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ABSTRACT

Complerely regular semigroups are semigroups which are unions of groups. They
form a variety €% of unary semigroups, determined by identities xx"1x = x, ( x! yl=x
and xx’! = x"Ix. The lattice of subvaricties of €% will be denoted by L(€% ).

Given %, 7€ £ (€% ), their Mal’cev product ¥°%  consists of those completely
regular semigroups S which possess a congruence p' such that S/p €¥ andep €%
(€% =¢). In general Zo% need not again be a variety. We define < ¥o% > to be the
variety of completely regular semigroups generated by Zo%" This thesis is devoted to a
detailed study of the varieties of this form.

Chapter 1 provides an introduction. Chapter 2 contains all the preliminary
material needed in this thesis. The first section of Chapter 3 studies joins of
congruences on Rees matrix semigroups. This enables us to extend a resuit of Jones
[JS] by showing that ¥o%  is again a variety if ¥e £ (¥) and ¥ € ¥ (€% ), where €
deno.es thé variety of all central completely simple semigroups. We also introduce the
concept of CR-relational morphism in this chapter. This makes it possible to describe

the varieties of the form < Zo% >. This description plays an important role in

subsequent chapters.
Chapter 4 is devoted to study the varieties of the form < ¥°% >, where ¥

denotes the variety of all groups. We first study the least full and self-conjugate
subsemigroup C*(S) of a completely regular semigroup S. This enables us to introduce
the operator C*, and characterize < %o% >. The operator C* is considered in detail. As
a consequence, we extend a result of Petrich and Reilly [PR7] by showing that the well
known operator C is a complete endomorphism of £ (¢ ), where &¢ denotes the
variety of all orthogroups. By restricting C* to completely simple semigroup varieties,

we show that the order of C* is infinite and the Mal'cev product is not associative on



¥ (€7). The semigroup generated by the operators C* and C is determined here. We
also describe W(C*)l, Ye[RF ,¥#]and 120, in terms of E-invariant normal subgroups

of the free group over a countably infinite set.
Chapter 5 is devoted to study the varieties of the forms < Zo% > with ¥ e { £,

KX, RF ). We first provide descriptions for these varieties. Operators on (€% )
related to these varieties and various relationships between these operators -.re
studied in detail throughout the rest of this chapter.

As consequences of results obtained in the previous chapters, we describe the

varieties of the forms < %> with ¥ € { X% , %%, HY , 5% , LAB , RAD , #F } in
the final chapter.
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Chapter 1

Introduction

Completely regular semigroups are semigroups which are unions of groups. This
conception unifies many important classes of semigroups, such as idempotent
semigroups, groups and completely simple semigroups, etc. Basic information about
such semigroups can be found in Howie [Howl). The fundamental structure theorem for
completely regular semigroups, due to Clifford, states that a semigroup S is completely
regular if and only if S is a semilattice of completely simple semigroups. This theorem is
the cornerstone of the whole theory. From their inception to the present day, completely
regular semigroups have attracted a wide attention among researchers in semigroups,
particularly in recent years.

A variety is a class consists of similar algebras which is closed for taking
homomorphic images, direct products and subalgebras. By a famous theorem, due to
Birkhoff, an equivalent definition of variety is an equationally defined class of similar
algebras. It is rather easy to see that the class €& of all completely regular semigroups
is closed with respect to homomorphic image§ and direct products. However, the
additive group of integers is completely regular but has the infinite cyclic semigroup of
positive integers, which is not completely regular, as a subsemigroup. Thus €% do not
constitute a variety of semigroups. Fortunately, the class ®® of all completely regular
semigroups, considered as algebras with the binary operation of multiplication and the
unary operation of inversion within each subgroup, is a variety determined by the

identities : x(yz) = (xy)z, x = xx'Ix, (x'1)"! = x and xx! = x"1x. Thus, the study of



completely regular semigroups may be approached from the perspective of their lattice
of varieties. The lattice £°(®% ) of all subvarietics of ®¥ has been the subject of
intensive study in recent years. Many authors have investigated varieties of compleiely
regular semigroups. Various approaches to these investigations showed that (€% ),
even though complex, can be successfully studied both locally and globally. For an
extensive bibliography up to 1989 see N.R. Reilly [Rei3). The present thesis is a
contribution to this subject. |

Given subvarieties Z and 7~ of ®¥ , their Mal'cev product %% consists of
those completely regular semigroups S which possess a congruence p such that S/p €y
and each class e¢p € ¥ (¢? =¢ ). In general -9 is a quasivariety, and need not again
be a varicty. But it has been showed that in many important cases a variety is obtained.
Mal'cev products are of fundamental importance in the study of the lattice (K% ) of all
subvaricties of €% and play a central role in our investigations.

| Given two varieties # and 9~ of completely regular semigroups, we define
<7 > to be the variety of completely regular semigroups generated by the Mal'cev
product Zo¥" of Z and 7 . This thesis is devoted to a detailed study of the varieties of
this form.

The following is a brief outline of each chapter of this thesis.

Chapter 2 presents the preliminary material required in the sequel. In particular,
the following topics are included : semigroups, completely simple semigroups,
completely regular semigroups, congruences and homomorphisms, ideals, Green’s
relations, varieties, and free objects.

The first section of Chapier 3 studies joins of congruences on Rees matrix
scmigroups. Section 2 introduces the most important definition of this thesis, the
Mal'cev product, and also extends a result of Jones [J5] by showing that if ¥e £(¥), 7
e L (KR ), then ¥o¥ is again a variety ( C.A. Vachuska also obtained this result in



[V} ), where & denotes the variety of all central completely simple semigroups. Section
3 presents alternative descriptions of the operators Ty, T,, T, K, T;” and T, in terms of
Mal'cev products and identities. Section 4 introduces the concept of CR-relational
morphism, and establishes a number of properties of CR-relational morphisms. The
final section of this chapter presents a useful description of the varieties of the form
< ¥o¥ > in terms of CR-relational morphisms. This description will be used in
subsequent chapters.

Chapter 4 is devoted to study the varieties of the form < ¥0% >, where ¥
denotes the variety of all groups. The first section studies the least full and self-
conjugate subsemigroup C*S)ofa completely regular semigroup S. Section 2 presents
the description of the least group, semilattice of groups and orthogroup congruences on
S in terms of C*(S). In Section 3 we show that #C = { Se®® | C*(5) e¥ ) =
<¥¥ > for any ¥ € (€% ), by using the description obtained in Chapter 3. Section 4
deals with showing that the operator C* commutes with the operators K, T}, T,, T, T,"
and T, . By restricting our attention t0 £(£%), Section 5 extends a result of Petrich and
Reilly [PR7] by showing that the operator C is a complete endomorphism of £ (%),
where 2% denotes the variety of all orthogroups. Though the action of C* on £(€%) is
complicated, a number of interesting and important results about C* on ¥ (€%) are
obtained in Section 6, where € denotes the variety of all completely simple
semigroups. In particular, we show that the order of the operator C” is infinite and the
Mal'cev product is not associative on £ (%€Y). Further, for ¥ e[ 9 ,€¥ Jand n 2 1,
we describe a'(c')" in terms of ‘E-invariant normal subgroups of the free group over a
countably infinite set. The final section of this chapter contains some remarks on the
operator C*.

Chapter 5 is devoted to study the varieties of the forms < Zo% > with ¥ e { &,
X, ¥ }. Section 1 provides simple identities for these varieties in terms of those for



Z . Operators on £ (€% ) related to these varieties and various relationships between
these operators are studied in details throughout the rest of this chapter.

As consequences of results obtained in the previous chapters, we describe the

varieties of the forms < 0% > with ¥ '€ { X%, ¢, WY, 5%, LIVB , RAF , S/F } in
the final chapter.



Chapter 2

Preliminaries

The fundamental definitions and results of completely regular semigroup theory
which required in the sequel are presented in this chapter. For the fundamentals of
semigroup theory, the reader is referred to Clifford and Preston [CP], Howie [How1]
and Petrich [Pel]. For background on varieties of algebras the reader is referred to
Burris and Sankapanavar [BS], Gritzer [Gr2], and McKenzie, McNulty and Taylor
[MMT]. For background on varieties of semigroups, the reader is referred to Evans
[Ev]. The reader is assumed familiar with the fundamentals of lattice theory ( see
Griitzer [Gr1] for the appropriate background ). Most of the results in Section § 2.6 can
be found in Pastijn and Petrich [PP2].

§ 2.1 Semigroups

A semigroup S is a pair ( S, ¢ ) where S is a nonempty set and e is an
associative binary operation, usually referred to as multiplication. Unless there is the
possibility of ambiguiy, we denote the semigroup ( S, ¢ ) by S and denote products in S
by juxtaposition.

Throughout the rest of this section S is a semigroup.

Certain elements of a semigroup have special properties relative to the
multiplication and play an important role in the study of the subject.

Anelemente of S is a left (right ) identity of Sifex=x(xe=x),forallxeS; a
two-sided identity ( or simply an identity ) of S if it is both a left and a right identity of



S. If S possesses an identity then it is unique and is denoted by 1 or 1, if we wish to
emphasize that it is the identity of S. We define S! to be S if S has an identity or
Su{1} with 1x = x1 =x, for all x €S, if S does not have an identity. A semigroup which
has an identity is called a monoid.

An element z €S is a zero if zx = xz = z, for all x € S. If S possesses a zero then
it is unique and is denoted by O or O; if we wish to emphasize that it is the zero of S.
The semigroup S°is defined to be S, if S possesses a zero, or SU{0} with 0x = x0 = 0,
for all x € S, otherwise.

An element s €S is regular if there exists an x € S such that s = sxs. S is called
regular if every element of S is regular.

Lets €S. An element x of S is an inverse of S if s = sxs and x = xsx. For any s
€ S denote by V(s) the set of inverses of s in S. S is called an inverse semigroup if
1 V(s) 1 =1 forevery s €8.

Let s, t €S. Then s and t are said to commute with each other if st = ts. S is
called commutative if all of its elements commute with each other. An element of S
which commutes with every element of S is called a central element of S. The set of all
central elements of S is either empty or a subsemigroup of S, and in the latter case is
called the centre of S.

An element e €S is an idempotent if e = e2. The set of idempotents of S is
denoted by E(S). The relation < on E(S) defined by ¢ < f if and only if e = ef = fe, for all
e, f €E(S), is a partial order and is called the natural partial order of E(S). An element e
of S without zero is primitive if it is mirimal relative to the partial order on E(S); i.c.,
f2=f = ef = fe implies f = e. An idempotent semigroup, or simply a band, is a semigroup
in which all elements are idempotent. A commutative band is a semilartice. We denote
by % and &, respectively, the classes of all semilattices and all bands.



S is left cancellative if for any a, b, x € S, xa = xb implies a = b; right cancellative
if ax = bx implies a = b; cancellative if it is both left and right cancellative; weakly
cancellative if ax = bx and xa =xb imply a = b. S is left reductive if for any a,b €S, xa =
xb for all x € S implies a = b; right reductive if ax = bx for all x € S implies a = b;
reductive if it is both left and right reductive; weakly reductive xa = xb and ax = bx for
allxeSimplya=b.

A nonempty subset T of S is a subsemigroup of S if it is closed under the
operation of S; i.e., if a, b € T then ab €T. If A is an arbitrary nonempty subset of S, then
the set

{38 ...8, |s;€A and m is arbitrary }
is the subsemigroup of S generated by A, denoted by [ A ]. If S = [ A ] we shall say
that A is a set of generators for S or a generating set of S.

A nonempty subset T of S is a left ideal of SifseS,teTimplysteT;, Tis a
right ideal if s € S, t €T imply ts € T; T is a two-sided ideal ( or simply an ideal ) if it is
both a left and right ideal. An ideal of S different from S is a proper ideal. The
intersection of all left ideals of S containing a nbnempty subset T of S is the left ideal
generated by T. A left ideal generated by a one-element set { a } is the principal left
ideal generated by a, and will be denoted by L(a). The corresponding definitions are
valid for right ideals with notation R(a), and two-sided ideals with notation J(a). If a
€S, then L(a) = S!'a, R(a) = aS! and J(a) = S'aS!.

Let S and T be semigroups. A mapping @ : S —— T is a homomorphism of S into
T if for all a, b € S, we have (a@)(bp) = (ab)g. If ¢ is one-to-one, then @ is an
isomorphism or embedding of S into T, and S is said to be embeddable in T. If there is a
homomorphism of S into T, T is a homomorphic image of S; further, S and T are

isomorphic if there is an isomorphism of S onto T; if so, we write S =T. A



homomorphism of S into itself is an endomorphism; a one-to-one endomorphism of S
onto itself is an qutomorphism.
If { S J,c; is a family of semigroups, their direct product is the semigroup

defined on the Cartesian product [I__,S, with coordinatewise multiplication. The

cel
notation for the direct product is I1,_,S, except when I is finite, say I = { 1, 2,...,n }, in
which case we write §;x S, x ... X §,. Any semigroup isomorphic to a direct product of
semigroups S, is itself a direct product of S, & €1.

Let { S, },.;be a family of semigroups, let S = [I__.S,and &, denote the

ael aecl

projection homomorphism =n,: S —> S_,. Any semigroup S' isomorphic to a
subsemigroup T of S such that Tr,= S, for all @ €1 is a subdirect product of semigroups
So @ €1. A semigroup S is subdirectly irreducible if it has the property : whenever S ¢
IT,. S, is a subdirect product, then one of the projection homomorphisms =, is one-to-

one.

Note that if S is a subdirect product of semigroups { S, } then each S is a

ael’
homomorphic image of S.

The following result is of universal-algebraic character, and is useful.

Theorem 2.1.1 [Pel]. Every semigroup is a subdirect product of subdirectly
irreducible semigroups.

The above theorem remains valid if in it we substitute " the class of all
semigroups " by any class of semigroups closed under taking homomorphic images. For
example, it follows that every ( idempotent, commutative, or both ) semigroup is a
subdirect product of subdirectly irreducible ( idempotent, commutative, or both )

semigroups.

§ 2.2 Equivalences and congruences



A binary relation p on a set S is a subset of the Cartesian product S x S. We
will write a p b and say that a and b are p -relared if (a,b ) €p and p call simply a

relation.
If p and © are relations on S, their composition poc is defined as follows:

(a, b) epoo if and only if there exists c €S such that (a,c ) ep and (¢, b ) €c. The
binary operation is associative.
A relation pon S is
reflexive  if apa,
symmetric if apbimpliesbp a,
transitive if apbandbpcimplyapc
for alla, b, c €8.
A reflexive, symmetric, transitive relation p is an equivalence relation; its
classes are p -classes and the p -class containing an eclement a will be denoted by ap.

The relation p on S for which a p b if and only if a = b is the equality relation on S and
will be denoted by &g; the relation p on S for which a p b for all a, b €S is the universal

relation on S and will be denoted by wg. Both &g and g are equivalence relations. We

denote by X(S) the set of equivalence relations on S.

Also, forany A, p e X(S), we will write [A,p]={0ceZ(S)! Agcocp].

An equivalence relation p on a semigroup S is a left congruence if for all a, b, ¢
€8, a p b implies ca p cb, a right congruence if a p b implies ac p bc; p is a congruence if
it is both a left and a right congruence. We denote by A(S) the set of congruences on S.

Let p, o be relations on a set [ semigroup ] S. The equivalence relation
[ congruence ] generated by p is the least equivalence relation [ congruence ] on S
containing p; it is denoted by p*. The join p v ¢ of p and G is the equivalence relation
[ congruence ] generated by p U ©.



Both Z(S) and A(S) are closed under intersections. If S is a semigroup, then
A(S) is a sublattice of the lattice Z(S). The reader is referred to Howie [How1] for

more information about those two lattices.

Lemma 2.2.1 [Howl]. If p is an equivalence on a semigroup S, then
p®={(a,b)e SxS | xay pxby forall x,yeS! }

is the largest congruence on S contained in p.

Lemma 2.2.2 [Howl]. Let p, be a reflexive symmetric relation on a semigroup S. Let
p consist of all pairs ( a, b ) such that there exist s;, t, p;, q;€S! with p, p,q; (i=1,...,
n) and
a =8Pt
$1q1t = $P2b
$2Q21 = $3Paly

SuPata = b-
Then p is the congruence on S generated by p,,.

Lemma 2.2.3 [Howl]. Let p, ¢ be equivalences on a set S [ congruences on a

semigroup S ]. If a, b €8S, then a pvo b if and only if for some n there exist elements x,,
X2, «.- 5 Xpq1 in S such that

apx;,X,6X;3, X9P X3, ... ,%X2,,0D.

Let p be a congruence on a semigroup S. Then the set S/p of all p-classes with
the multiplication (ap)(bp) = (ab)p is the quotient semigroup relative to the congruence
p.

10



Lemma 2.2.4 [Howl]. For any congruences p and ¢ on a semigroup S such that p ¢
o, define a relation /p on S/p by

(ap) (O/pj (bp) & aob.
Then O/p is a congruence on S/p and (S/p)/(S/p) =S/c.

There is a strong connection between congruences and homomorphisms. Given a
homomorphism ¢ of a semigroup S inio a semigroup T, there is an associated
congruence ¢* on S defined by a ¢* b if and only if ap = b, for all a, b € S. Conversely,
given a congruence p on a semigroup S, there is an associated homomorphism
p* : S—— S/p given by sp*=sp, for all s € S [How1].

Let I be an ideal of a semigroup S. Then the relation p;on S defined by

ap;b < abelora=b (abesl)
is a congruence and is called the Rees congruence on S relative to 1. The quotient

semigroup S/pI induced by p, is called the Rees quotient semigroup relative to I and is

denoted by S/[ [Pel].

Lemma 2.2.5 ( Lallement’s Lemma ). Let p be a congruence on a regular semigroup

S and a € be such that ap €E( S/p ). Then ap = ep for some e e E(S).

The close correspondence between congruences and homomorphisms enables us

to obtain the following alternative version of Lallement’s Lemma:

Lemma 2.2.6 [Howl]. If ¢ : S —— T is a homomorphism from a regular semigroup S
onto a semigroup T. Then S¢ is regular. If f € E(T) then there exists ¢ € E(S) such that
ep =£.

If p is a congruence on a semigroup S and T is a subsemigroup of S, p [ will

11



denote the restriction pN{TxT)of pto T.

The following two concepts will be used extensively.

If € is any class of semigroups, S is a semigroup and p is a congruence on S,
then p is a & -congruence if S/p e¥. If €is the class of all semilattices, € -congruences
are called semilartice congruences; one defines analogously band congruences, left zero
congruences, eic.

For example, a congruence p on a semigroup S is a semilattice congruence if and
only if for all x, y €S, xy p yx, x?p x. Similar expressions hold for other congruences.,

Let & be a class of semigroups. A semigroup S is a semilattice of semigroups
belonging to € if there exists a semilattice congruence on S all of whose classes belong
to ¥. The concepts: a band of or a left zero semigroups of semigroups belong to €, are
defined analogously.

The following result will prove useful.

Lemma 2.2.7 [Pe3]. Let { pg Jge be a family of congruences on a semigroup S such
that N, _; Pq = €g- Then S is a subdirect product of semigroups S/py, o €.

§ 2.3 Green’s relations

Green’s relations are named for J.A. Green who introduced them in 1951 [Gre].
These relations have played a fundamental role in the development of semigroup theory.
In any semigroup S, the relations %, %, # , & and 9 defined on S by
a b o aS'=bSs),
a¥b < Sla=Sh,
apg b & SlaS'=S8pS!,
X=LNR and F =L %,
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are Green's relations ( or equivalences ) on S. Note that # is a left congruence and ¥

is a right congruence; further, ¢ and & commute, and that F= Lo H = Fo¥ is an

equivalence relation [CP].
Forany ¥e{ 2, %, ,X,9 },define the ¥ - classof seS by Ki={ xeS |

sAXx )

The next lemma is known as Green’s Lemma.

Lemma 2.3.1 [Gre]. Letaand b be # -related clements of a semigroup S. By
hypothesis there exist s, s' € S! such that as = b and bs' = a. Then the mappings

0: x — xs (xel,),

c:y — ys (yely),
are mutually inverse, % -related preserving, one-to-one mappings L, onto Ly, and of

Lyonto Ly, respectively.
The next result is known as Green’s Theorem.

Lemma 2.3.2 [Gre]. If a, b and ab all belong to the same #-class H of a semigroup S,

then H is a subgroup of S. In particular, any #-class containing an idempotent is a

subgroup of S.

Lemma 233 [PC]. Every idempotent ¢ in a semigroup S is a left identity of R,, a right
identity of L., and the identity of H,.

Lemma 2.3.4 [Howl]. Lete, f be idempotents in a semigroup S. Then

(i) eZf ifandonlyif ef=ec,fe=f;
Gi) es®f ifandonlyif ef=f,fe=c;

13



(ii1)) e @ f if and only if there exists a € S and a' € V(a) such that ¢ = aa', f = a'a;

further, if e & f, then H,=Hjg.

Lemma 2.3.5 [Howl]. In a regular semigroup each % -class and each ¥ -class

contains at least one idempotent.

Lemma 2.3.6 [H1]. Let S be a regular subsemigroup of a semigroup T. Then Green’s

relations &, ®, A on S are the restrictions of those on T.

§ 2.4 Completely simple semigroups

Let S be a semigroup. Then S is simple if g =S x S; and S is completely simple
if it is simple and contains a primitive idempotent.
The next two results give some useful characterizations of completely simple

semigroups.

Lemma 2.4.1 [Pel]. The following conditions on a semigroup S are equivalent.
(1) S is completely simple.
(i1) S is regular and all its idempotents are primitive.

(iii) S is regular and weakly cancellative.

Lemma 2.4.2 [Pel]. Let S be a completely simple semigroup and let ¢, f € E(S). Then

the followinz statements hold.
(i) & is a congruence on S, and H, = aSa = G, — the maximal subgroup of S

containing a.
(ii) For any a, b €8, ab € G, implies aSb C G,.

(iii) ef =e implies fe =f.
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(iv) ef=f implies fe =e.

We denote by €7 the class of all completely simple semigroups.

For any 4-tuple (G; I, A; P) where G is a group, I and A are nonempty sets and
P:(A,i)—> p,; is a function from A x I to G, let M(G; I, A; P) = G x I x A together
with multiplication

(84 A)(h j, k) = (gpyhs i, ).
It is a straightforward exercise to show that M(G; I, A; P) is a completely simple
semigroup. This construction is due t0 Rees [Re] and M(G; I, A; P) is therefore called
the Rees I x A matrix semigroup over the group G with the sandwick matrix P. For
convenience, we sometimes write [ A, i ] for p,;,. We will usually call such a semigroup
a Rees matrix semigroup. However, Rees matrix semigroups are much more than

examples of completely simple semigroups.

Theorem 2.4.3 [Pel]. Let S be a completely simple semigroup; fix g e E(S), and let G
= GS .

I={eecES) leg=c }, A={ feES) | gf=f },
P = (pg, ) where p, = fe. Then the mapping ) defined by

X:a — (gag:e,f) (2€8)
where ag € G, ga € Gy, is an isomorphism of S onto T = 4G; I, A; P).

Let S = M(G; I, A; P) be a Rees matrix semigroup. The sandwich msirix P is
normalized if there exists 1 € IN A suchthatp,, =e=p,,forallA eA and i €], where
¢ denote the identity of »G. A point which will be of importance in § 3.1, is that the
sandwich matrix P defined in Theorem 2.4.3 is normalized.

We can sum up the structure theorem of completely simple semigroups in the

following form.
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Theoremn 2.4.4 [Pel]. The following conditions on a semigroup S are equivalent.
@) S is completely simple.
(ii) S is isomorphic to a Rees matrix semigroup with normalized sandwich matrix.

(iii) S is isomorphic to a Rees matrix semigroup.

Lemma 2.4.5 {Pel]. Let S = M(G; I, A; P) be a Rees matrix semigroup and a =
(g1i,A)eS. Then

@ L,={(g55A)IgeCG,jel}.

Gi) Ry={(giLp)lgeG preAl

Gil) Hy=((g51,A)ig'eG).

The following useful result can be derived easily from Howie [How2].

Lemma 2.4.6 [How2]. Let S =M(G; I, A; P) be a Rees matrix semigroup with
normalized P. Then [ E(S) ] = (< P >; I, A; P) where < P > is the subgroup of G
generated by the entries of P.

We now introduce some rather special yet important classes of completely
simple semigroups.

A semigroup S i8 a rectangular band if aba = a, for all a, b €S. A semigroup S is a
rectangular group if it is isomorphic to the direct product of a rectangular band and a
group. The class of all rectangular group [ rectangular band ]} will be denoted by ¢
[ %F ).

Lemma 2.4.7 [ Howl]. The following conditions on a semigroup S are equivalent.

D Sewny.
Gl S is regular and E(S) e 7 .
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B
(iii) S €% and E(S) is a subsemigroup of S.

The class of all groups will be denoted by ¥. Of course any group is a
rectangular group so that ¥ C S¥¥ .

A semigroup S is a left [ right ] zeroifab=a[ab=Db], foralla, beS. The
class of all left [ right ] zero semigroups will be denoted by ¥ [ %% ]. A semigroup S
is a left [ right ] group if it is a direct product of a left [ right ] zero semigroup and a
group. The class of all left { right ] groups will be denoted by 4% [ %% 1.

Lemma 2.4.8 [Howl]. The following conditions on a semigroup S are equivalent.

(1) Sis a left [ right ] group.
(ii) S is completely simple and E(S) is a left [ right ] zero semigroup.
(iii) Sisregularand ¥ =S xS[ . =SxS ]

It follows from Lemma 24.8 that ¥ = %% N %¥ .

§ 2.5 Completely regular semigroups

An element a of a semigroup S is completely regular if a = axa and ax = xa for
some x € S; S is completely regular if all its elements are completely regular.

Lemma 2.5.1 [Pel]. The following conditions on an element a of a semigroup S are
equivalent.

(1) ais completely regular.

(i) a has an inverse with which it commutes.

(iii) H, is a subgroup of S.
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Lemma 2.5.2 [Pel]. The following conditions on a semigroup S are equivalent.
(i) S is completely regular.
(ii) For Vevery aeS, aealSaz
(iii) S is a union of ( disjoint ) groups.
(iv) Every #-class of S is a group.

Let €% denote the class of all completely regular semigroups and for any a € S
€K%, let a! denote the inverse of a in the ( group ) #-class H, and let a® denote the
element aa = a'a, the identity of the group H,.

Let S be the disjoint union of the semigroups S, (@ €Y ), where Y is a
semilattice and SoSp C Sqp. Then S is said to be a semilattice of the semigroups Sg,

a €Y, and we write S = U Sq. and refer to the semigroups S, as the components

acY
of S. The importance of this concept in the theory of completely regular semigroups was
revealed by the following theorem.

Theorem 2.5.3 [CPl. LetS e®®. Then & = g is a congruence, each @ -class is a

completely simple semigroup and S/ p is a semilattice. Thus S is a semilattice of its 2

-classes.

For use in later chapters, we gather the following basic properties of completely
regular semigroups.

Lemma 2.54. Let S e €% and let T be a subsemigroup of S. Then T e €% if and only
if T is closed under inverses; that is, a'e T forany aeT.

Lemma 2.55. LetS, Te%®, then SxTe®¥F and (s,t) ) =(s?,t!)forany (s,t)
eSxT.
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Lemma 2.56. LetS, Te®¥ and ¢ : S —— T be a surjective homomorphism of S
onto T. Then
() alo=(agp Yl foranyaeS.

(i) For any t €T, there exists s €S such that s¢ =t and s''¢ = t’!,

By the above facts, €% is closed with respect to products and homomorphic
images. However, €% is not closed under subsemigroups. Thus €% is not a variety of
semigroups. However, €% may be regarded as a class of algebras with the operations
of ( binary ) multiplication and ( unary ) inversion. As such €% forms a variety defined
by the identities

x(yz) = (xy)z, x = xx1x, xIx = xx1, (x'l)°1 =X.
With the earlier notation, we shall write x0= x"Ix = xx°1.

One observation that is sometimes helpful is the following.

Lemma 2.5.7 [PR3]. The variety €% satisfies the identity

ey = xy)Py )% lixy)? .

For any S € €%, let C(S) denote the subsemigroup of S generated by the
idempotents of S, i.e., C(S) = [ E(S) ]

k3

Lemma 2.5.8 [Fil. Forany S e %%, C(S) e €%

As a particular case of [ H2, Theorem 2 ], we have the following useful

observation.

Lemma 2.5.9. ForS =U,.y Sq € €%, we have C(S) = Uae YCSo)-



The rest of this section is devoted to several important classes of completely

regular semigroups.

Lemma 2.5.10 [Pel]. The following conditions on a semigroup S are equivalent.
(i) S is a band of groups.
(ii) S is completely regular and & is a congruence.
(iii) S is regular and a2b$ = ab$, Sab? = Sab for all a, b € S.

We denote by &% the class of all bands of groups.

A completely regular semigroup S is an orthogroup if E(S) forms a

subsemigroup. We denote by ¢ the class of all orthogroups.

Lemma 2.5.11 [Pel]. The following conditions on a semigroup S are equivalent.
(i) Se&w.

(ii) Every @ -class is a rectangular group.

Let 9% denote the class of all semilattices of groups. Then we have the

following result.

Lemma 2.5.12 [Howl). The following conditions on a semigroup S are equivalent.
i SeH.
(ii) S is regular and its idempotents lie in its centre.
(iii) S is isomorphic to a subdirect product of a group and a semilattice.

§ 2.6 Congruences on completely regular semigroups

Throughout this section, let S denote a completely regular semigroup.
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Let p be a congruence on S. Then the kernel of p is
kerp={aeSlapa®)
= Veck(s) oP
and the trace of pis
rp=pl ES) -
The key observation about the kernel and trace of a congruence is that in

combination they completely determine the congruence.

Lemma 2.6.1 [PP2]. Let p be a congruence on S. Then, for any elements a, b €S,
apb & a%up b?andablekerp.

This leads to natural questions concerning the nature of those subsets of S
which are kernels of congruences and those equivalence relations on E(S) which are the
traces of congruences.

A subset K of S is said to be a normal subset of S if it satisfies the following
conditions:

(i) E®)cK,

(i) keK = klek,

(iii)) xyeK = yxeK (x,yeS),
@iv) x,x% eK = xyeK (x,yeS).

For any subset K of S, we denote by g the largest congruence on S for which K
is a union of my -classes. Then

mg={(a,b)eSxS | xayeK if and only if xby X, forall x,y eS! }.

Theorem 2.6.2 [PP2]. Let K be a subset of S. Then the following statements are
equivalent.

(i) K s a normal subset of S.
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(i) K is the kemnel of some congruence on S.

(iii) K is the kernel of m.
When (i) — (iii) hold, { (k, k%) | k €K }* is the smallest congruence and wy is the

largest congruence on S with the kernel K.

Let © be an equivalence relation on E(S). Then 1 is a normal equivalence if it
satisfies the following condition:

etf & (xey)?t(xfy)® (x,yeS!).

Theorem 2.6.3 [PP2]. Let 1 be an equivalence relation on E(S). Then the following
- conditions are equivalent.

(i) <tis a normal equivalence.

(i) tis the trace of some congruence on S.

(iii) T=trt*.

When (1) — (iii) hold, then t* is the smallest congruence and ( #oro#)? is the

largest congruence on S with trace <.

We refer the reader to either Pastijn and Petrich [PP2] or Reilly [Rei3] for
results concerning when a normal subset and a normal equivalence can be combined to
the kernel and trace of a single congruence.

Let the kernel relation K and the trace relation T be defined on A(S) as follows:

AKp © kerdA=kerp (A,peA(S)),
ATp & rtA=tp (A, peAS)).
Clearly, K and T are both equivalence relations, and K N T = g, the identical

relation on A(S). We have the following interesting observations.

Lemma 2.6.4 [PP2]). Let A, p € A(S). Then
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) AKp & AnX=pnX.
i) A\Tp @ AvFx=pvEx.

Let X(S) denote the set of all normal subsets of S ordered by set theoretic

inclusion. Then XIS) is a complete lattice with respect to the operations

Theorem 2.6.5 [PP2). The mapping
ker:p — kerp (p €A(S)).
is a complete N-homomorphism of A(S) onto %{S) which induces the relation K on

A(S). For all p € A(S) the K -class of p is an interval [ pyg , pX], where pg = ( pn¥)*
and pX=1m,, ..

Unfortunately, K is not always a congruence [Rei3].
Let 7(S) denote the set of all normal equivalence relations on E(S). Then 7(S)

is complete lattice with respect to the operations
cAat=cnNntand ovi=n{pe NS) lcutgp ).

Theorem 2.6.6 [PP2]. The mapping

* r:p — wp (peA®d)).
is a complete homomorphism of A(S) onto 7(S) inducing the relation T on A(S).
Moreover, for each p € A(S), the T -class of p is an interval [ p;, pT], where pr=
(xp)andpT=(pvar)’

In contrast to the fact that K need not be a congruence on A(S), we have that T
is a complete congruence on A(S), by Theorem 2.6.6.



Two additional relations on A(S) associated with the other Green's relations %
and & are defined as follows:
ATip <« ll(mp) CZ and PlpAl) S £ (A p €AS)),
ATp & Monp)c % and P/pAL) S E (A peAS)).
We refer to Ty as the left trace relation and to T, as the right trace relation on A(S).
For any congruence p € A(S), the left trace and right trace of p are defined to be
rp=(pv¥)X and rp=(pvE )
Then an equivalent characterization of the relations Tyand T, is given by the following:
for A, p e A(S),
ATip © lrd=Ilrp and AT,p & rri=rtrp.
The parallelism between the relations T, Ty and T, is brought out strongly in the

next result.

Theorem 2.6.7 [PP2]. The mappings
p — pVvdE, p — pVvs, p — pVvHRA
are complete homomorphisms of the lattice A(S) into the lattice Z(S) inducing the

relations T, T)and T,, respectively. Consequently, the relations T, Tyand T, are

complete congruences on A(S).

Since Tjand T, are complete congruences, it follows that all the T} -classes and
T, -classes are intervals. For any p € A(S), we define pr,,pr . pTl and pTr by setting
pTi=[pr1,,p"] and pT,=[pr ,p* 1.
In order to give more explicit descriptions of the endpoints of T;- and T, -
classes, it is convenient to introduce the following relations. Define
e s f @ e=ef (e, f€E(S))
and define the relation <, dually.



Lemma 2.6.8 [PP2]. Letp e A(S). Then
@ pr, =(pNs, ) and pl=(pve).
@) pr, =(pns,)*and pTr=(pv ).

The next result sets out some important basic connections between the
relations K, T, Ty and T,.

Lemma 2.6.9 [PP2]. Let p € A(S). Then
G pxkver=p=pXnpl
@) pr,vpr,=prand pTirpTr=pT.

(i) TjAT,="T.

This leads to the following diagram from [PP2].

K\/
\/
/\
fx /\

Figure 2.1,



As we will see later, the most important applications of these concepts are in
the lattice of varieties of completely regular semigroups.

In the remainder of this section we briefly discuss several congruences on 5,
which will be needed in the sequel.

Let p € A(S). Then p is idempotent pure if ker p = E(S); p is idempotent
separating if tr p = € or, equivalently, p g #.

The following observation is straightforward.
Lemma 2.6.10. Let p € A(S). Then p is idempotent pure if and only if p N ¥ =¢gs.

Let p = pg be the largest idempotent separating congruence on S, and let © = 1

be the largest idempotent pure congruence on S.

Lemma 2.6.11 [H2 and J5). Let S e €%. Then
p=0
={(a,b)eSxS | a®=b%and alea="blebforalle eE(S), ¢ <a’}
={(a,b)eSxS | a'(a%a?)% = b’( b%b®)" for all e eE(S) }.

It is not hard to see that
t={(a,b)eSxS | xay eE(S) if and only if xby e E(S), forall x,y eS! }.
Whilst this description is not very useful in practice, the following simple description of
T N 9 will be needed in the sequel.

Lemma 2.6.12 [J5]. Let S e €%. Then
TNF ={(ab)ed | (xay)(xby)!eE®S)forallx,yeS}.

Lemma 2.6.13. Let S e €%. Then



() £° ={(ab)eSxS i (xa)?=(xaxb)? and (xb)?= (xbxa)°
forall x e St}
= { (a,b)eSxS' I xa = xa( xb)? and xb=xb(xa)® forall xeS!}.
(i) #° ={(a,b)eSxS I (ax)?=(bxax)? and (bx)®=(axbx)°
forallx eS')
={(a,b)eS xS lax = (bx)%x and bx = (ax )%x forall x eS!}.
Proof. (i) Since S e €%, then for any a, b €S, we have
a¥%b & a#ab and b# ba
<> a=ab® and b=bal.
Note that % is a right congruence, then for any a, b 5, we have
aZL’hb & xaZfxb forallxeS!
< xa& xaxb and xb A& xbxa
& (xa)?=(xaxb)? and (xb)0=(xbx:«1)0 for all x e S!
& xa=xa(xb)? and xb=xb(xa)° forallxeS.
Hence, (1) is obtained.
(i1) This is the dual of (i). #

§ 2.7 Varieties of completely regular semigroups

We begin with some familiar but necessary background oﬁ varieties of algebras.
The reader is referred to Burris and Sankappanavar {BS], Gritzer [Gr2], and
McKenzie, McNulty and Taylor [MMT] for details.

By an algebra, we will mean a nonempty set together with one or more

operations. Familiar examples are groups, lattices, semigroups, etc. By a variety or



equational class of algebras we shall mean a class of algebras of the same type defined
by a set of identities.
For any class ¥ of algebras, let
P ¥ = the class of all direct products of members in €
H &= the class of all homomorphic images of members in ¥
S & = the class of all subalgebras of members in ¥.

The next result is known as Birkhoff's Theorem.

Theorem 2.7.1 [Gr2]. Let¥ be a class of algebras of the same type. Then € is a
variety if and only if ¥ = HSP €.

One useful consequence of Birkhoff's Theorem is a characterization of the

variety generated by a class of algebras of the same type.

Lemma 2.7.2 [Gr2]. For any class & of algebras of the same type, the smallest
variety containing & is HSP #.

We call HSP € the variety generated by € and denoted by < ¥ >. Thus < ¥> =
HSP €. If ¥ consists of the single algebra S, we write < S > instead of < ¥ >, and call
this the variety generated by S.

If  is a variety defined by the identities Z then we write # =[Z ].If Zis a
finite set of identities { u;= v, , ..., u,= v, } we will often write ¥=[u,=v,, ..,
u, = v, ] instead of [ Z J. We sometimes refer to the identities which define the variety ¥
as laws.

If  is a variety contained in the variety % then ¥ is a subvariety of #. For any

variety ¥, it is easily verified that the subvarieties of %~ constitute a complete lattice

with respect to the operations



UYNY =YNY, ¥vTP =N F:¥CF and ¥CF ).
We shall denote this lattice of subvarieties of %~ by Z(#).

Let 7 be a variety of algebras, X be a nonempty set, F = F(X) be an algebra in
generated by X and 6 : X —— F be the embedding of X into F. If, for all algebras A in 7
and all mappings a : X —— A, there exists a unique homomorphism B : F—— A which
"extends” ¢, that is, such that x6p = xa , for all x € X, then F is said to have the
universal mapping property for ¥ over X or to be a free object in % over X. In fact, up to
isomorphism, such free object in %" over X is unique. This leads us to refer to the free
object in 7 over X, or the relatively free object in # over X, and to be denoted by
Fg(X). Then for any S € # and any mapping ¢ : X —— S, there is a unique
homomorphism ¢*: Fo(X) — S which extends ¢.

P is an operator if for every class K of algebras, K P is also a class of algebras.

As we mentioned in § 2.5, completely regular semigroups, considered as
algebras with the binary operation of multiplication and the unary operation of inversion
within each subgroup, is a variety determined by the identities
) x(yz) = (xy)z, x = xx‘lx, xIx = xx'l, (x'l)'1 = X.

Consequently we may consider the lattice of varieties of completely regular semigroups.

Let X be a nonempty set. The free semigroup on X consists of all nonempty finite
sequences of elements of X, called words, over X,Vcallcd an alphabet, given the
multiplication of concatenation. We denote the free semigroup on X by X*. The free
monoid over X, denoted by X*, consists of all words over X including the empty word,
which serves as the identity of X*.

The description in [C) and [Rei2] of the free completely regular semigroup
Fepa(X), that is, the free object in the variety €% over X is via a description of the free
unary semigroup U over X; that is, the free object over X in the variety of all semigroups

with a unary operation. Let Y = X U { (,)! }, where " (" and " ) " are two distinct
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elements not in X. By Clifford [C], U is the smallest subsemigroup of the free semigroup
Y* on Y such that X ¢ U and (w)’leU for all w € U. As a notational convenience we

write w! instead of (w)'! in U. Let  be the congruence on U generated by the pairs
(w, wwiw), (ww!, wlw)and ((w")',w)forall weU. Then Feg(X) = U/

( [C], [Rei2] ). Every element of Fe,(X) can be written in the form w with w e U. We
henceforth assume that w = v in Fg(X) if and only if the identity w = v is a
consequence of the identities x = xx-Ix, x"Ix = xx71, (x‘l)°l =x. Thus if ¥ is a
subvariety of €%, then we shall write the identities that hold in #”in the form w = v
where w, v e U.

A congruence p on a completely regular semigroup S is fully invariant if it is
invariant under all endomorphisms ¢ of S, that is, if a p b implies (a¢) p (b¢) for all
endomorphisms ¢ of S. The set of all fully invariant congruences on S, denoted by
FCON(S), is a complete sublattice of the lattice of congruences on S.

Fundamental to the discussion of varieties is the standard correspondence

between varieties and fully invariant congruences.

Theorem 2.7.3 ([Gr2], {Rei2] ). Let X be a nonempty set. For any '€ £ (€% ), let

Py =N{ Y eA(Feg(X) ) | FeegX)lye 7).
Then pgy-is a fully invariant congruence on Fee(X) and, identifying x with xpgy,

FeogfX)/py- is the free object in # over X.
Let X be infinite and for any fully invariant congruence p on Feggl(X), let 75
denote the subvariety of ®% defined by the family of identities
u=v forall(u,v)ep.

Then the mappings
77— py ad p — %



are mutually inverse order anti-isomorphisms between the lattices AK#) and

FCON( FepX) ).

We sometimes refer 10 py- and % as the fully invariant congruence corresponding
to % and the variety corresponding to the fully invariant congruence p, respectively.

Throughout the rest of this thesis, X is assumed to be a fixed countably infinite set,
unless otherwise stated; and I’ the lattice of fully invariant congruences on Fo(X).

In Theorem 2.6.7, we saw that the relations T, T; and T, are complete

congruences on A(S) for any S e K% . A notable absentee from this list was K. We now

have:

Theorem 2.7.4 ([P], {Po2} ). K is a complete congruence on I'.

Thus K, T, T; and T, are all complete congruences on I'. Under the anti-
isomorphism in Theorem 2.7.3, these carry to complete congruences on (€% ):
K7 o pgKpy., TV & pyTpy
YN < pgTipyn Y7 & pyTipy -
The classes of any complete congruences are intervals and so it is convenient to

denote the intervals for these congruences as follows:
ZK =[2y, 2%), 2T =[%1,27]
¥T=[{¥g, 2N, 2T, =[2r,2T]

Theorem 2.7.5 ([P], [Poll, [Po2] ). The mappings
¥ — ¥ ¥ — ¥, ¥ — ¥ (YeL(ER))

are complete endomorphisms of ¥°(®€%® ) inducing the congruences K, Tjand T,. The

mappings
¥ — 2T, ¥ — ¢ ¥ — 2T (Zer(&®))
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are complete N-endomorphisms of Z°(®¥% ) but are not v-homomorphisms.

Surprisingly, the mapping
Y — Yy (YeL(€X))

is not an endomorphism of (€% ) ( see Petrich and Reilly [ PRS, Proposition 7.6 ] ).
It will be important to point out that K, T, T} and T, are all idempotent operators on
£ (€% ). Also, more discussion about these operators will take place later in this
thesis. For more information, the reader is also referred to Pastijn [P], Poldk ( [Pol],
[Po2}, [Po3]), Petrich and Reilly ( [PR6], [PR8] ).

One question about ¥ (®# ) that remained unanswered for a considerable time

was whether or not it is a modular lattice ( a lattice L is modular if o Sy = av( BAY)

= (avP Ay, o, B, ¥ €L). Rasin [R2] showed that £ (€%) is modular. Hall and Jones
[HJ] showed that (%% ) is modular. The question was finally answered with the aid
of Poldk’s Theorem by Pastijn:

Theorem 2.7.6 [P]l. L (€%) is modular.

§ 2.9 Special symbols

For convenience we provide a list of notation introduced in this chapter as well
as the notation we will use in the rest of this thesis.
The following special subvarieties of €® will be involved in this thesis:

F  — the variety of one clement semigroups =[x =y ].
%  — the variety of semilattices =[ xX2=x,xy = yx ].
X  — the variety of left zero semigroups =[xy =x 1.

KX — the variety of right zero semigroups =[xy =y |.
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Cagad i ey

R

\

jaae

the variety of rectangular bands = [ x2 = x, xyx =x ].
the variety of left normal bands = [ x2 = x, xyz = xzy ].
the variety of right normal bands = [ x? = x, xyz = yxz ].
the variety of normal bands = [ x? = x, axya = ayxa ].
the variety of left regular bands = [ x2 = x, xyx =xy ].
the variety of right regular bands = [ x2 = x, xyx = yx ].
the variety of regular bands = [ x? = x, axya = axaya ].
the variety of bands = [ x3=x].
the variety of groups = [ x® =y ).
the variety of abelian groups =[ x=y% xy =yx ].
the variety of abelian groups of exponentn = x%=y? ,xy = yx, x"=x%].
the variety of left groups = [ x%° =x01.
the variety of right groups = [ x%° =y0 ].
the variety of rectangular groups = [ x%%? = x01].
the variety of completely simple semigroups = [ (xyz)? = (x2)?].
the variety of completely simple semigroups over abelian groups
= [ (xyz)° = (x2)°, xx = xyx’].
the variety of central completely simple semigroups
= [ (xyz)° = (x2)°, x%% = xy®°].
the variety { Se®” | [ES)]e &)
= [ (xyz)? = (xz)°, xy%*x%2% = xz%%%%% ].
the variety of semilattices of groups = [ x%°% = y%0° ].
the variety of orthogroups = [ x%? = (x%9°].
the variety of bands of groups = [ (x%%° = (xy)° 1.
the variety of regular orthogroups =[ x%? = (x%y%°, ax%y%a = ax%aly? ].
the variety of normal bands of groups = [ (axya)® = ( ayxa)® ].
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%%F4 — the variety of those bands of groups such that S/ € ¥ € A(F).

&% — the variety of completely regular semigroups.

Moreover,

L&) — the lattice of subvarieties of .

<¥&> — the variety of completely regular semigroups generated by the
nonempty class of completely regular semigroups ¥ .

Yo¥ — the Mal'cev product of the varieties % and #°( not necessarily a

variety ).

[ug=vy:ael] — the variety of all completely regular semigroups

satisfying the identities uy =vg (a €l).

[ A, B] — the interval of a lattice with minimum A and maximum B.

X

U
c(u)
Fy (X)
r

Py
%o

— a fixed countably infinite set.
— the free unary semigroup over X.

— the set of variables from X appearing in u € U.
— the free object in the variety # over X.

— the lattice of fully invariant congruences on Fe g(X).
— the fully invariant congruence on Feo(X) corresponding to the variety %
— the variety corresponding to the fully invariant congruence p on

Fea(X).

Further notation

%(S)
A(S)

— the lattice of equivalences on the set or semigroup S.

— the lattice of congruences on the semigroup S.

FCON(S) — the lattice of fully invariant congruences on the semigroup S.

E(S)

— the set of idempotents of the semigroup S.



c(S)
Cc*s)
V(a)

— the subsemigroup of S generated by E(S).

—

the least full and self-conjugate subsemigroup of S.

the set of inverses of 2in S.

x0=xIx =xx!,foranyx €S e R%.

CR(S, T) — the set of CR-relational morphisms from S into T (S, T e €% ).

End S
1]

T
Oy

4

rp
kerp

the semigroup of all endomorphisms of the semigroup S.
ihe largest idempotent separating congruence on S.

the largest idempotent pure congruence on S.

the least congruence on S such that S/, € ¥ € £(€%).
the identity relation.

the trace of the congruence p.

the kernel of the congruence p.

£, R, X, pand & — Green’s relations.

the largest congruence contained in the equivalence relation p.

the congruence generated by the relation p.

the restriction of the relation p to T.

the equivalence relation on A induced by the mapping 0 of the set A.
the free semigroup on the nonempty set Y.

the free monoid on the set Y.

the first variable which appears in w € YH(weU ).

the last variable which appearsinw e YY(w eU).
the semigroup of all transformations on the set Y.
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Chapter 3

Mal'cev Products and CR -relational Morphisms

Given two varieties  and 7 of completely regular semigroups, denote by ¥ 0%

the class of all completely regular semigroups S on which there is a congruence p such

that the idempotent p -classes are in ¥ and S/p € 7. The class ¥o% is said to be the
Mal'cev product of  and # in €% . Our definition is a specialization of Mal'cev’s
original definition [M]. In general Z°%" need not again be a variety. We define < Zo% >
to be the variety of completely regular semigroups generated by Zo%".

The first section of this chapter studies joins of congruences on Rees matrix

semigroups. This enables us to extend a result of Jones [J§] by showing that ¥o% is
again a variety if ¥e (¥ ) and " € L (€% ). We introduce the concept of CR-relational

morphism in the fourth section. This makes it possible to describe the varieties of the

form < Zo%">. This description will plays an important role in subsequent chapters.

§ 3.1 Congruences on Rees matrix semigroups

Congruences on Rees matrix semigroups have been described completely in
terms of the admissible triples. The details of this treatment can be found in either
Howie [How1] or Lallement [L1]. Here we present a special form of such description
discovered by Tamura [T].
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Let S = M(G; I, A; P) be a Rees matrix semigroup with normalized sandwich
matrix P. Let N be a normal subgroup of G. Define Py and ®t); on I and A respectively,

as follows:

iPyi © py plj'l eN foreverydeA;

Ayl € py; pm'1 eN foreveryiel
Then Py and =y are equivalence relations on I and A respectively. Let P C Pyand n ¢
7y be equivalence relations on I and A respectively, and define the relation ( N; P, &)
on S by:

(8 :ipA)(N;P,w)(g,;iuA,) < Ng =Ng, i;Pi, and A, A,

We then have

Theorem 3.1.1 [T]. The relation ( N; P, & ) is a congruence on S. Conversely given a
congruence 6 on S there exists N <G, P 2 Pyyand © ¢ 1 such that 6 = (N; P, ).

The following useful result can be derived easily from Howie [Howl1].

Lemma 3.1.2 [Howl]. Let S = M(G; I, A; P) be a Rees matrix semigroup with
normalized P. If & =(Ng; Py, 7y ) and p =( Np; Pp , np) are congruences on S. Then
(@) agp & PyCPy,mgom; and NoC N,
(i) anp=(NgN Ny PgNPy, tgNm,).

(iii) avp =(NgNp: Py Vv P, o vV T5).

Lemma 3.1.3. Let®=(N; P, ®t) be a congruence on S = M(G; I, A; P) with
normalized P. Then

(1) 0 is idempotent pure < N = { e }, where ¢ denotes the identity of G.
(i) O is idempotent separating <& P =g, Xt =¢,.
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Proof. (i) Necessity. Assume that N # { e }, then there exist g,» 8 € N such that
g% 8and Ng =Ng, letielandA €A, then (g;;i,A) and (g, i, A) are two distinct
elements of S such that (g,;i,A) 0 N # (g i, A ), and so 6N & # g5 , a contradiction,
by Lemma 2.6.10.

Sufficiency. It suffices to show that 6N ¥ =¢eg. Let (g, ;1. A)) 0N ¥ (g, : iy A,).
By Lemma 2.4.5, we have i) =iand A, = X,. Since (g, ;i;,A,) 0 (g, ;5 A;), then Ng, =
Ng,, so that g, = g,. Hence 8 N ¥ =¢&q.

(i) Necessity. Assume that P # g, then there exist i), i;€ I such that i; # i, and
iy Piy LetA €A, e =(py, s i, A) and f = (py;, ™" i A ). Then e and f are two distinct
idempotents of S. Since i, P i,, then p“npliz.l € N, so that p,_iz'lp“l =
Pxil-l( Pxilpxiz-l )le € N, since N a G. Thus anl'l = Np,_iz'l, andsoeOf, a
contradiction. Hence P = €,. in a similar way, one can show that t=¢,.
Sufficiency. Note that E(S) = { (pxi'l; i,A) |l iel, A €A }, the assertion follows

easily. #

The following straightforward corollary will be used throughout this section

without explicit reference.

Corollary 3.14. Let®=(N; P, ) be a congruence on S = M(G; I, A; P) with
normalized P and e = (py; 31, A ) and £ = (p; "' j, ) €E(S). Then e O f if and only if

iPj and A .

Lemma 3.1.5. Let S be a completely simple semigroup and let a, p € A(S), with p
idempotent pure. Then for any e € E(S), we have H.ne(avp)=H.Nnea.

Proof. By Theorem 2.4.3, we may assume that S = M(G; I, A; P) with normalized P.
By Theorem 3.1.1 and Lemma 3.1.3 (i), we may assume that ¢ = ( Ng; Py, g ) and p

=({e); Py, ). It follows from Lemma 3.1.2 (iii) that
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avp=(NgPyvPymgvm,).
For any e € E(S), we have ¢ = ( pu'l; i, A ) for someieland A ¢ A. By Theorem 3.1.1,
Hene(avp) = {((giA) ! geNgpyt)
=H.Neaq,

as required. #

Definition 3.1.6. Let S e €% and %€ £(€# ). A congruence pon S is over ¥ ifep e 7

for each e € E(S).

The next result can be derived easily from Jones [J5]. We sketch the proof for

completeness.

Lemma 3.1.7 [J5]. LetS e €% and let a, p € A(S), with p idempotent pure. Then for
aﬁyré[.ay,xy,y }, a is over ¥~ implies (avp)/p is over 7.
Proof. () ¥ =%%. To show that (@ Vv p )/p is over ¥ , it suffices to show that
(avp )y € £, by Lemma 2.48. So let a, b €S, with (ap,bp)e(®V P )/p, that is,
‘a(avp)b. Then there exist a;,b;eS (i=0, 1, ..., n) such that
a=aabypaab,..azob,=b, by Lemma 2.2.3.
Since & C &, then a; & by , and so (a;p ) £ (bjp ) in /. Thus
ap = (20 ) L(bp) =(2p) L(bp) =...=(ap) L(byp) = bp,

and whence ( ap ) £(bp ) in 5/, as required.

(ii) 9 = %%. This is the dual of (i).

(iil) ¥ =%. Since ¥ = X¥ NEY, the assertion follows easily. #

Before proceeding, we need some preparation.
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Notation 3.1.8. Let o denote the variety of all completely simple semigroups with

abelian groups.
We here provide some simple characterizations of the variety .«".

Lemma 3.1.9 ([PRS], [R2]). The following conditions on a completely simple
semigroup S are equivalent.

(i) Se«.

(i) S satisfies the identity x%yx = xyx°.

(iii) S satisfies the identity x2yx = xyx>.

Definition 3.1.10. A completely simple semigroup S is central if the product of any two

idempotents of S lies in the centre of the containing maximal subgroup. We denote by ¢

the variety of all central completely simple semigroups.

Lemma 3.1.11 [PRS]. The following conditions on a completely simple semigroup S
are equivalent.
(i) S is central.
(ii) In every ( respectively, some ) Rees matrix representation M(G; I, A; P) of S
with normalized P, all entries of P lie in the centre of G.
(iii) S satisfies the identity x%% = xy%®.
(iv) Sesr v¥.

The lattice of all subvarieties of ¥ has been described completely by Petrich and
Reilly [PR4] in the following way.



Notation 3.1.12. For # € Z(€¥), let I( ) denote the class of all idempotent

generated members of # and let < I( #7) > denote the variety of completely simple

semigroups generated by I( ).

Notation 3.1.13. Let o4 denote the variety of all abelian groups. For each k 2 1,
let o} denote the variety of abelian groups of exponent k.

Lemma 3.1.14 [N]. () % =[x"=y% xy=yx].
(i) = =[x=y% xy =yx, x*=x0], k 21.
(iii) Every subvariety of &% is either o% or & for some k 2 1.

Theorem 3.1.15 [PR4]. The mapping
{: ¥ — (FNRF,<(F)>NAH,7NF) (FeLF))
is an isomorphism of £ (%) onto the subdirect product
(WY )e L RF)XxL(ALVXL(E) | TCY ¥V +RF = =9 ).
Moreover, if ¥ € L(€) and ¥ { =(¥, 2, ¥ ), then
¥ =(Se¥ | S/p e¥, subgroups of [ E(S) ] lie in £, subgroups of S licin ¥ ).

In the next proposition, the case " = 9% has been obtained by Jones [JS].

Here we provide an alternative proof of this fact.

Proposition 3.1.16. Let S be a completely simple semigroup and let a, p € A(S), with
p idempotent pure. Then for e { ¥, ¥ }, o is over #” implies that o v p is over 7.
Proof. By Theorem 2.4.3, we may assume that S = M(G; 1, A; P) with normalized P.
By Theorem 3.1.1 and Lemma 3.1.3(i), we may assume that a@ = ( Ng; Py, ) and p =
({e); Py, my) . Thus, @ v p=(Ng; Py v Pp, g v M) by Lemma 3.1.2 (iii). Let e and
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f be two arbitrarily elements of E(S) with e ( & v p ) f. Then there exist e, f; € E(S)
(i=0,1,...,n) such that
e=¢afope,af,...eqoufy,=f, byLemma2.33;
where, e = (Py " i M) and fiy = (B 5 o by ), k=0, 1, .
Since fy pey,; (k=0,1, .., n-1), then we have
M Puic = Phrips
@) Py, =P, for all A €A, since jy Ppiy,;
3) Puj =Pa,,j forall j e, since p T, Aper
Sincee af, (k=0, 1, ..., n), then we have
4 plikpkjk-l € N, foralldeA;
5) p,‘.'jpw-'l e N, foralljel.
Case 1: 7 = %% . To show that o v p is over SB#¥ , it suffices to show that
ef = (Pyjy ' ion Mg )Py, ™5 dns )
= (Pagiy PagigPugi, - o> Hn)

e E(S), by Lemma 2.4.7;

that is, ef = ( pl‘nio.l; ig» Ky )- Thus, it remains to show that p*oio-lp’-oin 1

pl-lnjn‘l = Pugiy -
Foranyi,jeland A, p €A, with iPyj and A Mgy, then (py 14, (s i )
€ E(S), and so ( pu'l; LA)a( puj'l; j» 0 ), by Corollary 3.1.4. Since a is over &Y,
then ( pu'l; LAX) Puj'lz hu)=( pu'lp;‘jpuj‘l; i, B ) € E(S), so that we have
© Py PPy =Py
Forke{0,1,...,n). By (2), we have
Pigio PhoiPun = (Pagy Pagie) = (Pagiy Py ) (L (Bai " pagi 00 )
= (Paiy Pay) - (P, Pag Pi”  BY ()
= (Pagiy "Pagiy)  CPagiy 5 Paggy X Pagiy Py P ™)
by (2)
= (P Pagy) ~ (Pagiy, Prjo, Pugic . DY ()
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= e ( repeating the same procedure for n-2 times )
=( p‘kio'lpltjo )p”'kil‘l
=Paiy PrjoPuio Y @
= Puig by (6).
Thus, we have proved that
) pwo'lp%p%'l = p”kio'1 forallke{0,1,..,n).
Hence, we have
Pagis PagicPrnin = { Pagiy " Pagi,Pugiy )V PajiPugi, ™) -~ (Pa Pui ) BY 3
= Pugig " PayjcPugin )~ (Paj Py ) by (7) with k = 0
= { Pa,l;o'l( plljnp"'ljn.l) } .. (P%Punjn'l) by (3)
= . ( repeating the same procedure fork=1,2,...,n-1)
=P ProjiPiiy )
= Pxnio'lpxnjnpm“'l by (3)
=Py by (7).
The proof of Case 1 is completed.
Case 2: ¥ =% . By Corollary 3.1.4, we have
(8) Ngpyi' = Ngpjlforalli,jeland A, u €A, with i ( PvP,) j and

l(ﬁav np)u.
To show that a v p is over ¥ , it suffices to show that
ef =(p;oio'lp;dnp%'l;io,un)
is in the centre of Heg M e( o v p ). Note that
Hegne(avp)={(gipiy)lge Nop, ;7' ).

Thus, it remains to show that
-1 NS TP SR -1
EPusig Pagio PagioPugin )= (Pagi PagiPuy JPugigf  forall g€ Nopyio
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For anyi,jeland A, p €A, withiPgyj and A g p,lete =(p,; i, A)andf' =
(puj'l; j,1). Thene', f* €eE(S) and ¢' « f ", by Corollary 3.1.4. Since a is over &, then
ef' lies in the centre Herg: N e'( @ v p ). It follows that

9) 2P, Py PaPy; T ) = (Pai'Papy  Pe  forallge Nop,ih.

Fork €{0,1,..,n}andge Nup%'l. By (3), we have

8Py P 1oik.l WPagiy

= 8PP, ) PuiPryi X PagigPrgiy Pagi
= (8PP ) PuigPr ) TPugh CPagi PagicPugi” P
= Prgi, ProiPucic Pk PunicPioic ) (PP DPugy

since 8(p, ;Paj ) (PuiPrj, )€ Nopy i, and by (9)
= Prgi, ProiPuci Pugicl BPiniProi ) - (PugigPrgiy ) Wi

P PriPujc Pue S0 P, = P,
= p‘oik.lp’-oikp Foik‘lpﬂoikphik-lp AP "’ljk-lp by BCP "nikplnik.l )
- CPugigPrgs Pug

since g(Py iy Paiy ) - (PugigPrgi ) € NoPys,” and by (9

= Pagi, PagiPic P ProicPhoic ) (PugiPagiy DPuy
SINCE Py, = Payiy 31 Py = Py
= .core ( repeating the same procedure n-1 times )
= Pagic PrgiPunc PioicEPugy
Thus, we have proved that

-1 - -1 -1
(10) 8CPy i Prgy WPagh =Prgh ProiPusic PP

forallke{0,1,..,n}andge Napunio’l.
Forany g € Napuni“'l,wenowhave
-1 -1
EPusiol Pagio PigiPiijn
= - -1
= £Pu( Pago Pgi P
= -1 -1 -1 -1
= BPuiel Pagy Proio X Pagiy Pagiy) = (Paoy Paoiy gy by @)
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= (B PuigPagy Pagio  Pagiy "Pagy) - (Pagy, Pagiy Pu,”
=p. .-} -1 -1 o]
= Pigio PrgicPigio PotnioBPunio{ Pagiy Pagiy )~ (Pagiy Pagi, P,
by applying (10) withk = 0.
= (Prgig Prgio){ (Puio Puuig Y8 Py Pagiy ™ gy} (Pai, " Pagi Py
SINCE Py o = Py
_ -1 -1 -1 -1 ) 1,
= (Pagig Pagip X Pagiy PagiiPugiy Prin (Puugig PigioJ8Pugiy( Pagi, Pag)
= (Prgiy PrgiyPu
since ( p%'lp%)g € Nap"nio'l, and by applying (10) with k = 1
- -1 -1 -1 -1 . . -1 .
= (Pagiy Pagi X Pagiy Pagiy 1 (Pujy Puugiy X Py Puugig B( PugisPagiy  IPag, |
- (Pagy Pagi Wy SR By =By,
C ( repeating the same procedure fork =2, ...,n)
— - -1 - - - - - -1 - » -1 » - -l -
= (Pagiy PaioX Pagiy Pagiy) - (Pagiy Pagiy X (Pugs, Pui, X Py " Pui )

(ppnio.lppnio g }P%Punjn'l
= (Pagy PrgPraiy P By @) 2rd ).
The proof of Case 2 is completed. #

Notation 3.1.17. We now introduce one more subvariety of € :
F =[ axP% = ay®a®x% ],
and point out the obvious fact that ¥ CF C F.

Lemma 3.1.18 [PRS]. The following conditions on a completely simple semigroup S
are equivalent.

1 Se?.

(ii) In every ( respectively some ) Rees matrix representation of S with a
normalized sandwich matrix P the eatries of P commute.

(i) [E(S)]ew .
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Lemma 3.1.19. Let S be a completely simple semigroup and let ¢ € A(S) be such that

o is over @. Then for any k 2 1, the following two conditions are equivalent.
(i) Foranye, f €E(S), ¢ o f implies ( ef )X = (ef )°.
(ii) For any e € E(S), subgroups of [ E(ext ) ] lie in & .
Proof. (i) implies (ii). For any ¢ € E(S), we have ext € &, since o is over & . Let H be

the maximal subgroup of e containing e and let
Ie={e'eE(ea) lee=e ), Ag={feE(ea) lef=f },

Pe = ( pger ) Where pgr = fe'. By Theorem 2.4.3, ea = M( H; Ies Ags Pe ), and so
[E(ea)]= M(<Pg > I, Ag; Pe ) by Lemma 2.4.6, where < P, > is the subgroup of
H generated by the entries of P,. From Lemma 3.1.18, < P, > e, and so < P, >
€5} since ( fe' )k =(fe') =cforallfe Ae, ¢ €l,. Hence, subgroups of [ E( eat) | lie
inary .

(i1) implies (i). This is straightforward. #

Proposition 3.1.20. Let S be a completely simple semigroup and let o, p € A(S), with

p idempotent pure and a v p is over ¥. Then for any k 2 1, the following two
statements are equivalent.

(i For any e € E(S), subgroups of [ E(e( v p)) ] lie in o

(ii) For any e € E(S), subgroups of [ E( ea ) ] lie in 5.

Proof. (i) implies (ii). This is obvious.

(1) implies (i). In terms of the discussion at the beginning of the proof of Proposition
3.1.16, we may take S = #M(G; I, A; P) with normalized P, @ = ( Ng; Py , g ) and p =
( {e); Pp ,zp), sothat v p=(Ng Py v Pp,nav Ty ). For any e, f € E(S) with
e{avp)f thereexiste,,. f,€ES) (m=0,1,...,n) such that

e=cpafype,af ..eqaf, =1,



where e, = (py_; "5 iy Agy) and £, = ( Py Jm M) m =0, 1, .., m; further, form €

{0,1,..,n-1]}, we have
(a) Paj, = Pl forallleAandpumfpxmﬂj foralljel;

andforme{0,1,2,...,n}, we have
(®) py Py, € NoforalleAand py_p, ;e Nyforalljel

By Lemma 3.1.19, it suffices to show that (ef )X = (ef )°. Since
(ef ) = [ (a5 i Ao X By s oo o) 16
= ((Pagig Pagi,Puge Presio) Pugig + ior )

and (ef )° =( punio.l; ig M)

1 -1

k = .
Y Pugig = Pugi

it remains to show that ( p;ﬂio’lpwnpunjn'lpunio , or equivalently
( p)oio.lp]ojnpunjn-lppnio )¥ = 1g , the identity of G.
Foranyi,jelandA, 1 €A, withiPyj and Ay p, lete’ = (py i, A)andf' =
( ppj'l; jyit). Thene',f' €E(S) and e’ a f*, by Corollary 3.1.4. By (ii) and Lemma 3.1.19,
(ef' )¢ =(ef')°. It follows that
© ( pu'lpljpuj'lpui )=1g, foranyi,jeland?A,peA, withiPyjandA my p.
Since a v p is over &, then from the proof of Case 2 of Proposition 3.1.16, we have
(d) Fori,jeland A, u €A, with i(PavPP)j and A (7 v T ) W, then
20, Pr ' PayPy ) = (g pyypy P forallge Nop,il.
Further, we have
(¢) Foranyi,jeland A, u €A, withi(Pava‘)j and A (g Vv To) M, then
Nap,j‘l = Napuj'l.
Forr,me{0,1,2,..,n},te{1,2,..,k} and ge N, then
[ &( plrim-lp’—rjm) - ( szjn‘leTjn X punin-lpp_nio) 1 Punio-l
= 8Pty PP Pisimd Puiy P X Phriysr” P
e (P P N P Py B P, P
e (P, P M P TR ) 1P 1D
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noting that the products in { } belong to Nap, rim_l' by (b) and (e)

= L8 Pui, P X Phgicay P ) = (Pagiy P, ) Py Py ]
Py P ) (Pagi, P X P i) 1 P
« PurimP;Tim'IPszmPprj m'l ) by (d),
thus, by induction on t, we have
(f) Forrrme{0.1.2,...,n} and ge N,
[ &( p‘-rim-lp‘rjm) e ( p‘-rin.lp‘rjn X pl»lnin_lpunio) b punio-l
= [ 8CPyir, Prgi ) Pacip g Py ) = (Pagi, P X Py, P ]
Py Pyt Pri, Paj Pug "
= [8(Pygiy, Py X Pai s Paie sy ) - (Pai Pag P P i 1Py,
S0CE ( PyyiyPhry PhejnPr )
= Puric Py Poi Py Pri) P
= Pugi, P, by (c)

k

= IG.
Hence, forre{0, 1,2, ...,n}, we have
-1 -1 k. -1
(Pady PhriPugin Piigio) Phgio
- -1 -1 -1 ko -1
= [Py "Pagio X Pagiy "Pagi)) = (Paiy " Pagsy X P, i) 1 Py
by (a) )
—1 - -1 - - -1 . - -l - - -1 . - -l
= UCPugig Pugig X Pagiy Pagiy) - (Pagiy Py Y Py Puagig) TPy
by applying (f ) withg=1gandm =0
- - - - k -
= { [pp_rio lpurjo]( Py, lpurjl ) .. ( P, IP;Tjn X Puj, lPunio) } Pui, !
by applying (f ) with g = p“ric'lpijo e Ngandm =1
=...... ( repeating the same procedure form=2,...,n)
- a1 s A S T S
JEPISRS SS N SRS |
= (Pugi PuciyPusj Prisio) Prsig

since p”rjmz p“rlm-kl (m=0,1,2,..,n-1), by(a).



So, we have proved that
(@) ( R T .)k cl=(p . lp . p .71 .)k -1
8) (Paiy PujPunin Punio” Pupie =\ Pugip PuggpPugin Punip” Pryio
forallre{0,1,2,..,n}.
Finally,
-1 -1 A el el -1
(Pagio ProinPimin Prnio )kp"nio = (Pugio PuginPrinin Prnio )kp"nlo
by applying (g) withr =0
p—sq -1 - » -1 . . -l
= (Paiy PayjoPugjo Pnio) Pii
by (a)
— . -1 . . -1 .- - -l
=(Pujiy PuyjPunin Prnig )kpunlo
by applying (g) withr =1
= ... ( repeating the same procedure
forr=2,3,...,n)
_ ! . . -1 . -1
= (Pujip PrnjoPinin Phndo )kp"'nlo
- .-l
Pugip

which completes the proof of (i) implies (i). #

We are now ready for the main result of this section. C.A. Vachuska also

obtained this result in [V].

Theorem 3.1.21. For ¥ e[ 2% ,¥ ]and S e €”. Let o, p € A(S), with a over #"and p
idempotent pure. Then @ v p is over 7.
Proof. To show that a v p is over 7 it suffices to show thate( o vp)e ¥ foralle
e E(S).

Since ¥ ¢ 7, then by Theorem 3.1.15, ¥ {=( ¥ ,%,¥% ), where Y ¥ e
X(¥) and ¥ € (4% ). From Lemma 3.1.14, we have & = o% or o forsome k2 1.
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Let e € E(S). To show thate( @ v p ) €%, and by Theorem 3.1.15, it suffices to
show the following three statements:
(@) (AVP)ype T .
This is obvious, sincee(a v p ) e €”.
(b) Subgroups of [ E(e(avp))]liein¥.
Since a is over ¥, and by Theorem 3.1.15, subgroups of [ E( fa ) ] lie in # for all
f € E(S). By Proposition 3.1.16, o v p is over ¥, so thate( & v p ) € ¥; and thus by

Lemma 3.1.11, subgroups of [ E(e( @ v p ) )] lie in % . It follows that (b) holds for ¥
=4 % =49 for some k 2 1, then by Proposition 3.1.20, subgroups of

[E(e(a v p))]lie in o, which completes the proof of (b).
(c) Subgroups of e( @ v p ) lie in #-
Since « is over 7 then ex € #°. By Theorem 3.1.15, subgroups of S lie in #; and

SO

H.ne(avp)=H, Nea by Lemma 3.1.5
€¥,
it follows that, subgroups of e¢( a v p ) lic in #~ This completes the proof of this

theorem. #

The next corollary will be useful in Section 3.2.

Corollary 3.1.22. For#7 e Z(¥)and S € €”. Let a, p € A(S), with o over ¥ and p
idempotent pure. Then (& V P )/, is over ¥ on S/,
Proof. If ¥c[ %% ,¥ ], then (@ V P )/, is over ¥, by Theorem 3.1.21. Otherwise, 7"
e[ &, 2% V[ %Y, ¢ | U L(F). We consider the following three cases:

@ el ¥, 9%). ByLemma3.1.7, (®VP)/;isover 4. For ¥ » 4% , it
remains to show that (ep)[ (& V P )/p 11 Heepy € for all € € E(S). Let e € E(S).

Since p N & = ¢, we then have



e (VPN Hep=Hene(avp)
=He Nea by Lemma 3.1.5
e¥ since o is over 7.
(b) e[ %%, &% ]. This is the dual of (a).
() ¥eZL(¥). Note that ¥ = (X v 7 )N (%X v 7 ). Combining (a) with (b),

we have (c). #

Whether Corollary 3.1.22 holds for every variety # € £ (€%) we do not know.

§ 3.2 The Mal'cev product on (€% )

We now introduce the most important definition of this thesis, the Mal'cev
product. This product has proved useful in many considerations concerning the lattice of
subvarieties of a variety of algebras. The following is a specialization of Mal'cev’s

original definition [M].

Definition 3.2.1. Let% and % be any classes of completely regular semigroups. The

class of all completely regular semigroups S for which there exists a congruence p on S
with the property that all idempotent p -classes are in ¥ and S/p € ¥ is the Mal'cev

product of Z and %", denoted by %o,

Notation 3.2.2. Forany '€ ¥ (®% ) and S e €% , a congruence p on S is an ¥ -

congruence if S/p €7"; 0y~ will denote the least #°- congruence on S.

The next result is obvious.
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Lemma 3.23. Forany %, %€ X (RE), %% =(Se€€® | Gp-isover? ).

As we shall see in Lemma 3.2.6, the Mal'cev product of varieties ¥ and % need

not be a variety. However, it does have the following property.

Lemma 3.24 [M]. If%, ¥ € £ (&%), then ¥o¥ is closed under direct products and

completely regular subsemigroups.
Proof. Let Sy e%o¥ for a €1, and for each a €], let pgy, be a congruence on S, figuring

in the definition of the Mal'cev product. On S =[] S define a reiation p by

(ag)p(by) if agpgag forallael
Then p is a congruence on S such that for all (ey) € E(S), (eq)p = Il . 1€aPq and
S/psﬂaelsujpa, so that S e 09",

Next let S e Zo¥ with the corresponding congruence p, and let T be a completely
regular subsemigroup of S. Then p' = p | 1 is a congruence on T which gives T e ¥o¥"

#

It is important to point out the fact that ¥ ¢ 0¥ and ¥ C ¥o¥ for any ¥, ¥ ¢
Z(¥). The general form of the next lemma is proven in [M]. We sketch the proof for

completeness.

Lemma 3.2.5. Forany?,7,# in £ (€% ), we have

Yo(FoF ) C (¥oF )W
Proof. Let S € Zo( #°%"). Then there exists O € A(S) such that S/g € #°% and 0 €¥
for each e € E(S). That S/g e o#% implies that there exists p e A(S/g ) such that
(S0 )/peﬁrf’ and (0 )p €% for each €0 e E( S/g ). Define p on S by

apb if (a8)p(bO).
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Thch) is a congruence on S such that 6 ¢ |.), and ( S8 )/p = 5/5 € %" Moreover, for

cach ¢ € E(S), 01 ep is a congruence on e;-) such that e—5/9 =(eO)pe¥ and 0 € for

each f eE(ep ) . Hence S € (%% )o%", as required. #

Jones [J5] showed that the Mal'cev product is not associative on [.¥, €% ], even
when all partial products are again varieties. In Corollary 4.6.12, we shall see that the
Mal'cev product is not associative on ¥ (&%) either.

Some important observations about the Mal'cev product on (€% ) are adapted

from Jones [J5] and stated in the following lemma. The proof of this lemma is also

included for completeness.

Lemma 3.2.6 [(J5]. Let%, ¥ € £ (€%).

() If7els, €R]), thenZ ¥ =(¥ NES )o¥ forany ¥ .

(ii) If ¥e L (&) and ¥e [.¥, €% ], then ¥o# can’t be a variety except in the
degenerate instances when 0% =%.
Proof. (i) If ¥ €[.¥, €% ], then on any completely regular semigroup S, 69 C F =G .
Thus if S € Z°%; so that Oy- is over ¥, then Oy is over ¥ N¥.%.

(i) Since ¥ e[.¥, €% ], then ¥ contains the two-element semilattice Y = { 0, 1 },
0 < 1. Suppose that T € ¥o%, T¢ . Then Y X T € ¥°¥ and consists of the two & -
classes (0} xTand ({1} xT. Now the Rees quotient A modulo the ideal { 0 } x T
does not belong to Z, since T does not, and the only #-congruence on A is the universal
congruence. Thus A ¢ %] and so Z°% is not a variety. #

It follows from the above lemma that only products whose first factor is in

Z(€7) are of interest. Thus we may restrict attention to ¥e £ (€¥). Under this
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restriction, Jones [J5] established a necessary and sufficient condition for the Mal'cev

product to be a variety. We state this condition in the next lemma.

Lemma 3.2.7 [J5]. Let%e £ (€% ) and ¥ € L (€# ). Then ¥o¥" is a variety if and only
if for each S € ¥ %, for each @ -class D cf S, and for each congruence p ¢ & whose

restriction to D is idempotent pure, ( O3V P )/p is over ¥ on D/p.

In [J5] Jones showed that Zo%" is indeed a variety in many important instances.
He also raised the following question: whether ¥¢%  is always a variety when %€
L(€ ). Corollary 3.1.22 enables us to extend Theorem 5.1 of Jones [J5]. This result
was also obtained by C.A. Vachuska [V].

Theorem 3.2.8. If e £(¥) and ¥ € L (€% ), then ¥o¥  is again a variety.
Proof. Let S eZo%,puto =0y ( SF), let D be a & -class of S and let p € A(S) be

contained in @ and idempotent pure on D. By Lemma 3.2.3, a is over , and so

(avp )/p is over ¥ on Dlp by Corollary 3.1.22. Hence % is a variety, by Lemma

3.2.7. #

Notation 3.2.9. For any #e £(¥), we write
CS(#)={ S €e&” | all subgroups of S liein ¥ }.
It is easily verified that CS(#) = #o %% , and so CS(X’) is a variety.

The proof of Theorem 4.1 in [J5] motivated the following result.

Proposition 3.2.10. If #e £(¥) and # € L(€R ), then CS(X)o? € L (€% ).




Proof. We apply Lemma 3.2.7. Let S e CS(#)o¥, put 0 =09 (S P ), let D be a & -
class of S and let p € A(S) be contained in & and idempotent pure on D. It remains to
show that (& V p )/p is over CS(#) on D/p. For any e € E(D), we have
e(avp)nHe=eanHe byLemma3.1.5
eX since @ is over CS(#"),
that is, e( @ v p ) € CS(#). Thus o v p is over CS(#) on D, whence (& vV p )/p is
also over CS(#) on D/p , as required. #

As a consequence of Theorem 3.2.8, the next corollary will be useful in the

sequel.

Coroallary 3.2.11 [J5]. For any ¥e L (€% ), then £¥ o, K o¥ and ¥ o% are again

varieties.

Theorem 3.2.12 [J5]. If %, % € £ (€%), then ¥o¥ € L(€F).

Proof. Let#X =% N ¥, then ¥ C ¥ ¢ CS(#X) and ¥ CS(#) =&, so by Theorem
2.7.6, we have ¥ = (Z v % ) N CS(¥’), whence ¥oF = (¥ v ¥ )o¥ N CS(¥)o¥. The
cases ¥e€ £ (¥) were treated in Theorem 3.2.8. By Proposition 3.2.10, we therefore may
assume that Z contains S¥% .

Now if &' C ¥ or X C ¥, then ¥o¥ = FF ¥ or 2§ o, so that ¥o¥ e L (&¥).
Thus we may assume that # € £(%). We now apply Lemma 3.2.7. Let S e %%, put o
= Oy~ and let p be an idempotent pure congruence on S. It remains to show that
(Vv p)/y is over  on S/p. Note that

ker(avp)=ueeE(s)[Henc(avp)]
=UeeE(s)(Henea) by Lemma 3.1.5

=ker a.
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Thus for any e € E(S), we haveea =kera =ker(avp)=e(avp) e, since ais a
group congruence over ¥. Thus o v p is over ¥ on S, and therefore (@ V P )/p is over

on S/p, as required. #

§ 3.3 The operators T}, T,, T, K, T,” and T,*

In this section we present alternative descriptions of the operators in the title in

terms of Mal'cev products and identities. Most of descriptions about these operarors T),

T;, T and K are taken from Jones [J5], Pastijn [P], and Petrich and Reilly [PR8].

Lemma 33.1. Let% =[ug=vylyca € L(€R). Then
N = oy

={ Se&® | S/_goeﬂ }

=[ ( xugy ¥ = XUgXVo )%, ( XVg = XV XUg )° JoeaA

= [ Xug = xug( xve)’ xvg = xvg( xug )° o as
where x € c(uy ) U c( vy ) for all a eA.
Proof. The equality T = %% o% was established in [ P, the dual of Lemma 3 ]. Let S
€ %% o%. Then Oy is over £¥ , and so Oy & £. But then 6y < £° and S/.5’,0 is a
homomorphic image of S/g,, and thus 8/0e 2. Conversely, if S/, 0e?, then S € 4% o
since £° is evidently over %% . This establishes the second equality. The third and
fourth equalities in the statement of the lemma are simple consequences of Lemma

2.6.13. This completes the proof. #

The next lemma is the dual of Lemma 3.3.1.

Lemma 33.2. LetZ =[ug=vy lae A €L (EX). Then



2Tr = Hgoy
={ Se&®% Islﬁoew }
=[(ugx )°=(vaxuax P, (vex )°=(uaxvax )° Joea
= [ugx = (vax )ugX , vox = (ugX Yv,.x lac A

where x € c(uy)Uc(vy) foralla eA.

Lemma 3.3.3. Let% =[ug = vy lyc s € L(€X). Then
¥T =gou
={Se’® | Slye )
= [ug® = vg® (xugy )°=(xvgey ° lgea
= ug (up"x"ug"Yug = v (ve'x’vg" vy laeas
where x,y € c(ug)Uc(vy) forallx eA.

Proof. By Lemma 2.69, #T=2TinzT:

=29 U N KF¥ by Lemmas 3.3.1 and 3.3.2

=YY since ¥ = 4% N %%,

this establishes the first equality. The same tyne of argument as in the second part of

the proof of Lemma 3.3.1 yields the second equality in the statement of this lemma. The
equality ( Se¥® | Sjpe ) =[ug" = v, (xugy )*= (xvgy )’ 1c o Was established

in [ Reil, Theorem 3.9 ]. The last equality in the statement of the lemma is a simple

consequence of Lemma 2.6.11. The proof is completed. #

Lemma 2.34. LetZe L (KR)and ¥ v ¥ =[uy =Vg]geca- Then
yK=Fo(v v 2)
=RFA(Y vF)
={Se&E® Isl1eﬂ]
={Sek® | SjanT)e ¥ )
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=[ (xugy X xvgy ) €E1,
where x, y € c(ug ) c{ vy ) forall o €A and w € E means w? = w.
Proof. The equality 7K =Fo(¥ v &) was eastablished in [J5, Proposition 7.2 (ii)].
The equality Fo(Z v &) = EF o( ¥ v ¥ ) follows from Lemma 3.2.6 (i). The same
type of argument as in the second part of the proof of Lemma 3.3.1 yields the third and
fourth equalities in the statement of this lemma. The last equality in the statement of

the lemma is a simple consequence of Lemma 2.6.12. #

Notation 3.3.5. For%e ZP(€%), let
* *
#Tl = o and Tt =¥ oy.
By Theorem 3.2.8, Tl* and T,* are two operators on £ (K% ).

In order to describe T;* and T,*, we require some preliminary observations.

Lemma 3.3.6. letS e €%, then

A TN ={(a,b)eSxS | xa=xbforallxeS }.

i) TN X ={(a,b)eSxS | ax=bxforallxeS}.
Proof. (i) Leta(TNn ¥ )band x €S. Then xa T xb and xa & xb. Thus ( xa )°=
( xaxb )°= ( xb )® so that xa # xb. Since T N & = &g, hence xa = xb.

Conversely, suppose that xa = xb for all x €S. Then (ab)®= (aa)’= a’and (ba)’=
{bb )®=1b", so thata Z b. Let x, y € S. If xay € E(S), then xby = xay e E(S). If xa
€ E(S}, then xb = xa e E(S). Next assume that ay € E(S). By Lemma 2.3.3, ay is a right
identity of Lay = Lpy , so that ( by )*= byby = byay = by, that is, by € E(S). Hence
ath,andsoa (TN ¥ )b, as required.

(ii) This is the dual of (i). #

Lemma 3.3.7. % =[ug =vg]ycp € L(EF), then
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(i) R =XvVvY
={ Xy = XVq jzeAr
where x € c(ug)uc{vy)forall a cA.
(ii) KXY =R¥ v¥
=[ gy =VaY lgeas
wherey € c(ug ) uc(vg)forallacA.
Proof. (i) Let S € Z¥%. Then there exists p € A(S) such that p over & and 5/p e 2.
Hence p N = €g. Thus S is a subdirect product of the left zero semigroup S/ g and the
semigroup S/;, and therefore S € v ¥. Clearly v ¥ C [ xug =xvg ] o LetS €
[ xug = xvg ] o- In views of Lemma 3.3.6 (i), we see that Sl(tn_sf) satisfies

Uy = Vo forall @ € A and hence s/(zny) €¥ sothat S € X o¥.
(ii) This is the dual of (i). #

Lemma 3.3.8. LetZe LP(KF), then

K~ 2% 4 if Ye L&),
(i) ﬂTl‘z d
! Z’Tln Z(K otherwise.
(®EVY i YeL (&)
. -
(i) #Tr =
L ?lTrn S’K otherwise.

Proef. (i) For ¥e ¥ (€7), the assertion follows from Lemma 3.3.7 (i). For Ze
[, €% }, the assertion follows from [ ReiS, the dual of Propusition 3.4 ].
(ii) This is the dual of (i). #

Remark 3.3.9. Combining the above lemmas one can derive a basis for the identities
*
of Tt [ 2Tr }in terms of a basis for the identities of %'
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We complete this section by providing a basis for the identities of % v ¥, which

wiil be useful in Section 5.2.

Lemma 3.3.10. Let S e €% . Define a relation A on S by
aAb & ax=bx forallxeS.

Then A is the least right reductive congruence on S.
Proof. Sece [ Pe2, the dual of exercise III. 7.6.7 ]. #

Lemma 33.11. %05 ={ Se®® | E(S) e S%F )
=[ x0y0x0= xoyo ].

Proof. See [ Pel, Theorem IV. 3.10]. #

Lemma 3.3.12. LetS €[ x%%%% =x%"2 1. Define p on S by
apb & ca=cb forsomeceS.
Then p is the least right group congruence on S.
Proof. To show that p is a congruence on S, it suffices to show that p is transitive and
left compatible. Let (a, b ), (b, ¢ ) €p, then xa = xb and yb = yc for some x, y €S, thus
x%a = x% and y% = y%, and so
y’x%a = y%%
=y’*%%
=y%%%
-y,
whence ( a, ¢ ) ep and p is transitive. Let (a2, b ) € p and ¢ €8, then x%a = x°b for some
X €8S, so that
(x%? )ca = x%%

= x°c°x°a

=x"%""
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=x%%
= (x%?)cb,
and so ( ca, cb ) € p and p is left compatible. Hence p € A(S).
For any a, b € S, we have ( a°0°)a%° = ( a’%)b° so that ( a°° b°) e p. By
Lallement’s lemma, E( S/p ) € X, and so S/p c %Y.
Let a be any right group congruence on S and let a, b € S such that (a, b ) € p, then
c’a = ¢ for some c €S, and so
aa = { 2% )( a0 )
=(c’a ) 2% ) ac) since E(S/y) e #¥
=(c¢%)a
=(c%)a
= ba,

whence p C « as required. #

Proposition 3.3.13. IfZe L(€F)and ¥ = [ ug = vy lye o» then
FXVY =[ugy = VoY lyeas

wherey € c(uy ) W c( vy ) forall @ eA.
Proof. Clearly 2% v ¥ C [ ugy = VoY lge 5- For the opposite inclusion, we consider in
three cases separately.

Case 1. ¥ C¥. Straightforward.

Case 2. ¥e £ (€¥). This follows immediately from Lemma 3.3.7 (ii).

Case3. e and S C¥. ThenZ C Z¥ oS so that [ ugy = vo¥ Jgea <
[ x°%°x% = x%"z ]. Let S €[ ugy = vy l ¢ A» and let A be the congruence on S defined
in Lemma 3.3.10. Clearly S/3 €¥. For cach @ class D of S, let Fy={aeS§:D,2D }.
Then Fpy is a completely regular subsemigroup of S, and so Fy €[ ugy = vgy Jgc - Let
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P be the congruence on Fp, defined in Lemma 3.3.12. Since [ ugy = vgy lpe pN ¥ =
¥N ¥, then we can easily see that I:D/pD € %% v, and so does ( FD/pD )’ . Define

y:S — HDES/_g( FD/pD)O

spp ifseFp;
by (sy)p =

0 otherwise.
It is easily verified that y is a homomorphism of S into l'ID‘E S /,( FD/pD )°, Define

] F 0

®: S —— Spx HDES/g( D/pD)
by s® = (sA, sy ). Then & is a homomorphism of S into S/;‘ x Ipes /’( FD/PD Y. If s,
teS and s® = 1P, then sA = tA and sy = ty. Thus xs = xt for all x €S, and so Dg = D,

and sc = tc for some c € FDs . Since Dy is the least & -class of FDs’ we have sc = tc for
some ¢ € D;. By Lemma 2.4.1 (iii), Dg is weakly cancellative, this implies that s = t.

Hence ® is injective, and whence S € Y v 7, as required. #

Obviously Proposition 3.3.13 has its left-right dual. We may use this dual result

without further notice.

§ 3.4 CR-relational morphisms

The concept of relational morphism, introduced by Tilson [ E, Chapters XI and
XII ], is a very useful and powerful tool in the study of Mal'cev products of
pseudovarieties of finite semigroups ( monoids ). The reader is referred to
Pin ( [Pil]}, [Pi2] ) and Tilson [T] for the basic definitions and results on this subject.

In order to study the Mal'cev products of varicties of completely regular

semigroups effectively, this section introduces the concept of CR-relational morphism



for completely regular semigroups. It is an analogue of the concept of relational

morphism for semigroups ( monoids ).

Definition 3.4.1. LetS, Te€®*. A relationt : S—— T is a function from S into P(T),

the set of subsets of T. The graph of the relation 1 is the subset graph(t) = { (s, t) I ¢t
est } of S x T. The inverse of 1 is the relation 7! : T— S defined by tt'l = { s €S |

test ). The relations T and t°! can be extended to functions from P(S) into P(T)

[ respectively from P(T) into P(S) ] by setting
Xt=U, xxt [ Xtl=u, yxtll

Definition 3.4.2. Let S, T € €% . A completely regular relational morphism ( CR-
relational morphism for short ) T : $ —— T is a relation satisfying the following
conditions:

(i) foreveryseS,st# O,

(ii) foreverys,teS, (st} tt)c(st),

(iii) graph(t) is a completely regular subsemigroup of S x T.
Equivalently, a CR-relational morphism t : S—— T is a relation such that graph(t) is
a completely regular subsemigroup of S x T and the projection of graph(t) into S is a

surjective homomorphism.

Notation 3.4.3. For S, T e €%, we denote the set of all CR-relational morphisms of S
into T by CR(S, T).

Definition 3.4.4. Let S, Te¥€® and let T e CR(S, T). Then 1 is called injective if the
condition st N i1 # & implies s = t ( or equivalently, if the relation t-1is a partial

function ). 1 is called surjective if tv! =@ foreveryteT.
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It is very important to point out the following property of CR-relational
morphisms. Let S, T e €#® and let T e CR(S, T). Then its graph graph(t) = { (s,t) €
S xT | test} is a completely regular subsemigroup of S x T and the projections S x T
—— S and S X T—— T induce homomorphisms o : graph(t) — S and B : graph(t)
—— T such that

(i) ais a surjective homomorphism,
(i) T = o 1.

The factorization S _q.i, graph(t) BT is called the canonical factorization of t.

Proposition 3.4.5. For S, Te®€# andlet 1: S—— T be a homomorphism of S into T.
Then Tt € CR(S, T).
Proof. To show that T € CR(S, T), it suffices to show that

graph(t) ={ (s5,t)eSxT | t=5s1}
is a completely regular subsemigroup of S x T. Clearly, graph(t) is a subsemigroup of
S x T. For any ( s, t ) € graph(t), we have st =t, and sle =yl by Lemma 2.5.6. Thus
(s,t )'1 = ( s'l, ¢l ) € graph(t) for any ( s, t ) € graph(t). It follows from Lemma 2.5.4
that graph(t) is completely regular, so that t e CR(S, T). #

Proposition 3.4.6. ForS, Te®&# and let § —‘1—1-> graph(t) —B, T be the canonical
factorization of a CR-relational morphism © : S —— T. Then

(i) tis injective if and only if B is injective.

(i) 7 is surjective if and only if P is surjective.
Proof. (i) Suppose that B is injective and let s, 8 € S be such that s;T N syT # 0.
Then s, 1B N 5,07 1B # @, whence s;o! N sy0! # @ since B is injective. Since o is
a function, it follows that s; =s,.

Conversely, suppose that 1 is injective and let ry, r, € graph(t) be such that ) =



rB. Since r; € ryac! and ry € ryoac! it follows that rjat Nryat # &, whence rja =
1,0 since 1 is injective, but r) = (r;a, r P ) is therefore equal to ry = (rpa, 1B ).

(i1) This is obvious. #

Proposition 3.4.7. LetS, T, Re &% .If 1 eCR(S, T) and 15 € CR(T, R) , then
7172 € CR(S, R). If in addition T and 1, are injective, so is T;75.
Proof. To show that 1,75 € CR(S, R), it suffices to show that graph(t;71;) € €% .
Clearly, graph(t;7,) is a subsemigroup of S x R. For any ( s, r ) € graph(t,7;), there
exists t € T such that t e sty and r e tTo, that is, (s, t ) € graph(ty) and (t, r)
graph(t,). Since graph(t,), graph(ty) e €% , then (s, t )1 =(s1,t!) e graph(t;) and
(t, r)yl=(tl, rl) egraph(ty), so that t'! es-11; and ! e 11,. Thus r! es-l1;1,,
and whence (s, r)! = (51, r!) e graph(t,1,). Therefore graph(t,1,) € €% , and the
first assertion follows.

Suppose that T; and 1, are injective. If 51711y N $9T11, # D, there exist ] €57,
and t) € 55T, such that tyTy N tyTy # . From the injectivity of T, we have t; = t; and

therefore s;T) N s7T # &, whence 5| = s, from the injectivity of 1. #

Proposition 3.4.8. LetS, Te®® , and let T eCR(S, T) be surjective. If S’ is a
completely regular subsemigronp of S, then S't is a completely regular subsemigroup of
T. If T is a completely regular subsemigroup of T, then Tt is a completely regular

subsemigroup of S.
Proof. For any ty, tj € S'1, there exist s, 55 € S’ such that t; € s)T and t; € 5,7, so that

tit2 € (83T X $9T) € (5132 )t € §'1, and therefore S't is a subsemigroup of T. For any
t € S't, there exists s € §' such that ( s, t ) € graph(t). Since graph(t), $' e €% , then
(s.t)1=(s1, t1)egraph(t) and s! € §', and whence t! €S't . Therefore S't is

completely regular.



For any s;, s, € T't'], then there exist t;, t € T such that t; € s;7 and ty € s5T. From
this it follows as above that t;t € ( 5157 )1, whence sys5 € (tjt2)t! ¢ T't! and Tv°!
is a subsemigroup of S. For any s € T't"1, there exists t € T" such that (s, t ) € graph(t).
Then ( s°!, t1) e graph(t) and t'! € T, whence s'' € T't"! and T't'! is completely

regular. #

Corollary 3.4.9. Let S, T €e®% . Then the following two statements are equivalent:

(i) There exists an injective CR-relational morphism from S into T.

(i) S is a homomorphic image of a completely regular subsemigroup of T.

Proof. (i) implies (ii). Let t: S —— T be an injective CR-relational morphism and let
1 = o1 be the canonical factorization of 1. By Proposition 3.4.6 (i), B : graph(t)— T
is an injective homomorphism, that is, graph(t) is isomorphic to a completely regular
subsemigroup of T. Moreover, S is a homomorphic image of graph(t). Therefore, (i1)
holds.

(ii) implies (i). Suppose that (ii) holds, then there exist a completely regular
subsemigroup T of T and a surjective homomorphism a: T—— S. LetB: T—— T be
the embedding of T into T. Then t = o !B is a CR-relational morphism from S into T,
since graph(t) = T" e €% . By Proposition 3.4.6 (i), 1 is also injective. #

§ 3.5 Varieties of the form < ¥o% >

In Lemma 3.2.6 we saw that the Mal'cev product need not be a variety in
ger=ral. However, it is of interest and imponant to study the variety < #o%> generated

by the Mal'cev product 209 of Zand 9. This will be the focus of our investigations
throughout the rest of this thesis. Our goal in this section is to establish the connection
with the CR-relational morphisms.



The CR-relational morphisms enable us to introduce a new operation on £ (€% )

as follows.

Definition 3.5.1. Forany %, 7 € £ (€%), let
CR(¥,7)={Sec€® | exist T € # and T e CR(S, T) such that T is
surjective and et e # for any e e E(T) ).

Then we have the following fact.

Proposition 3.5.2. Forany ¥, # € £ (€% ), we have CR( ¥, ) € £ (€% ).
Proof. Let%, 7 ¢ (€% ). To show that CR( Z, #7) is a vrriety, it suffices to show
that CR( Z, #°) is closed under direct products, completely regular subsemigroups and
homomorphic images.

(i) CR(%, %) is closed under direct products.

Let S € CR(%, ¥") for @ € A, and for each a €A, let Tg € #"and T, CR(Sq, Ty)
figuring in Definition 3.5.1. Then t= [ . sTy: Ilgec pSa— Il s Ta is a surjective
CR-relational morphism such that for any ( eq)ge o €E(Tpe sTa): [ (€0 )ge p 177!
=g a0t ' €% and 1 \Ta €7, so that T, ,Sa € CR( Z, ¥).

(1)) CR(Z, 7)) is closed under completely regular subsemigroups.

Let S e CR( Z, 77) with the comresponding T € 7" and © € CR(S, T), and let S' be
a completely regular subsemigroup of S. Let ¢ be the embedding of S' into S. By
Proposition 3.4.5, ¢ e CR(S, S). Thus by Proposition 3.4.7, 97 e CR(S', T). Let § ol
graph(pr) —B> T be the canonical factorization of @t, and let T' = [ graph(t) 1B.
Since graph(pt) e ®®Z and B is a homomorphism, then T is a completely regular
subsemigroup of T, so that T' € 7 and @t € CR(S', T) is surjective. For any ¢ € E(T"),
e(@t)t=ctln S e, since et €. Hence S' e CR(Z, %).

(iii) CR(%, %) is closed under quotients.
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Let S € CR( &, #°) with the corresponding T € # and t e CR(S, T), and let ¢ :
S —— §' be a homomorphism of S onto S'. Clearly, -1 : §'—> § is an injective and
surjective CR-relational morphism. By Proposition 3.4.7, ¢ !t e CR(S'.T) and ¢!t is
surjective. For any e € E(T), e( 911 )l = (et )p €%, since et’! e%. Hence S'

CR(%, 7). #

We are now ready for the desired result.

Theorem 3.5.3. let?,# € LP(€R). Then < %% >=CR(Z,¥).

Proof. Let S e CR( ¥,7). Then there exist T € # and a surjective CR-relational
morphism t : S— T such that et"! €% for any ¢ e E(T). Let S al, graph(t) BT
be the canonical factorization of t. Since B : graph(t) — T is a surjective
homomorphism of graph(t) onto T such that, for any ¢ € E(T), cB’l ={(s,e)eSxT]I
eest}=et! e?, thus graph(t) e Zo¥. Moreover, a : graph(t)— S is a surjective
homomorphism, so that S € <%+%>. Hence CR(¥%, %) C < %% >.

For the opposite inclusion, it suffices to show that Zo% ¢ CR( %, 7). Let S e Z0%".
Then there exists p € A(S) such that S/p e¥andep €e¥ foranye €E(S). Lett: S ——
S/p be defined by st = sp. Then by Proposition 3.4.5, T € CR(S, S/p) and t is surjective.
For any f € E( S/p ), we have frl= ep €% for some ¢ e E(S). Thus S e CR( %, ¥°), and
whence < Zo¥% > ¢ CR( %, %), as required. #

Theorem 3.5.3 shows that CR-relational morphisms play an important role in the
study of varieties of the form < Zo% >. This description will prove very useful in the

sequel.

Corollary 3.54. Forany¥,? e LP(€R), ¥ v¥ C<¥Yo¥ >.
Proof. Straightforward. = #



The next corollary will be needed in the sequel.

Corollary 3.5.5. Forany%,% and % in (€% ), we have
YK T oW >> C <K YoF >oH ™>.

Proof. It is enough to show that Zo< ¥ oF > C << Y0¥ >0 > Let S e ¥ o< ¥ o >,
Then there exists p € A(S) such that S/p e< ¥ o¥ > and ep €¥ for all e e E(S). By
Theorem 3.5.3, there exist T e % and t eCR(S/p, T) such that 1 is surjective and £l
€ ¥ for all f e E(T). Let p#: S— S/p be the surjective homomorphism defined by sp#
= sp. It follows from Propositions 3.4.5 and 3.4.7 that p#r eCR(S, T) and p#'c is
surjective. Let f € E(T). Define ®¢: f (p*t )1 — f11 by s®¢= sp. Clearly, &
e CR(f ( p#r y L el ) and &y is surjective. Moreover, for any h e E( 1), and by
Lemma 2.2.5, we have h = ep for some e € E(S), so that thf'l =ep € ¥. By Theorem
353, f(p*t) e <%0 >, and whence S € << Zo¥ >o¥ >, as required. #

As the following example shows, the opposite inclusion in Corollary 3.5.5 need

not be true. For an alternative example, see [ JS, Proposition 6.6 ].

Example 3.5.6. Let¥ =%, 7 = RF and # = .. Then << %o¥ >o¥ > = €FoF = €%
and < Yo< F oW ' >>=FoF = F¥, s0 that <Yo< FoF >> £ <K YoF >o%™> . #

Corollary 3.5.5 enables us to provide an alternative description of the operator K.

Corollary 3.5.7. For any %€ £(¥%), we have X = < F o >.
Proof. Let¥e (€% ). Then we have

?/K=.20(2’ v.Z) by Lemma 3.3.4
= RBA(Y v.SF) by Lemma 3.2.6 (i)
CRF o< FoY > by Corollary 3.5.4



C << RF o DU > by Corollary 3.5.5
=< FoY > since F = P o7 [ Pe2, Corollary I1.1.2 ].
Clearly, < Fo¥ >C Fo(¥ v &) =X, Hence ¥ =< # ¥ >, as required. #
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Chapter 4

Varieties of The Form < Z°% >

In this chapter we restrict our attention to varieties of the form < Z-%¥>. We

first study the least full and self-conjugate subsemigroup C*S)of a completely regular

semigroup S. This cnables us to introduce the operator C*, and characterize

< o9 >. The operator C* is considered in detail. As a consequence, we extend a

result of Petrich vand Reilly [PR7} by showing that the well known operator C is a
complete endomorphism of £ (7%). By rcstrictin.g the operator Cc* w0 completely simple
semigroup varieties, we show that the order of C* is infinite and the Mal'cev product is
not associative on Z(€%). The semigroup generated by the operators C*and C is

determined here. We also describe 2(C"), e[ 2% , %# J and i 2 0, in terms of Z-

invariant normal subgroups of the free group over a countably infinite set.
§ 4.1 The subsemigroup C*(S)

Definition 4.1.1. LetS e ®® . A subsemigroup T of S is full if E(S) ¢ T; T is self -

conjugate if a''Ta ¢ T for each a 8.

Definition 4.1.2. For any S e €%, let C*(S) denote the least full and self-conjugate

subsemigroup of S. Thus
C*(S) = Ui 0V; -

where V= C(S) and, fori2 0
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Vi =1Uses a‘IVi al.

Lemma 4.1.3. LetS e®®.Then C*(S) e &% .

Proof. Since V;C V,,;, fori 2 0and C*(S) = U, , 4V,, it suffices to show that by
induction on i that each V; is a compietely regular subsemigroup of S. By Lemma 2.5.8,
V,=C(S) €e €% . Assume that V, € €% , we are going to show that V, ., e €% . By
Lemma 2.5.4, it remains to show that vi'eV,,, forany v €V, . Let v be an arbitrary
1- Then there exist u,, ... ,u;eV;anda, .., a, €S (n2 1) such that V=

element of Vi +

aj'lujaj (j=1,2,..,n)and v=v, .. v . By induction again, this time on n, we are going

to show that v'! € V;_,. This will be done in the following two steps.
(i) Ifn=1,then
vi=v 1=(aTua, y?
= (2,3, )%, 1(a,%u; )% 2, My, Yk a,"u,a,)° byLemma257
=v0a, (3%, Y%u, u;a,’! )°a,( a,tu, )0 by Lemma 2.5.7

eV.

41 Since ul-levi+l and C(S) CViC Vi+l'
(ii) Assume that (v ... v , )‘I € V;,1- then
vil=( Vi Yn-1¥n y!
= v°vn‘1( VoV, e Vo) X V) Vo y1y0 by Lemma 2.5.7

eV: since vn‘l, (v ¥p1 )'1 eV, and CS) V.

i+l

By induction, v'eV,, forallveV,,,, thatis, V,,; € &% . Therefore, C*(S) = U; 5 ¢V;

€ €%, as required. #

Lemma 4.14 [RS]. IfS ec¥, then C*(S) = C(S) = E(S).

Proof. Since S e 7¥, then E(S) is a subsemigroup of S, so that C(S) = E(S). To show
that C*(S) = E(S), it suffices to show that E(S) is closed under conjugation, that is,
a''E(S)a c E(S) for any a €S. Let ¢ € E(S) and a € S. Then a® = aal e E(S) and



therefore aale € E(S). Thus atea = (aiaal)ea = a’!( aale )a = a!( aa'le )a =

aaaleaalea = (alea )%, so that a-lea e E(S). Hence C*(S) = E(S). #

Lemma 4.1.5. LetS =#( G; [, A; P) be a Rees matrix semigroup whose matrix P is
normalized with respect to some 1 €1, 1 € A. Then C*(S) =M{N; L A; P) where N is
the normal subgroup of G generated by the entries of P.
Proof. LetH={xeG ! (x;1,1)eC*S) }, and let ¢ denote the identity of G. Then
H is a subgroup of G, since c*S)is a completely simple subsemigroup of S. For any
{x;1,A) with x e H, we have

(iLA)=(eiL1Xx1,1)e L,2)eCS),
since (e;i,1),(e; LAYeES). Thus M(H; LA;P)={(x;1,A)! xeH,ielLAeA)
< C*(S). By the same type of argument, we can show that C*(S) c M{ H; L A; P), so
that C*(S) = #(H; I, A; P). Forany y €G,

(LN (s LDiIxeH Ky L1 =((yy 1, 1)IxeH ) C*(S)
implies that y"'Hy ¢ H, and so H is a normal subgroup of G. By Lemma 2.4.6, H
conains the normal subgroup of G generated by the entries of P, so that M{N; I, A;P)
< C*(S). Forany (y;i,A)eSand (x:j, p) e M(N: I, A; P), we have

(A GLp Xy A)=[(pyp) S LA NG YL A)
= (o 'y Py PR,y 1 1)
eMN; LA P),
since pu’ly'lpli‘lpljxpuiy eN; ii follows that M( N; I, A; P ) is closed under

conjugation. By the definition of C*(S), M{N: L A; P) = C*(S), as required. #

Lemma 4.1.6. LetS, Te®#, and let ¢ : S— T be a surjective homomorphism of S

onio T. Then C* (S} = C*(D).
Proof. Note that C*(S) =y, , gV, and C*(M =y, 50U,
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where V,=C(S)and U, =C(T) , forn 20
Vi =l UesalVyal and Uy =[uUprblU bl
To show that C*(S)¢ = C*(T), it suffices to show that V¢ = U, for all n 2 0. This will
be done by induction on n. By Lemma 2.2.6, V ¢ = U,. So assume that V, ¢ = U, , we
are going to show that V__.é=U__, . Foranya €S, we have
{alxal xeV_ 1¢=(a'¢)} x¢ i xeV, }(ad)
=(ad )‘1Vn¢( ad) by Lemma 2.5.6
=(a¢) U (a¢).
Moreover, for any b € T and by Lemma 2.5.6, there exists a € S such that a¢ = b and

alé=bl sothat { alxa | x eV, J$= b"Unb, and therefore V6 =U_ , ,as

required. #
As a consequence of Lemmas 4.1.4 and 4.1.6, we have

Corollary 4.1.7. LetSeR® and Ge¥. If 9 : $ — G is a homomorphism of S into
G, then C*(S) < 19°], where 1 is the identity of G.

The next lemma, adapied from Petrich and Reilly [ PR2, Theorem 5.2 ], will be
used in the proof of Lemma 4.1.9.

Lemma 4.1.8 [PR2]. Let S =&, and let K be a subsemigroup of S. Then the following

statements are equivalent.
(i) Kis a full and self-conjugate completely simple subsemigroup of S.
(1) K is the kernel of a group congruence on S.

Lemma 4.1.9. Forany S e €7, there exist G € ¥ with identity 1 and a homomorphism
@ :S— G such that C*(S) = 1¢L.
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Proof. By Lemma 4.1.5, C*S)isa self-conjugate completely simple subsemigroup of

S, and so by Lemma 4.1 8, there exists 2 group congruence ¢ on S such that ker ¢ =
C*(S). Let G = S/g and @ : S — G = S/ be the canonical epimorphism. Then 197! =

ker 6 = C*(S), where 1 is the identity of G. #
As a consequence of Lemma 4.1.9, we have

Corollary 4.1.10. For any S € €7, then C*(S) is the kernel of the least group

congruence on S.

The next lemma, adapted from Ljapin [ Lj, Chapter VIL Section 5.5 ], will be
used in the proof of Proposition 4.1.12.

Lemma 4.1.11 {Ljl. If T is an ideal of a semigroup S and ¢ : T——> M is a

homomorphism of T onto the monoid M. Then there exists a homomorphism y : S ——
Mof Sonto Msuch that y iy =9.

The following proposition parallels Lemma 2.5.9.

Proposition 4.1.12. Forany S =uU__y S € €%, we have C*(S) = U,y C*(S,).
Proof. Cicasly, C*(S) = U yI S, N C*(S) ]. It remains to show that S, N C*(S) =
C*(S,)foranyaeY.

LetaeY. Then S, € €. By Lemma 4.1.9, there exist G € ¥ with identity 1 and a
homomorphism @ : S, —— G of Sy onto G such that C*( S, ) =19\ Let F(S,) =
{SB:BeYandasﬁ].ItiscasymseedlatF(Sa)isanidealofS,amisoisF(Sa)
U S,. Extend pto @ : F(S;) U S, — G, the group G with a zero adjoined, by
F( Sy )9 ={ 0 }. Thus ¢ is a homomosphism of F( S, ) U S, onto a monoid, G°. By



Lemma 4.1.11, there exists a homomorphism ¥ : S —— G%0of S onto G° such that
VIE(Sy)usS, =@ By Lemmas 4.1.4 and 4.1.6, C*S)y =C*(G®) = { 0,1}, so that

C*$)<{ 0,1}y, andso S, ~C*S) < 1971 = C*(S,). Clearly, C*(S,) ¢
Sg M C*(S), and therefore S, N C*(S) = C*( S, ), as required. #

Proposition 4.1.12 enables us to simplify the expression of C*(S) in Definition
4.1.2.

Coroliary 4.1.13. Forany S e®®,C*(S) = V,, where V,;=[ U, ga'C(S)a].

Proof. By Proposition 4.1.12, it suffices to show that C*(S) = V, forany S e €. Let S
e®¥. Without loss of generality, we assume that S = M( G; I, A; P ) whose sandwich
matrix P is normalized with respect to some 1 €1, 1 € A, by Theorem 2.4.3. Thus C(S) =
M(<P>L A;P)and C*(S) = M(N; L, A; P ), by Lemmas 2.4.6 and 4.1.5,

respectively, where < P > [ N ] is the subgroup [ normal subgroup ] of G generated by
the entrics of P. Clearly C(S) S V; < C*(S). It is easily verified that N =

[UgeG g'l< P >g]. From the proof of Lemma 4.1.3, V,€€® sothat V, is a completely
simple subsemigroup of S. Thus H={ xeG | (x;1,1) eV, } is a subgroup of G, and
<P>cHCN. Forany ( x; i, A) with x e H, we have
(xLA)=(ei, 1(x 1,1 Xe; LA) eV,
since (e;i, 1), (e; 1,1 ) e C(S), where ¢ is the identity of G; it follows that V,=
f(x;1,A) I xeH,ieLAeA}=4H;LLA;P).Forany g €G and x €< P >, we have
(L1 (x1,1XgL1)=(gxg 1 1)

e(g1,1)Y'CSHg 1,1)
Cvl
so that g'xg € H, and therefore N = [ U, g "< P >g] < H. Hence C*(S) = V,, as

required. #
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§ 4.2 Some congruences related to C'(S)

Notation 4.2.1. ForS =uU .y S, € €% , denote by o, f and 7y the least group,
semilattice of groups and orthogroup congruences on S and by 6, B, and Y those on
Sq>» respectively, a €Y.

The next lemma extends a result of Reilly [ Reil, ’Lemma 2.9 ] for completely

simple semigroups.

Lemma 4.2.2. LetS e 9. Then
y=((ab)e SxS | a°=b%and ab1 e C*(S) }
and ker Y= C*(S).
Proof. Leta={(a,b)e SxS | a®=b° and ab’! e C*(S) ). Clearly « is an
equivalence relation on S. Now let ( a, b ) e a and let x be any clement of S. Then a% =
b°so that a & b, thus ax # bx and xa # xb so that (ax )° = (bx )®and ( xa )°= (xb)°,
since & is a congruence on S. Since a®= b%and ab™ e C*(S) N H_, then a = nb with n =
ab'e C*(S), so that
(ax X bx )’1=ax( bx )°x( xb )°p*( bx )° by Lemma 2.5.7
= nbx( bx )’*( xb )°b'( bx )°
=C*(S).
Similarly, { xa }( xb )’'! € C*(S). Hence ( ax, bx ), ( xa, xb ) €, and therefore « is a
congruence on S.

Now for any ¢, f € E(S), ef € C*(S) 50 that ( ea )( fa ) = ( ef o= ( ef Ya €
E( S/y ). Thus, by Lemma 2.2.5, S/, is an orthogroup, and s0 ¥ C & On the other
hand, since S/yis an orthogroup, by Lemmas 4.1.4 and 4.1.6, C*(S)# = C*(Sty) =
E(SIY).whichimpﬁ@nhat(n,n°)eyforanynEC*(S).chmfor(a,b)ea,saya=



nb where n = ab’l e C*(S) N H, and e = a°=b% a = nb yn% = b. Thus &Y, and

therefore 7y = a. The equality ker y = C*(S) is straightforward. #

Notation 4.23. ForS=uU, y S, € €%, denote by F [ resp. F, ] the smaliest
subsemigroup T of S [ resp. S, ] containing E(S) [ resp. E( S, ) ], and such that
aTacT forallaeS[resp.aeS,], a eV(a).

Lemma 4.2.4 [J2]. ForS =y, y S, € K%, we then have
(i) B = UaeY GG .

(i) F=kerB=kery=u_ . ykero,=u, vF,.

Corollary 4.2.5. Forany S € €% , we have C*(S) = F.
Proof. Since Se€ €% ,then S =U,_y S, - Foreach a €Y, by Lemmas 4.2.2 and 4.2.4

(i), C*(Sy) = ker 7 =Fy. Thus C*(8) = U,y C*(S,) =Ugey Fy =F. #

Corollary 4.2.5 enables us to adopt the descriptions about these congruences ©,
B and y from Feigenbaum [F], LaTomre ([Lal], [La2}) and Trotter ({Trl], [Tr2],
[Tr3)). For details or alternative descriptions of these congruences, the reader is

referred 10 the above references and Pimot [Pi ).

Lemmez 4.2.6 [F]. LetS € €% . Then
o={(a,b)e SxS | ax=ybfor some x, y eC*(S) }.

Lemma 4.2.7 [La2]. LetS € €% . Then
B={(a.b)eSxSI agbandax——-ybforsomcx,yeC*(Da)]
={(a,b)eSxSlaP bandab’ eC*(D,) )

and ker B = C*(S).



Let S € ®% . Define a relation % 5 on E(S) as follows: (e, f)e n 4 if and only
if there exist y, € S, k; € E(S) and h; € C*(S), 1 €1 < n for some n, where for each i
Ghi =X =y, ey Kby e yig TKhyiag £ vk

and

eyy 'Kihyy) - Yo kohgy, =f.
Dually define n, . Let ® =7 g0 .. We then have the following result.

Lemmna 4.2.8 [Tr2). LetSe €% . Then try=7 and ker Y= C*(S) so that
y=((a,b)eSxS | a®xb®and abl eC*(S) ).

§ 4.3 Varieties of the form < ¥-% >

Notation 4.3.1. For any ¥ € £ (€% ), we write
2C = Sew® | C*S)e¥ ).

Lemma 4.3.2. Forany¥ e £(€%), ¥C e £ (€%).
Proof. To show that #C e (&%), it suffices to show that #C" is closed under direct
products, completely regular subsemigroups and quotients.

Let S, € ¥C' for @ €A. On S =g aSq- it is easy to see that C*(S) =
Mg AC*( S, ). 50 that C*(S) e #, since C*(S, ) € ¥ foreach a €A. Thus S € #C".

Let S €#C” and let T be a completely regular subsemigroup of S. Thus C*(T) is a
completely regular subsemigroup of C*(S), by Lemma 4.1.3, and so C*(T) €%. Hence
Se WC"

Let S € € and let @ be a homomorphism of S onto T. Clearly, T e €% . By Lemma
4.1.6, C*(S)p = C*(T). Since C*(S) € %, then C*(T) € ¥, and whence Te 2C.  #



Lemma 433. Forany ¥ e (¥R ), <%%¥ >c#C .
Proof. It suffices to show that ¥-% ¢ 2C" letS e %+%. Then there exists a group
congruence ¢ on S such that ec = ker 6 € for any ¢ € E(8). Clearly, C(S) < ker 0. For

any a € S and x eker o, we have ( alxa )o = (a"lo }( x6 }( a0 ) = a0 = ker 0, since

x0 = ker G is the identity of the group S/G . It follows that a’xa e ker o . Thus C*(S) <
ker ¢, and so C*(S) e¥.Hence S eZ’C*, and the inclusion follows. #

The main objective of this section is to establish the equality in Lemma 4.3.3,
which gives a description of the varieties of the form < <% >. In order to do so, we
need some preparation. First, we have the following direct consequence of Theorem

3.5.3.

Corollary 4.34. Let¥e (%) and S e €% . Then S € < ¥ > if and only if there
exists a CR-relational morphism t : $ — G for some G € & with identity 1 such that

itle .

Lemma 4.3.5. LetS e K% . Then
C*S)y<n {11! | Ge¥ with identity 1 and T e CR(S, G) }.
Proof. Let G €% with identity 1 and T € CR(S, G). By Proposition 3.4.8, 1771 is a
completely regular subsemigroup of S. Let e € E(S). Since the projection of T into S is
surjective, then ( ¢, g ) € graph(t) for some g €G, and so (e, g) ' = (e, gl ) e
graph(t); it follows that 1 = gg'l e( et} et) cet, so thate € 1771, Thus E(S) ¢
11!, For any s € 111 and x €8, then ( x, g ) € graph(t) for some g €G, and so
(x. g )'I =(x1, g‘l ) € graph(1). Thus
1=glge(x M) st)(xt)c(xsx ),
and so x~!sx € 177L; it follows that 11! is self-cojugate. From Definition 4.1.2, we

have C*(S) < 1171. Since G and T were chosen arbitrarily, the inequality follows. #
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Our next goal is to establish the opposite inclusion in Lemma 4.3.5. The

techniques used here are modified from Ash {A], Birget [BMR] and Pin [Pi2].

Definition 4.3.6. From now on, until Proposition 4.3.13, let S € €% and let R be an &
-class of S. Define an equivalence relation = on R as follows:
a=b if and only if ax = b and by = a for some x, y e C*(S).

Lemma 4.3.7. Leta, beR and s €S be such that as, bs e R. Then a = b if and only if

as = bs.

Proof. Necessity. Since b % bs, there exists x € S such that b = bsx, so that b =
b( sx )°. Also, a=b implies that a = by for some y € C'(S). Thus as = bys =
b( sx )°ys = bsw for some w = x( sx ) 'ys. By Lemma 2.5.7,
w = x( sx )"ys
= x( sx x 1 xs )os"( $X )°ys
e C*(S).
In a symmerric way one finds an element w' € C*(S) such that bs = asw'. Thus as = bs.
Sufficiency. Since as = bs, there exists x € C*(S) such that as = bsx. Also, a .® as
implies that a = asy for some y €8, so that a = a( sy )°. Let w = sxy( sy ), then
w = sxy( sy )|
= sxy(sy X’y '(ys)’s(sy)° by Lemma 257
e C*s),
and a = bw. In a symmetric way one finds an element w' € C*(S) such that b = aw'.
Thusa=b. #

Definition 4.3.8. For each a R, let [ a ] be the equivalence class of a modulo =on R,

and et
R ={[a] laeR }.
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For each s €S, define s¥ : R, — R/ by

[as] ifas eR;
[alsk =

undefined otherwise.

Lemma 4.3.9. ForeachseS,s®: Ri_ — R/_isa partial function which, in
addition, is injective.

Proof. Clearly, s® is well defined, so that s® is a partial function. If {a],{b ] € R/;
are such that [ a ]sR =[b ]sR, then as, bs €R and as = bs. By Lemma 4.3.7, a = b, that
is,[2]=[b]1, and therefore, s® is injective. #

Notation 4.3.10. Foreachac€$s, let
Dom( s®) ={ [a]eR/= I [a)cRis defined )
={[a]leR/z{aseR )
be the domain of s*: Riz — R/,

Lemma 4.3.11. For any s,, s, €S, we nave Dom( isszk) = Dom( ( s,s, )R) and
( $;S, )R = isszk.

Proof. Let[ a) e Dom( s,kszR ), then [ a ] € Dom( s,R) and [ a ]s,R € Dom( szR ).
Now [ a ] e Dom( s,R) implies that as, eRand [ a ]slk= [as ). Also[a ]is= [as]
€ Dom( szk) implies that as;s,eRand [ as, ]s2R= [as;s,]. Thus[a]e Dom((slsz)k)
and { 3 J(s,s, R = [as;s,]=[a ]slgszn. Conversely, let [ a ] e Dom( ( s;s, R ), then
as;s,eRand [ a )( slsz)R = [ as;s, ]). Since a # as;s,, then it is easy 1o sce that
as, S ass.,, so that as; eR. Thus [ a ] € Dom( is) and [ a ]is= [ as, ] € Dom( s;zR ),
and so [ a ] e Dom( s,Rs,¥ ). Therefore, Dom( 5,%s,® ) = Dom( ( 5,5,)®) and (5,5,)®

— - R.R
=85 5 . #



Lemma 4.3.12. Ifa,s€S,thena, as’ eR imply thatas?eR and [ as’] =[a].

Proof. Since as?! = as%!and as? = as'ls, then as® % as’l, so that as® e & . Also,
as? % a implies that a = as® for some x € S, and so a = a( s% )° . Thus a = as’w and
as® = a-s, where s € C*(S) and w = x( % )! = x( % )°x-1( xs°)%°( 5% )° € C*(8),

by Lemma 2.5.7; it follows that as® = a. Hence [ as®] =[a ]. i
We are now ready for the desired result.

Proposition 4.3.13. For any S e €% , we have
C*@®) =N { 11| Ge¥ with identity 1 and T € CR(S, G) }.
Proof. Fer convenience, let K(S) = n{ 1111 Ge¥% and 1e CR(S, G) }. By Lemma
4.3.5, it suffices to show that if r € S, then r e K(S) implies that r e C*(S).
Let r € K(S), and let R be the % -class containing r. Let G be the group of all
bijections on R/z. We definet:S — G by
st={ 6eG | Slp Ry=s")  (seS).
Clearly, st = D for any s € S [ where st = G if Dom( s* ) = @ ). For any $;»$, €S, and
let 6, €5,T and G, €5,7, then 6, | pop( g &) =5;" and 0,1 poy( k) =5, . By Lemma
4.3.11, it is easy 10 see that 0,0 | por( ( 5,6, )R) = (5,5,)%, 50 that 6,6,€ (,5,)7,
and whence ( 5,1)(s,1) < (s;5,)t. LetseS and 0 €G be such that (s, 0) €
graph(1), then & | poc &y =s" .Forany [a}eDom{ (s?1)®]1={ [a]eR/z | as!
€R }, and by Lemma 4.1.12, as® = asIs e R, s0 that [ as’! ] e Dom( s® ) and [ as'! Jo
=[asts®=[asls]=[a’]=[a} thus[aJol=[as!]=[a](sT)R, and s0
0 pomp (1R} = ()X Then 6l e (s )1, so that (5, 6) ! = (s, 071 ) €
graph(t). By Lemma 2.5.4, graph(t) e €® . Therefore T € CR(S, G).
Since r €K(S), then 1 ert= {6 €G 16! gy, k) =1}, and so r* is a partial
identity on R/_. Let ¢ be an idempotent of R. By Lemma 2.3.3,er=r,sothat [e ] €



Dom( " ). Thus [ e ]rR ={ ¢ ], and whence r = e. Hence r = ex for some x € C‘(S). SO

that r € C*(S). Therefore K(S) < C*(S), and so K(S) = C*(S). #
We are now ready to prove the principal result of this section.

Theorem 4.3.14. For any Ze ¥ (€% ), we have
<UG >= #C”
={Segx® 1 C*S)e 7).
Proof. By Lemma 4.3.3, it remains to show that %C* S <¥Yo¥ > LetS e%C", then
C*(S) e¥. To show tﬁat S e <Zo¥ >, it suffices to show that there exists a CR-

relational morphism T : S — G for some G € ¥ with identity 1 such that C*@S) =
11:’1, by Corollary 4.3.4. Let { Te:3— G, } ae A be all distinct CR-relational

morphisms of S into groups. Set G = [, 4 G, and define T: S—— G by setting

A | P for any s € S.
It is easy to see that G € ¥ and T e CR(S, G), so that 1th =, 151,77 = C*(S)
f 1 is the identity of G, and for each @ €A, 1, is the identity of G, ], by Proposition

4.3.13. This proves the theorem. #
The next corollary is essentially contained within the proof of Theorem 4.3.14.

Corollary 4.3.15. Forevery S e €% , there exist G € ¥ with identity 1 and 7 €
CR(S, G) such that C*(§) = 1%,

In regard to the principal result of this section, it is interesting to note the
following varieties of the form < +% > which are well known:
<SG > =5
<ELXG> =%



< KXY > =HY
< RF K >=HY
<FFg> =.

§ 4.4 Commutativity between operators
We begin this section with the following notation.

Notation 4.4.1. For% € L (€% ), let

ZC={Se%® | C(S)e¥? ).
Since HSP( € ) = %€, as is easily verified, it follows that #C € £(%%® ). Thus C is an
operator on £ (€% ). Clearly ( zC )C =#C so that C2 = C. The operator C was
considered in detail by Petrich and Reilly ([PR6], [PR7]) and Poldk [Po3]. In the rest
of this chapter we shall see that the operator C*, introduced in Section 4.3, is similar to

C in many ways.
The next lemma is a direct consequence of Lemma 4.1.4.

Lemma 4.4.2. Forany % € £(9%),#C =%C. Thus C* = C on £(7%).
However, as we shall see in Corollary 4.6.12, C* = C on L(%).

Lemma 443. C=C*'C=cCcC*

Proof. Let% e (&% ). Clearly #C" ¢ #C, so that 2C*C c #C%=%C. Let 5 #C,
then C(S) . Since C*( C(S) ) = C(S), then C(S) eZC", and so S e#C*C. Thus #C*C
=%C | and therefore C = C*C. In a symmetric way one can show that C = CC*. This

completes the proof. #



Lemma 4.4.4. |PR6]. C commutes with K, T, T, and T.

The main purpose of this section is to prove the next theorem, which is the

analogue for C* of Lemma 4.4.4,

Theorem 4.4.5. C* commates with K , ’I’l , T, T, T, * and Tr*,

In order to prove the above theorem, we need some preparations.

Lemma 4.4.6. LetS e ®® and C* = C*(S). Then

(tgNP)lpr=104N9F.
Proof. The proof is similar to the proof of [ PR6, Lemma 5.1 ]. For convenience, let T =
(g D)l c*and 0 =7* N F. Clearly 1 C o. Since t and o are idempotent pure, it
suffices to show that r 6 =tr 7. Solete, feE(S) ande of. Letx, y e S! be such that
xey € E(S). Then -

(eyx )? = ey( xey )x = ey( xey }*x = (eyx )
so that, since eyx lies in a subgroup, eyx € E(S). Thus e( eyx ) € E( C* ) and so, since
e ¢ f and eyx € C*, we must have f( eyx ) e E( C* )= E(S). Hence

(yxfe ¥ = yx( feyx )( feyx Yfe = yx( feyx )e = ( yxfe )?
and yxfe € E(S). Thus ( yxfe )e e E( C*) and, again since e ¢ f and yxfe eC*, we have
yxfef e E( C* ) = E(S). But ¢ I f so that £ ¥ fef. Since ¢ 1+ f and 1* restricted to any
F-clzass is trivial we get fef = f. Therefore yxf € E(S) and

(xfy ¥ = xf( yxf } yxf )y = xf( yxf )y = ( xfy )2.
Thus xfy € E(S). By symmetry, we have that, for all x, y e S},

xey €E(S) ifandonlyif xfyeE(S)

and therefore e 1 f. Hence ¢ =1, as required. #



The next two lemmas will be needed in the proof of Lemma 4.4.9,

Lemma 4.4.7 [J3]. The mapping ¥ — ¥ N €Y (¥e L(€RX) ) is an endomorphism
of (€% ).

Lemma 4.4.8 [Pel]. The following conditions on a completely regular semigroup S =
Uge Y S are equivalent.

(i) S is a normal band of groups.

(i) Segr v

(iii) S is a subdirect prodw.:t of completely simple semigroups with a zero possibly
adjoined.

(iv) For any o, B €Y with B < a and any e € E( S, ) there exists a unique f €

E( SB ) such that f <e.

Lemma 4.4.9. LetZ e L(€X). Then < (¥ v # Y% >=<¥oF >v < FoF >
=<YF >v L.

Proof. The proof is similar to the proof of [ PR6, Lemma 5.2 ]. We clearly have

Y G >V QYE >V FoG > < (Y Vv F )Y >
It suffices to show that < (% v & )e¥ > ¢ <%o¥ > v & . The claim is trivial if ¥ C ¥.
So suppose that Y € ¥ so that ¥ € L(K¥). Let Se< (% v & )oF >. Then C*@S) e
¥ v & and thus C*(S) is a normal band of groups. By Lemma 4.4.8 (iv), S itself is a
normal band of groups. If D is a & -class of S, then by Proposition 4.1.12 and Lemma
4.4.7, we obtain

C'D)=C*O)NDe(ZvFINKF =(¥NKF)IV(FNE) =Y.
Therefore D e < %o%¥ > and so D’e <%o%¥ > v % for each completely simple
component D of S. By Lemma 4.4.8 (iii), we have S €< %% >v ¥ #



Proposition 4.4.10. LetZ e £(R®). Then < F o< Yo% >>=< < F o¥ >og >.

Proof. First let S € €% and define a mapping ¥ by

x: A1gNF) — a(1gN2)NC*S) (aeC*S)).
Lemma 4.4.6 asserts that ( 1gN F) | o* =1-* N F which then implies that x is a
bijection of C*( S/(ts g )) ontc C*(S)/(rc. g )by Lemma 4.1.6. It now follows by

Lemma 4.4.6 that ) is also a homomorphism. Therefore C*( S/(TS ~n@)) =
C*(S)/(tc. AF)
For ¥ e £ (€% ), and by Corollary 3.5.5, it suffices to show that < < F o¥>e% > ¢
< Fo<¥Yo¥ >> ForS e €%, we have
Se<<FY>F> = C*S)e<F¥> by Theorem 4.3.14
= C*(S)/(tC‘ N EY VS by Lemma 3.3.4
and Corollary 3.5.7
= C' Sty ng)) et v s
= /¢ n2)E<(¥ Vv F)F > by Theorem 4.3.14
= Se<HFo<(¥vF)»¥>> bylemma3l3d
and Corollary 3.5.7
= SE<F(<YE >V )> byLemma 4.4.9,
so that < < F o >4 >C < Fo(<¥o¥ >v & ) >. Furthermore, we have
SFAYG >V )>C<F o< Fo<¥Y¥ >> by Corollary 3.5.4
Q << FoF ><¥% >> by Corollary 3.5.5
=< Fo<¥Yog >> since < FoF>=F.
Therefore < F o< ¥oF >>=< < F oY >4 >. #

Lemma 4.4.11. Let S e %% and C* = C*(S). Then
Ploe=(Lee)’ Eln=(H ) pl o* = Ho.



Proof. The proof is similar to the proof of [ PR6, Lemma 5.4 ]. Consider #°. Clearly
Ll ec(Lc+). Soleta, beC*S), a (£ bandx, yeS!. Then x%ay® &
x%by?, and x%ay & x%y since £ is a right congruence on S. But clearly

xay & xPay, xby % x%y
so that xay & xby. Thus a(folc*)b andfolct =(Lc+ ). Similarly for # and p
=#=L"'N2°. #

Proposition 4.4.12. Let ¥ e (€% ). Then
LEo<YG > =< (LY Y )F >
FG o< YoG > =< ( HGY 9F >
Go<YoG > =< (GYU )% >.
Proof. Let S e €% . From Lemma 4.4.11, it follows that
c*( 8/2’0 )= C*(S)/( Levs) -
For any ¥ € (€% ), we then obtain
Se<(o )G > & C*S)eyow by Theorem 4.3.14
= C*(S)/( Lers ) €% by Lemma3.3.1
& C*(Sip)ew
& S/pe<woy > by Theorem 4.3.14
& SeXHo<¥o¥ > by Lemma 3.3.1,
and therefore Z¥ o< ¥o¥ > = < ( £¥ o¥ Y% >. The rest of the equalities can be proved
similarly. #

Corollary 4.4.13. LetZ € £(€%). Then
X oYY > =< (XY )oF >
RE o< YoH > =< ( RX oY )% >.



Proof. For e ¥ (€% ), and by Corollary 3.5.5, we have ¥ o< ¥o% > ¢
< (¥ ¥ )% >. For the opposite inclusion, let S € ¥% , we then obtain
Se<(ZYy%> = C'S) ey by Theorem 4.3.14
= CYS)eHYNXFY
= C*(S)/( Fers) Y €% and C*(S)/(tc_ nD)EY
by Lemmas 3.3.1 and 3.2.3
= C¥% S,/_?D) e and C*( S/(tsng)) €Y
from the proofs of Propositions 4.4.10 and 4.4.12

= s/_go €e<¥°¥ > and S/(Tsn,)e< Y5 >

= SeZYo<¥o¥ > and S € KF o< Yo% >

= Se€LXo<¥U¥ >,
s0 that < (X o¥ )oF > C LX o< ¥°% >. Therefore X o< Y0¥ > =< (LX oY )oF >.

Similarly for the second equality. #

Proof of Theorem 4.4.5. For any ¥ € £ (¥% ), we hen obtain
#C'K=c Fo2C"> by Corollary 3.5.7
=< Fo<¥°¥ >> by Theorem 4.3.14
=< < Fo¥ >% > by Proposition 4.4.10
=<zK g >
- Z/KC""
and therefore C*K = KC*. Similarly for T,, T,, T, T, * and T.* by applying Proposition

4.4.12 and Corollary 44.13. #

Lemma 4.4.14 [PR6]. LetS e €% . Then 3 | c(S) = uC(S)'

Notation 4.4.15. For any ¥ € ¥{F ), we write
%8G ={(SeFG | Sipev).

%0



Clearly #¥¢ = §o¥, so that ¥F¢ € L€R).

Corollary 4.4.16. For any ¥ € (&), we have
(29) " = <287 o5 >
= (2% )C.
Proof. Let% € £(&F). By Proposition 4.4.12, $o< %% >= < %FF ¥ > = (2¥F )C .
On the other hand,
Fo<#F>=(Se®X | 5 e<?y>) bylemma333
={Se®® | C*(5/,)e%) by Theorem 4.3.14
={Sewx 1C(S/)er) '
by Lemma 4.1.4 and since <¥°% > C 74

={Sex® ! S/I»lc(s)e 7) by Lemma 4.4.14
={Se%® | CS)e¥¥ ) by Lemma 3.3.3
={Se®® ICES)cxF¥ )
= (237 .

Therefore (2%% )C = (28% )T, as required. #

§ 4.5 The restriction of C to £ (%)

Recalling the fact that C = C* on £(0%) from Section 4.4. The main purpose of
this section is to show that C is a complete endomorphism of £ (9% ).

Lemma 4.5.1 [PR7, Lemma 44 ]. LetZ € £(¢%). Then
#C =€
=(#nF)F°
={ Sec® | EQ)e¥nF }.
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In particular, (% )C=(% )C = #C=2C" =0y

Lemma 45.2[PR7, Lemma4.5]. LetZ € ¥ (79) and
YNF = x'=xu(X;, ., X ) =v(X{,... %) |
Then ?/C=Z’C*

=[ xO%=(x%%)% u(x,0, ..., x 0 =v(x,% .., x%) 1

Definition 4.5.3. Let S e €% . Then S is E-unitary if e e E(S), a €8S, ea e E(S) imply a
e E(S).

Lemma 4.5.4. The following conditions on a completely regular semigroup S are
equivalent.

(i) S is E-unitary.

(i) S is an orthogroup and ker ¢ = E(S).

(iii) S e F 9.
Proof. (i) implies (ii). Let e, f € E(S). Then ef( ef )'! = (ef )? € E(S). By hypothesis,
f(ef )’1 € E(S), and so (ef )" € E(S). Thus ef € E(S), and therefore S is an orthogroup.

Clearly E(S) ¢ ker 6. By Lemma 4.1.4, C*(S) = E(S). Let a eker o, then (a,¢e )
e ¢ for some e € E(S), it follows from Lemma 4.2.6 that fa = ef ' for some f, f' € E(S).
Thus £, fa € E(S) so that a € E(S) by hypothesis. We conclude that ker ¢ = E(S).

(ii) implies (iii). Trivial.

(iii) implies (i). If S € & °¥, then there exists a congruence p cn S such that S/p €
& and ep = E(S) is the identity of S/, for any e €E(S). If ¢, ea € E(S), then ep = (ea )p

=(ep X ap ) = ap, so that a € E(S). Hence S is E-unitary. #

Definition 4.55. LetS, T e®® . A homomorphism @ of S into T is idempotent
separating if for any e, f €E(S), ep =f @ implies e =f. S is called fundamental if pg=¢€.



We now give an altemative proof of [ PP1, Corollary 6.39 ] for orthogroups.

Proposition 4.5.6 [PP1]. Every orthogroup is an idempotent separating homomorphic
image of an E-unitary orthogroup.

Proof. Let S €% . By Lemma 4.5.1,S e #C = CR(#, %), and so there exist G € 9
with identity 1 and a surjective T € CR(S, G) such that 11! e @ . Let S al
graph(t) —B_, G be the canonical factorization of . Then B : graph(t)—> Gisa
homomorphism of graph(t) onto G such that 1[3'l = 11! e#, which implies that
graph(t) € & ¥, and so by Lemma 4.5.4, graph(t) is an E-unitary orthogroup. On the
other hand, since E( graph(t) ) ={ (e, 1) | e €E(S) } and a is the projection of
graph(t) onto S, thus o : graph(t)—— S is an idempotent separating homomorphism
of graph(t) onto S. This completes the proof. #

Corollary 4.5.7. Every E-unitary orthogroup is a subdirect product of a fundamental

orthogroup and a group.

Proof. Let S be an E-unitary orthogroup. Then ker (6 N ) ¢ ker 6 = E(S) by Lemma

454, andr (cN ) girh =¢, thus o N Y = €. Hence, S is isomorphic to a subdirect

product of S/u and Slg, where S/ll is a fundamental orthogroup and S/(, is a group.
#

Lemma 4.5.8. LetS, T €% and let ¢ be an idempotent separating homomorphism of
SontoT. Thenforalla,beS,2ub ifandonlyif (ap)p (be).

Proof. By Lemma 2.5.6, ( a@ yl= alg for all a € S. The direct implication is obvious.
Let (a@ ) (b ). Since T €79 and by Lemma 2.6.11, we have ( a@ y i ep )X ag) =
(5@ ) !( e )( b ) for all € e E(S), so that ( a'lea )¢ = (b leb )¢ for all ¢ € E(S).
Since @ is idempotent separating and a lea, b-leb € E(S), we must have alea = b-leb
for all e € E(S). Hence, by Lemma 2.6.11,apu b. #



The following result will be needed in the proof of Proposition 4.5.10.

Lemma 4.5.9. Forevery S eZ9 there exist a group G, a ( completely regular

semigroup ) subdirect product T of S/p and G, and an idempotent separating
homomorphism ¢ of T onto S.

Proof. Let S € 79 . By Propeosition 4.5.6, there exist an E-unitary orthogroup T and an
idempotent separating homomorphism ¢ : T—— S of T onto S. It follows from Corollary
4.5.7 that T is a subdirect product of T/, and G = T/5. By Lemma 458, Ty, =5/,

and the assertion follows. #

Proposition 4.5.10. For any & € (%), we have
vy =4TnyC
=(Se® | S|ye¥andEG)e¥ N F )

Proof. Clearly ¥ v ¥ < #T n%C. For the opposite inclusion, let S e¥T A #C, then S
€% and S/ll €¥. By Lemma 4.5.9, there exist an orthogroup T, which is a subdirect
product of S/u and a group G, and an idempotent separating homomorphism @ of T onto
S.ThusTeZ v¥,andsoS e% v ¥. This proves the first equality. The second equality
is an immediate consequence of Lemmas 3.3.3 and 4.5.1. #

The lattice £(F) of subvarieties of the variety & of all bands is presented in
Figure 4.1, as determined by Birjukov [Bi], Fennemore [Fe] and Gerhard [G].

However, the description of the vertices as Mal'cev products is due to Pastijn [P].

By simple inspection of Figure 4.1, the next lemma follows.

Lemma 4.5.11. Let%,% e[S, F) Then¥ ¢ ¥ and ¥ ¢ ¥ imply that ¥v¥ =
XY N FX Y oxr XY N LY .



Figure 4.1.

Lemma 4.5.12. Forany ¥, 7 € £(€%), we have ¥ oY N LX ¥ CU v ¥.

Proof. Let S € #¥ o% N £ o7 . Then there exist congruences p,, p, € A(S) such that
Slplez', Slpzef and ep, € Y, ep,€ Z¥ forany c €E(S). Let p=p,Np, thenpe



A(S)andslp is a subdirect product of S/p!andslpz,sothat S/pe&'v 7. On the other
hand, ker p C ker p, = E(S) and 1r p = tr p; N tr p, = €, which imply that p =€, so that
S:‘:—S/pex’vr,asmquimd. #

Notation 4.5.13. We denote by S8® the variety of all regular bands. Then S¥%F =

[ a% = a, axya = axaya 1.
Lemma 4.5.14 {[PR7, Lemma 4.6 . Forany %, ¥ e £(9%F), (¥ v ¥ C=2Cv ¥C

Proposition 4.5.15. Forany %, ¥ € ¥(#), we have (¥ v¥ )C=2C\ 9C.
Proof. Let¥, ¥ € £(#). Clearly #C v ¥ C ¢ (¥ v 9)C. For the opposite inclusion, it
suffices to show that (¥ v % Y% < #C v 9°C. There are three cases:
(@A ¥v¥ =% or?. Trivial.
(b) ¥ v ¥ € L(F). Then
(vyyg c(vy)C by Lemma 4.4.2
=%CvyC by Lemma 4.5.14
©Q¥7Vel (P )and ¥vY ¥ or ¥ . Thus &, ¥ e[.¥, F ], and by Lemma
4511, % v ¥ =Y N KXYV or X oY NLX oY .
For the former case, we have
(¥ v T )G C(LEY )G N(RY Y )oF
c(&¥C yn (v C) by Corollary 4.4.13
czC'v 9 C* by Lemma 4.5.12.
=2CvyC
For the latter case, we also have
(¥ VY G C (L YF N (LY YoF
c(@xrozC ) (LroyC’) by Corollary 4.4.13
c#CvyC by Lemma 4.5.12.
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=#C\v5C.

Therefore, the equality follows. #

Lemma 4.5.16 [ PR6, Lemma 7.6 |. Let% € £(#).
) #Ting =(zn3)TT.
Gi) 2TcnF = (¥ Z)Ir.

Lemma 4.5.17. For% eZ(F), a €A, then B =V, ¥, implies that ¥ =
Vaea (Z4)C.
Proof. In order to establish the assertion, it suffices to show that Fo’ (k) €
Vaea (g )C for all positive integers k, where Fay (k) is the free orthogroup on k
generators ( see (GP] ). Then the same type of argument as in the last part of the proof
k
of [ PR6, Theorem 4.6 ] yields that F (k) €% (TiT)” for all positive integers k.
k
Let k > 1. From Lemma 4.5.16, it follows that & (TT)* A @ = 2 (T T and so
k
& Fﬂj(k) )=E(F %k))e" (L*T") . Since & =V 2 ¥, and by inspection of
k

Figure 4.1, there must exist f € A such that & ( Tl*Tr‘) C;?B. Thus C( Faj k) ewﬁ,

which then implies that Fpg(k) € (2)C € Ve p (#)C, as required.  #

Corollary 4.5.18. The restriction of C to £ (&) is a complete monomorphism of
L(F) into L (9%).

Proof. Clearly ¥ —> 2Cisa complete N-homomorphism of £ (4 ) into Z(7%). Let
¥,eX(F)for x € A. By inspection of Figure 4.1, we ther have v ¥, =4 or

VYacA¥a=Vi=1,n¥q, for some finite set { @,, ..., &, } < A. For the former case, it

follows from Lemmas 4.5.1 and 4.5.17 that ( v, % )C = Ve o (#)C. For the

latter case, it follows from Proposition 4.5.15 and induction on i that ( Ve o % )C =

(v #0C =Vio1 a(#4)C =Vaea (#4)C. Thus ¥ — #C s also a

i=1,n



complete v-homomorphism of £(F) into £(7%). The injectivity of C on £(F ) follows
from Lemma 4.5.1. Therefore the restriction of C to £(&#) is a complete monomorphism
of Z(F) ino L(7%). #

Lemma 4.5.19 {PR7]. The mapping
Y — YnA (ZeX (%) )

is a complete endomorphism of £ (¢ ).

We are now ready for the main result of this section, which extends the last

assertion of { PR7, Theorem 4.1 |.

Theorem 4.5.20. The restriction of C to £ (49 ) is a complete endomorphism of

ATF).
Proof. For% ¥ (¥). a e A, we get
(VgenZq)C =[(VoeaZg) N F 1©  byLemma45.1
= [ Ve a (XN #)IC  byLemma4.5.19
=Vaea (N #)C by Corollary 4.5.18

=Vgea (Z)° by Lemma 4.5.1
and
(N geay)C ={Se® 1 CO)e N a1 ¥, )
=N geal Seex® | C(S) e Wa}
=naeA(z/a)C'
This concludes the proof. #

However, the operator C is not a V-homomorphism of £ (€% ), the reader is
referred to Petrich and Reillv [PR7] for details.



§ 4.6 The restriction of C* to £ (%)

In this section we consider the operator C* on ¥ (€7 ) in detail. As

consequences, we determine the semigroup generated by the operators C* and C, and

show that the Mal'cev product is not associative on £ (€%).

Definition 4.6.1. Let S e €% zad let (C*)%(S) = S. Then for n 2 1, define (C*)"(S) by
(C*)“(S) = C*((C*)“'I(S)). This gives a sequence of subsemigroups of S :
S > C*S) =2 (CHXS) 2 ... )

We now have the following observations.

Lemma 4.6.2. Let¥ € £(€%). Then

M ZCV=(sex® | (CY"S)e¥ ) foralln20,
where 2(C"° =% and 2(C® =[2C"IC° forn21.

G) v € ¢ .. c 2 .. ¢ 2F,
sothat v, 5% )" ¢ 2C.

i) [V 0¥ CIC = vy 5 g€
Proof. (i) The straightforward verification is omitted.

(ii) Clearly 7 ¢ 7‘:' c#C for any ¥ € L(€% ), and so the ascending sequence

rc2Cc .. coClc ..

follows. Moreover, C(S) < (C*)(S) for any S e ®® and n 2 0, whence #(C)" ¢ #C for
alin20, so thatvn?_ozl(ct)nc %C.

i) Clearly V50 %€ 1V, 502 €V 1€ Let S e[ v, 502" 1€, then
C*®) vy 0% C V. By i) vy 502 C " = U, 5 0 # (€Y, 0 that C*(5) e2(CT)"
forsomenzl,thusSea’(C*Wl,andw!wnceSevnzoﬂ(C‘)n. #



In Proposition 4.6.11, we shall see that the ascending sequence in Lemma 4.6.2

(ii) is strict in some instances. The next lemma follows easily from Corollary 4.1.13.

Lemma 4.63. If ¥ ={ u(x;)=vy(x%;) Jpcp € L(EX), then
b
¥C ci ug( yi'x Byx) Yal yi_lxioyi ) Jacas

where for each x; , x, & yiisonc-to-om,andyiec( ugduc(v,jforallaeA.

For any subvariety of ¢, the equality in Lemma 4.6.3 will be established in this

section.

Lemma 4.64. «C =%C"
=[ (axb)®=(ab)°, xOy1b0yx1a0x = x"la%y 1bOyx0 ].

Proof. Denote the third class above by Z. Since o ¢ %, then #C° c #C”. Let S €
#C’.Then s € &7, without loss of generality, we may assume that S = M(G; 1, A; P)
where P is normalized. Let <P > and N be the subgroup and the normal subgroup of G
generated by the entries of P respectively. By Lemma 4.1.5, c* S)=MN;LA;P)e?,
it follows from Lemma 3.1.11 (ii) that all entries of P lie in the centre of N, so that
<P> g Z(N) a N a G, where Z(N) is the centre of N. By [ Hu, Lemma 11.7.13 ], Z(N)
is normal in G 50 that N = Z(N) €29 . Thus C*(S) e« and S e C". This proves the
first equality. It remains to show that «C =2 In the light of [ PeS, Lemma 3.7 ], ¥
= [ (axb)® = (ab)® }, it follows from Lemma 3.1.9 that = = [ (axb)® = (ab)°,
a%a = aba® |. Let S € C”, then S € %7 so that S satisfies the identity ( axb )? =
( ab )°. On the other hand, by Lemma 4.6.3, S satisfies the identity

( x'a% )% y b0 X x1alx ) = (x1a% )( y !0 )( x1a% )",
which implies that S satisfies the identity x%y1b%x-1a% = x-1a®xy1b%x0. Thus S e %,
and therefore »C’ C #. For the opposite inclusion, let S €%. Then S € €%, by the
same reason as above, and we assume that S = M(G; I, A; P) where P is normalized,
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so that C*(S) = M(N; I, A; P). Leti,jel, A, €A and g €G. Since S satisfies the
identity x%y1b%x1a% = x1a%xy 'b%yx®, we then have
(& LAY (g Lu)y e 1) %(ghpXe LAY (ei, 1)% e 1,4)

=(& LAY (i, 1% (e LAY g L) (s, 1)0% g Lo )(es 1,100,
where e is the identity of G, so that ( g‘lppjgpu; LA)=( plig'lpujg; 1, A), whenze

Pl g-lpujg ) = ( g‘lpujg )py;- Taking inverse and conjugating by p,;, we have that
Pl g’lpuj'lg) =( g'lpuj'lg )Py;- It follows that p,; lies in the centre of N, since N =
[Vgeo g'l< P >g ], and therefore all entries of P lie in the centre of N. By Lemma
3.1.11 (if), C*(S) = MQN; I, A; P) €% so that S e #C" = C”. Hence # < «C", which

completes the proof. #

Corollary 4.6.5. For any % € (%), we have #C' = (% n o )C".

Proof. This is immediate from Lemma 4.6.4. #

Lemma 4.6.6. If ¥=w N[ (x%°%)X=(xy)?] forsomek 2 1, then
7T =T A [ (x00)k=(xy)° 1.
Proof. Clearly 2C AT ( x0y0 )= (xy)° g #C*. On the other hand, we have
#C = C A (X005 = (xy )0 1€
corCh AT (%, )0y, 1y, )0 ) = (%, x0%,y, Hy0y, 0 ]

by Lemma 4.6.3
=T AL (%%, =(x,y,)° ]
= AL (x%)F=(xy)].
Hence WC*=.n(C*n{ (xPy0)=(xy)°]. #

Lemmad6.7. F¥=o N[ x®=x"] forsomem 21, then
Wct=dctn[ (leoy)m:yo 1.
Proof. First, we have
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Z’C‘de*n[ x™ = x0 ]C*
coC Al (y %)™ =(yx%)°] by Lemma4.6.3
=T AL (O )m=y0 §.

Indeed, % = o _o®% . Let S erC A [ (y'x% )™= y°). Without loss of
generality, we may assume that S = M(G; I, A; P) where P is normalized, thus by
Lemma 4.1.5, C*(S) = M(N; I, A; P) where N is the normal subgroup of G generated by
the entries of P. Since C*(S) €., then N € &% . To show that C*(S) e Z it suffices to
show that N € .o ,. Since N is generated by the set { g''py,g, g'py;'g | g€G,iel
and A €A }, and noting that ( g'py;'g )™ =[ (g'pye )™ 1}, it remains to show that
(g'pyg " =e forallgeG,ieland A €A, where e is the identity of G. Let g €G, i
eland A €A. Since S satisfies the identity ( y1x% )™ = y?, we then have

(g LM (e 1 Xs L) =(g1,3)
and so (g7py;8 LA™ =[(g7pyi8 )™ LA ]

=(e;1,A),
whence ( g'p);g)™ =e, as required.  #

The next corollary is a simple consequence of Lemma 4.5.1.

Corollary 4.6.8. For any € ¥ (%% ), we have
[ ¥, if veL(®)

X, if ¥ RF =
2 =

&2, if ¥NRF =%,
| WY, if RF C¥.

Rasin [R2] has obtained a description of the subvarieties of & ( see also [ J1,
Theorem 4.2 ] ). We state this result in the next theorem.
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Theorem 4.6.9 [R2]. Let% € £(.»r'). Then

either (i) ¥ e X (A% vEF),

or Gi) =,

or (i) =sr N[ (x090) = (xy)?] for some k 2 1,
or (V) = N[ xP=x0 ] for somem 21,

or v) = N[ (xXO0)K=(xy)®,x™=x"] forsomem,k= 1 withklm.

Combining Theorem 4.6.9 with the above facts, we deduce easily the following.

Proposition 4.6.10. IfZ =] Uo (%) = Vo (X;) lgea € L(¥F), then
7€ =1 ugC %% = Vo 3% Jge

where for each x;, x; > y; is one-to-one, and yi€c(uy ) Ue( vy ) forall a e A.

The next proposition shows that the order of the operator C* is infinite.

Proposition 4.6.11. The varieties . (" , 1 2 0, form a strictly ascending sequence
s - C M(C*)nc... c #C=9,
and v ZOM(C*)D cC 9.

(1) (1)
Proof. LetS=M( G, LL;P), whereI={1,2 },G=S3andP=[ ] By
(1) (12)

Lemma 3.1.18, S e C = & . Since the normal subgroup of S, generated by the set
( (1), (12) ) is S; itself, it follows from Lemma 4.1.5 that C*(S) = S, and so (C*)(S) =
S foralln 2 0. Thus S ¢.2(C)" for all n > 0, since S; €. . By Lemma 4.6.2, 5 ¢

Vi O.g((ct)n, and therefore the last assertion follows.
(H (1)

(1) (123)
subgroup of S; generated by { (1), (123) } is N = { (1), (123), (132) }, it follows from

LetT=M(S3;I,I;P),whereI={1,2}andP=[ ] Since the normal
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Lemma 4.1.5 that C*(T) =M(N; LI P), whence C*(T) exr'sothat T e .e(C*. ButT e

= since S; € /4 . Hence o #C7.
Foreachn21,let 8,=M(G; L P), whereI={ 1,2}, Gn=D2n+1 =<ab:

a?!' ¢ =12 ba=alb> —— the dihedral group of order 22*" [ Hu, Theorem
e e

[6.13],and P = b ] The normal subgroup M, of G,, generated by the entries of P
e

is precisely the subgroup of G, generated by the elements b and a?, ie., M, =
< b, a% >. It is easily verified that M, =G, if n22and M, =<a,b:a’?=e=b% ab=
ba >. By Lemma 4.1.5, C*(Sl) =M(M;LLP)es since M;e¥. Foreachn 2 2, it
follows that C*(Sn) =M(M LEP)=M(G, s LLLP)=§,,, thus

CH™S,) = C*S)) esr
and

sy =S, e
since G, ¢ 9%, and s0 S, € o (C)" and S_¢ o (€™ Therefore, by Lemma 4.6.2,
A c o€ foralinz2.  #

Corollary 4.6.12. (i) C*=C.
(ii) The Mal'cev product " ¢ " is not associative on £ (€%).

Proof. (i) This is an immediate consequence of Proposition 4.6.11.
(i) By Proposition 4.6.11, we have (0% )o% = o (C*? 2 o C* = oy -
sfo( FoF ), so that ( K )oF # oo ¥°F ), and therefore " o " is not associative on

L(&7). #

Corollary 4.6.13. LetZ € (€% ). Then
G #C" =7 + #C=z.
i) 2C° =2(CY 1 2C-gC"
Proef. This follows easily from Lemma 4.6.2 (iii) and Proposition 4.6.11. #
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Corollary 4.6.14. The semigroup generated by the operators C* and C is isomorphic
to the infinite cyclic semigroup with a zero adjoined.
Proof. This is a consequence of Lemma 4.4.3 and Proposition 4.6.11. #

The rest of this section is devoted to characterizations of W(C*)', Ye [ RF , €7
and i 2 0, in terms of £-invariant normal subgroups of the free group over a countably

infinite set. We need some preparation.

Lemma 4.6.15 [R1]. LetS=M(G; L A; P) where P is normalized. Let ¢ € T}, 0 €
End G, y € T, be such that
[Milo=[1y, 19) Ay, 101 [ Ay, ip )l ly,ie]! (AeAiel). (1)
Then 0 =0( ; ¢, y) defined by
(20,28 =([1y,io1"(g0)l 1y, 101 Ay, 19175 ig, Ay)
is an endomorphism of S. Conversely, every endomorphism of S can be so written

uniquely.

The following is a construction of the Rees matrix representation of a free

completely simple semigroup.

Lemma 4.6.16 ([C], [R1]). Let X ={ x; | iel} be a nonempty set, fix 1 €l and let I'
=I\{1}.Let

Z={qliel)u({[jk]!jkel],
F; be the free groupon Z, and let P=([j, k] ) with[ 1, k] =[], 1 ] = 1, the identity of
F;. Then

F=MF,; LLF)
is a free completely simple semigroup over X, with embedding x,—— (q;;1,1).
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Motation 4.6.17. We fix a countably infinite set X, and in addition to the above

notation, introduce
Fp=<[ik]ljkel>

the free subgroup of F, generated by the set { [j, k] | j, kel }.

By Theorem 3.1.1 and Lemma 3.1.3 (ii), we have the following .

Lemma 4.6.18. Let S = a(G; I, A; P ) where P is normalized. If N is a normal
subgroup of G, then py defined on S by

(gi,A)pny(hjn) < ghleNi=ji=p
is an idempotent separating congruence on S, and every such congruence is obtained in

this way. Write P/N for the A x I matrix with the ( j, k )-th entry equal to the ( j, k )-th
entry of P modulo N, 5/ is isomorphic to 2 S/n; L A; Fiy).

Notation 4.6.19. Let
E(F;z)=( weEnd F; | there exist @, ¥ € 7; such that (1) holds }.

Then E( F; ) consists precisely of endomorphisms of F, that arise in association with

endomorphisms of F.

Lemma 4.6.20 [R1]. Let N be a normal subgroup of F,. Then py; is fully invariant if
and only if N ¢ N for all © e & F).

Definition 4.6.21. A normal subgroup of F, is £ -invariant if it is invariant under all ®

€ E{ F; ). The set of all Z-invariant normal subgroups of F, will be denoted by (.

It is clear that A( is a sublattice of the lattice of all normal subgroups of F,.
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Theorem 4.6.22 [Rij. The interval [ ¥ , €7 ] is anti-isomorphic to the lattice A(.
In particular, ¥e [ ¥ , €7 ] if and only if py, is idempotent separating and so is of the

form p,, N € A(. The mapping pg, — N, where py, = pyy, is an isomorphism of the

lattice of fully invariant idempotent separating congruences on F ontc A(.

A
Notation 4.6.23. For any subgroup H of F,, we will denote by H the normal closure of
Hin F5.

Notation 4.6.24. For any subgroups H and K of a group G, we denote by { H, K ] the
subgroup of G generated by the elements of the form [ h, k ] = h"lk-Thk, where h e H, k
ek

Definition 4.6.25. Let M = F;. Then for i 2 1, define M; to be the normal closure of
Fp in M, ; . This gives a sequence of subgroups of F,, each normal in the preceding

one :
FZ=M02M12.,.2M'2...2FP.

1

Lemma 4.6.26. For i20, we have Mo c M, for all m e E( F;).
Proof. Ifi =0, then My = F,, so that Mgo = F,0 ¢ F; = M for all ® e £( Fz).
Assume that Mo ¢ M;for all ® €eE( Fz ). It is easy to see that M; | =
[Ugem, g 1Fpg ), thus for any @ € £( F; ), we have

M o=[ Uge M; g'leg Jo

=[Ugem, (80) 'Fpo(go)]

=M
By induction, the assertion follows. #
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Lemma 4.6.27. For any 0 € £( F; ), there exist two unique endomorphisms 6, and 6,
of F5 such that

(i) 0,Ix=06lyx and 6 ly=¢ey;

(i) 6,y =€ and 0,ly=01y;

(iii) 9,,9,e E(F;) and 0=0,0,;
where X = (x| ieI'}and Y =([j k] I j, kel } as introduced in Lemma 4.6.16.
Proof. Since F is the free group on Z = X U Y, thus the existence and uniqueness of
8, and 0, follows easily. Clearly 8, satisfies the condition (1) in Lemma 4.6.15 with ¢
=y =¢gp, and so 8, e E( F;). Since 0 € £( Fz), ihere exist @, y € Ty such that the
condition (1) holds, thus 0, satisfies the conditicn (1) with the same ¢ and Y, and

whence 0, € £( F; ). Clearly, 61, =6,0, | ; , which implies that 6 = 0,0, . #

Definition 4.6.28. Let N € A(. For any subgroup M of F, we define
YN(M)=< UNw: o €E(F;) such dlatha)t;Manda)lFP=eFP >.

Ciearly ¥y( M) is a subgroup of F; such that y( M) NN M.

We are now ready to prove the last main result of this section.

Theorem 4.6.29. For % e[ RF , €] with pg, = py, we have
PgiC®)i = pNi foralli =0,
N ,

. P
Proof. Fori =0, we clearly have that Ny = %y( Fz ) = N, so that Pg(C*0 =Pz = PN,

Leti 2 1. To show that N; € A( it suffices to show that YN(M; )8 € YN(M;) for all
0 € E(F;). Let 8 € E( F3 ), and let ® € E( Fz) be such that F;0 ¢ M; and (n)IFP =
eFP - Thus X@ ¢ M;, which implies that X0 ¢ M;0 C M; by Lemma 4.6.26, so that
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X( @8 ); € M;. On the other hand, Y( w8 ), c Fp o M;. Then Z( @0 ), = X(wB ), U
Y( w0 ), €M, and so Fx( @9 ), < M;. Hence
(Nw )0 =N( 8 )
=N(wd ),(wd), byLlemma4.6.27
< N(wd ), since N(w ), <N
and whence V(M )0 < YN( M; ). Therefore N; € AL.
To show that p g(CHI=PN. » it suffices to show the following two statements:
l -
@ Flpy = M(Fan LI Py ) ez (©.
l -
In order to show that F/PN. eZ/(C*)l, it suffices to show that (C*)¥( FIPN ) =
i i
MMi/m. AN, L EP/(M AN, )) €¥ by Lemmas 4.1.5 and 4.6.2.
Let 0* : X — M,; be a bijection; since both X and M; are countably infinite,
such a ®* must exist. Extend ®* to ®* : Z— M, by [ j, kJo* =[j, k] forany [j, k]
€Y. Then there exists a unique homomorphism ® : F; —— M; of F; onto M; such that
1 —1 * - -
(l) ol Z ®" and ® ! FP EFP,
(i) meB(Fy); since o satisfies the condition (1) with ¢ =y =¢;;
(iii) No c F0 =M,
Thus No ¢ Y( M;) € N;, and so No € M; N N;. Define
®: Fip . — #Mi/(m.AN, 3 LEFP(MAN,))
by (gN;i,j)® =[(go X M;n N;); i, j ]. Itis a straightforward verification that Dis
a hofnomorphism of F/PN onto M( Mi/( M;AN, )i LLP 1 M;AN, y)» and whence
(C*)'(Flpy ) €2 , as required.
l -
(®) If N e A with Flp e (C")’, then N, N
=1 .
since F/p,. = M(Fz/ys LE Piy) e2(C7), then T = (€*)'(Flpy) =
M( M;/(N' NM, ) LI P/( NNM, y) €% by Lemmas 4.1.5 and 4.6.2. Define
@: MM;LEP) — T
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by (g i, j)p =08 N NnM,)i,ji Itis easily verified that  is a homomorphism of
M(M,; L I; P) onto T. For ® € £( F ) with Fzmg;MiandmlFP=er , we define 0 :
F— M(M;; LLP)by(gi,j)0=(gw;ij) Then 6 is a homomorphism of F into
M(M; LI, P). It follows that 8¢ : F—— T (€% ) is a homomorphism of F into T, so

that pyy S 8¢. Let g eN. Since (g; 1, 1) py(1;1,1), thus (g 1, 1)8¢ = ( 1; 1, 1, )09,
thatis, [ (g0 (NN M;) 1,1 ]=(N' nM; 1, 1), so that gw e N' " M;. Then No ¢
N M, cN forallmeZ(FZ)withFngMiandmIFP=er, and whence N; C N’

by the definition of N;, as required. #

It is a simple consequence of Theorem 4.6.29 that

Flon, = M(F2in;: L1 Py, )
. . . C*)i . .
is a relatively free object in (C), for all ¥ e[ ¥ , €¥] with Py =pyandi20.

Corollary 4.6.30. p  (CHi=P ﬁ] foralli>0.

Proof. From [ PRS, Proposition 72 ], N={ Fz,Fz]eN and p_, = pp. By Theorem

- /\ .
4.6.29, it suffices to show that N;=[ M;, M;] foralli 2 0.

The case is trivial fori =0. For i 2 1, we then have

= >
and.ooll_-P eFP

M, M1,

PR N
so that N; = Yy( M;) < [ M;, M; . On the other hand, from the proof of Theorem
4.6.29, there exists ® € E( F;) such that F;0 =M, and @ | Fp = eFP; this implies that
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for any a, b € M;, there exists u, v € Fz such that a = uw and b = vo, thus a’'b-lab =

( u’lv‘luv }(ﬂ E[ FZ’ FZ ]ﬁ) < {VN( Mi ), so that [ Mi‘ Mi] oy ‘VN( M‘ ), and WhCﬂCC

N P TN .
(M, M} (M) = N,. Therefore, N; = {M;, M;J forall i20.  #

Corollary 4.6.31. The subgroups M; of F, i 2 0, fcrms a strictly descending sequence
F,=My> M, >M>..>M>. >F.

Proof. This is an immediate consequence of Proposition 4.6.11 and Corollary 4.6.30. #

§ 4.7 Concluding remarks on the operator c*

We conclude this chapter by gathering together some supplementary facts about

the operator C* in the next result.

Theorem 4.7.1. The operator C* is a complete N-endomorphism of L (&% ). Its

restriction to (%) is a complete endomorphism of (% ).
Proof. For Y, e L(€X)witha €A, and let S e €% , we then have

x
Se(NeeaZy)C & C*S)eNgaZq
& C'S) ez, foralla e A
o Se(Zy)C  forallaeA
Ct
& SeNgpa(¥y)-
whence C* is a complete N-endomorphism of £ (%% ). The last assertion is a

consequence of Lemma 4.4.2 and Theorem 4.5.20. #

It remains an open question whether or not the operator C* is a ( complete ) v~

homomorphism of L (€% ).
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Chapter 5§

Varieties of The Forms < ¥ >
With 7 e{ &, ¥, ¥ }

This chapter is devoted to study the varieties of the forms < Zo% > with %
el &, ¥, RF }. We first provide descriptions of these varieties < Zo ¥ >,
<Y RX > and < ¥oRF >. The operators L, L and L* on L(€X ) associated with

these varieties are introduced and studied. We also cbtain some general relationships

between the operators L, L, L* and the well known operator L.

§ 5.1 Varieties < ¥o¥ > with ¥ e { £¥, ¥, XF }

In this section we give descriptions of the varieties of the forms < Zo%¥ >,

<Y RX >and <Y KF >. We require some preliminary observations.

Lemma 5.1.1. If S e €%, then eS, Sf and eSf are members of €% for any e, f e E(S).
Proof. Lete, f € E(S). Clearly ¢S is a subsemigroup of S. To show that eS € €% , by
Lemma 2.5.4 it suffices to show that a eeS for any a eeS. Leta =ex eeS withx €S,
then
al=(ex)!
= (ex )x 1 xe )% (ex )0 by Lemma 2.5.7
= e[ x(ex ) 'x!(xe )0e( ex )°]

€eS,

112



whence €S € €% . The case of 5f is symmetric and the case of ¢Sf follows from these

two cases, since eSf =eS N Sf. #

The above iemma enables us to introduce three operators on (€% ) defined as
follows : for any ¥ € (€% ),
21 = ( Se®® | eSe¥ foranye €E(S) },
2" = { Se®® | See¥ foranye €EGS) ),
7 —( Scw® | eSfe¥ foranye, fE(S) ].

Lemma 5.1.2. LetZ € (€% ). Then
@ 21 e @R) and <wosr >
() ¥ eL(®R) and <VoRE >C U
* *

(i) 7" € L(®F) and <VoRF >C ¥ .

Proof. (i) If S ez" Tisa completely regular subsemigroup of S and ¢ € E(T) then ¢
€E(S) and €T is a completely regular subsemigroup of ¢S and so belongs to %, whence
Te Z’L‘ . If T is a homomorphic image of S, under §, say, and e € E(T) then by Lemma
2.2.6, ¢ = e'¢ for some ¢ € E(S), whence eT = ( €'S )¢ e¥. That # is closed under
direct products is immediate upon noting that an elcment of a direct product of
semigroups is idempotent if and only if each of its components is idempotent. Hence et
is a variety, i.c., ¥ e P(%%).

To see that < %o %% >C 2! it suffices 10 show that o C¥ ' . Let S e¥olX.
Then there exists a congruence p on S such that S/p € X and ep € for any e € E(S).
Let e e E(S). For any a € S, we then have (es )p = (ep )( sp ) = ep since slp is a left
zero semigroup, so that eS < ep, which clearly implies that eS €%, and whence S ez,
Therefore < Zos >c ¥ .

(i) This is the dual of (i).
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(iii) The proof of this pan is entirely similar 1o that of (i). #

Let X be a nonempty set. For any u eX”, we denote by h(u) and t(u)
respectively the first and the last variables which appear in u. We define three relations

on X' as follows: for any u, v eX+,
ufyv < hu) =hv),

uf v o u) =1y,

uflv < h@=hv) and t(u) = 1(v).
Clearly 8,,f,and § are congruences on X" such that B = By B, and we have the

following observations.

Lemma 5.1.3. LetweX'. Then
+
@) X/p esx and wh=hw)X".
i) X+/B, e and wh =X"t(w).
e T * *
i) X /g e2F and wh =h(w)X* N X 1(w).
Proof. (i) Forany u, v eX+, we clearly have that h(uv) = h(u), which implies that

+ +
X'Ip, esx.Forw €X', wpy = h(w)X™ follows easily from the definition of B;.

(i) This is dual 1o ().
(iii) This follows directly from (i), (i) and the fact that B= B, B.  #

The main purpose of this section is to establish the following result.

Theorem 5.1.4. For any ¥ € £ (K% ) we have
i) oy =<z >,
(i) ¥ =<2om¥ >.
i) 2 = <zoF >.

114



Proof. (i) By Lemma 5.1.2 (i) it remains to show that ! C <05 > Let S e,
Let X denote the alphabet whose letters are elements of S. There results the usual
surjective homomorphism of semigroups

a: X'—s S
which maps each letter of X into itself. By Lemma 5.1.3 (i), T = x+/gl € ¥X¥ and

p: X*—> T becomes a surjective homomorphism by defining wp = wf,. Let 1 =

a~1p. Clearly 1 : S —— T is a relational morphism of S onto T. For any t €T, there

exists w € X~ such that t = WB,, and by Lemma 5.1.3 (i) we have that wBl = h(w)X",

whence
el = (wh))r!

= (h(w)X* )
=sS where s = ( h(w) )
=s0s,

and therefore t1~! e since S eZ’L 1 . To complete the proof of this part, by Theorem
3.5.3 it suffices to show that graph(t) e €% . Let (s, t ) € graph(t), then s ¢S and tz~!
= eS8, where e = s°, it follows from Lemma 5.1.1 that s~ eeS, so that (s, t )'l =
(s L, 1) =(s7L, t) e graph(1), and therefore graph(t) € €% , as required.

(i) This is dual to (i).

(iii) The proof of this part is entirely similar to that of (i). #

The next corollary is a simple consequence of Theorem 5.1.4.

Corollary 5.1.5. K ¥ =[u (x,)=vy (X ) ]pep €L (EF), then
G) Z=<yox >
=[ ua(xxl,...,xxn)zva(xxl,...,xxn) ]U.EA

=[ ua( xoxly - ,xoxn) =va( xoxl, ey xoxn) ]aeA'
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Gi) #7 = <gox >
=[ up( X% s XY ) = Vo (XYs e XY ) Jgea
=[ g x,Y% o %, YD = Vo (%Y’ o %, Y0 ) Jge -
L 4
Gi) #° =< ¥ kT >
=[ ug( X%, oo s XX ¥ ) = Vo (XXY,5 e, XX Y ) Joe A
= ug(x%%,y0 ... . x%%, ¥%) = v (x%,y% ..., x%_ Y% ) Jpe A

Where x, y € ¢( ua)uc( vy ) foralla e A.
The next corollary is essentially contained within the proof of Theorem 5.1.4.

Coroliary 5.1.6. LetS € €% . Then
(i) There exist T € ¥ and 1 € CR(S, T) such that 1 is surjective and for any t € T,

t1'] = eS for some e € E(S).

(i1) There exist T € ¥ and T € CR(S, T) such that 7 is surjective and for any t € T,

tt! = Se for some e e E(S).

(iii) There exist T € #F and T € CR(S, T) such that 7 is surjective and for any t € T,
tt”! = eSf for some e, f € E(S).
§ 5.2 The operators Lyand L_

In this section we consider the operators L and L, in detail. We only study the
operator L, instead of L;and L, since L is dual to L;.

Lemma 5.2.1. The operator L, is a closure operator on £ (€% ).

Proof. Let?, ¥'c £(€%). Clearly # c %1, and % < 9 implies that #7 ¢ # . If S
2
er'M ) ande e E(S) then eS e#™ Bute eE(eS)and soeS e¥. Thus S M ,
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2
whence %™ = 211" Therefore L, is a closure operator on £ (€% ), by Lemma 5.1.2
Q. #

Before proceeding, we require some preparation.

Definition 5.2.2 [PR7]. Let.«r be a class of completely regular semigroups. Call its
members s-semigroups. We will say that o is a pre-image class if it is closed under

direct products and homomorphic images and has the following property :
for any epimorphism 6 : S—— T, where S e €¥ and T € «,
(P) there is a completely regular subsemigroup R of S with R e o
and RO =T.
A subclass ¥ of .o is an & -variety if it is closed under the formation of direct
products, homomorphic images and .'-subsemigroups. Denote the class of all «'-
varieties by (€% ).

Clearly, all o -varieties are varieties if & = €% .

Lemma 5.2.3 [ PR7, Proposition 2.2 ]. Let & be a pre-image class of completely

regular semigroups.
() £, (€R)is a complete lattice.

(i) The mapping
0, Y —>¥ng ( Y eX(€EX) )
is a complete homomorphism of (€% ) onto £ (€%).

The following result of a lattice theoretical nature will be useful.
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Lemma 5.2.4 [ PP2, Lemma 4.10]. Let p be a complete congruence on a complete
lattice L. For each x € L, let x* be the least element of xp. Then for any A < L, we have

vxeA x* = ( vxeA X )*'

Notation 5.2.5. We denote by L£4&% the class of all completely regular semigroups
with left identity. Clearly, Z4€% ={eS | Se®® ande €E(S) }. Also if O is a

mapping of a set A, then 6 denotes the equivalence on A induced by 6.

Theorem 5.2.6. (i) LA4&LX is a pre-image class.

(i) The mapping
O : ¥ — UNZLAER (YL (€R) )

is a complete homomorphism of £ (€% ) onto Zm (€% ). Moreover, for any ¥
cL(@R), we have VBg g =[< ¥ N LARE > 7).
Proof. (i) Clearly £4%% is closed under direct products and homomorphic images.
Nowlet S e €® , T € Z4#€# and 6 be an epimorphism of S onto T. Let a € S be such
that ab = e, a left identity of T, and let R = a%S. Then R € £4€% and R6 = T. Thus
LA&R has property ( P ) so that (i) holds.

(i) It follows immediately from (i) and Lemma 5.2.3 that 0, .., is a complete
homomorphism of (€% ) onto Loeen(EX).

LetZ € £(K®). It is easily verified that

<Y LARR > LURK =Y N LURE ="\ A LR,

S0 that < ¥ (\ LARRE >, ¥ €M ry . Next let 7€ (¥R ) be such that ¥ N LARR
=P N\LABCR . Then<¥ NLHER >=<FT NLHEX > C¥. Also, for S € ¥, we have
eS € ¥ N LHELX for all ¢ €E(S) so that S e2™ _ It follows that 7";7"’ . Consequently
Y8 e = <¥ N LABK >, %], as required. #
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Corollary 5.2.7. Forany &, # € ¥ (€% ), we have
= & YNLUCR =T N LHER & <¥ N LHBE > =< ¥ N LAER >,

Corollary 5.2.8. The relation L; which is given by
YL 7 & <YX>=<F X >

is a complete congruence on (€% ). For ¥ £ (¥® ) the L;-class ZL, is an interval
(7, 2" ], where 7 =<2 N 2#&R >and 2 = <zox >

Corollary 5.2.9. The mapping
Y — Z/Ll ( YeLl(ER) )

is a complete v-endomorphism of £ (€% ).
Proof. This follows directly from Theorem 5.2.6 and Lemma 5.2.4. #

Whether or not the mapping ¥ —— %, is a ( complete ) N-homomorphism
pping L

of (€% ) we do not know.
Lemma 5.2.10. If ¥ € (&%), then Zle =<Y N LAER >

=¥ NKY.
Proof. By Lemma 2.3.3, #9 C LAKR so that YNKF C <¥ N LARE > Let §
e¥N LAER , then S € €7, without loss of generality, we may assume S =
M(G; I, A; P). Since S e Z4€% , and let ( x; i, A ) be a left identity of S, then for any
(y;j» 1) €S, we have
(LAY 5 1) = (xpyyi i )

=(¥:h K1)
smhatlll='1,andsoSe.3$.chce?/Ll=?/nJy. #
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We now consider the commutativity between the operator L; and the operators

K, T, T, T, T,* and T,".

Lemma 5.2.11 [ H2, Corollary 6 ]. Let T be a regular subsemigroup of a regular
semigroup S such that for any idempotents e, f in S with f S e, ¢ € T implies f € T. Then

Lemma 5.2.12. LetS e €% and e € E(S). Then
ueszﬂs!es, (-?eS)():-(foleS'
Proof. Let T=eS. Foranyf,heE(S) with f < h, heT, we then have f=hf =fhand h =
eh,sothatf:hf=ehf=efeeS=T.ByLemma5.2.11,u65=psles.
Clearlly £°1  ©(£,5)?.Soleta, beeS,a(Lg)" band x €8. First note that,

for any w € S,
( exe )°( xe )0( exe )w = ( exe )‘1( exe )( xe )oexew
= (exe )w
so that ( exe )w £ ( xe )0( exe )w. Also
a(Les)’b = (ex)aLyg(ex)b
= (exe )a L g (exe)b since a, b eeS
= (xe )°( exe )a £( xe )°( exe )b by the above remark
= xea ¥ xeb
= xa .2 xb.

Thus a #° b, since L isa right congruence. #

Propesition 5.2.13. Let % ¢ £(¥%). Then
Fo<Y X > =< (FoY )oX >
LG oY LE > =< (LYY Yo ¥ >.

Proof. From Lemma 5.2.12 it follows that
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eS/y o= (en)(Sp).
For any ¥ € ¥ (¥% ), we then obtain

S€<(HY )X > & eSeF¥ for all e e E(S)
o o)y (¥ for all ¢ € E(S)
< (ep ) S/p)ezf for all e e E(S)
o S/pe<2/o.9ﬁ‘>
& SEFoY X >,

Thus Fo<¥oZ® >=<(Go¥ )odX > That LH o< Yo X > =< (ZH U)o X >

follows similarly. #

Corollary 5.2.14. L, commutes with T and T,.

Proof. This is a direct consequence of Proposition 5.2.13. #

Lemma 5.2.15. Let% € £(&%). Then
G <(Y VR Y LES>=< [ HG(Y v R ) J]o X >.
Proof. LetZ =[u (x) =v,(X,) loec s €L (€X). By Proposition 3.3.13, ¥ v =
[ ugy=vyy loca- Wherey €c(u, ) wc(v,) forall @ € A. We then have
<[ FHEAY Vv R ) o X >
=<(FFolugy =voy lye a )0 & >
=<{(uyyz ) =( Vo YZU,yZ ), ( VoYZ )0 = ( U, YZV,yZ )° Joe AOEE >
by Lemma 3.3.2
=[ (ug( xx;)xyxz )°= (v, ( xx,)xyxzug( xx; )xyxz )°,
( Va( XX; )XyXz )°= (ug( xx; IXyxzv,( xx; )Xyxz )0 Jac A
by Corollary 5.1.5 (ii)
[ (ug( xx;)xyz )0 = (va( xx;)xyzug( xx;)xyz )°,

(Vo xx)xyz )0 = (ug( X%, )xyzve(xx;)xyz ) loe a
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substituting the variable z by y( xy )z
= ZF o[ ug( xx;)xy = vo(xx;)Xy ]Joea by Lemma 3.3.2
= ZFo<[uyy = vy lge A% > by Corcllary 5.1.5 (ii)
= KGo<(YU VR )oX >.

The opposite inclusion follows from Corollary 3.5.5. #

Corollary 5.2.16. L;T,=T[L,on [ %¥, €%].

Proof, This follows from Lemma 5.2.15. #

Lemma §.2.17. KL, # LK.
Proof. Since 911X = < Foc Yo >> by Corollaries 5.1.5 (ii) and 3.5.7
=< FoLH >.
=< Fo< LXoG >>
C<<FoLX >% > byCorollary 3.5.5
=< F oY >
=% by Lemma 4.5.1,
so that % ¢ ¥L1X. On the other hand, ¥X11 = << Fo% >0 > 0 < FFo > =
«7. Thus ¥1K » 9Kl andso KL, # LK. #

Theorem 5.2.18. The mapping
v —> 2h (¥eZ(€R) )

is a complete N-endomorphism of £ (¥% ) but is not a v-homomorphism.

Proof. For the first assertion of the theorem, let Y¥,eZX(€R)foroeAand S ek®,

we then have

Se(Nueae)! © eSeny ¥,  foralle eE(S)
=3 eSeZ’a foralle eE(S) and all a €A
= Se(?/a)l‘l forallaeA

122



& Seng A%, )Ll,

whence ( Mg g Zg )1 = Ngen (Zg)M.

acA
For the second assertion of the theorem, consider
_S,yLl vl =<LH X >V RAXLX >
=2% v ¥%
= Y,
(% v 2\ =< HGosx >
=< HHoLX >
=€,

so the mapping ¥ —— 211 isnota v-homomorphism. #

In the rest of this section, we restrict our attention to £ (& ). The behaviour of

L, is determined exactly on £ (% ).
The following observations are elementary:
gh=al -2 arl-=-29"-29,
Fh=zimh =21, F1-=-9.

Corollary 5.2.19. (i) L, commutes with T l* on £ (F).
(ii) Ly commutes with T l.* on|[ ¥ ,F).
Proof. (i) Let% € £(F). Then
#Ti L= (zTin @ )1 by Lemma 4.5.16 (i)
= #Tilin 11 by Theorem 5.2.18
= lng by Corollary 5.2.14
_ Ty by Lemma 4.5.16 (i),
so that T;'L;= L;T;".
(ii) Similarly, T,*L,=L,T," on [ %%, # ] follows from Corollary 5.2.16.  #
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Lemma 5.2.20. (i) £RF = FoF=[x2=x,axa=ax].
(il) o RAMF =[x%=x, axyay = axy ].

Proof. (i) See [ Pe2, the dual of Proposition II. 3.12 ].
(ii) See [ Pe2, the dual of Proposition 1I. 3.8 ]. #

Surprisingly, we have

Lemma 5.2.21. (i) ses@l1 = 1wl = 3.
(i) Lrgl = %9.
(i) (L2F v 2r 1 = o7,
(iv) (Y o LRF M1 = A o( X oRNT ).
Proof. (i) Clearly /@ ¢ .%4@ 1 ¢ 4@ 11, It remains 1o show that 411 ¢ 47 .
Let S e 4w L , then eS € 4% for all e e E(S). Lete, f, g €E(S) be such thatf<e, g <e
and f @' g, then e, f, g € E(eS). Since eS € 4%, it follows from Lemma 4.4.8 (iv) that
f=g. Hence S € 4%, as required.
i) gl = (o)l
= yT1*L1
oL by Corollary 5.2.19 (i)
= MTI*
=RY .
(iii) From Figure 4.1, we have that 2% v BY = X o RNB N KX o LRF , so that
(%2 v o) c(eroswsm )l

= MTI*LI

-l by Corollary 5.2.19 (i)
g™ by G)

= o RNE .
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On the other hand, we have
(2eF v 2 Y1 =([x2=x,axa=ax]v.%¥ )11 by Corollary 5.2.20 (i)
=[x2=x, axay = axy |1 by Proposition 3.3.13
= [ x? = x, zazxzazy = zazxzy | by Corollary 5.1.5 (i)
=[ x% = x, zazxzaz = zazxz ] v RY
by Proposition 3.3.13
2 [ x2 = x, axyay = axy ] v.&Y¥
by straightforward verification
= (X RANB ) vV RE by Corollary 5.2.20 (ii)
= LR RANE
whence (iii) holds.
(iv) Since KX o LRF = KX o( LRF v XX ), we then have
(gxosemd Y =[x o L2F v ¥ ) 1M
=(RF v X )T:Ll
=(LRF v BX )HT: by Corollary 5.2.19 (ii)
~(romsm ) by
= X o LXoRAF ),

whence (iv) holds. #

Theorem 5.2.22. The complete congruence L, on £ (&) has the following properties :
(i) Each L, -class is finite.
(i) The circled elements in Figure 5.1 are exactly all the maximum elements from
all the L, -classes.
(iii) The set of all the maximum elements from all the L, -classes is not a sublattice
of (& ). However, the set of all the maximum eleinents above . £¥ is a sublattice of

L(F).
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This thecorem follows by simple inspection of Figure 4.1, Corollary 5.2.19 and
Lemma 5.2.21. Figure 5.1 is modified from Figure 4.1.

x
Ti\

Figure 5.1.

Corollary 5.2.23. (i) The operator L, is not an endomorphism of £ (F ). Its restriction

to ! %X, & ]is a complete homomorphism of [ ¥, F Jonto [ 2F , F .
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(i) The mapping
Y — ?/Ll (¥eL(F))

is a complete endomorphism of Z(F ).
Proof. (i) By Lemma 5.2.21, we obtain
el v arh = ovw v
# Lo RNASF
= (2% v 2 ),

so the first assertion follows. The second assertion follows from Theorem 5.2.22 (iii).
(ii) By simple inspection of Figure 5.1, we obtain that ¥ —— ?Ll is a complete

N-endomorphism of Z(&#). Combining this fact with Corollary 5.2.9, the required result

follows. #

Corollary 5.2.24. LT," # T,"L, and L;T, # TL,on L(¥%).
Proof. Since LRF LIT:= LR Tr*
= R LRT
# RY o LXK o RNF )
= (¥ o2 Y
= mT:Ln ,
so LiT.* = T, i, By this fact we then have
1T A 3 = gl Ts
* SRE T, L,
=R N2,
whence A1 T2 op@ T andso LT, # T,  #
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Obviously the notions and results obtained so far in this section have their left-

right duals. We shall use these dual results in the sequel.

§ 53 The operator L

Definition 5.3.1. Forany ¥ € (€% ), let
gl =(Se®® | eSee¥ foralle eE(S) ).

In the context of varieties of completely regular semigroups this operator was
introduced by Hall and Jones [HJ); see [ HJ, Proposition 4.1, where the notation P is
used ] where it is shown that #" € (%% ) and that (2T ) =2l or L2 = L. It was
discussed in greater depth by Poldk [Po3], Petrich and Reilly ( [PR6], [PR7] ).

First we recall some re_alts about L.

Lemma 533 [PeS). If ¥ e £(®R) and & = [ u ( x;) = v( X;) Joc o~ then
#b = [ug(x%%x%) = vg(x%%x%) Joe o
=[og( xxx ) = v (XXX } Joc A

where x €c(u, Yo c(vy )forall aeA.

Lemma 5.3.3 [Reil). If ¥ e £(€¥), then
8’1‘={Sef§’ I all subgroupsof S liein & }.

Notation 5.3.4. We denote by 4€® the class of all completely regular monoids.
Clearly £4€% ={eSe | Se&€® and ¢ €E(S) }.

Lemma 535 [PR7]L Forany %, % ¢ ¥ (€% ), we have
=9l © FN MR =N MR & < YN MR >=<T ' MER >.
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Theorem 5.3.6 [PR7]. The relation L which is given by
LY o wl=9L

is a complete congruence on £ (&% ). For any ¥ € (€% ) the L-class L is an interval
(7, %", where ¥ =< ¥ A 4R >.

Theorem 5.3.7 [PR7]. The mapping

is a complete endomorphism of £ (€% ).

To know how to obtain a basis of identities for ?/L from one for , the reader is

referred to [ PR7, Proposition 5.4 ].

Theorem 5.3.8 [Po3]. (i) ng‘WK .
(i) The operator L is a complete N-endomorphism of £ (€% ). Its restriction to

F( 61' ) is a complete endomorphism of £ ( &% L ).

It remains an open question whether or not the operator L is a ( complete ) v-

endomorphism of (€% ).

Theorem 53.9 [PR6]. () (Zv &) =25 v .# forany ¥ e £(%%).
i) L commutes with K, T, Tyand T,.

Corollary 5.3.10. L commutes with T,* and T,*.

Proof. This follows from Lemma 3.3.8 and Theorem 5.3.9. #

Lemma 53.11. LetS e €% and let ¢, f € E(S) be such that fe = f. Then
¢: fSe ——> eSe
defined by x¢ = ex is an embedding.
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Proof. Clearly ¢ is well-defined. For any x, y e f Se, we then have
(x0)(yd) = exey
= exy
=(xy)d,
so that $ is a homomorphism. If x, y € f Se and x¢ = y¢, then ex = ey and fex = fey, thus

x = fx = fy =y, and so ¢ is one-to-one. Hence ¢ is an embedding. #

The main purpose of this section is to establish the following result. In the draft
of this thesis, it was left open whether or not L = L* on £(%% ). However, P. R. Jones

pointed out that L = L* indeed. His proof of L =L" is included here.

Theorem 5.3.12. L=LL =L1,=L".
Proof. Let ¥ € (€% ). By Theorem 5.1.4, we then have
yhilr = (2Ll

={Se&® | See?l foralle eE(S) )

={Se¥X | fSee¥ foralleeE(S)andfeE(Se) }

={Se¥® | fSee¥ foralle, f eE(S) withfe =f}.
Clearly zlilec L. For the opposite inclusion, let S e%L. TheneSe €% foralle e
E(S). Let e, f € E(S) be such that fe = f. By Lemma 5.3.11, eSe € % implies that f Se € %,
and so S e #l1Lr, Thus & = L1 Lr, and therefore L = L;L,. Similarly one can show
that L =L, L; by using the dual of Lemma 5.3.11.

We now show that L = L*. Let # = [ u ( x; ) = vo( x;) ] € £(®% ). Clearly 21" ¢

2L For the opposite inclusion, let S eWL, that is, eSe e  for all e € E(S). To show that
S ezl and by Theorem 5.1.4 (iii), it suffices to show that eSf €% for all e, f € E(S).

Let e, f e E(S), we consider in three cases separately.
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Casel. ¥ c . Leta €A, and letua(xi)=ua(xl,...,xn)andvu( Xj) =
vo( X5 -, X, ). For any a,, ..., a, €eSf, we then have ac e eSe and ai"c =(ae )
eeSe,forallie{ 1,2,...,n }. Now

u,(ag,...,a;)e=uy(ae,..,ae) by the above remarks

=vqa(ae, ...,ae) since eSe e/

= Vol ap 2y e
But uy (%, ..., X, ) and v ( X,, ... , X, ) end in the same variable x;, say, since ¥ C ¥ ;
thus
U ap, s 8y) = Ug( Ay, e s ap Jea?
= vl 3y o s 3 Jeay”
=vg(ay .hap),
and whence eSf e %.

Case 2. ¥ . The dual of Case 1.
Case3. ¥, XL ¥ . Thus ¥ ¢ 5% . Now let a, b € E( eSf ), we have ae, be €
E(eSe ) €.#, so that
ab = abb = ( ae )( be )b = ( be )( ae )b = bab.
Similarly, using fa, fb € E( fSf ), ba = bab. Then ab = ba, and whence eSf € 9%. It follows
from Lemma 2.5.12 that eSf is a subdirect product of a group and a semilattice. On the

other hand, any maximal subgroup of eSf is a maximal subgroup of gSg for some g €
%
E(S), and whence eSf €% since £ ¢  if and only if ¥ ¢ 2L Hence S ezl so that

E 3
gL =L , and therefore L=L* . #

Corollary 53.13. If & € £(¥%), then

L= (Se®® | fSce¥ foralle, f eE(S) with fe = f )

={Se®® | eSfe¥ foralle, f e E(S) withef =f )
={Se®® | eSfe¥ foralle, f €E(S) ).
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Proof. This is an immediate consequence of Theorem 5.3.12. #

In conclusion, we given the relationships between L, L, and L. on Z(&F).

Lemma §.3.14. (i) L=Ljon[ %%, #].

(i) L=L on[%¥, #].

(i) L=L1=L . on[ %%, #].
Proof. (i) This follows easily by combining Theorem 5.2.22 with [ Reil, Theorem 6.2 ]
and by simple inspection of Figure 5.1 and Diagram 1 in [ Reil, Section 6 ].

(ii) This is the dual of (i).

(iii) This is a combination of (i) and (ii). #
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Chapter 6

Some Consequences

As consequences of results obtained in the previous chapters, we give

descriptions of varieties of the forms < ¥°% > with ¥’ e { ¥, %% , Y , %, Z/F
FANTF , #F } in this chapter.

§ 6.1 Varieties of the forms < ¥ > with ¥ ¢ { 4, %¥, MY , 9% }

Proposition 6.1.1. For any ¥ € £ (€% ) we have
() <%o%% >
=< < Yo LXK >4 >
={Se®&® | eC*(S)e¥ foralle eE(S) ).
(il) <¥%o%¥ >
=< <Y RX >°4 >
={Se®® | C*S)e e¥ foralle €E(S) }.
(ili) < Yo% >
=< <Y RE >4 >
={Se&® |eC*(S)e €% forall e eE(S) }.
Proof. Let ¥e £ (¥% ), and we denote the third class in (i) by A. From Theorems
4.3.14 and 5.1.4 (i), it follows that
<<YoL>F>={Sec&R | eC*(S)e¥ foralle cE(S) }

=A.
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On the other hand, < #°%¥ > =< ¥o< XX % >>
C << YoLX >% > by Corollary 3.5.5

It remains to show that A € <Zo%¥ >. Let S € A. It follows from Corollary 4.3.15 that
there exist G € % and 7, € CR(S, G) such that 1, is surjective and C*(S) = 11,7},
where 1 is the identity of G. By Corollary 5.1.6 (i) there exist T € % and 1, € CR(S, T)
such that 1, is surjective and for any t €T, t’tz"1 = ¢S for some e € E(S). Clearly 17, x 1,

eCR(S,GxT)andGxTeZ¥. Since ECGxT)={(1,t) | teT }, then for any

(1,t)eE(GxT) we have
(L) txt) =111,

=C*@S)neS for some e e E(S)
= eC*(S)
34 since S €A,
it follows from Theorem 3.5.3 that S € < #°%% >, and whence A C < %o%% >.
(1) This is dual to (i).
(iii) The proof of this part is entirely similar to that of (i). #

Reilly [Reil] has completely determined the varieties of the form < Zo.% >. We

now recall this result from [Reil].

Notation 6.1.2. For any identity u = v in the variables Xy . » X, ( SO that each x;
appears either in u or v or both ) let u* = v* denote the identity u( x,*, ..., x *) =

* * * _ - 0
v(x;% .., X" ) where x;™ = eXe;> €= ( XXXy ... X X, ).

Lemma 6.1.3 [ Reil, Theorem44]. K% e L(¥¥) and ¥ =[uy = v, ], then
(i) Yo P ecL(E€R).
(il) ¥oF ={ Se€® | all @-classes of S belong 0 ¥ }

=[“a*=va* Jaer -
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Proposition 6.1.4. For any ¥ € £ (¥% ), we have
Yo = < (YoF )oF >
={Se®% | all &-classes of C*(S) belong to ¥ }
={Se®® | foreach @classDof S, C*(D) e% ).
Proof. Let % € ¥ (€% ). By Corollary 3.5.5, we have
Yo S =Yo< P >
S <<¥YoF >% >
=< (oS )oF >.
Combining Theorem 4.3.14 with Lemma 6.1.3, we obtain that
<(YoF )% >=(Se€® | all F-classes of C*(S) belong to & }.
It follows from Proposition 4.1.12 that
(Se®® | all F-classes of C*(S) belong to ¥ }
={Se®® | foreach @-classDof S, C*D) e¥ }.
It remains to show that { S e ®% | all @ -classes of C*(S) belongto % } ¢ Yo% . Let
S € €% be such that all @ -classes of C*(S) belong to #. By Lemma 4.2.7, C¥*(S) =
ker B and ep = C*(S) N D,, for any e € E(S). Thus ef € for any e € E(S), and whence
S € #059%, as required. #

Corollary 6.1.5. Forany ¥ € L (€% ), #5% is a variety.

Proof. This is an immediate consequence of Proposition 6.1.4. #

§ 6.2 Varieties of the forms < % > with 7 ¢ { /% , RAF , S/F }

Let X be a nonempty set. As introduced in § 2.7, we denote the free unary
semigroup over X by U. The following result is well known.
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Lemma 6.2.1. Foru, veU we have
UG, o vV & c(u) = c(v), h(u) = h(v),

UC,,q V © cu)=c(v),tu) =tv),

UG o vV & c(u)=c(v), h(u) = h(v), t(u) = t(v).

Proof. See, e.g., IL 3 of [ Pe2 ]. #

The main result of this section is the following.

Proposition 6.2.2. For any ¥ € £ (€% ) we have
() <Yor®F >
=< (Yo Yo X >
= { S e €% | for each e € E(S), all @ -classes of eS belong to ).
(1) <YoRAF >
=< (YoF )o X >
={ S € €% | for each e € E(S), all & -classes of Se belong to Z }.
(ii}) < Yo sw >
=< (YoS Yo RF >
={ S e €% | for each e € E(S), all & -classes of eSe belong to ¥ }.
Proof. (i) Let¥ € ¥ (€% ), and we denote the third class in (i) by A. Combining
Theorem 5.1.4 (i) with Lemma 6.1.3 (ii), we obtain that
< (Yo )oLX >= {8 e&€® |for each e e E(S), all @ -classes of S belong to  }.
=A.
Cn the other hand, < %o L4 > = < ¥o< SoLX >>
C < <o > > by Corollary 3.5.5
=< (YoF )o X > by Lemma 6.1.3 (i).
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It remains to show that A C <% Z#% >. Let S € A. Let X denote the alphabet whose
letters are elements of S. Then we have the usual surjective homomorphism of unary
semigroups

a:U—> §
which maps each letter of X into itself ( see, e.g., the proof of Theorem 2.8 oi [Rei2] ).

LetT = U/Gm. We define p : U—— T by up = uc,,, . Then p is a surjective

homomorphism of U onto T. Let T = a"!p. Clearly t: S—— T is a relational morphism
of S onto T. For any t € T, we have t =uo,, , for some u € U. Let u = u( Xpr on s Xp Do X; €
X(i=1,2,..,n). Then
ttl=(uo,,g )l

={veU | ¢(v)=c(u)and h(v) = h(u) }Jo by Lemma 6.2.1

={veUl c(v)={x,,...,x,}and h(v) = h(u) }a.
lLete =[ h(u)o ]0. Thus e e E(S) and tt-1 < eS. It is casy to see that { velU | c(v) =
c(uj and h(v) = h(u) } is a unary subsemigroup of U. Since a: U —— S is a surjective
homomorphism of unary semigroups, and by Lemma 2.5.4, tt'lis a compictely regular

subsemigroup of eS. If s;, s, € tt-1, then there exist v; €U such that c(v;) = { x, ...,
X, ), h(v;) = h(u) and s, = v,a, for i = 1, 2. Since & is a semilattice congruence on S,
then s, 9= (v,0)F=(x,0) ... (x,0)F=(v,0)F=5,9,ie.,3 Fs, Thusttlisa
completely regular subsemigroup of some .2 -class of eS, and so tt! e, since S € A.
Further, since T € Z4% and t1"! e ¥® for any t € T, then by Lemma 2.5.4, graph(t)
€K%, so that T e CR(S, T). From Theorem 3.5.3, it follows that S e < ¥4 >, as
required.

(ii) This is dual to (i).

(iii) The proof of this part is entirely similar to that of (i). #
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Remark 6.2.3. Combining Proposition 6.2.2 with Lemma 6.1.3 (ii) and Corollary 5.1.5
one can derive a basis for the identities of < %o LAF > ( <K Yo RAF >, < Yo AH4F > ) in

terms of a basis for the identities of %.
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