
National Library 1*1 of Canada 

Acquisitions and 
Bibliographic Services Branch 

395 Wellington Street 
Ottawa. Ontario 
K IA  ON4 

NOTICE 

Bibliotheque nationale 
du Canada 

Direc!ion des acquisitions et 
des services bibliographiques 

395, rue Well~ngton 
Ottawa Ionlard 

The quality of this microform is 
heavily dependent upon the 
quality of the original thesis 
submitted for microfilming. 
Every effort has been made to 
ensure the highest quality of 
reproduction possible. 

If pages are missing, contact the 
university which granted the 
degree. 

Some pages may have indistinct 
print especially if the original 
pages were typed with a poor 
typewriter ribbon or if the 
university sent us an inferior 
photocopy. 

Reproduction in full or in part of 
this microform is governed by 
the Canadian Copyright Act, 
R.S.C. 1970? c. C-30, and 
subsequent amendments. 

La qualite de cette microforme 
depend grandement de la qualite 
de la these soumise au 
microfilmage. Nous avons tout 
fait pour assurer une qualit6 
superieure de reproduction. 

S'il manque des pages, veuillez 
communiquer avec I'universite 
qui a confer8 le grade. 

La qualite d'impression de 
certaines pages peut laisser B 
desirer, surtout si les pages 
originales ont et6 
dactylographiees a I'aide d'un 
ruban use ou si I'universite nous 
a fait parvenir une photocopie de 
qualite inferieure. 

La reproduction, m6me partielle, 
de cette microforme est soumise 
a la Loi canadienne sur le droit 
d'auteur, SRC 1970, c. C-30, et 
ses amendements subsequents. 



MATROIDS WITH THE CIRCUIT COVER PROPERTY 

Xudong Fu 

B.Sc., Wuhan University, Wuhan, China, 1986 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS FOR T H E  DEGREE OF 

MASTER OF SCIENCE 

in the Department 

of 

Mathematics and Statistics 

@ Xudong Fu 1991 

SIMON FRASER UNIVERSITY 

June, 1991 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



National Library 1*1 of Canada 
Bibliotheque natronale 
du Canada 

Acquisitions and Direction des acquisitions et 
Bibliographic Services Branch des services bibiiographiques 

395 Wellmgton Street 395. rue Weil~nglm 
Onawa, Ontarlo Ottawa (Ontario) 
K I A  ON4 K I A  ON4 

The author has granted an 
irrevocable non-exclusive licence 
allowing the National Library of 
Canada to reproduce, loan, 
distribute or sell copies of 
his/her thesis by any means and 
in any form or format, making 
this thesis available to interested 
persons. 

L'auteur a accorde une licence 
irrevocable et non exclusive 
permettant a la Bibliotheque 
nationale du Canada de 
reproduire, priiter, distribuer ou - 

vendre des copies de sa thkse 
de quelque maniere et sous 
quelque forme que ce soit pour 
mettre des exemplaires de cette 
these a la disposition des 
personnes interessees. 

The author retains ownership of L'auteur conserve la propriete du 
the copyright in his/her thesis. droit d'auteur qui protege sa 
Neither the thesis nor substantial th6se. Ni la these ni des extraits 
extracts from it may be printed or substantiels de celle-ci ne 
otherwise reproduced without doivent etre imprimes ou 
his/her permission. autrement reproduits sans son 

, ,- 

autorisation. 

ISBN 0-315-78186-6 



Approval 

Name: 

Degree: 

Title of Thesis: 

Examining Committee: 

Chairman: 

Xudong Fu 

Master of Science (Mathematics) 

Matroids with the Circuit Cover Property 

M. Singh 

L. Goddyn, Senior Supervisor 

B. Alspach 

A. Mekler 

A. H. Lachlan, Externd Examiner 

August 6 ,  1991 

Date Approved 



PART I AL COPYHI GIIT L I Cl.NSIT 

I hereby granl- t o  Sitno11 Fraser- IJnivol-si t y  tlip r i g h t  to lurbJ 

my thesis, p ro jec t  or axtended essay ( tho  t i  t l o  of  which i s  shown below) 

t o  users of tho Simon Frasor Un ivers i ty  L ib ra ry ,  and to  mako par-1 ial  or 

s ing le  copies on ly  f o r  such users o r  i n  response t o  a roquest from tho 

l i b r a r y  of  any o ther  un ivers i ty ,  o r  o ther  educational i n s l i - t u t i o r ~ ,  on 

' i t s  own behalf o r  f o r  ono o f  i t s  users. I fu r tho r  agroe tlw-1. permission 

f o r  m u l t i p l e  copying o f  t h i s  work f o r  scholar ly  purposes may bo gran4x.d 

by me o r  the Doan o f  Graduate Stud ics.  It i s  understood I hat copying 

o r  pub1 l ca t i on  o f  t h i s  work fo r  f inincia1 g a i n  s h a l l  not bc a l  lowed 

without my w r i t t e n  permission. 

. . 
T i t l e  o f  Thesis/Project/Extended Essay . 

Author: - 
(s ignature)  

d 

(name 

(date) 



Abstract 

A circuit cover of a weighted binary matroid (M,p) is a multiset of circuits in M such 

that every element e is contained in exactly p(e) circuits in the multiset. A non-negative 

integer-valued weight function p is admissible if the total weight of any cocircuit is even, 

and no element has more than half the total weight of any cocircuit containing it. A binary 

mat roid M has the circuit cover property if (M,p) has a circuit cover for every admissible 

weight function p. In this thesis Seym~ur's conjecture, a binary matroid has the circuit 

cover property if and only if i t  contains no minor which is isomorphic t o  F;, Rlo, M*(K5) 

or M(Plo), has been proved. 
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Chapter 1 

Introduction 

1.1 The Circuit Cover and Bond Coves of a Graph 

A cycle (or even subgmph) in a graph G= (V, E )  is a subset of edges F C E such that 

each vertex of G is incident with an even number of edges in F. A circuit is a minimal 

non-empty cycle. 

For any subset S of vertices of G, the set of edges S(S) = [S, V - S] which have exactly 

one endvertex in S is called an edge-cut (or cocycle) of G. A bond is a minimal non-empty 

edge-cu t . 

Proposition 1.1.1 If C is an arbitmry circuit and D is  an arbitrary bond in a graph 

G then the number oj common edges, IC n Dl, of C and D is even. 

Let (G,p) be an edge-weighted graph (with loops and multiple edges allowed) where 

p : E(G) -. 2+. We say that (G,p) has a circuit cover if there exists a multiset (or list) L 

of circuits in G such that each edge e is covered exactly p(e) times by circuits in L. More 

precisely, we say that (G,p) has a circuit cover provided the following holds: 

(1.1) There exists a vector of non-negative integer coefficients (Ac : C E C) 

such that 
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Here, C denotes the collection of circuits in G and (Ac) is the multiplicity vector for the 

circuit cover L, and for any subgraph H of G , XH denotes the {O, 1)-characteristic function 

of the edge set of 8. We use the convention that XL means XHi, where L= {HI, 11%, . . ., N.) . 

Seymour [ll] gave necessary conditions for an arbitrary weighted graph (G,p) to have 

a circuit cover: 

(1.2) (i) for every bond D and e E D, p(e) < p(D\e) (that is, p is balanced), 

(ii) for every bond D, p(D) is even (that is, p is eulerian), and 

(iii) p is non-negative integer valued. 

(We use the convention that p(F) means CeE p(e), for any F 2 E.) These conditions follow 

easily from the fact that any circuit in a gra'ph intersects any bond in an even number of 

edges. The conditions in (1.2) are collectively called admissibility conditions, and p is said 

to  be admissible if it satisfies (1.2). 

Definition 1 A graph G has the circuit cover pmperty if ( G , p )  has a circuit cover for 

every admissible weight p. 

The following classic result of P. D. Seymour was proved in [1 11. 

Theorem 1.1.1 Every planar graph has the circuit cover property. 

Several authors [11,12] observed: 

Proposition 1.1.2 Petersen's graph does not have the circuit cover property. 

Let Plo denote the graph in Fig. 1 and let a weight p of Plo take the value 1 on some 

2-factor of Plo, and the value 2 on the complementary 1-factor. Then (PIo,p)  is dmissible, 

but (PI*, p) has no circuit cover. 

If e E E ( G )  then G\e denotes the graph obtained from G by deleting e, and G / e  denotes 

the graph obtained from G by contmcting e (that is, identifying the endvertices of c,  then 
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1 

Fig. 1: Petersen 's graph 

deleting e). Loops and multiple edges (other than e) which arise from a contraction are 

not deleted. Any graph obtained from G by successive deletions and contractions is called 

a minor of G. An H-minor of graph G is a minor of G which is isomorphic to H. The 

foilowing nice result was proved by B. Alspach, L. Goddyn and C. Q. Zhang in 121. 

Theorem 1.1.2 (B, Alspach, L. Goddyn and C. Q. Zhang) A gmph has the cir- 

cuit cover property if and only if it has no Plo - minor. 

Let ( G , p )  be an edge-weighted graph (with loops and multiple edges allowed) where 

p : E ( G )  4 2+. We say that (G,p) has a bond cover if there exist a multiset (or list) 

L of bonds in G such that each edge e is covered exactly p(e) times by bonds in L. More 

precisely, we say that (G,p) has a bond cover provided the following holds: 

(1.3) There exists a vector of non-negative integer coefficients (AD : C E C*) 

such that 

C D E P  A D X ~  = P. 

Here, C* denotes the collection of bonds in G and (AD) is the multiplicity vector for the 

bond cover L. 

Analogously to the circuit case, the following conditions are necessary for an arbitrary 

weighted graph (G, p) to have a bond cover: 

f 1.4) (i) for every circuit C and e E C ,  p(e) 5 p(C\e) (that is, p is balanced), 
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(ii) for every circuit C, p(C) is even (that is, p is eulen'an), and 

(iii) p is non-negative integer valued. 

The conditions in (1.4) are also collectively called admissibility conditions, and y is said 

to be admissible if it satisfies (1.4). 

Definition 2 A graph G has the bond cover property if (G ,p )  has a bond cover for 

every admissible weight p. 

Not every graph has the bond cover property. 

Proposition 1.1.3 K5 does not have the bond cover property. 

Fig. 2 

Proof: Let a weight p of Kg be as in Fig. 2. 

Since all edges with weight 1 form a bond and every circuit intersects each bond in an 

even number of edges, every circuit contains an even number of edges with weight 1. flerrce 

p is eulerian. Since every circuit has at  least 3 edges, but for any edge e, 1 < p(e)  < 2, p is 

balanced. Thus p is admissible. 

Suppose (K5,p) has a bond cover. Let us find the bond D covering edge el and rcn~ove 

D. In triangle {eI,e2,e8], since p(es) = 2, then eg E D and ez # D because if not, then 

after removing D, the avights of el and e~ are 0, and the weight of eg is 2, so the triangle in 

nnbalanced. The same situation occurs in triangles {el, e3, es) and {el, eq, e7), SO eg E I I ,  

e3 $! D and e7 E D, e4 # D. Thus es and es must be in D, otherwise D will not he a 
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bond. Therefore after removing D, the triangle {e5, es, el*) is unbalanced. Hence K5 does 

not have the bond cover property. CI 

Since the dual of a planar gmph is still a planar graph and the circuits in a planar graph 

correspond to the bonds in the planar dual, from Theorem 1.1.1 we have: 

Corollary 1.1.1 Planar graphs have the bond cover property. 

We shall later see that, in fact, a graph has the bond cover property if and only if it has 

no K5-minor. 

1.2 Matroids and Binary Matroids 

All the results in this section can be found in Welsh [20]. 

A matmid M = M ( S , Z )  is a finite set S and a collection Z of subsets of S (called inde- 

pendent sets) such that (11)-(13) are satisfied. 

( 1 1 )  B) E Z. 

(12) I f  X E Z and Y E X then Y E Z. 

(13) If U, V are members o f 3  with IUI = IVI + 1 there exists x E U \ V 

such that V U z E Z. 

A subset of S not belonging to Z is called dependent. An element x E S is called a loop 

if {x) $? T. A circuit in M is a minimal dependent subset of S. 

One can show that a collection C of subsets of S is the set of circuits of a matroid on S 

i f  and only if condition (Cl)  and (C2) are satisfied. 

(Cl)  IfX # Y EC, then X Y. 

(C2)  If C1, C2 are distinct members of C and z E Cl n C2, there exists C3 E C 

such that C3 E (CI U C2) \ 2. 
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Every proper subset of a circuit is independent. 

A matroid is determined by its set of circuits since X & S is independent if and only if 

X contains no circuit. 

Let C be the collection of circuits of a matroid M. Then a collection C* of subsets of S 

is a set of cocircuits of M if and only if for every X E C* the conditions below are satisfied. 

(C*l) X # 0. 

(C*2) IXnYI  # 1 forevery Y EC. 

(C*3) X is minimal with respect to these properties. 

A matroid W on S is said to  be the dual matmid of matroid M on S if thc collectior~ 

of circuits of M* is the collection of cocircuits in M. 

The element x E S is a coloop of the matroid M=M(S,Z) if {x) is a cocircuit of M. 

This happens if and only if x is a loop in IW. 

Proposition 1.2.1 An element x is a loop (coloop) in M if and only if no cocircuit 

(circuit) in M contains x. 

If M is a matroid on S and x E 3 then define Z' such that for X S - { x ) ,  X E Z' i f  

and only if X E Z (that is, Z' contains those independent subsets of M which are disjoint 

from {x)). Then Z' is the collection of independent sets of a matroid Ad' on S - {x) . T h i ~  

matroid is denoted by m x  and is called the deletion of x from M. 

U M is a matroid on S and x E S, then define Z' so that if x is a loop then for X C S- {x) 

let X E Zf if and only if X E Z (that is, consider those independent subsets of M which 

are disjoint from (x)), if x is not a loop then for X C S - {x) let X E Z' if and only if 

X U {x) E Z . Then Z' is the collection of independent sets of a matroid M' on S - {z). 

This matroid will be denoted by M i x  and called the contmction of x from M. 

By deleting or contracting the elements of S ,  many new matroids can be obtained from 

an original matroid M on S. The result of a sequence of deletions and contractions is called 
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a minor of M. As the order of deletions and contractions is immaterial, we use MIA \ B to 

denote M/a l / a  z.../a, \ bl \ b2... \ bs when A = {al, a2, ... a,), B = {bl, b2, ... b,). 

Let T be an arbitrary field, V [ q  be a vector space over T and S be a set of vectors from 

this vector space. This set leads to a matroid M=M(S,Z) as follows: X C S is independent 

(denoted by X f 1) if and only if the vectors belonging to X are h e a d y  independent over 

T. 

A matroid M=M(S,Z) is called representable over a field T if suitable vectors from a 

vector space over T can play the role of S in the above construction. 

A matroid is said to be regular if it is representable over every field. 

Proposition 1.2.2 If a matroid is representable over a field then so is its dual and its 

minors. 

A matroid is said to  be binary if it is representable over GF(2).  

A cycle is any disjoint union of circuits (thus the empty set is a cycle). 

Let the symmetric difierence X A Y of two sets X, Y be defined as ( X  - Y) U (Y - X). 

One can prove that "A" is an associative, commutative binary operation on the set of cycles 

of a binary matroid. 

Proposition 1.2.3 The following statements about a matroid M are equivalent. 

(i) M is binary. 

(ii) For any circuit C and cocircit C*, IC n C'I is even. 

(iii) The symmetric digerence of any two cycles of M is a cycle of M. 

(iv) If Cl, C2 are distinct circuits of M, then Cl A C2 contains a circuit C. 

Graphs are a rich source of binary matrojds. A graphic matmid (or polygon matroid of 

gmphs) M ( G )  and a cogmphic matmid M*(G) are defined on the edge set E ( G )  of the 

graph G and X E E is independent in M ( G )  or in M*(G)  if and only if X, as a subgraph 

of G, is a forest or contains no bond, respectively, in G. The circuits of M ( G )  are just the 
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circuits of G. The circuits of M*(G) are just the bond of G. A loop and a coloop in M * ( G )  

are a loop and a bridge in G, respectively. It is clear that minor of M(G) correspond to 

the minors of G. A matroid is called gmphic or cogmphic if it arises as the graphic inatroid 

or cographic matroid of some graph. Graphic matroids and cographic matraids are regular. 



Chapter 2 

Main Theorem 

2.1 Introduction 

Let M be a binary matroid. Let S = S(M) d e ~ o t e  the set of elements of M, and let 

G = C(M) denote the set of all circuits C of M. Let 

We say that (M, p) has a circuit cover if there exists a multiset (or list) L of circuits in M 

such that each element e is covered exactly p(e) times by circuits in L. More precisely, we 

say that (M,p) has a circuit cover provided the following holds: 

(2.1) There exists a vector of non-negative integer coefficients (Ac : C E C) 

Here, (Ac) is the multiplicity vector for the circuit cover L, and for any subset H of S(M), 

XH denotes the {0,1}-characteristic function of H. We use the convention that XL means 

C X H i ,  where L={H1, Hz, ..., Hn}. 
As in the graphic case we have the following necessary conditions for an arbitrary 

weighted binary matroid (M, p) to have circuit cover: 
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(2.2) (i) for every cocircuit D and e E D, p(e) < p(D\e) (that is, p is hilanccd), 

(ii) for every cocircuit D,  p(D) is even (that is, p is euleriata), a d  

(iii) p is non-negative integer. 

(Again we use the convention that p(F) means CeEFp(e), for any F 2 S ( M ) . )  As before 

these conditions follow easily from the fact that any circuit in a binary matroid intcrsects 

any cocircuit in an even number of elements. The conditions in (2.2) are collectively called 

admissibility conditions, and p is said to be admissible if it satisfies (2.2). 

Definition 3 M has the circuit cover property if (2.1) and (2.2) are equivalent for all 

admissible weights p. 

An N-minor of matroid M is a minor of M which isomorphic to N. 

Here we restate Proposition 1.1.3, and Theorems 1.1.1 and 1.1.2. 

Corollary 2.1.1 M *(K5) does not have the circuit cover property. 

Theorem 2.1.1 (Seymour) Every graphic rnatroid of a planar graph has the circuit 

cover property. 

Theorem 2.1.2 (B.Alspach, L.Goddyn and C.Q.Zhang) A graphic nratroid Irax 

the circuit cover property if and only if it has no M(Plo)-minor. 

The main result of this thesis (Theorem 2.3.1) is an extension of this result to binary 

matroids. 

2.2 Some Special Matroids 

We introduce here two special binary matroids which, like M ( P l o )  and M * ( K 5 ) ,  do not 

have the circuit cover property. 

Fig. 3 represents a special binary matroid on a 7-element set (the points). The circuits 

consist of any 3 points which lie on a line, and also any 4 points not containing a line (a 



C H A  PTEK 2. MA IK THEOREM 11 

4-arc). The cocircuits are precisely the 4-arcs in Fig. 2. This matroid called, the Fano 

mutroid, is denoted by F7. 

0 

Fig. 3 

The matroid F7 represented by the seven non-zero 3-tuples over GF(2).  

Fig. 3 shows a correspondence between the points and the 3-tuples. 

F,' is the dual matroid of F7, SO every circuit of F; is a 4-arc and every cocircuit of F,* 

is a line or a 4-arc in Fig. 3 above. 

Proposition 2.2.1 F; does not have the circuit cover property. 

Fig. 4 

Proof: Let a weight p of F,* take the value 1 on some 4-arc and the value 2 on the 

complement of the 4-arc. 
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Since the 4-arc with weights 1 is a circuit of F; and every cocircuit intersects it circuit 

in an even number of elements, it follows that each cocircuit contains an even aumher of 

the elements with weight 1, so p is eulerian. Since every cocircuit has 3 or 4 elements, and 

1 < p(e) < 2 for every e E F7, p is balanced. Thus p is an admissible weight. 

Suppose (F;,p) has circuit cover. Consider the circuit covering e l .  There are only 4 

circuits in F; containing e as shown in Fig. 5 (the circuits containing e are denoted by black 

dots). But removing any one of the 4 circuits will cause some cocircuits (dotted lines) t o  

become unbalanced. 

Fig. 5 

Alternatively, (F;,p) has total weight 10, and each circuit in I;;' has size 4. However, 4 

does not divide 10. 

Therefore F; does not have the circuit cover property. 0 

Let Rlo denote the matroid represented over GF(2)  by the ten 5- tuples with t hrec 18 and 

two 0s. A totally unimodular representation of Rlo is given below. As this matrix represents 

Rlo over any field, Rlo is a regular matroid. One can check that Rlo is isomorphic to  its 

dual (although not self- 
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It is possible to identify the ten elements of Rlo with the edges of K5 in such a way that 

the collection of circuits in Rlo is the collection of the (graphical) 4-circuits in Kg and their 

complements (which form 6-circuits in Rlo). The collection of cocircuits in Rlo corresponds 

to the collection of bonds and their complements in K5. See Fig. 6 and Fig. 7. 

Fig. 6: The typical circuits in Rlo 

Fig. 7: The typical cocircuits in Rlo 

Like FT, RI0 does not have the circuit cover property. 

Proposition 2.2.2 Rlo does not have the circuit cover property. 

Proof: Let a weight p of Rlo be as in Fig. 8. Since each cocircuit in Rlo has 4 or 6 

elements, p is even, and since 1 5 p(e)  5 3 for every e E Rlo, p is also balanced. 

Suppose (Rlo,p) has a circuit cover. Consider the circuit C covering el. Considering 

cocircuit {el, e2, eg, e6), eg E C and e2 4 C, es 4 C because if not, then after removing C, 

the weights of el and one of ez and es are 0, and the weight of eg is 3, so the cocircuit is 

unbalanced. The same situation occurs in cocircuits (el, es, es, elo) and {el, es, es, eg), so 

el0 E D, es 6 D eg E D and ea # D- Then C must be {el,e4, e~ , e s ,  e9, elo). But after 

removing C, the cocircuit {el, e4, e,, el0) is unbalanced. Hence Rlo does not have the circcit 

cover property. 0 
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Fig. 8 

2.3 The Main Theorem 

Seymour 1101 proposed a forbidden minor characterization of binary matroids with the 

circuit cover property. As the main result of this thesis we prove his conjecture. 

Theorem 2.3.1 A binary rnatroid M hus the circuit cover property if and only ij M 

has no F;, Rlo, M8(K5) or M(Plo) minor. 

We know that F;, Rlo, M8(K5) and M(Plo) do not have the circuit cover property, 

so by Lemma 3.1.1 we know that if a binary matroid M has either a F;, Rlo, M*(li5) or 

M(Blo) minor then M does not have the circuit cover property. 

In the following chapters we shall introduce a decomposition theorem (Corollary 3.2.1) 

which says that any binary matroid with no F;, RlO, or M * ( K 5 )  minor may be obtainod by 

means of certain sum operations from graphic matroids and copies of two special rnatroids, 

F7 and M*(V8). We shall prove that the sum operations preserve the circuit cover property, 

and that F7 and M*(Vs) each have the circuit cover property. These results, togethcr with 

Theorem 2.1.2 (which deals with the graphic case) imply Theorem 2.3.1. 

By the fact that none of F;, Rlo and M(Plo)  is cographic, Theorem 2.3.1 irnplicts the 

following. 

Corollary 2.3.1 A cogmphic matroid has the circuit cover property if and onlp if it huu 

no M*(K5) minor. 

Restating this in graphical terms gives the following. 
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Corollary 2.3.2 A graph has the bond cover properly if and only if it has no Ks minor. 



Chapter 3 

Minors and Decomposition 

Theorems 

3.1 Minors and the Circuit Cover Property 

The concept of a minor was introduced in Section 2.1. Here we prove that the circuit 

cover property of binary matroids is closed under minors. 

Lemma 3.1.1 If a binary matroid M(S) has the circuit cover property, then any minor 

of M(S) also has the circuit cover property. 

Proof: Suppose M(S) has the circuit cover property. It is suficient to  show that for 

any f E S, both 1M\ f and M/ f also have the circuit cover property. 

First we consider 1M\ f. Let p : S f ( W  f )  4 2+ be admissib1e.We define p' : S(M) -. 2+ 

by 

244 ( e  # f 1 
0 ( e =  f ) .  

It is easy t o  see that (M,p') is admissible and, by hypothesis, has a circuit cover. Clearly 

this circuit cover for (M,p') is also a circuit cover for (W f , p ) .  Thus f has the circuit 

cover property. 
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How we prove that M/ f has the circuit cover property. Assume f is not a loop, since 

M/ f f if f is loop. 

Let p : St(M/ f )  i 2+ be admissible. We define p' : S(M) - Z+ as follows. 

Since j is not a loop of M, there is a cocircuit of M containing f. Choose such a cocircuit 

D with 

P'(D - { f l )  

minimum. We define p' by 

We claim that (M, p') is admissible. 

Any cocircuit Dl not containing f in M is also a cocircuit in M/ f, so pf(D1) = p(Dl)  

is even and balanced. 

For every cocircuit 3' containing f in M, by the definition of p'( f )  we have 

Now D' A D has even intersection with every cycle of M /  f, and so is a disjoint union of 

cocircuits of M /  f. Thus pfD' A D )  is even. But p'(D) is even, and 

p(DJ A D )  z pt(D') + p1(D) (mod 2 )  

so that #(Dl) is even. 

We now show that p' is balanced on the cocircuit D'. For any e E D' n D ,  

For any e E D l -  D, we have e E D ' A  D,  and 
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Thus (M,p') is admissible as claimed. 

By hypothesis, there are collections of circuits L in M such that XL = $ (recall that 

XF denotes xXFi when F=(Fl, F2, ... F.)). Let W= {C1,C2, ..., Cpt(I)]  be the circuits 

containing f in M. Clearly, W/ f := {Cl - f, C2 - f, ..., Cpl(f) - f )  and L- W are collcctiol~s 

of circuits in M/ f and 

X w/f u (L-W)  = p. 

Thus, M/ f has the circuit cover property. 

3.2 Decomposition of Binary Matroids 

Let MI, M2 be binary matroids with element sets Sl, S2, respectively, where S1 and Sz 

may intersect. We define a new binary matroid MlAM2 to be the matroid with clcmcnt sc!t 

Sl A S2 and with cycles all subsets of S1 A S2 of the form C1 A C2, where C; is a cycle of M; 

( 2  = 1,2). (For sets Sl, S2, Sl A S2 denotes (Sl - $2) U (S2 - SI). Recall from Section 1.2 

that a cycle of a binary matroid is a subset of the elements expressible as a disjoint uniorr 

of circuits. It is easy to  see that if C, C' are cycles, then C A C' is a cycle.) 

We are only concerned with three special cases of this operation, as follows. 

(i) When S1 n S2 = Q and ISlI,JS2J < IS1 AS21 (that is, St,S2 # 0), then 

MlAM2 is a 1-sum (or disjoint union) of MI and M2, 

(ii) When ISl nS2/ = 1, Sl n S2 = {f), f is not a loop or 

coloop of Ml or M2, and ISII, 1521 < IS1 A $21 (that is, SI, S2 2 3), then 

M1AM2 is a %sum of Ml and Mz. 

fiii) When ISl n Szl = 3, Sl n S2 = Z, Z is a circuit of size 3 of both Ml 

Mz, Z includes no cocircuit of either Ml or M2, and 

ISl17 IS21 < IS1 A S21 (that is, Sl, S2 2 7), then 

MlAM2 is a 3-sum of MI and M2. 
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(iii)' The dual form of 3-sum 

When IS1 n S21 = 3, S1 n S2 = Z, Z is a cocircuit of size 3 of both MI 

M2,  Z includes no circuit of either MI or M2, and 

ISll, 15'21 < IS, A S21 (that is, Sl, S2 2 7), then 

MlAM2 is a dual 3-sum of MI and M2 

It is helpful to visualize these operations in terms of polygon matroids of graphs. For 

k = 1,2,3, a k-sum of two polygon matroids corresponds to  taking two graphs, choosing a 

k-clique from each, identifying the vertices in the cliques pairwise and deleting the edges in 

the cliques. If M is the k-sum of MI and M2, then MI and M2 are minors of M. 

Fig. 9 

There is no need to  introduce dual 1- and 2-sums since these two operations are self-dual. 

That is, if M is a 1- or 2-sum of matroids MI and M2, then M* is a 1- or 2-sum of M; and 

M;. However, 3-sum is not self dual, since if S(Ml) n S(M2) is a circuit of size 3 in Mi 

( i=l  or 2) then by Proposition 1.2.3, S(Ml) n S(M2) is not a cocircuit of Mi. In fact, if 

M is a 3-sum of matroids MI and M2, then W is a dual 3-sum of M; and w. 
We shall need several theorems which assert that binary matroids without certain minors 

may be obtained by m e a m +  of these three sum operations, starting from a simpler class of 

matroids. 
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The following three results were proved by Seymour [14]. 

Theorem 3.2.1 (Seymour) Evey  binay matmid with no F7* minor' nwy be obtaitied 

by means of 1- and 2-sums from regular matroids and copies of F7. 

Theorem 3.2.2 (Seymour) Every binary matmid with no F' minor may 6e obtained 

by means of 1- and 2-sums from regular matmids and copies of F;. 

Theorem 3.2.3 (Seymour) Every regular matroid with no Rlo minor may 6e obtaincd 

by means of 1-,2- and 3-sums from graphic and cogmphic matroids. 

From Propsition 1.2.2 we have that the dual of a binary matroid is binary and the dual 

of a regular matroid is regular. Also, Rlo is isomorphic to  its dual. Clearly Theorem 3.2.1 

and Theorem 3.2.2 are dual forms of each other and we may restate Theorem 3.2.3 in the 

dual form below. 

Theorem 3.2.4 Every regular matroid with no Rlo minor may be obtained by rizeans 

of 1-,2- and dual 3-sums from graphic and cogmphic matroids. 

The well-known Kuratowski Theorem states that a graph is planar if and only if it has 

no K5 or K3,3 minor. The next result is a generalization proved by Wagner [19], 

Theorem 3.2.5 Every graphic matroid with no M ( K 5 )  minor may be oobluined by 

means of 1-,2- and 3-sums from polygon matroids of planar graphs and copies o j  M(Vs).  

See Fig. 10 in Page 30 for the picture of V8. We shall use the dual form of this thcorctrn, 

Theorem 3.2.6 Every cographic matroid with no M U ( K 5 )  minor may be obtained by 

means of 1-,2- and dual 3-sums from polygon matroids of planar graphs and copies of 

M*(Vi)- 

The following corollary follows from Theorem 3.2.1, Theorem 3.2.3 and Theorem 3.2.6. 
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Corollary 3.2.1 Every binary matmid with no F;, Rlo or M * ( K 5 )  minor may be 

obtained by means of 1-,2- and dual 3-sums from graphic matroids, copies of F7. and copies 

of M*(%)- 



Chapter 4 

Sums and the Circuit Cover 

Property 

Our object in this section is to show that the three matroid sum operations dcscribcd in 

Section 3.2 preserve the circuit cover property. All the matroids in this chapter are binary 

matroids. 

Lemma 4.0.1 If M is the 1-sum of MI and M2, and M I ,  M2 both have the circuit 

cover property, then so has M.  

Proof: Let p  : E(M)  -, 2+ such that p  is admissible. Write S = S ( M ) ,  S; = $;(Mi) 

(i = 1,2). 

Define pl : S1 -+ 2+ and p2 : S2 - 2+ by p l ( e )  = p (e )  ( e  E SI) and pz ( e )  = p ( e )  

( e  E Sz). 

By the definition of 1-sum, we know that pl and pz are admissible. Therefore by hy- 

pothesis, there are collections of circuits Ll in MI and L2 in M2, such that xL1 = and 

Xh = p s  Clearly L1 and & are also the collections of circuits in M and XL1UL2 = p a 

required. 0 
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Lemma 4.0.2 If M is the t s u m  of Ml  and M2,  and MI, M 2  both have the circuit 

cover property, then so has M .  

Proof: Let p : E(M)  -, 2+ such that p is admissible. Write S = S ( M ) ,  S; = Si (Mi)  

( i  = 1,2), and let S1 f~ S2 = { f ) .  By the definition of the matroid 2-sum, f is not a loop of 

Mi, so there is a cocircuit of M; containing f .  For i = 1,2, choose such a cocircuit Di in 

M ;  with 

p(Di - { f  1) 

minimum and let these numbers be ni ( i  = 1,2). Then put n = min{nl,n2). Choose 

j E {1,2) such that nj = n. 

Define pl : S1 -+ 2+ and pz : S2 -+ 2f by 

~ i ( e )  = ~ ( e )  (e if f 1, p2(e) = ~ ( e )  ( e  # f 1, 
~ l ( f )  = n,  ~ 2 ( f )  = n. 

We shall now show that each p; is an admissible weight for Mi. 

For every cocircuit D of M i  ( i  = 1,2) not containing f ,  D has even intersection with 

every cycle of M .  Thus D is a disjoint union of cocircuits of M ,  implying pi(D) = p(D) is 

even and 

~ i ( e )  = ~ ( e )  L P(D - { e ) )  = pi(D - ( e l )  

for every e E D. Thus D is balanced and eulerian. 

We now show that every cocircuit D containing f in Mi ( i  = 1,2) is balanced and 

eulerian. By the definition of pi( f )  we have 

Since Dj  A D has even intersection with every cycle of M, it is a disjoint union of cocircuits 

of M .  Thus p(Dj A D )  is even. But pj (Dj )  is even, and 
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so that pi(D) is even. 

For any e E Dj n D, we have 

For any e E D -  Dj7 we havee f Dl A D ,  and 

Thus p; is admissible. 

By hypothesis, there are collections of circuits L1 in MI and L2 in M2 such that xLl = pl 

and XL2 = p2 and there are exactly la cycles containing f in MI and M2. Let Wl = 

{cl, c2, ..., cn} and W2 = {dl,d2, ..., d,) be such circuits in MI and M2, respectively. 1,ct 

W= {cl A dl, c2 A d2, ..., C, A dn). Clearly, W, L1 - Wl , L2- W2 are coUections of circuits 

in M and 

X W U ( L I - W I ) U ( ~ - W ~ )  - - 

as required. El 

Lemma 4.0.3 If M is the dual 3-sum of MI and M2, and MI, M2 both have the circuit 

cover property, then so has M. 

Proof: Let p : S(M) t 2+ be such that p is admissible. Put S(Mi) = Si (i = 1,2), 

and S1 n S2 = Z = {zl, 22, z3), where Z is a cocircuit of both MI and M2. 

For 1 5 i 5 2 , l  5 j 5 3, since Z is a cocircuit in Mi and Z contains no circuit in Mi, 

zj is not a loop in M;/(Z - { z j } ) .  Thus there is a cocircuit in Mi/(Z - { z j ) )  containing 

zj. By the definition of contraction, this cocircuit is also a cocircuit in M;. 

Hence, let dij be the minimum of 
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taken over all cocircuits D of Mi with D n Z = zj, Let Dij be a cocircuit of Mi attaining 

equality. For 1 5 j _< 3, put n j  = min{dlj, dzj). Let D j  be a cocircuit in {Dlj, D2j, D3j) 

such that p(Dj-zj) = nj. Now DlAD2AD3AZ is a cocycle of M and sop(DlAD2AD3AZ) 

is even. Thus n := nl + n2 + na = p(D1) + p(D2) + p(D3) - p(Z) p(D1 A D2 A D3 A 2 )  

(mod 2) is even. 

Define p; : S; -, 2 + ( i  = 1,2) by 

Let D be any cocircuit of either MI or M2, say Mi. We shall show that D is eulerian and 

balanced in (Mi, pi). We have 4 cases depending on IZ n Dl. 

Case IZ n Dl = 3: Here D = Z and the cocircuit Z is eulerian and balanced by the 

definition of pi. 

Case IZ n Dl = 0: As D has even intersection with every circuit of M, D is a disjoint 

union of cocircuits of M. Thus D is eulerian and balanced. 

Case IZ n Dl = 1: Suppose without loss of generality, Z n D = {q). 

If p;(zl) = nl, then by the same argument as in previous lemma, D is eulerian and balanced. 

Suppose that p;(zl) < nl,  so that nl > n2 + 723, pi(tl) = n2 + n3,pi(z2) = n2,p;(z3) = n3 

and p;(D - zl) > n2 + n3 = pi(zi). We claim that in this case, neither MI nor M2 can 

contain both D2 and D3. Otherwise, D2 A D3 A Z will be a cocycle in MI or M2 and 

(D2 A D3 A 2 )  n Z = {q). Thus there is a cocircuit Di E D2 A D3 A Z in MI or M2 and 

Di n Z = {zl). Thus, for k = l  or 2 we have, 

This contradicts the minimality of nl , proving our claim. 
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Hence exactly one of D2, D3, say Dz, belongs to Mi. Now Di = D2 A D A Z is a cocyclc 

of Mi and D& n Z = {a). Thus p;(Dk) is even. But pi(Dz) and pi(Z)  are even, and 

so that p;(D) is even. 

We now show D is balanced. For any e E D n D2, we have e E D2 and 

The last inequality follows from the definition of p i ( z l ) .  

For any e E D -  D2, we have e E D 2 A  D A Z ,  and ( D 2 A  D A  Z ) n Z  = {z3}, so 

D2 A D A Z is eulerian and balanced. Therefore 

Thus D is eulerian and balanced. 

r 1s a Case IZ n Dl = 2: Without loss of generality, let D n Z = { z l ,  z2)  SO that 10 A 7 ' 

cocycle of Mi and ( D  A Z )  n Z = {z3}. By the previous case, pi(D A Z )  is evcn. 1311t p i ( z )  

is even, and 

p;(D A 2) = p,(D) + pi(Z) (mod 2) 

so that p;(D) is even. 

For any e E D - {ar, z2}, we have e E D A Z. Since D A Z is balanced, 
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Similarly, we have 

pi(z2) < P ~ ( D  - ( ~ 2 ) ) -  

Thus D is eulerian and balanced. Therefore pl and pz are admissible. 

By hypothesis, there are collections of circuits L1 in Ml and L2 in M2 such that XLl = pl 

and XL2 = p2. But since Z is a cocircuit, every cycle which contains any of zl,z2, 23 contains 

exactly two of them. Thus there are 

0 5 ml = 1/2(pi(z2) + ~i (23)  - pl(z1)) cycles containing {z2, z3}, 

0 _< m2 = 1/2(p;(zl) + p;(z3) - ~' (22))  cycles containing {zl, 231, and 

0 5 m3 = 1/2(pi(z1) + pi(z2) - ~' (23))  cycles containing {zl, z2) 

( i  = 1 or 2) in Ll and L2. Let 

R' = {R!, R:, ..., Rk,} be the ml cycles containing (22, 231, 
S' = {S; , S;, ... , Si2} be the m2 cycles containing {zl , z3}, and 

Ti = {Ti, Ti, . .. , T$,} be the m3 cycles contain {zl, z2} 

in Mi(i  = 1,2). Let 

5' = {Si A S:, Si A Si, ...SA2 A Si2), and 

Clearly, R, S, T, L1 - (R' U S' u T1) and - (R2 u S2 u T2) are collections sf cycles in 

M and 

X 
RUSUTU(L.~-(R~US~UT~))U(~-(R~US~UTZ)) 

= P  

as required. 
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The Circuit Cover Property of F7 

Proposition 5.0.1 Evey  two distinct elements of F7 are in a unique $-circuit. 

Proposition 5.0.2 F7 \ i ?Y M ( K 4 )  for every element i of F7. 

Definition 4 Let p : E(F7) -+ 2+ be an admissible weight of F7 and p be positive. Let 

C be circuit of F7. Define a new weight pc by pc := p - XC. That is 

I f  (F7,pc) is stiU admissible, then say that C is removable. 

Removing a circuit C means reducing the weights of the elements in C by 1. 

Lemma 5.0.4 Let (F7,p) be admissible and p be positive. Let I l  and l2 6e any two 

heaviest weighted elements of F7. That is, min(p(ll),p(12)) 2 p(e) for every e E $(I;;) - 

{11, 12). Then the unique 3-circuit C containing ll and l2 is removable. 

P Proof: Since both p and XC are eulerian, so is pc = p - xu. Also, pc  is non-negative 

valued since p is positive. It remains to show pc is balanced. 

For any cocircuit D of F7, we have IC n Dl = 0 or 2, 
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For any cocircuit D where [D i l  CI = 0, we have, since p is balanced, 

for every e E D. 

For any cocircuit D and ID n CI = 2, then at  least one of l1 and 12 is in D. Let 1; in D 

(i  = 1 or 2). 

For each e E D - C, since p positive, p(e) 5 min(p(ll),p(12)) 5 p(1;) < p(D - {e)), so 

that p(e) 5 p(D - {e)) - 1. But p(D) is even, so p(e) _< p(D - {e)) - 2. Therefore 

For each e E D n C,  

Hence pc(D) is balanced. Therefore C is removable. 0 

Lemma 5.0.5 F7 has the circuit cover property. 

Proof: Let p : E(F7) -+ 2+ and p be admissible. If p(i) = 0 for some i, 0 5 i 5 6, we 

delete i from F7 and obtain F7 \ i % M ( K 4 ) .  

We define pt : E(hl(K4)) -t 2+ by 

Clearly pl is admissible, Therefore by Corollary 1.1.1 there is a collection of circuits L in 

& such that XL = pf, but L is also a collection of circuits in F7 and XL = p as required. 

We assume that p(i) > O(0 5 i 5 6) and prove the result by finding a removable circuit C, 

removing circuit C and using induction on the new weighted (F7,pc). By Lemma 5.0.4 we 

can always find a removable circuit. 0 
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The Bond Cover Property of v8 

In this chapter we show that M*(V8) has the circuit cover property by showiilg that Vs 

has the bond cover property. This is a key step towards the main theorem (Theorem 2.3.1). 

Vs is a graph of 8 vertices with 8 rim-edges and 4 spokes. In Fig. 10 below, el, ez, ..., ea 

are the rim-edges, and eg, elo, ell,  el2 are spokes, If any one of the 4 spokes is contriletcd, 

v7 

Fig. 10 

a planar graph is obtained. If any one of the 8 rim-edges is contracted, then we obtain a 

non-planar graph which we catf V7, 

In V7 in Fig 10, if e4 is contracted, then identifying es and e~ we obtain K3,3. If e:j or e5 
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is contracted, we obtain the non-planar graph denoted by V6. If any one of the other edges 

contracted, then a planar graph is obtained. 

If any one of the edges in V6 and in K3,3 is contracted, then a planar graph is obtained. 

The concept and definition of bond cover and the bond cover property have been intro- 

duced in Section 1.1. 

Proposition 6.1.1 Let (G,p) admissible. Let e E E ( G )  such that p(e) = 0. If G / e  

has the bond cover property, then (G,p) has a bond cover. 

Proof: Define p' : E ( G / e )  -+ 2+ by 

Clearly (G/e,pl)  is admissible. Thus by hypothesis, there is a collection L of bonds in G / e  

such that XL = p'. L is also a collection of bonds in G and XL = p as required. 0 

Proposition 6.1.2 A gmph with multiple edges has the bond cover property i f  and only 

i f  its underline simple gmph has the bond cover property. 

6.2 Preliminaries 

In this section we prove some results which are key to the proof of the bond cover 

property of V8. 

Definition 5 Let ( G, p) be admissible. A tight circuit is a circuit C with p(1) = p(C - 

( I ) )  for some 1 E C ,  and 1 is called a leader of C .  For an edge e, if there is some tight circuit 

C such that e is the leader of C, then e is said to be a leader in (G,p).  I f  there is no such 

tight circuit in which e is a leader, then e is said to  be a follower in ( G , p ) .  

In a nun-tight circuit C of admissible ( G , p ) ,  p(e) 5 p(C - ( e ) )  - 1 for all e E C .  Since 

p(C) is even, we have p(e) 5 p(C - ( e ) )  - 2. In the following proofs, we assume every circuit 
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has cardinality a t  least 3. If p  is positive, then in each tight circuit C exactly one edge is a 

leader of C. 

Lemma 6.2.1 Let ( G , p )  be admissible and p  be positive, and let l I  be the leader of 

circuit el. If circuit C2 is tight, ll E C2 and ICl n C21 > 2, then ll is also the 1cc;der of C2. 

Proof: Let A  = Cl n C2 - {Il).  Then 

Suppose I1 is not the leader of C2. Let l2 be the leader of C2, so that 12 4 A,  and 

From (6.1) and (6.2), we have 

But Cl A C2 is a cycle, and 12 E Cl A C2, so that 

Now (6.3) and (6.4) imply p(A) < 0. But IAl > 1 and p  is positive, so that p ( A )  > 0, which 

is a contradiction. Hence II must be the leader of Cz. a 

Definition 6 Let D be a bond of admissible ( G , p )  and p be positive. I)efirtc? p o  : 

If (G,pD) is still admissible, then D is said to be removable. 

Removing bond D means reducing the weights of the edges in D by 1. 
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Lemma 6.2.2 Let (G,p) be admissible and p be positive, and let D = {el, en, e3} be an 

orbitrury .?-bond. If at least two edges of D are leaders in (G,p), then D is removable. 

Proof: Since D is a 3-bond, ID n Cl = 0 or 2 for any circuit C in G. For any non-tight 

circuit C of ( G, p), pD(C) = p(C), or p(C) - 2, so pD(C) is even, and 

for all e E C. Thus pD(C) is also balanced. 

For any tight circuit C, if C n D = 8, then pD(C) = p(C) is even and balanced. 

Otherwise, let C n D = {el, ez}, and consider the following two cases. 

Case 1: If one of el and ez is a leader, then e3 is a leader. Without loss of generality 

let el be the leader, e2 be the follower. Now we prove that el is the leader of C. Suppose el 

is not the leader of C. Let e be the leader of C so that e 4 D. Let C1 and C2 be the tight 

circuits in which el and es are the leaders, respectively. Then by Lemma 6.2.1, e2 4 Cl, 

so D n C1 = {el, e3). By Lemma 6.2.1, C 17 C1 = {el), therefore again by Lemma 6.2.1, 

el 4 C2. Thus D n Cz = {e2,e3} and by Lemma 6.2.1, C1 f l  C2 = (e3}. Thus e is also the 

leader of the tight circuit C A C1. But C2 n ( C  A Cl) _> {e2,e3}, and by Lemma 6.2.1, e3 

is also the lea&er of C A Cl, which is impossible. 

Hence el must be the leader of C, and 

p ~ ( e 1 )  = p(e1) - 1 I p(C - {el) - 1 = pD(C - {el) + 1 - 1 = pD(C - {el}) while 

for all e E C - {el). Thus pD(C) is balanced and even. 

Case 2: el and e2 are both leaders. Now we prove that one of el and e2 must be 

the leader of C. Suppose not, and let e be the leader of C so that e $! D. Let Cl and 

Cz be the tight circuits in which el and e2 are the leaders, respectively. By Lemma 6.2.1, 

C n C1 = {el) and C n C2 = fez). Thus, es E C1 n C2, and e is also the leader of the tight 
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circuit C A C1. But C2 n (C  A C1) 3 {ep, eg), and by Lemma 6.2.1, e2 is also the Icaticr of 

C A Cl, which is impossible. 

Hence el or e2 is the leader of C ,  and by the same argument as that in Case I ,  pD(C) is 

balanced and even. 0 

A k-star bond is a bond of size k with all its edges incident to a given point. 

Lemma 6.2.3 Let (G,p) be admissible and p be positive, and let D = {el, e2, eg, e,,) be 

a 4-star bond. If at  least three edges of D are leaders in (G,p), then D is removable. 

Proof: Since D is a star bond, then ID n C (  = 0 or 2 for any circuit C in G. For any 

non-tight circuit C of (G, p), pD(C) = p(C) or p(C) - 2, so pc(C) is even, and 

for a,ll e E C. Thus pD(C) is also balanced. For any tight circuit C,  if C n D = Q), then 

pD(C) = p(C) is even and balanced. Otherwise let C n D = {el, e2), and we consider the 

following two cases. 

Case 1. Only one of el and e2 is a leader, so that es and e4 are leaders. Without loss of 

generality let el be the leader and ez be the follower. Now we prove that el is the lender of 

C. Suppose el is not the leader of C. Let e be the leader of C ,  so that e 4 D. Let CI, C2 and 

C3 be the tight circuits in which el, e3 and e4 are the leaders, respectively. By Imnrrra 6.2.1, 

C n C1 = (el), and e2 Sf C1. Without loss of generality, let e3 E C1, implying e is also the 

leader of the tight circuit C A Cl, and (e2, e3) C Cl A C. Since el E C1, e2 E C1 A C, and 

Cl, Cl A C are tight circuits, then by Lemma 6.2.1, el and e2 are not in C2. Thus e4 E C2 

and by Lemma 6.2.1, C1 A C2 = {eg}, (C1 A C )  n C2 = {e3), so that e is the leader of the 

tight circuit C1 A CA C2, and {e2, e4} C C1 A CA C2. Since e2 E C1 A CA and e~ E C2, 

e;l and e3 are not in C3, and therefore el E C3. BU t Cl n C2 = {e3], so el is the leader of 

the tight circuit C1 A Cz and {el, el) C C1 A C2. Thus (el, e4) E (C1 A C2) n C3, and by 
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Lemma 6.2.1, el is also the leader of C3, which is impossible. Hence el is the leader of C ,  

and 

for all e E C - {el) .  Thus pD(C) is balanced and even. 

Case 2: el and e2 are both leaders. Now we prove that one of el ar,d e2 must be the 

leader of C. Suppose not, and let e be the leader of C,  so that e # D. Let Cl and C2 be the 

tight circuits in which el and e2 are the leaders respectively. By Lemma 6.2.1, CnC1 = {e l )  

and e2 # C1, so e3 or e4 6 C1. Without loss of generality, let e3 E Cl,  so that e is the leader 

of the tight circuit C A Cl, and {e2, e3) C C A CI. Since {el, e2) C C and {e3, e2) c C AC1, 

by Lemma 6.2.1, el and e3 are not in C2, implying e4 E C2. By Lemma 6.2.1, C2 n C = {e2) 

and C2 n (C A C1) = {e2). Therefore e is the leader of the tight circuit C A C1 A C2 and 

{e3, e4) c C A C1 A C2. Without loss of generality let e3 be the leader and C3 be the tight 

circuit in which e3 is the leader. Then (C A Cl)  = {e3, en) and (C A Cl A C2) = {e3, e4), 

so by Lemma 6.2.1, e2 and e4 are not in C3. Therefore el 6 C3. But Cl n C3 = {el,  e3), by 

Lemma 6.2.1, el is also the leader of C3, which is impossible. Hence el or e2 is the leader 

of C, and by the same argument as that in Case 1, pD(C) is balanced and even. 0 

Lemma 6.2.4 Let (G,p)  be admissible, p be positive, and D be a star bond such that 

all the possible leaders of (G,p) are in D. Then I) is removable. 

Proof: Since D is a star bond, then ID n CI = 0 or 2 for any circuit C in G. If 

C n D = 0,  then pD(C) = p(C) is even and balanced. If C n D f 0,  then IC n Dl = 2, and 

pD(C) = p(C) - 2 is even. We need to consider two cases. 

First, if C is non-tight, then 
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for all e E C.  Thus pD(C) is also balanced. 

Second, if C is tight, let 1 be the leader of C. Then 1 E D and p(1) = p(C - { I ) )  and 

p(e) 5 p(C - { e ) )  - 2 for all e E C - {I).  Thus 

p ~ ( 1 )  = p(1) - 1 = p(C - ( I ) )  - 1 = po(C - { I ) )  + 1 - 1 = po(C - ( 1 ) )  whilc 

p d e )  5 ~ ( e )  5 P(C - { e ) )  - 2 I PD(C - {e ) )  + 2 - 2 = po(C - { e ) ) .  

for all e E C - {I).  Hence p~ is admissible and D is removable. o 

An edge e = {x, y)  is a chord of the circuit C if e $Z E ( C )  yet x, y E V ( C )  are met. 

Lemma 6.2.5 Let (G ,p )  be admissible and p be positive, then every chord of u light 

circuit C is a leader in (G,p) .  

Proof: Let e be a chord of C = PI U P2, where PI and P2 are the two parts of C split 

by  e, and let the leader 1 of C in PI. Then 

Since 1 is in circuit Pl U {I} ,  

2p(l) I p(P1) + ~ ( 4 .  

Therefore p(e) 2 p(P2). But e is in the circuit P2 U {e), so 

Hence p(e) = p(Pz) and e is the leader of tight cis cuit P2 u {e) .  a 

Lemma 6.2.6 Let (G ,p )  be admissible and p be positive. Let C be a circuit with chord8 

such that at least one of the chords is a follower. For any 1 E ", i f  p(1) = p(C - ( 1 ) )  - 2, 

then 1 is a leader. 
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Proof: Let e be a chord which is follower, let C = PI U P2, where PI and P2 are the 

two parts of C split by e, and let 1 E PI. Then 

Since 1 is in circuit PI U { l ) ,  

2p(l) I p(P1) + p(e). 

Therefore p(e) 2 p(P2j - 2. But e is a follower in the circuit P2 U {e ) ,  so 

and we have p(e) = p(P2) - 2. Thus we have 2p(l) = p(Pl) + p(e), and therefore I is the 

leader of the tight circuit Pl U {e).  

From Lemma 6.2.5 and Lemma 6.2.6, we have the following corollary. 

Corollary 6.2.1 Let (G ,p )  be admissible p be positive and C be a circuit with chords 

such that at least one of the chords is a follower. Then C is non-tight, for every leader 1 in 

C ,  p(1) _< p(C - { l } )  - 2, and for every follower f in C ,  p ( f )  5 p(C - {f)) - 4. 

Lemma 6.2.7 Let (G,p)  be admissible, p be positive, D be a bond such that all the 

leaders of ( G , p )  are in D,  and C be a circuit such that IC (I Dl 5 2. Then after removing 

D,  pD(C) is still even and balanced. 

Proof: If C n D = 0, then pD(C) = p(C) is even and balanced. If lC (I Dl = 2, then 

pD(C) = p(C) - 2 is even. We need to consider two cases. 

First, if C is non-tight, then 

for all e E C. Thus pD(C) is also balanced. 
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Second, if C is tight, let 1 be the leader of C .  Then 1 E D, p(1) = p(C - { I ) )  and 

p(e) 5 p(C - { e ) )  - 2 for all e E C - {I).  Thus 

pD(l) = p(1) - 1 = p(C - { I ) )  - 1 = pD(C - ( I } )  + 1 - 1 = po(C - { I ) )  while 

Lemma 6.2.8 Let (G,  p )  be admissible, p be positive, D be a bond, C be a non-tight 

circuit such that IC 17 Dl I: 4, and i f  p( f )  = p(C - if)) - 2 then e E C fl D for every e C .  

Then after removing D, pD(C) is still even and balanced. 

Proof: Since C is circuit and D is bond, then JC n Dl is even, so po(C) is even. For 

every e E C n D, we have 

pD(e) = p(e) - 1 < p(C - { e ) )  - 2 - 1 < po(C - ( e ) )  + 3 - 3 = PD(C - ( e ) ) .  

For every f E C - D,  we have 

Hence pD(C) is balanced. tl 

From Corollary 6.2.1 and Lemma 6.2.8, we have the following corollary. 

Corollary 6.2.2 Let (G, p) be admissible, p be positive, D be a bond such that all the 

leaders of ( G , p )  are in  D, C be a circuit such that at least one of its chords is a followc.r, 

and IC n Dl _< 4. Then aj'ter removing D, pD(C) is still even and balanced. 

From Lemma 6.2.8 we have the following result. 
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Corollary 6.2.3 Let ( G , p )  be admissible, p be positive, D be a bond, C be a 4-circuit, 

and C C D. If C is not tight, then after removing D, pD(C) is still even and balanced. 

6.3 The Bond Cover Property of K3,3 

Lemma 6.3.1 K3,3 has the bond cover pmperty. 

Proof: Let p : E(K3,3) -+ 2+ be admissible. If there is an edge e E E(K3,3) with p(e)  = 

0, then we contract e to obtain a planar graph. By Corollary 1.1.1 and Proposition 6.1.1, 

(K3,3, p) has a bond cover. 

We assume that p is positive and prove the result by finding a removable bond D,  

removing bond D and using induction on the new weighted (K3,3,pD). If there are no edges 

which are leaders in (I<3,3,p), then by Lemma 6.2.4 an arbitrary star bond is removable. 

If there is only one edge which is a leader in (K3 ,3p) ,  then by Lemma 6.2.4 the star bond 

containing this leader is removable. If there is a star bond which contains at  least two 

leaders, then by Lemma 6.2.2 this star bond is removable. 

So we assume that K3,3 has at least two leaders no two of which are adjacent. By 

symmetry we have to check following two cases. In the following cases, we try to  find a bond 

D and prove D is removable by proving pD(C) is balanced and even for every circuit C of 

K3,3. Since all the possible leaders of (Ii3,3,p) are in the removable bond, by Lemma 6.2.7, 

we don't have to check 3-circuits and 4-circuits unless all the edges of a 4-circuit are in the 

Fig. 11 

removable bond. If so then by Corollary 6.2.3, we need to  prove this 4-circuit is non-tight. 
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Fig. 11 above shows all the 6-circuits of K3,3. Notice that each 6-circuit has 3 chords. 

Case 1. (K3,3,p) has exactly two non-adjacent leaders. Let es and es be the 

leaders. Then a bond D = {el, e6, e7, e8) is removable. 

Fig. 12 

Proof: For any 6-circuit C, if IC n Dl < 2, then by Lemma 6.2.7, pD(C) is evcn and 

balanced. If IC n Dl = 4 then no leader can be a chord of C, and by Corollary 6.2.2, pD(C) 

is even and balanced. Thus D is removable. 

Case 2. (K3,3,p) has exactly three non-adjacent leaders. 

Let e3, e6 and e g  be the leaders. Then a bond D = (e3, es, e7, eg, es) is removable. 

Fig. 13 

Proof: For any 6-circuit C, if IC f l  Dl _< 2, then by Lemma 6.2.7, pD(C) is even and 

balanced. If IC n Dl = 4, then at  most one leader can be a chord of C. But C has three 

chords, so at least two chords of C are followers, and by Corollary 6.2.2, pD(C) is even and 

balanced. 
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By Corollary 6.2.3, it remains to show that the Ccircuit C = {e3, e6, e7, e9} is non-tight . 
Suppose C is tight. Without loss of generality, let e6 be the leader of C. Let C1 be 

the tight circuit in which e3 is its leader. By lemma 6.2.1, C1 can only be {e8, e3, e*, e4}, 

and e6 is the leader of tight tight circuit C A Cl. But C A Cr is a 6-circuit with follower 

chords el and e5, and by Lemma 6.2.5, it can not be tight. Therefore C is non-tight, and 

by Corollary 6.2.3, pD(C) is even and balanced. Hence D is removable. 0 

6.4 The Bond Cover Property of v6 

Lemma 6.4.1 V6 has the bond cover property. 

Proof: Let p : E(V6) 3 2+ be admissible. If there is an edge e E E(V6) with p(e) = 0, 

then we contract e to  obtain a planar graph. By Corollary 1.1.1 and Proposition 6.1.1, 

(Vs,p) has a bond cover. 

We assume that p is positive and prove the result by finding a removable bond D, 

removing bond D and using induction on the new weighted (V6,pD). If there are no edges 

which are leaders in (F$,p), then by Lemma 6.2.4 an arbitrary star bond is removable. If 

there is only one edge which is a leader in (V6,p), then by Lemma 6.2.4 the star bond 

containing this leader is removable. If there is a 3-star bond which contains at  least two 

leaders, then by Lemma 6.2.2 this star bond is removable. If there is a 4-star bond which 

contains a t  least three leaders, then by Lemma 6.2.3 this star bond is removable. 

So we assume that V6 has at least two leaders and no vertex of degree 3 adjacent to  more 

than one leader, no vertex of degree 4 adjacent to more than two leaders, and by symmetry 

we have to check the following cases according to  the number of leaders among the six edges 

{e r ,  e5, e ~ ,  e-r, eg, e9) in Fig. 10 in Page 30, of which at most two edges can be the leaders. 

In the following cases, we try to find a bond D and prove D is removable by proving 

pD(C) is balanced and even for every circuit C of Vs. Since all the possible leaders of (V6,p) 
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are in the removable bond, by Lemma 6.2.7, we don't have to check %circuits and 4-circuits 

unless all the edges of a $-circuit are in the removable bond. If so then by Corollary 6.2.3, 

we need to  prove this 4-circuit is non-tight. 

The figures below are all the 5-circuits of Vs. Notice that each one has 2 chords. 

Fig. 14 

The figures below are all the 6-circuits of V6 and each one has 4 chords. 

Fig. 15 

Case 1. No edges in the six edges {e4, e5, e ~ ,  e ~ ,  eel e9) are leaders. 

Then el0 is a possible leader, and only one of el,  ez and e3 can be a leader. Sincc 

they are identical, we let el be the possible leader. A removable bond for this cast ir; 

D = {el,e5,e6,el0}. 

Fig. 16 

Proof: For every 5- or 6-circuit C, if IC n Dl 5 2, then by Lemma 6.2.7, pu(C) is even 

and balanced. If JC n Dl = 4, then at most one leader can be a chord of C. But C has at 
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lest two chords, so at  least one chord of C is a follower, by Corollary 6.2.2, pD(C) is even 

and balanced. Therefore D is removable. 

Case 2. Exactly one edge of the six edges {e4, e5, e6, e7, e8, eg) is the leader. 

By symmetry let e4 be the leader, implying that el0 is the possible leader and only one 

of e2 and e3 can be a leader, again by symmetry let e3 be the possibe leader. A removable 

bond for this case is D = (e3, e4, e5, eg, elo). 

Fig. 17 

The proof is the same as that in Case 1. 

Case 3. Exactly two edges of the six edges {e4, es, eg, e7, e8, eg) are leders. 

Case 3.1. The two leaders are adjacent. 

By symmetry let e4 and e5 be the leaders, implying that es is the only possible leader. 

A removable bond is D = {e3, e4, e5, eg, elo). 

Fig. 18 

The proof is the same as that in Case 1. 

Case 3.2. The two leaders are not adjacent. 

By symmetry let e4 and es be the leaders. Then only e2 and el0 can be possible leaders. 

tire need to consider the following two subcases. 
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Case 3.2.1. If e2 is not a leader, then a removable bond is D = (es, edc eg, e9, etO). 

Fig. 19 

The proof is the same as that in Case 1. 

Case 3.2.2. If e2 is 2 leader, then a removable bond is D = {el, e2, e4, e5, eg, elo). 

Fig. 20 

Proof: Since ID1 = 6 and I) contains a 4-circuit, ID n C1 5 4 for any circuit C in Vf;. 

For every 6-circuit C, if lCn  Dl 5 2, then by Lemma 6.2.7, pD(C) is even and balanced. 

If lC n Dl = 4 ,  then a t  most two leader can be chords of C. However, C has four chor<ls, so 

at least two chords of C are followers, and by Corollary 6.2.2, pD(C) is even and balanced. 

Except for the 5-circuit Cl = {el, e3, e6, e7, elo), every 5-circuit C' has a follower chord. 

By Corollary 6.2.2, pD(C) is even and balanced. But ICl n DJ = 2, and by Lemma. 6.2.7, 

pD(Cl) is even and balanced. 

Now we have to  prove that the 4-circuit C2 = (el, e2, e4,e5) is nun-tight. Suppose (A 

is tight, we let e* be the leader of C2 (if ez is the leader of C2, the proof follows the same 

idea). Let C3 be the tight circuit in which e2 is the leader. 

The 6-circuit Cq = {el, e3, eg, e6, e7, eg) contains no leaders, and every other &circuit hau 

a follower chord, so they can not be tight, thus C3 can not be a 6-circuit, Except for 
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the 5-circuit C1 = {el,e~,e~,e7,elo), every 5-circuit has a follower chord, so they can not 

he tight. Also, e2 @ Cl and thus C3 can not be a 5-circuit. By Lemma 6.2.1, C3 can 

only be the 4-circuit {e2, e3, e8, e9), and therefore e4 is also the leader of the tight circuit 

C; A C3 = {el, e3, e4, e5, e8, e9). However, C2 A C3 is a &circuit, so it can not be tight. 

Hence C2 is non-tight, and by Corollary 6.2.3 pD(C2) is even and balanced. Therefore D is 

removable. 0 

6.5 The Bond Cover Property of V7 

Lemma 6.5.1 V7 has the bond cover property. 

Proof: Let p : E(V7) -+ 2+ be admissible. If there is an edge e E E(V7) with p(e) = 0, 

then we contract e and obtain either a planar graph, K3,3 or V6. By Corollary 1.1.1 and 

Lemma 6.3.1 or Lemma 6.4.1 and Proposition 6.1.1, (V7,p) has a bond cover. 

We assume that p is positive and prove the lemma by finding a removable bond D, 

removing bond D and using induction on the new weighted (V7,pD). If there are no edges 

which are leaders in (V7,p), then by Lemma 6.2.4 an arbitrary star bond is removable. 

If there is only one edge which is leader in (V7,p), then by Lemma 6.2.4 the star bond 

containing this leader is removable. If there is a 3-star bond which contains at least two 

leaders, then by Lemma 6.2.2 this star bond is removable. If there is a 4-star bond which 

contains at  least three leaders, then by Lemma 6.2.3 this star bond is removable. 

So we assume that V7 has a t  least two leaders, no vertex of degree 3 adjacent to more 

than one leader and no vertex of degree 4 adjacent to more than two leaders. Therefore by 

symmetry we have to  check the following cases according to  the number of leaders among 

the four edges {e2, e ~ ,  el*, ell) in V7 in Fig. 10 in Page 30. At most two edges of them can 

be the leaders and the two leaders can not be adjacent. 
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The figures below are all the 5-circuits of V7. The first four have one chord and the last 

two have no chord. 

Fig. 21 

The figures below are all the 6-circuits of V7, each of which has two chords. 

Fig. 22 

The figures below are d the 7-circuits of V7, each of which has four chords. 

Fig. 23 

In the following cases, we try to  find a bond D and prove D is removatAc by proving 

pD(C) is balanced and even for every circuit C of V7. Since all the possible leaders of (V7, p )  

are in the removable bond, by Lemma 6.2.7, we don't have to  check 3-circuits and 4-circuits 

unless a l l  the edges of a Ccircuit are in the removable bond, and if so then by Corollary 6.2.3 

we need to prove this Ccircuit is non-tight. 

Case 1. No edges in (e2, e ~ ,  elo, ell) are leaders. 
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Case 1.1. Let e4 be the leader. Then el and e7 are possible leaders. A removable bond 

is D = {el,e4,e5,e7,ea). 

Fig. 24 

Proof: Except for the 5-circuits C1 = {e7, eg, e4, es, e6) and C2 = {el, elo, e5, e4, eg), any 

5-circuit C stisfies IC n Dl _< 2 and by Lemma 6.2.7, pD(C) is even and balanced. But 

ICt n Dl = 4, IC2 n Dl = 4 and C1, C2 have a follower chord es, so by Corollary 6.2.2, 

pD(C1) and pD(Cz) are even and balanced. 

For any 6- or 7-circuit C ,  if IC n Dl 5 2, then by Lemma 6.2.7, pD(C) is even and 

balanced. If IC n Dl = 4, then at most one leader can be a chord of C .  But C has at 

least two chords, so at least one chord is a follower. By Corollary 6.2.2, pD(C) is even and 

balanced. 

Case 1.2. e4 is not a leader. We consider the following three subcases. 

Case 1.2.1. If e3 and es are not leaders, then at most two of el, e7, es and eg can be 

leaders. By Lemma 6.2.4, the star bond D = {el, e;r, es, e9} is removable. 

Fig. 25 
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Case 1.2.2. Only one of e3 and es is a leader. Since e3 and e5 are identical, let €5 be tllc 

leader. Then el ,  e7 and eg are possible leaders. A removable bond is D = {e l ,  ea, es ,  c7, Q). 

Fig. 26 

The proof is the same as that in Case 1.1. 

Case 1.2.3 If both of es and e5 are leaders, then e l ,  and e7 are possible Icaders. A 

removable bond is D = {el, e3, e5, e7). 

Fig. 27 

Proof: For any 5-circuit C, IC n Dl = 2, and by Lemma 6.2.7, pD(C) is even and 

balanced. 

For any 6-circuit or any 7-circuit C,  if ]C n Dl < 2, then by Lemma 6.2.7, pD(C) is evcrr 

and balanced. If IC n Dl = 4, then no leader can be a chord of C, and by Corollary 6.2.2, 

pD(C) is even and balanced. 

Case 2. Exactly one of the edges {e2, e6, elo, e l l )  is a leader. Let e2 be the Icacier. 
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Case 2.1. If el  is the leader, then only e7 can be a possible leader. A removable bond 

J) = {ez, e4, es, e7, eg).  

Fig. 28 

Proof: Except for the Scircuit C1 = {e6, e7, eg, el, e5), every 5-circuit C satisfies IC n 

Dl < 2, and by Lemma 6.2.7, w ( C )  is even and balanced. However ICl n Dl = 4 and Cl 

has a follower chord eg, so by Corollary 6.2.2, pD(C1) is even and balanced. 

For any 6- or 7-circuit C, if IC n Dl _< 2, then by Lemma 6.2.7, pD(C) is even and 

balanced. If IC n Dl = 4, then at  most one leader can be a chord of C, but C has at 

least two chords, so at least one chord is a follower. By Corollary 6.2.2, pD(C) is even and 

balanced. Hence D is removable. 

Case 2.2. The edge e4 is not a leader. We consider the following two subcases. 

Case 2.2.1. If es is not a leader, only two of e ~ ,  eg and eg can be leaders. A removable 

bond is D = {e2, e7, es, eg, elo). 

Fig. 29 

The proof follows the same as that in Case 1.2.3. 
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Case 2.2.2 If es is a leader, then only e7 and eg are possible leaders. 

Case 2.2.2.1. If e7 is not a leader. then a removable bond is D = {e2, es, es, ey, el ,}. 

Fig. 30 

The proof follows the same as that in Case 1.2.3. 

Case 2.2.2.2. If e7 is a leader, then a removable bond is I) = {e2, es, ec, e7, ea, e9). 

Fig. 31 

Proof: Since I Dl = 6 and D contains a 4-circuit, then IC n Dl < 4 for every circuit 

C of V7. Except for the 5-circuit Cl = {e4,e5,e6,e7,e9), any other 5-circuit C fiatisfies 

(Cfl Dl = 2, and by Lemma 6.2.7, pD(C) is even and balanced. But C1 has a follower chord 

eg, so by Corollary 6.2.2, q70(C1) is even and balanced. 

Except for the 6-ciicuit C2 = {e6, ell,  el^, e9, el, e3}, any other 6-circuit C has a follower 

chord , so they are non-tight, and by Corollary 6.2.2, pD(C) is even and balanced. Uut 

1C2 n Dl = 2, m d  by Lemma 6.2.7, pD(C2) is even and balanced. 

For m y  7-circuit C, if )C fl Dl < 2, then by Lemma 6.2.7, pu(C) is even and balanced. 

If IC n Dl = 4, then at  most two leaders can be a chord of C, but C has four chords, so at  
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least two chords are followers, and by Corollary 6.2.2, pD(C) is even and balanced. 

Now we have to  prove that the 4-circuit C3 = {e5,e6,e7,e8} is non-tight. Suppose 

C3 is tight. We let e, be the leader of C3 (if es is the leader of C3, the proof follows 

the same idea). Let C4 be the tight circuit in which e5 is the leader. Only the 6-circuit 

{el, e3, e ~ ,  eg, elo, ell) can possibly be tight, but es # {el, e3, e6, eg, em, ell), and thus C4 

can not be a &circuit. Only the 7-circuit {el, e3, e4, es, eg, elo, ell) can possibly be tight, but 

e5 $ {el, e3, e4, e6, eg, elo, ell), and thus C4 can not be a 7-circuit. By Lemma 6.2.1, C4 can 

only be one of the 5-circuits {e2, e3, e4, e5, elo) and {e4, e5, el, ell, eg), but {e4, e5, el, ell, eg) 

has a follower chord eg and can not be tight. Thus C4 can only be {e2, e3, e4, e5, elo). Then 

e7 is also the leader of the tight circuit C3 A C4, but C3 A C4 has follower chords el, ell and 

elo, and it is non-tight. Hence C3 is non-tight, and by Corollary 6.2.3, pD(C3) is even and 

balanced. Therefore D is removable. 

Case 3. Only two of the edges {e2, e6, elo, ell) are leaders. Let e2 and e6 be the 

two leaders. 

Case 3.1. If e4 is a leader, then there are no other leaders. A removable bond is 

D = {e2,e4te61e7,e9). 

Fig. 32 

The proof is the same argument as that in Case 2.1. 

Case: 3.2 If er is not a leader, then only eg and eg are possible leaders. A removable 

bond is D = (e2, e6, es, eg, elo, ell). 



CHAPTER 6. THE BOhTD COVER PROPERTY OF V8 

Fig. 33 

Proof: Since ID1 = 6 and D contains a 4-circuit, then )C  n Dl 5 4 for every circuit C of 

v7. 

Any 5-circuit C satisfies IC n Dl = 2, and by Lemma 6.2.7, pD(C) is even and baiancctl. 

Every 6-circuit C has a follower chord , so they are non-tight, and by Corollary 6.2.2, pu(C) 

is even and balanced. For any 7-circuit C ,  if IC n Dl 5 2, then by Lcmma 6.2.7, pil(C) is 

even and balanced. If IC n Dl = 4, then at most two leaders can be a chord of C, but C 

has four chords, so at  least two chords are followers, and by Corollary 6.2.2, pn(C) is even 

and balanced. 

Now we have to prove that the 4-circuit C1 = {el, ee, e10, ell) is non-tight. Suppose CI 

is tight. We let e2 be the leader of C1 (if e6 is the leader of C1, the proof follows the same 

idea). Let C2 be the tight circuit in which es is the leader. 

Every &circuit has follower chord, they can not be tight, thus C3 can not be a 6-circuit. 

The 7-circuit {el, es, e4, e5, e7, e10, ell} contains no leaders, and every other 7-circuit has 

follower chord, so they can not be tight, thus C2 can not be a 7-circuit. By Lemma 6.2.1, 

Cz can only be the 4-circuit C3 = (e5, e6, e7, es) or the 5-circuit C4 = {er, e5, ee, e7, ea). 

Therefore e2 is also the leader of the tight circuit C1 A C3 = {e5,e7,e2,eg,e10,ell) or 

Cl A C4 = {e4, e5, e7, ez, e9, elo, ell}. However C1 A C3 and Cl A Cq are a 6-circuit and 

a 7-circuit respectively, and they can not be tight. Hence C1 is non-tight, and by Coral- 

lary 6.2.3, pD(Cl) is even and balanced. Therefore D Is removable. 0 



CHAPTER 6. THE BOND COVER PROPERTY OF V8 

6.6 The Bond Cover Property of V8 

Lemma 6.6.1 V8 has the bond cover property. 

ProoE Let p : E(V8) -+ 2+ be admissible. 

If there is an edge e E E(V8) with p(e) = 0, then we contract e to  obtain a planar graph or 

V7. Therefore, by Corollary 1.1.1 or Lemma 6.5.1 and Proposition 6.1.1, (V8, p) has a bond 

cover. 

We assume that p is positive and prove the result by finding a removable bond D and 

removing bond D then using induction on the new weighted (V8,pD). If there are no edges 

which are leaders in (V8,p), then by Lemma 6.2.4 an arbitrary star bond is removable. If 

there is only one edge which is a leader in (V8,p), then by Lemma 6.2.4 the star bond 

containing this leader is removable. If there is a 3-star bond which contains at  least two 

leaders, then by Lemma 6.2.2 this star bond is removable. 

So we assume then that V8 has at  !east two leaders and no vertex of degree 3 adjacent 

to more than one leader. Therefore, we hhve to check following cases. 

In the following cases, we try to find a bond D and prove D is removable by proving 

pD(C) is balanced and even for every circuit C of V8. Since al l  the possible leaders of (V8, p) 

are in the removable bond, by Lemma 6.2.7, we don't have to  check 3-circuits and Ccircuits 

unless all the edges of a 4-circuit are in the removable bond. If so then by Corollary 6.2.3, 

we need to prove this 4-circuit is non-tight. 

Fig. 34 below is the collection of all the 5-circuits of V8. They have no chords. 

Fig. 34 

Fig. 35 below is the collection of all the 6-circuit of V8. Each has one chord. 
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Fig. 35 

Fig. 36 below is the collection of all the 7-circuit of Vs. Each has two chords. 

Fig. 36 

Fig. 37 below is the collection of all the 8-circuit of Vs. Each has four chords. 

Fig. 37 

(1) Exactly one leader on the rim. 

By symmetry, we need only check one case. 

Case 1.1: Let el be the leader, then ell and el2 are the possible leaders. A rernovablc 

bond is D = {el, es, eg, ell, e12). 

Proof: For any 8-circuit or 7-circuit C, if IC n Dl 5 2, then by Lemma 6.2.7, po(C) is 

even and balanced. If !C n Dl = 4, then at  most one leader can be a chord of C', but C' l i a ~  

at least two chords, implying that at  least one chord is a follower, and by Corollary 6.2.2, 

pD(C) is even and balanced. 
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Fig. 38 

Every 6-circuit C, other than C1 = {el ,e~,es ,e6 ,e~,e l l ) ,  satisfies IC f l  Dl = 2, and 

by Lemma 6.2.7, pD(C) is even and balanced. But Cl has a follower chord elo, and by 

Corollary 6.2.2, pD(C1) is even and balanced. 

Since every 5-circuit C can use only one spoke and there are three spokes in D, lCn Dl _< 

2, and by Lemma 6.2.7, pD(C) is even and balanced. Therefore D is removable. 

(2) Exactly two leaders on the rim. 

By symmetry, we have to check the following three cases. 

Case 2.1. Let el and e7 be the leaders, so there are no other leaders. A removable 

bond is D = {el, e3, e5, e7). 

Fig. 39 

Proof: For any 8-circuit C, if IC tl Dl < 2, then by Lemma 6.2.7, pD(C) is even and 

balanced. If IC n Dl = 4, then no leader can be a chord of C. But C has four chords, so 

the four chords are followers, and by Corollary 6.2.2, pD(C) is even and balanced. 
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Each 7-circuit C contains 3 spokes, 2 adjacent rim edges and 2 rim edges adjacent to 

each end of a spoke and on one side of this spoke. But D contains no such four rim edges, 

so JC n Dl 5 2, and thus by Lemma 6.2.7, yD(C) is even and balanced. 

Each 6-circuit C contains 2 spokes and 2 pairs of 2 adjacent rim edges. But D co~ttains 

no such four rim edges, so IC n Dl < 2, and thus by Lemma. 6.2.7, pD(C)  is cveti and 

balanced. 

Each 5-circuit C contains a spoke and all rim edges on one side of the spoke. Thcrt? are 

only two edges of D on each side of each spoke, so IC n Dl = 2, and thus by Lemma 6.2.7, 

pD(C) is even and balanced. Therefore D is removable. 

Case 2.2. Let el  and e~ be the leaders. Then ell and el2 are possible leatlers. A 

removable bond is D = {el, e5, eg, ~ I O ,  ell, elz}. 

Fig. 40 

Proof: Since ID1 = 6 and D contains a $-circuit, then IC n Dl 5 4 for cvcry circuit 

C of Vs. For any %circuit C, if 1C n Dl 5 2, then by Lemma 6.2.7, pD(C) is evcrt and 

balanced. If IC 17 Dl = 4, then at most two leaders can be a chord of C. IIowevcr, C' 

has four chords, so at  least two chords are followers, and by Corollary 6.2.2, yD(C) is cven 

and balanced. The edges ell and el* can not be the chords of a 7-circuit, and el ard es 

caa not the chords of a 7-circuit at  the same time. Thus every 7-circuit C h a  at  I ca t  

one follower chord, and by Corollary 6.2.2, pD(C) is even and balanced. Exccpt for thc 6- 

circuits Cl = {el, e2, e5, es, eg, ell) and C2 = {el, e4, es, es, elo, elz), any other two G-circuit8 

C satisfies IC n Dl = 2, and by Lemma 6.2.7, pD(C) is even and balanced. But C1 and C2 
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have follower chords el0 and eg, respectively. By Corollary 6.2.2, pD(C1) and pD(C2) are 

even and balanced. The edges el and e5 are not in the same side of any spoke, so for any 

5-circuit C, IC n Dl = 2. By Lemma 6.2.7, pD(C) is even and balanced. 

Now we have to prove that the 4-circuit C3 = (el,e5, eg, elo) is non-tight. Suppose 

C3 is tight. We let el be the leader of C3 (if e5 is the leader of C3, the proof follows 

the same idea). Let C4 be the tight circuit in which es is the leader. Only the 8-circuit 

{e2, e3, e4, e6, e7, e8, eg, el0) has no follower chords, but {e*, es, e4, e6, e7, e8, eg, elo) contains 

no leaders. Hence every 8-circuit is non-tight, and C4 can not be a 8-circuit. Every 7-circuit 

has follower chord, so they are non-tight. Therefore C4 can not be a 7-circuit. Also, e5 is 

only in two 6-circuits Cl and C2, but they are not tight, so C4 can not be a 6-circuit. By 

Lemma 6.2.1, C4 can only be the 5-circuit (e3, e4, e5, es, ell) or {e4, e5, ee, e7, el2). Then 

el is also the leader of the tight circuit C3 A C4 which is a 7-circuit. Thus it can not be 

tight. Hence C3 is non-tight, and by Corollary 6.2.3, pD(C3) is even and balanced. Thus D 

is removable. 

Case 2.3. Let el and e4 be the leaders, so that ell is the possible leader. A removable 

bond is D = (el, e4, elo, ell, el2). 

Fig. 41 

Proof: For any 8-circuit or 7-circuit C, if IC n Dl 2, then by Lemma 6.2.7, pD(C) is 

even and balanced. If IC n Dl = 4, then at  most one leader can be a chord of C. However, 

C has at least two chords, so at least one chord is a follower, and by Corollary 6.2.2, pD(C) 

is even and balanced. 
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Except for the 6-circuit Cl = (el, ez, e5, es, eg, ell), any other 6-circuit C has a follower 

chord, and by Corollary 6.2.2, pD(C) is even and balanced. But (Cl n Dl = 2, and by 

Lemma 6.2.7, pD(Cr) is even and balanced. 

The edges el and e4 are in only one side of spoke eg. As eg $ D, evcry 5-circuit C? 

satisfies IC n Dl = 2, and by Lemma 6.2.7, po(C) is even and balanced. Therd'orc 1) is 

removable. 

(3) Exactly three leaders on the rim. 

By symmetry, we need t o  consider only two cases. 

Case 3.1. Let el, es and e7 be the leaders, so there are no other leaders. A rcmovahle 

bond is D = {el, es, es, e7). 

Fig. 42 

The proof is the same as that in Case 2.1. 

Case 3.2. Let el, er and e7 be the leaders, so there are no other leadcrs. A rernovablc 

bond is D = {el, e4, e5, e7, el*}. 

Proof: For any &circuit or 7-circuit C, if IC n Dl 5 2, then by Lemma 6.2.7, plj(C') 

is even and balanced. If lC n Dl = 4, then at  most one leader can be a chord of C. 

But C hzs at least two chords, so a t  least one chord is a followrr, and by Corollary 6.2.2, 

pD(C) is even and balanced. Since no spokes are leaders, every 6-circuit C hahi a follower 

chord, and by Corollary 6.2.2, pD(C) is even and balanced. Except for the 5-circuit C1 = 

{e4, e5,e6, e7, eI3}, every !%circuit C satisfies IC n Dl = 2, and by Lemma 6.2.7, pD(C) is 

even and balanced. 
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Fig. 43 

Now we have t o  prove that C1 is non-tight and p(e6) < p(Cl - {e6}) - 4. Suppose 

C, is tight and let e4 be the leader of CI (if e7 is the lea,der of Cl, the prove follows the 

same idea). Let C2 be the tight circuit in which e7 is the leader. Since there are only 

three leaders, but every &circuit has 4 chords, at  least one chord is a follower. Then every 

&circuit is non-tight, and thus C2 can not be an 8-circuit. Also, C2 can not be a &circuit. 

The two 7-circuits {e2, e3, e5, eg, e9, elo, el21 and {e3, e5, e6, eg, e9, ell, el2) contain no leaders 

and every other 7-circuit has follower chord. Hence they can not be tight and C2 can not be 

a ?-circuit. By Lemma 6.2.1, C2 can not be a 4-circuit or the Scircuits {e4, e5, e6, e7, e12), 

{e5, e6, e7, eg, es) and {el, elo, es, e7, es ). T h s  C2 can only be jel, e27 e7, es}, so that e4 

is the leader of the tight circuit Cl A C2. Since Cl A C2 is a &circuit, it can not be tight. 

Therefore C1 is non-tight. Thus p(e) = p(C1 - {e)) - 2 for every e E Cl. 

Suppose p(e6) = p(Cl - (e6)) - 2. Let C3 be a tight circuit in which e4 is the leader. 

Then p(e4) = p(C3 - {e4)). If e6 E C3, then 

This is a contradiction implying that e6 4 C3. Therefore e6 E C1 A C3. 

Let Cl rj C3 = A rj {e4). Then 
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Thus, 2p(A) 5 0, and since F ( A )  # 0, A = 0. Hence C3 call only be {el, €2, €3, e,,, Q). 

Let C4 be the tight circuit in which e l  ,s the leader. Similar t o  above C4 cat1 only 

be (el, ez, e7, e8, ell). Therefore el  f C3 and el E C4. Any circuit C5 contahing el 

must contain at least one of ez, eg and eg. Therefore 1C5 n C3) > 2 or IC5 n G41 > 2, 
and by Lemma 6.2.1, el can not be a leader, which is a contradiction. Hence, p(ee)  5 

p(C1 - {e6)) - 4. Thus, pD(C1) is even and balanced. and D is removable. 

(4) Exactly 4 leaders on the rim. 

Case 4.1. Let el ,  e3, es and e7 be the leaders. -4 removable bond is I )  = {el, c3, e5, c ~ ) .  

Fig. 44 

The proof is the same as that in Case 2.1. 

(5) No leaders on the rim. 

Case 5.1. All the 4 spokes are leaders. A removable bond is D = { e 3 ,  c7, ey,  el^, 

e11, e12) 

Proof: Since ID1 = 6 and D contains a 4-circuit, IC n Dl 5 4 for every circuit C of V8. 

For any $-circuit C, if IC n I)/ < 2, then by Lemma 6.2.7, pD(C) is even and halarrcod. If 

IC n Dl = 4, then at most two leaders can be a chord of C. As C haa four chords, a t  Icnst 

two chords are followers, and by Corollary 6.2.2, pD(C) is even and balanced. Since spokes 

can not be the chords of a ?-circuit, every chord of any 7-circuit C is a follower, and by 

Corollary 6.2.2, pD(C) is even and balanced, 
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Fig. 45 

Now we prove that every 6-circuit is not tight. Without loss of generality suppose 

C1 = {e2, e3,e6,e7,elo7el2) is tight, and el0 is the leader of C1. Let C2 be the circuit in 

which el2 is the leader. Now C2 can not be an 8- or 7-circuit since every 8- and 7-circuit is 

non-tight. By Lemma 6.2.1, C2 can not be the other 6-circuit which contains el2 or the two 

5-circuits which contain ell .  Thus C2 can only be the 4-circuit {e4, es, eg, el2), and then 

el@ is the leader of the tight circuit C1 A C2 which is an 8-circuit, and can not be tight. 

Therefore, C1 is not tight. 

Here we prove that every 4-circuit is not tight. Without loss of generality suppose 

C3 = {e3, e7, ell, el2} is tight and ell  is the leader of C3, and let C4 be the tight circuit in 

which el2 is the leader. Then C4 can not be an 8-,7-, or &circuit. By Lemma 6.2.1, C4 can 

not be the two 5-circuits which contain el2, so C4 can only be the 4-circuit {e4,eg,e9,e12). 

Then ell  is the leader of tight circuit C3 A C4. AS C3 A C4 is a 6-circuit, it can not be 

tight. Therefore C3 is not tight. Therefore by Corollary 6.2.3, pD(C3) is even and balanced. 

Except for the 6-circuits C1 and C5 = {e3, e4, el, eg, eg, ell), any other 6-circuit C satisfies 

IC n Dl = 2, and by Lemma 6.2.7, pD(C3) is even and balanced. 

Now we have to  prove: 
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Here we only prove p(e6) 5 p(C1 - {e6}) -4. The other inequalities may be provcd sindarly. 

Let B1 and B2 be the tight circuits in which elo and el2 are the leaders, rcspect.ivc1y. 

If e6 is in B1 or 32, then p(e6) < ~ ( e ~ o )  < p(C1 - {&lo)) - 2 < p ic1  - {cti)) - 2 or 

~(es) < p(el2) 5 p(C1 - (el211 - 2 < ~ ( ~ 1  - { e6)) - 2. Therefore, p(e6) < P(C.'~ - { e , ; ) )  - fl 

as required. 

So now suppose €6 is not in B1 or B2. Then B1 can only be {e2, e3, e4, E S ,  elo) and ]In 

can only be {el, e2, e3, e8, e12)- 

If p(e6) = ~ ( C I  - {es) - 2, then 

Therefore, 2(p(e2) + p(e3)) _< 0, but p(e2) + p(e3) > 0, which is a contradiction. flct~cc, 

p(e6) I p(C1 - (e6)) - 4, so pD(C1) and pD(C5) are even and balanced as nquircd. 

Case 5.2. Three spokes are leaders. Let es, el0 and ell be the Icders. A rumoval)lc! 

bond is D = {e3, e8, eg, elo, ell). 

Proof: For any 8-circuit or '-/-circuit C, if IC n Dl 5 2, then by Lern~rla 6.2.7, y l l (C)  is 

even and balanced. If [C fl Dl = 4, then at most one leader can be a chord of C, but C frns 

at least two chords, so at  least one chord is a follower. By Corollary 6.2.2, y [,(L') is even 

and balanced. 

Except for the 6-circuit Cl = {e3,  e4, e7, es, e3, ell), any other 6-circuit C' satisfies I(: CI 

Dl = 2. By Lemma 6.2.7,pD(C) is even and balanced. But C1 has a follower chord elz, and 
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Fig. 46 

by Corollary 6.2.2, pD(C1) is even and balanced. The edges es and eg are in only one side 

of spoke erz, but el2 4 D, so that for every 5-circuit C, ICfl Dl 5 2. Then by Lemma 6.2.7, 

pD(C) is even and balanced. Therefore D is removable. 

Case 5.3. Two neighbor spokes are leaders. Then eg, and el0 are leaders. A 

removable bond is D = (e2,es, eg, elo). 

Fig. 47 

Proof: For any 8-circuit, 7-circuit or 6-circuit C, if IC n Dl _< 2, then by Lemma 6.2.7, 

pD(C) is even and balanced. If IC n Dl = 4, then no leader can be a chord of C, so 

every chord of C is a follower, and by Corollary 6.2.2, pD(C) is even and balanced. For 

any 5-circuit C, IC n Dl 5 2. By Lemma 6.2.7, pD(C) is even and balanced. Hence D is 

removable. 

Case 5-4, Two non-neighbor spokes are leaders. Let ell and e9 be the leaders. 

A removable bond D = (el, e6, eg, el l ,  el*). 
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Fig. 48 

The proof is the same as that in Case 1 .l. 

Here we restate the dual form of Lemma 6.6. 

Corollary 6.6.1 M*(Vs) has the circuit cover property. 

6.7 Summary 

Propositions 1.1.2, 2.1.1, 2.2.1 and 2.2.2, together with Lemma 3.1.1 imply that i f  a 

binary matroid M has F;, Rlo, M * ( K 5 )  or M(Plo) as  a minor, then it does not have ttw 

circuit cover property. Corollary 3.2.1, Lemmas 4.0.1, 4.0.2, 4.0.3, 5.0.5, and 6.6.1 imply 

that if a binary matroid M has no  F;, Rlo, M n ( K 5 )  or M(Plo)  minor, tlrcn it I ~ i t s  tlw 

circuit cover property. Thus we complete the proof. 
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