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Abstract

In this thesis, we study the theory and computation of moving mesh method: for solving one
dimensional time-dependent partial differential equations. Chapter 1 is a survey of moving
- mesh methods, wherein we briefly discuss the three kinds of moving mesh methods — the
| coordinate transformation method, moving finite element methods and moving finite differ-
ren>ce methods. In Chapter 2, we investigate various aspects of the moving mesh problem
for the solution of partial differential equations in one space dimension. In particular, we
study methods based (explicitly or implicitly) upon an equidistribution principle. Equidis-
tribution is shown to be equivalent to the problem of solving a particular PDE for this new
computational coordinate system. Implementation of a discrete version of equidistribution
to compute a moving mesh corresponds to solving a weak form of the PDE. The stability
of equidistribution is discussed, and we argue that stability can be significantly affected by
the way in which this solution process is carried out. A simple moving mesh method is con-
structed using this framework, and numerical examples are given to illustrate its robustness.
In Chapter 3, we study the moving finite element (MFE) methods and one moving finite
difference method. Of particular interest are the regularization term and gradient weighted
function in MFE. Further, we compare the MFE with the moving finite difference method.
The last Chapter contains the conclusions and a discussion of some moving mesh problems

deserving further study.
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Chapter 1

A Survey of Moving Mesh
Methods

1.1 Method of lines for solving PDEs

The method of lines (MOL) is a semi-discrete method for solving partial differential equa-
tions. The method is quite reliable and convenient. The idea of the MOL is simple. We
consider the PDE problem

ue = f(u)

where f is a nonlinear differential spatial operator. Boundary and initial conditions are given.
In the MOL, there are two ways to discretise the PDE. The first one consists of discretizing in
temporal ¢ and then solving a boundary value ODE problem by BVP codes like COLSYS,
COLCON and AUTO [AMRSS8]. This approach is called the transverse method of lines.
The second scheme involves discretizing in the space z first, and then solving an initial
value problem for temporal ¢ by IVP codes, for example LSODI [HI80] and DASSL [PE82].
This approach is called the longitudinal method of lines. At a computational levels, the

longitudinal approach has been much more popular than the transverse approach.
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The possible advantages of MOL are :

(1) By separating the problems of space and time discretization it is easy to establish
stability and convergence for the method used in MOL.

(2) The powerful numerical techniques for solving ODEs, such as dynamically regridding
the stepsize and still maintain stability and a desired time integration accuracy, can be
directly applied to the PDE case.

(3) Programming effort can be substantially reduced by making use of reliable ODE
codes.

(4) By solving the ODEs very accurately one can compare the accuracy and efficiency
of different approximations of spatial derivatives.

The possible disadvantages in using MOL are that the reduced ODEs may become very
stiff problems and one may lose overall optimization of the method by decoupling the analysis
vo‘f the space and time discretization [HY76]. The spatial mesh does not change for problems
with transient regions like a moving wave front or a shock layer, for which the fine mesh
would be needed throughout the domain, and for problems in which the solution becomes
very smooth, it may even be desirable to coarsen the mesh.

The moving mesh methods for solving PDEs, which we consider in this thesis are based
on the longitudinal method of lines, where standard finite element methods or finite dif-
ference methods can be used to approximate the spatial differential terms. However, the
spatial mesh is allowed to change with time. This gives the corresponding moving finite
element methods or moving finite difference methods in a moving mesh frame, respectively.
This allows automatic selection of meshes for both spatial z and temporal ¢ according to
the behaviour of the original PDE itself. It is natural to change the spatial mesh smoothly
with time. Here we consider the mesh selection strategy with the number of mesh points
fixed. Thus, local refinement mesh strategy and how it might interact with the moving mesh

strategy, are not considered either.
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1.2 Adaptive moving mesh methods

1.2.1 Introduction

The efficiency of a numerical algorithm for solving a class of problems can be critically
affected by its computer implementation. Adaptive mesh methods are for instance much
more efficient than uniform mesh methods for solving time-dependent partial differential
equations with large gradients such as shock waves, propagatied boundary layers etc.. There
are three main approaches for adaptive mesh methods: the h-refinement methods, which
add or delete mesh points according to the profile of the solution and control the mesh points
by the local errors of the solution; the p-refinement methods, which alter the order of the
numerical method to fit the local solution characteristics; and the moving mesh methods,
in which a fixed number of mesh points move automatically to minimize the errurs of the
solution. Further, we may use 2 combination of the moving mesh methods and the local
refinement methods [AF86b1], [AF86b2].

Adaptive mesh methods for solving ODEs were surveyed in [RU79]. The purpose of this
chapter is to outline a variety of the moving mesh methods for solving partial differential
equations. Despite their efficiency for solving PDEs, the moving mesh methods are just
ic their beginning, especially as regards their theory. We discuss the current numerical
methods in a general way and avoid giving firm conclusions. We consider moving finite
element methods, moving finite difference methods and coordinate transformation methods
borrowed from adaptive mesh methods for solving ODEs. Both parabolic and hyperbolic

problems are studied.

1.2.2 Coordinate transformation method

Based on the corresponding method used in solving ODEs [WH79], White [WH82] applies

the coordinate transformation method to solve first-order systems of partial differential
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equations of the form

A(u,z,t)us + B(u, z,t)u, = C(u,z,t)
where (z,t) € [a,b] X [0, 00), and appropriate boundary and initial conditions are given. For
good accuracy a non-uniform mesh must be selected in the region of rapid solution change.
The goal of the coordinate transformation is to transform the solution such that in the new

coordinate a uniform mesh can be used.
White introduces the arclength transformation for initial/boundary-value problems. He
changes from (z,t)-coordinates to new computational coordinates (s,T), where s is the

arclength of the solution. A pair of computational coordinates is defined by
o 1
s= [ 1+ luee OB de/0 (1.2.1)

‘and
T =t, (1.2.2)

where 6 is the total arclength of the solution defined by
b 1
0= [ 11+ lluelé, liEde. (1.2.3)

For simplicity, we consider the scalar differential equation case. The transformed problem

in arclength coordinates is now given by

zsAur + [B — z7Alu, = z,C, (1.2.4)
5 + |us|l3 — 6% =0, (1.2.5)

and
8, = 0. (1.2.6)

The solution of the transformed problems (1.2.4), (1.2.5) and (1.2.6) can be approximated
on a uniform mesh because the arclength transformation automatically smooths out re-

gions of the rapid change. The well-known Box scheme [KE71] is used by White in actual
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computation, viz.

1 1 k x
(Wi = 719+ a T
k uktl k
k3 1 J+1 Y Yit1 ~ %
(us)]-+% [( )+( s )],
(ur)yy} 1[("5“ A kY
u y 3 .
Ti+d ¥ 3807 ATy ATy
These give
1 k+1 k+1 k k 1 k+1 k+1 k
a3 lTi41 — % tTin —"’j]Azark[“j+1 - ,+1+u - u;]

k+ k+1 k k+1 k+l k
+ (B- “"mln [Ij+% - “’§+1 + Ij+ ]A)2As[u1+l L T S Ry “f]

1 [ k41 K+l 4 _k k
= saslEi — 2T + 25 - 55C,
and

1 ) A 1
Gagleri — ot e - )+ gl — of T i - wllE - (565 +64)) =0,

And then Newton’s method, for example, can be used to solve these nonlinear equations.

The resulting systems generally turn out to be sensitive and difficult to solve numerically.
Although the reasons are not entirely clear, note that the transformed equation is nonlinear
even if the original one is linear. Furthermore, sometimes the method has physically mean-
ingless solutions when the solution becomes multivalued. At such a point, shock conditions
should be used in order tc approximate the correct solution.

Dwyer, Kee and Sanders studied the coordinate transformation method for problems in
fluid mechanics and heat transfer, in which meshes were controlled by the gradient and the

curvature of the solution [DKS80].

1.2.3 Moving finite difference methods

Consid.r the time-dependent partial differential equation

w = f(u), (1.2.7)
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where f is a spatial differential operator. In the Lagrangian frame, meshes move continuously

with time, and the original equation (1.2.7) can be rewritten in the form
u; — uz’.'ii = f(ul) (128)

for the i-th mesh, where 4; = u,(z;) + uz,Z; is a total derivative at the i-th mesh point, and

u,, is approximated by a standard difference central

o Uig1 — Ui
Ug; = —————.
iyl — Ti-1

This is a stable scheme used in moving finite difference methods.

'We consider now the moving equation for the moving mesh z;(¢). First of all, we intro-
duce the moving mesh equations derived by Hyman [HY82] and Petzold {PE87].

These schemes have two computational stages: first, choosing a moving mesh based
on minimizing the time rate of change of the solution in the La.gra.ngia’.ﬁ éoordinates, and

seéond, calculating the mesh based on the deBoor’s eqlxidistribution algorithm [BO73), i.€.,
static regriding.

Hyman studied the PDE case
U = f(u, Ugr, uzz)-

The system case

F(uh Uz, ut:l«‘) = 07

was studied by Petzold.

For simplicity, here we consider the scalar case
= f(u, Uz, Uzz). (1.2.9)
In the Lagrangian frame, equation (1.2.9) becomes

U — Uk = fu, ug, trz)- (1.2.10)
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he? |

The mesh velocity £ is chosen to minimize the time rate of change of u and z in this

Lagrangian frame. Thus the moving mesh equation is
mzjn[Hle2 + al|z]]}] = méin[z @? + ai?] = ngn[Z(f(u) + u.2)? + ai?] (1.2.11)

where a is a positive scaling parameter. This results in the moving mesh equation

PR (CLL D0y (1.2.12)

a+ uzlug

For the hyperbolic problem, it is natural that a mesh point moves along the characteristic
direction of the equation if the parameter a is zero, and in this case the meshes move along

the direction of minimizing the rate of change of the solution. For example, if

f(u) = au,

we have moving mesh equation

which is the characteristic equation.

It is interesting that if we minimize the time rate of change of » and z in the Lagrangian ’
frame with respect to the velocity % of the solution instead of the velocity z of the mesh in
equation (1.2.11), we obtain the same moving mesh equation as (1.2.12).

A practical difficulty is that the mesh points derived by equation (1.2.12) may easily cross
one another. An extra regularization term is needed to prevent such mesh point crossings.

For this purpose, Petzold has used the penalty function

A(u e et ) (12.13)

-1 Tij41 — T
and minimized the new objective function,
z 1 z 1 z
mm[”“:"z + allZ;(13 + A(II——;’—IIZ' + IIL—JH )] (1.2.14)
- Tj+1 — T;

where ) is a positive parameter, which leads to

| I —Zj-1 Zj41 ~ T;
—_— = U. 12.15
ok; + s, I\[(I - zj1)?  (Tip— Ij)z] 0 ( )
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The parameters a, and A are chosen as 1.0 and 0.2, respectively, in [PE87]. The penalty term
acts to diffuse the mesh velocity since the penalty term in equation (1.2.15) approximates
A(Z)z, for a uniform mesh spacing, z; — z;-1 = ;41 — Z;. Although mesh points can still
cross, (1.2.15) is quite a robust moving mesh equation.
For reliable computation, deBoor’s algorithm can be required to adjust the mesh position
“after a time step obtained by equation (1.2.15). Such a so-called dual reconnecting mesh
s‘f;fategy is described in [HY82], [HY84], and [PE87]. This strategy equidistributes the mesh

ba.éed on the first and second derivatives of the solution, such that the mesh points satisfy
hiluz|| + hZ|luzs|l < TOL (1.2.16)

where TOL is a user-defined error tolerance.

Itis possible tointerpolate the solution from the mesh resulting from (1.2.12) directly and
usé it to find a new the equidistributing ‘mesh from atiéfyiﬁg‘,(lllﬁ).’ Thus, this requires
interi)blating between every mesh point at each step. To avoid the large computational
ex‘pén'se for this abpi‘oat_h, Hyman and Petzold use the du'a.l; ;éconnecting mesh approach,
~ which is a compromise between choosing the best mesh, and a&didin‘g needless interpolations.
In parti,cula.r, two reference meshes are computed at the beginning of the each time level.
The first reference mesh and the solution are obtained by solving equations (1.2.10) and
(1.2.15). The second reference mesh is redistributed to satisfy equation (1.2.16). Therefore,
the second reference mesh divides the space into reference zones. Mesh points are added or
deleted so that there is exactly one mesh point per reference zone, and mesh points at the
edges of zones which are too close to other mesh points are moved apart. This scheme has
worked well in practice, and on most time steps it requires few interpolations between mesh
points.

To apply this approach to practical problems, they also derive the scaled moving mesh
equation from minimizing a weighted l; norm in (1.2.11), where ||%;]|2 = *NP (%})2 and

125113 = (—"’;’——)2, which NP is the number of PDEs in the original system. The scaled

WNP+1
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moving mesh equation at z; is

NP . - - . . .
T N BV Rk 7 S % Gk 2 WY
ol wipi (zj—zj-1)?  (Tj41 = 2;)°

where w; are weights to be chosen by
w; = ma-x{lumar; ~ Umin, |, floor(2)}.

Here U4z, is the maximum of the i-th component of u; over all mesh points, and wu;y, is
the minimum of u; over all mesh points.

Another moving finite difference method is proposed by Dorfi and Drury [DD87]. A
method with smoothing procedure for both spatial and temporal variables is derived based
on the equidistribution principle for solving one-dimensional initial value problems.

Equidistribution for the mesh points requires that

UM ndE= 00)  0<i<H, (1.2.17)
1

where 6(t) = fab M(£,t)dE, and M > 0 a so-called monitor function. Dorfi and Drury use

the arclength monitor defined by

M(z,u) = 4/1 + ul. (1.2.18)

Using the forward difference scheme for u,, the discrete arclength monitor at each subinterval

[z, Tiy1) is

(Ui+1 - “i)2
M; = l+m. (1.2.19)

The fundamental form of a moving mesh equation is derived by considering the point con-

centration

ny = ————————— (1220)

and having
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If we consider two neighboring subintervals for equidistribution,

" M(E, t)de = /“ M(E,t)dE, for i=1,---,N. (1.2.21)

Ti-1

By applying the mid-point quadrature rule, we have
(zi = Tic1)Mioy = (Zig1 — z)M;, for (1 <i<N).

We can rewrite this in the form
Ni-1 _ T

My~ M
Further, Dorfi and Drury introduce a penalty function for smoothing both spatial and

temporal meshes based on the stability condition

k_ nin k+1 (1.2.22)

- whgr,ef kis chosen to be 1 or 2. We also require
n; o }: Mj(—— ~ 1)"-Jl (1.2.23)

where the right-hand-side is a smoothing kernel which is a Green’s function associated with

the difference operator

1 - k(k + 1)82,
where 6 is a centered difference operator. So smoothing in space is
fi; = ny — k(k + 1)(nig1 — 2n; + ni1) x M;. (1.2.24)
To smooih the temporal variable, let
n; = n; + -I—(ﬁ; — ﬁ(ou)) o M;
At !
where At is the time step, and 7 is a positive time scale which depends on the problem.

Finally, we obtain moving equidistribution by setting

dn;
dt )

=)Moy = (i + 7—2) [ M. (1.2.25)
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In equation (1.2.25), the monitor function M is implicitly unchanged from the last time to
the updated time over the time step . The parameter r acts as a delay factor.

Verwer ef al. studied this method [VBFZ88]. The inequality {1.2.22) is necessary for
stability of the scheme since it prevents meshes from crossing each other. Blom and Verwer
[BV89! compared the arclength monitor with the curvature monitor for the moving mesh.
The equations (1.2.25) are found to be much easier to solve with the arclength monitor than
with the curvature monitor, which uses an approximation to the second derivative of the
solution.

Another way of controlling meshes involves the concept of a mesh function, which was
first introduced by Hyman to dynamically adjust the mesh locations [HL86]. There are
many ways to define the mesh function. Hyman and Larrouturou use one that satisfies an

ordinary differential equation

. B, . _
mi+% = ';_'(m - m,‘+%), (1.2.26)
where miy 1 is the value of the mesh function at Tipy = %(:z:, + Zi41), ™ is the average value

of the mesh function m, and 8 determines the relaxation time with respect to the timescale
T. Adjerid and Flaherty use a similar approach [AF86b2].

Madsen adopts the idea of a mesh function when considering the system of partial
differential equations

U= FU), for zi<z <z, t>t,

where U = (u1,---,unppg)! and F = (fi,--+, fnppe)T. Using the method of lines, the

PDE system is approximated with the semi-discrete ODE system

duk,i _ ) ) d.’L‘,‘ _
-dT. "fk,l‘{"(uk,t)::':iT, for k= 1,"',NPDE.

Mesh points saiisfy the spatial ODE

dz;

7 mesh function, for i=1,.---,NPTS.
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Madsen [MAB84] defines a mesh function with the property:

lim m(:) =0,

hi—o00

where m(7) is the mesh function value associated with the i-th mesh interval and h; =

ziy1 — zi- If 2/ and z, are assumed to be the left and right fixed boundaries, respectively,

then
: NPTS-1
Y. hi=gz, -1,
1=1
o : : L Ly . NPTS-1dh; _
both Z, and Z; are zero. Differentiating above equation with respect to ¢, 3°;=| & =0

* The moving mesh equation is defined by

dhi d${+1 dl"’,

- =g~ = M- m), (1.2.27)
where
R NPTS-1
M=[ ) m(@)/(NPTS-1)
1=1

- s the average mesh function value over all of the mesh zones. Madsen uses the five different
mesh functions
NPDE
Y WS~ (fi)asl/ T, (1.2.28)
k=1
» NPDE
ma(i) = Y Wilukir — ukil/To, (1.2.29)
k=1
NPDE
Y. Wil(uo)kier — (uz)isl/Ts, (1.2.30)
=1
NPDE
my(i) = Y, WilKkis1 — Kiil/Ts, (1.2.31)
k=1
ms(i) = |ziy1 — =il /Ts, (1.2.32)

1l

mj(i)

where (fi)n and (fi)2n represent the right hand side of the k-th PDE evaluated for the
current step size h and 2h, respectively. Wy is a user-specified component weight, Ky ; is the

curvature of the k-th solution component at z; and each 7} is chosen so that le:l m(i) = 1.
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The first mesh function m; is designed to ensure that the right-hand sides of the PDEs are
well approximated, m,(1), m3(i) and my4(2) are designed to control the amount of change of
the solution u according to first derivative and curvature of solution and ms(i) is designed
to control excessive adjacent mesh distortion. In practice, the total mesh function may be

useful as a linear combination of the individual mesh functions, i.e.,
m(i)totat = Amy (i) + Bma(3) + Cma(i) + Dma(s) + Ems(i) (1.2.33)

where A, B, C, D, and E are user specified constants. The’ échen;e‘ conta;ins many problem-
dependent parameters, viz. Wi, T;, A, B,C, D, E. Although extensive tests of this method
seem not to have been carried out, preliminary tests appear gncoufaging- For exa.mpl‘e, the
problem of two opposite travelling wave pulses is tested vﬁtﬁ A=1B= O,»C = 0,0 =
-1, F =1 and mesh points N = 100, and reasonable results-are obtained. |

- Verwer, Blom and Sanz-Serna use static regridkdjng to bbta.iﬁ th‘:e'reference mesh, then
Vsolve the PDE described by the Lagrangian frame [VBSSS] and: [BSVBB] Their techmque‘
is the so-called ‘intermediate’ technique between static regnddmg methods Where meshes
’rema.m fixed for intervals of time, and dynamic moving mesh method‘s, where the mesh
‘movement and the PDE integration are fully coupled.
| To solve

Uy = L(u), (1;234)

where L is a linear or nonlinear spatial differential operator, they use the Lagrangian time-

stepping scheme

B3 - 225 + (1~ 0)(z2y, — 2 (5
—[0uT — o) + (1 - 0)(ulyy - u?q)(f"—,—"f‘-)
= 0(1';4—1 -z A Lai(u™t) + (1 - 0)(z7y1 — 2 1)L i(w™), (1.2.35)

where T is the time step. For # = 1, (1.2.35) is the Lagrangian Crank-Nicolson scheme;
for @ = 1, it becomes the Lagrangian Implicit Euler scheme. The ‘intermediate’ approach
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has two successive computational stages. The first is the mesh prediction stage which
computes a mesh at the forward (n+1)-th level. Then we get the solution on a fixed mesh
by the Implicit Euler step, and use the deBoor’s regridding algorithm to generate the final
mesh at the (n+1)-th level. The second stage is the integration stage which computes the
solution u?*! by the Lagrangian Crank-Nicolson scheme with § = % The PDEs (1.2.35)
are computed two times for 8 = — and @ = 1 in the approach.

_ Two monitors are introduced in the implementation. The time error monitor controls
the time-step selection and the space error monitor adapts the number of moving mesh
points.

Smooke and Koszykowski develop a fully adaptive method, which first discretizes in
time ¢, then solves the boundary value problems [SK83]. Meshes are derived from the mesh
monitor at discrete time levels. The scheme interpolates values of the solutipn from the
old meshes to the new meshes. They do not couple the calculation of the meshes and the

solution of the PDE. The details are as follows: Consider the partial differential equation
us = f(z,t,u,Uz,8,2), a<z<b, t>0. (1.2.36)

Here they use a Backward-Euler scheme to approximate the time derivative. The equation

(1.2.36) becomes the boundary value problems,

u"t(z) — u(z)

A = f(@ T atal Wl) 4 et (2) (1.2.37)

where the time step At™t! := "+ _ " and e™t!(z) is the discretization error derived by

the Backward-Euler scheme

323(95 3]

e"H(z) = [ jArH 2, € e [t 7). (1.2.38)

Ignoring the discretization error, we can rewrite (1.2.37) in the form

w1 yuiny W) w(a) (1.2.39)

n+1 , n+l
Sz, "™ ul T ull Al = AL
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Many researchers have used the adaptive mesh method for solving boundary value prob-
lems. For example, White has chosen the arclength as a monitor to equidistribute mesh
[WH79]. Pereyra and Sewell have obtained a mesh based on equidistributing the local trun-
cation error [PS75]. BVP-ODE solvers such as COLSYS, COLNEW and COLPAR involve
adaptive mesh strategies.

For solving BVP-ODE (1.2.39), we realize that an interpolation scheme is required to

+1_ For this purpose, Smooke

obtain the solution at time level n at the mesh point :c"

and Koszykowski use linear interpolation. Specifically consider the mesh points at two

consecutive time levels in Fig. 1.1 and assume that the mesh point z;-”'l lies in an interval
[z}, z},,] from the n-th level. To obtain u}, they use linear interpolation

P (Zk+l _ :k (7 nHl _pny (1.2.40)

k+1 k

n+1

n
or a corresponding expression if z77" is closer to zZ,;.

n+1

T
0 © ©
a ' b
1
3
]
i
s — o ©
“ zE TE1 b

Figure 1.1: Interpolation points at two time levels

Finally, they derive the fully discrete adaptive scheme

n4i
f(I;}+l , tﬂ.+l , u;_l‘l'l n+1 (zj) un—l—l (IJ )) — Af

= —zrr (U} +( ))(-’l"”1 z%)s (1.2.41)
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with the appropriate initial and boundary conditions. But one can not solve the above
nonlinear equation, since the mesh point z;‘“ at the (n+1)-st level is still unknown. They
use an equidistribution strategy to obtain all meshes prior to the (n+1)-st level. To get the

meshes at the (n+1)-st level, they guess mesh points {z;-”'l} moving along the simple ODE

equation
’ dz.: ? — z","_l

dt’ = -2 Atn’ (1.2.42)
with initial condition z,(0) = :1:;-‘“1. Integrating from time 0 to t yields

.’E;-' ~ z;—l n—1

or so integrating from t" to "+, we have

" — z':‘_l

it = (L2 —)Art + 2] (1.2.44)

Atn
This is a linearly extrapolated equation using time levels n. and n — 1.

Thbugh this scheme generally works quite well, there are two major difficulties which
occur when an extrapolation scheme is used to move the mesh. The rc-ordering of meshes
if mesh points cross one another is the first. The second occurs when mesh points are
extrapolated out of the spatial domain [a, b].

Larrouturou considers a very simple moving mesh method for solving the flame propa-

gation problem

T, = Tee+QT,Y), (1.2.45)

Y, = Yi/Le—QT,Y), (1.2.46)

where z € [zo,zn} and Q(T,Y) = -Z%Y exp(—]—f'%%) is the normalized reaction rate.
Here, the Lewis number Le of the reactant, the reduced activation energy 3 of the reaction
and the nondimensional heat-release parameter a are positive constants. The initial and
boundary conditions are given. Larrouturou supposes the meshes move continuously as

a rigid body te catch the flame front [LA89], that is, meshes move at each time ¢ with
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the same time-dependent velocity V(¢)(= z;(t)). In this simplified Lagrangian frame, the

flame-propagation becomes

T, = Te+ QT,Y)+V(©®)Ts, (1.2.47)

Y, = Yi/Le—QT,Y)+V(t)Y.. (1.2.48)

The meshes are chosen by an equidistribution strategy with a physical qualitative monitor,
for example, the temperature T.
Suppose
N
/ T(z,t)dz = constant. (1.2.49)
)

Integrating equation (1.2.47) from zg to zn yields

dit :N Tdz = Tx(zn) ~ Te(zo) + V()[T(zn) — T(z0)] + /z” QT,Y)dz.  (1.2.50)

Using equation (1.2.49), we obtain the mesh velocity
TN .
V) == [T, Y)de + Tuleo) - To(aw /(T () - T(a0)] (1251)
T

A simple explicit finite difference scheme is used to approximate the PDE. In order to
better adapt the mesh points to the solution profiles, the new meshes are computed by
equidistributing the mesh monitor. Then the solutions at the new meshes are obtained by
interpolation from the old meshes. Larrouturou proposes a conservative interpolation which
is used instead of linear interpolation. This implementation is much simpler: Let T(o!d) he

the piecewise constant function defined on the interval [zo, zn] by

Told) — 7o), if ze [:cf"_‘i),:cfff)], (1.2.52)
2 2

and consider

E@)= [ ") (6)dg, (1.2.53)
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where E(z) is a continuous piecewise linear function on [zg, zn]. Then the new solution for

the temperature T in the interval [:z:( 'y )z ﬁ’rf' )] is given by
2 2

( (ncw)) _ E(z(‘nelw))
172

(new) J+]
le z(new) 27(mf:w) (1254)
i+3 i-3

It has been shown that conservative interpolation preserves the positivity and monotonicity

of the soluticn and the properties of linear interpolation [LA89].

1.2.4 Moving finite element methods

Moving finite element methods are another class of methods which have been quite successful
in solving time-dependent partial differential equations with shocks or large gradients. Miller
and Miller first introduced the moving finite element method in 1981 [MM81]. Subsequently,
"many researchers have studied further variants of moving finite element methods. Baines
et al studled the “local” moving finite element method [BW88] [JWBS8S8]; Herbst et al.
generahzed the moving finite element [MM81] to a moving Petrov-Galerkin methods for
solving transport equations [HMS82]; Adjerid and Flaherty proposed the adaptive moving
finite element method [AF86b1], [AF86b2]; and Mosher used a variable node finite element

-méthod [MO85). We review these moving finite element methods in the following sections.
A. Moving finite element methods
Consider the time-dependent partial differential equation

=L(u), a<z<bd t>0. (1.2.55)

In the moving mesh frame or Lagrangian frame, meshes depend on the time and profile of

the solution of the partial differential equation. Consider the partition

H:ia=z0< - <zi(t) < zija(t) < - < zN41 = b. (1.2.56)
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Miller and Miller introduce the piecewise linear moving finite element to approximate the

solution, so

N
U(z,t) = Y_ Ui(t)ai(z), (1.2.57)
=1

where a; are the standard piecewise linear basis functions

Ti—Ti—1
a; = ;_":11—;;‘ for T; S T S Titls (12.58)
0 otherwise.

and U; are the amplitudes of solution at z;. Differentiating equation (1.2.57) with respect

to t gives
Uz, t) = f_j Ui(t)a; + Biz, (1.2.59)
i=1
where
—uza; forz;y <z<z,
Bi=1q —ug, 0 forz; <z<ziq, (1.2.60)
0 otherwise.

Here f3; are discontinuous piecewise linear functions. The divided difference

Uy — Uiy
m; ;= ——————
I —Zi-1

approximates the first derivative of the solution on {z;_;, 2], t.e. m; & uz,for z € [ziz1, 2]

We migimi
| U - L) I3 (1.2.61)

with respect to the velocities of meshes z; and the velocities of the solution U;. This Least

Square approach leads to a system of Ordinary Differential Equations
N -
Z<a.-,aj>U.-+<ﬂ,-,aj>5:,- =< L(U),a; >, j=1,...,N. (1.2.62)

i=1

N
S < 0,8 > Uit < Bi, B > & =< L(U), B; >, j=1,...,N. (1.2.63)

i=1
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where < -,- > is the standard L, - inner product. The U;(0) are obtained from the initial
conditions for the partial differential equation, and a uniform mesh are usually chosen for
the initial values z;(0). For fixed meshes, this is the same as the standard finite element

method with a piecewise linear basis.
Let YV := (Ul,xl,...,U,-,z,-,...,UN,zN)T € R*N. We write equations (1.2.62) and

(1.2.63) in matrix form,

AY)Y =G(Y), for t>0. (1.2.64)

Here A(Y) is the mass-matrix with block-tridiagonal form, where

G(Y) = (glv g2, '1g2N—1’g‘2N)T’
g2j-1 =< aj, L(u) >,

and

g2; =< ,BJ‘,L(‘U.) >.

Wathen and Baines introduce the concept of the “local” moving finite element and show

that the block-tridiagonal matrix A can be represented as

A=MTXM, (1.2.65)
with
1 1
M= , (1.2.66)
—m; —Mi41
and
%A:L‘,' 0
X= . (1.2.67)
0 %Az§+1

Hence it is easy to show that A(Y) is a singular if two situations occurred. The first
is so-called parallelism (m; = m;4,, for some : € {1,---,N}). Geometrically, this implies
that three neighboring points (z;-1,%i-1), (Zi, u;) and (Zi41, 8i+1) are located on the same

straight line, and the curvature u,, at the point (z;, u;) is zero. The second is the degeneracy
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of A whenever two mesh points come too close together or cross one another; in this case A
becomes ill-conditioned and numerically singular. The mesh crossing can be eliminated by
reducing the time step [HMW86], or by deleting mesh points that are too close [WB85].
In order to overcome above two problems, Miller adds regularization terms or penalty
functions in the residual minimization to obtain new objective functions [MI81]. He mini-

mizes

N+
| U= LEO) 1} + Y (idd: = Si)? (1.2.68)
1=1
with respect to U;, and #;, where g2 = Ecj’:-g, €iS; = (A—?‘_CQ_L&V, ¢1,¢2, and 4 are problem-
dependent constants and § is a user-defined minimum mesh distance and is also used for
the activation energy. The regularization terms affect the moving mesh equation (1.2.63)
by adding

2

. 2, .2 \a 2 .
~€;&im1 + (€] + €i41)Ei — €1 Tit1,

and

€iS; — €i+15i+1,

to the left- and right-hand sides of equation (1.2.63), respectively. Then it can be shown
that the mass-matrix A becomes positive definite [MM81]. Miller interprets the physical
meaning of regularization. The e-terms are called ‘internodal viscosity’ terms which avoid
parallelism by controlling the relative motion between the meshes. The S-terms are called
‘internodal spring forces’ which prevent numerical drift by providing a force between too
close mssh points.

For shock problems, most of the mesh points move into the steepest regions of the shocks,
because the total derivative U is close to being a delta function and large errors U- L(u)
arise for the least square method with the L,-norm. To de-emphasize the steep portions
of the solution, the gradient weighted MFE method with the gradient weighted function
w(uz) = /1T + u2 is introduced by Miller [MI83]. Thus, the system of Ordinary Differential
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Equation for gradient weighted MFE becomes

<U,aq;w> = < L(u),aw>, (1.2.69)

<U,a;w> = < L(u),ajw> +reg. terms, (1.2.70)

instead of equations (1.2.62) and (1.2.63). However, this system shares many of the same
difficulties as equations (1.2.62) and (1.2.63), as we shall see in Chapter 3.

Herbst et al. [HMS82) have derived a moving Petrov-Galerkin method based on the
moving finite element approximation equation
N

Uz, t) = Y_ Ui(t)ei(). (1.2.71)
i=1

The a; are defined as in (1.2.58), but they use piecewise Hermite cubic polynomials as test

. fu‘nctions, viz. §; and T; given by

Si(z) = [a;(2)]*[3 - 2a,(z)], (1.2.72)
and
T(2) = [as(e)Pla(z) - 12y (1273)

Differentiating equation (1.2.71) with respect to t gives
- N -
U(z,t) = Y Ui(t)os + Bisi, (1.2.74)
=1
where the g; are given in (1.2.60). Then, by Petrov-Galerkin method, the coupled system of

Ordinary Differential Equations is

N

3 <e;, 8> Uit < 8,85 > & =< L(V), S; >, i=1,...,N. (1.2.75)
=1

N -

> <o, T > Uit < Bi, T; > #: =< L(U),Tj > . j=1,...,N. (1.2.76)

i=1

To clarify the form of the above coupled ODE system, we write down the mass-matrix

of the left hand side in (1.2.75) and (1.2.76):
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wBAZ; U1 + T(Az; + L2540 + 38241 Uj 1)
+2l0[3mjAzj1':j_1 + 7(m;Az; + mjn Az, )E; + (3mj Arjn)En

=< L(u), S; >, (1.2.77)
and

8 2(Az)* -1 + 3(Ax] - Az, ) - 2AAzj41) U]
+§15[2(A1:?m1:i:]_1 + 3(A:r?m] - (A$?+1mj+1}.i?j - 2(AIj+1)2mj+]i]‘+1

=< L(u), T; >, (1.2.78)

where Az; =z — zj_;. It is clear that the mass-matrix (1.2.75) and (1.2.76) is sometimes
singular. So regularization terms are again required to avoid a singular mass-matrix. Herbst
et al. also use the regularization terms of Miller [MI81] (see also {MI83] and [FUS85}).

Comparing the moving finite element method of Miller and Miller with the moving
Petrov-Galerkin method, Miller showed that if the moving finite element [MMS81] is used in
the H !-norm rather than the L,-norm in the residual minimization, the two methods are
equivalent for scalar PDEs in 1-D to within the regularization terms [MI83].

MFE [MMS81] can also be derived by a suitable coordinate transformation (see Mueller
and Carey [MC85], Lynch [LY82] and Baines [BA88]). To see this, consider the time-

dependent partial differential equation
uy = L(u). (1.2.79)

Suppose (£,T) are new independent variables, and (z,t) are the original variables, where a

coordinate transformation is defined by
z =%(&,T), (1.2.80)

t="T, (1.2.81)
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u(z,t) = 2(§,1).

Using the derivative chain rule
u = ur + weby = ur — uir,
g = Teug.
For the new coordinates (£, T), equation (1.2.79) becomes
aT — uzZr = L(u).

Using the notation

(1.2.85) becomes

@~ ugZ — L{u) = 0.

For a numerical approximation u of the exact solution, define the residual R by

R =14 —uzz — L(u).

24

(1.2.82)

(1.2.83)

(1.2.84)

(1.2.85)

(1.2.86)

Using the Least Square Variational Method for ||R||2 with respect to % and #, we have the

- weak forms

<R, p>=0

and

< R,u,p>=0

for all admissible test function (= §4) and ¢(= ).

Consider finite element approximations
u = Ui(T)#;(§),
i

2= 3 25(T)5(6),

(1.2.87)

(1.2.88)

(1.2.89)

(1.2.90)
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where the ¢;(£) are basis functions for the finite element space.
Since
=3 Uie;(6), (1.2.01)
J
$ =) %8(6), (1.2.92)
il
we obtain that
Y =6u=¢;{§) and ¢ =46z=¢§).

Equations (1.2.87) and (1.2.88) become

<R,$;>=0 (1.2.93)
and
< Ryuzéi >=0 (1.2.94)
for all 7, or
< Y UAT)$i(€) — uz 3 2;(T)$5, ¢ >=< L(u), ¢i >, (1.2.95)
7 J

< Y UAT)$i(6) ~ uz Y 25(T)j, usti >=< L(u),usi >.  (1.2.96)
J J

This is Miller’s MFE if the basis functions ¢; are piecewise linear functions [MC85),
[LYS82] and [BAS8S].
Instead of minimizing ||/ — L(u)||? with respect to the mesh #; to determine the mesh

equation, Mosher [MO85] gets the moving mesh equation based upon the equidistribution

principle
M; =0, 1<i<N, (1.2.97)
where
Iy fi=1
Mi={ fi1-fi f2<i<N-1 (1.2.98)

zy—-1 ifi=N
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with f; a function of the gradient and the curvature defined by

fi =/ m? + e1(Zig1 — ;) + Biv/(mi — mi_1)? + €2(Tig1 — Tin1)

+ng,/(m,«+1 - 11’?.,‘)2 + 62(Ii+2 - I,‘) (1.2.99)

fori =1,---,N — 1. For ends points, B, is zero if : = 1 and B; is zeroif i = N — 1. Here
B, B3, ¢,, €, are nser-chosen constants. In his computations, By, = B; = 0.025,¢; = 1072,

g2 = 107° are used [MO85).

B. Adaptive finite element method

» In this section, we discuss the adaptive finite element method proposed by Adjerid and Fla-
herty [AF86b1], [AF86b2]. The Galerkin method is used to discretize the partial differential
equation in space with piecewise linear basis functions. They introduce an error estimate
to ;control the moving mesh based on an equidistribution principle.

Consider

uy = L(u). (1.2.100)

The finite element approximation U of the exact solution u is defined using the weak form
< Ui, o >=< L(U), ¢ >, (1.2.101)

where ¢ is a suitable test function. Introducing a partition

M: a=zo<z(t)<---<zN(t)<zn41 = (1.2.102)
If
N+1
U(z,t) = Y Ui(t)eu(x), (1.2.103)
=0
where a; are piecewise linear functions defined in (1.2.58), then
N+1 i 141 aai )
U= Y {Ui()ei(z)+ Y, Uitz —4;()}- (1.2.104)
=0 j=i—1 3
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To estimate the error between the exact solution u and the finite element approximation U,

we define anotler weak form

< U+ e, v >=< L(U + €),v> (1.2.105)

for an admissible test function v. Then, we approximate the error e by piecewise quadratic

functions
N+1
E(z,t)= Y E(t)¥i(z), , (1.2.106)
=0 .
where
g, ] TEIAET fr e € (zia(t),z(), (12107
0 otherwise.

Then the weak form is used to estimate the error, viz.
<Ui+ E,¥; >=< LU+ E),¥; >. ' (1.2.108)
Once we know the error estimate, the meshes can be controlled by requiring
£i(t) — 2i1(t) = = A(|E:¥;|ls — E) fori=1,2,---,N, (1.2.109)
where X is a positive constant and
1 2 2 1 K
1l = { [ (EY + (B)iz}E. (1.2.110)

Here ||E;¥;]|; is the local error in H? on (z;_1(t), zi(t)) and E is the average error in H'.
The moving mesh equation (1.2.109) is similar to equation (1.2.26). This method is

more efficient for solving parabolic problems than for solving hyperbolic problems. It can

estimate the error for each time step, although the method is quite sensitive to the choice

for A [AF86b1], [AF86b2].



Chapter 2

Theory & Computation of Moving
Mesh Methods

2.1 Introduction

In this chapter we investigate various aspects of the moving mesh problem for the solution of
partial differential equations in one space dimension. In particular, we study methods based
{explicitly or implicitly) upon an equidistribution principle. Equidistribution is shown to be
equivalent to the problem of solviug a particular PDE for this new computational coordinate
system. Implementation of a discrete version of equidistribution to compute a moving mesh
corresponds to solving a weak form of the PDE. The stability of the equidistribution is
discussed, and we argue that stability can be significantly affected by the way in which this
solution process is carried out. A simple moving mesh method is constructed using this
framework, and numerical examples are given to illustrate its robustness.

One of the most important computational consideration when solving partial differential
equations (PDEs) having nontrivial solutions is che decision of how to automatically and
stably choose a nonuniform mesh which suitably adapts to the solution behaviour. For

initial value PDEs, constructing a moving mesh with time can be essential if the problem

28
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is to be solved efficiently, and often if it is to be solved at all. The resolution of this issue
has proven to be surprisingly difficult, and theoretical results have been particularly slow in
coming. Considerable controversy surrounds the questions of which overall strategy to use
and how best to choose a moving mesh for a given strategy [FVZ90], even though few basic
mesh selection principles are around. Here, we investigate one of the key mesh selection
strategies, that where equidistribution is explicitly done with respect to some measure of
the error, and we discuss how these results have implications with regard to some other
strategies as well. We focus on PDEs in one space dimension.

First consider the case of solving an ordinary differential equation (ODE), e.g.
Urz = f(z,u,uz) (2.1.1)

with boundary conditions u(a) = B, u(b) = f2. The equidistribution idea, apparently
first introduced by deBoor [BO73] and Dodson [DO72], is based upon the simple idea that
if some measure of the error M(z) is available, then a good choice for a mesh 7 : ¢ =
To < 71 < --- < zxy = b would be one for which the contributions to the error over
the subintervals are equalized (or “distributing equally”). In practice, most strategies find
x by only approximately equidistributed with respect to the so-called monitor function
M(z), although White [WH79] provides a framework for doing this distribution exactly. He
defines a change of variables s = %f: M(€)dE, where 6 := f: M(&)dE, and then forms a
new system of ODEs consisting of the original ODE (say, (2.1.1)) rewritten in terms of this

computational variable s, and the ODE

dz 8

FaRp Tt (2.1.2)

Equidistribution then corresponds to choosing m with s(zi41) — 8(z;) = 71v,i =0,1,---,
N — 1. This continuous form has been found to be a useful theoretical tool for interpreting
schemes, but it has generally been found to be not too reliable computationally because the

new ODE system can be extremely sensitive to solve. While all of the reasons for numerical
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difficulties are not well understood, a major one is that the transformed ODE (in s) can
be extreniely nonlinear and its solution badly behaved due to the introduction of interior
layers [RU79], [SM82]. Still, equidistribution strategies are widely used in conjunction with
the original ODE (like (2.1.1)), and in this way they have enjoyed general success.

Consider now an initial/boundary value PDE
Ut = f(u, Uz, u'.:z:) (213)

with u(z,0),a < z < b and u(a,t),u(b,t),t > 0 given. Our concern is to investigate
properties of an equidistribution procedure, and in many respects this does not depend
upon the form of the PDE itself. For example, the PDE could instead be a system of

equations in u = (u1,..., u,)T like
F(ut, Uy, uxx) = 0. (2.1.4)

Many variations of equidistribution strategies have been investigated in practice. The first
ones generally did a static regridding [HY83], where equidistribution to determine a new
mesh is done after the solution to the PDE is computed at the new time level - e.g. see
[AF86a). Later, the PDE and mesh solution processes were combined to do dynamic regrid-
ding [HY83]. Several moving mesh methods based upon equidistribution were investigated
by Coyle, Flaherty and Ludwig [CFL86]. Hyman [HY83] studied a moving mesh strategy
for PDEs of the form (2.1.3), and later Petzold [PE87] did so for the implicit PDE (2.1.4),
for details see page 6.

Mathematically, the goal of finding mesh functions {z;(t)}Y!, or moving meshes

M:{a=12z0<z1(t) < --- < zN-1{t) < zy = b} (2.1.5)
which are equidistributing for all values of t means that we want

zi(t) 1 b 1 .
f M(z,t)dz = / M(z,t)dz =: 20(t), =1, N. (2.1.6)

ri—y (t)
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This equidistribution equation can be written equivalently as
z4(t) i [b 1 .
/ Mz, t)dz = N/ M(z,t)dz = 20(2), i= 0,1, N. (2.1.7)

With static regridding, equation (2.1.6) or (2.1.7) is approximately satisfied at every new
time level, where the monitor function M(z,t) depends upon the just computed solution
of the PDE at this time level. (For notational convenience, the explicit dependence of
M upon u is not specified.) With dynamic regridding, the PDE is solved together with
(2.1.6) or (2.1.7), and the rate at which the mesh moves is a function of how 8 changes with
time. In actual fact, the regridding strategies only sclve (2.1.7) approximately, producing
so-called asymptotically equidistributing meshes, but this distinction will not be a focus of
our presentation.

White [WHS82] also studies the PDE case, which we discussed in page 4. As for the
ODE, he replaces the physical variables z,t with a new set of computational coordinates

8, T defined via the equidistribution process, viz.

1 T
s = 75/4 M(E,0)dE, T =t. (2.1.8)

He obtains a new PDE system consisting of the original PDE for u rewritten in term of s

and T, and
Qf_ 0
s M(z,T)

(2.1.9)
Several attempts to solve this transformed PPE for u (as a function of these new compu-
tational variables) have been made, e.g., see [WH82], [DKS80]. This involves forming a
discretization of the transformed PDE and solving a coupled system for the numerical so-
lution and the equidistributing mesh which (approximately) satisfies (2.1.6). The resulting
system is, however, generally sensitive to solve numerically [SM82]. The transformed PDE
is nonlinear even if the original one is linear, and sometimes physically meaningless solu-

tions are obtained. Still, as we shall see, it provides a useful model with which to interpret

particular numerical schemes.
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In [CFL86] the stability of the equidistribution process is studied. In particular, differ-
entiating (2.1.7) with respect to ¢, they study the equations

: db

=52 =l N-L (2.1.10)

M(z,-,t)i';+/ ‘Mt(z,t)d:v

Using linear perturbation techniques for the mesh points, they perturb z; by éz; and take

Y i dg
M(zi + 625, 8)(&: + 622) +/ My(a,t)dz = = (2.1.11)

and linearize (2.1.11) to get the first order terins

M(zi(t),t)éz:(t) + BB—-——Aj(z;(t),t):i:,-(t)éz;(t) + M(z:(t),t)ézi(t) = 0,

%[M(z;(t),t)&z,-(t)] =0. (2.1.12)
Integrating from ¢t = 0 to ¢,
524(t) = %h@). (2.1.13)

Doing this analysis and an accompanying numerical study, they conclude that mesh equidis-
tribution, while unquestiorably a desirable property for the mesh points, requires extreme
care for its implementation because of potential instabilities for dissipative PDEs, where
the perturbation terms in (2.1.13) can grow rapidly. A number of attempts are made to
eliminate this potential instabilities for dissipative PDEs for the moving meshes. Generally,
these involved some form of regularization [HN84], [PE87].

In the next section, we discuss the equidistribution problem within another framework,
showing why the stability analysis needs to be interpreted cautiously. This is not surprising
since it is unclear exactly how one would reconcile instability results concerning equidistri-
bution with what is known about moving finite element (MFE) methods [MM81) in page 18.
These methods have proven extremely effective for parabolic PDEs [GDMS81]. Herbst et al.
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have shown by Taylor expansion that the moving finite element equation (1.2.62) for the
transport equation

e+ (V(u))z = €tps

leads to the equation
e(miy1 — M) ATip1u:(2], 1) = e(mipr — M) Aziuge(2]7,t) + (Migy — mi)0(Az?)

where Az = max;(Az;) and Az; = z; — z;—y. The MFE methods have been shown to be
related to a weak form of equidistribution [FU85, HSM83, TS86]. Also, we can see that for
parabolic PDEs the matrix system can become singular if an equidistribution relationship
is violated, i.e., m;4+1 = m; [HSM83]. For hyperbolics, i.e., ¢ = 0, they run into difficulty
at the very point where the equidistribution property is lost [FVZ90]. Further, Thrasher
and Sepehmoori have proven that the MFE [MM81] equations without regularization terms
satisfy a weak equidistribution relationship [TS86]. In order to avoid difficulties, Miller

[MI81] introduces regularization terms, which implies the new equidistribution relation

3(miyy — M)Az euze (2}, 1) + €44 (2iv1 — £i) — €415

= 3(mip1 — M) AziEUL (2], 8) + €2(3i — $i-1) — 65 + O(Az?).

From the above equation, we see that the penalty function in this regularization plays the
key role of preserving equidistribution [HSM83] when m,; = m; or ¢ = 0. Nevertheless, the
practical implications of these often tenuous theoretical connections are difficult to interpret,

leaving many stability issues still open to question.

2.2 Equidistribution PDE

In order to analyze further the stability of moving meshes satisfying an equidistribution
principle, we derive a PDE which provides a new interpretation of equidistribution. From
(2.1.8),
s6(t) = /’ © M(€,1)de
a
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so assuming M is a smooth function, along lines where s(t) is constant with respect to time
t,
. . z
50 + 56 = s = / ML(&, )dE + M3 (2.2.14)

implying
320 + 80, = 3.0 = My(z,t) + a%(Ma':). (2.2.15)

Thus, we have the differential form

3 d 8
'a—tM(I,t) + %(M(.’E,t)z) = 5M(.’B,t). (2.2.16)
or .
O M+di (M')-—o-M (2.2.17)
at v I) = 0 . v das

- Consequently, doing equidistribution implicitly corresponds to finding a solution to (2.2.16).
Although this is technically an integro-differential equation, we shall refer to it as a hyperbolic
conservation-type PDE. (In the next section the integral term is eliminated through a change

of variables.) Differentiating {2.1.6) with respect to ¢, we obtain

' My(z,t)dz + M(zi,t)ai(t) — M(2i1,)d-1(t) = %é
Tioy

or

T T a . 1.
/, Mzt + /,,- " e Mz = 5,

Using (5), it is shown that the discrete equidistribution process for the mesh (2.1.5) corre-

sponds to finding a solution to

/: :[M,(z,t) + a%(M(z, 1)&)]dz = %é = /: : %M(z,t)dz. (2.2.18)
Thus, by letting the cell [z;_;, z;] shrink to a point we obtain the moving mesh PDE (2.2.16).

This viewpoint is valuable in several respects. Practically, the effects of discretizing
(2.1.6) and (2.2.16) are similar. However, considerable experience has been gained from

solving PDEs in conservation-type form like (2.2.16), so it is natural to try to develop new
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methods and interpret previous ones using this formulation. It also provides a physical in-
terpretation of these moving mesh methods in terminology familiar in fluid dynamics. The
mesh points serve a similar function as particles of flow. In particular, the equidistributing
coordinates are chosen using a quasi-Lagrangian approach: the moving mesh is along lines of
constant s(¢) = [ :(‘) Mé%—f-)’—t)% . Here, (2.1.6) satisfies a finite version of the integral form, or
weak form. The weak form (2.1.6) of the PDE shows that the “flux” of the error density
function M is equivalent across the subintervals, or across each cell [z;_y,2,;]. If the total
measure of error in the interval {a, b] is constant, then # = 0, and the moving mesh equation
(2.2.16) becomes the Euler equation for the “fluid” with density function M(z,t). Finally,
the case where meshes are calculated using static regridding can be viewed as correspond-
ing to the steady flow case in fluid dynamics, where the error density function M(z,?) is
independent of time. A Lagrangian approach corresponds to the choice M(z,t) = u, and

6 = 0. In this case integration of (2.2.16) gives the well-known conservation law [LA73]
u + ugz =0 (2.2.19)

and z(t) is simply a characteristic. For the arclength monitor function M(z,t) = /1 + 42,
if uz > 0 then M(z,t) = u,, and we see how the moving mesh equation reflects the shock
behaviour where characteristics cross. For hyperbolic PDEs, the MFE method with no
regularization has also been shown to produce moving meshes along characteristics [BA8S,
HMS82].

While the PDE (2.2.16) has to our knowledge not been used previously to interpret mesh
selection schemes in a general setting, similar approaches have been investigated in special
contexts. As mentioned in Chapter 1 Larrouturou [LA89] develops an inexpensive moving
mesh method for which the mesh points move with a time-dependent velocity &(t), the
monitor function is chosen as a physical quantity (temperature), and the total energy 6(t)
is constant. This gives a PDE like (2.2.16) to solve for #(t), but 8(t) = 0. In Larrouturou’s

actual implementation, the new mesh is computed using static regridding.
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Theoretically, White's approach [WH82], being based upon equidistribution, involves
satisfying (2.2.16) exactly. He writes the PDE in terms of the computational (“Lagrangian”)
coordinates (s,T), and since the solution has no steep gradients in these coordinates, a
uniform mesh with s(zi4;) — s(z;) = # is used for the transformed PDE. He generally
works with arclength as the monitor function, i.e., M(z,t) = /1 + u2.

From the relation between the moving mesh problem with equidistribution and (2.2.16),
it is easy to see how difficulties can arise computationally. Approximation to the left-hand-
side should generally be done with a conservative scheme, or one could expect difficulties
to occur. While many excellent methods of such type are available, when # 0 this term
can cause considerable numerical difficulty, and finding suitable numerical methods just to
solve a PDE of this type is a far from well understood matter [LY88]. The situation here
is of course further complicated because the moving mesh PDE is coupled to the original
PDE.

To see how difficulties can arise in general for the moving mesh equation, suppose that

we assume that @ = 0. Then (2.2.16) becomes

oM

0 .
At 5o (M) =0. (2.2.20)

If we use the non-conservative form

oM g, .. OM,
—BT + Ma(:t) + E:—:D(t) =0 (2221)

and discretize using a standard method of lines procedure, we obtain

(1 - Eiq1(t) ~ £:i(t) | OM(zi(t),8). .
My(zi(2),t) + M( '(t)’t)a:,-+1(t) o) T oz i(t) = 0,

or
. .. OM
Mt(I", t)(22{+1 - 17.') + M(.’E,‘, t)(.’l“.l - 2:,‘) + E.’E,’(.’E,‘ﬁ.](i) - a:;(t)) =0. (2.2.22)

Thus,
%[M(zf(t):t)(zﬂl(t) - z;(t))] = 0, (2.2.23)
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and upon integrating, we get

M(z(0),0)

ziy1(t) — zi(t) = M(zi(t),t)

(zi41(0) = z(0)). (2.2.24)

Unless % remains small, which it generally would not do for dissipative PDEs, the
moving mesh points can easily cross and/or leave the domain [a, b].

These observations apply as well for to the differential equation (2.1.13) developed in
[CFL86] using linear perturbation techniques. It is useful to investigate this linear pertur-

bation analysis further. Expanding (2.1.12) and dividing by éz;, we have

M (z;(t),t)%fﬁ% + %}M‘ii(t) + My(zi(t),t) = 0. (2.2.25)

Letting éx; — 0, we obtain

oM

E:&;(t) + My(z(t),t) = 0. (2.2.26)

M(ai(t), o (25) +

or

oM 9 {
[ + 55 (M&)a=z, = 0. (2.2.27)

The steps from (2.2.25) to (2.2.27) can be retraced.

Thus, the perturbation equation (2.1.13) used in [CFL86] to study stability of the equidis-
tribution process can be obtained from setting the source term in (2.2.16) to zero and writing
the resulting equation at z = z; in nonconservative form. In retrospect, we see that (2.1.13)
resembles 2 conservation of mass equation, where 6 corresponds to total mass which is
unchanging with time. Finally, note that (2.1.13) is obtained from perturbing only the
left-hand-side of the equation (2.1.7) or (2.1.10), since there is no perturbation expansion
for the term . We conclude that, while (2.1.13) is extremely useful for interpreting the
stability of many implementations of equidistribution procedures, the stability properties of
the equidistribution principle itself are more complicated.

Through a simple change of variables, (2.2.16) can be converted from a differential-

integral equation in M(z,%) to a differential equation for which the stability analysis of
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[CEL86] is more generaily applicable. Introducing the transformation
M(z,t)  M(z,t)

Wiz,t):= = , 2.2.28
@) ¢ [ M(z,t)dz ( )
it is easy to see that (2.2.16) takes the equivalent form
t W(z,t)1
W(z,1)  OW(z0)%) _, (2.2.29)

ot Oz
Thus, the “average energy” function W(z,t), for which fab W(z,t)dz = 1, satisfies the

conservation equation (2.2.29). The transformation (2.2.28) is of a similar type to the Cole-
Hopf transformation [WH74], although the context and purpose are quite different. From

(2.1.6), the weak form of the PDE (2.2.29) is
W, t)de =
™" wa, iz = 1.

i.e., the total “average energy” between any two mesh lines remains constant. There is

i=1,...,N.

in principle no reason why the moving mesh approaches co;lstructed in terms of M(z,?)
can not use W(z,t) instead. The derivation from (2.2.20) through (2.2.24) can be repeated
with W replacing M, and under the appropriate corresponding conditions (except with no
right-hand-side which needs to be ignored ) we see that the potential for mesh crossings now

occurs if
W(z;(0),0) _ M(z;(O),O)O(t)
W(zit),1)  M(zi(2),2) 8(0)’

a measure of the average change in M(z;(t),t), grows. Comparing with (2.2.24), one would

hope that the moving mesh equations derived using this new variable would be more robust,
if not necessarily more efficient. Finally, the analysis [CFL86] is directly applicable to
(2.2.29), so stability of an non-conservative equidistribution process is given by (2.1.13)

with W repladng M.

2.3 Analysis of equidistribution PDE

In this section, we study the pure equidistribution PDE without considering the physical
PDE (the original PDE). In particular, consider the equidistribution partial differential
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equation

ow  Owz) ,

o+ et =0 (2.3.30)
where f: w(z,t)dr = 1. Letting

N oa
a:= — —-x+wzﬁu—, (2.3.31)

we can write (2.3.30) in the form

wt + a(w)w, = 0. (2.3.32)

This asserts that w is a constant along trajectories £ = z(t) which propagates with speed

w%’% + & = a(w) (2.3.33)

Suppose that the solution of equation (2.3.30) is smooth on each side of a smooth curve
z = y(t), across which w develops a shock and is discontinuous. Denote by w; and w, the
values of w on the left and right sides, respectively, of z = z; , and assume that the curve

y intersects the interval a < z < b at time ¢. Then

b T b
1= / w(z,t)dr = / w(z,t)dr + / w(z, t)dr, (2.3.34)
a a Ty
and taking the derivative with respect to ¢t we have
Ti b
0= / w,dz + wys +/ wydzr — W, 8 (2.3.35)

where s = %’? for the speed with which the discontinuity propagates. Since
wy = —(wZ)y,
0= [F(-ws)dz + wis + f:‘(—-wi),dz - W8
= —(wz) + (WE)g=a + WS + (—WZE)z=p + (WE), — w,s. (2.3.36)
The conservation law asserts that

(w2); ~ (wz), = 0.
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Then the jump condition or Rankine - Hugoniot condition

(w"i:)r - (Wi.)l . Wr — Wy
8§ = —t———— = p——— =
w, — W Wy — W

% (2.3.37)

is automatically satisfied.

For the hyperbolic equation
ow

ot

there is a general solution w = F(z —ta). If we define w to be a density per unit length and

+ a(w)w; = 0,

wi to be a flux per unit time, then the solution of this equation can be viewed as having
kinematic wave behaviour, where a(w) is the propagation velocity of the wave.

Breaking condition [WH74]
A continuous wave breaks and requires a shock if and only if the propagation velocity a

: rd'ecreases as z increases. Therefore when the shock is included we have
a; > s> a, (2.3.38)

where all velocities are measured positive in the direction of increasing z. From the breaking

condition (2.3.38), and the definition of the velocity a, we get
. o0z ) 0%
() + wl(%)l >8> () + w,(%r). (2.3.39)
If (£); = (£), = %, then from the jump condition we have s = z. Now (2.3.39) becomes
. 0z . . o0z
(@) + wi(g=) > &> (&) + w5 ),

or
0z 0z
w(s—n>0>w (= ).
I(Bw)l o ‘lDr)
Since w is the positive average monitor function in mesh selection, we obtain ‘ he breaking

condition for the equidistribution PDE (2.3.30)

0z 0z
(5{;)' >0> (5-1;’). (2.3.40)
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When the breaking condition is satisfied, we get one weak solution of the PDE (2.3.30) that
is a shock wave. Thus the breaking condition corresponds to mesh points crossing each

other.

2.4 Implementations of equidistribution

In this section we consider ways in which the equidistribution process can be implemented.
First, we consider how to choose the monitor or density function which controls the move-
ment of the mesh points. This is more difficult than for ODEs due to the additional variable
t. There are three basic choices of M(z,t) which have been widely used in practice: {i) an
arclength monitor function [WH82, DD87], (ii) a combination of gradient and curvature
[MD88, DKS80, HL86, DD87, MO85], and (iii) truncation error or solution residual - used
directly for ODEs [RU79], and either axplicitly [AF86a, BB86] or implicitly [MMS81, HSM83]
for moving finite element methods for PDEs. |

Stahility properties of the moving mesh equations, while dependent upon the choice of
monitor function, are to some extent arbitrary since they usually behave asymptotically

much like some fractional power of a solution derivative (e.g., see [RC78]). Here, we use the

M(z,t) = /1 +u2. (2.4.41)

Our first implementation of a moving mesh method involves using an approximation for

arclength monitor function

(2.2.16) of the form

a, Mipadina(t) - Migi(t) 6 A
5 M(z:(),0) + TR R GM(zi(0),0), 1Si<N-1. (2442

For the numerical examples presented in the next section, £ > 0 so this simple upwind
approximation to (M%), is sufficient. On the interval [z;, z;},], we use the monitor function

discretization

M; = M(zi,t) = \/ 14 (BT Ty (2.4.43)

iyl — T
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To maintain discrete conservative,

‘ fb N-1 Tipr
o(t) = | M(z,t)dz= Y / M(z,t)dz
a i=0 e
and
N b N-1 Tig.
b() = / My(z,t)dz = 3 / Mz, t)dz
a i=0 v %i
are approximated using left rectangle rules
Titl
M(z,t)dz = (zi41 — z:)M(2:(2), 1), (2.4.44)
Tig1
Mt(Z, t)dZ =~ (.’L‘i+1 - .’L'{)Mt(.’l,‘,'(t), t). (2.445)

i

We test this moving mesh strategy, hereafter called Method I, both with and without the
right-hand-side in (2.4.42). For both, only the fixed boundary case Zo(t) = in(t) = 0 is
considered.

We also consider a moving mesh method developed using (2.2.29). Approximating this

over [z;,Z;41] at t = to41 = (n + 1)At by

I/Vi""'l -wr + W?+II','+1 - I'V,"_"il z;

= 2.4.
At Tip1 — T; 0, (2.4.46)
upon rearrangement we obtain
Win+1(.’l7,'+1 - I,‘) + At(“’i,ﬂ-liﬂ.l - Wi,_l_-*il.’l',‘,) = (.’L'H.l - I,’)Wiﬂ. (2.4.47)
A similar approximation on [z;_;, z;] gives
W (& — zio) + AUWER S - WPE'd ) = (30 — 200)WR,y. (2.4.48)
Equidistribution implies
Titl Ti
Wz, t)de = / W(z,1)dz. (2.4.49)
i Ti-1
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Equating the right-hand-sides of (2.4.47), (2.4.48), which are approximations to (2.4.49) at
t = t,, we obtain
Wit (zip1 — z:) + DUW g4y - W E))

m-’}jil(z,' — I,'_l) + At(W:ﬁilig - W{:Sl.’i','_l) .

Since each term involves W(z,t,:1) = Mo f::l , 8(t) can be eliminated, leaving the discrete
approximation
T(M;&ip — 2M; 18, + M 2%, )= Mi_y(z; — ;1) — Mi(zi41 — 7)) (2.4.50)

at t = 1,41, where to avoid confusion with the time integration steps later on we write
r := At. This moving mesh strategy, which we refer to as Method II (also using (2.4.43)
and with #o(t) = £n(t) = 0), is considered in the next section.

A great variety of moving mesh equations have been obtained by others, taking the
various choices of monitor functions and approximation schemes. In the remainder of this
section, we show how some of these are related to the equidistribution relationships derived
in §2, either in the differential form (2.2.16) or the weak form (2.1.6).

For the moving finite element methods of Miller and Miller [MM81] and Herbst et al.
[HSM83], the moving mesh equations are derived from the weak form of the PDEs written
in Lagrangian form. In particular, a given PDE u; = L(u) is converted to its Lagrangian

form #—u,z = L(u). Suitable weight functions ¢;(z) and ;(z) are chosen, and the residual
R(u) =4 — u,z — L(u)
is required to satisfy the orthogonality relations
/ ’ 4i() R(w)dz = 0, (2.4.51)

/ b Yi(z)R(u)dz = 0. (2.4.52)
The choice
¢i(z) = ai(z) (2.4.53)
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and

Yi(z) = Bi(x) = —ugai(z) (2.4.54)

where o;(z) is the hat function and 3;(z) is a discontinuous piecewise linear functions on
(z;_1,Zis1) (see (1.2.58) and (1.2.60)) is made in [MM81}, and the choice of the piecewise

cubic Hermite polynomials

$i(z) = [ai(2)]"[3 — 204(2)], (2.4.55)
(=) = los(=)la(z) - 1228 (2.4.56)

is used in [HSM83]. Both of these can be shown to be implicitly based upon a weak form

of the PDE (2.2.16). In particular, requiring that

/zi M(z,t)dz = '/‘m+1 M(z,t)dz (2.4.57)

ZTi-1 zi

is satisfied for the monitor function
Mi(z,u) = (zi — zi1) R(ui),
we obtain the moving mesh equation corresponding to (2.4.55) and (2.4.56), and for

—u-R(u) forz €[z;1,2;
ey | TRO) oz el
u R(u) for z € [z, 7]

we obtain the moving mesh equation corresponding to (2.4.53) and (2.4.54) [FU85].

Aside from stability, one of the most troublesome problems for a moving mesh method
is the tendency for mesh points to cross. For equidistribution (2.1.6), this easily happens
if M changes sign, so to avoid this the early papers on equidistribution define a monitor
function to be non-negative. For MFE methods, the associated equidistribution property
above holds for a monitor function which changes sign, and consistent with this the fact
that regularization terms generally need be added to prevent mesh crossings. In contrast,
we find that for discretizations formed directly from (2.2.16), for positive monitor functions

the problem of mesh crossing itself can be minimal.
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If instead of (2.2.16) we take
0
—(Mz) =
6:1:( 7)=0

and write it in the non-conservative form

O, %,
then the discretization
i
gives
T —Fiog = ~L—';_(Mi M;_,)

This is similar to the moving mesh equaticn of [AF86b1], except they attempt to optimize
a parameter value which is used in place of ﬁ:

If the monitor function is simply the solution to the PDE, i.e. M(z,u) = u, then (2.2.16)
becomes

Ou  O(uz) g

ot t oz bk

or in non-conservative form

ov Ou., 0% 9
E + ‘é;.’lo' + u_a_:t— = ‘ll.'a. (2.458)

In developing a moving mesh strategy, Petzold [PE87] attempts tc minimize, for a suitable

parameter a, the objective function

o Bu du., .
¢(z,u)_(at+az:z) + at”,

which is a measure of the change in the solution u and mesh z with respect to time ¢. Since
meshpoints can easily cross with this choice, she introduces a penalty function z\[(-i:"—_"-ii:f%)z +

(i_:ﬂ_::’)i‘] This can be viewed as a “replacement” to the missing term u3Z in (2.4.58),
which gives a scheme that in some sense minimizes the “source error energy” ug for the
PDE when moving mesh points in time. The usefulness of this interpretation of Petzold’s

scheme to develop other practical moving mesh strategies remains to be investigated.
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One of the most reliable moving mesh discretizations is due to Dorfi and Drury [DD87]
and analyzed in [VBFZ88]. It is similar to (2.4.50), where the general relationship between

them involves using an artificial dissipation term in conjunction with (2.4.50). We will

discuss them in Chapter 3.

2.5 Numerical results

Here we give some numerical examples to examine the moving mesh strategy from Method
I- with and without the right-hand-side of (2.4.42) - and the strategy from Method II.
We choose three examples, consisting of one hyperbolic and two parabolic problems. both
using and not using the source term.

To discretize the PDE
' o
ot

we first write it in the Lagrangian form

= f(u, Uz, Uzz), (2559)

% — Uzt = f{u, s, Uzz)- (2.5.60)
Next, using a central difference scheme for the spatial derivatives, we obtain
- Z Wl o fi=2,...,N. (2.5.61)

Thus, we solve the coupled system of equations (2.5.61) and (2.4.42), with and without 8 = 0.
This ODE system is solved using the code LSODI of Hindmarsh [HI80]. An approximate
Jacobian is computed by LSODI internally using difference quotients. For simplicity, an
initial uniform mesh is used in each case. In the tables of numerical results reported, nst
and nje are respectively the number of steps and number of Jacobian evaluations taken
by LSCDI up to the time given, and nqn and tstep are respectively the order of the last
successful method and the last successful stepsize. All runs were made on Sparcstations in a

distributed computing environment, and computer times are not given. Method I is more
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expensive using the right-hand-side in (2.4.42) than not using it, but the difference is not
very significant (always less than 20% for these problems).

Problem I: This problem, a scalar reaction diffusion problem from combustion theory, has
been used by several authors to test their moving mesh strategies [AF86a, PE87, FVZ90].

It is a model of a single step reaction with diffusion,

2
%—%—+D(1+a—u)exp———{, t>0, 0<z<l,

uz(0,t) =0, u(l,t)=1, t >0,
u(z,0)=1, 0<z <1,

where the constant heat release is a, reaction rate is R, activation energy is §, and Damkohler
number is D = Rexpd/(ab). The solution represents the temperature of a reactant in a
combustion. For small time the temperature gradually increases from unity with a “hot
spot” forming at £ = 0. At a finite time ignition occurs and temperature at £ = 0 jumps
rapidly from unity to 1 + a. A flame front then forms and propagates towards z = 1 with
speed proportional to exp (ad)/2(1 + a). Here a is about unity and § is large, so the flame
front moves exponentially fast after ignition. The problem reaches a steady state once the
flame propagates to ¢ = 1. This problem serves as a good test of moving mesh methods
because of the sensitivity of tracking the flame front [AF86b1].

The derivative boundary condition & 52(6,t) = @ is approximated by —Iil-—;?» =0, o0r u —
uz = 0. The problem is solved for @ = 1,6 = 20, and R = 5, using a moving mesh with
N =20 and with N = 40. The results are compared with a reference solution (solid lines in
the Figures) obtained by LSODI, using the method of lines with standard central differences
on (2.5.59) and N = 500 equal spaced mesh points, with absolute tolerance atol = 10~® and
relative tolerance rtol = 1076, The problem is quite sensitive to the tolerances for LSODI.

For example, for atol = rtol = 10~3, the numerical solution (not given here) moves too fast

and is very inaccurate.
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Fig. 2.1 shows the numerical solution computed using Method I with ] # 0, for N = 20,
atol = 1075 and rtol = 10~*. The soluticn is fairly accurate except for an error caused by
the solution moving too fast so that it gives a slight shift for ¢ = 0.27 and 0.28. This error
is largely caused by the time integration, as the results change qualitatively when smaller
tolerances are used in LSODI (see below). The corresponding results for § = 0 are shown
in Fig. 2.2. Note that the solution is inaccurate at the left boundary when ¢ = 0.26, and
the soiution is not very well equidistributed with respect to arclength, especially near the
left boundary. The sensitivity of the problem with respect to integrator tolerances is severe,
as performing the same runs with larger tolerances can easily give poorer results, but even
using atol = 107¢ and rtol = 10~ gives lower accuracy (c.f. Fig. 2.3 and Fig. 2.4).

For Method II witk atol = 10~%,rtol = 1075,7 = 10~% and N = 20, the numerical
solution moves slightly slower than the reference solution before reaching steady state (see
f‘ig. 2.5). Reducing the spatial mesh to N = 40, the solution has fairly high accuracy
throughout, as shown in Fig. 2.6. Reducing 7 or the integrator tolerances does not qualita-
tively affect the numerical solution, although from our experience 7 should be kept smaller
than the time integration stepsize used in LSODI. Note that the arclength is considerably
better distributed between mesh points than for the other moving mesh equation.

The time-stepping information for the runs summarized in the Figures are given in Ta-
ble 2.1. In particular, the number of steps and Jacobian evaluations, order of the integration
method, and final step size used by LSODI are listed.

Problem II: Burgers’ equation

Our next example is Burgers’ equation

Ou _ Of(u)  d*u
-b—t*—— P +E&—2,t>0,0<1‘<1,

¥(0,t) =0, u(1,1)=0, t>0

u(z,0) = ug(z),
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t | Fig. 2.1(Method I):60.88(cpu) | Fig. 2.2(Method I):56.60(cpu)
nst | nje | nqn step nst | nje | nqn tstep

0.26 | 33 | 14 3 0.000286 30 | 11 3 0.000728
0.27 | 80 : 21 3 0.000374 80 | 25| 3 0.000390
0.28 | 108 | 25 3 0.000369 114 | 33 2 0.000368
0.29 { 138 | 28 3 0.000395 1451 40 | 3 0.000466

t Fig. 2.3(Method I):52.64 Fig. 2.4(Method I):36.74
0.26 | 53 | 13 3 0.000280 54 |12 | 3 0.000514
0.27 | 128 | 23 4 0.000175 121 24 | 3 0.000216
0.28 | 187 | 31 3 0.000161 168 | 31 3 0.000274
0.29 | 246 | 39 3 0.000187 {212 | 38 | 3 0.000263

t Fig. 2.5(Method I1):45.41 Fig. 2.6(Method I1):272.12
0.26 | 46 | 12 3 0.000302 57 {16 | 3 0.000121
0.27 | 146 | 34 3 0.000183 143 | 34 1 0.000109
0.28 | 193 | 43 3 0.000259 197 1 44 | 2 0.000265
0.29 | 233 | 52 2 0.000348 236 | 56 | 2 0.000393

Table 2.1: Problem I

49
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2.2 T T T T

Figure 2.1: Problem I, using method I with é # 0, t= 0.26,0.27,0.28,0.29; atol =
1073, rtol = 10™4, mesh points N = 20

22— T T T T

1.8

uaxis 1.6

1.4

1.2

Figure 2.2: Problem I, using method I with § = 0, t= 0.26,0.27,0.28,0.29; atol =
1075, rtol = 104, mesh points N = 20
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2.2 T T T T

1.8
% axis 1.6
1.49

1.2

Figure 2.3: Problem I, using method I with 6 # 0, t= 0.26,0.27,0.28,0.29; atol =
1076, rtol = 10~%, mesh points N = 20

-

2.2 T T T T

T axis

Figure 2.4: Problem I, using method I with § = 0, t= 0.26,0.27,0.28,0.29; atol =
1078, rtol = 1073, mesh points N = 20
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u axis 1.6

1.4

1.2

T 2xis

Figure 2.5: Problem I, using method II, t= 0.26,0.27,0.28,0.29; atol = 1075, rtol = 10~%,

mesh points N =20

22 T i T T i

Figure 2.6: Problem I, using method II, t= 0.26,0.27,0.28,0.29; atol = 1073, rtol = 1077,
mesh points N =40
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where f(u) = u?/2. This problem is also often used as a test (occasionally the only test) of
mesh selection strategies.

We use ¢ = 1072 and ¢ = 10™* and the smooth iritial solution ug(z) = sin(2rz) +
%sin(ﬂz). For small times and ¢, the exact solution is a pulse that moves in the positive
z direction while steepening. The reference solution (solid lines) is computed as in Prob-
lem I except with N = 1000, rtol = 10~® and atol = 10™8. The solution is shown for
time=0.2,0.4,0.8,1.0, 1.4 and 2.0. For Method II, 7 = 1075.

Using Method I with = 0, the method easily breaks down due to mesh crossing for
¢ = 1072. For example, for N = 20, atol = 102 and rtol = 1073, breakdown occurs
because the second mesh point crosses the left boundary and becomes negative at t = 0.35.
For ¢ = 1074, atol = 10~* and rtol = 10~5 several mesh points cross each other on the
interval [0.519,0.597] at ¢ = .2. This is consistent with the theoretical and numerical
findings of [CFL86] regarding potential instability of (2.2.20). For ¢ = 1072, the presence
of the right-hand-side term # # 0 now stabilizes the results. Fig. 2.7 and Fig. 2.8 show
the solutions and mesh points for N = 20 with atol = 1073, rtel = 103 and atol = 10~4,
rtol = 1075, respectively. The corresponding time-stepping information is given in Table 2.2.
The solutions are quite accurate except at the points of zero gradient (u, = 0), where the
graph is somewhat higher than that for the reference solution. This same problem occurs
using Method II; results for the same parameter values are given in Fig. 2.9 and 2.2.
Note, too, that the degree of equidistribution is rather poor in this region. Using N = 40,
these inaccuracies are remedied, and the problem resolution is generally quite satisfactorily.
These results are given in 2.10.

For ¢ = 1074, the problem causes considerable difficulty. At about ¢ = 0.2, a shock layer
forms near z = 0.6. Setting N = 20, using Method I with 4 # 0 LSODI stops at the
very steep layer at t = 0.218224 due to a small step size (tstep = 107® and nst = 955 for
atol = 1074, rtol = 10~3). With (2.4.50) and corresponding parameter values. LSODI also
stops, now at ¢t = 0.341905 with tstep = 0.0 and nst = 949. Using N = 40, LSODI is able
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t | Fig. 2.7(Method I):78.19(cpu) | Fig. 2.8(Method I):106.76{cpu)
nst | nje | nqn tsten nst | nje | nqn tstep
0.2 18 7 2 0.020208 39 | 10 3 0.005603
0.4 43 | 22 2 0.018662 83 | 21 3 0.009411
0.8 71 | 32 2 0.020863 165 | 43 3 0.012868
1.0 78 | 33 3 0.030399 186 | 49 4 0.014660
1.4 98 | 43 1 0.043301 218 { 57 | 3 0.022651
2.0 (106 | 44 3 0.115478 234 | 39 3 0.050789
t Fig. 2.9(Method II):50.87 Fig. 2.10(Method I1):205.36
nst | nje | rqn tstep nst | nje | nqn tstep
C.2| 88 | 24 3 0.004330 110 | 25 2 0.022014
0.4{103| 29 2 0.002011 116 | 26 3 0.045140
0.8 (1711 57 2 0.00899¢ 122 | 28 4 0.124988
1.0 1 197 | 64 3 0.012833 123 | 28 4 0.124988
141215 | 69 3 0.033861 127 | 29 4 0.184520
20242 79 2 G.055271 130 | 29 4 0.184520

Table 2.2: Problem II
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to progress further but still soon fails. The same difficulty of breakdown when the shock
develops can occur for this problem with a high order MFE method using Hermite cubic

test functions [HMS82], although other methods are successful [FVZ90, M181].

1.4
1.2

0.8
0.6

u axis 0.4

0.2

-0.2
-0.4
-0.6

Figure 2.7: Burgers’ problem, using method I with 4 # 0,e = 1072, t =
0.2,0.4,0.8,1.0,1.4,2.0; atol = 1073, rtol = 10~3, mesh points N = 20.

Proh!em llI: Buckley-Leverett equation.

The third example is the hyperbolic conservative Buckley-Leverett eguation
u + .f (u)z =0

with the non-convex flux function

u2

w2+ 1(1-u)?

f(=)

as in, e.g., [CP79]. The moving mesh meihods of [AF86b1] and [GDMS81] test the problem
with an artificial viscosity term cu,, added (see also [JWB88]).
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Figure 2.8: Burgers’ problem, using method I with 0 # 0,e = 1072, t =
0.2,0.4,0.8,1.0,1.4,2.0; atel = 104, rtol = 1975, mesh points N = 20.

We consider the continuous ‘nitial data condition

0.1
= <z<l1
wz,0) =gz 0s2s
and boundary conditions
1
O,t = 1, l,t = -
w0, =1, u(l,t)= -

where we express the right boundary condition for LSODI in the form an(¢) = 0. The
reference solution is determined as in the other two problems, with N = 500, atol = 1078
and rtol = 10~%, and the solution profile shown for ¢ = 0.1,0.2,0.3,0.4. With ¥ = 20,
results with and without the right-hand-side term in Method I are given in Fig. 2.11 and
Fig. 2.12, respectively. These numerical solutions are virtually identical and move faster
than the reference solution. For Method II with atol = 10~%, rtol = 10~° and 7 = 1075,
LSODI stops due to the steep layer for ¢ = 0.303228 with tstep = 0.0 and nst = 575.

(Again, mesh crossing is not a difficulty.) Adding the artificial viscosity term mentioned
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Figure 2.9: Burgers’ problem, using method 11, ¢ = 1072, t = 0.2,0.4,0.8, 1.0, 1.4, 2.0; atol
= 1074, rtol = 10~°, mesh points N = 20.

above, here with ¢ = 1074, the problem is solved more satisfactorily than before, using
atol = 10~%, rtol = 1075. The results, given in Fig. 2.13, are qualitatively unchanged for
smaller tolerances, like for example atol = 1073, rtol = 107° (see Table 2.3). The scheme
developed in [AF86bl1] has no difficulty for this problem when solved as a parabolic PDE
using real viscosity with ¢ = 10~3. However, it is interesting to wonder when a difficulty
arises when solving hyperbolic PDEs because the scheme is nonconservative when viewed
as a scheme for solving the moving mesh PDE.
Problem |V: Heat conduction problem

As a fourth example, we consider a heat conduction problem,
u + f(z,t) = puz,, -3<z<3, t>0,

where the initial conditions, Dirichlet boundary conditions, constant diffusion yx, and source
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Figure 2.10: Burgers’ problem, using method II, £ = 10~2, t = 0.2,0.4,0.8,1.0, 1.4, 2.0; atol
= 1074, rtol = 10~%, mesh points N = 40.

t | Fig. 2.11(Method I):436.29(cpu) | Fig. 2.12(Method I):315.05(cpu)

nst | nje | nqn tstep nst | nje | nqn tstep

0.1} 21 4 0.009126 22 4 0.008524
021 32 4 0.009126 33 4 0.008524
03| 43 4 0.009126 48 4 0.006048
04} 57 | 13 4 0.005544 74 | 13 3 0.003204

t | Fig. 2.13(a)(Method II):407.85 | Fig. 2.13(b)(Method II):713.21

01160 | 14} 3 0.014108 |17 3 0.012381
0.2 67 | 15 3 0.014108 8 | 18 3 0.009835
03} 75 | 19 3 0.013226 95 | 24 | 3 0.007773
041606307 3 0.000147 883|372 2 0.000415

Table 2.3: Problem III
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Figure 2.11: Buckley-Leverett problem, using method I with 6+#£0,t=0.1,0.2,0.3,0.4; atol
= 1073, rtol = 10~%, mesh points N = 20.

term f are chosen such that the exact solution is
u(z,t) = tank[ry(z — 1)+ rot], -3<z<3, t>0.

This problem differs from the previous three examples, since the solution travels in the
negative z direction when r, and r, are positive. We solve this problem for r, = r, = 5
and u = 10™%, and show the results at ¢t = 0.05,0.50,1.00, 1.50,2.00. Coyle, Flaherty and
Ludwig studied this problem [CFL86).

We test 7 = 10~° and atol = rtol = 10~*. Fig 2.14 shows that computed solutions are
oscillating, and cpu time is 209.85. For 7 = 1073, the results have little improvement as
shown in Fig. 2.15, and cpu time is 79.35. When increasing 7 to 10~, Fig. 2.16 shows that
the results are better than for 7 = 1073, but the computed solutions are above the exact
solutions, and cpu time is 31.14. For 7 = 1.0. the accuracy of the computed solutions is

quite good as shown in Fig. 2.17, and cpu time is 24.28.
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Figure 2.12: Buckley-Leverett problem, using method I with b = 0, t=0.1,0.2,0.3,0.4; atol
=10"3, rtol = 10~%, mesh points N = 20.

t | Fig. 2.14(Method IT):209.85(cpu) | Fig. 2.15(Method 1I):79.35(cpu)
nst | nje | nqn tstep nst | nje | ngn tstep

0.05 ] 55 | 16 2 0.018596 48 | 13 | 2 0.007598
0.50| 88 | 30 2 0.023122 81 | 23 2 0.018953
1.00 | 213 | 87 1 0.001667 120 | 32 3 0.031767
1.50 | 286 | 114 | 2 0.014560 149 | 41 3 0.017471
2.00) 340 { 137 2 0.011856 200 | 58 3 0.004397

t Fig. 2.16(Method II):31.14 Fig. 2.17(Method I1):24.28
005| 11 | 4 3 0.008237 6 3 3 0.030933
0.50 { 35 3 0.031682 23 | 6 3 0.029440
100} 49 { 11} 3 0.030759 41 | 8 4 0.025956
1.50'{ 67 | 17 3 0.040294 57 | 11 3 0.042617
200} 86 | 21 4 0.038142 72 115 4 0.026683

Table 2.4: Problem IV
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Figure 2.13: Buckley-Leverett problem, using method II, t=0.1,0.2,0.3,0.4; mesh points
N = 20, (a) atol = 1074, rtol = 107° ( Results for (b) atol = 10~5, rtol = 10~° indistin-
guishable.)

Problem IV
2 T T T T T

L | .
1.5 AN lfl(

yaxis (.5

T axis

Figure 2.14: using method II, 7 = 107> and atol = rtol = 10™*, cpu = 209.85.
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Problem IV

d
Y ¥

1.5 T T

v axis

Figure 2.15: using method II, 7 = 1073 and atol = rtol = 10~4, cpu = 79.35.

Problem 1V
1.5 T r I T —

T axis

Figure 2.16: using method I, 7 = 10~! and atol = rtol = 104, cpu = 31.14.
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Problem IV

Figure 2.17: using method II, 7 = 1.0 and atol = rtol = 1074, cpu = 24.28.
2.6 Conclusions

We have presented a new formulation of the equidistribution strategy in terms of a PDXE. Pre-
viously, authors who have explicitly used equidistribution have generally developed moving
mesh procedures which make use of (2.1.6), the integrated or weak form of the conservative
integral. We intend to develop further robust moving mesh strategies based directly upon
the differential form (2.2.16) or (2.2.29). Here, our intention has been to present some simple
ones. The purpose has not been to give extensive numerical results or a detailed comparison
with other methods, which will be done in Chapter 3. Nevertheless, the results indicate that
the schemes given here, with simple improvements such as smoothing of the mesh (for Prob-
lem IT) when necessary, should prove competitive with those which have been recommended
by others [FVZ90]. Use of conservative-type schemes to approximate the PDEs is natural
and probably essential in many contexts. The importance of the right-hand-side term of
{(2.2.16) is unclear, and we have included numerical results for # = 0 partly to determine

‘the effect and partly because this corresponds to what many previous implementations have
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used.

The numerical methods used here are quite simple and presented mainly for illustrative
purposes. Constructing more robust moving mesh methods could well require the incorpo-
ration of regularization terms as in [DD87, FVZ90, MA84, MI83, VBFZ88], and possibly a
more complicated monitor function, an obvious choice being some combination of arclength
and curvature. However, while using the arclength monitor function can limit the number
of mesh points which are placed in the transition region, strong nonlinearities which arise
using a curvature monitor function can also cause computational difficulties [BV89)].

Efficient ways to produce the moving mesh equations using this approach, particularly
for higher-order systems (2.1.4) and for the higher-dimensional form of (2.2.17) or (2.2.29),
remain to be investigated. Still, it is important to realize that the scheme is not plagued
with mesh crossings the way most other simple moving mesh schemes are. When the PDE
(2.2.16) (including the right-hand side) is approximated, we have found very little difficulty
of this type. In one case (Burgers’ equation with different initial conditions than given here)
(2.4.42) gave mesh crossing with a large tolerance, but this was fixed when the tolerance
was reduced. While there is no need to add penalty functions for this reason, it may still
be necessary to perform a mesh smoothing to prevent problem stiffness when steep solution
layers occur (as was the difficulty in Problem II in section § 2.4 ). Obviously, a desirable
ultimate goal is the development of a robust scheme with minimal requirements for a user
to select contentious problem-dependent parameters.

This moving mesh PDE interpretation can be used to understand stability properties for
moving mesh strategies and extends the understanding of the stability properties as given
in [CFL86]. While the stability issue for methods based upon equidistribution is a very
complicated one, and there is no doubt that a complicated interaction takes place between
the PDE (2.1.3) and the mesh PDE (2.2.16) or (2.2.29), we expect that this viewpoint will be
used to develop a deeper understanding of stability properties for currently used methods

which have proven reliable. It is important to realize how many moving mesh methods
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are based upon equidistribution, making it possibly the single most important concept in
the development of moving mesh methods. Many of these methods use equidistribution
explicitly, like [AF86a, HL86, PE87] and those in [CFL86], and many of these often have
stability difficulties [CFL86]. There are also the ones like the moving finite element methods
[MM81, HSM83] and the elliptic grid generation methods [MD88] which have been developed
from another viewpoint but for which equidistribution has turned out to play a role - just
how fundamental is unclear at this stage. The considerable success of some of these may
be due in part to the fact that the moving mesh PDE (2.2.16) is solved implicitly, so
that inadequate approximations from using nonconservative schemes or from ignoring the
important right-hand-side term have been circumvented. Of course another underlying issue
of critical importance is that of deciding what monitor function to use, and it is unrealistic

to expect that a single choice for M would serve as a panacea for most problems.



Chapter 3

A Study of Moving Mesh Methods

3.1 Introduction

In this Chapter, we will further study some of the moving mesh methods discussed in
Chapter 1. While the analysis of the error and the convergence for moving mesh methods are
very difficult problems, we will study them in the future. Here we consider the performance
in practice of the most promising methods. Recall that methods based upon equidistribution
principles have been studied by many people, e.g. [B073, CFL86, DO72, WH79] and
that the powerful moving finite element methods of Miller et al. also implicitly satisfy
equidistribution principles in certain cases. Related methods will be central in our study
here.

Although general ccmparison of moving mesh methods has been seldom done in the
past, cne useful study was made by Furzeland et al. [FVZ88]. They compared three moving
meshes methods for one-dimensional pdes, viz., one moving finite element method of Miller
& Miller, and two moving finite difference methods, one by Petzold and by the other by Dorfi
& Drury. Zegeling and Blom {ZB90] have more recently evaluated the gradient-weighted
moving finite element methods of Miller [MI83]. The gradient-weighting is introduced into
the MFE method by Miller [M183} along with a new penalty function to prevent mesh points
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becoming tco close to one another in the steepest part of the solution layers. Obviously,
the penalty function and gradient-weighting are two key factors in moving finite element
methods. A new penalty function can be important to balance the gradient-weighting
of the modified moving finite element methods, but it is unclear precisely what the rela-
tionship between the penalty function and the gradient-weighting is. In this chapter we
study the penalty function and the gradient-weighted strategy both in MFE [MIS81] and in
GWMFE[MI83]. We also study the moving finite difference method introduced earlier (see

equation (1.2.25)), for which mesh points are chosen by a discrete equidistribution.

3.2 Moving mesh methods

3.2.1 Moving finite element methods

Two versions of moving finite element methods have been introduced by Miller et al., one
the original MFE [MM81] with a piecewise linear basis function, and the other the gradient-
weighted MFE. For the latter, the gradient weighted function used to prevent too many
mesh points from entering steep layers [MI83] gives an ODE system which cac be very

difficult to solve.

MFE (1)

In this section we briefly review Miller’s unmodified moving firite element method (for
details, see page 18).

Consider the partial differential equation
@ = L(u), t>0, =z¢€la,b] (3.2.1)

where L(u) is an nonlinear spatial differential operator. The solution of equation (3.2.1) is

solved by a finite element methods. The solution is expressed as

N
Ulz,t) = 3 _Viei(a, 1), (3-2.2)

=1
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where the non-uniform mesh points {z;} are allowed to move according to the profile of the

solution.

The residual of the partial differential equation is defined for the L;-norm
U -LU)|3. (3.2.3)

The solutions U; at mesh points z; are determined by minimizing the residual with respect
to the velocity of the amplitude U, We have the standard Galerkin finite element equation
(1.2.62) for U;. For the determination of the mesh points z;, Miller & Miller [MMS81]
minimize the residual of the partial differential equation once again, but with respect to the
velocity of mesh points z;. This gives equation (1.2.63).

The mass matrix A(Y) in the moving finite element system (1.2.64) is block tridiagonal.
Wathen [WAS86) shows that A(Y') is singular only in two cases: (i) m; = m;4+, which is called
- parallelism. Geometrically, it means that the three neighboring points (z;-1,U;_1), (zi, U;)
and (zi41, Ui41) are collinear, lying on a straight line. In this case, the basis functions {e;}
and {B;} are not linearly independent. (ii) Mesh points are too close to one other, which
makes the mass matrix A become ill-conditioned.

To overcome singular or ill-conditioned A, Miller introduces a penalty function for the
mesh equations. That is, he minimizes equation (1.2.68) with respect to Z;, which makes
the mass matrix A positive definite [MI81]. We refer to this moving finite element method

as MFE (1).

Gradient-weighted MFE method (GWMFE)

Meshes driven by the i, norm in the minimization of the residual U — L(U) move most of
the meshes into the steepest region of the solution to minimize the errors since large errors
arise in the steepest region [MI83]. Miller uses the gradient-weighted L, minimization in the
normal direction of the solution vo try to ‘de-emphasize’ the steep regions of the solution.

The gradient-weighted function w(u;) = 71—1:—2 is constant on each subinterval [z;_1, ;]
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since w(m;) = \/i-lTan for r;_1 <z < z;.
1 1

The test functions {«;} and {8;} are replaced by {a;w} and {F;w} in equation (1.2.62)
and (1.2.63), and Miller minimizes the same residual of the PDEs as for MFE (1). A system
of 2N ODE:s for the 2N unknowns {U;} and {z;} arises, viz.,

N

z < a;,a;w > Ui+ < Bi,c;w > £ =< L(U), ajw >, (3.2.4)
=1

N .

> < ai, fjw > Ui+ < B, Bjw > £ =< L(U), Bjw > (3.2.5)
=1

for j = 1,---, N. The matrix form is A(Y)Y = F(Y). The mass-matrix A is singular too
when parallelism m; = m;;; occurs and when Az; = 0 or AU; = 0.

In order to prevent the matrix A from becoming singular, Miller suggested using ‘ar-
clength viscosities’ and ‘arclength spring forces’ at each subinterval to balance the gradient-
weighting in the moving finite element method. He then minimizes the residual of the PDEs

with this gradient-weighting and new penalty function,
] N+1
U - L) I} + Y (eidi = 50)* (3.2.6)
=1
with respect to the velocity of the amplitude U; and the velocity of the meshes #;. Here the
gradient-weighted Ly-norm is defined by ||| U — L(U) |||Z:= [2(U ~ L(U))*wdz, ¢? := 4};—,
€5 = %3, where A and B are problem-dependent constants, ( B is usually chosen as 0),

I; is an arclength for the subinterval [z;_;, z;], and since [ is constant on each subinterval

for a piescewise linear basis,

L= /(B + (BUY = / 1+ m2dz = /I‘ J1+ U2ds. (3.2.7)

Ti-1 i
MFE (2)
GWMFE uses a gradient-weighted L; norm and an arclength-type penalty function to pre-

vent the meshes from becoming too close in the steepest region of the solution and to prevent

parallelism. The gradient-weighted function has little effect in the non-steep regions of the
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solutions, and at non-steep parts GWMFE acts as MFE(1). In the steepest regions, the

second equation (3.2.5) of GWMFE approaches the first equation (1.2.62) of MFE, i.e.,
< o, Biw >—< a;, 05 >,
< /Biaﬁjw >—=< B{aaj >,

and

< L(U),Bjw >—=< L(U),a; >,

— 1
as up —+ 20, where w = :714-_14‘5 and

u
Iim ———— =
uz—oo \ /1 4 u2

- We shall test a moving finite element method using the standard L, norm of the residual,
but using the arclength-type penalty function of GWMFE as used in (3.2.6). We minimize

the function
N1

N0 -LEO) G+ Y (eidi - 5:)? (3.2.8)

=1

with respect to U; and #;. The penalty function has an important effect both in GWMFE
and in MFE for controlling the mesh points and preventing the mass-matrix of the systems

of ODEs from becoming singular. We refer to this moving mesh strategy as MFE (2).

Notes for implementation of moving finite element methods

The approximation of the second derivative u., has to be considered carefully in moving

finite elements methods, since u;, is a 6-function at each mesh point when using piecewise

linear bases. Miller et al. use a mollification scheme for second order terms, and this results
mn

<z, > = (Miy — my) (3.2.9)

U, B; > = —(mip — m:)(m;ﬂ;‘-ﬁ) (3.2.10)

<Uzp,aie > = In(y/1+m?, +mipn) —In(\/1+m?+my) (3.2.11)

Vitm? = /1+md,. (3.2.12)

I

< Urg, tﬂiw >
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For the implementation of (3.2.11) and (3.2.12), roundoff problems have to be considered
in the implementation, since formulas (3.2.11) and (3.2.12) are susceptible to a great loss of
relative accuracy if m; and m;,; are small, and (3.2.11) also gives problems if either m; or

m;4; is large and negative. Miller et al. deal with < u,., 3w > as

2 2
m; m;
\/m?+l—\/:n?+1+1= : i1

L+ymiel L4 fm, +1

to prevent loss of the relative accuracy when m; or m,4; is small. For the problems of large

and negative m; or mi4,, < ¥zz,;w > is approximated using sign(m;)In (|m;| + /m? +1)
instead of In (m; + {/m? + 1).
Blom et al. evaluate In (m; + y/m? + 1) by a Taylor expansion if 7 = 7’:?1-; is small,
taking
n(m; +\/m2 + 1) = 210 (+2) m 0+ 20% + =7 + = (3.2.13)
: A A P A A R O -

In fact, since w is a constant on each subinterval when using piecewise linear bases in moving
finite element methods,

Tit1
< Upp, OW > = U, wdz
Ti—3

Ty Ti41
= / Upro;wdT + / Uco;wdz

Ti—1 I,

x; Tig1
= w; / U0 dT + Wiygg / U 0;de

Ti~1 I

= —wym; + Wip1Mi4 (3.2.14)

which is the same as only using the first term of a Taylor series (3.2.13).

3.2.2 Method II1

In this section, we briefly discuss method III, the moving mesh equation that Dorfi and
Drury {DD87] derived based upon the equidistribution principle (for details, see page 9).
The main idea of method III is that the mesh equidistribution is smoothed both in spatial

and temporal variables. Verwer et al. [VBFZ88] studied this method. Blom and Verwer
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[BV89] compared the arclength monitor with the curvature monitor used in the moving
mesh equation. They found that using an arclength monitor makes the system of moving
mesh equations easier to solve than using a curvature monitor.

As discussed in equation (1.2.25) of Chapter 1, the mesh equation for Metkod III is

_ di 1 - dii
("*";; i ’;’&L) r>0 (2<i<N-1) (3.2.15)
i—1 1

where 7; is smoothing the point concentrations as defined in (1.2.24), n; is the point con-
centrations as defined in (1.2.20) and k is the parameter in (1.2.22). The monitor M is
implicitly assumed to be unchanged from the last time to the current time over the time
interval 7. Dorfi and Drury approximate an arc-length monitor M = /1 + u2 on each
subinterval [r;,z;41] by M; = /1 + (—:—:ﬁ:—:)? The parameter T acts as a delay factor,
which we have seen serves like a time stepsize. The temporal smoothing term
4
dt

in (3.2.15) can be interpreted as an artificial viscosity term
d .
Vi)

that smooths out discontinuities in the mesh flow.

3.3 Time integration for OBEs

In our experience, the numerical time integration component is a very important factor
in determining reliability of the numerical solutions and parameter values for moving mesh
methods. In this section, we discuss implement aspects to this time integration of the system
of ordinary differential equations that arises. To better understand moving mesh methods
and to fairly compare the methods, here for all methods we use the same stiff ODE solver,
LSODI, without any modification, although in certain cases some special strategies such as

a preconditioning scheme in Newton’s method and mesh crossing test might be required.

-
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It is interesting to see how others have dealt with the numerical integration problem.
Hrymak et al. have tested a moving finite element method using LSODI [HMW86]. They
added another error norm for the corrector in the predictor-corrector algorithm of LSODI
in order to check whether or not it was necessary to reduce the time-step because of pos-
sible mesh crossings. Carlson and Miller developed the 1-D code GWMFE1DS for their
moving finite element methods, including a gradient weighted MFE. A second-order ac-
curate Diagonally-Implicit Runge-Kutta method (DIRK2) which is an “A-stable” method,
has been used as the time integrator for the system of ODEs. A block diagonally precon-
ditioning scheme has been used for Newton’s method. In GWMFEI1DS, Carlson and Miller
test a relative error tolerance (usually 10%) on mesh spacing and check for negative Az;
in predicted values. An evaluation of the GWMFE was reported in [ZB90]. Zegeling and
Blom tested the GWMFE1DS code with their own criterion for both the time error and the

convergence of the Newton process. They required the following conditions:
flvftol]l < 1,

and
max ZEi+1) = ()]

<1
zi (Tig —Zi)p

where v is a vector either containing an estimate of the time error or the last correction in
the Newton process, and p is a user-defined parameter. Furzeland et al. tested the three
moving mesh methods (see [FVZ90]) using the stiff solver SPGEAR within the SPRINT
package. SPGEAR is based on the LSODI code of Hindmarsh [HI80] for solving differential
algebraic systems (DAEs), and it contains both the family of Admas methods up to order
12 and the family of GEAR /backward difference formulas (BDF) methods of up to order
5. Interestingly, Furzeland ef al. [FVZ90] were unable to successfully run GWMFE with
LSODI.
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3.4 Numerical results

The reduced ODE system from MOL is a linearly implicit system of first order ODE. We

use LSODI to solve the initial value problem
dy .
a(t,y)= = b(t,y).

If a is singular, this is a differential-algebraic system. The user needs to provide the sub-
routines for computing the residual function and a(%,y). The initial values of % and the
Jacobian are internally generated by LSODI. The parameter rtol is the relative tolerance

parameter, and atol(i) is the absolute tolerance parameter. The estimated local error in y(3)

will be controlled so as to be roughly less than
ewt(i) = rtol * abs(y(3)) + atol(7).

~ Thus the local error test passes if, in each component, either the absolute error is less than
atol(i), or the relative error is less than rtol. Actual global errors may exceed these local
tolerances. {g The initial value of the independent variable is #y, and tout is the first point
where output is desired. The difference tout — #p is the outside stepsize of LSODI. Recall
that nst and nje are respectively the number of steps and number of Jacobian evaluations
taken by LSODI up to the time given, and nqa and tstep are respectively the order of the
last successful method and the last successful stepsize.

Problem | (A scalar reaction-diffusion problem)

For details see page 47. For this problem we use tout — ¢, = 10~ for LSODI, since
LSODI fails to solve the problem for tout — tg = 1072. The initial value is o = 0.25.

Results for MFE(1)

As we tested in Chapter 2, this problem is quite sensitive to the tolerance (atol and
rtol). We have tried many values for c;, ¢; and § ir equation (1.2.68), where the parameter
¢, is a coefficient of the ‘internodal viscosity’ terms, the parameter c; is a coefficient of

the ‘internodal spring forces’ terms, and the parameter é is a user-defined minimum mesh
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distance and is also used for the activation energy [MI81]. Although we test some values
used in [FVZ90] and [HMWS6], it is hard to find good ones. MFE(1) is very sensitive to
these parameters.

We first test the method with ¢; = 1073 (and ¢; = 1072), c5 = 1074, 6§ = 5 % 10~% used
in [HMWS86] and atol = rtol = 10~ *(for atol = rtol = 1073, the computed solution moves
too fast - see page 47). The results are very poor.

Then we use the values ¢; = 0.1, ¢ = 5 x 107*, § = 10™4, which succeed in solving
Burgers’ problem (as we shall see later) and atol = rtol = 1075, At the time t = 0.26,
the numerical solution is quite good, but for later times (¢ = 0.27,0.28,0.29), the numerical
solutions move slower than the reference solutions. The results are given in Fig. 3.1, where
the cpu time is 77.76. If the tolerances (atol and rtol) are increased to 10~ %, the numerical
solution moves too fast initially and jumps to 2.0 at ¢t = 0.26. But for ¢t = 0.27,0.28,0.29, the
solutions (given in Fig. 3.2) are better than before; the cpu time is 68.23. If ¢, is decreased
from 5 x 10™* to 1074, the results in Fig. 3.3 are the same as those in Fig. 3.1, and the cpu
time is 75.70.

Finally, we use the values ¢; = 0.025, ¢z = 0, § = 0 tested in [FVZ90], and for atol =
rtol = 1073, as we known before, the computing solution moves too fast. For atol = rtol =
103, the computing solution moves slower than the reference solution. The behaviour of
the results is similar to that in Fig. 3.1. For ato! = rtol = 1074, at the time ¢ = 0.26,
the numerical solution is incorrect, but for later times (¢ = 0.27,0.28,0.29), the numerical
solution becomes better gradually (see Fig 3.4).

Results for GWMFE

Problem sensitivity and trouble in determining the method parameters was also a diffi-
culty with GWMFE. The parameters A and B are the coefficients of the ‘arclength viscosi-
ties’ terms and ‘arclength spring forces’ terms in (3.2.6), respectively.

(1) We have tried the values suggested by Miller [MI88]; unfortunately LSODI, fails to
solve this problem. For 4 = (1076)'/2, B = (107%)'/2 and atol = rtol = 10~%, GWMFE
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Problem |
2 . 2 [] T 1 L

Figure 3.1: ¢; = 0.1, c2 =5 X 1074, § = 1074, and atol = rtol = 1073, cpu = 717.76.

Problem 1
2.2 T T T Y

1.8

u axis 1.6

14

1.2

Figure 3.2: ¢, = 0.1, c; = 5x 1074, § = 107%, and atol = rtol = 1074, cpu = 68.23.
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Problem 1
2.2 T T T Y

Figure 3.3: ¢; = 0.1, ¢ = 1074, § = 107*, and atol = rtol = 10~°, cpu = 75.70.

Problem 1

Z axis

Figure 3.4: ¢; = 0.025, ¢, = 0, § = 0, and atol = rtol = 1074, cpu = 131.58.
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fails because the time stepsize is zerc at ¢ = 0.25 (initial time for LSODI solver).

(2) For A = 0.01, B = 0 and atol = rtol = 1075, GWMFE fails at ¢t = 0.261. The time
stepsize is zero there, and three mesh points are crossing the left boundary (z = 0).

(3) For A = 0.01, B = 0 and atol = rtol = 107*, GWMFE spends much more time than
MFE(1), viz., the cpu time is 826.46. The accuracy of the solutions have not improved much

using GWMFE, except that most of mesh points have moved to the layers. The results are

given in Fig. 3.5.

Problem 1

T axis
Figure 3.5: A = 0.01, B = 0 and atol = rtol = 1074, cpu = 826.46.

Results for MFE(2)

For A = 0.01, B = 0 and atol = rtol = 10™4, the numerical solution near z = 0 for time
t = 0.26 is incorrect. For later times (¢t = 0.27,0.28,0.29), the accuracy of the solutions
are quite satisfactory and most of mesh points have moved into the layers; the cpu time is
147.35. The results are given in Fig. 3.6. If the tolerances (atol and rtol) are decreased to
1075, the accuracy of the solution becomes worse, and the cpu time is 182.92. The results
are given in Fig. 3.7.

Results for Method Iii
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U axis

Figure 3.6: A =0.01, B = 0 and atol = rtol = 1074, cpu = 147.35.

Problem |

0 0.2 0.4 0.6 0.8 1

Figure 3.7: A =90.01, B = 0 and atol = rtol = 1075, cpu = 182.92.
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For k = 2,7 = 1073 and atol = rtol = 10—, the numerical solution near z = 0 for time
t = 0.26 is incorrect. The numerical solutions at ¢ = 0.27 and 0.28 move slower than the
reference solution, but at time ¢t = 0.29, the numerical solution is quite accurate. The total
cpu time is 23.73, which is much less than that for MFE(1) and MFE(2). The results are
given in Fig. 3.8. Decreasing the tolerances (atol and rtol) to 1073, the results are much
worse (see Fig. 3.9). For k = 1, the results have not improved, as shown in Fig. 3.10. For
k = 2, atol = rtol = 1075 and 7 = 104, the results shown in Fig. 3.11 are basically the
same as those for 7 = 10~ given in Fig. 3.9, and the cpu time is 24.83. For r = 1076 and
7 = 1078, the results are unchanged.

The results for Problem I are summarized in Table 3.1 and Table 3.2. Note that the
time stepsize for solving the MFE. ODE system for Problem I gradually becomes larger when
mesh points move into the steep regions of the solutions. For Method III, it is interesting

that the resultant ODE system alternates between large and small.

Figure 3.8: k = 2,7 = 10~2 and atol = rtol = 10~4, cpu = 23.73.

Problem i (Burgers’ equation)
We solve Burgers’ equation with ¢ = 10™* and use N = 20 mesh points. For details of
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Figure 3.10: k = 1,7 = 1073 and atol = rtol = 1075, cpu = 26.44.

81
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t | Fig. 3.1(MFE(1)):77.76(cpu) | Fig. 3.2(MFE(1)):68.23(cpu)
nst | nje | nqn tstep nst | nje | nqn tstep
0.26 | 50 | 14 3 0.000236 | 45 | 22 3 0.000133
0.27 | 129 | 39 2 0.000189 | 76 | 41 3 0.000143
0.28 { 162 | 56 4 0.000381 | 98 | 57 2 0.000565
0.29 | 201 | 78 3 0.000323 | 115 71 2 0.000504
t Fig. 3.3(MFE(1)):75.70 Fig. 3.5(GWMFE):826.46
0.26 | 50 | 14 3 0.000236 | 174 | 121 | 2 0.000006
0.27 1129 | 39 2 0.000189 | 759 | 532 | 2 0.000537
0.28 ; 162 | 56 4 0.000381 | 777 | 545 2 0.001002
0.29 {196 | 77 3 0.000349 | 791 {556 | 3 | 0.001276
t Fig. 3.6(MFE(2)):147.35 Fig. 3.7(MFE(2)):182.92
0.26 ) 68 | 51 2 0.000173 | 67 | 58 3 0.000146
027 {1111 75 3 0.000437 [ 154|102 3 0.000226
0.28 | 132 | 91 2 0.000706 | 187 [ 119 3 0.000401
02911481105 3 0.000674 | 210|129 | 4 0.000545
t Fig. 3.8(Method I11):23.73 Fig. 3.9(Method I11):25.25
0.26 | 22 | 10 3 0.001152 | 39 | 10 3 0.001025
0.27}| 58 | 20 3 0.000645 | 91 | 19 3 0.000175
028 70 | 22 3 0.001114 { 115} 23 3 0.000787
029} 84 | 27 3 0.000572 | 131 | 26 3 0.000435
t | Fig. 3.10(Method IM):26.44 | Fig. 3.11(Method III):24.83
0.26 | 39 | 10 3 0.001025 | 38 | 10 3 0.000931
10.27 92 | 18 4 0.000181 | 88 | 19 4 0.000206
0.28 | 118 | 23 3 0.000535 | 113 | 24 3 0.000683
0.29 1 133 | 27 3 0.000458 | 128 | 27 3 0.000516

‘Table 3.1: Problem 1
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Problem I

Figure 3.11: k = 2,7 = 10~* and atol = rtol = 1073, cpu = 24.83.

the problem see page 48.

Results for MFE(1)

We use the tolerances atol = rtol = 10~ for MFE(1).

(1) First, we choose the parameter values ¢; = 0.1, ¢z = 107%(or 107°) and § = 107,
The reduced ODE system becomes stiff and MFE(1) stops at ¢ = 0.45 because the time
stepsize is zero. However there is no mesh point crossing.

(2) For ¢; = 0.1, c = 0 and & = 107°, MFE(1) stops at t = 1.0 because the chosen

t | Fig. 3.4(MFE(1)):131.58(cpu)
nst | nje | nqn tstep
0.26 | B4 | 58 | 2 0.000095
0.27 | 149 | 83 2 0.000361
0.28 {186 {105 2 0.000361
0.29 | 217 | 127 | 2 0.000383

Table 3.2: Problem 1
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stepsize is small (4 x 10~%) for solving ODE system. Again there is no mesh point crossing.

(3) For ¢; = 0.1, ¢c; = 107 and 6 = 10™4, MFE(1) fails at ¢t = 0.25. The time stepsize
is zero at this time, and some mesh points are crossing in the interval [0.596838, 0.628945].

(4) For ¢; = 0.025, c; = 10™* and é = 10~4, MFE(1) fails at ¢t = 0.2. The time stepsize
is 3 x 1076, At this time, some mesh points are crossing in [0.590859,0.590971] which is
where oscillating soiations occur.

(5) For ¢; = 0.2, ¢c; = 107° and 6 = 107>, MFE(1) fails at t = 0.2. Although the time
stepsize is not too small ( 0.012256), some mesh points are crossing in [0.570000, 0.657410].

(6) For ¢; = 0.01, c2 = 107* and 6 = 5 x 107%( or § = 10™*), MFE(1) fails at t = 0.2.
The time stepsize is 5 x 1078 (or 7 x 1078), but there is no mesh crossing.

(7) For ¢; = (4 x 107)Y2, ¢; = (107°)!/2 and § = 1074, MFE(1) fails at t = 0.2.
The time stepsize is zero, three mesh points are the same (0.586943), and the approximate
solutions are much worse than the other cases above due to unacceptable oscillations.

(8) For ¢; = 0.025, c; = 0 and § = 10~%, MFE(1) fails at t = 0.2. The time stepsize
is zero, and some mesh points are crossing having successive values {0.590385, 0.590628,
0.590623, 0.590704}.

(9) For ¢; = 0.025, ¢c; = 1073 and § = 10~%, MFE(1) fails at ¢ = 1.4. The time stepsize
is 6.3 x 107, where one mesh point (1.001088) is crossing the right boundary (z = 1), and
the solution at 1.001088 jumps to 0.066214.

(10) For ¢; = 0.1, c2 = 0 and § = 10~*, MFE(1) fails at ¢t = 0.2. The time stepsize is
zero, but there is no mesh point crossing.

(11) For ¢; = 1073, ¢ = 107 and § = 10~*, MFE(1) fails at t = 0.2. The time stepsize
is zero, and some mesh points are crossing having successive values {0.587316, 0.636860,
0.587304, 0.587398}. The solution at 0.636860 jumps to —147.259502.

(12) For ¢; = 0.15, c; = 1072 and 6 = 10™*, MFE(1) fails at ¢ = 1.4. The time stepsize
is zero, and some mesh points are crossing, having successive values {0.991774, 0.993613,

0.991672, 0.993822}.
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(13) For ¢; = 0.05, c; = 1072 and 6 = 10~%, MFE(1) fails at ¢t = 0.2. The time stepsize
is zero, and the mesh points are crossing, having successive values {0.583234, 0.583353,
0.583454, 0.583259}. The solution at point 0.583454 jumps to —17.231277.

(14) For ¢; = 0.01, c; = 1072, § = 10~* and tolerances atol = rtol = 1073, oscillations
in the solutions occur after ¢t = 0.2, few mesh points are in the layers, and the cpu time is
146.79. The results are given in Fig. 3.12.

The choice ¢; > 0.025 was used by Furzeland et al.[FVZ90], and smaller c; was rec-
ommended by Gelinas et al.[GDM81], and Hrymak et al.[HMW86]. To increase ¢; and to
decrease ¢;, we test ¢; = 0.1,¢, = 1073,6 = 1074 and atol = rtol = 10~3. The results
are quite satisfactory except for small oscillations, as shown in Fig. 3.13. The cpu time is
159.98. Further, we test a smaller ¢y, viz.,, ¢ = 5 x 10~%. The results shown in Fig. 3.14
are now better, but the method is much more expensive, with a cpu time of 255.94.

To decrease c;, we use ¢; = 0.05,¢c3 = 5 x 107,86 = 10™* and atol = rtol = 1073, The

results shown in Fig. 3.15 are basically the same as those given in Fig. 3.14.

Problem 11

1.5

-1 L L

0 0.2 0.4

T axis
Figure 3.12: ¢; = 0.01, ¢ = 10~2 and § = 1074, atol = 103, rtol = 1073, cpu =146.79.

Results for GWMFE
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t | Fig. 3.12(MFE(1)):146.79(cpu) | Fig. 3.13(MFE(1)):159.98(cpu)

nst { nje | nqn tstep nst | nje | nqn tstep

0.2 45 | 36 2 0.006515 68 | 47 1 0.001115
0.4) 78 | 85 2 0.006846 199 | 148 | 1 0.003564
0.8 99 | 65 3 0.025080 228 1 165 | 1 0.017565
1.0 | 109 | 68 3 0.016578 233 1166 | 1 0.045048
147183112 2 0.000726 244 1 175 | 2 0.005145

2.0 357185 | 2 0.015561 316 | 213 | 2 0.139613

t Fig. 3.14(MFE(1)):255.94 Fig. 3.15(MFE(1)):308.49

0.2 | 68 | 52 1 0.000503 107 | 82 1 0.000479

0.4|390 | 249 | 1 0.001915 | 472|304 | 1 0.003273
0.8|455|294 | 1 0.056705 | 537 | 346 | 1 0.030485
1.0 | 458 | 206 | 1 0.056705 | 541 | 348 | 2 0.061189
1.4 | 468 | 305 | 1 0.000648 | 555 | 357 | 1 0.005229
2.0 | 525 | 338 | 2 0.095474 | 625|406 | 2 | 0.122648
t | Fig. 3.16(GWMFE):524.68 Fig. 3.17(GWMFE):570.59
02 78 | 45 | 2 0.001179 |119| 57 | 2 | 0.000693
04155 | 86 | 3 0.011499 |235|111| 4 | 0.006692
08174 |104| 3 0.036544 | 260|136 | 4 | 0.026438
1.0 178 | 108 | 3 0.052049 | 266 | 142 | 4 | 0.042221
14310188} 1 0.004809 | 445 | 208 | 1 0.003406
2.0 {380 |233| 3 0.070649 | 565|261 | 3 | 0.050214

Table 3.3: Problem II
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t | Fig. 3.18(GWMFE):553.30(cpu) | Fig. 3.19(MFE(2)):919.64(cpu)

nst | nje | ngn tstep nst | nje | ngn tstep

0.2 116 | 62 3 0.000568 83 | 65 2 £.001446
0.4} 208 | 114 | 2 0.012319 425 1315} 1 0.000417
0.8 230 | 137 3 0.043453 821 | 628 | 1 0.002G72
1.0 234 | 141 | 3 0.068609 900 {693 1 0.004044
14 346 [ 210 1 0.009262 967 | 746 | 2 0.014998
2.0 416 | 256 | 3 0.069342 1067 | 815 | 2 0.017230

t Fig. 3.20(MFE(2)):945.90 Fig. 3.21(MFE(2)):868.76

02 8 | 70 3 0.001382 95 | 72 | 2 0.001262
04 430 | 319 1 0.000252 391 {278 1 0.001202
0.8 847 {654 1 0.002083 820 {620 1 0.001597
(1.0 925 [719] 1 0.004059 890 {677 | 1 0.003400
144993 | 772 1 0.013676 938 V709' 2 0.004874
2.0 {1092 | 839 | 1 0.024404 1024 | 768 | 1 0.022465
Table 3.4: Problem 11
t | Fig. 3.22(MFE(2)):836.26(cpu)
nst | nje | ngn tstep
02} 8 | 57 | 2 0.001402
04 369 | 251} 1 0.001120
08| 713 | 515} 1 0.001386
1.0 799 [ 5831 1 0.002010
141 902 [ 662} 1 0.002380
20(10321735| 1 0.019370

Table 3.5: Problem 11
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Problem 11

0 0.2 0.4 0.6 0.8 1

Figure 3.13: ¢; = 0.1, ¢c2 = 1072 and § = 107%, atol = 1073, rtol = 1073, cpn =159.98.

Problem Il

-1 1 1 L 1

0 0.2 0.4 0.6 0.8 1
T axis

Figure 3.14: ¢; = 0.1, ¢ = 5 x 10™* and 6 = 10™%, atol = 1073, rtol = 1073, cpu =255.94.
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Problem 11

-1 Il
0 0.2

Figure 3.15: ¢; = 0.05,¢c3 = 5x 1074 and § = 1074, atol = 1073, rtol = 1073, cpu =308.49.

We first choose the parameter 4 values as recommended by Miller [MI88], and the
parameter B value that is ten times the suggested one (also from [MI88]).

(1) For A = (1076)1/2, B = (10~%)1/2 and atol = rtol = 10~3, GWMFE fails at
t = 1.25. The time stepsize is 0.006148, and one mesh point is crossing with {0.934948,
0.943122, 0.939446}.

(2) For A = (10-7)Y/2, B = (10~%)/2 and atol = rtol = 10-3, GWMFE fails at ¢ = 1.55.
The time stepsize is zero, and many mesh point crossings occur in the interval [0, 1].

(3) For A = (107%)Y/2, B = (10~8)!/2 and atol = rtol = 10~*, GWMFE fails at ¢ = 0.25,
the time stepsize is 0.003370, and the mesh points are crossing.

(4) For A = (10~3)Y/2, B = (1078)!/2 and atol = rtol = 104, GWMFE fails at ¢ = 1.45,
the time stepsize is zero, and four mesh points are crossing the right bourdary (z = 1).

(5) For A = (1076)1/2 B = (10)!/2 and atol = rtol = 10~*, the results are quite good,
as shown in Fig. 3.16. More mesh points move to the steep regions using GWMFE than when
using MFE(1), but it runs much longer than MFE(1), with a cpu time of 524.68. Decreasing

A to (1077)!/2, the results are unchanged, except the cpu time is 553.30. The results are
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given in Fig. 3.18. Decreasing the tolerances to atol = rtol = 107%, and again using
A = B = (107%)1/2 the results, shown in Fig. 3.17, are the same as for atol = rtol = 10~*

in Fig. 3.16, except the cpu time is 570.59.

Problem 11

1.5

-1 1 i

0 0.2 0.4

Figure 3.16: A = (10-%)1/2, B = (107%)1/2 and atol = rtol = 104, cpu= 524.68.

Results for MFE(2)

Similar values are tested as for GWMFE.

(1) For A = (4 x 1076)/2, B = (10~°)1/2 and atol = rtol = 1073, MFE(2) fails at
t = 0.25. The time stepsize is 2 x 1078, however there is no mesh point crossing.

(2) For A = (10-)/2, B = (10~%)'/2 and atol = rtol = 10~3, MFE(2) fails at ¢t = 0.25.
The time stepsize is 3.6 x 10~3, but there is no mesh point crossing.

(3) For A = (10~%)'/2, B = (107¢)!/2 and atol = rtol = 10™*, MFE(2) fails at t = 1.5.
The time stepsize is zero, and 9 mesh points are crossing the right boundary (z = 1).

(4) For A = (1074)1/2, B = 0 and atol = rtol = 1074, the results are satisfactory. When
the solution becomes steeper, almost all mesh points move to the steep regions after ¢t = 0.4

as shown in Fig. 3.19, but the cpu time is very high, 919.64. Increasing B to (107)!/2 and
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Problem 11
1.5 T T T T

0 0.2 0.4
I axis

Figure 3.17: A = (10-6)Y/2, B = (107¢)1/2 and atol = rtol = 10~5, cpu = 570.59.

Problem II

T axis

Figure 3.18: A = (1077)!/2, B = (10~%)Y/2 and atol = rtol = 104, cpu = 553.30.
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(107%)1/2, the results are given in Fig. 3.20 and in Fig. 3.21, respectively. The qualities of
the solutions are unchanged. Further increasing B to B = (107%)!/2_ the results are quite
satisfactory. For late times a few more mesh points move away from the steep regions, as
shown in Fig. 3.22, and the cpu time is 836.26.

It is important to note how points locate in the layer. Mill~~’s GWMFE forces points

into layer, and while the regularization term eventually does it more, it does less initially.

Problem 11

1.5
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0 0.2 0.4 0.6 0.8 1

Figure 3.19: A = (10~%)'/2, B = 0 and atol = rtol = 1074, cpu = 919.64.

Results for Method |1l

When using N = 20 mesh points, Method III fails to solve this problem, and as before
failure of LSODI is because the numerical solutions are unacceptable due to oscillations,
which may result from too few mesh points being in the steep regions. We use mesh points
N = 40 to solve this problem.

(1) For k = 2,7 = 10™* and atol = rtol = 10~*, Method III fails at t = 1.5, the time
stepsize is 8.2 x 10~°, and there is no mesh points crossing.

(2) For k = 2,7 = 107> and atol = rtol = 1074, Method III fails at ¢t = 0.65; although
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Problem I1
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Problem 11
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Figure 3.21: A = (1074)'/2, B = (10~%)1/2 and atol = rtol = 10~4, cpu = 868.76.
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Problem 11

-1 1 1 1 1

0 0.2 0.4 0.6 08 1

Figure 3.22: 4 = (10~4)1/2, B = (1075)'/2 and atol = rtol = 10~*, cpu = 836.26.

the time stepsize is not too small (1.7 X 10~%), the next time stepsize is zero, and there is
no mesh points crossing.

(3) For k = 1,7 = 102 and atol = rtol = 1073, Method III fails at ¢ = 0.25, the time
stepsize is 1.9 x 107°, and there is no mesh crossing.

(4) For k = 2,7 = 1072 and atol = rtol = 10~*, Method III succeeds in solving this
problem (see in Fig. 3.23), but it spends a cpu time of 3153.53. Increasing 7 to 10~2, the
qualities of the solutions do not improve, although it takes much less cpu time, »2z., 2175.36.
The results are given in Fig. 3.24.

We change k from 2 to 1, and test r = 1072, atol = rtol = 107*. The results given in
Fig. 3.26 are better than the corresponding results for £ = 2 in Fig. 3.23, but the cpu time
is still higher, 3060.02. Increasing T to 10~2, the qualities of the results are unchanged, but
the cpu time reduces to 2088.24. These results are given in Fig. 3.25.

Problem Il ( Buckley-Leverett equation)

For this problem (see page 55), an artificial viscosity term eu,, is needed. We choose
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t | Fig. 3.23(Method I11):3153.53(cpu) | Fig. 3.24(Method II1):2175.36(cpu)
nst | nje | ngn tstep nst | nje nan tstep
02] 133 | 48 | 2 0.001754 179 | 73 | 2 0.000383
04| 213 | 87 | 1 0.004084 283 | 123 | 1 0.002914
08} 260 | 110| 1 0.012193 341|155 1 0.012938
1.0] 280 | 120 2 0.009915 371 [ 171 2 0.018942
14| 391 | 184 2 0.001034 502 | 246 | 2 0.000993
201067 | 724 1 0.001520 639 | 307 | 1 0.007222
t Fig. 3.25(Method II1):2088.24 Fig. 3.26(Method I11):3060.02
02| 163 | 90 | 1 0.000441 98 {32 | 2 | 0.002425
0.4 258 | 140 | 1 0.003598 211 (107 1 0.001019
0.8 343 | 191 | 2 0.008476 339193 | 1 0.006910
10| 374 |211| 1 0.009210 362|205 2 0.012618
1.4 442 | 249 2 0.002975 | 440 | 242 | 2 0.003939
20| 569 | 204 | 2 0.054334 715 [ 431 1 0.023336
Table 3.6: Problem II
Problem il
1.5 T T P T
1 =
0.5 F _
u axis i q"
1y comaliiind _ = — <E_ —q-
-0.5 F
-1 1 1 1 i
0 0.2 0.4 06 0.8 1
I axis

Figure 3.23: k = 2,7 = 1073 and atol = rtol = 1074, cpu = 3153.53.
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Problem 11

[y
WD

-1 !
0 0.2

Figure 3.24: k = 2,7 = 10~2 and atol = rtol = 10~4, epu = 2175.36.

Problem 11
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Figure 3.25: k = 1,7 = 1072 and atol = rtol = 1074, cpu = 2088.24.
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Problem 11

) 0.2 0.4 0.6 0.8 1

Figure 3.26: k = 1,7 = 10~ and atol = rtol = 1074, epu = 3060.02.

the parameter values as for Problem I and Problem IL
‘_ | Results for MFE(1)

» (1) For ¢; = 0.1,¢2 = 1074,6 = 10~* and atol = rtol = 10~°, the results for ¢t = 0.1,0.2
are correct. For later times, ¢ = 0.3 and 0.4, a couple of solution values are incorrect as
shown in Fig. 3.27, and few mesh points are in the steep regions. The cpu time is 102.04.
Decreasing ¢; t0 0.01, MFE(1) succeeds in solving the problem, but mesh points concentrate
at the right boundary. (see Fig. 3.28). The cpu time increases to 260.02 for this case. Further
decreasing c; to 0, the quality of the results does not improvement, as shown in Fig. 3.29,
with cpu time now 536.59.

(2) For ¢; = 0.025, c; = 10™%, § = 10™* and atol = rtol = 1073, the results are shown
in Fig. 3.30. The numerical solutions for ¢ = 0.1,0.2,0.3 are correct. For t = 0.4, only one
solation point is incorrect, although few mesh points are near the layers, with points again
moving to the right boundary (z = 1).

(3) Forc; = 0.0, ¢2 = 10‘4, § =5 x 10~* and atol = rtol = 107>, the results (given in

Fig. 3.31) are similar to these given in Fig. 3.28.
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t | Fig. 3.27(MFE(1)):102.04(cpu) | Fig. 3.28( MFE(1)):260.02(cpu)

nst | nje | nqn tstep nst | nje | nqn tstep

0.1 24| 7 | 4 0.005902 | 24 | 12| 4 0.004980
0.2 41 | 12| 4 0.005902 | 45 | 25 | 3 0.001060
03]63|19] 3 0.005738 | 83 | 40| 3 0.007683
04112 34| 3 0.000477 | 127 58 | 4 0.000631

t Fig. 3.29(MFE(1)):536.59 Fig. 3.30(MFE(1)):177.09
01| 24 | 12| 4 0.004982 | 26 | 13| 3 0.005360
02| 54 | 26| 2 0.000878 | 45 | 22| 1 0.001199
03|92 |40 3 0.001829 | 82 | 39 | 4 0.003704
0.4(101|87| 2 0.001308 | 132| 53| 3 0.002080

Table 3.7: Problem III

The results are similar to those in [GDM81]. We conclude that success of the method
depends heavily on parameter values and this dependence is very sensitive.

Results for GWMFE

For this problem, parameter values giving accurate results for GWMFE were much more
difficult to find. The best values found were A = (1076)/2, B = 0 and atol = rtol = 10°.
Even then, while GWMFE solves the problem, the results are not satisfactory, as shown in
Fig. 3.32. Most mesh points move to the right boundary, and it spends considerable time
to solve the problem, with cpu time being 1207.86.

Results for MFE(2)

We first test the method with A = (4 x 107%)/2, B = (10~?)}/2 as recommended by
Miller and by Zegeling & Blom, and atol = rtol = 10~°. As shown in Fig. 3.33, the accuracy
of the numerical solution is poor, and the cpu time is 581.47.

For A= (10"%)Y/2, B = 0 and atol = riol = 10~°, MFE(2) is more successful at solving
this problem. Mesh points now move into the steep region of the solution, and the cpu time

is reduced to 455.61. The results are displayed in Fig. 3.34.
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t | Fig. 3.31(MFE(1)):266.73(cpu) | Fig. 3.32(GWMFE):1207.86(cpu)
nst | nje | nqn tstep nst | nje | nqgn tstep

0.11 24 | 12 4 0.004980 34 | 15 2 0.002413
0.2 42 | 24 3 0.001403 84 | 35 3 0.006260
03 88 | 44 2 0.004293 147 | 59 2 0.002816
0.4} 136 63 3 0.002295 2551 111 | 3 0.000361

¢ Fig. 3.33(MFE(2)):581.47 Fig. 3.34(MFE(2)):455.61
0.1] 28 9 3 0.002936 25 | 13 4 0.007906
0.2 99 | 45 2 0.000499 56 | 31 2 0.004891
03168 71 2 0.001005 120 { 70 2 0.000722
04310135 2 0.000951 249 |1 149 | 2 0.001908

Table 3.8: Problem III

Problem 111

U axis

Figure 3.27: ¢; = 0.1, cz = 1074, § = 10™* and atol = rtol = 10~%, cpu = 102.04.
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Problem III

0.9
0.8
0.7
0.6
u axis 0.5
0.4
0.3
0.2
0.1

Figure 3.28: ¢; = 0.01, ¢ = 107*%, § = 10~* and atol = rtol = 107, cpu = 260.02.

Problem II1

Figure 3.29: ¢; = 0.01, ¢c; = 0, § = 10™% and atol = rtol = 1073, cpu = 536.59.
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Problem 111
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Figure 3.30: ¢; = 0.025, c; = 1074, § = 10~% and atol = rtol = 10~°, cpu = 177.09.

Problem III
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Figure 3.31: ¢; = 0.01, c3 = 1074, § = 5 x 107 and atol = rtol = 1073, cpu = 266.73.
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Problem 111
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Figure 3.32: A = (107%)'/2) B = 0.0 and atol = rtol = 107°, cpu = 1207.86,

Problem III
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Figure 3.33: A = (4 x 10~6)!/2, B = (107°)!/2 and atol = rtol = 107°, cpu = 581.47.
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Problem II1

U axis

Figure 3.34: A = (10~%)!/2, B = 0 and atol = rtol = 10~%, cpu = 455.61.

Results for Method 11

For this problem, Method III performs much better than the moving finite element
methods. We first test the method with k = 2 and atol = rtol = 10~%. The results are
shown only for 7 = 10~3 and 10~* in Fig. 3.35 and Fig. 3.36, respectively. The qualities of
the results for = 1072,107%,1078,10~7,1078, are similar. The results are satisfactory for
t=0.1,0.2,0.3. Fort = 0.4, the numerical solutions at two mesh points move a little higher
than the reference solution, as shown in Fig. 3.35 or Fig. 3.36. The cpu time is 69.14 for
7 = 1072 and 93.41 for T = 1074, respectively.

If we chaage k from 2 to 1, and use 7 = 10~*, (see Fig. 3.37) the results are better than
the results for k = 2, although it requires much more time to solve this problem, with cpu
time now 273.05.

Problem IV (Heat conduction problem)

Recall that we have tested this problem in Chapter 2 (see page 57 for details). The

solution front for this problem travels in the negative direction, which is different from the
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Fig. 3.35(Method III):69.14(cpu)

nst | nje | nqn tstep
0.1} 61 | 12| 4 0.009614
02 71 y 13| 4 0.010785
03] 81 |16 | 4 0.008957
04107} 221 3 0.002802
t Fig. 3.36(Method I17):93.41
nst | nje | nqn tstep
0.1} 78 | 17| 3 0.008243
0.2} 91|18 3 0.006726
03107} 20| 4 0.007252
041140 29 ] 3 0.003194

Fig. 3.37(Method I11):273.05

nst | nje | nqn tstep
0.1 8 | 19 3 0.010845
0.2 103} 23 2 0.004965
0.3 118 25 3 0.006318
0.4 181 48 3 0.001443

Table 3.9: Problem III
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Problem I11

¢ axis

T axis

Figure 3.35: k = 2,7 = 103 and ato! = rtol = 1073, cpu = 69.14.

Problem 111

0.9
0.8
0.7
0.6
u axis 0.5
0.4
0.3
0.2
0.1

T axis

Figure 3.36: k = 2,7 = 1074 and atol = rtol = 107°, cpu = 93.41.
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Problem III

Figure 3.37: k = 1,7 = 10~* and atol = rtol = 107°, cpu = 273.05.

previous three problems. We output results for t = 0.05,0.50,1.00,1.50,2.0.

Results for MFE(1)

We first test the method with the small parameter ¢; used in Problem I, II, and III,
but MFE(1) fails to solve it because mesh points move in the positive direction while the
solution front travels in the negative direction. Then we use a large parameter value for
¢1, namely ¢; = 3,2 which result in an almost non-moving mesh, with ¢; = 0, § = 10~*
and atol = rtol = 10™%. The results are shown in Fig. 3.38 and Fig. 3.39 respectively. The
oscillating solution occurs at time ¢t = 1.0, and almost all of the mesh points have moved to
the right. The cpu times are 36.90 and 38.07, respectively.

Results for GWMFE

As for GWMFE, we first use the parameter values A and B recommended by Zegeling
and Blom [ZB90). GWMFE cannot solve it since mesh points move still in the positive
direction. Then we increase the parameter A.

(1) For A = (1074)'/2, B = 0 and atol = rtel = 10~%, LSODI is unable to find an initial
time step (from o = 0.05). The predicted time stepsize is very smali (3 x 1078,
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Problem IV

Figure 3.38: ¢; = 3.0, ¢z = 0.0, § = 10™* and atol = rtol = 10~4, cpu = 36.90.

Problem IV

Figure 3.39: ¢; = 2.0, ¢; = 0.0, § = 10~* and atol = rtol = 104, cpu = 38.07.
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t Fig. 3.40(Method III):46.16(cpu) | Fig. 3.41(Method II1):39.74(cpu)
nst | nje | nqn tstep nst | nje | nqn tstep
0.05| 40 | 10 1 0.016568 43 | 11 2 0.018570
0.50 | 67 | 14 2 0.019736 66 | 16 1 0.003062
1.00 | 88 | 22 2 0.044406 82 | 19| 3 0.037782
1.50 | 101 | 24 3 0.053726 98 | 22 3 6.039853
2001|121 { 30 2 0.042174 111} 25 3 0.041087

Table 3.10: Problem IV

(2) For A = (1072)!/2, B = 0 and atol = rtol = 10~*, GWMFE stops at t = 0.25, again
due to a small time stepsize (107¢).

(3) For A = 1.0 (or 2.0), B = 0 and atol = rtol = 1074, GWMFE produces an unstable
solution, so the integration terminates quickly because the computed solution becomes large.

(4) For A = 1.0, B = 10™* and atol = rtol = 107*, oscillatory solutions are produced
near the front.

Results for MFE(2)

MFE(2) is also unsuccessful for this problem.

(1) For A = (107%)1/2, B = (1078)'/2 and atol = rtol = 1074, oscillatory solutions again
occur.

(2) For A = (107%)/2, B = 0 and atol = rtol = 10~%, MFE(2) stops at the initial stop
(to = 0.05), with predicted time stepsize being zero.

Results for Method il

We test k = 2,7 = 1073 and atol = rtol = 10~%. As shown in Fig. 3.40, an oscillatory
solution occurs near the front. There are some mesh points on the layers. The cpu time is
46.16. Decreasing T to 107%, the qualities of the results are unchanged (see Fig. 3.41), and

the cpu time is 39.74.
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3.5 Conclusions

We have tested the moving finite element methods (i.e., MFE(1), MFE(2), GWMFE ) and
one moving finite difference method, simply using the stiff solver LSODI for the MOL time
integration. For the various moving finite element methods, we have had an emphasis on
-considering the regularization terms and the gradient weighted function. The main difficulty
with the MFE methods is that the parameters are problem-dependent, and suitable choices
can be very difficult to find, although the recommended choice of the parameters used by
the code GWMFEILDS is sometimes helpful. The regularization terms of the GWMFE and
MFE(2) force mesh points to move into the steep region of the solution, which causes the
reduced ODE system to become extremely stiff. MFE(2) successfully catches the solutions
with large gradients as shown in problems I, II, III. GWMFE and MFE(2) move more mesh
‘;"‘)oi'n'ts‘ into the steep regions of the solutions than MFE(1). It is still not understood why
“the moving finite element methods can fail altogether to solve thé, problem where a front
moves in the negative z direction (although see [GDMS81] and [0D79]). It is conjectured
that an upwind scheme for the discrete PDE is needed to match the direction of the mesh
movement.

For Method III, there is not much difference if the parameter k is chosen to be 2 or 1.
As we mentioned before, the temporal smoothing term serves as an artificial viscosity term,
so the parameter T should be kept small. Method III could not solve the Burgers’ problem
with 20 mesh points, since too few mesh points move into the steep region, which results in
unstable solutions.

The choice of the optimal number of mesh points is a major problem for moving mesh
methods. Method III is very expensive for Burgers’ problem, although the cpu time for
T = 1072 is 60% of the cpu time for 7 = 10~3. To solve problems I and III, Method III is
faster than the moving finite element methods, but it can have some difficulty getting the

mesh near a corner in the solution, as shown in problem III. For the final problem, where
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a front moves in the negative z direction, Method III has trouble due to oscillations in the

computed solution.
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Problem IV

Y axis

Figure 3.40: k = 2,7 = 1072 and atol = rtol = 10™%, cpu = 46.16.

Problem IV
1.5 T T T T T

Figure 3.41: k = 2,7 = 107* and atol = rtol = 1074, cpu = 39.74.
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Chapter 4

Summary and Further Problems

This Chapter contains the conclusions and a discussion of some moving mesh problems
deserving further study. In this thesis, we study the theory and computation of moving
mesh methods for solving one dimensional time dependent partial differential equations.
We briefly discuss the three kinds of moving mesh methods - the coordinate transformation
method, moving finite element methods and moving finite difference methods. The moving
finite element method [MM81] with piecewise linear bases can also be derived by a suit-
able coordinate transformation [MC85], [LY82] and [BA88]. We discuss the advantages and
disadvantages for various moving mesh methods. In Chapter 2, we study methods based
(explicitly or implicitly) upon an equidistribution principle. We have presented a new for-
mulation of the equidistribution strategy in terms of a PDE, which is shown to be equivalent
to the problem of sclving a particular PDE for this new computational coordinate system.
We intend to develop further robust moving mesh strategies based directly upon the differ-
ential form (2.2.16) or (2.2.29). Here, our intention has been to present some simple ones.
Nevertheless, the results indicate that the schemes given here, with simple improvements
such as smoothing of the mesh (for Problem IT) when necessary, should prove competitive
with those which have been recommended by others [FVZ90].

This moving mesh PDE interpretation can be used to understand stability properties for
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moving mesh strategies and extends the understanding of the stability properties as given
in [CFL86]. While the stability issue for methods based upon equidistribution is a very
complicated one, and there is no doubt that a complicated interaction takes place between
the PDE (2.1.3) and the mesh PDE (2.2.16) or (2.2.29). We expect that this viewpoint will
be usea 1. 4evelop a deeper understanding of stability properties for currently used methods
which have proven reliable.

In Chapter 3, we study the moving finite element methods and one moving finite differ-
ence method. We have tested these methods using a simple method of lines approach and
an existing stiff solver LSODI to solve the ODEs rather than more scphisticated codes. Of
particular interest are the role of the regularization terms and the gradient weighted func-
tion in MFE. The regularization terms of the GWMFE and MFE(2) force mesh points to
move into the stiff regions of the solutions, which cause the reduced ODE system to become
extremely stiff. MFE(2) can easily catch the solutions with large gradients as shown in
problems I, II, III. GWMFE and MFE(2) move more mesh peints into the stiff regions of
the solutions than does MFE(1). It is still not understood why the moving finite element
method can fail to solve problems with moving fronts that move in the negative z-axis di-
rection (although see [GDMS81] and [OD79]). For Method III, the temporal smoothing term
serves as an artificial viscosity term, and this interpretation helps show why the parameter
7 should be kept small. Method III is very expexsive when solving Burgers’ problem, even
though the cpu time can decrease fast when 7 increases (e.g., for r = 10~2 it is only 60%
that for 7 = 1073).

While it is extremely difficult to make general conclusions about the relative merits of the
methods, some commiexzts are appropriate. While Method I can be used to interpret previous
moving mesn methods, it is not competive in general. We conjecture that an artificial
viscosity term is needed to make the method more robust. For Burgers’ problem, Method
II is not competitive with MFE if the appropriate parameter values are used. Nevertheless,

for the other problems, Method IT proves competitive with other existing methods.
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There are still many moving mesh questions deserving further study. The choice of the
moritor function and number of mesh points are two such important issues for moving mesh
methods (e.g., for Methods II and III). We intend to extend moving mesh strategies based
directly upon the differential form (2.2.16) or (2.2.29) to a system of partial differential
equations. An equally important question is whether or not the moving mesh strategies
(2.2.16) or (2.2.29) can be straight forwardly extended to 2-dimensional partial differential
problems. We intend, for example, to investigate the addition of another moving mesh

equation for controlling mesh movement in the y-direction,

0w, + O(wa9)

=27 =,

ot oy

where w; is the total “average energy” of the solution in the y-direction.

Another problems is how to solve PDEs which involve higher derivatives (e.g., 4z, as for
example, in the Korteweq-deVries equation) with MFE. The moving finite element methods
with piecewise linear bases have some difficulties solving these higher order equations.

Finally, convergence and error analysis are further things to consider for moving mesh
methods. Dupont studied the moving finite element method [MM81] without regularization
terms for the case of smooth solutions of parabolic problems [DU82]. For scalar conservation
laws, Lucier showed that the discontinuous solution may be approximated in L!(R) to within
O(N~2) by a piecewise linear function with O(/N') mesh points when mesh points are moved
according to the method of characteristics [LU86]. Nevertheless, general analyses for moving

mesh methods have yet to appear.
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