
A CUSTOM VLSI ARCHITECTURE
FOR IMPLEMENTING LOW-DELAY

ANALY SIS-BY-SYNTHESIS
SPEECH CODING ALGORITHMS

Peter Dean Schuler
B.A.Sc., Simon Fraser University, 1989

A THESIS SUBMlTT'ED IN PARTIAL FULFlLLMENT

OF THE REQUIREMENlS mR THE DEGREE OF

MA!TI'ER OF APPLIED SCIENCE

in the School

of

Engineering Science

O Peter Dean Schuler 1991

SIMON FRASER UNIVERSITY

June 199 1

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Peter Dean Schuler

Degree: Master of Applied Science

Title of Thesis: A Custom VLSI Architecture for Implementing Low-Delay
Analysis-by-Synthesis Speech Coding Algorithms

Examining Committee: Dr. John D. Jones
Associate Professor
School of Engineering Science
Chair

Dr. vlkirnir &mman
Professor
School of Engineering Science

Date Approved:

Dr. d. H. stephen Hardy
Professor
School of Engineering Science

lh. Paul K. M. Ho
Assistant Professor
School of Engineering Science

-"

James K. Cavers

School of Engineering Science

June 21, 1991

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs l t y the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Unlversf t y L l brary, and t o make p a r t i a l o r

s i ng le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r other educational I n s t i t u t i o n , on

i t s own behalf o r f o r one of i t s users. I f u r t he r agree t h a t permission

f o r mu l t i p l e copying of t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean of Graduate Studies. I t i s understood t h a t copying

o r publication o f t h i s work f o r f lnanc ia i gain sha l l not be allowed

wi thout my w r i t t en permission.

T i t l e of Thes i s/Project/Extended Essay

" A Custom VLSI Architecture for Implementing Low-Delay Analysis-by-

Synthesis Speech Coding Algorithms"

Author:

(signature)

Peter D. Schuler

June 25, 1991

(date)

Abstract

In the past, digital signal processing (DSP) algorithms have typically been

implemented on general-purpose DSP chips. However, the high complexities of modem

algorithms are pushing the capabilities of these chips to their limits. An alternative solution

is to design a custom VLSI architecture which exploits the structure of a specific algorithm.

This thesis presents a custom VLSI architecture for implementing low-delay

analysis-by-synthesis speech coding algorithms more efficiently than general-purpose DSP

chips. The criteria used to compare the efficiency of different architectures are the

performance characteristics of execution speed and memory requirements, and the physical

properties of die size and power consumption. The architecture is based on a detailed

analysis of two speech coding algorithms: Low-Delay Code-Excited Linear Prediction,

which will be the new CCI'IT standard for 16 kbitls speech coding, and Lattice Low-Delay

Vector Excitation Coding. The required operations for these algorithms were determined

and the architecture was designed to implement these operations efficiently.

The custom VLSI architecture consists of two types of arithmetic units: a variable

number of Adaptive Arithmetic Units (AAUs) connected in parallel, and one Distortion

Arithmetic Unit (DAU). Each AAU contains an adaptive datapath to perform various

operations, such as filtering and inner product calculations, on one element (sample) of

data. The DAU computes the distortion measure required for a vector quantization

codebook search and determines the minimum distortion value. The number of AAUs is

optimized for power consumption and chip area. My research shows that an efficient

configuration for implementing the Lattice Low-Delay Vector Excitation Coding algorithm

consists of 4 AAUs. This configuration implements the algorithm with an estimated power

consumption of less than 300 mW at a clock rate of 2 MHz, and an area of 90 mm2; a

corresponding implementation on a general-purpose DSP chip such as the DSP32C would

require approximately 1 W of power while operating at a clock rate of 50 MHz.

Acknowledgements

I wish to thank Dr. Cupeman and Dr. Hardy for allowing me the opportunity to

work on this project, and for their guidance throughout my work on the thesis.

Many thanks also to MPR Teltech for the use of their Computer-Aided Design

tools, and specifically to Mr. Tino Varelas, Mr. Graham Smith, and Mr. Greg Aasen for

their assistance.

This work was supported by the Science Council of British Columbia and by the

Natural Sciences and Engineering Research Council of Canada.

Table of Contents

Approval .. l
... ... Abstract iii

... Acknowledgements iv

.. List of Tables vii
... ... List of Figures viii

... 1 . An Introduction to VLSI Signal Processing 1

1 . 1 The Need for Custom VLSI Architectures 1

... 1 . 2 A Proposed Custom Architecture 2

.. 1.3 A Guide to the Thesis 3

... 2 . The Speech Coding Algorithms 4

2.1 Techniques of Speech Coding ... 4
.. 2.2 The 16 kbit/s LLD-VXC Algorithm 7

... 2.3 The 16 kbit/s LD-CELP Algorithm 9

2.4 The 8 kbitls VSELP Algorithm .. 12
... 3 . Mapping the Algorithms onto Hardware 16

... 3.1 The Filtering Operations 16
.. 3.2 The Codebook Search Operations 21

.. 3.3 Implementing the Operations 22
... 4 . An Adaptive VLSI Architecture 24

... 4.1 The Adaptive Arithmetic Unit 24

.. 4.2 The Distortion Arithmetic Unit 26

... 4.3 Connection of the Arithmetic Units 28

... 4.4 Memory -29
.. 5 . The Control System 31

... 5.1 The Program ROM 31

5.2 The Instruction Set .. 32

5.3 Hardware Support for Flow Control ... 34

... 5.4 Clock Rate Constraints 35

.. 6 . Implementation of the Algorithm 36

.. 6.1 Memory Requirements for the Algorithm 36

... 6.2 Program Requirements 37

... 6.3 Timing Considerations 38

7 . The Performance of the Architecture ... 40
7.1 Layout of the Architecture ... 40
7.2 Analysis of the Results ... 45

8 . The Suitability of the Architecture for Other Algorithms 47
8.1 Implementation of LD-CELP .. 47
8.2 Implementation of VSELP ... 47
8.3 Implementation of the Fast Fourier Transform 48

9 . Conclusions ... 50

10 . Future Directions ... 51

References .. 53

List of Tables

Table l.-C omplexity Analysis of LLD-VXC ... 9

Table 2 . 4 ummary of Complexity of LD-CELP ... 1 1

Table >Detailed Complexity Analysis of LD-CELP 12

Table 4.. Complexity Analysis of VSELP ... 15

Table 5 T h e Most Common Instructions ... 32
Table &Memory Requirements of the LLD-VXC Algorithm 36

Table 7-Number of Cycles Required to Implement LLD-VXC 38

.. Table 8-Power and Area Figures 44

List of Figures

Figure 1-Basic Configuration of a Typical CELP Speech Coder 5

Figure 2-Block Diagram of LLD-VXC ... 7

Figure >Block Diagram of LD-CELP ... 10

Figure 4.. Block Diagram of VSELP .. 13

Figure %The Basic Multiply-Accumulate Structure .. 17

Figure &A Parallel Multiply-Accumulate Structure ... 17

Figure 7-Direct-form Filtering with Poles ... 18

Figure &Lattice Filtering Based on Recursive Equations 20

Figure %Lattice Filtering Based on Cross-Connection Structure 20

Figure 10-The Distortion Comparison Structure .. 22

Figure 11-An Adaptive Structure for Filtering Operations 23

Figure 12-Adaptive Arithmetic Unit .. 25

Figure 13-Distortion Arithmetic Unit ... 27

Figure 1 4 - 4 ustom Architecture for Implementing Speech Coding Algorithms 29

Figure 1 >The Control Unit ... 31

Figure 16-Datapath for the FILTER I Instruction ... 33

Figure 17-Floorplan of an Adaptive Arithmetic Unit 42

Figure 18-Floorplan of the Custom Architecture .. 43

Figure 19-Power vs . Number of Adaptive Arithmetic Units 45

Figure 20-The General Radix-2 Decimation-In-Time FFT Butteffly 49

1. An Introduction to VLSI Signal Processing

Digital signal processing (DSP) algorithms are typically implemented on general-

purpose DSP chips. Custom architectures and application-specific integrated circuits

(ASICs) may provide a more efficient implementation of specific algorithms. This thesis

presents a new custom VLSI architecture for implementing low-delay analysis-by-synthesis

speech coding algorithms more efficiently than general-purpose DSP chips. This chapter

provides an introduction to past and present implementation solutions.

1.1 The Need for Custom VLSI Architectures

In the past, most digital signal processing @SP) algorithms have been implemented

on general-purpose DSP chips, such as the TMS320C25 [I]. This chip operates at a clock

speed of 40 MHz. The instruction cycle time is 100 ns, allowing 10 million instructions to

be carried out each second. One floating point operation (flop), such as a multiply-

accumulate instruction, may be performed in one cycle if these instructions are repeated;

therefore, the maximum throughput of this chip is 10 Mflops (million flops). Other chips

have similar specifications. However, the complexities of modern algorithms often exceed

10 Mflops, and are pushing the capabilities of these chips to their limits. In particular, one

of the speech coding algorithms analyzed in this thesis (LD-CELP) has an encoder

complexity of 9 Mflops and a decoder complexity of 3.4 Mops; therefore, it would not be

possible to implement both an encoder and a decoder on a single chip.

One method of increasing computational power is to connect several DSP chips in

parallel. However, most chips were not designed specifically for such connections, and

interconnection problems arise. The overhead associated with sending data off-chip often

makes such solutions unfeasible. This situation is beginning to change, though. Certain

general-purpose chips, such as the new TMS320C40, are being designed especially for

parallel processing applications.

An alternative solution is to design a custom VLSI architecture for a specific

algorithm, such as speech coding. This architecture may use parallelism and pipelining to
increase throughput by exploiting the structure of the algorithm. By using processing

elements in parallel on a single chip rather than distributing the elements over several chips,

inter-element communication is greatly simplified. Application-specific architectures have

already been designed for applications such as wideband audio coding [2].

The design of application-specific VLSI architectures for digital signal processing,

and the use of computer-aided design (CAD) tools for VLSI design were discussed in my

Bachelor's thesis [3]. The results of that thesis showed that a custom architecture is

required to implement the low-delay speech coding algorithms efficiently.

1.2 A Proposed Custom Architecture

This thesis proposes a custom VLSI architecture for implementing speech coding

algorithms more efficiently than general-purpose DSP chips. To compare the efficiency of

various architectures, certain criteria are needed to evaluate the performance. These criteria

include performance characteristics such as speed of execution and program and data

memory requirements, and physical properties such as die size and power consumption.

The architecture discussed here implements the LLD-VXC algorithm with a slower clock

rate and lower power consumption than general-purpose DSP chips, and requires a

comparable amount of memory and die area.

For my Bachelor's thesis, I compared the implementation of a small section of the

LLD-VXC speech coding algorithm on various architectures, including general-purpose

DSP chips and custom architectures. Both scalar and vector processors were considered.

The results show that a custom vector architecture provides an implementation which

requires the fewest cycles and the least number of instructions. This thesis follows up on

those results.

First, I broadened the scope of my analysis to include the entire LLD-VXC

algorithm; as well, I studied other speech coding algorithms, including LD-CELP and

VSELP. I determined what hardware structures were necessary to implement these

algorithms efficiently. Next, I reviewed the previously designed architectures and

considered the implementation of the other algorithms on these architectures. The designs

were modified as required and a final architecture was developed.

Estimates of the power consumption and chip area were obtained by using the VLSI

System tools available at MPR Teltech. The various blocks of the architecture were

compiled to a layout. The estimates were analyzed to see if the design was feasible and the

lirni ting factors for a practical design were determined.

1.3 A Guide to the Thesis

The remainder of the thesis is organized as follows: Chapter 2 describes the speech

coding algorithms which were analyzed to develop the new architecture, including a

summary of their complexities; the mapping of these algorithms onto hardware structures is

discussed in Chapter 3. The complete custom architecture is presented in Chapter 4, and its

control system is described in Chapter 5. Chapter 6 discusses the implementation of the

LLD-VXC algorithm on the architecture, and Chapter 7 discusses the efficiency of this

implementation. The suitability of the architecture for other algorithms, including LD-

CELP, VSELP, and the Fast Fourier Transform, is considered in Chapter 8. Finally,

Chapter 9 presents the conclusions of the thesis and Chapter 10 suggests some areas of

future research.

2. The Speech Coding Algorithms

Speech coding consists of digitizing the speech signal and eliminating the

redundancies from the signal so that a lower bandwidth is required to transmit the digital

voice data. There are currently CCIm standards for transmission rates of 64 kbit/s (PCM)

and 32 kbit/s (ADPCM); a 16 kbit/s standard is under consideration. This chapter briefly

discusses several common techniques of speech coding, including analyses of the speech

coding algorithms which were studied to develop the custom architecture.

2.1 Techniques of Speech Coding

The most straight-forward speech coding technique is pulse-code modulation

(PCM). The voice data is sampled at 8 kHz, and each sample is quantized to 8 bits;

therefore, a transmission rate of 64 kbit/s is required. A logarithmic quantizer is used

instead of a linear quantizer, allowing finer quantization of low-amplitude signals. This

approach results in toll-quality speech (acceptable for commercial telephony); it is desirable

to maintain this quality while reducing the transmission rate.

When a predictor is added to the coder, the resulting system is known as

Differential PCM (DPCM). The current sample of the speech signal is predicted, based on

previous input samples, and the prediction subtracted from the actual input. The difference

signal is then transmitted. Because the difference should be smaller than the input, only 4

bits are used to digitize the signal; the resulting transmission rate is 32 kbitls. Further

modifications are to adapt the coefficients of the predictor to maintain a near-optimal

predictor at all times, and to adapt the quantizer, the system is then called Adaptive DPCM

(ADPCM) [4]. The quality of current ADPCM systems is nearly as high as that of PCM,

with half the transmission rate.

Vector quantization [5,6] may be used to further reduce the transmission rate to

16 kbit/s and below. The samples of the input signal are grouped into vectors; each vector

is compared to all codevectors stored in a codebook, and the optimal codevector, based on

a distortion measure such as least-square distance, is transmitted. Because there are far

fewer codevectors than actual input vectors, fewer bits are required to transmit the data.

Again, when the difference (residual) between the input and a predicted value is vector

quantized rather than the input itself, fewer codevectors are required for accurate

representation and lower bit rates are achieved.

An important class of speech coding algorithms is based on linear prediction in an

Analysis-by-Synthesis configuration, which is sometimes called Code Excited Linear

Prediction (CELP). The basic structure of an Analysis-by-Synthesis speech coder includes
an excitation codebook and a synthesis filter, as shown in Figure 1. Input speech samples

are grouped into vectors and codebook samples are grouped into codevectors. Each

codevector is passed through the synthesis filter and the filtered codevector is compared to

the input vector using a distortion measure such as weighted least-squared distance. The

index of the codevector resulting in the smallest distortion is then transmitted.

l n put

Index Selection SJ
Transmitted lndei

Synthesis Filter Codebook

Figure 1-Basic Configuration of a Typical
CELP Speech Coder

*

Other filters, such as a pitch predictor and a weighting filter, may also be included

in the coder. A pitch predictor exploits the periodicity of voiced speech by estimating the

pitch period of the input and using samples from the previous period to predict the current

value; this filter is connected in series with the synthesis filter. A weighting filter reduces

the amount of perceived noise by exploiting the acoustic masking properties of the human

ear; using this filter in the index selection results in the weighted least-square distortion

measure.

The two most common implementation structures for the filters are the direct form

and the lattice structure [4]. The direct form has the advantage that the filter coefficients are
linearly related to the transfer function. However, it also has some important

disadvantages: adding one stage to a direct form implementation requires recalculation of

all filter coefficients, the coefficients are particularly sensitive to quantization, and it is

difficult to check for filter stability.

The lattice filter overcomes these disadvantages. The reflection coefficients which

specify a lattice structure are less sensitive to quantization effects. When a stage is added to

the filter, the coefficients of the previous stages do not change. Also, the check for stability

is much simpler-the coefficients must all be less than 1. In fact, direct form coefficients

are often converted to reflection coefficients to check for stability. For these reasons, filters

are often implemented using a lattice structure. On the other hand, a lattice structure is

more complex than a direct structure and each stage of a lattice filter requires two

multiplications rather than one.

The adaptation routines fall into one of two categories: forward adaptive or
backward adaptive [4]. Forward adaptive routines adapt the predictors based on the actual

input signal. Because this signal is not available at the receiver, the predictor parameters

must be coded and transmitted to the receiver. Typically, block adaptation is used; that is, a

block of the input signal is analyzed to determine the optimal parameters, resulting in a

significant algorithmic delay.

On the other hand, backward adaptive routines adapt the predictors based on the
reconstructed signal, which is available at both the transmitter and the receiver. Therefore,

the entire data rate is available for transmission of the coded error signal. Typically,

recursive adaptation is used, that is, the adaptation proceeds on a sample-by-sample basis,

using a gradient algorithm to correct the predictor parameters after each sample. As a

result, the algorithmic delay is negligible and backward adaptive routines may be used in

low-delay algorithms. The higher available data rate compensates for the fact that quality is

degraded by adapting on a noisy signal: For a fixed overall transmission rate, forward and

backward adaptation result in nearly equivalent speech quality.

Filter coefficients are not necessarily updated every input vector, even if they are

adapted that frequently. The coefficients often do not change significantly with each

vector. Therefore, a significant complexity reduction is achieved by computing new

estimates of the coefficients on a vector-by-vector basis but replacing the old coefficients

only every few vectors.

An important point to note is that the encoder for a backward-adaptive system must

include a simulated decoder because the reconstructed signal used to adapt the predictors at

the decoder must also be used at the encoder. Therefore, the decoder is just a subset of the

encoder, it need not be specified separately, and it has a much lower complexity than the

encoder. The decoder, and hence the simulated decoder, includes the excitation codebook

and the synthesis filter and its adapter.

Three algorithms were studied in detail to develop the custom architecture: Lattice

Low-Delay Vector Excitation Coding (LLD-VXC), Low-delay Code-Excited Linear

Prediction (LD-CELP), and Vector S um Excited Linear Prediction (VSELP). These

algorithms are now discussed.

2.2 The 16 kbitls LLD-VXC Algorithm

The 16 kbitls Lattice Low-Delay Vector Excitation Coding (LLD-VXC) algorithm
[7,8] has the CELP structure shown in Figure 1. It also contains a pitch predictor and a

perceptual weighting filter. A more detailed block diagram of the encoder is shown in

Figure 2. This section discusses primarily the encoder; the decoder consists of a subset of

the operations required for the encoder.

INPUT SPEECH

-
CODEBOOK

Figure 2-Block Diagram of LLD-VXC

The LLD-VXC algorithm operates as follows: For each input vector the codebook

is searched; that is, each excitation codevector in turn is scaled by a gain and filtered by a

--) G

long-term filter (pitch predictor) and a short-term filter. Each filtered codevector is then

compared to the input vector. The distortion (difference) vector is weighted to account for

perceptual properties, and the index of the codevector which results in the minimum

A

distortion is transmitted by the coder.

The vector dimension for LLD-VXC is 4. At a sampling rate of 8 kHz and a

INDEX
SELECTION

transmission rate of 16 kbitls, each sample must be encoded using 2 bits, or equivalently,

LAlTICE
SYNTHESIS

FILTER
PITCH

PREDICTOR

each vector using 8 bits; therefore, the codebook contains 28 = 256 codevectors. The least-

-

4
I I

squared distortion measure is used to compare filtered codevectors to input vectors:
v

d = Ilx-yll' = C(xryi)2 (1)
i=l

4 4 ,

where V is the vector dimension, x is the weighted input vector, and y is the current

WEIGHTING
FILTER

filtered codevec tor.

The synthesis filter is an adaptive 20th-order lattice filter. It is adapted using a

backward recursive gradient algorithm. Because LLD-VXC is a backward-adaptive

system, it can meet the CCITI' low-delay criterion for 16 kbitls speech coding: the
processing delay is less than 5 ms. The pitch predictor has three taps:

where P-l, Po, and p+l are the predictor coefficients and L is the pitch period. The

perceptual weighting filter is a 10th-order pole-zero direct-form filter; however, i t is

adapted based on the input signal with a lattice adapter. Filter coefficients are updated

every 12 vectors. Also, a 10-pole non-adaptive gain predictor is present. The operation of

the filters is discussed in more detail in the next chapter.

An important feature of this algorithm is that lattice filters are used. As a result, the

stability check has a very low complexity. As well, there are important implications for the

design of a hardware structure because the architecture must be able to implement both

lattice and direct-form filtering operations.

The algorithm provides several complexity reductions over the CELP structure.

The most notable is that the response to the synthesis filter is separated into the zero-state

response (ZSR) and the zero-input response (ZIR):

The ZSR is due only to the input signal to the synthesis filter, which is the excitation

codevectors. Because the codevectors never change and the synthesis filter coefficients are

updated only every 12 vectors, the ZSR need be computed only when the filter coefficients

change. On the other hand, the ZIR is based on the previous filter state, which is

independent of the input codevector. As a result, the ZIR need be computed only once per

vector rather than once per codevector.

A second complexity reduction is that the weighting filter is moved from the output

of the adder to the input branches of the adder. On the path of the input speech, the input

vector is weighted before being compared to the filtered codevector. On the codevector

path, the weighting filter is combined with the synthesis filter, resulting in a weighted,

filtered codevector.

A detailed analysis of the computational complexity of the Low-Delay VXC

algorithm with a 2-pole 6-zero synthesis filter may be found in [9]. The total complexity of

the algorithm is shown to be 4.6 Mflops. By changing the synthesis filter to a 20th-order

lattice filter, the complexity of the algorithm is increased, as demonstrated by my analysis

as shown in Table 1. Here, a floating-point operation (flop) is defined as a multiplication

and an accumulate.

Table 1--Complexity Analysis of LLD-VXC

-tion
Perceptual weighting filter

Input weighting
Adapt weighting filter coeffs
Stability check, convert to LPC coeffs

Gain predictor
Predict gain
Adapt gain predictor coeffs

Pitch predictor
Pitch prediction
Pitch tracking
Adapt pitch predictor coeffs
Update pitch period

Computation of ZIR vector
Synthesis and weighting filter
Adapt filter coeffs
Stability check

Codebook search module
Impulse response vector computation
Filter codevectors
Calculate energy
E m r calc & best index selection

Simulated decoder
Filter memorv uDdate

The total complexity of the LLD-VXC algorithm is 6.4 Mflops. The codebook

search requires the most computational power (2.6 Mflops), which indicates that this

section must be implemented very efficiently for an efficient implementation of the en tire

algorithm. Other high-complexity sections are the computation of the pitch period and the

adaptation of the filter coefficients.

2.3 The 16 kbitls LD-CELP Algorithm

The 16 kbitfs Low-Delay Code Excited Linear Prediction (LD-CELP) algorithm

[lo] is similar in structure to UD-VXC and results in comparable voice quality. A block

diagram of the encoder is shown in Figure 3. It is being considered for standardization at

16 kbit/s by the CCITI'.

INPUT SPEECH

CODEBOOK

-

Figure %Block Diagram of LD-CELP

The vector dimension for LD-CELP is 5, allowing 10 bits for coding each vector.

To reduce the codebook search complexity, the codebook is divided into a shape codebook

containing 128 codevectors, requiring 7 bits to encode, and a gain codebook containing 8

--)

gain values, requiring 3 bits to encode. To produce the final codevector, the chosen shape

SYNTHESIS
FILTER -

codevector is multiplied by the chosen gain value. The least-squared distortion measure is

4 INDEX
SELECTION

again used to compare the input to the filtered codevectors. The codebook search is the

same in principle as that in LLD-VXC, with the exception of the separate gain codebook:
v

d = Ilx-GyII' = ~ (x ~ - G ~ ~) ' (4)
i=l

-

where V is the vector dimension, x is the weighted input vector, y is the current filtered

WEIGHTING
FILTER

codevector, and G is the current gain value.

The synthesis filter is a 50-pole direct-form filter. There is no pitch predictor in this

system; therefore, the synthesis filter must be significantly longer than when a pitch

predictor is present, in order to take the periodicity of the input speech into account. As in

LLD-VXC, a ZIR-ZSR decomposition provides a significant complexity reduction. The

perceptual weighting filter is a 10th-order pole-zero filter. All filter coefficients are updated

every 4 vectors. Backward adaptation again results in a processing delay of less than 5 ms.

A 10-pole gain predictor is present; its coefficients are updated every vector.

The LD-CELP algorithm uses Levinson-Durbin recursion to adapt the coefficients

of all filters. The input signal is windowed and used to estimate the autocorrelation

function on a vector-by-vector basis. Then, at each coefficient update period, the optimal

filter coefficients are computed recursively, based on the autocorrelation function. Because

the coefficients are calculated explicitly rather than being estimated, and because of the long

synthesis filter, the complexity of the adaptation routines is much higher than those of

LLD-VXC. Also, the recursive nature of the routine makes its implementation on a parallel

and pipelined architecture inefficient. Problems with the implementation of LD-CELP are

discussed further in Chapter 8.

I performed a detailed analysis of the computational complexity of the LD-CELP

encoder. The results are shown in Tables 2 and 3, the first listing the total complexity of

the major sections of the algorithm, the second giving a detailed breakdown of the analysis.

Table 2--Summary of Complexity of LD-CELP

Adapter for synthesis filter
Adapter for vector gain
Perceptual weighting filter
Computation of ZIR vector
Codebook search module

SectionofAlgorithm . .
1

Adapter for perceptual weightmg

The total complexity of the LD-CELP encoder is 9.0 Mflops, significantly higher

than that of LLD-VXC. As mentioned in the previous chapter, the decoder consists of the

excitation VQ codebook, the gain predictor and its adaptor, and the synthesis filter and its

Complexity (Mflops) - 0.427

adapter. The complexity of the decoder is approximately 3.4 Mflops, much lower than that

of the encoder.

Once again, the codebook search has the highest complexity (3.7 Mflops), and the

need for an efficient codebook search architecture is seen. The codevector filtering

operation also requires a large amount of computation. As well, the adapter for the

synthesis filter also has a higher complexity than that of LLD-VXC. Because the

Levinson-Durbin algorithm is used for the adaptation, this high complexity may present

some difficulty in the overall implementation of this algorithm.

Except for the adaptation routines, implementation of LD-CELP is nearly identical

to that of LLD-VXC. Therefore, most of the analysis in the following chapter applies to

both algorithms.

Table 3-Detailed Complexity Analysis of LD-CELP

~ d a ~ t e r h
Recursive windowing -
Levinson-Durbin
Weighting filter coeff calc

Adapter for synthesis filter
Recursive windowing
Levinson-Durbin
Bandwidth expansion

Adapter for vector gain
RMS & log calc
Recursive windowing
Levinson-Durbin
Bandwidth expansion
Log-gain linear predictor
Miscellaneous

Perceptual weighting filter
Computation of ZIR vector

Synthesis filter
Weighting filter
VQ target vector comp

Codebook search module
Impulse response vector calc
Shape codevector conv & table
VQ target vector nom
Time-reversed convolution
Error calc & best index selection

Simulated decoder
Excitation VQ codebook
Gain scaling unit
Filter mem& update

2.4 The 8 kbiUs VSELP Algorithm

The 8 kbit/s Vector Sum Excited Linear Prediction (VSELP) algorithm [l 11 is

significantly different from the other two algorithms. It was developed for mobile

communications and is the TIA standard for digital cellular communication. The overall

rate of transmission is 13 kbit/s, of which 8 kbit/s is used for speech coding and 5 kbitls

for error control; I analyzed only the speech coding section. This algorithm is also based

on the CELP class of coders; however, it uses forward adaptation and a large vector

dimension of 40, and therefore does not meet the low-delay criterion. Most importantly, it

uses a structured codebook rather than a trained codebook to reduce the complexity of the

vector quantization operation.

LONG-TERM

EXCITATION
CODEBOOK 1

INPUT SPEECH

SYNTHESIS
FILTER

EXCITATION -
CODEBOOK 2

4

Figure 4--Block Diagram of VSELP

INDEX
SELECTION

Whereas the approach to the LLD-VXC and LD-CELP algorithms is fairly intuitive,

the approach to VSELP is much more mathematical. The encoder consists of three

codebooks, one adaptive codebook for long-term prediction, which replaces the pitch

prediction filter, and two excitation codebooks. The three codebooks are searched
sequentially. The long-term codebook implements one-tap pitch prediction:

4

where p is the long-term filter coefficient and L is the lag (pitch period). The codebook

stores the past values of the reconstructed speech signal; for different possible lags,

different vectors are retrieved. The codebook is searched to determine the optima1 lag; this

operation is equivalent to computing the pitch period in LLD-VXC.

The excitation codebooks, on the other hand, are highly structured to simplify the

search procedure; each codevector ui(n) is constructed from M=7 basis vectors v,(n) using

WEKiHTING
FILTER

where &,,=+I if bit m of codeword i is 1, and &=-I if bit m of codeword i is 0. That is,

4

each codevector is constructed as the sum of the M basis vectors where the sign of each

basis vector is determined by the state of the corresponding bit in the codeword (index).

Each excitation codebook contains 27=128 codevectors, resulting in a total of 214 possible

codevectors in all.
The high complexity of performing an exhaustive search with an unstructured

codebook of this size is prohibitive; however, the use of two structured codebooks and of

an efficient mathematical method for searching the codebooks makes the VSELP approach

quite practical. The long-term codebook is searched first, to determine the optimal lag and

select a vector consisting of past reconstructed speech samples. Then the first excitation

codebook is orthogonalized from the selected past-speech vector. This operation has a low

complexity because only the basis vectors need to be orthogonalized from the selected

vector; also, because the codevector filtering is a linear operation, only the basis vectors

need to be filtered. This codebook is searched to determine the optimal codevector. Next,

the second excitation codebook is orthogonalized from both previously chosen vectors,

filtered, and searched. Finally, the gains associated with each codebook are jointly

optimized.

The advantages of the VSELP approach include an extremely efficient codebook

search procedure, low codebook storage requirements, more robustness to channel errors

than other types of codebooks, and efficient joint optimization of the codeword and the

long-term predictor coefficient. A problem with using multiple codebooks is that the gains

must be optimized jointly with the codevectors for optimal performance, which would

result in an impractically high complexity. By optimizing the gains jointly with each other

but independently of the codevectors, the results are suboptimal and the performance is

degraded slightly but the complexity is reduced considerably. The gains are jointly

quantized using another vector quantization operation.

The synthesis filter is a 10-pole filter, and the perceptual weighting filter is a 10th-

order pole-zero filter. Additionally, the weighting filter W(z) is related to the synthesis

filter A(z) in such a way that combining the two results in a simpler filter:

The filter coefficients are updated every 4 vectors using a lattice adaptation technique.

Because this algorithm is forward adaptive, not only the V Q index but also the filter

parameters, long-term lag, and gain parameters must be transmitted to the receiver.

I also performed a detailed analysis of the computational complexity of the VSELP

algorithm; the results are shown in Table 4. Because this algorithm has a data rate of 8

kbit/s, half that of the other algorithms discussed, one would expect that the complexity

would be significantly higher, however, the results show that this is not the case. In fact,

the complexity is comparable to that of LLD-VXC. The low complexity is a result of the

highly specialized codebooks used.

Table 4-Complexity Analysis of VSELP

The total complexity of the VSELP encoder is 6.6 Mflops. The decoder consists of

the excitation codebooks and a synthesis filter, as for the other algorithms; it also contains a

pitch prefilter and a spectral postfilter. The prefilter is used to enhance the periodicity of the

excitation signal; the postfilter is used to enhance the perceptual quality of the reconstructed

speech. The complexity of the decoder is only 0.4 Mflops, much lower than that of the

encoder.
The complexity of this algorithm is not distributed in the same way as that of the

other algorithms. The excitation codebook search complexity is much lower because a

structured mathematical search is used instead of an exhaustive search. As well, the

codevector filtering operation has a low complexity because only the basis vectors need to

be filtered. On the other hand, the search of the long-term lag codebook has a high

complexity because this codebook is not structured. The gain coefficient vector

quantization also involves an unstructured search.

The custom architecture presented in this thesis is based primarily on the LLD-VXC

algorithm. Chapter 8 discusses the implementation of the LD-CELP and VSELP

algorithms on the new architecture and shows that certain sections of these algorithms are

also implemented efficiently whereas other sections are not well suited to the architecture.

3. Mapping the Algorithms onto Hardware

The LLD-VXC and LD-CELP algorithms are very similar in structure, the only

significant difference being the adaptation routines. Therefore, both of these algorithms

were considered when developing the new architecture.

The most frequently used operations in the algorithms include filtering, magnitude-

squared, inner product, autocorrelation, and convolution computations. Each of these may

be expressed as a sum of products. Typically, these sums of products can be expressed in

a vector format, so that the products can be computed in parallel. Therefore, a parallel

architecture would appear to meet the requirements of these algorithms.

The complexity analysis of the algorithms shows that the codebook search has the

highest computational complexity. Therefore, an efficient way of implementing this routine

is also desirable. This chapter discusses the mapping of the required operations onto a

VLSI architecture.

3.1 The Filtering Operations

The most commonly used operation in the algorithms is filtering, including lattice,

pitch prediction, and pole and zero direct-form filtering. These operations are similar in

structure and may all be vectorized; the products may be computed in parallel.

A basic inner product operation may be written in vector format as

where x and y are vectors of dimension n. The direct-form filtering operation may then be

written as

where p is the number of poles, z is the number of zeros, and xrev and yrev are the vectors

x and y with time-reversed indices. Long-term prediction, based on the pitch period, is

also implemented as a direct-form f~ltering operation; however, the delay is larger-instead

of using the most recent samples in the inner product, it uses samples from the previous

pitch period..

where L is the pitch period and q is the number of poles. Typically, q=l; that is, there are

three poles in the predictor. The inner product operation can be implemented with a basic

multiply-accumulate structure, as shown in Figure 5.

Figure %The Basic Multiply-Accumulate Structure

By using several of these structures in parallel, it is possible to reduce the execution

time at the expense of the chip area. The power consumption can be expected to remain

relatively constant. For example, by doubling the number of such structures, the required

power per cycle is approximately doubled, but the number of cycles required to implement

the operation is approximately halved. The exact results depend on the overheads

involved. A parallel multiply-accumulate structure with four parallel multipliers is shown

in Figure 6.

Figure 6-A Parallel Multiply-Accumulate Structure

For the fastest execution of the operation, one multiplier would be provided for

each pole and zero in the operation. The multiple-input adder may be implemented as a tree

of two-input adders. The penalty paid is that the propagation delay through the datapath is

increased because of the chained adders. The z-I delay required by the filtering operations

is accomplished by chaining the data registers together, the input data is passed through the

resulting delay line. This structure is the direct form implementation of the filtering

operation.

There is a slight difference between filtering the poles and the zeros. Zero filtering

does not require the output to be computed before the next computation can be begun

because each output depends only on previous and current inputs. The same is not true for

pole filtering. The computation of one output sample in this case is based on the previous

output sample. As a result, each output sample must be fed back to the input. Figure 7

shows the feedback required to implement direct-form filtering with poles.

Figure 7-Direct-form Filtering with Poles

This fact has a serious impact on the pipelineability of the architecture. In a

structure where there are fewer multipliers than zeros, partial sums may be computed by

filtering all input data with each subset of the zeros, then summing the results. Therefore,

the filter coefficients need only be replaced after all input data has been filtered by each

subset. However, when there are fewer multipliers than poles, the output must be

computed for each input sample, requiring the filter coefficients to be replaced for each

input sample. As a result, pole filtering has a higher overhead than zero filtering and will

be executed more slowly.

The convolution sum may also be expressed as an inner product:
N

z(n> = Cx(j)y(n-j) = xTyrev (1 2)
j=1

This operation differs from the filtering operations only in that the function y(n) is often not

defined for n<O; where such indices are required, the function is assumed to be zero, and

multiplications with zero need not be computed. As a result, the number of multiplications

increases with the index n. This fact is advantageous when implementing the operation on

a single multiplier structure because it is not necessary to compute N multiplications for

each index. However, when a parallel multiply-accumulate structure is used, this

advantage no longer exists. With four multipliers, for example, the same length of time is

required to compute one, two, three, or four multiplies.

Lattice filtering involves a different computation:

where el(n) is the input and e ~ + l (n) is the output of an M-stage filter. These recursive

equations are not as simple to vectorize because of the interdependence among vector

components; however, the products for each stage may still be computed in parallel if the

flow of data is adapted from the standard inner product calculation.
The lattice filtering operation may be implemented in a number of ways. One

method is to compute the forward and backward residuals separately, as shown in Figure

8. This method implements Equations 13 directly. First, the multiplications in Equation

13a are performed in parallel; the forward residuals are calculated as a sum of the products.

Next, the multiplications in Equation 13b are performed in parallel; the backward residuals

are calculated by adding the backward residuals from the previous iteration. This method

has the advantage that the datapath is similar to that of the other filtering operations.

Figure &Lattice Filtering Based on Recursive Equations

A second method is to compute one stage of the filter, including forward and

backward residuals, simultaneously. This method requires implementing the cross-

connections shown in Figure 9. These connections are more natural to a lattice

implementation than the previous method; however, they also have the disadvantage that

the datapath differs significantly from other filter operations; in particular, only two

multiplications can be performed in parallel. The first method will be used to implement the

lattice filtering operations.

Figure %Lattice Filtering Based on Cross-Connection Structure

The autocorrelation function is estimated in the pitch prediction section of the LLD-

VXC algorithm, where the maximum value of the autocarrelation function is determined in

calculating the new pitch period, and in the adaptation routines of the LD-CELP algorithm,

where the Wiener-Hopf equations are solved in calculating the optimal filter coefficients.

The estimate of the autocorrelation function is computed by multiplying a signal by a

delayed version of itself, and is therefore also expressed as a sum of products. The same

structure that is used for the filtering operations may be used; the filter coefficients are

replaced by the input signal, and the delay line allows the function to be estimated for

different delays. As a result, all of the above operations may be performed by one type of

arithmetic unit, or several of these units in parallel, providing that the unit can adapt its

datapath as required.

3.2 The Codebook Search Operations

Another very important section of the algorithm is the codebook search. The

filtered codevectors must be compared to the input vector, and the codevector which results

in the smallest distortion (distance from the input vector) must be remembered. Therefore,

the codebook search involves two stages: computing the distortion measure and comparing

the result to the minimum distortion value.
The distortion measure may be computed in one of several ways, each of which

involves inner product calculations [12]. For example, the weighted least-square distance

may by written as

where x is the weighted input vector and y is the filtered codevector. Each of the three

terms in this computation may be written as an inner product. Additionally, some

algorithms, such as LD-CELP, split the codebook into shape and gain values; in this case

the distortion measure must take the gain G into account:

Now the inner products must be scaled by the appropriate values.

Not all three inner products must be calculated in order to compare distortion

values, however. The weighted input vector x remains constant throughout the codebook
search. As a result, the energy of this vector, 11x112, also remains constant. Only the

relative magnitude of the distortion values is of interest because the object of the codebook

search is to find the minimum distortion; therefore, the energy of the input vector need not

be computed. The number of inner products required is thus reduced to two.

Furthermore, the codevectors are constant and the synthesis filter coefficients are updated

only every few vectors; therefore, the energy of the filtered codevectors can be

precomputed when the filter coefficients are updated. Only one inner product need be

calculated for each distortion computation.

The magnitude squared terms and the inner product are computed similarly to the

filtering operations described above; however, the codebook search must also determine the

minimum distortion value, which is a completely different type of operation. Each
distortion value must be compared to the present minimum distortion value; if the new

value is smaller, then it replaces the minimum value. This operation requires a structure

like the one shown in Figure 10.

I I -
, C

v 0

MIN. DIST.

I , R
E

Figure 1 k T h e Distortion Comparison Structure

This structure could further simplify the implementation of the distortion

computation by including multipliers to scale the inner product and the codevector energy

by the gain values as required, and an adder to compute the final distortion measure. This

computation also differs from the basic filtering operations.

3.3 Implementing the Operations

A detailed analysis of several architectures, including both standard DSP chips and

custom architectures, for implementing the filtering operations is discussed in [3]. The

results show that a custom parallel architecture is the most promising structure. The

discussion in the previous section also indicates that a parallel architecture may provide an

efficient implementation of the filtering operations.

The architectures for implementing the various types of filtering operations are

nearly identical, with the datapath varying slightly for different functionalities. Therefore,

the same processing elements may be used and the datapath varied, to create an architecture

with an adaptive datapath. The architecture shown in Figure 11 provides a great deal of

functionality with a minimum of hardware.

An efficient structure for implementing the codebook search operations includes

both the multipliers and adder required for the distortion computation and the comparator

required for the distortion comparison.

Figure 1 1-An Adaptive Structure for Filtering Operations

4. An Adaptive VLSl Architecture

The analysis in the previous chapter shows that two types of arithmetic units are

required in the architecture. One type of unit performs all the necessary filtering

operations, including lattice, pitch prediction, and pole and zero direct-form filtering. The

flow of data through this unit varies for the different types of filtering; therefore, it must

contain an adaptive datapath and will be called the Adaptive Arithmetic Unit (AAU). The

second type of unit implements the codebook search, which is not performed efficiently by

the AAUs. Its main task is to compute and compare distortion values; therefore, it wi 11 be

called the Distortion Arithmetic Unit (DAU). This chapter describes these units in detail.

4.1 The Adaptive Arithmetic Unit

The AAU performs all the necessary filtering operations. These operations are

similar in structure and may be written as a vectorized sum of products. Pole and zero

direct-form filtering computations require a slightly different flow of data. The zero

coefficients are multiplied by the previous input samples, whereas the pole coefficients are

multiplied by the previous output samples; therefore, there must be a means of routing the

output sample back to the input. Lattice filtering involves a different computation, but it

still has a similar structure. These recursive equations are not as simple to vectorize

because of the interdependence among vector components; however, the products for each

stage may still be computed in parallel if the flow of data is adapted from the standard inner

product calculation.

An AAU is shown in Figure 12. It consists of three pipelined stages: load,

execute, and store. The processing elements in the execute stage, a multiplier and an adder,

implement the multiply-accumulate required for all filtering operations. The rest of the unit

implements an adaptive datapath which allows different flows of data through these

elements. Although all standard DSP chips include multiplexers to load registers from

different sources, the datapath in this arithmetic unit actually adapts to the requirements of
the various filtering operations; the adaptation is discussed further in Chapter 6. This

configuration allows varied functionality with a minimum of hardware and allows a faster

execution of the algorithm than does a general-purpose DSP chip.

Figure 12 - Adaptive Arithmetic Unit (AAU)

The load stage contains two registers which provide the input to the multiplier; they

are called the data register and the coefficient register. The names refer to the standard

filtering operation which is most common-an AAU implements a filter tap, multiplying a

data value by a filter coefficient. The data register may be loaded either from local memory
or from a previous AAU in a chain, thereby implementing a delay line. Furthermore, the

memory location may be in ROM, to access a codevector component, or in RAM, to access

a temporary vector component. The coefficient register is always loaded from local

memory. Separate data and coefficient memories allow these two load operations to be

performed simultaneously; memory is discussed further in the following section.

The execute stage consists of a multiplier and an adder. One input to the multiplier

always comes from the data register. The other input may come either from the coefficient

register, to implement a filter tap or similar operation, or from the data register as well, to

implement a magnitude-squared operation. The product is one input to the adder. If only

the product is required, then the second input is zero; if a sum of products is to be

calculated, then the second input is the partial sum from a previous AAU in a chain. A

third possibility is required to implement the backward-residual computation for lattice

filtering. In this case, a data value must be added to the product; therefore, another
register, DATA2, is connected between the data register and the adder.

The store stage stores the resulting sum in local memory if required. If a sum of

products is being computed, only the final sum in the chain must be stored. A shifter

allows the data value to be stored with any required precision.

Several of these units may be connected in parallel. Vector operations are then

implemented by performing the calculations on each component simultaneously. Both the

input data values and the output sums are chained together, providing a unidirectional data

transfer. The data value chain implements a delay line; the sum chain implements a sum of

products. When several AAUs are chained together, computing the sum of products

requires time for one multiply, because each multiply is computed in parallel, and for one

addition per AAU, because the additions are computed sequentially. Therefore, the

required clock rate plays an important role in determining how many AAUs can be

connected in the architecture. The performance results in Chapter 7 show that at the

required clock rates the propagation delay through the sum of products structure is

sufficiently short. Intuitively it would seem that an efficient solution would be to use one

AAU for each vector component; the performance results show that this is indeed the case.

4.2 The Distortion Arithmetic Unit

The DAU computes and compares the distortion values required in the codebook

search. The magnitude-squared terms (codevector energy) and the inner product of the

distortion computation may all be computed by AAUs; however, the codebook search must

also determine the rninimum distortion value, which the AAU cannot do efficiently. The

DAU computes the least-square distortion between the codevector and the input vector

based on the result of the inner product calculations and compares the distortion values to

determine the minimum.

A DAU is shown in Figure 13. It consists of two pipelined stages: the distortion

calculation and the distortion comparison. The structure of the DAU is more rigid than that

of the AAU, allowing the datapath to vary only slightly. Also, only one DAU is required.

FROM AAU

Figure 13 - Distortion Arithmetic Unit @AU)

The first stage includes two multipliers and an adder, this stage computes the least-

squared distortion, using as inputs the inner product between the codevector and the input
vector, and the codevector energy. One input to the multiplier connected to the AAUs is the

inner product between the codevector and the input vector, as computed by the AAUs. The

second input scales this value by -2G, as required by the distortion equation, Equation 15.

One input to the other multiplier is the previously-calculated codevector energy for the

current codevector. The second input scales this value by G2. In the case where the gain

values are not independent of the shape codevectors, these scale factors reduce to -2 and 1,

respectively. The energy of the input vector remains constant throughout the codebook

search and therefore need not be considered. The two products are then summed. The

result need not be stored because it is only required by the following stage.

The second stage includes a comparator; this stage determines the minimum

distortion value. Each value calculated by the first stage is compared to the minimum value
stored in a special register. If the new value is smaller, then the new value replaces the

previous minimum value and the index to the current value is remembered.

This unit is also used in the codevector energy calculation. In the algorithms, each

codevector is filtered, then its energy is calculated. Although both steps may be performed

by the AAUs, the intermediate results (the filtered codevectors) must then be stored.

Instead, the energy calculation is pipelined with the filtering operation using the DAU,

saving memory and time. Therefore, while the AAUs filter the codevectors, the DAU acts

as a simple multiply-accumulate unit. The multiplier which is connected to the AAU

computes the square of each component by routing the value to both inputs of the

multiplier. The product is then connected to the adder. The sum is fed back to the other

input of the adder, resulting in a multiply-accumulate structure. The second multiplier and

the comparator are not required for this operation. In this case, the sum needs to be stored;

as with the AAU, a shifter allows the result to be stored with any desired precision.

Only one DAU is required for the codebook search. If the number of AAUs in the

configuration exceeds twice the vector dimension, then multiple codebook searches could

be executed in parallel, with multiple DAUs. However, such a configuration would require

a large number of AAUs. The architecture is considered to contain only one DAU.

4.3 Connection of the Arithmetic Units

The high-level block diagram in Figure 14 shows how these arithmetic units are

connected to form the new custom architecture. Several AAUs are chained together, the

number of units being a parameter of the configuration; 4 AAUs provide an optimal

implementation of LLD-VXC, as discussed in Chapter 7. The output of each data register

is chained to the input of the following one, implementing a delay line. Similarly, the

output of each adder is chained to one input of the following one, implementing a sum of

products. The final AAU is pipelined with the DAU-the accumulator of the AAU is

connected to the input of one multiplier of the DAU, allowing a sum of products computed

by the chain of AAUs to be the input to the DAU. Local memory is associated with each

AAU, and global memory is accessible to several of the blocks. The control system

controls the operations of the blocks.

I I I I

Global
mem

Output ' I
Input/

Figure 14 - Custom Architecture for Implementing
Speech Coding Algorithms

-

I

Control

The word width of the datapath and of the memory is 16 bits. The output of each

multiplier is a double word; double-length accumulators follow the multiply-add structure

to maintain full precision of intermediate results. A shifter scales the final result before it is

truncated to 16 bits and stored in memory.

-

4.4 Memory

I

AAU

D A U

The proposed architecture includes both local and global memory. Codevector

ROM provides each AAU with the appropriate codebook vector components. Local RAM

stores data associated with a single AAU, such as the appropriate components of all vectors

and the appropriate data and coefficients for filtering operations. Global RAM contains

variables which are not specific to any AAU. The global ROM contains the program code.

Thus, all required memory is located on-chip.

To store the codebooks, ROM is used instead of RAM because the original

codebook does not change throughout the algorithm and because ROM requires smaller

chip area and lower power. The same is true for the program ROM.

Each AAU has its own memory associated with it. The first and last AAUs also

have access to global memory. These units need to read the input and store the output of

the chain, which is often not distributed. The DAU has no local memory; whatever data is

not passed directly from the AAUs is accessed through global memory.

- AAU - AAU - AAU

Local memory can be even further distributed. When all values are stored in one

RAM, multiple accesses are often required for one instruction. For example, computing

the product of one fiiter tap requires loading the data value and the coefficient value; if these

are stored in the same memory, two accesses are needed. Storing the data and coefficients

in separate RAMs can be expected to increase the execution speed without significantly

increasing the power consumption or chip area; the results of Chapter 7 show that this is

indeed the case. Two RAMs are therefore associated with each AAU.

5. The Control System

The control unit is responsible for controlling the operation of the datapath, which

has been discussed up to this point. A block diagram of the control unit is shown in Figure

15. It consists of the Program ROM, instruction decoding hardware, and flow control

hardware.

TO MEMORY 1
PROGRAM

ROM

REGISTER REGISTER ,* J
TO CONTROL POINTS TO MEMORY

Figure 15-The Control Unit

The address of the current instruction is indicated by the program counter. The

instruction is then read from the program ROM. The instruction field is decoded, and the

decoded signals are routed to the required control points; the address field is routed to the

various memories. Flow control hardware simplifies such operations as looping and

interrupts. This chapter describes the control unit in detail.

5.1 The Program ROM

The Program ROM is 16 bits wide. A control word is divided into an instruction

field (7 bits) and an address field (9 bits); the address bits are capable of accessing a

memory space of 512 words. The next chapter shows that a 512-word global RAM and

four 512-word local RAMS meet the memory requirements of LLD-VXC. Each address

refers either to global memory or to all local memories in parallel, depending on the

instruction; therefore, this address space is sufficient.

5.2 The Instruction Set

The ASIC chip has a highly specialized instruction set. There are approximately 20

control points, such as register load and multiplexer select, in the datapath, so using a

hardwired control system would require a wide control word. Instead, each the required

control points for each instruction are encoded in 7 bits. This scheme allows 27=l28

different instructions, far more than are actually required. There are seven common

instructions in the instruction set, and many of these affect the control points in the same

way. In particular, corresponding control points in parallel AAUs are connected together,

with the exception of the first AAU in the chain, which is often controlled differently from

the others. An instruction controls several parallel operations and one instruction is always

completed in one cycle. The most common instructions are listed in Table 5.

Table 5 - The Most Common Instructions

includes ener calc.) E

AAU in parallel, from the same ahdress in each I
local RAM.
Write the values in the data registers back to local -
RAM.
Chain the adders together, with the input to the
fust being zero, and multiply; store the previous
result in global RAM.
Chain the data registers together, with the input
to the first coming from global memory; chain
the adders together, with the input to the first
being zero, and multiply.
Chain the data registers together, with the input
to the first coming from global memory; chain
the adders together, with-the input to the first I
being a previ&s partial sum, and mu1 tiply.
Load data registers of each AAU from codebook
ROM; compute sum of products (inner product
between input and codevector); compute
distortion value using DAU; compare value to
minimum distortion and store if less.
NOTE: These four stages are pipelined, so they - -
affect different codevectors
As FILTER I; also, compute magnitude-squared -
of result using DAU.

The memory storage is organized in such a way that the same address accesses the

required values in both data and coefficient RAM in all AAUs in parallel. For example, for

a filtering operation, the data and coefficient values are stored at the same addresses in the

data and coefficient memories respectively.

To illustrate how the control unit and the datapath interact, the operation of the

FILTER I instruction is as follows: The multiplexer in the load stage of each AAU selects

to load the data register from the previous AAU in the chain; in the first AAU, this

connection is made to global memory. The data register is loaded In the execute stage, the

multiplexer at the input of the multiplier selects the coefficient register as its source. The

multiplexer at the input of the adder also selects the path from the previous AAU in the

chain in all AAUs but the first; in the first M U , this multiplexer selects 0. In the final

AAU of the chain, the load control point of the accumulator in the store stage is also set.

As a result of setting these control points, the data register is loaded from the previous

AAU, the data value from the previous cycle is multiplied by the filter coefficient and the

product added to the partial sum from the previous AAU, and the final sum from the

previous cycle is loaded into the accumulator of the final AAU. Because of the pipelining

of the AAU, the three stages affect three different data values. Figure 16 shows the

datapath selected by the control unit for the FILTER I instruction.

I

Figure 16-Datapath for the FILTER I Instruction

5.3 Hardware Support for Flow Control

The control system contains hardware support for looping and interrupts. A

REPEAT N instruction allows the following instruction to be executed N times. A loop

counter is initialized to N and the program counter is not advanced until the counter reaches

zero; the counter is also used to address the required memory. For example, during the

codebook search the SEARCH CODEBOOK insauction is repeated for each codevector in

the codebook; the counter is used as an index into the local ROM to load the appropriate

codevectors into the datapath. The use of a hardware counter to control the indexing allows

comparisons and branching in software to be kept to a minimum.

Except for the lengthy codebook filtering and codebook search loops, however, the

algorithm is implemented using straight-line code; repeated instructions are explicitly

entered in the code rather than being looped. This tradeoff results in a larger program ROM

but also in faster execution and simpler control hardware because little looping hardware is

required. The program ROM will still be kept to a reasonable size. When loops are

required, a hardware counter is used to control the indexing; therefore, comparisons and

branching in software are kept to a minimum.

During the codebook search, the index of the codevector which results in the
minimum distortion must be saved. Therefore, an index-save register is present in the

control unit. This register is loaded from the counter by the same signal which saves the
minimum distortion value in the DAU. It is the index in this register at the end of the

codebook search which is actually transmitted.

Certain sections of the algorithm are not executed for each vector. For example, the

filter coefficients are only adapted once every 12 vectors in LLD-VXC. Executing these
routines within the time allowed for each vector would require a high clock rate. An

alternative is to allow the adaptation routine to be interrupted by the vector-oriented

routines. The program counter and accumulators are saved during the interrupt; the control

unit provides a program-counter-save register and the accumulators are saved in local

memory. The time required for the adaptation routines is thereby averaged over 12 vectors.

However, this approach slightly degrades the quality of the algorithm because the

adaptation routine will not necessarily be completed before the next vector must be

processed.

5.4 Clock Rate Constraints

The minimum clock rate required to implement the algorithm in real time is

determined by the number of instructions which must be executed for each input vector.

For example, in LLD-VXC one vector consists of 4 samples taken at 8 kHz; therefore, the

algorithm must process each vector in 0.5 ms. The clock rate must be high enough to

allow all required instructions to be executed in this time.

On the other hand, the maximum possible clock rate is determined by how many

AAUs are connected in parallel. Computing a sum of products involves a propagation

through one multiplier and as many adders as AAUs; chaining many AAUs results in a

large propagation delay. Because a sum of products must be computed in one clock cycle,

the cycle time must be greater than this propagation delay. Conversely, a fixed clock rate

determines how many AAUs may be chained together.

6. Implementation of the Algorithm

To estimate the performance results of the custom architecture, in particular the

power requirements and chip area, the implementation of the LLD-VXC algorithm was

studied. This algorithm is very similar to LD-CELP; however, the adaptation routines of

LD-CELP make its implementation on the architecture more difficult, as discussed in

Chapter 8. All of the data below refers to the LLD-VXC algorithm, unless otherwise

specified. This chapter discusses the practical concerns of implementing the LLD-VXC

algorithm on the custom architecture.

6.1 Memory Requirements for the Algorithm

The amount of memory required on the chip is determined by the amount of data

needed by the algorithm and how the data is distributed amongst the AAUs. Table 6 shows

the memory requirements of the algorithm, including whether each element of data must be

stored in local or global memory.

Table &Memory Requirements of the LLD-VXC Algorithm

Data -
Codevectors
Filter coefficients
Filter memory
Temporary vectors
Codevec tor energy
Temporary vectors
Adaptation & tent coeffs
Past values of input
Autocorrelation values

Local/Global ROM/RAM
Local ROM
Local RAM
Local RAM
Local RAM
Global RAM
Global RAM
Local RAM
Local RAM
Local RAM

The size of the local memory associated with each AAU depends on the number of

AAUs in the configuration. The algorithm requires a fixed amount of memory; if more

AAUs are present, then each has a smaller amount of memory associated with it.

However, this distribution is not necessarily even. For example, if three AAUs are used to

store a vector of dimension 4, one AAU must always store two components of the vector,

and its memory must be twice as large as the others. (Clearly, such a configuration is not

efficient!) Local ROM is used only to store the codevectors of the Vector Quantization

codebook. Its size must be 1024 words for a configuration with 1 AAU, 512 words for 2

or 3 AAUs, and 256 words for 4 or more AAUs. (Recall that multiple codebook searches

in parallel are not used.) Local RAM is the most-used memory in the architecture; it stores

filter memory and coefficients as well as various temporary vectors. The minimum total

storage required is 512 words; however, larger RAMS will typically be used to ensure that

there is enough memory for saving accumulators during interrupts and so forth.

Global RAM is used primarily to store the codevector energy. However, some

temporary vectors are necessarily also stored in global memory. Note that the filtered

codevectors are not stored because the energy calculation is pipelined with the filtering

operation by using the DAU. Unlike with local memory, the size of the global RAM does

not change as the number of AAUs varies; its size will be fixed at 512 words.

The Global ROM is the program memory; its size is determined by the number of
instructions required to execute the algorithm. The program memory will be discussed

further in the following section.

6.2 Program Requirements

The size of the program ROM and the required clock rate are determined by the

number of instructions required to implement the algorithm with a given number of

Adaptive Arithmetic Units. Because all instructions are implemented in one clock cycle, the

number of instructions is nearly identical to the number of cycles required, with minor
differences resulting h m the looping of the codebook search and filtering.

An analysis of the number of cycles required to process one vector with the LLD-

VXC algorithm is shown in Table 7. The number of cycles required is listed for

configurations with one to five AAUs. The actual analysis was performed for up to ten

AAUs. Note that the routines in the update section are performed only once every 12

vectors; therefore, the cycle count for these sections is divided by 12 before being added to
the total. In the actual implementation, this averaging is accomplished by using interrupts,

as discussed below.
For configurations with two or more AAUs, the number of cycles required to

implement the algorithm, and hence the number of instructions required, is well under

2000. Therefore, a program ROM of 2K words will be used in the design.

Table 7-Number of Cycles Required to Implement LLD-VXC

Section of algorithm

Direct-form filter (1 0)
Long- term fil ter (3)
Lamce filter (20)
Direct-form filter (1 0)
Gain prediction (10)
Convolution
Codebook search (256)
Lamce filter (20)
Direct-form filter (1 0)
ADAPTATION:
Lattice adapter (20,lO)
Long- term adapter
Pitch tracking
Autocorrelation calculation
UPDATE: (every 12 vects)
Lattice filter (20)
Direct-form filter (10)
Codebook filtering
Lattice to direct c6nversion
r n A L

1 AAU
200

220
24

400
220
22
15

1024
400
220

210
45
75

400

400
220

2560
710

3800

4 AAUs -
60
66
6

100
66
8
6

256
100
66

56
15
25

100

100
66

1024
196

1046

5 AAUs -
40
44
6

80
44
6
6

256
80
44

42
15
25
80

80
44

1024
150
877

6.3 Timing Considerations

Because the sampling rate of the input speech signal is 8 kHz and one vector

consists of 4 samples, the algorithm has 0.5 ms to process each vector. The minimum

clock rate required to implement the algorithm in real time is easily calculated from the

number of cycles required to process the vector: this number of cycles must require no

more than 0.5 ms. From the results of Table 7, the minimum clock rates for configurations

with one to five AAUs are calculated to be 7.6 MHz, 3.9 MHz, 3.2 MHz, 2.1 MHz, and

1.8 MHz respectively. All of these values are significantly lower than the clock rates of

general-purpose DSP chips, which may be as high as 50 MHz.

The timing through the chain of adders is critical. The propagation delay of each

adder is approximately 15 ns, and of the multiplier is 66 ns. Therefore, when n AAUs are

chained together, the total propagation delay is (66 + 15n) ns. For example, with 4 AAUs

the minimum cycle time can be 126 ns; therefore, the maximum clock rate can be 8 MHz.

The clock rates just calculated show that these constraints are not so tight as to be a

problem.

The routines to update the filter coefficients are performed only once every twelve

vectors. Because these routines have a significant complexity, it would be inefficient to

make the clock rate high enough to handle these routines during every twelfth vector; this

high rate would not be required during the other eleven vectors. Instead, the update

routines are distributed over the entire vector time. They are interrupted by the vector

routines in the main algorithm loop, but continue when these routines have been completed.

As long as the update routines are completed within one update period (12 vectors), the

algorithm will still execute correctly. There will be a slight degradation in the quality of the

reconstructed speech because the filter coefficients will be updated at the end of the update

period rather than at the beginning; however, the lower clock rate, and hence lower power
consumption, make this solution attractive.

Computing the autocorrelation function requires a significant amount of

computation. Up to 256 multiplications are required for each possible lag, and the lag
varies from 20 to 105 samples, resulting in a total of almost 19000 flops. Again, the

problem of implementing a high-complexity routine only during an update period appears.

In this case, however, the autocorrelation computation can be distributed over each vector

without the use of interrupts. As each new vector is processed, only the correlations

between this and previous vectors are computed.

7. The Performance of the Architecture

Now that the custom VLSI architecture and its implementation of the Lattice Low-

Delay Vector Excitation Coding algorithm have been specified, it is necessary to analyze the

efficiency of the architecture in implementing the algorithm. Memory requirements have

already been dealt with in the previous chapter, and execution speed has been touched

upon. This chapter discusses primarily the physical characteristics of die size and power

consumption.

Several factors determine an optimal number of AAUs, the most important being
the vector dimension and the length of the filters. Clearly the fastest solution would be to

have one AAU for each vector component and for each filter tap; however, an

unrealistically large chip area would be required for long filters. The next best solution

would then seem to be having a number of AAUs which evenly divides the number of

components or filter taps. The performance of configurations with various numbers of

AAUs was analyzed, and optimal numbers of AAUs were determined, considering power

consumption and chip area. These results show that these intuitive ideas are indeed valid;

4 AAUs provide an optimal implementation of LLD-VXC.

7.1 Layout of the Architecture

To estimate the die size and chip area of the custom VLSI architecture, the

architecture was analyzed using the VLSI Systems Tools [13]. The arithmetic units were

entered as datapath schematics with a 16-bit word width and complied to a layout.
The technology chosen for designing the architecture was "1 pm CMOS"; this

technology has a minimum feature size of 1.2 pm. An alternate technology was " 1.5 pm

CMOS", with a minimum feature size of 1.6 pm; however, the smaller size results in a

smaller area, a lower power consumption, and a faster switching time, and therefore
seemed to be the obvious choice. For example, the power of an adderlsubtractor at 1.6 pm

is 104 pW/MHz, while at 1.2 pm it is 71 pW/MHz.

The datapath schematic of an Adaptive Arithmetic Unit consists of several datapath

elements, including flip-flops, 2- and 3-input multiplexers, an adderlsubtractor, a shifter,

and a multiplier. Each of these elements appears in the schematic as a 1-bit element on a 1-

bit datapath; a datapath compiler then expands the schematic to the desired word width,

which is set as a parameter. For these estimates, the word width is 16 bits.

The multiplier merits some discussion on its own. A signed, variable-pipelined

multiplier was used as the datapath element. Both inputs to the multiplier had a word width

of 16 bits. The number of stages in the pipeline may be specified; to determine if any

pipelining was required at all, the datapath was first compiled with one stage. The
estimated cycle length for the multiplier was determined to be 66 ns. Because the clock rate

is expected to be low (2 MHz for a 4-AAU configuration), the multiplier need not be

pipelined at all, and the entire multiply-accumulate operation can be performed in one clock

cycle.

The output of the multiplier consists of two words because the product of two 16-

bit numbers may be a 32-bit result. This output is divided into a high- and a low-order

word. The accumulator following the adder is double-width to preserve precision; a shifter

at the output of the adder allows the result to be scaled to the desired precision before being

stored in 16-bit memory.

The next step was to compile the datapath schematic to a layout. This layout is then

used to estimate the area of the block. The datapath elements are placed side by side along

the width of the layout, while the bit-parallel word is built up along the height of the layout.
The height of the layout is given by lOOh per bit, where h is a function of the technology

size used; for the 1.2 pm technology, h = 0.6 pm. Clock buffers are placed above each

clocked element. A large portion of the area is consumed by the interconnections among

the datapath elements.

Each input and output of the block may be routed either to both sides of the block or

to only one side of the block (not all to the same side). Because of the regular structure and

interconnections of the blocks in the architecture, the inputs and outputs were routed to one

side, resulting in a significant decrease in the size of the block. For example, the height of

the AAU layout decreased from 1.5 mrn for double-sided routing to 1.2 mm for one-sided

routing; the width remained constant at 2.1 mm. Figure 17 shows the actual floorplan of

an AAU.

I BUFFERS

MULTIPLIER

Figure 17-Floorplan of an Adaptive Arithmetic Unit

The datapath schematic of the Distortion Arithmetic Unit was developed and
compiled in the same way as that of the AAU. The only element in the DAU which is not

present in the AAU is the comparator. The total size of this block with one-sided routing is

3.8 rnm x 1.4 mm.

The sizes for typical RAM and ROM blocks were also determined. In the previous

chapter, the memory requirements for various architecture configurations were determined.

The VLSI System Tools manuals provided the layout sizes of the various memory blocks.

Two types of RAMs were considered in the implementation: CRAMl and

CRAM3. The first type, CRAMl, is a clocked RAM with differential amplifiers on each

output. Because there is a bias current when the clock is held low, CRAMl has a static

power dissipation. As a result, adding more RAMs is not efficient because the reduction in

dynamic power due to the reduction in clock rate is typically smaller than the increase in

static power. For this reason, using separate data and coefficient RAMs is not efficient.

The second type, CRAM3 is a fully static RAM, it has no static power dissipation.

As well, its dynamic power dissipation is much lower than that of CRAMl. The tradeoff is

that CRAM3 has a significantly larger area than CRAMl. For example, a 4-AAU

configuration of the architecture consumes 530 mW of power and occupies 43 mm2 when

implemented with CRAMl, and consumes only 280 mW but occupies 56 mm2 when

implemented with CRAM3. However, power is a more important factor in evaluating this

architecture than area because low power is the main advantage over standard DSP

solutions. The results using CRAM1 show that the area is quite reasonable but the power

is very high. Also, using separate data and coefficient RAMS becomes feasible with

CRAM3. Therefore, CRAM3 was used in the final design.

The control block requires very little hardware when compared to the arithmetic

units and the memory. It consists basically of six registers and a decoder. As a result, its

area and power dissipation are negligible in comparison to the other blocks.

Once the size of each block was determined, the blocks were placed manually to

estimate the overall area of the architecture. An additional area of approximately 10% was

allowed for routing interconnections. Pads were added with a dimension of 0.2 x 0.5 mm.

An overall layout of the architecture with 4 AAUs is shown in Figure 18.

GLOBAL E
4 9 mm b

Figure 1 &Floorplan of the Custom Architecture

Power figures for the arithmetic units were obtained by estimating the number of

gates in an element and using the properties of CMOS technology to estimate the power

consumption based on the number of gates and the clock rate, according to the formula

where G is the number of gates, S is the switching factor, and f is the clock frequency.

The power estimates (0.012)G are presented in the VLSI System Tools manuals. The
power depends on a switching factor-what percentage of the time the gates are actually

switching. For the estimates presented here, this factor was set to 1, giving an upper limit

on the power consumption. Because the architecture will be used at full capacity, the data

will be changing with nearly every clock cycle and the estimates will be quite accurate.

The power consumption for the memory units was also specified in the VLSI

System Tools manuals. CRAM1 has both a static and a dynamic power dissipation,

whereas CRAM3 has only a dynamic power dissipation. The power figures for the ROM

blocks are more complex, depending on the configuration of the ROM. Formulas for

determining the total capacitances of the various lines are given, and the power

consumption may be estimated from

where V is the supply voltage of 5 V and f is the clock frequency.

The final estimates of the power consumption and chip area of the various blocks

are listed in Table 8, and were first presented in [14] and [15].

Table 8 - Power and Area Figures

Block Power (mW/MHz)
AAU
DAU
ROM (2Kx 16)
ROM (5 12x 16)
ROM (256x 16)
RAM (512x16)
RAM (2 5 6 ~ 16)

Using separate data and coefficient RAMS results in a decrease in power

consumption and an increase in chip area. For example, for a configuration with 2 AAUs,

using a single 512-word RAM results in a power dissipation of 350 mW and an area of

38 rnd , whereas using two 256-word RAMS results in a power of 295 mW and an area

of 43 mm2. Once again, because achieving a low power consumption is a primary goal of

this architecture, separate data and coefficient RAMs are used.

7.2 Analysis of the Results

Although the architecture with one AAU implements the algorithm more efficiently

than a general-purpose DSP chip, better performance is achieved by combining several

AAUs in parallel. As well as increasing the throughput, this approach reduces the amount

of temporary storage needed and simplifies the control requirements. By varying the
number of AAUs in the configuration, tradeoffs between the power consumption and the

area of the chip can be achieved. Adding AAUs creates a larger chip, but decreases the

number of cycles required to implement the algorithm, thereby reducing the clock rate. To

simplify the estimates, memory size was fixed at two 256-word RAMs for each AAU,

regardless of how many were used; practically, smaller memories are required when more

AAUs are used. A 1-AAU configuration has an approximate area of 50 mm2, and adding

one AAU increases the area by about 10 mm2. Figure 19 shows a graph of the estimated

power as a function of the number of AAUs.

Power

(mw)

Number of Adaptive Arithmetic Units

Figure 19-Power vs. Number of Adaptive Arithmetic Units

These results show that using 10 AAUs requires the lowest power consumption-

approximately 250 mW; however, this configuration also has a large chip area of

180 mm2. By reducing the number of AAUs to 4, the area is halved while the power is

only increased by 10%. The clock rate required for a 4-AAU configuration is approxi-

mately 2 MHz. These results compare favorably with an implementation on a general-

purpose chip such as the DSP32C, which has a power dissipation of up to 1.25 W.

At the beginning of the thesis, four criteria were set for evaluating the efficiency of

an architecture: execution speed, memory requirements, die size, and power consumption.

The efficiency of the new custom architecture presented here is equal to or better than that

of general-purpose DSP chips based on these criteria. Using a configuration with 4 AAUs,

this architecture implements the LLD-VXC algorithm in real time with a clock rate of

approximately 2 MHz; a standard chip typically requires a clock rate of at least 20 MHz to

achieve the same goal. The memory required by the algorithm is approximately 1K words

of data RAM, 1K words of data ROM, and 2K words of program ROM; this amount of

storage is comparable to what is found on standard chips. The die size of the architecture is

estimated at 90 mm2; this is a large area, but still quite reasonable. The main advantage of

the new architecture is its low power consumption: less than 300 mW, compared to power

consumptions of over 1 W for standard chips. These results show that the new custom

architecture does provide an efficient implementation of the LLD-VXC speech coding

algorithm.

8. The Suitability of the Architecture for Other Algorithms

The architecture presented in this thesis was optimized for the implementation of the

LLD-VXC speech coding algorithm; however, the implementation of other speech coding

algorithms and of non-speech coding algorithms was also studied briefly. This chapter

discusses the suitability of the architecture for these other algorithms.

8.1 Implementation of LD-CELP

The implementation of the LD-CELP algorithm was studied. This algorithm has

been implemented on a DSP32C [16], requiring approximately 75% of the capability of the

chip with an 80 ns instruction cycle. Therefore, its power consumption can be estimated at

slightly less than 1 W. The memory requirements were 1100 words of program memory,

900 words of data RAM, and 800 words of data ROM.

On the custom architecture its implementation is not as efficient as that of LLD-

VXC. The LD-CELP algorithm uses Levinson-Durbin recursion to adapt the filters. This

routine converts the autocorrelation coefficients to linear predictor coefficients. The

approach is recursive: The predictor coefficients at each stage of the routine are based on

those at the previous stage. As a result, the parallelism of the architecture does not improve

the implementation performance because successive stages cannot be computed in parallel.

Also, the pipelining of the architecture cannot be exploited because the computations of

each stage must be completed before those of the next stage can be started.

Except for the adaptation routines, the LD-CELP algorithm is implemented similarly

to LLD-VXC, with the result that the power of the custom implementation (estimated at 800

mW) is still lower than that of the DSP32C implementation.

8.2 Implementation of VSELP

The implementation of VSELP was also studied. However, the architecture is

geared towards low-delay speech coding algorithms, not towards a specific, highly

specialized algorithm which does not even meet the low-delay criterion, such as VSELP.

Therefore, it is expected that certain sections of this algorithm will not be implemented

efficiently.

The adaptation of the synthesis filter parameters is implemented as a fixed point

covariance lattice technique (FLAT). This routine involves the computation of the

autocorrelation function of the input speech and of the reflection coefficients for each stage

of a lattice filter used to adapt the filter. The autocorrelation is efficiently implemented by

the custom architecture; however, the method of computing the reflection coefficients from

the autocorrelation that is used by FLAT involves several calculations which cannot exploit

the parallelism of the custom architecture.

The optimization of the long-term lag is based primarily on operations which can be

expressed as inner products. The codebook search involves the filtering of basis vectors

and the computation of cross-correlations and energies, both of which are performed in all

three algorithms analyzed in the thesis. Therefore, these operations may be implemented

efficiently on the custom architecture.

The final section of the VSELP algorithm is the quantization of the gain and long-

term predictor coefficients. These gains are transformed to the energy domain before being

vector quantized. This procedure requires the computation of reciprocals and square roots,

as well as other operations which cannot be expressed as inner products. Therefore, the

custom architecture is poorly suited for this section of the algorithm.

Overall, the custom architecture presented here will not implement the VSELP

algorithm efficiently, as expected. This algorithm uses many mathematical techniques to

reduce the complexity of the standard filtering and vector quantization operations. The

efficient implementation of VSELP would require a different specialized architecture.

8.3 Implementation of the Fast Fourier Transform

Many of the important operations in digital signal processing are part of the low-

delay speech coding algorithms discussed above. For example, filtering operations of all

types are the most common operations in the algorithms. Clearly, these are implemented

efficiently on the custom VLSI architecture because it was for these operations that the

architecture was designed. However, there are also other operations which are important to

DSP which are not relevant to these speech coding algorithms.

One such operation is the Fourier transform. The implementation of this operation

on standard DSP chips such as the TMS32020 is well documented [17]. This reference

provides the code for the general radix-2 FFT butterfly shown in Figure 20, as well as for

128,256, and 1024-point FITS. Some are implemented with looped code and some with

straight-line code. The butterfly operation requires 22 instructions.

Figure 20-The General Radix-2 Decimation-In-Time FFT Butterfly

The equations for the butteffly operation are the following:

X ~ [P] = Xm-1 [PI + WN' x m - 1 [ql

Xm[qI = x m - 1 [PI - WN' xm-1 [ql (18)

The values for WN' are known for FFTs of a given size and may therefore be precomputed

and stored. In order to perform real computations rather than complex computations, these

equations may be separated into their real and imaginary components. By writing

WN' = COSW + j sinW (19)

The custom architecture can compute the required multiplications with cosW and

sinW in parallel. If the architecture contains three or more AAUs in parallel, then each of

the above equations can be computed in one cycle by multiplying the appropriate data

values by the coefficients 1, f cosW, and f sinW. However, the real and imaginary parts of

Xm-l[p] and Xm-l[q] must be stored in more than one location in the local memories of the

appropriate AAUs. The FFT can then be computed in 4 cycles.

Clearly, the custom architecture is not optimal for implementing the Fast Fourier

Transform. However, the parallelism of the architecture can be exploited to implement the

FFT with a shorter execution time than a general-purpose DSP chip.

9. Conclusions

The new custom architecture presented in this thesis provides an efficient

implementation of low-delay analysis-by-synthesis speech coding algorithms. It was
designed by analyzing the requirements of two low-delay 16 kbit/s speech coding

algorithms: LLD-VXC and LD-CELP. The required operations were mapped onto

hardware structures and two types of arithmetic units were developed.

The most common operations in the speech coding algorithms are filtering

operations of various types. All of these operations may be implemented on one type of

arithmetic unit, provided it has an adaptive datapath; this unit is called an Adaptive

Arithmetic Unit (AAU). Several AAUs may be connected in parallel to increase the

throughput of the architecture.

The section of the speech coding algorithms with the highest complexity is the

vector quantization codebook search, which involves computing a distortion measure and

determining the minimum distortion value. This operation is not performed efficiently by

the AAUs; therefore, a second type of unit, called a Distortion Arithmetic Unit (DAU), is

required. The DAU is pipelined with the AAUs.

The custom architecture consists of several AAUs connected in parallel and

pipelined with one DAU. Local memory is associated with each AAU and global memory

is available to several of the units. By varying the number of AAUs in the architecture,

tradeoffs between power consumption and chip area are achieved. With a configuration of

4 AAUs, this architecture implements the Lattice Low-Delay Vector Excitation Coding

algorithm with an estimated power consumption of under 300 mW and area of 90 mm2.

This solution provides significant power savings over implementations on general-purpose

DSP chips, which may consume approximately 1 W.

10. Future Directions

The results of this thesis show that the new custom architecture presented here

provides an efficient implementation of low-delay analysis-by-synthesis speech coding

algorithms. The estimates of memory requirements, clock speed, die size, and power

consumption provide a good idea of the capabilities of this architecture. However, before

fabricating a chip based on this architecture, there is still some work to be done. This

chapter discusses possible future work on the architecture.

The primary weakness of this architecture is that it does not implement the recursive
Levinson-Durbin routines efficiently. The rest of the LD-CELP algorithm is well suited to

the architecture because it is very similar to the LLD-VXC algorithm. However, if the

architecture could be modified to implement Levinson-Durbin recursion more efficiently,

then a complete implementation of LD-CELP (soon to be the CCITT standard at 16 kbitls)

would be practical.

The implementation of other speech coding algorithms on this architecture could be

investigated. Algorithms to consider include forward adaptive approaches and algorithms

with different bit rates.

To determine more accurate timing and power estimates for the architecture, an
extensive simulation may be performed. The VLSI System Tools provide the capability of

simulating a design which was entered as a datapath schematic. The results would clarify

the importance of the timing constraints discussed in the thesis and would provide more

practical estimates of the power consumption than the upper limits presented here.

Additional simulation is required to analyze the performance of the algorithm on the

fixed-point architecture. The issues of precision and scaling affect the overall performance

of a speech coder implemented on a fixed-point processor.

Rather than implementing the algorithm with a low clock rate, both an encoder and

a decoder could be implemented on one chip. Furthermore, the implementation of multiple
coders is conceivable because of the low clock rate required for a single coder. However,

there are several problems with this approach. First, the amount of memory increases

because separate memory must be maintained for each copy of the algorithm. The data

could be swapped between larger external memory and the internal memory but this

technique would require a large overhead of time. Second, independent of the previous

consideration, the time required to run multiple copies of the algorithm does not increase

linearly because of the overhead associated with swapping operating parameters. Third,

the timing constraints due to the chain of adders place critical and severe limits on the clock

rate of the chip. Attempting to implement multiple coders on a single chip would present an

interesting challenge.

References

Texas Instruments Incorporated, "Second-Generation TMS320 User's Guide,"
1987.

P. T. Whitcomb, H. M. Ahmed, "A Custom VLSI Architecture for the CCITT
Wideband Coding Standard," IEEE Journal on Selected Areas in Communications,
Vol. 8, No. 8, pp. 1492-1499, Oct. 1990.

P. D. Schuler, "Implementation Study of a 16 kbitls Speech Coder," B.A.Sc.
Thesis, Simon Fraser University, Dec. 1989.

J. D. Gibson, "Adaptive Prediction for Speech Encoding," IEEE ASSP Magazine,
Vol. 1, No. 3, pp. 12-26, July 1984.

R. M. Gray, "Vector Quantization," IEEE ASSP Magazine, Vol. 1, No. 2, pp. 4-
29, April 1984.

A. Gersho, V. Cuperman, "Vector Quantization: A Pattern-matching Technique for
Speech Coding," IEEE Communications Magazine, Dec. 1983.

V. Cuperman, A. Gersho, R. Pettigrew, J. J. Shynk, J-H. Yao, "Backward
Adaptive Configurations for Low-Delay Vector Excitation Coding," in Advances in
Speech Coding, B. S. Atal, V. Cuperman, A. Gersho, Editors; Kluwer Academic
Publishers, Boston, MA, 1990.

R. Peng, V. Cuperman, "Low-Delay Analysis-by-Synthesis Speech Coding Using
Lattice Predictors," Proc. IEEE Global Telecommunications Conference, Vol. 2,
pp. 951-956, Dec. 1990.

R. G. Pettigrew, "Low-Delay Vector Excitation Coding of Speech at 16 kbit/s,"
M.A.Sc. Thesis, Simon Fraser University, Jan. 1990.

J-H. Chen, "A Robust Low-Delay CELP Speech Coder at 16 kbls," in Advances in
Speech Coding, B. S. Atal, V. Cuperman, A. Gersho, Editors; Kluwer Academic
Publishers, Boston, MA, 1990.

I. A. Gerson, M. A. Jasiuk, "Vector Sum Excited Linear Prediction (VSELP)," in
Advances in Speech Coding, B. S. Atal, V. Cuperman, A. Gersho, Editors;
Kluwer Academic Publishers, Boston, MA, 1990.

W. B. Kleijn, D. J. Krasinski, R. H. Ketchum, "Fast Methods for the CELP
Speech Coding Algorithm," IEEE Transactions on Acoustics, Speech, Signal
Processing, vol. 38, no. 8, pp. 133s1342, Aug. 1990.

VLSI Technology Inc., VLSI Silicon Compilation System Design Manuals, S an
Jose, CA.

P. D. Schuler, R. H. S. Hardy, V. Cuperman, "A Custom VLSI Architecture for
Low-Delay Speech Coding," Proc. ICASSP '91 Conference, May 199 1.

[15] P. D. Schuler, R. H. S. Hardy, V. Cuperman, "Custom versus Standard VLSI
Architectures for Implementing Speech Coding Algorithms," Proc. IEEE Pacific
Rim Conference on Communications, Computers, and Signal Processing, Vol. 2,
pp. 639-642, May 1991.

[16] J-H. Chen, M. J. Melchner, R. V. Cox, D. 0. Bowker, "Real-Time
Implementation and Performance of 16 Kbit/s Low-Delay CELP Speech Coder,"
Proc. ICASSP '90 Conference, pp. 18 1-1 84, 1990.

[17] Texas Instruments Incorporated, "Digital Signal Processing Applications with the
TMS320 Family," pp. 69-168, 1986.

