
LINEAR GOAL PROGRAMMING IN CLASSIFICATION 

AND PREFERENCE DECOMPOSITION 

Kim Fung Bruce Lam 

B. B. A. (Hons. 1, Simon Fraser University, 1984 

M. B. A. , Simon Fraser University, 1986 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

in the Department 

of 

ECONOMICS 

O Kim Fung Bruce Lam 1991 

SIMON FRASER UNIVERSITY 

November 1991 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without permission of the author. 



APPROVAL 

Name : 

Degree : 

Title of Project: 

Bruce Lam 

Linear Goal Programming in 
Classification and Preference 
Decomposition 

Examining Committee: 

Chairman : Dr. L. A. Boland 

Dr. E. U. Cnoo 
Associate Professor, Business 
Administration 
Senior Supervisor 

Dr. A. R. Warburton 
Associate Professor, Business 
Administration 

Dr-. W. Wedley 
Professor, Business Aaministration 
Internal/External Examiner 

Dr. A. Stdm, Dept. ot Mgmt. sclences 
University of Georgia 
External Examiner 

Date Approved: ,&,em& 25, /74/ 



PARTIAL COPYRIGHT LICENSE 

I hereby grant to Simon Fraser University the right to lend my thesis, project or 

extended essay (the title of which is shown below) to users of the Simon Fraser 

University Library, and to make partial or single copies only for such users or in 

response to a request from the library of any other university, or other educational 

institution, on its own behalf or for one of its users. I further agree that 

permission for multiple copying of this work for scholarly purposes may be 

granted by me or the Dean of Graduate Studies. It is understood that copying or 

publication of this work for financial gain shall not be allowed without my written 

permission. 

Title of Thesis/Project/Extended Essay 

Li near Goal Programming i n Cl assi f i cati on and 

Preference Decom~osition 

Author: 
(signature) 

Kim f-unrc Bruce Lam 
(name) 

November 25, 1991 
(date) 



ABSTRACT 

Linear programming approaches in multivariate analysis have 

been studied by many researchers. In this work, linear 

programming approaches in classification and preference 

decomposition will be discussed. New and improved models in both 

classification and preference decomposition will also be 

introduced. 

Classification addresses the problem of assigning objects to 

appropriate classes. The two main classes of classification 

approaches are cluster analysis and discriminant analysis. 

Cluster analysis concerns the 'grouping' of 'similar' objects to 

initially undefined classes. The main purpose of performing 

cluster analysis is data simplification. Discriminant analysis 

concerns the 'separation' of objects from several known 

populations. The primary purpose of performing discriminant 

analysis is to assign new objects to the correct population. Many 

method5 including heuristic approaches and statistical approaches 

have been proposed to solve the two classes of classification 

problems. 

In cluster analysis, heuristic approaches do not guarantee 

optimal solutions with respect to any criterion. As a result, 

various mathematical programming models for cluster analysis have 

been developed. The advantage of mathematical programming models 

is that they provide optimal solutions for specific optimization 

objectives. I develop five new mathematical programming models in 

cluster analysis. A published data set is used to examine the 

performance characteristics of the cluster solutions obtained from 

my models and six other clustering procedures. Six criteria 

including five different measures of within cluster distances and 

one measure of between cluster distances are used to evaluate the 

cluster solutions obtained from the eleven models. All my models 

provide better cluster solutions than the heuristic approaches. 
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In discriminant analysis, the objects in the sample data set 

are from known populations. Popular statistical approaches to 

discriminant analysis are Fisher's discriminant function and 

logistic regression. Linear programming approaches in 

discriminant analysis are known to be robust and have been shown 

to have competitive performance when compared with the other 

statistical approaches. In this work, two new linear goal 

programming models in discriminant analysis are being introduced. 

The first model incorporates the within group discriminate 

information which is usually ignored by the other techniques in 

discriminant analysis. The classification performance of this 

model and several other popular discriminant techniques are 

evaluated by both an empirical study, which is based on the actual 

experience of an MBA admission committee, and a simulation 

experiment. The second model allows non-monotonic attributes to 

be included in the estimation process. In order to evaluate the 

classification performance of the second model and the other 

approaches in discriminant analysis with non-monotonic attributes, 

a simulation experiment is being conducted. Classification 

performance of the models in discriminant analysis are evaluated 

by the hit-ratio, the number of objects correctly classified. My 

models perform well in the above experiments. 

Preference decomposition is a class of methods used to 

measure a respondent's multiattribute preference structure. 

Usually, a set of well selected alternatives is presented to a 

respondent who then expresses hidher preferences for the 

alternatives in terms of either nonmetric or metric measurement. 

Then, based on the overall preferences of the alternatives, 

preference decomposition is used to estimate the individual's 

preference function. I introduce a linear goal programming model 

for preference decomposition with the input preference judgments 

measured in ratio scale. In order to compare the predictive 

validity of my model and two other models, LINMAP and Ordinary 

Least Squares, a simulation experiment is being conducted. 

Performances of the models are evaluated by both the Pearson 



correlation coefficients and Spearman rank coefficients between 

the input preferences and the derived preferences of the 

alternatives. Both my model and Ordinary Least Squares have 

higher average Pearson correlation coefficients and average 

Spearman rank coefficients than LINMAP in this experiment, while 

the coefficients of my model and Ordinary Least Squares are close 

to each other. 

In summary, I introduce several new linear goal programming 

models to solve the problems in cluster analysis, discriminant 

analysis, and preference decomposition. The five new models in 

cluster analysis provide additional optimization objectives to 

modelers in cluster analysis. This increase in the flexibility in 

choosing alternate optimal objectives in cluster analysis will 

likely motivate more frequent applications of mathematical 

programming approaches to cluster analysis. My first model in 

discriminant analysis incorporates the within group discriminate 

information. Intuitively, this model may provide more accurate 

estimations of the attribute weights than the other techniques 

which ignore the within group discriminate information. My second 

model has the ability to incorporate non-monotonic attributes in 

discriminant analysis. The existing linear programming approaches 

in preference decomposition only allow the input preference 

judgments to be measured in ordinal scale. Theoretically, ratio 

scale preference judgments contain more information than ordinal 

scale preference judgments. Consequently, I introduce a linear 

goal programming model which allows the input preference judgments 

to be measured in ratio scale. 
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CHAPTER I 

INTRODUCTION 

The goal programming model was first proposed by Charnes, 

Cooper, and Ferguson [19551. Their work has motivated many 

applications of using linear programming techniques in 

multivariate analysis including multiple regression, cluster 

analysis, discriminant analysis, and preference decomposition 

[e. g. , Wagner, 1959; Vinod, 1969; Rao, 1971; Srinivasan and 

Shocker, 1973; Freed and Glover, 1981al. In this work, linear 

goal programming approaches to problems in classification and 

preference decomposition are being studied. The two main types of 

classification techniques are cluster analysis and discriminant 

analysis. The later concerns the 'separation' of objects from 

several known populations while the former concerns the grouping 

of 'similar' objects to initially undefined classes. Preference 

decomposition is a class of methods used to measure an 

individual's multiattribute preference structure given the 

individual's relative preferences of some chosen alternatives. 

New and improved models in both classification and preference 

decomposition will be introduced. 

1.1 CLUSTER ANALYSIS 

Cluster analysis has been applied in many fields of 

scientific inquiry, in business, in industry, and in education. 

Many heuristic methods have been proposed to solve the clustering 

problems. Unfortunately, the heuristic methods do not guarantee 

optimality with respect to any criterion. As a result, various 



mathematical programming models for cluster analysis have been 

developed. The objective functions of mathematical programming 

for cluster analysis are usually defined as measures of either 

"within cluster distances" or "between cluster distances". With 

an analog of multicriteria optimization framework, I provide a 

systematic way of generating a whole array of meaningful criteria 

for cluster analysis. We also introduce five new mathematical 

programming models and reformulate two existing models in chapter 

2. A published data set is used to examine the performance 

characteristics of my models and several other popular clustering 

procedures. 

1.2 DISCRIMINANT ANALYSIS 

Recently, linear programming approaches to discriminant 

problems have been widely studied and have been shown to yield 

satisfactory results. In chapter 3, I introduce two new linear 

goal programming models in discriminant analysis. The first model 

works directly with the conditional probabilities of group 

membership rather than the simple group category to which a member 

belongs. With the use of conditional probabilities, the strength 

of group membership is measured and further discrimination within 

group is possible. Both an empirical data set which is obtained 

from an M.B.A. admission committee and simulated data are used to 

test the effectiveness of the above linear goal programming model 

and the other popular classification methods for discriminant 

analysis in minimizing misclassification errors. Since the 

primary purpose of performing discriminant analysis is to assign 

new objects to the correct population, the performance of the 

methods are evaluated by the hit ratio, the number of correctly 

classified objects. 

Classification of objects are based on their overall scores 

computed from the classification function. However, according to 

the classification function, the higher the attribute score of an 



object, all other factors being equal, the higher (if this 

attribute has a positive weight in the classification function) or 

the lower (if this attribute has a negative weight in the 

classification function) is its overall score. This implied 

monotonicity is not reasonable in many situations. The second 

model I introduce is a linear goal programming model which has the 

ability to incorporate non-monotonic attributes in discriminant 

analysis. A simulation experiment is conducted to examine the 

effectiveness of this goal programming approach to classification 

problems with and without non-monotonic attributes. 

1.3 PREFERENCE DECOMPOSITION 

In choosing the best alternative with respect to multiple 

criteria, it is a common practice to determine the criterion 

weights which influence the preference of all the alternatives 

presented. The criteria are aggregated into a single preference 

function and the alternative with the highest preference function 

value is identified as the optimal choice. The preference 

function values can also be used to rank order all the 

alternatives. However, many decision makers are able to make 

preference judgments based on the alternative as a whole without 

any detailed criteria trade-off. To understand the choice 

behavior of these decision makers, it is pertinent to evaluate how 

they value the alternatives' criterion levels. Preference 

decomposition is a class of methods used to decompose the overall 

preference of alternatives into part-worth evaluations of 

criterion levels. Given the input judgments of preference among 

some carefully selected alternatives, the additive preference 

decomposition estimates a part-worth value for each level of each 

criterion. The sums of the part worths which correspond as 

closely as possible to the input preferences are used to determine 

the preferences among all alternatives. Theoretically, ratio 

scale preference judgments contain more information than ordinal 

scale preference judgments. Consequently, in chapter 4, I 



introduce a linear goal programming model for preference 

decomposition where the input preference judgments are measured in 

ratio scale. I conduct a simulation experiment to compare the 

predictive validity of my model and two other models namely LINMAP 

and Ordinary Least Squares in estimating the preference function. 

Performance of the models are evaluated by both the Pearson 

correlation coefficients and Spearman rank coefficients between 

the input preferences and the derived preferences of the 

alternatives. Both my model and Ordinary Least Squares have 

higher average Pearson correlation coefficients and average 

Spearman rank coefficients than LINMAP in this experiment, while 

the coefficients of my model and Ordinary Least Squares are close 

to each other. 



CHAPTER 2 

MATHEMATICAL PROGRAMMING APPROACHES TO CLUSTER ANALYSIS 

2.1 INTRODUCTION 

The problem of 

of objects into cer 

cluster analysis is to partition a 

tain appropriate classes such that 

given set 

it is 

optimal with respect to a certain chosen criterion function. Many 

heuristic methods have been proposed to solve the cluster analysis 

problem. Unfortunately, the heuristic methods do not guarantee 

optimality with respect to any criterion. As a result, various 

mathematical programming models for cluster analysis have been 

developed. In this chapter, I focus the discussion on the 

mathematical programming approaches. In section 2.4, with an 

analog of multicriteria optimization framework, I provide a 

systematic way of generating a whole array of meaningful criteria 

for cluster analysis. In section 2.5, I introduce five new 

mathematical programming models, two of which are bicriterion 

formulations. I also reformulate two existing mathematical 

programming models which utilize fewer variables than the two 

existing models. Computational results from a published data set 

in cluster analysis are presented in section 2.6. 

2.2 THE PROBLEM OF GROUPING 

Problems of cluster analysis involve grouping a certain 

number of objects into a certain number of clusters. Given a 

sample of n objects, the most general problem in cluster analysis 



is to group the n objects into clusters where the number of 

clusters is not known. Many heuristic methods have been proposed 

to solve the cluster analysis problems. The single linkage, 

complete linkage, group average linkage, and Ward's Method are 

some popular bottom-up hierarchic methods used in cluster analysis 

[Blashf ield and Aldenderf er, 1978; Gordon, 1981; Johnson and 

Wichern, 19881. In section 2.3, hierarchic methods will be 

discussed. The hill-climbing and the k-means methods [MacQueen, 

19671 are two iterative reassigning procedures. Unfortunately, 

the heuristic approaches do not guarantee global optimality with 

respect to any criterion. The inadequacy of the heuristic methods 

has provoked the serious consideration of mathematical programming 

approaches to cluster analysis [Vinod, 1969; Rao, 1971; Arthanari 

and Dodge 1981; Aronson and Klein, 19891. The advantage of 

mathematical programming models is that they provide optimal 

solutions to specific optimization objectives. This is most 

useful when an appropriate criterion for clustering exists. For 

example, mathematical programming approaches have been 

successfully applied to many location problems. 

In cluster analysis, it is essential to define the distance 

between each pair of objects in the data set. The distances 

should reflect the "similarity" between pairs of objects. Usually 

the objects within clusters are more "similar" than objects in 

different clusters. Each object is typically described by a 

vector of attribute values. The "similarity" between objects is 

measured in terms of some distance metrics defined on the 

attribute space. Let n be the number of objects in a data set, p 

be the number of attributes, X be a nxp matrix which represents 

the attribute values of the n objects in the p dimensional space, 

and D be the distance matrix derived from X where d is defined i j 
as the distance between the i-th object and the j-th object. The 

followings are the distances that are commonly used: 

P 
i) City block metric: d. .= Ixik-xjk 

lJ k=l 
I 



ii) Euclidean metric: C 

P 
iii) Minkowski metric: d. .= 

positive integer. 

iv) Weighted Minkowski distance: 

r is a positive integer. 

V) Weighted Tchebycheff metric: di j 
= Max wklxik-xjk . 

1 sksp 
I 

2.3 HIERARCHIC METHODS 

The agglomerative approach is a popular class of hierarchic 

methods. Agglomeration starts with n clusters with each cluster 

contains only one object. Then at each stage, two closest 

clusters are merged to form one cluster until finally all objects 

are grouped into a single cluster. Different agglomerative 

approaches differ by the ways they define the distance between two 

clusters. The following are some distances between two clusters 

defined by several common agglomerative hierarchic methods: 

Single linkage: It is also called the nearest neighbor method. 

The distance between two clusters is defined as the distance 

between their nearest members. At each stage, the two 

clusters with the smallest distance are merged. 

Complete linkage: It is also called the furthest neighbor method. 

The distance between two clusters is defined as the distance 

between their furthest members, 

Group average linkage: The distance between two clusters is 

defined as the average of the distances between all pairs of 

objects in the two clusters. 



Wards' Method: It is also called the sum of squares method. In 

this method two clusters are merged if the amalgamation leads 

to the minimum increase in the total within cluster sum of 

squares at each stage. 

Hierarchic methods are easy to implement but may not produce 

optimal solutions. 

2.4 SYSTEMATIC WAYS OF GENERATING CRITERIA FOR CLUSTER ANALYSIS 

Let m be the number of clusters embedded in the sample. Many 

methods have been proposed to determine the number of hidden 

clusters in a data set. Milligan and Cooper [I9851 have provided 

a comparison study of thirty such procedures. However, when m can 

be prespecified, the remaining task is to identify the clusters 

according to some specific criteria. 

There are many reasonable criteria which can be used in 

forming clusters. Thus they lead to different objective functions 

in the mathematical programming approaches. The structure in 

multicriteria optimization can be used to develop a systematic way 

of generating meaningful criterion functions for clustering 

problems. Suppose n objects have been grouped into m clusters. 

It is logical to evaluate the m clusters as follows: 

For each k=1,2, . . . ,  m, let f be some measure of "deficiency" k 
of the k-th cluster. Typically, fk measures the "dissimilarity" 

of all the objects in the k-th cluster. Alternatively, f may k 
measure the "closeness" from the k-th cluster to other clusters. 

It is obvious that we want to "minimize" F=(f f ..,fm), which 
1' 2" 

is a multicriteria optimization problem. A common approach to 

solve this multicriteria optimization problem is to "combine" 

fl,f2, ..., f into one single overall objective function. Let g be 
m 

a real valued function defined on the m-dimensional space of f k 
values, k=1,2,. . . ,m, such that g(fl, f . . . , f 1 measures the 

2, m 



overall "badness" of fl,f2, ..., fm. Then the problem can be solved 

by minimizing g(fl,f 2,...,fml. There are many acceptable ways to 

define the cluster "deficiency" fl,f2, ... ,f and the overall value m 
function g [Chankong and Haimes 19831. In this paper, I consider 

m - the weighted sum (WS), g(fl,f2,. . . ,fm) = wkfk, and the 
k= 1 

Tchebychef f norm (TF) , g (f l, f 2, . . . , fm) i MAX {wlfl, . . . ,  w f ), m m 
where w1,w2,. . . ,wm are positive numbers which reflect the relative 
importance of the m clusters respectively. To avoid considering 

too many different forms of g(f f ..,f ) ,  seven ways of 1' 2" m 
defining f l, f2, . . . , f are considered: m 

a. SDM: Sum of distances from objects to cluster medians, 

b. MDM: Maximum distance from objects to cluster medians, 

c. SDC: Sum of distances from objects to cluster centers, 

d. SWD: Sum of within cluster pairwise distances, 

e. MWD: Maximum within cluster pairwise distance, 

f. MSW: Maximum sum of within cluster distances from an object, 

g. NSB: -(Minimum sum of between cluster distances from an object) 

Note that NSB is defined with negation so that fk is to be 

minimized. There are 14 (=7x2) different forms for 

g (f l, f2, . . . , fm) . For convenience, SDM-WS is used to denote 

g(fl,f2, ..., fm) when f f .,f are sum of distances from 1' 2'" m 
objects to cluster medians (SDM) and g is the weighted sum (WS) 

function. Theoretically, each form of g(fl,f2, . . . ,  fm) can be 
taken as the objective function to be minimized in a mathematical 

programming model for cluster analysis. Furthermore, we may 

combine two or more objective functions together and solve the 

problem as a new multicriteria problem. Thus many cluster 

analysis models can be generated. I will introduce two 

bicriterion models in the next section. Among the 14 basic 

models, the following have already been studied: 

1. Vinod [I9691 and Aronson & Klein [I9891 use SDM-WS. 

2. Rao [I971 I uses SWD-WS. 
3. Rao [I9711 uses MWD-TF. 

Discussing all fourteen models will be too lengthy and some of the 

models may not be as intuitively attractive as the other models. 



For example, both MDM and MUD measure "maximum distance" in a 

cluster. If we use US for g(f ,f , f 1, then in some optimal 1 2'"' m 
solutions, some clusters may have large "maximum distances" while 

other clusters may have small "maximum distances". These results 

may be difficult to interpret. It is more meaningful to use TF 

for g(fl,f2, . . . ,  fm) such that g(f f 
1' 2'"' 

.fm) can be interpreted 

as the "overall maximum distance" in all the clusters. Therefore, 

for illustration purpose, I only look at one model for each of the 

seven definitions of fk. 

The fundamental question in cluster analysis is what makes a 

good cluster solution. Evaluation of cluster solutions must, 

therefore, be based on some meaningful criteria. The different 

forms for g(fl,f2, ..., fm) can be used as criteria in evaluating 
the cluster solutions. In Section 2.6, we will compare the 

cluster solutions obtained by different clustering models based on 

the values of these criteria. 

2.5 MATHEMATICAL PROGRAMMING APPROACHES TO CLUSTER ANALYSIS 

For all the models discussed in this section, I use the 

following variables for cluster memberships: 

1 if the i-th object belongs to the k-th cluster 
z ik 0 otherwise 

For models (SDM-US) and for i=l, . . . ,n and k=l, . . . ,m. 
(MDM-TF), the variables used 

as follows: 

Yik = { 1 if the i-th ob, 
0 otherwise 

to identify the medians are defined 

ject is the median of the k-th cluster 

for i=l,. . . ,n, k=l, . . . ,m. Since the models (SM) [Vinod, 19691 and 
(SW) [Rao, 19711 use different variables, I reformulate their 

models in this section. 

2.5.1 Cluster-Median Problem 

One of the objective functions for the mathematical 

10 



programming methods in cluster analysis is to minimize the total 

sum of distances from each object to the "representative" point 

(cluster median) of the cluster in which the object belongs. If 

it is restricted that only the n sample points can be chosen as 

the cluster-medians, then this problem is usually called the 

cluster-median problem [Vinod 19691. This objective function 

shares the same or similar objectives of some location problems 

[Revelle, Marks and Liebman, 1970; Ghosh and Craig, 1986; Church, 

Current and Storbeck, 19911. For example, if we wanted to build 

three shopping malls to serve twenty suburban areas, we would like 

to build the shopping malls in certain locations such that the 

total sum of distances travelled from the twenty areas to their 

nearest shopping malls is minimized. 

Vinod 119691 formulated the cluster-median problem as an 

integer programming problem (SM) (the formulation is in Appendix 

2.1). I reformulate (SM) as follows: 

n 
(SDM-WS) MIN C hi 

i=l 
n 

S.T 1 dijyjk - M(l-zik) - h i  " 0, for k=l, . . . ,  m (2.2) 
j=l i=l,. . . ,n 

for i=l, . . . ,  n ( 2 . 3 )  

for k=l,. . . ,m (2.4) 

h. 20, 'ik zero-one and z zero-one. 
1 ik 

M is a large positive number. When z equals to zero, the ik 
corresponding constraint in (2.2) becomes redundant. When z ik 
equals to one, h. is forced to equal to d where point j is the 

1 i j  
median (yjk=l) of cluster k. Constraints in (2.3) enforce that 

each object must be belonged to one cluster. Constraints in (2.4) 

identify exactly m medians. 



2 . 5 . 2  The Problem of Minimizing the Overall Maximum Distance from 

an Object to Its Median 

Considering the cluster median problem, a different objective 

is to minimize the overall maximum distance from an object to its 

median. I formulate this problem as follows: 

(MDM-TF) MIN H 

S.T. dijyjk - M(1-zik) - H 5 0, 
j=l 

for k=l,. . . ,m (2.6) 
i=l,. . . ,n 

for i=l, . . . ,  n (2.7) 

for k=l, . . . , rn (2.8) 

HrO, yik zero-one, z zero-one. ik 

In (2.6), the variable H captures the overall maximum distance 

from an object to its median. Let the optimal objective value of * * 
(MDM-TF) be H . Since H equals to the overall maximum distance 

from an object to its median, multiple solutions are likely to 

exist. Multiple solutions exist when the distances from an object 

(or several objects) to two or more medians are less than or equal * 
to H . If this occurs, then this object (these objects) can be * 
assigned to different clusters without affecting the value of H . 
However, among the multiple solutions, some solutions may be more 

preferred than the others. In order to choose the "best" 

clustering solution among the multiple solutions, I formulate the 

problem as the following bicriterion problem: 



(MDM-TF-B) MIN PIH + P2( 1 hi) 
i=l 

S. T. di jyjk - M(1-z 1 -hiso, for k=l, . . . , m (2.10) 
j=l ik 

i=l,. . .  ,n 
for i=l, . . . ,n (2.11) 

for i=l, . . . ,  n (2.12) 

for k=l, . . . ,m (2.13) 

HrO, hirO, yik zero-one z zero-one. ik 

In (MDM-TF-B), P is preemptive over (i.e. much larger than) P 
1 2 

and H is forced to be equal to the maximum value of h in (2.11). i 
The first priority goal of (MDM-TF-B) is the same as the objective 

in (MDM-TF), while the second priority goal is the same as the 

objective in (SDM-WS). 

2.5.3 The Problem of Minimizing the Sum of Distances from Objects 

to the 'Centers' 

For the cluster median problem, there is no intuitive reason 

to restrict the medians to be located on the sample points only. 

A more general problem is to relax this restriction by allowing 

any point in the p-dimensional attribute space to be the medians. 

Revelle, Marks and Liebman [I9701 classified this type of problem 

as "Location on a Plane" in location analysis. It allows for more 

flexibility in the locations of the medians. I formulate this 

problem as a mixed-integer programming problem (SDC-WS) in the 

next section. 

Consider the cluster-median problem where any point in the 

p-dimensional attribute space can be selected as a cluster median. 

Let (b kl,...,b be the k-th median. Using city-block distance 
kp 

to define the distances between the sample points and the medians, 

this problem can be formulated as follows: 



n P  
(SDC-WS) MIN Z hij 

i=l j=l 

- b -M(l-z -h 5 0, for i=l,. . . ,n (2.15) S.T. Xij kj ik ij 
j=l,. . . ,p 

b - xi -M(l-z ) -hij 5 0, for i=l, . . . ,n (2.16) 
kj ik j=l,. . . ,p 

k=l,. . . ,m 
for i=l,. . . ,n (2.17) 

bkjzO, hijtO, z zero-one. 
ik 

Constraints (2.15) and (2.16) are linear forms of the following 

conditions: 

-M(l-z ) -hij 5 0, for i=l, . . . ,n (2.18) ik j=l,. . . ,p 

Although (SDC-WS) allows for more flexibility in the location 

of the medians, with large values of n, m, and p, (SDC-WS) will be 

a large mixed integer programming problem which is difficult to 

solve. Hence, (SDC-WS) is more suitable to solve small to 

moderate size problems. Nevertheless, with small size problems, 

there is an apparent advantage of (SDC-WS) over (SDM-WS). If the 

locations of the medians can be chosen only from the sample 

points, then the smaller the sample size, the less will be the 

possible locations to locate the medians. As a result, choosing 

good "representative" medians for the clusters became a more 

difficult task in (SDM-WS). However, the number of possible 

locations in (SDC-WS) is still infinite even when the sample size 

is very small. 

2.5.4. The Problem of Minimizing Within Cluster Distances 

Another objective is to minimize the total sum of pairwise 

distances between objects in the same cluster. Rao [I9711 

developed a zero-one integer programming model (SW) for this 

problem (the formulation is in the Appendix 2.1). However, (SW) 



is difficult to solve because it has too many zero-one variables 

and constraints. Aronson and Klein [I9891 provided an improved 

mixed-integer programming model, (SWl), which contained fewer 

variables than Rao's model (the formulation is in the Appendix 

2.1). They applied their model in the area of computer-assisted 

process organization for information development. 

I reformulate this problem as a mixed-integer programming 

problem (SWD-WS) which has fewer variables and constraints than 

both (SW) and (SW1). My model is as follows: 

n 
(SWD-WS) MIN C hi 

i=l 

n S. T. 1 dijzjk - M(1-z. -hi a 0, for i=l, ..., n (2.201 lk 
j=l k=l,. . . ,m 

for i=l, . . . ,  n (2.21) 

hihO, z zero-one. ik 

In (2.20), when zik equals to one, h. measures the sum of 
1 

distances of object i to the other objects in the same cluster. 

If zik equals to zero, then the corresponding constraint becomes 

redundant. The number of variables and number of constraints in 

(SWD-WS) are both equaled to mn+n, and are much less than (SW) and 

2 . 5 . 5  The Problem of Minimizing the Overall Maximum Within 

Cluster Distance 

Rao [I9711 introduced a zero-one integer programming model 

(MWD-TF) to solve the cluster problem by minimizing the overall 

maximum pairwise distance within cluster. The formulation is as 

follows: 



(MWD-TF) MIN H (2.22) 

S. T. dijzik + dijzjk - H 5 dij, for 1 , .  . 1 (2.23) 
j=i+l, . . . , n 

for i=l, ..., n (2.24) 

HZO, z zero-one. ik 

If both zik and z equal to one, then H is forced to be greater J k 
than or equal to d in (2.231, or H must be equal to the largest 

i j 
pairwise distance in the same cluster. However, similar to the 

problem of (MDM-TF) in section 2.5.2, multiple solutions may exist. 

Since if the distances from an object to the objects in more than * 
one cluster are less than or equal to H , then this object can be 

assigned to any of those clusters without affecting the value of 
* 
H . I formulate a new model (MWD-TF-B) which chooses the 'best' 

clustering solution among the multiple solutions is as follows: 

(MWD-TF-B) MIN PIH + P2( C hi) 
i=l 

S.T. dijzik + dijzjk - H 5 d for i=l,. . . ,n-1 (2.26) 
ij, j=i+l,. . . ,n 

1 dijzjk - M(1-z. )-his 0, for i=l, ..., n (2.27) 
j=l lk k=l,. . . ,m 

for i=l, . . . ,  n (2.28) 

HrO, hiZO, z zero-one. 
ik 

P is preemptive over P (MUD-TF-B) is an improved version of 1 2' 
(MWD-TF). The first priority goal of (MWD-TF-B) is to minimize 

the overall maximum within cluster distance, same as the objective 

in (MWD-TF), while the second priority goal is to minimize the sum 

of pairwise distances as in (SWD-US). 

2 . 5 . 6  The Problem of Minimizing the Maximum Sum of Distances from 

One Object to Other Objects Within Cluster 

In this section, I define the "dissimilarity" measured in a 



cluster as the maximum sum of distances from one object to the 

other objects within the same cluster. The objective function of 

the corresponding model is to minimize the sum of the 

"dissimilarity" measured in all the clusters. I formulate this 

problem as follows: 

m 
(MSW-US) MIN 1 hk 

k=l 

S.T. 1 dijzjk - M(1-Z. 1 -hk" 0, for i=1, . . . ,  n (2.30) 
j=l 

lk k=l,. . . ,m 

for i=l, . . . , n (2.31 1 

hkrO, z zero-one. ik 

In (2.30), h is forced to be greater than or equal to the maximum k 
sum of within group distances. Consequently, h captures the sum k 
of the within group distances to the worst cluster median. The 

sum of h over all clusters is minimized. 
k 

2.5.7 The Problem of Maximizing the Minimum Sum of Distances from 

One Object to the Other Objects in Different Clusters 

Another possible objective in cluster analysis is to maximize 

the overall minimum sum of distances from one object to all the 

other objects in different clusters. I formulate this problem as 

follows: 

(NSB-TF) MIN -H (2.32) 

S. T. d i k  1 - z .  )+H s lk 1 dij, for i=l, ..., n (2.33) 
j=l j=l k=l,. . . ,m 

HrO, z zero-one. ik 

for i=l, ..., n (2.34) 

In (2.33), the value of H is less than or equal to the smallest 

sum of between cluster distances. If zik equals to one, then H 



must be less than or equal to the sum of between cluster distances 

for object i. Again, if zik equals to zero, then the 

corresponding constraint in (2.33) becomes redundant. 

2.6 COMPUTATIONAL EXAMPLE 

In this section, I apply the above methods and some popular 

heuristic methods in cluster analysis to a problem, and examine 

the cluster solutions obtained from the different methods. The 

data set I use is a distance matrix from Johnson and Wichern 

11988, p.5461. This distance matrix describes the distances 

between twenty-two utilities. I apply six mathematical 

programming models; (SDM-WS 1, (MDM-TF-B 1, (SWD-WS) , (MWD-TF-B 1, 

(MSW-WS) and (NSB-TF), (the model (SDC-WS) is excluded due to the 

large problem size), and five heuristic methods namely, between 

groups average linkage (BGAVG), within group average linkage 

(WGAVG), single linkage (SINGL), complete linkage (COMPL), and 

Ward's method (WARD) to the data. I use six forms of 

g(fl,f2, . . . ,  f ) to evaluate these methods. After I obtained the 
m 

cluster solutions from all the methods, I calculate the six 

criterion function values for all these cluster solutions and the 

results are reported in Table 2.1. 

Table 2.1: Inefficiency of Cluster Solutions from different Methods 

CRITERIA 
MODELS SDM-WS MDM-TF SWD-WS MWD-TF MSW-WS NSB-TF AVERAGE 

(SDM-WS) 0.000* 0.053* 0.148 0.079* 0.097 0.386 0.127 
(MDM-TF-B) 0.015* 0.000* 0.046 0.162 0.038* 0.112* 0.062 
(SWD-WS) 0.055 0.061 0.000* 0.162 0.014* 0.089* 0.064 
(MUD-TF-B) 0.111 0.095 0.018* 0.000* 0.069 0.139 0.072 
(MSW-WS) 0.073 0.167 0.010* 0.162 0.000* 0.148 0.093 
(NSB-TF) 0.161 0.350 0.083 0.162 0.065 0.000* 0.137 
( BGAVG 1 0.051 0.090 0.628 0.144 0.135 0.731 0.297 
( WGAVG ) 0.051 0.090 0.628 0.144 0.135 0.731 0.297 
(SINGL) 0.072 0.090 2.059 0.144 0.175 0.905 0.574 
( COMPL ) 0.070 0.294 0.075 0.079* 0.091 0.281 0.148 
(WARD) 0.008* 0.053* 0.244 0.079* 0.108 0.519 0.169 

Note: Asterix represents the best three approaches in each 
criterion function, and 0.000 represents the best approach. 



For each of the criterion functions, it is expected that the best 

method is the mathematical programming model which gives optimal 

solution. Note that none of the heuristic methods performs better 

or as well as any of the mathematical programming approaches. It 

is interesting to see that for the mathematical programming 

models, their solutions also perform well when evaluated by the 

other criterion functions. For example, (MDM-TF-B) is one of the 

top three methods in four out of the six criterion functions, and 

each of (SDM-WS) and (SWD-WS) are one of the top three methods in 

three out of the six criterion functions. Other mathematical 

programming models also perform well in the other criterion 

functions. This is reflected by the average values of 

inefficiency from the eleven models in Table 2.1. The average 

values of inefficiency of the six mathematical programming models 

are significantly less than that of the heuristic methods. 

2.7 CONCLUSION 

The main advantage of the mathematical programming approaches 

to cluster analysis is the capability of providing an optimal 

solution with respect to some appropriate obJective functions. I 

provide a systematic way of generating a whole array of meaningful 

criteria for cluster analysis. In particular, I introduce five 

new mathematical programming models, including two bicriterion 

formulations. The ability to generate many meaningful criteria 

for evaluating cluster solutions increases the power and the 

flexibility of applying mathematical programming approaches to 

cluster analysis. The computational results support the use of 

mathematical programming models in cluster analysis. Additional 

constraints [Aronson and Klein, 19891 can easily be incorporated 

into the models. 



Appendix 2.1: Formulations of (SM) and (SW) 

According to Vinod [19691, the cluster-median problem can 

be formulated as follows: 

1 if the i-th objects belongs to the j-cluster 
Let xi 0 otherwise 

for i=l, . . . ,n and j=l, . . . ,n. 

(SM) MIN Z dij xij 
i=1 j=1 
n 

S.T. xij=lD 
j=l 
n 

xjj=m 
j=l 

n 

for i=1, 

for j=l, 

x zero-one. i j 

In (SM), the number of clusters defined is n, where n-m clusters 

are empty. In (2.371, only m of the x are equal to 1 (if xj j=l, .I .J 
then point j is a median) and the other x are equal to zero. 

j j 
The constraints in (2.38) define non-empty clusters. 

Rao [I9711 discussed an integer programming model, (SW), 

which has the objective of minimizing the sum of within group 

pairwise distances. Let 

k 1 if both i-th and j-th objects belong to the k-th cluster 
Yij = { 0 otherwise. 
His formulation is as follows: 

k 
Yi j 

zero one, z zero-one. ik 

for 1 ,  . . 1 (2.40) 
j=i+l,. . . ,n 
k=l, . . .  ,m 

for i=l, . . . ,  n (2.41) 

k 
Aronson and Klein [I9891 modified (SW) by replacing all yij , 

for k=l, ...,p in (SW) by yij. I call their model (SW1). 



CHAPTER 3 

LINEAR GOAL PROGRAMMING IN DISCRIMINANT ANALYSIS 

3.1 INTRODUCTION 

In this chapter, two linear goal programming models to 

discriminant analysis are being introduced. The first model 

incorporates discriminating information within group in terms of 

group membership probabilities in a linear goal programming model. 

The second linear programming model has the ability to capture the 

non-monotonicity of the attribute scores in discriminant problems. 

The two models are discussed in section 3.3 and 3.4, respectively. 

A review of some common techniques in discriminant analysis: 

Fisher's discriminant function, logistic regression, and linear 

programming approaches is presented in the next section. 

3.2 THE PROBLEM OF SEPARATING GROUPS 

Discriminant analysis concerns separating two or more groups 

of objects in a data set and allocating new objects to previously 

defined groups. Generally, we start with m random samples from m 

different populations, of sizes n n n Eachobject is 1' 2'"" m' 
typically described by a vector of attribute values. For a 

classification problem with two populations n and n 1 2' 
classification of objects is based on the measurements on p 

attributes. The sample data matrices for population 1 and 

population 2 are A and A2, respectively. 1 

3.2.1 Fisher's Linear Discriminant Function 



For a two-group classification problem, Fisher [I9361 

attempted to take a linear combination of the p attributes, and 

choose the coefficients to maximize the ratio of the between group 

variance to the within group variance. He developed the following 

sample linear discriminant function: 

where ; and ; are the sample mean vectors of A and A2, 
1 2 1 

respectively, S is the pooled sample covariance matrix, and a is 

the vector scores of an object. The classification rule based on 

the samples becomes the following: 
- - ' -1 - - ' -1- - 

Classify a to nl if (a -a ) S a z 1/2(al-a2) S (al-a2) 
1 2  - - ' -1 - - ' - 1 -  - 

Classify a to n2 if (al-a2) S a < 1/2(a 1 2  -a 1 S (al-a2). 

Fisher's linear discriminant function will minimize the 

probability of misclassification if the following conditions are 

met: 

1. The population distributions are multivariate normal. 

2. The covariance matrices of a and a are the same. 1 2 
3. The means and the common covariance matrix are known. 

This has been a very popular approach used in discriminant 

analysis. 

3.2.2 Logistic Regression 

The logistic regression follows from the Bayes's Theorem: 

where i=1,2 in a two groups discriminant problem. If p(alni ) and 

P(n. ) are known, then ~ ( n ~ l a )  can be computed. However, p(alni) 
1 

and P(n ) generally need to be estimated. 
i 

If one assumes the conditional probability density function 



takes the following form [Day and Kerridge, 19671: 

where €)(a) is a non-negative scalar function of a and 8(a) is 

integrable, and r >O is a normalizing constant, then i 

There are two approaches to estimate 6 and p'. One is the 
0 

weighted least-square approach and the other is the maximum 

likelihood approach [Flath and Leonard, 19791. 

3.2.3 Mathematical Programming and Discriminant Analysis 

Since Freed and Glover [1981a, 1981bl and Hand [I9811 

proposed the use of linear programming approaches to solve the 

discriminant problems, many authors [Bajgier and Hill, 1982; Choo 

and Wedley, 1985; Freed and Glover, 1986; Stam and Joachimsthaler, 

1989; Lee and Ord, 19901 developed different variants of the 

linear programming models. Furthermore, some authors [Bajgier and 

Hill, 1982; Choo and Wedley, 1985; Freed and Grover, 1986; 

Joachimsthaler and Stam, 1988; Stam and Joachimsthaler, 1990; Stam 

and Jones, 1990; Lee and Ord, 19901 attempted to compare and 

evaluate the classification performance of the mathematical 

programming approaches and statistical approaches via empirical or 

simulated experiments. 

The linear programming model introduced by Freed and Glover 

[1981al has the objective to minimize the maximum deviation (MMD) 



for the objects that are misclassified by the classification 

function. Let X be a nxp matrix where xik denotes the k-th 

attribute value of the i-th object for i=1,2, ..., n, and 
k=1,2, ...,p, where n is the number of objects in the sample, w be k 
the estimated weights in the classification function, where 

k=l, . . . , p ,  and G and G be the two sample sets drawn from n and 1 2 1 
n respectively. The (MMD) model is formulated as follows: 
2' 

(MMD) MIN d (3.8) 

for icG1 (3.9) 

for icG2 (3.10) 

w c unrestricted in sign, drO. k' 

In (MMD), a normalization constraint is needed to avoid the 

trivial solution (i.e., the values of all wk and c equal to zero). 

Freed and Glover [I9861 suggested the use of the following 

normalization constraint: 

where r is a non-zero number. 

Instead of minimizing the maximum deviation, Freed and Glover 

[1981bl proposed another linear programming model to minimize the 

sum of individual external deviations (MSD). Let n = nl + n then 2' 
n 

(MSD) MIN C di 
i=l 

for ieG (3.13) 1 

for ieG (3.14) 2 

w c unrestricted in sign, dirO. 
k' 

The objective of (MSD) is to minimize the total group overlap 

instead of the maximum overlap as in (MMD). A normalization 

constraint is needed in (MSD) to avoid the trivial solution. 



The objective of minimizing the sum of interior distances 

[Freed and Glover, 19861 can be formulated as the following linear 

programming problem (MSID): 

(MSID) MIN qld - q2 1 ai 
i=l 

for icG1 (3.16) 

for ieG2 (3.17) 

w c unrestricted in sign, drO, a 20. k' i 

(MSID) is a bicriterion linear programming model where the two 

objectives are minimizing the maximum misclassification and 

maximizing the sum of deviations of the correctly classified 

objects from the cutoff boundary. The values of ql and q2 reflect 

the relative importance of the two objectives in (MSID) and must 

be provided by the decision maker. 

Choo and Wedley [I9851 discussed the use of an integer 

programming method to minimize the number of misclassified objects 

in a classification problem. Their integer programming 

formulation (MNM) can be stated as follows: 

n 
(MNM) MIN 1 ei 

i=l 

for icGl (3.19) 

for i€G (3.20) 
2 

a, wk unrestricted in sign, e zero-one. i 

M is a large positive number, and e are zero-one variables for i 
all i. The objective of (MNM) is to minimize the actual number of 

misclassifications. 



Koehler and Erengue [19901, Stam and Joachimsthaler [I9901 

also studied the problem of finding a linear discriminant function 

to minimize the number of misclassifications. Their model (MNM2) 

is as follows: 

n 
(MNM2) MIN C ei 

i=l 
P 

(3.21 1 

for icG1 (3.22) 

for i€G2 (3.23) 

w c unrestricted in sign, e zero-one. k' i 

A normalization constraint is needed to avoid the trivial solution 

in (MNM2). 

Stam and Joachimsthaler [I9891 discussed the use of 8 norm 
P 

in discriminant analysis. Their model can be expressed 

as the following mathematical programming problem: 

n 
(LPN) MIN 1 (diIr 1 (l/r 1 

i=l 

for i€G1 (3.25) 

P 

"kxik - di + ai = C, for ieG2 (3.26) 
k= 1 

w unrestricted in sign, di=O, a 20, r is a positive integer. k i 

The cutoff value c is chosen arbitrary. They pointed out that 

(MMD) and (MSD) are the two special cases of the .! norm 
P 

discriminant analysis. The (MMD) and (MSD) formulations are the 

same as (LPN) formulation when r=w and r=l, respectively. 

Another variant of the linear programming models was 

proposed by Lee and Ord [19901. They formulated the 

classification problem similar to a regression problem where the 

objective function is to minimize the sum of absolute deviations 



(LAD). The formulation is as follows: 

n 
(LAD) MIN C (d + ail i i=l 

P 
C wkxik + a + di - a = 1, i 

for ieG1 (3.28) 
k= 1 

5 .,xi, + a + d  - a  =0, 
i i for ieG2 (3.29) 

k= 1 

a, wk unrestricted in sign, dirO, a i 20. 

There have been some attempts [Bajgier and Hill, 1982; Freed 

and Grover, 1986; Joachimsthaler and Stam, 1988; Lee and Ord, 

19901 to compare and evaluate the classification performance of 

the mathematical programming approaches and the classical 

discriminant techniques using simulated experiments. Some of the 

results show that linear programming approaches are competitive 

with the classical discriminant techniques in terms of the 

classification performance (number of objects correctly 

classified). 

Bajgier and Hill [I9821 found that (MSD) and (MMD) 

outperformed Fisher's linear discriminant function (FLDF) under 

certain conditions of the data sets in a simulated study. The 

(MSD) performed better than (FLDF) when the sample sizes of the 

two groups were unequal. The (MMD) outperformed the other 

approaches under the condition that group overlap was small, but 

not performing well when the two groups were close to each other. 

Freed and Glover [1986, pp.1611 reported their finding as " . . .  
Tests results showed that among the LP variants tested, the (MSD) 

formulation generally is the most reliable predictor of group 

membership". In their simulated experiment, Joachimsthaler and 

Stam [I9881 found that when outliers were present in the data set, 

(MSD) and logistic discriminant function performed better than 

(FLDF). Koehler and Erengue [I9901 reported that (MNM2) performed 

better than (FLDF) as the variance heterogeneity of the two 

populations increased. The above results show that linear 

programming approaches (especially the MSD) are competitive 



alternatives to the classical discriminant techniques. 

3.3 LINEAR GOAL PROGRAMMING IN ESTIMATION OF CLASSIFICATION 

PROBABILITIES 

The linear programming approaches to classification problems 

have yielded satisfactory results [Choo and Wedley, 1985; Freed 

and Glover, 1986; Glover, Keene and Duea, 1988; Joachimsthaler and 

Stam 19881. Unlike logistic regression [Cox, 1970; Anderson, 

19721, which can incorporate membership probabilities of an object 

belonging to a group, linear programming models [Choo and Wedley, 

1985; Freed and Glover, 1986; Glover, Keene and Duea, 1988; Lee 

and Ord, 19901 and (FLDF), when applied to estimate the attribute 

weights of the classification function, do not incorporate 

discriminating information between members within the same group. 

Group membership probabilities, when available, can be and 

should be used to discriminate between members of the same group. 

When working with categorical dependent variables, most methods 

round off the group membership probabilities, and information 

useful for discriminating between members within the groups is 

lost. For example, dividing companies into bankrupt and 

non-bankrupt groups ignores the fact that the non-bankrupt group 

contains companies of varying qualities. This is a severe 

disadvantage of (FLDF) and linear programming models where group 

membership is coded as a dichotomous or categorical variable. 

Recently, constrained multiple regression models with general 

l -norm are used to estimate membership probabilities [Stam and 
P 
Ragsdale, 19901. 

I provide a continuous goal programming model (GP1) which 

works directly with the conditional probabilities of group 

membership rather than the simple group category to which a member 

belongs. In applying this continuous goal programming model to 

classification problems, the users have to provide the estimated 



group membership probabilities of the objects within the sample. 

With the use of conditional probabilities, the strength of group 

membership is measured and further discrimination within groups is 

possible. Actual experience of an MBA admission committee is used 

to illustrate the implementation of (GP1). 

The classification power of (GP1) is compared with four other 

methods of classification including logistic regression (LG), 

(MNM) [Choo and Wedley, 19851, multiple regression with minimum 

sum of absolute deviations (MSAD) [Wagner, 19591, and Fisher's 

linear discriminant function (FLDF). Moreover, simulated data are 

used to test the effectiveness of the above approaches in 

minimizing misclassification errors. 

3.3.1 Model Formulation 

For the two groups discriminant problem with n objects 

(n=n +n 1, let pi, i=l, . . . ,  n be the probability that the i-th 
1 2  

object belongs to one of the parent populations. The rows of X 

are arranged in the descending order of the p values. i 
Furthermore, let wl, W2' "" 

be the attribute weights to be 
P 

determined and the weighted sum function w x +w x +. . .+ w x is 1il 2 i 2  P i~ 
used to distinguish the likelihood of belonging to the population. 

In the perfect situation, the weighted sums w x +w x +. . .+ w x 1 il 2 i2 P i~ 
will have the same ordering as the p values and thus we would i 
expect the following : 

There are n(n-1)/2 inequalities in (3.30). All these inequalities 

are used in the ordinal regression [Srinivasan, 19751. However, 

when IpU-PrI is small, it is not wise to enforce the corresponding 

ordering in (3.30) due to possible data inaccuracy in pU and p r' 
Thus, unlike the ordinal regression, many pairwise comparisons 

(u,r) may be excluded from (3.30). 



There are many reasonable methods to select the subset of 

pairwise comparisons to be enforced in (3.30). I suggest one 

approach as follows: 

For any small a>O, define Da by Da = { (u,r) : lsu<rsn, 

pu-pr - 1 sa & pU-pr>a ). Essentially, D consists of consecutive 
a 

pairs (u,r) with p -p slightly greater than a. Let ra = max {r : u r 
(u,r)€D for lsusn). Then none of the pairs in D includes any 

a a 
r-th object with r>ra. To avoid this omission, define Ua = {(u,r) 

: r +lsrsn, <a & p >a) when r <n and let % = Da u Ua . a Pu+ 1 -Pr- u-'r a 

The n(n-1)/2 inequalities in (3.30) are replaced by 

Since perfect ordering is not always possible, deviational 

variables dur are introduced into (3.31) to allow for more 

flexibility: 

that the difference 

The objective is to minimize the total sum of deviations 

1 dur 
. Furthermore, it is natural 

(u, TIER a 
P P 

wkx& - wkxrk should be larger for 
k= 1 k= 1 

The model formulation for 

probabilities for all the 

(GP1) MIN C dur 
(u, r)cR a 

preserving the 

pairs in R is a 

larger values of p -p u r' 

order of membership 

given below: 

S. T. i WkXuk - i wkxrk+dur Pu-P,, V (u,r)cRa (3.34) 
k=l k= 1 

w unrestricted in sign, d 20, V(u, r)c% 
k ur 

The attribute weights wl,w2, . . . ,  w obtained from the solution 
P 

of (GP1) are used to compute the weighted sums wlxil+ w x + . . . +  
2 i2 

w x , i=1,2,. . . , n, of all the objects. The log odds ratio, 
P ip 

ln(p./(l-pi) 1, i=1,2,. . . , n, of all the objects, is regressed on 
1 



the weighted sums to obtain an intercept coefficient b and a 
0 

slope coefficient b For any object i, its membership 
1' 

probability p. is estimated by 
1 

3.3.2 Additional Features 

Sometimes, prior information may be available in a 

classification problem. For example, the members in an MBA 

admission committee may agree that the higher the GMAT score of an 

applicant, the higher the probability that this applicant will be 

accepted. Consequently, the attribute weight for the GMAT score 

should be positive. Furthermore, the admission committee may also 

agree that GMAT score is the most important factor in evaluating 

applicants. Therefore, GMAT score should be weighted more heavily 

than the other attributes in the classification function. In 

practice, additional constraints reflecting useful prior 

information can be added to (GP1) to obtain better and more 

meaningful attribute weights. These include the positive or 

negative sign constraints on the weights of certain attributes. 

Let x be the average values of the k-th attribute in the 
k 

development sample, then higher weights can be imposed on more 

important attributes by adding the following constraint, 

where T can be any desired value which reflects the relative 

importance of the u-th attribute and the v-th attribute. Extreme 

values of attribute weights can be avoided by bounding the ratios 

of the attribute weights. For example, adding the following 

constraints to (GP1) can avoid extreme values of attribute 

weights, 

with appropriate values of U and L. 



3.3.3 Empirical Evidence 

The decision making situation chosen for testing the model 

(GP1) against four other different methods (LG, MNM, MSAD, and 

FLDF) is the admission of students to an Executive M.B.A. Program. 

A committee of four professors was given the task of reviewing all 

applicant files and making decisions of admission or rejection. 

Prior to reviewing the applicant files, the committee 

convened to discuss evaluation procedures. Although there was 

much information in the applicant files, the committee agreed that 

four main attributes were of importance. These were: 

(1) managerial experience, 

(2) undergraduate preparation, 

(3) letters of reference, and 

(4) scores on the Graduate Management Admission Test (GMAT). 

No prior weightings were established for these attributes. 

Nevertheless, an evaluation form was prepared which required each 

committee member to rate each applicant on each attribute. The 

ratings were semantic indicators as to whether the applicant was 

poor, fair, good or excellent on the dimensions being considered. 

As individuals, each committee member read the files and made the 

ratings. Later, when the members met as a group, these ratings 

were useful for establishing a consensus. Of 86 applications for 

the 1987 class, 37 were admitted. 

The relevant independent variables used as attributes are 

presented in Table 3.1. The empirical study is based on 68 cases 

with complete information. There are 41 cases with probability of 

admission greater than or equal to 0.50. A list of the 68 cases 

is given in Appendix 3.1. 

The dependent variable (probability of admission) was not 

actually used in the decision process of the committee. Instead, 



it was determined afterwards. Each committee member used the 

Analytic Hierarchy Process, AHP [Saaty, 19771 to determine weights 

for the four main attributes and the four semantic indicators used 

to rate each attribute. For example, each member had to think of 

prototype candidates with poor, fair, good and excellent records 

on managerial experience. Then with the managerial experience 

attribute in mind, they undertook AHP paired comparisons between 

prototype candidates to establish importance weights for the 

semantic indicators. In a like manner, priority weight zik was 

established for each indicator b with respect to each attribute k. 

Finally, AHP comparisons were carried out to determine weight w 
k 

for each attribute. 

Table 3.1: List of Attributes and Labels 

Name Description Type Labe 1 

JOBL Job level C 

YMGT Years in management R 
JOBS Job mobility I 

DEG Highest education C 

YEDD Years out of school I 
LETT Employer's letter C 

QGMAT Quantitative score R 
TGMAT Total GMAT score R 
LETA Average reference C 
PROB Probability R 

l=Non-business, 2=Consul tant , 3=Low, 
4=Middle, 5=Top 

Number of job title switches in last 
5 years 
l=Non-university, 2=Some university, 
3=technical college, 4=CPA/CGA, 
5=CA/non-science graduatehon-business 
graduate, 6=B. Sc. , 7=B. Bus. , 8=Masters 
degree, 9=Ph. D. 
Number of years since formal education 
O=No. 1 to 6 indicating strength of 
reference. 
Quantitative GMAT score 

Average strength of references. 
Acceptance probability. 

C = Categorical variable, R = Ratio variable, I = Integer variable. 

Using the indicator weights as absolute measures, each 

candidate i has a score s i = 'wk Vk(61kizlk+62kiz2k+63kiZ3k+64kiZ4k) ' 
where abki=l means the candidate i was rated with indicator b with 

respect to attribute k, and abki=O otherwise. This score s can i 
be used to measure the desirability of candidate i. Saaty calls 

this use of AHP as measurement with absolute values. These 



scores s are converted into probabilities of acceptance by i 
rescaling them between 1, the probability for an imaginary 

candidate who scores excellent on all indicators, and 0, the 

probability for another imaginary candidate who scores poor on all 

dimensions. 

Although it is possible to calculate the membership 

probabilities perceived by each committee member, I have used the 

average group ratings, importance weights, and indicator values to 

emulate the group discussion, and consensus process which actually 

occurred in the committee. Thus, I am using aggregated group 

scores to generate the committee's probability of acceptance for 

each candidate. The average attribute weights and indicator 

values which were used in the study are given in Table 3.2. The 

resulting acceptance probabilities are in the last column of 

Appendix 3.1. 

Table 3.2: Group Attributes and Indicator Weights 

At tribute Group Indicator Weights 
Attribute 

Weight Poor Fair Good Excel lent 

Managerial .305 .076 .I48 .283 .493 
Experience 

Academic 
Pre~aration 

.280 

Letters of .095 .081 .I58 .313 .448 
Reference 

Highest 

Lowest 

Potential Score = .305(.493)+.280(.483)+.095(.448)+.320(.527) 
= .497, which is given a probability of 1. 

Potential Score = .305(.076)+.280(.056)+.095(.081)+.320(.054~ 
= .064, which is given a probability of 0. 

The data of 68 cases are randomly divided into development 

and validation samples with 34 cases in each sample. For all the 

methods used, attribute weights are derived from the development 

sample. Then the remaining holdout sample is used to measure the 

success of each method. Success is defined herein as the ability 



of each method to correctly identify the candidates with greater 

than or equal to 0.50 probability of admission. A listing of the 

SPSS-X [I9881 programme used is given in Appendix 3.2. 

All the attribute weights obtained by the various methods are 

given in Table 3.3. The classification results are given in Table 

3.4. (GP1) and (MNM) both have six misclassifications in the 

validation sample. Both (LG) and (FLDF) have eight 

misclassifications and (MSAD) has nine misclassifications in the 

validation sample. (GP1) and (MNM) have the smallest number of 

misclassifications in the validation sample. 

Table 3.3: Attribute Weights of the Different Methods 

- 

ATTRIBUTE WEIGHTS 
JOBL YMGT JOBS DEG YEDD LETT QGMAT TGMAT LETA CONSTANT 

METHOD 
(GP1) -.357 .I16 
(RGP1) -.I98 .057 
(LG) -.022 .024 
( MNM .510 .I47 
(RMNM) 6.793 -1.19 
(MSAD) -.017 .003 
(RMSAD) -. 007 .003 
(FLDF) -. 395 -. 030 

Note that the attribute weights of DEG and LETT obtained from 

(GP1) and (MNM) are both negative which seem to contradict 

apparent intuition. But further analysis shows that applicants 

with higher degrees may not always be preferred to those with a 

Bachelor degree in Business (score 7). Applicants with either a 

Master degree (score 8) or a Ph. D. (score 9) have usually majored 

in areas other then Business and are not working at high 

management levels. Furthermore, applicants who are either CPA/CGA 

(score 4) or CA (score 5) may have a higher chance of being 

accepted than those with Bachelor degrees in Sciences. Thus, the 

sign of degree is really indeterminate. However, for LETT it is 

difficult to interpret why the weight is negative. 



Table 3.4: Classification Results of the Different Methods 

NUMBER "YES" AND "NO" AND "YES" AND "NO" AND CORRECT 
METHOD OF PREDICTED PREDICTED PREDICTED PREDICTED PREDICTION 

CASES "YES" 'I NO" ,,NO" "YES" PERCENTAGE 

D : development sample 
V : validation sample 

The advantage of the mathematical programming approach is 

that positive or negative sign constraints can be easily imposed 

if desired (for example, see Srinivasan, Jain, and Malhotra, 

1983). For further analysis, the MBA problem is solved again 

using (GPl), (MNM), and (MSAD) with positive sign constraints 

imposed on LETT, QGMAT, TGMAT, and LETA. The "restricted" models 

(with positive sign constraints) are (RGPl), (RMNM), and (RMSAD), 

respectively. The classification results of the three 

"restricted" models are also listed In Table 3.3 and Table 3.4. 

The validation samples (GP1) and (MNM) have the same correct 

prediction percentage with or without the sign constraints, while 

the correct prediction percentage of (MSAD) is improved by 2.9% if 

the sign constraints are imposed. 



3.3.4 Simulation Experiment 

Two simulation experiments are conducted to investigate the 

performance of the different classification techniques in 

discriminating between groups. For both experiments, the samples 

are drawn from two multivariate normal populations with three 

discriminating attributes. Population 1 is distributed as N(0,I) 

and population 2 is distributed as N(v,A), where v is a mean 

vector and A is a diagonal matrix. Similar to Bajgier and Hill 

[19821, the three means in v are chosen to be equal as are all the 

diagonal elements in A. Three different values, 0.5, 1,and 3 are 

chosen to represent three different mean vectors, and 1, 4, and 16 

are chosen to represent the diagonal elements of three different 

diagonal matrices. This yields a 3x3 factorial design with nine 

combinations in each of the two simulation experiments. The 

relative frequency of population 1 and population 2 are set to be 

equa 1. 

In the first simulation experiment, the linear sum of the 

three attribute values of each object is perturbed and then 

substituted into a logistic equation to compute the probability of 

group membership. The probability of group membership is obtained 

from the logistic equation. As a result, the experimental design 

in the first simulation experiment is in favor of logistic 

regression. The second simulation experiment tries to eliminate 

this bias. 

In the second simulation experiment the linear sum of the 

three attribute values of each object is systematically 

transformed using the following criteria: the highest 50% of the 

linear sums are transformed into squares of the linear weighted 

sums, and the lowest 50% of the linear sums are transformed into 

square roots of the linear sums. After these transformations, the 

linear sum is perturbed and then substituted into a logistic 

equation to compute the probability of group membership. In both 

simulation studies the linear sums are perturbed by adding a 



random error which is normally distributed with zero mean and 

variance 6' Its variance is computed from the following formula e' 
[Srinivasan, 19751: 

2 where 6 is the variance of the linear sums in the sample before 
S 

the error term is introduced. The total sample size is 1030, and 

consists of 30 cases randomly drawn from the sample as the 

development sample, and the 1000 cases used as the validation 

sample. Ten problems are generated for each combination of the v 

and A values. All five approaches (GP1, LG, MNM, MSAD, and FLDF) 

are applied to solve the problems. For (MNM), only the LP 

relaxation is solved. The LP relaxation of (MNM)  is similar to 

(MSD) except for a small difference in the constant terms. 

Table 3.5: Average Hits of Different Methods 
(First Simulation Experiment) 

A= 1 (GP1) 970.6 967.0 923.2 
(LG)  974.1 970.0 923.1 
( MNM 1 928.2 932.4 890.2 
(MSAD ) 956.8 959.9 920.8 
( FLDF 930.6 926.9 873.1 

A=4 (GP1) 
(LG)  
(MNM) 
( MSAD ) 
( FLDF 

A=16 (GP1) 
(LG) 
( MNM 1 
(MSAD 1 
( FLDF 1 

The average hit rates (out of 1000) of the validation sample 

of each combination in the first simulation experiment and in the 

second simulation experiment are reported in Table 3 .5  and Table 

3.6, respectively. A summary of the total average hit rates of 



the nine combinations in each simulation experiment are reported 

in Table 3.7. 

Table 3.6. Average Hits of Different Methods 
(Second Simulation Experiment) 

v=O. 5 v=l v=3 

A= 1 (GP1) 877.2 835.4 632.4 
(LG) 874.7 835.5 628.2 
( MNM 1 847.1 803.5 632.7 
( MSAD 1 869.3 834.5 639.7 
( FLDF 1 860.6 818.7 627.3 

A=4 (GP1) 694.8 648.0 585.4 
(LG) 690.0 646.5 568.6 
( MNM 1 675.9 635.4 573.5 
( MSAD ) 675.5 642.0 569.5 
( FLDF 1 671.9 633.9 569.4 

A=16 (GP1) 540.4 540.3 519.6 
(LG) 539.6 534.4 518.2 
(MNN 1 544.7 533.9 514.2 
(MSAD ) 539.1 530.9 516.6 
( FLDF 1 546.9 529.3 516.7 

Table 3.7: Total Average Hits in the Two Simulation Experiment 

Met hod First Second 
Simulation Experiment Simulation Experiment 

In the first simulation experiment, logistic regression has 

the best performance in term of the average hit rates. Since the 

original membership probability is computed from a logistic 

equation, this result is expected. (GP1) has the second highest 

average hit rate, and (MSAD) has the third highest average hit 

rate. 

In the second simulation experiment, (GP1) has the best 



performance in terms of the total average hit rates. (LG) has the 

second highest average hit rate and (MSAD) has the third highest 

average hit rate. It should be pointed out that the systematic 

non-linear transformation of the linear sum of the attribute 

values in the second simulation experiment does not seem to favor 

any of the five approaches. In summary, (GP1) has performed well 

in this simulation experiment. 

3.4 A LINEAR GOAL PROGRAMMING MODEL FOR CLASSIFICATION WITH 

NON-MONOTONE ATTRIBUTES 

Statistical approaches and linear programming approaches to 

classification problems presume monotonicity of the attribute 

scores with respect to the likelihood of belonging to one specific 

group. This may not be realistic in many applications. In view 

of this, I propose a general linear programming approach with the 

ability to capture the non-monotonicity of some attribute scores 

in classification problems. 

3.4.1 The Problem of Non-monotonic Attributes 

Objects are classified based on the overall scores computed 

from the derived classification function. However, according to 

the classification function, the higher the attribute score of an 

object, all other factors being equal, the higher (if this 

attribute has a positive weight in the classification function) or 

the lower (if this attribute has a negative weight in the 

classification function) will be its overall score. This implied 

monotonicity is not reasonable in many situations. For example, 

if the age and blood pressure of an individual are being used to 

determine whether to assign an individual to a "beginners" fitness 

class or to an "advanced" fitness class, then an individual who is 

either too old or too young and an individual who has either a 

high blood pressure or a low blood pressure may not be suitable 



for the "advanced" fitness class. As a result, neither positive 

weights nor negative weights are suitable for both the age and the 

blood pressure attributes in the classification function. Similar 

examples can be found in some medical diagnoses when high 

attribute scores or low attribute scores may indicate symptoms of 

certain diseases. One possible approach to overcome this 

difficulty is to transform the scores of an monotonic attribute as 

deviations from the "desirable value" for the class, however, 

sometimes desirable value may not be easy to determine. Moreover, 

there may exist a range of "desirable values". 

In the next section, a linear goal programming model (GP2) 

which can overcome the difficulty of imposing an implied 

monotonicity in classification function analysis is developed. 

Furthermore, a simulation experiment is conducted to examine the 

effectiveness of this linear goal programming approach to 

classification problems. The results of the proposed approach are 

very encouraging. 

3.4.2 Model Formulation 

As noted earlier, Fisher's linear discriminant function, 

logistic regression, and linear programming approaches do not 

handle cases with non-monotonic attribute scores (attribute scores 

which are not monotonic with respect to the likelihood of 

belonging to a specific population). In order to overcome this 

problem, the following approach is suggested. We first consider 

the case when all the attribute scores are non-monotonic in a two 

groups discriminant problem. For non-monotonic attributes, their 

scores are discretized into at least two different levels. Let gk 

be the number of levels for the k-th attribute, and 

( 1 , if the level of the k-th attribute of the i-th object 

( 0 , otherwise 



where k=l, . . . ,p, C=l, . . . ,gk, and i=l, . . . ,n. Let wke be the weight 
of the t-th level of the k-th attribute in the classification 

function. The overall score of any object i is equal to 

wke6ie. Equivalently, we can replace each attribute k by g 
k=l e=i k 

dummy variables 6 &l, ...,g in the matrix X. Let c be the cut 
kt' k 

off value of the overall score between G and G The goal is to 
1 2' 

determine a set of weights, w for k=l, . . . , p, e=l,. . . , gk, kt which 

satisfies the following conditions: 

for ieG1 (3.40) 

P gk i 

C C Wke6ke I c, for ieG2 (3.41) 
k=l e=i 

Since perfect classification results may not always be possible, 

deviational variables di and a can be introduced to allow for more i 
flexibility as in standard goal programming models. Hence, (3.40) 

and (3.41) are replaced by: 

P gk i 
C 1 wkCake + di - a i C, for icG1 (3.42) 
k=l e=i 

for ieG2 (3.43) 

The objective is to minimize the sum of all the d values and 
i 

maximize the sum of all the a values. Under perfect i 
classification condition the sum of all the d. values is equal to 

1 

zero. Furthermore, if object i is classified correctly, then 

maximizing a will tend to force its overall score as far apart i 
from c as possible [Glover, Keene and Duea, 19881. Intuitively, 

this should enhance the classification power. The new goal 

programming model (GP2) is stated as follows: 



n n 
(GPZI MIN P1.r di - P2 ai 

1=1 i=l 

P gk 
S. T. wke& + di - ai = C, for i€G1 (3.45) 

k=l e=i 

P gk i 
1 wkLake - di + ai 5 C, for ieG2 (3.46) 

k=l e=i 

wke, c unrestricted in sign, dirO, ai=O. 

Since the primary concern is to make correct classifications, the 

parameter P should be preemptive over P Equation (3.47) is 1 2' 
used to avoid the trivial solution of zero values for all w 

kt' 

In a classification problem, usually not all attributes are 

non-monotonic. For monotonic attributes, no discretization is 

required and only one weight is used for each of these attributes 

in (GP2). Let I be the subset of attributes with non-monotonic N 
scores and I be the subset of attributes with monotonic scores. 

M 
In general, (GP2) can be stated as follows: 

n n 
(GP2) MIN Pl C dl - pa C ai 

i=l i=l 

S.T. Zwke6ke+ E w k x i k + d i - a 2 c ,  
i 

ieG1 (3.49) 
k e ~ ~  !=I k~ I 

M 

k 
C CWke + ZWk = 1 (3.51 
~ E I  e=1 N k e ~ ~  
w w c unrestricted in sign, dirO and aiZO. kt' k' 

While wke is the attribute weight of the t-th level of the k-th 

attribute for k€IN, and w is the weight of the k-th attribute for k 
keIM. 



The w obtained from solving (GP2) can be used to compute ke 
the overall scores, Si, of the objects in the sample using, 

For new objects, similar treatments in discretizing the attribute 

scores are applied. Their overall scores can then be computed 

as in (3.52). Objects with overall scores greater than c are 

classified into G and objects with overall scores less than c are 
1 

classified into G 
2' 

Similar to the discussions of (GP1) in section 3.3.2, if 

prior information is available in a classification problem, this 

information can be incorporated in (GP2). In particular, both the 

attribute weights, wk and w can be restricted to be either kt' 
positive or negative by imposing positive or negative sign 

constraints in (GP2). 

3.4.4 Simulation Experiment 

A simulation experiment is conducted to investigate the 

performance of linear programming approaches, logistic regression, 

and Fisher's linear discriminant function, with and without the 

discretization procedures to classification problems with 

non-monotonic attributes. Four cases are considered. 

Case I: Samples are drawn from two multivariate normal 

populations with three attributes. Population a is distributed 1 
as N(u1,I) and population n2 is distributed as N(u2,I), where 

u =[1 1 11 and u -[0 0 01, respectively. 1 2- 

Case 11: Population nl is distributed as N(ul,I) and ul=[l 1 

11 (same as in Case I ) .  The sample scores of the three attributes 

in population a are drawn independently. The sample scores of 
2 



the first two attributes are drawn from a normal distribution with 

mean equals to zero and variance equals to one, while the sample 

scores of the third attribute are drawn from the following 

distribution [Johnson, 19871: 

With probability p, the process is realized from N(-l,l), and with 

probability (1-p), the process is realized from N(3.1). With the 

probability p equals to 0.5, the shape of the distribution is 

bimodal. In Case I1 the third attribute score in population n is 
2 

non-monotonic . 

Case 111: Population n is the same as in Case I .  The 1 
sample scores of the three attributes in population n are drawn 2 
independently from (3.53). With this set up, all the three 

attribute scores in population n are non-monotonic. 
2 

Case IV: The sample scores of the three attributes in 

population n are drawn independently from a uniform distribution 
1 

with mean 7 and variance 8.333. The sample scores of the three 

attributes in population n are drawn independently from a bimodal 
2 

uniform distribution (with 0.5 probability of being drawn from a 

uniform distribution with mean 1.5 and variance 2.083, and 0.5 

probability of being drawn from a uniform distribution with mean 

12.5 and variance 2.083). All the three attribute scores in 

population n for Case IV are non-monotonic. 2 

Ten data sets are generated for each Case. Each data set 

contains 130 cases with 65 cases from each population. Fifteen 

cases from each population are used as the development sample and 

the remaining 100 cases as the validation sample. 

The classification methods are applied with and without 

discretization of attribute scores in this simulation experiment. 

For example, the linear programming approach without 

discretization is to solve (GP2) when I is empty and IM contains N 



all the attributes. This is not originally designed to solve the 

problems in Case 11, 111, and IV. Consequently, I suggest using 

the new linear goal programming approach (GP2) when the attributes 

are non-monotonic. Moreover, the procedures to discretize the 

attribute scores can also be applied to both logistic regression 

and Fisher's linear discriminant function using dummy variables. 

Hence, classification methods with discretization of attribute 

scores are studied. When applying the classification methods with 

discretization to the development samples, the following four 

configurations of discretization are used: 

(MM,3,3,3): All three attribute scores were discretized into 3 
levels, 

(MM,C,C,3): The third attribute score was discretized into 3 
levels, 

(MM,4,4,4): All three attribute scores were discretized into 4 
levels, 

(MM,C,C,4): The third attribute score was discretized into 4 
levels, 

where MM represents the methods used; GP for our linear 

programming model (GP2); LG for logistic regression; FD for 

Fisher's discriminant function. Classification methods without 

discretization are represented by (MM,C,C,C). For example, 

(GP,C,C,C) is the linear programming model without discretization 

of any attribute score. 

(MM,C, C, C) is applied to all the four cases. To reflect a 

situation where only the third attribute is non-monotonic, 

(MM, C, C, 3) and (MM, C, C, 4) are applied to Case 11. For Case I11 

and Case IV, since all attributes are designed to be 

non-monotonic, (MM, 3,3,3) and (MM, 4,4,4) are applied. 

There are many ways to discretize the scores of an attribute 

into different levels. The following suggestion is just one of 

the many reasonable approaches. For non-monotonic attributes, if 

we discretized their scores into three levels, the objects with 

attribute scores in the middle level are expected to have higher 

chances of belonging to one group, while the objects with 



attribute scores in the first level or the third level are 

expected to have higher chances of belonging to the other group. 

In this simulation experiment, since the sample size of the two 

populations in the development sample are equal, I choose to group 

the top 25% of the highest attribute values into the first level, 

the next 50% into the second level, and the bottom 25% into the 

last level. For four levels, the four levels are grouped by the 

top 25% of the highest attribute values, the next 25%, the next 

25%, and the bottom 25%, respectively. With four levels, we 

expect either level two and three representing one group and level 

one and four representing the other group, or level one and three 

representing one group and level two and four representing the 

other group. 

In Case I, both populations are multivariate normally 

distributed as assumed by discriminant analysis, the correct 

models to use are the original classification methods without 

discretization. As a result, only the classification methods 

without discretization are applied to Case I. The average hit 

rates (validation samples) of linear programming, logistic 

regression, and Fisher's discriminant analysis are 77.3%, 77.8%, 

and 78%, respectively. The average hit rates of the validation 

samples of all the methods in Case I1 to Case IV are reported in 

Table 3.8. 

In Case 11, only the third attribute score is non-monotonic, 

and the average hit rates of (LG, C,C,C) and (FD,C,C, C) are 74.6% 

each, and 73.6% for (GP,C,C, C). When the third attribute score is 

discretized as in (MM,C, C, 3)  and (MM,C, C, 41, the range of the 

average hit rates is from 79.0% to 80.1%. These results suggest 

that if some attribute score is non-monotonic, classification 

methods with discretization of the non-monotonic attribute level 

are better models than the original classification methods without 

discretization. 



Table 3.8: Average Hit Rates of all the Methods 

Met hods Case I1 Case I11 Case IV 

Without 
Discretization 

With 
Discretization 

In both Case I11 and Case IV, the classification methods 

without discretization of attribute scores perform very poorly. 

Since all the three attributes are non-monotonic, this result is 

expected. In Case 111, among the classification methods with 

discretization of attribute scores, (GP2) has the highest average 

hit rates in both (MM, 3,3,3) and (MM, 4,4,4). Furthermore, in Case 

IV when the samples are drawn from uniform distribution, (GP2) 

again has the best classification performance. 

3.5 CONCLUSION 

The goal programming model (GP1) is based on the order 

preservation of selected pairs of membership probabilities in the 

development sample. It has worked well in the M.B.A. admission 

problem and in the simulation experiment. The different possible 



variations of using (GP1) need to be explored in terms of the 

quality of solutions and the difficulty in execution. As pointed 

out by Srinivasan [19751, it is far more efficient to solve the 

dual of (GPI) with a bounded variable simplex algorithm. Linear 

programming sensitivity analysis may be used to improve the 

development sample by identifying and deleting cases with bad 

membership probabilities. It will be interesting to see how well 

(GP1) can be used as a general tool of probability estimation in 

other applications. 

The results of the simulation experiment with non-monotonic 

attributes suggest that when some or all of the attribute scores 

are non-monotonic in nature, classification approaches with 

discretization of attribute scores perform much better than the 

classification approaches without discretization. Although the 

procedure for discretizing the attribute scores can also be 

applied to both logistic regression, and discriminant analysis 

using dummy variables, (GP2) has a better classification 

performance than these two approaches in the simulation 

experiment. Moreover, as discussed earlier, another advantage of 

using (GP2) is that it can incorporate prior information more 

easily than statistical discriminant analysis and logistic 

regression. 



Appendix 3.1: Listing of 68 Cases 

Attribute values are listed in the following order: 
JOBL 
4 
5 
3 
1 
4 
3 
3 
4 
1 
1 
3 
4 
4 
1 
3 
1 
2 
3 
3 
3 
3 
3 
3 
2 
1 
6 
3 
4 
1 
1 
3 
2 
3 
4 
1 
3 
4 
4 
4 
3 
4 
4 
3 
3 
1 
3 
4 
3 
1 
4 

YMGT 
5 
6 
8 
8 
10 
0 
0 
8 
16 
5 
3 
6 
8 
0 
0 
7 
7 
0 
0 
12 
6 
2 
0 
2 
7 
15 
3 
7 
9 
0 
4 
3 
2 
6 
2 
0 
10 
10 
14 
0 
2 
7 
0 
1 
4 
0 
3 
0 
3 
2 

JOBS 
4 
2 
0 
0 
1 
3 
1 
2 
2 
0 
1 
1 
1 
0 
2 
3 
1 
0 
2 
1 
0 
1 
0 
3 
1 
0 
2 
2 
1 
1 
5 
4 
1 
1 
1 
2 
3 
0 
1 
3 
1 
1 
0 
1 
3 
1 
3 
5 
2 
1 

DEG 
7 
4 
2 
3 
6 
7 
5 
6 
6 
7 
6 
7 
5 
6 
3 
6 
6 
3 
5 
4 
3 
6 
7 
6 
5 
5 
2 
2 
9 
5 
4 
5 
3 
8 
3 
4 
7 
4 
6 
6 
5 
6 
6 
7 
5 
8 
7 
6 
6 
8 

YEDD 
17 
4 
2 
17 
10 
4 
8 
9 
16 
1 
6 
10 
12 
10 
8 
8 
6 
22 
10 
2 
3 
12 
2 
14 
7 
1 
6 
6 
20 
10 
4 
6 
5 
6 
9 
7 
17 
4 
17 
6 
16 
11 
13 
5 
18 
1 
7 
4 
8 
6 

LETT QGMAT TGMAT 
600 
640 
650 
460 
560 
590 
630 
610 
614 
450 
530 
450 
530 
600 
520 
560 
510 
460 
460 
480 
350 
470 
590 
690 
510 
640 
700 
580 
450 
510 
560 
610 
520 
490 
530 
650 
590 
490 
580 
500 
680 
640 
430 
560 
450 
570 
710 
470 
430 
780 

LETA 
4 
5 
4 
1 
5 
4 
3 
5 
3 
3 
4 
4 
3 
3 
3 
1 
4 
3 
3 
6 
5 
3 
3 
4 
2 
3 
5 
5 
1 
2 
4 
5 
5 
4 
1 
3 
5 
4 
5 
4 
4 
4 
5 
5 
1 
4 
6 
3 
1 
4 

PROB 
.86 * 
.6 
.58 
.19 * 
.82 
.49 
.63 * 
.91 * 
.99 
.26 * 
.31 
.52 
.49 * 
.49 
.27 * 
.49 
.49 
.17 * 
.28 
.19 * 
.ll 
.28 * 
.47 
.67 
.36 
.53 * 
.61 * 
.64 
.49 * 
.25 
.49 * 
.54 * 
.34 * 
.47 
.23 
.57 
.63 * 
.29 
.35 * 
.37 
.55 * 
.81 
.27 * 
.28 
.4 * 
.56 
.91 
.27 * 
.12 * 
.85 



Listing of 68 Cases (continued) 

JOBL YMGT JOBS DEG 
1 0 0 5 
2 5 1 6 
3 3 1 6 
3 6 1 1 
1 14 1 3 
4 3 2 6 
4 9 2 8 
1 18 1 5 
2 14 2 6 
3 0 2 2 
1 5 1 5 
1 0 2 3 
4 3 2 7 
4 9 0 6 
4 11 0 6 
4 5 2 5 
1 8 0 6 
4 5 1 6 

YEDD 
16 
8 

14 
25 
34 
7 
9 

18 
24 
8 

13 
8 
7 

13 
13 
7 

11 
9 

LETT 
3 
0 
4 
3 
3 
4 
4 
3 
0 
3 
3 
4 
2 
2 
4 
5 
5 
5 

QGMAT 
29 
28 
30 
2 1 
14 
32 
45 
26 
34 
25 
31 
19 
37 
33 
38 
39 
36 
30 

TGMAT 
470 
390 
480 
400 
370 
560 
600 
470 
520 
450 
540 
410 
610 
600 
500 
620 
570 
600 

LETA PROB 
1 .29 * 
4 . 1  * 
4 .15 
5 . l l  * 
1 . 2  * 
3 .38 * 
5 .76 
1 .37 * 
5 .49 * 
3 . 2  
1 .43  * 
3 .19 
4 .32 * 
5 .58 
4 .42 * 
3 .41 * 
1 .56 
3 .41 

* : development sample 

Appendix 3.2 : Listing of SPSSX Progranune 

$RUN *SPSSX SPRINT=-OUTX 
FILE HANDLE OSS / NAME="-Q" 
DATA LIST FREE FILE=OSS / 

JOBL, YMGT, JOBS, DEG, YEDD, LETT, 
QGMAT, TGMAT, LETA, PROB 

VARIABLE LABELS JOBL "JOB LEVEL" / 
YMGT "YEARS IN MANAGEMENT" / 
JOBS "JOB SWITCHES" / 
DEG "DEGREE" / 
YEDD "YEARS SINCE EDUCATION" / 
LETT "LETTER OF SUPPORT FROM COMPANY" / 
QGMAT "QUAN GMAT SCORE" / 
TGMAT "TOTAL GMAT SCORE" / 
LETA " AVERAGE OF LET 1, LET2, LET3" / 
PROB "ACCEPTANCE PROBABILITY 0 , l  "/ 

COMPUTE CLASS= (PROB GE 0.50 ) /  
DISCRIMINANT GROUPS=CLASS ( 0 , l )  / 

VARIABLES=JOBL TO LETA/ 
ANALYSIS=JOBL TO LETA/ 
PRIORS=SIZE 

STATISTICS 11 12 13 14 
FINISH 



CHAPTER 4 

LINEAR GOAL PROGRAMMING IN PREFERENCE DECOMPOSITION 

4.1 INTRODUCTION 

Preference decomposition is a class of methods used to 

estimate the values of the attribute levels (part worths) of the 

alternatives given an individual's preference judgments of these 

alternatives. As noted by Green and Srinivasan [19781, the 

primary objective of performing preference decomposition is to 

predict the preference orderings of new alternatives. Usually, a 

set of well selected alternatives is presented to a respondent who 

then expresses hidher preferences for the alternatives in terms 

of either nonmetric or metric measurements. For example, in order 

to study how consumers value the attributes of a certain class of 

products (alternatives), a consumer (respondent) may be asked to 

rank order ten different products which are characterized by their 

differences in the attribute levels. The attributes of the 

products can be brand name, price level, weight of the product, 

special feature, quality and so on. Then the additive preference 

decomposition estimates a part-worth value for each level of each 

attribute. In nonmetric preference decomposition, the 

respondent's preference judgments are represented by either 

ranking of all alternatives or a subset of paired comparisons of 

the alternatives. Common methods for estimating the parameters in 

nonmetric preference decomposition are MONANOVA [Kruskal, 19651, 

PREFMAP [Carroll, 19721, and LINMAP [Srinivasan and Shocker, 

19731. Ratings and constant sum pairwise comparisons [Torgerson, 

19581 are methods used to measure intervally-scaled preference 

judgments. The common metric approach in preference decomposition 

includes ordinary least squares regression (OLS) with various 

forms of dummy variables [Johnston, 19721. 



I develop a linear goal programming model (GPD) for 

preference decomposition where the input preference judgments are 

measured in ratio scale. For each selected pair of alternatives, 

the respondent is asked to state which alternative is more 

preferable and by (at least) how many times the chosen alternative 

is more preferable to the other. Goal programming is used to 

estimate the part worths of all the attributes by minimizing the 

badness of fit between the input preferences and the preferences 

derived from the estimated part worths. Similar to (LINMAP), 

additional prior subjective constraints, if any, on the 

part-worths such as range, monotonicity or bounds can be easily 

enforced in (GPD). 

I conduct a simulation study to compare the predictive 

validity of the two linear programming approaches (GPD) and 

(LINMAP), and also ordinary least squares in estimating the 

preference function. The simulated overall preferences are of 

interval scale. Predictive validity is evaluated by the Pearson 

correlation coefficient and the Spearman rank coefficient between 

the input preferences and the derived preferences obtained from 

each approach. Ordinary least squares and (GPD) both have higher 

average Pearson correlation coefficients and average Spearman rank 

coefficients than (LINMAP) in this simulated study. 

4.2 REVIEW OF PREFERENCE DECOMPOSITION 

Consider the analysis of the preference judgments on n 

alternatives which are completely described in terms of p 

attributes. Let X be a nxp matrix where xik denotes the k-th 

attribute value of the i-th alternative for i=1,2, . . . ,  n, and 
k=1,2, ...,p. Thus the i-th row of X describes the i-th 

alternative in terms of the p attributes. Usually, it is assumed 

that for each k, where k=1,2, ...,p, the k-th attribute has g k 
distinct values (levels). For k=1,2, ...,p and .!=1,2, ..., gk' let 

yk! 
denote the 1-th value of the k-th attribute. 



The part-worth function model [Green and Srinivasan, 19781 

posits that for each i=1,2,. . . ,n, the overall preference, Si, 
associated to the i-th alternative is given by 

where f (y ) denotes the part worth of yke and 
k kt 

( 1, if the value of the k-th attribute of the i-th 
alternative is y k e 

( 0, otherwise. 
i 

The dummy variable akt captures the presence (=I) or absence (=O) 
of yke in the k-th attribute of the i-th alternative. Equation 

(4.1) is also used by Wittink and Cattin [I9811 to generate data 

for a Monte Carlo study of alternative estimation methods for 

preference decomposition. The aim of the preference decomposition 

is to estimate each of the g +g +.. .  part worths fk(yke) for 
1 2  + g ~  

k=1,2,. . . ,p and .!=1,2,. . . ,gk, from data matrix X and input 
preference in 52. Let wek denotes the estimated value for the part .. 
worth fk(yekl. It follows from (4.1) that Si is estimated by Si 

where 

Other forms of the preference function are the vector model 

and the ideal point model. The overall preference, Si, of the 

vector model is given by: 
P 

where x is the k-th attribute value of the i-th alternative and ik 
w is the weight of the k-th attribute. For the ideal point k 
model, the weighted Euclidean metric of the i-th alternative from 

1 /2 

the ideal point is given by [' wk(xik - zk)j , where z is 
k=l 

k 

the k-attribute value of the ideal point (the most preferred point 



in the p-th dimensional attribute space) of the respondent. The 

overall preference, Si, is stated as follows: 

The smaller the value of S, the closer the alternative to the 

ideal point; and therefore, the more preferred will be the 

alternative. 

Monotonic ANOVA (MONANOVA) was proposed by Kruskal 119651. 

MONANOVA attempts to find a set of wke and a set of Z (where 
i 

Z.=f(S.) are the monotonically transformed values of Si) for 
1 1 

i=l, . . . , n, k=l, . . . , p and e=l,. . . ,gk, in order to minimize the 
badness of fit function or stress, S: 

where Si = 1 ~ ~ ~ 6 ; ~ .  and S is the mean of Si. The stress 
k=l e=i 

function has a lower limit of zero and an upper limit of unity. 

PREFMAP [Carroll, 19721 relates preference data to a 

multidimensional solution. In nonmetric PREFMAP, an individual's 

overall preference of an alternative, is assumed to be ordinally 

related to the weighted squared distance of the alternative to the 

individual's ideal point. In metric PREFMAP, however, overall 

preference is assumed to be linearly related to the weighted 

squared distance from the ideal point. Using multiple regression, 

both the weights and ideal points can be estimated. The multiple 

regression model is stated as follows: 

where a and b are parameters to be estimated, and E is an error i 
term. 



Srinivasan and Shocker 119731 developed a linear programming 

model (LINMAP) in preference decomposition. Let R = {(i,j)) be 

the set of all paired comparisons obtained from the respondent 

with the i-th alternative being more preferred to the j-th 

alternative. Using the part worth function model as the 

preference function, their model is stated as follows: 

MIN dij 
(i, ~)ER 

w is the estimated value of the part worth f (x for kt k kt 
k=1,2,. . . ,p and l=1,2,. . . , gk' 

(LINMAP) is designed for ordinally-scaled preference data. 

When ordinally-scaled preference data is collected by paired 

comparison approach, the respondent is asked to state which 

alternative is more preferred. However, more information may be 

contained in ratio-scaled preference data when the respondent is 

asked to state how many times the preferred alternative is being 

more preferred to the other alternative. Since (LINMAP) does not 

incorporate the higher level preference information when 

estimating the part worth, I develop a linear programming model 

which utilizes ratio-scaled preferences judgments as the input 

data. 

4.3 MODEL FORMULATION 

In this section, I introduce a linear goal programming model 

for preference decomposition (GPD), with the input preference 

judgments measured in ratio scale. Let the overall preference 

associated to the i-th alternative be quantified by S 
i' 



i=1,2, ..., n, and for each pair of alternatives i and j, the i-th 
alternative is preferred to the j-th alternative whenever S >S 

i J' 
Let R = {(i,j,t 1) be the set of all paired comparisons obtained 

i .I 
from the respondent, with the i-th alternative being t times 

i j 
more preferred to the j-th alternative for tijrl. Then for each 

i t  in R, we expect the ratio (S /S 1 to be t under 
i j i J i j 

perfect consistency. That is, 

- t  S = 0 ,  i j j  V(i, j, t 1 in R. 
i j 

To be consistent with the input preference structure (4.10) in R, 

it is desirable that 

i=1,2,. . . ,n, satisfy 

A 

the estimated overall preferences Si, 

in (4.11) is too restrictive, deviational Since exact equality 
+ 

variables d and dij are introduced to allow for inconsistencies i j 
which may exist in the input preference structure in R. Thus 

(4.11) becomes 

+ - 
C 

+ 
The sum (dij + dij) of all dij and dij in (4.12) is 

(i, j, tij)cR 
A 

the badness of fit between Si and S with respect to the input 
i 

preference structure in R. Substituting (4.1) into (4.121, we get 

V , , t i j  in . Thus the problem of finding the best solution 

{wkL) from the data matrix X and the input preference R reduces to 

a goal programming problem of finding {wke) which minimizes the 
+ - -~ ~ 

badness of fit C (dij + dij) subject to the 
(i, j, tij)~R 

constraints (4. l3), V (i, j,t ) in R. 
i j 

However, it is sometimes difficult for the respondent to 

express the exact value of t directly. It is better to ask the i j 
respondent "at least" how many times he/she prefers the i-th 



alternative to the j-th alternative instead of asking hidher the 

exact number of times he/she prefers the i-th alternative to the 

j-th alternative. Intuitively this allows more robust input from 

the respondent and hence more reliable results may be obtained 

from the goal programming model. Now suppose Q = {(i,j,t 1) is 
i J 

the set of all paired comparisons obtained from the respondent 

with the i-th alternative being at least t times more preferred 
i j 

to the j-th alternative. Then for each (i, j, ti , I ,  the positive 
+ A ,. A .J 

value of d- 
ij (dij 

=0) implies that Si<tijSj, which conflicts 

directly with the input preference in 52. But the positive value 

of dlj (d: .=O) implies that ii>tijSj, which is still consistent 
13 - 

with the input preference in 52. Consequently, d i i  should be 
+ J 

minimized before dij is minimized in the objective function. 

I can now define formally the goal programming model for the 

preference decomposition as follows: 

(GPD) MIN P1 [ (i, j, C I J  t. .)EQ d;j]+~2[ (i, j, i tij)€Q d;j] 
(4.141 

P is much greater than P to allow for a larger penalty on the 
1 2 

+ 
deviational variables d- than di j. 

i j 
Perhaps (GPD) should be 

solved as a preemptive goal programming problem [Kornbluth, 19731 
+ 

so that no part of d is ever traded off by any part of d- 
ij' 

The 
i J - 

primary objective is to minimize C di j 
in attempting 

i j t )EQ 
i j 



S The secondary objective is to minimize to achieve Sirtij j. 

+ A A 

C di j for reaching S i =t ij S j' 
(i, j, t. .)dl 

1 J 

P 
The inequity 1 

k= 1 

constraint. It can be 

relative values of the 

same if the right hand 

1 wke L 1 is the normalization 
e=i 

shown by direct verifications that the 

optimal part worths wkt will remain the 

side of the normalization constraint is 

changed to any positive constant other than 1. Furthermore, for 

any nontrivial solution {wit) which is feasible in (GPD) without 

the normalization constraint, there exists a feasible solution 

{w;} in (GPD) such that the relative values of w are the same 

as the corresponding relative values of {w" ). Thus, the only kt 
effect of the normalization constraint in (GPD) is to avoid the 

trivial solution (all wkfO). 

The wkt obtained from solving (GPD) can then be used to 

compute the estimated preference for any alternative by simply 

summing up w for all relevant part worths. Thus the rank kt 
ordering of all the alternatives can be determined by the 

magnitudes of their estimated preferences. 

4.3.1 Discussion 

Several parameter estimation methods in preference 

decomposition can be used to estimate the part worths. In 

particular, linear programming techniques for multidimensional 

analysis of preferences (LINMAP) have higher predictive validity 

over other methods when there is a dominant attribute [Wittink and 

Cattin, 19811. (LINMAP) posits that Si-s.10 whenever the i-th 
J 

alternative is preferred to the j-th alternative. The overall 

preference, Si, may also be defined in terms of the distance from 

the i-th alternative to an ideal alternative. In (GPD), Si-SjzO 

is replaced by Si/S It with tijtl. Conceptually, Si/S.rtij j ij J 
has more preference information than S.-S 10 when t >1. 

1 J i j 



Furthermore, the only feasible solution cut off by the 

normalization constraint in (GPD) is the trivial solution. There 

is no unnecessary restrictions introduced by the normalization 

constraint. 

Usually, it is easier for a respondent to identify the 

preferred alternative as compared to express the magnitude of 

hidher preference. The cost of having more preference 

information in S /S rt is the difficulty in eliciting tij from 
i j iJ 

the respondent. One possible method to determine t is the 
i j 

constant sum pairwise comparisons by Torgerson [19581. Another 

way to assist a respondent in determining tij in the paired 

comparison is the nine points intensity scale used in the Analytic 

Hierarchy Process [Saaty, 19771. Harker and Vargas [I9871 

supported the use of the 1 to 9 scale in Saaty' Analytic Hierarchy 

Process. The ratio scale used in the Analytic Hierarchy Process 

ranges from 1 to 9 and represents the preference of one 

alternative to the other such as: 

1 - indifference: at least 1 time, 
3 - slightly more preferred: at least 3 times, 
5 - strongly more preferred: at least 5 times, 

7 - demonstratedly more preferred: at least 7 times, 
9 - absolutely more preferred: at least 9 times. 

Intermediate values of 2,4,6 and 8 are used when a more refined 

compromise is needed. As long as all the paired comparisons of a 

respondent are underestimated in the 9 points scale, the 

constraints S./S.rt implicitly implied by (4.15) in (GPD) are 
1 J ij 

accurate and thus the corresponding solutions are meaningful. 

Theoretically, there are (gl)(g2) . . .  (g distinct 
P 

alternatives from which n of them are selected for preference 

evaluation, and there are n(n-1)/2 distinct pairwise comparisons. 

When n is large, it is not feasible to conduct all the paired 

comparisons. Thus the set R used in (GPD) may be replaced by a 

well selected subset R' of R. In practice, only the paired 

comparisons in R' would be elicited from the respondent and 



incorporated into (GPD). Orthogonal array is one of the many 

methods available for the selection of some representative subset 

R' from R [Green, 19741. Table 4.1 illustrates an orthogonal 

array of four attributes, each with three levels. It should be 

pointed out that more reliable solutions would be obtained from 

(GPD) by increasing the size of the subset R'. 

Table 4.1: A Symmetrical Orthogonal Array for the 
4 
3 Factorial Design 

- -- 

Attributes and Levels 

Alternative 

4.3.2 Computation Example 

Consider the preference of alternatives with four attributes, 

each with three levels of values. By using orthogonal arrays, 

nine alternatives are selected to be included in the development 

sample with the remaining 72 alternatives in the validation 

sample. To test whether (GPD) can perform well and predict 

preferences from other models, the input preference is generated 

by the vector model (4.2). The attribute values yke for the nine 

chosen alternatives X, the weights wk for the four attributes W 

and the overall preferences Si of the alternatives XW are: 



A random error value, E is added to each of the nine overall 
i 

preferences in XW. The random error has zero mean and a constant 

variance. The perturbed values of the nine overall preferences 

XW+E are used as input into (GPD). The part-worth values w k.!? 
obtained from solving (GPD) and the original attribute values yke 

are given in Table 4.2 below: 

Table 4.2: The Part-worth values wke obtained from (GPD) and the 

original attribute values y k .!? 

ATTRIBUTE 

LEVEL 1 2 3 4 1 2 3 4 

1 1 1 1 1 0.000 0.000 0.088 0.079 
2 2 3 2 2 0.011 0.025 0.065 0.129 
3 3 5 4 10 0.041 0.065 0.141 0.356 

The estimated part-worth values w are used to compute the 
A k.!? 

estimated overall preference Si for the nine alternatives in the 

development sample and the 72 alternatives in the validation 

sample. The predictive validity is supported by the Pearson 

correlation coefficient of 0.942 and the Spearman rank coefficient 
A 

of 0.944 between the original Si values and the estimated Si 

values in the validation sample. The Pearson correlation 

coefficient and the Spearman rank coefficient between the original 
A 

S. values and the estimated Si values in the development sample 
1 

are 0.942 and 0.883 respectively. (GPD) has performed well in 

this example. 



4.4 SIMULATION EXPERIMENT 

I design a simulation experiment to evaluate the performance 

of (GPD), (LINMAP) and Ordinary Least Squares (OLS) approaches in 

preference decomposition. The data generation procedure is 

similar to Wittink and Cattin [19811. The input preference Si is 

derived from the part-worth function model, equation (4.1 1, where 

all the part worths are drawn from a normal distribution with mean 

zero and variance one. In this experiment, 30 data sets are used, 

each data set consisting of 81 alternatives with four attributes, 

each having three levels of values or part worths. By using 

orthogonal arrays, nine alternatives are selected to be included 

in the development sample with the remaining 72 alternatives in 

the validation sample. A random error value is added to each of 

the nine overall preferences in the development sample. The 

random error has zero mean and its variance a2 is computed from e 
the same formula used by Wittink and Cattin as follows: 

2 
where 13~ is the error variance and 6 is the variance in the 

e s 
overall preference S before the error term is introduced. I use i 
three different values, 0.1, 0.2, and 0.35 for E in this 

experiment. The higher the value of E, the larger is the noise 

term being introduced into the input preference. I randomly 

generated 10 data sets for each of the E values, and the perturbed 

values of the nine overall preferences are used as input into 

(GPD), (LINMAP), and (OLS). The softwares I used for (LINMAP) and 

(OLS) are Conjoint Linmap [19891, and Conjoint Analyzer [ 19871, 

respectively. 

The estimated part-worth values w obtained from the models kt ,. 
are used to compute the estimated overall preference S for the 72 i 
alternatives in the validation sample. The predictive validity is 

evaluated by the average Pearson correlation coefficient and the 

average Spearman rank coefficient between the original S values i 



A 

and the estimated S values in the validation samples. The 
i 

results are reported in Table 4.3. 

Table 4.3: Average Pearson correlation coefficient and average 
Spearman rank coefficient of (CPD), LINMAP and (OLS) 

Pearson correlation Spearman rank 
coefficient coefficient 

E (GPD) (LINMAP) (OLS) ( GPD 1 (LINMAP) (OLS) 

average 0.910 0.857 0.911 0.904 0.860 0.903 

The average Pearson correlation coefficient and the average 

Spearman rank coefficient of (GPD) and (OLS) are higher than the 

coefficients of (LINMAP) in all three cases. For the Pearson 

correlation coefficient, (GPD) is higher than (LINMAP) by 0.0541, 

0.0522, and 0,0492 when E equals to 0.1, 0.2, and 0.35, 

respectively. For the Spearman rank coefficient, (GPD) is higher 

than (LINMAP) by 0.0451, 0.0511, and 0.0368 when E equals to 0.1, 

0.2, and 0.35, respectively. In all three cases, both the average 

Pearson correlation coefficients and the average Spearman rank 

coefficients of (GPD) and (OLS) are very close to each other. 

4.5 CONCLUSION 

A linear goal programming model (GPD) is introduced to 

estimate the part worths in preference decomposition. The model 

uses ratio scaled input preference judgments which contain more 

preference information than ordinal scaled preference judgments 

commonly used in many preference decomposition models. Since the 

objective of (GPD) is to directly minimize the badness of fit 

between the input preferences and the derived preferences, more 

reliable estimates for the part worths may be expected from the 

model. In this simulated experiment (GPD) and (OLS) have better 



performance than (LINMAP) in terms of the Pearson correlation 

coefficient and the Spearman rank coefficient between the input 

preference and the derived preference. Additional empirical 

studies are needed to evaluate the efficiency and the predictive 

power of (GPD). 



CHAPTER 5 

CONCLUSION 

In this paper, I develop several new linear goal programming 

models to solve the problems in classification and preference 

decomposition. In chapter 2, with an analog of multicriteria 

optimization framework, I provide a systematic way of generating a 

whole array of meaningful criteria and introduce five new 

mathematical programming models for cluster analysis. The ability 

to generate many meaningful criteria for evaluating cluster 

solutions increases the power and the flexibility of applying 

mathematical programming approaches to cluster analysis. This 

will likely motivate more frequent applications of mathematical 

programming approaches to cluster analysis. The computational 

results obtained from applying the clustering models to a 

published data set support the use of mathematical programming 

models. Future researches applying the above techniques to 

solve the problems in cluster analysis should be very interesting. 

In chapter 3, I introduce two new linear goal programming 

models for discriminant analysis. The model (GP1) incorporates 

the within group discriminate information in discriminant 

analysis. It is based on the order preservation of selected pairs 

of membership probabilities in the development sample. 

Intuitively, this model may provide more accurate estimations of 

the attribute weights than other techniques which ignore the 

within group discriminate information. It has good performance 

in both the M.B.A. admission problem and the simulation 

experiment. The model (GP2) allows non-monotonic attributes to be 

included in the classification function. Since in some 

situations, the implied monotonicity of the attribute scores may 



be violated, thus (GP2) provides more flexibility in applying 

linear programming techniques to classification problems. The 

results from the simulation experiment support the use of (GP2) to 

solve the classification problems when non-monotonic attributes 

are present. 

The existing linear programming approaches in preference 

decomposition only allow the input preference judgments to be 

measured in ordinal scale. Theoretically, ratio scale preference 

judgments contain more information than ordinal scale preference 

judgments. Therefore, in chapter 4, I introduce a linear goal 

programming model (GPD) for preference decomposition with the 

input preference judgments measured in ratio scale. (GPD) 

performs well in the simulation experiment. Although the 

performance of (GPD) and (OLS) are close in the simulation 

experiment, (GPD) has the advantage that additional constraints 

which reflect useful prior information can easily be added. 
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