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Abstract 

There have been many proposals for adding sound implementations of 

numeric processing to Prolog. This thesis describes a new approach to 

numeric constraint processing which has been implemented in Echidna, a 

new constraint logic programming ( U P )  language. The approach, called 

HACR, uses consistency algorithms which can actively process a wider 

variety of numeric constraints than most other U P  systems, including 

constraints containing non-linear functions. A unique feature of HACR is 

that it implements domains for real valued variables with hierarchical data 

structures and exploits this structure using a hierarchical arc consistency 

algorithm specialized for numeric constraints. This gives Echidna two 

advantages over other systems. First, the union of disjoint intervals can be 

represented directly. 0 ther approaches require trying each disjoint interval 

in turn during backtrack search. Second, the hierarchical structure facilitates 

varying the precision of constraint processing. Consequently, it is possible 

to implement more effective constraint processing control algorithms which 

avoid unnecessary detailed domain analysis. These two advantages set 

HACR apart from other approaches to real number processing in CLP. 
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1. Introduction 

Numeric processing has always been an important aspect of computing. But there are two 

major problems with traditional procedural languages using the floating point representation 

for real numbers. First, errors induced by floating point computations are hard to 

determine and analyze. Second, debugging and correctness verification for procedural 

languages can be very difficult. I ~ g i c  programming languages, such as Prolog, address 

the second problem since they have well understood semantic properties (Lloyd, 1984). 

However, numeric processing in Prolog, as it is usually implemented with the ' i s '  

predicate, suffers from the same problems as procedural languages using floating point 

numbers. 

Constraint logic programming (CLP) languages (Jaffar and Lassez, 1987; Van Hentenryck, 

1989) seek to add efficient algorithms for new computational domains to logic 

programming languages in a way that preserves their important semantic properties. 

However, the major CLP languages with numeric constraint processing capabilities have at 

least one of the three following weaknesses: 

1. their applicability is limited to a small class of constraints, such as linear, 

polynomial or integer constraints, 

2. they compute using the full precision of the underlying numeric computation 

implementation, whether it is needed or not, and 

3. they are forced to search a large space when dealing with disjunctive 

constraints. 

CLP languages like CLP(R) (Jaffar and Michaylov, 1987), Prolog 111 (Colmerauer, 1990), 

and CAL (Aiba et al., 1988) use symbolic constraint solving techniques. However, 

CLP(R) and Prolog 111 can only actively process linear constraints using linear 

programming algorithms. CAL actively processes polynomial constraints using algorithms 

from polynomial ideal thmry which have doubly exponential time complexity in the worst 

case (Buchberger, 1985). 

The CHIP CLP language (Van Hentenryck, 1989) and BNR Prolog (Older and Vellino, 

1990) use consistency and case analysis algorithms (Mackworth, 1977) for solving 

constraints. Consistency algorithms require that variables be associated with domains 



which are sets of possible values for a variable. For consistency algorithms, a domain 

must be represented by some finite manipulable structure. CHIP'S numeric domains are 

always finite integer sets. BNR Prolog's domains are real intervals and it efficiently 

implements many real constraints by using consistency algorithms to tighten those intervals 

closer to actual solutions to the constraints (Cleary, 1987; Hyvonen, 1989). 

Practical consistency algorithms only partially solve constraints. Both CHIP and BNR 

Prolog provide search primitives which can be used to augment consistency algorithms 

within the logic programming (LP) language. CHIP can always find exact solutions since 
its consistency algorithms only deal with finite discrete sets. Search methods in BNR 

Prolog can tighten intervals as close to solutions as possible using the underly~ng finite 

precision computer arithmetic. This ensures that no solution for a given set of constraints 
is missed although sometimes answers contain no solutions. 

This thesis describes an approach to real number processing in CLP, called HACR1. 

WACR has been implemented in a new CLP language called Echidna (Havens, et al., 1990; 
Havens, 1991). Like both CHIP and BNR Prolog, Echidna uses consistency algorithms 

which can actively process a wide variety of real number constraints. The key difference is 

that HACR implements real domains which are disjoint sets of intervals using a hierarchical 

data structure. HACR exploits this structure using a version of hierarchical arc consistency 

(Mackworth, Mulder and Havens, 1985) specialized for real number constraints. 

Davis (1987) classifies constraint systems according to the richness of the language used to 

represent both variable domains (the "label language") and constraints (the "constraint 

language"). HACR implements label and constraint languages which are more general than 

either BNR Prolog or the real number systems surveyed in (Davis, 1987). Our label 

language is composed of disjoint real interval sets and it contains real intervals as a 

sublanguage. Our constraint language contains equalities, inequalities, and disjunctions of 

inequalities on arbitrary expressions involving the arithmetic fundms ,  and some 

expressions involving the trigonometric, exponential, root, and logarithmic ftI nctions. 

HACR handles such g e n d  systems of constraints by using partial consistency algorithms 

(NadeI, 1989). Partial consistency algorithms approximate the set of solutions to a 

rHACR stands far Hierarchical Arc Consistency on Real domains. The approach takes its name from the 
arc consistency algorithm, which is its novel component. The approach also includes case analysis 
algorithms which have been descn i  by others (Mackworth, 1977; C l q ,  1987). 



constraint satisfaction problem (CSP) by computing a superset of the solutions. Good 
partial consistency algorithms compute a superset which is only slightly larger than the 

actual set but at a substantially reduced cost. HACR uses partial consistency algorithms 

and case analysis algorithms to generate sets of interval tuples with one interval for each 

variable in a given numeric CSP. All the solutions to the CSP are contained in some 

interval tuple. Also, HACR is parameterized so that as it is given increasing time and 

space, it can usually generate intervals that converge on solution points. 

The remainder of the thesis is organized as follows: Section 2 describes the aspects of 

Echidna which are relevant to HACR. Section 3 specifies HACR's adaptation of 

hierarchical arc consistency (Mackworth et al., 1985) for real number constraints. Section 
4 gives some sample runs using Echidna and compares it with other CLP languages. 

Finally, Section 5 draws some conclusions about this research and describes some future 

lines of research. 

2. Echidna Background 

Echidna is a new type of CLP language for model-based expert systems applications. The 

language improves upon the limitations of existing expert system languages by combining 

aspects of schema-based knowledge representatiuiis, CLP, and intelligent backtracking 

(Havens, 1991). Echidna builds on recent advances in CLP by integrating within the 

language a clausal reasoning maintenance system and object-oriented knowledge structures. 

We believe that next-generation expert systems will incorporate richer structured 

knowledge representations based on object-oriented programming principles and rely on 

more efficient constraint propagation and dependency backtracking control structures. 

Echidna demonstrates that these capabilities can be combined successfully into a coherent 

new CLP language. 

This section focuses on those aspects of Echidna concerned with real number processing. 

For a description of other aspects of the language, see (Havens, et d., 1990). In this 

presentation, we augment the syntax of Edinburgh Prolog (Sterling and Shapiro, 1986) as 
necessary for exposition2. Section 2.1 describes how Echidna augments a logic 

programming language with real number constraints and Section 2-2 briefly describes the 

%k clarity, we deviate from actual Echidna syntax 



SLD-resolution theorem prover (Lloyd, 1984) and arc consistency algorithms (Mackworth, 

1977) used in Echidna, 

2.1 Real Number Constraints in Echidna 

Echidna provides domain constraints, equalities, inequalities, and disjunctions of 

inequalities on real number expressions. A domain constraint is a unary constraint of the 

f m :  

x E Set 

where X is a real valued variable and Set &notes the domain of x. The domain is 

specified as a finite union of open, closed, or half open real intervals. An interval is 

-ed by a lower and an upper bound. A bound consists of a real numeral and a bracket 

symbol. A square bracket indicates that the bound is closed and a round bracket indicates 

the bound is open, according to normal mathematical usage. For instance, [O,  1 ] 

denotes the set {x  I 0 4 x 5 1 1 and [ O f  1 ) denotes the set { x  I 0 5 x  < 1 } . Intervals 

which are not bounded above or below can be specified using the symbols -= and +=. 
For instance, (0, +-) Specifies the set of all positive real numbers. 

The domain constraint 

declaresx to beinthedomain { x I O 5 x <  1 v 3 < x I 4 v 7 c x <  10). 

Equalities and inequalities are constraints on real number expressions, henceforth referred 

to simply as expressions. Expressions are built up from variables and real constants using 

numeric function symbol$. The following is an example of an Echidna program using 

equalities and inequalities: 

f 11 oncircle (p fX, Y) , c (p (A, B) , R) :- 

R > 0 ,  
(X - A ) ~  + (Y - B ) ~  = R'- 

3 ~ h i d n a  currently suppurts the arithmetic functions, some trigonometric functions, exponentiation, 
~ a n d r o ~ e x t r a c t i o n ,  



It specifies the relationship between a circle centered at point p (A, B) with radius R and n 

point p (x, Y) on its circumference, as shown in figure 1. The query: 

has a single solution: 

since three points uniquely define a circle4. Notice that this query results in many 

constraints involving non-linear expressions. HACR can restrict the domains of A, B and 

R to intervals which tightly bound this solution. 

Figure 1. A circle described by [I ]  

HACR supports constraints of the form: 

where El and E2 are expressions, but these are a special form of the disjunctive inequality 

constraint which is written: 

-- - 

4~ctual  results using Echidna for examples in this section are given in section 4. 



where C1 and C2 are both inequalities. The disjunctive inequality is useful in temporal and 

spatial reasoning problems. For instance, Figure 2 gives an Echidna program for 

scheduling tasks using some of the relations on temporal intervals described in (Allen, 

1983). A task is represented by a term task ( S f  D ) where S is the start time of the task 

and D is the duration of the task. The predicate, i n  (Task, SuperTask) , is true if the 

interval for SuperTask contains the interval for Task. NoOverlap (Task, Tasks ) 

is true if Task overlaps with none of the tasks in the list Tasks. It uses a disjunctive 

inequality constraint (shown in bold typeface in Figure 2) to make sure Task is either 

beforeorafterall the tasksin Tasks. Schedule (Tasks, SuperTask) is trueifall 

the tasks in the list Tasks are in SuperTask but no pair in Tasks overlap. 

in (task (Sl, Dl), task (S2, D2) ) :- 
S1 2 S2, 
Sl+Dl 2 S2+D2. 

nooverlap (-, [ I . 
nooverlap (task (Sl, Dl) , [task (S2, D2) I Tasks] ) : - 

Sl+Dl < S2 v S1 2 S2+D2, 
nooverlap (task (Sl, Dl), Tasks! . 

schedule ( [I, -1 . 
schedule ( [Task I Tasks], SuperTask) :- 

in (Task, SuperTask) , 
noOverlap(Task, Tasks), 

schedule (Tasks, SuperTask) . 

Figure 2. An Echidna Program for scheduling tasks 

Given the program of Figure 2, HACR can deduce from the goal: 

[4] ?- schedule ( [task (Sl, 2), task (S2, 1.5) I, task (0, 4 )  ) . 

that s l  is in the set [O, 0.51 u [IS, 21 and s2 is in the set [0,0.5] u [2, 2.515. 

2.2 Overview of the Echidna Reasoning Engine 

Echidna programs are executed by an SLD-resolution theorem prover (Lloyd, 1984) which 

incrementally constructs and maintains a CSP. A CSP is defined by a set of variables, each 

5~ctually, HACR deduces sets slightly larger than these sets. See section 3 for details. 
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associated with a domain of possible values and a set of constraints on subsets of the 

variables. A constraint specifies which values from the domains of its variables are 

compatible. A compatible set of values, one for each variable participating in a constraint, 

is said to satisfy the constraint. The notation D x  is used to denote the domain of the 

variable X. For all variables x participating in real number constraints, Dx is a subset of the 

set R of real numbers. A solution to the CSP is an assignment of values to all its variables 

which satisfies all the constraints. When a constraint is selected by the theorem prover, it is 

added to the CSP. Echidna manipulates the CSP using two methods (Mackworth, 1977): 

1 .  arc consistency is used to remove inconsistent values fiom the domains of 

variables under numeric constraints, and 

2 .  heuristic case analysis is used to consider alternatively different halves of red 

variable domaid. 

If the arc consistency algorithm ever removes all values from a variable domain, then the 

constructed CSP has no solutions. The theorem prover then backtracks using dependency 

backtracking (Havens, 1991). Backtracking through a constraint consists of removing it 

from the CSP. 

Case analysis provides a divide and conquer method for finding solutions to the CSP. Arc 

consistency is interleaved with case analysis algorithms to further reduce the search space. 

Case analysis is implemented by the built-in predicate, s p l i t  (Vars) , which is similar to 

predicates described elsewhere (Cleary, 1987; Older and Vellino, 1990; Van Hentenryck, 

1989). s p l i t  (vars  ) repeatedly cycles through the list vars  of variables in a round 

robin fashion removing approximately half the values in each variable's domain. Upon 
backtracking, s p l i t  restores half of a domain and removes the other half. 

Echidna's real constraint processing techniques are partial algorithms because they are not 

capable of completely solving the CSP. Arc consistency is not sufficient to solve CSPs 
because it considers only single constraints in isolation. When domains are finite and 

discrete, case analysis combined with arc consistency can completely solve the CSP. If 

Echidna's real domains were finite and discrete, then after some finite number of iterations, 

s p l i t  would have reduced all variable domains to singleton sets. However, real domains 

%ariables with finite domains, such as fmite sets of integers, may also consider each value in the domain 
in turn This is known as backtrack tree searching. 



are neither finite nor discrete. Currently, the number of times a variable domain is split is 

determined bya built-inpredicate,precision(~ars, Prec). Sections3.2and4.1 
describe its operation in more detail. We are investigating how to provide more flexible 

control of the case analysis methods. 

3. Hierarchical Arc Consistency on Reals (HACR) 

We use the notation v(C) to denote the set of variables in the constraint C. The arity of C 

is Iv(C)I. We assume the CSP is formulated as a directed hypergraph7 where variables are 

associated with nodes and each constraint C is a set of hyperarcs of the form (T, C) for 
each T E v(C). T is called the zarget and the rest of the variables in v(C) are called 

sotlrces. Given a CSP formulated in this way, arc consistency deletes values from target 

variable domains which are not supported by any consistent source variable values. Such 
deleted values cannot be part of any global solution to the CSP. The notation Ax is used to 

denote the dynamically changing domain of the variable x which decreases monotonically 

from its full declared domain Dx towards smaller and smaller subsets. When values are 
deleted from Ax, it is said to be refined. 

To simplify discussion, constraints are taken as relations in the relational database model 

sense (Ullman, 1988). Unlike relational database theory, relations are represented 

intensionally and can be infinite. Variables are the attributes of an instance of a relation 

scheme and the relation is always restricted to values in the dynamic domains of the 
variables. For example, if Ax = Ay = {1,2,3) then the constraint C(X, Y) = 'X < Y' is 

the relation { {(x,1),(~,2)), {(x,~),(Y ,3 ) ) ,  {(x,2),(~,3)) ), which is an instance of the 

'less than' relation between x and Y. Relations are viewed as sets of mappings. Each 
element p E C can be considered a mapping from the set v(C) of variables to the set 

uXEv(c) Ax of possible values for those variables. For example, for p = {(~,1) , (~,2))  E 

C above, p(x) = 1 and p ( ~ )  = 2. 

It will sometimes be convenient to use positional notation for constraints by giving an 

explicit order for the variables similar to the notation used to specify the relation scheme. If 
C is a constraint with v(C) = (XI ,  ..., ~ k )  and ai E DXi (1 5 i 5 k), then the positional 

notation for C is C(xl, ..., xk) and C(al, ..., ak) means ((xi, ai) I (1 S i I k)) E C. The 

7~ dincted hyper-gnph is a generalization of a dincted graph where hyper-arcs may 'connect' any number 
of nodes. 



tuple (al,. . .,ak) is said to sat is-  C. If there is at least one such tuple (ie. C ;c a), then C is 

satrsfiable. 

A useful function for describing consistency algorithms is a special case of relational 
projection, denoted n, which maps a constraint C and a variable x E v(C) to a subset of 
Ax. It is defined by: 

For instance, given C = 'X < Y' as above, xx(C) = ( 1,2) and xy(C) = {2 ,3 ) .  For any 

constraint C and any variable x 6 v(C), all values a E Ax \ nx(C)9 cannot be used to 

satisfy C since there are no corresponding values for v(C) \ x. Such values are 

inconsistent with the constraint C and thus cannot be part of any solution to the CSP. A 
hyperarc (T, 6) is arc consistent if AT = x&). Full arc consistency algorithms delete all 

inconsistent values from every domain in the CSP, making all constraints arc consistent. 

Partial arc consistency algorithms (Nadel, 1989) delete only some inconsistent values. A 

well-designed partial arc consistency algorithm deletes most inconsistent values at less cost 

than any full consistency algorithm. 

The fundamental operation of most arc consistency algorithms is arc revision (Mackworth, 

1977), which is implemented by a procedure R ~ v ~ s ~ ( T ,  C) where (T, C) is a hyperarc. 
Revise refines AT by deleting values which are inconsistent with C. Full arc revision is 

implemented by having  revise(^, C) perform the assignment AT t nT(6), making the 

hyperarc (T, C) arc consistent. Partial arc revision sets AT to some superset of xT(C). 

Full arc consistency algorithms, such as AC-3 (Mackworth, 1977), call Revise repeatedly 

with various hyperarcs. These arc consistency algorithms terminate when there is no 

hyperarc (T, C) such that Revise(T, C) can refine AT further. The HACR approach 

employs a similar but partial arc consistency algorithm, also called HACR, for real number 

constraints. HACR repeatedly applies a partial arc revision algorithm, called 
ReviseHACR(T, C), to hyperarcs (T, C) thereby reducing AT to some near superset of 

8~rojection is usually defmed to return a relation on some subset of the variables in the given relation. 
Only this special case will be needed because the algorithms described in this paper manipulate relations 
only by manipulating variable domains. 

9The symbol T is used to denote set difference. 



nT(C) which can be computed efficiently. HACR terminates when there is no hyperarc (T, 

C) such that ReviseHACR(T, C) can refine AT further. 

Figure 3 presents the HACR algorithm with an abstract specification of ReviseHACR. It 

is essentially the same as the AC-3 algorithm (Mackworth, 1977), but it is generalized for 

n-ary constraints~0. The input to HACR is a set A of hyperarcs which formulate the CSP. 

The CSP contains the constraints Echidna has selected during an SLDderivation. 

The subprocedure, ReviseHACRAbstract, is an abstract specification of our partial arc 
revision algorithm, ReviseHACR. It specifies a partial arc revision algorithm because A, 

the new domain for the target variable T, is somewhere between AT and xT(C), as 

specified on line 4. A good implementation of this specification makes A as close to xT(C) 

as efficiently possible. Lines 5 and 6 specify that A T  is updated only if 

ReviseHACRAbstract succeeds in refining it. ReviseHACRAbstract returns true if 
and only if AT is refined. ReviseHACRAbstractYs implementation depends on how 

domains are implemented and the class of constraints being processed. 

Line 10 of HACR initializes Q to the set A of input hyperarcs. The loop from line 1 1 to 

line 15 removes and revises one hyperarc from Q in each iteration, so each hyperarc is 
revised at least once. If ReviseHACRAbstract(~, C) refines AT in line 13, then Q is 
updated in line 14 to add just the set of hyperarcs which could be further revised. These 
are of the form (T I, C') with T E v(C')\{T ) and C # C'. This is because T is a source 

variable of C' so the partial arc consistency of some values in AT I may have depended on 

values deleted from AT. That is, xT 1 (C') may have changed since it depends on T. 

Hyperarcs involving the same constraint (C = C') are not added because (T I, C) is such 

that T is a source variable of the hyperarc (T, C) which was just refined. (T I, C) cannot 
have become partially inconsistent because AT was refmed. Values were deleted from AT 

precisely because there was no corresponding values for the source variables of (T, C). 

lOThe initial step of achieving node consistency using the unary constraints has been removed, since the 
remainder of the algorithm handles unary constrain~s. However, it is usually most efficient to handle unary 
constraints first, so they are always inserted at the front of the queue. 

10 



procedure HAC R(A): 

procedure ReviseHACRAbstract(~, C): 
begin 

let A be such that xT(C) L A s AT; 
DELETE t (A c AT); 
if DELETE then AT t A; 

return DELETE 

end; 

begin 
Q t A ;  
while Q 7t Q) do begin 

select and delete any hyperan: (T, C) from Q; 
if ReviseHACRAbstract(~, C) then 

Q t Q U  ((T*,C')E A I T E  v(C')\(T*) A C ~ C ' )  

end 
end; 

Figure 3. HACR: an arc consistency algorithm for real constraints 

Unlike arc consistency algorithms like AC-3 and HAC, which are for finite discrete 

domains, there is no guarantee that full arc consistency algorithms for numeric domains 

terminate. This is because real domains can be refined indefinitely. Hence 

ReviseHACRAbstract must be a partial arc revision algorithm. Section 3.2 describes the 

built-in predicate, pre  cis ion, which is used to limit domain refinement. H AC R 

terminates when Q = 0, the exit condition on line 1 1. Otherwise, the loop of lines 1 1 - 1 5 is 

executed. Line 12 deletes one hyperarc from Q. New hyperarcs are added to Q in line 14 

after a domain is refined in line 13. At any point in an SLD-derivation, the number of 

variables and constraints in the CSP is finite. Thus, the number of domains is also finite. 

Since each of the domains will be refined only a finite number of times by 

ReviseHACRAbstract, at some point no hyperarcs will be added to Q. Thus, Q 

eventually becomes empty and HACR terminates. 



The remainder of this section is organized as follows. Section 3.1 describes how domains 

are represented. Section 3.2 describes how HACRYs arc revision algorithm is implemented 
given the ability to compute xT(C) and section 3.3 describes how to compute xT(C) for 

most constraints. 

3.1 Domains 

Arc consistency algorithms usually operate on finite and discrete domains. Domains are 

represented extensionally as enumerated sets of possible values. These algorithms can be 

very expensive when domain sizes are large. For instance, the running time of AC-3 is 

proportional to the square of the domain size in the best case and the cube in the worst case 
(Mackworth & Freuder, 1985). An extensional representation for real domains is 

impossible. Instead, we introduce a hierarchical and intensional domain representation. 

HACR is based on the hierarchical arc consistency algorithm, HAC (Mackworth et al., 

1985). HAC facilitates manipulating potentially very large discrete domains which can be 

organized as taxonomies. A taxonomy structures a domain into a hierarchy of subsets 

which have common properties and stand in common relations. HAC assumes that the 
taxonomies are relatively balanced and structured in a way appropriate for the constraints 

under consideration, and that all constraints are unary or binary. Under these assumptions, 

the running time of HAC is independent of domain size in the best case and is proportional 

to the logarithm of domain size in the worst case. Although HAC presumes that domains 

are finite and discrete, it actually manipulates domain subsets intensionally as symbols by 

precompiling predicates which test properties of these symbols. We describe this essential 

capability further in section 3.2. 

Please consider the example of Figure 4 taken from Mackworth et al. (1985). It shows 

taxonomies for the variables G and s where DG is the set (island, mainland, lake, ocean) of 

geographic systems and Ds is the set (lakeshore, coastline) of shorelines. Each taxonomy 

is a rooted directed acyclic graph (DAG). Each node is associated with a domain symbol, 

denoting a subset of the domain, and a mark. We distinguish between the symbol 

associated with each node and the domain subset which it denotes. Henceforth, the 

distinction is dropped. We will refer to a node domain symbol simply as a node domain 

and manipulate it as if it were a set. 

The arcs of the DAG represent proper subset relations between node domains. The root 

domain is the full domain for the variable. The leaves are singleton subsets. Each child 



domain is a proper subset of its parent domain. The union of the children domains are 

assumed be equal to the parent domain and, for simplicity, the children domains are 
assumed to be disjoint. 

Each node is associated with a mark indicating the relationship between its domain and the 
dynamic domain Ax for the variable x. Each sub-DAG rooted at a particular node 

represents a particular subset of Ax. The mark for the root node of a sub-DAG indicates 

whether the its domain is completely contained in Ax (marked '4' ), completely excluded 

from Ax (marked 'x'), or partially contained in Ax (marked '?'). In the last case, the part 

of Ax represented by the sub-DAG rooted at the node is union of the parts rep~sented by 

the sub-DAGS rooted at its children. H A C  maintains the dynamic domain Ax by 

manipulating these marksn. 

Geographicsystem Shoreline 
? ? 

L m h a s s  Waterbody Lakes hore Coas t h e  

1 s h d  Mainland Lake Ocean 

Figure 4. (a) Geo-system and (b) Shore specialization hierarchies 

We formalize domain taxonomies as in (Mackworth et al., 1985). Assume that the size of 
each variable domain is a power of two which is structured into a complete binary tree of  

height rn. That is, Dx = {ai l 1 S i 2 2") and domains in the tree for Dx are D: (0 5 k 5 

m, 1 5 s I 2k) where the pair (kj) specifies the node in the tree. The integer k is the 

distance from the root and the integers is the number of the node at distance k from the root 
0 1 counting from the left starting at 1. The root domain, Dx , is D x . For 0 5 k c m , the 

children of (k,s) are (k+1,2s-1) and (k+1,2s) with the conditions that: 

lllt should be noted that Mackworth, Mulder and Havens (1985) describes HAC in a different way. This 
representation makes it easier to exploit order on sets of real numbers. 



These two conditions ensure respectively that the children cover their parent exhaustively 

and mutually exclusively. The leaf domains are D: = {ai) (1 _< i 5 2m). Thus for Figure 

D$ = Island = (island), 

D: = Mainland = {mainland), 

0: = ~ a k e  = {lakz), 

24 DG = Ocean = {ocean), 

D: = Landmass, 

Di2 = Waterbody, and 

D: = Geographicsystem. 

For a variable x, the relationship between Ax and the nodes in the tree for Dx is defined by 
kr the marks Mx on nodes (k,s) for 0 5 k S m and 1 S s S 2k. .e interpretation for these 

marks is 

The dynamic domain, Ax, is the union of the domains of all nodes marked '4': 

191 A ~ = U { D ~ I @ = ~ } .  

However, some of the nodes marked '4' are redundant since all descendents of nodes 
marked '4' are also marked '4' and all descendents of nodes marked 'x' are also marked 



'x'. These two observations are central to the HACR method. The domain taxonomy 

permits consistency algorithms to retain or eliminate whole subtrees as a unit, simply by 

manipulating the marks. We introduce the following notation for non-redundant node 
J J domains. A, is the smallest set of domains in the tree for Dx such that U A ,  = A x .  

Similarly, $ is the smallest set of domains in the tree for Dx such that ~g = D \ Ax.  

4 For instance, in Figure 4, Ax = {Landmass) and A: = (Coastline). 

To delete inconsistent values from Ax a consistency algorithm only needs to change marks 
J in subtrees rooted a nodes with domains in Ax and possibly marks on the path back to the 

root. Similarly, to add values to Ax, only marks on nodes in paths from the root to and 

marks on nodes in subtrees rooted at nodes with domains in $ need to be change. The 

J tree itself is an efficient representation for 3, and A; because they can be generated by n 

simple depth first search of the subtree with nodes marked '?'. The ReviseHAC R 

algorithm described in section 3.2 makes extensive use of these properties. 

We extend hierarchical domains for real intervals as follows. The domain of each node it a 

taxonomy represents a real interval. Thus, instead of symbols, nodes are associated with 

the lower and upper bounds of the intervals they represent. Conceptually, these trees are 

infinite but they can be re resented finitely by terminating branches with nodes whose J' domains are elements of A, and 4. 

For example, consider the previous Echidna program for scheduling (in Figure 2) and the 

goal: 

[lo] ?- s E [Of 4 1 ,  

schedule ( [task ( O , l ) ,  task (2 .75,  I), task (Sf 0 .875)  1, task (0,4.875) 1 . 

Figure 5 illustrates the scheduling problem schematically. Each solid arrow in figure 5 

represents a task with the start time at the tail and the duration in the middle. Two tasks of 

one time unit in duration are already placed in the super task starting at 0 with duration 

4.875, and a third task starting at time s and with duration 0.875 must be scheduled. The 

two dotted lines point to the arc consistent intervals for S. 



Figure 5 A scheduling problem 

When the CSP induced by this goal is made arc consistent, As = [l ,  1.8751 u [3.75,4], as 

shown by the shaded rectangles in fig-rre 5. HACR represents As using the structure 

shown in figure 6. The root domain is Ds and the domains for the two children of each 

node are roughly the lower and upper halves of the their parent domain. The relationship 

between a parent and its two children is 

where a < mid(a,b) < b. The types of interval bounds (open or closed) associated with a 
and b in the children are inherited from the parent and one of the bounds associated with 

mid(a,b) is open while the other is closed. There are several reasonable definitions for 

mid(a,b). If an unbounded precision (eg. rational) number system is used, then the mean 

((a+b)/2) or the mediant (Graham et al., 1989) can be used. If a fixed precision (eg. 

floating point) number system is used, then the number nearest to the mean or the median 

number in the system between x andy can be used. Cleary (1987) calls these two options 
linear and exponential splitting respectively and studies their efficiency. 

Echidna presently represents interval bounds using 64-bit IEEE floating point numbers and 

employs linear splitting. That is, for the remainder of this thesis, we assume 



Currently, all lower bounds are closed and all upper bounds are open in order that nn 

interval need only be stored explicitly for the root node. The interval for any other node (k, 
01 s) is calculated via irsposition in the tree. That is, if D, = [a, b), then 

Figure 6. The domain representation for a real variable S 

3.2 ReviseHACR 

HAC and HACR are quite similar algorithms. Internally, their respective arc revision 

procedures, ReviseHAC and ReviseHACR are also similar. ReviseH AC relies an 

precompiled extensional constraints. It can be generalized for constraints on any number of 

variables, but for simplicity we describe it only for binary constraints. Assume that there is 

a single source variable s for all hyperarcs (T, C). Constraints are compiled into predicates 

which can be used to update the marks in the domain taxonomies using only the symbols 

which label their nodes. These predicates test if all or some value(s) in a subset D," of DT 

are consistent with some value in a subset D: of Ds.  Conceptually, both ReviseHAC(~, 



C) and ReviseHAcR(~, C) perform the assignment of a new mark @ to one of its three 

possible values according to: 

M:t{? 
if D: CJ nT(C) and D: n n,(C) # 0 

for each subset l$ of DT. If all values in @ are consistent with some value in some D: 

J ks 
E AS, then MT remains 'd'. Otherwise if some values are consistent with some value in 

considered12. Otherwise none of the values are consistent so M? is set to 'x'. By 

4 repeating this procedure for every node in A,, the new domain AT is constructed according 

to the assignment AT t zT(C). Mackwmh et al. (1985) show that ReviseHAC is a full 

arc revision algorithm. 

For our algorithm, ReviseHACR, domains are infinite non-discrete sets, so precompiling 

predicates is impossible. Instead ReviseHAcR(~, C) computes nT(C) by generating a 

set of intervals whose union is n,(C)'3. The intervals are generated one at a time and the 

new AT is accmulated from them. In our development, let C be an n-ary constraint and 
d v(C) = (S1, ..., Sn = T). Iterating through AT and searching for tuples 

ks 4 J 
%&ice h t  fa. DT E AT, changing $ from 'd* to '?' implicitly removes DF from A, and adds its 

I 3 ~ u 3 l l y ,  when floating piat numbers are asxi, the generated set of intervals may be a superset of A&) 

because rhe floating point approximations of the bounds of some intervals may necessarily be rounded 
m r d y .  



which are consistent with C will be very inefficient as n increases. Instead, ReviseHACR 

updates AT by computing nT(C) from ( A ~  il !, . . . , A 1. 
n- 1 

ReviseHACR would also be a full arc revision algorithm if the marks could be set exactly 

as specified in formula 1141 above. However, for some CSPs it is possible that an 
unbounded amount of refinement will be required. This is not a problem with 

ReviseH AC because it manipulates finite domains structured as finite taxonomies. Thus 

ReviseHAC is guaranteed to terminate. For infinite real taxonomies, a full arc revision 

algorithm would not be expected to terminate. To avoid this eventuality, HACR attaches a 
positive integerprecision P to each variable x in the list Vars using the built-in predicate, 

p rec i s ion  (Vars, P )  . P is the maximum distance from the root to any node in the 

taxonomy for Ax When ReviseHACR determines that D; should refined, that is M! 

should be set to '?' and its children analyzed, if the node (k, s) is at the precision limit (k = 

P) then MF is left '4'. For this reason, ReviseHACR is only a partial arc revision 

algorithm but it can approximate a full arc revision algorithm by increasing the precision of 

variables as necessary.14 

We return to this issue of computing the new domain A for AT such that: 

W e  implement this specification by computing the set A which is as close to nT(C) as 

possible given the current precision of T. This is done using a set of additional 

"temporary" marks associated with the nodes of the taxonomy for DT: 

These temporary marks represent A in the same way that the set (M:) represents AT. 

That is: 

1 4 ~ o n  can be increased dining execution mder program control. 

19 



J We define AJ as the smallest subset of {$ I TM: = 4 )  such that A = U A  . Likewise, 

AX is the smallest subset of {DF I TM: = x} such that DTU = WAX. 

The full procedure ReviseHACR is shown in Figure 7. Its principle subprocedure is 

Mark~ernp(~;', I) which adds an approximation of the interval I to A by searching 

01 through the taxonomy of the variable T starting at the root interval D, . That is, given A = 

S, Mark~ernp(D~',  I) updates A so A = S v approx(1, T) where approx(1, T)  is the 

smallest superset of I which can be represented in the taxonomy for T. at its current 
precision PT.' Fonnally, approx(1, T) is the union of the results of intersecting I with all the 

intervals at nodes on level PT in the taxonomy for T. That is, 

We generalize approx to apply to a finite union of intervals as follows: 

Section 4.3 shows how to compute a set (I1,. . .,In} of intervals whose union is xT(C), SO 

we use approx(n,(C), T) to mean approx((l1,. . .A}, T) for such an appropriate set of 

intervals. The approximation of rc,(C) is accumulated in A by repeatedly calling 

MarkTe mp with Ii for 1 < i 5 n. MarkTemp does not require that the set of intervals is 

disjoint. 



procedure ReviseHACR(T, C):  

begin (AT = s)  
01 TMT t x; ( A  = 0)  

let (11,. ..Jn) be any set of intervals such that u (Il,. . .In} = xT(C); 
0 1 for i c 1 to n do MarkTernp(D, , li); ( A  = a p p r ~ x ( ~ ~ ( C ) ,  T) 1 

ks k s  k s  Less  t (D ,  I T M ,  c M ,  ); ( * x < ? c d * )  

k s  k s  ks. for DT E L e s s  do M ,  t T M ,  , ( A ,  = S n A ]  

return Less  # 0 

end; 

ks 
procedure MarkTernp(DT , I): 

begin 
ks i f  ( @ = x ) v ( T ~ = ~ ) v ( I ~ D , = ~ )  then return 

else begin ( 1 n ~ : f  O A D ? & I )  

i f  T M ~  = x then begin 

end; 
(k+ I)@- 1) 

MarkTemp(D, , I ) ;  MarkTernp(DT ,o; (k+1)2r 

end 

end; 

Figure 7 ReviseHACR: a revision algorithm for hierarchical numeric domains 



The ReviseHACR algorithm operates as follows. In line 3, the root temporary mark 

T@ is set to 'x' effectively making A empty. Care is taken (later in the specification of 

MarkTernp) to mark children of nodes with intervals in AX as 'x' if they are ever 

accessed In lines 4-5, the algorithm sets A to approx(n,(C), T) using MarkTemp, as 

discussed above. In line 6, the set of marks, Less, are collected which need to changed in 
updating A, to be the intersection of its old value and A. In line 7, A, is updated 

appropriately. Less is the set of node domains with fewer values in the new value for A,. 

A node domain has fewer values if its mark is changed to a smaller value according to the 
order x < ? < 4. The operation specified by lines 6 7  can be implemented by a constrained 

depth fast search of the taxonomy for T which has a form similar to MarkTernp, which is 
described next. Since Less is empty if and only if the A, is not changed, ReviseHACR 

returns m e  at line 8 if and only if some inconsistent values are deleted from A,. 

The subprocedure, ~ a r k ~ e r n ~ ( ~ F ,  I), is now described in more detail. The algorithm 

considers three cases (in lines 12, 13 and 14 respectively). In the first case, it returns 

without changing any temporary marks (in line 12) if any of the following conditions are 
ks ks true. 1f M: = x, then D, n AT = 0 meaning that D, has already been removed from AT. 

If TM: = 4, then D: G A meaning that an interval covering D: has already been 

generated. If I n @ = 0 then the 1 misses D$ and the subtree rooted at (k, s) can be left 

as is. 

b ks Otherwise, in the second case (in line 13), if D, I (indicating that I covers D, ) or k = 

PT (indicating that the precision limit of T has been reached), then D: is added to A by 

assigning TM: = 4. At the precision limit, some values outside I may be added to A, but 

only ones which require greater precision to eliminate. Note that I n D: = 0 and D: E I 

can be tested efficiently by comparing appropriate bounds. 

Otherwise, in the third case (starting at line 14), since the branches at lines 12 and 13 were 

not taken, I n D: + 0 and l)! d I. Thus, TM? should be set to '?' and its children 

should be analyzed. Lines 15-17 ensure that MarkTemp is never called recursively with 



children of nodes temporarily marked 'x'. If T@ = x at line 15 the children have never 

be accessed. This is because the root temporary mark is set to 'x' in line 3 and line 16 sets 

the temporary mark of the current node to '?' before the recursive calls with the c hilciren. 
Lines 17 and 18 set the temporary marks of the children to 'x' before the recursive calls on  

line 20, which mark the approximation of I in the subtrees rooted at the two children of 

D:. If k+l is the precision limit and the point on the boundary between the two children is 

in I, the two recursive calls mark both children '4'. This violates the interpretation of 

marks. It is fixed by line 21, if necessary. 

Now that we have described ReviseHACR fully, we can formally state what the HACR 

algorithm of figure 3 does. We say that a hyperarc (T, C) is approximately arc consistent if 
AT = approx(nT(C), T) and that a CSi? is approximately arc consistent if every hyperarc in 

its hypergraph representation is approximately arc consistent. Upon the termination of 
HACR, the CSP represented by its input, A, is approximately arc consistent. It is in 

exactly this sense that HACR is a partial arc consistency algorithm. 

3.3 Computing Projections 

Let C be an equality or inequality with v(C) = (s 1, ..., sn-l ,  sn = T ) .  Computing 

projections is facilitated by transforming the formula for C into an equivalent formula for 

the constraint iso(T, C) which isolates the variable T. Thus, C and ~SO(T, C) contain the 

same set of mappings. For instance, iso(x, X Y=Z) = 'x=z+Y'. The constraint iso(T, C) 
is of the form 'T r E' where r E (=, <, I, >, 2), E is a numeric expression, and T P v(E) 
= ( ~ 1 ,  . . ., Sn-1). It is convenient to usefE:Aslx.. .xAsn-* -+ R to denote the function of  

(Sl, . . ., Sn-1) defined by E. The range of & is 

The projection xT(C) can now be computed from the variable T and the numeric expression 

E. Given the ability to isolate variables, Sections 3.3.1 and 3.3.2 describe the computation 

of projections of equalities and inequalities, respectively. Section 3.3.3 uses the results for 

inequalities to compute projections for disjunctive inequalities. But first, two restrictions 

are made on domains and constraints to shorten this presentation and to reduce the 

complexity of HACR. They are as follows: 



1 .  All intervals in domain taxonomies are of the form [xi, x2] where both the 

lower and upper bounds are closed and all inequalities are the nonstrict type (ie- 

< and 2). 

2. All equalities contain at most one function symbol and all inequalities contain no 

function symbols. Consequently, constraints are of the form 'A 1 =A2', 
'AISA2', 'A1+A2=A3', 'A1 . A2=A3', 'A1*2=A3', 'sin(A1 ) =A2', 'A1<A2 v 

A12A3', et cetera where A l ,  A2, and A3 are either real variables or real 
constants. 

Cleary (1987) describes some of these issues involved in removing the f ~ s t  restriction. 

The second restriction makes computing ~SO(T, C) mvial for constraints involving only 

invertible functions. A full presentation of how to compute projections of constraints 

involving more functions with open and closed intervals is in preparation (Sidebottom, 
1991). We consider here only computing q ( C )  for an arbitrary constraint C subject to 

these two restrictions. 

HACR satisfies restriction 2 by introducing intermediate variables to decompose complex 

constraints into an equivalent simpler set. For instance, the o n ~ i r  cle / 2 predicate of [I] 

is transformed to: 

where Ti are new intermediate variables (1 I i I 5). The domain DTi of intermediate 

variable Ti in a constraint Ti = E is [min range&), max range&)]. All subexpressions 

of real constraints are decomposed in this same way. The domains of intermediate 

variables can be calculated efficiently because& is either: 1) a constant; 2) a variable; or 3) 
a numeric function applied to variables and constants. In the first case,& = a where a is a 

14 constant and: 

[211 min rangee) = mcu: range&) = a. 



In the second case, ~ E ( x )  = x giving min range&) = min Ax and max range&) = mas 

Ax. We order the children of each node in the taxonomy with the domains containing 

smaller values to the left and the domains containing larger values to the right. 
.I Consequently, min Ax and mar Ax are in the leftmost and rightmost domains in A,  , 

respectively: 

k s J  FS' J 
[23] rnaxAx=a2where [al,a2] =Dx E Axis such t h a t s = m ( s t l  Dx E A x ) .  

The leftmost node domain in [22] can be found by following the path of left descendents 

from the mot node until a node not marked '?' is found. If the node is marked '4' then its 

lower bound is min Ax. Otherwise, the lower bound of its sibling is min Ax. Similarly, 

max Ax can be found by following the path of right descendents from the root, 

In the last case, E involves a numeric function. The bounds, min range&) and mux 

range(f~), can be calculated from the respective minima and maxima of the function 

arguments by analyzing the monotonicity and continuity properties of the function (Bundy, 

1984; Ratschek & Rokne, 1984). This analysis is applied in HACR for the arithmetic, 

exponential, logarithmic, root extraction, and tigonometic functions. 

3.3.1 Equalities 

Let C be an equality with v(C) = ( ~ 1 ,  . . ., s,-1, Sn = T). By restriction 2, we can assume 

that n is 0, 1,2, or 3. When n = 0, there are no projections to compute. For n > 0, iso(T, 

C) = 'T = E' and the projection nT(C) = range&). If n = 1 then E is the constant a and 

range&) = {a). Otherwise, 

where applying& to the intervals (D:?',. . .,Dkn-lsn-l) is defined by 
Sn-1 



The Region Splitting theorem of Bundy (1984) ensures the correctness of this approach for 
computing nT(C). Bundy gives a general theory of functions applied to intervals whereas 

Alefeld and Henberger (1983) give some specific results for the arithmetic functions. The 

following formulas from Alefeld and Henberger specify the four arithmetic operations on 

intervals: 

We necessarily complicate [29] by considering divisors which include zero in their 

domains. In this case, the quotient is the union of two disjoint intervals. For instance, 

This is accommodated by splitting the denominator at zero: 

and appealing to the Region Splitting theorem which yields: 

These two disjoint expressions can then be evaluated using [32] by replacing forms such as 

1 4  by the limit as the denominator approaches zero from within its interval. For example, 
[1,1] + [-2,0] = [1+(&), l+-21 where I+(&) = --, the limit of 'l+x' as x approaches zero 

from below. Likewise, the exponential, logarithmic, root extraction, and trigonometric 

functions can be handled similarly by analyzing periodicity and monotonicity properties and 

by taking limits at points of discontinuity. 



The number of functions of the f o n n f ~ ( ~ " ~ ' , .  . .,D 
s 1 

'"-'"-') evaluated in I241 above can be 
Sn-1 

J reduced by combining adjacent intervals in A . (1 5 i < n). For instance, in the scheduling 
s1 

example of Figure 6, A: = ([1,1.5), [1.5,1.75), [1.75,1.875), [3.75,4)) but after 

combininr adjacent intervals, only the set {[1,1.875), [3.75,4)) need be considered to 
calculate nT(C) where C is an equality with S E v(C). The complexity of computing 

xT(C) is another reason for decomposing equalities as described above. Even after 
J 4 adjacent intervals are combined, !As x . . . x A I increases rapidly with n.. After 

sn-1 

constraints are decomposed, C is transformed into a set of constraints with arity not greater 
J than three. The size of each A . is further limited by the setting of the precision for each 
s1 

variable (as previously described). 

3.3.2 Inequalities 

For inequalities of the form iso(T, C) = 'T 5 E', the projection nT(C) should rnnge 

between rnin AT and the max range&). Precisely stated, 

[331 7cT-C) = [min AT, max range&)]. 

Similarly, if iso(T, C) = 'T 2 E' then 

[341 KT(C) = [min range&), max AT]. 

Since f~ is a constant or a variable by restriction 2, min Ax, max Ax, min range(&), and 

rnax range&) can be calculated using [21-231 above. 

3.3.3 Disjunctive Inequalities 

If C is a disjunctive inequality of the form C1 v C2 then the projection nT(C) depends on 

whether T appears in one or both of v(C1) and v(C2). If both T E v(C1) and T E v(C2) 

then values which satisfy either disjunct can be used to satisfy the whole constraint. The 

projection is: 



For the other case, T only appears in one expression. Assume without loss of generality 
that T E v(C1) and T e v(C2). Then nT(C) depends on the satisfiability of C2. If C2 = 

'El I E2' then can be efficiently tested for satisfiability given min range&l) and m m  

range&) which in turn can be computed using [21-231. C2 is satisfiable if and only if 

1361 min rangeVi2) 5 mar range(@. 

When El is the variable x and E2 is the variable Y, ((x, rnin Ax), (Y, m u  A*)) E C2 SO 

1361 is sufficient for the satisfiability of C2. [36] is also necessary because if C2 is 
satisfiable then for some a E Ax and b E Ay, {(X, a), (Y, a) j E C2. This implies a S b 

and since a 2 min Ax and b 5 max AY, 1361 is true. The proofs when E l  or E2 are 

constants is simpler. Similarly, if C2 = 'El 2 E2' then C2 satisfiable if and only if 

[ 371 mar 2 min range(f~~). 

Lf C2 is satisfiable, then there exists p' E C2 which can be extended arbitrarily to a 

mapping p E C. Specifically, if v(C i)\v(C2) = (XI, .  . . ,Xm) and (a 1,. . . ,a,) E 

AXIx ... xAXm then p = p' u ((xl,al),.. .,(xm,am)) E C. Since T E v(CI)\v(C2), xT(C) = 

AT if C2 is satisfiable. If C2 is unsatisfiable, then all p E C, when restricted to v(C1), 

must satisfy C1. Thus, xT(C) = xT(C1). 

TO summarize, 

i nT(C1)~~T(C2)  if TE v(C 1) h TE v(C2) 
1381 ~ T ( C  1vC2) = AT if TE v(C1) A TP v(C2) A C2 is satisfiable 

n ~ ( c 1 )  if TE v(C1) A TP v(C2) A C2 is unsatisfiable. 

4. Examples and Comparisons 

This section provides some comparisons of Echidna's real number capabilities with other 

major CLP systems. The examples were run using Echidna version 1.0 on a Sun UNIX 

Sparcstation 1. 

Each derivation of a query in Echidna induces a CSP which consists of the set of 

constraints selected (ie. called) at some step in the derivation. CLP languages with 
complete CSP solvers can answer queries exactly in terms of variable bindings for 

solutions to the CSP. Since Echidna's numeric constraint solving system is a partial 

solution to the CSP, it outputs approximate answers by binding variables to their domains 



in the induced CSP after it has been rcacie approximately arc consistent. As dicussed 

earlier, calls to s p l i t  are used to further refine domains by analyzing different cases. Let 

C be a CSP induced by a query and let (XI,. . .,x,) be the set of variables which have 

appeared in a call to s p l i t .  Then Echidna ouputs one answer for each way C can have 
the domain of Xi replaced by some interval on a node at level Px in the domain taxonomy 

for Xi (1 I i < m) and then made approximately arc consi~tent~~. 

4.1 Polynomials and Precision 

For simplicity, only a quadratic polynomial in factored form is used in this section. The 

form of the polynomial affects the efficiency of the solution (Cleary, 1987). Consider the 

following query. 

1391 ?- x E [-1000, looo), 

p r e c i s i o n  ( [XI, 8), 
(X - 1)-(X - 2) = 0, 

s p l i t  ( [XI ) . 

Echidna generates numerical solutions to polynomial equations with varying precision 

using the built-in predicate prec is  ion. We employ the call prec is ion  ( [XI , 8 ) to 

initially limit the precision of the variable x to 8-bits. Thus, the taxonomy for X will not be 

refined beyond the eight level. The call s p l i t  ( [ X I  ) is used to invoke a case analysis 

search for solutions for X. For this query, Echidna computes the following answer 

(containing the two solutions, x = 1 and x = 2): 

x E [O, 7.8125) I 

no. 

More precise approximations of the solution can be obtained by computing answers with 

smaller domains. This can be achieved by increasing the precision of X. For instance, if 

the precision is set to 16, the following answers are computed: 

X E [0.9765625, 1.00708) ; 
X E r1.983643, 2.01416) ; 

no. 

15~ecause of the propagation floating point precision errors, it is possible for Echidna's current 
implementation to ouput answers which are not from partially arc consistent CSPs. 
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As the precision is further increased, more false answers are excluded. Setting the 

precision to 32 produces the following approximate solutions: 

X E [0.9999997, 1.0000002) ; % solution here 
X E [1.9999998, 2.0000003) ; % solution here 
no. 

Systems like CLP(W) (Jaffar & Michaylov, 1987), Prolog-III (Colmerauer, 1990), and 
CAL (Aiba et al., 1988) are based on symbolic manipulation of constraints. Their 

solutions consists of a set of constraints in some solved fonn. Since CLP(R) and Prolog- 

III can solve only linear constraints, they cannot solve the above query. CAL is powerful 

enough to find the two solutions, however. 

For real number constraint processing, Echidna is most similar to BNR Prolog (Older & 

Vellino, 1990). They both use arc consistency algorithms to remove values from the 

dynamic domains of variables. Both languages can solve polynomials numerically to 

reasonable accuracy efficiently. BNR Prolog provides primitives for programming case 

analysis algorithms, like s p l i t  , which compute solutions to varying accuracy, but it has 

no programmable control over the accuracy of its consistency algorithms. The Echidna 

predicate, precision,  provides control over this facet of the computation. 

4.2 Geometry 

The query [2] in section 2.1, which uses the onc irc le predicate defined by [I], can be 

augmented with precision and case analysis calls. The resulting query is: 

[40] 2- precision ( [A, B, R] , 16) , 
A E [-100,1001, 
B E [-100,1001, 
R E [-100,1001, 

C = c(p(A,B),R)r 
onCircle(p(O,l), C), 
onCircle(p(l,O), C), 
oncircle (p (-l,0), C) 
split ( [A, B, RI 1 . 

Echidna finds the following answer which closely approximates the correct solution: 



Again, neither CLP(R) nor Prolog-III can solve this query because they only process linear 

constraints while CAL can solve this query exactly. BNR Prolog, like Echidna, has the 

capability to solve this quay numerically. 

4.3 Linear Equations 

Specialized linear constraint solving algorithms of CLP(R) and hlog-III  are superior to 

both Echidna and BNR Prolog for linear constraints. Echidna, like BNR Prolog, can solve 

linear systems like: 

[41] ?- p r e c i s i o n  ( Ex, Y, 21, 1 6 )  

x E [-1000, 10001 ,  
Y E [-1000, 10001 ,  
Z E [-1000, 10001 , 

X + 2 - Y +  z =  4, 
3 - x i -  Y + 5 * z =  9,  
7 - x  + 4 - Y  + 8 - 2  = 16 ,  
s p l i t  ( [X, Y, Z l )  . 

However, the time required increases exponentially with the number of variables and 

equations in the CSP (Cleary, 1986). 

4.4 Scheduling 

Given the scheduling program introduced earlier in Figure 2, consider the query: 

[42] ?- p r e c i s i o n  ( [ S l ,  S21,  3) , 
S1 E [Of 41, 
5 2  E [Or 41, 
schedule ( [ t a s k  ( S l ,  2)  , t a s k  (S2, 1 . 5 )  1 ,  t a s k  (0, 4)  . 

Echidna returns the single answer: 

It is interesting to note that the query contains no call to the sp  1 it case analysis predicate. 

In this case, HACR's consistency algorithms alone remove enough inconsistent values to 

split the domains into two disjoint intervals. In systems such as BNR Prolog, Prolog 111 

and CLP(R), the disjunctive inequality in the noover lap predicate of Figure 2 has to be 

expressed using nondeterminism in the program. For instance, it can be expressed as: 



using the disjunction connective (; ) of Edinburgh syntax Prolog. When this disjunctive 

constraint is used, the solutions to queries like [42] above are not contained in a single 

answer, but are distributed over several answers. 

ConcIusions and Future Work 

This thesis has described how the HACR approach real number constraint processing is 

implemented in the Echidna CLP language. HACR supports domain constraints, 

equalities, inequalities, and disjunctions of inequalities on real number expressions 

involving arithmetic, exponential, and trigonometric functions. The set of numeric 

constraints supported by HACR is richer than for the other numeric constraint processing 

techniques cited. 

HACR's novel use of hierarchical domains and a hierarchical arc consistency algorithm 

makes it possible to process constraints with varying accuracy and to represent variable 

domains which are the union of disjoint sets of intervals. This thesis gave a formal 

description of the HACR algorithm which included details about how to revise and project 

constraints on variables with hierarchically structured precision bounded real numeric 

domains. Examples were give to show 1) that HACR can be used to compute answers to 

varying precision under program control, 2) HACR can numerically solve some constraints 

which other CLP systems cannot, 3) HACR is not as efficient as other systems for simple 

linear constraints, and 4) HACR can process certain disjunctive constraints without 

=sorting to case analysis algorithms. 

There arr= at least two areas where HACR can be improved. First, consistency algorithms 

cannot compete with specialized symbolic constraint solving algorithms in their domain of 

application. Second, consistency algorithms combined with general case analysis 

algorithms are often insufficient to efficiently solve large complex problems. 

We discuss two steps towards solving the fim problem. A first step is to avoid breaking 

&wn constraints with temporary variables, wherever reasonable- In particular, with linear 

constraints, variables can be isolated and ranges of expressions can be computed quite 

easily- A second step stems from the observation that HACR's consistency algorithms 

never consider more than one constraint at a time. But symbolic linear constraint solving 

algorithms used in CLP are efficient because they combine constraints to eliminate 



variables. Consequently, it would be useful to find a way to integrate some symbolic 

constraint solving with consistency algorithms, gaining tFrz advantages of both approaches. 

The second problem can be addressed with more programmable ways of implementing case 

analysis algorithms in a control meta-language. We propose a control language inspired by 

the when declarations in NU-Prolog (Thorn and Zobel, 1986), which are a generalization 

of the delay declarations of MU-Prolog (Naish, 1985). We specify just enough of this 

proposal to write a control procedure which achieves an effect similar to tfe use of s p l i t  

and p r e c i s  ion as they were used in section 4. The control meta language makes i t  

possible to program case analysis algorithms directly. BNR Prolog has similar 

functionality, but there is no separate control program. 

Instead of placing calls to control primitives such as s p l i t  and precision in the logic 

of the program, the programmer uses control  declarations to specify the case analysis 

algorithm to be used when solving goals involving numeric constraints. Control programs, 

like logic programs, are specified oy sets of clauses, except instead of using the : - symbol 

to separate the head from the body, the symbol control is used. Also, control prograrns 

must not contain numeric constraints, For instance, 

o n c i r c l e  (-, c (p (A, B) , R) c o n t r o l  

b r e a d t h F i r s t  ( [A, B, R] , 16) . 

def~nes a control procedure for the oncircle predicate given in [I] in terms of the control 

procedure breadt hF i r st. As we will see, the control procedure 

breadthFirst  (Vars, P )  , 

hasthesameeffectasaddingthecallsprecision(Vars, P )  and s p l i t  (Vars) toa 

query. 

Logic programs and control programs are separate; they may not call each other. The 

control procedures associated with predicates are executed afrer a top level query succeeds 

but before the answer to the query is output. If no control procedure is specified for a goal 

involving variables in real constraints, a default procedure is used. A reasonable default 

procedure is s p l i t  (vars) , where vars is a list of the domain variables occurring in the 

call to the predicate. 

Conno1 programs are executed according to the procedural interpretation of Prolog 

programs, by selecting clauses in the order in which they appear in the program and goals 



from left to right. Control programs may also use the or connective ( ; ), the if-then (->) 

connective, and arithmetic predicates ( i s ,  = : =, <, I, etc.) to evaluate arithmetic 

expressions as in Prolog. 

Control programs should minimally have access to one evaluable function and two built-in 

control predicates which control different aspects of the search. The function call 

precis ion (x)  retums the current precision of x. This function can be evaluated with 

the usual predicates ( is ,  = : =, <, I, etc.). The control predicate s e t  Precis  i o n  (x, 
P) sets the precision of x to the result of evaluating P, which is normally a function of 

precis  i o n  ( X )  . The control predicate case ( X) removes approximately half of the 

values in the domain of x and introduces a choice point. Upon backtracking, it restores the 

deleted half and removes the other half. 

The control program shown in figure 8 defines a control program using the primitives 

described above. Breadt hF i r s  t (Xs , P ) iteratively increases precision and splits the 

domain of each variable in the Iist in a round-robin fashion until all domains are refined to 

precision P. 

s p l i t  ( X s ,  P )  c o n t r o l  
( 

atLimit(Xs,  P)  -> t r u e  
# 

r e f i n e  ( X s ,  P )  , s p l i t  ( X s ,  P) 
1 .  

a t l i m i t  ( [ I ,  -) c o n t r o l  t r u e .  
a tL imi t  ( [X I Xsl, P)  c o n t r o l  

p rec i s ion(X)  =:= P, 

a tL imi t  ( X s )  . 

r e f i n e  ( [ I ,  -1 c o n t r o l  t r u e .  
r e f i n e ( [ X  I Xsl, P )  con t ro l  

( 

prec i s ion(X)  < P -> 
s e t p r e c i s i o n  (X, prec i s ion  (XI + 1) , case  ( X I  

1 ,  
r e f i n e  ( X s  , P) . 

Figure 8. A control program 



This proposal could be further elaborated to include primitives which allow control 

programs to analyze the structure of domains, specify both the number system and the 

definition of mid(x,y)l6, and symbolically manipulate constraints. With such a powerful 

control language, it would be possible write a declarative specification of the problem to be 

solved and then fine tune problem and data specific numerical analysis and symbolic 

constraint solving algorithms independent of this specification. 
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