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Abstract 

Annually across North America approximately 150,000 women are diagnosed as 

having breast cancer. In British Columbia about 500 women die each year due to the 

disease. Mammography, x-ray imaging of the breast, is the primary screening and 

diagnostic tool available for the early detection of breast cancer and other forms of breast 

disease. To diagnose breast cancer in mammograms the radiologist looks for several 

specific textural indicators which indicate a growing cancer. 

One particular textural model which has received recent interest, especially for its 

ability to model natural shapes and forms, is that of fractals. This thesis investigates fractal 

theory as a method of texture analysis and assesses the potential of using fractal-based 

texture segmentation to identify breast disease in digitized standard film mammograms. 

This research focuses on the ability of the fractal model to detect known tumours, 

cysts and microcalcifications. The effect of various implementation methods, algorithmic 

noise removal and mask size on the fractal dimension calculations and image segmentation 

is outlined. A quantitative and qualitative analysis of synthetic and patient images is 

presented. Finally, cases where fractal-based texture analysis is successful and where it 

fails are reviewed. 
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Fractal-Based Texture Segmentation of Digital X-Ray Mammograms 

Chapter 1 

Introduction 

- .. 

1 . 1  Motivation 

Annually across North America approximately 150,000 women are diagnosed as 

having breast cancer. In British Columbia about 500 women die each year due to the 

disease [KnicgO]. Although curable when detected in the early stages, breast cancer is the 

leading cause of cancer deaths among women 30 years and older [SBo71] [ZhGo88]. 

1 .1 .1  Screening Mammography 

Since the mid-1960s mammography-x-ray imaging of the breast-has been the 

primary screening and diagnostic tool used in the detection of breast cancer and other forms 

of breast disease such as cysts and fibroadenomas [SBDS86] [CDVM87] [CBRE88] 

LLBi881 [Mosk88]. It is the only proven method of detecting nonpalpable breast cancers, 

and consistently detects a significant number of breast cancers at an earlier stage than any 

other method [GBKS87] Wosk871. 

Generally, small cancers are not large enough to be felt as breast lumps. Studies 

indicate Peig791 [ZhGo88] [Knic90] detection rates by physical examination alone do not 

approach those of mammography until carcinomas reach a size of 2 to 3 centimetres in 
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diameter, by which time 65 percent have metastasized and spread to involve regional nodes. 

Detection of breast cancer prior to nodal involvement, when it is still clinically localized, 

increases the survival rate to 85 percent at five years. Detection at the time of nodal 

involvement reduces the five year survival rate to 53 percent. The prognosis worsens 

dramatically as the carcinoma enlarges to two or three nodes and begins to spread to other 

parts of the body. The average three year survival rate with untreated breast cancer is 

approximately 40 percent; at five years the survival rate drops to 18 to 20 percent. 

A cancer found before it reaches one centimetre in diameter may be treated by 

lumpectomy-surgical removal of just the cancerous tissue, rather than mastectomy- 

removal of the entire breast [MASR84] [HHKi85] [VZLu86]. Benefits of early detection 

not only include increased survival rate but the possibility of functional breast 

reconstruction which may alter the patient's attitude to therapy and treatment. The basis for 

early detection is long-term survival-a woman who has a small carcinoma removed has a 

much better chance than a woman who has removal of a large breast cancer. 

Since early detection is imperative and because x-ray dosages required by modem 

mammography equipment are low, the American College of Radiology recommends all 

asymptomatic women over 40 have a routine mammogram every 2 years and annually after 

age 50 [Whit841 [GBKS87] [Mosk88]. As a screening procedure, it has been anticipated 

that mammography will reduce deaths due to breast cancer by one third and perhaps by as 

much as 70 percent. Consequently it is becoming more widely used as a mass screening 

procedure [SBDS86] [CDVM87] [GBKS87] [ L L B ~ ~ ~ I  [Knic90], as exemplified by the 

recently implemented Breast Screening Mammography Program of British Columbia. 
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Screening mammography is limited by a number of factors the most significant 

being the method of analysis. Currently mammographic analysis is performed manually by 

a .radiologist using a magnifying glass to scan the film transparency carefully over a 

lightbox. The radiologist looks for visual indicators or diagnostic signals that indicate a 

growing cancer. Since many of the indicators involve very fine details, manual analysis of 

mammograms is labour intensive. Table 1.1: Radiological Signs of Breast Cancer lists the 

diagnostic signals most commonly associated with cancer. While these visual signs often 

reflect cancer that is locally advanced, emphasis is currently being placed on the less 

obvious signs such as subtle changes in breast architecture or mammographic texture that 

may signify the pre-clinical stages of cancer [GBCo87]. 

To overcome these problems and to aid radiologists in their diagnosis, it is desirable 

to develop computer-aided mammographic image processing and analysis tools which 

extract as much information as possible from mammograms. With computer processing of 

digital mammograms, the opportunity presents itself, as it has for other types of diagnostic 

x-ray [Conn85] [SSWA85] [CDVS87] [Fa01871 [GDMa87] [Rabk87] [DaFo88], to 

enhance and compare mammograms in ways impossible even for the eye of the best-trained 

radiologist. 

1 .1 .2  Computer-Aided Mammography 

A number of automated prescreening methods have been suggested for 

mammography which utilize techniques in image p&essing and pattern recognition. Most 

of this work has been aimed at the detection of breast lesions and microcalcifications. The 

identification of breast lesions has been the focus of [Wins671 [AcGo72] [KOSk77] 

[SWGS77] [HSAA79] [GRRW87] and [LLBi88]. Approaches have included: (i) using 
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RADIOLOGICAL S I G N  COMMENTS 

high density tissue 

spiculation 

microcalcifications 

lesion texture 

lesion density 

nipple retraction 

ductal prominence 

skin thickening 

asymmetry 

large areas of light gray or white known as lesions 

afizzy texture around an area of high density 

sand-like bright spots that appear in clusters 

homogeneous lesions are likely benign; 
non-homogeneous are likely malignant 

lesions less dense than surrounding tissue are 
likely non-malignant; denser lesions are likely 
malignant 

indicates a subcutaneous reaction causing the 
nipple to be drawn towarah the lesion 

prominent ducts extending from a lesion towardr 
the nipple strongly suggests malignancy 

indicates a subcutaneous reaction where the skin 
sulface is drawn towar& a lesion 

structural dzyerences such as size and shape 
between breasts 

Table 1.1: Radiological Signs of Breast cancer1 

four measures of malignancy-calcification, spiculation, roughness and area-to-perimeter 

ratio-to develop pattern classification techniques to categorize suspicious areas [AcGo72]; 

(ii) distinguishing benign and malignant lesions based on intensity distributions 

[SWGS77]; (iii) comparing textural and shape parameters in the left and right breast images 

IHSAA791; and (iv) template matching schemes to detect circumscribed masses PLBi881. 

This table has been compiled from several sources including [Lama85], [AWNB87], [GBCo87], 
Mosk871 and [CBRE88]. 
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Microcalcifications, which sometimes appear in large numbers and clusters around a 

developing tumour, provide one particularly obvious radiological indicator of cancer. 

Approaches to microcalcification identification have included: ( i )  quantification of the 

shapes of the calcifications using piecewise linear discriminant functions [WMCT75]; (ii) 

using gray-level statistics and measures of brightness and compactness [Spie79]; (iii) 

adaptive local contrast and feature enhancement [RaNg86]; and (iv) spatial filtering to 

suppress the background while using signal-extraction techniques based on the physical 

characteristics of microcalcifications to enhance their presence [CDVM87]. 

1 .1 .3  Texture in Mammography 

Image texture can be considered a spatial arrangement of different gray-level 

intensities and is the primary characteristic used in the analysis of radiological images. The 

spatial arrangement of the differing intensities within a particular region of an image may be 

more or less regular, may be random, or may have a linear, structural or probabilistic 

dependency of one upon another. Frequently the spatial arrangement is qualitatively 

described as having the properties of fineness, coarseness, smoothness, granulation, 

randomness, lineation, or being mottled or irregular. 

In mammography the radiologist evaluates image texture within an area of the film 

image by looking at the composition of the fine detail and the overall spatial organization of 

this detail. Any changes in either the linear or coalescent densities permits the radiologist to 

differentiate between normal and abnormal areas. These textural changes are frequently 

described using the above qualitative terms and are the basis of several of the radiological 

indicators mentioned in Table 1.1. 
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In computer-aided mammography several researchers have used changes in image 

texture to classify physical areas of an image. In particular [KSFW79] [MCOB85] 

[CSHJ~O] have used texture-based classification schemes to predict the risk of developing 

breast cancer. While using different methods, these programs are all similar in that they 

assess the radiographic densities of mammographic parenchymal patterns and determine a 

statistical correlation which best coincides with a specific risk category of the Wolfe 

Classification System [Wolf83]. [KSFW79] analyzed the gray-level variations of digitized 

mammograms to determine which statistics best represented a particular texture 

classification. [MCOB85] investigated the automatic determination of a risk coeficient 

using both global and local parameters as measures of risk. Unfortunately these parameters 

did not provide enough discriminant information to permit accurate classification among 

various mammographic patterns. The application offractal theory to radiological images is 

evident in the recent work of [CSHJ9O]. Fractals measure the degree of roughness of a 

surface, and [CSHJ90] correlates globally-derived fractal dimension values to specific risk 

categories in the Wolfe system. 

1 .2  Scope 

This thesis investigates fractal theory as a method of texture analysis, and in 

particular assesses the potential of using fractal-based texture segmentation to identify 

breast disease in digitized standard film mammograms. A key premise is that, as projected 

on a two-dimensional x-ray, a carcinoma has a texture (i.e., pattern of gray-level 

intensities) which is distinct from the surroundiig normal tissue, and that any changes 

between normal and abnormal tissue can be described by a corresponding change in fractal 

dimension. Thus, changes in the fractal dimension should correspond to the anatomical 

features of the breast-normal and abnormal-and may be used to segment the image. 
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A basic problem in the application of fractal theory to mammography is the 

estimation of the fractal dimension or D value. Several methods, [Pent841 [LOKS86] 

[LOKW86] [Dell871 [OhLu87] [Vern87] .[ChDF89] [KeCh89] [KCRW89] [CSHJ90], 

have been presented for calculation of this parameter. In order to simplify our evaluation 

process, we chose to implement Pentland's Intensity Statistics Method for estimating the 

fractal dimension [Pent84]. This method calculates the fractal dimension of a small area- 

mask-surrounding each pixel directly from the gray-level intensities of the x-ray. From 

these calculations a fractal image is created in which the gray-level intensities are 

proportional to a particular D value. Texture segmentation is via the fractal image. 

To assess the effectiveness of fractal-based texture segmentation in mammography 

this research focuses on the following issues: 

(i) The ability of the fractal estimator to detect both large- and small-scale 

anatomical features. The objective is to detect features that are not obvious to 

the human eye. It is also imperative that details that are clearly visible are not 

lost. Two implementations of the fractal estimator will be evaluated. 

(ii) Determination of an appropriate mask size for detecting both large- and small- 

scale anatomical features. Several researchers [Vern87] pel1871 [StHa88] have 

indicated that small mask sizes are more sensitive to noise, while larger mask 

sizes lead to averaged or smoothed D estimations. Both of these situations will 

be investigated to determine which will produce more reliable results. 

(iii) An investigation of the effect of noke on the fractal calculations and the 

subsequent impact on fractal-based texture segmentation. 

(iv) An investigation of the effect of algorithmic noise removal prior to performing 

fractal dimension calculations. In particular, can noise removal be used prior to 
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fractal-based texture segmentation and still produce consistent and reliable 

results? 

(v) An evaluation of the potential of combining data from the original gray-level x- 

ray with data from the fractal image as a means for enhancing fractal-based 

texture segmentation. 

1 . 3  Strategy 

Computer-aided mammography can be broken into three stages: the image formation 

stage, the image acquisition stage, and the image analysis stage as shown in Figure 1.1. 

Each of these processes is based on particular physical models and has an associated series 

of assumptions and limitations. These assumptions and limitations directly affect the 

behaviour of the fractal model as a texture segmentation technique in radiology. 

The first two stages, the image formation and acquisition stages, will be explained 

in Chapter 2. Penetrating radiation systems and radiographic image formation, including 

image, quantizer and sensor noise are discussed. 

Chapters 3 , 4  and 5 are concerned with the image analysis stage. Chapter 3 deals 

with fractal theory; particular emphasis is placed on the application of fractal analysis as it 

pertains to radiology. Chapter 4 presents the experimental outline and discusses the 

algorithms used in the experiments. Chapter 5 presents and discusses the results of the 

experiments. Chapter 6 presents the conclusions and suggests future research directions. 
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Radiographic 
I 

Formation L- 
Digital X-Ray 

Image 
Acquisition 

i r 

Image 
Pre-Processing 

and 
Analysis 

Figure 1.1: Three stages of computer-aided mammography 
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Chapter 2 

Diagnostic X-Ray Imaging 

This chapter discusses key characteristics of radiographic image formation and 

digital x-ray image acquisition which have been found to affect fractal-based texture 

segmentation of digital x-rays. 

2 . 1  Radiographic Image Formation 

The x-rays used in conventional radiography are produced by passing a high 

voltage, usually between 50 and 150 kilovolts, across two terminals in an evacuated tube 

causing free electrons to hit a tungsten target. A small portion of the resulting x-ray beam 

escapes through an opening in the surrounding metal casing. It then passes through the 

object of interest and is recorded on film. 

2 . 1 . 1  Film Images 

X-ray image formation is a chemical process in which silver particles are deposited 

on film in response to x-ray exposure. A photographic effect results when film is placed 

between two fluorescent screens that emit light on exposure to x-rays. The light emitted by 

the fluorescent screens intensifies the effects of the x-ray beam and causes the blackening of 

the developed film. The type of phosphor coating on the screen, its x-ray absorption 

Diagnostic X-Ray Imaging 
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characteristics and its efficiency in converting absorbed x-ray energy to light determine the 

sensitivity of the screen. The amount of metallic silver deposited on a particular area of film 

in response to the quantity of light emitted by the flourescent screen is referred to as thefilm 

density [Yu83]. For maximum sensitivity, the spectral response of the film must be 

matched to the light emitted by the screen. 

According to [AnHu77] [Yu83] [Rash871 [Loats88], the capability to detect or 

reproduce biomedical detail is limited by the silver grains' response to x-ray exposure and 

by the microstructure of the film. Essentially silver grains have two states: highly 

developed (i.e., exposed) and marginally developed (i.e., unexposed). Due to the limited 

number of responsive silver halide grains per surface area of film, there is a upper limit on 

the amount of energy that is detected at a particular location on the film surface. This is 

known as the saturation level of the film. After saturation has been reached, further 

exposure to x-rays does not significantly alter the local density of the image; it only exposes 

film grains more distant from the source of the emissions. Even in areas of film that are not 

exposed to any x-rays, reactions occur between the developer and the silver grains. This 

produces a background density or fog level which causes a loss of image sharpness and 

resolution. Thus two boundaries-the fog level and the saturation level--define the limits 

of film density. 

Another factor also contributing to loss of image sharpness and resolution is film- 

grain noise. According to [AnHu77] and [Yu83], a fundamental randomness exists in the 

deposition of silver grains. They are randomly distributed with respect to size, shape and 

location in the film emulsion even when identical conditions of exposure and development 

exist. 
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While various mathematical models exist to explain film-grain noise, it is generally 

agreed that film-grain noise is aperture size dependent, is not constant but varies with the 

average film density in a region of film, and can be approximated by a random process 

[AnHu77] [Yu83]. Unfortunately the imaging characteristics of the x-ray systems which 

produced the films used in this thesis are not known. Let it suffice to say that several of the 

x-ray films contained a significant amount of film-grain noise. As suggested by [AnHu77], 

we approximated film-grain noise by a random noise process and used this in our 

experiments which assessed the impact of noise and its algorithmic removal on the fractal 

model. 

2 . 1 . 2  Image Projections 

The image on an x-ray film is two-dimensional. It is a shadow projection of the 

interior of the object-all the structures along the path of the beam are projected onto the 

same point of the film. The shadows are produced by four basic densities-gas, fat, soft 

tissues and calcijTed structures. According to [AWNB87] x-rays passing through air are 

the least absorbed and cause the most blackening of the film. Calcium absorbs the most x- 

rays, therefore bones and other calcified structures appear white. Soft tissues, such as the 

sold viscera, muscle, blood and bowel wall, all have the same absorptive capacity and 

appear the same shade of gray. Fat absorbs slightly less x-rays and appears a little blacker 

than the other soft tissues. Radiologically, the greater the differential absorption of the 

tissues the more satisfactory the film contrast, which in turn determines the visibility of 

structures and of disease. 

According to Lama851, x-ray images embody three principal characteristics: they 

are conical, composite and contrasted projections. They are conical projections because the 
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x-ray beam extends in different directions from an apex and then passes through the object 

of interest to be recorded on film. Images are composite because each portion of the beam 

is' projected onto a single given point of the film. In other words, for a particular (x, y) 

location in the film image the gray-level intensity at that point is due to a summation of the 

point contributions along a particular beam path through the object [AnHu77]. Images are 

contrasted projections because each point on the film shows a darkening depending on the 

intensity of the rays received (i.e., as determined by the density of the object) following 

transition through the tissue. 

The weakening of the x-ray beam due to the density of the object is referred to as 

attenuation [AnHu77]. Projection geometry and radiation scatter also modify the x-ray 

beam and consequently affect the film image. Radiation scatter occurs when the x-ray beam 

is scattered from its path resulting in a deflection of radiation about a point. Projection 

geometry dictates that edges not directly in the path of the radiation source are spread out. 

Thus, the developed x-ray image as we view it is a projection of all point 

contributions from the structures of the object along a path of the beam-gas, fat, soft and 

calcified tissues-including modifications of the x-ray beam due to density, radiation scatter 

and projection geometry. The amount of information present on an x-ray image is related to 

the differential absorption of the tissues which dictates the sharpness of the image, its 

clarity and its contrast. 

2.1.3 Mammogram Image Formation 

Mammography differs from conventional radiology in that low energy x-rays in the 

20 to 35 kilovolt range are used in an effort to reduce the possible harmful effects of 
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repeated exposure to high voltage ionizing radiation [AWNB87] [GBKS87] [Mosk87] 

[Mosk88]. The breast, classed as a soft tissue, is composed mainly of fat and fibrous 

connective tissue. When projected on film, fat is clear while connective and fibrous tissue 

is opaque. The variable amount of fatty tissue (a function of the breast's thickness) and the 

relationship between fatty and connective tissues determine the structures seen on 

projection. Together these two extremes produce the image of a mammograph. 

Unfortunately, due to its composition, the breast has weak differential absorption. 

In addition, the small differences in density between normal and tumourous tissues create 

relatively weak contrast between tumour areas and image background. The presence of 

anatomical structures (e.g., ducts and glands) further increases the background variations 

which in turn decrease contrast. A further reduction of contrast also occurs from the limited 

capability of photographic film to develop maximum contrast over an extended range of 

exposure values; the high x-ray penetration of the objects; scatter radiation; image blurring 

produced by the finite size of the focal spot; the thickness of the intensifying screen; and 

improper procedure and poor film processing techniques. The result is  poor quality 

mammogram images which exhibit reduced contrast, sharpness and resolution. 

According to [Lama851 [AWNB87] [GBKS 871 [Mosk87] [CBRE88] [Mosk88], 

reducing the thickness through which the x-ray beam passes by compressing the breast 

enhances the clarity of structures seen on the projection images. Breast  omp press ion is also 

performed for a number additional reasons: it enables a reduction in the x-ray dose; it 

improves image contrast due to the reduction in' scatter radiation; and it improves the 

sharpness of the film image because the breast is closer to the receptor. The improved 

quality of image obtained by using breast compression has made this the norm in 

mammography. 
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2 . 2  Digital X-Ray Acquisition 

Digital x-ray acquisition seeks to provide accurate, reliable quantization of x-ray 

images which extracts as much data as possible from the original film image. Figure 2.1 

shows the major components of the acquisition system used in this thesis. Quantization of 

x-ray images is performed using a sensor, in this case a video camera, that converts the 

gray-level intensity variations of the x-ray into an analog electrical signal. A signal 

converter-in our case the IIS image processor-transforms the analog signal into digital 

form for computer processing and analysis. 

According to Poats881 the quantization process imposes an inherent accuracy limit 

on the representation of the gray-scale information present on digitized x-rays. This limit is 

principally determined by the quantization capabilities of the acquisition device and the 

sensor noise characteristics of the system. 

The quantization capabilities of the acquisition device are determined by two factors: 

the smallest discernible detail, in the original x-ray image, and the spatial resolution 

capabilities of the video camera/analog-to-digital (AD) converter system. We have already 

mentioned how the details of the original x-ray images are determined by several factors. 

The resolution capabilities of our particular system are discussed in Chapter 4. 
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Figure 2.1: Digital X-Ray Image Acquisition System in the Vision 
Laboratory of the School of Computing Science 
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The sensor noise characteristics of the acquisition system impose a further accuracy 

limit on the representation of the gray-scale information present on the digitized x-ray. 

[Loats88] points out that noise in a digital image system comprises image, sensor and 

quantizer noise. Image noise refers to the visual quality of the film images, which as 

previously mentioned is determined by several factors. Sensor noise arises primarily from 

the video camera, whereas quantizer noise arises primarily from distortions in either the 

optical system of the digitizer or the AID converter. As a result, digitized x-ray images 

often have degraded edge and texture definition which may significantly impair accurate 

diagnosis and have impact on the diagnostic value of the processed image. Consequently, a 

number of image preprocessing and restoration techniques have been developed to improve 

the quality of digitized images. 

2 . 2 . 1  Image Preprocessing and Restoration 

Image preprocessing and restoration techniques fall into two classes: geometric and 

radiometric. Geometric techniques include corrections to compensate for spatial non- 

uniformities introduced by the sensor. The distortions may be on the sensor chip itself or 

may arise when the analog signal is converted to digital format. Chapter 4 discusses the 

geometric corrections performed in this thesis to compensate for spatial distortions which 

are present in this particular digital image acquistion system. 

Radiometric techniques include: noise removal, and the enhancement of contrast, 

edge and texture quality. These techniques have been the focus of considerable research 

[GoRa84] [Selz84] [DBGo86] [DLGo86] [RaNg86] [Fa01871 [DhLe88] [LLBi89]. They 

are aimed at improving the quality of x-ray images by bringing out the unseen or barely 

seen features and textures for better human visibility without an additional x-ray dose to the 
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patient. Unfortunately the selection of suitable enhancement functions for mammography is 

difficult--often these algorithms intensify the noise and background variations so that the 

desired features cannot be clearly seen. Recently [LLBi89] presented a comparison of 

edge-preserving noise removal and contrast enhancement methods for specific use in 

mammography. Several of these algorithms seem to enhance the diagnostic information 

without intensifying noise or other background variations. From this comparison the Kth- 

Nearest Neighbour Method was chosen to enhance the contrast and remove noise from the 

digitized x-rays. 

2 . 3  Summary 

X-ray images are shadow projections of the interior of the object where all 

structures along the path of the beam are projected onto the same point of the film. The 

relatively weak differential absorptive capacity of the breast makes compression necessary 

in order to enhance the clarity of the internal structures and improve image contrast. 

Radiologists interpret changes in relative image intensity-directly related to the strength of 

the x-ray received-as changes in image texture indicative of possible breast cancer. 

Reproduction of radiographic detail on x-ray film is governed by the initial quality 

of the film x-ray, and by the accuracy/inaccuracy of the imaging system. A significant 

amount of noise may be present in the film image. In addition, quantizer and sensor noise 

are introduced during the digitization process. Image preprocessing and restoration 

techniques are utilized to compensate for spatial dihortions and for noise removal. 

The effect of noise, and its algorithmic removal, on the behaviour and stability of 

the fractal model requires investigation. The experiments in chapter 5 attempt to determine 

Diagnostic X-Ray Imaging 



Fractal-Based Texture Segmentation of Digital X-Ray Mammogram 19 

its impact on the fi-actal model as it pertains to texture-based segmentation of radiological 

images. The next chapter, Chapter 3, will present the Fractal Brownian model and review 

its application to radiology. 
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Chapter 3 

Fractals in Radiology 

An important goal of texture-segmentation research is the identification of texture 

models that facilitate the discrimination of various textures. One particular textural model 

which has received recent interest,, especially for its ability to model natural shapes and 

forms, is based on a relatively novel class of mathematical functions known as fractals. 

Fractal geometry has received considerable attention as a model for natural phenomena in 

physiology and medicine, and as a means of texture description and segmentation of 

medical images. 

This chapter discusses fractals in biology and physiology, basic concepts of fractal 

theory and in particular the fractional Brownian motion model as it has been applied to 

scene analysis, image segmentation and radiography. 

3 .1  Fractals in Biology and Physiology 

The complex interrelations between size, scale and shape to form, function and 

development are commonly encountered in anatomy and physiology. Exploration of these 

interrelations has led to the formulation of several scaling relationships which describe how 

proportions vary as an animal grows. According to [WeGo87] these relationships rely on 

the assumptions that biological processes are continuous, homogeneous and regular. 

Fractals in Radiology 



Fractal-Based Texlure Segmentation of Digital X-Ray Mammograms 21 

However, observation and experiment have suggested the opposite-most biological 

systems are discontinuous, nonhomogeneous and irregular. 

Seizing upon the fact that many anatomical structures show elements of both 

similarity and randomness over a range of scales, researchers have used fractal theory to 

describe the behaviour of several systems in physiology. These systems include: the 

different sized tubes of the vascular system and its branching throughout the body; the bile 

duct system; the urinary collecting tubes in the kidney; the brain; the lining of the bowel; the 

nervous system; the placenta; the heart with its system of coronary arteries and veins held 

together by branching strands of connective tissue; the heart's His-Purkinje system-a 

network of nerves which conduct electrical impulses; and the various branching and tube 

sizes of the lung WeGo871. 

Research has also suggested that as well as describing healthy physiological 

variability, alterations in fractal scaling (i.e., fractal dimension) may underlie a number of 

diseases including congestive heart failure, fetal distress syndrome and certain types of 

chronic leukemia. The notion that alterations in fractal scaling may underlie disease and the 

possibility that such alterations may be detected on radiographs is key in the formulation of 

this thesis. 

3 .2  What is a Fractal? 

Fractals form a class of mathematical functions that express the geometrical 

properties of some sets. The mathematician Benoit Mandelbrot coined the word fractal to 

describe complex geometric forms that mimic the randomness found in nature and yet 

exhibit a paradoxical combination of variability and order. Mandelbrot elegantly states 
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"Clouds are not spheres, mountains are not cones, coastlines are not circles, 
and bark is not smooth, nor does lightning travel in a straight line.'a 

In classical Euclidean geometry objects are often defined by parametric equations 

specifying their surface or volume. In classical geometry these objects have an integer 

dimension or topological dimension T. A point is referred to as having zero dimension, a 

line one dimension, an area two dimensions and a solid three dimensions. The term fractal 

refers to objects possessing a non-integer or fractional dimension D, where the fractal 

dimension is greater than the topological dimension. The dimension of a fractal is related to 

the way it scales and is a measure of how well it fills the Euclidean space in which it is 

embedded. As the fractal dimension increases the irregularity of the object increases. This 

corresponds to our intuitive notion of roughness or texture-the lower the D value the 

smoother the object, the higher the D value the rougher the object. 

According to [Gowe871 fractal objects possess some interesting properties- 

heterogeneity, self-similarity and the absence of a well-defined or characteristic scale of 

length. Fractal curves, surfaces and volumes are neither smooth nor homogeneous. 

Examination at increasingly stronger powers of magnification reveal levels of detail not 

present in the classical forms. Seemingly endless levels of irregular structure emerge- 

wrinkles on wrinkles on wrinkles-in which the small scale structure of the fractals 

resembles the large scale form, that is they are self-simihr. 

Self-similarity is the basic property which is the key to real-world modeling of 

natural objects. According to [Voss85] and [StHa88] natural objects exhibit a statistical 

Mandelbrot, B. B., The Fractal Geometry of Nature, New York: W .  H. Freeman and Company, 1983, 
P. 1 
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self-similarity rather than an a exact self-similarity. An object possessing exact self- 

similarity is composed of many copies of itself, with possible translations and rotations, 

each of which is scaled down by a specific ratio at all positions of the object. An object 

displaying statistical self-similarity is described by a statistical law that governs the self- 

similarity of probability distributions of specific properties, such as gray-level intensity, 

measured at different scales. The degree of self-similarity is directly related to the fractal 

dimension. The statistical model most frequently assumed for this purpose is fractional 

Brownian motion. 

The fractional Brownian motion model (fBm), introduced by Mandelbrot and Van 

Ness [MaVN68], is an extension of the concept of Brownian motion that plays an 

important role in physics and mathematics. This model regards naturally occurring rough 

surfaces as the end result of random walks which are the basic physical processes in our 

universe. A characteristic of these processes is that they modify shape through local action 

and after innumerable repetitions they typically produce a fractal shape, Application of the 

fBm model has been extended to the intensity surfaces of film images by Pentland in 

[Pent841 and is of particular interest to this thesis. 

3 .3  Fractional Brownian Motion and Film Images 

Pentland's research uses fractional Brownian motion to explain how natural objects 

and textures are mapped onto a two-dimensional film image intensity surface. Several 
I 

researchers, pel1871 [Vern87] and [ChDF89], have used Pentland's fractal model for the 

texture analysis of radiographs. Like [Dell871 [Vern87] and [ChDF89] this thesis assumes 

the applicability of Pentland's model for the analysis of x-ray film images. The following 
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discussion is a synthesis of the method as presented by Pentland. Detailed discussions are 

found in [Pent841 and [Pent85]. 

3 . 3 . 1  Fractal Brownian Functions and Surfaces 

A function I(z) is a fractal Brownian function of Hurst coefficient H if the 

cumulative distribution function F(y) defined by 

where Pr is a probability measure, z is a vector, Az is a given increment of z, and the 

parameter H being constant is independent of z and AZ. If the topological dimension of the 

domain of z is T, then the fractal dimension D of the graph described by I(z) is 

If H = 112 and F(y) comes from a zero-mean Gaussian with unit variance, then I(z) is a 

classical Brownian function. 

Interpreting z and AZ as vector quantities allows an extension to two or more 

topological dimensions. When z is scalar, the fractal dimension D of the graph described 

by I(z) for T = 1 is 
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In digitized images z is a vector of the spatial coordinates (x, y), I(z) is a function 

representing surface behaviour (i.e., the gray-level intensity) at the spatial coordinates z, 

and Az is the separation distance between a pair of points I(z) and I(z + AZ). In this context, 

since T = 2, the fractal dimension of the image intensity surface is 

In practice when D = 2.0 the surface is a flat plane and whenD = 2.9 the surface is a very 

rough stalagmite covered plane. 

Since fractals, like most mathematical abstractions, can only approximate natural 

objects over a range of physical parameters, a reasonable definition of a fractal Brownian 

surface is a continuous function that obeys the statistical description given by equation (3.1) 

where z is a two-dimensional vector at all scales and values of AZ are between some 

smallest (dzrnin) and largest ( A Z ~ ~ ) . ~  Practical limitations dictate the lower bound not be 

less than the smallest constituent particle (i.e., the size of the projected pixel), while the 

upper bound not exceed the size of the object of interest (i.e., the size of the examined 

surface patch or mask size). 

3 .3 .2  Pentland's Intensity Statistics Method 

Pentland's method estimates the "fractal dimension" of a natural surface from an 

image intensity representation of a film image of that surface, realizing that the dimension 

may not be constant across the whole surface. His method computes the average gray-level 

Pentland, A.P., "Fractal-Based Description of Natural Scenes", IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Vol. PAMI-6, No. 6,  Nov. 1984, p. 663 
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mean and variance of pixel pairs over decreasing scales within a local surface area (i.e., 

mask) surrounding a particular (x, y) location on the surface of the film image. The 

logarithms of the averaged mean and variance are then linearly regressed onto the logarithm 

of the discretized scale. From the linear regression and the parameter H, the fractal 

dimension of the mask is calculated. By calculating the fractal dimension for every point on 

the image surface, we get a measure of texture as it varies from point to point. The 

resultant fractal surface description provides a means of describing and evaluating textural 

variations that occur on the film surface. 

More specifically, to estimate the fractal dimension of an image, equation (3.1) can 

be rewritten according to [Pent841 as 

where E( I AI& I ) is the expected value of the absolute value of the change of intensity for 

the range A Z . ~  To estimate H, and thus D, the quantities E{ I I(z + Az) - I(z) I } are 

calculated for various Az. 

H is estimated by taking the logarithm of both sides of equation (3.6) to give 

H Log I I  Az I I  = Log (E{ I I(z + Az) - I(z) 1 )) -* Log (E{ 1 I(z + 1) - I(z) 1 )) (3.7) 

Given two points z = (x, y) and z' = (x', y'), the distance between the points or range Az is obtained 
using the Euclidean distance formula Az = sqrt((xl - x12 + (y' - y)2) 
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Equation (3.7) is then used as the basis for a linear regression of samples of 

Lag (E{ I I(z + Az) - I(z) 1 }) taken at different Az, onto Log I I  Az II. Using least-squares 

fit, H is the slope of the best-fit line given several data pairs. The fractal dimension is then 

calculated according to equation (3.4). It should be noted that linear regressions, and 

consequently this method, require a sufficient number of sample points to obtain reasonable 

results in terms of linear fit. Further discussion of this topic is found in Chapters 4 and 5. 

3.3.3 fBm and the Imaging Process 

Pentland's fractal model facilitates our understanding of how the imaging process 

maps a three-dimensional fractal surface shape onto a two-dimensional image intensity 

surface. [Pent841 indicates for specific conditions (i.e., the surface is a homogeneous5 

  amber ti an^ surface with constant illumination and albedo7) that: 

(i) A three-dimensional surface which is fractal Brownian produces a film image 
whose intensity surface is fractal Brownian. 

(ii) A linear transformation of a fractal Brownian function is a fractal Brownian 

function with the same fractal dimension. 

(iii) The fractal dimension of a fractal Brownian function is invariant over 

transformations of scale. 

(iv) If an image intensity surface is a two-dimensional fractal Brownian then the 

imaged three-dimensional surface must also be fractal Brownian. 

Pentland states a homogeneous surface refers to natural surfaces that are of a similar composition or 
structure throughout and that its homogeneity may be determined from imaged colour. 

Such a surface is commonly referred to as a matte surface. 

Albedo refers to the fraction of incident light that is reflected by a surface. 
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Radiography differs from the photography used in Pentland's model in one 

important aspect: it does not map three-dimensional surfaces onto the film image, rather the 

x-ray formation process maps a shadow projection of the contents of a volume onto the 

two-dimensional image intensity surface (refer to 2.1.1 Film Images and 2.1.2 Image 

Projections). We assume that an imaged volume which is fractal Brownian produces a film 

image whose intensity surface is also fractal Brownian. Since photography and 

radiography use the same photochemical process to deposit the silver grains on the film 

surface, this assumption seems reasonable. This assumption allows us to apply Pentland's 

fractal theory to the analysis of x-ray film images and derive a fractal surface description. 

For the analysis of medical images, the fractal surface description provides a means 

of relating textural changes to structures in the interior of the human body. Since an x-ray 

image is a shadow projection of the structure of the interior of the object, any changes in the 

structure of the interior of the object are projected as changes in texture on the film surface. 

Therefore, changes in the fractal dimension between different areas of the x-ray image are a 

function of the physical differences in image intensity and directly correspond to changes in 

the interior structure of the object. Assuming that an anatomical feature, such as a 

carcinoma, has a texture which is distinct from the surrounding tissue, then such textural 

differences should be evident by a corresponding change in the fractal dimension. For the 

purpose of texture-based image segmentation, the changes in the fractal dimension assist in 

determining the edges and segmenting the image; hence there is no need for edge detection 

in a formal sense. An advantage of fractal-based image analysis is that, if an image 

intensity surface is fractal, the fractal surface descriition alone may be sufficient to describe 

the image structure [Pent841 [De1187]. 
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3 . 4  Related Work 

Researchers have used several fractional Brownian models including Pentland's for 

the analysis of a number of diseases in radiology. This section briefly discusses their 

findings as it pertains to this research. 

a )  Bone Diseases . . .. 

The focus of [LOKS86] and [OhLu87] has been quantification of texture changes 

which occur in bone loss diseases such as osteoporosis. The researchers developed a 

Maximum Likelihood Estimator (MLE) for estimating H in the two-dimensional case from 

the power spectrum of digitized x-rays of the human calcaneus (heel). 

Of particular importance to this thesis was the research into the behaviour of fBm in 

the presence of additive Gaussian noise. It was found that the effect of noise was not 

uniform. Even with signal-to-noise ratios of 30 dB significant estimation errors result, 

particularly for high values of H. This implies that surfaces which are smoother are more 

sensitive to noise than those that are rougher. Since the performance of the estimator H in 

noise is important, especially if one is attempting to make structural inferences about an 

object from the data, it was concluded that noise must be either removed from the data 

before processing or incorporated into the estimation model to achieve reliable results 

[LOSK86]. 

Other authors continuing the work on diagnosis of osteoporosis are [HKMS87] and 

[KHNM87]. Of particular interest was the use of the fractal dimension in combination with 

other statistics derived from the x-rays. Three textural features were estimated: the run 
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length statistics, the relative extrema density, and the fractal dimension. Together these 

estimators were used to determine bone loss. Favourable conclusions were reached 

regarding the appropriateness of digital image texture analysis and the usefulness of fBm in 

the analysis of radiographs. 

b )  Coronary Angiograms 

In subsequent work, &OKW86] extended the MLE to three dimensions and applied 

it to sequences of digital coronary angiograms for the purpose of fractal-based texture 

segmentation. The fractal dimension is used to separate dye-filled blood vessels from the 

background and used to create a gray-level fractal image where the intensity is related to D 

value. Unfortunately, these images are often difficult to interpret and poorly differentiated 

due to the behaviour of the background tissue (i.e., normal tissue). 

c )  Lung Diseases 

[Dell871 and [Vern87] assess the effectiveness and limitations of fractal-based 

texture segmentation in x-rays of the human lung containing pathological nodes. The 

Intensity Statistics method is used to compute the fractal dimension and a fractal image was 

generated where intensity is a function of the D value. This image was then used for 

texture-based segmentation to indicate regions that are differently textured. Their results 

show that fractal images can point out differences between normal and pathological tissues. 

Noteworthy is their investigation into mask size. Masks that are too small can give 

noise dependent D estimations. Masks that are too large can give averaged or smoothed D 

estimations. In these situations the fractal approach did not allow regions to be easily 
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segregated. However, [Vern87] points out that smaller mask sizes achieve a higher spatial 

resolution, which is important in the detection of pathological tissues especially very small 

tumours, and concludes that this behaviour confirms the appropriateness of employing 

small mask sizes. 

More recently [Vehel90] has continued research on identification of lung diseases. 

Vehel's approach combines both fractal and integral geometry for the purpose of 

developing a computer-based classification system of pulmonary disease from SPECT 

images. This work provides additional confirmation on the appropriateness of applying 

fractal-based texture segmentation for the purpose of disease identification in radiological 

images. 

d )  Liver Disease 

The goal of [Carg88] is the development of a fractal-based liver disease classifier 

from the power spectra of nuclear medicine scans. Nuclear medicine scans, like 

radiographic images, suffer image degradation due to scatter, attenuation, collimator and 

detector blur, and noise. Knowledge of the imaging system allowed corrections for image 

degradation in the fractal calculations. While the goal of disease classification differs from 

that of fractal-based texture segmentation, the compensation techniques developed by 

[Carg88] may be useful in future research (refer to Chapter 6). 

e )  Dental Radiographs 

Application of fractal texture analysis to the segmentation of dental radiographs is 

the focus of [KCRW89]. The fractal dimension of the radiographs was estimated from the 
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Fourier power spectra. A three dimensional feature space--determined by the fractal 

dimension, radiograph intensities and the regression analysis correlation coefficient-was 

used to partition dental x-rays into bone, teeth or boundary areas. Noteworthy is the 

finding that the regression analysis has a degree of error, and that various regression 

techniques can significantly effect the accuracy of results, which is also corroborated by 

[S tHa881. 

f) Chest X-Rays 

The work of [ChDF89] focuses on edge enhancement and segmentation of chest x- 

rays, and is similar in approach to this thesis. The Intensity Statistics method was used to 

calculate the fractal dimension of each pixel in the image, using a 7 x 7 pixel block centered 

on each respective pixel. A fractal image is created where the gray-level of each pixel 

corresponds to a specific D value between 2 and 3. The chest x-ray is clearly segmented 

into bone versus non-bone areas. The results of this work were used as a reference in 

verifying the results of this thesis. 

g )  Mammography 

The development of a fractal parameter of risk for breast disease is the goal of 

[Cald90]. Fractal theory is used in the analysis of standard film mammograms to relate the 

Wolfe classification system to specific fractal dimensions. Measuring the radiographic 

density of the various breast tissue patterns, mammograms are differentiated into one of the 

four Wolfe classes (i.e., N 1, P1, P2 and DY) on the basis of two independently calculated 

fractal-dimensions. The first is the average fractal dimension of the entire breast image; the 

second, a fractal dimension calculation performed on a region of interest adjacent to the 
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nipple. In contrast with the work of [Cald90], the goal of this thesis is the identification of 

possible lesion sites in the x-ray image through the use of fractal-based texture 

segmentation rather than the development of a fractal-based risk classifier. 

3.5 Summary 

As indicated in the literature review, the application of fractal theory to the analysis 

of x-ray textures has met with considerable success, particularly for tissues with great 

differential absorption. However, since soft tissues present weakly contrasted projections 

with poor differential absorption, a number of questions need to be addressed when 

applying fractal-based texture segmentation to mammography. The next chapter outlines 

the equipment, methods and procedures used to assess the appropriateness of fractal-based 

texture segmentation for mammography. 
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Chapter 4 

Materials and Methods 

4.1  Method Overview 

Figure 4.1 shows an overview of the order of processing used in this thesis. First, 

standard film x-rays were digitized using the camera system in the Vision Laboratory of the 

School of Computing Science. Second, digital unwarping was performed on the digitized 

x-ray images to correct for spatial distortions that occurred in the analog-to-digital 

conversion process. Third, a series of synthetic images were generated as control data to 

aid in the evaluation of the fractal model for this particular application. These images were 

designed to emulate the behaviour of the gray-level intensities on the surface of film images 

with and without noise. Fourth, noise removal was performed on noisy images to limit the 

effects of image and sensor noise. Fifth, the images-with and without noise-were input 

into our implementations of the Intensity Statistics method to produce fractal images. 

Finally, the fractal images were used in combination with the original images--digi tized x- 

rays and synthetic images-to produce subtractive fractal images. Four images-the 

original image, the fractal image, the correlation coefficient image and the subtractive fractal 

image-were used together in the evaluation of fractal-based texture segmentation of digital 

x-ray mammograms. 
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Fractal 
Images 
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Coefficient 
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Correlation Coefficient Images Subtractive Fractal Images I 
Figure 4.1: An overview of the order of processing 
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4 . 2  Hardware Components 

Figure 2.1 illustrates the hardware components used in this thesis. The image 

acquisition system consists of a fluorescent film illuminator, a video camera, an analog-to- 

digital converter and a workstation. 

The film illuminator utilizes an opaque diffusing surface placed over three 

fluorescent tubes to facilitate back illumination of the x-ray images. It operates at 118 volts, 

60 Hz and up to 1.1 amps for a maximum output of 129.8 Watts. 

The video camera is a VSP Labs model SC505. This solid state video camera uses 

charge coupled (CCD) frame transfer technology. It has 604 horizontal x 485 vertical 

active elements and conforms to the RS170/NTSC (National Television System Committee) 

standards. The camera was mounted with a Vivitar 72mm variable focal length closeup 

lens and an infrared filter. 

Connected to the camera is the International Imaging Systems (11s) Model 75F 

image processing system. The IIS provides the following functions: real-time display of 

images being photographed by the VSP video camera; digital capture of images from the 

camera for storage and processing on a workstation; display of images processed on other 

workstations; and performance of several complex image processing routines (e.g., 

convolution, edge detection, thresholding) in real-time on images via its own software 

utilities. For this thesis the IIS was used to convert the analog camera output into a digital 

image with 8-bit resolution for a possible 256 gray-scale intensities. Storage of the images 

was on a SUN4 workstation. Image processing and analysis of the images was performed 

on the same workstation running UNIX 4.1 using the C programming language. Display 
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of processed images was on both the IIS and on the SUN4. Display of the images on the 

IIS was performed using software from the Image File Format software library [KFFIib90]. 

Display of images on the SUN4 workstation was performed using a program called 'Color- 

Map Editor' developed by Ms. Kim Adamson-Sharpe. As well as facilitating the display of 

images on a SUN workstation, this program allows real-time user-controlled adjustment of 

image brightness and contrast. All photographs included in this thesis were taken from the 

SUN4 using the 'Color-Map Editor' program. 

4 . 3  Image Acquisition 

Dr. Donald McIntosh of the Primrose Ultrasound and Breast Clinic, Edmonton, 

Alberta, generously provided mammograms and accompanying clinical reports for ten 

patients. Mediolateral oblique and craniocaudal views-using breast compression-were 

provided for the left and right breasts in most cases. Several cases were accompanied by 

ultrasound films. The cases contained instances of benign breast disease, surgically and 

pathologically confirmed malignancy, and instances where no indication of breast disease 

could be found. Dr. McIntosh also included cases where mammography did not indicate 

any pathological process but where ultrasound confirmed the presence of breast disease. 

Markings indicated the films were taken using the Kodak Min-R rare earth screen. 

Unfortunately technical difficulties occured during the digitization process for several of the 

x-ray films which limited the final number of patients studied to eight. A synopsis of these 

eight patients' clinical reports is found in Appendix A. 

Dr. Heather McNaughton of the Eagle Ridge Hospital, Department of Radiology 

and Dr. Douglas Read of Coquitlam, British Columbia, assisted by providing the chest x- 

rays and clinical reports for two patients. These films were obtained in order to compare 
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our results with those reported by [De1187], [Vern87] and [ChDF89]. Since both x-ray 

films were very similar, a single patient was chosen to include in our experiments. A 

synopsis of this patient's clinical report is also found in Appendix A. 

4.3.1 Digitization of X-Ray Films 

The x-ray films were digitized by placing them against the lightbox-on maximum 

wattage-for back illumination. All excess light from the illuminator was masked out using 

heavy-duty black cardboard. The CCD camera was placed perpendicular to the illuminator 

at approximately 1.5 meters from the film surface and manually focused for each film 

image. All images were taken in the evening in a darkened room supplied with black-out 

drapes. A total of 17 mammograms and 2 chest x-rays were digitized. 

The accurate digitization of the x-ray films was a important goal of this thesis. 

Unfortunately several problems were encountered which reduced the radiometric accuracy 

possible using this method of digitization. Initially, the CCD camera was found to be 

sensitive to the 60 cycle flicker of the fluorescent tubes in the film illuminator. This 

feedback caused distinct diagonal phase bars to appear in the digitized images. To reduce 

most of the radiation bars detected by the digitizer, the illuminator was coupled to two 

series linked phase protectors, and the CCD camera was linked to a single separate phase 

protector. 

Next, examination of the video camera imagery produced by this particular CCD 

camera revealed several distortions within its optical system. [Evans871 determined that 
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some of these distortions with this camera are a result of fall-off: vignetting9 and non- 

uniform spatial sensitivity across the sensor chip. These distortions cause different regions 

within the camera's field of view to respond differently to the same input light intensity, 

producing a number of aberrations including spots and a darkening of the image towards 

the edges of the sensor chip. 

Finally, we determined that a spatial d i s t~ r t i on '~  occurs when the image is 

converted from NTSC standard format (i.e, 604 horizontal x 485 vertical elements) to 

digital format (i.e., 512 x 512 elements) causing degradation of image accuracy due to the 

loss and distortion of the original analog data. 

4.3 .2  Image Preprocessing 

The inaccuracies and distortions introduced during the digitization of the film images 

necessitated the use of preprocessing techniques. We found the distortions within the 

camera's optical system were often imperceptible on the digitized back illuminated films, 

and therefore did not warrant correction. However, the spatial distortion which occurred 

during the A D  conversion process was significant and necessitated the use of software 

correction. 

8 Fall-off is a variation in gray-level intensity associated with the distance an image point is from the 
center of the focal plane. Intensity is maximum at the center of the focal plane and decreases with the 
distance from the center. 

Vignetting is the internal shadowing from the lens mount and aperature surfaces within the camera onto 
the image plane. 

Spatial distortion refers to a change in the size, shape and position of objects in the digital image with 
respect to their true proportions and position. 
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a) Geometric Unwarping 

Geometric unwarping of the digital images was performed using an available 

software program called 'Iscale' [IFFlib90]. Unwarping was performed using cubic 

convolution in a two-step process. First, the image was reduced vertically from 512 to 485 

pixels (i.e., each pixel was reduced by approximately 0.947 percent). Second, the reduced 

image was expanded horizontally from 5 12 to 604 pixels (i.e., each pixel was expanded by 

approximately 1.179 percent). Table 4.1 shows our estimation of the amount of data lost 

due to conversion between NTSC and digital formats. This is a loss of image resolution of 

approximately 10.5 percent. After unwarping the digitized images more closely represented 

the physical proportions of the objects imaged on the original film data. 

Array Size Total Number of Pixels 

Video camera: 604 x 485 292,940 

Digitizer: 512 x 512 262.144 

Number of pixels lost 30,796 

Table 4.1: Number of pixels lost from conversion between NTSC and 
digital formats 

b)  Noise Removal and Contrast Enhancement 

Despite the previously mentioned problems with the camera's optical system it was 

determined that the camera was sensitive enough to detect film-grain noise present in the 

film x-rays. To reduce the variation in image texture due to noise the digitized x-ray images 

were smoothed using the Kth-Nearest Neighbour Method. 
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The Kth-Nearest Neighbour method reduces the overall variation in image texture 

due to noise while simultaneously performing contrast and feature enhancement. It is based 

on the idea that pixels in the same region should have similar gray values. This is 

accomplished by taking the average using the k neighbours within a given neighbourhood 

region whose gray levels are closest to that of the given pixel. It does not require that 

neighbours involved in the averaging are adjacent. An integral part of this method is that 

the averaging scheme avoids crossing edges, but it makes no attempt to detect the presence 

of edges. This is accomplished by restricting the averaging to a subset of neighbourhood 

pixels chosen so that the most likely edge in a neighbourhood does not cross the subset. 

By keeping the mask size and the number of nearest neighbours relatively small, this 

method is able to reduce noise artifacts and enhance edges and contrast without loosing fine 

spatial detail. 

Iteration # Mask Size # of Nearest Neighbours 

1 5 x 5  3 

2 5 x 5  3 

3 3 x 3  3 

Table 4.2: Parameters used in Kth-Nearest Neighbour Smoothing 
of digital images. 

Smoothing was performed using an available software program called 'Iffsmooth' 

[IFFlibBO]. This program was chosen because it allows specific control of mask sizes, 

number of nearest neighbours and numbers of iterations performed. The parameters used 

are shown in Table 4.2. A three-pass iterative approach in which the smoothed image from 

each iteration was the input to the next iteration is used. The parameters were chosen to 
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retain as much of the fine spatial detail of the x-rays as possible without averaging out 

details that could be possible lesion sights. 

4 . 3 . 3  Generation of Synthetic Images 

The limitations imposed upon the digitized x-ray images, a function of both the 

radiographic image formation process and the digital acquisition process, raised questions 

regarding the behaviour of the fractal model where these limitations were not a factor. This 

necessitated the generation of a series of synthetic images which were used to characterize 

the behaviour of the fractal model in certain situations found in the digitally acquired 

images. Specifically we wanted to: 

Determine how the fractal model behaves in various gray-level ranges; 

Determine the behaviour of the fractal model with and without the presence of 

noise; 

Determine whether noise affects the model uniformly across all gray-level 

ranges; 

Compare the results of our implementations of the intensity statistics method 

given identical conditions; 

Characterize the behaviour of the subtractive fractal image. 

The behaviour of the synthetic images is extrapolated to the digitized x-ray images and used 

to explain the results of the fractal-based texture segmentation of digitized mammograms. 

A SUN4 workstation was used to generate 8 test images-two groups of four 

images each-which were designed to imitate the behaviour of the gray-level intensities on 
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the surface of an x-ray film. These 8 images were used in the experiments to confirm that 

our implementations of the fractal model were working appropriately in ideal conditions. 

4 . 4  Implementations 

Two versions of the Intensity Statistics method-the Center Surround version and 

the Patch version-were developed and compared. The significant difference between the 

Center Surround and Patch versions arises from different interpretations of the phrase 

"centered on a pixel" found in [Pent84]. In the first interpretation-the Center Surround 

version, the fractal dimension is calculated specifically as it relates to the pixel on which the 

mask is centered. In the second interpretation-the Patch version, the center pixel has no 

particular importance other than as a position marker on the image; the fractal dimension is 

calculated for the area surrounding the center pixel, but it does not relate specifically to that 

pixel. Once calculated, both versions similarly assign the fractal dimension to the location 

corresponding to the center pixel of the mask. Finally, three images are generated. First, a 

correlation coeflicient image is generated from the array of fractal values and its associated 

array of correlation coefficient values. This image is used to indicate what portion of the 

fractal image has a 'good' fit when the linear regression is performed. Second, a fractal 

image is generated from the array of fractal dimension values alone. Third, the fractal 

image is used together with the original image to produce a subtractivefractal image. 

4 . 4 . 1  The Center Surround Version 

In this version of the Intensity Statistics method, the center pixel of the mask is a 

fixed reference point for all calculations. The average gray-level mean and variance of all 

pixel pairs at all distances surrounding the center point of the mask are computed and used 
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pixel pairs at all distances surrounding the center point of the mask are computed and used 

to calculate the fractal dimension. Figure 4.2 shows a simple example using a 5 x 5 mask 

centered on pixel (3,3). 

Figure 4.2: This is an example of the Center Surround version using a 5 x 5 mask. The 
circle indicates the center pixel of the mask. X indicates the position being 
used as a reference point for calculating the distances and absoluate values of 
the change of intensity. Note that the center pixel of the mask and X are the 
same, and that the reference point X does not move in the mask. The change 
in intensity and distance is calculated between X and each position marked by 
a *. Calculations are then made within the mask by using equation (3.7). As 
a result, the fractal dimension calculated according to this algorithm reflects a 
relationship specifically between the center pixel and its surrounding area. 

Using the Euclidean distance formula, the distance Az is calculated from the center 

pixel to each surrounding pixel location within the mask. The absolute value of the change 

of intensity between this pixel and each surrounding location is calculated and an average 

variance obtained for each possible Az within the mask. The distance Az's and their 

associated variances are then used in equation (3.7) and the number of points available for 

the linear regression are determined. The number of different Az's obtained for various 

mask sizes are summarized in Table 4.3. The slope of the best-fit line from the regression, 

H, is then used to calculate the fractal dimension D using equation (3.4). D is then 

assigned to the location corresponding to the center pixel of the mask in the fractal image. 
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4.4.2 The Patch Version 

In this version of the Intensity Statistics method the center pixel of the mask serves 

solely as a position marker for the mask on the image. As illustrated in Figure 4.3, the 

reference point for the average gray-level mean and variance calculations moves throughout 

the mask. Consequently, the fractal dimension is calculated for the area surrounding the 

center pixel but it does not relate specifically to the center pixel. 

Initially, the reference pixel X starts at position (1,l) as shown figure 4.3 (a). As in 

the previous version, the Euclidean distance formula is used to calculate Az from this pixel 

to the other locations within the mask. The absolute value of the change of intensity 

between this current X and the other locations within the mask are calculated. Once 

complete, location (1,2) becomes the next reference pixel as is shown in figure 4.3 (b). 

Again the calculations are performed between this new X and the other locations within the 

mask. Note that location (1,l) is excluded since the absolute value of the change of 

intensity between (1,l) and (1,2) was already included in the previous step. Figures 4.3 

(c) to (0 show the movement of X through the remainder of the first row. This process 

continues until location (5,5) becomes X. Thus, the variance for distance Az is evaluated 

on the average absolute value taken over all pixel pairs within the mask whose centers are 

Az apart. Finally, an average variance is obtained for each possible Az within the mask. 

The distance Az's and their associated variances are then used in equation (3.7) and the 

number of points available for the linear regression are determined. The slope of the best- 

fit line from the regression is then used to calculate the fractal dimension D using equation 

(3.4). D is then assigned to the location corresponding to the center pixel of the mask in the 

fractal image. 
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Figure 4.3: This is an example of the Patch Version using a 5 x 5 mask. The circle 
indicates the center pixel of the mask. X indicates the position being used as a 
reference point for calculating the distances and absoluate values of the change 
of intensity. Note that the center pixel of the mask and X are not the same, 
and that the reference point X moves throughout the mask. The change in 
intensity and distance is calculated between X and each position marked by a 
*. The diagram shows the f rs t  6 positions for X and the other points used for 
the calculations. When the fractal dimension D is assigned to the center pixel, 
it reflects more a fractal dimension of the area surrounding the center pixel 
than just of that pixel. 
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Table 4.3 illustrates the computational strength and weakness of the Center 

Surround method. Due to the limited number of distances possible from the center pixel 

using a fixed reference point, equivalent mask sizes provide fewer points for the linear 

regression than the Patch method. Consequently, the Center Surround method is faster 

than the Patch method. 

Number of Regression Points 
Center Surround Patch 

Mask Size Version Version 

Table 4.3: Depending on the mask size chosen, the Center Surround 
and Patch implementations generate different numbers of 
distances within a mask. Consequently the number of points 
that contribute to the averages and for the linear regression 
varies according to the particular implementation method. 

4.4 .3  Correlation Coefficient Image Generation 

After fitting a regression line to our data for each (x, y)  position in the image the 

correlation coefJicient is used to evaluate how closely the points fit the regression line. The 
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correlation coefficient1' R varies between -1 and +l. When R is positive the regression 

line has an upward slope; when R is negative the regression line has a downward slope. If 

R = +1 or R = -1 all the variation is explained and all points lie on the regression lie-a rare 

occurrence. If R = 0 the variables are not correlated. 

To assess the 'goodness of fit' the fractal image was decomposed according to the R 

and D values. R was arbitrarily determined to be IRI r .80.12 D was determined to fall into 

either of three possible categories: (1) 2.0 I D I 3.0 as defined by fractal theory; (2) D c 

2.0; (3) D > 3.0. From this decomposition a correlation coefficient image was generated 

and a black and white image created according to the particular D, R combination chosen. 

The statistics used in the derivation of the correlation coefficient image are evaluated for 

both the synthetic and 'real' images and compared between the implementation methods. 

4.4.4 Fractal Image Generation 

Generation of a fractal image is a simple mapping process. The computed fractal 

dimensions ranging between 2.0 to 3.0, are converted into corresponding gray-level values 

in the range of 0 to 255. For example, a fractal dimension of 2.0 or less appears as gray- 

level 0 or black, 2.5 appears as grey-level 127 or medium gray, and 3.0 or more as gray- 

level 255 or white. Consequently, the smoother the object and the lower its fractal 

dimension, the darker it will appear in the fractal image. The rougher the object and the 

higher its fractal dimension, the lighter it will appear in the fractal image. 

It should be noted that R ~ ,  the Coeflcient of Determination, may also be used as another measure of 
the goodness of fit. R,  the square root of the coefficient of determination, was chosen to remain 
consistent with the results reported by previous researchers. 

l2  In this thesis R is not being used to represent some result of particular correlation significance, but is 
just being taken as something representative of the goodness of fit for the regression line. 
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4 . 4 . 5  Subtractive Fractal Imaging 

An important benefit of computer-based image analysis is the ability to correlate and 

combine different images using a quantitative process such as subtraction, for the purpose 

of extracting information not readily apparent on visual examination. Subtraction of images 

is used to enhance specific structures of interest while at the same time cancel out structures 

which interfere with the visual interpretation of the image. According to [Selz84], [Cao88] 

and [hats881 the subtraction of digital images has been particularly successful in the field 

of cardiology, especially in the area of subtractive angiography. 

Given this precedent, we combined data from the original image with that of the 

fractal image through as process we termed subtractive fractal imaging. Our goal was to 

determine whether the process of subtraction and the resulting subtractive fractal image 

could be used to: cancel structures, such as 'normal' background tissue, which often 

interfere with visual interpretation; verify tumour sites; as another means of image 

segmentation based on a combination of quantitative data types; and finally to extract 

information not readily apparent on visual examination of either the original x-ray image or 

the fractal image. Generation of a subtractive fractal image is not difficult. The gray-level 

values of the fractal image are subtracted from those of the original x-ray giving a 

subtractive fractal image. The next chapter discusses the results of o w  experiments. 
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Chapter 5 

Results 

The results in this chapter are presented as follows: 

(i) The Patch and Center Surround methods are compared using synthetic images. 

The relationship between the fractal dimension D and and the correlation 

coefficient R is investigated to determine if the fractal models are providing 

reasonable results in terms of fit. The impact of various mask sizes and noise 

removal on D and R is evaluated. In particular, the conditions which generate 

D values that are out of bounds as defined by fractal theory (i.e., D < 2.0 or D 

> 3.0) are of special interest. These observations provide a basis from which 

comparisons can be made between real and synthetic images. 

(ii) The Patch and Center Surround methods are compared using data from 

digitized x-rays. To evaluate the ability of the fractal model to detect large and 

small scale anatomical features, three patients with known tumours, cysts and 

microcalcifications are chosen for detailed discussion. As before, attention is 

focused on mask size, noise removal, the relationship between D and R, and 

the goodness of fit. The results are compared to those from the synthetic 

images. In addition, both methods are evaluated from a qualitative viewpoint. 

Finally, a rationale is given for preference of the Center Surround 
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implementation method for fractal-based texture segmentation of 

mammograms. 

(iii) The potential for utilizing a subtractive fractal image in conjunction with the 

original image is analyzed. 

(iv) The results obtained from applying the Center Surround method to all the 

digitized x-rays are discussed. 

5 . 1  Comparison of Implementation Methods-Synthetic Images 

To make this comparison, 8 synthetic images were analyzed using mask sizes for 

each method which generate the same number of data points for the linear regression. The 

3 x 3 and 5 x 5 masks were chosen for the Patch method, and the 5 x 5 and 9 x 9 masks 

were chosen for the Center Surround method. Use of the same number of data points for 

both cases assists in attributing differences between the results to the method of 

implementation. 

The synthetic images used for the comparison were: 

(i) a flat plane corresponding to low valued pixels in the x-ray image (i.e., all 
pixels have the value 20); 

(ii) a continuum of values corresponding to low- through mid-range values in the 

x-ray image (i.e., pixel values range from 50 to 149); 

(iii) a continuum of values corresponding to mid-range through low values in the 

x-ray image (i.e., pixel values range from 149 to 50) which is the inverse of 

(ii)); 
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(iv) a continuum of values corresponding to mid- through high-range pixel values 

in the x-ray image (i.e., pixel values range from 150 to 249). 

The first group of test images does not contain noise. The second group of images is 

identical to the first except that a randomly generated noise image corresponding to 

approximately 1.5 percent random white noise was added to each of the first images. 

The following criteria was used to compare the D and R values generated by both 

methods: 

(i) a D value is 'good' if 2.0 I D I 3.0; 

(ii) a D value is 'poor' if D < 2.0 or D > 3.0; 

(iii) a R value is 'good' or has a'good fit' if IRI 2.80; 

(iv) a R value is 'poor' or has 'poor fit' if IRI < .80. 

Note that criterion (i) and (ii) are defined by fractal theory,13 whereas criteria (iii) and (iv) 

were arbitrarily chosen as reasonable limits. 

5.1.1 Synthetic Images Without Noise--Observations and Discussion 

Table 5.1 summarizes the goodness of fit results for synthetic images without 

noise. As expected, the fractal dimension for the flat plane was D = 2.0 and its goodness 

of fit or correlation value was R = 1.0. The observation that virtually no values 2.0 I D I 

3.0, are found in images (ii), (iii) and (iv) was also anticipated since they are really a series 

of edges with no texture associated with them. In other words, the images are inclined 

planes of 45' slope, each successive pixel being one higher than the previous, without any 

Voss, R.F., "Random fractal forgeries", Fundamental Algorithms for Computer Graphics (Editor R.A. 
Eamshaw), Springer-Verlag, Berlin Heidelberg, 1985, p 8 17 
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% of Total Image Where 2.0 I D _< 3.0 and IRI 2 .80 

Patch Method Center Surround Method 
Synthetic Image ( 3 x 3 )  ( 5 x 5 )  (5 x  5 )  (9 x  9) 

i )  Flat plane 100 % 100 % 
ii) Low-mid plane 0 0 
iii) Mid-low plane 0 0 
iv) Mid-high plane 0 0 

Table 5.1: Comparison of Patch and Center Surround methods on synthetic images 
without noise. A D value is 'good' if 2.0 I D 5 3.0 and it has a 'good' fit if 
lRl 2 30. 

texture imposed on them. The small percentage (4 percent) noted for the Center Surround 

method,9 x 9 mask, is due to larger mask sizes being affected more by the physical borders 

of the image than the smaller mask sizes. 

The observation that the fractal values for synthetic images (ii), (iii) and (iv) were 

less than the topological dimension (i.e. D < 2.0), is consistent with the results reported in 

[Pent84]. Pentland explains that boundaries between homogeneous regions "do not fit 

well" into the fractal model. They seem to be the "most common eventy' giving rise to a 

non-fractal intensity surface and provide a method of detecting image points that are likely 

to be edges. Pentland states 

"When we observe a measured fractal dimension that is less than the 
topological dimension, therefore, we can reasonably expect that we have 
found a texture edge."14 

Analysis of the D values generated from the Patch and Center Surround m ethod 

applied to the synthetic images (ii), (iii) and (iv) suggests that certain conditions exist when 

l4  Pentland, A., "Fractal-based description of natural scenes," IEEE Transactions on Pattern Analysis and 
Machine Intelligence, (PAMI-6:6), November 1984, p. 667 
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there are a consecutive number of edges. First, when the fractal value D < 2.0, then the IRI 

value is usually greater than .80. Second, the direction of the step function does not appear 

to impact the D and R values (i.e., (i) and (ii) are inclined in opposite directions and give 

similar results). The combination of these observations with Pentland's comments suggest 

the conclusion that an edge has probably been detected when D < 2.0 and IRI 2.80. These 

observations are used in later explanations of results on live data. 

It should also be noted that fractal values greater than 3.0 were not generated. Such 

values were found to occur when noise was added to the synthetic images. 

5 . 1 . 2  Synthetic Images With Noise-Observations and Discussion 

Tables 5.2 and 5.3 summarize the goodness of fit results for synthetic images 

containing noise. The Patch (3 x 3) and Center Surround (5 x 5), and the Patch (5 x 5) and 

Center Surround (9 x 9) have been grouped together to facilitate comparisons between the 

methods. The table structure accounts for all points in the image and the D values are 

grouped according to R value. The column of values D > 3.0 are of particular concern 

since they indicate a fractal dimension greater than the topological dimension. These values 

are not only inappropriate from a theoretical basis but are also of no known value in the 

detection of abnormalities in the x-ray images. 

It should also be noted that in Tables 5.2 and 5.3, images (ii) and (iii), anomalies 

are evident which are due to a fault in the boundary extension algorithm [IFFlib9O] and not 

to the fractal calculation methodology. All points that lie within the original image matrix 

are valid and give identical results. 
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Statistical Analysis of D and R 

Patch Method: (3 x 3)  

For 2.0 5 D 5 3.0 For D < 2.0 For D > 3.0 
% of With With %of With With % of With With 

Synthetic Image Image good R poor R Image good R poor R Image good R poor R 

i) Flat plane 60.52 7.76 52.76 26.26 20.54 5.72 13.22 0.00 13.22 
ii) Low-mid plane 52.64 11.58 41.06 41.89 36.56 5.33 5.47 0.00 5.47 
iii) Mid-low plane 53.82 11.58 42.24 41.29 36.06 5.23 4.89 0.00 4.89 
i v )  Mid-high plane 52.64 11.58 41.06 41.89 36.56 5.33 5.47 0.00 5.47 

Center Surround Method: (5 x 5 )  

i) Flat plane 44.44 10.23 34.21 4.79 4.09 0.70 50.77 8.88 41.89 
ii) Low-mid plane 72.01 27.64 44.37 13.12 12.49 0.63 14.87 1.49 13.38 
iii) Mid-low plane 72.24 27.39 44.85 13.02 12.39 0.63 14.74 1.45 13.29 
i v )  Mid-high plane 72.01 27.64 44.37 13.12 12.49 0.63 14.87 1.49 13.38 

Table 5.2: Comparative analysis of D and R calculated by the Patch and Center Surround 
methods on synthetic images with noise using masks that generate 5 data 
points for the linear regression. 

Statistical Analysis of D and R 

Patch Method: (5 x 5) 

For 2.0 5 D  23.0 For D < 2.0 For D > 3.0 

% of With With % of With With % of With With 
Synthetic Image Image good R poor R Image good R poor R Image good R poor R 

i) Flat plane 86.36 2.49 83.87 0.58 0.56 0.02 13.06 0.00 13.06 
ii) Low-mid plane 77.01 64.21 12.80 22.99 22.98 0.01 0.00 0.00 0.00 
iii) Mid-low plane 77.52 64.94 12.58 22.48 22.47 0.01 0.01 0.00 0.01 
i v )  Mid-high plane 77.01 64.21 12.80 22.99 22.98 0.01 0.00 0.00 0.00 

Center Surround Method: (9 x 9 )  

i) Flat plane 49.19 0.23 48.96 0.06 ' 0.04 0.02 50.75 0.05 50.70 
ii) Low-midplane 90.41 49.15 41.26 9.53 9.29 0.24 0.06 0.00 0.06 
iii) Mid-low plane 90.19 49.53 40.66 9.74 9.53 0.21 0.07 0.00 0.07 
i v )  Mid-high plane 90.41 49.15 41.26 9.53 9.29 0.24 0.06 0.00 0.06 

- 
Table 5.3: Comparative analysis of D and R calculated by the Patch and Center Surround 

methods on synthetic images with noise using masks that generate 14 data 
points for the linear regression. 
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Several observations about D > 3.0 values were made which indicate an objective of 

the analysis of images should be to minimize the generation of these values and the impact 

they may have on lesion sight detection. In particular, the following characteristics have 

been noted and can be deduced from the tables: 

(i) The values D > 3.0 seem to be related to noise as these values were not found 

in the noise-free synthetic images. The importance of optimal noise removal 

techniques is implied. 

(ii) The values D > 3.0 almost always tend to have a 'very poor' associated 

goodness of fit (i.e., tending towards zero). A significant improvement in the 

fractal-based texture segmentation and detection results may occur by removing 

the D > 3.0 values from the visual display. This result can be readily achieved 

by selecting D values that only have good R values (i.e., IRI 2.80). 

(iii) Small mask sizes tend to generate more D > 3.0 values than larger ones. A 

comparison of the percentage of the D values in Table 5.2 versus Table 5.3 

supports this deduction. This implies that selection of the appropriate mask 

size is important in reducing the generation of these values. 

It also appears that mask size affects generation of the number of 'good' D values 

(i.e., where 2.0 I D I 3.0) which have 'good' R values (i.e., IRI 2 30). These fractal 

values seem to be providing valuable texture information of a visual nature. A comparison 

between the tables also indicates that larger mask sizes provide better goodness of fit for the 

D values within this range. This was expected and was due to a smoothing effect of the 

larger mask sizes. 
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Interestingly, the number of D < 2.0 values with a good associated R (i.e., edge 

detection values) decreases as the mask size increases. This was expected as smaller mask 

sizes generate a larger number of 'false edges' which are a result of noise. Dellepiane et a1 

[Dell871 mention that smaller masks allow the detection of a fractal edge (i.e., two different 

slopes), while larger masks tend to produce a single intermediate slope. 

The smoothing effect of the large mask sizes does not facilitate the easy segregation 

of differently textured regions. Choosing the appropriate mask size becomes a balancing 

act between texture differentiation and edge detection capabilities. Obviously the detection 

of fractal edges cannot be sacrificed totally if you wish to find small anatomical features, 

particularly those indicating the earliest stages of cancer. This analysis suggests that an 

improvement in the detection capability of abnormalities in mammograms may be achieved 

if a mask size of 5 x 5 or 9 x 9 is used, and if all fractal dimensions D I 3.0 with a 'good' 

R are displayed. This approach combines the values 2.0 I D I 3.0 which provides textural 

information and D < 2.0 which provides edge detection. 

A comparison between the Patch and Center Surround methods indicates both 

approaches have limitations which should be recognized. The Patch method can produce 

disturbing results at small mask sizes. By definition a flat plane should not have any D 

values outside of the range of 2.0 I D 5 3.0, and particularly not in the range D < 2.0 (i.e., 

edge points). However, Table 5.2 indicates that in the presence of noise the Patch method 

(3 x 3) finds 26.26 percent of the total D values less than 2.0. In contrast, on the same 

image the Center Surround method (5 x 5) finds only 4.79 percent of the total D values less 

than 2.0. The Patch method seems more sensitive to noise and consequently erroneously 

allocates a greater proportion of the image as edge points than does the Center Surround 

method. 
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Conversely at the higher mask size the Center Surround method can produce fewer 

D values with a corresponding 'good' R value than the Patch method. Ultimately the final 

decision on which implementation method to choose is dependent on the method's 

performance in terms of accuracy and quality of the visual representation on the x-ray 

images of the patients. 

5 . 1 . 3  Noise Removal Applied to Synthetic Images with Noise 

To evaluate the impact of noise removal on the fractal model, Kth-Nearest 

Neighbour smoothing was applied using a three-pass iterative approach to the synthetic 

images containing noise. The smoothing parameters were identical to those applied to the 

digitized mammograms. The Center Surround method was then applied to the smoothed 

images. The objective of this experiment was twofold. First, to determine to what extent 

noise removal affects the calculated fractal dimensions and the correlation coefficient. 

Second, to determine whether it was possible to reproduce results similar to those obtained 

from the synthetic images before noise was added. Table 5.4 summarizes the goodness of 

fit results for the synthetic images before and after noise removal. 

Table 5.4 demonstrates that a modest improvement-20 percent15--is made 

towards obtaining the same results (i.e., 100 percent for (i) and 4 percent for (ii), (iii) and 

(iv) respectively) as those in the original noise-free synthetic image. Though this is not 

very encouraging, it does imply that using noise removal techniques does not negatively 

impact the process. The number of iterations could be increased to further improve the 

results. Unfortunately this would eliminate much of the fine detail which radiologists 

Image (i) : (58.86 - 49,.19) t 49.19 = 19.65 % 
Images (ii), (iii), (iv) : (90.41 - 75.39) + 75.39 = 19.92 % 
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-- 

Statistical Analysis of D and R 

Center Surround (9 x 9) Without Noise 

For 2.0 5 D 1 3.0 For D < 2.0 For D > 3.0 

% of With With % of With With % of With With 
Synthetic Image Image good R poor R Image good R poor R Image good R poor R 

i )  Flat plane 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
i i )  Low-midplane 4.00 4.00 0.00 96.00 96.00 0.00 0.00 0.00 0.00 
i i i)  Mid-low plane 4.00 4.00 0.00 96.00 96.00 0.00 0.00 0.00 0.00 
i v )  Mid-high plane 4.00 4.00 0.00 96.00 96.00 0.00 0.00 0.00 0.00 

- -- 

Center Surround With Noise 

i )  Flat plane 49.19 0.23 48.96 0.06 0.04 0.02 50.75 0.05 50.70 
i i)  Low-mid plane 90.41 49.15 41.26 9.53 9.29 0.24 0.06 0.00 0.06 
i i i)  Mid-low plane 90.19 49.53 40.66 9.74 9.53 0.21 0.07 0.00 0.07 
i v )  Mid-high plane 90.41 49.15 41.26 9.53 9.29 0.24 0.06 0.00 0.06 

Center Surround After Algorithmic Noise Removal 

i )  Flat plane 58.86 1.75 57.11 0.40 0.28 0.12 40.74 0.08 40.66 
i i )  Low-mid plane 75.39 55.27 20.12 24.54 24.14 0.40 0.07 0.00 0.07 
i i i)  Mid-low plane 74.49 54.83 19.66 25.45 25.16 0.29 0.06 0.00 0.06 
i v )  Mid-high plane 75.39 55.27 20.12 24.54 24.14 0.40 0.07 0.00 0.07 

Table 5.4: Comparative analysis of D and R calculated bv the Center Surround method on 
syntfietic images with noise using a 9 x 9 m k k  before and after Kth-Nearest 
Neighbour smoothing. 

examine when diagnosing cancer. Figures 5.1 (a) and (b) illustrate the typical results 

obtained by applying the Kth-Nearest Neighbour smoothing to digitized x-ray images. In 

general it seems apparent that noise removal is much more of an 'art7 than a 'science7 as one 

must carefully balance the number of iterations and window sizes in order to bring out both 

the fine and coarse details of the x-ray image. Clearly there is a great deal of room for 

improvement in the area of noise removal. Any significant developments in noise removal 

may produce dramatic improvements in fractal-based detection techniques which can be 

used for identifying abnormalities in x-ray mammograms. 
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Figure 5.1: (a) Fractal image generated from 'raw' data without any algorithmic noise 
removal. Note the generally fuzzy appearance of the image. The 
sensitivity to noise is evident in the amount of white-indicating fractal 
values D > 3.0-throughout the image. 
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Figure 5.1: (b) Fractal image generated after Kth-Nearest Neighbour smoothing. The 
amount of white throughout the image has decreased and the image has 
become less fuzzy and more defined. 
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5.2  Comparison of Implementation Methods-X-Ray Images 

Tables 5.5, 5.6 and 5.7 summarize the goodness of fit results for 'real' images 

containing known tumours, cysts and microcalcifications. These images-Figures 5.2, 5.3 

and 5.4 respectively-are taken from patients 8, 2 and 1 of Appendix A. To facilitate 

visual analysis the figures consist of the original image, the fractal image and the correlation 

coefficient image.16 Since the analysis applied to the x-ray images is similar to that used on 

the synthetic images, the tables have an identical format. All major observations for the 

synthetic images were verified for the 'real' images and are used to assist in analyzing the 

results obtained from the live data. 

As previously indicated, a central objective is to minimize the generation of fractal 

values where D > 3.0 which seem to be a result of noise. This has been achieved two 

ways. First, Kth-Nearest Neighbour smoothing is applied to all x-ray images prior to 

fractal analysis. Figures 5.1 (a) and (b) illustrate the improvement in visual quality of the 

fractal image after smoothing. Second, larger mask sizes (i.e., 5 x 5 and 9 x 9) are used. 

As well as being less sensitive to noise, the larger sizes provide an additional advantage of 

improved R values without elimination of their edge detection ability. The following 

analysis focuses on how well the Patch (5 x 5) and Center Surround (9 x 9) methods detect 

the abnormalities in the mammograms of the selected patients. 

As noted by the observations in sections 5.1.1, 5.1.2 and 5.1.3, improved edge detection and texture 
segmentation may occur when the fractal dimension are in the ranges D I 3.0 where the correlation 
coefficient is IRI 2 30. The correlation coefficient image displays all pixels meeting this criterion as 
black and all others as white. 
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5.2.1 Analysis of Patch and Center Surround Methods-Tumour 

Table 5.5 summarizes the results for the image containing a large tumour. At the 

larger mask size less than four percent of the image has a fractal dimension D > 3.0 which, 

is acceptable. Virtually all of the edge detection fractal values (i.e., D < 2.0) have good R 

values, which can be used to detect the turnour. The Center Surround method out perfoms 

the Patch method by providing approximately 48 percent17 more values in the range 2.0 5 

D < 3.0 which are used to detect changes in texture. 

/I Statistical Analysis of D and R-Turnour 

For 2.0 I D I 3.0 For D < 2.0 For D > 3.0 

11 % of With With % of With With % of With With 
MethodIMask Size Image good R poor R Image good R poor R Image good R poor R 

Patch: (3 x 3) 37.43 12.82 24.61 56.39 52.67 3.72 6.18 0.01 6.17 
63.93 26.81 37.12 32.21 31.87 0.34 3.86 0.00 3.86 

Center Surround: 
(5 X 5) 57.84 37.02 20.82 36.44 35.42 1.02 5.72 0.69 5.03 
(9 x 9) 70.15 39.75 30.40 27.31 26.11 1.20 2.54 0.02 2.52 

Table 5.5: Comparative analysis of D and R calculated by the Patch and Center Surround 
methods on an image containing a large tumour. 

Visually Figures 5.2 (a) and (b) provide dramatic evidence of texture change and 

tumour shape. Generally the fractal image mirrors the tumour's circular pattern, while the 

distance between the texture lines within the tumour itself seem farther apart than those of 

the surrounding area. Interestingly the fractal iniage seems to  indicate an appendage- 

perhaps growth-into the surrounding tissue at the lower right corner of the tumour which 

is not very obvious in the x-ray image. Finally, as indicated from the gray-level the fractal 

l7 Center Surround (9 x 9) versus Patch (5 x 5): (39.75 - 26.81) i- 26.81 = 48.26 percent 
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Figure 5.2: (a) Original digitized x-ray image showing large tumour from patient 8. 
(b) Fractal image generated by Center Surround method using a 9 x 9 mask. 
(c) Correlation coefficient image generated from image b). Dark areas are 

fractal values in the range D < 3.0 where IRI 2.80. 
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Figure 5.2: (d) Original digitized x-ray image showing large tumour from patient 8. 
(e) Fractal image generated by Center Surround method using a 9 x 9 mask. 
(f) Fractal image generated by Patch method using a 5 x 5 mask. 
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dimension is significantly less than that of the surrounding area. 

The display of all fractal values with a 'good' R indicates that there is a very good fit 

for all D values in the tumour region. The correlation coefficient image Figure 5.2 (c) 

provides vivid confirmation of the turnour's shape and edges, and suggest that displaying 

values D 5 3.0 with a good R may be useful in assisting the edge detectionlsegmentation 

capabilities of the fractal method. 

A comparison of Figures 5.2 (e) and (0 indicates that the Center Surround method 

is not only quantitatively but also qualitatively superior. In particular, the Patch method 

does not define the boundaries of the tumour as sharply. However, one must temper the 

successful results for this image with the knowledge that this patient's abnormality was 

readily detectable on the original mammogram. To be genuinely useful this technique needs 

to be able to detect less obvious abnormalities such as small cysts and microcalcifications. 

5.2.2 Analysis of Patch and Center Surround Methods--Cysts 

Table 5.6 summarizes the results for the image containing cysts. Again at the larger 

mask sizes less than four percent of the image has a fractal dimension of D > 3.0, and the 

edge detection fractal values (i.e., D < 2.0) have mainly good R values. As before the 

Center Surround method out performs the Patch method-approximately 57 percent'8 more 

values in the range 2.0 5 D < 3.0 which are used to detect changes in texture. 

Center Surround (9 x 9) versus Patch (5 x 5): (44.77 - 28.53) t 28.53 = 56.92 percent 
Results 



Fractal-Based Texture Segmentation of Digital X-Ray Mammograms 67 

11 Statistical Analysis of D and R-Cysts 

II For 2.0 < D 1 3.0 For D < 2.0 For D > 3.0 

% of With With % of With With % of With With 
Methodmask Size Image good R poor R Image good R poor R Image good R poor R 

Patch: (3 x 3) 37.20 12.48 24.72 54.93 50.98 3.95 7.87 0.03 7.84 
62.90 28.53 34.37 33.53 33.17 0.36 3.57 0.00 3.57 

Center Surround: 
57.26 38.93 18.33 38.37 37.56 0.81 4.37 0.39 3.99 

(9 X 9) 67.96 44.77 23.19 30.53 29.64 0.89 1.51 0.00 1.51 

Table 5.6: Comparative analysis of D and R calculated by the Patch and Center Surround 
methods on an image containing cysts. 

Visually Figures 5.3 (a) and (b) provide evidence of texture change and cyst shape. 

The cysts have a circular pattern which is fairly evident on the fractal image, although they 

are quite a bit smaller and therefore less dramatic than the tumour. It should be noted that 

the patient's report indicated the cysts were difficult to see on the mammogram. Again the 

gray-level indicates the fractal dimension is less in the area of the cysts than that of 

surrounding areas. 

The correlation coefficient image Figure 5.3 (c) indicates that there is a good fit for 

D values in the cysts region and provides a particularly dramatic outline of the cysts 

especially when viewed in conjunction with the fractal image. A comparison of Figures 5.3 

(e) and (0 once again show that the Center Surround method provides a superior visual 

display. Generally the fractal method is still having some success in identifying the cysts, 

although it becomes more difficult to detect the characteristic circular patterns in the fractal 

image. As a result the correlation coefficient image becomes more useful in confirming this 

particular analysis. 
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Figure 5.3: (a) Original digitized x-ray image showing cysts from patient 2. 
(b) Fractal image generated by Center Surround method using a 9 x 9 mask. 
(c) Correlation coefficient image generated from image (b). Dark areas are 

fractal values in the range D < 3.0 where IRI 2.80.  
(d) Original digitized x-ray image showing cysts from patient 2. 
(e) Fractal image generated by Center Surround method using a 9 x 9 mask. 
(0 Fractal image generated by Patch method using a 5 x 5 mask. 
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5 . 2 . 3  Analysis of Patch and Center Surround Methods-Microcalcifications 

Table 5.7 summarizes the results for the image containing the microcalcifications. Tt 

indicates that two percent or less of the image contains fractal values D > 3.0, which are 

some of the best results achieved. As in the previous x-ray images virtually all of the edge 

detection fractal values have a 'good' R. Once again the Center Surround method out 

performs the Patch method-approximately 62 percent19 more values in the range 2.0 I D 

5 3.0 which are used to detect changes in texture. 

Statistical Analysis of D and R-Microcalcifications 

For 2.0 5 D 5 3.0 For D < 2.0 For D > 3.0 

% of With With % of With With % of With With 
Methodmask Size Image good R poor R Image good R poor R Image good R poor R 

Patch: (3 x 3) 30.21 13.10 17.11 64.98 62.25 2.73 4.81 0.01 4.80 
49.80 27.95 21.85 48.05 47.85 0.20 2.15 0.00 2.15 

Center Surround: 
(5 X 5) 51.75 41.94 9.81 46.61 45.85 0.76 1.64 0.12 1.52 
(9 X 9) 58.74 45.43 13.30 40.54 39.75 0.79 0.72 0.00 0.72 

Table 5.7: Comparative analysis of D and R calculated by the Patch and Center Surround 
methods on an image containing microcalcifications. 

Visually, Figures 5.4 (a) and (b) provide minimal evidence of texture change and 

microcalcification shape. The microcalcifications appear as partial circles, but these are 

very small and difficult to detect. The patient's report also noted that the microcalcifications 

were difficult to see and as a result were marked on the mammogram by the consulting 

physician. The display of the fractal values with a 'good' R in Figure 5.4 (c) is also incon- 

Center Surround (9 x 9) versus Patch (5 x 5): (45.43 - 27.95) + 27.95 = 62.54 percent 
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Figure 5.4: (a) Original digitized x-ray image showing microcalcifications from patient 
1. 

(b) Fractal image generated by Center Surround method using a 9 x 9 mask. 
(c) Correlation coefficient image generated from image b). Dark areas are 

fractal values in the range D 13.0 where IRI 2.80. 
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Figure 5.4 (d) Original digitized x-ray image showing microcalcifications from patient 
1. 

(e) Fractal image generated by Center Surround method using a 9 x 9 mask. 
( f )  Fractal image generated by Patch method using a 5 x 5 mask. 
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clusive and vague. The evidence may exist but it appears to be quite subtle and not easy for 

the human eye to detect. A comparison of Figures 5.4 (e) and (0 also indicates that both 

the Patch and Center Surround methods provide inconclusive results. Further refinements 

to the fractal method may be needed before conclusive results can be reported in regards to 

the method's ability to detect such minute abnormalities as microcalcifications. 

5 . 2 . 4  Rationale for Preference of Center Surround Method 

Quantitative and qualitative evidence has been presented throughout this chapter that 

illustrates differences between the Patch and Center Surround methodologies. In particular: 

(i) Synthetic images whose D values were calculated using the Patch method using 

small mask sizes produced unusual results (i.e., false edges) and were more 

unstable than the Center Surround method. 

(ii) The Center Surround method at comparable mask sizes consistently produces 

more values in the range 2.0 I D I 3.0 with good R values on real data than 

the Patch method. 

(iii) The Center Surround method consistently produces visually superior fractal 

and correlation coefficient images than the Patch method. 

(iv) The Center Surround method is computationally faster than the Patch method 

due to the fewer number of calculations performed within each mask. 

On the basis of these findings, the Center Surround method, 9 x 9 mask, was used to 

generate the fractal images for all of the patients. These images are shown together with the 
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original digitized x-ray films in the Appendix. A fractal image of a chest x-ray was also 

generated using the Center Surround method. It was compared to the image reported in 

[ChDF89] and used to confirm the 'correctness' of our generated images. 

5 . 3  Utilization of Subtractive Fractal Imaging 

As mentioned in the previous chapter, the goal of subtractive fractal imaging was to 

determine whether data from the original x-ray and the fractal image could be combined 

through the process of subtraction in order to extract information not readily apparent on the 

visual examination of either image. Figures 5.5 (a), (b) and (c) illustrate the results 

obtained by subtracting the fractal image from the original digital x-ray using the tumour, 

cyst and microcalcification images previously discussed. 

Unfortunately, little evidence was obtained indicating that the ability to detect 

abnormalities was improved. In general, the subtractive images did not segment the image 

as well as the fractal image and were felt not to be appropriate for this application. 
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(c) 

Figure 5.5: (a) X-ray image showing large tumour and subtractive fractal image. 
(b) X-ray image showing cysts and subtractive fractal image. 
(c) X-ray image showing microcalcifications and subtractive Fractal image. 
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5.4 Summary of Results for all Digitized X-Ray Images 

As in the previous tables, the fractal images for all the patients are analyzed in terms 

of edge detection fractal values (i.e., D < 2.0 and IRI 2 .80) and fractal values which 

provide textural information (i.e., 2.0 I D I 3.0 and IRI 2.80). These measures are used 

in combination to indicate abnormalities in the x-ray images. Table 5.8 summarizes the 

statistical results for all patients using the Center Surround method with a 9 x 9 mask. 

There is a significant increase in D > 3.0 values from those reported in the earlier analysis 

of the three test patients. For patient 1 (microcalcifications) the D > 3.0 values increased 

from .72 to 15.70 percent, patient 2 (cysts) the D > 3.0 values increased from 1.51 to 

13.15 percent, and patient 8 (tumour) the D > 3.0 values increased from 2.54 to 9.34 

percent. It should be noted the fractal images of Table 5.8 contain the entire mammogram 

including a significant amount of background from the back plate, whereas the images in 

Tables 5.5, 5.6, 5.7 contain only selected areas with known abnormalities and no back 

plate. It seems clear that the increase in D > 3.0 values is a function of the amount of 

background in the image. A decrease in these values can be achieved by cropping the 

digitized image. 

The decrease in 2.0 5 D I 3.0 and D < 2.0 values with a good R can also be 

attributed to the amount of background in the image. The relative stability of the D values 

between the cropped and full images of patient 8 (tumour), 39.75 versus 32.61 percent, 

and 26.11 versus 26.38 percent, is due to the fact that these images have less total 

background area than patients 1 and 2. This supports the approach of removing as much 

background from the image as possible to improve the D value statistics. 

Results 
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Statistical Analysis of D and R by Patient 

For 2.0 5 D 1 3.0 For D < 2.0 For D > 3.0 

% of With With % o f  With With % of With With 
Patient/Breast/Image Image good R poor R Image good R poor R Image good R poor R 

A. 1.1  eft view* 62.8 1 

A.2.1 Left view** 58.23 
A.2.2 Left side view 59.43 

A.3.1 Left view 62.93 
A.3.2 Leftsideview 59.16 
A.3.3 Right view 60.29 
A.3.4 Right side view 60.15 

A.4.1 Left view 58.94 
A.4.2 Left side view 59.24 
A.4.3 Right view 57.83 
A.4.4 Right side view 59.00 

A.5.1 Left view 61.50 

A.6.1 Left view 61.19 
A.6.2 Right view 60.52 

A.7.1 Left view 58.59 
A.7.2 Right view 58.05 

A.8.1 Left view 63.47 
A.8.2 Left side view 59.26 
A.8.3 Right view*** 63.08 
A.8.4 Right side view 62.43 

A.9.1 Chest front 62.02 
view 

Table 5.8: Comparative analysis of D and R calculated by the Center Surround method, 
9 x 9 mask, on x-ray images of all patients included in the Appendix. Patient * and image numbers correspond to those found in the Appendix. contains ** *** microcalcifications, contains cysts, contains large tumour. 
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Correlation coefficient images (i.e., D I 3.0 where IRI 2 .80) of the entire 

mammogram are also included in the Appendix for the three test patients. Though the 

correlation coefficient images of the complete breast successfully indicate areas where 

abnormalities are known to exist, they also tend to indicate falsely other areas as having 

abnormalities when they are not perceived on the mammogram. Of particular concern are 

the edges of the breast and the nipple regions. While from a diagnostic point of view it 

would be difficult to use these images without further research, these findings then seem to 

be of a false-positive rather than a false-negative nature. 

In general, the results for the fractal images are quite consistent. A review of the 

fractal images in the Appendix shows several interesting characteristics. First, anatomical 

features such as blood vessels and bone are clearly delineated. Second, in 'normal' tissue 

the texture lines differ from those within an abnormality. Darker, circular patterns (i.e., 

low fractal dimension) seem to be in the vicinity of an abnormality and the texture lines 

seem to move toward the object. Normal tissue is characterized by higher fractal dimension 

(i.e., lighter colour) and the texture lines do not seem to move in a specific direction. 

Finally, film grain noise is evident in the back plate areas of the fractal image in the form of 

very high fractal values (i.e., white and almost white areas). 

Results 
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Chapter 6 

Conclusions 

6.1 Conclusions 

In summary, the fractal model performed satisfactorily for some images but was 

difficult to interpret for the remainder. On the positive side, for relatively large 

abnormalities such as tumours and cysts, the fractal model provided assistance in detecting 

problem areas. Generally these abnormalities were depicted in the fractal image as circular 

patterns with texture lines which were further apart than those of the surrounding area. The 

fractal dimensions of these areas were usually less than (i.e., darker) the surrounding area. 

Unfortunately, as the abnormalities decreased in size the ability of the fractal method 

to provide clear evidence of texture change and object shape also decreased. Small cysts 

and microcalcifications were translated into relatively small changes in a 'busy' fractal 

image. The evidence may have existed but it became very subtle and difficult to interpret or 

easily detect. 

It appears that in some cases radiologists may actually have an advantage if they 

only use the original x-ray image. The digitization process introduces noise into what may 

not be a very good image in the first place. The modest improvement of 20 percent for the 

fractal method provided by the Kth-Nearest Neighbour smoothing indicates that noise 
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removal does not negatively impact the process. Probably the greatest opportunity for 

improving the fractal method lies in this area. 

Clearly the method of implementing the fractal model impacts the results. The 

analysis of the Center Surround and Patch approaches demonstrates that the choice of 

algorithms can produce significantly different results. The final choice of approach should 

be based on both quantitative and qualitative results, perhaps with a slight bias towards the 

visual quality of the final fractal images. 

It was also determined that inappropriate mask sizes and misinterpretation of D 

value statistics can further deteriorate the fractal approach. In particular, for the Intensity 

Statistics method: 

(i) D < 2.0 and IRI 2 .80 values were found to be an indicator that an edge has 

been detected. The direction of the slope on the edge does not appear to affect 

the fractal model's ability to detect the edge. 

(ii) D > 3.0 values are related to noise and usually have a 'very poor' associated 

goodness of fit. These values negatively impact the fractal-based texture 

segmentation and detection results and should be minimized when possible. 

(iii) Small mask sizes tend to generate more D > 3.0 values than large ones. 

(iv) Larger mask sizes tend to provide beker R values for 2.0 I D I 3.0. 

(v) Improved detection capabilities of abnormalities in mammograms occurs if 

fractal dimensions with a 'good' R are displayed, including 2.0 I D 5 3.0 for 
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textural information and D < 2.0 for edge detection. Recall that D > 3.0 

usually do not have 'good' R values. These abnormalities tend to have less 

texture (i.e., are smoother) than the surrounding tissue and consequently 

achieve a low D value with a high R when subjected to fractal analysis. 

(vi) Removing as much background as possible from the image by cropping 

before applying the fractal method will significantly improve the D and R 

statistics (i.e., fewer D > 3.0 and more D values with good R values). 

(vii) Correlation coefficient images are the most effective in the areas of the breast 

which are not near the breast edges. 

The above conditions need to optimized for a particular set of x-ray images. A commercial 

package would require an automated optimization feature to ensure that errors in this area 

are minimized. 

In conclusion, while this method seems "slightly ahead of its time" there is 

sufficient promise to continue work in this area. With the advent of digital radiography 

which eliminates several of the problems associated with the x-ray film processes, fractal- 

based texture segmentation may prove useful. At best I would currently recommend that 

this method be used only by those radiologists who are prepared to develop some degree of 

comfort with reading fractal images as an aid in their analysis of mammographic images. 

Conclusions 
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6 . 2  Future Research 

Future research could focus on a number of topics. Knowledge of the noise and 

sensor characteristics of the radiographic imaging system should be incorporated as part of 

the fractal model in the hopes of minimizing or correcting for the effects of scatter, 

collimator and detector blur within the x-ray image. Details of the type of filmlscreen 

combination and its optical characteristics could possibly assist in bringing out the details of 

the x-ray, especially in poorly contrasted areas. Also a detailed investigation of the 

digitization equipment (i.e., camera, lenses, x-ray illumination sources) is required to 

ensure that the digitized x-ray is of the highest quality possible. Precise calibration of the 

digitization equipment followed by an analysis of anomalies, should be accounted for in the 

fractal model whenever possible. 

Finally, further tests need to be undertaken in a clinical setting and performed in 

close conjunction with radiologists who are experts in the field of mammography. A large 

collection of images is necessary for both supervised and blind tests. A database of visual 

fractal indicators needs be developed. This database should be correlated with the 

radiological indicators currently used for the diagnosis of cancer, and also with the clinical 

findings for patients who have undergone mammography. 

Conclusions 
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Appendix A 

Patient Synopses 

This Appendix is organized as follows. For each patient, a brief synposis of the 

clinical report is given. This is followed by the digitized x-ray images, fractal images and 

correlation coefficient images for a few selected patients; all views of the left breast are 

given before those of the right. The fractal images were created using the Center Surround 

method, 9 x 9 mask. It should be noted that the images do not duplicate the fine detail or 

subtle gray-level variation that is evident when viewed on the workstation screen. 

Patient I : 

Age: unknown 

Diagnosis: A detailed report is not available. Microcalcifications are present and 

proved to be cancerous. The patient had a left mastectomy. The 

images for this patient are on the following page. 

Appendix A: Patient Synopses 
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Figure A. 1.1 (a) Left breast, x-ray image. 

Figure A. 1.1 (b) Left breast, fractal image. 

Appendix A: Parienf Synopses 



Fractal-Based Texture Segmentation of Digital X-Ray Manunograms 

Figure A. 1.1 (c) Left breast, correlation coefficient image. 
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Patient 2: 

Age: 49 

Diagnosis: Mammography of both breasts. Radiographic dense breast tissue 

(DY Wolfe classification) without evidence of a malignant lesion, 

skin thickening or nipple retraction. Ultrasound and light scans show 

a non-uniform pattern indicative of fibrocystic breast disease. 

Multiple cysts are noted in the left breast. The patient was given a 

negative mammographic report. 

Figure A.2.1 (a) Left breast, x-ray image. 

Figure A.2.1 (b) Left breast, fractal image. 
Appendix A: Patient Synopses 
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Figure A.2.1 (c) Left breast, correlation coefficient image. 

Figure A.2.2 (a) Left side breast, x-ray image. 
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Figure A.2.2 (b) Left side breast, fractal image. 

Figure A.2.2 (c) Left side breast, correlation coefficient image. 
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Patient 3: 

Age: 43 

Diagnosis: Mamnlography of both breasts. Radiographic dense breast tissue 

(DY Wolfe classification) without evidence of a malignant lesion, 

skin thickening or nipple retraction. Ultrasound and light scans show 

a non-uniform pattern indicative of fibrocystic breast disease. The 

patient was given a negative mammographic report. 

Figure A.3.1 (a) Left breast, x-ray image. 

Appendix A: Patient Synopses 
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Figure A.3.1 (b) Left breast, fractal image. 

Figure A.3.1 (c) Left breast, correlation coefficient image. 
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Figure A.3.2 (a) Left side breast, x-ray image. 
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Figure A.3.2 (b) Left side breast, fractal image. 
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Figure A.3.3 (a) Right breast, x-ray image. 

Figure A.3.3 (b) Right breast, fractal image. 

Appendix A: Paiient Synopses 



Fractal-Based Texture Segmentation of Digital X-Ray M m g r a r t l r  

Figure A.3.3 (c) Right breast, correlation coefficient image. 

Figure A.3.4 (a) Right side breast, x-ray image. 

Appendix A: Patient Synopses 
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Patient 4: 

Age: 44 

Diagnosis: Mammography of both breasts. Radiographic dense breast tissue 

(DY Wolfe classification) without evidence of a malignant lesion, 

skin thickening or nipple retraction. Ultrasound and light scans show 

a non-uniform pattern indicative of fibrocystic breast disease. The 

light scan and ultrasound indicate the presence of a cyst in the 

periareolar areas of both the left and right breasts not observed by 

mammography. 

Figure A.4.1 (a) Left breast, x-ray image. 

Figure A.4.1 (b) Left breast, fractal image. 
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Figure A.4.1 (c) Left breast, correlation coefficient image. 

..", 

Figure A.4.2 (a) Left side breast, x-ray image. 

Figure A.4.2 (b) Left side breast, fractal image. 
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Figure A.4.3 (a) Right breast, x-ray image. 

Figure A.4.3 (b) Right breast, fractal image. 

Figure A.4.3 (c) Right breast, correlation coefficient image. 
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Figure A.4.4 (a) Right side breast, x-ray image. 

Figure A.4.4 (b) Right side breast, fractal image. 
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Patient 5:  

Age: 47 

Diagnosis: Mammography of both breasts. Radiographic dense breast tissue 

(DY Wolfe classification) without evidence of a malignant lesion, 

skin thickening or nipple retraction. Ultrasound and light scans show 

a non-uniform pattern indicative of fibrocystic breast disease. The 

light scan and ultrasound indicate the presence of a cyst in the left 

breast not observed by mammography. 

Figure A.5.1 (a) Left breast, x-ray image. 
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Figure A.5.1 (b) Left breast, fractal image. 

Figure A.5.1 (c) Left breast, correlation coefficient image. 

Appendix A: Pa f ienl Synopses 



Patient 6: 

Age: 39 

Diagnosis: Mammography of both breasts. Radiographic dense breast tissue 

(DY Wolfe classification) without evidence of a malignant lesion, 

skin thickening or nipple retraction. Ultrasound and light scans show 

a non-uniform pattern indicative of fibrocystic changes. There is no 

evidence of a lesion suspicious for malignancy. The patient was 

given a negative mammographic report. 

Figure A.6.1 (a) Left breast, x-ray image. 

Figure A.6.1 (b) Left breast, fractal image. 
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Figure A.6.2 (a) Right breast, x-ray image. 

Figure A.6.2 (b) Right breast, fractal image. 
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Patient 7: 

Age: 36 

Diagnosis: Mammography of both breasts. Radiographic dense breast tissue 

(DY Wolfe classification) without evidence of a malignant lesion, 

skin thickening or nipple retraction. Ultrasound and light scans show 

a non-uniform pattern indicative of fibrocystic charlges. There is no 

evidence of a lesion suspicious for malignancy. The patient was 

given a negative mamrnographic report. 

Figure A.7.1 (a) Left breast, x-ray image. 

Figure A.7.1 (b) Left breast, fractal image. 
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Figure A.7.2 (a) Left side breast, x-ray image. 

Figure A.7.2 (b) Left side breast, fractal image. 
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Figure A.7.3 (a) Right breast, x-ray image. 

Figure A.7.3 (b) Right breast, fractal image. 

Appendix A: Patient Synopses 



Fractal-Bused Texture Segmentation of Digital X-Ray h.iammogranrr 

Patient 8: 

Age: 64 

Diagnosis: Mammography of both breasts. Mammography of right breast 

indicates a malignant lesion at the 12 o'clock position. Ultrasound, 

light scans and pathological report confim~ the malignancy. A right 

mastectomy was performed. Mammography of the left breast 

indicates dense breast tissue without evidence of a malignant lesion, 

skin thickening or nipple retraction. A left mastectomy was 

performed within one year of having taken this mammogram. 

Figure A.8.1 (a) Left breast, x-ray image. 
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Figure A.8.1 (b) Left breast, fractal image. 

Figure A.8.1 (c) Left breast, correlation coefficient image. 
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Figure A.8.2 (a) Left side breast, x-ray image. 

Figure A.8.2 (b) Left side breast, fractal image. 
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Figure A.8.3 (a) Right breast, x-ray image. 

Figure A.8.3 (b) Right breast, fractal image. 
Appendix A: Parienf Synopses 
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Figure A.8.3 (c) Right breast, correlation coefficient image. 
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Figure A.8.4 (a) Right side breast, x-ray image. 
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Figure A.8.4 (b) Right side breast, fractal image. 
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Patient 9: 

Age: 30 

Diagnosis: Chest x-ray demonstrates the presence of an oval mass approxilnately 

3 cm in diameter in the right lower lung zone. The patient was 

diagnosed as having poorly differentiated squamous cel! 

bronchogenic carcinoma of the right lower lobe. 

Figure A.9.1' (a) Chest, x-ray image. 

Appendix A: Paliertl Synopses 
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Figure A.9.1 (b) Chest, fractal image. 
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