
Design and Implementation of
Automotive Model-Based Diagnosis

Using the
Echidna Constraint Reasoning System

by
Afwarman Manaf

B.Sc., Bandung Institute of Technology, 1986
(Indonesia)

A THESIS SUBMITTED IN PARTIAL FULFILLMENT O F

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the, School
\--

of
Computing Science

O Afwarman Manaf 1991

SIMON FRASER UNIVERSITY
APRIL 1991

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopying

or other means, without the permission of the author.

Approval

Name : Afwarman Manaf

Degree : Master of Science

I Title of Thesis : Design and Implementation of
1

i Automotive Model-Based Diagnosis
Using the Echidna Constraint Reasoning System

6

1

Examining Committee : Dr. Veronica Dahl, Chairperson
I

Dr. William S. Havens
Senior Supervisor

Dr. John D. Jones
Supervisor

Dr. Lou Wafel-

Dr. Fred Popowich
External Examiner

Date Approved: 25 A p r i l 1 9 9 1
. .
11

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs i t y the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser University Llbrary, and t o make p a r t i a l o r

s ing le copies oniy f o r such users o r f n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one of i t s users. I fu r the r agree t h a t permission

f o r mu l t i p l e copying o f t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r pub l ica t ion o f t h i s work f o r f lnanc la l ga ln sha l l not be allowed

wi thout my w r i t t en permission.

T it l e of Thes i s/Project/Extended Essay

Design and T plementa t ion of Automotive Model-Based Diagnos i s Using t h e

Echidna c o n s t r a i n t Reasoning System.

Author:

(s ignature)

Af warman Man af

(name 1

May 2 8 , 1991

Abstract

Developing engineering applications using expert systems has been an
important driving force for research in expert system technology. The
automotive diagnosis problem is one of the most challenging domain
applications. Existing automotive diagnosis systems which rely solely on
rule-based knowledge inherit many limitations. Model-based diagnosis is
an area of active research which overcomes these limitations since it uses
knowledge from first principles.

This thesis provides a new model-based diagnosis system for automotive
systems. Our architecture uses a deductive model as the main part and
diagnostic rules to increase the speed of diagnosis processes. We use both
abductive and deductive reasoning t o provide a more powerful diagnostic
system. Both model-based techniques and heuristic knowledge are
integrated in the system. We claim that our model makes a significant step
towards the use of a generic model to solve problems in many applications.
The model integrates both correct and faulty behaviour using first-order
logic and has a high degree of readibility and modifiability. We also use
constraint satisfaction techniques that have been shown to increase
efficiency in A1 applications.

We have developed a working prototype of a model-based diagnostic system.
The system generates the list of faulty components based on observational
input supplied to it. We use the Echidna reasoning engine, a new expert
system shell being developed in the SFU Expert System Laboratory.

Acknowledgements

It is my pleasure to acknowledge the many people involved through the
completion of this thesis. My senior-supervisor, Dr. Bill Havens, provided
many hours, insight, discussion and encouragement during our weekly
meetings. His support and help were always there when I needed them. Dr.
John Jones helped me to understand the other side of the issues I was
tackling. He also patiently helped and corrected me in writing this thesis.
Dr. Lou Hafer provided much encouragement.

I especially want to acknowledge Charlie Hunter who deserves credit. He
helped me in understanding the domain of my work and was very
cooperative when I was building the model designed. I would like to thank
to Stefan Joseph and people in McCarney Technolgy, Inc. I also thank to
many good people in Expert System Laboratory, SFU; Sue Sidebottom, Miron
Cuperman and Rod Davison were very helpful. I am also gratefid to the
numerous other students, faculty members and staff of the School of
Computing Science SFU that helped me to enjoy my time as a Master
student.

Table of Contents

Approval
Abstract
Acknowledgements
Table of Contents
List of Figures
List of Tables
1. Introduction

1.1. Background
1.2. Proposed Work
1.3. Motivation

2. Related Research and Expert System Shell
2.1. Model-based Diagnosis
2.2. Automobile Diagnosis
2.3. Expert System Shell

2.3.1. Echidna
3. Diagnosis System Design

3.1. System Overview
3.1.1. Model-based Diagnosis
3.1.2. Generating and Discriminating Diagnosis

3.2 Diagnostic System Components
3.2.1. Artifact
3.2.2. Deductive Model
3.2.3. Abductive Rule-base
3.2.4. Comparator

3.3. Diagnosis Scenario
3.4. Efficiency
3.5. Combinatorial Problems

4. System Implementation

. .
ll
...
111

iv
v

vii ...
vlll
1

4.1. Vehicle Engine Organization
4.2. Vehicle Engine Model

4.2.1. Primitive Components
4.2.2. Physical Connectivity

4.3. Knowledge Base
4.3.1. Classes and Instances
4.3.2. Methods and Logical Messages
4.3.3. Constraints and Schema Elaboration

4.4. Deductive Model
4.5. Input Data
4.6. Diagnosis Example

5. System Evaluation
5.1. Design Analysis

5.1.1. Deductive Model Issues
5.1.2. Observational Abstraction Issues
5.1.3. Abductive Process Issues

5.2. Computational Issues
5.3. Comparative Results

6. Conclusion
Appendix. System Knowledge Base
References

List of Figures

Figure 1-1: Diagnostic System Architecture
Figure 2-1: The Echidna Schema
Figure 3-1: Wire's Behavioural Description
Figure 3-2: Ranges of The Real Data
Figure 3-3: The Deductive Model of Wire
Figure 3-4: Heuristic Rules
Figure 3-5: A Priori Likelihood of Failures
Figure 3-6: The Possible Diagnoses
Figure 4-1: Composition Hierarchy
Figure 4-2: Primitive Components
Figure 4-3: Power System Components
Figure 4-4: Power System's Physical Connectivity
Figure 4-5: Schema of Object Classes
Figure 4-6: Basic Schema of Power System
Figure 4-7: Methods and Logical Message
Figure 4-8: Diagnosis Cycle
Figure 4-9: Some Common Drivability Complaints
Figure 4-10: 12-Volt Power Supply System
Figure 4-11: Abductive Part of The Power System Schema

List of Tables

Table 3-1: Some Measurements
Table 4-1: Diagnosis Results
Table 5-1: System Performances

...
Vll l

Chapter 1
Introduction

Knowledge about how something is supposed to work is very useful in
determining why it has stopped working correctly. Model-based reasoning

is based on the simple notion above. This has been an active research area

particularly for the applications of diagnosis and troubleshooting [Davis,88].

Model-based diagnosis, which uses knowledge from first principles is

more powerful than conventional rule-based systems [Reiter,87],
[deKleer,87]. This approach reduces problems that conventional systems

have such as limited coverage in symptom-cause relationships and poor
performance of the system when dealing with problems which lie on the

periphery of i ts knowledge [Abu-Hanna,88]. Model-based architecture

results in a more robust, reusable and maintainable diagnostic system

[Lee ,901.

Diagnosis is driven by discrepancies between observations and predicted
behaviour. Hypotheses are generated based on knowledge about internal

processes and components' interrelationships. This notion is very natural
in diagnosis problem solving; i t enables us to design a system that

diagnoses elegantly.

Rule-based diagnosis techniques, as have been used in some commercial

systems, have major intrinsic limitations. Abductive rules are based on a

weak notion of association between a set of observations and faults. I t is

very unlikely to provide complete coverage of symptom-cause associations,

when there is an abundance of data such as data from sensors of a vehicle's

electronic control module (ECM). Rule-based expert systems typically have

degraded performance when they are faced with problems on the periphery
of system knowledge. This type of diagnosis system must rely on heuristics

derived from relationships between symptoms and faults and requires

carefully tuned heuristic rules expressing domain knowledge. Rule-based

diagnosis systems do not consider the device's physical structure and rely
on abductive rules alone.

Model-based systems are expected to be better than the rule-based ones
because model-based systems use a model describing the structure and

function of the diagnosed objects. They are based on a theory associating the

device's behaviour with its design or structure. A model-based diagnostic

system ensures a high degree of confidence because a model can capture

the essential features and structure of domain. It reasons from first

principles so that i t knows the device's internal processes and uses that

knowledge to determine which state of the device matches actual
observations. The main disadvantage of this approach is the computational

inefficiency. The model-based diagnostic system tends to be very expensive

because it uses search method and generate too many alternatives. Many

researchers have been working in the area of model-based diagnosis

systems, some of them are [deKleer,87], [Abu-Hanna,88], [deKleer,89],

[Struss,89], [Hamscher,9Oa]. This thesis presents research results in the
design and implementation of a model-based system for automotive
diagnosis.

1.1. Background

Most passenger vehicles now use a computer to control aspects of the

engine. The computerized control system serves to improve engine

performance in general and fuel economy in particular. It also maintains

good exhaust emission environmentally. The automobile control system

continuously improves. This yields a better performance and more complete

functionality but at the same time it becomes increasingly difficult for

mechanics to diagnose engine problems. A vehicle diagnosis system is

needed to help mechanics by providing a recommended procedure to fix

specific types of problems. Although engine troubleshooting is known to be a
hard task, expert systems have been developed to aid in troubleshooting.
Some existing expert systems are surveyed in Chapter 2.

Vehicle diagnosis is a promising application of expert systems
[Klausmeier,861. Using conventional rule-based expert systems to solve the
engine diagnosis problem has proven to be a complex task [Fink,86],
[Tomikashi,87]. The abundance of sensors and actuators involved in the
engine control system is difficult to handle by using a rule-based approach,
because it is almost impossible t o cover the association between sensor's
data and symptoms completely. Despite the difficulty of developing such a
system, the expert system approach for vehicle diagnosis is very appealing.
By taking advantage of knowledge about the engine, we can build a
structural and behavioural model t o develop a better diagnosis system.

1.2. Proposed Work

We adopt the notion of diagnosis as the process of finding the causes of
any discrepancy between a device's correct behaviour and the observed
behaviour [Genesereth,821, [Reiter,87]. The device could be a whole system,
a subsystem o r a physical primitive component. The model is a description
of structure and behaviour. It also contains specific relationships among
device components o r a theory about the device that must hold in certain
states. Component interrelationships could be relationships such as
physical values passed between components or correlations between two
adjacent components derived from the laws of physics.

Diagnosis can also be seen as a process of model refinement according to
observation or evidence [deKleer,84]. Any observation may lead to a
discrepancy with the model. This discrepancy forces the model to be refined
in order t o match reality. By model refinement, we mean that the
component's state responsible for the discrepancy is changed into a new
state that matches observation. This process, known as hypothesis
generation, is fundamental t o diagnosis.

Another major task in diagnosis is how to distinguish among the
hypotheses (diagnoses). The problem here is to obtain the most valuable
information from more than one possible additional measurement at the
lowest cost. We would like to make additional obsewations to refine current
diagnoses and incorporate cost functions to decide which measurements
would discriminate candidates most efficiently. A cost factor is taken into
consideration in selecting measurements to localize the faults.

We adopt the idea of differential diagnosis that is commonly used in
medical applications. Differential diagnosis is the method of finding a
correct diagnosis by ruling out all but one of the possible diagnoses. It
enables a program to solve problems without requiring complete
obsewational data [Buchanan,84]. We assume that only one fault can occur
at one time. Multiple faults can be seen as a combination of single fault
[Hamscher,9Oal. This assumption is reasonable, although not always true
in reality [deKleer,9Oc]. Some differential diagnosis sets are provided and
the program proceeds sequentially through each possibility. This method
imposes an assumption to solve the problem. The main disadvantage with
this method is the system does not consider multiple faults. I t only
evaluates each suspected diagnosis independently. However, this method
greatly increases efficiency by reducing a large set of candidates into a
sequence of hypotheses involving a smaller set of candidates [Pople,82].

In this work, we propose a basic diagnostic architecture as shown in
Figure 1-1. This basic schema is the refined architecture described in our
preliminary work [Havens ,goal.

The actual automobile engine is represented as an artifact. The system
knows real engine conditions from observations supplied through a
hardware interface. The observation includes vector of measurements such
as temperatures, pressure at particular hoses, or voltages at certain wires.
All data about the artifact are interpreted subject to the type of vehicle and
year of manufacturing. McCar-EAS is the data acquisition system that has
been developed to provide this real-time data by McCarney Technology, Inc..

This system is designed to analyze sensors and actuators accessed by the

electronic control module. It is a system running on IBM AT'S and has the

ability to collect, record and display data from internal combustion engines

[Joseph,89]. In our case, data measurements are recorded as data files to
support model-based diagnosis.

Interface - Hardware C = comparator

Figure 1-1
Diagnostic System Architecture

behaviour

Rule-based expert systems use abductive reasoning. Given the

symptoms, they guess what causes the symptoms. Instead, our diagnostic

system uses both abductive and deductive reasoning. Our system relies

mainly on deductive reasoning as the backbone of the diagnosis process. It

hypothesizes the state of devices and components and then deduces the

consequences. The deductive process yields a number of conditions or

behaviour descriptions which must hold given the initial hypothesis. The

Abductive
Rule-Base

Deductive
Model

A hypotheses

t

hypothesis is retracted when it doesn't match the behaviour observed a t the

actual device.

We use composition hierarchy for knowledge representation. A complex

object is composed of simple primitive components. A schema is a

generative model of an object class. The model consists of characteristic

parameter, components and constraints. Each parameter is a variable

associated with a domain of possible values. The type of parameters could be
a Herbrand, which means that its domain is the universe of all syntactic

entities. Instances of an object share a common set of parameters,

components and constraints. Constraints between schema instances form a

constraint network of the system. Composition and other semantic

relationships among components are specified by logical methods within

the schema [Havens,SOb].

Every component has functional states describing its behaviour for any

possible condition. The model of component functional states is adequate

and competent in some extent. The model is adequate in terms of the ability
to characterize all possible states or behaviours of the artifact to some level

of competency. By competent, meaning the model is a complete theory for

characterizing the real object which contains all possible component states

and their associated behavioural descriptions. We define all possible states

for each component and use them as a complete set where the states of

components can lie. This predefined set of states is the basis for diagnosis.

The assumption of model competency has limitations and needs to be

defined within the modelling abstraction. We can capture as much of the

component's physical behaviour as is required to give sufficient diagnosis.

One may argue that complete competency of the model can never be

achieved. The ideal model of a component is a real component itself.

The behavioural description is a theoretical model which applies when a
component is in a certain state. We can also view diagnosis as a reasoning

process within the predefined possible states of the device. Deduction from
this knowledge can be seen as a simple case of theory formation. We treat

defaults as predefined possible hypotheses. The idea of theory formation

from a fixed set of possible hypotheses is an essential and basic
characterization of default reasoning [Poole,88].

The proposed default model without abductive rule-based reasoning
involved is adequate t o diagnose engine control related problems. The basic
diagnostic theory illustrated in figure 1-1 is adequate to solve the problem
in a correct and complete fashion. However, the deductive process is slow
because it does not inherit knowledge of diagnostic procedure. Deduction
uses 'search' in finding a solution. The search mechanism uses the
generate-and-test method which naturally generates many solutions and
explodes exponentially when faced with a combinatorial problem. Therefore
the deductive part is not procedurally efficient. We use abductive rules to
gain efficiency. Abduction is a method to guess diagnoses based on
heuristics. This is more efficient than the generate-and-test method
because it does not explore all the search space. However, there is no
guarantee that the choice or assumption is correct. There is also no
guarantee of completeness, the correct diagnosis may not even tried.

Rule-based knowledge is applied to sort out obvious problems based on
the mechanic's experience. Abductive part of knowledge-base always tries
t o make suggestions before the deductive process takes place. The abductive
part includes rules and an a priori probability method. Since it is derived
from compiled knowledge, i t is not exhaustive. We also apply a simple
probabilistic method in this abductive part. When rules can not find a
matched hypothesis, the system hypothesizes based on a set of a priori
failure probabilities for each component. The abductive process is efficient
but it has limited power in diagnosis. On the other hand, the deductive
process is complete but slow because it explores all the search space.

A comparator is used in deductive processes. Its function is to detect any
discrepancy between observed behaviour and the behaviour predicted from
deductive processes. This comparator is implicit and is used to test the
component's state and all deduced consequences of i t against actual
observations.

Our diagnosis system starts the diagnostic procedure by constructing a
vehicle model and putting it in a normal state. The normal state is made as
the first state chosen in each default model. When no information or

is supplied by the user, it is assumed that the vehicle is in its
correct state, or 'normal'. Any complaint or data from actual observations
can lead to discrepancies between current states and observations. This
discrepancy causes the model to be refined by retracting inconsistent states
of device components and assigning new ones that match observations. We
apply rules to find the explanation based on abductive reasoning. Then, the
system deduces all consequences of the hypothesis suggested by the rules
and compares them to the actual observations. The reasoning process
within the deductive model relies on a backtracking mechanism
[Havens,SObI. Diagnosis is over when there is no difference between model
and artifact.

The system is implemented in Echidna. Echidna supports logic
programming language within the object-oriented paradigm. It supports
model-based reasoning using schema knowledge representation. The k-ary
arc consistency technique for constraint reasoning in Echidna help to solve
the problem efficiently [Havens,SOb], because it preprocesses the search
space before elaborating any goal. Echidna is a constraint-based reasoning
engine that uses a truth maintenance system for dependency-directed
backtracking. In contrast t o [GDE,87], which uses multiple contexts,
Echidna uses a single-context truth maintenance system.

Our approach to diagnosis takes advantage of fault models in addition to
correct behavioural models. The diagnostic procedure stops when no
discrepancy occurs between predicted behaviour and the artifact. The
system performs iterative diagnosis discrimination by suggesting
additional measurements to localize the culprit. Another reason for the
system to stop diagnosis is when no more testing or measurements are
economically reasonable to perform for candidate discrimination.

1.3. Motivation

There are an increasing number of engineering applications which use

expert systems. Along with the development of the Echidna reasoning

engine, a new generation expert system shell, we want to develop an

appropriate challenging application that can drive forward research in this

area. The engine diagnosis problem is a very suitable and interesting

application as a domain for a model-based system. This type of engineering

problem is especially good, because it has a firm basis for evaluating system

performance. Engineering generally has well-tested theoretical

foundations, therefore the results of an engine diagnosis system are
testable. Formal techniques in engineering have roots in commonsense

reasoning, because there is a broad range of competence and many kinds of
knowledge are involved [Forbus,88]. These facts make it more suitable for

A1 applications such as diagnosis systems.

This work attempts t o achieve the following research goals. The first

goal is to design an architecture for general diagnostic systems and

implement i t for the automobile engine diagnosis problem.

The second goal is to build an engine model based on the found

architecture. The model should be generic and can be used for any
application related t o engines, especially design and diagnosis. This
attempt is strongly recommended by Forbus[88]. We introduce a general

knowledge representation of the domain which is independent of any

problem.

The third goal is to demonstrate a working prototype of a model-based

diagnostic system. We provide a diagnostic system for the problem which is

recorded by the vehicle's electronic control module.

The fourth goal is t o evaluate, explore and examine the performance of a

model-based reasoning system in Echidna. We evaluate and explore needs,

capability, performance and features of an expert system shell to support

model-based diagnosis that are instrumental in pushing forward the on-
going development of the Echidna constraint reasoning engine.

Chapter 2

Related Research
and

Expert System Shell

Model-based diagnosis is driven by the discrepancy between actual

behaviour and predicted behaviour. The model is a theory of a complex
object or device which incorporates structure, behaviour descriptions and
specific relationships that must hold among its components. Diagnoses are

generated by refining the model until i t matches the device's actual

condition. Diagnosis is typically an incremental process. We need some

additional facts about the artifact to conclude better hypotheses (diagnoses).

The diagnosis process is performed over several iterative cycles. We stop the

diagnosis process after the suggested diagnoses are accepted, meaning that
a match is obtained between predicted behaviour from the deductive model

and actual behaviour from observations.

Knowledge about correct models is required by model-based diagnosis

systems. However, knowledge about fault models is often very useful; the

use of fault models can increase the efficiency of model-based diagnosis. We

integrate fault and correct modes in the deductive model. We also use an

abductive rule-base to capture some well-known ways of device failure. We

use Echidna, a constraint-based reasoning engine which applies a k-ary

arc consistency algorithm [Mackworth,85]. Echidna also provides a clean

knowledge representation system within the object-oriented paradigm. We

write our knowledge base in first-order Horn Clauses. This enables us to
design knowledge bases which are more understandable and readable than

other existing systems. The following is a survey of related research in the

area.

2.1. Model-based Diagnosis

The notion of using design information in automated diagnosis started
by Roth[67] who used the test-generation algorithm. Geneserethr821 uses
device specification and operation knowledge from first principles. The
program called DART works only based on information about correct
information modes; it has no information about how the diagnosed object
fails. DART uses the 'suspect computation' and 'test generation' technique.
DART'S algorithm is different from conventional test generation
algorithms because it also takes advantage of the hierarchical structure of
the device to ensure the test generation algorithm remains manageable.
The diagnosis reasoning is carried out in a pure deductive process.

The main task of diagnosis is detecting faults. Scar1[84] uses functional
relationships to represent the diagnosed object. The functional relationship
is used to check the consistency of sensor measurements, after information
about current state is given. These relations are inverted to determine
hypothetical values. Scarl's system propagates hypothetical values to detect
and localize faults. It calculates the implications of any values supplied
with respect to current state and checks them against each suspect in the
network relationship. DeKleer[84] uses causal analysis to evaluate plausible
faults. The causal analysis method basically uses component connectivity to
explain the behaviour of composite systems. After substituting a faulty
component it continues with causal analysis again. Causal analysis can
run through "down stream" and "up stream" along the physical structure.
DeKleer[87] considers input-ouput relationships between upstream-
downstream components of the physical lay out. This can be done easily due
to the nature of multiple context paradigm incorporated in the underlying
reasoning engine. This system uses an assumption-based truth
maintenance system (ATMS) to keeping track of the current solution and
its related assumption. It incorporates probability and information theory
into the ATMS' mechanism. GDE+ [Struss,89] exploits contradictions

between assumed correct behaviour and obsemations; therefore it needs to
know the 'value' of a component's output in particular states.

Model-based systems embody behavioural models of a device.
Behavioural descriptions are represented as input-output relationships in

[Genesereth,82] and are typically characterized in terms of the hierarchical

nature of devices because device structure is specified by describing its

parts. Equal [deKleer,84] incorporates commonsense knowledge together
with quantitative knowledge to predict the behaviour of a composite system.
It relies solely on a qualitative model and doesn't contain enough
quantitative knowledge from the design point of view. This leads to a less

powerful system to find inconsistences between the predicted behaviour and
observed behaviour. The predictive procedure may fail t o detect conflicts.

Dague[87] models the structure and behaviour of the diagnosed object in

order to bridge the gap between presumed correct behaviour and actual

observations. Models may fail because they are oversimplified; for example,

a healthy component may sometimes behave beyond its normal model.

Dague's system considers the possibility of multiple behaviour patterns.

Several models are required to describe a component's behaviour. His

system, called Dedale, uses the knowledge of a human expert to model
behaviour. Dague's system uses models to reason and has a set of

assumptions related to the particular symptoms given. Instead of using
several models, we use a single model with modes for each component. One

mode of behaviour could be manifested in more than one way. For example,

a primitive component such as a fuse may have a good and bad mode and it
could be in bad mode in more than one way such as shorted or open.

Genesereth[82] uses a deductive procedure within each level of a
compositional hierarchy in order to perform model refinement. The

symptoms are expressed as violations of expected behaviour. When a

symptom is found, all parts under that level are suspected. The next step is

to test each suspect by a kind of test which expects certain output given any

particular input. If the output doesn't agree with expectation then the

underlying part must be broken and needs to be investigated further. This

process goes on level by level. His system, called DART, uses composition

structure to describe a device and how its parts interconnect. The lowest-

i

level parts in a compositional hierarchy are the primitive components. GDE
of [deKleer,87] is a model-based diagnosis system that can handle multiple

faults. Since it doesn't use fault models, it has a drawback, in that it
provides implausible diagnoses in the real world even though they may be

possible logically.

In [Genesereth,82] a high level of abstraction is used to determine the

major subcomponents in which the fault lies. Scar1[84] uses frames to

describe each potentially faulty component and can only deal with a single

fault a t one diagnostic cycle. GDE [deKleer,87] attempts to detect fault in a
different way. Suspects are represented and manipulated in terms of
minimal sets of candidates. GDE uses an incremental diagnosis procedure

by exploiting the iterative nature of diagnosis. It is a general system and
can be used for domain-independent diagnosis because of the separation

between diagnosis and behaviour prediction. GDE combines model-based

prediction and sequential measurements to localize the faults. It uses

conditional probabilities based on structure. GDE applies a one-step

lookahead technique to ensure the best next measurements. GDE uses

minimum entropy calculation to select the next measurements taken. The

method is to find the measurements which lead to minimal additional
measurements required to localize faults. Minimum entropy is a

calculation derived from probability and information theory. This

calculation is incorporated in the reasoning engine. The best measurement
to take is the one which leads to minimum expected entropy of the resultant

candidate probabilities. GDE needs some known values to deduce the values

of system parameters. The diagnosis stops when the probability of a faulty

component is high enough or when the next measurement is too costly to

perform.

Struss[89] proposed an approach that has advantages over the original

GDE. It has the ability to prove the correctness of components and to rule
out implausible diagnostic hypotheses. His system, called GDE +, also

confirms whether malfunctioning components are consistent with

observations. He argues that a component will fail in a deterministic

manner instead of a completely unconstrained manner, therefore it is

possible to have known fault models. GDE+ uses extended ATMS which is

capable of handling 'negation' and 'disjunction'. It incorporates fault
models by extending the capability of the GDE reasoning engine (ATMS)

with these new features. The diagnostic process is done by gathering

information in a cycle that decides which correctness assumptions should

be retracted. GDE+ explains and confirms its diagnosis by analyzing
whether the malfunction of components is consistent with observed

behaviour. Specific knowledge about what happens when a fault occurs is

required. It uses resolution rules and controls reasoning to introduce
appropriate fault models. Fault models are used only when necessary.

SHERLOCK [deKleer,89] uses a theory of faulty components. It identifies
failures without necessarily knowing how components fail. It uses the

model of behavioural modes and probability theory about the likelihood of
each mode of behaviour. In Sherlock, diagnostic discrimination is derived

from knowledge about the likely ways a component may fail. It determines

whether these failure modes are consistent with observations. There is a
high chance that an unlikely diagnosis will be treated as seriously as a

likely one because it does not use the knowledge of diagnosis procedure

derived from the human experts. Sherlock uses modes to discriminate

diagnoses. If one mode is supported favourably by evidence, it lowers the

probability of others. A component always belongs to a certain mode. The

manipulation of behavioural modes and modification to focus ATMS are the

main difference between Sherlock and the previous system described, GDE.
It represents candidates as a list of components with assigned modes.

Components fail independently and there is prior probability of finding a

component in a particular mode. In Sherlock, the sum of components'
probability is constant, so if a candidate is eliminated the other's probability

will increase. The diagnostic task is to identify behavioural modes of all

components.

The limitation of the model vocabulary causes a problem in localizing

every fault. [Genesereth,82] suffers from this problem. GDE [deKleer,871

only uses correct models and doesn't require an explicit fault model.

Because GDE lacks important diagnostic reasoning knowledge about

incorrect behaviour it also suffers from the phenomenon where a predicted

faulty component may not explain symptoms. On the other hand [Struss,89]

depends upon the completeness of fault models, otherwise it can give wrong
diagnoses. It assumes a typical known fault model occurs first and
manages to get rid of implausible diagnoses. DeKleer[89] uses correct, fault
and unknown modes. Each of them may have more than one model and
more than one observation can result in different good modes. It focuses on
more probable diagnoses to reduce alternative diagnoses. Sherlock requires
a modification of ATMS that can focus on more probable diagnoses. This
work shows again that exploiting fault models is a very active research
area in diagnosis problem. It confirms that fault models are useful to
pinpoint a faulty component quickly and to determine a specific repair to
the faulty components.

Combinatorial explosion is a problem which occurs in diagnosis because
the program uses search mechanism and generates many alternative
diagnoses. Genesereth[82] incorporates constraint propagation techniques
in reasoning to alleviate the combinatorial explosion problem. The design
language and diagnostic procedure used postpones the instantiation of
variables as long as possible. The restricted design description used in
DART suppresses enough detail to reduce the cost compared to the use of
the full-blown description. The generate-and-test process also benefits from
structural abstraction. DART relies heavily on the existence of a design
description. Computational efficiency still remains a problem in this
system, because there is a trade off arising from the generality of the
system. DART needs to enhance its knowledge involved in stages of
diagnosis. DART has not included the cost of testing and diagnostic value of
tests in discriminating and testing hypotheses. GDE+ [Struss,89] uses
control strategies to overcome the combinatorial problem. The use of the
one fault assumption also reduces this inherent problem of diagnosis.

Hamscher[SOa] incorporates hierarchic diagnosis and fault models into
GDE. He dealt with the combinatorial problem by introducing an explicit
context-switching mechanism into the ATMS. His system, called XDE,
reduces the cost of reasoning by representing structure at multiple levels of
abstraction and eliminating portions of the device from consideration by
localizing the problem in the simplest model first. It only proceeds into
detail when needed. To avoid an implausible diagnosis, XDE focuses on

components that are statistically plausible rather than those which are
logically possible. This approach is used in addition to fault models.

XDE adds two more intermediate procedures before suggesting next
probes. The first is a diagnostic decomposition procedure based on
hierarchical structure. It has a 'physical hierarchy' containing all
assumptions about which components are working. The decomposition
process descends through this hierarchical structure, replacing an
assumption of an upper-level component by the changes in the
assumptions of its subcomponents. The second is a refinement procedure
which uses fault models to eliminate unnecessary diagnoses. XDE uses
some thresholds to decide whether diagnoses can proceed into refinement,
decomposition, and finally probe selection step in discriminating
candidates.

Similar to GDE, XDE works from the knowledge of expected output of a
particular component. It only has one possible model for modes, in contrast
to GDE. Refinement based on fault model exacerbates the combinatorial
problem. XDE system research implies that further research is needed t o

find a more flexible control structure. It also suggests the need for research
to confirm the efficiency of explicit context switching as compared with
GDE.

XDE chooses the next probe by using fault models and hierarchical
organization. It uses the fault models to rule out implausible suspects and
reasons downward through the hierarchical organization. Assumptions
about fault components only appear in the physical hierarchy and
behavioural models appear in the functional hierarchy. Coordination
between these two hierarchies causes a potential technical problem in
addition to combinatorial complexity. XDE invokes the behaviour model
when it contains the immediate physical subcomponents.

Our system uses a deductive model as the main system knowledge base.
The deductive model gives descriptions of correct and fault models. This is
considered as deep knowledge in our system. We apply rule-based
knowledge before using deep knowledge. The rule-base acts as the shallow

knowledge and is not
has the capability of

necessarily exhaustive. The [Abu-Hanna,88] system
learning from deep knowledge and "compiling" the

knowledge at a shallow level of abstraction. This helps in subsequent cases.
The new shallow expertise regarding links between faults and symptoms is
constructed after expertise is used at the deep knowledge level. It uses a
model of pathological failure at lower level components.

Our diagnosis system captures engine conditions at certain periods of
time. Engine conditions are assumed invariant at diagnosis time. This
assumption of non-intermittent faults is reasonable, although it could be
false in general. DE [Abu-Hanna,88] assumes there are no intermittent
faults when tests are applied to check the consistency of suspected
components. Hamscher[SOa] uses an independent failure assumption, this
is a very strong simplifying assumption, although still not as strong as the
assumption of independent effect that Mycin [Buchanan,84] makes. The
probability of a component working is the product of the possibilities that
each of its subcomponents works independently. The probability of
diagnoses in the XDE program is merely a conjunction of the assumptions.
X D E needs two hierarchical models and it only uses fault model for
heuristic method which is not necessarily exhaustive.

One advantage of model-based diagnosis is the separation between the
diagnostic procedure and the design knowledge about the device. In
[Genesereth,82] all device dependent information, which expresses a theory
about the object, is separated from knowledge about the diagnosis process
and is captured within its design description. DeKleer[87] separates the
diagnosis process and the sequencing procedure to localize faults. Abu-
Hanna[88] also adopts the same notion of separation between diagnosis
methodology and knowledge about device.

Our system uses physical connectivity to represent the low-level
organization of the device. The compositional hierarchy is used as a meta-
level view of the physical structure and represents a "part of' hierarchy in
physical structure. In [Hamscher,SOa], the physical composition hierarchy
expresses the physical structure as "part-of' relationships. It knows which
component is working; a component is working if all of its subcomponents

are working. The functional composition hierarchy contains behavioural
models. There is a technical problem in matching reasoning in the physical
and functional hierarchies in which the behavioural model lies. This is
because the diagnosis proceeds through the physical organization. The
physical organization does not inherit behavioural descriptions. A
component's behavioural descriptions are invoked when it is suspected as
faulty.

[Genesereth,84] uses a knowledge base represented as a model written
in a series of propositions in a variant of prefix predicate calculus. I t
prefers executing tests to generating a diagnosis tree, because of the high
computational cost for constructing diagnostic trees. DE [Abu-Hanna,88]
uses Prolog as its reasoning engine and uses qualitative together with
quantitative rules. If there are no qualitative rules which apply directly to
the current suspects, i t uses quantitative models of the subcomponent to
further investigation. I t records a history of property values of each
component while a hypothesis is applied. This information is used for the
next improvement of higher level behavioural rules. DE takes advantage of
compiled knowledge before starting diagnosis sequences. The success of DE
suggests further research on the use of the object oriented approach in
diagnostic systems.

2.2. Automobile Diagnosis

The problem of automotive diagnosis has been considered particularly
challenging. Although it is a difficult task, automotive diagnosis is a
promising and feasible application of expert systems [Tomikashi,87]. Our
goal is to provide a model-based system for automobile diagnosis.
Specifically, we only deal with problems which are recorded on the
electronic control module.

KZausmeier[86] explores the concept of using an expert system as an
external diagnostic aid in repairs. His system attempts to diagnose engine
problems using a rule-based approach. Knowledge is extracted from a

drivability diagnosis manual[Chevrolet,891. In this example, the system

assumes that there is no problem in the electronic control module (ECM) or

in the electronic circuit. I t also requires pre-examination of mechanical

problems before diagnosis proceeds. Although expert system technology

seems to help mechanics in garages [Joseph,89], this work suggests that

the complexity of the problem and the difficulty of establishing knowledge
has delayed commercial uses of vehicle engine-related-problem diagnosis

systems. Another work dealing with electronic-controlled engine diagnosis

i s [Tomikashi,87]. This work came up with the same conclusion; it is
possible to arrange and store the knowledge of mechanics to develop such a
diagnostic system.

All the automobile engine diagnosis systems above a re rule-based

systems. Rule-based systems have only been successful because of carefully
arranged knowledge concerning the domain. They have a poor capability

for explanation and their performance degrades significantly when faced

with problems a t the boundary of their knowledge. They contain only

abductive knowledge that does not use any deep theory about the diagnosed

devices. Therefore, they are best for domains lacking a theoretical basis e.g.

medicine, business, financial domains [Buchanan,841.

Realizing the serious limitations of the rule-based approach, Fink[86]

developed the integrated diagnostic method (IDM) to integrate shallow

knowledge, derived from empirical experience, and deep knowledge based
on the functional knowledge of physical devices. This work applies the

model-based approach to diagnosing mechanical and electrical devices in
general, although it was intended particularly as a n electronic control

engine problem troubleshooter. IDM uses two separate knowledge bases for

shallow knowledge and deep knowledge. Each has its own inference engine.

Coordination and control between these two separate modules is performed

by a controller module. This system includes qualitative modelling of faulty

and correct behaviour.

Lee[SO] attempted to provide a model-based diagnostic system for

engines. This system, called Repair , is being developed after studying

various domain applications developed for repairing systems. Repair uses a

model describing physical structure and device behaviour. It models the
components of a device and the ways in which these components are linked
together.

2.3. Expert System Shell

Echidna is the underlying reasoning engine we use for our diagnosis
system. It allows us to represent a knowledge base in object-oriented form.
It also provides a constraint reasoning engine we need to solve diagnosis
problems. Echidna is a new CLP Language with objects and a dependency
backtracking mechanism [Havens,91].

There are many expert system technologies available to support the
automatic deduction needed in diagnostic systems. What we need is a
symbolic logic system that captures the notions of logical consequence with
formalism and can be done mechanically. Prolog, a logic programming
language, is a good candidate to provide a basis for expert system
technology [Merritt,89]. This is a declarative language and structured in
terms of relations. This notion yields many powerful ramifications for logic
programs, one of which is reasoning with non-deterministic behaviour
[Pereira,87]. Although it is a declarative language, it has a procedural
interpretation.

Since it is a high-level language and because of the clean formalism it
has, Prolog is a good programming language for applications in AI,
databases and engineering [Kowalski,79]. Prolog also seems to have a close
relationship with constraint satisfaction problem solving [Nadel,90].
However, Prolog is known to suffer from thrashing behaviour which is a
consequence of backtrack search.

There have been some attempts to overcome this problem by introducing
constraints into Prolog such as CLP(R), Prolog II and Prolog III
[Colmerauer,90]. CLP has successfully added constraints in logic
programming while maintaining basic theorem of first-order predicate

calculus [Cohen,90]. There are many good reasons to choose CLP languages
for building diagnostic systems. The non-deterministic feature of CLP and
the use of constraints makes CLP very efficient for implementing a
diagnostic system [Colmerauer,SO].

Data structure and knowledge representation schemes are the major
considerations in diagnostic system design. The object-oriented approach
allows powerful knowledge abstraction [Meyer,88]. The "objects" in our
model reflect real world objects. We need to develop operation that are
applicable to certain objects and specify the effect of each operation. The
object-oriented approach seems to be beneficial for diagnostic system
construction design.

2.3.1. Echidna

Echidna is a new generation of expert system shell that provides object-
oriented representation and embeds constraints in logic programming
[Havens,SOb]. It uses active constraint reasoning techniques to detect failure
in the search more efficiently. When failure is detected, i t uses a
dependency-directed backtracking algorithm t o avoid unnecessary
computation. Echidna is a CLP language with an object-oriented - - -- -- - schema
representation. Echidna is a good choice to implement our diagnostic
system, because it fits very well with the natural ontology of constraint-
based hypothetical reasoning that we use in our system [Havens,SObI,
[Havens,91]. It is the only available language that provides constraint
reasoning techniques with a good schema representation in our knowledge.

Echidna is a theorem prover which deals with Horn Clauses. A clause is
an expression of the form H:- B1, B2, ..., Bn. where H and B1, B2, ..., Bn. are
terms. H is the head and B1, B2, ..., Bn. are the subgoals. For example :

"state(good):- VoltIn =:= VoltOut, CurrentIn =:= Currentout."
Unification is a substitution which makes the two terms identical such as
state(State) and state(good). These terms unify because they have common
unifier { State = good). Echidna applies an interpreter to answer queries

issued. The interpreter generates 'yes' when the query succeeds and 'no'
when the query is not deducible from the program.

Knowledge of particular domain is represented in the form of schemata. --
Schemata is an object-oriented programming language paradigm adapted
to CLP. The following is an example of a simple Echidna knowledge base.

schema wire:component
(
% type declarations

voltageRange Volt 1. currentRange CurrentInl.
voltageRange VOW. currentRange CurrentOut2.
voltl(Volt1). currentInl(CurrentIn1).
voM(Volt2). currentOut2(CurrentOut2).

% accessors for persistant variables
terminal1 (Voltl ,CurrentInl).
terminal2(Volt2,CurrentOut2).

% modes of operation
order mode.
mode:- % good state

Voltl =:= v o w ,
CurrentInl =:= CurrentOut2,
State =:= 0,
Condition =:= good.

mode:- % shorted state
Voltl =:= Volt2,
CurrentInl =\= CurrentOut2,
State =:= 1,
Condition =:= bad.

mode:- % open state
CurrentInl =:= 0,
CurrentOut2 =:= 0,
State =:= 2,
Condition =:= bad.

Figure 2-1

The Echidna Schema

A variable in Echidna is a sequence of characters which begin with an
upper case letter or underscore (-). A Variable is bound to a domain over
which the variable ranges when it is referenced at the first time. A variable
can be over an Herbrand and also it can ranges over discrete and real
intervals. For example :

(good,shorted,open) State.
voltRange VoltIn.

Objects in knowledge base are organized into classes. Each class is
defined by a schema. A schema is a model for a real object and can be
instantiated when needed. Each schema may contain definitions or
methods. The more details about Echidna is explained throughout this
thesis.

Chapter 3
Diagnosis System Design

3.1. System Overview

In this chapter, we present a model-based expert system for diagnosing
computer-controlled engine malfunctions. The system uses a knowledge

base of engine models. Our model includes the description of correct and

faulty engine behaviour. We also incorporate rule-based knowledge to

improve system performance. This abductive rule-base uses heuristics and

a priori likelihood of failures of each component. In fact, our system's

knowledge-base has both deep and shallow knowledge. The deep knowledge

is the deductive model which includes correct and faulty behaviour. The
shallow knowledge is an abductive rule-base based on heuristics.

3.1.1. Model-based Diagnosis

Model-based diagnosis is carried out using the interaction between

predictions and observations. Observations come from the measurements

taken or complaints of the car owner. Predictions are the behavioural

descriptions derived from the assumption within the deductive model in the

form which can be compared to the observations. Discrepancies between

actual and predicted behaviour drive the diagnosis process which traces the

possible causes of the problem described within the deductive model. For

example, consider a wire. At one time the wire may be in 'good' state. (We

use the terms 'state' and 'mode' interchangeably with the same meaning).

The discrepancy between predictions and observations from this

assumption may cause the state of the wire to be changed in the model. The

change of the model is performed automatically using backtrack every time
a discrepancy occurs in the deductive process.

The model-based approach is powerful, because it enables the diagnostic
system t o diagnose single or multiple faults for various kinds of engine
[Hamscher,SOb]. We can use the same architecture to diagnose any device
by substituting the models with the required ones. Unfortunately the cost of
reasoning is a major problem in the model-based diagnosis. It can generate
too many alternatives that are logically possible. In the worst case i t has
complexity of O(kn) [Aho,74], where k represents the number of modes of
each component and n is the number of components comprising the whole
device.

We deal with the combinatorial explosion problem by using the abductive
rules t o eliminate the less likely alternatives. Instead of letting a
backtracking mechanism explore the search space, we apply heuristics for
some obvious symptoms. We use rules of thumb to guess the culprits. This
strategy avoids the exhaustive backtrack search within the deductive model.
If there is no rule which can give a correct 'guess', the system uses the
single-fault assumption and makes a hypothesis based on the ordered
probability of failures amongst components. We should make it clear that
this single-fault assumption is needed because our system does not
consider the effects of multiple-faults. However, the diagnostic system can
still detect more than one faults whenever i t is consistent to the predicted
behaviour deduced in the deductive model.

We construct the engine model by defining schemata which contain
methods in the form of logical horn clauses. The left-hand part is a non-
negated literal that becomes the head of the clause. The right-hand part is
conjoined to form the body of the clause. The possible modes of a component

in the deductive model are represented as the heads of the clause. The body
represents subgoals that must hold for the underlying mode. Figure 3-1
shows the behavioural description of the wire as a primitive component.
There are three possible behavioural modes of wire. I t could be good,
shorted or open. The antecedent of the rules, which are written in Prolog-
like syntax, describes the behaviour in each possible mode.

Figure 3-1
Wire's Behavioural Description

3.1.2. Generating and Discriminating Diagnoses

Diagnosis generation is the process of finding the potential faulty
components given a vector of measurements or drivability complaints. A
diagnosis is the collective state of every component in the engine model after
the process of model refinement is completed. The following steps apply in
directing the changes of component states throughout a model refinement
process: The first is the heuristics which relate observations to some known
possible failure of the components. By using rules, the system can direct a
component to be in a good or faulty state. However, these rules are subject to
error. By error, we mean the chosen rule may not explain the symptoms.
The rules are not complete, because it is impossible to exhaust real-world
phenomena in rules. However, we expect the chosen assumption is almost
always true. The second is the single-fault-based probabilistic method
which assigns certain components to be in faulty modes based on a priori
likelihood of failures. The third step, which acts as the confirming step, is
the deductive process applied to competent models. The deductive model
guarantees that at least one possible mode matches the observations
because the model is adequate to cover all possible conditions of the artifact.

Testing and measurement are very valuable in diagnosing engine
malfunctions. They give information that enables the system to localize the
faults. Unfortunately, measurements or testing are usually expensive and
time-consuming. We would rather exploit computational power than make
unnecessary expensive measurements. The system is pushed t o pick up
more measurements if the current observations do not lead to any
diagnoses. Our system in this stage considers only the most likely
diagnoses at one time.

We take cost factors into consideration while gathering information. The
next measurement is the one that gives the most valuable information with
minimal cost to performing it. This is derived from the experience of
mechanics and incorporated within the shallow knowledge. The system
benefits from accumulated measurements taken to discriminate diagnoses,
therefore we assume that all engine states are stable throughout the
diagnosis process. We always choose the vectors of measurements that
haven't been given so far. For the time being, we are using data extracted
from the real observation to simulate the diagnosis process.

3.2. Diagnostic System Components

3.2.1 Artifact

We gather engine data from measurements by using a hardware
interface provided by McCarney Technology, Inc.. In fact McCar-EAS
supplies these measurements in a data file form [Joseph,89]. We are
provided with such data as temperature, voltage, current, pressure, and
volume of flowing air that can be measured a t several check points on the
real engine. Figure 3-2 shows some real data examples and their ranges
that can be measured and provided through the hardware interface. Table
3-1 shows an example of measurements taken on the 12-volt power supply
system. We have eight testpoints within the 12-volt power supply system
that are possible to observe for diagnosis purpose.

...
Parameters : Range :

Auto key.
Battery voltage
Bypass line voltage
CCP-du ty
Engine cranking RPM.
Fuel pump position
switching voltage
Fuel pump primary
switching voltage
Manifold absolute
pressure
Transmission
temperature

Figure 3-2
Ranges of The Real Data

12-Volt Power Supply System
---- - -

Signal V1 V2 V3 M1 M2 M3 M4

(volts)

off 11.9 0.0

off 0.0 0.0

on 0.0 0.0 11.9

on 0.0 0.0 11.9 11.9

on 0.0 0.0 11.9 0.0 11.9

Table 3-1
Some Measurements

3.2.2. Deductive Model

The deductive model is the main part of our model-based diagnosis
system. It should cover every possible state of the engine and its behavioural

descriptions. The state of the engine is represented by the corporate state of
the engine components. We show the model of a wire as an engine

component with three possible states. The example of wire's component

behavioural model is shown in figure 3-3. This deductive model embodies

the knowledge about correct and fault modes of the wire.

voltRange = [0..201.
currentRange = [-20..20).
schema wire:component
[
% type declarations

voltageRange Voltl. currentRange CurrentInl.
voltageRange Volt.2. currentRange CurrentOut.2.
voltl(Volt1). currentInl(CurrentIn1).
volt2(Volt2). currentOut2(CurrentOut2).

% accessors for persistant variables
terminal1 (Volt 1 ,CurrentInl). terminal2(Volt2,CurrentOut2).

% modes of operation
order mode.
mode:- % good state

Voltl =:= Volt.2,
CurrentInl =:= CurrentOut.2,
State =:= 0,
Condition =:= good.

mode:- % shorted state
Voltl =:= Volt2,
CurrentInl =k CurrentOut.2,
State =:= 1,
Condition =:= bad.

mode:- % open state
CurrentInl =:= 0,
Currentout2 =:= 0,
State =:= 2,
Condition =:= bad.

1

Figure 3-3
The Deductive Model of A Wire

The domain values for the voltage are real numbers ranging from 0 to 20

volts. The current varies between -20 and 20 amperes. We use a symbolic
discrete domain for the state parameters of the wire. We define three

possible modes in the default model of the wire. The clause is formed from

"disjunctive or" literals so that the default state of the wire is to be in the
good state.

The adequate model of the wire is the one that describes the good state of

the wire. Therefore the otherwise behaviour is considered as a bad state.

Since the knowledge of fault modes are also available in some extent, we

define the possible modes of a wire t o be {good, shorted,open) instead of just

good or bad state. These three possible modes of the wire's deductive model
will be checked non-deterministically when the deductive process takes

place. We can arrange them in a particular order so that the system
backtracks according to the sequence we want. This is useful to control

backtracking according to knowledge of diagnosis procedure derived from

experience.

3.2.3. Abductive Rule-base

The abductive part of the diagnosis system consists of heuristic rules and a

probability method based on a priori likelihood. We use a set of rules derived

from the mechanics' experience. These rules are the first step applied to
detecting faults. However, abductive rules may fail t o explain the symptoms.

Examples of abductive rules are shown in Figure 3-4, M1 is a possible

testpoint that lies close t o the battery. This an obvious problem; the

mechanic knows that if the voltage measured at that point is more than 10

volts, it is very likely that the battery is in a good state. If the actual data does

not match with the first clause, the next clause will be choosen and so on.

We use probabilities in addition t o rules. The probability method uses a

simple list of components ordered by their likelihood of failure. It imposes a

rule:-
Signal =:= 'on ',
MI < 16,
MI > 10,
Battery:state(good).

rule:-
Signal =:= 'on ',
M4 < 10,
JunctionZ:state(bad).

Figure 3-4
Heuristic Rules

specific state for components. For example, the wire could be in a bad

condition either by being in the shorted state or by being open. This

probability method improves the system's ability to detect failure. Figure 3-5
shows a list of ordered a priori probabilities for faulty components within

the 12-volt power system.

Figure 3-5
A priori Likelihood of Failures

3.2.4. Comparator

A Comparator is applied implicitly within the system. The comparison

takes place a t the level of the deductive process to detect whether the

predicted behaviour matches the observation. We can explain this by

looking a t figure 1-1. The discrepancy between the predicted and actual

behaviour causes a symptom, the symptom i s a binary state signal

indicating the discrepancy occurence. The symptom generated by the

comparator leads the abductive rule-base to hypothesize about the engine
state based on heuristics. The "engine state" here means the states of the
engine's components. This assumption is applied into the deductive model

in order t o generate the deduced behaviour. The system deduces the
consequences of this assumption and compares them against observations.

The comparison is implemented through unification of parameter values

and applying constraint satisfaction algorithms.

3.3. Diagnosis Scenario

The automotive diagnostic system starts by building a complete vehicle
engine structure. The vehicle engine structure is an instantiation of a
complex object from a vehicle schema which is comprised of several

subsystem schema classes. Every complex object consists of more than one

object and so on. The engine structure is formed from primitive

component's object at the lowest level. Primitive objects are connected by
unification through their input-output parameters.

The engine structure is a complete network of primitive components
that are already connected by input-output parameters. At the beginning,
there is no particular state applied to the engine, no assumption is selected

and no constraint is activated. The diagnosis process commences when a

measurement or a complaint is supplied as the input data. Given this

observational data, the system immediately applies data to the engine

structure (observational data are persistent unless the user intentionally

retracts them). Any specific complaint of the car owner is also recorded and
will be used by the system a t the abductive level.

Given the observational data, the system puts the engine model in a good
state and then compares the predicted behaviour with the given data. The

diagnosis process continues while a symptom occurs, otherwise the

diagnosis is over. Based on the available information from measurement

and complaint, the system activates applicable abductive rules and refines

the deductive model heuristically. The system applies dependency-
backtracking mechanism into the deductive model. Because the deductive
model is adequate, the system should find diagnoses eventually.

Abductive rules impose particular states on one or more components
based on observations and heuristics. The components which have been
forced into a certain state yield the deduced consequences. This deduced
behaviour may cause inconsistency with actual observations. If the
discrepancy happens the system would retract the current states of engine
components in favour of new states which match actual observations. If a
rule succeeds, the process is over. Otherwise i t chooses rules until one of
them succeeds or the rules are exhausted. A probabilistic method which is
based on single-fault assumption will be applied if the rule base can not
capture the diagnosis. The probabilistic method is basically a guess
directing which component is more likely to fail. The dependency
backtracking mechanism triggers system failure if constraint satisfaction
method fails to achieve the goal. Failures cause the system to backtrack
until one of the system choices is consistent with observations.

3.4. Efficiency

Together with the deductive model which incorporates fault modes in
addition to correct modes, the abductive rule-base aims to make diagnosis
more efficient. The set of abductive rules is instrumental to gaining
efficiency based on heuristics which is significantly faster than deduction.
The use of the single-fault assumption helps to eliminate some
unnecessary alternatives in hypothesis generation. The use of the abductive
part in our diagnostic system improves computational efficiency which is

one of the main obstacles in model-based diagnosis systems.

In the deductive part of the system the use of constraint logic
programming (CLP) reduces the search space in the reasoning process. We
use CLP because it has features that enable us to express constraints and
manipulate them efficiently. CLP is efficient because this programming

paradigm exploits constraint solving techniques for various kinds of
specific domains [Jaffar,87]. The idea is to restrict domains of variables to
only values which participate in the global solution of the diagnosis
problem. The system's reasoning engine applies an appropriate algorithm
for different computational domains throughout the diagnosis process.

We use Echidna, a CLP language, in implementing the diagnostic
system. Echidna incorporates the k-ary arc consistency algorithm AC-3 of
[Mackworth,771 for constraint propagation over discrete domains. For
example, the condition of a wire is represented by the discrete domain {good,
shorted, open]. Once the system knows that a particular wire is in a state
good, it immediately eliminates the other two possible values from state's
domain. A more efficient version of AC-3 is applied to handle the integer
domain. Echidna introduces the ability to use constraint processing on
variables which range over real intervals. Variable domains are
represented explicitly as a hierarchical structured set of intervals.
Equalities and inequalities are propagated through a specialized
hierarchical arc consistency algorithm [Sidebottom,Slal.

Another significant feature of the Echidna reasoning engine used in our
system is dependency-directed backtracking [Havens,SOb]. This is an
intelligent backtracking technique, developed to cope with the well-known
thrashing problem [Mackworth,77]. It backtracks to the cause of failure
instead of t o the most recent choice. It also avoids rediscovery of
contradictions in backtracking by recording no-good assumptions.

3.5. Combinatorial Problems

The use of behavioural models which include correct and fault modes
exacerbates the combinatorial problem [deKleer,89]. It produces O(kn)
possible diagnoses, where k is the average number of components' modes
and n is the number of components which comprise the whole diagnosed
device. The single-fault assumption reduces the number of possible
diagnoses significantly. To illustrate this, assume a system comprised of

two components A and B. Each of them has four behavioural modes which
include correct and fault modes. This system has only one 'good' state and
more than one non-good state. Sai represents the possibility component

S a l S b l
S a l Sb2
S a l Sb3
S a l Sb4
Sa2 S b l
Sa2 Sb2
Sa2 Sb3
Sa2 Sb4

Sa3 S b l
Sa3 Sb2
Sa3 Sb3
Sa3 Sb4
Sa4 S b l
Sa4 Sb2
Sa4 Sb3
Sa4 Sb4

multiple-faults : 0 (k d

S a l S b l
S a l Sb2
S a l Sb3
S a l Sb4
Sa2 S b l
Sa3 S b l
Sa4 S b l

single-fault : O((k-1)n)

Figure 3-6
The Possible Diagnoses

"A" being in state i. Figure 3-6 shows all possible diagnoses based on the
multiple-faults assumption compared to the single-fault assumption. The
diagnosis search remains complete, even with the single-fault assumption,
because this assumption applies only to the abductive step; the deductive
model can still diagnose multiple faults. We argue that this assumption is
more reasonable for a diagnosis system which use abductive rules to
alleviate the combinatorial problem. We only use this assumption on

abductive part. The use of the multiple-faults assumption is usefid if one is
using multiple-context causal analysis within the reasoning engine
[deKleer,87]. Our system uses a single-context based justification reasoning
maintenance system [Doyle,78].

The use of abductive rules plays an important role in dealing with
combinatorial explosion. The rules eliminate a significant number of
possibilities by imposing a chosen state of a component based on heuristics.
By using the rules, we effectively restrict the search space of diagnosis
reasoning.

Chapter 4
System Implementation

We have developed a prototype of a diagnosis system which provides
recommendations for mechanics to repair vehicle-engine-related problems.
In this stage the engine system is comprised of the 12-volt power supply and
the CCP systems. The diagnostic system requires a set of input from the
hardware interface. We gather input data into a data file. Our diagnostic
system can detects more than one causes of the failure. The output is a list
of the abnormal components causing the symptoms observed. The diagnosis
system also gives a list of the next measurements to perform in order to
further localize the problem. The development of the diagnostic system for
diagnosing vehicle engine's problem is a big task. Our system is the initial
step that can be expanded in order to develop a complete diagnostic system
dealing with the vehicle engine as the whole.

4.1. Vehicle Engine Organization

A vehicle engine is a very complicated system that needs a vast amount
of knowledge to repair it. In figure 4-1, we show a "part of' relationship
hierarchy for a vehicle engine system. We organize the vehicle engine
system by classifying its components into three large categories; electronic
control, engine and 12-volt power system.

Although the engine operation depends strongly on the work of the
electronic control module (ECM), we classify the electronic control system
that includes the ECM into a separate system. We do so because the
electronic control system is a broader system controlling many vehicle

functions besides the engine. The same reason is applied to the power
supply system. Every subsystem consists of a number of subsystems or
primitive components. The charcoal canister purge (CCP) system, a part of
the emissions system, includes primitive components such as: hoses, wires,
purge solenoid, charcoal canister and pressure control valve. This
organization is not intended t o show physical connections among
subsystems or components, instead it illustrates a higher-level view of the
physical components based on vehicle engine system functions.

vehicle s

() = system or subsystem

0 = primitive component

Figure 4-1

Composition Hierarchy

4.2. Vehicle Engine Model

4.2.1. Primitive Components

Engine behaviour is represented by the behaviour of the primitive
components comprising the whole engine. Every replaceable physical
component is considered t o be a primitive component. Each primitive
component has an input andlor output description as shown a t figure 4-2.

A primitive component has one or more input-output terminals where
input-output relations or correlations derived from physical laws are
applied. For example, the behaviour of the battery can be observed from
values of voltage going out and the behaviour of a wire can be seen from
voltage and current coming in and going out through its terminals.

terminall terminall

Volt1 Press1
CurrentInl FlowIn 1

CurrentOut2 FlowCond2 FlowCond 1

signal

terminall

Voltl
*

CurrentInl CurrentOut3
\Ignition Switch

terminal2
b a t t e r y

Volt2
CurrentOut2

Currentout v

Figure 4-2
Primitive Components

The examples below are behaviour that can be observed on Battery and Wire

components.

Battery :
(regarding t o voltage)

volt < 9, or
volt > 16, or

9 <= volt >= 16.

Wire :

(regarding t o current)

currentIn = 0 and currentout = 0, o r

currentIn = currentout, or

currentIn =\= current Out.

We describe primitive components' behaviour based on the behaviour of

input-output observed in its terminals. Behavioural description is adequate,

meaning that it covers all possible behaviour a t any of components' states o r
modes.

4.2.2. Physical Connectivity

Most of the connection links between components are based on equality,

disequality or inequality. The use of mathematical hnctions is also possible.
We use unification t o establish input-output relationship among the

components. Figure 4-3 illustrates the Electrical Power System's

components' "part of' relationships hierarchy and figure 4-4 shows the

physical connectivity among its components.

/ 12 volt 1

Figure 4-3

Power System Components

signal

12-volt power system

d

curreny;ffy2' j1 ' + i n a 1 1
CurrentOutl Currentout

ecm wire sol. wire
fuel pump

Electronic
Fuel System Control CCP System

Figure 4-4

Power System's Physical Connectivity

The 12-volt power system includes a battery, wires, junctions, ignition

switch and ECM-fuse. Every component is connected t o adjacent

components constructing a subsystem of the engine system. Physical

parameter values are propagated through connections along all
components according t o design descriptions. The 12-volt of battery voltage

is propagated t o wire-1, junction-1, wire-5, ignition switch and so on,
through unification.

All constraints are propagated through unifying values in two

directions. The following are the examples of constraints manifest in the
model :

A subsystem class is a composite of primitive components that embodies all

constraints, parameters and methods. For example, the parameter values

observed at terminal-2 of 12-Volt Power System are merely those of Wire-7.

4.3. Knowledge Base

Knowledge of the diagnostic system is represented in Echidna
knowledge base. A knowledge base consists of a set of schemata. Each
schema is a model of a object class of vehicle's component. Figure 4-5 is to
illustrate the system's knowledge base. A comment begins with the percent
(%) sign.

schema component
{
% type declarations :

conditionType Condition.
stateRange State.
Name.

% methods :
condition(Condi tion).
state(S tate).
namewame).
mode.
build.

1

schema composite:component
I
% type declarations
component Clist.

% methods
build:- buildSubComps(C1ist).

Figure 4-5
Schema of Object Classes

All variables are bound t o a specified domain over which the variable
ranges. A schema 'component' represents an object class; this class is a top
class of knowledge-base's schemata. A schema 'composite' is the second
level of object class which inherits methods from the component object.
Echidna supports only a single inheritance hierarchy where each class has
exactly one superclass.

4.3.1. Classes and Instances

A schema can be instantiated to create one or more copies of an object
class. This instance is modified through unification [Sidebottom,Slb]. A new
instance is created whenever a variable is declared to be associated to a
particular class. For example, "IS isa igswitch" at the "build" method in
figure 4-6. IS is an instance variable, it stores information about the state of
the instance. An instance variable is persistent so that it can not be

changed.

schema power:composite
[
% type declarations :

igswitch IS. battery Battery.
- - - -
- - - -

signalType Signal.

% accessors for persistent variables
terminal l(Volt1,CurrentOutl).

order mode.

% define components of system

build:-
IS isa igswitch, IS:name(ignitionswitch),
Battery isa battery, Battery:name(battery),

W1 isa wire, Wl:name(wirel),
W2 isa wire, W2:name(wire2),
W6 isa wire, W6:name(wire6),
J 1 isa junction3, J1:nameCjunction 1),
J2 isa junction3, JTnameCjunction2),
J3 isa junction3, J3:narneCjunction3),
ECM-F isa fuse, ECM-F:name(ecmfuse),
Engine-F isa fuse, Engine-F:name(enginefuse),

Clist = [IS ,Battery,W 1 ,W2,W6 J 1 J2 J3 ,ECMF,Engine-F],

% inputloutput parameters of system

% connections between components within system

Battery: terminal(VoltA,CurrentA),
J3: terminal 1 (VoltA,CurrentA),

J3:terminal2(VoltB$urrentRange CurrentB),
W 1 :terminal 1 (VoltB,currentRange CurrentBB),
0-CurrentB =:= CurrentBB,

IS: terminal3(VoltE,CurrentE),
W6: terminall(VoltE,CurrentE),

composite: : build.

1

Figure 4-6

Basic Schema of Power System

As we see in the power system schema above, a subsystem is comprised

of primitive components. Each of them is represented as a member of the

class. The predicate 'build' is meant to define the components of the 12-volt

power supply system. Classes are accessed by logical messages or unifylng

goals which match logical methods or predicates defined within schemata.

Knowledge about the class is modular and localized within the schema. We
create instances of schemata to represent real world objects. All

components which comprise the power system are constructed when the

goal "build" is issued.

Each parameter must have an associated domain of possible values

declared and every instance of the class shares the same parameters.

Schema instances can be sent messages, passed arguments, or composed

into networks. All of these operations are performed through unification.

Constraints are established by exchanging messages between a sending

and receiving schema and the parameters of any of its components.

4.3.2. Methods and Logical Messages

There is a method called accessor since it simply provides an access to

the instances variable, for example : signal (Signal). We can use an

accessor to retrieve and set up the value of a parameter. The schema uses

methods to maintain system's knowledge bases. The method library is built

to retrieve the candidate clauses. The method lookup is used to resolve

which one will be chosen. These all are performed at the compile time,
therefore the set of methods is static during system executions. If the
corresponding method is not defined, it will cause the error for the message
sent. We can also have global methods which are defined at the outside of
any schema definition in the knowledge base.

We use message-passing and message-interpretation for the
communication between two schemas. A goal is a message sent to an object.
A message is the name of the corresponding method that may be followed
by arguments. Message interpretation is the selection of clauses from the
method.

The logical message is the goal initiated by a sending schema. This is
performed by unification of a logical parameters whose values may be
refined towards the ground values. The process is monotonic and only
reversible by dependency backtracking. A logical method is a logical
predicate defined in the receiving schema. Unification is carried out in a
non-deterministic way.

observation(Signa1, V1, V2, V3, M3, M4):-
default,
apply-data(Signa1, V1, V2, V3, M3, M4),
generate-diagnoses.

Figure 4-7
Method and Logical Message

Figure 4-7 illustrates an example of a logical message sent into power
system schema. The message "Power:observation(on, 0.0, 0.0, 11.9, 11.9, 0.0)"

is issued and will be unified with methods defined in Power. Power is a
schema variable which represents the 12-volt power supply system class.

4.3.3. Constraints and Schema Elaboration

Constraints support information flow through the link of persistent
data. The engine constraint network is constructed during a session with
Echidna. Constraints are useful1 to prune the space before a search begins.
There are two ways of constraints set up. The first one is by issuing the goal
which applies constraint operator or a constraint relation. The second one
is unification of two terms t o be the same.

Constraint propagation is applied over variables which have an
explicitly declared domain. A schema is a parametric model for a class.
Instantiating the parameter of a schema to actual values specifies a
possible member of the class. A particular instantiation is valid if it holds
for all constraints which have been asserted within the instance.
Constraint propagation causes the refinement of parameter domain.

observation

current
diagnoses hypotheses

reasoning
constraint

Figure 4-81
Diagnosis Cycle

The instantiation process is incremental and employs hypothetical
reasoning. Figure 4-8 illustrates an iterative process of making hypotheses
during the diagnosis process. We use hypotheses to derive new constraints

. l ~ h i s is adopted from [Havens,831

and apply the constraints to the schemas in the network. This reduces the
search space. Some hypotheses might be retracted when it's deduced
consequences do not match the observational data. In this case the process
continues forward.

The reasoning process continues to refine models until they are fully
ground. The process relies on applying constraints to the domains of
parameter values. The process is incremental. Model-based diagnosis
elaboration is carried out by applying internal heuristics to refining the
model. Each new choice imposes new constraints on the network. Choices
are made incrementally and their constraints propagated before any other
hypothesis is pursued. Incremental elaboration allows flexible control
structures and allows arbitrary heuristic order.

4.4. Deductive Model

A component model represents a n object with some parameters
corresponding to some physical or electrical units applicable to the object. I t
also describes the modes of components together with behavioral
descriptions related to each of them. For example, component modes for
'Hose' could be: good, leaking, blocked, etc. Assuming there is liquid flowing
through the hose, leaking hose means 'total amount of flow going out the
hose is less than that of flow coming into the hose'. Each and every
primitive component has its own possible modes and one mode can have

more than one associated behaviour descriptions. The following is a model
for the hose, it inherits all the methods defined in a schema component.

flowRange = {O..6O).
pressureRange = {0..104).
conditionType = {good,bad) .
schema hostxcomponent
I
% type declarations
pressRange Pressl. flowRateRange FlowInl. conditionType FlowCondl.
pressRange PresQ. flowRateRange FlowOut2. conditionType FlowCond2.

% accessors for persistant variables
terminal1 (Pressl ,FlowInl ,FlowCondl).
terminal2(Press2,FlowOut2,FlowCond2).

% modes of operation
order mode.
mode:- % good state

FlowInl =:= FlowOut2,
Press1 =:= Press2,
Flowcondl =:= FlowCond2,
State =:= 0,
Condition =:= good.

mode:- % leaking state
FlowOut2 =\= FlowInl ,
Press1 =:= Press2,
State =:= 1,
Condition =:= bad.

mode:- % blocked state
Flowout2 =:= 0,
FlowInl =:= 0,
State =:= 2,
Condition =:= bad.

I

The model of a composite object is an engine theory that describes the
component and its behaviour. It also describes the interrelationships of the
components which make up the whole network structure. The structure of
the complex object model implies the composition hierarchy of the whole
engine consists of subsystems and primitive components. The previous
figure 4-6 shows the model of Power System as a composite system. It
describes the components comprising the system and its physical structure.

The following is the schema model of the vehicle system which consists
of the 12-volt power supply and CCP system.

schema vehic1e:composite
(
% type declmtions :

ccp CCP.
power Power.

voltageRange Voltl. currentRange Current 1.
voltageRange Volt2. currentRange Current2.

order mode.
mode:-

Power:condition(good),
CCP:condition(good),
condition(good).

% system components :
build:-

Power isa power, Power:name(power-system).
CCP isa ccp, CCP.name(ccp-system),

Clist = Fower,CCP],

% connections between components within system :

Power: terminal2(VoltA,CurrentA).
CCP:terminal2(VoltA,CurrentA),

composite:: build.
...
%% Abductive Part : %%
% containing rules at level of Vehicle

observation-l(Signal.Vl ,V2,V3,M4,C1 ,C2):-
apply-dataO(Signa1,V 1 ,V2,V3,M4,Cl , a) ,

generate-diagnoses.

observation-l(Signa1,Vl ,V2,V3,M3,M4,Cl,C2):-
default,
apply-dataO(Signa1,V 1 ,V2,V3,M3,M4,C 1 . a) ,

generate-diagnoses.

default -
Power mode,
CCPmode.

1
vehicle Vehi.

We integrate physical organization and behavioral description i n a
deductive model. The model behaviour is determined by the behaviour of its
components. I n this way we overcome the difficulties of coordinating

physical organization and behavioural model faced by [Hamscher,9Oa]. The

model is adequate and guarantees a match between observation and at least

one of the behaviour description that can be generated by the model.

4.5. Input Data

McCar-EAS [Joseph,89] is a tool already developed to gather data from

the artifact. This system operates on a standalone PC Micro Computer for

on-road data collection. It is an hardware interface consisting of an MC-
68HCl l micro processor which automatically records engine physical

measurements into data files, there are data such as temperature, voltage,

and so on. Some examples of input data are described a t section 3.2.1.

1. Long cranking time.
2. No start.
3. Hard start.
4. Poor performance.
5. Dieselling.
6. Excessive odor.

Figure 4-9
Some Common Drivability Complaints

Beside of measurements taken from McCar-EAS, the diagnosis system

accepts drivability complaints from mechanics or owners i n the garage.

This information drives the diagnosis process. Some commonly found
drivability complaints are listed a t figure 4-9. The drivability complaint
could appears alone or together with others. We may consider some steps
before starting diagnosis system such as visual or physical inspection,
diagnostic circuit checks, etc. These are all related to some causes that are
not covered in ECM-recorded information.

4.5. Diagnosis Example

We assume the vehicle engine structure in this example consists of only
the 12-volt power supply system and the charcoal canister purge system
(CCP). Each of the power supply system and CCP is a composite system that
has several primitive components a t the lower level within the
compositional hierarchy. V is a schema variable of the simplified vehicle
structure. The first time the system starts, a logical message is sent into V.
The message must be sent to the particular schema variable, for example
"V isa vehicle". This is to declare V to be associated to the vehicle schema
class. "V:buildM is the message that will be unified with a method defined in
the vehicle schema. Building the structure is performed in a cascade from
the 'top' level object downward through the compositional hierarchy.

The diagnosis process is initiated by sending the message containing
input or observational data, e.g.:

V:observation(Signal, V1, V2, V3, M3, M4, C1, C2).
This data will be sent to the appropriate subsystems where the underlying
physical unit checkpoints taken. In this example, there are six data
observed a t power system components' terminal and the rest two are taken
a t the CCP system. These data are applied into the structure and become
persistent. We concentrate on the 12-volt power supply system to explain
diagnosis examples. Figure 4-10 shows some test points of the 12-volt power
supply system.

A
signa

v3

12-volt power system

v2

Figure 4-10
12-Volt Power Supply System

The data should be firstly applied into the model for diagnosing faulty
components, because we want to refine and check the consistency of the
model against the actual data. The model may be inconsistent with the
actual behaviour and this drives the diagnoses generation. Diagnosis is a
the process of refining the model until it matches the observations.

The system uses abductive rules heuristically and always assumes the
engine to be initially in the good state. The use of abductive rules can be seen
in the power schema class at figure 4-11 below. After the above logical
message sent, the corresponding method in vehicle schema will be selected.
This new observational data initiates diagnosis process which put the
whole diagnosed engine at the default states (good states). The method
"apply-dataOw applies the observational data into the model in order to

diagnose the faulty components. If the good state of engine is still
consistent, the diagnosis is over. Otherwise the system uses abductive rules

by issuing the message "apply-ruleo". The a priori probability method

applies when rules are exhausted.

We select the next probe to localize the faulty components. Selecting the next

probe is part of the abductive process and it is based on heuristics described
by shallow knowledge of the system.

schema power:composite
(

%%%
%% Abductive Part : 8%

owner-complaint(diesel1ing):-
ECM-Rcondition(bad).

observation-l(Signal,Vl,V2,V3,M3,M4):-
default,

apply-dataO(Signal,V l,V2,V3M3,M4),
generate-diagnoses.

observation_2(M4):- apply_data2(M4),
generate-diagnoses.

volt l(Vl),
volt2(V2),
volt3(V3).

apply-dataO(Signa1.V 1 ,V2.V3,M4):-
signalWgnal),
volt l(V 1).
volt2(V2),
volt3(V3),
J2:terminal2@44,MM4).

apply-ruleO(Signal,Vl,V2,V3,M3,M4):- print(rulel),
Signal =:= on,
v2 > 10.
v1<5,
M3 > 10,
ECM-F:condition(bad).

apply-ruleO(Signal,Vl,V2,V3.M3,M4):- print(rulel),
Signal =:= on,

v1<5,
V2 < 5,
v3 > 10,
W7:condition(bad).

apply-ruleO(Signa1,Vl ,V2,V3,M3,M4):- print(rule1).
Signal =:= on,

v1<5,
V2<5,
v3 > 10,
W1 :state(2).

apply-ruleO(Signa1,V 1 ,V2,V3,M3,M4):- print(rulel),
Signal =:= on,
v1> 10,
V2 < 5,
J2:condition(bad).

apply-rule 1 :-
C1> 0,
Jl:condition(bad).

apply-rule 1 : -
print(app1y-apriori),

a~riori-2.

solution-list([],PrintList,PrintLis t).
solution-list([component HcomplTcomps] ,PrintList,List 1):-

Hcomp:condition(Ccond),
Hcomp:state(Cstate),
Hcomp:name(Cname),
solution~list(Tcomps,[[Cname,Cstate]lPriist],Listl).

Figure 4-11
Abductive Part of The Power System Schema

We simulate diagnosis process by sending :

"Power:observation(on, 0.0, 0.0, 1 l.g).",
These are the data about voltages on all output terminals of the power
system, the signal coming from the key onloff, and the voltage from V1, V2,
and V3 consecutively. The system puts the engine structure a t state good
and this will checked whether i t they are consistent to the data or not.

Should any discrepancy occurs, the rules, a priori probability method and
the deductive process applies in order. In this particular example the

match between data and model results in two faulty components: Junction-
1 is open on terminal 1 and Junction-2 is open on terminal 3. Some of
diagnosis results is shown in the table 4-1. Those are based only the
deductive process without intervention of the abductive part.

12-Volt Power Supply System

Signal V1 V2 V3 M1 M2 M3 M4

off 11.9 0.0

off 0.0 0.0

on 0.0 0.0 11.9

on 0.0 0.0 11.9 11.9

on 0.0 0.0 11.9 0.0 11.9

Faulty Component(s)

All components are good

Fuse: broken.

J-1:open; J-2:open.

J-1:open; J-2:open; W-?:open.

W-2:open; W-?:open.

Table 4-1
Diagnosis Results

On the example #3 of table 4-1, we see that the result is not plausible to
occur in reality. The system hypothesizes J-1 to be open on the termindl

close to the battery. Therefore there is no voltage going out of output

terminals. Since the voltage at terminal-3 of 12-volt power supply system

(V3) is observed to be 11.9 volt, the system assumes that 5-2 to be broken

because it produces 11.9 volt at the output terminal although there is no

incoming voltage. The diagnosis proceeds by taking another measurement
at M4 (M4 = 11.9 volt). Even worse the system falsifies W-7 because it
produces V = 0.0 after receiving 11.9 volt coming from 5-2.

The diagnosis becomes reasonable when we apply the knowledge from
diagnostic procedure based on mechanic's experience. Given the

observational data of {Signal = on; V1 = 0.0; V2 = 0.0; V3 = 11.9; M4 = 11.91, it

activates a rule in the system knowledge base: "if M4 > 10.0 then J-1:
condition (good)". This rule applies and yields ECM-F:condition(blown) and
W-7:condition(open as the faulty components which are consistent with the
observations. The car owner's complaint is used in abductive part for
guessing the faulty component. Having the same observation above {Signal
= on; V1 = 0.0; V2 = 0.0; V3 = 11.9; M4 = 11.9) and the complaint from the car
owner: "dieselling", the diagnostic system recommends ECM-
F:condition(bad) and W-7:condition(open). The knowledge of diagnostic
procedures is incorporated in the abductive part of system knowledge bases.

Chapter 5
System Evaluation

This thesis has presented a model-based diagnosis system. We have
developed a system design which combines abductive and deductive
diagnosis. We have successfully integrated model-based diagnosis with the
use of heuristic knowledge. In this chapter, we examine the
implementation of the diagnostic system and examine its design. We also
discuss the applicability of system design t o real data, problems
encountered and a brief comparison with other systems found in the
literature.

5.1. Design Analysis

5.1.1. Deductive Model Issues

The use of deductive models is the key idea in this vehicle engine
diagnostic system. Models of component objects and generative function
states give great flexibility in adding, subtracting, modifying or replacing
the models according to the ones desired. Building a deductive model is a
continuous process and the model typically needs to be refined as the
system is used and tested.

The deductive model of a component is still very simple compared to the
actual component. The model is adequate but may not be ideally competent.
For example, to characterize a wire based on the voltage and current
coming and going from its terminal may be not sufficient. There are other
parameters such as impedance, grounding state or life-time factors which

affect wire behaviour. In fact the ideal competent model is an object in the
real world.

We only represent the failures which are worth representing in our
model [Hamscher,9Ob]. It is impossible to capture every detail of an actual
device in the model. For example, a mechanic usually replaces the whole of
a cable including a number of wires when it fails, although only one of
them may cause the failure. We can control this problem by separating the
distinguishable failures. If there are many faults with the same repair, we
treat them as one fault.

Modelling of predicted behaviour still has limitations. The ideal system
would capture transient events, but this is too expensive and is not available
in our system. We only predict behaviour over a stable long interval,
although this simplification seems to be reasonable so far to provide correct
diagnoses. We also use a level-based behavioural model. Behaviour is
represented a t the level of components which can be replaced by mechanics
and modeled by a knowledge engineers. We do not model the behaviour of
electrons in a wire, instead we represent the conditions of electrical current
or voltage.

We represent the physical organization of the artifact using primitive
components. Components must be represented in terms of observable
attributes and behavioural abstractions. The representation should
correspond to the possible failures of actual devices. On the other hand, we
only model failure modes for the components that have a high likelihood of
failure. We can not model failures which give rise to very complex
behaviour, but we will model a failure mode if it is simple enough to model
[Hamscher,9Ob]. There are encapsulated components that must be treated
as one component, although they consist of more than one primitive
component.

In the diagnosis process, the model does not necessarily know the input-
output 'values' coming and going between components at a particular state
as required by Struss [89]. GDE+ of [Struss,89] actually uses this knowledge
to exploit the contradiction between correct behavior and observation. In

contrast, our deductive model finds discrepancy based on the behavioural
description of each component and backtracks immediately to adjust the
whole structure. The deductive model enables the system t o find
malfunctioning components whenever an observation of the real world is
provided, therefore the technique of Struss[89] to confirm malfunctioning
components by observation is not necessary. Our system perform the next
probe if the current observations is not sufficient to recommend faulty
components.

5.1.2. Observational Abstraction Issues

Vehicle engine diagnosis is a difficult problem. It deals with a very
complex system. The system consists of components which has theories of
physics determining the input-output relationships among them.
Representation of the physical organization of components in a deductive
model requires corresponding information from a real-time data-
acquisition tool. The data available in the current system are adequate, but
could be improved to meet observation requirements. Most of them are
already in compiled form and more appropriate for a rule-based expert
system input data. This is because the tool was designed for a rule-based
type of diagnosis system. However, modification of the data acquisition tool
in the near future should be straightforward.

The measurement of data is considered much more expensive than the
computational cost of selecting them. It would cost more if we performed
observations over a long interval of time, therefore temporal abstraction in
observation is useful. The observation tool has limitations that may make
the system unable to localize faults. Sometimes it is too expensive to make
the precise observation that is needed to discriminate diagnoses. For
example, the pressure at a hose being 80 kPa or 100 kPa may cause
significantly different results in diagnoses, but this kind of precision may
not be economically feasible. Typically, the available data or mechanics only
know whether there is 'enough' pressure or not at a particular hose. The

diagnostic system requires input from a real time data acquisition tool. The

available data in the current system do not provide all the information
needed. Some data fulfill the requirements indirectly so that transformation
processes are needed.

5.1.3. Abductive Process Issues

The use of heuristics together with model-based diagnosis improves
system performance and gives a procedural meaning to diagnosis. For a
simple small system with few components, the use of rules seems to cover
almost all possibilities of diagnosis. But, for complex and big system, which
is the general case, i t is highly improbable to get a complete coverage in the
abduction part by using heuristics. The power of a deductive model could be
minimal for small problems but would increase with system complexity.

Combination of Deductive and Abductive Part

Performance

Deductive Process Only

Abductive Rules Applied

A priori Probabilty Applied

Abductive Part + Deductive Process

Diagnoses = Wire-2:open; Wire-7:open

-

-

Table 5-1

System Performances

Average Performance

(AT)

99 seconds

96 seconds

96 seconds

108 seconds

The a priori probability method also contributes to improving
performance. This method is a simple method that relies on the single-fault
assumption. The single-fault assumption decreases the number of possible
diagnoses. Table 5-1 shows the performance of the diagnostic system with

the uses of a pure deductive process and abduction part. The abductive part
is the use of rules and a priori likelihood of failures. We expect that the
rules are almost always correct. The use of rules increases the speed of
diagnosis and so does the a priori likelihood method. However, if the
abductive part fails, meaning that the rule applied is not consistent with
observations, it results in more time needed for the system to find

diagnoses.

Moreover, the performance shown on table 5-1 does not seem very
impressive. The current implementation of the diagnostic system does not
elaborate the abductive rules efficiently. When any component is
hypothesized to be in a different state, the Echidna reasoning engine
backtracks immediately. This results in inefficiency because this backtrack
may involve many choices a t the rules and model made during the
diagnosis. Unfortunately, we can not avoid this inefficient backtrack in the
current implementation, because Echidna does not provide the proper tool
to do so. Instead, we want to perform abductive rules by using the current
state of the diagnosed object plus the new hypothesis asserted in the rules
and then continue the diagnosis process. By doing so, we can maintain the
incremental notion of the diagnostic procedure. In the future, we need the
facility from Echidna to enable us t o create a clone of the current diagnosed
object which includes its entire deductive state. Using this clone, we can
then perform eficient backtrack search of its state as necessary to perform
diagnosis.

The use of the single-fault assumption in our system is not necessarily
inferior to the multiple-faults assumption of [deKleer,89]. The single-fault
assumption enables us t o find solutions very efficiently, whereas the
multiple-faults assumption which relies on multiple-context diagnosis
reasoning tends to be very expensive. The latter approach has an expensive
overhead in probabilistic computation required in finding global solutions.
We use a less expensive single-context based diagnosis reasoning to
produce one solution at one time. The cost of our method is to control and
discriminate solutions sequentially. This approach is natural and
reasonable, especially with the fact that the system always give the best
predicted solution first.

5.2. Computational Issues

We use an adequate model to represent real objects. This model might
maldiagnose when an important characterizing parameters is discarded.
This could cause the system to assume the faulty engine to be in a normal
state. Building an expert system is a continuous process and has to be
refined if there is new knowledge regarding to the deductive model or
abductive part. The domain expert who possesses a level of knowledge like
a mechanic should be able to update the generative model of functional
states or change the contents of the abductive rule-base.

The diagnosis process is performed in a monotonic fashion. Data
measurement taken on physical organization checkpoints is carried out
once and these data persist. Any new data supplied by the next probes
selected are in addition to the data already given. It also means diagnosis
refinement maintains monotonicity as well. The more data provided from
the outside world, the more constraints are applied and the smaller the
search space remaining in which to find hypotheses. Facts observed from
the real engine are persistent whereas the hypotheses are reversible, based
on dependency-directed backtracking.

The speed of computation is always an obstacle in diagnosis. Because of
the search, the system produces many alternatives and grows exponentially
according to the number of components in the engine. The diagnostic
system reduces the search space in localizing faults by using constraints.
This method together with the CLP constraint-solving-technique increases
the speed significantly [Havens,SOb].

Although the use of the single-fault assumption in abductive rules
limits the system, it has been helpful to overcome the combinatorial
problem in a diagnostic system. Yet, the use of this method still allows us to
have complete and correct diagnoses. We only use the single-fault
assumption in the abductive part, because it is impractical to enumerate all

combinations based on multiple faults. It is important to note that the
deductive model can capture multiple-faults, this may cause computational
cost too.

5.3. Comparative Results

Any model-based diagnosis system that models only correct behaviour
has limited performance, it loses additional diagnostic discrimination
power and the unlikely faulty modes are considered along with the most
likely ones. Sherlock [deKleer,89] uses behavioral modes which include
correct and fault modes and assigns a priori likelihood. Unfortunately the
use of behavioural modes results in a combinatorial problem as the number
of alternatives increases exponentially. Sherlock uses probabilistic
information to focus diagnoses. Like sherlock, our system uses behavioural
modes in diagnosis. In contrast to sherlock, we incorporate the shallow
knowledge including diagnosis procedure as parts of system's knowledge
bases. This abductive part controls diagnosis sequences and heuristically
suggests the next measurements required in discriminating diagnoses too.
Another system that combines the shallow and deep knowledge is [Abu-
Hanna,88].

Struss[89] controls diagnostic alternatives by concentrating on small
candidate sets which are more likely to fail. It uses the single-fault
assumption and argues that multiple faults can be treated as combinations
of single faults. His system applies a control strategies to overcome
combinatorial problem. It uses a method to confirm the correctness of
components and rules out the implausible diagnosis based on a
hypothetical value. Our system differs from [Struss,89] because our
system's knowledge-base does not need to know something like what is the
correct voltages in particular wire at any time. Instead, the model deduces
it based on behavioural descriptions.

Knowledge about physical structure and a component's behaviour in
carrying out its function is the crucial part of a model-based diagnostic

system. Hamscher[9Oa] uses separated physical and functional
organization in the knowledge base. This has caused technical problems in
coordination. Our system is the first among model-based diagnostic
systems which proposes an integrated model of fault and correct modes in a
deductive model. There is no coordination problem in our system.

Our diagnostic system uses behavioural modes and a simple probability
method. We use the single fault assumption in the probabilistic method for
the sake of efficiency. Our system captures multiple faults as deKleerl-891
does although we use a less expensive single-context reasoning diagnosis.
We use rules and probabilistic method to cope with combinatorial problems
and successfully combine model-based diagnosis with heuristics.

Chapter 6
Conclusion

The objectives of this thesis are t o design a model-based diagnosis design
and implement it in the Echidna constraint reasoning system. We have
proposed an architecture for a diagnostic system which combines a
deductive model and an abductive rule-base. The system has been
implemented in prototype form that can demonstrate the power of the
model-based approach in engine troubleshooting. We successfully built the
deductive model for parts of engine system namely 12-volt power supply
system and the CCP system. The model is sufficient t o test our system,
although hrther work is still needed t o make it more realistic.

The work done through the completion of this thesis gives us
experiences in using Echidna, a new CLP language, t o solve the diagnosis
problems. On the other hand, this work has been beneficial t o push the
research and development of the Echidna. We have explored the potential
power of Echidna t o enable a knowledge engineer t o build a model-based
diagnostic system. Echidna needs t o improve its feature t o enable the
designer t o make a copy of the complex object instance and provide the
control mechanism in order to capture multiple solutions at one time. This
feature is not available now, so that it restricts us to consider one solution at
one time in solving diagnostic problem.

Model-based diagnosis approach enables us to build a diagnostic system
for vehicle engine problems, the diagnostic system relies mainly on the
knowledge from design descriptions. It gives us the way t o avoid the
necessity t o enumerate exhaustively symptom-cause relationships.
Diagnosis is driven by discrepancy between observation and predicted
behaviour. In this system hypothesis generation is carried out based on

knowledge of internal processes and components' interrelationships. This
notion is very natural in diagnosis problem solving and ensures a high
degree of confidence for the diagnostic system.

We integrate correct and fault modes in the deductive model. Reasoning
in the deductive model is performed using a dependency-directed
backtracking algorithm. This algorithm is important in our diagnosis
system, it avoids thrashing behaviour. The use of heuristics for abduction
increases the speed and efficiency. Heuristics play a beneficial role when
the system faces obvious, well-known problems. The single-fault
assumption used in our probabilistic method is also worth noting. This
chosen strategy is a compromise solution for a system that doesn't consider
multiple-context in finding a global solution.

The use of heuristic rules only for a diagnostic system is not adequate.
Complete coverage is impossible to achieve. On the other hand, relying only
on a deductive model is adequate, but it is inefficient due to the system's
ignorance of the mechanic's experience in solving obvious problems.
Combining both of them is the ideal solution. Our system successfully puts
them together. We adopt the idea of differential diagnosis to discriminate
diagnoses. In differential diagnosis, the system imposes structure to solve
the problem. This technique considerably reduces search space.

The single-fault assumption may cause problems. DeKleer[89] has
shown the advantages of using multiple faults in diagnosis reasoning.
However, this approach also seems t o have its own problem. The multiple-
fault assumption requires a high overhead to consider all solutions at one
time, that may be unnecessary. Study of performance comparison of these
two approaches would be very useful.

This thesis demonstrates the beauty and potential power of the Echidna
constraint reasoning engine as a new-generation Expert System Shell. It
has a clean knowledge representation and supports constraint-based
hypothetical reasoning elegantly.

This work suggests further studies to improve performance. Continued
study on modelling of physical components is clearly needed to develop a
viable diagnosis system for engine troubleshooting. Incorporating
probabilistic information in the underlying system reasoning engine is also
worth investigating. The results of this study would enable us to use
multiple-context consideration applied at [deKleer,89]. It would be very
interesting to know the performance of our diagnostic system using that
approach. In the long run, adding the learning ability into the system could
be beneficial, because it leads to a more efficient system which tackles the
problems as quick as possible using a shallow level of knowledge.

Appendix

System Knowledge Base:

schema component
I

% type declarations :
conditionType Condition.
stateRange State.
Name.

% methods :
condition(Condition).
state(State).
name(Name).
mode.
build.

I

schema composite:component
I

% type declarations

component Clist.

% methods

schema fuse:component
{

% type declarations

voltageRange Voltl. currentRange CurrentInl.
voltageRange Volt2. currentRange CurrentOut2.

% accessors for persistant variables

% modes of operation
order mode.
mode:- % good state

Currentout2 =:= CurrentIn 1,
Volt2 =:= Voltl,

State =:= 0,
Condition =:= good.

mode:- % bad state - fuse blown
Currentout2 =:= 0,
CurrentInl =:= 0,
State =:= 1,
Condition =:= bad.

I

schema hose:component
{

% type declarations

pressRange Pressl. flowRateRange FlowInl. conditionType FlowCondl.
pressRange Press2. flowRateRange FlowOut2. conditionType FlowCond2.

% accessors for persistant variables

terminal 1 (Pressl ,FlowIn 1 ,FlowCond 1).
terminal2(Press2,FlowOut2,F1owCond2).

pressl(Press 1). flowout1 (FlowInl). flowCondl(FlowCondl).
press2(Press2). flowOut2(FlowOut2). flowCond2(FlowCond2).

% modes of operation
order mode.
mode:- % good state

FlowInl =:= FlowOut2,
Pressl =:= Press2,
FlowCond 1 =:= FlowCond2,

State =:= 0,
Condition =:= good.

mode:- % leaking state
FlowOut2 =k FlowInl,
Press1 =:= Press2,
State =:= 1,
Condition =:= bad.

mode:- % blocked state
Flowout2 =:= 0,
Flowhl =:= 0,
State =:= 2,
Condition =:= bad.

1

schema junction3:component

% type declarations

voltageRange Voltl . currentRange CurrentIn 1.
voltageRange Volt2. currentRange CurrentIn2.
voltageRange Volt3. currentRange CurrentIn3.

% accessors for persistant variables

% modes of operation
order mode.

mode:- % good condition
Voltl =:= Volt2,
Volt2 =:= Volt3,
CurrentInl + CurrentIn2 + CurrentIn3 =:= 0,

State =:= 0,
Condition =:= good.

mode:- % open circuit on 1
Currenth2 + CurrentIn3 =:= 0,
CurrentInl =:= 0,
Volt2 =:= Volt3.

State =:= 1,
Condition =:= bad.

mode:- % open circuit on 2
CurrentIn 1 + CurrentIn3 =:= 0,
CurrentIn2 =:= 0.
Voltl =:= Volt3,

State =:= 2,
Condition =:= bad.

mode:- % open circuit on 3
CurrentInl + CurrentIn2 =:= 0,
Currenth3 =:= 0,
Voltl =:= Volt2,

State =:= 3,
Condition =:= bad.

mode:- % shorted circuit
Voltl =:= Volt2,
Volt2 =:= Volt3.
CurrentInl + CurrentIn2 + CurrentIn3 =k 0,

State =:= 4,
Condition =:= bad.

1

schema switch:component
{

% type declarations

voltageRange Volt 1. currentRange CurrentIn 1.
voltageRange Volt2. currentRange CurrentOut2.
signalType Signal.

% accessors for persistant variables

tenninall(Voltl,CurrentInl).
tenninal2(Volt2,CurrentOut2).
volt1 (Voltl). currentInl(CurrentIn1).
volt2(Volt2). currentOut2(CurrentOut2).

signal(Signa1).

% modes of operation
order mode.
mode:- % Off condition

Signal =:= off,
CurrentInl =:= 0,
CurrentOut2 =:= 0,
State =:= 0,
Condition =:= good.

mode:- % On condition
Signal -.- -.- on,
CurrentInl =:= CurrentOut2,
Voltl =:= Volt2,

State =:= 1,
Condition =:= good.

mode:- % short circuit across throw
CurrentInl =:= CurrentOut2,
Voltl =:= Volt2,

State =:= 2,
Condition =:= bad.

mode:- % open circuit across throw
CurrentInl =:= 0,
CurrentOut2 =:= 0,

State =:= 3,
Condition =:=bad.

1

schema wire:compnent
(

% type declarations

voltageRange Volt 1. currentRange CurrentIn 1.
voltageRange Volt2. currentRange CurrentOut2.
voltl(Volt1). currentInl(CurrentIn1).
volt2(Volt2). currentOut2(CurrentOut2).

% accessors for persistant variables

terminal l(Volt1 ,CurrentInl).
terminal2(Volt2,CurrentOut2).

% modes of operation
order mode.
mode:- %good state

Voltl =:= Volt2.
CurrentIn 1 =:= CurrentOut2,
State =:= 0.
Condition =:= good.

mode:- % shorted state
Voltl =:= Volt2,
CurrentIn 1 =k CurrentOut2,
State =:= 1,
Condition =:=bad.

mode:- % open state
CurrentInl =:= 0,
CurrentOut2 =:= 0,
State =:= 2,
Condition =:=bad.

1

schema canister:component

% type declarations

pressRange Press 1. flowRateRange FlowOutl . conditionType Flowcondl .
pressRange Press2. flowRateRange FlowIn2. conditionType FlowCond2.
pressRange Press3. flowRateRange FlowIn3. conditionType FlowCond3.

% accessors for persistant variables

pressl(Press 1). flowout1 (FlowOutl). flowCondl(FlowCondl).
press2(Press2). flowOut2(FlowIn2). flowCond2(FlowCond2).

% modes of operation

order mode.

mode:- % good state, storing but not purging
Flowout1 < 5,
FlowIn2 < 5,
FlowIn3 > 50,
Press3 =:= Pressl,
State =:= 0,
Condition =:= good.

mode:- % good state, purging but not storing
FlowIn3 < 5,
FlowOutl =:= FlowIn2,

Pressl<press2,
Pressl =:= Press3,
State =:= 1,
Condition =:= good.

mode:- % good state, not storing nor purging
Flowout1 < 5,
Flow1113 < 5,
FlowIn2 < 5,
Pressl =:= Press3,
Pressl =:= Press2,
State =:= 2,
Condition =:= good.

mode:- % bad state, blocked inlet no. 2
FlowOutl < 5,
FlowIn2 < 5,
State =:= 3,
Condition =:= bad.

mode:- % bad state, blocked inlet no. 3
FlowIn3 < 5,
State =:= 4,
Condition =:= bad.

mode:- % bad state, leaking
FlowOut 1 =k FlowIn2,

State =:= 5,
Condition =:= bad.

schema pcv:component
I

% type declarations

pressRange Press 1. flowRateRange FlowOutl. conditionType FlowCondl.
pressRange Press2 flowRateRange FlowIn2. conditionType FlowCond2.
pressRange Press3. flowRateRange FlowIn3. conditionType FlowCond3.

% accessors for persistant variables

% modes of operation

order mode.

mode:- % Valve is closed by vacuum on terminal 1
Pressl<O.
FlowOutl < 5,
FlowIn2 < 5,
State =:= 0,
Condition =:= good.

mode:- % Valve is opened by pressure on terminal 2
Pressl >= 0,
Press2 > 80,
Pressl =:= Press2,
FlowOutl =:= FlowIn2,
FlowCondl =:= FlowCond2,
State =:= 1,
Condition =:= good.

mode:- % Valve is opened by vacuum on terminal 3
Pressl >= 0,
Press3 < 0,
Pressl =:= Press2,
FlowOutl =:= FlowIn2,
FlowCondl =:= FlowCond2,
State =:= 2,
Condition =:= good.

mode:- % Valve blocked
FlowIn2 < 5,
FlowOutl < 5,
State =:= 3,
Condition =:=bad.

mode:- % Valve stuck open
Pressl =:= Press2,
FlowOutl =:= FlowIn2,
State =:= 5,
Condition =:= bad.

mode:- % Valve restricted
Pressl =k Press2,
FlowOutl =:= FlowIn2,
State =:= 4,
Condition =:= bad.

mode:- % Valve leaking

FlowOutl =b FlowIn2,
State =:= 6,
Condition =:=bad.

I

schema so1enoid:component
{

% type declarations

pressRange Press1 . flowRateRange FlowOutl . conditionType FlowCondl .
pressRange Press2. flowRateRange FlowIn2. conditionType FlowCond2.
voltageRange Volt3. currentRange CurrentIn3.
voltageRange Volt4. currentRange CurrentOut4.

% accessors for persistant variables

pressl(Press1). flowout1 (FlowOutl). flowCondl(FlowCondl).
press2(Press2). flowIn2(FlowIn2). flowCond2(FlowCond2).
volt3(Volt3). currentIn3(CurrentIn3).
volt4(Volt4). currentOut4(CurrentOut4).

% modes of operation

order mode.

mode:- % good state (closed solenoid)
Flowoutl < 5,
FlowIn2 < 5,
Volt3 - Volt4 >= 9. % duty applied from ECM
Volt3 - Volt4 <= 16,
CurrentIn3 =:= CurrentOut4,

State =:= 0,
Condition =:= good.

mode:- % good state (open solenoid)
FlowOutl =:= FlowIn2,
FlowCondl =:= FlowCond2,
Press 1 =:= m 2 ,
CurrentIn3 < 5 , % Duty is not applied from ECM
Currentout4 < 5,
Volt3 =:= Volt4,

State =:= 1,
Condition =:= good.

mode:- % blocked state
Flowout1 < 5,
FlowIn2 < 5,
State =:= 2,
Condition =:= bad.

mode:- % stuck open state
FlowOutl =:= FlowIn2,

FlowCondl =:= FlowConM,
Press1 =:= Press2.
State =:= 3,
Condition =:= bad.

mode:- % restricted state
FlowOutl =:= FlowIn2,
FlowCondl =:= FlowCond2,
Press1 =k Press2,
State =:= 4,
Condition =:= bad.

mode:- % leaking state
FlowIn2 =k FlowOutl,

State =:= 5,
Condition =:= bad.

mode:- % contaminating state
FlowCondl =k FlowCond2,

State =:= 6,
Condition =:= bad.

schema ccp:composite
{

% type declarations

canister Can. pcv PCV. solenoid Sol.
hoseH1. hose H2. hose H3.
hose H5. hose H6.
wire W1. wire W2.

pressRange Press 1. flowRateRange FlowOutl . conditionType FlowCond 1.
voltageRange Vold. currentRange CurrentIn2.
voltageRange Volt3. currentRange CurrentOut3.
pressRange Press4. flowRateRange FlowIn4. conditionType FlowCond4.
pressRange Press5 flowRateRange FlowIn5. conditionType FlowCond5.
pressRange Press6. flowRateRange FlowOut6. conditionType FlowCond6.

% accessors for persistant variables

press l(Press1). flowOutl(FlowOutl). flowCondl(FlowCondl).
vold(Volt2). currentIn2(CurrentIn2).
volt3(Volt3). currentOut3(Curren tOut3).
presd(Press4). flowIn4(FlowIn4). flowCond4(FlowCond4).
press5(Press5). flowIn5(FlowIn5). flowCond5(FlowCond5).
press6(Press6). flowOut6(FlowOut6). flowCond6(FlowCond6).

order mode.
mode:-

Can:condition(good),
PCV:condition(good),
Sol:condition(good),
H1 :condition(good),
H2:condition(good),
H3:condition(good),
H5:condition(good),
H6:condition(good),
Wl:condition(good),
W2:condition(good),
condition(good).

% define components of system

build:- Can isa canister, Can:name(canister),
F'cV isa pcv, F'cV:name(presCV),
Sol isa solenoid, Sol:name(solenoid),
H1 isa hose, Hl:name(hosel),
H2 isa hose, II2.name(hose2),
H3 isa hose, H3:name(hose3),
H5 isa hose, H5:name(hoseS),
H6 isa hose, H6:name(hose6),
W1 isawire, Wl:name(wirel),
W2 isa wire, W2:name(wire2),

Clist = [SO~,C~~,PCV,H~,H~,H~,H~.H~,W~,W~],

% input/ouput parameters of system

% connections between components within system

Sol: terminal 1 (F'ressA,FlowA,CondA),
H1 :terrninall(F'ressA,FlowA,CondA),

Sol: terminal3(VoltC,CurrentC),
W 1 :terminal2(VoltC,CurrentC),

Sol: terminal4(VoltD,CurrentD).
W2:terminall (VoltD,CurrentD),

PCV:terminal3(PressI,flowRateRange Flow1,CondI).
H6:terminall (Press1,flowRateRange FlowIR,CondI),

FlowIR < 5.0 - FlowI,

..
%% Abductive Rut : %%

default:- print(accessing~deductive~model~ccp),
Can:&,
PCV :mode,
Sol :mode,
H 1 :mode,
H2mode,
H3:mode.
HS:mode,
H6:mode,
W1:mode.
W2:mode.

appl y-dataOCpl ,Fl):-
pressl(Pl),
flowout1 (Fl).

schema battery:component
{

voltageRange Volt. currentRange Currentout.

% accessors for persistant variables

% modes of operation

mode:- % good state, voltage between 9 and 16 volts
Volt >= 9,
Volt c= 16,
State =:= 0,
Condition =:= good.

mode:- % bad state, undercharged
Volt c 9,
State =:= 1.
Condition =:= bad.

mode:- % bad state, overcharged
Volt > 16,
State =:= 2,
Condition =:= bad.

I

schema igswitch:component
{

switch Switch. junction3 Junction.
. voltageRange Volt 1. currentRange CurrentIn 1.

voltageRange Volt2. currentRange CurrentOut2.
voltageRange Volt3. currentRange CurrentOut3.
signalType Signal.

% accessors for persistant variables

% define components of system

mode:- Switch isa switch,
Junction isa junction3,

% input/output parameters of system

% connections between components within system

% choose mode of operation for each component

% determine Condition and State of ignition switch

findmode:-
Switch:state(O),
Junction:state(O),
Signal =:= off,
State =:= 0,
Condition =:= good.

findmode:-
Switch:state(l),
Junction:state(O),
Signal =:= on,
State =:= 1,
Condition =:= good.

findmode:-
Switch:state(2),
Junction:state(l),
State =:= 2,
Condition =:= bad.

findmode:-
S witch:state(2),
Junction:state(2),
State =:= 3,
Condition =:= bad.

findmode:-
Switch:state(2),
Junction:state(3),
State =:= 4,
Condition =:= bad.

findmode:-
S witch:state(2),
Junction:state(4),
State =:= 5,
Condition =:= bad.

findmode:-
S witch:state(3),
Junction:state(l),
State =:= 6,
Condition =:= bad.

findmode:-
Switch:state(3),
Junction:state(2),

State =:= 7,
Condition =:= bad.

findmode:-
Switch:state(3),
Junction:state(3),
State =:= 8,
Condition =:= bad.

findmode:-
Switch:state(3),
Junction:state(4),
State =:= 9,
Condition =:= bad.

I

schema power:composite
(
% type declarations :

battery Battery. igswitch IS. fuse ECM-F.
wire W1. wire W2. wire W3.
wire W4. wire W5. wire W6. wire W7.
junction3 Jl. junction3 J2.

voltageRange Volt 1. currenaange CurrentOutl.
voltageRange Volt2. currenaange CurrentOut2.
voltageRange Volt3. currenaange CurrentOut3.
voltageRange Volt4. currenaange CurrentOut4.

signalType Signal.
real u1. real u2. real v1. real v2.
real V3. real M3. real M4. real C1.

% accessors for persistant variables

order mode.
mode:- print(accesingdefault~of~Power~System),
IS:condition(good),
Battery:condition(good),
W 1 :condition(good),
W2:condition(good),
W3:condition(good),
W4:condition(good),

% define components of system

build:- IS isa igswitch, IS:name(ignitionswitch),
Battery isa battery, Battery:name@attery),

W 1 isa wire, Wl:name(wirel),
W2 isa wire, ~name(wi re2) ,
W3 isa wire, W3:name(wire3).
W4 isa wire, W4:name(wire4),
W5 isa wire, WS:name(wireS),
W6 isa wire. W6:name(wire6),
W7 isa wire, W7:name(wire7),
J1 isa junction3, Jl:name(junctionl),
J2 isa junction3, J2:narne(junction2),
ECM-F isa fuse, ECM-F:name(ecmfuse),

Clist = [IS,Battery,Wl,W2.W3,W4,W5,W6,W7 Jl,J2,ECM-F],

% inputloutput parameters of system

% connections between components within system

Jl:terminal2(VoltC,currentRange CurrentC),
W2:terminall (VoltC,currentRange CurrentCC),

0-CurrentC =:= CurrentCC,

Jl:termina13(VoltD,currentRange CurrentD),
W5:terminall (VoltD,currentRange CurrentDD),

0-CurrentDD =:= CurrentDD,

ECM-F: terminal2(VoltI,CurrentI),
W3:terminall (VoltI,CurrentI),
W4: terminal 1 (VoltI,CurrentI),

W6:terminal2(VoltJ,currentRange CurrentJ),
J2:terminall (VoltJ,currentRange CurrentJJ),

@CurrentJJ =:= CurrentJJ,

..
%% Abductive Part : %%

owner-complain t(hard-start): -
1S:condi tion(bad).

observation-l(Signal,V l,V2,V3,M3,M4):-
default,

apply-dataO(Signal,V 1 ,V2,V3,M3,M4),
gene-diagnoses.

observation_2(M4):- apply_data2(M4),
generate-diagnoses.

applydataO(Signa1,V 1 ,V2,V3 ,M3 ,M4):-
%wwignal),
voltl(Vl),
vol t2(V2),
volr3(V3),
ECM-F: terminal2(M3 ,MM3),
J2: terrninal2(M4 ,MM4),
apply_ruleO(SignaI,Vl ,V2.V3 ,M3,M4).

a_priori.

apply-ruleO(Signa1,V 1 ,V2,V3,M3,M4):- print(rulel),
Signal =:= on,

v 2 > 10,
V1<5,
M3 > 10,

ECM-Fxondi tionbad).

apply-ruleO(Signa1,V 1 ,V2,V3,M3,M4):- print(rule1).
Signal =:= on,

V1<5,
V2 < 5,
v 3 > 10,
W;I:condition(bad).

apply_ruleO(Signal,Vl,V2,V3,M3,M4):- print(rulel),
Signal =:= on,

Vl < 5,
V2<5,
v 3 > 10,
Wl:state(2).

apply-ruleO(Signa1,V 1 ,V2,V3 ,M3 ,M4):- print(rulel),
Signal =:= on,

v 1 > 10,
V2 < 5,
J2:condi tion(bad).

measure 1 (C 1 ,a) : -
prin t(rule0-4).

apply-datal (C 1 , a) ,
apply-rule1 .

apply-data 1 (C 1 ,a) : -
currentOutl(C1).
currentOut5(C2).

apply-rule 1:-
C1> 10,
Jl:condition(good).

apply-rule 1 :-
C1>0,
J l:condition(bad).

apply-rule 1 :-
prin t(app1 y-apriori),

aqriori-2.

generate-diagnoses: -
solution~list(Clist,[],PrintList),

print(PrintList).

schema vehic1e:composite
{
% type declarations :

ccp a?.
power Power.

voltageRange Voltl. currentRange Currentl.
voltageRange Volt2 currentRange Current2.

order mode.
mode:- Power:condition(good),

CCP:condition(good),
condition(good).

% system components :
build:- Power isa power, Power:name@ower-system),

CCP isa ccp, CCPname(ccp-system),

Clist = power,CCP],

% connections between components within system :

Power:terminal2(VoltA,CurrentA),
CCP: terminal2(VoltA,CurrentA),

%default,

composite:: build.
..
%% Abductive h t : %%

% containing rule at level of Vehicle

observation-1 (Signal,Vl ,V2,V3,Cl ,C2):-
apply-dataO(Signa1,V 1 ,V2,V3,C 1 ,C2),

generate-diagnoses.

observation-1 (Signa1,Vl ,V2,V3,M4,Cl ,C2):-
apply-dataO(Signa1.V 1 ,V2,V3 ,M4,Cl ,C2),

generate-diagnoses.

observation-l(Signa1,Vl ,V2,V3,M3,M4,Cl,C2):-
default,
apply-dataO(SignaI,Vl,V2,V3,M3,M4,Cl,C2).

generate-diagnoses.

default-
Power mode,
CCP-mode.

I
vehicle Vehi.

Data File for Run Test:

load sys-vehicle.kb
load cl.kb

Vehi isa vehicle.
Vehi:build.

References

[Abu-Hanna,88] Abu-Hanna, A. and Gold, Y., An Integrated, Deep-
shallow expert system for multi-level diagnosis of
dynamic systems, in: J.S. Gero (ed.), Artificial
Intelligence in Engineering: Diagnosis and Learning,
Southhampton,75-94, 1988.

[Ah0,741 Aho, A.V., J.E. Hopcroft, J.D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley,1974.

[Bratko,86] Bratko, I. Prolog: Programming for Artificial
Intelligence, Addison-Wesley, 1986.

[Buchanan,84] Buchanan, Shortliffe (eds), Rule-Based Expert Systems :
The MYCIN Experiments of The Stanford Heuristics
Programming Project, Addison-Wesley, 84.

[Chevrolet,89] 1989 Celebrity Service Manual, Chevrolet-GM

[Cohen,90] Cohen, J . , Constraint Logic Programming,
Communications of the ACM, 33(7), pp. 52-68,90.

[Colmerauer,90] Colmerauer, A., An Introduction to Prolog 111,
Communications of the ACM, 33(7), pp.69-90,90

[Dague, 821 Dague, P., Deves, P., Raiman, O., Troubleshooting: when
Modelling is the Trouble, Proceedings of AAAI-87, 600-
610.

[Davis,82] Davis, R., Shrobe, H., Hamscher, W., Wiecker, K., Shirley,
M., and Polit, S., Diagnosis based on Structure and
Function. In Proceedings of AAAI-82, Pittsburgh,
Pennsylvania, 137- 142.

[Davis,84] Davis, R., Diagnostic Reasoning Based on Structure and
Behaviour, Artificial Intelligence 24 (1984) 347-410.

[de Kleer,84]

[de Kleer,86]

[de Kleer,87]

[de Kleer,89a]

[de Kleer,89b]

[de Kleer,90a]

[de Kleer,90b]

[de Kleer,90c]

[Fink ,8 63

Davis, R., and Hamscher, W., Model-based Reasoning:
Troubleshooting, in Exploring Artificial Intelligence,
edited by H.E. Shrobe and the American Association for
Artificial Intelligence, (Morgan Kaufman, 1988), 297-346.

de Kleer, J., An Assumption-Based Truth Maintenance
System, Artificial Intelligence 28 (1986), 127-162.

de Kleer, J., Extending the ATMS, Artificial Intelligence
28 (1986), 163-196.

de Kleer, J. and Williams, B.C, Diagnosing Multiple
Faults, Artificial Intelligence 32(1) (1987), 97-130.

de Kleer, J. and Williams, B.C, Diagnosis with Behavioral
Modes, in: Proceedings IJCAI-89, Detroit, MI (1989), 1324-
1330.

de Kleer, J., A Comparison of ATMS and CSP
Techniques, Proceedings IJCAI-89, Detroit, MI (1989),
290-296.

de Kleer, J., Exploiting Locality in a TMS, In Proceedings
of AAAI-90, 1990.

de Kleer, J., A.K. Mackworth, R. Reiter, Characterizing
Diagnoses, In Proceedings of AAAI-90, 1990.

de Kleer, J., Using Crude Probability Estimates to Guide
Diagnosis, Research Note, Artificial Intelligence, 45(3),
1990.

Doyle, J., A Truth Maintenance System, Artificial
Intelligence 12 (1979), 231-272.

Duffy, J.E., Auto Engines, The Goodheart-Willcox
Company, Inc, 1988.

Finin, T.; Morris, G., Abductive Reasoning in Multiple
Fault Diagnosis, Artificial Intelligence Review, 1989(3),
129-158.

Fink, P.K.; Lusth, J.C., A Second Generation Expert
System for Diagnosis and Repair of Mechanical and
Electrical Devices, SAE Technical Paper Series, 860337,
86.

Forbus, K.D., Qualitative Physics: Past, Present, and
Future, in Exploring Artificial Intelligence, edited by H.E.

Shrobe and the American Association for Artificial
Intelligence, (Morgan Kaufman, 1988), 239-296.

Forbus,88] Forbus, K.D., Intelligent Computer-Aided Engineering,
A1 Magazine, Fall- 88.

[Genesereth,82] Genesereth, M.R., Diagnosis Using Hierarchical Design
Models, in Proceedings AAAI-82, 278-283.

[Genesereth,84] Genesereth, M.R., The Use of Design Descriptions in
Automated Diagnosis, Artificial Intelligence 24 (1984),
41 1-436.

[Hamscher,84] Hamscher, W. and Davis, R., Diagnosis Circuit with state:
An inherently Underconstrained Problem, Proceedings
of -1-84, 142-147.

[Hamscher,87] Hamscher, W. and Davis, R., Issues in Model-Based
Troubleshooting. Memo 893, MIT Artificial Intelligence
Laboratory, 1987.

[Hamscher,891 Hamscher, W., Temporally Coarse Representation of
Behavior for Model-based Troubleshooting of Digital
Circuit, Proceedings IJCAI-89, Detroit, MI (1989).

[Hamscher,9Oa] Hamscher, W., XDE: Diagnosing Devices with Hierarchic
Structure and Known Component Failure Modes. IEEE
Conference on A1 Applications, 1990.

[Hamscher,9Ob] Hamscher, W., Modelling Digital Circuits for
Troubleshooting: An Overview, IEEE Conference on A1
Application, March 90

[Havens ,831 Havens, W.S., Recognition Mechanisms for Schema-
based Knowledge Representations, Comp. & Math. with
Appls., vol9, No 1, pp 185-189,1983.

[Havens,9Oa] Havens, W.S., J . Jones, C. Hunter, S. Joseph, A. Manaf,
Model-Based Automotive Diagnosis using the Echidna
Constraint Reasoning System, Pergamon Press Article,
1990.

CHavens,9Ob] Havens, W.S., S. Sidebottom, G. Sidebottom, J. Jones, M.
Cuperman, R. Davison, Echidna Constraint Reasoning
System: Next Generation Expert System Technology,
Simon Fraser University Technical Report, CSS-IS TR 90-
09.

[Havens ,9 11 Havens, W.S., Dataflow Dependency Backtracking in a
new CLP Language, proc AAAI Spring Symposium on
Constraint Reasoning, Stanford, Ca, pp 110-127,
March,l991.

[Jaffar,87a] Jaffar, J. and J.L. Lassez, Constraint Logic
Programming, In Proc. Fourteenth ACM POPL Conf.,
Munich, 1987.

[Jaffar,87b] Jaffar, J. and S. Michaylov, Methodology and
Implementation of a CLP System, In Proc. Fourth
International Conference in Logic Programming,
Melbourne, 1987.

[Joseph,89] Joseph, S., J. McCarney, A New Engine Analysis System
for Sensor and Actuator Related Problems, Proc. Future
Transportation Technology Conference and Exposition,
SAE 891726, Vancouver, B.C., 1989.

[Kowalski,79] Kowalski, R., Logic for Problem Solving, The Computer
Science Library, 1979.

[Klausmeier,86] Klausmeier, R., Using Artificial Intelligence in Vehicle
Diagnosis Systems, SAE Technical Paper Series, 861124,
86.

[Kline,89] Kline, P.J., S.B. Dollins, Designing Expert Systems: A
Guide t o Selecting Implementation Techniques, John
Wiley & Sons, 1989.

[Kuipers,84] Kuipers, B., Commonsense Reasoning about Causality:
Deriving Behavior from Structure, Artificial Intelligence,
24 (1984, pp. 169-203.

[Lee, 901 Lee, M.H.; Hunt, J.E.; Price, C. J.; Long, F.W., REPAIR : A
Model-Based Diagnosis System, UK IT 1990 Conference
pp. 266-270, Southharnptom, UK, 1990.

[Mackworth,77] Mackworth, A.K., Consistency in Network Relations,
Artificial Intelligence, 8, pp. 99-118, 1977.

[Mackworth,85] Mackworth, A.K., E.C. Freuder, The Complexity of Some
Polynomial Network Consistency Algorithm for
Constraint Satisfaction Problems, Artificial Intelligence,
25, pp.65-74,1985.

[Meyer,88] Meyer, B., Object-oriented Software Construction,
Prentice Hall, 1988.

[Nadel,90] Nadel, B.A., The Complexity of Constraint Satisfaction in
Prolog,In Proceedings of AAAI-90, 1990.

[Pereira,871 Pereira, F.C.N.,and S.M. Shieber, Prolog in Natural-
Language Analysis, CSLI lecture notes, 1987.

[Poole,88] Poole, D., A Logical Framework for Default Reasoning,
Artificial Intelligence, 36 (1988), pp. 27-47.

provan,881 Provan, G.M., The Computational Complexity of Multiple-
Context Truth Maintenance Systems, Technical Report
88- 11, University of British Columbia, Department of
Computer Science, 1988.

[Reiter,80] Reiter, R., A Logic for Default Reasoning,Artificial,
Intelligence 13 (1980), 81-132.

[Reiter,87] Reiter, R., A Theory of diagnosis from the first principles,
Artificial Intelligence 32 (1987), 57-95.

[%th,671 Roth, J.P., W.G. Bouricius, P.R. Schneider, Programmed
Algorithm to Compute Tests t o Detect and Distinguish
Faults in Logic Circuits, IEEE Transactions on
Electronics Computers, Vol EC-16 No 5, October 1967.

[Scarls ,851 Scarls, E., Jamieson, J.R. and Delaune, C.I., A Fault
Detection and Isolation Method Applied to Liquid Oxygen
Loading for Space Shuttle. In Proceedings IJCAI-85, Los
Angeles, CA, 414-416.

[Shiga,88] Shiga, H., S. Mizutani, Car Electronics, Nippondenso Co,
Ltd, 1988

[Sidebottom,9la] Sidebottom, G., W.S. Havens, Hierarchical Arc
Consistency Applied to Numeric Constraints Processing
in Logic Programming, Simon Fraser University
Technical Report, in preparation.

[Sidebottom,9lbl Sidebottom, S., W.S. Havens, M. Cuperman, R. Davison, G.
Sidebottom, Echidna Constraint Reasoning System:
Programming Guide, Tutorial and Manual Version 1,
Simon Farser University, 1991.

[Struss,881 Struss, P., Extensions to ATMS-based Diagnosis, in: J S .
Gero (ed.), Artificial Intelligence in Engineering:
Diagnosis and Learning, Southhampton, 3-28, 1988.

[Struss,89] Struss, P. and Dressler, O., "Physical Negationn-
Integrating Fault Fodels into the General Diagnosis
Engine, in: Proceedings IJCAI-89, Detroit, MI (1989),
13181323.

[Tomikashi,871 Tomikashi, M.; Kishi, N.; Kanegae, H.; Hino, A.,
Application of an Expert System to Engine
Troubleshooting, SAE Technical Paper Series, 870910,
1987.

Wu,90] Wu, T.D., Efficient Diagnosis of Multiple Disorders Based
on a Symptom Clustering Approach, In Proceedings of
AAAI-90, 1990.

[William ,901 William, B.C., Interaction-based Invention: Designing
Novel Devices from First Principles, In Proceedings of
AAAI-90,1990.

