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Abstract 

Developing engineering applications using expert systems has been an 
important driving force for research in expert system technology. The 
automotive diagnosis problem is one of the most challenging domain 
applications. Existing automotive diagnosis systems which rely solely on 
rule-based knowledge inherit many limitations. Model-based diagnosis is 
an area of active research which overcomes these limitations since it uses 
knowledge from first principles. 

This thesis provides a new model-based diagnosis system for automotive 
systems. Our architecture uses a deductive model as the main part and 
diagnostic rules to  increase the speed of diagnosis processes. We use both 
abductive and deductive reasoning t o  provide a more powerful diagnostic 
system. Both model-based techniques and heuristic knowledge are 
integrated in the system. We claim that our model makes a significant step 
towards the use of a generic model to  solve problems in many applications. 
The model integrates both correct and faulty behaviour using first-order 
logic and has a high degree of readibility and modifiability. We also use 
constraint satisfaction techniques that have been shown to  increase 
efficiency in A1 applications. 

We have developed a working prototype of a model-based diagnostic system. 
The system generates the list of faulty components based on observational 
input supplied to it. We use the Echidna reasoning engine, a new expert 
system shell being developed in the SFU Expert System Laboratory. 
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Chapter 1 
Introduction 

Knowledge about how something is supposed to work is very useful in 
determining why it has stopped working correctly. Model-based reasoning 

is based on the simple notion above. This has been an active research area 

particularly for the applications of diagnosis and troubleshooting [Davis,88]. 

Model-based diagnosis, which uses knowledge from first principles is 

more powerful than conventional rule-based systems [Reiter,87], 
[deKleer,87]. This approach reduces problems that conventional systems 

have such as limited coverage in symptom-cause relationships and poor 
performance of the system when dealing with problems which lie on the 

periphery of i ts  knowledge [Abu-Hanna,88]. Model-based architecture 

results in a more robust, reusable and maintainable diagnostic system 

[Lee ,901. 

Diagnosis is driven by discrepancies between observations and predicted 
behaviour. Hypotheses are generated based on knowledge about internal 

processes and components' interrelationships. This notion is very natural 
in diagnosis problem solving; i t  enables us to design a system that 

diagnoses elegantly. 

Rule-based diagnosis techniques, as have been used in some commercial 

systems, have major intrinsic limitations. Abductive rules are based on a 

weak notion of association between a set of observations and faults. I t  is 

very unlikely to provide complete coverage of symptom-cause associations, 

when there is an abundance of data such as data from sensors of a vehicle's 

electronic control module (ECM). Rule-based expert systems typically have 



degraded performance when they are faced with problems on the periphery 
of system knowledge. This type of diagnosis system must rely on heuristics 

derived from relationships between symptoms and faults and requires 

carefully tuned heuristic rules expressing domain knowledge. Rule-based 

diagnosis systems do not consider the device's physical structure and rely 
on abductive rules alone. 

Model-based systems are expected to  be better than the rule-based ones 
because model-based systems use a model describing the structure and 

function of the diagnosed objects. They are based on a theory associating the 

device's behaviour with its design or structure. A model-based diagnostic 

system ensures a high degree of confidence because a model can capture 

the essential features and structure of domain. It reasons from first 

principles so that i t  knows the device's internal processes and uses that 

knowledge to  determine which state of the device matches actual 
observations. The main disadvantage of this approach is the computational 

inefficiency. The model-based diagnostic system tends to  be very expensive 

because it uses search method and generate too many alternatives. Many 

researchers have been working in the area of model-based diagnosis 

systems, some of them are [deKleer,87], [Abu-Hanna,88], [deKleer,89], 

[Struss,89], [Hamscher,9Oa]. This thesis presents research results in the 
design and implementation of a model-based system for automotive 
diagnosis. 

1.1. Background 

Most passenger vehicles now use a computer to  control aspects of the 

engine. The computerized control system serves to  improve engine 

performance in general and fuel economy in particular. It also maintains 

good exhaust emission environmentally. The automobile control system 

continuously improves. This yields a better performance and more complete 

functionality but at  the same time it  becomes increasingly difficult for 

mechanics to  diagnose engine problems. A vehicle diagnosis system is 

needed to  help mechanics by providing a recommended procedure to fix 



specific types of problems. Although engine troubleshooting is known to be a 
hard task, expert systems have been developed to aid in troubleshooting. 
Some existing expert systems are surveyed in Chapter 2. 

Vehicle diagnosis is  a promising application of expert systems 
[Klausmeier,861. Using conventional rule-based expert systems to solve the 
engine diagnosis problem has proven to be a complex task [Fink,86], 
[Tomikashi,87]. The abundance of sensors and actuators involved in the 
engine control system is difficult to handle by using a rule-based approach, 
because it is almost impossible t o  cover the association between sensor's 
data and symptoms completely. Despite the difficulty of developing such a 
system, the expert system approach for vehicle diagnosis is very appealing. 
By taking advantage of knowledge about the engine, we can build a 
structural and behavioural model t o  develop a better diagnosis system. 

1.2. Proposed Work 

We adopt the notion of diagnosis as the process of finding the causes of 
any discrepancy between a device's correct behaviour and the observed 
behaviour [Genesereth,821, [Reiter,87]. The device could be a whole system, 
a subsystem o r  a physical primitive component. The model is a description 
of structure and behaviour. It also contains specific relationships among 
device components o r  a theory about the device that must hold in certain 
states. Component interrelationships could be relationships such as 
physical values passed between components or correlations between two 
adjacent components derived from the laws of physics. 

Diagnosis can also be seen as a process of model refinement according to 
observation or evidence [deKleer,84]. Any observation may lead to a 
discrepancy with the model. This discrepancy forces the model to be refined 
in order t o  match reality. By model refinement, we mean that the 
component's state responsible for the discrepancy is changed into a new 
state that  matches observation. This process, known as  hypothesis 
generation, is fundamental t o  diagnosis. 



Another major task in diagnosis is how to  distinguish among the 
hypotheses (diagnoses). The problem here is to  obtain the most valuable 
information from more than one possible additional measurement at  the 
lowest cost. We would like to  make additional obsewations to refine current 
diagnoses and incorporate cost functions to  decide which measurements 
would discriminate candidates most efficiently. A cost factor is taken into 
consideration in selecting measurements to localize the faults. 

We adopt the idea of differential diagnosis that is commonly used in 
medical applications. Differential diagnosis is the method of finding a 
correct diagnosis by ruling out all but one of the possible diagnoses. It 
enables a program to  solve problems without requiring complete 
obsewational data [Buchanan,84]. We assume that only one fault can occur 
at  one time. Multiple faults can be seen as a combination of single fault 
[Hamscher,9Oal. This assumption is reasonable, although not always true 
in reality [deKleer,9Oc]. Some differential diagnosis sets are provided and 
the program proceeds sequentially through each possibility. This method 
imposes an assumption to  solve the problem. The main disadvantage with 
this method is the system does not consider multiple faults. I t  only 
evaluates each suspected diagnosis independently. However, this method 
greatly increases efficiency by reducing a large set of candidates into a 
sequence of hypotheses involving a smaller set of candidates [Pople,82]. 

In this work, we propose a basic diagnostic architecture as shown in 
Figure 1-1. This basic schema is the refined architecture described in our 
preliminary work [Havens ,goal. 

The actual automobile engine is represented as an artifact. The system 
knows real engine conditions from observations supplied through a 
hardware interface. The observation includes vector of measurements such 
as temperatures, pressure at particular hoses, or voltages at  certain wires. 
All data about the artifact are interpreted subject to  the type of vehicle and 
year of manufacturing. McCar-EAS is the data acquisition system that has 
been developed to provide this real-time data by McCarney Technology, Inc.. 

This system is designed to analyze sensors and actuators accessed by the 



electronic control module. It is a system running on IBM AT'S and has the 

ability to  collect, record and display data from internal combustion engines 

[Joseph,89]. In our case, data measurements are recorded as data files to  
support model-based diagnosis. 

Interface - Hardware C = comparator 

Figure 1-1 
Diagnostic System Architecture 

behaviour 

Rule-based expert systems use abductive reasoning. Given the 

symptoms, they guess what causes the symptoms. Instead, our diagnostic 

system uses both abductive and deductive reasoning. Our system relies 

mainly on deductive reasoning as the backbone of the diagnosis process. It 

hypothesizes the state of devices and components and then deduces the 

consequences. The deductive process yields a number of conditions or 

behaviour descriptions which must hold given the initial hypothesis. The 

Abductive 
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hypothesis is retracted when it  doesn't match the behaviour observed a t  the 

actual device. 

We use composition hierarchy for knowledge representation. A complex 

object is composed of simple primitive components. A schema is a 

generative model of an object class. The model consists of characteristic 

parameter, components and constraints. Each parameter is  a variable 

associated with a domain of possible values. The type of parameters could be 
a Herbrand, which means that its domain is the universe of all syntactic 

entities. Instances of an object share a common set of parameters, 

components and constraints. Constraints between schema instances form a 

constraint network of the system. Composition and other semantic 

relationships among components are specified by logical methods within 

the schema [Havens,SOb]. 

Every component has functional states describing its behaviour for any 

possible condition. The model of component functional states is adequate 

and competent in some extent. The model is adequate in terms of the ability 
to characterize all possible states or behaviours of the artifact to some level 

of competency. By competent, meaning the model is a complete theory for 

characterizing the real object which contains all possible component states 

and their associated behavioural descriptions. We define all possible states 

for each component and use them as a complete set where the states of 

components can lie. This predefined set of states is the basis for diagnosis. 

The assumption of model competency has limitations and needs to be 

defined within the modelling abstraction. We can capture as  much of the 

component's physical behaviour as is required to give sufficient diagnosis. 

One may argue that complete competency of the model can never be 

achieved. The ideal model of a component is a real component itself. 

The behavioural description is a theoretical model which applies when a 
component is in a certain state. We can also view diagnosis as a reasoning 

process within the predefined possible states of the device. Deduction from 
this knowledge can be seen as a simple case of theory formation. We treat 

defaults as predefined possible hypotheses. The idea of theory formation 



from a fixed set of possible hypotheses is an essential and basic 
characterization of default reasoning [Poole,88]. 

The proposed default model without abductive rule-based reasoning 
involved is adequate t o  diagnose engine control related problems. The basic 
diagnostic theory illustrated in figure 1-1 is adequate to  solve the problem 
in a correct and complete fashion. However, the deductive process is slow 
because it does not inherit knowledge of diagnostic procedure. Deduction 
uses 'search' in finding a solution. The search mechanism uses the 
generate-and-test method which naturally generates many solutions and 
explodes exponentially when faced with a combinatorial problem. Therefore 
the deductive part is not procedurally efficient. We use abductive rules to 
gain efficiency. Abduction is a method to  guess diagnoses based on 
heuristics. This is more efficient than the generate-and-test method 
because it does not explore all the search space. However, there is no 
guarantee that the choice or assumption is correct. There is also no 
guarantee of completeness, the correct diagnosis may not even tried. 

Rule-based knowledge is applied to sort out obvious problems based on 
the mechanic's experience. Abductive part of knowledge-base always tries 
t o  make suggestions before the deductive process takes place. The abductive 
part includes rules and an a priori probability method. Since it is derived 
from compiled knowledge, i t  is not exhaustive. We also apply a simple 
probabilistic method in this abductive part. When rules can not find a 
matched hypothesis, the system hypothesizes based on a set of a priori 
failure probabilities for each component. The abductive process is efficient 
but it has limited power in diagnosis. On the other hand, the deductive 
process is complete but slow because it explores all the search space. 

A comparator is used in deductive processes. Its function is to  detect any 
discrepancy between observed behaviour and the behaviour predicted from 
deductive processes. This comparator is implicit and is used to test the 
component's state and all deduced consequences of i t  against actual 
observations. 



Our diagnosis system starts the diagnostic procedure by constructing a 
vehicle model and putting it  in a normal state. The normal state is made as 
the first state chosen in each default model. When no information or 

is supplied by the user, it is assumed that the vehicle is in its 
correct state, or 'normal'. Any complaint or data from actual observations 
can lead to discrepancies between current states and observations. This 
discrepancy causes the model to be refined by retracting inconsistent states 
of device components and assigning new ones that match observations. We 
apply rules to  find the explanation based on abductive reasoning. Then, the 
system deduces all consequences of the hypothesis suggested by the rules 
and compares them to the actual observations. The reasoning process 
within the deductive model relies on a backtracking mechanism 
[Havens,SObI. Diagnosis is over when there is no difference between model 
and artifact. 

The system is implemented in Echidna. Echidna supports logic 
programming language within the object-oriented paradigm. It supports 
model-based reasoning using schema knowledge representation. The k-ary 
arc consistency technique for constraint reasoning in Echidna help to  solve 
the problem efficiently [Havens,SOb], because it  preprocesses the search 
space before elaborating any goal. Echidna is a constraint-based reasoning 
engine that uses a truth maintenance system for dependency-directed 
backtracking. In contrast t o  [GDE,87], which uses multiple contexts, 
Echidna uses a single-context truth maintenance system. 

Our approach to diagnosis takes advantage of fault models in addition to 
correct behavioural models. The diagnostic procedure stops when no 
discrepancy occurs between predicted behaviour and the artifact. The 
system performs iterative diagnosis discrimination by suggesting 
additional measurements to localize the culprit. Another reason for the 
system to  stop diagnosis is when no more testing or measurements are 
economically reasonable to perform for candidate discrimination. 



1.3. Motivation 

There are an increasing number of engineering applications which use 

expert systems. Along with the development of the Echidna reasoning 

engine, a new generation expert system shell, we want to develop an 

appropriate challenging application that can drive forward research in this 

area. The engine diagnosis problem is a very suitable and interesting 

application as a domain for a model-based system. This type of engineering 

problem is especially good, because it has a firm basis for evaluating system 

performance. Engineering generally has  well-tested theoretical 

foundations, therefore the results of an  engine diagnosis system are 
testable. Formal techniques in engineering have roots in commonsense 

reasoning, because there is a broad range of competence and many kinds of 
knowledge are involved [Forbus,88]. These facts make it more suitable for 

A1 applications such as diagnosis systems. 

This work attempts t o  achieve the following research goals. The first 

goal is to design an  architecture for general diagnostic systems and 

implement i t  for the automobile engine diagnosis problem. 

The second goal is to build an engine model based on the found 

architecture. The model should be generic and can be used for any 
application related t o  engines, especially design and diagnosis. This 
attempt is strongly recommended by Forbus[88]. We introduce a general 

knowledge representation of the domain which is independent of any 

problem. 

The third goal is to demonstrate a working prototype of a model-based 

diagnostic system. We provide a diagnostic system for the problem which is 

recorded by the vehicle's electronic control module. 

The fourth goal is t o  evaluate, explore and examine the performance of a 

model-based reasoning system in Echidna. We evaluate and explore needs, 

capability, performance and features of an expert system shell to support 



model-based diagnosis that are instrumental in pushing forward the on- 
going development of the Echidna constraint reasoning engine. 



Chapter 2 

Related Research 
and 

Expert System Shell 

Model-based diagnosis is driven by the discrepancy between actual 

behaviour and predicted behaviour. The model is a theory of a complex 
object or device which incorporates structure, behaviour descriptions and 
specific relationships that must hold among its components. Diagnoses are 

generated by refining the model until i t  matches the device's actual 

condition. Diagnosis is typically an incremental process. We need some 

additional facts about the artifact to conclude better hypotheses (diagnoses). 

The diagnosis process is performed over several iterative cycles. We stop the 

diagnosis process after the suggested diagnoses are accepted, meaning that 
a match is obtained between predicted behaviour from the deductive model 

and actual behaviour from observations. 

Knowledge about correct models is required by model-based diagnosis 

systems. However, knowledge about fault models is often very useful; the 

use of fault models can increase the efficiency of model-based diagnosis. We 

integrate fault and correct modes in the deductive model. We also use an 

abductive rule-base to capture some well-known ways of device failure. We 

use Echidna, a constraint-based reasoning engine which applies a k-ary 

arc consistency algorithm [Mackworth,85]. Echidna also provides a clean 

knowledge representation system within the object-oriented paradigm. We 

write our knowledge base in first-order Horn Clauses. This enables us to 
design knowledge bases which are more understandable and readable than 

other existing systems. The following is a survey of related research in the 

area. 



2.1. Model-based Diagnosis 

The notion of using design information in automated diagnosis started 
by Roth[67] who used the test-generation algorithm. Geneserethr821 uses 
device specification and operation knowledge from first principles. The 
program called DART works only based on information about correct 
information modes; it has no information about how the diagnosed object 
fails. DART uses the 'suspect computation' and 'test generation' technique. 
DART'S algorithm is different from conventional test generation 
algorithms because it also takes advantage of the hierarchical structure of 
the device to  ensure the test generation algorithm remains manageable. 
The diagnosis reasoning is carried out in a pure deductive process. 

The main task of diagnosis is detecting faults. Scar1[84] uses functional 
relationships to  represent the diagnosed object. The functional relationship 
is used to  check the consistency of sensor measurements, after information 
about current state is given. These relations are inverted to  determine 
hypothetical values. Scarl's system propagates hypothetical values to  detect 
and localize faults. It calculates the implications of any values supplied 
with respect to current state and checks them against each suspect in the 
network relationship. DeKleer[84] uses causal analysis to  evaluate plausible 
faults. The causal analysis method basically uses component connectivity to 
explain the behaviour of composite systems. After substituting a faulty 
component it continues with causal analysis again. Causal analysis can 
run through "down stream" and "up stream" along the physical structure. 
DeKleer[87] considers input-ouput relationships between upstream- 
downstream components of the physical lay out. This can be done easily due 
to  the nature of multiple context paradigm incorporated in the underlying 
reasoning engine. This system uses an assumption-based truth 
maintenance system (ATMS) to keeping track of the current solution and 
its related assumption. It incorporates probability and information theory 
into the ATMS' mechanism. GDE+ [Struss,89] exploits contradictions 



between assumed correct behaviour and obsemations; therefore it needs to  
know the 'value' of a component's output in particular states. 

Model-based systems embody behavioural models of a device. 
Behavioural descriptions are represented as input-output relationships in 

[Genesereth,82] and are typically characterized in terms of the hierarchical 

nature of devices because device structure is specified by describing its 

parts. Equal [deKleer,84] incorporates commonsense knowledge together 
with quantitative knowledge to predict the behaviour of a composite system. 
It relies solely on a qualitative model and doesn't contain enough 
quantitative knowledge from the design point of view. This leads to  a less 

powerful system to find inconsistences between the predicted behaviour and 
observed behaviour. The predictive procedure may fail t o  detect conflicts. 

Dague[87] models the structure and behaviour of the diagnosed object in 

order to  bridge the gap between presumed correct behaviour and actual 

observations. Models may fail because they are oversimplified; for example, 

a healthy component may sometimes behave beyond its normal model. 

Dague's system considers the possibility of multiple behaviour patterns. 

Several models are required to  describe a component's behaviour. His 

system, called Dedale, uses the knowledge of a human expert to model 
behaviour. Dague's system uses models to  reason and has a set of 

assumptions related to  the particular symptoms given. Instead of using 
several models, we use a single model with modes for each component. One 

mode of behaviour could be manifested in more than one way. For example, 

a primitive component such as a fuse may have a good and bad mode and it 
could be in bad mode in more than one way such as shorted or open. 

Genesereth[82] uses a deductive procedure within each level of a 
compositional hierarchy in order to  perform model refinement. The 

symptoms are expressed as violations of expected behaviour. When a 

symptom is found, all parts under that level are suspected. The next step is 

to  test each suspect by a kind of test which expects certain output given any 

particular input. If the output doesn't agree with expectation then the 

underlying part must be broken and needs to  be investigated further. This 

process goes on level by level. His system, called DART, uses composition 

structure to  describe a device and how its parts interconnect. The lowest- 

i 



level parts in a compositional hierarchy are the primitive components. GDE 
of [deKleer,87] is a model-based diagnosis system that can handle multiple 

faults. Since it doesn't use fault models, it has a drawback, in that it 
provides implausible diagnoses in the real world even though they may be 

possible logically. 

In [Genesereth,82] a high level of abstraction is used to determine the 

major subcomponents in which the fault lies. Scar1[84] uses frames to 

describe each potentially faulty component and can only deal with a single 

fault a t  one diagnostic cycle. GDE [deKleer,87] attempts to detect fault in a 
different way. Suspects are represented and manipulated in terms of 
minimal sets of candidates. GDE uses an incremental diagnosis procedure 

by exploiting the iterative nature of diagnosis. It is a general system and 
can be used for domain-independent diagnosis because of the separation 

between diagnosis and behaviour prediction. GDE combines model-based 

prediction and sequential measurements to localize the faults. It uses 

conditional probabilities based on structure. GDE applies a one-step 

lookahead technique to  ensure the best next measurements. GDE uses 

minimum entropy calculation to  select the next measurements taken. The 

method is to  find the measurements which lead to  minimal additional 
measurements required to localize faults. Minimum entropy is a 

calculation derived from probability and information theory. This 

calculation is incorporated in the reasoning engine. The best measurement 
to  take is the one which leads to  minimum expected entropy of the resultant 

candidate probabilities. GDE needs some known values to  deduce the values 

of system parameters. The diagnosis stops when the probability of a faulty 

component is high enough or when the next measurement is too costly to 

perform. 

Struss[89] proposed an approach that has advantages over the original 

GDE. It has the ability to  prove the correctness of components and to rule 
out implausible diagnostic hypotheses. His system, called GDE +, also 

confirms whether malfunctioning components are consistent with 

observations. He argues that a component will fail in a deterministic 

manner instead of a completely unconstrained manner, therefore it is 

possible to  have known fault models. GDE+ uses extended ATMS which is 



capable of handling 'negation' and 'disjunction'. It incorporates fault 
models by extending the capability of the GDE reasoning engine (ATMS) 

with these new features. The diagnostic process is done by gathering 

information in a cycle that decides which correctness assumptions should 

be retracted. GDE+ explains and confirms its diagnosis by analyzing 
whether the malfunction of components is consistent with observed 

behaviour. Specific knowledge about what happens when a fault occurs is 

required. It uses resolution rules and controls reasoning to  introduce 
appropriate fault models. Fault models are used only when necessary. 

SHERLOCK [deKleer,89] uses a theory of faulty components. It identifies 
failures without necessarily knowing how components fail. It uses the 

model of behavioural modes and probability theory about the likelihood of 
each mode of behaviour. In Sherlock, diagnostic discrimination is derived 

from knowledge about the likely ways a component may fail. It determines 

whether these failure modes are consistent with observations. There is a 
high chance that an unlikely diagnosis will be treated as seriously as a 

likely one because it does not use the knowledge of diagnosis procedure 

derived from the human experts. Sherlock uses modes to discriminate 

diagnoses. If one mode is supported favourably by evidence, it lowers the 

probability of others. A component always belongs to  a certain mode. The 

manipulation of behavioural modes and modification to  focus ATMS are the 

main difference between Sherlock and the previous system described, GDE. 
It represents candidates as a list of components with assigned modes. 

Components fail independently and there is prior probability of finding a 

component in a particular mode. In Sherlock, the sum of components' 
probability is constant, so if a candidate is eliminated the other's probability 

will increase. The diagnostic task is to  identify behavioural modes of all 

components. 

The limitation of the model vocabulary causes a problem in localizing 

every fault. [Genesereth,82] suffers from this problem. GDE [deKleer,871 

only uses correct models and doesn't require an explicit fault model. 

Because GDE lacks important diagnostic reasoning knowledge about 

incorrect behaviour it also suffers from the phenomenon where a predicted 

faulty component may not explain symptoms. On the other hand [Struss,89] 



depends upon the completeness of fault models, otherwise it can give wrong 
diagnoses. It assumes a typical known fault model occurs first and 
manages to  get rid of implausible diagnoses. DeKleer[89] uses correct, fault 
and unknown modes. Each of them may have more than one model and 
more than one observation can result in different good modes. It focuses on 
more probable diagnoses to  reduce alternative diagnoses. Sherlock requires 
a modification of ATMS that can focus on more probable diagnoses. This 
work shows again that exploiting fault models is a very active research 
area in diagnosis problem. It confirms that fault models are useful to 
pinpoint a faulty component quickly and to determine a specific repair to 
the faulty components. 

Combinatorial explosion is a problem which occurs in diagnosis because 
the program uses search mechanism and generates many alternative 
diagnoses. Genesereth[82] incorporates constraint propagation techniques 
in reasoning to  alleviate the combinatorial explosion problem. The design 
language and diagnostic procedure used postpones the instantiation of 
variables as long as possible. The restricted design description used in 
DART suppresses enough detail to  reduce the cost compared to  the use of 
the full-blown description. The generate-and-test process also benefits from 
structural abstraction. DART relies heavily on the existence of a design 
description. Computational efficiency still remains a problem in this 
system, because there is a trade off arising from the generality of the 
system. DART needs to  enhance its knowledge involved in stages of 
diagnosis. DART has not included the cost of testing and diagnostic value of 
tests in discriminating and testing hypotheses. GDE+ [Struss,89] uses 
control strategies to  overcome the combinatorial problem. The use of the 
one fault assumption also reduces this inherent problem of diagnosis. 

Hamscher[SOa] incorporates hierarchic diagnosis and fault models into 
GDE. He dealt with the combinatorial problem by introducing an explicit 
context-switching mechanism into the ATMS. His system, called XDE, 
reduces the cost of reasoning by representing structure at multiple levels of 
abstraction and eliminating portions of the device from consideration by 
localizing the problem in the simplest model first. It only proceeds into 
detail when needed. To avoid an implausible diagnosis, XDE focuses on 



components that are statistically plausible rather than those which are 
logically possible. This approach is used in addition to  fault models. 

XDE adds two more intermediate procedures before suggesting next 
probes. The first is a diagnostic decomposition procedure based on 
hierarchical structure. It has a 'physical hierarchy' containing all 
assumptions about which components are working. The decomposition 
process descends through this hierarchical structure, replacing an 
assumption of an upper-level component by the changes in the 
assumptions of its subcomponents. The second is a refinement procedure 
which uses fault models to eliminate unnecessary diagnoses. XDE uses 
some thresholds to decide whether diagnoses can proceed into refinement, 
decomposition, and finally probe selection step in discriminating 
candidates. 

Similar to  GDE, XDE works from the knowledge of expected output of a 
particular component. It only has one possible model for modes, in contrast 
to GDE. Refinement based on fault model exacerbates the combinatorial 
problem. XDE system research implies that further research is needed t o  

find a more flexible control structure. It also suggests the need for research 
to confirm the efficiency of explicit context switching as compared with 
GDE. 

XDE chooses the next probe by using fault models and hierarchical 
organization. It uses the fault models to  rule out implausible suspects and 
reasons downward through the hierarchical organization. Assumptions 
about fault components only appear in the physical hierarchy and 
behavioural models appear in the functional hierarchy. Coordination 
between these two hierarchies causes a potential technical problem in 
addition to combinatorial complexity. XDE invokes the behaviour model 
when it contains the immediate physical subcomponents. 

Our system uses a deductive model as the main system knowledge base. 
The deductive model gives descriptions of correct and fault models. This is 
considered as deep knowledge in our system. We apply rule-based 
knowledge before using deep knowledge. The rule-base acts as the shallow 



knowledge and is not 
has the capability of 

necessarily exhaustive. The [Abu-Hanna,88] system 
learning from deep knowledge and "compiling" the 

knowledge at a shallow level of abstraction. This helps in subsequent cases. 
The new shallow expertise regarding links between faults and symptoms is 
constructed after expertise is used at the deep knowledge level. It uses a 
model of pathological failure at lower level components. 

Our diagnosis system captures engine conditions at  certain periods of 
time. Engine conditions are assumed invariant at  diagnosis time. This 
assumption of non-intermittent faults is reasonable, although it could be 
false in general. DE [Abu-Hanna,88] assumes there are no intermittent 
faults when tests are applied to  check the consistency of suspected 
components. Hamscher[SOa] uses an independent failure assumption, this 
is a very strong simplifying assumption, although still not as strong as the 
assumption of independent effect that Mycin [Buchanan,84] makes. The 
probability of a component working is the product of the possibilities that 
each of its subcomponents works independently. The probability of 
diagnoses in the XDE program is merely a conjunction of the assumptions. 
X D E  needs two hierarchical models and it only uses fault model for 
heuristic method which is not necessarily exhaustive. 

One advantage of model-based diagnosis is the separation between the 
diagnostic procedure and the design knowledge about the device. In 
[Genesereth,82] all device dependent information, which expresses a theory 
about the object, is separated from knowledge about the diagnosis process 
and is captured within its design description. DeKleer[87] separates the 
diagnosis process and the sequencing procedure to localize faults. Abu- 
Hanna[88] also adopts the same notion of separation between diagnosis 
methodology and knowledge about device. 

Our system uses physical connectivity to  represent the low-level 
organization of the device. The compositional hierarchy is used as a meta- 
level view of the physical structure and represents a "part of' hierarchy in 
physical structure. In [Hamscher,SOa], the physical composition hierarchy 
expresses the physical structure as "part-of' relationships. It knows which 
component is working; a component is working if all of its subcomponents 



are working. The functional composition hierarchy contains behavioural 
models. There is a technical problem in matching reasoning in the physical 
and functional hierarchies in which the behavioural model lies. This is 
because the diagnosis proceeds through the physical organization. The 
physical organization does not inherit behavioural descriptions. A 
component's behavioural descriptions are invoked when it is suspected as 
faulty. 

[Genesereth,84] uses a knowledge base represented as a model written 
in a series of propositions in a variant of prefix predicate calculus. I t  
prefers executing tests to generating a diagnosis tree, because of the high 
computational cost for constructing diagnostic trees. DE [Abu-Hanna,88] 
uses Prolog as its reasoning engine and uses qualitative together with 
quantitative rules. If there are no qualitative rules which apply directly to  
the current suspects, i t  uses quantitative models of the subcomponent to  
further investigation. I t  records a history of property values of each 
component while a hypothesis is applied. This information is used for the 
next improvement of higher level behavioural rules. DE takes advantage of 
compiled knowledge before starting diagnosis sequences. The success of DE 
suggests further research on the use of the object oriented approach in 
diagnostic systems. 

2.2. Automobile Diagnosis 

The problem of automotive diagnosis has been considered particularly 
challenging. Although it is a difficult task, automotive diagnosis is a 
promising and feasible application of expert systems [Tomikashi,87]. Our 
goal is to provide a model-based system for automobile diagnosis. 
Specifically, we only deal with problems which are recorded on the 
electronic control module. 

KZausmeier[86] explores the concept of using an expert system as an 
external diagnostic aid in repairs. His system attempts to  diagnose engine 
problems using a rule-based approach. Knowledge is extracted from a 



drivability diagnosis manual[Chevrolet,891. In  this example, the system 

assumes that  there is no problem in the electronic control module (ECM) or 

in  the electronic circuit. I t  also requires pre-examination of mechanical 

problems before diagnosis proceeds. Although expert system technology 

seems to help mechanics in  garages [Joseph,89], this work suggests that  

the complexity of the problem and the difficulty of establishing knowledge 
has delayed commercial uses of vehicle engine-related-problem diagnosis 

systems. Another work dealing with electronic-controlled engine diagnosis 

i s  [Tomikashi,87]. This work came up with the same conclusion; it is 
possible to arrange and store the knowledge of mechanics to develop such a 
diagnostic system. 

All the  automobile engine diagnosis systems above a re  rule-based 

systems. Rule-based systems have only been successful because of carefully 
arranged knowledge concerning the domain. They have a poor capability 

for explanation and their performance degrades significantly when faced 

with problems a t  the boundary of their knowledge. They contain only 

abductive knowledge that  does not use any deep theory about the diagnosed 

devices. Therefore, they are best for domains lacking a theoretical basis e.g. 

medicine, business, financial domains [Buchanan,841. 

Realizing the serious limitations of the rule-based approach, Fink[86] 

developed the integrated diagnostic method (IDM) to integrate shallow 

knowledge, derived from empirical experience, and deep knowledge based 
on the functional knowledge of physical devices. This work applies the 

model-based approach to diagnosing mechanical and electrical devices in 
general, although it was intended particularly as a n  electronic control 

engine problem troubleshooter. IDM uses two separate knowledge bases for 

shallow knowledge and deep knowledge. Each has its own inference engine. 

Coordination and control between these two separate modules is performed 

by a controller module. This system includes qualitative modelling of faulty 

and correct behaviour. 

Lee[SO] attempted to provide a model-based diagnostic system for 

engines. This system, called Repair ,  is being developed after studying 

various domain applications developed for repairing systems. Repair uses a 



model describing physical structure and device behaviour. It models the 
components of a device and the ways in which these components are linked 
together. 

2.3. Expert System Shell 

Echidna is the underlying reasoning engine we use for our diagnosis 
system. It  allows us to represent a knowledge base in object-oriented form. 
It  also provides a constraint reasoning engine we need to solve diagnosis 
problems. Echidna is a new CLP Language with objects and a dependency 
backtracking mechanism [Havens,91]. 

There are many expert system technologies available to support the 
automatic deduction needed in diagnostic systems. What we need is a 
symbolic logic system that captures the notions of logical consequence with 
formalism and can be done mechanically. Prolog, a logic programming 
language, is  a good candidate to provide a basis for expert system 
technology [Merritt,89]. This is a declarative language and structured in 
terms of relations. This notion yields many powerful ramifications for logic 
programs, one of which is reasoning with non-deterministic behaviour 
[Pereira,87]. Although it is a declarative language, it has a procedural 
interpretation. 

Since it is a high-level language and because of the clean formalism it 
has, Prolog is a good programming language for applications in  AI, 
databases and engineering [Kowalski,79]. Prolog also seems to have a close 
relationship with constraint satisfaction problem solving [Nadel,90]. 
However, Prolog is known to suffer from thrashing behaviour which is a 
consequence of backtrack search. 

There have been some attempts to overcome this problem by introducing 
constraints into Prolog such as  CLP(R), Prolog II and Prolog III  
[Colmerauer,90]. CLP has successfully added constraints in  logic 
programming while maintaining basic theorem of first-order predicate 



calculus [Cohen,90]. There are many good reasons to  choose CLP languages 
for building diagnostic systems. The non-deterministic feature of CLP and 
the use of constraints makes CLP very efficient for implementing a 
diagnostic system [Colmerauer,SO]. 

Data structure and knowledge representation schemes are the major 
considerations in diagnostic system design. The object-oriented approach 
allows powerful knowledge abstraction [Meyer,88]. The "objects" in our 
model reflect real world objects. We need to  develop operation that are 
applicable to  certain objects and specify the effect of each operation. The 
object-oriented approach seems to be beneficial for diagnostic system 
construction design. 

2.3.1. Echidna 

Echidna is a new generation of expert system shell that provides object- 
oriented representation and embeds constraints in logic programming 
[Havens,SOb]. It uses active constraint reasoning techniques to  detect failure 
in the search more efficiently. When failure is detected, i t  uses a 
dependency-directed backtracking algorithm t o  avoid unnecessary 
computation. Echidna is a CLP language with an object-oriented - - -- -- - schema 
representation. Echidna is a good choice to  implement our diagnostic 
system, because it fits very well with the natural ontology of constraint- 
based hypothetical reasoning that we use in our system [Havens,SObI, 
[Havens,91]. It is the only available language that provides constraint 
reasoning techniques with a good schema representation in our knowledge. 

Echidna is a theorem prover which deals with Horn Clauses. A clause is 
an expression of the form H:- B1, B2, ..., Bn. where H and B1, B2, ..., Bn. are 
terms. H is the head and B1, B2, ..., Bn. are the subgoals. For example : 

"state(good):- VoltIn =:= VoltOut, CurrentIn =:= Currentout." 
Unification is a substitution which makes the two terms identical such as 
state(State) and state(good). These terms unify because they have common 
unifier { State = good ). Echidna applies an interpreter to  answer queries 



issued. The interpreter generates 'yes' when the query succeeds and 'no' 
when the query is not deducible from the program. 

Knowledge of particular domain is represented in the form of schemata. -- 
Schemata is an object-oriented programming language paradigm adapted 
to CLP. The following is an example of a simple Echidna knowledge base. 

schema wire:component 
( 
% type declarations 

voltageRange Volt 1. currentRange CurrentInl. 
voltageRange VOW. currentRange CurrentOut2. 
voltl(Volt1). currentInl(CurrentIn1). 
voM(Volt2). currentOut2(CurrentOut2). 

% accessors for persistant variables 
terminal1 (Voltl ,CurrentInl). 
terminal2(Volt2,CurrentOut2). 

% modes of operation 
order mode. 
mode:- % good state 

Voltl =:= v o w ,  
CurrentInl =:= CurrentOut2, 
State =:= 0, 
Condition =:= good. 

mode:- % shorted state 
Voltl =:= Volt2, 
CurrentInl =\= CurrentOut2, 
State =:= 1, 
Condition =:= bad. 

mode:- % open state 
CurrentInl =:= 0, 
CurrentOut2 =:= 0, 
State =:= 2, 
Condition =:= bad. 

Figure 2-1 

The Echidna Schema 



A variable in Echidna is a sequence of characters which begin with an  
upper case letter or underscore (-). A Variable is bound to a domain over 
which the variable ranges when it is referenced at  the first time. A variable 
can be over an Herbrand and also it can ranges over discrete and real 
intervals. For example : 

(good,shorted,open) State. 
voltRange VoltIn. 

Objects in knowledge base are organized into classes. Each class is  
defined by a schema. A schema is a model for a real object and can be 
instantiated when needed. Each schema may contain definitions or 
methods. The more details about Echidna is explained throughout this 
thesis. 



Chapter 3 
Diagnosis System Design 

3.1. System Overview 

In this chapter, we present a model-based expert system for diagnosing 
computer-controlled engine malfunctions. The system uses a knowledge 

base of engine models. Our model includes the description of correct and 

faulty engine behaviour. We also incorporate rule-based knowledge to 

improve system performance. This abductive rule-base uses heuristics and 

a priori likelihood of failures of each component. In fact, our system's 

knowledge-base has both deep and shallow knowledge. The deep knowledge 

is the deductive model which includes correct and faulty behaviour. The 
shallow knowledge is an abductive rule-base based on heuristics. 

3.1.1. Model-based Diagnosis 

Model-based diagnosis is carried out using the interaction between 

predictions and observations. Observations come from the measurements 

taken or complaints of the car owner. Predictions are the behavioural 

descriptions derived from the assumption within the deductive model in the 

form which can be compared to the observations. Discrepancies between 

actual and predicted behaviour drive the diagnosis process which traces the 

possible causes of the problem described within the deductive model. For 

example, consider a wire. At one time the wire may be in 'good' state. (We 

use the terms 'state' and 'mode' interchangeably with the same meaning). 

The discrepancy between predictions and observations from this 

assumption may cause the state of the wire to be changed in the model. The 



change of the model is performed automatically using backtrack every time 
a discrepancy occurs in the deductive process. 

The model-based approach is powerful, because it enables the diagnostic 
system t o  diagnose single or multiple faults for various kinds of engine 
[Hamscher,SOb]. We can use the same architecture to diagnose any device 
by substituting the models with the required ones. Unfortunately the cost of 
reasoning is a major problem in the model-based diagnosis. It can generate 
too many alternatives that are logically possible. In the worst case i t  has 
complexity of O(kn) [Aho,74], where k represents the number of modes of 
each component and n is the number of components comprising the whole 
device. 

We deal with the combinatorial explosion problem by using the abductive 
rules t o  eliminate the less likely alternatives. Instead of letting a 
backtracking mechanism explore the search space, we apply heuristics for 
some obvious symptoms. We use rules of thumb to guess the culprits. This 
strategy avoids the exhaustive backtrack search within the deductive model. 
If there is no rule which can give a correct 'guess', the system uses the 
single-fault assumption and makes a hypothesis based on the ordered 
probability of failures amongst components. We should make it clear that 
this single-fault assumption is needed because our system does not 
consider the effects of multiple-faults. However, the diagnostic system can 
still detect more than one faults whenever i t  is consistent to the predicted 
behaviour deduced in the deductive model. 

We construct the engine model by defining schemata which contain 
methods in the form of logical horn clauses. The left-hand part is a non- 
negated literal that becomes the head of the clause. The right-hand part is 
conjoined to form the body of the clause. The possible modes of a component 

in the deductive model are represented as the heads of the clause. The body 
represents subgoals that must hold for the underlying mode. Figure 3-1 
shows the behavioural description of the wire as  a primitive component. 
There are three possible behavioural modes of wire. I t  could be good, 
shorted or open. The antecedent of the rules, which are written in Prolog- 
like syntax, describes the behaviour in each possible mode. 



Figure 3-1 
Wire's Behavioural Description 

3.1.2. Generating and  Discriminating Diagnoses 

Diagnosis generation is the process of finding the potential faulty 
components given a vector of measurements or drivability complaints. A 
diagnosis is the collective state of every component in the engine model after 
the process of model refinement is completed. The following steps apply in 
directing the changes of component states throughout a model refinement 
process: The first is the heuristics which relate observations to some known 
possible failure of the components. By using rules, the system can direct a 
component to  be in a good or faulty state. However, these rules are subject to 
error. By error, we mean the chosen rule may not explain the symptoms. 
The rules are not complete, because it is impossible to  exhaust real-world 
phenomena in rules. However, we expect the chosen assumption is almost 
always true. The second is the single-fault-based probabilistic method 
which assigns certain components to be in faulty modes based on a priori 
likelihood of failures. The third step, which acts as the confirming step, is 
the deductive process applied to competent models. The deductive model 
guarantees that at  least one possible mode matches the observations 
because the model is adequate to cover all possible conditions of the artifact. 



Testing and measurement are very valuable in diagnosing engine 
malfunctions. They give information that enables the system to localize the 
faults. Unfortunately, measurements or testing are usually expensive and 
time-consuming. We would rather exploit computational power than make 
unnecessary expensive measurements. The system is pushed t o  pick up 
more measurements if the current observations do not lead to any 
diagnoses. Our system in this stage considers only the most likely 
diagnoses at one time. 

We take cost factors into consideration while gathering information. The 
next measurement is the one that gives the most valuable information with 
minimal cost to performing it. This is derived from the experience of 
mechanics and incorporated within the shallow knowledge. The system 
benefits from accumulated measurements taken to discriminate diagnoses, 
therefore we assume that all engine states are stable throughout the 
diagnosis process. We always choose the vectors of measurements that 
haven't been given so far. For the time being, we are using data extracted 
from the real observation to  simulate the diagnosis process. 

3.2. Diagnostic System Components 

3.2.1 Artifact 

We gather engine data from measurements by using a hardware 
interface provided by McCarney Technology, Inc.. In fact McCar-EAS 
supplies these measurements in a data file form [Joseph,89]. We are 
provided with such data as temperature, voltage, current, pressure, and 
volume of flowing air that can be measured a t  several check points on the 
real engine. Figure 3-2 shows some real data examples and their ranges 
that can be measured and provided through the hardware interface. Table 
3-1 shows an example of measurements taken on the 12-volt power supply 
system. We have eight testpoints within the 12-volt power supply system 
that are possible to observe for diagnosis purpose. 



............................................................... 
Parameters : Range : 

Auto key. 
Battery voltage 
Bypass line voltage 
CCP-du ty 
Engine cranking RPM. 
Fuel pump position 
switching voltage 
Fuel pump primary 
switching voltage 
Manifold absolute 
pressure 
Transmission 
temperature 

Figure 3-2 
Ranges of The Real Data 

12-Volt Power Supply System 
---- - - 

Signal V1 V2 V3 M1 M2 M3 M4 

(volts) 

off 11.9 0.0 

off 0.0 0.0 

on 0.0 0.0 11.9 

on 0.0 0.0 11.9 11.9 

on 0.0 0.0 11.9 0.0 11.9 

Table 3-1 
Some Measurements 



3.2.2. Deductive Model 

The deductive model is the main part of our model-based diagnosis 
system. It should cover every possible state of the engine and its behavioural 

descriptions. The state of the engine is represented by the corporate state of 
the engine components. We show the model of a wire as an engine 

component with three possible states. The example of wire's component 

behavioural model is shown in figure 3-3. This deductive model embodies 

the knowledge about correct and fault modes of the wire. 

voltRange = [0..201. 
currentRange = [-20..20). 
schema wire:component 
[ 
% type declarations 

voltageRange Voltl. currentRange CurrentInl. 
voltageRange Volt.2. currentRange CurrentOut.2. 
voltl(Volt1). currentInl(CurrentIn1). 
volt2(Volt2). currentOut2(CurrentOut2). 

% accessors for persistant variables 
terminal1 (Volt 1 ,CurrentInl). terminal2(Volt2,CurrentOut2). 

% modes of operation 
order mode. 
mode:- % good state 

Voltl =:= Volt.2, 
CurrentInl =:= CurrentOut.2, 
State =:= 0, 
Condition =:= good. 

mode:- % shorted state 
Voltl =:= Volt2, 
CurrentInl =k CurrentOut.2, 
State =:= 1, 
Condition =:= bad. 

mode:- % open state 
CurrentInl =:= 0, 
Currentout2 =:= 0, 
State =:= 2, 
Condition =:= bad. 

1 

Figure 3-3 
The Deductive Model of A Wire 



The domain values for the voltage are real numbers ranging from 0 to  20 

volts. The current varies between -20 and 20 amperes. We use a symbolic 
discrete domain for the state parameters of the wire. We define three 

possible modes in the default model of the wire. The clause is formed from 

"disjunctive or" literals so that the default state of the wire is to  be in the 
good state. 

The adequate model of the wire is the one that describes the good state of 

the wire. Therefore the otherwise behaviour is considered as a bad state. 

Since the knowledge of fault modes are also available in some extent, we 

define the possible modes of a wire t o  be {good, shorted,open) instead of just 

good or bad state. These three possible modes of the wire's deductive model 
will be checked non-deterministically when the deductive process takes 

place. We can arrange them in a particular order so that the system 
backtracks according to the sequence we want. This is useful to  control 

backtracking according to knowledge of diagnosis procedure derived from 

experience. 

3.2.3. Abductive Rule-base 

The abductive part of the diagnosis system consists of heuristic rules and a 

probability method based on a priori likelihood. We use a set of rules derived 

from the mechanics' experience. These rules are the first step applied to  
detecting faults. However, abductive rules may fail t o  explain the symptoms. 

Examples of abductive rules are shown in Figure 3-4, M1 is a possible 

testpoint that lies close t o  the battery. This an obvious problem; the 

mechanic knows that if the voltage measured at  that point is more than 10 

volts, it is very likely that the battery is in a good state. If the actual data does 

not match with the first clause, the next clause will be choosen and so on. 

We use probabilities in addition t o  rules. The probability method uses a 

simple list of components ordered by their likelihood of failure. It imposes a 



rule:- 
Signal =:= 'on ', 
MI < 16, 
MI > 10, 
Battery:state(good). 

rule:- 
Signal =:= 'on ', 
M4 < 10, 
JunctionZ:state(bad). 

Figure 3-4 
Heuristic Rules 

specific state for components. For example, the wire could be in  a bad 

condition either by being in  the shorted state or by being open. This 

probability method improves the system's ability to detect failure. Figure 3-5 
shows a list of ordered a priori probabilities for faulty components within 

the 12-volt power system. 

Figure 3-5 
A priori Likelihood of Failures 

3.2.4. Comparator 

A Comparator is applied implicitly within the system. The comparison 

takes place a t  the level of the deductive process to detect whether the 

predicted behaviour matches the observation. We can explain this by 

looking a t  figure 1-1. The discrepancy between the predicted and actual 

behaviour causes a symptom, the symptom i s  a binary state signal 



indicating the discrepancy occurence. The symptom generated by the 

comparator leads the abductive rule-base to hypothesize about the engine 
state based on heuristics. The "engine state" here means the states of the 
engine's components. This assumption is applied into the deductive model 

in order t o  generate the deduced behaviour. The system deduces the 
consequences of this assumption and compares them against observations. 

The comparison is implemented through unification of parameter values 

and applying constraint satisfaction algorithms. 

3.3. Diagnosis Scenario 

The automotive diagnostic system starts by building a complete vehicle 
engine structure. The vehicle engine structure is an instantiation of a 
complex object from a vehicle schema which is comprised of several 

subsystem schema classes. Every complex object consists of more than one 

object and so on. The engine structure is  formed from primitive 

component's object at  the lowest level. Primitive objects are connected by 
unification through their input-output parameters. 

The engine structure is a complete network of primitive components 
that are already connected by input-output parameters. At the beginning, 
there is no particular state applied to the engine, no assumption is selected 

and no constraint is activated. The diagnosis process commences when a 

measurement or a complaint is supplied as the input data. Given this 

observational data, the system immediately applies data to the engine 

structure (observational data are persistent unless the user intentionally 

retracts them). Any specific complaint of the car owner is also recorded and 
will be used by the system a t  the abductive level. 

Given the observational data, the system puts the engine model in a good 
state and then compares the predicted behaviour with the given data. The 

diagnosis process continues while a symptom occurs, otherwise the 

diagnosis is over. Based on the available information from measurement 

and complaint, the system activates applicable abductive rules and refines 



the deductive model heuristically. The system applies dependency- 
backtracking mechanism into the deductive model. Because the deductive 
model is adequate, the system should find diagnoses eventually. 

Abductive rules impose particular states on one or more components 
based on observations and heuristics. The components which have been 
forced into a certain state yield the deduced consequences. This deduced 
behaviour may cause inconsistency with actual observations. If the 
discrepancy happens the system would retract the current states of engine 
components in favour of new states which match actual observations. If a 
rule succeeds, the process is over. Otherwise i t  chooses rules until one of 
them succeeds or the rules are exhausted. A probabilistic method which is 
based on single-fault assumption will be applied if the rule base can not 
capture the diagnosis. The probabilistic method is basically a guess 
directing which component is more likely to fail. The dependency 
backtracking mechanism triggers system failure if constraint satisfaction 
method fails to  achieve the goal. Failures cause the system to backtrack 
until one of the system choices is consistent with observations. 

3.4. Efficiency 

Together with the deductive model which incorporates fault modes in 
addition to  correct modes, the abductive rule-base aims to make diagnosis 
more efficient. The set of abductive rules is instrumental to  gaining 
efficiency based on heuristics which is significantly faster than deduction. 
The use of the single-fault assumption helps to  eliminate some 
unnecessary alternatives in hypothesis generation. The use of the abductive 
part in our diagnostic system improves computational efficiency which is 

one of the main obstacles in model-based diagnosis systems. 

In the deductive part of the system the use of constraint logic 
programming (CLP) reduces the search space in the reasoning process. We 
use CLP because it has features that enable us to  express constraints and 
manipulate them efficiently. CLP is efficient because this programming 



paradigm exploits constraint solving techniques for various kinds of 
specific domains [Jaffar,87]. The idea is to restrict domains of variables to 
only values which participate in the global solution of the diagnosis 
problem. The system's reasoning engine applies an appropriate algorithm 
for different computational domains throughout the diagnosis process. 

We use Echidna, a CLP language, in implementing the diagnostic 
system. Echidna incorporates the k-ary arc consistency algorithm AC-3 of 
[Mackworth,771 for constraint propagation over discrete domains. For 
example, the condition of a wire is represented by the discrete domain {good, 
shorted, open]. Once the system knows that a particular wire is in a state 
good, it immediately eliminates the other two possible values from state's 
domain. A more efficient version of AC-3 is applied to handle the integer 
domain. Echidna introduces the ability to  use constraint processing on 
variables which range over real intervals. Variable domains are 
represented explicitly as a hierarchical structured set of intervals. 
Equalities and inequalities are propagated through a specialized 
hierarchical arc consistency algorithm [Sidebottom,Slal. 

Another significant feature of the Echidna reasoning engine used in our 
system is dependency-directed backtracking [Havens,SOb]. This is an 
intelligent backtracking technique, developed to cope with the well-known 
thrashing problem [Mackworth,77]. It backtracks to  the cause of failure 
instead of t o  the most recent choice. It also avoids rediscovery of 
contradictions in backtracking by recording no-good assumptions. 

3.5. Combinatorial Problems 

The use of behavioural models which include correct and fault modes 
exacerbates the combinatorial problem [deKleer,89]. It produces O(kn) 
possible diagnoses, where k is the average number of components' modes 
and n is the number of components which comprise the whole diagnosed 
device. The single-fault assumption reduces the number of possible 
diagnoses significantly. To illustrate this, assume a system comprised of 



two components A and B. Each of them has four behavioural modes which 
include correct and fault modes. This system has only one 'good' state and 
more than one non-good state. Sai represents the possibility component 

S a l  S b l  
S a l  Sb2 
S a l  Sb3 
S a l  Sb4 
Sa2 S b l  
Sa2 Sb2 
Sa2 Sb3 
Sa2 Sb4 

Sa3 S b l  
Sa3 Sb2 
Sa3 Sb3 
Sa3 Sb4 
Sa4 S b l  
Sa4 Sb2 
Sa4 Sb3 
Sa4 Sb4 

multiple-faults : 0 ( k d  

S a l  S b l  
S a l  Sb2 
S a l  Sb3 
S a l  Sb4 
Sa2 S b l  
Sa3 S b l  
Sa4 S b l  

single-fault : O((k-1)n) 

Figure 3-6 
The Possible Diagnoses 

"A" being in state i. Figure 3-6 shows all possible diagnoses based on the 
multiple-faults assumption compared to the single-fault assumption. The 
diagnosis search remains complete, even with the single-fault assumption, 
because this assumption applies only to  the abductive step; the deductive 
model can still diagnose multiple faults. We argue that this assumption is 
more reasonable for a diagnosis system which use abductive rules to 
alleviate the combinatorial problem. We only use this assumption on 

abductive part. The use of the multiple-faults assumption is usefid if one is 
using multiple-context causal analysis within the reasoning engine 
[deKleer,87]. Our system uses a single-context based justification reasoning 
maintenance system [Doyle,78]. 

The use of abductive rules plays an important role in dealing with 
combinatorial explosion. The rules eliminate a significant number of 
possibilities by imposing a chosen state of a component based on heuristics. 
By using the rules, we effectively restrict the search space of diagnosis 
reasoning. 



Chapter 4 
System Implementation 

We have developed a prototype of a diagnosis system which provides 
recommendations for mechanics to  repair vehicle-engine-related problems. 
In this stage the engine system is comprised of the 12-volt power supply and 
the CCP systems. The diagnostic system requires a set of input from the 
hardware interface. We gather input data into a data file. Our diagnostic 
system can detects more than one causes of the failure. The output is a list 
of the abnormal components causing the symptoms observed. The diagnosis 
system also gives a list of the next measurements to  perform in order to  
further localize the problem. The development of the diagnostic system for 
diagnosing vehicle engine's problem is a big task. Our system is the initial 
step that can be expanded in order to  develop a complete diagnostic system 
dealing with the vehicle engine as the whole. 

4.1. Vehicle Engine Organization 

A vehicle engine is a very complicated system that needs a vast amount 
of knowledge to  repair it. In figure 4-1, we show a "part of' relationship 
hierarchy for a vehicle engine system. We organize the vehicle engine 
system by classifying its components into three large categories; electronic 
control, engine and 12-volt power system. 

Although the engine operation depends strongly on the work of the 
electronic control module (ECM), we classify the electronic control system 
that includes the ECM into a separate system. We do so because the 
electronic control system is a broader system controlling many vehicle 



functions besides the engine. The same reason is applied to  the power 
supply system. Every subsystem consists of a number of subsystems or 
primitive components. The charcoal canister purge (CCP) system, a part of 
the emissions system, includes primitive components such as: hoses, wires, 
purge solenoid, charcoal canister and pressure control valve. This 
organization is not intended t o  show physical connections among 
subsystems or components, instead it illustrates a higher-level view of the 
physical components based on vehicle engine system functions. 

vehicle s 

( ) = system or subsystem 

0 = primitive component 

Figure 4-1 

Composition Hierarchy 



4.2. Vehicle Engine Model 

4.2.1. Primitive Components 

Engine behaviour is represented by the behaviour of the primitive 
components comprising the whole engine. Every replaceable physical 
component is considered t o  be a primitive component. Each primitive 
component has an input andlor output description as shown a t  figure 4-2. 

A primitive component has one or more input-output terminals where 
input-output relations or correlations derived from physical laws are 
applied. For example, the behaviour of the battery can be observed from 
values of voltage going out and the behaviour of a wire can be seen from 
voltage and current coming in and going out through its terminals. 

terminall terminall 

Volt1 Press1 
CurrentInl FlowIn 1 

CurrentOut2 FlowCond2 FlowCond 1 

signal 

terminall 

Voltl 
* 

CurrentInl CurrentOut3 
\Ignition Switch 

terminal2 
b a t t e r y  

Volt2 
CurrentOut2 

Currentout v 

Figure 4-2 
Primitive Components 



The examples below are behaviour that can be observed on Battery and Wire 

components. 

Battery : 
(regarding t o  voltage) 

volt < 9, or 
volt > 16, or 

9 <= volt >= 16. 

Wire : 

(regarding t o  current) 

currentIn = 0 and currentout = 0, o r  

currentIn = currentout, or 

currentIn =\= current Out. 

We describe primitive components' behaviour based on the behaviour of 

input-output observed in its terminals. Behavioural description is adequate, 

meaning that it covers all possible behaviour a t  any of components' states o r  
modes. 

4.2.2. Physical Connectivity 

Most of the connection links between components are based on equality, 

disequality or  inequality. The use of mathematical hnctions is also possible. 
We use unification t o  establish input-output relationship among the 

components. Figure 4-3 illustrates the Electrical Power System's 

components' "part of' relationships hierarchy and figure 4-4 shows the 

physical connectivity among its components. 



/ 12 volt 1 

Figure 4-3 

Power System Components 

signal 

12-volt power system 

d 

curreny;ffy2' j1 ' + i n a 1 1  
CurrentOutl Currentout 

ecm wire sol. wire 
fuel pump 

Electronic 
Fuel System Control  CCP System 

Figure 4-4 

Power System's Physical Connectivity 



The 12-volt power system includes a battery, wires, junctions, ignition 

switch and ECM-fuse. Every component is connected t o  adjacent 

components constructing a subsystem of the engine system. Physical 

parameter values are propagated through connections along all 
components according t o  design descriptions. The 12-volt of battery voltage 

is propagated t o  wire-1, junction-1, wire-5, ignition switch and so on, 
through unification. 

All constraints are propagated through unifying values in two 

directions. The following are the examples of constraints manifest in the 
model : 

A subsystem class is a composite of primitive components that embodies all 

constraints, parameters and methods. For example, the parameter values 

observed at terminal-2 of 12-Volt Power System are merely those of Wire-7. 



4.3. Knowledge Base 

Knowledge of the diagnostic system is represented in Echidna 
knowledge base. A knowledge base consists of a set of schemata. Each 
schema is a model of a object class of vehicle's component. Figure 4-5 is to 
illustrate the system's knowledge base. A comment begins with the percent 
(%) sign. 

schema component 
{ 
% type declarations : 

conditionType Condition. 
stateRange State. 
Name. 

% methods : 
condition(Condi tion). 
state(S tate). 
namewame). 
mode. 
build. 

1 

schema composite:component 
I 
% type declarations 
component Clist. 

% methods 
build:- buildSubComps(C1ist). 

Figure 4-5 
Schema of Object Classes 



All variables are bound t o  a specified domain over which the variable 
ranges. A schema 'component' represents an object class; this class is a top 
class of knowledge-base's schemata. A schema 'composite' is the second 
level of object class which inherits methods from the component object. 
Echidna supports only a single inheritance hierarchy where each class has 
exactly one superclass. 

4.3.1. Classes and Instances 

A schema can be instantiated to create one or more copies of an object 
class. This instance is modified through unification [Sidebottom,Slb]. A new 
instance is created whenever a variable is declared to  be associated to  a 
particular class. For example, "IS isa igswitch" at  the "build" method in 
figure 4-6. IS is an instance variable, it stores information about the state of 
the instance. An instance variable is persistent so that it can not be 

changed. 

schema power:composite 
[ 
% type declarations : 

igswitch IS. battery Battery. 
- - - -  
- - - -  

signalType Signal. 

% accessors for persistent variables 
terminal l(Volt1,CurrentOutl). 

order mode. 



% define components of system 

build:- 
IS isa igswitch, IS:name(ignitionswitch), 
Battery isa battery, Battery:name(battery), 

W1 isa wire, Wl:name(wirel), 
W2 isa wire, W2:name(wire2), 
W6 isa wire, W6:name(wire6), 
J 1 isa junction3, J1:nameCjunction 1), 
J2 isa junction3, JTnameCjunction2), 
J3 isa junction3, J3:narneCjunction3), 
ECM-F isa fuse, ECM-F:name(ecmfuse), 
Engine-F isa fuse, Engine-F:name(enginefuse), 

Clist = [IS ,Battery,W 1 ,W2,W6 J 1 J2 J3 ,ECMF,Engine-F], 

% inputloutput parameters of system 

% connections between components within system 

Battery: terminal(VoltA,CurrentA), 
J3: terminal 1 (VoltA,CurrentA), 

J3:terminal2(VoltB$urrentRange CurrentB), 
W 1 :terminal 1 (VoltB,currentRange CurrentBB), 
0-CurrentB =:= CurrentBB, 

IS: terminal3(VoltE,CurrentE), 
W6: terminall(VoltE,CurrentE), 



composite: : build. 

1 

Figure 4-6 

Basic Schema of Power System 

As we see in the power system schema above, a subsystem is comprised 

of primitive components. Each of them is represented as a member of the 

class. The predicate 'build' is meant to define the components of the 12-volt 

power supply system. Classes are accessed by logical messages or unifylng 

goals which match logical methods or predicates defined within schemata. 

Knowledge about the class is modular and localized within the schema. We 
create instances of schemata to represent real world objects. All 

components which comprise the power system are constructed when the 

goal "build" is issued. 

Each parameter must have an associated domain of possible values 

declared and every instance of the class shares the same parameters. 

Schema instances can be sent messages, passed arguments, or composed 

into networks. All of these operations are performed through unification. 

Constraints are established by exchanging messages between a sending 

and receiving schema and the parameters of any of its components. 

4.3.2. Methods and  Logical Messages 

There is a method called accessor since it simply provides an access to 

the instances variable, for example : signal (Signal). We can use an 

accessor to retrieve and set up the value of a parameter. The schema uses 

methods to maintain system's knowledge bases. The method library is built 

to retrieve the candidate clauses. The method lookup is used to resolve 



which one will be chosen. These all are performed at the compile time, 
therefore the set of methods is static during system executions. If the 
corresponding method is not defined, it will cause the error for the message 
sent. We can also have global methods which are defined at the outside of 
any schema definition in the knowledge base. 

We use message-passing and message-interpretation for the 
communication between two schemas. A goal is a message sent to  an object. 
A message is the name of the corresponding method that may be followed 
by arguments. Message interpretation is the selection of clauses from the 
method. 

The logical message is the goal initiated by a sending schema. This is 
performed by unification of a logical parameters whose values may be 
refined towards the ground values. The process is monotonic and only 
reversible by dependency backtracking. A logical method is a logical 
predicate defined in the receiving schema. Unification is carried out in a 
non-deterministic way. 

observation(Signa1, V1, V2, V3, M3, M4):- 
default, 
apply-data(Signa1, V1, V2, V3, M3, M4), 
generate-diagnoses. 

Figure 4-7 
Method and Logical Message 

Figure 4-7 illustrates an example of a logical message sent into power 
system schema. The message "Power:observation(on, 0.0, 0.0, 11.9, 11.9, 0.0)" 

is issued and will be unified with methods defined in Power. Power is a 
schema variable which represents the 12-volt power supply system class. 



4.3.3. Constraints and Schema Elaboration 

Constraints support information flow through the link of persistent 
data. The engine constraint network is constructed during a session with 
Echidna. Constraints are useful1 to  prune the space before a search begins. 
There are two ways of constraints set up. The first one is by issuing the goal 
which applies constraint operator or a constraint relation. The second one 
is unification of two terms t o  be the same. 

Constraint propagation is applied over variables which have an 
explicitly declared domain. A schema is a parametric model for a class. 
Instantiating the parameter of a schema to  actual values specifies a 
possible member of the class. A particular instantiation is valid if it holds 
for all constraints which have been asserted within the instance. 
Constraint propagation causes the refinement of parameter domain. 

observation 

current 
diagnoses hypotheses 

reasoning 
constraint 

Figure 4-81 
Diagnosis Cycle 

The instantiation process is incremental and employs hypothetical 
reasoning. Figure 4-8 illustrates an iterative process of making hypotheses 
during the diagnosis process. We use hypotheses to  derive new constraints 

. l ~ h i s  is adopted from [Havens,831 



and apply the constraints to the schemas in the network. This reduces the 
search space. Some hypotheses might be retracted when it's deduced 
consequences do not match the observational data. In this case the process 
continues forward. 

The reasoning process continues to refine models until they are fully 
ground. The process relies on applying constraints to the domains of 
parameter values. The process is incremental. Model-based diagnosis 
elaboration is carried out by applying internal heuristics to refining the 
model. Each new choice imposes new constraints on the network. Choices 
are made incrementally and their constraints propagated before any other 
hypothesis is pursued. Incremental elaboration allows flexible control 
structures and allows arbitrary heuristic order. 

4.4. Deductive Model 

A component model represents a n  object with some parameters 
corresponding to some physical or electrical units applicable to the object. I t  
also describes the modes of components together with behavioral 
descriptions related to each of them. For example, component modes for 
'Hose' could be: good, leaking, blocked, etc. Assuming there is liquid flowing 
through the hose, leaking hose means 'total amount of flow going out the 
hose is less than that of flow coming into the hose'. Each and every 
primitive component has its own possible modes and one mode can have 

more than one associated behaviour descriptions. The following is a model 
for the hose, it inherits all the methods defined in a schema component. 

flowRange = {O..6O). 
pressureRange = {0..104). 
conditionType = {good,bad) . 
schema hostxcomponent 
I 
% type declarations 
pressRange Pressl. flowRateRange FlowInl. conditionType FlowCondl. 
pressRange PresQ. flowRateRange FlowOut2. conditionType FlowCond2. 

% accessors for persistant variables 
terminal1 (Pressl ,FlowInl ,FlowCondl). 
terminal2(Press2,FlowOut2,FlowCond2). 



% modes of operation 
order mode. 
mode:- % good state 

FlowInl =:= FlowOut2, 
Press1 =:= Press2, 
Flowcondl =:= FlowCond2, 
State =:= 0, 
Condition =:= good. 

mode:- % leaking state 
FlowOut2 =\= FlowInl , 
Press1 =:= Press2, 
State =:= 1, 
Condition =:= bad. 

mode:- % blocked state 
Flowout2 =:= 0, 
FlowInl =:= 0, 
State =:= 2, 
Condition =:= bad. 

I 

The model of a composite object is an engine theory that describes the 
component and its behaviour. It also describes the interrelationships of the 
components which make up the whole network structure. The structure of 
the complex object model implies the composition hierarchy of the whole 
engine consists of subsystems and primitive components. The previous 
figure 4-6 shows the model of Power System as a composite system. It 
describes the components comprising the system and its physical structure. 

The following is the schema model of the vehicle system which consists 
of the 12-volt power supply and CCP system. 

schema vehic1e:composite 
( 
% type declmtions : 

ccp CCP. 
power Power. 

voltageRange Voltl. currentRange Current 1. 
voltageRange Volt2. currentRange Current2. 

order mode. 
mode:- 

Power:condition(good), 
CCP:condition(good), 
condition(good). 



% system components : 
build:- 

Power isa power, Power:name(power-system). 
CCP isa ccp, CCP.name(ccp-system), 

Clist = Fower,CCP], 

% connections between components within system : 

Power: terminal2(VoltA,CurrentA). 
CCP:terminal2(VoltA,CurrentA), 

composite:: build. 
................................................. 
%% Abductive Part : %% 
% containing rules at level of Vehicle 

observation-l(Signal.Vl ,V2,V3,M4,C1 ,C2):- 
apply-dataO(Signa1,V 1 ,V2,V3,M4,Cl , a ) ,  

generate-diagnoses. 

observation-l(Signa1,Vl ,V2,V3,M3,M4,Cl,C2):- 
default, 
apply-dataO(Signa1,V 1 ,V2,V3,M3,M4,C 1 . a ) ,  

generate-diagnoses. 

default - 
Power mode, 
CCPmode. 



1 
vehicle Vehi. 

We integrate physical organization and behavioral description i n  a 
deductive model. The model behaviour is determined by the behaviour of its 
components. I n  this way we overcome the difficulties of coordinating 

physical organization and behavioural model faced by [Hamscher,9Oa]. The 

model is adequate and guarantees a match between observation and at least 

one of the behaviour description that can be generated by the model. 

4.5. Input Data 

McCar-EAS [Joseph,89] is a tool already developed to gather data from 

the artifact. This system operates on a standalone PC Micro Computer for 

on-road data collection. It is an  hardware interface consisting of an MC- 
68HCl l  micro processor which automatically records engine physical 

measurements into data files, there are data such as  temperature, voltage, 

and so on. Some examples of input data are described a t  section 3.2.1. 

1. Long cranking time. 
2. No start. 
3. Hard start. 
4. Poor performance. 
5. Dieselling. 
6. Excessive odor. 

Figure 4-9 
Some Common Drivability Complaints 

Beside of measurements taken from McCar-EAS, the diagnosis system 

accepts drivability complaints from mechanics or owners i n  the garage. 



This information drives the diagnosis process. Some commonly found 
drivability complaints are listed a t  figure 4-9. The drivability complaint 
could appears alone or together with others. We may consider some steps 
before starting diagnosis system such as  visual or physical inspection, 
diagnostic circuit checks, etc. These are all related to some causes that are 
not covered in ECM-recorded information. 

4.5. Diagnosis Example 

We assume the vehicle engine structure in this example consists of only 
the 12-volt power supply system and the charcoal canister purge system 
(CCP). Each of the power supply system and CCP is a composite system that 
has several primitive components a t  the lower level within the 
compositional hierarchy. V is a schema variable of the simplified vehicle 
structure. The first time the system starts, a logical message is sent into V. 
The message must be sent to the particular schema variable, for example 
"V isa vehicle". This is to declare V to be associated to the vehicle schema 
class. "V:buildM is the message that will be unified with a method defined in 
the vehicle schema. Building the structure is performed in a cascade from 
the 'top' level object downward through the compositional hierarchy. 

The diagnosis process is initiated by sending the message containing 
input or observational data, e.g.: 

V:observation(Signal, V1, V2, V3, M3, M4, C1, C2). 
This data will be sent to the appropriate subsystems where the underlying 
physical unit checkpoints taken. In this example, there are six data 
observed a t  power system components' terminal and the rest two are taken 
a t  the CCP system. These data are applied into the structure and become 
persistent. We concentrate on the 12-volt power supply system to explain 
diagnosis examples. Figure 4-10 shows some test points of the 12-volt power 
supply system. 
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Figure 4-10 
12-Volt Power Supply System 

The data should be firstly applied into the model for diagnosing faulty 
components, because we want to  refine and check the consistency of the 
model against the actual data. The model may be inconsistent with the 
actual behaviour and this drives the diagnoses generation. Diagnosis is a 
the process of refining the model until it matches the observations. 

The system uses abductive rules heuristically and always assumes the 
engine to be initially in the good state. The use of abductive rules can be seen 
in the power schema class at  figure 4-11 below. After the above logical 
message sent, the corresponding method in vehicle schema will be selected. 
This new observational data initiates diagnosis process which put the 
whole diagnosed engine at the default states (good states). The method 
"apply-dataOw applies the observational data into the model in order to 



diagnose the faulty components. If the good state of engine is still 
consistent, the diagnosis is over. Otherwise the system uses abductive rules 

by issuing the message "apply-ruleo". The a priori probability method 

applies when rules are exhausted. 

We select the next probe to localize the faulty components. Selecting the next 

probe is part of the abductive process and it is based on heuristics described 
by shallow knowledge of the system. 

schema power:composite 
( 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Abductive Part : 8% 

owner-complaint(diesel1ing):- 
ECM-Rcondition(bad). 

observation-l(Signal,Vl,V2,V3,M3,M4):- 
default, 

apply-dataO(Signal,V l,V2,V3M3,M4), 
generate-diagnoses. 

observation_2(M4):- apply_data2(M4), 
generate-diagnoses. 



volt l(Vl), 
volt2(V2), 
volt3(V3). 

apply-dataO(Signa1.V 1 ,V2.V3,M4):- 
signalWgnal), 
volt l(V 1). 
volt2(V2), 
volt3(V3), 
J2:terminal2@44,MM4). 

apply-ruleO(Signal,Vl,V2,V3,M3,M4):- print(rulel), 
Signal =:= on, 
v2 > 10. 
v1<5, 
M3 > 10, 
ECM-F:condition(bad). 

apply-ruleO(Signal,Vl,V2,V3.M3,M4):- print(rulel), 
Signal =:= on, 

v1<5, 
V2 < 5, 
v3 > 10, 
W7:condition(bad). 

apply-ruleO(Signa1,Vl ,V2,V3,M3,M4):- print(rule1). 
Signal =:= on, 

v1<5, 
V2<5, 
v3 > 10, 
W1 :state(2). 

apply-ruleO(Signa1,V 1 ,V2,V3,M3,M4):- print(rulel), 
Signal =:= on, 
v1> 10, 
V2 < 5, 
J2:condition(bad). 



apply-rule 1 :- 
C1> 0, 
Jl:condition(bad). 

apply-rule 1 : - 
print(app1y-apriori), 

a~riori-2. 

solution-list([],PrintList,PrintLis t). 
solution-list([component HcomplTcomps] ,PrintList,List 1):- 

Hcomp:condition(Ccond), 
Hcomp:state(Cstate), 
Hcomp:name(Cname), 
solution~list(Tcomps,[[Cname,Cstate]lPriist],Listl). 

Figure 4-11 
Abductive Part of The Power System Schema 

We simulate diagnosis process by sending : 

"Power:observation(on, 0.0, 0.0, 1 l.g).", 
These are the data about voltages on all output terminals of the power 
system, the signal coming from the key onloff, and the voltage from V1, V2, 
and V3 consecutively. The system puts the engine structure a t  state good 
and this will checked whether i t  they are consistent to the data or not. 



Should any discrepancy occurs, the rules, a priori probability method and 
the deductive process applies in order. In this particular example the 

match between data and model results in two faulty components: Junction- 
1 is open on terminal 1 and Junction-2 is open on terminal 3. Some of 
diagnosis results is shown in the table 4-1. Those are based only the 
deductive process without intervention of the abductive part. 

12-Volt Power Supply System 

Signal V1 V2 V3 M1 M2 M3 M4 

off 11.9 0.0 

off 0.0 0.0 

on 0.0 0.0 11.9 

on 0.0 0.0 11.9 11.9 

on 0.0 0.0 11.9 0.0 11.9 

Faulty Component(s) 

All components are good 

Fuse: broken. 

J-1:open; J-2:open. 

J-1:open; J-2:open; W-?:open. 

W-2:open; W-?:open. 

Table 4-1 
Diagnosis Results 

On the example #3 of table 4-1, we see that the result is not plausible to 
occur in reality. The system hypothesizes J-1 to be open on the termindl  

close to  the battery. Therefore there is no voltage going out of output 

terminals. Since the voltage at terminal-3 of 12-volt power supply system 

(V3) is observed to be 11.9 volt, the system assumes that 5-2 to  be broken 

because it  produces 11.9 volt at the output terminal although there is no 

incoming voltage. The diagnosis proceeds by taking another measurement 
at  M4 (M4 = 11.9 volt). Even worse the system falsifies W-7 because it 
produces V = 0.0 after receiving 11.9 volt coming from 5-2. 

The diagnosis becomes reasonable when we apply the knowledge from 
diagnostic procedure based on mechanic's experience. Given the 

observational data of {Signal = on; V1 = 0.0; V2 = 0.0; V3 = 11.9; M4 = 11.91, it 



activates a rule in the system knowledge base: "if M4 > 10.0 then J-1: 
condition (good)". This rule applies and yields ECM-F:condition(blown) and 
W-7:condition(open as the faulty components which are consistent with the 
observations. The car owner's complaint is used in abductive part for 
guessing the faulty component. Having the same observation above {Signal 
= on; V1 = 0.0; V2 = 0.0; V3 = 11.9; M4 = 11.9) and the complaint from the car 
owner: "dieselling", the diagnostic system recommends ECM- 
F:condition(bad) and W-7:condition(open). The knowledge of diagnostic 
procedures is incorporated in the abductive part of system knowledge bases. 



Chapter 5 
System Evaluation 

This thesis has presented a model-based diagnosis system. We have 
developed a system design which combines abductive and deductive 
diagnosis. We have successfully integrated model-based diagnosis with the 
use of heuristic knowledge. In this chapter, we examine the 
implementation of the diagnostic system and examine its design. We also 
discuss the applicability of system design t o  real data, problems 
encountered and a brief comparison with other systems found in the 
literature. 

5.1. Design Analysis 

5.1.1. Deductive Model Issues 

The use of deductive models is the key idea in this vehicle engine 
diagnostic system. Models of component objects and generative function 
states give great flexibility in adding, subtracting, modifying or replacing 
the models according to  the ones desired. Building a deductive model is a 
continuous process and the model typically needs to  be refined as the 
system is used and tested. 

The deductive model of a component is still very simple compared to the 
actual component. The model is adequate but may not be ideally competent. 
For example, to characterize a wire based on the voltage and current 
coming and going from its terminal may be not sufficient. There are other 
parameters such as impedance, grounding state or life-time factors which 



affect wire behaviour. In fact the ideal competent model is an object in the 
real world. 

We only represent the failures which are worth representing in our 
model [Hamscher,9Ob]. It is impossible to capture every detail of an actual 
device in the model. For example, a mechanic usually replaces the whole of 
a cable including a number of wires when it fails, although only one of 
them may cause the failure. We can control this problem by separating the 
distinguishable failures. If there are many faults with the same repair, we 
treat them as one fault. 

Modelling of predicted behaviour still has limitations. The ideal system 
would capture transient events, but this is too expensive and is not available 
in our system. We only predict behaviour over a stable long interval, 
although this simplification seems to be reasonable so far to provide correct 
diagnoses. We also use a level-based behavioural model. Behaviour is 
represented a t  the level of components which can be replaced by mechanics 
and modeled by a knowledge engineers. We do not model the behaviour of 
electrons in a wire, instead we represent the conditions of electrical current 
or voltage. 

We represent the physical organization of the artifact using primitive 
components. Components must be represented in terms of observable 
attributes and behavioural abstractions. The representation should 
correspond to  the possible failures of actual devices. On the other hand, we 
only model failure modes for the components that have a high likelihood of 
failure. We can not model failures which give rise to  very complex 
behaviour, but we will model a failure mode if it is simple enough to model 
[Hamscher,9Ob]. There are encapsulated components that must be treated 
as one component, although they consist of more than one primitive 
component. 

In the diagnosis process, the model does not necessarily know the input- 
output 'values' coming and going between components at a particular state 
as required by Struss [89]. GDE+ of [Struss,89] actually uses this knowledge 
to  exploit the contradiction between correct behavior and observation. In 



contrast, our deductive model finds discrepancy based on the behavioural 
description of each component and backtracks immediately to  adjust the 
whole structure. The deductive model enables the system t o  find 
malfunctioning components whenever an observation of the real world is 
provided, therefore the technique of Struss[89] to  confirm malfunctioning 
components by observation is not necessary. Our system perform the next 
probe if the current observations is not sufficient to  recommend faulty 
components. 

5.1.2. Observational Abstraction Issues 

Vehicle engine diagnosis is a difficult problem. It deals with a very 
complex system. The system consists of components which has theories of 
physics determining the input-output relationships among them. 
Representation of the physical organization of components in a deductive 
model requires corresponding information from a real-time data- 
acquisition tool. The data available in the current system are adequate, but 
could be improved to  meet observation requirements. Most of them are 
already in compiled form and more appropriate for a rule-based expert 
system input data. This is because the tool was designed for a rule-based 
type of diagnosis system. However, modification of the data acquisition tool 
in the near future should be straightforward. 

The measurement of data is considered much more expensive than the 
computational cost of selecting them. It would cost more if we performed 
observations over a long interval of time, therefore temporal abstraction in 
observation is useful. The observation tool has limitations that may make 
the system unable to  localize faults. Sometimes it is too expensive to make 
the precise observation that is needed to discriminate diagnoses. For 
example, the pressure at  a hose being 80 kPa or 100 kPa may cause 
significantly different results in diagnoses, but this kind of precision may 
not be economically feasible. Typically, the available data or mechanics only 
know whether there is 'enough' pressure or not at  a particular hose. The 

diagnostic system requires input from a real time data acquisition tool. The 



available data in the current system do not provide all the information 
needed. Some data fulfill the requirements indirectly so that transformation 
processes are needed. 

5.1.3. Abductive Process Issues 

The use of heuristics together with model-based diagnosis improves 
system performance and gives a procedural meaning to diagnosis. For a 
simple small system with few components, the use of rules seems to cover 
almost all possibilities of diagnosis. But, for complex and big system, which 
is the general case, i t  is highly improbable to get a complete coverage in the 
abduction part by using heuristics. The power of a deductive model could be 
minimal for small problems but would increase with system complexity. 

Combination of Deductive and Abductive Part 

Performance 

Deductive Process Only 

Abductive Rules Applied 

A priori Probabilty Applied 

Abductive Part + Deductive Process 

Diagnoses = Wire-2:open; Wire-7:open 

- 

- 

Table 5-1 

System Performances 

Average Performance 

(AT) 

99 seconds 

96 seconds 

96 seconds 

108 seconds 

The a priori probability method also contributes to improving 
performance. This method is a simple method that relies on the single-fault 
assumption. The single-fault assumption decreases the number of possible 
diagnoses. Table 5-1 shows the performance of the diagnostic system with 



the uses of a pure deductive process and abduction part. The abductive part 
is the use of rules and a priori likelihood of failures. We expect that the 
rules are almost always correct. The use of rules increases the speed of 
diagnosis and so does the a priori likelihood method. However, if the 
abductive part fails, meaning that the rule applied is not consistent with 
observations, it results in more time needed for the system to  find 

diagnoses. 

Moreover, the performance shown on table 5-1 does not seem very 
impressive. The current implementation of the diagnostic system does not 
elaborate the abductive rules efficiently. When any component is 
hypothesized to  be in a different state, the Echidna reasoning engine 
backtracks immediately. This results in inefficiency because this backtrack 
may involve many choices a t  the rules and model made during the 
diagnosis. Unfortunately, we can not avoid this inefficient backtrack in the 
current implementation, because Echidna does not provide the proper tool 
to  do so. Instead, we want to perform abductive rules by using the current 
state of the diagnosed object plus the new hypothesis asserted in the rules 
and then continue the diagnosis process. By doing so, we can maintain the 
incremental notion of the diagnostic procedure. In the future, we need the 
facility from Echidna to enable us t o  create a clone of the current diagnosed 
object which includes its entire deductive state. Using this clone, we can 
then perform eficient backtrack search of its state as necessary to perform 
diagnosis. 

The use of the single-fault assumption in our system is not necessarily 
inferior to  the multiple-faults assumption of [deKleer,89]. The single-fault 
assumption enables us t o  find solutions very efficiently, whereas the 
multiple-faults assumption which relies on multiple-context diagnosis 
reasoning tends to be very expensive. The latter approach has an expensive 
overhead in probabilistic computation required in finding global solutions. 
We use a less expensive single-context based diagnosis reasoning to 
produce one solution at one time. The cost of our method is to  control and 
discriminate solutions sequentially. This approach is natural and 
reasonable, especially with the fact that the system always give the best 
predicted solution first. 



5.2. Computational Issues 

We use an adequate model to represent real objects. This model might 
maldiagnose when an important characterizing parameters is discarded. 
This could cause the system to assume the faulty engine to  be in a normal 
state. Building an expert system is a continuous process and has to  be 
refined if there is new knowledge regarding to  the deductive model or 
abductive part. The domain expert who possesses a level of knowledge like 
a mechanic should be able to  update the generative model of functional 
states or change the contents of the abductive rule-base. 

The diagnosis process is performed in a monotonic fashion. Data 
measurement taken on physical organization checkpoints is carried out 
once and these data persist. Any new data supplied by the next probes 
selected are in addition to  the data already given. It also means diagnosis 
refinement maintains monotonicity as well. The more data provided from 
the outside world, the more constraints are applied and the smaller the 
search space remaining in which to find hypotheses. Facts observed from 
the real engine are persistent whereas the hypotheses are reversible, based 
on dependency-directed backtracking. 

The speed of computation is always an obstacle in diagnosis. Because of 
the search, the system produces many alternatives and grows exponentially 
according to the number of components in the engine. The diagnostic 
system reduces the search space in localizing faults by using constraints. 
This method together with the CLP constraint-solving-technique increases 
the speed significantly [Havens,SOb]. 

Although the use of the single-fault assumption in abductive rules 
limits the system, it has been helpful to  overcome the combinatorial 
problem in a diagnostic system. Yet, the use of this method still allows us to 
have complete and correct diagnoses. We only use the single-fault 
assumption in the abductive part, because it is impractical to  enumerate all 



combinations based on multiple faults. It is important to note that the 
deductive model can capture multiple-faults, this may cause computational 
cost too. 

5.3. Comparative Results 

Any model-based diagnosis system that models only correct behaviour 
has limited performance, it loses additional diagnostic discrimination 
power and the unlikely faulty modes are considered along with the most 
likely ones. Sherlock [deKleer,89] uses behavioral modes which include 
correct and fault modes and assigns a priori likelihood. Unfortunately the 
use of behavioural modes results in a combinatorial problem as the number 
of alternatives increases exponentially. Sherlock uses probabilistic 
information to  focus diagnoses. Like sherlock, our system uses behavioural 
modes in diagnosis. In contrast to sherlock, we incorporate the shallow 
knowledge including diagnosis procedure as parts of system's knowledge 
bases. This abductive part controls diagnosis sequences and heuristically 
suggests the next measurements required in discriminating diagnoses too. 
Another system that combines the shallow and deep knowledge is [Abu- 
Hanna,88]. 

Struss[89] controls diagnostic alternatives by concentrating on small 
candidate sets which are more likely to  fail. It uses the single-fault 
assumption and argues that multiple faults can be treated as combinations 
of single faults. His system applies a control strategies to  overcome 
combinatorial problem. It uses a method to  confirm the correctness of 
components and rules out the implausible diagnosis based on a 
hypothetical value. Our system differs from [Struss,89] because our 
system's knowledge-base does not need to know something like what is the 
correct voltages in particular wire at  any time. Instead, the model deduces 
it based on behavioural descriptions. 

Knowledge about physical structure and a component's behaviour in 
carrying out its function is the crucial part of a model-based diagnostic 



system. Hamscher[9Oa] uses separated physical and functional 
organization in the knowledge base. This has caused technical problems in 
coordination. Our system is the first among model-based diagnostic 
systems which proposes an integrated model of fault and correct modes in a 
deductive model. There is no coordination problem in our system. 

Our diagnostic system uses behavioural modes and a simple probability 
method. We use the single fault assumption in the probabilistic method for 
the sake of efficiency. Our system captures multiple faults as deKleerl-891 
does although we use a less expensive single-context reasoning diagnosis. 
We use rules and probabilistic method to cope with combinatorial problems 
and successfully combine model-based diagnosis with heuristics. 



Chapter 6 
Conclusion 

The objectives of this thesis are t o  design a model-based diagnosis design 
and implement it in the Echidna constraint reasoning system. We have 
proposed an architecture for a diagnostic system which combines a 
deductive model and an abductive rule-base. The system has been 
implemented in prototype form that can demonstrate the power of the 
model-based approach in engine troubleshooting. We successfully built the 
deductive model for parts of engine system namely 12-volt power supply 
system and the CCP system. The model is sufficient t o  test our system, 
although hrther work is still needed t o  make it more realistic. 

The work done through the completion of this thesis gives us 
experiences in using Echidna, a new CLP language, t o  solve the diagnosis 
problems. On the other hand, this work has been beneficial t o  push the 
research and development of the Echidna. We have explored the potential 
power of Echidna t o  enable a knowledge engineer t o  build a model-based 
diagnostic system. Echidna needs t o  improve its feature t o  enable the 
designer t o  make a copy of the complex object instance and provide the 
control mechanism in order to capture multiple solutions at one time. This 
feature is not available now, so that it restricts us to consider one solution at 
one time in solving diagnostic problem. 

Model-based diagnosis approach enables us to  build a diagnostic system 
for vehicle engine problems, the diagnostic system relies mainly on the 
knowledge from design descriptions. It gives us the way t o  avoid the 
necessity t o  enumerate exhaustively symptom-cause relationships. 
Diagnosis is driven by discrepancy between observation and predicted 
behaviour. In this system hypothesis generation is carried out based on 



knowledge of internal processes and components' interrelationships. This 
notion is very natural in diagnosis problem solving and ensures a high 
degree of confidence for the diagnostic system. 

We integrate correct and fault modes in the deductive model. Reasoning 
in the deductive model is performed using a dependency-directed 
backtracking algorithm. This algorithm is important in our diagnosis 
system, it avoids thrashing behaviour. The use of heuristics for abduction 
increases the speed and efficiency. Heuristics play a beneficial role when 
the system faces obvious, well-known problems. The single-fault 
assumption used in our probabilistic method is also worth noting. This 
chosen strategy is a compromise solution for a system that doesn't consider 
multiple-context in finding a global solution. 

The use of heuristic rules only for a diagnostic system is not adequate. 
Complete coverage is impossible to  achieve. On the other hand, relying only 
on a deductive model is adequate, but it is inefficient due to the system's 
ignorance of the mechanic's experience in solving obvious problems. 
Combining both of them is the ideal solution. Our system successfully puts 
them together. We adopt the idea of differential diagnosis to discriminate 
diagnoses. In differential diagnosis, the system imposes structure to solve 
the problem. This technique considerably reduces search space. 

The single-fault assumption may cause problems. DeKleer[89] has 
shown the advantages of using multiple faults in diagnosis reasoning. 
However, this approach also seems t o  have its own problem. The multiple- 
fault assumption requires a high overhead to consider all solutions at  one 
time, that may be unnecessary. Study of performance comparison of these 
two approaches would be very useful. 

This thesis demonstrates the beauty and potential power of the Echidna 
constraint reasoning engine as a new-generation Expert System Shell. It 
has a clean knowledge representation and supports constraint-based 
hypothetical reasoning elegantly. 



This work suggests further studies to  improve performance. Continued 
study on modelling of physical components is clearly needed to develop a 
viable diagnosis system for engine troubleshooting. Incorporating 
probabilistic information in the underlying system reasoning engine is also 
worth investigating. The results of this study would enable us to  use 
multiple-context consideration applied at  [deKleer,89]. It would be very 
interesting to  know the performance of our diagnostic system using that 
approach. In the long run, adding the learning ability into the system could 
be beneficial, because it leads to a more efficient system which tackles the 
problems as quick as possible using a shallow level of knowledge. 



Appendix 

System Knowledge Base: 

schema component 
I 

% type declarations : 
conditionType Condition. 
stateRange State. 
Name. 

% methods : 
condition(Condition). 
state(State). 
name(Name). 
mode. 
build. 

I 

schema composite:component 
I 

% type declarations 

component Clist. 

% methods 



schema fuse:component 
{ 

% type declarations 

voltageRange Voltl. currentRange CurrentInl. 
voltageRange Volt2. currentRange CurrentOut2. 

% accessors for persistant variables 

% modes of operation 
order mode. 
mode:- % good state 

Currentout2 =:= CurrentIn 1, 
Volt2 =:= Voltl, 

State =:= 0, 
Condition =:= good. 

mode:- % bad state - fuse blown 
Currentout2 =:= 0, 
CurrentInl =:= 0, 
State =:= 1, 
Condition =:= bad. 

I 

schema hose:component 
{ 

% type declarations 

pressRange Pressl. flowRateRange FlowInl. conditionType FlowCondl. 
pressRange Press2. flowRateRange FlowOut2. conditionType FlowCond2. 

% accessors for persistant variables 

terminal 1 (Pressl ,FlowIn 1 ,FlowCond 1). 
terminal2(Press2,FlowOut2,F1owCond2). 

pressl(Press 1). flowout1 (FlowInl). flowCondl(FlowCondl). 
press2(Press2). flowOut2(FlowOut2). flowCond2(FlowCond2). 

% modes of operation 
order mode. 
mode:- % good state 

FlowInl =:= FlowOut2, 
Pressl =:= Press2, 
FlowCond 1 =:= FlowCond2, 



State =:= 0, 
Condition =:= good. 

mode:- % leaking state 
FlowOut2 =k FlowInl, 
Press1 =:= Press2, 
State =:= 1, 
Condition =:= bad. 

mode:- % blocked state 
Flowout2 =:= 0, 
Flowhl =:= 0, 
State =:= 2, 
Condition =:= bad. 

1 

schema junction3:component 

% type declarations 

voltageRange Voltl . currentRange CurrentIn 1. 
voltageRange Volt2. currentRange CurrentIn2. 
voltageRange Volt3. currentRange CurrentIn3. 

% accessors for persistant variables 

% modes of operation 
order mode. 

mode:- % good condition 
Voltl =:= Volt2, 
Volt2 =:= Volt3, 
CurrentInl + CurrentIn2 + CurrentIn3 =:= 0, 

State =:= 0, 
Condition =:= good. 

mode:- % open circuit on 1 
Currenth2 + CurrentIn3 =:= 0, 
CurrentInl =:= 0, 
Volt2 =:= Volt3. 

State =:= 1, 
Condition =:= bad. 

mode:- % open circuit on 2 
CurrentIn 1 + CurrentIn3 =:= 0, 
CurrentIn2 =:= 0. 
Voltl =:= Volt3, 

State =:= 2, 
Condition =:= bad. 



mode:- % open circuit on 3 
CurrentInl + CurrentIn2 =:= 0, 
Currenth3 =:= 0, 
Voltl =:= Volt2, 

State =:= 3, 
Condition =:= bad. 

mode:- % shorted circuit 
Voltl =:= Volt2, 
Volt2 =:= Volt3. 
CurrentInl + CurrentIn2 + CurrentIn3 =k 0, 

State =:= 4, 
Condition =:= bad. 

1 

schema switch:component 
{ 

% type declarations 

voltageRange Volt 1. currentRange CurrentIn 1. 
voltageRange Volt2. currentRange CurrentOut2. 
signalType Signal. 

% accessors for persistant variables 

tenninall(Voltl,CurrentInl). 
tenninal2(Volt2,CurrentOut2). 
volt1 (Voltl). currentInl(CurrentIn1). 
volt2(Volt2). currentOut2(CurrentOut2). 

signal(Signa1). 

% modes of operation 
order mode. 
mode:- % Off condition 

Signal =:= off, 
CurrentInl =:= 0, 
CurrentOut2 =:= 0, 
State =:= 0, 
Condition =:= good. 

mode:- % On condition 
Signal -.- -.- on, 
CurrentInl =:= CurrentOut2, 
Voltl =:= Volt2, 

State =:= 1, 
Condition =:= good. 

mode:- % short circuit across throw 
CurrentInl =:= CurrentOut2, 
Voltl =:= Volt2, 

State =:= 2, 
Condition =:= bad. 

mode:- % open circuit across throw 
CurrentInl =:= 0, 
CurrentOut2 =:= 0, 



State =:= 3, 
Condition =:=bad. 

1 

schema wire:compnent 
( 

% type declarations 

voltageRange Volt 1. currentRange CurrentIn 1. 
voltageRange Volt2. currentRange CurrentOut2. 
voltl(Volt1). currentInl(CurrentIn1). 
volt2(Volt2). currentOut2(CurrentOut2). 

% accessors for persistant variables 

terminal l(Volt1 ,CurrentInl). 
terminal2(Volt2,CurrentOut2). 

% modes of operation 
order mode. 
mode:- %good state 

Voltl =:= Volt2. 
CurrentIn 1 =:= CurrentOut2, 
State =:= 0. 
Condition =:= good. 

mode:- % shorted state 
Voltl =:= Volt2, 
CurrentIn 1 =k CurrentOut2, 
State =:= 1, 
Condition =:=bad. 

mode:- % open state 
CurrentInl =:= 0, 
CurrentOut2 =:= 0, 
State =:= 2, 
Condition =:=bad. 

1 

schema canister:component 

% type declarations 

pressRange Press 1. flowRateRange FlowOutl . conditionType Flowcondl . 
pressRange Press2. flowRateRange FlowIn2. conditionType FlowCond2. 
pressRange Press3. flowRateRange FlowIn3. conditionType FlowCond3. 

% accessors for persistant variables 

pressl(Press 1). flowout1 (FlowOutl). flowCondl(FlowCondl). 
press2(Press2). flowOut2(FlowIn2). flowCond2(FlowCond2). 



% modes of operation 

order mode. 

mode:- % good state, storing but not purging 
Flowout1 < 5, 
FlowIn2 < 5, 
FlowIn3 > 50, 
Press3 =:= Pressl, 
State =:= 0, 
Condition =:= good. 

mode:- % good state, purging but not storing 
FlowIn3 < 5, 
FlowOutl =:= FlowIn2, 

Pressl<press2, 
Pressl =:= Press3, 
State =:= 1, 
Condition =:= good. 

mode:- % good state, not storing nor purging 
Flowout1 < 5, 
Flow1113 < 5, 
FlowIn2 < 5, 
Pressl =:= Press3, 
Pressl =:= Press2, 
State =:= 2, 
Condition =:= good. 

mode:- % bad state, blocked inlet no. 2 
FlowOutl < 5, 
FlowIn2 < 5, 
State =:= 3, 
Condition =:= bad. 

mode:- % bad state, blocked inlet no. 3 
FlowIn3 < 5, 
State =:= 4, 
Condition =:= bad. 

mode:- % bad state, leaking 
FlowOut 1 =k FlowIn2, 

State =:= 5, 
Condition =:= bad. 

schema pcv:component 
I 

% type declarations 

pressRange Press 1. flowRateRange FlowOutl. conditionType FlowCondl. 
pressRange Press2 flowRateRange FlowIn2. conditionType FlowCond2. 
pressRange Press3. flowRateRange FlowIn3. conditionType FlowCond3. 



% accessors for persistant variables 

% modes of operation 

order mode. 

mode:- % Valve is closed by vacuum on terminal 1 
Pressl<O. 
FlowOutl < 5, 
FlowIn2 < 5, 
State =:= 0, 
Condition =:= good. 

mode:- % Valve is opened by pressure on terminal 2 
Pressl >= 0, 
Press2 > 80, 
Pressl =:= Press2, 
FlowOutl =:= FlowIn2, 
FlowCondl =:= FlowCond2, 
State =:= 1, 
Condition =:= good. 

mode:- % Valve is opened by vacuum on terminal 3 
Pressl >= 0, 
Press3 < 0, 
Pressl =:= Press2, 
FlowOutl =:= FlowIn2, 
FlowCondl =:= FlowCond2, 
State =:= 2, 
Condition =:= good. 

mode:- % Valve blocked 
FlowIn2 < 5, 
FlowOutl < 5, 
State =:= 3, 
Condition =:=bad. 

mode:- % Valve stuck open 
Pressl =:= Press2, 
FlowOutl =:= FlowIn2, 
State =:= 5, 
Condition =:= bad. 

mode:- % Valve restricted 
Pressl =k Press2, 
FlowOutl =:= FlowIn2, 
State =:= 4, 
Condition =:= bad. 

mode:- % Valve leaking 



FlowOutl =b FlowIn2, 
State =:= 6, 
Condition =:=bad. 

I 

schema so1enoid:component 
{ 

% type declarations 

pressRange Press1 . flowRateRange FlowOutl . conditionType FlowCondl . 
pressRange Press2. flowRateRange FlowIn2. conditionType FlowCond2. 
voltageRange Volt3. currentRange CurrentIn3. 
voltageRange Volt4. currentRange CurrentOut4. 

% accessors for persistant variables 

pressl(Press1). flowout1 (FlowOutl). flowCondl(FlowCondl). 
press2(Press2). flowIn2(FlowIn2). flowCond2(FlowCond2). 
volt3(Volt3). currentIn3(CurrentIn3). 
volt4(Volt4). currentOut4(CurrentOut4). 

% modes of operation 

order mode. 

mode:- % good state (closed solenoid) 
Flowoutl < 5, 
FlowIn2 < 5, 
Volt3 - Volt4 >= 9. % duty applied from ECM 
Volt3 - Volt4 <= 16, 
CurrentIn3 =:= CurrentOut4, 

State =:= 0, 
Condition =:= good. 

mode:- % good state (open solenoid) 
FlowOutl =:= FlowIn2, 
FlowCondl =:= FlowCond2, 
Press 1 =:= m 2 ,  
CurrentIn3 < 5 ,  % Duty is not applied from ECM 
Currentout4 < 5,  
Volt3 =:= Volt4, 

State =:= 1, 
Condition =:= good. 

mode:- % blocked state 
Flowout1 < 5, 
FlowIn2 < 5,  
State =:= 2, 
Condition =:= bad. 

mode:- % stuck open state 
FlowOutl =:= FlowIn2, 



FlowCondl =:= FlowConM, 
Press1 =:= Press2. 
State =:= 3, 
Condition =:= bad. 

mode:- % restricted state 
FlowOutl =:= FlowIn2, 
FlowCondl =:= FlowCond2, 
Press1 =k Press2, 
State =:= 4, 
Condition =:= bad. 

mode:- % leaking state 
FlowIn2 =k FlowOutl, 

State =:= 5, 
Condition =:= bad. 

mode:- % contaminating state 
FlowCondl =k FlowCond2, 

State =:= 6, 
Condition =:= bad. 

schema ccp:composite 
{ 

% type declarations 

canister Can. pcv PCV. solenoid Sol. 
hoseH1. hose H2. hose H3. 
hose H5. hose H6. 
wire W1. wire W2. 

pressRange Press 1. flowRateRange FlowOutl . conditionType FlowCond 1. 
voltageRange Vold. currentRange CurrentIn2. 
voltageRange Volt3. currentRange CurrentOut3. 
pressRange Press4. flowRateRange FlowIn4. conditionType FlowCond4. 
pressRange Press5 flowRateRange FlowIn5. conditionType FlowCond5. 
pressRange Press6. flowRateRange FlowOut6. conditionType FlowCond6. 

% accessors for persistant variables 

press l(Press1). flowOutl(FlowOutl). flowCondl(FlowCondl). 
vold(Volt2). currentIn2(CurrentIn2). 
volt3(Volt3). currentOut3(Curren tOut3). 
presd(Press4). flowIn4(FlowIn4). flowCond4(FlowCond4). 
press5(Press5). flowIn5(FlowIn5). flowCond5(FlowCond5). 
press6(Press6). flowOut6(FlowOut6). flowCond6(FlowCond6). 



order mode. 
mode:- 

Can:condition(good), 
PCV:condition(good), 
Sol:condition(good), 
H1 :condition(good), 
H2:condition(good), 
H3:condition(good), 
H5:condition(good), 
H6:condition(good), 
Wl:condition(good), 
W2:condition(good), 
condition(good). 

% define components of system 

build:- Can isa canister, Can:name(canister), 
F'cV isa pcv, F'cV:name(presCV), 
Sol isa solenoid, Sol:name(solenoid), 
H1 isa hose, Hl:name(hosel), 
H2 isa hose, II2.name(hose2), 
H3 isa hose, H3:name(hose3), 
H5 isa hose, H5:name(hoseS), 
H6 isa hose, H6:name(hose6), 
W1 isawire, Wl:name(wirel), 
W2 isa wire, W2:name(wire2), 

Clist = [SO~,C~~,PCV,H~,H~,H~,H~.H~,W~,W~], 

% input/ouput parameters of system 

% connections between components within system 

Sol: terminal 1 (F'ressA,FlowA,CondA), 
H1 :terrninall(F'ressA,FlowA,CondA), 

Sol: terminal3(VoltC,CurrentC), 
W 1 :terminal2(VoltC,CurrentC), 



Sol: terminal4(VoltD,CurrentD). 
W2:terminall (VoltD,CurrentD), 

PCV:terminal3(PressI,flowRateRange Flow1,CondI). 
H6:terminall (Press1,flowRateRange FlowIR,CondI), 

FlowIR < 5.0 - FlowI, 

................................................ 
%% Abductive Rut : %% 

default:- print(accessing~deductive~model~ccp), 
Can:&, 
PCV :mode, 
Sol :mode, 
H 1 :mode, 
H2mode, 
H3:mode. 
HS:mode, 
H6:mode, 
W1:mode. 
W2:mode. 

appl y-dataOCpl ,Fl):- 
pressl(Pl), 
flowout1 (Fl). 



schema battery:component 
{ 

voltageRange Volt. currentRange Currentout. 

% accessors for persistant variables 

% modes of operation 

mode:- % good state, voltage between 9 and 16 volts 
Volt >= 9, 
Volt c= 16, 
State =:= 0, 
Condition =:= good. 

mode:- % bad state, undercharged 
Volt c 9, 
State =:= 1. 
Condition =:= bad. 

mode:- % bad state, overcharged 
Volt > 16, 
State =:= 2, 
Condition =:= bad. 

I 

schema igswitch:component 
{ 

switch Switch. junction3 Junction. 
. voltageRange Volt 1. currentRange CurrentIn 1. 

voltageRange Volt2. currentRange CurrentOut2. 
voltageRange Volt3. currentRange CurrentOut3. 
signalType Signal. 

% accessors for persistant variables 

% define components of system 

mode:- Switch isa switch, 
Junction isa junction3, 

% input/output parameters of system 



% connections between components within system 

% choose mode of operation for each component 

% determine Condition and State of ignition switch 

findmode:- 
Switch:state(O), 
Junction:state(O), 
Signal =:= off, 
State =:= 0, 
Condition =:= good. 

findmode:- 
Switch:state(l), 
Junction:state(O), 
Signal =:= on, 
State =:= 1, 
Condition =:= good. 

findmode:- 
Switch:state(2), 
Junction:state(l), 
State =:= 2, 
Condition =:= bad. 

findmode:- 
S witch:state(2), 
Junction:state(2), 
State =:= 3, 
Condition =:= bad. 

findmode:- 
Switch:state(2), 
Junction:state(3), 
State =:= 4, 
Condition =:= bad. 

findmode:- 
S witch:state(2), 
Junction:state(4), 
State =:= 5, 
Condition =:= bad. 

findmode:- 
S witch:state(3), 
Junction:state(l), 
State =:= 6, 
Condition =:= bad. 

findmode:- 
Switch:state(3), 
Junction:state(2), 



State =:= 7, 
Condition =:= bad. 

findmode:- 
Switch:state(3), 
Junction:state(3), 
State =:= 8, 
Condition =:= bad. 

findmode:- 
Switch:state(3), 
Junction:state(4), 
State =:= 9, 
Condition =:= bad. 

I 

schema power:composite 
( 
% type declarations : 

battery Battery. igswitch IS. fuse ECM-F. 
wire W1. wire W2. wire W3. 
wire W4. wire W5. wire W6. wire W7. 
junction3 Jl. junction3 J2. 

voltageRange Volt 1. currenaange CurrentOutl. 
voltageRange Volt2. currenaange CurrentOut2. 
voltageRange Volt3. currenaange CurrentOut3. 
voltageRange Volt4. currenaange CurrentOut4. 

signalType Signal. 
real u1. real u2. real v1. real v2. 
real V3. real M3. real M4. real C1. 

% accessors for persistant variables 

order mode. 
mode:- print(accesingdefault~of~Power~System), 
IS:condition(good), 
Battery:condition(good), 
W 1 :condition(good), 
W2:condition(good), 
W3:condition(good), 
W4:condition(good), 



% define components of system 

build:- IS isa igswitch, IS:name(ignitionswitch), 
Battery isa battery, Battery:name@attery), 

W 1 isa wire, Wl:name(wirel), 
W2 isa wire, ~name(wi re2 ) ,  
W3 isa wire, W3:name(wire3). 
W4 isa wire, W4:name(wire4), 
W5 isa wire, WS:name(wireS), 
W6 isa wire. W6:name(wire6), 
W7 isa wire, W7:name(wire7), 
J1 isa junction3, Jl:name(junctionl), 
J2 isa junction3, J2:narne(junction2), 
ECM-F isa fuse, ECM-F:name(ecmfuse), 

Clist = [IS,Battery,Wl,W2.W3,W4,W5,W6,W7 Jl,J2,ECM-F], 

% inputloutput parameters of system 

% connections between components within system 

Jl:terminal2(VoltC,currentRange CurrentC), 
W2:terminall (VoltC,currentRange CurrentCC), 

0-CurrentC =:= CurrentCC, 

Jl:termina13(VoltD,currentRange CurrentD), 
W5:terminall (VoltD,currentRange CurrentDD), 

0-CurrentDD =:= CurrentDD, 



ECM-F: terminal2(VoltI,CurrentI), 
W3:terminall (VoltI,CurrentI), 
W4: terminal 1 (VoltI,CurrentI), 

W6:terminal2(VoltJ,currentRange CurrentJ), 
J2:terminall (VoltJ,currentRange CurrentJJ), 

@CurrentJJ =:= CurrentJJ, 

............................................ 
%% Abductive Part : %% 

owner-complain t(hard-start): - 
1S:condi tion(bad). 

observation-l(Signal,V l,V2,V3,M3,M4):- 
default, 

apply-dataO(Signal,V 1 ,V2,V3,M3,M4), 
gene-diagnoses. 

observation_2(M4):- apply_data2(M4), 
generate-diagnoses. 



applydataO(Signa1,V 1 ,V2,V3 ,M3 ,M4):- 
%wwignal), 
voltl(Vl), 
vol t2(V2), 
volr3(V3), 
ECM-F: terminal2(M3 ,MM3), 
J2: terrninal2(M4 ,MM4), 
apply_ruleO(SignaI,Vl ,V2.V3 ,M3,M4). 

a_priori. 

apply-ruleO(Signa1,V 1 ,V2,V3,M3,M4):- print(rulel), 
Signal =:= on, 

v 2  > 10, 
V1<5, 
M3 > 10, 

ECM-Fxondi tionbad). 

apply-ruleO(Signa1,V 1 ,V2,V3,M3,M4):- print(rule1). 
Signal =:= on, 

V1<5, 
V2 < 5, 
v 3  > 10, 
W;I:condition(bad). 

apply_ruleO(Signal,Vl,V2,V3,M3,M4):- print(rulel), 
Signal =:= on, 

Vl < 5, 
V2<5, 
v 3  > 10, 
Wl:state(2). 

apply-ruleO(Signa1,V 1 ,V2,V3 ,M3 ,M4):- print(rulel), 
Signal =:= on, 

v 1 >  10, 
V2 < 5, 
J2:condi tion(bad). 



measure 1 (C 1 ,a) : -  
prin t(rule0-4). 

apply-datal (C 1 , a ) ,  
apply-rule1 . 

apply-data 1 (C 1 ,a) : -  
currentOutl(C1). 
currentOut5(C2). 

apply-rule 1:- 
C1> 10, 
Jl:condition(good). 

apply-rule 1 :- 
C1>0, 
J l:condition(bad). 

apply-rule 1 :- 
prin t(app1 y-apriori), 

aqriori-2. 

generate-diagnoses: - 
solution~list(Clist,[],PrintList), 

print(PrintList). 

schema vehic1e:composite 
{ 
% type declarations : 

ccp a?. 
power Power. 

voltageRange Voltl. currentRange Currentl. 
voltageRange Volt2 currentRange Current2. 

order mode. 
mode:- Power:condition(good), 

CCP:condition(good), 
condition(good). 



% system components : 
build:- Power isa power, Power:name@ower-system), 

CCP isa ccp, CCPname(ccp-system), 

Clist = power,CCP], 

% connections between components within system : 

Power:terminal2(VoltA,CurrentA), 
CCP: terminal2(VoltA,CurrentA), 

%default, 

composite:: build. 
................................................ 
%% Abductive h t  : %% 

% containing rule at level of Vehicle 

observation-1 (Signal,Vl ,V2,V3,Cl ,C2):- 
apply-dataO(Signa1,V 1 ,V2,V3,C 1 ,C2), 

generate-diagnoses. 

observation-1 (Signa1,Vl ,V2,V3,M4,Cl ,C2):- 
apply-dataO(Signa1.V 1 ,V2,V3 ,M4,Cl ,C2), 

generate-diagnoses. 

observation-l(Signa1,Vl ,V2,V3,M3,M4,Cl,C2):- 
default, 
apply-dataO(SignaI,Vl,V2,V3,M3,M4,Cl,C2). 

generate-diagnoses. 

default- 
Power mode, 
CCP-mode. 



I 
vehicle Vehi. 



Data File for Run Test: 

load sys-vehicle.kb 
load cl.kb 

Vehi isa vehicle. 
Vehi:build. 
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