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ABSTRACT 

Phase shift keying {PSK) is a class of constant envelope modulation which has 

become one of the most popular techniques for mobile communication. The mo- 

bile radio channel is characterized by Rayleigh fading in which the complex gains 

expcriencc:d by consecutive transmitted symbols are correlated. Various channel 

estimation techniques have been proposed in the literatures to combat correlated 

Rayleigh fading. In this thesis, a general analysis of the error performance of PSK 

ntodulations with different detection schemes in correlated Rayleigh fading channels 

is provided. Specifically, we derive the optimal receiver for the dcnodulation of N 

PSK symbols given A f  channel state estimates. Subsequently, an exact expression 

for the pairwise error event probability of this receiver is obtained. The results are 

applied to study the error performance of pilot symbol assisted modulation (PSAM), 

multiple symbol differential detection, and interleaved, Trellis-coded PSK modula- 

tions. The bit error rates for the above modulation schemes at  various normalized 

Doppler frequencies have been obtained from the analytical expressions. For bit 

error rate above it is found that both PSAhiZ and multiple symbol differential 

detection can eliminate the irreducible error floor commonly associated with con- 

vt-niional diEerent iai detection. In the case of interleaved, Trellis-coded differential 

f'SIi, it is observed that full interleaving does not necessarily provide the best error 

performance. 
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CHAPTER 1 

INTRODUCTION 

For the past ten years, digital transmission over mobile fading channels has become 

an important research area. A major concern to the mobile radio system engineers 

is the error performance of the communication systems. In general, a moving vehicle 

does not have a direct line of sight path to the transmitter. The received signal is the 

net resultant of many signals that reach the vehicle via multiple paths. Thus, the 

received signal at different locations consists of a number of waves whose amplitudes, 

phases, and angles of arrival are random. Under these conditions, the short-term 

amplitudes statistics of the resultant signal tends to be Rayleigh distributed [2]. 

In general, the Rayleigh fading experienced by consecutive transmitted symbols 

are correlated. This results in burst errors. For a coded system, a practical and 

effective approach for combating burst errors is to destroy the channel's memory 

through interleaving. Alternativeiy, one can exploit the correlation of the fading 

encountered by different transmitted symbols to improx-e the error performance of 

the system. This brings us to the central theme of the thesis:- the seeking of alternate 



detection for digital modulations operating i n  correlated Rayltaigh fading cliai~i~c~ls. 

Two techniques will be studied, both use the concept of block dcn~odulatio~~. 'I'tlt~ 

first technique, which is called multiple-symbol differential dctvction in t llc lit.t~rat.urt~ 

ill], requires no bandwidth expansion. The second technique, which is a rt4riwrcwt 

of the one in [6], requires a slight bandwidth expansion. f i r  tlw bit error ratc. al)ov<* 

both techniques are able to eliminate the irreduciblc~ error floors cotii~~to~rly 

associated with conventional detectors. 

In conjunction to the study on alternate decoding stratrgies for corrclatc4 Ilaylcigh 

fading channels, we also considered the interleaver cfesign issue for corril>iricd cotl- 

ing/interleaving systems. As mentioned earlier, this is a more comnion approacli 

for combating fading. After Ungerboeck [32] proposed Trcllis-codcd Modtilation 

(TCM) for the additive white Gaussian noise channel, thew t i a s  becn consid(~rah!c 

interest in applying TCM to mobile fading channels. In recent years, llttnlcarous 

reports [8], [9], [lo], 1211, [5] showed that TCM, when cornhined with intcrlravir~g of 

sufficient depth, is able to provide good error perforrriance in mobile fading cjlit11- 

nels. In many of these studies, the system was assulned to havc ideal interleaving, 

or equivalently independent fading. This assumption is justified if tftc iritc~rlt~itving 

depth is "largen compared to the fade duration. fIowever, in order to firid out what 

a "largen interleaving depth is, one usually has to resort to tirnc: const~rrring corrl- 

puter simulation 1211, 1123, ji?]. In this thesis, we will study analytically tlit: error 

performance of TCM with finite interleaving, or equivalently correlated fading. 'I'll(: 

error probability will be given with the interleaving depth as a paramctcr. 



1.1 Background and Literature Review 

Telephone has long been accepted as an important communications tool in modern 

living. IIowever, due to the fact that its use has been constrained by the connecting 

wire, the ultimate objective of communications- to enable anyone to communicate 

instantly with anyone else from anywhere, can be achieved only by mobile radio. 

Resulting from the success in semiconductor industry and the change in attitude 

of the radio regulatory authorities in making radio frequency spectrum available 

for commercial applications, mobile radio is no longer a luxury item. Nowadays, a 

mobile tclephone costs less than a video recorder or even an in-car stereo unit and 

become an essential business tool for many people. 

1.1 1 Conventional Mobile Radio Systems 

During the past decade, broad applications of land mobile services have been autho- 

rized by regulatory agencies in the 800 and 900 MHz portions of the radio spectrum. 

Owing to the limited experience with the application of radio propagation to land 

mobile system in these bands, there are no procedures within the mobile engineering 

community that are as yet generally acknowledged or accepted as providing accu- 

rate and reliable 800/900 MHz propagation information [23]. Early in 1982, this 

constraint on engineering analysis of mobile radio operating in the 800/900 MHz 

frequency range has been identified by the IEEE as an area requiring immediate 

attention. 

hlobile radio signals are affected by various factors such as propagation-pat h 

loss. multipath fading and Doppler effect resulting from the relatively high speed 



of the vehicle. However, in iirban areas, propagation bctwccn a rnot)ilc unit and 

a base station is most susceptible to t~he effect of nlt11tipat.h fading [lti]. 'Ttrc. tcrtn 

"multipath fading" is used to refer to the variation in the strength of a r ~ ~ t i v e < l  

radio carrier signal due to atmospheric changes and ground and water rcflcc-tions 

in the propagation path as shown in Figure 1.1. Basically, there are two typiks of 

fade, fiat jades and frequency selective fades. The fornlcr distorts thc arnplituclc* 

of the transmitted signal uniformly across the channel bandwidth w hilc t lw 1;tt.tcr 

attenuates the carrier signal unevenly across the hand. In most cases, flat fatltas 

mainly affect the small-capacity digital radios and frcqucncy selective fades arc of 

major importance to the high-capacity digital radios. 'I'hroughoiit this tlwsis, only 

flat fades will be considered in the radio channel. C;enerally, with adequatc path 

clearance and in the absence of a single specular reflection on a path, the arripIitdc~ of 

flat fades due to multipath propagation varies randomly with a Itayleigli distrihutiolt 

[16]. This kind of channel is commonly referred to as Rayleigh fadirig CIIMIII~*~S.  

When the signal falls below its statistical mean, a fade occurs that causes any 

digital data transmitted over the carrier to be corrupted with a noise btmt [Is]. 
For instance, a vehicle travels at 20 km/hr and sends data at 10 kbit/s with carrior 

frequency 850 MHz, the signal goes into a -15 dB fade at thc rate of approxirrlat,c:ly 

six times a second. The probability that the duration of this fade is at lcmt 8 tr~s 

is about 0.2. Thus, a block of 80 or more bits of data would he corruptd Ily noisc: 

once every 160 ms with a probability of 0.2. 

There are several techniques to minimize the effects of rnultipath fadir~g. Sirm 

the chance of having two deep fades from two uncorrelated signals at any instarm is 

rare, the effect of the fades can be reduced by combining them. This can he a c h i c w d  

by space and frequency diversity. The space diversity scheme uses two (or more) 
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Figure 1.1: The Multipath fading phenomenon 



antennas for receiving and/or transrnitti~lg thc same signal simnlt artrw.r~sly ovt3r A 

radio channel so that the individual signals reccivcd are urtcorrc~littcd. 'I'ltc* frc~cl~~cwc.y 

diversity scheme transmits the same signal sirnultar~eously over two or ntorc8 rilclio 

frequency channels which are located in t.he same frcqui*nry bald.  Although it l i i ~ ~  

been shown [31] that both space diversit.y arid frcqucricy divcmity can prervitl(- good 

improvement factors, their use is usually restricted tluc- to tllc. rcquirc*tiic-~~t, of t*>ct.ra 

hardware or due to  the inefficient use of the available frtyw~lc-y spt8ctrun~. 

In coded systems, one simpler technique which rtquircs tltiiior hnrdwarc chiuigcbs 

and is very robust to  burst error, is time tfiversi ty, or in! r.t.lcc~aing. If  all the sy ni tmls 

of a transmitted codeword are sent a t  witlcl y spacc~I i r t  tt~rv;tls and tlte. i ~rt,c*rvcwi I I ~  

spaces are filled by symbols of other codewords, the statistical clcpcnclc~ncy bc~twcw~ 

symbols can effectively be eliminated. An ir~terleavc~ (st-c 1:igurc I . 2 )  is a (Icwiw 

which can rearrange the ordering of the encoded syrnl~ols so  that two c.orisc~c.~~tiv<* 

, - symbols are separated by certain spaces (interleaving dcpth ) after intc*rlcavi ng. I tic:- 

oretically, if the interleaver is able to  break up all tlic burst errors cat~sctl t)y r ~ r u l  ti- 

path fading, the individual symbols received will havc inclcpcncferit fading gai ris arid 

the channel is called a memoryless channel or a fully inter Ivitved Itay lc-igli d i i ~ i ~  11i4. 

The larger the interleaving depth is, the longer burst of tmor the systcm car] t~ar~tllc:. 

However, a drawback for having a largc interleaving dcpth is the. tirne :lclay wlric-11 

increases directly with the interleaving depth. I:ortunatcly, therta is sosrttt tolewmc-t* 

for this in the mobile radio environment. In particular, for the case of sptr:ch trans- 

mission, if the total coding/decoding delay is below 60 nrs, it would not tw riot iccat~lc: 

to the listener [8]. Thus, decoder htffer and interleaving dcptft nti~st  f ~ :  lirnitc:tl so 

as t o  produce a t  most a 60 ms delay. The Pan-Europc*an Digital Celluhr system: 

Group Special Mobile (GSM), which will begin service in 1991, adopts intcrlcaving 



Figure 1.2: Block interleaver 



as the technique to  combat t h e  nlultipath fading in thc* systcni [35]. 

With the introduction of the interlca\w-' in tlic* rnchilc coniri~u~iic.atior~ systt*ri~, 

burst error caused by amplitude fades of duration grcXatcr t Iial; o w  syn~hol t i ~ ~ i e  call 

be dispersed evenly on each codeword. In order to rccovc.r t lit. origirial c.oclc*\vorcl, cwr- 

ror correction technique must be applied subsequently. ' l ' l ~ i g  ability to cietc~t mitl/or 

correct errors in traditional forward error correction (k'E(') cwdi ng is proviclcd I,$ t,lic* 

transmission of redundant bits, and thus, lowering the effectivc: irifornlatiorr rntc j w r  

transmission bandwidth. In mobile radio applications, w h - c  both handwidti; aticl 

power limitations are imposed si~nultaneously, it is often not possi hlc to just cmlploy 

either bandwidth efficient modulation techniques or powcar c4licicnt 1: tCC! ti*chri iqws 

to enhance the system throughput,. What is rcquirtd is thc i~itcgration o f  a Imd- 

width efficient modulation scheme with some form of I" IN; coding to caxploit tllc I)c*st, 

possible attributes of both. 

In 1982, Ungerboeck of IBM (Zurich) [32] proposccl a rlovel cotlirrg t.c~cItnic~rrc* 

which treated channel coding and modulation as an er~tity and acLicvt4 a signif- 

icant improvement in error performance without sacrificirlg data rate or rcquirir~g 

extra bandwidth. This technique is known as Trellis-cocicd Mod~lat~iorr. 'I'tict t m r ~  

"Trellisn is used because this scheme can be descriheti by a state transition (t.rr*llis) 

diagram similar to  the trellis diagrams of binary convolir tio~ial eotlr:s [:$:)I. I l l  t 11- 

itively, signal waveforms representing information sey ucrnces arc rrrost i rr~jwr viol~s 

to noise if they are very different from each other. Mathematically, this is equiv- 

alent t o  the statement that the signai sequences shouid have largi: distance: i r l  the 

'Interleaver must be used in conjunction with some kind of coding sctrernes. 

8 



Kuc1idf:arl sigr~al space. This leads to the most important new concept of TCM- 

to 11s: signal-set expansion to provide redundancy for coding, and to design coding 

and signal-mapping functions jointiy so as to maximize directly the minimum Eu- 

rlirfcan distance (free distance) hetween coded signal sequences (increase the noise 

ir~lnlunity). The resulting free distance of the coded sequences exceeds significantly 

the minimum distance between uilcoded modulation signals a t  the same information 

rate, hand width, and signal power. 

For example, consider the res~llts in [32] where he compared his 8-state 8-PSK 

Trellis codc with tincoded 4-PSK scheme. Both systems transmit two information 

hits per modulation interval. The free distance for uncoded 4-PSK is only 1.414 while 

the free distance for Trellis-coded 8-state 8-PSK is 2.141. Such an improvement in 

free distance resulted in code gain of 3.6 dB over uncoded 4-PSK in the additive 

white Gaussian noise channel (AWGN). 

'I'he most common application of TCM technique is in the new generation of 

modems being developed for the telephone channel. Prior t o  TCM, uncoded trans- 

snission a t  9.6 kbit/s over voiceband channels was considered to  be a practical limit 

for data modems. In 1954, a new generation of data modem which employed TCM 

along with other improvements in equalization and synchronization appeared on the 

rnarkct and was able to transmit data reliably over telephone lines a t  rates of 14.4 

kbit/s and higher. In addition, TChl was also adopted by the CCITT for use in new 

higti-speed voiceband modems 1331. Since the TCM improves the noise immunity 

of digital transmission systems without bandwidth expansion or reduction of data 

rate, it is idea! for application in the power and bandwidth limited mobile radio 

environment. 



-4 couple of years after Ungcrboeck had introducctf tilt  powt*r and band-width 

efficient TCM technique. there were considerable research activit it*s in s tudy  itig thc 

possibility of using TCM in mobile radio systems. ,SicLane et  a1 ['LI] stuclicd the 

usefulness of rate 213, Trellis-coded 8-PSK, with both colterent (PSK) and difft-r- 

ential detections (DPSK): for fast fading, shadowed mobile satellite cornnturric.iltiot1 

channels. Their interest was mainly in speech transmission a t  a hit rate of 21OO bit/s 

and a bit error rate of IW3.  .A similar study on interieaved Trellis-cocitvl 8-III'SK 

modulations transmitted over both Rayleigh and Rician fading channt*ls wits cforw 

by Edbauer [12]. More recently, Lce and Mctane [17] reprated the study rqmrtcd 

in [21] by replacing the block interleaver with a convolutional intcrltavcr. 'l'lic i d -  

vantage of using a convolutional interleavcr is that it requires only half then clclay 

for the same bit error performance relative to  the block intcrleavcr. 'i'lte cornrrton 

drawback in the  abote studies was that all the results wre detcrrnincd v ia  digital 

computer simulation. Although simulation is capable of reflecting tlrc actual systc*rrl 

performance, i t  is a time consuming process. In addition, sirnulaticin studit-s cannot 

provide much insight into the understanding of the heiiavior of the systtm. 

The first analytical result on Trellis-coded MPSK mocirtlatiun trans~rlittcd over 

fading channel was reported by Diusalar and Simon [8] where tlrcy appliwl t t ~ :  C t w -  

noff bound technique t o  obtain an upper bound on t h e  pairwise error prot~ability. 

By making use of the  pairwise error probability bound and the transfer ft~nction of 

the pair-state transition diagram, an upper hound of the average bit error jmtm 

bitity was obtained- Later on: Divsalar and Simon 191 u.wd a similar tcettrricjue ard 

extended their analysis to include Trel lis-coded multilevel differential p h a , ~  shift 

keying (MDPSK). However, the upper bounds obtained by IXvsalar and Sirnor1 

were too loose over the normal range of signal to noise ratios (SKR) of interest. 



f ~ r d r - ~ ,  thf. pair-st i, tt. transit ion diagram approach may he a tedious task when the 

ntm~imr of states irm rhf: trellis diagram becomes large. By using the characteristic 

ftirlctiorr arid the rtrmierical Gauss-Konrod integration rule. McKay 1201 was able 

to  evalttictt* an exart pairxiw error cwnt  probability for TCM in Rayleigh and Ri- 

riarr fading chanrmcls. 1Vitlr a simjilc modification to  the  standard transfer function 

tmmd, a rww asyrnptuticalf_v tight upper bound for t hc bit error prohabiXitx was de- 

rived. A Iihough t. be results were satisfactory, the numerical evaluation of this upper 

botxnd is quite corrrpjicihte. Bx employing the characteristic function and the residue 

thlrorcrrr, (:avers and Ho f5] obtained an exact and easily computed expression for 

the jmirwise error event probability of TCM operating in Rayleigh fading channels. 

'i'his expression is quite general which includes not only Trellis-coded MPSK, but 

alsc~ Trellis-coded Quadrature Amplitude Modulation (QA!if) with perfect chan- 

ncI state information (CSI), differential detection, or pilot tones. Accurate average 

bit error probabilities were obtained by considering onlx a small set of short error 

eviwts. Among all of these ard_t-tics! s i u d k ,  the assumption iif idea1 interleaving, 

or equivalently independent fading s e r e  used and which is usually impractical for 

real sys it-ms. 

En this thesis, we wiI1 study the error performance of "frellis-coded PSK mod- 

ttiations wit haut t ht assumption of ideal interleaving. An exact expression for the 

pairwise error event probability of in te r fea~ed~ coded PSK modulations is derived 

with the interliewing depth as one of the parameters. Both coherent as well as dif- 

fc*.rmtix! detect Eon are CGESI~PI-~A,. Gener-1!!'1;, .. s it- is four?,d that the Interfeaving 

depth is equal t o  one-fifi h t o  one-quarter the duration of a fade c ~ c l e  (defined as the 

rct.iprrwai of the  norndized Doppler frequency). the error performance is almost as 

giz0c.i as full interfmvimg. 



1.1.2 Alternate Detection Strategy in Mobile Radio Sys- 

tems 

Since interleaving is employed only in coded systcms, it is natural to ask: anD th:w 

other ways of enhancing error performance for both codcd and uncodcd systctrrls 

in correlated Rayleigh fading channels? Ry exploiting the statistics of the fading 

channels, two new detection schemes: multi ple-sy~nbol di ffcrential &tection I1 91 a d  

pilot symbol assisted modulations (PSAM) [26] were proposed. 

In the simplest terms. a multiple-symbol differential detector is a dc!cotfcr ttral 

makes a decision about a block of .'L' consecutive PSK symbols based 011 N + 1 

received samples. The first received sample is used to  provide a phase rcfrrcmcc for 

the entire block while the last sample is used to provide a reference for the next 

block. In the case when rV = 1, a conventional differtmtial dctccbor is t l ~ t  resull,. 

The larger the value of N, the better the error perforrnancc [l 11. 

A simulation study of the error performance of multiple-symbol diffcrcnc,:al de- 

tection of MPSK was done by Edbauer [12]. He found that relative to cohwer~t 

4-PSK, Trellis-coded &DPSK with a three-symbol detector achieves the sarnc cod- 

ing gain as Trellis-coded coherent &PSK in the AWGN charinel. Itecently, Divsalar 

and Simon [11] used the marimurn likelihood sequence estimation techniqlle to an- 

alyze the performance of multiple-symhol differential detection for uncodccl MI'SK 

signals in the -4WGX channel. They demonstrated that the  amount of improvc:rrtcmt 

over con~entional DPSK depends on the number of phases and the num bcr of ad- 

ditional symbol intervals added to the observation. %lorw~ver, wi th  the addi tiort of 

a few observation intervals, the error performance is approaching that of a coherent 



detector. 

The first investigation of multiple-symbol differential detection in the Rayleigh 

fading channel was shown in 1191 where two or more differential detectors were jointly 

utilized to take advantage of the redundancy introduced by the differential encoder. 

Although the performance evaluation was performed via computer simulations, they 

found that just by using a 1-bit and ra. 2-bit differential detector jointly, the perfor- 

mance of Trellis-coded PSI( schemes can be improved significantly. A more detailed 

study of multiple-symbol differential detection was reported in [18]. They considered 

t~7o disturbances ( AWGN and fading) separately and derived optimum decoders for 

each cases. Then, based on a linear combining approach, they combined the two 

decoders together and form the suboptimal decoder for the multiple-symbol detec- 

tion system. Error performance was evaluated by computer simulation. For the 

Trellis-coded 4-PSI( scheme, the proposed detection technique was able to eliminate 

the presence of error floors. 

In this thesis, we present the true optimal multiple symbol differential detector 

for uncoded PSK modulation transmitted over correlated Rayleigh fading channels 

with AWGN. An exact expression for the pairwise error event probability of this 

detector is derived. As shown later, for the bit error rate above low5, with only 

2 additional observation intervals, this decoding strategy practically eliminates the 

irreducible error floor associated with a conventional differential detector. In ad- 

dition, this decoding strategy is not very sensitive to the mismatch between the 

autocorrelation function of the channel fading process and the decoding metric. 

Beside considering multiple symbol differential detection, we also consider block 

demodulation for pilot symbol assisted modulations. PSAM was first proposed by 



Sampei and Sunaga in [26]. The concept of PSAhl is sinlilar to thc conventional pilot. 

tone estimator. Tne transmitter periodically inserts known symbols into t hc data 

sequence so that the receiver can make a good estimation of the channel state* bascci 

on the pilot symbols. Unlike the conventional pilot signaling rnethotis whew n pilot 

signal is transmitted along with the data signal, PSAhl does not require cornplcx 

analog signal processing, such as frequency shifting and filt.cring. A sirnulatiorl 

study of PSAM for 16QAM in the Rayleigh fading channel was rcported il l  [XI. 
The hardware implementation of a PSAM modem was also outlined in  [26]. F+orn 

both the software and hardware simulation results, it was confirmed that PSAM can 

effectively suppress the error floor [26]. An analytical study of PSAM was shown in 

[6] where closed form results for the bit error rate of BI'SK and 4-PSI(, and a tight 

upper bound for 16QAM were obtained. The main difference between tlie work 

presented in this thesis and the one reported in [6] is that the formcr usod block 

decoding strategy while the latter uses symbol by symbol detection. It is ol>scrvetl 

that block decoding of PSAhl is more appropriate i n  a fast fading environrnertt ( c~g .  

5% of the signaling rate). 

1.2 

The ma 

Contributions of The Thesis 

jor contributions of this thesis can he summarized as f c ~  

1. The derivation of the optimum block decoder for PSK symbols transmittcd 

over correlated Rayleigh fading channels. The structure of this optimal dr:cocler 

covers both multiple symbol-differential detection as well as PSAM. 



2. 'I'he derivation of an exact expression for the pairwise error event probability 

for the optimai detectors in (1). 

3. The derivation of an exact and easily computed expression for the pairwise er- 

ror event probability of interleaved coded PSK modulations transmitted over 

correlated Rayleigh fading channel, with the interleaving depth and the nor- 

mali zed Doppler frequency as parameters. 

1.3 Thesis Outline 

In Chapter 2, a general description of the PSK modulation systems operating in 

correlated Rayleigh fading channels is given. The assumptions made in the study 

are clearly stated. Following that, the optimum block decoder and the corresponding 

pairwise error event probability is derived. In Chapter 3, the error expressions for 

multiple-symbol differential detection and pilot symbol assisted block demodulation 

are presented as examples for the general analysis in Chapter 2. Analytical results 

are shown subsequent-ly. In Chapter 4, we will once again make use of the general 

results given in Chapter 2 to analyze the error performance of Trellis-coded PSK 

modulations with non-ideal interleaving. Results for both interleaved coded PSK 

modulations and DPSK modulations with Viterbi decoding are presented. Finally, 

conclusions of this study are drawn in Chapter 5. 



CHAPTER 2 

ANALYSIS OF PSK SIGNALS 

IN CORRELATED RAYLEIGH 

FADING CHANhTEL 

As stated in Chapter 1, one of our objectives is to study the error pcrforrnaric.~ of 

PSK modulations transmitted over Rayleigh fading channel without the assumpt,ion 

of independent fading. In this chapter, we will firstly define the system riotation a,nd 

then derive the optimum block decoding metric for PSK signals operatir~g i n  Y I I C I I  

an environment. Following that, an exact expression for the pairwise error cvcmt 

probability for the optimum decoder is derived. 



Simplifying Assumptions and Definitions 

In order to perform the analysis described in this thesis, a number of simplifying 

assumptions are made. First, the channel is assumed to be non-frequency selective 

fading channel (or flat fading channel) with AWGN. Second, the fading process is 

assumed to be slow enough that the channel complex gain is roughly constant over 

one symbol interval. Finally, the system is assumed to be able to perform perfect 

time synchronization. For coherent detection, perfect carrier frequency and phase 

recovery are also assumed. 

Throughout this thesis, E { e )  is used to represent a statistical average while (e )*  

is used to represent complex conjugate. ( e ) t  is used to represent the transpose of 

a matrix or a vector while (e)+ is used to represent the Hermitian transpose of a 

matrix. 

System Description 

The purpose of this chapter is to present a general mathematical analysis of PSK 

signals operating in correlated Rayleigh fading channel. Throughout this thesis, we 

will use the complex baseband notation. A comprehensive coverage of the relation- 

ship between baseband signal and bandpass signal can be found in Chapter 3 of 

['%I. 

Consider Figure 2.1, the input to the encoder is a sequence of binary digits and 

t.he output is a sequence of complex PSK symbols denoted by c = (el, . . . , c k ,  . . .). 

Note that the functions for the encoder, the processor G, and the processor H for 



Figure 2.1: General system model. 
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Table 2.1: The actual function of the Encoder, the processor G ,  and the processor 

H in Figure 2.1 for different detection schemes. 



different detection schemes arc listcd in 'I'ablt '2.1. For csample, t tit. cwcodt.r for 

PSAM is a binary to BPSli converter while for 111111t iple symbol tfiffcwntial cktc*c.tio~i, 

the encoder represents a binary to -1-I'SIi convcrtcr. The output sc~111<~11c.c* c of t,lw 

encoder is further processed by the processor G and products a traris~nit, scqwtrw 

s = (sly.- ,,sk,.. .). Like the ck's, the  sk7s are also complex F'SK symbols. I n  thc- 

case of PSAM, the processor G inserts pilot symtmls periodically illto t. he scqucticcb c 

while in multiple symbol differential detection, the processor C: er~cocfcs tht scyticwc-c- 

c differentially. On the other hand, for coded cc,ficrerit PSli, the proccssor (: just, 

acts as an interleaver while in coded IIPSIi, tile proccssor C not only pc~folmis 

interleaving, but also encodes the scrambled sequence diffcrt:~ltially; soc 'l'at~lc 2.1. 

The baseband equivalent of the transmit signal is 

where p(t) is the complex impulse response of a pulse shaping fi1tc.r tt~irt satisficbs 

the Nyquist's criterion of zero intersymbol interference [22], 1 /'I' is the symbol r;~tc$, 

and A is a constant. The transmitted symbol s k  i n  the interval k?' 5 1 < ( k  + I)'/' 

has the complex form 

sc = exp{jQk) (2.2) 

2111 - where Bk takes on one of the I uniformly distributed values 7!,; = 7; z = 0,1,. . . , 1- I 

around the unit circle. The energy of the p ( t )  is normalized such that 



In a mobile radio environment, there are usually a large number of diffuse scat- 

terers or reflectors which move randomly relative to  one another. The received signal 

is therefore, a linear combination cif many replicas of the original signal, each at- 

tcnrrated and phase shifted by a random amount (341. By the central limit theorem 

[21], the distribution of the sum of many independent random variables approaches 

the Gaussian distribution. Hence, the baseband equivalent of the received signal 

can he written as 

where g(t) is a zero mean, complex, Gaussian random process representing the 

Rayleigh fading in the channel, and nw(t) is the complex envelope of the channel's 

white Gaussian noise. The double-sided power spectral density (PSD) of nw(t) is 

No. For a mobile radio channel, the autocorrelation function of the fading process 

can be modeled as [16] 

where Jo is the Bessel function of order zero, fD is the maximum Doppler frequency 

(also referred as the fade rate in this study): 

speed o f vehicle 
fo = - 

transmission wavelength ' 



and 0; = R g ( 0 )  is the variance of the fading process g ( t ) .  \\'c a w ~ ~ u ~ *  tlw fading 

process g ( t )  is slow enough that g ( t )  remains roughly constant over mcll syru1)ol 

interval. This implies the received signal in (2.3) can be simplified to 

where g k  denotes the value of g ( t )  during the kth interval. 'I'ltc average 1wwt.r of t . 1 ~  

signal component of r ( t )  is thus 

The average received signal energy for each modulation syrnhol sent is thus 

If each modulation symbol carries m bits of information, tlten thc averagc: rcccivcd 

energy per bit is Eb = E,/rn. 

At the receiver side, the received signal is passed to a matched filtcsr with an 



impulse resporrsc equal to - t ) / f l .  The output of the filtered signal is sampled 

at the symt>ol rate and the salnples are used to derived two sequences: 

The sequence y contains the corrupted signals of the original dat.a while the sequence 

x contains information about the fading experienced by the data symbols. When 

fading is slow enough that it will not distort the shape of the transmittion pulse and 

hence produce no appreciable intersymbol interference, then, the sample yk can be 

written as [5] 

The uk's in (2.10) are complex Gaussian random variables which are called fading 

gains while the ?zk's are independent and identically distributed (iici) complex Gaus- 

sian random variables representing samples of the filtered channel noise. Each nk7s 

ha.. a zero mean and a unit variance. It shottld be pointed out that the uk's and 

nk's arc statistically independent. 

The fading gain sequence uk's in (2.10) are correlated, zero mean Gaussian ran- 

do111 variables. Depending on the system being studied, the uk's can be data depen- 

dent. In any case, we k t  



1 
~ ( i .  j )  = E(u,u;)  

7 (2.1 1 )  - 
denote the correlation between u; and u,. The cspression for Q(i, j) for tli!ft*rt-lit. 

systems will be derived in subsequent chapters. 

In addition to the sequence y, the processor I I  also provides a sccp~m~cc~ x -; 

(zl, .  . . , xhf)' that contains the channel state inforr~lation (('SI); sty 'IBblc 2 .  I .  'I'ltc- 

sequence length is ill and the xk's are dependent of t h  ctiannd t-stimator 11std. For 

example, in coded PSK with perfect CSI, A l  = N ,  and s k  = u k  whilt* in  rtwltiplc- 

symbol differential detection, M = I ,  and rt is the noisy phaw rcfcrcwcc at the* 

beginning of the  data block. In an? case, the xk's arc correlatcci, zero rncwi corriplc*~ 

Gaussian random variables. 

The received sequences x and y car1 kc written in matrix form as 

where 



and I is i i t f  M / M irientity ntatris. Since the variance of the nk3s is 1, the covariance 

rriatrix for  n i24j i.i 

1 
= -E(nn*) = 1: 

2 

whcrt I is  an 1%' / .tr identity matrix. AISO for simplicity, we shall use 

to rcpresc~it the covariafice matrices for the sequences x and u. In addition, 

1 
@, = - ~ { x u ' }  = Q& 

2 
(2.19) 

will be ttscci to represent the crass-covariance matrix of the sequences x and u. The 

clernents in the  &bow conriance matrices will be defined in subsequent chapters. 

Given any data sequence (el. q,. . . ,c5!. the covariance matrix of r is 



with 

and 

2.3 The Optimum Decoder 

Let the set of all possible rY-length data sequences he denoted by 

where Ek is the kth syrnboj in the sequence: e.  An optimum decoder will s c h %  

the sequence for which the a-posteriori probability P(Cly, x) is the largest. I f  a l l  

the sequences are sent with equal probability, this is cqiiivalent to choosir~g thc 

sequence with the largest conditional probability density fiirtctiorl p(yfS,x). ' I ' h  

joint probability density function of the xk's and the yk7s,  given i., is 

where r is defined in 62-12) and the joint probability density function of t h  z k 7 s  i u  



Note that in this thesis, the notation I! ( 1  is used to represent the determinant of 

a matrix. The conditional probability density function p(ylC, x )  is, therefore, 

Although the decoding expression in (2.26) looks rather complicate, it is possible 

to reduce it into a simpler form; see Appendix A. The resulting optimum decoding 

metric is of the form: 

where 

and +:,, is defined in (2.22). 



2.4 The Pairwise Error Event Probability 

After obtaining the optimum decoding metric, we arc now in a position to tlcrivt* 

the pairwise error event probability. Let the transmitted data scqiicnce be c.  'I'hcn, 

according to  (2.27), the decoder will make a wrong decision if  for somc sc8q~tcwco i3, 

the  random variable 

is less than zero. The probability that D is less than zero is known as tllc pairwisct 

error event probability. Note that r is the column vector defined in (2.12) a n d  F is 

the following matrix: 

0 b t a ~ t  
I?= ( 

Aab C a ~ t  - CaCt 

with 

A = C - C .  (2.32) 

The random variable D in (2.30) is a quadratic form of dr:pendent Gaussian vari- 

ates. Following the procedures outlined in Appendix 13: the rarldom variable I) car1 

be transformed into a sum of independent quadratic forrns of cornplcx Chussiarl 

variates; ix.: 



k 

As showed in Appendix B, the qk7s are iid complex Gaussian variables each having a 

zero mean and a unit variance and Ab,k's are the eigenvalues of the matrix B where 

1 

As pointed out in Appendix B, A; is a diagonal matrix whose diagonal elements are 

the square root of the eigenvalues of the matrix a,,, U, is a unitary matrix whose 
1 1  

columns are orthonormal and (U,A~)(A?U:) = 8,. Using the results from [5] ,  

it is easy to calculate P(c  -+ e ) ,  the pairwise error event probability. Let p(D) be 

the probability density function of the random variable D. Then, the characteristic 

function, or the two-sided Laplace Transform 1271 of p(D) is 

where 

and the region of convergence is the vertical strip enclosing the jw axis bounded 

by the closest poles on either sides. In addition, it should be pointed out that if 

is zero, the term a is equal to unity. From 151, the pairwise error probability 
s-Pk 



is equal to the sum of the residues of the function <Pn(s)/.< calculated at tllc polcs 

located in the right-half of the complex s-plane, i x . ,  

This expression for the pairwise error event probability can be easily coniputc(1, 

even in the case of higher order poles, since there exists a recursive prosedun: for 

calculating the different derivatives of the characteristic function. 

The key elements in the expression (2.36) are the eigenvalues, tlie &'s of 1 . 1 1 ~  

matrix B in (2.33). However, in order to find the Xb,k'~, a large nuni1)c.r of niatrix 

calculations and decompositions have to be performed; see Appendix 13. 111 fact, 

there is a much simpler way to find the X b , k ' ~ .  AS found in Appendix C, the X h , k ' ~  

are also the eigenvalues of the matrix 

Consequently, a lot of matrix eigenvalue calculations can be avoidctl i 11 co~n pi1 t i  r~g 

the poles pk3s in (2.34). 

In summary, the pairwise error event probability for a PSK scquericc: trarisrriitt,c:c1 

over a correlated Rayleigh fading channel can be evaluated as follows: 

1. Express the random variable D in the form rtF'r where r is a coli~riiri vcctor 

which contains the correlated random variables xk 's  a n d  yk's. 'The prc)Lability 

that D 5 0 is the pairwise error event probability. It sho~dd he pointed 



out that pairwise error event probability is obtained by assuming only two 

codewords are present and different pairwise error events are dependent. 

2. Find the covariance matrix of r. 

3. Find the eigenvalues of the matrix QerrF in (2.37), or of the matrix B in (2.33). 

4. Substitute those eigenvalues found in step 3 into (2.34) - (2.36) to calculate 

the error event probability. 

In nearly all applications, we are interested in the overall bit error probability of the 

communication systems rather than the individual pairwise error event probability. 

A good approximation of the bit error probability can be obtained by summing a 

small set of pairwise error probabilities. This will be shown in subsequent chapters. 

There are two points we want the readers to take notice of. First, the general 

form of the decoder in (2.27) implies the receiver has prior knowledge about the 

autocorrelation function of the fading process. Second, although the pairwise error 

probability analysis has been derived for an optimum decoder, our analysis still 

applies to non-optimal decoders as long as the decoding metric results in a Hermitian 

matrix F, like the one in (2.31). 

2.5 Summary 

In this chapter, we have presented detailed procedures for the performance analysis 

of PSK signals transmitted over correlated Rayleigh fading channels. The optimal 

decoding metric is derived along with the expression for the pairwise error event 



probability. The applications of the analysis devtloped in this chapter will he g iwn  

as examples in subsequent chapters. 



CHAPTER 3 

PERFORMANCE OF 

DECODING OF PSK 

BLOCK 

SIGNALS 

In this chapter, we will present two applications to illustrate the general theory 

that has been developed in Chapter 2. The analysis of the uncoded PSK signals 

with multiple-symbol differential detection will be discussed in the first part. The 

analysis of uncoded BPSK signals with pilot symbol assisted demodulation will be 

shown in the second part. The optimum decoders and the pairwise error event prob- 

abilities will be obtained for both cases. Results and discussions will be presented 

subsequently. 



3.1 Multiple-symbol Differential Detection of PSK 

Signals 

In a conventional differential detector, the previous rccrived sample is uscd as at1 

estimate of the channel complex gain in the current interval. This works finc as lorig 

as fading is relatively slow. As shown in [5], the irreducible error floor associated 

with conventional differential detection is proportional to (a fDT)2 whcrc fr17' is tile 

normalized Doppler frequency. Intuitively, more accurate cha~inel state inforrrmt ion 

can be obtained by using more than one previously received samples. This Imds 

us to the concept of multiple symbol differential detection. 111 simplest ternis, ii 

multiple-symbol differential detectm is a decoder that makes a decision ahout a 

block of N consecutive PSK symbols based on N + 1 received sarnplcs. W hcn N 

is equal to 1, we have a conventional differential detector. Ry making ~tse of tllc 

results developed in Chapter 2, we can derive the optimum decoding rl~etric arid t , t ~ c b  

pairwise error event probability for multiple-sysnbol differential detection of I'SK 
r 1  signals transmitted over correlated Rayleigh fading channels. I he nusrictric-al rcw 1 ts  

for uncoded 4-DPSK will be presented subsequently. 

3.1.1 System Description 

Using the notation in section 2.2, the transmitted I'SK symbol in  the kL" signaling 

interval ji-e. kT < t < (k + 1)T, T being the symbol duratior~) can bc cxprcsscd in 

complex form as: 



where Ok is the transmitted signal phase and will take on one of the I values from the 

25ri - set {T;  2 = 0,1,. . . , I - 1). Due to the differential encoding process, the sequence 

s = ( s ~ ,  ~ 2 , .  . . , sN) is re;ated to the message sequence c = (q, ca, . . . , cN) by the 

fc!lowing: 

where 

and so is the reference symbol for the differential encoding process. Like the sk's, the 

ck's and consequently the zk's are complex phasors taken from the set { e z p ( j y ) ;  i = 

G , l , . - . , I -  1). 

The complex PSK symbols sk's are transmitted over a non-frequency selective 

Rayleigh fading channel with additive white Gaussian noise. After filtering and 

sampling, the received signal in the kfh  interval is yk = ukck + n k ,  k = 1,. . . , N; (see 

(2. lo)), where 

Note that gk is the channel complex gain in the kth interval and uk's are complex 

Gaussian random variables with variance: 



where 0; is shown in (2.7). As before, n k  represents a filtcrrd Gaussian noiw sa~lrple 

and the nt's are a set of iid variables with a variance of a: = 2 h ' { l r r k ( ' )  = 1. rl'l~c* 

vector u = (ul,  . . . , uN)t  can be writ ten as 

where 

and 

t 
g = (91,. . - JN) . 

The covariance matrix @,,, in (2.18) becomes 

where 



and 

see (2.4) and (2.7). Now substituting the above expression for a,, into (2.21) 

implies 

where 

and tllc rk5s are defined in (3.3). 

Since differential encoding/det.ection is used, we are using the received sample 
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corresponding to the initial transmitted phase so to provide the CSI. A s  a result,, 

the length of the sequence x in (2.9) is equal to 1 (M = 1 ) and 

X I  = lioSo + no. 

This implies that the matrix @, in (2.19) becomes: 

where 

and 

Substituting cP, into (2.23) implies 

where z was defined in (3.13). As mentioned in Chapter 2, +xy = +:,. l~ir~ally, t h  

term 91, in (2.17) becomes 



3.1.2 The Optimum Decoder 

'I trc* rt=ccivtd sccprencc* iy l .  yz.. . . . ys) as well as XI are passed to a multiple-symbol 

4 i fftwu t ial rictector implerrrt*rttc*d as a l f  aximum Like1 iimod Sequence Estimator 

f MI,Sl;f. The function of the  MLSE is to select from all the I N  possible nT-length 

S ~ V ~ ~ T C S  tlw rnmt likely rirtssage sequence. This is accomplished by finding the 

wcjrtcmcc. k = (&&. . . . , c>-) for which the conditional probability density function 

p(ylrr. 2) is the largm!, y Ixirtg the vector defined earlier in (2.5). Using the results 

frorrt section 3.1.1 as n.4 as those from Section 2.2, we have the following decoding 

m w t  ric 

.,. 
wtrtrc Z and b are: 

apkd Sk = n:=, tj. The d ~ d e r  r i l l  select the sequence E = . . . ei-) whose 

metric is the smallmt. in using the metric in (3.20). the assumption of a prior 

tnowleafge about the aurocorrelation function of the fading process must be made. 



This can be done in practice by estimating the autocorrelation function froni a kriowrl 

training sequence sent during the start-up phase of a comnlunicatiort stwiori, anti 

L IIlCC' by continuously updating these estimates during thc~ data transniission pliztsc. '4' 

estimation errors are sometimes unavoidable (especially during the acccleratiorl or 

deceleration of the vehicle). we will examine in thc following sections t l i c *  c r r o s  

performance of a detector whose decoding metric is riot. pcrfcctly ~itatc-hcd t o  t11c 

channel statistics. 

- 
In the case of static fading. i.e. when f D l l  = 0, the rnatriccs 5 and b in (3.21) ancl 

(3.22) becomes f - fJ  and If' respectively, where f = $(O, 0) / (1 + ( 1  + IV)~(O, O)),  

f' = e, and J and 1 are -.\ x xN and X x 1 m a t r i w  allosc rntrirs arc all ~cl~tid 

to  unity; see Appendix D. Consequently, the optirnurn dt:coding nwtric from (3.20) 

becomes 

or equivalently 

In othenvords, for very slow fading; the furlction of optimttm dccurier is to sc*lcct thc: 

sequence (zl, - . - , zs) which has the highest correlatiorl with the rect:ivcd sryucSlic.ct. 

It should be pointed out that (3.25) is also the optirrl~lrr~ cfccoding rrrwtric for ttic: 

XWGX ciranneI; see [i i j and [3Gf. 



3.1.3 The Error Performance 

Given the actual rnessage sequence is c = (cl,. . . , c N ) ,  the decoder will make a wrong 

decision if for some sequence E = (6, .  . . , &), the random variable D in (2.30) is 

less than zero. As shown in Section 2.4, we can follow the four steps developed on 

page 31 to obtain the pairwise error event probability. Note that the matrix F in 

(2.31) bccomes: 

where i and 6 were defined in (3.21) and (3.22) and 

We will make use of the exact pairwise error event probability expression in 

(2.36) to evaluate the overall bit error probability. Results for uncoded 4-DPSK, 

with the Doppler frequency of the Rayleigh fading channel and the word length 

of t . 1 ~  multiple-symbol differential detector as parameters, will be presented and 

cornpared with that of a perfect coherent detector. 

In analyzing the bit error performance of an uncoded MPSK system, we note 

that the message sequence c = (cl, . . . . c , ~ )  is obtained by mapping binary n-tuples, 

n = l o g 2 ( l ) .  to hIPSK ss_vntho!s using Gray coding. An example using 4-PSK is 

shown in Figure 3.1. We also note that the bit error probability is independent of 

the xrlessage sequence sent: see Appendix E. As a result, we assume c is the all zero- 

phase sequence, i-e-. c = (1,. . . - 1 ) .  Consequently, all the elements in the sequence 



Figure 3.1: The CPSK constellation and Gray mapping. The magnitude oi each 

signal vector is equal to unity. 



(zl , . . . , z N )  are equal to unity; see (3.3). 

An upperbound on the hit error probability can be obtained by taking the union 

hauncl of the pairwise error event probabilities. For a multiple-symbol detector with 

a word length equal to N ,  there are IN - 1 error events to consider. Clearly, the 

computational complexity required to obtain the union bound increases dramatically 

as N increases. It is shown in Ill] that for an AWGN channel, an accurate estimate 

of the overall hit error probability can be obtained by considering only the set of most 

likely (or dominant) error events. These most likely error events are determined by 

those sequences (&, . . . , z>) which have the highest correlation with the sequence 

(zl , .  . . , zN), where the correlation is defined as 

As mentioned above, we assumed all the zk7s are equal to  unity. Subsequently, (3.27) 

becomes 

This expression indicates that there are 2(N + 1) sequences that give the same largest 

jr and they are denoted by: 

Note that i(') = ( e l Z " / '  ... - ,  e 1 2 " / I ) , i ( Z )  = (e-j2r/I e-j2s/I 
, - - - 7  ), and each of the re- 

mai~iing ?(') contains one and onlj- one symbol of the form ej**"ll and the remaining 

N - 1 symbols are all equal to unity. Since a static fading channel ( f D T  .-5 0) is 



equivalent to an AIVGX channel throughout the duration of cacti block of 11' sytn- 

bols, consequently, the most likely error events for t hcsc t w o  channels arc idct~ t i t - i d .  

As a matter of fact, we have shown earlier that the optimurri clecoding rnc-tric is ttie 

same for both the AWGN and the static fading channel; see ~ection 3.1.2. 111 gm- 

eral, we believe that as long as jDT is relativciy small, t h  most !ikt4y cbrror cwct~ts 

in a fading channel are identical to those in the AWGN cl~anncl. (briscq~tc~itly, 

only those error events ment.ioned above will be includecl i r i  the bit trror probnltility 

analysis. 

Let the erroneous message sequence corrcsponding to i(') = (fl( ' ) ,  . . . , r b ( ' ) )  I)c% 

k denoted by E(' )  = (i('), . . . , c>('))  where &('I = nJz1 c,(').  flc;causch of tlic use of 

differential encoding, 2N - 2 of these erroncoils message- sequencc>s havc t11c syt11l)ol 

ejzxlr (or e-j2=/') followed immediately by c-J2"f' (or cJ2"/') and tlie rwt of t . h t h  

symbols in these sequences are all equal to unity. The rcmairring 4 scqimiccs arc8 

denoted by: c ( ' )  = (ej2"l', 1, .  . . , I), e(2) = (e-J2"/', 1 , .  . . , l ) ,  i?') = (1,. . . , 1 , ~ J ~ T / [  1 ,  

and ld4) = ( I , .  . . , 1, e - ~ ~ ~ / ' ) .  Since Gray coding is usrd to map bimry n-tuples to 

MPSK symbols, this implies the Hamming distance bctwiwn the hir~ary cylivalcv~t, 

of c and is 

Consequently, an approximation to the bit error probability of a rr~ultil,le-syrri1)oI 

differentia! detector in a Rayieigh fading channel is: 



Since the enumeration of the erroneous messages is different for a conventional dif- 

ferential detector, the above equation is only used when llr > 1. However, it can be 

shown that for a conventional differential detector (N = I), the bit error probability 

is upperbound by [ 5 ] :  

where 

and 4( i ,  j )  is the autocorrelation function defined in (3.11). Note that (3.30) can 

also be uszd to determine the bit error probability of uncoded MPSK with perfect 

coherent detection. In that case, simply replace the term r in (3.30) by the signal- 

to-noise ration E,/N,; see [5]. 

\Ne show in Figure 3.2 the analytical results for the error performance of uncoded 

I-DPSK in a static Rayleigh fading channel ( fDT = 0). Also showed is the result 

for 4-PSK with perfect coherent dctectio~. It is observed that the original 3 db 

gap between coherent and conventional differential detection can be narrowed to 2 

dH by using a multiple-symbol differential detector with a word length, N, equal 

to 5. Another 1 dB gain can bc achieved if N is increased to 10. The performa.nce 

improvelnent of these two detectors, however, are achieved at the expense of higher 

decoding corn plexi ties. Note that in general, a multiple-symbol differential detector 

requires to perform I" metric computations to decode hrlog2 (I) bits of information. 



Figure 3.2: Error performance of 4-PSK in a static Rayleigh fading channel. The 

parameter N is word length used by the multiple-symbol differential detector. N = 1 

corresponds to conventional differential detection. 



7'he scenario for which multiple-symbol differential detection is most useful is 

when the moMe unit is traveling at very high speed. As mentioned earlier, the 

maximum Doppler frequency is linearly proportional to the speed of the vehicle. We 

show in Figure 3.3 the error performance of 4-PSK when the normalized Doppler 

frequency1 is equal to 0.01 (corresponds roughly to the case in which the carrier 

frerj~lency is 900 MHz, the vehicle speed is 60 miles/hour, and the signaling rate is 

8 Ksymbol/s). It is observed from Figure 3.3 that for the bit error rate above 

the irreducible error floor associated with the conventional differential detector can 

bc eliminated by using a multiple-symbol detector with N as small as 2. When 

N = 3, the gap between differential and coherent detection is roughly 4 dB at a bit 

crror rate of lo-? If complexity is not an issue, then a differential detector with 

N = 10 can be used to narrow the gap further down to 2 dB. Similar observations 

are made for a Doppler frequency of 0.03. It is shown in Figure 3.4 that for this 

Doppler frequency, a detector with N = 2 can practically eliminate the irreducible 

error floor associated with a conventional differential detector at the bit error rate 

above lo-'. When the word length is N = 5, the gap between coherent detection 

arid differential detection is about 4 dB at an error probability of Another dB 

gain can be achieved by using a detector with N = 10. 

ti.ecall that the analytical results showed in Figure 3.2 - 3.4 are obtained by 

assuming the bit error probability of a multiple-symbol detector is dominated by 

those sequences (sly.. . , zk), which have the highest correlation with the sequence 

( z * , .  . . , zN). TO check the validity of this assumption, we show also in Figure 3.4 the 

sin~ulation results for the N = 3 detector. It is observed that the simulation results 

' SormaIized by signaiing rate, i.e., nfarimumDoppler Signaling ra:e frequency. 



Figure 3.3: Enor performance of 4-PSK in a Riryleigh fading ekannei with a Doppler 

frequency of 0.01. 



Figure 3.4: Error performance of 4-PSK in a Rayleigh fading channel with a Doppler 

frequency of 0.03. The circles are the simulation results for the ,V = 3 detector. 



agree very well with the analytical results at large sigr~al-to-rloise ratios (tyual to or 

above 20 dB). At  lower SKR, the assunlption appears to be slightiy pcssiniist.ic. 

As mentioned in Section 3.1.2, a practical implcrnentation of the niult.i~~lc-sy~ilhol 

differential detector requires the receiver to estimate from the reccivd sarnplcs ttic 

autocorrelation function of the channel fading process. Clearly, cstirnatiorr errors 

are unavoidable and this may result in a decoding rnctric that is niis~~iatc.hed to 

the channel statistics. FtTe show in Figure 3.5 the error perforrriarice of a. N = 3 

detector that uses a decoding metric which is optinl~inl for fur = 0.01 wt~ilr tltc* 

actual Doppler frequency has a different value. Two cases arc- col~sictcrtd: 

1. the actual Doppler frequency is 0 (static fading), 

2. the actual Doppler frequency is 0.02. 

It is observed t.hat the maxirnum degradation caused by a ~i~isrnatcf~ twtwwri t . 1 ~ -  

decoding metric and the channel stati ;tics is about 2 dl3 at a n  error pro!)at)ili ty o f  

and this is for the case when the acttial Doppler frc~luency is zc3ro wlrilc tttct 

estimated Doppler frequency is 6.01. The effect of the rnismatxft is rathc~r r r l i r l i r t i i i l  

if the actual Doppler frequency is 0.02. It should hr poir~ted orit that tlw r w ~ l t ~  i n  

Figure 3.5 are obtained by replacing the matrix F in stcy> 3 of page 31 hy the: olrc 

derived from the estimated Doppler frequency. On the othcr h a d ,  tht: matrix a,, 
in step 3 of page 31 is left unchanged and it still reprcwnts thct covariarm. rriatrix 

of the received samples associated with the actual Iloppler frcqimicy. Moreovcv, 

Figure 3.5 is optimistic in the sense that the shape of thr: autocorrelaticm !'~~nc:t.ior~ 

of the fading process (in this case is the Bessel functior. of ordcr zcro, see: (3.1 1 ) )  is 

known to  the receiver. If there is also 3 mismatch in the sfiapc of the autucorrclatiort 



Figure 3.5: Error performance of a multiple-symbol differentid detector whose de- 

coding metric is mismatched to the channel statistics. 



function, more degradation in the  error perfornlance will he rcsult,cd. 

3.2 Pilot Symbol Assisted Demodulation of un- 

coded BPSK 

In this section, we will use the general theory outlined in C'hapter 2 to carry ou t  tttc 

analysis for uncoded BPSK signals with pilot syntol assisted dcrnod~~lat ioti ( I'SA M) 

in correlated Rayleigh fading channcl. I,'niikts [GI, the artalysis sh<,wri hmc is I,;tscd 

on a block decoding strategy rather than symbo! Ity sy~tibol cfcfc~rtitiri. 'l'fw <rrtlc.cbpt 

of PSAki is to insert a known syrnhof perioflicnlly into tlits trcznsrrlitt.c~l scxclrwrlc.cB so 

that the fading distort ion can he estimated at t hc rcw4vr.r. Siilcc* t h r e  are rtcitli t,ionitl 

pilot symbols being transrnirted. the t:jfective ban ti wid ti^ will hcb ri~luccd. 1)tyitc 

this throughput drawback, PSShl does nut cliatrgc tlw trartsmitttd p~ilse sfiapc: [ti] 

and the processing at transmitter and receiver is nlso sirnplvr t11at1 with t .or~vc~i~tiod 

pilot tone. 

3.2.1 System Description 

The frame structure for a PSAM system is shuwn in 1;Ig11rr: :%ti rvttc.rr* 1 pilot syil~\ml 

is added to every AF data symbols. Since block dernodulatic.m is us~d in this artalysis. 

The decision on any block of 3' data symllols will be tzascil or! the ,Af n:r:r:i vt-:I sam ylw 

for that block. as wefl as on the 



Fading 
gain 

Figure 3.e Transmitted frame structure of PSAM 



received pilot s_vrnhoIs surrourttfing that block. 'I'liis clt*cotlirtg st rat<-ge;?. is vc8rv si tttilar 

to the multiple-s_vrnhol ciiffcrcntial dctcction i n  previo~ls wcti~ttt, t ~ c - t - i ) t  that i t 1  t I I C  

multiple-symbol differential detcctiori systcw. tlir c 4 I < ~ t i v t *  "pilot" syrnlroi is t t ~  

symbol at tile end of the previous block. :Is a rcwlt , r1111l t ip l r~-s~ t~~hoI  t t i f f c w ~ l t i i r l  

detection can be viewed as a pilot syrnhol assisted rr~otfulaticm t c ~ c + n i t p ~  wi th  t , i t c a  

"pilot" symbol added wit h o ~ t  t,andwitf t h i*symision. 

To start our anal_\-sis. we use c = ( r , ,  . . . , c . , v )  autl p = ( p , ,  . . . . / I \ , )  1 0  c i c v ~ o t c .  

the data symbols and thc piiot s y i r ~ i d c  I cspr~tivc4y. Arlopf irtg t lw itoi itt icm in 

Section 2.2, the complex rcceiwti i,awl>and data signal at t = k'l' is ilc.t~c,tc~d hy 

yk = ukck + n k  in ('2.10) and the covarianw matrix eyy for the rardolrl v t ~ t o r  y is 

ir f i k  5 arcB: defined in (2.21). For PS:f>l. tf ' 

where gk once again represents the clmnncl t-or~lpft*s gitilt i t i  t . 1 1 ~  k"' iirtc.rvitl. f ty 

comparing (3.33) with (3.4). it is not difficult to stvg t ttat t fw c-c,val-i;rrrc-c. rrtitt,rix of 

the ukYs is 

*,* = *22 

idere *22 was defined in f 3-10). 

On the other handS the received pilot synhols art:: 



Xk = p k " t ( k - ~ ) ( , y + ~ )  $ ek, k = 1.2: - . - , hf (3.35) 

wlwrc- K is defined in (3.32) ar~d the ek's are iid zero mean complex Gaussian random 

variahks with a unit variance. Yow, the random vector x = (xl,. . . , x.~,)'  in (2.9) 

can tw writtcn in matrix form as 



with N f  = N + 1 and d ( i ,  j )  was defined in (3.11). As for the matrix ip,,, i l l  ( 2 .  I!)), 

we have 

1 a,,, = 7 ~ ( ( P v  + e)u 1 = Pip,,, (3.42) - 
where a,, is a matrix whosc* ( i ,  j ) t h  elernwf,. ( I c ~ I o ~ c ~  hy $,,,(i, j )  is 

Recall the term E, is the received signal mc:rgy jwr syrt~bol of a I I O I ~  PSAM 

detection system. Since a pilot symbol is insertcd inlo (-wry N tliitit syr~ll)ols. I f  tllc* 

same amount of energy is used in a PSAM systt:m, tlw c-ffcv-tiw data sigt~itl cwclrgy 

is only (&)E,. Therefore, for PSAM system, the rffwtivc: sigr~al to rtoisc* ratio 

should be 



3.2.2 The Optimum Decoder 

For I'SAM, the decoding metric can he obtained by putting the @,, in (3.42) and 

a;, = *vv + I 
into (2.28) and (2.29) and then, substituting 

a = + I - @uv+~;l@,]-', 

and 

t 
b = +uv+;<l P , (3.47) 

into (2.27). The same expressions, when substituted into (2.31) gives us the F 

matrix. Once we have a,, and F, we can then proceed to calcu!ate the pairwise 

error cvcnt probability as outlined in page 31. 

3.23 The Error Performance 

in this sub-section, we will consider the error performance of uncoded BPSK signals 

with PS:IJI. To find an approximation on the average bit error probability of the 



PSAhl system. we rnust first find t h e  pairwise tXrror ~mhability. As bcforc-. ivc can 

follow the four steps developed in Section 2.4 (page 31) to calculatr~ tiit .  pairwisc. 

error probability. The bit error rate for u~icodtd UPSIi, wit 11 ttic I)opplt*r frcyr~cric-y 

of the Rayleigh fading channel, the length of data I h c k  :V, and thc Ic~igtli of pilot 

symbols sequence df as parameters. will be pt c~mit,c.d and m ~ t l p a r ( ~ I  with tl~ilt. of a 

perfect coherent detector. 

As in the multiple-symbol differential tfetcction analysis, an approxirnatioti of the 

bit error probahili ty can be obtained by summing a set of d o ~ n  i r m i  t, p i  rwisc cwar 

event probabilities. in otI~erwords, we arc only intcwstcd i n  tliost~ crror cvcwts wliicli 

the data sequence c = (q, . . . , c . ~ )  and the erroncoils scqrtc*ric~ t = , . . . , c.N) I ~ i l ~ c b  

the highest correlation. For a PStZhl systern, thv c-orrc+itiorl coc.fIicirmt is ( I t 4 1 1 o < l  as 

(see (3.27) as well): 

Without loss of generality, the data synibols c,'s arcs ass~~rncd to tw I .  'I'llis i1111,lic.s 

that the correlation coefficient can ttirtn hc writtcn as 

Therefore: for BPSK signaling, there are ,iL' erroncwus scvl~~c~~c:t.s i. = ( k l ,  . . . , &) 

such that the correiation coefficient in (3.49) is mzximizrd. 'I'hosc~ arcs t hc: sry tlcWrms 

with onlv one symbol 6 equals to -1 and the rest of t t i c .  symhcJs i r ~  iiw squcriccs 

are 211 equal t o  2 .  

For comparison purpose, we include tht: hit error proi)al)ility of c:c~trt:rcr~t Ijf'SK 
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i n  all Figures. We show in Figure 3.7 the error performance of uncoded BPSK with 

the length of data block equal to 6, and the length of pilot sequence equal to 11. 

Thc performance for the block PSAM decoder agrees very well with the symbol by 

syrnbol detector in [6]. However, the block decoder performs slightly better than the 

syrnbol by syrnbol detector in  fast fading channels. For example. when the fade rate 

equals to 0.05, the gap betweerr block decoding PSAhl and coherent detection is only 

1.5 (113 at a bit error rate of 10-"hile the gap for the symbol by symbol decoding 

I'SAM shown in [6f is 3 dB. This improvement implies that block decoding is more 

appropriate in fast fading environment. Figure 3.8 and Figure 3.9 show the error 

performance at a fade rate equal to 0.05 with different data length 1V and different 

ie~tgtlls of pilot sequence M as parameters. We observe that as the length of the 

data block i~:crcases, the bit error rate decreases subsequently. This is in agreement 

wit t t  the report in [6] and [26]. The reason being that as the length of the data block 

increases, the effective signal energy increases; see (3.44). However, we cannot keep 

increasing the size of the data block in order to get better performance. Since the 

pilot sy~nt>ol spacing depends on the data block size, the larger block size means the 

pilot synlbols separate further apart and hence, their correlation is less significant. 

Following this fine of reasoning and observation from Figure 3.8 and 3.9, the number 

of pilot symbols used for decoding is less important for larger data block. In other 

worcis, the difference between using 4 pilot symbols and 20 pilot symbols for decoding 

a 6 s_vnibols data block is very small: see Figure 3.9. Fewer pilot symbols used for 

decoding irxiply less delax is required for filling up the pilot symbols buffer. 



SIGNAL-TO-NOISE RATIO, Eb/EOo (dB) 
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Figure 3.7: Error performance of uricoded BPSK with PSAM and M = I I ,  N - I; 
fDT = O , O . O l ,  0.05. 
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Figure 3.8: Error performance of uncoded BPSK with PSAM and N = 1, fDT = 

0.05 
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Figure 3.9: Error performance of uncoded BPSK with PSAM and N = 6, fDT = 

0.05 



3.3 Summary 

111 tfli:i chapter, two examples have been used to demonstrate the general analysis 

presenttd in Chapter 2. In the first part, the p a h i s e  error event probability of 

uric-odd I'SK signals with multiple-sy mbol dirkrential detection has been derived 

from the optirrium decoder. Error performance at  different fade rates have been 

13rcsrm~1:d. For the bit error rate above it is found that multiple-symbol de- 

coding strategy can remove t h e  error floor associated with conventional symbol by 

syrnbol differential decoding. In the second part, the pairwise error event probability 

of uncoded BPSK signals with pilot symbol assisted modulation (PSAM) has been 

t1t:vclopt~l. Results for different fade rate, data block size N and length of pilot 

syrnhol sequence h l  are presented. We observed that in fast fading channels, the 

tdock decoder used in this thesis for PSAM performs slightly better that the symbol 

by syrnbol detector reported in [6]. 



CHAPTER 4 

PERFORMANCE OF 

INTERLEAVED TCNI IN 

CORRELATED RAYLEIGH 

FADING CHANNELS 

We consider in this chapter the pt~rfor:na~lcc~ of int(~lc~itvc4, 'l'rc*llis c . o t i c ~ l  I'SIi sigr~als 

transmitted over flat Rayleigh fading charrrrels. I!r~likc* [.i], [&I ,  [!)I, wl(1 [I'], I , / I ( .  sys- 

r 1 terns consider here have finite interleaving depth. I Iiis ir:~i~lic*s afttsr dr--ir~t,(-rl(*i~vi~~g, 

the fading gains experienced by the difftwnf trar1srrlittc4 syrrrt,ols arc. c.orrc4atc4. 

We will study the prwr pcsforrnancc of various 'I'(JI.4 sc.hi*rrlt.s wit,h r . f ~ c .  irrt t . i  l m v  

ing depth as a parameter. First, we will make uur: of tit(. gc*nc:ral t hcwy r l c . ~ : c * l o j ~ c - c l  

in Chapter 2 to analyze the interleavcxf, cotierl f'SK signals wit t~ j w r k c  t ( 5 1 .  A 1 1  

exact expression for the pair~sise error event prot~ahi l i  ty of i nttdeave4, c w l ~ ( 1  i.o- 



fic:re;!t I'SK signals is otztairietf. Second, we will study the error performance of 

interleaved, coded DPSK signals. However, the optimum decoding metric in (2.27) 

carinot be directly adopted. The redson being that the metric in (2.27) is used for 

block dccoding and is rmt directly applicable in the Viterbi decoding of TCM. As a 

r ~ s u l t ,  wc: use a sui,optirriaI tfecvding metric which was employed in [9]. Although 

the decoclirig metric is changed, the four steps listed on page 31 can still be used to 

determine t tie pairwise error event probability of interleaved, coded DPSK signals. 

Finally, by making use of the pairwise error event expressions, we can obtain an 

approximation of the bit error probability. Bit error curves of various interleaving 

depths at  different maximum Doppler frequency will be shown subsequently. Since 

TCM will he of our interest, we .rvill start this chapter by introducing some of the 

I>asic concept, and error performarlce of TCM. 

4.1 Ungerboeck's Trellis Codes 

Trellis-coded modulation (TCRI) is a coding scheme with which channel coding and 

r~iociulat~iori are combined as one entity. I t  is very suitable far t h e  communication 

systmls where both bandwidth and power limitations are imposed simultaneously. 

'P('h1 achieves coding gain without any bandwidth expansion. At first it may seem 

that this statement violates some basic power-bandwidt h trade-off principle. How- 

cvcxr, there is still a trade-off a t  work; namely TCXl achieves coding gain at  the 

tasperisth of decotier cornpIexi ty. 

TCM combines a multilevel/pbase modulation signaling set with a state-oriented 

trellis coding scheme. Mult~!crel/phase signal sets are signal constellatio,ls having 



multiple amplitudes. miItipIc phases. or a comhinaiiorls of rrluiiipltl a i l ~ p i i i t i c t c ~ s  a l l t i  

multiple phases. A trellis code is one that cart be cttaractt+ztvi wit  t\ ix trellis diagrirln, 

like the one showed in Figure 4.1. The dots i n  Figure* 4.1 rryrc*st>~it ttw st atcs aild 

the branches represent transitions betwc'cn states. ni~rirlg a transition, the t*rtcotltbr 

will emit a signal alphabet by considering its present statt*  and tfw ir~put bits. !:or 

example, if the encoder is in s ta i r  SO and t h e  input bits arc  11, tfw tvtc.otfcr will 

send out the symbol labeled 6 or tllr complex syn~bol r.rA j y )  to tlw clmmd.  

TCM is based on the fact that redundancy is introduced by ir~crcasing ttw rlr~~rhc-r 

of signal alphabet through ntt~ltilcvcllfpfii~s~ sigrialilig, so that tm rcdt~~rclsnt syi~~i,c~lr  

are transmitted. For example. if tllc nuriibcr of sjmhols rcvlrrirtcl in thc- itlljllitf~(*t 

r * is 2" for an uncoded system, rfCM usm 'tn'+' for ttlc coclc*d systcrii. 1 his implit-s 

there are 3"+' - 2" symbols used for rcilundar~cy. llowt*vtsr, for a constairt ;rvt*ragcb 

power, the minimum distance be t~swn adjacent sigriat alpliaiwt tlwrcwic*~ as ~ , t w  

number of signal alphabet increases. In uncodctl ~nocl&tion, assiirtting a consta~~t.  

average power, the reduction i r t  the niini~r~urri clistanct iwtwcwt tfti* signat iilpitirl~t~t 

degrades the error performance. AS a rtsult, treliis coding nwst liw aMt- tu iricrtwsc* 

the minimum distance between the signals that art* rnosi, likciy to tw ccmf~~si*ci, 

without increasing the average power. C'onsicler this trellis i r r  f2igurc* 4 . 1 ,  sirtc~ ttwrc 

are 8 PSK symbols available while there arc only 4 possiiriis transitions frc,rll cS;rc 11 

state, coding bere means the proper assigrtrnei~t of 19SK syrrttmls ttt t h  istic d * r  

transitions so as t.s maximize the free Euclidcwr distarm.. 'I'llr* ctmcept o f  zrlappi~~g 

by set partitioning [32] is used to  acfticve that. Figure* 4.2 shows the wt yartitirtning 

of &PSK consteltation. This technicpe divdm a asig~;at rrnt swr-wsiw*!y k t o  srrrai!r:r 

subsets with maximally increasing smallest intra-set distance A!, i = 0,1,2. Ilach 

partition is twa-way, After the first partition, tf~c signal subsr-t il alld 13 ohtairrr4 



- - Free Euclidean disxmce = 2. f 41 



2 
A,= 0.586 

Subset A Subset I3 

Figure 4.2: Set partitioning of the 8-PSK constellation. 
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!q takirtg tftc- f:vr*ri siqrtal jroiri ts  and the odd signal points respectively, increase the 

irttra-wt distancr. A: front 0.586 to 2. The partitioning is repeated once more so 

t Itat t h -  srr~alkst irtt ra-set distance flirt her increases to 4. If we assign symbols from 

t h  \ amv S I I ~ S C ~  ( A  fir 1%)  to those transitions originating from the  same state and 

t trcf ir-  tw-rrtinatirtg at the same state i n  Figure 4.1, we will have at least a squared 

f r c ~  E ~ r r l i c l r v i n  tiistarice of 

'i'his is t trc- loww k m ~ r i r i  for the* squared frtu: Euclidean distance since it only repre- 

sc-trts tftrw sqt~arid cfistarrce accrirt4 during the initiai split and the final remerge of 

two paths in the trrlfis and tfrcrc rimy be additional distances accrued during other 

intcrvals. ('ornparcrl wi th  ~trlctsdcd I-PSK where the minimum squared distance is 

2, t t ic*  sirnplt* 8-state ccxfc in Figure -1.1 provides a coding gain (without bandwidth 

c*xpansiorr f. 

,, I hc f r h w i n g  is a summary of I,:ngerhoeck's code design rules for AWGX chan- 

iic'ls: 

I .  All c-llannrl QS PSIi) sphots stm.dd occur with equal frequency and with a 

fair anwuat of regatari ty and syrirnetrx. 

'i'hc*~ mfes guarantee reasonably g o d  c d t s  for the AlVGS channels. However, to 



find out :he best code f m  a given cricodcr strtictrirc, ot~c Iias t o  rt-ly o r 1  c o ~ ~ i p ~ i t ( ~  

search. 

The trellis encoder of Figure -1.1. can hc irnplcmcvitrui i l l  t tw fornr of n i-ntt* :!/:! 

convolutionai encoder followed 1,- an 8-PSI< signal ~ ~ t l ~ t i * I l i ~ t i t t ~ l  and bit to-syti~l)ol 

mapper, see Figure 4.3. 

4.1.1 The Performance of TCM 



Figure 4.3: Realization of U n g e r W ~ ' s  Bdak code using a rate 2/3, &state h- 

volu tional code. 



Transmitted sequence e 

- ~mmeous scq~nce  6' - ~ e o u s  sequence G2 

Figure 4.4: Exanplf.s. of error events. 
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is t f w  t*rarlsrrtittr*d swjwnrr- whcre r,'s are the channel symbols. There are two se- 

qtimcc: 2' arid t' which tlivcrgc and then remerge with the transmitted sequence 

titrough cliffwent paths. Assume that Ef # c,. Then. the length of error events 

assor iatc4 with the statpierice 2' and E 2  are 2 and 3 respectively. Since there is no 

parallc4 trmsition arrd ?' has the sn~allest length, it is the shortest error event and 

ttw c c h  tiivc*rsitp of this trt:IIis code is 2. OR the other hand, if fading effects are 

rrii:rirr~al. ttw optimum pt.rforrnance is once again achieved by a trellis code designed 

f t j  irraxirriizt* t f i e  frct Euct irkan distance. 

Now, It-t's c o r d e r  some examples of Ungerboeck7s Trellis codes. The rate 2/3, 

S - ~ f i ~ t " ,  S-PSK t d i s  C C ~ P  an4 the rate 2j3, 16-state. 8-PSK trellis code are the 

first 'I'('34 sc-t1en1r.s found by I-ngcdmeck using the rules of set partitioning outlined 

irk page Gff. 'I'11e trellis diagrarr: of the  &state code is shown in Figure 4.1 and the 

trt-Itis diagram of the 16-state code and the strttcture of the trellis encoder is shown 

in E'igttrt -1.5. in b t h  diagrams, the shaded area depicts the shortest error event 

wfiilcx ttw clash line itcrrotc-s t h e  free Euclidean distance. In addition, we assume the 

trartsmittcd cde\i.ord is represented by the path at  the top of the  trellis. As  writtea 

oir titc ctingratns, the frtT Euciicfean distance for the $-state code is only 2.141 while 

tEw frcr Euclidean distance for tfic 1t;state code is 2.274. The increment in free 

f:urtiricaa distancc cause the 16-state code achieved a 4.1 dB coding gain over 

wtr-odtvl -I-PSK while t h s  coding gain for the S-state code is on]? 3.6 dB. Thus, 

Irr E ~ r m  of  tire coding gain. the I &state code is more powerful than the 8-state 

rtwic* i t r  t hc Al\"C:N clzanmi Irr addition, the 16-state c d e  is also more suitable for 

fading c-itann~ls sirrm it Z r a s  a code diversity order of 3 while the &state code has a 

ctxk riiversify O&I- of 2- j.fowewr, since more states are int-olved, finding the set 

csf dornirrant errar events for t hc IGstate code is also more time consuming than 



1-1 .: ..,. - .... - .... 
i--,-..---- ,..,,::. -.. . . S hmest error event 

- - Free Euclidean distance = 2.274 



tht: 8-st,atr. i:ork. For the sake of simplicity, we will mainly study the Ungerboeck's 

%state, 8-I'SK trttilis code in this thesis. 

System Model and Not at ion for Interleaved 

PSK Systems 

'I'ttc. disc-rcatc-timc system rtiodel for tbe interleaved, coded PSK symbols transmitted 

ow-r cwrrc*latcd Itaylcigh fading channel will be discussed in this section. Although 

wc* haw prcserttetl similar materials in Chapter 2, a more detailed description for 

the 'I'CM system with interlcaver wi11 be shown in this .section. Both systems with 

pcrftct !'SI and differential detection will he presented. 

' h e  Mock diagram of the system is shown in Figure -1.6. The input to the trellis 

c-nco<fc*r is a sapience of binary digits denoted by m = f nzl , . . . , mk, . . .), and the 

orit  put is a sclcpmce of coded Y S K  symbofs denoted by c = (el,  . . . . ck, . . . , cN). In 

order to  tfispcrsc possihle decp fades in the channel, the sequence of modulation 

symtn~ls is passed t o  a b i d  interlearef with a buffer of size tl rows by j3 columns, 

wlww ,j is f he iaterleavirtg depth, and 3cp = :l' is the length of each TCM codeword; 

sc.cm Figtire 1 -2. The txiaiulat ion s_vntbols in the codeword c = (cl , . . . , c k ,  . . . , c N )  

will f it1 the irtterleawr buffer column by column, and the output, sequence of the 

itite~rkavcr is cirwotcd by c' = (4 .  -. . ,C;.. . . ,c$). k t  the time index k in ck be 

u-rit-tcrz zs k = ha + + + a!. wbereQ O - < Q - 9- 1 &and O < - o < - cr - 1. This irnnlies 1' 

that after intcrlcaviug- the symbol ci; will occupy the  ( a  + 1 ,  b + 1Ith position in 

r Sw interieaver buffer, where a + 1 is the rox number and b + 1 is the column 

n u ~ r t ~ r .  According to Figure 1.2. Q d l  be sent out in the (a$ + b + l)Lh time 



mk Trellis =kt 9 *-- c l * Encoder In terleaver ; 
5 / '.I 
t t k 
t . ,......., ............. i 
k 
t is,: Differentid I * .  i 
B ...... I Encoder I 

-..-.....,..._I 

................................................ 
Processor G 

Virerbi 
Dxoder 

Filter Ap(t) 

5 
Matched $(-t) - 4 
filter JN~ 5 4 

I 5 
5 
5 
$ 

Channel 
estimator 

Figure 4.6: B l d  diagram of the Trellis-coded system. 



slot. 'l'hr* r~4atior1ship i w t w w n  the two sequences c = (c l . .  . . , ck, . . . ; cX) and c' = 

((<. . . . ,&. . . , is thus: 

/ - 
( - ' !m+a+~ - cajj'+b+l. (4.1) 

Sitrrc in practical systrins, Lfw interleaving depth @ is fi~iite. This implies that, after 

clt*intc*rlt*avirrg on the receiwr side, the complex gains, or fading, experienced by 

r!ifFf~rcvrt 11m1 ulat ion sy rn bols in the cotfeword are correlated. 

fix I)I'Sh, the q r l c n c e  cf = (c:, . . . ,G,. . . , c!~) at the interkawr output will 

tw tli ffertw tialiy cncodcri into a~lot  her sequence before transmission. In either case, 

t tw transmit t i 4  s y i e n c c  is cfenoted by s = (sl, . . . , s k .  . . . , s N )  where 

Coherent PSK 
Sk = 

4 s k -  1 { ci Differential PSK 
t5itlioi1t loss of genrralit_v. we assume so = 1 for DPSK, 

I'onsidrr the transmission of MPSK signal over a Raylcigh fading channel with 

X\YC:N, as showrtd in Figuzc 4.6, the  receired signal is passed ' o  a matched filter and 

t hc output is t twn sampled ever_\.. T seconds to  produce the sequence f yi, . . . ,&. . . . , yi*). 

The santp-ce y; can then be writ ten as (see Section 3.1.1 and 3.2.i j 

.-Is h*fcsrt*, the ni's in the almw q i ~ a t k n  are independent and identically distributed 

f iiti) colr-rple-x Garrssian rardorn variable representing samples of the filtered channel 

twist.. Each rri's has a zero mean and a unit variance. The samples in the  sequence 



where 

Due to a finite interleaving ric*ptlr,  thcs 11~'s in 1 s t .  if arc. a +t of c-orrc4;i1ivl, z/,cari, 

mean, compfes Gaussian random \;ar!ablc.s. I A  t w j  of thr* syrr~hls i t ]  t l r c *  'l'(!M 

e d e w o r d .  c,, and ck,. crcctip~- ri.spf~ctisel_v the* fa,+ i .  b t t  I j'" awl t h c '  (a2 t I ,  t I ) l k  

positions in the interleawr hr~ffer. tvhcrr O 4 u , ,  (1, < f t  - 1 arrcl II L: 1,. h, f ;j 1 .  

This implies that if kI = b l o  + crl  + 1. k2 = bt,rt -i- crt + i ,  ; t l d  t h .  c.i#rr~pjc" ga i t13  t r t ,  

ad ~b experiescd b~ $ h e x  s~:::!x>!$ !;;-.:.i. :-or;*-tat !<jii ~ i ~ i r t i ?  ti): 



Coherent PSK 
(4.6) 

and I tg(r)  is the i lut~corrt . lat i~n function defined in (2.4). Note that if ck, and ck, 

arc8 placcd in the same column in interleaver buffer, then bl must equal to  b2, and 

b(k,,  A*,) becomes p(d(kl - Xi)) for coherent PSK. 

'I'tre chartnd estimator in Figure -1.6 will extract from the received signal infor- 

r~ratiorl ahout the channel's complex gains. Let the sequence that  appears a t  the 

t.stimator output be denoted by (r;, - . . .I;. . . . , sh). In the most ideal situation, 

tht* estimator provides perfect C'SI. This implies 

Perf  ecl CEJ. 

Alt hottgh technic;ac=s l ike pilot tone and embedded pilot symbols can be used to 

provide r - l o s e  to ycrfwt CSI, for applications like mobile radio, the simpler differential 

dt*tn-t ion is =wmtimes prrftnd. 4 s  pointed out, in /51. differential detection can 

Iw- vie-iw~f as a rhanrtel estimation technique for which the symbol received in the 

prc*viorrs signnlirrg i n t e n d  is u d  as an estimate of the channel's compies gain in 

the current interval. Therefore, in DPSK 



In either coherent Y S K  or DPSli, the samples in ttir sequtwcc ( x i , .  . . , x i . .  . . , .r%:v) 

are deiriterleaved to produced the seciuencc ( x l . .  . . , xk.. . . .I:~-:. Oiict a.tf i j i~~,  i f  X. = 

ba -k a + 1 (with 0 5 a 5 a - 1 and 0 5 6 5 - 11, then 

4.3 Coded PSK with Perfect CSI 

?Ve will provide in this  section two derivatior~s of the pairwisc csrror rver~t prold,ili ty 

of interleaved TChZ with perfect CSI, ?'he first derivation is thc* o w  givcw ill f k r j ) t , c ~ r  

2. The second derivation is a simpler one and it aflows 11s to t8xprtw t h :  iwor 

probability in terms of the bra::ctr squared cfistartrcts hv~twrr.ri t h e  c-chrl  snqucrir-cbs. 

4.3.1 The Optimum Decoder 

For the system with per f s t  CSI, the vector x = (xl:. . . .rdVjf and t h t =  gain wctor 

u = ( z i t . .  . . ,uNJf are identical. Consap~ently, the covariarrcs: rnatricm @,,, 9,,, 

in (2.17) and (2.19) are identical. This implies thc ritatricm a and b in 12-28) art(] 



Clearly this is equivalent to selecting the cod<word whosc ~nc-tric 

is the largest. 

4.3.2 The Pairwise Error Event Probability 

Let the transmitted codeword c = (c l , .  . . , c N )  and thc* crrorwolls cotl(~worrl i? - 
( E l ,  . . . , Z A ~ )  be digerent in the kl . k2, . . . , kL positioris. For convr-nicvico, wc* ~ S S I I I I I P  

ki < k; if i < j .  Moreover. we let each ki hc writte~~ as 12, = b,cr + a,  -+ 1 w l t t w  

0 5 a; 5 cr - 1, 0 5 bi 5 ,,3 - 1,  and cr and arc t h :  nurntwr o f  rows ard c x , l ~ ~ r l ~ r ~ s  i n  

the interleaver buffer; see Figure 1.2. From the optirnal rlcwding rnct,ric i l l  (1.12), 

we see that if the random variable 

is less than zero, then a decoding error will occur. T h e  randorrr variahlc 1) (:an IN: 

written in matrix f~-m as: 



if wc let 

then using the results from Chapter2, the poles of the characteristics function of the 

random variable D are the reciprocais of the eigenvalues of 



and 

The covariance matrix Brr can be obtained according to (2.17) - (2.23). Sin~ply 
- 

replace every matrix M in these equations by the corrcspontling matrix M. 

Consider the matrix 

- A where u = (uk,,  . . . , u k , ) ' .  Since ut,  = m g . , ~ + s , + I ,  this implirs tllc (i, j)'" &~~,twts 

of &,, is equal to the term d(k,, kj) in (4.6). Now if all the I, plarcbs tllat i . 1 ~  

codewords are different are confined to one single column, thcn all thc: h,'s arc: i . 1 ~  

same and $(k;-, kj) becomes p(P(ki - k,)). As mentioned earlicr that i r t  a k~ylcigli 

fading channels, the error performance of a TCM scllerne is (loininatcti l ~ y  th: sc:t 

of shortest error events. For example, the Ungerhoeck's 8-statc code i r t  IJigurt: 4.  I 

has a shortest error event of length 2. In an interleaver buffer of sizc (1 rows hy 

p columns, there are only cr - 1 out of a total of crB - 1 places whcre  this error 

event can span over 2 zolurnns. Consequently, most of the time we can assurrlct this 

dominant event is confined to a single wiumn with respect to the interlr:avc:r b~lfft:r. 

As a result, we let 



.. 
Once +UU is known, then we can show easily that 

- " - 
*xx = @xu = @uu 

where 

B;v arranging these: submatrices according to (2.201, we haxe the covariance matrix 

G,,. This matrix when combined with the matrix @ derived in (4.21) would allow 

us to compute the eigenvalues required in the error probability calculations. 



4.3.3 Alternate Derivation of The Pairwise Error Proba- 

bility 

Although we have already obtained the error expression for 'I'rcllis-c-otfctl PSI\: with 

perfect CSI in the last section, we will derive below a simpicr cxprc&on for t,lris 

system. The new expression allows us to show thc pairwise error proi>ahility for fu l l  

interleaving and very slow fading in simple forms. 

The optimal decoding metric for coded PSK with pr*rft*ct CSI is sllown i r i  (4.12) 

and as shown in (4.13), a decoding error will occur if 

is less than zero. Note that 

h; = diuk,, (4.28) 

where di is defined in (4.18) and the nkl's are iid cornplex (;aussiarl rm(lorrl v i ~  rial,lvs 

each having a zero mean and a unit variance. Equation (4.27) can also IJC writtxr~ 

in matrix form as 

where h = (hl  , . . . , hLIt and ii = (nk, , . . . , nk, )' are colurnn vectors wl~c,sc: corn p- 

nents are the hi's and the nk,'s. The covariance matrix for the h, 's  is 

8.5 



where A is defined in (4.17) and 6,, is defined in (4.23). Since all the elements of 
- 

t h :  matrix @,,, in (4.23) depend only on the differences of the k;'s, we can assume, 

without loss of generality, that an error event always starts a t  the beginning of each 

codcwortl, i-e., kI = 1. 

Since ohh is a Hermitian matrix, it can be written in the form 

where 

is a diagonal matrix whose elements, the A;'s, are the eigenvalues of a h h ,  and U is 

a unitary matrix whose columns are orthonormal and UUt = I. Let w,, ~ 2 , .  . . , WL 

be a set of independent, zero mea.n, complex Gaussian random variables, with the 

variance of u ~ ;  equal to  

2 1 ow, = -E{w;w;) = A;. 
2 

(4.33) 

It. can be shown that the hi's can be obtained from the wi7s by applying the following 

transformation: 



where w = (wl,.  . . , u ' ~ ) ~ -  3forewer, it can be slrown that t l i c  raritfon~ variahlc- I )  

in (4.29) can now he written in terms of thc ~11, 's as 

where 

Using the fact that inn = I and that UUt = I, it rim Iw stlrwrl illat t . 1 1 ~  t,,'s arc i i  

set of iid Gaussian random variables each having a zoro rrrcarl itrlcl a unit vi~riar~w. 

Also, the e,'s are independent of the wits. At this point, it fwc-ornc~s clear tilat, 

the random variable D is simply a sum of indepcrident cjlladratic lorrris o f  cwlr~j,lc.x 

Gaussian variates. Using (4B.5) in [2.5], we can show that. thcx ctlarac-tcrist.ic- f~~rlc.t,iorl 

of D is 

where 



arrb thr* p&s of the characteristic function. By summing the residues of a D ( s ) / s  as 

sttown in (2.36), we can obtair~ the pairwise error probability. The numerical results 

are iiientit-a1 to the one o!;taincd in the previous sub-section. As mentioned before, 

the  dvarttage of cit+ving this expression is that error expression for full interleaving 

arrd wry slow fading car; be easily derived. 

4.3.3.1 Full Interleaving 

Clor~sider the case &en we hasc full interleaving, that is, the interleaving depth P 
- 

is a wry  large numhcr. The matrix 9,, in (4.23) becomes (Es/lVo)I, where I is the 

idtwtity rriatrix. This implies the matrix eIih in (4.30) is a diagonal mat.rix, given 

t gf 

where /d,12 is the squared Euclidean distance between ck ,  and &; see (4.18). Con- 

wqrien t ly. the e igendues  are: 

f3y substituting these eigenvafues into (4.37) - (4.38). we can obtain the expressions 

for the characteristic function and for the poles. All of the resulting expressions are 



identical t o  those forind in [<I. 

4.3.3.2 Very Slow Fading 

where J is a matrix with all its clerncnts cbqual t.o ~crrity. Ikc-ailst* of I l~is ~ ~ r c q ~ ~ t . t y  

of the  matrix J, the  matrix iPhh has a rank eqrlal t.o 1. A s  a rc-suit,, it I i a s  only o r r t b  

non-zero eigenvalue. This non-zoro cigenvalrcca, t l t*r ro t  c ~ l  t)y X I  . is c*quir l t o  t,lct. t.r;wv 

of the  matrix. In ot herwords, 

- I  and the characteristic function becomes c P u ( . s )  = - A ,  (s - p1 ) ( s  - y . ~ ~  ) . 111 fact,, A 

is the sum of squared Euclidean distance hetwwrr tlrcb transrr~ittcd arlcl th i -  cworlcorls 

word. Using (4.37) and (4.381, we can show that  

This is an intuitive!_:. pleasing resuit because wires1 fading is slow, thi: I(ay1c:igIr 

channel is equivalent to a Gaussian noise charinel on a p w  cotlt:wortl t,asis. As a 



4.3.4 The Error Perfhrrnance 

iVt. prwwts irl tllk swtion thi- crror performance of Ungerhoeck's &state 8-PSK 

cudc in a ftaylt-igh fading channcd. with the interleaving depth as a parameter. 

l r t  ncm-ly all applications. we are interested in the overall bit error probability of 

the 'IXIM schenw rather than the individual pairwise error event probability. An 

approxirrmt ion to thc bit crror probability can be obtained by summing the pairwise 

cwrror rkvrnt probatdi ti= a s  follows f.51: 

I r t  tht: above equation, In is the number of input hits per encoding interval, a(c ,  t )  

is the riunlher of bit-errors associated with each error event, and the summation is 

taker1 over the set of dominant error events listed in Table 4.1. The error events 

listed in Table 4.1 are taken from Table 4.2 in [20] and they correspond to the 

shortest paths in the modified error state diagram [20] obtained via the method 

of Xt*havi and {\;OK [38]. ,As defined earlier, the parameters L and S in Table 4.1 

arc* the 1cngth1 and the span2 of an error event. It should be pointed out that in 

'f'ablc 4. I. t ttc riotation T,, i = 0.1.2,3.4 is used to represent the situation where 

"f he ltar~lrr~ing distance between two coded sequences, counted by the channel symbols. 

'The ~ l t i m h ~ r  of transition branches associated with the error event. 

90 



Table 4.1: List of dominant error events in Ungerhor:ck's 8-state 8-I'SK cc&. 
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t tw trartsrrti t t t d  syrrr t d  and thr. c.rronwus symbol have an absolute phase difference 

of in/.+ radian. Diffrrcr~t error events are represented by different sequences of the 

7,'s i n  'Ihhfe 4.1. For example, in the shortest error event ( the first sequence in 

l'ahltl4.1 j, the transmiitcd m r f  the erroneous wwds are different in two consecutive 

placw, thc first 2nd swond symbols in the two codewords havicg absolute 

ptww rl iffcrences of and ?; respec!ively. Since non-ideal interleaving is used in 

the systcm, the rornpfex gains experiertced by different transmitted syn~bols are 

rorrrM.c*tl. ?'herefore, the order of the .;/,'s in each sequence is important. Also 

since thcre are many ways in which two symbols in the S-PSK constellation can 

h a w  all absolute phase difference of 2 ~ 1 4 ,  the error events listed in Table 4.1 should 

or~ly he used if the error probability depends only on the absolute phase differences 

Iwtwecm symbol pairs in the transmitted and the erroneous words. It is shown in 

Appendix F that the eigenvalues for the matrix Qehh in (4.30), and consequently the 

error prohabiiity, depend only on the squared Euclidean distance between symbol 

pairs in the two codewords. As a result, we can use the set of error events listed in 

Table 4.1 i n  our error probability calculation. Without loss of generality, we assume 

the transmitted codeword is the all zero-phase codeword, i.e., c = (1,1,. . . , I ) .  The 

erroneous codeword in each error event can then be determined by the corresponding 

squerice of phase differences. 

The approximate bit error performance of Ungerboeck's &state code in a Rayleigh 

fading channel with a normalized Doppler frequency, fDT, of 0.01, is shown in Figure 

3.7. As one would expect, as the interleaving depth increases, the bit error proba- 

bility decrease. i2"hen the interleaving depth is equal t o  20 symbols, the bit error 

probat>ility is almost identical to  that provided by full interleaving. Furthermore, it 

should be pointed out that the full interleaving curve is same as the one in Figure 
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Egxe 4.7: Bit err: perfoO~ame of U ~ g e r ~ k ' s  &state d c  ia z ftzyleigh fading 

channel with perf& CSI. fLtT = 0.01. The number itsmciakd with ensr 

curve is the inter'teaving depth, The curye Iahlled F represents the case of full 

inter1 eaving . 



r - 3  r r  / ' I  * 1 ir: i:~]. 1 0  WP i i r , t f ~ e r  ? t , . \ t  sctwrrw5 require a similar interleaving depth, we 

~ f t t i w  in  Figrlre .f ..; t Ire- apjtrr~:iirnatc Lit error performance of Ungerboeck's 16-state 

t-t& witft the inti-rbavinq depth as a parameter. As mentioned in Section 4.1.1, 

to  finri t t t r .  .set of r h t i n a n t  error event for this 16-state code is a time consuming 

task. \Ye tlrr-rcfori:, obtain the hit error probability by only considering the 

sfrarttxst c-rrar ewnt .  This error tavent is shown in Figure 4.5 and has a length L = 3. 

'f'hr- corrr.spondirtg !,ranch Eiiclidean distances in (4.18) are 4 = 1 - exp(j4q), 

(I ,  - 1 - tsp(j;]- and d3 = 1 - czf l ( j2$) .  By comparing Figure 4.7 and 4.8, we 

s r v  that for each of thc* intrdcas-i~ig depth considered, the 16-state code has a lower 

h i t  cwor yrohabilitg- t ilan tile &state code. As in the case of the &state code, an 

i t~tr-rf~aving tfrpth o f  20 SJ-I : I~O~S provides almost the same performance as full in- 

tt*rlc*avi rtg. f,i*t t Itc fade cycle be defined as the reciprocal of the normalized Doppler 

frcy~cncy, fnT. Thcn, by doing the appropriate normalization, we conclude that for 

tmth the 8 and 16-state coded, an interleaving depth roughly equivalent t o  one-fifth 

tlw ciuraticm of a fade cycle is sufficient t o  produce the same effect as full interleaving. 

fn order to  verify t h e  above statement, the bit error performance of Ungerboeck's 

S-state code with a nomtalized DopyIer frequency of 0.03 is plotted in Figure 4.9. 

' f " f ~ e  rcstdts indicated that error performance of interleaving depth between 5 to  10 

syrrrfwls is close to the case crf ideal interleaving. As a confirmation of the analytical 

r c x j l t s  a rd  tfr t  assrrmption that the bit error probability is dominated by a set of 

short error events, simulation results f dash curves) for interleaving depth of 5 and 

10 syrthls art a1.w provided in Figure 4.9. The simulation of the Rayleigh fading 

r-hai~rwl ws (lom h~ gemrating samples of the time varying complex channel gain 

rrk. -f Etc rtai and imaginary parts of uk were generated by fiftering two statistically 

inck-l~*c.ndcnt Gaussian random n u m k r  sequences with a FIR digital low-pass filter. 
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F'igure 4-8: Bit error performance of Ungerboeck's 16-state code in a Rayleigh fading 

&anneI with coherent detection and perfect CSI. jDT = 0.01. 
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Figure 4.9: Bit error performance of Ungerboeck's &state code in a Rayleigh fading 

channel with coherent detection and perfect CSI. fDT = 0.03. 



The simulation of the error performance was bawd on RIontc Carlo error count i11g 

techniques and the number of samples for each point of t h b  sirnulation c-urvv was 

chosen to be larger than 100/Pb. It is observed that the sirriulatiorl rttsults ngrw 

well with the analytical results at  large SNR. 

4.4 Analysis of interleaved, Trellis-coded DY SK 

In Section 4.2, we see that for coded PSK with perfect CSI, the opti~nal tlccotli~~g 

metric is simply a linear sum of branch metrics; scc (4.12). It is not too tliffic.r~lt to 

show that the Viterbi algorithm can no longer be cmploycd if the decodir~g t~lctric 

does not have such an additive property. For this reason, we cannot atlopt tlw 

optimum quadratic decoder from Section 2.2 for coded DPSK. We use ir~stcatl t l ~ :  

following metric [9]: 

nf(q = - C { y k z ; ~ ;  + y;skq (1.41) 
k 

where y k  and x k  is defined in (2.10) and (4.10) respectively. Given that t11c trarts- 

mitted codeword is c = (cl, . . . , c k ?  . . . , c , ~ ) ,  error will occilr i f  the rarldorn varial,lo 

is less than 0. As in the case of coded YSK with perfect CSI, wc let, (kl ,  kz,. . . , kj,) 

denotes the set of index k for which c k  # Ck7 where ki > kj if i > j .  In addition, we 

let each ki be written as ki = bicr+ai+f ,  where 0 5 ai 5 a -  1 and 0 5 6; 5 a- 1. 



After sutistitrltirlg these information as well as (2.10), (4.41, (4.5) and (4.10) into 

(4.4.5), wc have, in the  case of coded DPSK, the following expression for the random 

variable D: 

where 

and the d;'s are defineA in (4.18). If the error event spans no more than a symbols, 

i.e., if kL - kl < at then the set of 2L noise terms 

are iid complex Gaussian random variables, each having a zero mean and a unit 

variance. In otherwords, as long as the span of an error event is shorter than the 

number of rows in the interleaver buffer, the set of 2L noise terms will not contain 

duplicated items. 

Let 2 = (xk,, . . . , ~ k , ,  . . . , xk& j7 = (ykl,. . . ,yk,, . . . , ykL)t and F = (5?, Yt)'. 

Then, the  random variable D can be written as 



where $' is defined in (4.21). To calculate the error probahilitg, wr i lwd t, dot rrmiw 
" 

the matrix B ,  = ~ E { F F ~ } .  As shown in Chapter 2, this nintrix is girw in trrllls of 
- " 

the submatrices @,, and a,,. If we assume that t,he error cvcnt, is cor:fiid t.o one 

single column with respect to the interleaver buffer in Figure 1.2, tlic~: all t,lw 0,'s 

are the same and hence from (4.47), we obtain 

where 

" 

and jzz is same as the a,, in (4.23) where ii is defined on page 83. Similarly, w* 

can show that 

and 

&,, = SB,S+, ( 4  5 3 )  

where is a matrix whose (i, j j th  element, denoted hy 4l (i, j ) ,  is q u a 1  to 



Afier substit~ltion these submatrices into (2.20), we can rewrite &,, as 

and 

It should be pointed out that LLt = I. Although L is data dependent, we can 

remove 5 from the matrix L without affecting the final results; see Appendix G. 

Hence, (4.55) is equivalent to: 

where 

We arc now in the position to find the pairwise error probability. As showed in 

(1.49). the randarn variable D is in quadratic form and the matrices @ and 6, are 

defined in (4.21) and (4.58) respectively. We can follow step 3 and 4 on page 31 to 



obtain the pairwise error event probability of intcrlcavtd, codcd III'SK sigiliils. I'iw 
- 

key is to determine the eigenvalues of either the mat ris B in  (2.33) or t 1w c~igcwv;ilrit~s 

of 8,,@ in (2.37). 

4.4.1 Full Interleaving 

The matrix K in (4.56) is a Hermitian matrix which can I>(* writ.t,en altc*rriiitivcbly w 

K = U K A K U ~  ( 4 .  G O )  

where AK is a diagonal matrix whose elemerits are the cigcrtvalucs r9f t h  11iatrix K 

and UK is a unitary matrix whose columns arc eigcnvi:ctors of the matrix K. As i t  

result, 8,, in (4.58) can be expressed as 

Consider the case of full interleaving, i x . ,  whcn /3 is a wry large rltir~ltwr. 111 this 

situation, the matrix K in (4.56) becomes 



This irnplics the matrix AK can be written as 

where 

it can be shown that the corresponding unitary matrix UK is 

- 1 1 
Substituting (4.61) and (4.66) into B = A H U ~ E ~ @ E U ~ A H  in (2.33), and after 

- 
sonic algebra, we can show that the matrix B can be written as 



- 
and d, = c k ,  - c is .  The eigcnvalucs of tllc ~ i i a t r i s  B art* 

This implies the poles of the characteristic fi~rlct ion a u ( s )  art3 

where 

is the squared magnitude of the correla?ion c-oi'fficicwt o f  yk, ard rk, i n  (4.47) i ~ 1 1 t l  

(4.48). Note that the poles given in (4.70) are idcriticai to thosc. found in  1.51 c.xc.t-pt. 

for the scaling factor of $ p ( ~ ) { ( p ( ~ )  + I ) ?  - p 2 ( 1 ) ) - ' .  Ilowtvr~r, it call tw slwwn 

easily that such a scaling factor has no effect o n  thc pairwist- cwor c ~ c . r t f ,  prolhil i ty 

calculation. 

4.4.2 The Error Performance 

Mie report in this section the error performance of i;ngcrbw:ck's 8-state 'I'rc4iis- 

coded &DPSK scheme in a RayIeigh fading channel. Si rrtilar to t f ~ t s  cav: of pc!rf(x:t 

CSI, we obtain: an approximation t o  the bit error probatility hy taking tltt: s t m  o f  



thr: I~ol,attiliticts of the don~ir~ar~t  crror events listed in Table 4.1. As discussed in 

Scctior~ 4.3.4, in order to make use  of the set of events listed in Table 4.1 in the bit 

error prottatility calculation, we have to make sure that the eigenvalues of the matrix 

6,,$', and cortseq~rently the error probabili ty, depend only on the squared Euclidean 

distance twtwcsen symbol pairs in the  transmitted and the erroneous words. It is easy 

to see that the oigenvalues depend only on the phase differences between different 

pairs of Q, and cis.  However, we are not able to demonstrate analytically if the 

s i p s  of the phasc differences affect the eigenvalues. We have found numerically, 

though, the  signs of the phase differences has no effect on the probabilities of the 

crror events listed in Table 4.1. 

We show in Figure 4.10 the approximate bit error probability of Ungerboeck's 8 

state code with differential detection in a Rayleigh fading channel. The normalized 

fade rate is only 0.003, which corresponds to rather slow fading. It is observed that 

a5 the interleaving depth increases, the bit error probability decreases. When the 

interleaving depth is equal to SO symbols, or equivalently, one-quarter the duration 

of a fade-cycle, the error performance approaches that provided by full interleaving. 

\i:hcn the normalized fade rate is equal to  0.03, we have the bit error probability 

sl~own in Figure 4.1 1. Because of the relative fast fading, the CSI provided by the 

previously reccived sample has a lower correlation with the fading experienced by 

the symbol transmitted in the current interval. As a result, we have the irreducible 

crror floors shown in Figure 4.11. Moreover, it is observed that full interleaving 

t1oc.s not provide the best error performance. As a matter of fact, it appears that 

an interleaving depth of 10 symbols is close to the optimal choice a t  this fade rate. 

The drredricible error floor at  this interleaving depth is about 3 times lower than 

that of full interleaving. When the interleaving depth is equal to  20 symbols, the 
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Figure 4.10: Bit error probability of Ungerboeck's 8-state &PSK code in a Rayleigtl 

fading channel with differential detection. The normalized Doppler frequency is 

0.003. 
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Figure 4.1 1: Bit error probability of Ungerboeck's 8-state &PSK code in a Ftayleigh 

fading channel with differentid detection. The normalized Doppler frequency is 

0.03. 



bit error performance is worse t h a n  that of ful l  interleaving. Ilowt~vc~r, i f  t hi- irit  t-r- 

leaving depth is increased to  3'). the performance brcorrzcs once again bc*ttt*r thiltl 

full interleaving, *his phenomenon is fwther confirnled by cornptltcr sirnu1 n t loll; ' sty 

dash curves on Figure -1.1 1. It appears that the bit crror probability, a s  a ft~rtc-f.io~t 

of the interleaving depth, oscillates around the hit. rrrar prohahility providcd by 

full interleaving, This is probably caused b~ tfic osciliatio~t in tiic f3csst-1 ftirtc-toion 

representing the autocsrretlation function of the  ctianncl failing process. ttrttcw tilt* 

autocorrelation function of the channel fadirig yroccss is < fiangcd to  art c-spo~~iwtii~l 

function, and specifically, ifp(k) in (4.7) is replaced by ~rrp( - l l ; j , ,7 '1 ) ,  w* I~avc* tlic 

error probability shown in Figure 4-12. The fade rate in f2igurc- 4-12 is again t * c p ; t l  

t o  0.03. It appears that if the autocorrelation functiori ckcrcasc monotoltic-ally t.o 

zero, increasing the interleaving depth always improves the crror perforrnancc: (with 

diminishing returns). 

4.5 Summary 

In this chapter, we have reviewed the concept of TCM. Spc*cificaIly, wc* Iiavv sltown 

I ,  the structure of Ungerboeck's &state and 16-state corlt-. l hc r.xaci, yai rwist. c.rrcJr 

event probability expressions for interleaved, cotlid PSK with pt*rfi:c.t (:Sf arid in- 

terleaved, coded DPSK have been obtained via the 4 stc:ys on yage 31. lk r  f1111 

interleaving, those pairwise error event exprt.ssions h a w  htxn prcwen ailalytic-ally 

the same as t h e  repart in [5-51. Sumerla! cdcdations of the appmxirnatr. !it  error 

probability at various interleaving depths and fade ra tw are presented. It is f 0 l l d  

that  generally an interleaving depth roughly equivalent to one-fifth or om-q~~i i r te r  

the duration of a fade cyde is sufficient to the same effect a3 full intcrrl~av- 



Figure 4.12: Bit error probability of Ungerboeck's bstate 8-PSK code in a Rayleigh 

fading channel with differential detection. The normalized Doppler frequency is 0.03 

and Che autocorrelation function of the fading process is an exponential fundion. 



ing. However, DPSK with a fade rate of 0.03 or higher. incrcxsing the inttdcaving 

depth does not necessarily enhance the  error pt~rf~rmanc-c. A s  a corlfirmntioi~ of t h t .  

analytical error performance, Alonte-Carlo siniu1at.ion results imvc I > w n  provitftvl for 

both coherent PSK and DPSK with a 0.03 fade rate. 



CHAPTER 5 

CONCLUSIONS 

5.1 Conclusions 

In this thesis, we have presented a general technique to find the pairwise error 

event probability of PSK signals transmitted over correlated Rayleigh fading chan- 

ncis. This techniqu is suitable for analyzing a wide range of modulation schemes 

including niultiple-symbol differential detection, pilot symbol assisted modulation 

(PSAM), Trellis coded PSI< with perfect CSI, and Trellis coded DPSK. 

:is the first example to illustrate the general technique, we analyze the error per- 

forrrmncc of multiple-symbol differential detection of PSI< signals transmitted over 

Raylcigli fading channels. It is found t.hat this detection strategy is very effective in 

clirni tlating the irreducible error probability associated with a conventional differen- 

t ial detector. For a 4-PSfi system and a channel with a maximum Doppler frequency 

equal to 3% of the signaling rate, a detector with a word length of N = 2 symbols 



can practically eliminate the irreducible error floor associated with a coti\-twt iortitl 

detector ( N  = 1) at the bit error rate above 10-" \Vlicn thc length is incrc~ascd 

to  5;  the degradation in energy efficiency relative to pcrfc>ct, cohcrcnt dctc*ct.ion is 

only 4 dB at an error rate of It is true that the larger the word lcrigtll N ,  thc 

better is the error performance. In the limiting case wllcn N is cxtrcriic4y largc, a 

multiple-symbol differential detector will probably have thc crror pc.rfornla~ice closc* 

to  that of the perfect coherent detector. In reality though, the pcrforniancc- of a 

multiple-symbol differential detector will be limited by the decoding con~plwity. 

With exhaustive search, the decoding complexity grows t~spo~~eritially with N. 

Similar to multiple-symbol differential detection, IJSAhil can also rerriovt* tlw 

irreducible error floor a t  the bit error rate above The perforrnanct. of u~~cockd 

BPSK with PSAM has been studied in this thesis. It is ohscrved that in fast fidirrg 

(such as fDT = 0.051, block decoding strategy achieves slightly better rcsults than 

those reported in 161. Besides, if the size of the data block is rca.onahly largc, t t ~ :  

difference between using 4 pilot symbols and 20 pilot symt~ols is alrnost tllc siurit.. 

Hence, a smsiler decoding delay is resulted. 

Using the generai analytical technique developed i11  Chapter 2, we study the 

error performance of interleaved Trellis coded PSK rnocl~ilatioris transrni t tccf ovcr 

correlated Rayleigh fading channels. Both coded PSK with perfect CSI as wcdl as 

coded DPSK were considered. In the case of full interleaving, our restlltv coinci(fe 

with those found in 151, For coded PSK with perfect CSI, we found that ir~creaqir~g 

the interleaving depth aiways provides an improvement in crror pcrforrnancc: (of 

course with diminishing return j. On the other hand, we found that for coded DPS K , 

increasing the interleaving depth does not necessarily improve the error perfor rnarm. 



T h i s  is especially true when the Doppler frequency is around 3% of the signaling 

rate. A t  this fade rate, the optimum interleaving depth is 10 symbols. We suspect 

the existence of an optimum interleaving depth is probably due to the sinusoidal 

nature of the autocorrelation function of the channel's fading process. When an 

exponential autocorrelation function is used instead, we found once again that full 

interleaving provides the best performance. Finally it should be pointed out that 

at relatively slow fade rate (such as fDT = 0.003), coded DPSK behaves similar to 

coded PSK with perfect CSI, i.e., increasing the interleaving depth does improve 

the error performance. 

Suggestions for Further Research 

Some suggestions for further work are as follows: 

1. The analysis of PSAM could be extended to  coded system as well as other 

forms of modulation. 

2. With such encouraging results obtained in uncoded multiple-symbol differen- 

tial detection system, we believe that these detectors could produce higher per- 

formance when used in conjunction with a soft decision channel coding system 

with interleaving to disperse the channel deep fades. However, suboptimal de- 

coding algorithms with significant reduction in computational complexity are 

required if these detectors are to achieve an error performance close to that of 

perfect coherent detect ion. 



Appendix A 

THE GENERAL OPTIMUM 

DECODING METRIC 

fa this appendix, we simplify the conditional probability cfcnsity functiort i r t  (2.X) 

and consequently, a very simple form of the optirnttrn decoding metric is ohtair~ctd. 

Consider (2.201, the determinant of the covariance rr~atrix iPrr is relattd tm the 

determinant of @, as 

/ I %  I 1  = IIQ?xxIl I P y y  - @yx*;:%yII. ( A 4  

By making use of the partitioned multiplication in C.31, the irlversc of the matrix arr 
can be obtained a5 

which implies 



Furthermore, using (2.21), (2.22) and (2.231, we can show that conditioned on 

the data sequence E ,  

$Yy - $yx+;;@xy = C - @uxaA@xu] et, (A-3) 

where +I, is defined in (2.22). Since each & has a unit magnitude, the determinant 

of the above matrix is independent of the sequence S and i t  is equal to 

ll*yy - *yx@2@xyll= 
II@rrll 

= ll@:u - @ U X + ~ @ ~ I l .  1I@=lI (A-4) 
Subsequently, the constant term in front of the exponential function in (2.26) is 

independent of S and therefore, can be ignored in the derivation of the optimal 

decoding metric. Now-. if we let 

a = [a?:, - s&*,]-', 

the determinant of @, in (A.1) becomes 



Moreover, substituting (2.21). (2.23)  and (A.3) into (:I.?), t h c a  quatiorr can Iw 

further reduced to  

Now, we can rearrange CA.6) so that it is once again in  a matrix f m r l  

where 



is the smallest. Note that the term btab is independent of ? and thus, can be 

removed frorn the decoding metric. 



Appendix B 

THE LINEAR 

TRANSFORMATION FOR THE 

VECTOR r IN CHAPTER 2 

We present in this appendix the linear transformation to the random vcc-tor r i 1 1  

(2.12) so that  the random variable D in (2.30) can be cxprcsscd in t.c*rn~s of i r l ( l c : -  

pendent Gaussian random variates. The particular transforrrtat.ior~ we uscl i:i ti~kcw 

from Appendix B in 1271 and is reproduced here for complctcness. 

Consider the covariance matrix cPrr in (2.20), since it is a llerrriitiiin ~r~ittrix, it 

can be written as 

err = U ~ A ~ U ~  

where U, is a unitary matrix [7] whose columns are orthonormal, arid 
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is a diagonal matrix whose elements, the XT,~'S, are the eigenvalues of the rnatrix a,,. 
I:lom thr: definition of the unitary matrix, it should be clear that u;' = U:. Since 

Qi,, is a positive semi-definite matrix, all its eigenvalues are r e d  and non-negative. 

This implies the rnatrix A, can also he decomposed into two matrices as: 

Now consider the transforma.tion 

1 

h = A;"$ 



1 

is the inverse of A?. Then the covariance matrix ibhl, = f l<{hhf) b c r o n ~ ~ ~ s  

where I is an identity matrix. With the ahovc t.rairsforrr~at.ion of r ,  t,h~ rimclorlr 

variable D = rtFr in (2.:30) can be written as 

where 

B = A~J;FU,A!.  

Since B is Hermitian matrix, it can he written as 



where Ut, is a unitary matrix whose columns are orthonormal, and 

is n diagonal matrix whose elements, the Xb,k7s, are the eigenvahes of the matrix B. 

Now, consider the  transformation 

h = Ubq. 

The random variable D in (B.8) can he written as 

Since the covariance matrix 

(B. 13) 



the qk7s are iid complex Gaussian variables each having a zcro 11tc~an anti ii urrit 

variance. This completes the task of transforming 11 into a sunt of i~~di*pcwtlri~t, 

Gaussian quadratic forms. 



Appendix C 

SHORT CUT TO FIND Xb7k  

We prc,'s(:nt in this appcrdis a faster way t o  find the eigenvalues of the matrix B 

in (11.9). Clonsitfcr (2.30). L) = riFr, with the  transformation given in (B.5), h = 
I 

h,'U;r. ttir ranrtfunl variable D can be expressed as 

os-here B was defined ire  iB.9). .Arcording to (B.5) and f B.7): the hk's are a set of 

irrtlcperrricat TAELC~OEII  ~at~iabfcs. Fw&m-ore, for any eigendue .AbTk of the matrix 

E3, t t r t w  c.sists ala rigcne-ecmr mb which must satisfy the following relation. 



Sow: we can substitute (B.9) into (C.1) arid obtain the following cquitt.icm: 

A!u:Fu ,A?~~  = Xb,r~nb. 

1 

By multiplying both sides by U,A?, f C.2) bccomcs 

1 1  1 

u ~ A ~ A : u ! F u ~ A ~  = A b , k u r ~ j  IIIi,.  (C.3) 

1 1  

Using (B.l) and fB.3), we find that U,A;fh$Uf is irl  last t . 1 ~  ~o~ilriiul<.c* 111~1 .r ix  

a,,. Consequently, (C.3) is simply 

where 

1 

mrb = UrAzrnh. (( x) 

This implies that the eigenvalues of the matrix B art: also thc: cigcrlv;~iirt~s of 1 . 1 ~  

matrix 



Appendix D 

THE MATRIX 6 FOR 

MULTIPLE-SYMBOL 

DIFFERENTIAL DETECTION 

IN STATIC FADING 

CHANNELS 

\Ye derive in this appendix the matrix 5 in (3.21) for multiple symbol differential 

detection in static fading channels. Starting with the matrices @12, @21 and 

in (3.16) and (3.10), when fDT = 0, we can rewrite them as: 



where 1 and J are hr x 1 and Ar x 1V matrices whose critrics arc all t y m l  1.0 ~ ~ [ r i t y ,  

I is an identity matrix and p is d(0,O) defined in (3.1 1) .  'l'hcri, substit.ut,i~~g ( l ) . l ) ,  

(D.2), (D.3) and (3.19) into (3.21), we have 

For any non-singular matrix A, there exists a relationship that, I = AA-l .  IIcwcv, 

the matrix 5 can be found by 

P up+  b = I+-J+- J + Nap2 + Nbp 
J 

P + 1  c p + d  ( p + l j ( c p + r l )  
cp2 + ap2 + Nap2 + dp + up + bp + Nbp + b 

= I +  J (Jj.5) 
(P + WP + 4 

where a,  b, c and d are arbitrary constants. Obviously, i f  t h c  nurnt:rat,or of thc: 

coefficient of matrix J in (D.5) equals to zero, we can obtain t h e  irrversc: matrix i n  

(0.4). To process, we have to solve the following simultaneous equations: 



Since there are many solutions for the above equations, we choose a arbitrarily and 

use a to determine the values of c and d that satisfy the given equations. If a = -1, 

then d = I and c = N + 1. Note that the variable d is always equal to zero. As a 

result ,  5 in (3.21) becomes 

A and p is d(0,O) in (3.11). where f = ( l + ( N + l ) p )  



Appendix E 

MESSAGE SEQUENCE IN 

MULTIPLE-SYMBOL 

DIFFERENTIAL DETECTION 

We want to show in this appendix that the pairwise error prc-hability is i~rtfc:l,c~rrtlc*tlt, 

of the message sequence. To proceed, we note that by using the Cholesky decorn- 

position method, the matrix 9,, in multiple symbol differential tfetcctiol~ car1 I,(: 

written as 

where 



and ~$10~0)  + 1, a12, iD22 are defined in Section 3.1.1. As showed in Appendix C, the 

eigenvalues of the matrix G' = 9,,F are identical to the eigenvalues of the matrix 

where F was defined in (3.26), and 

is a diagonal matrix whose kt" element is equal to ikz; = n:=, die;. It should he 

clear from these results that as long as the set of phase differences between the 

symbols c k  and ci,, k = 1, . . . , N ,  are fixed, the eigenvalues of the matrix G' are 

f independent of the  sequence c = l c ~ ,  . . . , cN) .  



Appendix F 

MESSAGE SEQUENCE IN 

COHERENT PSK 

We want to show in this appendix that the eigmvalues for the matrix !BlI1, i l l  (4.30) 

depends only on the magnitudes of the d;'s and not their phases. 'Ib proccod, 1 4  

where T is a permutation matrix. The matrix T is chosen in  such a way that !,IN: 

ith row and the ith column of ahh now becomes the first row and tltc: first collirrrr~ of 

*b and vice versa. The other rows and columns of are Icdt unchangcrl. 'i'hc: 

matrix @Lh has the same eigenvalues as !€jhh. In addition, it can he writtcrl the! 

form: 



where d,MI2 and MZ2 are submatrices of ahh7 and M12 and are independent 

of 4. The sizes of these two submatrices are 1 x L and (L - 1) x (L - 1) respectively. 

The eigenvalues of Qihh are the roots of the determinant of !ELh - AI. It can be 

shown that 

The above equation tells us that the eigenvalues remain unchanged if we replace di by 

its conjugate. In otherwords, the eigenvalues of ahh depend only on the magnitudes 

of the di7s, or equivalently only on the squared Euclidean distances between symbol 

pairs in the transmitted and the erroneous words. 



THE M 4TRIX @ FOR DPSK 

We want to  show in this appendix that the eigenvalues for the rnatrix b,,% in 

coded DPSK do not depend on the matrix 5. To proceed, wt: use the Clmlesky 

decomposition method to rewrite the matrix Brr in (4.55) as: 

where 

M M ~  = K (w) 

and L is defined in (4.57). As shown in Appendix C, the eigenvalues of is dso 

the eigenvatues of the matrix 



It is clear from (G.3) that 6 is independent of 5. This implies 5 can be removed 

the matrix L in (4.57). 
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