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ABSTRACT 

Database query optimization research has been ongoing for a long time. Nevertheless 

considerable performance deviations persist between retrieval times for different, but 

logically equivalent, expressions of SQL queries. It would appear that in many actual 

applications the query optimizer cannot efficiently optimize the query with respect to 

retrieval time unless query transformation and the physical (index) structure of the 

database are taken into account. In this thesis an experimental performance study 

is carried out, with the help of the Wisconsin Benchmark, to test which kinds of 

queries are generally more efficient than other logically equivalent queries (based on 

our classification of SQL queries). This research is intended to provide an aid for 

use in natural language database interfaces where automatic SQL query generation 

results in more efficient query transformations to optimize subsequent data retrieval. 
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CHAPTER 1 

Int reduction 

One of the most appealing properties of many relational database systems is their 

nonprocedural user interface. Users specify only what data is desired, leaving the sys- 

tem optimizer to choose how to access that data. The built-in decision capabilities of 

the optimizer therefore play a central role regarding system performance. Automated 

seIection of optimal access plans is a rather difficult task, because, even for simple 

queries, there are many alternatives and factors affecting each query's performance. 

Critics of relational systems point out that their nonprocedurality prevents users from 

navigating through the data in the ways they believe to be the most efficient. De- 

dope r s  of relational systems claim that systems could be capable of making very 

good decisions abwt how to perform users' requests based on statistics! models of 

databases and formulas for estimating the costs of different execution plans. Opti- 

mizer effectiveness in choosing efficient execution plans is critical to system response 
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time. For example, in an experiment described later in the thesis, a query was cxc- 

cuted in 41.42 seconds on our Oracle system1 while the response time of anothcr query 

which prodaces exactly the same answer was 74.3 minutes, about 108 times longer. 

In the case where the first query is to be used interactively, the second one cannot be 

justified since it is very inefficient. The same performance problem arises for a number 

of equivalent SQL queries. This huge performance difference is due to the fact that 

it is usually very difficult for the optimizer to know the nature of some complicated 

queries. Thus, the database query optimizer chooses tot ally different algorithms for 

the evaluation of queries which request the same data in different ways. Optimization 

algorithms are built-in for only certain kinds of queries, thus the optimizer sornctinlcs 

cannot find the most efficient evaluation algorithm. Therefore, it is important to 

transform, if possible, those complicated queries into simpler ones in order to make 

use of built-in optimization algorithms. 

Generally speaking, the problems we encounter include: what kinds of SQL queries 

are more efficient than others in particular situations? For those queries which will 

produce the same results, is there any algorithm to transform one query into anothcr 

equivalent query in order to take the advantage of built-in query processing algo- 

rithms? For query evaluation, what roles do the indexes play? Does the use of an 

index always result in better time efficiency? 

This thesis is organized into six chapters. After motivating and i;ltroducing the 

'Oracle RDBMS, Version 6.1. 
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problems in Chapter 1, a classification of SQL queries is given in Chapter 2 in order to 

establish the foundation for the transformation and performance experiment later on. 

Chapter 3 illustrates some specific transformation algorithms and their theoretical 

cost models. An actual testing environment is established in Chapter 4 from which 

the testing results are driven. A more general transformation algorithm is given in 

Chapter 5. Chapter 6 concludes that the transformation algorithms are practical and 

effective, thus a better retrieval performance can be obtained from those transforma- 

tions. 



PTER 2 

A Classification of SQL Queries 

SQL is a block-structured, database interface language which has been irnplerncnted 

in many commercial relational database systems, e.g., the SEQUEL system, System 

R, DB2 and Oracle. The principal advantage of the relational data model is that it 

allows a user to express the desired results of a query in a high-level nonprocedural 

data language without specifying the access paths to stored data. Relational calcu- 

lus and relational algebra were designed to concisely specify a complex query to a 

database. However, the mathematics of the relational system is diflicult for normal 

users to grasp, thus their use as data languages to access an actual database may be 

limited. As a result, SQL was developed as an interface language. SQL is ay powerful 

as the relational calculus and the relational algebra in the sense that SQL exhibits the 

major expressive power implicit in the relational calculus and algebra, but possesses 

the additional features like readability, which makes SQL easier for nontechnical users 

to learn and use. One of the more interesting features of SQL is the capability of nest- 

ing query blocks to an arbitrary depth. Without this capability, the power of SQL 
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is severely restricted. However, techniques which have been used to implement this 

feature in existing systems are, in general, inefficient and, in view of the popularity of 

SQL-like data languages, it is imperative to develop efficient methods for processing 

nested queries. Our classification of SQL queries will be based on query blocks and 

the relationship between those query blocks. 

A query block is represented by a SELECT clause, a FROM clause, and zero or one 

WHERE clause. The SELECT clause specifies the columns of the tables to be output 

and operations on the columns. Aggregate functions can be used as an operation on a 

column of a table. These aggregate functions in SQL are SUM, AVG, COUNT, MAX 

and MIN. The FROM clause specifies the tables referenced. The WHERE clause 

specifies the predicates which tuples of the tables indicated in the FROM clause must 

satisfy. Different predicates decide the different relationships between related query 

blocks. 

A sample predicate is of the form [K.Ck op XI, where R, is a table name, Ck is 

the column name of a table, &.Ck represents the column Ck of the table &. X is 

a constant or a list of constants, and op is a scalar comparison operator (=, !=, >, 

>=, <, <=) or a set membership operator (IN, NOT IN). As long as the predicates 

in the WHERE clause are restricted to the simple predicates of the form [R,.Ck op 

XI, only single-table queries can be formulated. For more general queries, the simple 

predicates may be extended in three ways. 

1. Nested prebicate: X may be replaced by Q, an SQL query biock, to yield a 
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predicate of the form [R,.Ck op Q]. The op may be a scalar comparisotl or set 

membership operator. This predicate form implies that t l ~ e  subquery Q must 

result in a single-column table. 

2. Join predicate: X may be replaced by Rj.Ch, to yield a predicate of the form 

[&.Ck op Rj.Ch], where Rj is a table name, Ch is a column name in the table 

Rj. The op is a scalar comparison operator. 

3. Division predicate: R.Ck and X may be replaced by two query blocks Ql R I I C ~  

Q2,  respectively, to yield a predicate of the form [Q, op Q2]. The op may 

be a scalar comparison operator, set membership operator or set comparison 

operator (=, !=, CONTAINS, NOT CONTAINS). 

Among predicates, the nested predicate and the join predicate are more interesting 

to us since no actual database system implements the division operation2. Thus, the 

division predicate is not considered further in our performance testing. The classi fi- 

cation of SQL queries in this thesis is based on those predicates. 

For demonstration purposes, we assume the following tables: 

S( sno, sname, budget, city )--the Supplier table 

P( pno, pname, color, weight, city )---the Part table 

SP( sno, pno, qty, destination )--the Shipment table 

2CONTAINS and NOT CONTAINS are the two division operators in SQL language (See page 78 
in [17]). But no actual RDBMS system supports these operators. 
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An S tuple contains the number (identifier), name, budget and location of a sup- 

plier. Each P tuple contains the number (identifier), name, color, weight and storage 

location of a part, Each SP tuple has fields for a supplier number, a part number, 

the quantity of parts the supplier supplies and the destination city for the shipment. 

Among these attributes of each table, italicized attribute(s) means the primary key(s) 

for that table. 

2.1 Single-Block Queries 

A single-block SQL query contains only one query block. Based on the number of 

tables involved, single-block queries can be of two kinds. 

2.1.1 Single-Table Queries 

A single-table query retrieves information from only one table. The number of predi- 

cates in the WHERE clause can be greater than one, of course. For example, find the 

number of the supplier whose name is 'Simon Fraser' in Burnaby: 

SELECT sno 

FROM S 

WHERE sname = ' Simon Fraser ' AND 

city = 'Burnaby'. 

The evaluation of this kind of query is fairly straight forward. Most current 

database optimizers can take the advantage of available index information in order to 
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find efficient ways for evaluation. 

2.1.2 Multi-Table Queries (Join Queries) 

A multi-table query retrieves information from two or more tables and must specify 

some join predicates. Thus, a single-block multi-table query is also called join query. 

For example, find supplier numbers and numbers of red parts which are stored at 

cities where there are some suppliers: 

SELECT sno, pno 

FROM s, p 

WHERE P.color = 'RedJ AND 

S-city = P.city. 

For a join query, the Oracle optimizer considers both the nested-iteration method 

and the merge-sort join method, as well as all of the possible 'reasonablc' orders 

in which tables may be scanned, possibly with some availahlc indexes. Whereas 

the nested-iteration method of joining two tables requires one table to be retrieved 

as many times as there are tuples that satisfy predicates on the other tahlc, the 

merge-sort join method requires both tables to be simultaneously retrieved only oncc, 

provided that the tables are first sorted in join-column order. The nested-iteration 

method is better if one of the tables is small enough to fit into the main memory 

cache. In that case, this table may be the inner loop table, thus less disk I/O occurs. 

However, if all tables are too large to fit into the main memory cache, the merge-sort 

join method performs better. 
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Nested Queries 

A nested query includes subqueries. A subqueq is a query block that is used in a clause 

of a higher level SQL statement. A query block comprising a subquery is called an 

inner block a query block containing a subquery is called an outer block. A table in 

the FROM clause of an inner block is called an inner table; a table in the FROM 

clause of an outer block is called an outer table. In the WHERE clause of a query 

block, there may be several subqueries connected by SQL logical operators AND or 

OR, and subqueries may also be nested with depth of greater than one. These would 

form more general, thus more complicated, nested queries. Unless otherwise specified, 

all the nested query examples in this chapter are the simplest nested queries, which 

means there is only one inner block and one outer block in each query and there is 

only one table in each query block. 

2.2.1 TypeA Nesting 

A nested query is a TypeA (A means Aggregate) query if the inner query block Q 

does not contain a join predicate that references any outer table, and if the SELECT 

clause of Q consists solely of an aggregate function over a column of an inner table. 

For example, find the numbers of suppliers who ship parts with the maximal part 

number: 

SELECT sno 

FROM SP 
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WHERE pno = 

( SELECT WAX( pno ) 

F R O M  p 1. 

Query blocks can be join blocks, which means that the join predicates are penliit- 

ted within one query block. Thus, the following query is also a TypeA qliery: firit1 th: 

name of a supplier with the largest supplier number who ships more t ha11 100 picccs 

of any kind of parts to the city where a supplier stays. 

SELECT sname 

F R O M  S 

WHERE sno = 

( SELECT MAX( sno ) 

FROM S, SP 

WHERE SP .q ty  > 100 AND 

SP.destination = S c i t y  ) .  

There is only one way to process a TypeA nested query on a single processor. 

Thus, the performance of a TypeA query is fixed. The inner block must he evaluated 

first. Since the SELECT clause in the inner block contains an aggregate function, 

the evaluation of the inner block will result in a single constant rather than a list of 

constants. The nested predicate of the outer block then becomes a simple predicatc, 

since the inner block can be replaced by a constant. After this, the outer block is no 

longer nested and can be processed completely. Thus the evaluation of inner query 

blocks is independent from any higher level outer blocks and all the inner blocks arc 
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evaluated only once from bottom-up. 

2.2.2 TypeN Nesting 

A nested query is a TypeN (N means None) query if the inner query block Q does not 

contain a join predicate which references any outer table, and the SELECT clause of 

Q does riot contain any aggregate function. Join predicates are permitted within one 

query block. 

For example, find out the numbers of suppliers who ship parts whose weight is 

greater than 50 pounds: 

SELECT sno 

FROM SP 

WHERE pno IN 

( SELECT pno 

FROM P 

WHERE weight > 50 ) . 

The evaluation of a TypeN nested query would be processed by first processing 

each inner query block Q, resulting in a list of values X which can then be substi- 

tuted for the inner query block in the nested predicate. In above example, [pno IN 

Q] becomes [pno IN XI. The resulting query is then evaluated by either the nested- 

iteration method or the merge-sort method in our Oracle system, depending on the 
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index information. Here, the evaluation of the inner block is also independent of the 

outer block, and the inner block is evaluated only once. The total number of tllc 

return values from the inner block has some effect on performance since these re turn  

values have to be sorted in order to remove those duplicate values. If this number is 

big enough, the nested iteration evaluation of the query might require extra disk I/Os. 

2.2.3 TypeJ and TypeJA Nestings 

A nested query is a TypeJ (J means Join) query when the WHERE clause of t l ~ c  

inner query block contains at least one join predicate which references an outer tablc. 

Another condition of TypeJ nesting is that the SELECT clause of the inner qucry 

block does not contain any aggregate function. For example, select the names of parts 

which are stored in the place to which the parts are shipped: 

SELECT pname 

FROM P 

WHERE pno I N  

( SELECT pno 

FROM SP 

WHERE SP-destination = P.city ) . 

A nested query is a TypeJA ( J A  means Join and Aggregate) query when the 

WHERE clause of the inner query block contains a join predicate which references 

an outer table, and the SELECT clause of the inner block consists of an aggregate 
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function over a column of an inner table. For example, find the names of parts, with 

the largest part number, which are shipped to the city where they are stored: 

SELECT pname 

FROM P 

WHERE pno = 

( SELECT MAX( pno ) 

FROM SP 

WHERE SP. d e s t i n a t i o n  = P.  c i t y  1. 

TypeJ and TypeJA nesting are processed in most commercial systems, such as 

our Oracle system, by the nested-iteration method: the inner query block is pro- 

cessed once for each tuple of the outer table which satisfies all simple predicates on 

the outer table. This method has the obvious disadvantage that the inner table may 

have to be retrieved many times. In the examples above, the inner table SP must 

be retrieved once for each tuple of the outer table P, since there are no other sim- 

ple predicates in the outer query block. It is this inefficiency which motivated some 

people to develop alternative algorithms for processing nested queries. Because of 

this inefficiency, we attempt experiments, reported later in this thesis, to verify the 

efficiency of some of these algorithms. 
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Table 2.1: Summary of SQL Query Classification 

2.3 Summary 

r 
Query TYP 

Our classification for SQL queries can be summarized in Table 2.1. Note, this classifi- 

Aggregate Function 
in Inner Block 

N/A 
N/A 
Yes 
No 
Yes 
No 

Single-block 

Nested query 

cation just presented is not a complete classification. We make use of this classificatiou 

Single-table 
Join query 

T Y P ~ A  
TypeN 
TypeJA 
T Y P ~ J  

only for subsequent transformations and performance testing. 

Join Predicate 
with Outer Table 

N/A 
N/A 
No 
No 
Yes 
Yes .. 



CHAPTER 3 

The Transformation of SQL 

Queries 

From the expressive power point of view, SQL is redundant, For a certain logical 

interpretation, we can usually write a query in several different, but logically equiv- 

alent, SQL forms. Thus some SQL queries can be transformed into other logically 

equivalent SQL queries, nonetheless this kind of transformation may be difficult to 

be accomplished automatically. The redundancy of SQL provides a variety of natural 

ways for people to conceive of, express and understand queries. However, different 

IogicaiIy equivalent SQL queries can result in significantly different retrieval perfor- 

mance. Since some transformations are bidirectional, this chapter will concentrate on 

transformations from more structurally complex forms, such as nested query forms, 

into structuraUy simpler ones, such as join query forms. 
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We say that two SQL queries are logically equivalent if both queries produce idcn- 

tical Answers for any tuple values of tables. 

The motivation for making transformations is to determine a more efficient access 

plan for a proposed query. In particular, transforming a nested query into its join 

equivalence is desirable because the optimizers in current relational database systems 

that support SQL-like query languages have been designed to efficiently evaluate thc 

join form of multiple-table queries and they resort to the nested-iteration method for 

evaluating most of the nested queries. The nested-iteration method is efficient only 

for a limited set of queries and database characteristics. In the general case, join 

queries are more efficient as we show later in Chapter 4. 

3.1 Single-Block Query Transformations 

A single-block query can always be transformed into another logically equivalent, 

single-block SQL query by simply changing the order of the predicates (assuming 

there are more than one predicates). For example, a join query 'find supplier r u n -  

bers and numbers of red parts which are stored in a city where a supplier stays': 

SELECT sno, pno 

FROM S, P 

WHERE P-color = 'red' AND 

S-city = P . c i ty  
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may be transformed into the logically equivalent query by 

SELECT sno, pno 

FROM S, P 

WHERE S . c i t y  = P.city AND 

P.color = 'red'. 

Changing the predicate order may effect query perform-ance. This is why query 

optimizers routinely adjust the predicate order, typically to ensure projections and 

selections are done prior to joins. Thus, manual alternation of predicate order by 

programmers will have minimal impact on performance since contemporary query 

optirnizers do a good job of this already. 

3.2 Nested Query Transformations 

A nested query (other than a TypeA query which may be processed only one way) 

can be always transformed into a series of logically equivalent single-block queries by 

building some intermediate tables or simply by using some join oper z t '  lons. 

In order to introduce transformation algorithms and some examples, we assume, 

throughout this section, that and R; are table names for the outer table and the 

inner table. Ch,  Ck, C,, C,, C,, C,, C, and Cy are attribute names in the corre- 

sponding tables. 
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3.2.1 TypeN/Type J Transformations 

A TypeN iiested query 'find numbers of suppliers who ship parts of more tliilrl 50 

pounds each': 

SELECT sno 

FROM SP 

WHERE pna I N  

( SELECT pno 

FROM P 

WHERE weight > 50 ) 

can be transformed into a logically equivalent query which does not contain a 

nested block: 

SELECT SP.sno 

FROM SP, P 

WHERE P.weight > 50 AND 

SP.pno = P.pno. 

For another example, a TypeJ query 'find names of parts which are shipped to 

the city where they are stored': 

SELECT pname 

FROM P 
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WHERE pno I N  

( SELECT pno 

FROM SP 

UHERE SP.destination = P.city ) 

can be also transformed into a logically equivalent join query: 

SELECT P . pname 

FROM P,  SP 

WHERE P.pno = SP.pno AND 

P. city = SP .destination. 

A lemma is given in [16] for establishing the equivalence of the TypeN or TypeJ 

form and the corresponding join form of a two-table query in which the operator is 

the set inclusion operator, IN, or other scalar comparison operators (=, ! =, <=, <? 

>=, >). To illustrate this lemma, consider two queries Q1 and Q2. 

Let query Q1 be 

SELECT Ck 

FROM Ro 

WHERE Ch I N  

( SELECT Cm 

FROM Ri ) . 
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Algorit hrn TypeNJ 
Begin 

1. Combine the FROM clauses of all query blocks into one FROM 
clause. 

2. AND together the whole WHERE clauses of all query blocks into one 
WHERE clause. 

3. Replace [Ro.Ch op (SELECT R.C,] by a join predicate [R,.Ch new- 
op R.C,], and AND it to the combined WHERE clause obtained 
on step 2. Note that if op is IN, the corresponding new-op is '='; 
otherwise, new-op is the same as op. 

4. Retain the SELECT clause of the outermost query block. 

End 

Figure 3.1: Algorithm for TypeN/J Transformation 

Let query Q2 be 

SELECT Ro.Ck 

FROM Ro, Ri 

WHERE Ro.Ch = Ri.Cm. 

The lemma says that Q1 and Qz are equivalent and suggests a transformatiori 

algorithm (1161) for nested TypeN or TypeJ query of depth (n-1) (here, n is thc total 

number of block levels) to its join form. Figure 3.1 illustrates this algorithm. 

By defiaition, the inner block of the TypeN query Q1 can be evaluated indepen- 

dently of the outer block and the result of evaluating it is X, a list of values in the 

attribute C ,  of table R;. Q1 is then reduced to 
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SELECT Ck 

FROM Ro 

W E R E  C h  IN X .  

The predicate [Ch IN XI is satisfied only if X contains a constant x such that Ch := 

x. That is, it can be satisfied only for those tuples of R, and R, which have common 

values in the Ch and C, columns, respectively. The join predicate [R,.Ch = Ri.C,] 

specifies exactly this condition. So, query Q1 and Qq are logically equivalent. For a 

TypcJ query, the join predicate in the inner block which references an outer table is 

A NDed to other predicates. Thus, it can also be transformed to its join form by the 

same algorithm. For example: 

SELECT Ck 

FROM 30 

WHERE Cm IN ( SELECT Cp 

FROM Ri 

WHERE Ro.Cn = Ri.Cq OR 

Ro.Cx = Ri.Cy ) 

could be transformed into: 

SELECT Ro.Ck 

FROM Ro, Ri 

WHERE Ro . Cm = Ri . Cp AND 

( Ro.Cn = Ri.Cq OR 

Ro.Cx = Ri.Cy ). 
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This algorithm makes a very important assumption. The result of evaluating the 

inner block of Q1 is X, a list of values in the attribute C, of table R;. Since the list 

is obtained by projecting & over the C ,  column, in general it will contain duplicate 

values. But if the OP in the nested query is IN, the effect of the simple predicate 

[Ro.Ch IN XI is to implicitly remove any redundant values from X. However, the joiu 

predicate [Ro.Ch = R.C,] of query Q2 does not imply removal of duplicate valut-s 

from the C, colum2 of R, and the join result of Q2 would reflect their psescncc. 

Therefore, it is assumed that when this algorithm is used for transformation anti i f  

the OP of the nested predicate is IN, the join query obtained after the transformati011 

is processed by first selecting and projecting the table of the inner query block in  the 

nested query(e.g., R, in Q2 ) and then removing duplicate values from the resulting 

unary table before joining it with the table of the outer query block in tllc nested 

query(e.g., R, in Q2 ). This assumption guarantees the correctness of the Lerrma and 

the algorithm, and appears to be reasonable, since the unary table which results frotn 

projecting and selecting a table is usually much smaller than the initial table, thus 

the cost of joining this smaller unary table with another table is usually smaller t hall 

the cost of joining initial ones. 

Also note that this algorithm can be easily extended to some nested predicates in 

wLch the OP is a scalar comparison operator, but a join query could be obtained from 

a TypeN or TypeJ nested query by that algorithm if and only if the OP of the nested 

predicate is IN or scalar comparison operators, which means that this algorithm does 

not apply when the OP of the nested predicate is the set noninclusion operator NOT 

IN. For example, the TypeJ query 
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SELECT Ck 

FROM Ro 

WHERE Cm NOT IN 

( SELECT Cp 

FROM Ri 

WHERE Ro . Cn = Ri . Cq ) 

can not be applied by that algorithm. A nested query with the NOT IN predicate 

can be transformed into a query with a division operator. This is not considered in 

this thesis. Detailed information of this transformation can be found in [16]. 

3.2.2 TypeJA Transformation 

A transformation algorithm ([12]) for TypeJA nested query with nesting depth of one 

is presented in Figure 3.2. The following example illustrates this algorithm step by 

step. 

Let Q3 be the TypeJA query 

SELECT Ck 

FROM Ro 

WHERE Ro.Cq = 

( SELECT AGG ( Ri . Cm ) 
FROM Ri 

WHERE Ri.Cn <= Ro.Cp ) .  
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Algorithm TypeJA 
Begin 

1. Create a temporary table TMPl by projecting the join column of the 
outer table, and restrict it with any simple predicates applying to the 
outer table; 

2. Create another temporary table TMP2 by joining the inner table 
with TMP1. If the aggregate function is COUNT, the join here must 
be an outer join, and the inner table must be restricted and projected 
before the join is performed. If the aggregate function is COUNT( 
* ), compute the COUNT function over the join column. The join 
predicate must use the same operator as the join predicate in the 
original query(except that it must be converted to the corresponding 
outer operator in the case of COUNT), and the join predicate in the 
original query must be changed to =. In the SELECT clause, selcct 
the join column from the table TMPI in the join predicate instead 
of the inner table. The GROUP BY clause will also contain columns 
from table TMPi. 

3. Join the outer table with the temporary table TMP2, according to 
the transformed version of the original query. 

End 

Figure 3.2: Algorithm for TypeJA Transformation 
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First, let 

mp1( Cp ) = 

SELECT DISTINCT Cp 

FROM Ro; 

then, another table TMPZ is created: 

TMP2( Cg, Cm = 

SELECT TMPl .Cp,  AGG( TMP3.Cm ) 

FROM 'R4P1, TMP3 

WHERE TMP3.Cn <= TMP1.Cp 

GROUPBY T M P l . C p .  

If AGG is COUNT, then the join for TMB2 must be ac outer join3 and 

TMP3( Cm, C n  ) = 

SELECT Cm, Cn 

FRO14 R i ;  

otherwise, the table TMPS is the same as Ri. 

Finally, a join qnery Q4 

3The outer join includes all values from columns participating in join, with NULLS in the opposite 
column if there is no match for a column value (see [81 for detail). Oracle implemented the outer 
join by adding a (t) after a table name in the normal join predicate. 
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SELECT Ro.Ck 

FROM Ro, W 2  

WHERE Ro .Cq = TMF2.Cm AND 

Ro.Cp = TMP2.Cp 

produces the same answer as the TypeJA query Q3. This shows that a TypeJA qucry 

may be transformed into an equivalent join query by introducing some i nternrediate 

tables. In query Q3, if the AGG in the inner query block is COUNT( * ), the11 

compute the COUNT function over the join attribute, i.e., change COUNT( * ) to 

COUNT( Cn ). 

The algorithm in Figure 3.2 only works for the simplest TypeJA nested queries, 

which is nested to depth one and there is only one table in the only inner query block. 

In the general case, the aggregate function and the j ~ i i ~  predicate may appear at 

any level of nesting, and not necessarily at the same level. Thus, Algorithm TypeJA 

needs to  be extended. The basic idea of this extension is t~ first remove the aggregate 

function from the inner query block by creating temporary tables (step 1 and step 2 i r l  

Figure 3.2), turning the TypeJA nested qucry into a TypeJ query, then to transform 

the revised TypeJ query by the TypeNJ algorithm (step 3 in Figure 3.2). In thc: 

general case, the transformation of a TypeJA query requires these two separate steps. 

We present a formal algorithm for the transformation of a general TypeJA query i n  

Chapter 5. 
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3.3 Some Extensions 

The transformation algorithms presented only consider nested predicates containing 

scalar comparison and set inclusion operators. But the SQL language also contains 

other operators such as EXISTS, NOT EXISTS, ANY and ALL. Some extensions to 

queries need to be implemented in order to take the advantage of these more efficient 

transformat ion algorithms. 

3.3.1 EXISTS and NOT EXISTS Extensions 

A nested query of the form 

WHERE E X I S T S  

( S E L E C T  s e l e c t i t e m s  

FROM f r o m i t e r n s  

WHERE w h e r e i t e m s  ) 

can be transformed into the nested query 

WHERE 0 < 

( S E L E C T  COTJNT( s e l e c t i t e m s  ) 

FROM f r o m i t  e m s  

W E R E  v h e r e i t e m s  ) .  

Similarly, a nested query of the form 
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WHERE NOT EXISTS 

( SELECT select it ems 

FROM f romit ems 

WHERE whereitems ) 

can be transformed into its equivalent 

WHERE 0 = 

( SELECT COUNT( select items ) 

FROM f romit ems 

WHERE whereitems 1 . 

These transformations may result in a TypeA or TypeJA nesting depending 11po11 

whether or not the inner query block has any join predicate with an outer tahlc, imcl 

these transformations are bidirectional. 

3,3.2 ANY and ALL Extensions 

A nested predicate of the form 

< ANY SELECT selectitem 

FROM fromiterns 

MIERE whereitems ) 

can be transformed into the logically equivalent form 
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< ( SELECT MAX< selectitem ) 

FROM f romitems 

WHERE vhereit ems ) . 

'f'he: same transformation is performed when the operator is <= ANY. 

Similarly, 

< ALL SELECT selectitem 

FROM f romitems 

WHERE whereitems ) 

can be transformed into the logically equivalent nested predicate 

< ( SELECT MIH( selectitem ) 

FROM f rornit ems 

WHERE vhereitems 1, 

and the same tra~tsh-mation is performed when the operator is <= ALL. If the 

comparison operator is > or >=, the transformation is the reverse: 

> ANY ( SELECT selectitem 

can be changed to 

> ( SELECT ?Ulf selectitem ) 

and 
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> ALL ( SELECT selectitem 

can be changed to 

> ( SELECT MAX( selectitem ) . 

More simply, an operator of the form =ANY is transformed into IN, and an opcra- 

tor of the form !=ANYis transformed into NOT IN. But the set noninclusion operator 

is not considered in our performance testing, so the transformation of !=ANY is  lot, 

considered further. 

3.4 Cost Models for Transformed Query Process- 

ing 

In order to convince ourselves that the processing performance will be better after 

these transformations, we need to set up cost models in order to compare the result,ing 

candidate queries. 

kt us assume: 

R,: an outer table; 

R;: an inner table; 

Rt: the temporary table t obtained by intermediate processing on k, t is 

the table name; 
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Pk: the size in pages of table Rk; 

Nk: the number of tuples in table Rk; 

G: the fraction of the tuples of table Rk that satisfy all simple predicates 

on Rk; 

B: the size in pages of available main memory cache. 

(Note, k represents a table name, thus k = o, i or t . )  

Furthermore, the nested query has the simplest form: one outer block and one 

inner block, the FROM clause of each block contains only one table. No indexes 

are available for query processing (i.e., tables are sequentially scanned). The nested- 

iteration method is used for the evaluation of TypeN, TypeJ and TypeJA queries, 

and a (B - 1)-way multiway merge-sort method is used for all the join operations, 

which requires (2 - Pk - logB-, Pk) page 110s to sort the table Rk. 

For a TypeN query, the inner query block is evaluated first, thus the temporary 

table Rt is a unary table with smaller size than the initial table. For a TypeJ query, the 

temporary table Rt is obtained by selecting and projecting on table R; first according 

to the simple predicates in the inner query block. This might reduce the size of Rt, 

If table Rt can not fit into the (B - 1) page main memory cache, then Rt has to be 

fetched once for each tuple of R, that satisfies all other simple predicates on R,, as 

many as (fo - No) times. The cost is up to 

+ P,)  + Po + fo No Pt (page IIOs) 

where the first two terms are the cost of generating Rt since table Rt has to be written 

out on disk. In contrast, the total cost for the equivalent join query by the merge-sort 
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method is 

where the first three terms are the cost of generating Rt from R; and removing dupli- 

cates from Rt by sorting; the next three terms are the cost of selecting and projecting 

Ro into Rtl and sorting it, thus Ptl = f, . Po; and the last two terms are the cost of 

merge joining Rt and Rtl after sorting both of them. 

For example, for a. TypeN or TypeJ query, if we have six pages of main memory 

cache (B = 6), the size of the inner and outer tables is 100 pages (Pi = roo = 100), 

there are 500 tuples in table R, which satisfies all other simple predicates (f, + No = 

500), and the temporary table Ri has 20 pages (Pt = 20), according to our cost model, 

the nested-iteration method may cost 10,220 page 110s. If the table Rtl hm 50 pages 

(Ptl = 50) and a five-way merge-sort is used to sort Rt and Ril, the join query costs 

total 658 page 110s. For another example, if we have six pages of main memory cache 

(B = 6), the inner and outer table size is 50 pages (P ,  = Po = 50), no simple predicate 

for the outer table (fo = 1) and there are 500 tuples in the outer talbe ( N o  = 500), 

and the table Rt has 20 pages (Pi = 20), the nested-iteration method costs 10,120 

page I/Os. If a five-way merge-sort join is used for the join query, the join processing 

needs 558 page 110s. Thus, transformed join queries are more efficient than nested 

queries. More detailed theoretical analysis results can be seen in [16]. 

The cost for a TypeJA query evaluated by the nested-iteration method is 
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The total cost of using the TypeJA transformation algorithm in Figure 3.2 will consist 

of three major sub-costs: 

1. The projection and selection on the outer table R,, resulting in a 

temporary table TMPl; 

2. The creation of temporary table TMP2 by projecting and selecting 

the inner table R, joining this with temporary table TMPl, and 

performing a GROUP BY operation on the result; 

3. Joining the temporary table TMP2 with the outer table R,. 

Thus, the total cost of transforming a simplest TypeJA nested query will depend 

on the type of join used to create temporary tables (since a join might have to be an 

outer join), and also depend on the type of join used between the outer table R, and 

the temporary table TMP2. If the merge-sort join is used for all of the join operations, 

the normal join and the outer join will hzve the same cost. 

The cost of creating the table TMPI, e.g., projecting and selecting R,, then sorting 

it, is: 

Po S PTMPI + 2 - PTMPI log~- l  PTMPI (page 1 / 0 3 )  

The cost of creating the temporary table TMP2 including the GROUP BY operation 

where table TMP4 is the result of join before the GROUP BY operation. The first 

three terms above are the cost of creating a sorted TMP3 from table &. The next 
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two terms aKe the cost of merge join TMPl and T W 3 .  Then, perform the GR.OUP 

BY operation on TMP4 and write out table TMP2 to disk. The cost of performing 

the final join between R, and TMP2 is: 

Thus, the total cost of the algorithm is the summary of these three parts its give11 

above. 

The cost model for TypeJA transformation can be compared to the nested-iteration 

method in the following example. The TypeJA query is query Q3 above, the aggrc- 

gate function is COUNT, but in the inner query block, the join is an equal join 

instead of with '<=' operator. For example, the outer table has 50 pages (Po = 50), 

the inner table has 30 pages (P; = 30), the corresponding temporary table RTMPl, 

RTMP~, RTMP~ and RTMpl have 7 pages, 5 pages, 10 pages and 8 pages respectively 

(PTMP~ = 7, PTMPZ = 5, PTIMP3 = 10, PTMPl = 8), the main memory cache is 6 pages 

(B = 6), there are 100 tuples which satisfy the simple predicates on the outer table 

(fo . No = 100). The nested-iteration method of processing the query costs 50 + 
100 * 30 = 3,050 page 110s. The transformation method using Algorithm 'I'ypeJA 

and two merge-sort joins cost about 470 page I/Os. This example shows that the 

nested-iteration method is less efficient under the assumptions in the example. The 

theoretical analysis of Algorithm TypeJA is very complex, and a detailed analysis is 

presented in [12]. 

From the a d y s e s  above, we can determine that, generally speaking, a theoretical 

analysis for an algorithm is clear, correct, but has some limitations in the sense that: 
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1. All of the theoretical analyses are based on simplified models, like simplified 

queries and simplified memory situations. Certain statistical properties, e.g. 

uniform distribution and independence of attribute values, are commonly as- 

sumed. This can only reflect a part of the performance information, sometimes, 

even a rather small part. For more general, more practical situations, this kind 

of theoretical analysis is difficult to do and to compare, thus the conclusions 

obtained based on those assumptions are suspect. 

2. Most theoretical analyses are based entirely on a small number of processing 

strategies. Index information can play a very important role on query perfor- 

mance and the strategy chosed by a query optimizer sometimes is related to 

the available indexts. But adding index information to the analysis makes the 

analysis more complicated and even more difficult. 

3. Frequently the number of secondary storage accesses is the sole, or at least dom- 

inating, cost measure, as in the analyses above. This assumes that disk 110 is 

still the bottleneck of SQL query processing. But today's transaction processing 

systems often have large database buffers and are CPU-bound rather than 110- 

bound. Multitasking environments, buffer management, concurrency control, 

communication cost and operating system overhead are frequently neglected by 

the traditional analysis methad, even though they have a major performance 

impact sometimes, 

Therefore, a performance testing on an actual RDBMS can make the conclusions 

more convincing. 



Performance Tests with Wisconsin 

Benchmark 

A benchmark is a point of reference from which measurements of any sort rnay be 

made4. The need for benchmarks arises whenever there are different produc'Ls claim- 

ing or providing similar functionality. For example, in industry there is a trend to 

decentralize data management which has acted as a catalyst to the development of 

relational distributed database management systems. Some of these RDBMSs include 

Distributed INGRES by Ingres Corporation, SDD-1 developed at the Computer Cor- 

poration of America and R* developed by IBM. Because these systenis offer similar 

functionalities, a need to perform a comparative evaluation of their performance be- 

comes necessary. A vendor could also use benchmarks to stress test a system under 

development. Another u x  for a vendor is in establishing a particular rating for a 

4See Webster's Third New Infernafional Dicfionary, 1981. 
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system. Finally, a user can use a benchmark to compare several systems before pur- 

chasing one. Benchmarks are also useful to logici).l acd physical database c!.xigners 

because benchmarks help the designers identify costs and Eighlight problems users 

may face given certain design decisions. 

A good benchmark for database systems should have the following basic charac- 

teristics ([s]): 

1. Single-user/Multi-user modes: A good benchmark should come in both the 

single-user and multi-user modes. The single-user benchmark should provide 

best case expected performance of a system, while the multi-user benchmark 

should test the system under normal operating conditions. 

2. Scalatility and Portability: A good benchmark should be scalable so that 

systems of various sizes can be meaningfully compared. It should also be easily 

portable across platforms. 

3. Ease of Implementation: The benchmark should be easy to implement. A 

benchmark does not have to require many person-months to set up. 

4. Database Structure: Most existing benchmarks use one database. This sug- 

gests a centralized system by default. If a benchmark is to be run on systems 

that are not centralized, then the structure of the benchmark, including the 

structure of the database(s) used, should clearly reflect that fact. 

5. System Workload: The workloads faced by the systems under test should be 

modeled as closely as possible. 
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6. Performance Metrics: The performance metrics measured by the benchmarks 

should be clearly stated and defined. 

4.1 Benchmark Methodology for Database Per- 

formance Testing 

Managing a database requires a complex system composed of hardware, software, and 

data components. A benchmark methodology for database systems must consider a 

wide variety of system variables in order to fully evaluate performance. Each varia' lc 

must be isolated as much as possible to allow the effects of that variable, and only 

that variable, to be evaluated. 

The benchmark methodology for database systems consists of three stages ([30]): 

1. Benchmark Design: 

Establishing the environment of the database systems to be tested, and devel- 

oping the actual tests to be performed, which includes setting up the syster~i 

environment for the benchmark; designing the system configuration, test data, 

workload, and variables of the benchmark studies. 

2. Benchmark Execution: 

Performing the benchmark testing and collecting the performance data. 

3. Benchmark Analysis: 

Analyzing the performance results on individual datahaw systems and, if more 
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than one system is benchmarked, comparing performance across several systems. 

The performance experiment of this thesis will be run cn one relational database 

system for different, but logically equimlent, SQL queries. 

4.2 Benchmark Design 

In the past few years we have seen in the literature a number of proposals for bench- 

marks to be used in measuring the performance of database management and trans- 

action processing systems. The T P l  benchmark ([I]) and the iVisconsin benchmark 

([3], [5 ] ,  and [4]) have been used to benchmark several systems. Other benchmarks 

have also been proposed. It appears as though both the TPI and the Wisconsin 

benchmark have the potential of becoming de facto standard benchmarks, in their 

respective areas, to be used in a variety of ways. 

Whereas TP1 is oriented towards transaction processing, the Wisconsin bench- 

mark was conceived for the purpose of measuring the performance of relational database 

systems. It consists of two parts: a single user benchmark in which a suite of approx- 

imately 30 different queries are used to obtain response time measurements in stand 

alone mode (described in [3]) and a multi-user benchmark in which several queries of 

varying complexity are used to determine the response time and throughput behavior 

under a variety of conditions (one version of the multi-user benchmark is described 

in [5] and the second version in [4]). 

In the Wisconsin benchmark, the test database consists of a number of relations 
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of varying sizes. The relations are generated according to statistical distributions 

and do not model any real-world data. Users of the benchmark can modify thc 

database generator routines to adapt the database characteristics so that they are 

more representative of their application. 

4.2J Wisconsin Benchmark Database 

Our benchmark experiment will be run on our Oracle system using the Wisconsin 

Benchmark database as the test database. The Wisconsin benchmark was one of 

the first attempts at formalizing experimental performance evaluation of reiationrtl 

database systems. It was originally conceived as an experiment in benchinarkirlg 

methodology. The benchmark focuses on measuring the performance of acccss met11- 

ods and query optimization in a relational database system. Since the purpose of 

this thesis work is to study the performance information between logically equivalent 

SQL queries for a database, and to test the performance difference in different indcx 

situations, we chose to use the Wisconsin benchmark database. 

The original test database consists of 3 relations, with identical attrit~utes but 

different cardinalities, one with 1,000 tuples and the other two with 10,000 tuplcs. 

Zach relation has 16 attributes, 13 two-byte integer attributes and three fixed-length 

string attributes with 52 bytes for each attribute. This results in the tuple width of 

182 bytes in total. For a table in a benchmark database, this number can avoid giv- 

ing any system arm advantage through some fortuitous alignment of tuples in  pages. 

Each of the three string attributes has three distinguishing characters occurririg in  

positions 1, 27 and 52. These distinguishing characters allow for 263 unique strings, 
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Name Type Range Order Comment 
unique1 int 0 - 9999 random candidate key 
unique2 
two 
four 
ten 
twenty 
hundred 
t housamd 
twothous 
fivet hous 
tent hous 
odd100 
even100 
stringul 
stringu2 

int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
char 
char 

random 
rotating 
rotating 
rotating 
rotating 
rotating 
random 
random 
random 
random 
rotating 
rotating 
random 
rotating 

declared key 
0, 1, 0, 1, .. 
0,1,2,3,0,1, .. 
O,l,.., 9,0,1, .. 
O,l,.., 19,0,.. 
O,l,.., 99,0,.. 

candidate key 
1,3,5 ,.., 99,1, 
0,2,4 ,.., 98,0, 
candidate key 
candidate key 

[ string4 char a..a..a - v..v..v rotating 

Table 4.1: Description of the Attributes in Table TenKOne of Wisconsin Benchmark 

thus enough for the 10,000 tuple table. The remainder of the positions contain the 

same padding character. See Table 4.1 for a detailed description of each attribute in 

the table TenKOae. 

The smaller table OneK has the same attributes as the table TenKOne, with 

identical ranges and cardinalities except where the number of tuples in the table pre- 

cludes some attributes from having all of the integer values within the specified range. 

In order to test the effects of indexes, we created three indexes on each table: a 

clustered index on unique2, a nonclustered, but unique index on uniquel and another 
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nonclustered, but nonunique index on hundred. 

Some system designers and users of database systems who implemented the bench- 

mark havz criticized the original design on numerous points ([2]). Among the most 

common criticisms are those about the structure and size of the database, the tuple 

length, data type structure of the strings and distributions of attribute values, the 

difficulty in scaling the benchmark to various applications, the restricted and unreal- 

istic set of test queries and the fact that the single user mode is not representative of 

a system's performance in an actual application. 

4.2.2 Index Information and Query Performance 

Conceptually speaking, an indez is a binary relation that associates certain at t ri bu tc 

vaIue(s) with references to relation elements (tuples), usually called tuple identifiers. 

We consider three kinds of index: 

1. cluster: the tuples with the same value on the cluster column are stored together 

physically, there can be only one clustered index for any table; 

2. noncluster/unique: there is exactly one tuple in the table fcx each index key; 

3. noncluster/nonunique: there is one or more tuples in the table for each indm 

key. 

An index can be conzposed of one or more attributes. An index with more that1 
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one attribute is celled a conuztenated index. 

A relational system does not automatically build indexes, rather they must be 

created by authorized users such as database administrators. Index selection is not 

trivial, since an index designer must balance the advantages of indexes for data re- 

trievaI versus their disadvantages in maintenance costs (incurred for database inserts, 

ddetcs, and updates) and database space utilization. An index always plays an im- 

portant role in the efficiency of certain searching times since some searching can be 

accomplished by simply scanning the index itself and some other searching can be 

accornpIished by the direct access of data blocks through the index. Nonetheless, a 

poor choice of index designs can result in poor system performance, far below what 

the system would do if a better set of indexes were available. Furthermore, the exis- 

tence of certain indexes, aithough they improve the performance of some statements, 

may reduce the performance o; other statements, since the indexes must be modified 

when tables are updated. 

Thus, indexes have the following advantages and disadvantages. 

Advantages 

a An index may speed up direct access based on a given value for the indexed 

coIumn or coEumn combination. Without the index, a sequential scan would be 

required - 

e fndexes speed up sequential access based on the indexed column or column 
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combination. Without the index, a sort would be required. 

Disadvantages 

0 Indexes require space on disk. The space devoted to indexes can easily excccd 

that taken up by the data itself in a heavily indexed database. 

0 Although an index can speed up retrieval operations, it will, at  the sarnc timc, 

slow update operations. Any update on the indexed column or column combi- 

nation will require an accompanying update operation on the index. 

4.2.3 Query Design 

The purpose of this work is to determine the performance relationship between logi- 

cally equivalent SQL queries in situations with different index information available. 

Thus, the original Wisconsin benchmark queries are not suitable for this work, a 

group of new queries needs to be designed. According to our classification of SQL 

queries, the query design is trying to take the advantage of the Wisconsin benchmark 

database in order to make use of different indexes and, at the same time, control the 

query selectivity, e.g., the size of the query answer, as well. Thus, we follow threc 

basic principles for query design: 

1. Each category in our query classification should be tested; 

2. Each query shodd be tested with different index information; 

3. The impact of the number of tuples returned should be considered. 
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Our classification of SQL queries yielded seven groups of test queries. For each 

group, there are several logically equivalent queries derived from the transformation 

algorithms. Group1 and Group2 are used to test the performance for single-block 

queries in different index situations. Group3, Group4 and Group5 are to used test 

the performance for single-level nested queries. Group6 and Group7 are used to test 

the performance for some extensions. Only the nested queries of depth one with the 

only inner block were tested. The SQL queries that are introduced in this chapter are 

also summarized in Appendix A. 

According to the definition of the benchmark tables, attributes tenthous has no 

index, uniquel has a nonclustered unique index. Each of them is a key for that table 

since each value of each of those attributes can uniquely identify a tuple in that table. 

The value range and value distribution is identical for these two attributes. Attributes 

tenthous, uniquel and hundred were used in test queries to determine the index impact. 

When we designed these test queries, the number of return tuples, i.e., the size 

of the query answer: was a very importa3t factor which we considered. In different 

index situations, we tried to determine what impact the size of the answer had on 

retrieval time. Again, the key attributes tenthous and uniquel were used to control 

the query answer size. 

Another assumption for the TypeNJ transformation algorithm is that if the O P  

is the set inclusion operator IN, the corresponding join query must remove dupli- 

cates before the actual join processing. In our tests, we always SELECTed from a 
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key attribute in the inner table if the OP is IN. Thus, the intermediate table a.fter 

processing the inner block would not contain any duplicates. This simplified the du- 

plicate removing processing, and the performance conclusions are still valid since in 

some actual situations, duplicates do exist. Thus the intermediate table which results 

from projecting and selecting the inner table is usually much smaller than the initial 

one. The cost of joining this reduced table is, therefore, usually smaller than the cost 

of joining the initial table. Thus, this simplified testing demonstratcs the worse case 

because the intermediate table is not reduced in size. 

4.3 Benchmark Execution and Analysis 

All of the performance tests were run on SunOS Release 4.1.1 in single-user mode 

during weekends or late nights. The host machine for the Oracle database5 is also a 

file server, so for each test, we chose the shortest timing after at least 10 executions 

of the same query. Since this test was in single-user mode, only the measurcmcnts for 

response time were reported. The SQL queries were executed from a I'ro'C program. 

Timing data was obtained by the use of system calls. FOP example, in the IJNIX 

environment, we made use of the gettimeofday() system call before and after a query 

to determine the elapsed time for response time. A sample Pro'C program used in 

the testing appears in Appendix B. 

In our Oracle system, an integer is 4 bytes, thus the tuple width in our tests is 

50racle RDBMS, Version 6.1. 
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208 bytes. The database data block size on our Oracle system is 2k, and the main 

memory cache has 200 blocks. For our tables, table OneK requires 178 blocks and 

IknKOne/TenKTwo requires 2119 blocks respectively. Thus, table OneK can fit into 

main memory cache, thus occasional improving the performance significantly, espe- 

cially for a nested iteration algorithm if OneK is the table used in the inner loop. 

In SQL*Plus6, there is a performance diagnostic tool which can be used to query 

the access plan chosed by the optimizer. All the access plans shown in later sections 

were obtained by using this tool. Detailed information for this diagnostic tool can be 

obtained in [22]. 

4.3.1 Single-Table Queries 

The queries used for testing are 

1.1: 

SELECT even100 

FROM TABLE 

WHERE oddlOOC100 AND 

two < 2 AND 

unique1 < value; 

6SQI,*Plus is an interactive cornmad language for working with an Oracle database. Detailed 
information can be obtained from [21]. 
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1.2: 

SELECT even100 

FROM TABLE 

WHERE unique1 < value AND 

odd100 < 100 AND 

tvo < 2. 

The SQL query 1.1 and 1.2 above are logically equivalent since one may be obtained 

from the other simply by switching the predicate order. Here, TABLE could bc 

OneK, TenKOne or TenKTwo, value is an integer value to restrict the number ol' 

return tuples. Since odd100 is an odd number from 1 to 99 and two can only be 0 or 

1, these two predicates are always true. Therefore, the value is the number of return 

tuples. According to the query planner on our system, for query 1.1, no matter what, 

order the predicates are in, the execution plan, when TABLE is TenKOne, is always: 

TABLE ACCESS BY ROWID TenKOne 

INDEX RANGE SCAN tenklunik 

where, tenklunik is the index name on TenKOne.unique1. Thus the query plan is riot, 

effected by the order of the predicates, and if there is an index available, the optirnizcr 

will use the index instead of doing a full table scan to execute that query. This means 

that the Oracle optimizer will optimize the query based on the index information 

instead of the query syntax like the order of the predicates. 

Our test data (see Table 4.2 and Table 4.3) shows that on Oracle, both qucrics 

for the same table require approximately the same execution time, no matter the Y izc 

of the table, as Iong as both queries have the same index available. Thus, the qucry 



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 49 

I I Number of Return Tuples 1 

Table 4.2: Timing Data(Sec.) for Single-Table Queries with Table OneK 

Query 
1.1 
1.2 
1.2 

Table 4.3: Timing Data(Sec.) for Single-Table Queries with Table TenKOne 

Index 
Yes 
Yes 
No 

performance cannot be changed simply by changing the predicate order in a query. 

This test indicates that the Oracle optimizer can always find a good way to evaluate 

single- table queries. 

- 

But, if we run the same query with and without an index, the situation is much 

different. However, an index does not always lead to greater efficiency. For a smaller 

table like OneK, an index is always helpful. This is due to the fact that both the table 

data and the index data can fit into ?he main memory cache. In this case, the main 

memory cache is 200 blocks, OneK requires 178 blocks, and the index on unique1 

requires only 11 blocks. Even when the entire table has to be accessed, the overhead 

of accessing the index hardly has any effect on query performance. But for a larger 

table like TenKOne, a query executed with an index can be less efficient than the full 

10 100 200 300 400 500 1000 
0.13 0.79 1.50 2.24 2.95 3.61 7.16 
0.13 0.78 1.48 2.25 2.97 3.61 7.13 
0.50 1.11 1.77 2.43 3.14 3.73 7.11 

Number of Return Tuples 
100 1000 2000 3000 4000 5000 8000 10000 

0.79 8.33 16.69 24.99 32.56 40.99 65.35 82.16 
0.80 8.38 16.57 25.13 32.76 40.77 65.39 81.93 
5.49 11.24 17.67 23.82 30.55 36.55 55.95 68.13 

Query 
1.1 
1.2 
1.2 

- 

Index 
Yes 
Yes 
No 
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0 2000 4000 6000 8000 10000 
Number of return tuples 

Figure 4.1: Single-Table Query 1.1 for Table TenKOnc 

table scan sometimes. This can be seen from Figure 4.1. The TenKOne table data 

occupies 2119 blocks, and the index on unique1 requires 99 blocks. Searching by indcx 

might cause some data blocks to be read more than once, and if that required data 

block is not in the cache at that moment, more disk 110s will resuit. In this casc, nil 

index can only be more efficient if the selectivity of that query is relatively high, which 

means the number of return tuples of that query is not too large. From our tests witti 

Oracle, this number might be around 25% to 30% of the table size. If the proportion 

of return tuples is more than that, an index can make the performance worse. Whcr~ 

the selectivity is low, large parts of the index and the table will be accessed. In  rr~arry 

cases it will take less time to scan the entire table than to access it using the indcx. 

When accessing the"6able via the index, much time will be spent moving the disk arln 

between the index data and the table data. In the extreme situation (for cxarr~pie, 

when a query returns every single tuple in the table TenKOne), the index access 

becomes complete overhead. A whole table scan of TenKOne can be 22% faster in 
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this case. This difference can be even larger for huge tables. 

4.3.2 JoinQueries 

Two different join queries were employed. 

2.1: 

SELECT TenKOne.even1OO 

FROM TenKTwo , TenKOne 

WHERE TenKTvo.value2 < value3 AND 

TenKTwo.value2 = TenKOne.value1 

2 . 2 :  

SELECT 

FROM 

WHERE 

TenKOne.even1OO 

On&, TenKOne, TenKTwo 

OneK .hundred < value AND 

TenKOne.unique2 < value AND 

TenKTwo.hundred < value AND 

0neK.hundred = TenKOne.unique1 AND 

0neK.hundred = TenKTwo.hundred 

We notice by consulting the Oracle planner that the actual access plans of these two 

queries are independent of the predicate order in the queries, ~ h i c h  means the timing 

data should be the same if the predicate order is the on!; difference between two 

queries. In Table 4.4, query 2.1 was obtained by value1 = tenthous, value2 = uniquel, 

value3 goes from 100 to 10000. Query 2.1' was obtained by putting the join predicate 

before the selection predicate in query 2.1 (similarly for query 2.2' in Table 4.5). From 
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Query 
2.1 
2.1' 

Table 4.5: Timing Data(Sec.) for Three-Way Join Query 2.2 

Number of Return Tuples 
100 1000 2000 4000 6000 8000 10000 

14.11 20.19 26.86 40.10 52.56 66.15 78.69 
14.31 20.53 27.54 38.54 53.40 64.5'7 79.55 

- 

those two tables, we can see that no significant performance difference may he dcrivccl 

Table 4.4: Timing Data(Sec.) for Two-way Join Query 2.1 

by switching the predicate orders in join queries. 

Query 
2.2 
2.2' 

We tested the following index situations for query 2.1: neither of the two tablcs 

Number of Return Tuples 
1000 10000 20000 40000 60000 80000 100000 
9.58 95.56 191.31 387.20 561.92 748.60 938.94 
9.59 95.61 190.80 389.42 563.63 750.94 934.00 

has an index, one of them has an index on uniquel, and both of them Rave indexcs 

on uniquel. The value for value3 ranges from 100 to 10,000. Here again, we always 

Table 
TenKOne 

index 

Table 4.6: Timing Data(Sec.) for Join Query 2.1 wi th/without Indexes 

L 

Table 
TenKTwo 

index 

Number of Return Tuples 
100 1000 2000 4000 6000 8000 lOUVO 

----. 
20.94 27.20 34.52 48.78 65.99 82.90 99.51 
0.88 9.15 18.52 38.15 55.33 74.32 92.70 

index 
index 

6.35 15.17 24.79 42.40 61.29 80.39 99.42 
14.11 20.19 26.86 40-10 52.56 66.15 78.69 
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10000 no index 
both indexes --I-. . 

TenKOne wjindex -0- 
8000 TenKTwo w/index ++- 

6000 

4000 

2000 

0 
0 2000 4000 6000 8000 10000 

Number of return tuples 

Figure 4.2: Join Query 2.1 with Different Indexes 

choose a key attribute for valuel and value2, so that, for every value of valuel in 

table TenKOne there is exactly one tuple for value2 in TenKTwo. Therefore, value3 

is the number of return tuples for that query. From Table 4.6 and Figure 4.2, we can 

see that, in this case, using an index does significantly improve performance. This is 

because the join attributes are keys for the two tables, and only one tuple is accessed 

from each table. But for a given query, different index information will cause the 

optimizer to use totally different access plans, and those access plans would play a 

major role for query performance. 

In query 2.1, if none of the concerned attributes in the WHERE clause has an 

index, the merge-sort method will be used for the evaluation. The sorting for each 

table is by the full table scan since no index is available. Thus, the timing data for 

this case is higher than for all of the other cases (See Figure 4.2). 
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If both value1 and value2 have an index in query 2.1, then the nested-loap m~thod 

will be used. The access plan is 

NESTED LOOPS 

INDEX RANGE SCAN tenk2unik 

TABLE ACCESS BY ROHID TenKOne 

INDEX UNIQUE SCAN tenklunik 

In this situation, tenk2unik and tenklzsnik are the indexes for table '1EnKTwo a d  

TenKOne. Since the join attribute and the select attribute for TenKTwo is thc in- 

dex attribute, i.e., value2) the valid values are obtained by scanning the indcx o111y 

instead of accessing the table. For each value of that attribute which satisfies thc 

selection condition obtained by using the index range scan method, use the index on 

TenKOne.value1 to  produce the join result. Having both tables indexed is best i f  lcss 

than half the tuples in both tables are accessed for that join operation. 

If only TenKOne has an index, the access plan is 

NESTED LOOPS 

TABLE ACCESS FULL TenKTwo 

TABLE ACCESS BY ROWID TenKOne 

INDEX UNIQUE SCAN tenklunik 

The index is used to access TenKOne, but the driving table TenK7iuo has to be ful l  

table scanned. This makes this case constantly worse than both-index-case due to t hr: 
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difference between a full table scan and an index access of the driving table. But this 

situation is still better than no-index-case most of the time. 

If only TenKTwo has an index, the nested-loop method is still used. The access 

plan becomes 

NESTED LOOPS 

TABLE ACCESS FULL TenKOne 

INDEX UNIQUE SCAN tenk2unik 

But this time, the driving table is TenKOne instead of TenKTwo. The driving table 

is full table scanned. For each tuple in TenKOne, the index on TenKTwo is used to 

check the corresponding value for the join attribute. This means that the index on 

TenKTwo has to be accessed as many times as the number of tuples in TenKOne. 

Thus, if only a small number of tuples in TenKOne is in the join output, accessing each 

single tuple of Tenlane and going through the whole index tenk2unik on TenKTwo 

would be an overhead for that join. This is why TenKTwo-index-case is the worst 

among all the index cases for small retrievals. But if more than half of the TenKTwo 

satisfy the selection condition, which means more than half of the tuples in TenKOne 

will be in the join output, the full table scan is the best way. Thus, this case is the 

most efficient one for large retrievals. 

From the four cases described above, we can observe that indexes can always make 

join queries more efficient. The query optimizer can recognize the available indexes 

and always take the indexed table as the inner loop table in a nested-loop method, 
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thus making the join processing more efficient sometimes if there are some indexes 

available. But taking the indexed table as the inner loop table in a nested loop joill 

method is not always efficient as in the case of next section. 

4.3.3 TypeN Queries 

A TypeN query can be transformed into a logically equivalent join query. Tlw TypcN 

query and the join query used for the test are 

3.1: 

SELECT 

FROM 

WHERE 

( 

3.2: 

SELECT 

FROM 

WHERZ 

even100 

TenKOne 

value1 IN 

SELECT value2 

FROM TenKTwo 

WHERE value2 < value3 1, 

TenKOne.even100 

TenKTwo, TenKOne 

TenKTvo.value2 < value3 AND 

TenKTuo.value2 = TenKOne.value1. 

In order to understand the role an index plays in a TypeN query, four cases (ou t,cr 

block with and without index and inner block with and without index) are considered. 

In our testing, only a nonclustered unique index is used. The value range for value3 
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is from 100 to 10,000. 

The inner query block in a TypeN nesting may be evaluated first. By consulting 

the Oracle optimizer, we can see that, for a TypeN query, if there is an index in the 

outer block, then the nested-iteration method is always used. This method sorts the 

return values from the inner block first, then for each value, uses the index in the 

outer block to acccss the outer table in order to select the valid tuples. Whether or 

not the inner block has an index for this query only determines whether the inner 

table is full-table-scanned or accessed through the index. If no index is available for 

the outer block, the merge-sort method is used, no matter whether the inner block 

has an index or not. First the return values from the inner block are sorted, then the 

outer table Tenh'One is full-table-scanned in order to sort it. After these steps, a join 

operation is executed. Equivalent join queries have exactly the same access plans as 

in the previous section. 

From Table 4.7, we observe that in all the cases, the join query is never less 

efficient than the corresponding TypeN query. But the transformation from TypeN 

to join achieves more benefit when the inner query block, thus the outer block too, 

returns a large number of values. This can also be deduced from Figure 4.3 when the 

outer block does not have any index, but the inner block may have a nonclustered 

unique index. 

if the nttrnber of return tuples of a query is more than 4,000, there is a dramatic 

performance increase for some index cases (see Table 4.7). This is because in those 
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TYP~N 
Join 
TypeN 
Join 
TYP~N 
Join 
TYP~N 
Join 

Outer 
Table 

Table 4.7: Timing Data(Sec.) for TypeN/ Join Queries (3.113.2) 

Index 

no index: TypeN + 

2000 4000 6000 8000 10000 
Number of return tuples 

Inner 
Table 

Index 

Figure 4.3: TypeN Query 3.1 with Merge-Sort Method and Join Query 3.2 

Number of Return Tuples 
100 1000 2000 4000 6000 8000 10000 

16.23 22.13 29.82 44.92 64.14 82.75 98.51 
14.11 20.19 26.86 40.10 52.56 66.15 78.69 

U 

Index 

20.98 27.42 34.40 49.58 $6.50 90.96 104.52 
20.94 27.20 34.52 48.78 65.99 82.90 99.51 
0.94 9.72 19.56 38.78 59.66 80.17 99.19 
0.88 9.15 18.52 38.15 55.33 74.32 92.70 
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cases, the returning values from the inner block are always sorted for the IN operator 

in the WHERE clause of the outer query block. When the number of these interme- 

diate values returned are large enough, the sorting will take more time. This may 

be due to the fact that this sorting process causes some disk I/Os (The size of main 

memory cache available for sorting in Oracle is unknown for this case). TEls accounts 

for why, even in no-index situation in which both the TypeN and Join queries use the 

same merge-sort method, TypeN is still slower than join. We car, see this behaviour 

from Figure 4.3 as well. 

All the above tests are based on two tables neither of which can fit into the main 

memory cache. In order to find out what will happen if at least one of them fits into 

the cache, we composed another pair of queries. 

3 .3  : 

SELECT 

FROM 

WHERE 

( 

3.4: 

SELECT 

FROM 

WHERE 

even100 

TenKOne 

hundred IN 

SELECT tenthous 

FROM OneK 

WHERE tenthous < value3 ) 

TenKOne.even100 

OneK , TenKOne 

0neK.tenthous < value3 AND 

OneK-tenthous = TenKOne.hundred. 
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In these two queries, 0neK can fit into the main memory cache. Since the ~iulnbcr 

of return tuples should be 100*ualue3, the value for ualuc3 ranges from 1 to 100 in 

order to access table TenKOne evenly. There is no index on OneK.tenthous, but tliiw! 

is a nonunique index on TenIi'One.hundred. 

From Table 4.8 and Figure 4.4, we notice that in this case, the join qucry is 

constantly worse than the equivalent TypeN query. In the worst case, the join qriery 

can be 16% slower than the TypeN query, The query planner indicates that both 

queries use nested-iteration method except that for query 3.3, the result f ro i~  tlw 

inner block has to be sorted before executing the nested loop. Usually a ncstcd- 

iteration method is more efficient when the table in the irlncr loop fits into thc ~nairl 

memory cache. But for both query 3.3 and query 3.4, the larger table TenliTO1le is i l l  

the inner loop since this table has an index to be used, This shows u s  that the Orac-lcl 

optimizer can make use of index information. But actually, putting the  irtdcxcd tal>Ic 

in the inner loop in a nested-iteration method is not always beneficial if this indcxccl 

table is large and the table in the outer loop can fit into the main memory cachc: ac1 

is the case here. After sorting the return tuples from the inner block il l  query 3.3, 

the sorting result is at most 100 integers, so most of the main memory cache car1 lw 

occupied by the inner loop table TenKOne. But in join processing, Onellns takir~g 

up additional space may cause extra disk I/Os for accessing TcnKOne. Iiuwever, 

this performance data may be due to the implementation of our particular Oracle 

optimizer. 
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Table 4.8: Timing Data(Sec.) for TypeN/Join Queries (3.3/3.4) with a Table Fit into 
Main Memory Cache 

'I' 
1 

in 
e 

Number of Return Tuples 
100 1000 2000 4000 6000 8000 10000 

1.32 7.86 15.12 29.70 44.29 58.37 73.10 
1.39 8.10 16.57 34.41 50.87 67.35 84.42 

outer wfindex: TypeN +- 
outer ~ / i n d e x :  JOIN + - 

- 

- 

- 

+ 

0 2000 4000 6000 8000 10000 
Number of return tuples 

Query 

TypeN 
Join 

Outer 
Table 
Index 
Index 

Figure 4.4: TypeN/Join Queries (3.3f3.4) with a Table Fit into Main Memory Cache 

Inner 
Table 
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Thus, in the case where none of the tables can fit into cache, a TypeN query should 

be transformed into the equivalent join query in order to obtain better pcrforrnancc. 

4.3.4 TypeJ Queries 

A TypeJ query can also be transformed into a logically equivalent join query. The 

queries used for the test are 

4.1: 

SELECT 

FROM 

WHERE 

4.2: 

SELECT 

FROM 

WHERE 

even100 

TenKOne 

valuel < value3 AND 

valuel IN 

SELECT value2 

FROM TenKTwo 

WHERE value2 < value3 AND 

TenKTwo-two <= TenKOne.odd100 ) 

TenKOne.even100 

TenKTwo , TenKOne 

TenKOne.value1 < value3 AND 

TenKTwo.value2 < value3 AND 

TenKTvo.value2 = TenKOne.value1 AND 

TenKTvo.tvo <= TenKOne.odd100. 
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In this  test, value3 is actually the number of return tuples of each query since the join 

condition T e n l a n e .  two <= TenKTwo.oddlO0 is always true and valuel, value2 are 

the keys for the corresponding tables. 

For the TypeJ query, if there are indexes tenklunik, tenk2vnik available for the 

evaluation on both the outer block and the inner block respectively, the access plan 

on our system is 

FILTER 

TABLE ACCESS BY ROWID TenKOne 

INDEX RANGE SCAN tenklunik 

TABLE ACCESS BY ROWID TenKTwo 

INDEX UMIQUE SCAM tenk2unik 

The access plan for the logically equivalent join query is 

NESTED LOOPS 

TABLE ACCESS BY ROWID TenKOne 

INDEX RANGE SCAN tenklunik 

TABLE ACCESS BY ROUID TenKTwo 

INDEX UNIQUE SCAN tenk2unik 

ff no index is available, a full-table-scan will be used. The FILTER method is another 

name for the nested-iteration method for nested queries. For each tuple in the outer 

table which satisfies the selection condition, the entire table in the inner block is 

searched. If the nested predicate is tme, the corresponding values from the tuples of 

the outer table are output- Thus, the performance of TypeJ query with both indexes 
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Inner 
Table 

Index 

Index 

:.9: Tin 

Table 
Number of Return Tuples 

100 1000 2000 4000 6000 8000 10000 

8.76 23.98 38.63 68.27 97.84 130.76 162.71 
8.81 23.96 37.99 67.46 98.68 129.62 164.35 
0.94 11.70 23.67 47.61 71.11 95.11 118.40 
0.93 11.53 23.52 47.31 70.68 93.90 117.90 

220.00 2254.44 - - - - 

5.34 14.43 23.74 41.94 59.92 80.13 100.10 
235.88 2313.49 - - - -. - 

10.42 17.39 25.33 48.27 70.44 83.62 101.20 

ing Data(Sec.) for TypeJ/Join Queries (4.114.2) 

T Y P ~ J  
Join 

TypeJ 
Join 

TypeJ 
Join 

T Y P ~ J  
Join 

should be the same as the corresponding Join query if the same index illiorn\ation is 

available. We also chose four cases to test the effect of an index on the query: inner 

and outer tables with and without index used by the optimizer. 

Index 

Index 

From Table 4.9, we can see that if there is an index which would bc used by t l ~ :  

optimizer in the inner query block, no matter whether or not t h e  outer hlock l i a s  alr 

index, the difference between those corresponding queries is fairly small. 'I'his is dtrc! 

to the fact that in both cases, the optimizer selects the same access plan. 

Table 

If there is no index in t h e  inner block, a huge performance difference is dctc:<:tcrl h- 

tween logically equivalent queries. If there is no index in either inner or outer hlocks, 

the TypeJ query needs 235.88 seconds when value3 = 100 , hut  the ecjl~ivalctnf, join 

query is 23 times faster (requiring only 10.42 seconds). This difference is because thc 

nested-iteration method must be used for a TypeJ query, and both large tahlcs rrlilst 

be full-table-scanned. However, a join query is processed with the merge-.sort method 
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which is much more efficient. If only the outer block has an (unclustered, unique) 

index, we found that the TypeJ query requires 220 seconds when value3 = 100, but 

t h e  join query is 41 times faster, needing only 5.34 seconds (see Table 4.9). This is 

due to the fact that TypeJ query execution always follows the SQL syntax, putting 

the inner table at  the inner loop. If there is no index available for the inner table, this 

is very inefficient. But the join query can put the indexed table at the inner loop and 

obtain a performance benefit, especially when a small part of that indexed table is 

accessed. When a large part of the indexed table is accessed, the TypeJ query would 

require more time. Even though accessing index involves an overhead, the join query 

is still expected to perform better than the TypeJ query. 

Generally speaking, if there is no index on the inner table which can be used by 

the optimizer, the join query is much mere efficient t5an the TypeJ query. Only i ~ i  

this case will the transformation from TypeJ to Join achieve a big benefit. If there 

is an  i ~ d e x  of the inner block table available for the evaluation, there is no point in 

transforming a TypeJ query since both forms use the same algorithm on our Oracle 

system. 

4.3.5 TypeJA Queries 

The queries used for testing are 

5.1: 

SELECT even100 

FROM OneK 
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WHERE value1 < value3 AND 

valuel <= 

( SELECT MAX( value2 ) 

FROM TenKTwo 

WHERE TenKTvo.value2 < value3 AND 

TenKTwo.two <= OneK.odd100 ) ,  

5.2: 

SELECT OneK.even100 

FROM OneK, TMP2 

WHEFiE OneK.value1 <= TMP2.max AND 

OneK.odd100 = TMP2.odd100, 

Where: TMP1( odd100 ) = ( 

SELECT DISTINCT odd100 

FROM OneK 

WHERE value1 < value3 ) 

and 

l"HP2( odd100, max ) = ( 

SELECT TMPl.odd100, MAX( TenKTuo.value2 ) 

FROM TMP1, TenKTwo 

WHERE TenKTwo.value2 < value3 AND 

TenKTvo.two <= TMPl.odd100 

GROUP BY TMPl . odd100 ) . 

The join condition TenK;wo.two <= OneK.oddl00 is always true, and valuel 

and value2 are key attributes for the corresponding tables and the values of them are 
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consecutive integers from 0 on up. Therefore, the value of value3 is the actual number 

of return tuples from each query. 

If there are indexes in both the inner and the outer blocks which can be used by 

the optimizer, the access plan of qcery 5.1 is 

FILTER 

TABLE ACCESS BY ROWID OneK 

INDEX RANGE SCAN onekunik 

SORT GROUP BY 

TABLE ACCESS BY ROWID TenKTvo 

INDEX RANGE SCAN tenk2unik. 

For each tuple in table OneKfound by INDEX RANGE SCAN which satisfies that 

selection condition, the entire table TenKTwo is searched by INDEX RANGE SCAN 

for those tuples which satisfy all of the selection conditions and the join conditions. 

The maximum of vcrlue.2 value in those tilples is found by SORT GROUP BY. If the 

value1 value of the tuple in OneK is not greater than tire maximum value2 value, then 

the value of even100 of that tuple is output. In the situation where no index exists, 

the corresponding table will be FULL TABLE SCANned instead of INDEX RANGE 

SCA Nned . 

The transformation algorithm creates some intermediate tables. But generally 

speaking, the intermediate tables are fairly small in size because the attributes in 

the intermediate tables are the attributes refered to in the predicates in the WHERE 
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Figure 4.5: TypeJAIJoin Queries (5.115.2) with Different Index Informatior1 

Number of Return Tuples 
100 200 300 400 600 800 1000 

10.13 40.72 182.41 302.57 - - 
9.42 16.58 38.20 48.95 72.80 95.61 1 1 7 . 4 3  

492.36 948.33 1433.82 - - 

11.75 15.18 19.30 22.31 28.76 35.35 41.86 
9.29 34.45 164.87 296.70 - 

12.23 23.91 49.15 65.35 96.84 128.34 157.98 
484.76 923.52 1378.47 - - - 

14.16 22.21 29.91 37.93 53.41 68.29 83.42 

Query Outer Inner 
Table Table 

Table 4.10: Timing Data(Sec.) for TypeJA/Join Queries (5.1/5.2) 

TypeJA 
Join 
T Y P ~ A  
Join 
TypeJ A 
Join 
TypeJA 
Join 

Index 

Index 

Index 
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clause. Those attributes are usually quite few in number. Thus, the intermediate 

tables can usually fit in the main memory cache and the join should be very efficient. 

Of course, the creation of the intermediate tables takes some time as well. We crested 

two temporary tables for query 5.2. 

From Table 4.10 and Figure 4.5, we observe that the join query is much more 

cfficicnt than the TypeJA query in all the index cases. Thus, a TypeJA query should 

a1 ways be transformed into its logically equivalent join form according to these results. 

4.3.6 EXISTS Extension 

The query block after EXISTS may or may not have a join predicate which con- 

nects the  two query blocks and EXISTS may be expressed by an aggregate function 

COUNT. This makes the equivalent queries have either TypeA nesting or TypeJA 

nesting. Thus, there are four testing queries. 

SELECT even100 

FROM TenKOne 

WHERE EXISTS 

( SELECT value2 

FRO# TenKTvo 

WERE value2 < value3 ); 
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6.2 : 

SELECT even100 

FROM TenKOne 

UHERE 0 < 

( SELECT COUNT( value2 ) 

FROM TenKTvo 

UHERE value2 < value3 ) ; 

SELECT even100 

FROM TenKOne 

WHERE EXISTS 

( SELECT value2 

FROM TenKTwo 

WHERE TenKTvo.value2 < value3 AND 

TenKTuo-two <= TenKOne.oddiO0 ); 

SELECT TenKOne-even100 

FROM W l ,  TenKOne 

m TMPl .count > 0 AND 

TenKOne-odd100 = TMPl.odd100; 

Where : 

RIP2( odd100 1 = 

SELECT DISTINCT odd100 

FROn TenKOne; 
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TMP3( two, value2 ) = 

SELECT two, value2 

FROM TenKTwo 

WHERE value2 < value3; 

W1( odd100, count ) = 

SELECT THP2.odd100, COUNT( 

FROM TMP2, TMP3 

WHERE TMP2.odd100 >= TMP3 

GROUP BY TPiP2.oddlOO. 

W3. value2 ) 

two (+) 

Query 6.1 is logically equivalent to query 6.2 of TypeA, and query 6.3 is equivalent 

to query 6.4 of join after the transformation from TypeJA by three temporary tables. 

For all of those four queries, the number of return tuples are either zero (if value3 

is zero) or 10,000 (if value3 is greater than zero). According to the transformation 

algorithm, an outer join is used for the  query 6.4 when the temporary table TMPl 

is created. For all of the four queries, we tested two cases for the inner query block 

with and without an index. 

From Table 4.11, we can see that in all of the cases, there is a big performance 

increase betuwn value3 = 0 and ualue3 = 1. This is due to the fact that when value3 

= if, no tupIe returns at all, but when value3 = 1, the entire table is returned. This 

big difference is due to the FETCH operation in Pro*C7. But once the entire table is 

'FETCH is a Pro'C operation which gets the roas one by one from the answer set of a query which 
returns mdtiple TOWS. 
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Table 4.11: Timing Data(Sec.) for EXISTS and Related Queries 

returned, the timing data is consistent for all the cases. 

Number of Return Tuples from inner f3lock 
0 1 100 1000 10000 

0.60 68.74 68.42 68.72 69.18 
0.60 69.23 68.87 68.81 69.56 
4.70 70.98 69.73 68.80 68.63 
4.58 73.54 74.15 73.77 74.83 

16.27 83-80 S4.26 83.83 83.72 
10.51 92.14 92.81 119.85 382.97 

46870.84 18677.62 - - - 

15-37 95.25 98.55 127.71 361.31 

Query 
EXISTS (6.1) 
TypeA (6.2) 
EXISTS (6.1) 
TypeA (6.2) 
EXISTS (6.3) 
Join (6.4) 
EXISTS (6.3) 
Join (6.4) 

If there is a.n index in the inner table available for the evaluation, the two qucrlcs 

have almost the same performance data. In this case, the evaluation of the i n r m  

query block is completed simply by scanning the index data instead of accessing thc 

I I table data through the index, and the whole index data can fit into t h e  cachrb. J hus, 

the performance difference is fairly small. While the EXISTS query just scaris tlrct  

index uniil the first qualified data is found, the TypeA query has to go through t t w  

entire index in order to wunt. So, we observe that the TypeA query is slightly s l o w r ~  

than the EFISTS query. 

Indes 

Yes 
Yes 
No 
No 

Yes 
Yes 
No 
No 

But if no index is available, both queries must acccss the table data. Thus, wc: 

see a performance differace between the two queries. While the EXISTS clucry is 

looking for the &st qualified tuple in the table, the TypeA query has to count the 

entire table- Thus, the TypeA query is even slower. 
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Figure 4.6: EXISTS Queries (6.1 and 6.3) with Different Index Information 

For query 6.3, if there is an index in the inner table, the access plan would be 

FILTER 

TABLE ACCESS FULL TenKOne 

TABLE ACCESS BY ROWID TenKTvo 

INDEX W G E  SCAN tenk2unik. 

If no index is avzilabIe, TenKTwo is full table scanned instead of using the index. 

An EXISTS query still tries to find out the first tuple, thus the timing data is the 

same if there is at least one tuple to make the EXISTS condition true. But the timing 

data is increased with the number of tuples involved in the join query. If there is an 

index availabIe, the join query would be slower than the EXISTS query if the EXISTS 

condition is true. If there is no index a% all, the join query is more efficient since, in 
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this case, the EXISTS query has to pass through the very inefficient nested looping. 

This is the only case that an EXISTS query should be transformed into a join qucry 

by introducing three temporary tables. Notice that if there is no index available, t . 1 ~  

EXISTS query, which returns nothing, takes a longer time than that which re tu rns  

the entire table of 10,000 tuples. This is because the query must scan the ent8irc tahlc 

in order to  return nothing at all instead just to find out the first tuple which nlakcs 

that EXISTS condition true t o  return the entire table. 

4.3.7 ANYIALL Extensions 

By consulting the query planner, we know that for the same kind of A N Y  arid ALI, 

queries, the query planner chooses the same access plan which means that if tiic only 

difference between two SQL queries is the difference between ANY and AIJIJ at thc 

same place in the queries, then the access plan is very similar, For example, query  

SELECT even100 

FROM OneK 

WHERE value1 >= value3 AND 

value1 > ALL 

( SELECT value2 

FROPI TenKTwo 

WHERE value2 < value3 ) 

has a similar access plan as query 
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SELECT even100 

FRO# OneK 

WHERE valuel >= value3 AND 

valuel > ANY 

( SELECT value2 

FROM TenKTvo 

WHERE value2 < value3 ) . 

Thus, for the test, we only choose the A N - i  extension. 

Depending upon whether or not there is a join predicate in the inner query block, 

an ANY query may be transformed into a TypeA or TypeJA query. Therefore, the 

test queries are 

7.1: 

SELECT 

FROM 

WHERE 

even100 

TenKOne 

valuel < value3 AND 

valuel <= AMY 

SELECT value2 

FROM TenKTvo 

UKEFE value2 < value3 ) ; 
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WHERE value1 < value3 AND 

valuel <= 

( SELECT MAX( value2 ) 

FROM TenKTuo 

WHERE value2 < value3 ) ; 

7.3: 

SELECT even100 

FROM OneK 

WHERE valuel < value3 AND 

valuel <= AMY 

( SELECT value2 

FROM TenKTuo 

WHERE TenKTvo.value2 < value3 AND 

TenKTuo.tuo <= OneK.odd100 ); 

Among them, query 7.1 and 7.2, query 7.3 and 5.1 are logically ey~~ivalent. '1'11(1 va11w 

of value3 is the number of return tuples from the queries. We tried all o f  the four 

cases for index information: inner and outer query block with and without an indcx.  

The optimizer chooses the same access plan for query 7.1 and query 7.2 exccpt for 

query 7.2, TenKTv~o has to be sorted before the filter algorithm. If bath the inr~c:r 

block and the outer bIock&s an index, the access plan for query 7.1 is 
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FILTER 

TABLE ACCESS BY ROWID TenKOne 

'I Query 

INDEX RANGE SCAN tenklunik 

Table 4.12: Timing Data(Sec.) for <=ANY/TypeA Queries (7.117.2) 

, 

INDEX RANGE SCAN tenk2unik. 

Number of Return Tuples 
100 1000 2000 4000 6000 8000 10000 

15.66 53.38 50.78 66.86 84.44 119.77 109.13 
10.56 17.11 23.91 37.34 51.13 64.58 78.46 
10.37 56.63 48.84 73.29 93.81 127.74 121.34 
5.75 13.28 22.41 38.88 55.52 72.61 89.74 
5.30 12.50 20.23 36.25 50.84 66.42 82.41 
5.25 11.59 18.46 31.87 45.25 58.72 72.15 
0.93 9.59 19.27 38.12 57.62 76.37 95.79 
0.81 8.73 17.44 34.66 51.91 69.41 86.69 

Outer 
Table 

Index 

Index 

<=ANY 
TypeA 
<=ANY 
TYP~A 
<=ANY 
TypeA 
<=ANY 
'I'ypeA 

The access plan for query 7.2 is 

Inner 
Table 

Index 

index 

FILTER 

TABLE ACCESS BY ROWID TenKOne 

INDEX RANGE SCAN tenklunik 

SORT GROUP BY 

IWEX RANGE SCAN tenk2unik. 

From Table 4.12, we notice that in all of the four index cases, the 'TypeA query 

is atways more efficient than the corresponding ANY query. Even though the result 

from the inner query block of query 7.2 implies the need to sort, this sorting may not 
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<=ANY 
Join 
<=ANY 
Join 
<=ANY 
Join 
<=ANY 
Join 

Outer 
Table 

Index 

Table 4.13: Timing Data(Sec.) for <=ANY/Join Queries (7.3/5.1) 

Index 

be required since the index is sorted already. Since there is only one valuc rcturrrctl 

Inner 
Table 

Index 

from the inner block due to  the aggregate function, the selection for tile outcr I,lock 

Index 

is very straight forward. But because in query 7.1, the result frorn thc inncr I h c k  is 

Number of Return Tuples 
100 200 300 400 600 800 1000 

0.96 2-10 3.29 4.32 6.47 8.53 10.61 
12.23 23.91 49.15 65.35 96.84 128.34 157.95 

multi-valued in most of cases, finding the first one which satisfies tttc < = A N Y  corl- 

v 

1.41 2.37 3.42 4.39 6.25 8.13 10.19 
9.42 16.58 38.20 48.95 72.80 95.61 117.43 

10.94 19.12 25.63 15.70 49.85 32.75 53.17 
14.16 22.21 29.91 37.93 53.41 68.29 83.42 
11.26 19.69 26.54 16.19 50.12 32.95 53.49 
11.75 15.18 19.30 22.31 28.76 35.35 41.86 

dition may require searching the entire index. Thus, the selection for thc outcv- block 

J 

has to be hased on a set instead of one value. This takes longer time. Thus, in t l~ i s  

case, a <=ANY query should he transformed into the TypcA query. 

If there is an index available from the  inner table, the <=ANY qwry is always 

more efficient than the join query, often dramatically so (see ?it-)le 4.13). I3ut i f  t,l~ctrc. 

is no index for t h e  inner table, or the  index attributes are different frorn the attrihutc 

used for the SELECT set, the <=AMY performance will depend on the tuple orclw 

of the inner tabk In this case, the timing data is not regular. If the outer tahle I r ~ j  

an index, but the inner table does not, the join query is constantly slower than the 

<=ANY query. Generally speaking, for a TypeJA ANY query without an index from 
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Figure 4.7: <=ANY/TypeA Queries (7.117.2) with different index information 

the inner table, the transformation can bring minimal efficiency. 

I t  is interesting that  the timing data for the <=ANY query does not display the 

usual linear distribution when there is no index available from the inner table or the 

index attributes are different from the attribute used to form the SELECT set (see 

Figure 4.7). This is because the member of the list comprising the returned values 

from the inner block has the  same order as the order of the tuple in the inner table. 

This, as more numbers are put into that list, the largest number may appear at the 

wry beginning of that list. Since the ANY algorithm finds the first one, if the number 

at the beginning is large enough, the evaluation does not need to  proceed through 

the values after that number. This makes the comparison with the list member much 

quicker. The same thing happened in the <=ANY/Join case (see Figure 4.8). From 



CHAPTER 4. PERFORhfANCE TESTS WITH WISCONSZN BENClIILIARli SO 

no index: ANY 
no index: Join 4- 

outer wjindex: ANY .O- , X - 

outer w/index: Jo: ,n .x. . 
6000 

1 1 I I I 1 

0 200 400 600 800 1000 
Number of return tuples 

Figure 4.8: <=AN\ /Join Queries (7.3/5.1) with differe~t index ir~forrnatio~~ 

this fact, we can see that the performance of ANY query is related to the  tuplc: or- 

der in the table. The ANY query is very similar to the LXISTS c1uct.y sir~cc: Ix~tli 

of them try to find the first value which satisfies the selection condition. A f t m  f i ~ i c t -  

ing the first one, the query processing should stop in order to get hektcr tirnc c.fficic:rlc.y. 

We would not expect the ALL query also to find the first tuple in a table. T h u s  wcb 

anticipate that an ALL query should take longer time than t h c  A N Y  qucry ac1ric:vcd 

by replacing the ALL in the ALL query by ANY. Frorn our above resdts, we krww 

that TypeA queries are more efficient than ANY qucries, and thus a ?'ypcA A LI,  

query should be less efficient than the TypeA query. If an ALL query may tie trarrx- 

formed into a TypeJA query, then they have exactly the same xcms plan accord i r~g 

to the query planner, Thus, a TypeJA ALL query should he transformed i ~ ~ t o  tlrc: 

equivalent join query by algorithm TypeJA. 
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The = A N Y  operator is logically equivalent to the IN operator, theoretically. Thus, 

any =ANY operator can he translated to IN no matter what kind of query it is, TypeN 

or TypeJ. The query planner indicates that for these two kinds of queries, the two 

operators yield exactly the same access plan. Therefore, it is not necessary to make 

any transformation between them. 

4.4 Summary 

The conclusions we make from the above tests are experimentally verified based on 

our Oracle system and the Wisconsin benchmark database. Some of them, such as 

the first three conclusions, should be suitable to most of the RDBMSs. We summarize 

the following: 

1. An index does not always guarantee more efficiency. At times, an index can 

degrade the performance due to extra accesses to  index blocks. For Oracle, if a 

table can not fit into the main memory cache, and more than 25% of the tuples 

are retrieved from it, an entire table scan is more efficient than accessing the 

table through indexes. 

2. From a performance point--of-view, for the same index situation, the predicate 

order in single-block queries, e-g., single-table or join queries, does not influence 

the query performance because the same access plan is used. Since most of 

the current query optirnizers can optimize this kind of queries very well with 

available index information, no matter what order the predides axe in, an 
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automatic SQL query generation system can disregard predicate order. 

There are two access plans for a join query: nested-loop method and w l c ~ g e -  

sort method. Which one is used for a query depends on the indcscs. Tlic usc 

of an index can make join queries more efficient if the join tables can not fit 

into the main memory cache and a small proportion of the tables is acccssc-d. 

But it is not the case that the more the indexes, the more efficient the queries. 

If some condition testing can be done by only accessing the indexes ir~stcwl 

of accessing the entire table through the index, the query can be much lllOrcb 

efficient, especially when a large proportion of the indexed attributes nc& to 

be accessed. This is due to  the fact that normally an index is small cno~:gh to 

fit into the main memory cache. But accessing a large proportion of a tahlt: 

through an index will degrade the join performance. 

4. On our Oracle system, a TypeN nesting can he processed by the rnergcb-sort 

method or the nested-iteration method. Compari~lg a TypeN query with its 

logically equivalent join form, we found from our experiments that a 'I'ypc:N 

query should be transformed into the join query in order to obtain twtter per- 

formance if none of the tables fit into the main memory cache. If some tablcs 

do fit into the cache, the TypeN query could be more efficient. 

5. A TypeJ query is always evaluated by the nested-iteration n~ethod. I t  is a1 wiry5 

worthwhile to transform a TypeJ nested query into its logically eqtrivalcrrt jrirr 

form, From our tests, we can see that there is a huge performayx differcriccr 

between these two kjnds of queries and the join ywry  is always hettcr, rapc- 

cidly when the inner table of the TypeJ query does not have any index. For a 

Typd query, the SQL syntax decides the evaluation plan, hut for a join yucry, 
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thc optimizer can choose the inner loop table for the nested-iteration method 

according to available indexes. 

6. A TypeJA nesting can only be evaluated by the nested-iteration method on our 

Oracle system. A TypeJA query could be much less efficient than the equivalent 

join query, even though some temporary tables have to be established ir, order 

to finish the join query. The temporary tables are usually very small and can 

fit into the cache, thus ~qaking the final join operation very efficient. Therefore, 

a TypeJA query should be transformed into its join query according to the 

algorithm provided. 

7. Our tcsts demonstrate that if an EXISTS can be transformed into a TypeA 

query, that EXISTS query can never be less efficient than the TypeA query. If an 

EXISTS query can be transformed into a join query, then that join query will be 

much more efficient if there Is no index in the inner table of the EXISTS query. 

The proccsing of EXISTS queries uses a find-first algorithm, thus the query 

has an  almost constant performance, but the performance of the equivalent join 

query would increase linearly with the number of return tuples. If the find-first 

algorithm is used, the query processing should stop after finding the first one in 

order to get better performance. If there is no index available for the inner table, 

then this is the only case in which an EXISTS query should be transformed into 

a join query, if possible. 

8. From a performance point-of-view, the set inclusion operator IN always has the 

same efficiency as the =ANY operator. This is due to  the fact that the query 

planner of our system uses the same access plan for both of them. For other 

kinds of ANY queries, if an ANY query can be transformed into an equivalent 
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TypeA query, then the TypeA query can always be more efficient than the 

ANY query in our testing. But if an ANY query can be tra~lsfortned into a join 

query with Algorithm TypeJA, in most cases, we cannot derive a performance 

benefit at all. This is because the evaluation of the ANY queries uses it jind- 

first algorithm; and it is faster in our tests. Because of the find-first algori t h ~ n ,  

the performance of the ANY query is sometimes related to the order of tuples 

concerned. The ALL query should always be transformed into its equivnlc~~t~ 

form. And if the find-first algorithm is used, the query processing shoulcl stop 

after finding the first one in order to get better performance. 



CHAPTER 5 

A Transformation for General 

Nested Queries 

A generally more effective strategy for evaluating a nested query of arbitrary deptl~ 

and complexity is to transform it to its join form and have the optimizer determine an 

optimal set of algorithms and access paths for evaluating it. Our experiment indicates 

to us that the join query after transformation is more efficient in most of tlle cascs 

we considered. It appears that the equivalence-transformation approzich dcvclopcd i n  

the previous chapters may be adopted as the foundation for an optimizer of SQL-l i kc  

queries and the nested-iteration method may then be used to augment the perfor- 

mance of the optimizer for the rather special situations for which the nested-i tcrat i o r r  

method is more efficient. 

For a more general nested query, all different kinds of nesting can be mixed up, 
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and for a general TypeJA nesting, the aggregate function and the join predicate may 

appear at any level of nesting, and not necessarily at the same level. While the algo- 

rithm for (t TypeN/J nesting in Figure 3.1 may work as well if the depth of nesting is 

greater than one, the algorithm developed in Figure 3.2 can only work with the sim- 

piest TypeJA nested queries. Thus, the algorithm in Figure 3.2 needs to be extended. 

A direct postorder recursive algorithm which works for general TypeA, TypeN, TypeJ, 

'I'ypeJA nested queries was developed in [12]. This algorithm is presented here. 

Figure 5.1 illustrates the pseudocode for this algorithm. The parameter Query- 

Ulk is a pointer to an SQL query block, possibly with descendant inner query blocks 

nested within it. Initially, QueryBlk points to the outermost query block of a query. 

After calling tbis procedure, the original query should be transformed into a single 

block query, which might be a multiway join query with some new tables created by 

the  transformation algorithms. 

Three procedures are called within procedure nestG(). 

nestA( QueqBA ): evaluate the query block pointed to by QueryBlk, replacing 

it with the resulting constant. This is used for evaluating the inner query block 

of a TypeA query. 

nestNJ( QveryBlk /: execute the algorithm in Figure 3.1, which transforms a 

single-level TypeN or TypeJ nesting ~o in ted  to by QueqBlk into a join query. 

This is used for transforming TypeW or TypeJ nested queries. 

ncstJA 1 ( Query3lk ): execute the first two steps in the algorithm of Figure 3.2, 
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procedure nestG ( QueryBlk ) 
Struct SQLQueryBlk *QueryBlk; 
i 

for ( each nested predicate in the WHERE clause of QueryBlk ) 
{ 

/* transform the subquery */ 
nestG ( QueryBlk->InnerBlk ) ; 

/* decide the nesting type for QueryBlk, it's only single-level 
* nesting here 
*/ 
if ( the SELECT clause of the inner block has an aggregate 

function ) { 
if (inner block has join with table not in its FROM clause)( 

/ * 
* TypeJA nesting 
* / 
nest JAI ( QueryBlk->InnerBlk ) ; 
 nest^^ ( QueryBlk ) ; 

3 
else /* 

* TypeA nesting 
*/ 

nestA( QueryBlk->InnerBlk ) ; 
3 
else /* 

* TypeN or TypeJ nesting 
* / 

nestMJ( QueryBlk ) ; 
f 
return ; 

Figure 5.1: Algorithm for Transformation of General Nested Qiieries 
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which creates a temporary table with a GROUP BY operation as specified in 

that algorithm. This is used for removing the aggregate function in order to 

transform a TypeJA query into a TypeJ query. The procedure nestNJ() should 

be called right after this in order to transform the resulted TypeJ nesting into 

a join form. 

Procedure nest(=() searches down through the nesting levels of a nested query from 

the outermost query block until it finds the innermost nested query block of each 

branch. It then examines the inner block to determine the type of nesting present, 

and transforms the single-level nesting there to join form by calling the appropriate 

transformation procedures. After this is done for all of the nested predicates in the 

current block, the recursion then backs up one level and the block is processed in the 

same way. The procedure keeps doing this backup until the outermost nested block 

is transformed. Note that procedure nestJAl() is similar to the algorithm for the 

simplest TypeJA queries, but the difference is that the nestJAl() is used to trans- 

form a TypeJA query into a TypeJ query instead of a join query directly. This is 

because the transformation to the join query may involve some other tables which 

appear in the other parts of the initial nested query. After creating the temporary 

table by nestJAl(), the aggregate function is removed by replacing it with a refer- 

ence to the column in the temporary table which results from the application of the 

aggregate function. This reduces the TypeJA nesting into TypeJ nesting, and after 

that, nestNJ() is called immediately to finish the job of reducing the TypeJ query to 

a join form. Any transformation in this algorithm is confined to single-level nesting: 

the outer block pointed to by QueMJBk and the inner block pointed to by QueryBlk- 

> InnerBlk. 
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A nesting can be represented by a tree structure based on the SQL syntax. Ea.ch 

node in the tree represents a query block in the initial query, and there is a11 cdyc 

between two nodes if the corresponding query blocks of these two nodes arc nesting. 

There are two kinds of edges: dashed edge and solid edge. A solid edge represents 

the SQL query syntax. Thus, all the solid edges form a tree according to the sylit,ax. 

Dashed edges represent join operations between two non-directly-nested query bloclts. 

The outermost query block, e.g., the beginning of the SQL statement, is the I-oot node 

of the tree, and the innermost query blocks are the leaves. The label on an edge 

represents the nesting present between those two blocks connected by the edge. 

The following example shows us how to form this query tree and how this rc- 

cursive approach works. A general nested query is represented in Figure 5.2. Thc 

outermost query block is represented by the root node A. Query block B appears in 

the WHERE clause of A and contains an aggregate function in its SELECT clausc; 

there is a join predicate in block C which involves a table in the FROM clar~se of 

block B; block E has two join predicates, one involves a table in block C and anotl~cr 

in block A. Since block E is nested in block C by the query syntax, there is a solid 

edge between E and C, and there is a dashed edge between E and A due to the join 

between tables in these two blocks, An edge for TypeN nesting is labeled N likc thc 

edge between B and D. All of the nodes and the solid edges in Figure 5.2 represent tlic 

syntactic structure of the query, and thus form into a tree. This example represents a 

general TypeJA nesting with TypeA, TypeN and TypeJ nesting inside. For this kind 

of graph representation of nesting, a join dashed edge must span a node contairlirlg 

an aggregate function, like node B in the example, for a TypeJA nesting to he prcsent . 
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Figure 5.2: An Example of a General Nested Query 

Procedure nestG() will travel down to E first, backtrack znd apply the algorithm 

to combine C and E into a join block; this moves the join reference to block A in 

block E initially to block C. Since the nesting between C and F is TypeA, block F 

is evaluated independently into a constant, thus the nested predicate in C becomes 

a simple predicate. After this, blocks C and B are combined, and then D and B. 

Now, the new query block B has an aggregate function in its SELECT clause, and a 

join predicate which references a table not found in the FROM clause of B, but in 

block A, thus a TypeJA nesting presents. The TypeJA nesting is &st changed into 

TypeJ nesting by nestJAl(), a d  then to a join query by nestNJ(). The execution of 

nestNJ() involves all the tables in nodes B, C, D, E, and a temporary table created 

by procedure nestJAl(). 
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This algorithm shows a general way to transfornl a general nested query into its 

logically equivalent join query. But from here, we observe some drawbacks. The mosc 

complicated a query is, the more difficult for people to understand its logical meaning, 

thus, the less chances for programmers to propose such a complicated query. But the 

transformation algorithm is still useful if the complicated query is built mechanically 

by some query generation system such as System X ([19]). Another problem is that 

the more complex the nesting, the more difficult the evaluation of the perforn~itlicc 

cost. In addition, a theoretical analysis would be more difficult and more unaccuratc 

because of simplification, and testing would be very time-consuming. Although wc 

have tested the actual performance for some transformations, for more corn plicstctl 

queries, building temporary tables in order to remove nesting may cause extra disk 

110s and extra computation- On the other hand, for complex nested querics, thc 

access plan in contemporary database systems would be heavily dependent on tl~c: 

SQL syntax, and the potential for optimization would be less. Therefore, wc still 

expect that the transformed join query should perform better than the initial nestcd 

query. The cost model of this general transformation algorithm still needs to I,(: 

completed and actual testing needs to be performed. 



CHAPTER 6 

Conclusions 

We observed the performance differences between some logically equivalent SQL 

queries. Although much work has been done on query optimization, for a partic- 

ular relational DBMS, the automatic query optimization is less than perfect. A huge 

performance gap persist between some logically equivalent SQL queries. Some query 

optimization which is based on some particular transformations and particular index 

information still needs programmer intervention. Thus, we focused on transforming 

some SQL queries in order to improve performance. 

For a nested SQL query, the nesting structure plzys a very important role on 

choosing the query processing plan. Most of the contemporary query optimizers use 

the nested-iteration method for the processing of nested queries, even though this is 

not the only option. For example, the Oracle opt.imizer may make use of the merge- 

sort method for some nesting. Furthermore, the nested-iteration method may perform 
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better in particular cases. Far join queries on the other hand, the optirnizcr can choosca 

a processing plan based on its inner-representation form instead of its SQL syntilx 

form, thus taking advantage of index information and other performance-rclatcd fiw- 

tors. This is the main reason that most nested queries are less elIicicut tlwl tlwir 

logically equivalent join queries. This point further illustrates, as well, that con tcll~- 

porary query optimizers can optimize the join queries better. 

In the thesis, we presented some algorithms for the optimization of ncstcttl qr~crics 

by transformation. Since most of the nested queries can be transfornwd into logic;dly 

equivalent join queries, more attention should be paid on join query optimiszatior~ irk 

order to get better time efficiency for most of the SQL queries. Besides index infor- 

mation, some other information, such as the size of main memory caclre, should I)(: 

considered, as well, in join processing. 

The performance testing reported herein leads evidence to the fact that the t r a w  

formation algorithms presented in this thesis are practical and effective. The transfor- 

mations of TypeJ (if no index in the inner block) and Type.JA queries can obtain much 

better performance on our Oracle system. How much effkiency may t x  gained fronr 

such transformations will vary on different database systems, dependi ng cspecial l y on 

their query optimizers. Some transformation necessary for an Oracle optirnizcr may 

not be necessary for a SYBASE optimizer since they use different methods to process 

the same query. Thus, in order to make best use of the algorithms in this thesis, t h e  

query processing methods used by a particular optimizer need to be considercd. 
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Our testing indicates that index can speed up retrieval sometimes, especially when 

a small proportion of table is accessed through index or when the retrieval can be ac- 

cornplished hy accessing the index alone. Another role an index plays is that the 

index information can influence the query optimizer to choose the access plan for a 

query. This influence can result in a better performance, but at  times, some other 

information, such as the size of main memory cache, should be considered as well. 

Theoretical cost models are clear and correct in some sense, but some theoret- 

ical cost models for query processing make comparisons based only on some major 

characteristic, like disk 110s. In the current systems, disk 110 is only one of the ma- 

jor factors in performance efficiency. It is difficult to obtain an accurate cost model 

using theoretical analysis since the processing is usually very complicated. Thus, per- 

formance testing, especially based on a standard benchmark is appealing. The cost 

model and actual testing for the transformation algorithm in Chapter 5 are needed. 

Testing can produce more reliable conclusions for particular databases since a test 

involves many major factors instead of only one of them. On the other hand, actual 

testing is usually more time-consuming and less complete. 

Database query optimization has been well studied previously. The transforma- 

tions mentioned in this thesis are based on SQL syntax instead of query semantics. 

More performance benefit could be obtained if query semantics were considered. For 

csample, TypeJ Query 4.1 produces the same result as the TypeN Query 3.1 because 

of the attribute value ranges. Judgements about semantic equivalence like above are 

based on application knowledge such as value ranges and distribution of attributes. 
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In our testing, transforming a TypeJ query in which only the inncr table is i~idc-sctl 

into a join cannot obtain perfbrmance benefit at all since in this situation. both of 

them use the same access plan for evaluation. But if the TypeJ query can Iw tralis- 

formed into the equivaient TypeN query, and subsequently transformed rigili~r into ;i 

join query, our testing shows that the query response time may ciecreilse <Irr~~~li~ti(.ill l y 

(in the best case testing, the query response time will decrease from 162.71 s c ~ ~ ~ i t l s  

to 78.69 seconds, or 51% faster). Thus, query optimization which involvcs s~~ l l i~~ l t . i ( '  

considerations is a potentially rewarding research area. 

We found the Wisconsin benchmark database inadeqi.latc for our testing pr~rlx)ws 

in that it did not allow for systematic scaling of attribute ranges and val~~c~s.  For 

example, it should be possible to model the same fixcd selectivities (e.g., 100 t,r~pl(*s) 

and relative selectivities (e.g., one percent relation cardinality) for diffcrcnt datd)ilsc. 

sizes. Sometimes, i t  is very difficult to  do so, especially when other factors, Iikc 

r 1 query selectivity and index information, need to be considered together. l l ~ ~ ~ ~ d o s ~ ~  

the Wisconsin benchmark database needs to  be improved. 



Appendix A 

List of SQL Queries for 

Performance Testing 

All of the SQL queries used in our testing are listed here. The testing was performed 

on Oracle RDBMS Version 6.1. Queries were executed from a Pro*C program. The 

TABLE, ualue, valuel, ualue2and value3in this list are variables. In our testing, they 

were replaced by the corresponding table names, integer values or attribute names. 

Sc.e Chapter 4 for explaination of each query. 

1. Single-Table Queries 

1.1: SELECT even100 

FROM TABLE 

WHERE odd100 < 100 AND 

two < 2 AND 

unique1 < value 



APPENDIX A. LIST OF SQL QUERIES FOR PERFORMANCE TES'I'INC: 97 

SELECT even100 

FROM TABLE 

WHERE unique1 < value AND 

odd100 < 100 AND 

two < 2 

2. Join Queries 

2.1 (Tvo-way- j oin) : 

SELECT TenKOne-even100 

FROM TenKTwo , TenKOne 

WHERE TenKTwo.value2 < value3 AND 

TenKTvo.value2 = TenKOne.val.ue1 

2.2 (Three-way- j oin) : 

SELECT TenKOne-even100 

FROM OneK, TenKOne, TenKTwo 

WHERE OneK .hundred < value AND 

TenKOne.unique2 C value AND 

TenKTuo-hundred < value AND 

OneK.hundred = TenK0ne.uniquel AND 

0neK.hundred = TenKTwo.hundred 
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3. Ty pet4 Queries 

3.1: 

SELECT even100 

FROM TenKOne 

WHERE value1 IN 

( SELECT value2 

FROM TenKTwo 

WHERE value2 < value3 ) 

SELECT TenKOne.even100 

FROH TenKTwo, TenKOne 

WHEE TenKTwo .value2 < value3 AND 

TenKTwo.value2 = TenKOne.value1 

SELECT 

FROH 

WHERE 

( 

3.4: 

SELECT 

FROM 

WHERE 

even100 

TenKOne 

hundred IN 

SELECT tenthous 

FROH OneK 

WHERE tenthous < value3 ) 

TenKOne . even100 
OneK, TenKOne 

UneK . tenthous < value3 AND 

OneK-tenthons = TenKOne-hundred 
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4. TypeJ Queries 

4.1: 

SELECT 

FROM 

WHERE 

4.2 : 

SELECT 

FROM 

WHERE 

even100 

TenKOne 

valuel < value3 AND 

valuel IN 

SELECT value2 

FROM TenKTwo 

WHERE value2 < value3 AND 

TenKTwo.two <= TenKOne.odd1OO ) 

TenKOne.even100 

TenKTwo , TenKOne 

TenKOne.value1 < value3 AND 

TenKTwo.value2 < value3 AND 

TenKTwo.value2 = TenKOne.value1 AND 

TenKTwo.two <= TenKOne.odd100 

5. TypeJA Queries 

5.1: 

SELECT even100 

FROM OneK 

WHERE valuel < value3 AND 

valuel <= 

( SELECT MAX( value2 ) 
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FROM TenKTwo 

WHERE TenKTwo.value2 < value3 AND 

TenKTwo.two <= OneK.odd100 ) 

5.2: 

SELECT OneK.even100 

FROM OneK, TMP2 

WHERE OneK.value1 <= TMP2.max AND 

OneK.oddl00 = TMP2.oddlOO; 

Where: TMP1( odd100 ) = ( 

SELECT DISTINCT odd100 

FROM OneK 

WHERE value1 < value3 ) 

and 

TMP2( odd100, max ) = ( 

SELECT TMPi.oddiO0, MAX( TenKTwo.value2 ) 

FROM TMPI , TenKTwo 

WHERE TenKTwo.value2 < value3 AND 

TenKTwo.two <= TMPl.odd100 

GROUP BY TMPi.odd100 ) 

6 .  EXISTS Extension 

6.1: 

SELECT even100 

FROM TenKOne 

WHERE EXISTS 
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( SELECT value2 

FROM TenKTwo 

WHERE value2 < value3 ) 

6.2: 

SELECT even1 00 

FROM TenKOne 

WHERE 0 < 

( SELECT COUNT( value2 ) 

FROM TenKTwo 

WHERE value2 < value3 ) 

6 . 3 :  

SELECT even100 

FROM TenKOne 

WHERE EXISTS 

( SELECT value2 

FROM TenKTwo 

WHERE TenKTwo .value2 < value3 AND 

TenKTwo.two <= TenKOne.odd1OO ) 

6.4:  

SELECT TenKOne.even100 

FROM W 1 ,  TenKOne 

WHERE TMPl .count > 0 AND 

TenXOne.odd1OO = TMPl.odd100; 

Where : 

TMP2( odd100 ) = 
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SELECT DISTINCT odd100 

FROM TenKOne ; 

TMP3( two, value2 ) = 

SELECT two, value2 

FROM TenKTwo 

WHERE value2 < value3; 

TMP1( odd100, count ) = 

SELECT TMP2.odd100, COUNT( TMP3.value2 ) 

FROM TMP~, T MP~ 

WHERE TMP2.oddlOO >= TMP3.two (+) 

GROUP BY TMP2.oddlOO 

7. ANY/ALL Extensions 

7.1: 

SELECT 

FROM 

WHERE 

7.2: 

SELECT 

FROM 

WHERE 

even100 

TenKOne 

valuel < value3 AND 

valuel <= ANY 

SELECT value2 

FROM TenKTwo 

WHERE value2 < value3 ) 

even100 

TenKOne 

value1 < value3 AND 
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7.3: 

SELECT 

F3OM 

WHERE 

7.4: 

SELECT 

FROM 

WHmE 

Where : 

and 

value1 <= 

SELECT MAX( value2 ) 

FROM TenKTwo 

WHERE value2 < value3 ) 

even100 

OneK 

value1 < value3 AND 

valuel <= ANY 

SELECT value2 

FROM TenKTwo 

WHERE TenKTwo.value2 < value3 AND 

TenKTwo.two <= OneK.odd100 ) 

OneK.evenl00 

OneK, TMP2 

OneK.value1 <= TMP2.ma.x AND 

OneK.odd100 = TMP2.odd100; 

TMPl( odd100 ) = ( 

SELECT DISTINCT odd100 

FROM OneK 

WHERE valuel i value3 ) 

TMP2( odd100, m a x  ) = ( 

SELECT TMP I, odd100, MAX ( TenKTwo . value2 ) 
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FROM TMP1, TenKTwo 

WHERE TenKTwo.value2 < value3 AND 

TenKTwo.two <= TMPl.odd100 

GROUP BY TMPl . odd100 ) 



Appendix B 

A Sample Pro*C Program for 

Testing 

/ * 
* This is a  Pro*C program used t o  t e s t  SqL TypeN query performance 

* on the  Wisconsin benchmark database. The Oracle database has t o  

* be connected f i r s t ,  then a  SQL query i s  executed.The U N I X  system 

* c a l l  gettimeofday0 is used before and a f t e r  the  query execution 

* i n  order t o  obtain the  r e t r i eva l  time. By changing the  SQL query, 

* t h i s  program is  used i n  a l l  the  t e s t s .  

* / 



APPENDIX B. A SAMPLE PRWC PROGRAM FOR TESTING 

#inc lcde  <sys/t ime.h> 

/* Def in i t i on  of hos t  va r i ab le s .  */ 

EXEC SQL BEGIN DECLARE SECTION; 

VARCHAR u i d  C201; /* u s e r  i d  f o r  l o g i n  t o  ORACLE */ 

VARCHAR pwd [20] ; /* u s e r  passwd f o r  l o g i n  t o  ORACLE */ 

i n t  anything ; /* used f o r  FETCH opera t ion  */ 

EXEC SQL END DECLARE SECTION; 

EXEC SQL INCLUDE sq1ca.h; 

/* Define t iming v a r i a b l e s  */ 
long sec, usec;  /* second and microsecond */ 

s t r u c t  t imeval StartTime; /* query start t ime */ 

s t r u c t  t imeval FinishTime; /* query f i n i s h  time * / 
s t r u c t  t imezone *tzp;  /* time zone p o i n t e r  */ 

/* connection t o  ORACLE */ 
s t r cpy  ( u i d .  arr , "qianwa" ) ; 

u id .  l e n  = s t r l e n (  uid. arr ) ; 
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s t r c p y  ( pvd , a r r  , "ericwu" ) ; 

pwd . l e n  = s t r l e n (  pvd. arr ) ; 

EXEC SQL WHENEVER SQLERROR GUT0 e r r e x i t ;  

EXEC SQL CONNECT: u i d  IDENTIFIED BY : pud ; 

p r i n t f  ( "\nConnected t o  Oracle use r :  %s\n\nl', u i d  . a r r  ) ; 

/* Get t h e  query start t i m e  */ 

t z p  = NULL; 

i f  ( gettimeofday( &StartTime, t z p  ) == -1 ) C 

p r i n t f  ( "Wrong with g e t t  imeofciay () . \n" ) ; 

e x i t (  1 ); 

1 

/* Declare a cu r so r  f o r  a  query t o  r e t u r n  many rows from tables */ 

EXEC SQL DECLARE cursorpr  CURSOR FOR 

SELECT even100 

FROM TenKOne 

WHERE unique1 I N  

( SELECT ten thous  

FROM TenKTwo 

WHERE t en thous  < 2000 ) ; 

/* Open t h e  cursor t o  eva lua te  t h e  query */ 

EXEC SQL OPEN cursorpr ;  
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/* Get every row of the query by FETCHING the cursor */ 
EXEC SQL WHENEVER NOT FOUND GOT0 finish; 

for( ; ; < 
EXEC SQL FETCH cursorpr INTO :anything; 

1 

errexit: /* SQL error messages */ 

printf ( "\n% .7Os (%d) \nu, sqlca. sqlerrm. sqlerrmc, -sqlca. sqlcode ) ; 

exit ( 1 ) ; 

finish: /* Query execution is successful */ 

/* Get the query finish time */ 

if ( gettimeofday( &FinishTime, tzp ) == -1 ) { 

printf ( "Wrong with gettimeofday() . \n" ) ; 
exit( 1 ); 

3 

/* Print out the Oracle message */ 

printf( "\n%.70s (%d)\nU, sqlca.sqlerrm.sqlerrmc, -sqlca.sqlcode ) ;  
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/* Close the cursor and commit the transaction */ 

EXEC SQL CLOSE cursorpr; 

EXEC SQL COMMIT WORK RELEASE; 

/* Calculate and print out the timing data */ 

sec = FinishTime.tv,sec - StartTime.tv,sec; 
usec = FinishTime.tv,usec - StartTim8.t~-usec; 
if ( usec < 0 ) { 

usec += 1000000; 

sec --; 

1 

printf ( "\nTbe elapsed time in sec . : %Id. %ld \nu, sec, usec ) ; 

exit ( 0 ) ; 
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