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ABSTRACT

This thesis presents different systems proposed for speaker-independent isolated-
digit recognition. The systems are based on discrete hidden Markov models (HMM).
Many of the conventional discrete HMM recognition systems use vector quantization
as a data reduction pre-processor. In such a case, vector quantization is often done
with a universal codebook. In this thesis, we propose to replace universal codebooks

by word-specific codebooks.

The motivation to make this change is based on the fact that VQ can do more
than simply quantize the input signal. As a matter of fact, the quantization dis-
tortions computed by word-specific codebooks give a distortion score for each word.
Moreover, the generation of a set of word-specific V() index sequences provides a

more detailed description of the input signal than if a single index sequence is used.

In our system, word-specific VQs are integrated into the framework of an HMM
recognizer. The VQ stage and the HMM stage are connected together with the
intention to capitalize on the word-specific VQ distortion scores and index sequences.
The results show that word-specific codebooks have some advantages over universal

codebooks for isolated-digit recogi.ition systems based on discrete HMMs.
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CHAPTER 1

INTRODUCTION

Speech recognition research has evolved considerably in the last few years, but
progress is still needed if reliable speech recogrizers are to be developed. In order
to find applicable solutions, the problem of recognition is often reduced by selecting
specific application tasks. In other words, the systems are developed within fixed
recognition constraints. For this thesis, the goal is to build a speaker-independent

isolated-digit recognizer.

The problem of isolated-digit recognition has been discussed frequently. A main
stream 1n the current research is oriented toward the implementation of hidden
Markov models {HMM). The interest for HMMs has been encouraged by the suc-
cess obtained from HMM-based systems [2] [26]. One of the most successful HMM
recognizers is the SPHINX system {12]. In this thesis, the basic techniques of the

SPHINX system are applied and adapted to our recognition conditions.

The SPHINX system uses a VQ pre-processor to reduce the amount of data to



be processed through the HMMs. However, we will show that VQ can do more than
simply quantize a signal for HMM recognition. Information can be extracted from
vector quantization and can be used directly for recognition. Different systems will
be tested to find out if additional VQ information can improve the performance of

HMDM-based recognizers.

Since VQ information will be used for recognition, we will focus on the V() stage.
Many characteristics of a vector quantizer can be modified. During this rescarch, |
studied how the final results of an isolated-word VQ-HMM recognizer are influenced
by the following parameters: the size of the codebooks, the nuniber of codebooks
(or VQ sequences), and the individual codebook training set. Alsc, we will examine
how the VQ stage can be connected advantageously to the HMM stage in order to

make full use of the informations provided by the V() stage.

In the next chapter, a general overview of speech recognition is presented to
clarify the state of the current research and to place VQ and HMM techniques in
their proper context. A system overview will then be presented with the recognition
process being divided into three stages: feature extraction, vector quantization,
and hidden Markov models. Chapter 3, 4, and 5 explain the basic approach of
each processing stage and present the adaptation of these techuiques to our specific

recognition tasks.

Chapter 6 presents ten different versions of VQ-HMM isolated-digit recogniz-
ers. Chapter 7 presents the experimental results obtained by the systems proposed
in Chapter 6. Some conclusions are drawn from every recognizer’s performances.

Finally, a general conclusion closes the discussion.



CHAPTER 2

SPEECH RECOGNITION
OVERVIEW

2.1 Constraints in speech recognition

The ultimate goal of speech recognition is to build a recognizer working under any
possible conditions, without any restrictions. However, the diversity of speech signals
and words is so wide that some constraints need to be assumed. Therefore, it is first
necessary to define the constraints of the recognizer. The possible constraints are :

1) speaker dependence, 2) connectivity between adjacent words, 3} vocabulary size.

1. Speaker-dependence or speaker-independence

A speaker-dependent recognizer is a system trained to be used by a limited
number of speakers. A speaker-independent system, however, is capable of

recognizing speech from any new speaker. Since speaker-independence implies

3



a much wider variety of speakers, it is a significantiy more difficult task than
speaker-dependent recognition. The system considered in this thesis is speaker-

independent.

. Isolated words or continuous speech

Ideally, a speech recognition system should recognize continuous speech in the
form of normal conversation, without any pauses enforced between the words.
However, continucus speech recognition brings many prcblems for three main

reasons.

First of all, word boundaries in continuous speech are difficult to define and to
locate. Comnsequently, searching becomes more complex and recognition less
accurate than in the isclated-word case. A second difficulty that arises for
continuous speech is the presence of co-articulatory effects. Since the articu-
lators of the vocal tract don’t move instantaneously from one position to the
other, the phonemes of a utterance can be strongly influenced by neighboring
phonemes. For continuous speech recognition, the co-articulatory effects are
very hard to predict. Thirdly, short words such as articles, prepositions, pro-
nouns, or short verbs, are often shortened, skipped, distorted or simply poorly

articulated.

Continuous speech recognition is thus a difficuit problem and viable imple-
mentations require high computational complexity. The difficuities associated
to continuous speech require solutions going beyond the scope of this the-
sis. Therefore, we will focus on isolated-word recognition where cach word
is isolated by a definite pause. Word-spotting will not be necessary and the

problems of co-articulatory effects will be easier to handle since the number



of possible combination of neighboring phonemes is reduced. However, many

problems remain, especially if the input signal contains noise.

3. Vocabulary size

Generally, small vocabularies are easier to recognize than large ones because
there is less possible confusion and the complexity of search is lower. With
small vocabularies, each word can be modeled separately as a distinct refer-
ence. But for large vocabularies (1000 words and more), it is normally not
possible to train a separate model for each word because of the limits im-
posed for training time and storage space. Instead of using word models, it
is possible to create subword models. Subword units can be phonemes, broad
phonetic categories, diphones, demi-syllabies, syllables, etc. For large vocab-
ularies, there is normally much less subword units than words. In the English
language, there are up to 100000 words but only about 1000 demi-syllables,
2500 diphones , 20000 syllables and less than 100 phonemes [12]. The sub-
word units can eventually be combined at higher levels to form the desired

utterances.

The choice of subword units is critical and can have a determining influence
on the performance. The choice of unit is determined by the number of units
present in the vocabulary and on the system’s capability to discriminate be-
tween the descriptive features of the different units. The units must also
be insensitive enough to context. Finally, the hierarchical structure through
which sequences of units are combined into words must be general enough to

make the reconstruction of utterances possible.



The vocabulary used in this thesis is limited to the single digits. Seo, with
such a small vocabulary, it is possible to implement word models instead of

subword models.

Once the constraiuts are established, the speech recognition systein has to be
designed. The next section describes the most generally used speech recognition

techniques.

2.2 Literature review

2.2.1 Speech recognition model

Speech recognition is a general problem that leads to many different proposed solu-
tions and systems. Although the existing recognizers may use very different tech-
niques, they are built following general rules defined by pattern-recognition models.
Fig. 2.1 shows a pattern-recognition model used for isolated-word recoguition [28].
This section, as well as this thesis, is limited to the problem of isolated-word recog-
nition. Nevertheless, the basic techniques developed for isolated-word recognition

are often similar to those which are applied for continuous speech recognition.

The three basic stages of the model shown in Fig. 2.1 are:

1. feature extraction;
2. pattern similarity measurement;

3. decision rule.
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Figure 2.1: Block diagram of a pattern-recognition model

The input to the system is the speech waveform itself. The signal is digitized and
transformed into feature parameters which should preserve the relevant information
of the input signal. Many different features can be extracted and the choice available
depends on the model to be implemented [28]. The computation time, the storage
space and the ease of implementation also are important factors to consider when

sets of features are chosen.

Once the input features have been processed, they are compared to reference
patterns which are separated into classes. For example, different words or different
phonemes could be separate classes. Different classes can also be created for different
features. Training procedures form reference patterns for each class by averaging
many features of a same class. For recognition, the system identifies the reference

patterns that match the input features the most closely.

The three steps of the pattern-recognition model are interdependent. The pat-
tern similarity measurement depends on the feature extracted. The decision rule is
also determined by the set of distortion scores obtained from the pattern similarity

block. Consequently, the design of a speech recognizer is not straightforward, all



design decisions are related to each other and have an impact on the final system

performance.

2.2.2 Feature measurement

Feature measurement is basically a data reduction process whereby a large number
of data points (samples of the speech waveform) are transformed into a smaller set of
features which are relevant in the sense that they contain the important properties
of the acoustic waveform. It would be computationally costly to use directly the
speech samples to make pattern similarity measurements. In this section, the main

features used for speech recognition are presented.

Amplitude or power versus time

The main reason to use power as a feature is to differcntiate between silence and
speech or between voiced and voiceless sounds. It can also be used to detect word
endpoint informaticn. Zero-crossing information can be used as a complement to
energy to identify the fricatives and sibilants [23]. The technique used to calculate

power will be described in the next chapter.

Filter bank analysis

Filter-bank analysis [27] provides a computationally cheap and fast way to extract
spectral information of a signal. The basic idea is to pass the specch signal through

different bandpass filters. The filters are put on parallel branches and extract differ-



ent adjacent band frequencies. The bank of filters covers normally the frequencies
from 100Hz to 3000Hz or 8000Hz. The number of filters can vary from about 5
to as many as 32, and the filter spacing is generally linear until about 1000Hz and
logarithmic beyond 1000Hz. Nonuniform spacing of the filters is used to exploit the

car’s decreasing frequency resolution with increasing frequency.

The output of each bandpass filter is usually passed through a non-linear element
and a low-pass filter to give a signal which is proportional to the energy of the speech
signal in the band. The resulting signal coming out of each branch is proportional to
the energy of the input signal in that particular band. The outputs of the branches

are used as the features for the recognizer.

Fourier analysis

Fourier representation has traditionally played a major role in speech processing.
Fourier representations give good descriptions of the spectrum of a signal. Standard
Fourier representations are usually appropriate for periodic, or stationary random
signals. Speech is a non-stationary signal. However, temporal properties such as
energy and correlation are usually assumed to be fixed over short time intervals
(10 ms to 30 ms). Therefore, it is possible to do Fourier analysis by applying the

short-time Fourier transform [27] on such intervals.

LPC parameters

The linear predictive coding (LPC) technique [18] [1] has been found to be a robust,

reliable and accurate method to estimate the characteristics of linear, time varying



systems. The speech production can be modeled as the output of a linear, time
varying system excited by periodic puises or random noise. Consequently, L.PC is
widely used for the purpose of speech recognition. A detailed description of LPC

analysis will be done in Section 3.7.

Cepstrum

A voice signal has a rapidly-varying component (vocal cord excitation) and a slowly-
varying component (vocal tract changing). The magnitude spectrum | X(w)|, X(w)
being the Fourier transform of the sigi:al, gives us information about the distribution
over the frequencies at an instant t. However, it is not possible to extraet, directly
from |X(w)|, information about the rapidly and slowly varying components of the

signal.

However, this task can be accomplished by calculating the cepstrum of the sig-
nal [21] which is defined as F~!(log|X(w)|). The cepstrum is an homomorphic
deconvolution [27] of the input signal. As it will be seen in the LPC analysis ( 3.7),
voiced speech can be modeled as a train of pulses (vocal cord excitation) passed
through a linear filter (vocal tract representation). Therelore, the speech signal can
be seen as a result of a convolution. The cepstrum transforms first this convolu-
tion into a multiplication by using the Fourier transform and finally reduces the
signal to an addition by applying a logarithm on the spectrum. As a result, the
spectral envelope and the fundamental period can be separated by homomorphic

deconvolution.

10



Formants

The vocal tract, like any other acoustic tube, has natural frequencies which are a
function of its shape. These natural resonances are called formants and are the most
important acoustical characteristics of the vocal tract. Formants represent listener’s
primary source of information about the position of the speaker’s vocal organs and
they are identified by number in order of increasing frequency: Fy, F3, etc. [23] In

speech recognition systems, at least the three first formants are considered.

Informations about formants is contained in the spectral envelope. Hence, all
formant estimators either implicitly or explicitly examine the spectrum envelcpe. In

many procedures, the maxima of the enveiope are considered to be the formants.

Warping scales

Spectral features can be warped in frequency in order to simulate the auditory char-
acteristics of the human ear. The resolution of the human ear at high frequencies
is less sharp than at low frequencies. Moreover, formant bandwidth increases with
frequency. Many scales have been proposed to simulate this aspect of hearing per-

ception.

The Bark scale [8] corresponds to the frequency scale on the basilar of the ear’s

cochlea. It is defined as:

B = 13 arctan(0.76f) + 3.5 a,rctan(,-rf-ls-)2 (2.1)

at

where B and f represent the Bark scale and frequency in KHz.

The Mel scale [8] corresponds to the auditory sensation of tone height. The scale

11



1s given by:

Mel =1000log,(1 + f) (2.

[\J
o
e

The bilinear transform [12] warps the linear axis using an all-pass filter. This
scale is comparable to the Bark scale or the Mel scale when the filter element « takes

a value between 0.4 and 0.8. The filter is defined as:

-1
-1 (27! —a) : .
= — (-1 1 2.3
Whew = w+2ta.n"1(—a—s—l-l-]—€——) (2.4)
'l —acosw

where w 1s the sampling frequency expressed by the normalized angular frequency,
Wrew 18 the converted frequency, and «a is the frequency warping parameter. A posi-
tive a converts the frequency axis into a low-fiequency weighted scale by lengthening

the low-frequency axis and shortening the pre-frequency axis.

2.2.3 Pattern similarity measurement and decision rule

Once the features of the input signal are extracted, they are matched to the reference
patterns. A strategy is elaborated to measure the similarity between the ispui and

the reference patterns.

Three classes of recognition systems are presented in this scction: the template

matching, the probabilistic modeling and the knowledge-based approach.

12
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Figure 2.2: Time warping process (a) and path constraints area (

Template matching

The template matching method is a decision making process matching the input
signal to each of a set of templates. In many isolated-word recognition syvstems,
the reference patterns are calculated from features recorded over the length of the
whole word rather than at particular points; such patterns are called templates. For
example, in vector quantization, the templates are represented by codevectors. We
will cover vector quantization in Chapter 4. In this section, the discussion will be

restricted to dynamic time warping alignment (DTW).

Dynamic time warping solves the problem of aligning the input feature signals
and the feature templates when the phonetic events are not consistent in time and
when the durations are different. Time warping is the process through which the
time axis of the input is nonuniformly distorted, or warped, to align it with the time

axis of the reference pattern. This process is illustrated in Fig. 2.2(a) [23].

13



The best time alignment path is a curve relating the ; time axis

ot

1 the reference

pattern to the 7 axis of the input signal. A distance measure is calculated when the

signals are compared at the position defined by the cuordinate of the points. The

distortion measure is accumulated along the points of the paths. The path that

generates the smallest distortion defines the best warping. Siuce there is a large

number of poszible paths to test, constraints are often imposed to limii the sunber

of computations:

(W]

Several distance measures exist and depend on the

. Endpoint corstraints on the path.

Normalilv the path starts at (1,1) and ends at the top right comer (M,N) of

the grid.

. Local path constraints.

The possible types of motions (e.g., directions, slopes) from one point to an-

other ar= restricted.

Global path constraints.

The path can fall only in a chosen area of the (i,j) plan. The shadowed surface
of Fig. 2.2{b) is a possible global path region. The parallclogram imnooses

reasonable limits t~ the search.

. Distance measure.

The distance measure is used to search the optimal paths aud to clirninate the

paths with high accumulated distortions.

1d ist a feature sets. A list of the

most frequently used distance measures follows:
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The Fuclidearn distance is defined as:
K
dlai,by) = 3 (ai(k) = by(k))’ (2.5)

where a- and b; are the signals at 7 and j on the respective time axis. Euclidean
distance will be the distance measurement that will be used in the process of

vector quantization for this thesis.

The covariance weighting is used to compensate for correlation between fea-
tures and it tends to give equal weight to all features for the overall distance

calculation. The covariance weighting measure is defined by:
' — (a: N1 . AT
d(a;, b;) = (a; — bj)77" (a; — bj) (2.6)
1 ~!is the inv /ari trix of the feat
where 77° 1s the inverse covariance matrix of the features.

The log spectras distance can be calculated with the following formula:
d(ai,by) = [ llog(ai(e’)) — log(b,(e™*))]"d 2.7)

The integral covers a chosen frequency range and ¢ is an even integer that

makes positive the power of the difference.

The Itakura’s log likelibood measure proved to be efficient to measure distances

between LPC derived features. The equation is:

a;Ral
b; RbT

dfas,b;) = log[ T =x ] (2.8)

where a; and b; are the LPC coefficients of the signals and R is the autocor-

relation matrix of the input signal.



Even under the constraints (1 to 4) mentioned previously, the number of possible
paths to evaluate remains prohibitive. Dynamic programming for time warping
(Dynamic time warping) solves that problem and achicves reasonable computational
complexity. This procedure is based on the fact that the best path from (1,1) to
any given point is independent of what happens beyond that point. Conscquently,

the accumulated distance D, is:
Da(i,7) = d(ai, b)) + min(Dai ~ 1,4) (2.9)
where d is the local distance between feature sets a; and b;.

With dynamic programming, the distance for every possible next steps is cal-
culated for each path. At each point, the best predecessor (the least cost path) is
chosen. A search can lead to many ramifications, but the number of ran:fications
is limited by the set of constraints. A maximum permissible accumulat »d distortion
Dy can also be imposed. Once the point (M,N) is reached, backtracking is done to

retrieve the best path.

DTW has shown very good recognition rate [34] but it still requires a fair amount
of computations. Consequently, other methods often replace DTW for speech recog-

nition applications.

Hidden Markov Modeling

Hidden Markov modeling (HMM) is a recognition strategy based on searching through
stochastic models. HMM offers comparable performances to those of D'T'W in many
applications at a fraction (up to 17 times less [29]) of the computational cost. HMM

is the basic stage of the speech recognizer proposed in this thesis and a complete
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coverage of this technique is done in Chapter 5.

Knowledge-based systems

To understand conversations, it is known that humans make use of their extensive
knowledge of speech and their ability to predict the next words. Taking this into
account, we can assume that recognition is not only done by using human percep-
tual and analytical powers but also by using a knowledge of the language. As a
result, knowledge-based recognition systems were developed using the knowledge

that humans have about the language.

The ARPA research agency was set up to encourage research for knowledge-
based systems and some encouraging results have been obtained [17] but not yet

comparable to those obtained with DTW or HMM.

2.3 Proposed isolated-digit speech recognizer

The discussion throughout this chapter concentrated on the general aspects of speech
recognition systems. Different techniques have been presented to give an idea of past
and current research. We now focus on the systems that are to be proposed in this

thesis.

Our recognizers are based on hidden Markov modeling which is one of the most
popular recognition methods of the last few years. The baseline speech recognizer
developed in this project is based on approaches developed for SPHINX [12], one

of the most successful recent recognizers. However, many modifications were done
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Figure 2.3: Schematic diagram of the proposed recognizer.

Recog.
word

since our recognition requirements are different from the objectives of the SPHINX

system and we tried to improve recognition performance for the particular task of

small-dictionary isolated word recognition.

The proposed recognizer can be subdivided into three stages: feature extraction,

vector quantization and hidden Markov models. Fig. 2.3 shows the block diagram of

the system and the function of each stage. The three processing stages are presented

separately in the next three chapters.
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CHAPTER 3

FEATURE EXTRACTION

The first stage of the proposed speech recognition system is the feature extraction
stage. The input signal is digitized and compressed into three feature vectors: com-
bined energy and differenced energy; cepstrum coefficients; and differenced cepstrum
coefficients. These features are commonly used in speech recognition [12], cepstrum
notably performs well because it gives directly an accurate smoothed estimate of
the spectral envelope of the signal. LPC-derived cepstrum was preferred to other
LPC-based features because it has shown superior performance for speech recogni-
tion [30] [37]. This chapter describes how the features are calculated from the speech

signal. A block diagram of the feature extraction process is shown in Fig. 3.1.
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Figure 3.1: Block diagram of the feature extraction stage.

3.1 Digitization

Two databases were used to conduct the experiments in this thesis. The first
database was recorded in a studio and the second database was recorded over tele-

phone lines.

The tokens (a token is a speech segment) of the studio database were first filtered
by an anti-alias filter with a cutoff frequency at around 8 KHz. The speech was then
sampled at a rate of 32 KHz with 12 quantization bits. A digital filter with a 3.4
KHz cutoff was applied to the sampled speech. Finally, the digital signal was down

sampled to 8 KHz by extracting one sample at every 4 samples.

The telephone database was filtered through an anti-alias filter with a cutoff
frequency at 4.8 KHz. The sampling frequency was set to 10 KHz and the signal

was quantized on 12 bits.
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3.2 Pre-emphasis

To reduce the possibility of computational instabilities due to finite precision arith-
metic, the signal for each utterance is spectrally flattened by pre-emphasis. The

filter used for pre-emphasis is :

H(z)=1-0.952"" 3.1
7

3.3 Block into frames

The digital signal is blocked into frames of 26 ms. For the studio database, the
frames contain 160 samples and for the telephone database, the frames contain 200

samples. In both cases, the consecutive frames are overlapped by 10 ms.

3.4 Hamming window

To reduce spectral spreading due to the Gibbs phenomenon, each frame is multiplied
by a Hamming window. The multiplication of the speeck wave by the window
function gradually attenuates the amplitude at both ends of the extraction interval
to prevent an abrupt change at the endpoints. The equation for a Hamming window
18

w(n) = 0.54 — 0.46cos(2xn/(N — 1)) (3.2)
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3.5 Energy

We incorporate energy as a feature in our recognition system. Energy is mainly used
because it facilitates the separation of speech from silence. Energy can simply be

computed from the waveform with:

M

E; = log(}_ z}) (3.3)

i=1
where E; is the energy for frame t, which has M discrete time samples iu it, nameiy

L1, T2, TM.

The absolute value of the energy can be used to detect silence by fixing an cnergy
threshold under which the signal is considered to be silent. However, the absolute
energy is not a reliable source of information in speech recognition because the voice
loudness for two speakers may be quite different. Consequently, the input tokens
need to be normalized. Normalization is done by subtracting the peak energy value

of a token from the energy of all the other frames of the token:
Enorm =k~ Ema:c (34)

E, is the energy value for frame t and E,,,. is the overall maximum frame cnergy

for the token considered.

Normalization cannot be applied without any consideration on the nature of the
token (the token can be a word or a phoneme). The normalization of a phoneme is
not comparable to the normalization of a word. For example, the normalized energy
for a low energy phoneme within a word (using the peak encrgy of the word) may
give much lower normalized values than if this low energy segment was normalized as

a phoneme (using the phoneme’s peak energy). Therefore, it would be meaningless
g p gy ; g

22



to compare normalized energy values of an input word if the energy values of the

reference templates have been normalized from the peak energy of phoneme tokens.

A way to solve the above problem is to normalize the energy of a phoneme by

using the peak energy of the word from which that phoneme was segmented.

3.6 Differenced energy

The differenced energy [12] is calculated in order to estimate the slope of the energy
signal at different times, which can be helpful to recognize the plosives since the
slope locates the changes in loudness of the signal. The differenced value for frame

t is obtained by making the difference between the energy of frame t+2 and t-2:

AEt = Et+2 - Et._g (35)

3.7 LPC analysis

Linear predictive coding (LPC) (18] (1] is a basic technique for estimating speech
parameters with linear combinaticns of past speech samples. The LPC coefficients
calculated in the LPC analysis aiso provide accurate estimates used for the mod-
eling of the vocal tract and are thus used as features in our system. The next
paragraph gives a model for speech production. From this model, we will see how

LPC coeflicients can be used to characterize the speech signal.

The production of speech can be modeled as the output of a linear, time-varying

system excited by either periodic pulses (during voiced speech), or random noise
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(during unvoiced speech). The transfer function between the input (excitation) and

the output (speech signal) can be approximated by:

G
(1- ZQL] axz=*)

The speech samples (y;(n)) are then related to the excitation (x;(n)}) by an all-pole

H(z) =

A\

(3.6)

filter model:

M
yi(n) = Y ayi(n — k) + Gay(n) (3.7)

k=1

In this model, G is the gain parameter, the a;’s are the filter coeflicients and M is

the order of the analysis.

On the other hand, from the linear prediction theory, we know that y,(n) can be

predicted with:
M
gi(n) = Z aryi(n — k) (3.8)
k=1

And, the prediction error, e(n), is defined as:

M
e(n) = yi(n) — gi(n) = yiln) = Y awyi(n — k) (3.9)
k=1

From Equation 3.9, it can be seen that the prediction error scquence is the output

of a system whose transfer function is:

M
A(z) =1- Zakz'k (3.10)
k=1

By comparing Equations 3.7 and 3.9, we realize that if ax = ay, then e(n) =
Gzi(n). Thus, the prediction error filter, A(z), will be an inverse filter for the

system, H(z), of Equation 3.6:

H(z) = (3.11)



From these models, it is showed in [27] that the LPC coeflicients {(ay) give
good estimates of the spectral properties of the speech signal. We can see from
Equation 3.9 that the minimization of the prediction error allows to find a set of
ay’s. But, because of the time-varying nature of the speech signals, the predictor
coefficients must be re-estimated for every short segments of the speech signal. If
the signal is divided into frames of length NN, the resulting prediction error for a

Hamming windowed frame is:

N+M+1 M
E; = Z [y:(m) — Z aryi(m — k)J? (3.12)
m=0 k=1

The minimization of the mean-squared error is achieved using the autocorrelation
method [18] [19] because in our system’s conditions (frame size equal to 200 samples
and LPC order 14), it was shown that the autocorrelation method was as good
as the covariance method and superior io the lattice method {27]. The details of
the autocorrelation method are given in [27] and are summarized in the following

equations.

The expression of a short-time autocorrelation function of the interval 0 < m <
N -- 1 is defined with:

N 1N . .
ri(y) = 0 Y vi(m)yi(m + 5) 0<j<M (3.13)
m=0

Given this definition, the minimization of the mean squared error { 3.12) leads

to the following expression:

M
ri(f) = D aeri(li — kl) 1<y<M (3.14)
k=1
This is a system of M equations and M unknowns, oy, ay, - -+, aa, which can be
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expressed in a matrix form as:

- - - — - -

7‘,‘(0) 7“-(1) T'i(l""f _ l) ay "'i(l)
ri(1) r;(0) (M = 2) o ri(2)
ri(2) ri(1) s (M =3) ay | =1 (@)

| (M —1) (M =2) o ri(0) | an || (M)

The M x M matrix is a Toeplitz matrix, i. e. , it is symmetric and all the
elements on any diagonal (from up left to down right) are equal. This matrix can
be efficiently solved with Durbin’s recursive solution [18]. The resulting information
obtained from LPC analysis is a set of M LPC coefficients extracted for cach frame
of the input signal. The order M of the analysis was set to 14. According to [27], we
need 3 or 4 poles to represent the source excitation spectrum and we need one pole
per KHz (of the sampling frequency) to represent the contribution of the vocal tract
to the speech spectrum. In our case, the sampling frequency was 10 KHz (8KHz for

the studio database) and that is why order 14 was chosen for the LPC analysis.

3.8 Cepstrum coefficients

The cepstrum [21] is a function from which it is possible to extract scparately the
spectral envelope of a signal and its fundamental period. As it was defined in Sec-
tion 2.2.2, the cepstrum can be obtained by computing the inverse Fourier transform

of the log Fourier transform of the signal.

The cepstrum can also be evaluated with a method based on the homomor-

phic analysis [8] (see Section 2.2.2). As a result, the cepstrum coefficients can be
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recursively calculated from the LPC coefficients:

C'] = —(q (315)
n-1 m
Cn = —an— . (1- ;—)aan_m (1<n<p) (3.16)
m=1 !
P m
C, = - Z (1- ;)aan_m (p<n) (3.17)
m=]

where a;’s are linear prediction coefficients and C;’s are an LPC cepstrum coeffi-
cients. Like in the case of the SPHINX system [12], the order of the LPC analysis
(p) is fixed to 14 and the dimension of the cepstrum vectors (n) is fixed to 12 co-
~fficients. These dimensions correspond approximately to those generally used for
speech recognition systems. The cepstrum vector dimension must be high enough
to give good estimates of the cepstrum and low enough to avoid cumbersome com-

putations.

3.9 Differenced cepstrum coefficients

Temporal changes in the spectra are believed to play an important role in human
perception. Therefore, differenced coefficients [12] are used to capture the slope of

the temporal changes. The differenced cepstrum coeflicients are calcnlated using:
AC(k) = Ciya(k) — Cio(k) (3.18)
where Cy(k) is the kth element of the cepstrum at frame ¢.

The slope is calculated from a difference of 4 overlapped frames (40 ms like in

the SPHINX system). For the first two frames of a utterance, it is impossible to get
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the term C;_2(k). Consequently, the slope is calculated by doing an extrapolation:

tf;t-(c‘f(k) — Cu (k) ly—t < (3.19)

where t; and ¢; are the ending frame and the beginning fraime of the slope. The

same interpolation is done for the last two differenced coeflicients of the utterance.

3.10 Feature vectors

The resulting features obtained from the process illustrated on Fiz. 3.1 are three
g P g

vectors generated frame by frame:

1. Energy vector of dimension 2. The first element is the differenced energy of a
frame and the second element is the energy itself.

2. Cepstrum coeflicients as a vector of dimension 12.

3. Differenced cepstrum coeflicients as a vector of dimension 12.
p
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CHAPTER 4

VECTOR QUANTIZATION

Vector quantization(V'Q) is a data reductioa technique that maps a real vector onto a
discrete symbol. Vector quantization is used to compress input signal feature vectors
into single indexes. At each frame, 24 feature vector elements are compressed into 3
indexes. Consequently, the amount of computations for the following stages of the
proposed system is greatly reduced. Despite the compression of the information,

vector quantization results in only a little lost in accuracy [30].

The basic concept of vector quantization is schematically depicted in Fig. 4.1. A
vector guantizer is completely described by a codebook and a distortion measure. A
codebook is a finite collection of vectors called codevectors (Cr(k)). Each codevector
has the same dimension as the input vecter (V(k)). The codebook is trained to
represent the distribution of the training vectors, and to minimize the total distortion

of vach training vector against the best matching codevector.

In our system, the codebooks are trained with the LBG algorithm [16]. The
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Figure 4.1: Schematic diagram of a vector quantizer.

LBG algorithm is a clustering algorithrn, used to separate the training data set into
groups, or clusters, of similar data items and each cluster’s centroid is assigned as a

codebook codevector.

The VQ output is the index of the codeword which best matches the input vector.
The VQ can also output a distortion measure (d,.;,) giving the distance between
the input vector and the chosen codevector. As we will see later (Chapter 6), this

distortion measure can be useful for the recognition decision procedure.

The next sections describe in more detail the VQ training procedure and the

method used to generate V() indexes.
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4.1 Codebook training

The goal of a vector quantization training algorithm is to generate a number of
codevectors from a large sample of training vectors. Codebook training selects the
codevectors representing the distribution of the training vectors and minimizing the
total distortion of each training vector against the best matching codevector. In this

section, the distortion criterion and the codebook training algorithm are presented.

4.1.1 Distance measurement

For the training procedure and the quantization process of our VQ stage, the dis-
tortion measure used to calculate the distance between two vectors is the Euclidean
distance. Many speech recognizers, including the SPHINX system [12], use the Eu-
clidean distance measurement because it gives good comparison scores for cepstrum

coefficient vectors [37}. The distortion measure is given by:

dVi, V) = 3 (Vi(m) — Va(m))? (4.1)

m=1

where Vi and V; are the two vectors to be compared.

4.1.2 LBG algorithm

The LBG algorithm {16} is a VQ clustering process splitting consecutively the train-
ing data into 2,4,8,---,28 clusters. The training set is divided into clusters by
iterative refinement. Each training vector is classified into the cluster whose cen-

troid best matches the vector. Once all the training vectors have been classified, a
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new centroid is calculated for each cluster (or cell) by averaging all the vectors of
the cluster. This process is repeated a fixed number of times to reduce the aver-
age distortion (the average distance between the vectors and the centroid) of cach

cluster. The steps of a bit stage are illustrated in the flowchart of Fig. 4.2.

At the beginning of the training algorithm, we need to choose a set of initial
centroids. In the case of the K-means algorithm, the number of initial centroids is
equal to the size of the codebook to be trained. This method limits the training
procedure to one bit-stage, however, some codcvectors may be poorly trained due to
the fact that the values of the initial centroids may not be properly set. In our case,
we avoid this problem by starting with two initial clusters froimn which the initial
centroids are calculated. And, when the centroids of the clusters have converged,
the clusters are split by separating each current centroids into two new centroids.
The old centroids are simply multiplied by pre-determined factors. The iterative
process is then applied to the new centroids. The algorithm ends when the number
of centroids is equal to the number of codevectors needed to be trained for the VQ

codebooks. Each centroid is stored as a codevector.

The LBG algorithm can be summarized by the following steps:

1. Start with two initial codevectors.

2. For each vector in the training set of a codebook, do a full search over ali
available codevectors to find the nearest neighbor (using Eq. 4.1) and then

assign the input to the corresponding cell.

3. Update the centroid for each cell by computing the average of the vectors of

the cell and use the new centroids as the current codevectors.
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4. Repeat 2. and 3. a fixed number (/N) of times.

5. If the current number of codevectors equals L (number of codevectors to train
for the codebook), repeat 2. and 3. for a fixed number (M) of times more,

and then stop. Steps 2. and 3. are repeated M times to be sure that the final

centroids have converged.

6. If the current number of codevectors is inferior to L, initialize codevectors for
the next bit stage by splitting each centroid into two: one equal to the old
centroid, and the other equal to the old centroid multiplied by a factor (in our

case 1.01). Then, go to 2.

For some applications, the size of the codebooks (L) needs to be set to a number
which is not a power of 2. Therefore, the codebook training procedure has to be

altered. The following operations are added “o generate codebooks of any size:
1. Train a codebook of size 2° where 2° < L < 201,

2. Choose the (L — 2) centroids having the highest average cluster distortion.

3. Split the (L —2*) chosen centroids to obtain, with the first 2° centroids, a total

of L centroids.

4. Train the L centroids with the clustering algorithm to obtain the final code-

book.
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4.2 Vector quantization process

4.2.1 Output index and distortion score

Once the codebooks have been trained, vector quantization is done by matching one
by one the input vectors against the codevectors. Equation 4.1 is used as the vector
comparison distortion measure. The index of the closest codevector to the input

vector is output from the VQ (Fig. 4.1):

M
dinin = 1_<I‘T71lisf1]\,l'g_=,l(Cn(m) ~ V(m))?] (4.2)
C,(m) is the mth coefficient of the nth codevector in the codebook and V' (m) is the

mth coefficient of the input vector.

dmin is the distortion resulting from the quantization of one input vector. The
quantization distortion can be accumulated for all the frames of an input utterance.
A final distortion score can be obtained for each codebook by averaging the dp,:n of

all the utterance’s input vectors:
T

D; = (3 dmin;)/T (4.3)

t=1

D; is the distortion score for codebook i and T' is the number of frames in the input
token. The distortion score will be used as a VQ information for the recognition

decision in some of our systems (see Chapter 6).

4.2.2 Multiple codebooks

It has been seen in the chapter on feature extraction, that three sets of features are

generated. At every frame, one cepstrum vector, one differenced cepstrum vector
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and one energy vector are calculated. It is necessary to define the process by which

the feature vectors are processed by the VQ stage.

The approach suggested in this thesis is the multiple ccdebook vector quantiza-
tion [9]. Lower quantization distortions are obtained when the feature vectors are
partitioned in different feature codebooks rather than used in a comimon codebook
where a codevector would represent the three features in a same vector [12]. A
different set of codebooks is trained for each feature. Consequently, for each frame

of speech, not one but three V() indexes are used to describe the input signal.

One problem with the multiple codebook approach, however, is the need of
substantially more storage. In our case, the number of parameters for the models is

tripled.
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CHAPTER 5

HIDDEN MARKOV MODELS

At this point in the system’s description, temporal information was analyzed only
in the feature exiraction stage when the differenced coefficients were calculated.
Differenced coefficients represent the slope of a signal at different times. It is evident
that this information gives only a part of the temporal information in a signal. In
the chapter on V(Q, we ignored the discussion on temporal variations of a speech

signal because the V() algorithm used is unable to capture this type of information.

In this chapter, the probabilistic theory of hidden Markov chains is introduced
as a solution for the modeling of speech signal nonstationarity. A hidden Markov
model (HMM) is a stochastic process generated by two interrelated mechanisms, a
Markov chain having a finite number of states, and a set of random functions which

are associated with every transition between the states.

The states are connected by transitions. Each transition carries two sets of

probabilities: a transition probability giving the probability of going from one state
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to another, and an output probability density function (pdf) which provides the

probability of having an output symbol emitted when a transition is taken.

The observed sequence is assumed to be a stochastic function of the state se-
quence of the Markov chain. The state sequence itself is unobservable (hidden). The
goal is to choose the parameters of the hidden Markov model to optimally match

the observed characteristics of a given signal.

We could consider an HMM as a model for the vocal tract. For example, the
articulatory positicns of a vocal tract can be represented by the states of an HMM,
and the changes in the vocal tract position can correspond to the transitions between
the states of a model. When a transition is taken, a short signal is produced. This
signal can have a finite number of possible characteristics which depend on the

transition itself.

5.1 Discrete HMM vs Continuous HMM

The HMM models can be separated into two types: discrete density IMMs and

continuous density HMMs.

In the case of discrete density HMMs, the models arc characterized by discrete
pdf’s. In order to use the discrete pdf’s, each input frame must be represented by
a symbol chosen from a finite alphabet. Therefore, vector quantization is used as a

pre-processing stage for the discrete HMMs.

A second type of system is based on the continuous nature of speech samples.

Usually, the speech parameters are in the form of multi-dimensional real-valued
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feature vectors (not vector quantized). By assuming certain properties for the vec-
tors distribution, it is possible to estimate the output parameters from training
data. Multivariate Gaussian density [24] is often used to calculate the probability
density functions of the models. Many other forms of continuous densities can be

applied [11] [31] [33].

The principal advantage of using continuous HMMs is the ability they have to di-
rectly model speech parameters. However, continuous HMMs require considerably
longer training and recognition time. In this thesis, discrete HMMs are imple-
mented. Although they are less flexible than continuous HMMSs, and cannot recover
from vector quantization errors, they are efficient and require less computations.
Moreover, some useful information from vector quantization will be added to the

HMM probabilities during the process of recognition.

5.2 HMM for isolated-word recognition

The most natural unit of speech is the word. Consequently, whenever it is possible,
speech recognition systems are based on word models of speech. As it was explained
in Section 2.1, word models can be used if the size of the vocabulary is small enough.
In our case, the vocabulary is very limited, therefore, a distinct HMM is used for

cach word.
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(b)

Figure 5.1: Representation of (a) an unconstrained HMM and (b) a Bakis HMM.

5.2.1 Basics of HMM

The most general case for a HMM model is the unconstrained HMM (Fig. 5.1(a)). In
this model, every state can be reached with a single step from every other state. The
unconstrained HMM can model any sequence of states, but for some applications
like speech recognition, constrained HMMs have been found to model better the
observed properties of the signals. The most commonly used constrained HMM for
isolated-word recognition is the Bakis model [3] shown in Fig. 5.1(b). The Bakis
model is a left-to-right type of HMM which has the desirable property that it can
readily model signais whose properties change over time, e. g. , speech. As a matter
of fact, this model is a sequence of states where each state could correspond, in

theory, to some phonetic event, and each event could be skipped.

The characterization of a model is done by determining:

1. {N} - the number of states in the model.

There are no clear rules to decide how many states are necessary to model
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a word. One idea is to let the number of states correspond roughly to the
number of sounds (phonemes) within the word. Tests have shown that 5 or
6 states were a good choice for isolated-digit recognition [29] [10]. The HMM
word model proposed in this work is the 5-state Bakis model(Fig. 5.2).

. {M} - the number of distinct observation symbols in the alphabet of the model.
In our case, the size of the alphabet is the number of codevectors used to
vector quantize the signal.

. {ai;} - the set of state transitions.

a;; is the probability of taking a transition from state i to state j:
ai; = P(Se41 =, 5 = 1) (5.1)

where S; is the state of the Markov chain at time ¢. The probability a;; must

also obey to the following conditions:
aij _>_ 0 VZ,_’] (52)
Z ai; = 1 A4 (53)

Before the training of matrix A (ai;), initial values for a;; must be set. A
simple uniform distribution is sufficient for initialization (assuming that the
amount of training data is reasonable).

For uniform initialization, all transitions from a state are considered equally
likely to be taken. Our matrix A, based on the transition probabilities of the
model of Fig. 5.2, is initially set with the matrix shown in Fig. 5.3. The sum

of the elements of each row must be equal to 1 according to Equation 5.3.
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Figure 5.2: Representation of the 5-state Bakis model.
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Figure 5.3: Uniform initialization of matrix A.
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SN

{b;j{kj} - the output symbol probability matrix.
b;;(k) is the probability of emitting symbol k (one of the V(Q indexes) when a

transition is taken from state i to state j:
bij(k) = P(Oy = k|S: =1, 541 =7) (5.4)

O is the output sequence which is directly observed, and S is the state sequence
which is hidden. So, Oy is the output symbol at time ¢ and S; is the state at

time £.

The same probability conditions as for a;;’s are applied:
bis(k) 2 0 Vi,j, k (5.5)
E bij(k) =1 Vi, 7 (5.98)
k

The matrix B is also uniformly initialized. Since k varies from 1 to M, and
every symbol k£ has the possibility to be observed, all the initial elements of

the matrix B are initially set to probability 1/M.

5.3 Training the HMMs

There is no known analytical method to solve the problem of training the parameters
of the HMM models. In fact, given any set of finite observation sequence as training
deta, there is no optimal way of estimating the model parameters. Instead, iterative
procedures or gradient techniques [15] must be used. In our case, we used an iterative

procedure; the Bauin-Welch algorithm [4] or forward-backward procedure.



5.3.1 Baum-Welch algorithm

An HMM model is defined by its state transition probabilities (a;;) and its output
symbol probabilities (b;;(k)). In this work, a;; and &;;(k) were uniformly initialized.
Uniform distribution was used because more complex initialization algorithms are
not necessary for discrete density pdf’s {12]. So, onee the initial parancters are

given, the model is reestimated iteratively with the Baum-Welch algorithm [4].

The Baum-Welch algorithm reestimation procedure is based on the intuitive
notion that a new estimate of a state transition probability can be obtained from
the expected number of transitions from state ¢ to state j, divided by the expected
number of transitions out of state ¢. Similarly, the new output symbol probability
for the kth symbol is the expected number of transitions from state i to state 7 when
symbol % is produced, divided by the expected number of transitions from state ¢ to
state 7. The term expected is used because these statistics are usually averaged over
large amount of data, and because the actual state transitions and outpul cvents
are hidden [25]. The complete description of the algorithm is given in [32] [12] and

can be summarized with the following equations.
Let’s define the forward variable «;(t) as:
a,(t) = P(O]OQ"'O[,S& = t;)\) (57)

where A represents the model’s parameters (matrix A and B). «;(t) is the probability
of having the partial observation sequence, Oy, 0, - -, Oy, (until time t) and being in

state z at time ¢, given the model A. Given the training data, the forward probability
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can be recursively computed on ¢t with:

a(t) =3 a;(t — 1)a;ibji(Oy) (5.8)

In a similar manner, the backward prebability 5;(t) is defined as:
Bi(t) = P(Or41,Orya, - -+, O1|S; = 1, ) (5.9)

where f3;(t) represents the probability of the partial observation sequences from time
t + 1 to the end, being in state ¢ at time ¢ and given the model A. The backward

probability can also be calculated recursively on ¢ with:

Bit) = 3 Bi(t + 1)aijbij(Ora) (5.10)

Finally, it is useful to define the variable +;;(¢) as the probability of taking a
transition from state ¢ to j at time t given the entire observation sequence:

t —1)ai;bi;(0,)B;(t)
s, (T)

2s(t) = P(S, = i, Supr = 10) = 24 (5.11)

where Sp is the final state.

Using these definitions, the reestimated state transition probabilities and output
symbol probabilities @;; and b;;(k) are calculated by integrating jointly the current

a;i(t), Bi(t), a;; and b;;(k). The estimates are given by:

i X (t)
Y E?ﬂ ok vir (1)

expected number of transitions from state i to j given O

expected number of transitions from state i at any time
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_ ook 7ii(t)
b{ . k —_ Lt:0¢=k 7!]( {, :
i(k) E"—‘_—_‘?:l @) (5.13)

expected number of transitions from state i to j given k

expected number of transitions from state i to j for any k

Once the reestimation is done, @;; and b;;(k) are used as the new a;; and b;;(k) for
the next iteration. Good recognition results were obtained with two reestimations

of the HMM parameters in the training procedure.

Smoothing

In our application, there is an insufficient amount of training data to estimate ap-
propriately the model parameters. The frequently occurring output symbols may be
well trained, but other symbols may be unobserved, and have zero probability. As
a consequence, any probability multiplication having one unobserved output sym-
bol probability may give a zero result. This is a critical problem:, especially for

recognition. So, a smoothing of the output pdf is essential.

The floor method [15] solves the problem of zero probabilitics and works well for
reasonably well trained models. If we had more difficult models to train, we could
have used the distance method [35] or the co-occurrence method [12]. In the floor
method, all the zero probabilities are replaced by a very small valne (0.0001). To
better smooth the pdf’s, a linear interpolation is done between the estimates of the

trained parameters and the minimum fixed values:
sbij(k) = 7b;j(k) + (1 — 7) Pu(k) (5.14)

where sb;;(k) is the smoothed probability, and P, (k) is the minimum output symbol

46



probability. 7 is experimentally calculated to optimize the performance. In our

HMMs, the best results were obtained with 7 equal to 0.998.

5.4 Recognition with HMMs

In our application, each HMM is trained with word tokens. For recognition, we need
to implement a procedure to search which model is the most likely to have produced

the input observation sequence.

5.4.1 Viterbi algorithm

The Viterbi algorithm [41} was used to compute the output HMM probabilities.
The probability of an HMM is defined as the best score along a single path of the
model. This path corresponds in the model to the state sequence that has the
highest probability of being taken while generating the observed sequence. Given
the state sequence S51.5;---S5; = 1 ending is state 7 and the observation sequence at

time ¢, the HMM prcbability is defined with:

v,-(t) = 51,52?3-(9(-1 P(5152 s St = i, 0102 e Otl/\) (515)

For recognition, the path probability is calculated recursively from the state
transition probabilities a;; and the output symbol probabilities b;;(k):

J{O —“—0/\2'#51

vi(t) =4 1 t=0Ai=5;
l ma,xj(vj(t — l)a,'jb,'j(Og)) t>0
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St is the initial state and v;(¢t) is the path probability at state : and time ¢.

The complete procedure to find the best state sequence is described in [32],

5.5 Multiple observation sequences

The procedures that were explained until now were based on the assumption that, at
each frame, a single observation index is input into the HMM. In our system, multiple
observation sequences are computed in the vector quantization stage. Recalling fromn
Section 4.2.2, separate V(Q indexes were calculated for cach input feature vectors
(cepstrum, differenced cepstrum, and energy vector). Consequently, the Baum-
Welch algorithm and the Viterbi algorithm must be generalized for the multiple

observation sequences.

Assuming that the observation sequences are independent, the gencralization of
the HMM training and recognition procedures can be done by computing the symbol

probability as the product of the independent b;;(k)’s obtained from cach sequence:
X

bij (k) = ] b(k) (5.16)
=1

where b,(-;)(k) is the output symbol probability from sequence z.

The use of multiple sequences increases the stcrage space for the B matrix.
A separate set of b;;(k) needs to be stored for each of the muliiple observation
sequences. Nevertheless, the addition of supplementary storage is compensated by
the fact that the precision of the signal description is significantly improved (see

Section 4.2.2).
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CHAPTER 6

ISOLATED-DIGIT
RECOGNITION WITH
VECTOR QUANTIZATION
AND HIDDEN MARKOV
MODELS

The three preceding chapters described the main stages of our isolated-digit recog-
nizers. Now, we need to see how the feature extraction stage, the vector quantization
stage and the HMM stage can be linked to each other and integrated into a system.
This chapter is an overview of the different systems that have been designed and

tested for isolated-digit recognition.
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The first system uses VQ only for recognition. Vector quantization can be used
for recognition [22] but it does not take into account the temporal characteristics of
the utterances. This is a major flaw for a speech recognition system and to correct

this problem, the rest of the proposed recognizers combine VQ and 1IMMs.

The first version of the VQ-HMM recognizer uses a single codebook to perform
vector quantization. Single codebook systems were tested with three different types
of codebook: one codebook made of universal codevectors, one made of word-specific
codevectors and one made of phoneme-specific codevectors. The idea behind these

tests was to find which type of codevectors performs the best in a VQ-HMM system.

The second version of VQ-HMM recognizers are made of word-specific VQs and
word HMMs. Three word-specific VQ-HMM systems are presented. These sys-
tems were tested with the intention to illustrate that VQ can do more than simply
compress data for discrete HMM recognizers by providing information that may be

combined with the HMM probabilities in the process of the recognition decision.

To sum up, we will show that discrete HMMs give good performance for isolated-
digit recognition, especially if word-specific VQ sequences arc used as observation

sequences.
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6.1 VQ recognizers

6.1.1 Isolated-word recognizer

The basic idzea in the following system is to perform recognition with vector quanti-
zation only [36] [38]. The suggested recognition system is illustrated on Fig. 6.1. The
vector quantization is done with word-specific codebooks, i. e. , each word codebook
is trained with many tokens of a same word contained in the training set. Recog-
nition is done by choosing the word in the vocabulary whose average quantization

distortion (according to its particular codebook) is minimum.

Three features are extracted from the input signal. The three features are vector
quantized separately by multiple codebooks (Section 4.2.2). At each frame, the
features give separate quantization distortions. The quantization distortions for the
energy and the differenced energy are calculated separately. In order to obtain a
single distortion score for each word, the quantization distortions are combined with

a weighted sum; the composite distance metric [7]:
dtot = Wen X den + Wden X dden + Weep X dcep + Wcep X ddcep (6-1)
deny dgens deep, and dyee, correspond respectively to the energy distortion, the
differenced energy distortion, the cepstrum distortion and the differenced cepstrum

distortion. The weights wen, Waen, Weep, and wycep, are determined by doing tests to

optimize the recognizer’s performance.

The comipusite distance is accumulated at each frame until all the frames of the

input word are consumed. A final distortion score is obtained for each word. The
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Figure 6.1: Representation of a word-specific VQ recognizer.
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smallest accumulated distance is used for recognition decision.

The word-specific VQ recognizer gives acceptable recognition rates for our small
vocabulary databases. However, this recognizer fails to use temporal informations

contained in speech signals.

6.1.2 Isolated-phoneme recognizer

The recognizer of Fig. 6.1 can be modified to obtain an isolated-phoneme recognizer
by replacing the word-specific vector quantizers with phoneme-specific vector quan-
tizers. Isolated-phoneme recognition can point out which phonemes are particularly

difficult to recognize.

6.2 Single codebook VQ-HMM recognizer

As mentioned before, the major flaw of a V(Q processor is the lack of capacity to
use the temporal information of a speech signal. In the next system, we propose to
introduce HMM models to correct this weakness of VQ. Vector quantization is used

here as a pre-processing stage, for data reduction.

This section focuses on the implementation of three different single codebook
vector quantizers for discrete HMM recognizers. A schematic diagram of a single
codebook VQ-HMM recognizer is given on Fig. 6.2. An input feature vector is
vector quantized by only one codebook and thus generates a single index that is
used by each of the word HMMs. Only one codebook (single codebook) covers the

whole vector space for a feature. In this section, three different single codebooks are
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proposed:

1. a universal codebook.
2. a global codebook made up of word-specific codevectors.

3. a global codebook made up of phoneme-specific codevectors.

A universal codebook is a single codebook generated from a training set including
all the words of the vocabulary. The codevectors of a universal codebook are trained
with feature vectors issued from each word. Universal codebooks are particularly
suitable for large vocabulary applications since the whole feature vector space can

be covered with one codebook.

In this thesis, single global codebooks are proposed as an alternative to univer-
sal codebooks, the idea being to improve the performance by having each codebook
to cover more specific regions of the vector space. Two global codebooks are sug-
gested, one obtained from the grouping of word-specific codebooks and the other
from phoneme-specific codebooks. Here, grouping means that the codevectors of all
the specific codebooks are put together into a single global codehook. The codevec-
tors of such global codebooks are related more closely to the specific characteristics

of the words or the phonemes.

A global codebook is schematized in Fig. 6.3. There are many codebooks but
only one index (the one with the smallest quantization distortion) is extracted at
every frame. In order to make a fair performance comparison, the total amount of

codevectors (nz) is equal to the amount of codevectors in a universal codebook.

For the HMM stage, one model is generated for each word. The HMMs are
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Figure 6.3: Representation of a global codebook.

trained with the Baum-Welch algorithm (Section 5.3.1) and recognition is done us-
ing the Viterbi algorithm(Section 5.4.1). The observation sequences used to train the
word models are obtained from multiple codebooks vector quantizers (Section 4.2.2)
and are assumed to be independent to each other. Therefore, the output symbol

probabilities are multiplied together in the training and testing procedures (Sec-

tion 5.5).

6.3 Word-specific codebook VQ-HMM recognizer

Many of the conventional discrete hidden Markov models (HMM) recognition sys-

tems use vector quantization (VQ) in the pre-processing stage. As mentioned zhove,



the vector quantizer is usually composed of a single codebook, a universal codebook.
We discuss in this section, how a single universal codebook can be replaced by several

word-specific codebooks.

The motivation to make this change is based on the fact that VQs can do more
than simply quantize the input signal. In addition to the VQ indexes, vector quan-
tization can output distortion scores for each word. As a matter of fact, V() distor-
tion scores were successfully used to make isolated-word recognition with the system
proposed in Section 6.1.1 (only for smail vocabulary application). For that system,

input words were processed through word-specific codebooks.

The input signal is quantized separately by each of the word-specific codebooks.
Therefore, the HMMs can use word-specific observation sequences from each of the

codebooks. Two interesting particularities emerge from such a system:

e The VQ and HMM stage can be combined consecutively as two discriminating

techniques for recognition.

e The presence of more observation sequences can give a more detailed descrip-

tion of the input signal.

In this section. we exploit these two observations to test different ways of integrat-
ing the input feature coefficients into the framework of a discrete HMM recognizer.
As is illustrated in Fig. 6.4, the problem consists of finding how word-specific in-
dex sequences and distortion measures can be used to make recognition with word
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6.3.1 Candidate selector VQ-HMM recognizer

The “cundidate selector VQ-HMM recognizer” is depicted in Fig. 6.5. This is a
recognizer where a processor is added to select the less distorted V() candidates

input to the HMM stage. The design of this recognizer is based on a parallel
branch configuration; each word-specific V@ is connected to the corresponding word
IIMM by a direct and independent branch. E=ch branch represents the transmission
of a word VQ multiple index sequence consisting of the cepstrum, the differenced
cepstrum and the energy vector index sequences. A pre-processor is inserted on each
branch to determine if a VQ sequence will be transmitted or not to the word HMM.
The pre-processor gives more flexibility to the system by permitting the elimination

of unlikely candidates from the VQ stage.

Each VQ sequence has an average quantization error score. Hence, the system
can consider, for the transmission to the HMM stage, only the sequences with the
lowest quantization error. As a consequence, the candidate selector allows a reduc-
tion in the number of calculations dore in the HMM stage. Also, the recognizer is

not confused by VQ sequences with high quantization error.

Tests have been made to find the optimal number of candidates that should be

considered by the system.
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6.3.2 Combined VQ-HMM recognizer

In the introduction of Section 6.3, we noted that VQ and HMM information can be
combined to improve recognition. The following system is used in order to verify

this statement.

The word-specific VQ distortions are not used any more as candidate selectors
but as word scores for the recognition decision. As illustrated on Fig. 6.6, a VQ dis-
tortion score and an HMM output probability are calculated for each word. A simple
empirical formula is proposed in which the V) and HMM scores are added together
in a weighted sum. The probabilities are represented at logarithmic scale to reduce
the dynamic range. The combination of V() distortions and HMM probabilities is

done with the following formula [5]:
R, =C x D; + Klog(F;) (6.2)

where C is a positive constant, D; is the distortion score for the codebook of word
1, P; is the output probability for the HMM of word :, and K is a negative constant

computed to optimize the performance.

The formula allows recognition to be based on the V() distortion scores only,
HMM output probabilities only or both scores at the same time. Tests have been
made with different values for C' and K in order to optimize the performance. If
the best performance is obtained using a combination of V& and HMM infornation,
we can conclude that VQ distortion scores provide recognition information that is

complementary to the HMM probabilities.
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6.3.3 Fully interconnected word-specific VQ-HMM system

A second observation in the introduction of Section 6.3 states that more observation
sequences can give a more detailed description of the input signal. The next system
is proposed with the intention to make full use of the whole set of word-specific
VQ sequences. The suggested system is called a “fully interconnected word-specific

VQ-HMM recognizer” and is illustrated on Fig. 6.7.

ln the fully interconnected VQ-HMM recognizer, the observation sequences ap-
plied to each HMM are not just the VQ outputs of a single word codebook, like
in the case of the parallel word processing recognizer, but rather the outputs of
all word-specific codebooks [40]. The increased amount of HMM input data makes
the recognizer less dependent on the possible peculiarities of single observation se-
quences. This way, the recognizer is less vulnerable to the effects of a poor index
sequence than in the case of the parallel word VQ-HMM recognizer. Alse, the full
interconnection may help to reduce the effect of the rough quantization at the V@

stage.

As usual, training is done with the Baum-Welch algorithm and recognition is
done with the Viterbi algorithm. In both cases, the probability calculations must
be modified to accept an increased amount of observation sequences simultaneously
arriving into cach word HMM model. The output probabilities are not calculated
from only the multiple sequences of a single word VQ, but from the multiple se-
quences of all the word-specific VQs. Therefore, the output symbol probabilities
of all the word-specific observation sequences must be combined to make a single

Viterbi secarch for each word HMM.
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Assuming that the word-specific VQ sequences are independent, we multiply the

output symbol probabilities of all the word-specific VQ sequences using the relation:

pit) = max(py (¢ = Days TT T] (0] (63)

wce

where y*° is the observation sequence from word VQ w using the word codebook

type c (energy, cepstrum or differenced cepstruin).
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CHAPTER 7

EXPERIMENTAL RESULTS

7.1 Speech databases

Two speech databases were used to evaluate the different systems proposed in this
thesis. One database was recorded in studio, and the other database was recorded
over telephone lines. The next section describes the databases and specifies how the

tokens of the databases were split into a training set and a testing set.

7.1.1 Studio database

The studio database, generated by Craig Scratchley [36], contains digits from zero to
nine. Each digit is replicated two times by each of 20 talkers (10 male, 10 female).
Each of the talkers is considered to have a fair 'Canadian’ accent. Pauses were

imposed between each words in the recording session. In other words, the tokens
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are isolated from any context dependency caused by neighboring words.

The recordings were done in SFU’s recording studio in the Instructional Media
Center. A special attention was put on the recording level, the length of pause

between the words, the positioning of the microphone and the noise being picked

up.

The digitization was done on a Sun-3 equipped with an ICS-100 digital signal
processing board (12 bits quantization). First, the recorded words were passed
through an analog anti-alias filter with a cutoff at around 8 KHz. The speech was
sampled at 32 KHz and filtered with a digital filter with a 3.4 KHz cutoff. The
digital signal was decimated by four, taking one sample at every four, to bring the

ratc at 8KHz. The resulting word tokens were stored in separate files.

Training set
The training set contains 10 talkers (5 male and 5 female) of the 20 talkers.

Each digit is replicated two times by the same talker. For recognition, the tests are

carried out with the tokens of the 10 remaining talkers.

7.1.2 Telephone database

The telephone database contains digits zero to nine with, in addition, the utterance
“oh”. All the tokens of the database are assumed to be spoken by a different talker.
Each word is uttered by 50 talkers. Approximately 27% of the tokens are uttered by
males, 33% by females and 40% by children. A subjective evaluation of the accents

assumes that 81% of the talkers have a ’Canadian’ accent and 19% have a foreign
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accent.

The tokens were obtained from customers calling to B. C. Tel yellow pages and
asking for a service number of four digits. The telephone calls were recorded, and
the resulting strings of digits were digitized and segmented into individual words.
As a consequence, the beginning and the end of the words may be contextually

dependent on the neighboring words.

Finally, phonemes were segmented from each word by keepiug only the context
independent frames. This means that only the frames considered to be independent
from the neighboring phonemes were extracted. The transitional segments between
two phonemes were rejected. The list of phonemes contained in the database is given

in Table 7.1(a). The phonetic transcriptions of each digit is listed in Table 7.i(h).

The digitization and the segmentation of the utterances into words was done by
MPR TelTech. The speech was sampled at 10KHz and quantized with 16 bits. An
anti-alias filter was used with a cutoff frequency at 4.8 KIlz. The resulting files were
stored on disk, each file containing one word. All the details of the speech data

processing are resumed in Appendix A.

Training set

The training set is made, for each digit, of 25 tokens randomly chosen. No
consideration was given to the nature (sex, accent) of the talker. The tests were

carried out with the remaining 25 tokens for each digit.
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Phon. | Example | Phon. | Ezample
z Z0O ao bought
1y beat ay bite

r red v very

ow boat s sis

w wet ih bit

ah butt k kick

n non eh bet

t tot ax the

uw boot ey bait

th thief td set

f fief

Word | Phoneme sequence
one w-ah-n

two t-uw

three | th-r-iy

four | f-ao-r

five | f-ay-v

six s-ih-k-s
seven | s-eh-v-ax-n
eight | ey-td

nine | n-ay-n

zero | z-1y-r-ow
oh ow

(b)

Table 7.1: List of phonemes (a) and single digits phonetic transcriptions (b)
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7.2 Vector quantization recognition

7.2.1 Isolated-word recognition

The first results presented for isolated-digit recognition are obtained witli a system
based only on vector quantization. Vector quantization has some weaknesses for

1

recognition applications but it’s performance can still be used as a comparison basis

to analyze the improvements generated by HMM-based systems.

The word-specific VQ recognizer has been described in Section 6.1.1. To nnple-

ment the system presented, we need to determine two unknown parameters:

1. The weights of the composite distance metric.

2. The size of the codebooks.

Several tests have been done to find the optimal set of weights for the composite
distance meiric (i. e. the weights that optimize the performance) and to find the
word codebook size giving the best resuit. The experiments were first done with the

studio database and the recognition rates are listed in Table 7.2, The resuits show

that:

o differenced cepstrum coefficients are the most reliable features for the present

recognition task.

e energy and differenced energy both give poor performance. These features do
not perform well when tested separately but they can still improve the perfor-

mance when combined to the cepstrum or differenced cepstrum eoefficiernis.
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e there are no important variations in performance for the different sizes of code-
book. A small amount of codevectors is sufficient for each codebook because of

the small variety of speakers and recording conditions in the studio database.

Now, we must find which size of codebook and which set of weights performs
well for our HMM-based systems using word-specific codebooks. The codebook size
chiosen for the studio database 1s 16. Sixteen codevectors per word gives a fair cov-
ering of the word vector space without generating excessive amount of computations
for the vector quantizers. This codebook size is not too low for the studio database
smce very good results were obtained with the same database and 8 codevectors per

codebook  [36).

For the composite distance metric, we need to determine which set of weights
should be used for recognition. Since we want to use size 16 codebooks, the set of
weights was selected according to the best performance obtained with size 16 code-
books in Table 7.2. The best weights are (1,2,0.1,0.1). However, the results obtained
suggest that energy is practically useless for recognition. The energy codevectors are
inefficient and confuse the recognizer. Therefore, the energy feature was discarded
from the composite distance metric. As a result, the final weights for the composite
distance metric in all the following systems tested with the studio database will be

(1.2,0.0.1).

Iu the case of the telephone database, we also fixed the word codebook size to
16. A bigger size for codebooks may have improved the performance since a higher
number of codevectors could have vector quantized better the varied nature of the
telephone database tokens. However, we limited the size of our codebooks to 16

because a high number of codevectors in the VQ stage generates a large amount
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Recognition rates (%)

Weep | Wdeep | Wes Waern, | Codebook size 8 | Codebook size 16| Codebook size 392
1 0 0 0 84 85.5 825
0 1 0 0 95.5 94 96

0 0 1 0 14 20 16.5
0 0 0 i 20 25.5 22.5
1 1 0 0 93.5 v1.) 95
i 2 0 0 95 95 95
1 3 0 0 95.5 95 95
1 4 0 0 95.5
0 0 10.01]0.005 - 45 3.5
g 0 0.01 | 0.01 43 49.5 48
0 0 }0.01] 0.02 47.5 125 15
0 0 }0.01] 0.03 43.3 -

0 0 |[0.061] 0.05 41

1 2 1001} 0.02 95 -

1 2 0.1 | 0.2 96.5" -

1 2 04 | 08 96 -

1 2 10.01} 0.01 - 95 95

1 2 0.1} €1 . 45.5~ 95.5
r—

1 2 0.5 { 0.5 - - 96

1 2 1 i - 955 96.57

Table 7.2: Isolated-word recogrition results with word-specific VQ recognizer tested

with the studio database




of symbols for the HMM discrete pdi’s and therefore generates a large amount of
computations and storage space for the HMM stage. With word codebook size fixed
to 16, we obtained a performance of 78.2% using the weights (1,2,0,0.5). This low
performance can be explained by the following factors: the recording quality for the
telephone database is relatively poor; the tokens are corrupted by different levels and
types of background and transmission noise; the variety of speakers (male, female,
children, foreign accents); and the large percentage of children speech result in a

very difficult recognition task.

7.2.2 Isolated-phoneme recognition

Isolated-phoneme recognition has been performed wiih a system similar to the
1sulated-word recognizer of Fig. 6.1 but with phoneme-specific codebooks instead
of word-specific codebooks. Since the variety of sounds within a phoneme is smaller
than for words, the number of codevectors in each codebook can be smaller for
phonemes than for words. In our case, the codebook size has been set to 8 codevec-

tors.

First, each feature for each phoneme has been tested separately. The tests were
done to check how the VQ recognizer performs when either one of the features is
used. These tests correspond to the case when only one weight in the composite

distance is different from Q.

Table 7.3 shows the recognition rate for each phoneme (rows) when either one
of the features (columns) is used. The recognition rates are generally low as we can

see from the average rate for each feature. In general, we can say that the cepstrum



coefficients give the best results and the energy is useful for only a foew phonemes,

Other tests were done for isolated-phoneme recognition, this time by combining
together the different feature distortion scores of a phoneme. An arbitrary set of
composite distance metric weights was fixed despite the fact that these weights may
work better for some phonemes than others. The best results were obtained with the
weights {Weep,Wacep Wen Ween } = (1,1,0.1,0.5). These weights are slightly different to
the optimal weights (1,0.5,0,0.3) and (1,0.8,0.01,0.05) obtained from similar phonetic

recognition experiments [12].

The results of the isolated-phoneme recognizer using the composite distance met-
ric are given in the form of a confusion matrix. Table 7.1 contains the confusion
matrix where the x axis shows the phonemes recognized when the phonemes of the

v axis are tested. The recognition rates are given in percentage,

The results illustrated in the confusion matrix of Table 7.1 suggest the following

remarks:

.

o The phonemes sounding similar, like "a0” and "ow™, are very likely to be

confused.

e The fricatives {"th”, "{", "v”, ”s”, "z2”) are very difficult to differentiate from

each other.

o The phonemes "th™ and "z” are particularly difficult 16 recognize.
. (=]

The low results obtained for phoneme "th” and 7z” may be caused by a bad
choice of weights for the composite distance metric. Therefore, we tested the two

phonemes for different sets of weights. In the case of phoneme 727, the maximun

74



P s

individual phoneme recognition rates (%)

Phoneme Features
Cepstrum | Diff. cep. | Energy | Diff. en.

w 92 60 0 48
ah 32 40 0 0
n 7 47 15 24
L 48 28 0 12
uw 72 60 52 8
th 32 4 0 0
r 84 21 0 15
iy 30 32 8 10
f 64 28 0 22
ao 36 36 0 24
ay 36 65 10 12
v 38 2 42 26
s 37 32 11 5
ih 44 36 8 20
k 36 80 28 12
eh 20 20 0 52
ax 36 28 32 28
ey 40 8 0 0
td 56 36 40 20
z 4 4 0 4
ow 26 22 0 2

Average 44.8 32.8 11.7 17.1

-
{J

Table 7.3: Isolated-phoneme recognition results with the telephone database




Phoneme tesied (y aris) vs Phoneme recognized {r aris)

w {ah | n t uw | th r 1y f | ao | ay v s th k eh | ax | ey | td 2 ow
w 4
ah 4 52 12 32
n 78 i 6 2 1w f 2 I
t 44 16 +4 16 4 HH
uw 4 95
th 4 20 24 4 12§ 20 16
r 4 4 3 72 1 1 3 1 5 5
iy 4 8 8 |40 24 2 |14
f 2 2 52 10§ 18 16
ao 76 4 20
ay 6 4 B2 2 fi
v 26 2 66 6
s 9 1 17 10 § 56 7
th 4 26 8 56 8 4
k 4 8 Ky
eh 4 12 4 8 ¥ 56§ 4 4
ax 16 8 12 23]
ey 4 32 4 4 H 48
td 4 4 U 4
z 8 16 36§ 146 24
ow 2 4 6 34 9 4 44

Table 7.4: Confusion matrix for the phonemes of the telephone database




recognition rate obtained remained at 24% (Table 7.3). For phoneme "th”, an
immprovement is obtained when the weights arc changed. The recognition rate for

"th” raised from 24% to 40% (Table 7.6).

From the confusion matrix, it is possible to calculate an overall isolated-phoneme
recognition performance by averaging all the phoneme recognition performance to-
gether (by taking the averages of the terms along the diagonal). The overall recogni-
tion rate is 60.6% which is satisfying for isolated-phoneme recognition if we compare

that result to the performances of other phoneme recognizers [12].

The low recognition rates for isolated-phoneme recognition suggest that isolated-
word recognition with a small vocabulary is easier to perform with word units than
subword units. Effectively, the recognition rates for isolated-word recognition are
higher than for isolated-phoneme recognition. Moreover, subword units introduce

an additional burden by imposing the implementation of a procedure to reconstruct

the words from phonemes.



Recognition rates (%)
Weep | Wdeep | Wen | Waen | Hesulls |
1 0 0 0 1
0 1 0 0 4
0 0 1 0 0
0 0 0 1 !
1 0.5 0 0 12
1 1 0 0 24*
1 1.5 0 0 20
1 2 0 0 20
1 1 0 | 0.2 24
1 i 0 0.5 24
1 1 0 ] 20
1 1 051 0 24
1 1 1 0 24
1 1 3 0 20

Table 7.5: Isolated-phoneme recognition results for phoneme 727



Recognition rates (%)

Weep | Wacep | Wen | Waen | Results
1 0 0 0 32
0 1 0 0 4
0 0 1 0 0
0 0 0 1 0
1 0.1 0 0 32
1 0.5 0 0 32
1 0.6 0 0 32
1 0.8 0 0 28
1 1 0 0 24
1 0 0 0.5 32
1 0 0 1 36
1 0 0 2 28
1 0 0.3 1 36
1 0 0.5 1 40*
1 0 0.7 1 36
1 0 1 1 32
1 0.5 | 0.5 1 28
ated-phoneme recognition results fo

r phoneme "th”



7.3 Single codebock VQ-HMM recognition

In this thesis, three single codebook VQ-HMM recognizers are studied (Section 6.2).
We want to find which type of codevectors, either from universal codebooks, word-
specific codebooks or phoneme-specific codebooks, gives the best performance for a

discrete HMM recognizer.

Based on the results of the VQ recognizers, we have sct the size of the word-
specific codebooks to 16 and the size of the phoneme-specific codebooks to 8. For
universal codebooks, the size was set according to the total number of codevectors

in the global codebooks.

For the studio database, only universal codebooks and word-specifie codebooks
have been traired since no phoneme tokens were available. The size of universal
codebooks was f{ixed to the total number of codevectors contained in the word-

specific codebooks/10 words x 16 codevectors/word = 164 codevectors).

For the telephone database, 11 word-specific codebeoks and 22 phoneme-specific
codebooks were trained. An additional phoneme codebook was trained with silent
frames. The addition of a silence codebook is justifiable by the fact that many frames
of the input tokens are silent. The total number of codevectors for the word-specific
{11 x 16) and phoneme-specific (22 x 8) global codebooks is 176 codevectors. So,

universal codebooks of size 176 were trained.
The results of the three single codebook VQ-HMM recognizers are shown in

Table 7.7. Two observations can be made:

¢ The addition of HMMs improves the performance. When we compare the
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Recognition system | Studio | Telephone
Universal 97.5% | 83.6%
Global word 98.0% 81.8%
Global phoneme - 77.8%

Table 7.7: Isolated-word recognition with single codebook VQ-HMM systems

performance of the best single codebook VQ-HMM system to the best results
of the VQ recognizers, we obtain an improvement of 1.5% (from 96.5% to 98%)
for the studio database and an improvement of 5.4% (from 78.2% to 83.6%)

for the telephone database.

o The results are unclear to know which single codebook VQ gives the best per-
formance. The studio database shows that the word-specific global codebook
gives slightly better results than the universal codebook, whereas the tele-
phone database gives opposite results; the word-specific and phoneme-specific
global codebooks don't perform as well as the universal codebook recognizer.
The contradiction in the results may be explained by the differences between

Lhe two databases.

The telephone database contains a larger variety of talkers than the studio
database. Therefore, the feature vectors of the telephone database may be more
sparsely spread in the vector space than those of the studio database. If the fea-
ture vectors are sparsely spread, t

covering well the whole vector space. The codevectors of universal codebooks are

usually well trained for such cases; that may explain the superiority in perfcrmance

g1



of universal codebooks for the telephone database.

On the other hand, word-specific and phoneme-specitic codebooks are trained to
cover restricted regions of the vector space. Each codebook is trained independently
from the other codebooks. This means that different codebooks may cover inter-
secting regions of the vector space. So, codevectors of different codebooks can be
positioned very near to each other. This lets some big arcas of the vector space to
be uncovered by the codebooks. If the input vectors fall into these critical regions,
the quantization error will be high. If the input vectors stay within the regions
covered by the codebooks, quantization is satisfying. ‘The previous argument may
explain why, for the studio database, the word-specific codebook VQ gave good re-
sults. Since the talkers of the studio database are not very diversified, the feature

vectors may stay in specific regions of the vector space.

We intend, in the next section, to still use word-specific codebooks for vector
quantization, but this time, the system conceived will exploit better the advantages

that word-specific VQs can provide to isolated-word recognition.

7.4 'Word-specific codebook VQ-HMM recogni-

tion

The next recognition systems have a common characteristic, they all use word-
specific codebooks to generate a set of word-specific VQ sequences. In Chapter 6,
three word-specific VQ-HMM recognizers were presented. The results are summa-

rized in the following sections.
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7.4.1 Recognition with the candidate selector VQ-HMM

system

For the “candidate selector VQ-HMM system” (Section 6.3.1), a distortion score is
calculated for cach word. The distortion score reflects the quantization distortion
associated to a word. Only the candidates giving the lowest quantization distor-
tions are selected for transmission to the HMM stage. Tests were carried out for
every possible number of candidate pre-selection. When only one candidate is se-
lected, recognition is uniquely based on the VQ scores. When all the candidates are

considered, the VQ scores are ignored.

The tests are made with word-specific codebooks of 16 codevectors. And, as it
was mentioned ir Section 7.2.1, we now use the composite distance metric weights
(1,2,0,0.1) for the studio database and (1,2,0,0.5) for the telephone database. Ex-
periments were conducted with the two databases and the results are shown in

Table 7.8. The results suggest that:

e Generally, the performance decreases when the number of candidates increases.
This means that the parallel branch configuration gives better results with VQ

distortion scores than with HMM output probabilities.

e The best performance for the telephone database is obtained when 2 candidates
are selected. This result suggests that a candidate selector pre-processor can

be justified for some applications.

The overall performance of the candidate selector VQ-HMM system is bad be-

cause the parallel branch system fails to take advantage of the HMM stage; the best
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Nb. of candidates 1 2 3 4 ) 6 7 S 4 10 11
Studio 91 92 189.01 87 |85.5 1 83 31 79.5 | 78.5 76
Telephone 7821793 | 76.7173.3170.6 1749 1745173817381 73.4173.1

Table 7.8: Recognition rates for candidate selector YQ-HMM svstem

performances were obtained when only one candidate is selected from the V() stage
and transferred to the HMM stage. In such a case, the recognition decision 1s done
at the VQ stage only. The next suggested system, the combined VQ-HMM, makes

a more direct use of the HMM and VQ scores.

7.4.2 Recognition with the combined VQ-HMM system

The parallel branch configuration is again tested and all the word VQ sequences
are connected to the word HMMs. The VQ distortion scores and the MM output

probabilities are combined with the following equation (see Scction 6.3.2):

Ri=CxD;,+ K log(fr),') (71)

The testing conditions and the results are summarized in Table 7.9. When €' =0
and K = 1, only the HMM probabilities are used for the final decision. When ' = |
and K = 0, only the V@ distortions are used. The system was tested again with
weights {1,2,0,0.1) for the studio database and (1,2,0,0.5) for the telephone database

{see Section 7.2.1).

The results of Table 7.9 show that:




o K Studio | Telephone

110 94 78.2

1 1-0.0600001 | 94.5 -

1 | -0.000008 | 98.5* |82.9

1 1-0.00001 Y8.5 84*

1 1-0.00002 93 83.27

1 | -0.00005 96.5 83.27

0]-1 76 73.1

Table 7.9: Recognition rates for the combined VQ-HMM system

e an improvement is achieved when D; and F; are combined together, rather
than used separately. This means that VQ distortion scores contain useful
complementary information to the HMM probabilities. A more sophisticated
method, like neural networks, could combine even better these picces of infor-

mation than the simple equation proposed for this systein.

e we obtained the best overall performances so far. Effectively, this system is
superior by 0.5% for the studio database and 0.4% for the telephone database
to the best single codebook VQ-HMM systemn (sce Table 7.7). There is an
improvement despite the fact that the parallel configuration gives low perfor-

mance (76% or 73.1%) when only HMM probabilities are used.
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o K Studio | Telephone

1 | -0.0000001 | 97.5 -

1 |-0.000005 |- 8l.1

1 1-0.00001 97.5 -

1 1-0.00005 98 81.4
1 ]-0.0001 98* 81.8*
1 1-0.0005 - 81.8
11-0.001 - 81.8
01-1 98 81.8

Table 7.10: Recognition rates for the global codebook and VQ-HMM combination

7.4.3 Recognition with word-specific global codebook and

VQ-HMM information combination

The word-specific global codeboo’: system (Section 6.2) can generate word-specific
VQ distortion scores. We know from previous results that the global codebook
system achieves good performance, so, it is interesting to verify if combining VQ
distortions and HMM probabilities linproves the performance of that system. The

VQ and HMM scores are combined again using Equation 7.1.

The results of Table 7.10 indicate that no improvement is obtained from the
combination of VQ and HMM informations for the global word-specific codebook

system (when compared to Table 7.7).
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Nb. of candidates 1 2 3 4 5 4]
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31
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o
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o
o

:

Studio (K=-8*10"°) 94 1975 98 | 98.5 | 985 YRD

Telephone (K=-1*10"%) | 78.2 | 82.2 | 83.6 | 83.3 | 84 84 84 84 84 84 | 84

Table 7.11: Recognition rates with candidate selector and VQ-IIMM information

combination

7.4.4 Recognition with candidate pre-selection and VQ-

HMM information combination

The idea for the next system is to join together in a parallel branch system, a can-
didate selector and a combination of VQ distorticn scores with HMM probabilities.
The system is identical to the recognizer shown in Fig. 6.5, but in addition, the
accumulated composite distance metrics are transferred to the final decision block.
This means that the V(Q distortion scores are used for candidate sclection and for
the final recognition decision. The tests were done with the optimal combination

factor K obtained in Table 7.9.

We denote from this system no amelioration of performance, i. ¢., the "all
candidates” recognizer gives the optimal rates (sce Table 7.11). Nevertheless, we
can observe that a limited number of candidates show also optimal performances.
As a matter of fact, 5 candidates prove to be sufficient. Therefore, with the candidate
selector, the computational complexity can be cut by half without affecting the final

results.
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7.4.5 Recognition with the fully interconnected word-specific

VQ-HMM system

"The last recognition experiment was carried out with the fully interconnected word-
specific VQ-HMM system discussed in Section 6.3.3. The recognizer is built to make
full use of the word-specific VQ sequences. As a matter of fact, each HMM model

is trained and tested with the whole set of word-specific V() index sequences.

The results for this system are: 99.5% recognition rate for the studio database
and 85.8% for the telephone database. In both cases, the performance is superior
to the best performance obtained so far. In fact, the current results are the best

results that are achieved in this thesis. The results imply that:

e a higher number of observation sequences can significantly improve the per-
formance (about 2% of improvement when compared to the best result of the

single codebook VQ-HMM system).

o a word HMM 1is better trained by observing the whole set of word-specific VQ

sequences than by observing a single observation sequence.

The advantages of this system are obtained at the expense of a higher amount
of computations, since more index sequences need to be processed in the HMM
stage. When we compare the computational complexity of the fully interconnected
configuration to the parallel configuration, we realize that although the V() stage
requires the same amount of computations in both cases, the fully interconnected
configuration requires approximately ten times more computations than the paral-

lel configuration for the HMM stage. The amount of additional computations is
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proportional to the size of the vocabulary. Most of the additional computations
come from the multiplication of the independent output svmbol probabilities (sce
Section 6.3.3). The number of computations is acceptable as long as the vocabulary

is small. which is the case for our databases.



CHAPTER 8

CONCLUSION

The objective of this thesis was to investigate a reliable isolated-digit recognizer.
Relying upon the state of the art research, we decided to utilize vector quantization
and hidden Markov models. The recognition procedure was divided into three stages:
feature extraction; VQ; and HMM. The basic components of each stage were first

described and we then proposed systems linking the above three stages.

In this thesis, additional VQ informaticn was combined with HMM information
to perform: recognition. The use of distortion scores was proposed as an alternative
to conventional VQ-HMM systems where V( is simply used as a pre-processing
stage for HMMs. We suggested three types of recognizer: VQ recoguizers, single

codebook VQ-HMM recognizers and word-specific codebook VQ-HMM recognizers.

VQ recognizers were tested to check the usefulness of VQ distortion scores for
recogrition. Then, single codebook VQ-HMM recognizers were introduced to show

how HMM models can improve the performances of a VQ recognizer. Finally, word-
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specific codebook VQ-HMM recognizers were proposed with the intention to verify
if VQ distortion scores can be added in the process of the recognition decision
when HMMs are used. The word-specific codebook VQ-HMM recognizers were also
proposed to check if the performances of an HMM system could benefit from an

increased number of observation sequences.

We found out that V(Q distortion scores helped to improve the performance of our
system. We concluded that VQ information is complementary to HMM information
and can be advantageously used for recognition. The resuits also showed that an
improvement is obtained when each HMM is trained with a set of word-specific VQ
index sequences. These results suggest that multiple V3 sequences have advantages
over a single VQ sequence systems. However, the implementation of more sequences
must respect the limits imposed by the computational complexity and the processing

time allowed.

The recognition rates obtained were very good when the recognizer was tested
with a studio recorded database. The results went up to 99.5% recognition. When
we used a database recorded over telephone lines, the results were 85.8% in the hest
case. This means that more work has to be done to overcome the difficulties present

in noisy and irregular environments such as telephone lines.
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Appendix A:

Telephone Database Speech File Pre-Processing

Once the telephone database tokens were digitized on 16 bits, they were converted

to 12 bits by discarding the 4 least significant bits, in order to be compatible with

our D/A converter.

The sampled data, in binary format, was stored on two-byte unsigned integers.
The integers ranged from 0 to 32767 (0 to TFFF Hex) with the low-byte coming
first. Zero amplitude was represented by the value 16384 (4000 Hex). The low-byte
and the high-byte were inverted. The 16 bits integers were finally divided by 8 to

be stored on 12 bits (0 to 4095).

The word tokens and the phoneme tokens were segmented with MacSpeech Lab
Il (Macintosh). The resulting tokens were put in individual files and transferred
back to the Sun system. The final digital signals were centered around 0 (signal
range +2048) which made possible their audition with the D/A converter of the

[C'S-100 board.
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