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ABSTRACT 

This thesis is based on two distinct studies. In the first a model is described for the 
computation of flows in shallow seas driven by density gradients. Two numerical algorithms 
are proposed. The first one is based on a splitting method: at each time-step, the surface 
elevation and vertically integrated mass transports are computed from the depth-averaged 
equations, then the vettical structure of the current is obtained from the horizontal momentum 
equations. The second is based on a Galerkin spectral method using eddyviscosity 
eigenfunctions for the vertical coordinate and a B-grid for the horizontal coordinates. The 
accuracy of the former is tested on four problems and that of the latter on two problems for 
which exact steady-state solutions can be computed. These problems have been chosen to 
distinguish between the effects of horizontal density gradients, vertical structure of the 
density field, variable depth and Coriolis forces. Both the numerical models are then used to 
compute that part of the residual currents in the Arabian Gulf caused by density gradient, 
using as input a series of measurements of the density field made during the Winter of 1977. 

The second part of the thesis is concerned with the estimation of both constant and position- 
dependent parameters in a sectionally integrated hydrodynamical model of tidal flow. Bottom 
friction coefficients and water deptk, art parameters estimated and the available data consists 
of measured periodic values of water surface height at certain stations. The adjoint equation 
formulation is used to obtain the parameter equations, and several optimization algorithms 

are examined and compared for the iterative refinement of the parameter values. A direct 
method, which avoids the use of the gradient of the cost function, has also been investigated 
to estimate the optimal values of the constant parameters. This method is somewhat more 
expensive than the adjoint/variational method. 
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CHAPTER 1 INTRODUCTION 

Most numerical models presently being used for computing flows due to tides and stom 

surges are based on the so-called shallow water equations. These equations are obtained 

from the full three-dimensional hydrodynamical equations by averaging over the vertical CG- 

ordinate. There are several computational methods which have been used to solve 

numerically these equations. Finite-difference schemes (Hansen 1962; Leendertse 1967; 

Matthews and Mungall 1972; Flather and Heaps 1975; Lardner et al 1982; Duff 1983) are the 
most widely used techniques among these methods. Other numerical schemes have been 

devised, using finite elements (Connor and Wang 1973; Taylor and Davis 1975; Brebbia and 

Partridge 1976; Connor and Brebbia 1976; Pinder and Gmy 1977; Wang 1978), harmonic 

analysis in time plus finite elements in space (Le Provost and Poncet 1978; Le Provost et a1 

1981; Pearson and Winter 1977) and the method of characteristics (Townson 1974; Lai 1976; 

Lardner et al 1986; Cekirge et a1 1986). 

In spite of the approximations made in the advective terms and the bottom friction terms in 

deriving the shallow water equations, the two-dimensional schemes are highly successful for 

tidal flows but yield only the free surface height and depth-averaged components of velocity. 

For many purposes this information is not enough, and the vertical profile of the velocity is 

required, for example, when computing the movement of an oil slick (which depends strongly 

on the surface velocity), the force on an underwater pipeline or wind driven flow (where the 

surface velocity differs strongly from the depthweraged velocity). For this purpose, in recent 

years, three-dimensional flow models have been developed by a number of workers. The 

earliest of these models are based on some kind of finite difference schemes in three 

dimensions (Sundermann 1974; Simons 1974; Laevastu 1975; kndertse  & Liu 1975a, b; 

Sengupta et a1 1978; Johns et al 1983). Heaps (1979) has used an appropriate integral 

transform in the vertical dimension. Davies & Owen (1979) and Davies (1980a, b; 1983) 

have used a Galerkin method of solution, using various sets of basis functions of the vertical 

coordinate. Recently, Lardner (1990) has proposed a more efficient numerical algorithm based 

on a Galerkin spectral method using eddy-viscosity eigenfunctions for the vertical coordinate. 

All of these three-dimensional schemes are generally an order of magnitude more expensive 

in computer time than the two-dimensional schemes. Another approach in which the two- 

dimensional equations are solved using bottom friction modelled by a convolution integral 



derived from the three-dimensional equations has been proposed by Welandu (1957). 
Jelesniansky (1 WO), Forristal (1 974, 198O), Jordan and Baker (1 980)- Davies (1 987, 1 95 8), 
Jamart and Ozer (1987) and Hearn and Hunter (1988). This algorithm, which treats the 

convolution integral in an approximate way, compares well with the two-dimensional 

algorithms in computer time, but is practically infeasible when the viscosity coefficient is rl 

general time-dependent function. 

Lardner & Cekirge (1988) and Lardner & Smoczynski (1990) have proposed an alternative 

scheme, called the V/HS algorithm (short for vertical/horizontal splitting). The basic approach 

of this algorithm is to obtain the surface elevation and the depth-averaged velocity 

components at the given time step using one of the existing two-dimensional schemes. 

These values are then used as a part of the input to the horizontal momentum equations, 

which are solved separately at each horizontal grid point for the vertical profiles of the 

velocity. Davies (1985a) and Lardner & Cekirge (1987) have used this approach to obtain 

velocity profiles from steady flows, and Davies (1985b) and Backhaus (1985) have proposed 

related schemes for dynamical problems. 

In the first part of the thesis, we shall be concerned with computation of the currents caused 

by such gradients. Density gradients in near-coastal seas are established by such processes 

as evaporation, fresh-water run-off and precipitation. While the magnitude of these currents 

is usually quite small, compared to tidal currents for example, they can be a dominant factor i n  

phenomena such as pollutant transport where long-term drift is of concern. 

We shall be interested in particular in modelling a commonly found situation in which the 

time-scale for changes in the density field itself is much longer than the time-scale for 

establishment of a quasi-steady flow Eeld in the region of interest. In this situation, it is 
possible to ignore the salinity transport when computing the flow velocities and to assume 

that the density field is fixed. Its values can be taken from observational measurements. 

We shall describe and test two numerical schemes for computing such density-driven flows, 

the first based on the V/HS algorithm and the second on the spectral method in the vertical 

and a B-grid in the horizontal, and shall apply these schemes to the computation of these 

flows in the Arabian Gulf. Here the dominant factor in establishing the density gradient is 

evaporation; the flesh-water run-off is rather insignificant except near the head of the Gulf. 

The changes in density field typically occur over time-scales of one to three months, while the 

time-scale for establishment of a steady flow over the region is not more than about a week. 



The accuracy of the algorithms will be tested on a number of test problems for which the exact 
steady state solutions are known. The basic density driven flow pattern in the Arabian Gulf 
turns out to be as expected, but the details of the flow show several surprising features. In 
particular, the magnitudes of the velocities are smaller by a factor of 2-5 than has been 
suggested by some authors.The algorithm based on the spectral method produces more 
accurate results in the test problems than the direction-splitting algorithm and the computed 
flow in the Gulf, while generally consistent with that found using the latter algorithm, does 
not show the irregularities near the o p n  boundary found there, and in other earlier 

computations. 

The second part of the thesis is concerned with the estimation of parameters in numerical 
tidal models. The earliest such models have been based on the vertically-integrated 
continuity and momentum equations, and yield values of the surface elevation and depth- 
averaged velocity components. The parameters in such models arc usually the water depth 
and the bottom friction coefficient, both of which arc in general gositiondependent. 
Traditionally, numerical tidal models are "tuned" by adjusting these parameters so as to 
make the predicted surface elevations at certain tide stations agree as closely as possible 
with their observed values. This technique is not only tedious and difficult to do in any 
systematic way, but is also unsatisfactory insofar as one can never be sure that such 
"manual" adjustment of the parameters yields their optimal values. These difficulties become 
greatly magnified in the case of full three-dimensional numerical models in which the vertical 
profiles of velocity are computed and in which additional parameters such as eddy-viscosity 
must be estimated. 

In recent years systematic techniques of data assimilation based on optimal control methods 
have been developed, particularly in the field of meteorology. These methods were originated 
by Sasaki (1955, 1970) and Marchuk (1974) and have more recently been developed and 
applied by Lewis and Derber (1985), Le Dimet and Talagrand (1986), Harlan and O'Brien 
(1986). Hoffman (1986), Lorenc (1986, 1988), T d a p d  and Courtier (1987) and Courtier 
and Talagrand (1987). Recent reviews of much of this work are given by Lorenc (1986), 
Navon (1986) and Le Dimet and Navon (1989). Similar methods have also been used by 
Chavent et al. (1975) and Carrera and Neumann (1986a,b,c) to estimate the parameters in 
models of flow in porous media. 

In thc field of oceanography such optimal control methods have also recently come into use. 
Bennett and Mclntosh (1982) and Prevost and Salmon (1986) have applied the weak 



constraint formalism of Sasaki (1970) to tidal flow and geostrophic flow problems. More 
recently the strong constraint formalism has been used by Panchang and O'Bxien (1989) to 
determine the bottom friction ccefficient in a problem of flow in a channel using some earlier 
experimental results. Srnedstad and O'Brien (1991) has extended this approach and used it 

to determine the effective phase speed in a model of the equatorial Pacific Ocean based on 
observations of sea level. Yu and O'Brien (1990) have used a similar method to estimate the 

eddy viscosity and surface drag coefficient from measured velocities of a wind-driven flow. In 

recent years, extensive application of the adjointivariational formulation to the North Atlantic 
Ocean using steady state general circulation models Rave been carried out by Tzipennan and 

his associates (see, Tziperman and Thacker, 1989; Tziperman et a1 1990a, b). Among other 
things, they have calculated poorly known parameters such as eddy-mixing coefficients, and 
surface forcing and tracer boundary fluxes by fitting model results to observations. 

For many water bodies, there exists an abundance of observational data an tidal amplitudes 
and phases, collected often over several decades from tide gauges. This thesis is concerned 
with the assimilation of such periodic data, using Sasaki's strong constraint formalism, in 
order to estimate the parameters in a depth-averaged numerical tidal model. The work is an 
extension in several directions of that of Panchang & O'Brien (1989). First, we have 
investigated the feasibility of using this approach to estimate more than one parameter and, 

more importantly, distributed parameters; second, we have assimilated periodic data rather 
than initial value data; and third, we have examined and compared several numerical 
optimization algorithms. 

We shall consider an idealized problem, similar to that considered by Panchang and O'Brien 
(1989), involving flow in a channel of uniform width. One end of the channel is open, the other 
closed, and the water elevation at the open end is varied harmonically with some known 
amplitude. Measurements of surface elevation are assumed to be made at two tide stations 
at points interior to the channel. In the case of linear friction and constant depth, the 
"measured" values are assumed to be equal to the analytic solutions at the two stations. In 
cases of quadratic friction and/or variable parameters, they are computed numerically using a 

grid and time-step an order of magnitude smaller than those used for the parameter 
estimation. 

The parameters to be estimated are the water depth and either the linear or quadratic bottom 
friction coefficient. (In tidal models, the bath ymetry is commonly taken from navigational 
charts, and such depths must be corrected by amounts that arc unknown a priori, for two 

reasons: navigational charts are invariably conservative insofar as they arc designed to 



prevent ships hitting bottom, and second, the depths on them are relative to some low water 
level that must be corrected to mean water level. It is reasonable to treat such depth 
corrections as tuning parameters that are adjusted to optimize the fit with observed surface 
elevations.) 

The variational method involves minimizing a certain functional with the given boundary value 
problem as a consmint. Construction of the gradient of this functional with respect to the 
parameters leads to an adjoint boundary value problem that must be solved backwards in 

time. A similar numerical method is used to solve both the direct and adjoint dynamical 
equations, namely a leapfrog method with staggered spatial and temporal grids. Several 
minimization algorithms are examined and compared for computing the final parameter values 
using the computed gradients: the secant method, a direct iteration method proposed by 
Panchang and O'Brien (1989), the Polak-Ribiere conjugate gradient method, the conjugate 
gradient method with Beale restarts and the BFGS quasi-Newton method. 

We will also present a second approach for estimating the parameters in the same channel 
problem using a direct optimization method which avoids the use of gradient of the cost 
function. 

In chapter 2 we present the basic equations on which the work in this thesis will be based. 
Chapter 3 describes the numerical algorithms used to compute the density driven flows. The 
test problems on which these algorithms will be tested for accuracy will be presented in 
chapter 4. In chapter 5 we will present the results obtained for the Arabian Gulf. Chapter 6 
and 7 will contain the derivation of the adjoint equation, continuous and discrete, and test 
results applying the numerical algorithm for parameter estimation on one-dimensional 
channel problem with tidal-forcing. Finally, in Chapter 8 we present the results on parameter 
estimation using an optimization method which does not use the gradient. 



CHAPTER 2 - 
The equations that form the basis of the model are the usual momentum and mass 

conservation equations and their depth-averaged forms. For the present problem these 

equations contain some extra terms beyond those commonly used. The basic equations here 

are based on an eddy-viscosity model of turbulence; furthermore the fluid is assumed to be 

incompressible, horizontal eddy shear stresses are neglected, and the vertical momentum 

equation is approximated by the hydrostatic pressure equation. 

We use a system of Cartesian coordinates with the z - axis pointing vertically upwards and 

the xy - plane occupying the undisturbed position of the water surface. The position of the 

bottom is taken to be z = - h (x, y ) while the surface at time t is z = < (x, y, r ). The 

horizontal components of fluid velocity are denoted by u (x, y, z, t ) and v (x, y, z, r ). 

As usual, the vertical momentum equation is approximated by thz hydrostatic 

equation 

where P is fluid pressure, Po is atmospheric pressure, assumed constant, g is the 

acceleration due to gravity and p (x, y, z ) the given fluid density. 

Flows driven by density gradients are generally quite slow, so that the advective terms in the 

horizontal momentum equations are very small and can be ignored. These equations then 

take the form 

Here, f is the Coriolis parameter, p is the (dynarnical) eddy viscosity and subscripts of x ,  y , 

z or t denote the corresponding partial derivative. 

It is convenient to introduce a sigma coordinate (Phillips 1957) in the vertical direction in the 

(Z + h) 
usual way as O =  , where H = h + 5. is the total water depth. The free surface is 



then a = 1 while ihe bottom is o = 0. Using the chain rule, we can then rewrite equations 

(2.2) in the form (Lardnei- & Smoczynski 1990; Johns et al 1983) 

while, from (2. I), the pressure 

m * y *  a, 0 = 

is given by 

1 

Po + gH u p(x,  y, d) d d .  

In equations (2.3). the second term on the left is small and can be neglected. After 

substituting from (2.4), these equations then simplify to 

where 

and 

In R,  T (x) and T (J? we can approximate H = h since this factor is already multiplied by 

small quantities. This approximation is generally of the same order as our earlier neglect of 

the advective terms. With this approximation and the earlier assumption that the density field 

is treated as fixed, T and T @ )  provide constant forces driving the flow. 

In addition, we have boundary conditions on a = 0 and 1. We assume that the surface is free 

of shear traction, so we have the boundary condition u, = v ,  = 0 on a = 1. On the 

bottom the boundary condition is 



where zcbX) and .fcby) are the components of bottom drag. It is assumed that these 

components are given in terms of the velocity at the bottom by a combination of linear and 

quadratic terms, 

(+"), dbY')= P ( T +  J G ) ( u , v )  on O = O  (2.9) 

where K1 and K~ are the linear and quadratic drag coefficients and the average density 

(see below). In general, it is physically more realistic to use a quadratic dependence of 

bottom friction on velocity, but in the case a density-driven flow is superimposed on other, 

possibly much larger, flows, such as tidal and wind-driven currents, it may be more 

appropriate to use the linear form for bottom friction (Hunter 1975). The form (2.9) retains 

both options. 

The kinematical boundary conditions are 

where superscripts of s and b refer respectively to o = 1 and o = 0, w is the vertical 

component of fluid velocity, W is the velocity of evaporation (minus the velocity of 

precipitation if that is significant) and po the density of pure water. 

The mass conservation equation, 

can be used to compute w if required. However, it is used here only in integrated form. 

Defining the average density and the components of mass transport by 

and integrating equation (2.1 1) over the water column from z = -h to z = (, we get, (Pinder 

& Gray 1977) after using (2. lo), 



The depth-averaged momentum equations are obtained by similarly integrating equations 
(2.2) over the water column. They take the form 

where 

s"' = t gH2 px + $Q ., s"'= t & j~ + &? ,, 

and 

Again, we can approximate H = h in Q, S ( X I  and S b), in which case these terms also 
become constant driving forces. 

We can compute the steady currents caused by a given density field by integrating the 
dynamical equations (2.5). (2.13) and (2.14), starting with 6, u and v initially zero 
everywhere, and stepping forward in t until a steady solution is reached. The time-stepping 
algorithm we have used (Lardncr & Cekirge 1988; Lardner & Smoczynski 1990) is split into 
two parts: first the quantities c, p and q are stepped forward by using the depth-averaged 
equations (2.13) and (2.14), then the velocity profiles are up-dated by solving equations 
(2.5): Having found the complete velocity field, the bottom drag stresses are updated by eqn 
(2.9) for use in eqns (2.14) on the next step. A second algorithm based on a spectral method 
in the vertical coordinate has also been developed. Further details of these numerical 
schemes arc given in chapter 3. 

For both of the algorithms, lateral boundary conditions are required, of the same forms as for 

the usual two-dimensional hydrodynarnical models. On coastal boundaries, the normal 

component of the mass flux vector @,q ) is taken to be zero. The appropriate condition on the 

open part of the boundary is the subject of considerable debate and we have tried four 
different approaches to the condition there. 

(i) C is set qua1 to zero at all open boundary pints 

(ii) C is set equal to zero at one of the boundary points and at the other points is 
determined from the geostrophic balance, 



according to the direction along the boundary. 

(iii) A radiation condition of the type proposed by Blurnberg and Kantha (1985) is 

assumed: 

where is the normal derivative and T, is a relaxation time. 

(iv) The region has been artificially enlarged by an additional five grids normal to the open 

boundary, with the depth and density extended continuously and the bottom friction 
substantially increased in the extra region. On the new open b u n d a r y  a condition of 

one of the types (i)-(iii) is assumed. 

We have found that for each of the two algorithms these four approaches lead to significant 

differences in the steady flow field only within two or three grid spacings of the open 

boundary. In the case of the Gulf, with the grid used, the open boundary contains just three 

grid points, so the solution at all but about six grid points is approximately the same 

regardless of the boundary condition chosen. 

We have also used the algorithms to compute the flows due to some model density fields for 

which the exact steady state flows can be found and which exhibit four principal features of 

the problem. These flows are included mainly as a test on the accuracy of the algorithms, but 

also because they are not without their own interest. The fust of them is in fact well-known 

in the estuarine literature. Details of these tests can be found in chapter 4. 



i2EuaEu FOR DENSITY DRIVEN FLOWS 

In this chapter, we shall outline the numerical schemes used to compute the velocity fields. 
First we shall describe the V/HS algorithm and then the spectra! method using the eddy- 
viscosity eigenfunction expansions. 

The time-stepping algorithm (Lardner & Cekirge 1988; Lardner & Smoczynski 1990) is split 
into two parts: first the quantities [, p and q are stepped forward by using the depth- 
averaged equations (2.13) and (2.14). then the velocity profiles are up-dated by solving 

equations (2.5). 

For the first part, a finite difference method is used, employing an Arakawa C-grid in the xy - 
plane and a leapfrog time stepping. This algorithm has been demibed earlier for a simpler set 
of equations (Lardner & Smoczynski 1990). We use m and n as grid indices in the x and y 

directions and k to denote the time level. Staggered spatial and temporal grids arc used with 
C ( and h) specified at poinu (my n, k), p specified at points ( m a ,  n, k 4 )  and q at points (m, 

1 1 n+2 , k+z). Figure 3.1(a) shows the spatial grid and figure 3.l(b) the cross sections of time- 

planes.The approximating variables are then G.. at time level k and p , and q 
m+g.# m .  a+- 

at time level k + +. The finite difference approximations to equations (2.13) and (2.14) are 

then 



1 I Approximation (3.1) is centered at (m. n, k+$. (3.2) is ce~tercd at (m+z, n, k + ~ )  and (3.3) at 

(m. n+i, k+l ) .  Here, the superscript '+' denotes an updated variable. that is 6.. at levct k + 

1 and p , and q 
m ,  a++ 

at level k + f . The size of the time step is + and the horizontal 
m+s.n 

grid spacing is 6. The local truncation errors in (3.1)-(3.3) arc o(?,&).To maintain this 
level of accuracy, the truncation emrs in approximating the right hand sides of (2.13) and 

(2.14) should not be greater than second order, at least in the dominant terns. 

The superscript '(1)' in the Coriolis tern is used t~ indicate two things. First the usual four 

point averages are used. This means that these terms are approximated by central averages: 

where 

(The algorithm does not produce spurious boundary layers at coasts, so it is not necessary 
to use a device such as Jamart and Ozer's wet-points-only averaging (Jamart & Ozer 
1987).) Second, p and q are updated in alternating order on successive time steps, with the 

most recent value of the other variable being used in these Coriolis tcrms.On odd time-steps, 
+ 

(3.2) is solved first and the updated values p,, used to compute p m ,  via (3.6). On even 

+ 
time-steps, (3.3) is solved fmt and the up-dated values q, ,n used to compute g,,, via (3.5). 

The computation of the vertical velocity profiles as described below is carried out at each 
(rn.n) spatial grid-point and at each time-step (k + i). After each such computation the 

bottom drag components r(bx) and are computed and stored. At the time-step k + 1 rt 
which these arc required in the right hand sides of (3.2) and (3.3) their values are only 
available for step k + 5 .  Since the bottom drag terms arc relatively significant they must 

therefore be computed by extrapolation in time: 

@XI\ 1 1 bx) - bx) - 
,,m+s. n, ' + I  = a [3db%+1.  n + +bx)m, n )  - ((+ m + l ,  n +(d ) 



1 
where minuses denote values at time-step (k - 5) and the unsuperfixed values refer to the 

1 
latest available time-step, (k + 2). This again maintains the required order of truncation error. 

A generalized Crank-Nicoison scheme (Lardner & Cekirge 1988) is used to approximate 
equations (2.5). Using an index j for vertical level, with the bottom being at j = 1 and the 

fra surface at j = J + t .  we get the following finite difference approximation to these 

equations. The indices m and n arc suppressed for clarity and again the '+' indicates updated 

values. at time step k + in the case of u and v. 

Here Aa is the vertical grid spacing and A and v are two implicitness parameters, required 
for stability, with 

and u;. vy defined similarly. Equations (3.8) and (3.9) comprise a tri-diagonal system for the 

updated velocities. This system is solved in conjunction with finite difference approximations 
to the frce surface boundary conditions and to equations (2.12b,c) in which the values of p 

md q are used from the first part of the algorithm. This, together with the values of [ in cqns 
(3.8.9). provide the linkage from the fmt to the second part of the algorithm. 

The velocity profiles computed in the second part of the algorithm are then used to evaluate 
the bottom stress and surface velocity components in preparation for use in eqns (3.1-3.3) or, 
the next time step. This provides the coupling from the second back to the first part of the 
algorithm. 



Further details of the algoiatRm (for a fluid of uniform density) can be found in references 
(Lardner & Cekirge 1988) and (Lardner & Smoczynski 1W0) and a discussion of its stability 

in (Lardner 1990). 

3.2 s E E C T & & A J J .  

Writing the velocity in complex fom, U = u + iv, in (2.5) we have 

pU, - Vpfp(l- K2(p(l ,) ,  = -gp(cx + icy)  + T"' + iTb) 

with boundary conditions 

U,=O on a=l 

In order to solve the boundary value problem (2.1 3), (3.10)-(3.12), we construct the 

eigenfunctions of the eigenvalue problem: 

For given p and p the eigenpairs (+@,(o ) ) can be computed numerically using the SLEIGN 

subroutine [see, Bailey, 19781. At each point (x,y), they satisfy the orthogonality condition: 

1 1 ,  w h e n i = j  
j ~ # i e j d g =  { 
o 0 ,  when i + j  

Expanding the current profile in terms of the eigenfunctions, we obtain 



Multiplying (3.10) by $(o) and integrating from a = 0 lo 1, we get 

where 

The initial values for the system of equations (3.18) can be obtained by assuming the motion 
stms from a state of rest, then u I ~  = 0 = 0, and so 

cil,.. = O (3.19) 

The mass transports can be obtained by combining (2.12) and (3.16) as 

We can compute the steady currents caused by a given density field by solving equations 

(2. i 3) and (3.18) with appropriate boundary conditions and initial values. The staggered B- 

grid has been used in solving these equations. The advantages of using the B-grid scheme 

have been discussed in Lardner and Song (1990b). Using indices m and n in the x-directior, 
and y -direction with spacings Ax and Ay respectively, we specify p, q and cj at points (m,n), 

while 6 is specified at central points (m + 3, n + 3). 

The spatial finite difference approximations to equations (2.13) and (3.18) are described as 

follows. 

In these equations the following notation is used: 



with similar definitions for the y-direction. 

The time differencing scheme used for above equations has been a leapfrog scheme which 
has the advantage of being explicit and also second order in the time step, though the size of 
the time-step is restricted by the CFL stability criterion. It is described in Lardner (199O), 

Lardner and Song (1990a, 199Qb). 



Vie. 3 , l i h )  The spatial grid: 0 indicates points where is specified; I 

indicates points where p is specified; indicates points I 
whcrs q is specified. Tho encircled three points correspond to 

'm,n* Pm,n and qmPn. 

Fig. 3 . l ( b )  Tho tempera1 grid: f is specified at integer time steps; p and 

q are specified at half-odd-integer time-steps. The s t a r s  

indicate space-time points at which vertical profiles are 

computed. 



CHAn'ER 4 ST PROBLEMS FOR SPLITTING AND S P E C W G Q U  

The accuracy of the frit algorithm was tested by using it to solve four problems for which the 

exact steady solutions can be calculated. These problems were designed to tcsr the code's 

accuracy in handling four distinct physical features: horizond gradient of density, vertical 

density variations, variable depth and Coriolis forces. The accuracy of the second algorithm 

was tested on the latter two problems. 

For the fmt three problems, we consider a channel occupying the region 0 < x < 1 with the 

end x = 0 being closed and x = I open. The eddy viscosity p is assumed constant, 

evaporation is ignored (W = 0) and bottom drag is assumed linear (K2 = 0). Only longitudinal 

flow is considered, with v and f taken as zero. 

For steady flow, equation (2.13) then reduces to p, = 0, and since p = 0 at x = 0, it follows 

that p = 0 for all x. Therefore, 

Equation (2.5a) then reduces, for steady flow, to 

while the boundary conditions are 

The depth-averaged momentum equation (2.14a) becomes 

It is readily verified that this is not independent of the a b v e  equations, and it can be ignored. 

The finite difference equations used for the numerical computations are the appropriately 



simplified f o m  of equations (3.1). (3.2) and (3.8), and they will not be repeated here. 

In t ! z  numerical results given below, the channel was taken with the closed end at grid-point 
3 m = arad the open end at m = 19, the horizontal grid spacing being 6 = 4Q,Whn.. The 

number of vertical levels was taken as J = 10. The other constants used were (in M K S  units) 
g = 9.81, K-, = 0.002 and N = 0.065. The time step was a = 360s, with the computation being 

run until a steady solution was obtained. ('I'ypicaily, this took a b u t  3880 steps, 

corresponding no 12 days of real time.) 

Two explicit density distributions have been examined for constant depth of 65 m. In the first 
of these, the density field has a strong horizontal gradient but no vertical gradient, while in 
the second there is vertical density gradient but the mean density has no horizontal gradient. 
Thus these two special cases distinguish between the effects of horizontal and vertical 
structure in the density fields, and the comparative flows in the two cases are in themselves 
quite interesting. A third problem witk variable depth has also k e n  examined. 

4.1- p=p , ( l -  &) h =constant 

In this case, i5 = p and equation (4.2) takes the form 

( P& = g ~ h * ~  - Pfi gkU- 01 

After using the conditions (4.1) and (4.3), we obtain the solution 

u = * {1+ ~ Z I C L T - ~ ( ~ + S K ) ~ C ~ ( ~ + ~ K ) ~ }  1 + 4 ~  

where 

For the values p~ = 1035 kg.m-3 and f i  = 1.47~104 ni-1 (which gives a density variation from 

1035 to 1025 kg.m-3 along the channel), the exact velocity solution is given in units of 0.1 
mm/s. in the second column of Table 4.1. In this case, the flow is the same for all x. At the 



upper surface there is strong inflow from the open end towards the closed end of magnitude 

about 20 m d s  while ohere is a corresponding outflow of somewhat lower magnitude near the 

bottom. (Near the closed end, there is, of course a boundary layer where the flow ovenums, 

but the model is too simplified to pick this up.) 

The computed steady velocity is given in the third column of Table 4.1. Clearly the numerical 

algorithm is very accurate. 

r i 1 Exact I Com~uted I 

Table 4.1. Exact and computed velocity profiles in units s f  0.1 mmls for flow in a channel with 

the density field of Model I. The level j = 1 corresponds to the bottom while the free 

surface is mid-way between j = 18 and j = 11. The flow is the same at all values of 

X .  

4.2 Model p = po[l + px(l - 2 0 ) ] ,  h = constant 

In this case, = Po and equation (4.2) reduces to 

with boundary conditions (4.3) a% well as (4.1). The  solution can be conveniently expft3fessed 
in terms of the bottom velocity 

where U and K have the same meaning as in (4.4) and 

D = 1 + 2 ~ [ 2 -  &r +$(@)21 



Then 

Again the values p,, = 1035 l~g .m-~ and p = 1.47x10-" rn-"ere used. In this case, the 

density on the free surface (in kg.m-3) varies from 1025 at the open end to 1035 at the closed 

end while at the bottom it varies from 1035 at the closed end to 1045 at the open end. There 

is thus zero vertical density gradient at the closed end and maximum vertical gradient at the 

open end. 

Table 4.2. Exact and computed velocity profiles, in units of 0.1 d s ,  for flow in a channel 

with the density field of Model n. The exact solution is given in the upper part of the 

table and the computed solution below. The profiles are given at three points dong the 

channel, the leftmost profile being adjacent to the closed end of the chamel and the 

rightmost adjacent to the open end. 



The exact and computed velocities arc given in units of 0.lmds. in Table 4.2. In this case, the 

flow is an order of magnitude smaller than for Model I, and varies slightly with x. Both at the 

upper surface and at the bottom there are inflows from the open end towards the closed end of 

approximate magnitudes 2 and 1 mm/s respectively, while there is a bwd of outflow of 
magnitude 1.3 mm/s near the middle of the water column. Again the computed solution is in 

very good agreement with the exact one. The absolute errors are about the same as those for 

Model I, though are larger in relative terms. 

In this case, = p, again and equation (4.2) reduces to 

Taking the conditions (4.1) and (4.3) into account, we obtain the Bottom velocity 

where U, D and K have the same meaning as in (4.4) and (4.5) and s = 4xh ' (x  )/h(x ). The 

rest of the solution is given by 

For the example computed, the parameters were given the same values as for Model I1 
except for the depth which was taken to increase uniformly from 35 rn at the closed end of the 

channel to 95 rn at the open end. Typical results are given in Table 4.3 which shows the exact 

and computed velocity profiles at three positions along the channel. The two solutions are 
again in very close agreement. 



Comparing with Table 4.2, it is clear that deptb variation has a very significant effect cm the 

magnitude ~f the velocity, its vertical profile and its variation along the channel. 

Table 4.3. Exact and computed velocity profiles at three pints  a l ~ n g  the channel, in units of 

0.1 mrrp/s, for flow in a channel with the density field of Model II and variable depth. 
The exact solution is given in the upper part of the table and the computed solution 

below. 

Using the spectral algorithm the exact and the computed solutions at the same set of 

horizontal grid pints  arc given in Table 4.4. As the figures indicate the accuracy is better in 

this cast. It must be noted that the exact values shown in Table 4.3a is different f r ~ m  that 
shown in Table 4.4a This is because the vertical levels do not coincide for the two 

algorithms. 



Table 4.4 Exact and computed velocity profiles at three points along the channel, in  

units of 0.1 mm/s computed using the spectral algorithm. 

4.4 IV Rectangular sea model 

The fourth mcdel is designed to test h e  accuracy of the computer code's treatment of the 

Coriolis terms. We consider a rectangular body of water of constant depth, occupying the 

region 0 < x < L, 0 < y < M, with lateral boundary conditions p = 0 on the sides x = Oh 
and q having certain prescribed values, to be given below, on the sides y = OM. W and K~ 

are again zero and f, p and K, constant. We suppose that the density p (x ) is a function of ,x 

only and that all flow variables are independent ofy. En this case, eqns (251, for steady flow, 

reduce to 



The depth-averaged equations (2.14) become 

-fq + ~ p h c ,  +r@" ++ gh 2p ' (~  ) =4 f p + ~ , p  "=a 

The continuity equation reduces top, = 0, rind in view of the lateral boundhy conditions 
therefore, p  = 0. Eqn (4.7b) then implies that v ( b )  = 0, so that the boundary conditions 
associated with eqns (4.6) are: 

The general solufilan of eqns (4.6) has the form 

where 
a =e "(acosra -bsinra)+e 'u(ccosra +d sinra) 

= y + I  -a +e m(b cosra +a sinra)+e*(d cosra -c sinra) 

. , terms involving a, ..., d are of course an Ekman spiral type of solution. uilh r = d F  
These connants as well as y arc determined from the above five boundan] conditions, which 
take the form 

- 
1 0 1 0 1 
0 1 1 - 1 -1 

0 a-1 1 ;1+1 -1 
0 -er cos r er sin r e" cos r e" sin r 
0 er sin r r r  cos r e"' sin r -e" cos r 

K h 
where = --Le . This matrix equation is solved numerically to construct the exact solution. 

Cu 

For the computed solution, we require the boundary values of q on y = O,M, which are taken 
from the above exact solution. It is easily seen b a n  the first of eqns (4.7) and the above 
solution that 



The solution has been computed for a rectangle of ~mcnsions 60 kms in rhe x -direction and 
200 kms in the y -direction with a grid spacing of 20 kxm The density function and other 

parameters were taken as in Model I with the addition off = 1.22x18-4 d. Table 4.5 gives 

the exact and computed velocities at the centre point of the rectangle. There is very little 

variation of thc final steady s~lution with x and the accuracy of the computed solution is 

about the same throughout the rectangle. 

Table 4.5. Exact and computed velocity profiles in units of 0.1 mm/s at the centre point of a 
rectangle with she density field of Model I. The flow is the same at all values of y and 

is almost independent of x. 

We present a part of the results obtained with the spectral algorithm in Table 4.6. The 

accuracy of the results we obviously somewhat better. (The discrepancy between the exact 

solutions given in Tables 4.5 and 4.6 is due to the difference between the Arakawa B and C 

1 grids lsed by the two algorithms.) 

Table 4.6. Exact and computed velocity profiles at the B-grid point (15,9) in the rectangle 

region, in units of 0.1 m m / s ,  



DRIVEN IFLOWS IN TEIE -IAN GULF 

The residual cumna in the Gulf have been attributed to two principal factors: wind-forcing 
which, coupled with Coriolis effects generates a net anti-clockwise circulation, and the effects 
of density gradients sustained by evaporation and radiative heat transfer and, to a lesser 
extent, by fresh water inflow at the head of the Gulf. The relative importance of these two 

mechanisms has been the subject of a certain amount of controversy in the literature. Hughes 
and Hunter (1980) argued that that wind-driven currents made the major contribution, but 
Hunter (1982) subsequently concluded that the. circulation was probably dominated by 
density-driven flow, gmstrophically balanced across the Gulf and frictionally bdanced in the 
direction of flow. Galt and co-workers (1983) agree with this assessment in the southern half 
of the Gulf, but conclude that wind-driven circulation plus the effects of fresh-water inflow 
dominate in the northern half. 

The computation of the wind-driven currents by Galt et al. (1983) was based on a two- 
dimensional depth-averaged model. Later, more detailed cdculations were made by Lardner, 
Lehr, Fraga and Sarhan (1988a,b) of the vertical structure s f  &e flow generated by the 
monthly averaged winds in the region, and it was found that the surface flow is considerably 
stronger and more uniform in direction than the depth-avenged f l ~ w .  Furthermore, the 
magnitude of this surface cwrrent is consistent over most of the Gulf with the observed values 
found by Hunter (1982) from an analysis of ship-drift data as well as with more recent 
experimental drift-buoy studies in the North-West part of the region (Henaidi 1984). 

Subsequent simulation of some of the drift buoy movements, using actual wind measlJremenbs 

and a dynamical three-dimensional model has yielded good agreement with the observations. 

An estimate of the density-driven currents was made by Lardner, Lehr, Fraga md Sarhan 
(1987) using a sirnpk two-layer, sectionally integrated model, similar to that constructed by 
Pearson and Winter (1978) for the flow in fjords. It was found that the magnitude of this 
component of the surface flow is sufficient on its own to explain Hunter's empirical values 
(1982) within the Strait of Hormuz, but as one moves into the Gulf, the density-driven 
c w n ; s  decrease rapidly and after about 100 kilometers they become appreciably smaller 
than the wind-driven currents. At the northern end of the Ga:f the density-driven effects are 

highly iocalized near the Shatt-al Arab, where substantia fresh water inflow occurs, but over 
most of this part of the region wind-forcing is the dominant f a r x .  



It can be argued that the use of a sectionally integrated model tends to underestimate the 
local flow velocities, and in particular ignores the effects of Coriolis forces and channelling of 
the flow by the deeper trench parallel to the Iranian coast, both of which tend to concentrate 

the surface inflow towards the Iranian side of the Gulf, thus producing much larger surface 

currents on that side than those computed by Lardner et al (1987). Hunter's computations 

(1983) indicate such concentration of the flow and in fact show that the density-driven flow 

persists along the kmian side with significant magnitude over much of the length of the Gulf. 

Thus, there is agreement among the above authors that wind-forcing contributes significantly 

to and perhaps dominates the surface flow in the region adjacent to the Saudi coastline.and 
that within the Strait of Hormuz, the density-gradient effects are significant, or perhaps even 

dominant. Concerning the rest of the Gulf there is still disagreement, which we hope the 

results presented here will help resolve. 

We have used the same horizontal grid and bathymemc data as used earlier (Lardner et a1 
1988a,b) for computation of the wind-driven currents and before that for tidal current 

modelling (Lardner et al 1982). The horizontal grid size is 8 = 20,230m. and a time step z = 

240s. was found to be sufficiently small to produce a stable computation. In the vertical 

direction, 11 levels were used (J = 1C in the notation of chapter 3). 

The basic equations contain terms involving gradients of the depth (the terms T and T 6 ) 

in equations (2.5) and the terms S ('1 and S b) in equations (2.14) and it was found that the 

large irregularities in the raw bathymetric data produce effects significant enough in some 

cases to swamp the average flow. i t  is unlikely that such lacalized eddies in the flow can be 

modelled in any realistic way with the coarse grid used and in particular with the deficiencies 

in the available data, so we eliminated them by making a preliminary smoothing of the 

bathymetric data. 

The only consistent series of density measurements in the Gulf cf which we are aware were 

made by the survey vessel Atlantis I1 during February and March, 1977 and reported by 

Brewer and co-workers (1978). Within the region modelled in the present work, measure- 

ments of density and other parameters were made at 43 stations, genemlly at depth intervals 

of 5 or lorn., for a total of 246 measurements. These measured data were smoothed by fitting 



them to a polynomial in the variables rn, n, and a, yielding values of p on the three- 

dimensional grid of the numerical model. Contours of constant density for the smoothed data 

arc shown in Figure 5.l(a) for the surface values and in Figure 5.l(b) for the values at the 

sea-bed, The detailed description of the method used to get the best fit values of the 

temperature, salinity and density values are given in the appendix at the end of this chapter. 

The accepted value tLardner et al 1987) for the average velocity of evaporation in the Gulf is 

W = 1.44 metres per year. 

Since the density-driven flow is a relatively s L d l  flow superimposed on larger tidal currents, 

we have considered it most appropriate to use a linear formula for the bottom friction in 

equation (2.9) (Hunter 1975). The effective linear drag coefficient experienced by the steady 

flow is given by the formula 

where Uridc is the amplitude of the tidd velocity and Ks is the actual quachtic coefficient.. 

For the Gulf, a typical value of uri& is 0.2 4 s .  Taking the quadratic drag coefficient K 2  = 

3.u03, we are led to the value x, = 0.0006 m2/s. 

The major ambiguity in the model centres around the choice of eddy viscosity function. Here, 

we chose a similar function to that used in the computation s f  the wind-driven currents 
(Lardner et a1 1988a,b). In the following we let N = p / p  denote the kinematical eddy 

viscosity and N, its surface value. Over the bulk of the water column, it is assumed that this 

is given by the Neumann-Pearson formula (1964) 

N =1.8x 10- 25 (MKS units: 

where V is the wind speed. An analysis of wind data for the region (Anon. 1980) showed 

that the annual mean wind speed is - 5 4 s .  If an exponential dismbution of wind speed is 

assumed, the mean value of v'.' is abut  3 ~ ~ " a n d  this leads to a bulk eddy viscosity N = 

0.03 m2/s. However, this argument neglects the suppressive effect on turbulence of density 

stratification, which is relatively stable in the Gulf, and we propose to use the value N = 0.01 

m2/s as best guess for this parameter. 

Next, it is assumed that over the top ten metres of the water column, the eddy viscosity 

varies linearly from this bulk value N to a swface value N, . The value of N, is estimated, 
following the approach of Davies (1985a), as N , = k&,z, where = 0.4 is von Kaman's 

constant, zo is a roughness length and u, is related to the mean surface shear stress, 4'' 



by the turbulent boundary layer equatiori I"' = puf. 'The roughness length is associated with 

the mean ampiitude of surface waves and is taken as 0.3m. The mean surface shear stress, 

I"' is computed from the wind data (Anon. 1980) using the formula of Lystad and Maninsen 

(1980) for the surface &ag due to wind (see Mathison & Johansen 1983)) and is found to 

have the value 8 ' = 6.46 x lo-' p . This leads to u. = 8.0 x 10" and N, = 0.001 d / s .  

The arguments le2ding to these values of K,, p and p, are of coum suspect. Hunter (1983) 

appears to have used the values K, = 0.0005, N = 0.085 and N, = 0.005 which differ 

somewhat from the values we have indicated. Because of this uncertainty, we Rave 

considered it essential to examine the sensitivity of the computed results to the choice of 

these three parameters, and this will be discussed. 

5.2 RESULTS 

5.2.1 Com~uted Flows due to S~l i t t in~  Algorithm 

In this section we shall report the results of the numericai computations, reserving their 

discussion to the next section. All figures relate to the steady flow, which is attained in the 

case of the Gulf after about 2000-2500 time steps, or 6-7 days of real time. 

We begin by noting that the value used for the velocity of evaporation W was found to have 

an almost insignificant effect on the numerical results. The evaporation plays m essential role 

in establishing the density field, but once established, it is the density gradient rather than 

the evaporation that drives the flow. 

The depth-averaged currents are similar for all choices of eddy viscosities and bottom friction 

coefficient. There is no neb flow in or out of the Gulf in the steady state, and the depth- 

averaged flow consists of several large vortices. A typical picture is presented in the figure 

5.2. 

Figures 5.3(a) and 5.3(b) illustrate the currents at the free surface and at level 2' obtained 

using the values N = 0.01, N, = 0.001, K, = 0.0006, which, as discussed in the last section, 

represent the most reasonable estimates for these parameters. As anticipated, the dominant 

feature of the flow is an inflow in the upper layers of the water column from the Strait of 

Level 2 is 10.5% of the way h m  the bottom to the top of the water colum. 
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Homuz towards the Northern and Western portions of the Gulf and a compensating ouifiow 
in the lower layer,. The tmdtion from inflow to outflow occurs at most of the horizontal grid 
points between levels 5 and 7 (figures 5.4(a), 5.4(b) and 5.4(c)), that is, in the middle 20% of 
the water column. 

Beyond this broad picture, however, the computed flows show a number of unexpected 
features, both in direction and magnitude. The main stream of surface inflow does not stay 
close to the Iranian shore, but rather proceeds in a Westerly direction, across the Gulf and 
north of the tip of the Qatar peninsula, and thence towards the mid-section of the Saudi coast. 
The maximum velocity of this surface inflow is about 18 cm/s within the Strait, but it 
decreases within 100 krn so the range 9-12 cm/s and by the t h e  the flow reaches Qatar it has 

diminished to about 4 crn/s. In the Southern portion of the Gulf, between Qatar and the 
Emirates, there is a uniform pattern of Westerly to South-Westerly surface inflow with 
magnitude diminishing to very small values after 250-308 kms from Hormuz. 

On the Iranian side, within the Strait of Hormuz, the flow is confused, the surface inflow 
occuring 20-40 krns offshore for the first 250 kms into the Gulf. This area of confused flow 
occurs regardless of the choice of open boundary condition and it is worth noting that it has 
also been reported by Hunter (1983) in related calculations. Its cause may lie in the 
extensive region of relatively shallow water that occurs on that side of the Strait but may also 
be caused by a deficiency in the algorithm used (see below). Along the North-East portion of 
the Inmian coast the surface flow for almost the last 250 lkms is directed towards the coast 
with the flow velocities of about 2 cm/s. 

This pattern of flow is repeated with reducing magnitude of the velocities as one moves down 
the water column until reversal of the pattern occurs around level 5. The maximum reverse 
flow occurs generally at level 2 (see Figure 5.3(b)). Over most of the region, this flow is 
about opposite in h ~ t i o n  to the surface inflow and with velocities generally akut  half the 

magnitude of those on the surface. There are however two significant exceptions to this. 
from the Qatar peninsula to the mid-Saudi coast, there is a slow Westerly bottom flow, 
parallel to the surface flow, this flow then sweeping to the north to join the main outflow. And 
along the Emirates coast close to Hormuz, the inflow persists at all levels of the water 
column, though the velocities at the bottom are very small. 

In order to test the sensitivity of the computed velocities to the particular choices of the 
physical parameters, we have made numerical experiments with smaller values of eddy 



viscosities and bottom drag. The following summarizes the effect of reducing these 

parameters. 

(i) 

(ii) 

(ii) 

(iii) 

(iv) 

We have used this case as a benchmark against which to measure the effects of 
parameter changes. (Note the different value of q.) 

This case is to examine the effect of smaller bottom friction. The effect on surface flow 

is generally quite small, the main exception being in the Strait of H ~ m u z  where the 

maximum inflow velocity is increased by 10% . There is a somewhat larger effect of 

this parameter on velocities at the lower levels. 

This case is to examine the effect of smaller surface eddy viscosity. The effect of this 

change is to increase the surface velocities by a very small amount, generally less 
than 5% with even less change on the bottom velocities. In this regard, the density- 
driven flow is unlike a wind-driven flow, for which surface velocities are paniclmlarly 
sensitive to N, (Davies 1985; Lardner & Cekirge 1987). 

This case is to examine the effect of smaller bulk eddy viscosity. This parameter has 

the most significant effect on the flow. With the above values, the maximum inflow 
velocity was 16% greater than that in Case (i), and generally both the surface and 
bottom velocities are increased by about this amount, with some modification. also of 
the direction of flow. 

We have seen in the above experiments that the effect of reducing the values of the 
three paribmeters is generally to increase the flow velocities. This f ind choice 
represents a b u t  the smallest reasonable set of values for the parameters and hence 
provides what is probably an upper bound for the magnitude of the density-driven 
flow. The computed currents at the surface and level 2 are shown in Figures 5.5(a) 
and (b). The pattern of the flow is almost the same as that in Figures 5.3(a) and (b), 



with small differences iPn direction in some arcas. The magnitudes of the velocities are 

incrtased over those shown in Figure 5.3 by generally 50-2096, The maximum velocity 
of surface inflow is 20 d s  while the flow velocity sf'f the Qatar peninsula is abut  4 

c d s .  

5.2.2 Flows 

Figures 5.6(8), 5.6(b) and 5.6(c) illustrate the currents at the fie surface, at level 2 and 

depth averaged c m n t  obtained using these values M = 0.Q1, N, = 0.001, K = 0.0006. With 
one notable exception (see below), the flow is virtually identical to that reported in 5.2.1, and 
reaffms certain unexpected features found there. In particular, the main stream of surface 
inflow does not stay close to the Iranian shore, but rather proceeds in a Westerly direction, 
across the Gulf and north of the tip of the Qatar peninsula, and thence towards the mid- 
section of the Saudi coast. The maximum velocity of this swface inflow is about 16 c d s  
within the Smia, but it decreases within 100 km to the range 7- 10 cm/s and by the h e  the 
flow reaches Qatar it has diminished to about 3 cm/s. In the Southern portion of the Gulf, 
between Qatar and the Emirates, there is a uniform pattern of Westedy to South-Westerly 
surfai;~ inflow with magnitude diminishing to very smdl values after 250-300 kms from 
Hormuz. 

On the Iranian side, the surface flow is directed predotninmtly onshore along virtually the 
whole coast, with mgnitudes decreasing from 15 cm/s in the Strait of Horrnuz to 2-4 cm/s 
along the North-Eastern portion of the coast. 

In was found in 5.2.1 (and also earlier by Hunter(l983)) that the surface flow near the hnian 
coast for the f i t  250 kms into the Gulf was confused. In 5.2.1, this was ascribed to the 
extensive area of shallow water that lies in that lwation. However, the present specmd 
algorithm yields a completely regular flow there, and it now seems likely that the origin of the 
confused flow lies in the inability of the earlier finite difference algorithms to deal accurately 

with a situation of rapidly shelving depths adjacent to an open boundary. 

This pattern of the surface flow is repeated with reducing magnitude of the velocities as one 
moves down the water column until reversal of the pattern occurs around the middle depth 

level. The maximum reverse flow occurs generally at a Bevel about 1096 from the bottom (see 
Figure 5,6(b)). Over most of the region, this flow is about opposite in direction to the surface 
inflow and with velocities generally about half the magnitude of those on the surface. There is 



however a significant exception to this. From the Qatar peninsula to the mid-Saudi coast, 
there is a slow Westerly bottom flow, parallel to the d a c e  flow, this flow then sweeping to 

the north to join the main outflow. Along the Iranian coast, the bottom flow is ofTshore, with 
magnitude generally equal to or even exceeding the onshore surface flow. 

The depth-averaged flow, consisting of several large gyms, is shown in Figure 5.6(c). 

Velocities are generally much smaller than surface velocities. 

We have again conducted certain experiments to test the sensitivity of the predicted flow to 

choice of these parameters. We have re-computed the flow with all the parameters reduced 
by half, to N4.005 m2/s, N, = 0.0005 m2/s and K =  0.0003 d s .  It is not likely that thew 

parameters could be smaller than this. The general pattern of flow turns out to be the same as 

that shown in Figures 5.6(a)-5.6(c), with the magnitudes of the velocities increased by 20- 
40%. In particular, the maximum velacity of surface inflow in the Strait of Hormuz is increased 

to 20 cm/s. 

The computed stcady-state flow shows an expected pattern, consisting of inflow into the Gulf 
in the upper layers of the water column and a balancing outflow in the lower layers. 'I'he 
detailed results however show several unexpected features. One of these is  that the main 
stream of surface inflow does not flow along the Iranian shoreline, but rather follows a 
Westerly course fiem Hormuz to the Qatar peninsular then continues towads the Saudi 
coast (see Figures 5.3(a), 5.5(a) and 5.6(a)). Between this line of flow and the Emirates 
coast, the Westerly surface flow persists but with diminishing magnitude. Along the North- 
Easterly part of the Iranian colast the surface flow is directed towards the coast. 

The most significant result concerns the magnitude of the velwities, which turn out to be 
much smaller than has been suggested by some authors. The surface velocities within the 
Strait of Hormuz have a maximum value of about 16 cm/s if one uses what we have taken us 
the most plausible values for eddy viscosities and bottom drag coefficient, or about 20 cm/s if 

one uses the smallest reasonable values of these parameters. These values are smaUcr than 

the empirical residual velocities estimated by Hunter (1982) on the basis of ship-drift 
reports. Furthemore, the computed velocities decrease within a distance of 1QQ kms into the 

Gulf to 7-10 cm/s, smaller by a factor ~f 3 or 4 than the empirical estimates. 



Previous calculations of surface velocities caused by average winds (Lardner et a1 1988a,b) 
have shown that they arc consistent in magnitude with Hunter's estimates over most of the 

Gulf. Thus, we arc lead to wnclude that the dominant factor in generating residual flow in 
most of the Gulf is wind-forcing rather than density g d e n t ,  the only exception being 
probably within the Strait of Hormuz. 

The velocities computed in this chapter are very similar in magnitude to those calculated 
earlier ( M n e r  et a1 1987) on the b s i s  of a simple two-layer, sectionally averaged model of 

tRc now. Comparing them with the velocities computed by Hunter using a three-dimensional 
model (Hunter 1983), however, our velocities agLpeak to be somewhat smaller within the 
Strait of Homuz and significantly smaller, generally by a factor of 2 to 3, within the Gulf itself. 
Hunter's results in particular show a significant surface flow parallel to the Iranian coast 
whereas ours show a much smaller flow directed on the surface towards that coast. The 
origin of the discrepancy between these two sets of results may lie in the ap'proxinnadons of 

Hunter's model or my be caused by different input data for the density field or the 
bathymetxy, but since few details of the analysis art given in refertnce (Hunter 1983), it is 
difficult to draw any fm conclusion on this point. 

Our coslclusions regarding the relative significance of the density-driven residual flow in the 
Gulf must be tempered by the remark that the density data we used was gathered during the 
Winter season, and presumably the density gradients during Summer would be significantly 
greater than those meaeured, leading to greater velocities during that season. However it 
does not seem likely that the velocities could be swfficiendy increased that they would 
approach those caused by the wind. 



A major geochemical, biological and geophysical survey of the Persian Gulf and adjacent 
waters was carried out on in February and March of 1977 by Peter Brewer et a1 (1978). They 
obtained chemical oceanographic data from which the density values have been used to 
estimate the flow driven by density merit in the Gulf as presented in Chapter 5. 

As reported by Peter Brewer et a1 (19'28) the data were obtained at several hydrographic 
stations situated at various points in the Persian Gulf. Hence the measurements were taken 

at locations which had different latitude and longitude. At each particular point the data were 

charted at different depths from the water surface. This mans that the observations were a 
function of the cwrdinates of the station as well as the depth. 

If the latitude and longitude of a particular station were represented by x- and y-coordinates 
and the depth by the z-coordinate, then we approximate the measurements by a polynomial of 

degree PI of the form 

where at =f (density - 1000) in MKS units. 

We are now given vdues of the three independent variables x y  and z at the data points and 

corresponding values of the dependent variable f and we wish to fit  to the latter by least 
squares a third degree polynomial in x, y and z. 

In all there arc twenty texms in the polynomial corresponding to N=3. Now we outIine: the 
least squms method employed to do the data fit. The aim is to get the bcst-fit coefficients of 
each of the terms in the third degree polynomial such that it agprsxinlatcs reasonably the 
data vdues. Determining what order polynomial will yield the best fit to the data depends on 

the criteria that one uses in defining best fit. For example, equation (A. 1) can be solved for 
successive higher order fits either to some maximum order or until the residuals have been 
minimized to below a specified error tolerance. In ow case we also cxpcrimented with fourth 
and fifth degree polynomials and came to conchsion that the third dcgret fit was the best. 



This decision was based on the fact that oscillations were appearing in the curve between 
adjacent data points, near she ends of the range. 

m m  Consider the problem of finding a vector x & such that Ax = b where A E R and b e R~ 

are given and m>n. This is an overdetermined system of equations and usually has no exact 

solution, unless ir is an clement of R(A), a proper subspace of JZm. 

This suggests that we strive to minimize llAx - blip for some suitable choice of p. For p=2 

this function is a continously differentiable function afx. One tactic for sdution is to convert 
the original teast squares problem into an equivd~d, easy-to-salve problem using 
orthogonal uansfonnations. The basic idea is to use one of the many orthogonal 
trmsfomatioras (Goiub and Van Loan, 1983) to compute the factorization A = QK, where Q is 

orthogonal and R is upper triangular. 

mxm Suppose that an orthogonal matrix Q e R has been computed such that 

P ~ A = R ~ [ R 1 ]  0 m - n  

is upper triangular. If 

~ ~ b * L f i J  m - n  " 

then 

for any x E p. Clearly, if ranlt(A) = rarJc(R1) = n, then xu is defined by the upper triangular 
2 

system R ~ X L S  = C. lldl12 represents the minimum sum of squares. Thus, the full rank LS 

problem can 'se readily solved once we have computed (A.2), which we mfer to as the Q-R 
factorization. We have us4 the Householder's orthogonadizartion procedure (pp. 146- 153, 
Golub & Van Loan, 1983) to factor the matrix A into the Q and R matrix. 



In our case the matrix x represents the coefficients of the terns in the fitting polynomial and 

the elements of the matrix A are the terms themselves. There are 43 seations in all and 225 

observation points. Hence, A e R 225x20 and I E 2'. We also obtained the best fit values to 
the temperature and salinity data. These are depicted as contours of constant density q, 

temperature md salinity on the surface and at the bottom in figures S.l(a), 5.l(b), 5.7(a), 
5.7(b), 5.8(a) and 5.8(b). These contour plots match very well with those presented by 

Brewer et d (1978). The best fit coefficients for the three data sets arc given in Table 5.1, 

In the table the coefficients are denoted by A(1), .......,A( 20) are the coefficients of the: terms 

involving 1, x, y, o,x2, y2, d,xy, yo, m,x3. y3. d,x2y, x 2 a  xy2,xc?,xyo, yd and y20 

respectively. Here a is defined in Chapter 2, x is latitude and y is longitude. 
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CHAPTER 6 J O N  EOUATION FORMULATION FOR DATA ASSI'MILATION 

In this chapter we will present the mathematical fonna.lism of the variational adjoint 

formulation of the ddal data assimiiation problem. We consider the depth-integrated 

equations for flow along a one-dimensional channel, the aim being to estimate the parameters 

in these equations from measurements of surface elevatian at certain data stations. First the 

basic equations are presented on which the work is based. Then the derivation of the adjoint 

is going to be explicitly stated. This is going to be followed by the finite difference 

approximations of both the forward and the adjoint problem. Lastly the equations for the 

parameter approximations are going to be shown. 

We let x be a coordinate along the channel with the channel occupying the interval 0 < x < L. 

For defmiteness, the end x = 0 is taken to be closed and x = L open. The undisturbed depth 

of the water at the position x is denoted by h (x ), the elevation of the free surface above its 
undisturbed position at time t by 6 (x, t ) and the depth-averaged velocity of the water by 
u (x, t ). The depth-integrated equations of continuity and momentum are then 

where z is the bottom friction stress and p the density, assumed constant. (See eqns. (2.13) 

and (2.14a) in which p + phu, p + 0, H = h and p = = p(S) .) It is assumed that the bottom 

friction has the form (2.9) which in the present problem becomes 

where K ~ ( X  ) and K,(X ) are linear and quadratic bottom friction coefficients. Usually, only one 

of K, and K2 would be taken as non-zero, depending on whether one is using a linear or 

quadratic model of bottom friction. By maintaining both terms, we shall be able to deal with 

both linear and quadratic cases in one go, but in most subsequent applications, only one of 

them will be retained. The equations can then be expressed as follows: 



where p (x, t ) = h (x ju (x, c ) is the volume flux per unit width of channel and k, (x  ) and 

k,(x ) arc defined by k, = q / h ,  k, = 5 / h 2 .  

The boundary conditions are taken to be 

where & (t ) is a prescribed periodic function of t determined by the tidal motions in an  

adjacent large water body to which the channel is connected at its open end. We shall be 

concerned with the use of tidal measurements to determine the parameter values, so rather 

than satisfying given initial conditions we suppose that the solution is periodic in time with 

period T, the period of the tidal component under consideration. 

6.2 s f  the . . 

It is supposed that prior estimates are available for the three parameters k ,  (x  ), kz(x ) and 

h (x ), either h m  previous measurements or from physical arguments; these are denoted by 

k,'(x), k;(x)andh'(x) respectively. It is now assumed that the surface elevation is measured 

throughout the tidal period at certain stations x,, x2, ..., the measured values being denoted by 

C(xi,r) = Zi(t). These measureuxnts are to be used to determine improved estimates of the 

three parameters. The basic principle is that the new estimates should minimize the 

functional 

The cost function F has been constructed on the premises that it measures the distance(thc 

misfit) between the model and the observations and also, the variational method makes use 

of the derivative of F, and the cost function must therefore be differentiable. The first term in 

(6.4) measures the data misfits and will be the forcing for the adjoint equation. The last thrct: 

terms in (6.4) are added to the cost function because the goal of this research is to esiirnate 

the parameters in the model. By adding these terms, the new estimate of the parameters will 

not be too far from the initial guess. Essentially minimizing the cost function results in a 

solution which is close to the observations and new values of the parameters which are close 

to the estixwe. Here Kc. K,, K, and K, are the respective weights given to the 



measurements and the three prior values. The K's depend on the error variance of each 

observational point, and give information of the quaIity of the &ta. 

T is to be minimized subject to the boundary value problem (6.1)-(6.3). Introducing 

Lagrange multipliers A (x, t ) and p dx,  t ), we then obtain 

The terms in the last integral here that contain t -derivatives are integrated by parts with 

rtspec t to t. The boundary tems vanish provided we assume that A and p are periodic in t 

with period T. The terms involving x -derivatives are integrated by parts with respect to x .  

The boundary tems vanish, in view of conditions (6.3). if we require A and y to satisfy 

The remaining terms have the fonn 

Setting the coefficients of &' and @ equal to zero, we obtain the adjoint quations 

Here 6 (x ) is the Dirac delta function. In view of the sign of the damping tern in the second 

of these equations, the solution must be computed 5 the negative t -direction, exactly as it 

would had we started with an initial value problem. 



The coefficients of &,, &e2 and Sbt then provide the three parameter equations 

In the special case in which the parameters are independent of x, the variations a,, 6k, and 

Sh are constant and the final term in eqn (6.6) then leads to the parameter equations 

in place of (6.9). 

If the prior value of a particlar parameter is regarded as sufficiently accurate, the corres- 

ponding coefficient K can be taken very large, which in effect means that the corresponding 

equation can be removed from among eqns (6.9) or (6.10). In particular, the second ~f eqns 

(6.9) or (6.10) is dropped for the linear friction case (k2 = 0),  while the f is t  of these equations 

is dropped for quadratic friction (k ,  = 0). 

We shall first outline the numerical algorithm used to solve the forward boundary value 

problem (6.1)-(6.3). Before doing so however, we replace the parameters h, k, and k2 in eqn 

(6.2) by Shh, Slkl and S&, where the scale factors S, are chosen so that the new parameters 

h, k, and k2 have the same orders of magitude. In practice, we have taken Sh = 102, S, = 1 0 

and S2 = 10-5. This re-scaling is needed because some minimization algorithms fail unless 

the variables all have comparable magnitudes. 

The numerical algorithm is based on a leapfrog method with staggered spatial and temporal 

grids. The index m is used for grid-points along the x direction while j indicates the time 

level. The variables [ andp an dimtized respectively by 6: which refers to the grid point 



(m, j) and pi  which refers to the point (m +), j + 3). The open burn* is set at m = M. 

The finite difference appximtion to eqn (1). centred at the grid point (m, j + 3), is then 

where Ax and At are the spatial and temporal grid spacings. Eqn (6.1 1) may be ssivcd, 

explicitly for r ,  m = 2,. , . , M - 1. 6;' is determined Prom the boundary condition (6.3,) with 

the appropriate value of & (t ). 

In the discretization of q n  (6.21, the friction $ e m  is m t e d  semi-implicitly in order to 

improve stability. The approximation, centred at the grid point (m + $, j + l), is 

where a is an implicitness parameter. (In practice we have taken a = 8.) It is here assumed 

that the depth k is speafied as h, at the same spatial grid points asp, and that the two 

friction parameters kl and k2 are also specified at these points. Eqn (6.12) may be solved 

explicitly for pc l ,  m = 2,. .. , M - 1. The left boundary condition gives p,"' = 0. 

In order to generate a periodic solution, eqns (6.11) and (6.12) are stepped forward starting 

from zero initial values. After several periods, the inidal transients disappear and the solution 

becomes essentially periodic. The values of 6 and p from the final period are then continued 

periodically backwards and these continuations used in the discretized versions of the adjoint 

equations (6.7) and (6.8). In the test problems reported in the next section, we computed the 

solution over twenty periods to eliminate the transients, but in a practical situation fewer 

than this would usually suffice. C and p must be stored for the last period which corresponds 

to the last 120 time steps and used in conjunction with the p and A stored in the last period to 

evaluate the gradient of the cost function. Thc major percentage of memory cost is in storing 

the c ,  p and the observation 2. Each of them require 2400 bytes of storage space. The 

remaining memory is shared among the other one-dimensional arrays. 

In order to obtain the discrete version of the adjoint problem, the argument of Section 2(b) 

must be re-developed for the discrete case because the adjoint and discretization operators 

do not commute. The discrete analogue of the functional F is 



where J is the number of time steps per period and H m )  = 1 if m is a grid poinr at which the 

surface elevation is observed and H m )  = 0 otherwise, 6; must be minimized subject to the 

constraints (6.1 1) and (6.12). To derive: the adjoint madel equations we form an Augmented 

Lagrange function by adding to the cost function (6.13) the finite difference model equations: 

where &, and are Lagrange multipliers, In general, the boundary conditions should also 

appear as constraints with their own Lagrange multipliers; however, for prescribed values at 

the boundaries, it is sim~ler to exclude the boundary values from the set of unknowns. w 

a F  a F  
Stationarity with respect to the Lagrange multipliers, - = 0 and - = 0, gives the a& apr1 

3 F  - 0 original model equations, whereas stationarity with respect to elevation and velocity, - - 
3 (; 

ar; 
and - = 0, gives a set of adjsint equations for the Lagrange multipliers. We then have the 

following expression for the first variation of F. 



The multiplier A; refen to the grid point (m. j + f) while p c  refers to (m + 4. / + 1). After 

changing certain of the summation indices in an appropriate way and imposing the boundary 
and periodicity conditions 

we can re-write this as 

Setting the coefficients of the different variations equal to zero, we obtain the following 
equations holding for 2 S ~ ; m  5 M - 1. 



These quantities satisfy the boundary and periodicity canditions 

The discrete analogues of eqns (6.9) are 

Equations (6.16) and (6.17) may be stepped backwards in time, fwst solving (6.17) explicitly 

for p i ,  rn = 2 ,..., M - 1 then solving (6.14) explicitly for LC1, rn = 2 ,..., M - I .  From (6.18) we 

also have p,' = 0 and k c  = 0. AS with the forward equations, these adjoint equations we 

stepped backwards through several periods, starting with zero values, until the solution 

becomes essentially periodic. The values of il and p from the final period are then used, 

together with the periodic continuation of the corresponding final values of and p from the 

forward problem to evaluate the sums in eqns (6.19). 

We have tested the validity of the gradient of h e  cost function to be minimized using the 

formuia: 

as described in Thepalut and Courtier (1991). The test was applied when evaluating single 

constant parameter kl, two constant parameters kZ and h and variable parameters, both k ,  

and h, and k, and h. Within the limits of rounding error the a was made as small as possible. 

In every case the gmhent was found to be correct. 



The expressions in eqns (6.19) are the components of the gradient ~f 6: with respect to the 

parameters k,, or k, and h,. For the c&e of constant parameters, these expressions must 

be replaced by 

M-I J 

In a practical situation, the use of tqns (6.19) to determine the parameter values at each grid 

point presents a formidable problem due to the large number of grid points in a realistic 

problem. P'he effective number of parameters may be reduced by making some approximation, 

for example by assuming the parameters are piecewise constant or piecewise linear (Chavent 

et al., 1975). In gencrd, let us suppose the parameters are approximated by some finite 

element expansions ~f the form 

where (p, : 1 S A 4 2N ) represent some reduced set of parameters and (M,) is a coef- 

ficient matrix. The corresponding expressions for the components of V" with respect to the 

new parameters are given by 

where F,,, Fg, and PI, are given by eqns (6.20). 

In some of the numerical tests to be described below, we have used piecewise linear 

approximations of this type with ( p A  ) being the ndal  values of the actual parameters and 

(M,) the appropriate interpalation matrix. 



CWAFI"ER 7 CAL Em- @l PARA-ION 

The procedure for using the variational method for data assimilation and parameter estinlrttion 

can be formulated in the following way. A cost function is defined, measuring the distance 

between model results and observations as in Chapter 6. The cost function is therefore a 

function sf both the observations and the unknown model parameters. Given an initial guess 

for the model parameters, the numerical model is used to cdculue the value of the cost 

function. An adjoint numerical d e l  is then used to calculate the gradient of thc cost function 

with respect to the m y  unknown model parameters. Next, an optimization algorithm, as will 

be described in this Chapter, uses the gradient information to obtain a new guess for the 

parameters, reducing the value of the cost function. Several such itelations are needed to 

obtain the minimum value of the cost function, where model results md observations are 3s 
close as allowed by the level of measurements noise. The optimal estimate for the 
parameters is that corresponding to the minimum value of the cost function. We now present 

a detailed discussion of the several minimization methods employed to carry out the 
optimization. Subsequently, we will present the results of thc numerous numerical 

experiments carried out to test the efficiency and accuracy of these to get the optimum value 

of the parameters. 

Let the parameters be denoted by q,, j=l ,...., P and the gradient components by Fj. To solve u 

system af P equations, F, = 0, by the secant method requires P + 1 starting points at which 
the values of the quantities F, have been found. Each of the functions F, is approximated by a 

linear function through the appropriate P + 1 points, and the P linear equations are then 

solved for the approximate root. 

Suppose that at P + 1 points, 4, = q;, p = 0.1, ..J, the gradient components in eqns 

(6.19),(6.20) or (6.22) are given by certain known values 5 = y. Then the system 



is first solved for the coefficients AjE where E = 1, ... Q, and then the system 

is solved to determine the next approximation q, to the solution. The last of the P + 1 original 
points is now discarded and the new approximation qj ustd as the zeroth point for the next 

i teratian. 

Selection of the initial B + 1 pints can conveniently be reduced to choosing one p in t  in the 

following way. ]Let q,', j = 1, ... Q be the initial values of the parameters, lading to the value 

F ' of the functional F and F,' of one of the corresponding Fj in (6.19). Now F, is the 

derivative of F with respect to q,, so if F is approximated by a quadratic function of q, and 

the minimum value is assumed to be close to zero, it follows that the minimum pin t  is given 

by 

This value of the jth parameter is generally found to be closer to the minimum of F than the 

original q;. By modifying each variable in turn in this way, we can generate the required 

additional B points. 

The secant method may be regarded as a quasi-Newton method of minimizing F in which an 

approximate Hessian matrix is computed at each step using secant approximations to the 

second derivatives. The above version of this method becomes inefficient when the number of 

variables is large because of the repeated matrix inversions and an explicit iteration algorithm 

must be used. 

"I%e expressions on the left of eqns (6.19),(6.28) or (6.22) are the components of VF in the 

space of the parameters. The method of steepest descent involves modifying the parameters 

in the direction - VF, that is, 



where the tilde indicates the new parameter values and s is an iteration parameter (or 9.tep 

size) determining the amount of d f x a t i o n .  

In the case of a single constant parameter k2, the iteration formulas (6.21) take the form 

In the case of no prior value, this iteration formula is equivalent to she parameter equation of 

Pmchang and O'Brien. In general we shall refer to direct iteration of eqns (7.1) or a subset 

thereof, with a constant value of rs , as the PO method. 

Panchmg and 09Brien found in their numerical example that direct iteration of (7.2) eon- 

verged for any initial guess for & and for my choice of s within a very wide range, but to 

obtain a reasonable rate of convergence an appropriate choice of s must be made. As we 

shall see later, we have found that in general, the iteration (7.1) does not converge for any s 

unless the initial guess is sufficiently close to the aye value. However, this method generally 

does converge for a wider range sf  staxting values than does the secant method. 

The method of steepest descent itself consists of making repeated line rninimizstions (or line 

searches) of F in the direction -VF, starting each time from the preceding winimurn point. An 

alternative, which in most cases gives much more mpid convergence, is to use a canjugate 

gradient method, in which the minimizations are made in a set of conjugate directions rather 

than'steepest descent directions. We have used the Polak-Ribiere fom ~f this method, with 

and without Beale restarts, with Davidon cubic interpolation for the line searches. A detailed 

hiiscussion of these algorithms, including the restart criteria, is given by Navon and Legter 
(1987). We have provided a short description of the Pol&-Ribiere conjugate gradient method 

and Davidon interpolation in an appendix at the end of his chapter. 

More sophisticated quasi-Newton methods of minimization are available, in which some 

information abut the Hessian matrix is used. A discussion of some of these is given by 

Navon and Legler (1987). In obtaining some of the numefical results reported in the next 

section we have made use of the subroutine CONMIN, written by Shranno and Phua (1980), 

which contains both a conjugate gradient like memoryless quasi-Newton algorithm with 

Beale restarts and a quasi-Newton algorithm based or, the Broyden-Fletcher-Goldfarb- 
Shanno (BFGS) scheme of updating the approximate Hessian. 



A number of numerical examples have been used to test the effectiveness sf the method 
described in Chapter 6. In all the examples the values M = 19 and Bx = 40,000m have been 

used, so that L = 700 krn. The boundary condition (6.32) are taken to be sinusoidal, 

6(L,t)=cosos, w = 2 x / T ,  (7.3) 
where T = 12 hrs. The time step used was At = 360s, or 120 steps per period. 

It is assumed that the values of C at the two points xl and x2 corresponding to the grid 

points m = 8 and 16 arc known from measurements, and occur in the fist term of eqn (6.4). 

The function F can be normalized arbitrarily, and we have taken K4At = 1, which somewhat 
simplifies eqn (6.16). 

The convergence criterion used for m s t  of the iterations was that successive values of each 

parameter should differ by less than 0.01%. For the algorithms in the CONMIN subroutine, 
the convergence criterion is based on the magnitude of the gradient of F. 

Unless explicitly stated, all quantities given below are h MKS units. 

In this case, k2 = 0 and k, and h are constant. The parameters are determine from eqns 
(6.20,) and (6.20,). The exact solution with boundary condition (7.3) is given by 

and this is used as the "empirical" values at the two points x,  and x,. 

We consider the following three cases: (i) h is known (= 65m) and kl is determined from 
eqn (6.20,). the true value being 0.3~184; (ii) k, is hewn (= 0.3xlW) and h is determined 

from eqn (6.203), the m e  value being 65; (iii) both k, and h are to be determined, with their 

true values being 0.3x10-4 a d  65 respectively. These cases involve just one or two variables 

and offer a good opportunity to compare the P8 (direct iteration) method, the secant method 
and the Davidon cubic interpolation method (plus conjugate gradients in ease (iii)). The 
results obtained are as follows. 



Case (i)  
When K, = 0 (no prior information) the secant method converges when the starting 

value is in the interval 0 S kl S 0 . 7 3 x l W ,  but diverges outside that interval. The 
convergence typically requires 5 - 6 iterations for 0.0196 error. As Kl is increased the 
interval of convergence also increases and the number of iterations decreases. 

Table 7.1 shows how the final value of kl and number of iterations changes as the 

weight K ,  is increased. The prior estimate kt' was 0.15x10-4 and it can be seen that 

the final value of k1 approaches this estimate as K 1  is increased. This result is not 

surprising, and shows that the variational algorithm is working as expected. In Figure 

7.1 we plot the function value against kl as K1 is increased. 

Table 7.1. Final value of k, and number of iterations for different values of the prior 

weighting factor K,. The starting value was k, = O . S X ~ O - ~  in each case. 

When K, is zero the PO method converges if the starting value is in the somewhat 

larger interval 0 S k, S 0 . 9 ~ 1 0 4 ,  provided a suitable iteration parameter s is used in ecjn 

(7.1), and again there is convergence for a larger interval when K ,  > 0. The number of 

iterations can be diminished and the interval of convergence considerably enlarged by 

adjusting the iteration parameter s in (6.22,) from one iteration to the next. However, 

unlike the case investigated by Panchang and O'Brien (1989), convergence cannot be 

achieved for a l l  starting values by using only positive values of s. 

When K ,  = 0 the Davidon cubic interpolation algorithm converges if the initial value is 

in the interval 0 S k, S 0 . 7 8 ~ 1 0 4 ,  and typically requires 5 - 7 iterations. 

The first two rows of Table 7.2 give some comparison of the rates of convergence of 

the three methods when K1 = 0. Each method was run for two starting values: k ,  = 



0 . 5 ~  1 W, and 0.1~104 with the samz termination criterion. The table gives for each 

method the frnal value of k,  and the number of iterations (that is, the number of 

evaluations of the gradient of F required to meet this convergence condition). It can 

be seen that all the methods converge to the same parameter value. 

In the case ot the .PO method it is always possible to find a valile of s in (7.1) so that 

this method converges in a single iteration, that is with two such evaluations, so this 

number is rather meaningless in this case. However, considerable experimentation is 

required to find this value of s. Furiiemore, this magic value sometimes lies outside 

the interval 0 c s c so in which the iterations converge (for example when k, = 

0.5x10-4) and in such a case, the smallest number of iterations that is obtainable 

within the interval of convergence is given. 

For the secant method the second value s f  the parameter is chosen as k, - 2F/4 

where F and F, are computed using the starting value kl. We have plotted the values 

of - 
lv~ol 

against the number of iterations in Figure 7.l(a) for this case. 

Table 7.2. Estimates in the single parameter cases for linear friction. The starting values of 

the different parameters are given in column 2 and the final values obtained with the 

three different minimization algorithms are in subsequent columns. 

Case (ii) 

When KA is zero the secant method converges when the starting vaiue is in the 

interval 47 S h 5 78, but diverges outside that interval. The PO method converges if 

the starting value is in the interval 43.5 5 h S 446, provided a suitable iteration 

parameter s is used. The Davidon cubic interpolation algorithm converges if the iniiial 

value is in the interval 43.9 5 h 5 125. 



The last two rows of Table 7.2 again give some comparison of the final values of h and 

the num'krs of iterations for the three methods with each method being run for two 

starting values: h = 55 and 75. In each case Kh = 0. As before, the vdue of s for the 

PO method is chosen to give the optimum rate of convergence and the second value of 

the parameter for the secant methud is chosen as h - 2F/F, where F and F ,  are 

computed using the starting value h. 

Table 7.3 shows how the final value of h and number of iterations for the secant 

method changes as the weight KA is increased. The prior estimate h ' was 25 and i t  

can be seen that the final value of h approaches this estimate as K ,  is increased. The 

number of iterations first increases as KK, is increased, which suggests the existence 

of two adjacent local minima of F. 

In order to investigate this more closely, we have graphed F as a function of h for 

several values of Kh in Figure 7.2. When KA = 0, F has two local minima, at h 

approximately equal to 25 and 65, the second minimum value being several orders of 

magni~de smaller than the first. By coincidence, we had chosen h = 25 as the prior 

estimate in TaMe 7.3, so the relative importance of the fmt minimum is enhanced as 

K, is increased. For (M - 2)JK, = 1, the two minimum values are almost equal, 

leading to a large number of iterations before final convergence. (Use of second order 

Hessian information can reveal more information concerning the existence of mu1 tlple 

minima.) local 

Final value of h 

Table 7.3. Final value of h and number of iterations for different values of the prior 

weighting factor K,. The starting value was h = 55 in each case. 



Case (iii) 
When both h and k, are unknown, eqns (6.20,) and (6.20,) must be solved together. 

Table 7.4 gives the final values of the two parameters and the number of iterations 
using the PO direct iteration method, the secant method and the Polak-Ribiere 

conjugate gradient methd with Davidon cubic interpolation. The tabulated values 

refer to the case when Kl and KA are both zero and results for two different pairs of 

starting values arc given. In the case of the PO method, a very considerable amaunt of 

experimentation is needed to find the optimal value of s and the number of iterations 

sometimes increases very significantly if s differs only a little from this value. The 

number of function evaluations in the conjugate gradient method is significantly 

reduced if Beale restarts are included, and the algorithm then becomes comparable in 

efficiency with the secant method (set also sub-section (b) below). 

The value of the objective function is very significantly reduced by the minimization, 
from initial values of 0.1 and 0 . 4 ~  in the two cases to abu t  0. 1x10-ll. 

Table 7.4. Estimates in the two-parameter case. The starting values of k, and h are given in 

ca!urnn 1 and the final values obtained with the three different minimization algorithms 

arc in subsequent columns. 

We now consider the general case when kl = 0 and k, and h are constants, so that the 

parameters are determined from eqns (6.202) and (6.20,). In this case, the exact 

solution cannot be found analytically, so it has been determined numerically by the 

same algorithm as described in Chapter 6 but with very fine spatial and temporal 

grids. In practice a grid size of Ax = 16OOm and time step At = 15s were used, 



smaller by factors of 25 and 15 than the corresponding values used for the parameter 
estimations. This "exact" numerical solution is then used in place of the experimental 

measurements Zi in eqn (6.13). 

Case (i) 
Here, k, = 0, h = 65 is assumed known and k2 is to be determined from eqn (6.20,). 

the true value being 0.25~10-~. The results found are similar to those for linear friction. 

In this case, the starting intervals in which the three algorithms converge are all about 

the same, namely 0 5 k2 5 0.7~10-5. 

Some typical results obtained with the three methods f ~ i  two starting values of 

k2 are given in Table 7.5. In both cases the prior weighting K2 = 0. Again, for 

the PO method the value of s in (7.2) is adjusted to give the minimum number 

of iterations within the interval of convergence. For the secant method the 
second value of the parameter is chosen as k, -2F/F,  where F and F ,  are 

computed using the starting value kz. As in the linear cast, all three algorithms 

yield essentially the same final value of the parameter. 

Table 7.5. Estimates in the single parameter cases for quadratic friction. The starting 

value of k2 or h is given in column 2 and the final values obtained with the 

three different minimization algorithms are in subsequent columns. 

if the prior weighting K2 is non-zero, results similar ti those shown in Table 7.1 are 

obtained. The final value of k2 approaches the pior estimate as K2 is increased. Again 

we plot the function value against k2 as K2 is increased in Fig-me 7.3. We have also 



~ F I  
plotted the logarithm of the values of - 

PFol 
against the number of iterations for the 

secant case in Figure 7.3(a). 

Case (ii) 
Here, k ,  = 0, k2= 0.25xlW and h is to be determined, the true value being 65. The 

intervals of starting values in which the three algorithms converge were four~d so be 

convergent were 40 5 h S 1100 for the PO method, 43.5 S h S 80 for the secant 
method and 40 5 h 5 125 for the Davidon method. One typical set of results with the 

starting value 55 is given in the last row of Table 7.5. 

Again for non-zero values of the prior weighting factor K, results similar to those 

shown in Table 7.3 are obtained. 

Case (iii) 
Here it is assumed that k, = 0, and k,and h are both to be determined from eqns 
(6.202) and (6.2&), the true values being 0.25~1O-~ and 65 respectively. Table 7.6 

gives the find values of the two parameters and the number of iterations using the PO 

direct iteration method, the secant method and tie Pol&-Ribiere conjugate gradient 

method with Davidon cubic interpolation. The tabulated values refer to the case when 

K, and K,, arc both zero and results for two different pairs of starting values are given. 

In the first case, the value of F is reduced by the minimbation from 0.28xlW to 

0.64~10-~ and in the second from 0.14~1O-~ to 0.73~10-5. These optimal values of F 

are greater than those in the linear case, presumably because of additional 

discretization emrs in the treatment of the nonlinear damping. 

As in the case of linear friction, the efficiency of the conjugate gradient method is 

improved to a level comparable to that of the secant method if Beale restarts are 

included. We have also tested the BFGS quasi-Newton algorithm on this problem and 

have found that the values of the parameters converge to 0.2475~10-5 and 64.98 in the 

first case and 0.2478~10-5 and 65.00 in the second, with 9 and 8 function calls 

respectively. 



Table 7.6. Estimates in the two-parameter case for quadratic friction. The starting values of 

k, and h are given in column 1 and the final values obtained with the three different 

minimization algorithms are in subsequent columns. 

Case (iv) 

We have also examined the case when all three variables k,, k2 and h arc unknown 

and must be determined from all three of q n s  (6.20), the m e  values being 0 . 3 ~  10-j. 

0.25x1W and 65 repectively. h this case, all the methods converge provided the 

starting values are sufficiently close to the true values, the number of iterations being 

generally in the range 10-20. The final value of h is in every cast as close to the true 

value as in the results reported above. However, the values of k,  and k2 are not 

obtained accurately. Almost invariably, one of these parameters is estimated as too 

large, the other too small, the final estimated values depending on the starting values 

and the mors being typically 1620%. Commonly, but not invariably, d l  the 

minimization algorithms yield the same erroneous estimates. 

It seems clear from this experience that k, and k, are to some extent interchangeable 

parameters, with the solutions at the two measurement points being relatively insensitive to 

an increase in one of these parameters and appropriate decrease of the other. The problem of 

distinguishing between them on the basis of the assumed data is apparently not well-posed. 

7.3.3 Variable coefficients 

We have examined some problems in which k, or k, and h are functions of position along the 

channel. Again the "empirical" values are constructed numerically using the very fine grid. 

As before we considered both linear friction in which = 0 and k, and h are estimated from 

eqns (6.19,) and (6.19,) and quadratic friction in which k, = 0 and k2 and h are estimated from 



eqns (6.192) and (6. 1g3). With the grid used, the number of grid points at which parameter 

values arc to be determined is 17, giving in each case a parameter space of dimension 34 if 

eqns (6.19) are used. This dimension is reduced if finite element approximations of the type 

given in q n s  (6.21) and (6.22) are used. 

In the two-parameter cases, we found the PO direct iteration method quite difficult to use 

insofar as elaborate experimentation was neded to discover a suitable iteration parameter, 

so we have not attempted to use this approach in these cases involving more parameters. 

Consequently, in these variable parameter cases, we have examined only the conjugate 

gradient and BFGS algorithms and the secant method. In of the cases tested, these 
algorithms yiel0cd essentially the same values of the parameters when they all converged. 

The BFGS algorithm generally converged for a wider range of starting values than the 

conjugate gradient like mernoryless quasi-Newton algorithm with Beale restarts (CGB) 
while the secant method was the least robust in this regard. Since most of the computing cost 

lies in the evaluation of the function and gradient values, the matrix inversions of the secant 

method did not add significantly to the cost even with the full 34 parameters. 

First, we considered the same problem as in subsection (b) in which k2 = 0.25~10-sand h = 

65 are constant, but with these two parameters determined pointwise from eqns (6.21) and 

(6.22). Figure 7.4(a) and (b) shows the estimated values of k2 and h obtained using 

piectwise linear approximations with 2, 3, 4 and 5 nodes. The value of F is reduced by the 
minimization from 0.14xlOF to about 0.6x1C5 in each case, and takes between 15 and 22 
iterations. 

Figure 7.5(a) and (b) shows similar estimations of k2 and h in a case where the m e  values 

of these parameters increase linearly from the closed to the open end of the chamel. In this 

case the value of F is reduced from 0.2~10-I to 0.2~104. We have plotted the logarithm of 
l v ~ l  

the values of - m o i  against the number of iterations in Figure 7.5(c) for this case. 

It is clear from these two figures that the estimates obtained with 2 nodes are as accurate as 

those described earlier for the constant parameter cases, but those with more nodes are very 

inaccurate. The parameter values obtained using eqns (6.19) and the full 34 dimensions of the 

parameter space are even less accurate than those shown f ~ r  four nodes. Note that the para- 

meter estimates are not even accurate in the vicinity of the two data stations, m = 8 and 16. 
The data at these stations is reproduced as accurately with these unsatisfactory parameter 



profdes as it is with the exact profiles, the residual errors coming predominantly from the 

truncation e m  in the approximations (6.1 1) and (6.12). 

It thus appears that the inverse problem is not well posed if the number of independent 

parameter values to be determined exceeds four. TAis however is not surprising since the 
assumed empirical data, the surface elevations at two stations, contains essentially four 

scalar values, namely the amplitudes and phases of the fundamental at the two stations. 

While for quadratic friction, the nonlinearity does generate higher harmonics, the amplitudes 

of these are apparently too weak to provide significant additional information. This would 

suggest that the number of independent parameters that can be estimated cannot exceed 

twice the number of data stations. (It is also worth noting that in the case of many parameter 

values ill-posedness can be eliminated by using a penalty-regularization approach.) 

In order to test this hypothesis we have examined the effect of including additional data 

stations. We fmt considered the same example of constant linear Friction that was used in 

subsection 7.3.1 in which kt= 0.3x10-4 and h = 65. The number of nodes was allowed to be 

2,3,4 or 5. In each case we found that when the number of tide stations is equal to the number 

of nodes the final estimates converged to the values k,= 0.29868~184 and h = 65.261 

regardless of the starting values (provided these latter were sufficiently close to the true 

values for the minimization algorithm to converge). (To achieve this five figure accuracy we 

used a more stringent convergence criterion than previously.) On the other hand, if the 

number of tide stations is smaller than the number of nodes then the predicted values of the 

parameters depend sensitively on the starting values and moreover show similar 

irregularities to those illustrated in Figure 7.4 for 3 or more nodes. This result is consistent 
lv F l 

with the above conjecture. Figure 7.6 gives the variation of the logardt!!m of the values of - -  
PFoI 

with the number of iterations. 

Figure 7.7(a) and (b) shows some results obtained for quadratic friction when the true values 

of depth and friction coefficient vary as quadratic functions of distance along the channel. The 

figure shows the approximations to these functions obtained using 2,3,4 and 5 nodes, in each 

case with the number of data stations equal to the number of nodes. The estimated para- 

meters are reasonable approximations to the true vdues within the respective function class 

in each case; as anticipated, the approximation improves as the number of nodes is increased. 

As with the previous example, if a smaller number of data stations is used, the estimates 

become less reasonable and depend on the assumed starting values. 



In a subsequent series of experiments we experimented with large-scale minimization 
algorithms such as L-BFGS(Noceda1, 1980) and the truncated-Newton method(Nash, 1985; 

Schlick and Fogelson, 1990). The performance of all the above algorithms for all the three 

cases of constant, linearly varying and quadratically varying parameters. In the first case the 
function value goes down to 3.1~10-~O, in the second to 2.x10-9 and in the third to 7.75x10-8. It 

is worth noting that the final function values turn out to be very sndl  as compared to that 

achieved by the CONMIN subroutine. 

7.4 AND DISCUSSION 

In Chapters 6 and 7 we have examined the feasibility of estimating the parameters of a 

hydraulic model by assimilating pericuiic tidal data A variational approach has been used in 

which the dynamical equations are imposed as strong constraints (Sasaki, 1970). The 

forward and adjoint problems are solved by finite difference methods using staggered spatial 

and temporal grids. In the test problems considered, the data consisted of periodic surface 

elevation values as two stations in a channel of length 17.5 grid spacings. The data itself was 

taken from the exact analytical solution when this was available or else Erom a very exact 

numerical solution. The parameters estimated are the depth of water and the linear and 

quadratic bottom Friction coefficients, which may be constant or may vary along the channel. 

Several methods were used and compared to solve the parameter equations: the secant 

method, a direct iteration method, the Polak-Ribiere conjugate gradient method, the conjugate 

gradient like memoryless quasi-Newton method with Beale restarts and the BFGS quasi- 

Newton method. The last two algorithms were taken AQm the CONMIN subroutine of 

Shanno and Phua (1980). 

In the case of constant parameters, when only one parameter is to be estimated, the secant 

method, direct iteration method and conjugate gradient method (which reduces simply to 

Davidon cubic interpolation) ail produce essentially identical results in about the same 

number of iterations, though some experimentation is needed to find an appropriate iteration 

parameter for the direct iteration method. When two parameters are estimated (depth and 

either of the friction coefficients) this continues to be true, except that the direct iteration 

method becomes significantly more expensive than the other methods; the conjugate gradient 

method without testarts is somewhat more expensivy . 



In dl these problems, the estimated values of the parameters obtained by all methods agree 

almost to four significant figures. These values differ froanr the exact parameter values by 
almost one percent, because of truncation errors in the finite difference approximation of the 

forward and adjsint equations. In the case of quadratic friction, the value of the objective 
function at the minimum is reduced by about four oders of magnitude from its starting value. 

For linear friction the reduction is between nine and eleven orders of magnitude, this smaller 

value being presumably due to the more exact treatment of the bottom friction by the finite 

difference algorithm in the linear case. 

An attempt to estimate all three parameters was not successful in yielding accurate values. 

The linear and quadratic friction coeficients appear to some extent to be interchangeable and 

the assumed data is not sufficient to resolve them. 

In the case of distributed parameters, we have used a finite element approximation by means 

of which the parameter functions are expressed in terms of some reduced number of 

cmfficients slack as certain nodal values of the parameters. The method has proved to be very 

accurate provided the total number of independent nodal values that are estimated does not 

exceed twice the number sf data stations. The estimates obtained by the secant method, the 

conjugate gradient like rnemoryless quasi-Newton method with Beale restarts and the BFGS 

quasi-Newton method are completely consistent whenever the different methods converge. 

In general, the estimated parameter functions are, as can be expected, found to be more 

accurate the water the number of nodes. 

If the number of independent nodal values that are estimated does exceed twice the number 

of data stations then the estimated parameters have turnd out to be quite unreliable and to 

depend on the assumed starting values. 

The q u  time fur solving the forward problem and the adjoint problem is almost the same and 

is the major part of the total computational cost. One iteration (involving integrating the 

model equations forward and the adjoint equations backward once) requires about 0.25 

second on an UNIX SUN Spmstation i. 



APPENDIX B 

The conjugate-gachent algorithm is an iterative method for unconsaairaed minimization that 

pfoduces a better approximation to the minimum of a general unconstrained nonlinear function 
of N variables, x l ,  x2, . . . ., XN with each iteration. Within a given iteration an estimate is 

made of the best way to change each component of the vector x, so as to produce the 
maximum reduction of the function, by finding the gradient of the function with respect to the 

variables and combining this gnubent with informadon from the previous iterations to produce 

a search direction. The search direction is an estimate of the relative change in each 

component of the vector x to produce the maximum reduction in the function F. To find the 

magnitude of the changes along the search direction, an optimal step size must be estimated. 
The new vector after an iteration of the conjugate gradient xk+1 is given by the previous 

vector xk plus an optimal step size times the search arection. 

Given a set of linearly independent vectors -go, -$I, . . . , -g,-1, one can construct a set of 

mutually G-conjugate (G is a positive definite symmetric matrix) directions dg, dl, . . . , dnWl 

by the following procedure. Set 

and then for i = 1, . . . , n-1 successively define 

where no are coefficients chosen so that di is G-conjugate to the previous directions di-1, 

di-2, . . . , dg. This is possible if, for ! = 0, . . . , i-1, 

If previous coefficients a0 were chosen so that at 6, . . . , di-1 are G-conjugate, then we have 



and hence we get 

1 T T For a quadratic function F(x) = ~x G x  + b x + c. (where G has been defined earlier. b is a 

vector, and c a scalar) a = VF(xk) and gk+l- gl, = G(xk+1 - xk). Therefore 

Using the fact that the subspace spanned by gg, . . . , gi-1 is also the subspace spanned by do, 
. . . , di-1 and the fact that 

we obtain 

T 
gi g,=O,j=O,. . . ,i-1 

so that we have a simpler formula 

with 

Using the equalities 
T T 

gj gj=& dj=O j = O , .  . . , i - I  

the coefficient pi can be written as 



In order to generate the direction di in the minimization pmess, we need only h a w  current 

and next previous gradients gi and gi-1 and the previous direction di-1 ( i s . ,  storage of three 
2 vectors). FOP a nonlinear function G = V F. The first expression for is the Polak-Ribiere 

form and the second expression is the Fletcher-Reeves fom. They are equal for exact 
quadratic fufictions. For real world functions which are not exactly quadratic, to reach the 

supposed minimum of the quadratic form, the Polak-Ribiere form accomplishes the transition 

to further required set of iterations more gracefully, by resetting B to be down the l w d  

gradient, which is equivalent to beginning the conjugate-gradient procedure anew. 

Davidon devised a method which uses the values of the functisnflx) at two points on the line 
x = xk + Ad, together with values of the directional derivatives of the function along the line at 

the same two pints. Given a point xk an8 a direction of search d, where d need not be a unit 

vector, Davidon's cubic interpolation method for minimizing the differentiable functionflx) on 

the line 
x = xk + Ad is as follows: 

1. Evaluate fo =f lx~)  and Go= k(xk)]'d. Check that Go < 0. In the following expression 

choose K andfe, where K is some representative magnitude for the problem (usually, K = 2) 

and feis a preliminary estimate, preferably low than high, offlxk + Amti), and hence determine 

a. 

2. Evaluate fa =Axk + ad) aid Ga = Ig(xk + ad)]'d. 

3. If Ga > 0, or if fa > fb proceed to rule 5. Otherwise go to a l e  4. 

4. Replace a by 2a, evaluate the new fa and Ga and return to rule 3. 

5. Interpolate in the interval [0, a] for &, using 

3 
In this equation w= d z a n d  z = - (fO -fa) + Go + Ga 

CY 

83 



6. Return to rule 5 to repeat the interpolation in the smaller interval [0, &] or [A,,,, a), 

according as 

fg(xk + &&I'd 2 or < 0. 

Stop when the interval of interpolation has decreased to some prescribed value. 

For further details on this method see Walsh(1975). 
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CHAPTER 8 PARAMETER ESTIMATION WITHOUT THE GRADIENT 

In this Chapter we present a method for estimating the constant parameters in a sectionally 
integrated hydrodynamical model of tidal flow which does not use the adjoint formulation for 

evaluating the gradient of the cost function. This prompts us to make use of an optimization 
algorithm that needs only evaluations of the cost function itself to get to the minimum. The 

algorithm is known as the Powell's Direction Set Method in the literature. 

We tested the algorithm on two model problems in which the parameters k, and h are 
determined. For all starting values of the parameters lying within a specified range we 

always reached the minimum with errors of the order 0.01%. 'l"his sounds encouraging as it 

saves the cpu time used in estimatitg the gradient of the function. But before the actual 
minimization procedure starts, the minimum has to be bracketed within an interval. This 

requires the function to be evaluated a number of times and hence, adds significantly to the 

cpu time. In our numerical experiments we found that the Powell method is 2-5 times as 

expensive in compater time as the gradient method. 

We again consider the channel problem as described in Chapter 6. We have the depth- 

integrated equations of continuity and momentum as 

where z is the bottom friction stress and p the density, assumed constant. (See eqns. (2.13) 
and (2.14a) in which p + phu, q -t 0, H - h and p = P = p'S) .) We have only taken the linear 

bottom friction K~ into account. It is assumed that the bottom friction has the form 

The equations are then given as (6.1) and (6.2). The boundary conditions are given as (6.3). 



I 

The prime aim is to minimize the functional as given in (6.4), subject to the boundary value 
problem (6.1)-(6.3). The surface elevation is measured at two stations x l  and x2, and these 

are used to define the functional. The first step in the process is to bracket the minimum. This 

is achieved by Golden Section Search in one dimension. The idea is to get the optimum 
bracketing interval a&c where the middle point b is a fractional distance 0.38197 from one 

end (say, a) and 0.51803 from the other end (say, c). This bracketing of the minimum is based 

on the principle of stepping downhill. 

Once we get this interval we use the Powell's method to get to the minimum. The first step in  

the method is to come with a set of N linearly independent, approximately mutually conjugate 

directions. Then the application of N line minimizations will get us approximately to the 

minimum of a quadratic function. For functions F which are not exactly quadratic forms, 

repeated cycles of N line minimizations will in due course converge quadratically to the 

minimum. A detailed discussion of the method is given in Press et a1 (1989). 

8.3 meal Tests 

The numerical algorithm used to solve the basic equations (6.1)-(6.3) are given in (6.11) and 

(6.12). Equations (6.11) and (6.12) are stepped forward starting from zero initial values. Thc 

initial transients disappear after several periods and the solution becomes periodic. Again we 

assume that the values of C at the two grid points m=8 and m=16 are known from 

measurements. The convergence criterion used is based on the magnitude of the function 

value. Essentially two tests were conducted. 

8.3.1 W t  cmcients._llnsegmented channel 

The exact solution of (6.1)-(6.3) with boundary condition (7.3) is given by 

COS" .&}, a = J"' - ik" 
( r )  = 'R{';~~ gh ? 

and this is used as the "empirical" values at the two points x l  and x2. 



We consider the following three cases: (i) h is known (= 65m) and k1 is determined, the 
true value being 0 .3~104;  (ii) kl is known (= 0.3~10-4) and h is determined, the true value 

being 65; (iii) both kl  and h are to be determined, with their true values being 0.3~10-4 and 

65 respectively. The results are summarized in Table 8.1. 

Table 8.1. Estimates in the numerical test no. 1. 

In another series of tests we have used a modified objective function equal to the square 
norm of the amplitude of the fundamental in the difference between C (xi,t) and Zi(t). This 

amplitude was extracted from the accumulated values of the elevation over the last 120 time 

steps by using the Fast Fourier Transform (see, De Boor and Conte, 1980). The number of 

iterations in the case of (i) and (ii) were 46 but in the case (iii) was only 149. 

8.3.2 u t  coeffi.&nts. semented channel 

We now consider the case where the channel is considered to be divided into two parts with 

different values of bathymetry and bottom friction. In this example the value M = 90 and Ax = 

8000m is used. The two ends of the channel are subjected to boundary conditions of the form 
(6.3). In 0 < x < L1,  the parameters are k1 and h, while in L1 < x a L they are k2 and h2. At 

the dividing point the velocity and surface elevation are considered to be continuous. 

The solution to the equaticns (6.1)-(6.3) is given by 



where al = and @ is defined similarly, ani 

D = al Pcosal L i  - i% f? sinal L i  , P = exp(iW1) + exp(ia2(2L-L1)) and 
Q = exp(iqL1) - exp(ia2(2GL1)). 

Region 2 

We took h, = 65 and h2 = 50, regarded as known, while kt and k2 are to be determined, the 

true values being 0.3x10-4 and 0 . 1 5 ~ 1 ~ .  The starting values are taken to be 0.2~10-4 and 

0.05~10-4. The final values are 0.2982xlW and 0.1462xlW. It takes 122 iterations for the 

convergence with tolerance of 104 when we evaluate the function by using Fast Fourier 

Transform and 293 iterations when the function is obtained by using the method in Chapter 6. 
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