
RESTRUCTURING THE

RUN TIME SUPPORT OF A

DISTRIBUTED LANGUAGE

by

Hugh Bawtree

B.Sc., University of Victoria, 1984

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School of

Computing Science

O Hugh Bawtree 1991

SIMON FRASER UNIVERSITY

October, 1991

All rights reserved. This thesis may not
be reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name : Hugh Bawtree
Degree : Master of Science
Title of Thesis: Restructuring the Run Time Support of a Distributed Language

Dr. Peter ~rihntaf il-lou
Assistant Professor
Chairman

Dr. M. Stella Atkins
Associate Professor
Senior Supervisor

Dr. Warren Burton
Professor

Dr. Robert Cameron
Associate Professor
Examiner

Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby g ran t t o Simon Fraser University the r i g h t t o lend

my thesis, p ro j ec t o r extended essay (t he t i t l e o f which i s shown below)

t o users o f the Simon Fraser Unlvers i ty L lbrary, and t o make p a r t i a l o r

s i ng le copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ive rs i t y , o r o ther educational I n s t i t u t i o n , on

i t s own behalf o r f o r one o f I t s users. I f u r t he r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r pub l i ca t i on o f t h i s work f o r financial gain sha l l not be al lowed

wi thout my w r i t t e n permisslon.

*

T i t l e o f Thes i s/Project/Extended Essay

Res t ruc tu r ing t h e Run Time Support of a D i s t r i b u t e d Language.

Author:

(s ignature)

Hugh Alexander Bawtree

October 24 . 1991

ABSTRACT

Distributed programming languages are designed to make distributed programming

simple through the use of powerful concurrent programming features and program

checking which the compiler provides. Unfortunately, current distributed

~rogramming languages are not yet sufficiently fast, dependable and portable

enough to make them more appealing to use than the alternatives. Distributed

programs are commonly programmed in third generation languages with system calls

embedded in the code. These programs are fast but notoriously difficult to

r. .-ogram.

These problems can be alleviated by improving the Run Time Support of a

distributed programming language. The Run Time Support implements the

distributed constructs and other language constructs whose exact execution can

only be determined at run-time.

We re-designed the Run Time Support for the distributed programming language

called Synchronizing Resources (SR). We succeeded in making it simpler, faster,

easier to maintain, more portable, and easier to test.

This thesis describes the software engineering techniques we used to improve the

Run Time Support, the application of the techniques, and the improved design.

Through our implementation, we justify our claims of simplicity, speed,

maintainability, portability and testability.

iii

Table of Contents

CHAPTER 1
INTRODUCTION . 1

1.1 Goals . 1
1.2 Performance . 1
1.3 System Design Problems . 2
1.4 Thesis Overview . 2

CHAPTER 2
RELATED WORK . 3

2.1RunTimeSupport . 3

CHAPTER 3
BACKGROUND . 6

3.1 . 6
3.1.1Modularization . 6
3.1.2 Abstraction . 6
3.1.3 Dependency Diagrams 7

. 3.2SRlanguage 7
3.3V-system . 11

CHAPTER 4
DESIGN ISSUES . 14

4.1Overview . 14
4.1.1Introduction . 14
4.1.2 SR RTS . 14
4.1.3 Design Goals and Tests 15

4.2 Application of the Design Techniques 17
4.2.1 A System Design Problem: Circular Dependencies 17
4.2.2 Circular Dependency Solutions 19

. 4.2.2.1 Subsystem-Level Modularization 22
4.2.2.2LayersofAbstraction 23
4.2.2.3ModuleSplitting 26

. 4.2.2.4 Unresolved Circular Dependencies 27
4 . 3 S u b s y s t e m D e s i g n I s s u e s 31

4.3.1 Language (LG) Subsystem Design 31
. 4.3.2 Operating System (0s) Subsystem Design 32

. 4.3.3 Machine (MC) Subsystem Design 34
. 4.3.4 Data Structures (DS) Subsystem Design 36

. 4.3.5 Generic Lists (GL) Subsystem Design 37
4.4 Module Design Issues . 39

4.4.1LGMN-Main . 40
. 4.4.2 LGVM-Virtual-Machine 40

. 4.4.3OtherLGModules 40
. 4.4.4ProcessModules 40

. 4.4.5 OSMT-Message-Tx & OSMR-Message-Rx Modules 41
4.4.6OSPL-Pool . 41
4.4.7OSNE-Network . 42

. 4.4.8OSSX-Srx 43
4.4.9OSGP-Group . 44

4.5 Management Issues . 44

CHAPTER 5
OPERATING SYSTEM SUBSYSTEM DESIGN . 47

5.1Introduction . 47
5.2 Design Decisions . 47

5.2.1 SR VM (Virtual Machine) Mapping 47
5.2.2SRProcessMapping 48
5.2.3 Input/Output . 49
5.2.4 SR Communication Mapping 50

5.3 Remaining Problems . 51
. 5.3.1 The Need for Distributed Data Structures 51

5.3.2 Time-Slicing . 5 2
. 5.4EnvironmentIssues 54

. 5.4.1 V-system communication primitives 54
. 5.4.2 V-system and SR Missing Information 55

5.5 Summary - Minimal operating System Requirements 56

CHAPTER 6
CONCLUSION . 5 8

BIBLIOGRAPHY . 6 0

APPENDIX A:
SR CO-ICATION PERFORMANCE . 6 1

APPENDIX B:
S R o n V - S y a t e m S Y S T E M D E S I G N . 7 1

Table of Figures

Figure 1 S R / V R T S Dependency Diagram 16
Figure 2 Early S R / V R T S Dependency Diagram 20
Figure 3 Operating System (0s) Module Dependency Diagram 21
Figure 4 Circular Process Resource Dependency Diagram 24
Figure 5 Linear Process Resource Dependency Diagram 25
Figure 6 Data Structures (DS) Module Dependency Diagram 30
Figure 7 Language (L G) Module Dependency Diagram 33
Figure 8 Machine (MC) Module Dependency Diagram 35

CHAPTER 1

INTRODUCTION

1.1 Goals

In the implementation of a distributed language, it is common practise to hide

the implementation of the distributed concepts in a Run Time Support (RTS)

system. The procedures in the RTS are invoked from the code generated by the

compiler. This design separates, and simplifies the design of both the

compiler and the RTS.

The goal of this project is to improve the Run Time System (RTS) design of the

distributed programming language SR (Synchronizing Resources) [ANDR861. We

applied software engineering techniques to make the system simpler, easier to

port, and more secure. In the process of re-designing the system, we gained a

greater understanding of the RTS design issues. In general, this

understanding leads to a better understanding of the issues associated with

the design of distributed programming languages.

1.2 Performance

The initial goal of our project was to reduce the communication overhead of

SR, running on a network of SUN workstations, using the UNIX operating system.

Another operating system called V-system [ChLa86] has much faster

communication primitives.

We believed that by porting SR from UNIX to V-system, and replacing the UNIX

communication sockets with V-system messages, we could greatly reduce the

communication time of SR programs. Appendix A has the complete details on SR

communication time.

1.3 System Design Problems

However, during the testing of the S R RTS on V-system (SR/V), we encountered

many difficulties. We found some very difficult bugs (errors), some of which

took weeks to analyze. We determined that these errors were caused by a

faulty system design. The design faults were so severe, that we were forced

to re-design the system.

This thesis describes our re-designed version of the S R R T S , and the

techniques we used to avoid further system design errors. We believe these

techniques are applicable to other large systems, in particular, other

distributed systems.

1.4 Thesis Overview

The remainder of this thesis is divided into the following chapters:

2. Related Work: a review of other papers on the implementation of

distributed programming languages.

3. Background: a review of Software Engineering, the S R language and the

V-system operating system.

4 . System Design: a description of the system design for our

implementation of S R , and the techniques we used in the design.

5 . Operating System Subsystem Design: a description of the design issues

faced in the implementation of the Operating System subsystem.

6. Conclusions: a summary of system design techniques and distributed

programming language design.

CHAPTER 2

RELATED WORK

2 .I Run T ime Support

There have been very few papers written on the subject of distributed language

RTSs. The ones that have been written tend to concentrate on the design

details rather than the overall system design.

Both Almes LALME851 and Lohr [LOHR881 implemented Remote Procedure Call (RPC)

mechanisms to convert sequential Modula-2 programs into distributed programs.

Almes' RPC mechanism is implemented on the V-system and Lohr's RPC mechanism

is implemented on both MS-DOS and UNIX. However, there is no concurrency in

these programs. If a program component of program P is currently executing on

machine B, then the program component of P on machine A is suspended. These

researchers use the RPC mechanism because it is easily adapted to existing

sequential languages. However, we do not believe the major criteria for a

successful distributed language is its similiarity to a sequential language.

In fact, a distributed language should have mechanisms to support as much

concurrency as possible, since a major advantage of distributing a program is

to reduce the program's execution time.

Almes evaluated the V-system in terms of its support for his RPC mechanism.

He found the performance to be quite fast for both the small, fixed size

messages implemented by the Send, Receive and Reply primitives and the large,

variable size messages. The performance is analyzed in detail in his paper.

On the ease-of-programming side, he found the V-system's kernel mechanisms are

simple to understand, compared to the interprocess mechanisms of many other

systems. However, he found that due to the two methods of communication

(Send/Receive and MoveTo/MoveFrom), the code must decide before sending a

message which communication method to use. This adds complexity to the RPc

stub generator code. The communication method used for each RPC is determined

by checking the amount of data being sent, and matching the data size to the

most appropriate communication method. Data less than 32 bytes long can be

sent with a Send; larger data are sent using a combination of a Send and

MoveTo .

Lohr's RPC mechanism was implemented for both the MS-DOS and the UNIX

operating systems (0s). Unfortunately for our purposes, he does not analyze

or evaluate either of the two 0s. Instead, he develops his own simple

distributed operating system which runs on top of MS-DOS and UNIX. In his

distributed operating system, communication is performed with RPC calls and

abort messages, and security is maintained with user-names and the help of the

local 0s. The RPC calls are implemented in the standard manner. The abort

messages are sent to all remote components of program, when one component of a

distributed program dies. For security checks, the distributed operating

system assumes that a user has the same username on each machine. Then all

security checks can be handled by the local 0s.

Newton [NEWT871 implemented an RTS for Ada tasking which supports concurrency

on the Mach operating system. Ada tasking is complicated to implement but the

only process interaction mechanism supported is the rendezvous. SR is a more

complete distributed language because of its flexible process interaction

mechanism, of which rendezvous is but one example.

Newton does not explicitly analyze the performance of communication primitives

in Mach. However, it appears from some of his timing tests, that Mach

performs context switches between processes in 0.5ms on a four processor VAX

8200 which is almost twice as fast as the V-system context switch on a 10-MHz

68000 microprocessor. Since there is no common machine which both Mach and

V-system are implemented on, it is difficult to compare their performance.

Newton does not evaluate the ease-of-programming using Mach primitives.

Finley [FIN891 modified the SR/UNIX RTS for the Sequent multiprocessor, which

runs a variant of UNIX. Curtis performed extensive performance tests to

analyze performance problems. He also addresses many of the design issues

associated with implementing a distributed language on a multiprocessor

machine. Many of these design issues are associated with protecting critical

sections. He does not comment on any system design issues. It appears he did

not have to make any major changes to the SR/UNIX design.

Swinehart et a1 [SWI86] describe the system design of the Cedar Programming

Environment which includes an operating system, programming environment and

programming language. The system design of this large project has some

similiarities with the SR/V design. It is interesting to note the similiarity

between the Cedar machine layer and the SR/V machine subsystem (described in

section 4.3.4), and between the Cedar Nucleus level and the SR/V

Operating-System subsystem (described in section 4.3.2). The Cedar system,

like the SR/V system, had problems with circular dependencies (described in

section 4.2.1), which the authors call "loops". The Cedar approach to

resolving the circular dependencies is to use sophisticated programming

techniques: call-back procedures, registered procedures, procedural objects

and object classes. All of these techniques are explained in the [SWI86]

paper. The SR/V approach has been to eliminate the circular dependencies

through re-design, using standard programming techniques. We believe the

elimination of circular dependencies is preferable to using unusual

programming techniques which are not supported in every programming language.

Our research is different than the above named research. We concentrate on

the system design of an RTS. We attempt to eliminate the system design

problems through the application of some basic software engineering

principles, and we implemented the system in a standard third-generation

language (C). Finally, we attempt to generalize the issues to all RTSs.

CHAPTER 3

BACKGROUND

3.1 Design Principles useful in System Restructuring

The Software Engineering (SE) field has been under investigation for a long

time and the general principles are well understood. In this section we

review the general principles that we found useful in the SR/RTS system

restructuring, and introduce a set of techniques which use these general

principles.

3.1.1 Modularization

The most important design technique we use is modularization. We used

modularization to divide the RTS system into subsystems, and subsystems into

modules. We also used modularization to extract modules whose functionality

was originally duplicated in several other modules. In designing the modules

we used the SE concepts of cohesion and coupling. More information about

these concepts can be found in any SE textbook.

3.1.2 Abstraction

Abstraction is the separation of the interface from the implementation. The

abstraction design technique is used to provide several layers of

functionality [DIJ68]. For example, memory modules in an operating system can

provide several layers of increasing functionality. At the lowest layer, a

memory module could provide a memory block from any area of main memory. At

the middle layer, another memory module provides a virtual memory block which,

depending on the current access, is stored in main memory or on disk. At the

top layer, a third memory module provides a virtual memory block in the

current user's memory address space.

3.1.3 Dependency Diagrams

Another key design technique for clarifing the RTS design is the dependency

diagram. These diagrams are used to show the dependencies between subsystems

and modules. We define the depend relationship in the following manner:

subsystem A depends on subsystem B if A uses a procedure, a data type, or

anything which is implemented in subsystem B. The dependency diagram for the

A and B subsystems is drawn below:

The depend relationship and the dependency diagrams are defined similiarly for

modules.

We sometimes use the word use as a synonym for depend.

3 . 2 SR language

SR supports heavyweight virtual machines (V M) containing resources which

contain lightweight processes. Each VM contains one address space unshared

with any other VM. VMs may execute on the same or different physical

machines. All communication, i.e. inter-VM, inter-resource and inter-process,

is achieved through operation invocation. An operation is a generalization of

a procedure.

The remainder of this section describes resources, and the mechanisms for

implementing and invoking operations.

Resources, like modules in Modula-2, are the building blocks of SR programs.

Following software design principles, a resource is used to implement a

software abstraction such as a bounded buffer, a file system, or a process

manager. Resources may use other resources. For example, the file system

resource could use the bounded buffer resource.

Each resource has a specification component, which declares the operations

exported by the resource. The bounded buffer resource specification which

exports the deposit and fetch operations looks like:

resource bounded-buffer

op deposit (val item:int) # val means value param.

op fetch (res item:int) # res means result param.

body bounded-buffer (size:inti separate # size is size of buffer

The bounded buffer resource code that we use here is taken from [An01871

Within a resource, the operations may be implemented by either a proc or an in

statement. The groc is similiar to a procedure. It can be invoked at any

time, and there may be many copies of one proc being executed at the same time

by different processes. The in statement is contained in a groc. In its

simplest form it waits for one particular operation to be invoked. When it

receives that invocation, it executes the body of the in statement, sends a

reply, and continues with the execution of the proc. In the more complicated

form, an in statement may wait for any of several operations to be invoked.

Receiving any of the operation invocations will cause the corresponding body

of code to be executed, send a reply, and continue with the execution of the

proc. Our example of a bounded buffer implements the deposit and fetch

operations with an in statement inside a process. The resource body for the

bounded buffer follows:

body bounded-buf f e r

var b u f f [O : s i z e - 1 1 : i n t

v a r count:=O, front:=O, rear:=O

process worker

do t rue -> # repeat i n stmt forever

in deposit (i t em) & count<size -> # receive deposit invoc

buf [rear] := i tem

rear := (r e a r + l) 8 s i z e

count++

[I f e t ch (i t emi & count>O ->

i tem := b u f [f r o n t]

front := (f r o n t + l i 8 s i z e

count--

receive f e t c h invoc.

od

end worker

end bounded-bu f f er

Before an operation can be invoked, the resource which implements the

operation must be created. The create statement creates an instance of a

resource on a VM, and returns a unique object identifying the resource

instance, called a capability, which identifies the resource instance.

Possession of resource A's capability by resource B allows B to invoke A's

operations. Every invocation of an operation must specify the resource

instance by including the resource's capability in the invocation statement

SR provides two invocation statements: call and eend. A call statement causes

the invoking process to be suspended until the operation is completed. The

send statement causes the operation to start executing as a separate process.

This means the invoking process executes concurrently with the invoked

operation. An example of a resource which invokes the bounded buffer resource

follows :

resource user

import bounded-buf f er

body user0

var bb: cap bounded-buffer # capability of b.b. resource

initial

var item: int # integer variable

create a buffer with room for 20 items

bb : = create bounded-buffer (20)

send bb . deposi t (5) # create process to deposit 5

send bb.deposit(3) # create process to deposit 3

call bb. fetch (item) # suspend until item is fetched

write (item)

call bb.deposit(2) # suspend until 2 is deposited

call bb. fetch(item) # suspend until item is fetched

write (item)

destroy bb # destroy bb instance of resource

end initial

end user

When an SR program starts, the default VM is located on the initiating

machine. The main resource is created on the default VM and starts to

execute. The main resource creates other resources which may contain new

processes. The processes then communicate between themselves using the

operation invocation and implementation statements described above.

Together, the SR statements call, send, proc and in implement the following

process interactions:

Invocation Implementation Process Interaction

call

call

send

send

proc

in

proc

in

remote/local procedure call

rendezvous

dynamic process creation

message passing/semaphore

The performance of these communication primitives is described in Appendix A,

and detailed in [ATKI881. More information on the SR language is in fANDR861

and [An01871 .

The V-system supports teams which contain lightweight processes [CHER84].

Each team has its own address space, unshared by any other team. A process

can create another process on the same team but it can not create a process on

another team. It may create a new team with an initial process on either the

same machine or another machine.

The V-system communication is implemented with messages sent between client

and server processes. A client process X sends a message to a server process

Y on either the same team or on another team, when it requires the service

controlled by Y. The client process is suspended until the server process

replies to the message indicating the service has been performed. The above

model is implemented with three system calls: Send, Receive and Reply. The

Send call sends a 32 byte message to the specified process and blocks the

sending process until a Reply is received. The Receive call blocks the

receiving process until a message is received. The Reply from the receiver

sends a message back to the process which is Send-blocked. This model is much

simpler than the UNIX socket model and no initial startup is required.

Once a server has received a Send message from a client, the server may

initiate variable-size message transfers, using the MoveFrom and MoveTo system

calls. The server may copy either to or from the client's address space. The

portion of the address space available to the server is passed to the server

in the initial fixed-size Send message. Since the client is suspended, there

should be no problems with two processes accessing the same memory location.

With this feature V-system ensures that large message transfers are still

efficient. This would not be the case if only fixed-size messages were

implemented. Note that care must be taken if there are other processes

running on the client's team since they are not suspended.

Cheriton explains the reasons for the V-system inter-process communication

(ipc) primitives in [CHER84]. He designed the ipc primitives to "efficiently

support procedural interfaces". In this respect he has certainly succeeded

since V-system is still one of the fastest distributed operating system in

terms of message passing, and the Send primitive can easily be used to

simulate a procedure call. Furthermore, he claims that implementing a

non-blocking Send primitive is unnecessary for two reasons. First, he has

experience with a distributed operating system that implements a non-blocking

Send. He writes "practise showed that during execution, a process typically

suspended execution to wait for a reply immediately after sending a message."

Second, "such concurrency in communication is difficult to use and imposes an

excessively high cost on the implementation", due to the message buffer

management. He prefers to use additional lightweight processes to achieve

concurrency. More detailed information on the V-system is in the manual

[ChLa86 I .

Note that the V-system synchronous, blocking communication primitives contrast

with the SR send invocation which is asynchronous and non-blocking. Our

implementation of the send using V-system communication primitives is

explained in section 5.2.4.

CHAPTER 4

DESIGN ISSUES

4.1 Overview

4.1.1 Introduction

In this chapter, we describe the general design problems that we encountered

in the SR/V RTS design and describe our solutions. The complete description

of the SR/V design is in Appendix B. We have divided the design issues into

three categories: system design, module design and management issues. System

design answers questions to do with the structure of the system. For example,

how do the modules fit together? How is the system divided into modules? On

the other hand, module design answers questions about individual modules. For

example, how does the scheduler module decide which process to execute next?

How does the semaphore module store the data about processes blocked on a

semaphore? Of course, the system design can not be completely separated from

the module design. Often a change in a module design will cause a change in

the system design, and vice versa. Nevertheless, the division between system

and module design provides us with two levels of abstraction, which makes the

entire design easier to understand. Management issues arise because the

project is large, complicated and requires much time and effort to complete.

Management issues deal with questions such as: How large? How complicated?

How much time, and how much effort?

4 . 1 . 2 SR RTS

The SR RTS is responsible for implementing the following SR concepts: VMs,

resources, processes, operation types, and SR call and send invocations. The

SR call and send invocations must be executed either locally or remotely,

depending on the context of the invocation.

Figure 1 shows the SR RunTime System Dependency Diagram with dependencies

between the RTS subsystems. We applied the software engineering techniques

described in section 3.1 and divided the RTS into the six subsystems shown in

Figure 1 (the V-system box is not a part of the RTS): Language (LG) subsystem,

Operating System (0s) subsystem, Machine (MC) subsystem, Data Structure (DS)

subsystem, Generic Lists (GL) subsystem and Utility (UT) subsystem.

We did not implement and test the entire RTS. We wrote a system design and

documented it for the entire RTS. However, we only implemented the Operating

System (0s) level and below. That is all of the RTS, except the Language (LG)

subsystem. The OS level is the most significant part of our design and

required the most design effort. The LG level would require much work to

implement but the design issues are minor. We feel that we have verified our

design and our design approach by implementing the OS level.

4.1.3 Design Goals and Tests

Throughout our design, we have striven to achieve the following goals:

simplicity, security, and portability. The goal of simplicity means we choose

to use standard designs instead of custom, elaborate designs, whenever we can.

We use Hoare's explanation of security in language design [HOA81]. Hoare

suggests that every result and error message must be understandable in terms

of the source code. A secure language, again according to Hoare, means that

it must be "logically impossible" for a program to cause the computer to run

wild at compile-time or run-time. Portability means the language

implementation can be easily changed to run on a different machine and/or a

different operating system. The issue of portability will be dealt with in

the next chapter on Operating Systems.

Figure 1

S R A RTS Dependency Diagram

M E Y

Module A
depends on

Module B

In this chapter, we explain our system design and show what we have done to

make it simpler and more secure. We have used two tests in our attempt to

weed out overly complex and insecure designs.

The first test involves writing. For each module and subsystem, there is a

description. The purpose of the module is described in one sentence and the

internal design is described in one paragraph. Any special provisions for the

module's security are described in further paragraphs. If the module purpose

can not be described in one sentence, then its cohesion is too low. If the

design can not be described in one paragraph then it is too complex and it

should be divided into two or more modules. Several times, we found that the

process of writing brought out new and better designs. Although this test is

not rigorous, in practise it always helps us find errors and improve the

design .

The second test follows the first test. The module or subsystem design

document is submitted to one or two other reviewers who review the documents

for simplicity, security and errors. Any concerns the reviewers have are

passed onto the designer who is responsible for improving the design. This

system seems to work best if the reviewers are the designer's peers; eg. in

this case, the designer's peers are fellow graduate students.

4.2 Application of the Design Techniques

4.2.1 A System Design Problem: Circular Dependencies

A major problem in RTS system design is circular dependencies. Swinehart et

a1 describe circular dependency problems, which he calls "loops" in [SWI861.

The simplest example of a circular dependency is a mutual dependency which

occurs when Subsystem A depends on Subsystem B and Subsystem B depends on A.

There are also indirect circular dependencies with 'larger' circles. There

may be four or five subsystems in the circular dependency, each subsystem

depending on the next subsystem, and the last subsystem depending on the first

subsystem (Eg. A -> B -> C -> D -> A 1 . Circular dependencies may also occur

between modules, in either the mutual or indirect form.

These circular dependencies are a problem for several reasons. First, they

may indicate a mutually recursive procedure call. If this recursion is not

completely understood, it could cause infinite recursion to occur every time

the program is run, or, worse, just under special circumstances! Therefore,

every circular dependency on the dependency diagram must be investigated to

make sure that the design has safeguards against infinite recursion.

The second problem is deadlock due to resource contention. This type of

deadlock occurs in the following scenario. Subsystem A has control of

resource X, and it calls subsystem B. B needs to use X, and attempts to get

control of it, but fails because A already has X. B then waits for the

resource to be released. Unfortunately, it will wait forever, since A is not

going to release the resource until B is finished. A common example of this

scenario occurs in systems which attempt to report an 'out of memory' error

but hang instead. The system hangs because the exception report mechanism

attempts to allocate memory to hold the error message, but is unable to

because the system is already out of memory!

The third problem with circular dependencies occurs during the testi

final system. There are two general strategies that can be applied

testing: top-down testing and bottom-up testing. In the first case,

most module on the dependency diagram is tested first, with all the

ng of the

to this

the top-

lower

level modules stubbed out. Then, one of the immediately lower modules is

tested with the top-most module. The testing continues in this manner, adding

lower-level modules until the entire system is included in the tests. In

bottom-up testing, one of the bottom level modules is tested first, and the

upper modules are added, one at a time, until the entire system is being

tested. In both cases, the testing procedures depend on the assumption that

bugs found during testing are most likely to be caused by the last module

added to the test system. This assumption can enormously simplify and speed-

up the testing process when a large system is being tested.

The problem with circular dependencies is that they do not have a top or a

bottom! Therefore, we can not use the top-down, or bottom-up testing

procedures. We have to develop special testing procedures for the system.

These special procedures will complicate and slow down the testing process.

When bugs are found, they will be more difficult to find because we can not

assume that the original modules in the system have been completely tested.

In general, removing a circular dependency removes any chance of infinite

recursion and simplifies the design. The simpler design avoids some tricky

deadlock errors, and makes the testing simpler and quicker.

4.2.2 Circular Dependency Solutions

Due to all the problems with circular dependencies, much effort was devoted to

removing them from the system design. In this section we describe some of the

original circular dependencies, and the techniques used to remove them.

Figure 2 shows a simplified dependency diagram for an early version of the

SR/V RTS system design before the circular dependencies were removed. Note

the many circular dependencies. This is much more complex than the new SR

RunTime System Dependency Diagram in Figure 1 and the Operating System (0s)

Module Dependency Diagram in Figure 3. Taken together Figure 1 and Figure 3

represent most of the complexity of the latest SR/V design. The major

improvement in the new design is the removal of most of the circular

dependencies.

nodule A

depends on

nodule B

4.2.2.1 Subsystem-Level Modularization

The biggest change to the design occurred when we realized that several of the

circular dependencies were caused by the underlying RTS data structure. For

example, each resource object has a list of processes associated with it, and

each process object has a reference to its resource. In the original design,

the resource module calls the process module to delete all process objects on

a resource object when the resource object is deleted. Similarly, the process

module calls the resource module to remove one process object from the

resource object's list when the process is deleted. Thus we have a circular

dependency!

Figure 4 shows a picture of the circular dependency between the process and

resource modules with the delete procedures and the data structures hidden

inside the modules.

Note that the circular dependency is caused by the circularity in the data

structure. The software engineering principle of information hiding states

that data structures should be hidden inside each module. In the original

design, this principle is followed perfectly. The resource module hides the

resource data structure and the process module hides the process data

structure. Unfortunately, the resource data structure depends on the process

data structure, and the process data structure depends on the resource data

structure. Since each module hides one data structure, the circular

dependency in the data structure causes a circularity in the module

dependency. In particular, a delete operation on either a process or a

resource requires an invocation of an operation from the other module.

Since we could not see an easy way to remove the circularity from the data

structure, we decided to limit the effects of the circularity. Using the

modularization technique, we extracted the data structure access and list

manipulation procedures to another subsystem called the Data Structure (DS)

subsystem. Now, all the circular dependencies caused by the data structure

are isolated to the DS subsystem. Furthermore, these circular dependencies

are all declaration dependencies. Eg. the DS process module depends on the DS

resource module to have a resource object declaration, and the DS resource

module depends on the DS process module to have a process object declaration.

These circular data declaration dependencies are a small problem compared to

the circular procedural dependencies.

Figure 5 shows a picture of the new process and resource modules with the

delete procedures associated with each module.

A.s a side effect of this design decision, we noticed that the DS modules

shared many of the same list operations. So, we created yet another subsystem

called the Generic List (GL) subsystem to hold these list operations. This

modularization reduces the amount of duplicate code and makes the remaining

code easier to read.

4.2.2.2 Layers of Abstraction

Another kind of circular dependency, where one module encompasses different

abstraction layers, can be removed by dividing a module into two layers of

abstraction.

In our case, a circular dependency occurs between the Memory and Semaphore

modules. The Memory module depends on the Semaphore module to provide

semaphores which protect the critical sections in the memory list operations.

The Semaphore module depends on the Memory module to provide memory blocks for

the semaphore data structures. These data structures must be allocated at run

time because the size of the data structure is determined by a run time

parameter. Thus we have a circular dependency: Memory -> Semaphore -> Memory.

This circular dependency is broken by dividing the Memory module into two

smaller modules. The simplest Memory module is called the machine (MC) level

Memory module (MCMM-Memory). It uses the V-system memory management routines

to allocate and free memory. It reports an error if there is any problem, but

it does not keep track of the memory blocks allocated. The more complex

Memory module is called the operating system (0s) level Memory module

(OSMM-Memory). It uses the MCMM-Memory module to allocate and free memory,

and it keeps track of all the memory allocated, with the help of the Semaphore

module. The Semaphore module now depends on MCMM-Memory to allocate and free

semaphore data structures. We now have a linear dependency: OSMM-Memory ->

OSS4-Semaphore -> MCMM-Memory.

This new linear dependency design requires that OSS4-Semaphore keep track of

the memory blocks it allocates. This turns out to be very simple because

OSS4-Semaphore never really frees any memory blocks, it just re-uses them for

other semaphores.

4.2.2.3 Module Splitting

Another kind of circular dependency, where one module performs two or more

functions at the same level, can be removed by splitting a module in half.

From the outside, the original module appeared to represent a well defined,

highly cohesive module. However, after the division, the two new modules were

found to have simpler internal designs and, most important, the circular

dependency is gone.

The circular dependency involves four modules as follows: Network -> Message -

> Semaphore -> Process (Scheduler) -> Network. The Network module is

responsible for processing all requests from other VMs. It uses the Message

module to read the incoming messages. The Message module uses the Semaphore

module to protect the critical sections in the message list operations. The

Semaphore module uses the Process (Scheduler) module to block processes that

have blocked on a semaphore and to awaken processes that are woken by a

semaphore operation. Finally, the Process (Scheduler) module calls the

Network module periodically to read the latest requests from other VMs. This

long chain creates a circular dependency.

In fact, this dependency was not found until we started testing. The system

hung in an infinite loop! The loop occurs as soon as the system runs out of

message blocks. Then the Message module blocks on its message list semaphore,

which causes a context switch. The Scheduler calls the Network module to read

the incoming requests. Network calls the Message module and it blocks on the

message list semaphore, and so on, and so on. . .

The solution to this circular dependency was to divide the Message module into

two modules. The Message-Rx module is responsible for receiving (Rx) messages

and the Message-Tx module is responsible for transmitting (Tx) messages.

Although these two modules depend on each other to share a common message

format and a communication protocal, they do not have any direct procedural

dependencies. In fact, the internal design of either module can be changed

completely without affecting the other module. Therefore, both of the new

modules have high cohesion.

Since the two new modules have no procedural dependencies, they break the

circular dependency. The new linear dependency is OSMT-Message-Tx ->

OSS4-Semaphore -> OSSH-Scheduler -> OSNE-Network -> OSMR-Message-Rx

4.2.2.4 Unresolved Circular Dependencies

There are several circular dependencies that remain in the final RTS design.

We keep these circular dependencies for two reasons. Either they can not be

removed because of the inherent circular dependency between communications and

processes in a distributed system; or, in the case of very small circles, the

effort to remove the circular dependency is more work than the benefit gained.

For each circular dependency, we describe the dependency, why it is not

removed, and what we did to avoid the problems associated with circular

dependencies.

The biggest and most important remaining circular dependency occurs between

the Operating System (O S) , and Language (LG) subsystems, as shown in Figure 1.

The OS subsystem depends on the LG subsystem to execute remote requests

received from other VMs, by the OSNE-Network module. The LG subsystem

contains both the procedures to implement the requests and the processes

(LGPR-Process) which execute the procedures. In turn, the LG subsystem

depends on the OS subsystem for memory management, process pools, free lists,

variable argument lists, semaphores, process scheduling and message

communication. This is a very complicated circular dependency.

We feel the OS - LG circular dependency is rooted in the core design of a

distributed, message-passing system. Such a system is built around the

intertwined concepts of process and message. Some process operations depend

on messages to deliver the operation request, and message receivers depend on

the process operations to execute the operations they receive. Furthermore,

the VM operations and the Resource operations both depend on messages to

deliver their requests and they are invoked by the message receivers.

Therefore, the final design reflects a central problem with the underlying

concept of intertwining the process and message concepts.

We had some trouble debugging this large circular dependency. In the end, we

traced the procedure calls to make sure that there are no procedures which end

up calling themselves. We were able to break this procedure circularity by

making the message receiver create another process to execute the operation.

The process creation was simplified to ensure it could not call the message

receiver. Since the operations are invoked from another process, they can

call whatever they wish, without creating a procedure circularity.

For the testing of the OS procedures, we have written an entire module of

2 8

stubs to replace the LG procedures called from the message receiver. This

extra code is necessary to isolate the OS subsystem during testing.

There are many circular dependencies in the DS subsystem. Figure 6 shows a

picture of the DS dependencies. These are all data type dependencies. They

do not cause any control problems. Each module only depends on the other

modules to supply it with a type declaration name. There is no possibility

for infinite recursion, because there is no executable code in these circular

dependencies. For testing, we must ensure that all these data declarations

compile without error. Then, we must test the modules and subsystems which

use the DS subsystem. Note there is no direct testing of the DS subsystem.

Finally there are two small circular dependencies in the LG subsystem. Figure

7 shows the LG dependencies. The LGIV-Invoke module depends on the

LGCO-Concurrent module to manage concurrent invocations. The LGCO-Concurrent

module depends on the LGIV-Invoke module to prcvide the procedure to create

and initialize an invocation descriptor. There is no possibility for infinite

recursion, and the descriptor creation procedure is easily stubbed out during

testing.

The LGVM-Virtual-Machine module depends on the LGRT-Remote-Tx to deliver

requests to remote machines. The LGRT-Remote-Tx module depends on the

LGVM-Virtual-Machine to retrieve and store information about the remote VM's

communication addresses. Again, there is no possibility for infinite

recursion and the two LGVM procedures are easily stubbed out during testing.

In summary, there are only a few circular dependencies left in the RTS design.

In the worst case, the circular dependency is caused by the interdependency

between messages and processes in this design, which is common to many

distributed systems. In the other cases, the circular dependencies are small,

easily explained, trouble-free and require very little work during testing.

Flgurm 6

Data Structurm8 Ilodulm Dmpmndmncy Diagram

4.3 Subsystem Design Issues

4.3.1 Language (LG) Subsystem Design

The Language (LG) Subsystem provides the functionality for SR Language-

specific concepts, which are too complex to implement with in-line code. For

example, the LG subsystem implements Virtual Machines, Resources, and

Operations. Almost every module in LG implements an SR concept or statement

directly.

The dependencies between LG modules are fairly simple. Most modules only

depend on one or two other LG modules. The two exceptions are LGMN-Main which

calls almost every other module to initialize the RTS, and LGIV-Invoke which

calls several other modules to implement the several different types of

invocation.

The LG dependencies on other Subsystem modules are more complex. The LG

modules only depend on two or three 0s-Operating-System modules, but they

often depend on six or seven DS-Data-Structure modules. The reason for the

large number of DS modules is that the LG modules often must traverse the RTS

data structure to find the information they need. In the course of traversing

the data structure, they use the DS descriptors and data access procedures.

Most LG modules also use several of the MC-Machine modules. Taken

collectively, the LG modules use almost every other module in the RTS. This

is not surprising since LG supplies most of the interface to the Generated

Code (GC), and the rest of the RTS is written to support that interface.

There are two circular dependencies in the LG Dependency Diagram, shown in

Figure 7. Neither of them are cause for concern.

The circular dependency between LGVM-Virtual-Machine and LGRT-Remote-Tx occurs

because the LGVM sr-create and sr-destroy procedures need to do sr-remote

calls, and the LGRT sr-remote procedure needs to call sr-vm-connect in LGVM if

the requested VM's communication address is unknown. Since the sr-vm-connect

procedure does not depend on any other LG modules, there is no possibility of

recursion or deadlock. We will need a stub for sr-vm-connect during the

testing of LGRT-Remote-Tx.

The circular dependency between LGIV-Invoke and LGCO-Concurrent occurs because

the LGIV sr-invoke procedure depends on LGCO to implement concurrent

invocations, and LGCO must sometimes make a copy of an invocation descriptor,

which it does by calling sr-dup-inv in LGIV. The sr-dup-inv procedure has no

dependencies other than the obvious need to use the invocation descriptor.

SR-dup-inv is a simple copy procedure. There is no possibility of recursion

or deadlock. We will need a stub for sr-dup-inv during the testing of

LGCO-Concurrent.

The internal design of some of the LG modules is quite complex. In particular

the LGIV-Invoke and the LGIN-Input-Op modules must distinguish between many

different types of invocations and implement each type as efficiently as

possible. These design issues are described in greater detail in [ANDR86].

4.3.2 Operating System (0.5) Subsystem Design

The OS Subsystem shown in Figure 3 provides the functionality that is normally

associated with an Operating System. For example, it supplies Message

passing, Memory Management, a Network interface, and SR Process Scheduling.

The OS Subsystem is quite complex. There are over a dozen modules and many of

these modules depend on ten or more other modules. To complicate the design

further, this subsystem seems to have a tendency to develop circular

dependencies. Fortunately, we have managed to break most of the circular

dependencies. However, there is one circular dependency left.

The circular dependency that is left is 'caused' by the OSNE-Network module's

dependency on several LG-Language modules. This particular dependency seems

to be unavoidable. Section 4.2.2.4 explains this dependency in greater

detail.

The other modules are fairly simple when regarded in isolation. There are

several different types of Free Lists to manage the lists of descriptors.

There are the 0s-type modules like the Message modules, the OSSH-Scheduler

module, the OSNE-Network module, and OSS4-Semaphore module. There are also

several modules which are peculiar to SR or the V-system implementation. The

OSSX-Srx module is peculiar to SR. It ensures that each VM number is unique.

The OSPL-Pool module is peculiar to the V-system implementation. It supplies

a pool of V-system processes to perform V-system blocking operations.

Although the connections between these modules are complex, each module is

straightforward.

4.3.3 Machine (MC) Subsystem Design

The Machine Subsystem is the lowest level of the RTS. Every other subsystem

in the RTS depends on it, either directly or indirectly. Figure 8 shows the

dependencies.

This subsystem is a mixed collection of modules. There are two main reasons

for including modules in this subsystem. Some modules are included because

they are used by almost every other module in the RTS. Eg. the MCDE-Debug

module. Others are included because they hide machine-specific details. Eg.

the MCPR-Process module. In general, modules are put in this subsystem

because they belong at the bottom of the dependency diagram.

Most of the Machine subsystem design is straightforward. Each of the modules

supplies a few procedures to manipulate their simple module.

Flgure 8

Machine (HC) Module Dependency Diagram

4.3.4 Data Structures (DS) Subsystem Design

In the RTS design, there is one RTS for each Virtual Machine Each RTS

implements a very complicated data structure to keep track of all the SR

entities on its VM, and the relations between those entities. It is the

purpose of the Data Structure Subsystem to implement the entity descriptors

(data types) and supply primitive procedures to allow higher-level modules to

access the data in the descriptors.

In Object-Oriented Programming Systems (OOPS) terminology, each DS module is a

'server' class. Since the DS modules only supply data types and data access

procedures, we call the DS modules data servers. For each data server, there

is one higher-level module in the 0s-Operating-System or LG-Language

subsystems which has the same module name, but a different prefix. We call

the corresponding higher-level module, the function server, because it

implements the corresponding functions. For example, the server class

DSS4-Semaphore module implements the semaphore data type and one data access

procedure: dss4-sem-count. OSS4-Semaphore is the corresponding function

server which implements the standard semaphore functions: create, kill, P, and

v.

The DS-Data-Structures subsystem is designed to let all modules access the RTS

data structure through the interface specified by the module description.

However, the function server for a DS module may manipulate any fields in the

DS module, even those that are 'hidden'. Hidden fields are not specified as

part of the interface. An example of a hidden field is the blocked field in

the semaphore descriptor which is a list of the processes blocked on the

semaphore. The OSS4-Semaphore function server needs to access the blocked

field to implement the P and V operations. The need of the function server

such as OSS4-Semaphore to access the hidden fields of a data server, reflects

the tight relationship between the data server and function server pairs.

Unfortunately, there is no way to document this relationship in the C code

other than to use the same root name on the code files. In an OOPS

programming language, we could reflect this relationship by having the

function server inherit the data server, and redefine the interface.

Much of the complexity of the Data Structure subsystem originates from two

requirements. The SR entities must be created dynamically and the many inter-

entity relationships must be stored in the data structure in order to perform

the operations efficiently. For example, in the case of the resource and

process entities, we have a bidirectional relationship. Each resource may

contain any number of processes, and each process must have an owner resource.

Both relationships must be stored if we are to perform both process and

resource operations efficiently.

To satisfy the dynamic requirements, the RTS implements descriptor records

which exist in main memory. To satisfy the need to keep track of

relationships between entities, each descriptor record contains pointers to

other entities which are related to it. For example, the resource instance

descriptor has a pointer to a list of processes in the resource and the

process descriptor has a pointer to the 'owner' resource of the process.

The DS subsystem is essentially a very primitive DBMS. It is responsible for

storing all the data and data relations necessary for the operation of a VM.

4.3.5 Generic Lists (GL) Subsystem Design

Many of the SR entities are implemented using data structures called

descriptors, eg. the resource and process descriptors. These descriptors are

often stored in linked lists of various types, because of the SR requirement

that the entities be created and destroyed dynamically. Since these list

types have very little to do with the type of descriptor they contain, it is

appropriate that the lists are implemented separately from the SR entities.

For example, the resource descriptor is implemented by the LGRE-Resource

module, but it uses a linked list which is implemented by the GLLL-Linked-List

module. The Generic Lists Subsystem has been created to implement modules for

all the list types required by the RTS.

This subsystem has very few dependencies because it is usually only working

with pointer fields. It initializes pointer fields, and assigns one field to

another. GL-Generic-Lists does depend on MC-Machine for some generic data

type definitions.

All of the instances of Generic Lists (GL) modules are implemented using

standard list manipulation algorithms. Therefore, this section merely

describes some implementation techniques common to all the modules which

affect the design and use of these modules.

Each instance of the Generic Lists (GL) module defines its own data type.

However, this is little more than a syntactic convention. In fact, the

procedures in these modules can work with any C record structure. This works

because C has very loose type checking and all the GL procedures are

implemented as #define statements.

The #define statements are processed by the C preprocessor. In essence, the

GL procedures, implemented by #define statements, are 'invoked' before the

code is compiled. Therefore, they can accept parameters containing C types,

and C field names. These parameters allow the GL procedures to be more

general than if they were implemented with the standard C functions.

Since all the modules in the GL subsystem are working on lists, they tend to

supply very similiar procedures. To make this similiarity explicit, we have

used the following standard procedure names:

create-list - Create a list and initialize it.

is-empty-list - Determine if a list is empty. Return TRUE for

an empty list, and FALSE otherwise.

POP - Remove the node from the front of the list and

3 8

chop

delete

push

append

append-list

insert

return a pointer to it.

- Remove a node from the end of the list and

return a pointer to it.

- Remove the given node from the list. The node

may be anywhere in the list.

- Add a node to the front of the list.

- Add a node to the end of the list.

- Add a new list to the end of the old list.

- Add a node after the given node in the list.

The given node may be anywhere in the list.

Not all of the above procedures are implemented for all of the GL modules.

The GL subsystem could be simplified if it was implemented in a language which

supports generic modules, such as Ada, Miranda, Modula-3, or CLU. Then there

would be no need for #define statements, or the passing of type names and

field names. We would create a list of type X by creating an instance of a

generic list module. The procedures for the list would be defined to work on

the elements of type X. Therefore, they would not require the type names and

field names as parameters.

4.4 Module Design Issues

We now explain the module design issues, module by module. The module designs

use the principles of information hiding, abstraction and modularity. This

allows us to concentrate on the module interfaces and some of the more

interesting implementation details, without having to explain the internal

design of every module. The following descriptions are ordered from top to

bottom of the dependency diagrams:

This module initializes all the modules in the RTS. If this is the first RTs

then it creates the main resource. Otherwise, it just waits for requests from

remote VMs.

This module starts the RTS on each VM. The first RTS is invoked from the

operating system command-line. This initial invocation is the program etartup

which may include program parameters. These parameters are ignored by the RTS

and passed to the SR program. Every subsequent invocation is a VM etartup

which is the result of a VM create statement. In this case, all the

parameters are used for the RTS initialization.

This module implements the Virtual Machine (VM) module. This module supplies

the operations to create and destroy virtual machines. Each virtual machine

has its own memory space, communication address, and RTS. Once a virtual

machine is created, then resource instances may be started on it.

The SR concept of VMs is described further in fANDR861.

4.4.3 Other LG Modules

The remaining LG module interfaces are unchanged from their UNIX

implementation. Some minor, uninteresting changes were made to conform to

changes in the operation of the OS procedures.

4.4.4 Process Modules

(LGPR-Process, OSSH-Scheduler, MCPR-Process, DSPR-Process)

The process modules are layered one on top of each other. Each level depends

on the lower levels, and adds its own level of functionality.

The LGPR-Process module implements SR processes. SR processes are very

lightweight with no time-slicing between processes. This means that an SR

process will monopolize the cpu until it blocks itself. More information

about processes and the standard operations can be found in any operating

systems text.

The OSSH-Scheduler module controls the processor. It assigns the processor to

the ready process which has been waiting the longest.

The MCPR-Process module implements the process module at the machine level.

This includes creating a process context, changing contexts, and context error

checking. These operations can only be done at the machine level because they

manipulate machine registers and the process stack.

The DSPR-Process module implements the data structures and data access

functions for the process data types. These data types support the

implementation of SR processes

4.4.5 OSMT-Message-Tx & OSMR-Message-Rx Modules

The OSMT-Message-Tx module implements the message transmit operations with the

V-system Send operation.

The OSMR-Message-Rx module implements

appropriate V-system operations: Rece

4.4.6 OSPL-Pool

the message receive operations with he

ive, and Reply.

The OSPL-Pool module implements a process pool module. This module is

implemented to accommodate the V-system blocking operations. In the V-system,

if you want to execute a blocking operation without blocking the current

process, then you must put the code for the blocking operation in another

process, called a helper process, and send a message to the helper process.

The message contains the blocking operation code and any parameters required

for the operation.

In the V-system implementation of SR, we follow this V-system model of one

main process, and many helper processes. However, the main process is also

receiving messages from other VMs as well as the helper processes. Plus,

there are different types of helper processes. There are helper processes to

perform I0 operations, processes for Message operations, and processes for VM

operations.

This module simplifies the implementation by containing all the code to create

a V-system process pool, report process pool errors, and synchronize with the

other in-coming messages.

This module supplies the operations to communicate with process pools, and the

operations used to implement the process pools.

The OSNE-Network module implements a network interface. This module is

responsible for receiving all messages from the network and calling the

appropriate module to perform the requested operations.

This module is a 'design problem'. It is called from the OSSH-Scheduler

module, which is in the middle of the OS Dependency Diagram, but it calls

several of the LG-Language modules, which depend on the OS subsystem.

Unfortunately, there does not seem to be any way to avoid this circular

dependency.

This circular dependency is unavoidable because OSNE must be called from

OSSH-Scheduler and it must call the LG modules. Before we go any further, we

will explain why the OSSH-Scheduler must call OSNE and why OSNE must call the

LG modules.

The OSSH-Scheduler module is responsible for scheduling tasks. Since the OSNE

module must periodically check for messages on the network, OSSH-Scheduler is

responsible for scheduling OSNE periodically. Therefore, OSSH-Scheduler must

call OSNE-Network.

The OSNE module must call the LG-Language modules because OSNE is responsible

for ensuring the operations requested by the in-coming messages are executed.

Unfortunately, all these operations are implemented in the LG-Language

subsystem. Therefore, OSNE must call the LG-Language modules.

Fortunately, the circular dependency is not as serious as it appears. OSNE

spawns SR processes to perform most of the message operations. Therefore,

very little of the LG-Language code is actually executed when OSNE calls the

LG-Language modules. Furthermore, the code that is executed never calls OSNE

either directly or indirectly. Therefore, we do not have to worry about

infinite recursion.

However, this dependency does make testing more difficult. OSNE can not be

completely tested until the LG-Language subsystem is working, but it must be

working in order to test the OS-Operating-System subsystem. We suggest that a

special test program with stubbed procedures be set up to test the

OSNE-Network module by itself. Then it can be used with confidence in the

0s-Operating-System tests.

The OSSX-Srx module is responsible for supplying a unique VM number for each

new VM.

Currently this module is implemented as a separate V-system process. This

implementation affects the interface. This module is initialized by starting

the process rather than by calling a procedure, and operations are 'called' by

sending messages to the process. Therefore, some of the 'procedures' listed

in the Invocation Interface have the word 'Message' appended to indicate they

are really messages, not procedures.

The OSGP-Group module implements the messages to process groups. There is a

very close dependency on the VM data structures because the VM modules are the

only modules that use process groups.

4.5 Management Issues

Management issues appear in large projects such as this SR RTS implementation.

When systems become this large it is difficult to measure the size of the

system, and thus to estimate how much time and effort is required. If we

can't measure the size of the system how do we know if it will take one year

or five years to complete? Without any estimate of the time required, how can

we tell if we will ever finish? Estimating the size of a large system is

necessary to ensure successful completion.

The module interface documents supply us with the raw data necessary to

estimate the size of the system. We now have several methods to develop

accurate estimates of the system size, complexity, and time and effort needed

to complete it. Each of these methods will be more accurate than estimates

made without the benefit of the module interface documents, because these

methods are based on a better understanding of the system.

An informal method of estimating is to study each module interface, and, based

on our experience, estimate the lines of code necessary to implement the

module. This becomes our estimate of module complexity. Based on the

complexity, we can estimate the time to code and test this module. The system

size is equal to the sum of the lines of code for each module. The total time

to implement is equal to the sum of the time needed for each module.

A more formal method of estimating involves measuring the complexity of the

module interface and the module dependencies. The module interface complexity

is measured by counting the number of procedures, procedure parameters, data

types, and data items in the interface. The module dependency complexity is

measured by counting the same items In the module's dependency list. Based on

these numbers, a measure of complexity is calculated. This complexity

measurement can then be used to estimate the system size and implementation

time .

For example, Henry and Selig [HeSegO] present a metric of design complexity

called information flow. They tested the information flow metric on the

documented design and implementation of projects created by University

students in a Software Engineering class. Their results indicate that the

information flow metric is a good predictor of a project's size and

complexity.

With either the informal or the formal method, experience will lead to better

estimates. For example, the first module implemented usually takes much

longer to implement than estimated. However, now that we have measurements of

the module's complexity, we have a chance to improve our estimates for the

remaining modules. To determine the problem with the first module's estimate

we must re-evaluate the module's complexity. Is it more complex than

originally designed? Have more procedures, parameters, types and data items

been added to the interface or the dependency list? If so, then the original

estimate is not wrong; the original design is wrong. In this case, we should

re-examine the remaining module designs to see if they too will have to be

changed. If the module's complexity has not changed from the original design,

then the estimate is wrong. In this case, we should change the estimates for

all the remaining modules. In either case, we will quickly gain better

measurements of system complexity and thus better estimates of time and effort

required.

In general, the module interface documents help us to understand the system

4 5

better, make better system design decisions, better module design decisions,

and manage the project better. However, it does require that we think

carefully about our design before we code it, and it requires that we document

the design before we code it!

CHAPTER 5

OPERATING SYSTEM SUBSYSTEM DESIGN

5.1 Introduction

This chapter discusses the Operating System (0s) subsystem design shown in

Figure 3. The discussion is devoted mainly to our implementation of the OS

subsystem on V-system. However, we attempt to generalize the issues and

the

iscuss

solutions to all applications or operating systems. We first d

major design decisions in the design of the OS subsystem. Then

the remaining problems and suggested solutions.

iscuss

, we d

5.2 Design Decisions

This section describes the mapping of SR entities onto the Operating System

concepts. The most important mappings are the VM, process, input/output and

communication mappings. Section 3.2 explains these SR entities in greater

detail.

5.2.1 SR VM (Virtual Machine) Mapping

The V-system implementation of VMs is similiar to the UNIX implementation. In

the UNIX implementation, each VM maps to one UNIX process. On the V-system

(abbreviated as V), each VM maps to a V team. This means communication

between all VMs is identical even if the VMs are on the same physical machine,

because V hides the physical location of the teams.

Communication would be faster for VMs on the same machine, if we had all VMs

on the same machine in the same V team, but we feel this would greatly

complicate communication for a relatively small increase in the overall speed

of the SR program. If the programmer wants to increase the speed of his

program, he can reduce the number of VMs, so there is only one VM per physical

machine.

5.2.2 SR Process Mapping

Within the VM team, there is one TJ process which controls all the S R processes

and the context switching between them. This is the same design as the UNIX

implementation. We choose to map all SR processes within a VM to one V

process, because it is faster than the V process management. In particular we

are concerned with the time to perform a context switch. The RTS

implementation of context switching is faster than the V context switching.

Within both a V-system team and an SR T I M , a context switch occurs when a

process voluntarily blocks itself, usually on a communication request. The

V-system communication primitives are synchronous Send(), Receive(), and

Reply(), as described in 3.3. The SR communication statements are call, send,

proc, and in, as described in 3.2.

To compare the SR context switch with the V-system context switch, we

estimated the performance of each SR communication pair in the two

implementations. Appendix A has a complete description of the performance

estimates and the method of estimating. Our main finding is that

communication using SR process managment is faster between two resources in

the same VM, but slower between two resources in different W s on different

machines. The following table shows, for each SR communication pair, the

estimated performance using SR process management, and the estimated

performance using V-system process management, for both local and remote

communication:

send-proc

send-in

call -proc

call-in

Estimated Performance (context sw + overhead)

LOCAL REMOTE

(different machines)

SR process V process SR process V process

There is a tradeoff between SR process management and V-system process

management as SR has faster local communication and V-system has faster remote

communication. We decided on fast local communication, because we believe

there is much more local communication in most programs than remote

communication. In fact, based on the above estimates, a program using SR

process management will be faster than one using V-system process management

unless there are 15 times more remote communications than local

communications.

An implication of the decision to put all the SR processes into one V process

is that we can never invoke a blocking V-system call from this V process. If

we did, then all the SR processes on the VM would also be blocked. Instead,

we create a pool of V helper processes which perform all the blocking V-system

calls. Any SR code which requests a blocking operation is translated into a

request to the appropriate V helper process. The V helper process executes

the blocking operation, and blocks waiting for the operation to finish. When

the blocking operation is finished, the helper process informs the main V

process. Meanwhile, the main V process is free to continue executing other SR

processes.

The input-output (10) operations are affected by this decision to use V helper

processes. All 10 operations are blocking operations and therefore must use

the pool of V helper processes. In addition, the I0 data structures in the

V-system are quite different from the UNIX I0 data structures, because of

their use of the V-system's message-based kernel. Therefore, all the SR 10

functions in the V-system implementation are different from the UNIX

implementation.

5 . 2 . 4 SR Communication Mapping

Communication between resources on the same VM remains the same as in the UNIX

implementation of SR, since resources are implemented the same as in the UNIX

implementation. All communication is accomplished through operation

invocation and operation implementation. Invocations of operations

implemented within the VM are optimized to avoid the use of the slow inter-

team communication facilities. Invocations between VMs must use V-system

primitives because they are the only means of communication between teams in

the V-system.

There are two major problems with communication between resources on different

VMs. First, there is the need to avoid blocking 'J calls from the main V

process, as described in 5.2.3. To solve this problem, each VM maintains a

pool of V processes called invoke processes which execute the Send primitives,

and one V process called the receive process which executes the Receive

primitive to receive messages from other VMs. Second, V-system communication

is done through synchronous, blocking Send messages, but the SR send

invocation is asynchronous and non-blocking. To implement the send

invocation, we use an invoke process to send the message to the remove VM.

When the receiver process receives a send invocation, it creates an SR process

to perform the operation, and immediately replies to the invocation so that

the invoker is only blocked as long as it takes to ensure the invocation is

started.

5.3 Remaining Problems

5.3.1 The Need for Distributed Data Structures

In SR, executing a locate statement associates a machine number with the

system-defined machine name (p 2 4 of Andr87). This machine number can then be

used anywhere else in the code to specify the location of a new VM.

The SR language stores the following information about each physical machine

in use by the SR program: machine identifier, name, and communication address.

This information is needed to create a VM on the machine. Since VMs may be

created from any existing VM, this information must be available to all VMs.

This creates the need for a data structure shared between VMs on separate

machines. In other words, we need a shared data structure. This can be

implemented in two ways: a centralized server process which manages the data

structure, or a distributed data structure which is updated using a

distributed transaction manager.

The problem with the current implementation is that it uses a central server

process to store the physical machine information. This central process is

vulnerable to processor failure. If the processor it is running on crashes,

or becomes separated from the network, the process and all the machine

information is lost. The rest of the SR program wi.11 fail if it requires

access to that information. Since this design is part of the SR RTS, the SR

programmer can do very little to protect himself from processor failure. This

is a great weakness in a distributed programming language. One of the great

advantages of distributed programs is their ability to survive processor

crashes, but, in this case, the implementation used to achieve the

distribution advantages is itself vulnerable to processor crashes!

A distributed transaction manager design [CER84] would be better than the

current design. In a distributed design, we could store the machine

information in every VM. Then, whenever a locate statement is executed, we

could broadcast the information to every VM. Since every locate statement

adds information to the data structure, the distributed transaction management

can be very simple.

However, the SR language does require that an unique machine number be

assigned to each machine. Currently these numbers are assigned in sequential

order. In a distributed design, the machine numbers could be mapped to the

machine's network address which is guaranteed to be unique, but unlikely to be

sequential.

The distributed transaction manager design may be more work to implement but

we believe it is required if SR programs are to exploit all the advantages of

a network.

5.3.2 Time-Slicing

The lack of time-slicing in the SR RTS implementation is a serious problem.

Without time-slicing, we can not take full advantage of the concurrency

offered by a network of processors. The RTS design can be optimized to

improve the amount of concurrency but without time-slicing there will always

be problems of one SR process hogging the processor on machine A, while other

processors go idle waiting for information from other processes on machine A.

Without time-slicing, the SR program designer trying to design concurrency

into her program will have to understand the SR RTS before she can achieve her

goals.

In the current RTS implementation, the slow down occurs when one VM makes a

series of remote requests to other VMs, which are blocked waiting for

requests :

The main V process sends request messages to remote teams.

- these requests are translated into V Replys to helper processes.

The main V process on the local team continues to execute until it

blocks itself.

Now, and only now, are the V helper processes able to execute and send

their messages to other V teams.

The requests are executed on the other V teams.

When the reply messages are sent back to the helper processes, the

messages will not be processed until the main V process blocks itself

again.

The reply messages are processed by the helper process, and sent back to

the main V process.

The main V process will not receive the message until it blocks itself,

yet again.

The overall effect is that there are many places here a remote request

message may be delayed. Each of these delays reduces the concurrency of the

program, and thus the speed of program execution.

Without time-slicing or interrupts, it is impossible to ensure prompt service

of the messages, and impossible to guarantee the concurrency which gives us

the speed advantage of distributed programs. Unfortunately, time-slicing is a

complex concept to implement and imposes a high performance penalty.

We do not see any great solution to this dilemma. We do believe that time-

slicing or some such processor sharing scheme is needed in order to take full

advantage of concurrency.

5.4 Environment Issues

5 . 4 . 1 V-system communication primitives

The V-system communication primitives have a very important influence on our

SR RTS design. (section 3.3 has a description of these primitives.) They are

the moti

simpler

(Append i

vation for implementing SR on the V-system. They are much faster and

than the socket mechanism used in the UNIX operating system.

x A gives the precise performance figures.)

However, there are a few disadvantages to using the V communication

primitives. They are not quite as simple as they first appear, and there are

circumstances where we do not get the speed increase that we expect.

The V communication primitives can be complicated to use since there are

several variations on the basic Send, Receive, Reply primitives. The SR RTS

must be able to send a message of any size. This requirement is not

efficiently supported on the V-system. If the program is to get the full

advantage of V message speed then the V programmer must write his own

functions to determine, based on the size of the message, which communication

primitive is most appropriate. We believe this function should be implemented

in the V-system library since it is useful in many applications.

Since the Send and Receive primitives are synchronous, the asynchronous

communications are difficult to implement and they are a slow. Any program

which does asynchronous communication must either create a helper process for

every async message, or, as we do in our implementation, keep a pool of helper

processes to perform all the message communication with other V teams. This

adds a level of complexity to all inter-team communication. It also adds a

small amount to the communication time since there is an extra intra-team pair

of messages between the main V process and the helper V process. There may be

a further decrease in the real communication time. In our implementation, a

message can not be sent until there is a helper process available. If the

system is busy and all the helper processes are busy then a message will be

blocked until a helper process becomes available.

As usual in a message-based operating system, the V-system process concept is

closely tied to the communication concept. In V-system, these two concepts

work together to make the message communication very fast.

5.4.2 V-system and SR Missing Information

In porting the RTS from UNIX to V-system, we ran into many small problems. We

believe these problems to be symptomatic of the current UNIX environment.

There are many systems with UNIX-like interfaces which, although similiar, are

not quite the same. System developers never find all the these small

differences until they reach the implementation stage.

Here we give an indication of the annoying 'small.' differences between the SUN

UNIX system and the V-system. The V-system requires a blank space between

every operand and operator on the command line, which is not required in the

SUN UNIX system. Eg. the command

copy file1 file2 >file3

is invalid on the V-system because there is no space between the ' > ' operator

and the file3 operand.

The V-system also requires a blank line at the end of .h include file. If the

blank line is not there, the C compiler will issue typical uncomprehensible C

error messages.

Although these problems may sound trivial and inconsequential, each

occurrence of one of these problems may take hours, and sometimes days to fix.

The only solution is to continue the drive toward standards, and document the

idiosyncrasies of the new systems we build. At least that will allow future

implementors to find the problems faster. With the current systems which

skimp on the documentation of details, the only way to solve problems is by

trial and error, or appeal to a guru.

5.5 Summary - Minimal Operating System Requirements

In porting the SR RTS from UNIX to V-system, we have seen that the operating

system (0s) has a major effect on the design of a distributed language RTS.

However, despite wide differences between OSs, the OS pecularities can still

be hidden in a few key modules of the RTS: Process, Communication, Memory, and

Input/Output.

Despite our ability to hide OS pecularities, there is still a list of OS

requirements that the RTS depends on in order to implement the SR language

These requirements and some desirable OS features are summarized in the

following list:

For Processes:

- create process

- delete process

- fast context switching

- Desirable: time slicing. This feature would improve the level of

concurrency in an SR program.

Communication

- send and receive variable size messages

- Desirable: asynchronous messages. This feature would make the

implementation easier.

Memory Management

- standard, variable-size memory allocation and deallocation

- Desirable: multiple processes in one address space. This feature

makes implementation easier if the OS uses synchronous communication, as

V-system does.

Input/Output

- input and output operat

standard error, and files

ions to standard input, standard output,

Machine Addresses

- Machine names. This feature is necessary for the implementation of

the SR locate statement.

- Desirable: unique machine address numbers. This feature would ease

the implementation of a distributed, shared data structure.

CHAPTER 6

CONCLUSION

This thesis describes and documents the application of software engineering

techniques to the design of a distributed programming language. We found the

concepts of modularization and abstraction to be very useful in the design of

the system, and the dependency diagrams are a wonderful aid to documenting and

understanding the system design. With the aid of the software engineering

techniques, we were able to identify our most serious system design problem -
circular dependencies - and reduce both the extent and the danger of this

problem.

The modularization and abstraction of Run Time System concepts helped make the

design issues explicit. It led to the recognition of a simple Data Base

Management System (Data Structure Subsystem) and Operating System (Operating

System Subsystem), among other systems, embedded in the Run Time System.

Having recognized these subsystems, we have simplified our work. We can now

understand the system better by examining it at the different layers of

complexity: system level, subsystem level, and module level. At each level

there is less complexity than if all the details were presented in one

document (Eg. the code).

The isolation of the Operating System Subsystem also led to an improvement in

portability. We identified a list of operating system features which are

required for the porting of SR, and we have isolated these features to the

Operating System Subsystem. The list of required operating system features

f 01 lows :

Process features

- creation, deletion, and fast context switching.

Communication

- send and receive message operations.

Memory Management

- variable-size memory allocation and deallocation

Input/Output

- C-type input and output operations to standard input, standard

output, standard error and files.

Machine Addresses

- Unique machine names.

In summary, the use of software engineering techniques in the design of the SR

Run Time System has simplified the system and improved the portability.

BIBLIOGRAPHY

G. Almes, "The Impact of Language and System on Remote Procedure
Call DesignH, TR 85-26, Dept. of Computer Science, Rice
University, Houston, Texas, October, 1985.

G. Andrews, et al, "An Overview of the SR Language and
Implementation", TR 86-6c, Dept of Computer Science, U. of
Arizona, Tucson, October 1987.

G. Andrews, R Olsson, "Revised Report on the SR Programming
Language", TR 87-27, Dept of Computer Science, U. of Arizona,
November 1987.

S. Atkins, R. Olsson, "Performance of multitasking and
synchronisation mechanisms", Software Practise and Experience, Vol
18(9), Sept 1988: 880-895.

S. Ceri, G. Pelagatti, Distributed Databases: Principles &
Systems, McGraw-Hill, New York, NY.

D. Cheriton, "The V Kernel: A Software Base for Distributed
Systems", IEEE Software, April 1984: 19-42.

D. Cheriton, K. Lantz, V Svstem 6.0 Reference Manual, Depts. of
Computer Science and Electrical Engineering, Stanford U.,
California, June 1986.

T. DeMarco, Controllinq Software Projects, Yourdon Press (New
York) , 1982.

E.W. Dijkstra, "The Structure of the THE Multiprogramming System,"
Comm ACM, ll(5), May 1968: 341-346.

C. Finley, "A Multiprocessor SR Implementation", CSE-89-6, Div of
Computer Science, U. of California, Davis, March, 1989.

S. Henry, C. Selig, "Predicting Source-Code Complexity at the
Design Stage", IEEE Software, March 1990: 36-44.

C.A.R. Hoare, "The Emperor's Old Clothes", Comm ACM, 24(2): 75-83.

Klaus-Peter Lohr, Joachim Muller, Lutz Nentwig, "DAPHNE - Support
for Distributed Applications Programming in Heterogeneous Computer
Networksn, Proc. Int. Conf. on Distributed Computing Systems (June
1988) : 63-71.

T. Newton, "An Implementation of Ada Tasking", CMU-CS-87-169,
Carnegie Mellon U., October, 1987.

D. Swinehart, P. Zellweger, R. Beach, "A Structural View of the
Cedar Programming Environment", ACM TOPLAS, 8(4) : 419-490.

APPENDIX A:

SR COMMVNICATION PERFORMANCE

TO estimate the performance of SR communication pairs on the V-system, we

measured the performance of communication pairs on the current UNIX

implementation of SR, and we measured the performance of V-system processes.

Since the UNIX implementation performs its own process management, and it uses

only the malloc system call, we believe it leads to an accurate estimation of

the performance of SR process management on the V-system.

The performance figures are used to estimate the performance of SR

communication using V-system process management, versus the performance using

SR process management, for both the local and remote cases.

The first section describes the SR performance tests, and the UNIX

implementation results for local communication. The second section describes

the V-system performance tests, and the results for both local and remote

communication. The third section compares the local communication performance

of an SR implementation using V processes, with the SR UNIX implementation

using SR process management. The fourth section estimates the SR remote

communication performance using V-system process management and using SR

process management.

All the performance tests are performed on SUN-2 workstations on an Ethernet

lOMbit Local Area Network.

1)SR Process Performance Tests

The tests in this section are based on the tests in the paper "Performance of

Multi-tasking and Synchronisation Mechanisms" by M. Stella Atkins and Ronald

A. Olsson, which appeared in Software Practice and Experience, 1988.

In the following discussion, the name of the program denotes the time to

execute the program. For instance, the sisema program executes 1 ,000 ,000

iterations of the two semaphore operations, P and V, in 71.8 seconds.

Therefore, we can say sisema = 71.8 sec. On the other hand, the word 'semal

is used to indicate the performance of one semaphore operation. So, we say

sema = 0.0718 ms.

The following list describes the performance terms:

sisema: time of 1,000,000 pair of P and V operations.

sema: time of 1 pair of P and V ops without context switch.

semaCS : time of context switch associated with sema.

mesg: time of 1 send-in operation without context switch.

mesgCS : time of context switch associated with mesg.

b3 : time of 100,000 sema, 500 mesg, 500 mesgCS, 500 semaCS, and

b3overhd.

b3overhd: overhead associated with starting and terminating b3.

b4 : time of 500 sema, 100,000 mesg, 500 mesgCS, 500 semaCS, and

b4overhd.

b4overhd: overhead associated with starting and terminating b4.

semswitch: time of 200,000 sema and their context switches.

msgswitch: time of 200,000 mesg and their context switches.

cirndz : time of 100,000 call-in ops, with context switch

rndz: time of 1 call-in op, with context switch.

rndzCS : time of 1 context switch associated with rndz.

a5 : time of 100,000 send-proc and sema ops

creat : time of 1 send-proc op.

cpprcdl : time of 1,000,000 call-proc ops within a resource.

prcdl : time of 1 call-proc op within a resource.

cpprcd2 : time of 100,000 call-proc ops between resources.

prcd2 : time of 1 call-proc op between resources.

overhdlM: overhead associated with 1,000,000 iterations.

overhd100k: overhead associated with 100,000 iterations.

The performance results and calculated statistics follow:

s isema = 7 1.8 sec

=> sema = 0.072 ms

b3 = 100,000 sema + 500 mesg + 500 mesgCS + 500 semaCS + b3overhd b4 = 500

sema + 100,000 mesg + 500 mesgCS + 500 sernaCS + b4overhd b3 = 10.2 sec

b4 = 144.5 sec

b3overhd = 3.1 sec

b4overhd = 3.8 sec

=> (b4-b4overhd) - (b3-b3overhd) = -99,500 sema + 99,500 mesg

=> mesg = 1.41 ms

rnsgswitch = 200,000 mesg + 200,000 rnesgCS

msgswitch = 312.1 sec

=> mesgCS = 0.15 ms

semswitch = 200,000 sema + 200,000 semaCS

semswitch = 57.7 sec

=> semaCS = 0.22 ms

overhdlM = 1 sec

overhdlOOk = 1 sec

cirndz = 186.0 sec - overhdl00k = 185.0 sec

=> rndz = 1.85 ms

rndz = rndzCS + mesg + mesgCS

a5 = 100,000 creat + 100,000 sema + 100,000 semaCS + overhdlO0k a5 = 184.4 set

=7 creat = 1.54 ms

cpprcdl = 1,000,000 prcdl + overhdlM

cpprcdl = 44.6 sec

=> prcdl = 0.043 ms

cpprcd2 = 100,000 prcd2 + overhdlOOk

cpprcd2 = 112.4 sec

=> prcd2 = 1 .ll ms

2 V-system Process Performance Tests

This section describes three tests: local and remote Send-Receive-Reply

communication, and V process creation. The Send-Receive-Reply tests are

performed using the V-system utility timeipc. The V process creation test is

performed by our own program.

Send-Receive-Reply V process

Local Remote creation

* This figure is the fastest, consistently reproducible performance

measurement. It is difficult to get an accurate measurement because of the

limited number of processes the test creates.

3 Local Communication Performance

This section estimates the local communication performance using SR process

management and using V-system process management. For SR process management,

we estimate the local communication will be the same as the UNIX

implementation, because the UNIX implementation of local communication uses

only one system call, malloc.

For V-system process management, all communication between processes must be

done using !]-system calls. Therefore, for the SR send-proc operation, which

creates a new process, we must use the V-system calls, Create and Ready. For

the send-in and call-in operations which communicate between existing

processes, we must use the V-system calls, Send, Receive, and Reply, to

implement the context switch. The overhead, which determines the V-process a

send is sending to, is added to the cost of the V-system calls. For the

call-proc operation, we can use the same optimizations as the UNIX

implementation since the proc is not in a separate V process. However, the

send-in semaphore optimization between processes can not be done using V

processes. Instead, they are implemented the same as the send-in message.

SR communic. V implement. Performance (context sw + overhead)

SR Process V Process

send-proc

send- in

(message)

send-in

(semaphore)

call-proc

call-in

Create-Ready

Send-Receive-

Reply

Send-Receive-

Reply

C procedure

call

Send-Receive-

Reply

1.11

(same as UNIX)

4 Remote Communication

This section estimates the SR remote communication performance using SR

process management and using V-system process management. For each method, we

first calculate the basic cost of the remote communication, which depends on

the V-system calls. Then, we calculate the cost of each SR operation by

adding the overhead associated with the operation to the basic cost of remote

communication.

Using SR process management, a remote request message is implemented by the

following steps:

1) notify a V invoke process of the request, and block invoking SR

process (local Send-Receive-Reply).

2) If there are no more SR processes on the ready queue, then the main V

process sleeps (Delay).

3) V invoke process executes the V-system Send call, which blocks the

invoke process (remote Send).

4) request is received at the remote VM by the VM's receive process

(remote Receive).

5) receive process creates an SR process to execute the request, and

blocks itself on a Receive (SR process creation).

6) remote SR process executes the request, Replys to the request and

kills itself (remote Reply).

7) invoke process is unblocked by Reply. It unblocks the invoking SR

process and blocks itself (local Receive for next request).

8) SR process continues execution.

In addition to the above process handling, there is some SR overhead required

to determine which SR process should receive the request. This overhead

depends on the SR communication operation.

The total time required for this remote request is:

local Send-Receive-Reply (1.14 ms) +

Delay (0.05 ms) +

remote Send (5.11 ms) +

remote Receive (included in remote Send time) +

SR process creation (1.54 ms) +

remote Reply (included in remote Send time) +

SR overhead

.

total 7.84 ms + SR overhead

Using V-system process management, a remote request message is implemented by

the following steps:

remote Send-Receive (5.11 ms) +

Reply to V pool process (1.14 ms) +

remote Reply (included in Send-Receive time) +

SR overhead

total 6.25 ms + SR overhead

Combining the SR performance figures (not including context switch times) and

remote request times, we obtain the following estimated performance times for

the SR communication pairs:

S R SR process V process

Overhead Mesq Time Total Mess Time Total

send-proc 1.54 ms 7.89 ms 9.43 ms 6.25 ms 7.79 ms

send-in 1.41 7.89 9.30 6.25 7.66

call-proc 1.11 7.89 9.00 6.25 7.36

call-in 1.41 7.89 9.30 6.25 7.66

APPENDIX B:

SR on V-System SYSTEM DESIGN

SR RUN TIME SYSTEM (RTS) DESIGN

Function of the RTS

The SR compiler/linker compiles SR resources into object code and

links the object code together with the SR ~ u n - ~ i m e System (RTS)

to form SR executable programs.

The Run-Time System (RTS) contains all the data structures and

operations to support the dynamic creation of SR entities, the

deletion of entities, and the various operations on these

entities. The SR entities include Virtual Machines (VMs),

resources, processes, operations, semaphores, and messages.

Since these entities are created, deleted and operated on during

run-time, SR must supply an RTS.

RTS Documentation

We call this document the Design Document. It describes the re-

design of the SR RTS into an Object-Oriented (00) design suitable

for porting to the V-system. The major differences between the

previous UNIX design and the 00, V-system design are due to the

Object-Oriented nature of the design. The changes due to the V-

system are contained within modules.

The design document is broken into the following sections: RTS

introduction (this section), Dependency Diagrams, and Abstract

Data Types (modules). The modules are grouped into five

subsystems: Machine, Generic Lists, Data Structures, Operating

System, and Language. Each module describes the data structure

and the operations for an SR entity, or an RTS data type which is

used to implement an SR entity. Also, each module identifies the

C or Assembler code files which implement the module. When the

modules are implemented, they form the entire RTS.

The module breakdown was chosen for several reasons:

It allows the designer and reviewer to understand small

portions of the RTS design without having to understand the

entire RTS system.

It allows design changes to be accomplished relatively easily,

because it tells the designer where the code that implements each

SR entity is located. For example, in the current RTS design,

semaphores are implemented by RTS code. If we decided to change

that design to use semaphores that are implemented by the

operating system, then, by inspecting the design document, we

would find that semaphores are implemented by the OSS4-Semaphore

module in the Operating System subsystem. Furthermore, that

module is implemented in the OSS4- semaphore.^, and the

OSS4-Semaph0re.h files. Now, all we have to do is rewrite those

files to use the operating system semaphores. The design

document has allowed us to quickly locate the semaphore code

without having to understand the entire RTS.
i

to one module into that module's implementation files. Any other

code that uses that module must then call the operations of that

module. This results in less coding and testing because each

portion of code is only written once. For example, single linked

lists are used in many different places in the RTS code.

However, the code to implement these lists is written once, in

the Generic Lists subsystem, GLLL-Linked-List module. Every

other module which uses a linked list, calls the appropriate

procedures in the GLLL-Linked-List module, thereby reducing the

total code in the RTS. Furthermore, if during testing, we find a

mistake in the linked list implementation, we only have to fix it

once, and we only have to test it once to make sure the mistake

is fixed. We do not have to re-test the linked list for

resources, the linked list for processes, the linked list for

memory blocks, etc. In other words, the subsystem/module

breakdown puts the design effort into creating good modules,

which results in good design. The simpler design simplifies the

implementation and testing.

The RTS documentation is divided into subsystems and modules in

order to help reviewers understand the design. The simpler

design that results reduces the amount of coding and thus the

amount of testing. We will now describe the RTS design in

detail.

Dependency Diaqrams and circular Dependencies

A key tool in understanding the RTS design is the dependency

diagram. This diagram is used to show the dependencies between

subsystems. We define depend by saying that subsystem A depends

on subsystem B if A uses a procedure, a data type, or anything

which is implemented in subsystem B. The dependency diagram for

the A and B subsystems is drawn below:

A major problem in the RTS design is circular dependencies. The

simplest example of a circular dependency occurs when Subsystem A

depends on Subsystem B and Subsystem B depends on A. There are

also circular dependencies with 'larger' circles. That is there

may be four or five subsystems in the circular dependency, each

subsystem depending on the next subsystem, and the last subsystem

depending on the first subsystem. (Eg. A -> B -> C -> D -> A)

These circular dependencies are a problem for several reasons.

First, they may indicate a mutually recursive procedure call. If

7 5

this recursion is not completely understood, it could possibly

cause infinite recursion to occur every time the program is run,

or, worse, just under special circumstances! Therefore, every

circular dependency on the dependency diagram must be

investigated to make sure that the design has safeguards against

infinite recursion.

The second problem is deadlock due to resource contention. This

type of deadlock occurs in the following scenario. Subsystem A

has control of resource X, and it calls subsystem B. B attempts

to get control of resource X, but fails because A already has X.

B then waits for the resource to be released. Unfortunately, it

will wait forever, since A is not going to release the resource

until B is finished. The most common example of this scenario

occurs in systems which attempt to report an 'out of memory'

error but hang instead. The system hangs because the exception

report mechanism attempts to allocate memory to hold the error

message, but is unable to because the system is already out of

memory !

The third problem with circular dependencies occurs during the

testing of the final system. There are two general strategies

that can be applied to this testing: top-down testing and bottom-

up testing. In the first case, the top-most module on the

dependency diagram is tested first, with all the lower level

modules stubbed out. Then, one of the lower modules is tested

with the top-most module. The testing continues in this manner,

adding lower-level modules until the entire system is included in

7 6

the tests. In bottom-up testing, one of the bottom level modules

is tested first, and the upper modules are added, one at a time,

until the entire system is being tested. In both cases, the

testing procedures depend on the assumption that bugs found

during testing are most likely to be caused by the last module

added to the test system. This assumption can enormously

simplify and speed-up the testing process when a large system is

being tested.

The problem with circular dependencies is that they do not have a

top or a bottom! Therefore, we can not use the top-down, or

bottom-up testing procedures. We have to develop special testing

procedures for the system. These special procedures will

complicate and slow down the testing process. When bugs are

found, they will be more difficult to find because we can not

assume that the original modules in the system have been

completely tested.

In general, removing a circular dependency removes any chance of

infinite recursion and simplifies the design. The simpler design

avoids some tricky deadlock errors, and makes the testing simpler

and quicker.

Naminq Standards

We have followed a few simple rules in abbreviating the subsystem

and module names. The abbreviation for each subsystem is two

letters long. When naming the subsystem, it is common to prefix

7 7

the name of the subsystem with its abbreviation. For example,

the Operating System subsystem's abbreviation is 0s. It is often

referred to as 0s-Operating-System.

The abbreviation for each module name is also two letters long

but it is combined with its subsystem abbreviation to make a four

letter abbreviation. For example, the abbreviation for the

Semaphore module in the Operating System subsystem is S4. When

combined with the subsystem name, the abbreviation is OSS4, and

the common name for the module is OSS4-Semaphore module.

The module four letter abbreviation is often prefixed to the

module operations. For example, the operation to create an empty

linked list, using the GLLL-Linked-List module, is called

glll-create-empty-list. (This standard has not been completely

implemented simply because, it is so much work to go and change

all the code which uses operations with non-standard names.)

Module Descriwtions

We use a standard format for all the module descriptions. The

following example shows the module description for the mythical

Stack module in the mythical UT-Useful-Things subsystem. We have

included comments in every section of the description to explain

the purpose and meaning of the format and terms used in that

section. The module abbreviation is UTST, and the description

was last modified on February 9, 1991.

UTST STACK MODULE

February 9, 1991

PURPOSE :
This section describes the purpose of the module. In this
case, the stack module implements the data types and
operations to create, delete and perform operations on a
stack.

DATA INTERFACE:
This section describes any variables that may be used by
other modules to change the operation of this module.

Name ~escription

None. - In the Stack module, there are no variables
which other modules may access or modify.

DATA TYPE INTERFACE:
This section describes data type definitions that may be
used by other modules to declare their own variables.

Name Description

stack Pointer to a stack variable.

INVOCATION INTERFACE:
This section describes operations which may be invoked by
other modules to modify the stack variables they have
declared. Under the Procedure heading is the name of the
operation. On the same line, or the very next line, is a
Description of the Procedure.

Following the description of each procedure there is a list
of the procedure parameters under the Parameters heading.
On the same line as the parameter name is a parameter
Description. The parameter description includes, in order,
the data type, the flow of data (INput, OUTput, or INput-
OUTput), and a short English description.

Procedure ~escrigtion
Parameters Description (Type, IN/OUT, etc.)

utst-init-stack
Initialize the stack data structure.

stack, IN-OUT, The stack to be
initialized.

utst-kill-stack
Free up all resources used by this stack.

OldStack stack, IN-OUT, This stack will
become unusable.

utstjush Add an item to the top of the stack.
Item stk-item, IN, The item.
AStack stack, IN-OUT, The stack receiving

Item.

utstsop Remove the item at the top of the stack.
AStack stack, IN-OUT, The stack.
Item stk-item, IN, The item removed from

AStack.

IMPLEMENTATION FILES:
This section names the files which contain the code
implementing this module. Sometimes there is more than one
file implementing the module. However, one file is never
used to implement more than one module!

UTST-Stack.h - The .h files contain data, data type
and procedure declarations for this
module. They must be included in any
other module which uses this module.

IMPORTED ELEMENTS:
This section lists all the elements used bv this module that
are implemented in other modules. It also- describes the
element T v ~ e (Procedure, Data Type, or Data), and the module
which implements the element.

Name 'WPe m o d u l e

glll-create-empty-list
Procedure GLLL-Linked-List

glll-push Procedure GLLL-Linked-List
g l l l ~ o ~ Procedure GLLL-Linked-List

NOTES :

None. - This section will sometimes contain
special comments explaining design
decisions or suggestions for
implementing the module.

RTS Desisn

The dependency diagram in Figure 1 shows the dependency

relationship between the RTS subsystems. Note that there is one

circular dependency in this diagram. The LG -> OS -> LG circular

dependency is described in greater detail in the OSNE-Network

module description.

This appendix is divided into one section for each subsystem of

the RTS. In each section there is a dependency diagram for the

subsystem and a module description for each module in the

subsystem. The module dependency diagram is identical to the

subsystem diagram in meaning except that an arrow from the A

module to the B module means that the A module depends on the B

module. 1.e. the only difference is that the subsystem

dependency diagram contains subsystems and the module dependency

diagrams contain modules.

HOW TO START

The design document is intended to be used as a reference, rather

than an introduction to the RTS, so there is no good place to

start reading. This document works best when there is a

particular design question that must be answered. In that case,

the reader uses the document like a dictionary, with no intention

of understanding everything, but simply intending to get

8 1

information about one topic, or, in this case, one design issue.

a

However, if this is your first introduction to the RTS, then it

is best to start by perusing the Dependency Diagrams. After

that, you can start by reading the LG-Language subsystem, since

that contains the highest level modules.

RTS DATA STRUCTURE SUBSYSTEM (DS) DESCRIPTION

Function of the Data Structure Subsystem

In the RTS design, there is one RTS for each Virtual Machine

(V M) . Each RTS implements a very complicated data structure to

keep track of all the SR entities on its VM, and the relations

between those entities. It is the purpose of the Data Structure

Subsystem to implement the entity descriptors (data types) and

supply primitive procedures to allow higher-level modules to

access the data in the descriptors

In Object-Oriented Programming Systems (OOPS

DS module is a 'server' class. Since the DS

data types and data access procedures, we ca

data servers.

terminology, each

modules only supply

11 the DS modules

For each data server, there is one higher-level module in the

0s-Operating-System or LG-Language subsystems which has the same

module name, but a different prefix. We call the corresponding

higher-level module, the function server, because it implements

the corresponding functions. For example, the server class

DSS4-Semaphore module implements the semaphore data type and one

data access procedure: dss4-sem-count. OSS4-Semaphore is the

8 3

corresponding function server which implements the standard

semaphore functions: create, kill, P, and V.

The DS-Data-Structures subsystem is designed to let all modules

access the RTS data structure through the interface specified by

the module description. However, the function server for a DS

module may manipulate any fields in the DS module, even those

that are 'hidden'. Hidden fields are not specified as part of

the interface. An example of a hidden field is the blocked field

in the semaphore descriptor which is a list of the processes

blocked on the semaphore. The OSS4-Semaphore function server

needs to access the blocked field to implement the P and V

operations. The need of the function server such as OSS4-

- Semaphore to access the hidden fields of a data server, reflects

the tight relationship between the data server and function

server pairs. Unfortunately, there is no way to document this

relationship in the C code other than to use the same root name

on the code files. In an OOPS programming language, we could

reflect this relationship by having the function server inherit

the data server, and redefine the interface.

Data Structure Subsvstem Desisn

Much of the complexity of the Data Structure is created by two

requirements. The SR entities must be created dynamically and

there are many relationships between the entities which must be

stored in order to perform the operations efficiently. For

example, in the case of the resource and process entities, we

8 4

have at least two relationships between these entities. Each

resource may contain any number of processes, and each process

must have an 'owner' resource.

To satisfy the dynamic requirements, the RTS implements

descriptor records which exist in main memory. To satisfy the

need to keep track of relationships between entities, each

descriptor record contains pointers to other entities which are

related to it. For example, the resource instance descriptor has

a pointer to a list of processes in the resource and the process

descriptor has a pointer to the 'owner' resource of the process.

Note -

The DS subsystem is really a very primitive DBMS. There may be

alternative designs using DBMS technology which are more

efficient, support data distribution, and supply other DBMS

benefits.

DSCL CLASS MODULE

PURPOSE :
Implement the data structures and data access functions for
the class data type. This 'class' refers to the SR
implementation of equivalence classes for input operations.
It has nothing to do with the 'class' of Object-Oriented
programming. For more information about the SR class
implementation refer to "An Overview of the SR language and
Implementation", by Gregory Andrews, et al.

DATA INTERFACE :
Name Description

None

DATA TYPE INTERFACE:
Name Description

class Pointer to an operation class descriptor.

INVOCATION INTERFACE:
Procedure Description

Parameters ~escrigtion (Type, IN/OUT, etc .)
dscl-classjending

The number of pending invocations for this
class.

clap class, IN, This class data
structure.

[return] short, OUT, Number of pending
invocations for clap.

dscl~class~num~ops
The number of operations in this class.

clap class, IN, This class data
structure.

[return] short, OUT, Number of operations in
clap.

dscl-class-count
The number of available class descriptors.

[return] int, OUT, Number of available
descriptors.

IMPLEMENTATION FILES:
DSCL-Class-i.h

IMPORTED ELEMENTS:
Name l'Y3?e Module

inv-queue Data Type DSIN-Invocation
proc-queue Data Type DSPR-Process
proc Data Type DSPR-Process
s em Data Type DSS4-Semaphore
dss4-sem-count Procedure DSS4-Semaphore

Boo1 Data Type UT-U t i 1

NOTES :
None

DSCO CO MODULE

PURPOSE :
Implement the data structures and data access functions for
the co data types. These data types support the
implementation of the SR co statement.

DATA INTERFACE:
Name Description

INIT-SEQ-CO co initial sequence number.

DATA TYPE INTERFACE:
Name Description

cob pointer to a CO statement descriptor.
struct cii-st Co Invocation Information data STructure.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)
dsco-cobsending

The number of pending invocations on this co
statement.

coStmt cob, IN, This co statement
descriptor.

[return] short, OUT, Number of pending
invocations for coStmt.

dsco~cob~completions
The list of completed invocations for this co
statement.

coStmt cob, IN, This co statement
descriptor.

[return] invb, OUT, List of completed
invocations for coStmt.

dsco-cii-cob The co statement descriptor for this arm of
the co statement.

cii-arm cii-st, IN, This arm of the co
statement.

[return] cob, OUT, The co statement
descriptor for cii-arm.

dsco~cii~completions
The list of completed invocations for this
arm of the co statement.

ci i-arm cii-st, IN, This arm of the co
statement.

[return] invb, OUT, The list of completed
invocations for cii-arm.

dscl-co-count The number of available co descriptors.
[return] int, OUT, Number of available

descriptors.

IMPLEMENTATION FILES:
DSCO-Concurrent-i.h
DSCO-Concurrent-h.h

IMPORTED ELEMENTS:
Name m e

invb Data Type
s em Data Type
dss4-sem-count Procedure

t index Data Type

seq Data Type

Module

NOTES :

None.

DSIN INVOKE MODULE

PURPOSE :
Implement the data structures
the invoke data types.

and data access functions for

DATA INTERFACE:
Name Description

INVOCATION-HEADER-SIZE
Byte size of the invb datz structure header
(i.e. the part of the data structure that
comes before the variable-length argument
list) .

inside the invb data
OP-CAP-SIZE The byte size of the

inside the invb data

OP-CAP-OFFSET The byte off set of the operation capability
structure.
operation capability
structure.

DATA TYPE INTERFACE:
Name Description

in-type

invb
inv-queue

enumerated type specifying the valid
INvocation TYPES.
pointer to an INVocation data structure.
an INVocation QUEUE data structure.

INVOCATION INTERFACE:
Procedure Description

Parameters

dsin-invbsach
The

invoke

[return]

invoke

[return]

dsin-invb-type

invoke

[return]

The

The

Description (Type, IN/OUT, etc.)

packet header for this invocation. -

invb, IN, This
struct.
pach, OUT, The
invoke.

operation capability
invb, IN, This
struct.

invocation data

packet header for

for this invocation
invocation data

opcap, OUT, The operation
capability for invoke.

invocation type of this invocation.
invb, IN, This invocation data
struct.
in-type, OUT, The invocation type
for invoke.

dsin-invb~roc
The process id for the invoker process.

invoke invb, IN, This invocation data
struct.

[return] proc, OUT, The process id for
invoke.

dsin-invb-co
The co data for this invocation.

invoke invb, IN, This invocation data
struct.

[return] struct cii-st, OUT, The co
statement data for invoke.

The byte size of the argument list in this
invocation.

invoke invb, IN, This invocation data

[return]
struct.
pach, OUT, The argument list byte
size for invoke.

dsin-create-inv-queue
Create an empty invocation queue.

invokeQ inv-queue, IN-OUT, A new invoke
queue.

dsin-is-empty-inv-queue
Test if invocation queue is empty.

invokeQ inv-queue, IN, An existing invoke
queue.

[return] Bool, OUT, TRUE if invokeQ is
empty, FALSE otherwise.

dsin-append Add an invocation to the end of the queue.
invoke invb, IN, An invocation.
invokeQ inv-queue, IN-OUT, The queue.

dsin-append-list
Add a new list to the r .i1 of an existing
queue.

NewList invb, IN, A new list.
ExistQ inv-queue, IN-OUT, The existing

queue.

dsin-delete Delete an invocation from the middle of the
queue.

invoke invb, IN, The invocation to be
deleted.

invokeQ inv-queue, IN-OUT, The queue
containing invoke.

IMPLEMENTATION FILES:
DSIN-Invoke-i.h

IMPORTED ELEMENTS:
Name
struct cii-st
struct pach-st

pach
OPcaP
proc-queue
proc
s em

TyBe
Data Type

Data Type
Data Type
Data Type
Data Type
Data Type
Data Type

gldd-create-empty-list
Procedure

gldd-is-empty-list
Procedure

gldd-append Procedure
gldd-append-list

Procedure
gldd-delete Procedure

Boo1 Data Type
seq Data Type
ut-offsetof Procedure
ut-fieldsize Procedure

Module
DSCO-Concurrent

NOTES :
None.

DSIO INPUT OUTPUT MODULE

PURPOSE :
Implement the data structures and data access functions for
the input and output data types.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

io-type Input/Output TYPE. Values are: INPUT,
OUTPUT.

access-mode file ACCESS MODE. Values are: READ, WRITE,
READ-WRITE.

file-offset FILE OFFSET type. Values are: ABSOLUTE,
RELATIVE, EXTEND.

FILE FILE descriptor. Values include: STDIN,
STDOUT, STDERR, NULL-FILE, NOOP-FILE.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .
None.

IMPLEMENTATION FILES:
DSIO-10-i.h

IMPORTED ELEMENTS:
Name TY??e Module

proc-queue Data Type DSPR-Process

NOTES :

None.

DSLM LIMITS MODULE

PURPOSE :
Implement the data structures to support the RTS runtime
limits.

DATA INTERFACE:
Name Description

sr-max-rmt-reqs
Maximum number of remote requests that can be
issued at any one time.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure ~escription

Parameters ~escription (Type, IN/OUT, etc . 1

None.

IMPLEMENTATION FILES:
DSLM-Limit-i.h

IMPORTED ELEMENTS:
Name TYRe Module

None

NOTES :

None.

DSMM MEMORY MODULE

PURPOSE :
Implement the data structures and data access functions for
the memory block data type.

DATA INTERFACE:
Name ~escription

RTS-OWN I•’ ds-memh-res returns this value then the
RTS owns the memory block.

PROG-OWN If ds-memh-res returns this value then the
program owns the memory block. I have not
seen this constant used anywhere in the RTS
code, so I think it may be unused now (HB,
Feb/91) .

DATA TYPE INTERFACE :
Name Description

memh

memhdr

pointer to a MEMory block Header. This
header exists for every memory block
allocated for the SR program.
pointer to a MEMory HeaDeR. This header only
exists for certain cases where the Generated
Code (GC) wishes to keep track of the memory
it is allocating.

INVOCATION INTERFACE:
Procedure Description

Parameters ~escription (Type, IN/OUT, etc .)

ds-memh-res The resource for this memory block.
memblock memh, IN, A memory block header.
[return] rint, OUT, The resource which owns

memblock.

Memow List O~erations

The following procedures perform the standard list
operations for memory lists. Refer to the GL-Generic-Lists
subsystem introduction for an explanation of the standard
list operations.

IMPLEMENTATION FILES:
DSMM-Memory-1.h

IMPORTED ELEMENTS:
Name M e Module

rint Data Type DSRE-Resource

gldl-create-empty-list
Procedure GLDL-Double-Link

gldl-push Procedure GLDL-Double-Link
gldl-delete Procedure GLDL-Double-Link

NOTES :

None.

DSNE NETWORK MODULE

PURPOSE :
Implement the data structures and data access functions for
the network interface data types.

DATA INTERFACE:
Name ~escription

None.

DATA TYPE INTERFACE:
Name Description

ms-type Message TYPE. Values are: BLOCKFUNC-FINI,
REQ-FINDVM, REQ-CREATE, REQ-INVOKE,
REQ-DESTROY, REQ-DESTVM, MSG-EXIT, NO-OP .

pach-s t PACKet header structure. Contains
information necessary for every packet sent
over the network.

num-s t message structure to hold one NUMber.
Several of the message types only send one
number in their message.

srxreply message structure for a REPLY message from
the SRX.

find-reply-st
message structure for a message in REPLY to a
req_FINDVM message.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)

None.

IMPLEMENTATION FILES:
DSNE-Net-i.h

IMPORTED ELEMENTS:
Name T"e Module

Pid Data Type DSPR-Process

None.

DSOP OPERATION MODULE

PURPOSE :
Implement the data structures and data access functions for
the operation data types.

DATA INTERFACE:
Name Description

INIT-SEQ-OP operation initial sequence number.

DATA TYPE INTERFACE:
Name Description

OP-type enumerated type which specifies the valid
Operation TYPES.

OPcaP Operation CAPability descriptor.
oper pointer to an OPERation descriptor.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)
dsop-opcap-vrn The vm for this operation capability.

Operationcap opcap, IN, This operation
capability's data structure.

[return] vmid, OUT, VM identifier for
OperationCap.

dsop-oper-res The resource that this operation belongs to.
operat ion oper, IN, This operation's data

struct.
[return] rint, OUT, Resource instance for

operation.

The number of pending inputs for this
operation.

operat ion oper, IN, This operation's data

[return]
struct.
short, OUT, Number of pending
inputs for operation.

dsop-oper-type
The operation type of this operation.

operat ion oper, IN, This operation's data
struct .

[return] op-type, OUT, Operation type of
operation.

dsop-oper-code
The code address for this operation, if this

is a proc
operat ion

[return]

dsop-oper-class
The input

type operation.
oper, IN, This operation's data
struct.
paddr, OUT, Code address for
operation.

operation class for this operation,
if this is an input type operation.

operat ion oper, IN, This operation's data
struct.

[return] class, OUT, Input operation class
for operation.

dsop-oper-sema4
The semaphore for this operation, if this is
a semaphore type operation.

operat ion oper, IN, This operation's data
struct.

[return] sema, OUT, Semaphore for operation.

dscl-oper-count
The number of available operation
descriptors.

[return] int, OUT, Number of available
descriptors.

IMPLEMENTATION FILES:
DSOP-Operation-i.h

IMPORTED ELEMENTS:
Name

class
rint

paddr
seqn

w e

Data Type
Data Type
Data Type
Procedure
Data Type

Data Type
Data Type

Module

NOTES :

None.

DSOS OPERATING SYSTEM MODULE

PURPOSE :
Implement the data structures and data access functions that
are peculiar to the V-system operating syste~n.

DATA INTERFACE:
Name Description

Messaqe Constants

MAX-SEGMENT-SIZE
MIN-MESG-SIZE

V-system Process priorities

WLTURE-PRIO
BLOCK-OSPROCESS-PRIO
MAIN~PROCESS~PRIO

DATA TYPE INTERFACE:
Name ~escription

system-errors System errors - classified by system call.
Values are:

CREATE-ERROR
READY-ERROR
RECEIVESPEC-ERROR
REPLY-ERROR
SEND-ERROR
REPLYSEG-ERROR
OPEN-ERROR
CLOSE-ERROR
SEEK-ERROR

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

None.

IMPLEMENTATION FILES:
DSOS-operating-System-1.h

IMPORTED ELEMENTS:
Name l'YRe Module

Message Data Type V- sys t em

NOTES :

None.

DSPR PROCESS MODULE

PURPOSE :
Implement the data structures and data access functions for
the process data types. These data types support the
implementation of SR processes.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

proc A process descriptor.
proc-queue A queue of processes. This is often used to

sequence a list of blocked Drocesses.
valid sr PRocess TYPES. V ~ ? U ~ S are: INITIAL,
FINAL, PROC.

pr-status PRocess status codes. Values are:
s rACTIVE Process is running.
srREADY Process is ready to run.
srBLOCKED Process is blocked,

waiting for some
operation.

srINFANT Process is created but
not started.

srFREE Process descriptor is not
in use.

Pid Process IDentifier.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc.)

dsprsroc-stack
The stack address for this process
descriptor.

procDesc proc, IN, This process descriptor.
[return] daddr, OUT, The stack address for

procDesc .

dspr_proc-status
The status of this process descriptor.

procDesc proc, IN, This process descriptor.
[return] int, OUT, The status for procDesc.

dsprjroc-in-type
The invocation type of this process
descriptor.

procDesc proc, IN, This process descriptor.

[return] in-type, OUT, The invocation type
of procDesc.

dsprjroc-res The resource that owns this process
descriptor.

procDesc proc, IN, This process descriptor.
[return] rint, OUT, The resource that owns

procDesc.

dsprjroc-blocked
The blocked list that this process descriptor
is on.

procDesc
[return]

proc, IN, This process descriptor.
proc-queue * , OUT, The blocked list
for procDesc.

dsprjroc-invoke
The invocation descriptor for this process
descriptor.

procDesc proc, IN, This process descriptor.
[return] invb, OUT, The invocation

descriptor for procDesc.

dspr_proc-co-lis t
The list of co statements for this process
descriptor.

procDesc proc, IN, This process descriptor.
[return] cob, OUT, The list of co statements

for procDesc.

dsprjroc-class
The operation class for the current input
statement in this process descriptor.

procDesc proc, IN, This process descriptor.
[return] class, OUT, The operation class for

the current input statement in
procDesc.

dspr-isjroc-else-leg
Is this process in an in-statement with an
else leg?

procDesc proc, IN, This process descriptor.
[return] Bool, OUT, TRUE if this process is

in an in-statement with an else
leg. FALSE, otherwise.

Process List

The following procedures perform the standard list
operations for process lists. Refer to the GL-Generic-Lists
subsystem introduction for an explanation of the standard
list operations.

Process Queue

The following procedures perform the standard list
operations for process queues. Refer to the
GL-Generic-~ists subsystem introduction for an explanation
of the standard list operations.

IMPLEMENTATION FILES:
DSPR-Process-i.h

IMPORTED ELEMENTS:
Name TyBe

class
cob
in-type
invb
rint
s em

Data Type
Data Type
Data Type
Data Type
Data Type
Data Type

glll-create-empty_proc-list
Procedure

glll-is-empty~roc-list
Procedure

glll-append Procedure
gll LPOP Procedure
glll-delete Procedure
glde-create-empty~roc-list

Procedure
glde-is-empty~roc-list

Procedure
glde-append Procedure
glde_po~ Procedure
glde-delete Procedure

Module

Boo1
daddr

NOTES :

None.

Data Type UT-Utility
Data Type UT-Utility

DSRE RESOURCE MODULE

PURPOSE :
Implement the data structures and data access functions for
the resource data types.

DATA INTERFACE :
Name Description

INIT-SEQ-RES RESource INITial SEQuence number.
CRB-HEADER-SIZE

byte SIZE of the CReate Block HEADER.
RES-CAP-SIZE byte SIZE of the RESource CAPability

structure.

Resource Status Values:
INIT-REPLY INITial process has REPLIed.
FINAL-REPLY FINAL process has REPLIed.
FREE-SLOT this resource descriptor SLOT is FREE.

DATA TYPE INTERFACE:
Name Description

rescap
rint

crb

RESource CAPability data structure.
pointer to a Resource INsTance descriptor
data structure.
pointer to a Create Request Block. It
contains information necessary to perform the
create operation.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

dsre-rescap-vm
The VM of the resource specified by this
rescap.

Resourcecap rescap, IN, Resource capability.
[return] vmid, OUT, The VM specified by

ResourceCap.

dsre-rintsrocs
The process list for this resource.

res rint, IN, Resource instance.
[return] proc, OUT, The list of processes

for res.

dsre-rintmemory
The memory list for this resource.

res rint, IN, Resource instance.
[return] memh, OUT, The list of memory

blocks for res.

dsre-rint-rescap
The resource capability for this resource.

res rint, IN, Resource instance.
[return] rescap, OUT, The rescap for res.

dsre-rint-rc-size
The resource capability size for this
resource.

res rint, IN, Resource instance.
[return] short, OUT, The byte size of rescap

for res.

dsre-rint-ops The operations list for this resource.
res rint, IN, Resource instance.
[return] oper, OUT, The list of operations

for res.

dsre-rint-num-ops
The number of operations for this resource.

res rint, IN, Resource instance.
[return] short, OUT, The number of

operations for res.

dsre-rint-status
The status flag for this resource's
initial/final/reply proc.

res rint, IN, Resource instance.
[return] int, OUT, ~nitial/final/reply

status flag for res.

dscl-rint-count
The number of available rint descriptors.

[return] inti OUT, Number of available
descriptors.

dsre-crbsach The packet header for this Create Request
Block.

CreateReq crb, IN, Create request block.
[return] pach, OUT, Packet header for

CreateReq.

dsre-crb-rescap
The resource capability for this Create
Request Block.

CreateReq crb, IN, Create request block.
[return] rescap, OUT, Resource capability

for CreateReq.

dsre-crb-size The byte size of this Create Request Block.
CreateReq crb, IN, Create request block.
[return] short, OUT, Byte size of CreateReq.

dsre-crb-m The VM in this Create Request Block.
CreateReq crb, IN, Create request block.
[return] m i d , OUT, VM identifier for

CreateReq.

dsre-crb-args The arguments in this Create Request Block.
CreateReq crb, IN, Create request block.
[return] char [I , OUT, Array of arguments in

CreateReq.

IMPLEMENTATION FILES:
DSRE-Resource-i.h
DSRE-Resource-h.h

IMPORTED ELEMENTS:
Name TYRe Module

memh
pach
pach-st
OPcaP
oper
proc
s em
dss4-sem-count
m i d

Data Type
Data Type
Data Type
Data Type
Data Type
Data Type
Data Type
Procedure
Data Type

status Data Type UT-Utility
s eqn Data Type UT-Utility
daddr Data Type UT-Utility
ut-offsetof Procedure UT-Utility

NOTES :

None.

DSRM REMOTE MODULE

PURPOSE :
Implement the data structures and data access functions for
the remote operations.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name ~escription

None.

INVOCATION INTERFACE:
Procedure ~escription -

Parameters Description (Type, IN/OUT, etc .)
dsrm-rem-count

The number of available remote descriptors.
[return] int, OUT, Number of available

descriptors.

IMPLEMENTATION FILES:
DSRM-Remote-i.h

IMPORTED ELEMENTS:
Name W R e Module

s em Data Type DSS4-Semaphore
dss4-sem-count Procedure DSS4-Semaphore

NOTES :

None.

DSS4 SEMAPHORE MODULE

PURPOSE :
Implement the data structures and data access functions for
the semaphore data type.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

s em Pointer to a semaphore data structure.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

dss4-sem-count
The value of a semaphore counter.

s ema 4 sem, IN, A semaphore.
[return] int, OUT, Value of sema4's counter.

If it is less than 0, then it gives
the number of processes waiting on
this semaphore. This value is zero
if sema4 is not in use (free).

IMPLEMENTATION FILES:
DSS4-Semaph0re.h

IMPORTED ELEMENTS:
Name T"e

proc-queue Data Type

NOTES :

None.

Module

DSPR-Process

DSVM VIRTUAL MACHINE MODULE

PURPOSE :
Implement the data structures and data access functions for
the virtual machine (VM) data types.

DATA INTERFACE:
Name ~escription

s r-my-vm Current virtual machine number.
sr-my-machine Current physical machine number.
NULL-Virtual-Machine

Null VM capability.
NOOP-Virtual-Machine

Null VM capability.
sr-nu-vm cap Null vm capability.
sr-no-vmcap Noop vm capability.

VM-MAG I C

PROTO-VER

random number used to check that VMs are
started by a valid SR program.
VERsion identifier. Used to check that
two portions of SR code are compiled by
the same SR compiler.

DATA TYPE INTERFACE:
Name Description

pmid Physical Machine IDentifier.
s rsmda t a Physical Machine descriptor.
m i d Virtual Machine IDentifier.
s r-vmda t a Virtual Machine descriptor.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

dsvm-vm-known Is the given VM known to the VM data
structure?

vm mid, IN, A VM identifier.
[return] Bool, OUT, TRUE if VM is known,

FALSE otherwise.

dsvm_vm_pm Determine the physical machine id for the
given VM.

dsvm-vm-addr Determine the message address for the given
VM.

IMPLEMENTATION FILES:
 virtual-Machine.h

IMPORTED ELEMENTS:
Name 'J!YRe Module

Boo1 Data Type UT-Utility

NOTES :

None.

RTS GENERIC LISTS SUBSYSTEM (GL) DESCRIPTION

Function of the Generic Lists Subsystem

Many of the SR entities are implemented using data structures

called descriptors, eg. the resource and process descriptors. In

turn, these descriptors are often stored in lists of various

types, because of the SR requirement that the entities be created

and destroyed dynamically. Since these list types have very

little to do with the type of descriptor they contain, it is

appropriate that the lists are implemented separately from the SR

entities. For example, the resource descriptor is implemented by

the LGRE-Resource module, but it uses a linked list which is

implemented by the GLLL-Linked-List module. Therefore, the

Generic Lists Subsystem has been created to implement modules for

all the list types required by the RTS.

This subsystem has very few dependencies because it is usually

only working with pointer fields. It initializes pointer fields,

and assigns one field to another. GL-Generic-Lists does depend

on MC-Machine for some generic data type definitions.

Generic Lists Subsystem Design

All of the Generic Lists (GL) modules are implemented using

standard list manipulation algorithms. Therefore, this section

merely describes some implementation techniques common to all the

modules which affect the design and use of these modules.

Each Generic Lists (GL) module defines its own data type.

However, this is little more than a syntactic convention. In

fact, the procedures in these modules can work with any C record

structure. This works because C has very loose type checking and

all the GL procedures are implemented as #define statements.

The #define statements are processed by the C preprocessor. In

essence, the GL procedures, implemented by #define statements,

are 'invoked' before the code is compiled. Therefore, they can

accept parameters containing C types, and C field names. These

parameters allow the GL procedures to be more general than if

they were implemented with the standard C functions.

Since all the modules in the GL subsystem are working on lists,

they tend to supply very similiar procedures. To make this

similiarity explicit, we have used the following standard

procedure names:

create-list

is-empty-list

- Create a list and initialize it.

- Determine if a list is empty. Return

114

POP

chop

delete

push

append

append-list

insert

TRUE for an empty list, and FALSE

otherwise.

- Remove the node from the front of the

list and return a pointer to it.

- Remove a node from the end of the list

and return a pointer to it.

- Remove the given node from the list.

The node may be anywhere in the list.

- Add a node to the front of the list.

- Add a node to the end of the list.

- Add a new list to the end of the old

list.

- Add a node after the given node in the

list. The given node may be anywhere in

the list.

Not all of the above procedures are implemented for all of the GL

modules.

GLAR ARRAY MODULE

PURPOSE :
Implement generic data structures which support the use of
arrays.

DATA INTERFACE:
Name ~escription

"Descriptor fields"
AD-LB1 Lower bound, if array.
AD-UB1 Upper bound, if array.
AD-LB2 Second lower bound, if two dimensional array.
AD-UB2 Second upper bound, if two dimensional array.

DATA TYPE INTERFACE:
Name Description

t index Index for small tables.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)

None.

IMPLEMENTATION FILES:
GLAR-Array . h

IMPORTED ELEMENTS:
Name 'WRe Modu 1 e

None.

NOTES :

None.

GLDD DOUBLE-ENDED, DOUBLE-LINKED LIST MODULE

PURPOSE :
Implement two-way (double), linked lists, with quick access
to both ends of the list. These lists do not make as
efficient use of memory as the other lists but they can
quickly perform deletion operations at any position in the
list. They can also quickly perform operations at both the
head and the tail of the list.

DATA INTERFACE:
Name ~escrigtion

None.

DATA TYPE INTERFACE:
Name ~escription

gldd-list Generic pointer type for this list structure.
gldd-node Generic node type for this list structure.

INVOCATION INTERFACE:
Procedure ~escription

Parameters Description (Type,IN/OUT, etc.)

gldd-create-empty-list
Initialize List to be an empty list.

List gldd-list, IN-OUT, A new list
structure.

gldd-is-empty-list
Determine if List is an empty list.

List gldd-list, IN, A list structure.
[return] Bool, OUT, TRUE if List is empty.

FALSE otherwise.

gldd-append ~ d d a node to the tail of the list.
Node gldd-node, IN, The new node.
List gldd-list, IN-OUT, An existing list

structure.

gldd-append-list
~ d d a new list to the tail of an existing
list.

NewList gldd-list, IN, The new list.
OldList gldd-list, IN-OUT, The existing

list structure.

gldd-delete Remove a node from the middle of the list.
Node gldd-node, IN, The node to be

removed.
List gldd-list, IN-OUT, An existing list

structure.

IMPLEMENTATION FILES:
GLDD-Double-Double-List.h

IMPORTED ELEMENTS:
Name m e

Boo1 Data

NOTES :

None.

Module

UT-Utility

GLDE DOUBLE-ENDED LINKED LIST MODULE

PURPOSE :
Implement one-way, linked lists, with quick access to both
ends of the list. These lists make efficient use of memory
and quickly perform insertion and deletion operations to
both ends of the list. Insertion and deletion operations
performed on other parts of the list may be quite
inefficient.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

glde-list Generic pointer type for this list structure.
glde-node Generic node type for this list structure.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)

glde-create-empty-list
Initialize List to be an empty list.

List glde-list, IN-OUT, A new list
structure.

glde-is-empty-list
Determine if List is an empty list.

List glde-list, IN, A list structure.
[return] Bool, OUT, TRUE if List is empty.

FALSE otherwise.

gldesush Add a node to the head of the list.
Node glde-node, IN, The new node.
List glde-list, IN-OUT, An existing list

structure.

glde-append Add a node to the tail of the list.
Node glde-node, IN, The new node.
List glde-list, IN-OUT, An existing list

structure.

Node

Remove a node from the head of the list.
glde-list, IN-OUT, An existing list
structure.
glde-node, OUT, The removed node.

Node

List

Remove a node from the middle of the list.

IMPLEMENTATION FILES:
GLDE-Double-Ended.h

IMPORTED ELEMENTS:
Name m e

Data Type

glde-node, IN, The node to be
removed.
glde-list, IN-OUT, An existing list
structure.

Module

UT-Utility

NOTES :

None.

GLDL DOUBLE LINKED LIST MODULE

PURPOSE :
Implement two-way (double), linked lists. These lists are
not quite as efficient as other linked lists in their use of
memory, but deletion operations are performed quickly for
any position in the list.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

gldl-list Generic pointer type for this list structure.
gldl-node Generic node type for this list structure.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

gldl-create-empty-list
Initialize List to be an empty list.

List gldl-list, IN-OUT, A new list
structure.

gldl-is-empty-list
Determine if List is an empty list.

List gldl-list, IN, A list structure.
[return] Bool, OUT, TRUE if List is empty.

FALSE otherwise.

gldljush Add a node to the head of the list.
Node gldl-node, IN, The new node.
List gldl-list, IN-OUT, An existing list

structure.
NextField C field name, IN, Name of forward

pointer field in gldl-node record
structure.

PrevField C field name, IN, Name of backwards
pointer field in gldl-node record
structure.

gldl-delete Remove a node from the middle of the list.
Node gldl-node, IN, The node to be

removed.
List gldl-list, IN-OUT, An existing list

structure.
NextField C field name, IN, Name of forward

pointer field in gldl-node record

IMPLEMENTATION FILES:
GLDL-Double-Link.h

IMPORTED ELEMENTS:
Name TYPe

Boo1 Data Type
C field name Data Type

NOTES :

structure.
C field name, IN, Name of backwards
pointer field in gldl-node record
structure.

Module

This module is called macr0s.h in the UNIX implementation of
SR .

GLLL LINKED LIST MODULE

PURPOSE :
Implement one-way, linked lists. These lists make efficient
use of memory and quickly perform insertion and deletion
operations to the head of the list. Insertion and deletion
operations performed on other parts of the list may be quite
inefficient.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

glll-list Generic pointer type for this list structure.
glll-node Generic node type for this list structure.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)

glll-create-empty-list
Initialize List to be an empty list.

List glll-list, IN-OUT, A new list
structure.

List
[return]

glll_push
Node
List

Node

glll-delete
Node

List

Determine if List is an empty list.
glll-list, IN, A list structure.
Bool, OUT, TRUE if ~ 1 s t is empty.
FALSE otherwise.

Add a node to the head of the list.
glll-node, IN, The new node.
glll-list, IN-OUT, An existing list
structure.

Remove a node from the head of the list.
glll-list, IN-OUT, An existing list
structure.
glll-node, OUT, The removed node.

Remove a node from the middle of the list.
glll-node, IN, The node to be
removed.
glll-list, IN-OUT, An existing list
structure.

IMPLEMENTATION FILES:
GLLL-Linked-List.h

IMPORTED ELEMENTS:
Name W e

Boo1 Data Type
C field name Data Type
C type Data Type

NOTES :

Module

None.

RTS LANGUAGE SUBSYSTEM (LG) DESCRIPTION

Function

The Language (LG) Subsystem provides the functionality for SR

Language-specific concepts, which are too complex to implement

with in-line code. For example, the LG subsystem implements

Virtual Machines, Resources, and Operations. Almost every module

in LG implements an SR concept or statement directly.

Desisn

The dependencies between LG modules are fairly simple. Most

modules only depend on one or two other LG modules. The two

exceptions are LGMN-Main which calls almost every other module to

initialize the RTS, and LGIV-Invoke which calls several other

modules to implement the several different types of invocation.

The LG dependencies on other Subsystem modules are more complex.

The LG modules only depend on two or three 0s-Operating-System

modules, but they often depend on six or seven DS-Data-Structure

modules. The reason for the large number of DS modules is that

the LG modules often must traverse the RTS data structure to find

the information they need. In the course of traversing the data

structure, they use the DS descriptors and data access

1 2 5

procedures. Most LG modules also use several of the MC-Machine

modules. Taken collectively, the LG modules use almost every

other module in the RTS. This is not surprising since LG

supplies most of the interface to the Generated Code (GC), and

the rest of the RTS is written to support that interface.

There are two circular dependencies in the LG Dependency Diagram.

 either of them are cause for concern.

The circular dependency between LGVM-Virtual-Machine and

LGRT-Remote-Tx occurs because the LGVM sr-create and sr-destroy

procedures need to do sr-remote calls, and the LGRT sr-remote

procedure needs to call sr--connect in LGVM if the requested

VM1s communication address is unknown. Since the sr-mconnect

procedure does not depend on any other LG modules, there is no

possibility of recursion or deadlock. We will need a stub for

sr-vm_connect during the testing of LGRT-Remote-Tx.

The circular dependency between LGIV-Invoke and LGCO-Concurrent

occurs because the LGIV sr-invoke procedure depends on LGCO to

implement concurrent invocations, and LGCO must sometimes make a

copy of an invocation descriptor, which it does by calling

sr-dup-inv in LGIV. The sr-dup-inv procedure has no dependencies

other than the obvious need to use the invocation descriptor.

SR-dup-inv is a simple copy procedure. There is no possibility

of recursion or deadlock. We will need a stub for sr-dup-inv

during the testing of LGCO-Concurrent.

The internal design of some of the LG modules is quite complex.

In particular the LGIV-Invoke and the LGIN-Input-Op modules must

distinguish between many different types of invocations and

implement each type as efficiently as possible. For more

information on these design issues, refer to "An Overview of the

SR Language and Implementation".

LGCL CLASS MODULE

PURPOSE :
Implement equivalence classes for input operations. A class
stores information about the input operations and all the
pending invocations on those input operations.

Section 4.2.2. The Input Statement, in "An Overview of the
SR Language and Implementation", has a complete description
of classes and their use in the SR RTS.

DATA INTERFACE :
Name Description

None.

2ATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters ~escription (Type,IN/OUT, etc.)

sr-init-class Initialize this module.

sr-make-class Create a new class.
[return] class, OUT, The new class

descriptor.

sr-free-class Kill an old class.
clap class, IN, The class to be killed.

IMPLEMENTATION FILES:
LGCL-C1ass.c
LGCL-Class-i.h
LGCL-Class-h. h

IMPORTED ELEMENTS:
Name TYRe Module

ossf-declare-free-list
Procedure OSSF-Safe-FreeList

ossf-init-free-list
Procedure OSSF-Safe-FreeList

ossf-get-node Procedure OSSF-Safe-FreeList
ossf-free-node Procedure OSSF-Safe-FreeList

sr-class-count Data (Update) DSCL-Class
sr-max-classes Data (Read) DSCL-Class
class Data Type DSCL-Class

class-st Data Type DSCL-Class
create-invQ Procedure DSIN-Invoke
create~rocQ Procedure DSPR-Process

sr-check-stk Procedure MCPR-Process
Boo1 Data Type UT-Ut il

NOTES :
None.

LGCO CONCURRENT MODULE

PURPOSE :
~Klement the SR co statement. This statement executes a
number of SR statements concurrently.

The "Revised Report on the SR Language" has more information
about the SR co statement.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name ~escrigt ion

None.

INVOCATION INTERFACE:
Procedure Description -

Parameters Description (Type,IN/OUT, etc.)

Initialize this module and this VM.

sr-co-start Start a co statement by initializing a co
descriptor and linking it to the current
process.

sr-co-call Initialize the invocation and co descriptors
for a call from a co statement.

ibp invb, IN-OUT, The invocation
descriptor.

sr-co-call-done
Finalize the invocation and co descriptors
after a call from a co statement has
completed. If the invoker is still
interested in this event, notify him.

ibp invb, IN-OUT, The invocation
descriptor.

sr-co-send Initialize the invocation and co descriptors
for a send from a co statement.

ibp invb, IN-OUT, The invocation
descriptor.

sr-co-wait Wait for a co invocation to terminate.
Return a pointer to the original invocation
descriptor so that the GC (Generated Code)
can copy result parameters and find out which
arm terminated.

[return] invb, IN-OUT, The invocation
descriptor.

s r-co-end Finalize a co statement. Release the co
des~riptor.

IMPLEMENTATION FILES:
LGCO- concurrent.^

IMPORTED ELEMENTS:
Name 'm'Pe Module

sr-dup-invb Procedure LGIN-Invoke

sr-f ree Procedure
sr-kill-sem Procedure
sr-make-sem Procedure
P Procedure
V Procedure
ossf-declare-free-list

Procedure
ossf-init-free-list

Procedure
ossf-get-node Procedure
ossf-free-node Procedure

INIT-SEQ-CO Data (Read)
cob Data Type
cob-s t Data Type
invb Data Type
dsin-invb-co Procedure
sr-max-co-stmts

Data (Read)
sr-cursroc Data (Update)
dspr_proc-co-list

Procedure

t index Data Type GLAR-Array

sr-check-stk Procedure MCPR-Process
daddr . Data Type UT-Util

NOTES :
None.

LGIN INVOKE MODULE

PURPOSE :
Implement the SR invocation statements: call, send and
reply. The SR invocation mechanisms are quite
sophisticated. The implementation uses a sophisticated
design to handle the different types of invocation, and the
different types of invocation termination.

The "Revised Report on the SR Language" has more information
about the SR invocation concepts.

DATA INTERFACE :
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters ~escription (Type,IN/OUT, etc.)

sr-invoke Invoke a proc or input operation with either
a call or a send.

ibp invb, IN, The invocation
descriptor.

[return] invb, OUT, The new invocation
descriptor describing the current
state of the invocation.

sr-reply Send an early reply to the invoker of an
operation. This implements the reply
statement.

ibp invb, IN, The invocation

[return]
descriptor.
invb, OUT, The new invocation
descriptor describing the current
state of the invocation.

sr-finished-input
Clean up a finished input operation.

ibp invb, IN, The in7:-cation
descriptor.

sr-finishedsroc
Clean up a finished proc operation.

ibp invb, IN, The invocation
descriptor.

ibp

ibp

[return]

Reject an invocation because the operation
was killed before the invocation was
accepted.

invb, IN, The invocation
descriptor.

IMPLEMENTATION FILES:
LGIN-1nvoke.c

Duplicate an invocation descriptor and return
the address of the copy.

invb, IN, The invocation
descriptor.
invb, OUT, The new invocation
descriptor.

IMPORTED ELEMENTS:
Name TYRe

sr-co-send Procedure
sr-co-call Procedure
sr-co-call-done

Procedure
sr-invk-iop Procedure
sr-own-alloc Procedure
sr-activate Procedure
sr-kill Procedure
sr-remot e Procedure

sr-kill-sem Procedure
sr-make-sem Procedure
P Procedure
V Procedure

INVOCATION-HEADER-SIZE
Data (Read)

invb
in-type
invk-argsize
invk-opcap
invk-type
invk-wai t
RTS-OWN
pach
ms-type
sr-optab
oper
OP-tYPe
opcap-opindex
opcap-seqn
OP c ap-vm
oper-code
oper-inclass

Data Type
Data Type
Procedure
Procedure
Procedure
Procedure
Data (Read)
Data Type
Data Type
Data (Read)
Data Type
Data Type
Procedure
Procedure
Procedure
Procedure
Procedure

Module

oper-res
oper-seqn
OPer-tYPe
sr-cursroc
proc
pr-type
proc-intype
proc-invoke
procjrtype
proc-wai t
sr-cur-res
res-status
rint-capsize
rint-create
rint-rescap
rint-status
rint-varbase
sem
s r-my-vm

sr-rtserror
sr-abort
sr-f ree
sr-check-stk
NOOP-SEQN
daddr
Boo1

Procedure
Procedure
Procedure
Data (Update)
Data Type
Data Type
Procedure
Procedure
Procedure
Procedure
Data (Update)
Data Type
Procedure
Procedure
Procedure
Procedure
Procedure
Data 5 p e
Data (Read)

Procedure
Procedure
Procedure
Procedure
Data (Read)
Data Type
Data Type

DSOP-Operation
DSOP-Operat ion
DSOP-Operation
DSPR-Process
DSPR-Process
DSPR-Process
DSPR-Process
DSPR-Process
DSPR-Process
DSPR-Process
DSRE-Resource
DSRE-Resource
DSRE-Resource
DSRE-Resource
DSRE-Resource
DSRE-Resource
DSRE-Resource
DSS4-Semaphore
~~VM-Virtual-Machine

memcpy Procedure

NOTES :
None.

LGIP INPUT OPERATIONS MODULE

PURPOSE :
The input statement is the most complicated statement in the
SR language. This module implements the basic input
operation processing: invoke input operations and retrieve
input operation invocations (done by processes which execute
input operations).

Section 4.2.2. The Input Statement in the "Overview of the
SR Language and Implementation" has a good description of
the input statement implementation and the use of
equivalence classes (LGCL-Class module).

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)
sr-invk-iop Invoke an input operation.

ibp invb, IN-OUT, The invocation
descriptor.

clap class, IN-OUT, The input
operation's equivalence class.

sr-iaccess Get access to an input operation class. This
allows the Generated Code (GC) to start
searching for an eligible invocation.

class, IN-OUT, The input
operation's equivalence class.

clap

ibp

Regain subsequent access to an input
operation class.

Remove an invocation descriptor from the
specified input operation queue. The
Generated Code (GC) can service the
invocation now.

invb, IN-OUT, The invocation
descriptor.

IMPLEMENTATION FILES:
LGIP-Input-0peration.c

IMPORTED ELEMENTS:
Name T'YQe

awaken Procedure
block Procedure
sr-cswitch Procedure

class Data Type
class-inuse Procedure
class-newin Procedure
class-newpr Procedure
class-oldin Procedure
class-oldpr Procedure
classsending Procedure
invb Data Type
invk-next Procedure
append-invQ Procedure
append-list-invQ

Procedure
delete-invQ Procedure
s r-op t ab Data (Read)
oper Data Type
opcap-opindex Procedure
opersending Procedure
sr-cursroc Data (Update)
proc Data Type
proc-class Procedure
proc-next-inv Procedure
proc-next Procedure

sr-check-stk Procedure
Boo1 Data Type

Module

NOTES :
None.

LGMN MAIN MODULE

PURPOSE :
This module initializes all the modules in the RTS. If this
is the first RTS then it creates the main resource.
Otherwise, it just waits for requests from remote VMs.

This module starts the RTS on each VM. The first RTS is
invoked from the operating system command-line. his
initial invocation is the program startup which may include
program parameters. These parameters are ignored by the RTS
and passed to the SR program. Every subsequent invocation
is a VM startup which is the result of a VM create
statement. In this case, all the parameters are used for
the RTS initialization.

3ATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

main Initialize the first RTS (program startup).
argc int, IN, Number of arguments.
argv char * * , IN, Array of arguments.

main Initialize all the subsequent RTSs (VM
startup).

argv[ll char * , IN, A magic string
(VM-MAGIC) indicating that this is
a VM startup.
char * , IN, Physical machine number
for the new VM.
char * , IN, Virtual machine number
for the new VM.
char * , IN, Network address of the
of the srx [srx's PID] .
char * , IN, Debugging flags. Used
to initialize the MCDE-Debug
module.
char *, IN, Program group
communication address. Used by the
OSGP-Group module.

IMPLEMENTATION FILES:
LGMN-Main.c
LGMN-Main-i.h
LGMN-Main-h.h

IMPORTED ELEMENTS:
Name WRe

sr-init-class Procedure
sr-init-co Procedure
sr-init-io Procedure
sr-argv Data (Update)
sr-argc Data (Update)
sr-init-oper Procedure
sr-initjroc Procedure
sr-kill Procedure
sr-create Procedure
sr-init-res Procedure
sr-init-remote-Rx

Procedure
sr-init-remote-Tx

sr-ini
s r-own
sr-ini
sr-ini
sr-ini

sr-pgmgroup
RTS-OWN
sr-cursroc
crbp
crb-st
rint
crb-rpatid
c r b-vm
MAIN-VM
sr-my-machine
s r-my-vm

stderr
sprint•’

Procedure
Data (Read)

Procedure
Procedure
Procedure
Procedure
Procedure

Data (Update)
Data (Read)
Data (Read)
Data Type
Data Type
Data Type
Data Type
Data Type
Data (Read)
Data (Update)
Data (Update)

Procedure
Data (Update)
Data (Read)

Data (Update)
Procedure

Module

V- sys t em
V-system

NOTES :
None.

LGMS MISCELLANEOUS MODULE

PURPOSE :
Implement a miscellaneous group of procedures which are
useful for the Generated Code (G C) . Included in this group
of procedures are string manipulation procedures, max and
min procedures, copy procedures, memory allocation
procedures and command-line argument, access procedures.

DATA INTERFACE:
Name Description

sr-argc When an SR program is started, the command
line may include several arguments. This
variable gives the number of command line
arguments.

sr-argv This variable contains the command line
arguments.

DATA TYPE INTERFACE:
Name Description

sr-s tring A string descriptor. All SR string variables
are stored in this format.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)

sr-cat Concatenate all the string arguments and copy
them to a new string. Return the address of
the new string.

va-alist va-dcl, IN, A list of argument
pairs. The first argument in a
pair is a char* pointer to a
string, and the second argument is
an int which gives the length of
the string. The list of argument
pairs is terminated with the pair:
"NULL, 0".
daddr, OUT, The address of the new
string containing the concatenation
of all the argument strings.

[return]

s r-s t rcmp

laddr
llen
raddr
rlen
[return]

pstr

len

va-alist

[return]

va-alist

[return]

addr

len

n

[return]

Compare two strings. Return a number
indicating which string is larger. Return a
negative number if the left string is less
than the right; return a positive number if
the left string is greater than the right;
and return 0 if the two strings are equal.

char * , IN, The left :ring.
int, IN, The left strlng length.
char * , IN, The right string.
int, IN, The right string length.
int, OUT, The comparison result.

Copy a null terminated string to an SR
string.

char * , IN, The null terminated
string.
sr-string, IN-OUT, The SR string
structure.
int, IN, The maximum length of p.

Return the maximum of the integer arguments
int, The number of integer
arguments.
va-dcl, IN, A list of n integer
arguments.
int, The maximum integer in
va-alist .

Return the minimum of the integer arguments.
int, The number of integer
arguments.
va-dcl, IN, A list of n integer
arguments.
int, The minimum integer in
va-alist .

Make n copies (clones) of a memory block.
All the clones are located in the memory area
immediately after the original copy. 1.e.
the memory block from addr to (addr+len-1) is
copied to (addr+len), (addr+ 2*len), (addr+
3*len), etc.

daddr, IN, The address of the
original.
int, IN, The length of of the
memory block.
int, IN, The number of clones to
make.
daddr, OUT, Pointer to the memory
location immediately after the last
clone.

laddr
raddr
len

sr-new
len

[return]

sr-newfree

addr

Swap two items in memory. If len is 0, then
the items are strings, and the maximum of the
current lengths is to be used.

char * , IN-OUT, The left item.
char * , IN-OUT, The right item.
int, IN, The length of the items.
0 indicates that the maximum string
length is to be used.

Allocate memory for an SR new(type) call.
int, IN, The length of the memory
block.
daddr, OUT, The address of the
memory block.

Deallocate a memory block allocated by
s r-new .

daddr, IN, The address of the
memory block. If this NULL, then
do nothing.

sr-numargs Return the number of command line arguments.
[return] int, The number of arguments.

[return]

sr-arg-boo1 Interpret command line argument n as a
Boolean literal. Assign its Boolean value to
pBool. If this procedure is successful then
return TRUE. Otherwise, return FALSE.

int, IN, The argument number.
Bool * , OUT, The Boolean value of
the argument.
Bool, OUT, Exit status of
procedure.

[return]

sr-arg-char

n
pstr
len

[return]

Interpret command line argument n as an
integer literal. Assign its value to pint.
If this procedure is successful then return
TRUE. Otherwise, return FALSE.

int, IN, The argument number.
int * , OUT, The integer value of
the argument.
Bool, OUT, Exit status of
procedure.

Copy the n'th command line argument to an SR
char array. If this procedure is successful
then return TRUE. Otherwise, return FALSE.

int, IN, The argument number.
char * , OUT, The character array.
int, IN, The maximum length of the
string.
Bool, OUT, Exit status of
procedure.

n
pstr

len

[return]

Copy the n'th command line argument to an SR
string. If this procedure is successful then
return TRUE. Otherwise, return FALSE.

int, IN, The argument number.
sr-string, OUT, The SR string
variable.
int, IN, The maximum length of the
string.
Bool, OUT, Exit status of
procedure.

IMPLEMENTATION FILES:
LGMS- miscellaneous.^
LGMS-Miscellaneous-i.h
LGMS-Miscellaneous-h.h

IMPORTED ELEMENTS:
Name

DEBUG
sr-abort
sr-check-stk
MAX-INTEGER
MIN-INTEGER
Bool
daddr

EOF
free
malloc
memcpy
sscanf

Procedure
Data Type
Data Type
Data Type
Data Type
Data Type
Data Type

Procedure
Procedure
Procedure
Data (Read)
Data (Read)
Data Type
Data Type

Data (Read)
Procedure
Procedure
Procedure
Procedure

Module

MCDE-Debug
MCEX-Exception
MCPR-Process
UT-U t i 1
UT-Util
UT-U t i 1
UT-Ut il

V- sys t em
V- sys t em
V-sys tem
V-sys tem
V- sys t em

NOTES :
None. -

LGNP NETPATH MODULE

PURPOSE :
This module is responsible for building a path to the
program's executable file. This path is needed whenever
this VM attempts to start another VM.

Because of the limitations of some network operating
systems, the path to a file is not the same on every
machine. 1.e. the path to file 'prog.exel on machine X may
not be the same as the path to file 'prog.exel on machine Y.
SR allows these different paths to be documented in a file
called the mapfile. This module uses the mapfile to build
the executable path for this machine.

For more information about mapfiles, refer to the example
mapfiles in the main SR source directory.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters ~escription (Type,IN/OUT, etc.)

sr-netpath Build a network path for the filename.
Return a pointer to the network path or NULL
if we can not build the path.

f name char * , IN, The name of the file.
dir char * , IN, The name of the

directory containing fname. This
directory path does not contain the
hostname or any network
information. This parameter is
ignored if fname includes the full
pat hname .

map•’ ile char * , IN, The network path for
the mapfile.

result char * , OUT, The network path for
fname. Null if it can not be
built.

[return] char * , OUT, The network path for
fname. Null if it can not be
built.

IMPLEMENTATION FILES:
LGNP-net path.^
LGNP-Netpath-i.h
LGNP-Netpath-h.h

IMPORTED ELEMENTS:
Name l'YRe

s r-open Procedure
sr-close Procedure

HOST-NAME-LEN Data (Read)
MAX-PATH Data (Read)
MAX-L INE Data (Read)

DEBUG Procedure
sr-rtserror Data (Update)
sr-rts-warn Data (Update)
sr-net-abort Procedure

FILE Data Type
Systemcode Data Type
fgets Procedure
isspace Procedure
perror Procedure
st rchr Procedure
strlen Procedure
st rncpy Procedure
sprint f Procedure
QueryWorkstationConfig

Procedure

Module

MCDE-Debug
MCEX-Exception
MCEX-Except ion
MCEX-Exception

V-system
V-system
V-system
V-system
V- sys t em
V-system
V-sys tem
V-system
V-system

V- sys t em

NOTES :
None.

LGOP OPERATION MODULE

PURPOSE :
Implement the procedures and data structures for SR
operations. Construct the operation descriptors and
capabilities when new operations are created, and remove the
descriptors and capabilities when operations are killed.
Find 'eligiblef operation invocations in invocation lists.

The "Revised Report on the SR Language" has more information
about SR operations.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)

sr-init-oper Initialize this module.

sr-make-resops
Add a list of new operations to a resource.
Called during resource initialization.

va-alist va-dcl, IN, A list of operations.
There are two or three arguments
per operation. The first argument
for an operation specifies the
operation type (op-type) . If the
operation is a PROC-OP or a
PROC-REP-OP, then the next argument
is the proc code address (paddr) .
If the operation is an INPUT-OP
then the next two arguments are the
input class (class) and the number
of operations of this type (int).
The list is terminated by END-OP.
Any other operation type causes a
fatal error.

sr-kill-resops
Kill all the resource operations for the
named resource instance. Remove any pending
input invocations.

rint, IN-OUT, The resource res

sr-make-liop
clap

count

OPCP

count

[return]

[return]

clap
[return]

sr-make-semop

[return]

sr-query-iop

Make a set of local input operations.
class, IN, The class for the input
operations.
opcap * , IN-OUT, Pointer to the
first operation capability in an
array of operation capabilities.
int, IN, The number of input
operations to be created.

Kill local input operations. Purge any
pending invocations from the class queues.
If the killed operation is the last of its
class, free the class as well.

opcap * , IN, Pointer to the first
operation capability in an array of
operation capabilities.
int, IN, The number of input
operations to be killed.

Get the next eligible invocation descriptor
for the GC (Generated Code) to check in
processing an input statement. The current
process must have access to the operation
class. If no invocations are available, wait
until more arrive.

invb, OUT, The next eligible
invocation descriptor.

Get the next eligible invocation of the
specified operation. If none are available,
wait until more arrive.

opcap, IN, The operation capability
descriptor for the operation to
match on.
invb, OUT, The next eligible
invocation descriptor for the
specified operation.

Get the next invocation for operations
appearing in a single class with no
synchronization or scheduling expressions.
This is an optimization.

class, IN, The operation's class.
invb, OUT, The next invocation for
the operation.

Create an operation to act as a semaphore.
1.e. a non-exported, parameterless, operation
in its own class. This is an optimization.

sem, OUT, The semaphore descriptor
for the operation.

Return the number of pending invocations for

[return]

an input operation.
opcap, IN, The operation
descriptor.
int, OUT, The number of pending
invocations for opc.

IMPLEMENTATION FILES:
LGOP-0peration.c

IMPORTED ELEMENTS:
Name m e Module

sr-iaccess Procedure LGIP-Iop
sr-reaccess Procedure LGIP-Iop
sr-rm-iop Procedure LGIP-Iop
sr-rej-inv Procedure LGIN-Invoke

sr-kill-sem Procedure
sr-make-sem Procedure
ossf-declare-free-list

Procedure
ossf-init-free-list

Procedure
ossf-get-node Procedure
ossf-free-list Procedure
osva-va-alist Data Type
osva-va-dcl Data Type
osva-va-list Data Type
osva-start Procedure
osva-arg Procedure
osva-end Procedure

class Data Type
class-num-ops Procedure
class-oldin Procedure
class-newin Procedure
invb Data Type
inv-queue Data Type
is-empty-invList

Procedure
next-invlist Procedure
remove-invlist Procedure
is-empty-invQ Procedure
top-invQ Procedure
next-invQ Procedure
pop-invQ Procedure
remove-invQ Procedure
invk-opcap Procedure
END-0 P Data (Read)
INIT-SEQ-OP Data (Read)
sr-max-operations

Data (Read)
sr-no-ocap Data (Update)

sr-nu-ocap Data (Update)
sr-optab Data (Update)
END-0 P Data (Read)
OPcaP Data Type
oper Data Type
oper-st Data Type
OP-type Data Type
opcap-opindex Procedure
opcap-seqn Procedure
oper-code Procedure
oper-inclass Procedure
oper-res Procedure
oper-seqn Procedure
OPer-tYPe Procedure
is-empty-op-list

Procedure
delete-oper Procedure
POP-OPer Procedure
sr-curjroc Data (Update)
isjroc-else-leg

Procedure
proc-next-inv Procedure
sr-cur-res Data (Update)
rescap Data Type
rint Data Type
rescap-opcap Procedure
rint-ops Procedure
rint-num-ops Procedure
rint-varbase Procedure
s em Data Type
s r-mY-vm Data (Read)

sr-abort Procedure
sr-alloc Procedure
paddr Data Type
sr-check-stk Procedure
NO0 P-S EQN Data (Read)
NULL-SEQN Data (Read)
Boo1 Data Type

D S O P - O ~ ~ ~ ~ ~ ion
DSOP-Operation
DSOP-Operation
DSOP-Operation
DSOP-Operation
DSOP-Operation
DSOP-Operat ion
DSOP-Operation
DSOP-Operation
DSOP-Operation
DSOP-Operation

DSOP-Operation
DSOP-Operat ion
DSOP-Operation
DSPR-Process

MCEX-Exception
MCMM-Memory
MCPR-Process
MCPR-Process
UT-U t i 1
UT-U t i 1
UT-Ut il

NOTES :
None.

LGPR PROCESS MODULE

PURPOSE :
Implement the SR process module. SR processes are very
lightweight. However, there is no time-slicing between SR
processes. This means that an SR process will monopolize
the cpu until it blocks itself. Refer to any operating
systems text for more infomation about processes and the
standard operations.

DATA INTERFACE :
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)
sr-initsroc Initialize the process module and start the

specified code in an SR process context.
This procedure never returns control to the
calling procedure.

start-code paddr, IN, Initial SR process to
execute.

.spawn Create a new process.
PC paddr, IN, Process code address.
res rint, IN, Resource which owns the

process.
argl int, IN, Process's first argument.
arg2 int, IN, Process's second argument.
arg3 int, IN, Process's third argument.
arg4 int, IN, Process's fourth argument.
[return] proc, OUT, New process descriptor.

sr-activate Make a new process ready to execute.
Pr proc, IN-OUT, The new process.

sr-kill Delete a process and all references to it.
Pr proc, IN-OUT, The process to be

deleted.
do-rem~roc Bool, IN, Is this process owned by

a resource?

IMPLEMENTATION FILES:
LGPR-Process . c

IMPORTED ELEMENTS:
Name WRe

sr-cswitch Procedure
osuf-declare-free-list

Procedure
osuf-init-free-list

Procedure
osuf-get-node Procedure
osuf-free-node Procedure

sr-num-blocked Data (Update)
sr-cursroc Data (Read)
proc Data Type
paddr Data Type
sr-enqueue Procedure
sr-dequeue Procedure
dspr-deletesroc

Procedure
sr-cur-res Data (Read)
dsre-rintmutex

Procedure
dsre-rintjrocs

Procedure
rint Data Type

DEBUG Procedure
sr-abort Procedure
sr-alloc Procedure
sr-build-context

Procedure
Boo1 Data Type

Module

NOTES :
None.

LGRE RESOURCE MODULE

PURPOSE :
Implement the SR resource module. SR resources are very
similiar to classes in Object-Oriented Programming System
(OOPS). One resource implements the data structure and all
the operations for an Abstract Data Type. Many copies of a
resource may be created during runtime. Each resouce copy
is called a resource instance.

The most important operations for a resource are create and
destroy. The "Revised Report on the SR programming
Language" has a complete description of SR resources.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)

sr-create
crbp

size

[return]

Initialize the resource module.

Create a resource instance.
crb, IN-OUT, Create Resource
descriptor. This procedure assumes
that crbp points to an allocated
and initialized descriptor.

Destroy a resource instance.
rescap * , IN-OUT, Resource
Capability descriptor of the
resource to be destroyed.

Destroy all the resource instances on this
VM.

Start the resource initial proc. Allocate
memory for resource variables and initialize
the ID part of the resource capability.

int, IN, Byte size of memory block
required.
daddr, OUT, Memory block pointer.

sr-finished-init
Finish the resource initial process.
~nitialize the operation capabilities in the
resource capability.

sr-finished-final
The resource's final code has completed.
Notify the destroyer.

sr-build-rcap Create a null or noop resource capability.
rcP rescap, IN-OUT, Resource

capability.
size int, IN, Size of rcp descriptor.
OCP opcap, IN, Null or noop value.

IMPLEMENTATION FILES:
LGRE-Res0urce.c

IMPORTED ELEMENTS:
Name m e

sr-spawn Procedure
sr-activate Procedure
sr-kill Procedure
sr-remote Procedure
sr-kill-res-ops

Procedure

sr-own-alloc Procedure
sr-f ree Procedure
sr-res-free Procedure
sr-create-sem Procedure
P Procedure
V Procedure
sr-kill-sem Procedure
ossf-declare-free-list

Procedure
ossf-init-free-list

Procedure
ossf-get-node Procedure
ossf-free-node Procedure

RTS-OWN Data (Read)
mernh Data Type
ds-ush-mem Procedure
dest-st Data Type
creb-st Data Type
ms-tYPe Data Type
MIN-MESG-SIZE Data (Read)
OPcaP Data Type
dsop-opcap-seq Procedure

Module

sr-cursroc Data (Read)
proc Data Type
proc-type Data Type
INIT-SEQ-RES Data (Read)
INIT-REPLY Data (Read)
FREE-SLOT Data (Read)
FINAL-REPLY Data (Read)
sr-cur-res Data (Read)
sr-max-resources

sr-noop-res
sr-null-res
rint
rint-st
rpa t
rescap
s em
NULL-VM
NO0 P-VM
s r-my-vm

DEBUG
sr-net-abort
sr-rts-abort
sr-rts-warn
sr-check-stk
NOOP-SEQN
NULL-SEQN
Boo1
daddr
t index
paddr
s r-maxo f

Data (Read)
Data (Update)
Data (Update)
Data Type
Data Type
Data (Read)
Data Type
Data Type
Data (Read)
Data (Read)
Data (Read)

Procedure
Procedure
Procedure
Procedure
Procedure
Data (Read)
Data (Read)
Data Type
Data Type
Data Type
Data Type
Procedure

MCDE-Debug
MSEX-Exception
MCEX-Exception
MCEX-Exception
MCPR-Process
UT-U t i 1
UT-Ut i 1
UT-U t i 1
UT-U t i 1
UT-Ut i 1
UT-Ut i 1
UT-U t i 1

NOTES :
None.

LGRR REMOTE RX MODULE

PURPOSE :
This module executes remote requests from other VMs. It is
responsible for hiding the details of communication, and
executing the requested operation.

This module is closely related to the LGRT-Remote-Tx module.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name ~escrigtion

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

sr-init-remote-Rx
Initialize this module.

sr-rmt-create Service a request to create a resource on
this VM.

client sender, IN-OUT, The sender
descriptor. Includes all the
information about the request^.

sr-rmt-des troy
Service a request to destroy a resource on
this VM.

client sender, IN-OUT, The sender
descriptor. Includes all the
information about the request.

sr-rmt-destvm Service a request to destroy this VM.
client sender, IN-OUT, The sender

descriptor. Includes all the
information about the request.

sr-rmt-invk Service a request to invoke an operation on
this VM.

client sender, IN-OUT, The sender
descriptor. Includes all the
information about the request.

IMPLEMENTATION FILES:
LGRR-Remote-Rx.c

IMPORTED ELEMENTS:
Name

sr-f ree
sr-own-alloc
sr-freesender
sr-net-reply

invb
in-type
inv-type
RTS-OWN

Procedure
Procedure
Procedure
Procedure
Procedure

Procedure
Procedure
Procedure
Procedure

Data Type
Data Type
Procedure
Data (Read)

CRE~HEADER-SIZE
Data (Read)

sender Data Type
sender-is-seg Procedure
sendersid Procedure
sender-server-seg

Procedure
sender-client-seg

Procedure
sender-mesg Procedure
des t-s t Data Type
MIN-MESG-SIZE Data (Read)
sr-cursroc Data (Read)
crb Data Type
crb-rescap Procedure
crep-st Data Type
crep-rescap Procedure

DEBUG . Procedure
sr-abort Procedure
Boo1 Data Type
daddr Data Type
status Data Type
sr-maxof Procedure

Message Data Type
COPY Procedure

Module

DSMS-Message
DSMS-Message
DSNE-Ne twork
DSOS-Operating-System
DSPR-Process
DSRE-Resource
DSRE-Resource
DSRE-Resource
DSRE-Resource

MCDE-Debug
MCEX-Exception
UT-U t i 1
UT-Ut i 1
UT-Util
UT-U t i 1

V-system
V- sys t em

NOTES :
None.

LGRT REMOTE TX MODULE

PURPOSE :
 his module sends remote requests to the appropriate VM. It
is responsible for hiding the network interface.

This module is closely related to the LGRR-Remote-Rx module.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)
sr-init-remote-Tx

Initialize this module.

sr-remote Send a request to the remote VM and wait for
the reply.

des t vmid, IN, Remote VM identifier.
type ms-type, IN, Request type.
ph pach, IN, Request descriptor.
size short, IN, Message byte size.
[return] pach, OUT, Reply message

descriptor.

IMPLEMENTATION FILES:
LGRT-Remote-Tx.c

IMPORTED ELEMENTS:
Name TyBe Module

sr-wn-connect Procedure ~GVM-Virtual-Machine

sr-net-send Procedure OSMT-Message-Tx

ms-type Data Type DSNE-Network '
pach Data Type DSNE-Network
m i d Data Type DSVM_Virtual-Machine
s r-nknown Procedure DSVM-Virtual-Machine

DEBUG Procedure MCDE-Debug

status

NOTES :
None.

Data Type

LGVM VIRTUAL MACHINE MODULE

PURPOSE :
Implement the Virtual Machine (VM) module. This module
supplies the operations to create and destroy virtual
machines. Each virtual machine has its own memory space,
communication address, and RTS. Once a virtual machine is
created, then resource instances may be started on it.

The "Revised Report on the SR Language" has more information
about the SR concept of VMs.

DATA INTERFACE:
Name Description

VM-MAG I C When this parameter value is an argument to
an RTS, the RTS knows that it is being
started as a VM. 1.e. it is not the initial
program startup. Refer to LGm-~ain module
for more information about the RTS startup.

DATA TYPE INTERFACE:
Name Descrigt ion

None.

INVOCATION INTERFACE:
Procedure Descrigt ion

Parameters Description (Type, IN/OUT, etc .)
sr-ini t-vm Initialize this module.

rcvrsid Pid, IN, The communication address
of this VM.

phost
lhost

pexe

lexe

Specify the location of a physical machine.
Register the location n on the specified
phost with the executable path pexe.
However, this location can only be referenced
from this VM. Resources on other VMs must
execute their own locate statements before
using location n.

pmid, IN, The location identifier.
char * , IN, The physical host name.
int, IN, The length of phost
string.
char * , IN, The executable path of
the program.
int, IN, The length of pexe string.

sr-crevm Create a new virtual machine.
m n u m m i d * , IN-OUT, Identifier of the

new VM.
pm-num pmid, IN, Physical machine location

of the new VM.

sr-destvm Destroy a virtual machine.
vm mid, IN, The virtual machine

identifier.

IMPLEMENTATION FILES:
LGVM-Virtual- machine.^
LGVM-Virtual-Machine-i.h
LGVM-Virtual-Machine-h.h

IMPORTED ELEMENTS:
Name l'YRe Module

netpath Procedure LGNP-Netpath
remote Procedure LGRT-Remote-Tx

sr-f ree Procedure OSMM-Memory
sr-own-alloc Procedure OSMM-Memory
sr-invokeblockfunc

Procedure
sr-acceptblockfunc

Procedure
sr-termblockfunc

Procedure
sr-freepid Procedure
P Procedure
va-alist Data Type
va-dc 1 Data Type
va-1 i s t Data Type
va-s tart Procedure
va-arg Procedure
va-end Procedure

srsgmgroup Data (Read)
RTS-OWN Data (Read)
srx-addr Data (Read)
sr-rcvrjid Data (Read)
sr-net-exesath

Data (Read)
pach-s t Data Type
ms-type Data Type
num-s t Data Type
srxreply Data Type
system-errors Data Type
pidnode Data Type
blockfunc Data Type
s em Data Type
SRDIR Data (Read)

SRLIB Data (Read)
NOOP-VM Data (Read)
NULL-VM Data (Read)
SRX-VM Data (Read)
MAx-VM Data (Read)
WLTURE-PRIO Data (Read)
WLTURE-STKSIZE

Data (Read)
sr-my-machine Data (Read)
s r-W-vm Data (Read)
s r-vmda t a Data (Update)
sr-vmpool Data (Update)
pmid Data Type
pmda t a Data Type
m i d Data Type

sr-dbg-f lags Data (Read)
DEBUG Procedure
sr-rtserror Data (Update)
sr-abort Procedure
sr-net-abort Procedure
Pid Data Type
sr-check-sp Procedure

Systemcode Data Type
SelectionRec Data Type
get env Procedure
getwd Procedure
strcpy Procedure
Create Procedure
Ready Procedure
Receivespecific

Procedure
MapRemoteHost Procedure
Exec Program Procedure
QueryWorkstationConfig

Procedure

V- sys t em
V-system
V-system
V- sys t em
V-system
V-system
V- sys t em

V- sys t em
V-system
V- sys t em

NOTES :
None.

RTS MACHINE SUBSYSTEM (MC) DESCRIPTION

Function of the Machine Subsystem

The Machine Subsystem is the lowest level of the RTS. Every

other subsystem in the RTS depends on it, either directly or

indirectly.

This subsystem is a mixed collection of modules. There are two

main reasons for including modules in this subsystem. Some

modules are included because they are used by almost every other

module in the RTS. Eg. the MCDE-Debug module. Others are

included because they hide machine-specific details. Eg. the

MCPR-Process module. In general, modules are put in this

subsystem because they belong at the bottom of the RTS system

dependency diagram.

Machine Subsvstem Desisn

Most of the Machine subsystem design is straightforward. Each of

the modules supplies a few procedures to manipulate their simple

module.

MCDE DEBUG MODULE

PURPOSE :
Implement debugging support for the RTS modules.

DATA INTERFACE:
Name ~escription

SRXDEBUG UNIX Environment variable which can be used
to specify the debug statements to be turned
on.

DATA TYPE INTERFACE :
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

mcde-init-debug
Specify which debug statements to be
printing.

char *, IN, A string of debug
flags. If a flag is on that
indicates that the associated group
of debug statements is "turned on".

IMPLEMENTATION FILES:
MCDE-Debug.c
MCDE-Debug.h

Print debugging values under format f, if
this statement is "onq1.

char * , IN, Debug group identifier.
Only one of the flags in this
string should be on.
char * , IN, Format string for
print•’.
int, IN, First debug value to be
printed.
int, IN, Second debug value to be
printed.
int, IN, Third debug value to be
printed.

IMPORTED ELEMENTS:
Name m e Module

V-system getenv Procedure

NOTES :

None.

MCEX EXCEPTION HANDLER MODULE

PURPOSE :
Implement a machine level exception handler for the RTS.
This module handles all exceptions, including those which
occur when the SR program is running on more than one VM.
In this case, a program abort must stop every resource
instance on each VM.

DATA INTERFACE:
Name Description

sr-trace-flag Indicates if tracing is turned on. Tracing
causes some debug-type statements to print
information about the current state of the
program.

sr-rtserror Contains a character string which describes
the last error that occurred.

sr-my-label Error label to indicate which VM the error
message came from. It contains the m i d .

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

mcex-error Print an RTS error message.
s char * , IN, Error message string.

mcex-warn Print an RTS warning message.
s char *, IN, Warning message string.

mcex-abort Print a fatal error and abort.
s char *, IN, Message string.

mcex-net-abort Print a fatal network communication error and
abort.

s char * , IN, Message string.

mcex~stk~overflow
Print a stack overflow message and abort.

mcex-stk-underflow
Print a stack underflow message and abort.

mcex-stk-corrupted
Print a corrupted stack message and abort.

mc ex-s top stop execution of the SR program on all VMs.
exitcode int, IN, UNIX-style exit code.

IMPLEMENTATION FILES:
MCEX-Excepti0n.c
MCEX-~xcept ion. h

IMPORTED ELEMENTS:
Name

srjgmgroup
nun-s t
ms-type
system-errors
sr-exec-up

stdout
s tderr
Send
Errorstring
fprintf
f f lush

Data (Read)
Data Type
Data Type
Data Type
Data (Read)

Data Type

Data Type
Data Type
Procedure
Procedure
Procedure
Procedure

Module

V- sys t em
V-system
V-system
V-system
V- sys t em
V- sys t em

NOTES :

None.

MCMM MEMORY MANAGEMENT MODULE

PURPOSE :
Implement memory management for RTS modules. This module is
just an interface to the machine memory management, but it
is convenient to abstract the interface in order to hide
machine differences.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)
mcmm_alloc Allocate a chunk of contiguous memory.

size int, IN, Byte size of memory
chunk desired.

[return] daddr, OUT, Pointer to allocated
memory chunk.

mc-f ree Free a chunk of contiguous memory.
addr daddr, IN, Pointer to allocated

memory chunk.

IMPLEMENTATION FILES:
MCMM-Mem0ry.h
MCMM-Memory . c

IMPORTED ELEMENTS:
Name TyBe Module

daddr
malloc
mf ree

Data Type UT-Utility
Procedure V-system
Procedure V-system

NOTES :

None.

MCPR PROCESS MODULE

PURPOSE :
Implement the process module at the machine level. This
includes creating a process context, changing contexts, and
context error checking. These operations can only be done
at the machine level because they manipulate machine
registers and the process stack.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name ~escription

paddr A procedure address.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)
mcpr-build-context

Create a process context.
PC paddr, IN, Process ' s initial

program counter.
stack daddr, IN, Pointer to the stack

area.
stack-size int, IN, Byte size of the stack.
argl int, IN, Process's first argument.
arg2 int, IN, Process's second argument.
arg3 int, IN, Process's third argument.
arg4 int, IN, Process's fourth argument.

mcpr-chg-context
Change to a new process context from the
current process context.

stack daddr, IN, Pointer to the new
process's stack.

mcpr-check-s tk
Check that the stack has not been corrupted.

IMPLEMENTATION FILES:
MCPR-Process . c

- Motorola 68000 Assembler code.

IMPORTED ELEMENTS:
NaXnt? Type Module

mc-stk-overflow
Procedure MCEX-Exception

mc-stk-underflow
Procedure MCEX-Exception

mc-stk-corrupted
Procedure MCEX-Exception

daddr Data Type

NOTES :

None.

RTS OPERATING SYSTEM SUBSYSTEM (0s) DESCRIPTION

Function

The Operating System (0s) Subsystem provides the functionality

that is normally associated with an Operating System. For

example, it supplies Message passing, Memory Management, a

Network interface, and SR Process Scheduling.

Desisn

The Operating System (0s) Subsystem is quite complex. There are

over a dozen modules and many of these modules depend on ten or

more other modules. To complicate the design further, this

subsystem seems to have a tendency to develop circular

dependencies. Fortunately, we have managed to break most of the

circular dependencies. However, there is one circular dependency

left.

The circular dependency that is left is 'caused' by the

OSNE-Network module's dependency on several LG-Language modules.

This particular dependency seems to be unavoidable. The

OSNE-Network module has more information on this dependency.

The other modules are fairly simple when regarded in isolation.

169

There are several different types of Free Lists to manage the

lists of descriptors. There are the 0s-type modules like the

Message modules, the OSSH-Scheduler module, the OSNE-Network

module, and OSS4-Semaphore module. There are also several

modules which are peculiar to SR or the V-system implementation.

The OSSX-Srx module is peculiar to SR. It ensures that each VM

number is unique. The OSPL-Pool module is peculiar to the V-

system implementation. It supplies a pool of V-system processes

to perform V-system blocking operations. Although the

connections between these modules are complex, each module is

straightforward.

OSGP GROUP MODULE

PURPOSE :
Implement the messages to process groups. There is a very
close dependency on the VM data structures because the VM
modules are the only modules that use process groups.

DATA INTERFACE :
Name Description

srsgmgroup the process GROUP identifier for this
ProGram.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

sr-vm-connect Connect to another VM by determining its
communication address. This procedure is
always successful. If there is any problem,
then the program is aborted.

vm mid, IN, VM to connect to.

sr-reply-findvm
Reply to a VM which is attempting to connect
to another VM. This procedure is always
successful. If there is any problem, then
the program is aborted.

client sender, IN-OUT, The client VM1s
message descriptor.

sr-j oin_pgmgroup
Add the current VM to the SR program's
process group. This procedure is always
successful. If there is any problem, then
the program is aborted.

new-rcvr Pid, IN, This VM's communication
address.

IMPLEMENTATION FILES:
OSGP-Group . c

IMPORTED ELEMENTS:
Name

s r-q-vm
s r-vmda t a
pach
ms-type
num-s t
findvm-reply
system-errors

MCDE-DEBUG
mcex-net-abort

sr-rtserror
Pid

mcex-abort

Systemcode
CreateGroup
JoinGroup

Procedure

Data (Read)
Data (Update)
Data Type
Data Type
Data Type
Data Type
Data Type

procedure
Procedure

Data (Update)
Data Type

Procedure

Data Type
Procedure
Procedure

Module

None.

OSIF INFINITE FREE LIST MODULE

PURPOSE :
Implement an infinite, unsafe free list of nodes.

A free list is a list of nodes that are currently unused.
This module supplies the operations to create the list, get
a node (from the free list), and free a node (return it to
the free list).

~t is an infinite list because if it ever runs out of nodes
on the free list, it will allocate more nodes to make sure
that the free list is never 'empty1.

It is an unsafe list because there is no mutual exclusion.
The operations implemented by this module do not guarantee
that only one process is modifying the list at any one time.
It is up to the invoking module to guarantee mutual
exclusion.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)
osif-declare-free-list

Declare the data structures needed for a free
list.

FreeList

NodePtr

C field name, IN-OUT, Free list
name.
C type, IN, Pointer type of the
list nodes.

osif-is-empty-list
Determine if FreeList is an empty list.

FreeList C field name, IN, Free list name.
[return] Bool, OUT, TRUE if List is empty.

FALSE otherwise.

osif-init-free-list
Create a new FreeList and add TotalNodes
number of nodes to the list.

FreeList C field name, IN, Free list name.

NodePtr

Nodestruct

TotalNodes

C type, IN, Pointer type of the
list nodes.
C type, IN, Structure type of the
list nodes.
int, IN, Number of nodes in the new
list.

osif-get-node Get a node from the FreeList and return it to
the caller. If there are no nodes available
and we can not allocate more memory, the
program is aborted.

FreeList C field name, IN, Free list name.
ErrorMsg char * , IN, Error message to be

displayed if there are no nodes
available.

Node glll-node, OUT, The 'new' node.

osif-free-node
Return a node to the FreeList.

FreeList C field name, IN, Free list name.
Node glll-node, IN, The new node.

IMPLEMENTATION FILES:
oSIF-~nfinite-Free1ist.h

IMPORTED ELEMENTS:
Name 'rYPe Module

Boo1 Data Type
C field name Data Type
C type Data Type
glll-list Data Type
glll-node Data Type
osuf-declare-free-list

Procedure
osuf-init-free-list

Procedure
osuf-is-empty-list

Procedure
osuf~ush Procedure
osuf_pop Procedure
mcmm_al loc Procedure

NOTES :

This module does not depend on the existence of the 'next'
field in the node record, as the OSUF-unsafe-FreeList module
does.

OSMM MEMORY MODULE

PURPOSE :
Implement a memory management for the RTS. This module
implements RTS allocation and implicit SR program
allocation. Explicit SR program allocation is handled by
the LGMS-Miscellaneous module.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

size
owner
[return]

addr

size
MemList
[return]

sr-own-alloc
size
owner
[return]

sr-f ree
addr

owner

Initialize Memory Managment module.

Allocate memory. Called from Generated Code
(GC) .

int, IN, Byte size of memory block.
rint, IN, Resource owner of memory.
daddr, OUT, Memory block pointer.

Free memory. Called from Generated Code
(GC) .

daddr, IN, Memory block pointer.

Allocate memory. Called from Generated Code
(GC). Add memory descriptor to the given
list.

int, IN, Byte size of memory block.
mernhdr, IN, Memory List.
daddr, OUT, Memory block pointer.

Allocate memory.
int, IN, Byte size of memory block.
rint, IN, Resource owner of memory.
daddr, OUT, Memory block pointer.

Free memory.
daddr, IN, Memory block pointer.

Free all memory belonging to the specified
resource.

rint, IN, Resource owner of memory.

IMPLEMENTATION FILES:
OSMM-Mem0ry.c

IMPORTED ELEMENTS:
Name TYRe

sr-make-sem Procedure
P Procedure
V Procedure

sem Data Type
memh Data Type
memhdr Data Type
dsmcreate-empty-mem-list

Procedure
dsm_pushmem Procedure

sr-cur-res Data (Read)
rint Data Type
rint-memory Procedure

daddr Data Type
mcpr-check-stk Procedure
mcmm_alloc Procedure
mc-f ree Procedure
mcex-abort Procedure
mcde-DEBUG Procedure

Module

NOTES :
None.

OSMR MESSAGE RECEIVE MODULE

PURPOSE :
Implement the message receive operations with the
appropriate V-system operations: Receive, and Reply.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

sender Pointer to a sender descriptor. The sender
descriptor is returned by the sr-net-recv
procedure. It contains information about the
message and the SENDER process.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

sr-msg-rx-start
Initialize this module.

max-clients int, IN, Initial number of in-
coming messages from client VMs,
this module will service at any one
time. If more messages arrive then
more memory will be allocated as
the messages arrive.

sr-net-recv Receive a message. Suspend the VM until a
message is received.

client sender, IN, Blank message
descriptor.

[return] sender, OUT, In-coming message
descriptor.

sr-net-reply Send a message in reply to a message received
through sr-net-recv.

client sender, IN, Out-going message
descriptor.

[return] Systemcode, OUT, Status of reply
operation.

sr-free-sender
Free up the resources associated with a
message descriptor.

client sender, IN, Message descriptor.

IMPLEMENTATION FILES:
OSMS-Messase Rx.c

IMPORTED ELEMENTS:
Name Tn?e

osif-declare-free-list
Procedure

osif-create-free-list
Procedure

osif-get-node Procedure
osif-free-node Procedure

sr-cur-res Data (Read)
sr-cursroc Data (Read)
Pid Data Type
pach Data Type
system-errors Data Type

daddr Data Type
Boo1 Data Type
MCDE-DEBUG Procedure
mcex-net-abort Procedure

SEGMENT-PRESENT
Data

REPLY-RETURN-CODE
Data

SYS-REPLY-CODE Data
REPLY-SEGMENT-BIT

Data
MsgSt ruct Data Type
Receive Procedure
Reply Procedure
MoveTo Procedure

NOTES :

Module

V-system
V-sys tem

V-sys tem
V-system
V-system
V- sys t em
V-system

This module is related to the OSMT-Message-Tx module.

OSMT MESSAGE TRANSMIT MODULE

PURPOSE :
Implement the message transmit operations with the V-system
Send operation.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

sr-net-tx-start
Initialize this module.

max-requests int, IN, Maximum number of out-
going messages (request messages)
this module will have outstanding
at any one time.

sr-net-send Send a message to another VM.
des t vmid, IN, Destination VM.
type ms-type, IN, Type of message.
packetH pach, IN-OUT, Message packet

header.
size unsigned, IN, Byte size of the

message.
[return] Systemcode, GUT, Status of send

operation.

sr-group-send Send a message to a group of V-system
processes.

dest Pid, IN, Process group identifier
type ms-type, IN, w p e of message.
packetH pach, IN-OUT, Message packet

header.
size unsigned, IN, Byte size of the

message.
[return] SystemCode, OUT, Status of send

operation.

IMPLEMENTATION FILES:
OSMS-Message-Tx.c

IMPORTED ELEMENTS:
Name ' nve

ossf-declare-free-list
Procedure

ossf-create-free-list
Procedure

ossf-get-node Procedure
ossf-free-node Procedure

InvokeMsg-st Data Type
blockf unc Data Type
sr-createprocpool

Procedure
sr-invokeblockfunc

Procedure
sr-acceptblockfunc

Procedure
sr-termblockfunc

Procedure

va-list Data Type
va-arg Procedure

pach Data Type
ms-tYPe Data Type
sr-cursroc data (Read)
Pid Data Type
sr-cur-res data (Read)
s r-vmda t a Data

MCDE-DEBUG Procedure
mcex-net-abort Procedure

SEGMENT-PRESENT
Data

MORE-REPLIES Data
MsgSt ruct Data Type
Send Procedure

NOTES :

Module

This module is related to OSMR-Message-Rx.

OSNE NETWORK MODULE

PURPOSE :
Implement a network interface. This module is responsible
for receiving all messages from the network and calling the
appropriate module to perform the requested operations.

DATA INTERFACE:
Name Description

None

DATA TYPE INTERFACE:
Name Description

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

sr-init-net Initialize the network interface.
s rx-addr Pid, IN, Address of SRX process.

sr-net-interface
Read all the
network.

IMPLEMENTATION FILES:
OSNE-Netw0rk.c

IMPORTED ELEMENTS:
Name

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

sr-reply-findvm
Procedure

sr-rtserror Data (Update)
sr-my-label Data (Read)
sr-stop Procedure
srsgmgroup Data (Read)
sr-join_pgmgroup

Procedure

outstanding messages from the

Module

sender Data Type
sr-freesender Procedure
sr-net-start Procedure
sr-net-recv Procedure
sr-net-reply Procedure
main Procedure

ms-type
num-s t
sr-exec-up
stdout
stdin
SRXPATH
VM-MAG I C
PROTO-VER
s r-my-vm

- reqs
~ a t a (Read)
Data Type
Data Type
Data (Update)
~ a t a (Read)
Data (Read)
Data (Read)
Data (Read)
Data (Read)
Data (Read)

MCDE-DEBUG procedure
mcex-abort procedure
mc ex-warn procedure
Pid Data Type

Systemcode Data Type
get env Procedure
Exec Program Procedure

V- sys t em
V-system
V- sys t em

NOTES :

This module is a 'design problem'. It is called from the
OSSH-Scheduler module, which is in the middle of the OS
Dependency Diagram, but it calls several of the LG-Language
modules, which depend on the OS subsystem. Unfortunately,
there does not seem to be any way to avoid this circular
dependency.

This circular dependency is unavoidable because OSNE must be
called from OSSH-Scheduler and it must call the LG modules.
Before we go any further, we will explain why the
OSSH-Scheduler must call OSNE and why OSNE must call the LG
modules.

The ~ ~ ~ ~ - ~ c h e d u l e r module is responsible for scheduling
tasks. Since the OSNE module must periodically check for
messages on the network, OSSH-Scheduler is responsible for
scheduling OSNE periodically. Therefore, OSSH-Scheduler
must call OSNE-Network.

The OSNE module must call the LG-Language modules because
OSNE is responsible for ensuring the operations requested by
the in-coming messages are executed. Unfortunately, all
these operations are implemented in the LG-Language
subsystem. Therefore, OSNE must call the LG-Language
modules.

Fortunately, the circular dependency is not as serious as it
appears. OSNE spawns SR processes to perform most of the
message operations. here fore, very little of the
LG-Language code is actually executed when OSNE calls the
LG-Language modules. Furthermore, the code that is executed
never calls OSNE either directly or indirectly. Therefore,
we do not have to worry about infinite recursion.

However, this dependency does make testing more difficult.
OSNE can not be completely tested until the LG-Language
subsystem is working, but it must be working in order to
test the 0s-Operating-System subsystem. We suggest that a
special test program with stubbed procedures be set up to
test the OSNE-Network module by itself. Then it can be used
with confidence in the 0s-Operating-System tests.

OSPL POOL MODULE

PURPOSE :
Implement a process pool module. This module is implemented
to accommodate the V-system blocking operations. In the V-
system, if you want to execute a blocking operation without
blocking the current process, then you must put the code for
the blocking operation in another process, called a helper
process, and send a message to the helper process. The
message contains the blocking operation code and any
parameters required for the operation.

In the V-system implementation of SR, we follow this V-
system model of one main process, and many helper processes
However, the main process is also receiving messages from
other VMs as well as the helper processes. Plus, there are
different types of helper processes. There are helper
processes to perform I0 operations, processes for Message
operations, and processes for VM operations.

This module simplifies the implementation by containing all
the code to create a V-system process pool, report process
pool errors, and synchronize with the other in-coming
messages.

This module supplies the operations to communicate with
process pools, and the operations used to implement the
process pools.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

pool Pointer to a process POOL descriptor.
InvokeMsg INVOKE MeSsaGe to a pool process.
block•’ unc BLOCKing operation codes. Values are:

REMOTE-SEND
CREATE-Virtual-Machine
FILE-FLUSH
FILE-READ
FILE-OPEN
FILE-CLOSE
FILE-SEEK
FILE-UNLINK

INVOCATION INTERFACE:
Procedure Descri~tion -

Parameters ~escription (Type,IN/OUT, etc.)

sr-initso01 Initialize the Process Pool module.

sr-createprocpool
Create a Process Pool.

NumProcess unsigned, IN, Number of processes
to be in the pool.

func paddr, IN, Procedure to execute in
the process.

priority short, IN, Process priority.
StkSize unsigned, IN, Byte size of process

stack.
[return] pool, OUT, The new pool descriptor.

sr-invokeblockfunc
Invoke a blocking function implemented in a
process pool.

poolptr pool, IN, The process pool.
f unc-num blockfunc, IN, The blocking

function to be executed.
argList va-list, IN, Pointer to an argument

list.

Pool Process Im~lementation O~erations

sr-acceptblockfunc
Accept a blocking function invocation.

message InvokeMsg, IN-OUT, The invocation
msg .

f unc-num blockfunc, OUT, The operation code
paramjtr va-list, OUT, The argument list.

sr-termblockfunc
Terminate the blocking function invocation.

message InvokeMsg, IN-OUT, The invocation
msg .

IMPLEMENTATION FILES:
OSPL-P0ol.c

IMPORTED ELEMENTS:
Name TyBe

sr-alloc Procedure
ossf-declare-free-list

Procedure
ossf-create-free-list

Procedure

Module

OSMM-Memory

OSSF-Safe-FreeList

OSSF-Safe-FreeList

ossf-get-node Procedure
ossf-free-node Procedure

sr-make-sem Procedure
P Procedure
V Procedure
va-list Data Type
va-dc 1 Data Type
va-start Data Type
va-end Data Type

sr-rtserror Data (Update)
pach-s t Data Type
sr-cursroc Data (Read)
Pid Data Type
sr-cur-res Data (Read)
dss4-sem-count Procedure
s em Data Type

paddr Data Type

Message
Systemcode
Create
Ready
Receivespec
Reply
Send
GetTeamRoot

Data Type
Data Type
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

V- sys t em
V-system
V-system
V- sys t em
V-system
V- sys t em
V-system
V-system

NOTES :

None.

0SS4 SEMAPHORE MODULE

PURPOSE :
Implement a semaphore module with the standard operations.
Semaphores are used to control process synchronization. Any
operating systems text will have an explanation of
semaphores.

DATA INTERFACE:
Name Description

None.

DATA TYPE INTERFACE:
Name Description

s em Pointer to a semaphore descriptor.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .
sr-init-sem Initialize the semaphore module.

sr-make-sem Return a new, initialized, semaphore
descriptor.

sr-init-val int, IN, Initial value of
semaphore counter.

[return] sem, OUT, New semaphore descriptor.

sr-kill-sem Destroy the semaphore.
SP sem, IN, Pointer to semaphore

descriptor.

Increment semaphore counter or unblock a
waiting process.

sem, IN, Pointer to semaphore
record.

Decrement semaphore counter or block the
calling process.

SP sem, IN, Pointer to semaphore
record.

sr-query-sem Return the value of the semaphore counter.
This is used by GC (Generated Code) to
determine the number of pending invocations
on a semaphore op.

sem, IN, Pointer to semaphore
record.
int, OUT, The semaphore counter
value.

SP

[return]

IMPLEMENTATION FILES:
OSS4- semaphore.^

IMPORTED ELEMENTS:
Name TYRe

awaken Procedure
block Procedure
sr-cswitch Procedure
osuf-declare-free-list

Procedure
osuf-is-empty-list

Procedure
osuf-init-free-list

Procedure
osuf-get-node Procedure
osuf-free-node Procedure

sr-cursroc Data (Read)
sr-cur-res Data (Read)

MCDE-DEBUG Procedure
mcex-abort Procedure
mcex-warn Procedure
sr-check-stk Procedure

Module

NOTES :
None.

OSSF SAFE FREE LIST MODULE

PURPOSE :
Implement a safe free list of nodes. It is a safe list
because each operation on a free list is protected by mutual
exclusion. The operations implemented by this module
guarantee that only one process is modifying the list at any
one time.

A free list is a list of nodes that are currently unused.
This module supplies the operations to create the list, get
a node (from the free list), and free a node (return it to
the free list).

DATA INTERFACE:
Name ~escription

None.

DATA TYPE INTERFACE:
Name ~escription

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type, IN/OUT, etc .)

ossf-declare-free-list
Declare the data structures needed for a free
list.

FreeList C field name, IN-OUT, Free list
name.

NodePtr C type, IN, Pointer type of the
list nodes.

ossf-is-empty-list
Determine if FreeList is an empty list.

FreeList C field name, IN, Free list name.
[return] Bool, OUT, TRUE if List is empty.

FALSE otherwise.

ossf-init-free-list
Create a new FreeList and add TotalNodes
number of nodes to the list.

FreeLis t C field name, IN, Free list name.
NodePtr C type, IN, Pointer type of the

list nodes.
Nodes t ruct C type, IN, Structure type of the

list nodes.
TotalNodes int, IN, Number of nodes in the new

list.

FreeList
ErrorMsg

Get a node from the FreeList and return it
the caller. I f there are no nodes availabl
the program is aborted.

C field name, IN, Free list name.
char * . IN. Error message to be
displayed if there are no nodes
available.

Node glll-node, OUT, The 'new' node.

ossf-free-node
Return a node to the FreeList.

~ r e e ~ i s t C field name, IN, Free list name.
Node gill-node, IN, The new node.

IMPLEMENTATION FILES:
OSSF-Safe-Free1ist.h

IMPORTED ELEMENTS:
Name m e

oss4-make-sem Procedure
P Procedure
v Procedure
osuf-declare-free-list

Procedure
osuf-is-empty-list

Procedure
osuf-init-free-list

Procedure
osuf-get-node Procedure
osuf-free-node Procedure

gill-list Data Type
gill-node Data Type

Boo1 Data Type
C field name Data Type
C type Data Type

Module

NOTES :

None.

OSSH SCHEDULER MODULE

PURPOSE :
Implement the 0s-level Scheduler module. This module
controls the processor. It assigns the processor to the
ready process which has been waiting the longest.

DATA INTERFACE:
Name ~escrigtion

sr-ready-list LIST of processes that are READY to run.
sr~max~c~switch_per~msg

MAXimum number of Context SWITCHes between
attempts to read MeSsaGes from the network.

sr-cur~roc CURrent PROCess that is running.
sr-num-blocked

NUMber of BLOCKED processes. They may be
blocked waiting for a semaphore, an io
operation, etc.

DATA TYPE INTERFACE:
Name ~escrigtion

None.

INVOCATION INTERFACE:
Procedure Descript ion

Parameters Description (Type, IN/OUT, etc .)

sr-cswitch Process context switch. Execute the next
process which is ready to run.

block Block the current process and place it on the
process queue.

procQ proc-queue, IN-OUT, The process
queue.

awaken Awaken the next process on the process queue.
P ~ O C Q proc-queue, IN-OUT, The process

queue.

sr-enqueue Add a process to the given queue.
P ~ O C Q proc-queue, IN-OUT, The process

queue.
procDesc proc, IN-OUT, Process added to

procQ.

sr-dequeue Remove a process from the given queue.
P ~ O C Q proc-queue, IN-OUT, The process

queue containing procDesc.
procDesc proc, IN, The process descriptor.

IMPLEMENTATION FILES:
OSSH-Schedu1er.c

IMPORTED ELEMENTS:
Name 'wT?e Module

sr-net-interface
procedure OSNE-Network

sr-stop procedure OSEX-Exception

dscl~class~count
procedure

dsco~co~count procedure
dsop-oper-count

procedure
sr-cursroc data (Update)
sr-ready-queue data (Update)
proc data type
proc-queue data type
dspr-append-procQ

procedure
dspr-delete-procQ

procedure
dspr-f ree-proc

procedure
dsrm-rem-count procedure
dsre-rint-count

procedure
sr-cur-res data (Update)
sr-exec-up data (Read)

sr-chg-context
procedure MCPR-Process

sr-rtserror Data MCEX-Exception
rt s-warn procedure MCEX-Exception
MCDE-DEBUG procedure MCDE-Debug

NOTES :
None.

OSSX SRX MODULE

PURPOSE :
Supply a unique VM number for each new VM.

Currently this module is implemented as a separate V-system
process. This implementation affects the interface. This
module is initialized by starting the process rather than by
calling a procedure, and operations are 'calledf by sending
messages to the process. Therefore, some of the
'procedures' listed in the Invocation Interface have the
word 'Messagef appended to indicate they are really
messages, not procedures.

DATA INTERFACE :
Name ~escrigtion

SRXPATH filename PATH for the SRX executable file

DATA TYPE INTERFACE:
Name ~escription

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

version

main Initialize this module.
vm-magic char * , IN, This string should

match the VM-MAGIC constant. If it
does, we can be fairly certain that
this process has been correctly
started by an SR program.
char * , IN, This string should
match the PROTO-VER constant. If
it does, we can be certain that
this code is the same version as
the SR program code.
int, IN, The program group number
identifies the communication group
that this SR program belongs to.
By belonging to this group, we will
ensure that this process receives
all the broadcast messages.

REQ-Virtual-MachineNUM Message
Return a unique VM identifier.

[return] vrnid, OUT, A unique VM identifier.

MSG-EXIT Message
Program has terminated. Time to exit.

IMPLEMENTATION FILES:
OSSX-Srx.c
OSSX-Srx-i.h
OSSX-Srx-h.h

IMPORTED ELEMENTS:
Name TYPe Module

sr-pgmgroup Data (Update) OSGP-Group
sr-joinsgmgroup

Procedure OSGP-Group
sender Data Type OSMS-Message-Rx
sr-net-start Procedure OSMS-Message-Rx
sr-net-recv Procedure OSMS-Message-Rx
sr-net-reply Procedure OSMS-Message-Rx

srxreply Data Type DSNE-Network
ms-tYPe Data Type DSNE-Network
MAX-Virtual-Machine Data (Read) DSVM-Virtual-Machine
VM-MAG I C Data (Read) ~SVM-Virtual-Machine
PROTO-VER Data (Read) ~SVM-Virtual-Machine

init-debug Procedure MCDE-Debug
MCDE-DEBUG Procedure MCDE-Debug
Boo1 Data Type UT-Util

Systemcode Data Type V- sys t em

NOTES :
None.

OSUF mSAFE FREE LIST MODULE

PURPOSE :
Implement an unsafe free list of nodes. It is an unsafe
list because there is no mutual exclusion. The operations
implemented by this module do not guarantee that only one
process is modifying the list at any one time. It is up to
the invoking module to guarantee mutual exclusion.

A free list is a list of nodes that are currently unused.
This module supplies the operations to create the list, get
a node (from the free list), and free a node (return it to
the free list).

DATA INTERFACE:
Name ~escrigtion

None.

DATA TYPE INTERFACE:
Name ~escription

None.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

osuf-declare-free-list
Declare the data structures needed for a free
list.

FreeList C field name, IN-OUT, Free list
name.

NodePtr C type, IN, Pointer type of the
list nodes.

osuf-is-empty-list
Determine if FreeList is an empty list.

FreeList C field name, IN, Free list name.
[return] Bool, OUT, TRUE if List is empty.

FALSE otherwise.

osuf-init-free-list
Create a new FreeList and add TotalNodes
number of nodes to the list.

FreeList C field name, IN, Free list name.
NodePtr C type, IN, Pointer type of the

list nodes.
Nodestruct C type, IN, Structure type of the

list nodes.
TotalNodes int, IN, Number of nodes in the new

list.

osuf-get-node Get a node from the FreeList and return it to
the caller. If there are no nodes available,
the program is aborted.

FreeList C field name, IN, Free list name.
ErrorMsg char * , IN, Error message to be

displayed if there are no nodes
available.

Node glll-node, OUT, The 'newr node.

osuf-free-node
Return a node to the FreeList.

FreeList
Node

IMPLEMENTATION FILES:
OSUF-Unsafe-Free1ist.h

IMPORTED ELEMENTS:
Name Type

Boo1 Data Type
C field name Data Type
C type Data Type
glll-list Data Type
glll-node Data Type
glll-create-empty-list

Procedure
glll-is-empty-list

Procedure
glllsush Procedure
g l l l ~ o ~ Procedure
mc-a1 loc Procedure

NOTES :

This module assumes that
in the node structure is
interface and it happens
of the SR RTS.

C field name, IN, Free list name.
glll-node, IN, The new node.

Module

UT-U t i 1
UT-Util
UT-Util
GLLL-Linked-List
GLLL_Linked-Lis t

the name of the NextField pointer
always 'next'. This simplifies the
to be true for the current version

Currently (Feb/91), this module is only used by the
OSS4-Semaphore and OSPR-Process. Therefore, only the
Semaphore and Process data structures have to use the 'next'
fieldname.

OSVA VARIABLE ARGUMENT LIST MODULE

PURPOSE :
Implement a variable argument list for C functions. This
allows calling functions to invoke a function with any
number of arguments.

DATA INTERFACE:
Name ~escription

va-alist The variable name of the argument list. The
last argument in the C function header must
have this name.

DATA TYPE INTERFACE:
Name Description

va-dc 1 Declare the va-alist variable.

va-list Pointer to a variable argument. This is used
to declare the current argument pointer.

INVOCATION INTERFACE:
Procedure ~escription

Parameters ~escription (Type, IN/OUT, etc.)

va-start Initialize the current argument pointer.
list va-list, IN-OUT, Current argument

pointer.

va-arg Remove the current argument from the argument
list.

list va-list, IN-OUT, Current argument
pointer.

mode C type, IN, The type of the current
argument.

va-end Release all resources in use.
list va-list, IN-OUT, Current argument

pointer.

IMPLEMENTATION FILES:
OSVA-Variable-ArgList.c
OSVA-variable-ArgList-i.h

IMPORTED ELEMENTS:
None.

NOTES :
Refer to the LGMI~Miscellaneous, srmax function code for an
example of the use of this module.

SRSYS MODULE

PURPOSE :
Gather together a group of types which are used by SR
generated code.

DATA INTERFACE:
Name ~escription

None.

DATA TYPE INTERFACE:
Name Description

s em pointer to semaphore data record.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

None.

IMPLEMENTATION FILES:
srsys . h

IMPORTED ELEMENTS:
Name Module

None.

NOTES :

None.

UT UTILITY MODULE

PURPOSE :
Implement utility procedures and utility data types

DATA INTERFACE:
Name ~escription

NULL-SEQN Sequence number of null resource or operation
capability.

NO0 P-S EQN Sequence number of noop resource or operation
capability.

"Descriptor fields"
AD-MAXL String maximum length.
AD-ADDR Address.
AD-SIZE Size.

DATA TYPE INTERFACE:
Name Description

Boo1 Boolean type. Values are: TRUE, FALSE.
status Exit status code for SR primitive functions

such as create and invoke.
seq Sequence number for dynamic objects.
daddr Generic data address pointer.
C field name Name of a field name in a C record structure.

This name is stored in a text string.
C type A C type definition. This name is stored in

a text string.

INVOCATION INTERFACE:
Procedure Description

Parameters Description (Type,IN/OUT, etc.)

u t-maxo f
first
second
[return]

[return]

Return the maximum of two numbers.
int, IN, First number.
int, IN, Second number.
int, OUT, Maximum of first and
second.

Return the byte offset of a field within a
struct .

C type, IN, Struct declaration.
C field name, IN, Field name in
type.
int, OUT, Byte offset of id in
type.

Return the size of a field in a struct.
C type, IN, Struct declaration.

[return]

IMPLEMENTATION FILES:
uT-Uti1ity.h

IMPORTED ELEMENTS:
Name TYRe

None.

NOTES :

None.

C field name, IN, Field name in
type.
int, OUT, Size of id field in type.

Module

