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Abstract

A circuit cover of a weighted binary matroid (M,p) is a multiset of circuits in M such
that every element e is contained in exactly p(e) circuits in the multiset. A non-negative
integer-valued weight function p is admissible if the total weight of any cocircuit is even,
and no element has more than half the total weight of any cocircuit containing it. A binary
matroid M has the circuit cover property if (M,p) has a circuit cover for every admissible
weight function p. In this thesis Seymour’s conjecture, a binary matroid has the circuit
cover property if and orly if it contains no minor which is isomorphic to F7, Ryg, M*(Ks)

or M(Pyp), has been proved.
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Chapter 1

Introduction

1.1 The Circuit Cover and Bond Cover of a Graph

A cycle (or even subgraph) in a graph G= (V, E) is a subset of edges F' C E such that
each vertex of G is incident with an even number of edges in F. A circuit is a minimal
non-empty cycle.

For any subset S of vertices of G, the set of edges §(S) =[S,V — S] which have exactly

one endvertex in § is called an edge-cut (or cocycle) of G. A bond is a minimal non-empty

edge-cut.

Proposition 1.1.1 If C is an arbitrary circuit and D is an arbitrary bond in a graph
G then the number of common edges, |C N D|, of C and D is even.

Let (G, p) be an edge-weighted graph (with loops and multiple edges allowed) where
p: E(G)— Z*. We say that (G, p) has a circuit cover if there exists a multiset (or list) L
of circuits in G such that each edge e is covered exactly p(e) times by circuits in L. More

precisely, we say that (G, p) has a circuit cover provided the following holds:

(1.1) There exists a vector of non-negative integer coefficients (A¢ : C € C)

such that
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Ycec Acx® = p.
Here, C denotes the collection of circuits in G and (A¢) is the multiplicity vector for the
circuit cover L, and for any subgraph H of G, xH denotes the {0, 1}-characteristic function
of the edge set of H. We use the convention that x¥ means > xHs, where L={H,, H,, ..., H,}.
Seymour [11] gave necessary conditions for an arbitrary weighted graph (G, p) to have

a circuit cover:

(1.2) (i) for every bond D and e € D, p(e) < p(D\e) (that is, p is balanced),
(ii) for every bond D, p(D) is even (that is, p is eulerian), and

(iii) p is non-negative integer valued.

(We use the convention that p(F') means } .. p(e), for any F C E.) These conditions follow
easily from the fact that any circuit in a graph intersects any bond in an even number of
edges. The conditions in (1.2) are collectively called admissibility conditions, and p is said

to be admissible if it satisfies (1.2).

Definition 1 A graph G has the circuit cover property if (G, p) has a circuit cover for

every admissible weight p.
The following classic result of P. D. Seymour was proved in [11].
Theorem 1.1.1 Every planar graph has the circuit cover property.
Several authors [11,12] observed:
Proposition 1.1.2 Petersen’s graph does not have the circuit cover property.

Let Pjp denote the graph in Fig. 1 and let a weight p of Pjo take the value 1 on some
2-factor of Pjg, and the value 2 on the complementary 1-factor. Then ( Py, p) is admissible,
but (Pio,p) has no circuit cover.

If e € E(G) then G\e denotes the graph obtained from G by deleting ¢, and G/e denotes

the graph obtained from G by contracting e (that is, identifying the endvertices of ¢, then
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Fig. 1: Petersen’s graph

deleting ¢). Loops and multiple edges (other than e) which arise from a contraction are
not deleted. Any graph obtained from G by successive deletions and contractions is called
a minor of G. An H-minor of graph G is a minor of G which is isomorphic to H. The

following nice result was proved by B. Alspach, L. Goddyn and C. Q. Zhang in [2].

Theorem 1.1.2 (B. Alspach, L. Goddyn and C. Q. Zhang) A graph has the cir-

cutl cover property if and only if it has no Pig — minor.

Let (G, p) be an edge-weighted graph (with loops and multiple edges allowed) where
p: E(G) — Z*. We say that (G,p) has a bond cover if there exist a multiset (or list)
L of bonds in G such that each edge e is covered exactly p(e) times by bonds in L. More

precisely, we say that (G, p) has a bond cover provided the following holds:

(1.3) There exists a vector of non-negative integer coefficients (Ap : C € C*)
such that

EDGC' ’\DXD =P

Here, C* denotes the collection of bonds in G and (Ap) is the multiplicity vector for the

bond cover L.

Analogously to the circuit case, the following conditions are necessary for an arbitrary

weighted graph (G, p) to have a bond cover:

(1.4) (i) for every circuit C and e € C, p(e) < p(C\e) (that is, p is balanced),
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(ii) for every circuit C, p(C) is even (that is, p is eulerian), and

(iii) p is non-negative integer valued.

The conditions in (1.4) are also collectively called admissibility conditions, and p is said

to be admissible if it satisfies (1.4).

Definition 2 A graph G has the bond cover property if (G, p) has a bond cover for
every admissible weight p.

Not every graph has the bond cover property.

Proposition 1.1.3 K does not have the bond cover property.

Fig. 2

Proof: Let a weight p of K5 be as in Fig. 2.

Since all edges with weight 1 form a bond and every circuit intersects each bond in an
even number of edges, every circuit contains an even number of edges with weight 1. Hence
p is eulerian. Since every circuit has at least 3 edges, but for any edge e, 1 < p(e) <2, pis
balanced. Thus p is admissible.

Suppose (Ks,p) has a bond cover. Let us find the bond D covering edge ¢; and remove
D. In triangle {e;, ez, e}, since p(eg) = 2, then eg € D and ez ¢ D because if not, then
after removing D, the weights of ; and e; are 0, and the weight of eg is 2, so the triangle is
unbalanced. The same situation occurs in triangles {e;,e3,e9} and {e;,eq4,€7}, 50 29 € D,

es € D and er € D, eq ¢ D. Thus es and eg must be in D, otherwise D will not be a
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bond. Therefore after removing D, the triangle {es, eg, €10} is unbalanced. Hence K5 does

not have the bond cover property. a

Since the dual of a planar graph is still a planar graph and the circuits in a planar graph

correspond to the bonds in the planar dual, from Theorem 1.1.1 we have:
Corollary 1.1.1 Planar graphs have the bond cover property.

We shall later see that, in fact, a graph has the bond cover property if and only if it has

no Ks-minor.

1.2 Matroids and Binary Matroids

All the results in this section can be found in Welsh [20].
A matroid M=M(S,T) is a finite set .S and a collection Z of subsets of S (called inde-
pendent sets) such that (11)-(I3) are satisfied.

(I1) 0el.
(I2) X€ZandY C X thenY €7.
(I3) ITU, V are members of Z with |U| = |V|+ 1 there exists z € U\ V

such that V U :L'VE Z.

A subset of § not belonging to Z is called dependent. An element z € S is called a loop
if {z} €Z. A circuitin M is a minimal dependent subset of §.
One can show that a collection C of subsets of S is the set of circuits of a matroid on S

if and only if condition (C1) and (C2) are satisfied.

(C1) EX#£YeC,then X Y.
(C2) 1If Cy, C; are distinct members of C and z € Cy N Cy, there exists C3 € C
such that C3 C (C1UCy) \ =.
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Every proper subset of a circuit is independent.

A matroid is determined by its set of circuits since X C § is independent if and only if
X contains no circuit.

Let C be the collection of circuits of a matroid M. Then a collection C* of subsets of §

is a set of cocircuits of M if and only if for every X € C* the conditions below are satisfied.

(C1) X#£0.
(C*2) |XNnY|#1lforeveryY €C.

(C*3) X is minimal with respect to these properties.

A matroid M”* on S is said to be the dual matroid of matroid M on S if the collection
of circuits of M* is the collection of cocircuits in M.
The element z € § is a coloop of the matroid M=M(S,T) if {z} is a cocircuit of M.

This happens if and only if z is a loop in M*.

Proposition 1.2.1 An element z is a loop (coloop) in M if and only if no cocircuit

(circuit) in M contains z.

If M is a matroid on § and z € 3 then define Z' such that for X C § - {z}, X € I il
and only if X € Z (that is, I’ contains those independent subsets of M which are disjoint
from {z}). Then 7’ is the collection of independent sets of a matroid M’ on § — {z}. This
matroid is denoted by M\z and is called the deletion of z from M.

If M is amatroid on S and z € S, then define Z’ so that if z is aloop then for X C S—{z}
let X € 7' if and only if X € T (that is, consider those independent subsets of M which
are disjoint from {z}), if z is not a loop then for X C § — {z} let X € I’ if and only if
X U{z} € T. Then 7’ is the collection of independent sets of a matroid M’ on § — {z}.
This matroid will be denoted by M/z and called the contraction of z from M.

By deleting or contracting the elements of S5, many new matroids can be obtained from

an original matroid M on §. The result of a sequence of deletions and contractions is called
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a minor of M. As the order of deletions and contractions is immaterial, we use M/A\ B to
denote M/a, /az...[a, \ by \ bz...\ b, when A = {ay,a,,...a,}, B = {b1,bs,...b,}.

Let T be an arbitrary field, V[T] be a vector space over T and S be a set of vectors from
this vector space. This set leads to a matroid M=M(S,7) as follows: X C .5 is independent
(denoted by X € Z) if and only if the vectors belonging to X are linearly independent over
T.

A matroid M=M(S,Z) is called representable over a field T if suitable vectors from a
vector space over T can play the role of S in the above construction.

A matroid is said to be regular if it is representable over every field.

Proposition 1.2.2 If a matroid is representable over a field then so is its dual and its

minors.

A matroid is said to be binary if it is representable over GF(2).
A cycle is any disjoint union of circuits (thus the empty set is a cycle).
Let the symmetric difference X AY of two sets X, Y be defined as (X —Y)U (Y - X).

One can prove that “A” is an associative, commutative binary operation on the set of cycles

of a binary matroid.

Proposition 1.2.3 The following statements about a matroid M are equivalent.

(i) M is binary.

(1) For any circuit C and cocircit C*, |C N C*| is even.

(iii) The symmetric difference of any two cycles of M is a cycle of M.

(iv) If Cy, C; are distinct circuits of M, then C; A C; contains a circuit C.

Graphs are a rich source of binary matroids. A graphic matroid (or polygon matroid of
graphs) M(G) and a cographic matroid M*(G) are defined on the edge set E(G) of the
graph G and X C FE is independent in M(G) or in M*(G) if and only if X, as a subgraph

of G, is a forest or contains no bond, respectively, in G. The circuits of M(G) are just the
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circuits of G. The circuits of M*(G) are just the bond of G. A loop and a coloop in M*(G)
are a loop and a bridge in G, respectively. It is clear that minor of M(G) correspond to
the minors of G. A matroid is called graphic or cographic if it arises as the graphic matroid

or cographic matroid of some graph. Graphic matroids and cographic matroids are regular.



Chapter 2

Main Theorem

2.1 Introduction

Let M be a binary matroid. Let § = §(M) derote the set of elements of M, and let

C = C(M) denote the set of all circuits C of M. Let
p:§5— 2%,

We say that (M, p) has a circuit cover if there exists a multiset (or list) L of circuits in M
such that each element e is covered exactly p(e) times by circuits in L. More precisely, we

say that (M, p) has a circuit cover provided the following holds:

(2.1) There exists a vector of non-negative integer coefficients (A¢ : C € C)
such that
Ycec Aex’ =p.
Here, (A¢) is the multiplicity vector for the circuit cover L, and for any subset H of S(M),
xH denotes the {0, 1}-characteristic function of H. We use the convention that xL means
S x¥, where L={H,, H,, ..., H,}.
As in the graphic case we have the following necessary conditions for an arbitrary

weighted binary matroid (M, p) to have circuit cover:

9
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(2.2) (i) for every cocircuit D and e € D, p(e) < p(D\e) (that is, p is balanced),
(ii) for every cocircuit D, p(D) is even (that is, p is eulerian), and
(iii) p is non-negative integer.
(Again we use the convention that p(F) means ) .. p(e), for any F C S(M).) As before
these conditions follow easily from the fact that any circuit in a binary matroid intersects
any cocircuit in an even number of elements. The conditions in (2.2) are collectively called

admissibility conditions, and p is said to be admissible if it satisfies (2.2).

Definition 3 M has the circuit cover property if (2.1) and (2.2) are equivalent for all

admissible weights p.

An N-minor of matroid M is a minor of M which isomorphic to N.

Here we restate Proposition 1.1.3, and Theorems 1.1.1 and 1.1.2.

Corollary 2.1.1 M*(Kj;) does not have the circuit cover property.

Theorem 2.1.1 (Seymour) Every graphic matroid of a planar graph has the circuit

cover property.

Theorem 2.1.2 (B.Alspach, L.Goddyn and C.Q.Zhang) A graphic matroid has

the circuit cover property if and only if it has no M(Pyp)-minor.

The main result of this thesis (Theorem 2.3.1) is an extension of this result to binary

matroids.

2.2 Some Special Matroids

We introduce here two special binary matroids which, like M(Pyp) and M*(Ks), do not
have the circuit cover property.
Fig. 3 represents a special binary matroid on a 7-element set (the points). The circuits

consist of any 3 points which lie on a line, and also any 4 points not containing a line (a
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4-arc). The cocircuits are precisely the 4-arcs in Fig. 2. This matroid called, the Fano

matroid, is denoted by F7.

OO

s O
Y

OO
Of= =
(o] o]

Fig. 3
The matroid F7 represented by the seven non-zero 3-tuples over G F(2).

1 0010011
0101101
0010111

Fig. 3 shows a correspondence between the points and the 3-tuples.

F7 is the dual matroid of F7, so every circuit of F7 is a 4-arc and every cocircuit of Fy

is a line or a 4-arc in Fig. 3 above.

Proposition 2.2.1 F7 does not have the circuit cover property.

Fig. 4

Proof: Let a weight p of F7 take the value 1 on some 4-arc and the value 2 on the

complement of the 4-arc.
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Since the 4-arc with weights 1 is a circuit of F7 and every cocircuit intersects a circuit
in an even number of elements, it follows that each cocircuit contains an even number of
the elements with weight 1, so p is eulerian. Since every cocircuit has 3 or 4 elements, and
1 < p(e) < 2 for every e € Fy, p is balanced. Thus p is an admissible weight.

Suppose (F7,p) has circuit cover. Consider the circuit covering e;. There are only 4
circuits in F7 containing e as shown in Fig. 5 (the circuits containing e are denoted by black
dots). But removing any one of the 4 circuits will cause some cocircuits (dotted lines) to

become unbalanced.

Fig. 5

Alternatively, (F7,p) has total weight 10, and each circuit in F; has size 4. However, 4
does not divide 10.

Therefore F; does not have the circuit cover property. ()

Let Ry denote the matroid represented over GF(2) by the ten 5-tuples with three 1s and
two 0s. A totally unimodular representation of Ry is given below. As this matrix represents
R0 over any field, Ryp is a regular matroid. One can check that Rjq is isomorphic to its

dual (although not self-dual).

r10000—11001

co1000 1 -1t 1 0 O
oo0100 0 1 -1 1 0
o0010 0 O0 1 -1 1
00001 1 0 0 1 -1
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It is possible to identify the ten elements of R;q with the edges of K5 in such a way that
the collection of circuits in Ryg is the collection of the (graphical) 4-circuits in K5 and their
complements (which form 6-circuits in Rjg). The collection of cocircuits in R;¢ corresponds
to the collection of bonds and their complements in K;. See Fig. 6 and Fig. 7.

Fig. 6: The typical circuits in R;q

Fig. 7: The typical cocircuits in Ryo

Like Fy, Ryo does not have the circuit cover property.
Proposition 2.2.2 Ry does not have the circuit cover property.

Proof: Let a weight p of Ry9 be as in Fig. 8. Since each cocircuit in R0 has 4 or 6
elements, p is even, and since 1 < p(e) < 3 for every e € Ry, p is also balanced.

Suppose (R,0,p) has a circuit cover. Consider the circuit C covering e;. Considering
cocircuit {e;,eq,€s,€c}, €s € C and e3 € C, es € C because if not, then after removing C,
the weights of e; and one of e; and eg are 0, and the weight of eg is 3, so the cocircuit is
unbalanced. The same situation occurs in cocircuits {e;,es, e, €10} and {e;, €3, €5, €9}, s0
e1o € D,es € D eg € D and e3 ¢ D. Then C must be {e;,eq,€7,e5,€9,€10}. But after
removing C, the cocircuit {e;,eq,€7,€10} is unbalanced. Hence R;o does not have the circuit

cover property. o
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2.3 The Main Theorem

Seymour [10] proposed a forbidden minor characterization of binary matroids with the

circuit cover property. As the main result of this thesis we prove his conjecture.

Theorem 2.3.1 A binary matroid M hus the circuit cover property if and only if M
has no F7, Ryo, M*(K5) or M(Pyo) minor.

We know that F7, Ry, M*(K5) and M(Pjo) do not have the circuit cover property,
so by Lemma 3.1.1 we know that if a binary matroid M has either a Fy, R0, M*(K’) or
M(Pyp) minor then M does not have the circuit cover property.

In the following chapters we shall introduce a decomposition theorem (Corollary 3.2.1)
which says that any binary matroid with no F7, R0, or M*(K5) minor may be obtained by
means of certain sum operations from graphic matroids and copies of two special matroids,
F; and M*(V3). We shall prove that the sum operations preserve the circuit cover property,
and that F7 and M*(V3) each have the circuit cover property. These results, together with
Theorem 2.1.2 (which deals with the graphic case) imply Theorem 2.3.1.

By the fact that none of F3, Ry and M(Pyo) is cographic, Theorem 2.3.1 implies the

following.

Corollary 2.3.1 A cographic matroid has the circuit cover property if and only if it has
no M*(Ks) minor.

Restating this in graphical terms gives the following.
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Corollary 2.3.2 A graph has the bond cover property if and only if it has no K5 minor.



Chapter 3

Minors and Decomposition

Theorems

3.1 Minors and the Circuit Cover Property

The concept of a minor was introduced in Section 2.1. Here we prove that the circuit

cover property of binary matroids is closed under minors.

Lemma 3.1.1 If a binary matroid M(S) has the circuit cover properly, then any minor

of M(S) also has the circuit cover property.

Proof: Suppose M(S) has the circuit cover property. It is sufficient to show that for
any f € S, both M\ f and M/ f also have the circuit cover property.
First we consider M\ f. Let p: $'(M\ f) — Z* be admissible.We define p’ : S(M) — Z*
by
ple) (e#f)
0 (e= f).
It is easy to see that (M, p’) is admissible and, by hypothesis, has a circuit cover. Clearly

P(e)=

this circuit cover for (M, p’) is also a circuit cover for (M\ f,p). Thus M\ f has the circuit

cover property.

16
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Now we prove that M/ f has the circuit cover property. Assume f is not a loop, since

M/ f=M\fif fis loop.
Let p: S'(M/f) — Z* be admissible. We define p’ : S(M) — Z¥ as follows.

Since j is not a loop of M, there is a cocircuit of M containing f. Choose such a cocircuit
D with
p(D-{f})

minimum. We define p’ by

P'(e) = p(e) (e # f) and
P(fN)=p(D-{f})-

We claim that (M, p’) is admissible.
Any cocircuit D; not containing f in M is also a cocircuit in M/ f, so p'(D;) = p(Ds)
is even and balanced.

For every cocircuit '’ containing f in M, by the definition of p'(f) we have
PN <D - {f}.

Now D’ A D has even intersection with every cycle of M/ f, and so is a disjoint union of

cocircuits of M/ f. Thus p(D’ A D) is even. But p/(D) is even, and
p(D' A D)= p'(D')+ p'(D) (mod 2)

so that p/(D’) is even.

We now show that p’ is balanced on the cocircuit D’. For any e € D' N D,
P(e) <p(D—{e}) <p'(D' —{e})
For any e € D' — D, we have e € D' A D, and

Pe)=ple) < p(DAD —{e})<p(D'—{f})+p(D—-{f}) - ple)
= D' -{N+0(f)-P(e)=p'(D' - {e})-
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Thus (M, p’) is admissible as claimed.

By hypothesis, there are collections of circuits L in M such that yL' = p/ (recall that
xF denotes Y xF when F={F, F,..F,}). Let W= {C},Cy,...,Cp(py} be the circuits
containing f in M. Clearly, W/f := {C, - f,Cy~ f, «esCpr gy — f} and L— W are collections

of circuits in M/ f and
VI (E-w) _

Thus, M/ f has the circuit cover property. a

3.2 Decomposition of Binary Matroids

Let My, M be binary matroids with element sets Sy, S,, respectively, where Sy and $,
may intersect. We define a new binary matroid M; AM,; to be the matroid with clement set
S1A S, and with cycles all subsets of $; A S; of the form Cy A C,, where C; is a cycle of M;
(i =1,2). (For sets S1, S2, S1 A 52 denotes (S — 52) U (2 — S1). Recall from Section 1.2
that a cycle of a binary matroid is a subset of the elements expressible as a disjoint union
of circuits. It is easy to see that if C, C’ are cycles, then C A C’ is a cycle.)

We are only concerned with three special cases of this operation, as follows.

(i) When S$; N Sz =0 and |51),]52] < 1S1 A 52| (that is, §;, 52 # 0), then
M;AM,; is a I-sum (or disjoint union) of M; and M,.

(ii) When |S; N S2| =1, 53N S2 ={f}, fis not a loop or
coloop of M, or M,, and |51},152} < |S1 A S2f (that is, S1, 52 > 3), then
M AM, is a 2-sum of M; and M,.

(iii) When |[$1 N S2] =3, 51N S2 = Z, Z is a circuit of size 3 of both M,
M,, Z includes no cocircuit of either M; or M>, and
151),152] < 1S1 A 53] (that is, §1,52 > 7), then
M;AM, is a 3-sum of M; and M,.
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(iii)* The dual form of 3-sum
When [$; N S2| =3, 51N S, =Z, Z is a cocircuit of size 3 of both M,
M3, Z includes no circuit of either M; or M;, and
[S11,152] < |81 A S2| (that is, S1,52 > 7), then

M;AM; is a dual 3-sum of M; and M-

It is helpful to visualize these operations in terms of polygon matroids of graphs. For
k =1,2,3, a k-sum of two polygon matroids corresponds to taking two graphs, choosing a
k-clique from each, identifying the vertices in the cliques pairwise and deleting the edges in

the cliques. If M is the k-sum of M, and M, then M; and M; are minors of M.

Fig. 9

There is no need to introduce dual 1- and 2-sums since these two operations are self-dual.
That is, if M is a 1- or 2-sum of matroids M, and M, then M* is a 1- or 2-sum of M7 and
M;. However, 3-sum is not self dual, since if S(M;) N S(M3) is a circuit of size 3 in M;
(i=1 or 2) then by Proposition 1.2.3, §(M;) N S(M,) is not a cocircuit of M;. In fact, if
M is a 3-sum of matroids M; and M;, then M* is a dual 3-sum of M7 and M;.

We shall need several theorems which assert that binary matroids without certain minors
may be obtained by means of these three sum operations, starting from a simpler class of

matroids.
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The following three results were proved by Seymour [14].

Theorem 3.2.1 (Seymour) Every binary matroid with no F; minor may be obtained

by means of 1- and 2-sums from regular matroids and copies of Fr.

Theorem 3.2.2 (Seymour) Every binary matroid with no F; minor may be obtained

by means of 1- and 2-sums from regular matroids and copies of Fy.

Theorem 3.2.3 (Seymour) Every regular matroid with no Ryo minor may be obtained

by means of 1-,2- and 3-sums from graphic and cographic matroids.

From Propsition 1.2.2 we have that the dual of a binary matroid is binary and the dual
of a regular matroid is regular. Also, Rjo is isomorphic to its dual. Clearly Theorem 3.2.1
and Theorem 3.2.2 are dual forms of each other and we may restate Theorem 3.2.3 in the

dual form below.

Theorem 3.2.4 Fvery regular matroid with no Ryo minor may be obtained by means

of 1-,2- and dual 3-sums from graphic and cographic matroids.

The well-known Kuratowski Theorem states that a graph is planar if and only if it has

no K5 or K33 minor. The next result is a generalization proved by Wagner [19].

Theorem 3.2.5 Every graphic matroid with no M(Ks) minor may be oblained by

means of 1-,2- and 3-sums from polygon matroids of planar graphs and copies of M(Vy).
See Fig. 10 in Page 30 for the picture of V3. We shall use the dual form of this theorem.

Theorem 3.2.6 Every cographic matroid with no M*(Ks) minor may be obtained by
means of 1-,2- and dual 3-sums from polygon matroids of planar graphs and copics of

M*(Vs).

The following corollary follows from Theorem 3.2.1, Theorem 3.2.3 and Theorem 3.2.6.
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Corollary 3.2.1 Every binary matroid with no F7, Rio or M*(K5) minor may be
obtained by means of 1-,2- and dual 3-sums from graphic matroids, copies of F7 and copies

of M*(Vs).



Chapter 4

Sums and the Circuit Cover

Property

Our object in this section is to show that the three matroid sum operations described in
Section 3.2 preserve the circuit cover property. All the matroids in this chapter are binary

matroids.

Lemma 4.0.1 If M is the 1-sum of M, and M,, and M,, M, both have the circuil

cover property, then so has M.

Proof: Let p: E(M) — Z% such that p is admissible. Write § = §(M), S; = S;{(M;)
(1=1,2).

Define p; : 1 — 2%t and p, : S2 — 2% by pi(e) = p(e) (e € 1) and py(e) = p(e)
(e € S7).

By the definition of 1-sum, we know that p; and p; are admissible. Therefore hy hy-
pothesis, there are collections of circuits Ly in M; and L; in My, such that x‘[‘1 = p; and
xI? = p;. Clearly L, and L, are also the collections of circuits in M and xL‘UL’ = p as

required. 0

22
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Lemma 4.0.2 If M is the 2-sum of M) and M,, and M,, M, both have the circuit

cover property, then so has M.

Proof: Let p: E(M) — Z% such that p is admissible. Write § = S(M), S; = Si(M;)
(i = 1,2), and let S} N S2 = {f}. By the definition of the matroid 2-sum, f is not a loop of
M;, so there is a cocircuit of M; containing f. For ¢ = 1,2, choose such a cocircuit D; in
M; with

p(Di—{f})

minimum and let these numbers be n; (i = 1,2). Then put n = min{n;,n2}. Choose
7 € {1,2} such that nj = n.

Define p; : S; — Z% and py: S, — Z% by

pi(e) =p(e) (e#f), pe)=ple) (e#f),
n(f) =n, p2(f) =mn.
We shall now show that each p; is an admissible weight for M;.

For every cocircuit D of M; (i = 1,2) not containing f, D has even intersection with
every cycle of M. Thus D is a disjoint union of cocircuits of M, implying p;(D) = p(D) is
even and

pi(e) = p(e) < p(D — {e}) = pi(D ~ {e})
for every e € D. Thus D is balanced and eulerian.
We now show that every cocircuit D containing f in M; (i = 1,2) is balanced and

eulerian. By the definition of p;(f) we have
pi(f) < p(D-{f})

Since D; A D has even intersection with every cycle of M, it is a disjoint union of cocircuits

of M. Thus p(D; A D) is even. But p;(D;) is even, and

p(Dj A D) = pi(D;)+ pi(D) (mod 2)
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so that p;(D) is even.

For any e € D; N D, we have

pi(e) = pi(e) < pi(D; - {e}) < pi(D - {e})

For any e € D — D;, we have e € Dy A D, and

pie) =ple) < p(D1AD-{e}) <p(D-{f}+p(D1~{f}) - p(e)
= pi(D —{/) +pi(f) - pi(e) = pi(D — {e})

Thus p; is admissible.

By hypothesis, there are collections of circuits L, in My and L, in M, such that xLl =,
and XL2 = p; and there are exactly n cycles containing f in M; and M,. Let W, =
{c1,¢2,...,¢n} and Wy = {d;,dy,...,d,} be such circuits in My and M>, respectively. Let
W= {c1 Ady,c2 Ady,...,cn Ady}. Clearly, W, Ly~ W;, L,— W, are collections of circuits
in M and

XWU(LI"WI )U(Lg-—-Wg) =p

as required. a

Lemma 4.0.3 If M is the dual 3-sum of My and M3, and My, M, both have the circuit

cover property, then so has M.

Proof: Let p: S(M) — Z* be such that p is admissible. Put S(M;) = 5; (i = 1,2),
and S; NS = Z = {21, 22,23}, where Z is a cocircuit of both M, and M,.

For1<i1<2,1<j<3,since Z is a cocircuit in M; and Z contains no circuit in M;,
z; is not a loop in M;/(Z — {z;}). Thus there is a cocircuit in M;/(Z - {z;}) containing
zj. By the definition of contraction, this cocircuit is also a cocircuit in M;.

Hence, let d;; be the minimum of

p(D — z;)
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taken over all cocircuits D of M; with DN Z = z;. Let D;; be a cocircuit of M; attaining
equality. For 1 < j < 3, put n; = min{dy;,d3;}. Let D; be a cocircuit in {D,;, D2j, D3;}
such that p(D;~z;) = nj. Now D1AD;AD3AZ is a cocycle of M and so p(D1AD,AD3AZ)
is even. Thus n :=ny + n2 + n3 = p(D1) + p(D2) + p(D3) — p(Z) = p(D1 A D, A D3 A Z)
(mod 2) is even.

Define p; : S; = Z%(: = 1,2) by

pi(e) = ple) (e € Z)

pi(zj) = min(”j’” - nj),j =1,2,3.

Let D be any cocircuit of either M; or M>, say M;. We shall show that D is eulerian and
balanced in (M;,p;). We have 4 cases depending on |{Z N D|.

Case |ZN D| = 3: Here D = Z and the cocircuii Z is eulerian and balanced by the

definition of p;.

Case |Z N D| = 0: As D has even intersection with every circuit of M, D is a disjoint
union of cocircuits of M. Thus D is eulerian and balanced.

Case |Z N D| = 1: Suppose without loss of generality, Z N D = {z}.
If pi(21) = ny, then by the same argument as in previous lemma, D is eulerian and balanced.
Suppose that p;(z1) < ny, so that ny > n2 + n3, pi(21) = n2 + n3,pi(22) = n2,pi(23) = n3
and pi(D — z) > ny + n3 = pi(z;). We claim that in this case, neither M; nor M; can
contain both D2 and D3. Otherwise, Dy A D3 A Z will be a cocycle in M; or M; and
(D2AD3AZ)NZ = {z}. Thus there is a cocircuit D} € Dy A D3 A Z in M; or M, and
DN Z = {z}. Thus, for k=1 or 2 we have,

(D] — {z1}) < pe(D2 — {22}) + pe(D3 — {23}) = ma + na < ny (k=1 or 2).

This contradicts the minimality of n,, proving our claim.
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Hence exactly one of Dy, D3, say Dy, belongs to M;. Now D = DA DA Z is a cocycle
of M; and DyN Z = {z3}. Thus p;(Dj) is even. But p;(D;) and pi(Z) are even, and
pi(D3) = pi(D) + pi(Z) + pi(D2) (mod 2)

so that p;(D) is even.

We now show D is balanced. For any e € D N D,, we have ¢ € D3 and

pi(e) < pi(D2—{e}) = pi(Dz — {z2}) + p(22) — pi(e)
= n2 + ny — pi(e) < 2(n2 + n3) — pi(e) = 2pi(z1) — pi(e)
< pi(D —{21}) + pi(z1) — pi(e) = pi(D — {e}).

The last inequality follows from the definition of p;(z;).
For any e € D~ Dz, wehavee € Dy ADAZ,and (D, ADAZ)NZ = {z}, so
Dy A D A\ Z is eulerian and balanced. Therefore

pi(e) £ pi(D2ADAZ~{e}) <pi(D - {z})+pi(D2 — {2}) + pi(23) - pi(e)
= pi(D —{x1}) + pi(21) — pi(e) = pi(D — {e})
Thus D is eulerian and balanced.
Case |Z N D| = 2: Without loss of generality, let DN Z = {21,22} sothat DA Z is a
cocycle of M; and (D A Z)NZ = {23}. By the previous case, p;(D A Z) is even. But p;(Z)

is even, and

pi(D A Z) =pi(D)+pi(Z) (mod 2)

so that p;(D) is even.
For any e € D — {z1,2,}, we have e € D A Z. Since D A Z is balanced,

pi(e) < pi(DAZ-{e})

= pi(D) — pi(z1) — pi(22) + pi(23) — pi(e) < pi(D — {e})
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and

pi(21) < pi(22) + pi(23) < pi(22) + pi( D — {21, 22}) = pi(D — {z1}).

Similarly, we have

pi(22) < pi( D — {22}).

Thus D is eulerian and balanced. Therefore p; and p, are admissible.

By hypothesis, there are collections of circuits L; in My and L; in Mj such that L1 = p,
and xI? = p,. But since Z is a cocircuit, every cycle which contains any of z1, 27, 23 contains
exactly two of them. Thus there are

0 < my = 1/2(pi(22) + pi(z3) — p1(z1)) cycles containing {25, 23},

0 < mp = 1/2(pi(z1) + pi(z3) — p1(22)) cycles containing {2, z3}, and

0 < m3 = 1/2(pi(z1) + pi(z2) — p1(23)) cycles containing {2, 22}

(i=1o0r2)in L, and L;. Let

R' = {R},RS,..., R}, } be the m; cycles containing {23, 23},

§* = {8,853, ...,S,‘;u} be the m; cycles containing {z, 23}, and

T* = {T},T3, ..., T%,} be the m3 cycles contain {z1, z;}

in M;(i = 1,2). Let

R = {RIARL,R;AR},..R, ARLY,
S = {S1AS},53A82,.8%, ASE }, and
T = {I}| AT}, S$; ATE,.. T ATE }.

Clearly, R, S, T, Ly — (R' USTUT?) and L; ~ (R? U §2 U T?) are collections of cycles in
M and

XRuSuTu(L; -(R'uStuTY))u(L;-(R?uS?uT?)) _ p

as required. a



Chapter 5

The Circuit Cover Property of F;

Proposition 5.0.1 Every two distinct elements of F; are in a unique 3-circuit.
Proposition 5.0.2 F; \ i @ M(Ky) for every element i of F;.

Definition 4 Let p: E(F7) — Z* be an admissible weight of F7 and p be positive. Let
C be circuit of Fy. Define a new weight pc by pc := p— x€. That is
ple)—1 (e€C)
p(e) (e g C)

If (F7,pc) is still admissible, then say that C is removable.

pe(e) =

Removing a circuit C means reducing the weights of the elements in C by 1.

Lemma 5.0.4 Let (F%,p) be admissible and p be positive. Let ly and l; be any two
heaviest weighted elements of Fr. That is, min(p(l,),p(l2)) > p(e) for every e € S(Fz) —

{li,12}. Then the unique 3-circuit C containing l, and ly is removable.

Proof: Since both p and x© are eulerian, so is pc = p — x°. Also, pc is non-negative
valued since p is positive. It remains to show p¢ is balanced.

For any cocircuit D of F7, we have |[Cn D| =0 or 2,

28
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For any cocircuit D where |D N C| = 0, we have, since p is balanced,
pc(e) = p(e) < p(D — {e}) = pc(D - {e})

for every e € D.
For any cocircuit D and |D N C| = 2, then at least one of /; and I3 is in D. Let l; in D

(i=1or?2).
For each e € D — C, since p positive, p(e) < min(p(l1),p(!2)) < p(li) < p(D — {e}), so
that p(e) < p(D — {e}) — 1. But p(D) is even, so p(e) < p(D — {e}) — 2. Therefore

pc(e) =p(e) <p(D ~{e})—2=pc(D - {e}) +2-2=pc(D — {e})
Foreachee DNC,
pc(e)=ple)—1=p(D -{e})—1=pc(D~{e})+1—1=pc(D - {e})

Hence pc(D) is balanced. Therefore C is removable. o

Lemma 5.0.5 F; has the circuil cover property.

Proof: Let p: E(F7) — Z% and p be admissible. If p(i) = 0 for some i, 0 < i < 6, we
delete i from F7 and obtain F7 \ i & M(K),).
We define pr : E(M(K4)) —» Zt by

pi(e) = p(e) (e # 9).

Clearly p/ is admissible, Therefore by Corollary 1.1.1 there is a collection of circuits L in
K4 such that XL = p!, but L is also a collection of circuits in Fy and XL = p as required.

We assume that p(i) > 0(0 < i < 6) and prove the result by finding a removable circuit C,
removing circuit C' and using induction on the new weighted (F7,pc). By Lemma 5.0.4 we

can always find a removable circuit. ]



Chapter 6

The Bond Cover Property of Vg

In this chapter we show that AM*(V3) has the circuit cover property by showing that Vg

has the bond cover property. This is a key step towards the main theorem (Theorem 2.3.1).

6.1 Introdution

Vs is a graph of 8 vertices with 8 rim-edges and 4 spokes. In Fig. 10 below, e, e;3,...,¢5

are the rim-edges, and eg, €, €311, €12 are spokes. If any one of the 4 spokes is contracted,

Vs V7 Vs
Fig. 10

a planar graph is obtained. If any one of the 8 rim-edges is contracted, then we obtain a
non-planar graph which we call V7.

In V7 in Fig 10, if e4 is contracted, then identifying eg and eg we obtain K33. If €3 or ¢

30
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is contracted, we obtain the non-planar graph denoted by V. If any one of the other edges
contracted, then a planar graph is obtained.

If any one of the edges in Vg and in K3 3 is contracted, then a planar graph is obtained.

The concept and definition of bond cover and the bond cover property have been intro-

duced in Section 1.1.

Proposition 6.1.1 Let (G, p) admissible. Let e € E(G) such that p(e) = 0. If G/e

has the bond cover property, then (G,p) has a bond cover.
Proof: Define p’ : E(G/e) —» Z* by
P(N)=p(f) (f#e)

Clearly (G/e,p’) is admissible. Thus by hypothesis, there is a collection L of bonds in G/e

such that xI = p’. Lis also a collection of bonds in G and xE=pas required. a

Proposition 6.1.2 A graph with multiple edges has the bond cover property if and only

if its underline simple graph has the bond cover property.

6.2 Preliminaries

In this section we prove some results which are key to the proof of the bond cover

property of Vs.

Definition 5 Let (G, p) be admissible. A tight circuit is a circuit C with p(l) = p(C —
{1}) for some | € C, and I is called a leader of C. For an edge e, if there is some tight circuit
C such that e is the leader of C, then e is said to be a leader in (G, p). If there is no such

tight circuit in which e is a leader, then e is said to be a follower in (G, p).

In a non-tight circuit C of admissible (G, p), p(e) < p(C ~ {e}) — 1 for all e € C. Since

p{C) is even, we have p(e) < p(C — {€})—2. In the following proofs, we assume every circuit
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has cardinality at least 3. If p is positive, then in each tight circuit C exactly one edge is a

leader of C.

Lemma 6.2.1 Let (G,p) be admissible and p be positive, and let |, be the leader of

circuit Cy. If circuit C, is tight, I € C; and |C1NC2| > 2, then |y is also the leader of Cy.
Proof: Let A = C;NC2 — {l1}. Then
p(h) = p(4) + p(C1 — C3). (6.1)
Suppose Iy is not the leader of C;3. Let I be the leader of Cy, so that I; ¢ A, and
p(l2) = p(h) + p(A) + p(C2 — C1) — p(l2). (6.2)
From (6.1) and (6.2), we have
2p(lz) = 2p(A) + p(C1 A Ca). (6.3)
But C; A C; is a cycle, and I, € Cy A C,, so that
2p(l2) < p(C1 A C) (6.4)

Now (6.3) and (6.4) imply p(A) < 0. But [A4] > 1 and p is positive, so that p(A) > 0, which

is a contradiction. Hence /; must be the leader of Cj. O

Definition 6 Let D be a bond of admissible (G, p) and p be positive. Define pp :
E(G)— Z* by
ple)-1 (e€ D)
p(e) (e ¢ D).
If (G, pp) is still admissible, then D is said to be removable.

pp(e) =

Removing bond D means reducing the weights of the edges in D by 1.
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Lemma 6.2.2 Let (G, p) be admissible and p be positive, and let D = {e1,ez,e3} be an
arbitrary 3-bond. If at least two edges of D are leaders in (G, p), then D is removable.

Proof: Since D is a 3-bond, |D NC| = 0 or 2 for any circuit C in G. For any non-tight
circuit C of (G, p), pp(C) = p(C), or p(C) — 2, so pp(C) is even, and

pp(e) < ple) < p(C—{e}) -2 < pp(C —{e}) +2 -2 =pp(C — {e})

for all e € C. Thus pp(C) is also balanced.
For any tight circuit C, if C N D = @, then pp(C) = p(C) is even and balanced.

Otherwise, let C N D = {e1,e;}, and consider the following two cases.

Case 1: If one of e; and e, is a leader, then e3 is a leader. Without loss of generality
let e, be the leader, e, be the follower. Now we prove that e, is the leader of C. Suppose e,
is not the leader of C. Let e be the leader of C so that e ¢ D. Let C; and C; be the tight
circuits in which e; and ez are the leaders, respectively. Then by Lemma 6.2.1, e; ¢ C},
so DN Cy = {e1,es}. By Lemma 6.2.1, C N Cy = {e;}, therefore again by Lemma 6.2.1,
e1 € Ca. Thus D N Cy = {es,e3} and by Lemma 6.2.1, C; N Cy = {e3}. Thus e is also the
leader of the tight circuit C A Cy. But C3 N (C A Cy) D {e2, €3}, and by Lemma 6.2.1, e3
is also the leader of C A Cy, which is impossible.

Hence e; must be the leader of C, and
pp(e1) =p(e1) ~1 < p(C —{e1} =1 =pp(C - {e1} + 1 = 1 = pp(C ~ {e1}) while

pp(e) <p(e) <p(C - {e})-2<pp(C—{e}) +2-2=pp(C —{e})

for all ¢ € C - {e1}. Thus pp(C) is balanced and even.

Case 2: e; and ez are both leaders. Now we prove that one of e; and e; must be
the leader of C. Suppose not, and let e be the leader of C so that e ¢ D. Let C; and
C3 be the tight circuits in which e; and ey are the leaders, respectively. By Lemma 6.2.1,

CnCy={e1} and CNC; = {e;}. Thus, e3 € C; N Cs, and e is also the leader of the tight
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circuit C ACy. But CoN(C ACy) D {ez2,e3}, and by Lemma 6.2.1, €, is also the leader of
C A C,, which is impossible.
Hence e; or e; is the leader of C, and by the same argument as that in Case 1, pp(C) is

balanced and even. (]

A k-star bond is a bond of size k with all its edges incident to a given point.

Lemma 6.2.3 Let (G, p) be admissible and p be positive, and let D = {e,, ez, €3,¢4} be

a 4-star bond. If at least three edges of D are leaders in (G, p), then D is removable.

Proof: Since D is a star bond, then |D N C| = 0 or 2 for any circuit C in G. For any

non-tight circuit C of (G, p), pp(C) = p(C) or p(C) - 2, so pp(C) is even, and
pp(e) < p(e) < p(C —{e}) =2 < pp(C — {e}) + 2~ 2= pp(C ~ {e})

for all e € C. Thus pp(C) is also balanced. For any tight circuit C, if C N D = @, then
pp(C) = p(C) is even and balanced. Otherwise let C N D = {e1,e2}, and we consider the

following two cases.

Case 1. Only one of e; and e; is a leader, so that e3 and e4 are leaders. Without loss of
generality let e; be the leader and e; be the follower. Now we prove that e; is the leader of
C. Suppose e, is not the leader of C. Let e be the leader of C, so that e ¢ D. Let C'y, C; and
C3 be the tight circuits in which e;, e3 and e4 are the leaders, respectively. By Lemma 6.2.1,
CNC, = {e1}, and ex € C;. Without loss of generality, let e3 € Cy, implying e is also the
leader of the tight circuit C A C1, and {ez,e3} C C1 AC. Since € € C1,e2 € C; AC, and
C1, C1 A C are tight circuits, then by Lemma 6.2.1, e; and e; are not in C,. Thus ¢4 € Cy
and by Lemma 6.2.1, C; A C; = {e3}, (C1 A C) N Cy = {e3}, so that e is the leader of the
tight circuit C; AC ACy, and {ez,e4} C C; ACAC;. Since eg € C1 ACAC; and e3 € Oy,
ez and es are not in Cs, and therefore e; € C3. But Cy N C; = {e3}, s0 €; is the leader of

the tight circuit C;y A C3 and {e;,e4} C C1 A Cp. Thus {e;,e4} C (Cy A C3) NC3, and by
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Lemma 6.2.1, e; is also the leader of C3, which is impossible. Hence €; is the leader of C,

and
po(er) = ple1) =1 < p(C - {e1} ~1=pp(C ~{e1} + 1 -1 = pp(C ~ {e1}) while
pp(e) < p(e) < p(C -~ {e}) =2 < pp(C — {e}) + 2~ 2 = pp(C - {e})

for all e € C — {e;}. Thus pp(C) is balanced and even.

Case 2: e; and ez are both leaders. Now we prove that one of e; ard e; must be the
leader of C. Suppose not, and let e be the leader of C, so that e ¢ D. Let C; and C; be the
tight circuits in which e; and e; are the leaders respectively. By Lemma 6.2.1, CNC; = {e;}
and e; g Cy, so e3 or e4 € C;. Without loss of generality, let e3 € C, so that e is the leader
of the tight circuit C ACy, and {ez,e3} C C ACy. Since {ey,e2} C C and {e3,e2} C CACy,
by Lemma 6.2.1, e; and e3 are not in Cy, implying e4 € C3. By Lemma 6.2.1, Co;NC = {e;}
and Cy; N (C A Cy) = {e2}. Therefore e is the leader of the tight circuit C A C; A C; and
{e3,eq} C C A Cy & C,. Without loss of generality let e3 be the leader and Cj be the tight
circuit in which e3 is the leader. Then (C A Cy) = {e3, ez} and (C & Cy A C3) = {es, e4},
so by Lemma 6.2.1, e; and e4 are not in C3. Therefore e; € C3. But C1 N C3 = {ey, e3}, by
Lemma 6.2.1, e is also the leader of C3, which is impossible. Hence e; or e, is the leader

of C, and by the same argument as that in Case 1, pp(C) is balanced and even. a

Lemma 6.2.4 Let (G, p) be admissible, p be positive, and D be a star bond such that
all the possible leaders of (G, p) are in D. Then D is removable.

Proof: Since D is a star bond, then [D N C| = 0 or 2 for any circuit C in G. If
CnND =9, then pp(C) = p(C) is even and balanced. If C N D # @, then |C N D| = 2, and
?p(C) = p(C) — 2 is even. We need to consider two cases.

First, if C is non-tight, then

po(e) < ple) < p(C - {e}) -2 < pp(C —{e}) +2-2=pp(C - {e})
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for all e € C. Thus pp(C) is also balanced.
Second, if C is tight, let I be the leader of C. Then | € D and p(l) = p(C — {{}) and
p(e) < p(C — {e})—2for all e € C ~ {I}. Thus

po()=p()=1=p(C-{I})-1=pp(C - {I})+1-1=pp(C - {I}) while

po(e) < p(e) < p(C —{e}) -2 < pp(C - {e}) +2 -2 =pp(C - {e}).

for all e € C — {l}. Hence pp is admissible and D is removable. 0

An edge e = {z,y} is a chord of the circuit C if e ¢ E(C) yet 2,y € V(C) are met.

Lemma 6.2.5 Let (G,p) be admissible and p be positive, then every chord of a tight

circuit C is a leader in (G, p).

Proof: Let € be a chord of C = P, U P;, where P; and P, are the two parts of C split
by e, and let the leader [ of C in P;. Then

2p(l) = p(Py) + p(P2).

Since [ is in circuit P, U {{},

2p(1) < p(P1) + p(e).
Therefore p(e) > p(P;). But e is in the circuit P; U {e}, so
p(e) < p(P2).

Hence p(e) = p(P;) and e is the leader of tight ci:cuit P, U {e}. o

Lemma 6.2.6 Let (G, p) be admissible and p be positive. Let C be a circuit with chords
such that at least one of the chords is a follower. For anyl € ~, if p(l) = p(C - {I}) - 2,

then |l is a leader.
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Proof: Let e be a chord which is follower, let C = P, U P,, where P; and P, are the

two parts of C split by e, and let [ € P;. Then
2p(l) = p(P1) + p(P,) - 2.

Since [ is in circuit P, U {l},
2p(1) < p(P1) + p(e)-

Therefore p(e) > p(P;) — 2. But e is a follower in the circuit P, U {e}, so
p(e) < p(P2) - 2,

and we have p(e) = p(P2) — 2. Thus we have 2p(l) = p(P1) + p(e), and therefore [ is the

leader of the tight circuit P, U {e}. o

From Lemma 6.2.5 and Lemma 6.2.6, we have the following corollary.

Corollary 6.2.1 Let (G,p) be admissible p be positive and C be a circuit with chords
such that at least one of the chords is a follower. Then C is non-tight, for every leader | in

C, p(1) < p(C — {1}) — 2, and for every follower f in C, p(f) < p(C - {f}) — 4.

Lemma 6.2.7 Let (G,p) be admissible, p be positive, D be a bond such that all the
leaders of (G, p) are in D, and C be a circuit such that |C N D| < 2. Then after removing

D, pp(C) is still even and balanced.

Proof: If C N D = 0, then pp(C) = p(C) is even and balanced. If |C N D| = 2, then
pp(C) = p(C) — 2 is even. We need to consider two cases.

First, if C is non-tight, then
po(e) < p(e) <p(C ~{e}) -2 < pp(C —{e}) +2~2=pp(C - {e})

for all e € C. Thus pp(C) is also balanced.
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Second, if C is tight, let | be the leader of C. Then ! € D, p(l) = p(C ~ {I}) and
p(e) < p(C —{e})—2for all e € C - {I}. Thus

po()=p() -1 =p(C - {I})-1=pp(C - {I})+1~1=pp(C — {I}) while

pp(e) < ple) <p(C —{e}) - 2< pp(C —{e}) +2-2=pp(C - {e})

for all e € C — {l}. Hence pp is admissible. 0

Lemma 6.2.8 Let (G,p) be admissible, p be positive, D be a bond, C be a non-tight
circuit such that [CND| <4, and if p(f) = p(C —{f})~2 thene € CN D for everye € C.

Then after removing D, pp(C) is still even and balanced.

Proof: Since C is circuit and D is bond, then |C N D] is even, so pp(C) is even. For

every e € C N D, we have
po(e) =ple) ~1 < p(C - {e}) ~2~1<pp(C ~ {€}) +3 ~ 3 = pp(C —~ {e}).
For every f € C — D, we have
po(f) < p(f) < p(C-{fH-4<pp(C~{f})+4-4=pp(C - {f})

Hence pp(C’) is balanced. &)

From Corollary 6.2.1 and Lemma 6.2.8, we have the following corollary.

Corollary 6.2.2 Let (G,p) be admissible, p be positive, D be a bond such that all the
leaders of (G, p) are in D, C be a circuit such that at least one of its chords is a follower,

and |C N D] < 4. Then after removing D, pp(C) is still even and balanced.

From Lemma 6.2.8 we have the following result.
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Corollary 6.2.3 Let (G, p) be admissible, p be positive, D be a bond, C be a 4-circuit,
and C C D. If C is not tight, then after removing D, pp(C) is still even and balanced.

6.3 The Bond Cover Property of Kj3;
Lemma 6.3.1 K33 has the bond cover property.

Proof: Let p: E(K33) — Z* be admissible. If there is an edge e € E(K33) with p(e) =
0, then we contract e to obtain a planar graph. By Corollary 1.1.1 and Proposition 6.1.1,
(K33, p) has a bond cover.

We assume that p is positive and prove the result by finding a removable bond D,
removing bond D and using induction on the new weighted (K33, pp). If there are no edges
which are leaders in (K3 3,p), then by Lemma 6.2.4 an arbitrary star bond is removable.
If there is only one edge which is a leader in (K33, p), then by Lemma 6.2.4 the star bond
containing this leader is removable. If there is a star bond which contains at least two

leaders, then by Lemma 6.2.2 this star bond is removable.

So we assume that K33 has at least two leaders no two of which are adjacent. By
symmetry we have to check following two cases. In the following cases, we try to find a bond
D and prove D is removable by proving pp(C) is balanced and even for every circuit C of
K3 3. Since all the possible leaders of (K33, p) are in the removable bond, by Lemma 6.2.7,

we don’t have to check 3-circuits and 4-circuits unless all the edges of a 4-circuit are in the

Fig. 11

removable bond. If so then by Corollary 6.2.3, we need to prove this 4-circuit is non-tight.
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Fig. 11 above shows all the 6-circuits of K3 3. Notice that each 6-circuit has 3 chords.

Case 1. (Ks3,p) has exactly two non-adjacent leaders. Let eg and eg be the

leaders. Then a bond D = {e, e, €7, €} is removable.

€6 €3

Fig. 12

Proof: For any 6-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C) is even and
balanced. If |C N D| = 4 then no leader can be a chord of C, and by Corollary 6.2.2, pp(C)

is even and balanced. Thus D is removable.
Case 2. (K33,p) has exactly three non-adjacent leaders.

Let e3, eg and eg be the leaders. Then a bond D = {es, e, €7, €3, €9} is removable.

Fig. 13

Proof: For any 6-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C) is even and
balanced. If |C N D| = 4, then at most one leader can be a chord of C. But C has three
chords, so at least two chords of C are followers, and by Corollary 6.2.2, pp(C') is even and

balanced.
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By Corollary 6.2.3, it remains to show that the 4-circuit C = {e3, eg, €7, €9} is non-tight.
Suppose C is tight. Without loss of generality, let e be the leader of C. Let C; be
the tight circuit in which e3 is its leader. By lemma 6.2.1, C; can only be {es, €3, €2, €4},
and eg is the leader of tight tight circuit C A C). But C A Cy is a 6-circuit with follower
chords e; and es, and by Lemma 6.2.5, it can not be tight. Therefore C is non-tight, and

by Corollary 6.2.3, pp(C) is even and balanced. Hence D is removable. O

6.4 The Bond Cover Property of V;

Lemma 6.4.1 Vg has the bond cover property.

Proof: Let p : E(V5) — Z1 be admissible. If there is an edge e € E(Vg) with p(e) = 0,
then we contract e to obtain a planar graph. By Corollary 1.1.1 and Proposition 6.1.1,
(Ve, p) has a bond cover.

We assume that p is positive and prove the result by finding a removable bond D,
removing bond D and using induction on the new weighted (Vs, pp). If there are no edges
which are leaders in (V§,p), then by Lemma 6.2.4 an arbitrary star bond is removable. If
there is only one edge which is a leader in (Vg,p), then by Lemma 6.2.4 the star bond
containing this leader is removable. If there is a 3-star bond which contains at least two
leaders, then by Lemma 6.2.2 this star bond is removable. If there is a 4-star bond which

contains at least three leaders, then by Lemma 6.2.3 this star bond is removable.

So we assume that Vg has at least two leaders and no vertex of degree 3 adjacent to more
than one leader, no vertex of degree 4 adjacent to more than two leaders, and by symmetry
we have to check the following cases according to the number of leaders among the six edges

{eq, €5, ¢€6,€7,€8,€9} in Fig. 10 in Page 30, of which at most two edges can be the leaders.

In the following cases, we try to find a bond D and prove D is removable by proving

pp(C) is balanced and even for every circuit C of V5. Since all the possible leaders of (Vg, p)



CHAPTER 6. THE BOND COVER PROPERTY OF Vs 42

are in the removable bond, by Lemma 6.2.7, we don’t have to check 3-circuits and 4-circuits
unless all the edges of a 4-circuit are in the removable bond. If so then by Corollary 6.2.3,

we need to prove this 4-circuit is non-tight.

The figures below are all the 5-circuits of V. Notice that each one has 2 chords.

ERIER 5 X 25 BN

Fig. 14

The figures below are all the 6-circuits of Vg and each one has 4 chords.

R o ) (] ) (5]

Fig. 15

Case 1. No edges in the six edges {e4,€s5,¢5,€7,€5,€9} are leaders.

Then €0 is a possible leader, and only one of e;, e3 and e3 can be a leader. Since

they are identical, we let e; be the possible leader. A removable bond for this case is

D = {e1, es5, €5, €10}-

Fig. 16

Proof: For every 5- or 6-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C) is even

and balanced. If |C n D] = 4, then at most one leader can be a chord of C. But ' has at
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least two chords, so at least one chord of C is a follower, by Corollary 6.2.2, pp(C) is even
and balanced. Therefore D is removable.
Case 2. Exactly one edge of the six edges {eq, €5, ¢€6,€7,€8,€9} is the leader.
By symmetry let e4 be the leader, implying that ejo is the possible leader and only one

of e; and e3 can be a leader, again by symmetry let e3 be the possibe leader. A removable

bond for this case is D = {es, eq, €5, €9,€10}.

Fig. 17

The proof is the same as that in Case 1.
Case 3. Exactly two edges of the six edges {e4, €5, €6, €7, €3, €9} are leders.

Case 3.1. The two leaders are adjacent.
By symmetry let e; and es be the leaders, implying that e3 is the only possible leader.

A removable bond is D = {e3, €4, €5, €9, €10}.

Fig. 18

The proof is the same as that in Case 1.
Case 3.2. The two leaders are not adjacent.
By symmetry let e4 and eg be the leaders. Then only e; and e;o can be possible leaders.

We need to consider the following two subcases.
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Case 3.2.1. If e; is not a leader, then a removable bond is D = {e3,eq4, €5, €9, €10}.

Fig. 19

The proof is the same as that in Case 1.

Case 3.2.2. If e, is a leader, then a removable bond is D = {e1, €2, e4, €5, €9,€50}.

Fig. 20

Proof: Since |D| = 6 and D contains a 4-circuit, |D N C| < 4 for any circuit C in V.

For every 6-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C’) is even and balanced.
If |C n D| = 4, then at most two leader can be chords of C. However, C has four chords, so
at least two chords of C are followers, and by Corollary 6.2.2, pp(C) is even and balanced.

Except for the 5-circuit C; = {e1, €3, €6, €7, €10}, every 5-circuit C' has a follower chord.
By Corollary 6.2.2, pp(C) is even and balanced. But |C; N D| = 2, and by Lemma 6.2.7,
pp(Cy) is even and balanced.

Now we have to prove that the 4-circuit C; = {e1, €2, e4,€5} is non-tight. Suppose
is tight, we let e4 be the leader of C; (if e; is the leader of C3, the proof follows the same
idea). Let C3 be the tight circuit in which e; is the leader.

The 6-circuit Cy = {ey, €3, €5, €6, €7, €8} contains no leaders, and every other 6-circuit has

a follower chord, so they can not be tight, thus C3 can not be a 6-circuit. Except for
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the 5-circuit C, = {e1,e3,e€s,€7, €10}, every 5-circuit has a follower chord, so they can not
be tight. Also, e ¢ C; and thus C3 can not be a 5-circuit. By Lemma 6.2.1, C3 can
only be the 4-circuit {ez,es,es,e9}, and therefore e4 is also the leader of the tight circuit
Cy A C3 = {e1,e3,€4,€5,€3,€9}. However, C2 A C3 is a 6-circuit, so it can not be tight.
Hence C is non-tight, and by Corollary 6.2.3 pp(C3) is even and balanced. Therefore D is

removable. O

6.5 The Bond Cover Property of V7
Lemma 6.5.1 V7 has the bond cover property.

Proof: Let p: E(V7) —» Z% be admissible. If there is an edge e € E(V7) with p(e) = 0,
then we contract e and obtain either a planar graph, K33 or V. By Corollary 1.1.1 and
Lemma 6.3.1 or Lemma 6.4.1 and Proposition 6.1.1, (V7,p) has a bond cover.

We assume that p is positive and prove the lemma by finding a removable bond D,
removing bond D and using induction on the new weighted (V7,pp). If there are no edges
which are leaders in (V7,p), then by Lemma 6.2.4 an arbitrary star bond is removable.
If there is only one edge which is leader in (V7,p), then by Lemma 6.2.4 the star bond
containing this leader is removable. If there is a 3-star bond which contains at least two
leaders, then by Lemma 6.2.2 this star bond is removable. If there is a 4-star bond which
contains at least three leaders, then by Lemma 6.2.3 this star bond is removable.

So we assume that V7 has at least two leaders, no vertex of degree 3 adjacent to more
than one leader and no vertex of degree 4 adjacent to more than two leaders. Therefore by
symmetry we have to check the following cases according to the number of leaders among
the four edges {e,, €6,€10,€11} in V7 in Fig. 10 in Page 30. At most two edges of them can

be the leaders and the two leaders can not be adjacent.
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The figures below are all the 5-circuits of V7. The first four have one chord and the last

two have no chord.

A PDXBED

Fig. 21

The figures below are all the 6-circuits of V7, each of which has two chords.

HHDRHED

Fig. 22

The figures below are all the 7-circuits of V7, each of which has four chords.

FBOBED

Fig. 23

In the following cases, we try to find a bond D and prove D is removable by proving
pp(C) is balanced and even for every circuit C of V7. Since all the possible leaders of (V7,p)
are in the removable bond, by Lemma 6.2.7, we don’t have to check 3-circuits and 4-circuits
unless all the edges of a 4-circuit are in the removable bond, and if so then by Corollary 6.2.3
we need to prove this 4-circuit is non-tight.

Case 1. No edges in {e;,€6,€10,€11} are leaders.
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Case 1.1. Let e4 be the leader. Then e; and e; are possible leaders. A removable bond

is D= {61,64)65367, 69}'

Fig. 24

Proof: Except for the 5-circuits Cy = {ez, eg, 4, €5, €6} and C2 = {e1, €10, €5, €4, €9}, any
5-circuit C stisfies |C N D| < 2 and by Lemma 6.2.7, pp(C) is even and balanced. But
[CiynD| =4, |CanD| =4 and Cy, Cg have a follower chord es, so by Corollary 6.2.2,
pp(C1) and pp(Cs) are even and balanced.

For any 6- or 7-circuit C, if [C N D| < 2, then by Lemma 6.2.7, pp(C) is even and
balanced. If |C N D| = 4, then at most one leader can be a chord of C. But C has at
least two chords, so at least one chord is a follower. By Corollary 6.2.2, pp(C) is even and
balanced.

Case 1.2. e4 is not a leader. We consider the following three subcases.

Case 1.2.1. If e3 and e5 are not leaders, then at most two of e, e7, eg and eg can be

leaders. By Lemma 6.2.4, the star bond D = {e;, e7, €3, €9} is removable.
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Case 1.2.2. Only one of e3 and e;5 is a leader. Since e3 and e5 are identical, let €5 be the

leader. Then e;, e7 and eg are possible leaders. A removable bond is D = {ey, e4, €5, €7, €9}.

Fig. 26

The proof is the same as that in Case 1.1.

Case 1.2.3 If both of e3 and e5 are leaders, then e;, and e; are possible leaders.

removable bond is D = {ey, €3, €5, €7}.

Fig. 27

Proof: For any 5-circuit C, |C N D| = 2, and by Lemma 6.2.7, pp(C) is even and

balanced.
For any 6-circuit or any 7-circuit C, if |C N D] < 2, then by Lemma 6.2.7, pp(C') is even

and balanced. If |C N D| = 4, then no leader can be a chord of C, and by Corollary 6.2.2,

pp(C) is even and balanced.

Case 2. Exactly one of the edges {e2, €, €10,€11} is a leader. Let ¢; be the lcader.
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Case 2.1. If ¢4 is the leader, then only ey can be a possible leader. A removable bond

is D= {62,84, €¢,€7, 69}'

Fig. 28

Proof: Except for the 5-circuit C; = {eg, €7, €9, €4, €5}, every 5-circuit C satisfies |C N
D| < 2, and by Lemma 6.2.7, pp(C) is even and balanced. However |C; N D| = 4 and C;
has a follower chord eg, so by Corollary 6.2.2, pp(C}) is even and balanced.

For any 6- or 7-circuit C, if |C' N D] < 2, then by Lemma 6.2.7, pp(C) is even and
balanced. If |[C N D| = 4, then at most one leader can be a chord of C, but C has at
least two chords, so at least one chord is a follower. By Corollary 6.2.2, pp(C) is even and

balanced. Hence D is removable.

Case 2.2. The edge ¢4 is not a leader. We consider the following two subcases.

Case 2.2.1. If e5 is not a leader, only two of e7, eg and eg can be leaders. A removable

bond is D = {e, €7, €3, €9, €10}

Fig. 29

The proof follows the same as that in Case 1.2.3.



CHAPTER 6. THE BOND COVER PROPERTY OF Vg 50

Case 2.2.2 If ¢5 is a leader, then only e; and eg are possible leaders.

Case 2.2.2.1. If e7 is not a leader. then a removable bond is D = {ey, €5, €5, €9, €11 }.

Fig. 30

The proof follows the same as that in Case 1.2.3.

Case 2.2.2.2. If e7 is a leader, then a removable bond is D = {eq, €5, €6, €7, €g,€3}.

Fig. 31

Proof: Since |D| = 6 and D contains a 4-circuit, then |[C N D| < 4 for every circuit
C of V7. Except for the 5-circuit C1; = {ea,es,¢€6,€7,€9}, any other 5-circuit ¢ satisfies
[{CnD|=2,and by Lemma 6.2.7, pp(C) is even and balanced. But C; has a follower chord
eg, so by Corollary 6.2.2, pp(C4) is even and balanced.

Except for the 6-ciccuit Cy = {es, €11, €10, €9, €1, €3}, any other 6-circuit C has a follower
chord , so they are non-tight, and by Corollary 6.2.2, pp(C) is even and balanced. But
|C2n D] = 2, and by Lemma 6.2.7, pp(C:) is even and balanced.

For any 7-circuit C, if |C N D} < 2, then by Lemma 6.2.7, pp(C) is even and balanced.

If |C N D| = 4, then at most two leaders can be a chord of C, but C has four chords, so at
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least two chords are followers, and by Corollary 6.2.2, pp(C) is even and balanced.

Now we have to prove that the 4-circuit C3 = {es,e€q,€7,€s} is non-tight. Suppose
C; is tight. We let ey be the leader of C3 (if es is the leader of C3, the proof follows
the same idea). Let C4 be the tight circuit in which es is the leader. Only the 6-circuit
{e1, €3, €6, €9,€10,€11} can possibly be tight, but e5 ¢ {e1, €3, €q, €9, €10,€11}, and thus Cy
can not be a 6-circuit. Only the 7-circuit {e1, e3, €4, €s, €3, €10, €11} can possibly be tight, but
es & {e1, €3, eq, €6, €8, €10, €11}, and thus C4 can not be a 7-circuit. By Lemma 6.2.1, C4 can
only be one of the 5-circuits {ez, €3, €4, €5,€10} and {eq,e5,€1,€11, €9}, but {eq, €5, €1, €11, €9}
has a follower chord eg and can not be tight. Thus Cy4 can only be {ez, €3, 4, €5,€10}. Then
e7 is also the leader of the tight circuit C3 A Cy4, but C3 A Cy4 has follower chords e;,e;; and
€10, and it is non-tight. Hence C3 is non-tight, and by Corollary 6.2.3, pp(C3) is even and
balanced. Therefore D is removable.

Case 3. Only two of the edges {e2,es,€10,€11} are leaders. Let ez and eg be the
two leaders.

Case 3.1. If e4 is a leader, then there are no other leaders. A removable bond is

D= {82, €4,€6,€7, 69}-

Fig. 32

The proof is the same argument as that in Case 2.1.

Case: 3.2 If e4 is not a leader, then only eg and eg are possible leaders. A removable

bond is D = {ey, eg, €g, €9, €10, €11}.
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Fig. 33

Proof: Since |D| = 6 and D contains a 4-circuit, then |C N D| < 4 for every circuit C of
Vz.

Any 5-circuit C satisfies |[C N D| = 2, and by Lemma 6.2.7, pp(C) is even and balanced.
Every 6-circuit C has a follower chord , so they are non-tight, and by Corollary 6.2.2, pp(C)
is even and balanced. For any 7-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C) is
even and balanced. If |C N D| = 4, then at most two leaders can be a chord of C, but ('
has four chords, so at least two chords are followers, and by Corollary 6.2.2, pp(C) is even
and balanced.

Now we have to prove that the 4-circuit Cy = {e3, e, €10, €11} is non-tight. Suppose ',
is tight. We let e; be the leader of C; (if es is the leader of Cy, the proof follows the same
idea). Let C; be the tight circuit in which eg is the leader.

Every 6-circuit has follower chord, they can not be tight, thus C5 can not be a 6-circuit.
The 7-circuit {e;,e3, €4, €5, €7,€10,€11} contains no leaders, and every other 7-circuit has
follower chord, so they can not be tight, thus C; can not be a 7-circuit. By Lemma 6.2.1,
C2 can only be the 4-circuit C3 = {es, es, €7, €3} or the 5-circuit Cy = {eq4, €5,€6,€7,€9}.
Therefore e, is also the leader of the tight circuit C; A C3 = {es,e7,€2,€s8,€10,€11} oOr
C1 & Cy = {eq,€5,€7,€2,€9,€10,€11}. However C; A C3 and Cy A Cy are a 6-circuit and
a 7-circuit respectively, and they can not be tight. Hence C; is non-tight, and by Corol-

lary 6.2.3, pp(C1) is even and balanced. Therefore D is removable. O
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6.6 The Bond Cover Property of Vj
Lemma 6.6.1 Vg has the bond cover property.

Proof: Let p: E(V3) — Z* be admissible.

If there is an edge e € E(V3) with p(e) = 0, then we contract e to obtain a planar graph or
Vs. Therefore, by Corollary 1.1.1 or Lemma 6.5.1 and Proposition 6.1.1, (Vs,p) has a bond
cover.

We assume that p is positive and prove the result by finding a removable bond D and
removing bond D then using induction on the new weighted (Vs, pp). If there are no edges
which are leaders in (Vs,p), then by Lemma 6.2.4 an arbitrary star bond is removable. If
there is only one edge which is a leader in (Vs,p), then by Lemma 6.2.4 the star bond
containing this leader is removable. If there is a 3-star bond which contains at least two

leaders, then by Lemma 6.2.2 this star bond is removable.

So we assume then that Vg has at least two leaders and no vertex of degree 3 adjacent
to more than one leader. Therefore, we have to check following cases.

In the following cases, we try to find a bond D and prove D is removable by proving
pp(C) is balanced and even for every circuit C of V3. Since all the possible leaders of (V3, p)
are in the removable bond, by Lemma 6.2.7, we don’t have to check 3-circuits and 4-circuits
unless all the edges of a 4-circuit are in the removable bond. If so then by Corollary 6.2.3,
we need to prove this 4-circuit is non-tight.

Fig. 34 below is the collection of all the 5-circuits of V3. They have no chords.

RERLPLREE

Fig. 34

Fig. 35 below is the collection of all the 6-circuit of V3. Each has one chord.
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Fig. 35

Fig. 36 below is the collection of all the 7-circuit of V3. Each has two chords.

RARE R PR AL

Fig. 36

Fig. 37 below is the collection of all the 8-circuit of Vs. Each has four chords.

PP

Fig. 37

(1) Exactly one leader on the rim.

By symmetry, we need only check one case.

Case 1.1: Let e, be the leader, then e;; and e;; are the possible leaders. A removable
bond is D = {e, ¢, €9, €11, €12}-

Proof: For any 8-circuit or 7-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C') is
even and balanced. If |C N D| = 4, then at most one leader can be a chord of (', but C' has
at least two chords, implying that at least one chord is a follower, and by Corollary 6.2.2,

pp(C) is even and balanced.
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Fig. 38

Every 6-circuit C, other than C; = {e1, ez, e€s, e, €9, €11}, satisfies |C N D| = 2, and
by Lemma 6.2.7, pp(C) is even and balanced. But C; has a follower chord e;q, and by
Corollary 6.2.2, pp(C}) is even and balanced.

Since every 5-circuit C can use only one spoke and there are three spokes in D, |CND| <

2, and by Lemma 6.2.7, pp(C) is even and balanced. Therefore D is removable.

(2) Exactly two leaders on the rim.

By symmetry, we have to check the following three cases.

Case 2.1. Let e; and e7 be the leaders, so there are no other leaders. A removable

bond is D = {e;,e3,e€s,€e7}.

€ €2

€g €3

(44 €4

€6

Fig. 39

Proof: For any 8-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C) is even and
balanced. If [C N D] = 4, then no leader can be a chord of C. But C has four chords, so
the four chords are followers, and by Corollary 6.2.2, pp(C) is even and balanced.
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Each 7-circuit C contains 3 spokes, 2 adjacent rim edges and 2 rim edges adjacent to
each end of a spoke and on one side of this spoke. But D contains no such four rim edges,
so |C N D} £ 2, and thus by Lemma 6.2.7, pp(C) is even and balanced.

Each 6-circuit C contains 2 spokes and 2 pairs of 2 adjacent rim edges. But D contains
no such four rim edges, so |C N D| < 2, and thus by Lemma. 6.2.7, pp(C) is even and
balanced.

Each 5-circuit C contains a spoke and all rim edges on one side of the spoke. There are
only two edges of D on each side of each spoke, so |C N D| = 2, and thus by Lemma 6.2.7,
pp(C) is even and balanced. Therefore D is removable.

Case 2.2. Let e; and es be the leaders. Then ey; and e;s are possible leaders. A

removable bond is D = {ey,es, eg, €10, €11, €12}.

€ €2

€g €11\€3

€7 €4

€

Fig. 40

Proof: Since |D| = 6 and D contains a 4-circuit, then |C N D| < 4 for every circuit
C of Vg. For any 8-circuit C, if |C N D] < 2, then by Lemma 6.2.7, pp(C') is even and
balanced. If {C N D| = 4, then at most two leaders can be a chord of C. However, C
has four chords, so at least two chords are followers, and by Corollary 6.2.2, pp(C') is even
and balanced. The edges ey; and e;2 can not be the chords of a 7-circuit, and ¢; and e5
can not the chords of a 7-circuit at the same time. Thus every 7-circuit C' has at least
one follower chord, and by Corollary 6.2.2, pp(C) is even and balanced. Except for the 6-
circuits Cq = {e1, €2, €5, €5, €9, €11} and Cy = {ey, €4, €5, €3, €10, €12}, any other two 6-circuits

C satisfies |C N D| = 2, and by Lemma 6.2.7, pp(C) is even and balanced. But C, and C,
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have follower chords e;p and eg, respectively. By Corollary 6.2.2, pp(C,) and pp(C:) are
even and balanced. The edges e; and es are not in the same side of any spoke, so for any

5-circuit C, |C'N D| = 2. By Lemma 6.2.7, pp(C) is even and balanced.

Now we have to prove that the 4-circuit C3 = {ej,es5, €9,€10} is non-tight. Suppose
C3 is tight. We let e; be the leader of C3 (if es is the leader of C3, the proof follows
the same idea). Let C4 be the tight circuit in which es is the leader. Only the 8-circuit
{e2, €3, €4, €6, €7, €8, €9, €10} has no follower chords, but {ey, e3, €4, €g, €7, €3, €9, €10} contains
no leaders. Hence every 8-circuit is non-tight, and C4 can not be a 8-circuit. Every 7-circuit
has follower chord, so they are non-tight. Therefore C4 can not be a 7-circuit. Also, es is
only in two 6-circuits Cy and C;, but they are not tight, so C4 can not be a 6-circuit. By
Lemma 6.2.1, Cy can only be the 5-circuit {es,eq,es,es,€11} or {e4,e€5,¢€6,€7,€12}. Then
e; is also the leader of the tight circuit C3 A C4 which is a 7-circuit. Thus it can not be
tight. Hence C3 is non-tight, and by Corollary 6.2.3, pp(C3) is even and balanced. Thus D
is removable.

Case 2.3. Let e; and e4 be the leaders, so that e is the possible leader. A removable

bond is D = {61,64, 610,611,612}.

€ €2

€s €3

€7 €4

€6

Fig. 41

Proof: For any 8-circuit or 7-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C) is
even and balanced. If |C N D| = 4, then at most one leader can be a chord of C. However,
C has at least two chords, so at least one chord is a follower, and by Corollary 6.2.2, pp(C)

is even and balanced.
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Except for the 6-circuit Cy = {ey, €2, €5, €6, €9, €11}, any other 6-circuit C has a follower
chord, and by Corollary 6.2.2, pp(C) is even and balanced. But |C; N D| = 2, and by
Lemma 6.2.7, pp(C;) is even and balanced.

The edges e; and e4 are in only one side of spoke eg. As eg & D, every 5-circuit C
satisfies |C N D| = 2, and by Lemma 6.2.7, pp(C) is even and balanced. Therefore D is
removable.

(3) Exactly three leaders on the rim.

By symmetry, we need to consider only two cases.

Case 3.1. Let e, €3 and e7 be the leaders, so there are no other leaders. A removable

bond is D = {e1,e3,e€s5,€7}.

Fig. 42

The proof is the same as that in Case 2.1.

Case 3.2. Let ¢, e4 and e7 be the leaders, so there are no viher leaders. A removable
bond is D = {ej, eq, €5, €7, €12}.

Proof: For any 8-circuit or 7-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C)
is even and balanced. If |C N D| = 4, then at most one leader can be a chord of C.
But C has at least two chords, so at least one chord is a follower, and by Corollary 6.2.2,
pp(C) is even and balanced. Since no spokes are leaders, every 6-circuit C has a follower
chord, and by Corollary 6.2.2, pp(C) is even and balanced. Except for the 5-circuit €', =
{es, es, €6, €7, €12}, every 5-circuit C satisfies |C N D| = 2, and by Lemma 6.2.7, pp(C) is
even and balanced.
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Fig. 43

Now we have to prove that C; is non-tight and p(eg) < p(C1 — {es}) — 4. Suppose
C, is tight and let e; be the leader of C; (if e7 is the leader of Cy, the prove follows the
same idea). Let C; be the tight circuit in which e is the leader. Since there are only
three leaders, but every 8-circuit has 4 chords, at least one chord is a follower. Then every
8-circuit is non-tight, and thus C; can not be an 8-circuit. Also, C2 can not be a 6-circuit.
The two 7-circuits {ez, €3, €5, €3, €9, €10, €12} and {es, es, g, €3, €9, €11, €12} contain no leaders
and every other 7-circuit has follower chord. Hence they can not be tight and C; can not be
a 7-circuit. By Lemima 6.2.1, C2 can not be a 4-circuit or the 5-circuits {eq, €5, €g, €7, €12},
{es, e, €7,€8,€9} and {ey, €10, €6,€7,€5}. Thus C; can only be {e1, e, €11, €7,€3}, so that e4
is the leader of the tight circuit Ci A C;. Since Cy A C; is a 8-circuit, it can not be tight.
Therefore C; is non-tight. Thus p(e) = p(C1 — {e}) — 2 for every e € C;.

Suppose p(eg) = p(C1 — {es}) — 2. Let C3 be a tight circuit in which e, is the leader.

Then p(eq) = p(C3 — {e4}). If eg € C3, then
p(es) < ples) < p(C1 — {ea}) —2 < p(C1 — {e6}) — 2.

This is a contradiction implying that eg ¢ C3. Therefore eg € Cy A Cs.
Let C;NCs= An{es}. Then

ples) < p(C1AC3;—{es}) -2

= p(C3)+ p(C1) — 2p(A) — 2p(eq) — p(es) — 2
= p(C1—{es}) — 2 —2p(A).
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Thus, 2p(A) < 0, and since £(A4) £ 0, A = 0. Hence C5 can only be {e;, e2,€3,€4,€9}.

Let C4 be the tight circuit in which e; .s the leader. Similar to above Cy can only
be {e1,e2,e7,es,€11}. Therefore e; € C3 and e; € C4. Any circuit Cs containing ¢,
must contain at least one of ez, eg and eg. Therefore |Cs N C3| > 2 or |Cs N Cy| > 2,
and by Lemma 6.2.1, e; can not be a leader, which is a contradiction. Hence, p(eg) <

p(C1 — {es}) — 4. Thus, pp(C;) is even and balanced. and D is removable.
(4) Exactly 4 leaders on the rim.

Case 4.1. Let e, e3, e5 and e7 be the leaders. A removable bond is D = {e;, e3, €5, €7}.

€g €3

€7 €4

€6

Fig. 44

The proof is the same as that in Case 2.1.

(5) No leaders on the rim.

Case 5.1. All the 4 spokes are leaders. A removable bond is D = {e3, €7, €y, 10,
€11, €12}

Proof: Since |D| = 6 and D contains a 4-circuit, |C N D| < 4 for every circuit C' of V.
For any 8-circuit C, if |C N D| < 2, then by Lemma 6.2.7, pp(C) is even and balanced. If
|C N D} = 4, then at most two leaders can be a chord of C. As C has four chords, at least
two chords are followers, and by Corollary 6.2.2, pp(C) is even and balanced. Since spokes
can not be the chords of a 7-circuit, every chord of any 7-circuit C is a follower, and by

Corollary 6.2.2, pp(C) is even and balanced.
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Fig. 45

Now we prove that every 6-circuit is not tight. Without loss of generality suppose
C) = {eq,e3,€6,€71,€10,€12} is tight, and e is the leader of C;. Let C, be the circuit in
which e is the leader. Now C3 can not be an 8- or 7-circuit since every 8- and 7-circuit is
non-tight. By Lemma 6.2.1, C; can not be the other 6-circuit which contains e;2 or the two
5-circuits which contain e;2. Thus C2 can only be the 4-circuit {e4, es,eg, €12}, and then
e1o is the leader of the tight circuit Cy; A C; which is an 8-circuit, and can not be tight.
Therefore, C) is not tight.

Here we prove that every 4-circuit is not tight. Without loss of generality suppose
C3 = {e3,er,€e11,€12} is tight and ey, is the leader of C3, and let C4 be the tight circuit in
which e;s is the leader. Then C; can not be an 8-,7-, or 6-circuit. By Lemma 6.2.1, C4 can
not be the two 5-circuits which contain e;2, so C4 can only be the 4-circuit {ey, s, €9, €12}.
Then e;; is the leader of tight circuit C3 A C4. As C3 A C4 is a 6-circuit, it can not be
tight. Therefore C3 is not tight. Therefore by Corollary 6.2.3, pp(C3) is even and balanced.
Except for the 6-circuits Cy and Cs = {e3, €4, €7, €s, €9, €11}, any other 6-circuit C satisfies
|C N D| =2, and by Lemma 6.2.7, pp(C3) is even and balanced.

Now we have to prove:
ples) < p(Ci—{es}) -4,

r(e2) P(C1 — {e2}) - 4,

ples) < p(Cs—{es})—4, and

IA
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plea) < p(Cs— {e4}) — 4.

Here we only prove p(es) < p(C1—{es})—4. The other inequalities may be proved similarly.
Let B; and B; be the tight circuits in which e;o and ey, are the leaders, respectively.
If eg is in By or B, then p(eg) < p(en) < p(C1 — {e10}) — 2 < p(C1 — {es}) ~ 2 or
p(eg) < plerz) < p(Cr — {e12}) — 2 < p(C1 —~ {es}) ~ 2. Therefore, p(es) < p(C1 — {eg}) — 4
as required.

So now suppose eg is not in By or B;. Then B can only be {e;,es, e4,€5,€10} and B,
can only be {e), e;, e3,¢€g,€12}.

If p(es) = p(Cy ~ {es} — 2, then

p(e2) + p(es) + p(ez) + plero) + per2) - 2,

p(es)
p(e1z) = p(er) + p(ez)+ p(es) + p(es), and

p(e2) + p(es) + p(es) + p(es).

p(e10)

Thus, p(es) = p(e1) + p(ez) + p(es) + pleq) + p(es) + p(er) + p(es) + 2(p(e2) + p(ea)) — 2.

Since €g € {elv €2, €3, €4,€5, €6, €7, 68}1
ples) < pler) + p(e2) + pes) + ples) + ples) + p(er) + ples) — 2.

Therefore, 2(p(e2) + p(e3)) < 0, but p(ez) + p(es) > 0, which is a contradiction. Hence,
ples) < p(C1~ {es}) — 4, so pp(C,) and pp(Cs) are even and balanced as required.

Case 5.2. Three spokes are leaders. Let eg, €10 and e;; be the leaders. A removable
bond is D = {e3, e, €9, €10, €11 }-

Proof: For any 8-circuit or 7-circuit C, if |C N D| < 2, then by Lemma 6.2.7, p;)(C') is
even and balanced. If |C N D] = 4, then at most one leader can be a chord of €, but €' has
at least two chords, so at least one chord is a follower. By Corollary 6.2.2, pp(C) is even
and balanced.

Except for the 6-circuit Cy = {e3, e4, €7, €5, €9, €11}, any other 6-circuit C satisfies |C N

D] = 2. By Lemma 6.2.7, pp(C) is even and balanced. But C) has a follower chord ¢;,, and
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Fig. 46

by Corollary 6.2.2, pp(C)) is even and balanced. The edges e3 and es are in only one side
of spoke e;2, but e;2 ¢ D, so that for every 5-circuit C, |C N D] < 2. Then by Lemma 6.2.7,
pp(C) is even and balanced. Therefore D is removable.

Case 5.3. Two neighbor spokes are leaders. Then eg, and e;¢ are leaders. A

removable bond is D = {ez, es, €9, €10}-

€1 4 €2

ég ‘ €3

€7 €4

€g ™0

Fig. 47

Proof: For any 8-circuit, 7-circuit or 6-circuit C, if |C N D| < 2, then by Lemma 6.2.7,
pp(C) is even and balanced. If |C N D| = 4, then no leader can be a chord of C, so
every chord of C is a follower, and by Corollary 6.2.2, pp(C) is even and balanced. For
any 5-circuit C, |C N D] < 2. By Lemma 6.2.7, pp(C) is even and balanced. Hence D is
removable.

Case 5.4. Two non-neighbor spokes are leaders. Let e;; and eg be the leaders.

A removable bond D = {e,, €g, €9, €11, €12}-
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Fig. 48

The proof is the same as that in Case 1.1. O

Here we restate the dual form of Lemma 6.6.

Corollary 6.6.1 M™*(Vg) has the circuit cover property.

6.7 Summary

Propositions 1.1.2, 2.1.1, 2.2.1 and 2.2.2, together with Lemma 3.1.1 imply that if a
binary matroid M has F3, Ryo, M*(K3s) or M(Pyp) as a minor, then it does not have the
circuit cover property. Corollary 3.2.1, Lemmas 4.0.1, 4.0.2, 4.0.3, 5.0.5, and 6.6.1 imply
that if a binary matroid M has no F7, Rio, M*(Ks) or M(Pyo) minor, then it has the

circuit cover property. Thus we complete the proof.
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