and homomorphic images. 

Now let S E '33, T E Z&Z9 and 9 be an epimorphism of S onto T. Let a E S be such 

that a9 = e, a lefi i&ntity of T, and let R = a0s. Then R E 5U4W and Re = T. Thus 

XXZR has property ( P ) so that (i) holds. 

(ii) It follows immediately from (i) and Lemma 5.2.3 that €3- is a complete 

Let V E 4p(%W). It is easily verified that 



Corollary 5.2.7. For any 8, YE Y(W ), we have 

Corollary 5.2.8. The relation which is given by 

*r,T < S l / o 2 r > = < Y o 5 % >  

is a complete congruence on Y(W ). For %E Y(W ) the L1-class 2VL I is an interval 

1% ,&I ],where% =<lnL&t!%Y > a n d ~ ~ ~ = < % o L S > .  
L1 1 

is a complete v-endomorphism of Y(W ). 

Proof. This follows directly from Theorem 5.2.6 and Lemma 5.2.4- # 

Whether or not the mapping 2V ----, 8 is a ( complete ) n-homomorphism 
Ll 

of 5?(%9) we do not know. 

=%n-. 

Prmf. By Lemma 2.3.3, s 2WZ% so that % n q  s < %n 5UiSt >. Let S 

E &c'n , then S E W ,  without loss of generality, we may assume S = 

6; I, h; P ). Since S E Z&%@ , and let ( x; i, h ) be a left identity of  S, then for any 



We now consider the commutativity between the operator L, and the operators 

K, TI, T, T, T,* and T,*. 

Lemma 5.2.11 [ H2, CorolIary 6 1. Let T be a regular subsemigroup of a regular 

semigroup S such that for any idempotents e, f in S with f 5 e, e E T implies f E T. Then 

I I T = v s I ~ -  

Lemma 5.2.12. Let S E %9 and e E E(S). Then 

pd=llSleS' W & ) O = P ' l  es ' 

Proof. k t  T = eS. For any f, h E E(S) with f I; h, h E T, we then have f = hf = fh and h = 

eh,sothatf=hf=ehf=ef~eS=T.ByLemma5.2.11,p~= yIeS. 

Clearly 9 1 Oles s ( Y* )O . SO let a, b E eS, a ( )O b and x E S. First note that, 

for any w E S, 

( exe )*( xe )O( exe )w = ( exe )-I( exe )( xe )Oexew 

= ( exe )w 

so that ( exe )w Y ( xe )O( exe )w. Also 

a (Y&) 'b  * (ex)aYeS (ex)b 

( exe )a Ya ( exe )b since a, b E eS 

( xe )*( exe )a Y( xe )O( exe )b by the above  mark 

=s xea Y xeb 

x a y x b .  

Thus a b, since Y is a righr conpence. # 



For any 2Y E Y ( a  ), we then obtain 

S E  < ( Y o % ) o S >  u eS~yo2Y for all e E E(S) 

o ~ S I ~ ~  EI for all e E E(S) 

follows similarly. # 

Corollary 5.2.14. L1 commutes with T and T,. 

Proof. This is a direct consequence of Proposition 5.2.13. # 



substituting the variable z by y( xy )-'z 

=qO[ ua( mi )XY = va( xxi)xy laEA by Lemma 3.3.2 

= woe f UaY = VaY IaE > by Corollary 5.1.5 (ii) 

= ~ o < ( ~ v ~  ) o B  >. 

The opposite inclusion follows from Corollary 3.5.5. # 

Corollary 5.2.16. LITr = TCI on [ 9 X ,  WZ 1. 

Proof. This follows from Lemma 5.2.15. # 

Lemma 5.2.17. KL, # LIK. 

Theorem 5.2.18. The mapping 

iY * iYb ( V E H - )  ) 

is a complete n-endomorphism of Y(W)  but is not a v-homomorphism. 

Proof. For the fust assemon of the theorem, let I, E 3'(%9! ) for a E A and S E 'S3 , 

we then have 
L 

S ~ ( n a E A g a a )  Cj ~ S E ~ ~ ~ ~ ~ ~  for a l l  e E E(S) 

u eS E for all e EE(S) and all a EA 

o S E ( Z ~ ) ~ ~  forall a EA 



For the second assertion of the theorem, consider 

$I v.swL1 = c ~ o ~ > v < ~ . ~ >  

so the mapping I --, p/L1 is not a v-homomorphism. # 

In the rest of this section, we restrict our attention to Y(9).  The behaviour of 

L1 is determined exactly on Y(9). 

The following observations are elementary: 

9-h =H.LI =xr, 5wLI =.%?S.LI =-, 

94 = w k = m ,  9L1=9. 

Corollary 52.19. (i) LI commutes with T: on Y ( 9 ) .  

(5) commutes with T,' on [ 5w , dl. 

Proof. (i) Let 9/ E Z(9). Then 
* 

zTl h = ( % ' l n 9  )Ll byLemma4.5.16(i) 

=Z!Tl"14n9k byTh-1115.2.18 

= % h T l n S  byCorollary5.2.14 
* 

= gqT! by Lemma 4.5.16 (i), 

SO that T;L~ = L~T?. 

(ii) Similarly, T,'% = GT,* on [ S, 9 ] follows from Corollary 5.2.16. # 



Lemma 5.2.20. (i) = 4f409 = [ x2 = x, axa = ax 1. 

(ii) % o Z & S  = [ x2 = x, axyay = axy 1. 

Proof. (i) See [ Pe2, the dual of Proposition II. 3.12 1. 

(ii) See [ Pe2, the dual of Proposition II. 3.8 1. # 

Surprisingly, we have 

(iii) ( 23W v 5iY )% = s o - .  

Proof. (i) Clearly E At&!# Ll s AS L~ . It remains to show that &?@ '1 . 
k t  s E A ~ ~ I ,  then e!3 E& for all e EE(S). Let e, f, g EE(S) be such that f 5 e, g i e 

and f S g ,  then e, f, g E E(eS). Since eS E a, it follows from Lemma 4.4.8 (iv) that 

f = g. Hence 5 EAS,  as quired. 

L T* =9 1 1 by Corollary 5.2.19 (i) 

(iii) From Figure 4.1, we have that ZW vS!F = ~~~n S Z O S ! ~  , so that 



On the other hand, we have 

( V lL1 = ( [ x2 = x, i%a = ax ] v X  ) L ~  by Cotollary 52-20 (i) 

= [ x2 = x, axay = axy 1% by Proposition 3.3.13 

= [ x2 = x, zanzazy = zazxzy ] by Corollary 5.1.5 (i) 

= [ x 2 = x ,  zazxzaz= zazxz] v s  

by Proposition 3.3.13 

2 [ x2 = x, axyay = axy ] v m  

by straightforward verification 

= (2?t%bW) VS by Corollary 5.2.20 (ii) 

= ~ ~ ~ ,  

whence (iii) holds. 

(iv) Since S o H W  =2Xo(Z?EB v ), we then have 

( . m o ~ ) L I  = [ ~ o ( ~ v ~ ) ~ ~ ~  

* 
= ( BW v SF )h Tr by Corollary 5.2.19 (ii) * 
= ( SOH )Tr by (iii) 

whence (iv) holds. # 

Themem 5.2.22. The complete congruence LI on Y(9) has the following properties : 

(i) Each L, -class is finite. 

(ii) The circled elements in Figure 5.1 are exacdy all the maximum elements from 

all the -classes. 

(iii) The set of all the maximum elements from all the L1 -classes is not a sublattice 

ofS?(S). However, the set of a l l  the maximum elements above 9!2' is a sublattice of 

s* 1. 



This theorem follows by simple inspection of Figure 4.1, Corollary 5.2.19 and 

Lemma 5.2.2 1. Figure 5.1 is modified from Figure 4.1. 

Figure 5.1. 

Corollary 5.223. (i) Thc operator L, is not an endomorphism of Y(9). Its restriction 

to [=,9 ]is acornplete homomorphism o f [ m , 9  ] ontu[S9P,AP]. 



is a complete endomorphism of Y(9 ) . 

Proof. (i) By Lemma 56-21, we obtain 

5 3 d - l v s b  =2Bw?vm 

so the fmt assertion fofIows. The second assertion follows from Theorem 5.2.22 (iii). 

(ii) By simple inspection of Figure 5.1, we obtain that l ---+ % is a complete 
I 

n-endomorphism of 44(S). Combining this fact with Corollary 52.9, the required result 

follows. # 

Cardlary 5.2.24. 5 ~ :  # T:% and LIT, # T h  on Y(m). 



Obviously the notions and results obtained so far in this section have their left- 

right d d s .  We shall use these dual results in the sequel. 

In the contee of varieties of completely regular semigroups this operator was 

introd-d by Hall a t t i  fanes [HJ]; see [ HJ, Proposition 4.1, where the notation P is 

used J where it is shown that E Y(%tS ) aod that ( gL = zL or L~ = L. It was 

ciisussed in greater depth by Pol& /Po3], Petrich and Reilly ( [PBdf, m7] ). 

First we rccaff same r t r~ l t s  abut  L. 

WsGm 23.4. W e  & m e  by ibe class of a l l  completely regular monoids. 

Cat&y43?9E={eS& f S E ~  auBdt~E(S) f .  



Theorem 5.3.6 fPR71. The relation L which is given by 

L * zL=+ 
is a complete congruence on Yf'iiW )- For any Z E 4P(W ) the L-class PL is an interval 

 where SL=< SVA%~V >. 

Theorem 53.7 [PR7]. The mapping 

z- SL f%€W=W 1 

is a complete endomorphism of Y(Wt ). 

To know how to &rain a basis of identities for PL from one for P/. the reader is 

referred to [ PR7, Proposition 5.4 1. 

Theorem 5.3.8 [Po3]. (i) = .iebc. 
(ii) The operator L is a complete n-endomorphism of A?(- ). Its restriction to 

L Y( ( 4 ~ ~ )  is a complete endomorphism of 2'( 48 ). 

It remains an open question whether or not the operator L is a ( complete ) v- 

enhorphism of Y(%2 ). 

Theorem 53.9 [PR6]. (i) ( V v 9 1 L  = * v 9 for any 0 E Y(W).  

(ii) L commutes with K, T, TI and T, 

CordlPry 53.10. L commutes with TI. and T:. 

Proof. This foilows f b m  Lemma 3.3.8 and Theorem 5.3.9. # 

Eemma 53.11, Let S EWE and let e, f ENS) be such that fe = f. Then 

@ : f Se --4 eSe 

~ b y x ~ = e x i s a n ~ g .  



Proof. Cleariy @ is well-defined. For any x, y E f Se, we then have 

( x$ )( y@ = exey 

= exy 

= ( xy 10 * 

so that Q, is a homomorphism. If x, y E f Se and x@ = yo, then ex = ey and fex = fey, thus 

x = fx = fy = y, and so (B is one-to-one. Hence $ is an embedding. # 

The main purpose of this section is to establish the following result. In the draft 

of this thesis, it was left open whether or not L = L' on Y(W).  However, P. R. Jones 

pointed out that L = L* indeed His proof of L = L* is included here. 

Theorem 53.12. L = hLr = I& = L* . 
Proof. Let % E Y(W). By Theorem 5.1.4, we then have 

f/L1 Lr = ( IL l  )Lr 

= ( S E ~  I se.lLl fo ra l l e~E(S)  } 

= ( S E W  I f S e ~ %  f o r a l l e ~ E ( S ) a n d f ~ E ( S e ) }  

= { S EW I f Se €8 for alle,f EE(S) withfe = f  ). 

Clearly gL1 Lr E gL. For the opposite inclusion, let S E zL. Then eSe E 4 for all e E 

E(S). Let e, f E E(S) be such that fe = f. By Lemma 5.3.11, eSe E f/ implies that f Se E 8 ,  
L L and so S E I I r. Thus IL = gL1 'r, and therefore L = LIL, Similarly one can show 

that L = & by using the dual of Lemma 5.3.11. 

L* ~ e n o w s h o w t h a t ~ = ~ * . L e t f / = [ u , ( ~ ) = ~ ~ ( ~ ) ] ~ ~ ( ~ ) . ~ e a r ~ y ~  c 

gL- For the opposite inclusion, let S E gL, that is, eSe E O for all c E E(S). To show that 

S EIL*, and by Theorem 5.1.4 (iii), it suffices to show that cSf E 4 for all e, f E E(S). 

k t  e, f EE(S), we consider in three cases separately. 



Case 1. s 8 .  Let a EA, and let ua( x i )  = ua( xI, ... , xn ) and va( xi ) = 

v,( x,, ... , x,., ). For any al, ... . a, E eSf, we then have sic E eSe and ai-lc = ( aie )-' 

E eSe, for all i E { 1,2, ... , n }. Now 

ua( a,, ... , a,, )e = ua( ale, ... , a,,e ) by the above remarks 

= v a . , e ) since eSe E% 

=va( al, --- 9 % k. 

But u,( xl, ... , x, ) and v,( x,, ... , x, ) end in the same variable xi, say, since SYZ; ; 

thus 

u a  7 - , = u,( a19 a, leai' 

= va( a*. ..- . $ Mio 

= va( al, -.- * 1, 

and whence eSf E V.  

Case 2. 5% s iY . The dual of Case 1. 

Case3, AZ,2Y9;%. T h u s % ' s ~ .  Now let a, b eE(eSf  ), we have ae, be E 

E( eSe ) E 9,  SO that 

ab = abb = ( ae )( be )b = ( be )( ae )b = bab. 

Similarly, using fa, fb E E( fSf ), ba = bab. Then ab = ba, and whence eSf E 3. It follows 

from Lemma 2.5.12 that eSf is a subdirect product of a group and a semilattice. On the 

orher hand, any maximal subgroup of eSf is a maximal subgroup of gSg fw some g E 

E(S), and whence eSf E I since 9 c P/ if and only if 9 c gL. Hence S E IL* so that 

iYL = ZL*, and therefore L = L* . # 



Proof. This is an immediate consequence of Theorem 5.3.12. # 

In conclusion, we given rhe relationships between L, L1 and L, on 2'(9 ). 

Lemma 5.3.14. (i) L = 4 on [ m, 9 1 .  

(ii) L = L , o n [ S , S ] .  

(iii) L=L.,=L,on [ S W , A 7 ] .  

Proof. (i) This follows easily by combining Theorem 5.2.22 with [ Reil, Theorem 6.2 ] 

and by simple inspection of Figure 5.1 and Diagram 1 in [ Reil, Section 6 1. 

(ii) This is the dual of (i). 

(iii) This is a combination of (i) and (ii), # 



Chapter 6 

Some Consequences 

As consequences of results obtained in the previous chapters, we give 

descriptions of varieties of the fonns < % o Y  > with YE ( q, q, q, q, 59SJ , 

S X W ,  ) in this chapter. 

6.1 Varieties of the forms c % o r  > with 9ve { q, q, w ,  ) 

Proposition 6.1.1. For any 8 E 2?(W ) we have 

(i) <Po@ 7 

= < < a W r > o y >  

= { S E- I ~c* (s)  €23' foralle EE(S) ). 

(ii) <Po- > 

= < < z o • ˜ E  > o y  > 

= { S E ~  I C*(S)C €23' ioralle EE(S) ). 

(iii) < V o w  > 

= c < I o . m J  > o y  > 

= { S EYLW I e ~ * ( ~ ) e  EI for all e EE(S) ). 

Proof. Let %E 9(%St ), and we denote the third class in (i) by A. From Theorems 

4.3.14 and 5.1.4 (i), it follows that 

C < % ~ Z W ~ > = { S E % ~ ~  I ~C*(S)E% i m a l l e ~ E ( S )  ) 



On the other h a d ,  < Pow > = < go< Hay > > 

~ c c % S > o ~ >  byCorollary3.5.5 

It remains to show that A s < 80- >. Let S E A. It follows from Corollary 4.3.15 that 

there exist G EY and rl E CR(S, G) such that rl  is surjective and c*(s) = lzl-', 

where 1 is the identity of G. By Corollary 5.1.6 (i) there exist T E 3Z and z2 E CR(S, T) 

such that i2 is surjective and for any t E T, m2-l = eS for some e E E(S). Clearly il x r2 

E C R ( S , G X T ) ~ ~ ~ G X T E - .  Since E ( G  xT)= ( ( 1, t )  I ~ E T  ), then for any 

( l , t ) c E ( G x T )  we have 

( 1, t )( f l  x z2 )-* = lz1-l n tr2-l 

= c*(s) n eS for some e E E(S) 

= &*(s) 

€8 since S E A; 

it follows from Theorem 3.5.3 that S E < Po* >, and whence A t < Pow >. 

(ii) This is dual to (i). 

(iii) The proof of this part is entirely similar to that of (i). # 

Reilly [Reil] has completely determined the varieties of the form < 809 >. We 

now recall this result from [Reil]. 

Notation 6.f.2. For any identity u = v in the variables xl , ... , x, ( so that each xi 

appears either in u or v or both ) let 3 = v* denote the identity u( xl*, ... , xn* ) = 

* 
V( x1 , ... , a* ) where xi* = eixici. ei = ( xix1x2 ... xnxi )O . 

Lemma6.13 [ R e i l , T h m m 4 . 4 ] .  I~~/EY(%CE) and%'= [ua =vaIaEI,  then 

(i) %9' E 2(WE 1. 

(ii) = ( SE- i all9ctasses of S belong tog 1 
* =[uae=Va 



Proposition 6.1.4. For any I E 2'(- ), we have 

so*  = < ( s o 9 7 9  > 

= { S E= I all 9-classes of C*(S) belong to O ) 

= { S EW f for each 8-class D of S, C*@) €8 1, 

Proof. Let O E Y(Wt). By Corollary 3.5.5, we have 

a / o q  = so< goy 7 

s < < 7 9  > 

= c ( s o 9 ) o y  >. 

Combining Theorem 4-3-14 with Lemma 6.1.3, we obtain that 

< ( Z09')oy > = { S E W I all 8 -classes of c*(s) belong to I ). 

It follows from Proposition 4.1.12 that 

{ S E- I all 9-classes of c*(s) belong to @ ) 

= ( S E W  I foreach9-class D of S, c*@) E% ). 

It remains to show that { S EW I all 9-classes of C*(S) belong to 8 ) E go*. Let 

S EW be such that all 9-classes of c*(s) belong to V. B y  Lemma 4.2.7, c*(s) = 

ker $ and e$ = c*(s) n D, for any e E E(S). Thus ep EO for any e E E(S), and whence 

S E go*, as required # 

Corollary 6.15. For any 8' E 2(%X ), Zo* is a variety. 

Proof. This is an immediate consequence of Propositisn 6.1.4. # 

6.2 Varietiesof the f m < l Y o T >  with T E { ~ , ~ , ~  ) 

Let X be a nonempty set. As introduced in 8 2.7, we &note the free unary 

semigroup over X by U. The following result is well known. 



Lemma 6.2.1. For u, v E U we have 

u a,, v u C(U) = c(v), h(u) = h(v), 

ua*a v # C(U) = c(v), t(u) = t(v), 

u a,, v e C(U) = c(v), h(u) = h(v), t(u) = t(v). 

Proof. See, e.g., II. 3 of [ Pe2 1. # 

The main result of this section is the following. 

Proposition 6.2.2. For any I E Y(Wf ) we have 

(i) c Io~X!ZP > 

= < ( % 0 9 ) 0 2 x  > 

= { S e %?% I for each e E E(S), all 97 -classes of eS belong to 8 ) . 
(ii) < I O U  > 

= < ( V o 9 ) 0 S  > 

= { S EW I for each e E E(S), all 97-classes of Se belong to % ). 

(iii) < V o B  > 

= c ( I o 9 ) o s ! 3  > 

= ( S I for each e E E(S), all -classes of eSe belong to V ). 

Proof. (i) Let I E 9(WE ), and we denote the third class in (i) by A. Combining 

Theo~lem 5.1.4 (i) with Ltmma 6.1.3 (ii), we obtain that 

< ( VoY )0% > = { S €933 I for each e E E(S), aU 9-classes of eS belong to I 1. 



It remains to show that A s < %OW >. Let S E A. Let X denote the alphabet whose 

letters are elements of S. Then we have the usual surjective homomorphism of unary 

semigroups 

a : U -  S 

which maps each letter of X into itself ( see, e.g., the proof of Theorem 2.8 of IRei2j ). 

Let T = Ulo-. We define p : U --+ T by up = uo, . Then p is a surjective 

homomorphism of U onto T. Let r = W1p. Clearly r : S --t T is a relational morphism 

of S onto T. For any t E T, we have t = uo, for some u E U. Let u = u( x,, ... , x, ), xi E 

X ( i = l , 2  ,..., n).Then 

t 4  = ( uo, 17-1 

= { v EU I C(V) =c(u) and h(v) = h(u) )a by Lemma 6.2.1 

= ( v EU I C(V) = ( x,, ... , X, } and h(v) = h(u) }a. 

Let e = [ h(u)a lo. Thus e EE(S) and n-I 5 eS. It is easy to see that ( v E U I c(v) = 

ciu) and h(v) = h(u) ) is a unary subsemigroup of U. Since a : U ---+ S is a surjective 

homomorphism of unary semigmups, and by Lemma 2.5.4, ts-l is a compietely regular 

subsemigroup of eS. If sI, s2 E tr-l, then then exist vi E U such that c(vi) = ( x,, ... , 

x, }, h(vi ) = h(u) and si = via, for i = 1, 2. Since 9 is a semilattice congruence on S, 

then s l 9 =  ( v la  )9= ( xla  ) ... ( %a )s= ( v2a )9= s p ,  i.e.. 3, 9 s 2 .  T ~ U S  tr-1 is a 

completely regular subsemipup of some 9-class of eS, and so K-I E 8, since S E A, 

Further, since T E B S P  and E 9St for any t E T, then by Lemma 2.5.4,  graph(^) 

EW, SO that z ECR(S, T). From Theorem 3.5.3, it follows that S E c P l / o X A ?  >, as 

required. 

(ii) This is dual to (i). 

(iii) The proof of this part is entirely similar to that of (i). # 



Remark 6.2.3. Combining Proposition 6.2.2 with Lemma 6.1.3 (ii) and Corollary 5.1.5 

one can &rive a basis for the identities of < S l / o B S  > ( < %OW > , c % o m  > ) in 

terms of a basis for the identities of P. 
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