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ABSTRACT 

Distributed programming languages are designed to make distributed programming 

simple through the use of powerful concurrent programming features and program 

checking which the compiler provides. Unfortunately, current distributed 

~rogramming languages are not yet sufficiently fast, dependable and portable 

enough to make them more appealing to use than the alternatives. Distributed 

programs are commonly programmed in third generation languages with system calls 

embedded in the code. These programs are fast but notoriously difficult to 

r. .-ogram. 

These problems can be alleviated by improving the Run Time Support of a 

distributed programming language. The Run Time Support implements the 

distributed constructs and other language constructs whose exact execution can 

only be determined at run-time. 

We re-designed the Run Time Support for the distributed programming language 

called Synchronizing Resources (SR). We succeeded in making it simpler, faster, 

easier to maintain, more portable, and easier to test. 

This thesis describes the software engineering techniques we used to improve the 

Run Time Support, the application of the techniques, and the improved design. 

Through our implementation, we justify our claims of simplicity, speed, 

maintainability, portability and testability. 

iii 
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CHAPTER 1 

INTRODUCTION 

1.1 Goals 

In the implementation of a distributed language, it is common practise to hide 

the implementation of the distributed concepts in a Run Time Support (RTS) 

system. The procedures in the RTS are invoked from the code generated by the 

compiler. This design separates, and simplifies the design of both the 

compiler and the RTS. 

The goal of this project is to improve the Run Time System (RTS) design of the 

distributed programming language SR (Synchronizing Resources) [ANDR861. We 

applied software engineering techniques to make the system simpler, easier to 

port, and more secure. In the process of re-designing the system, we gained a 

greater understanding of the RTS design issues. In general, this 

understanding leads to a better understanding of the issues associated with 

the design of distributed programming languages. 

1.2 Performance 

The initial goal of our project was to reduce the communication overhead of 

SR, running on a network of SUN workstations, using the UNIX operating system. 

Another operating system called V-system [ChLa86] has much faster 

communication primitives. 

We believed that by porting SR from UNIX to V-system, and replacing the UNIX 

communication sockets with V-system messages, we could greatly reduce the 

communication time of SR programs. Appendix A has the complete details on SR 

communication time. 



1.3 System Design Problems 

However, during the testing of the S R  RTS on V-system (SR/V), we encountered 

many difficulties. We found some very difficult bugs (errors), some of which 

took weeks to analyze. We determined that these errors were caused by a 

faulty system design. The design faults were so severe, that we were forced 

to re-design the system. 

This thesis describes our re-designed version of the S R  R T S ,  and the 

techniques we used to avoid further system design errors. We believe these 

techniques are applicable to other large systems, in particular, other 

distributed systems. 

1.4 Thesis Overview 

The remainder of this thesis is divided into the following chapters: 

2. Related Work: a review of other papers on the implementation of 

distributed programming languages. 

3. Background: a review of Software Engineering, the S R  language and the 

V-system operating system. 

4 .  System Design: a description of the system design for our 

implementation of S R ,  and the techniques we used in the design. 

5 .  Operating System Subsystem Design: a description of the design issues 

faced in the implementation of the Operating System subsystem. 

6. Conclusions: a summary of system design techniques and distributed 

programming language design. 



CHAPTER 2 

RELATED WORK 

2 .I Run T ime Support 

There have been very few papers written on the subject of distributed language 

RTSs. The ones that have been written tend to concentrate on the design 

details rather than the overall system design. 

Both Almes LALME851 and Lohr [LOHR881 implemented Remote Procedure Call (RPC) 

mechanisms to convert sequential Modula-2 programs into distributed programs. 

Almes' RPC mechanism is implemented on the V-system and Lohr's RPC mechanism 

is implemented on both MS-DOS and UNIX. However, there is no concurrency in 

these programs. If a program component of program P is currently executing on 

machine B, then the program component of P on machine A is suspended. These 

researchers use the RPC mechanism because it is easily adapted to existing 

sequential languages. However, we do not believe the major criteria for a 

successful distributed language is its similiarity to a sequential language. 

In fact, a distributed language should have mechanisms to support as much 

concurrency as possible, since a major advantage of distributing a program is 

to reduce the program's execution time. 

Almes evaluated the V-system in terms of its support for his RPC mechanism. 

He found the performance to be quite fast for both the small, fixed size 

messages implemented by the Send, Receive and Reply primitives and the large, 

variable size messages. The performance is analyzed in detail in his paper. 

On the ease-of-programming side, he found the V-system's kernel mechanisms are 

simple to understand, compared to the interprocess mechanisms of many other 

systems. However, he found that due to the two methods of communication 

(Send/Receive and MoveTo/MoveFrom), the code must decide before sending a 



message which communication method to use. This adds complexity to the RPc 

stub generator code. The communication method used for each RPC is determined 

by checking the amount of data being sent, and matching the data size to the 

most appropriate communication method. Data less than 32 bytes long can be 

sent with a Send; larger data are sent using a combination of a Send and 

MoveTo . 

Lohr's RPC mechanism was implemented for both the MS-DOS and the UNIX 

operating systems (0s). Unfortunately for our purposes, he does not analyze 

or evaluate either of the two 0s. Instead, he develops his own simple 

distributed operating system which runs on top of MS-DOS and UNIX. In his 

distributed operating system, communication is performed with RPC calls and 

abort messages, and security is maintained with user-names and the help of the 

local 0s. The RPC calls are implemented in the standard manner. The abort 

messages are sent to all remote components of program, when one component of a 

distributed program dies. For security checks, the distributed operating 

system assumes that a user has the same username on each machine. Then all 

security checks can be handled by the local 0s. 

Newton [NEWT871 implemented an RTS for Ada tasking which supports concurrency 

on the Mach operating system. Ada tasking is complicated to implement but the 

only process interaction mechanism supported is the rendezvous. SR is a more 

complete distributed language because of its flexible process interaction 

mechanism, of which rendezvous is but one example. 

Newton does not explicitly analyze the performance of communication primitives 

in Mach. However, it appears from some of his timing tests, that Mach 

performs context switches between processes in 0.5ms on a four processor VAX 

8200 which is almost twice as fast as the V-system context switch on a 10-MHz 

68000 microprocessor. Since there is no common machine which both Mach and 

V-system are implemented on, it is difficult to compare their performance. 

Newton does not evaluate the ease-of-programming using Mach primitives. 



Finley [FIN891 modified the SR/UNIX RTS for the Sequent multiprocessor, which 

runs a variant of UNIX. Curtis performed extensive performance tests to 

analyze performance problems. He also addresses many of the design issues 

associated with implementing a distributed language on a multiprocessor 

machine. Many of these design issues are associated with protecting critical 

sections. He does not comment on any system design issues. It appears he did 

not have to make any major changes to the SR/UNIX design. 

Swinehart et a1 [SWI86] describe the system design of the Cedar Programming 

Environment which includes an operating system, programming environment and 

programming language. The system design of this large project has some 

similiarities with the SR/V design. It is interesting to note the similiarity 

between the Cedar machine layer and the SR/V machine subsystem (described in 

section 4.3.4), and between the Cedar Nucleus level and the SR/V 

Operating-System subsystem (described in section 4.3.2). The Cedar system, 

like the SR/V system, had problems with circular dependencies (described in 

section 4.2.1), which the authors call "loops". The Cedar approach to 

resolving the circular dependencies is to use sophisticated programming 

techniques: call-back procedures, registered procedures, procedural objects 

and object classes. All of these techniques are explained in the [SWI86] 

paper. The SR/V approach has been to eliminate the circular dependencies 

through re-design, using standard programming techniques. We believe the 

elimination of circular dependencies is preferable to using unusual 

programming techniques which are not supported in every programming language. 

Our research is different than the above named research. We concentrate on 

the system design of an RTS. We attempt to eliminate the system design 

problems through the application of some basic software engineering 

principles, and we implemented the system in a standard third-generation 

language (C). Finally, we attempt to generalize the issues to all RTSs. 



CHAPTER 3 

BACKGROUND 

3.1 Design Principles useful in System Restructuring 

The Software Engineering (SE) field has been under investigation for a long 

time and the general principles are well understood. In this section we 

review the general principles that we found useful in the SR/RTS system 

restructuring, and introduce a set of techniques which use these general 

principles. 

3.1.1 Modularization 

The most important design technique we use is modularization. We used 

modularization to divide the RTS system into subsystems, and subsystems into 

modules. We also used modularization to extract modules whose functionality 

was originally duplicated in several other modules. In designing the modules 

we used the SE concepts of cohesion and coupling. More information about 

these concepts can be found in any SE textbook. 

3.1.2 Abstraction 

Abstraction is the separation of the interface from the implementation. The 

abstraction design technique is used to provide several layers of 

functionality [DIJ68]. For example, memory modules in an operating system can 

provide several layers of increasing functionality. At the lowest layer, a 

memory module could provide a memory block from any area of main memory. At 

the middle layer, another memory module provides a virtual memory block which, 

depending on the current access, is stored in main memory or on disk. At the 

top layer, a third memory module provides a virtual memory block in the 

current user's memory address space. 



3.1.3 Dependency Diagrams 

Another key design technique for clarifing the RTS design is the dependency 

diagram. These diagrams are used to show the dependencies between subsystems 

and modules. We define the depend relationship in the following manner: 

subsystem A depends on subsystem B if A uses a procedure, a data type, or 

anything which is implemented in subsystem B. The dependency diagram for the 

A and B subsystems is drawn below: 

The depend relationship and the dependency diagrams are defined similiarly for 

modules. 

We sometimes use the word use as a synonym for depend. 

3 . 2  SR language 

SR supports heavyweight virtual machines ( V M )  containing resources which 

contain lightweight processes. Each VM contains one address space unshared 

with any other VM. VMs may execute on the same or different physical 

machines. All communication, i.e. inter-VM, inter-resource and inter-process, 

is achieved through operation invocation. An operation is a generalization of 

a procedure. 

The remainder of this section describes resources, and the mechanisms for 

implementing and invoking operations. 

Resources, like modules in Modula-2, are the building blocks of SR programs. 



Following software design principles, a resource is used to implement a 

software abstraction such as a bounded buffer, a file system, or a process 

manager. Resources may use other resources. For example, the file system 

resource could use the bounded buffer resource. 

Each resource has a specification component, which declares the operations 

exported by the resource. The bounded buffer resource specification which 

exports the deposit and fetch operations looks like: 

resource bounded-buffer 

op deposit (val item:int) # val means value param. 

op fetch (res item:int) # res means result param. 

body bounded-buffer (size:inti separate # size is size of buffer 

The bounded buffer resource code that we use here is taken from [An01871 

Within a resource, the operations may be implemented by either a proc or an in 

statement. The groc is similiar to a procedure. It can be invoked at any 

time, and there may be many copies of one proc being executed at the same time 

by different processes. The in statement is contained in a groc. In its 

simplest form it waits for one particular operation to be invoked. When it 

receives that invocation, it executes the body of the in statement, sends a 

reply, and continues with the execution of the proc. In the more complicated 

form, an in statement may wait for any of several operations to be invoked. 

Receiving any of the operation invocations will cause the corresponding body 

of code to be executed, send a reply, and continue with the execution of the 

proc. Our example of a bounded buffer implements the deposit and fetch 

operations with an in statement inside a process. The resource body for the 

bounded buffer follows: 



body bounded-buf f e r  

var  b u f f [ O : s i z e - 1 1 :  i n t  

v a r  count:=O, front:=O, rear:=O 

process  worker 

do t rue  -> # repeat i n  stmt forever 

in deposit ( i t em)  & count<size -> # receive deposit  invoc 

buf  [rear]  := i tem 

rear := ( r e a r + l )  8 s i z e  

count++ 

[ I  f e t ch ( i t emi  & count>O -> 

i tem := b u f [ f r o n t ]  

front  := ( f r o n t + l i  8 s i z e  

count-- 

# receive  f e t c h  invoc.  

od 

end worker 

end bounded-bu f f er  

Before an operation can be invoked, the resource which implements the 

operation must be created. The create statement creates an instance of a 

resource on a VM, and returns a unique object identifying the resource 

instance, called a capability, which identifies the resource instance. 

Possession of resource A's capability by resource B allows B to invoke A's 

operations. Every invocation of an operation must specify the resource 

instance by including the resource's capability in the invocation statement 

SR provides two invocation statements: call and eend. A call statement causes 

the invoking process to be suspended until the operation is completed. The 

send statement causes the operation to start executing as a separate process. 



This means the invoking process executes concurrently with the invoked 

operation. An example of a resource which invokes the bounded buffer resource 

follows : 

resource user 

import bounded-buf f er 

body user0 

var bb: cap bounded-buffer # capability of b.b. resource 

initial 

var item: int # integer variable 

# create a buffer with room for 20 items 

bb : = create bounded-buffer (20) 

send bb . deposi t (5) # create process to deposit 5 

send bb.deposit(3) # create process to deposit 3 

call bb. fetch (item) # suspend until item is fetched 

write (item) 

call bb.deposit(2) # suspend until 2 is deposited 

call bb. fetch(item) # suspend until item is fetched 

write (item) 

destroy bb # destroy bb instance of resource 

end initial 

end user 

When an SR program starts, the default VM is located on the initiating 

machine. The main resource is created on the default VM and starts to 

execute. The main resource creates other resources which may contain new 



processes. The processes then communicate between themselves using the 

operation invocation and implementation statements described above. 

Together, the SR statements call, send, proc and in implement the following 

process interactions: 

Invocation Implementation Process Interaction 

call 

call 

send 

send 

proc 

in 

proc 

in 

remote/local procedure call 

rendezvous 

dynamic process creation 

message passing/semaphore 

The performance of these communication primitives is described in Appendix A, 

and detailed in [ATKI881. More information on the SR language is in fANDR861 

and [An01871 . 

The V-system supports teams which contain lightweight processes [CHER84]. 

Each team has its own address space, unshared by any other team. A process 

can create another process on the same team but it can not create a process on 

another team. It may create a new team with an initial process on either the 

same machine or another machine. 

The V-system communication is implemented with messages sent between client 

and server processes. A client process X sends a message to a server process 

Y on either the same team or on another team, when it requires the service 

controlled by Y. The client process is suspended until the server process 

replies to the message indicating the service has been performed. The above 

model is implemented with three system calls: Send, Receive and Reply. The 

Send call sends a 32 byte message to the specified process and blocks the 

sending process until a Reply is received. The Receive call blocks the 



receiving process until a message is received. The Reply from the receiver 

sends a message back to the process which is Send-blocked. This model is much 

simpler than the UNIX socket model and no initial startup is required. 

Once a server has received a Send message from a client, the server may 

initiate variable-size message transfers, using the MoveFrom and MoveTo system 

calls. The server may copy either to or from the client's address space. The 

portion of the address space available to the server is passed to the server 

in the initial fixed-size Send message. Since the client is suspended, there 

should be no problems with two processes accessing the same memory location. 

With this feature V-system ensures that large message transfers are still 

efficient. This would not be the case if only fixed-size messages were 

implemented. Note that care must be taken if there are other processes 

running on the client's team since they are not suspended. 

Cheriton explains the reasons for the V-system inter-process communication 

(ipc) primitives in [CHER84]. He designed the ipc primitives to "efficiently 

support procedural interfaces". In this respect he has certainly succeeded 

since V-system is still one of the fastest distributed operating system in 

terms of message passing, and the Send primitive can easily be used to 

simulate a procedure call. Furthermore, he claims that implementing a 

non-blocking Send primitive is unnecessary for two reasons. First, he has 

experience with a distributed operating system that implements a non-blocking 

Send. He writes "practise showed that during execution, a process typically 

suspended execution to wait for a reply immediately after sending a message." 

Second, "such concurrency in communication is difficult to use and imposes an 

excessively high cost on the implementation", due to the message buffer 

management. He prefers to use additional lightweight processes to achieve 

concurrency. More detailed information on the V-system is in the manual 

[ChLa86 I . 

Note that the V-system synchronous, blocking communication primitives contrast 

with the SR send invocation which is asynchronous and non-blocking. Our 



implementation of the send using V-system communication primitives is 

explained in section 5.2.4. 



CHAPTER 4 

DESIGN ISSUES 

4.1 Overview 

4.1.1 Introduction 

In this chapter, we describe the general design problems that we encountered 

in the SR/V RTS design and describe our solutions. The complete description 

of the SR/V design is in Appendix B. We have divided the design issues into 

three categories: system design, module design and management issues. System 

design answers questions to do with the structure of the system. For example, 

how do the modules fit together? How is the system divided into modules? On 

the other hand, module design answers questions about individual modules. For 

example, how does the scheduler module decide which process to execute next? 

How does the semaphore module store the data about processes blocked on a 

semaphore? Of course, the system design can not be completely separated from 

the module design. Often a change in a module design will cause a change in 

the system design, and vice versa. Nevertheless, the division between system 

and module design provides us with two levels of abstraction, which makes the 

entire design easier to understand. Management issues arise because the 

project is large, complicated and requires much time and effort to complete. 

Management issues deal with questions such as: How large? How complicated? 

How much time, and how much effort? 

4 . 1 . 2  SR RTS 

The SR RTS is responsible for implementing the following SR concepts: VMs, 

resources, processes, operation types, and SR call and send invocations. The 



SR call and send invocations must be executed either locally or remotely, 

depending on the context of the invocation. 

Figure 1 shows the SR RunTime System Dependency Diagram with dependencies 

between the RTS subsystems. We applied the software engineering techniques 

described in section 3.1 and divided the RTS into the six subsystems shown in 

Figure 1 (the V-system box is not a part of the RTS): Language (LG) subsystem, 

Operating System (0s) subsystem, Machine (MC) subsystem, Data Structure (DS) 

subsystem, Generic Lists (GL) subsystem and Utility (UT) subsystem. 

We did not implement and test the entire RTS. We wrote a system design and 

documented it for the entire RTS. However, we only implemented the Operating 

System (0s) level and below. That is all of the RTS, except the Language (LG) 

subsystem. The OS level is the most significant part of our design and 

required the most design effort. The LG level would require much work to 

implement but the design issues are minor. We feel that we have verified our 

design and our design approach by implementing the OS level. 

4.1.3 Design Goals and Tests 

Throughout our design, we have striven to achieve the following goals: 

simplicity, security, and portability. The goal of simplicity means we choose 

to use standard designs instead of custom, elaborate designs, whenever we can. 

We use Hoare's explanation of security in language design [HOA81]. Hoare 

suggests that every result and error message must be understandable in terms 

of the source code. A secure language, again according to Hoare, means that 

it must be "logically impossible" for a program to cause the computer to run 

wild at compile-time or run-time. Portability means the language 

implementation can be easily changed to run on a different machine and/or a 

different operating system. The issue of portability will be dealt with in 

the next chapter on Operating Systems. 
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In this chapter, we explain our system design and show what we have done to 

make it simpler and more secure. We have used two tests in our attempt to 

weed out overly complex and insecure designs. 

The first test involves writing. For each module and subsystem, there is a 

description. The purpose of the module is described in one sentence and the 

internal design is described in one paragraph. Any special provisions for the 

module's security are described in further paragraphs. If the module purpose 

can not be described in one sentence, then its cohesion is too low. If the 

design can not be described in one paragraph then it is too complex and it 

should be divided into two or more modules. Several times, we found that the 

process of writing brought out new and better designs. Although this test is 

not rigorous, in practise it always helps us find errors and improve the 

design . 

The second test follows the first test. The module or subsystem design 

document is submitted to one or two other reviewers who review the documents 

for simplicity, security and errors. Any concerns the reviewers have are 

passed onto the designer who is responsible for improving the design. This 

system seems to work best if the reviewers are the designer's peers; eg. in 

this case, the designer's peers are fellow graduate students. 

4.2 Application of the Design Techniques 

4.2.1 A System Design Problem: Circular Dependencies 

A major problem in RTS system design is circular dependencies. Swinehart et 

a1 describe circular dependency problems, which he calls "loops" in [SWI861. 

The simplest example of a circular dependency is a mutual dependency which 

occurs when Subsystem A depends on Subsystem B and Subsystem B depends on A. 

There are also indirect circular dependencies with 'larger' circles. There 

may be four or five subsystems in the circular dependency, each subsystem 



depending on the next subsystem, and the last subsystem depending on the first 

subsystem ( Eg. A -> B -> C -> D -> A 1 .  Circular dependencies may also occur 

between modules, in either the mutual or indirect form. 

These circular dependencies are a problem for several reasons. First, they 

may indicate a mutually recursive procedure call. If this recursion is not 

completely understood, it could cause infinite recursion to occur every time 

the program is run, or, worse, just under special circumstances! Therefore, 

every circular dependency on the dependency diagram must be investigated to 

make sure that the design has safeguards against infinite recursion. 

The second problem is deadlock due to resource contention. This type of 

deadlock occurs in the following scenario. Subsystem A has control of 

resource X, and it calls subsystem B. B needs to use X, and attempts to get 

control of it, but fails because A already has X. B then waits for the 

resource to be released. Unfortunately, it will wait forever, since A is not 

going to release the resource until B is finished. A common example of this 

scenario occurs in systems which attempt to report an 'out of memory' error 

but hang instead. The system hangs because the exception report mechanism 

attempts to allocate memory to hold the error message, but is unable to 

because the system is already out of memory! 

The third problem with circular dependencies occurs during the testi 

final system. There are two general strategies that can be applied 

testing: top-down testing and bottom-up testing. In the first case, 

most module on the dependency diagram is tested first, with all the 

ng of the 

to this 

the top- 

lower 

level modules stubbed out. Then, one of the immediately lower modules is 

tested with the top-most module. The testing continues in this manner, adding 

lower-level modules until the entire system is included in the tests. In 

bottom-up testing, one of the bottom level modules is tested first, and the 

upper modules are added, one at a time, until the entire system is being 

tested. In both cases, the testing procedures depend on the assumption that 

bugs found during testing are most likely to be caused by the last module 



added to the test system. This assumption can enormously simplify and speed- 

up the testing process when a large system is being tested. 

The problem with circular dependencies is that they do not have a top or a 

bottom! Therefore, we can not use the top-down, or bottom-up testing 

procedures. We have to develop special testing procedures for the system. 

These special procedures will complicate and slow down the testing process. 

When bugs are found, they will be more difficult to find because we can not 

assume that the original modules in the system have been completely tested. 

In general, removing a circular dependency removes any chance of infinite 

recursion and simplifies the design. The simpler design avoids some tricky 

deadlock errors, and makes the testing simpler and quicker. 

4.2.2 Circular Dependency Solutions 

Due to all the problems with circular dependencies, much effort was devoted to 

removing them from the system design. In this section we describe some of the 

original circular dependencies, and the techniques used to remove them. 

Figure 2 shows a simplified dependency diagram for an early version of the 

SR/V RTS system design before the circular dependencies were removed. Note 

the many circular dependencies. This is much more complex than the new SR 

RunTime System Dependency Diagram in Figure 1 and the Operating System (0s) 

Module Dependency Diagram in Figure 3. Taken together Figure 1 and Figure 3 

represent most of the complexity of the latest SR/V design. The major 

improvement in the new design is the removal of most of the circular 

dependencies. 
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4.2.2.1 Subsystem-Level Modularization 

The biggest change to the design occurred when we realized that several of the 

circular dependencies were caused by the underlying RTS data structure. For 

example, each resource object has a list of processes associated with it, and 

each process object has a reference to its resource. In the original design, 

the resource module calls the process module to delete all process objects on 

a resource object when the resource object is deleted. Similarly, the process 

module calls the resource module to remove one process object from the 

resource object's list when the process is deleted. Thus we have a circular 

dependency! 

Figure 4 shows a picture of the circular dependency between the process and 

resource modules with the delete procedures and the data structures hidden 

inside the modules. 

Note that the circular dependency is caused by the circularity in the data 

structure. The software engineering principle of information hiding states 

that data structures should be hidden inside each module. In the original 

design, this principle is followed perfectly. The resource module hides the 

resource data structure and the process module hides the process data 

structure. Unfortunately, the resource data structure depends on the process 

data structure, and the process data structure depends on the resource data 

structure. Since each module hides one data structure, the circular 

dependency in the data structure causes a circularity in the module 

dependency. In particular, a delete operation on either a process or a 

resource requires an invocation of an operation from the other module. 

Since we could not see an easy way to remove the circularity from the data 

structure, we decided to limit the effects of the circularity. Using the 

modularization technique, we extracted the data structure access and list 

manipulation procedures to another subsystem called the Data Structure (DS) 



subsystem. Now, all the circular dependencies caused by the data structure 

are isolated to the DS subsystem. Furthermore, these circular dependencies 

are all declaration dependencies. Eg. the DS process module depends on the DS 

resource module to have a resource object declaration, and the DS resource 

module depends on the DS process module to have a process object declaration. 

These circular data declaration dependencies are a small problem compared to 

the circular procedural dependencies. 

Figure 5 shows a picture of the new process and resource modules with the 

delete procedures associated with each module. 

A.s a side effect of this design decision, we noticed that the DS modules 

shared many of the same list operations. So, we created yet another subsystem 

called the Generic List (GL) subsystem to hold these list operations. This 

modularization reduces the amount of duplicate code and makes the remaining 

code easier to read. 

4.2.2.2 Layers of Abstraction 

Another kind of circular dependency, where one module encompasses different 

abstraction layers, can be removed by dividing a module into two layers of 

abstraction. 

In our case, a circular dependency occurs between the Memory and Semaphore 

modules. The Memory module depends on the Semaphore module to provide 

semaphores which protect the critical sections in the memory list operations. 

The Semaphore module depends on the Memory module to provide memory blocks for 

the semaphore data structures. These data structures must be allocated at run 

time because the size of the data structure is determined by a run time 

parameter. Thus we have a circular dependency: Memory -> Semaphore -> Memory. 







This circular dependency is broken by dividing the Memory module into two 

smaller modules. The simplest Memory module is called the machine (MC) level 

Memory module (MCMM-Memory). It uses the V-system memory management routines 

to allocate and free memory. It reports an error if there is any problem, but 

it does not keep track of the memory blocks allocated. The more complex 

Memory module is called the operating system (0s) level Memory module 

(OSMM-Memory). It uses the MCMM-Memory module to allocate and free memory, 

and it keeps track of all the memory allocated, with the help of the Semaphore 

module. The Semaphore module now depends on MCMM-Memory to allocate and free 

semaphore data structures. We now have a linear dependency: OSMM-Memory -> 

OSS4-Semaphore -> MCMM-Memory. 

This new linear dependency design requires that OSS4-Semaphore keep track of 

the memory blocks it allocates. This turns out to be very simple because 

OSS4-Semaphore never really frees any memory blocks, it just re-uses them for 

other semaphores. 

4.2.2.3 Module Splitting 

Another kind of circular dependency, where one module performs two or more 

functions at the same level, can be removed by splitting a module in half. 

From the outside, the original module appeared to represent a well defined, 

highly cohesive module. However, after the division, the two new modules were 

found to have simpler internal designs and, most important, the circular 

dependency is gone. 

The circular dependency involves four modules as follows: Network -> Message - 

> Semaphore -> Process (Scheduler) -> Network. The Network module is 

responsible for processing all requests from other VMs. It uses the Message 

module to read the incoming messages. The Message module uses the Semaphore 

module to protect the critical sections in the message list operations. The 



Semaphore module uses the Process (Scheduler) module to block processes that 

have blocked on a semaphore and to awaken processes that are woken by a 

semaphore operation. Finally, the Process (Scheduler) module calls the 

Network module periodically to read the latest requests from other VMs. This 

long chain creates a circular dependency. 

In fact, this dependency was not found until we started testing. The system 

hung in an infinite loop! The loop occurs as soon as the system runs out of 

message blocks. Then the Message module blocks on its message list semaphore, 

which causes a context switch. The Scheduler calls the Network module to read 

the incoming requests. Network calls the Message module and it blocks on the 

message list semaphore, and so on, and so on. . . 

The solution to this circular dependency was to divide the Message module into 

two modules. The Message-Rx module is responsible for receiving (Rx) messages 

and the Message-Tx module is responsible for transmitting (Tx) messages. 

Although these two modules depend on each other to share a common message 

format and a communication protocal, they do not have any direct procedural 

dependencies. In fact, the internal design of either module can be changed 

completely without affecting the other module. Therefore, both of the new 

modules have high cohesion. 

Since the two new modules have no procedural dependencies, they break the 

circular dependency. The new linear dependency is OSMT-Message-Tx -> 

OSS4-Semaphore -> OSSH-Scheduler -> OSNE-Network ->  OSMR-Message-Rx 

4.2.2.4 Unresolved Circular Dependencies 

There are several circular dependencies that remain in the final RTS design. 

We keep these circular dependencies for two reasons. Either they can not be 

removed because of the inherent circular dependency between communications and 

processes in a distributed system; or, in the case of very small circles, the 

effort to remove the circular dependency is more work than the benefit gained. 



For each circular dependency, we describe the dependency, why it is not 

removed, and what we did to avoid the problems associated with circular 

dependencies. 

The biggest and most important remaining circular dependency occurs between 

the Operating System ( O S ) ,  and Language (LG) subsystems, as shown in Figure 1. 

The OS subsystem depends on the LG subsystem to execute remote requests 

received from other VMs, by the OSNE-Network module. The LG subsystem 

contains both the procedures to implement the requests and the processes 

(LGPR-Process) which execute the procedures. In turn, the LG subsystem 

depends on the OS subsystem for memory management, process pools, free lists, 

variable argument lists, semaphores, process scheduling and message 

communication. This is a very complicated circular dependency. 

We feel the OS - LG circular dependency is rooted in the core design of a 

distributed, message-passing system. Such a system is built around the 

intertwined concepts of process and message. Some process operations depend 

on messages to deliver the operation request, and message receivers depend on 

the process operations to execute the operations they receive. Furthermore, 

the VM operations and the Resource operations both depend on messages to 

deliver their requests and they are invoked by the message receivers. 

Therefore, the final design reflects a central problem with the underlying 

concept of intertwining the process and message concepts. 

We had some trouble debugging this large circular dependency. In the end, we 

traced the procedure calls to make sure that there are no procedures which end 

up calling themselves. We were able to break this procedure circularity by 

making the message receiver create another process to execute the operation. 

The process creation was simplified to ensure it could not call the message 

receiver. Since the operations are invoked from another process, they can 

call whatever they wish, without creating a procedure circularity. 

For the testing of the OS procedures, we have written an entire module of 
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stubs to replace the LG procedures called from the message receiver. This 

extra code is necessary to isolate the OS subsystem during testing. 

There are many circular dependencies in the DS subsystem. Figure 6 shows a 

picture of the DS dependencies. These are all data type dependencies. They 

do not cause any control problems. Each module only depends on the other 

modules to supply it with a type declaration name. There is no possibility 

for infinite recursion, because there is no executable code in these circular 

dependencies. For testing, we must ensure that all these data declarations 

compile without error. Then, we must test the modules and subsystems which 

use the DS subsystem. Note there is no direct testing of the DS subsystem. 

Finally there are two small circular dependencies in the LG subsystem. Figure 

7 shows the LG dependencies. The LGIV-Invoke module depends on the 

LGCO-Concurrent module to manage concurrent invocations. The LGCO-Concurrent 

module depends on the LGIV-Invoke module to prcvide the procedure to create 

and initialize an invocation descriptor. There is no possibility for infinite 

recursion, and the descriptor creation procedure is easily stubbed out during 

testing. 

The LGVM-Virtual-Machine module depends on the LGRT-Remote-Tx to deliver 

requests to remote machines. The LGRT-Remote-Tx module depends on the 

LGVM-Virtual-Machine to retrieve and store information about the remote VM's 

communication addresses. Again, there is no possibility for infinite 

recursion and the two LGVM procedures are easily stubbed out during testing. 

In summary, there are only a few circular dependencies left in the RTS design. 

In the worst case, the circular dependency is caused by the interdependency 

between messages and processes in this design, which is common to many 

distributed systems. In the other cases, the circular dependencies are small, 

easily explained, trouble-free and require very little work during testing. 
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4.3 Subsystem Design Issues 

4.3.1 Language (LG) Subsystem Design 

The Language (LG) Subsystem provides the functionality for SR Language- 

specific concepts, which are too complex to implement with in-line code. For 

example, the LG subsystem implements Virtual Machines, Resources, and 

Operations. Almost every module in LG implements an SR concept or statement 

directly. 

The dependencies between LG modules are fairly simple. Most modules only 

depend on one or two other LG modules. The two exceptions are LGMN-Main which 

calls almost every other module to initialize the RTS, and LGIV-Invoke which 

calls several other modules to implement the several different types of 

invocation. 

The LG dependencies on other Subsystem modules are more complex. The LG 

modules only depend on two or three 0s-Operating-System modules, but they 

often depend on six or seven DS-Data-Structure modules. The reason for the 

large number of DS modules is that the LG modules often must traverse the RTS 

data structure to find the information they need. In the course of traversing 

the data structure, they use the DS descriptors and data access procedures. 

Most LG modules also use several of the MC-Machine modules. Taken 

collectively, the LG modules use almost every other module in the RTS. This 

is not surprising since LG supplies most of the interface to the Generated 

Code (GC), and the rest of the RTS is written to support that interface. 

There are two circular dependencies in the LG Dependency Diagram, shown in 

Figure 7. Neither of them are cause for concern. 

The circular dependency between LGVM-Virtual-Machine and LGRT-Remote-Tx occurs 

because the LGVM sr-create and sr-destroy procedures need to do sr-remote 



calls, and the LGRT sr-remote procedure needs to call sr-vm-connect in LGVM if 

the requested VM's communication address is unknown. Since the sr-vm-connect 

procedure does not depend on any other LG modules, there is no possibility of 

recursion or deadlock. We will need a stub for sr-vm-connect during the 

testing of LGRT-Remote-Tx. 

The circular dependency between LGIV-Invoke and LGCO-Concurrent occurs because 

the LGIV sr-invoke procedure depends on LGCO to implement concurrent 

invocations, and LGCO must sometimes make a copy of an invocation descriptor, 

which it does by calling sr-dup-inv in LGIV. The sr-dup-inv procedure has no 

dependencies other than the obvious need to use the invocation descriptor. 

SR-dup-inv is a simple copy procedure. There is no possibility of recursion 

or deadlock. We will need a stub for sr-dup-inv during the testing of 

LGCO-Concurrent. 

The internal design of some of the LG modules is quite complex. In particular 

the LGIV-Invoke and the LGIN-Input-Op modules must distinguish between many 

different types of invocations and implement each type as efficiently as 

possible. These design issues are described in greater detail in [ANDR86]. 

4.3.2 Operating System (0.5) Subsystem Design 

The OS Subsystem shown in Figure 3 provides the functionality that is normally 

associated with an Operating System. For example, it supplies Message 

passing, Memory Management, a Network interface, and SR Process Scheduling. 

The OS Subsystem is quite complex. There are over a dozen modules and many of 

these modules depend on ten or more other modules. To complicate the design 

further, this subsystem seems to have a tendency to develop circular 

dependencies. Fortunately, we have managed to break most of the circular 

dependencies. However, there is one circular dependency left. 





The circular dependency that is left is 'caused' by the OSNE-Network module's 

dependency on several LG-Language modules. This particular dependency seems 

to be unavoidable. Section 4.2.2.4 explains this dependency in greater 

detail. 

The other modules are fairly simple when regarded in isolation. There are 

several different types of Free Lists to manage the lists of descriptors. 

There are the 0s-type modules like the Message modules, the OSSH-Scheduler 

module, the OSNE-Network module, and OSS4-Semaphore module. There are also 

several modules which are peculiar to SR or the V-system implementation. The 

OSSX-Srx module is peculiar to SR. It ensures that each VM number is unique. 

The OSPL-Pool module is peculiar to the V-system implementation. It supplies 

a pool of V-system processes to perform V-system blocking operations. 

Although the connections between these modules are complex, each module is 

straightforward. 

4.3.3 Machine (MC) Subsystem Design 

The Machine Subsystem is the lowest level of the RTS. Every other subsystem 

in the RTS depends on it, either directly or indirectly. Figure 8 shows the 

dependencies. 

This subsystem is a mixed collection of modules. There are two main reasons 

for including modules in this subsystem. Some modules are included because 

they are used by almost every other module in the RTS. Eg. the MCDE-Debug 

module. Others are included because they hide machine-specific details. Eg. 

the MCPR-Process module. In general, modules are put in this subsystem 

because they belong at the bottom of the dependency diagram. 

Most of the Machine subsystem design is straightforward. Each of the modules 

supplies a few procedures to manipulate their simple module. 
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4.3.4 Data Structures (DS) Subsystem Design 

In the RTS design, there is one RTS for each Virtual Machine Each RTS 

implements a very complicated data structure to keep track of all the SR 

entities on its VM, and the relations between those entities. It is the 

purpose of the Data Structure Subsystem to implement the entity descriptors 

(data types) and supply primitive procedures to allow higher-level modules to 

access the data in the descriptors. 

In Object-Oriented Programming Systems (OOPS) terminology, each DS module is a 

'server' class. Since the DS modules only supply data types and data access 

procedures, we call the DS modules data servers. For each data server, there 

is one higher-level module in the 0s-Operating-System or LG-Language 

subsystems which has the same module name, but a different prefix. We call 

the corresponding higher-level module, the function server, because it 

implements the corresponding functions. For example, the server class 

DSS4-Semaphore module implements the semaphore data type and one data access 

procedure: dss4-sem-count. OSS4-Semaphore is the corresponding function 

server which implements the standard semaphore functions: create, kill, P, and 

v. 

The DS-Data-Structures subsystem is designed to let all modules access the RTS 

data structure through the interface specified by the module description. 

However, the function server for a DS module may manipulate any fields in the 

DS module, even those that are 'hidden'. Hidden fields are not specified as 

part of the interface. An example of a hidden field is the blocked field in 

the semaphore descriptor which is a list of the processes blocked on the 

semaphore. The OSS4-Semaphore function server needs to access the blocked 

field to implement the P and V operations. The need of the function server 

such as OSS4-Semaphore to access the hidden fields of a data server, reflects 

the tight relationship between the data server and function server pairs. 

Unfortunately, there is no way to document this relationship in the C code 



other than to use the same root name on the code files. In an OOPS 

programming language, we could reflect this relationship by having the 

function server inherit the data server, and redefine the interface. 

Much of the complexity of the Data Structure subsystem originates from two 

requirements. The SR entities must be created dynamically and the many inter- 

entity relationships must be stored in the data structure in order to perform 

the operations efficiently. For example, in the case of the resource and 

process entities, we have a bidirectional relationship. Each resource may 

contain any number of processes, and each process must have an owner resource. 

Both relationships must be stored if we are to perform both process and 

resource operations efficiently. 

To satisfy the dynamic requirements, the RTS implements descriptor records 

which exist in main memory. To satisfy the need to keep track of 

relationships between entities, each descriptor record contains pointers to 

other entities which are related to it. For example, the resource instance 

descriptor has a pointer to a list of processes in the resource and the 

process descriptor has a pointer to the 'owner' resource of the process. 

The DS subsystem is essentially a very primitive DBMS. It is responsible for 

storing all the data and data relations necessary for the operation of a VM. 

4.3.5 Generic Lists (GL) Subsystem Design 

Many of the SR entities are implemented using data structures called 

descriptors, eg. the resource and process descriptors. These descriptors are 

often stored in linked lists of various types, because of the SR requirement 

that the entities be created and destroyed dynamically. Since these list 

types have very little to do with the type of descriptor they contain, it is 

appropriate that the lists are implemented separately from the SR entities. 

For example, the resource descriptor is implemented by the LGRE-Resource 

module, but it uses a linked list which is implemented by the GLLL-Linked-List 



module. The Generic Lists Subsystem has been created to implement modules for 

all the list types required by the RTS. 

This subsystem has very few dependencies because it is usually only working 

with pointer fields. It initializes pointer fields, and assigns one field to 

another. GL-Generic-Lists does depend on MC-Machine for some generic data 

type definitions. 

All of the instances of Generic Lists (GL) modules are implemented using 

standard list manipulation algorithms. Therefore, this section merely 

describes some implementation techniques common to all the modules which 

affect the design and use of these modules. 

Each instance of the Generic Lists (GL) module defines its own data type. 

However, this is little more than a syntactic convention. In fact, the 

procedures in these modules can work with any C record structure. This works 

because C has very loose type checking and all the GL procedures are 

implemented as #define statements. 

The #define statements are processed by the C preprocessor. In essence, the 

GL procedures, implemented by #define statements, are 'invoked' before the 

code is compiled. Therefore, they can accept parameters containing C types, 

and C field names. These parameters allow the GL procedures to be more 

general than if they were implemented with the standard C functions. 

Since all the modules in the GL subsystem are working on lists, they tend to 

supply very similiar procedures. To make this similiarity explicit, we have 

used the following standard procedure names: 

create-list - Create a list and initialize it. 

is-empty-list - Determine if a list is empty. Return TRUE for 

an empty list, and FALSE otherwise. 

POP - Remove the node from the front of the list and 
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chop 

delete 

push 

append 

append-list 

insert 

return a pointer to it. 

- Remove a node from the end of the list and 

return a pointer to it. 

- Remove the given node from the list. The node 

may be anywhere in the list. 

- Add a node to the front of the list. 

- Add a node to the end of the list. 

- Add a new list to the end of the old list. 

- Add a node after the given node in the list. 

The given node may be anywhere in the list. 

Not all of the above procedures are implemented for all of the GL modules. 

The GL subsystem could be simplified if it was implemented in a language which 

supports generic modules, such as Ada, Miranda, Modula-3, or CLU. Then there 

would be no need for #define statements, or the passing of type names and 

field names. We would create a list of type X by creating an instance of a 

generic list module. The procedures for the list would be defined to work on 

the elements of type X. Therefore, they would not require the type names and 

field names as parameters. 

4.4 Module Design Issues 

We now explain the module design issues, module by module. The module designs 

use the principles of information hiding, abstraction and modularity. This 

allows us to concentrate on the module interfaces and some of the more 

interesting implementation details, without having to explain the internal 

design of every module. The following descriptions are ordered from top to 

bottom of the dependency diagrams: 



This module initializes all the modules in the RTS. If this is the first RTs 

then it creates the main resource. Otherwise, it just waits for requests from 

remote VMs. 

This module starts the RTS on each VM. The first RTS is invoked from the 

operating system command-line. This initial invocation is the program etartup 

which may include program parameters. These parameters are ignored by the RTS 

and passed to the SR program. Every subsequent invocation is a VM etartup 

which is the result of a VM create statement. In this case, all the 

parameters are used for the RTS initialization. 

This module implements the Virtual Machine (VM) module. This module supplies 

the operations to create and destroy virtual machines. Each virtual machine 

has its own memory space, communication address, and RTS. Once a virtual 

machine is created, then resource instances may be started on it. 

The SR concept of VMs is described further in fANDR861. 

4.4.3 Other LG Modules 

The remaining LG module interfaces are unchanged from their UNIX 

implementation. Some minor, uninteresting changes were made to conform to 

changes in the operation of the OS procedures. 

4.4.4 Process Modules 

(LGPR-Process, OSSH-Scheduler, MCPR-Process, DSPR-Process) 

The process modules are layered one on top of each other. Each level depends 

on the lower levels, and adds its own level of functionality. 



The LGPR-Process module implements SR processes. SR processes are very 

lightweight with no time-slicing between processes. This means that an SR 

process will monopolize the cpu until it blocks itself. More information 

about processes and the standard operations can be found in any operating 

systems text. 

The OSSH-Scheduler module controls the processor. It assigns the processor to 

the ready process which has been waiting the longest. 

The MCPR-Process module implements the process module at the machine level. 

This includes creating a process context, changing contexts, and context error 

checking. These operations can only be done at the machine level because they 

manipulate machine registers and the process stack. 

The DSPR-Process module implements the data structures and data access 

functions for the process data types. These data types support the 

implementation of SR processes 

4.4.5 OSMT-Message-Tx & OSMR-Message-Rx Modules 

The OSMT-Message-Tx module implements the message transmit operations with the 

V-system Send operation. 

The OSMR-Message-Rx module implements 

appropriate V-system operations: Rece 

4.4.6 OSPL-Pool 

the message receive operations with  he 

ive, and Reply. 

The OSPL-Pool module implements a process pool module. This module is 

implemented to accommodate the V-system blocking operations. In the V-system, 

if you want to execute a blocking operation without blocking the current 

process, then you must put the code for the blocking operation in another 

process, called a helper process, and send a message to the helper process. 



The message contains the blocking operation code and any parameters required 

for the operation. 

In the V-system implementation of SR, we follow this V-system model of one 

main process, and many helper processes. However, the main process is also 

receiving messages from other VMs as well as the helper processes. Plus, 

there are different types of helper processes. There are helper processes to 

perform I0 operations, processes for Message operations, and processes for VM 

operations. 

This module simplifies the implementation by containing all the code to create 

a V-system process pool, report process pool errors, and synchronize with the 

other in-coming messages. 

This module supplies the operations to communicate with process pools, and the 

operations used to implement the process pools. 

The OSNE-Network module implements a network interface. This module is 

responsible for receiving all messages from the network and calling the 

appropriate module to perform the requested operations. 

This module is a 'design problem'. It is called from the OSSH-Scheduler 

module, which is in the middle of the OS Dependency Diagram, but it calls 

several of the LG-Language modules, which depend on the OS subsystem. 

Unfortunately, there does not seem to be any way to avoid this circular 

dependency. 

This circular dependency is unavoidable because OSNE must be called from 

OSSH-Scheduler and it must call the LG modules. Before we go any further, we 

will explain why the OSSH-Scheduler must call OSNE and why OSNE must call the 

LG modules. 



The OSSH-Scheduler module is responsible for scheduling tasks. Since the OSNE 

module must periodically check for messages on the network, OSSH-Scheduler is 

responsible for scheduling OSNE periodically. Therefore, OSSH-Scheduler must 

call OSNE-Network. 

The OSNE module must call the LG-Language modules because OSNE is responsible 

for ensuring the operations requested by the in-coming messages are executed. 

Unfortunately, all these operations are implemented in the LG-Language 

subsystem. Therefore, OSNE must call the LG-Language modules. 

Fortunately, the circular dependency is not as serious as it appears. OSNE 

spawns SR processes to perform most of the message operations. Therefore, 

very little of the LG-Language code is actually executed when OSNE calls the 

LG-Language modules. Furthermore, the code that is executed never calls OSNE 

either directly or indirectly. Therefore, we do not have to worry about 

infinite recursion. 

However, this dependency does make testing more difficult. OSNE can not be 

completely tested until the LG-Language subsystem is working, but it must be 

working in order to test the OS-Operating-System subsystem. We suggest that a 

special test program with stubbed procedures be set up to test the 

OSNE-Network module by itself. Then it can be used with confidence in the 

0s-Operating-System tests. 

The OSSX-Srx module is responsible for supplying a unique VM number for each 

new VM. 

Currently this module is implemented as a separate V-system process. This 

implementation affects the interface. This module is initialized by starting 

the process rather than by calling a procedure, and operations are 'called' by 

sending messages to the process. Therefore, some of the 'procedures' listed 



in the Invocation Interface have the word 'Message' appended to indicate they 

are really messages, not procedures. 

The OSGP-Group module implements the messages to process groups. There is a 

very close dependency on the VM data structures because the VM modules are the 

only modules that use process groups. 

4.5 Management Issues 

Management issues appear in large projects such as this SR RTS implementation. 

When systems become this large it is difficult to measure the size of the 

system, and thus to estimate how much time and effort is required. If we 

can't measure the size of the system how do we know if it will take one year 

or five years to complete? Without any estimate of the time required, how can 

we tell if we will ever finish? Estimating the size of a large system is 

necessary to ensure successful completion. 

The module interface documents supply us with the raw data necessary to 

estimate the size of the system. We now have several methods to develop 

accurate estimates of the system size, complexity, and time and effort needed 

to complete it. Each of these methods will be more accurate than estimates 

made without the benefit of the module interface documents, because these 

methods are based on a better understanding of the system. 

An informal method of estimating is to study each module interface, and, based 

on our experience, estimate the lines of code necessary to implement the 

module. This becomes our estimate of module complexity. Based on the 

complexity, we can estimate the time to code and test this module. The system 

size is equal to the sum of the lines of code for each module. The total time 

to implement is equal to the sum of the time needed for each module. 



A more formal method of estimating involves measuring the complexity of the 

module interface and the module dependencies. The module interface complexity 

is measured by counting the number of procedures, procedure parameters, data 

types, and data items in the interface. The module dependency complexity is 

measured by counting the same items In the module's dependency list. Based on 

these numbers, a measure of complexity is calculated. This complexity 

measurement can then be used to estimate the system size and implementation 

time . 

For example, Henry and Selig [HeSegO] present a metric of design complexity 

called information flow. They tested the information flow metric on the 

documented design and implementation of projects created by University 

students in a Software Engineering class. Their results indicate that the 

information flow metric is a good predictor of a project's size and 

complexity. 

With either the informal or the formal method, experience will lead to better 

estimates. For example, the first module implemented usually takes much 

longer to implement than estimated. However, now that we have measurements of 

the module's complexity, we have a chance to improve our estimates for the 

remaining modules. To determine the problem with the first module's estimate 

we must re-evaluate the module's complexity. Is it more complex than 

originally designed? Have more procedures, parameters, types and data items 

been added to the interface or the dependency list? If so, then the original 

estimate is not wrong; the original design is wrong. In this case, we should 

re-examine the remaining module designs to see if they too will have to be 

changed. If the module's complexity has not changed from the original design, 

then the estimate is wrong. In this case, we should change the estimates for 

all the remaining modules. In either case, we will quickly gain better 

measurements of system complexity and thus better estimates of time and effort 

required. 

In general, the module interface documents help us to understand the system 

4 5 



better, make better system design decisions, better module design decisions, 

and manage the project better. However, it does require that we think 

carefully about our design before we code it, and it requires that we document 

the design before we code it! 



CHAPTER 5 

OPERATING SYSTEM SUBSYSTEM DESIGN 

5.1 Introduction 

This chapter discusses the Operating System (0s) subsystem design shown in 

Figure 3. The discussion is devoted mainly to our implementation of the OS 

subsystem on V-system. However, we attempt to generalize the issues and 

the 

iscuss 

solutions to all applications or operating systems. We first d 

major design decisions in the design of the OS subsystem. Then 

the remaining problems and suggested solutions. 

iscuss 

, we d 

5.2 Design Decisions 

This section describes the mapping of SR entities onto the Operating System 

concepts. The most important mappings are the VM, process, input/output and 

communication mappings. Section 3.2 explains these SR entities in greater 

detail. 

5.2.1 SR VM (Virtual Machine) Mapping 

The V-system implementation of VMs is similiar to the UNIX implementation. In 

the UNIX implementation, each VM maps to one UNIX process. On the V-system 

(abbreviated as V), each VM maps to a V team. This means communication 

between all VMs is identical even if the VMs are on the same physical machine, 

because V hides the physical location of the teams. 

Communication would be faster for VMs on the same machine, if we had all VMs 

on the same machine in the same V team, but we feel this would greatly 

complicate communication for a relatively small increase in the overall speed 



of the SR program. If the programmer wants to increase the speed of his 

program, he can reduce the number of VMs, so there is only one VM per physical 

machine. 

5.2.2 SR Process Mapping 

Within the VM team, there is one TJ process which controls all the S R  processes 

and the context switching between them. This is the same design as the UNIX 

implementation. We choose to map all SR processes within a VM to one V 

process, because it is faster than the V process management. In particular we 

are concerned with the time to perform a context switch. The RTS 

implementation of context switching is faster than the V context switching. 

Within both a V-system team and an SR T I M ,  a context switch occurs when a 

process voluntarily blocks itself, usually on a communication request. The 

V-system communication primitives are synchronous Send(), Receive(), and 

Reply(), as described in 3.3. The SR communication statements are call, send, 

proc, and in, as described in 3.2. 

To compare the SR context switch with the V-system context switch, we 

estimated the performance of each SR communication pair in the two 

implementations. Appendix A has a complete description of the performance 

estimates and the method of estimating. Our main finding is that 

communication using SR process managment is faster between two resources in 

the same VM, but slower between two resources in different W s  on different 

machines. The following table shows, for each SR communication pair, the 

estimated performance using SR process management, and the estimated 

performance using V-system process management, for both local and remote 

communication: 



send-proc 

send-in 

call -proc 

call-in 

Estimated Performance (context sw + overhead) 

LOCAL REMOTE 

(different machines) 

SR process V process SR process V process 

There is a tradeoff between SR process management and V-system process 

management as SR has faster local communication and V-system has faster remote 

communication. We decided on fast local communication, because we believe 

there is much more local communication in most programs than remote 

communication. In fact, based on the above estimates, a program using SR 

process management will be faster than one using V-system process management 

unless there are 15 times more remote communications than local 

communications. 

An implication of the decision to put all the SR processes into one V process 

is that we can never invoke a blocking V-system call from this V process. If 

we did, then all the SR processes on the VM would also be blocked. Instead, 

we create a pool of V helper processes which perform all the blocking V-system 

calls. Any SR code which requests a blocking operation is translated into a 

request to the appropriate V helper process. The V helper process executes 

the blocking operation, and blocks waiting for the operation to finish. When 

the blocking operation is finished, the helper process informs the main V 

process. Meanwhile, the main V process is free to continue executing other SR 

processes. 



The input-output (10) operations are affected by this decision to use V helper 

processes. All 10 operations are blocking operations and therefore must use 

the pool of V helper processes. In addition, the I0 data structures in the 

V-system are quite different from the UNIX I0 data structures, because of 

their use of the V-system's message-based kernel. Therefore, all the SR 10 

functions in the V-system implementation are different from the UNIX 

implementation. 

5 . 2 . 4  SR Communication Mapping 

Communication between resources on the same VM remains the same as in the UNIX 

implementation of SR, since resources are implemented the same as in the UNIX 

implementation. All communication is accomplished through operation 

invocation and operation implementation. Invocations of operations 

implemented within the VM are optimized to avoid the use of the slow inter- 

team communication facilities. Invocations between VMs must use V-system 

primitives because they are the only means of communication between teams in 

the V-system. 

There are two major problems with communication between resources on different 

VMs. First, there is the need to avoid blocking 'J  calls from the main V 

process, as described in 5.2.3. To solve this problem, each VM maintains a 

pool of V processes called invoke processes which execute the Send primitives, 

and one V process called the receive process which executes the Receive 

primitive to receive messages from other VMs. Second, V-system communication 

is done through synchronous, blocking Send messages, but the SR send 

invocation is asynchronous and non-blocking. To implement the send 

invocation, we use an invoke process to send the message to the remove VM. 

When the receiver process receives a send invocation, it creates an SR process 

to perform the operation, and immediately replies to the invocation so that 

the invoker is only blocked as long as it takes to ensure the invocation is 

started. 



5.3 Remaining Problems 

5.3.1 The Need for Distributed Data Structures 

In SR, executing a locate statement associates a machine number with the 

system-defined machine name (p 2 4  of Andr87). This machine number can then be 

used anywhere else in the code to specify the location of a new VM. 

The SR language stores the following information about each physical machine 

in use by the SR program: machine identifier, name, and communication address. 

This information is needed to create a VM on the machine. Since VMs may be 

created from any existing VM, this information must be available to all VMs. 

This creates the need for a data structure shared between VMs on separate 

machines. In other words, we need a shared data structure. This can be 

implemented in two ways: a centralized server process which manages the data 

structure, or a distributed data structure which is updated using a 

distributed transaction manager. 

The problem with the current implementation is that it uses a central server 

process to store the physical machine information. This central process is 

vulnerable to processor failure. If the processor it is running on crashes, 

or becomes separated from the network, the process and all the machine 

information is lost. The rest of the SR program wi.11 fail if it requires 

access to that information. Since this design is part of the SR RTS, the SR 

programmer can do very little to protect himself from processor failure. This 

is a great weakness in a distributed programming language. One of the great 

advantages of distributed programs is their ability to survive processor 

crashes, but, in this case, the implementation used to achieve the 

distribution advantages is itself vulnerable to processor crashes! 

A distributed transaction manager design [CER84] would be better than the 

current design. In a distributed design, we could store the machine 

information in every VM. Then, whenever a locate statement is executed, we 



could broadcast the information to every VM. Since every locate statement 

adds information to the data structure, the distributed transaction management 

can be very simple. 

However, the SR language does require that an unique machine number be 

assigned to each machine. Currently these numbers are assigned in sequential 

order. In a distributed design, the machine numbers could be mapped to the 

machine's network address which is guaranteed to be unique, but unlikely to be 

sequential. 

The distributed transaction manager design may be more work to implement but 

we believe it is required if SR programs are to exploit all the advantages of 

a network. 

5.3.2 Time-Slicing 

The lack of time-slicing in the SR RTS implementation is a serious problem. 

Without time-slicing, we can not take full advantage of the concurrency 

offered by a network of processors. The RTS design can be optimized to 

improve the amount of concurrency but without time-slicing there will always 

be problems of one SR process hogging the processor on machine A, while other 

processors go idle waiting for information from other processes on machine A. 

Without time-slicing, the SR program designer trying to design concurrency 

into her program will have to understand the SR RTS before she can achieve her 

goals. 

In the current RTS implementation, the slow down occurs when one VM makes a 

series of remote requests to other VMs, which are blocked waiting for 

requests : 

The main V process sends request messages to remote teams. 

- these requests are translated into V Replys to helper processes. 



The main V process on the local team continues to execute until it 

blocks itself. 

Now, and only now, are the V helper processes able to execute and send 

their messages to other V teams. 

The requests are executed on the other V teams. 

When the reply messages are sent back to the helper processes, the 

messages will not be processed until the main V process blocks itself 

again. 

The reply messages are processed by the helper process, and sent back to 

the main V process. 

The main V process will not receive the message until it blocks itself, 

yet again. 

The overall effect is that there are many places  here a remote request 

message may be delayed. Each of these delays reduces the concurrency of the 

program, and thus the speed of program execution. 

Without time-slicing or interrupts, it is impossible to ensure prompt service 

of the messages, and impossible to guarantee the concurrency which gives us 

the speed advantage of distributed programs. Unfortunately, time-slicing is a 

complex concept to implement and imposes a high performance penalty. 

We do not see any great solution to this dilemma. We do believe that time- 

slicing or some such processor sharing scheme is needed in order to take full 

advantage of concurrency. 



5.4 Environment Issues 

5 . 4 . 1  V-system communication primitives 

The V-system communication primitives have a very important influence on our 

SR RTS design. (section 3.3 has a description of these primitives.) They are 

the moti 

simpler 

(Append i 

vation for implementing SR on the V-system. They are much faster and 

than the socket mechanism used in the UNIX operating system. 

x A gives the precise performance figures.) 

However, there are a few disadvantages to using the V communication 

primitives. They are not quite as simple as they first appear, and there are 

circumstances where we do not get the speed increase that we expect. 

The V communication primitives can be complicated to use since there are 

several variations on the basic Send, Receive, Reply primitives. The SR RTS 

must be able to send a message of any size. This requirement is not 

efficiently supported on the V-system. If the program is to get the full 

advantage of V message speed then the V programmer must write his own 

functions to determine, based on the size of the message, which communication 

primitive is most appropriate. We believe this function should be implemented 

in the V-system library since it is useful in many applications. 

Since the Send and Receive primitives are synchronous, the asynchronous 

communications are difficult to implement and they are a slow. Any program 

which does asynchronous communication must either create a helper process for 

every async message, or, as we do in our implementation, keep a pool of helper 

processes to perform all the message communication with other V teams. This 

adds a level of complexity to all inter-team communication. It also adds a 

small amount to the communication time since there is an extra intra-team pair 

of messages between the main V process and the helper V process. There may be 

a further decrease in the real communication time. In our implementation, a 

message can not be sent until there is a helper process available. If the 



system is busy and all the helper processes are busy then a message will be 

blocked until a helper process becomes available. 

As usual in a message-based operating system, the V-system process concept is 

closely tied to the communication concept. In V-system, these two concepts 

work together to make the message communication very fast. 

5.4.2 V-system and SR Missing Information 

In porting the RTS from UNIX to V-system, we ran into many small problems. We 

believe these problems to be symptomatic of the current UNIX environment. 

There are many systems with UNIX-like interfaces which, although similiar, are 

not quite the same. System developers never find all the these small 

differences until they reach the implementation stage. 

Here we give an indication of the annoying 'small.' differences between the SUN 

UNIX system and the V-system. The V-system requires a blank space between 

every operand and operator on the command line, which is not required in the 

SUN UNIX system. Eg. the command 

copy file1 file2 >file3 

is invalid on the V-system because there is no space between the ' > '  operator 

and the file3 operand. 

The V-system also requires a blank line at the end of .h include file. If the 

blank line is not there, the C compiler will issue typical uncomprehensible C 

error messages. 

Although these problems may sound trivial and inconsequential, each 

occurrence of one of these problems may take hours, and sometimes days to fix. 

The only solution is to continue the drive toward standards, and document the 

idiosyncrasies of the new systems we build. At least that will allow future 



implementors to find the problems faster. With the current systems which 

skimp on the documentation of details, the only way to solve problems is by 

trial and error, or appeal to a guru. 

5.5 Summary - Minimal Operating System Requirements 

In porting the SR RTS from UNIX to V-system, we have seen that the operating 

system (0s) has a major effect on the design of a distributed language RTS. 

However, despite wide differences between OSs, the OS pecularities can still 

be hidden in a few key modules of the RTS: Process, Communication, Memory, and 

Input/Output. 

Despite our ability to hide OS pecularities, there is still a list of OS 

requirements that the RTS depends on in order to implement the SR language 

These requirements and some desirable OS features are summarized in the 

following list: 

For Processes: 

- create process 

- delete process 

- fast context switching 

- Desirable: time slicing. This feature would improve the level of 

concurrency in an SR program. 

Communication 

- send and receive variable size messages 

- Desirable: asynchronous messages. This feature would make the 

implementation easier. 

Memory Management 

- standard, variable-size memory allocation and deallocation 

- Desirable: multiple processes in one address space. This feature 

makes implementation easier if the OS uses synchronous communication, as 



V-system does. 

Input/Output 

- input and output operat 

standard error, and files 

ions to standard input, standard output, 

Machine Addresses 

- Machine names. This feature is necessary for the implementation of 

the SR locate statement. 

- Desirable: unique machine address numbers. This feature would ease 

the implementation of a distributed, shared data structure. 



CHAPTER 6 

CONCLUSION 

This thesis describes and documents the application of software engineering 

techniques to the design of a distributed programming language. We found the 

concepts of modularization and abstraction to be very useful in the design of 

the system, and the dependency diagrams are a wonderful aid to documenting and 

understanding the system design. With the aid of the software engineering 

techniques, we were able to identify our most serious system design problem - 
circular dependencies - and reduce both the extent and the danger of this 

problem. 

The modularization and abstraction of Run Time System concepts helped make the 

design issues explicit. It led to the recognition of a simple Data Base 

Management System (Data Structure Subsystem) and Operating System (Operating 

System Subsystem), among other systems, embedded in the Run Time System. 

Having recognized these subsystems, we have simplified our work. We can now 

understand the system better by examining it at the different layers of 

complexity: system level, subsystem level, and module level. At each level 

there is less complexity than if all the details were presented in one 

document (Eg. the code). 

The isolation of the Operating System Subsystem also led to an improvement in 

portability. We identified a list of operating system features which are 

required for the porting of SR, and we have isolated these features to the 

Operating System Subsystem. The list of required operating system features 

f 01 lows : 

Process features 

- creation, deletion, and fast context switching. 



Communication 

- send and receive message operations. 

Memory Management 

- variable-size memory allocation and deallocation 

Input/Output 

- C-type input and output operations to standard input, standard 

output, standard error and files. 

Machine Addresses 

- Unique machine names. 

In summary, the use of software engineering techniques in the design of the SR 

Run Time System has simplified the system and improved the portability. 
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APPENDIX A: 

SR COMMVNICATION PERFORMANCE 



TO estimate the performance of SR communication pairs on the V-system, we 

measured the performance of communication pairs on the current UNIX 

implementation of SR, and we measured the performance of V-system processes. 

Since the UNIX implementation performs its own process management, and it uses 

only the malloc system call, we believe it leads to an accurate estimation of 

the performance of SR process management on the V-system. 

The performance figures are used to estimate the performance of SR 

communication using V-system process management, versus the performance using 

SR process management, for both the local and remote cases. 

The first section describes the SR performance tests, and the UNIX 

implementation results for local communication. The second section describes 

the V-system performance tests, and the results for both local and remote 

communication. The third section compares the local communication performance 

of an SR implementation using V processes, with the SR UNIX implementation 

using SR process management. The fourth section estimates the SR remote 

communication performance using V-system process management and using SR 

process management. 

All the performance tests are performed on SUN-2 workstations on an Ethernet 

lOMbit Local Area Network. 

1)SR Process Performance Tests 

The tests in this section are based on the tests in the paper "Performance of 

Multi-tasking and Synchronisation Mechanisms" by M. Stella Atkins and Ronald 

A. Olsson, which appeared in Software Practice and Experience, 1988. 

In the following discussion, the name of the program denotes the time to 

execute the program. For instance, the sisema program executes 1 ,000 ,000  



iterations of the two semaphore operations, P and V, in 71.8 seconds. 

Therefore, we can say sisema = 71.8 sec. On the other hand, the word 'semal 

is used to indicate the performance of one semaphore operation. So, we say 

sema = 0.0718 ms. 

The following list describes the performance terms: 

sisema: time of 1,000,000 pair of P and V operations. 

sema: time of 1 pair of P and V ops without context switch. 

semaCS : time of context switch associated with sema. 

mesg: time of 1 send-in operation without context switch. 

mesgCS : time of context switch associated with mesg. 

b3 : time of 100,000 sema, 500 mesg, 500 mesgCS, 500 semaCS, and 

b3overhd. 

b3overhd: overhead associated with starting and terminating b3. 

b4 : time of 500 sema, 100,000 mesg, 500 mesgCS, 500 semaCS, and 

b4overhd. 

b4overhd: overhead associated with starting and terminating b4. 

semswitch: time of 200,000 sema and their context switches. 

msgswitch: time of 200,000 mesg and their context switches. 

cirndz : time of 100,000 call-in ops, with context switch 

rndz: time of 1 call-in op, with context switch. 

rndzCS : time of 1 context switch associated with rndz. 

a5 : time of 100,000 send-proc and sema ops 

creat : time of 1 send-proc op. 

cpprcdl : time of 1,000,000 call-proc ops within a resource. 

prcdl : time of 1 call-proc op within a resource. 

cpprcd2 : time of 100,000 call-proc ops between resources. 

prcd2 : time of 1 call-proc op between resources. 



overhdlM: overhead associated with 1,000,000 iterations. 

overhd100k: overhead associated with 100,000 iterations. 

The performance results and calculated statistics follow: 

s isema = 7 1.8 sec 

=> sema = 0.072 ms 

b3 = 100,000 sema + 500 mesg + 500 mesgCS + 500 semaCS + b3overhd b4 = 500 

sema + 100,000 mesg + 500 mesgCS + 500 sernaCS + b4overhd b3 = 10.2 sec 

b4 = 144.5 sec 

b3overhd = 3.1 sec 

b4overhd = 3.8 sec 

=> (b4-b4overhd) - (b3-b3overhd) = -99,500 sema + 99,500 mesg 

=> mesg = 1.41 ms 

rnsgswitch = 200,000 mesg + 200,000 rnesgCS 

msgswitch = 312.1 sec 

=> mesgCS = 0.15 ms 

semswitch = 200,000 sema + 200,000 semaCS 

semswitch = 57.7 sec 

=> semaCS = 0.22 ms 

overhdlM = 1 sec 

overhdlOOk = 1 sec 

cirndz = 186.0 sec - overhdl00k = 185.0 sec 

=> rndz = 1.85 ms 

rndz = rndzCS + mesg + mesgCS 



a5 = 100,000 creat + 100,000 sema + 100,000 semaCS + overhdlO0k a5 = 184.4 set 

=7 creat = 1.54 ms 

cpprcdl = 1,000,000 prcdl + overhdlM 

cpprcdl = 44.6 sec 

=> prcdl = 0.043 ms 

cpprcd2 = 100,000 prcd2 + overhdlOOk 

cpprcd2 = 112.4 sec 

=> prcd2 = 1 .ll ms 

2 V-system Process Performance Tests 

This section describes three tests: local and remote Send-Receive-Reply 

communication, and V process creation. The Send-Receive-Reply tests are 

performed using the V-system utility timeipc. The V process creation test is 

performed by our own program. 

Send-Receive-Reply V process 

Local Remote creation 

* This figure is the fastest, consistently reproducible performance 

measurement. It is difficult to get an accurate measurement because of the 

limited number of processes the test creates. 

3 Local Communication Performance 

This section estimates the local communication performance using SR process 

management and using V-system process management. For SR process management, 



we estimate the local communication will be the same as the UNIX 

implementation, because the UNIX implementation of local communication uses 

only one system call, malloc. 

For V-system process management, all communication between processes must be 

done using !]-system calls. Therefore, for the SR send-proc operation, which 

creates a new process, we must use the V-system calls, Create and Ready. For 

the send-in and call-in operations which communicate between existing 

processes, we must use the V-system calls, Send, Receive, and Reply, to 

implement the context switch. The overhead, which determines the V-process a 

send is sending to, is added to the cost of the V-system calls. For the 

call-proc operation, we can use the same optimizations as the UNIX 

implementation since the proc is not in a separate V process. However, the 

send-in semaphore optimization between processes can not be done using V 

processes. Instead, they are implemented the same as the send-in message. 

SR communic. V implement. Performance (context sw + overhead) 

SR Process V Process 

send-proc 

send- in 

(message) 

send-in 

(semaphore) 

call-proc 

call-in 

Create-Ready 

Send-Receive- 

Reply 

Send-Receive- 

Reply 

C procedure 

call 

Send-Receive- 

Reply 

1.11 

(same as UNIX) 



4 Remote Communication 

This section estimates the SR remote communication performance using SR 

process management and using V-system process management. For each method, we 

first calculate the basic cost of the remote communication, which depends on 

the V-system calls. Then, we calculate the cost of each SR operation by 

adding the overhead associated with the operation to the basic cost of remote 

communication. 

Using SR process management, a remote request message is implemented by the 

following steps: 

1) notify a V invoke process of the request, and block invoking SR 

process (local Send-Receive-Reply). 

2) If there are no more SR processes on the ready queue, then the main V 

process sleeps (Delay). 

3) V invoke process executes the V-system Send call, which blocks the 

invoke process (remote Send). 

4) request is received at the remote VM by the VM's receive process 

(remote Receive). 

5) receive process creates an SR process to execute the request, and 

blocks itself on a Receive (SR process creation). 

6) remote SR process executes the request, Replys to the request and 

kills itself (remote Reply). 

7) invoke process is unblocked by Reply. It unblocks the invoking SR 

process and blocks itself (local Receive for next request). 



8) SR process continues execution. 

In addition to the above process handling, there is some SR overhead required 

to determine which SR process should receive the request. This overhead 

depends on the SR communication operation. 

The total time required for this remote request is: 

local Send-Receive-Reply (1.14 ms) + 

Delay (0.05 ms) + 

remote Send (5.11 ms) + 

remote Receive (included in remote Send time) + 

SR process creation (1.54 ms) + 

remote Reply (included in remote Send time) + 

SR overhead 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

total 7.84 ms + SR overhead 

Using V-system process management, a remote request message is implemented by 

the following steps: 



remote Send-Receive (5.11 ms) + 

Reply to V pool process (1.14 ms) + 

remote Reply (included in Send-Receive time) + 

SR overhead 

total 6.25 ms + SR overhead 

Combining the SR performance figures (not including context switch times) and 

remote request times, we obtain the following estimated performance times for 

the SR communication pairs: 

S R SR process V process 

Overhead Mesq Time Total Mess Time Total 

send-proc 1.54 ms 7.89 ms 9.43 ms 6.25 ms 7.79 ms 

send-in 1.41 7.89 9.30 6.25 7.66 

call-proc 1.11 7.89 9.00 6.25 7.36 

call-in 1.41 7.89 9.30 6.25 7.66 
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SR RUN TIME SYSTEM (RTS) DESIGN 

Function of the RTS 

The SR compiler/linker compiles SR resources into object code and 

links the object code together with the SR ~ u n - ~ i m e  System (RTS) 

to form SR executable programs. 

The Run-Time System (RTS) contains all the data structures and 

operations to support the dynamic creation of SR entities, the 

deletion of entities, and the various operations on these 

entities. The SR entities include Virtual Machines (VMs), 

resources, processes, operations, semaphores, and messages. 

Since these entities are created, deleted and operated on during 

run-time, SR must supply an RTS. 

RTS Documentation 

We call this document the Design Document. It describes the re- 

design of the SR RTS into an Object-Oriented (00) design suitable 

for porting to the V-system. The major differences between the 

previous UNIX design and the 00, V-system design are due to the 

Object-Oriented nature of the design. The changes due to the V- 

system are contained within modules. 



The design document is broken into the following sections: RTS 

introduction (this section), Dependency Diagrams, and Abstract 

Data Types (modules). The modules are grouped into five 

subsystems: Machine, Generic Lists, Data Structures, Operating 

System, and Language. Each module describes the data structure 

and the operations for an SR entity, or an RTS data type which is 

used to implement an SR entity. Also, each module identifies the 

C or Assembler code files which implement the module. When the 

modules are implemented, they form the entire RTS. 

The module breakdown was chosen for several reasons: 

It allows the designer and reviewer to understand small 

portions of the RTS design without having to understand the 

entire RTS system. 

It allows design changes to be accomplished relatively easily, 

because it tells the designer where the code that implements each 

SR entity is located. For example, in the current RTS design, 

semaphores are implemented by RTS code. If we decided to change 

that design to use semaphores that are implemented by the 

operating system, then, by inspecting the design document, we 

would find that semaphores are implemented by the OSS4-Semaphore 

module in the Operating System subsystem. Furthermore, that 

module is implemented in the OSS4- semaphore.^, and the 

OSS4-Semaph0re.h files. Now, all we have to do is rewrite those 

files to use the operating system semaphores. The design 

document has allowed us to quickly locate the semaphore code 

without having to understand the entire RTS. 
i 



to one module into that module's implementation files. Any other 

code that uses that module must then call the operations of that 

module. This results in less coding and testing because each 

portion of code is only written once. For example, single linked 

lists are used in many different places in the RTS code. 

However, the code to implement these lists is written once, in 

the Generic Lists subsystem, GLLL-Linked-List module. Every 

other module which uses a linked list, calls the appropriate 

procedures in the GLLL-Linked-List module, thereby reducing the 

total code in the RTS. Furthermore, if during testing, we find a 

mistake in the linked list implementation, we only have to fix it 

once, and we only have to test it once to make sure the mistake 

is fixed. We do not have to re-test the linked list for 

resources, the linked list for processes, the linked list for 

memory blocks, etc. In other words, the subsystem/module 

breakdown puts the design effort into creating good modules, 

which results in good design. The simpler design simplifies the 

implementation and testing. 

The RTS documentation is divided into subsystems and modules in 

order to help reviewers understand the design. The simpler 

design that results reduces the amount of coding and thus the 

amount of testing. We will now describe the RTS design in 

detail. 



Dependency Diaqrams and circular Dependencies 

A key tool in understanding the RTS design is the dependency 

diagram. This diagram is used to show the dependencies between 

subsystems. We define depend by saying that subsystem A depends 

on subsystem B if A uses a procedure, a data type, or anything 

which is implemented in subsystem B. The dependency diagram for 

the A and B subsystems is drawn below: 

A major problem in the RTS design is circular dependencies. The 

simplest example of a circular dependency occurs when Subsystem A 

depends on Subsystem B and Subsystem B depends on A. There are 

also circular dependencies with 'larger' circles. That is there 

may be four or five subsystems in the circular dependency, each 

subsystem depending on the next subsystem, and the last subsystem 

depending on the first subsystem. ( Eg. A -> B -> C -> D -> A ) 

These circular dependencies are a problem for several reasons. 

First, they may indicate a mutually recursive procedure call. If 
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this recursion is not completely understood, it could possibly 

cause infinite recursion to occur every time the program is run, 

or, worse, just under special circumstances! Therefore, every 

circular dependency on the dependency diagram must be 

investigated to make sure that the design has safeguards against 

infinite recursion. 

The second problem is deadlock due to resource contention. This 

type of deadlock occurs in the following scenario. Subsystem A 

has control of resource X, and it calls subsystem B. B attempts 

to get control of resource X, but fails because A already has X. 

B then waits for the resource to be released. Unfortunately, it 

will wait forever, since A is not going to release the resource 

until B is finished. The most common example of this scenario 

occurs in systems which attempt to report an 'out of memory' 

error but hang instead. The system hangs because the exception 

report mechanism attempts to allocate memory to hold the error 

message, but is unable to because the system is already out of 

memory ! 

The third problem with circular dependencies occurs during the 

testing of the final system. There are two general strategies 

that can be applied to this testing: top-down testing and bottom- 

up testing. In the first case, the top-most module on the 

dependency diagram is tested first, with all the lower level 

modules stubbed out. Then, one of the lower modules is tested 

with the top-most module. The testing continues in this manner, 

adding lower-level modules until the entire system is included in 
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the tests. In bottom-up testing, one of the bottom level modules 

is tested first, and the upper modules are added, one at a time, 

until the entire system is being tested. In both cases, the 

testing procedures depend on the assumption that bugs found 

during testing are most likely to be caused by the last module 

added to the test system. This assumption can enormously 

simplify and speed-up the testing process when a large system is 

being tested. 

The problem with circular dependencies is that they do not have a 

top or a bottom! Therefore, we can not use the top-down, or 

bottom-up testing procedures. We have to develop special testing 

procedures for the system. These special procedures will 

complicate and slow down the testing process. When bugs are 

found, they will be more difficult to find because we can not 

assume that the original modules in the system have been 

completely tested. 

In general, removing a circular dependency removes any chance of 

infinite recursion and simplifies the design. The simpler design 

avoids some tricky deadlock errors, and makes the testing simpler 

and quicker. 

Naminq Standards 

We have followed a few simple rules in abbreviating the subsystem 

and module names. The abbreviation for each subsystem is two 

letters long. When naming the subsystem, it is common to prefix 
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the name of the subsystem with its abbreviation. For example, 

the Operating System subsystem's abbreviation is 0s. It is often 

referred to as 0s-Operating-System. 

The abbreviation for each module name is also two letters long 

but it is combined with its subsystem abbreviation to make a four 

letter abbreviation. For example, the abbreviation for the 

Semaphore module in the Operating System subsystem is S4. When 

combined with the subsystem name, the abbreviation is OSS4, and 

the common name for the module is OSS4-Semaphore module. 

The module four letter abbreviation is often prefixed to the 

module operations. For example, the operation to create an empty 

linked list, using the GLLL-Linked-List module, is called 

glll-create-empty-list. (This standard has not been completely 

implemented simply because, it is so much work to go and change 

all the code which uses operations with non-standard names.) 

Module Descriwtions 

We use a standard format for all the module descriptions. The 

following example shows the module description for the mythical 

Stack module in the mythical UT-Useful-Things subsystem. We have 

included comments in every section of the description to explain 

the purpose and meaning of the format and terms used in that 

section. The module abbreviation is UTST, and the description 

was last modified on February 9, 1991. 



UTST STACK MODULE 

February 9, 1991 

PURPOSE : 
This section describes the purpose of the module. In this 
case, the stack module implements the data types and 
operations to create, delete and perform operations on a 
stack. 

DATA INTERFACE: 
This section describes any variables that may be used by 
other modules to change the operation of this module. 

Name ~escription 

None. - In the Stack module, there are no variables 
which other modules may access or modify. 

DATA TYPE INTERFACE: 
This section describes data type definitions that may be 
used by other modules to declare their own variables. 

Name Description 

stack Pointer to a stack variable. 

INVOCATION INTERFACE: 
This section describes operations which may be invoked by 
other modules to modify the stack variables they have 
declared. Under the Procedure heading is the name of the 
operation. On the same line, or the very next line, is a 
Description of the Procedure. 

Following the description of each procedure there is a list 
of the procedure parameters under the Parameters heading. 
On the same line as the parameter name is a parameter 
Description. The parameter description includes, in order, 
the data type, the flow of data (INput, OUTput, or INput- 
OUTput), and a short English description. 

Procedure ~escrigtion 
Parameters Description (Type, IN/OUT, etc. ) 

utst-init-stack 
Initialize the stack data structure. 

stack, IN-OUT, The stack to be 
initialized. 

utst-kill-stack 
Free up all resources used by this stack. 

OldStack stack, IN-OUT, This stack will 
become unusable. 



utstjush Add an item to the top of the stack. 
Item stk-item, IN, The item. 
AStack stack, IN-OUT, The stack receiving 

Item. 

utstsop Remove the item at the top of the stack. 
AStack stack, IN-OUT, The stack. 
Item stk-item, IN, The item removed from 

AStack. 

IMPLEMENTATION FILES: 
This section names the files which contain the code 
implementing this module. Sometimes there is more than one 
file implementing the module. However, one file is never 
used to implement more than one module! 

UTST-Stack.h - The .h files contain data, data type 
and procedure declarations for this 
module. They must be included in any 
other module which uses this module. 

IMPORTED ELEMENTS: 
This section lists all the elements used bv this module that 
are implemented in other modules. It also- describes the 
element T v ~ e  (Procedure, Data Type, or Data), and the module 
which implements the element. 

Name 'WPe m o d u l e  

glll-create-empty-list 
Procedure GLLL-Linked-List 

glll-push Procedure GLLL-Linked-List 
g l l l ~ o ~  Procedure GLLL-Linked-List 

NOTES : 

None. - This section will sometimes contain 
special comments explaining design 
decisions or suggestions for 
implementing the module. 



RTS Desisn 

The dependency diagram in Figure 1 shows the dependency 

relationship between the RTS subsystems. Note that there is one 

circular dependency in this diagram. The LG ->  OS -> LG circular 

dependency is described in greater detail in the OSNE-Network 

module description. 

This appendix is divided into one section for each subsystem of 

the RTS. In each section there is a dependency diagram for the 

subsystem and a module description for each module in the 

subsystem. The module dependency diagram is identical to the 

subsystem diagram in meaning except that an arrow from the A 

module to the B module means that the A module depends on the B 

module. 1.e. the only difference is that the subsystem 

dependency diagram contains subsystems and the module dependency 

diagrams contain modules. 

HOW TO START 

The design document is intended to be used as a reference, rather 

than an introduction to the RTS, so there is no good place to 

start reading. This document works best when there is a 

particular design question that must be answered. In that case, 

the reader uses the document like a dictionary, with no intention 

of understanding everything, but simply intending to get 
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information about one topic, or, in this case, one design issue. 

a 

However, if this is your first introduction to the RTS, then it 

is best to start by perusing the Dependency Diagrams. After 

that, you can start by reading the LG-Language subsystem, since 

that contains the highest level modules. 



RTS DATA STRUCTURE SUBSYSTEM (DS) DESCRIPTION 

Function of the Data Structure Subsystem 

In the RTS design, there is one RTS for each Virtual Machine 

( V M ) .  Each RTS implements a very complicated data structure to 

keep track of all the SR entities on its VM, and the relations 

between those entities. It is the purpose of the Data Structure 

Subsystem to implement the entity descriptors (data types) and 

supply primitive procedures to allow higher-level modules to 

access the data in the descriptors 

In Object-Oriented Programming Systems (OOPS 

DS module is a 'server' class. Since the DS 

data types and data access procedures, we ca 

data servers. 

terminology, each 

modules only supply 

11 the DS modules 

For each data server, there is one higher-level module in the 

0s-Operating-System or LG-Language subsystems which has the same 

module name, but a different prefix. We call the corresponding 

higher-level module, the function server, because it implements 

the corresponding functions. For example, the server class 

DSS4-Semaphore module implements the semaphore data type and one 

data access procedure: dss4-sem-count. OSS4-Semaphore is the 
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corresponding function server which implements the standard 

semaphore functions: create, kill, P, and V. 

The DS-Data-Structures subsystem is designed to let all modules 

access the RTS data structure through the interface specified by 

the module description. However, the function server for a DS 

module may manipulate any fields in the DS module, even those 

that are 'hidden'. Hidden fields are not specified as part of 

the interface. An example of a hidden field is the blocked field 

in the semaphore descriptor which is a list of the processes 

blocked on the semaphore. The OSS4-Semaphore function server 

needs to access the blocked field to implement the P and V 

operations. The need of the function server such as OSS4- 

- Semaphore to access the hidden fields of a data server, reflects 

the tight relationship between the data server and function 

server pairs. Unfortunately, there is no way to document this 

relationship in the C code other than to use the same root name 

on the code files. In an OOPS programming language, we could 

reflect this relationship by having the function server inherit 

the data server, and redefine the interface. 

Data Structure Subsvstem Desisn 

Much of the complexity of the Data Structure is created by two 

requirements. The SR entities must be created dynamically and 

there are many relationships between the entities which must be 

stored in order to perform the operations efficiently. For 

example, in the case of the resource and process entities, we 

8 4 



have at least two relationships between these entities. Each 

resource may contain any number of processes, and each process 

must have an 'owner' resource. 

To satisfy the dynamic requirements, the RTS implements 

descriptor records which exist in main memory. To satisfy the 

need to keep track of relationships between entities, each 

descriptor record contains pointers to other entities which are 

related to it. For example, the resource instance descriptor has 

a pointer to a list of processes in the resource and the process 

descriptor has a pointer to the 'owner' resource of the process. 

Note - 

The DS subsystem is really a very primitive DBMS. There may be 

alternative designs using DBMS technology which are more 

efficient, support data distribution, and supply other DBMS 

benefits. 



DSCL CLASS MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the class data type. This 'class' refers to the SR 
implementation of equivalence classes for input operations. 
It has nothing to do with the 'class' of Object-Oriented 
programming. For more information about the SR class 
implementation refer to "An Overview of the SR language and 
Implementation", by Gregory Andrews, et al. 

DATA INTERFACE : 
Name Description 

None 

DATA TYPE INTERFACE: 
Name Description 

class Pointer to an operation class descriptor. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters ~escrigtion (Type, IN/OUT, etc . ) 
dscl-classjending 

The number of pending invocations for this 
class. 

clap class, IN, This class data 
structure. 

[return] short, OUT, Number of pending 
invocations for clap. 

dscl~class~num~ops 
The number of operations in this class. 

clap class, IN, This class data 
structure. 

[return] short, OUT, Number of operations in 
clap. 

dscl-class-count 
The number of available class descriptors. 

[return] int, OUT, Number of available 
descriptors. 

IMPLEMENTATION FILES: 
DSCL-Class-i.h 



IMPORTED ELEMENTS: 
Name l'Y3?e Module 

inv-queue Data Type DSIN-Invocation 
proc-queue Data Type DSPR-Process 
proc Data Type DSPR-Process 
s em Data Type DSS4-Semaphore 
dss4-sem-count Procedure DSS4-Semaphore 

Boo1 Data Type UT-U t i 1 

NOTES : 
None 



DSCO CO MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the co data types. These data types support the 
implementation of the SR co statement. 

DATA INTERFACE: 
Name Description 

INIT-SEQ-CO co initial sequence number. 

DATA TYPE INTERFACE: 
Name Description 

cob pointer to a CO statement descriptor. 
struct cii-st Co Invocation Information data STructure. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 
dsco-cobsending 

The number of pending invocations on this co 
statement. 

coStmt cob, IN, This co statement 
descriptor. 

[return] short, OUT, Number of pending 
invocations for coStmt. 

dsco~cob~completions 
The list of completed invocations for this co 
statement. 

coStmt cob, IN, This co statement 
descriptor. 

[return] invb, OUT, List of completed 
invocations for coStmt. 

dsco-cii-cob The co statement descriptor for this arm of 
the co statement. 

cii-arm cii-st, IN, This arm of the co 
statement. 

[return] cob, OUT, The co statement 
descriptor for cii-arm. 

dsco~cii~completions 
The list of completed invocations for this 
arm of the co statement. 

ci i-arm cii-st, IN, This arm of the co 
statement. 

[return] invb, OUT, The list of completed 
invocations for cii-arm. 



dscl-co-count The number of available co descriptors. 
[return] int, OUT, Number of available 

descriptors. 

IMPLEMENTATION FILES: 
DSCO-Concurrent-i.h 
DSCO-Concurrent-h.h 

IMPORTED ELEMENTS: 
Name m e  

invb Data Type 
s em Data Type 
dss4-sem-count Procedure 

t index Data Type 

seq Data Type 

Module 

NOTES : 

None. 



DSIN INVOKE MODULE 

PURPOSE : 
Implement the data structures 
the invoke data types. 

and data access functions for 

DATA INTERFACE: 
Name Description 

INVOCATION-HEADER-SIZE 
Byte size of the invb datz structure header 
(i.e. the part of the data structure that 
comes before the variable-length argument 
list) . 

inside the invb data 
OP-CAP-SIZE The byte size of the 

inside the invb data 

OP-CAP-OFFSET The byte off set of the operation capability 
structure. 
operation capability 
structure. 

DATA TYPE INTERFACE: 
Name Description 

in-type 

invb 
inv-queue 

enumerated type specifying the valid 
INvocation TYPES. 
pointer to an INVocation data structure. 
an INVocation QUEUE data structure. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters 

dsin-invbsach 
The 

invoke 

[return] 

invoke 

[return] 

dsin-invb-type 

invoke 

[return] 

The 

The 

Description (Type, IN/OUT, etc. ) 

packet header for this invocation. - 

invb, IN, This 
struct. 
pach, OUT, The 
invoke. 

operation capability 
invb, IN, This 
struct. 

invocation data 

packet header for 

for this invocation 
invocation data 

opcap, OUT, The operation 
capability for invoke. 

invocation type of this invocation. 
invb, IN, This invocation data 
struct. 
in-type, OUT, The invocation type 
for invoke. 



dsin-invb~roc 
The process id for the invoker process. 

invoke invb, IN, This invocation data 
struct. 

[return] proc, OUT, The process id for 
invoke. 

dsin-invb-co 
The co data for this invocation. 

invoke invb, IN, This invocation data 
struct. 

[return] struct cii-st, OUT, The co 
statement data for invoke. 

The byte size of the argument list in this 
invocation. 

invoke invb, IN, This invocation data 

[return] 
struct. 
pach, OUT, The argument list byte 
size for invoke. 

dsin-create-inv-queue 
Create an empty invocation queue. 

invokeQ inv-queue, IN-OUT, A new invoke 
queue. 

dsin-is-empty-inv-queue 
Test if invocation queue is empty. 

invokeQ inv-queue, IN, An existing invoke 
queue. 

[return] Bool, OUT, TRUE if invokeQ is 
empty, FALSE otherwise. 

dsin-append Add an invocation to the end of the queue. 
invoke invb, IN, An invocation. 
invokeQ inv-queue, IN-OUT, The queue. 

dsin-append-list 
Add a new list to the r .i1 of an existing 
queue. 

NewList invb, IN, A new list. 
ExistQ inv-queue, IN-OUT, The existing 

queue. 

dsin-delete Delete an invocation from the middle of the 
queue. 

invoke invb, IN, The invocation to be 
deleted. 

invokeQ inv-queue, IN-OUT, The queue 
containing invoke. 



IMPLEMENTATION FILES: 
DSIN-Invoke-i.h 

IMPORTED ELEMENTS: 
Name 
struct cii-st 
struct pach-st 

pach 
OPcaP 
proc-queue 
proc 
s em 

TyBe 
Data Type 

Data Type 
Data Type 
Data Type 
Data Type 
Data Type 
Data Type 

gldd-create-empty-list 
Procedure 

gldd-is-empty-list 
Procedure 

gldd-append Procedure 
gldd-append-list 

Procedure 
gldd-delete Procedure 

Boo1 Data Type 
seq Data Type 
ut-offsetof Procedure 
ut-fieldsize Procedure 

Module 
DSCO-Concurrent 

NOTES : 
None. 



DSIO INPUT OUTPUT MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the input and output data types. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

io-type Input/Output TYPE. Values are: INPUT, 
OUTPUT. 

access-mode file ACCESS MODE. Values are: READ, WRITE, 
READ-WRITE. 

file-offset FILE OFFSET type. Values are: ABSOLUTE, 
RELATIVE, EXTEND. 

FILE FILE descriptor. Values include: STDIN, 
STDOUT, STDERR, NULL-FILE, NOOP-FILE. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . 
None. 

IMPLEMENTATION FILES: 
DSIO-10-i.h 

IMPORTED ELEMENTS: 
Name TY??e Module 

proc-queue Data Type DSPR-Process 

NOTES : 

None. 



DSLM LIMITS MODULE 

PURPOSE : 
Implement the data structures to support the RTS runtime 
limits. 

DATA INTERFACE: 
Name Description 

sr-max-rmt-reqs 
Maximum number of remote requests that can be 
issued at any one time. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure ~escription 

Parameters ~escription (Type, IN/OUT, etc . 1 

None. 

IMPLEMENTATION FILES: 
DSLM-Limit-i.h 

IMPORTED ELEMENTS: 
Name TYRe Module 

None 

NOTES : 

None. 



DSMM MEMORY MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the memory block data type. 

DATA INTERFACE: 
Name ~escription 

RTS-OWN I•’ ds-memh-res returns this value then the 
RTS owns the memory block. 

PROG-OWN If ds-memh-res returns this value then the 
program owns the memory block. I have not 
seen this constant used anywhere in the RTS 
code, so I think it may be unused now (HB, 
Feb/91) . 

DATA TYPE INTERFACE : 
Name Description 

memh 

memhdr 

pointer to a MEMory block Header. This 
header exists for every memory block 
allocated for the SR program. 
pointer to a MEMory HeaDeR. This header only 
exists for certain cases where the Generated 
Code (GC) wishes to keep track of the memory 
it is allocating. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters ~escription (Type, IN/OUT, etc . ) 

ds-memh-res The resource for this memory block. 
memblock memh, IN, A memory block header. 
[return] rint, OUT, The resource which owns 

memblock. 

Memow List O~erations 

The following procedures perform the standard list 
operations for memory lists. Refer to the GL-Generic-Lists 
subsystem introduction for an explanation of the standard 
list operations. 

IMPLEMENTATION FILES: 
DSMM-Memory-1.h 



IMPORTED ELEMENTS: 
Name M e  Module 

rint Data Type DSRE-Resource 

gldl-create-empty-list 
Procedure GLDL-Double-Link 

gldl-push Procedure GLDL-Double-Link 
gldl-delete Procedure GLDL-Double-Link 

NOTES : 

None. 



DSNE NETWORK MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the network interface data types. 

DATA INTERFACE: 
Name ~escription 

None. 

DATA TYPE INTERFACE: 
Name Description 

ms-type Message TYPE. Values are: BLOCKFUNC-FINI, 
REQ-FINDVM, REQ-CREATE, REQ-INVOKE, 
REQ-DESTROY, REQ-DESTVM, MSG-EXIT, NO-OP . 

pach-s t PACKet header structure. Contains 
information necessary for every packet sent 
over the network. 

num-s t message structure to hold one NUMber. 
Several of the message types only send one 
number in their message. 

srxreply message structure for a REPLY message from 
the SRX. 

find-reply-st 
message structure for a message in REPLY to a 
req_FINDVM message. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 

None. 

IMPLEMENTATION FILES: 
DSNE-Net-i.h 

IMPORTED ELEMENTS: 
Name T"e Module 

Pid Data Type DSPR-Process 

None. 



DSOP OPERATION MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the operation data types. 

DATA INTERFACE: 
Name Description 

INIT-SEQ-OP operation initial sequence number. 

DATA TYPE INTERFACE: 
Name Description 

OP-type enumerated type which specifies the valid 
Operation TYPES. 

OPcaP Operation CAPability descriptor. 
oper pointer to an OPERation descriptor. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 
dsop-opcap-vrn The vm for this operation capability. 

Operationcap opcap, IN, This operation 
capability's data structure. 

[return] vmid, OUT, VM identifier for 
OperationCap. 

dsop-oper-res The resource that this operation belongs to. 
operat ion oper, IN, This operation's data 

struct. 
[return] rint, OUT, Resource instance for 

operation. 

The number of pending inputs for this 
operation. 

operat ion oper, IN, This operation's data 

[return] 
struct. 
short, OUT, Number of pending 
inputs for operation. 

dsop-oper-type 
The operation type of this operation. 

operat ion oper, IN, This operation's data 
struct . 

[return] op-type, OUT, Operation type of 
operation. 

dsop-oper-code 
The code address for this operation, if this 



is a proc 
operat ion 

[return] 

dsop-oper-class 
The input 

type operation. 
oper, IN, This operation's data 
struct. 
paddr, OUT, Code address for 
operation. 

operation class for this operation, 
if this is an input type operation. 

operat ion oper, IN, This operation's data 
struct. 

[return] class, OUT, Input operation class 
for operation. 

dsop-oper-sema4 
The semaphore for this operation, if this is 
a semaphore type operation. 

operat ion oper, IN, This operation's data 
struct. 

[return] sema, OUT, Semaphore for operation. 

dscl-oper-count 
The number of available operation 
descriptors. 

[return] int, OUT, Number of available 
descriptors. 

IMPLEMENTATION FILES: 
DSOP-Operation-i.h 

IMPORTED ELEMENTS: 
Name 

class 
rint 

paddr 
seqn 

w e  

Data Type 
Data Type 
Data Type 
Procedure 
Data Type 

Data Type 
Data Type 

Module 

NOTES : 

None. 



DSOS OPERATING SYSTEM MODULE 

PURPOSE : 
Implement the data structures and data access functions that 
are peculiar to the V-system operating syste~n. 

DATA INTERFACE: 
Name Description 

Messaqe Constants 

MAX-SEGMENT-SIZE 
MIN-MESG-SIZE 

V-system Process priorities 

WLTURE-PRIO 
BLOCK-OSPROCESS-PRIO 
MAIN~PROCESS~PRIO 

DATA TYPE INTERFACE: 
Name ~escription 

system-errors System errors - classified by system call. 
Values are: 

CREATE-ERROR 
READY-ERROR 
RECEIVESPEC-ERROR 
REPLY-ERROR 
SEND-ERROR 
REPLYSEG-ERROR 
OPEN-ERROR 
CLOSE-ERROR 
SEEK-ERROR 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

None. 

IMPLEMENTATION FILES: 
DSOS-operating-System-1.h 

IMPORTED ELEMENTS: 
Name l'YRe Module 

Message Data Type V- sys t em 



NOTES : 

None. 



DSPR PROCESS MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the process data types. These data types support the 
implementation of SR processes. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

proc A process descriptor. 
proc-queue A queue of processes. This is often used to 

sequence a list of blocked Drocesses. 
valid sr PRocess TYPES. V ~ ? U ~ S  are: INITIAL, 
FINAL, PROC. 

pr-status PRocess status codes. Values are: 
s rACTIVE Process is running. 
srREADY Process is ready to run. 
srBLOCKED Process is blocked, 

waiting for some 
operation. 

srINFANT Process is created but 
not started. 

srFREE Process descriptor is not 
in use. 

Pid Process IDentifier. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc. ) 

dsprsroc-stack 
The stack address for this process 
descriptor. 

procDesc proc, IN, This process descriptor. 
[return] daddr, OUT, The stack address for 

procDesc . 

dspr_proc-status 
The status of this process descriptor. 

procDesc proc, IN, This process descriptor. 
[return] int, OUT, The status for procDesc. 

dsprjroc-in-type 
The invocation type of this process 
descriptor. 

procDesc proc, IN, This process descriptor. 



[return] in-type, OUT, The invocation type 
of procDesc. 

dsprjroc-res The resource that owns this process 
descriptor. 

procDesc proc, IN, This process descriptor. 
[return] rint, OUT, The resource that owns 

procDesc. 

dsprjroc-blocked 
The blocked list that this process descriptor 
is on. 

procDesc 
[return] 

proc, IN, This process descriptor. 
proc-queue * ,  OUT, The blocked list 
for procDesc. 

dsprjroc-invoke 
The invocation descriptor for this process 
descriptor. 

procDesc proc, IN, This process descriptor. 
[return] invb, OUT, The invocation 

descriptor for procDesc. 

dspr_proc-co-lis t 
The list of co statements for this process 
descriptor. 

procDesc proc, IN, This process descriptor. 
[return] cob, OUT, The list of co statements 

for procDesc. 

dsprjroc-class 
The operation class for the current input 
statement in this process descriptor. 

procDesc proc, IN, This process descriptor. 
[return] class, OUT, The operation class for 

the current input statement in 
procDesc. 

dspr-isjroc-else-leg 
Is this process in an in-statement with an 
else leg? 

procDesc proc, IN, This process descriptor. 
[return] Bool, OUT, TRUE if this process is 

in an in-statement with an else 
leg. FALSE, otherwise. 



Process List 

The following procedures perform the standard list 
operations for process lists. Refer to the GL-Generic-Lists 
subsystem introduction for an explanation of the standard 
list operations. 

Process Queue 

The following procedures perform the standard list 
operations for process queues. Refer to the 
GL-Generic-~ists subsystem introduction for an explanation 
of the standard list operations. 

IMPLEMENTATION FILES: 
DSPR-Process-i.h 

IMPORTED ELEMENTS: 
Name TyBe 

class 
cob 
in-type 
invb 
rint 
s em 

Data Type 
Data Type 
Data Type 
Data Type 
Data Type 
Data Type 

glll-create-empty_proc-list 
Procedure 

glll-is-empty~roc-list 
Procedure 

glll-append Procedure 
gll LPOP Procedure 
glll-delete Procedure 
glde-create-empty~roc-list 

Procedure 
glde-is-empty~roc-list 

Procedure 
glde-append Procedure 
glde_po~ Procedure 
glde-delete Procedure 

Module 



Boo1 
daddr 

NOTES : 

None. 

Data Type UT-Utility 
Data Type UT-Utility 



DSRE RESOURCE MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the resource data types. 

DATA INTERFACE : 
Name Description 

INIT-SEQ-RES RESource INITial SEQuence number. 
CRB-HEADER-SIZE 

byte SIZE of the CReate Block HEADER. 
RES-CAP-SIZE byte SIZE of the RESource CAPability 

structure. 

Resource Status Values: 
INIT-REPLY INITial process has REPLIed. 
FINAL-REPLY FINAL process has REPLIed. 
FREE-SLOT this resource descriptor SLOT is FREE. 

DATA TYPE INTERFACE: 
Name Description 

rescap 
rint 

crb 

RESource CAPability data structure. 
pointer to a Resource INsTance descriptor 
data structure. 
pointer to a Create Request Block. It 
contains information necessary to perform the 
create operation. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

dsre-rescap-vm 
The VM of the resource specified by this 
rescap. 

Resourcecap rescap, IN, Resource capability. 
[return] vmid, OUT, The VM specified by 

ResourceCap. 

dsre-rintsrocs 
The process list for this resource. 

res rint, IN, Resource instance. 
[return] proc, OUT, The list of processes 

for res. 

dsre-rintmemory 
The memory list for this resource. 

res rint, IN, Resource instance. 
[return] memh, OUT, The list of memory 

blocks for res. 



dsre-rint-rescap 
The resource capability for this resource. 

res rint, IN, Resource instance. 
[return] rescap, OUT, The rescap for res. 

dsre-rint-rc-size 
The resource capability size for this 
resource. 

res rint, IN, Resource instance. 
[return] short, OUT, The byte size of rescap 

for res. 

dsre-rint-ops The operations list for this resource. 
res rint, IN, Resource instance. 
[return] oper, OUT, The list of operations 

for res. 

dsre-rint-num-ops 
The number of operations for this resource. 

res rint, IN, Resource instance. 
[return] short, OUT, The number of 

operations for res. 

dsre-rint-status 
The status flag for this resource's 
initial/final/reply proc. 

res rint, IN, Resource instance. 
[return] int, OUT, ~nitial/final/reply 

status flag for res. 

dscl-rint-count 
The number of available rint descriptors. 

[return] inti OUT, Number of available 
descriptors. 

dsre-crbsach The packet header for this Create Request 
Block. 

CreateReq crb, IN, Create request block. 
[return] pach, OUT, Packet header for 

CreateReq. 

dsre-crb-rescap 
The resource capability for this Create 
Request Block. 

CreateReq crb, IN, Create request block. 
[return] rescap, OUT, Resource capability 

for CreateReq. 

dsre-crb-size The byte size of this Create Request Block. 
CreateReq crb, IN, Create request block. 
[return] short, OUT, Byte size of CreateReq. 

dsre-crb-m The VM in this Create Request Block. 
CreateReq crb, IN, Create request block. 
[return] m i d ,  OUT, VM identifier for 



CreateReq. 

dsre-crb-args The arguments in this Create Request Block. 
CreateReq crb, IN, Create request block. 
[return] char [ I ,  OUT, Array of arguments in 

CreateReq. 

IMPLEMENTATION FILES: 
DSRE-Resource-i.h 
DSRE-Resource-h.h 

IMPORTED ELEMENTS: 
Name TYRe Module 

memh 
pach 
pach-st 
OPcaP 
oper 
proc 
s em 
dss4-sem-count 
m i d  

Data Type 
Data Type 
Data Type 
Data Type 
Data Type 
Data Type 
Data Type 
Procedure 
Data Type 

status Data Type UT-Utility 
s eqn Data Type UT-Utility 
daddr Data Type UT-Utility 
ut-offsetof Procedure UT-Utility 

NOTES : 

None. 



DSRM REMOTE MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the remote operations. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name ~escription 

None. 

INVOCATION INTERFACE: 
Procedure ~escription - 

Parameters Description (Type, IN/OUT, etc . ) 
dsrm-rem-count 

The number of available remote descriptors. 
[return] int, OUT, Number of available 

descriptors. 

IMPLEMENTATION FILES: 
DSRM-Remote-i.h 

IMPORTED ELEMENTS: 
Name W R e  Module 

s em Data Type DSS4-Semaphore 
dss4-sem-count Procedure DSS4-Semaphore 

NOTES : 

None. 



DSS4 SEMAPHORE MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the semaphore data type. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

s em Pointer to a semaphore data structure. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

dss4-sem-count 
The value of a semaphore counter. 

s ema 4 sem, IN, A semaphore. 
[return] int, OUT, Value of sema4's counter. 

If it is less than 0, then it gives 
the number of processes waiting on 
this semaphore. This value is zero 
if sema4 is not in use (free). 

IMPLEMENTATION FILES: 
DSS4-Semaph0re.h 

IMPORTED ELEMENTS: 
Name T"e 

proc-queue Data Type 

NOTES : 

None. 

Module 

DSPR-Process 



DSVM VIRTUAL MACHINE MODULE 

PURPOSE : 
Implement the data structures and data access functions for 
the virtual machine (VM) data types. 

DATA INTERFACE: 
Name ~escription 

s r-my-vm Current virtual machine number. 
sr-my-machine Current physical machine number. 
NULL-Virtual-Machine 

Null VM capability. 
NOOP-Virtual-Machine 

Null VM capability. 
sr-nu-vm cap Null vm capability. 
sr-no-vmcap Noop vm capability. 

VM-MAG I C 

PROTO-VER 

random number used to check that VMs are 
started by a valid SR program. 
VERsion identifier. Used to check that 
two portions of SR code are compiled by 
the same SR compiler. 

DATA TYPE INTERFACE: 
Name Description 

pmid Physical Machine IDentifier. 
s rsmda t a Physical Machine descriptor. 
m i d  Virtual Machine IDentifier. 
s r-vmda t a Virtual Machine descriptor. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

dsvm-vm-known Is the given VM known to the VM data 
structure? 

vm mid, IN, A VM identifier. 
[return] Bool, OUT, TRUE if VM is known, 

FALSE otherwise. 

dsvm_vm_pm Determine the physical machine id for the 
given VM. 

dsvm-vm-addr Determine the message address for the given 
VM. 

IMPLEMENTATION FILES: 
 virtual-Machine.h 



IMPORTED ELEMENTS: 
Name 'J!YRe Module 

Boo1 Data Type UT-Utility 

NOTES : 

None. 



RTS GENERIC LISTS SUBSYSTEM (GL) DESCRIPTION 

Function of the Generic Lists Subsystem 

Many of the SR entities are implemented using data structures 

called descriptors, eg. the resource and process descriptors. In 

turn, these descriptors are often stored in lists of various 

types, because of the SR requirement that the entities be created 

and destroyed dynamically. Since these list types have very 

little to do with the type of descriptor they contain, it is 

appropriate that the lists are implemented separately from the SR 

entities. For example, the resource descriptor is implemented by 

the LGRE-Resource module, but it uses a linked list which is 

implemented by the GLLL-Linked-List module. Therefore, the 

Generic Lists Subsystem has been created to implement modules for 

all the list types required by the RTS. 

This subsystem has very few dependencies because it is usually 

only working with pointer fields. It initializes pointer fields, 

and assigns one field to another. GL-Generic-Lists does depend 

on MC-Machine for some generic data type definitions. 



Generic Lists Subsystem Design 

All of the Generic Lists (GL) modules are implemented using 

standard list manipulation algorithms. Therefore, this section 

merely describes some implementation techniques common to all the 

modules which affect the design and use of these modules. 

Each Generic Lists (GL) module defines its own data type. 

However, this is little more than a syntactic convention. In 

fact, the procedures in these modules can work with any C record 

structure. This works because C has very loose type checking and 

all the GL procedures are implemented as #define statements. 

The #define statements are processed by the C preprocessor. In 

essence, the GL procedures, implemented by #define statements, 

are 'invoked' before the code is compiled. Therefore, they can 

accept parameters containing C types, and C field names. These 

parameters allow the GL procedures to be more general than if 

they were implemented with the standard C functions. 

Since all the modules in the GL subsystem are working on lists, 

they tend to supply very similiar procedures. To make this 

similiarity explicit, we have used the following standard 

procedure names: 

create-list 

is-empty-list 

- Create a list and initialize it. 

- Determine if a list is empty. Return 

114 



POP 

chop 

delete 

push 

append 

append-list 

insert 

TRUE for an empty list, and FALSE 

otherwise. 

- Remove the node from the front of the 

list and return a pointer to it. 

- Remove a node from the end of the list 

and return a pointer to it. 

- Remove the given node from the list. 

The node may be anywhere in the list. 

- Add a node to the front of the list. 

- Add a node to the end of the list. 

- Add a new list to the end of the old 

list. 

- Add a node after the given node in the 

list. The given node may be anywhere in 

the list. 

Not all of the above procedures are implemented for all of the GL 

modules. 



GLAR ARRAY MODULE 

PURPOSE : 
Implement generic data structures which support the use of 
arrays. 

DATA INTERFACE: 
Name ~escription 

"Descriptor fields" 
AD-LB1 Lower bound, if array. 
AD-UB1 Upper bound, if array. 
AD-LB2 Second lower bound, if two dimensional array. 
AD-UB2 Second upper bound, if two dimensional array. 

DATA TYPE INTERFACE: 
Name Description 

t index Index for small tables. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 

None. 

IMPLEMENTATION FILES: 
GLAR-Array . h 

IMPORTED ELEMENTS: 
Name 'WRe Modu 1 e 

None. 

NOTES : 

None. 



GLDD DOUBLE-ENDED, DOUBLE-LINKED LIST MODULE 

PURPOSE : 
Implement two-way (double), linked lists, with quick access 
to both ends of the list. These lists do not make as 
efficient use of memory as the other lists but they can 
quickly perform deletion operations at any position in the 
list. They can also quickly perform operations at both the 
head and the tail of the list. 

DATA INTERFACE: 
Name ~escrigtion 

None. 

DATA TYPE INTERFACE: 
Name ~escription 

gldd-list Generic pointer type for this list structure. 
gldd-node Generic node type for this list structure. 

INVOCATION INTERFACE: 
Procedure ~escription 

Parameters Description (Type,IN/OUT, etc.) 

gldd-create-empty-list 
Initialize List to be an empty list. 

List gldd-list, IN-OUT, A new list 
structure. 

gldd-is-empty-list 
Determine if List is an empty list. 

List gldd-list, IN, A list structure. 
[return] Bool, OUT, TRUE if List is empty. 

FALSE otherwise. 

gldd-append ~ d d  a node to the tail of the list. 
Node gldd-node, IN, The new node. 
List gldd-list, IN-OUT, An existing list 

structure. 

gldd-append-list 
~ d d  a new list to the tail of an existing 
list. 

NewList gldd-list, IN, The new list. 
OldList gldd-list, IN-OUT, The existing 

list structure. 

gldd-delete Remove a node from the middle of the list. 
Node gldd-node, IN, The node to be 

removed. 
List gldd-list, IN-OUT, An existing list 



structure. 

IMPLEMENTATION FILES: 
GLDD-Double-Double-List.h 

IMPORTED ELEMENTS: 
Name m e  

Boo1 Data 

NOTES : 

None. 

Module 

UT-Utility 



GLDE DOUBLE-ENDED LINKED LIST MODULE 

PURPOSE : 
Implement one-way, linked lists, with quick access to both 
ends of the list. These lists make efficient use of memory 
and quickly perform insertion and deletion operations to 
both ends of the list. Insertion and deletion operations 
performed on other parts of the list may be quite 
inefficient. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

glde-list Generic pointer type for this list structure. 
glde-node Generic node type for this list structure. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 

glde-create-empty-list 
Initialize List to be an empty list. 

List glde-list, IN-OUT, A new list 
structure. 

glde-is-empty-list 
Determine if List is an empty list. 

List glde-list, IN, A list structure. 
[return] Bool, OUT, TRUE if List is empty. 

FALSE otherwise. 

gldesush Add a node to the head of the list. 
Node glde-node, IN, The new node. 
List glde-list, IN-OUT, An existing list 

structure. 

glde-append Add a node to the tail of the list. 
Node glde-node, IN, The new node. 
List glde-list, IN-OUT, An existing list 

structure. 

Node 

Remove a node from the head of the list. 
glde-list, IN-OUT, An existing list 
structure. 
glde-node, OUT, The removed node. 



Node 

List 

Remove a node from the middle of the list. 

IMPLEMENTATION FILES: 
GLDE-Double-Ended.h 

IMPORTED ELEMENTS: 
Name m e  

Data Type 

glde-node, IN, The node to be 
removed. 
glde-list, IN-OUT, An existing list 
structure. 

Module 

UT-Utility 

NOTES : 

None. 



GLDL DOUBLE LINKED LIST MODULE 

PURPOSE : 
Implement two-way (double), linked lists. These lists are 
not quite as efficient as other linked lists in their use of 
memory, but deletion operations are performed quickly for 
any position in the list. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

gldl-list Generic pointer type for this list structure. 
gldl-node Generic node type for this list structure. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

gldl-create-empty-list 
Initialize List to be an empty list. 

List gldl-list, IN-OUT, A new list 
structure. 

gldl-is-empty-list 
Determine if List is an empty list. 

List gldl-list, IN, A list structure. 
[return] Bool, OUT, TRUE if List is empty. 

FALSE otherwise. 

gldljush Add a node to the head of the list. 
Node gldl-node, IN, The new node. 
List gldl-list, IN-OUT, An existing list 

structure. 
NextField C field name, IN, Name of forward 

pointer field in gldl-node record 
structure. 

PrevField C field name, IN, Name of backwards 
pointer field in gldl-node record 
structure. 

gldl-delete Remove a node from the middle of the list. 
Node gldl-node, IN, The node to be 

removed. 
List gldl-list, IN-OUT, An existing list 

structure. 
NextField C field name, IN, Name of forward 

pointer field in gldl-node record 



IMPLEMENTATION FILES: 
GLDL-Double-Link.h 

IMPORTED ELEMENTS: 
Name TYPe 

Boo1 Data Type 
C field name Data Type 

NOTES : 

structure. 
C field name, IN, Name of backwards 
pointer field in gldl-node record 
structure. 

Module 

This module is called macr0s.h in the UNIX implementation of 
SR . 



GLLL LINKED LIST MODULE 

PURPOSE : 
Implement one-way, linked lists. These lists make efficient 
use of memory and quickly perform insertion and deletion 
operations to the head of the list. Insertion and deletion 
operations performed on other parts of the list may be quite 
inefficient. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

glll-list Generic pointer type for this list structure. 
glll-node Generic node type for this list structure. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 

glll-create-empty-list 
Initialize List to be an empty list. 

List glll-list, IN-OUT, A new list 
structure. 

List 
[return] 

glll_push 
Node 
List 

Node 

glll-delete 
Node 

List 

Determine if List is an empty list. 
glll-list, IN, A list structure. 
Bool, OUT, TRUE if ~ 1 s t  is empty. 
FALSE otherwise. 

Add a node to the head of the list. 
glll-node, IN, The new node. 
glll-list, IN-OUT, An existing list 
structure. 

Remove a node from the head of the list. 
glll-list, IN-OUT, An existing list 
structure. 
glll-node, OUT, The removed node. 

Remove a node from the middle of the list. 
glll-node, IN, The node to be 
removed. 
glll-list, IN-OUT, An existing list 
structure. 



IMPLEMENTATION FILES: 
GLLL-Linked-List.h 

IMPORTED ELEMENTS: 
Name W e  

Boo1 Data Type 
C field name Data Type 
C type Data Type 

NOTES : 

Module 

None. 



RTS LANGUAGE SUBSYSTEM (LG) DESCRIPTION 

Function 

The Language (LG) Subsystem provides the functionality for SR 

Language-specific concepts, which are too complex to implement 

with in-line code. For example, the LG subsystem implements 

Virtual Machines, Resources, and Operations. Almost every module 

in LG implements an SR concept or statement directly. 

Desisn 

The dependencies between LG modules are fairly simple. Most 

modules only depend on one or two other LG modules. The two 

exceptions are LGMN-Main which calls almost every other module to 

initialize the RTS, and LGIV-Invoke which calls several other 

modules to implement the several different types of invocation. 

The LG dependencies on other Subsystem modules are more complex. 

The LG modules only depend on two or three 0s-Operating-System 

modules, but they often depend on six or seven DS-Data-Structure 

modules. The reason for the large number of DS modules is that 

the LG modules often must traverse the RTS data structure to find 

the information they need. In the course of traversing the data 

structure, they use the DS descriptors and data access 

1 2 5  



procedures. Most LG modules also use several of the MC-Machine 

modules. Taken collectively, the LG modules use almost every 

other module in the RTS. This is not surprising since LG 

supplies most of the interface to the Generated Code (GC), and 

the rest of the RTS is written to support that interface. 

There are two circular dependencies in the LG Dependency Diagram. 

 either of them are cause for concern. 

The circular dependency between LGVM-Virtual-Machine and 

LGRT-Remote-Tx occurs because the LGVM sr-create and sr-destroy 

procedures need to do sr-remote calls, and the LGRT sr-remote 

procedure needs to call sr--connect in LGVM if the requested 

VM1s communication address is unknown. Since the sr-mconnect 

procedure does not depend on any other LG modules, there is no 

possibility of recursion or deadlock. We will need a stub for 

sr-vm_connect during the testing of LGRT-Remote-Tx. 

The circular dependency between LGIV-Invoke and LGCO-Concurrent 

occurs because the LGIV sr-invoke procedure depends on LGCO to 

implement concurrent invocations, and LGCO must sometimes make a 

copy of an invocation descriptor, which it does by calling 

sr-dup-inv in LGIV. The sr-dup-inv procedure has no dependencies 

other than the obvious need to use the invocation descriptor. 

SR-dup-inv is a simple copy procedure. There is no possibility 

of recursion or deadlock. We will need a stub for sr-dup-inv 

during the testing of LGCO-Concurrent. 



The internal design of some of the LG modules is quite complex. 

In particular the LGIV-Invoke and the LGIN-Input-Op modules must 

distinguish between many different types of invocations and 

implement each type as efficiently as possible. For more 

information on these design issues, refer to "An Overview of the 

SR Language and Implementation". 



LGCL CLASS MODULE 

PURPOSE : 
Implement equivalence classes for input operations. A class 
stores information about the input operations and all the 
pending invocations on those input operations. 

Section 4.2.2. The Input Statement, in "An Overview of the 
SR Language and Implementation", has a complete description 
of classes and their use in the SR RTS. 

DATA INTERFACE : 
Name Description 

None. 

2ATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters ~escription (Type,IN/OUT, etc.) 

sr-init-class Initialize this module. 

sr-make-class Create a new class. 
[return] class, OUT, The new class 

descriptor. 

sr-free-class Kill an old class. 
clap class, IN, The class to be killed. 

IMPLEMENTATION FILES: 
LGCL-C1ass.c 
LGCL-Class-i.h 
LGCL-Class-h. h 

IMPORTED ELEMENTS: 
Name TYRe Module 

ossf-declare-free-list 
Procedure OSSF-Safe-FreeList 

ossf-init-free-list 
Procedure OSSF-Safe-FreeList 

ossf-get-node Procedure OSSF-Safe-FreeList 
ossf-free-node Procedure OSSF-Safe-FreeList 

sr-class-count Data (Update) DSCL-Class 
sr-max-classes Data (Read) DSCL-Class 
class Data Type DSCL-Class 



class-st Data Type DSCL-Class 
create-invQ Procedure DSIN-Invoke 
create~rocQ Procedure DSPR-Process 

sr-check-stk Procedure MCPR-Process 
Boo1 Data Type UT-Ut il 

NOTES : 
None. 



LGCO CONCURRENT MODULE 

PURPOSE : 
~Klement the SR co statement. This statement executes a 
number of SR statements concurrently. 

The "Revised Report on the SR Language" has more information 
about the SR co statement. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name ~escrigt ion 

None. 

INVOCATION INTERFACE: 
Procedure Description - 

Parameters Description (Type,IN/OUT, etc.) 

Initialize this module and this VM. 

sr-co-start Start a co statement by initializing a co 
descriptor and linking it to the current 
process. 

sr-co-call Initialize the invocation and co descriptors 
for a call from a co statement. 

ibp invb, IN-OUT, The invocation 
descriptor. 

sr-co-call-done 
Finalize the invocation and co descriptors 
after a call from a co statement has 
completed. If the invoker is still 
interested in this event, notify him. 

ibp invb, IN-OUT, The invocation 
descriptor. 

sr-co-send Initialize the invocation and co descriptors 
for a send from a co statement. 

ibp invb, IN-OUT, The invocation 
descriptor. 

sr-co-wait Wait for a co invocation to terminate. 
Return a pointer to the original invocation 
descriptor so that the GC (Generated Code) 
can copy result parameters and find out which 
arm terminated. 



[return] invb, IN-OUT, The invocation 
descriptor. 

s r-co-end Finalize a co statement. Release the co 
des~riptor. 

IMPLEMENTATION FILES: 
LGCO- concurrent.^ 

IMPORTED ELEMENTS: 
Name 'm'Pe Module 

sr-dup-invb Procedure LGIN-Invoke 

sr-f ree Procedure 
sr-kill-sem Procedure 
sr-make-sem Procedure 
P Procedure 
V Procedure 
ossf-declare-free-list 

Procedure 
ossf-init-free-list 

Procedure 
ossf-get-node Procedure 
ossf-free-node Procedure 

INIT-SEQ-CO Data (Read) 
cob Data Type 
cob-s t Data Type 
invb Data Type 
dsin-invb-co Procedure 
sr-max-co-stmts 

Data (Read) 
sr-cursroc Data (Update) 
dspr_proc-co-list 

Procedure 

t index Data Type GLAR-Array 

sr-check-stk Procedure MCPR-Process 
daddr . Data Type UT-Util 

NOTES : 
None. 



LGIN INVOKE MODULE 

PURPOSE : 
Implement the SR invocation statements: call, send and 
reply. The SR invocation mechanisms are quite 
sophisticated. The implementation uses a sophisticated 
design to handle the different types of invocation, and the 
different types of invocation termination. 

The "Revised Report on the SR Language" has more information 
about the SR invocation concepts. 

DATA INTERFACE : 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters ~escription (Type,IN/OUT, etc.) 

sr-invoke Invoke a proc or input operation with either 
a call or a send. 

ibp invb, IN, The invocation 
descriptor. 

[return] invb, OUT, The new invocation 
descriptor describing the current 
state of the invocation. 

sr-reply Send an early reply to the invoker of an 
operation. This implements the reply 
statement. 

ibp invb, IN, The invocation 

[return] 
descriptor. 
invb, OUT, The new invocation 
descriptor describing the current 
state of the invocation. 

sr-finished-input 
Clean up a finished input operation. 

ibp invb, IN, The in7:-cation 
descriptor. 

sr-finishedsroc 
Clean up a finished proc operation. 

ibp invb, IN, The invocation 
descriptor. 



ibp 

ibp 

[return] 

Reject an invocation because the operation 
was killed before the invocation was 
accepted. 

invb, IN, The invocation 
descriptor. 

IMPLEMENTATION FILES: 
LGIN-1nvoke.c 

Duplicate an invocation descriptor and return 
the address of the copy. 

invb, IN, The invocation 
descriptor. 
invb, OUT, The new invocation 
descriptor. 

IMPORTED ELEMENTS: 
Name TYRe 

sr-co-send Procedure 
sr-co-call Procedure 
sr-co-call-done 

Procedure 
sr-invk-iop Procedure 
sr-own-alloc Procedure 
sr-activate Procedure 
sr-kill Procedure 
sr-remot e Procedure 

sr-kill-sem Procedure 
sr-make-sem Procedure 
P Procedure 
V Procedure 

INVOCATION-HEADER-SIZE 
Data (Read) 

invb 
in-type 
invk-argsize 
invk-opcap 
invk-type 
invk-wai t 
RTS-OWN 
pach 
ms-type 
sr-optab 
oper 
OP-tYPe 
opcap-opindex 
opcap-seqn 
OP c ap-vm 
oper-code 
oper-inclass 

Data Type 
Data Type 
Procedure 
Procedure 
Procedure 
Procedure 
Data (Read) 
Data Type 
Data Type 
Data (Read) 
Data Type 
Data Type 
Procedure 
Procedure 
Procedure 
Procedure 
Procedure 

Module 



oper-res 
oper-seqn 
OPer-tYPe 
sr-cursroc 
proc 
pr-type 
proc-intype 
proc-invoke 
procjrtype 
proc-wai t 
sr-cur-res 
res-status 
rint-capsize 
rint-create 
rint-rescap 
rint-status 
rint-varbase 
sem 
s r-my-vm 

sr-rtserror 
sr-abort 
sr-f ree 
sr-check-stk 
NOOP-SEQN 
daddr 
Boo1 

Procedure 
Procedure 
Procedure 
Data (Update) 
Data Type 
Data Type 
Procedure 
Procedure 
Procedure 
Procedure 
Data (Update) 
Data Type 
Procedure 
Procedure 
Procedure 
Procedure 
Procedure 
Data 5 p e  
Data (Read) 

Procedure 
Procedure 
Procedure 
Procedure 
Data (Read) 
Data Type 
Data Type 

DSOP-Operation 
DSOP-Operat ion 
DSOP-Operation 
DSPR-Process 
DSPR-Process 
DSPR-Process 
DSPR-Process 
DSPR-Process 
DSPR-Process 
DSPR-Process 
DSRE-Resource 
DSRE-Resource 
DSRE-Resource 
DSRE-Resource 
DSRE-Resource 
DSRE-Resource 
DSRE-Resource 
DSS4-Semaphore 
~~VM-Virtual-Machine 

memcpy Procedure 

NOTES : 
None. 



LGIP INPUT OPERATIONS MODULE 

PURPOSE : 
The input statement is the most complicated statement in the 
SR language. This module implements the basic input 
operation processing: invoke input operations and retrieve 
input operation invocations (done by processes which execute 
input operations). 

Section 4.2.2. The Input Statement in the "Overview of the 
SR Language and Implementation" has a good description of 
the input statement implementation and the use of 
equivalence classes (LGCL-Class module). 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 
sr-invk-iop Invoke an input operation. 

ibp invb, IN-OUT, The invocation 
descriptor. 

clap class, IN-OUT, The input 
operation's equivalence class. 

sr-iaccess Get access to an input operation class. This 
allows the Generated Code (GC) to start 
searching for an eligible invocation. 

class, IN-OUT, The input 
operation's equivalence class. 

clap 

ibp 

Regain subsequent access to an input 
operation class. 

Remove an invocation descriptor from the 
specified input operation queue. The 
Generated Code (GC) can service the 
invocation now. 

invb, IN-OUT, The invocation 
descriptor. 



IMPLEMENTATION FILES: 
LGIP-Input-0peration.c 

IMPORTED ELEMENTS: 
Name T'YQe 

awaken Procedure 
block Procedure 
sr-cswitch Procedure 

class Data Type 
class-inuse Procedure 
class-newin Procedure 
class-newpr Procedure 
class-oldin Procedure 
class-oldpr Procedure 
classsending Procedure 
invb Data Type 
invk-next Procedure 
append-invQ Procedure 
append-list-invQ 

Procedure 
delete-invQ Procedure 
s r-op t ab Data (Read) 
oper Data Type 
opcap-opindex Procedure 
opersending Procedure 
sr-cursroc Data (Update) 
proc Data Type 
proc-class Procedure 
proc-next-inv Procedure 
proc-next Procedure 

sr-check-stk Procedure 
Boo1 Data Type 

Module 

NOTES : 
None. 



LGMN MAIN MODULE 

PURPOSE : 
This module initializes all the modules in the RTS. If this 
is the first RTS then it creates the main resource. 
Otherwise, it just waits for requests from remote VMs. 

This module starts the RTS on each VM. The first RTS is 
invoked from the operating system command-line.   his 
initial invocation is the program startup which may include 
program parameters. These parameters are ignored by the RTS 
and passed to the SR program. Every subsequent invocation 
is a VM startup which is the result of a VM create 
statement. In this case, all the parameters are used for 
the RTS initialization. 

3ATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

main Initialize the first RTS (program startup). 
argc int, IN, Number of arguments. 
argv char * * ,  IN, Array of arguments. 

main Initialize all the subsequent RTSs (VM 
startup). 

argv[ll char * ,  IN, A magic string 
(VM-MAGIC) indicating that this is 
a VM startup. 
char * ,  IN, Physical machine number 
for the new VM. 
char * ,  IN, Virtual machine number 
for the new VM. 
char * ,  IN, Network address of the 
of the srx [srx's PID] . 
char * ,  IN, Debugging flags. Used 
to initialize the MCDE-Debug 
module. 
char *,  IN, Program group 
communication address. Used by the 
OSGP-Group module. 



IMPLEMENTATION FILES: 
LGMN-Main.c 
LGMN-Main-i.h 
LGMN-Main-h.h 

IMPORTED ELEMENTS: 
Name WRe 

sr-init-class Procedure 
sr-init-co Procedure 
sr-init-io Procedure 
sr-argv Data (Update) 
sr-argc Data (Update) 
sr-init-oper Procedure 
sr-initjroc Procedure 
sr-kill Procedure 
sr-create Procedure 
sr-init-res Procedure 
sr-init-remote-Rx 

Procedure 
sr-init-remote-Tx 

sr-ini 
s r-own 
sr-ini 
sr-ini 
sr-ini 

sr-pgmgroup 
RTS-OWN 
sr-cursroc 
crbp 
crb-st 
rint 
crb-rpatid 
c r b-vm 
MAIN-VM 
sr-my-machine 
s r-my-vm 

stderr 
sprint•’ 

Procedure 
Data (Read) 

Procedure 
Procedure 
Procedure 
Procedure 
Procedure 

Data (Update) 
Data (Read) 
Data (Read) 
Data Type 
Data Type 
Data Type 
Data Type 
Data Type 
Data (Read) 
Data (Update) 
Data (Update) 

Procedure 
Data (Update) 
Data (Read) 

Data (Update) 
Procedure 

Module 

V- sys t em 
V-system 

NOTES : 
None. 



LGMS MISCELLANEOUS MODULE 

PURPOSE : 
Implement a miscellaneous group of procedures which are 
useful for the Generated Code ( G C ) .  Included in this group 
of procedures are string manipulation procedures, max and 
min procedures, copy procedures, memory allocation 
procedures and command-line argument, access procedures. 

DATA INTERFACE: 
Name Description 

sr-argc When an SR program is started, the command 
line may include several arguments. This 
variable gives the number of command line 
arguments. 

sr-argv This variable contains the command line 
arguments. 

DATA TYPE INTERFACE: 
Name Description 

sr-s tring A string descriptor. All SR string variables 
are stored in this format. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 

sr-cat Concatenate all the string arguments and copy 
them to a new string. Return the address of 
the new string. 

va-alist va-dcl, IN, A list of argument 
pairs. The first argument in a 
pair is a char* pointer to a 
string, and the second argument is 
an int which gives the length of 
the string. The list of argument 
pairs is terminated with the pair: 
"NULL, 0". 
daddr, OUT, The address of the new 
string containing the concatenation 
of all the argument strings. 

[return] 



s r-s t rcmp 

laddr 
llen 
raddr 
rlen 
[return] 

pstr 

len 

va-alist 

[return] 

va-alist 

[return] 

addr 

len 

n 

[return] 

Compare two strings. Return a number 
indicating which string is larger. Return a 
negative number if the left string is less 
than the right; return a positive number if 
the left string is greater than the right; 
and return 0 if the two strings are equal. 

char * ,  IN, The left :ring. 
int, IN, The left strlng length. 
char * ,  IN, The right string. 
int, IN, The right string length. 
int, OUT, The comparison result. 

Copy a null terminated string to an SR 
string. 

char * ,  IN, The null terminated 
string. 
sr-string, IN-OUT, The SR string 
structure. 
int, IN, The maximum length of p. 

Return the maximum of the integer arguments 
int, The number of integer 
arguments. 
va-dcl, IN, A list of n integer 
arguments. 
int, The maximum integer in 
va-alist . 

Return the minimum of the integer arguments. 
int, The number of integer 
arguments. 
va-dcl, IN, A list of n integer 
arguments. 
int, The minimum integer in 
va-alist . 

Make n copies (clones) of a memory block. 
All the clones are located in the memory area 
immediately after the original copy. 1.e. 
the memory block from addr to (addr+len-1) is 
copied to (addr+len), (addr+ 2*len), (addr+ 
3*len), etc. 

daddr, IN, The address of the 
original. 
int, IN, The length of of the 
memory block. 
int, IN, The number of clones to 
make. 
daddr, OUT, Pointer to the memory 
location immediately after the last 
clone. 



laddr 
raddr 
len 

sr-new 
len 

[return] 

sr-newfree 

addr 

Swap two items in memory. If len is 0, then 
the items are strings, and the maximum of the 
current lengths is to be used. 

char * ,  IN-OUT, The left item. 
char * ,  IN-OUT, The right item. 
int, IN, The length of the items. 
0 indicates that the maximum string 
length is to be used. 

Allocate memory for an SR new(type) call. 
int, IN, The length of the memory 
block. 
daddr, OUT, The address of the 
memory block. 

Deallocate a memory block allocated by 
s r-new . 

daddr, IN, The address of the 
memory block. If this NULL, then 
do nothing. 

sr-numargs Return the number of command line arguments. 
[return] int, The number of arguments. 

[return] 

sr-arg-boo1 Interpret command line argument n as a 
Boolean literal. Assign its Boolean value to 
pBool. If this procedure is successful then 
return TRUE. Otherwise, return FALSE. 

int, IN, The argument number. 
Bool * ,  OUT, The Boolean value of 
the argument. 
Bool, OUT, Exit status of 
procedure. 

[return] 

sr-arg-char 

n 
pstr 
len 

[return] 

Interpret command line argument n as an 
integer literal. Assign its value to pint. 
If this procedure is successful then return 
TRUE. Otherwise, return FALSE. 

int, IN, The argument number. 
int * ,  OUT, The integer value of 
the argument. 
Bool, OUT, Exit status of 
procedure. 

Copy the n'th command line argument to an SR 
char array. If this procedure is successful 
then return TRUE. Otherwise, return FALSE. 

int, IN, The argument number. 
char * ,  OUT, The character array. 
int, IN, The maximum length of the 
string. 
Bool, OUT, Exit status of 
procedure. 



n 
pstr 

len 

[return] 

Copy the n'th command line argument to an SR 
string. If this procedure is successful then 
return TRUE. Otherwise, return FALSE. 

int, IN, The argument number. 
sr-string, OUT, The SR string 
variable. 
int, IN, The maximum length of the 
string. 
Bool, OUT, Exit status of 
procedure. 

IMPLEMENTATION FILES: 
LGMS- miscellaneous.^ 
LGMS-Miscellaneous-i.h 
LGMS-Miscellaneous-h.h 

IMPORTED ELEMENTS: 
Name 

DEBUG 
sr-abort 
sr-check-stk 
MAX-INTEGER 
MIN-INTEGER 
Bool 
daddr 

EOF 
free 
malloc 
memcpy 
sscanf 

Procedure 
Data Type 
Data Type 
Data Type 
Data Type 
Data Type 
Data Type 

Procedure 
Procedure 
Procedure 
Data (Read) 
Data (Read) 
Data Type 
Data Type 

Data (Read) 
Procedure 
Procedure 
Procedure 
Procedure 

Module 

MCDE-Debug 
MCEX-Exception 
MCPR-Process 
UT-U t i 1 
UT-Util 
UT-U t i 1 
UT-Ut il 

V- sys t em 
V- sys t em 
V-sys tem 
V-sys tem 
V- sys t em 

NOTES : 
None. - 



LGNP NETPATH MODULE 

PURPOSE : 
This module is responsible for building a path to the 
program's executable file. This path is needed whenever 
this VM attempts to start another VM. 

Because of the limitations of some network operating 
systems, the path to a file is not the same on every 
machine. 1.e. the path to file 'prog.exel on machine X may 
not be the same as the path to file 'prog.exel on machine Y. 
SR allows these different paths to be documented in a file 
called the mapfile. This module uses the mapfile to build 
the executable path for this machine. 

For more information about mapfiles, refer to the example 
mapfiles in the main SR source directory. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters ~escription (Type,IN/OUT, etc.) 

sr-netpath Build a network path for the filename. 
Return a pointer to the network path or NULL 
if we can not build the path. 

f name char * ,  IN, The name of the file. 
dir char * ,  IN, The name of the 

directory containing fname. This 
directory path does not contain the 
hostname or any network 
information. This parameter is 
ignored if fname includes the full 
pat hname . 

map•’ ile char * ,  IN, The network path for 
the mapfile. 

result char * ,  OUT, The network path for 
fname. Null if it can not be 
built. 

[return] char * ,  OUT, The network path for 
fname. Null if it can not be 
built. 



IMPLEMENTATION FILES: 
LGNP-net path.^ 
LGNP-Netpath-i.h 
LGNP-Netpath-h.h 

IMPORTED ELEMENTS: 
Name l'YRe 

s r-open Procedure 
sr-close Procedure 

HOST-NAME-LEN Data (Read) 
MAX-PATH Data (Read) 
MAX-L INE Data (Read) 

DEBUG Procedure 
sr-rtserror Data (Update) 
sr-rts-warn Data (Update) 
sr-net-abort Procedure 

FILE Data Type 
Systemcode Data Type 
fgets Procedure 
isspace Procedure 
perror Procedure 
st rchr Procedure 
strlen Procedure 
st rncpy Procedure 
sprint f Procedure 
QueryWorkstationConfig 

Procedure 

Module 

MCDE-Debug 
MCEX-Exception 
MCEX-Except ion 
MCEX-Exception 

V-system 
V-system 
V-system 
V-system 
V- sys t em 
V-system 
V-sys tem 
V-system 
V-system 

V- sys t em 

NOTES : 
None. 



LGOP OPERATION MODULE 

PURPOSE : 
Implement the procedures and data structures for SR 
operations. Construct the operation descriptors and 
capabilities when new operations are created, and remove the 
descriptors and capabilities when operations are killed. 
Find 'eligiblef operation invocations in invocation lists. 

The "Revised Report on the SR Language" has more information 
about SR operations. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 

sr-init-oper Initialize this module. 

sr-make-resops 
Add a list of new operations to a resource. 
Called during resource initialization. 

va-alist va-dcl, IN, A list of operations. 
There are two or three arguments 
per operation. The first argument 
for an operation specifies the 
operation type (op-type) . If the 
operation is a PROC-OP or a 
PROC-REP-OP, then the next argument 
is the proc code address (paddr) . 
If the operation is an INPUT-OP 
then the next two arguments are the 
input class (class) and the number 
of operations of this type (int). 
The list is terminated by END-OP. 
Any other operation type causes a 
fatal error. 

sr-kill-resops 
Kill all the resource operations for the 
named resource instance. Remove any pending 
input invocations. 

rint, IN-OUT, The resource res 



sr-make-liop 
clap 

count 

OPCP 

count 

[return] 

[return] 

clap 
[return] 

sr-make-semop 

[return] 

sr-query-iop 

Make a set of local input operations. 
class, IN, The class for the input 
operations. 
opcap * ,  IN-OUT, Pointer to the 
first operation capability in an 
array of operation capabilities. 
int, IN, The number of input 
operations to be created. 

Kill local input operations. Purge any 
pending invocations from the class queues. 
If the killed operation is the last of its 
class, free the class as well. 

opcap * ,  IN, Pointer to the first 
operation capability in an array of 
operation capabilities. 
int, IN, The number of input 
operations to be killed. 

Get the next eligible invocation descriptor 
for the GC (Generated Code) to check in 
processing an input statement. The current 
process must have access to the operation 
class. If no invocations are available, wait 
until more arrive. 

invb, OUT, The next eligible 
invocation descriptor. 

Get the next eligible invocation of the 
specified operation. If none are available, 
wait until more arrive. 

opcap, IN, The operation capability 
descriptor for the operation to 
match on. 
invb, OUT, The next eligible 
invocation descriptor for the 
specified operation. 

Get the next invocation for operations 
appearing in a single class with no 
synchronization or scheduling expressions. 
This is an optimization. 

class, IN, The operation's class. 
invb, OUT, The next invocation for 
the operation. 

Create an operation to act as a semaphore. 
1.e. a non-exported, parameterless, operation 
in its own class. This is an optimization. 

sem, OUT, The semaphore descriptor 
for the operation. 

Return the number of pending invocations for 



[return] 

an input operation. 
opcap, IN, The operation 
descriptor. 
int, OUT, The number of pending 
invocations for opc. 

IMPLEMENTATION FILES: 
LGOP-0peration.c 

IMPORTED ELEMENTS: 
Name m e  Module 

sr-iaccess Procedure LGIP-Iop 
sr-reaccess Procedure LGIP-Iop 
sr-rm-iop Procedure LGIP-Iop 
sr-rej-inv Procedure LGIN-Invoke 

sr-kill-sem Procedure 
sr-make-sem Procedure 
ossf-declare-free-list 

Procedure 
ossf-init-free-list 

Procedure 
ossf-get-node Procedure 
ossf-free-list Procedure 
osva-va-alist Data Type 
osva-va-dcl Data Type 
osva-va-list Data Type 
osva-start Procedure 
osva-arg Procedure 
osva-end Procedure 

class Data Type 
class-num-ops Procedure 
class-oldin Procedure 
class-newin Procedure 
invb Data Type 
inv-queue Data Type 
is-empty-invList 

Procedure 
next-invlist Procedure 
remove-invlist Procedure 
is-empty-invQ Procedure 
top-invQ Procedure 
next-invQ Procedure 
pop-invQ Procedure 
remove-invQ Procedure 
invk-opcap Procedure 
END-0 P Data (Read) 
INIT-SEQ-OP Data (Read) 
sr-max-operations 

Data (Read) 
sr-no-ocap Data (Update) 



sr-nu-ocap Data (Update) 
sr-optab Data (Update) 
END-0 P Data (Read) 
OPcaP Data Type 
oper Data Type 
oper-st Data Type 
OP-type Data Type 
opcap-opindex Procedure 
opcap-seqn Procedure 
oper-code Procedure 
oper-inclass Procedure 
oper-res Procedure 
oper-seqn Procedure 
OPer-tYPe Procedure 
is-empty-op-list 

Procedure 
delete-oper Procedure 
POP-OPer Procedure 
sr-curjroc Data (Update) 
isjroc-else-leg 

Procedure 
proc-next-inv Procedure 
sr-cur-res Data (Update) 
rescap Data Type 
rint Data Type 
rescap-opcap Procedure 
rint-ops Procedure 
rint-num-ops Procedure 
rint-varbase Procedure 
s em Data Type 
s r-mY-vm Data (Read) 

sr-abort Procedure 
sr-alloc Procedure 
paddr Data Type 
sr-check-stk Procedure 
NO0 P-S EQN Data (Read) 
NULL-SEQN Data (Read) 
Boo1 Data Type 

D S O P - O ~ ~ ~ ~ ~  ion 
DSOP-Operation 
DSOP-Operation 
DSOP-Operation 
DSOP-Operation 
DSOP-Operation 
DSOP-Operat ion 
DSOP-Operation 
DSOP-Operation 
DSOP-Operation 
DSOP-Operation 

DSOP-Operation 
DSOP-Operat ion 
DSOP-Operation 
DSPR-Process 

MCEX-Exception 
MCMM-Memory 
MCPR-Process 
MCPR-Process 
UT-U t i 1 
UT-U t i 1 
UT-Ut il 

NOTES : 
None. 



LGPR PROCESS MODULE 

PURPOSE : 
Implement the SR process module. SR processes are very 
lightweight. However, there is no time-slicing between SR 
processes. This means that an SR process will monopolize 
the cpu until it blocks itself. Refer to any operating 
systems text for more infomation about processes and the 
standard operations. 

DATA INTERFACE : 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 
sr-initsroc Initialize the process module and start the 

specified code in an SR process context. 
This procedure never returns control to the 
calling procedure. 

start-code paddr, IN, Initial SR process to 
execute. 

.spawn Create a new process. 
PC paddr, IN, Process code address. 
res rint, IN, Resource which owns the 

process. 
argl int, IN, Process's first argument. 
arg2 int, IN, Process's second argument. 
arg3 int, IN, Process's third argument. 
arg4 int, IN, Process's fourth argument. 
[return] proc, OUT, New process descriptor. 

sr-activate Make a new process ready to execute. 
Pr proc, IN-OUT, The new process. 

sr-kill Delete a process and all references to it. 
Pr proc, IN-OUT, The process to be 

deleted. 
do-rem~roc Bool, IN, Is this process owned by 

a resource? 



IMPLEMENTATION FILES: 
LGPR-Process . c 

IMPORTED ELEMENTS: 
Name WRe 

sr-cswitch Procedure 
osuf-declare-free-list 

Procedure 
osuf-init-free-list 

Procedure 
osuf-get-node Procedure 
osuf-free-node Procedure 

sr-num-blocked Data (Update) 
sr-cursroc Data (Read) 
proc Data Type 
paddr Data Type 
sr-enqueue Procedure 
sr-dequeue Procedure 
dspr-deletesroc 

Procedure 
sr-cur-res Data (Read) 
dsre-rintmutex 

Procedure 
dsre-rintjrocs 

Procedure 
rint Data Type 

DEBUG Procedure 
sr-abort Procedure 
sr-alloc Procedure 
sr-build-context 

Procedure 
Boo1 Data Type 

Module 

NOTES : 
None. 



LGRE RESOURCE MODULE 

PURPOSE : 
Implement the SR resource module. SR resources are very 
similiar to classes in Object-Oriented Programming System 
(OOPS). One resource implements the data structure and all 
the operations for an Abstract Data Type. Many copies of a 
resource may be created during runtime. Each resouce copy 
is called a resource instance. 

The most important operations for a resource are create and 
destroy. The "Revised Report on the SR programming 
Language" has a complete description of SR resources. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 

sr-create 
crbp 

size 

[return] 

Initialize the resource module. 

Create a resource instance. 
crb, IN-OUT, Create Resource 
descriptor. This procedure assumes 
that crbp points to an allocated 
and initialized descriptor. 

Destroy a resource instance. 
rescap * ,  IN-OUT, Resource 
Capability descriptor of the 
resource to be destroyed. 

Destroy all the resource instances on this 
VM. 

Start the resource initial proc. Allocate 
memory for resource variables and initialize 
the ID part of the resource capability. 

int, IN, Byte size of memory block 
required. 
daddr, OUT, Memory block pointer. 



sr-finished-init 
Finish the resource initial process. 
~nitialize the operation capabilities in the 
resource capability. 

sr-finished-final 
The resource's final code has completed. 
Notify the destroyer. 

sr-build-rcap Create a null or noop resource capability. 
rcP rescap, IN-OUT, Resource 

capability. 
size int, IN, Size of rcp descriptor. 
OCP opcap, IN, Null or noop value. 

IMPLEMENTATION FILES: 
LGRE-Res0urce.c 

IMPORTED ELEMENTS: 
Name m e  

sr-spawn Procedure 
sr-activate Procedure 
sr-kill Procedure 
sr-remote Procedure 
sr-kill-res-ops 

Procedure 

sr-own-alloc Procedure 
sr-f ree Procedure 
sr-res-free Procedure 
sr-create-sem Procedure 
P Procedure 
V Procedure 
sr-kill-sem Procedure 
ossf-declare-free-list 

Procedure 
ossf-init-free-list 

Procedure 
ossf-get-node Procedure 
ossf-free-node Procedure 

RTS-OWN Data (Read) 
mernh Data Type 
ds-ush-mem Procedure 
dest-st Data Type 
creb-st Data Type 
ms-tYPe Data Type 
MIN-MESG-SIZE Data (Read) 
OPcaP Data Type 
dsop-opcap-seq Procedure 

Module 



sr-cursroc Data (Read) 
proc Data Type 
proc-type Data Type 
INIT-SEQ-RES Data (Read) 
INIT-REPLY Data (Read) 
FREE-SLOT Data (Read) 
FINAL-REPLY Data (Read) 
sr-cur-res Data (Read) 
sr-max-resources 

sr-noop-res 
sr-null-res 
rint 
rint-st 
rpa t 
rescap 
s em 
NULL-VM 
NO0 P-VM 
s r-my-vm 

DEBUG 
sr-net-abort 
sr-rts-abort 
sr-rts-warn 
sr-check-stk 
NOOP-SEQN 
NULL-SEQN 
Boo1 
daddr 
t index 
paddr 
s r-maxo f 

Data (Read) 
Data (Update) 
Data (Update) 
Data Type 
Data Type 
Data (Read) 
Data Type 
Data Type 
Data (Read) 
Data (Read) 
Data (Read) 

Procedure 
Procedure 
Procedure 
Procedure 
Procedure 
Data (Read) 
Data (Read) 
Data Type 
Data Type 
Data Type 
Data Type 
Procedure 

MCDE-Debug 
MSEX-Exception 
MCEX-Exception 
MCEX-Exception 
MCPR-Process 
UT-U t i 1 
UT-Ut i 1 
UT-U t i 1 
UT-U t i 1 
UT-Ut i 1 
UT-Ut i 1 
UT-U t i 1 

NOTES : 
None. 



LGRR REMOTE RX MODULE 

PURPOSE : 
This module executes remote requests from other VMs. It is 
responsible for hiding the details of communication, and 
executing the requested operation. 

This module is closely related to the LGRT-Remote-Tx module. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name ~escrigtion 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

sr-init-remote-Rx 
Initialize this module. 

sr-rmt-create Service a request to create a resource on 
this VM. 

client sender, IN-OUT, The sender 
descriptor. Includes all the 
information about the  request^. 

sr-rmt-des troy 
Service a request to destroy a resource on 
this VM. 

client sender, IN-OUT, The sender 
descriptor. Includes all the 
information about the request. 

sr-rmt-destvm Service a request to destroy this VM. 
client sender, IN-OUT, The sender 

descriptor. Includes all the 
information about the request. 

sr-rmt-invk Service a request to invoke an operation on 
this VM. 

client sender, IN-OUT, The sender 
descriptor. Includes all the 
information about the request. 



IMPLEMENTATION FILES: 
LGRR-Remote-Rx.c 

IMPORTED ELEMENTS: 
Name 

sr-f ree 
sr-own-alloc 
sr-freesender 
sr-net-reply 

invb 
in-type 
inv-type 
RTS-OWN 

Procedure 
Procedure 
Procedure 
Procedure 
Procedure 

Procedure 
Procedure 
Procedure 
Procedure 

Data Type 
Data Type 
Procedure 
Data (Read) 

CRE~HEADER-SIZE 
Data (Read) 

sender Data Type 
sender-is-seg Procedure 
sendersid Procedure 
sender-server-seg 

Procedure 
sender-client-seg 

Procedure 
sender-mesg Procedure 
des t-s t Data Type 
MIN-MESG-SIZE Data (Read) 
sr-cursroc Data (Read) 
crb Data Type 
crb-rescap Procedure 
crep-st Data Type 
crep-rescap Procedure 

DEBUG . Procedure 
sr-abort Procedure 
Boo1 Data Type 
daddr Data Type 
status Data Type 
sr-maxof Procedure 

Message Data Type 
COPY Procedure 

Module 

DSMS-Message 
DSMS-Message 
DSNE-Ne twork 
DSOS-Operating-System 
DSPR-Process 
DSRE-Resource 
DSRE-Resource 
DSRE-Resource 
DSRE-Resource 

MCDE-Debug 
MCEX-Exception 
UT-U t i 1 
UT-Ut i 1 
UT-Util 
UT-U t i 1 

V-system 
V- sys t em 

NOTES : 
None. 



LGRT REMOTE TX MODULE 

PURPOSE : 
 his module sends remote requests to the appropriate VM. It 
is responsible for hiding the network interface. 

This module is closely related to the LGRR-Remote-Rx module. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 
sr-init-remote-Tx 

Initialize this module. 

sr-remote Send a request to the remote VM and wait for 
the reply. 

des t vmid, IN, Remote VM identifier. 
type ms-type, IN, Request type. 
ph pach, IN, Request descriptor. 
size short, IN, Message byte size. 
[return] pach, OUT, Reply message 

descriptor. 

IMPLEMENTATION FILES: 
LGRT-Remote-Tx.c 

IMPORTED ELEMENTS: 
Name TyBe Module 

sr-wn-connect Procedure ~GVM-Virtual-Machine 

sr-net-send Procedure OSMT-Message-Tx 

ms-type Data Type DSNE-Network ' 
pach Data Type DSNE-Network 
m i d  Data Type DSVM_Virtual-Machine 
s r-nknown Procedure DSVM-Virtual-Machine 

DEBUG Procedure MCDE-Debug 



status 

NOTES : 
None. 

Data Type 



LGVM VIRTUAL MACHINE MODULE 

PURPOSE : 
Implement the Virtual Machine (VM) module. This module 
supplies the operations to create and destroy virtual 
machines. Each virtual machine has its own memory space, 
communication address, and RTS. Once a virtual machine is 
created, then resource instances may be started on it. 

The "Revised Report on the SR Language" has more information 
about the SR concept of VMs. 

DATA INTERFACE: 
Name Description 

VM-MAG I C When this parameter value is an argument to 
an RTS, the RTS knows that it is being 
started as a VM. 1.e. it is not the initial 
program startup. Refer to LGm-~ain module 
for more information about the RTS startup. 

DATA TYPE INTERFACE: 
Name Descrigt ion 

None. 

INVOCATION INTERFACE: 
Procedure Descrigt ion 

Parameters Description (Type, IN/OUT, etc . ) 
sr-ini t-vm Initialize this module. 

rcvrsid Pid, IN, The communication address 
of this VM. 

phost 
lhost 

pexe 

lexe 

Specify the location of a physical machine. 
Register the location n on the specified 
phost with the executable path pexe. 
However, this location can only be referenced 
from this VM. Resources on other VMs must 
execute their own locate statements before 
using location n. 

pmid, IN, The location identifier. 
char * ,  IN, The physical host name. 
int, IN, The length of phost 
string. 
char * ,  IN, The executable path of 
the program. 
int, IN, The length of pexe string. 



sr-crevm Create a new virtual machine. 
m n u m  m i d  * ,  IN-OUT, Identifier of the 

new VM. 
pm-num pmid, IN, Physical machine location 

of the new VM. 

sr-destvm Destroy a virtual machine. 
vm mid, IN, The virtual machine 

identifier. 

IMPLEMENTATION FILES: 
LGVM-Virtual- machine.^ 
LGVM-Virtual-Machine-i.h 
LGVM-Virtual-Machine-h.h 

IMPORTED ELEMENTS: 
Name l'YRe Module 

netpath Procedure LGNP-Netpath 
remote Procedure LGRT-Remote-Tx 

sr-f ree Procedure OSMM-Memory 
sr-own-alloc Procedure OSMM-Memory 
sr-invokeblockfunc 

Procedure 
sr-acceptblockfunc 

Procedure 
sr-termblockfunc 

Procedure 
sr-freepid Procedure 
P Procedure 
va-alist Data Type 
va-dc 1 Data Type 
va-1 i s t Data Type 
va-s tart Procedure 
va-arg Procedure 
va-end Procedure 

srsgmgroup Data (Read) 
RTS-OWN Data (Read) 
srx-addr Data (Read) 
sr-rcvrjid Data (Read) 
sr-net-exesath 

Data (Read) 
pach-s t Data Type 
ms-type Data Type 
num-s t Data Type 
srxreply Data Type 
system-errors Data Type 
pidnode Data Type 
blockfunc Data Type 
s em Data Type 
SRDIR Data (Read) 



SRLIB Data (Read) 
NOOP-VM Data (Read) 
NULL-VM Data (Read) 
SRX-VM Data (Read) 
MAx-VM Data (Read) 
WLTURE-PRIO Data ( Read) 
WLTURE-STKSIZE 

Data (Read) 
sr-my-machine Data (Read) 
s r-W-vm Data (Read) 
s r-vmda t a Data (Update) 
sr-vmpool Data (Update) 
pmid Data Type 
pmda t a Data Type 
m i d  Data Type 

sr-dbg-f lags Data (Read) 
DEBUG Procedure 
sr-rtserror Data (Update) 
sr-abort Procedure 
sr-net-abort Procedure 
Pid Data Type 
sr-check-sp Procedure 

Systemcode Data Type 
SelectionRec Data Type 
get env Procedure 
getwd Procedure 
strcpy Procedure 
Create Procedure 
Ready Procedure 
Receivespecific 

Procedure 
MapRemoteHost Procedure 
Exec Program Procedure 
QueryWorkstationConfig 

Procedure 

V- sys t em 
V-system 
V-system 
V- sys t em 
V-system 
V-system 
V- sys t em 

V- sys t em 
V-system 
V- sys t em 

NOTES : 
None. 



RTS MACHINE SUBSYSTEM (MC) DESCRIPTION 

Function of the Machine Subsystem 

The Machine Subsystem is the lowest level of the RTS. Every 

other subsystem in the RTS depends on it, either directly or 

indirectly. 

This subsystem is a mixed collection of modules. There are two 

main reasons for including modules in this subsystem. Some 

modules are included because they are used by almost every other 

module in the RTS. Eg. the MCDE-Debug module. Others are 

included because they hide machine-specific details. Eg. the 

MCPR-Process module. In general, modules are put in this 

subsystem because they belong at the bottom of the RTS system 

dependency diagram. 

Machine Subsvstem Desisn 

Most of the Machine subsystem design is straightforward. Each of 

the modules supplies a few procedures to manipulate their simple 

module. 



MCDE DEBUG MODULE 

PURPOSE : 
Implement debugging support for the RTS modules. 

DATA INTERFACE: 
Name ~escription 

SRXDEBUG UNIX Environment variable which can be used 
to specify the debug statements to be turned 
on. 

DATA TYPE INTERFACE : 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

mcde-init-debug 
Specify which debug statements to be 
printing. 

char *,  IN, A string of debug 
flags. If a flag is on that 
indicates that the associated group 
of debug statements is "turned on". 

IMPLEMENTATION FILES: 
MCDE-Debug.c 
MCDE-Debug.h 

Print debugging values under format f, if 
this statement is "onq1. 

char * ,  IN, Debug group identifier. 
Only one of the flags in this 
string should be on. 
char * ,  IN, Format string for 
print•’. 
int, IN, First debug value to be 
printed. 
int, IN, Second debug value to be 
printed. 
int, IN, Third debug value to be 
printed. 

IMPORTED ELEMENTS: 
Name m e  Module 

V-system getenv Procedure 



NOTES : 

None. 



MCEX EXCEPTION HANDLER MODULE 

PURPOSE : 
Implement a machine level exception handler for the RTS. 
This module handles all exceptions, including those which 
occur when the SR program is running on more than one VM. 
In this case, a program abort must stop every resource 
instance on each VM. 

DATA INTERFACE: 
Name Description 

sr-trace-flag Indicates if tracing is turned on. Tracing 
causes some debug-type statements to print 
information about the current state of the 
program. 

sr-rtserror Contains a character string which describes 
the last error that occurred. 

sr-my-label Error label to indicate which VM the error 
message came from. It contains the m i d .  

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

mcex-error Print an RTS error message. 
s char * ,  IN, Error message string. 

mcex-warn Print an RTS warning message. 
s char *,  IN, Warning message string. 

mcex-abort Print a fatal error and abort. 
s char *,  IN, Message string. 

mcex-net-abort Print a fatal network communication error and 
abort. 

s char * ,  IN, Message string. 

mcex~stk~overflow 
Print a stack overflow message and abort. 

mcex-stk-underflow 
Print a stack underflow message and abort. 

mcex-stk-corrupted 
Print a corrupted stack message and abort. 



mc ex-s top stop execution of the SR program on all VMs. 
exitcode int, IN, UNIX-style exit code. 

IMPLEMENTATION FILES: 
MCEX-Excepti0n.c 
MCEX-~xcept ion. h 

IMPORTED ELEMENTS: 
Name 

srjgmgroup 
nun-s t 
ms-type 
system-errors 
sr-exec-up 

stdout 
s tderr 
Send 
Errorstring 
fprintf 
f f lush 

Data (Read) 
Data Type 
Data Type 
Data Type 
Data (Read) 

Data Type 

Data Type 
Data Type 
Procedure 
Procedure 
Procedure 
Procedure 

Module 

V- sys t em 
V-system 
V-system 
V-system 
V- sys t em 
V- sys t em 

NOTES : 

None. 



MCMM MEMORY MANAGEMENT MODULE 

PURPOSE : 
Implement memory management for RTS modules. This module is 
just an interface to the machine memory management, but it 
is convenient to abstract the interface in order to hide 
machine differences. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 
mcmm_alloc Allocate a chunk of contiguous memory. 

size int, IN, Byte size of memory 
chunk desired. 

[return] daddr, OUT, Pointer to allocated 
memory chunk. 

mc-f ree Free a chunk of contiguous memory. 
addr daddr, IN, Pointer to allocated 

memory chunk. 

IMPLEMENTATION FILES: 
MCMM-Mem0ry.h 
MCMM-Memory . c 

IMPORTED ELEMENTS: 
Name TyBe Module 

daddr 
malloc 
mf ree 

Data Type UT-Utility 
Procedure V-system 
Procedure V-system 

NOTES : 

None. 



MCPR PROCESS MODULE 

PURPOSE : 
Implement the process module at the machine level. This 
includes creating a process context, changing contexts, and 
context error checking. These operations can only be done 
at the machine level because they manipulate machine 
registers and the process stack. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name ~escription 

paddr A procedure address. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 
mcpr-build-context 

Create a process context. 
PC paddr, IN, Process ' s initial 

program counter. 
stack daddr, IN, Pointer to the stack 

area. 
stack-size int, IN, Byte size of the stack. 
argl int, IN, Process's first argument. 
arg2 int, IN, Process's second argument. 
arg3 int, IN, Process's third argument. 
arg4 int, IN, Process's fourth argument. 

mcpr-chg-context 
Change to a new process context from the 
current process context. 

stack daddr, IN, Pointer to the new 
process's stack. 

mcpr-check-s tk 
Check that the stack has not been corrupted. 

IMPLEMENTATION FILES: 
MCPR-Process . c 

- Motorola 68000 Assembler code. 



IMPORTED ELEMENTS: 
NaXnt? Type Module 

mc-stk-overflow 
Procedure MCEX-Exception 

mc-stk-underflow 
Procedure MCEX-Exception 

mc-stk-corrupted 
Procedure MCEX-Exception 

daddr Data Type 

NOTES : 

None. 



RTS OPERATING SYSTEM SUBSYSTEM (0s) DESCRIPTION 

Function 

The Operating System (0s) Subsystem provides the functionality 

that is normally associated with an Operating System. For 

example, it supplies Message passing, Memory Management, a 

Network interface, and SR Process Scheduling. 

Desisn 

The Operating System (0s) Subsystem is quite complex. There are 

over a dozen modules and many of these modules depend on ten or 

more other modules. To complicate the design further, this 

subsystem seems to have a tendency to develop circular 

dependencies. Fortunately, we have managed to break most of the 

circular dependencies. However, there is one circular dependency 

left. 

The circular dependency that is left is 'caused' by the 

OSNE-Network module's dependency on several LG-Language modules. 

This particular dependency seems to be unavoidable. The 

OSNE-Network module has more information on this dependency. 

The other modules are fairly simple when regarded in isolation. 

169 



There are several different types of Free Lists to manage the 

lists of descriptors. There are the 0s-type modules like the 

Message modules, the OSSH-Scheduler module, the OSNE-Network 

module, and OSS4-Semaphore module. There are also several 

modules which are peculiar to SR or the V-system implementation. 

The OSSX-Srx module is peculiar to SR. It ensures that each VM 

number is unique. The OSPL-Pool module is peculiar to the V- 

system implementation. It supplies a pool of V-system processes 

to perform V-system blocking operations. Although the 

connections between these modules are complex, each module is 

straightforward. 



OSGP GROUP MODULE 

PURPOSE : 
Implement the messages to process groups. There is a very 
close dependency on the VM data structures because the VM 
modules are the only modules that use process groups. 

DATA INTERFACE : 
Name Description 

srsgmgroup the process GROUP identifier for this 
ProGram. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

sr-vm-connect Connect to another VM by determining its 
communication address. This procedure is 
always successful. If there is any problem, 
then the program is aborted. 

vm mid, IN, VM to connect to. 

sr-reply-findvm 
Reply to a VM which is attempting to connect 
to another VM. This procedure is always 
successful. If there is any problem, then 
the program is aborted. 

client sender, IN-OUT, The client VM1s 
message descriptor. 

sr-j oin_pgmgroup 
Add the current VM to the SR program's 
process group. This procedure is always 
successful. If there is any problem, then 
the program is aborted. 

new-rcvr Pid, IN, This VM's communication 
address. 

IMPLEMENTATION FILES: 
OSGP-Group . c 



IMPORTED ELEMENTS: 
Name 

s r-q-vm 
s r-vmda t a 
pach 
ms-type 
num-s t 
findvm-reply 
system-errors 

MCDE-DEBUG 
mcex-net-abort 

sr-rtserror 
Pid 

mcex-abort 

Systemcode 
CreateGroup 
JoinGroup 

Procedure 

Data (Read) 
Data (Update) 
Data Type 
Data Type 
Data Type 
Data Type 
Data Type 

procedure 
Procedure 

Data (Update) 
Data Type 

Procedure 

Data Type 
Procedure 
Procedure 

Module 

None. 



OSIF INFINITE FREE LIST MODULE 

PURPOSE : 
Implement an infinite, unsafe free list of nodes. 

A free list is a list of nodes that are currently unused. 
This module supplies the operations to create the list, get 
a node (from the free list), and free a node (return it to 
the free list). 

~t is an infinite list because if it ever runs out of nodes 
on the free list, it will allocate more nodes to make sure 
that the free list is never 'empty1. 

It is an unsafe list because there is no mutual exclusion. 
The operations implemented by this module do not guarantee 
that only one process is modifying the list at any one time. 
It is up to the invoking module to guarantee mutual 
exclusion. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 
osif-declare-free-list 

Declare the data structures needed for a free 
list. 

FreeList 

NodePtr 

C field name, IN-OUT, Free list 
name. 
C type, IN, Pointer type of the 
list nodes. 

osif-is-empty-list 
Determine if FreeList is an empty list. 

FreeList C field name, IN, Free list name. 
[return] Bool, OUT, TRUE if List is empty. 

FALSE otherwise. 

osif-init-free-list 
Create a new FreeList and add TotalNodes 
number of nodes to the list. 

FreeList C field name, IN, Free list name. 



NodePtr 

Nodestruct 

TotalNodes 

C type, IN, Pointer type of the 
list nodes. 
C type, IN, Structure type of the 
list nodes. 
int, IN, Number of nodes in the new 
list. 

osif-get-node Get a node from the FreeList and return it to 
the caller. If there are no nodes available 
and we can not allocate more memory, the 
program is aborted. 

FreeList C field name, IN, Free list name. 
ErrorMsg char * ,  IN, Error message to be 

displayed if there are no nodes 
available. 

Node glll-node, OUT, The 'new' node. 

osif-free-node 
Return a node to the FreeList. 

FreeList C field name, IN, Free list name. 
Node glll-node, IN, The new node. 

IMPLEMENTATION FILES: 
oSIF-~nfinite-Free1ist.h 

IMPORTED ELEMENTS: 
Name 'rYPe Module 

Boo1 Data Type 
C field name Data Type 
C type Data Type 
glll-list Data Type 
glll-node Data Type 
osuf-declare-free-list 

Procedure 
osuf-init-free-list 

Procedure 
osuf-is-empty-list 

Procedure 
osuf~ush Procedure 
osuf_pop Procedure 
mcmm_al loc Procedure 

NOTES : 

This module does not depend on the existence of the 'next' 
field in the node record, as the OSUF-unsafe-FreeList module 
does. 



OSMM MEMORY MODULE 

PURPOSE : 
Implement a memory management for the RTS. This module 
implements RTS allocation and implicit SR program 
allocation. Explicit SR program allocation is handled by 
the LGMS-Miscellaneous module. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

size 
owner 
[return] 

addr 

size 
MemList 
[return] 

sr-own-alloc 
size 
owner 
[return] 

sr-f ree 
addr 

owner 

Initialize Memory Managment module. 

Allocate memory. Called from Generated Code 
(GC) . 

int, IN, Byte size of memory block. 
rint, IN, Resource owner of memory. 
daddr, OUT, Memory block pointer. 

Free memory. Called from Generated Code 
(GC) . 

daddr, IN, Memory block pointer. 

Allocate memory. Called from Generated Code 
(GC). Add memory descriptor to the given 
list. 

int, IN, Byte size of memory block. 
mernhdr, IN, Memory List. 
daddr, OUT, Memory block pointer. 

Allocate memory. 
int, IN, Byte size of memory block. 
rint, IN, Resource owner of memory. 
daddr, OUT, Memory block pointer. 

Free memory. 
daddr, IN, Memory block pointer. 

Free all memory belonging to the specified 
resource. 

rint, IN, Resource owner of memory. 



IMPLEMENTATION FILES: 
OSMM-Mem0ry.c 

IMPORTED ELEMENTS: 
Name TYRe 

sr-make-sem Procedure 
P Procedure 
V Procedure 

sem Data Type 
memh Data Type 
memhdr Data Type 
dsmcreate-empty-mem-list 

Procedure 
dsm_pushmem Procedure 

sr-cur-res Data (Read) 
rint Data Type 
rint-memory Procedure 

daddr Data Type 
mcpr-check-stk Procedure 
mcmm_alloc Procedure 
mc-f ree Procedure 
mcex-abort Procedure 
mcde-DEBUG Procedure 

Module 

NOTES : 
None. 



OSMR MESSAGE RECEIVE MODULE 

PURPOSE : 
Implement the message receive operations with the 
appropriate V-system operations: Receive, and Reply. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

sender Pointer to a sender descriptor. The sender 
descriptor is returned by the sr-net-recv 
procedure. It contains information about the 
message and the SENDER process. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

sr-msg-rx-start 
Initialize this module. 

max-clients int, IN, Initial number of in- 
coming messages from client VMs, 
this module will service at any one 
time. If more messages arrive then 
more memory will be allocated as 
the messages arrive. 

sr-net-recv Receive a message. Suspend the VM until a 
message is received. 

client sender, IN, Blank message 
descriptor. 

[return] sender, OUT, In-coming message 
descriptor. 

sr-net-reply Send a message in reply to a message received 
through sr-net-recv. 

client sender, IN, Out-going message 
descriptor. 

[return] Systemcode, OUT, Status of reply 
operation. 

sr-free-sender 
Free up the resources associated with a 
message descriptor. 

client sender, IN, Message descriptor. 



IMPLEMENTATION FILES: 
OSMS-Messase Rx.c 

IMPORTED ELEMENTS: 
Name Tn?e 

osif-declare-free-list 
Procedure 

osif-create-free-list 
Procedure 

osif-get-node Procedure 
osif-free-node Procedure 

sr-cur-res Data (Read) 
sr-cursroc Data (Read) 
Pid Data Type 
pach Data Type 
system-errors Data Type 

daddr Data Type 
Boo1 Data Type 
MCDE-DEBUG Procedure 
mcex-net-abort Procedure 

SEGMENT-PRESENT 
Data 

REPLY-RETURN-CODE 
Data 

SYS-REPLY-CODE Data 
REPLY-SEGMENT-BIT 

Data 
MsgSt ruct Data Type 
Receive Procedure 
Reply Procedure 
MoveTo Procedure 

NOTES : 

Module 

V-system 
V-sys tem 

V-sys tem 
V-system 
V-system 
V- sys t em 
V-system 

This module is related to the OSMT-Message-Tx module. 



OSMT MESSAGE TRANSMIT MODULE 

PURPOSE : 
Implement the message transmit operations with the V-system 
Send operation. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

sr-net-tx-start 
Initialize this module. 

max-requests int, IN, Maximum number of out- 
going messages (request messages) 
this module will have outstanding 
at any one time. 

sr-net-send Send a message to another VM. 
des t vmid, IN, Destination VM. 
type ms-type, IN, Type of message. 
packetH pach, IN-OUT, Message packet 

header. 
size unsigned, IN, Byte size of the 

message. 
[return] Systemcode, GUT, Status of send 

operation. 

sr-group-send Send a message to a group of V-system 
processes. 

dest Pid, IN, Process group identifier 
type ms-type, IN, w p e  of message. 
packetH pach, IN-OUT, Message packet 

header. 
size unsigned, IN, Byte size of the 

message. 
[return] SystemCode, OUT, Status of send 

operation. 

IMPLEMENTATION FILES: 
OSMS-Message-Tx.c 



IMPORTED ELEMENTS: 
Name ' nve 

ossf-declare-free-list 
Procedure 

ossf-create-free-list 
Procedure 

ossf-get-node Procedure 
ossf-free-node Procedure 

InvokeMsg-st Data Type 
blockf unc Data Type 
sr-createprocpool 

Procedure 
sr-invokeblockfunc 

Procedure 
sr-acceptblockfunc 

Procedure 
sr-termblockfunc 

Procedure 

va-list Data Type 
va-arg Procedure 

pach Data Type 
ms-tYPe Data Type 
sr-cursroc data (Read) 
Pid Data Type 
sr-cur-res data (Read) 
s r-vmda t a Data 

MCDE-DEBUG Procedure 
mcex-net-abort Procedure 

SEGMENT-PRESENT 
Data 

MORE-REPLIES Data 
MsgSt ruct Data Type 
Send Procedure 

NOTES : 

Module 

This module is related to OSMR-Message-Rx. 



OSNE NETWORK MODULE 

PURPOSE : 
Implement a network interface. This module is responsible 
for receiving all messages from the network and calling the 
appropriate module to perform the requested operations. 

DATA INTERFACE: 
Name Description 

None 

DATA TYPE INTERFACE: 
Name Description 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

sr-init-net Initialize the network interface. 
s rx-addr Pid, IN, Address of SRX process. 

sr-net-interface 
Read all the 
network. 

IMPLEMENTATION FILES: 
OSNE-Netw0rk.c 

IMPORTED ELEMENTS: 
Name 

Procedure 
Procedure 
Procedure 
Procedure 
Procedure 
Procedure 
Procedure 

sr-reply-findvm 
Procedure 

sr-rtserror Data (Update) 
sr-my-label Data (Read) 
sr-stop Procedure 
srsgmgroup Data (Read) 
sr-join_pgmgroup 

Procedure 

outstanding messages from the 

Module 



sender Data Type 
sr-freesender Procedure 
sr-net-start Procedure 
sr-net-recv Procedure 
sr-net-reply Procedure 
main Procedure 

ms-type 
num-s t 
sr-exec-up 
stdout 
stdin 
SRXPATH 
VM-MAG I C 
PROTO-VER 
s r-my-vm 

- reqs 
~ a t a  (Read) 
Data Type 
Data Type 
Data (Update) 
~ a t a  (Read) 
Data (Read) 
Data (Read) 
Data (Read) 
Data (Read) 
Data (Read) 

MCDE-DEBUG procedure 
mcex-abort procedure 
mc ex-warn procedure 
Pid Data Type 

Systemcode Data Type 
get env Procedure 
Exec Program Procedure 

V- sys t em 
V-system 
V- sys t em 

NOTES : 

This module is a 'design problem'. It is called from the 
OSSH-Scheduler module, which is in the middle of the OS 
Dependency Diagram, but it calls several of the LG-Language 
modules, which depend on the OS subsystem. Unfortunately, 
there does not seem to be any way to avoid this circular 
dependency. 

This circular dependency is unavoidable because OSNE must be 
called from OSSH-Scheduler and it must call the LG modules. 
Before we go any further, we will explain why the 
OSSH-Scheduler must call OSNE and why OSNE must call the LG 
modules. 

The ~ ~ ~ ~ - ~ c h e d u l e r  module is responsible for scheduling 
tasks. Since the OSNE module must periodically check for 
messages on the network, OSSH-Scheduler is responsible for 
scheduling OSNE periodically. Therefore, OSSH-Scheduler 
must call OSNE-Network. 

The OSNE module must call the LG-Language modules because 
OSNE is responsible for ensuring the operations requested by 
the in-coming messages are executed. Unfortunately, all 
these operations are implemented in the LG-Language 
subsystem. Therefore, OSNE must call the LG-Language 
modules. 



Fortunately, the circular dependency is not as serious as it 
appears. OSNE spawns SR processes to perform most of the 
message operations.   here fore, very little of the 
LG-Language code is actually executed when OSNE calls the 
LG-Language modules. Furthermore, the code that is executed 
never calls OSNE either directly or indirectly. Therefore, 
we do not have to worry about infinite recursion. 

However, this dependency does make testing more difficult. 
OSNE can not be completely tested until the LG-Language 
subsystem is working, but it must be working in order to 
test the 0s-Operating-System subsystem. We suggest that a 
special test program with stubbed procedures be set up to 
test the OSNE-Network module by itself. Then it can be used 
with confidence in the 0s-Operating-System tests. 



OSPL POOL MODULE 

PURPOSE : 
Implement a process pool module. This module is implemented 
to accommodate the V-system blocking operations. In the V- 
system, if you want to execute a blocking operation without 
blocking the current process, then you must put the code for 
the blocking operation in another process, called a helper 
process, and send a message to the helper process. The 
message contains the blocking operation code and any 
parameters required for the operation. 

In the V-system implementation of SR, we follow this V- 
system model of one main process, and many helper processes 
However, the main process is also receiving messages from 
other VMs as well as the helper processes. Plus, there are 
different types of helper processes. There are helper 
processes to perform I0 operations, processes for Message 
operations, and processes for VM operations. 

This module simplifies the implementation by containing all 
the code to create a V-system process pool, report process 
pool errors, and synchronize with the other in-coming 
messages. 

This module supplies the operations to communicate with 
process pools, and the operations used to implement the 
process pools. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

pool Pointer to a process POOL descriptor. 
InvokeMsg INVOKE MeSsaGe to a pool process. 
block•’ unc BLOCKing operation codes. Values are: 

REMOTE-SEND 
CREATE-Virtual-Machine 
FILE-FLUSH 
FILE-READ 
FILE-OPEN 
FILE-CLOSE 
FILE-SEEK 
FILE-UNLINK 



INVOCATION INTERFACE: 
Procedure Descri~tion - 

Parameters ~escription (Type,IN/OUT, etc.) 

sr-initso01 Initialize the Process Pool module. 

sr-createprocpool 
Create a Process Pool. 

NumProcess unsigned, IN, Number of processes 
to be in the pool. 

func paddr, IN, Procedure to execute in 
the process. 

priority short, IN, Process priority. 
StkSize unsigned, IN, Byte size of process 

stack. 
[return] pool, OUT, The new pool descriptor. 

sr-invokeblockfunc 
Invoke a blocking function implemented in a 
process pool. 

poolptr pool, IN, The process pool. 
f unc-num blockfunc, IN, The blocking 

function to be executed. 
argList va-list, IN, Pointer to an argument 

list. 

Pool Process Im~lementation O~erations 

sr-acceptblockfunc 
Accept a blocking function invocation. 

message InvokeMsg, IN-OUT, The invocation 
msg . 

f unc-num blockfunc, OUT, The operation code 
paramjtr va-list, OUT, The argument list. 

sr-termblockfunc 
Terminate the blocking function invocation. 

message InvokeMsg, IN-OUT, The invocation 
msg . 

IMPLEMENTATION FILES: 
OSPL-P0ol.c 

IMPORTED ELEMENTS: 
Name TyBe 

sr-alloc Procedure 
ossf-declare-free-list 

Procedure 
ossf-create-free-list 

Procedure 

Module 

OSMM-Memory 

OSSF-Safe-FreeList 

OSSF-Safe-FreeList 



ossf-get-node Procedure 
ossf-free-node Procedure 

sr-make-sem Procedure 
P Procedure 
V Procedure 
va-list Data Type 
va-dc 1 Data Type 
va-start Data Type 
va-end Data Type 

sr-rtserror Data (Update) 
pach-s t Data Type 
sr-cursroc Data (Read) 
Pid Data Type 
sr-cur-res Data (Read) 
dss4-sem-count Procedure 
s em Data Type 

paddr Data Type 

Message 
Systemcode 
Create 
Ready 
Receivespec 
Reply 
Send 
GetTeamRoot 

Data Type 
Data Type 
Procedure 
Procedure 
Procedure 
Procedure 
Procedure 
Procedure 

V- sys t em 
V-system 
V-system 
V- sys t em 
V-system 
V- sys t em 
V-system 
V-system 

NOTES : 

None. 



0SS4 SEMAPHORE MODULE 

PURPOSE : 
Implement a semaphore module with the standard operations. 
Semaphores are used to control process synchronization. Any 
operating systems text will have an explanation of 
semaphores. 

DATA INTERFACE: 
Name Description 

None. 

DATA TYPE INTERFACE: 
Name Description 

s em Pointer to a semaphore descriptor. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . 
sr-init-sem Initialize the semaphore module. 

sr-make-sem Return a new, initialized, semaphore 
descriptor. 

sr-init-val int, IN, Initial value of 
semaphore counter. 

[return] sem, OUT, New semaphore descriptor. 

sr-kill-sem Destroy the semaphore. 
SP sem, IN, Pointer to semaphore 

descriptor. 

Increment semaphore counter or unblock a 
waiting process. 

sem, IN, Pointer to semaphore 
record. 

Decrement semaphore counter or block the 
calling process. 

SP sem, IN, Pointer to semaphore 
record. 

sr-query-sem Return the value of the semaphore counter. 
This is used by GC (Generated Code) to 
determine the number of pending invocations 
on a semaphore op. 

sem, IN, Pointer to semaphore 
record. 
int, OUT, The semaphore counter 
value. 

SP 

[return] 



IMPLEMENTATION FILES: 
OSS4- semaphore.^ 

IMPORTED ELEMENTS: 
Name TYRe 

awaken Procedure 
block Procedure 
sr-cswitch Procedure 
osuf-declare-free-list 

Procedure 
osuf-is-empty-list 

Procedure 
osuf-init-free-list 

Procedure 
osuf-get-node Procedure 
osuf-free-node Procedure 

sr-cursroc Data (Read) 
sr-cur-res Data (Read) 

MCDE-DEBUG Procedure 
mcex-abort Procedure 
mcex-warn Procedure 
sr-check-stk Procedure 

Module 

NOTES : 
None. 



OSSF SAFE FREE LIST MODULE 

PURPOSE : 
Implement a safe free list of nodes. It is a safe list 
because each operation on a free list is protected by mutual 
exclusion. The operations implemented by this module 
guarantee that only one process is modifying the list at any 
one time. 

A free list is a list of nodes that are currently unused. 
This module supplies the operations to create the list, get 
a node (from the free list), and free a node (return it to 
the free list). 

DATA INTERFACE: 
Name ~escription 

None. 

DATA TYPE INTERFACE: 
Name ~escription 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type, IN/OUT, etc . ) 

ossf-declare-free-list 
Declare the data structures needed for a free 
list. 

FreeList C field name, IN-OUT, Free list 
name. 

NodePtr C type, IN, Pointer type of the 
list nodes. 

ossf-is-empty-list 
Determine if FreeList is an empty list. 

FreeList C field name, IN, Free list name. 
[return] Bool, OUT, TRUE if List is empty. 

FALSE otherwise. 

ossf-init-free-list 
Create a new FreeList and add TotalNodes 
number of nodes to the list. 

FreeLis t C field name, IN, Free list name. 
NodePtr C type, IN, Pointer type of the 

list nodes. 
Nodes t ruct C type, IN, Structure type of the 

list nodes. 
TotalNodes int, IN, Number of nodes in the new 

list. 



FreeList 
ErrorMsg 

Get a node from the FreeList and return it 
the caller. I f  there are no nodes availabl 
the program is aborted. 

C field name, IN, Free list name. 
char * .  IN. Error message to be 
displayed if there are no nodes 
available. 

Node glll-node, OUT, The 'new' node. 

ossf-free-node 
Return a node to the FreeList. 

~ r e e ~ i s  t C field name, IN, Free list name. 
Node gill-node, IN, The new node. 

IMPLEMENTATION FILES: 
OSSF-Safe-Free1ist.h 

IMPORTED ELEMENTS: 
Name m e  

oss4-make-sem Procedure 
P Procedure 
v Procedure 
osuf-declare-free-list 

Procedure 
osuf-is-empty-list 

Procedure 
osuf-init-free-list 

Procedure 
osuf-get-node Procedure 
osuf-free-node Procedure 

gill-list Data Type 
gill-node Data Type 

Boo1 Data Type 
C field name Data Type 
C type Data Type 

Module 

NOTES : 

None. 



OSSH SCHEDULER MODULE 

PURPOSE : 
Implement the 0s-level Scheduler module. This module 
controls the processor. It assigns the processor to the 
ready process which has been waiting the longest. 

DATA INTERFACE: 
Name ~escrigtion 

sr-ready-list LIST of processes that are READY to run. 
sr~max~c~switch_per~msg 

MAXimum number of Context SWITCHes between 
attempts to read MeSsaGes from the network. 

sr-cur~roc CURrent PROCess that is running. 
sr-num-blocked 

NUMber of BLOCKED processes. They may be 
blocked waiting for a semaphore, an io 
operation, etc. 

DATA TYPE INTERFACE: 
Name ~escrigtion 

None. 

INVOCATION INTERFACE: 
Procedure Descript ion 

Parameters Description (Type, IN/OUT, etc . ) 

sr-cswitch Process context switch. Execute the next 
process which is ready to run. 

block Block the current process and place it on the 
process queue. 

procQ proc-queue, IN-OUT, The process 
queue. 

awaken Awaken the next process on the process queue. 
P ~ O C Q  proc-queue, IN-OUT, The process 

queue. 

sr-enqueue Add a process to the given queue. 
P ~ O C Q  proc-queue, IN-OUT, The process 

queue. 
procDesc proc, IN-OUT, Process added to 

procQ. 

sr-dequeue Remove a process from the given queue. 
P ~ O C Q  proc-queue, IN-OUT, The process 

queue containing procDesc. 
procDesc proc, IN, The process descriptor. 



IMPLEMENTATION FILES: 
OSSH-Schedu1er.c 

IMPORTED ELEMENTS: 
Name 'wT?e Module 

sr-net-interface 
procedure OSNE-Network 

sr-stop procedure OSEX-Exception 

dscl~class~count 
procedure 

dsco~co~count procedure 
dsop-oper-count 

procedure 
sr-cursroc data (Update) 
sr-ready-queue data (Update) 
proc data type 
proc-queue data type 
dspr-append-procQ 

procedure 
dspr-delete-procQ 

procedure 
dspr-f ree-proc 

procedure 
dsrm-rem-count procedure 
dsre-rint-count 

procedure 
sr-cur-res data (Update) 
sr-exec-up data (Read) 

sr-chg-context 
procedure MCPR-Process 

sr-rtserror Data MCEX-Exception 
rt s-warn procedure MCEX-Exception 
MCDE-DEBUG procedure MCDE-Debug 

NOTES : 
None. 



OSSX SRX MODULE 

PURPOSE : 
Supply a unique VM number for each new VM. 

Currently this module is implemented as a separate V-system 
process. This implementation affects the interface. This 
module is initialized by starting the process rather than by 
calling a procedure, and operations are 'calledf by sending 
messages to the process. Therefore, some of the 
'procedures' listed in the Invocation Interface have the 
word 'Messagef appended to indicate they are really 
messages, not procedures. 

DATA INTERFACE : 
Name ~escrigtion 

SRXPATH filename PATH for the SRX executable file 

DATA TYPE INTERFACE: 
Name ~escription 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

version 

main Initialize this module. 
vm-magic char * ,  IN, This string should 

match the VM-MAGIC constant. If it 
does, we can be fairly certain that 
this process has been correctly 
started by an SR program. 
char * ,  IN, This string should 
match the PROTO-VER constant. If 
it does, we can be certain that 
this code is the same version as 
the SR program code. 
int, IN, The program group number 
identifies the communication group 
that this SR program belongs to. 
By belonging to this group, we will 
ensure that this process receives 
all the broadcast messages. 

REQ-Virtual-MachineNUM Message 
Return a unique VM identifier. 

[return] vrnid, OUT, A unique VM identifier. 

MSG-EXIT Message 
Program has terminated. Time to exit. 



IMPLEMENTATION FILES: 
OSSX-Srx.c 
OSSX-Srx-i.h 
OSSX-Srx-h.h 

IMPORTED ELEMENTS: 
Name TYPe Module 

sr-pgmgroup Data (Update) OSGP-Group 
sr-joinsgmgroup 

Procedure OSGP-Group 
sender Data Type OSMS-Message-Rx 
sr-net-start Procedure OSMS-Message-Rx 
sr-net-recv Procedure OSMS-Message-Rx 
sr-net-reply Procedure OSMS-Message-Rx 

srxreply Data Type DSNE-Network 
ms-tYPe Data Type DSNE-Network 
MAX-Virtual-Machine Data (Read) DSVM-Virtual-Machine 
VM-MAG I C Data (Read) ~SVM-Virtual-Machine 
PROTO-VER Data (Read) ~SVM-Virtual-Machine 

init-debug Procedure MCDE-Debug 
MCDE-DEBUG Procedure MCDE-Debug 
Boo1 Data Type UT-Util 

Systemcode Data Type V- sys t em 

NOTES : 
None. 



OSUF mSAFE FREE LIST MODULE 

PURPOSE : 
Implement an unsafe free list of nodes. It is an unsafe 
list because there is no mutual exclusion. The operations 
implemented by this module do not guarantee that only one 
process is modifying the list at any one time. It is up to 
the invoking module to guarantee mutual exclusion. 

A free list is a list of nodes that are currently unused. 
This module supplies the operations to create the list, get 
a node (from the free list), and free a node (return it to 
the free list). 

DATA INTERFACE: 
Name ~escrigtion 

None. 

DATA TYPE INTERFACE: 
Name ~escription 

None. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

osuf-declare-free-list 
Declare the data structures needed for a free 
list. 

FreeList C field name, IN-OUT, Free list 
name. 

NodePtr C type, IN, Pointer type of the 
list nodes. 

osuf-is-empty-list 
Determine if FreeList is an empty list. 

FreeList C field name, IN, Free list name. 
[return] Bool, OUT, TRUE if List is empty. 

FALSE otherwise. 

osuf-init-free-list 
Create a new FreeList and add TotalNodes 
number of nodes to the list. 

FreeList C field name, IN, Free list name. 
NodePtr C type, IN, Pointer type of the 

list nodes. 
Nodestruct C type, IN, Structure type of the 

list nodes. 
TotalNodes int, IN, Number of nodes in the new 

list. 



osuf-get-node Get a node from the FreeList and return it to 
the caller. If there are no nodes available, 
the program is aborted. 

FreeList C field name, IN, Free list name. 
ErrorMsg char * ,  IN, Error message to be 

displayed if there are no nodes 
available. 

Node glll-node, OUT, The 'newr node. 

osuf-free-node 
Return a node to the FreeList. 

FreeList 
Node 

IMPLEMENTATION FILES: 
OSUF-Unsafe-Free1ist.h 

IMPORTED ELEMENTS: 
Name Type 

Boo1 Data Type 
C field name Data Type 
C type Data Type 
glll-list Data Type 
glll-node Data Type 
glll-create-empty-list 

Procedure 
glll-is-empty-list 

Procedure 
glllsush Procedure 
g l l l ~ o ~  Procedure 
mc-a1 loc Procedure 

NOTES : 

This module assumes that 
in the node structure is 
interface and it happens 
of the SR RTS. 

C field name, IN, Free list name. 
glll-node, IN, The new node. 

Module 

UT-U t i 1 
UT-Util 
UT-Util 
GLLL-Linked-List 
GLLL_Linked-Lis t 

the name of the NextField pointer 
always 'next'. This simplifies the 
to be true for the current version 

Currently (Feb/91), this module is only used by the 
OSS4-Semaphore and OSPR-Process. Therefore, only the 
Semaphore and Process data structures have to use the 'next' 
fieldname. 



OSVA VARIABLE ARGUMENT LIST MODULE 

PURPOSE : 
Implement a variable argument list for C functions. This 
allows calling functions to invoke a function with any 
number of arguments. 

DATA INTERFACE: 
Name ~escription 

va-alist The variable name of the argument list. The 
last argument in the C function header must 
have this name. 

DATA TYPE INTERFACE: 
Name Description 

va-dc 1 Declare the va-alist variable. 

va-list Pointer to a variable argument. This is used 
to declare the current argument pointer. 

INVOCATION INTERFACE: 
Procedure ~escription 

Parameters ~escription (Type, IN/OUT, etc. ) 

va-start Initialize the current argument pointer. 
list va-list, IN-OUT, Current argument 

pointer. 

va-arg Remove the current argument from the argument 
list. 

list va-list, IN-OUT, Current argument 
pointer. 

mode C type, IN, The type of the current 
argument. 

va-end Release all resources in use. 
list va-list, IN-OUT, Current argument 

pointer. 

IMPLEMENTATION FILES: 
OSVA-Variable-ArgList.c 
OSVA-variable-ArgList-i.h 

IMPORTED ELEMENTS: 
None. 

NOTES : 
Refer to the LGMI~Miscellaneous, srmax function code for an 
example of the use of this module. 



SRSYS MODULE 

PURPOSE : 
Gather together a group of types which are used by SR 
generated code. 

DATA INTERFACE: 
Name ~escription 

None. 

DATA TYPE INTERFACE: 
Name Description 

s em pointer to semaphore data record. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

None. 

IMPLEMENTATION FILES: 
srsys . h 

IMPORTED ELEMENTS: 
Name Module 

None. 

NOTES : 

None. 



UT UTILITY MODULE 

PURPOSE : 
Implement utility procedures and utility data types 

DATA INTERFACE: 
Name ~escription 

NULL-SEQN Sequence number of null resource or operation 
capability. 

NO0 P-S EQN Sequence number of noop resource or operation 
capability. 

"Descriptor fields" 
AD-MAXL String maximum length. 
AD-ADDR Address. 
AD-SIZE Size. 

DATA TYPE INTERFACE: 
Name Description 

Boo1 Boolean type. Values are: TRUE, FALSE. 
status Exit status code for SR primitive functions 

such as create and invoke. 
seq Sequence number for dynamic objects. 
daddr Generic data address pointer. 
C field name Name of a field name in a C record structure. 

This name is stored in a text string. 
C type A C type definition. This name is stored in 

a text string. 

INVOCATION INTERFACE: 
Procedure Description 

Parameters Description (Type,IN/OUT, etc.) 

u t-maxo f 
first 
second 
[return] 

[return] 

Return the maximum of two numbers. 
int, IN, First number. 
int, IN, Second number. 
int, OUT, Maximum of first and 
second. 

Return the byte offset of a field within a 
struct . 

C type, IN, Struct declaration. 
C field name, IN, Field name in 
type. 
int, OUT, Byte offset of id in 
type. 

Return the size of a field in a struct. 
C type, IN, Struct declaration. 



[return] 

IMPLEMENTATION FILES: 
uT-Uti1ity.h 

IMPORTED ELEMENTS: 
Name TYRe 

None. 

NOTES : 

None. 

C field name, IN, Field name in 
type. 
int, OUT, Size of id field in type. 

Module 


