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Abstract 

In the past, digital signal processing (DSP) algorithms have typically been 

implemented on general-purpose DSP chips. However, the high complexities of modem 

algorithms are pushing the capabilities of these chips to their limits. An alternative solution 

is to design a custom VLSI architecture which exploits the structure of a specific algorithm. 

This thesis presents a custom VLSI architecture for implementing low-delay 

analysis-by-synthesis speech coding algorithms more efficiently than general-purpose DSP 

chips. The criteria used to compare the efficiency of different architectures are the 

performance characteristics of execution speed and memory requirements, and the physical 

properties of die size and power consumption. The architecture is based on a detailed 

analysis of two speech coding algorithms: Low-Delay Code-Excited Linear Prediction, 

which will be the new CCI'IT standard for 16 kbitls speech coding, and Lattice Low-Delay 

Vector Excitation Coding. The required operations for these algorithms were determined 

and the architecture was designed to implement these operations efficiently. 

The custom VLSI architecture consists of two types of arithmetic units: a variable 

number of Adaptive Arithmetic Units (AAUs) connected in parallel, and one Distortion 

Arithmetic Unit (DAU). Each AAU contains an adaptive datapath to perform various 

operations, such as filtering and inner product calculations, on one element (sample) of 

data. The DAU computes the distortion measure required for a vector quantization 

codebook search and determines the minimum distortion value. The number of AAUs is 

optimized for power consumption and chip area. My research shows that an efficient 

configuration for implementing the Lattice Low-Delay Vector Excitation Coding algorithm 

consists of 4 AAUs. This configuration implements the algorithm with an estimated power 

consumption of less than 300 mW at a clock rate of 2 MHz, and an area of 90 mm2; a 

corresponding implementation on a general-purpose DSP chip such as the DSP32C would 

require approximately 1 W of power while operating at a clock rate of 50 MHz. 
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1. An Introduction to VLSI Signal Processing 

Digital signal processing (DSP) algorithms are typically implemented on general- 

purpose DSP chips. Custom architectures and application-specific integrated circuits 

(ASICs) may provide a more efficient implementation of specific algorithms. This thesis 

presents a new custom VLSI architecture for implementing low-delay analysis-by-synthesis 

speech coding algorithms more efficiently than general-purpose DSP chips. This chapter 

provides an introduction to past and present implementation solutions. 

1.1 The Need for Custom VLSI Architectures 

In the past, most digital signal processing @SP) algorithms have been implemented 

on general-purpose DSP chips, such as the TMS320C25 [I]. This chip operates at a clock 

speed of 40 MHz. The instruction cycle time is 100 ns, allowing 10 million instructions to 

be carried out each second. One floating point operation (flop), such as a multiply- 

accumulate instruction, may be performed in one cycle if these instructions are repeated; 

therefore, the maximum throughput of this chip is 10 Mflops (million flops). Other chips 

have similar specifications. However, the complexities of modern algorithms often exceed 

10 Mflops, and are pushing the capabilities of these chips to their limits. In particular, one 

of the speech coding algorithms analyzed in this thesis (LD-CELP) has an encoder 

complexity of 9 Mflops and a decoder complexity of 3.4 Mops;  therefore, it would not be 

possible to implement both an encoder and a decoder on a single chip. 

One method of increasing computational power is to connect several DSP chips in 

parallel. However, most chips were not designed specifically for such connections, and 

interconnection problems arise. The overhead associated with sending data off-chip often 

makes such solutions unfeasible. This situation is beginning to change, though. Certain 

general-purpose chips, such as the new TMS320C40, are being designed especially for 

parallel processing applications. 

An alternative solution is to design a custom VLSI architecture for a specific 

algorithm, such as speech coding. This architecture may use parallelism and pipelining to 
increase throughput by exploiting the structure of the algorithm. By using processing 

elements in parallel on a single chip rather than distributing the elements over several chips, 

inter-element communication is greatly simplified. Application-specific architectures have 

already been designed for applications such as wideband audio coding [2]. 



The design of application-specific VLSI architectures for digital signal processing, 

and the use of computer-aided design (CAD) tools for VLSI design were discussed in my 

Bachelor's thesis [3]. The results of that thesis showed that a custom architecture is 

required to implement the low-delay speech coding algorithms efficiently. 

1.2 A Proposed Custom Architecture 

This thesis proposes a custom VLSI architecture for implementing speech coding 

algorithms more efficiently than general-purpose DSP chips. To compare the efficiency of 

various architectures, certain criteria are needed to evaluate the performance. These criteria 

include performance characteristics such as speed of execution and program and data 

memory requirements, and physical properties such as die size and power consumption. 

The architecture discussed here implements the LLD-VXC algorithm with a slower clock 

rate and lower power consumption than general-purpose DSP chips, and requires a 

comparable amount of memory and die area. 

For my Bachelor's thesis, I compared the implementation of a small section of the 

LLD-VXC speech coding algorithm on various architectures, including general-purpose 

DSP chips and custom architectures. Both scalar and vector processors were considered. 

The results show that a custom vector architecture provides an implementation which 

requires the fewest cycles and the least number of instructions. This thesis follows up on 

those results. 

First, I broadened the scope of my analysis to include the entire LLD-VXC 

algorithm; as well, I studied other speech coding algorithms, including LD-CELP and 

VSELP. I determined what hardware structures were necessary to implement these 

algorithms efficiently. Next, I reviewed the previously designed architectures and 

considered the implementation of the other algorithms on these architectures. The designs 

were modified as required and a final architecture was developed. 

Estimates of the power consumption and chip area were obtained by using the VLSI 

System tools available at MPR Teltech. The various blocks of the architecture were 

compiled to a layout. The estimates were analyzed to see if the design was feasible and the 

lirni ting factors for a practical design were determined. 



1.3 A Guide to the Thesis 

The remainder of the thesis is organized as follows: Chapter 2 describes the speech 

coding algorithms which were analyzed to develop the new architecture, including a 

summary of their complexities; the mapping of these algorithms onto hardware structures is 

discussed in Chapter 3. The complete custom architecture is presented in Chapter 4, and its 

control system is described in Chapter 5. Chapter 6 discusses the implementation of the 

LLD-VXC algorithm on the architecture, and Chapter 7 discusses the efficiency of this 

implementation. The suitability of the architecture for other algorithms, including LD- 

CELP, VSELP, and the Fast Fourier Transform, is considered in Chapter 8. Finally, 

Chapter 9 presents the conclusions of the thesis and Chapter 10 suggests some areas of 

future research. 



2. The Speech Coding Algorithms 

Speech coding consists of digitizing the speech signal and eliminating the 

redundancies from the signal so that a lower bandwidth is required to transmit the digital 

voice data. There are currently CCIm standards for transmission rates of 64 kbit/s (PCM) 

and 32 kbit/s (ADPCM); a 16 kbit/s standard is under consideration. This chapter briefly 

discusses several common techniques of speech coding, including analyses of the speech 

coding algorithms which were studied to develop the custom architecture. 

2.1 Techniques of Speech Coding 

The most straight-forward speech coding technique is pulse-code modulation 

(PCM). The voice data is sampled at 8 kHz, and each sample is quantized to 8 bits; 

therefore, a transmission rate of 64 kbit/s is required. A logarithmic quantizer is used 

instead of a linear quantizer, allowing finer quantization of low-amplitude signals. This 

approach results in toll-quality speech (acceptable for commercial telephony); it is desirable 

to maintain this quality while reducing the transmission rate. 

When a predictor is added to the coder, the resulting system is known as 

Differential PCM (DPCM). The current sample of the speech signal is predicted, based on 

previous input samples, and the prediction subtracted from the actual input. The difference 

signal is then transmitted. Because the difference should be smaller than the input, only 4 

bits are used to digitize the signal; the resulting transmission rate is 32 kbitls. Further 

modifications are to adapt the coefficients of the predictor to maintain a near-optimal 

predictor at all times, and to adapt the quantizer, the system is then called Adaptive DPCM 

(ADPCM) [4]. The quality of current ADPCM systems is nearly as high as that of PCM, 

with half the transmission rate. 

Vector quantization [5,6] may be used to further reduce the transmission rate to 

16 kbit/s and below. The samples of the input signal are grouped into vectors; each vector 

is compared to all codevectors stored in a codebook, and the optimal codevector, based on 

a distortion measure such as least-square distance, is transmitted. Because there are far 

fewer codevectors than actual input vectors, fewer bits are required to transmit the data. 

Again, when the difference (residual) between the input and a predicted value is vector 

quantized rather than the input itself, fewer codevectors are required for accurate 

representation and lower bit rates are achieved. 



An important class of speech coding algorithms is based on linear prediction in  an 

Analysis-by-Synthesis configuration, which is sometimes called Code Excited Linear 

Prediction (CELP). The basic structure of an Analysis-by-Synthesis speech coder includes 
an excitation codebook and a synthesis filter, as shown in Figure 1. Input speech samples 

are grouped into vectors and codebook samples are grouped into codevectors. Each 

codevector is passed through the synthesis filter and the filtered codevector is compared to 

the input vector using a distortion measure such as weighted least-squared distance. The 

index of the codevector resulting in the smallest distortion is then transmitted. 

l n put 

Index Selection SJ 
Transmitted lndei 

Synthesis Filter Codebook 

Figure 1-Basic Configuration of a Typical 
CELP Speech Coder 

* 

Other filters, such as a pitch predictor and a weighting filter, may also be included 

in the coder. A pitch predictor exploits the periodicity of voiced speech by estimating the 

pitch period of the input and using samples from the previous period to predict the current 

value; this filter is connected in series with the synthesis filter. A weighting filter reduces 

the amount of perceived noise by exploiting the acoustic masking properties of the human 

ear; using this filter in the index selection results in the weighted least-square distortion 

measure. 

The two most common implementation structures for the filters are the direct form 

and the lattice structure [4]. The direct form has the advantage that the filter coefficients are 
linearly related to the transfer function. However, it also has some important 

disadvantages: adding one stage to a direct form implementation requires recalculation of 

all filter coefficients, the coefficients are particularly sensitive to quantization, and it  is 

difficult to check for filter stability. 

The lattice filter overcomes these disadvantages. The reflection coefficients which 

specify a lattice structure are less sensitive to quantization effects. When a stage is added to 

the filter, the coefficients of the previous stages do not change. Also, the check for stability 

is much simpler-the coefficients must all be less than 1. In fact, direct form coefficients 



are often converted to reflection coefficients to check for stability. For these reasons, filters 

are often implemented using a lattice structure. On the other hand, a lattice structure is 

more complex than a direct structure and each stage of a lattice filter requires two 

multiplications rather than one. 

The adaptation routines fall into one of two categories: forward adaptive or 
backward adaptive [4]. Forward adaptive routines adapt the predictors based on the actual 

input signal. Because this signal is not available at the receiver, the predictor parameters 

must be coded and transmitted to the receiver. Typically, block adaptation is used; that is, a 

block of the input signal is analyzed to determine the optimal parameters, resulting in a 

significant algorithmic delay. 

On the other hand, backward adaptive routines adapt the predictors based on the 
reconstructed signal, which is available at both the transmitter and the receiver. Therefore, 

the entire data rate is available for transmission of the coded error signal. Typically, 

recursive adaptation is used, that is, the adaptation proceeds on a sample-by-sample basis, 

using a gradient algorithm to correct the predictor parameters after each sample. As a 

result, the algorithmic delay is negligible and backward adaptive routines may be used in 

low-delay algorithms. The higher available data rate compensates for the fact that quality is 

degraded by adapting on a noisy signal: For a fixed overall transmission rate, forward and 

backward adaptation result in nearly equivalent speech quality. 

Filter coefficients are not necessarily updated every input vector, even if they are 

adapted that frequently. The coefficients often do not change significantly with each 

vector. Therefore, a significant complexity reduction is achieved by computing new 

estimates of the coefficients on a vector-by-vector basis but replacing the old coefficients 

only every few vectors. 

An important point to note is that the encoder for a backward-adaptive system must 

include a simulated decoder because the reconstructed signal used to adapt the predictors at 

the decoder must also be used at the encoder. Therefore, the decoder is just a subset of the 

encoder, it need not be specified separately, and it has a much lower complexity than the 

encoder. The decoder, and hence the simulated decoder, includes the excitation codebook 

and the synthesis filter and its adapter. 

Three algorithms were studied in detail to develop the custom architecture: Lattice 

Low-Delay Vector Excitation Coding (LLD-VXC), Low-delay Code-Excited Linear 

Prediction (LD-CELP), and Vector S um Excited Linear Prediction (VSELP). These 

algorithms are now discussed. 



2.2 The 16 kbitls LLD-VXC Algorithm 

The 16 kbitls Lattice Low-Delay Vector Excitation Coding (LLD-VXC) algorithm 
[7,8] has the CELP structure shown in Figure 1. It also contains a pitch predictor and a 

perceptual weighting filter. A more detailed block diagram of the encoder is shown in 

Figure 2. This section discusses primarily the encoder; the decoder consists of a subset of 

the operations required for the encoder. 

INPUT SPEECH 

- 
CODEBOOK 

Figure 2-Block Diagram of LLD-VXC 

The LLD-VXC algorithm operates as follows: For each input vector the codebook 

is searched; that is, each excitation codevector in turn is scaled by a gain and filtered by a 

--) G 

long-term filter (pitch predictor) and a short-term filter. Each filtered codevector is then 

compared to the input vector. The distortion (difference) vector is weighted to account for 

perceptual properties, and the index of the codevector which results in the minimum 

A 

distortion is transmitted by the coder. 

The vector dimension for LLD-VXC is 4. At a sampling rate of 8 kHz and a 

INDEX 
SELECTION 

transmission rate of 16 kbitls, each sample must be encoded using 2 bits, or equivalently, 

LAlTICE 
SYNTHESIS 

FILTER 
PITCH 

PREDICTOR 

each vector using 8 bits; therefore, the codebook contains 28 = 256 codevectors. The least- 

- 

4 
I I 

squared distortion measure is used to compare filtered codevectors to input vectors: 
v 

d = Ilx-yll' = C(xryi)2 (1) 
i=l 

4 4 , 

where V is the vector dimension, x is the weighted input vector, and y is the current 

WEIGHTING 
FILTER 

filtered codevec tor. 



The synthesis filter is an adaptive 20th-order lattice filter. It is adapted using a 

backward recursive gradient algorithm. Because LLD-VXC is a backward-adaptive 

system, it can meet the CCITI' low-delay criterion for 16 kbitls speech coding: the 
processing delay is less than 5 ms. The pitch predictor has three taps: 

where P-l, Po, and p+l are the predictor coefficients and L is the pitch period. The 

perceptual weighting filter is a 10th-order pole-zero direct-form filter; however, i t  is 

adapted based on the input signal with a lattice adapter. Filter coefficients are updated 

every 12 vectors. Also, a 10-pole non-adaptive gain predictor is present. The operation of 

the filters is discussed in more detail in the next chapter. 

An important feature of this algorithm is that lattice filters are used. As a result, the 

stability check has a very low complexity. As well, there are important implications for the 

design of a hardware structure because the architecture must be able to implement both 

lattice and direct-form filtering operations. 

The algorithm provides several complexity reductions over the CELP structure. 

The most notable is that the response to the synthesis filter is separated into the zero-state 

response (ZSR) and the zero-input response (ZIR): 

The ZSR is due only to the input signal to the synthesis filter, which is the excitation 

codevectors. Because the codevectors never change and the synthesis filter coefficients are 

updated only every 12 vectors, the ZSR need be computed only when the filter coefficients 

change. On the other hand, the ZIR is based on the previous filter state, which is 

independent of the input codevector. As a result, the ZIR need be computed only once per 

vector rather than once per codevector. 

A second complexity reduction is that the weighting filter is moved from the output 

of the adder to the input branches of the adder. On the path of the input speech, the input 

vector is weighted before being compared to the filtered codevector. On the codevector 

path, the weighting filter is combined with the synthesis filter, resulting in a weighted, 

filtered codevector. 

A detailed analysis of the computational complexity of the Low-Delay VXC 

algorithm with a 2-pole 6-zero synthesis filter may be found in [9]. The total complexity of 

the algorithm is shown to be 4.6 Mflops. By changing the synthesis filter to a 20th-order 

lattice filter, the complexity of the algorithm is increased, as demonstrated by my analysis 



as shown in Table 1. Here, a floating-point operation (flop) is defined as a multiplication 

and an accumulate. 

Table 1--Complexity Analysis of LLD-VXC 

-tion 
Perceptual weighting filter 

Input weighting 
Adapt weighting filter coeffs 
Stability check, convert to LPC coeffs 

Gain predictor 
Predict gain 
Adapt gain predictor coeffs 

Pitch predictor 
Pitch prediction 
Pitch tracking 
Adapt pitch predictor coeffs 
Update pitch period 

Computation of ZIR vector 
Synthesis and weighting filter 
Adapt filter coeffs 
Stability check 

Codebook search module 
Impulse response vector computation 
Filter codevectors 
Calculate energy 
E m r  calc & best index selection 

Simulated decoder 
Filter memorv uDdate 

The total complexity of the LLD-VXC algorithm is 6.4 Mflops. The codebook 

search requires the most computational power (2.6 Mflops), which indicates that this 

section must be implemented very efficiently for an efficient implementation of the en tire 

algorithm. Other high-complexity sections are the computation of the pitch period and the 

adaptation of the filter coefficients. 

2.3 The 16 kbitls LD-CELP Algorithm 

The 16 kbitfs Low-Delay Code Excited Linear Prediction (LD-CELP) algorithm 

[lo] is similar in structure to UD-VXC and results in comparable voice quality. A block 

diagram of the encoder is shown in Figure 3. It is being considered for standardization at 

16 kbit/s by the CCITI'. 
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CODEBOOK 
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Figure %Block Diagram of LD-CELP 

The vector dimension for LD-CELP is 5, allowing 10 bits for coding each vector. 

To reduce the codebook search complexity, the codebook is divided into a shape codebook 

containing 128 codevectors, requiring 7 bits to encode, and a gain codebook containing 8 

--) 

gain values, requiring 3 bits to encode. To produce the final codevector, the chosen shape 

SYNTHESIS 
FILTER - 

codevector is multiplied by the chosen gain value. The least-squared distortion measure is 

4 INDEX 
SELECTION 

again used to compare the input to the filtered codevectors. The codebook search is the 

same in principle as that in LLD-VXC, with the exception of the separate gain codebook: 
v 

d = Ilx-GyII' = ~ ( x ~ - G ~ ~ ) '  (4) 
i=l  

- 

where V is the vector dimension, x is the weighted input vector, y is the current filtered 

WEIGHTING 
FILTER 

codevector, and G is the current gain value. 

The synthesis filter is a 50-pole direct-form filter. There is no pitch predictor in this 

system; therefore, the synthesis filter must be significantly longer than when a pitch 

predictor is present, in order to take the periodicity of the input speech into account. As in 

LLD-VXC, a ZIR-ZSR decomposition provides a significant complexity reduction. The 

perceptual weighting filter is a 10th-order pole-zero filter. All filter coefficients are updated 

every 4 vectors. Backward adaptation again results in a processing delay of less than 5 ms. 

A 10-pole gain predictor is present; its coefficients are updated every vector. 

The LD-CELP algorithm uses Levinson-Durbin recursion to adapt the coefficients 

of all filters. The input signal is windowed and used to estimate the autocorrelation 

function on a vector-by-vector basis. Then, at each coefficient update period, the optimal 

filter coefficients are computed recursively, based on the autocorrelation function. Because 

the coefficients are calculated explicitly rather than being estimated, and because of the long 

synthesis filter, the complexity of the adaptation routines is much higher than those of 



LLD-VXC. Also, the recursive nature of the routine makes its implementation on a parallel 

and pipelined architecture inefficient. Problems with the implementation of LD-CELP are 

discussed further in Chapter 8. 

I performed a detailed analysis of the computational complexity of the LD-CELP 

encoder. The results are shown in Tables 2 and 3, the first listing the total complexity of 

the major sections of the algorithm, the second giving a detailed breakdown of the analysis. 

Table 2--Summary of Complexity of LD-CELP 

Adapter for synthesis filter 
Adapter for vector gain 
Perceptual weighting filter 
Computation of ZIR vector 
Codebook search module 

SectionofAlgorithm . . 
1 

Adapter for perceptual weightmg 

The total complexity of the LD-CELP encoder is 9.0 Mflops, significantly higher 

than that of LLD-VXC. As mentioned in the previous chapter, the decoder consists of the 

excitation VQ codebook, the gain predictor and its adaptor, and the synthesis filter and its 

Complexity (Mflops) - 0.427 

adapter. The complexity of the decoder is approximately 3.4 Mflops, much lower than that 

of the encoder. 

Once again, the codebook search has the highest complexity (3.7 Mflops), and the 

need for an efficient codebook search architecture is seen. The codevector filtering 

operation also requires a large amount of computation. As well, the adapter for the 

synthesis filter also has a higher complexity than that of LLD-VXC. Because the 

Levinson-Durbin algorithm is used for the adaptation, this high complexity may present 

some difficulty in the overall implementation of this algorithm. 

Except for the adaptation routines, implementation of LD-CELP is nearly identical 

to that of LLD-VXC. Therefore, most of the analysis in the following chapter applies to 

both algorithms. 



Table 3-Detailed Complexity Analysis of LD-CELP 

~ d a ~ t e r h  
Recursive windowing - 
Levinson-Durbin 
Weighting filter coeff calc 

Adapter for synthesis filter 
Recursive windowing 
Levinson-Durbin 
Bandwidth expansion 

Adapter for vector gain 
RMS & log calc 
Recursive windowing 
Levinson-Durbin 
Bandwidth expansion 
Log-gain linear predictor 
Miscellaneous 

Perceptual weighting filter 
Computation of ZIR vector 

Synthesis filter 
Weighting filter 
VQ target vector comp 

Codebook search module 
Impulse response vector calc 
Shape codevector conv & table 
VQ target vector nom 
Time-reversed convolution 
Error calc & best index selection 

Simulated decoder 
Excitation VQ codebook 
Gain scaling unit 
Filter mem& update 

2.4 The 8 kbiUs VSELP Algorithm 

The 8 kbit/s Vector Sum Excited Linear Prediction (VSELP) algorithm [ l  11 is 

significantly different from the other two algorithms. It was developed for mobile 

communications and is the TIA standard for digital cellular communication. The overall 

rate of transmission is 13 kbit/s, of which 8 kbit/s is used for speech coding and 5 kbitls 

for error control; I analyzed only the speech coding section. This algorithm is also based 

on the CELP class of coders; however, it uses forward adaptation and a large vector 

dimension of 40, and therefore does not meet the low-delay criterion. Most importantly, it 

uses a structured codebook rather than a trained codebook to reduce the complexity of the 

vector quantization operation. 
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Figure 4--Block Diagram of VSELP 
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Whereas the approach to the LLD-VXC and LD-CELP algorithms is fairly intuitive, 

the approach to VSELP is much more mathematical. The encoder consists of three 

codebooks, one adaptive codebook for long-term prediction, which replaces the pitch 

prediction filter, and two excitation codebooks. The three codebooks are searched 
sequentially. The long-term codebook implements one-tap pitch prediction: 

4 

where p is the long-term filter coefficient and L is the lag (pitch period). The codebook 

stores the past values of the reconstructed speech signal; for different possible lags, 

different vectors are retrieved. The codebook is searched to determine the optima1 lag; this 

operation is equivalent to computing the pitch period in LLD-VXC. 

The excitation codebooks, on the other hand, are highly structured to simplify the 

search procedure; each codevector ui(n) is constructed from M=7 basis vectors v,(n) using 

WEKiHTING 
FILTER 

where &,,=+I if bit m of codeword i is 1, and &=-I if bit m of codeword i is 0. That is, 

4 

each codevector is constructed as the sum of the M basis vectors where the sign of each 

basis vector is determined by the state of the corresponding bit in the codeword (index). 



Each excitation codebook contains 27=128 codevectors, resulting in a total of 214 possible 

codevectors in all. 
The high complexity of performing an exhaustive search with an unstructured 

codebook of this size is prohibitive; however, the use of two structured codebooks and of 

an efficient mathematical method for searching the codebooks makes the VSELP approach 

quite practical. The long-term codebook is searched first, to determine the optimal lag and 

select a vector consisting of past reconstructed speech samples. Then the first excitation 

codebook is orthogonalized from the selected past-speech vector. This operation has a low 

complexity because only the basis vectors need to be orthogonalized from the selected 

vector; also, because the codevector filtering is a linear operation, only the basis vectors 

need to be filtered. This codebook is searched to determine the optimal codevector. Next, 

the second excitation codebook is orthogonalized from both previously chosen vectors, 

filtered, and searched. Finally, the gains associated with each codebook are jointly 

optimized. 

The advantages of the VSELP approach include an extremely efficient codebook 

search procedure, low codebook storage requirements, more robustness to channel errors 

than other types of codebooks, and efficient joint optimization of the codeword and the 

long-term predictor coefficient. A problem with using multiple codebooks is that the gains 

must be optimized jointly with the codevectors for optimal performance, which would 

result in an impractically high complexity. By optimizing the gains jointly with each other 

but independently of the codevectors, the results are suboptimal and the performance is 

degraded slightly but the complexity is reduced considerably. The gains are jointly 

quantized using another vector quantization operation. 

The synthesis filter is a 10-pole filter, and the perceptual weighting filter is a 10th- 

order pole-zero filter. Additionally, the weighting filter W(z) is related to the synthesis 

filter A(z) in such a way that combining the two results in a simpler filter: 



The filter coefficients are updated every 4 vectors using a lattice adaptation technique. 

Because this algorithm is forward adaptive, not only the V Q  index but also the filter 

parameters, long-term lag, and gain parameters must be transmitted to the receiver. 

I also performed a detailed analysis of the computational complexity of the VSELP 

algorithm; the results are shown in Table 4. Because this algorithm has a data rate of 8 

kbit/s, half that of the other algorithms discussed, one would expect that the complexity 

would be significantly higher, however, the results show that this is not the case. In fact, 

the complexity is comparable to that of LLD-VXC. The low complexity is a result of the 

highly specialized codebooks used. 

Table 4-Complexity Analysis of VSELP 

The total complexity of the VSELP encoder is 6.6 Mflops. The decoder consists of 

the excitation codebooks and a synthesis filter, as for the other algorithms; it also contains a 

pitch prefilter and a spectral postfilter. The prefilter is used to enhance the periodicity of the 

excitation signal; the postfilter is used to enhance the perceptual quality of the reconstructed 

speech. The complexity of the decoder is only 0.4 Mflops, much lower than that of the 

encoder. 
The complexity of this algorithm is not distributed in the same way as that of the 

other algorithms. The excitation codebook search complexity is much lower because a 

structured mathematical search is used instead of an exhaustive search. As well, the 

codevector filtering operation has a low complexity because only the basis vectors need to 

be filtered. On the other hand, the search of the long-term lag codebook has a high 

complexity because this codebook is not structured. The gain coefficient vector 

quantization also involves an unstructured search. 

The custom architecture presented in this thesis is based primarily on the LLD-VXC 

algorithm. Chapter 8 discusses the implementation of the LD-CELP and VSELP 

algorithms on the new architecture and shows that certain sections of these algorithms are 

also implemented efficiently whereas other sections are not well suited to the architecture. 



3. Mapping the Algorithms onto Hardware 

The LLD-VXC and LD-CELP algorithms are very similar in structure, the only 

significant difference being the adaptation routines. Therefore, both of these algorithms 

were considered when developing the new architecture. 

The most frequently used operations in the algorithms include filtering, magnitude- 

squared, inner product, autocorrelation, and convolution computations. Each of these may 

be expressed as a sum of products. Typically, these sums of products can be expressed in 

a vector format, so that the products can be computed in parallel. Therefore, a parallel 

architecture would appear to meet the requirements of these algorithms. 

The complexity analysis of the algorithms shows that the codebook search has the 

highest computational complexity. Therefore, an efficient way of implementing this routine 

is also desirable. This chapter discusses the mapping of the required operations onto a 

VLSI architecture. 

3.1 The Filtering Operations 

The most commonly used operation in the algorithms is filtering, including lattice, 

pitch prediction, and pole and zero direct-form filtering. These operations are similar in 

structure and may all be vectorized; the products may be computed in parallel. 

A basic inner product operation may be written in vector format as 

where x and y are vectors of dimension n. The direct-form filtering operation may then be 

written as 

where p is the number of poles, z is the number of zeros, and xrev and yrev are the vectors 

x and y with time-reversed indices. Long-term prediction, based on the pitch period, is 

also implemented as a direct-form f~ltering operation; however, the delay is larger-instead 

of using the most recent samples in the inner product, it uses samples from the previous 

pitch period.. 



where L is the pitch period and q is the number of poles. Typically, q=l; that is, there are 

three poles in the predictor. The inner product operation can be implemented with a basic 

multiply-accumulate structure, as shown in Figure 5. 

Figure %The Basic Multiply-Accumulate Structure 

By using several of these structures in parallel, it is possible to reduce the execution 

time at the expense of the chip area. The power consumption can be expected to remain 

relatively constant. For example, by doubling the number of such structures, the required 

power per cycle is approximately doubled, but the number of cycles required to implement 

the operation is approximately halved. The exact results depend on the overheads 

involved. A parallel multiply-accumulate structure with four parallel multipliers is shown 

in Figure 6. 

Figure 6-A Parallel Multiply-Accumulate Structure 



For the fastest execution of the operation, one multiplier would be provided for 

each pole and zero in the operation. The multiple-input adder may be implemented as a tree 

of two-input adders. The penalty paid is that the propagation delay through the datapath is 

increased because of the chained adders. The z-I delay required by the filtering operations 

is accomplished by chaining the data registers together, the input data is passed through the 

resulting delay line. This structure is the direct form implementation of the filtering 

operation. 

There is a slight difference between filtering the poles and the zeros. Zero filtering 

does not require the output to be computed before the next computation can be begun 

because each output depends only on previous and current inputs. The same is not true for 

pole filtering. The computation of one output sample in this case is based on the previous 

output sample. As a result, each output sample must be fed back to the input. Figure 7 

shows the feedback required to implement direct-form filtering with poles. 

Figure 7-Direct-form Filtering with Poles 

This fact has a serious impact on the pipelineability of the architecture. In a 

structure where there are fewer multipliers than zeros, partial sums may be computed by 

filtering all input data with each subset of the zeros, then summing the results. Therefore, 

the filter coefficients need only be replaced after all input data has been filtered by each 

subset. However, when there are fewer multipliers than poles, the output must be 

computed for each input sample, requiring the filter coefficients to be replaced for each 

input sample. As a result, pole filtering has a higher overhead than zero filtering and will 

be executed more slowly. 



The convolution sum may also be expressed as an inner product: 
N 

z(n> = Cx(j)y(n-j) = xTyrev (1  2 )  
j=1 

This operation differs from the filtering operations only in that the function y(n) is often not 

defined for n<O; where such indices are required, the function is assumed to be zero, and 

multiplications with zero need not be computed. As a result, the number of multiplications 

increases with the index n. This fact is advantageous when implementing the operation on 

a single multiplier structure because it is not necessary to compute N multiplications for 

each index. However, when a parallel multiply-accumulate structure is used, this 

advantage no longer exists. With four multipliers, for example, the same length of time is 

required to compute one, two, three, or four multiplies. 

Lattice filtering involves a different computation: 

where el(n) is the input and e ~ + l ( n )  is the output of an M-stage filter. These recursive 

equations are not as simple to vectorize because of the interdependence among vector 

components; however, the products for each stage may still be computed in parallel if the 

flow of data is adapted from the standard inner product calculation. 
The lattice filtering operation may be implemented in a number of ways. One 

method is to compute the forward and backward residuals separately, as shown in Figure 

8. This method implements Equations 13 directly. First, the multiplications in Equation 

13a are performed in parallel; the forward residuals are calculated as a sum of the products. 

Next, the multiplications in Equation 13b are performed in parallel; the backward residuals 

are calculated by adding the backward residuals from the previous iteration. This method 

has the advantage that the datapath is similar to that of the other filtering operations. 



Figure &Lattice Filtering Based on Recursive Equations 

A second method is to compute one stage of the filter, including forward and 

backward residuals, simultaneously. This method requires implementing the cross- 

connections shown in Figure 9. These connections are more natural to a lattice 

implementation than the previous method; however, they also have the disadvantage that 

the datapath differs significantly from other filter operations; in particular, only two 

multiplications can be performed in parallel. The first method will be used to implement the 

lattice filtering operations. 

Figure %Lattice Filtering Based on Cross-Connection Structure 

The autocorrelation function is estimated in the pitch prediction section of the LLD- 

VXC algorithm, where the maximum value of the autocarrelation function is determined in 

calculating the new pitch period, and in the adaptation routines of the LD-CELP algorithm, 

where the Wiener-Hopf equations are solved in calculating the optimal filter coefficients. 

The estimate of the autocorrelation function is computed by multiplying a signal by a 



delayed version of itself, and is therefore also expressed as a sum of products. The same 

structure that is used for the filtering operations may be used; the filter coefficients are 

replaced by the input signal, and the delay line allows the function to be estimated for 

different delays. As a result, all of the above operations may be performed by one type of 

arithmetic unit, or several of these units in parallel, providing that the unit can adapt its 

datapath as required. 

3.2 The Codebook Search Operations 

Another very important section of the algorithm is the codebook search. The 

filtered codevectors must be compared to the input vector, and the codevector which results 

in the smallest distortion (distance from the input vector) must be remembered. Therefore, 

the codebook search involves two stages: computing the distortion measure and comparing 

the result to the minimum distortion value. 
The distortion measure may be computed in one of several ways, each of which 

involves inner product calculations [12]. For example, the weighted least-square distance 

may by written as 

where x is the weighted input vector and y is the filtered codevector. Each of the three 

terms in this computation may be written as an inner product. Additionally, some 

algorithms, such as LD-CELP, split the codebook into shape and gain values; in this case 

the distortion measure must take the gain G into account: 

Now the inner products must be scaled by the appropriate values. 

Not all three inner products must be calculated in order to compare distortion 

values, however. The weighted input vector x remains constant throughout the codebook 
search. As a result, the energy of this vector, 11x112, also remains constant. Only the 

relative magnitude of the distortion values is of interest because the object of the codebook 

search is to find the minimum distortion; therefore, the energy of the input vector need not 

be computed. The number of inner products required is thus reduced to two. 

Furthermore, the codevectors are constant and the synthesis filter coefficients are updated 

only every few vectors; therefore, the energy of the filtered codevectors can be 

precomputed when the filter coefficients are updated. Only one inner product need be 

calculated for each distortion computation. 



The magnitude squared terms and the inner product are computed similarly to the 

filtering operations described above; however, the codebook search must also determine the 

minimum distortion value, which is a completely different type of operation. Each 
distortion value must be compared to the present minimum distortion value; if the new 

value is smaller, then it replaces the minimum value. This operation requires a structure 

like the one shown in Figure 10. 
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Figure 1 k T h e  Distortion Comparison Structure 

This structure could further simplify the implementation of the distortion 

computation by including multipliers to scale the inner product and the codevector energy 

by the gain values as required, and an adder to compute the final distortion measure. This 

computation also differs from the basic filtering operations. 

3.3 Implementing the Operations 

A detailed analysis of several architectures, including both standard DSP chips and 

custom architectures, for implementing the filtering operations is discussed in [3]. The 

results show that a custom parallel architecture is the most promising structure. The 

discussion in the previous section also indicates that a parallel architecture may provide an 

efficient implementation of the filtering operations. 

The architectures for implementing the various types of filtering operations are 

nearly identical, with the datapath varying slightly for different functionalities. Therefore, 

the same processing elements may be used and the datapath varied, to create an architecture 

with an adaptive datapath. The architecture shown in Figure 11 provides a great deal of 

functionality with a minimum of hardware. 

An efficient structure for implementing the codebook search operations includes 

both the multipliers and adder required for the distortion computation and the comparator 

required for the distortion comparison. 



Figure 1 1-An Adaptive Structure for Filtering Operations 



4. An Adaptive VLSl Architecture 

The analysis in the previous chapter shows that two types of arithmetic units are 

required in the architecture. One type of unit performs all the necessary filtering 

operations, including lattice, pitch prediction, and pole and zero direct-form filtering. The 

flow of data through this unit varies for the different types of filtering; therefore, it must 

contain an adaptive datapath and will be called the Adaptive Arithmetic Unit (AAU). The 

second type of unit implements the codebook search, which is not performed efficiently by 

the AAUs. Its main task is to compute and compare distortion values; therefore, it wi 11 be 

called the Distortion Arithmetic Unit (DAU). This chapter describes these units in detail. 

4.1 The Adaptive Arithmetic Unit 

The AAU performs all the necessary filtering operations. These operations are 

similar in structure and may be written as a vectorized sum of products. Pole and zero 

direct-form filtering computations require a slightly different flow of data. The zero 

coefficients are multiplied by the previous input samples, whereas the pole coefficients are 

multiplied by the previous output samples; therefore, there must be a means of routing the 

output sample back to the input. Lattice filtering involves a different computation, but it 

still has a similar structure. These recursive equations are not as simple to vectorize 

because of the interdependence among vector components; however, the products for each 

stage may still be computed in parallel if the flow of data is adapted from the standard inner 

product calculation. 

An AAU is shown in Figure 12. It consists of three pipelined stages: load, 

execute, and store. The processing elements in the execute stage, a multiplier and an adder, 

implement the multiply-accumulate required for all filtering operations. The rest of the unit 

implements an adaptive datapath which allows different flows of data through these 

elements. Although all standard DSP chips include multiplexers to load registers from 

different sources, the datapath in this arithmetic unit actually adapts to the requirements of 
the various filtering operations; the adaptation is discussed further in Chapter 6. This 

configuration allows varied functionality with a minimum of hardware and allows a faster 

execution of the algorithm than does a general-purpose DSP chip. 



Figure 12 - Adaptive Arithmetic Unit (AAU) 

The load stage contains two registers which provide the input to the multiplier; they 

are called the data register and the coefficient register. The names refer to the standard 

filtering operation which is most common-an AAU implements a filter tap, multiplying a 

data value by a filter coefficient. The data register may be loaded either from local memory 
or from a previous AAU in a chain, thereby implementing a delay line. Furthermore, the 

memory location may be in ROM, to access a codevector component, or in RAM, to access 

a temporary vector component. The coefficient register is always loaded from local 

memory. Separate data and coefficient memories allow these two load operations to be 

performed simultaneously; memory is discussed further in the following section. 

The execute stage consists of a multiplier and an adder. One input to the multiplier 

always comes from the data register. The other input may come either from the coefficient 

register, to implement a filter tap or similar operation, or from the data register as well, to 



implement a magnitude-squared operation. The product is one input to the adder. If only 

the product is required, then the second input is zero; if a sum of products is to be 

calculated, then the second input is the partial sum from a previous AAU in a chain. A 

third possibility is required to implement the backward-residual computation for lattice 

filtering. In this case, a data value must be added to the product; therefore, another 
register, DATA2, is connected between the data register and the adder. 

The store stage stores the resulting sum in local memory if required. If a sum of 

products is being computed, only the final sum in the chain must be stored. A shifter 

allows the data value to be stored with any required precision. 

Several of these units may be connected in parallel. Vector operations are then 

implemented by performing the calculations on each component simultaneously. Both the 

input data values and the output sums are chained together, providing a unidirectional data 

transfer. The data value chain implements a delay line; the sum chain implements a sum of 

products. When several AAUs are chained together, computing the sum of products 

requires time for one multiply, because each multiply is computed in parallel, and for one 

addition per AAU, because the additions are computed sequentially. Therefore, the 

required clock rate plays an important role in determining how many AAUs can be 

connected in the architecture. The performance results in Chapter 7 show that at the 

required clock rates the propagation delay through the sum of products structure is 

sufficiently short. Intuitively it would seem that an efficient solution would be to use one 

AAU for each vector component; the performance results show that this is indeed the case. 

4.2 The Distortion Arithmetic Unit 

The DAU computes and compares the distortion values required in the codebook 

search. The magnitude-squared terms (codevector energy) and the inner product of the 

distortion computation may all be computed by AAUs; however, the codebook search must 

also determine the rninimum distortion value, which the AAU cannot do efficiently. The 

DAU computes the least-square distortion between the codevector and the input vector 

based on the result of the inner product calculations and compares the distortion values to 

determine the minimum. 

A DAU is shown in Figure 13. It consists of two pipelined stages: the distortion 

calculation and the distortion comparison. The structure of the DAU is more rigid than that 

of the AAU, allowing the datapath to vary only slightly. Also, only one DAU is required. 
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Figure 13 - Distortion Arithmetic Unit @AU) 

The first stage includes two multipliers and an adder, this stage computes the least- 

squared distortion, using as inputs the inner product between the codevector and the input 
vector, and the codevector energy. One input to the multiplier connected to the AAUs is the 

inner product between the codevector and the input vector, as computed by the AAUs. The 

second input scales this value by -2G, as required by the distortion equation, Equation 15. 

One input to the other multiplier is the previously-calculated codevector energy for the 

current codevector. The second input scales this value by G2. In the case where the gain 

values are not independent of the shape codevectors, these scale factors reduce to -2 and 1, 

respectively. The energy of the input vector remains constant throughout the codebook 

search and therefore need not be considered. The two products are then summed. The 

result need not be stored because it is only required by the following stage. 

The second stage includes a comparator; this stage determines the minimum 

distortion value. Each value calculated by the first stage is compared to the minimum value 
stored in a special register. If the new value is smaller, then the new value replaces the 

previous minimum value and the index to the current value is remembered. 



This unit is also used in the codevector energy calculation. In the algorithms, each 

codevector is filtered, then its energy is calculated. Although both steps may be performed 

by the AAUs, the intermediate results (the filtered codevectors) must then be stored. 

Instead, the energy calculation is pipelined with the filtering operation using the DAU, 

saving memory and time. Therefore, while the AAUs filter the codevectors, the DAU acts 

as a simple multiply-accumulate unit. The multiplier which is connected to the AAU 

computes the square of each component by routing the value to both inputs of the 

multiplier. The product is then connected to the adder. The sum is fed back to the other 

input of the adder, resulting in a multiply-accumulate structure. The second multiplier and 

the comparator are not required for this operation. In this case, the sum needs to be stored; 

as with the AAU, a shifter allows the result to be stored with any desired precision. 

Only one DAU is required for the codebook search. If the number of AAUs in the 

configuration exceeds twice the vector dimension, then multiple codebook searches could 

be executed in parallel, with multiple DAUs. However, such a configuration would require 

a large number of AAUs. The architecture is considered to contain only one DAU. 

4.3 Connection of the Arithmetic Units 

The high-level block diagram in Figure 14 shows how these arithmetic units are 

connected to form the new custom architecture. Several AAUs are chained together, the 

number of units being a parameter of the configuration; 4 AAUs provide an optimal 

implementation of LLD-VXC, as discussed in Chapter 7. The output of each data register 

is chained to the input of the following one, implementing a delay line. Similarly, the 

output of each adder is chained to one input of the following one, implementing a sum of 

products. The final AAU is pipelined with the DAU-the accumulator of the AAU is 

connected to the input of one multiplier of the DAU, allowing a sum of products computed 

by the chain of AAUs to be the input to the DAU. Local memory is associated with each 

AAU, and global memory is accessible to several of the blocks. The control system 

controls the operations of the blocks. 
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The word width of the datapath and of the memory is 16 bits. The output of each 

multiplier is a double word; double-length accumulators follow the multiply-add structure 

to maintain full precision of intermediate results. A shifter scales the final result before it  is 

truncated to 16 bits and stored in memory. 

- 

4.4 Memory 

I 
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The proposed architecture includes both local and global memory. Codevector 

ROM provides each AAU with the appropriate codebook vector components. Local RAM 

stores data associated with a single AAU, such as the appropriate components of all vectors 

and the appropriate data and coefficients for filtering operations. Global RAM contains 

variables which are not specific to any AAU. The global ROM contains the program code. 

Thus, all required memory is located on-chip. 

To store the codebooks, ROM is used instead of RAM because the original 

codebook does not change throughout the algorithm and because ROM requires smaller 

chip area and lower power. The same is true for the program ROM. 

Each AAU has its own memory associated with it. The first and last AAUs also 

have access to global memory. These units need to read the input and store the output of 

the chain, which is often not distributed. The DAU has no local memory; whatever data is 

not passed directly from the AAUs is accessed through global memory. 

- AAU - AAU - AAU 



Local memory can be even further distributed. When all values are stored in one 

RAM, multiple accesses are often required for one instruction. For example, computing 

the product of one fiiter tap requires loading the data value and the coefficient value; if these 

are stored in the same memory, two accesses are needed. Storing the data and coefficients 

in separate RAMs can be expected to increase the execution speed without significantly 

increasing the power consumption or chip area; the results of Chapter 7 show that this is 

indeed the case. Two RAMs are therefore associated with each AAU. 



5. The Control System 

The control unit is responsible for controlling the operation of the datapath, which 

has been discussed up to this point. A block diagram of the control unit is shown in Figure 

15. It consists of the Program ROM, instruction decoding hardware, and flow control 

hardware. 

TO MEMORY 1 
PROGRAM 

ROM 

REGISTER REGISTER ,* J 
TO CONTROL POINTS TO MEMORY 

Figure 15-The Control Unit 

The address of the current instruction is indicated by the program counter. The 

instruction is then read from the program ROM. The instruction field is decoded, and the 

decoded signals are routed to the required control points; the address field is routed to the 

various memories. Flow control hardware simplifies such operations as looping and 

interrupts. This chapter describes the control unit in detail. 

5.1 The Program ROM 

The Program ROM is 16 bits wide. A control word is divided into an instruction 

field (7 bits) and an address field (9 bits); the address bits are capable of accessing a 

memory space of 512 words. The next chapter shows that a 512-word global RAM and 

four 512-word local RAMS meet the memory requirements of LLD-VXC. Each address 



refers either to global memory or to all local memories in parallel, depending on the 

instruction; therefore, this address space is sufficient. 

5.2 The Instruction Set 

The ASIC chip has a highly specialized instruction set. There are approximately 20 

control points, such as register load and multiplexer select, in the datapath, so using a 

hardwired control system would require a wide control word. Instead, each the required 

control points for each instruction are encoded in 7 bits. This scheme allows 27=l28 

different instructions, far more than are actually required. There are seven common 

instructions in the instruction set, and many of these affect the control points in the same 

way. In particular, corresponding control points in parallel AAUs are connected together, 

with the exception of the first AAU in the chain, which is often controlled differently from 

the others. An instruction controls several parallel operations and one instruction is always 

completed in one cycle. The most common instructions are listed in Table 5. 

Table 5 - The Most Common Instructions 

includes ener calc.) E 

AAU in parallel, from the same ahdress in each I 
local RAM. 
Write the values in the data registers back to local - 
RAM. 
Chain the adders together, with the input to the 
fust being zero, and multiply; store the previous 
result in global RAM. 
Chain the data registers together, with the input 
to the first coming from global memory; chain 
the adders together, with the input to the first 
being zero, and multiply. 
Chain the data registers together, with the input 
to the first coming from global memory; chain 
the adders together, with-the input to the first I 
being a previ&s partial sum, and mu1 tiply. 
Load data registers of each AAU from codebook 
ROM; compute sum of products (inner product 
between input and codevector); compute 
distortion value using DAU; compare value to 
minimum distortion and store if less. 
NOTE: These four stages are pipelined, so they - - 
affect different codevectors 
As FILTER I; also, compute magnitude-squared - 
of result using DAU. 



The memory storage is organized in such a way that the same address accesses the 

required values in both data and coefficient RAM in all AAUs in parallel. For example, for 

a filtering operation, the data and coefficient values are stored at the same addresses in the 

data and coefficient memories respectively. 

To illustrate how the control unit and the datapath interact, the operation of the 

FILTER I instruction is as follows: The multiplexer in the load stage of each AAU selects 

to load the data register from the previous AAU in the chain; in the first AAU, this 

connection is made to global memory. The data register is loaded In the execute stage, the 

multiplexer at the input of the multiplier selects the coefficient register as its source. The 

multiplexer at the input of the adder also selects the path from the previous AAU in the 

chain in all AAUs but the first; in the first M U ,  this multiplexer selects 0. In the final 

AAU of the chain, the load control point of the accumulator in the store stage is also set. 

As a result of setting these control points, the data register is loaded from the previous 

AAU, the data value from the previous cycle is multiplied by the filter coefficient and the 

product added to the partial sum from the previous AAU, and the final sum from the 

previous cycle is loaded into the accumulator of the final AAU. Because of the pipelining 

of the AAU, the three stages affect three different data values. Figure 16 shows the 

datapath selected by the control unit for the FILTER I instruction. 

I 

Figure 16-Datapath for the FILTER I Instruction 



5.3 Hardware Support for Flow Control 

The control system contains hardware support for looping and interrupts. A 

REPEAT N instruction allows the following instruction to be executed N times. A loop 

counter is initialized to N and the program counter is not advanced until the counter reaches 

zero; the counter is also used to address the required memory. For example, during the 

codebook search the SEARCH CODEBOOK insauction is repeated for each codevector in 

the codebook; the counter is used as an index into the local ROM to load the appropriate 

codevectors into the datapath. The use of a hardware counter to control the indexing allows 

comparisons and branching in software to be kept to a minimum. 

Except for the lengthy codebook filtering and codebook search loops, however, the 

algorithm is implemented using straight-line code; repeated instructions are explicitly 

entered in the code rather than being looped. This tradeoff results in a larger program ROM 

but also in faster execution and simpler control hardware because little looping hardware is 

required. The program ROM will still be kept to a reasonable size. When loops are 

required, a hardware counter is used to control the indexing; therefore, comparisons and 

branching in software are kept to a minimum. 

During the codebook search, the index of the codevector which results in the 
minimum distortion must be saved. Therefore, an index-save register is present in the 

control unit. This register is loaded from the counter by the same signal which saves the 
minimum distortion value in the DAU. It is the index in this register at the end of the 

codebook search which is actually transmitted. 

Certain sections of the algorithm are not executed for each vector. For example, the 

filter coefficients are only adapted once every 12 vectors in LLD-VXC. Executing these 
routines within the time allowed for each vector would require a high clock rate. An 

alternative is to allow the adaptation routine to be interrupted by the vector-oriented 

routines. The program counter and accumulators are saved during the interrupt; the control 

unit provides a program-counter-save register and the accumulators are saved in local 

memory. The time required for the adaptation routines is thereby averaged over 12 vectors. 

However, this approach slightly degrades the quality of the algorithm because the 

adaptation routine will not necessarily be completed before the next vector must be 

processed. 



5.4 Clock Rate Constraints 

The minimum clock rate required to implement the algorithm in real time is 

determined by the number of instructions which must be executed for each input vector. 

For example, in LLD-VXC one vector consists of 4 samples taken at 8 kHz; therefore, the 

algorithm must process each vector in 0.5 ms. The clock rate must be high enough to 

allow all required instructions to be executed in this time. 

On the other hand, the maximum possible clock rate is determined by how many 

AAUs are connected in parallel. Computing a sum of products involves a propagation 

through one multiplier and as many adders as AAUs; chaining many AAUs results in a 

large propagation delay. Because a sum of products must be computed in one clock cycle, 

the cycle time must be greater than this propagation delay. Conversely, a fixed clock rate 

determines how many AAUs may be chained together. 



6. Implementation of the Algorithm 

To estimate the performance results of the custom architecture, in particular the 

power requirements and chip area, the implementation of the LLD-VXC algorithm was 

studied. This algorithm is very similar to LD-CELP; however, the adaptation routines of 

LD-CELP make its implementation on the architecture more difficult, as discussed in 

Chapter 8. All of the data below refers to the LLD-VXC algorithm, unless otherwise 

specified. This chapter discusses the practical concerns of implementing the LLD-VXC 

algorithm on the custom architecture. 

6.1 Memory Requirements for the Algorithm 

The amount of memory required on the chip is determined by the amount of data 

needed by the algorithm and how the data is distributed amongst the AAUs. Table 6 shows 

the memory requirements of the algorithm, including whether each element of data must be 

stored in local or global memory. 

Table &Memory Requirements of the LLD-VXC Algorithm 

Data - 
Codevectors 
Filter coefficients 
Filter memory 
Temporary vectors 
Codevec tor energy 
Temporary vectors 
Adaptation & tent coeffs 
Past values of input 
Autocorrelation values 

Local/Global ROM/RAM 
Local ROM 
Local RAM 
Local RAM 
Local RAM 
Global RAM 
Global RAM 
Local RAM 
Local RAM 
Local RAM 

The size of the local memory associated with each AAU depends on the number of 

AAUs in the configuration. The algorithm requires a fixed amount of memory; if more 

AAUs are present, then each has a smaller amount of memory associated with it. 

However, this distribution is not necessarily even. For example, if three AAUs are used to 

store a vector of dimension 4, one AAU must always store two components of the vector, 

and its memory must be twice as large as the others. (Clearly, such a configuration is not 

efficient!) Local ROM is used only to store the codevectors of the Vector Quantization 

codebook. Its size must be 1024 words for a configuration with 1 AAU, 512 words for 2 

or 3 AAUs, and 256 words for 4 or more AAUs. (Recall that multiple codebook searches 



in parallel are not used.) Local RAM is the most-used memory in the architecture; it stores 

filter memory and coefficients as well as various temporary vectors. The minimum total 

storage required is 512 words; however, larger RAMS will typically be used to ensure that 

there is enough memory for saving accumulators during interrupts and so forth. 

Global RAM is used primarily to store the codevector energy. However, some 

temporary vectors are necessarily also stored in global memory. Note that the filtered 

codevectors are not stored because the energy calculation is pipelined with the filtering 

operation by using the DAU. Unlike with local memory, the size of the global RAM does 

not change as the number of AAUs varies; its size will be fixed at 512 words. 

The Global ROM is the program memory; its size is determined by the number of 
instructions required to execute the algorithm. The program memory will be discussed 

further in the following section. 

6.2 Program Requirements 

The size of the program ROM and the required clock rate are determined by the 

number of instructions required to implement the algorithm with a given number of 

Adaptive Arithmetic Units. Because all instructions are implemented in one clock cycle, the 

number of instructions is nearly identical to the number of cycles required, with minor 
differences resulting h m  the looping of the codebook search and filtering. 

An analysis of the number of cycles required to process one vector with the LLD- 

VXC algorithm is shown in Table 7. The number of cycles required is listed for 

configurations with one to five AAUs. The actual analysis was performed for up to ten 

AAUs. Note that the routines in the update section are performed only once every 12 

vectors; therefore, the cycle count for these sections is divided by 12 before being added to 
the total. In the actual implementation, this averaging is accomplished by using interrupts, 

as discussed below. 
For configurations with two or more AAUs, the number of cycles required to 

implement the algorithm, and hence the number of instructions required, is well under 

2000. Therefore, a program ROM of 2K words will be used in the design. 



Table 7-Number of Cycles Required to Implement LLD-VXC 

Section of algorithm 

Direct-form filter (1 0) 
Long- term fil ter (3) 
Lamce filter (20) 
Direct-form filter (1 0) 
Gain prediction (10) 
Convolution 
Codebook search (256) 
Lamce filter (20) 
Direct-form filter (1 0) 
ADAPTATION: 
Lattice adapter (20,lO) 
Long- term adapter 
Pitch tracking 
Autocorrelation calculation 
UPDATE: (every 12 vects) 
Lattice filter (20) 
Direct-form filter (10) 
Codebook filtering 
Lattice to direct c6nversion 
r n A L  

1 AAU 
200 

220 
24 

400 
220 
22 
15 

1024 
400 
220 

210 
45 
75 

400 

400 
220 

2560 
710 

3800 

4 AAUs - 
60 
66 
6 

100 
66 
8 
6 

256 
100 
66 

56 
15 
25 

100 

100 
66 

1024 
196 

1046 

5 AAUs - 
40 
44 
6 

80 
44 
6 
6 

256 
80 
44 

42 
15 
25 
80 

80 
44 

1024 
150 
877 

6.3 Timing Considerations 

Because the sampling rate of the input speech signal is 8 kHz and one vector 

consists of 4 samples, the algorithm has 0.5 ms to process each vector. The minimum 

clock rate required to implement the algorithm in real time is easily calculated from the 

number of cycles required to process the vector: this number of cycles must require no 

more than 0.5 ms. From the results of Table 7, the minimum clock rates for configurations 

with one to five AAUs are calculated to be 7.6 MHz, 3.9 MHz, 3.2 MHz, 2.1 MHz, and 

1.8 MHz respectively. All of these values are significantly lower than the clock rates of 

general-purpose DSP chips, which may be as high as 50 MHz. 

The timing through the chain of adders is critical. The propagation delay of each 

adder is approximately 15 ns, and of the multiplier is 66 ns. Therefore, when n AAUs are 

chained together, the total propagation delay is (66 + 15n) ns. For example, with 4 AAUs 

the minimum cycle time can be 126 ns; therefore, the maximum clock rate can be 8 MHz. 

The clock rates just calculated show that these constraints are not so tight as to be a 

problem. 



The routines to update the filter coefficients are performed only once every twelve 

vectors. Because these routines have a significant complexity, it would be inefficient to 

make the clock rate high enough to handle these routines during every twelfth vector; this 

high rate would not be required during the other eleven vectors. Instead, the update 

routines are distributed over the entire vector time. They are interrupted by the vector 

routines in the main algorithm loop, but continue when these routines have been completed. 

As long as the update routines are completed within one update period (12 vectors), the 

algorithm will still execute correctly. There will be a slight degradation in the quality of the 

reconstructed speech because the filter coefficients will be updated at the end of the update 

period rather than at the beginning; however, the lower clock rate, and hence lower power 
consumption, make this solution attractive. 

Computing the autocorrelation function requires a significant amount of 

computation. Up to 256 multiplications are required for each possible lag, and the lag 
varies from 20 to 105 samples, resulting in a total of almost 19000 flops. Again, the 

problem of implementing a high-complexity routine only during an update period appears. 

In this case, however, the autocorrelation computation can be distributed over each vector 

without the use of interrupts. As each new vector is processed, only the correlations 

between this and previous vectors are computed. 



7. The Performance of the Architecture 

Now that the custom VLSI architecture and its implementation of the Lattice Low- 

Delay Vector Excitation Coding algorithm have been specified, it is necessary to analyze the 

efficiency of the architecture in implementing the algorithm. Memory requirements have 

already been dealt with in the previous chapter, and execution speed has been touched 

upon. This chapter discusses primarily the physical characteristics of die size and power 

consumption. 

Several factors determine an optimal number of AAUs, the most important being 
the vector dimension and the length of the filters. Clearly the fastest solution would be to 

have one AAU for each vector component and for each filter tap; however, an 

unrealistically large chip area would be required for long filters. The next best solution 

would then seem to be having a number of AAUs which evenly divides the number of 

components or filter taps. The performance of configurations with various numbers of 

AAUs was analyzed, and optimal numbers of AAUs were determined, considering power 

consumption and chip area. These results show that these intuitive ideas are indeed valid; 

4 AAUs provide an optimal implementation of LLD-VXC. 

7.1 Layout of the Architecture 

To estimate the die size and chip area of the custom VLSI architecture, the 

architecture was analyzed using the VLSI Systems Tools [13]. The arithmetic units were 

entered as datapath schematics with a 16-bit word width and complied to a layout. 
The technology chosen for designing the architecture was "1 pm CMOS"; this 

technology has a minimum feature size of 1.2 pm. An alternate technology was " 1.5 pm 

CMOS", with a minimum feature size of 1.6 pm; however, the smaller size results in a 

smaller area, a lower power consumption, and a faster switching time, and therefore 
seemed to be the obvious choice. For example, the power of an adderlsubtractor at 1.6 pm 

is 104 pW/MHz, while at 1.2 pm it is 71 pW/MHz. 

The datapath schematic of an Adaptive Arithmetic Unit consists of several datapath 

elements, including flip-flops, 2- and 3-input multiplexers, an adderlsubtractor, a shifter, 

and a multiplier. Each of these elements appears in the schematic as a 1-bit element on a 1- 

bit datapath; a datapath compiler then expands the schematic to the desired word width, 

which is set as a parameter. For these estimates, the word width is 16 bits. 



The multiplier merits some discussion on its own. A signed, variable-pipelined 

multiplier was used as the datapath element. Both inputs to the multiplier had a word width 

of 16 bits. The number of stages in the pipeline may be specified; to determine if any 

pipelining was required at all, the datapath was first compiled with one stage. The 
estimated cycle length for the multiplier was determined to be 66 ns. Because the clock rate 

is expected to be low (2 MHz for a 4-AAU configuration), the multiplier need not be 

pipelined at all, and the entire multiply-accumulate operation can be performed in one clock 

cycle. 

The output of the multiplier consists of two words because the product of two 16- 

bit numbers may be a 32-bit result. This output is divided into a high- and a low-order 

word. The accumulator following the adder is double-width to preserve precision; a shifter 

at the output of the adder allows the result to be scaled to the desired precision before being 

stored in 16-bit memory. 

The next step was to compile the datapath schematic to a layout. This layout is then 

used to estimate the area of the block. The datapath elements are placed side by side along 

the width of the layout, while the bit-parallel word is built up along the height of the layout. 
The height of the layout is given by lOOh per bit, where h is a function of the technology 

size used; for the 1.2 pm technology, h = 0.6 pm. Clock buffers are placed above each 

clocked element. A large portion of the area is consumed by the interconnections among 

the datapath elements. 

Each input and output of the block may be routed either to both sides of the block or 

to only one side of the block (not all to the same side). Because of the regular structure and 

interconnections of the blocks in the architecture, the inputs and outputs were routed to one 

side, resulting in a significant decrease in the size of the block. For example, the height of 

the AAU layout decreased from 1.5 mrn for double-sided routing to 1.2 mm for one-sided 

routing; the width remained constant at 2.1 mm. Figure 17 shows the actual floorplan of 

an AAU. 
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Figure 17-Floorplan of an Adaptive Arithmetic Unit 

The datapath schematic of the Distortion Arithmetic Unit was developed and 
compiled in the same way as that of the AAU. The only element in the DAU which is not 

present in the AAU is the comparator. The total size of this block with one-sided routing is 

3.8 rnm x 1.4 mm. 

The sizes for typical RAM and ROM blocks were also determined. In the previous 

chapter, the memory requirements for various architecture configurations were determined. 

The VLSI System Tools manuals provided the layout sizes of the various memory blocks. 

Two types of RAMs were considered in the implementation: CRAMl and 

CRAM3. The first type, CRAMl, is a clocked RAM with differential amplifiers on each 

output. Because there is a bias current when the clock is held low, CRAMl has a static 

power dissipation. As a result, adding more RAMs is not efficient because the reduction in 

dynamic power due to the reduction in clock rate is typically smaller than the increase in 

static power. For this reason, using separate data and coefficient RAMs is not efficient. 

The second type, CRAM3 is a fully static RAM, it has no static power dissipation. 

As well, its dynamic power dissipation is much lower than that of CRAMl. The tradeoff is 

that CRAM3 has a significantly larger area than CRAMl. For example, a 4-AAU 

configuration of the architecture consumes 530 mW of power and occupies 43 mm2 when 

implemented with CRAMl, and consumes only 280 mW but occupies 56 mm2 when 

implemented with CRAM3. However, power is a more important factor in evaluating this 

architecture than area because low power is the main advantage over standard DSP 



solutions. The results using CRAM1 show that the area is quite reasonable but the power 

is very high. Also, using separate data and coefficient RAMS becomes feasible with 

CRAM3. Therefore, CRAM3 was used in the final design. 

The control block requires very little hardware when compared to the arithmetic 

units and the memory. It consists basically of six registers and a decoder. As a result, its 

area and power dissipation are negligible in comparison to the other blocks. 

Once the size of each block was determined, the blocks were placed manually to 

estimate the overall area of the architecture. An additional area of approximately 10% was 

allowed for routing interconnections. Pads were added with a dimension of 0.2 x 0.5 mm. 

An overall layout of the architecture with 4 AAUs is shown in Figure 18. 

GLOBAL E 
4 9 mm b 

Figure 1 &Floorplan of the Custom Architecture 



Power figures for the arithmetic units were obtained by estimating the number of 

gates in an element and using the properties of CMOS technology to estimate the power 

consumption based on the number of gates and the clock rate, according to the formula 

where G is the number of gates, S is the switching factor, and f is the clock frequency. 

The power estimates (0.012)G are presented in the VLSI System Tools manuals. The 
power depends on a switching factor-what percentage of the time the gates are actually 

switching. For the estimates presented here, this factor was set to 1, giving an upper limit 

on the power consumption. Because the architecture will be used at full capacity, the data 

will be changing with nearly every clock cycle and the estimates will be quite accurate. 

The power consumption for the memory units was also specified in the VLSI 

System Tools manuals. CRAM1 has both a static and a dynamic power dissipation, 

whereas CRAM3 has only a dynamic power dissipation. The power figures for the ROM 

blocks are more complex, depending on the configuration of the ROM. Formulas for 

determining the total capacitances of the various lines are given, and the power 

consumption may be estimated from 

where V is the supply voltage of 5 V and f is the clock frequency. 

The final estimates of the power consumption and chip area of the various blocks 

are listed in Table 8, and were first presented in [14] and [15]. 

Table 8 - Power and Area Figures 

Block Power (mW/MHz) 
AAU 
DAU 
ROM (2Kx 16) 
ROM (5 12x 16) 
ROM (256x 16) 
RAM (512x16) 
RAM ( 2 5 6 ~  16) 

Using separate data and coefficient RAMS results in a decrease in power 

consumption and an increase in chip area. For example, for a configuration with 2 AAUs, 

using a single 512-word RAM results in a power dissipation of 350 mW and an area of 

38 rnd ,  whereas using two 256-word RAMS results in a power of 295 mW and an area 



of 43 mm2. Once again, because achieving a low power consumption is a primary goal of 

this architecture, separate data and coefficient RAMs are used. 

7.2 Analysis of the Results 

Although the architecture with one AAU implements the algorithm more efficiently 

than a general-purpose DSP chip, better performance is achieved by combining several 

AAUs in parallel. As well as increasing the throughput, this approach reduces the amount 

of temporary storage needed and simplifies the control requirements. By varying the 
number of AAUs in the configuration, tradeoffs between the power consumption and the 

area of the chip can be achieved. Adding AAUs creates a larger chip, but decreases the 

number of cycles required to implement the algorithm, thereby reducing the clock rate. To 

simplify the estimates, memory size was fixed at two 256-word RAMs for each AAU, 

regardless of how many were used; practically, smaller memories are required when more 

AAUs are used. A 1-AAU configuration has an approximate area of 50 mm2, and adding 

one AAU increases the area by about 10 mm2. Figure 19 shows a graph of the estimated 

power as a function of the number of AAUs. 

Power 

(mw) 

Number of Adaptive Arithmetic Units 

Figure 19-Power vs. Number of Adaptive Arithmetic Units 

These results show that using 10 AAUs requires the lowest power consumption- 

approximately 250 mW; however, this configuration also has a large chip area of 

180 mm2. By reducing the number of AAUs to 4, the area is halved while the power is 

only increased by 10%. The clock rate required for a 4-AAU configuration is approxi- 

mately 2 MHz. These results compare favorably with an implementation on a general- 

purpose chip such as the DSP32C, which has a power dissipation of up to 1.25 W. 



At the beginning of the thesis, four criteria were set for evaluating the efficiency of 

an architecture: execution speed, memory requirements, die size, and power consumption. 

The efficiency of the new custom architecture presented here is equal to or better than that 

of general-purpose DSP chips based on these criteria. Using a configuration with 4 AAUs, 

this architecture implements the LLD-VXC algorithm in real time with a clock rate of 

approximately 2 MHz; a standard chip typically requires a clock rate of at least 20 MHz to 

achieve the same goal. The memory required by the algorithm is approximately 1K words 

of data RAM, 1K words of data ROM, and 2K words of program ROM; this amount of 

storage is comparable to what is found on standard chips. The die size of the architecture is 

estimated at 90 mm2; this is a large area, but still quite reasonable. The main advantage of 

the new architecture is its low power consumption: less than 300 mW, compared to power 

consumptions of over 1 W for standard chips. These results show that the new custom 

architecture does provide an efficient implementation of the LLD-VXC speech coding 

algorithm. 



8. The Suitability of the Architecture for Other Algorithms 

The architecture presented in this thesis was optimized for the implementation of the 

LLD-VXC speech coding algorithm; however, the implementation of other speech coding 

algorithms and of non-speech coding algorithms was also studied briefly. This chapter 

discusses the suitability of the architecture for these other algorithms. 

8.1 Implementation of LD-CELP 

The implementation of the LD-CELP algorithm was studied. This algorithm has 

been implemented on a DSP32C [16], requiring approximately 75% of the capability of the 

chip with an 80 ns instruction cycle. Therefore, its power consumption can be estimated at 

slightly less than 1 W. The memory requirements were 1100 words of program memory, 

900 words of data RAM, and 800 words of data ROM. 

On the custom architecture its implementation is not as efficient as that of LLD- 

VXC. The LD-CELP algorithm uses Levinson-Durbin recursion to adapt the filters. This 

routine converts the autocorrelation coefficients to linear predictor coefficients. The 

approach is recursive: The predictor coefficients at each stage of the routine are based on 

those at the previous stage. As a result, the parallelism of the architecture does not improve 

the implementation performance because successive stages cannot be computed in parallel. 

Also, the pipelining of the architecture cannot be exploited because the computations of 

each stage must be completed before those of the next stage can be started. 

Except for the adaptation routines, the LD-CELP algorithm is implemented similarly 

to LLD-VXC, with the result that the power of the custom implementation (estimated at 800 

mW) is still lower than that of the DSP32C implementation. 

8.2 Implementation of VSELP 

The implementation of VSELP was also studied. However, the architecture is 

geared towards low-delay speech coding algorithms, not towards a specific, highly 

specialized algorithm which does not even meet the low-delay criterion, such as VSELP. 

Therefore, it is expected that certain sections of this algorithm will not be implemented 

efficiently. 

The adaptation of the synthesis filter parameters is implemented as a fixed point 

covariance lattice technique (FLAT). This routine involves the computation of the 



autocorrelation function of the input speech and of the reflection coefficients for each stage 

of a lattice filter used to adapt the filter. The autocorrelation is efficiently implemented by 

the custom architecture; however, the method of computing the reflection coefficients from 

the autocorrelation that is used by FLAT involves several calculations which cannot exploit 

the parallelism of the custom architecture. 

The optimization of the long-term lag is based primarily on operations which can be 

expressed as inner products. The codebook search involves the filtering of basis vectors 

and the computation of cross-correlations and energies, both of which are performed in all 

three algorithms analyzed in the thesis. Therefore, these operations may be implemented 

efficiently on the custom architecture. 

The final section of the VSELP algorithm is the quantization of the gain and long- 

term predictor coefficients. These gains are transformed to the energy domain before being 

vector quantized. This procedure requires the computation of reciprocals and square roots, 

as well as other operations which cannot be expressed as inner products. Therefore, the 

custom architecture is poorly suited for this section of the algorithm. 

Overall, the custom architecture presented here will not implement the VSELP 

algorithm efficiently, as expected. This algorithm uses many mathematical techniques to 

reduce the complexity of the standard filtering and vector quantization operations. The 

efficient implementation of VSELP would require a different specialized architecture. 

8.3 Implementation of the Fast Fourier Transform 

Many of the important operations in digital signal processing are part of the low- 

delay speech coding algorithms discussed above. For example, filtering operations of all 

types are the most common operations in the algorithms. Clearly, these are implemented 

efficiently on the custom VLSI architecture because it was for these operations that the 

architecture was designed. However, there are also other operations which are important to 

DSP which are not relevant to these speech coding algorithms. 

One such operation is the Fourier transform. The implementation of this operation 

on standard DSP chips such as the TMS32020 is well documented [17]. This reference 

provides the code for the general radix-2 FFT butterfly shown in Figure 20, as well as for 

128,256, and 1024-point FITS. Some are implemented with looped code and some with 

straight-line code. The butterfly operation requires 22 instructions. 



Figure 20-The General Radix-2 Decimation-In-Time FFT Butterfly 

The equations for the butteffly operation are the following: 

X ~ [ P ]  = Xm-1 [PI + WN' x m - 1  [ql 

Xm[qI = x m - 1  [PI - WN' xm-1  [ql (18) 

The values for WN' are known for FFTs of a given size and may therefore be precomputed 

and stored. In order to perform real computations rather than complex computations, these 

equations may be separated into their real and imaginary components. By writing 

WN' = COSW + j sinW (19) 

The custom architecture can compute the required multiplications with cosW and 

sinW in parallel. If the architecture contains three or more AAUs in parallel, then each of 

the above equations can be computed in one cycle by multiplying the appropriate data 

values by the coefficients 1, f cosW, and f sinW. However, the real and imaginary parts of 

Xm-l[p] and Xm-l[q] must be stored in more than one location in the local memories of the 

appropriate AAUs. The FFT can then be computed in 4 cycles. 

Clearly, the custom architecture is not optimal for implementing the Fast Fourier 

Transform. However, the parallelism of the architecture can be exploited to implement the 

FFT with a shorter execution time than a general-purpose DSP chip. 



9. Conclusions 

The new custom architecture presented in this thesis provides an efficient 

implementation of low-delay analysis-by-synthesis speech coding algorithms. It was 
designed by analyzing the requirements of two low-delay 16 kbit/s speech coding 

algorithms: LLD-VXC and LD-CELP. The required operations were mapped onto 

hardware structures and two types of arithmetic units were developed. 

The most common operations in the speech coding algorithms are filtering 

operations of various types. All of these operations may be implemented on one type of 

arithmetic unit, provided it has an adaptive datapath; this unit is called an Adaptive 

Arithmetic Unit (AAU). Several AAUs may be connected in parallel to increase the 

throughput of the architecture. 

The section of the speech coding algorithms with the highest complexity is the 

vector quantization codebook search, which involves computing a distortion measure and 

determining the minimum distortion value. This operation is not performed efficiently by 

the AAUs; therefore, a second type of unit, called a Distortion Arithmetic Unit (DAU), is 

required. The DAU is pipelined with the AAUs. 

The custom architecture consists of several AAUs connected in parallel and 

pipelined with one DAU. Local memory is associated with each AAU and global memory 

is available to several of the units. By varying the number of AAUs in the architecture, 

tradeoffs between power consumption and chip area are achieved. With a configuration of 

4 AAUs, this architecture implements the Lattice Low-Delay Vector Excitation Coding 

algorithm with an estimated power consumption of under 300 mW and area of 90 mm2. 

This solution provides significant power savings over implementations on general-purpose 

DSP chips, which may consume approximately 1 W. 



10. Future Directions 

The results of this thesis show that the new custom architecture presented here 

provides an efficient implementation of low-delay analysis-by-synthesis speech coding 

algorithms. The estimates of memory requirements, clock speed, die size, and power 

consumption provide a good idea of the capabilities of this architecture. However, before 

fabricating a chip based on this architecture, there is still some work to be done. This 

chapter discusses possible future work on the architecture. 

The primary weakness of this architecture is that it does not implement the recursive 
Levinson-Durbin routines efficiently. The rest of the LD-CELP algorithm is well suited to 

the architecture because it is very similar to the LLD-VXC algorithm. However, if the 

architecture could be modified to implement Levinson-Durbin recursion more efficiently, 

then a complete implementation of LD-CELP (soon to be the CCITT standard at 16 kbitls) 

would be practical. 

The implementation of other speech coding algorithms on this architecture could be 

investigated. Algorithms to consider include forward adaptive approaches and algorithms 

with different bit rates. 

To determine more accurate timing and power estimates for the architecture, an 
extensive simulation may be performed. The VLSI System Tools provide the capability of 

simulating a design which was entered as a datapath schematic. The results would clarify 

the importance of the timing constraints discussed in the thesis and would provide more 

practical estimates of the power consumption than the upper limits presented here. 

Additional simulation is required to analyze the performance of the algorithm on the 

fixed-point architecture. The issues of precision and scaling affect the overall performance 

of a speech coder implemented on a fixed-point processor. 

Rather than implementing the algorithm with a low clock rate, both an encoder and 

a decoder could be implemented on one chip. Furthermore, the implementation of multiple 
coders is conceivable because of the low clock rate required for a single coder. However, 

there are several problems with this approach. First, the amount of memory increases 

because separate memory must be maintained for each copy of the algorithm. The data 

could be swapped between larger external memory and the internal memory but this 

technique would require a large overhead of time. Second, independent of the previous 

consideration, the time required to run multiple copies of the algorithm does not increase 

linearly because of the overhead associated with swapping operating parameters. Third, 



the timing constraints due to the chain of adders place critical and severe limits on the clock 

rate of the chip. Attempting to implement multiple coders on a single chip would present an 

interesting challenge. 
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