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Abstract

In this thesis, the three-dimensional steady-state normal contact problem for a general

linear viscoelastic material is studied.

In Chapter 1, a brief review of the history of this topic is given and the specific problem

to be solved is described.

In Chapter 2, solutions of the normal elastic contact problem due to Sneddon and

Popov are presented. These solutions are used for solving the viscoelastic problem in
Chapter 3.

Chapter 3, the main part of the thesis, consists of four sections. Section 1 describes
viscoelastic material behaviour and states the Correspondence Principle. In Section 2,
the viscoealstic contact problem is reduced to solutions of six integral equations; and the
steady-state limit is derived. These integral equations have kernels that are infinite series
of multiple integrals involving creep and relaxation functions for the material. In the case
of a standard linear material, evaluation of these kernels can be reduced to summation
of geometric series. This is done in Section 3. For more general material behaviour this
method breaks down. However, in that case a method, previously used for crack problems,
remains valid. That method, which expresses the kernels as solutions of other integral
equations, is used in the present work to derive specific information on the solution of
contact problems, for materials more general than the standard linear material. Section
4 contains the analytical details of this development. A specific model (N = 2) is studied
in detail and the results of numerical calculations are presented. Results for the standard

lincar model (N=1), given in Section 3, are recovered as a special case.
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Chapter 1

Introduction

In this paper, normal contact problems for general viscoelastic solids are studied.

Countact problems are sometimes called Hertz problems. In this paper, we consider
the following Hertz problem: a rigid indentor(or punch) of axisymmetric curved form
S(r), pressed into a lubricated viscoelastic half-space, occupying the region z > 0, by a

time-dependent normal load W(t), where r and z are the usual cylindrical coordinates.

To solve this problem means to find the relationship among the total load W (t), pres-
sure distribution under the punch p(7,t) and the contact area C(t). For the axisymmetric
problem, we use p(r,t) to express the pressure distribution and use a(t) to specify the

radius of circular contact area.

Contact problems, in some sense, are inherently nonlinear, even in linear elasticity;
since for an indentor of curved profile, the contact area is unknown before the solution is
known. They have provided a challenge to applied mathematicians ever since the work
of Heinrich Hertz in 1880’s. In 1882, Hertz successfully treated a static contact problem
in elasticity. He considered the equilibrium of two curved elastic bodies pressed together
and assumed that these two bodies can be replaced by two elastic half-spaces which are

in contact only over the contact area C lying in the common tangent plane of these two



bodies. Then he used Boussinesq’s solution to obtain valid formulas for the pressure and
indentation, confirming the assumption that the contact area is an ellipse. We can find
additional details of Hertz’ theory in a survey up to 1980 by Gladwell[2]. Since then many
contributions to this field have been made. Up to 1960’s, the two-dimensional elastic
contact theory was well-established by Russian scholars. Muskhelishvili[16, 17} developed
a systematic method to solve the two-dimensional contact problem. By using complex
potentials and conformal maps, one of the most powerful method of mathematics, he cast
them in the form of a Hilbert problem. Then he solved this problem by using the properties
of Cauchy integrals. Galin [1] also considered a wide range of problems by casting them
in the form of a Riemann-Hilbert Problem. Three-dimensional contact problems are more
complicated. In fact, the only contact problem that allows an explicit analytic solution
is the one with an elliptical contact area [1, 15, 18, 19, 21]. In Chapter 2, the details
of Sneddon’s work are given. From his work, we can see how the integral transform
method, another powerful mathematical method, can be applied to the three-dimensional
contact problem. The result for spherical indentor with large radius will be used for
the viscoelastic case in Chapter 3. Popov [18, 19] established a relationship between the
boundary displacement and the pressure distribution in terms of Lengendre polynomials.

An account of his results is also given in Chapter 2 ( sce [2] for details).

As we know, the classical elastic problems can be divided iuto two kinds. For the
first kind, either the forces or the dispacements are specified at all points of the boundary
surfaces. The second kind consists of the mixed boundary value problems for which forces
are given on part of the boundary surface( referred as B, ), while over the complementary

boundary surface (referred as B;) the displacement is given.

In viscoelasticity, the second kind boundary value problems are subdivided into two
further classes depending on whether B; and B; are time-independent or time-dependent.
An example of the problem with time-independent boundary regions is the indentation

problem of a half-space by a flat-ended punch of circular section. An example of the



problem with time-dependent boundary region is the contact problem for a spherical
punch. The first kind of viscoelstic boundary value problems together with the second
kind with time-independent boundary regions can be solved by employing the classical
correspondence principle. We can reduce the time-dependent viscoelastic equations to a
standard elastic form by taking Fourier tranforms over time t. Therfore the difficulties of
this kind of problem are no more than that for the corresponding elastic ones. But for the
problems involving time-dependent regions( such problems are called "essential viscoelastic
problems” by Hunter [11]), we cannot use the classical correspondence principle. This is
because there will be some points of ihe boundary at which the entire history of one type

of boundary conditions is unavailable. This precludes the taking of Fourier transforms of

the boundary conditions.

The "essential viscoelastic problems” remained untouched until 1960’s. The problem
of a rigid spherical indentor was first treated by Lee and Radok [13], In that solution,
the radius a(t) of the contact area is restricted to be a monotonically increasing function
of time t. Later Hunter [10] extended this solution to the case in which a(t) increases
monotonically to a maximum and then decreases to zero monotonically. The idea for
the case where a(t) has any number of maxima and minima came from the works by
Graham [7] and Ting [24, 25]. The strategy of their methods is to reduce the viscoelastic
problems to a form analogous to the elastic equations by using a special decomposition,

and then use the familiar elastic solutions to determine the viscoelastic quantities.

Recently, Golden and Graham {3] gave the steady-state solution to the problem of a
rigid indentor, subject to normal periodic loading, on a viscoelastic half-space. Detailed
solutions were given for the case where the half-space was assumed to respond as a stan-
dard linear solid. In that paper, only the plane strain problem was considered. The
corresponding three-dimensional problem was discussed subsquently in {6, 8]. In these
papers, it was shown that the contact pressure and indentation obeyed integral equations

where the kernels are infinite sums of terms involving integrals of the viscoelastic func-



tions. For a standard linear solid, the summations can be carried out without difficulty
to give closed formula. For this case, considerable analytical progress can be made before

resorting to numerical techniques of solution.

For more general materials, the infinite summations cannot be carried out in an ele-
mentary manner. However, in [5], this question was addressed in the context of a different
problem, namely that of a fixed length crack in an infinite body under sinusoidal loading
at infinity. In that paper, the authors showed that the kernels obey certain integral equa-
tions, whose solutions can be determined in closed form, at least for discrete spectrum
models. The solution of these equations amounts to summing the infinite series. This

method is extended to the contact problem in this thesis.

There are two parts in this paper. The first part Chapter 2 is devoted to the clastic
problem, which was studied by several scholars. Here, I give the solution due to Sneddon.
First the three-dimensional problem is reduced to a bihamonic equation subject to some
boundary conditicns by introducing Love’s strain function. Then we use Hankel transforms
to transform this into a set of dual integral equations, which are solved by using some
properties of Hankel and Fourier transforms. At the end of this chapter, an alternative

solution to the same problem due to Popov is provided.

The second part, Chapter 3 of the thesis, deals with the viscoelastic contact problem.
First of all in Section 3.1, viscoelastic material behaviour described by spectrum models is
given and the classical correspondence principle for viscoelsticity is stated. In Section 3.2,
the viscoealstic contact problem is reduced to the solution of six integral equations; and
the steady-state limit is derived. These integral equations have kernels that are infinite
series of multiple integrals involving creep and relaxation functions for the material. In
the case of a standard linear material, evaluation of these kernels can be reduced to the
summation of geometric series. This was done by Golden and Graham [3] and is given in
Section 3.3. For more general material behaviour this method does not work. However, in

that case a method, previously used for crack problems[5], remains valid. That method,



which expresses the kernels as the solutions of other integral equations, is used in this
work to derive specific information on the solution of contact problems, for materials more
general than the standard linear material. Section 3.4 contains the analytical details of this
development. A specific model (N = 2) is studied in detail and the results of numerical

calculations are presented. Some general results and discussions are also given in Section

3.4.



Chapter 2

Three-Dimensional Contact

Problems in Elasticity

Governing equations of linear isotropic and homogeneous clasticity are [23]

1
eij(7) = 5(uig(F) + (M), (2.0.1)
0i;(7) = 2pei;(7) + Aekk(7)6ij, (2.0.2)
and
0ij,i(7) = 0, (2.0.3)
with boundary conditions
0ij(M)n;(7) = T(7), 7€ By, £2.0.4)
ui(7) = ui(7), 7€ DBy, (2.0.5)

in the Cartesian coordinates z;, if there are no body forces, inertial forces are neglected and
the summation convention is in force. Here A and p are Lame’s constants, 7 = (zy, 4, £3),
u; denotes the displacements, ¢;; and o;; are strain and stress components, respectively.

T:(7) and ud(7) are applied tractions and displacements, respectively.



We only consider axisymmetric problems. By introducing Love’s strain function ®(r, 2)

[14] and using cylindrical coordinates (7,8, z), we can express displacements by

A+

ur(r,z) = ———u———@”, (2.0.6)
ug(r,z) = 0, (2.0.7)
A A
uy(r,z) = 2 g At (2.0.8)
7 7
Then strains are determined by
du, A+ p
rr = = _—"—"‘erz’ 2.0.
¢ or 1 (2.0.9)
_10ug  u, A4+p®,,
Egg = ;‘-—8—0— —’;"' = -—T r (2010)
€2z = "8“12 = /\+2uv2¢z" /\+u(1’zzza (2011)
0z p p
€rg = €26 = 0, (2.0.12)
1,0u, Ou, Atpu A+20 0
vz = =(—— =-"—L9,,, —(V*®). 2.0.13
¢ 2( 0z + ar ) u° + u° (91‘( ) ( )
The corresponding stresses are obtained by direct substitution in equation (2.0.2):
Orr = AV2®, — 2(X + 1)@, (2.0.14)
0 = (BA+4p)V3®, — 2\ + p)®,,., (2.0.15)
2
ogp = AV*®, — ~(A+ 1) %, (2.0.16)
Orz = (A+20)V2®, —2(A + p)®..,, (2.0.17)
O =09 = 0. (2.0.18)
It may be shown that the first equation of (2.0.3) in cylindrical coordintes
a rr rr — rz
Orr | Tre — 000 | 90r: _ (2.0.19)

or T 0z
is automatically satisfied by such a selection of ®(r,z) and the second one holds because

of the axisymmetry while the third one

00, aa'zz Orz _
i (2.0.20)



is equivalent to

Vie = 0. (2.0.21)

Then the problem is reduced to finding a biharmonic function ®(r, z) which satisfies

certain boundary conditions.

Figure 2.1: Contact problem for an axisymmetric punch with curved profile S(r).

For the elastic contact problem to be considered, a smooth indentor of axisymmetric
form S(r) being pressed against the half-space z > 0 by a normal force W (see l'ig.2.1),

the boundary conditions are

uy(r,0)= D ~ S(r), r<a, (2.0.22)
0,.(r,0)=0, 7>0, (2.0.23)
0..(r,0)=0, r>a, (2.0.24)

where @ is the radius of the contact area, D is the indentation at r = 0 and 5(r) charac-
terizes the shape of the punch, which satisfies S{(0) = 0 and $’(0) = 0. In addition there

must be no tensile stress under the punch and no contact when 7 > a.



Taking zero order Hankel Transforms of the both sides of equation (2.0.21) we obtain

the ordinary differential equation [20](see Appendix for details)
- d? 2=
(E; — 8°)*®(s,2) =0 (2.0.25)
where &(s, z)! is the zero-order Hankel Tranform of the function ®(r,z) given by
®(s,2) :/ rdo(sr)®(r, z)dr. (2.0.26)
0
The solution of (2.0.25) is
®(s,z) = (A+ Bz)e* + (E + Fz)e™** (2.0.27)
where A,B,E F are functions of s.

Then, if we multiply both sides of (2.0.6) by rJ{(sr) and integrate over r from 0 to oo,

we find

oo _Atp do
/0 rus(r, ) Isr)dr = S H ST, (2.0.28)

after using equation (A.10) and integration by parts. Hankel inverse transform of the

above equation gives us

At [ ,do
()= 2 /0 22 n(sr)ds. (2.0.29)
Similarly we obtain the quantities of interest
© d?® A+2u ,-
u,(r, z):/0 (= ~ . s°®)Jo(sr)ds, (2.0.30)
oo 35 ,db
02a(ry2) = /0 sl(A+ 205 = BA+ 4 S Lo(sr)ds,  (2.0.31)
* g, d°® 23
or(r,z) = / s [/\2—2—2 + (A + 2p)s“®]J1(s7)ds. (2.0.32)
0

Considering that all the components of stress and displacement tend to zero as z — oo,
and o;,(r,0) = 0 for all r, we have A(s) = B(s) = 0, and E(s) = ﬁﬁjF(s)/s Therefore

equation (2.0.27) becomes to

3(s,2) = L2

—8Zz
e + sz)e” %, (2.0.33)

'Here we are using a slightly different notation from that in Appendix.



Using the above equation and putting z = 0 in equations (2.0.30) and (2.0.31), gives

At 2u (o

uz(r,0) = — .; #/ s2F(s)Jo(sr)ds, (2.0.34)
0

022(r,0) = 2(A + 1) / SF(5)Jo(r)ds. (2.0.35)
0

Then the boundary conditions (2.0.22) and (2.0.24) yield the dual integral equations
A 00
———.;L——zlt/ 82 F(s)Jo(sr)ds = u,(r,0), 0< r < a, (2.0.306)
0
o0
/ S F(s)Jo(sr)ds = 0, r > a. (2.0.37)
0

These equations may be transformed into the form

/oo Y(p)Jo(pr)dr = u.(z,0)= D - §(z), 0 <z <1, (2.0.38)

0

/oo p¥(p)Jo(pr)dz =0, = > 1, (2.0.39)
0

by introducing the new variables

z=r/a, (2.0.40)

p = sa, (2.0.11)
_ A+ 2[1 2 P 5 ‘

¥() = 2L R, (2.0.42)

Sneddon [22] solved this set of dual integral equations by using some relations between

Hankel and Fourier transforms, which are listed in Appendix A.

Taking note of (A.20), equation (2.0.39) is automatically satisfied, if

¥(p) = /0] X (t)cos(pt)dt, (2.0.43)

and equation (2.0.38) is equivalent to the Abel integral equation

= X(t)dt
0 Vz?l—1t2

The solution of this equation is given by(see Appendix)

=D-5(z), 0<z<1. (2.0.14)

2D 2d [tzS5(z)dz
T wdt Jo V12 - 22

(2.0.45)



Integrating by parts and then taking a derivative, one deduces that

‘ﬂnzzgg-zifﬁmﬁi[vﬁfﬁyum4

T wdt
2D 2 ‘S'(z)tdz] .
= ———— —_—t . 2.0.46
D2 s+ [ S (2.0.49)
From (2.0.35), we know
0.(1,0) = 2(/\+u)/ $3F(s)Jo(sr)ds
0
2u(A+p) [
e Ji d
(/\_*_2“)(1 o p¢(p) 0(p2?) P
2u(A + 1) /‘ /°°
——t ¢ dp. 2.047
) [ e [ peostoydotpmydp. (2047
With the aid of (A.11), we obtain
/ pcos(pt)Jo(pz)dp = —— [:c/ cos(pt)Jl(pz)dp]
0 zdz 0
1
_ 1d [ X(t)d (2.0.48)

- zdzx J; Vt2 — Zz_.
Here use has been made of equation (A.22). As before, integrating by parts and taking a

derivative with respect to x and then substituting into equation (2.0.47), we get

2u(A+p) [ X(1) L X'(t)dt
s { - } . (2.0.49)

0..(7,0) =

Jicet Jo Ve-ot

To assure 0,,(r,0) is finite under the punch we must take

X(1) = 0. (2.0.50)
Therefore, we have from (2.0.46) that
1 S'(z)dz
D= / —, 2.0.51
a1 ( )

considering that S$(0) = 0. This formula relates D the depth of penetration of the tip of

the indentor into the half-space, to a the radius of the circular area of contact. Now we

can find, from (2.0.49), that the total load acting on the punch is
W = —27r/ ro,.(r,0)dr
0

O+ war 1 e
—(7‘*‘—2!‘7——/0 zdz/o p¥(p)Jo(pz)dp. (2.0.52)

11



Changing the order of integration and noting that
d }
zJo(z) = (.’l.'J](.t)) (2.0.53)

we get

dpu(d+ p)ra [ y oo
TSI /0 ¥(p)Ji(p)dp- (2.0.54)

With the aid of (A.21) and (2.0.43), we can change the above equation to

W =

4p(X + p)ra

W=
(A+2p)

1
/ X (p)dp. (2.0.55)
0

For the spherical indentor of large radius R, we have

2 q2g2 _
S(r) = Y Y (2.0.56)
By using (2.0.51), one gets
2
D= %, (2.0.57)
while (2.0.46) gives us
2
a
)= —(1-1%). 2.0.58
X(t) = (1~ ) (20.58)
Therefore, one deduces from equations (2.0.49) and (2.0.55) that
8uu(A + ) »
22(r,0) = ——=—o=5Va? 2.0.5¢
02(7,0) 7r(/\+2;t)R ( 79)
16u( X + p)a® ,
w — . 2.0.6(
30 1 2R (2.0.60)

This is the solution given by Sneddon [22]. In that paper, equation (6.15) for the general

spherical indentor should be written as

P = Tn [(a + R?)log (IR; ta a) ~ 2(513] (2.0.61)
or
ﬂ('\JrH)[ 2, p2 (R+“) ] y
= —_—— - , 0.4
S (a® + R%)log o 2aR|, (2.0.62)
in our notation here, instead of
__H 2, p2 RJF“) _ J 0.6
P_.l_n[(a +R)log(R~a aR|. (2.0.63)

12



For the case when R >> a, equation (2.0.62) and

lo (R+a>
g R—a

T
=

N R

reduce to
2a
D =
3 (R * (3R3))

_#(/\+ﬂ)( 0% ))
A+ 2u 3R

(2.0.64)

(2.0.65)

(2.0.66)

by using Taylor’s expansion and keeping the highest order terms. This corrects formula

(30.41) in [21]. From equations (2.0.65) and (2.0.66), we can see that equation (2.0.57)

and (2.0.60) are special cases of equations (2.0.62) and (2.0.64).

An alternative solution was given by Popov[18]. By using Boussinesq’s formula he

obtained the relationship between the boundary quantities

! !
2ru,(r,0) = At 2 .I.)(T )ds , r<a
2/‘(A + ﬂ) c |T' - ﬂz:O

and showed that if the specified surface displacement is

N
ue(r,0) = 17(E\T+¥27% 3" an[Poa(O)PPanl(1 - 72/a¥)V?), 7 < a

n=0

then the normal stress distribution is

N
p(r) = —02:(r,0) = (1 — 7%/a*)"V2 Y an Po[(1 ~ r2/a*)V/?), r < a

n=0
while the total load is
W = 27r/ sp(s)ds = 2ma’aqg
0

where P,(z) are Legendre polynomials, which are defined by
Po=1, A=z
and the recurrence relation
(n4+1)Pagi(z) = (20 + 1)z Po(z) = nPry(2).
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For the spherical punch of large R, we know that

2

uy(r,0) = D—%ﬁ

ra(A + 2p) | ) .
m {aO[PO(O)]2 + a; [P0 P[(1 - r2/a*)V/ ]}
M ﬂ 3(117‘2
WOt |©

TR } 0<r<a (2.0.73)

This gives us that

Ta(A+ 2u) a’

WO ® 3= D, (2.0.74)
a; = %%. (2.0.75)
Noting that p(e) = 0, one gets from (2.0.69)
1 .
ag — §a1 = 0. (2.0.76)

Then equations (2.0.74) ,(2.0.69) and (2.0.70) will give us the same resuit as (2.0.57),

(2.0.59) and (2.0.60), which will be used later for the viscoclastic solution.
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Chapter 3

Three-Dimensional Contact

Problems in Viscoelasticity

3.1 Viscoelastic Material Behaviour and the

Correspondence Principle

In viscoelasticity, all the field quantities depend on time ¢ and the governing equations

take the same form as the corresponding elastic ones{12]
cif(F1) = 5(uis(F50) + u3a(7, 1)), (3.1.1)
oi;; (7)) =0 (3.1.2)
except for the constitutive equations. The latter are
o;(Tyt) =2 /:o dt'u(t — t)ei; (7 ') + &;j [oo dt'\(t — terr(F, 1) (3.1.3)
where A(t) and p(t) are related to the relaxation moduli in bulk and shear of an isotropic

and homogeneous material, respectively. Taking time Fourier tranforms of these governing

equations and the given boundary conditions
o (7, )n;(F) = Ti(7, 1), 7€ By, (3.1.4)
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ui(7,t) = ui(7,t), 7€ By, (3.1.5)

for fixed regions B; and B;, we obtain

A .. . L
€ij(Tw) = §[us.j(r,w) + 57, W), (3.1.6)
,[t(w)ﬁ,',jj(f',w) + [ﬂ(w) + :\(w)]ﬁj,j,-(f',w) = 0, (3.1.7)
Gij(Fyw) = 20(w)é5 (7 w) + i3 A w)é(Fw), (3.1.8)
and
&i5(fw) = Ti(Fw), 7€ By, (3.1.9)
(7, w) = 4)(Fw), T€ By, (3.1.10)

where é(7,w) denotes the Fourier transform of &(7,t), etc. The transformed equations
have the same form as the governing equations of the corresponding elastic problem. If
solutions to the elastic problem are known, one can obtain the solution of the viscoclastic
problem by replacing the elastic constants by the complex moduli in the expressions for the
displacements and stresses and then calculating the inverse transforms. For viscoclastic
problems with time-independent boundary region, it is easy to do this. In this sense,
viscoelastic boundary value problems are no more difficult than the corresponding clastic

ones. This is the content of the classical correspondence principle(e.g. see [12]).

For convenience, in this paper, we adopt the proportionality assumption{4]

A(t) = Q”QU;;(t), (3.1.11)

1-—
where v is a a constant that plays the role of Poisson’s ratio. Therefore sometinies this

model is referred as unique Poisson’s ratio model.

Later on we will use I(t), a singular function, which is related to the relaxition moduli

u(t) by

I(t) = TE% (3.1.12)

16



Its inverse k() is chosen to satisfy

t t
: di'l(ty = k(' — 1)) = /2 di'k(ty —tHI[' —t1) = 6(ty — 1) (3.1.13)
t

t 1

for any #;,13 wucre {3 > 1), or in a more compact form
t ¢
/ dr'i(t - t)k(t') = / d'k(t ~ )I(t) = 6(2). (3.1.14)
0 0
Here k(2) is also a singular functions, which is closely related to the creep functions of the

madterial.

For the discrete spectrum model of a general linear viscoelastic material, {(¢) and k(¢)

take the form

N

I(t) = lob(t)+ ) Le ™, (3.1.15)
W

k(t) = kob(t)+ 3 kie™Ht, (3.1.16)
i=1

In order to satisfy (3.1.14), the coefficients I;, k;, ¢ = 1,2,..., N must be related by[4]

loko = 1 (3.1.17)
IO+Z _‘ﬂ_'—ov] = 1’21---’N; (3118)
=1 ! J
N k:
0~ X g i =0 = L2 (3.1.19)
i=1 t
‘f="{z"i*3}"l,i = 1,2,...,N; (3.1.20)
j=1 (ai —.ﬂ]) 4
ki = “{iﬁi—}'l i = 1,2,...,N. (3.1.21)
i1 (a5 = Bi)? ’

The case N = 1 corresponds to the standard linear viscoelastic solid

I(t) lob(t) + I e~ (3.1.22)

k(t) = kob(t) + ke~ (3.1.23)
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for which

loko = 1, (3.1.24)
ky = —Lkd, (3.1.25)
,@ =a+ llko = — kl/ko. (312(5)

3.2 Formulation of the Contact Problem in Viscoelasticity

In this thesis, we only consider certain viscoelastic contact problems that belong to
the so called essential viscoelastic problem. Unfortunately the classical correspondence
principle given in the last section cannot be applied to this kind of problem. To solve
this problem, we use the ideas of Graham[7] and Ting[24] and try to change the surface
quantity relationship into a form that is the same as the elastic one. Then the familiar

elastic result given in Chapter 2 is used to solve the problem.

Using the proportionality assumption described in last section and replacing u;(7, () in

the viscoelastic equations (3.1.1) to (3.1.3) by the pseudodisplacements

t
vi(7,1) = / dt'l(t — t")w;(7 1), (3.2.1)
~00
we find that the viscoelastic equations are same as the elastic equations for a material with
if(i,\?ﬁf) = 1. Therefore we obtain the viscoelastic analogue of the clastic result (2.0.67)
1 p(v',1) ;
v(r,t =—/ ds'io—— 1 <a(t), (3.2.2
where
¢
o(r,1) = / di'l(t — 'yu(r, o' (3.2.3)
—~00

for our axisymmetric contact problem. Here v(r,t) denotes the normal pseudodisplace-

ment on the boundary surface v3(7,1)|,=0, u(r,?) express the normal surface displacement

u3(7,t)]z=0, and ¥ = (21,22,0), r = Jz2+ 2%, ' = (21,25,0), v/ = JoP2 + 2 and
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p(r’,t) = —0,,(r',1). Later on we will use all these notations except where stated other-
wise. This displacement-traction relationship on the boundary will form the basis of the

considerations of the thesis.

Now the displacement boundary condition, instead of (2.0.22), takes the form
u(r,t) = D(t) - S(r), v < a(t). (3.2.4)
The inverse of (3.2.3) can be written as
t
u(r,t) = / dr'k(t — t)v(r, ). (3.2.5)

We are interested in the case where the applied load is oscillating in magnitude, so
that the contact area radius a(t) will pass through a series of maxima and minima before

the current time t.

a(t) //\ \97 20 61 (1)

Figure 3.1: Typical distribution of 6;(t), ¢ = 1,2... when a(t) is decreasing.
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Now we consider first case in which the contact area is shrinking at the current time t,
as shown in Fig.3.1. Let Sg(t) be the set of all these time t' such that C(¢') D C'(¢t), while
Sr(t) is its complement in (—o0,t]. Using the method given by Golden and Graham[3], we
can decompose v(r,t) into integrals over these two sets. Consider times 8;(¢), 7 = 1,2,3, ...

such that 6,(t) > 6;(t) > 03(t)... and
a(0;(1)) = a(?). (3.2.6)
Then we can write (3.2.3) as
t 01
v(r,t) = / di'l(t — tHu(r,t') + / dt'l(t — t"yu(r,t") (3.2.7)
91 -0Q
where the second term can be rewritten in the form
61 t" /A ‘
/ dt"1(t — ") / Akt - t)o(r, 1) = / AT (0, )o(r, 1), (3.2.8)
g
Tyt 1) = / it — k(" - 1) (3.2.9)
t’
The same processure can be applied to this second term, where now the split is into

an integral over [05(t), 8;(t)] and (—o0,8,(2)]. This can be done repeatly to give the final

decomposition
v(r,t):/ dt’IIg(t,t’)u(r,t’)+/ dt'TL (¢, t)v(r, t) (3.2.10)
Sc(t) Si(t)
where

(1) = To(t,t')R(t';61(t),t) + Ta(t, 1) R(t; 63(1),02(2)) + ..., (3.2.11)

Mz(t,t")y = Ti(t,t')R(1;0:(2),0,(1)) + Ts(t, t')R(1; 04(1),05(8)) + .... (3.2.12)

Here functions T;(t,t’) are defined as follows

To(t,t") = l(t-1), (3.2.13)
6:(t)
Ti(t,t) = / dt"T;_1(t,t"k(t" - t'), i odd, (3.2.14)
tl
8:(t) )
= / A" T (8, ") —1'), i even, (3.2.15)
tl
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while function R((;t,,0;) is defined as

1, te€[tst
R(tita,ty) = lt2, 1] (3.2.16)

0, té ]t t4]

for all tq,t,,1.

(0 /\ XA AN

ARV

Figure 3.2: Typical distribution of 6;(t), ¢ = 1,2... when a(t) is increasing,.

If a(t) is increasing at time t(Fig.3.2), we obtain in a similar manner the decomposition

of equation (3.2.5)

u(r 1) = / dt'Te(t, )u(r, ') + / d'TL(t,)o(r, ') (3.2.17)
Sg(1) SiL(?)

where

TL(t,t")

Ta(t,t') = Ni(t,t)R(;602(2),61(t)) + Na(t,t')R(t'; 84(2), 63(2)) + .... (3.2.19)

No(t,t")R(t; 6,(1), ) + No(t,t")R(t'; 63(2), 02(2)) + ..., (3.2.18)
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and functions Ny(t,t’') are given by

No(t,t') = k(t-1), (3.2.20)
eg(t)
Nt ) = / A" N (8, 41" = 1), & odd, (3.2.21)
tl
0,‘(!)
= / dt' N, (3, 1"k(" = 1), i even. (3.2.22)
t’

Counsider equation (3.2.10) for the time when a(t) is decreasing. According to the
definition of S;(t), we know that r is in the contact area for any time t' € Sq(t) if it is
there at time t. Therefore u(r,?') is known to be D(t') - S(r) for any time ¢’ € S¢(t) and

the first term in equation (3.2.10) now becomes

/SG(t) dt’HG(t, t’)U(T, t’) - /SG(t) dt,HG(t, t,)(D(t’) _ 5(1))
D.(t) - S(r)g(t) (3.2.23)

for r belonging to the contact area at time t, where

D(1)

/ 'l (1, ¢)D(t'), (3.2.24)
Sa(t)
Me(t) = / dt'Tg(t, 1), (3.2.25)
Sa(t)
Furthermore, for time ¢’ € Sp(t), the contact region C(t') is always contained in C'(t).

Hence we can interchange the time and space integration to put the second integral of

equation (3.2.10) in the form

1 q.(v',t) , .
dt'TIL(t, tHo(r, t') = ——/ ds' =—2 r < a(t), (3.2.26
Joy o Mt 00t = 50 [ a7ty )
where
ge(r',1) = / de'TiL (1, 1)p(r, 1), (3.2.27)
S.(t)

Therefore equation (3.2.10) becomes

o1 q.(r',t) .,
v(r,t) = ve(r,t +——/ ds'==——= r <a(t), (3.2.28
()= wlrt) g7 [ as 1500, r<aty (3.2.29)
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where

ve(r,1) = De(t) — S(r)Tg(2). (3.2.29)

Substituting (3.2.2) into (3.2.28) gives us

— !
ve(ryt) = -1_/ PGt SGEL (3.2.30)
27 Jeq [r! — 7

If there is a quantity D.(t) ( we will see its physical meaning later) such that
Du(t) = / TG, ¢)D(t') = Mg(t)Du(t), (3.2.31)
Sa(t)

then we have
ve(r,t) = Hg(t)(D(t) — S(1)), (3.2.32)

and equation (3.2.30) takes the form

rmaxnao—su»=aalmﬂymnzifgﬂo’TSawm (3.2.33)

Comparing this equation with (2.0.67) and recalling the elastic solution, we get .
p(r,t) = qc(7,t) + kellg(t)pe(r, t) (3.2.34)

where p.(r,t) is the pressure distribution on an elastic medium characterized by k. =

ﬁ%. For the viscoelastic problem considered here, k. is free to choose but k.p.(r,1) is

fixed. Here k. is chosen te be [4]

N gt al ki ad L - '
ke = /(; k(t )dt = kO + Z F = {lo + Z -a—} . (3235)

i=] "t i=1
Such a choice of k. makes p.(r,t) and W,(t) have special meaning (we can see this later

in Section 3.4.2). Now, it is clear that D,(t) in equation (3.2.31) is the elastic indentation

corresponding to the pressure distribution p.(r,1).

For the case in which C(t) is expanding, we begin with the decomposition (3.2.17) and

get
Auﬁmuu%mm=mu—mmmwm, (3.2.36)

D(t) = /S o #Ta(t)D(E) + D()(1 - Ta(1) (3.2.37)
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where

Ig(t) = /S “ di'Tg(t,t). (3.2.38)
G

Integrating (3.2.34) and (3.2.36) gives us integral equations for the total load

W(t) = /C o 9L 0+ BTG (OW() (3.2.39)
i

/S o QT OW(E) = kel = T (3.2.40)
L

The viscoelastic contact problem has therefore been reduced to solutions of six integral
equations (3.2.31), (3.2.34), (3.2.36),(3.2.37), (3.2.39) and (3.2.40), which involve solutions
of the corresponding elastic problem. For a spherical indentor of large radius R, we have,

from the results in Chapter 2, that

a’(t) :

() =28 3.2.41

Dc(t) R (3.2.41)

4 2 211/2 vy ge

o(r, 1) = —(a(t) — :

kepe(r,0) = (@) - 1) (3.242)
8a3(t)

(1) = 22

EWL(1) = o (3.2.43)

Let us now consider the steady-state limit of these integral equations. If the loading
varies periodically with time, we would expect the response of the half-space to reflect this

periodicity after a sufficiently long time. We therefore set

a(t) = a(t + A), (3.2.14)
D(t) = D(t + A), (3.2.45)
p(r,t) = p(r,t + A), (3.2.46)
W(t) = W(t+A) (3.2.47)

for any time t, where A is the period of the applied load. We choose t € [A}, A,] where
Ay — Ay = A and Ay, A; are times when the contact region C'(t) is maximum. Also, we

assume C(t) is minimum at time Zo.
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First we consider the contracting phase when t € [A;,%5]. Let ¢1(t) be the solution to
equation a(t;(t)) = a(t) in [to, A2]. This function is determined by the shape of a(?). In

terms of t and t,(t), we have

0,(t) = t1(t) — A, (3.2.48)
G(t) =1t - A, (3.2.49)
3(t) = t1(1) — 24 (3.2.50)

and so on. It follows that p(r,t), W(t) and D(t) in the decreasing phase [Ay, 1], satisfy

the following integral equations

t1(1)
p(r,t) = / ’ dt'TLL P)(2, t)p(r, t') + kIl (t)pe(r, 1), (3.2.51)
t
t1(t)
W(t) = / L, YW () + kP ()We(2), (3.2.52)
t
t
/ AP, £)D(¢) = TP (1) D(2), (3.2.53)
131 (t)—A
where
.2, ) = ¥ Toxa(t, ¢ - kD), (3.2.54)
k=1
MeP(t,t') = 3 Ta(t, ¢’ - kA), (3.2.55)
k=0
i
Ie'P(t) = / dt'TeP) (¢, 1'). (3.2.56)
tl(t)--A

In the expanding phase, i.e. t € [to, A2], we get from (3.2.36), (3.2.37) and (3.2.40) that

» dt'T P (t,1)p(7, 1) = k(1 - TP (2))p(7,1), (3.2.57)

)
o dt'T )4, "YW (V') = k(1 - TP (0)W.(2), (3.2.58)

)
D(t) = /t 11:) dt'TcP(1,¢)D(t') + (1 — PP (1)) D.(2), (3.2.59)

where
I‘L(p)(t,t') = f: Now(t,t' — kA), (3.2.60)
k=0
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v o]

TP, t') = Y Nakga(t.t' = kA), (3.2.61)
k=0
t(t) _
T6P(1) = / dt'TeP(t, t'). (3.2.62)
t-A

Here we have used equations

0:1(t) = (1),

62(t) =t - A,

B3(t) = t,(1) — A (3.2.63)
and so on and #,(¢) is the solution of a(t,(t)) = a(?) in [A;, o). The steady-state contact

problem is thus expressed in terms of the six integral equations (3.2.51)-(3.2.53) and

(3.2.57)-(3.2.59), four of them independent.

3.3 Standard Linear Model

In the last section, we have reduced the steady-state contact problem to the solution
of six integral equations. Six kernels in these equations are infinite sums of terms involving
integrals of the viscoelastic functions. In this section, we present formulas for these kernels

for the standard linear solid given by Golden and Graham [3].

Consider first a time t when the contact area is decreasing. According to the definition

of T;(t,t') and the standard linear model given by (3.1.22) and (3.1.23), we have

To(t,t") = lob(t — t') + e~ ™=), (3.3.1)
Ty(t,t') = lykoe~0(t=01)=A(b1=t") (3.3.2)
Ta(t,t') = he~@(t=01)=A(61-02)—a(62~1") (3.3.3)

and so on. It is easy to verify that

il

Toa(bt = A) = Tit, ¢)ePl=0i1)-al0ui~042) ; g4y (3.3.4)

Ti(t, t')e~(0i=0i41)=Bl6it1-6i12) 1 copep (3.3.5)

I
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for t # t'. The latter restriction is included to exclude the delta functiorn in Ty(t,1'). By

using (3.2.48)-(3.2.50), we see that
0; — 01 = 1(t) — 1,
0iv1 —bir2 =t —11(1) + A,
for odd i, while for even i we have
0; — i1 =t —1(t) + A,
Oiy1 — Oip2 = 1,(t) — t.

This gives that for all i
Tiy2(t, ' = A) = Ty(t, ) E(2),

where

E(t) = e(“'tl (t))(ﬁ'—ﬂ)—aA.

It is also easy to see that 0 < E(t) < 1, so that

P ) = Tut,t -a)S(EQP
n=0
_hko  _a-nsayepe-n)

1-E(1)

By the same method, we obtain

NP (1, 1) = lob(t — ') + — b e=olt=1)

1-E(t)
and therefore, from equation (3.2.56), we get
H(p)(t) - 10 + ____Il_____[l _ e—-a(t—t,+A)].
¢ a(1 - E(t))
Similarly we obtain the kernels
k,e—Pt—t')
I‘g’)(t,t,) = kob(t — il) + *'ll—i-E—(—tl—)-,
kql '
I'r-®(1. 1) = —210 __ —B(t-t))—a(ti-t')
G (t7t) I_E(tl)e 1
kql
TP = 10 ~Blt-t1)[q _ golt-t1-4)
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for times t when the contact area is increasing.

Using these expressions, we can replace the six integral equations, which involve quanti-
ties in both expanding and contracting phases with other integral equations which contain
quantities only in one phase. These equations then can be reduced to ordinary diflerential
equations. Here we give the derivation for p(r,t). We can get the equation for W (¢) sim-
ply by integrating the equation of p(r,t) over the contact area. The ordinary differential

equation for D(t) is given in paper(8].

From (3.3.15) and (3.3.17), we can write (3.2.57) as
p(r,t) = Cl(t)/ttdt’emlp(r, t') + Di(t)pe(r,t), t€ [to, Aq]. (3.3.18)
1
From (3.3.12) and (3.3.13), write (3.2.51) as
) = Cal0) [ e pr, )+ DalOpr ), €€ lto, o) (3:.19)

The functions C1(t), Ca(t), D1(t), D2(t) are calculated in [3]. Considering that p.(r,t) =
Pe(r,t1) we get the following relationship between the pressure function in expanding and

contracting phase, by eliminating the integral terms in (3.3.18) and (3.3.19)
p(r,12) = n()pe(r, 1) + e()p(r, 1), ¢ € [to, Aal. (3.3.20)

Using this relationship, we reduce (3.2.57) to a integral equation for p(r, ) in the expansion

phase only, and then to a ordinary differential equation
p(ryt)+ ap(r,t) = b(r,t), t € [to, As] (3.3.21)

where b(r,t) is also given in [3]. Equations (3.3.20) and (3.3.21) were solved for {,(¢) and
p(r,t) by an iteration method in [3]. The contact problem of standard lincar material
was discussed extensively by Golden and Graham for three modes in [6](see Section 3.4.3
for the definition of these three modes). In that paper, they also calculated the rates of
energy loss and gave a simpler numerical technique. Instead of solving equations (3.3.20)

and (3.3.21), they determined t,(t) by directly solving a first order differential equation,
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namely (21) for the stress-controlled mode and (34) for the strain-controlled mode, in [6].

Once t,(t) i known, p(r,t)is obtained from (3.3.21). For area-controlled mode, t;(t) = —t.

3.4 General Viscoelastic Model

In this section, solutions *o the contact problem for general viscoelastic materials,
which correspond to the case that N can be any integer number in (3.1.15) or (3.1.16), are
given. Obviously N = 1 reduces the case to the standard linear material. As we mentioned
before, the infinite summations of the kernels cannot be carried out in an elememtary
manner for the case when N > 2. However, in [5], this question was addressed in the
context of a different problem, namely that of a fixed length crack in an infinite body
under sinusoidal loading. In that paper, the authors showed that the kernels obey certain
integral equations, whos= solutions can be determined in closed form, at least for discrete
spectrum models. The solution of these equations amounts to summing the infinite series.

Here, this method is extended to the contact problem.

3.4.1 Integral Equations for Kernels

We shall now show that the kernels of (3.2.51) — (3.2.53) and (3.2.57) — (3.2.59) obey
certain integral equations, which at least for the discrete spectrum models (3.1.15) and
(3.1.16) can be solved in closed form. Let us consider the kernel

o0
ILP(t,t) = Y Toxa(t, ¥ — kA) (3.4.1)
k=1
of equation (3.2.51) first. According to the definition of T} (¢,t'), we have

/ ’ On(1) " On-1(t) " " " w 1" '
Ta(t, t') = / dt dt" T8, 2")I(2" — " Vk(¢" — t') (3.4.2)

tl tHf

for odd numbers n > 3. The integral over t” can be extended at the lower limit to ¢’ since

I(t" —t") vanishes over this interval. This allows the order of integration to be interchanged
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without difficulty and one has ( omitting explicit mention of the t dependence of 8,,)

9n~l
T.(t,t) = / dt" T, (t, )G (1", 1),
tl

On
Gn(t”, tl) - dtml(t” _ t”l)k(tm _ t’).

tl

Using the inverse relationship (3.1.13) between k(2) and {(¢), one deduces that

G (" )y=6("-1"), t" <6,.
Therefore
0n—1
To(1,t') = Tu_a(1,t') +/ dt" Ty o(1,")G (1", 1), U < 6,.
In
Making the subscript explicitly odd, we can write
Tg,‘_l(t, t - iA) = Tyi-a(t, t — 1A)
t-(i-1)A
+ / dt"To;_3(t, 0" VGai1 (1", 1) — 14),
t1—id

by using #3,—1 = t; — nA and 05,2 =t — (n — 1)A, where

t1—iA
Go (", —iD) = /l dt”1(" = " Yk(" ~ U +iD)
t'—iA

t1—A
/’ dul(t” — u + (i = DAYk(w - ' + A)
t'—-A

G{t" + (i - 1)A,t' - A).

fl

Here the transformation of variables u = t"" 4+ (i — 1)A is employed. The function

é
Gt = / " dul(t - wk(u - )
tl

(3.4.3)

(3.4.1)

(3.1.5)

(3.1.6)

(3.4.7)

(3.4.8)

(3.4.9)

has the same functional form as Ty(t,t’) with t” replacing t but 8,(¢) left untouched. Using

(3.4.7) and (3.4.8), we have

Tgi_l(t, t, - ZA) = Tz,‘-3(t, t, - ZA)
t
+ duTy;_s(t,u — (i — 1)A)G(u,t' — A).

ti—4A
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Therefore 115, P/(t, t'), given by (3.2.54) or (3.4.1), obeys the equation
t
0,0, ) = Ty(t, ¢ = A)+ TP (2,1 - A) +/ dull, P (2, )G (u,t’ — A). (3.4.11)
t1—A
Thus

H PNt — A) = Ty(t,t' — 20) + TPt ¢ — 2A)

t
+ dullP)(t, u)G(u,t' — 2A) (3.4.12)
A

t1—
and so on. Repeated substitution of (3.4.12) and its sucessors into (3.4.11) together with

the assumption, which will be justified later, that
Jim . P(t,t — nA) =0, (3.4.13)

finally gives an integral equation for II(P)(2,1') of the form

t
NP, t) = K(t,t') + / dull, P)(t,w) K (u,t'), (3.4.14)
01
where
K(u,t') =Y G(u,t' - nd). (3.4.15)
n=1

We recall that G(t,' — nA) = Ty(t,t' — nA). In a similar way, it is found that IIgP)(t, ')

obeys the integral equation

" N
, Lo ey
MeP(t, ') = bt =t) + 2 T e aite=e)
6,
+ /0 dullg® (8, ) L(u, '), (3.4.16)
2
provided
lim Mg®(t,¢' —nA) =0 (3.4.17)
where
oo
L(u,t") =Y H(u,t - nA), (3.4.18)
a=1
o
H(", ) = / * duk(t” — w)l(u—1'). (3.4.19)
t'
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Furthermore, by comparing the definition of HG(”)(t, t') and TpP)(¢,1"), we find that
I'.®)(t,t') may be obtained from HG(”)(t,t’) by interchanging the roles of /() and k(t).
Therefore I'; (P)(1, ') satisfies an equation obtained from (3.4.16) by interchanging I(t) with
k(t), provided it satisfies a relation analogous to (3.4.17). Finally we see that I'{P)(¢, /= A)
satisfies an integral equation obtained from (3.4.14) by interchanging I(t) and &(1) provided

an analogue of (3.4.13) is satisfied.

3.4.2 Solutions of Integral Equations for Kernels

We now solve these integral equations for the kernels. First of all we consider (3.4.14).

For discrete spectrum models (3.1.15) and (3.1.16), we obtain from (3.4.9) that

N
lik' . . [
Glu,t')y =) —__JTe“"(“—”l)-f’J("l“”, u > 01(2). (3.4.20)
7

Thaus, equation (3.4.15) takes the form

i.j=1

N
K(u,t')= Y Kijem>it=0)=50-t) (3.4.21)

1,7=1

where
l,‘kj e~ Pid
a; ~ B;1—-e i

To solve (3.4.14), we make the ansatz for II;(P)(t,1') of the form

(3.4.22)

K;; =

N
Pty = Y Py, (3.4.23)

ivjzl

which clearly obeys (3.4.13). Substitution into (3.4.14) gives

N N
ZPij - ZI(,-_,-e'“‘(“G‘)‘ﬂiel

i=1 i=1
N
P K,; ,
+ Z LimAnj —tmond fe Bmt—an(t~60y)~[;6, _e(ﬂm—ﬁj)ﬂl}_ (3.4.24)
im,n=1 ﬂm — Qn

This algebraic equation will certainly be satisfied if a stronger condition is imposed that

cancellation takes place term by term in the variable . This gives us the matrix equation
P=K,+ PAK, (3.4.25)
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where P is a square matrix formed by F;; while

(K1)ij = Kijem o (t=01)=Bi0

(1(2)11._7 = Knje—ﬁjala
e—an(i—el )4+Bmt _ eﬂmel

Amn =
B — an
The formal solution of (3.4.25) is

P = K(I- AKy)™ .

Similarly, we get the solution to (3.4.16) of the form

N
HG(P)(t,t’) — loﬁ(t _ i’) + Z Q{j(t)eaﬂl’

1,5=1

where Q;;(1) is a square matrix given by

Q = Li(I - BLy)™',

and

| 5ijlje it

(L1)ij = ﬁ:‘&;—&s

kilie=2i%  gmosb

(L2)ij = =3 —
Bi—a; 1—e %

elai=0,)014802 _ paifs

i =

o - f;

(3.4.26)
(3.4.27)

(3.4.28)

(3.4.29)

(3.4.30)

(3.4.31)

(3.4.32)

(3.4.33)

(3.4.34)

Clearly, g P)(¢, ') satisfies assumption (3.4.17). Using the observation after (3.4.19), we

can write

N
TP, ¢) = kod(t — ') + 3 Qi;(1)eP",

1,7=1

Q = Ly(f - BL,)™,

(3.4.35)

(3.4.36)

where L; ,B and L, are obtained from (3.4.32)-(3.4.34) by interchanging the role of /()

and k(?). They are

o;; kje"ﬁit

(L) = T ——g&
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" LikjeBif2  ¢=FA
L) = L) . J.1.38
( 2)1] ai'—ﬂj 1—6_31‘5' (‘1,3)

e(ﬁi‘aj)al +0’162 _ eﬁn‘BQ

Bi; = : 3.4.3¢
j B (3.4.39)
Also from that observation, we have
N ~ 3
LeP(t,t') = Y7 Py(t)e ), (3.4.40)
1,j=1
P=FKyI- ARy (3.4.41)

where the components of f(l, fi, fx"g are

(K1)i; = Kyje Bilt=0)—o0 (3.4.42)
(K3)p; = Kpje=%, (3.4.13)
Apn = e~ﬁ"(t—:)+am,; —emh (3.4.44)
m — Mn
and
Ry = —2ili e 12 (3.4.45)

ﬂ,‘ - Qj 1- €_°’JA )
Equation (3.4.30) together with (3.2.56) gives

(p) N ea,t — 6(1101 ) .
HG (t) = IO + Z Qij—(;—'-——’ (3.4.4())

1,7=1 ]

while (3.4.40) combined with (3.2.62) gives

N aj(61+8) _ Lo,(02+4)
re®y =3 B ¢’ . (3.4.47)

ay

1,7=1
Now the steady-state contact problem equations (3.2.51)-(3.2.53) and (3.2.57)-(3.2.59)
take the form

N t1(t) o A N et — pus(t1-4)
p(r,)= Pij(t)/t dt'e’ ' p(r,t') + keglo+ Y Qis(t) . pelr,t),

L P x
i,7=1 i,7=1 J

for t € [A1,14], (3.4.4%)

N t , N eonlbn) oyt
kop(r,t) + z Qij(t)l(t) di'ePrt p(r,t') = ke{l- z P;(t) p pe(r, ),
1

ij=1 i,j=1 !

for te€ [to,Az], (3.4.49)
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N £1(t) , N ot _ Lai(ti—A)
wity= 3 p,-j(z)/t‘ AW + k. {10+ 3 Qi) Z }We(t),

1,7=1 ij=1 g
for t€[Aq,t0], (3.4.50)
N t p N . ei(B+t) _ ot
kW) + 3 Qi(t) / deP'W) = kA1- 3 Py() W.(1),
Q=1 ti(t) ij=1 il
fOT te [t(), A2]7 (34.51)

N N t , N et — eaj(tl—-A)
LD+ 3 Qi) / e D) = Lot 30 Qult) - D.(1),
ij=1 - i,j=1 7

for t € [Ay,t0), (3.4.52)

=1 J

N 1 , N ei(ti+d) _ pajt
D(ty= 3 Py(t)em® / dest D) + 1= 3 Pyt ——— D.(t),
ij=1 -4
for te [to,Az], (3.4.53)
where the matrices P,Q are determined by (3.4.29),(3.4.31) and @, P given by (3.4.36) and

(3.4.41).
Some general conclusions can be deduced from these equations. We will demonstrate
that p(r,t), W(t), D(t) satisfying the above equations are continuous at time iy, and

equal at A; and A,.

Putting t = ¢y in (3.4.50), we have

(W ;
W(to) = ke ilo + 2 Qij(to)

i,j=1

ajty _ eaj(to—A)

} We(to)- (3.4.54)
3

From (3.4.34) we know that B;;(to) = 0, since §; = 6, = to — A for t = t3. Therefore it
follows from (3.4.31) that

..].p—0jto
_ bijliem0

Qij(to) = {L1(to)}ij = T ==& (3.4.55)

so that N
W(to) = ke (10 + ZI;/a,-) We(to) = We(to), (3.4.56)

=1
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after using equation (3.2.35). This confirms the results given in {9]. Equation (3.4.51) at

t = 5 gives the same result by noting the fact that

kil; e—i(A+t)

Bi—a; 1 —e b

P,'J'(to) =

(3.1.57)

and relation (3.1.19). Therefore W(t) is continous at time ty. Equation (3.4.50) at t = A,

and equation (3.4.51) at t = A, take the form

N A, ,
W(A1)) = ) Pij(Ay) / dt'eP W (1) + koloWe(A),
A

i7=1

1 &L . a; ”
W(ae) = -z 2 Qu(a) /A 'YW (1) + kodoWe(D2).
1

i7=1

From (3.2.48)-(3.2.50), we know
(1) = Ag, 61() = A
for time t = A;. Therefore, from (3.4.28), one deduces
Aij(Ar) = 0.

Thus we can write (3.4.29) as

lik; e Pibd2

Pij(An) = (K1)i(A) = =57 =ma"
1 J

Similarly, we obtain
6,'jkje—ﬁ1 Az

Qii(A2) = (L1)ij(A2) = 1 o ha

considering 6; = 8, = t; = A; and B,'J- = 0 for t = Ay. Therefore

N LN
> Pj(Ar) =~ >0 Qi(A2),
i=1 0 =1

(3.4.58)

(3.4.59)

(3.4.60)

(3.4.61)

(3.4.62)

(3.4.63)

(3.4.64)

by virtue of equation (3.1.18). Noting W (A1) = W.(A2), we have, from equations (3.4.58)

and (3.4.59), that W(A;) = W(A2). This completes the verification of the periodicity of

w(t).
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Now we consider D(t). It is clear that D(A;) = D(A;) because (3.4.52) at t = A,

gives

D(A1) = De(A4), (3.4.65)
cquation (3.4.53) at t = A, yields
D(A3) = D (A7), (3.4.66)

and we know that D.(A;) = D.(A2). Equations (3.4.65),(3.4.66) are in agreement with

results given in [9] in a more general context.

When ¢ = tg, we have, from (3.4.52) and (3.4.53)

il

. N to '
D(to) “kOZQij(to)/t Adt'e“:'* D(t)
1=1 {1 hed

N ajlp __ Lo '(io—A)
+ ko {lo + Z Qij(to)e Lo } D.(to), (3.4.67)
i=1 J
N o to e
D(to) = ), P;j(to)ea’Al Adt’e"‘J‘D(t’)
ij=1 0~
N asle _ a'(to—A)
A A €% e%i
+ {1 = 3 By(to)e™? & }De(to). (3.4.68)
ij=1 3

To prove D(t) is continuous at ¢t = 1o, it is sufficient to know that

N N .
— koY Qij(fo) = Y _ Pij(to)e™™. (3.4.69)
=1

i=1
This is an immediate consequence of (3.4.55) and (3.4.57) with the aid of equation (3.1.19).

The verification of the continuity and periodicity of p(r,t) are the same as that of W(t).

Actually, it is possible to prove the more general results:

(I - AK)(t) = (I - BLy)(ti(2)), for te[A1,10], (3.4.70)

(I - BLy)(t) = (I-AKy)(ti(t)), for te€[Ay,to). (3.4.71)

These relations are very useful for the numerical calculation in the next section.
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Also, we can show that the solutions for the kernels lead to the results for standard
linear material given in Section 3 . If N = 1, we can write (3.4.26)-(3.4.28) as

. Lk, e—o(t—=61)-B(6:1+4)
(1‘1)11 = al—lﬂ 1= C—ﬂA s (3172)

Lik, e~Plo1+1)

(1‘!2)11 = a—B1- e—0A (3173)
e—al(t=01)+8t _ B0,
Ay = T . (3.4.74)
Then from (3.4.29), we obtain
I’

Py _ W ‘1)“,

1 - An(K2)n
= Liko e~e(t-t1+A)-0tr (3.4.75)

1 — e—a(A+t-t1)+6(t~t)

after using equations (3.1.24)-(3.1.26). By virtue of (3.4.23) and (3.3.11), one deduces

K ,
P, 1) = 10 e A, (3.4.76)

This formula is identical to one obtained in Section 3 by a different method. Similarly,
we can show that the other three kernels Hg’)(t,t’), I‘(If)(t,t') and Fg’)(t, t') are same as

before.

3.4.3 Numerical Results

In this section, numerical solutions to integral equations (3.4.48)-(3.4.53) obtained by

the quadrature method are given for the following three cases

(1) where the normal load is specified (stress-controlled mode);
(i1) where the indentation is given (strain-controlled mode );

(iii) where the area of contact is specified (area-controlled mode ).

Here we consider the spherical indentor of large radius R, for which the elastic solutions

are known. All the numerical calculations are carried out for the case N = 2 and the
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dimensionless quantities ca(t), ¢D(t), c2koW(t), kop(r,t) in terms of the dimensionless
parameters ' = wt, ! = fi/w, k! = kif/(wko), o} = a;i/w, Il = likg/w and k = ke/ko,
where ¢ = 1/(2R). This method can be applied to the cases when N > 2 without any

difficulty.

(i) Stress-Controlled Mode

In this case the applied load is assumed to have the simple sinusoidal form
27
W(t) = K(d—coswt), d>1,A = - (3.4.77)

To solve for a(t),p(r,t), D(t), we need to know ¢, and A;, A,. According to [9],

to = 0. Setting t = A; in (3.4.50), one obtains

W(Ap) = ~lozli§—:%7- / AP W (t') + Lok Wa(Ay), (3.4.78)

j=1
while equation (3.4.51) at t = A, gives the same equation.

According to (4.21) in [9], we have, at t = A,, that
" " ”mo__
max - / d"k({ — YW (") = Wa(2). (3.4.79)
Differentiating this equation at t' = A, gives us

koW (A2) + W(Ay) Zk - E ke 02 / deBCW(H)=0.  (3.4.80)

Considering that

/ o diePtW(t') = E / fernd d' Pt W (')
—00 nep Y Q2—(n+1)A
- TT?—T / dt' B W (1), (3.4.81)
we obtain
N k,‘ﬂ,‘e‘ﬂ‘Az A, .
W(As) = ———gk W(A2)+§m /A Cate ). (348
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Substituting (3.4.77) into the above equation gives

X k! & whif;
tan(wAq) = {Z ;—2—:’—[3?} / {wko + Z L;’ +ﬂ/3? } (3.4.83)

=1 1=1

where use of Az — Ay = A has been made. This agrees with a general result in [9]
in a different form involving loss tangent. For the standard linear model N = 1,

the above equation reduces to

wpf
p? +wi(1 - f)

where f = 1 — 8/a, which agrees with (4.56) in [3]. For this special model k =
(1~ f).

tan(wly) = (3.4.84)

(@

0.95 ©

09 -
0.85 -
10ca(t)
0.8
0.75

0.7 +

0.65 1 1 1 1 1 1 i
-4 -3 -2 -1 0 1 2 3 1

Figure 3.3: Contact area radius for the stress-controlled mode. This gives
the dimensionless contact area radius ca(t) over a complete cycle under
stress-controlled condition for cases (a): k7 = 0.0096, k5 = 0.003, f] =
0.2, B3 = 1.5, k = 1.05; (b): k] = 0.09, k; = 0.03, ] =2, f3), = 6,
k = 1.05;(¢): k1 = 0.09, k3 = 0.075, B; = 0.2, 8, = 1.5, k =15
and (d): kj = 0.8,k =06, B = 2,0, =6, k=15 with ¢*Kky =
0.0008,d = 3.
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Figure 3.4: Indentation for the stress-controlled mode. This gives the di-
mensionless indentation cD(t) over a complete cycle under stress-controlled
condition for the same cases as those in Fig.3.3. (a): k] = 0.0096, k; =
0.003, g1 = 0.2, 83 = 1.5, k = 1.05; (b): k3 = 0.09, k5 = 0.03, f] = 2,
By =6, k= 1.05(c): k = 0.09, kj = 0.075, 8 = 0.2, g = 1.5,
k=15 and (d): k] =08,k =06, 8] =2, 0, =6, k= 1.5 with
c?K ko = 0.0008,d = 3.

Once 2 and A;, A, are known, Newton’s iteration method is employed to solve a
functional equation, obtained by eliminating W.(t) = W(#1(t)) from (3.4.50) and
(3.4.51), for t;(t). Then W,(t) can be got from one of these equations. If W(t) is
known, the contact radius a(t), elastic indentation D.(t) and elastic pressure p.(r,t)
can be found by using the relations (3.2.41) to (3.2.43). Therefore we can get D(t)
and p(r,t). For example, indentation D(t) can be obtained by solving equation
(3.4.52) starting at t = A; and equation (3.4.53) beginning with ¢ = A,, using
marching method. Considering that all the kernels are smooth functions, we use

trapezoidal rule for the numerical computations. Results for the stress-controlled
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mode are presented in Fig.3.3-Fig.3.5.

From Fig.3.3 and Fig.3.4, we can see that ca(t) and c¢D(t) increase with the value
of k and there is very little variation with 8; and k; if k is close to 1. Note that,
from Fig.3.3, the minimum contact area is only dependent on the value of k and
independent of the individual values of o] and I} or 8! and £!. Fig.3.3 and Fig.3.4
also confirm the result that the contact area and indentation achieve minimum a

little bit later than load does for the stress-controlled mode.

1.8 1 1 ¥ I T ¥ 1 1 J

1.6

14

1.2

1
10kgp(r, t)
0.8

0.6

04

0.2

0 L | 1 i 1 | 1 H 1

0 0.1 02 03 04 05 06 07 08 09 1
10cr

Figure 3.5: Pressure distribution for the stress-controlled mode. This pic-
ture gives the dimensionless pressure distribution p(r,1) at various times
during the cycle for the stress-controlled mode with &k} = 0.8, &% = 0.6,
B, =2,8, =6, k=1.5and ¢?Kkg = 0.0008. The lines on the top and
bottom are for the times when the contact area is maximum and minimumn,
respectively. The pairs of lines which meet on the horizontal axis are for

times, when the contact area radii are same.
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(ii) Strain-Controlled Mode

For this case, indentation is taken to be

27

D(t) = N(b- coswt), A = :, b>g>1. (3.4.85)

Here g is a constant related to the viscoelastic material and its definition is given

in [6]. According to (3.4.65)(see also [9]), the maximum value of D.(t) and of a(t)

occurs at the same time as that of D(t). Therefore

Ag=—A; = g (3.4.86)

1.05

1k

0.95 |-

0.9

0.85
10ca(t)0.8
0.75

1

0.7
0.65
0.6 -

0.55
-4

Figure 3.6: Contact area radius for strain-controlled mode. This shows the

dimensionless contact area radius ca(t) over a complete cycle in the strain-
controlled mode for cases (a): k7 = 0.0096, k5 = 0.003, 8] = 0.2, 53 = 1.5,
k = 1.05; (b): k} = 0.09, k5 = 0.03, B; =2, B, =6, k= 1.05(c): kj =
0.09, k, = 0.075, B, =0.2,8, =15, k=15 and (d): K, = 0.8, k} = 0.6,

By =2,8; =6, k=1.5with ¢cN =0.005 and b = 3.
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To find tp, we use (4.11) in [9] and the same method as used to derive equation

(3.4.83) to obtain
N

Liw? i .
tan(wty) = {Z Fraz } {wlo + Z — :_ac; } (3.1.87)

i=1

This equation is a special case of (4.25) in [9] involving loss angle of the viscoclastic
material. Equation (3.4.52) and (3.4.53) give a functional equation for ¢;(¢) when
D,(t) = D¢(t1(t)) is eliminated. We can find #,(t) by solving this functional equation
using iteration method. When t;(t) is known, D.(t) can be determined by either
(3.4.52) or (3.4.53). Then a(t),W(t), p(r,t) can be obtained by the same procedure

as before. Numerical results for this case are presented in Fig.3.6-Fig.3.8.

0.6 T 1 1 ) i 1 1

05

04}

100¢2ko W (t) 0.3

02F -
0.1 .

0 ] 1 1 ] | 1 i
-4 -3 -2 -1 0 1 2 3 4

Figure 3.7: Total load for strain-controlled mode. It provides the dimen-
sionless total load c2koW () over a complete cycle in the strain-controlled
mode for the same four cases as Fig.3.6. (a): £k} = 0.0096, k5 = 0.003,
B, = 0.2, B4 = 1.5, k = 1.05; (b): K} = 0.09, kj = 0.03, ] =2, B; =6,
k = 1.05;(c): k{ = 0.09, kj = 0.075, B; = 0.2, B3 = 1.5, k = 1.5
and (d): K} = 0.8,k = 0.6, p; = 2,5, =6, k = 1.5 with cN = 0.005 and
b=3.
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Fig.3.6 and Fig.3.7 indicate that there is very little variation with k! and 3! when k is
close to 1 and ca(t) and c2koW(t) decrease with increasing values of k. From Fig.3.6
we can sce that the maximum value of the contact area is independent of parameters,
that is also an immediate consequence of equation (3.4.52). Furthermore we note,
from these two graphs, that ca(t) and c?koW(t) achieve their minimum values a
little bit earlier than ¢D(t) does. This follows from equation (3.4.87), noting that

w;, Bi, k; are positive and I; are negative.
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0 ] ] ] 1 1 ! ] 1
0 01 02 03 04 05 06 07 08 09 1
10cr

Figure 3.8: Pressure distribution for the strain-controlled mode This gives
the dimensionless pressure distribution at different times in a cycle of strain-
controlled mode with parameters ki = 0.09, k) = 0.075, 8} = 0.2, 65 =
1.5, k= 1.5,¢N = 0.005 and b = 3. The lines on the top and bottom are for
the times when the contact area is maximum and minimum, respectively.
The pairs of lines which meet on the horizotal axis are for times, when the

contact area radii are equal.
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(iii) Area-Controlled Mode

In this case we have

2
a(t) = M(ao — coswt), ag > 1, A= =, (3.4.88)
W
and
2T
to=0, Do = A= —, H(t) = —L. (3.4.89)

Therefore D(t), W(t), p(r,t) are easier to determine than in the other two cases.
From equations (3.2.41)-(3.2.43), we can find D.(t), kepe(r,1) and k.W.(1). Then
equations (3.4.48)-(3.4.53) are solved numerically by trapezoidal rule to give D(t),
p(r,t) and W(t). Results are presented in Fig.3.9-Fig.3.11.

2.2 13 ¥ 4 ¥ i H 1

2 -

1.8 |

1.6 |

14 |
100cD(t)
12 }

1 e

0.8 |

0.6

0.4 L L 1 ! 1 1 1

4 -3 2 -1 0 1 2 3 4
Figure 3.9: Indentation for the area-controlled mode. It shows the dimen-
sionless indentation over a complete cycle under the area-controlled condi-
tion with parameters (a): kj = 0.0096, k5 = 0.003, A3} = 0.2, §; = 1.5,
k= 1.05; (b): K} = 0.09, kj = 0.03, f; =2, By =6, k= 1.05(c) k| =
0.09, k, = 0.075, B, = 0.2, 8, = 1.5, k= 1.5 and (d): k} = 0.8, k} = 0.6,
By =2,8,=6, k=1.5,cM = 0.025 and ap = 3.
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Figure 3.10: Total load for the area-controlled mode. This provides the
total load over a complete cycle under the area-controlled condition with
same parameters as those for Fig.3.9. (e): &} = 0.0096, k; = 0.003,
py = 0.2, 85 = 1.5, k = 1.05; (b): k{ = 0.09, £} = 0.03, f; =2, B =6,
k = 1.05i(c): k| = 0.09, k, = 0.075, B, =02, 8, =15 &k =15
and (d): k| = 0.8, k, = 0.6, B, =2, 8, =6, k = 1.5,cM = 0.025 and

(10:3.

It is clear, from Fig.3.9, that the maximum indentation is independent of £, 8/ and
k for the area-controlled case. Actually we can see this from (3.4.52) or (3.4.65).
Also we notice, from Fig.3.10, that total load decreases with increase of k and the

minimum value of the total load is only dependent on k.

From Fig.3.5, Fig.3.8 and Fig.3.11, the pressure distributions for the three modes,
we can see that the effects of viscosity: the pressures are different even for the same
contact area, or more exactly the pressures in the loading phase are larger than those

at the corresponding times in the unloading phase. Note that the tendency of the
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pressure to develop a hump followed by a sharp decline, that was remarked in [3, 6]

for positive time t, is also demonstrated.

All these results are quite similar to those given by Golden and Graham [6] for the

standard linear material, but now we have five parameters ky, k3, 31, 32 and &, (or

ly, I3, a1, a3, and l.), four of them are independent, instead of three parameters e,

B and f(two of them are independent) in [6].

1.8

1.6

14

1.2

1
10kop(r, t)
0.8

0.6

0.4

0.2

1

1

1 i i 1 ]

wt= ~mrorwt=n

] i | 1

0
0

0.1

0.2

0.3

0.4

05 06 07 08 09 1
10cr

Figure 3.11: Pressure distribution of the area-controlled mode. This gives

the dimensionless pressure at several times during a period under arca-

controlled condition for the case in which k| = 0.09, &} = 0.075, /3] =

0.2, B = L5,

k = 1.5, ag = 3 and eM = 0.025. The lines on the

top and bottom are for the times when the contact area is maximum and

minimum, respectively. The pairs of lines which mecet on the horizotal axis

are for times, when the contact area radii are same.
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Appendix

Hankel transforms of order n of a function f(r) is defined as

f(s) = Ha{s(r)is) = [ " r f(r)Ju(sr)dr

(A.1)

where J,,(z) is the first kind Bessel function of order n. Hankel inverse transform is

f(r) = /0 % $J7(s)Jn(sr)ds.

Bessel functions satisfy

Ju(®) = (~1)"n(2)

and

zJ,(z) = 2Jp-1(2) — ndn(z).

IFourier cosine tranform is

F {f(t);s} = \/gv/ooo f(t)cos(st)dt.

Fourier sine tranform is
2 [0 .
F{f(t); s} = \/;/ f(t)sin(st)dt.
(]

Hankel transforms satisfy

Ho {r =t = (o = s () s)
Jr(s) = =[S 1) - )|, n o

Now we can deduce the ordinary differential equation

d2 21240
(E'Z—Z-—S ) ® (S,Z)‘-:O.

Letting n = 1in (A.3) and n = 0 in (A.4), we get

Jo(z) = J_1(z) = = Ni(z),
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(A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)



while equation (A.7) at n = 0 yields

190
Ho [;5;(”(’))’8] = —sH4[f(r), 3] (A.11)
Using these twice and noting that
2 19 oY
4 — . —— »
Vi = (82+r8r+822) o, (A.12)
we get equation (A.9). By virtue of the well-known integrals
/oo Jo(sr)cos(st)ds = %, (A.13)
/ Jo(sr)sin(st)ds = Hi-r) (A.14)
’ N -
we have
Ho{s 'F.{g(t),s};r} = /00 Jo(sr)ds\/:;?_j‘/OO g(t)cos(t)dt
0 0
= \/—2_-/00 g(t)cos(t)dt /00 Jo(sr)ds
3 \/’ g H(r - t)dt
B ./ rZ ~ t2
_ ]2 g(t)dt .
- \/;/0 s, (A.15)
and
-1 R /°° g(t)dt ,
Hols™ Ff(0,shir) =2 [ A0E (.16
Considering
F{d'(t), s} = —sF.{g(1), s}, (A7)
one deduces
Ho{Fo{g(t),s};ir} = —Ho{s7'F{g'(1);s};r}
Y E2 e SO ~
= —\/;[ N (A.18)
Replacing g¢(t) by X(t)H(1 —t) in equations (A.16) and (A.18) yields
21 Y o v T X (t)dt ,
1 . ,
Ho {3 ‘/(; X(t)COS(.St)dt,T} = A —'\/1._2___—:72‘, 0 S T S 1, (Ai())
1
Hy {/ X(t)cos(st)dt;r} =0, r>1. (A.20)
0
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Another integral we used in this paper is
o0
/ Ji(s)cos(st)ds =1, for 0 <t <1, (A.21)
0

or in a more general form

if 0<t<rz,

’

1—75‘%;7, if r<t<l1.
Finally, let us look at the Abel’s integral equation (2.0.44). Multiplying both sides of this

/Ooo zJy(sz)cos(st)ds = (A.22)

equation by z/v/y? — 22 and integrating over x from 0 to y, we get

v = X(t)dt yz(D S(z))d:z:
[ 3 [0 oo

Changing the order of the integration on the left hand side, we have

zdz v z(D — S(z))dz
/ X (t)dt / =T /0 e (A.24)
This equation takes the form
/ X (t)dt = /0 z(l\)/y_"’w_(__zz)z)dz. (A.25)

Here use has been made of the following integral

v zdz T
= —. A.26
N OEET R (29

Taking derivative of equation {A.25) gives us the solution

t —
X(1) = Zi/ z(D — S(z))d=
7 dt 12 — 2

_ 2D 2d ['z5(z))dz (A.27)

3 wdt Jo V12— 22
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