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ABSTRACT

Phase shift keying (PSK) is a class of constant envelope modulation which has
become one of the most popular techniques for mobile communication. The mo-
bile radio channel is characterized by Rayleigh fading in which the complex gains
experienced by consecutive transmitted symbols are correlated. Various channel
estimation techniques have been proposed in the literatures to combat correlated
Rayleigh fading. In this thesis, a general analysis of the error performance of PSK
modulations with different detection schemes in correlated Rayleigh fading channels
is provided. Specifically, we derive the optimal receiver for the denodulation of N
PSK symbols given M channel state estimates. Subsequently, an exact expression
for the pairwise error event probability of this receiver is obtained. The results are
applied to study the error performance of pilot symbol assisted modulation (PSAM),
multiple symbol differential detection, and interleaved, Trellis-coded PSK modula-
tions. The bit error rates for the above modulation schemes at various normalized
Doppler frequencies have been obtained from the analytical expressions. For bit
error rate above 1072, it is found that both PSAM and multiple symbol differential
detection can eliminate the irreducible error floor commonly associated with con-
ventional differential detection. In the case of interleaved, Trellis-coded differential
PSK, it is observed that full interleaving does not necessarily provide the best error

performance.
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CHAPTER 1

INTRODUCTION

For the past ten years, digital transmission over mobile fading channels has become
an important research area. A major concern to the mobile radio system engineers
is the error performance of the communication systems. In general, a moving vehicle
does not have a direct line of sight path to the transmitter. The received signal is the
net resultant of many signals that reach the vehicle via multiple paths. Thus, the
received signal at different locations consists of a number of waves whose amplitudes,
phases, and angles of arrival are random. Under these conditions, the short-term
amplitudes statistics of the resultant signal tends to be Rayleigh distributed [2].
In general, the Rayleigh fading experienced by consecutive transmitted symbols
are correlated. This results in burst errors. For a coded system, a practical and
effective approach for combating burst errors is to destroy the channel’s memory
through interleaving. Alternatively, one can exploit the correlation of the fading
encountered by different transmitted symbols to improve the error performance of

the system. This brings us to the central theme of the thesis:~ the seeking of alternate



detection for digital modulations operating in correlated Rayleigh fading channels.
Two techniques will be studied, both use the concept of block demodulation. The
first technique, which is called multiple-symbol differential detection in the literature
[11], requires no bandwidth expansion. The second technique, which is a refinement
of the one in [6], requires a slight bandwidth expansion. For the bit error rate above
10~°, both techniques are able to eliminate the irreducible error floors commonly

associated with conventional detectors.

In conjunction tc the study on alternate decoding strategies for correlated Rayleigh
fading channels, we also considered the interleaver design issue for combined cod-
ing/interleaving systems. As mentioned earlier, this is a more common approach
for combating fading. After Ungerboeck [32] proposed Trellis-coded Modulation
(TCM) for the additive white Gaussian noise channel, therc has been considerable
interest in applying TCM to mobile fading channels. In recent years, numerous
reports [8], [9], [10], [21], [5] showed that TCM, when combined with interleaving of
sufficient depth, is able to provide good error performance in mobile fading chan-
nels. In many of these studies, the system was assumed to have ideal interleaving,
or equivalently independent fading. This assumption is justified if the interleaving
depth is “large” compared to the fade duration. However, in order to find out what
a “large” interleaving depth is, one usually has to resort to time consuming com-
puter simulation [21], [12], {17]. In this thesis, we will study analytically the error
performance of TCM with finite interleaving, or equivalently correlated fading. The

error probability will be given with the interleaving depth as a parameter.
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1.1 Background and Literature Review

Telephone has long been accepted as an important communications tool in modern
living. However, due to the fact that its use has been constrained by the connecting
wire, the ultimate objective of communications- to enable anyone to communicate
instantly with anyone else from anywhere, can be achieved only by mobile radio.
Resulting from the success in semiconductor industry and the change in attitude
of the radio regulatory authorities in making radio frequency spectrum available
for commercial applications, mobile radio is no longer a luxury item. Nowadays, a
mobile telephone costs less than a video recorder or even an in-car stereo unit and

become an essential business tool for many people.

1.1.1 Conventional Mobile Radio Systems

During the past decade, broad applications of land mobile services have been autho-
rized by regulatory agencies in the 800 and 900 MHz portions of the radio spectrum.
Owing to the limited experience with the application of radio propagation to land
mobile system in these bands, there are no procedures within the mobile engineering
community that are as yet generally acknowledged or accepted as providing accu-
rate and reliable 800/900 MHz propagation information [23]. Early in 1982, this
constraint on engineering analysis of mobile radio operating in the 800/900 MHz
frequency range has been identified by the IEEE as an area requiring immediate

attention.

Mobile radio signals are affected by various factors such as propagation-path

loss, multipath fading and Doppler effect resulting from the relatively high speed



of the vehicle. However, in urban areas, propagation between a mobile unit and
a base station is most susceptible to the effect of multipath fading [16]. The term
“multipath fading” is used to refer to the variation in the strength of a received
radio carrier signal due to atmospheric changes and ground and water reflections
in the propagation path as shown in Figure 1.1. Basically, there are two types of
fade, flat fades and frequency selective fades. The former distorts the amplitude
of the transmitted signal uniformly across the channel bandwidth while the latter
attenuates the carrier signal unevenly across the band. In most cases, flat fades
mainly affect the small-capacity digital radios and frequency selective fades are of
major importance to the high-capacity digital radios. Throughout this thesis, only
flat fades will be considered in the radio channel. Generally, with adequate path
clearance and in the absence of a single specular reflection on a path, the amplitude of
flat fades due to multipath propagation varies randomly with a Rayleigh distribution
[16]. This kind of channel is commonly referred to as Rayleigh fading channels.
When the signal falls below its statistical mean, a fade occurs that causes any
digital data transmitted over the carrier to be corrupted with a noise burst [15].
For instance, a vehicle travels at 20 km/hr and sends data at 10 kbit/s with carrier
frequency 850 MHz, the signal goes into a -15 dB fade at the rate of approximately
six times a second. The probability that the duration of this fade is at least 8 ms
is about 0.2. Thus, a block of 80 or more bits of data would be corrupted by noise

once every 160 ms with a probability of 0.2.

There are several techniques to minimize the effects of multipath fading. Since
the chance of having two deep fades from two uncorrelated signals at any instance is
rare, the effect of the fades can be reduced by combining them. This can be achieved

by space and frequency diversity. The space diversity scheme uses two (or more)
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Figure 1.1: The Multipath fading phenomenon



antennas for receiving and/or transmitting the same signal simultancously over a
radio channel so that the individual signals received are uncorrelated. The frequency
diversity scheme transmits the same signal simultaneously over two or more radio
frequency channels which are located in the same frequency band. Although it has
been shown [31] that both space diversity and frequency diversity can provide good
improvement factors, their use is usually restricted duc to the requirement of extra

hardware or due to the ineflicient use of the available {frequency spectrum.

In coded systems, one simpler technique which requires minor hardware changes
and is very robust to burst error, is time diversity, or interleaving. If all the symbols
of a transmitted codeword are sent at widely spaced intervals and the intervening
spaces are filled by symbols of other codewords, the statistical dependency between
symbols can effectively be eliminated. An interleaver (sce IYigure 1.2) is a device
which can rearrange the ordering of the encoded symbols so that two cousecutive
symbols are separated by certain spaces (interleaving depth) after interleaving. The-
oretically, if the interleaver is able to break up all the burst errors caused by multi-
path fading, the individual symbols received will have independent fading gains and
the channel is called a memoryless channel or a {ully interleaved Rayleigh channel.
The larger the interleaving depth is, the longer burst of error the system can handle.
However, a drawback for having a large interleaving depth is the time delay which
increases directly with the interleaving depth. Fortunately, there 1s some tolerance
for this in the mobile radio environment. In particular, for the case of specech trans-
mission, if the total coding/decoding delay is below 60 ms, it would not be noticeable
to the listener [8]. Thus, decoder buffer and interleaving depth must be limited so
as to produce at most a 60 ms delay. The Pan-European Digital Celluiar system:

Group Special Mobile (GSM), which will begin service in 1991, adopts interleaving
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as the technique to combat the multipath fading in the system [35].

With the introduction of the interleaver!

in the mobile communication system,
burst error caused by amplitude fades of duration greater than one symbol time can
be dispersed evenly on each codeword. In order to recover the original codeword, er-
ror correction technique must be applied subsequently. The ability to detect and/or
correct errors in traditional forward error correction (FEC) coding is provided by the
transmission of redundant bits, and thus, lowering the effective information rate per
transmission bandwidth. In mobile radio applications, where both bandwidth aud
power limitations are imposed simultaneously, it is often not possible to just employ
either bandwidth efficient modulation techniques or power eflicient FEC techniques
to enhance the system throughput. What is required is the integration of a band-

width efficient modulation scheme with some form of I'EC coding to exploit the best

possible attributes of both.

In 1982, Ungerboeck of IBM (Zurich) [32] proposed a novel coding technique
which treated channel coding and modulation as an entity and achieved a signif-
icant improvement in error performance without sacrificing data rate or requiring
extra bandwidth. This technique is known as Trellis-coded Modulation. The term
“Trellis” i1s used because this scheme can be described by a state transition (trellis)
diagram similar to the trellis diagrams of binary convolutional codes [33]. Intu-
itively, signal waveforms representing information sequences are most impervious
to noise if they are very different from each other. Mathematically, this is equiv-

alent to the statement that the signal sequences should have large distance in the

Interleaver must be used in conjunction with some kind of coding schemes.



Fuclidean signal space. This leads to the most important new concept of TCM—
to use signal-set expansion to provide redundancy for coding, and to design coding
and signal-mapping functions jointiy so as to maximize directly the minimum Eu-
clidean distance (free distance) between coded signal sequences (increase the noise
immunity). The resulting free distance of the coded sequences exceeds significantly
the minimum distance between uicoded modulation signals at the same information

rate, bandwidth, and signal power.

For example, consider the results in [32] where he compared his 8-state 8-PSK
Trellis code with uncoded 4-PSK scheme. Both systems transmit two information
bits per modulation interval. The free distance for uncoded 4-PSK is only 1.414 while
the free distance for Trellis-coded 8-state 8-PSK is 2.141. Such an improvement in

free distance resulted in code gain of 3.6 dB over uncoded 4-PSK in the additive

white Gaussian noise channel (AWGN).

The most common application of TCM technique is in the new generation of
modems being developed for the telephone channel. Prior to TCM, uncoded trans-
mission at 9.6 kbit/s over voiceband channels was considered to be a practical limit
for data modems. In 1984, a new generation of data modem which employed TCM
along with other improvements in equalization and synchronization appeared on the
market and was able i transmit data reliably over telephone lines at rates of 14.4
kbit/s and higher. In addition, TCM was also adopted by the CCITT for use in new
high-speed voiceband modems [33]. Since the TCM improves the noise immunity
of digital transmission systems without bandwidth expansion or reduction of data
rate, it is ideal for application in the power and bandwidth limited mobile radio

environment.



A couple of years after Ungerboeck had introduced the power and band-width
efficient TCM technique, there were considerable research activities in studying the
possibility of using TCM in mobile radio systems. McLane et al [21] studied the
usefulness of rate 2/3, Trellis-coded 8-PSK, with both coherent (PSK) and differ-
ential detections (DPSK), for fast fading, shadowed mobile satellite communication
channels. Their interest was mainly in speech transmission at a bit rate of 2100 bit/s
and a bit error rate of 1072. A similar study on interleaved ‘Trellis-coded 8-DPSK
modulations transmitted over both Rayleigh and Rician fading channels was done
by Edbauer [12]. More recently, Lee and McLane [17] repeated the study reported
in [21] by replacing the block interleaver with a convolutional interleaver. The ad-
vantage of using a convolutional interleaver is that it requires only half the delay
for the same bit error performance relative to the block interleaver. The common
drawback in the above studies was that all the results were determined via digital
computer simulation. Although simulation is capable of reflecting the actual system
performance, it is a time consuming process. In addition, simulation studies cannot

provide much insight into the understanding of the behavior of the system.

The first analytical result on Trellis-coded MPSK modulation transimitted over
fading channel was reported by Divsalar and Simon (8] where they applied the Cher-
noff bound technique to obtain an upper bound on the pairwise error probability.
By making use of the pairwise error probability bound and the transfer function of
the pair-state transition diagram, an upper bound of the average bit error proba-
bility was obtained. Later on, Divsalar and Simon [9] used a similar technique aud
extended their analysis to include Trellis-coded multilevel differential phase shift
keying (MDPSK). However, the upper bounds obtained by Divsalar and Simon

were too loose over the normal range of signal to noise ratios (SNR) of interest.
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Besides, the pair-state transition diagram approach may be a tedious task when the
number of states in the trellis diagram becomes large. By using the characteristic
function and the numerical Gauss-Konrod integration rule, McKay [20] was able
to evaluate an exact pairwise error event probability for TCM in Rayleigh and Ri-
cian fading channels. With a simple modification to the standard transfer function
bound, a new asymptotically tight upper bound for the bit error probability was de-
rived. Although the results were satisfactory, the numerical evaluation of this upper
bound is quite complicate. By employing the characteristic function and the residue
theorem, Cavers and Ho [5] obtained an exact and easily computed expression for
the pairwise error event probability of TCM operating in Rayleigh fading channels.
This expression is quite general which includes not only Trellis-coded MPSK, but
also Trellis-coded Quadrature Amplitude Modulation (QAM) with perfect chan-
nel state information (CSI), differential detection, or pilot tones. Accurate average
bit error probabilities were obtained by considering only a small set of short error
events. Among all of these analytical studies, the assumption of ideal interleaving,
or equivalently independent fading were used and which is usually impractical for

real systems.

In this thesis, we will study the error performance of Trellis-coded PSK mod-
ulations without the assumption of ideal interleaving. An exact expression for the
pairwise error event probability of interleaved, coded PSK modulations is derived
with the interleaving depth as one of the parameters. Both coherent as well as dif-
. Generally, it is found that when the interleaving
depth is equal to one-fifth 10 one-quarter the duration of a fade cycle (defined as the
reciprocal of the normalized Doppler frequency), the error performance is almost as

good as full interleaving.
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1.1.2 Alternate Detection Strategy in Mobile Radio Sys-

tems

Since interleaving is emploved only in coded systems, it is natural to ask: are there
other ways of enhancing error performance for both coded and uncoded systems
in correlated Rayleigh fading channels? By exploiting the statistics of the fading
channels, two new detection schemes: multiple-symbol differential detection [19] and

pilot symbol assisted modulations (PSAM) [26] were proposed.

In the simplest terms, a multiple-symbol differential detector is a decoder that
makes a decision about a block of N consecutive PSK symbols based on N + 1
received samples. The first received sample is used to provide a phase reference for
the entire block while the last sample is used to provide a reference for the next
block. In the case when N = 1, a conventional differential detector is the result.

The larger the value of N, the better the error performance [11].

A simulation study of the error performance of multiple-symbol differential de-
tection of MPSK was done by Edbauer [12]. He found that relative to coherent
4-PSK, Trellis-coded 8-DPSK with a three-symbol detector achieves the same cod-
ing gain as Trellis-coded coherent 8-PSK in the AWGN channel. Recently, Divsalar
and Simon [11] used the marimum likelihood sequence eslimation technique to an-
alyze the performance of multiple-symbol differential detection for uncoded MPSK
signals in the AWGN channel. They demonstrated that the amount of improvement
over conventional DPSK depends on the number of phases and the number of ad-
ditional symbol intervals added to the observation. Moreover, with the addition of

a few observation intervals, the error performance is approaching that of a coherent



detector.

The first investigation of multiple-symbol differential detection in the Rayleigh
fading channel was shown in [19] where two or more differential detectors were jointly
utilized to take advantage of the redundancy introduced by the differential encoder.
Although the performance evaluation was performed via computer simulations, they
found that just by using a 1-bit and a 2-bit differential detector jointly, the perfor-
mance of Trellis-coded PSK schemes can be improved significantly. A more detailed
study of multiple-symbol differential detection was reported in [18]. They considered
two disturbances (AWGN and fading) separately and derived optimum decoders for
each cases. Then, based on a linear combining approach, they combined the two
decoders together and form the suboptimal decoder for the multiple-symbol detec-
tion system. Error performance was evaluated by computer simulation. For the
Trellis-coded 4-PSK scheme, the proposed detection technique was able to eliminate

the presence of error floors.

In this thesis, we present the true optimal multiple symbol differential detector
for uncoded PSK modulation transmitted over correlated Rayleigh fading channels
with AWGN. An exact expression for the pairwise error event probability of this
detector is derived. As shown later, for the bit error rate above 10~°, with only
2 additional observation intervals, this decoding strategy practically eliminates the
irreducible error floor associated with a conventional differential detector. In ad-
dition, this decoding strategy is not very sensitive to the mismatch between the

autocorrelation function of the channel fading process and the decoding metric.

Beside considering multiple symbol differential detection, we also consider block

demodulation for pilot symbol assisted modulations. PSAM was first proposed by
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Sampei and Sunaga in [26]. The concept of PSAM is similar to the conventional pilot
tone estimator. Tne transmitter periodically inserts known symbols into the data
sequence so that the receiver can make a good estimation of the channel state based
on the pilot symbols. Unlike the conventional pilot signaling methods where a pilot
signal is transmitted along with the data signal, PSAM does not require complex
analog signal processing, such as frequency shifting and filtering. A simulation
study of PSAM for 16QAM in the Rayleigh fading channel was reported in [26].
The hardware implementation of a PSAM modem was also outlined in [26]. From
both the software and hardware simulation results, it was confirmed that PSAM can
effectively suppress the error floor [26]. An analytical study of PSAM was shown in
[6] where closed form results for the bit error rate of BPSK and 4-PSK, and a tight
upper bound for 16QAM were obtained. The main difference between the work
presented in this thesis and the one reported in [6] is that the former used block
decoding strategy while the latter uses symbol by symbol detection. It is observed
that block decoding of PSAM is more appropriate in a fast fading environment (e.g.

5% of the signaling rate).

1.2 Contributions of The Thesis

The major contributions of this thesis can be summarized as follows:

1. The derivation of the optimum block decoder for PSK symbols transmitted
over correlated Rayleigh fading channels. The structure of this optimal decoder

covers both multiple symbol-differential detection as well as PSAM.
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9. The derivation of an exact expression for the pairwise error event probability

for the optimal detectors in (1).

3. The derivation of an exact and easily computed expression for the pairwise er-
ror event probability of interleaved coded PSK modulations transmitted over
correlated Rayleigh fading channel, with the interleaving depth and the nor-

malized Doppler frequency as parameters.

1.3 Thesis Outline

In Chapter 2, a general description of the PSK modulation systems operating in
correlated Rayleigh fading channels is given. The assumptions made in the study
are clearly stated. Following that, the optimum block decoder and the corresponding
pairwise error event probability is derived. In Chapter 3, the error expressions for
multiple-symbol differential detection and pilot symbol assisted block demodulation
are presented as examples for the general analysis in Chapter 2. Analytical results
are shown subsequently. In Chapter 4, we will once again make use of the general
results given in Chapter 2 to analyze the error performance of Trellis-coded PSK
modulations with non-ideal interleaving. Results for both interleaved coded PSK
modulations and DPSK modulations with Viterbi decoding are presented. Finally,

conclusions of this study are drawn in Chapter 5.
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CHAPTER 2

ANALYSIS OF PSK SIGNALS
IN CORRELATED RAYLEIGH
FADING CHANNEL

As stated in Chapter 1, one of our objectives is to study the error performance of
PSK modulations transmitted over Rayleigh fadin g channel without the assumption
of independent fading. In this chapter, we will firstly define the system notation and
then derive the optimum block decoding metric for PSK signals operating in such
an environment. Following that, an exact expression for the pairwise crror event

probability for the optimum decoder is derived.
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2.1 Simplifying Assumptions and Definitions

In order to perform the analysis described in this thesis, a number of simplifying
assumptions are made. First, the channel is assumed to be non-frequency selective
fading channel (or flat fading channel) with AWGN. Second, the fading process is
assumed to be slow enough that the channel complex gain is roughly constant over
one symbol interval. Finally, the system is assumed to be able to perform perfect

time synchronization. For coherent detection, perfect carrier frequency and phase

recovery are also assumed.

Throughout this thesis, F{e} is used to represent a statistical average while (e)*
is used to represent complex conjugate. (o) is used to represent the transpose of

a matrix or a vector while (o)! is used to represent the Hermitian transpose of a

matrix.

2.2 System Description

The purpose of this chapter is to present a general mathematical analysis of PSK
signals operating in correlated Rayleigh fading channel. Throughout this thesis, we
will use the complex baseband notation. A comprehensive coverage of the relation-

ship between baseband signal and bandpass signal can be found in Chapter 3 of

[25].

Consider Figure 2.1, the input to the encoder is a sequence of binary digits and
the output is a sequence of complex PSK symbols denoted by ¢ = (¢y,...,ck,.-..).

Note that the functions for the encoder, the processor G, and the processor H for
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Figure 2.1: General system model.
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different detection schemes are listed in Table 2.1. For example, the encoder for
PSAM is a binary to BPSK converter while for multiple symbol differential detection,
the encoder represents a binary to 4-PSK converter. The output sequence ¢ of the
encoder is further processed by the processor G and produces a transmit sequence
s = (S1,..-,8k,...). Like the ¢t’s, the si’s are also complex PSK symbols. In the
case of PSAM, the processor G inserts pilot symbols periodically into the sequence ¢
while in multiple symbol differential detection, the processor G encodes the sequence
c differentially. On the other hand, for coded coherent PSK, the processor G just
acts as an interleaver while in coded DPSK, the processor G not only performs

interleaving, but also encodes the scrambled sequence differentially; see Table 2.1.

The baseband equivalent of the transmit signal is

s(t) = A sep(t — kT) (2.1)
k

where p(t) is the complex impulse response of a pulse shaping filter that satisfies
the Nyquist’s criterion of zero intersymbol interference [22], 1 /T is the symbol rate,
and A is a constant. The transmitted symbol s in the interval kT <t < (k+ )T

has the complex form

st = cap{ii} (2.2)

where 8, takes on one of the I uniformly distributed values 1; = 2—,"—‘;1' =0,1,...,1—1

around the unit circle. The energy of the pulse p(t) is normalized such that

[ ieorar = 1.
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In a mobile radio environment, there are usually a large number of diffuse scat-
terers or reflectors which move randomly relative to one another. The received signal
is therefore, a linear combination of many replicas of the original signal, each at-
tenuated and phase shifted by a random amount [34]. By the central limit theorem
[24], the distribution of the sum of many independent random variables approaches

the Gaussian distribution. Hence, the baseband equivalent of the received signal

can be written as

r(t) = g(t)s(t) + nu(t)
= Ag(t) (Z sip(t — kT)) + n,(t) (2.3)
k

where g(t) is a zero mean, complex, Gaussian random process representing the
Rayleigh fading in the channel, and n,(t) is the complex envelope of the channel’s
white Gaussian noise. The double-sided power spectral density (PSD) of n,(t) is
N,. For a mobile radio channel, the autocorrelation function of the fading process

can be modeled as [16]

Ry(r) = 5Elg (0l +7))
= 0:J,(2x fpT) (2.4)

where J, is the Bessel function of order zero, fp is the maximum Doppler frequency

(also referred as the fade rate in this study):

speed of vehicle

fp=

transmission wavelength’
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and o? = R,(0) is the variance of the fading process g(t). We assume the fading
process g(t) is slow enough that g(t) remains roughly constant over each symbol

interval. This implies the received signal in (2.3) can be simplified to

r(t) = A (Z geskp(t — kT)) + n.(t) (2.5)
k

where g denotes the value of ¢(t) during the k** interval. The average power of the
g g g ge |

signal component of r(¢) is thus

P(t) = 5E{s0s(0)F)

A2 ) L , N
= 52 Y E{sis} E{gigx}p"(t — IT)p(t — kT)
= I k

= 5 S Bl ElaYptt — TP
“ ok

= A%s2) " |p(t — kT)[% (2.6)
k

The average received signal energy for each modulation symbol sent is thus

T
E, = / Py(t)dt
0

= A%l (2.7)

If each modulation symbol carries m bits of information, then the average reccived

energy per bit is E, = E,/m.

At the receiver side, the received signal is passed to a matched filter with an
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impulse response equal to p*(—t)/+/N,. The output of the filtered signal is sampled

at the symbol rate and the sainples are used to derived two sequences:

Yy = (y]7y27"-7yN)t7 (2.8)

and

x = (z1,Z2,...,zm)" (2.9)

The sequence y contains the corrupted signals of the original data while the sequence
x contains information about the fading experienced by the data symbols. When
fading is slow enough that it will not distort the shape of the transmittion pulse and
hence produce no appreciable intersymbol interference, then, the sample ¥, can be

written as [5)

Yk = ukCx + ni. (2.10)

The ux’s in (2.10) are complex Gaussian random variables which are called fading
gains while the n)’s are independent and identically distributed (iid) complex Gaus-
sian random variables representing samples of the filtered channel noise. Each n;’s
has a zero mean and a unit variance. It should be pointed out that the u;’s and

ni’s are statistically independent.

The fading gain sequence u;’s in (2.10) are correlated, zero mean Gaussian ran-
dom variables. Depending on the system being studied, the ux’s can be data depen-

dent. In any case, we let
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I |
Q(l._})‘——:;E{u,'u;} (2.11)

denote the correlation between u; and u;. The expression for ¢(z,j) for different

systems will be derived in subsequent chapters.

In addition to the sequence y, the processor H also provides a sequence x =
(z1,-..,zar)! that contains the channel state information ((S1); sce Table 2.1. The
sequence length is M and the z,’s are dependent of the channel estimator used. For
example, in coded PSK with perfect CSI, M = N, and ry = u; while in multiple-
symbol differential detection, M = 1, and x, is the noisy phase reference at the
beginning of the data block. In any case, the x,’s are correlated, zero mean complex

Gaussian random variables.

The received sequences x and y can be written in matrix form as

where

[ ¢ \

C2

C = , (2.13)

u = (unu,...un), (2.14)

n = (Tl],ﬂz,...,n‘,\!)t, (2.]5)



and I1s an Al ~ M idemtity matrix. Since the variance of the ny’s is 1, the covariance

matrix for n {24} is

1
@nn = ‘Q’E{nn-} = I, (2.16)

where Iis an NV » N identity matrix. Also for simplicity, we shall use

and

to represent the covariance matrices for the sequences x and u. In addition,

1
P = 5E{xut} =@l (2.19)

will be used to represent the cross-covariance matrix of the sequences x and u. The

elements in the above covariance matrices will be defined in subsequent chapters.

Given any data sequence {¢,ca,...,cx}, the covariance matrix of r is
1 D ¢
&, = -FE{rr') = i (2.20)
9
- Pyx Pyy
where



= C®,,C!+ CIC!

= C®,,C. (2.21)

with
@:lll = @uu + I, (222)

and
@xy = @xu(j1 - @;x. (2.23)

2.3 The Optimum Decoder

Let the set of all possible N-length data sequences be denoted by

{¢=(&1,--.,¢n)}

where & is the k" symbol in the sequence & An optimum decoder will select
the sequence for which the a-posteriori probability P(€]y,x) is the largest. If all
the sequences are sent with equal probability, this is equivalent to choosing the
sequence with the largest conditional probability density function p(y|¢,x). The

joint probability density function of the z;’s and the y’s, given &, is

1 1. ,
.yle) = ——rl®1 } 2.94

where r is defined in (2.12) and the joint probability density function of the z.’s is
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1 1 .
p(x) = memp {—Exféx;x} . (2.25)

Note that in this thesis, the notation || e || is used to represent the determinant of

a matrix. The conditional probability density function p(y|¢, x) is, therefore,

R _plx,yle)
p(ylc,x) - p(X)
1

L te- 1)
= (ZW)N“‘i'rr”/Hﬁxx”emp {—'2‘ (rférrlr - xféxi)()] . (2.26)

Although the decoding expression in (2.26) looks rather complicate, it is possible
to reduce it into a simpler form; see Appendix A. The resulting optimum decoding

metric is of the form:

. 0 —bfaCt x
M(C) = ( xt yt ) o (2.27)
—Cab CaCf y

where

-1
a = By~ BuxPii®ru| , (2.28)

b == qu Q;)]C. N (2.29)

and @y, is defined in (2.22).



2.4 The Pairwise Error Event Probability

After obtaining the optimum decoding metric, we are now in a position to derive
the pairwise error event probability. Let the transmitted data sequence be c. Then,
according to (2.27), the decoder will make a wrong decision if for some sequence €,

the random variable

D = M(C)- M(C)

= riFr (2.30)

is less than zero. The probability that D is less than zero is known as the pairwise
error event probability. Note that r is the column vector defined in (2.12) and F is

the following matrix:

0 btaAt
F = L , (2.31)
Aab CaCt — CaCt

with

A=C-C. (2.32)

The random variable D in (2.30) is a quadratic form of dependent Gaussian vari-
ates. Following the procedures outlined in Appendix B, the random variable D) can
be transformed into a sum of independent quadratic forms of complex Gaussian

variates; i.e.:
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D= Z Ab,k[qkfz.
k

As showed in Appendix B, the ¢,’s are iid complex Gaussian variables each having a

zero mean and a unit variance and A, ;’s are the eigenvalues of the matrix B where

B = AJU!FU,AZ. (2.33)

As pointed out in Appendix B, AI% is a diagonal matrix whose diagonal elements are
the square root of the eigenvalues of the matrix ®, Uy is a unitary matrix whose
columns are orthonormal and (U,.A,-% )(A,-% Ul) = &,r. Using the results from [5],
it is easy to calculate P(c — &), the pairwise error event probability. Let p(D) be
the probability density function of the random variable D. Then, the characteristic

function, or the two-sided Laplace Transform [27] of p(D) is

op(s) = /_Zp(p)e-stD

= [ (2.34)

5~ Pk

where

~1

= 2.3
P Tk (2.35)

and the region of convergence is the vertical strip enclosing the jw axis bounded
by the closest poles on either sides. In addition, it should be pointed out that if

Ask 1s zero, the term ’—:Ef; is equal to unity. From [5], the pairwise error probability
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is equal to the sum of the residues of the function ®p(s)/s calculated at the poles

located in the right-half of the complex s-plane, i.e.,

P(c—¢&) = Prob(D <0)
— Z Residue ‘:(DD(S)

1

] i (2.36)
§ RPpoles

This expression for the pairwise error event probability can be easily computed,
even in the case of higher order poles, since there exists a recursive procedure for

calculating the different derivatives of the characteristic function.

The key elements in the expression (2.36) are the eigenvalues, the Ay i’s of the
matrix B in (2.33). However, in order to find the A, x’s, a large number of matrix
calculations and decompositions have to be performed; see Appendix B. In fact,
there is a much simpler way to find the A ’s. As found in Appendix C, the Ay ,'s

are also the eigenvalues of the matrix

G = &.F. (2.37)
Consequently, a lot of matrix eigenvalue calculations can be avoided in computing

the poles pi’s in (2.34).

In summary, the pairwise error event probability for a PSK sequence transmitted

over a correlated Rayleigh fading channel can be evaluated as follows:

1. Express the random variable D in the form r'Fr where r is a column vector
which contains the correlated random variables z,’s and y,’s. The probability

that D < 0 is the pairwise error event probability. It should be pointed
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out that pairwise error event probability is obtained by assuming only two

codewords are present and different pairwise error events are dependent.

2. Find the covariance matrix of r.
3. Find the eigenvalues of the matrix ®, F in (2.37), or of the matrix B in (2.33).

4. Substitute those eigenvalues found in step 3 into (2.34) - (2.36) to calculate

the error event probability.

In nearly all applications, we are interested in the overall bit error probability of the
communication systems rather than the individual pairwise error event probability.
A good approximation of the bit error probability can be obtained by summing a
small set of pairwise error probabilities. This will be shown in subsequent chapters.
There are two points we want the readers to take notice of. First, the general
form of the decoder in (2.27) implies the receiver has prior knowledge about the
autocorrelation function of the fading process. Second, although the pairwise error
probability analysis has been derived for an optimum decoder, our analysis still
applies to non-optimal decoders as long as the decoding metric results in a Hermitian

matrix F, like the one in (2.31).

2.5 Summary
In this chapter, we have presented detailed procedures for the performance analysis

of PSK signals transmitted over correlated Rayleigh fading channels. The optimal

decoding metric is derived along with the expression for the pairwise error event
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probability. The applications of the analysis developed in this chapter will be given

as examples in subsequent chapters.
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CHAPTER 3

PERFORMANCE OF BLOCK
DECODING OF PSK SIGNALS

In this chapter, we will present two applications to illustrate the general theory
that has been developed in Chapter 2. The analysis of the uncoded PSK signals
with multiple-symbol differential detection will be discussed in the first part. The
analysis of uncoded BPSK signals with pilot symbol assisted demodulation will be
shown in the second part. The optimum decoders and the pairwise error event prob-

abilities will be obtained for both cases. Results and discussions will be presented

subsequently.
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3.1 Multiple-symbol Differential Detection of PSK

Signals

In a conventional differential detector, the previous received sample is used as an
estimate of the channel complex gain in the current interval. This works fine as long
as fading is relatively slow. As shown in [5], the irreducible error floor associated
with conventional differential detection is proportional to (= fpT)? where fpT is the
normalized Doppler frequency. Intuitively, more accurate channel state information
can be obtained by using more than one previously received samples. This leads
us to the concept of multiple symbol differential detection. In simplest terms, a
multiple-symbol differential detector is a decoder that makes a decision about a
block of N consecutive PSK symbols based on N + 1 received samples. When N
is equal to 1, we have a conventional differential detector. By making use of the
results developed in Chapter 2, we can derive the optimum decoding metric and the
pairwise error event probability for multiple-symbol differential detection of PSK
signals transmitted over correlated Rayleigh fading channels. The numerical results

for uncoded 4-DPSK will be presented subsequently.

3.1.1 System Description

Using the notation in section 2.2, the transmitted PSK symbol in the k" signaling
interval (i.e. kT <t < (k+1)T, T being the symbol duration) can be expressed in

complex form as:
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sk = exp(jbr), k=1,...,N (3.1)

where 0, is the transmitted signal phase and will take on one of the I values from the

set {2-’{—’, i = 0,1,...,1—1}. Due to the differential encoding process, the sequence
8 = (s,,82,...,5N) is related to the message sequence ¢ = (c1,¢3,...,¢n) by the
fcllowing:

Sk = 8k_1Ck = S0%k (32)
where

k
Zr = HCJ" (3.3)
J=1

and sg is the reference symbol for the differential encoding process. Like the si’s, the
cx’s and consequently the z;’s are complex phasors taken from the set {exp(j %), 1=

0,1,...,1—1}.

The complex PSK symbols s;’s are transmitted over a non-frequency selective
Rayleigh fading channel with additive white Gaussian noise. After filtering and
sampling, the received signal in the k** interval is yx = ugcr +ng, k= 1,..., N; (see

(2.10)), where

A
wy = \/J%,%sk_l. (3.4)

Note that g is the channel complex gain in the k** interval and u;’s are complex

Gaussian random variables with variance:
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A?
0= "—o*=E,/N,, (3.5)

u g
N,

where o7 is shown in (2.7). As before, n represents a filtered Gaussian noise sample
and the ny’s are a set of iid variables with a variance of o2 = 1 E{|ni|*} = 1. The

vector u = (uyg,...,un)" can be written as

u = \/?V—Osg (3.6)
where
S0
S = , (3.7)
SN-1
and
g=1(g,---.9n)". (3.8)

The covariance matrix ®yy in (2.18) becomes

Py = SP22S! (3.9)

where
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[ 6(1,1) $(1,2) -+ B(1,N) )
2 2.1 2,2 2,N
¢22=§—%E{gg*}= o21) 922 . o2 ) | .10)
and
o A%l .
#i,7) = E§E{geg,-}
- %Jo(QﬂfDT(i—j)), (3.11)

sce (2.4) and (2.7). Now substituting the above expression for ®,, into (2.21)

implies
®,, = C(S®zS'+I)Ct
= CS(®22 +I)S'C!
= z(®a2 + D)z’ (3.12)
where
21
z= . (3.13)
ZN

and the z;'s are defined in (3.3).

Since differential encoding/detection is used, we are using the received sample
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corresponding to the initial transmitted phase sp to provide the CSI. As a result,

the length of the sequence x in (2.9) is equal to 1 (M = 1) and

Iy = UgSg + no.

This implies that the matrix ®xy, in (2.19) becomes:

1
qu - ;)'E{-rlut} = S()QIZST

where

le - (é(os l)~ .- 1¢(01 Ai—))

and

Y £ | . Ey o
Q(O'IJ) = j,\;oiE{gOgJ} = _:N-—OJO(ZKII)IJ)'

Substituting ®x,, into (2.23) implies

Qxy = S[)‘:ﬁlzsfct = lezf

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

where z was defined in (3.13). As mentioned in Chapter 2, ®,, = Q;x. Finally, the

term Py in (2.17) becomes

1_ “s
Pex = §E,'{§I‘]!2) = é(ﬁ,ﬂ) +1 = —'\?— + i.

(3.19)



3.1.2 The Optimum Decoder

The received sequence {y,.y,.. ... yx) as well as z, are passed to a multiple-symbol
differential detector implemented as a Maximum Likelihood Sequence Estimator
(MLSE). The function of the MLSE is to select from all the IV possible N-length
sequences the most likely message sequence. This is accomplished by finding the
sequence € = (6q,....cx) for which the conditional probability density function
plylz,.€) is the largest. y being the vector defined earlier in (2.8). Using the results
from section 3.1.1 as well as those from Section 2.2, we have the following decoding

metric

. .1 0 —btéit Iy
Me)=(27y") _ (3.20)
—zab  zaz! y
where i and b are:
-~ Y -1 1-1
a = iQZZ_QZIQxxﬁlzj , (3.21)
b = &8 (3.22)
®5, = B +1, (3.23)
%1
z = . (3.24)
and I = Hf:; ¢j. The decoder will select the sequence &€ = (é,...,cy) whose

metric ts the smallest. In using the metric in (3.20). the assumption of a prior

knowledge about the autocorrelation function of the fading process must be made.
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This can be done in practice by estimating the autocorrelation function from a known
training sequence sent during the start-up phase of a communication session, and
by continuously updating these estimates during the data transmission phase. Since
estimation errors are sometimes unavoidable (especially during the acceleration or
deceleration of the vehicle). we will examine in the following sections the error
performance of a detector whose decoding metric is not perfectly matched to the

channel statistics.

In the case of static fading, i.e. when fpT = 0, the matrices a and b in (3.21) and

(3.22) becomes I — fJ and 1f’ respectively, where f = ¢(0,0)/(1 + (1 + N)¢(0,0)),

fl — _9(0,0)

= 200" and J and 1 are ¥ x N and N x 1 matrices whose entries are all equal

to unity; see Appendix D. Consequently, the optimum decoding metric from (3.20)

becomes

N N 2 N
M(&) = Z iykgz —f Z yrZk | + Z(ykI;fk. + YiT12k)
k=1 tk=1 | k=1
or equivalently
N 2
M(@) =z + >y} (3.25)
k=1

In otherwords, for very slow fading, the function of optimum decoder is to select the
sequence (zy,...,2x) which has the highest correlation with the received sequence.
It should be pointed out that (3.23) is also the optimum decoding metric for the

¥ 1

AWGN channel; see [11] and [36].
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3.1.3 The Error Performance

Given the actual message sequence is ¢ = (cy, ..., cy), the decoder will make a wrong
decision if for some sequence ¢ = (&, ...,cy), the random variable D in (2.30) is
less than zero. As shown in Scction 2.4, we can follow the four steps developed on

page 31 to obtain the pairwise error event probability. Note that the matrix F in

(2.31) becomes:

0 btaAt
F=| . (3.26)
Aab zast — zaz!

where 3 and b were defined in (3.21) and (3.22) and

We will make use of the exact pairwise error event probability expression in
(2.36) to evaluate the overall bit error probability. Results for uncoded 4-DPSK,
with the Doppler frequency of the Rayleigh fading channel and the word length
of the multiple-symbol differential detector as parameters, will be presented and

compared with that of a perfect coherent detector.

In analyzing the bit error performance cf an uncoded MPSK system, we note
that the message sequence ¢ = (cy, ..., cn) is obtained by mapping binary n-tuples,
n = logy(1), to MPSK symbols using Gray coding. An example using 4-PSK is
shown in Figure 3.1. We also note that the bit error probability is independent of
the message sequence sent; see Appendix E. As a result, we assume c is the all zero-

phase sequence, i.e., ¢ = (1,...,1). Consequently, all the elements in the sequence
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2 (1, 1) 0 (0, 0)

@ 0

Figure 3.1: The 4-PSK constellation and Gray mapping. The magnitude of each
signal vector is equal to unity.
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(z1,...,2n) are equal to unity; see (3.3).

An upperbound on the bit error probability can be obtained by taking the union
bound of the pairwise error event probabilities. For a multiple-symbol detector with
a word length equal to N, there are IV — 1 error events to consider. Clearly, the
computational complexity required to obtain the union bound increases dramatically
as N increases. It is shown in [11] that for an AWGN channel, an accurate cstimate
of the overall hit error probability can be obtained by considering only the set of most
likely (or dominant) error events. These most likely error events are determined by
those sequences (7),...,2n) which have the highest correlation with the sequence

(z1,-..,2n), where the correlation is defined as

2

(3.27)

N
p={1+ zzsz
k=1

As mentioned above, we assumed all the z;’s are equal to unity. Subsequently, (3.27)

becomes

This expression indicates that there are 2(/N+1) sequences that give the same largest
4 and they are denoted by:
7 = (59, 239); i=1,...,2(N +1).

Note that 2(1) = (e/27/1 . /21y 3(2) — (e=327/1 _ e=i27/1) and each of the re-
maining 2{*) contains one and only one symbol of the form e/*2™/ and the remaining

N — 1 symbols are all equal to unity. Since a static fading channel (fpT = 0) is
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equivalent to an AWGN channe] throughout the duration of cach block of N sym-
bols, consequently, the most likely error events for these two channels are identical.
As a matter of fact, we have shown earlier that the optimuin decoding metric is the
same for both the AWGN and the static fading channel; see section 3.1.2. In gen-
eral, we believe that as long as fpT is relatively small, the most likely error events
in a fading channel are identical to those in the AWGN channel. Consequently,
only those error events mentioned above will be included in the bit error probability

analysis.

Let the erroneous message sequence corresponding to 2() = (;’l("), cee z}v(‘)) be
denoted by &9 = (¢ @ . .,c}v(i)) where 7. = ?:1 (?j(i). Because of the use of
differential encoding, 2NV — 2 of these erronecus message sequences have the symbol
e’/ (or e73%/1) followed immediately by ¢ 7%"/! (or ¢/2*/1) and the rest of the
symbols in these sequences are all equal to unity. The remaining 4 sequences are
denoted by: &) = (e/27/11,...,1),&® = (e 1,...,1),&®) = (1,... 1,721y,
and ¢4 = (1,...,1,e77*"/1). Since Gray coding is used to map binary n-tuples to
MPSK symbols, this implies the Hamming distance between the binary equivalent

of ¢ and ¢ is

d(e, ) 1 1<i<4 (3.28)
c,c'’) =
2 5 <1 <2AN +1)

Consequently, an approximation to the bit error probability of a multiple-symbol

differential detector in a Rayleigh fading channel is:

1 2N+2 (.) “©
o —— 5 d(c,eV)P(c — &) 2< N 3.29
b~ T -] (c, " )P(c — &) ( )

=1

P
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Since the enumeration of the erroneous messages is different for a conventional dif-
ferential detector, the above equation is only used when N > 1. However, it can be
shown that for a conventional differential detector (N = 1), the bit error probability

is upperbound by [5]:

[N}
1
)
~

P, <3 (Psin’(5) N=1, (330)

! (1 + \/1 + (Tsin?(%))™ (\/1 + (rsin2(§))'l)

where

_ ¢(1,0)?
T ($(0,0) + 1)2 — (1, 0)2 (3.31)

and ¢(7,7) is the autocorrelation function defined in (3.11). Note that (3.30) can
also be used to determine the bit error probability of uncoded MPSK with perfect

coherent detection. In that case, simply replace the term I' in (3.30) by the signal-

to-noise ration F,/N,; see [5].

We show in Figure 3.2 the analytical results for the error performance of uncoded
4-DPSK in a static Rayleigh fading channel (fpT = 0). Also showed is the result
for 4-PSK with perfect coherent detection. It is observed that the original 3 db
gap between coherent and conventional differential detection can be narrowed to 2
dB by using a multiple-symbol differential detector with a word length, N, equal
to 5. Another 1 dB gain can be achieved if N is increased to 10. The performance
improveinent of these two detectors, however, are achieved at the expense of higher
decoding complexities. Note that in general, a multiple-symbol differential detector

requires to perform /¥ metric computations to decode Nlog,(I) bits of information.
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parameter N is word length used by the multiple-symbol differential detector. N

corresponds to conventional differential detection.



The scenario for which multiple-symbol differential detection is most useful is
when the mobile unit is traveling at very high speed. As mentioned earlier, the
maximum Doppler frequency is linearly proportional to the speed of the vehicle. We
show in Figure 3.3 the error performance of 4-PSK when the normalized Doppler
frequency! is equal to 0.01 (corresponds roughly to the case in which the carrier
frequency is 900 MHz, the vehicle speed is 60 miles/hour, and the signaling rate is
8 Ksymbol/s). It is observed from Figure 3.3 that for the bit error rate above 107°,
the irreducible error floor associated with the conventional differential detector can
be eliminated by using a multiple-symbol detector with N as small as 2. When
N = 3, the gap between differential and coherent detection is roughly 4 dB at a bit
error rate of 1074, If complexity is not an issue, then a differential detector with
N = 10 can be used to narrow the gap further down to 2 dB. Similar observations
are made for a Doppler frequency of 0.03. It is shown in Figure 3.4 that for this
Doppler frequency, a detector with N = 2 can practically eliminate the irreducible
error floor associated with a conventional differential detector at the bit error rate
above 1073, When the word length is N = 5, the gap between coherent detection
and differential detection is about 4 dB at an error probability of 10~*. Another dB

gain can be achieved by using a detector with N = 10.

Recall that the analytical results showed in Figure 3.2 - 3.4 are obtained by
assuming the bit error probability of a multiple-symbol detector is dominated by
those sequences (2;,...,2n), which have the highest correlation with the sequence
(z1,.-.,2n). To check the validity of this assumption, we show also in Figure 3.4 the

simulation results for the N = 3 detector. It is observed that the simulation results

Mazrimum Doppler frequency
Signalingraste .

! Normalized by signaling rate, i.e.,
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agree very well with the analytical results at large signal-to-noise ratios (equal to or

above 20 dB). At lower SNR, the assumption appears to be slightly pessimistic.

As mentioned in Section 3.1.2, a practical implementation of the multiple-symbol
differential detector requires the receiver to estimate from the received samples the
autocorrelation function of the channel fading process. Clearly, estimation errors
are unavoidable and this may result in a decoding metric that is mismatched to
the channel statistics. We show in Figure 3.5 the error performance of a N = 3
detector that uses a decoding metric which is optimum for fp7T = 0.01 while the

actual Doppler frequency has a different value. Two cases are considered:

1. the actual Doppler frequency is 0 (static fading),

2. the actual Doppler frequency is 0.02.

It is observed that the maximum degradation caused by a mismatch between the
decoding metric and the channel statistics is about 2 dB3 at an error probability of
107* and this is for the case when the actual Doppler {requency is zero while the
estimated Doppler frequency is 0.01. The effect of the mismatch is rather minimal
if the actual Doppler frequency is 0.02. It should be pointed out that the results in
Figure 3.5 are obtained by replacing the matrix F in step 3 of page 31 by the one
derived from the estimated Doppler frequency. On the other hand, the matrix ®,,
in step 3 of page 31 is left unchanged and it still represents the covariance matrix
of the received samples associated with the actual Doppler frequency. Moreover,
Figure 3.5 is optimistic in the sense that the shape of the autocorrelation function
of the fading process (in this case is the Bessel function of order zero, sce (3.11)) is

known to the receiver. If there is also a mismatch in the shape of the autocorrelation
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function, more degradation in the error performance will be resulted.

3.2 Pilot Symbol Assisted Demodulation of un-

coded BPSK

In this section, we will use the general theory outlined in Chapter 2 to carry oul the
analysis for uncoded BPSK signals with pilot symbol assisted demodulation (PSAM)
in correlated Rayleigh fading channel. Unlike [6], the analysis shown here is based
on a block decoding strategy rather than symbol by symbol detection. The concept
of PSAM is to insert a known symbol periodically into the transmitted sequence so
that the fading distortion can be estimated at the receiver. Since there are additional
pilot symbols being transmitted, the effective bandwidth will be reduced. Despite
this throughput drawback, PSAM does not change the transmitted pulse shape [6]
and the processing at transmitter and receiver is also simpler than with conventional

pilot tone.

3.2.1 System Description

The frame structure for a PSAM system is shown in Figure 3.6 where 1 pilot symbol
is added to every N data symbols. Since block demodulation is used in this analysis.
The decision on any block of NV data symbols will be based on the N received samples

for that block. as well as on the



Fading
gain

Data

U (1.K)N+1)

Y 2.K)N+1)

Uk (N+1)

Figure 3.6: Transmitted frame structure of PSAM.




M =2k (3.32)

received pilot symbols surrounding that block. This decoding strategy is very similar
to the multiple-symbol differential detection in previous section, except that in the
multiple-symbol differential detection system, the eflective “pilot™ syvmbol is the
symbol at the end of the previous block. As a result, multiple-symbol differential
detection can be viewed as a pilot symbol assisted modulation technigne with the

“pilot” symbol added without bandwidth expansion.

To start our analysis, we use ¢ = (cf,...,en) and p = (py....,py) to denote
the data symbols and the piiot symbols respectively.  Adopting the notation in
Section 2.2, the complex received baseband data signal at { = k7T is denoted by
Yr = ugck + ng in (2.10) and the covariance matrix ®yy for the random vector y is

defined in (2.21). For PSAM. the u;'s are:

A
U = ——=
k ,———No Gk

where g; once again represents the channel complex gain in the &% jnterval. By

(3.33)

comparing (3.33) with (3.4), it is not difficult to see that the covariance matrix of

the u’s is

Pyu = P22 (3.34)

where P22 was defined in (3.10).

On the other hand, the received pilot symbols are:

't
PN



Tp = PeUk_K)N+1) + €k, k= 1, 2, Sy M (335)

where K is defined in (3.32) and the e;’s are iid zero mean complex Gaussian random
variables with a unit variance. Now, the random vector x = (z1,...,z)" in (2.9)

can be written in matrix form as

x=Pv+te (3.36)

where

P
P = .. , (3.37)
PAas
Vo= (UO_K)(N41) U@=R)(N41)s - - - UK (N41)) s (3.38)
and

e =(e1,...,en). (3.39)

This implies the matrix 4 in (2.17) becomes

b =P, P 41T (3.40)

where



[ 6((1 = K)N'.(1 = K)N') 6((1 = K)N', (2= K)N') ... o((1 = K)N", K N"))
® $((2— KYN', (1= K)N) (2= KIN'. (2= K)N') ... 6((2— N)N', K\
\ G(AN, (1~ K)N) SN (2= KIN') ... KN, KN
(3.41)

with N = N 41 and 4(z, ) was defined in (3.11). As for the matrix ®y,, in (2.19),

we have

1 ,
Py = ‘)'E{(PV + e)u} = Pdyy, (3.42)

where ®, is a matrix whose (i, 7)™ element, denoted by Duul,J) 18

buul(i,7) = &((i — K)(N + 1), 5). (3.43)
J=12...,N

Once again, all the ¢(z,7)’s in the above covariance matrices are delined in (3.11).

Recall the term FE, is the received signal energy per symbol of a non PSAM
detection system. Since a pilot symbol is inserted into every N data symbols. If the
same amount of energy is used in a PSAM system, the effective data signal energy
is only (Tv%)Es Therefore, for PSAM system, the effective signal to noise ratio

should be

~ N F, ,
SNR =~ (3.44)




3.2.2 The Optimum Decoder

For PSAM, the decoding metric can be obtained by putting the ®xy in (3.42) and

&, = (P, P +I)!

XX

= (P®,,P'+PIPH)™!

= P(®,,)'P! (3.45)

where

®,, =Py +1
into (2.28) and (2.29) and then, substituting
a=[Pas+1— By &, Bvu], (3.46)

and

b = &,, 8P (3.47)

into (2.27). The same expressions, when substituted into (2.31) gives us the F
matrix. Once we have ®,r and F, we can then proceed to calculate the pairwise

error event probability as outlined in page 31.

3.2.3 The Error Performance

In this sub-section, we will consider the error performance of uncoded BPSK signals

with PSAM. To find an approximation on the average bit error probability of the

57



PSAM system, we must first find the pairwise error probability. As before, we can
follow the four steps developed in Section 2.4 (page 31) to calculate the pairwisc
error probability. The bit error rate for uncoded BPSK, with the Doppler frequency
of the Rayleigh fading channel, the length of data block N, and the length of pilot
symbols sequence A as parameters, will be presented and compared with that of a

perfect coherent detector.

As in the multiple-symbol differential detection analysis, an approximation of the
bit error probability can be obtained by summing a set of dominant pairwise error
event probabilities. In otherwords, we are only interested in those error events which
the data sequence ¢ = (cy, ..., cn) and the erroncous sequence € = (é4,...,cy) have
the highest correlation. For a PSAM system, the correlation coeflicient is defined as

(see (3.27) as well):

2

§= (3.48)

Ai
M+ S e
1=1

Without loss of generality, the data symbols ¢;’s are assumed to be 1. This imphes

that the correlation coefficient can then be written as

2

p=

N
M + Z (31'
i=1

Therefore, for BPSK signaling, there are N erroneous sequences € = (é4,...,¢n)

such that the correlation coefficient in (3.49) is maximized. Those are the sequences
with only one symbol ¢ equals to —1 and the rest of the symbols in the sequences

are all equal to 1.

For comparison purpose, we include the bit error probability of coherent BPSK



[25]:

1
~ 4x SNR

in all Figures. We show in Figure 3.7 the error performance of uncoded BPSK with

P, (3.50)

the length of data block equal to 6, and the length of pilot sequence equal to 11.
The performance for the block PSAM decoder agrees very well with the symbol by
symbol detector in [6]. However, the block decoder performs slightly better than the
symbol by symbol detector in fast fading channels. For example, when the fade rate
equals 10 0.05, the gap between block decoding PSAM and coherent detection is only
1.5 dB at a bit error rate of 10~* while the gap for the symbol by symbol decoding
PSAM shown in [6] is 3 dB. This improvement implies that block decoding is more
appropriate in fast fading environment. Figure 3.8 and Figure 3.9 show the error
performance al a fade rate equal to 0.05 with different data length N and different
lengths of pilot sequence M as parameters. We observe that as the length of the
data block increases, the bit error rate decreases subsequently. This is in agreement
with the report in [6] and [26]. The reason being that as the length of the data block
increases, the effective signal energy increases; see (3.44). However, we cannot keep
increasing the size of the data block in order to get better performance. Since the
pilot symbol spacing depends on the data block size, the larger block size means the
pilot symbols separate further apart and hence, their correlation is less significant.
Following this line of reasoning and observation from Figure 3.8 and 3.9, the number
of pilot symbols used for decoding is less important for larger data block. In other
words, the difference between using 4 pilot symbols and 20 pilot symbols for decoding
a 6 symbols data block is very small; see Figure 3.9. Fewer pilot symbols used for

decoding imply less delay is required for filling up the pilot symbols buffer.
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3.3 Summary

In this chapter, two examples have been used to demonstrate the general analysis
presented in Chapter 2. In the first part, the pairvise error event probability of
uncoded PSK signals with multiple-symbol diiferential detection has been derived
from the optimum decoder. Error performance at different fade rates have been
presented. For the bit error rate above 107, it is found that multiple-symbol de-
coding strategy can remove the error floor associated with conventional symbol by
symbol differential decoding. In the second part, the pairwise error event probability
of uncoded BPSK signals with pilot symbol assisted modulation (PSAM) has been
developed. Results for diflerent fade rate, data block size N and length of pilot
symbol sequence M are presented. We cobserved that in fast fading channels, the
block decoder used in this thesis for PSAM performs slightly better that the symbol

by symbol detector reported in [6].
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CHAPTER 4

PERFORMANCE OF
INTERLEAVED TCM IN
CORRELATED RAYLEIGH
FADING CHANNELS

We consider in this chapter the perforinance of interleaved, Trellis coded PSK signals
transmitted over flat Rayleigh fading channels. Unlike [3], [8], [9], and [12], the sys-
tems consider here have finite interleaving depth. This implies after de-interleaving,
the fading gains experienced by the different transmitted symbols are correlated.
We will study the error performance of various TCM schemes with the interleav-
ing depth as a parameter. First, we will make use of the general theory developed
in Chapter 2 to analyze the interleaved, coded PSK signals with perfect CSL An

exact expression for the pairwise error event probability of interleaved, coded co-
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herent PSK signals is obtained. Second, we will study the error performance of
interleaved, coded DPSK signals. However, the optimum decoding metric in (2.27)
cannot be directly adopted. The reason being that the metric in (2.27) is used for
block decoding and is not directly applicable in the Viterbi decoding of TCM. As a
result, we use a suboptimal decoding metric which was employed in [9]. Although
the decoding metric is changed, the four steps listed on page 31 can still be used to
determine the pairwise error event probability of interleaved, coded DPSK signals.
Finally, by making use of the pairwise error event expressions, we can obtain an
approximation of the bit error probability. Bit error curves of various interleaving
depths at different maximum Doppler frequency will be shown subsequently. Since
TCM will be of our interest, we will start this chapter by introducing some of the

basic concept and error performance of TCM.

4.1 Ungerboeck’s Trellis Codes

Trellis-coded modulation (TCM) is a coding scheme with which channel coding and
modulation are combined as one entity. It is very suitable for those communication
systeins where both bandwidth and power limitations are imposed simultaneously.
TCM achieves coding gain without any bandwidth expansion. At first it may seem
that this statement violates some basic power-bandwidth trade-off principle. How-
ever, there is still a trade-off at work; namely TCM achieves coding gain at the

expense of decoder complexity.

TCM combines a multilevel/phase modulation signaling set with a state-oriented

trellis coding scheme. Mult:level/phase signal sets are signal constellatioas having

65



multiple amplitudes. multiple phases. or a combinations of multiple amplitudes and
multiple phases. A trellis code is one that can be characterized with a trellis diagram,
like the one showed in Figure 4.1. The dots in Figure 4.1 represent the states and
the branches represent transitions between states. During a transition, the encoder
will emit a signal alphabet by considering its present state and the input bits. For
example, if the encoder is in state S0 and the input bits are 11, the encoder will
send out the symbol labeled 6 or the complex symbol (‘;I‘p(j%{) to the channel.
TCM is based on the fact that redundancy is introduced by increasing the number
of signal alphabet through n:ultilevel/phase signaling, se that no redundant symbols
are transmitted. For example, if the number of symbols required in the alphabet
is 2™ for an uncoded system, TCM uses 2™ for the coded system. This implies
there are 2™*! — 2™ symbols used for redundancy. However, for a constant average
power, the minimum distance between adjacent signal alphabet decreases as the
number of signal alphabet increases. In uncoded modulation, assuming a constant
average power, the reduction in the minimum distance between the signal alphabet
degrades the error performance. As a result, treliis coding must be able to increase
the minimum distance between the signals that are most likely to be confused,
without increasing the average power. Consider the trellis in Figure 4.1, since there
are 8 PSK symbols available while there are only 4 possible transitions from cach
state, coding here means the proper assignment of PSK symbols to the encoder
transitions so as to maximize the free Euclidean distance. The concept of mmapping
by set partitioning [32] is used to achieve that. Figure 4.2 shows the set partitioning
of 8-PSK constellation. This technigue divides a signal set successively into smaller
subsets with maximally increasing smallest intra-set distance A%, 1 = 0,1,2. Fach

partition is two-way. After the first partition, the signal subset A and B obtained
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by taking the even signal points and the odd signal points respectively, increase the
intra-set distance A? from 0.586 to 2. The partitioning is repeated once more so
that the smallest intra-set distance further increases to 4. If we assign symbols from
the same subset (A or B) to those transitions originating from the same state and
those terminating at the same state in Figure 4.1, we will have at least a squared

free Fuchidean distance of

ATy A=

T'his is the lower bound for the squared free Euclidean distance since it only repre-
sents the squared distance accrued during the initial split and the final remerge of
two paths in the trellis and there may be additional distances accrued during other
intervals. Compared with uncoded 4-PSK where the minimum squared distance is
2, the simple 8-state code in Figure 4.1 provides a coding gain (without bandwidth

expansion}.

The following is a summary of Ungerboeck’s code design rules for AWGN chan-
nels:

1. All channel (8 PSK} symbols should occur with equal frequency and with a

fair amount of regularity and syvmmetry.

2. Transitions originating from or merging in the same state receive signals either

from subset A or B.

1. Parallel transitions receive signals either from subset AQ or Al, or B0 or Bl.

These rules guarantee reasonably good codes for the AWGN channels. However, to
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find out the best code for a given encoder structure, one has to rely on computer

search.

The trellis encoder of Iigure 1.1 can be implemented in the form of a rate 2/3
convolutional encoder followed by an 8-PSK signal constellation and bit-to-symbol

mapper, see Figure 1.3.

In summary, trellis coding for bandlimited channels employs larger signal alpha-
bet achieved through multilevel/phase signaling (e.g. MPSK), such that channel
bandwidth is not increased. Although the increase in signal set size reduces the
minimum distance between symbols. the free Euclidean distance between trellis code
sequence more than compensates for the signal points being crowded together [29).
The result is a net error performance gain of at least 3 dB without any bandwidth

expansion [32].

4.1.1 The Performance of TCM

It is well known that the appropriate criterion for optinmnn TOM design on the
AWGN channel is the maximization of the free Euclidean distance [32]. However,
reports from [10] and {37] suggested that the performance of TCM in (severe) fading
environment may no longer depend solely upon the maximization of the free kn-
clidean distance. The primary concern in such environment is to maximize the code
diversity or the “length™ of the shortest error event path. In fact, the “length” of
an error event path is just the Hamming distance between the transmitted sequence
and the selected sequence, counted by the channel symbols. For example, Figure

4.4 illustrates two error event paths. The sequence marked by ¢ = ... ¢, ey 04, ..



D~

o3
8-PSK
c

{ Symbol [ 7 & c’ |
0 0 0 u
4 60 0 1
2 6 1 0
G 0 ! !
1 1 0 0
5 1 0 1
3 i1 0
7 | S T

Figure 4.3: Realization of Ungerboeck’s 8-state code using a rate 2/3, 8-state Con-

volutional code.
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======-  Transmitted sequence ¢

1
= Erroneous sequence ¢

A2
s Erroneous sequence €

Figure 4.4: Examples of error events.
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is the transmitted sequence where ¢;’s are the channel symbols. There are two se-
gquence &' and €% which diverge and then remerge with the transmitted sequence
tirough different paths. Assume that & # c¢;. Then, the length of error events
associated with the sequence €' and &% are 2 and 3 respectively. Since there is no
parallel transition and €' has the smallest length, it is the shortest error event and
the code diversity of this trellis code is 2. On the other hand, if fading effects are
mimmal, the optimum performance i1s once again achieved by a trellis code designed

to maximize the free Euclidean distance.

Now, let’s consider some examples of Ungerboeck’s Trellis codes. The rate 2/3,
S-state, 8-PSK trellis code and the rate 2/3, 16-state, 8-PSK trellis code are the
first TCM schemes found by Ungerboeck using the rules of set partitioning outlined
in page 69. The trellis diagrar: of the 8-state code is shown in Figure 4.1 and the
trellis diagram of the 16-state code and the structure of the trellis encoder is shown
in Figure 4.5. In both diagrams, the shaded area depicts the shortest error event
while the dash line denotes the free Euclidean distance. In addition, we assume the
transmitted codeword is represented by the path at the top of the trellis. As written
on the diagrams. the free Euclidean distance for the 8-state code is only 2.141 while
the free Eunclidean distance for the 16-state code 1s 2.274. The increment in free
Fuchdean distance causes the 16-state code achieved a 4.1 dB coding gain over
uncoded 4-PSK while the coding gain for the 8-state code is only 3.6 dB. Thus,
in terms of the coding gain. the 16-state code is more powerful than the 8-state
code in the AWGN chanrel. In addition. the 16-state code is also more suitable for
fading channels since it has a code diversity order of 3 while the 8-state code has a
code diversity order of 2. However, since more states are involved, finding the set

of dominant error events for the 16-state code is also more time consuming than

13
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Figure 4.5: Realization of Ungerboeck’s 16-state code using a rate 2/3, 16-state

convolutional code.
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the 8-state code. For the sake of simplicity, we will mainly study the Ungerboeck’s

8-state, 8-P’SK trellis code in this thesis.

4.2 System Model and Notation for Interleaved

PSK Systems

The discrete-time system model for the interleaved, coded PSK symbols transmitted
over correlated Rayleigh fading channel will be discussed in this section. Although
we have presented similar materials in Chapter 2, a more detailed description for
the TCM system with interleaver will be shown in this section. Both systems with

perfect ('Sl and differential detection will be presented.

The block diagram of the system is shown in Figure 4.6. The input to the trellis
encoder is a sequence of binary digits denoted by m = (m,,...,my,...), and the
output is a sequence of coded PSK symbols denoted by ¢ = (¢,...,¢k,...,cn). In
order to disperse possible deep fades in the channel, the sequence of modulation
symbols is passed to a block interleaver with a buffer of size a rows by 3 columns,
where 3 is the interleaving depth, and Ja = N is the length of each TCM codeword;
sce Figure 1.2. The modulation syvmbols in the codeword ¢ = (¢y,...,¢ex,...,cn)
will fill the interleaver buffer column by column, and the output sequence of the
interleaver is denoted by ¢ = {d].....c}....,cy). Let the time index k in ¢, be

writtenas k= ba + a4+ 1. where 0 < b < 3-1and 0 < a < a- 1. This implies

that after interleaving. the symbol ¢ will occupy the (a + 1,5 4 1)* position in
tie mterleaver buffer, where a + 1 is the row number and 5 + 1 is the column

number. According to Figure 1.2, ¢; will be sent out in the (a3 + b 4+ 1)** time
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slot. The relationship between the two sequences ¢ = (¢p,...,¢k,...,cn) and ¢’ =

(. fy -y Car) 15 thus:

’
Cbotatl = caﬁ+b+l' (4.1)

Since in practical systems, the interlcaving depth 3 is finite. This implies that, after
deinterleaving on the receiver side, the complex gains, or fading, experienced by

different modulation symbols in the codeword are correlated.

For DPSK, the sequence ¢’ = (¢},...,¢,,...,cy) at the interleaver output will
be differentially encoded into another sequence before transmission. In either case,

the transmitted sequence is denoted by s = (s1,...,5,...,5n5) where

c, Coherent PSK
sk = (4.2)
ChSk-1 Differential PSK

Without loss of generality, we assume sy = 1 for DPSK.

Consider the transmission of MPSK signal over a Rayleigh fading channel with
AWGN, as showed in Figuie 4.6, the received signal is passed ‘o a matched filter and
the output is then sampled every T seconds to produce the sequence (v}, ...,y ..., yN)-

The samp’e yi can then be written as (see Section 3.1.1 and 3.2.1)

, A
v, = ;73}:;9&3& + nj. (4.3)

As before, the n’s in the above equation are independent and identically distributed
{ud) complex Gaussian random variables representing samples of the fiitered channel

noise. Each n}’s has a zero mean and a unit variance. The samples in the sequence



(¥1----+¥i-----y%) are deintericaved to produce the sequence (g, ... ¥k, ... y~n).
Using (4.1), it 1s casy to sec that forany 0 < a < a—land 0 < b < 3 -1,
the samples 1n the sequences (y).....y.. ...y ) and (g . ¥k, - .., yx) have the
relationship that ysatat1 = ¥o34441- Using the notation in (2.10). the deinterleaved

sample y; can be written as

Yk = UpCi + g

where

A . Yo
2= Gai b1 Coherent PSK
Up = Vo k=ba+ail (1.4)

7:4\_'0-qaj+“’+i5"‘j+b I)l)sl{

represents the fading experienced Ly the 4™ data symbol, and

k=ba+a+l (4.5)

is a sample of the filtered channel’s additive white Ganssian noise.

Due to a finite interleaving depth, the ui’s in (1.4) are a set of correlated, zero
mean, complex Gaussian random variables. Let two of the symbols in the TCM
codeword. ¢, and ¢, occupy respectively the (a,+1, 6,4 1) and the (ay + 1, by + 1)
positions in the interleaver buffer, where 0 < ay, 0, T a~land 0 < by, b, < 4 - 1.
This implies that if ky = by + a; + 1. k; = bya + a, + 1. and the complex gains uy,

and u,, experienced by these two symbols have a correlation eqgua

1
é(klz k?} = ;E{Uh ul-t?}

Vo)

-]



pl3(a; — az) + by — by) Coherent PSK
- ' (4.6)

plBlay —aqz) + by — })2)3a1i3+b1522{j+b2 DPSK

where

A%l .
plk) = NoéE{gmgmk}
A?
= Eﬁg(kT)

E, .
= VJQ(QkaDT), (41)

and f,(7) is the autocorrelation function defined in (2.4). Note that if ¢, and ¢,
are placed in the same column in interleaver buffer, then b, must equal to b,, and

&k, k7) becomes p(3(k; — k,)) for coherent PSK.

The channel estimator in Figure 4.6 will extract from the received signal infor-
mation about the channel’s complex gains. Let the sequence that appears at the
estimator output be denoted by (z,...,2%,...,7%). In the most ideal situation,

the estimator provides perfect ('SI. This implies

I, = \f?\:gk Perfect CSI. (4.8)
Although techmques like pilot tone and embedded pilot symbols can be used to
provide close to perfect CSI, for applications like mobile radio, the simpler differential
detection is sometimes preferred. As pointed out in [5]. differential detection can
be viewed as a channel estimation technique for which the symbol received in the

previous signaling interval is used as an estimate of the channel’s compiex gain in

the current interval. Therefore, in DPSK

19



, 4

/ / R
r, = = —=Jk_1Sk— +n 1 1)1).5 A 1.9
k= Yo TN etk ey (1.9)
In either coherent PSK or DPSK, the samples in the sequence (o}, ..., r}. ..., 0%)
are deinterleaved to produced the sequence (ry,...,rg.....xry) Once again, if k =

bata+l(with0<ae<a-land0<b< 3 —1), then

I Uy Perfect CSI
, A=ba+a+l. (1.10)

Ty =

A . / r-
l \7‘,\'0.(/’15‘!'6‘5'63-‘:—5 + nuﬁ+b DPS!\
The n5,,’s in (4.10) are iid complex Gaussian random variables cach having a zero

mean and unit variance.

4.3 Coded PSK with Perfect CSI

We will provide in this section two derivations of the pairwise error event probability
of interleaved TCM with perfect CSl. The first derivation is the one given in Chapter
2. The second derivation is a simpler one and it allows us to express the error

probability in terms of the branch squared distances between the coded sequences.

4.3.1 The Optimum Decoder

For the system with perfect CSI, the vector x = (z,,...,zx})" and the gain vector
u = (uy....,un)" are identical. Consequently, the covariance matrices @y, Pxy

in {2.17) and (2.19) are identical. This implies the matrices a and b in {2.28) and
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(2.29) are both an identity matrix of size N. As a result, the optimal decoder in

(2.27) becomes

7 o -Ct X
M(@) = ( Xyt ) 5 . (4.11)
- y

Clearly this is equivalent to selecting the codeword whose metric

N

M(&) = D (yides + T36"me) (1.12)
k=1

is the largest.

4.3.2 The Pairwise Error Event Probability

Let the transmitted codeword ¢ = (¢j,...,cn) and the erroncous codeword ¢ =
(¢1,-..,én) be different in the ki, ko, ..., kg positions. For convenience, we assume
ki < k; if 2 < 7. Moreover, we let each k; be written as k; = b + a; + | where
0<aq;<a—-1,0<bh;<3—1,and a and f are the number of rows and columns in
the interleaver buffer; see Figure 1.2. From the optimal decoding metric in (4.12),

we see that if the random variable

D = M(¢)—- M(c)
L
= 3 {yezi (e, — &)+ vpzu ek, — i)} (4.13)
=1

is less than zero, then a decoding error will occur. The random variable [ can be

written in matrix form as:
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( X ) (4.14)
y

where

5; = (yknykz;-'-aykL)ta (415)

X = (ThyyThyy-- - Thy ) (4.16)

dy
A = , (4.17)
dL
with
d,‘ = Ck; — ék,-. (4.18)

If we let

f-:(i), (4.19)
y

then using the results from Chapter2, the poles of the characteristics function of the

random variable D are the reciprocals of the eigenvalues of

Q
I
=1

o F (4.20)

where



and

- 1. e
&y = ;Z-E{nf}. (4.22)

The covariance matrix ® can be obtained according to (2.17) - (2.23). Simply

replace every matrix M in these equations by the corresponding matrix M.

Consider the matrix

~ 1 s

where il = (ug,,...,ux, ). Sinceuy, = —\/?‘T\,'—jga'-ﬁ+b.+] , this implies the (z, 1) elements
of &,y is equal to the term (ki  k;) in (4.6). Now if all the L places that the
codewords are different are confined to one single column, then all the b;’s are the
same and ¢(k;, k;) becomes p(B(k; — k;)). As mentioned carlier that in a Rayleigh
fading channels, the error performance of a TCM scheme is dominated by the set
of shortest error events. For example, the Ungerboeck’s 8-state code in Figure 4.1
has a shortest error event of length 2. In an interleaver buffer of size o rows by
B columns, there are only @ — 1 out of a total of aff — 1 places where this error
event can span over 2 colurnns. Consequently, most of the time we can assume this

dominant event is confined to a single column with respect to the interleaver buffer.

As a result, we let
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(0 Ak —k)B) o pllk —k)B) )

Qun = | p((ki~k)B) ... pllki—k)B) ... pl(ki—kr)B) |- (423)

ok —k)B) . plki—k)B) .. p0) )

Once @,y is known, then we can show easily that

Qxx = @xu = Quu (4.24)
and
&,y = C(®yu +1)C! (4.25)
where
Ck,
C= : (4.26)
CkL

By arranging these submatrices according to (2.20), we have the covariance matrix
‘_i?,-,-. This matrix when combined with the matrix F derived in (4.21) would allow

us to compute the eigenvalues required in the error probability calculations.
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4.3.3 Alternate Derivation of The Pairwise Error Proba-

bility

Although we have already obtained the error expression for Trellis-coded PSK with
perfect CSI in the last section, we will derive below a simnpler expression for this
system. The new expression allows us to show the pairwise error probability for full

interleaving and very slow fading in simple forms.

The optimal decoding metric for coded PSK with perfect CSI is shown in (4.12)

and as shown in (4.13), a decoding error will occur if

L
D = Y yuzi(ch — &) + vk (cx — k)
=1
L
= D hl* + hing, + hing, (4.27)

1=1

is less than zero. Note that

h,‘ = d,-uk', (428)

where d; is defined in (4.18) and the ny,’s are iid complex Gaussian random variables
each having a zero mean and a unit variance. Equation (1.27) can also be written

in matrix form as

D =hth +alth + h'a (4.29)

where h = (hy,...,hr)! and i = (ng,,...,ng, )" are column vectors whose compo-

nents are the h;’s and the ng,’s. The covariance matrix for the k;’s is
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By = %E{hhf} _ Ad, A (4.30)

where A is defined in (4.17) and &, is defined in (4.23). Since all the elements of
the matrix ®yy in (4.23) depend only on the differences of the k;’s, we can assume,

without loss of generality, that an error event always starts at the beginning of each

codeword, i.e.;, ky = 1.

Since Py, is a Hermitian matrix, it can be written in the form

&1 = UAUL, (4.31)

where

A1
A= (4.32)
AL
1s a diagonal matrix whose elements, the A;’s, are the eigenvalues of ®yy,, and U is
a unitary matrix whose columns are orthonormal and UU' = 1. Let wy, ws, ..., wy,
be a set of independent, zero mean, complex Gaussian random variables, with the

variance of w; equal to

1
0'12”' = ;E{w,-w;'} = /\,’. (433)

It can be shown that the k;'s can be obtained from the w;’s by applying the following

transformation:
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h=Uw, (-1.31)

t

where w = (wy,...,wr)". Moreover, it can be shown that the random variable

in (4.29) can now be written in terms of the w;’s as

D = wi(U'U)w + (alU)w + wl(U'i)
= wTw + eTw + wTe

L
= D {|wil> + wie] + wle}. (1.35)

where

e=UM = (er,...,e1)" (4.36)

Using the fact that i’nn =T and that UU' =1, it can be shown that the ¢,’s are a
set of iid Gaussian random variables each having a zero mean and a unit variance.
Also, the e;’s are independent of the w;’s. At this point, it becomes clear that
the random variable D is simply a sum of independent quadratic torms of complex
Gaussian variates. Using (4B.5) in [25], we can show that the characteristic function

of Dis

®p(s) = (1':[ Ai) (f[ — ) (4.37)

o (s = pu)(s — pai)

where
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P ]

P2 J

are the poles of the characteristic function. By summing the residues of ®p(s)/s as

Fyf-+ (4.38)

1
Ai

o=
o | —

shown in (2.36), we can obtain the pairwise error probability. The numerical results
are identical to the one obtained in the previous sub-section. As mentioned before,
the advantage of deriving this expression is that error expression for full interleaving

and very slow fading can be easily derived.

4.3.3.1 Full Interleaving

Consider the case when we have full interleaving, that is, the interleaving depth 3
is a very large number. The matrix @,y in (4.23) becomes (E,/N,)I, where I is the
identity matrix. This implies the matrix ®py, in (4.30) is a diagonal matrix, given

by

i
LAar- L

N, N, (4.39)

Phn =
ld|?
where |d,]? is the squared Euclidean distance between ¢;, and c},; see (4.18). Con-

sequently, the eigenvalues are:

E,
A= 222 (4.40)

By substituting these eigenvalues into (4.37) - (4.38), we can obtain the expressions

for the characteristic function and for the poles. All of the resulting expressions are
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identical to those found in [3].

4.3.3.2 Very Slow Fading

When fading is very slow, i.e., fpT = 0, il is quite reasonable to assume that all
the components of the matrix ®yy, in (4.23) are the same and they are equal to

p(0) = % As a result, ®y,; becomes

E, -~
Pun = —1\~;,—AJAt (1.41)

o

where J is a matrix with all its clements equal to unity. Because of this property
of the matrix J, the matrix @5 has a rank equal to 1. As a result, it has only one
non-zero eigenvalue. This non-zero eigenvalue, denoted by Ay, is equal to the trace

of the matrix. In otherwords,

EYsE 142 1=

\io= (%) £l (4.42)
0 otherwise

and the characteristic function becomes ®(s) = —A (s — pyy)(s — pa) ' Infact, A

is the sum of squared Euclidean distance between the transmitted and the erroncous

word. Using (4.37) and (4.38), we can show that

Lo .
1’(c——>c)—=2(1 ‘4+)\1)' (4.43)

This is an intuitively pleasing resuit because when fading is slow, the Rayleigh

channel is equivalent to a Gaussian noise channel on a per codeword basis. As a
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result, the error performance of a TCM system should be determined by the squared

Fuclidean distance betwe~n two codewords.

4.3.4 The Error Performance

We presents in this section the error performance of Ungerboeck’s 8-state 8-PSK
code in a Rayleigh fading channel, with the interleaving depth as a parameter.
In nearly all applications, we are interested in the overall bit error probability of
the TCM scheme rather than the individual pairwise error event probability. An
approximation to the bit error probability can be obtained by summing the pairwise
error event probabilities as follows [5]:
Py = 1 > alc,&)P(c — &).
&#c

In the above equation, m is the number of input bits per encoding interval, a(c, €)
is the number of bit-errors associated with each error event, and the summation is
taken over the set of dominant error events listed in Table 4.1. The error events
listed in Table 4.1 are taken from Table 4.2 in [20] and they correspond to the
shortest paths in the modified error state diagram [20] obtained via the method
of Zehavi and Wolf [38]. As defined earlier, the parameters L and S in Table 4.1
are the length! and the span? of an error event. It should be pointed out that in

Table 1.1, the notation v;,¢ = 0,1,2,3,4 is used to represent the situation where

i

"The Hamming distance between two coded sequences, counted by the channel symbols.

?The number of transition branches associated with the error event.
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g LiS Error Events a(c, ¢)
202092 * !
S I N 7N B PO B 1
33 v l
3U3 7| I
3 U3 v2 | 72| 1 2
3U3 21T 2
33 || :3
330 2| :2
3P4 valn || 7 2

1334w | T2 2
34l 2l |n|n :i
34l rlv|wm|r]| - :i
S e T e N e T B 7 3
352 v |7 || 3

Table 4.1: List of dominant error events in Ungerboeck’s 8-state 8-PSK code.
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the transimitted symbol and the erroneous symbol have an absolute phase difference
of iz /4 radian. Different error events are represented by different sequences of the
~.’s in Table 4.1. For example, in the shortest error event (the first sequence in
Table 4.1), the transmiited and the erroneous words are different in two consecutive
places, with the first and second symbols in the two codewords havirg absolute
phase differences of 7 and 7 respectively. Since non-ideal interleaving is used in
the system, the complex gains experienced by different transmitted symbols are
correlated. Therefore, the order of the +’s in each sequence is important. Also
since there are many ways in which two symbols in the 8-PSK constellation can
have an absolute phase difference of 17 /4, the error events listed in Table 4.1 should
only be used if the error probability depends only on the absolute phase differences
between symbol pairs in the transmitted and the erroneous words. It is shown in
Appendix F that the eigenvalues for the matrix ®j, in (4.30), and consequently the
error probability, depend only on the squared Euclidean distance between symbol
pairs in the two codewords. As a result, we can use the set of error events listed in
Table 4.1 in our error probability calculation. Without loss of generality, we assume
the transmitted codeword is the all zero-phase codeword, i.e., ¢ = (1,1,...,1). The
erroncous codeword in each error event can then be determined by the corresponding

sequence of phase differences.

The approximate bit error performance of Ungerboeck’s 8-state code in a Rayleigh
fading channel with a normalized Doppler frequency, fpT, of 0.01, is shown in Figure
4.7. As one would expect, as the interleaving depth increases, the bit error proba-
bility decrease. When the interleaving depth is equal to 20 symbols, the bit error
probability is almost identical to that provided by full interleaving. Furthermore, it

should be pointed out that the full interleaving curve is same as the one in Figure
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Figure 4.7: Bit error performance of Ungerboeck’s 8-state code in a Rayleigh fading
channel with perfect CSI. fpT = 0.01. The number associated with each error
curve is the interleaving depth. The curve labelled F represents the case of full

interleaving.
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4 in [5]. To see if other TOM schemes also require a similar interleaving depth, we

show in Figure 4.5 the approximate bit error performance of Ungerboeck’s 16-state
code with the interleaving depth as a parameter. As mentioned in Section 4.1.1,
to find the set of dominant error event for this 16-state code is a time consuming
task. We will, therefore, obtain the bit error probability by only considering the
shortest error event. This error event is shown in Figure 4.5 and has a length L = 3.
The corresponding branch Euclidean distances in (4.18) are d; = 1 — exp(j4%),
dy = 1 — erp(7%), and d3 = 1 — exp(72%). By comparing Figure 4.7 and 4.8, we
see that for cach of the interleaving depth considered, the 16-state code has a lower
bit error probability than the 8-state code. As in the case of the 8-state code, an
interleaving depth of 20 svimbols provides almost the same performance as full in-
terleaving. Let the fade cycle be defined as the reciprocal of the normalized Doppler
frequency, fpT. Then, by doing the appropriate normalization, we conclude that for
both the 8 and 16-state coded, an interleaving depth roughly equivalent to one-fifth
the duration of a fade cycle 1s sufficient to produce the same effect as full interleaving.
In order to verify the above statement, the bit error performance of Ungerboeck’s
8-state code with a normalized Doppler frequency of 0.03 is plotted in Figure 4.9.
These results indicated that error performance of interleaving depth between 5 to 10
symbols is close to the case of ideal interleaving. As a confirmation of the analytical
results and the assumption that the bit error probability is dominated by a set of
short error events. simulation results {dash curves) for interleaving depth of 5 and
10 symbols are also provided in Figure 4.9. The simulation of the Rayleigh fading
channel was done by generating samples of the time varyving complex channel gain
ue. The real and imaginary parts of u; were generated by filtering two statistically

independent Gaussian random number sequences with a FIR digital low-pass filter.
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Figure 4.8: Bit error performance of Ungerboeck’s 16-state code in a Rayleigh fading
channel with coherent detection and perfect CSI. fpT = 0.01.
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Figure 4.9: Bit error performance of Ungerboeck’s 8-state code in a Rayleigh fading
channel with coherent detection and perfect CSI. fpT = 0.03.
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The simulation of the error performance was based on Monte Carlo error counting
techniques and the number of samples for each point of the simulation curve was
chosen to be larger than 100/P;. It is observed that the simulation results agree

well with the analytical results at large SNR.

4.4 Analysis of interleaved, Trellis-coded DFSK

In Section 4.2, we see that for coded PSK with perfect CSI, the optimal decoding
metric is simply a linear sum of branch metrics; see (4.12). It is not too difficult to
show that the Viterbi algorithm can no longer be employed if the decoding metric
does not have such an additive property. For this reason, we cannot adopt the
optimum quadratic decoder from Section 2.2 for coded DPSK. We use instead the

following metric [9]:

M(&) = ~ 3 {ykeié; + yizade} (1.14)
k
where y, and z is defined in (2.10) and (4.10) respectively. Given that the traus-

mitted codeword is ¢ = (¢y,...,¢k,...,cn), error will occur if the random variable

D = M(&)— M(c)

N
= Y {wzi(c; — &) + yizelcr — é)} (1.45)
k=1

is less than 0. As in the case of coded PSK with perfect CSI, we let, (ky, ky, ... k1)

denotes the set of index k for which ¢ # ¢, where k; > k; if : > 3. In addition, we

let each k; be written as k; = bja+a; +1, where 0 < a; <a—-land 0 < 4 < f~1.
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After substituting these information as well as (2.10), (4.4), (4.5) and (4.10) into

(4.45), we have, in the case of coded DPSK, the following expression for the random

vartable D:

L
D =3 {yxzidi +yizid:} (4.46)
=1
where
A '
Yeo = \/——N—ga,«g+b;+1sa.-g+b,-ck,- T Maiprbi (4.47)
A
Tk, = \/"‘K—,;gaiﬁ+bi3aeﬁ+bi + n;.-ﬁ+b," (4.48)

and the d;’s are defined in (4.18). If the error event spans no more than a symbols,

ie, il ky — ky < a, then the set of 2L noise terms

{napbia1s Mapyn )

are 11d complex Gaussian random variables, each having a zero mean and a unit
variance. In otherwords, as long as the span of an error event is shorter than the
number of rows in the interleaver buffer, the set of 2L noise terms will not contain

duplicated items.

Let X = (k5> Thiy-- 2Tk )5 ¥ = (Ykyy- -2 Uhir-- -5k, )" and F = (X, 7).

Then, the random variable D can be written as

D = 'FF, (4.49)
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where F is defined in (4.21). To calculate the error probability, we need o determine

the matrix ®,r = L E{Ff'}. As shown in Chapter 2, this matrix is given in terms of
2 p ) g

the submatrices ®4yy and ®yy. If we assume that the error event i1s confined to one

single column with respect to the interleaver buffer in IFigure 1.2, then all the b;'s

are the same and hence from (4.47), we obtain

where

Puu = S($22 + DS' (4.50)

Sayf+b

U
i

(4.51)

SapB+b

and @32 is same as the $yy in (4.23) where 1 is defined on page 83. Similarly, we

can show that

and

&, = S(P322 + 1)S' (4.52)

&, = S®; S, (4.53)

where ®; is a matrix whose (7, 7)™ element, denoted by ¢,(z, ), 1s equal to

$1(z,7) = p(B(ki — k;) + 1). (4.54)
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After substitution these submatrices into (2.20), we can rewrite &, as

&, = LKL! (4.55)
where
P +1 B!
K=1| 22 ot , (4.56)
P, P$o2 + 1
and

S o
L= R (4.57)
0 CS

It should be pointed out that LL = I. Although L is data dependent, we can

remove S from the matrix L without affecting the final results; see Appendix G.

Hence, (4.55) is equivalent to:

&,, = EKE' (4.58)

where

(o o)
E= . (4.59)
0 C

We are now in the position to find the pairwise error probability. As showed in
(4.49), the random variable D is in quadratic form and the matrices F and &, are

defined in (4.21) and (4.58) respectively. We can follow step 3 and 4 on page 31 to
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obtain the pairwise error event probability of interleaved, coded DPSK signals. The
key is to determine the eigenvalues of either the matrix Bin (2.33) or the cigenvalues

of &, F in (2.37).

4.4.1 Full Interleaving

The matrix K in (4.56) is a Hermitian matrix which can be written alternatively as

K = UxAgx Uk (4.60)

where Ak is a diagonal matrix whose elements are the eigenvalues of the matrix K
and Ux is a unitary matrix whose columns are eigenvectors of the matrix K. As a

result, &, in (4.58) can be expressed as

- 1 1
@, = (EUKAZ)(AZULE'). (1.61)

Consider the case of full interleaving, i.e., when 4 is a very large number. In this

situation, the matrix K in (4.56) becomes

(p(0) + DI (1)1
k- [ AOFDE ) , (4.62)
AT (p(0) + )T
where p(0) = E,/N, and p(1) = (E,/N,)J.(27 fpT); see (4.7). The eigenvalues of

this matrix are
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{p(0)+1+p(1) 1<i<l
Aki =

(4.63)
p(0)+ 1 —p(1) L+1<:<2L
This implies the matrix Ak can be written as
MO
Ak = , (4.64)
0 I
where
0) +1 + p(1 =1
A.:{”” p(1) j (1.65)
p(0) +1 —p(1) J=2
It can be shown that the corresponding unitary matrix Uk is
U N (4.66)
K=—F R 4.
V2 1 -1

- 1 - 1
Substituting (4.64) and (4.66) into B = AZULE'FEUKAZ in (2.33), and after

some algebra, we can show that the matrix B can be written as

-1 \ (0 + et VA (e —et
B=_ ! ) o ) , (4.67)
“\ -vVan®e-—-eh) -\ (e+e)
where
cknd;
e=AC= (4.68)

CdeZ

102



and d; = ¢g, — c;,. The eigenvalues of the matrix B are

ldi|*p*(1)

-

S I VU (1 . \J L4 ALp(0) + L+ p(D][p(0) + 1 = ﬂ(l)]) )

/\9,1'+L

This implies the poles of the characteristic function ¢p(s) are

L
" ) L[ e = ) + ]
T2 1 . (470
Pi+L 2(p(0) + 1)% = p*(1) () i \J 4 + p(0)|d, |*}pe|? ) (10
where
_J22n fpT)

|l (4.71)

AN
1+ (%)
is the squared magnitude of the correlation coefficient of yx, and x, in (4.47) and
(4.48). Note that the poles given in (4.70) are identical to those found in [5] except
for the scaling factor of 2p(0){(p(0) + 1)? — p*(1)}~'. However, it can be shown
easily that such a scaling factor has no effect on the pairwise error event probability

calculation.

4.4.2 The Error Performance

We report in this section the error performance of Ungerboeck’s 8-state Trellis-
coded 8-DPSK scheme in a Rayleigh fading channel. Similar to the case of perfect

CSI, we obtain an approximation to the bit error probability by taking the sum of
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the probabilities of the dominant error events listed in Table 4.1. As discussed in
Section 4.3.4, in order to make use of the set of events listed in Table 4.1 in the bit
error probability calculation, we have to make sure that the eigenvalues of the matrix
&'"f?, and consequently the error probability, depend only on the squared Euclidean
distance between symbol pairs in the transmitted and the erroneous words. It is easy
to see that the eigenvalues depend only on the phase differences between different
pairs of ¢, and c¢;,. However, we are not able to demonstrate analytically if the
signs of the phase differences affect the eigenvalues. We have found numerically,

though, the signs of the phase differences has no effect on the probabilities of the

error events listed in Table 4.1.

We show in Figure 4.10 the approximate bit error probability of Ungerboeck’s 8
state code with differential detection in a Rayleigh fading channel. The normalized
fade rate is only 0.003, which corresponds to rather slow fading. It is observed that
as the interleaving depth increases, the bit error probability decreases. When the
interleaving depth is equal to 80 symbols, or equivalently, one-quarter the duration
of a fade-cycle, the error performance approaches that provided by full interleaving.
When the normalized fade rate is equal to 0.03, we have the bit error probability
shown in Figure 4.11. Because of the relative fast fading, the CSI provided by the
previously received sample has a lower correlation with the fading experienced by
the symbol transmitted in the current interval. As a result, we have the irreducible
error floors shown in Figure 4.11. Moreover, it is observed that full interleaving
does not provide the best error performance. As a matter of fact, it appears that
an interleaving depth of 10 symbols is close to the optimal choice at this fade rate.
The irreductble error floor at this interleaving depth is about 3 times lower than

that of full interleaving. When the interleaving depth is equal to 20 symbols, the
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Figure 4.10: Bit error probability of Ungerboeck’s 8-state 8-PSK code in a Rayleigh
fading channel with differential detection. The normalized Doppler frequency is
0.003.
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Figure 4.11: Bit error probability of Ungerboeck’s 8-state 8-PSK code in a Rayleigh
fading channel with differential detection. The normalized Doppler frequency is

0.03.
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bit error performance is worse than that of full interleaving. However, if the inter-
leaving depth is increased to 37, the performance becomes once again better than
full interleaving. "his phenomenon is further confirmed by computer simulation; see
dash curves on Figure 4.11. It appears that the bit error probability, as a function
of the interleaving depth, oscillates around the bit error probability provided by
full interleaving. This is probably caused by the oscillation in the Bessel function
representing the autocorrelation function of the channel fading process. When the
autocorrelation function of the channel fading process is changed to an expouential
function, and specifically, if p(k) in (4.7) is replaced by %ﬁ:eafp(—}kfn’l']), we have the
error probability shown in Figure 4.12. The fade rate in Figure 1.12 is again equal
to 0.03. It appears that if the autocorrelation function decrcase monotonically to
zero, increasing the interleaving depth always improves the error performance (with

diminishing returns).

4.5 Summary

In this chapter, we have reviewed the concept of TCM. Specifically, we have shown
the structure of Ungerboeck’s 8-state and 16-state code. The exacl pairwise error
event probability expressions for interleaved, coded PSK with perfect €SI aud in-
terleaved, coded DPSK have been obtained via the 4 steps on page 31. For full

interleaving, those pairwise error event expressions have been proven analytically

[Se]

the same as those report in [5]. Numerical calculations of the approximate bit error
probability at various interleaving depths and fade rates are presented. It is found
that generally an interleaving depth roughly equivalent to one-fifth or one-quarter

the duration of a fade cycle is sufficient to produce the same effect as [ull interleav-
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Figure 4.12: Bit error probability of Ungerboeck’s 8-state 8-PSK code in a Rayleigh
fading channel with differential detection. The normalized Doppler frequency is 0.03

and the autocorrelation function of the fading process is an exponential function.
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ing. However, DPSK with a fade rate of 0.03 or higher, increasing the interleaving
depth does not necessarily enhance the error perfermance. As a confirmation of the

analytical error performance, Monte-Carlo simulation results have been provided for

both coherent PSK and DPSK with a 0.03 fade rate.
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CHAPTER 5

CONCLUSIONS

5.1 Conclusions

In this thesis, we have presented a general technique to find the pairwise error
event probability of PSK signals transmitted over correlated Rayleigh fading chan-
nels. This technique is suitable for analyzing a wide range of modulation schemes
including multiple-symbol differential detection, pilot symbol assisted modulation

(PSAM), Trellis coded PSK with perfect CSI, and Trellis coded DPSK.

As the first example to illustrate the general technique, we analyze the error per-
formance of multiple-symbol differential detection of PSK signals transmitted over
Rayleigh fading channels. It is found that this detection strategy is very effective in
climinating the irreducible error probability associated with a conventional differen-
tial detector. For a 1-PSK system and a channel with a maximum Doppler frequency

equal to 3% of the signaling rate, a detector with a word length of N = 2 symbols
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can practically eliminate the irreducible error floor associated with a conventional
detector (N = 1) at the bit error rate above 107°. When the length is increased
to 5, the degradation in energy efficiency relative to perfect coherent detection is
only 4 dB at an error rate of 107%. It is true that the larger the word length N, the
better is the error performance. In the limiting case when N is extremely large, a
multiple-symbol differential detector will probably have the error performance close
to that of the perfect coherent detector. In reality though, the performance of a
multiple-symbol differential detector will be limited by the decoding complexity.

With exhaustive search, the decoding complexity grows exponentially with N.

Similar to multiple-symbol differential detection, PSAM can also remove the
irreducible error floor at the bit error rate above 1072. The performance of uncoded
BPSK with PSAM has been studied in this thesis. It is observed that in fast fading
(such as fpT = 0.05), block decoding strategy achieves slightly better results than
those reported in [6]. Besides, if the size of the data block is reasonably large, the
difference between using 4 pilot symbols and 20 pilot symbols is almost the same.

Hence, a smailer decoding delay is resulted.

Using the general analytical technique developed in Chapter 2, we study the
error performance of interleaved Trellis coded PSK modulations transmitted over
correlated Rayleigh fading channels. Both coded PSK with perfect CSI as well as
coded DPSK were considered. In the case of full interleaving, our results coincide
with those found in [5]. For coded PSK with perfect CSI, we found that increasing
the interleaving depth always provides an improvement in crror performance (of
course with diminishing return). On the other hand, we found that for coded DP5SK,

increasing the interleaving depth does not necessarily improve the error performance.
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This is especially true when the Doppler frequency is around 3% of the signaling
rate. At this fade rate, the optimum interleaving depth is 10 symbols. We suspect
the existence of an optimum interleaving depth is probably due to the sinusoidal
nature of the autocorrelation function of the channel’s fading process. When an
exponential autocorrelation function is used instead, we found once again that full
interleaving provides the best performance. Finally it should be pointed out that
at relatively slow fade rate (such as fpT = 0.003), coded DPSK behaves similar to
coded PSK with perfect CSI, i.e., increasing the interleaving depth does improve

the error performance.

5.2 Suggestions for Further Research
Some suggestions for further work are as follows:

1. The analysis of PSAM could be extended to coded system as well as other

forms of modulation.

o

With such encouraging results obtained in uncoded multiple-symbol differen-
tial detection system, we believe that these detectors could produce higher per-
formance when used in conjunction with a soft decision channel coding system
with interleaving to disperse the channel deep fades. However, suboptimal de-
coding algorithms with significant reduction in computational complexity are
required if these detectors are to achieve an error performance close to that of

perfect coherent detection.



Appendix A

THE GENERAL OPTIMUM
DECODING METRIC

In this appendix, we simplify the conditional probability density function in (2.26)

and consequently, a very simple form of the optimuimn decoding metric is oblained.

Consider (2.20), the determinant of the covariance matrix ®;p is related to the

determinant of ® as

[ Prrl] = || ®xx]| - [|Byy — 'I’yX‘};;‘I’xyH- (A.T)
By making use of the partitioned multiplication in [3], the inverse of the matrix @,

can be obtained as

31— I -®1®,, Lk 0 I 0 |
Y I 0 (Byy — ByxBix Puy)”! ~Pyx Py 1

which implies
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y
= x'Bx + v (Byy — ByxPrxPxy) 'y

X
rf‘p;rlr = ( x! y'r ) Q;1-1 ( )

"xfi;:@xy(éyy - nyé;;éxy)_]y
~y (Byy — Byx Bt By ) Byx P x

X' Bt By (Byy — ByxPrr Bry) ' ByxBrrx. (A.2)

Furthermore, using (2.21), (2.22) and (2.23), we can show that conditioned on

the data sequence &,

Byy — By Bir Bxy = C [B), — BuxPrs x| C', (A.3)

where @7, is defined in (2.22). Since each & has a unit magnitude, the determinant

of the above matrix is independent of the sequence ¢ and it is equal to

[|®rrl]
[1Pxx]|

Subscquently, the constant term in front of the exponential function in (2.26) is

[y — ByxP3x Bxyll = = || ®hu — PuxPix Bxull- (A.4)

independent of ¢ and therefore, can be ignored in the derivation of the optimal

decoding metric. Now, if we let

a=[®), — Pux®pi®x] |

the determinant of ®.r in (A.1) becomes

114



|| Pxxl]
lall -

Moreover, substituting (2.21), (2.23) and (A.3) into (A.2), the equation can be

®rrl] = (A.D)

further reduced to

i@ lr = xfi;ix-%ytéaéty
-1 3

-x'®_ P,,,aCy
¢ -1

"y Ca@llxixxx

+x'® 1P, a® P 1 x. (A.6)
Now, we can rearrange (A.6) so that it i1s once again in a matrix form
10 btab —b'a I o X

rt@;rlr — xf@;;x + ( xt yrt ) . . s
0 -ab a o Ct y

where

b == @ux@;:

Finally, combining (2.26), (A.5), and {A.7) and then taking the natural log of (2.26),
the optimum decoder is equivalent to the one which selects the sequence € such that

the decoding metric

) 0 —bltaCt x
A](C) = ( xf yf ) R .
v —Cab CaCt y
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is the smallest. Note that the term b'ab is independent of & and thus, can be

removed from the decoding metric.
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Appendix B

THE LINEAR
TRANSFORMATION FOR THE
VECTOR r IN CHAPTER 2

We present in this appendix the linear transformation to the random vector r in
(2.12) so that the random variable D in (2.30) can be expressed in terms of inde-
pendent Gaussian random variates. The particular transformation we use is taken

from Appendix B in [27] and is reproduced here for completeness.

Consider the covariance matrix ®rr in (2.20), since it is a Hermitian matrix, it

can be written as

&, = U;A Ul (B.1)

where Uy is a unitary matrix [7] whose columns are orthonormal, and
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\

(B.2)

is a diagonal matrix whose elements, the A, ;’s, are the eigenvalues of the matrix ®pp.

From the definition of the unitary matrix, it should be clear that U;! = U}. Since

®,, is a positive semi-definite matrix, all its eigenvalues are real and non-negative.

This implies the matrix Ay can also be decomposed into two matrices as:

where

>
s TXTISY

e
I
P
P

Now consider the transformation

where

h= A;%Ulr
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(B.4)

(B.5)



\ )

1 ) . )
is the inverse of AZ. Then the covariance matrix ®y), = %Ig {hh'} becomes

Pun = Ar 2 (Ul® UL )AL 2
— ATIAASR

=1 (13.7)

where I is an identity matrix. With the above transformation of r, the random

variable D = r'Fr in (2.30) can be written as

D =h'Bh (13.8)

where

B = A7UIFU,A?. (B.9)

Since B is Hermitian matrix, it can be written as

B = UpApU], (8.10)
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where Uy, is a unitary matrix whose columns are orthonormal, and

( Ab,1

Ayp

\

Ab,2
(B.11)

Ab k

-

is a diagonal matrix whose elements, the A, ’s, are the eigenvalues of the matrix B.

Now, consider the transformation

The random variable D in (B.8) can be written as

Since the covariance matrix

q'U}BUsq

q'Apq
> Alal’. (B.13)
k

1 ;

5Elad’}

%E{Uthbe}

I, (B.14)
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the gx’s are iid complex Gaussian variables each having a zero mean and a unit
variance. This completes the task of transforming D into a sum of independent

Gaussian quadratic forms.
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Appendix C

SHORT CUT TO FIND X,

We present in this appendix a faster way to find the eigenvalues of the matrix B
in (B.9). Consider (2.30), D = r'Fr, with the transformation given in (B.5), h =
Ar éUf,r, the random variable D can be expressed as

1 1
D = h'A?UIFU;A’h

or

D = h'Bh

where B was defined in {B.9}). According to (B.5) and (B.7), the h;’s are a set of
independent random variables. Furthermore, for any eigenvalue Ay, of the matrix

B, there exists an eigenvecior my, which must satisfy the following relation,

Bmy = Ay, (C.1)



Now, we can substitute (B.9) into (C".1) and obtain the following equation:

AZUIFUAZmy, = A, (C.2)

1
By multiplying both sides by UrA¢£, (C.2) becomes

U, AZAZUIFUA my, = AU AZmy,. (C.3)

11
Using (B.1) and (B.3), we find that U;AZAZU} is in fact the covariance matrix

®... Consequently, (C.3) is simply

erFmrb = Ab,kmrb, ((:.‘1)

where

1 .
my, = UrAZmy, (C.5)

This implies that the eigenvalues of the matrix B are also the eigenvalues of the

matrix

G = ®.,F.
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Appendix D

THE MATRIX a FOR
MULTIPLE-SYMBOL
DIFFERENTIAL DETECTION
IN STATIC FADING
CHANNELS

We derive in this appendix the matrix a in (3.21) for multiple symbol differential
detection in static fading channels. Starting with the matrices ®12, ®21 and P22

in (3.16) and (3.10), when fpT = 0, we can rewrite them as:

@12 = plt (Dl)
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P21 = ol (D.2)
P +1 = pJ+1 (D.3)
where 1 and J are N x 1 and N x N matrices whose entries are all equal to unity,

I is an identity matrix and p is ¢(0,0) defined in (3.11). Then, substituting (D.1),
(D.2), (D.3) and (3.19) into (3.21), we have

2 ~1
a=[®22 +1— P21P;P12]”" = {/’J_FI—/)ZH}

_ 2 \4]7 ,
- [I+(p+1)J] . (D.A)

For any non-singular matrix A, there exists a relationship that I = AA~L. Ilence,

the matrix a can be found by

1

I = a”
= I+(——p—).l 14 (2F0) g
p+1 cp+d
b Nap?® Fb
- 142y doy, Nep ¥ Nop
p+1 cp+d (p+1)(cp + d)
cp®* +ap*+ Nap* +dp+ap+bp+ Nbp+ b

(p+1)(cp+d)

-3}

= I+ J (1).5)

where a, b, ¢ and d are arbitrary constants. Obviously, if the numerator of the
coefficient of matrix J in (D.5) equals to zero, we can obtain the inverse maltrix in

(D.4). To process, we have to solve the following simultaneous equations:



Nb+a+b+d = 0,
b = 0.

Since there are many solutions for the above equations, we choose a arbitrarily and
use a to determine the values of ¢ and d that satisfy the given equations. If a = —1,

then d =1 and ¢ = N + 1. Note that the variable d is always equal to zero. As a

result, a in (3.21) becomes

p

a = -5, 17
= I-fJ (D.6)

where f = Gy, and pis 6(0,0) in (3.11).
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Appendix E

MESSAGE SEQUENCE IN
MULTIPLE-SYMBOL
DIFFERENTIAL DETECTION

We want to show in this appendix that the pairwise error probability is independent
of the message sequence. To proceed, we note that by using the Cholesky decom-
position method, the matrix ®;, in multiple symbol differential detection can be

written as

&, = ZMM'Z! (I.1)

where
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(1 )
7 - “ _ , (E.2)
\ 2y
MM — #(0,0)+1 P12 ) ’ (E.3)
P2 Py +1

and ¢(0,0)+1, ®12, P22 are defined in Section 3.1.1. As showed in Appendix C, the

eigenvalues of the matrix G’ = ®, F are identical to the eigenvalues of the matrix

B = Mi(Z'FZ)M (E.4)
0 bia(I — 1)

= Mf 3 M, (E.5)
(I1-©)iab eaef-a

where F was defined in (3.26), and

O =13z (E.6)

is a diagonal matrix whose k' element is equal to 74z} = Hf;:l ¢jc;. It should be
clear from these results that as long as the set of phase differences between the
symbols ¢, and ¢,k = 1,..., N, are fixed, the eigenvalues of the matrix G’ are

independent of the sequence ¢ = {cy,...,cn).
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Appendix F

MESSAGE SEQUENCE IN
COHERENT PSK

We want to show in this appendix that the eigenvalues for the matrix @y, in (4.30)

depends only on the magnitudes of the d;’s and not their phases. To proceed, let

Qi]h = TthTa (l“. l)

where T is a permutation matrix. The matrix T is chosen in such a way that the
™ row and the i** column of @y}, now becomes the first row and the first column of

bn and vice versa. The other rows and columns of ®y,), are left unchanged. ‘The
matrix ®}, has the same eigenvalues as ®p,p,. In addition, it can be written in the

form:



Oldi2 d:M
3, = p(O)ld:] 2. (F.2)
&M}, My

where d;M12 and M2z are submatrices of ®;, and M2 and M2z are independent,
of d;. The sizes of these two submatrices are 1 X L and (L —1) X (L —1) respectively.

The eigenvalues of @y, are the roots of the determinant of ®}; — AL. It can be

shown that

|d:]?

— = Mt
P(O)]di[F = V1zM12

(F.3)

1@ — Al = (p(0)1di]* — ) - ”(Mzz — L) -

The above equation tells us that the eigenvalues remain unchanged if we replace d; by
its conjugate. In otherwords, the eigenvalues of ®y;, depend only on the magnitudes
of the d;’s, or equivalently only on the squared Euclidean distances between symbol

pairs in the transmitted and the erroneous words.
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Appendix G

THE MATRIX &, FOR DPSK

We want to show in this appendix that the eigenvalues for the matrix & F in
coded DPSK do not depend on the matrix S. To proceed, we use the Cholesky

decomposition method to rewrite the matrix ®y in (4.55) as:

&, = LMM'L! (G.1)

where

MM =K ((G.2)

and L 1s defined in (4.57). As shown in Appendix C, the cigenvalues of @ F is also

the eigenvalues of the matrix

B = ML'FLM
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MT
\O

[ 1

\ 0

|

M?

ot
I
0 Cf

0

i

|

(G.3)

It is clear from ((G.3) that B is independent of S. This implies S can be removed

the matrix L in (4.57).
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