
Nati~nal Library 
of Canada 

Acquisitions and 
Bibliographic Services Branch 

395 Welling!on Street 
Ottawa, Ontario 
KIA ON4 

NOTICE 

Bibliotheque nationale 
du Canada 

Direction des acquisitions et 
des services bibliographiques 

395, rue Weilington 
Ottawa (Ontario) 
KIA ON4 

The quality of this microform is 
heavily dependent upon the 
quality of the original thesis 
submitted for microfilming. 
Every effort has been made to 
ensure the highest quality of 
reproduction possible. 

If pages are missing, contact the 
university which granted the 
degree. 

Some pages may have indistinct 
print especially if the original 
pages were typed with a poor 
typewriter ribbon or if the 
university sent us an inferior 
photocopy. 

Reproduction in full or in part of 
this microform is governed by 
the Canadian Copyright Act, 
R.S.C. 1970, c. C-30, and 
subsequent amendments. 

La qualite de cette microforme 
depend grandement de la qualit6 
de la these soumise au 
microfilmage. Nous avons tout 
fait pour assurer une qualite 
superieure de reproduction. 

S'il manque des pages, veuillez 
communiquer avec I'universite 
qui a confere le grade. 

La qualite d'impression de 
certaines pages peut laisser a 
desirer, surtout si les pages 
originales ont ete 
dactylographiees a I'aide d'un 
ruban use ou si I'universite nous 
a fait parvenir une photocopie de 
qualite inferieure. 

La reproduction, m6me partielle, 
de ceitte microforme est soumise 
a la Loi canadienne sur le droit 
d'auteur, SRC 1970, c. C-30, et 
ses amendements subsequents. 



THREE-DIMENSIONAL STEADY-STATE 

NORMAL INDENTATION PROBLEM 

FOR A GENERAL VISCOELASTIC 

MATERIAL 

Qiang Lan 

M.Sc., Fudan University, Shanghai, 1987 

THESIS SUBMITTED IN PARTIAL FULFILMENT O F  

THE REQUIREMENTS FOR THE DEGREE O F  

MASTER O F  SCIENCE 

in the Department 

of 

Mathematics and Statistics 

@Qiang La,n 

SIMON FRASER UNIVERSITY 

June, 1991 

All  rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without pern~ission of the author. 



National Library 1*1 of Canada 
Bibliotheque nationale 
du Canada 

Acquisitions and D~rection des acquisitions et 
Bibliographic Services Branch des services bibliographiques 

395 Wetlington Street 395, rue Well~ngtnn 
Ottawa. Ontarlo Ottawa (Ontat~o) 
KIA ON4 KIA ON4 

The author has granted an 
irrevocable non-exclusive licence 
allowing the National Library of 
Canada to reproduce, loan, 
distribute or sell copies of 
his/her thesis by any means and 
in any form or format, making 
this thesis available to interested 
persons. 

L'auteur a accorde une licence 
irrevocable et non exclusive 
permettant a la Bibliotheque 
nationale du Canada de 
reproduire, pr6ter, distribuer ou - 

vendre des copies de sa these 
de quelque maniere et sous 
quelque forme que ce soit pour 
mettre des exemplaires de cette 
these a la disposition des 
personnes interessees. 

The author retains ownership of L'auteur conserve la proprihte du 
the copyright in his/her thesis. droit d'auteur qui protege sa 
Neither the thesis nor substantial these. Ni la these ni des extrdits 
extracts from it may be printed or substantiels de celle-ci ne 
otherwise reproduced without doivent Otre imprimes ou 
his/her permission. autrement reproduits sans son 

autorisation. 

ISBN 0-315-78215-3 



Approval 

Name : Qiang Lan 

Degree : Master of Science 

Title of Thesis : Three-Dimensional Steady-State Normal Indentation 

Problem for a General Viscoelastic Material 

Examining committee : 

Chairman: Dr. A.H.Lachlan 

Senior Supervisor 

- 
Dr. R.W.Lardner 

External Examiner 
Department of Mathematics and Statistics 
Simon Fraser University 

Date Approved : ~ u l y  25 ,  1991 



PART I AL COPY13 I GIIT L ICLNSC 
- \ 

I hereby g ran t  t o  Sirnor1 Fraser- 1Jn i vors i t y tho  r i ghl to lor) J 

my thesis, p r o j e c t  or extended essay ( t ho  t i t l e  o f  which i s  shown balow) 

t o  users o f  the Simon Frasor Un i ve rs i t y  L ibrary ,  and .to make p a r l i a l  or 

s i n g l e  copies o n l y  f o r  such users o r  i n  response to  a roquest f r o m  tho 

l i bra ry  of  any other un i vers i t y  , o r  other educat i ona l i ns-1 i .t u k ion, on 

' i t s  own behal f o r  f o r  ono o f  i t s  users. I f ur- thcr  agroe t h a i  pcrrni ss ion 

- f o r  m u l t i p l e  copying o f  t h i s  work f o r  scho la r l y  purposcs may bo grantod 

by me o r  tho  Dcan o f  Graduate Studies. I t  i s  understood t h a t  copying 

o r  pub1 l c a t i o n  o f  t h i s  work f o r  f i n i n c i a 1  ga in  shall not bc a1 lowcd 

w i thou t  my w r i t t e n  permission. 

. . 
T i t l e  o f  Thesis/Project/Extended Essay . 

Author: 

( s igna tu re )  

(date) 



Abstract 

In this thesis, the three-dimensional steady-state normal contact problem for a general 

linear viscoelastic material is studied. 

In Chapter 1, a brief review of the history of this topic is given and the specific problem 

to he solved is described. 

In Chapter 2, solutions of the normal elastic contact problem due to Sneddon and 

Popov are presented. These solutions are used for solving the viscoelastic problem in 

Chapter 3. 

Chapter 3, the main part of the thesis, consists of four sections. Section 1 describes 

viscoelastic material behaviour and states the Correspondence Principle. In Section 2, 

the viscoealstic contact problem is reduced to  solutions of six integral equations; and the 

steady-state limit is derived. These integral equations have kernels that are infinite series 

of multiple integrals involving creep and relaxation functions for the material. In the case 

of a standard linear material, evaluation of these kernels can be reduced to  summation 

of geometric series. This is done in Section 3. For more general material behaviour this 

mctflod breaks down. However, in that case a method, previously used for crack problems, 

remains vaiid. That method, which expresses the kernels as solutions of other integral 

equations, js used in the present work t o  derive specific information on the solution of 

contact problems, for materials more general than the standard linear material. Section 

4 contains the analytical details of this development. A specific model (N = 2) is studied 

in detail and the results of numerical calculations are presented. Results for the standard 

linear model ( N = l ) ,  given in Section 3, are recovered as a special case. 

iii 
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Chapter 1 

Introduction 

111 this paper, normal contact problems for general viscoelastic solids are studied. 

Contact problems are sometimes called Hertz problems. In this paper, we consider 

thc following Hertz problem: a rigid indcntor(or punch) of axisymmetric curved form 

S ( r ) ,  pressed into a lubricated viscoelastic half-space, occupying the region z > 0, by a 

time-dependent normal load W(t ), where r and z are the usual cylindrical coordinates. 

To solve this problem means to  find the relationship among the total load W(t), pres- 

sure distribution under the punch p(?, t ) and the contact area C(t). For the axisymmetric 

problem, we use p(r, t )  to  express the pressure distribution and use a(t)  t o  specify the 

radius of circular contact area. 

Contact problems, in some sense, are inherently nonlinear, even in linear elasticity; 

since for an indentor of curved profile, the contact area is unknown before the solution is 

kaown. They have provided a challenge to  applied mathematicians ever since the work 

of Heinrich lfertz in lS80's. In 1882, Hertz successfully treated a static contact problem 

in ci=ticity. fie considered the equilibrium of two curved elastic bodies pressed together 

a d  assumed that these two bodies can be replaced by two elastic half-spaces which are 

in contact only over the contact area C lying in the common tangent plane of these two 



bodies. Then he used Boussinesq's solution to obtain valid forn~t~lits Tor thct prc.ssurc itnd 

indentation, confirming the assumption that the contact i . ~  an c'rlipsc. LYc- cnlt ti ~ t t l  

additional details of Hertz' theory in a survey up to  1980 by Clad~vrll['L]. Sinw t I~cw I I I ; U I ~  

contributions to this field have hwn made. 1Jp to  19GO's, the  t1i.o-tlir~ic~~isitrni~l t~liistic- 

contact theory was well-established by Russian scholars. Musklii~listivili[l(i, 171 tlrvc~lolrcvl 

a systematic method to  solve the two-dimet~sional contact problcrn. Ijy using coruplc~s 

potentials and conformal maps. one of the most powerful methot1 of mat Iw~~iatics, 1118 cxst 

them in the form of a Hilbert problem. Then he solved this prohlcrn iry rlsing t IN. propc~t ies 

of Cauchy integrals. Galin [I] also considered a wide range of prctl)lcirls by casting t l~cw~ 

in the form of a Riemann-Hilbert Problem. Three-dimensional cou t act p r o l h ~ s  art. mow 

complicated. In fact, the only contact problem that allows an cbsplicit i~nalytic. solutior~ 

is the one with an elliptical contact area 11, 15, 18, 19, 211. In  (:lraptcr 2, t.lrc1 d ~ l i ~ i l ~  

of Sneddon's work are given. From his work, we ran see how thc. intc~gri~l t.r;lrrsfor~~~ 

method, another powerful mathematical method, can he applitd to  the tI~rccl -di t~lc~~~sio~~;~I  

contact problem. The result for spherical indentor with largc r;tdius will I)(* usotl for 

the viscoelastic case in Chapter 3. Popov [18, 191 estahlishecl a ri~lationsl~ip Iwtwcvr~ 1,11(1 

boundary displacement and the pressure distribution in tcrrns of 1,crigwclr.t~ polyt~o~l~i;~ls.  

An account of his results is also given in Chapter 2 ( sce [2] for tic4;~ils). 

As we know, the classical elastic problems can he divided into two kinds. I h r  t,Iw 

first kind, either the forces or the dispacements are specified at all points of t,iw t ~ t u ~ ~ r l a r y  

surfaces. The second kind consists of the mixed boundary value prohlims for wl~itll forccas 

are given on part of the boundary surface( referred as D l ) ,  while over tile c.ot~rplr~~r~c~l~l.;u.y 

boundary surface (referred as Bz)  the displacement is given. 

In viscoelasticity, the second kind boundary value problems am s~rhdividtd irrto two 

further classes depending on whether B1 and B2 are time-independent, or ti~nc~-clc*l)r~~r(lcInt. 

An example of the problem with time-independent boundary rc!gions is the inclrwtatiorr 

problem of a half-space by a flat-ended punch of circular section. A n  cxarnplrt of tlrc~ 



~rrohlem with time-dependent boundary region is the contact problem for a spherical 

punch. The first kind of viscoelstic boundary value problems together with the second 

kind with time-independent boundary regions can be solved by employing the classical 

correspondence principle. We can reduce the time-dependent viscoelastic equations to  a 

starrdard elastic form by taking Fourier tranforms over time t. Therfore the difficulties of 

this kind of prohiem are no more than that for the corresponding elastic ones. But for the 

problems involving time-dependent regions( such problems are called "essential viscoelastic 

problems" by Hunter [l I]), we cannot use the classical correspondence principle. This is 

because there will be some points of rhe boundary a t  which the entire history of one type 

of boundary conditions is unavailable. This precludes the taking of Fourier transforms of 

the boundary conditions. 

Tlrc "essential viscoelastic problemsn remained untouched until 1960's. The problem 

of a rigid spherical indentor was first treated by Lee and Radok [13], In that solution, 

thc radius n ( t )  of the contact area is restricted to  be a monotonically increasing function 

of time t. Later Hunter [lo] extended this solution to the case in which a ( t )  increases 

rrtonotonirally to a maximum and then decreases to  zero monotonically. The idea for 

the case where n ( t )  has any number of maxima and minima came from the works by 

Graham [7] and Ting [24, 251. The strategy of their methods is to  reduce the viscoelastic 

problems to a form analogous to the elastic equations by using a special decomposition, 

anti then use the familiar elastic solutions to determine the viscoelastic quantities. 

Recently, Golden and Graham 131 gave the steady-state solution t o  the problem of a 

rigid indentor, subject to  normal periodic loading, on a viscoelastic half-space. Detailed 

solutions were given for the case where the half-space was assumed to  respond as a stan- 

dard linear solid. In that paper, only the plane strain problem was considered. The 

corresponding threc-dimensional problem was discussed subsquently in 16, 81. In these 

papers, i t  was shown that the contact pressure and indentation obeyed integral equations 

wtwre the kernels arc infinite sums of terms involving integrals of the viscoelastic func- 



tions. For a standard linear solid, the summations can be ca.rried out without difiiculty 

to  give closed formula. For this case, considerable analytical progress can be mi& bcforc. 

resorting t o  numerical techniques of solution. 

For more general materials, the infinite summations cannot be carried out in an clc- 

mentary manner. Howcver, in [5], this question was addressed in tire coritcxt of a cliffercvltt 

problem, namely that of a fixed length crack in an infinite body under siausoidal loading 

a t  infinity. In that paper, the authors showed that the kernels obey certaiti integrd c(lniL- 

tions, whose solutions can be determined in closed form, at  least for discrete spcctrurn 

models. The solution of these equations amounts to  summing the infinite series. l'llis 

method is extended t o  the contact problem in this thesis. 

There are two parts in this paper. The first part Chapter 2 is devoted to tho: clastic 

problem, which was studied by several scholars. Here, I give the so lu t i~n  (1 tie to Sntdtlon. 

First the three-dimensional problem is reduced to  a bihamonic equation subject to somca 

boundary conditicns by introducing Love's strain function. Then we use Hankcl transfcmns 

t o  transform this into a set of dual integral equations, which are solved by using soriic 

properties of Hankel and Fourier transforms. At the end of this chapter, an alternative* 

solution to  the same problem due t o  Popov is provided. 

The second part, Chapter 3 of the thesis, deals with the viscoelastic contact prohlern. 

First of all in Section 3.1, viscoelastic material behaviour described by spoctrurtl rnod~ls is 

given and the classical correspondence principle for viscoelsticity is stated. In Sectioe 3.2, 

the viscoealstic contact problem is reduced to  the solution of six integral cquatioris; alrtl 

the steady-state limit is derived. These integral equations have kernels that arc infinitc 

series of multiple integrals involving creep and relaxation functions for titc material. In 

the case of a standard linear material, evaluation of these kernels can be reduccd to the 

summation of geometric series. This was done by Golden and Graham [3] and is given i n  

Section 3.3. For more general material behaviour this method does not work. Ilowcver, irr 

that case a method, previously used for crack problems[Fj], remains valid. That  mctl~od, 



which expresses the kernels as the solutions of other integral equations, is used in this 

work to derive specific information on the solution of contact problems, for materials more 

general than the standard linear material. Section 3.4 contains the analytical details of this 

dcvdopment. A specific model ( N  = 2) is studied in detail and the results of numerical 

calculations are presented. Some general results and discussions are also given in Section 

3.4. 



Chapter 2 

Three-Dimensional Contact 

Problems in Elasticity 

Governing equations of linear isotropic and homogeneous elasticity art! [23] 

and 

with boundary conditions 

in the Cartesian coordinates x;, if there are no body forces, inertial forces arc n(:glcctt~l itrr t l  

the summation convention is in force. Here X and p are Lame's constants, F =  ( x l ,  29, q), 

u; denotes the displacements, ~ ; j  and aij are strain and stress cornpnrren ts, rr:spc!ctivcd y. 

T; (q  and uQ(q are applied tractions and displacements, respectively. 



We orrly consider axisymmetric problems. By introducing Love's strain function @ ( r ,  z )  

1141 and using cylindrical coordinates ( r ,  8, z ) ,  we can express displacements by 

Then strains are determined by 

1 du ,  du ,  
E , ~  = -(- + -) = -- A + ' @ , z z +  -- A i - 2 ~  8 ( V 2 @ ) .  (2.0.13) 

2 d z  d r  P P 

The corresponding stresses are obtained by direct substitution in equation (2.0.2):  

a,, = (3A + 4 / i ) ~ ~ @ ~  - 2(A + ~ ) @ Z t z ,  (2 .0.15) 

It may bc shown that the first equation of (2.0.3)  in cylindrical coordintes 

is automatically satisfied by such a selection of @ ( r ,  z )  and the second one holds because 

of the axisymmetry while the third one 



is equivalent t o  

4 V Q = O .  (2.0.2 1) 

Then the problem is reduced to  finding a biharrrionic fuuction + ( r ,  2) which satisfcs 

certain boundary conditions. 

Figure 2.1: Contact problem for an axisymmetric punch with curved profile S ( r ) .  

For the elastic contact problem to  be considered, a smooth indentor of a.xisy~ritncttric 

form S(T )  being pressed against the half-space z > 0 by a normal forcc W (scc l"ig.2.1), 

the boundary conditions are 

where a is the radius of the contact area, D is the indentation a t  r = 0 ant1 S ( r )  charac- 

terizes the shape of the punch, which satisfies S(0) = 0 and S1(0)  = 0. In  additior~ therc! 

must be no tensile stress under the punch and no contact when r  > a. 



Yaking zero order Wankel Transforms of the both sides of equation (2.0.21) we obtain 

the ordinary differential equation [20](see Appendix for details) 

where &(s, a)' is the zero-order Kankel Tranform of the function @(r, z)  given by 

The sollitjon of (2.0.25) is 

where A,B,E,F' are functions of s. 

Then, if we multiply both sides of (2.0.6) by rJA(sr) and integrate over r from 0 to  oo, 

we find 

after using equation (A.10) and integration by parts. Hankel inverse transform of the 

above equation gives us 

Similarly we obtain the quantities of interest 

Considering that all the components of stress and displa.cement tend t o  zero as z --+ co, 

and (T,,(T, 0) = 0 for all r, we have A(s) = B(s) = 0, and E(s )  = ~ F ( S ) / S .  Therefore 
( A + P )  

equation (2 .O.27) becomes to  

'Here we are using a slightly different notation from that in Appendix. 

9 



Using the above equation and putting z = 0 in equations (2.0.30) and (2.0.31), gives 

Then the boundary conditions (2.0.22) and (2.0.24) yield the dual irttcgra.1 cynntions 

These equations may be transformed into the form 

by introducing the new variables 

Sneddon [22] solved this set of dual integral equations by using some relations bctwctcrr 

Hankel and Fourier transforms, which are listcd in Appendix A .  

Taking note of (A.20), equation (2.0.39) is automatically satisfied, if 

and equation (2.0.38) is equivalent to the A be1 integral equation 

The solution of this equation is given hyfsee Appendix) 



Integrating by parts and then taking a derivative, one deduces that 

From (2.0.35), we know 

00 

a,, (r, 0) = 2 ( ~  + p )  J s 3 ~ ( s )  ~ ~ ( s r ) d s  
0 

With the aid of (A.11), we obtain 

Here use has been made of equation (A.22). As before, integrating by parts and taking a 

derivative with respect to  x and then substituting into equation (2.0.47), we get 

To assure a,,(r, 0) is finite under the punch we must take 

Therefore, we have from (2.0.46) that 

considering that S(0) = 0. This formula relates D the depth of penetration of the tip of 

the indentor into the half-space, to  a the radius of the circular area of contact. Now we 

can find, from (2.0.49), that the total load acting on the punch is 



Changing the order of integration a.nd not.ing that 

we get 

With the aid of (A.21) and (2.0.43), we can change the above equation to 

For the spherical indentor of large radius R, we have 

By using (2.0.51), one gets 
" 

while (2.0.46) g' lves us 

Therefore, one deduces from equations (2.0.49) and (2.0.55) that 

This is the solution given by Sneddon [22]. In that paper, equation (6.15) f o r  tllo ~ P I I O I . ; L I  

spherical indentor should be written as 

in our notation here, instead of 



I:or the case when R >> a, equation (2.0.62) and 

reduce to 

by using Taylor's expansion and keeping the highest order terms. This corrects formula 

(30.41) in 1211. From equations (2.0.65) and (2.0.66), we can see that equation (2.0.57) 

and (2.0.60) are special cases of equations (2.0.62) and (2.0.64). 

An alternative solution was given by Popov[l8]. By using Boussinesq's formula he 

obtained the relationship between the boundary quantities 

and showed that if the specified surface displacement is 

then the normal stress distribution is 

while the total load is 

where Pn(x) a.re Legendre po1ynornia.l~~ which are defined by 

rtnd the recurrence relation 



For the spherical puiich of large R, we know that 

This gives us that 

Noting that p(a)  = 0 ,  one gets from (2.0.69) 

Then equations (2.0.74) ,(2.0.69) and (2.0.70) will give us the s;mc result, as ( 2 3 . 5 7 )  , 

(2.0.59) and (2.0.60),  which will be used later for the viscoclastk solutio~l. 



Chapter 3 

Three-Dimensional Contact 

Problems in Viscoelasticity 

3.1 Viscoelast ic Material Behaviour and the 

Correspondence Principle 

In viscoelasticity, all the field quantities depend on time t and the governing equations 

take the same form as the corresponding elastic ones[l2] 

rxccpt for the constitutive equations. The latter are 

t 1 

O F  t = 2 t - t i j  t )  + d t ' ~ ( t  - ~ ' ) E * ~ ( F ,  t l )  1, (3.1.3) 

whcrc X(t )  and p(Z) are related t o  t.he relaxation moduli in bulk and shear of an isotropic 

a ~ i d  liomogeneous material, respectively. Taking time Fourier tranforms of these governing 

equations and the given boundary conditions 



u; (C  t )  = up(?, t ) ,  F E  B2, 

for fixed regions B1 and Bp,  we obtain 

j i (~ ) i i~ ,~ , (F ,  w) + [fi(w) + A(W)]G;,,;(F, w) = 0, 

&,(F,w) = 2gw)iij(F, u)  + 6ijA(W)2(f, w), 

where EI(f,w) denotes the Fourier transform of &(F,t), ctc. Tlic transforlticvi cqu;~t,iol~s 

have the same form as the governing equations of the corresponding elastic. prot)loul. I f  

solutions to the elastic problem are known, one can obtain the solution of tlrc. visc.oclast.ic 

problem by replacing the elastic constants by the complex moduli i n  t l ~ e  e sp rcA)r~s  for t,11c 

displacements and stresses and then calculating the inverse transforms. I h r  viscoc4;tstir 

problems with time-independent boundary region, it is easy to (lo this. 111 t,l~is scl1sc3, 

viscoelastic boundary value problems are no more difficult than the corrc~spo~~tlir~g c-lastic 

ones. This is the content of the classical correspondence principlc(cz.g. sct: [ I ' L ] ) .  

For convenience, in this paper, we adopt the proportionality assu~r~ptio~~[. l]  

where v is a a constant that plays the role of Poisson's ratio. Tt~eri!fore sor~wti~lrcts tlris 

model is referred as unique Poisson's ratio model. 

Later on we will use l(t), a singular function, which is related to the rtrlirx-itio11 rtloduii 



Its inverse R ( t )  is chosen to  satisfy 

for any 1 1 ,  t 2  ..ltt-.re t l  2 t l ,  or in a more compact form 

Here k ( t )  is also a singular functions, which is closely related t o  the creep functions of the 

material. 

For the discrete spectrum model of a general linear viscoelastic ma.terial, l ( t )  and k ( t )  

take the form 

In order to satisfy (3.1.14),  the coefficients l,, k;, i = ! , 2 , .  . . , N must be related by[4] 

l'ftc case N = 1 corresponds t o  the standard linear viscoelastic solid 



for which 

3.2 Formulation of the Contact Problem in Viscoelasticity 

In this thesis, we only consider certain viscoelastic contact problems t h t  1)elong to 

the so called essential viscoelastic problem. Unfortunately the classical corrcspon tlci~co 

principle given in the last section cannot be applied to this kind of proI)lc!rir. 'Ih solvc 

this problem, we use the ideas of Graham[7] and Ting[24] and try to cliangc. tllc S U ~ ~ ~ L C P  

quantity relationship into a form that is the same as the ehstic one. The11 tllc fitmi1ia.r 

elastic result given in Chapter 2 is used to  solve the problem. 

Using the proportionality assumption described in last section and replacing v;(r', C )  i n  

the viscoelastic equations (3.1.1) t o  (3.1.3) by the pseudodisplacei~icnts 

dttl(t - tt)u;(r', t), 

we find that the viscoelastic equations are same as the elastic equations for a I I I ; I ~ . V I . ~ ~ I ~  with 

-- A+2' - 1. Therefore we obtain the viscoelastic analogue of the elastic rcsalt (2.0.67) ~'(A+P) 

where 

for our axisymmetric contact problem. Here v(r7 t)  denotes the norniai pscudodispla.ce- 

ment on the boundary surface v3(F, t t)(,,o, u(r, t) express the normal surface disylaccntrtnt 

us(F, t)l.=o, and i = (z l ,z2,0) ,  r = 4-, 2 = (xi,%;, O), r' = J- ard 



p(r'F t j = -crzZ(r', 1 ) .  Later on we will use all these notations except where stated other- 

wise. This displaccment-traction relationship on the boundary will form the basis of the 

ccmsiderations of the thesis. 

Now the displacement boundary condition, instead of (2.0.22), takes the form 

'I'he inverse of (3.2.3) can be written as 

We are interested in the case where the applied load is oscillating in magnitude, so 

that the  contact area radius a ( t )  will pass through a series of maxima and minima before 

the current time t. 

Figure 3.1: Typical distribution of B i ( l ) ,  i = 1,2 ... when a( t )  is decreasing. 



Now we consider first case in which the contact area is shrinking a t  t hc curriwt t i ~ l ~ c  t ,  

as shown in Fig.3.1. Let S G ( t )  be the set of all these tirne t' such that C ( t 1 )  2 ( ' ( t ) ,  while 

S L ( t )  is its complement in ( - 0 0 ,  t ] .  Using the method given by Golden and G1-;iltanl[3], we 

can decompose v ( r ,  t )  into integrals over these two sets. Consider t-irnes @,(I), i = 1,2,3, ... 

such that Ol(t )  > 0 2 ( t )  > B3(t) ... and 

Then we can write (3.2.3) as 

dtf l ( t  - t l )u (r ,  t') + dtf l ( t  - t1 )u(r ,  2') 

where the second term can be rewritten in the form 

The same processure can be applied to this second term, where now tho split is i ~ ~ t , o  

an  integral over [02( t ) ,  O,(t)] and ( - m , 0 2 ( t ) ] .  This can be done rcpcat,ly to give thc f i ~ t a l  

decomposition 

U ( T ,  t )  = dt lno( t ,  t f ) u ( r ,  t') + / d l ' n ~ ( 4  ~ ' ) ? J ( T ,  1 ' )  (:J.2.10) 
SL ( t )  

where 

Here functions T i ( t ,  t') are defined as follows 

= l16i't) d t ~ ~ - ~ ( t ,  t t l ) l( t l t  - t l ) ,  i even, 



while function R(t;  t2, t l )  is defined as 

for all tz,tl,t. 

a(t> 

Figure 3.2: Typical distribution of O;(t), i = 1,2 ... when a(t) is increasing. 

If a(t) is increasing at time t(Fig.3.2), we obtain in a similar manner the decomposition 

of equation (3.2.5) 



and functions Ni( t ,  t') are given by 

( t  t )  = itQs@) dt"N,-l( t ,  t')l(t" - t ' ) ,  i odd, 

Consider equation (3.2.10) for the time when a ( t )  is decreasing. According tro t lit\ 

definition of SG( t ) ,  we know that r is in the contact area for a,ny timc! t' E Sc( t )  if it is 

there a t  time t .  Therefore u ( r ,  t') is known to be D ( t l )  - S ( r )  for any timc t' E &:(I) i ~ ~ l i i  

the first term in equation (3.2.10) now becomes 

for r belonging to  the contact area at time t, where 

Furthermore, for time t' E S L ( t ) ,  the contact region C ( t t )  is always con ta i ld  in C'(1). 

Hence we can interchange the time and space integration to put the second iritcgral of 

equation (3.2.10) in the form 

d r ' ,  t )  d t tnL( t7  t t ) v ( r7  t t )  = 1 / ds' - 7 r  5 (4% 
2~ ~ ( t f  Ir' - 4 

where 

Therefore equation (3.2.10) becomes 



ives us Substituting (3.2.2) into (3.2.28) g' 

If there is a quantity De(t) ( we will see its physical meaning later) such that 

and equation (3.2.30) takes the form 

Comparing this equation with (2.0.67) and recalling the elastic solution, we get 

where p,(r,t) is the pressure distribution on an elastic medium characterized by k, = 

"+'" For the viscoelastic problem considered here, be is free to  choose but kepe(r, t) is -m' 
fixed. Here be is chosen to be [4] 

Such a choice of ke makes pe(r, t) and We(t) have special meaning (we can see this later 

in Section 3.4.2). Now, it is clear that De(t) in equation (3.2.31) is the elastic indent ation 

corresponding to  the pressure distribution pe(r, t). 

For the case in which C(t) is expanding, we begin with the decomposition (3.2.17) and 

get 

dt' r ~ ( t ,  t' ) p ( ~ ,  2') = Ee(l - rG(t))pe(rt t), (3.2.36) 



where 

= J s G ( r )  dttrG(t, t'). 

Integrating (3.2.33) and (3.2.36) gives us integral equations for the t.otaJ 1oa.d 

The viscoelastic contact problem has therefore been reduced to solutions of sis i 11 tc.gra.1 

equations (3.2.31), (3.2.34), (3.2.36), (3.2.37), (3.2.39) and (3.2.401, which involvc solutions 

of the corresponding elastic problem. For a spherical indentor of large radius It., we have, 

from the results in Chapter 2, that 

Let us now consider the steady-state limit of these integral equations. If the! loit.tling 

varies periodically with time, we would expect the response of the half-space to rollcct this 

periodicity after a sufficiently long time. We therefore set 

for any time t ,  where A is the period of the applied load. We chooso t E [ A I ,  A2] whcrc: 

A2 - A, = A and Al ,A2  are times when the contact region C(t) is rnaxirnurri. Also, wc! 

assume C(t) is minimum at time to. 



First we consider the contracting phase when t  E [Al,to]. Let t l ( t )  be the solution to 

equation a ( t l ( t ) )  = n ( t )  in [ t o , A 2 ] .  This function is determined by the shape of a ( t ) .  In 

terms o f t  and t l ( t ) ,  we have 

and so on. It  fotlows that p(r , t ) ,  W ( t )  and D ( t )  in the decreasing phase [ A l , t o ] ,  satisfy 

the following integral equations 

where 

00 

n p ( t ,  t') = C T z k - l ( t ,  t' - k A ) ,  

In the expanding phase, i.e. t  E [ to,  A 2 ] ,  we get from (3.2.36),  (3.2.37) and (3.2.40) that 

where 



Here we have used equations 

and so on and tl(t)  is the solution of a(tl(t))  = a(t) in [Al,to]. The steady-sta.te contitct 

problem is thus expressed in terms of the six integral equations (3.2.51)-(3.2.53) a n d  

(3.2.57)-(3.2.59), four of them independent. 

3.3 Standard Linear Model 

In the last section, we have reduced the steady-state contact problem to tlw solution 

of six integral equations. Six kernels in these equations are infinite srms of tcwns hvolving 

integrals of the viscoelastic functions. In this section, we present formulas for t l~c!sc kcvwrls 

for the standard linear solid given by Golden and Graham [3]. 

Consider first a time t when the contact area is decreasing. According to t l ~ e  clc:finition 

of Ti(t,tt) and the standard linear model given by (3.1.22) and (3.1.23), we have 

and so on. It is easy t o  verify that 



for t # t'. The latter restriction is included t o  exclude the delta function in To( t , t l ) .  By 

using (3.2.48)-(3.2.50), we see that 

for odd i, while for even i we have 

T h i s  gives that for all i 

Ti+*(t, t' - A)  = Ti( t ,  t f ) E ( t ) ,  

It is  also easy to see that 0 < E ( t )  < 1, so that 

By the same method, we obtain 

n, (v ) ( t ,  t t )  = bs(t - t i )  + 11 e-cY(t-tr) 
1 - E ( t )  7 

and therefore, from equation (3.2.56), we get 

Similarly we obtain the kernels 



for times t when the contact area is increasing. 

Using these expressions, we can replace the six integral equations, wliicli i~ivolw quanti- 

ties in both expanding and contracting phases with other integral cquatiolis which contain 

quantities only in one phase. These equations then can be rcduccd to ordinary diftiww t id  

equations. Here we give the derivation for p(r, t). We can get the equation for t i ' ( t )  sitil- 

ply by integrating the equation of y(r, t)  over the contact area. The ordinary diffwclitial 

equation for D(t)  is given in paper[8]. 

From (3.3.15) and (3.3.17), we ca.n write (3.2.57) as 

From (3.3.12) and (3.3.13), write (3.2.51) as 

The functions Cl(t), C2(t), Dl(t) ,  D2(t) are calculated in [3]. Considering t h t  p,(r, 1 )  = 

pe(r, t l )  we get the following relationship between the pressure function in expancli ng and 

contracting phase, by eliminating the integral terms in (3.3.18) and (3.3.19) 

Using this relationship, we reduce (3.2.57) to  a integral equation for p(r7 t )  ill t.lio c?xp;~~~sion 

phase only, and then to  a ordinary differential equation 

where b(r, t)  is also given in [3]. Equations (3.3.20) and (3.3.21) were solvctl for t l ( t )  ;LII(I 

p(r, t)  by an iteration method in [3]. The contact problem of standard linc?a.r rr~at,c!rial 

was discussed extensively by Golden and Graham for three modes in  [6](set! Sectior~ 3.4.3 

for the definition of these three modes). In that paper, they also calculatc:d the rates of 

energy loss and gave a simpler numerical technique. Instead of solving equations (3.3.20) 

and (3.3.21), they determined tl(t)  by directly solving a first order diffcreritial equation, 



namely (21) for the stress-controlled mode and (34) for the strain-controlled mode, in [6]. 

Once t i ( t )  i., known, P(T, t)  is obtained from (3.3.21). For area-controlled mode, t l(t)  = -t. 

3.4 General Viscoelastic Model 

In this section, solutions '9 the contact problem for general viscoelastic materials, 

whit h correspond to  the case that N can be any integer number in (3.1.15) or (3.1. 16), are 

given. Obviously N = 1 reduces the case to  the standard linear material. As we mentioned 

before, the infinite summations of the kernels cannot be carried out in an elememtary 

manner for the case when N 2 2. However, in [5], this question was addressed in the 

context of a different problem, namely that of a fixed length crack in an infinite body 

under ~inusoidal loading. In that paper, the authors showed that the kernels obey certain 

integral equations, who52 solutions can be determined in closed form, a t  least for discrete 

spectrum models. The solution of these equations amounts to summing the infinite series. 

Here, this method is extended to the contact problem. 

3.4.1 Integral Equations for Kernels 

We shall now show that the kernels of (3.2.51) - (3.2.53) and (3.2.57) - (3.2.59) obey 

certain integral equations, which a t  least for the discrete spectrum models (3.1.15) and 

(3.1.16) can be solved in closed form. Let us consider the kernel 

of equation (3.2.51) first. According to the definition of T,(t,tt), we have 

en ( t )  
~ , f t ,  2') = 1, d t " ~ , ~ ~ . l l ( t )  ~lt"T,-~(t, t")l(tv - t")k(tW - t') (3.4.2) 

for odd numbers n 2 3. The integral over t" can be extended a t  the lower limit t o  t' since 

i (P - t i " )  vanishes over this interval. This allows the order of integration t o  be interchanged 



without difficulty and one ha.s ( omit.ting explicit mention of ttic t dcptwdeucc of H , , )  

Using the inverse relationship (3.1 . l3 )  between k( t  ) and l ( t ) ,  one detluccs that. 

Gn(t1', t l )  = 6(t1' - t ' ) ,  t" < 8,,. (3.4 - 5 )  

Therefore 

4 . - 1  

Tn(t, t') = Tn-?(t,  t') t / dtt'Tn-2(t7 tl')Gn(t", t ' ) ,  t' 5 fill- 
0, 

Making the subscript explicitly odd, we can write 

T ~ ; - ~  ( t ,  t' - i A )  = T~i-3( t ,  t' - i A )  

by using = tl - n A  and e2,+2 = t -(n- l ) A ,  where 

= G(t" + ( i  - l ) A ,  t' - A ) .  (3.4.8) 

Here the transformation of variables u = 1"' + (i - l )A is employed. ' l ' l~c? t'ur~ct,ion 

has the same functional form as Tl ( t ,  t') with t" replacing t but 8, ( 1 )  left urrtouct~cd. lising 

(3.4.7) and (3.4.8), we have 

T2i-l ( t ,  t' - iA) = T2;-3(t, t' -- i A )  

duTzid3(t, u - ( i  - l )A )G(v ,  t' - A) .  (3.4.10) 



'T'hrwfore 11~("l(t ,  t'), given by (3.2.54) or (3.4.1), obeys the equation 

and so on .  Repeated substitution of (3.4.12) and its sucessors into (3.4.11) together with 

the assumption, which will be justified later, that 

lim n L ( ~ ) ( t ,  t' - n A )  = 0, 
n-+m 

(3.4.13) 

finally gives an intcgral equation for IIL(p)(t, t') of the form 

t 

H L ( P ) ( ~ ,  t') = K ( t ,  t') + 1 duIIL(~ ) ( t ,  u ) K ( u ,  t'), (3.4.14) 
1 

where 
00 

K ( u ,  t') = G ( u ,  t' - n A ) .  
n = l  

We recall that G ( t ,  t' - n A )  = TI ( t ,  t' - n A ) .  In a similar way, it is found that IIG(p)(t, t') 

ot~eys  the integral equation 

provided 

where 

+ J; durIo(')(t, u ) ~ ( u ,  t'), 

w 

L(u,  t') = H(u,  t' - n A ) ,  

H( tV ,  t') = /' duk(tl' - u)l(u - t'). 
1' 



Furthermore, by comparing the definition of n ~ ( ~ ) ( l ,  t') and r L ( ~ ) ( t ,  t ' ) ,  tvc find t l i i ~ t  

rL(pf ( t ,  t 3  may be obtained from ~ I G ( P ) ( ~ ,  t') by interchanging the roles of 1( t )  and I . ( / ) .  

Therefore r L ( ~ ) ( t ,  t i )  satisfies an equation obt,a.ined from (3.4.16) by interchanging l i t )  wit11 

k ( t ) ,  provided it satisfies a relation analogous to (3.4.17). Finally we see that I'c(~)(t, 1'-A) 

satisfies an integral equation obtained from (3.4.14) by int.erchanging l ( t  ) and I;( t ) provititvl 

an analogue of (3.4.13) is satisfied. 

3.4.2 Solutions of Integral Equations for Kernels 

We now solve these integral equa.tions for the kernels. First of a11 wc consider (3.4.14). 

For discrete spectrum models (3.1 . I S )  and (3.1.16), we obtain from (3.4.9) that 

Thils, equation (3.4.15) takes the form 

where 

To solve (3.4.14), we make the ansatz for I I ~ ( P ) ( ~ ,  t') of the form 

which clearly obeys (3.4.13). Substitution into (3.4.14) gives 

This algebraic equation will certainly be satisfied if a stronger condition is imposed that 

cancellation takes place term by term in the variable i.This gives u s  the matrix ttcjnatiorr 



where I' is a square matrix formed by Pij while 

Siniilarly, we get the solution to (3.4.16) of the form 

N 
n c ( * ) ( t ,  1') = b 6 ( t  - t') + ~ ~ ( t ) e ~ j ~ ' ,  

i , j = l  

where Q ; j ( t )  is a square matrix given by 

and 

Clearly, ~ l c ( ~ ) ( t ,  t') satisfies assumption (3.4.17). Using the observation after (3.4. l g ) ,  we 

tan write 

ahere & ,3 and i z  are obtained from (3.4.32)-(3.4.34) by interchanging the role of i ( t )  

and k(2).  They are 



Also from that observation, we have 

N 

rC(')( t ,  t') = C p i j ( t ) e f f l ( t l + ~ )  

where the components of I?17 a ,  k2 are 

and 

Equation (3.4.30) together with (3.2.56) gives 

while (3.4.40) combined with (3.2.62) gives 

Now the steady-state contact problem equations (3.2.51)-(3.2.53) arid (3.2.57)-(3.2.5!)) 

take the form 

hT p ~ f A + t ~ )  - , f I ~ t  
f j3 t' L p ( r , t ) +  ~ ~ ( t ) ] '  d t e  J p (r7t1)  = k, h ( r 7  L ) ,  

i,j=l tl ( t )  i,j=l a] 



where the matrices P,Q are determined by (3.4.29),(3.4.31) and Q , P  given by (3.4.36) and 

(3.4.41). 

Some general conclusions can be deduced from these equations. We will demonstrate 

that p ( r , t ) ,  Mr(t), D ( t )  satisfying the above equations are continuous a t  time t o ,  and 

equal a t  Al and A2. 

Putting t = to in (3.4.50)' we have 

From (3.4.34) we know that B i j ( t o )  = 0, since = e2 = to - A for t = to. Therefore it 

follows from (3.4.31) tha.t 



after using equation (3.2.35). This confirms the results given in [9]. Equatiou (3.4.51) at 

t = to gives the same result by noting the fact that 

and relation (3.1.19). Therefore W ( t )  is continous at  time to. Ecluation (3.4.50) at t = A ,  

and equation (3.4.51) a t  t = A2 take the form 

From (3.2.48)-(3.2.50), we know 

for time t = Al. Therefore, from (3.4.28), one deduces 

Thus we can write (3.4.29) as 

Similarly, we obtain 

considering 01 = 02 = tl = Al and Bij = 0 for t = A2. Therefore 

by virtue of equation (3.1.18). Noting We(Al) = We(Az), we have, from cquatio~rs (3.4.58) 

and (3.4.59), that W(Al)  = W(A2). This completes the verification of the periodicity of 

ww. 



Kow we consider D(t). It is clear that D(Al) = D(A2) because (3.4.52) at t = Al 

gi vcs 

D(A1) = De(Al), (3.4.65) 

equation (3.4.53) at t = A2 yields 

q A 2 )  = De(A2), (3.4.66) 

and we know that D,(Al) = De(A2). Equations (3.4.65),(3.4.66) are in agreement with 

results given in [9] in a more general context. 

When t = to, we have, from (3.4.52) and (3.4.53) 

To prove D(t) is continuous at t = to, it is sufficient to know that 

This is an immediate consequence of (3.4.55) and (3.4.57) with the aid of equation (3.1.19). 

The verification of the continuity and periodicity of p(r, t) are the same as that of W(t). 

Actually, it is possible to prove the more general results: 

These relations are very useful for the numerical calculation in the next section. 



Also, we can show that the solutions for the kernels lead to the results for sta.ri(i;~rtl 

linear material given in Section 3 . If N = 1, we can write (3.4.26)-(3.4.28) as 

Th2n from (3.4.29), we obtain 

after using equations (3.1.24)-(3.1.26). By virtue of (3.4.23) and (3.3.1 1 ), one tlcduc.c?s 

This formula is identical to one obtained in Section 3 by a different inetliotl. Similarly, 

we can show that the other three kernels I@)(t,tt), r t ) ( t , t t )  and I$) ( t ,  t i )  arc sit.ltlr as 

before. 

3.4.3 Numerical Results 

In this section, numerical solutions to  integral equations (3.4.48)-(3.4 5 3 )  0 1 )  tainctl by 

the quadrature method are given for the following three cases 

(i) where the normal load is specified (stress-controlled mode); 

(ii) where the indentation is given (strain-controlled mode ); 

(iii) where the area of contact is specified (area-controlled mode ). 

Here we consider the spherical indentor of large radius R, for which the elastic solutions 

are known. All the numerical calculations are carried out for the case N = 2 and the 



dimensionless quantities cn(t) ,  cD( t ) ,  c2koW(t) ,  kop(r , t )  in terms of the dimensionless 

parameters t' = w t ,  p: = P;/w,  k{ = ki / (wko) ,  a: = cu;/w, 1: = l;ko/w and k = ke/ko,  

where c = 1 / ( 2 R ) .  This method can be applied to  the cases when N > 2 without any 

difficulty. 

(i) Stress-Controlled Mode 

In this case the applied load is assumed to  have the simple sinusoidal form 

27r 
W ( t )  = K ( d  - coswt), d > 1, A = -. w (3.4.77) 

To solve for a ( t ) , p ( r , t ) , D ( t ) ,  we need to  know to and A l ,  A 2 .  According t o  191, 

to = 0 .  Setting t  = A l  in (3.4.50), one obtains 

while equation (3.4.51) a t  t  = A2 gives the same equation. 

According to  (4.21) in [9] ,  we have, a t  t  = A2, that 

Differentiating this equation a t  t' = A2 gives us 

Considering that 

A2 
I p t l  I_ dl e ~ ( t ' )  = I"'-"" dt'epa" w ( t i )  

n=O Az-(n+l)A 

- - jA2 dt'eAtl ~ ( t ' ) ,  
- e-PiA al 

we obtain 



Substituting (3.4.77) into the above equation gives 

where use of A2 - A1 = A has been ma.de. This agrees with a gcnerd rcsult in [9] 

in a different form involving loss tangent. For the standard linear model N r 1 

the above equation reduces to  

where f = 1 - P/a, which agrees with (4.56) in [3] .  For this special inode1 k 71- 

w- 0 

Figure 3.3: Contact area radius for the stress-controlled mode. 7'1iis gives 

the dimensionless contact area radius ca( t )  over a complete cycle under 

stress-controlled condition for cases (a): k{ = 0.0096, k$ = 0.003, = 

0.2, P i  = 1.5, k = 1.05; (b ) :  = 0.09, ki = 0.03, j'3: = 2 ,  = 6 ,  

k = 1.05;(c): k{ = 0.09, ki = 0.075, P', = 0.2, Ph = 1.5, k = 1.5 

and ( d ) :  ki = 0 . 8 , k i  = 0.6, Pi = 2 ,Ph  = 6 ,  k = 1.5 with c q / i k o  = 

0.0008, d = 3. 



Figure 3.4: Indentation for the stress-controlled mode. This gives the di- 

mensionless indentation cD(t) over a complete cycle under stress-controlled 

condition for the same cases as those in Fig.3.3. (a): ki = 0.0096, ki = 

0.003, Pi = 0.2, Pk = 1.5, k = 1.05; (b): k; = 0.09, ki = 0.03, Pi = 2, 

Pk = 6, k = 1.05;(c): ki = 0.09, ki = 0.075, Pi = 0.2, Pi = 1.5, 

k = 1.5 and (d): ki = 0.8, ki = 0.6, Pi = 2,P; = 6, k =  1.5with 

c2Kko = 0.0008, d = 3. 

Once to and Al, A2 are known, Newton's iteration method is employed to solve a 

functional equation, obtained by eliminating W,(t) = W,(tl(t)) from (3.4.50) and 

(3.4.51), for t1 (2). Then iK( t )  can be got from one of these equations. If W,(t) is 

known, the contact radius a(t), elastic indentation D,(t) and elastic pressure p,(r, t )  

can be found by using the rela.tions (3.2.41) to (3.2.43). Therefore we can get D(t) 

and p(r ,  t). For example, indentation D ( t )  can be obtained by solving equation 

(3.4.52) starting at t = A1 and equation (3.4.53) beginning with t = A2, using 

marching method. Considering that all the kernels are smooth functions, we use 

trapezoidal rule for the numerical computations. Results for the stress-controlled 



mode are presented in Fig.3.3-Fig.3.5. 

From Fig.3.3 and Fig.3.4, we can see that cn( t )  and c D ( t )  increase with the vitluc 

of k and there is very little variation with /I; and C; if k  is close to 1. Note tlii~t,, 

from Fig.3.3, the minimum contact area is only dependent on the va.lt~t of k illid 

independent of the individual values of a! and 1: or ,f?: and k:. Fig.3.3 i\nd Fig.3.4 

also confirm the result that the contact area and indentation achievc ini~iiniu~ti a 

little bit later than load does for the stress-controlled mode. 

Figure 3.5: Pressure distribution for the stress-controlled motfc?. l'li is j k -  

ture gives the dimensionless pressure distribution p ( r , t )  at various tir~ios 

during the cycle for the stress-controlled mode with k{ = 0.8, k.; = 0.6, 

pi = 2, = 6, k = 1.5 and c 2 K k o  = 0.0008. The lines on the top a,nd 

bottom are for the times when the contact area is maximum and rriir~irr~ I I  rri , 

respectively. The pairs of lines which meet on the horizontal axis are for 

times, when the contact area radii are same. 



(ii) Strain-Controlled Mode 

For this case, indentation is taken to  be 

Here g is a constant related to  the viscoelastic material and its definition is given 

in [ti]. According to (3.4.65)(see also [9]), the maximum value of D,(t) and of a ( t )  

occurs at the same time as that of D(t ) .  Therefore 

Figure 3.6: Contact area radius for strain-controlled mode. This shows the 

dimensionless contact area radius ca(t) over a complete cycle in the strain- 

controlled mode for cases ( a ) :  k: = 0.0096, k; = 0.003, $: = 0.2 ,& = 1.5, 

k = 1.05; (b ) :  k: = 0.09, k; = 0.03, Pi = 2,  P; = 6 ,  k = 1.05;(c): ki = 

0.09, k!, =0.075,  Pi = 0 , 2 , & =  1.5, k =  1.5 and ( d ) : k {  = 0 . 8 , k i  = 0 . 6 ,  

= 2,  P; = 6 ,  k = 1.5 with cN = 0.005 and b = 3. 



To find to ,  we use (4.11) in 191 and the same method as used to derive cquntion 

(3.4.83) to  obtain 

This equation is a special case of (4.25) in 191 involving loss angle of the viscocl;dc 

material. Equation (3.4.52) and (3.4.53) give a functional cquation for t l ( t )  wlwn 

D,( t )  = D e ( t l ( t ) )  is eliminated. We can find t i ( t )  by solving this fu:lctional cquatinn 

using iteration method. When t l ( t )  is known, D e ( t )  can be deternlined by citl~cv 

(3.4.52) or (3.4.53). Then a ( t ) , W ( t ) ,  p(r ,  t )  can be obtained by the same prowdurc~ 

as before. Numerical results for this case are presented in  Fig.3.6-Fig.3.8, 

Figure 3.7: Total load for strain-controlled mode. It provides t l ~ c  tlinie~t- 

sionless total load c2koW(t )  over a complete cycle in the strain-corttrollctl 

mode for the same four cases as Fig.3.6. (a): ki = 0.0096, ki = 0.003, 

pi = 0.2, P; = 1.5, k = 1.05; ( b ) :  k', = 0.09, k!, = 0.03, Pi = 2, 17; = 6 ,  

b = 1.05;(c): Ici = 0.09, ki = 0.075, Pi = 0.2, /34 .= 1.5, k =: 1.5 

and ( d ) :  ki = 0.8,  kk = 0.6, Pi = 2,& = 6, k = 1.5 with cN = 0.005 and 

b =  3. 



E'ig.3.G and Fig.3.7 indicate that there is very little variation with ki and 0;' when k is 

close to  1 and ca(t) and c2koW(t) decrease with increasing values of k. From Fig.3.6 

we can see that the maximum value of the contact area is independent of parameters, 

that is also an immediate consequence of equation (3.4.52). Furthermore we note, 

from these two graphs, that ca(t) and c2koW(t) achieve their minimum values a 

little bit earlier than cD(t) does. This follows from equation (3.4.87), noting that 

a;, p;, k; are positive and li are negative. 

Figure 3.8: Pressure distribution for the strain-controlled mode This gives 

the dimensionless pressure distribution a t  different times in a cycle of strain- 

controlled mode with parameters ki = 0.09, ki = 0.075, Pi = 0.2, = 

1.5, k = 1.5, cN = 0.005 and b = 3. The lines on the top and bottom are for 

the times when the contact area is maximum and minimum, respectively. 

The pairs of lines which meet on the horizotal axis are for times, when the 

contact area radii are equal. 



(iii) Area- Controlled Mode 

In this case we have 

and 

Therefore D ( t ) ,  W ( t ) ,  p(r, t )  are easier to determine than in the otlwr two c;ws.  

From equations (3.2.41)-(3.2.43), we can find D,(t), k,p,(r, t ) and k, l..t7, ( t ) .  Then 

equations (3.4.48)-(3.4.53) are solved numerically by trapezoidal rule to give I l ( t ) ,  

p(r ,  t )  and W ( t ) .  Results are presented in Fig.3.9-Fig.3.11. 

Figure 3.9: Indentation for the area-controlled mode. It shows the c 1 i r n c r 1 -  

sionless indentation over a complete cycle under the area-cant rollecl mud i -  

tion with parameters ( a ) :  ki = 0.0096, ki  = 0.003, = 0.2,  & = 1.5, 

k = 1.05; (b):  k', = 0.09, k; = 0.03, Pi  = 2,  /3; = 6, k = l.O:i;(c): k: = 

0.09, k; = 0.075, Pi = 0.2,P; = 1.5, k = 1.5 and (d ) :  k: = 0.8,1~: = 0.6, 

pi = 2, pi = 6 ,  1; = 1.5,cM = 0.025 and a3 = 3. 



Figure 3.10: Total load for the area-controlled mode. This provides the 

total 1oa.d over a complete cycle under the area-controlled condition with 

same parameters as those for Fig.3.9. (a): ki = 0.0096, bi = 0.003, 

= 0.2,,0$ = 1.5, k = 1.05;(b): ki = 0.09, ki = 0.03, Pi = 2, Pi  = 6, 

b = 1.05;[c): ki = 0.09, bi = 0.075, Pi = 0.2, Pi  = 1.5, k = 1.5 

and ( d ) :  bi = 0.8, ki = 0.6, Pi = 2, = 6, b = l.5,cM = 0.025 and 

a0 = 3. 

It is clear, from Fig.3.9, that the maximum indentation is independent of k:, PI and 

X: for the area-controlled case. Actually we can see this from (3.4.52) or (3.4-65). 

Also we notice, from Fig.3.10, that total load decreases with increase of k and the 

~ninirnum value of the total load is only dependent on b.  

From Fig.3.5, Fig.3.8 and Fig.3.11, the pressure distributions for the three modes, 

we can see that the effects of viscosity: the pressures are different even for the same 

contact area, or more esactly the pressures in the loading phase are larger than those 

at. the corresponding times in the unloading phase. Note that the tendency of the 



pressure t o  develop a hump followed by a sharp decline, that was renii~rkcci in [9, (if 

for positive time t ,  is also demonstrated. 

All these results are quite similar to  those given by Golden and Gratiarn [6] for t . 1 ~ 1  

standard linear material, but now we have five parameters kl ,  kn, bl, /J2 slid k, (or 

11, 12, al, C Y ~ ,  and l , ) ,  four of them are independent, instead of three pararnct.crs c ~ ,  

p and f (two of them are independent) in [6]. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 1 
1 Ocr 

Figure 3.11: Pressure distribution of the area-controlled mode. This givcs 

the dimensionless pressure a t  several times during a period undcr iirc!ii,- 

controlled condition for the case in which ki = 0.09, kb = 0.075, = 

0.2, /?; = 1.5, k = 1.5, a0 = 3 and cM = 0.02.5. The lines o n  the 

top and bottom are for the times when the contact area is rnaxirnulr~ arid 

minimum, respectively. The pairs of lines which meet on the horizotal axis 

are for times, when the contact area radii are same. 



Appendix 

IIankel transforms of order n of a function f (r) is defined as 

whorc: J,,(x) is the first kind Bessel function of order n. Hankel inverse transform is 

fkssel functions satisfy 

Jn(x) = (-l)nJ-n(~) 

I*i)urier cosine tranform is 

1~'ourier sine tranform is 

1Ia.n kc1 transforms satisfy 

Now we can deduce the ordinary differential equation 

Lct ting n = 1 in (A.3) and n = 0 in (A.4), we get 

J~(x) = J-I (x) = - Jl (x), (A.10) 



while equation (A.7)  a.t n = 0 yields 

Using these twice and noting that 

@ , 

we get equation (A.9) .  By virtue of the well-known integrals 

00 H(r - t )  1 Jo(sr)cos(st)ds = 
u / r T  ' 

OC) N(t  - r )  1 Jo(sr)sin(st)ds = d m '  
we have 

H ~ { S - ' F , { ~ ( ~ ) ,  s } ;  r )  = 1" ~ o ( s r ) d ~ p  lrn g ( k ) e o s ( t ) r l ~  
0 

and 

( A .  12) 

( A .  13) 

( f l . 1 4 )  

Considering 

one deduces 

Replacing g(t)  by X( t )H(I  - 2)  in equations (A.16) and (A.18) yields 



Another integral we used in this paper is 

!XI 

Jl (s)ros(st)ds = 1, for  0 < 1 1, 

or in a more general form 

Finally, let us look at the Abel's integral equation (2.0.44). Multiplying both sides of this 

equation by x / J m '  and integrating over x from 0 to  y, we get 

Cltanging the order of the integration on the left hand side, we have 

This equation takes the form 

Here use ha.s been made of the following integral 

Taking derivative of equation (A.25) gives us the solution 
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