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This thesis is based on two distinct studies. In the first a model is described for the
computation of flows in shallow seas driven by density gradients. Two numerical algorithms
are proposed. The first one is based on a splitting method: at each time-step, the surface
elevaton and vertically integrated mass transports are computed from the depth-averaged
equations, then the vertical structure of the current is obtained from the horizontal momentum
equations. The second is based on a Galerkin spectral method using eddyviscosity
eigenfunctions for the vertical coordinate and a B-grid for the horizontal coordinates. The
accuracy of the former is tested on four problems and that of the latter on two problems for
which exact steady-state solutions can be computed. These problems have been chosen to
distinguish between the effects of horizontal density gradients, vertical structure of the
density field, variable depth and Coriolis forces. Both the numerical models are then used to
compute that part of the residual currents in the Arabian Gulf caused by density gradient,
using as input a series of measurements of the density field made during the Winter of 1977.

The second part of the thesis is concerned with the estimation of both constant and position-
dependent parameters in a sectionally integrated hydrodynamical model of tidal flow. Bottom
friction coefficients and water depth are parameters estimated and the available data consists
of measured periodic values of water surface height at certain stations. The adjoint equation
formulation is used to obtain the parameter equations, and several optimization algorithms
are examined and compared for the iterative refinement of the parameter values. A direct
method, which avoids the use of the gradient of the cost function, has also been investigated
to estimate the optimal values of the constant parameters. This method is somewhat more
expensive than the adjoint/variational method.
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CHAPTER 1 INTRODUCTION

Most numerical models presently being used for computing flows due to tides and storm
surges are based on the so-called shallow water equations. These equations are obta:ned
from the full three-dimensional hydrodynamical equations by averaging over the vertical cu-
ordinate. There are several computational methods which have been used to solve
numerically these equations. Finite-difference schemes (Hansen 1962; Leendertse 1967;
Matthews and Mungall 1972; Flather and Heaps 1975; Lardner et al 1982; Duff 1983) are the
most widely used techniques among these methods. Other numerical schemes have been
devised, using finite elements (Connor and Wang 1973; Taylor and Davis 1975; Brebbia and
Partridge 1976; Connor and Brebbia 1976; Pinder and Cray 1977; Wang 1978), harmonic
analysis in time plus finite elements in space (Le Provost and Poncet 1978; Le Provost et al
1981; Pearson and Winter 1977) and the method of characteristics (Townson 1974; Lai 1976;
Lardner et al 1986; Cekirge et al 1986).

In spite of the approximations made in the advective terms and the bottom friction terms in
deriving the shallow water equations, the two-dimensional schemes are highly successful for
tidal flows but yield only the free surface height and depth-averaged components of velocity.
For many purposes this information is not enough, and the vertical profile of the velocity is
required, for example, when computing the movement of an oil slick (which depends strongly
on the surface velocity), the force on an underwater pipeline or wind driven flow (where the
surface velocity differs strongly from the depth-averaged velocity). For this purpose, in recent
years, three-dimensional flow models have been developed by a number of workers. The
earliest of these models are based on some kind of finite difference schemes in three
dimensions (Sundermann 1974; Simons 1974; Laevastu 1975; Leendertse & Liu 1975a, b;
Sengupta et al 1978; Johns et al 1983). Heaps (1979) has used an appropriate integral
transform in the vertical dimension. Davies & Owen (1979) and Davies (1980a, b; 1983)
have used a Galerkin method of solution, using various sets of basis functions of the vertical
coordinate. Recently, Lardner (1990) has proposed a more efficient numerical algorithm based
on a Galerkin spectral method using eddy-viscosity eigenfunctions for the vertical coordinate.

All of these three-dimensional schemes are generally an order of magnitude more expensive
in computer time than the two-dimensional schemes. Another approach in which the two-
dimensional equations are solved using bottom friction modelled by a convolution integral



derived from the three-dimensional equations has been proposed by Welander (1957),
Jelesniansky (1970), Forristal (1974, 1980), Jordan and Baker (1980), Davies (1987, 1988),
Jamart and Ozer (1987) and Hearn and Hunter (1988). This algorithm, which treats the
convolution integral in an approximate way, compares well with the two-dimensicnal
algorithms in computer time, but is practically infeasible when the viscosity coefficient is a
general time-dependent function.

Lardner & Cekirge (1988) and Lardner & Smoczynski (1990) have proposed an alternative
scheme, called the V/HS algorithm (short for vertical/horizontal splitting). The basic approach
of this algorithm is to obtain the surface elevation and the depth-averaged velocity
components at the given time step using one of the existing two-dimensional schemes.
These values are then used as a part of the input to the horizontal momentum equations,
which are solved separately at each horizontal grid point for the vertical profiles of the
velocity. Davies (1985a) and Lardner & Cekirge (1987) have used this approach to obtain
velocity profiles from steady flows, and Davies (1985b) and Backhaus (1985) have proposed
related schemes for dynamical problems.

In the first part of the thesis, we shall be concerned with computation of the currents caused
by such gradients. Density gradients in near-coastal seas are established by such processes
as evaporation, fresh-water run-off and precipitation. While the magnitude of these currents
is usually quite small, compared to tidal currents for example, they can be a dominant factor in
phenomena such as pollutant transport where long-term drift is of concern.

We shall be interested in particular in modelling a commonly found situation in which the
time-scale for changes in the density field itself is much longer than the time-scale for
establishment of a quasi-steady flow field in the region of interest. In this situation, it is
possible to ignore the salinity transport when computing the flow velocities and to assume
that the density field is fixed. Its values can be taken from observational measurements.

We shall describe and test two numerical schemes for computing such density-driven flows,
the first based on the V/HS algorithm and the second on the spectral method in the vertical
and a B-grid in the horizontal, and shall apply these schemes to the computation of these
flows in the Arabian Gulf. Here the dominant factor in establishing the density gradient is
evaporation; the fresh-water run-off is rather insignificant except near the head of the Gulf.
The changes in density field typically occur over time-scales of one to three months, while the
time-scale for establishment of a steady flow over the region is not more than about a week.



The accuracy of the algorithms will be tested on a number of test problems for which the exact
steady state solutions are known. The basic density driven flow pattern in the Arabian Gulf
turns out to be as expected, but the details of the flow show several surprising features. In
particular, the magnitudes of the velocities are smaller by a factor of 2-5 than has been
suggested by some authors.The algorithm based on the spectral method produces more
accurate results in the test problems than the direction-splitting algorithm and the computed
flow in the Gulf, while generally consistent with that found using the latter algorithm, does
not show the irregularities near the open boundary found there, and in other earlier

computations.

The second part of the thesis is concerned with the estimation of parameters in numerical
tidal models. The earliest such models have been based on the vertically-integrated
continuity and momentum equations, and yield values of the surface elevation and depth-
averaged velocity components. The parameters in such models are usually the water depth
and the bottom friction coefficient, both of which are in general position-dependent.
Traditionally, numerical tidal models are “tuned” by adjusting these parameters so as to
make the predicted surface elevations at certain tide stations agree as closely as possible
with their observed values. This technique is not only tedious and difficult to do in any
systematic way, but is also unsatisfactory insofar as one can never be sure that such
“manual” adjustment of the parameters yields their optimal values. These difficulties become
greatly magnified in the case of full three-dimensional numerical models in which the vertical
profiles of velocity are computed and in which additional parameters such as eddy-viscosity
must be estimated.

In recent years systematic techniques of data assimilation based on optimal control methods
have been developed, particularly in the field of meteorology. These methods were originated
by Sasaki (1955, 1970) and Marchuk (1974) and have more recently been developed and
applied by Lewis and Derber (1985), Le Dimet and Talagrand (1986), Harlan and O’Brien
(1986), Hoffman (1986), Lorenc (1986, 1988), Talagrand and Courtier (1987) and Courtier
and Talagrand (1987). Recent reviews of much of this work are given by Lorenc (1986),
Navon (1986) and Le Dimet and Navon (1989). Similar methods have also been used by
Chavent et al. (1975) and Carrera and Neumann (1986a,b,c) to estimate the parameters in

models of flow in porous media.

In the field of oceanography such optimal control methods have also recently come into use.
Bennett and McIntosh (1982) and Prevost and Salmon (1986) have applied the weak



constraint formalism of Sasaki (1970) to tidal flow and geostrophic flow problems. More
recently the strong constraint formalism has been used by Panchang and O’Brien (1989) to
determine the bottom friction ccefficient in a problem of flow in a channel using some earlier
experimental results. Smedstad and O'Brien (1991) has extended this approach and used it
to determine the effective phase speed in a model of the equatorial Pzcific Ocean based on
observations of sea level. Yu and O’Brien (1990) have used a sirnilar method to estimate the
eddy viscosity and surface drag coefficient from measured velocities of a wind-driven flow. In
recent years, extensive application of the adjoint/variational formulation to the North Atlantic
Ocean using steady state general circulation models have been carried out by Tziperman and
his associates (see, Tziperman and Thacker, 1989; Tziperman et al 1990a, b). Among other
things, they have calculated poorly known parameters such as eddy-mixing coefficients, and
surface forcing and tracer boundary fluxes by fitting model results to observations.

For many water bodies, there exists an abundance of observational data on tidal amplitudes
and phases, collected often over several decades from tide gauges. This thesis is concerned
with the assimilation of such periodic data, using Sasaki’s strong constraint formalism, in
order to estimate the parameters in a depth-averaged numerical tidal model. The work is an
extension in several directions of that of Panchang & O’Brien (1989). First, we have
investigated the feasibility of using this approach to estimate more than one parameter and,
more importantly, distributed parameters; second, we have assimilated periodic data rather
than initial value data; and third, we have examined and compared several numerical
optimization algorithms.

We shall consider an idealized problem, similar to that considered by Panchang and O’Brien
(1989), involving flow in a channel of uniform width. One end of the channel is open, the other
closed, and the water elevation at the open end is varied harmonically with some known
amplitude. Measurements of surface elevation are assumed to be made at two tide stations
at points interior to the channel. In the case of linear friction and constant depth, the
“measured” values are assumed to be equal to the analytic solutions at the two stations. In
cases of quadratic friction and/or variable parameters, they are computed numerically using a
grid and time-step an order of magnitude smaller than those used for the parameter
estimation.

The parameters to be estimated are the water depth and either the linear or quadratic bottom
friction coefficient. (In tidal models, the bathymetry is commonly taken from navigational
charts, and such depths must be corrected by amounts that are unknown a priori, for two
reasons: navigational charts are invariably conservative insofar as they are designed to



prevent ships hitting bottom, and second, the depths on them are relative to some low water
level that must be corrected to mean water level. It is reasonable to treat such depth
cofrections as tuning parameters that are adjusted to optimize the fit with observed surface

elevations.)

The variational method involves minimizing a certain functional with the given boundary value
problem as a constraint. Construction of the gradient of this functional with respect to the
parameters leads to an adjoint boundary value problem that must be solved backwards in
time. A similar numerical method is used to solve both the direct and adjoint dynamical
equations, namely a leapfrog method with staggered spatial and temporal grids. Several
minimization algorithms are examined and compared for computing the final parameter values
using the computed gradients: the secant method, a direct iteration method proposed by
Panchang and O’Brien (1989), the Polak-Ribiere conjugate gradient method, the conjugate
gradient method with Beale restarts and the BFGS quasi-Newton method.

We will also present a second approach for estimating the parameters in the same channel
problem using a direct optimization method which avoids the use of gradient of the cost

function.

In chapter 2 we present the basic equations on which the work in this thesis will be based.
Chapter 3 describes the numerical algorithms used to compute the density driven flows. The
test problems on which these algorithms will be tested for accuracy will be presented in
chapter 4. In chapter 5 we will present the results obtained for the Arabian Gulf. Chapter 6
and 7 will contain the derivation of the adjoint equation, continuous and discrete, and test
results applying the numerical algorithms for parameter estimation on one-dimensional
channel problem with tidal-forcing. Finally, in Chapter 8 we present the results on parameter
estimation using an optimization method which does not use the gradient.



CHAPTER 2 BASIC EQUATIONS

The equations that form the basis of the model are the usual momentum and mass
conservation equations and their depth-averaged forms. For the present problem these
equations contain some extra terms beyond those commonly used. The basic equations here
are based on an eddy-viscosity model of turbulence; furthermore the fluid is assumed to be
incompressible, horizontal eddy shear stresses are neglected, and the vertical momentum
equation is approximated by the hydrostatic pressure equation.

We use a system of Cartesian coordinates with the z - axis pointing vertically upwards and
the xy - plane occupying the undisturbed position of the water surface. The position of the
bottom is taken to be z =~ h (x, y ) while the surface at time ¢ is z = { (x,y,t ). The
horizontal components of fluid velocity are denoted by u (x,y,z,¢ Yand v (x,y,2,¢ ).

As usual, the vertical momentum equation is approximated by thz hydrostatic
equation

4
P(x,y,z,0) =P+ | g px,y, 2')dz’ @2.1)

where P is fluid pressure, P, is atmospheric pressure, assumed constant, g is the
acceleration due to gravity and p (x, y, z ) the given fluid density.

Flows driven by density gradients are generally quite slow, so that the advective terms in the
horizontal momentum equations are very small and can be ignored. These equations then
take the form

p(u,“fV)"—-"— Px +(uu,),

(2.2)
pv,+ fuy=—P, +(uv,),

Here, f is the Coriolis parameter, i is the (dynamical) eddy viscosity and subscripts of x, y,
z ort denote the corresponding partial derivative.

It is convenient to introduce a sigma coordinate (Phillips 1957) in the vertical direction in the

+ h
usual way as o = (z 7 ) , where H = h + { is the total water depth. The free surface is




then 0 = 1 while the bottom is & = 0. Using the chain rule, we can then rewrite equations
(2.2) in the form (Lardner & Smoczynski 1990; Johns et al 1983)

{ % }-—P Lk, - oH )P, + —5(
PY U, — H“a"fv = x_H( x OH, )P, Hz His) o

2.
p{v—g-civ +fu}——P-—1-(h — OH,)Py+ —=( uvy) =
1 H o Yy H y y o Hz oo
while, from (2.1), the pressure is given by
1
P(x,y, 0,0)= P+ gH | p(x,y, @)do'. 2.4)
In equations (2.3), the second term on the left is small and can be neglected. After
substituting from (2.4), these equations then simplify to
1 (2)
ul_fv_ wz(#uo)a':—ng'*'T
(2.5)
vV + fu-~ 1 (uvy), =- g6 + T
4 MI o Y
where
(0 8 (v 8
I=—5{R,-H1-0p} T =—4{R -H(1-0)p,} (2.6)
and
1
R=H[[p(0) - p(a)do. Q.7)

InR, T ®)and T ¢, we can approximate H = h since this factor is already multiplied by
small quantities. This approximation is generally of the same order as our earlier neglect of
the advective terms. With this approximation and the earlier assumption that the density field
is treated as fixed, T *) and T @) provide constant forces driving the flow.

In addition, we have boundary conditions on 0 = 0 and 1. We assume that the surface is free
of shear traction, so we have the boundary condition 4, = v,=0 on o= 1.On the

bottom the boundary condition is

Ug ve) = H(Z 2°) on 6=0 (2.8)



where 7®*) and T®) are the components of bottom drag. It is assumed that these
components are given in terms of the velocity at the bottom by a combination of linear and
quadratic terms,

(7, ) = p(x + K/ ut+ vi)@w,v) on =0 (2.9)

where x; and x;, are the linear and quadratic drag coefficients and g the average density
(see below). In general, it is physically more realistic to use a quadratic dependence of
bottom friction on velocity, but in the case a density-driven flow is superimposed on other,
possibly much larger, flows, such as tidal and wind-driven currents, it may be more
appropriate to use the linear form for bottom friction (Hunter 1975). The form: (2.9) retains
both options.

The kinematical boundary conditions are

Py
C+ UL +vO0 - w=-—W,  Wh,+ v R+ W =0 (2.10)

where superscripts of s and b refer respectively to 0 =1 and ¢ =0, w is the vertical
component of fluid velocity, W is the velocity of evaporation (minus the velocity of
precipitation if that is significant) and p, the density of pure water.

The mass conservation equation,

(pu),+(pv),+(pw),=0, (2.11)

can be used to compute w if required. However, it is used here only in integrated form.
Defining the average density and the components of mass transport by

1 ¢ 1
p=[pdo. (po=] pwvid=H] pwvido 2.12)
0 - h 0

and integrating equation (2.11) over the water column from z =-h toz ={, we get, (Pinder
& Gray 1977) after using (2.10),

Pt +p.+q, = Wp, (2.13)



The depth-averaged momentum equations are obtained by similarly integrating equations
(2.2) over the water column. They take the form

p,- fg=— gpHL, - 7 - pWi® - 57 2.14)
g+ fo=—gpH{, - 77 - ppv* -5,

where
U=t p+ 0, SV=3Hp+L,

and

Q=sz(p-ﬁ)ada.
0

Again, we can approximate H =h in Q, 5 ®) and § @), in which case these terms also

become constant driving forces.

We can compute the steady currents caused by a given density field by integrating the
dynamical equations (2.5), (2.13) and (2.14), starting with {, ¥ and v initially zero
everywhere, and stepping forward in ¢ until a steady solution is reached. The time-stepping
algorithm we have used (Lardner & Cekirge 1988; Lardner & Smoczynski 1990) is split into
two parts: first the quantities {, p and ¢ are stepped forward by using the depth-averaged
equations (2.13) and (2.14), then the velocity profiles are up-dated by solving equations
(2.5). Having found the complete velocity field, the bottom drag stresses are updated by eqn
(2.9) for use in eqns (2.14) on the next step. A second algorithm based on a spectral method
in the vertical coordinate has also been developed. Further details of these numerical
schemes are given in chapter 3.

For both of the algorithms, lateral boundary conditions are required, of the same forms as for
the usual two-dimensional hydrodynamical models. On coastal boundaries, the normal
component of the mass flux vector (p,q ) is taken to be zero. The appropriate condition on the
open part of the boundary is the subject of considerable debate and we have tried four
different approaches to the condition there.

(i) ¢ is set equal to zero at all open boundary points

(ii) ¢ is set equal to zero at one of the boundary points and at the other points is
determined from the geostrophic balance,



L ___Ir
ST T ST

according to the direction along the boundary.

(iii) A radiation condition of the type proposed by Blumberg and Kantha (1985) is
assumed:

g+%ﬁg=—%

where {, is the normal derivative and 7 is a relaxation time.

(iv)  The region has been artificially enlarged by an additional five grids normal to the open
boundary, with the depth and density extended continuously and the bottom friction
substantially increased in the extra region. On the new open boundary a condition of
one of the types (i)-(iii) is assumed.

We have found that for each of the two algorithms these four approaches lead to significant
differences in the steady flow field only within two or three grid spacings of the open
boundary. In the case of the Gulf, with the grid used, the open boundary contains just three
grid points, so the solution at all but about six grid points is approximately the same
regardless of the boundary condition chosen.

We have also used the algorithms to compute the flows due to some model density fields for
which the exact steady state flows can be found and which exhibit four principal features of
the problem. These flows are included mainly as a test on the accuracy of the algorithms, but
also because they are not without their own interest. The first of them is in fact well-known
in the estuarine literature. Details of these tests can be found in chapter 4.
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CHAPTER 3  NUMERICAL SCHEMES FOR DENSITY DRIVEN FLOWS

In this chapter, we shall outline the numerical schemes used to compute the velocity fields.
First we shall describe the V/HS algorithm and then the spectra! method using the eddy-

viscosity eigenfunction expansions.

3.1 Y/HS ALGORITHM

The time-stepping algorithm (Lardner & Cekirge 1988; Lardner & Smoczynski 1990) is split
into two parts: first the quantities {, p and ¢ are stepped forward by using the depth-
averaged equations (2.13) and (2.14), then the velocity profiles are up-dated by solving
equations (2.5).

For the first part, a finite difference method is used, employing an Arakawa C-grid in the xy -
plane and a leapfrog time stepping. This algorithm has been described earlier for a simpler set
of equations (Lardner & Smoczynski 1990). We use m and n as grid indices in the x and y

directions and k to denote the time level. Staggered spatial and temporal grids are used with
¢ (and h) specified at points (m, n, k), p specified at points (m+%, n, k+%) and q at points (m,

n+-l2-, k+';-). Figure 3.1(a) shows the spatial grid and figure 3.1(b) the cross sections of time-

planes.The approximating variables are then .. at time level k and p , and ¢ |

ﬂ+-5,l M.R+f

at time level k + -;- The finite difference approximations to equations (2.13) and (2.14) are

then
Wo
£ 0
P ma ! - N + T D R .
C' ' c ﬁ-.u( p"‘*’-" pﬂ-’,u qu.n+’ q...-’) Pr.n (3 1)
+ 87 + +
Pos: =P~ 3R, ( Covin = Lm0
—d- £, 0+ pwu), 45" ] (3.2)
mira mez.a mty. A mesa
gt + +
L TR (2O B (AR S
4 ' 3.3
- f[fp(l) 4 ,‘ﬁ»f’) .‘*'POWV(') ‘ +S()) l} ( )
u.l+~‘ m, Rty m, Aty m Aty
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Approximation (3.1) is centered at (m, n, k+3), (3.2) is centered at (m+3, a, k+1) and (3.3) at

(m, n+3, k+1). Here, the superscript ‘+ denotes an updated variable, that is {m.. at level k +

, and ¢ , atlevel k+ 3. The size of the time step is T and the horizontal

ll+3.l n,n*r

land p

grid spacing is 8. The local truncation errors in (3.1)-(3.3) are O(7°,78%).To maintain this
level of accuracy, the truncation errors in approximating the right hand sides of (2.13) and
(2.14) should not be greater than second order, at least in the dominant terms.

The superscript ‘(1) in the Coriolis term is used to indicate two things. First the usual four
point averages are used. This means that these terms are approximated by central averages:

(TfQ)»H%. n kel = Yqma, (Yp)m, n+%.k+l = UPmn, 3.4)
where

- 1 ,

dma =3(qdmn + 9m, n-1 + dm+1, n + Gm+1, n-1), (3.5)

_ 1

Pm,n =3 (Pm.n + Pm-1,n + Pm, n+1 + Pm-1.n+1)- 3.6)

(The algorithm does not produce spurious boundary layers at coasts, so it is not necessary
to use a device such as Jamart and Ozer's wet-points-only averaging (Jamart & Ozer
1987).) Second, p and ¢ are updated in alternating order on successive time steps, with the
most recent value of the other variable being used in these Coriolis terms.On odd time-steps,

(3.2) is solved first and the updated values p; n used to compute py, , via (3.6). On even

time-steps, (3.3) is solved first and the up-dated values q;, ,n used to compute gm p via (3.5).

The computation of the vertical velocity profiles as described below is carried out at each
(m,n) spatial grid-point and at each time-step (k + %). After each such computation the

bottom drag components 7% and 787 are computed and stored. At the time-step k& + | at
which these are required in the right hand sides of (3.2) and (3.3) their values are only
available for step k + % Since the bottom drag terms are relatively significant they must

therefore be computed by extrapolation in time:

(T(bx)}m+% ,m kel = tlt— [3(T(bx)m+1. nt T(bx)m, n) - ((T(bX))_m-H, n+(1(bx))—"l. 'l)]‘

12
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. . 1
where minuses denote values at time-step (k — 3) and the unsuperfixed values refer to the

latest available time-step, (k + 3). This again maintains the required order of truncation error.

A generalized Crank-Nicolson scheme (Lardner & Cekirge 1988) is used to approximate
equations (2.5). Using an index j for vertical level, with the bottom being at j =1 and the

free surface at j = J + 3, we get the following finite difference approximation to these
equations. The indices m and n are suppressed for clarity and again the '+ indicates updated

values, at time step k + 3 in the case of u and v.

T v _ T A _ Ay a_ 2
W= u+ oy H p, 4G K, +§(Vf+1 v;) ”,--‘;(vi vj—l)]
. (3.8)
- gl + T,

+ v T
vV,=V, - #uj - o o o [.l“_;(u;,, - u;) - uj-';( u".‘ - “;_,)]
J

+ (») (3.9
- 1gf, + 1T,
Here Ac is the vertical grid spacing and A and v are two implicitness parameters, required
for stability, with

u;? = Au;? +(1- l)uj, v".‘= lv; + (1 - l)vj

and u?, v’ defined similarly. Equations (3.8) and (3.9) comprise a tri-diagonal system for the

updated velocities. This system is solved in conjunction with finite difference approximations
to the free surface boundary conditions and to equations (2.12b,c) in which the values of p
and ¢ are used from the first part of the algorithm. This, together with the values of { in egns
(3.8,9), provide the linkage from the first to the second part of the algorithm.

The velocity profiles computed in the second part of the algorithm are then used to evaluate
the bottom stress and surface velocity components in preparation for use in eqns (3.1-3.3) on
the next time step. This provides the coupling from the second back to the first part of the
algorithm.

13



Further details of the algorithm (for a fluid of uniform density) can be found in references
(Lardner & Cekirge 1988) and (Lardner & Smoczynski 1990) and a discussion of its stability
in (Lardner 1990).

3.2 SPECTRAL ALGORITHM

Writing the velocity in complex form, U = u + iv, in (2.5) we have

pUl —;pr_ H-z(ﬂUc;)a = —gp(Cx +icy)+T(x) +iT(’) (310)

with boundary conditions

U,=0 on o=1 G.11)

pU,=hpxU on o=0 (3.12)

In order to solve the boundary value problem (2.13), (3.10)-(3.12), we construct the
eigenfunctions of the eigenvalue problem:

0 7]
-3—5(#-3%)+/19¢(0)=0 (3.13)
ug%:O on o=1, ug%-thp:O on =0 (3.14)

For given u and p the eigenpairs {4;,9(0 )} can be computed numerically using the SLEIGN
subroutine [see, Bailey, 1978]. At each point (x,y), they satisfy the orthogonality condition:

j- 6.6 do = 1, wheni=j
0P,~,~ 10, when i%j (3.15)

Expanding the current profile in terms of the eigenfunctions, we obtain

U(0)=Y ¢;(x,5,)9,(0) (3.16)

j21

where
¢,(x.y.0= [ pU(0)9,(0)do (3.17)
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Multiplying (3.10) by ¢(0) and integrating from o =0 to0 1, we get

ac; A;
-;—tL+(lf+Zé')cj=R1j[§x+i¢y]+R2j+R3j (3.18)

where

R1j = "gjolp¢jda

R, = I; [1) +iT]¢,do
R, = (h—z -4 -z)ljcf

The initial values for the system of equations (3.18) can be obtained by assuming the motion
starts from a state of rest, then U |, =0 =0, and so

¢l = (3.19)
The mass transports can be obtained by combining (2.12) and (3.16) as
1
p+iq=ch(x,y,t)Hjop¢jd0' (320)

j2t

We can compute the steady currents caused by a given density field by solving equations
(2.13) and (3.18) with appropriate boundary conditions and initial values. The staggered B-
grid has been used in solving these equations. The advantages of using the B-grid scheme
have been discussed in Lardner and Song (1990b). Using indices m and n in the x-direction
and y-direction with spacings Ax and Ay respectively, we specify p, g and c; at points (m,n),

while { is specified at central points (m +4,n+1).

The spatial finite difference approximations to equations (2.13) and (3.18) are described as

follows.

p“)%f +(,p) + (5,q)’ =0

dc. ; *
_‘.9_[/. +ac; = R!j {(5,{)’ + 1(5,4) } + RZj + R3J

In these equations the following notation is used:
a, =k +if
L2172
ki=h"4;

15



(0,P)nn = Ax™ (PM*_. - P..-}..)

B )nn= % (ﬂ.“.i,. + /3..-},.)

with similar definitions for the y-direction.

The time differencing scheme used for above equations has been a leap-frog scheme which
has the advantage of being explicit and also second order in the time step, though the size of
the time-step is restricted by the CFL stability criterion. It is described in Lardner (1990),
Lardner and Song (1990a, 1990b).
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Fig.3,1{a) The spatial grid: O 1indicates points where [ 1is specified; v
indicates points where p 1is specified; l indicates points
where q 1is gpecified. The encircled three points correspond to

g-m,n' pm,n and qm,n'

Fig.3.1(b) The temperal grid: ¢ 4is specified at integer time steps; p and
qQ are specified «t half-odd-integer time-steps. The stars
indicate space-time points at which vertical profiles are

computed.



CHAPTER 4

The accuracy of the first algorithm was tested by using it to solve four problems for which the
exact steady solutions can be calculated. These problems were designed to test the code’s
accuracy in handling four distinct physical features: horizonta! gradient of density, vertical
density variations, variable depth and Coriolis forces. The accuracy of the second algorithm
was tested on the latter two problems.

For the first three problems, we consider a channel occupying the region 0 <x </ with the
end x = 0 being closed and x =! open. The eddy viscosity u is assumed constant,
evaporation is ignored (W = 0) and botiom drag is assumed linear (x; = 0). Only longitudinal
flow is considered, with v and f taken as zero.

For steady flow, equation (2.13) then reduces to p, =0, and since p =0 atx =0, it follows
that p =0 for all x. Therefore,

1
Iomda=o. @.1)

Equation (2.5a) then reduces, for steady flow, to

(Hu,), = gph’, + gh’é-;x—,l:p(o Ndo '~ gh 2%":[’)(6)— pc)Hc’ (4.2)

while the boundary conditions are

0 o=1
a, ={ . (43)
Phku® on o =0

The depth-averaged momentum equation (2.14a) becomes
- 0 odh 1 -
®) 2 _ o
gphl  +pxu® + gh > J:p(o)odo +2gh > Io[p(o) plo do =0.

It is readily verified that this is not independent of the above equations, and it can be ignored.

The finite difference equations used for the numerical computations are the appropriately
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simplifird forms of equations (3.1), (3.2) and (3.8), and they will not be repeated here.

In th¢ numerical results given below, the channel was taken with the closed end at grid-point
m =3 and the open end at m = 19, the horizonta! grid spacing being 6 = 40,000m.. The
number of vertical levels was taken as / = 10. The other constants used were (in MKS units)
g =9.81, x; =0.002and N =0.065. The time step was T = 360s, with the computation being
run until a steady solution was obtained. (Typically, this took about 3000 steps,
corresponding to 12 days of real time.)

Two explicit density distributions have been examined for constant depth of 65 m. In the first
of these, the density field has a strong horizontal gradient but no vertical gradient, while in
the second there is vertical density gradient but the mean density has no horizontal gradient.
Thus these two special cases distinguish between the effects of horizontal and vertical
structure in the density fields, and the comparative flows in the two cases are in themselves
quite interesting. A third problem with variable depth has also been examined.

4.1 ModelI p=p(1- fx) h = constant
In this case, P = p and equation (4.2) takes the form
(Huo)s = 8DH' - Bp, gH (1~ 0)

After using the conditions (4.1) and (4.3), we obtain the solution

u=—2 {1+ 12x0 - 6(1+ 5x)0*+ 401 +4 0 &'}

“1+4rx
{v =l_ﬁ,1+3x
27+ 4x¢
where
3
e =Koy Bk oy (4.4)
12u 244

For the values py = 1035 kg.m=3 and § = 1.47x10-3 m~! (which gives a density variation from
1035 to 1025 kg.m-3 along the channel), the exact velocity solution is given in units of 0.1
mmy/s. in the second column of Table 4.1. In this case, the flow is the same for all x. At the
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upper surface there is strong inflow from the open end towards the closed end of magnitude
about 20 mmy/s while there is a corresponding outflow of somewhat lower magnitude near the
bottom. (Near the closed end, there is, of course a boundary layer where the flow overturns,
but the model is too simplified to pick this up.)

The computed steady velocity is given in the third column of Table 4.1. Clearly the numerical
algorithm is very accurate.

j | Exact | Computed
11 -198 -199

9 -172 =172

7 -67 -68

5 59 59

3 151 151

1 151 153

Table 4.1. Exact and computed velocity profiles in units of 0.1 mm/s for flow in a channel with
the density field of Model I. The level j = 1 corresponds to the bottom while the free
surface is mid-way between j =10 and j = 11. The flow is the same at all values of

X.

42Model 1 p= pi + Bx(1-20)], h = constant
In this case, p = p, and equation (4.2) reduces to
(Hus)s = gPH' L. - Bp, g o(1 - 0)

with boundary conditions (4.3) as well as (4.1). The solution can be conveniently expressed
in terms of the bottom velocity

o_ U

=—1o [+ 5 - 2(f¢ )']

where U and x have the same meaning as in (4.4) and

D =1+2k[2~- fix ++(Bx)% (4.5)
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Then

u=u®{1+6x[20 -0 *- fro’(1-%0)|} +Wao[(1-0 ) + pr (1-40))

(= sanf1-3m

Again the values py = 1035 kg.m™3 and f = 1.47x10-* m~! were used. In this case, the
density on the free surface (in kg.m-3) varies from 1025 at the open end to 1035 at the closed
end while at the bottom it varies from 1035 at the closed end to 1045 at the open end. There
is thus zero vertical density gradient at the closed end and maximum vertical gradient at the

open end.

m: 4 10 16
j u U U
11 -19 -18 -18

9 -11 -11 -11
7 9 9 9
5 13 13 13
3 0 0 0
1 -10 -10 -10

m 4 10 16
J u u u
11 =20 -20 -19

9 -12 -12 -11
7 8 8 9
5 13 13 13
3 1 0 0
1 -9 ~10 -10

Table 4.2. Exact and computed velocity profiles, in units of 0.1 mm/s, for flow in a channel
with the density field of Modei II. The exact solution is given in the upper part of the
table and the computed solution below. The profiles are given at three points along the
channel, the leftmost profile being adjacent to the closed end of the channel and the
rightmost adjacent to the open end.
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The exact and computed velocities are given in units of 0.1mm/s. in Table 4.2. In this case, the
flow is an order of magnitude smaller than for Model 1, and varies slightly with x. Both at the
upper surface and at the bottom there are inflows from the open end towards the closed end of
approximate magnitudes 2 and 1 mm/s respectively, while there is a band of outflow of
magnitude 1.3 mm/s near the middle of the water column. Again the computed solution is in
very good agreement with the exact one. The absolute errors are about the same as those for
Model I, though are larger in relative terms.

4.3 Model III p=pll+ Bl -20)1,h =h(x)
In this case, p = p, again and equation (4.2) reduces to
(Hg)g = 8PHC, ~ Ppog [Wo (1-0 )+ h*h'x (1-0)7]

Taking the conditions (4.1) and (4.3) into account, we obtain the bottom velocity

(b)___(_]__ 3 2 _ o 2
u® = 15D[l+5ﬂx 2(fx )* -5 (2~ fix )]

where U, D and x have the same meaning as in (4.4) and (4.5) and s =4xh’(x )/h(x). The
rest of the solution is given by
u =u®{1+6x[20 -0 *- fro’(1-$0)l}
+2Wo (-0 +(1+4s)fx (1-%0)-4s(2~0)]

For the example computed, the parameters were given the same values as for Model II
except for the depth which was taken to increase uniformly from 35 m at the closed end of the
channel to 95 m at the open end. Typical results are given in Table 4.3 which shows the exact
and computed velocity profiles at three positions along the channel. The two solutions are

again in very close agreement.
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Comparing with Table 4.2, it is clear that depth variation has a very significant effect on the
magnitude of the velocity, its vertical profile and its variation along the channel.

m: 4 10 16
j u u u
11 -16 -96 -268
9 -13 -81 -227
7 -2 —25 ~76
5 6 32 89
3 9 66 189
1 7 61 168
m 4 10 16
J U u u
11 -14 ~-93 -264
9 -11 ~78 -223
7 -2 -24 -74
5 6 31 88
3 8 64 187
1 6 60 168

Table 4.3. Exact and computed velocity profiles at three points along the channel, in units of
0.1 mmys, for flow in a channel with the density field of Model II and variable depth.
The exact solution is given in the upper part of the table and the computed solution
below.

Using the spectral algorithm the exact and the computed solutions at the same set of
horizontal grid points are given in Table 4.4. As the figures indicate the accuracy is better in
this case. It must be noted that the exact values shown in Table 4.3a is different from that
shown in Table 4.4a. This is because the vertical levels do not coincide for the two

algorithms.
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m: 4 10 16
i u u u

11 -17.3 -98.7 -269.6

9 -11.3 -71.4 -198.5

7 -0.5 -15.6 -49.0

5 7.2 37.2 101.3

3 9.3 66.1 186.8

1 7.4 60.9 167.5
m: 4 10 16
Jj u u u

11 -17.7 -99.5 -271.0

9 -11.5 -71.4 -198.9

7 -0.5 -154 -47.3

5 7.5 37.8 102.5

3 9.5 66.5 187.0

1 7.6 60.1 167.3

Table 4.4 Exact and computed velocity profiles at three points along the channel, in
units of 0.1 mm/s computed using the spectral algorithm.

4.4 Model 1V Rectangular sea model

The fourth maodel is designed to test the accuracy of the computer code’s treatment of the
Coriolis terms. We consider a rectangular body of water of constant depth, occupying the
region0<x <L, 0 <y <M, with lateral boundary conditions p = 0 on the sides x =0,L
and ¢ having certain prescribed values, to be given below, on the sidesy = OM. W and «,
are again zero and f, i and K, constant. We suppose that the density p (x ) is a function of x
only and that all flow variables are independent of y. In this case, egns (2.5}, for steady flow,
reduce to

(Hug), +ph’fv — gph®(, - gh’p'(x)1-0)=0

(uv,), - ph’fu =0. (4.6)
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The depth-averaged equations (2.14) become

—fq +gphl, +x,pu® +4 gh’p’(x) =Q, fp+xpv ® =a (4.7)

The continuity equation reduces to p, =0, and in view of the lateral boundary conditions
therefore, p = 0. Eqn (4.7b) then implies that v ®) = 0, so that the boundary conditions
associated with egns (4.6) are:

Uy =v,=0 on o =1
v =V, =puu, -~k hpu=0 on o =0.

The general solution of eqns (4.6) has the form

w)=2L @B L. =£§—y,

where
a =e”(acosrg —bsinrog)+e "7 (ccosro +d sinro)

B=7+1-0 +e™ (bcosro +asinro)+e ™’ (d cosro ~c sinro)

2
with r = 22% . The terms involving a,...,d are of course an Ekman spiral type of solution.

These constants as well as ¥ are determined from the above five boundary conditions, which
take the form

1 0 1 0 1 PTy+1] [ 0 7
0 1 1 -1 -1 a Yr
0 A4-1 1 A+1 -1 5 |=1 0
0O —e'cosr e'sinr e’cosr e'sinr c -1/2r
|0 ¢€'sinr e'cosr e’sinr —ecosrf§ d | | 12r

Kih : . o : :
where A = —b’ﬁ . This matrix equation is solved numerically to construct the exact solution.

For the computed solution, we require the boundary values of g ony =0,M, which are taken
from the above exact solution. It is easily seen from the first of eqns (4.7) and the above
solution that

LA ]
q= 7 y+2+2r(a+c)
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The solutior has been computed for a rectangle of dimensions 6C0 kms in the x -direction and
200 kms in the y -direction with a grid spacing of 20 kms. The density function and other
parameters were taken as in Model 1 with the addition of f = 1.22x104 s-1. Table 4.5 gives
the exact and computed velocities at the centre point of the rectangle. There is very little
variation of the final steady solution with x and the accuracy of the computed solution is
about the same throughout the rectangle.

Exact Computed

J u v u v
11 -165 255 -166 256

9 -142 240 -142 241

7 -55 175 -55 176

5 48 91 47 91

3 124 24 124 23

1 126 0 126 f]

Table 4.5. Exact and computed velocity profiles in units of 0.1 mm/s at the centre point of a
rectangle with the density field of Model 1. The flow is the same at all values of y and
is almost independent of x.

We present a part of the results obtained with the spectral algorithm in Table 4.6. The
accuracy of the results are obviously somewhat better. (The discrepancy between the exact
solutions given in Tables 4.5 and 4.6 is due to the difference between the Arakawa B and C
grids used by the two algorithms.)

Exact Computed

J u v u v
il -169 257 -169 257

9 -129 231 -128 231

7 -40 164 40 164

5 58 84 58 84

3 127 22 127 22

1 127 0 127 0

Table 4.6. Exact and computed velocity profiles at the B-grid point (15,9) in the rectangle
region, in units of 0.1 mm/s.
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The residual currents in the Gulf have been attributed to two principal factors: wind-forcing
which, coupled with Coriolis effects generates a net anti-clockwise circulation, and the effects
of density gradients sustained by evaporation and radiative heat transfer and, to a lesser
extent, by fresh water inflow at the head of the Gulf. The relative importance of these two
mechanisms has been the subject of a certain amount of controversy in the literature. Hughes
and Hunter (1980) argued that that wind-driven currents made the major contribution, but
Hunter (1982) subsequently concluded that the circulation was probably dominated by
density-driven flow, geostrophically balanced across the Gulf and frictionally balanced in the
direction of flow. Galt and co-workers (1983) agree with this assessment in the southern half
of the Gulf, but conclude that wind-driven circulation plus the effects of fresh-water inflow
dominate in the northern half.

The computation of the wind-driven currents by Galt et al. (1983) was based on a two-
dimensional depth-averaged model. Later, more detailed calculations were made by Lardner,
Lehr, Fraga and Sarhan (1988a,b) of the vertical structure of the flow generated by the
monthly averaged winds in the region, and it was found that the surface flow is considerably
stronger and more uniform in direction than the depth-averaged flow. Furthermore, the
magnitude of this surface current is consistent over most of the Gulf with the observed values
found by Hunter (1982) from an analysis of ship-drift data as well as with more recent
experimental drift-buoy studies in the North-West part of the region (Henaidi 1984).
Subsequent simulation of some of the drift buoy movements, using actuai wind measurements
and a dynamical three-dimensional model has yielded good agreement with the observations.

An estimate of the density-driven currents was made by Lardner, Lehr, Fraga and Sarhan
(1987) using a simple two-layer, sectionally integrated model, similar to that constructed by
Pearson and Winter (1978) for the flow in fjords. It was found that the magnitude of this
component of the surface flow is sufficient on its own to explain Hunter's empirical values
(1982) within the Strait of Hormuz, but as one moves into the Gulf, the density-driven
currenis decrease rapidly and after about 100 kilometers they become appreciably smaller
than the wind-driven currents. At the northern end of the Guif. the density-driven effects are
highiy 1ocalized near the Shatt-al Arab, where substantial fresh water inflow occurs, but over
most of this part of the region wind-forcing is the dominant facor.
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It can be argued that the use of a sectionally integrated model tends to underestimate the
local flow velocities, and in particular ignores the effects of Coriolis forces and channelling of
the flow by the deeper trench parallel to the Iranian coast, both of which tend to concentrate
the surface inflow towards the Iranian side of the Gulf, thus producing much larger surface
currents on that side than those computed by Lardner et al (1987). Hunter's computations
(1983) indicate such concentration of the flow and in fact show that the density-driven flow
persists along the Iranian side with significant magnitude over much of the length of the Gulf.

Thus, there is agreement among the above authors that wind-forcing contributes significantly
to and perhaps dominates the surface flow in the region adjacent to the Saudi coastline.and
that within the Strait of Hormuz, the density-gradient effects are significant, or perhaps even
dominant. Concerning the rest of the Gulf there is still disagreement, which we hope the
results presented here will help resolve.

5.1 INPUT DATA

We have used the same horizontal grid and bathymetric data as used earlier (Lardner et al
1988a,b) for computation of the wind-driven currents and before thai for tidal current
modelling (Lardner et al 1982). The horizontal grid size is 6 = 20,230m. and a time step 7 =
240s. was found to be sufficiently small to produce a stable computation. In the vertical
direction, 11 levels were used (/ = 10 in the notation of chapter 3).

The basic equations contain terms involving gradients of the depth (the terms T ¢} and T ¢?
in equations (2.5) and the terms S #) and S ¢} in equations (2.14)) and it was found that the
large irregularities in the raw bathymetric data produce effects significant enough in some
cases to swamp the average flow. It is unlikely that such localized eddies in the flow can be
modelled in any realistic way with the coarse grid used and in particular with the deficiencies
in the available data, so we eliminated them by making a preliminary smoothing of the
bathymetric data.

The only consistent series of density measurements in the Gulf of which we are aware were
made by the survey vessel Atlantis II during February and March, 1977 and reported by
Brewer and co-workers (1978). Within the region modelled in the present work, measure-
ments of density and other parameters were made at 43 stations, generally at depth intervals
of 5 or 10m., for a total of 246 measurements. These measured data were smoothed by fitting

28



them to a polynomial in the variables m, n, and o, yielding values of p on the three-
dimensional grid of the numerical model. Contours of constant density for the smoothed data
are shown in Figure 5.1(a) for the surface values and in Figure 5.1(b) for the values at the
sea-bed. The detailed description of the method used to get the best fit values of the
temperature, salinity and density values are given in the appendix at the end of this chapter.
The accepted value (Lardner et al 1987) for the average velccity of evaporation in the Gulf is

W = 1.44 metres per year.

Since the density-driven flow is a relatively small flow superimposed on larger tidal currents,
we have considered it most appropriate to use a linear formula for the bottom friction in
equation (2.9) (Hunter 1575). The effective linear drag coefficient experienced by the steady

flow is given by the formula
K, = (37 m)Kyfugy,|

where w4, is the amplitude of the tidal velocity and x, is the actual quadratic coefficient..
For the Gulf, a typical value of u;iz. is 0.2 m/s. Taking the quadratic drag coefficient k', =
0.003, we are led to the value x; = 0.0006 m2/s.

The major ambiguity in the model centres around the choice of eddy viscosity function. Here,
we chose a similar function to that used in the computation of the wind-driven currents
(Lardner et al 1988a,b). In the following we let N =u/p denote the kinematical eddy
viscosity and N, its surface value. Over the bulk of the water column, it is assumed that this

is given by the Neumann-Pearson formula (1964)

N =18x10% ¥  (MKS units

where V is the wind speed. An analysis of wind data for the region (Anon. 1980) showed
that the annual mean wind speed is V = Smys. If an exponential distribution of wind speed is
assumed, the mean value of V> is about 3!72‘sand this leads to a bulk eddy viscosity N =
0.03 m2/s. However, this argument neglects the suppressive effect on turbulence of density
stratification, which is relatively stable in the Gulf, and we propose to use the value N = 0.0]
mZ/s as best guess for this parameter.

Next, it is assumed that over the top ten metres of the water column, the eddy viscosity
varies linearly from this bulk value N to a surface value N, . The value of N, is estimated,
following the approach of Davies (1985a), as N, =k .z, where k&, = 0.4 is von Karman's
constant, z, is a roughness length and u, is related to the mean surface shear stress, 7"
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by the turbulent boundary layer equation 7’ = pu?. The roughness length is associated with
the mean amplitude of surface waves and is taken as 0.3m. The mean surface shear stress,
7*) is computed from the wind data (Anon. 1980) using the formula of Lystad and Martinsen
(1980) for the surface drag due to wind (see Mathison & Johansen 1983)) and is found to

have the value 7°’=6.46 x 107" p. This leads to u, =8.0 x 10~ and N, = 0.001 m¥s.

The arguments leading to these values of x;, 4 and y, are of course suspect. Hunter (1983)
appears to have used the values x; = 0.0005, N = 0.005 and N, =0.005 which differ
somewhat from the values we have indicated. Because of this uncertainty, we have
considered it essential to examine the sensitivity of the computed results to the choice of
these three parameters, and this will be discussed.

52 RESULTS
5.2.1 w litting Algorith

In this section we shall report the results of the numerical computations, reserving their
discussion to the next section. All figures relate to the steady flow, which is attained in the
case of the Gulf after about 2000-2500 time steps, or 6-7 days of real time.

We begin by noting that the value used for the velocity of evaporation W was found to have
an almost insignificant effect on the numerical results. The evaporation plays an essential role
in establishing the density field, but once established, it is the density gradient rather than
the evaporation that drives the flow.

The depth-averaged currents are similar for all choices of eddy viscosities and bottom friction
coefficient. There is no net flow in or out of the Gulf in the steady state, and the depth-
averaged flow consists of several large vortices. A typical picture is presented in the figure
5.2

Figures 5.3(a) and 5.3(b) illustrate the currents at the free surface and at level 2* obtained
using the values N = 0.01, N, = 0.001, x; = 0.0006, which, as discussed in the last section,
represent the most reasonable estimates for these parameters. As anticipated, the dominant
feature of the flow is an inflow in the upper layers of the water column from the Strait of

* Level 2 is 10.5% of the way from the bottom to the top of the water column.
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Hormuz towards the Northern and Western portions of the Gulf and a compensating outfiow
in the lower layers. The transition from inflow to outflow occurs at most of the horizontal grid
points between levels S and 7 (figures 5.4(a), 5.4(b) and 5.4(c)), that is, in the middle 20% of

the water column.

Beyond this broad picture, however, the computed flows show a number of unexpected
features, both in direction and magnitude. The main stream of surface inflow does not stay
close to the Iranian shore, but rather proceeds in a Westerly directicn, across the Gulf and
north of the tip of the Qatar peninsula, and thence towards the mid-section of the Saudi coast.
The maximum velocity of this surface inflow is about 18 cm/s within the Strait, but it
decreases within 100 km to the range 9-12 cm/s and by the time the flow reaches Qatar it has
diminished to about 4 cm/s. In the Southern portion of the Gulf, between Qatar and the
Emirates, there is a uniform pattern of Westerly to South-Westerly surface inflow with
magnitude diminishing to very small values after 250-300 kms from Hormuz.

On the Iranian side, within the Strait of Hormuz, the flow is confused, the surface inflow
occuring 20-40 kms offshore for the first 250 kms into the Gulf. This area of confused flow
occurs regardless of the choice of open boundary condition and it is worth noting that it has
also been reported by Hunter (1983) in related calculations. Its cause may lie in the

extensive region of relatively shallow water that occurs on that side of the Strait but may also
be caused by a deficiency in the algorithm used (see below). Along the North-East portion of
the Iranian coast the surface flow for almost the last 250 kms is directed towards the coast

with the flow velocities of about 2 cmy/s.

This pattern of flow is repeated with reducing magnitude of the velocities as one moves down
the water column until reversal of the pattern occurs around level 6. The maximum reverse
flow occurs generally at level 2 (see Figure 5.3(b)). Over most of the region, this flow is
about opposite in dircetion to the surface inflow and with velocities generally about half the
magnitude of those on the surface. There are however two significant exceptions to this.
From the Qatar peninsula to the mid-Saudi coast, there is a slow Westerly bottora flow,
parallel to the surface flow, this flow then sweeping to the north to join the main outflow. And
along the Emirates coast close to Hormuz, the inflow persists at all levels of the water
column, though the velocities at the bottom are very small.

In order o test the sensitivity of the computed velocities to the particular choices of the
physical parameters, we have made numerical experiments with smaller values of eddy
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viscosities and bottom drag. The following summarizes the effect of reducing these

parameters.

(1)

(ii)

(ii)

(iii)

(iv)

N =001, N, =0.001, x; =0.0012

We have used this case as a benchmark against which to measure the effects of
parameter changes. (Note the different value of x;.)

N =0.01, N, =0.001, x; =0.0005

This case is to examine the effect of smaller bottom friction. The effect on surface flow
is generally quite small, the main exception being in the Strait of Hormuz where the
maximum inflow velocity is increased by 10% . There is a somewhat larger effect of
this parameter on velocities at the lower levels.

N =0.01, N, =0.0001, x; =0.0012

This case is to examine the effect of smaller surface eddy viscosity. The effect of this
change is to increase the surface velocities by a very small amount, generally less
than 5%, with even less change on the bottom velocities. In this regard, the density-
driven flow is unlike a wind-driven flow, for which surface velocities are particularly
sensitive to N, (Davies 1985; Lardner & Cekirge 1987).

N =0.005, N, =0.001, x; =0.0012

This case is to examine the effect of smaller bulk eddy viscosity. This parameter has
the most significant effect on the flow. With the above values, the maximum inflow
velocity was 16% greater than that in Case (i), and generally both the surface and
bottom velocities are increased by about this amount, with some modification also of
the direction of flow.

N =0.003, N, =0.0001, x; = 0.0005

We have seen in the above experiments that the effect of reducing the values of the
three parameters is generally to increase the flow velocities. This final choice
represents about the smallest reasonable set of values for the parameters and hence
provides what is probably an upper bound for the magnitude of the density-driven
flow. The computed currents at the surface and level 2 are shown in Figures 5.5(a)
and (b). The pattern of the flow is almost the same as that in Figures 5.3(a) and (b),
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with small differences in direction in some areas. The magnitudes of the velocities are
increased over those shown in Figure 5.3 by generally 10-20%. The maximum velocity
of surface inflow is 20 cm/s while the flow velocity off the Qatar peninsula is about 4

cm/s.

5.2.2 Computed Flows due to Spectral Algorithm

Figures 5.6(a), 5.6(b) and 5.6(c) illustrate the currents at the free surface, at level 2 and
depth averaged current obtained using these values N = 0.01, N, =0.001, x = 0.0006. With
one notable exception (see below), the flow is virtually identical to that reported in 5.2.1, and
reaffirms certain unexpected features found there. In particular, the main stream of surface
inflow does not stay close to the Iranian shore, but rather proceeds in a Westerly direction,
across the Gulf and north of the tip of the Qatar peninsula, and thence towards the mid-
section of the Saudi coast. The maximum velocity of this surface inflow is about 16 cm/s
within the Strait, but it decreases within 100 km to the range 7-10 cm/s and by the time the
flow reaches Qatar it has diminished to about 3 cm/s. In the Southern portion of the Gulf,
between Qatar and the Emirates, there is a uniform pattern of Westerly to South-Westerly
surfacc inflow with magnitude diminishing to very small values after 250-300 kms from

Hormuz.

On the Iranian side, the surface fiow is directed predominantly onshore along virtually the
whole coast, with magnitudes decreasing from 15 cm/s in the Strait of Hormuz to 2-4 cmy/s
along the North-Eastern portion of the coast.

It was found in 5.2.1 (and also earlier by Hunter(1983)) that the surface flow near the Iranian
coast for the first 250 kms into the Gulf was confused. In 5.2.1, this was ascribed to the
extensive area of shallow water that lies in that location. However, the present spectral
algorithm yields a completely regular flow there, and it now seems likely that the origin of the
confused flow lies in the inability of the earlier finite difference algorithms to deal accurately
with a situation of rapidly shelving depths adjacent to an open boundary.

This pattern of the surface flow is repeated with reducing magnitude of the velocities as one
moves down the water column until reversal of the pattern occurs around the middle depth
level. The maximum reverse flow occurs generally at a level about 10% from the bottom (see
Figure 5.6(b)). Over most of the region, this flow is about opposite in direction to the surface
inflow and with velocities generally about half the magnitude of those on the surface. There is
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however a significant exception to this. From the Qatar peninsula to the mid-Saudi coast,
there is a slow Westerly bottom flow, parallel to the surface flow, this flow then sweeping to
the north to join the main outflow. Along the Iranian coast, the bottom flow is offshore, with
magnitude generally equal to or even exceeding the onshore surface flow.

The depth-averaged flow, consisting of several large gyres, is shown in Figure 5.6(c).
Velocities are generally much smaller than surface velocities.

We have again conducted certain experiments to test the sensitivity of the predicted flow to
choice of these parameters. We have re-computed the flow with all the parameters reduced
by half, to N=0.005 m%s, N; = 0.0005 m%/s and K = 0.0003 mys. It is not likely that these
parameters could be smaller than this. The general patiern of flow turns out to be the same as
that shown in Figures 5.6(2)-5.6(c), with the magnitudes of the velocities increased by 20-
40%. In particular, the maximum velocity of surface inflow in the Strait of Hormuz is increased
to 20 cmy/s.

5.3 DISCUSSION AND SUMMARY

The computed steady-state flow shows an expected pattern, consisting of inflow into the Gulf
in the upper layers of the water column and a balancing outflow in the lower layers. The
detailed results however show several unexpected features. One of these is thai the main
stream of surface inflow does not flow along the Iranian shoreline, but rather follows a
Westerly course from Hormuz to the Qatar peninsular then continues towards the Saudi
coast (see Figures 5.3(a), 5.5(a) and 5.6(a)). Between this line of flow and the Emirates
coast, the Westerly surface flow persists but with diminishing magnitude. Along the North-
Easterly part of the Iranian coast the surface flow is directed towards the coast.

The most significant result concerns the magnitude of the velocities, which turn out to be
much smaller than has been suggested by some authors. The surface velocities within the
Strait of Hormuz have a maximum value of about 16 cm/s if one uses what we have taken as
the most plausible values for eddy viscosities and bottomn drag coefficient, or about 20 cru/s if
one uses the smallest reasonable values of these parameters. These values are smaller than
the empirical residual velocities estimated by Hunter (1982) on the basis of ship-drift
reports. Furthermore, the computed velocities decrease within a distance of 100 kms into the
Gulf to 7-10 cm/s, smaller by a factor of 3 or 4 than the empirical estimates.
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Previous calculations of surface velocities caused by average winds (Lardner et al 1988a,b)
have shown that they are consistent in magnitude with Hunter's estimates over most of the
Gulf. Thus, we are lead o conclude that the dominant factor in generating residual flow in
most of the Gulf is wind-forcing rather than density gradient, the only exception being
probably witiin the Strait of Hormuz.

The velocities computed in this chapter are very similar in magnimde to those calculated
carlier (Lardner et al 1987) on the basis of a simple two-layer, sectionally averaged model of
the flow. Comparing them with the velocities computed by Hunter using a three-dimensional
model (Hunter 1983), bowever, our velocities appear to be somewhat smaller within the
Strait of Hormuz and significantly smaller, generally by a factor of 2 to 3, within the Gulf itself.
Hunter's results in particular show a significant surface flow parallel to the Iranian coast
whereas ours show a much smaller flow directed on the surface towards that coast. The
origin of the discrepancy between these two sets of results may lie in the approximations of
Hunter's model or may be caused by different input data for the density field or the
bathymetry, but since few details of the analysis are given in reference (Hunter 1983), it is
difficult to draw any firm conclusion on this point.

Our conclusions regarding the relative significance of the density-driven residual flow in the
Gulf must be tempered by the remark that the density data we used was gathered during the
Winter season, and presumably the density gradients during Summer would be significantly
greater than those measured, leading to greater velocities during that season. However it
does not seem likely that the velocities could be sufficiently increased that they would

approach those caused by the wind.
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APPENDIX A

A major geochemical, biological and geophysical survey of the Persian Guif and adjacent
waters was carried out on in February and March of 1977 by Peter Brewer et al (1978). They
obtained chemical oceanographic data from which the density values have been used to
estimate the flow driven by density gradient in the Gulf as presented in Chapter 5.

As reported by Peter Brewer et al (1978) the data were obtained at several hydrographic
stations situated at various points in the Persian Guif. Hence the measurements were taken
at locations which had different latitude and longitude. At each particular point the data were
charted at different depths from the water surface. This means that the observations were a
function of the coordinates of the station as well as the depth.

If the latitude and longitude of a particular station were represented by x- and y-coordinates
and the depth by the z-coordinate, then we approximate the measurements by a polynomial of
degree N of the form

N Nek Nekj
or=fxy)= % Z X apxydt (A.1)
k=0 j=0 =0

where ¢; = (density — 1000) in MKS units.

We are now given values of the three independent variables x,y and z at the data points and
corresponding values of the dependent variable fand we wish to fit to the latter by least
squares a third degree polynomial in x, y and z.

In all there are twenty terms in the polynomial corresponding to N=3. Now we outline the
least squares method employed to do the data fit. The aim is to get the best-fit coefficients of
each of the terms in the third degree polynomial such that it approximates reasonably the
data values. Determining what order polynomial will yield the best fit to the data depends on
the criteria that one uses in defining best fit. For example, equation (A.1) can be solved for
successive higher order fits either to some maximum order or until the residuals have been
minimized to below a specified error tolerance. In our case we also experimented with fourth
and fifth degree polynomials and came to concliusion that the third degree fit was the best.
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This decision was based on the fact that oscillations were appearing in the curve between
adjacent data points, near the ends of the range.

A.1 LEAST SQUARES METHOD

Consider the problem of finding a vector x & R" such that Ax = b where A € R™"and beR™
are given and m>n. This is an overdetermined system of equations and usually has no exact
solution, unless & is an element of R(A), a proper subspace of R™.

This suggests that we strive to minimize IlAx - bll, for some suitable choice of p. For p=2
this function is a continously differentiable function of x. One tactic for solution is to convert

the original least squares problem into an equivalcui, €asy-to-solve problem using
orthogonal transformations. The basic idea is to use one of the many orthogonal
transformations (Golub and Van Loan, 1983) to compute the factorization A = QR, where Q is

orthogonal and R is upper triangular.

Suppose that an orthogonal matrix Q £ R™™ has been computed such that

R
QTA=R=[01]m'in (A.2)

is upper triangular. If

then
lAx — B2 = 1QTAx — QTHIE = IR px ~ cliz + lldli3

for any x € R". Clearly, if rank(A) = rank(R;) = n, then X is defined by the upper triangular
2
system Rixp s = c. lldll; represents the minimum sum of squares. Thus, the full rank LS

problem can be readily solved once we have computed (A.2), which we refer to as the Q-K
factorization. We have used the Householder's orthogonalization procedure (pp. 146-153,
Golub & Van Loan, 1983) to factor the matrix A into the Q and R matrix.
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A.2 BEST FIT VALUES

In our case the matrix x represents the coefficients of the terms in the fitting polynomial and
the elements of the matrix A are the terms themselves. There are 43 stations in sil and 225
observation points. Hence, A € R¥2%20 504 x £ R%. We also obtained the best fit values to
the temperature and salinity data. These are depicted as contours of constant density o,
temperature and salinity on the surface and at the bottom in figures 5.1(a), 5.1(b), 5.7(a),
5.7(b), 5.8(a) and 5.8(b). These contour plots match very well with those presented by
Brewer et al (1978). The best fit coefficients for the three data sets are given in Table 5.1.

In the table the coefficients are denoted by A(l),....... LA(20) are the coefficients of the terms
involving 1, x, y, O, x2, y2, 0’2, Xy, yO, Ox, x3, y3, <J'3 , x2y, xzo', xyz, xoz, Xyo, y02 and y20'
respectively. Here o is defined in Chapter 2, x is latitude and y is longitude.
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Figure 5.5(b
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CHAPTER 6 ADJOINT EQUATION FORMULATION FOR DATA ASSIMILATION

In this chapter we will present the mathematical formalism of the variational adjoint
formulation of the tidal data assimiiation problem. We consider the depth-integrated
equations for flow along a one-dimensional channel, the aim being to estimate the parameters
in these equations from measurements of surface elevation at certain data stations. First the
basic equations are presented on which the work is based. Then the derivation of the adjoint
is going to be explicitly stated. This is going to be followed by the finite difference
approximations of both the forward and the adjoint problem. Lastly the equations for the

parameter approximations are going to be shown.

6.1 Basic equations

We let x be a coordinate along the channel with the channel occupying the interval 0 < x < L.
For definiteness, the end x =0 is taken to be closed and x =L open. The undisturbed depth
of the water at the position x is denoted by A (x ), the elevation of the free surface above its
undisturbed position at time ¢ by { (x, ¢ ) and the depth-averaged velocity of the water by

u (x, t ). The depth-integrated equations of continuity and momentum are then

G, + (), =0, phu, + gphl +7=0

where 7 is the bottom friction stress and p the density, assumed constant. (See eqns. (2.13)
and (2.14a) in whichp — phu,q 20, H=hand p = pP= p(s) ) It is assumed that the bottom
friction has the form (2.9) which in the present problem becomes

7= p(K, + K

where k(x ) and x;(x ) are linear and quadratic bottom friction coefficients. Usually, only one
of x; and x; would be taken as non-zero, depending cn whether one is using a linear or
quadratic model of bottom friction. By maintaining both terms, we shall be able to deal with
both linear and quadratic cases in one go, but in most subsequent applications, only one of
them will be retained. The equations can then be expressed as follows:

§,+p, =0, (6.1)

p,+ghi, +(k +k,|p))p =0, (6.2)
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where p (x, t) = h (x )u (x, ¢ ) is the volume flux per unit width of channel and ,(x ) and
ky(x ) are defined by k, = Kk, /4, k, = K, /h*.

The boundary conditions are taken to be

p(0,0)=0, {(L2)=¢,(@), (6.3)

where §, (1) is a prescribed periodic function of ¢ determined by the tidal motions in an
adjacent large water body to which the channel is connected at its open end. We shall be
concerned with the use of tidal measurements to determine the parameter values, so rather
than satisfying given initial conditions we suppose that the solution is periodic in time with
period T, the period of the tidal component under consideration.

6.2 Derivation of the adjoi bl

It is supposed that prior estimates are available for the three parameters k,(x ), k,(x ) and

h (x ), either from previous measurements or from physical arguments; these are denoted by
k/(x), k;(x)and h’(x) respectively. It is now assumed that the surface elevation is measured
throughout the tidal period at certain stations x,, x,, ..., the measured values being denoted by
§(x;,2) = Z,(1). These measurements are to be used io determine improved estimates of the

three parameters. The basic principle is that the new estimates should minimize the
functional

F=4LY [ K [(x.n-Zo] d
lL (6.4)
T [K, (6 = k) + Ky, ~ k) + K, (b~ )2 ] dx

The cost function F has been constructed on the premises that it measures the distance(the
misfit) between the model and the observations and also, the variational method makes use
of the derivative of F, and the cost function must therefore be differentiable. The first term in
(6.4) measures the data misfits and will be the forcing for the adjoint equation. The last three
terms in (6.4) are added to the cost function because the goal of this research is to esiimate
the parameters in the model. By adding these terms, the new estimate of the parameters will
not be too far from the initial guess. Essentially minimizing the cost function results in a
solution which is close to the observations and new values of the parameters which are close
to the estimaic. Here K, K|, K, and K, are the respective weights given to the
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measurements and the three prior values. The K's depend on the error variance of each
observational point, and give information of the quality of the data.

 is to be minimized subject to the boundary value problem (6.1)-(6.3). Introducing
Lagrange multipliers 4 (x, t) and g (x, ¢ ), we then obtain

OF = LZLT KC{C(X‘.,I) —Z}(!)}ﬁg(x..,t)dt
+TJ.0L{K1("1 — ki) Ok, + K, (k, ~ k;) Ok, + K:.(h—h')éh}dx
+LTLL{,1(1J) (¢, + p.)+ u(x,18(p, + gh{, + (k + k,|p) p)} dx dt.

The terms in the last integral here that contain ¢ -derivatives are integrated by parts with
respect to 1. The boundary terms vanish provided we assume that A and u are periodic in ¢
with period 7. The terms involving x -derivatives are integrated by parts with respect to x.
The boundary terms vanish, in view of conditions (6.3), if we require 4 and u to satisfy

u0,0y=0, AL,0)=0. (6.5)
The remaining terms have the form
SF=LY [} K {t0xn- 20} 6¢(x,0ar
[T [{8L(R, + (ehiy, )+ 801, + A, U, + 2| phpe)} v e
+T j:{ék1 (TK,(Iq -k)+ forupdt)+ 519(TK2(19 -k)+ f:ulplp dt) dx
+5h(n<,,(h -+ [t d:)}dx (6.6)
Setting the coefficients of 6 and dp equal to zero, we obtain the adjoint equations
A, +(ghp), = ZLKC{C(xi.t) -Z,0}6(x-x,) (6.7)
K, + A —(k +2k]phu =0. (6.8)

Here 6 (x ) is the Dirac delta function. In view of the sign of the damping term in the second
of these equations, the solution must be computed in the negative ¢ -direction, exactly as it
would had we started with an initial value problem.

59



The coefficients of &,, &, and 6k then provide the three parameter equations

F(0)=TK,(k ~k)+ [ updr=0
F(x)=TK,(k, - &)+ [ plplpdr =0 (6.9)

Fu(x)=TK,(h~ )+ | gl de=0.

In the special case in which the parameters are independent of x, the variations &k,, 8, and
oh are constant and the final term in eqn (6.6) then leads to the parameter equations

LT
F, = LTK,(k - k) + [ [ updrdx=0
, L T
F, = LTK,(k, - k) + [ [ plplpdedc=0 (6.10)

F, = LTK,(h= 1)+ [ [ugl,drdx=0

in place of (6.9).

If the prior value of a particlar parameter is regarded as sufficiently accurate, the corres-
ponding coefficient K can be taken very large, which in effect means that the corresponding
equation can be removed from among eqns (6.9) er (6.10). In particular, the second of eqns
(6.9) or (6.10) is dropped for the linear friction case (k, = 0), while the first of these equations
is dropped for quadratic friction (k, = 0).

6.3 Finite diff imai

We shall first outline the numerical algorithm used to solve the forward boundary value
problem (6.1)-(6.3). Before doing so however, we replace the parameters h, k, and &; in ¢qyn
(6.2) by S,h, Sk, and Sk, where the scale factors S; are chosen so that the new parameters
h, k, and k, have the same orders of magitude. In practice, we have taken §, = 102, §, =10°*
and S, = 10-5. This re-scaling is needed because some minimization algerithms fail unless
the variables all have comparable magnitudes.

The numerical algorithm is based on a leapfrog method with staggered spatial and temporal
grids. The index m is used for grid-points along the x direction while j indicates the time

level. The variables { and p are discretized respectively by {. which refers to the grid point



(m,j) and p’ which refers to the point (m + 4, +4). The open boundary is set at m = M.
The finite difference approximation to eqn (1), centred at the grid point (m, j ++), is then

CI” Cl 1 0 Z
-l 2€msM-1
Al Ax m (6.11)

where Ax and Ar are the spatial and temporal grid spacings. Eqa {6.11) may be soived
explicitly for {Z*', m=2,...,M-1. {," is determined from the boundary condition (6.3,) with

the appropriate value of o (7).

In the discretization of eqn (6.2), the friction term is wreated semi-implicitly in order to
improve stability. The approximation, centred at the grid point (m+41,j+1), is

251—"—-+g3h éﬂ—ﬁl—ﬂsh + 5k, Jpiplapit + 1 - a)pL} =0,

At
1
2<smsM-1 (6.12)

where o is an implicitness parameter. (In practice we have taken & =4.) It is here assumed
that the depth & is specified as A, at the same spatial grid points as p,, and that the two
friction parameters k; and k, are also specified at these points. Eqn {6.12) may be solved
explicitly for p.*', m = 2,...,M — 1. The left boundary condition gives p/*' =0.

In order to generate a periodic solution, eqns (6.11) and (6.12) are stepped forward starting
from zero initial values. After several periods, the initial transients disappear and the solution
becomes essentially periodic. The values of { and p from the final period are then continued
periodically backwards and these continuations used in the discretized versions of the adjoint
equations (6.7) and (6.8). In the test problems reported in the next section, we computed the
solution over twenty periods to eliminate the transients, but in a practical situation fewer
than this would usually suffice. { and p must be stored for the last period which corresponds
to the last 120 time sieps and used in conjunction with the u and A stored in the last period to
evaluate the gradient of the cost function. The major percentage of memory cost is in storing
the { . p and the observation Z. Each of them require 2400 bytes of storage space. The
remaining memory is shared among the other one-dimensional arrays.

In order to obtain the discrete version of the adjoint problem, the argument of Section 2(b)
must be re-developed for the discrete case because the adjoint and discretization operators
do not commute. The discrete analogue of the functional F is
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M-1 J
F=143 Y K (5L -Z0) ¢(m)
maZ j=]

M-

+1I Y K (ko — K + Kyl o =50 + Kb, ~ 1)) (6.13)

mnl

where J is the number of time steps per period and ¢{m) = 1 if m is a grid point at which the
surface elevation is observed and ¢(m) = 0 otherwise. F must be minimized subject to the

constraints (6.11) and (6.12). To derive the adjoint model equations we form an Augmented
Lagrange function by adding to the cost function (6.13) the finite difference model equations:

M-l J

F=4%Y YK, (¢L-Z0) ¢im)

m=2 jal

30 (K~ K + Koy =00+ K, By~ L))

m=l

T R
"’sz{ .

m=2 ju]

M-1J j+ ,u)

+ZZ#’“{ =P "+gh..-(-—"—’1;‘-;-"-—+(k,.+kz opipfeapy + (- ap, }}

m=2 jx]

where A, and u/*' are Lagrange multipliers. In general, the boundary conditions should also

appear as constraints with their own Lagrange multipliers; however, for prescribed values at

the boundaries, it is simpler to exclude the boundary values from the set of unknowns.

Stationarity with respect to the Lagrange multipliers, aaxi =0and — oF = (0, gives the

a # j+t
- . : . . : . dF
original model equations, whereas stationarity with respect to elevation and velocity, —— = ()
18
oF
and — = 0, gives a set of adjoint equations for the Lagrange multipliers. We then have the
apL,
following expression for the first variation of F.
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J . ) )
&F =Y Y K(L-2)8l!

meQ =)

+J ‘f[x,(k,,_ =k )0 .+ Ky (ky o~ K5, )0y, + K, (B, — B )5, |

mm2

PRIRR LS Af'*'}

mul )=l

M-1 7 P _p j+l C/-ﬂ ]
S wtaf Bl g SELD o, oot + - )]

mu? ja}

The multiplier A7, refers to the grid point (m, j +%) while u/*' refers to (m+ 4, j +1). After
changing certain of the summation indices in an appropriate way and imposing the boundary
and periodicity conditions

Au=0, pi=0 A =AY, pl=pl (6.14)

we can re-write this as

N-1 J ; # L #.h"
o= o35, o b tlhe 12,
LY FLI Ax
M- J u # . )
+ZZ 5P..{_'.L___" +atk, +k, |P;. I)#,,+(1 a)k . +k, Ip"l)#/
mu jw]
+k1'_sgnp_{ap:'+(1 a)p_}y’*' Q_.f'_l_ﬂ.)}

+“Z.|5k1,m{jK|(k1,. )+ Zﬂﬁl{ap/ﬂ +(1- a)p:.}}

mu2 j=1

+“Z“|6kz‘_{JK2(kz__ -k} )+ iu,{;‘ pil{apit +1- a)p_}}

mul =1

M-
+25h_{11(,(h h’)+Zg;u*'Ax (&t - cl*‘} (6.15)
m= Jj=l

Setting the coefficients of the different variations equal to zero, we obtain the following
equations holding for2<m <M - 1.

AT -A @i h  —-pih : .
=] = L) - -—
TS, TR K (L - Z)9(m) =0 (6.16)

63



RV o
HoZte 2oz ot oSk + Shoulpl il

+ (1= a)(S ko + Sk, W|PLDRLE" + Sk, sgn pL{apl + (1 - a)p], it =0 (6.17)

These quantities satisfy the boundary and periodicity conditions

Me=0, pl=0, A=A, pl=pl, (6.18)
The discrete analogues of eqns (6.9) are

J
o = K0 =)+ 5, 3 il ol + (1= pl} =0

j=1

J
Fyon= Ky ky o~ k5 )+ 85, 3 il piffopi + - a)pl} =0 (6.19)

i=l

B = IRy (hy = B+ 5,3 i =G - (1) =0,
j=l Ax

Equations (6.16) and (6.17) may be stepped backwards in time, first solving (6.17) explicitly
for u’, m=2,...,M -1 then solving (6.14) explicitly for A’,', m =2,...,M - 1. From (6.18) we
also have u/ =0 and A;' = 0. As with the forward equations, these adjoint equations are
stepped backwards through several periods, starting with zero values, until the solution
becomes essentially periodic. The values of A and ¢ from the final period are then used,
together with the periodic continuation of the corresponding final values of { and p from the
forward problem to evaluate the sums in eqns (6.19).

We have tesied the validity of the gradient of the cost function to be minimized using the

formuia:

lim F(x + agfadF) - F(x) 3

1
a0 (gfddF,agrddF)

as described in Thepaut and Courtier (1991). The test was applied when evaluating single
constant parameter k,, two constant parameters k; and 4 and variable parameters, both &,
and h, and k, and h. Within the limits of rounding error the a was made as small as possible.
In every case the gradient was found to be correct.



The expressions in eqns (6.19) are the components of the gradient of F with respect to the
parameters &, of k, . and h,. For the case of constant parameters, these expressions must

be replaced by

MN-3 J

F=(M=-2)JK (k- k)+5 Y 3 ui{api +(1-a)pl}=0
mm) jm]
M-l J

F, = (M -2)JK,(k, — k) +5, 3 Y u2|pilfopit + 1 -e)pi}=0 (6.20)
n=2 j=]
M- J

F = (M -2IK,(h=K)+ S, 33 gui (¢ - ¢y =0,

mu2 fu] AX

6.4 Parameter aparoximations

In a practical situation, the use of eqns (6.19) to determine the parameter values at each grid
point presents a formidable problem due to the large number of grid points in 2 realistic
problem. The effective number of parameters may be reduced by making some approximation,
for example by assuming the parameters are piecewise constant or piecewise linear (Chavent
et al., 1975). In general, let us suppose the parameters are approximated by some finite
element expansions of the forrn

N N
ki Or k=Y Mupsr  ho=2 MupDy.4 (6.21)

A=l A=l

where {p,: 1 <A < 2N } represent some reduced set of parameters and (M,,) is a coef-
ficient matrix. The corresponding expressions for the components of VF with respect to the
new parameters are given by

M-1 M-l ap M-
S =2 MUF . or Y M_F,., = 2 MuF, (6.22)

mu2 mu2 apNﬁ\ m=2

where F, ., F,, and F,, are given by eqns (6.20).

In some of the numerical tests to be described below, we have used piecewise linear
approximations of this type with {p, } being the noda! values of the actual parameters and
(M,..) the appropriate interpolation matrix.
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The procedure for using the variational method for data assimilation and parameter estimation
can be formulated in the following way. A cost function is defined, measuring the distance
between model results and observations as in Chapter 6. The cost function is therefore a
function of both the observations and the unknown model parameters. Given an initial guess
for the model parameters, the numerical model is used to calculate the value of the cost
function. An adjoint numerical model is then used to calculate the gradient of the cost function
with respect to the many unknown model parameters. Next, an optimization algorithm, as will
be described in this Chapter, uses the gradient information to obtain a new guess for the
parameters, reducing the value of the cost function. Several such iterations are needed to
obtain the minimum value of the cost function, where model results and observations are as
close as ailowed by the level of measurements noise. The optimal estimatc for the
parameters is that corresponding to the minimum value of the cost function. We now present
a detailed discussion of the several minimization methods employed to carry out the
optimization. Subsequently, we will present the results of the numerous numerical
experiments carried out to test the efficiency and accuracy of these to get the optimum value
of the parameters.

7.1 Secant method

Let the parameters be denoted by gj, j=1,....,P and the gradient components by F;. To solve a

system of P equations, F; = (), by the secant method requires P + | starting points at which
the values of the quantities F; have been found. Each of the functions F; is approximated by a

linear function through the appropriate P + 1 points, and the P linear equations are then
solved for the approximate root.

Suppose that at P + 1 points, ¢, =¢/, p =0,1,....P, the gradient components in eqns

(6.19),(6.20) or (6.22) are given by certain known values F;, = F”. Then the system

P
V(@ -q)A=Ff-F  p=1..P

j=1



is first solved for the coefficients Ay where E = 1,...,P, and then the systern

P
Y(q,-a)A,=-F  E=1..P

j=l

is solved to determine the next approximation g, to the solution. The last of the P + 1 original
points is now discarded and the new approximation q; used as the zeroth point for the next

iteration.

Selection of the initial P + 1 points can conveniently be reduced to choosing one point in the
following way. Let ¢/, j = 1,...,P be the initial values of the parameters, leading to the value
F’ of the functional F and F;’ of one of the corresponding F; in (6.19). Now F; is the
derivative of F with respect to g;, so if F' is approximated by a quadratic function of ¢; and
the minimum value is assumed to be close to zero, it follows that the minimum point is given

by
q;=4; = 2F[F}.

This value of the jth parameter is generally found to be closer to the minimum of F than the
original ¢;". By modifying each variable in turn in this way, we can generate the required
additional P points.

The secant method may be regarded as a quasi-Newton method of minimizing F in which an
approximate Hessian matrix is computed at each step using secant approximations to the
second derivatives. The above version of this method becomes inefficient when the number of
variables is large because of the repeated matrix inversions and an explicit iteration algorithm

must be used.

7.2 Descent methods

The expressions on the left of eqns (6.19),(6.20) or (6.22) are the components of VF in the
space of the parameters. The method of steepest descent involves modifying the parameters

in the direction - VF, that is,

4;=q;,~sF, j=L..P, (7.1)
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where the tilde indicates the new parameter values and 5 is an iteration parameter (or utep
size) determining the amount of modification.

In the case of a single constant parameter k,, the iteratior formulas (6.21) take the form

-~ M-1J ) . . )
ky = k, -s{(M - 2DJK,(k, — k) + 5, 3, > plpifapitt +(1- a)p:.}} (7.2)
mu ja)

In the case of no prior value, this iteration formula is equivalent to the parameter equation of
Panchang and O’Brien. In general we shall refer to direct iteration of eqns (7.1) or a subset
thereof, with a constant value of s , as the PO method.

Panchang and O’Brien found in their numerical example that direct iteration of (7.2) con-
verged for any initial guess for &, and for any choice of s within a very wide range, but to
obtain a reasonable rate of convergence an appropriate choice of s must be made. As we
shall see later, we have found that in general, the iteration (7.1) does not converge for any s
unless the initial guess is sufficiently close to the true value. However, this method generally
does converge for a wider range of starting values than does the secant method.

The method of steepest descent itself consists of making repeated line minimizations (or line
searches) of F in the direction - VF, starting each time from the preceding minimum point. An
alternative, which in most cases gives much more rapid convergence, is to use a conjugate
gradient method, in which the minimizations are made in a set of conjugate directions rather
than steepest descent directions. We have used the Polak-Ribiere form of this method, with
and without Beale restarts, with Davidon cubic interpolation for the line searches. A detailed
discussion of these algorithms, including the restart criteria, is given by Navon and Legler
(1987). We have provided a short description of the Polak-Ribiere conjugate gradient method
and Davidon interpolation in an appendix at the end of this chapter.

More sophisticated quasi-Newton methods of minimization are available, in which some
information about the Hessian matrix is used. A discussion of some of these is given by
Navon and Legler (1987). In obtaining some of the numerical results reported in the next
section we have made use of the subroutine CONMIN, written by Sharno and Phua (1980),
which contains both a conjugate gradient like memoryless quasi-Newton algorithm with
Beale restarts and a quasi-Newton algorithm based on the Broyden-Fleicher-Goldfarb-
Shanno (BFGS) scheme of updating the approximate Hessian.
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7.3 NUMERICAL TESTS

A number of numerical examples have been used to test the effectiveness of the method
described in Chapter 6. In all the examples the values M = 19 and Ax = 40,000m have been
used, so that L = 700 km. The boundary condition (6.3,) are taken to be sinusoidal,

{(Lt)=cosat, w=2x/T, (7.3)
where T = 12 hrs. The time step used was At = 360s, or 120 steps per period.

It is assumed that the values of { at the two points x, and x, corresponding to the grid
points m = 8 and 16 arc known from measurements, and occur in the first term of eqn (6.4).
The function F can be normalized arbitrarily, and we have taken K;At = 1, which somewhat

simplifies eqn (6.16).

The convergence criterion used for most of the iterations was that successive values of each
parameter should differ by less than 0.01%. For the algorithms in the CONMIN subroutine,
the convergence criterion is based on the magnitude of the gradient of F.

Unless explicitly stated, all quantities given below are in MKS units.

7.3.1 Constant coefficients. linear friction

In this case, k;, =0 and k, and h are constant. The parameters are determine from eqns
(6.20,) and (6.20,). The exact solution with boundary condition (7.3) is given by

z,(,)__,m{mem} g | —iko
' cosal ’ gh

and this is used as the “empirical” values at the two points x; and x,.

We consider the following three cases: (i) & is known (= 65m) and &, is determined from
eqn (6.20,), the true value being 0.3x10+; (ii) £, is known (= 0.3x10~) and A is determined
from eqn (6.20,), the true value being 65; (iii) both k, and h are to be determined, with their
true values being 0.3x10~ and 65 respectively. These cases involve just one or two variables
and offer a good opportunity to compare the PO (direct iteration) method, the secant method
and the Davidon cubic interpolation method (plus conjugate gradients in case (iii)). The
results obtained are as follows.
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Case (i)
When K, = 0 (no prior information) the secant method converges when the starting
value is in the interval 0 < &, < 0.73x10+, but diverges outside that interval. The
convergence typically requires 5 - 6 iterations for 0.01% error. As K, is increased the
interval of convergence also increases and the number of iterations decreases.
Table 7.1 shows how the final value of k, and number of iterations changes as the
weight K, is increased. The prior estimate k,” was 0.15x10 and it can be seen that
the final value of k; approaches this estimate as K, is increased. This result is not
surprising, and shcws that the variational algorithm is working as expected. In Figure
7.1 we plot the function value against &, as K, is increased.

M -2)JK, Final value of k) Numbcr of
iterations
10-3 0.2972x10+ 5
10-2 0.2948x10+ 4
10-! 0.2751x10+ 4
100 0.2084x10+ 4
10! 0.1598x10~+ 3
102 0.1511x10~+ 3

Table 7.1. Final value of £, and number of iterations for different values of the prior
weighting factor K. The starting value was k, = 0.5x10-4in each case.

When X, is zero the PO method converges if the starting value is in the somewhat
larger interval 0 < &, < 0.9x104, provided a suitable iteration parameter s is used in egn
(7.1), and again there is convergence for a larger interval when K, > 0. The number of
iterations can be diminished and the interval of convergence considerably enlarged by
adjusting the iteration parameter s in (6.22,) from one iteration to the next. However,
unlike the case investigated by Panchang and O’Brien (1989), convergence cannot be
achieved for all starting values by using only positive values of s.

When K, = 0 the Davidon cubic interpolation algorithm converges if the initial value is
in the interval 0 < k; < 0.78x10-4, and typically requires S - 7 iterations.

The first two rows of Table 7.2 give some comparison of the rates of convergence of
the three methods when K, = 0. Each method was run for two starting values: k, =
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0.5x10+, and 0.1x10+ with the same termination criterion. The table gives for each
method the final value of £k, and the number of iterations (that is, the number of
evaluations of the gradient of F required to meet this convergence condition). It can
be seen that all the methods converge to the same parameter value.

In the case of the PO method it is always possible to find a value of s in (7.1) so that
this method converges in a single iieration, that is with two such evaluations, so this
number is rather meaningless in this case. However, considerable experimentation is
required to find this value of s. Furthermore, this magic value sometimes lies outside
the interval 0 < s <5, in which the iterations converge (for example when k, =
0.5x10+#) and in such a case, the smallest number of iterations that is obtainable

within the interval of convergence is given.

For the secant method the second value of the parameter is chosen as k, —2F/F,
where F and F; are computed using the starting value k,. We have plotted the values
\%3

of m against the number of iterations in Figure 7.1(a) for this case.
PO method Secant method Davidon method
Casel Start value Final value { N| Final value | N | Final value | N
(1) k; =0.5x10+ 0.2975x10+ | S| 0.2975x10+4 | 6] 0.2975x10~ | 5
(1) [k, =0.1x10+4 0.2975x10+ | 2 | 0.2975x104 | 5| 0.2975x10~ | 7
(1) | h =55 65.26 2 65.27 6 65.28 7
(i) | h =175 65.28 5 65.27 8 65.28 6

Table 7.2. Estimates in the single parameter cases for linear friction. The starting values of

Case

the different parameters are given in column 2 and the final values obtained with the
three different minimization algorithms are in subsequent columns.

(is)

When K, is zero the secant method converges when the starting vaiue is in the
interval 47 < h < 78, but diverges outside that interval. The PO method converges if
the starting value is in the interval 43.5 < h < 446, provided a suitable iteration
parameter s is used. The Davidon cubic interpolation algorithm converges if the iniiial

value is in the interval 43.9 < 4 < 125.
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The last two rows of Table 7.2 again give some comparison of the final values of 4 and
the numbers cf iterations for the three methods with each method being run for two
starting values: A = 55 and 75. In each case K, = 0. As before, the value of s for the
PO method is chosen to give the optimum rate of convergence and the second value of
the parameter for the secant method is chosen as h—-2F/F, where F and F, are

computed using the starting value h.

Table 7.3 shows how the final value of 4 and number of iterations for the secant
method changes as the weight K, is increased. The prior estimate & " was 25 and it
can be seen that the final value of A approaches this estimate as X, is increased. The
number of iterations first increases as K, is increased, which suggests the existence
of two adjacent local minima of F.

In order to investigate this more closely, we have graphed F as a function of & for
several values of K, in Figure 7.2. When K, = 0, F has two local minima, at h
approximately equal to 25 and 65, the second minimum value being several orders of
magnitvde smaller than the first. By coincidence, we had chosen h = 25 as the prior
estimate in Table 7.3, so the relative importance of the first minimum is enhanced as
K, is increased. For (M - 2)JK, = 1, the two minimum values are almost equal,
leading to a large number of iterations before final convergence. (Use of second order
Hessian information can reveal more information concerning the existence of multiple
local minima.)

M -2)JK, Final value of A Numbcr of
iterations

10-2 65.12 6

10! 64.01 4

100 59.25 13

10! 24.45 6

102 24.84 4

103 24 .98 3

Table 7.3. Final value of 4 and number of iterations for different values of the prior
weighting factor K. The starting value was A = 55 in each case.
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Case (iii)
When both & and k, are unknown, eqns (6.20,) and (6.20,) must be solved together.
Table 7.4 gives the final values of the two parameters and the number of iterations
using the PO direct iteration method, the secant method and the Polak-Ribiere
conjugate gradient method with Davidon cubic interpolation. The tabulated values
refer to the case when K, and X, are both zero and results for two different pairs of
starting values are given. In the case of the PO method, a very considerable amount of
experimentation is needed to find the optimal value of s and the number of iterations
sometimes increases very significantly if s differs only a little from this value. The
number of function evaluations in the conjugate gradient method is significantly
reduced if Beale restarts are included, and the algorithm then becomes comparable in
efficiency with the secant method (see also sub-section (b) below).

The value of the objective function is very significantly reduced by the minimization,
from initial values of 0.1 and 0.4x10-2 in the two cases to about 0.1x10-11,

PO method Secant method Conjugate gradient
Start values Final values N Final values | N | Final values | N
ki =0.1x10* 0.2981x10+ | 55 ] 0.2987x10+ | 12| 0.2987x10+* |26

h =355 65.26 65.26 65.26
k, =0.43x10+ 0.2987x10+ | 20| 0.2987x10+ | 10| 0.2987x10+ |21
h =171 65.26 65.26 65.26

Table 7.4. Estimates in the two-parameter case. The starting values of k, and A are given in
column 1 and the final values obtained with the three different minimization algorithms

are in subsequent columns.

7.3.2 Constant coefficients. quadratic friction

We now consider the general case when &, =0 and k, and h are constants, so that the
parameters are determined from eqns (6.20,) and (6.20,). In this case, the exact
solution cannot be found analytically, so it has been determined numerically by the
same algorithm as described in Chapter 6 but with very fine spatial and temporal
grids. In practice a grid size of Ax = 1600m and time step Ar = 15s were used,
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smaller by factors of 25 and 15 than the corresponding values used for the parameter
estimations. This “exact” numerical solution is then used in place of the experimental
measurements Z; in egn (6.13).

Case (i)
Here, £, =0, h =65 is assumed known and &, is to be determined from eqn (6.20,),
the true value being 0.25x10-5. The results found are similar to those for linear friction.
In this case, the starting intervals in which the three algorithms converge are all about
the same, namely 0 < k, < 0.7x10-5.

Some typical results obtained with the three methods for two starting values of
k, are given in Table 7.5. In both cases the prior weighting K, = 0. Again, for
the PO method the value of s in (7.2) is adjusted to give the minimum number
of iterations within the interval of convergence. For the secant method the
second value of the parameter is chosen as k, —~2F/F, where F and F, are
computed using the starting value k,. As in the linear case, all three algorithms
yield essentially the same final value of the parameter.

PO method Secant method Davidon method

Start value Final value | N | Final value | N | Final value | N
k2 =0.5x10-7 0.2472x10-5 | 2 | 0.2472x10-5 | 8| 0.2474x105 | 12
Ikg = (.5x10-3 0.2472x10-° | 7 | 0.2472x10-5 | 7 | 0.2472x10-5 | 11
h =55 65.04 2 65.04 6 65.05 16

Table 7.5. Estimates in the single parameter cases for quadratic friction. The starting
value of k, or & is given in column 2 and the final values obtained with the
three different minimization algorithms are in subsequent columns.

if the prior weighting K, is non-zero, results similar to those shown in Table 7.1 are
obtained. The final value of k, approaches the prior estimate as K, is increased. Again
we plot the function value against k, as K is increased in Figure 7.3. We have also
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plotted the logarithm of the values of against the number of iterations for the

secant case in Figure 7.3(a).

Case (ii)
Here, k, =0, k;= 0.25x10-° and Ak is to be determined, the true value being 65. The
intervals of starting values in which the three algorithms converge were found to be
convergent were 40 < h < 1100 for the PO method, 43.5 < & < 80 for the secant
method and 40 < # < 125 for the Davidon method. One typical set of results with the
starting value 55 is given in the last row of Table 7.5.

Again for non-zero values of the prior weighting factor K, results similar to those
shown in Table 7.3 are obtained.

Case (iii)
Here it is assumed that £, =0, and k;and A are both to be determined from eqns
(6.20,) and (6.20,), the true values being 0.25:<10-5 and 65 respectively. Table 7.6
gives the final values of the two parameters and the number of iterations using the PO
direct iteration method, the secant method and the Polak-Ribiere conjugate gradient
method with Davidon cubic interpolation. The tabulated values refer to the case when
K, and K, are both zero and results for two different pairs of starting values are given.
In the first case, the value of F is reduced by the minimization from 0.28x10-2 to
0.64x10-5 and in the second from 0.14x10-! to 0.73x10-5. These optimal values of F
are greater than those in the linear case, presumably because of additional
discretization errors in the treatment of the nonlinear damping.

As in the case of linear friction, the efficiency of the conjugate gradient method is
improved to a level comparable to that of the secant method if Beale restarts are
included. We have also tested the BFGS quasi-Newton algorithm on this problem and
have found that the values of the parameters converge to (0.2475x10-5 and 64.98 in the
first case and 0.2478x10-5 and 65.00 in the second, with 9 and 8 function calls

respectively.

75



PO method Secant method Conjugate gradient
Start values Final values N Final values N Final values N
k, =0.35x10-3 0.2471x103 8 0.2470x10-5 11 0.2470x10-3 32

h =175 64.95 64.95 64.95
k, =0.15x10-3 0.2470x10-5 {13} 0.2470x10-5 9 0.2471x10-5 | 21
h =55 64.95 64.95 64.95

Table 7.6. Estimates in the two-parameter case for quadratic friction. The starting values of
k, and h are given in column 1 and the final values obtained with the three different
minimization algorithms are in subsequent columns.

Case (iv)
We have also examined the case when all three variables k,, £, and 2 are unknown
and must be determined from all three of egns (6.20), the true values being 0.3x104,
0.25x10-5 and 65 repectively. In this case, all the methods converge provided the
starting values are sufficiently close to the true values, the number of iterations being
generally in the range 10-20. The final value of & is in every case as close to the true
value as in the results reported above. However, the values of k, and k, are not
obtained accurately. Almost invariably, one of these parameters is estimated as too
large, the other too small, the final estimated values depending on the starting values
and the errors being typically 10-20%. Commonly, but not invariably, all the
minimization algorithms yield the same erroneous estimates.

It seems clear from this experience that k, and k, are to some extent interchangeable

parameters, with the solutions at the two measurement points being relatively insensitive to
an increase in one of these parameters and appropriate decrease of the other. The problem of
distinguishing between them on the basis of the assumed data is apparently not well-posed.

7.3.3 Yariable coefficients

We have examined some problems in which k, or k, and & are functions of pesition along the
channel. Again the “empirical” values are constructed numerically using the very fine grid.
As before we considered both linear friction in which k, = 0 and &, and & are estimated from
eqns (6.19,) and (6.19;) and quadratic friction in which k;, = 0 and k, and h are estimated from
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eqns (6.19;) and (6.19,). With the grid used, the number of grid points at which parameter
values are to be determined is 17, giving in each case a parameter space of dimension 34 if
eqns (6.19) are used. This dimension is reduced if finite element approximations of the type
given in egns (6.21) and (6.22) are used.

In the two-parameter cases, we found the PO direct iteration method quite difficult to use
insofar as elaborate experimentation was needed to discover a suitable iteration parameter,
so we have not attempted to use this approach in these cases involving more parameters.
Consequently, in these variable parameter cases, we have examined only the conjugate
gradient and BFGS algorithms and the secant method. In ali of the cases tested, these
algorithms yielded essentially the same values of the parameters when they all converged.
The BFGS algorithm generally converged for a wider range of starting values than the
conjugate gradient like memoryless quasi-Newton algorithm with Beale restarts (CGB)
while the secant method was the least robust in this regard. Since most of the computing cost
lies in the evaluation of the function and gradient values, the matrix inversions of the secant
method did not add significantly to the cost even with the full 34 parameters.

First, we considered the same problem as in subsection (b) in which &, = 0.25x10-°and & =
65 are constant, but with these two parameters determined pointwise from eqns (6.21) and
(6.22). Figure 7.4(a) and (b) shows the estimated values of &, and & obtained using
piecewise linear approximations with 2, 3, 4 and 5 nodes. The value of F is reduced by the
minimization from 0.14x10-! to about 0.6x10-3in each case, and takes between 15 and 22

iterations.

Figure 7.5(a) and (b) shows similar estimations of k, and & in a case where the true values
of these parameters increase linearly from the closed to the open end of the charnel. In this
case the value of F is reduced from 0.2x10-! to 0.2x10. We have plotted the logarithm of
IvEl
[VFol

the values of against the number of iterations in Figure 7.5(c) for this case.

It is clear from these two figures that the estimates obtained with 2 nodes are as accurate as
those described earlier for the constant parameter cases, but those with more nodes are very
inaccurate. The parameter values obtained using eqns (6.19) and the full 34 dimensions of the
parameter space are even less accurate than those shown for four nodes. Note that the para-
meter estimates are not even accurate in the vicinity of the two data stations, m = 8 and 16.
The data at these stations is reproduced as accurately with these unsatisfactory parameter
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profiles as it is with the exact profiles, the residual errors coming predominantly from the
truncation errors in the approximations (6.11) and (6.12).

It thus appears that the inverse problem is not well posed if the number of independent
parameter values to be determined exceeds four. This however is not surprising since the
assumed empirical data, the surface elevations at two stations, contains essentially four
scalar values, namely the amplitudes and phases of the fundamental at the two stations.
While for quadratic friction, the ronlinearity does generate higher harmonics, the amplitudes
of these are apparently too weak to provide significant additional information. This would
suggest that the number of independent parameters that can be estimated cannot exceed
twice the number of data stations. (It is also worth noting that in the case of many parameter
values ili-posedness can be eliminated by using a penalty-regularization approach.)

In order to test this hypothesis we have examined the effect of including additional data
stations. We first considered the same example of constant linear friction that was used in
subsection 7.3.1 in which k,= 0.3x10“and A = 65. The number of nodes was allowed to be
2,3,4 or 5. In each case we found that when the number of tide stations is equal to the number
of nodes the final estimates converged to the values k= 0.29868x10+and & = 65.26!
regardless of the starting values (provided these latter were sufficiently close to the true
values for the minimization algorithm to converge). (To achieve this five figure accuracy we
used a more stringent convergence criterion than previously.) On the other hand, if the
number of tide stations is smaller than the number of nodes then the predicted values of the
parameters depend sensitively on the starting values and moreover show similar

irregularities to those illustrated in Figure 7.4 for 3 or more nodes. This result is consistent
IVE
with the above conjecture. Figure 7.6 gives the variation of the logarithm of the values of ﬁwl
0

with the number of iterations.

Figure 7.7(a) and (b) shows some results obtained for quadratic friction when the true values
of depth and friction coefficient vary as quadratic functions cf distance along the channel. The
figure shows the approximations to these functions obtained using 2,3,4 and 5 nodes, in each
case with the number of data stations equal to the number of nodes. The estimated para-
meters are reasonable approximations to the true values within the respective function class
in each case; as anticipated, the approximation improves as the number of nodes is increased.
As with the previous example, if a smaller number of data stations is used, the estimates
become less reasonable and depend on the assumed starting values.
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In a subsequent series of experiments we experimented with large-scale minimization
algorithms such as L-BFGS(Nocedal, 1980) and the truncated-Newton method(Nash, 1985;
Schlick and Fogelson, 1990). The performance of all the above algorithms for all the three
cases of constant, linearly varying and quadratically varying parameters. In the first case the
function value goes down to 3.1x10-!9, in the second to 2.x10-? and in the third to 7.75x10-%. It
is worth noting that the final function values turn out to be very smull as compared to that

achieved by the CONMIN subroutine.

7.4 SUMMARY AND DISCUSSION

In Chapters 6 and 7 we have examined the feasibility of estimating the parameters of a
hydraulic model by assimilating periodic tidal data. A variational approach has been used in
which the dynamical equations are imposed as strong constraints (Sasaki, 1970). The
forward and adjoint problems are solved by finite difference methods using staggered spatial
and temporal grids. In the test problems considered, the data consisted of periodic surface
elevation values at two stations in a channel of length 17.5 grid spacings. The data itself was
taken from the exact analytical solution when this was available or else from a very exact
numerical solution. The parameters estimated are the depth of water and the linear and
quadratic bottom friction coefficients, which may be constant or may vary along the channel.

Several methods were used and compared to solve the parameter equations: the secant
method, a direct iteration method, the Polak-Ribiere conjugate gradient method, the conjugate
gradient like memoryless quasi-Newton method with Beale restarts and the BFGS quasi-
Newton method. The last two algorithms were taken from the CONMIN subroutine of
Shanno and Phua (1980).

In the case of constant parameters, when only one parameter is to be estimated, the secant
method, direct iteration method and conjugate gradient method (which reduces simply to
Davidon cubic interpolation) all produce essentially identical results in about the same
number of iterations, though some experimentation is needed to find an appropriate iteration
parameter for the direct iteration method. When two parameters are estimated (depth and
either of the friction coefficients) this continues to be true, except that the direct iteration
method becomes significantly more expensive than the other methods; the conjugate gradient
method without restarts is somewhat more expensive,
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In all these problems, the estimated values of the parameters obtained by all methods agree
almost to four significant figures. These values differ from the exact parameter values by
almost one percent, because of truncation errors in the finite difference approximation of the
forward and adjoint equations. In the case of quadratic friction, the value of the objective
function at the minimum is reduced by about four orders of magnitude from its starting value.
For linear friction the reduction is between nine and eleven orders of magnitude, this smaller
value being presumably due to the more exact treatment of the bottom friction by the finite
difference algorithm in the linear case.

An attempt to estimate all three parameters was not successful in yielding accurate values.
The linear and quadratic friction coefficients appear to some extent to be interchangeable and
the assumed data is not sufficient to resolve them.

In the case of distributed parameters, we have used a finite element approximation by means
of which the parameter functions are expressed in terms of some reduced number of
coefficients such as certain nodal values of the parameters. The method has proved to be very
accurate provided the total number of independent nodal values that are estimated does not
exceed twice the number of data stations. The estimates obtained by the secant method, the
conjugate gradient like memoryless quasi-Newton method with Beale restarts and the BFGS
quasi-Newton method are completely consistent whenever the different methods converge.
In general, the estimated parameter functions are, as can be expected, found to be more
accurate the greater the number of nodes.

If the number of independent nodal values that are estimated does exceed twice the number
of data stations then the estimated parameters have turned out to be quite unreliable and to
depend on the assumed starting values.

The cpu time for solving the forward problem and the adjoint problem is almost the same and
is the major part of the total computational cost. One iteration (involving integrating the
model equations forward and the adjoint equations backward once) requires about 0.25
second on an UNIX SUN Sparcstation 1.
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APPENDIX B

The conjugate-gradient algorithm is an iterative method for unconstrained minimization that
produces a better approximation to the minimum of a general unconstrained nonlinear function
of N variables, x, x5, . . . ., x5 with each iteration. Within a given iteration an estimate is
made of the best way to change each component of the vector X, so as to produce the
maximum reduction of the function, by finding the gradient of the function with respect to the
vanables and combining this gradient with information from the previous iterations to produce
a search direction. The search direction is an estimate of the relative change in each
component of the vector x to produce the maximum reduction in the function F. To find the
magnitude of the changes along the search direction, an optimal step size must be estimated.
The new vector after an iteration of the conjugate gradient X, is given by the previous
vector x4 plus an optimal step size times the search direction.

Given a set of linearly independent vectors -gg, -g1, - - - » -ga-1, ON€ can construct a set of
mutually G-conjugate (G is a positive definite symmetric matrix) directions dg, dj, . . ., ds-1

by the following procedure. Set
do = -go
and then fori =1, .. ., n—1 successively define

i-1

di=-gi+ X aid
j=0

where a;; are coefficients chosen so that d; is G-conjugate to the previous directions d;_i,
di-2, ..., dg. This is possible if, for =0, ..., i-I,

i-1
di'Gd; = -g"Gd;+ X a;d;"Gd;=0.
j=0

If previous coefficients a;j were chosen so that at dy, . . ., dj) are G-conjugate, then we have

d4'Gd =0if j I

81




and hence we get

g,-TGd

- ] F o
ajj= dGd; foralli=1,...,n-1

Jj=0,...,i-1

For a quadratic function F(x) = x Tox +bTx + ¢, (where G has been defined earlier, b is a

vector, and ¢ a scalar) gg = VF(xz) and ge+1 — gk = G(Xg+1 — Xg). Therefore

i-1
zgl (g+l g)

di=-gi +
‘ j=0 d_, (gj+l _gj)

Using the fact that the subspace spanned by gy, . . ., gi-1 is also the subspace spanned by dy,
, d;-1 and the fact that
gidj=0,j=0,..., il
we obtain
g,-ng=O,j=0,. ey i=l

so that we have a simpler formula

d; =g + fidi-1
with
gi (gz gi-1)
Bi=
di-1 (gz —8i-1)

Using the equalities
T T , .
gigi=gi di=0 Jj=0,...,i-1
di-1 = -gi-1 + fi-1di-2

the coefficient B; can be written as

T
8i (gl gl—l) giTgi
gi-1 gt- gt—l gi-1

Bi=
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In order to generate the direction d; in the minimization process, we need only know current
and next previous gradients g; and g;_1 and the previous direction d;_; (i.e., storage of three
vectors). For a nonlinear function G = V2F. The first expression for f3; is the Polak-Ribiere

form and the second expression is the Fletcher-Reeves form. They are equal for exact
quadratic functions. For real world functions which are not exactly quadratic, to reach the
supposed minimum of the quadratic form, the Polak-Ribiere form accomplishes the transition
to further required set of iterations more gracefully, by resetting d to be down the local
gradient, which is equivalent to beginning the conjugate-gradient procedure anew.

Davidon's Cubic I lation Method

Davidon devised a method which uses the values of the function f{x) at two points on the line
x = xp + Ad, together with values of the directional derivatives of the function along the line at

the same two points. Given a point x; and a direction of search d, where d need not be a unit
vector, Davidon's cubic interpolation method for minimizing the differentable function f{x) on

the line
x =x; + Ad is as follows:

1. Evaluate f = fixy) and Go= [g(x¢)]'d . Check that Gg < 0. In the following expression
o = minf, - 28 —fe)}
’ Go

choose K and fe, where x is some representative magnitude for the problem (usually, k = 2)
and fuis a preliminary estimate, preferably low than high, of fix; + Amd), and hence determine

a.
2. Evaluate fo = flix} + ad) and Gg = {g(x; + ad)]'d.

3.If Go > 0, or if fy > fg, proceed to rule 5. Otherwise go to rule 4.

4. Replace a by 2a, evaluate the new fu and G and return to rule 3.

5. Interpolate in the interval [0, a] for Ay, using

A.m_l Gq‘l’W—Z

a Go-Go+2w"

In this equation w= ‘\J 22 —GyGy and z = % (fo-fa) +Go+Ga.
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6. Return to rule 5 to repeat the interpolation in the smaller interval [0, Ap] or [Ay, o,
according as

[g(xg + Amd)]'d 2 0r<O.

Stop when the interval of interpolation has decreased to some prescribed value.

For further details on this method see Walsh(1975).
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CHAPTER 8 PA TER ESTIMATION T THE GRADIENT

In this Chapter we present a method for estimating the constant parameters in a sectionally
integrated hydrodynamical model of tidal flow which does not use the adjoint formulation for
evaluating the gradient of the cost function. This prompts us to make use of an optimization
algorithm that needs only evaluations of the cost function itself to get to the minimum. The
algorithm is known as the Powell's Direction Set Method in the literature.

We tested the algorithm on two model problems in which the parameters &, and 4 are
determined. For all starting values of the parameters lying within a specified range we
always reached the minimum with errors of the order 0.01%. This sounds encouraging as it
saves the cpu time used in estimating the gradient of the function. But before the actual
minimization procedure starts, the minimum has to be bracketed within an interval. This
requires the function to be evaluated a number of times and hence, adds significantly to the
cpu time. In our numerical experiments we found that the Powell method is 2-5 times as

expensive in computer time as the gradient method.

8.1 Basic Equations

We again consider the channel problem as described in Chapter 6. We have the depth-
integrated equations of continuity and momentum as

£, +(hu), =0, phu, +gphl +1=0

where 7 is the bottom friction stress and p the density, assumed constant. (See eqns. (2.13)
and (2.14a) in which p — phu,q — 0, H=hand p = p = p® .) We have only taken the linear
bottom friction x; into account. It is assumed that the bottom friction has the form

‘r=px'1 u

The equations are then given as (6.1) and (6.2). The boundary conditions are given as (6.3).
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8.2 Optimizati eoritt

The prime aim is to minimize the functional as given in (6.4), subject to the boﬁndary value (
problem (6.1)-(6.3). The surface elevation is measured at two stations x; and x7, and thesc
are used to define the functional. The first step in the process is to bracket the minimum. This
is achieved by Golden Section Search in one dimension. The idea is to get the optimum
bracketing interval a<b<c where the middle point b is a fractional distance 0.38197 from one
end (say, a) and 0.51803 from the other end (say, c). This bracketing of the minimum is based
on the principle of stepping downhill.

Once we get this interval we use the Powell’'s method to get to the minimum. The first step in
the method is to come with a set of N linearly independent, approximately mutually conjugate
directions. Then the application of N line minimizations will get us approximately to the
minimum of a quadratic function. For functions F which are not exactly quadratic forms,
repeated cycles of N line minimizations will in due course converge quadratically to the
minimum. A detailed discussion of the method is given in Press et al (1989).

8.3 Numerical Tests

The numerical algorithm used to solve the basic equations (6.1)-(6.3) are given in (6.11) and
(6.12). Equations (6.11) and (6.12) are stepped forward starting from zero initial values. The
initial transients disappear after several periods and the solution becomes periodic. Again we
assume that the values of { at the two grid points m=8 and m=16 are known from
measurements. The convergence criterion used is based on the magnitude of the function
value. Essentially two tests were conducted.

8.3.1 Constant coefficients, unsegmented channel

The exact solution of (6.1)-(6.3) with boundary condition (7.3) is given by

’

2 .
cosOx; ; W —-ikw
CO i e“”' }' o=, |——————

ZHO=R
@ { cosal gh

and this is used as the "empirical” values at the two points x) and x2.



We consider the following three cases: (i) A is known (= 65m) and &, is determined, the
true value being 0.3x104; (ii) k;, 1s known (= 0.3x10+) and h is determined, the true value
being 65; (iii) both k, and A& are to be determined, with their true values being 0.3x10~ and
65 respectively. The results are summarized in Table 8.1.

Case Start Value | Final Value| N

@) k,=0.2x10+| 0.2975x10+| 44

(i1) h =55 65.27 44

(iii) k,=0.2x10+{ 0.2986x10-4| 391
h =155 65.25

Table 8.1. Estimates in the numerical test no. 1.

In another series of tests we have used a modified objective function equal to the square
norm of the amplitude of the fundamental in the difference between { (x;,r) and Z;(s). This

amplitude was extracted from the accumulated values of the elevation over the last 120 time
steps by using the Fast Fourier Transform (see, De Boor and Conte, 1980). The number of
iterations in the case of (i) and (ii) were 46 but in the case (iii) was only 149,

8.3.2 Constant coefficients, segmented channgl]

We now consider the case where the channel is considered to be divided into two parts with

different values of bathymetry and bottom friction. In this example the value M =90 and Ax =
8000m is used. The two ends of the channel are subjected to boundary conditions of the form

(6.3). In 0 < x < L,, the parameters are k, and h, while in L; < x < L they are k, and h,. At

the dividing point the velocity and surface elevation are considered to be continuous.
The solution to the equaticns (6.1)-(6.3) is given by
Region |

o = 250 .
Zix) =7y @) cosayx; exp(iayL),
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w2 —- ik .
where a; = 2h, and @, is defined similarly, anc

D = a; Pcosay Ly —ioy Q sin@; Ly, P = exp(iopLy) + exp(iay(2L~Ly)) and
Q = exp(iapLy) — exp(iay(2L-Ly)).

Region 2
2ipa, X .
Zi(x) = pp sin(@;L1)(exp(iay(L+x;)) - exp(icy(3L—x)))
+ % (cxp(iaz(L—L1+x;‘)) - cxp(ia2(3L—L1—x))) + {o exp(iay(L-x;))
We took h, = 65 and A, = 50, regarded as known, while £} and k; are to be determined, the
true values being 0.3x10-4 and 0.15x10-. The starting values are taken to be 0.2x10-4 and
0.05x104. The final values are 0.2982x10- and 0.1462x10+. It takes 122 iterations for the

convergence with tolerance of 10+ when we evaluate the function by using Fast Fourier
Transform and 293 iterations when the function is obtained by using the method in Chapter 6.
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