I*l of C;ana'dgbrary

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort .:as been made to
ensure the highest quality of
reproduction possible.

If rages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

385, rue Wellington
Cttawa, Ontario Ottawa (Ontario)

Youf hie  Volre «tforence

Ous Ble  Notre relerance

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la théese soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec luniversité
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



TRANSFORMATION AND BENCHMARK
EVALUATION FOR SQL QUERIES

by

Eric Qian Wu
B.Sc. Peking University, Beijing, China, 1986
M.Sc. Peking University, Beijing, China, 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

in the School
of

Computing Science

© Eric Qian Wu 1991
SIMON FRASER UNIVERSITY
November 1991

All rights reserved. This work may not be
reproduced tn whole or in part, by photocopy
or other means, without the permission of the author.



b

National Library
of Canada

Acquisitions and
Bibtiographic Services Branch
395 Wellington Sueet

Ottawa, Ontario
K1A 04

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Onawa {Ontario}
K1A QN4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Yoo Sl Vg it e

Uler fie Notie réference

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-78200-5

3k |

Canada



APPROVAL

Name: Eric Qian Wu

Degree: Master of Science

Title of thesis: Transformation and Benchmark Evaluation for SQL
Queries

Examining Committee: Dr. Veronica Dahl, Chairman

Dr. Nick Cercone, Senior Supervisor

Dr. Jiawei HA n, Senior Supervisor

Dr. Fred Popowicﬁ, External Examiner

Date Approved: Novewmber 29 , {79/

i



PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my
thesis, project or extended essay (the title of which is shown below) to
users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational Institution, on its
own behalf or for one of its users. I further agree that permission for
multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financial gain shall not be allowed
without my written permission.

Title of Thesis/Project/Extended Essay

Transformation and Benchmark Evaluation for
SQL Queries.

Author:

(signature)

Eric Qian Wu

(name)

December 10, 1991

(date)



ABSTRACT

Database query optimization research has been ongoing for a long time. Nevertheless
considerable performance deviations persist between retrieval times for different, but
logically equivalent, expressions of SQL queries. It would appear that in many actual
applications the query optimizer cannot efficiently optimize the query with respect to
retrieval time unless query transformation and the physical (index) structure of the
database are taken into account. In this thesis an experimental performance study
is carried out, with the help of the Wisconsin Benchmark, to test which kinds of
queries are generally more efficient than other logically equivalent queries (based on
our classification of SQL queries). This research is intended to provide an aid for
use in natural language database interfaces where automatic SQL query generation

results in more efficient query transformations to optimize subsequent data retrieval.



To my mom and dad

v



ACKNOWLEDGMENTS

I would like to thank my two senior supervisors, Dr. Nick Cercone and Dr. Jiawei
Han for their generosity, guidance, especially their extraordinary patience while mod-
ifying and editing the thesis drafts, which make all things possible for me. I am also
grateful to Dr. Fred Popowich for his careful reading and valuable comments. My
sincere thanks also go to Mr. Gary Hall who talked with me, helped me to finish the
testing, read through my draft very carefully and gave me very important suggestions.
I would also like to acknowledge the financial support from the School of Computing

Science and the Center for Systems Science, Simon Fraser University.

My thanks also go to my parents for their love, education and encouragement in
so many years, to my two brothers and best friends who made my first two years in

Canada memorable.



CONTENTS

ABSTRACT . . . . . e e
ACKNOWLEDGMENTS . ... .. ... o
LISTOF FIGURES . ... .. . .. . e
LIST OF TABLES . . . . . . . . o e
1 Introduction . . . . . .. . . ... .
2 A Classification of SQL Queries . . . . . .. ... .. .. ... ... ..
2.1 Single-Block Queries . . . . .. ... ... ... ... ...
2.1.1 Single-Table Queries . . .. .. ... .. ... .........

2.1.2 Multi-Table Queries (Join Queries) . . . ... ... .. .. ..

2.2 Nested Queries . . . . . . . . . . . .. . e
221 TypeA Nesting . .. ... ... ... .. .. .. ...,

222 TypeNNesting . . ... .. .. ... ... ... ... . ....

2.2.3 TypeJ and TypeJA Nestings . . . . . .. ... ... .. ....

2.3 SUmMIMALY . . . . . . e e e e e e e e e e e e e

3 The Transformation of SQL Queries. . . . . . .. .. ... ... ......
3.1 Single-Block Query Transformations. . . . . .. ... ... .... ..
3.2 Nested Query Transformations . . . . . ... ... ... ........

vi

ii



3.2.1 TypeN/Typel Transformations . . ... ... ... ...... 18

3.2.2 TypelA Transformation . . .. ................. 23

33 SomeExtensions . .. ... .. .. ... ... . 27
3.3.1 EXISTS and NOT EXISTS Extensions . . . . ... ... ... 27

3.3.2 ANY and ALL Extensions . . . . . ... ... ... ...... 28

3.4 Cost Models for Transformed Query Processing . . .. .. ... ... 30

4 Performance Tests with Wisconsin Benchmark . . . . . . .. ... ... .. 36
4.1 Benchmark Methodology for Database Performance Testing . . . . . 38
42 Benchmark Design . . ... .. ... ... ... ... ... .. ... 39
4.2.1 Wisconsin Benchmark Database . . . . . ... ... ...... 40

4.2.2 Index Information and Query Performance . . . . . ... ... 42

423 QueryDesign . ... ... ... ... ... 44

4.3 Benchmark Execution and Analysis . . . . ... ... ... ...... 46
4.3.1 Single-Table Queries . . . ... ... ... ... ........ 47

4.3.2 JoimQueries . . . . . .. .. .. e e 51

433 TypeN Queries . . . .. .. .. ... ... ... ........ 56

434 TypelJQueries. . . . . . . . .. . .. ... 62

435 TypeJAQueries. . . . . .. .. ... .. ... .. €5

43.6 EXISTSExtension ... ..................... 69

43.7 ANY/ALLExtensions . .. ................... 74

4.4 SUMMATY . . . . . o L e e e e e e e e e e e e e 81

5 A Transformation for General Nested Queries . . .. ... ... ...... 85
6 Conclusions . . . .. .. ... ... e 92
A List of SQL Queries for Performance Testing . . . . . .. .......... 96

vii



B A Sample Pro*C Program for Testing
REFERENCES . . . . ... ... .. ..

.....................

.....................

viii



LIST OF FIGURES

3.1
3.2

4.1
4.2
4.3
4.4
4.3
4.6
4.7
4.8

5.1

5.2

Algorithm for TypeN/J Transformation . . . . . . ... .. ... ... 20
Algorithm for TypeJA Transformation . . ... .. ... ....... 24
Single-Table Query 1.1 for Table TenKOne . . . . . .. .. ... ... 50
Join Query 2.1 witk: Different Indexes . . . . . . . .. ... ... ... 53
TypeN Query 3.1 with Merge-Sort Method and Join Query 3.2 . . . . 58
TypeN/Join Queries (3.3/3.4) with a Table Fit into Main Memory Cache 61

TypeJA/Join Queries (5.1/5.2) with Different Index Information . . . 68
EXISTS Queries (6.1 and 6.3) with Different Index Information ... 73
<=ANY/TypeA Queries (7.1/7.2) with different index information . 79

<=ANY/Join Queries (7.3/5.1) with different index information . . . 80
Algorithm for Transformation of General Nested Queries . . . . . . . 87
An Example of a General Nested Query . . .. .. ... ....... 90

ix



LIST OF TABLES

2.1 Summary of SQL Query Classification ... ... ........... 14

4.1 Description of the Attributes in Table TenKOne of Wisconsin Benchmark 41

4.2 Timing Data(Sec.) for Single-Table Queries with Table OneK . ... 49
4.3 Timing Data(Sec.) for Single-Table Queries with Table TenKOne . . 49
4.4 Timing Data(Sec.) for Two-Way Join Query 2.1 . . . . .. ... ... 52
4.5 Timing Data(Sec.) for Three-Way Join Query 2.2 . . . . . ... . .. 52
4.6 Timing Data(Sec.) for Join Query 2.1 with/without Indexes . . . . . 52
4.7 Timing Data(Sec.) for TypeN/Join Queries (3.1/3.2) . .. ... ... 58
4.8 Timing Data(Sec.) for TypeN/Join Queries (3.3/3.4) with a Table Fit

into Main Memory Cache . . ... ... .. .. ... ... ..... 61
4.9 Timing Data(Sec.) for TypeJ/Join Queries (4.1/4.2) . ... ... .. 64
4.10 Timing Data(Sec.) for TypeJA/Join Queries (5.1/5.2) . . . . .. . .. 68
4.11 Timing Data(Sec.) for EXISTS and Related Queries. . . . . .. . .. 72
4.12 Timing Data(Sec.) for <=ANY/TypeA Queries (7.1/7.2) . . . . ... 77
4.13 Timing Data(Sec.) for <=ANY/Join Queries (7.3/5.1} . ... .. .. 78



CHAPTER 1

Introduction

One of the most appealing properties of many relational database systems is their
nonprocedural user interface. Users specify only what data is desired, leaving the sys-
tem optimizer to choose how to access that data. The built-in decision capabilities of
the optimizer therefore play a central role regarding system performance. Automated
selection of optimal access plans is a rather difficult task, because, even for simple
queries, there are many alternatives and factors affecting each query’s performance.
Critics of relational systems point out that their nonprocedurality prevents users from
navigating through the data in the ways they believe to be the most efficient. De-
velopers of relational systems claim that systems could be capable of making very
good decisions about how to perform users’ requests based on statistical models of
databases and formulas for estimating the costs of different execution plans. Opti-

mizer effectiveness in choosing efficient execution plans is critical to system response



CHAPTER 1. INTRODUCTION 2

time. For example, in an experiment described later in the thesis, a query was exe-
cuted in 41.42 seconds on our Oracle system' while the response time of another query
which produces exactly the same answer was 74.3 minutes, about 108 times longer.
In the case where the first query is to be used interactively, the second one cannot be
justified since it is very inefficient. The same performance problem arises for a number
of equivalent SQL queries. This huge performance difference is due to the fact that
it is usually very difficult for the optimizer to know the nature of some complicated
queries. Thus, the database query optimizer chooses totally different algorithms for
the evaluation of queries which request the same data in different ways. Optimization
algorithms are built-in for only certain kinds of queries, thus the optimizer sometimes
cannot find the most efficient evaluation algorithm. Therefore, it is important to
transform, if possible, those complicated queries into simpler ones in order to make

use of built-in optimization algorithms.

Generally speaking, the problems we encounter include: what kinds of SQL queries
are more efficient than others in particular situations? For those queries which will
produce the same results, is there any algorithm to transform one query into another
equivalent query in order to take the advantage of built-in query processing algo-
rithms? For query evaluation, what roles do the indexes play? Does the use of an

index always result in better time efficiency?

This thesis is organized into six chapters. After motivating and iatroducing the

10racle RDBMS, Version 6.1.



CHAPTER 1. INTRODUCTION 3

problems in Chapter 1, a classification of SQL queries is given in Chapter 2 in order to
establish the foundation for the transformation and performance experiment later on.
Chapter 3 illustrates some specific transformation algorithms and their theoretical
cost models. An actual testing environment is established in Chapter 4 from which
the testing results are driven. A more general transformation algorithm is given in
Chapter 5. Chapter 6 concludes that the transformation algorithms are practical and

effective, thus a better retrieval performance can be obtained from those transforma-

tions.



CHAPTER 2

A Classification of SQL Queries

SQL is a block-structured, database interface language which has been implemented
in many commercial relational database systems, e.g., the SEQUEL system, System
R, DB2 and Oracle. The principal advantage of the relational data model is that it
allows a user to express the desired results of a query in a high-level nonprocedural
data language without specifying the access paths to stored data. Relational calcu-
lus and relational algebra were designed to concisely specify a complex query to a
database. However, the mathematics of the relational system is difficult for normal
users to grasp, thus their use as data languages to access an actual database may be
limited. As a result, SQL was developed as an interface language. SQL is as powerful
as the relational calculus and the relational algebra in the sense that SQL exhibits the
major expressive power implicit in the relational calculus and algebra, but possesses
the additional features like readability, which makes SQL easier for nontechnical users
to learn and use. One of the more interesting features of SQL is the capability of nest-

ing query blocks to an arbitrary depth. Without this capability, the power of SQL



CHAPTER 2. A CLASSIFICATION OF SQL QUERIES 5

is severely restricted. However, techniques which have been used to implement this
feature in existing systems are, in general, inefficient and, in view of the popularity of
SQL-like data languages, it is imperative to develop efficient methods for processing
nested queries. Qur classification of SQL queries will be based on query blocks and

the relationship between those query blocks.

A query block is represented by a SELECT clause, a FROM clause, and zero or one
WHERE clause. The SELECT clause specifies the columns of the tables to be output
and operations on the columns. Aggregate functions can be used as an operation on a
column of a table. These aggregate functions in SQL are SUM, AVG, COUNT, MAX
and MIN. The FROM clause specifies the tables referenced. The WHERE clause
specifies the predicates which tuples of the tables indicated in the FROM clause must
satisfy. Different predicates decide the different relationships between related query

blocks.

A sample predicate is of the form [R;.Cix op X], where R; is a table name, Cy is
the column name of a table, R;.C; represents the column Cjy of the table R;. X is
a constant or a list of constants, and op is a scalar comparison operator (=, !=, >,
>=, <, <=) or a set membership operator (IN, NOT IN). As long as the predicates
in the WHERE clause are restricted to the simple predicates of the form [R;.Ci op
X], only single-table queries can be formulated. For more general queries, the simple

predicates may be extended in three ways.

1. Nested predicate: X may be replaced by Q, an SQL query biock, to yield a



CHAPTER 2. A CLASSIFICATION OF SQL QUERIES 6

predicate of the form [R;.Cx op Q). The op may be a scalar comparison or set
membership operator. This predicate form implies that the subquery Q must

result in a single-column table.

2. Join predicate: X may be replaced by R;.Cj, to yield a predicate of the form
[R;.Cx op R;.C4], where R; is a table name, C;, is a column name in the table

R;. The op is a scalar comparison operator.

3. Division predicate: R;.Cx and X may be replaced by two query blocks Q; and
Q., respectively, to yield a predicate of the form [Q, op Q:]. The op may
be a scalar comparison operator, set membership operator or set comparison

operator (=, !=, CONTAINS, NOT CONTAINS).

Among predicates, the nested predicate and the join predicate are more interesting
to us since no actual database system implements the division operation?®. Thus, the
division predicate is not considered further in our performance testing. The classifi-

cation of SQL queries in this thesis is based on those predicates.

For demonstration purposes, we assume the following tables:
S( sno, sname, budget, city )—-the Supplier table
P( pno, pname, color, weight, city )}—-the Part table

SP( smno, pno, qty, destination )—-the Shipment table

2CONTAINS and NOT CONTAINS are the two division operators in SQL language (See page 78
in [17]). But no actual RDBMS system supports these operators.



=3

CHAPTER 2. A CLASSIFICATION OF SQL QUERIES

An S tuple contains the number (identifier), name, budget and location of a sup-
plier. Each P tuple contains the number (identifier), name, color, weight and storage
location of a part. Each SP tuple has fields for a supplier number, a part number,
the quantity of parts the supplier supplies and the destination city for the shipment.

Among these attributes of each table, italicized attribute(s) means the primary key(s)

for that table.

2.1 Single-Block Queries

A single-block SQL query contains only one query block. Based on the number of

tables involvey, single-block queries can be of two kinds.

2.1.1 Single-Table Queries

A single-table query retrieves information from only one table. The number of predi-
cates in the WHERE clause can be greater than one, of course. For example, find the

number of the supplier whose name is ‘Simon Fraser’ in Burnaby:

SELECT sno
FROM S
WHERE sname = ‘Simon Fraser’ AND

city = ‘Burmaby’.

The evaluation of this kind of query is fairly straight forward. Most current

database optimizers can take the advantage of available index information in order to



CHAPTER 2. A CLASSIFICATION OF SQL QUERIES 8

find efficient ways for evaluation.

2.1.2 Multi-Table Queries (Join Queries)

A multi-table query retrieves information from two or more tables and must specify
some join predicates. Thus, a single-block multi-table query is also called join query.
For example, find supplier numbers and numbers of red parts which are stored at

cities where there are some suppliers:

SELECT sno, pno
FROM S, P
WHERE P.color = ‘Red’ AND

S.city = P.city.

For a join query, the Oracle optimizer considers both the nested-iteration method
and the merge-sort join method, as well as all of the possible ‘reasonable’ orders
in which tables may be scanned, possibly with some available indexes. Whereas
the nested-iteration method of joining two tables requires one table to be retrieved
as many times as there are tuples that satisfy predicates on the other table, the
merge-sort join method requires both tables to be simultaneously retrieved only once,
provided that the tables are first sorted in join-column order. The nested-iteration
method is better if one of the tables is small enough to fit into the main memory
cache. In that case, this table may be the inner loop table, thus less disk I/O occurs.
However, if all tables are too large to fit into the main memory cache, the merge-sort

join method performs better.



CHAPTER 2. A CLASSIFICATION OF SQL QUERIES 9

2.2 Nested Queries

A nested queryincludes subqueries. A subguery 1z a query block that is used in a clause
of a higher level SQL statement. A query block comprising a subquery is called an
inner block; a query block containing a subquery is called an outer block. A table in
the FROM clause of an inner block is called an inner table; a table in the FROM
clause of an outer block is called an outer table. In the WHERE clause of a query
block, there may be several subqueries connected by SQL logical operators AND or
OR, and subqueries may also be nested with depth of greater than one. These would
form more general, thus more complicated, nested queries. Unless otherwise specified,
all the nested query examples in this chapter are the simplest nested queries, which
means there is only one inner block and one outer block in each query and there is

only one table in each query block.

2.2.1 TypeA Nesting

A nested query is a TypeA (A means Aggregate) query if the inner query block Q
does not contain a join predicate that references any outer table, and if the SELECT
clause of Q consists solely of an aggregate function over a column of an inner table.
For example, find the numbers of suppliers who ship parts with the maximal part

number:

SELECT sno
FROM SP



CHAPTER 2. A CLASSIFICATION OF SQL QUERIES 10

WHERE pno =
( SELECT MAX( pno )

FROM P).

Query blocks can be join blocks, which means that the join predicates are permit-
ted within one query block. Thus, the following query is also a TypeA query: find the
name of a supplier with the largest supplier number who ships more than 100 picces

of any kind of parts to the city where a supplier stays.

SELECT sname
FROM S
WHERE sno =
(  SELECT MAX( smno )
FROM S, SP
WHERE SP.qty > 100 AND

SP.destination = S.city ).

There is only one way to process a TypeA nested query on a single processor.
Thus, the performance of a TypeA query is fixed. The inner block must be evaluated
first. Since the SELECT clause in the inner block contains an aggregate function,
the evaluation of the inner block will result in a single constant rather than a list of
constants. The nested predicate of the outer block then becomes a simple predicate,
since the inner block can be replaced by a constant. After this, the outer block is no
longer nested and can be processed completely. Thus the evaluation of inner query

blocks is independent from any higher level outer blocks and all the inner blocks are



CHAPTER 2. A CLASSIFICATION OF SQL QUERIES 11

evaluated only once from bottom-up.

2.2.2 TypeN Nesting

A nested query is a TypeN (N means None) query if the inner query block Q does not
contain a join predicate which references any outer table, and the SELECT clause of

Q does not contain any aggregate function. Join predicates are permitted within one

query block.

For example, find out the numbers of suppliers who ship parts whose weight is

greater than 50 pounds:

SELECT sno
FROM SP
WHERE pno IN
(  SELECT pmno
FROM P

WHERE weight > 50 ).

The evaluation of a TypeN nested query would be processed by first processing
each inner query block Q, resulting in a list of values X which can then be substi-
tuted for the inner query block in the nested predicate. In above example, [pno IN
Q] becomes [pno IN X]. The resulting query is then evaluated by either the nested-

iteration method or the merge-sort method in our Oracle system, depending on the



CHAPTER 2. A CLASSIFICATION OF SQL QUERIES 12

index information. Here, the evaluation of the inner block is also independent of the
outer block, and the inner block is evaluated only once. The total number of the
return values from the inner block has some effect on performance since these return
values have to be sorted in order to remove those duplicate values. If this number is

big enough, the nested iteration evaluation of the query might require extra disk [/Os.

2.2.3 TypelJ and TypeJA Nestings

A nested query is a TypeJ (J means Join) query when the WHERE clause of the
inner query block contains at least one join predicate which references an outer table.
Another condition of Typel nesting is that the SELECT clause of the inner query
block does not contain any aggregate function. For example, select the names of parts

which are stored in the place to which the parts are shipped:

SELECT pname
FROM P
WHERE pno IN
(  SELECT pno
FROM 3

WHERE SP.destination = P.city ).

A nested query is a TypeJA (JA means Join and Aggregate) query when the
WHERE clause of the inner query block contains a join predicate which references

an outer table, and the SELECT clause of the inner block consists of an aggregate



CHAPTER 2. A CLASSIFICATION OF SQL QUERIES 13

function over a column of an inner table. For example, find the names of parts, with

the largest part number, which are shipped to the city where they are stored:

SELECT pname
FROM P
WHERE  pno =
( SELECT MAX( pmno )
FROM SP
WHERE SP.destination = P.city ).

TypeJ and TypeJA nesting are processed in most commercial systems, such as
our Oracle system, by the nested-iteration method: the inner query block is pro-
cessed once for each tuple of the outer table which satisfies all simple predicates on
the outer table. This method has the obvious disadvantage that the inner table may
have to be retrieved many times. In the examples above, the inner table SP must
be retrieved once for each tuple of the outer table P, since there are no other sim-
ple predicates in the outer query block. It is this inefficiency which motivated some
people to develop alternative algorithms for processing nested queries. Because of
this inefficiency, we attempt experiments, reported later in this thesis, to verify the

efficiency of some of these algorithms.



CHAPTER 2. A CLASSIFICATION OF SQL QUERIES 14

Query Type Aggregate Function | Join Predicate
in Inner Block with Outer Table

Single-block | Single-table N/A N/A
Join query N/A N/A

TypeA Yes No

Nested query TypeN No No
TypelJA Yes Yes

Typed No Yes

Table 2.1: Summary of SQL Query Classification

2.3 Summary

Our classification for SQL queries can be summarized in Table 2.1. Note, this classifi-

cation just presented is not a complete classification. We make use of this classification

only for subsequent transformations and performance testing.



CHAPTER 3

The Transformation of SQL

Queries

From the expressive power point of view, SQL is redundant. For a certain logical
interpretation, we can usually write a query in several different, but logically equiv-
alent, SQL forms. Thus some SQL queries can be transformed into other logically
equivalent SQL queries, nonetheless this kind of transformation may be difficult to
be accomplished automatically. The redundancy of SQL provides a variety of natural
ways for people to conceive of, express and understand queries. However, different
logically equivalent SQL queries can result in significantly different retrieval perfor-
mance. Since some transformations are bidirectional, this chapter will concentrate on
transformations from more structurally complex forms, such as nested query forms,

into structurally simpler ones, such as join query forms.

15



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 16

We say that two SQL queries are logically equivalent if both queries produce iden-

tical answers for any tuple values of tables.

The motivation for making transformations is to determine a more efficient access
plan for a proposed query. In particular, transforming a nested query into its join
equivalence is desirable because the optimizers in current relational database systems
that support SQL-like query languages have been designed to efficiently evaluate the
join form of multiple-table queries and they resort to the nested-iteration method for
evaluating most of the nested queries. The nested-iteration method is efficient only
for a limited set of queries and database characteristics. In the general case, join

queries are more efficient as we show later in Chapter 4.

3.1 Single-Block Query Transformations

A single-block query can always be transformed into another logically equivalent
single-block SQL query by simply changing the order of the predicates (assuming
there are more than one predicates). For example, a join query ‘find supplier num-

bers and numbers of red parts which are stored in a city where a supplier stays’:

SELECT sno, pno
FROM S, P
WHERE P.color = ‘red’ AND

S.city = P.city



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 17
may be transformed into the logically equivalent query by

SELECT sno, pno
FROM S, P
WHERE S.city = P.city AND

P.color = ‘red’.

Changing the predicate order may effect query performance. This is why query
optimizers routinely adjust the predicate order, typically to ensure projections and
selections are done prior to joins. Thus, manual alternation of predicate order by
programmers will have minimal impact on performance since contemporary query

optimizers do a good job of this already.

3.2 Nested Query Transformations

A nested query (other than a TypeA query which may be processed only one way)
can be always transformed into a series of logically equivalent single-block queries by

building some intermediate tables or simply by using some join operations.

In order to introduce transformation algorithms and some examples, we assume,
throughout this section, that R, and R; are table names for the outer table and the
inner table. Cy, Ci, Cn, Cy, C,, Cy, C, and C, are attribute names in the corre-

sponding tables.



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 18

3.2.1 TypeN/TypelJ Transformations

A TypeN nested query ‘find numbers of suppliers who ship parts of more than 50

pounds each’:

SELECT sno
FROM SP
WHERE pno IN
(  SELECT pno
FROM P

WHERE weight > 50 )

can be transformed into a logically equivalent query which does not contain a

nested block:

SELECT SP.sno
FROM SP, P
WHERE P.weight > 50 AND

SP.pno = P.pno.

For another example, a TypelJ query ‘find names of parts which are shipped to

the city where they are stored’:

SELECT pname
FROM P



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 19

WHERE pno IN
( SELECT pno
FROM SP

WHERE SP.destination = P.city )

can be also transformed into a logically equivalent join query:

SELECT P.pname
FROM P, SP
WHERE P.pno = SP.pno AND

P.city = SP.destination.

A lemma is given in [16] for establishing the equivalence of the TypeN or TypelJ
form and the corresponding join ferm of a two-table query in which the operator is
the set inclusion operator, IN, or other scalar comparison operators (=, ! =, <=, <,

>=, >)}. To illustrate this lemma, consider two queries Q; and Q..

Let query Q, be

SELECT Ck
FROM Ro
WHERE Ch 1IN
( SELECT Cm
FROM Ri ).



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 20

Algorithm TypeNJ
Begin

1. Combine the FROM clauses of all query blocks into one FROM

clause.

2. AND together the whole WHERE clauses of all query blocks into one
WHERE clause.

3. Replace [R,.C}, op (SELECT R..C,;] by a join predicate [R,.Cj, new-
op R;.C..], and AND it to the combined WHERE clause obtained

) 1

on step 2. Note that if op is IN, the corresponding new-op is '=’;
otherwise, new-op is the same as op.

4. Retain the SELECT clause of the outermost query block.
End

Figure 3.1: Algorithm for TypeN/J Transformation

Let query Q3 be

SELECT Ro.Ck
FROM Ro, Ri

WHERE Ro.Ch = Ri.Cm.

The lemma says that Q; and Q, are equivalent and suggests a transformation
algorithm ([16]) for nested TypeN or TypelJ query of depth (n-1) (here, n is the total

number of block levels) to its join form. Figure 3.1 illustrates this algorithm.

By definition, the inner block of the TypeN query Q; can be evaluated indepen-
dently of the outer block and the result of evaluating it is X, a list of values in the

attribute C,, of table R;. Q; is then reduced to



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 21

SELECT Ck
FROM Ro
WHERE Ch IN X.

The predicate [Cy, IN X] is satisfied only if X contains a constant x such that Cj =
x. That is, it can be satisfied only for those tuples of R, and R; which have common
values in the C,, and C,, columns, respectively. The join predicate [R,.C, = R;.C,,]
specifies exactly this condition. So, query Q; and Q3 are logically equivalent. For a
TypeJ query, the join predicate in the inner block which references an outer table is
ANDed to other predicates. Thus, it can also be transformed to its join form by the

same algorithm. For example:

SELECT Ck
FROM Ro
WHERE Cm IN { SELECT Cp

FROM Ri
WHERE Ro.Cn = Ri.Cq OR
Ro.Cx = Ri.Cy )

could be transformed into:

SELECT Ro.Ck
FROM Ro, Ri

WHERE Ro.Cm = Ri.Cp AND

( Ro.Cn = Ri.Cq OR

Ro.Cx = Ri.Cy ).



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES

(S
o

This algorithm makes a very important assumption. The result of evaluating the
inner block of Q; is X, a list of values in the attribute C,, of table R;. Since the list
is obtained by projecting R; over the C,, column, in general it will contain duplicate
values. But if the OP in the nested query is IN, the effect of the simple predicate
[R,-Ch IN X] is to implicitly remove any redundant values from X. However, the join
predicate [R,.C, = R;.C,;] of query Q. does not imply removal of duplicate values
from the C,, column of R; and the join result of Q; would reflect their presence.
Therefore, it is assumed that when this algorithm is used for transformation and if
the OP of the nested predicate is IN, the join query obtained after the transformation
1s processed by first selecting and projecting the table of the inner query block in the
nested query(e.g., R; in Q2 ) and then removing duplicate values from the resulting
unary table before joining it with the table of the outer query block in the nested
query(e.g., R, in Q2 ). This assumption guarantees the correctness of the Lemma and
the algorithm, and appears to be reasonable, since the unary table which results from
projecting and selecting a table is usually much smaller than the initial table, thus
the cost of joining this smaller unary table with another table is usually smaller than

the cost of joining initial ones.

Also note that this algorithm can be easily extended to some nested predicates in
which the OP is a scalar comparison operator, but a join query could be obtained from
a TypeN or TypeJ nested query by that algorithm if and only if the OP of the nested
predicate is IN or scalar comparison operators, which means that this algorithm does
not apply when the OP of the rested predicate is the set noninclusion operator NOT

IN. For example, the Typed query



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 23

SELECT Ck

FROM  Ro
WHERE Cm NOT IN
( SELECT Cp
FRCM  Ri

WHERE Ro.Cn = Ri.Cq )

can not be applied by that algorithm. A nested query with the NOT IN predicate
can be transformed into a query with a division operator. This is not considered in

this thesis. Detailed information of this transformation can be found in [16].

3.2.2 TypeJA Transformation

A transformation algorithm ([12]) for TypeJA nested query with nesting depth of one

is presented in Figure 3.2. The following example illustrates this algorithm step by

step.

Let Q3 be the TypeJA query

SELECT Ck
FROM Ro
WHERE Ro.Cq =
( SELECT AGG( Ri.Cm )
FROM Ri
WHERE Ri.Cn <= Ro.Cp ).



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES

Algorithm TypelJA
Begin

1.

End

Create a temporary table TMP1 by projecting the join column of the
outer table, and restrict it with any simple predicates applying to the
outer table;

Create another temporary table TMP2 by joining the inner table
with TMP1. If the aggregate function is COUNT, the join here must
be an outer join, and the inner table must be restricted and projected
before the join is performed. If the aggregate function is COUNTY(
*), compute the COUNT function over the join column. The join
predicate must use the same operator as the join predicate in the
original query(except that it must be converted to the corresponding
outer operator in the case of COUNT), and the join predicate in the
original query must be changed to =. In the SELECT clause, select
the join column from the table TMP1 in the join predicate instead
of the inner table. The GROUP BY clause will also contain columns
from table TMP1i.

Join the outer table with the temporary table TMP2, according to
the transformed version of the original query.

Figure 3.2: Algorithm for TypeJA Transformation



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 25

First, let

TMP1( Cp ) =
SELECT DISTINCT  Cp

FROM Ro;

then, another table TMP2 is created:

TMP2( Cp, Cm ) =
SELECT TMP1.Cp, AGG( TMP3.Cm )
FROM  TMP1, TMP3
WHERE TMP3.Cn <= TMP1.Cp

GROUP BY TMP1.Cp.

If AGGis COUNT, then the join for TMP2 must be an outer join® and
TMP3( Cm, Cn ) =
SELECT Cm, Cn

FROM Ri;

otherwise, the table TMP3 is the same as Ri.

Finally, a join query Q4

3The outer join includes all values from columns participating in join, with NULLs in the opposite
column if there is no match for a column value (see [8] for detail). Oracle implemented the outer
Join by adding a (+) after a table name in the normal join predicate.



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 26

SELECT Ro.Ck
FROM Ro, TMP2

TMF2.Cm AND

WHERE Ro.Cq

Ro.Cp = TMP2.Cp

produces the same answer as the TypeJA query Qs. This shows that a TypeJA query
may be transformed into an equivalent join query by introducing some intermediate
tables. In query Qs, if the AGG in the inner query block is COUNT( * ), then
compute the COUNT function over the join attribute, i.e., change COUNT( * ) to
COUNT( Cn ).

The algorithm in Figure 3.2 only works for the simplest TypeJA nested queries,
which is nested to depth one and there is only one table in the only inner query block.
In the general case, the aggregate function and the joiu predicate may appear at
any level of nesting, and not necessarily at the same level. Thus, Algorithm TypeJA
needs to be extended. The basic idea of this extension is to first remove the aggregate
function from the inner query block by creating temporary tables (step 1 and step 2 in
Figure 3.2), turning the TypeJA nested query into a TypelJ query, then to transform
the revised TypeJ query by the TypeNJ algorithm (step 3 in Figure 3.2). In the
general case, the transformation of a TypeJA query requires these two separate steps.
We present a formal algorithm for the transformation of a general TypeJA query in

Chapter 5.



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 27

3.3 Some Extensions

The transformation algorithms presented only consider nested predicates containing
scalar comparison and set inclusion operators. But the SQL language also contains
other operators such as EXISTS, NOT EXISTS, ANY and ALL. Some extensions to

queries need to be implemented in order to take the advantage of these more efficient

transformation algorithms.

3.3.1 EXISTS and NOT EXISTS Extensions

A nested query of the form

WHERE  EXISTS
( SELECT selectitems
FROM fromitems

WHERE whereitems )
can be transformed into the nested query

WHERE 0 <
( SELECT COUNT( selectitems )
FROM fromitems

WHERE vwhereitems ).

Similarly, a nested query of the form



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES

[
—
&

WHERE NOT EXISTS
( SELECT selectitems
FROM fromitems

WHERE whereitems )

can be transformed into its equivalent

( SELECT COUNT( selectitems )
FROM fromitems

WHERE whereitems ).

These transformations may result in a TypeA or TypeJA nesting depending upon
whether or not the inner query block has any join predicate with an outer table, and

these transformations are bidirectional.

3.3.2 ANY and ALL Extensions

A nested predicate of the form

< ANY ( SELECT selectitem
FROM fromitems

WHERE whereitems )

can be transformed into the logically equivalent form



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 29

< ( SELECT MAX( selectitem )
FROM fromitems

WHERE vwhereitems ).

The same transformation is performed when the operator is <= ANY'.

Similarly,

< ALL ¢ SELECT selectitem
FROM fromitems

WHERE whereitems )
can be transformed into the logically equivalent nested predicate

< ( SELECT MIN( selectitem )
FRCM fromitems

WHERE whereitems ),

and the same transformation is performed when the operator is <= ALL. If the

comparison operator is > or >=, the transformation is the reverse:

> ANY ( SELECT selectitem

can be changed to

> ( SELECT MIN{ selectitem )

and



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 30

> ALL ( SELECT selectitem
can be changed to
> ( SELECT MAX( selectitem ).

More simply, an operator of the form =ANY is transformed into IN, and an opera-
tor of the form /=ANY is transformed into NOT IN. But the set noninclusion operator
is not considered in our performance testing, so the transformation of /=ANY is not

considered further.

3.4 Cost Models for Transformed Query Process-
ing
In order to convince ourselves that the processing performance will be better after

these transformations, we need to set up cost models in order to compare the resulting

candidate queries.

Let us assume:

&

-2 an outer table;

&

;2 an inner table;

oy

the temporary table ¢ obtained by intermediate processing on Ry, tis

the table name;



"HAPTER 3. THE TRANSFORMATION OF SQL QUERIES 31

P,: the size in pages of table Ry;

INj: the number of tuples in table Ry;

fi: the fraction of the tuples of table Ry that satisfy all simple predicates
on Ry;

B: the size in pages of available main memory cache.

(Note, k represents a table name, thus k = o, i or t.)

Furthermore, the nested query has the simplest form: one outer block and one
inner block, the FROM clause of each block contains only one table. No indexes
are available for query processing (i.e., tables are sequentially scanned). The nested-
iteration method is used for the evaluation of TypeN, TypeJ and TypeJA queries,
and a (B — 1)-way multiway merge-sort method is used for all the join operations,

which requires (2 - P; - logg_, Pi) page I/Os to sort the table Ry.

For a TypeN query, the inner query block is evaluated first, thus the temporary
table R, is a unary table with smaller size than the initial table. For a TypeJ query, the
temporary table R is obtained by selecting and projecting on table R; first according
to the simple predicates in the inner query block. This might reduce the size of R;.
If table R; can not fit into the (B — 1) page main memory cache, then R; has to be
fetched once for each tuple of R, that satisfies all other simple predicates on R,, as

many as (f, - N,) times. The cost is up to
(Pi+-Pt)+Po+fo'No'Pt (Page I/OS)

where the first two terms are the cost of generating R, since table R; has to be written

out on disk. In contrast, the total cost for the equivalent join query by the merge-sort



CHAFPTER 3. THE TRANSFORMATION OF SQL QUERIES 32

method is
(Pi+P:+2-Pi-logg_y )+ (Po+ Pa+2- Py -logg_; Pu)+ (P + Pu) (page 1/0s)

where the first three terms are the cost of generating R; from R; and removing dupli-
cates from R; by sorting; the next three terms are the cost of selecting and projecting
R, into Ry and sorting it, thus P,y = f, - P,; and the last two terms are the cost of

merge joining R; and Ry, after sorting both of them.

For example, for a TypeN or Typed query, if we have six pages of main memory
cache (B = 6), the size of the inner and outer tables is 100 pages (P; = P, = 100),
there are 500 tuples in table R, which satisfies all other simple predicates (f, - N, =
5090), and the temporary table R; has 20 pages (P, = 20), according to our cost model,
the nested-iteration method may cost 10,220 page I/Os. If the table R,y has 50 pages
(Pa = 50) and a five-way merge-sort is used to sort R; and Ry, the join query costs
total 658 page I/Os. For another example, if we have six pages of main memory cache
(B = 6), the inner and outer table size is 50 pages (P; = P, = 50), no simple predicate
for the outer table (f, = 1) and there are 500 tuples in the outer talbe (N, = 500),
and the table R; has 20 pages (P; = 20), the nested-iteration method costs 10,120
page I/Os. If a five-way merge-sort join is used for the join query, the join processing
needs 558 page I/Os. Thus, transformed join queries are more efficient than nested

queries. More detailed theoretical analysis results can be seen in [16].

The cost for a TypeJA query evaluated by the nested-iteration method is

P,+ f,-N,-P;, (page I/Os).



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 33

The total cost of using the TypeJA transformation algorithm in Figure 3.2 will consist

of three major sub-costs:

1. The projection and selection on the outer table R,, resulting in a
temporary table TMP]I,;

2. The creation of temporary table TMP2 by projecting and selecting
the inner table R;, joining this with temporary table TMPI, and
performing a GROUP BY operation on the result;

3. Joining the temporary table TMP2 with the outer table R,.

Thus, the total cost of transforming a simplest TypeJA nested query will depend
on the type of join used to create temporary tables (since a join might have to be an
outer join), and also depend on the type of join used between the outer table R, and
the temporary table TMP2. If the merge-sort join is used for all of the join operations,

the normal join and the outer join will have the same cost.

The cost of creating the table TMP1, e.g., projecting and selecting R,, then sorting
it, is:
P, + Prypi +2 - Prypy - logg_y Prup1 (page 1/0s)
The cost of creating the temporary table TMP2 including the GROUP BY operation
is:
P+ Prayps+2-Prypes-logp_y Praps+ Praspi+ Pryps+2-Prapa+Pryupz (page 1/0s)

where table TMP4 is the result of join before the GROUP BY operation. The first

three terms above are the cost of creating a sorted TMP3 from table R;. The next



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 34

two terms are the cost of merge join TMP1 and TMP3. Then, perform the GROUP
BY operation on TMPj and write out table TMP2 to disk. The cost of performing
the final join between R, and TMP2 is:

2-P,-logg_y P,+ P, + Pryp2  (page 1/0s)

Thus, the total cost of the algorithm is the surnmary of these three parts as given

above.

The cost model for TypeJA transformation can be compared to the nested-iteration
method in the following example. The TypeJA query is query Q3 above, the aggre-
gate function is COUNT, but in the inner query block, the join is an equal join
instead of with ‘<=’ operator. For example, the outer table has 50 pages (P, = 50),
the inner table has 30 pages (P; = 30), the corresponding temporary table Ryapy,
Rrmp2, Rramps and Rrasps have 7 pages, 5 pages, 10 pages and 8 pages respectively
(Prmpr = 7, Prmp2 = 5, Prasps = 10, Praypy = 8), the main memory cache is 6 pages
(B = 6), there are 100 tuples which satisfy the simple predicates on the outer table
(fo - N, = 100). The nested-iteration method of processing the query costs 50 +
100 * 30 = 3,050 page I/0s. The transformation method using Algorithm TypeJA
and two merge-sort joins cost about 470 page I/Os. This example shows that the
nested-iteration method is less efficient under the assumptions in the example. The
theoretical analysis of Algorithm TypeJA is very complex, and a detailed analysis is

presented in [12].

From the analyses above, we can determine that, generally speaking, a theoretical

analysis for an algorithm is clear, correct, but has some limitations in the sense that:



CHAPTER 3. THE TRANSFORMATION OF SQL QUERIES 35

1. All of the theoretical analyses are based on simplified models, like simplified
queries and simplified memory situations. Certain statistical properties, e.g.
uniform distribution and independence of attribute values, are commonly as-
sumed. This can only reflect a part of the performance information, sometimes,
even a rather small part. For more general, more practical situations, this kind
of theoretical analysis is difficult to do and to compare, thus the conclusions

obtained based on those assumptions are suspect.

2. Most theoretical analyses are based entirely on a small number of processing
strategies. Index information can play a very important role on query perfor-
mance and the strategy chosed by a query optimizer sometimes is related to
the available indexcs. But adding index information to the analysis makes the

analysis more complicated and even more difficult.

3. Frequently the number of secondary storage accesses is the sole, or at least dom-
inating, cost measure, as in the analyses above. This assumes that disk 1/0 is

. still the bottleneck of SQL query processing. But today’s transaction processing
systems often have large database buffers and are CPU-bound rather than I/0O-
bound. Multitasking environments, buffer management, concurrency control,
communication cost and operating system overhead are frequently neglected by
the traditional analysis method, even though they have a major performance

impact sometimes.

Therefore, a performance testing on an actual RDBMS can make the conclusions

more convincing.



CHAPTER 4

Performance Tests with Wisconsin

Benchmark

A benchmark is a point of reference from which measurements of any sort may be
made®. The need for benchmarks arises whenever there are different products claim-
ing or providing similar functionality. For example, in industry there is a trend to
decentralize data management which has acted as a catalyst to the development of
relational distributed database management systems. Some of these RDBMSs include
Distributed INGRES by Ingres Corporation, SDD-1 developed at the Computer Cor-
poration of America and R* developed by IBM. Because these systems offer similar
functionalities, a need to perform a comparative evaluation of their performance be-
comes necessary. A vendor could also use benchmarks to stress test a system under

development. Another use for a vendor is in establishing a particular rating for a

4Gee Webster’s Third New International Dictionary, 1981.

36



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 37

system. Finally, a user can use a benchmark to compare several sys’ems before pur-
chasing one. Benchmarks are also useful to logic»] ard physical database ¢=signers
because benchmarks help the designers identify costs and Lighlight problems users

may face given certain design decisions.

A good benchmark for database systems should have the following basic charac-

teristics ([5]):

1. Single-user/Multi-user modes: A good benchmark should come in both the
single-user and multi-user modes. The single-user benchmarl should provide
best case expected performance of a system, while the multi-user benchmark

should test the system under normal operating conditions.

2. Scalatility and Portability: A good benchmark should be scalable so that
systems of various sizes can be meaningfully compared. It should also be easily

portable across platforms.

3. Ease of Implementation: The benchmark should be easy to implement. A

benchmark does not have to require many person-months to set up.

4. Database Structure: Most existing benchmarks use one database. This sug-
gests a centralized system by default. If a benchmark is to be run on systems
that are not centralized, then the structure of the benchmark, including the

structure of the database(s) used, should clearly reflect that fact.

5. System Workload: The workloads faced by the systems under test should be

modeled as closely as possible.



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 38

6. Performance Metrics: The performance metrics measured by the benchmarks

should be clearly stated and defined.

4.1 Benchmark Methedology for Database Per-

formance Testing

Managing a database requires a complex system composed of hardware, software, and
data components. A benchmark methodology for database systems must consider a
wide variety of system variables in order to fully evaluate performance. Each varia’ le
must be isolated as much as possible to allow the effects of that variable, and only

that variable, to be evaluated.

The benchmark methodology for database systems consists of three stages ([30]):

1. Benchmark Design:
Establishing the environment of the database systems to be tested, and devel-
oping the actual tests to be performed, which includes setting up the system
environment for the benchmark; designing the system configuration, test data,

workload, and variables of the benchmark studies.

2. Benchmark Execution:

Performing the benchmark testing and collecting the performance data.

3. Benchmark Analysis:

Analyzing the performance results on individual database systems and, if more



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 39

than one system is benchmarked, comparing performance across several systems.

The performance experiment of this thesis will be run cn one relational database

system for different, but logically equivalent, SQL queries.

4.2 Benchmark Design

In the past few years we have seen in the literature a number of proposals for bench-
marks to be used in measuring the performance of database management and trans-
action processing systems. The TP1 benchmark ([1]) and the Wisconsin benchmark
([3], [5], and [4]) have been used to benchmark several systems. Other benchmarks
have also been proposed. It appears as though both the TP1 and the Wisconsin
benchmark have the potential of becoming de facto standard benchmarks, in their

respective areas, to be used in a variety of ways.

Whereas TP1 is oriented towards transaction processing, the Wisconsin bench-
mark was conceived for the purpose of measuring the performance of relational database
systems. It consists of two parts: a single user benchmark in which a suite of approx-
imately 30 different queries are used to obtain response time measurements in stand
alone mode (described in [3]) and a multi-user benchmark in which several queries of
varying complexity are used to determine the response time and throughput behavior
under a variety of conditions (one version of the multi-user benchmark is described

in [5] and the second version in [4]).

In the Wisconsin benchmark, the test database consists of a number of relations



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 40

of varying sizes. The relations are generated according to statistical distributions
and do not model any real-world data. Users of the benchmark can modify the
database generator routines to adapt the database characteristics so that they are

more representative of their application.

4.2.1 Wisconsin Benchmark Database

Our benchmark experiment will be run on our Qracle system using the Wisconsin
Benchmark database as the test database. The Wisconsin benchmark was one of
the first attempts at formalizing experimental performance evaluation of relational
database systems. It was originally conceived as an experiment in benchmarking
methodology. The benchmark focuses on measuring the performance of access meth-
ods and query optimization in a relational database system. Since the purpose of
this thesis work is to study the performance information between logically equivalent
SQL queries for a database, and to test the performance difference in different index

situations, we chose to use the Wisconsin benchmark database.

The original test database consists of 3 relations, with identical attributes but
different cardinalities, one with 1,000 tuples and the other two with 10,000 tuples.
Each relation has 16 attributes, 13 two-byte integer attributes and three fixed-length
string attributes with 52 bytes for each attribute. This results in the tuple width of
182 bytes in total. For a table in a benchmark database, this number can avoid giv-
ing any system an advantage through some fortuitous alignment of tuples in pages.
Each of the three string attributes has three distinguishing characters occurring in

positions 1, 27 and 52. These distinguishing characters allow for 263 unique strings,



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 41

Name Type Range Order Comment
uniquel  int 0 - 9999 random candidate key
unique2  int 0 - 9999 random declared key
two int 0-1 rotating 0, 1,0, 1, ..
four int 0-3 rotating 0,1,2,3,0,1, ..
ten int 0-9 rotating 0,1,..,9,0,1, ..
twenty int 0-19 rotating 0,1,..,19,0,..
hundred int Q-99 rotating 0,1,..,99,0,..
thousand int 0-999 random

twothous int 0 - 1999 random

fivethous int 0 - 4999 random

tenthous int 0 - 9999 random candidate key
0dd100 int 1 - 99(50) rotating 1,3.,5,..,99,1,
evenl00 int 0 - 98(50) rotating 0,2,4,..,98,0,
stringul  char a..a.a-v..v.t random candidate key
stringu2 char a..a.a- v.v.t rotating candidate key
string4 char a..a..a-v..v.v rotating

Table 4.1: Description of the Attributes in Table TenKOne of Wisconsin Benchmark

thus enough for the 10,000 tuple table. The remainder of the positions contain the
same padding character. See Table 4.1 for a detailed description of each attribute in

the table TenKOne.

The smaller table OneK has the same attributes as the table TenKOne, with
identical ranges and cardinalities except where the number of tuples in the table pre-

cludes some attributes from having all of the integer values within the specified range.

In order to test the effects of indexes, we created three indexes on each table: a

clustered index on unique2, a nonclustered, but unique index on unique! and another



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 42

nonclustered, but nonunique index on hundred.

Some system designers and users of database systems who implemented the bench-
mark have criticized the original design on numerous points {[2]). Among the most
common criticisms are those about the structure and size of the database, the tuple
length, data type structure of the strings and distributions of attribute values, the
difficulty in scaling the benchmark to various applications, the restricted and unreal-
istic set of test queries and the fact that the single user mode is not representative of

a system’s performance in an actual application.

4.2.2 Index Information and Query Performance

Conceptually speaking, an indez is a binary relation that associates certain atiribute

value(s) with references to relation elements (tuples), usually called tuple identifiers.

We consider three kinds of index:

1. cluster: the tuples with the same value on the cluster column are stored together
physically, there can be only one clustered index for any table;

2. noncluster/unique: there is exactly one tuple in the table fir each index key;

3. noncluster/nonunique: there is one or more tuples in the table for each index

key.

An index can be composed of one or more attributes. An index with more than



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 43

one attribute is called a concatenated indez.

A relational system does not automatically build indexes, rather they must be
created by authorized users such as database administrators. Index selection is not
trivial, since an index designer must balance the advantages of indexes for data re-
trieval versus their disadvantages in maintenance costs (incurred for database inserts,
deletes, and updates) and database space utilization. An index always plays an im-
portant role in the efficiency of certain searching times since some searching can be
accomplished by simply scanning the index itself and some other searching can be
accomplished by the direct access of data blocks through the index. Nonetheless, a
poor choice of index designs can result in poor system performance, far below what
the system would do if a better set of indexes were available. Furthermore, the exis-
tence of certain indexes, aithough they improve the performance of some statements,
may reduce the performance of other statements, since the indexes must be modified

when tables are updated.

Thus, indexes have the following advantages and disadvantages.

Advantages

e An index may speed up direct access based on a given value for the indexed
column or column combination. Without the index, a sequential scan would be

required.

e Indexes speed up sequential access based on the indexed column or column



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 44

combination. Without the index, a sort would be required.

Disadvantages

e Indexes require space on disk. The space devoted to indexes can easily exceed

that taken up by the data itself in a heavily indexed database.

e Although an index can speed up retrieval operations, it will, at the same time,
slow update operations. Any update on the indexed column or column combi-

nation will require an accompanying update operation on the index.

4.2.3 Query Design

The purpose of this work is to determine the performance relationship between logi-
cally equivalent SQL queries in situations with different index information available.
Thus, the original Wisconsin benchmark queries are not suitable for this work, a
group of new queries needs to be designed. According to our classification of SQL
queries, the query design is trying to take the advantage of the Wisconsin benchmark
database in order to make use of different indexes and, at the same time, control the
query selectivity, e.g., the size of the query answer, as well. Thus, we follow three

basic principles for query design:

1. Each category in our query classification should be tested;
2. Each query should be tested with different index information;

3. The impact of the number of tuples returned should be considered.



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 45

Our classification of SQL queries yielded seven groups of test queries. For each
group, there are several logically equivalent queries derived from the transformation
algorithms. Groupl and Group2 are used to test the performance for single-block
queries in different index situations. Group3, Group4 and Group5 are to used test
the performance for single-level nested queries. Group6 and Group7 are used to test
the performance for some extensions. Only the nested queries of depth one with the
only inner block were tested. The SQL queries that are introduced in this chapter are

also summarized in Appendix A.

According to the definition of the benchmark tables, attributes tenthous has no
index, uniquel has a nonclustered unique index. Each of them is a key for that table
since each value of each of those attributes can uniquely identify a tuple in that table.
The value range and value distribution is identical for these two attributes. Attributes

tenthous, uniquel and hundred were used in test queries to determine the index impact.

When we designed these test queries, the number of return tuples, i.e., the size
of the query answer, was a very important factor which we considered. In different
index situations, we tried to determine what impact the size of the answer had on
retrieval time. Again, the key attributes tenthous and unique! were used to control

the query answer size.

Another assumption for the TypeNJ transformation algorithm is that if the OP
is the set inclusion operator IN, the corresponding join query must remove dupli-

cates before the actual join processing. In our tests, we always SELECTed from a



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 46

key attribute in the inner table if the OP is IN. Thus, the intermediate table after
processing the inner block would not contain any duplicates. This simplified the du-
plicate removing processing, and the performance conclusions are still valid since in
some actual situations, duplicates do exist. Thus the intermediate table which results
from projecting and selecting the inner table is usually much smaller than the initial
one. The cost of joining this reduced table is, therefore, usually smaller than the cost
of joining the initial table. Thus, this simplified testing demonstrates the worse case

because the intermediate table is not reduced in size.

4.3 Benchmark Execution and Analysis

All of the performance tests were run on SunOS Release 4.1.1 in single-user mode
during weekends or late nights. The host machine for the Oracle database® is also a
file server, so for each test, we chose the shortest timing after at least 10 executions
of the same query. Since this test was in single-user mode, only the measurements for
response time were reported. The SQL queries were executed from a Pro*C program.
Timing data was obtained by the use of system calls. For example, in the UNIX
environment, we made use of the gettimeofday() system call before and after a query
to determine the elapsed time for response time. A sample Pro*C program used in

the testing appears in Appendix B.

In our Oracle system, an integer is 4 bytes, thus the tuple width in our tests is

5Q0racle RDBMS, Version 6.1.



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 47

208 bytes. The database data block size on our Oracle system is 2k, and the main
memory cache has 200 blocks. For our tables, table OneK requires 178 blocks and
Ten KOne/TenK Two requires 2119 blocks respectively. Thus, table OneK can fit into
main memory cache, thus occasional improving the performance significantly, espe-

cially for a nested iteration algorithm if OneK is the table used in the inner loop.

In SQL*Plus®, there is a performance diagnostic tool which can be used to query
the access plan chosed by the optimizer. All the access plans shown in later sections

were obtained by using this tool. Detailed information for this diagnostic tool can be

obtained in [22].

4.3.1 Single-Table Queries

The queries used for testing are

1.1:
SELECT even100
FROM TABLE
WHERE 0dd100 < 100 AND
two < 2 AND

uniquel < value;

SSQL*Plus is an interactive command language for working with an Oracle database. Detailed
information can be obtained from [21].



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 48

1.2:
SELECT even100
FROM TABLE
WHERE uniquel < value AND
0dd100 < 100 AND

two < 2.

The SQL query 1.1 and 1.2 above are logically equivalent since cne may be obtained
from the other simply by switching the predicate order. Here, TABLE could be
OneK, TenKOne or TenKTwo, value is an integer value to restrict the number of
return tuples. Since 0dd100 is an odd number from 1 to 99 and two can only be 0 or
1, these two predicates are always true. Therefore, the value is the number of return
tuples. According to the query planner on our system, for query 1.1, no matter what

order the predicates are in, the execution plan, when TABLFE is TenKOne, is always:

TABLE ACCESS BY ROWID TenKOne

INDEX RANGE SCAN tenkiunik

where, tenklunik is the index name on TenKOne.uniquel. Thus the query plan is not
effected by the order of the predicates, and if there is an index available, the optimizer
will use the index instead of doing a full table scan to execute that query. This means
that the Oracle optimizer will optimize the query based on the index information

instead of the query syntax like the order of the predicates.

Our test data (see Table 4.2 and Table 4.3) shows that on Oracle, both queries
for the same table require approximately the same execution time, no matter the size

of the table, as long as both queries have the same index available. Thus, the query



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 49

Number of Return Tuples

Query | Index | 10 100 200 300 400 500 1000
1.1 Yes {0.13 0.79 1.50 224 295 3.61 7.16
1.2 Yes | 0.13 0.78 1.48 225 297 3.61 7.13
1.2 No (050 1.11 1.77 243 3.14 3.73 17.11

Table 4.2: Timing Data(Sec.) for Single-Table Queries with Table OneK

Number of Return Tuples

Query | Indez | 100 1000 2000 3000 4000 5000 8000 10000
1.1 Yes {0.79 8.33 16.69 24.99 32.56 40.99 65.35 82.16
1.2 Yes |0.80 838 16.57 25.13 32.76 40.77 65.39 81.93
1.2 No |549 11.24 17.67 23.82 30.55 36.55 55.95 68.13

Table 4.3: Timing Data(Sec.) for Single-Table Queries with Table TenKOne

performance cannot be changed simply by changing the predicate order in a query.

This test indicates that the Oracle optimizer can always find a good way to evaluate

single-table queries.

But, if we run the same query with and without an index, the situation is much
different. However, an index does not always lead to greater efficiency. For a smaller
table like OneK, an index is always helpful. This is due to the fact that both the table
data and the index data can fit into ‘he main memory cache. In this case, the main
memory cache is 200 blocks, OneK requires 178 blocks, and the index on uniquel
requires only 11 blocks. Even when the entire table has to be accessed, the overhead
of accessing the index hardly has any effect on query performance. But for a larger

table like TenKOne, a query executed with an index can be less efficient than the full



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 50

9000 T T T T T
8000 Index Access ©— 1
7000 Full Table Scan ——
6000
5000
4000
3000
2000
1000

0 ] | 1 1 1

0 2000 4000 6000 8000 10000
Number of return tuples

O(DUN—‘O'O“OE*"H

Figure 4.1: Single-Table Query 1.1 for Table TenKOne

table scan sometimes. This can be seen from Figure 4.1. The TenKOne table data
occupies 2119 blocks, and the index on uniquel requires 99 blocks. Searching by index
might cause some data blocks to be read more than once, and if that required data
block is not in the cache at that moment, more disk I/Os will resuit. In this case, an
index can only be more efficient if the selectivity of that query is relatively high, which
means the number of return tuples of that query is not too large. From our tests with
Oracle, this number might be around 25% to 30% of the table size. If the proportion
of return tuples is more than that, an index can make the performance worse. When
the selectivity is low, large parts of the index and the table will be accessed. In many
cases it will take less time to scan the entire table than to access it using the index.
When accessing the fable via the index, much time will be spent moving the disk arm
between the index data and the table data. In the extreme situation (for example,
when a query returns every single tuple in the table TenKOne), the index access

becomes complete overhead. A whole table scan of TenKOne can be 22% fastcr in



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 51

this case. This difference can be even larger for huge tables.

4.3.2 Join Queries

Two different join queries were employed.

2.1
SELECT TenKOne.evenl100
FROM TenKTwo, TenKOne
WHERE TenKTwo.value2 < value3 AND
TenKTvwo.value2 = TenKOne.valuel
2.2:

SELECT TenKOne.eveni00

FROM OneK, TenKOne, TenKTwo

WHERE OneK.hundred < value AND
TenKOne.unique2 < value AND
TenKTwo.hundred < value AND

OneK.hundred = TenKOne.uniqueli AND

TenKTwo .hundred

OneK.hundred

We notice by consulting the Oracle planner that the actual access plans of these two
queries are independent of the predicate order in the queries, w hich means the timing
data should be the same if the predicate order is the on! - difference between two
queries. In Table 4.4, query 2.1 was obtained by valuel = tenthous, value2 = uniquel,
value3 goes from 100 to 10000. Query 2.1’ was obtained by putting the join predicate

before the selection predicate in query 2.1 (similarly for query 2.2’ in Table 4.5). From



Number of Return Tuples
Query | 100 1000 2000 4000 6000 8000 10000

2.1 14.11 20.19 26.86 40.10 52.56 66.15 78.69
2.1 | 1431 20.53 27.54 38.54 53.40 64.57 79.55

Table 4.4: Timing Data(Sec.) for Two-Way Join Query 2.1

CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK

Query

Number of Return Tuples
1000 10000 20000 40000 60000 80000 100000

2.2

2.2°

9.58 95.56 191.31 387.20 561.92 748.60 938.94
9.59 95.61 190.80 389.42 563.63 750.94 934.00

Table 4.5: Timing Data(Sec.) for Three-Way Join Query 2.2

52

those two tables, we can see that no significant performance difference may be derived

by switching the predicate orders in join queries.

We tested the following index situations for query 2.1: neither of the two tables

has an index, one of them has an index on uniquel, and both of them have indexes

on uniquel. The value for value3 ranges from 100 to 10,000. Here again, we always

Table Table Number of Return Tuples
TenKOne | TenKTwo | 100 1000 2000 4000 6000 8000 10600
20,94 27.20 34.52 48.78 65.99 82.90 99.51
index index 0.88 9.15 18.52 38.15 55.33 74.32 92.70
index 6.35 15.17 24.79 42.40 61.29 80.39 99.42
index 14.11 20.19 26.86 40.10 52.56 66.15 78.69

Table 4.6: Timing Data(Sec.) for Join Query 2.1 with/without Indexes



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 53

T I 1 T T

10000 |- no index ©—
both indexes —+ -

T TenKOne w/index -
. 8000 TenKTwo w/index ¢

o3

6000

QO I=O O s
-
(=]
(=]
<

! 1

0 L L L 1
0 2000 4000 6000 8000 10000
Number of return tuples

Figure 4.2: Join Query 2.1 with Different Indexes

choose a key attribute for valuel and value2, so that, for every value of valuel in
table TenKOne there is exactly one tuple for value2 in TenK Two. Therefore, value3
is the number of return tuples for that query. From Table 4.6 and Figure 4.2, we can
see that, in this case, using an index does significantly improve performance. This is
because the join attributes are keys for the two tables, and only one tuple is accessed
from each table. But for a given query, different index information will cause the
optimizer to use totally different access plans, and those access plans would play a

major role for query performance.

In query 2.1, if none of the concerned attributes in the WHERE clause has an
index, the merge-sort method will be used for the evaluation. The sorting for each
table is by the full table scan since no index is available. Thus, the timing data for

this case is higher than for all of the other cases (See Figure 4.2).



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 54

If botk valuel and vaelue2 have an index in query 2.1, then the nested-loop method

will be used. The access plan is

NESTED LOOPS
INDEX RANGE SCAN tenkZunik
TABLE ACCESS BY ROWID TenKOne

INDEX UNIQUE SCAN tenklunik

In this situation, tenk2unik and tenklunik are the indexes for table TenKTwo and
TenKOne. Since the join attribute and the select attribute for TenKTwo is the in-
dex attribute, i.e., value2, the valid values are obtained by scanning the index only
instead of accessing the table. For each value of that attribute which satisfies the
selection condition obtained by using the index range scan method, use the index on
TenKOne.valuel to produce the join result. Having both tables indexed is best if less

than half the tuples in both tables are accessed for that join operation.

If only TenKOne has an index, the access plan is

NESTED LOOPS
TABLE ACCESS FULL TenKTwo
TABLE ACCESS BY ROWID TenKOne

INDEX UNIQUE SCAN tenkiunik

The index is used to access TenKOne, but the driving table TenKTwo has to be full

table scanned. This makes this case constantly worse than both-index-case due to the



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 55

difference between a full table scan and an index access of the driving table. But this

situation is still better than no-index-case most of the time.

If only TenKTwo bas an index, the nested-loop method is still used. The access

plan becomes

NESTED LOGOPS
TABLE ACCESS FULL TenKOne

INDEX UNIQUE SCAN tenk2unik

But this time, the driving table is TenKOne instead of TenKTwo. The driving table
is full table scanned. For each tuple in TenKOne, the index on TenKTwo is used to
check the corresponding value for the join attribute. This means that the index on
TenKTwo has to be accessed as many times as the number of tuples in TenKOne.
Thus, if only a small number of tuples in TenKOne is in the join output, accessing each
single tuple of TenKOne and going through the whole index tenk2unik on TenKTwo
would be an overhead for that join. This is why TenKTwo-index-case is the worst
among all the index cases for small retrievals. But if more than half of the TenK Two
satisfy the selection condition, which means more than half of the tuples in TenKOne
will be in the join output, the full table scan is the best way. Thus, this case is the

most efficient one for large retrievals.

From the four cases described above, we can observe that indexes can always make
join queries more efficient. The query optimizer can recognize the available indexes

and always take the indexed table as the inner loop table in a nested-loop method,



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 56

thus making the join processing more efficient somctimes if there are some indexes
available. But taking the indexed table as the inner loop table in a nested loop join

method is not always eflicient as in the case of next section.

4.3.3 TypelN Queries

A TypeN query can be transformed into a logically equivalent join query. The TypeN

query and the join query used for the test are

3.1
SELECT evenl00
FROM TenKOne
WHERE valuel IN
(  SELECT value2
FROM TenKTwo
WHERE value2 < value3 ),
3.2:

SELECT TenKOne.even100
FROM TenKTwo, TenKOne
WHERZ TenKTwo.value2 < value3 AND

TenKTwo.value2 = TenKOne.valuel.

In order to understand the role an index plays in a TypeN query, four cases (outer
block with and without index and inner block with and without index} are considered.

In our testing, only a nonclustered unique index is used. The value range for value3



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 57

is from 100 to 10,000.

The inner query block in a TypeN pesting may be evaluated first. By consulting
the Oracle optimizer, we can see that, for a TypeN query, if there is an index in the
outer block, then the nested-iteration method is always used. This method sorts the
return values from the inner block first, then for each value, uses the index in the
outer block to access the outer table in order to select the valid tuples. Whether or
not the inner block has an index for this query only determines whether the inner
table is full-table-scanned or accessed through the index. If no index is available for
tlie outer block, the merge-sort method is used, no matter whether the inner block
has an index or not. First the return values from the inner block are sorted, then the
outer table TenKOne is full-table-scanned in order to sort it. After these steps, a join

operation is executed. Equivalent join queries have exactly the same access plans as

in the previous section.

From Table 4.7. we observe that in all the cases, the join query is never less
efficient than the corresponding TypeN query. But the transformation from TypeN
to join achieves more benefit when the inner query block, thus the outer block too,
returns a large number of values. This can also be deduced from Figure 4.3 when the
outer block does not have any index, but the inner block may have a nonclustered

unique index.

If the number of return tuples of a query is more than 4,000, there is a dramatic

performance increase for some index cases (see Table 4.7). This is because in those



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK

38

Query | Outer | Inner Number of Return Tuples
Table | Table 100 1000 2000 4000 6000 8000 10000
TypeN Index | 16.23 22.13 29.82 44.92 64.14 82.75 98.51
Join 14.11 20.19 26.86 40.10 52.56 66.15 78.69
TypeN 20.98 27.42 34.40 49.58 76.50 90.96 104.52
Join 20.94 27.20 34.52 48.78 65.99 82.90 99.51
TypeN Index | 0.94 9.72 19.56 38.78 59.66 80.17 99.19
Join Index 0.88 9.15 18.52 38.15 55.33 74.32 92.70
TypeN 6.99 15.34 25.12 4298 635.84 85.76 104.55
Join 6.35 15.17 24.79 4240 61.29 80.39 99.42
Table 4.7: Timing Data(Sec.) for TypeN/Join Queries (3.1/3.2)
T T I { T
10000 no index: TypeN $—
no index: JOIN ~+—
T inner w/index: TypeN -0
g 8000 = inper w/index: JOIN -x- - =X
H X
0 6000 1
1
1 4000 .
e
c - i
2000 7% i
0 1 1
2000 4000 6000 8000 10000

Number of return tuples

TypeN Query 3.1 with Merge-Sort Method and Join Query 3.2



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 59

>4

cases, the returning values from the inner block are always sorted for the IN operator
in the WHERE clause of the outer yuery block. When the number of these interme-
diate values returned are large enough, the sorting will take more time. This may
be due to the fact that this sorting process causes some disk I/Os (The size of main
memory cache available for sorting in Oracle is unknown for this case). This accounts
for why, even in no-index situation in which both the TypeN and Join queries use the

same merge-sort method, TypeN is still slower than join. We car see this behaviour

from Figure 4.3 as well.

All the above tests are based on two tables neither of which can fit into the main
memory cache. In order to find out what will happen if at least one of them fits into

the cache, we composed another pair of queries.

3.3:
SELECT even100
FROM TenKOne
WHERE hundred 1IN
(  SELECT tenthous
FROM OnekK
WHERE tenthous < value3 )
3.4:

SELECT TenKOne.eveni00
FROM OneK, TenKOne
WHERE OneK.tenthous < value3 AND

OneK.tenthous = TenKOne.hundred.



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 60

In these two queries, OneK can fit into the main memory cache. Since the number
of return tuples should be 100*valued, the value for valued ranges from 1 to 100 in
order to access table TenKOne evenly. There is no index on OneK.tenthous, but there

is a nonunique index on TenKQOne.hundred.

From Table 4.8 and Figure 4.4, we notice that in this case, the join query is
constantly worse than the equivalent TypeN query. In the worst case, the join query
can be 16% slower than the TypeN query. The query planner indicates that both
queries use nested-iteration method except that for query 3.3, the result from the
inner block has to be sorted before executing the nested loop. Usually a nested-
iteration method is more efficient when the table in the iuner loop fits into the main
memory cache. But for both query 3.3 and query 3.4, the larger table Ten KOne is in
the inner loop since this table has an index to be used. This shows us that the Oracle
optimizer can make use of index information. But actually, putting the indexed table
in the inner loop in a nested-iteration method is not always beneficial if this indexed
table is large and the table in the outer loop can fit into the main memory cache as
is the case here. After sorting the return tuples from the inner block in query 3.3,
the sorting result is at most 100 integers, so most of the main memory cache can be
occupied by the inner loop table TenKOne. But in join processing, Onel’s taking
up additional space may cause extra disk I/Os for accessing TenKOne. lHowever,
this performance data may be due to the implementation of our particular Oracle

optimizer.



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 61

[ Query | Outer | Inner Number of Return Tuples
Table | Table | 100 1000 2000 4000 6000 8000 10000
TypeN | Index 1.32 7.86 15.12 29.70 44.29 58.37 73.10
Join Index 1.39 8.10 16.57 34.41 50.87 67.35 84.42

Table 4.8: Timing Data(Sec.) for TypeN/Join Queries (3.3/3.4) with a Table Fit into
Main Memory Cache

10000 T T 7 T T
outer w/index: TypeN <—
t i :

3000 - outer w/index: JOIN —4— |
T
i
m

¢ 6000 -
0

O 4000 - .
S
[+
c

2000 + .

0 1 1 ! I 1

0 2000 4000 6000 8000 10000

Number of return tuples

Figure 4.4: TypeN/Join Queries (3.3/3.4) with a Table Fit into Main Memory Cache



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK (2

Thus, in the case where none of the tables can fit into cache, a TypeN query should

be transformed into the equivalent join query in order to obtain better performance.

4.3.4 TypelJ Queries

A Typel query can also be transformed into a logically equivalent join query. The

queries used for the test are

SELECT eveni00
FROM TenKOne
WHERE valuel < value3 AND
valuel IN
( SELECT value2
FROM TenKTwo
WHERE value2 < value3 AND
TenKTwo.two <= TenKOne.odd100 )
4.2:
SELECT TenKOne.even100
FROM TenKTwo, TenKOne
WHERE TenKOne.valuel < valued _ AND
TenKTwo.value2 < value3 AND

TenKTwo.value2 TenKOne.valuel AND

TenKTwo.two <= TenKOne.odd100.



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 63

In this test, valued is actually the number of return tuples of each query since the join

condition TenKOne.two <= TenKTwo.0dd100 is always true and valuel, value2 are

the keys for the corresponding tables.

For the TypeJ query, if there are indexes tenklunik, tenk2unik available for the

evaluation on both the outer block and the inner block respectively, the access plan

on our system 1is

FILTER
TABLE ACCESS BY ROWID TenKOne
INDEX RANGE SCAN “enkilunik
TABLE ACCESS BY ROWID TenKTwo

INDEX UNIQUE SCAN tenk2unik
The access plan for the logically equivalent join query is

NESTED LOOPS
TABLE ACCESS BY ROWID TenKOne
INDEX RANGE SCAN tenklunik
TABLE ACCESS BY ROWID TenKTwo

INDEX UNIQUE SCAN tenk2Zunik

If no index is available, a full-fable-scan will be used. The FILTER method is another
name for the nested-iteration method for nested queries. For each tuple in the outer
table which satisfies the selection condition, the entire table in the inner block is
searched. If the nested predicate is true, the corresponding values from the tuples of

the outer table are output. Thus, the performance of Typel query with both indexes



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 64

Query | Outer | Inner Number of Return Tuples

Table | Table 100 1000 2000 4000 6000 8000 10000
Typel Index 8.76 23.98 38.63 68.27 97.84 130.76 162.71
Join 8.81 23.96 37.99 67.46 98.68 129.62 164.35
TypelJ | Index | Index 0.94 11.70 23.67 47.61 71.11 95.11 118.40
Join 0.93 11.53 23.52 47.31 70.68 93.90 117.90
TypelJ | Index 220.00 2254.44 - - - -
Join 5.34 14.43 23.74 4194 59.92 80.13 100.10
Typel 235.88 2313.49 - - - ~ -
Join 10.42 17.39 2533 48.27 70.44 83.62 101.20

Table 4.9: Timing Data(Sec.) for Typel/Join Queries (4.1/4.2)

should be the same as the corresponding Join query if the same index information is
available. We also chose four cases to test the effect of an index on the query: inner

and outer tables with and without index used by the optimizer.

From Table 4.9, we can see that if there is an index which would be used by the
optimizer in the inner query block, no matter whether or not the outer block has an
index, the difference between those corresponding queries is fairly small. This is due

to the fact that in both cases, the optimizer selects the same access plan.

If there is no index in the inner block, a huge performance difference is detected be-
tween logically equivalent queries. If there is no index in either inner or outer blocks,
the TypelJ query needs 235.88 seconds when valued = 100 , but the equivalent join
query is 23 times faster (requiring only 10.42 seconds). This difference is because the
nested-iteration method must be used for a TypelJ query, and both large tables must

be full-table-scanned. However, a join query is processed with the merge-sort method



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 65

which is much more efficient. If only the outer block has an (unclustered, unique)
index, we found that the TypelJ query requires 220 seconds when value3 = 100, but
the join query is 41 times faster, nceding only 5.34 seconds (see Table 4.9). This is
due to the fact that TypeJ query execution always follows the SQL syntax, putting
the inner table at the inner loop. If there is no index available for the inner table, this
is very inefficient. But the join query can put the indexed table at the inner loop and
obtain a performance benefit, especially when a small part of that indexed table is
accessed. When a large part of the indexed table is accessed, t\he TypelJ query would
require rmore time. Even though accessing index involves an overhead, the join query

is stili expected to perform better than the Typel query.

Generally speaking, if there is no index on the inner table which can be used by
the optimizer, the join query is much mere efficient than the TypeJ query. Only in
this case will the transformation from TypelJ to Join achieve a big benefit. If there
is an index of the inner block table available for the evaluation, there is no point in
transforming a TypelJ query since both forms use the same algorithm on our Oracle

system.

4.3.5 TypeJA Queries

The queries used for testing are

SELECT evenl100

FROM OnekK



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 66

WHERE valuel < value3 AND
valuel <=
(  SELECT MAX( value2 )
FROM TenKTwo
WHERE TenKTwo.value2 < value3 AND

TenKTwo.two <= OneK.0dd100 ),

5.2:
SELECT OneK.even100
FROM OneK, TMP2
WHERE OneK.valuel <= TMP2.max AND
OneK.0dd100 = TMP2.0dd100,
Where: TMP1( 0dd100 ) = (
SELECT DISTINCT 0dd100
FROM OneK
WHERE  valuel < value3 )
and

TMP2( 0dd100, max ) = (
SELECT TMP1.0dd100, MAX( TenKTwo.value2 )
FROM TMP1, TenKTwo
WHERE TenKTwo.value2 < value3 AND
TenKTwo.two <= TMP1.0dd100

GROUP BY TMP1.0dd100 ).

The join condition TenK . 'wo.two <= OneK.odd100 is always true, and valuel

and value2 are key attributes for the corresponding tables and the values of them are



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 67

consecutive integers from 0 on up. Therefore, the value of value3 is the actual number

of return tuples from each query.

If there are indexes in both the inner and the outer blocks which can be used by

the optimizer, the access plan of query 5.1 is

FILTER
TABLE ACCESS BY ROWID OmneK
INDEX RANGE SCAN onekunik
SORT GROUP BY
TABLE ACCESS BY ROWID TenKTwo

INDEX RANGE SCAN tenk2unik.

For each tuple in table OneK found by INDEX RANGE SCAN which satisfies that
selection condition, the entire table TenK Two is searched by INDEX RANGE SCAN
for those tuples which satisfy all of the selection conditions and the join conditions.
The maximum of velue2 value in those tuples is found by SORT GROUP BY. If the
valuel value of the tuple in OneK is not greater than the maximum value2 value, then
the value of even100 of that tuple is output. In the situation where no index exists,
the corresponding table will be FULL TABLE SCANned instead of INDEX RANGE
SCANned.

The transformation algorithm creates some intermediate tables. But generally
speaking, the intermediate tables are fairly small in size because the attributes in

the intermediate tables are the attributes refered to in the predicates in the WHERE



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 63

Query QOuter | Inner Number of Return Tuples

Table | Table 100 200 300 400 600 800 1000
TypeJA Index | 10.13  40.72 182.41 302.57 - - :
Join 9.42 16.58 38.20 4895 7280 95.61 117.43
TypeJA 492.36 948.33 1433.82 - - -
Join 11.75 15.18 19.30  22.31 28.76  35.35 41.86
TypeJA Index 9.29 3445 164.87 296.70 - -
Join Index 1223 2391 49.15 65.35 96.84 128.34 157.98
TypeJA 484.76 923.52 1378.47 - - - :
Join 1416 22.21 2991 3793 5341 68.29 83.42

Table 4.10: Timing Data(Sec.) for TypeJA/Join Queries (5.1/5.2)

25000

20000

o3

15000

10009

OB O D+

5000

Number of return tuples

T R ! I H
both w/index: TypeJA ©—
both w/index: JOIN ~+—
— inner w/index: TypeJA 8- =
inner w/index: JOIN -x- -
1
0 200 400 600 800 1000

Figure 4.5: TypeJA [Join Queries (5.1/5.2) with Different Index Information




CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 69

clause. Those attributes are usually quite few in number. Thus, the intermediate
tables can usually fit in the main memory cache and the join should be very efficient.

Of course, the creation of the intermediate tables takes some time as well. We created

two temporary tables for query 5.2.

From Table 4.10 and Figure 4.5, we observe that the join query is much more
efficient than the TypeJA query in all the index cases. Thus, a TypeJA query should

always be transformed into its logically equivalent join form according to these results.

4.3.6 EXISTS Extension

The query block after EXISTS may or may not have a join predicate which con-
nects the two query blocks and EXISTS may be expressed by an aggregate function
COUNT. This makes the equivalent queries have either TypeA nesting or TypeJA

nesting. Thus, there are four testing queries.

SELECT even100
FROM TenKOne
WHERE  EXISTS
( SELECT value2
FROM TenKTwo
WHERE value2 < value3 );



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK

6.2:

6.3:

6.4:

SELECT
FROM
WHERE

SELECT
FROM
WHERE

SELECT
FROM

Where:

evenl00

TenKOne

0 <

SELECT COUNT( value2 )
FROM TenKTwo

WHERE value2 < value3 );

even100

TenKOne

EXISTS

SELECT value2

FROM TenKTwo

WHERE TenKTwo.value2 < value3 AND

TenKTwo.two <= TenKOne.odd100 );

TenKOne.even100
TMP1, TenKOne
TMP1l.count > O AND

TenKOne.odd100 = TMP1.0dd100;

TMP2{ 0dd100 ) =

SELECT DISTINCT o0d4d100
FROM TenKOne;

70



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 71

TMP3( two, value2 ) =
SELECT two, value2
FROM TenKTwo
WHERE value2 < value3;
TMP1( 0dd100, count ) =
SELECT TMP2.0dd100, COUNT( TMP3.value2 )
FROM TMP2, TMP3
WHERE TMP2.0dd100 >= TMP3.two (+)

GROUP BY TMP2.0dd100.

Query 6.1 is logically equivalent to query 6.2 of TypeA, and query 6.3 is equivalent
to query 6.4 of join after the transformation from TypeJA by three temporary tables.
For all of those four queries, the number of return tuples are either zero (if value3
is zero) or 10,000 (if value3 is greater than zero). According to the transformation
algorithm, an outer join is used for the query 6.4 when the temporary table TMP1
is created. For all of the four queries, we tested two cases for the inner query block

with and without an index.

From Table 4.11, we can see that in all of the cases, there is a big performance
increase between value? = 0 and valued = 1. This is due to the fact that when value3
= 0, no tuple returns at all, but when valued = 1, the entire table is returned. This

big difference is due to the FETCH operation in Pro™C”. But once the entire table is

“FETCH is a Pro”C operation which gets the rows one by one from the answer set of a query which
returns multiple rows.



-1
o

CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK

Number of Return Tuples from Inner Block

Query Indez 0 1 100 1000 10000
EXISTS (6.1) | Yes 0.60 68.74 68.42 68.72 69.18
TypeA (6.2) Yes 0.60 69.23 68.87 68.81 69.56
EXISTS (6.1) | No 4.70 70.98 69.73 68.80 68.63
TypeA (6.2) No 4.58 73.54 74.15 73.77T 74.83
EXISTS (6.3) | Yes 16.27 83.80 84.26 83.83 83.72
Join (6.4) Yes 10.51 92.14 92.81 119.85 382.97
EXISTS (6.3) | No | 46870.84 18677.62 - - -
Join (6.4) No 15.37 95.25 98.55 127.71 361.31

Table 4.11: Timing Data(Sec.) for EXISTS and Related Queries

returned, the timing data is consistent for all the cases.

If there is an index in the inner table available for the evaluation, the two queries
have almost the same performance data. In this case, the evaluation of the inner
query block is completed simply by scanning the index data instead of accessing the
table data through the index, and the whole index data can fit into the cache. Thus,
the performance difference is fairly small. While the EXISTS query just scans the
index uniil the first qualified data is found, the TypeA query has to go through the
entire index in order to count. So, we cbserve that the TypeA query is slightly slower

than the EXISTS query.

But if no index is available, both queries must access the table data. Thus, we
see a performance difference between the two queries. While the EXISTS query is
looking for the first qualified tuple in the table, the TypeA query has to count the

entire table. Thus, the TypeA query is even slower.



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 73

T T
14000 F | no index: EXISTS ©— -
no index: TypeA ~—
‘ 12000 + index: EXISTS 4= X
T index: Join -X- - L
1 P A
10000 |- R -
Fl ]
6 8000 + ) G
V — vy
9 oo - ]
8
€ - -
e 4000
2000 | 2 -
0 i i 1 I 1
0 200 400 600 800 1000

Value of value3

Figure 4.6: EXISTS Queries (6.1 and 6.3) with Different Index Information

For query 6.3, if there is an index in the inner table, the access plan would be

FILTER
TABLE ACCESS FULL TenKOne
TABLE ACCESS BY ROWID TenKTwo

INDEX RANGE SCAN tenk2unik.

If no index is avzilable, TenKTwo is full table scanned instead of using the index.
An EXISTS query still tries to find out the first tuple, thus the timing data is the
same if there is at least one tuple to make the EXISTS condition true. But the timing
data is increased with the number of tuples involved in the join query. If there is an
index available, the join query would be slower than the EXISTS query if the EXISTS

condition is true. If there is no index at all, the join query is more efficient since, in



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK T4

this case, the EXISTS query has to pass through the very ineflicient nested looping.
This is the only case that an EXISTS query should be transformed into a join query
by introducing three temporary tables. Notice that if there is no index available, the
EXISTS query, which returns nothing, takes a longer time than that which returns
the entire table of 10,000 tuples. This is because the query must scan the entire table
in order to return nothing at all instead just to find out the first tuple which makes

that EXISTS condition true to return the entire table.

4.3.7 ANY/ALL Extensions

By consulting the query planner, we know that for the same kind of ANY and ALL
queries, the query planner chooses the same access plan which means that if the only
difference between two SQL queries is the difference between ANY and ALL at the

same place in the queries, then the access plan is very similar. For example, query

SELECT eveni00
FROM OneK
WHERE valuel >= value3 AND
valuel > ALL
( SELECT value2
FROM TenKTwo
WHERE value2 < value3 )

has a similar access plan as query



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 75

SELECT even100
FROM OneK
WHERE valuel >= value3 AND
valuel > ANY
(  SELECT value2
FROM TenKTwo

WHERE value2 < value3 ).

Thus, for the test, we only choose the ANY extension.

Depending upon whether or not there is a join predicate in the inner query block,

an ANY query may be transformed into a TypeA or TypeJA query. Therefore, the

test queries are

7.1
SELECT even100
FROM TenKOne
WHERE  valuel < value3 AND
valuel <= ANY
(  SELECT value2
FROM TenKTwo
WHERE value2 < value3 );
7.2:

SELECT eveni100

FROM TenKCne



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 76

WHERE valuel < value3 AND
valuel <=
(  SELECT MAX( value2 )
FROM TenKTwo

WHERE value2 < value3 );

7.3:
SELECT even100
FROM OneK
WHERE valuel < value3 AND
valuel <= ANY
( SELECT value2
FROM TenKTwo
WHERE TenKTwo.value2 < value3 AND

TenKTwo.two <= OneK.o0dd100 );

Among them, query 7.1 and 7.2, query 7.3 and 5.1 are logically equivalent. The value
of value3 is the number of return tuples from the quertes. We tried all of the four

cases for index information: inner and outer query block with and without an index.

The optimizer chooses the same access plan for query 7.1 and query 7.2 except for
query 7.2, TenKTwo has to be sorted before the filter algorithm. If both the inner

block and the outer block has an index, the access plan for query 7.1 is



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 77

Query Quter | Inner Number of Return Tuples

[ Table | Table 100 1000 2000 4000 6000 8000 10000
<=ANY 15.66 58.38 50.78 66.86 84.44 119.77 109.13
TypeA 10.56 17.11 2391 37.34 51.13 64.58 78.46
<=ANY | Index 10.37 56.63 48.84 73.29 93.81 127.74 121.34
TypeA 575 13.28 2241 38.88 55.52 72.61 89.74
<=ANY Index | 5.30 12.50 20.23 36.25 50.84 66.42 82.41
TypeA 5.25 11.59 18.46 31.87 45.25 58.72 172.15
<=ANY | Index { Index { 0.93 9.59 19.27 38.12 57.62 76.37 95.79
TypeA 081 873 17.44 3466 5191 69.41 86.69

Table 4.12: Timing Data(Sec.) for <=ANY/TypeA Queries (7.1/7.2)

FILTER
TABLE ACCESS BY ROWID TenKOne
INDEX RANGE SCAN tenklunik

INDEX RANGE SCAN tenkZunik.

The access plan for query 7.2 is

FILTER
TABLE ACCESS BY ROWID TenKOne
INDEX RANGE SCAN tenklunik
SORT GROUP BY

INDEX RANGE SCAN tenkZunik.

From Table 4.12, we notice that in all of the four index cases, the TypeA query
15 always more efficient than the corresponding ANY query. Even though the result

from the inner query block of query 7.2 implies the need to sort, this sorting may not



-]
o

CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK

Query Quter | Inner Number of Return Tuples

Table | Table 100 200 300 400 600 800 1000
<=ANY | Index { Index | 0.96 2.10 3.29 4.32 647 8.53 10.61
Join 12.23 23.91 49.15 65.35 96.84 128.34 157.98
<=ANY Index | 1.41 237 342 439 6.25 8.13 10.19
Join 9.42 16.58 38.20 48.95 72.80 95.61 117.43
<=ANY | Index 10.94 19.12 25.63 15.70 49.85 32.75  53.17
Join 14.16 22.21 2991 37.93 53.41 68.29 83.42
<=ANY 11.26 19.69 26.54 16.19 50.12 32.95 53.49
Join 11.75 15.18 19.30 2231 28.76 35.35 41.86

Table 4.13: Timing Data(Sec.) for <=ANY /Join Queries (7.3/5.1)

be required since the index is sorted already. Since there is only one value returned
from the inner block due to the aggregate function, the selection for the outer block
is very straight forward. But because in query 7.1, the result from the iner block is
multi-valued in most of cases, finding the first one which satisfies the <=ANY con-
dition may require searching the entire index. Thus, the selection for the outer block
has to be based on a set instead of one value. This takes longer time. Thus, in this

case, a <=ANY query should be transformed into the TypeA query.

If there is an index available from the inner table, the <=ANY query is always
more efficient than the join query, often dramatically so (see Table 4.13). But if there
is no index for the inner table, or the index attributes are different from the attribute
used for the SELECT set, the <=ANY performance will depend on the tuple order
of the inner table. In this case, the timing data is not regular. If the outer table has
an index, but the inner table does not, the join query is constantly slower than the

<=ANY query. Generally speaking, for a TypeJA ANY query without an index from



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 79

14000 T T T T T
no index: ANY €— o...
no index: TypeA —— B !
outer w/index: ANY - - -

T

12000

T ' i v
10000 outer w/index: TypeA -X
m

¢ 8000

0

0 6000

1

e 4000

C

2000 b

1 1

0 1 i 1
0 2000 4000 6000 8000 10000
Number of return tuples

Figure 4.7: <=ANY/TypeA Queries (7.1/7.2) with different index information

the inner table, the transformation can bring minimal efficiency.

It is interesting that the timing data for the <=ANY query does not display the
usual linear distribution when there is no index available from the inner table or the
index attributes are different from the attribute used to form the SELECT set (see
Figure 4.7). This is because the member of the list comprising the returned values
from the inner block has the same order as the order of the tuple in the inner table.
Thus, as more numbers are put into that list, the largest number may appear at the
very beginning of that list. Since the ANY algorithm finds the first one, if the number
at the beginning is large enough, the evaluation does not need to proceed through
the values after that number. This makes the comparison with the list member much

quicker. The same thing happened in the <=ANY/Jjoin case (see Figure 4.8). From



CHAPTER 4.

9000

8000

T 7000

o 6000
e

© 500D
0

6 4000

I 3000
[+4

< 2000

1000

0

PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 80

T ] T I

—

no index: ANY ©— o ‘
no index: Join —+— o
outer w/index: ANY OO X ]
outer w/index: Join -X- - -

1 i | 1 1

200 400 600 800 1000
Number of return tuples

Figure 4.8: <=ANY /Join Queries (7.3/5.1) with differer.t index information

this fact, we can see that the performance of ANY query is related to the tuple or-

der in the table. The ANY query is very similar to the EXISTS query since both

of them try to find the first value which satisfies the selection condition. After find-

ing the first one, the query processing should stop in order to get better time efficiency.

We would not expect the ALL query also to find the first tuple in a table. Thus we

anticipate that an ALL query should take longer time than the ANY query achieved

by replacing the ALL in the ALL query by ANY. From our above results, we know

that TypeA queries are more efficient than ANY qucries, and thus a TypcA ALL

query should be less efficient than the TypeA query. If an ALL query may be trans-

formed into a TypeJA query, then they have exactly the same access plan according

to the query planner. Thus, a TypeJA ALL query should be transformed into the

equivalent join query by algorithm TypeJA.



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 81

The =ANY operator is logically equivalent to the IN operator, theoretically. Thus,
any =ANY operator can be translated to IN no matter what kind of query it is, TypeN
or Typel. The query planner indicates that for these two kinds of queries, the two
operators yield exactly the same access plan. Therefore, it is not necessary to make

any transformation between them.

4.4 Summary

The conclusions we make from the above tests are experimentally verified based on
our Oracle system and the Wisconsin benchmark database. Some of them, such as
the first three conclusions, should be suitable to most of the RDBMSs. We summarize

the following:

1. An index does not always guarantee more efficiency. At times, an index can
degrade the performance due to extra accesses to index blocks. For Oracle, if a
table can rot fit into the main memory cache, and more than 25% of the tuples
are retrieved from 1%, an entire table scan is more efficient than accessing the

table through indexes.

Y

From a performance point-of-view, for the same index situation, the predicate
order in single-block queries, e.g., single-table or join queries, does not influence
the query performance because the same access plan is used. Since most of
the current query optimizers can optimize this kind of queries very well with

available index information, no matter what order the predicates are in, an



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 82

automatic SQL query generation system can disregard predicate order.

3. There are two access plans for a join query: nested-loop method and merge-
sort method. Which one is used for a query depends on the indexes. The usec
of an index can make join queries more efficient if the join tables can not ft
into the main memory cache and a small proportion of the tables is accessed.
But it is not the case that the more the indexes, the more efficient the queries.
if some condition testing can be done by only accessing the indexes instead
of accessing the entire table through the index, the query can be much more
efficient, especially when a large proportion of the indexed attributes needs to
be accessed. This is due to the fact that normally an index is small enough to
fit into the main memory cache. But accessing a large proportion of a table

through an index will degrade the join performance.

4. On our Oracle system, a TypeN nesting can be processed by the merge-sort
method or the nested-iteration method. Comparing a TypeN query with its
logically equivalent join form, we found from our experiments that a TypeN
query should be transformed into the join query in order to obtain better per-
formance if none of the tables fit into the main memory cache. If some tables

do fit into the cache, the TypeN query could be more efficient.

5. A TypelJ query is always evaluated by the nested-iteration method. It is always
worthwhile to transform a Typel nested query into its logically equivalent join
form. From our tests, we can see that there is a huge performance diffcrence
between these two kinds of queries and the join query 1s always better, espe-
cially when the inner table of the TypeJ query does not have any index. For a

TypeJ query, the SQL syntax decides the evaluation plan, but for a join query,



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 83

o

the optimizer can choose the inner loop table for the nested-iteration method

according to available indexes.

A TypelA nesting can only be evaluated by the nested-iteration method on our
Oracle system. A TypeJA query could be much less efficient than the equivalent
join query, even though some temporary tables have to be established ir order
to finish the join query. The temporary tables are usually very small and can
fit into the cache, thus 11aiing the final join operation very efficient. Therefore,
a TypeJA query should be transformed into its join query according to the

algorithm provided.

Our tests demonstrate that if an EXISTS can be transformed into a TypeA
query, that EXISTS query can never be less efficient than the TypeA query. If an
EXISTS query can be transformed into a join query, then that join query will be
much more efficient if there is no index in the inner table of the EXISTS query.
The processing of EXISTS queries uses a find-first algorithm, thus the query
has an almost constant performance, but the performance of the equivalent join
query would increase linearly with the number of return tuples. If the find-first
algorithm is used, the query processing should stop after finding the first one in
order to get better performance. If there is no index available for the inner table,
then this is the only case in which an EXISTS query should be transformed into

a join query, if possible.

From a performance point-of-view, the set inclusion operator IN always has the
same efficiency as the =ANY operator. This is due to the fact that the query
planner of our system uses the same access plan for both of them. For other

kinds of ANY queries, if an ANY query can be transformed into an equivalent



CHAPTER 4. PERFORMANCE TESTS WITH WISCONSIN BENCHMARK 8t

TypeA query, then the TypeA query can always be more efficient than the
ANY query in our testing. But if an ANY query can be transformed into a join
query with Algorithm TypeJA, in most cases, we cannot derive a performance
benefit at all. This is because the evaluation of the ANY queries uses a find-
first algorithm; and it is faster in our tests. Because of the find-first algorithin,
the performance of the ANY query is sometimes related to the order of tuples
concerned. The ALL query should always be transformed into its equivalent
form. And if the find-first algorithm is used, the query processing should stop

after finding the first one in order to get better performance.



CHAPTER 5

A Transformation for General

Nested Queries

A generally more effective strategy for evaluating a nested query of arbitrary depth
and complexity is to transform it to its join form and have the optimizer determine an
optimal set of algorithms and access paths for evaluating it. Our experiment indicates
to us that the join query after transformation is more efficient in most of the cases
we considered. It appears that the equivalence-transformation approach developed in
the previous chapters may be adopted as the foundation for an optimizer of SQL-like
queries and the nested-iteration method may then be used to augment the perfor-
mance of the optimizer for the rather special situations for which the nested-iteration

method is more efficient.

For a more general nested query, all different kinds of nesting can be mixed up,

85



CHAPTER 5. A TRANSFORMATION FOR GENERAL NESTED QUERIES 86

and for a general TypeJA nesting, the aggregate function and the join predicate may
appear at any level of nesting, and not necessarily at the same level. While the algo-
rithm for « TypeN/J nesting in Figure 3.1 may work as well if the depth of nesting is
greater than one, the algorithm developed in Figure 3.2 can only work with the sim-
plest TypeJA nested queries. Thus, the algorithm in Figure 3.2 needs to be extended.
A direct postorder recursive algorithm which works for general TypeA, TypeN, TypelJ,

TypeJ A nested queries was developed in [12]. This algorithm is presented here.

Figure 5.1 illustrates the pseudocode for this algorithm. The parameter Query-
Blk is a pointer to an SQL query block, possibly with descendant inner query blocks
nested within it. Initially, QueryBlk points to the outermost query block of a query.
After calling this procedure, the original query should be transformed into a single
block query, which might be a multiway join query with some new tables created by

the transformation algorithms.

Three procedures are called within procedure nestG().

o nestA( QueryBlk ): evaluate the query block pointed to by QueryBlk, replacing

it with the resulting constant. This is used for evaluating the inner query block

of a TypeA query.

o nestNJ( QueryBlk ): execute the algorithm in Figure 3.1, which transforms a
single-level TypeN or TypelJ nesting pointed to by QueryBlk into a join query.

This is used for transforming TypeN or TypelJ nested queries.

o nestJAI( QueryBlk ): execute the first two steps in the algorithm of Figure 3.2,



Q

CHAPTER 5. A TRANSFORMATION FOR GENERAL NESTED QUERIES 87

procedure nestG( QueryBlk )
Struct SQLQueryBlk #*QueryBlk;

{
for ( each nested predicate in the WHERE clause of QueryBlk )

{
/* transform the subquery */
nestG( QueryBlk->InnerBlk );

/* decide the nesting type for QueryBlk, it’s only single-level
* nesting here

*/
if ( the SELECT clause of the inner block has an aggregate

function ) {
if (inner block has join with table not in its FROM clause){

/*
* TypeJA nesting
*/
nestJA1( QueryBlk->InnerBlk );
nestNJ( QueryBlk );
}

else /*
* TypeA nesting

*/
nestA( QueryBlk->InnerBlk );
}

else /*
* TypeN or Typel nesting

*/
nestNJ( QueryBlk );
}

return;

Figure 5.1: Algorithm for Transformation of General Nested Queries



CHAPTER 5. A TRANSFORMATION FOR GENERAL NESTED QUERIES 88

which creates a temporary table with a GROUP BY operation as specified in
that algorithm. This is used for removing the aggregate function in order to
transform a TypeJA query into a TypeJ query. The procedure nestNJ() should
be called right after this in order to transform the resulted Typel nesting into

a join form.

Procedure nestG() searches down through the nesting levels of a nested query from
the outermost query block until it finds the innermost nested query block of each
branch. It then examines the inner block to determine the type of nesting present,
and transforms the single-level nesting there to join form by calling the appropriate
transformation procedures. After this is done for all of the nested predicates in the
current block, the recursion then backs up one level and the block is processed in the
same way. The procedure keeps doing this backup until the outermost nested block
is transformed. Note that procedure nestJA1() is similar to the algorithm for the
simplest TypeJA queries, but the difference is that the nestJA1() is used to trans-
form a TypeJA query into a TypeJ query instead of a join query directly. This is
because the transformation to the join query may involve some other tables which
appear in the other parts of the initial nested query. After creating the temporary
table by nestJA1(), the aggregate function is removed by replacing it with a refer-
ence to the column in the temporary table which results from the application of the
aggregate function. This reduces the TypeJA nesting into TypelJ nesting, and after
that, nestNJ() is called immediately to finish the job of reducing the TypeJ query to
a join form. Any transformation in this algorithm is confined to single-level nesting:
the outer block pointed to by QueryBlk and the inner block pointed to by QueryBlk-
> [nnerBlk.



CHAPTER 5. A TRANSFORMATION FOR GENERAL NESTED QUERIES 89

A nesting can be represented by a tree structure based on the SQL syntax. Each
node in the tree represents a query block in the initial query, and there is an edge
between two nodes if the corresponding query blocks of these two nodes are nesting.
There are two kinds of edges: dashed edge and solid edge. A solid edge represents
the SQL query syntax. Thus, all the solid edges form a tree according to the syntax.
Dashed edges represent join operations between two non-directly-nested query blocks.
The outermost query block, e.g., the beginning of the SQL statement, is the root node
of the tree, and the innermost query blocks are the leaves. The label on an edge

represents the nesting present between those two blocks connected by the edge.

The following example shows us how to form this query tree and lhow this re-
cursive approach works. A general nested query is represented in Figure 5.2. The
outermost query block is represented by the root node A. Query block B appears in
the WHERE clause of A and contains an aggregate function in its SELECT clause;
there is a join predicate in block C which involves a table in the FROM clause of
block B; block E has two join predicates, one involves a table in block C and another
in block A. Since block E is nested in block C by the query syntax, there is a solid
edge between E and C, and there is a dashed edge between E and A due to the join
between tables in these two blocks. An edge for TypeN nesting is labeled N like the
edge between B and D. All of the nodes and the solid edges in Figure 5.2 represent the
syntactic structure of the query, and thus form into a tree. This example represents a
general TypeJA nesting with TypeA, TypeN and TypeJ nesting inside. For this kind
of graph representation of nesting, a join dashed edge must span a node containing

an aggregate function, like node B in the example, for a TypeJA nesting to be present.



CHAPTER 5. A TRANSFORMATION FOR GENERAL NESTED QUERIES 90

Figure 5.2: An Example of a General Nested Query

Procedure nestG() will travel down to E first, backtrack and apply the algorithm
to combine C and E into a join block; this moves the join reference to block A in
block E initially to block C. Since the nesting between C and F is TypeA, block F
is evaluated independently into a constant, thus the nested predicate in C becomes
a simple predicate. After this, blocks C and B are combined, and then D and B.
Now, the new query block B has an aggregate function in its SELECT clause, and a
join predicate which references a table not found in the FROM clause of B, but in
block A, thus a TypeJA nesting presents. The TypeJA nesting is first changed into
TypeJ nesting by nestJAI(), and then to a join query by nestNJ(). The execution of
nestNJ() involves all the tables in nodes B, C, D, E, and a temporary table created

by procedure nestJA1(].



CHAPTER 5. A TRANSFORMATION FOR GENERAL NESTED QUERIES 91

This algorithm shows a general way to transform a general nested query into its
logically equivalent join query. But from here, we observe some drawbacks. The more
complicated a query is, the more difficult for people to understand its logical meaning,
thus, the less chances for programmers to propose such a complicated query. But the
transformation algorithm is still useful if the complicated query is built mechanically
by some query generation system such as System X ([19]). Another problem is that
the more complex the nesting, the more difficult the evaluation of the performance
cost. In addition, a theoretical analysis would be more difficult and more unaccurate
because of simplification, and testing would be very time-consuming. Although we
have tested the actual performance for some transformations, for more complicated
queries, building temporary tables in order to remove nesting may cause extra disk
I/Os and extra computation. On the other hand, for complex nested queries, the
access plan in contemporary database systems would be heavily dependent on the
SQL syntax, and the potential for optimization would be less. Therefore, we still
expect that the transformed join query should perform better than the initial nested
query. The cost model of this general transformation algorithm still needs to be

completed and actual testing needs to be performed.



r
!

CHAPTER 6

Conclusions

We observed the performance differences between some logically equivalent SQL
quertes. Although much work has been done on query optimization, for a partic-
ular relational DBMS, the automatic query optimization is less than perfect. A huge
performance gap persist between some logically equivalent SQL queries. Some query
optimization which is based on some particular transformations and particular index
information still needs programmer intervention. Thus, we focused on transforming

some SQL queries in order to improve performance.

For a nested SQL query, the nesting structure plays a very important role on
choosing the query processing plan. Most of the contemporary query optimizers use
the nested-iteration method for the processing of nested queries, even though this is
not the only option. For example, the Oracle optimizer may make use of the merge-

sort method for some nesting. Furthermore, the nested-iteration method may perform

92



CHAPTER 6. CONCLUSIONS 93

better in particular cases. For join queries on the other hand, the optimizer can choose
a processing plan based on its inner-representation form instead of its SQL syntax
form, thus taking advantage of index information and other performance-related fac-
tors. This is the main reason that most nested queries are less efficient than their
logically equivalent join queries. This point further illustrates, as well, that contem-

porary query optimizers can optimize the join queries better.

In the thesis, we presented some algorithms for the optimization of nested queries
by transformation. Since most of the nested queries can be transformed into logically
equivalent join queries, more attention should be paid on join query optimization in
order to get better time efficiency for most of the SQL queries. Besides index infor-
mation, some other information, such as the size of main memory cache, should be

considered, as well, in join processing.

The performance testing reported herein leads evidence to the fact that the trans-
formation algorithms presented in this thesis are practical and effective. The transfor-
mations of TypelJ (if no index in the inner block) and TypeJA queries can obtain much
better performance on our Oracle system. How much efficiency may be gained from
such transformations will vary on different database systems, depending especially on
their query optimizers. Some transformation necessary for an Oracle optimizer may
not be necessary for a SYBASE optimizer since they use different methods to process
the same query. Thus, in order to make best use of the algorithms in this thesis, the

query processing methods used by a particular optimizer need to be considered.



CHAPTER 6. CONCLUSIONS 94

Our testing indicates that index can speed up retrieval sometimes, especially when
a small proportion of table is accessed through index or when the retrieval can be ac-
complished by accessing the index alone. Another role an index plays is that the
index information can influence the query optimizer to choose the access plan for a
query. This influence can result in a better performance, but at times, some other

information, such as the size of main memory cache, should be considered as well.

Theoretical cost models are clear and correct in some sense, but some theoret-
ical cost models for query processing make comparisons based only on some major
characteristic, like disk I/Os. In the current systems, disk I1/O is only one of the ma-
jor factors in performance efficiency. It is difficult to obtain an accurate cost model
using theoretical analysis since the processing is usually very complicated. Thus, per-
formance testing, especially based on a standard benchmark is appealing. The cost
model and actual testing for the transformation algorithm in Chapter 5 are needed.
Testing can produce more reliable conclusions for particular databases since a test
involves many major factors instead of only one of them. On the other hand, actual

testing is usually more time-consuming and less complete.

Database query optimization has been well studied previously. The transforma-
tions mentioned in this thesis are based on SQL syntax instead of query semantics.
More performance benefit could be obtained if query semantics were considered. For
example, TypeJ Query 4.1 produces the same result as the TypeN Query 3.1 because
of the attribute value ranges. Judgements about semantic equivalence like above are

based on application knowledge such as value ranges and distribution of attributes.



CHAPTER 6. CONCLUSIONS 95

In our testing, transforming a TypeJ query in which only the inner table is indexed
into a join cannot obtain performance benefit at all since in this situation, both ol
them use the same access plan for evaluation. But if the TypelJ query can be trans-
formed into the equivaient TypeN query, and subsequently transforined agamn into a
join query, our testing shows that the query response time may decrease dramatically
(in the best case testing, the query response time will decrease from 162.71 seconds
to 78.69 seconds, or 51% faster). Thus, query optimization which involves seimantic

considerations is a potentially rewarding research area.

We found the Wisconsin benchmark database inadequate for our testing purposes
in that it did not allow for systematic scaling of attribute ranges and values. For
example, it should be possible to model the same fixed selectivities (c.g., 100 tuples)
and relative selectivities (e.g., one percent relation cardinality) for different database
sizes. Sometimes, it is very difficult to do so, especially when other factors, like
query selectivity and index information, need to be considered together. Thercfore

the Wisconsin benchmark database needs to be improved.



Appendix A

List of SQL Queries for

Performance Testing

Al of the SQL queries used in our testing are listed here. The testing was performed
on Oracle RDBMS Version 6.1. Queries were executed from a Pro*C program. The
TABLE, value, valuel, value? and valued in this list are variables. In our testing, they
were replaced by the corresponding table names, integer values or attribute names.

See Chapter 4 for explaination of each query.

l. Single-Table Queries

1.1: SELECT even100
FROM TABLE
WHERE 044100 < 100 AND
two < 2 AND

uniquel < value

96



APPENDIX A. LIST OF SQL QUERIES FOR PERFORMANCE TESTING 97

1.2:
SELECT even100
FROM TABLE
WHERE uniquel < value AND
0dd100 < 100 AND

two < 2

2. Join Queries

2.1(Two-way-join):
SELECT TenKOne.even100
FROM TenKTwo, TenKOne
WHERE TenKTwo.value2 < value3 AND

TenKTwo.value2 = TenKOne.valuel

2.2(Three-way-join):
SELECT TenKOne.even100

FROM OneK, TenKOne, TenKTwo

WHERE OneK.hundred < value AND
TenKOne.unique2 < value AND
TenKTwo.hundred < value AND

W

OneK.hundred = TenKOne.uniquei AND

OneK.hundred = TenKTwo.hundred



APPENDIX A. LIST OF SQL QUERIES FOR PERFORMANCE TESTING

3. TypeN Queries

3.2

3.3:

3.4:

SELECT
FROM

WHERE

SELECT
FROM

WHERE

SELECT
FROM

WHERE

SELECT
FROM

eveniOo0
TenKOne

valuel IN
SELECT value2
FROM TenKTwo

WHERE value?2 < value3 )

TenKOne.even100
TenKTwo, TenKOne
TenKTwo.valueZ2 < value3 AND

TenKTwo.value?2 = TenKOne.valuel

evenl00

TenKOne

hundred IN
SELECT tenthous
FROM OnekK

WHERE tenthous < value3 )

TenKOne.eveni100
OneK, TenKOne
OneK.tenthous < value3 AND

OneK.tenthous = TenKOne.hundred

98



APPENDIX A. LIST OF SQL QUERIES FOR PERFORMANCE TESTING

4. TypeJ Queries

SELECT evenl100
FROM TenKOne
WHERE valuel < value3 AND
valuel IN
(  SELECT value2
FROM TenKTwo
WHERE value2 < value3 AND
TenKTwo.two <= TenKOne.odd100 )
4.2:
SELECT TenKOne.even100
FROM TenKTwo, TenKOne
WHERE TenKOne.valuel < value3 AND

TenKTwo.value2 < value3 AND

TenKTwo.value2 TenKOne.valuel AND

TenKTwo.two <= TenKOne.odd100

5. TypeJA Queries

SELECT evenl00

FROM OneK

WHERE valuel < value3 AND
valuel <=

( SELECT MAX( value2 )

99



APPENDIX A. LIST OF SQL QUERIES FOR PERFORMANCE TESTING

5.2:

6. EXISTS Extension

SELECT
FROM

WHERE

Where:

and

FROM TenKTwo
WHERE TenKTwo.value2 < value3 AND

TenKTwo.two <= OneK.odd100 )

OneK.even100
OneK, TMP2
OneK.valuel <= TMP2.max AND
OneK.odd100 = TMP2.0dd100;
TMP1( 0dd100 ) = (
SELECT DISTINCT 0dd100
FROM OnekK

WHERE valuel < value3 )

TMP2( 0dd100, max ) = (

SELECT TMP1.0dd100, MAX( TenKTwo.value2 )

FROM TMP1, TenKTwo
WHERE TenKTwo.value2 < value3 AND
TenKTwo.two <= TMP1.0dd100

GROUP BY TMP1.0dd100 )

SELECT eveni00

FROM
WHERE

TenKOne

EXISTS

100



APPENDIX A. LIST OF SQL QUERIES FOR PERFORMANCE TESTING

6.2:

6.3:

6.4:

(

SELECT

FROM

WHERE
(

SELECT

FROM

WHERE
(

SELECT
FROM

WHERE

Where:

SELECT
FROM

WHERE

evenl00
TenKOne
0 <
SELECT
FROM

WHERE

evenl00
TenKOne
EXISTS
SELECT
FROM

WHERE

TenKOne

value?2
TenKTwo

value2 < value3 )

COUNT( value2 )
TenKTwo

value2 < value3 )

value?2
TenKTwo
TenKTwo.value2 < valued AND

TenKTwo.two <= TenKOne.o0dd100 )

.evenl00

TMP1, TenKOne

TMP1.count > 0 AND

TenKOne

.0dd100 = TMP1.0dd100;

TMP2( 0dd100 ) =

101



APPENDIX A. LIST OF SQL QUERIES FOR PERFORMANCE TESTING 102

SELECT DISTINCT 044100
FROM TenKOne;
TMP3( two, value2 ) =
SELECT two, value2
FROM TenKTwo
WHERE value2 < value3;
TMP1( 0dd100, count ) =
SELECT TMP2.0dd100, COUNT( TMP3.value2 )
FROM TMP2, TMP3
WHERE TMP2.0dd100 >= TMP3.two (+)

GROUP BY TMP2.0dd100

7. ANY/ALL Extensions

7.1
SELECT even100
FROM TenKOne
WHERE valuel < value3 AND
valuel <= ANY
( SELECT value?2
FROM TenKTwo
WHERE value2 < value3 )
7.2:

SELECT even100
FROM TenKOne

WHERE valuel < value3 AND



APPENDIX A. LIST OF SQL QUERIES FOR PERFORMANCE TESTING

7.3:

7.4:

and

SELECT
FROM

WHERE

SELECT
FROM

WHERE

Where:

valuel <=
SELECT MAX( value2 )
FROM TenKTwo

WHERE value2 < value3 )

evenl100

OneK

valuel < value3 AND

valuel <= ANY

SELECT value2

FROM TenKTwo

WHERE TenKTwo.value2 < value3 AND

TenKTwo.two <= OneK.odd100 )

OneK.eveni00
OneK, TMP2
OneK.valuel <= TMP2.max AND
OneK.o0dd100 = TMP2.0dd100;
TMP1( 0dd100 ) = (
SELECT DISTINCT 0dd100
FROM OnekK

WHERE valuel < value3 )

TMP2( 0dd100, max ) = (

SELECT TMP1.0dd100, MAX( TenKTwo.value2 )

103



APPENDIX A. LIST OF SQL QUERIES FOR PERFORMANCE TESTING 104

FROM TMP1, TenKTwo
WHERE TenKTwo.value2 < value3 AND
TenKTwo.two <= TMP1.0dd100

GROUP BY TMP1.0dd100 )



Appendix B

A Sample Pro*C Program for
Testing

/%

* This is a Pro*C program used to test SQL TypeN query performance
* on the Wisconsin benchmark database. The Oracle database has to
* be connected first, then a SQL query is executed.The UNIX system
* call gettimeofday() is used before and after the query execution
* in order to obtain the retrieval time. By changing the SQL query,

*# this program is used in all the tests.

*/

#include <stdio.h>

#include <ctype.h>

105



APPENDIX B. A SAMPLE PRO*C PROGRAM FOR TESTING 106

#include <sys/time.h>

/* Definition of host variables. */

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR uid[20]; /* wuser id for login to ORACLE */
VARCHAR pwd[20]; /* user passwd for login to ORACLE */
int anything; /* used for FETCH operation */

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE sqlca.h;

main() {

/* Define timing variables */

long sec, usec; /[/* second and microsecond */
struct timeval StartTime; /* query start time */
struct timeval FinishTime; /* query finish time */
struct timezone *tzZp; /* time zone pointer */

/* connection to ORACLE */
strcpy( uid.arr, "qianwu" );

uid.len = strlen( uid.arr );



APPENDIX B. A SAMPLE PRO*C PROGRAM FOR TESTING 107

strcpy( pwd.arr, “ericwu" );

pwd.len = strlen( pwd.arr );

EXEC SQL WHENEVER SQLERROR GOTO errexit;
EXEC SQL CONNECT: uid IDENTIFIED BY: pvd;

printf( "\nConnected to Oracle user:%s\n\n", uid.arr );

/* Get the query start time */

tzp = NULL;

if ( gettimeofday( &StartTime, tzp ) == -1 ) {
printf( "Wrong with gettimeofday().\n" );

exit( 1 );

/* Declare a cursor for a query to return many rows from tables */
EXEC SQL DECLARE cursorpr CURSOR FOR
SELECT even100
FROM TenKOne
WHERE uniquel IN
( SELECT tenthous
FROM TenKTwo

WHERE tenthous < 2000 );

/* Open the cursor to evaluate the query */

EXEC SQL OPEN Cursorpr;



APPENDIX B. A SAMPLE PRO*C PROGRAM FOR TESTING 108

/* Get every row of the query by FETCHING the cursor */
EXEC SQL WHENEVER NOT FOUND GOTO finish;

for( ; ; ) {
EXEC SQL FETCH cursorpr INTO :anything;

errexit: /* SQL error messages */

printf( "\n%.70s (%d)\n", sqlca.sqlerrm.sqlerrmc, -sqlca.sqlcode );

exit( 1 );

finish: /* Query execution is successful */

/* Get the query finish time */
if ( gettimeofday( &FinishTime, tzp ) == -1 ) {
printf( "Wrong with gettimeofday().\n" );

exit( 1 );

/* Print out the Oracle message */

printf( "\n%.70s (%d)\n", sqlca.sqlerrm.sqlerrmc, -sqlca.sqlcode );



APPENDIX B. A SAMPLE PRO*C PROGRAM FOR TESTING 109

/* Close the cursor and commit the transaction */
EXEC SQL CLOSE CUrsorpr;

EXEC SQL COMMIT WORK RELEASE;

/* Calculate and print out the timing data */
sec = FinishTime.tv_sec - StartTime.tv_sec;
usec = FinishTime.tv_usec - StartTime.tv_usec;
if ( usec < 0 ) {

usec += 1000000;

sec --;
}

printf( “\nThe elapsed time in sec.: %1d.%ld \n", sec, usec );

exit( 0 );



REFERENCES

[1]

2]

3]

[4]

[5]

[6]

(7

Anon, et al.: A Measure of Transaction Processing Power, Datamation,
April 1, 1985, 112-118.

Bitton, D.: A Retrospective on the Wisconsin Benchmark, Readings in
Database Systems, Ed. by M. Stonebraker, Morgan Kaufmann, 1988, 280-299.

Bitton, D., DeWitt, D.J., et al: Benchmarking Database Systems: A Sys-
tematic Approach, Proc. 9th International Conference on Very Large Data
Bases, Florence, Italy, Nov. 1983, 8-19.

Bitton, D. and Turbyfill, C.: Design and Analysis of Multi-User Bench-
mark for Database Systems, Technical Report 84-589, Dept. of Computer
Science, Cornell University, Ithaca, New York, Jan. 1984.

Boral, H. and DeWitt, D.J.: A Methodology for Database System Per-
formance Evaluation, Proc. of ACM-SIGMOD Conference on Management of
Data, Boston, 1984, 176-185.

Cardenas, Alfonso F.: Evaluation and Selection of File Organization —
A Model and System, Communications of ACM, Vol. 16, No. 9, Sept. 1983,
540-548.

Chamberlin, D.D., et al: Support for Repetitive Transaction and Ad Hoc
Queries in System R, ACM Trans. on Database Systems, Vol.6, No.1, March
1981, 70-94.

[8] Codd, E.F.: Extending the database relational model to capture more

[9]

meaning, ACM Trans. on Database System, Vol.4, No.4, Dec. 1979, 397-434.

Date, C.J.: A Critique of the SQL Database Language, ACM SIGMOD
RECORD, Vol.14, No.3, Nov. 1984, 8-54.

[10] Date, C.J.: A Guide to the SQL Standard, Addison-Wesley, 1987.

110



REFERENCES [

[11] Findelstein, S., Schkolnick, M. and Tiberio, P.: Physical Database Design
for Relational Databases, ACM Trans. on Database Systems, Vol. 13, No. |,
March 1988, 91-123.

[12] Ganski, R.A. and Wong, H.K.T.: Optimization of Nested SQL Queries Re-
visited, Proceedings of ACM-SIGMOD 1987 International Conference on Man-
agement of Date, San Francisco, May 27-29, 1987, 23-33.

[13] Haberhauer, Franz: Tutorial: Physical Database Design Aspects of Rela-
tional DBMS Implementations, Information Systems, Vol. 15, No. 3, 1990,
375-387.

[14] Jarke, M. and Koch, J.: Query Optimization in Database Systems, ACM
Computing Surveys, Vol.16, No.2, June 1984, 111-152.

[15] Kao, M., Cercone, N. and Luk, W.: Providing Quality Responses with
Natural Language Interface: The Null Value Problem, IEEE Trans. on
Software Engineering, Vol. SE-14, No.7, July 1988, 959-984.

[16] Kim, Won: On Optimizing an SQL-like Nested Query, ACM Transaclions
on Database Systems, Yol.7, No. 3, Sept. 1982, 443-469.

[17] Korth, H. and Silberschatz, A.: Database System Concepts, Second Edition,
McGraw-Hill, 1991.

[18] Kumar, A. and Stonebraker, M.: Performance Considerations for an Oper-
ating System Transaction Manager, IEEE Trans. on Software Engineeriny,
Vol. SE-15, No. 6, June 1989, 705-714.

[19] McFetridge, P., Hall, G., Cercone, N. and Luk, W.: Knowledge Acquisition in
System X: Natural Language Interface to Relational Databases, Froc.
of International Computer Science Conference 1988 on Arlificial Inlelligence:
Theory and Applications, Hong Kong, Dec. 1988, 604-610.

[20] Motzkin, Dalia: The Design of Optimal Access Paths for Relational
Databases, Information Systems, Vol. 12, No. 2, 1987, 203-213.

[21] Oracle Corporation: SQL*Plus User’s Guide, Version 2.0, 1989.

[22] Oracle Corporation: OQRACLE RDBMS Perfermance Tuning Guide, Ver-
sion 6.0, August 1989, Pages 7-9 to 7-16.

[23] Riet, R., et al: High-level Programming Features for Improving the Effi-
ciency of a Relational Database System, ACM Trans. on Database Systems,
Vol.6, No.3, Sept. 1981, 464-485.



REFERENCES 112

{24] Selinger, P.G., et al: Access Path Selection in a Relational Database Mun-
agement System, Proceedings of the ACM-SIGMOD International Conference
on Management of Data, Boston, May 30-June 1, 1979, 23-34.

[25] Sellis, T.: Multiple-Query Optimization, ACM Trans. on Database Systems,
Vol. 13, No. 1, March 1988, 23-52.

[26] Shneiderman, Ben: Response Time and Display Rate in Human Perfor-
mance with Computers, ACM Computing Surveys, Vol.16, No.3, Sept. 1984,
265-285.

[27] Stonebraker, M.: Readings in Database Systems, Morgan Kaufmann, 1988.

(28] Turbyfill, C.: Comparative Benchmarking of Relational Database Sys-
tems, PhD Dissertation, Technical Report 87-871, Connell University, Sept.
1987.

[29] Welty, C.: Human Factors Comparison of a Procedural and a Nonproce-
dural Query Language, ACM Trans. on Database Systems, Vol.6, No.4, Dec.
1981, 626-649.

1301 Yao, S.B., Hevner, A.R. and Young-Myers, H.: Analysis of Database System
Architectures Using Benchmarks, IEEE Trans. on Software Engineering,
Vol. 5E-18 No.4, June 1987, 709-714.



