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Abstract 

In this thesis, we study the theory and computation of moving mesh methods for solving one 

dimensional time-dependent partial differential equations. Chapter 1 is a survey of moving 

mesh methods, wherein we briefly discuss the three kinds of moving mesh methods - the 

coordinate transformation method, moving finite element methods and moving finite differ- 

ence methods. In Chapter 2, we investigate various aspects of the moving mesh problem 

for the solution of partial differential equations in one space dimension. In particular, we 

study methods based (explicitly or implicitly) upon an equidistribution principle. Eauidis- 

tribution is shown to be equivalent to the problem of solving a particular PDE for this new 

computational coordinate system. Implementation of a discrete version of equidistribution 

to compute a moving mesh corresponds to  soIving a weak form of the PDE. The stability 

of equidistribution is discussed, and we argue that stability can be significantly affected by 

the way in which this solution process is carried out. A simple moving mesh method is con- 

structed using this framework, and numerical examples are given to illustrate its robustness. 

In Chapter 3, we study the moving finite element (MFE) methods and one moving finite 

difference method. Of particular interest are the regularization term and gradient weighted 

function in MFE. Further, we compare the MFE with the moving finite difference method. 

The last Chapter contains the conclusions and a discussion of some moving mesh problems 

deserving further study. 

iii 
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Chapter 1 

A Survey of Moving Mesh 

Methods 

1.1 Method of lines for solving PDEs 

The method of lines (MOL) is a semi-discrete method for solving partial differential equa- 

tions. The method is quite reliable and convenient. The idea of the MOL is simple. We 

consider the PDE problem 

U t  = f ( 4  

where f is a nonlinear differential spatial operator. Boundary and initial conditions are given. 

In the MOL, there are two ways to discretise the PDE. The first one consists of discretizing in 

temporal t and then solving a boundary value ODE problem by BVP codes like COLSYS, 

COLCON and AUTO [AMRS8]. This approach is called the transverse method of lines. 

The second scheme involves discretiziig in the space z first, and then solving an initial 

d u e  problem for temporal t by NP codes, for example LSODI [HI801 and OASSL [PE82]. 

This approach is called the longitudinal method of lines. At a computational levels, the 

Iongitndinal approach has been much more popular than the transverse approach. 
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The possible advantages of MOL are : 

(1) By separating the problems of space and time discretization it is easy to establish 

stability and convergence for the method used in MOL. 

(2) The powerful numerical techniques for solving ODES, such as dynamically regridding 

the stepsize and still maintain stability and a desired time integration accuracy, can be 

directly applied to the PDE case. 

(3) Programming effort can be substantially reduced by making use of reliable ODE 

codes. 

(4) By solving the ODEs very accurately one can compare the accuracy and efficiency 

of different approximations of spatial derivatives. 

The possible disadvantages in using MOL are that the reduced ODEs may become very 

stiff problems and one may lose overall optimization of the method by decoupling the analysis 

of the space and time discretization [HY76]. The spatial mesh does not change for problems 

with transient regions like a moving wave front or a shock layer, for wbich the fine mesh 

would be needed throughout the domain, and for problems in which the solution becomes 

very smooth, it may even be desirable to  coarsen the mesh. 

The moving mesh methods for solving PDEs, which we consider in this thesis are based 

on the longitudinal method of lines, where standard finite element methods or finite dif- 

ference methods can be used to approximate the spatial differential terms. However, the 

spatial mesh is allowed to  change with time. This gives the corresponding moving finite 

element methods or moving finite difference methods in a moving mesh frame, respectively. 

This allows automatic selection of meshes for both spatial z and temporal t according to 

the behaviour of the original PDE itself. It is natural to change the spatial mesh smoothly 

with time. Here we consider the mesh selection strategy with the number of mesh points 

fixed. Thus, local refinement mesh strategy and how it might interact with the moving mesh 

strategy, are not considered either. 
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1.2 Adaptive moving mesh methods 

1.2.1 Introduction 

The efficiency of a numerical algorithm for solving a class of problems can be critically 

affected by its computer implementation. Adaptive mesh methods are for instance much 

more efficient than uniform mesh methods for solving time-dependent partial differential 

equations with large gradients such as shock waves, propagatied boundary layers etc.. There 

are three main approaches for adaptive mesh methods: the h-refinement methods, which 

add or delete mesh points according to the profile of the solution and control the mesh points 

by the local errors of the solution; the p-refinement methods, which alter the order of the 

numerical method to fit the local solution characteristics; and the moving mesh methods, 

in which a fixed number of mesh points move automatically to minimize the errkiss of the 

solution. Further, we may use a combination of the moving mesh methods and the local 

refinement met hods [AFSGbl], [,4F86b2]. 

Adaptive mesh methods for solving ODEs were surveyed in [RU79]. The purpose of this 

chapter is to outline a variety of the moving mesh methods for solving partial differential 

equations. Despite their efficiency for solving PDEs, the moving mesh methods are just 

ic their beginning, especidy as regards their theory. We discuss the current numerical 

methods in a general way and avoid giving firm conclusions. We consider moving finite 

element methods, moving finite difference methods and coordinate transformation methods 

borrowed from adaptive mesh methods for solving ODES. Both parabolic and hyperbolic 

problems are studied. 

1.2.2 Coordinate transformation method 

Based on the corresponding method used in solving ODEs [WH79], White [WH82] applies 

the coordinate transformation method to  solve first-order systems of partial differential 
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equations of the form 

A(u, 2, t)ut + B(u, 2, t)uz = C(u,  5, t )  

where (x,  t )  E [a, b] x [0, oo), and appropriate boundary and initial conditions are given. For 

good accuracy a non-uniform mesh must be selected in the region of rapid solution change. 

The goal of the coordinate transformation is t o  transform the solution such that in the new 

coordinate a uniform mesh can be used. 

White introduces the arclength transformation for initial/boundary-value problems. He 

changes from (x, t)-coordinates t o  new computational coordinates (s, T), where s is the 

arclength of the solution. A pair of computational coordinates is defined by 

and 

where 0 is the total arclength of the solution defined by 

For simplicity, we consider the scalar differential equation case. The transformed problem 

in arclength coordinates is now given by 

and 

a, = 0. (1.2.6) 

The solution of the transformed problems (1.2.4), (1.2.5) and (1.2.6) can be approximated 

on a uniform mesh because the arclength transformation automatically smooths out re- 

gions of the rapid change. The well-known Box scheme [KE71] is used by White in actual 
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computation, viz. 

These give 

and 

And then Newton's method, for example, can be used to solve these nonlinear equations. 

The resulting systems generally turn out to be sensitive and difficult to solve numerically. 

Although the reasons are not entirely clear, note that the transformed equation is nonlinear 

even if the original one is linear. Furthermore, sometimes the method has physically mean- 

ingless solutions when the solution becomes multivalued. At such a point, shock conditions 

should be used in order to  approximate the correct solution. 

Dwyer, Kee and Sanders studied the coordinate transformation met hod for problem8 in 

fluid mechanics and heat transfer, in which meshes were controlled by the gradient and the 

curvature of the solution [DKS80]. 

1.2.3 Moving finite difference methods 

Consider the time-dependent partial differential equaticin 
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where f is a spatial differential operator. In the Lagrangian frame, meshes move continuously 

with time, and the original equation (1.2.7) can be rewritten in the form 

ui - u=,x~ = f (u,) (1.2.8) 

for the i-th mesh, where ui = ut(zi) + u,,ii is a total derivative at  the i-th mesh point, and 

u,, is approximated by a standard difference central 

'%+I - ui-1 
212, = 

2;+1 - 2;-1 

This is a stable scheme used in moving finite difference methods. 

We consider now the moving equation for the moving mesh s;(t).  First of all, we intro- 

duce the moving mesh equations derived by Hyman [HY82] and Petzold [PE87]. 

These schemes have two computational stages: first, choosing a moving mesh based 

on minimizing the time rate of chaage of the solution in the Lagrangian coordinates, and 
. . 

second, calculating the mesh based on the deBoor's equidistribution algorithm [B073], a. e., 

static regriding, 

Hyman studied the PDE case 

The system case 

was studied by Petzold. 

For simplicity, here we consider the scalar case 

In the Lagrangian frame, equation (1.2.9) becomes 
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The mesh velocity x is chosen to minimize the time rate of change of u and z in this 

Lagrangian frame. Thus the moving mesh equation is 

where a is a positive scaling parameter. This results in the moving mesh equation 

For the hyperbolic problem, it is natural that a mesh point moves along the characteristic 

direction of the equation if the parameter a is zero, and in this case the meshes move along 

the direction of minimizing the rate of change of the solution. For example, if 

we have moving mesh equation 

x = a  

which is the characteristic equation. 

It is interesting that if we minimize the time rate of change of u and z in the Lagrangian 

frame with respect to the velocity u of the solution instead of the velocity x of the mesh in 

equation (1.2.11), we obtain the same moving mesh equation as (1.2.12). 

A practical difficulty is that the mesh points derived by equation (1.2.12) may eaaily cross 

one another. An extra regularization term is needed to prevent such mesh point crossings. 

For this purpose, Petzold has used the penalty function 

and minimized the new objective function, 

where A is a positive parameter, which leads to  
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The parameters a, and A are chosen as 1.0 and 0.2, respectively, in [PE87]. The penalty term 

acts to diffuse the mesh velocity since the penalty term in equation (1.2.15) approximates 

A(k)=, for a uniform mesh spacing, zj - xj-1 = zj+l - z,. Although mesh points can still 

cross, (1.2.1.5) is quite a robust moving mesh equation. 

For reliable computation, deBoor's algorithm can be required to adjust the mesh position 

after a time step obtained by equation (1.2.15). Such a so-called dual reconnecting mesh 

strategy is described in [HYS2], (HY841, and [PE87]. This strategy equidistributes the mesh 

based on the first and second derivatives of the solution, such that the mesh points satisfy 

where TOL is a user-defined error tolerance. 

It is possible to interpolate the solution from the mesh resulting from (1.2.12) directly and 

use it to find a new the equidistributing mesh from atisfying (1.2.16). Thus, this requires 

interpolating between every mesh poipt at each step. To avoid the large computational 

expense for this approach, Hyman and Petzold use the dual reconnecting mesh approach, 

which is a compromise between choosing the best mesh, and avoiding needless interpolations. 

In particular, two reference meshes are computed at  the beginning of the each time level. 

The first reference mesh and the solution are obtained by solving equations (1.2.10) and 

(1.2.15). The second reference mesh is redistributed to satisfy equation (1.2.16). Therefore, 

the second reference mesh divides the space into reference zones. Mesh points are added or 

deleted so that there is exactly one mesh point per reference zone, and mesh points at  the 

edges of zones which are too close to  other mesh points are moved apart. This scheme has 

worked well in practice, and on most time steps it requires few interpolations between mesh 

points. 

To apply this approach t o  practical problems, they also derive the scaled moving mesh 

equation from minimizing a weighted l2 norm in (1.2.11), where Ilti,llf = and 
i l[kj11; = (,,:+, )?, which N P  is the number of PDEs in the original system. The scaled 
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moving mesh equation at  xj is 

where wi are weights to be chosen by 

Here u,,,, is the maximum of the i-th component of u; over all mesh points, and u,,,, is 

the minimum of uj over all mesh points. 

Another moving finite difference method is proposed by Dorfi and Drury [DD87]. A 

method with smoothing procedure for both spatial and temporal variables is derived based 

on the equidistribution principle for solving one-dimensional initial value problems. 

Equidistribution for the mesh points requires that 

where e( t )  = C M ( [ ,  t )d[ ,  and M 2 O a so-called monitor function. Dorfi and Drury use 

the arclength monitor defined by 

Using the forward difference scheme for u,, the discrete arclength monitor at each subinterval 

The fundamental form of a moving mesh equation is derived by considering the point con- 

cent ration 

and having 

n; a M;. 
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If we consider two neighboring subintervals for equidistribu tion, 

B y  applying the mid-point quadrature rule, we have 

We can rewrite this m the form 

Farther, Do& and Drury introduce a penalty function for smoothing both spatial and 

temporal meshes based on the stability condition 

k ni+i k + 1 < < -  
k + 1 -  n; - k  

where k is chosen to be 1 or 2. We also require 

where the right-hand-side is a smoothing kernel which is a Green's function associated with 

the difference operator 

1  - k(k + 1)h2, 
where 6 is a centered difference operator. So smoothing in space is 

To smooih the temporal variable, let 

where At is the time step, and T is a positive time scale which depends on the problem. 

Finally, we obtain moving equidistribution by setting 
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In equation (1.2.25), the monitor function A4 is implicitly unchanged from the last time to 

the updated time over the time step T .  The parameter r acts as a delay factor. 

Verwer et al. studied this method [VBFZ88]. The Inequality f 1.2.22) is necessary for 

stability of the scheme since it prevents meshes from crossing each other. Blom and Verwer 

[BV89j compared the arclength monitor with the curvature monitor for the moving mesh. 

The equations (1.2.25) are found to be much easier to solve with the arclength monitor than 

with the curvature monitor, which uses an approximation to the second derivative of the 

solution. 

Another way of controlling meshes involves the cowept of a mesh function, which was 

first introdnced by Hyman to dynamically adjust the mesh locations [HL86]. There are 

mmy ways t o  define the mesh function. Hyman and Larrouturou use one that satisfies an  

ordinary differential equation 
P 

mi++ = -(a - mi+$), (1.2.26) 
7 

where mi+; is the value of the mesh function at  xi+$ = $(xi + xi+l),  6 is the average d u e  

of the mesh function rn, and @ determines the relaxation time with respect to the timescale 

T .  Adjerid and Flaherty use a similar approach [AF86b2]. 

Madsen adopts the idea of a mesh function when considering the system of partial 

differential equations 

Ut = F ( U ) ,  for xl < z < x,, t > to ,  

where U = ( u l ,  - , uNDpE)T and F = (fi, . . , f r v D P E ) T .  Using the met hod of lines, the 

PDE system is approximated with the semi-discrete ODE system 

duk . 2- dxi dt - fk,i + ( ~ k , i ) z -  dt ' for k = 1,. - -, N P D E .  

Mesh points saiisfy the spatial ODE 

dzi 
-=mesh function, for i =  1,-..,NPTS. 
dt 
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Madsert ;MA843 defines a mesh function with the property: 

lim m(i)  = 0, 
hi -m 

where m(i) is the mesh function value associated with the i-th 

x;+l - x;.  If zr and 2, are assumed to be the left and right fixed 

mesh interval and h; = 

boundaries, respectively, 

NPTS-I dh, = 0. both i, and xl are zero. Differentiating above equation with respect to t, 
dt 

The moving mesh equation is defined by 

where 
NPTS-1 

M = [ m(i) ] / (N PTS - 1 )  

is the average mesh function value over all of the mesh zones. Madsen uses the five different 

mesh fuhctions 

where (f& and ( f k ) ~ h  represent the right hand side of the k-th PDE evaluated for the 

current step size h and 2h, respectively. Wk is a user-specified component weight, Kk,+ is the 

curvature of the k-th solution component at z; and each is chosen so that C:=l ml(i)  = 1 .  
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The first mesh function ml is designed to ensure that the right-hand sides of the PDEs are 

well approximated, mz(i) ,  m3(i) and m4(i) are designed to control the cimount of change of 

the solution u according to first derivative and curvature of solution and ms( i )  is designed 

to control excessive adjacent mesh distortion. In practice, the total mesh function may be 

useful as a linear combination of the individual mesh functions, i.e., 

where A, B, C, D, and E are user specified constants. The scheme contains many problem- 

dependent parameters, viz. Wk, Ti, A, B, C, D, E. Although extensive tests of this method 

seem not to have been carried out, preliminary tests appear encouraging, For example, the 

problem of two opposite travelling wave pulses is tested with A = 1, B = O,C = 0, D = 

1, E = 1 and mesh points N = 100, and reasonable results are obtained. 

Verwer, Blom and Sam-Serna use static regridding to obtain the reference mesh, then 

solve the PDE described by the Lagrangian frame [VBS88] and '[Bsv~~]. Their technique 

is the so-called 'intermediate' technique between static regridding methods where meshes 

remain fixed for intervals of time, and dynamic moving mesh methods, where the mesh 

aovement and the PDE integration are fully coupled. 

To solve 

Ut = L(u), (1,2.34) 

where L is a linear or nonlinear spatial differential operator, they use the Lagrangian tirne- 

stepping scheme 

where T is the time step. For B = f, (1.2.35) is the Lagrangian Crank-Nicolmn acheme; 

for 6 = 1, it becomes the Lagrmgian Implicit Euler scheme. The 'intermediate' approach 
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has two successive computational stages. The first is the mesh prediction stage which 

computes a mesh at the forward (n+l)-th level. Then we get the solution on a fixed mesh 

by the Implicit Euler step, and use the deBoor's regridding algorithm to generate the final 

mesh at  the (n+l)-th level. The second stage is the integration stage which computes the 

solution ti:+' by the Lagrangian Crank-Nicolson scheme with 6 = 4. The PDEs (1.2.35) 

are computed two times for 6 = $ and 8 = 1 in the approach. 

Two monitors are introduced in the implementation. The time error monitor controls 

the time-step selection and the space error monitor adapts the number of moving mesh 

points. 

Smooke and Koszykowski develop a f d y  adaptive method, which first discretizes in 

time 1, then solves the boundary value problems [SK83]. Meshes are derived from the mesh 

monitor at discrete time levels. The scheme interpolates values of the solution from the 

old meshes to the new meshes. They do not couple the calculation of the meshes and the 

solution of the PDE. The details are as follows: Consider the partial differential equation 

Here they use a Backward-Eder scheme to approximate the time derivative. The equation 

( 1.2.36) becomes the boundary valne problems, 

where the time step AT+' := tn+l - tn, aad en++'(z) is the discretization error derived by 

the Backward-EuIer scheme 

Ignoring the discretization e m r ,  we can rewrite (1.2.37) in the form 
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Many researchers have used the adaptive mesh method for solving boundary value prob- 

lems. For example, White has chosen the arclength as a aonitor to equidistribute mesh 

[WH79]. Pereyra and Sewell have obtained a mesh based on equidistributing the local trltn- 

cation error [PS75]. BVP-ODE solvers such as COLSYS, COLNEW and COLPAR involve 

adaptive mesh strategies. 

For solving BVP-ODE (1.2.39), we realize that an interpolation scheme is required to 

obtain the solution a t  time level n a t  the mesh point xlC1. For this purpose, Smooke 

and Koszykowski use h e a r  interpolation. SpecificaUy consider the mesh points at two 

consecutive time levels in Fig. 1.1 and assume that the mesh point zY+' lies in an interval 

Ex;, z;T+~] from the n-th level. To obtain u?, they use linear interpolation 

or a corresponding expression if zY+' is closer to 

Figure 1.1: Interpolation points at two time levels 

Finally, they derive the M y  discrete adaptive scheme 
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with the appropriate initial and boundary conditions. But one can not solve the above 

nonlinear equation, since the mesh point x:+' at the (n+l)-st level is still unknown. They 

use an equidistribution strategy to obtain all meshes prior to the (n+l)-st level. To get the 

meshes at the (nf 1)-st level, they guess mesh points {x:") moving along the simple ODE 

equation 

with initial condition x,(O) = zl-'. Integrating from time 0 to t yields 

or so integrating from tn to tn+l7 we have 

This is a linearly extrapolated equation using time levels n and n - 1. 

Though this scheme generally works quite well, there are two major difficulties which 

occur when an extrapolation scheme is used to  move the mesh. The rs-ordering of meshes 

if mesh points cross one another is the first. The second occurs when mesh points are 

extrapolated out of the spatial domain [a, b]. 

Larrouturou considers a very simple moving mesh method for solving the flame propa- 

gation problem 

Tt = Tzz + Q(T, Y), 

= Yzz/Le - .R(T,Y), 

where z E [zo, zN] and R(T, Y )  = $Y exp (- e h )  is the normalized reaction rate. 

Here, the Lewis number Le of the reactant, the reduced activation energy ,O of the reaction 

and the nondimensional heat-release pasameter a are positive constants. The initial and 

boundary conditions are given. Larrouturou supposes the meshes move continuously as 

a rigid body ts catch the flame front [LA89], that is, meshes move at each time t with 
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the same time-dependent velocity V(t)(= xj(t)). In this simplified Lagrangian frame, the 

flame-propagation becomes 

The meshes are chosen by an equidistribution strategy with a physical qualitative monitor, 

for example, the temperature T. 

Suppose 

Integrating equation (1.2.47) from xo to XN yields 

x N 
T ~ x  = T ~ ( z N )  - Tz(x0) + V(t)[T(x~v) - T(xo)] + lo R(T, Y)dx. (1.2.50) 

Using equation (1.2.49), we obtain the mesh velocity 

v(t) = [- J x N  O(T, Y ) d x  4- T,(xo) - T=(xN ~]/[T(xN) - T(xo)]. (1.2.51) 
s o  

A simple explicit finite difference scheme is used to approximate the PDE. In order to 

better adapt the mesh points to the solution profiles, the new meshes are computed by 

equidistributing the mesh monitor. Then the solutions at the new meshes are obtained by 

interpolation from the old meshes. Larrouturou proposes a conservative interpolation which 

is used instead of linear interpolation. This implementation is much simpler: Let T ( " ~ )  be 

the piecewise constant function defined on the interval [xo, XN] by 

and consider 
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where E ( z )  is a continuous piecewise linear function on [xo ,  x N ] .  Then the new solution for 

the temperature T in the interval [z(Y:Y), z(ner)] is given by 
3-5  3 + ~  

It has been shown that conservative interpolation preserves the positivity and monotonicity 

of the solution and the properties of linear interpolation [LA89]. 

1.2.4 Moving finite element methods 

Moving finite element methods are another class of methods which have been quite successful 

in solving time-dependent partial differential equations with shocks or large gradients. Miller 

and Miller first introduced the moving finite element method in 1981 [MM81]. Subsequently, 

many researchers have studied further variants of moving finite element methods. Baines 

et al. studied the "local" moving finite element method [BW88], [JWB88]; Herbst et al. 

generalized the moving finite element [MM81] to  a moving Petrov-Galerkin methods for 

solving transport equations [HMS82]; Adjerid and Flaherty proposed the adaptive moving 

finite element method [AF86bl], [AF86b2]; and Mosher used a variable node finite element 

method [M085]. We review these moving finite element methods in the following sections. 

A. Moving finite element methods 

Consider the tirne-dependent partial differential equation 

In the moving mesh frame or Lagrangian frame, meshes depend on the time and profile of 

the solution of the partial differential equation. Consider the partition 



CHAPTER 1 .  A SURVEY OF MOVING MESH METHODS 19 

Miller and Miller introduce the piecewise linear moving finite element to approximate the 

solution, so 

where a; are the standard piecewise linear basis functions 

and Ui are the amplitudes of solution at  x i .  Differentiating equation (1.2.57) with respect 

to t gives 

where 

-uZia; for 2;-1 < x < z;, 

for z; < x < zi+l, (1.2.60) 

otherwise. 

Here Pi are discontinuous piecewise linear functions. The divided difference 

approximates the first derivative of the solution on xi], 2.e. mi % u,, for z E [xi-1, z;]. 

with respect to  the velocities of meshes zi and the velocities of the solution U,. This Least 

Square approach leads to  a system of Ordinary Differential Equations 
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where < ., > is the standard L2 - inner product. The U;(O) are obtained from the initial 

conditions for the partial differential equation, and a uniform mesh are usually chosen for 

the initial values zi(0). For fixed meshes, this is the same as the standard finite element 

method with a piecewise linear basis. 

Let Y := (Ul, zl, . . . , Ui, z,, . . . , UN, zN)T E R". We write equations (1.2.62) and 

(1.2.63) in matrix form, 

A(Y)Y = G(Y),  for t > 0 .  (1.2.64) 

Here A(Y) is the mass-matrix with block-tridiagonal form, where 

Wathen and Bdnes introduce the concept of the "localn moving finite element and show 

that the block-tridiagonal matrix A can be represented as 

with 

and 

Hence it is easy to show that A(Y) is a singular if two situations occurred. The first 

is swcalled pardelism (mi = m;+l, for some i E (1, - -, N)). Geometrically, this implies 

that three neighboring points ( ~ i , ~ ,  u ~ - ~ ) ,  (z;, u;) and (zi+1, u ~ + ~ )  are located on the same 

straight line, md the curvature u, at  the point (z;, u;) is zero. The second is the degeneracy 
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of A whenever two mesh points come too close together or cross one another; in this case A 

becomes ill-conditioned and numerically singular. The mesh crossing can be eliminated by 

reducing the time step [HMW86], or by deleting mesh points that are too dose [WBG]. 

In order to overcome above two problems, Miller adds regularization terms or penalty 

functions in the residual minimization to obtain new objective functions [MI81]. He mini- 

mizes 

2 2 with respect to a, and x i ,  where &f = &:-67 E,S; = -&2, C I ,  c 2 ,  and 6 are problem- 

dependent constants and 6 is a user-defined minimum mesh distance and is also used for 

the activation energy. The regularization terms affect the moving mesh equation (1.2.63) 

by adding 

and 

to  the left- and right-hand sides of equation (1.2.63), respectively. Then it can be shown 

that the mass-matrix A becomes positive definite [MM81]. Miller interprets the physical 

meaning of regularization. The &-terms are called 'internodal viscosity' terms which avoid 

parallelism by controlling the relative motion between the meshes. The S-terms are called 

'internodal spring forces' which prevent numerical drift by providing a force between too 

close ~ e s h  points. 

For shock problems, most of the mesh points move into the steepest regions of the shocks, 

because the total derivative u is close to being a delta function and large errors 6' - L(u) 
arise for the least square method with the Ls-norm. To de-emphasize the steep portions 

of the solution, the gradient weighted MFE method with the gradient weighted function 

m(u,) = is introduced by Miller [MI83]. Thus, the system of Ordinary Differential 
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Equation for gradient weighted MFE becomes 

< U , ( L ~ W  > = < L ( u ) , Q ~ w  >, 

< U ,  a j w  > = < L(u),  a j w  > +reg. terms, 

instead of equations (1.2.62) and (1.2.63). However, this system shares many of the same 

difficulties as equations (1.2.62) and (1.2.63), as we shall see in Chapter 3. 

Herhst et at. [HMS82] have derived a moving Petrov-Galerkin method based on the 

moving finite element approximation equation 

The a; are defined as in (1.2.58), but they use piecewise Hermite cubic polynomials as test 

functions, viz. Sj and Ti given by 

sj(z) = [aj(z)12[3 - 20 j ( z ) ] ,  

and 

Differentiating equation (1.2.71) with respect to t gives 

where the pi are given in (1.2.60). Then, by Petrov-Galerkin method, the coupled system of 

Ordinary Differential Equations is 

N 

C < a;, Sj > a+ < pi, S, > 5i =< L(U),  Si >, j = 1, ..., N .  (1.2.75) 
i=l 

To clarify the form of the above coupled ODE system, we write down the mass-matrix 

of the left hand side in (1.2.75) and (1.2.76): 
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and 

where A x j  = x j  - It is clear that the mass-matrix (1.2.75) and (1.2.76) is sometimes 

singular. So regularization terms are again required to avoid a singular mass-matrix. Herbst 

et al. also use the regularization terms of Miller [MI811 (see also (MI831 and [FU85]). 

Comparing the moving finite element method of Miller and Miller with the moving 

Petrov-Galerkin method, Miller showed that if the moving finite element [MM81] is used in 

the H-l-norm rather than the Lz-norm in the residual minimization, the two methods are 

equivalent for scalar PDEs in l -D  to  within the regularization terms [MI83]. 

MFE [MM81] can also be derived by a suitable coordinate transformation (see Mueller 

and Carey [MC85], Lynch [LY82] and Baines [BA88]). To see this, consider the time- 

dependent partial differential equation 

Suppose (<,T)  are new independent variables, and (z,t) are the original variables, where a 

coordinate transformation is defined by 
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u(z,  t )  = q.f, t ) .  

Using the derivative chain rule 

C( = Z<U(.  

For the new coordinates (I, T), equation (1.2.79) becomes 

Using the notation 
. au 

u = ' 6 ~ ,  Z = Z T ,  uz = - a~ 
(1.2.85) becomes 

For a numerical approximation u of the exact solution, define the residual R by 

Using the Least Square Variational Method for IIRlii with respect to u and S, we have the 

weak forms 

< R,$>=O (1.2.87) 

and 

< B,u,ip>=O 

for all admissible test function +(= 6u) and cp(= 6x). 

Consider finite element approximations 
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where the q5j(() are basis functions for the finite element, space. 

Since 

we obtain that 

Equations (1.2.87) and (1.2.88) become 

and 

< R, uz& >= 0 

This is Miller's MFE if the basis functions 4; are piecewise linear functions [MC85], 

[LY82] and [BA88]. 

Instead of minimizing I [U - L(u)11; with respect to the mesh xi to determine the mesh 

equation, Mosher [M085] gets the moving mesh equation based upon the equidistri bu t ion 

principle 

where 
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with f, a function of the gradient and the curvature defined by 

for a = 1, . , N - I. For ends points, B1 is zero if i = I and B2 is zero if i = N - 1. Here 

B l ,  B2, & I ,  E* are wer-chosen constants. In his computations, B1 = B2 = 0.025, ~1 = 

E Z  = loq6 are used [M085). 

B. Adaptive finite element method 

In this section, we discuss the adaptive finite element method proposed by Adjerid and Fla- 

herty [AF86bl], [AF86b2]. The Galerkin method is used to discretize the partial differential 

equation in space with piecewise linear basis functions. They introduce an error estimate 

to control the moving mesh based on an equidistribution principle. 

Consider 

Ut = L(u). (1.2.100) 

The finite element approximation U of the exact solution u is defined using the weak form 

where cp is a suitable test function. Introducing a partition 

If 
N + l  

u(z , t )  = C il,(t)ai(z)? 
i=o 

where a; are piecewise linear functions defined in (1.2.58), then 
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To estimate the error between the exact solution u and the finite elemeat approximation I I ,  

we define anotLsr weak form 

for an admissible test function v.  Then, we approximate the error e by piecewise quadratic 

functions 

where 

Then the weak form is used to  estimate the error, viz. 

Once we know the error estimate, the meshes can be controlled by requiring 

k t )  - ( t )  = - ( E i i l  - ) for i = 1,2, - . -, N, 

where X is a positive constant and 

Here [IEi9;lIl is the local error in H1 on (zi-1(t), xi(t)) and E is the average error in H I .  

The moving mesh equation (1.2.109) is similar to equation (12.26). This method is 

more efficient for solving parabolic problems than for solving hyperbolic problems. It can 

estimate the error for each time step, dthough the method is quite sensitive to the choice 

for A [AF86bl], [AFBGb2], 



Chapter 2 

Theory & Computation of Moving 

Mesh Methods 

2.1 Introduction 

.s aspects of th In this chapter we investigate variou ng mesh problem for the solution of 

partial differential equations in one space dimension. In particular, we study methods based 

[explicitly or implicitly) upon an equidistribution principle. Equidistribution is shown to be 

equivalent to the problem of solvkg a particular PDE for this new computational coordinate 

system. Implementation of a discrete version of equidistribution to compute a moving mesh 

corresponds to solving a weak form of the PDE. The stability of the equictistribution is 

discnssed, and we argue that stabiity can be significmtly affected by the way in which this 

sointion process is carried out. A simple moving mesh method is constructed using this 

framework, and numerical examples axe given to  illustrate its robustness. 

One of the most important compntational consideration when solving partial differential 

equations (PDEs) having nontrivial solutions is che decision of how to automatically and 

stably chouse a nonuniform mesh which snitably adapts to  the solution behaviour. For 

initial d u e  PDEs, constructing a moving mesh with time can be essential if the problem 
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is to  be solved efficiently, and often if it is to be solved at all. The resolution of this issue 

has proven to  be surprisingly difficult, and theoretical results have been particularly slow in 

coming. Considerable controversy surrounds the questions of which overall strategy to use 

and how best to choose a moving mesh for a given strategy [FVZQO], even though few basic 

mesh selection principles are around. Here, we investigate one of the key mesh selection 

strategies, that where equidistribution is explicitly done with respect to some measure of 

the error, and we discuss how these results have implications with regard to some other 

strategies as well. We focus on PDEs in one space dimension. 

First consider the case of solving an ordinary differential equation (ODE), e.g. 

with boundary conditions u(a) = PI, u(b) = ,&. The equidistribution idea, apparently 

first introduced by deBoor [I30731 and Dodson [D072], is based upon the simple idea that 

if some measure of the error M ( z )  is available, then a good choice for a mesh n ; c; = 

so < z l  < - .. < z p ~  = b would be one for which the contributions to the error over 

the subintervals are equalized (or "distributing equallyn). In practice, most strategies find 

H by only approximzitely equidistributed with respect to the so-called monitor function 

M ( z ) ,  although White [WH79] provides a framework for doing this distribution exactly. He 

defines a change of variables s = ) J: M ( [ ) @ ,  where 9 := J: M ( [ ) 4 ,  and then forms a 

new system of ODES consisting of the original ODE (say, (2.1.1)) rewritten in terms of this 

computational variable s, and the ODE 

Eqnidistribution then corresponds to choosing n with s(z;+*) - $(zi) = k, i = 0,1, -. a ,  

N - 1- This continuous form has been found to be a useful theoretical tool for interpreting 

schemes, but it has generally been found t o  be not too reliable cornputationally because the 

new ODE system can be extremely sensitive t o  solve. While all of the reasons for numerical 
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difficulties are not well understood, a major one is that the tra~bsformed ODE (in s )  can 

be extremely nonlinear and its solution badly behaved due to the introduction of interior 

layers [&U791, [SM82]. StiU, equidistribution strategies are widely used in conjumtion with 

the original ODE (like /2.1.1)), and in this way they have enjoyed general success. 

Consider now an initial/boundary value PDE 

with u(x, O), a < x _< b and u(a, t), u(b,t),t > 0 given. Our concern is to  investigate 

properties of an equidistribution procedure, and in many respects this does not depend 

upon the form of the PDE itself. For example, the PDE could instead be a system of 

equations in u = ( u ~ ~ ,  . . . , like 

Many variations of equidistribution strategies have been investigated in practice. The first 

ones generally did a static regridding [HY83], where equidistribution to  determine a new 

mesh is done after the solution t o  the PDE is computed at the new time level - e.g. see 

[.W86a]. Later, the PDE and mesh solution processes were combined to  do dynamic regrid- 

ding [HY83]. Several moving mesh methods based upon equidistribution were investigated 

by Coyle, Flaherty and Ludwig [CFLSG]. Hyman [HY83] studied a moving mesh strategy 

for PDEs of the f o m  (2.1.3), and later Petzold [PE87] did so for the implicit PDE (2.1.4), 

for details see page 6. 

Mathematically, the goal of finding mesh functions {z, (t) jz;', or moving meshes 

which are equidistributing for all values of t means that we want 
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This equidistribution equation can be written equivalently as 

With static regridding, equation (2.1.6) or (2.1.7) is approximately satisfied at every new 

time level, where the monitor function M(z, t )  depends upon the just computed solution 

of the PDE at this time level. (For notational convenience, the explicit dependence of 

M upon u is not specified.) With dynamic regridding, the PDE is solved together with 

(2.1.6) or (2.1.7), and the rate at  which the mesh moves is a function of how 9 changes with 

time. In actual fact, the regridding strategies only sdve (2.1.7) approximately, producing 

so-called asymptotically equidistributing meshes, but this distinction will not be a focus of 

our present ation. 

White [WH82] also studies the PDE case, which we discussed in page 4. As for the 

ODE, he replaces the physical variables x , t  with a new set of computational coordinates 

s ,  T defined via the equidistribution process, viz. 

He obtains a new PDE system consisting of the original PDE for u rewritten in term of s 

and T ,  and 

Several attempts t o  solve this transformed PDE for u (as a function of these new compu- 

tational variables) have been rcade, e.g., see [WH82], [DKS80]. This involves forming a 

discretization of the transformed PDE and solving a coupled system for the numerical so- 

lution and the equidistributing mesh which (approximately) satisfies (2.1.6). The resulting 

system is, however, generally sensitive to  solve numerically [SM82]. The transformed PDE 

is nonlinear even if the original one is linear, and sometimes physically meaningless solu- 

tions are obtained. Still, as we s h d  see, it provides a useful model with which to interpret 

particular numerical schemes. 
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In [CFL86] the stability of the equidistribution process is studied. Ln particular, differ- 

entiating (2.1.7) with respect to t, they study the equations 

i d8 
M(xi, t ) i i  + lxi Mt(z, t ) d ~  = - - i =  l , . . . , N  - 1. 

N d i '  

Using linear perturbation techniques for the mesh points, they perturb s; by 6xi and take 

and linearize (2.1.1 1) to get the first order terms 

Integrating from t = 0 to t, 

Doing this analysis and an accompanying numerical study, they conclude that mesh equidis- 

tribution, while unquestionabIy a desirable property for the mesh points, requires extreme 

care for its implementation because of potential instabilities for dissipative PDEs, where 

the perturbation terms in (2.1.13) can grow rapidly. A number of attempts are made to 

eliminate f his potential instabilities for dissipative PDEs for the moving meshes. Generally, 

these involved some form of regularization [HN84], [PE87]. 

In the next section, we discuss the equidistribution problem within another framework, 

showing why the stability analysis needs to  be interpreted cautiously. This is not surprising 

since it is unclear exact@ how one would reconcile instability results concerning equidistri- 

bution with what is known about moving finite element (MFE) methods [MM81] in page 18. 

These methods have proven extremely effective for parabolic PDEs [GDM81]. Herbst et al. 
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have shown by Taylor expansion that the moving finite element equation (1.2.62) for the 

transport eqilation 

u* + (V(4)Z = E U z z  

leads to the equation 

where Ax = ma~;(Az;) and Ax; = x i  - 2;-1. The MFE methods have been shown to be 

related to  a weak form of equidistribution [FU85, HSM83, TS86J. Also, we can see that for 

parabolic PDEs the matrix system can become singular if an equidistribution relationship 

is violated, i ,e.,  mi+l = mi [HSM83]. For hyperbolics, i.e., E = 0, they run into difficulty 

at the very point where the equidistribution property is lost [FVZ90]. Further, Thrasher 

and Sepehmoori have proven that the MFE [MM81] equations without regularization terms 

satisfy a weak equidistribution relationship [TS86]. In order to avoid difficulties, Miller 

[MI811 introduces regularization terms, which implies the new equidistribution relation 

From the above equation, we see that the penalty function in this regularization plays the 

key role of preserving equidistribution [HSM83] when m;+l = m; or E = 0. Nevertheleas, the 

practical implications of these often tenuous theoretical connections are difficult to interpret, 

leaving many stability issues still open to question. 

2.2 Equidistribution PDE 

In order to  analyze further the stability of moving meshes satidying an equidletribution 

principle, we derive a PDE which provides a new interpretation of equidistribution. From 
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so assuming M is a smooth function, along lines where s(t) is constant with respect to time 

implying 
a 

8 r )  + S& = sXe = M ~ ( x , ~ )  + &(MX). (2.2.15) 

Thus, we have the differential form 

a a e 
- M ( z ,  t) + -(M(x, t ) i )  = -M(x, t). 
a t  a x  e 

Consequently, doing equidistribution implicitly corresponds to  finding a solution to (2.2.16). 

Although this is technically an integro-differential equation, we shall refer to it as a hyperbolic 

conservation-type PDE. (In the next section the integral term is eliminated through a change 

of variables.) Differentiating (2.1.6) with respect to t, we obtain 

Using (5j, it is shown that the discrete equidistribution process for the mesh (2.1.5) corre- 

sponds to finding a solution to  

Thus, by letting the cell [z;-~, xi] shrink to a point we obtain the moving mesh PDE (2.2.16). 

This viewpoint is valuable in several respects. Practically, the effects of discretizing 

(2.1.6) and (2.2.16) are similar. However, considerable experience has been gained from 

solving PDEs in conservation-type form like (2.2.16), SQ it is natural to try to develop new 
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methods and interpret previous ones using this formulation. It also provides a physical in- 

terpretation of these moving mesh methods in terminology familiar in 0uid dynamics. The 

mesh points serve a similar function as particles of flow. In particular, the equidistributing 

coordinates are chosen using a quasi-Lagrangian approach: the moving mesh is along lines of 

constant s ( t )  = I:(') wdt. Here, (2.1.6) satisfies a finite version of the integral form, or 

weak form. The weak form (2.1.6) of the PDE shows that the "flux" of the error density 

function M is ecpivalent across the subintervals, or across each cell [xi-l, xi]. If the total 

measure of error in the i n t e r d  [a, b] is constant, then 6 = 0, and the moving mesh equation 

(2.2.16) becomes the Euler equation for the "fluid" with density function M(x, 1) .  Finally, 

the case where meshes are calculated using static regridding can be viewed as correspond- 

ing to  the steady flow case in fluid dynamics, where the error density function M(x, 2 )  is 

independent of time. A Lagrangian approach corresponds to the choice M(x, t) = u, and 

e = 0. In this case integration of (2.2.16) gives the well-known conservation law [LA731 

and x(t) is simply a characteristic. For the arclength monitor function M ( z ,  t) = d m : ,  
if uz >> 0 then M (z, t) = u,, and we see how the moving mesh equation reflects the shock 

behaviour where characteristics cross. For hyperbolic PDEs, the MFE method with no 

regularization has also been shown to  produce moving meshes along characteristics [BA88, 

RMS 821. 

While the PDE (2.2.16) has to  our knowledge not been used previously to interpret mesh 

selection schemes in a general setting, similar approaches have been investigated in special 

contexts. As mentioned in Chapter 1 Larrouturou [LASS] develops an inexpensive moving 

mesh method for which the mesh points move with a time-dependent velocity x ( t ) ,  the 

monitor function is chosen a3 a physical quantity (temperature), and the total energy Oft) 

is constant. This gives a PDE like (2.2.16) to solve for k(t), but 0(t) = 0. In Larrouturou's 

actual implementation, the new mesh is computed using static regridding. 
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Theoretically, White's approach [WH82], being based upon equidistribution, involves 

satisfying (2.2.16) exactly. He writes the PDE in terms of the computational ("Lagrangian") 

coordinates ( s ,T ) ,  and since the solution has no steep gradients in these coordinates, a 

uniform mesh with - s(z;) = $ is used for the transformed PDE. He generally 

works with arclength as the monitor function, i.e., M(x, t) = d w .  
From the relation between the moving mesh problem with equidistribution and (2.2.16), 

it is easy to see how difficulties can arise computationally. Approximation to the left-hand- 

side should generally be done with a conservative scheme, or one could expect difficulties 

to occur. While many excellent methods of such type are available, when 9 # 0 this term 

can cause considerable numerical difficulty, and finding suitable numerical methods just to 

solve a PDE of this type is a far from well understood matter [LY88]. The situation here 

is of course further complicated because the moving mesh PDE is coupled to the original 

PDE. 

To see how difficulties can arise in general for the moving mesh equation, suppose that 

we assume that 9 = 0. Then (2.2.16) becomes 

If we use the non-conservative form 

and discretize using a standard method of lines procedure, we obtain 

Thus, 
d 
-[M(zi(t), dt t)(zi+~(t) - ~; ( t ) ) ]  = 0, 
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and upon integrating, we get 

Unless w/ remains small, which it generally would not do for dissipative PDEs, the 
I, t ,t 

moving mesh points can easily cross and/or leave the domain [a, b]. 

These observations apply as well for to the differential equation (2.1.13) developed in 

[CFL86] using linear perturbation techniques. It is useful to investigate this linear pertur- 

bation analysis further. Expanding (2.1.12) and dividing by 6xi9 we have 

Letting 62;  + 0, we obtain 

The steps from (2.2.25) to (2.2.27) can be retraced. 

Thus, the perturbation equation (2.1.13) used in [CFL86] to study stability of the equidis- 

tribution process can be obtained from setting the source term in (2.2.16) to zero and writing 

the resulting equation a t  z = zi in nonconservative form. In retrospect, we see that (2.1.13) 

resembles a conservation of mass equation, where 8 corresponds to total mass which is 

unchanging with time. Findy, note that (2.1.13) is obtained from perturbing only the 

left-hand-side of the equation (2.1.7) or (2.1. lo), since there is no perturbation expansion 

for the term h. We conclude that, while (2.1.13) is extremely useiul for interpreting the 

stability of many implementutiom of eqdiatribution procedures, the stability properties of 

the equidistribution principle itself are more complicated. 

Through a simple change of variables, (2.2.16) can be converted from a differential- 

integral equation in M ( z ,  i) to  a differential equation for which the stability analysis of 
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[CFL86] is more generaily applicable. Introducing the transformation 

it is easy to see that (2.2.16) takes the equivalent form 

Thus, the "average energyn function W(x. t), for which W(z, t)dx r 1, satisfies the 

conservation equation (2.2.23). The transformation (2.2.28) is of a similar type to the Cole- 

Nopf transformation [UrB74], although the context and purpose are quite different. From 

(2.1.6), the weak form of the PDE (2.2.29) is 

i e . ,  the total "avemge energyn between any two mesh lines remains constant. There is 

in principle no reason why the moving mesh approaches constructed in terms of M(x, t) 

can not use W(z, t) instead. The derivation fram (2.2.20) through (2.2.24) can be repeated 

with W replacing M, and under the appropriate corresponding conditions (except with no 

right-hand-side which needs to  be ignored ) we see that the potential for mesh crossings now 

occurs if 

a measure of the average chaage in M(zi(t), t), grows. Comparing with (2.2.24), one would 

hope that the moving mesh equations derived using this new variable would be more robust, 

if not necessarily more efficient. Finally, the analysis [CFL86] is directly applicable to 

f 2.2.29), so stability of an non-conservative equidistribution process is given by (2.1.13) 

with W replacing M. 

2.3 Analysis of equidistribution PDE 

In this section, we study the pure equidistribution PDE without considering the physical 

PDE (the original PDE). In particular, consider the equidistribution partial differential 
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equation 

where w(z,t)dz = 1. Letting 

we can write (2.3.30) in the form 

This asserts that w is a constant along trajectories x = x(t) which propagates with speed 

Suppose that the solution of equation (2.3.30) is smooth on each side of a smooth curve 

z = y(t), across which w devebps a shock and is discontinuous. Denote by wl and w, the 

d u e s  of w on the left and right sides, respectively, of x = z; , and assume that the curve 

y intersects the intervd a 5 x 5 b at  time t. Then 

and taking the derivative with respect to t we have 

where s = 9 for the speed with which the discontinuity propagates. Since 

The conservation law asserts that 
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Then the jump condition or Rankine - Hugoniot condition 

is automatically satisfied. 

For the hyperbolic equation 

there is a general solution w = F(z - ta). If we define w to be a density per unit length and 

wx to be a flux per unit time, then the solution of this equation can be viewed as having 

kinematic wave behaviour, where a ( w )  is the propagation velocity of the wave. 

Breaking condition [WH74] 

A continuous wave breaks and requires a shock if and only if the propagation velocity a 

decreases as 2 increases. Therefore when the shock is included we have 

a1 > s > a,  (2.3.38) 

where a l l  velocities are measured positive in the directisii sf increasing x. From the breaking 

condition (2.3.38),  and the definition of the velocity a, we get 

If ( x ) l  = ( z ) ~  = 2 ,  then from the jump condition we have s = i. NOI- (2.3.39) becomes 

Since lu is the positive average monitor function in mesh selection, we obtain :he breaking 

condition for the equidistribution PDE (2.3.30) 
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When the breaking condition is satisfied, we get one weak solution of the PDE (2.3.30) that 

is a shock wave. Thus the breaking condition corresponds to mesh points crossing each 

othe~.  

2.4 Implementations of equidist ribut ion 

In this section we consider ways in which the equidistribution process can be implemented. 

First, we consider how to choose the monitor or density function which cmt;rols the move- 

ment of the mesh points. This is more difficult than for ODEs due to the additional variable 

t. There are three basic choices of M(x, t) which have been widely used in practice: (i)  an 

arclength monitor function iWH82, DD871, (2) a combination of gradient and curvature 

[MD88, DKS80, HL86, DD87, M085], and (iii) truncation error or solution residual - used 

directly for ODEs [RU79], and either explicitly [AF86a, BB861 or implicitly [MM81, HSM83] 

for moving finite element methods for PDEs. 

Stability properties of the moving mesh equations, while dependent upon the choice of 

monitor function, are t o  some extent arbitrary since they usually behave ayrnptotically 

much like some fractional power of a solution derivative (e.g., see [RC78]). Here, we use the 

arclength monitor function 

Our first implementation of a moving mesh method involves using an approximation for 

(2.2.16) of the form 

For the numerical examples presznted in the next section, i > 0 so tkis simple upwind 

approximation to  ( M j ) ,  is sufficient. On the interval [xi, we use the monitor function 

discretization 
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To maintain discrete conservative, 

and 

are approximated using left rectangle rules 

M ( z 7  t ) d z  (zi+l - z ; ) M ( z ; ( t ) ,  t ) ,  

Mt ( z ,  t ) d z  (x;+I - z i )Mf (x ; ( t ) ,  t ) .  (2.4.45) 

We test this moving mesh strategy, hereafter called Method I, both with and without the 

right-hand-side in (2.4.42). For both, only the fixed boundary case i o ( t )  = x N ( t )  = 9 is 

considered. 

We also consider a moving mesh method developed using (2.2.29). Approximating this 

upon rearrangement we obtain 

A similar approximation on [zi-, , zi] gives 

Eqnidistribution implies 
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Equating the right-hand-sides of (2.4.47), (2.4.48), which are appro>cimations to (2.4.49) at 

t = t,, we obtain 

Since each term involves W ( z ,  tnil) = -*I, O(t) can be eliminated, leaving the discrete 
0 h + l  

approximation 

at  t = t,+,, where to avoid confusion with the time integration steps later on we write 

T := At. This moving mesh strategy, which we refer to as Method I1 (also using (2.4.43) 

and with xo(t) = xN(t) = 0), is considered in the next section. 

A great variety of moving mesh equations have been obtained by others, taking the 

various choices of monitor functions and approximation schemes. In the remainder of this 

section, we show how some of these are related to the equidistribution relationships derived 

in $2, either in the differential form (2.2.16) or the weak form (2.1.6). 

For the moving finite element methods of Miller and Miller [MM81] and Herbst et al, 

[HSM83], the moving mesh equations are derived from the weak form of the PDEs written 

in Lagrangian form. In particular, a given PDE ut = L(u) is converted to its Lagrangian 

form u-v,x = L(u). Suitable weight functions di(x) and $J;(x) are chosen, and the residual 

is reqnired t o  satisfy the orthogonality relations 

The choice 
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where ai(x) is the hat function and P ; ( x )  is a discontinuous piecewise h e a r  functions on 

x ; + ~ ]  (see (1.2.58) and (1.2.60)) is made in [MM81], and the choice of the piecewise 

cubic Herinite polynomials 

4 ( z )  = [ai(5)I2[3 - 2ffi(5)] (2.4.55) 

is used in [HSM83]. Both of these can be shown to  be implicitly based upon a weak form 

of the PDE (2.2.16). In particular, requiring that 

is satisfied for the monitor function 

we obtain the moving mesh equation corresponding to (2.4.55) and (2.4.56), and for 

-uXR(u) for x E [xi-1, xi] 

u2 R(u) for 2 E [xi, xi+l] 

we obtain the moving mesh equation corresponding to  (2.4.53) and (2.4.54) [FU85]. 

Aside from stability, one of the most troublesome problems for a moving mesh method 

is the tendency for mesh points to cross. For equidistribution (2.1.6), this easily happens 

if M changes sign, so to avoid this the early papers on equidistribution define a monitor 

function to be non-negative. For MFE methods, the associated equidistribution property 

above holds for a monitor functicm which changes sign, and consistent with this the fact 

that regularization terms generally need be added to prevent mesh crossings. In contrast, 

we find that for discretizations formed directly from (2.2.161, for positive monitor functions 

the problem of mesh crossing itself can be minimal. 
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If instead of (2.2.16) we take 

and write it in the non-conservative form 

then the discretization 
M; - M;-l X; - 2;-1 

2; + Mi = 0 
Z j  - 2,-1 Xi - 2 ; - 2  

gives 

This is similar to the moving mesh equation of [AF86bl], except they attempt to optimize 

a parameter value which is used in place of 3. 
If the monitor function is simply the solution to the PDE, i.e. M(x,u) = u, then (2.2.16) 

becomes 

or in non-conservative form 

In developing a moving mesh strategy, Petzold [PE87] attempts to minimize, for a suitable 

parameter a, the objective function 

which is a measure of the change in the solution u and mesh x with respect to time t .  Since 
f -x - 1  

meshpoints can easily cross with this choice, she introduces a penalty function A[(-)* + 
i i + l - P i  2 

-z, ) 1. This can be viewed a. a ureplacement" to the missing term u$$ in (2.4.581, 

which gives a scheme that in same sense minimizes the "source error energy" uf for the 

PDE when moving mesh points in time. The usefulness of this interpretation of Petzold's 

scheme to  develop other practical moving mesh strategies remains to be investigated. 
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One of the most resable moving mesh discretizations is due to Dorfi and Drury [DD87] 

and analyzed in [VBFZ88]. It is similar to (2.4.501, where the general relationship between 

them involves using an artificial dissipation term in conjunction with (2.4.50). We will 

discuss them in Chapter 3. 

2.5 Numerical results 

Here we give some numerical examples to examine the moving mesh strategy from Met hod 

I- with and without the right-hand-side of (2.4.42) - and the strategy from Method 11. 

We choose three examples, consisting of one hyperbolic and two parabolic problems. both 

using and not using the source term. 

To discretize the PDE 

we first write it in the Lagrangian form 

Next, using a central difference scheme for the spatial derivatives, we obtain 

Thus, we solve the coupled system of equations (2.5.61) and (2.4.42), with and wlthout 9 = 0. 

This ODE system is solved using the code LSODI of Hindmarsh [HI80]. An approximate 

Jacobian is computed by LSODI internally using difference quotients. For simplicity, an 

initial uniform mesh is used in each case. In the tables of numerical results reported, nst 

and nje are respectively the number of steps and number of Jacobian evaluations taken 

by LSODI up to the time given, and nqn and tstep are respectively the order of the last 

successful method and the last successfd stepsize. All runs were made on Sparcstations in a 

distributed computing environment, and computer times are not given. Method I is more 
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expensive using the right-hand-side in (2.4.42) than not using it, but the difference is rlot 

very significant (always less than 20% for these problems). 

Problem I: This problem, a scalar reaction diffusion problem from combustion theory, has 

been used by several authors to test their moving mesh strategies [AF86a, PEST, FVZSO]. 

It is a model of a single step reaction with diffusion, 

where the constant heat release is a, reaction rate is R, activation energy is 6, and Damkohler 

number is D = R exp 6/(a6). The solution represents the temperature of a reactant in a 

combustion. For small time the temperature gradually increases from unity with a "hot 

spot" forming at z = 0. At a finite time ignition occurs and temperature at x = 0 jumps 

rapidly from unity to  1 + a. A flame front then forms and propagates towards x = 1 with 

speed proportional to exp (a6)/2(l f a).  Here a is about unity and b is large, so the flame 

front moves exponentially fast after ignition. The problem reaches a steady state once the 

flame propagates to x = 1. This problem serves as ies good test of moving mesh methods 

because of the sensitivity of tracking the flame front [AF86bl]. 

The derivative boundary condition %((I, t) = 0 is approximated by = 0, or ul - 

uz = 0. The problem is solved for a = 1,6 = 20, and R = 5, using a moving mesh with 

N = 20 and with N = 40. The results are compared with a reference solution (solid lines in 

the Figures) obtained by LSODI, using the method of lines with standard central differences 

on (2.5.59) and N = 500 equal spaced mesh points, with absolute tolerance atof = and 

relative tolerance rtol = 10-~. The problem is quite sensitive to the tolerances for LSODI. 

For example, for at01 = ttd = the numerical solution (not given herej moves too fast 

and is very inaccurate. 
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Fig. 2.1 shows the numerical solution computed using Method I with e + 0, for N = 20, 

at01 --7 and rtol = The soluticm is fairly accurate except for an error caused by 

the solution moving too fast so that it gives a slight shift for t = 0.27 and 0.28. This error 

is largely caused by the time integration, as the results change qualitatively when smaller 

tolerances are used in LSODI (see below). The corresponding results for = 0 are shown 

in Fig. 2.2. Note that the solution is inaccurate at the left boundary when t = 0.26, and 

the soiution is not very well equidistributed with respect to arclength, especially near the 

left boundary. The sensitivity of the problem with respect to integrator tolerances is severe, 

as performing the same runs with larger tolerances can easily give poorer results, but even 

using at01 = and rtol = gives lower accuracy (c.f. Fig. 2.3 and Fig. 2.4). 

For Method I1 with atol = loq5, rtol = 1 0 - ~ , r  = low5 and N = 20, the numerical 

solution moves slightly slower than the reference solution before reaching steady state (see 

Fig. 2.5). Reducing the spatial mesh to N = 40, the solution has fairly high accuracy 

throughout, as shown in Fig. 2.6. Reducing T or the integrator tolerances does not qudita- 

t i d y  affect the numerical solution, although from our experience T should be kept smaller 

than the time integration stepsize used in LSODI. Note that the arclength is considerably 

better distributed between mesh points than for the other moving mesh equation. 

The time-stepping information for the m s  summarized in the Figures are given in Ta- 

ble 2.1, In particular, the number of steps and Jacobian evaluations, order of the integration 

method, and final step size used by LSODI are listed. 

Problem 11: Burgers' equation 

Our next example is Burgers' equation 
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Fig. 2.1(Method 1):60.88(cpu) Fig. 2.2(Method 1):56,60(cpu) 

nst nje nqn tstep nst nje nqn tsteg 

33 14 3 0.000286 30 11 3 0.000728 

80 21 3 0.000374 80 25 3 0.000390 

108 25 3 0.000369 114 33 2 0.000368 

138 28 3 0.000395 145 40 3 0.000466 

Fig. 2.3(Method I):52.64 Fig. 2.4(Method 1):36.74 

53 13 3 0.000280 54 12 3 0.000514 

0.0002 16 

0.000274 

0.000263 

Fig. 2.5(Method II):45.41 Fig. 2.6(Method II):272.12 

Table 2.1: Problem I 
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u axis 

Figure 2.1: Problem I, using method I with e f 0, t= 0.26,0.27,0.28,0.29; at01 = 

rtol = lW4, mesh points N = 20 

2 

1.8 

u axis 1.6 

1.4 

1.2 

Figure 2.2: Problem I, using method I with e = 0, t= 0.26,0.27,0.28,0.29; at01 = 

l W 5 ,  r t d =  mesh points N = 20 
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u axis 

0 0.2 0.4 0.6 0.8 1 
z axis 

Figure 2.3: Problem I, using ~llethad I with # 0, t= 0.26,0.27,0.28,0.29;atol = 

rtol = mesh points N = 20 

Figare 2.4: Problem I, using method I with 6 = 0, t= 0.26,0.27,0.28,0.29; atol = 

I@-', r t d =  lo-', mesh points N = 20 
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u axis 

Figure 2.5: Problem I, using method 11, t= 0.26, Q.27,0.28,0.29; at01 = rtol = 

mesh points N =20 

u axis 

Figure 2.6: Problem I, using method II, t= 0.26,0.27,0.28,0.29; atoi = do1 = loq5, 

mesh points N =40 
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where f(u) = u2/2. This problem is also often used as a test (occasionally the only test) of 

mesh selection strategies. 

We use E = and E = lo-* and the smooth initial solution uo(x) = sin(2nx) f 

1 2 sin(nx). For small times and E ,  the exact solution is a pulse that moves in the positive 

x direction while steepening. The reference solution (solid lines) is computed as in Prob- 

lem I except with N = 1000, rtol = lod6 and atol = low8. The solution is shown for 

tirne=0.2,0.4,0.8,1.0,1.4 and 2.0. For Method 11, r = lo-'. 

Using Method I with 9 = 0, the method easily breaks down due to mesh crossing for 

E = For example, for N = 20, atol = and rtol = 1W3, breakdown occurs 

because the second mesh point crosses the left boundary and becomes negative at t = 0.35. 

For E = atol = and rtol = several mesh points cross each other on the 

interval [0.519,0.597] at t = .2. This is consistent with the theoretical and numerical 

findings of [CFL86j regarding potential instability of (2.2.20). For E = low2, the presence 

of the right-hand-side term / # 0 now stabilizes the results. Fig. 2.7 and Fig. 2.8 show 

the solutions and mesh points for N = 20 with atol = rtol = and at01 = 

rtol = lod5, respectively. The corresponding time-stepping information is given in Table 2.2. 

The solutions are quite accurate except at the points of zero gradient (u, = 0), where the 

graph is somewhat higher than that for the reference solution. This same problem occurs 

using Method 11; results for tihe same parameter values are given in Fig. 2.9 and 2+2. 

Note, too, that the degree of equidistribution is rather poor in this region. Using N = 40, 

these inaccuracies are remedied, and the problem resolution is generally quite satisfactorily. 

These results are given in 2.10. 

For E = the problem causes considerable difficulty. At about t = 0.2, a shock layer 

forms near z = 0.6. Setting N = 20, using Method I with 9 # 0 LSODI stops at the 

very steep layer at  t = 0.218224 due to a small step size (tstep = lo-' and nst = 955 for 

at01 = 1W4, rtol = With (2.4.50) and corresponding parameter values- LSQDI also 

stops, now at t = 0.341905 with tstep = 0.0 and nst = 949. Using N = 40, LSODI is able 
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Table 2.2: Problem I1 

t 

0.2 

0.4 

0.8 

1.0 

1.4 

2.0 

t 

C.2 

0.4 

0.008990 

0.012833 

0.033861 

6.055271 

Fig. 2.7(Method 1):78.19(cpu) 

nst 

18 

43 

71 

78 

98 

106 

Fig. 2.8~Method 1):106.76(cpu) 

nst 

39 

83 

165 

186 

218 

234 

122 

123 

127 

130 

nje 
7 

22 

32 

33 

43 

44 

Fig. 2.9(Methocl IQ50.87 

28 

28 

29 

29 

nqn 
2 

2 

2 

3 

1 

3 

tstep 

0.905603 

0.009411 

0.012868 

0.014660 

0.022651 

0.050789 

nje 
10 

21 

43 

49 

57 

nst 

88 

Fig. 2.10(Method II):205.36 

tstep 

0.020208 

0.018662 

0.020863 

0.030399 

0.043301 

0.115478 

nqn 
3 

3 

3 

4 

3 

nst 

110 

116 

4 

4 

4 

4 

59 1 3 

0.124988 

0.124988 

0.184529 

0.184520 

tstep 

0.004330 

103 29 

nje 
24 

nje 
25 

26 0.002011 

rqn 
3 

nqn 
2 

3 

tstep 

0.022014 

0.045140 
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to progress further but still soon fails. The same difficulty of breakdown when the shock 

develops can occur for this problem with a high order MFE method using Hermite cubic 

test functions [HMS82], although other methods are successful [FVZSO, M1811. 

Figure 2.7: Burgers' problem, using rnethod I with # O,E = lov2, t = 

0.2,0.4,0.8,1.0,1.4,2.0; at01 = rtol = mesh points N = 20. 

Prot.!e.n I I I: Buckley-Leverett equation. 

The third example is the hyperbolic conservative Buchley-Leverett equation 

with the non-convex flux function 

as in, e-g., [CP79]. The moving mesh methods of [AF86bl] and [GDM81] test the problem 

with an artificial viscosity term EU== added (see also [JWB88]). 
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Figure 2.8: Burgers' problem, using method I with 6 # O,E = t = 

O.Z,O.4,O.8,l.O, 1.4,Z.O; at01 = rtol= mesh points N = 20. 

We consider the continuous rnitial d a h  condition 

md boundary conditions 
1 

u(0, t) = 1, u(1, t) = - 
I1 ' 

where we express the right boundary condition for LSODI in the form .uN(t) = 0. The 

reference solution is determined as in the other two problems, with N = 500, at01 = lo-' 

and rtol = and the solution profile shown for t = 0.1,0.2,0.3,0.4. With N = 20, 

resnlts with and without the right-hand-side tern in Method I axe given in Fig. 2.11 and 

Fig. 2.12, respectively. These ntllllericaf solutions are virtually identical and move faster 

than the reference solution, For Method II with at01 = lov4, rtol= '_W5 and T = lo-', 
LSODI stops due to the steep layer for t = 0.303228 with tstep = 0.0 and nst = 575. 

(Again, mesh crossing is not a difficuIty,) Adding the artificial viscosity term mentioned 
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0 0.2 0 -4 0.6 0.8 1 
s axis 

Figure 2.9: Burgers' problem, using method 11, E = t = 0.2,0.4,0.8,1.0,1.4,2.0; at01 

= rtol = mesh points N r- 20. 

above, here with E = the problem is solved more satisfactorily than before, using 

at01 = rtol = The results, given in Fig. 2.13, are qualitatively unchanged for 

smaller tolerances, like for example at01 = lo-', ptol = (see Table 2.3). The scheme 

developed in [AF86bl] has no difficulty for this problem when solved as a parabolic PDE 

using real viscosity with E = lW3. However, it is interesting to wonder when a difficulty 

arises when solving hyperbolic PDEs because the scheme is nonconservative when viewed 

as a scheme for solving the moving mesh PDE. 

Problem IV: Heat conduction problem 

As a fourth example, we consider a heat conduction problem, 

where the initial conditions, Dirichlet boundary conditions, constant diffusion /I, and source 
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0 0.2 0.4 0.6 0.8 1 
x axis 

Figure 2.10: Burgers' problem, using method I][, E = lo'*, t = 0.2,Of4,0.8,1.O,1.4, 2.0; at01 

= loM4, d o ) =  mesh points N = 40. 

I t I Fig. 2.11(Method 1):436.29(cpu) I Fig. 2.12(Method 1):315.05(cp) I 
nst - 
21 

32 

43 

57 

nqn tstep nst 

4 0.009126 22 

4 0.009126 33 

4 0.009126 46 

4 0.005544 74 

I t I Fig. Z.lf(a)(Method II):407.85 1 Fig. 2.13(b)& 

Table 2.3: ProbIem PLI 
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1 

0.9 

0.8 

0.7 

0.6 

u axis 0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 0.2 0.4 0.6 0.8 1 

z axis 

Figure 2.11: Buckley-Leverett problem, using method I with # 0, t = 0.1,0.2,0.3,0.4; at01 

= r t d =  mesh points N = 20. 

term j are chosen such that the exact solution is 

This problem differs from the previous three examples, since the solution travels in the 

negative z direction when t l  and r2 are positive. We solve this problem for rl = ~2 = 5 

and p = and show the results at t = 0.05,0.50,1.00,1.50,2.00. Coyle, Flaherty and 

Ludwig studied this problem [CFL86]. 

We test T = and at01 = rtol = loe4. Fig 2.14 shows that computed solutions are 

oscillating, and cpu time is 209.85. For T = the resdts have little improvement as 

shown in Fig. 2.15, and cpu time is 79.35. When increasing T to lo-', Fig. 2.16 shows that 

the results are better than for T = 1 0-3, but the computed solutioas are above the exact 

solutions, and cpu time is 31-14. For r = 1.0, the accuracy of the computed solutions is 

quite good as shown in Fig- 2.17, and cpu time is 24.28. 
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1: axis 

Figure 2.12: Buckley-Leverett problem, using method I with 9 = 0, t=0.1,0.2,0.3,0.4; at01 

= rtol = mesh points N = 2Q. 

Fig. 2.14(Method II):209.85(cpu) I Fig. 2.15(Method II):79.35(cpu) 

tstep 

0.007598 

0.018953 

0.031767 

0.017471 

0.004397 

1 

tstep 

0.018596 

0.023122 

0.001667 

0.014560 

0.011856 

T- nst 

48 

81 

120 

149 

200 

Table 2.4: Problem IV 

Fig. 2.16(Method II):31.14 

1 1 4  3 0.008237 

35 8 3 0.031682 

49 11 3 0.030759 

67 17 3 0.040294 

86 21 4 0.038142 

Fig. 2.17(Method II):24.28 

23 

41 

57 

72 

6 3 3  

6 

8 

11 

15 

3 

4 

3 

4 

0.030933 

0.029440 

0.025956 

0.042617 

0.026683 



CHAPTER 2. THEORY & COMPUTATION OF MOVING MESH METHODS 6 1 

1 

0.9 

0.8 

0.7 

0.6 

u axis 0.5 

0.4 

0.3 

0.2 

0.1 
I I I I 

o 0.2 0.4 0.6 0.8 1 
x axis 

Figure 2.13: Buckley-Leverett problem, using method 11, t=0.1,0.2,0.3,0.4; mesh points 

N = 20, (a) at01 = rtol= low5 ( Results for (b) at01 = lod5, rtol = loe6 indistin- 

guishable.) 

Fignre 2.14: using method fl, T = and at01 = rtol = loM4, cpu = 209.85. 
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y axis 

- 

Figure 2.35: u s i q  method 11, T = and at01 = rtol = c p  = 79.35, 

Problem IV 

y axis 

- - -  - - - 

-0.5 - 

Figure 2.16: using method II, T = lo-' and at01 = r t d  = cpu = 31.14. 
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Problem IV 

y a x i s  

- 

Figure 2.17: using method 11, T = 1.0 and at01 = 7101 = cpu = 24.28. 

2.6 Conclusions 

We have presented a new formulation of the equidistribution strategy in terms of a PDE. Pre, 

viously, authors who have explicitly used equidistribution have generally developed moving 

mesh procedures which make use of (2.1.6), the integrated or weak form of the conservative 

integral. We intend to develop further robust moving mesh strategies based directly upon 

the differential form (2.2.16) or (2.2.29). Here, our intention has been to present some simple 

ones. The purpose has not been to  give extensive numerical results or a detailed comparison 

with other methods, which will be done in Chapter 3. Nevertheless, the results indicate that 

the schemes given here, with simple improvements such as smoothing of the mesh (for Prob- 

lem If) when necessary, should prove competitive with those which have been recommended 

by others [FVZSO]. Use of conservative-type schemes to approximate the PDEs is natural 

and pmbably essential in many contexts. The importance of the right-hand-side term of 

(22.16) is unclear, and we have included numerical results for 8 = 0 partly to determine 

the effect and partly because this corresponds to  what many previous implementations have 
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used. 

The numerical methods used here are quite simple and presented mainly for illustrative 

purposes. Constructing more robust moving mesh methods could well require the incorpo- 

ration of regularization terms as in [DD87, FVZSO, MA84, MI83, VBFZ881, and possibly a 

more complicated monitor Eunction, an obvious choice being some combination of arclength 

and curvature. However, while using the arclength monitor function can limit the number 

of mesh points which are placed in the transition region, strong nonlinearities which arise 

using a curvature monitor function can also cause computational difficulties [BVSS]. 

Efficient ways to produce the moving mesh equations using this approach, particularly 

for higher-order systems (2.1.4) and for the higher-dimensional form of (2.2.17) or (2.2.29), 

remain to be investigated. Still, it is important to realize that the scheme is not plagued 

with mesh crossings the way most other simple moving mesh schemes are. When the PDE 

(2.2.16) (including the right-hand side) is approximated, we have found very little difficulty 

of this type. In one case (Burgers' equation with different initial conditions than given here) 

(2.4.42) gave mesh crossing with a Large tolerance, but this was fixed when the tolerace 

was reduced. While there is no need to add penalty functions for this reason, it may still 

be necessary to  perform a mesh smoothing to  prevent problem stiffness when steep solution 

layers occur (as was the difliculty in Problem II in section $ 2.4 ). Obviously, a desirable 

ultimate goal is the development of a robust scheme with minimal requirements for a user 

to select contentious problem-dependent parameters. 

This moving mesh PDE interpretation can be used to understand stability properties for 

moving mesh strategies a d  extends the understanding of the stability properties as given 

in ICFL861. While the stability issue for methods based upon equidistribution is a very 

complicated one, and there is nu doubt that a complicated interaction takes place between 

the PDE (2.1.3) and the mesh PDE (2.2.16) or (2.2.29), we expect that this viewpoint will be 

used to develop a deeper understanding of stability properties for currently used methods 

which have proven reliable. It is important to realize how many moving mesh methods 
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are based upon equidistribution, making it possibly the single most important concept in 

the development of movicg mesh methods. Many of these methods use equidistribution 

explicitly, like [AF86a, HL86, PE871 and those in [CFL86], and many of these often have 

stability difficulties [CFL86]. There ars also the ones like the moving finite element methods 

[MMBl, HSM83] and the elliptic grid generation methods [MD88] which have been developed 

from another viewpoint but for which equidistribution has turned out to play a role - just 

how fundamental is unclear at this stage. The considerable success of some of these may 

be due in part to the fact that the moving mesh PDE (2.2.16) is solved implicitly, so 

that inadequate approximations from using nonconservative schemes or from ignoring the 

important right-hand-side term have been circumvented. Of course another underlying issue 

of critical importance is that of deciding what monitor function to use, and it is unrealistic 

to expect that a single choice for M would serve as a panacea for most problems, 



Chapter 3 

A Study of Moving Mesh Methods 

3.1 Introduction 

In this Chapter, we will further study some of the moving mesh methods discussed in 

Chapter 1. While the analysis of the error and the convergence for moving mesh methods are 

very difficult problems, we will study them in the future. Here we consider the performance 

in practice of the most promising methods. Recall that methods based upon equidistribution 

principles have been studied by many people, e.g. [B073, CFL86, D072, WH791 and 

tha t  the powerful moving finite element methods of Miller et al. also implicitly satisfy 

equidistribution principles in certain cases. Related methods will be central in our study 

here. 

Although generd comparison of moving mesh methods has been seldom done in the 

past, one useful study was made by Fuzzeland et al. fFVZ88]. They compared three moving 

meshes methods for onedimensional pdes, viz., one moving finite element method of Miller 

IOG Miller, and two moving finite difference methods, one by Petzold and by the other by Dorfi 

& Dmry, Zegeling and Blom [ZBW] have more recently evaluated the gradient-weighted 

moving finite element methods of Miller fMI83). The gradient-weighting is introduced into 

the MFE method by Miller [MI831 along with a new penalty function to  prevent mesh points 
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becoming too close to  one another in the steepest part of the solution layers. Obviously, 

the penalty function and gradient-weighting are two key factors in moving finite element 

methods. -4 new penalty function can be important to balance the gradient-weighting 

of the modified moving finite element methods, but it is unclear precisely what the rela- 

tionship between the penalty function and the gradient-weighting is. In this chapter we 

study the penalty function and the gradient-weighted strategy both in MFE [MI811 and in 

GWMFE[MI83]. We also study the moving finite difference method introduced earlier (see 

equation (1.2.25)), for which mesh points are chosen by a discrete equidistribution. 

3.2 Moving mesh methods 

3.2.1 Moving finite element methods 

Two versions of moving finite element methods have been introduced by Miller et al., one 

the original MFE [MM81] with a piecewise linear basis function, and the other the gradient- 

weighted MFE. For the latter, the gradient weighted function used to prevent too many 

mesh points from entering steep layers [MI831 gives an ODE system which car. be very 

difficult t o  solve. 

MFE (1) 

In this section we briefly review Miller's unmodified moving finite element method (for 

details, see page 18). 

Consider the partial differential equation 

where L(u) is an nonlinear spatial differential operator. The solution of equation (3.2.1) is 

d v e d  by a finite element methods, The solution is expressed as 

N 
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where the non-uniform mesh points {x;) are allowed to move according to the profile of the 

soh tion. 

The residual of the partial differential equation is defined for the Lz-norm 

The soIutions U, at mesh points z; are determined by minimizing the residual with respect 

to the velocity of the amplitude ~ i .  We have the standard Galerkin finite element equation 

(1.2.62) for &. For the determination of the mesh points xi, Miller & Miller [MM81] 

minimize the residual of the partial differential equation once again, but with respect to the 

velocity of mesh points xi. This gives equation (1.2.63). 

The mass matrix A(Y) in the moving finite element system (1.2.64) is block tridiagonal. 

Wathen [WA86] shows that A(Y) is singular only in two cases: (i) m; = m;+l which is called 

parallelism. Geometrically, it means that the three neighboring points U;-l), ( x i ,  Ui)  

and Ui+l) are collinear, lying on a straight line. In this case, the basis functions {a i )  

and {P i )  are not linearly independent. (ii) Mesh points are too close to one other, which 

makes the mass matrix A become ill-conditioned. 

To overcome singular or ill-conditioned A, Miller introduces a penalty function for the 

mesh equations. That is, he minimizes equation (1.2-68) with respect to xi, which makes 

the mass matrix A positive definite [MI81]. We refer to this moving finite element method 

as MFE (1). 

Gradient-weighted MFE method (GWMFE) 

Meshes driven by the L2 norm in the minimization of the residual u - L(U) move most of 

t h e  meshes into the steepest region of the solution to  minimize the errors since large errors 

arise in t;he steepest region [MI$3]. A4ller uses the gradient-weighted L2 minimization in the 

normal direction of the salution LO try to  'de-emphasize' the steep regions of the solution. 

The gradient-weighted function w(u,) = -* is constaat on each subinterval Iq-1, z;j 
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for z;-1 5 z 5 xi .  since w ( m ; )  = -- 4x 
The test fiinctions (z;) and ( P ; )  are replaced by { a ; w )  and { f l i 3 ; w )  in equation (1.2.62) 

and (1.2.63), and Miller minimizes the same residual of the PDEs as for MFE (1). A system 

of 2N ODES for the 2N unknowns {U;)  and {xi) arises, vat., 

for j = 1, .  - -, N. The matrix form is A(Y)Y = k ; ( ~ ) .  The mass-matrix A is singular too 

when parallelism m ;  = mi+l occurs and when A z i  = 0 or AU; = 0. 

In order to prevent the matrix A from becoming singular, Miller suggested using 'ar- 

clength viscosities' and 'arckngth spring foxes' at  each subinterval to balance the gradient- 

weighting in the moving finite element method. He then minimizes the residual of the PDEs 

with this gradient-weighting and new penalty function, 

with respect to  the velocity of the amplitude U; and the velocity of the meshes i;. Here the 

gradient-weighted L2-norm is defined by 1 1 1  u - L ( U )  I l l f  := J ~ ( U  - ~ 5 ( U ) ) ~ w d z ,  r: := f , 
E-S- t z -- -- -q-, B2 where A and B are problem-dependent constants, ( B is usually chosen as O), 

1; is an arclength for the subinterval [z;-~, z;], and since Crr is constant on each subinterval 

for a piecewise linear basis, 

MFE (2) 

GWMFE uses a gradient-weighted L2 norm and an arclength-type penalty function to pre- 

vent the meshes from becoming too close in the steepest region of the solution and to prevent 

pardelism. The gradient-weighted fnnction has little effect in the non-steep regions of the 
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sofntions, and at non-steep parts GWMFE acts as MFE(1). In the steepest regions, the 

second equation (3.25) of GWMFE approaches the first equation (1.2.62) of MFE, i.e., 

as u, -+ m, where w = *~ and 

We shall test a moving finite element method using the standard L2 norm of the residual, 

but using the amlength-type penalty function of GWMFE as used in (3.2.6). We minimize 

the function 

with respect to U; and 2;. The penarlty function has an important effect both in GWMFE 

and in MFE for controlling the mesh points and preventing the mass-matrix of the systems 

of ODES from becoming singular. We refer to  this moving mesh strategy as MFE (2). 

Notes for implementation of moving finite element methods 

The approximation of the second derivative u, has to be considered c z e f d y  in moving 

finite elements methods, since u,, is a 6-function at each mesh point when using piecewise 

hear bases. Miller et aL use a mdiiication scheme for second order terms, and this results 
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For the implementation of (3.2.11) and (3.2.12), roundqff problems have to be considered 

in the implementation, since formulas (3.2.11) and (3.2.12) are susceptible to a great loss of 

relative accuracy if m; and are small, and (3.2.11) also gives problems if either m; or 

m;+l is large and negative. Miller et al. deal with < u,,,,L?;w > as 

to  prevent loss of the relative accuracy when m; or m;+l is small. For the problems of large 

and negative m, or mi+l, < u,,, a im > is approximated using sign(mi) In (]mil + Jm: + 1) 

instead of lo (mi + ,/m?+l). 
Blom el al. evaluate in (mi + 4-) by a Taylor expansion if 7 = is ~ m d .  

In fact, sine w is a constant on each subinterval when using piecewise linear bases in moving 

finite element methods, 

which is the same as only using the first term of a Taylor series (3.2.13). 

3.2.2 Method III 

fn this section, we briefty discuss method fII, the moving mesh equation that Dorfi and 

Drruy [Dl3873 derived based upon the equidistribution principle (for details, see page 9). 

The main idea of method is that the mesh eqnidistribntion is smoothed both in spatial 

and temporal variables- Verwer et d. [VBFZ88] studied this method. Blom and Verwer 
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[BV89] compared the arclength monitor with the curvature monitor used in the moving 

mesh equation. They found that using an arclength monitor makes the system of moving 

mesh equations easier to solve than using a curvature monitor. 

As discussed in equation (1.2.25) of Chapter 1, the mesh equation for Method I11 is 

where it; is smoothing the point concentrations as defined in (1.2.241, rcj is the point con- 

centrations as defined in (1.2.20) and k is the parameter in (1.2.22). The monitor M is 

implicitly assumed to be unchanged from the last time to  the current time over the time 

interval r.  Dorfi and Drury approximate an arc-length monitor M = on each 

sobinterval [ z ~ , z ~ + ~ ]  by Mi = d m .  Z I + ~ - ~ S  The parameter s acts as a delay factor, 

which we have seen serves like a time stepsize. The temporal smoothing term 

in (3.2.15) can be interpreted as an artificial vixosity term 

d 
v-(n) 

d z 2  

that smooths out discontinnities in the mesh flow. 

3.3 Time integration for ODES 

In onr experience, the numerical time integration component is a very important factor 

in determining reliability of the numerical solutions and parameter values for moving mesh 

methods- In this section, we discuss implement aspects to this time integration of the system 

af ordinary Werentid equations that arises, To better understand moving mesh methods 

and to fairty compare the methods, here for atl methods we use the same stiff ODE solver, 

LSODI, without my modification, dthongh in certain cases some specid strategies such as 

a preconditioning scheme in Newton's method aad mesh crossing test might be required. 

C 
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It is interesting to see how others have dealt with the numerical integration problem. 

Hrymak et al. have tested a moving finite element method using LSODI [HMW86]. They 

added another error norm for the corrector in the predictor-corrector algorithm of LSODI 

in order to check whether or not it was necessary to reduce the time-step because of pos- 

sible mesh crossings. Carlson and Miller developed the l-D code GWMFElDS for their 

moving finite element methods, including a gradient weighted MFE. A second-order ac- 

curate Diagonally-Implicit Runge-Kutta method (DIRK2) which is an uA-stable" method, 

has been used as the time integrator for the system of ODES. A block diagonally precon- 

ditioning scheme has been used for Newton's method. In GWMFElDS, Carlson and Miller 

test a relative error tolerance (usually 10%) on mesh spacing and check for negative Axi 

in predicted values. An evaluation of the GWMFE was reported in [ZB90]. Zegeling and 

Blom tested the GWMFElDS code with their own criterion for both the time error and the 

convergence of the Newton process. They required the following conditions: 

where v is a vector either containing an estimate of the time error or the last correction in 

the Newton process, and p is a user-defined parameter. Furzeland et al. tested the three 

moving mesh methods (see [FVZW]) using the stiff solver SPGEAR within the SPRLNT 

package. SPGEAR is based on the LSODI code of Hindmarsh [HI801 for solving differential 

aIgebraic system (DAEs), and it contains both the family of Admas methods up to order 

12 and the family of GEAR/b&ward dXerence formulas (BDF) methods of up to order 

5- Enterestingly, F d d  ef aL. [FVZSO] were unable to successfully run GWMFE with 

LSODI. 
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3.4 Numerical results 

The reduced ODE system from MOL is a linearly implicit system of first order ODE. We 

use LSODI to solve the initial value problem 

If a is singular, this is a differential-algebraic system. The user needs to  provide the sub- 

routines for computing the residual function and a(t ,  y). The initial d u e s  of $ and the 

Jacobian are internally generated by LSODI. The parameter rtol is the relative tolerance 

parameter, and atol(j) is the absolute tolerance parameter. The estimated local error in y ( i )  

will be controlled so as to  be roughly less than 

ewt(i)  = rtol + ds(y(i))  + atol(i). 

Thus the local error test passes if, in each component, either the absolute error is less than 

a&l(i), or the relative error is less t h m  rtul. Actud global errors may exceed these local 

tolerances. to The initial d u e  of the independent variable is to, and totit is the first point 

where output is desired. The difference tout - to is the outside stepsize of LSODI. Recall 

that nst and nje are respectively the number of steps and number of Jacobian evaluations 

taken by LSODI up to the time given, and nqn and tstep are respectively the order of the 

last successful method and the last successful stepsize. 

Prabkm I (A scalar reaction-diffusion problem) 

For details see page 47. For this problem we use tout - to = for LSODT, since 

LSODI fails to solve the problem for tout - to = The initial d u e  is to = 0.25. 

R e d s  far MFE(1) 

As we tested m Chapter 2, this problem is quite sensitive to the tolerance (atol and 

rl.d)- We have tried many d u e s  for q, cz a d  6 in equation (1.2.681, where the parameter 

c~ is a coefficient of the ' i n t e d  ttiscositg' terms, the parameter c2 is a coefficient of 

the 'internodal sprrsprrng foms' terms, and the parameter 6 is a user-defined minimum mesh 
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distance and is also used for the activation energy [M181]. Although we test some values 

used in [FVZSO] and [HMWS6], it is hard to find good ones. MFE(1) is very sensitive to 

these parameters. 

We first test the method with cl = (and cl = cz = 10'" 6 = 5 5 lop5 used 

in [HMW86] and at01 = rtol = 10-~(for at01 = rtol = the computed solution moves 

too fast - see page 47). The results are very poor. 

Then we use the values cl = 0.1, ca = 5 x 6 = which succeed in solving 

Burgers' problem (as we shall see later) and at01 = ~ t o l  = lo-'. At the time t = 0.26, 

the numerical solution is quite good, but for later times ( 1  = 0.27,0.28,0.29), the numerical 

solutions move slower than the reference solutions- The results are given in Fig. 3.1, where 

the cpu time is 77.76. If the tolerances (atol and rtoZ) are increased to the numerical 

solution moves too fast initially and jumps to 2.0 at t = 0.26. But for t = 0.27,0.28,0,29, the 

solutions (given in Fig. 3.2) are better than before; the cpu time is 68.23. If c2 is decreased 

from 5 x to the results in Fig. 3.3 are the same as those in Fig. 3.1, and the cpu 

time is 75.70. 

Finally, we use the values cl = 0.025, c2 = 0, S = 0 tested in [FVZSO], and for atol = 

rtoE= as we known before, the computing solution moves too fast. For atol = rtol = 

lov5, the computing solution moves slower than the reference solution. The behaviour of 

the r d t s  is similar to that in Fig. 3.1. For at01 = rtol = llIk4, at the time t = 0.26, 

the numerical solution is incorrect, bat for later times (t = 0.27,0.28,0.29), the numerical 

solution becomes better gradually (see Fig 3.4). 

&s&s for GWMFE 

Problem sensitivity and tmubk in determining the method parameters was also a diffi- 

culty with GWMFE- The parametas A and B are the coefficients of the 'arclength vimosi- 

ties' tenns and 'arciength spring f-' terms in (3.2.6)' respectively. 

(X) We have tried the values suggested by Mier [X4IS8]; mfortunately LSODI, fails to 

d v e  this problem Fur A = [IO-~)'P, B = (10-~)'/~ and utd  = rld = loe4, GWMFE 
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.u axis 

Figure 3.1: cl = 0.1, cs = 5 x 6 = and at01 = ~ t o l  = c p  = 77.76. 

Figure 3.2: q = 0.1, cz = 5 x 1W4, d = and aid = rtd = lo-*, cpu = 68.23- 
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Problem I 

2-2 2 

Figure 3.3: cl = 0.1, c* = 6 = and at01 = rtol = lo", cpu = 75.70. 

Problem I 

Figure 3.4: cl = 0.025, c2 = 0 , 6  = 0, and atd= rtol = cpu = 131.58. 
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fails because the time stepsize is zero at t = 0.25 (initial time for LSODI solver). 

(2) For A = 0.01, B = 0 and at01 = rtol = lo-', GWMFE fails at t = 0.261. The time 

stepsize is zero there, and three mesh points are crossing the left boundary (z = 0). 

(3) For A = 0.01, B = 0 and at01 = rtol= lW4, GWMFE spends much more time than 

MFE(l), vtt.., the cpu time is 826.46. The accuracy of the solutions have not improved much 

using GWMFE, except that most of mesh points have moved to the layers. The results are 

given in Fig. 3.5. 

Problem I 

u axis 

Figure 3.5: A = 0.01, B = 0 and atid = rtol = cpu = 826.46. 

Resdts for M FE(2) 

For A = 0.01, B = 0 and at& = r f d  = &0-4, the numerical solution near z = O for time 

r = 0.26 is incorrect. For later times ( t  = 0.27,0.28,0.29), the accuracy of the solutions 

are quite satisfac~ry and most of mesh points Lave moved into the layers; the cpu time is 

14735. The rasuks w e  given in Fig. 3.6. If the tolerances (301 a d  r td )  are decreased to 

iWS1 the accuracy of the solntion becomes w m ,  and the cpu time is 182.92. The resalts 

are given in Fig. 3.7- 

Results for Method Ill 
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Problem I 

0 0.2 0.4 0.6 0.8 1 
z axis 

Figure 3.6: A = 0.01, B = 0 and at01 = ~ 2 0 1  = cpu = 147.35. 

Problem I 

Figate 3.7: A = 0.01 B = 0 and atd = rtol = cpu = 182.92. 
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For 6 = 2, T = and utd = rtol = the numerical solution near x = 0 for time 

t = 0.26 is incorrect. The numerical solutions at  t = 0.27 and 0.28 move slower than the 

reference solution, but at time t = 0.29, the numerical solution is quite accurate. The total 

cpu time is 23.73, which is much less than that for MFE(1) and MFE(2). The results are 

given in Fig. 3.8. Decreasing the tolerances (at01 and rtol) to lo-', the results are much 

worse (see Fig. 3.9). For k = 1, the results have not improved, as shown in Fig. 3.10. For 

k = 2, at01 = rtol = lo-' and T = the results shown in Fig. 3.11 are basically the 

same as those for T = given in Fig. 3.9, and the cpu time is 24.83. For T = loa6 and 

r = 1W8, the results are unchanged. 

The results for Problem I are summarized in Table 3.1 and Table 3.2. Note that the 

time stepsize for solving the MFE ODE system for Problem I gradually becomes larger when 

mesh points move into the steep regions of the solutions. For Method 111, it is interesting 

that the resultant ODE system aiternates between large and s m d .  

Problem I 

Prubkm I I  (Burgers" equation) 

We solve Burgers' equation with E = 10'~ and nse N = 20 mesh points. For details of 
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Problem I 

Figure 3.9: k = 2 , r  = and atof = ~ l o l  = lo-', cpu = 25.25. 

Figure 3.10: k = 1 , ~  = f W 3  and atol = ttol = lo-', cpu = 26.44. 
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t Fig. 3.1(MFE(1)):77.76(cpu) Fig. 3.2(MFE(1)):68.23(cpu, 

nst nje nqn tstep nst nje nqn tstep 

0.26 50 14 3 0.000236 45 22 3 0.000133 

0.27 129 39 2 0.000189 76 41 3 0.000143 

0.28 162 56 4 0.000381 98 57 2 0.000565 

0.29 201 78 3 0.000323 115 71 2 0.000504 

t Fig. 3.3(MFE(1)):75.70 Fig. 3.5(GWMFE):826.46 

t Fig. 3.6(MFE(2)):147.35 

0.26 68 51 2 O.OM1173 

0.27 111 75 3 0.000437 

0.28 132 91 2 0.000706 I 
0.29 148 105 3 0.000674 

t I Fig. 3.8(Method III):W.73 

Fig. 3.7(MFE(2)):182.92 

67 58 3 0.000146 

154 102 3 0.000226 

187 119 3 0.00040I 

210 129 4 0.000545 
- - - - - -- 

Fig. 3.9(Method IIJ):25.25 

t Fig, 3.10(Mebhod IPI):26.44 Fig. 3.11(Method III):24.83 

0.26 39 10 3 0.001025 38 i0  3 OrO00931 

0.27 92 18 4 0.000181 88 19 4 0.000206 

0.28 118 23 3 0.000535 113 24 3 0.000683 

0.29 133 27 3 0.000458 128 27 3 0.000516 

Table 3.1: Problem I 
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u axis 

Problem I 
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2 axis 

the problem see page 48. 

Results for M F €(I) 

We use the tolerances at01 = st01 = for MFE(1). 

(1) First, we choose the parameter values el = 0.1, cz = 1oV6(or lo-') and 6 = lo-". 

The reduced ODE system becomes stiff and MFE(1) stops at t = 0.45 because the time 

stepsize is zero. However there is no mesh point crossing. 

(2) For el = 0.1, cz = 0 and 6 = MFE(1) stops at t = 1.0 because the chosen 

Fig. 3.4(MFE(1)):131.58(cpu) 

tstep 

0.000095 

Table 3.2: Problem I 
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stepsize is small (4 x for solving ODE system. Again there is no mesh point crossiag. 

(3) For cl = 0.1, cz = and 6 = MFE(1) fails at t = 0.25. The time stepsize 

is zero at this time, and some mesh points are crossing in the interval [0.596838,0.620945]. 

(4) For cl = 0.025, c2 = and 6 = MFE(1) fails at t = 0.2. The time stepsize 

is 3 x At this time, some mesh points are crossing in [0.590399,0.590971] which is 

where osciliating solutions occur. 

(5) For cl = 0.2, c2 = and 6 = MFE(1) fails at t = 0.2. Although the time 

stepsize is not too small ( 0.012256), some mesh points are crossing in [0.570000,0.657410]. 

(6) For cl = 0.01, c2 = and 6 = 5 x or 6 = MFE(1) fails at t = 0.2. 

The time stepsize is 5 x (or 7 x but there is no mesh crossing. 

(7) For cl = (4 x 10-~) ' /~ ,  c2 = (10-~) ' /~  and 6 = lW4,  MFE(1) fails at t = 0.2. 

The time stepsize is zero, three mesh points are the same (0.5869431, and the approximate 

solutions are much worse than the other cases above due to unacceptable oscillations. 

(8) For cl = 0.025, cz = 0 and 6 = MFE(1) fails at t = 0.2. The time stepsize 

is zero, and some mesh points are crossing having successive values (0.590335, 0.590628, 

0.590623,0.590704). 

(9) For cl = 0.025, cz = and 6 = MFE(1) fails at t = 1.4. The time stepsize 

is 6.3 x where one mesh point (1.001088) is crossing the right boundary ( x  = I), and 

the solution a t  1.001088 jumps to 0.066214. 

(10) For cl = 0.1, c2 = 0 and 6 = MFE(1) fails at t = 0.2. The time stepsize is 

zero, but there is no mesh point crossing. 

(11) For cl = c2 = and 6 = MFE(1) fails at t = 0.2. The time stepsize 

is zero, and some mesh points are crossing having successive values (0.507316, 0.636860, 

0.587304,0.587398). The solution a t  0.636860 jnmps to -147.259502. 

(12) For cl = 0.15, c2 = lom2 and 6 = lov4, MFE(1) fails at t = 1.4. The time stepsize 

is zero, and some mesh points are crossing, having successive values C0.991774, 0.993613, 

0.991672,0.993822). 
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(13) For cl = 0.05, cz = and 6 = MFE(1) fails at t = 0.2. The time stepsize 

is zero, and the mesh points are crossing, having successive values (0.583234, 0.583353, 

0.583454,0.583259). The solution at  point 0.583454 jumps to -17.231277. 

(14) For cl = 0.01, cz = 6 = and tolerances at01 = ~ t o l  = low3, oscillations 

in the solutions occur after t = 0.2, few mesh points are in the layers, and the cpu time is 

146.79. The results are given in Fig. 3.12. 

The choice cl 2 0.025 was used by Fnrzeland et al.[FVZ9O], and smaller c2 was rec- 

ommended by Gelinas et al.[GDM81], and Hrymak et al.[HMW86]. To increase cl and to 

decrease c2, we test c1 = 0.1, c2 = 6 = and at01 = rtol = The results 

are quite satisfactory except for small oscillations, as shown in Fig. 3.13. The cpu time is 

159.98. Further, we test a smaller el, viz., c2 = 5 x 1W4. The results shown in Fig. 3.14 

are now better, but the method is much more expensive, with a cpu time of 255.94. 

To decrease cl, we use cl = 0.05, c2 = 5 x 6 = and at01 = rtol = The 

results shown in Fig. 3.15 are basically the same as those given in Fig. 3.14. 

Problem II 

Figure 3.12: cl = 0.01, c2 = lov2 and 6 = at01 = rtol= cpu =146.79. 

Results for GWMFE 
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Fig. 3.14(MFE(1)):255.94 

Fig. 3.12(MFE(1)):146.79(cpu) 

Fig. 3.16(GWMFE):524.68 

nst nje nqn 

45 36 2 

78 55 2 

99 65 3 

109 68 3 

183 112 2 

357 185 2 

tstep 

0.006515 

0.006846 

0.025080 

0.016578 

0.000726 

0.015561 

Fig. 3.13(MFE(1)):159.98(cpu) 

Table 3.3: Problem rI 

nst 

68 

199 

228 

233 

244 

316 

Fig. 3.17(GWMFE):570.59 

Fig. 3.15(MFE(1)):308.49 

nje 
47 

148 

165 

166 

175 

213 

119 

235 

260 

266 

445 

565 

57 

111 

136 

142 

208 

261 

2 

4 

4 

4 

1 

3 

nqn 

1 

1 

1 

1 

2 

2 

0.000693 

0.006692 

0.026438 

0.042221 

0.003406 

0.050214 

tstep 

0.001115 

0.003564 

0.017565 

0.045048 

0.005145 

0.139613 
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I t I Fig. 3.18(GWMFE):553.30(cpu) 1 Fig. 3.19(MFE(2)):919.64(cpu) 

0.2 

0.4 

0.8 

1.0 

1.4 

2.0 

Table 3.4: Problem I1 

nst 

83 

425 

821 

900 

967 

1067 - 

nst 

116 

208 

230 

234 

346 

416 

I"P 

3 

2 

3 

3 

1 

3 

1 
0.2 

nje 

62 

114 

137 

141 

210 

256 

tstep 

0.000568 

0.012319 

0.043453 

0.068609 

0.009262 

0.069342 
. 

nje 

65 

315 

628 

693 

746 

815 

Fig. 3.20(MFE(2)):945.90 

I t I Fig. 3.22(MFE(2)):836.26(cpu) I 

89 

Fig. 3.21(MFE(2)):868.76 

nst 

83 

369 

nqn 
2 

1 

1 

1 

2 

2 

95 

tstep 

0.001402 

0.001120 

tstep 

0.001446 

0.000417 

0.002672 

0.004044 

0 .O 14998 

0.017230 

70 

Table 3.5: Problem 11 

72 3 0.001382 2 0.001262 
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I 

0 0.2 0.4 0.6 0.8 1 
x axis 

Figure 3.13: cl = 0.1, c2 = and S = at01 = loe3, rtol= cpu ~ 1 5 9 . 9 8 .  

Problem II 

Figure 3.14: cl = 0.1, c2 = 5 x and 6 = at01 = rtol= cpu =255.94. 
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Problem I1 

Figure 3.15: cl = 0.05, c2 = 5 x and d = atol= loe3, rtol= cpu ~308.49.  

We first choose the parameter A values as recommended by Miller [MI88], and the 

parameter B value that is ten times the suggested one (also from [MI88]). 

(1) For A = (10-~) ' /~ ,  B = ( 1 0 - ~ ) ~ / ~  and at01 = ~ t o l  = GWMFE fails at 

1 = 1.25. The time stepsize is 0.006148, and one mesh voint is crossing with (0.934948, 

0.943122,0.939446). 

(2) For A = ( I O - ~ ) ' ~ ~ ,  B = ( 1 0 - ~ ) l / ~  and at01 = rtol = GWMFE fails at t = 1.55. 

The time stepsize is zero, and many mesh point crossings occur in the interval [O, 11. 

(3) For A = ( 1 0 - ~ ) l / ~ ,  B = (1W8)'I2 and atol= rtol = loe4, GWMFE fails at t = 0.25, 

the time stepsize is 0.003370, and the mesh points are crossing. 

(4) For A = ( 1 0 - ~ ) l / ~ ,  B = (10-~) ' /~  and atol = rtol = GWMFE fails at t = 1.45, 

the time stepsize is zero, and four mesh points are crossing the right bourdary (z = 1). 

(5) For A = (10-~) ) ' /~ ,  B = (10 -~ ) ' /~  and at01 = r t d  = the results are quite good, 

as shown in Fig. 3.16. More mesh points move to the steep regions using G WMFE than when 

using MFE(l), but it runs much longer than MFE(l), with a cpu time of 524.68. Decreasing 

A to  ( l ~ - ~ ) ' / ~ ,  the results are unchanged, except the cpu time is 553.30. The results are 
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given in Fig. 3.18. Decreasing the tolerances to at01 = rtoi = and again using 

A = B = ( 1 0 - ~ ) ' / ~ ,  the results, shown in Fig. 3.17, are the same as for at01 = rtol = 

in Fig. 3.16, except the cpu time is 570.59. 

Problem I1 
1.5 

1 

0.5 

u axis 

0 

-0.5 

-1 1 t I I I I 
0 0.2 0.4 0.6 0.8 1 

z axis 

Figure 3.16: A = ( 1 0 - ~ ) l / ~ ,  B = ( 1 0 - ~ ) l / ~  and atol = rtol = 1W4, cpu= 524.66. 

Results for M FE(2) 

Similar values are tested as for GWMFE. 

(1) For A = (4 x 1 0 - ~ ) l / ~ ,  B = (10-')l/~ and at01 = rtol = MEE(2) f d 8  at 

t = 0.25. The time stepsize is 2 x however there is no mesh point cro~sing. 

(2) For A = (10-~) ' /~ ,  B = ( 1 0 - ~ ) ~ / ~  and atol = rtol = loe3, MFE(2) fails at t = 0.25. 

The time stepsize is 3.6 x but there is no mesh point crossing. 

(3) For A = (10-~) ' /~ ,  B = ( 1 0 - ~ ) ~ / ~  and atol = rtol = lW4, MFE(2) fails at t = 1.5. 

The time stepsize is zero, and 9 mesh points are crossing the right boundary (x = 1). 

(4) For A = ( l ~ - ~ ) l / ~ ,  B = 0 and atol= rtd = lo-*, the results are satiisfactory. When 

the solution becomes steeper, almost ad mesh points move to the steep regions after t = 0.4 

as shown in Fig. 3.19, but the cpu time is very high, 919.64. Increasing B to j 1 0 - ~ ) ' / ~  and 
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Problem I1 

0  0.2 0.4 0.6 0.8 1 
zaxis 

Figure 3.17: 4 = ( 1 0 - ~ ) ~ / ~ ,  B = ( 1 0 - ~ ) ~ / ~  a d  at01 = rtol = cpu = 570.59. 

u axis 

Figure 3.18: A = B = (10-~}'/~ and at01 = rtol = 1W4, cpu = 553.30. 
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the results are given in Fig. 3.20 and in Fig. 3.21, respectively. The qualities of 

the soiutions are unchanged. Further increasing B to B = (10 -~ ) ' /~ ,  the results are quite 

satisfactory. For late times a few more mesh points move away from the steep regions, as 

shown in Fig. 3.22, and the cpu time is 836.26. 

It is important to note how points locate in the layer. Milkc's GWMFE forces points 

into layer, and while the regularization term eventually does it more, it does less initially. 

Problem I1 

u axis 

- 

1 I I 1 I 
0 0.2 0.4 0.6 0.8 1 

z axis 

Figure 3.19: A = ( 1 0 - ~ ) l / ~ ,  B = 0 and atol = rtol = cpu = 919.64. 

Results for Method Ill 

When using N = 20 mesh points, Method I11 fails to solve this probjem, and as before 

failure of LSODI is because the numerical solutions are unacceptable due to oscillations, 

which may result from too few mesh points being in the steep regions. We use mesh points 

N = 40 to  solve this problem. 

(1) For k = 2,r = and ah1 = rtol = Method ID fails at t = 1..5, the time 

stepsize is 8.2 x and there is no mesh points crossing. 

(2) For k = 2 , ~  = and do2 = ~ t o l  = Method III fails at  t = 0.65; although 
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Problem 11 

z axis 

Figure 3.20: A = (10-~)' /~,  B = (10-~)'/~ and atol = rtol= cpu= 945.90. 

Problem II 
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Figure 3.21: A = [ l ~ - ~ ) ' l * ,  B = a d  at01 = rtol = cpu = 868.76. 
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Problem I1 

Figure 3.22: A = (10-~) ' /~,  B = ( I O - ~ ) ~ ! ~  and at01 = rtol = loq4, cpu = 836.26. 

the time stepsize is not too s m d  (1.7 x 10-*), the next time stepsize is zero, and there is 

no mesh points crossing. 

(3) For k = 1,r = and at01 = rtol = Method 111 fails at t = 0.25, the time 

stepsize is 1.9 x and there is no mesh crossing. 

(4) For k = 2, r = and at01 = rtol = Method I11 succeeds in solving this 

problem (see in Fig. 3.23), but it spends a cpu time of 3153.53. Increasing r to the 

qualities of the solutions do not improve, although it takes much less cpu time, viz., 2175.36. 

The results are given in Fig. 3.24. 

We change k from 2 to 1, and test 7 = at01 = rtol = The results given in 

Fig. 3.26 are better than the corresponding results for k = 2 in Fig. 3.23, but the cpn time 

is still higher, 3060.02. Increasing T to the qualities of the results are unchanged, but  

the cpu time reduces to 2888.24, These results are given in Fig. 3.25. 

Problem 1 t 1 ( Bwkley-Levesett equation) 

For this problem (see page 55), an artificial viscosity term eu, is needed. We choose 
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Fig. 3.23(Method III):3153.53(epu) 1 Fig. 3.24(Method III):2175.36(cpu) 

nst - 
133 

213 

260 

280 

39 1 

1067 

Fi 

163 

258 

343 

374 

442 

569 - 

- 
nje - 
48 

87 

110 

120 

184 

724 -- 

nqn I tstep 

2 0.001754 

1 0.004084 

1 0-012193 

2 0.009915 

2 0.001034 

1 0.001520 

I nst tstep 

0.000383 

0.002914 

0.012938 

0.018942 

0.000993 

0.007222 

3.25(Method III):2088.24 Fig. 3.26(Method II1):3060.02 

;;; 1 ; 1 0.009210 1 362 1 205 1 1 0.012618 

0.002915 440 242 0.003939 

294 0.054334 715 431 0.023336 

Table 3.6: Problem I1 

Problem TI 
1.5 

1. 

0.5 

u axis 

-0.5 

Figure 3.23: k = 2 , r  = and add = rtsl = cpu = 3153.53. 
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Problem I1 

I I I I I 
0 0.2 0.4 0.6 0.8 1 

z axis 

Figure 3.24: k = 2, T = and at01 = rtol = c p  = 2175.36. 

Figure 3.25: k = 1 , ~  = and at01 = rtol= cpu = 2088.24. 
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Problem I1 

Figure 3.26: k = 1,r = loc3 and at01 = rtol= 1W4, cpzl = 3060.02. 

the parameter values as for Problem I and Problem 11. 

Results for MFE(1) 

(1) For cl = 0.1.q = lW4,S = and atd = rtol = the results for t = 0.1,0.2 

are correct. For later times, t = 0.3 and 0.4, a couple of solution values are incorrect as 

shown in Fig. 3.27, and few mesh points are in the steep regions. The cpn time is 102.04. 

Decreasing cl to 0.01, MFE(1) succeeds in solving the problem, but mesh points concentrate 

at the right boundaq (see Fig. 3.28)- The cpu time increases to  260.02 for this case. Further 

decreasing cz to 0, the quality of the resdts does not improvement, as shown in Fig. 3.29, 

with cpa time now 536.59. 

(2) For c1 = 0.025, c2 = lo4, 6 = lo-* and at01 = rtol = PO-5, the results are shown 

in Fig- 3.30- The numerical solutions for t = 0.1,0.2,0.3 are correct. For t = 0.4, only one 

solation point is incorrect, dhough few mesh points are near the layers, with points again 

moving to the right b m d q  (z = 1). 

(3) For cl = 0.01, cz = lo4, 6 = 5 x a d  at01 = rtol= the results (given in 

Fig- 3.31) a e  similar to these given in Fig. 3.28- 
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Table 3.7: Problem I11 

The resnlts are similar to  those in [GDM81]. We conclude that success of the method 

depends heavily on parameter values and this dependence is very sensitive. 

Results for GWMFE 

For this problem, parameter d u e s  giving accurate results for GWMFE were much more 

difficult to  find. The best values found were A = (10-")'/~, B = 0 and at01 = rtol = 

Even then, while GWMFE solves the problem, the results are not satisfactory, as shown in 

Fig. 3-32. Most mesh points move to  the right boundary, and it spends considerable time 

to solve the problem, with epu time being 1207.86. 

Results for M F E(2) 

We first test the method with A = (4 x 10-~) ' /~ ,  B = ( 1 0 - ~ ) l / ~  as recommended by 

Miller and by Zegeling & Blom, and a t d  = rtol = As shown in Fig. 3.33, the accuracy 

of the nnmerical solution is poor, and the cpu time is 581.47. 

For A = ( 1 0 - ~ ) ~ f ~ ,  B = 0 a d  at01 = rtol = MFE(2) is more succasful at solving 

this problem. Mesh points now move into the steep region of the solution, and the cpu time 

is reduced to 455.61. The results are displayed in Fig. 3.34- 

t 

0.1 

0.2 

0.3 

0.4 

t 

0.1 

0.2 

0.3 

0.4 

Fig. 3.28(MFE(1)):260.02(cpu) Fig. 3.27(MFE(1)):102.04(cpu) 
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Fig. 3.30(MFE(1)):177.09 

nqn 
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Fig. 3.29(MFE(1)):536.59 

nqn 
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tstep 
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0.004982 
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3 

1 
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0.001 199 

0.003704 
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Table 3.8: Problem I11 

t 

0.1 

0.2 

0.3 

0.4 

Problem 111 

u axis 

Fig. 3.31(MFE(1)):266.73(cpu) 

Figure 3.27: cl = 0.1, cz = 6 = and at01 = rtol = lo-', c p  = 102.04. 
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Fig. 3.32(GWMFE):1207.86(cpu) 

Fig. 3.33(MFE(2)):581.47 

nst 

34 

84 

147 

255 

28 

99 

168 

310 

Fig. 3.34(MFE(2)):455.61 
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tstep 
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tstep 
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u axis 

Problem 111 

0 0.2 0.4 0.6 0.8 1 
x axis 

Figure 3.28: el = 0.01, cz = lo-', 6 = and atol = ~ t o l  = cpu = 260.02. 

Problem 111 

Figure 3.29: el = 0.01, cz = 0, 6 = lo-' and atol = rtoi = cpu = 536.59. 



CHAPTER 3. A STUDY OF MOVING MESH METHODS 

Problem I11 
1 

0.9 

0.8 

0.7 

40.6 

u axis 0.5 
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Figure 3.30: cl = 0.025, c2 = 6 = and at01 = ~ t o l  = cpu = 177.09. 

Problem I11 

u axis 

Figure 3 .a :  cl = 0.01, c2 = lo-*, 6 = 5 x and at01 = r tol= cpu = 266.73. 
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Problem I11 

u axis 

I I I I I 
0 0.2 0.4 0.6 0.8 1 

x axis 

Problem 111 

Figure 3.33: A = (4 x 10-~)'1~,  B = ( 1 0 - ~ ) l / ~  and at01 = rtol = cpu = 581.47. 
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u axis 

Problem 111 

Figure 3.34: A = ( 1 0 - ~ ) l / ~ ,  B = 0 and at01 = ~ t o l =  cpu = 455.61. 

Results for Method I l l  

For this problem, Method 111 performs much better than the moving finite element 

methods. We first test the method with k = 2 and at01 = rtol = The results are 

shown only for T = and in Fig. 3.35 and Fig. 3.36, respectively. The qualities of 

the results for r = lo-', lo-', are similar. The results are satisfactory for 

t = 0.1,0.2,0.3. For t = 9.4, the numerical solutions at two mesh points move a little higher 

than the reference solution, as shown in Fig. 3.35 or Fig. 3.36. The cpu time is 69.14 for 

r = and 93.41 for T = respectively. 

If we chaage k from 2 to 1, and use r = (see Fig. 3.37) the results are better than 

the results for k = 2, although it requires much more time to  solve this problem, with cpu 

time now 273.05. 

Problem IV (Heat conduction problem) 

Recall that we have tested this problem in Chapter 2 (see page 57 for details). The 

solution front for this problem travels in the negative direction, which is different from the 
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t 1 Fig. 3.35tMethod IIJ):69.14(epu) 

nst nje nqn tstep 

0.1 61 12 4 0.0096 14 

0: 1 16 1 " I:::::::; 
0.4 107 22 

Fig. 3.36tMethod III):93.41 

nst nje nqn tstep 

0.1 78 17 3 0.008243 

0.2 91 18 3 0.006726 

0.3 107 23 4 0.007252 

Fig. 3.37(Method III):273.05 

tstep 

Table 3.9: Problem I11 
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Problem 111 
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Figure 3.35: k = 2, T = and ato! = rtol = cpu = 69.14. 
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Problem 111 
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Figure 3.37: k = 1 , ~  = and at01 = rtol = lo-', cpu = 273.05. 

previous three problems. We output results for t = 0.05,0.50,1.00,1 .SO, 2.0. 

Results for M FE(1) 

We first test the method with the small parameter cl used in Problem I, 11, and 111, 

but MFE(1) fails to  solve it because mesh points move in the positive direction while the 

solution front travels in the negative direction. Then we use a large parameter value for 

cl, namely cl = 3,2 which result in an almost non-moving mesh, with cz = 0, 6 = lo-" 

and at01 = rtol = The results are shown in Fig. 3.38 and Fig. 3.39 respectively. The 

oscillating solution occurs at time t = 1.0, and almost all of the mesh points have moved to 

the right. The cpu times are 36.90 and 38.07, respectively. 

Results for GWMFE 

As for GWMFE, we first use the parameter values A and B recommended by Zegeling 

and BIom [ZBSOJ. GWMFE cannot solve it since mesh points move still in the positive 

direction. Then we increase the parameter A. 

(1) For A = ( 1 0 - ~ ) ' / ~ ,  B = 0 a d  at01 = r td  = low4, LSODI is unable to  find an initial 

time step (from to = 0.05). The predicted time stepeize is very small (3 x lo-'). 
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Problem IV 

- - -  - - -  

-3 -2 -1 0 1 2 3 
zaxis 

Figure 3.38: cl = 3.0, cz = 0.0, 6 = and at01 = rtol = cpu = 36.90. 
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Figure 3.39: cl = 2.0, cz = 0.0, 6 = 10'~ and at01 = rtol = cpu = 38.07. 



nqn tstep nsP, 

1 0.016568 4 3 

2 0.019736 66 

2 0.044406 82 

0.053726 98 

2 0.042174 111 

nje nqn tstep 

11 2 0.018570 

16 1 0.003062 

19 3 0.037782 

22 3 0.039853 

25 3 8.041087 

Table 3.10: Problem IV 

(2) For A = (10-*)~f i ,  B = ? and at01 = rtol = GWMFE stops at t = 0.25, again 

due to a small time stepsize 

(3) For A = 1.0 (or 2.0), B = 0 and at01 = rtol = GWMFE produces an unstable 

solution, so the integration terminates quickly because the computed solution becomes large. 

(4) For A = 1.0, B = and at01 = rtol = lo-*, oscillatory solutions are produced 

near the front. 

Results for M FE(2) 

MFE(2) is also unsuccessful for this problem. 

(1) For A = ( 1 0 - ~ ) l / ~ ,  B = ( 1 0 - ~ ) ~ / *  and at01 = rtol = oscillatory solutions again 

occur. 

(2) For A = ( 1 0 - ~ ) ) ' / ~ ,  B = 0 and at01 = rtol = lw4, MFE(2) stops at the initial stop 

( to = 0.05), with predicted time stepsize being zero. 

Results for Method Ill 

We test k = 2,r = low3 and at01 = rtol = As shown in Fig. 3.40, an oscillatory 

solution occurs n e a  the front. There are some mesh points on the layers. The cpu time is 

46.16. Decreasing T to the qualities of the results are unchanged (see Fig. 3.41), and 

the cpu time is 39.74. 
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3.5 Conclusions 

We hove tested the moving finite element methods ( i .e . ,  MFE(Z), MFE(2), G WMFE ) and 

one moving finite difference method, simply using the stiff solver LSODI for the MOL time 

integration. For the various moving finite element methods, we have had an emphasis on 

considering the regularization terms and the gradient weighted function. The main difficulty 

with the MFE methods is that the parameters are problem-dependent, and slutable choices 

can be very difficult to find, although the recommended choice of the parameters used by 

the code GWMFElDS is sometimes helpful. The regularization terms of the GWMFE and 

MFE(2) force mesh points to move into the steep region of the solution, which causes the 

reduced ODE system to become extremely stiff. MFE(2) successfully catches the solutions 

with large gradients as shown in problems I, II, III. GWMFE and MFE(2) move more mesh 

points into the steep re8ons of the solutions than MFE(1). It is still not understood why 

the moving finite element methods can fail d toge the~  to solve the problem where a front 

moves in the negative z direction (although see [GDM81] and [OD79]). It is conjectured 

that an upwind scheme for the discrete PDE is needed to match the direction of the mesh 

movement. 

For Method 111, there is not much difference if the parameter k is chosen to be 2 or 1. 

As we mentioned before, the temporal smoothing term serves as an artificial viscosity term, 

so the parameter T should be kept small. Method I11 could not solve the Burgers' problem 

with 20 mesh points, since too few mesh points move into the steep region, which results in 

unstable solutions. 

The choice of the optimal number of mesh points is a major problem for moving mesh 

methods. Method III is very expensive for Burgers' problem, although the cpu time for 

T = lod2 is 60% of the cpu time for T = To solve problems I and IU, Method III is 

faster than the moving finite element methods, but it can have some difficulty getting the 

mesh near a corner in the solution, as shown in problem 111. For the final problem, where 
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a front moves in the negative z direction, Method I11 has trouble due to oscillations in the 

computed solution. 



Figure 3.40: k = 2 , ~  = lov3 aad at01 = rtol = cpu = 46.11 

Figure 3.41: k = 2 , r  = and atd = ttol = cpu = 39.74. 



Chapter 4 

Summary and Further Problems 

This Chapter contains the conclusions and a discussion of some moving mesh problems 

deserving further study. In this thesis, we study the theory and computation of moving 

mesh methods for solving one dimensional time dependent partid differential equations. 

We briefly discuss the three kinds of moving mesh methods - the coordinate transformat~on 

method, moving finite element methods and moving finite difference methods. The moving 

finite element method [MM81] with piecewise linear bases can also be derived by a suit- 

able coordinate transformation [MC85], [LY82] and [BA88]. We discuss the advantages and 

disadvantages for various moving mesh methods. In Chapter 2, we study methods based 

(explicitly or implicitly) upon an equidistribution principle. We have presented a new for- 

mnlation of the equidistribntion strategy in terms of a PDE, which is shown to be equivalent 

to the problem of solving a particular PDE for this new computational coordinate system. 

We intend t o  develop fnrther robust moving mesh strategies based directly upon the differ- 

ential form (2.2.16) or (2.2.29). Here, our intention has been to  present some simple ones. 

Nevertheless, the results indicate that the schemes given here, with simple improvements 

such as smoothing of the mesh (for Problem 11) when necessary, should prove competitive 

with those which have been recommended by others [FVZW]. 

This moving mesh PDE interpretation can be used to  understand stability properties for 
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moving mesh strategies and extends the understanding of the stability properties as given 

in [CFL86]. While the stability issue for methods based upon equidistribution is a very 

complicated one, and there is no doubt that a complicated interaction takes place between 

the PDE (2.1.3) and the mesh PDE (2.2.16) or (2.2.29). We expect that this viewpoint will 

be usea t ,  dcvelop a deeper understanding of stability properties for currently used methods 

which have proven reliable. 

In Chapter 3, we study the moving finite element methods and one moving finite differ- 

ence method. We have tested these methods using a simple method of lines approach and 

an existing stiff solver LSODI to solve the ODES rather than more sophisticated codes. Of 

particular interest are the role of the regularization terms and the gradient weighted func- 

tion in MFE. The regularization terms sf the GWMFE and MFE(2) force mesh points to 

move into the stiff regions of the solutions, which cause the reduced ODE system to become 

extremely stiff. MFE(2) can easily catch the solutions with large gradients as shown in 

problems I, TI, 111. GWMFE and MFE(2) move more mesh points into the stiff regions of 

the solutions than does MFE(1). It is still not understood why the moving finite element 

method can fail to solve problems with moving fronts that move in the negative x-axis di- 

rection (although see [GDM81] and [OD79]). For Method 111, the temporal smoothing term 

serves as an artificial viscosity term, and this interpretation helps show why the parameter 

r should be kept small. Method 111 is very expezsive when solving Burgers' problem, even 

though the cpu time can decrease fast when T increases (e.g., for T = it is only 60% 

that for T = 

While it is extremely difficult to  make general conclusions about the relative merits of the 

methods, some c o m e t s  are appropriate. While Method I can be used to interpret previous 

moving mesh methods, it is not competive in general. We conjecture that an artificial 

viscosity term is needed to make the method more robust. For Burgers' problem, Method 

II is not competitive with MFE if the appqwiate panzmeter values are used Nevertheless, 

for the other problems, Method I1 proves competitive with other existing methods. 
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There are still many moving mesh questions deserving further study. The choice of the 

monitor function and number of mesh points are two such important issues for moving mesh 

methods (e.g., for Methods I1 and 111). We intend to extend moving mesh strategies based 

directly upon the differential form (2.2.16) or (2.2.29) to a system of partial differential 

equations. An equally important question is whether or not the moving mesh strategies 

(2.2.16) or (2.2.29) can be straight forwardly extended to 2-dimensional partid differential 

problems. We intend, for example, to  investigate the addition of another moving mesh 

equation for controlling mesh movement in the y-direction, 

where w2 is the total "average energy" of the solution in the y-direction. 

Another problems is how to  solve PDEs which involve higher derivatives (e.g., u,,,, as for 

example, in the Korteweq-deVries equation) with MFE. The moving finite element methods 

with piecewise linear bases have some difficulties solving these higher order equations. 

Finally, convergence and error analysis are further things to consider for moving mesh 

methods. Dupont studied the moving finite element met hod [MM81] without regularization 

terms for the case of smooth solutions of parabolic problems [DU82]. For scalar conservation 

laws, Lucier showed that the discontinuous solution may be approximated in L'(R) to within 

O ( N - ~ )  by a piecewise linear function with O ( N )  mesh points when mesh points are moved 

according t o  the method of characteristics [LU86]. Nevertheless, general analyses for moving 

mesh methods have yet to  appear. 
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