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ABSTRACT 

'I'he recovery of the three-dimensional (3-D) structure of the h m a n  body from 

;I scqrrcrlce of motion images is a ciass of human motion analysis which is receiving 

incrcasir~g attention due to its con~piicated nature and numerous potential applica- 

tions. 

Various technoiogies for recovering 3-D information from two-dimensional (2-D) 

irrlagcs have been proposed by many authors. The primary difference between our 

work a ~ ~ d  that of others is that we are focusing on recovery from a sequence of single 

view in~ages. We propose a m~del-based approach as  opposed to the usual method, 

where the starting point is to identify the correspondences between two view images. 

We describe our model-based interpretation system in terms of three compo- 

ncnts: image analysis, image interpretation, and recwery and display of the 3-D 

body structure. The image analysis component applies noise removing algorithms 

a ~ d  edge detection. The image interpretation component matches image features 

to a well-defined human body model which has geometric constraints. The third 

dimension is inferred by a kinematic method. The model also allows the prediction 

of image features. Finally, the recovered 3D structure is displayed in a 3-D graphics 

window. 

Resuits from the experiments are encouraging. The system tracks the body 

rnotioii and presents an "understanding" of the movement. It also gives a tentative 

explanation for occluded body motion. 
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Chapter 1 

Introduction 

In the context of this thesis, motion i s  defined as the relative movement bctwcxxi an 

observing camera and the objects(or the background) of interwt. Motion is n h t e d  

to the structure of objects in space and their positions rcla~ive to  thc vicwpnints. 

Motion analysis may reveal information unavailable in the stationary images. Al- 

though motion analysis is a relatively young field, researchers are highly motivated 

because of the extensive applications. These cover a b r a d  range of fields includ- 

ing medicine, autonomous navigation, tomography, cornmunicaticm and telcviaion, 

dancing and choreography, meteorology? and anirnat ion. For example. r tlcr automatic. 

analysis of scientific-graphic image sequences of thc human heart is used to ass:ss 

motility of the heart and Is finding application in ciiagnosis and supervision of pa- 

tients after heart surgery; the processing of wqiiencm of i r r q e s  fur the reccqpition 

and the tracking of taxgets is of ?rnmqse interest to the departriii~nt of drtfensc of 

every country; and the computation, characterization, and understanding of humarr 

motion in the contexts s f  dancing and athletics is another field of ct~dc.~.ctr r e 4 v -  



ing rnuch at tentioc. l r r  znetcorcriogy. satellite imagery provides the opportunity for 

I**t~-rprrt,ation and prc*Jiction of atmospheric processes through estimation of the 

, ~ t ~ i i [ ~  and motion paran~~tcrs of atmospheric disturbances. These examples are all 

r:orlr-crrrd with rrmtion and time-~arying imagery analysis. 

WP focus on t h e  stlbj-ci of human n d i o n  analvsis, which is a challenging research 

ariBa bccau:;r: t h e  human body has a highly complex structure which can twist, bend, 

and rotate. The g d  of this project is to work from a computer vision point of view 

ar~d try to reved %D information from a set of single view 2-D images. 

In this chapter we d k d s s  the different methods used for understanding and 

detrmnininp the 3-I) structure of the human body. Methods employed by university 

and ir.dusfry working in the human motion research area are introduced. We are 

cspwially inf ereded in the  con, puterized approaches for recovericg 3-D informat ion 

from stcrw images or monocular images. 

'I'hc r c m i i d e r  of this thesis is organized as foll~ws. Chapter 2, is a literature 

rcvicw of rncthods for the measurement of SD structures from images and related 

research. In chapter 3 we discuss work in how, given a sequence of single view human 

~nowmcnt images, the 3-D information from each feature joint can be recovered. The 

recovery is b a w l  on a nlmiel matching approach. In chapter 1, we describe the use 

of imagc preproiwsing to remove the impulsive noise and white Gaussian noise in 

tllc irnagc. Cmmetric feature edge detection and thinning is also introduced in 

t f r b  chapter. In chapter 5. we describe the human body model and its kinematic 

curlstrrtints, t tte xxos-ery i>rwcss which matches a geometric image model to  a human 

Imiy nldel ,  a110 predicts the appearance of feature poifits and explains occluded 

M y  parts. In chapter 6. we present the results and evaluate the wiiole system. 



Finally, chapter 7 summarizes the thesis. 

Human Mot ion Analysis From Instrument a- 

t ion 

Human body movement can be capt.ured in real-time with special insirurnentation. 

Osle of the many quantitative tools available for the study of human movement, is 

t~ attach electrogoniometers to the different parts of the body. 

To monitor the pattern of stepping during human locomotion, the C.A.1i.S.- 

UBC electrogoniometer involves three orthogonal potentiometers at each joint. The 

potentiometers measure three cardinal plane rotations at the hips, knees and a n k h  

bilaterally. The closure of switches by a metal contact attached to the subject's foot 

assists in determining heel strike and toe-off. The surface of the walkway is covered 

with copper strips which form svitch contacts. These switches allow the contacts 

between the foot and the ground to be recorded[Hannah80]. 

Another promising approach, similar to the goniometers, involves a specially in- 

strumented body-suit which gives the computer real-time analog signals proporlional 

to the angle of each joint. 

A different class of instruments is based on optoelectronics. Rows of light emit- 

ting diodes (LEDs) are attached to the lateral aspects of the neck, upper ar~d lower 

limb segments, feet, and the pelvic girdles. The LEDs flash at a frequency of 2017~. 

S m d  light bulbs at leg and arm levels are turned on by foot-floor Two 

cameras, with open shutters and winders, record the sequential displncernerlts of the 



rows of lights a9 the subject walks in the field of view in semidarkness. 

Such records &re projected onto a digitizing tablet. Using a special stylus, the 

relative positions of the light bars are digitized and used to derive the angular 

changes at the angle, knee, hip, elbow, shoulder, thorax, and pelvis and the vertical 

and lakeral displacements of the body. 

Although iristrument systems are expensive, they do not need sophisticated com- 

puter analysis. The great advantage is that the attachments are easy to  place and 

of little ericumbrance for the subject. However, they pose the important problem of 

their identification, which is difficult to extend over z, large distance, as each sensing 

strip needs either its own swiich or a wire connectioc to the controlling electronics; 

further, a resolution of one or two millimeters over a length of several meters may 

require many hundreds of wire connections[Perry90]. 

1.2 Interactive Computer- Aided Image Digitiz- 

ing Analysis System 

Compared to instrumentatior,, an interactive computerized image digitizing system 

is reasonably priced. It allows the experimenter to get the results quickly ~ i t h o u t  

requiring the human to wear different kinds of markers. 

Generally, t ! x  analysis system utilizes a mouse or a stylus which is used to select 

significant points. The system works with one video frame at  a time. Specific 

software performs direct linear transformations on the 2-D data from each camera 

and converts them into 3-D coordinates. The system c o ~ e c t s  the points, creats 3-D 



representation figures, and can automatically calculate the walking speed and other 

parameters[PerrySO]. 

University of California at Davis has been doing research in human body move- 

ment for a rather long time. In a research project which helps Olympic swimmers it1 

training, they developed a less cumbersome prclcess that involves using high-speed 

cameras, and then projecting developed film onto a digitizing tablet. An electric 

puck or pen is used to input each set of joint coordinates into a minicomputer. Soft- 

ware can calculate angles, forces, and speeds of the motion for the swimmer's arms, 

legs, torso, and other body parts. It has been proved that swimmers benefit from 

the result of this a~alysis  system. They no longer need to put pads with pressure 

sensors on their hands and legs[Perry90]. 

This kind of system has the advantage of freeing the experimental subject from 

wearing markers, however, it takes time for the analyst to put the coordinates into 

the system, especially when precise data are necessary. 

1.3 Automatic Digitized Analysis System 

Automatic digitizing systems, consisting of video cameras connected to personal 

computers or workstations, can capture simple motions in real time. These systems 

rely on reflective markers or infrared LEDs to identify significant body points. A 

controller wired to  the LEDs and to the computer allows software to keep track of 

which spot is lit, and an infrared-sensitive camera detects the lights. 

A system made by the Motion Analysis Corp. of Santa Rosa, California, is 



typical of the reflective method of data capture. As many as 30 reflective markers, 

are attached to the subject at points to be tracked. Up to four cameras, run through 

a video processor to a Sun workstation, track the markers at a rate of up to 200 

hertz. If the motion is basically linear, like a walk or a run, the computer can 

be instructed to csrrelate markers to body parts, track these points by identifying 

pixels that exceed a certain brightness, and connect them to create stick figures for 

display and analysis[Perry90]. 

Automatic analysis systems have now become the most common approach to 

capture the actual movement patterns of a live subject because of their speed and 

accuracy. But there are still some problems left: the pattern recognition problems 

involved are quite difficult, since the human body joint looks different from every 

angle and changes with lighting conditions. When motion involves twisting, which 

can obscure markers or cause their paths to converge, the computer software may 

flounder. 

1.3.1 Problem With Single View Human Motion Analysis 

The systems described above usually require two views or three views for any mean- 

ingful human body movement analysis. But in ordinary life, most pictures of physical 

object are taken from a single view. This makes analysis more difficult. People are 

giving increasing attention to the use of computer vision technology to derive 3-D 

human motion from single view images. 

Various methods have been proposed to determine the 3-D structure of objects 

from images obtained via a single camera. The state of the art technologies are 



shape from shading, shape from texture, shape from optical flow, and shape from 

contour. Some techniques are more mature than others, but they seldom have been 

used in the human motion area. The difficulties mainly come from the human body 

itself. The human body has a very complicated, always-varying structure, especially 

when the body is in a twist, or jump movement. 

Badler [O'RourkeBadler80] worked on the human motion analysis problem about 

ten years ago. A model-driven analysis was proposed to track the motion in thrcc 

dimensions. But his emphasis was on the constraint propagation, in which he at- 

tempted to interpret low-level knowledge in accordance with a world model of the 

object. 

Similar work was done by Lee [LeeChen85]. He proposed a binary interpretation 

tree to determine the final feasible body structures of a person from a single view. 

Physical and motion constraints were ilsed to prune the interpretation tree. But his 

interpretation was based on: (1) at least six feature points on the head and a ~ c t  

of body joints available on the image plane, and (2) knowledge of the geometry of 

the head and lengths of body segments formed by joints. This approach h a  Eomc 

unsolvable constraints in practical applications. 

During this thesis work, we will investigate the problem of recovering the 3- 

D human body structure from a single view. A model-based recovery system is 

proposed which is able to track and explain the human body movement. 



Chapter 2 

Literature Review 

In principle, it is impossible to capture complete 3-D information directly from a 

single monocular image. However, it is ~ossible to use certain cues to ~art ial ly 

deduce the third dimension. Vision is not only a general single action, it is also a 

sequentia! recursive and cyc!ical process of alternating information gathering and 

decision making. The 3-D structure of the environment, together with the laws 

of optics and photometry, determine the structure of the 2-D visual field. Given 

something known about a scene, a monocular image or an image sequence may 

often provide extra 3-D information. Under certain assumptions, it is often possible 

to perform the inverse mapping from 2-D images to a 3-D model. 

Although the information processing involved in analyzing a sequence of a single 

view images presents a serious technical problem, even today, researchers have made 

progress in interpreting 3-D information from 2-D images. The solutions appear to 

follow one of several distinct methods: determine 3-D structure from stereo vieion, 

from optic flow, from shading, from texture, and from contour. 



Determine Structure Stereo vi- 

sion 

In the stereo paradigm, stereo matching methods involve two or more images. The 

matching is implemented using the low-level image features, such as image intensities 

or image edge points. Given the relative geometry of the two cameras (eyes) that 

acquired the images, simple trigonometry determines the depth of the matched 

features in two images. 

Martin Herman[Herman84] proposed his method which matches structural fea- 

tures, i.e., different kinds of junctions extracted from the two images. The process 

contains three steps: 

(1) Extracting line features frcm images; 

(2) Extracting different kinds of junctions, for instance, junctions of 'L' shapc: 

which consists of two line features; and 

(3) Finding potential matches between the corresponding junctions in thc two 

images. 

In his method, knowledge about the analyzed scenes is also involved. For in- 

stance, the roofs of building tend to be parallel to the ground plane, while thc: walln 

tend to  be perpendicuiar to this plane. Face boundaries visible in both images arc 

selected for matching rather than those which may be occluded in one of thc irri- 

ages. L-junctions and Arrow junctions are initially assumed to lie on a horizontal 

scene plane. When they are found in one image, the shape and orientation of the 

corresponding junction in the other image can therefore be predicted by using this 



knowledge. Each junction in the first image is associated with a set of potentially 

matching junctions in the other images. 

Referring to the problem of how many matched points are enough to derive the 

3-D structure of the model, Rogers and Adams[RogersAdams76] showed that at least 

six object points were needed to determine their 3-D coordinates from a single 2D 

view. Eater Ullman[Ullman76] points out that one can determine the exact model 

of a nonplanar structure over four points, from three views of this structure, using 

the assumption of parallel projection to model this imaging process. Roach and 

Aggarwal [RoachAggarwa189] studied the recovery method based on five noncoplanar 

points over two views under perspecthe projection and gave a general formulation 

for the relationship between the number of points and views. 

Stereo vision is only useful for objects within a restricted portion of the visual 

field and a limited range of depths for any given degree of eye vergence, afid is never 

useful for distant objects. At any moment, most parts of a scene will be outside of 

the limited fusional area, so the stereo vision system will fail to give a solution. 

Shape Recovery From Optical Flow 

Optical flow is the distribution of apparent velocities of movement with brightness 

patterns in an image. Optical flow can arise from relative motion of objects and 

the viewcr. There is a relationship between optical flow changes in the image plane 

and the velocities of objects in the 3-D world. In the optic flow paradigm, two 

or more images are needed to compute the image velocity of corresponding scene 

points. If the camera's motion and imaging properties are known, we can use simple 



trigonometry to convert velocity measurements of the corresponding pc.nts in  the 

image to depths in the scene[IiornSchunck8Ij. 

There are two broad classes of methods to compute optical velocities: feature 

based and gradient based. In feature based methods, matchirig is the niain operation. 

It generally provides a process that tracks characteristic brightness patterns frorri 

frames for a time-ordered sequence of images. The optical flow patterns are matched 

to get the corresponding points in the images. Gradient-based techniques rely on 

an equation that relates optical velocities to spatial and temporal changes in the 

image: 

where f is the image brightness function, t is the time, and u and v are the x and y 

components of optical velocity. To solve the equation above, we may r~eed additional 

constraints: 

(1)  The surface being imaged is flat; 

(2) The incident illumination is uniform across the surface, which asstrrcs us that 

the brightness at a point in the image is proportional to the reflectance of t hc surfacc: 

at the corresponding point on the object; 

(3) Reflectance varies smoothly and has no spatial discontinuities, which assures 

us that the image brightness is differentiable; 

Since the motion of the brightness patterns in the image is determined directly 

by the motion of corresponding points on the surface of the object, object structr~re 

can be derived when the optical velocities are calculated. 



2.3 Shape Recovery From Shading 

The process of recovering surface orientation from image shading has been primar- 

ily studied by B. K. P. Horn and his colleagues at MIT[Horn77]. His method is 

explained as follow: The intensity I at a point (x, y) in thz image plane is a func- 

tion of the corresponding surface normal, and can be formed as the solution of a 

non-linear first-order partial differential equation in two unknowns. This equation 

can be solved using a modified characteristic s tri p-expansion met hod, assuming the 

surface is smooth. Horn introduced a reflectance map R(p, q) which represents the 

relationship bet.ween surface ~rientation and surface brightness. The shape of the 

object can be described by its height, z, above the xy-plane: 

The pq-plane is referred to as gradient space, since every point in it corresponds to 

a particular surface gradient. Each point in the gradient space is associated with 

the brightness of a surface patch with the specified orientation. 

The reflectance map can be obtained experimentally and can also be determined 

theoretically if the surface-reflectance is known as a function of the incidence, emit- 

tance, and phase angles. Once the brightness, I(x, y), is known at  a point, we can 

get the possible surface orientations at that point, since the brightness I(x, y) re- 

stricts the possible surfxe orientations at  the corresponding point on the surface of 

the object. This constraint is expressed: 

Some additional constraint is necessary for a unique solution to the equation above. 

That usually comes from the assumption about the class of surfaces. Ikeuchi and 



Horn [IkeuchiHorn80] proposed an iterative method for computing shape from shad- 

ing using occluding boundary information based on this theory. They applied this 

method to analyze scanning microscope pictures and other applications. 

Recovering Shape Orientat ion Fkom Texture 

Natural texture provides an important source of information about the local ori- 

entation of visible surfaces. Assumptions, together with the constraints imposed 

by projective geometry, could be applied to recover the shape, since the different 

distortions effects of the projection apply to different properties of the texture. 

The recovery of surface orientation using texture was first investigated by 

J.J.Gibson[Gibson66], who studied the perspective projection of a ground plane. 

Assuming the plane to be covered with elements of a uniform density, and that 

those elements' projections could be identified and counted, he observed that under 

these assumptions, the gradient of texture density specifies surface oricntat ion, wherc 

texture density was defined as the number of elements per unit area in the image. 

Gibson proposed the density gradient as the primary basis for surface perception 

by humans. This theme has since been pursued extensively. Suhsequerit work has 

largely accepted Gibson's premises and concentrated on geometric research using 

textures of known uniform properties. 

Image texture gradients on oblique photographs can be used to estimate the 

surface orientation of the observed 3-D object. The first work of this kind was done 

by Charton and Ferris [ChartonFerris79]. They made use of the surfam orientation 

of the surface over the object. The basis of the method was an analysis that related 



surface slant to  the texture gradient in the perspective projection image. They 

rneasured the number of texture elements in a line by meamring the number of 

changes in brightness along the line. The number of changes in brightness was the 

number of relative extrema. 

Other work that re la t~s  to the recovery of surface orientation from texture in- 

cludes that of Kender[Kender80], who described an aggregation Hough-related trans- 

form by grouping toget her the edge direct ion associated with the same vanishing 

point. An  edge direction E = ( E,, E,) at  position P = (P,, P,) has coordinates T 

= (T,, T,) in the transformed space where T = E*P. 

These methods can work well; however, natural textures are so unpredictable 

that no attempt to  model their geometry precisely has much chance of success. 

2.5 Shape Recovery From Contours 

A surface contour is the image of a curve across a physical surface, such as the edge 

of a shadow cast across a surface, a gloss contour, wrinkle, seam, or pigmentation 

marking. The contours describe the surface shape along the boundary when the 

surface is smooth. Contour is an important resource for recovering object structure. 

However, from one view of a planar contour there exists infinite solutions for shape, 

so certain assumptions about the geometry of the curves must be made if we are 

to use them to infer surface shape. It is also clear that geometric constraints need 

to be considered, which determine the properties of various types of real physical 

curves. Combining a generic surface description with a model of image formation, 

the method consists of three steps: 



(1) The contours are extracted and the relationships among them estab!ishd; 

(2) Among these contours, the ones which form a dcsired configuration, are 

seiected; 

(3) The selected contours are cmbined with constraints that come from the 

image formation process, in order 'lo be interpreted in terms of discontinuities in 

surface orientation. The result is &at the number of possible orientations of the 

associated scene surfaces is considerably decreased. 

There are several different aspects to the problem of recovering shape from con- 

tours. We will empiidsize the interpretation of lines and points that recovers the 

shape of the object. 

2.6 Depth Recovery From Line Drawing Inter- 

pretat ion 

Line drawings can r e u l t  from image segmentation and contour analysis. Line draw- 

ings connected often give cues to recovering depth information of the imaged object. 

Various methods have been proposed for recovering 3-D structure of an object by 

analyzing the line drawings. 

Significant work was done by (Fuzman (GuzrnanG8J or the segmentation of borlim 

in a scene containing polyhedra, He first defined t y p  of junctions consisted of 

several h e  drawings and developed many heuristics concerning probak~le axmciation 

of regions stiggested by each junction type. His SEE progrm accepted a line draving 

and produced output lists identifying and describing the bodies present in the scene 



by using ir, w:L of heuristic rules related to the types of vertices. The basic idea 

kcltrind SEE was to make global use of information collected locally at each vertex: 

SEE: carnt,ined different kinds of strong or weak evidence to make reliable global 

j~rcigerr~ents. Thc result- were successful in dec~mposing even rather complex scenes 

of plybedra. But his heuristics were very ad hoc and his program was intended 

only to partition the scene into bodies and provide this as input to a recognizer 

which rr~igh t drrive 3- D descriptions. 

El uffrnan [Hu ffman'l 1) and Clowes [Clowcs?l) stressed that the relationship be- 

twmn the scene and tbe image needs to be made explicit. Huffman classified lines 

chat were the  projections of edges into 3 types: convex, concave and occluding. 

Assuming that al! images were taken from a general position, he showed that for a 

tr i l .dral  world, junctions ~ t i l d  be catalogued into only 12 possible types. The con- 

sistent labeling s f  the Iines in an image uniquely corresponded to a particular 3-D 

sccrre, If a picture had no possible labeiing, it was impssi ble to realize it. Clowes 

determined a consistent interpretat ion by a search space technique. 

Another attempt at reconstructing curved bodies was made by Freeman and 

Loutrtl fFrcemmloutrel67]. For 3-D bodies with verticeq formed by three faces, a 

cyclic-order property was defined. The property augmented the grammatical rules 

that govern t h e  possibility or impossioility of the existence of 3-D bodies correspond- 

ing 6 0  2-n iine-stmc&ure projections. 

The work described above is all aimed at getting more information about the 

ubjr~t  itself with ru l e  employed to interpret the line drawing of an objed. They do 

not recover t h e  depth from the scene directly? but from the assumptions combined 

with knowledge about t h e  object, 



2.6.1 Model-Based Image Interpretation 

Another model-based line interpretation approach has been proposed to recover the 

depth. It is quite different from the methods described above, where most of the 

initial work was based on low-level image processing and information extraction. 

The depth infarmation is inferred by matching the 2-D images in terms of an object 

model, 

Roberts[Roberts65] did pioneering work on interpreting line drawings from a 

photograph. After the liiie drawings were found, they were matched to a model and 

the 3-D information was inferred from the images. His matching process consisted 

of the selection of junctions corresponding to the vertices of the object, and the 

matching of the junctions with the vertices predicted by the object model. He 

proposed that for verification of match, at least seven point-to-point correspondences 

should be required for object and model parameters. Since his program was able 

to predict other views of the scene, it marked a significant break from pattern 

recognition by emphasizing descriptions of the objects present in a scene and the 

spatial relationships between them. 

Other significant work was done by O'Rourke and Badler[O'burkeSadler80], 

who have long been involved in human body movement research. In ihis approach, 

they advocated a model-based system for the human motion interpretation. Body 

feature position identification and localization were based on a matching hetween the 

image features and the human body model. They represented an articuiated modcl 

of the human M y  by 24 segments and 25 joints. The shape presentation of each 

segment was in turn characterized by a set of spheres. The system was structured 

as a closed loop between a high level componeilt, (i.e., the predication j, and a 



low level component, (i-e., image analysis). The center of the proposed approach 

was a human model. The input to the image analysis component was a list of 3- 

D regions where various body features are predicted to appear; a search for the 

~ t u a l  location of a feature was conducted by matching the model within the area 

predicted for tbzt feature. The 2-D location boxes of extracted features are fed 

back through a constraint network to refine the 3-D best-guess rectangular boxes 

of features. The constraints checked included distance measures, angle limits, and 

collision detections. They were an important aid to the interpretation of motion. 

Two Model-Based Vision Systems 

In this section, we introduce two model-based vision systems that have been used in 

image understanding. Given models of the different objects, they have the potential 

of automatically calculating the positions and orient ations for corresponding objects. 

These two systems have provided improved algorithms for 3-D information recovery. 

The ACRONYM system [Brooks831 was the first model-based vision system 

which succeeded in using a general symbolic constraint solver to calculate bounds 

on viewpoint and model parameters from image r?-easurements. Matching was per- 

formed by iooking for particular sizes of elongated structures in the image space(coded 

ribbons) and matching them to potentially corresponding parts of the model. The 

bounds given by the constraint solver tree were then used to check the consistency 

of all potential matches of ribbons to object components. While providing an influ- 

ential and very general framework, the actual calculation of bounds for such general 

constraints was mathematically difficult and approximations had to be used that 



did not lead to exact solutions for a viewpoint. In practice, prior bounds on a view- 

point were required which prevented application of the system to full 3-D ranges of 

viewpoints. 

In 1987, David C. Lowe[Lowe87] implemented a computer vision system that 

could recognize 3-D objects from unknown viewpoints in single gray-scale images. 

Unlike most other approaches, the recognition was accomplished without any at- 

tempt to reconstruct depth information bot tom-up from visual input. Instead, three 

other mechanisms that can bridge the gap between the 2-D image and knowledge of 

3-D objects were used. First, a process of perceptual organization was used to form 

groupings and structures in the image that are likely to be invariant over a wide 

range of viewpoints. Second, a probabilistic ranking method was used to reduce thc 

size of the search space during model-based matching. Finally, a process of spatial 

correspondence brought the projections of a 3-D model into direct correspondence 

with the image by solving for the unknown viewpoint and model parameters. A 

high level of robustness in the presence of occlusion and missing data was achieved 

through fuil application of a viewpoint consistency constraint. It was argued that 

similar mechanisms and constraints form the basis for recognition in human vision. 

2.8 Two Approaches in Recovering 3-D 

Structure 

Although many methods have been developed to recover 3-D information from 2-D 

images, basically they can be divided into two categories: bottom-up and top-down . 

A bottom-up approach relies on low-level image processing. Usually low-level image 



processing which is carried out for image interpretation can be roughly divided into 

three phases: (a) moving body parts are separated from the background; (b) the 

moving body part features are then labeled; (c) motion verbs are assigned to the 

movement. These steps may be slightly changed in different applications. 

Kanade[Kanade81], in the first part of his method for recovery of the 3-D shape 

of an object from a single view, focused on line-labeling according to the junction 

dictionary. Each junction label has attached to it information on the constraints in 

the gradient space that should be satisfied by the surfaces incident at the junction. 

In this approach, he had a detailed line finding method based on edge detection 

and line linking, and then assigned a junction label to each junction one by one. 

His method represented a traditional bottom-up approach: first the primitives and 

relations are extracted and then a preliminary object description is constructed. 

A different method was provided by O'Rourke and Badler[O'RourkeBadler80]. 

They did not preprocess the image to segment it into regions or detect edges, and 

no low-level processing was performed on the whole image. Preprocessing was only 

done when needed, and only within the area predicted for a particular feature. In 

this method a model with feature detectcrs was applied to match structure in the 

predicted image region. The matching is complete when the features have been 

localized to a small enough region. The output is a list of 3-D regions where the 

various body features had been found. This represents a top-down approach: the 

model was used to predict or anticipate future position of the body using processing 

which started from the model description. 



Project Objective 

For the project described in this thesis, we would like to implement a model-based 

vision system capable of tracking human body parts in motion and describing the 

body structure in 3-D coordinates. The input to the system is a sequence of single 

view, grey-level images. The output is a list of 3-D human body data structure. We 

would like to  build a system which has the ability of: 

(a) Identifying the feature points attached to the body; 

(b) Tracking human body parts in a set of motion images; 

(c) Inferring the 3-D human body position from a sequence of single view images, 

and; 

(d) Estimating the position of occluded human body parts. 



Chapter 3 

General Approach 

Much of the current work in interpreting single view images is based on trying to 

extract maximal information from an image without using any knowledge about the 

objects being viewed. Usually the techniques are based on physical considerations 

concerning the image producing process. Other approaches, those principally pro- 

posed by David Marr and his students[Marr81], start from the physiological view, 

and use algorithms which extract information including identification of surfaces and 

their local orientations. The idea behind this is tc make use of rich descriptions to 

interpret the images. Researchers have proposed many anproaches based on these 

ideas and made some progress in recoving 3-D information from 2-D images. How- 

ever, human body movement interpretation still remains a rather challenging and 

difficult problem. Although researchers have been working on this problem for more 

than ten years, they have not made a great deal of progress due to  the following 

difficulties: 

(1) The physical world is 3-D, but an image contains only a 2-D projection of 



this reality. Not on!y will the project'ive image change with changes of position, 

orientation, and distance of the human body, but it is possible that different 3-D 

human body positions have the same 2-D projection. 

(2) The human body is an extremely cornplex object, being highly articulated 

and capable of a bewildering variety of motions. Rotations and twists of the body 

parts occur in nearly every movement, and various parts of the body continually 

move in and out of occlusion. 

The difficulties described above make it nearly impossible to infer 3-D structures 

directly from their 2-D projections. During this research, we simplify the domain 

by only considering a single human in an environment devoid of others objects. We 

propose a model-based interpretation approach to recover the 3-D information from 

its single view 2-D projections. The approach employs a human body model to 

match the image features and to predict the position of the body. 

3.1 Model-Based Approach 

The human visual system has no difficulty interpreting human motion. The mo- 

tion of a human body can be correctly inferred from just a few lights placed on 

the body[Marr8P]. One experience [YoungFu86] shows that only about 200 ms are 

required for the motion to be identified as human. This indicates that the huma,n 

visual system has a remarkable capacity for interpreting changing images caused by 

rigid motion of 3-D objects. [Rashid791 has developed a method which does not em- 

ploy a model of the human body. They have achieved some success in interpreting 

images with lights attached to the human body, which demonstrates that the model 



may p!ay a lesser role in object separation and tracking tasks. But they mainly 

concentrate on movement with no occlusion of hands, etc, and with minimal com- 

plicated movements. In order to handle occlusion; to detect twist in body segments, 

to infer the locations of anatomical landmarkers which have no visible counterpart, 

and  ultimate!^, to generate a rich semantic descriptions of human motion from im- 

ages, it seems clear that a human body model is necessary. In this resewch, we have 

a set of consecutive human body movement images which have arms twisting and 

body occlusion. We apply a human body model with some kinematic constraints to 

our task of prediction process and recovery process. 

3.2 System Overview 

The method we have chosen in this human motion interpretation research is to 

combine low-level image processing with high-level motion interpretation. From the 

low-level image processing, we extract maximal useful information from the images, 

including geometric features such as lines, circles, etc. Interpretation builds on the 

results of this low level processing. The information from the single view 2-D images 

is interpreted in terms of a human model with well defined structure and kinematic 

constraints. Another task of interpretation is to predict the future positions of those 

feature points-t his directs the task of image feature finding by matching the model 

of geometric symbols to the image characters at  the predicted position. So basically, 

we divide our process into three parts: image analysis; image interpretation; and 

3-D structure of the human body recovery and display in a graghics window. 
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Figure 3.1 : Configuration of the Model-Based System 



3.2.1 Input to  the System 

A wooden model of a human body, which is about 20 certimeters tall, is used as 

the source of the pictures in this research. The physical structure of the simulated 

human body is known. This includes the length of body segments formed by angle 

joints and the ranges for each joint angle. Constraints on the body, including angle 

constraints, motion constraints and collision constraints are encoded into the model. 

Up to seventeen markers are attached to the feature positions of the wooden body 

model. These markers are geometric symbols, such as squares and circles with 

differelit colors. These are used to identify the positions of the head, the chest, the 

arm joints, the legs, and the feet. 

The test images contain a set of consecutive samples of a simulated body motion, 

such as the arm swing movement. We execute each simulated body movement by 

moving the arms in a continuous, smooth function. The movement also embodies 

extensive knowledge and constraints of the human body, for instance, it will not 

move any limb beyond the limitations of its associated joint, nor will it move one 

body part through another. The simulated human body movements are based on 

gravity and balance. 

The set of images is produced by a CCD video camera, digitized and stored in 

Image File Forniat(1FF). The machine we have chosen to  analyze the images on is 

a Sun Sparcstation. All the images are stored in the workstation with the intensity 

value ranges from 0 for dark to 255 for light, thereby yielding a 512 x 512 x 8 

resolution. The images were set up to give a rat her strong contrast with respect to 

the background. 



Two-dimensional images can be generated from a 3-D scene by parallel or pcr- 

spective projection. Perjpective projecticn is chosen here because human eyes and 

cameras have that function. Assuming that the focal length of the camera and its 

position relative to the simulated body is known, and since the viewpoint of the carn- 

era is invariant for a given set of body movement pictures, we can set up a relation 

between 2 camera-centered coordinate system and an ob ject-cen tered coordinate 

system. The position of the human body in the object system is derived through 

multiplying the coordinates in the camera-centered system by the camera-object 

transformation matrix. 

3.2.2 Image Analysis 

The image analysis component is the only process which deals directly with the 

images. The input is a list of 2-D images with some flesh-colored are- which 

represents the attached feature areas. This process performs some basic image 

processing, such as impulsive noise removal and White Gaussian noise removal. 

After that, the image is processed to detect edges and do line linking. These line 

features are passed to the next stage of image interpretation to idedify the attached 

geometric symbols to the human body model. 

3.2.3 Image Interpretation 

The image interpretation process is designed to recover 3-D position information 

using a model based search. The feature points are first identified by matching 

extracted line characters to the model features of circles or squares predefined to 



the human body model. The matching is ucder the constraint environment. Then, 

the information about the third dimensio~ at these feature points is derived from 

the human mode; using the kinematic methods. The interpretation process also has 

the function of predicting the future position of the feature points based on distance 

constraints and motion constraints. 

3.2.3.1 Description of the Model and  the Constraints  

The model of human body plays a important role in the interpretation process. It 

contains all of the 3-D knowledge about the human body and has the function of: 

(1) inferring 3-D information for a matched 2-D feature points; 

(2) being able to predict the future position of the feature points. 

There are several represent ations of 3-D model: surface representations (points, 

polygons, or surface patches) and volume representations (polyhedra, ellipsoids, gen- 

eralized cylinders, spheres). Considering that the stick figure has the advantage of 

propagating the geometric angle constraints and distance constraints throughout the 

model, we choo* the stick figure [Calvest881 as our model representation. The nodes 

and links represent primitive topological and geometric constraints. The principal 

constraints we consider are: 

(1) Angle constraints at each joint ; 

(2) Distance constraints for a segment between two feature points; 

(3) Motion constraints based on the cooperative movement of differeat parts of 

the body. 

They are list in thz appendix A. 



3.2.3.2 Matching Methods Used in the Interpretation 

The matching between the line 2atterns and the feature models is applied to identify 

the geometric symbols such as square, triangle, ctc. (consisting of lines and curves), 

and tc, assign them different names corresponding to the human model. Also the 

matching has ihe task of predicting the future position of the feature points to help 

the first matching in future frames. 

The image analysis process produces line and curve features. To group them and 

identify which pattern they represent, these line and curve features are matched to 

the predefined geometric models which at  tach to the human body model. Kinematic 

constrain~s are supplied to  get an explicit identificatioz. This high-level matching is 

actually a confirmation of the feature points identified from the image plane match. 

A matched image description already has 2-D coordinate information; sincc thc 

model has 3-D information a b u t  the simulated human hody used as input, we can 

apply a kinematic method, starting from the chest point, then movirng to the shoulder 

point, elbow point and wrist point, ete. tc derive a completp 3-D description of all 

parts of the body. 

3.2.4 Display of the &covered 3-D Position of the Human 

Body 

After the 3-D structure of the imaged human body is derived, we present the results 

by displaying them in a SD graphics window on a SUN Sparcstation. The display 

is programmed in C and makes use of the Hoops software package, It has a graphics 



jrzterface that, allows the  user to rotate the simulated human body through 360' 

frtdorn and the user can also see the human body including the occluded parts 

from three dirc~tions: front, right, top. The display of the results uses a stick figure 

[Cal vr:r t82]. 

3.3 Expected Results 

I'cwple have done a lot work on recovering 3-D information from Images. But most 

of t lie successfi~l work i; based on two view images. We expect our system, given a 

xc;.~ence of single view images of a human in motion, should be capable of tracking 

the motion in 3-D space and "understanding" or describing the motion in some form. 

Starting from a sequence of single view 2-D images showing a human body move- 

ment, we want the system to extract the attached feature information from the 

images, merge it with the human b d y  model and its constraints, and generate a 

s t  s f  3-I) body structures representing possible body movements. The output is 

tftc 3-1) position information recovered for each feature p i n t .  A 3-D stick figure 

representing the human M y  is buiit and displayed on a 3-D graphics workstation. 

Occiusion occurs when me body parts interferes with the view of another. We 

would also like to investigate whet her the system could detect and analyze the 

r.lcchsion. find the positions of occluding parts, predict their reappearance, and 

cstimabe their 3- D coordinates. 



Chapter 4 

Image Analysis 

In computer analysis of time-varying i mages, high-lcvd rlndcmtalleli ng is ; ~ c . l l i c w ~ t l  

by building on the results of low-level processing. Low-lcvcl image prowss i~~g rn i~ in ly  

refers to  feature extraction. The approaches dcscri hcd helow show that r cw;~rch+s  

have been focusing on better approaches to  tl(:tect the niarkcrs att;rct~c.d 1 4  ttlc 

human body. 

Huffman[Huffman71] reported a video-based rncthod for trackirlg four ~narke:rs, 

which were fixed to the specimen surface, and calcnlat~cd the 2-D inforrr~ation from 

the measured marker positions and displacements. 7'he markcrs wcbre first itlmti- 

fied using a threshold search, and the marker ccnt,ers rverr: fotlrd ~lsirlg a ccntroid 

formula. This method did not include on-line experirncntal crmtrcrl, a r ~ l  the data a:- 

quisition and analysis rate were really slow. In addition to th i s  method, IItirnphxy 
- r-- 

et a~.[~umphrey83]  proposed a tracking algorithm utilizing a threshold scarclr fol- 

lowed by a method of rows and columns(MRC) marker identification whereby tl~t: 

center of a marker is defined to  be that pixel location curresporrrhg to  th:  max- 



irnunl (light marker) or minimum ( dark marker) sum of a row and a column of 

pixe! intensities. An advantage of this approach is its ability to independently track 

four very small markers, thereby allowing estimation of shearing strains and the 

homogeneity of the strain field. However, due to hardware and software limitations, 

the data acquisition and experimental control were very slow. Another approach 

is dynamic scene segmentation. Dynamic scene segmentation consists of dividing 

images into changing parts and constant parts, and locating the significant moving 

feature paAs in each image sequences. 

The approaches introduced above did not use a model of the object. They all 

have the disadvantage of low processing speed due to searching the whole image 

area. The model based feature detection method which we propose here aims to 

provide a faster feature localization. The input to our method is a sequence of 

images of a simulated human body which has some geometric symbols to identify 

the joints. We begin our method by smoothing the images, extracting edge features, 

and identifying the geometric symbols through matching to a catalogue of stored 

2-D geometric model descriptions. In this section, we introduce the image noise 

removal a.nd edge detection algorithms. 

Image Processing 

The function of image processing is to get as much information as possible about 

the feature in the images. Although we provide a strongly contrasting background 

for the figure in the video image, nevertheless, when the pictures are digitized, there 

is a certain amount of noise due to various factors. The factors considered here 



include: 

(a) Random white noise; 

(b) CCD video camera device instabili tics; 

(c) Varying lighting condition. 

These factors can cause severe distortions in the digital irnagc arid hcnce arlil)igu- 

ous features and poor recognition results. Mathematically, they are roughly tfividcvl 

into: (a) Impulsive noise which appears as random white spots of high positive grcy 

level value in an image. It is usually caused by errors during the image acquisition or 

transmission through communication channels. Median filters have good i~npulsive 

noise filtering capabilities; (b) White Gaussian noise whose grey levcl valuc is i n  a 

normal distribution with a covariance a . The noise energy is represented as a2. In 

the image, it results in some points with low grey level since usually the noise cncrgy 

has a relative low value. Thresholding is efficient and simple to remcvc this noisc:. 

4.1.1 Impulsive Noise Removal 

A median filter has good performance in rejecting the sharp dctails due to the 

addition of impulsive noise; in this approach we replace the grey lcvol of cach pixcl 

by the median of the grey levels in a neighborhood of that pixel, instcad of hy thc 

aver age. 

The principal function of median filtering is to force points with very distind 

intensities to be more like their neighbors, thus actually eliminating intensity spikes 

that appear isolated in the area of the filter mask. In our approach, we use a 3 x 3 

mask to implement the median filter. It was defined as follc,ws: sort the 9 pixel Jcvd 



values of the  mask, determine the median which is the fifth largest value among 9 

values here, and assign that value to the central pixel. 

We found that this nonlinear signal processing method is particularly effective 

when the noise pattern consists of strong, spike-like components, and where the 

characteristic to be preserved is edge sharpness which is utilized later. 

4.1.2 White Gaussian Noise Removal 

During thresholding, the brightness value of each pixei is compared to a threshold 

value, and the pixel is assigned to one of two categories depending on whether the 

pixel value is exceeded or not. Thus those low grey level points will belong to the 

background after t hresholding. 

For a 512 x 512 image, consider a pixel with value f(x, y) at the point (x, y); 

this is compared with the thresholding value t, then the points with brightness value 

greater than t remain at their original grey value; while those less than t are set to 

the black background value. i.e., new pixel value fn,, (x, y) will be given as: 

The main point in this method is the selection of the threshold value. Although 

we can select threshold values which depend on the grey level value for a region 

of the image, it is probably unnecessary and it is a very time consuming. Usually 

we select a fixed threshold value for the whole image area, provided the character 

of the image does not change abruptly. A histogram of grey-level content provides 

a global description of the appearance of an image and provides a good way to  



select the threshold value. It counts how often each brightness value occurs: thc 

points belonging to the background give rise to a peak in this graph sincc t,hcrc are 

many of them, and similarly for the points belonging to the wooden human body; 

whereas the noise points give rise to a valley since the points rare. We choose a fixed 

threshold value to place these noise points in the background. 

Feature Extraction 

This is the process of localizing those areas in the image wherc a potential fcaturc: 

is likely to be present. Most of the techniques can Lc adapted to detect tither 

light or dark targets. Burton[l4] used a double window filter. This filter is based 

on the contrast between the target and its immediate background. It consists of 

two rectangular windows, in which the inner window surrounds the target, and thct 

outer window contains background. Range is used to control the window sixes. 

Sklansky[l5] used a spoke filter(an eight-spoke digital mask) which is an extcnsior~ 

of the Hough circle detector. It examines the local edge magnitude ard direction. It 

needs preprocessing which includes intensity normalization, and an edge t1ctet:tor. 

Rubin[lG] used a linear discriminant function of local features of the irnage to obtain 

points of interest, while the target is assumed to be in the ncight~ort~ood of thcsc 

points. 

Our approach starts by detecting edges and then performs edge thinning. A 

pTE'07-i knowledge of the objects being viewed together with the appropriate featurc: 

model are used to identify and locate the feature points in the image. 



4.2.1 Edge Detection 

An edge is a piece of the boundary between two regions with relatively distinct 

grey-level properties. Basically, the idea uriderlying most edge-detection techniques 

is the computation of a local derivative operator. 

The gradient of an image f (x, y) at location (x, y) is defined as the two- 

dimensiona! vector: 

For edge detection, we are interested in the magnitude of G M x , ~ ) ]  which is given 

by: 

2 112 IG[j(., y)] 1 = mag[Gl = [(df lax)2 + (dflay) )I (4.3) 

The gradient gives the maximum rate of increase of fTx,y) per unit distance in 

the direction of G. The direction of the gradient vector is represented by a(x,y) with 

respect to ihe z axis. 

In digitized images, the magnitude of the first derivative d f /dx and d f /dy at  

every pixel can be used to detect the edge of an image in a number of ways. One 

approach is to use the first-order differences in a 3 x 3 neighborhood about point 

(x, y) to estimate the gradient [Niblack86](see figure 4.1). We define the component 

of the gradient vector in the z direction as: 
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Figure 4.1: 3 x 3 Mask for Edge Detection 

and in the y direction as: 

G, and G, are combined together using the equation 4.2 to get C:[l(x, y)] to 

obtain an estimate of the gradient at that point. Processing on the whole image 

yields estimates of the gradient at all points in the image. The magnitude ol C;[l(x, 

y)] is compared to a threshold value t. If it exceeds t, an edge point is producc:tl hy 

setting a new pixel value 0 representing black. Otherwise, the point has thc nctw 

pixel value 255 representing white. 

The edge detection process may produce some discollnected border points ant1 

broad edges because of the image noise and selection of threshold value t .  'li) dc:lc?te 

those points and thin the edge, the output from the gradicnt operator is chc=ck(-d 

at each edge point. Only those gradient points that arc ~naxirr~lrn arnor~g scvcral 

directions are kept. Referring to Figure 4.2, four directions lat~clod 1,  2, 3, a11 d I are 

considered since direction 6 is the same as direction 4, 7 thc same ~LY 3, and so arr. 

The two neighbors in the direction that is closest to the direction of thc gradicrrlt y, 

of the center pixel p are checked, and if g, is the largest, the other two points arc: sc:t 

to  background and eliminated. The detailed algorithm is introduced in [Niblac:k8G]. 

The result is an image with only the one best point across the border at any point. 



Figure 4.2: Thc Nun- ber ring Convention For Direction Around A Pixel 



Chapter 5 

Image Interpret at ion 

In this chapter, we deal with the feature point identification and the 3-D rcncovery 

function of the system. Given a preprocessed image, thc system should I>(; ahle to 

apply the kinematic constraints to the prediction process and the rnatcliirig procclss, 

to  identify the image feature points along with their 2-D locations, and to i ~ ~ f w  tlrc 

third dimension of the human body. 

A model-based method is employed in our approach to irrtcrpret thc sirrglc view 

2-D images. It is basically divided into two steps: (a) identifying and labeling tlrc: 

line patterns corresponding to the human body model; and (h)  irrtcrprotirrg thc: 

r 1  feature points and recovering the 3-D informat ion. I l m c  steps are bricfly c1csc:ri hecl 

as follows: 

(a) The image features are composed of line pakterns. To identify thc fcaturc: 

points, the first step is to group and label line patterns using u priori knowlctlgc. 

The a priori knowledge includes the shape and position of geometric feature rnodclu, 



i.e., the circles, squares and triangles attached to the body model, and the initial 

posture of a sequence of human body movement. The feature models are applied 

to the matchirig process using instructions from the prediction process to  find cor- 

respondences between ccmponents of the image description and the feature model 

representations. Kinematic constraints, like the distances between the elbow and 

wrist joints, along with motion rules, predict thc future position where the feature 

point should appear and instruct the low-level feature model matching process. The 

output is a list of the image features with scmantic names, together with their 2-D 

positions. 

(b) The interpretation of the image feature points is implemented using the model 

knowledge together with kinematic methods. The human body model includes a 

complete 3-D data structure describing the human body. Each feature point follows 

the motion rule from the last n frames. The motion rule is applied to the recovery 

process by considering the direct i~n and y e e d  for the feature points in the last 

n frames. From the initial position, each feature point is tracked and its third 

dimension is inferred by calculating the difference between the projection length of 

each segment and its true length in the human body model. Kinematic ccinstraints 

are provided to reject the infeasible positions of each feature point. For instance, 

to  infer the 3-D position of the wrist points, its depth is recovered by calculating 

the squareroot of the difference between the square of the projection length of the 

segment i~lbow-wrisr  in the image plane and the square of the true length lelbow-wrist 

from the body model. The squareroot reflects the depth information for the wrist 

point. The recovery process is implemented under a tree structure: from the chest 

to shoulder, elbow, and wrist. This stage recovers the complete 3-D structure of the 

human body. 



Finally, we also wish to know how well the recovery proccss performs whcn thc 

feature points are not known at all positions, in part:icular, when t h e  body parts of 

interest are occluded by another part. 

In this chapter, we will first introduce the detailed huma~l body model and its 

kinematic constraints, then describe the constraint based prediction proccss and 

matching process. Finally we focus on recovering the 3-D position of cach feature 

point. 

Human Model Description 

A model is an organized representation of features which providcs descriptions and 

information for image analysis and understanding. Thc modd description can bc 

roughly divided into two categories: 2-D model description and 3-D   nod el dcscrip- 

tion. In this thesis project, we are concerned about the 3-D model constrt~ctior~ and 

representat ion. The construction of a 3-D model requires t11c model's coortli~~ate 

system, its component axes in an image and the arrangement of tile cornpor1c:nt 

axes in the model's coordinate system. This construction is appropriate when the 

viewpoint is fixed. 

Our intention is to develop an appropriate 3-D rnodcl which w o ~ ~ l d  proclucc thc 

2-D appearance of the given body taken from a fixed point of view. 'I'11c rnodd 

is made up of structural parts which incorporate all ?he known information ahout 

the body. A description of it is giveri in the form of a relational structure i n  which 

the nodes correspond to features: geometric shapes and thcir 3-D positions. For 

example, the elbow point is expressed by a triangle at (12, 28, 140). We employ 



kinematic const,ra,ints to provide some properties of the human body to the model 

description. 

5.1.1 Two kinds of Human Body Model 

At the present time, volume models, surface models, and stick figures are the most 

widely utilized representations for the human body model. In the volume models, 

the body is decomposed into instances of one or more primitive volumes, such as 

cylinders, ellipsoids, or spheres. A few ellipsoids or spheres can capture the surface 

and longitudinal axis pr~perties of many body parts. Among the volume models 

is the "BubbleMan" developed by Korein and Badler[Badler79] where the body is 

build up from ',he superposition of about 300 spheres. Another approach proposed by 

Nerbison-Evans is a "Sausage Woman", which is built up from a smaller number of 

ellipsoids[MarrNishihara78]. The volume models are relatively efficient and robust, 

however, there are difficulties in refining them to give a truly realistic look. 

Surface modeling is another approach. The body surface may be modeled by par- 

titioning it into planar or curved patches. Representation based on a planar decom- 

position of the body surface can be implemented by vertices or polygons[Badler79]. 

The former has from 300 to 3000 vertices, which has the advantage of simple dis- 

play primitives, but sacrifices the solid appearance of an actual body. The polygon 

representation has the advantage of solid rendering but has high display cost. Fur- 

thermore, polygon models of a jointed shape may yield unnatural results when the 

shape is changed at a joint. 



5.1.2 Stick Figure Model Representation 

A stick figure model is composed of joints and segments which contain kiaerrmtic 

constraints. Its representation for the human body is based strictly on the con- 

nectivity and flexibility of the body. We choose it as our n~odel description in  tallis 

project as it is easily implemented. 

A 3-D stick figure model does not etlectively portray complete human Imdy 

movements, especially rotatory movements, twists of certain body parts, and con- 

tacts between body surfaces. To solve this problcm, we crlrplny thrcv ortliogonal 

graphics windo-:-s to display the recovered three dirnensior~al structurc of the hurnari 

body. Then the twist of body parts, can he clcarly viewcd from threc dircctiorrs. 

In addition, the display is programmed to havc a rotate function .so that tllc vic:wc-r 

can understand the recovered body structurc. 

5.1.2.1 Composition of t h e  Human Body Model  

In our project, the stick figure model is defined to haw 1 4  joints and 15 xgrnents, 

as shown in Figure 5.1. The human body model is defined in  a chc*st-ccntcrcd 

coordinate system: with the x axis pointing to the right, y axis pointing up, arid s 

axis pointing to awav from the viewer. The rnodcl is facing towards ttic vicwer arid 

is in a left-handed coordinate system. 

The model contains a11 of the system' "work! !moW!cdgcn for the human i d y .  

It has a total of five degrees of freedom. The seg ,ents and joints are linked together 

into a treestructured skeleton. Each joint is a unique point connecting two segments. 

A segment is an abstract rigid body with an associated embedded cmrdinatr: syrti:m . 
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Figure 5.1: Stick Figure Representation of the Human Body Model 



It has two joints located \vitiiin its coordiliatc systeln. ' i ' h  scgnwnts, sr~c-11 as t l ~  

torso formed by the chest, left shoulder and right shoulticr. rriovc rigidly; tlic only 

articulation permitted is at  the joints. The angle co~istraints at the 14 joints and 

the lengths of all 13 segments are known. They arc dcscribcd in the twxt wciion as 

kinematic constraints applied to t lie model. 

The geometric features attached to the hutnan bocl_v arc tlic cori)poticrits of tlrc 

model. Image features such as edge, corner, line, curve, Iiole, and tmmdary cur- 

r -) vature define individual feature components of an image. 1I;i:sc: fcatures and tlwir 

spatial relations are then comhincd to gencratc rnocicl descriptions. From thc gc- 

ometric symbols attached to the wooden human body, we Imild up our rnodcl by 

setting these geometric features, such as the circlcs and rectal~glcs, at  tlw corrcqm~d- 

ing locations of the model. -4 total of 14 unique geometric syrribols arc at,l,acl~cvl to 

the 14 joints of our stick figure rncdel. 

5.1.2.2 Object-Centered Coordinate System 

The stick figure model is defined in an object-ccntercd coordil~atc* systmi. 'I'llcrc arc 

two kinds of object-centered coordinate sys terns that the 3- I) moclcl rc:prcsc.rl tat ion 

might use. In one, all the component axes of a descriptirm. from rrcxk to wrist, 

are specified in a common frame. The other uses a distrilmtcid coortfir~ate systcrr~, 

in which each component ha. its own local coordirlatc systcrri. For the latter om:, 

the spatid relations specified in a 3-D model dcscripti~n arc always local to orjc of 

its components: for example, since the elbow poirrt is sp-cified in a I(,cal shouldcr 

coordinate system, recovery is relatively simple to implemerlt. i44: chcmsf: t h e  local 

coordinate system to  specify the relative arrangement of a 3-D ~r i ch l ' s  corn yuncrrl 



axes. In this tree structure of the human body model, the positions of each feature 

point are derived from the local coordinate system and its relative position to the 

chest axis. 

Kinematic Constraints of the Human Body 

Much of the research on vision relies on constraint analysis in matching and feature 

findillg. For example, Marr[81] proposed compatibility constraints, a uniqueness 

constrzint and a continuity constraint in his research work. Constraint analysis 

is especially useful when imposed on human body movement since kinematic con- 

straints limit the scope of feasible movements. In a particular situation, such as 

when each joint of tne body has movement limitations in angles and two body parts 

cannot occupy the same place at the same time, the specification of such constraints 

can be are very effective in recognizing each body part and justifying the result. 

In this research work, we apply angle limitations, distances constraints and mo- 

tion constraints to the human body model. These are the most general kinematic 

constraints for human body movement analysis. We check the violation of the con- 

straints for any particular orientation of the body in the recovery process. Kinematic 

constraints arise from the structure of the simulated human body model and its 3-D 

properties projected onto the image plane. In the prediction and matching process, 

the constraints are actually the 2-D projection of constraints from the 3-D world. 

Each segment is permitted to have a certain orientation, which is expressed as 2-D 

ar~gles limits projecied from the 3-D world. The distance constraints between the 

body parts are also 3-D projections on the 2-D plane. However, in inferring the 



third dimension position of the featsure poi~it,s, 3-D constrai~its are directly applied. 

5.2.1 Angle Constraints 

Each joint of the human body has limits to its free angular ~novemcut, which give 

rise to  constra i~ts  on the relative positions of body features on opposite sirlc8s of t l ~ c  

joint. Angular constraints are used to reject particular illegal body positions during 

the prediction process. 

Angle constraints are usually divided into four diffcrcnt categories associated 

with the human body joints. They are 

(a) flexion/extension, 

(b) abduction/adduction, 

(c) rotation, 

(d)bending. 

Data on these angles can be easily found from references in the kincsiology. Sonw 

of the constraints are listed in appendix A. For the human body model employed i l l  

this project, the allowable ra.nges of the angles are slightly diffcrcnt frorn thosct i n  

the references and we introduce them as follows: 

(A) At the shoulder joint. Project the human body onto t l ~ c  x-y plan(: alor~g thrt 

-z axis and the y-z plane along the -x axis respectively (Figure 5.2). I,ct thc: upper 

arm, either right or left, be specified by a vector u from the shoul<ic:r t.o the cdhow. 

Assume that  the  projection vector of u onto the x-y plane and y-z planc is u(,,,) 

and u(,,=). Define: 

0 = the angle from the x axis vector t o  the projected vector u(,,,) (Figure 5.3). 





Figure 5.3: Right Shoulder Angle Constraint in x-y Plane Seen Frorrr tho I~i.orit 

4 = the angle from the -2 axis vector to the projected vector u(,,,) (1:igurc 5.1). 

From the kinematic point of view, the value of 01 is restricted lic: 1)ctwccrr 0" i ~ n t l  

130" in the x, y coordinate system when the arm is above the shoulder; or to a V ~ L I I I C  

82 between 0" and 80" when the arm is below the shoulder (Figure 5.3). Si~nilarly, 

4 is the angle at the right(1eft) shoulder point with a value 41 I>etwcw~ 0" and 70" 

in the y, z coordinate system when the arm is above tllc slioulder; or it is a val~ict 

42 between 0" and 160" when the arm is below the shouldcr (Figurc 5.4). 

These angle limitations are considered in our experirnerit. They dcfirrc: a specific 

motion area for the elbow joint. Checking these angles would reject the ill(:gal I d y  

positions during the positioning process. 

(B) At the elbow joint. We define the angle at the right and left cl how joint as 



right shoulder - - 
z 

Figure 5.4: Right, Shoulder Angle Constraint in y-z Plane Seen From the Side 



follows: 

* 

u = the vector from the shoulder to elbow, as beforc 

v = the vector from the elbow to the wrist, 

w = the cross product of v and u,  and 

II, = the angle measured from v to -u. 

shoulder 

Then the angle t,b has a value from 0' to 170' (IJignrct 5.5). I3y corlsidc:rir~g this 

angle const.raint, we predict the position where the wrist joirl t might tw arid wjcd, 

the impossible positions for the wrist joint. 

eIbo w 
U 

(C) At the head joint. The angles associated wi tli tlic hcaci joirif, arr. t l c 4 r i c d  

by the head point and the chest point when the body moves its hcwl forwar(-l or 

backward. Let the vector from the chest to head point havc: a projcctcbd vcci,or n(,,,) 

on the y-z plane, dm let the angles measured from the y axis vector to  t h  vr-c tor 

n(,,) be 51 or 52. Then the angle 51 has a value from 0' t o  71)' for the forward ariglc* 

and from 0' to  40•‹ for the backward angle 62 (Figure 5.6). 

Figure 5.5: Right Elbow Angle Constraint 



Figure 5.6: Head Angle Constraint 



5.2.2 Distance Constraints 

Distance constraints can make it easier to check tlic thc violat i o ~ ~ s  for any pnrticuliw 

orientation of the body and understkind meaningful body postures. For i\xa~:lple, 

when both arms are swinging, usually one is in front of t h  body itlid thv otlrcr is 

behind the body. The distance between the two wrist, point projections on tllc i~~ii\g<' 

plane is in an increasing function until they reach the vory cnd positions. Also t , l i c b  

wrist points should be in a circular area centered on the elbow feat11r.c poi~~ts .  rl'lic~ 

distance constraints between the two feature points used i r i  this project arc listcd i n  

appendix A. They are used in predicting the position of tlic featuro appcarrmcc i l l  

the next frame. In addition, they can be used to reducc the co~nbinations of possible 

solutions of recovered joints. 

5.2.3 Motion Constraints 

Another factor we consider in the recovery process is the motion coristrairits. Among 

a remarkably large number of different body postures, we  shall riot orily apply the 

physical constraints mentioned above, hut also make use of motion kriowlr~dgc to 

obtain meaningful human body postures. In other words, we try to IIS~: a p r i o i i  

knowledge about human motion to set up a "Motion Model": 

(1) Generally speaking, when the body is in motion, thc two arms arcm not hoth 

in front of or behind the torso simultaneousiy. The sarne restriction also applies 

for the two legs. This give us information about one arm's position relative to tlic 

other. 



(2) The elbow movement is cooperative with the shoulder. When these two joints 

both move, they will swing forward or backward at the same time. This rule also 

holds for the hip joint and the knee joint. Usually they swing in the same direction 

at the same time. 

(3) Arms and legs move smoothly, most of the time. From this, we get an idea 

of how East the arm is moving; the arm should be in an area which corresponds to 

its speed of the movement and observe "motion coherence". This helps us to find 

the two dimensional positions of the feature points. 

Motion constraints are especially usefu 

movement is smooth and thus we predict 

model. 

.1 in feature point prediction. Most human 

, the future position based on the motion 

Image Feature Point Identification 

The first task of the recovery process involves identifying the feature points from 

which the recovered 3-D structure of the human body is displayed. The identifica- 

tion process consists of finding correspondences between components of the image 

description and the human body represe-+ations, i-e., to get corresponding matches 

between the image geometric labels extracted by the low-level image processing 

and the predefined model. After this matching, the features are registered in a list 

of symbolic representations of image features. The whole identification process is 

divided into three steps as follows: 

(1) Get the edge features of the geometric feature from the images by using edge 



detection; 

(2) Using a priori knowledge about thc hunlan body n ~ o d d ,  1natcd1 tl~cb cdgc* 

feature to the feature model in the predicted area; 

(3) Get a symbolic representation of the geon~etric sy~i~bols  along with tlwir 2-11 

information in the image plane. 

5.3.1 Image Feature Representations 

r \ Image feature points are the points necessary to  coristruct a ! I ~ I ~ ~ I I  body. 1 11c sclc*c.- 

tion of image feature representation has a deep effect on fcatl~rc- poi~lt idmtificiition. 

The selection should follow the policy of being easy to irnplc~~~erlt  a ~ d  Icast scl~sitive 

with respect, to the noise. Generally, the feat use can be geornet ric c11arac.tc~ristic.s of 

the object, such as corner, line, curve, etc; or an intensity fur~ct.ion ~f thc part. at  i ~ l l  

locations(x, y); or even trichromatic luminance rneasurernc~it in the color imagc.. 

In this project, we attach some geometric symbols wit11 tliffcrcnt colors to thct 

wooden body as the image feature. The symbols are circles, sqrlarcs, triangles, which 

have different red, yellow or brown colors. These fcatures arc: the tmsis from which 

to  generate the models in the modeling phase and are agai~r used to  rnat,c:h with t11o 

extracted line patterns from the images. 

5.3.2 Matching Between Models and Image Characters 

We have introduced the three step feature point ider~tificat ion process. 'I'he first 

step is t o  get the line patterns in a given input image by using edge clctection. This 
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is stcscribcd in the previous chapter: image analysis. The second step is to find a set 

of pattmns in the given image that approximately matches the model's features. In 

this section, wc deal with this problem by providing a model-based feature matching 

method: the linc patterns extracted from the image plane and those predefined by 

the rnodel are comparcd. 

Let f(x,y) be the image field containing the part to  be inspected, and let t(x,y) be 

the template of a defective pattern, like a circle with given radius or a triangle with 

given angles. The matching is commonly done by computing a similarity measure 

C(x, y) I,ctween f(x,y) and t(x, y) at all (x, y) in f(x, y), and then using a similarity 

measure for detection. The similarity measure used is cross correlation, defined as 

C(x, y) = f(i,j)*t(i-xj-y). To be practical, t(x, y) is usually zero outside a small 

window. 

In our project, the low-lcvel image processing gives the labeled line features. The 

model used for matching is a 2-D geometric pattern on the input wooden human 

body. The matching method is used to  find geometric symbols represented by these 

line features. 

I.br example, to identify a circle pattern, a 4 x 4 mask is used as shown in 

Figure 5.7(a). Inside is a circle model whose curves are white on a black background: 

fi(x,p) is the grey value of the model mask. Value 1 represents white and d u e  0 

represents black. An image character is shown in Figure 5.7(b), where fi(x,y) is 

the image grey value. The matching equation is given as: 

This equation produces the difference between two masks by implementing the ex- 



(a) Feature Model (b) Image Character 

Figure 5.7: Matching Between Feature Mocleis and Ir~iagc: (hiractcrs 

clusive or logical function of f i  (x. y) and I . , (x ,  y) at, the corresponding pix(.!, If  t hc- 

difference is less than a giver1 threshoid t, thc image curve forn~s a circlc-: oi.)wrwisc-, 

it does not. To identify the pattern from thcse line fcaturcs, wc! c a n  uscB otht-s rno(l(*ln 

t o  check whether it belongs to a triangle, or a square, etc. 

This matchirg uses the information gained a t  the &ow-lc-vci image proc:c&ng Icvt4 

and the feature information included in the modci dcxription process. I t  ii.ssigns 

names to  the different image characters which corrcrsyonrls to tlm fc-aturf: points, 

5.3.3 Constraints in Prediction and Matching 

When the matching between the image characters and feature rndcl, it is not easy 

to determine the right ones when there is a large set of model descriptions, 'ri assint 

the process, the kinematic constraints of the rnodel are irrcsrrporated in a yrrtrfiction- 



irhtiiication process to rnake predictions about the appearance of the feature in 

#,he rtext image hy checkirtg the comtraints. The ~redicted feature is verified by 

matching. 

~hnstraint ,  arralysis ~~?rrtfro(!s haw teen used in image interpretation. Badler 

[O'Itoi1rkcI3arilcr80] yrr,vidcrri a constraint propagation method in his human motion 

analpis rcwarch- lie even poposed a constraint network based on the structure of 

the human moilel. Ltx[l~rc:Chen85] determined the 3-1) human body postures by 

deb-tinlg any r*xplanation which did not satisfy the kinematic constraints. 

fn this thesis project,: we apply the kimmatic constraints in the prediction process 

to assist t h e  H W  of the corrrtspondirig image feature model to fulfill the low-level 

matchiag. Also, the constraints are employed in the recovery process to infer the 

third dimension of thc lmrnan body. The physical kinematic constraints of the 

hunlan body considered here include: angular constraints at  the joints which limit 

bending and twisting, distance constraints between the rigid skeletal structures of 

the body, and motion constraints which limit the movement. These constraints are 

treated as relations between the positions of the features on the human body. 

5.3.4 Initial Frame Image Feature Identification 

P 7 I he initial posture of the  human body is assumed to be kaown, as are the general 

pwitiuns of tlw feature paints in the first frame. Correspondences between compo- 

ntmts of the imiigf Btscripiiori and tile model representations are found through the 

matching mrthw! d,cscriM in :he t a t  sectio~. 

At this stage. identification is implemented based on the prior knowledge about 



the position. Each feature point is located at thc starting p s i  tior1 of the cntirc* bo(ly 

movement. The image preprocessing part protl~iccs line feat urcs of the gcwn1c.t ric 

patterns which represent different image feat urcs of the Ilu~llan body. 'I'tlcn rli fftwwt 

feature models are applied to match these geolnctric pattcr~is to iclcntify t . 1 ~  fcat,urc 

points. For example, a triangle model is matcl!cd to the pp~nct~r ic  patttbrns at t . 1 ~  

head area to identify the head fqature point. 

The resulting symbolic description of the feature points is passed to thc j)rcclic.tior~- 

verification process for analysis of the next fra~ne, 

5.3.5 Image Feature Identification in Consecutive names 

For a sequence of motion images, it is not obvious how to firid the fc-aturca poirits 

at each frame, especially in an image where h e  body parts arc occ.ludcci. At this 

stage, the kinematic constraints play a critical rolc in prctlic-ling the f(balurc* poir~t, 

, 7  positions of the human body for the ntxxt frarllc. I he kill(-matic corlstrairlt,~ c-rrrl  

be analysised individually. And at somc placcs, s t w ~ a l  constraints arcn c.o~rlt)ir~c*tl 

together to implement the prediction function. 

The distance constraints and angle constrair~ts arc. I I S I I ~ L I I Y  put in  tlw forrr~ of 

inequalities between expressions, along with the possibility of inclurlir~g rrlax and 

min. Equality can be encoded as two inequalities. For ir~stancc supjmsc~ a tlistar~r-c 

between the shoulder p i n t  and t h e  elbow point is rcpreser~tcd ac; a stick figure: 

distance by the quantifier L-StoE, the distar~ce hetwwn t.h: c:lhow poir~t and the 

wrist point is defined by the quantifier 1,-EtuW, and thr: angle betwr:en thc upjw 

arm and lower arm is defined by the quantifier A-AItSltoAItSl. ?'hen the wholi: area 



A which ;,ray 1,'; covered Ly t h e  wrist point can he expressed as: 

(5 .2 )  
I I I hc s!l!,parts of the body are predicted and their 3-D structure are recovered using 

a iiowclrart. The arca where tlie wrist point will appear is predicted based on the 

idcmtification of the elhow point. Rasically, the wrist point is located within a circle 

area cent cred a t  the elbow with a radius equal to tlie segment length between the 

elbow and the wrist. Hut the area could be shrunk because of the small step of the 

rriovemc~lt between each picti11 . For instance, the arm moves only a small angle 

0 during each step, and 0 can bc is small as 1.5" in our experiment. So, the wrist 

point exists only in a part area of t h ~  cirrle (Figure 5.S). It can be predicted as: 

These local predictions are combined t o g ~ ~ h e r  to produce a global prediction which 

proviclcs strong clues for feature points discrimination. The position of the feature 

in the next frame is predicted by simply continuing the body movement without 

change. For example, if the arm is in a swing motion, it will be predicted to keep 

swinging until it reaches the angular constraint(angu1ar constraints are described 

above). From that point. the arm will swing backwards. 

For sonic points, the movement is relatively small, almost nil during some body 

moveincnts. For instance, during an arm swing motion, the position of the chest 

fcaturc point tfot.s not change a lot. Instead, it remains in a fixed small rectangular 

area. At  this stage. the feature point is identified relatively fast by searching the 

gmmctric modrl in this area and will not be confused with other geometric features. 
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12igure -5.8: I'rcdictior~ of tllc: Wrist I'oint, 

5.4 Recovery of 3-D Structure of the Human 

Body 

It is straightforward mathematically to t.ransforrn from n 3-11 sc-cmc8 r r l o r i c * l  to it.. 

projected 2-D image, but the  invcrse problc111 is consic1c~ral)ly rrrorc. difficult. I l ow-  

ever, the combination of image data and u przori k ~ l o w l ( ~ i g ~  of ttlc 3-11 ~ I I I I I I ~ I I  l)ody 

model can result in a constrairicd environn~cnt i n  wt~ic-h thc- hurnar~ t d y  positio11 

in 3-D can be estimated. The clues available a priori irrc-111tlc.: 

(a) world knowledge about the lmman hady nloclt4, 

(b) compositions of the chest coordinate systcn~, 

( c )  the relationship between ihe carnem-ccr1tcrt3d a i d  i t i c =  vt) jwt-c-c.r~tc*rcd c:or,r- 

dinate systems, and 

(d) the 2-D coordimtes of the body in thc irnagc plane. 



Given an image with identified feature points, our task is to transform the feature 

point positiol?~ in the 2-D focal plane coordinates to  their location and orientation 

in the 3-1) object-centered coordinate system; then starting from the feature point 

on the chest, the 3-D parameters of the objects are determined using a tree structure 

search. Thc: third dimension of each feature point is calculated through the model 

knowledge and the kinematic constraints. 

5.4.1 Relationship Between Object Structure and Camera 

Model 

The locations of the body feature points in the image are specified relative to the 

viewer in a camera-centered coordinate system. The camera views the world along 

the negative z-axis of its coordinate system, with the y-axis pointing up, and the x- 

axis to  the right. It is specified in a left-handed camera-centered coordinate system. 

The 3-D positions of the human body which we seek should be in an object-centered 

system. The object-centered coordinate system is defined on the chest of the hu- 

man body, so it is this right-handed chest-centered coordinate system that is used 

to define the body in this project. A 3-D structure (x,y7z) in the chest-centered 

coordinate frame has a trailslational kinematic relationship which produces a 3-D 

structure (X,Y,Z) in the camera-centered coordinate frame. The relationship can 

be described by the following equation: 

where [TI denotes a transformation matrix. The matrix [TI can be readily shown 
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to be the product of a translation mat,rix, a rotation rnntris, and a co~ivwsiorl tnittlris 

from the right-handed coordiriate system to the left-handed coordinate systcrl~. 'I'tlc 

details for the rotation and translation nrotioris car1 bc. fourid i n  [Rogcr7.l]. 

In this project, the human body is defined i n  t h c  c-hrst-ccntcrc~d c-oorcli~rat~c* sys- 

tem which is in the same tl irection as in t llc c-an~t~r;~-cc~l t w ~ d  coo~-din;ltc- syst.c.111. 

Thus. only a translation and a conversion ~rlatrix ;arc. ~ l c w l c c l  to calculate* t11c trms- 

formation. Here all of these transformations are smooth a ~ ~ c l  wcrll bcliavcti a ~ i d  thi* 

transform matrix [TI is known from the a p ~ i o r i  k~lowlc~lgc- a1)out systcwi. So it is 

straight forward to transfer each feature point coordi~~ntc~s from tlw chost-ccwtcwd 

coordinate system to the cari~cra-centcrcd systc~ri, and tllc- rc3covc-ry prowss is irn- 

,, plemented in the camera-centered coordir~atc~ systmr. I IN* jmrarric%tc-rs wc. IM- lakr  

are all referred to that systern. l'hc: recovered 3-11 strut-turc- of tllc: 11111l1itll 1)otIy 

is finally converted by an inverse transfornlatio~i to tlic* chi*st-c.cntcrcd c-oor.cli~~;ttc* 

system. 

5.4.2 Recovery Strategy - Tree Structure 

The human body is represented hy a hierarchical trrr: wllcm. c~ac41 ~lodc: rcb])rc~sc.l~ts 

one body feature point. The chest point is used as the: root lwc-arlstb it is typic-ally 

nearest to the body's center of mass. Bascxl on tljc: stick-figure Irurriarl nioclt.1, wc. 

group all joints into five classes: 

Class (a) = chest, left shoulder, left elbow, left wrist 

Class (b j  = chest, right shoulder, right eltow, right wrist 

Class (c) = chest, head 



left shouldcr right shoulder 

left elbow 

Figure 5.3: Tree Structure of the Recovery Process 

Class (d) = chest, left hip, left knee, left ankle 

Class (e) = chest, right hip, right knee, right ankle 

'I'he human body is modeled in a world coordinate system where the chest point 

is the root. 'rhc feature point at each node is connected by a serial kinematic 

chain which consists of n segmerits from the root point by 11 nodes. The Cartesian 

position of the end node can be espressed as a multiplicative function of matrices 

fro111 the parent node coordinate frame to the current node frame. This consists of 

a translation to the origin of the joint followed by a rotation in the displaced frame 

lo achicvc the position in  the world coordinate system. 

Starling from the chm.  we car1 find the coordinates of those joints in each class. 

For instance. the elbow point is modeled in a local coordinate system related to 

its yarcnt node - the shoulder point. The position of the shoulder point is derived 



first, following by the positio~l of the elbow point,, wllicll is fou11t1 by ~ r l u l l  iplyi~lg tlw 

matrix relating the elbow to shoulder point alici tllc nlal ris rclat,inp; tlw shou1tic.r 

r . point and chest point. Thus its position in thc world fra~llt- is fourid. 1 hc posiI.io11 

of the wrist point is also derived in this nwtliotl uudtar thtx t n v  struc.tfurib. 

5.4.3 Relation Between the Camera-Centered Coordinate 

System and Its Projection 

A perspective projection is obtained hy cor~catcr~at,ior~ of a pc-rspcc-tiw t ransfor~rla- 

, . 
tion followed by a projection onto some 2-D "viewing" plan(*. I h c  coordin;ttc*s of tlw 

feature joint (s,. y,, t,) in t h e  c-arncra-centcrctl <.ooldirlittc* systcnl and i t s  proj4~l.io11 

(xi, y:) on the z: =O image plane are relatcd by a pcmpc*ctivo pr:~jc*ct.ioll rlli~trix: 

where the parameter f is proportional to tllc~ canwra fwal Iwlgth i d  tlw rrllrrriwr 

k is a scalar factor. Solving this equation, we haw: 



If r is the focal ratio of a camera, and an object is parallel to the image plane 

of the camera at distances d from the center of the camera, then the image of the 

ohject will mcasure r/d in image plane coordinates. 

The length of a segment, l,,, between the starting point (x,, y,, 2,) and ending 

point (2,: y,, 2,) can be expressed as 

The length of the segment lSe is known from knowledge of the human body 

model. The equation can be expressed in terms of k and the solution for (x,, y,, 

.% is obtaii ld after getting a value for k, and the structure of thc human body 

irr the camera-centered coordinate system is recovered. However, the equation 5.8 

expressed in terms of k2 shows that there exist two possible solutions for k. This 

produces feat.urc joint positional ambiguity-Figure 5.10 illustrates these two pos- 

sible solutions: A segment at, ill the image plane may be projected from segment 

All l  or A &  which h a w  the same segment length. Point B1 and B2 have the same 

projection point b. 

5.4.4 Determination of Joint Structure 

In th i s  research, the human  bod^ is considered to be restricted by physical con- 

straints. We apply kinematic constraints t o  reject unmeaningful configurations of 

the human body and t o  select those which fit into the body motion. 

In our recowry process. the first step is to calculate the angle between a feature 

point and its parent joint- To calculate the angle: suppose the projection of the 



1 lmagc Plane 

Figure 5.10: Two Possible Solutions 1:or the I'rojccttd l+aturc I'oi~~t. b 

distance anticipated betweerl the two cormcctetl poi 11ts is Is,. 'rhc p r i o r  11~o<l(4 

knowledge gives the actual lerlgtli of this scgmmt lsI;.. 'l'lle ar~glc bt-t.w<~w t11o 

projected segment and the actlral one is : 

0 = cos- ' [l,,/lss] (5.9) 

This angle is compared to the angle const,raints applic~tl to this point. I f  it c*xt.cvds 

its limitation, then this configuration is rejected. Othcrwise, it is ~);tssc.cl to the rwxt, 

step for further classification. Angle rejection is c*spcciafly hwfic id  t.o thosc. poil~ts 

which have two different angle limitations, s:tch as for the* h a d ,  which  11m a fairly 

large difference between the forward angle corlstrair~t ar~rl thc: I)ackward or~c. I f  the 

angle between the head point and the chest poirr t is over 2.5", thcrn it rrl~lst b t h g  to 

the forward configuration, since no human being col~ld berid back wards t tirough such 

a big angle. The angle cortstrai~:ts also apply to other angle joints, wfrosc: limitations 

were explained before in the Human Body Kinematic Cc~rrstraints section. 

The next step involves distance constraints arid is inlplerncnted by calct~lating 



Zse 

Figure 5.11: Angle Constraints Applied to the Feature Point 



the distances between pairs of featurc points. For instanc-c, to idcntify tllc. two wrist 

points, we may find the distance LIT betwce~~ thc. left ha~id and t,hc right I~atld. For 

a hand-swing movement, it is obvious that thc distance L I ,  incrcwc8s as khcl 11;lnds 

move away from a posture witli arms close to the legs (in tlli. initial frallw) until tht.y 

reach fully extented positions. From there, the distancc L I ,  decrcascs. 'I'llc rllotioti 

rules applied to the human body are used to reject those configilrations which (lo mt. 

I ,  follow the distance function: decreasing, increasing, decreasiug, - - .. I hesc distant-c- 

constraints are applied to thc feature points on tlic two as~iis. 

The above two steps can eliminate many inf(wsihlc body coufigitratio~~s. Al -  

though the mathematical calculation is quitc corriplicatcd, t.11c- rc.su1t.s arcb vcry (4- 

fective in clearing the ambiguities. 

5.4.5 Occluding Parts Interpretation 

A feature is occluded when tiic feature detection procoss car1 riot f i r d  a partit-ular 

r -7 body feature after examining the image plane. 1 hus, it is assurrictl that tlrc* fmt,urc 

region must be hidden behind another part of the body. '11) tlcrive the position of 

these occluded feature points, a major strategy is to us(: thc: 1)ody's visible corri- 

ponents to predict the occIuded feature. Whcn this is doric, the reprt:sc-ntatior~ is 

slightly weakened in terrris of the uniqueness criterion, Imt this is 1,cttc:r t h a n  n o  

estimate. 

Our approach to  finding the position of the occlurled feature pciints is to clcpcncl 

on the n last frames and the neighboring featurc: points tdo get the track of t!ic:w 

points. in a smooth movement, the body produces approxirriately a coristarit nmving 



spccd. From the feature points in the last n frames, we calculate the moving speed 

arid direction. The speed may riot be exactly the same from frame to frame. So, we 

choose its average moving speed over the last three frames as that for the current 

frarrle and use it to estimate the position. 

The estimated position can be checked by the visible body parts. For instance, 

to check the occluded position of one wrist point, we first ca!culate the distance 

between the wrist and elbow points. The distance must satisfy the distance con- 

straints introduced in the human body model. If the constraints are not satisfied, 

the occluded parts need to be estimated again. Second, the distance between the 

left and right wrist points is also calculated. It should follow the change of distance 

function for this movement. The estimated position is only tentative. The results 

are displayed in the 3-D graphics window to be checked. 

Another pair of the visible parts which are related to the occluded part are used 

to predict the reappearance of the occiuded part. For cooperative movement of the 

body, when the visible wrist point is moving backwards, the occluded wrist point 

will likcly be moving in the contrary direction with the same speed as  the visible 

wrist point. The data is the same as the movement towards occlusion. It will appear 

when it moves through that distance behind the body. 

The interpretation of results from a sequence of single view images is presented 

in the next chapter: Display and Discussion of Results. 



Chapter 6 

Display and Discussions of 

Results 

In this chapter, we describe how the  results arc: disptaycd using the! IIOC)IBS 3-11 

software package on t he  Sun Sparcstatiorl. Sorne of the cxpc:rirncv~tal rctsults wlr ich 

were obtained using the system are discussed. 

6.1 Display of the Recovered 3-D Structure of 

the Human Body 

To evaluate the recovery system, it is necessary to view the: physical realization of 

the final results. In this project, the evaluation of the recclvery of thc 3-1) structure: 

of the human body is fulfilled by displaying the stick figure representatirm in a 3-D 

graphics window and checking whether t h e  body posture matches that in thc inpr~t 



irrragw. 1'r;r: rrquirc that thr: display i;mcticl~ in the graphics window: 

ta j  i,t- a f A  to  rotate the to r l ic~  for viev; from different directions; 

{ b) have inttmct ive  cmt  rok.  

Il001'S, whir-h provirlcrs t h r  t c d s  fur modifying, querying, and displaying graph- 

i c ,  III  ttlrtx dirnrwkas o n  t l i e  S m  Sparcstation, is employed in our system. 

6.1.1 HOOPS Graphics Software Package 

11001'S is a datirbasv crirnted software package which stores information about geo- 

1 -  lnvtric prilnitivcs, cameras. :~ghts, rendcring and modeling attributes. The database 

is orgar~izetl as a t ree-shaped I~ierarclry, whcre related elements are grouped together 

in scgirm~ts which are t h e  units of organization within the database. Each segment 

may also cor~tair~ other segments. hence the resulting tree structure. 

In the display impie~nentation~ segments consisting of two connecting feature 

p i n t s  arc transformed as the tree-elements w-hile the chest feature point acts as the 

root of the trce structure. The data is easy to  organize because of the hierarchical 

structure of the bodies. 

6.l.2 Display of Results 

The display consists of tf~rec parts. Om the right-hand side of the display area there 

arc. a n u t r k r  of but ions. wilicii can be seiecied by using the mouse to control and 

to wlm-t various barf? posture. On the left is the stage window where the human 

bxfy is riispla_ve=d in spacc. The stage view can be rotated. On the top of the 
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window, there are three other wirrdows wl~ ic l~  clisplay t,trc= Iwly ~ N ~ S ~ I I ~ C *  frort~ t . I ~ t w  

fixed orthogonal directims. 

A 3-D humari body is first displayed in a natural 11t.11triti starrdir~g jrositiim. 'l'lrr. 

interactive 3-I) workstation allows thc vittwer 1,o s~*l(*s-t tlw jiosturcu o f  tlw I)c)cip 

corresponding to  the different frar~ws and to rotat i ,  it arlit iariiv. Y'hv i l w r  ran rr~ovc. 

back and forth in the xquencc of ~ I I I I I ~ ~ I  hodp rnc~vc*rr9crr1t.s. 



6.2 Experimental Results 

I n  this section, we introduce two of the experiment results obtained in the project. 

Thr: imagis ar~il their corresponding displays arc shown in appendices B and C. 

Kxarrrplc: 1 : Gestural )lotion 

l'hc first t:xarnple .st.yucncr3 consists of 6 frames of symmetric arm motions, roughly 

in the form of a "applauding arm swingn. There is no vertical body motion in 

this S C C ~ C ~ C C .  Appe~dix  13 shows the input and output of the system for each 

frame in thc sqrwnce. The left column shows the actual input images. Geometric 

spnhols are attached 8 0  the feature point positions of the body model. There are 

no ovrrlapping rrgions for thc feature positions in this image sequence. 

From a priori knowledge of t~he h m a n  body movement, it is not difficult t o  trace 

the feature points and f hc arrd~igtlous positions are cleared by checking the angular 

limitations. ?'he angle constraints from the motion rule forbid the arms to  swing 

backwards. The recovered structr~re of the human body for each frame is shown in 

the right column. The d i s p l z ~  winclow illustrates the recovery system functions. 

Fxamplc 2: Arm Swing Slovenlent 

'ftw wcond test contains a set of motion pictures where thc right hand moves in 

front of the M y  from the initial posture. while the left, hand moves behind the body 

twnding the arm a t  t h e  cllmw. \Vhen t hc arms reach the top position, they swing 

hackwards. The depth functicln of the feature points on the  right arm increases 

when thc ann  rnavcs towards the camera. The depth function of the left am de- 

crca-ws since the anrr m o n s  in the contrary direction. This motion rule and its 

cvrrcspanding distance constraints are applied to  the inference process. The system 



correctly tracks the  visible feat u r t  points on t lit. arm from !hc k ~ i o w I ~ ~ I g ( *  of t lit* ilrlll 

movement. T h e  position of the  occluded elbow point on tlic right. a rm is c s t i ~ ~ m t c d  

from the  last 3 frames. For instance. t o  get tht- position of the  wrist point in f ra i~w 

6, we calculate the  movement speed and dirc~t.ion of that fcat.urc point. from frar~w 

3 t o  5. T h e  tentative explanation of the  occlurlccl point c u n ~ c s  from this inforn~alion 

and the  motion rule of this arm. Alt Ilough this data is I~arcl to verify s i ~ ~ r c a  tllcy arcs 

not recorded during taking the  espcrimc~it  , t I I P  display in tht. 3- I) graphics w i d o w  

shows tha t  the  results arc reasonable. The systim also prctlic-ts thc* appt8ararmh of 

the  occluded points when t h ~ y  swing hack frorn the Iwhiritl of t l ~ c  hocly. 

Discussion of Results 

T h e  goal of this model-hasel visior~ sptcrr l  is to cJc~rrio~~stratt- the* al~i l i ty ti, rep( ovvr 

t h e  3-D structure of the  Irurr!arr body fro111 a stBc1rlcmc-cb of sir~glc- vicew i111agc.s. 'I ' l lc* 

recovery process includes techniques of iriiagc prc.prowssi r~g, fc'i~tll rv I J O ~ I I  t ~~rc-clic-t icm 

and identification. and the  derivation of the third di~ncwsic~rl I J ~ L S ~ ~  o r 1  t . 1 ~ -  r ~ i o e l c ~ l  arid 

kinematic constraints. 



Example 2 has: more complex motion: the arms are hidden behind the human 

body in somc frames- nu t  it as handled by the same basic paradigm: the visible 

fcatiirc points were matched with corresponding model features, while the hidden 

joints wcw eitirnatcrl from the last n frames. The depth information was acquired 

t,y rcjccting the infeasible body postures. The appearance of the occluded feature 

poi~lts on the hidden arm was predicted according to  the motion rule applied to  the 

other arm. 

'I'lle cxamplw illr~strate tlw ability of the system to match the feature model and 

the extracted image fcatnrcs. IIowever. the task is simplified because the image fea- 

tt~rc-s arc gcornctric shapc.s $aced on the human model and there is prior knowledge 

of t l ~ c  rnovc~ncnt. Even for occluded body features, a less precise identification is 

pss ihlc  tjy using motion rules calculated over a number of frames. Although these 

testing squcnces arc* simplc. t h y  do illustrate that the motion can be tracked with- 

out cornplctely cxaminir~g cach image. Sote that in the analysis we do not require 

thc- diflert*ncc of two conwcutivt. input images, we do  nut produce a picture of the 

rnotir4 and subtract it from an imagc frame, and we do nut perform any others ex- 

perrsiw irnagt* prot-msing tc=chaiqucs t o  get t be parameters of movement, The results 

can be ol~taincd by looking at only a haction of the pixels in each image frame. In 

this system im~>lernerttatior~. some prior factors are considered. These include: 

[ I )  ;I hr~rnan body rnalc-1 and its kinematic constraints: this is the basis for this 

Inlplcnwritatim of t hc. system. 

( 2 )  .A high image sarnpling rate so that there is only small motion between 

conscruti~-c frames. This is of cspcrcial benefit t o  the  prediction and identification 

of t h e  fcatwc- points. 



(3) Good initial guesses for feature point position: tllv initial gl~cwc*s lravca it Ijig 

impact on the feature joint search and itorativc* solutions. A gcjc~cl irlitial gilcbss is 

often required for convergence of this met hod. 

(4) Efficient use of motion i ~ h m a t i o n :  rnotioll p;tra~~wt,c.rs arc. c-st,i~~~at,cd fro111 

more than two frames. 

(1) Although the limited amourlt of data makes it diffic-rllt to verify tlw ac:c.ilracy, 

i t  still can be checked by viewing the results in thc 3-D graphics window. 



Figure 6.2 illustrates the relation between the swing angle of the upper arm and 

its depth information. Assume the elbow is swinging backwards and the angle 0 is 

hetwc:en the shedder-elbow segment and the y axis. The length of the segment is 

I , , .  The depth Xelh,, can be expressed by: 

a r~d  t hcrcforc 

The equatiorl above shows that when 0 is small, the projection on the image 

planc )'Llbow clmlges slowly, while the depth ZeIb,, changes faster. A t  this time, 

thc* scgrr~crlt is almost parallel to thc image plane x-y- A totally cont.rary situation 

cxists when the 0 is largc, as the segment is nearly perpendicular to  the image 

planc. This situatio~t requires highly accurate identification of the feature points on 

t h c b  image plane. For rxample, an one pixel error when 0 = 0" might produce an error 

J 2 i I , ,  - I zz 1 .-11 x I,, to depth Z,lb,, whereas the same one pixel error when 0 
- 

= !lo0 p r o d r ~ m  an error v$e - 1 = I,,.  This shows that the error in identifying the 

feat ure points produces larger crror when 0 is small than that when 0 is large. 

I'hc irrlagc acquisition process is a possible source of error which gives image 

noiw and blws image features- Thus the s ~ s t e m  produces mismatches between 

the image features and feature models and generates errors in locating the feature 

jmints. This effects the recovery of the third dimension of the human body. 



(2) Speed is another factor to be considtwd i n  t tw sys tc .~~~.  Iii~agc proccssiq, 

which includes feature point prediction. searct~iiig and n~atchii~g, a ~ d  s c k t i ~ ~ g   fro^^^ 

r ,  a set of feature descriptions, is the most costly to cornputc. 1 he  graphics clisplir~. 

also requires some processing, but SO% of tllc processirig for each franrc* is takcv rrp 

by the low level image processing tasks. 

To speed up the processing, parallel tccluliques c-orilcl 1w ~isctl for tlre tlic i~~~agcn 

processing. Note that if more feature points arc atftletf to the body 111ocIc4, r~~orc* 

geometrical feattsres are needed to attach to thc model, a d  fcwturcb nrat'cllir~g will  Iw 

r 1 more difficult and will require proportionately inorcn tiriw. 1 Iw tradcoff, of course, 

is that large images take longer to process. 



Chapter 7 

Conclusions and Directions For 

Future Work 

'I'ht- principal objective of this thesis was to implement a vision system to recover I!... 

3-D structure of the human body from a scquence of single view 2-D images. The 

expcrimtwts iilr~stratcd that thc system. which uses a high-level prediction process 

ard a low-lwei featurc point identification driven by a well-defined human body 

il~odel. was able to track thc feature points attached to  the human body in each 

imagr- frame ar~rl ~ i v c  a 3-11 r.splanation to the body movement. 

1301 11 low-lt~el a11c1 high-lcvel processes are important in vision. Good data 

sat hc*rctf from the low-levc-l is a critical prerequisite to  reasonable performance at  

t he  higlier Irvrls. Image noise removal and geometric line feature model matching 

arc iniroduccd to iden! ifx !he feature points attached to the human body. However, 

without the hrlnran inodcl and prediction results from the high-level, this bottom-up 



searching would not be able to gct an ~(ficicnt ~liatcliiiig. 

One of the major bottlcliccks for ~wdtd-l)asctl \.isic)~i is i l l  t , l i ( ~  acq~iisitiol~ and 

representation of the models. In this projcct a si~ilplc. st it-k figrlrcb is ~iscd as ii 

model for the 3-D human body. Iinowlctigc ahout tlic h i i 1 1 1 a 1 i  l d y ,  its kii~cwlidic. 

constraints and attached gcotnctric fcaturcs arcb cricotlctl i ~ r  t lrc sttick ligt~rc* n d c l  

representation. The analysis of the kinen~atic corlstrai nts prcvlicts ari arc8it w l~c-rcb 

the feature points shouId appear i n  t l i ~  next fra.111~. It \t7ilS i ~ 1 ~ r )  IIS(YI to wjwt tl~t* 

infeasible body positions during the rt~ovcry prowss. 

At this stage, the systc:m has rc'licrd on ktaturct jmirrt. i(I(.lrt.ilic-;ii.if,rl to c l i s t  irlg~rislr 

body parts from one anotllcr. i\ p o s s i k  diffcrrrrit ajiproac-11 would c-rrljrloy a rrlorc: 

robust and reliable human tmdy n ~ d c i  t)axd on thc* 3-1) sllapci. c t f  the 1,ocly arrd 

r *  using all the motion krro~ledge. The rnatcl~ing bctwccn the irr~aycts arid tliv r~loclcl 

would be based on the shape of the body rather tharr sc,tnr: selected points. ' 1 ' 1 1 ~  



systern would use reasoning to explain the body position with the aid of motion 

knriwlcdge and other kinematic constraints. 



Appendix A 

List of Kinematic Constraints 

Table A-1 illustrates the gcncral ar~glc: limitatioris at cactr arlglc joirits. 'I'al)It* 11-2 

lists the lengths of rigid segments of the h~irriar~ body rrrorld cwl l~ l~Sc .d  i l l  t.liis projc*c.l. 



Flexion -- 
0- 180 

0- 90 

0- 160 

0- 130 

0- 7.5 

0-4.5 
- ---- 

Extension 

0--50 

0-40 

0 

0 

0-30 

0-.5.5 

Abduction Adduction Rotation Bending 

'I'al)lc A.  1: Angle Constraints a t  Joints 



Rigid Segrnelit 

Chest -to-Head 

Chest-to-Left Shouldc~ 

Chesb-to-Right Sl~oulcler 

Chcst-to-Left lIip 

Chest-to-Right Ilip 

Left Elhow-to-Lcft Shoulder 

Left Elhow-to-Left Wrist 

Left Shoulder-t o-Right Slioulder 

Right Elbow-to- Right Shoulder 

Right Elbow-to-Right CVrist 

Left Knee-to-Left IIip 

Left Knee-to-Left Ankle 

Left Hip-to-Right Hip 

Right Knee-to Right Hip 

Right Knee- to-Right AII kle 

Table A.3: Lengths of rigid Segments of a f11~11~itn Hody 



Appendix B 

Experiment 1: Gestural Motion 

The following contains a sequence of 6 human body motion picture-s. Tljc loft C : O ~ I I I I I I I  

is the original input images. The right ones are the output of the rccovcrcd 111111li\.rl 

body structure corresponding to the left one. Both of the h a r i ~ l : ~  art: always i l l  f r m t ,  

of the body. 



rotate ++ 

rotate -- 

quit 





Appendix C 

Experiment 2: Arm Swing 

Movement 

The following has 12 image frames about arms swinging movement. The left column 

is the input pictures. In the images, the right hand moves from the initial posture 

to the front of the body, then back to the initial position. The left hand moves to 

the back of the human body then reappear to the image plane. The right column 

displays the recovered 3-D structure of the humall body. The occluded body parts 

are also displayed. 
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