
National Library 1*1 of Canada
Bibliothtkque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395. rue Well~ngton
Ottawa, Ontarb Ottawa (Ontarto)
KIA ON4 KIA ON4

NOTICE AVlS

The quality of this microform is La qualite de cette microforme
heavily dependent upon the depend grandement de la qualit6
quality of the original thesis de la t h h e soumise au
submitted for microfilming. microfilmage. Nous avons tout
Every effort has been made to fait pour assurer une qualit6
ensure the highest quality of superieure de reproduction.
reproduction possible.

If pages are missing, contact the S'il manque des pages, veuillez
university which granted the comrnuniquer avec I'universite
degree. qui a confbre le grade.

Some pages may have indistinct La qualite d'impression de
print especially if the original certaines pages peut laisser h
pages were typed with a poor desirer, surtout si les pages
typewriter ribbon or if the originales ont 6te
university sent us an inferior dactylographiees a I'aide d'un
photocopy. ruban use ou si I'universitb nous

a fait parvenir une photocopie de
qualite inferieure.

Reproduction in full or in part of La reproduction, mBme partielle,
this microform is governed by de cette microforme est soumise
the Canadian Copyright Act, a la Loi canadienne sur ie droit
R.S.C. 1970, c. C-30, and d'auteur, SRC 1970, c. C-30, et
subsequent amendments. ses amendements subsequents.

Hierarchical Arc Consistency

Applied to Numeric Processing

in

Constraint Logic Programming

Gregory Allan Sidebottom

B.Sc. (Hon.) University of Calgary

?'I-ESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School of Computing Science

O Gregory Allan Sidebottom 1991

Simon Fraser University

November, 1 99 1

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

National Library 1*1 of Canada
Bibliotheque nationale
du Canada

Acquisitions and Direction des acqu~sitions et
Bibliographic Services Branch des services bibltographiques

395 Well~ngton Street 395, rue Welhngton
Ottawa. on tar^ Ottawa (Onfarlo)
Kt A ON4 KIA ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

L'auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, prGter, distribuer ou -
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes interess6es.

The author retains ownership of L'auteur conserve la propriete du
the copyright in his/her thesis. droit d'auteur qui protege sa
Neither the thesis nor substantial these. Mi la these ni des extraits
extracts from it may be printed or substantiels de celle-ci ne
otherwise reproduced without doivent 6tre imprimes ou
his/her permission. autrement reproduits sans son

autorisation.

ISBN 0-315-78234-X

Approval

NAME: Gregory Allan Sidebottom

DEGREE: Master of Science (Computing Science)

TITLE OFTKESIS: Hierarchical Arc Consistency Applied to Numeric Processing in
Constraint Logic Programming

EXAMINING COMMITTEE:

Chair: Dr. Fred Popowich

~ r . +. S. Havens
Senior Supervisor

Dr. V. Dahl
Examiner

Dr. Alan K. Mackworth
Department of Computer Science
University of British Columbia
External Examiner

PARTIAL COPYRIGHT LICENSE

I hereby g r a n t t o S l m n Fraser U n i v e r s i t y the r i g h t t o lend

my thesis, proJect o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l or

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o the r un ive rs i t y , o r o ther educat ional I n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s unders9ood t h a t copying

o r publication o f t h i s work f o r f l nanc fa l ga in sha l l not be al lowed

wi thout my w r i t t e n permission.

T i f 1 e o f Thes i s/Project/Extended Essay

H i e r a r c h i c a l A r c Cons i s t ency Applied t o Numeric P rocess ing i n C o n s t r a i n t

Logic Programming.

Author:

- (sQnatureI

Gregory A l l a n Sidebottom

(name 1

November 20, 1991

Abstract

There have been many proposals for adding sound implementations of

numeric processing to Prolog. This thesis describes a new approach to

numeric constraint processing which has been implemented in Echidna, a

new constraint logic programming (U P) language. The approach, called

HACR, uses consistency algorithms which can actively process a wider

variety of numeric constraints than most other U P systems, including

constraints containing non-linear functions. A unique feature of HACR is

that it implements domains for real valued variables with hierarchical data

structures and exploits this structure using a hierarchical arc consistency

algorithm specialized for numeric constraints. This gives Echidna two

advantages over other systems. First, the union of disjoint intervals can be

represented directly. 0 ther approaches require trying each disjoint interval

in turn during backtrack search. Second, the hierarchical structure facilitates

varying the precision of constraint processing. Consequently, it is possible

to implement more effective constraint processing control algorithms which

avoid unnecessary detailed domain analysis. These two advantages set

HACR apart from other approaches to real number processing in CLP.

...
lll

To Sue,
for making

my Life complete

Acknowledgements

This work was supported by the Centre for Systems Science at Simon Frascr University,
by the Alberta Research Council, and by PRECARN Associates. I would also like to

acknowledge my senior supervisor, Bill Havens, who provided the initial idea for and
numerous useful discussions about this work, and Miron Cupeman for implementing the
algorithms described here in Echidna.

Contents
. List of Figures V I I

... 1 . Introduction 1

2 . Echidna Background ... 3

2.1 Real Number Constraints in Echidna .. 4

..................................... 2.2 Overview of the Echidna Reasoning Engine 6

... 3 . Hierarchical Arc Consistency on Reds (HACR) 8

3.1 Domains .. 12

3.2 ReviseHACR .. 17

. 3.3 Computing Projections 2 3

3.3.1 Equalities .. 25

... 3.3.2 Inequalities -27

.. 3.3.3 Disjunctive Inequalities 27

.. 4 . Examples and Comparisons 28

... 4.1 Polynomials and Precision 29

... 4.2 Geometry 30

... 4.3 Linear Equations 31

4.4 Scheduling .. 31

.. 5. Conclusions and Future Work 32

... References - 3 5

List of Figures

1 . A circle described by [I] .. 5

.. 2 . An Echidna Program for scheduling tasks 6

................................. 3 . H ACR: an arc consistency algorithm for real constraints 11

.................................. 4 . (a) Geo-system and (b) Shore specialization hierarchies 13

5 . A scheduling problem ... 16

6 . The domain repmentation for a real variable S .. 17

................ 7 . ReviseHACR: a revision algorithm for hierarchical numeric domains -21

.. 8 . A control program 34

vii

1. Introduction

Numeric processing has always been an important aspect of computing. But there are two

major problems with traditional procedural languages using the floating point representation

for real numbers. First, errors induced by floating point computations are hard to

determine and analyze. Second, debugging and correctness verification for procedural

languages can be very difficult. I ~ g i c programming languages, such as Prolog, address

the second problem since they have well understood semantic properties (Lloyd, 1984).

However, numeric processing in Prolog, as it is usually implemented with the ' i s '

predicate, suffers from the same problems as procedural languages using floating point

numbers.

Constraint logic programming (CLP) languages (Jaffar and Lassez, 1987; Van Hentenryck,

1989) seek to add efficient algorithms for new computational domains to logic

programming languages in a way that preserves their important semantic properties.

However, the major CLP languages with numeric constraint processing capabilities have at

least one of the three following weaknesses:

1. their applicability is limited to a small class of constraints, such as linear,

polynomial or integer constraints,

2. they compute using the full precision of the underlying numeric computation

implementation, whether it is needed or not, and

3. they are forced to search a large space when dealing with disjunctive

constraints.

CLP languages like CLP(R) (Jaffar and Michaylov, 1987), Prolog 111 (Colmerauer, 1990),

and CAL (Aiba et al., 1988) use symbolic constraint solving techniques. However,

CLP(R) and Prolog 111 can only actively process linear constraints using linear

programming algorithms. CAL actively processes polynomial constraints using algorithms

from polynomial ideal thmry which have doubly exponential time complexity in the worst

case (Buchberger, 1985).

The CHIP CLP language (Van Hentenryck, 1989) and BNR Prolog (Older and Vellino,

1990) use consistency and case analysis algorithms (Mackworth, 1977) for solving

constraints. Consistency algorithms require that variables be associated with domains

which are sets of possible values for a variable. For consistency algorithms, a domain

must be represented by some finite manipulable structure. CHIP'S numeric domains are

always finite integer sets. BNR Prolog's domains are real intervals and it efficiently

implements many real constraints by using consistency algorithms to tighten those intervals

closer to actual solutions to the constraints (Cleary, 1987; Hyvonen, 1989).

Practical consistency algorithms only partially solve constraints. Both CHIP and BNR

Prolog provide search primitives which can be used to augment consistency algorithms

within the logic programming (LP) language. CHIP can always find exact solutions since
its consistency algorithms only deal with finite discrete sets. Search methods in BNR

Prolog can tighten intervals as close to solutions as possible using the underly~ng finite

precision computer arithmetic. This ensures that no solution for a given set of constraints
is missed although sometimes answers contain no solutions.

This thesis describes an approach to real number processing in CLP, called HACR1.

WACR has been implemented in a new CLP language called Echidna (Havens, et al., 1990;
Havens, 1991). Like both CHIP and BNR Prolog, Echidna uses consistency algorithms

which can actively process a wide variety of real number constraints. The key difference is

that HACR implements real domains which are disjoint sets of intervals using a hierarchical

data structure. HACR exploits this structure using a version of hierarchical arc consistency

(Mackworth, Mulder and Havens, 1985) specialized for real number constraints.

Davis (1987) classifies constraint systems according to the richness of the language used to

represent both variable domains (the "label language") and constraints (the "constraint

language"). HACR implements label and constraint languages which are more general than

either BNR Prolog or the real number systems surveyed in (Davis, 1987). Our label

language is composed of disjoint real interval sets and it contains real intervals as a

sublanguage. Our constraint language contains equalities, inequalities, and disjunctions of

inequalities on arbitrary expressions involving the arithmetic fundms , and some

expressions involving the trigonometric, exponential, root, and logarithmic ftI nctions.

HACR handles such g e n d systems of constraints by using partial consistency algorithms

(NadeI, 1989). Partial consistency algorithms approximate the set of solutions to a

rHACR stands far Hierarchical Arc Consistency on Real domains. The approach takes its name from the
arc consistency algorithm, which is its novel component. The approach also includes case analysis
algorithms which have been descn i by others (Mackworth, 1977; C l q , 1987).

constraint satisfaction problem (CSP) by computing a superset of the solutions. Good
partial consistency algorithms compute a superset which is only slightly larger than the

actual set but at a substantially reduced cost. HACR uses partial consistency algorithms

and case analysis algorithms to generate sets of interval tuples with one interval for each

variable in a given numeric CSP. All the solutions to the CSP are contained in some

interval tuple. Also, HACR is parameterized so that as it is given increasing time and

space, it can usually generate intervals that converge on solution points.

The remainder of the thesis is organized as follows: Section 2 describes the aspects of

Echidna which are relevant to HACR. Section 3 specifies HACR's adaptation of

hierarchical arc consistency (Mackworth et al., 1985) for real number constraints. Section
4 gives some sample runs using Echidna and compares it with other CLP languages.

Finally, Section 5 draws some conclusions about this research and describes some future

lines of research.

2. Echidna Background

Echidna is a new type of CLP language for model-based expert systems applications. The

language improves upon the limitations of existing expert system languages by combining

aspects of schema-based knowledge representatiuiis, CLP, and intelligent backtracking

(Havens, 1991). Echidna builds on recent advances in CLP by integrating within the

language a clausal reasoning maintenance system and object-oriented knowledge structures.

We believe that next-generation expert systems will incorporate richer structured

knowledge representations based on object-oriented programming principles and rely on

more efficient constraint propagation and dependency backtracking control structures.

Echidna demonstrates that these capabilities can be combined successfully into a coherent

new CLP language.

This section focuses on those aspects of Echidna concerned with real number processing.

For a description of other aspects of the language, see (Havens, et d., 1990). In this

presentation, we augment the syntax of Edinburgh Prolog (Sterling and Shapiro, 1986) as
necessary for exposition2. Section 2.1 describes how Echidna augments a logic

programming language with real number constraints and Section 2-2 briefly describes the

%k clarity, we deviate from actual Echidna syntax

SLD-resolution theorem prover (Lloyd, 1984) and arc consistency algorithms (Mackworth,

1977) used in Echidna,

2.1 Real Number Constraints in Echidna

Echidna provides domain constraints, equalities, inequalities, and disjunctions of

inequalities on real number expressions. A domain constraint is a unary constraint of the

f m :

x E Set

where X is a real valued variable and Set ¬es the domain of x. The domain is

specified as a finite union of open, closed, or half open real intervals. An interval is

-ed by a lower and an upper bound. A bound consists of a real numeral and a bracket

symbol. A square bracket indicates that the bound is closed and a round bracket indicates

the bound is open, according to normal mathematical usage. For instance, [O, 1]

denotes the set {x I 0 4 x 5 1 1 and [O f 1) denotes the set { x I 0 5 x < 1 } . Intervals

which are not bounded above or below can be specified using the symbols -= and +=.
For instance, (0, +-) Specifies the set of all positive real numbers.

The domain constraint

declaresx to beinthedomain { x I O 5 x < 1 v 3 < x I 4 v 7 c x < 10).

Equalities and inequalities are constraints on real number expressions, henceforth referred

to simply as expressions. Expressions are built up from variables and real constants using

numeric function symbol$. The following is an example of an Echidna program using

equalities and inequalities:

f 11 oncircle (p fX, Y) , c (p (A, B) , R) :-

R > 0 ,
(X - A) ~ + (Y - B) ~ = R'-

3 ~ h i d n a currently suppurts the arithmetic functions, some trigonometric functions, exponentiation,
~ a n d r o ~ e x t r a c t i o n ,

It specifies the relationship between a circle centered at point p (A, B) with radius R and n

point p (x, Y) on its circumference, as shown in figure 1. The query:

has a single solution:

since three points uniquely define a circle4. Notice that this query results in many

constraints involving non-linear expressions. HACR can restrict the domains of A, B and

R to intervals which tightly bound this solution.

Figure 1. A circle described by [I]

HACR supports constraints of the form:

where El and E2 are expressions, but these are a special form of the disjunctive inequality

constraint which is written:

-- -

4~ctual results using Echidna for examples in this section are given in section 4.

where C1 and C2 are both inequalities. The disjunctive inequality is useful in temporal and

spatial reasoning problems. For instance, Figure 2 gives an Echidna program for

scheduling tasks using some of the relations on temporal intervals described in (Allen,

1983). A task is represented by a term task (S f D) where S is the start time of the task

and D is the duration of the task. The predicate, i n (Task, SuperTask) , is true if the

interval for SuperTask contains the interval for Task. NoOverlap (Task, Tasks)

is true if Task overlaps with none of the tasks in the list Tasks. It uses a disjunctive

inequality constraint (shown in bold typeface in Figure 2) to make sure Task is either

beforeorafterall the tasksin Tasks. Schedule (Tasks, SuperTask) is trueifall

the tasks in the list Tasks are in SuperTask but no pair in Tasks overlap.

in (task (Sl, Dl), task (S2, D2)) :-
S1 2 S2,
Sl+Dl 2 S2+D2.

nooverlap (-, [I .
nooverlap (task (Sl, Dl) , [task (S2, D2) I Tasks]) : -

Sl+Dl < S2 v S1 2 S2+D2,
nooverlap (task (Sl, Dl), Tasks! .

schedule ([I, -1 .
schedule ([Task I Tasks], SuperTask) :-

in (Task, SuperTask) ,
noOverlap(Task, Tasks),

schedule (Tasks, SuperTask) .

Figure 2. An Echidna Program for scheduling tasks

Given the program of Figure 2, HACR can deduce from the goal:

[4] ?- schedule ([task (Sl, 2), task (S2, 1.5) I, task (0, 4)) .

that s l is in the set [O, 0.51 u [IS, 21 and s2 is in the set [0,0.5] u [2, 2.515.

2.2 Overview of the Echidna Reasoning Engine

Echidna programs are executed by an SLD-resolution theorem prover (Lloyd, 1984) which

incrementally constructs and maintains a CSP. A CSP is defined by a set of variables, each

5~ctually, HACR deduces sets slightly larger than these sets. See section 3 for details.

6

associated with a domain of possible values and a set of constraints on subsets of the

variables. A constraint specifies which values from the domains of its variables are

compatible. A compatible set of values, one for each variable participating in a constraint,

is said to satisfy the constraint. The notation D x is used to denote the domain of the

variable X. For all variables x participating in real number constraints, Dx is a subset of the

set R of real numbers. A solution to the CSP is an assignment of values to all its variables

which satisfies all the constraints. When a constraint is selected by the theorem prover, it is

added to the CSP. Echidna manipulates the CSP using two methods (Mackworth, 1977):

1 . arc consistency is used to remove inconsistent values fiom the domains of

variables under numeric constraints, and

2 . heuristic case analysis is used to consider alternatively different halves of red

variable domaid.

If the arc consistency algorithm ever removes all values from a variable domain, then the

constructed CSP has no solutions. The theorem prover then backtracks using dependency

backtracking (Havens, 1991). Backtracking through a constraint consists of removing it

from the CSP.

Case analysis provides a divide and conquer method for finding solutions to the CSP. Arc

consistency is interleaved with case analysis algorithms to further reduce the search space.

Case analysis is implemented by the built-in predicate, s p l i t (Vars) , which is similar to

predicates described elsewhere (Cleary, 1987; Older and Vellino, 1990; Van Hentenryck,

1989). s p l i t (vars) repeatedly cycles through the list vars of variables in a round

robin fashion removing approximately half the values in each variable's domain. Upon
backtracking, s p l i t restores half of a domain and removes the other half.

Echidna's real constraint processing techniques are partial algorithms because they are not

capable of completely solving the CSP. Arc consistency is not sufficient to solve CSPs
because it considers only single constraints in isolation. When domains are finite and

discrete, case analysis combined with arc consistency can completely solve the CSP. If

Echidna's real domains were finite and discrete, then after some finite number of iterations,

s p l i t would have reduced all variable domains to singleton sets. However, real domains

%ariables with finite domains, such as fmite sets of integers, may also consider each value in the domain
in turn This is known as backtrack tree searching.

are neither finite nor discrete. Currently, the number of times a variable domain is split is

determined bya built-inpredicate,precision(~ars, Prec). Sections3.2and4.1
describe its operation in more detail. We are investigating how to provide more flexible

control of the case analysis methods.

3. Hierarchical Arc Consistency on Reals (HACR)

We use the notation v(C) to denote the set of variables in the constraint C. The arity of C

is Iv(C)I. We assume the CSP is formulated as a directed hypergraph7 where variables are

associated with nodes and each constraint C is a set of hyperarcs of the form (T, C) for
each T E v(C). T is called the zarget and the rest of the variables in v(C) are called

sotlrces. Given a CSP formulated in this way, arc consistency deletes values from target

variable domains which are not supported by any consistent source variable values. Such
deleted values cannot be part of any global solution to the CSP. The notation Ax is used to

denote the dynamically changing domain of the variable x which decreases monotonically

from its full declared domain Dx towards smaller and smaller subsets. When values are
deleted from Ax, it is said to be refined.

To simplify discussion, constraints are taken as relations in the relational database model

sense (Ullman, 1988). Unlike relational database theory, relations are represented

intensionally and can be infinite. Variables are the attributes of an instance of a relation

scheme and the relation is always restricted to values in the dynamic domains of the
variables. For example, if Ax = Ay = {1,2,3) then the constraint C(X, Y) = 'X < Y' is

the relation { {(x,1),(~,2)), {(x,~),(Y ,3)) , {(x,2),(~,3))), which is an instance of the

'less than' relation between x and Y. Relations are viewed as sets of mappings. Each
element p E C can be considered a mapping from the set v(C) of variables to the set

uXEv(c) Ax of possible values for those variables. For example, for p = {(~,1) , (~,2)) E

C above, p(x) = 1 and p (~) = 2.

It will sometimes be convenient to use positional notation for constraints by giving an

explicit order for the variables similar to the notation used to specify the relation scheme. If
C is a constraint with v(C) = (XI , ..., ~ k) and ai E DXi (1 5 i 5 k), then the positional

notation for C is C(xl, ..., xk) and C(al, ..., ak) means ((xi, ai) I (1 S i I k)) E C. The

7~ dincted hyper-gnph is a generalization of a dincted graph where hyper-arcs may 'connect' any number
of nodes.

tuple (al,. . .,ak) is said to sat is- C. If there is at least one such tuple (ie. C ;c a), then C is

satrsfiable.

A useful function for describing consistency algorithms is a special case of relational
projection, denoted n, which maps a constraint C and a variable x E v(C) to a subset of
Ax. It is defined by:

For instance, given C = 'X < Y' as above, xx(C) = (1,2) and xy(C) = {2 ,3) . For any

constraint C and any variable x 6 v(C), all values a E Ax \ nx(C)9 cannot be used to

satisfy C since there are no corresponding values for v(C) \ x. Such values are

inconsistent with the constraint C and thus cannot be part of any solution to the CSP. A
hyperarc (T, 6) is arc consistent if AT = x&). Full arc consistency algorithms delete all

inconsistent values from every domain in the CSP, making all constraints arc consistent.

Partial arc consistency algorithms (Nadel, 1989) delete only some inconsistent values. A

well-designed partial arc consistency algorithm deletes most inconsistent values at less cost

than any full consistency algorithm.

The fundamental operation of most arc consistency algorithms is arc revision (Mackworth,

1977), which is implemented by a procedure R ~ v ~ s ~ (T , C) where (T, C) is a hyperarc.
Revise refines AT by deleting values which are inconsistent with C. Full arc revision is

implemented by having revise(^, C) perform the assignment AT t nT(6), making the

hyperarc (T, C) arc consistent. Partial arc revision sets AT to some superset of xT(C).

Full arc consistency algorithms, such as AC-3 (Mackworth, 1977), call Revise repeatedly

with various hyperarcs. These arc consistency algorithms terminate when there is no

hyperarc (T, C) such that Revise(T, C) can refine AT further. The HACR approach

employs a similar but partial arc consistency algorithm, also called HACR, for real number

constraints. HACR repeatedly applies a partial arc revision algorithm, called
ReviseHACR(T, C), to hyperarcs (T, C) thereby reducing AT to some near superset of

8~rojection is usually defmed to return a relation on some subset of the variables in the given relation.
Only this special case will be needed because the algorithms described in this paper manipulate relations
only by manipulating variable domains.

9The symbol T is used to denote set difference.

nT(C) which can be computed efficiently. HACR terminates when there is no hyperarc (T,

C) such that ReviseHACR(T, C) can refine AT further.

Figure 3 presents the HACR algorithm with an abstract specification of ReviseHACR. It

is essentially the same as the AC-3 algorithm (Mackworth, 1977), but it is generalized for

n-ary constraints~0. The input to HACR is a set A of hyperarcs which formulate the CSP.

The CSP contains the constraints Echidna has selected during an SLDderivation.

The subprocedure, ReviseHACRAbstract, is an abstract specification of our partial arc
revision algorithm, ReviseHACR. It specifies a partial arc revision algorithm because A,

the new domain for the target variable T, is somewhere between AT and xT(C), as

specified on line 4. A good implementation of this specification makes A as close to xT(C)

as efficiently possible. Lines 5 and 6 specify that A T is updated only if

ReviseHACRAbstract succeeds in refining it. ReviseHACRAbstract returns true if
and only if AT is refined. ReviseHACRAbstractYs implementation depends on how

domains are implemented and the class of constraints being processed.

Line 10 of HACR initializes Q to the set A of input hyperarcs. The loop from line 1 1 to

line 15 removes and revises one hyperarc from Q in each iteration, so each hyperarc is
revised at least once. If ReviseHACRAbstract(~, C) refines AT in line 13, then Q is
updated in line 14 to add just the set of hyperarcs which could be further revised. These
are of the form (T I, C') with T E v(C')\{T) and C # C'. This is because T is a source

variable of C' so the partial arc consistency of some values in AT I may have depended on

values deleted from AT. That is, xT 1 (C') may have changed since it depends on T.

Hyperarcs involving the same constraint (C = C') are not added because (T I, C) is such

that T is a source variable of the hyperarc (T, C) which was just refined. (T I, C) cannot
have become partially inconsistent because AT was refmed. Values were deleted from AT

precisely because there was no corresponding values for the source variables of (T, C).

lOThe initial step of achieving node consistency using the unary constraints has been removed, since the
remainder of the algorithm handles unary constrain~s. However, it is usually most efficient to handle unary
constraints first, so they are always inserted at the front of the queue.

10

procedure HAC R(A):

procedure ReviseHACRAbstract(~, C):
begin

let A be such that xT(C) L A s AT;
DELETE t (A c AT);
if DELETE then AT t A;

return DELETE

end;

begin
Q t A ;
while Q 7t Q) do begin

select and delete any hyperan: (T, C) from Q;
if ReviseHACRAbstract(~, C) then

Q t Q U ((T*,C')E A I T E v(C')\(T*) A C ~ C ')

end
end;

Figure 3. HACR: an arc consistency algorithm for real constraints

Unlike arc consistency algorithms like AC-3 and HAC, which are for finite discrete

domains, there is no guarantee that full arc consistency algorithms for numeric domains

terminate. This is because real domains can be refined indefinitely. Hence

ReviseHACRAbstract must be a partial arc revision algorithm. Section 3.2 describes the

built-in predicate, pre cis ion, which is used to limit domain refinement. H AC R

terminates when Q = 0, the exit condition on line 1 1. Otherwise, the loop of lines 1 1 - 1 5 is

executed. Line 12 deletes one hyperarc from Q. New hyperarcs are added to Q in line 14

after a domain is refined in line 13. At any point in an SLD-derivation, the number of

variables and constraints in the CSP is finite. Thus, the number of domains is also finite.

Since each of the domains will be refined only a finite number of times by

ReviseHACRAbstract, at some point no hyperarcs will be added to Q. Thus, Q

eventually becomes empty and HACR terminates.

The remainder of this section is organized as follows. Section 3.1 describes how domains

are represented. Section 3.2 describes how HACRYs arc revision algorithm is implemented
given the ability to compute xT(C) and section 3.3 describes how to compute xT(C) for

most constraints.

3.1 Domains

Arc consistency algorithms usually operate on finite and discrete domains. Domains are

represented extensionally as enumerated sets of possible values. These algorithms can be

very expensive when domain sizes are large. For instance, the running time of AC-3 is

proportional to the square of the domain size in the best case and the cube in the worst case
(Mackworth & Freuder, 1985). An extensional representation for real domains is

impossible. Instead, we introduce a hierarchical and intensional domain representation.

HACR is based on the hierarchical arc consistency algorithm, HAC (Mackworth et al.,

1985). HAC facilitates manipulating potentially very large discrete domains which can be

organized as taxonomies. A taxonomy structures a domain into a hierarchy of subsets

which have common properties and stand in common relations. HAC assumes that the
taxonomies are relatively balanced and structured in a way appropriate for the constraints

under consideration, and that all constraints are unary or binary. Under these assumptions,

the running time of HAC is independent of domain size in the best case and is proportional

to the logarithm of domain size in the worst case. Although HAC presumes that domains

are finite and discrete, it actually manipulates domain subsets intensionally as symbols by

precompiling predicates which test properties of these symbols. We describe this essential

capability further in section 3.2.

Please consider the example of Figure 4 taken from Mackworth et al. (1985). It shows

taxonomies for the variables G and s where DG is the set (island, mainland, lake, ocean) of

geographic systems and Ds is the set (lakeshore, coastline) of shorelines. Each taxonomy

is a rooted directed acyclic graph (DAG). Each node is associated with a domain symbol,

denoting a subset of the domain, and a mark. We distinguish between the symbol

associated with each node and the domain subset which it denotes. Henceforth, the

distinction is dropped. We will refer to a node domain symbol simply as a node domain

and manipulate it as if it were a set.

The arcs of the DAG represent proper subset relations between node domains. The root

domain is the full domain for the variable. The leaves are singleton subsets. Each child

domain is a proper subset of its parent domain. The union of the children domains are

assumed be equal to the parent domain and, for simplicity, the children domains are
assumed to be disjoint.

Each node is associated with a mark indicating the relationship between its domain and the
dynamic domain Ax for the variable x. Each sub-DAG rooted at a particular node

represents a particular subset of Ax. The mark for the root node of a sub-DAG indicates

whether the its domain is completely contained in Ax (marked '4'), completely excluded

from Ax (marked 'x'), or partially contained in Ax (marked '?'). In the last case, the part

of Ax represented by the sub-DAG rooted at the node is union of the parts rep~sented by

the sub-DAGS rooted at its children. H A C maintains the dynamic domain Ax by

manipulating these marksn.

Geographicsystem Shoreline
? ?

L m h a s s Waterbody Lakes hore Coas t h e

1 s h d Mainland Lake Ocean

Figure 4. (a) Geo-system and (b) Shore specialization hierarchies

We formalize domain taxonomies as in (Mackworth et al., 1985). Assume that the size of
each variable domain is a power of two which is structured into a complete binary tree of

height rn. That is, Dx = {ai l 1 S i 2 2") and domains in the tree for Dx are D: (0 5 k 5

m, 1 5 s I 2k) where the pair (kj) specifies the node in the tree. The integer k is the

distance from the root and the integers is the number of the node at distance k from the root
0 1 counting from the left starting at 1. The root domain, Dx , is D x . For 0 5 k c m , the

children of (k,s) are (k+1,2s-1) and (k+1,2s) with the conditions that:

lllt should be noted that Mackworth, Mulder and Havens (1985) describes HAC in a different way. This
representation makes it easier to exploit order on sets of real numbers.

These two conditions ensure respectively that the children cover their parent exhaustively

and mutually exclusively. The leaf domains are D: = {ai) (1 _< i 5 2m). Thus for Figure

D$ = Island = (island),

D: = Mainland = {mainland),

0: = ~ a k e = {lakz),

24 DG = Ocean = {ocean),

D: = Landmass,

Di2 = Waterbody, and

D: = Geographicsystem.

For a variable x, the relationship between Ax and the nodes in the tree for Dx is defined by
kr the marks Mx on nodes (k,s) for 0 5 k S m and 1 S s S 2k. .e interpretation for these

marks is

The dynamic domain, Ax, is the union of the domains of all nodes marked '4':

191 A ~ = U { D ~ I @ = ~ } .

However, some of the nodes marked '4' are redundant since all descendents of nodes
marked '4' are also marked '4' and all descendents of nodes marked 'x' are also marked

'x'. These two observations are central to the HACR method. The domain taxonomy

permits consistency algorithms to retain or eliminate whole subtrees as a unit, simply by

manipulating the marks. We introduce the following notation for non-redundant node
J J domains. A, is the smallest set of domains in the tree for Dx such that U A , = A x .

Similarly, $ is the smallest set of domains in the tree for Dx such that ~g = D \ Ax.

4 For instance, in Figure 4, Ax = {Landmass) and A: = (Coastline).

To delete inconsistent values from Ax a consistency algorithm only needs to change marks
J in subtrees rooted a nodes with domains in Ax and possibly marks on the path back to the

root. Similarly, to add values to Ax, only marks on nodes in paths from the root to and

marks on nodes in subtrees rooted at nodes with domains in $ need to be change. The

J tree itself is an efficient representation for 3, and A; because they can be generated by n

simple depth first search of the subtree with nodes marked '?'. The ReviseHAC R

algorithm described in section 3.2 makes extensive use of these properties.

We extend hierarchical domains for real intervals as follows. The domain of each node it a

taxonomy represents a real interval. Thus, instead of symbols, nodes are associated with

the lower and upper bounds of the intervals they represent. Conceptually, these trees are

infinite but they can be re resented finitely by terminating branches with nodes whose J' domains are elements of A, and 4.

For example, consider the previous Echidna program for scheduling (in Figure 2) and the

goal:

[lo] ?- s E [Of 4 1 ,

schedule ([task (O , l) , task (2 .75, I), task (Sf 0 .875) 1, task (0,4.875) 1 .

Figure 5 illustrates the scheduling problem schematically. Each solid arrow in figure 5

represents a task with the start time at the tail and the duration in the middle. Two tasks of

one time unit in duration are already placed in the super task starting at 0 with duration

4.875, and a third task starting at time s and with duration 0.875 must be scheduled. The

two dotted lines point to the arc consistent intervals for S.

Figure 5 A scheduling problem

When the CSP induced by this goal is made arc consistent, As = [l , 1.8751 u [3.75,4], as

shown by the shaded rectangles in fig-rre 5. HACR represents As using the structure

shown in figure 6. The root domain is Ds and the domains for the two children of each

node are roughly the lower and upper halves of the their parent domain. The relationship

between a parent and its two children is

where a < mid(a,b) < b. The types of interval bounds (open or closed) associated with a
and b in the children are inherited from the parent and one of the bounds associated with

mid(a,b) is open while the other is closed. There are several reasonable definitions for

mid(a,b). If an unbounded precision (eg. rational) number system is used, then the mean

((a+b)/2) or the mediant (Graham et al., 1989) can be used. If a fixed precision (eg.

floating point) number system is used, then the number nearest to the mean or the median

number in the system between x andy can be used. Cleary (1987) calls these two options
linear and exponential splitting respectively and studies their efficiency.

Echidna presently represents interval bounds using 64-bit IEEE floating point numbers and

employs linear splitting. That is, for the remainder of this thesis, we assume

Currently, all lower bounds are closed and all upper bounds are open in order that nn

interval need only be stored explicitly for the root node. The interval for any other node (k,
01 s) is calculated via irsposition in the tree. That is, if D, = [a, b), then

Figure 6. The domain representation for a real variable S

3.2 ReviseHACR

HAC and HACR are quite similar algorithms. Internally, their respective arc revision

procedures, ReviseHAC and ReviseHACR are also similar. ReviseH AC relies an

precompiled extensional constraints. It can be generalized for constraints on any number of

variables, but for simplicity we describe it only for binary constraints. Assume that there is

a single source variable s for all hyperarcs (T, C). Constraints are compiled into predicates

which can be used to update the marks in the domain taxonomies using only the symbols

which label their nodes. These predicates test if all or some value(s) in a subset D," of DT

are consistent with some value in a subset D: of Ds. Conceptually, both ReviseHAC(~,

C) and ReviseHAcR(~, C) perform the assignment of a new mark @ to one of its three

possible values according to:

M:t{?
if D: CJ nT(C) and D: n n,(C) # 0

for each subset l$ of DT. If all values in @ are consistent with some value in some D:

J ks
E AS, then MT remains 'd'. Otherwise if some values are consistent with some value in

considered12. Otherwise none of the values are consistent so M? is set to 'x'. By

4 repeating this procedure for every node in A,, the new domain AT is constructed according

to the assignment AT t zT(C). Mackwmh et al. (1985) show that ReviseHAC is a full

arc revision algorithm.

For our algorithm, ReviseHACR, domains are infinite non-discrete sets, so precompiling

predicates is impossible. Instead ReviseHAcR(~, C) computes nT(C) by generating a

set of intervals whose union is n,(C)'3. The intervals are generated one at a time and the

new AT is accmulated from them. In our development, let C be an n-ary constraint and
d v(C) = (S1, ..., Sn = T). Iterating through AT and searching for tuples

ks 4 J
%&ice h t fa. DT E AT, changing $ from 'd* to '?' implicitly removes DF from A, and adds its

I 3 ~ u 3 l l y , when floating piat numbers are asxi, the generated set of intervals may be a superset of A&)

because rhe floating point approximations of the bounds of some intervals may necessarily be rounded
m r d y .

which are consistent with C will be very inefficient as n increases. Instead, ReviseHACR

updates AT by computing nT(C) from (A ~ il !, . . . , A 1.
n- 1

ReviseHACR would also be a full arc revision algorithm if the marks could be set exactly

as specified in formula 1141 above. However, for some CSPs it is possible that an
unbounded amount of refinement will be required. This is not a problem with

ReviseH AC because it manipulates finite domains structured as finite taxonomies. Thus

ReviseHAC is guaranteed to terminate. For infinite real taxonomies, a full arc revision

algorithm would not be expected to terminate. To avoid this eventuality, HACR attaches a
positive integerprecision P to each variable x in the list Vars using the built-in predicate,

p rec i s ion (Vars, P) . P is the maximum distance from the root to any node in the

taxonomy for Ax When ReviseHACR determines that D; should refined, that is M!

should be set to '?' and its children analyzed, if the node (k, s) is at the precision limit (k =

P) then MF is left '4'. For this reason, ReviseHACR is only a partial arc revision

algorithm but it can approximate a full arc revision algorithm by increasing the precision of

variables as necessary.14

We return to this issue of computing the new domain A for AT such that:

W e implement this specification by computing the set A which is as close to nT(C) as

possible given the current precision of T. This is done using a set of additional

"temporary" marks associated with the nodes of the taxonomy for DT:

These temporary marks represent A in the same way that the set (M:) represents AT.

That is:

1 4 ~ o n can be increased dining execution mder program control.

19

J We define AJ as the smallest subset of {$ I TM: = 4) such that A = U A . Likewise,

AX is the smallest subset of {DF I TM: = x} such that DTU = WAX.

The full procedure ReviseHACR is shown in Figure 7. Its principle subprocedure is

Mark~ernp(~;', I) which adds an approximation of the interval I to A by searching

01 through the taxonomy of the variable T starting at the root interval D, . That is, given A =

S, Mark~ernp(D~', I) updates A so A = S v approx(1, T) where approx(1, T) is the

smallest superset of I which can be represented in the taxonomy for T. at its current
precision PT.' Fonnally, approx(1, T) is the union of the results of intersecting I with all the

intervals at nodes on level PT in the taxonomy for T. That is,

We generalize approx to apply to a finite union of intervals as follows:

Section 4.3 shows how to compute a set (I1,. . .,In} of intervals whose union is xT(C), SO

we use approx(n,(C), T) to mean approx((l1,. . .A}, T) for such an appropriate set of

intervals. The approximation of rc,(C) is accumulated in A by repeatedly calling

MarkTe mp with Ii for 1 < i 5 n. MarkTemp does not require that the set of intervals is

disjoint.

procedure ReviseHACR(T, C):

begin (AT = s)
01 TMT t x; (A = 0)

let (11,. ..Jn) be any set of intervals such that u (Il,. . .In} = xT(C);
0 1 for i c 1 to n do MarkTernp(D, , li); (A = a p p r ~ x (~ ~ (C) , T) 1

ks k s k s Less t (D , I T M , c M ,); (* x < ? c d *)

k s k s ks. for DT E L e s s do M , t T M , , (A , = S n A]

return Less # 0

end;

ks
procedure MarkTernp(DT , I):

begin
ks i f (@ = x) v (T ~ = ~) v (I ~ D , = ~) then return

else begin (1 n ~ : f O A D ? & I)

i f T M ~ = x then begin

end;
(k+ I)@- 1)

MarkTemp(D, , I) ; MarkTernp(DT ,o; (k+1)2r

end

end;

Figure 7 ReviseHACR: a revision algorithm for hierarchical numeric domains

The ReviseHACR algorithm operates as follows. In line 3, the root temporary mark

T@ is set to 'x' effectively making A empty. Care is taken (later in the specification of

MarkTernp) to mark children of nodes with intervals in AX as 'x' if they are ever

accessed In lines 4-5, the algorithm sets A to approx(n,(C), T) using MarkTemp, as

discussed above. In line 6, the set of marks, Less, are collected which need to changed in
updating A, to be the intersection of its old value and A. In line 7, A, is updated

appropriately. Less is the set of node domains with fewer values in the new value for A,.

A node domain has fewer values if its mark is changed to a smaller value according to the
order x < ? < 4. The operation specified by lines 6 7 can be implemented by a constrained

depth fast search of the taxonomy for T which has a form similar to MarkTernp, which is
described next. Since Less is empty if and only if the A, is not changed, ReviseHACR

returns m e at line 8 if and only if some inconsistent values are deleted from A,.

The subprocedure, ~ a r k ~ e r n ~ (~ F , I), is now described in more detail. The algorithm

considers three cases (in lines 12, 13 and 14 respectively). In the first case, it returns

without changing any temporary marks (in line 12) if any of the following conditions are
ks ks true. 1f M: = x, then D, n AT = 0 meaning that D, has already been removed from AT.

If TM: = 4, then D: G A meaning that an interval covering D: has already been

generated. If I n @ = 0 then the 1 misses D$ and the subtree rooted at (k, s) can be left

as is.

b ks Otherwise, in the second case (in line 13), if D, I (indicating that I covers D,) or k =

PT (indicating that the precision limit of T has been reached), then D: is added to A by

assigning TM: = 4. At the precision limit, some values outside I may be added to A, but

only ones which require greater precision to eliminate. Note that I n D: = 0 and D: E I

can be tested efficiently by comparing appropriate bounds.

Otherwise, in the third case (starting at line 14), since the branches at lines 12 and 13 were

not taken, I n D: + 0 and l)! d I. Thus, TM? should be set to '?' and its children

should be analyzed. Lines 15-17 ensure that MarkTemp is never called recursively with

children of nodes temporarily marked 'x'. If T@ = x at line 15 the children have never

be accessed. This is because the root temporary mark is set to 'x' in line 3 and line 16 sets

the temporary mark of the current node to '?' before the recursive calls with the c hilciren.
Lines 17 and 18 set the temporary marks of the children to 'x' before the recursive calls on

line 20, which mark the approximation of I in the subtrees rooted at the two children of

D:. If k+l is the precision limit and the point on the boundary between the two children is

in I, the two recursive calls mark both children '4'. This violates the interpretation of

marks. It is fixed by line 21, if necessary.

Now that we have described ReviseHACR fully, we can formally state what the HACR

algorithm of figure 3 does. We say that a hyperarc (T, C) is approximately arc consistent if
AT = approx(nT(C), T) and that a CSi? is approximately arc consistent if every hyperarc in

its hypergraph representation is approximately arc consistent. Upon the termination of
HACR, the CSP represented by its input, A, is approximately arc consistent. It is in

exactly this sense that HACR is a partial arc consistency algorithm.

3.3 Computing Projections

Let C be an equality or inequality with v(C) = (s 1, ..., sn-l , sn = T) . Computing

projections is facilitated by transforming the formula for C into an equivalent formula for

the constraint iso(T, C) which isolates the variable T. Thus, C and ~SO(T, C) contain the

same set of mappings. For instance, iso(x, X Y=Z) = 'x=z+Y'. The constraint iso(T, C)
is of the form 'T r E' where r E (=, <, I, >, 2), E is a numeric expression, and T P v(E)
= (~ 1 , . . ., Sn-1). It is convenient to usefE:Aslx.. .xAsn-* -+ R to denote the function of

(Sl, . . ., Sn-1) defined by E. The range of & is

The projection xT(C) can now be computed from the variable T and the numeric expression

E. Given the ability to isolate variables, Sections 3.3.1 and 3.3.2 describe the computation

of projections of equalities and inequalities, respectively. Section 3.3.3 uses the results for

inequalities to compute projections for disjunctive inequalities. But first, two restrictions

are made on domains and constraints to shorten this presentation and to reduce the

complexity of HACR. They are as follows:

1 . All intervals in domain taxonomies are of the form [xi, x2] where both the

lower and upper bounds are closed and all inequalities are the nonstrict type (ie-

< and 2).

2. All equalities contain at most one function symbol and all inequalities contain no

function symbols. Consequently, constraints are of the form 'A 1 =A2',
'AISA2', 'A1+A2=A3', 'A1 . A2=A3', 'A1*2=A3', 'sin(A1) =A2', 'A1<A2 v

A12A3', et cetera where A l , A2, and A3 are either real variables or real
constants.

Cleary (1987) describes some of these issues involved in removing the f ~ s t restriction.

The second restriction makes computing ~SO(T, C) mvial for constraints involving only

invertible functions. A full presentation of how to compute projections of constraints

involving more functions with open and closed intervals is in preparation (Sidebottom,
1991). We consider here only computing q (C) for an arbitrary constraint C subject to

these two restrictions.

HACR satisfies restriction 2 by introducing intermediate variables to decompose complex

constraints into an equivalent simpler set. For instance, the o n ~ i r cle / 2 predicate of [I]

is transformed to:

where Ti are new intermediate variables (1 I i I 5). The domain DTi of intermediate

variable Ti in a constraint Ti = E is [min range&), max range&)]. All subexpressions

of real constraints are decomposed in this same way. The domains of intermediate

variables can be calculated efficiently because& is either: 1) a constant; 2) a variable; or 3)
a numeric function applied to variables and constants. In the first case,& = a where a is a

14 constant and:

[211 min rangee) = mcu: range&) = a.

In the second case, ~ E (x) = x giving min range&) = min Ax and max range&) = mas

Ax. We order the children of each node in the taxonomy with the domains containing

smaller values to the left and the domains containing larger values to the right.
.I Consequently, min Ax and mar Ax are in the leftmost and rightmost domains in A, ,

respectively:

k s J FS' J
[23] rnaxAx=a2where [al,a2] =Dx E Axis such t h a t s = m (s t l Dx E A x) .

The leftmost node domain in [22] can be found by following the path of left descendents

from the mot node until a node not marked '?' is found. If the node is marked '4' then its

lower bound is min Ax. Otherwise, the lower bound of its sibling is min Ax. Similarly,

max Ax can be found by following the path of right descendents from the root,

In the last case, E involves a numeric function. The bounds, min range&) and mux

range(f~), can be calculated from the respective minima and maxima of the function

arguments by analyzing the monotonicity and continuity properties of the function (Bundy,

1984; Ratschek & Rokne, 1984). This analysis is applied in HACR for the arithmetic,

exponential, logarithmic, root extraction, and tigonometic functions.

3.3.1 Equalities

Let C be an equality with v(C) = (~ 1 , . . ., s,-1, Sn = T). By restriction 2, we can assume

that n is 0, 1,2, or 3. When n = 0, there are no projections to compute. For n > 0, iso(T,

C) = 'T = E' and the projection nT(C) = range&). If n = 1 then E is the constant a and

range&) = {a). Otherwise,

where applying& to the intervals (D:?',. . .,Dkn-lsn-l) is defined by
Sn-1

The Region Splitting theorem of Bundy (1984) ensures the correctness of this approach for
computing nT(C). Bundy gives a general theory of functions applied to intervals whereas

Alefeld and Henberger (1983) give some specific results for the arithmetic functions. The

following formulas from Alefeld and Henberger specify the four arithmetic operations on

intervals:

We necessarily complicate [29] by considering divisors which include zero in their

domains. In this case, the quotient is the union of two disjoint intervals. For instance,

This is accommodated by splitting the denominator at zero:

and appealing to the Region Splitting theorem which yields:

These two disjoint expressions can then be evaluated using [32] by replacing forms such as

1 4 by the limit as the denominator approaches zero from within its interval. For example,
[1,1] + [-2,0] = [1+(&), l+-21 where I+(&) = --, the limit of 'l+x' as x approaches zero

from below. Likewise, the exponential, logarithmic, root extraction, and trigonometric

functions can be handled similarly by analyzing periodicity and monotonicity properties and

by taking limits at points of discontinuity.

The number of functions of the f o n n f ~ (~ " ~ ' , . . .,D
s 1

'"-'"-') evaluated in I241 above can be
Sn-1

J reduced by combining adjacent intervals in A . (1 5 i < n). For instance, in the scheduling
s1

example of Figure 6, A: = ([1,1.5), [1.5,1.75), [1.75,1.875), [3.75,4)) but after

combininr adjacent intervals, only the set {[1,1.875), [3.75,4)) need be considered to
calculate nT(C) where C is an equality with S E v(C). The complexity of computing

xT(C) is another reason for decomposing equalities as described above. Even after
J 4 adjacent intervals are combined, !As x . . . x A I increases rapidly with n.. After

sn-1

constraints are decomposed, C is transformed into a set of constraints with arity not greater
J than three. The size of each A . is further limited by the setting of the precision for each
s1

variable (as previously described).

3.3.2 Inequalities

For inequalities of the form iso(T, C) = 'T 5 E', the projection nT(C) should rnnge

between rnin AT and the max range&). Precisely stated,

[331 7cT-C) = [min AT, max range&)].

Similarly, if iso(T, C) = 'T 2 E' then

[341 KT(C) = [min range&), max AT].

Since f~ is a constant or a variable by restriction 2, min Ax, max Ax, min range(&), and

rnax range&) can be calculated using [21-231 above.

3.3.3 Disjunctive Inequalities

If C is a disjunctive inequality of the form C1 v C2 then the projection nT(C) depends on

whether T appears in one or both of v(C1) and v(C2). If both T E v(C1) and T E v(C2)

then values which satisfy either disjunct can be used to satisfy the whole constraint. The

projection is:

For the other case, T only appears in one expression. Assume without loss of generality
that T E v(C1) and T e v(C2). Then nT(C) depends on the satisfiability of C2. If C2 =

'El I E2' then can be efficiently tested for satisfiability given min range&l) and m m

range&) which in turn can be computed using [21-231. C2 is satisfiable if and only if

1361 min rangeVi2) 5 mar range(@.

When El is the variable x and E2 is the variable Y, ((x, rnin Ax), (Y, m u A*)) E C2 SO

1361 is sufficient for the satisfiability of C2. [36] is also necessary because if C2 is
satisfiable then for some a E Ax and b E Ay, {(X, a), (Y, a) j E C2. This implies a S b

and since a 2 min Ax and b 5 max AY, 1361 is true. The proofs when E l or E2 are

constants is simpler. Similarly, if C2 = 'El 2 E2' then C2 satisfiable if and only if

[371 mar 2 min range(f~~).

Lf C2 is satisfiable, then there exists p' E C2 which can be extended arbitrarily to a

mapping p E C. Specifically, if v(C i)\v(C2) = (XI, . . . ,Xm) and (a 1,. . . ,a,) E

AXIx ... xAXm then p = p' u ((xl,al),.. .,(xm,am)) E C. Since T E v(CI)\v(C2), xT(C) =

AT if C2 is satisfiable. If C2 is unsatisfiable, then all p E C, when restricted to v(C1),

must satisfy C1. Thus, xT(C) = xT(C1).

TO summarize,

i nT(C1)~~T(C2) if TE v(C 1) h TE v(C2)
1381 ~ T (C 1vC2) = AT if TE v(C1) A TP v(C2) A C2 is satisfiable

n ~ (c 1) if TE v(C1) A TP v(C2) A C2 is unsatisfiable.

4. Examples and Comparisons

This section provides some comparisons of Echidna's real number capabilities with other

major CLP systems. The examples were run using Echidna version 1.0 on a Sun UNIX

Sparcstation 1.

Each derivation of a query in Echidna induces a CSP which consists of the set of

constraints selected (ie. called) at some step in the derivation. CLP languages with
complete CSP solvers can answer queries exactly in terms of variable bindings for

solutions to the CSP. Since Echidna's numeric constraint solving system is a partial

solution to the CSP, it outputs approximate answers by binding variables to their domains

in the induced CSP after it has been rcacie approximately arc consistent. As dicussed

earlier, calls to s p l i t are used to further refine domains by analyzing different cases. Let

C be a CSP induced by a query and let (XI,. . .,x,) be the set of variables which have

appeared in a call to s p l i t . Then Echidna ouputs one answer for each way C can have
the domain of Xi replaced by some interval on a node at level Px in the domain taxonomy

for Xi (1 I i < m) and then made approximately arc consi~tent~~.

4.1 Polynomials and Precision

For simplicity, only a quadratic polynomial in factored form is used in this section. The

form of the polynomial affects the efficiency of the solution (Cleary, 1987). Consider the

following query.

1391 ?- x E [-1000, looo),

p r e c i s i o n ([XI, 8),
(X - 1)-(X - 2) = 0,

s p l i t ([XI) .

Echidna generates numerical solutions to polynomial equations with varying precision

using the built-in predicate prec is ion. We employ the call prec is ion ([XI , 8) to

initially limit the precision of the variable x to 8-bits. Thus, the taxonomy for X will not be

refined beyond the eight level. The call s p l i t ([X I) is used to invoke a case analysis

search for solutions for X. For this query, Echidna computes the following answer

(containing the two solutions, x = 1 and x = 2):

x E [O, 7.8125) I

no.

More precise approximations of the solution can be obtained by computing answers with

smaller domains. This can be achieved by increasing the precision of X. For instance, if

the precision is set to 16, the following answers are computed:

X E [0.9765625, 1.00708) ;
X E r1.983643, 2.01416) ;

no.

15~ecause of the propagation floating point precision errors, it is possible for Echidna's current
implementation to ouput answers which are not from partially arc consistent CSPs.

29

As the precision is further increased, more false answers are excluded. Setting the

precision to 32 produces the following approximate solutions:

X E [0.9999997, 1.0000002) ; % solution here
X E [1.9999998, 2.0000003) ; % solution here
no.

Systems like CLP(W) (Jaffar & Michaylov, 1987), Prolog-III (Colmerauer, 1990), and
CAL (Aiba et al., 1988) are based on symbolic manipulation of constraints. Their

solutions consists of a set of constraints in some solved fonn. Since CLP(R) and Prolog-

III can solve only linear constraints, they cannot solve the above query. CAL is powerful

enough to find the two solutions, however.

For real number constraint processing, Echidna is most similar to BNR Prolog (Older &

Vellino, 1990). They both use arc consistency algorithms to remove values from the

dynamic domains of variables. Both languages can solve polynomials numerically to

reasonable accuracy efficiently. BNR Prolog provides primitives for programming case

analysis algorithms, like s p l i t , which compute solutions to varying accuracy, but it has

no programmable control over the accuracy of its consistency algorithms. The Echidna

predicate, precision, provides control over this facet of the computation.

4.2 Geometry

The query [2] in section 2.1, which uses the onc irc le predicate defined by [I], can be

augmented with precision and case analysis calls. The resulting query is:

[40] 2- precision ([A, B, R] , 16) ,
A E [-100,1001,
B E [-100,1001,
R E [-100,1001,

C = c(p(A,B),R)r
onCircle(p(O,l), C),
onCircle(p(l,O), C),
oncircle (p (-l,0), C)
split ([A, B, RI 1 .

Echidna finds the following answer which closely approximates the correct solution:

Again, neither CLP(R) nor Prolog-III can solve this query because they only process linear

constraints while CAL can solve this query exactly. BNR Prolog, like Echidna, has the

capability to solve this quay numerically.

4.3 Linear Equations

Specialized linear constraint solving algorithms of CLP(R) and hlog-III are superior to

both Echidna and BNR Prolog for linear constraints. Echidna, like BNR Prolog, can solve

linear systems like:

[41] ?- p r e c i s i o n (Ex, Y, 21, 1 6)

x E [-1000, 10001 ,
Y E [-1000, 10001 ,
Z E [-1000, 10001 ,

X + 2 - Y + z = 4,
3 - x i - Y + 5 * z = 9,
7 - x + 4 - Y + 8 - 2 = 16 ,
s p l i t ([X, Y, Z l) .

However, the time required increases exponentially with the number of variables and

equations in the CSP (Cleary, 1986).

4.4 Scheduling

Given the scheduling program introduced earlier in Figure 2, consider the query:

[42] ?- p r e c i s i o n ([S l , S21, 3) ,
S1 E [Of 41,
5 2 E [Or 41,
schedule ([t a s k (S l , 2) , t a s k (S2, 1 . 5) 1 , t a s k (0, 4) .

Echidna returns the single answer:

It is interesting to note that the query contains no call to the sp 1 it case analysis predicate.

In this case, HACR's consistency algorithms alone remove enough inconsistent values to

split the domains into two disjoint intervals. In systems such as BNR Prolog, Prolog 111

and CLP(R), the disjunctive inequality in the noover lap predicate of Figure 2 has to be

expressed using nondeterminism in the program. For instance, it can be expressed as:

using the disjunction connective (;) of Edinburgh syntax Prolog. When this disjunctive

constraint is used, the solutions to queries like [42] above are not contained in a single

answer, but are distributed over several answers.

ConcIusions and Future Work

This thesis has described how the HACR approach real number constraint processing is

implemented in the Echidna CLP language. HACR supports domain constraints,

equalities, inequalities, and disjunctions of inequalities on real number expressions

involving arithmetic, exponential, and trigonometric functions. The set of numeric

constraints supported by HACR is richer than for the other numeric constraint processing

techniques cited.

HACR's novel use of hierarchical domains and a hierarchical arc consistency algorithm

makes it possible to process constraints with varying accuracy and to represent variable

domains which are the union of disjoint sets of intervals. This thesis gave a formal

description of the HACR algorithm which included details about how to revise and project

constraints on variables with hierarchically structured precision bounded real numeric

domains. Examples were give to show 1) that HACR can be used to compute answers to

varying precision under program control, 2) HACR can numerically solve some constraints

which other CLP systems cannot, 3) HACR is not as efficient as other systems for simple

linear constraints, and 4) HACR can process certain disjunctive constraints without

=sorting to case analysis algorithms.

There arr= at least two areas where HACR can be improved. First, consistency algorithms

cannot compete with specialized symbolic constraint solving algorithms in their domain of

application. Second, consistency algorithms combined with general case analysis

algorithms are often insufficient to efficiently solve large complex problems.

We discuss two steps towards solving the fim problem. A first step is to avoid breaking

&wn constraints with temporary variables, wherever reasonable- In particular, with linear

constraints, variables can be isolated and ranges of expressions can be computed quite

easily- A second step stems from the observation that HACR's consistency algorithms

never consider more than one constraint at a time. But symbolic linear constraint solving

algorithms used in CLP are efficient because they combine constraints to eliminate

variables. Consequently, it would be useful to find a way to integrate some symbolic

constraint solving with consistency algorithms, gaining tFrz advantages of both approaches.

The second problem can be addressed with more programmable ways of implementing case

analysis algorithms in a control meta-language. We propose a control language inspired by

the when declarations in NU-Prolog (Thorn and Zobel, 1986), which are a generalization

of the delay declarations of MU-Prolog (Naish, 1985). We specify just enough of this

proposal to write a control procedure which achieves an effect similar to tfe use of s p l i t

and p r e c i s ion as they were used in section 4. The control meta language makes i t

possible to program case analysis algorithms directly. BNR Prolog has similar

functionality, but there is no separate control program.

Instead of placing calls to control primitives such as s p l i t and precision in the logic

of the program, the programmer uses control declarations to specify the case analysis

algorithm to be used when solving goals involving numeric constraints. Control programs,

like logic programs, are specified oy sets of clauses, except instead of using the : - symbol

to separate the head from the body, the symbol control is used. Also, control prograrns

must not contain numeric constraints, For instance,

o n c i r c l e (-, c (p (A, B) , R) c o n t r o l

b r e a d t h F i r s t ([A, B, R] , 16) .

def~nes a control procedure for the oncircle predicate given in [I] in terms of the control

procedure breadt hF i r st. As we will see, the control procedure

breadthFirst (Vars, P) ,

hasthesameeffectasaddingthecallsprecision(Vars, P) and s p l i t (Vars) toa

query.

Logic programs and control programs are separate; they may not call each other. The

control procedures associated with predicates are executed afrer a top level query succeeds

but before the answer to the query is output. If no control procedure is specified for a goal

involving variables in real constraints, a default procedure is used. A reasonable default

procedure is s p l i t (vars) , where vars is a list of the domain variables occurring in the

call to the predicate.

Conno1 programs are executed according to the procedural interpretation of Prolog

programs, by selecting clauses in the order in which they appear in the program and goals

from left to right. Control programs may also use the or connective (;), the if-then (->)

connective, and arithmetic predicates (i s , = : =, <, I, etc.) to evaluate arithmetic

expressions as in Prolog.

Control programs should minimally have access to one evaluable function and two built-in

control predicates which control different aspects of the search. The function call

precis ion (x) retums the current precision of x. This function can be evaluated with

the usual predicates (is , = : =, <, I, etc.). The control predicate s e t Precis i o n (x,
P) sets the precision of x to the result of evaluating P, which is normally a function of

precis i o n (X) . The control predicate case (X) removes approximately half of the

values in the domain of x and introduces a choice point. Upon backtracking, it restores the

deleted half and removes the other half.

The control program shown in figure 8 defines a control program using the primitives

described above. Breadt hF i r s t (Xs , P) iteratively increases precision and splits the

domain of each variable in the Iist in a round-robin fashion until all domains are refined to

precision P.

s p l i t (X s , P) c o n t r o l
(

atLimit(Xs, P) -> t r u e

r e f i n e (X s , P) , s p l i t (X s , P)
1 .

a t l i m i t ([I , -) c o n t r o l t r u e .
a tL imi t ([X I Xsl, P) c o n t r o l

p rec i s ion(X) =:= P,

a tL imi t (X s) .

r e f i n e ([I , -1 c o n t r o l t r u e .
r e f i n e ([X I Xsl, P) con t ro l

(

prec i s ion(X) < P ->
s e t p r e c i s i o n (X, prec i s ion (XI + 1) , case (X I

1 ,
r e f i n e (X s , P) .

Figure 8. A control program

This proposal could be further elaborated to include primitives which allow control

programs to analyze the structure of domains, specify both the number system and the

definition of mid(x,y)l6, and symbolically manipulate constraints. With such a powerful

control language, it would be possible write a declarative specification of the problem to be

solved and then fine tune problem and data specific numerical analysis and symbolic

constraint solving algorithms independent of this specification.

References
Aiba, A., Sakai, K., Sato, Y. and Hawley, D. J. 1988. Constraint Logic Programming

Language CAL. In Proc. The International Conference on Fifth Generation Systems.
Ohrnsha Publishers. Tokyo. 263-276.

Alefeld, G. and Herzberger, J. 1983. Introduction to Interval Computations. Academic
Press, Toronto. 333 pages.

Allen, J. F. 1983. Maintaining Knowledge About Temporal Intervals. Communications of
the ACM. 26 (1 1).

Buchberger, B. 1985. Grobner Bases: An Algorithmic Method in Polynomial Ideal
Theory. In Multidimentional Systems Theory, Bose, N. K. (ed.).

Bundy, A. 1984. A Generalized Interval Package and Its Use for Semantic Checking.
ACM Transactions on Mathematical Systems. 10 (4). 397-409.

Cleary, J. G. 1987. Logical Arithmetic. Future Computing Systems. 2 (2). 125-149.

Colmerauer, A. 1990. An Introduction to Prolog 111. Communicat-ions of the ACM. 33 (7).
69-90.

Davis, E. 1987. Constraint Propagation with Interval Labels. Artificial Intelligence. 32.
281-331.

Graham, R. L., Knuth, D. E. and Patashnik, 0. 1989. Concrete Mathematics. Addison-
Wesley, Don Mills, ON.

Havens, W. S. 1991. Dataflow Dependency Backtracking in a New CLP Language. In
Proc. AAAI Spring Symposium on Constraint-Based Reasoning. Stanford. 1 10-1 27.

Havens, W. S., Sidebottom, S., Sidebottom, G., Jones, J., Cupeman, M. and Davison,
R. 1990. Echidna Constraint Reasoning System: Next-generation Expert System
Technology. Technical Report CSS-IS TR 90-09. The Expert Systems Laboratory, The
Centre for Systems Science.

16~ifferent number systems and definitions of mid were discussed in section 3.1 near formula [l 11.

Hyvthen, E. 1989. Constraint Reasoning Base on Interval Arithmetic. In Proc. Eleventh
International Joint Conference on Artificial Intelligence, Sridharan, N. S. (ed.).
Morgan Kaufmann. Detroit, MI. 1 193- 1 198.

Jaffar, J. and Lassez, J.-L. 1987. Constraint Logic Programming. In Proc. Fourteenth
ACM POPL Conf. Munich.

Jaffar, J. and Michaylov, S. 1987. Methodology and Implementation of a CLP System. In
P m . Fourth International Conference on Logic Programming. Melbourne, Australia.

Lloyd, J. W. 1984. Foundations of Logic Programming. Springer-Verlag, New York.
124 pages.

Mackworth, A. K. 1977. Consistency in Networks of Relations. Artificial Intelligence. 8.
99-1 18.

Mackworth, A. K. and Freuder, E. C. 1985. The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems. Artificial
Intelligence. 25.65-74.

Mackworth, A. K., Mulder, J. A. and Havens, W. S. 1985. Hierarchical arc consistency:
exploiting structured domains in constraint satisfaction problems. Computational
Intelligence. 1. 118- 126.

Nadel, B. A. 1989. Constraint Satisfaction Algorithms. Computational Intelligence. 5.
188-224.

Naish, L. 1985. Negation and Control in Prolog. In Lecture Notes in Computer Science
238, Goos, G. and Hartmanis, J. (ed.).

Older, W. and Vellino, A. 1990. Extending Prolog with Constraint Arithmetic on Real
Intervals. In Proc. The Eight Biennial Conference of the Canadian Society for
Computational Studies of Intelligence. Ottawa

Ratschek, H. and Rokne, J. 1984. Computer Methods for the Range of Functions. John
Wiley & Sons, Toronto.

Sidebottom, G. 1991. Projection of Numeric Constraints with Interval Domains. In
Preparation.

Sterling, L. and Shapiro, E. 1986. The Art of Prolog: Advance Programming Techniques.
MIT Press, Cambridge, MA.

Thorn, J. A. and Zobel, J. 1986. NU-Prolog Reference Manual. Technical Report.
University of Melbourne, k p t of Computer Science.

Ullman, J. D. 1988. Principles of Database and Knowledge-base Systems. Computer
Science Press, Rockville, MD.

Van Hentenryck, P. 1989. Constraint Satisfaction in Logic Programming. The MIT Press,
Cambridge, MA.

