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ABSTRACT 

This thesis presents different systems proposed for speaker-independent isolated- 

digit rr:cognition. The systems are based on discrete hidden Markov models (HMM). 

Many of the conventional discrete HMM recognition systems use vector quantization 

as a data reduction pre-processor. In such a case, vector quantization is often done 

with a universal codebook. In this thesis, we propose to replace universal codebooks 

by word-specific codebooks. 

The motivation to make this change is based on the fact that VQ can do more 

than simply quantize the iaput signal. As a matter of fact, the quantization dis- 

t,ortions computed by word-specific codebooks give a distortion score for each word. 

Moreover, the generation of a set of word-specific VQ index sequences provides a 

more detailed description of the input signal than if a single index sequence is used. 

In our system, word-specific VQs are integrated into the framework of an HMM 

recognizer. The VQ stage and the HMM stage are connected together with the 

intention to capitalize on the word-specific VQ distortion scores and index sequences. 

The results show that word-specific codebooks have some advantages over universal 

codebooks for isolated-digit recogiition systems based on discrete HMMs. 



ACKNOWLEDGEMENTS 

I would like to thank my superviscr Dr. Vladirnir Cuperrnan for his gnirlaliw, his 

dynamism and his sharp management of my research project. 1 all1 also gratt3ful to 

Dr. Edgar Velez for his invaluable help, for his patience, for the fruitful convc~rsrttio~ls 

we had together and for the good suggestions he pointed out to mt.. I woultl l i  kc 

to thank Mr. Craig Scratchley who helped me to start correctly Iny project. I 

thank Mrs. Brigitte Rabold for her help when I needed inior~natiori a d  Mr. Cliao 

Cheng for his assistance on computer related issues. Finally, I would like to tlialik 

all my friends in the Engineering department who certai~~ly contributcxl to thc work 

I have done in SFU. This research project was supported by tl~ct Natural Scitm(:c:s 

and Engineering Research Council of Canada. 



CONTENTS 

. . 
.APPROVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

.* .  AHSTRAC'I' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 

LIST OF FIGURSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

LIST O F  TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

B INTRODUCTION 1 

2 SPEECH RECOGNITION OVERVIEW 3 

2.1 Constraints in speech recognition . . . . . . . . . . . . . . . . . . . . 3 

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2.2.1 Speech recognition model . . . . . . . . . . . . . . . . . . . . 6 

2.2.2 Feature measurement . . . . . . . . . . . . . . . . . . . . . . . 8 

2.2.3 Pattern similarity measurement and decision rule . . . . . . . 12 

2.3 Proposed isolated-digit speech recognizer . . . . . . . . . . . . . . . . 17 

3 FEATURE EXTRACTION 19 

3.1 Digitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

3.2 Pre-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Block into frames 21 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4 Hamming window 21 

'Pj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.5 Energy 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.6 Differenced energy 23 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.7 LPC analysis 2 1  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.8 Cepstrum coefficients 26 

L - . . . . . . . . . . . . . . . . . . . . .  3.9 Differenced cepstrum coefficients .? ( 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.10 Feature vectors 28 

4 VECTOR QUANTIZATION 

. . . . . . . . . . . . . . . . . . .  4.1 Codebook training 

. . . . . . . . . . . . . . . . . . . . . .  4.1.1 Distance measurement :I 1 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4.1.2 LBG algorithm 31 

. . . . . . . . . . . . . . . . . . . . . . .  4.2 Vector quant.ization pxxess 35 

. . . . . . . . . . . . . . . .  4.2.1 Output index and distortion score 35 

. . . . . . . . . . . . . . . . . . . . . . . .  4.2.2 Multiple codebooks 35 

5 HIDDEN MARKOV MODELS 37 

. . . . . . . . . . . . . . . . . .  5.1 Discrete HMM vs Continuous HMM 38 

. . . . . . . . . . . . . . . . . . .  5.2 HMM for isolated-word recognition :I!) 

. . . . . . . . . . . . . . . . . . . . . . . . . .  5.2.1 Basics of HMM 4 0  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Training the HMMs 4 3  

. . . . . . . . . . . . . . . . . . . . . .  5.3.1 B a ~ r n . . ~  eich algorithm 44 

. . . . . . . . . . . . . . . . . . . . . . . . .  5.4 Recognition with HMMs 47 

. . . . . . . . . . . . . . . . . . . . . . . . .  5.4.1 Viterbialgorithm 47 



. . . . . . . . . . . . . . . . . . . . . .  5.5 .Multiple observation sequences 48 

6 ISOLATED-DIGIT RECOGNITION WITH VECTOR QUANTI- 
ZATION AND HIDDEN MARKOV MODELS 49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.1 VQ recognizers 51 

. . . . . . . . . . . . . . . . . . . . .  6.1.1 Isolated-word recognizer 51 

. . . . . . . . . . . . . . . . . . .  6.1.2 Isolated-phoneme recognizer 53 

. . . . . . . . . . . . . . . . . .  6.2 Single codebook VQ-HMM recognizer 53 

. . . . . . . . . . . . . .  6.3 Word-specific codebook VQ-HV'A recognizer 56 

. . . . . . . . . . . .  6.3.1 Candidate selector VQ-HMM recognizer 59 

. . . . . . . . . . . . . . . . .  6.3.2 Combined VQ-HMM recognizer 61 

. . . . . .  6.3.3 Fully interconnected word-specific VQ-HMM system 63 

7 EXPERIMENTAL RESULTS 68 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 Speech databases 66 

. . . . . . . . . . . . . . . . . . . . . . . . . .  7.1.1 Studio database 66 

. . . . . . . . . . . . . . . . . . . . . . . .  7.1.2 Telephone database 67 

. . . . . . . . . . . . . . . . . . . . .  7.2 Vector quantization recognition 70 

7.2.1 Isolated-word recognition . . . . . . . . . . . . . . . . . . . . .  70 

- I . . . . . . . . . . . . . . . . . .  i . 2.2 Isolated-phoneme recognition 73 

. . . . . . . . . . . . . . . . .  7.3 Single codebook VQ-HMM recognition 80 

. . . . . . . . . . . . .  7.4 Word-specific codebook VQ-HMM recognition 82 

?.<.I Recognition with the candidate selector VQ-I3Mh4 system . . 83 

vii 



7 - 4 3  Recognition with word-specific global codcbook anti iiQ- IlhI h l  
information combination . . . . . . . . . . . . . . . . . . . . .  S(i 

7.4.4 Recognition with cmdidate y re-selection arid VC)- I I hI hi in for- 
mation combination . . . . . . . . . . . . . . . . . . . . . . . .  S 1  

7.4.5 Recognition with the fully iritcrcon~itctctl word-spcci tic.  VC)- 
HMM system . . . . . . . . . . . . . . . . . . . . . . . . . . .  SS 

8 CONCLUSION 90 

Appendix A: Telephone database speech file pre-processing 92 



LIST OF FIGURES 

Block diagram of a pat tern-recognition model . . . . . . . . . . . . .  

Time warping process (a) and path constraints area (b) . . . . . . . .  

Schematic diagram of the proposed recognizer . . . . . . . . . . . . . .  

Block diagram of the feature extraction stage . . . . . . . . . . . . . .  

Schematic diagram of a vector quantizer . . . . . . . . . . . . . . . . .  

Iteration procedure for codebook generation when codebook size is 2b 

Representation of (a) an unconstrained HMM and (b) a Bakis HMM. 

Representation of the 5-state Bakis model . . . . . . . . . . . . . . . .  

Uniform initialization of matrix A . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . .  Representation of a word-specific VQ recognizer 

. . . . . . .  Representation of a single codebook VQ-HMM recognizer 

Representation of a global codebook . . . . . . . . . . . . . . . . . . .  

Representation of the word-specific VQ-HRIM implementation problem . 
n T 7 A  T T ~  *a I nepreseniaiion of the candidate selector vq-HMM recognizer . . . . .  

Representation of the combined VQ-HMM recognizer . . . . . . . . . .  
Representation of the fully interconnected VQ-HMM recognizer . . . .  



LIST OF TABLES 

'7.1 List of phonemes (a) a d  single digits phonetic tra~iscriptioris ( 1 ) )  . . 69 

7.2 Isolated-word recognition results with word-speci fic VQ rccogniztrr 
tested with the studio database . . . . . . . . . . . . . . . . . . . . . 72 

7.3 Isolated-phoneme recognition results with the telephone da.talx~'.:c . . 75 

7.4 Confusion matrix for the phonemes of the telephone databasi: . . . . 76 

7.5 Isolated-phoneme recognition results for phoneme "z" . . . . . . . . . 78 

7.6 Isolat ed-phoneme recognition results for phoneme " t h" . . . . . . . . 7!) 

7.7 Isolated-word recognition with single codebook VQ-HMM systems . . X I  

7.8 Recognition rates for candidate selector VQ-HMkI system . . . . . . 84 

7.9 Recognition rates for the combined VQ-HMM system . . . . . . . . . 85 

7.10 Recognition rates for the global codebook and VQ- W MA4 co~r~t~inilt i o r l  86 

7.11 Recognition rates candidate selector and VQ-IIMM infornlatjorl 
combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 



CHAPTER 1 

INTRODUCTION 

Spc-cch recognition research has evolved considerably in the last few years, but 

progrt.ss is still needed if reliabk speech recogr$i;ers are to be deveioped. In order 

to find applicable solutions, tbe problem of recognition is often reduced by selecting 

specific application tasks. In other words, the systems are developed within fixed 

recognition constraints. For this thesis, the goal is to build a speaker-independent 

isolated-digit recognizer. 

The problem of isolated-digit recognition has been discussed frequently. A main 

strearn in the current research is oriented toward the implementation of hidden 

Sfzrrkov models i WhiM). The interest for HMMs has been encouraged by the suc- 

ct5s obtained from HNM-based systems 121 1261. One of the most successful HMM 

aec;g:;izers is the SPHfSX system j121. In this thesis, the basic techniques of the 

S PIl f NX system are applied and adapted to  our recognition conditions. 

The SPHINX st-stem uses a VQ pre-processor to reduce the amount of data to 



be processed through the HMMs. However, we will show that VQ can do m o r r  than 

simply quantize a signal for HMM recognition. Information call bc cstractcd from 

vector quantization and can be used directly for recognition. Different systems will 

be tested to find out if additional VQ information can ilnprovc the pcrfornlance o f  

HMht-based recognizers. 

Since VQ information will be used for recognit~ion, we will iocus on tlw V Q  stage. 

Many characteristics of a vector quantizer can be modified. During this resc~arch, I 

studied how the final results of an isolated-word VQ-IIMM recognizes are il~flucnced 

by the following parameters: the size of the codebooks, the nunlber of codebooks 

(or VQ sequemes), and the individual codebook training set. Also, we will ejcar~iir~c 

how the VQ stage can be connected advantageously to the HMM stage i n  order to 

make full use of the informations provided by the VQ stage. 

In the next chapter, a general overview of speech rccogriitio~~ is pr ixr~ted to 

clarify the state of the current research and to place VQ and HMM tcchniqut:~ in 

their proper context. A system overview will then be presented with the ri:cogriition 

process being divided into three stages: feature extraction, vector y uant iza.t,ior~, 

and hidden Markov models. Chapter 3, 4, and 5 explain the basic approach of 

each processing stage and present the adaptation of these techrli yuw to our spccific 

recognition tasks. 

Chapter 6 presents ten different versions of VQ-HMM isolated-digit rc:cogniz- 

ers. Chapter 7 presents the experimental results obtained by the systems proposed 

in Chapter 6 .  S a m  conclusions are drawn from every recognizer's perforrnanct;~. 

Finally, a general conclusion closes the discussion. 



CHAPTER 2 

SPEECH RECOGNITION 

OVERVIEW 

2.1 Constraints in speech recognition 

The ultimate goal of speech recognition is to build a recognizer working under any 

possible conditions, without any restrictions. However, the diversity of speech signals 

and words is SO wide that some constraints need to be assumed. Therefore, it is first 

necessary to define the constraints of the recognizer. The possible constraints are : 

1) speaker dependence, 2) connectivity between adjacent words, 3) vocabulary size. 

1. Speaker-dependence or speaker-independence 

A speaker-dependent recogsizer is a system trained to be used by a limited 

number of speakers. A speaker-independent system, however, is capable of 

recognizing speech from any new speaker. Since speaker-independence implies 



a much wider variety of speakzrs, it is 2c significdAy more diffiic~dt task than 

speaker-depencient recognition. The system considered in this thesis is ~pca1ic.1.- 

independent. 

2. Isolated words or continuous speech 

Ideally, a speech recognition systerr, should recog~ize co~ltinuous speech in the 

form of normal conversation, without any pauses eriforccd bcstwcen the words. 

However, continuous speech recognition brings rnaliy prcblems for threc r n a i i i  

reasons. 

First of dll, word boundaries in continuous speech are difficult to defitic ;md to 

locate. Conseyue~tly, searchirig becomes more complex and recognitiori less 

accurate then in the iselated-word case. A second difficdly that, arises for 

continuous speech is the presence of co-articulatory effects. Since the articu- 

lators of the vocal tract don't move instantaneously from one positior~ to the 

other, the phooemes of a u t te raxe  can be strongly influenced by rieighboring 

phonemes. For continuous speech recognition, the co-articulatory effects arc 

very hard to predict. Thirdly, short words such as articles, prepositions, pro- 

nouns, or short verbs, are often shortened, skipped, distorted or sirnp!y poorly 

articulated. 

Continuous speech recognition is thus a difficult probkru and viable implc- 

mentations require high computational complexity. The difficuitics associated 

to  continuous speech require solutions going beyond the scope of this the- 

sis. Therefore, we will focus on isolated-word recognition where each word 

is isolated by a definite pause. Word-spotting will not be necessary and the 

pruE!ems of co-articulatory effects will be easier to handle since the number 



of possihfe combination of neighboring phonemes is reduced. However, many 

problems remain, especially if the input signal contains noise. 

3. Vocabulary size 

Generally, small vocabularies are easier to recognize than large ones because 

there is less possible confusion and the complexity of search is lower. With 

small vocabularies, each word can be modeled separately as a distinct refer- 

ence. But for large vocabularies (1000 words and more), it is normally not 

possible to train a separate model for each word because of the limits im- 

posed for training time and storage space. Instead of using word models, it 

is possible to create subword models. Subword units can be phonemes, broad 

phonetic categories, cliphones, &mi-s yllabies, sylla,bles, et c. For large vocab- 

ularies, there is normally much iess subword units than words. In the English 

language, there are up to 100000 words but only about 1000 demi-syllables, 

2500 diphones , 20000 syllables and less than 100 phonemes [12]. The sub- 

word units can eventually be combined at higher levels to form the desired 

utterances. 

The choice of subword units is critical and can have a determining influence 

on the performance. The choice of unit is determined by the number of units 

present in the vocabulary and on the system's capability to discriminate be- 

tween the descriptive features of the different units. The units must also 

be insensitive enough to context. Finally, the hierarchical structure through 

which sequences of units are combined into words must be general enough to 

make the reconstruction of utterances possible. 



The vocabu!a.ry used in this thesis is limited to the single digits. So, wit11 

such a small vocabulary, it is possible to irnplernc~ii word xnodcls instt:a.ci of 

subword models. 

Once the constrailits are established, the speech recogrlitio~l syste~n has to bv 

designed. The xiext sect io~ describes the most generally used spc~cch rccogrlit,ion 

techniques. 

Literature review 

2.2.1 Speech recognition model 

Speech recognition is a general problem that leads to many different proposed solu- 

tions and systems. Although the existing recognizers rimy use very different tech- 

niques, they are built following general rules defined by pattern-recognition r ~ ~ l c l s .  

Fig. 2.1 shows a pattern-recognition model used for isolated-word recognition [%I. 
This section, as well as this thesis, is limited to the problem of isolated-word recog- 

nition. Nevertheless, the basic techniques developed for isolated-word recognition 

are often similar to  those which are applied for continuous speech recogr~ition. 

The three basic stages of the model shown in Fig. 2.1 are: 

1. feature extraction; 

2. pattern similarity measurement; 

3. decision rule. 
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The input to the system is the speech waveform itself. The signal is digitized and 

transformed into feature parameters which should preserve the relevant information 

of the input s ignd Many different features can be extracted and the choice available 

depends on the model to be implemented 1281. The computation tine, the storage 

space and the ease of implementation also are important factors to consider when 

sets of features are chosen. 

Once the input features have been processed, they are compared to reference 

patterns which are separated into classes. For example, different words or different 

phonemes could be separate classes. Different classes can also be created for different 

features. Training procedures form reference patterns for each class by averaging 

many features of a same class. For recognition, the system identices the reference 

patterns that match the input features the most closely. 

4 
& 

The three steps of the pattern-recognition model are interdependent. The pat- 

tern similarity measurement depends on the feature extracted. The decision rule is 

also determined by the set of distortion scores obtained from the pattern simiiarity 

block. Consequently, the design of a speech recognizer is not straightforward, all 
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design decisions are related to each other and h v e  all illipacl on 1 1 ~ 1  iiual sj.sktii 

performance. 

2.2.2 Feature measurement 

Fzature measurement is basically a data reduction process wllcreby a largc nu~lllwr 

of data points (samples of the speech waveform) are transformed into a srilallt-r scat of 

features which are relevant in the sense that they contain the irnporta~~t prqwrties 

of the acoustic waveform. It would be computationally costly to use directly tlia: 

speech samples to make pattern similarity measurements. 111 this scctio~l, the 111ain 

features used for speech recognition are presented. 

Amplitude or power versus time 

The main reason to use power as a feature is to difrerentiatc t~etwccn ~ilc~lccb i ~ ~ i d  

speech or between voiced and voiceless sounds. It can also be used to dc:t,cct word 

endpoint informati~n. Zero-crossing information can bc used as a cornpl(:~ric:~~t to 

energy to identify the fricatives and sibilants [23]. Thc t,echnique used to cal(:ul;~tc: 

power will be described in the next chapter. 

Filter bank analysis 

Filter-bank analysis [27] provides a computationally cheap and fast way to extract 

spectral information of a signal. The basic idea is to pass the specch sigrtal throt~gh 

different bandpass filters. The filters are put on para!lel branches and extract diffix- 



cn  t adjacent band frequencies. The bank of filters covers normally the frequencies 

from lOOIiz to 3000IIz or 8000Hz. The number of filters can vary from about 5 

to as many as 32, and the filter spacing is generally h e a r  until about lOOOHz and 

logarithmic beyond 1000Hz. Nonuniform spacing of the filters is used to exploit the 

ear's decreasing frequency resolution with increasing frequency. 

'I'lie output of each bandpass filter is usually passed through a non-linear element 

and a low-pass filter to give a signal which is proportional to th2 energy of the speech 

s i g ~ ~ a l  in the hand. The resulting signal coming out of each branch is proportional to  

t!w energy of the input signal in that particular band. The outputs of the branches 

arc used as the features for the recognizer. 

Fourier analysis 

Fourier representation has traditionally played a major role in speech processing. 

Fourier representat ions give good descriptions of the spectrum of a signal. Standard 

Fourier representations are usually appropriate for periodic, or stationary random 

sig~ials. Speech is a non-stationary signal. However, temporal properties such as 

energy and correlation are usually assumed to be fixed over short time intervals 

f 10 ms to 30 111s). Therefore, it is possible to do Fourier analysis by applying the 

short-time Fourier transform [27] on such intervals. 

LPC parameters 

'l'licb linear predictive coding (LPC) technique [Is] [I] has been found to be a robust, 

reliable and accurate method to estimate the characteristics of linear, time varying 



systems. The speech production can be nmdeled as the oiltpiit L j f  a liilcar. tizrtca 

varying system excited by periodic paises or random noise. Co~iscyilc~ltlj, 1,I'C is 

widely used for the purpose of speech recognition. A detailed cicw.ripiio~i of 1,PC 

analysis will be done in Section 3.7. 

Cepstrum 

A voice signal has a rapidly-varying component (vocal cord escitatiorl) a d  a. slowly- 

varying component (vocal tract changing). The magnitude spectrum I X ( w )  /, S (w) 

being the Fourier transform of the sigiial, gives us inforrriation about tlir~ ciistrihutiori 

over the frequencies at  an instant t.  However, it is not possible to ~ x t r i ~ ~ t , ,  ~ l i s d l y  

from lX(w)l, information about the rapidly and slowly varying ( : O J I I ~ O I I C I ~ ~ S  of t,lio 

signal. 

However, this task can be accomplished by calculating thc cepstsu~~l  of tilt* sig- 

nal [21] which is defined as F-'(log /X(w)l). The cepstsuni is a11 tiorno~riorphic 

deconvolution [27] of the input signal. As it will be seen in t h c  [,PC analysis ( 3.7), 

voiced speech can be modeled as a, train of pulses (vocal cord excitatio~~) ~)asscd 

through a linear filter (vocal tract representation). 'l'hereforc, ttie speech siglra.1 can 

be seen as a result of a convolution. The cepstrurn trardorrris first this c.onvolu- 

tion into a multiplication by using the Fourier trarlsforrri arld finally rciluct:~ tho 

signal to an addition by applying a logarithm on the spcxtrurn. As a ~ ( ~ Y I I I ~ ,  t h :  

spectral envelope and the fundamental period can be separated by horrict~rlorpliic 

deconvolut ion. 



Formants 

' l 'h voca! tract, like any other acoustic tube, has natural frequencies which are a 

function c-if its shape. These natural resonances are called formants and are the most 

important acoustical characteristics of the vocal tract. Formants represent listener's 

primary source of information about the positio~l of the speaker's vocal organs and 

they are identified by number in order of increasing frequency: Fl, F2, etc. 1231 In 

spc:ech recognition systems, at least the three first formants are considered. 

Inhrrnat.ior~s about formants is contained in the spectral envelope. Hence, all 

for marl!, estimators either implicitly or explicitly examine the spectrum envelcpe. In 

marly procedures, the maxima of the enveiope are considered to be the formants. 

W-arping scales 

Spectral features can be warped in frequency in order to slmulete the auditory char- 

acteristics of the human ear. The resolution ~f the human eai at  high frequencies 

is less sharp than at   OW frequencies. Moreover, formant bandwidth increases with 

frequency. Many scales have been proposed to simulate this aspect of hearing per- 

ccption. 

The Bark scale [8] corresponds to the frequency scale on the basilar of the ear's 

cochlea. It is defined as: 

where B and f represent the Eark scale and frequency in KHz. 

The Me1 scale [8] corresponds to the auditory sensation of tone height. The scale 



is given by: 

The bilinear transfxm [12] warps the linear axis usirtg an all-pass fi1tc.r. 'I'liis 

scale is comparable to the Bark scale or the Rile1 scale whcn tlic filtvr clc~iicwt ( I  ialit-s 

a value between 0.4 and 0.8. The filter is defined as: 

a sin w 
a,,, = w + 2 tan-'(-- 

1 - acosw 1 
where 4 is the sampling frequency expressed Ly the nornlalizect angular friqr~c.r~c.y, 

w,,, Is the converted freqwncy, and a is the frequency warping pararnc-tcr. A p s i -  

tive a converts the freque~lcy axis into a low-ficyuency weighted scale by Ic~y$lrc.~ling 

the low-frequency axis and shortening the pre-frequency axis. 

2.2.3 Pattern similarity measurement and decision rule 

Once the features of the input signal are extracted, they are matchccf to tlic: rc4c:rcmc:c: 

patterns. A strategy is elaborated to measure the sirriilari ty tctwcct~ tllc i : i i , ~ i  i, ;trrtl 

the reference pat terns. 

Three classes of recognition systems are presented i v this scction: tilt: tcm j>latc: 

matching, the probabilistic modeling and the knowledge-Gasctl approac:h. 



Figure 2.2: Time warping process (a) and path coastraints area (b) 

Template matching 

The template matching method is a decision making process matching the input 

signal to each of a set of templates. In many isolat,ed-word recognition systems, 

the reference patterns are calculated from features recorded over the length of the 

whole word rather than at  particular points; such patterns are called templates. For 

example, in vector quantization, the templates are represented by codevectors. We 

will cover vector quantization in Chapter 4. In this section, the discussion will be 

restricted to dynamic time warping alignment (DTW). 

Dynamic time warping solves the problem of aligning the input feature signals 

and the feature templates when the phonetic events are not co~isistent in time and 

when the durations are different. Time warping is the process through which the 

time axis of the input is nonunifmdy distorted, or warped, to align it with the t h e  

axis of the reference pattern. This process is illustrated in Fig. 2.?(a) [23]. 



The best time alignment path is a curve relating '1,. j' timr axi: . . t i i t  t ~ ' f ; . ~ t * i ! < ' t '  

pattern to the i axis of the input signal. .a distance rncasuse is calculat cxi  ;I 1 1 . ~ 1  i il,. 

signals are compared at  the position defined by the cwrc!i:iatt> o f  :ltc point.. ' I ' l t c  

distortion measure is zccumulated along the points of ~ h c  patlts. 'i iw p ~ t  It lllr~t 

generates thy ~~na l l e s t  distortion defines the best \varpir!g. Siliw t ht.1-t* is a 1;~rgt' 

number of posr;bk paths to test, constraints are often iinposctl, to l i r ~ r ~ '  t I I V  ; t i : i t g i , r . : .  

of computations: 

1. Endpoict cor~straints on the path. 

Normall;- 15e path starts at  (1,l) and ends a t  thc top right c t ~ i r i t b r  (M,!U) o f  

the grid. 

2. Local path constraints. 

The possible types of rnotions l e g ,  directions, slopes) fro111 c m t  poirit to an- 

other are restricted. 

3. Global. path constraints. 

The path c a  fa!! only in a chosen area of the f i , j )  plart. '1-llc slidowc~c~ :,i~rf'i~t.(: 

of Fig. 2.2fb) is a possible global path region. ' 1 . h  pariiiI(*!ogsar~~ ; ; : I ;N .~ (*S  

reasonable limit r; e r  the search. 

4. Distance measure. 

The distance measure is used to  search the optirnai paths ard to  c.firriiri;ttc tlir. 

paths with high accumulated distortions. 

Sever& &sta~ee measires exist a d  depend on the feature: seii. A i i i i  of iht: 

most frequently used distance measures follows: 



where a .  and !+ are the signals at i and j on the respective time axis. Euclidean 

distance will t e  the distaace measurement that will be used in the process of 

wctor quantization for this thesis. 

l 'he covariance xeighting is used to compensate for correlation between fea- 

tures arid i t  tends to give equal weight to all features for the overall distance 

caiculatior:. The  co%*ariance weighting measure is defined by: 

where T - I  is the inverse covariance matrix of the features. 

The log spcctras distance can be calculated with the following formula: 

'fhe integral covers a chosen frequency range and q is an even integer that 

makes positive the power of the difference. 

The ftakura's log likelihood measure proved to be eEcient to measure distances 

bet ween LPS derived features. The equation is: 

wtiert. 0% and k, are the LPC coefficients of the signals and R is the autocor- 

relation ~r,atris of t5e input signal. 



Even under the constraints (1 to 4) mentioned previously, t h c  narlibcr of possittlt. 

paths to evaluate remains prohibitive. Dynamic programnli~ig for t i n~c  witrpitlg 

[Dynamic time warping) solves that proble~n and achiet~es rcasonablc co~iipu tat io1laI 

complexity. This procedure is based on the fact that the best path fro111 (1,l) to 

any given point is independent of what happens beyond that point. Clotlsc~~ut.r1!,1y, 

the accumulated distance DA is: 

where d is the local distance between feature sets a; and bj. 

With dynamic programming, the distance for every possible next steps is cal- 

culated for each path. At each point, the best predecessor (the least cost 1)i~tll) is 

chosen. A search can lead to many ramifications, but the number of rs~r:~flcations 

is limited by the set of constraints. A maximum permissible accurriulat d distortio~r 

DA can also be imposed. Once the point (?d,N) is rcaclled, Li~cl;t,rackil~g is dorle to 

retrieve the best path. 

DTW has shown very good recognition rate [34] Lu t it still rcquircs a, fair a.~llou~ll, 

of computations. Consequently, other methods often rcplace I)TW for spcccll rt:r:og- 

nition applications. 

Hidden Markov Modeling 

Bidden Markov modeling (HMM) is a recognition strategy based on searching through 

stochastic models. HXM offers comparable performances to those of Df1'W i n  Inany 

applications at  a fraction (up to 17 times less [29]) of the cornputatiorial cost. I l M M  

is the basic stage of the speech recognizer proposed in this thesis and a cornpletc: 



cc;verage of this technique is done in Chapter 5. 

Knowledge- based systems 

7'0 u~derstand conversations, it is known that humans make use of their extensive 

knowledge of speech and their ability to predict the next words. Taking this into 

account, we can assume that recognition is not only done by using human percep- 

tual and analytical powers but also by using a knowledge of the language. As a 

result, knowiedge-based recognition systems were developed using the knowledge 

that humans have about the language. 

The ARPA research agency was set up to encourage research for knowledge- 

based systems and some encouraging results have been obtained [17] but not yet 

comparable to those obtained with DTW or HMM. 

2.3 Proposed isolated-digit speech recognizer 

The discussion throughout this chapter concentrated on the general aspects of speech 

recognition systems, Different techniques have been presented to give a.n idea of past 

and current research. We now focus on the systems that are to be proposed in this 

thesis. 

Our recognizers are based on hidden Markov modeling which is one of the most 

piipuhr recognition methods of the last few years. The baseline speech recognizer 

developed in this project is based on approaches developed for SPHINX [El, one 

of the most successful recent recognizers. However, many modifications were done 



Figure 2.3: Schematic diagram of the proposed recognizer. 

since our recognition requirements are different from the objectives of the SPNINX 

system and we tried to improve recognition performance for the particular task of 

small-dictionary isolated word recognition. 

The proposed recognizer can be subdivided into three stages: feature extraction, 

vector quantization and hidden Markov models. Fig. 2.3 shows the block diagram of 

the system and the function of each stage. The three processing stages are presented 

separately in the next three chapters. 



CHAPTER 3 

FEATURE EXTRACTION 

The first stage of the proposed speech recognition system is the feature extraction 

stage. The input signal is digitized and compressed into three feature vectors: com- 

bined energy and differenced energy; cepstrum coefficients; and differenced cepstrum 

coefficients. These features are commonly used in speech recognition [12], cepstrum 

notably performs well because it gives directly an accurate smoothed estimate of 

the spectral envelope of the signal. LPC-derived cepstrum was preferred to other 

LPC-based features because it has shown superior performance for speech recogni- 

tion [30] [37]. This chapter describes how the features are calculated from the speech 

sig~ial. .A block diagram of the feature extraction process is shown in Fig. 3.1. 



Signal 

Figure 3.1: Block diagram of the feature extraction stage. 

3.1 Digitization 

Two databases were used to conduct the experiments in this thesis. The first 

database was rec~rded in a studio and the second database was recorded over tele- 

phone lines. 

The tokens (a token is a speech segment) of the studio database were first filtered 

by an anti-alias filter with a cutoff frequency at around 8 KHz. The speech was then 

sampled at  a rate of 32 KHz with 12 quantization bits. A digital filter with a 3.4 

KHz cutoff was applied to the sampled speech. Finally, the digital signal wa:i down 

sampled to 8 KHz by extracting one sample at every 4 samples. 

The telephone database was filtered through an anti-alias filter with a cutoff 

frequency at  4.8 KHz. The sampling frequency was set to 10 KHz and the signal 

was quantized on 12 bits. 



'ii, reduce the possibility of computational instabilities due to finite precision arith- 

mctic, the signal for each utterance is spectrally flattened by pre-emphasis. The 

filter used for pre-emphasis is : 

3.3 Block into frames 

The digital signal is blocked into frames of 2G ms. For the studio database, the 

frames contain 160 samples and for the telephone database, the frames contain 200 

samples, In both cases, the consecutive frames are overlapped by 10 ms. 

3.4 Hamming window 

To reduce spectra! spreading due to  the Gibbs phenomenon, each frame is multiplied 

by a Hamming window. The multiplication of the speech wave by the window 

function gradually attenuates the amplitude at both ends of the extraction interval 

to prevent an abrupt change at the endpoints. The equation for a Hamming window 

is : 

~ ( 7 1 )  = 0.54 - @.46cos(2nn/(N - 1)) (3.2) 



3.5 Energy 

We incorporate energy as a feature iri our recognition system. Energy is rlliii~lly used 

because it facilitates the separation 

computed from the waveform with: 

4 

of speech from silcnce. Energy can simply be 

where Et is the energy for frame t, which has M discrete time sarnplcs i n  it, I I ~ L I ~ ~ C ; ~  

21, x2, " ' , XM. 

The absolute value of the energy can be used to detect silence by fixing an encrgy 

threshold under which the signal is considered to be silent. However, the absolute 

energy is not a reliable source of information in speech recognition because the: voice 

loudness for two speakers may be quite different. Consequently, the ir~put tokc~is 

need to be normalized. Normalization is done by subtracting the peak energy valuct 

of a token from the energy of all the other frames of the token: 

Et is the energy value for frame t and Em,, is the overall maxirnu~r~ frarric: erlergy 

for the token considered. 

Normalization cannot be applied without any corlsideration on thc ~iaturct of t f ~ c  

token (the token can be a word or a phoneme). The normalization of a phorlcwic is 

not comparable to the normalization of a word. Wr example, the normalized energy 

for a low energy phoneme within a word (dsing the peak energy of the word) may 

give much lower normalized values than if this low energy segment was riorrriaiizcd as 

a ghoneme (using the phoneme's peak energy). Therefore, it would be meaninglcss 



to compare normalized energy values of an input word if the energy values of the 

refererice templates have been normalized from the peak energy of phoneme tokens. 

A way to solve the above problem is to normalize the energy of a phoneme by 

using the peak energy of the word from which that phoneme was segmented. 

3.6 Differenced energy 

The differenced energy [I21 is calculated in order to estimate the slope of the energy 

signal at different times, which can be helpful to recognize the plosives since the 

slope locates the changes in loudness of the signal. The differenced value for frame 

t is obtained by making the difference between the energy of frame t+2 and t-2: 

3.7 LPC analysis 

Linear predictive coding (LPC) [I81 [I] is a basic technique for estimating speech 

parameters with linear combinati~ns of past speech samples. The LPC coefficients 

calculated in the LPC analysis aiso provide xcurate  estimates used for the mod- 

eling of the vocal tract and are thus used as features in our system. The next 

paragraph gives a model for speech production. From this model, we will see how 

LPC coefficients can be used to characterize the speech signal. 

The production of speech can be modeled a. the output of a linear, time-varying 

system excited by either periodic pulses (during voiced speech), or random noise 



(during unvoiced speech). The transfer function "titwccrl thc input (cxcitat.iou) aurl 

the output (speech signal) can be approximated by: 

The speech samples (y;(n)) are then related to the e t c i t a t i o ~ ~  ( x i ( ? ) . ) )  by a 1 1  a.ll-polc 

filter model: 
M 

yi(n) = akyi(n - I;)  + Gri (n)  
k=1 

In this model, G is the gain parameter, the ak's are the filtcr c o c ~ f l i ~ i ~ l l t s  nr~cl A! is 

the order of the analysis. 

On the other hand, from the linear prediction theory, wr: lc~low t3Iliit, y , ( r r )  cim L ) c b  

predicted with: 

And, the prediction error, e(n), is defined as: 

From Equation 3.9, it can be seen that t he  prediction error scquc:~icc~ is ttlc output  

of a system whose transfer function is: 

By comparing Equatiors 3.7 and 3.9, we realize tha t  i f  a k  = ak, t11c:rr c(r t )  = 

Gxi(nj. Thus, the prediction error filter, A(z) ,  will be an inv(:rse filtcr for thc 

system, H(z),  of Equation 3.6: 



From these models, it is showed in [27j that the LPC coefficients (ak) give 

good estimates of the spectral properties of the speech signal. We can see from 

Equation 3.9 that the minimization of the prediction error allows to find a set of 

uk's. But, because of the time-varying nature of the speech signals, the predictor 

coefficients must be re-estimated for every short segments of the speech signal. If 

the signal is divided into frames of length N, the resulting prediction error for a 

IIarnming windowed frame is: 

The minimization of the mean-squared error is achieved using the autocorrelation 

method [IS] [I91 because in our system's conditions (frame size equal to 200 samples 

and LPC order 14)) it was shown that the autocorrelation method was as good 

as the covariance method and superior to the lattice method [27]. The details of 

the autocorrelation method are given in 1271 and are summarized in the following 

equations. 

The expression of a short-time autocorrelation function of the interval 0 5 m < 
it' - 1 Is defined with: 

Given this definition, the minimization of the mean squared error ( 3.12) leads 

to the follriwing expression: 

This is a system of M equations and M unknoluns, ul, o l z ,  . . , CYM, which can be 



expressed in a matrix form as: 

The A4 x M matrix is a Toeplitz matrix, i. e. , it is symr~ictric altcl all tilt: 

elements on any diagonal (from up left to down right) are equal. 'rliis ~liabrix (:ill1 

be efficiently solved with Durbin's recursive solution [Is]. The resulting ir~for~rii~tioli 

obtained from LPC analysis is a set of M LPC coefficients extracted for c ~ d i  fri~rnc* 

of the input signal. The order M of the analysis was set to 14. According to [27 ] ,  wc 

need 3 or 4 poles to represent the source excitatioii spectrum and we riccd oric pol(: 

per KHz (of the sampling frequency) to represent the contribution of the vocal tract 

to the speech spectrum. In our case, the sampling frecluency was 10 KIIz (8KlIx  for 

the studio database) and that is why order 14 was chosen for the LI'C analysis. 

3.8 Cepstrurn coefficients 

The cepstrum 1211 is a function from which it is pssible to extract scparatc:ly t , I ~ c :  

spectral envelope of a signal and its fundamental period. As it was tlcfird i r i  S w -  

tlon 2.2.2, the cepstrum can be obtained by computing the inverse ll'ourier transform 

of the log Fourier transform of the signal. 

The cepstrum can also be evaluated with a method based on the hornornor- 

phic analysis [8] (see Section 2.2.2). As a result, the cepstrurn coefficients car1 be 



recursively calcuiated from the LPC coefficients: 

where ai7s  are linear prediction coefficients and Ci's are an LPC cepstrum coeffi- 

cients. Like in the case of the SPHINX system 1121, the order of the LPC analysis 

( p )  is fixed to 14 and the dimension of the cepstrum vectors (n) is fixed to 12 co- 

efficients. These dimensions correspond approximately to those generally used for 

speech recognition systems. The cepstrum vector dimension must be high enough 

to give good estimates of the cepstrum and low enough to avoid cumbersome con- 

putations. 

3.9 Differenced cepstrum coefficients 

'I'ernporal changes in the spectra are believed to play an important role in human 

perception. Therefore, differenced coefficients [12] are used to capture the slope of 

the temporal changes. The differenced cepstrum coefficients are calculated using: 

where Ct (k )  is the kth element of the cepstrum at frame t .  

The slope is calculated from a difference of 4 overlapped frames (40 ms like in 

the SPHINX system). For the first two frames of a utterance, it is impossible to get 



the term Ctd2(k). Consequently, the shpe is calculated by dohg all c ~ s t r ; t ; t t : l i ~ t  ion: 

1 
AG(x-> = - ( G , ( k )  - c,, (k) )  

t j  - t i  

where tf and t i  are the ending frame and the begiiinirig fritiltt. o f  t h  sltqw. 'l'liv 

same interpolation is done for the last two differenced coctfticimts of the t~ti.c.sa~tcc. 

3.10 Feature vectors 

The resulting features obtained from the process illustratcri on l'ig. 3.1 arc- t I i r . ( ~  

vectors generated frame by frame: 

1. Energy vector of dimension 2. The first element is tile differtmwtl t:wrgy of it 

frame and the second element is the energy i tsclf. 

2. Cepstrum coefficients as a vector of dimension 1%. 

3. Differenced cepstrilm coefficients as a vector of dirr~erlsion 12. 



CHAPTER 4 

VECTOR QUANTIZATION 

Vector quantization(\'Q) is z data reducticir technique that maps a real vector onto a 

discrrte symbol. tkctor qilantizatior; is used to compress input signal feature vectors 

i!!to single indexes. .At each frame, 24 feature vector elements are compressed into 3 

indexes. Cor:scquentIy, the amount of computations for the following stages of the 

proposed system is greatly seduced. Despite the compression of the information, 

vector qua~ttizatiori resuits in ocly a iirtle lost in accuracy 1303. 

The basic concept of vector quantization is schematically depicted in Fig, 4.1. A 

vc.ctr,r cjaantizer is completely described by a codebook and a distortion measure. A 

rodrbook is a finite collection of vectors called codevectors (C,(k)). Each codevector 

has the  same dimension as the input vector (V (k ) ) .  The codebook is trzined to 

represent the distribution of the training vectors, and to nliaimize the total distortion 

t i i  t.a& trainiqg vector against the best matching coderector. 

In our q-steml the codebooks are trained with the LBG algorithm [16]. The 



Figure 4.1: Schematic diagram of a vector quantizer. 

1 

LBG algorithm is a clustering algorithm, used to separate the training data set into 

groups, or clusters, of similar data items and each cluster's centroid is assigned as a 

codebook codevector. 

The VQ output is the index of the codeword which best matches the input vector. 

The VQ can also output a distortion measure (d,;,) giving the distance between 

index i 

n-rin 

Vector to 
quantize 

~ ( k )  + 

the input vector and the chosen codevector. As we will see later (Chapter 6), this 

distortion measure can be useful for the recognition decision procedure. 

Qumtizer 
K 2 

dm,= 15511 mfi ( L=l E (ci &)-~(k) )  ) 

The next sections describe in more detail the VQ training procedure and the 

method used to generate VQ indexes. 



4.1 Codebook training 

'I'lte goal of a vector quantization training algorithm is to generate a number of 

r:odevectors from a large sample of training vectors. Codebaok training selects the 

codevectcirs representing the distribution of the training vectors and minimizing the 

total distortion of each training vector against the best matching codevector. In this 

section, the distortion criterion and the codebook training algorithm are presented. 

4.1 ,1 Distance measurement 

For the training procedure and the quantization process of our VQ stage, the dis- 

tortion measure used to calculate the distance between two vectors is the Euclidean 

distance. Many speech recognizers, including the SPHINX system [12], use the Eu- 

clidean distance measurement because it gives good comparison scores for cepstrum 

coefficient vectors [373. The distortion measure is given by: 

where & and I/z are the two vectors to be compared. 

4.1.2 LBG algorithm 

The LBC: algorithm [lo] is a VQ clustering process splitting consecutively the train- 

ing data into 2,4 ,S ,  . . . ,2' clusters. The training set is divided into clusters by 

iterative refinement. Each tmining vector is classified iiito the cluster whose cen- 

troid best matches the vector. Once all the training vectors 'nave been classified, a 



new centroid is calculated for each cluster (or cell) by avcragi~ig all tlic vt%c.tc>rs of 

the cluster. This process is repeated a fixed nunibcr of tilncs to rcduw the. avc~-  

age distortion (the average distance Setween the \Tectors and tlic ccniroict) of c w l l  

cluster. The steps of e bit stage are illustrated in the fjowcllart of Fig. 4.2. 

At the beginning of the training algorithm, we need to choose a set of iliitial 

centroids. In the case of the K-means algorithm, the number of initial cer~troitis is 

equal to the size of the codebook to be trained. This method lisnits thc tsairiing 

procedure to one bit-stage, however, some codcvectors may be poorly trairlcd tlut. to 

the fact that the values of the initial centroids may not be propcrly sct. 111 011;- cast*, 

we avoid this problem by starting with iu.0 initial clusters frorn which the iiiitial 

centroids are calculated, And, when the centroids of the clusters have c-orivergctl, 

the clusters are split by separating each current centroids into two ricw m~troids .  

The old centroids are simply multiplied by pre-determined factors. 'I'lic itera t i  vc 

process is then applied to the new centroids. The algorithm ends wheri the riur~ibw 

of centroids is equal to  the number of codevectors needed to he trairicd for t f ~ c  VC) 

codebooks. Each centroid is stored as a codevector. 

The LBG algorithm can be summarized by the following steps: 

1. Start with two initial codevectors. 

2. F x  each vector in the training set of a codebook, do a full search ovcr d i  

available codevectors to find the nearest neighbor (using Eq. 4.1) arid then 

assign the input to the corresponding cell. 

3. Update the centroid for each cell by computirlg the average of the vwtors of 

the cell and use the new centroids as the current codevectors. 



4. Repeat 2. and 3. a fixed number (N) of times. 

5 .  If the current number of codevectors equals L (number of codevectors to train 

for the codehook), repeat 2 .  and 3 .  for a fixed number (M) of times more, 

and then stop. Steps 2. and 3 .  are repeated A4 times to be sure that the final 

centroids have converged. 

6. If the current number of codevectors is inferior to L, initialize codevectors for 

the next bit stage by splitting each centroid into two: one equal to the old 

centroid, and the other equal to the old centrold multiplied by a factor (in our 

case 1.01). Then, go to 2 .  

For some applications, the size of the codebooks (L) needs to be set to a number 

which is not a power of 2. Therefore, the codebook training procedure has to be 

altered. The following operations are added to generate codebooks of any size: 

I .  Train a codebook of size 2b where 2b < L < 2b+'. 

2. Choose the ( L  - 2 b )  centroids having the highest average cluster distortion. 

3. Split the ( L  - 2 b )  chosen centroids to obtain, with the first 2b centroids, a total 

of L centroids. 

4. Train the L centroids with the clustering algorithm to obtain the final code- 

book. 
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Figure 4.2: iteration procedure for codehook generation when codebook size is 2b 



4.2 Vector quantization process 

4.2.1 Output index and distortion score 

Once the codebooks have been trained, vector quantizatioa is done by matching one 

by one the j i l p~ t  vectors against the codevectors. Equation 4.1 is used as the vector 

comparison distortion measure. The index of the closest codevector to the input 

vector is output from the VQ (Fig. 4.1): 

dmin = min i C (C, (m) - V(m))2] 
l l n 9  m=l 

Cn(m) is the mth coefficient of the nth codevector in the codebook and V(m) is the 

nzth coefficient of the input vector. 

dm,, is the distortion resulting from the quantization of one input vector. The 

quantization distortion can be accumulated for all the frames of an input utterance. 

A final distortion score can be obtained for each codebook by averaging the dm;, of 

all the utterance's input vectors: 

I); is the distortion score for codebook i and T is the number of frames in the input 

token. The distortion score will be used as a VQ information for the recognition 

decision in some of our systems (see Chapter 6). 

4.2.2 Multiple codebooks 

I t  has been seen in the chapter on feature extraction, that three sets of features are 

generated. At every frame, one cepstrum vector, one differenced cepstrum vector 
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and one energy vector are calculated. It is necessary to clcfinc t*hc proctlss by which 

the feature vectors are processed by the VQ stage. 

The approach suggested in this thesis is the multiple ccdebook vector quantiza- 

tion [9]. Lower quantization distortions are obtained wlieri tlic fcaturc vcctors a,rc 

partitioned in different feature codebooks rather than used in a corunion coticbook 

where a codevector would represent the three features in  a satlie vector [12]. A 

different set of codebooks is trained for each feature. Consequently, for each frnrnc 

of speech, not one but three VQ indexes are used to describe the input sigllal. 

One problem with the multiple codebook approach, however, is tlic ~ i c c c l  of 

substantially more storage. In our case, the number of psranietcrs for the rnodcls is 

tripled. 



CHAPTER 5 

HIDDEN MARKOV MODELS 

At this point in the system's description, temporal information was analyzed only 

in the feature extraction stage when the differenced coefficients were calculated. 

Differenced coeEcients represent the slope of a signal at  different times. It is evident 

that this information gives only a part of the temporal information in a signal. In 

the chapter on VQ, we ignored the discussion on temporal variations of a speech 

signal because the VQ algorithm used is unable to capture this type of information. 

In this chapter, the probabilistic theory of hidden Markov chains is introduced 

as n solution for the modeling of speech signal nonstationarity. A hidden Markov 

model (HMM) is a stochastic process generated by two interrelated mechanisms, a 

hlarkov chain having a finite number of states, and a set of random functions which 

are associated with every transition between the states. 

The states are connected by trarisiticns. Each transitioo carries two sets of 

probabilities: a transition probability giving the probability of going from one state 



t3  another, and an output probability density function (pdf) ~ h i c h  providcs tlie 

probability of having afi output symbol emitted when a trarisition is takw. 

The observed sequence is assumed to be a stochastic function of the state sc- 

quence of the Markov chain. The state sequence itself is unobservable (hidderi). 'r'hi: 

goal is to choose the parameters of the hidden Markov model to opti~r~ally match 

the observed characteristics of a given signal. 

We could consider an HMM as a model for the vocal tract. For exanlplc, t h e  

articulatory positicns of a vocal tract can be represented by the states of ari IIMM, 

and the changes in the vocal tract position can correspond to the transitions betwcen 

the states of a model. When a transition is taken, a short signal is produced. 'l'tiis 

signal can have a finite number of possible characteristics which dept:~id on thc 

transition itself. 

5.1 Discrete HMM vs Continuous HMM 

The HMM models can be separated into two types: discrete dcr~sity I lMMs s ~ d  

continuous density HMMs. 

In the case of discrete density HMMs, the models arc c11aractcrizc:d hy discrc:tc: 

pdf's. In order to use the discrete pdf's, each input frame must hc rcprc:xritcd by 

a symbol chosen from a finite alphabet. Therefore, vector cjuantizatio~~ is uwtl as a 

pre-processing stage for the discrete HMMs. 

A second type of system is bmed on the continuous nature of specch sarnplcs. 

Usually, the speech parameters are in the form of multi-dirriensiond real-valued 



festure vectors (not vector yuantizzd). By assuming certain properties for the vec- 

tors distribution, it is possible to estimate the output parameters from training 

data. Multivariate Gaussian density [24] is often used to calculate the probability 

deil~itjr functions of the models. Many other forms of continuous densities can be 

applied 1111 [31] [33]. 

The principal advantage of using continuous HMMs is the ability they have to di- 

rectly model speech parameters. However, continuous HMMs require considerably 

longer training and recognition time. In this thesis, discrete HMMs are imple- 

mented. Although they are less flexible than continuous HMMs, and cannot recover 

from vector quantization errors, they are efficient and require less computations. 

Moreover, some useful information from vector quantization will be added to the 

HMM probabilities dufing the process of recognition. 

HMM for isolated-word recognit ion 

The most natural unit of speech is the word. Consequently, whenever it is possible, 

speech recognition systems are based on word models of speech. As it was explained 

in  Section 2.1, word models can be used if the size of the vocabulary is small enough. 

In our case, the vocabulary is very limited, therefore, a distinct HMM is used for 

each word. 



Figure 5.1: Representation of (a) an unconstrained HMM and (b) a Bakis EIhIM. 

5.2.1 Basics of HMM 

The most general case for a HMM model is the unconstrained HMh4 (Fig. 5.l(a)). In 

this model, every state can be reached with a single step from every other state. The 

unconstrained HMM can model any sequence of states, but for some applications 

like speech recognition, constrained HMMs have been found to model better the 

observed properties of the signals. The most commonly used constrained NMM for 

isolated-word recognition is the Bakis model [3] shown in Fig. 5.l(b). The Bakis 

model is a left-to-right type of HMM which has the desirable property that it can 

readily model sigxiais whose properties change over time, e. g. , speech. As a matter 

of fact, this model is a sequence of states where each state could correspond, in 

theory, to some phonetic event, and each event could be skipped. 

The characterization of a model is done by determining: 

1. {K) - the number of states in the model. 

There are no clear rules to decide how many states are newssary to model 



a word. One idea is to let the number of states correspond roughly to the 

number of sounds (phonemes) within the word. Tests have shown that 5 or 

G states were a good choice for isolated-digit recognition [29] [lo]. The HMM 

word model proposed in this work is the 5-state Bakis model(Fig. 5.2). 

2. {M) - the number of distinct observation symbols in the alphabet of the model. 

In our case, the size of the alphabet is the number of codevectors used to 

vector quantize the signal. 

3. {uij) - the set of state transitions. 

aij is the probability of taking a transition from state i to state j: 

where St is the state of the Markov chain at time t .  The probability a;j must 

also obey to the following conditions: 

Before the training of matrix A (aij), initial values for a;j must be set. A 

simple uniform distributior, is sufficient for initialization (assuming that the 

amount of training data is reasonable). 

For uniform initializatioo, all transitions from a state are considered equally 

likely to be taken. Our matrix A, based on the transition probabilities of the 

model of Fig. 5.2, is initially set with the matrix shown in Fig. 5.3. The sum 

of the elements of each row must be equal to 1 according to Equation 5.3. 



Figure 5.2: Representation of the 5-state Bskis model. 

1 1  o o , ,  
0 0 0 ;  
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Figare 5.3: Uniform irlitialization of matrix A. 



i. {b, , (k ,  j - titi: o u t p u t  syrnboi probability matrix. 

b,,(kj is the  probability of emitting symbol k (one of the VQ indexes) when a 

transition is taken from state i to state j: 

fl is the output sequence which is directly observed, and S is the state sequence 

which is hidden. So, Of is the output symbol at time t and St is the state at 

tirrie t .  

The same probability conditions as for aij's are applied: 

The matrix B is also uniformly initialized. Since k varies from 1 to M ,  and 

every symbol k has the possibility to be observed, all the initial elements of 

the matrix B are initially set io probability 1/,@1. 

5.3 Training the HMMs 

Thew is no known analytical method to solve the problem of training the parameters 

of tt h e  HM Jf models. In fact, g i ~ e n  any set of finite observation sequence as txaining 

cL.ta. there is no optimal way of estimating the model parameters. Instead, iterative 

p~oredures or gradient techniques f15j must be used. III our case, we used an iterative 

procedure: the I h d i j k h  algorithm [-I] or forward-backward procedure. 



5.3.1 Baam-Welch algorithm 

An HMM model is defined by its state transition probabilitics (a;,) a d  its out,put 

syri7bol probabilities ( b i j ( k ) ) .  In this work, aij and b,, ( k )  were uniformly i~iitialixid. 

Uniform distribution was used because more complex ini tiaiization algori thms arc 

not necessary for discrete density pdf's [12]. So, once tile initial pari~rnctcrs arc 

given, the model is reestimated iteratively with the Baum-Welch algori thrii [dl. 

The Baum-Welch algorithm reestimation procedure is based on thc intuitivcb 

notion that a new estimate of a state transition probability can be obtai~icd fro111 

the expected number of transitions from state i to state j ,  divided by the cxpccted 

number of transitions out of state i. Similarly, the new output syrr~hol probability 

for the kth symbol is the expected number of transitions from statc i to stat(: j w l ~ : r ~  

symbol k is produced, divided by the expected number of transitio~is fro111 statc i to 

state j .  The term expected is used because these statistics are usually avcragcd over 

large amount of data, and because the actual state transitions and outptlt c:vc~its 

are hidder, [25j. The complete description of the algorithm is give11 in [32] [12] i~11Cl 

can be summarized with the following equat~uris. 

Let's define the forward variable cu;(t) as: 

where X represents the model's parameters (matrix A and B) .  r x , ( t )  is th:  prol)al~ilit,y 

of having the partial observation sequence, 01, 02,, . . , Ot! (until time t )  and being in 

state i at time t 7  given the model A. Given the training data, the forward prot)ahifity 



can be recursively computed on t  with: 

In a sirnilar manner, the backward probability Pi( t )  is defined as: 

where b i ( t )  represents the probability of the partial observation sequences from time 

t + 1 to the end, being in state i at time t and given the model A. The backward 

probability can also be calculated recursively on t  with: 

Finally, it is useful to define the variable y i j ( t )  as the probability of taking a 

transition from state i to j at time t given the entire observation sequence: 

where SF is the final state. 

Using these definitions, the reestimated state transition probabilities and output 

symbol probabilities i&j and bij(k)  are calculated by integrating jointly the current 

a;( t ) ,  /.?,(t), a;j and b i j ( k ) .  The estimates are given by: 

- expected number of transitions from state ; to j given 0 - 
expected number of transitions from state i at any time 



- expected number of transitions from state i to j give11 k 
- 

expected number of trarlsitions from st,ate i to j for arty li 

Once the reestimation is done, a,l and 6 , , (k )  are used as the new a,, and h,,(k) for 

the next iteration. Good recognitior results were obtaincd with two rtwt itnatiow 

of the HMM parameters in the training procedure. 

Snioothing 

In our application, there is an insufficient amount of trail~irig data to cstimatc ap- 

propriately the model parameters. The frequently occurring output synibols riiay be 

well trained, but other symbols may be unobserved, and have zero probsl)ility. As 

a consequence, any probability multiplication having one unobser vcd out put, syrri- 

bol probability may give a zero result. This is a critical problei~:, especially for 

recognition. So, a smoothing of the output pdf is essential. 

The floor method 1151 solves the problem of zero probabilities arid works wcll for 

reasonably well trained models. If we had more difficult nmclcls to train, we could 

have used the distance method [35] or the co-occurrence rnt:thod [12]. 111 tht: f loor 

method, all the zero probabilities are replaced by a very sinall value (0.01101). 'l'o 

better smooth the pdf's, a linear interpolation is done betwccn the cstimatcs of tllo 

trained parameters and the minimum fixed values: 

where sb i j (k)  is the smoothed probability, and P, (k)  is t h e  minirnurri output s y ~ r h i  
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probability. T is experimentally calculated to optimize the performance. In our 

fiMMs, the best results were obtained with T equal to 0.998. 

5.4 Recognition with HMMs 

In our application, each HMM is trained with word tokens. For recognition, we need 

to implement a procedure to search which model is the most likely to have produced 

the input observation sequence. 

5.4.1 Viterbi algorithm 

The Viterbi algorithm [41] was used to compute the output HMM probabilities. 

The probability of an HMM is defined as the best score along a single path of the 

model. This path corresponds in the model to the state sequence that has the 

highest probability of being taken while generating the observed sequence. Given 

the state sequence S1S2. St = i ending is state i and the observation sequence at 

time t ,  the HMM probability is defined with: 

For recognition, the path probability is calculated recursively from the state 

transit ion probabilities a;j and the output symbol probabilities bij ( l c ) :  



Sr is the initial state a d  vi(t) is the path probability at stntc i and tirlic t ,  

The complete procedure to find the best state sequence is clcscrihcti i l l  132; 

Multiple observation sequences 

The procedures that were explained until now were based on tfie assurrqtiou tllat,, at 

each frame, a single observation index is input into the HMM. In our systerri, ~r~t~l t iple  

observation sequences are computed in the vector quantization stage. Recalling fro111 

Section 4.2.2, separate VQ indexes were calculated for each input feature vectors 

(cepstrum, differenced cepstrum, and energy vector). Co~lsequent ly, tlrc 13;1,1r I rl- 

Welch algorithm and the Viterbi algorithm must be generalized for tlic ~ n u l  t iplc 

observation sequences. 

Assuming that the observation sequences are independent, the gcric:ralizi~lio~~ of 

the HMM training and recognition procedures can be done by computing tho sy~rhol 

probability as the product of the independent b,j(k)'s obtai~ictl from each sctquc:r~c.c: 

where b$)(k) is the output symbol probability from sequerlm I. 

m i h e  use of multiple sequences increases the storage spacct for t he  ij ~riatrix. 

A separate set of bij(k) needs to be stored for each of t he  rnnltiple olmrvation 

sequences. Nevertheless, the addition of supplementary storage is compensat,cd by 

the fact that the precision of the signal description is significantly improv~d (see 

Section 4.2.2). 



CHAPTER 6 

ISOLATED-DIGIT 

RECOGNITION WITH 

VECTOR QUANTIZATION 

AND HIDDEN MARKOV 

MODELS 

The thrce preceding chapters described the main stages of our isolated-digit recog- 

nizers Now, wc need to see how the feature extraction stage, the vector quantization 

stage and the HMM stage can be linked to each other and integrated into a system. 

This chapter is ar, overview of the different systems that have Seeo designed and 

tested for isolated-digit recognition. 



The first system uses VQ only for recognition. Vector quantization can br~ ustd 

for recognition [22] but it does not take into account the terliposal cltztractcristics of 

the utterances. This is a major flaw for a speed) recognition syste~il a id  to corscct 

this problem, the rest of the proposed recognizers combine VQ arid IIMMs. 

The first version of the VQ-HMM recognizer uses a siugle codebook to pcrforln 

vector quantization. Single codebook systems were tested with threc difrerc~it, typos 

of codebook: one codebook made of universal codevectors, one made of word-spcv.ific 

codevectors and one made of phoneme-specific codevectors. The idca, behind tlicsc 

tests was to find which type of codevectors performs the best in a VQ-IIMh4 systc:ri~. 

The second version of VQ-HMM recognizers are made of word-specific VQs and 

word HMMs. Three word-specific VQ-HMR4 systems a,rc: prcscnted. '1'11c:so sys- 

tems were tested with the intention to illustrate that VQ can do rrlorc than siltiply 

compress data for discrete HxM recognizers by providing infor~nation tllat 111ay bc 

combined with the HMM probabilities in tghe process of tlie recogriitio~i dccisiorl. 

To sum up, we will show that discrete HMMs give good perfor~nance for isolated- 

digit recognition, especially if word-specific VQ sequences arc uscci as ot)sc~rvi~f.iorl 

sequences. 



6.1 VQ recognizers 

6.1.1 Isolated-word recognizer 

'I'he basic idca in the following system is to perform recognition with vector quanti- 

zation only [36] [38]. The suggested recognition system is illustrated on Fig. 6.1. The 

vector quantization is done with word-specific codebooks, i. e. , each word codebook 

is trained with many tokens of a same word contained in the training set. Recog- 

nition is done by choosing the word in the vocabulary whose average quantization 

distortion (according to its particular codebook) is minimum. 

Three features are extracted from the input signal. The three features are vector 

quantized separately by multiple codebooks (Section 4.2.2). At each frame, the 

features give separate quantization distortions. The quantization distortions for the 

energy and the differenced energy are calculated separately. In order to obtain a 

single distortion score for each word, the quantization distortions are combined with 

a weighted sum; the composite distance metric [7] :  

d,:,, dden, deep, and ddcep correspond respectively to the energy distortion, the 

differenced energy distortion, the cepstrum distortion and the differenced cepstrunl 

diskortion. The weights we,, wden, w,,,, and wdCep, are determined by doing tests to 

opt irnize the recognizer's performance. 

The compt~site distance is accumuiated at each frame until all the frames of the 

input word are consumed. A final distortion score is obtained for each word. The 
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Figure 6.1: Representation of a word-specific VQ recognizcr. 



srriaiiest accumulated distance is used for recognition decision. 

The word-specific VQ recognizer gives acceptable recognition rates for our small 

vocabulary databases. However, this recognizer fails to use temporal informations 

contained in speech signals. 

6.1.2 Isolated-phoneme recognizer 

'i'he recognizer of Fig. 6.1 can be modified to obtain an isolated-phoneme recognizer 

by replacing the word-specific vector quantizers with phoneme-specific vector quan- 

tizers. Isolated-phoneme recognition can point out which phonemes are particularly 

difficult to recognize. 

6.2 Single codebook VQ-HMM recognizer 

As mentioned before, the major flaw of a VQ processor is the lack of capacity to 

use the temporal information of a speech signal. In the next system, we propose to 

introduce HMM models to correct this weakness of VQ. Vector quantization is used 

here as a pre-processing stage, for data reduction. 

This section focuses on the implementation of three different single codebook 

vector quantizers for discrete HMM recognizers. A schematic diagram of a single 

codcbook VQ-HMM recognizer is given on Fig. 6.2. An input feature vector is 

vector quantized by only one codebook and thus generates a single index that is 

used by each of the word HMMs. Only one codebook (single codebook) covers the 

whole vector space for a feature. In this section, three different single codebooks are 



proposed: 

1. a universal codebook. 

2. a global codebook made up of word-specific codevcctors. 

3. a global codebook made up of phoneme-specific codevectors. 

A universal codebook is a single codebook generated from a traiiiiiig sct iiiclucli~ig 

all the words of the vocabulary. The codevectors of a universal codebook arcb trailictd 

with feature vectors issued from each word. Universal codcbooks are particularly 

suitable for large vocabulary applications since the whole feature vector spacc a can 

be covered with one codebook. 

In this thesis, single global codebooks are proposed as an alternative to uriiver- 

sal codebooks, the idea being to improve the performance by havi~:g each cocleLook 

to cover more specific regions of the vector space. ?'wo global codebooks arc: sug- 

gested, one obtained from the grouping of word-specific codebooks and thc otlicr 

from phoneme-specific codebooks. Here, grouping rrlearls that the codcvcctors of dl 

the specific codebooks are put together into a single global codehook. '1'hc corlcw:c- 

tors of such global codebooks are related more closely to thc speciflc cl~ar;~ct.cbristics 

of the words or the phonemes. 

A global codebook is schematized in Fig. 6.3. There are rrlany cod(:fmoks but, 

only one index (the one with the smallest quantization distortion) is oxtracti:d at 

every frame. In order to make a fair performance comparison, the total arrtount of 

codevectors (nx) is equal to the amount of codevectors in a urliversal codebook. 

For the HMM stage, one model is generated for each word. 'I'he I IMMs arc 
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Figure 6.2: Representation of a single codebook VQ-HMM recognizer. 
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Figure 6.3: Representation of a global codebook. 
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trained with the Baum-JWch algorithm (Section 5.3.1) and recognition is done us- 

r 

ing the Viterbi dgorithm(Sectisn 5.4.1). The observation sequences used to train the 

1 

word models are obtained irorn multiple codebooks vector quantizers (Section 4.2.2) 

and are assumed to be independent to each other. Thereiore, the output symbol 

I 

probabilities are multiplied together in the training hnd testing procedures (Sec- 

tion 5.5). 
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6.3 Word-specific codebook VQ-HMM recognizer 

Many of the conventiond aiscrete hidden bf arkov rfiijdels (H 5Q.f j recognition sys- 

tems use vector quantization (VQ) in the pre-processing stage. -4s mentioned &ow, 
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thc vector qtantizer is usuaiiy composed of a single codebook, a universal codebook. 

We discuss in this section, how a single universal codebook can be replaced by several 

word-specific codebooks. 

'7 ht: motivation to make this change is based on the fact that VQs can do more 

t h t  simply quarAze the input signal. In addition to  the VQ indexes, vector quan- 

tizatiort can output distortion scores for eacL word. As a matter of fact, VQ distor- 

tior1 scores were si~cces~iully used to make isolated-word recognition with the system 

prciposed in Section 6.1.1 (only for srnail vocabtllary application). For that system, 

ixiput words were processed through word-specific codebooks. 

I I I he input signal is quantized separately by each of the word-specific codebooks. 

Therefore, the tiMMs can use word-specific observation sequences from each of the 

cocieLooks. Two interesting particularities emerge from such a system: 

'f'lte VQ and HM3f stage can be combined consecutively as two discriminating 

techniques for recognition. 

s The presence of nxre  observation sequences can give a more detailed descrip- 

tiori of the iriput signal. 

i r t  th is  scctiori. we cspiuit &ese two observations to test diRerent WEL; 5 of integrat- 

irig tile iriput feature coefficients into the framework of a discrete H h N  recognizer. 

:I. is iIIustrated in Fig. 6.4. the problem consists of finding has. wxd-specific in- 

dr~s sequc::c'tls and ditorrion measures can be used to  make recognition with ward 

ff3f5fs. 
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6.3.1 Candidate selector VQ-HMM recognimr 

I ,  I he .'c~ndidate selector VQ-HMM recognizer" is depicted i q  Fig. 6.5. This is a 

recognizer where a processor is added to select the less dixcorted VQ candidates 

input to the HMM stage. The design of this recognizer is based on a parallel 

tiranch configuration; each word-specific VQ is connected to the corresponding word 

Ilk1 Rn by a direct and independent branch. E2.5 branch represents the transmission 

of a word VQ multiple index sequence consisting of the cepstrum, the differenced 

c-qxdrurn and the energy vector index sequences. A pre-processor is inserted on each 

\:ra~:cli to determine if a VQ sequence will be transmitted or not to  the word HMM. 

' I ' t i t s  pe-processor gives more flexibility to the system by permitting the elimination 

of unlikely candidates from the VQ stage. 

15ach VQ seqience has an average quantization error score. Hence, the system 

call con~ider, for the transmission to the HMM stage, on!y the sequences with the 

lowtst quantization error. As a consequence, the candidate selector allows a reduc- 

tion i n  the number of calculations doce in the HMM stage. Also, the recognizer is 

11ot COII ftlsed by VQ sequences with high quantization error. 

Tests have been made to find the optimal number of candidates that should be 

co~isidered by the system. 
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6.3.2 Combined VQ-HMM recognizer 

1 1 1  t h e  iritroduction of Section 6.3, we noted that VQ and HMM information can be 

wrrit,incd to improve recognitio~~. The following system is used in order to verify 

this staterrlent. 

'l 'hc word-specific VQ distortions are not used any more as candidate selectors 

t ~ u t  as word scores for the recognition decision. As illustrated on Fig. 6.6, a VQ dis- 

tortion score arid an HMM output probability are calculated for each word. A simple 

exrtpirical formula is proposed in which the VQ and HMM scores are added together 

in a weighted sum. The probabilities are represented a t  logarithmic scale to  reduce 

the dyriamic range. The combination of VQ distortions and WMM probabilities is 

do~ic: with the following formula 151: 

wl~ere C is a positive constant, Di is the distortion score for the codebook of word 

i, P, is the output probability for the HMM of word i, and K is a negative constant 

computed t.o optimize the performance. 

T h e  formula allows recognition to be based on the VQ distortion scores only, 

IIRIhI output probabilities only or both scores at  the same time. Tests have been 

1nat1e with different values for C and K in order to optimize the performance. If 

tilts best perfor~nance is obtained using a combination of VQ and HMM information, 

we can conclude that VQ distortion scores provide recognition information that is 

co~npicrrlt~ntary to the H - t N  probabilities. 
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Figure 6.6: Representation of the combined L'Q-HMM recognizer. 



- % f i r  6.3.3 Fully interconnected word-specific Jy - rJMM system 

A second ohervation in the introduction of Section 6.3 states that more observation 

sequences can give a more detailed description of the input signal. The next system 

is proposed with the intention to make full use of the whole set of word-specific 

V Q  sequences. The suggested system is called a "fully interconnected word-specific 

VQ-I IMM recognizer" and is illustrated on Fig. 6.7. 

In  the fully interconnected VQ-HMM recognizer, the observation sequences ap- 

plied to each I1MM are not just the VQ outputs of a single word codebook, like 

in the case of the parallel word processing recognizer, but rather the outputs of 

all word-specific codebooks [40]. The increased amount of HMM input data makes 

the recognizer less dependent on the possible peculiarities of single observation se- 

c4ut:rtces. This way, the recagnizer is less vulnerable to the effects of a poor index 

scxqueitce than in the case of the parallel word VQ-HMM recognizer. Also, the full 

i~iterconnection may help to reduce the effect of the rough quantization at the VQ 

stage. 

As usual, training is done with the Baum-Welch algorithm and recognition is 

done with the Viterbi algorithm. 13 both cases, the probability calculations must 

be modified to accept an increased amount of observation sequences simultaneously 

arriving into each word HJlhfmodel. The output probabilities are not calculated 

from o111y the nlult iple sequences of a single word VQ, but from the multiple se- 

quences of all the word-specific VQs. Therefore, the output symbol probabilities 

of all the word-specific observation sequences must be combined to make a single 

i'itcrbi scarcii for each word HMM. 



Assuming that the word-specific VQ sequences are i~ldepcndc~it, web 11ii11t iply ttlo 

output symbol probabilities of all the word-specific VQ sc(lucilctas usilig tlica sc~iiitiorl: 

where yWc is the observation sequence from word VCj' w using t . 1 ~  wort1 cxdc~book 

type c (energy, cepstrum or differenced cepstru~n). 



Signal - 

Figure 6.7: Representation of the fully interconnected I'Q-HhIM recognizer. 
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CHAPTER 7 

EXPERIMENTAL RESULTS 

7.1 Speech databases 

Two speech databases were used to evaluate the di fferc~lt sy stc~iis propowd i 1 1  tliis 

thesis. One database was recorded in studio, and tlic other datahas(! wits rc:<:or(hvl 

over telephone lines. The next section describes the  clatabitsc:~ a~icl sl)crcifit!s Itow t h t t  

tokens of the databases were split into a trairliilg set arjcl a tt:stir~g set. 

7.1.1 Studio database 

The studio database, generated by Craig Scrat chley [%I, co~itai ris cligi ts frcm i mro to 

nine. Each digit is replicated two times by each of 20 talkers (10 male, 10 fcrrialt:). 

Each of the talkers is considered to have a fair 'Canadian' accent. Pauscs wcrc 

imposed between each words in the recording session. Irt o t h  words, ttir: tokcrls 



art: isolated from ariy context dependency caused by neighboring words. 

?'he recordings were done in SFU's recording studio in the Instructional Media 

Center. A special attention was put on the recording level, the length of pause 

bctweeri the words, the positioning of the microphone and the noise being picked 

up. 

'I'he digitization was done on a Sun-3 equipped with an ICS-100 digital signal 

processing board (12 bits quantization). First, the recorded words were passed 

through an analog anti-alias filter with a cutoff at around 8 KHz. The speech was 

sampled at 32 KHz and filtered with a digital filter with a 3.4 KHz cutoff. The 

digital signal was decimated by four, taking one sample at  every four, to bring the 

rate at 8KHz. The resulting word tokens were stored in separate files. 

Training set 

The training set contains 10 talkers (5 male and 5 female) of the 20 talkers. 

Each digit is replicated two times by the same talker. For recognition, the tests are 

carried out with the tokens of the 10 remaining talkers. 

7.1.2 Telephone database 

The. telephone d a t a h e  contains digits zero to nine with, in addition: the utterance 

"oh". A11 the tokens of the database are assumed to be spoken by a different talker. 

Each word is uttered by 50 talkers. Approximately 27% of the tokens are uttered by 

males, 335% by females and 40% by children. X subjective evaluation of the accents 

assumes that a!";% of the talkers have a 'Canadian' accent and 19% have a foreign 



accent. 

The tokens were obtained from custon~ers calling to 13. C. rl'cl yellow pngtbs arid 

asking for a service number of four digits. The telepllolie calls wtrc rc~ortirti, i~11ti 

the resulting strings of digits were digitized and scgnicnted into individina! worcls. 

As a consequence, the beginning and the end uf the wo~cls  Iiiay Lc ct)ntc~?ituidiy 

dependent on the neighboring words. 

Finally, phonemes were segmented from each word by kcepiug o~ily t11c c~o~ltc~xt 

independent frames. This means that only the frames considtmxl to be itidcyctr~clcwt 

from the neighboring phonemes were extracted. The tralisitior~a! S ~ ~ U I ~ S  t)t~t,w(vn 

two phonemes were rejected. The list 01 phonemes contai~lod i n  the clatal~aw is givtw 

in Table 7.l(a). The phonetic transcriptions of each digit is listed i n  '1'z~l)lo 7. t ( I ) ) .  

The digitization and the segmentation of the ut terarlces into words w;is tlo~icb i,y 

MPR TelTech. The speech was sampled at  10KHz arid quaritizcd wit11 1 G I J ~  ts. A;) 

anti-alias filter was used with a cutoff frequency at 4.8 K I  Iz. l'hc rcsul ling filw witrca 

stored on disk, each file containing one word. All the details of the. sl)c.c:cl~ t l i ~ t , i ~  

processing are resumed in Appendix A,  

Training set 

The trainirg set is made, for each digit, of 25 tokerls r;trldr,~r~ly ctlosc:~~. No 

consideration was given to the nature (sex, accent) of the talker. ' I ' l l f ~  tctst,s wchrc* 

carried out with the remaining 25 tokens for each digit. 



Example Phon. Example 

I zoo I ao I bought ( 
- - -  - 

beat ( ay ( bite 

red 1 v / very 

kick 

tot ax the 

boot eY bait 
I 

thief I td I set 

fief i I 

Word I Phoneme sequence 

one I w-ah-n 

two 

three 

four 

five 

six 

t-uw 

t h-r-iy 

f-ao-r 

f-ay-v 

s-ih-k-s 

seven 

eight 

nine 

Table 7.1: List of phonemes (a) and single digits phonetic transcriptions (b) 

s-eh-v-ax-n 

ey-td 

n-ay-n 

zero 

oh 

z-iy-r-ow 

OW 

('4 



7.2 Vector quantization recognit ion 

7.2.1 Isolated- word recognit ion 

The first results presented for isolated-digit recogni~iori arc obtai:~td w i l l i  GI s y s t r w l  

based only on vector quantization. Vector cjuant izat io!l fm sarrtr wt*afi!rcsws for 

recogoiticm appliczticns bct it's performance can stili be t i d  as a cttrrtjtnrisol; !mis 

to azlalyze the improvements generated by HMM- based systcws .  

The word-specific VQ recognizer has been described in Section f i . l , l .  '1'0 implc- 

ment the s y s t e ~  presented. we need to deterrninc tv:o urkk~iossri pitrar~wttw 

I. The weights of the composite distance metric. 

2. The size of the cotiebooks. 

Several tests have beec done to End the optimal set iif weighis for t f i i :  ( . i j ~ l i j t o s i t i :  

distance metric (i. e. the weights that optimize the pcrfcmr.ta~tcc.j x t r f  t.ti i i r l t l  thct 

word codebook size giving the best resuit. ?'he expeiiri:isr:t .-, were  first c f o r v t  w i th  lrh: 

studio database and the recognition rates are iistecl ir; l;iiik 7.2. '1-11(: r(!su;ts shosv 

that: 

energy and differeuced energy both give poor pr:rfcrrrr~artcc. 'I'hew fcirtiir.6.i cfo 

not perform we3 when tested separately but they can still imprr,ve thc perfor- 

mance when combined to the cepstrurn or diRere::ccd ci:pstrtarn c . , d f i i  , h  I.. ..,. 
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a tht:rc are no inlpcxtant variations in performance for the different sizes of code- 

book. 11 srnafi amount of codevectors is sufficient for each codebook because of 

thr: srrdl variety of speakers and recording conditions in the studio database. 

Xow, wc: must find which size of codebook and which set of weights performs 

s w l i  for our IIMM-hazed systems using word-specific codebooks. The codebook size 

ctloser~ for the studio database is 16. Sixteen codevectors per word gives a fair cov- 

t a r i  t!q of t tie word vector space without generating excessive amount of computations 

for t h e  vctctul- quantizcrs. This codebook size is not too lorn for the studio database 

stircr* very good rcstlfts were obtained with the same database and 8 codevectors per 

ti~dcltook f361. 

Ibr t he  composite distance metric, we need to determine which set of weights 

sfmild bc used for recognition. Since we want to use size 16 codebooks, the set of 

vwigtlts was seiected accordiug to the best performance obtained with size 16 code- 

i~ooks in Table 7.2. The best weights are (1,2,0.1,0.1). However. the results obtained 

suggest that energy is practically useless for recognition. The energy codevectors are 

irtt45cierit and cmfuse the recognizer. Therefore, the energy feature was discarded 

from t hc compositt. distance metric. A s  a result, the finai weights for the composite 

distancc metric in ali tbe fdlowing systerm tested with the studio database will be 

( I.2,O.U. 1 ). 

I n  the case of the telephone database. we also fixed rhe word codebook size to 

f 6. X bigger size for codebudis may have improved the performance since a higher 

number of codevectors could hare vector quantized better the varied nature of the 

te!cphune database tokens. However, we limited the size of our codebooks to 16 

because a high number of codevectors in the VQ stage generates a large amount 



Tabfe 7.2: Isohted-word recogoition results with v;ord-spcciiic V Q  rt:coqriizr:r tt:stc:d 

with the studio database 



of 3,-rrltzol5 far t fie 115151 discrete pdf's and therefore generates a large amount of 

corrtputatiuns arid storage space for the HMM stage. IVith word codebook size fixed 

to 16: we ofitained a performance of 78.2% using the weights (1,2,0,0.5). This low 

p(-rf(zrr~~anct: can be explained by the following factors: the recording quality for the 

tt:lt:pitone datafiase is relatively poor; the tokens are corrupted by different levels and 

typtb> of Lackground and transmission noise; the variety of speakers (male, female, 

c hiltfrm, foreign accents); and the large percentage of children speech result in a 

vclry difficult rcaqylition task.  

7.2.2 Isolated-phoneme recognit ion 

Isolated-phoneme recognition has been performed wiih a system similar to the 

isotated-word recognizer of Fig. 6.1 but with phoneme-specific codebooks instead 

of word-spccific codebooks. Since the variety of sounds within a phoneme is smaller 

titail for words, the number of codevectors in each codebook can be smaller for 

pf,onenlc>s than for words. In our case, the codebook size has been set to  8 codevec- 

tors. 

First. cacti feature for each phoneme has been tested separately. The tests were 

clvrrc tu c-heck h o ~ s  tbr  tsQ recognizer performs when either one of the features is 

w t d .  1 hese tests correspond to the case when only one wight  in the composite 

distance is different from 0. 

Table 7.3 shows the recognition rate for each phoneme (rows) when either one 

of the features j c d w n s j  is used. The recognition rates are generally low as we can 

s w  from the average rate for each feature. In general, we can say that the cepstrum 





-- 

Table 7.3: Isolated-phoneme recognition results with the telephone database - m. : 3 

i 
individual phoneme recogrlition rates (SZj 

1 Ptiunernr 
I 

Features 
i 

Energy I Dig. en. 
I 

1 t 

i 
26 1 22 0 2 

t 
J 

-4verkge 44.8 32.8 f 1.7 17.1 

Crpstnrrn Dig. cep. 





rr.cx,gnitioil rate chtained remained at 2.1% (Table 7.5). For ~hoceme  " th", an 

irriprovcriw~t is obtained wheu the weights arc changed. The recognition rate for 

"tL" raised from 23% to 40% (Table 7.6). 

From thi: confdsion matrix, it is possible to calculate an overall isolated-phoneme 

sc=cctgnitiort pcrforrnance by averaging all the phoneme recognition performance to- 

wt ht*r (l)y taking tf~e averages of the terms along the diagonal). The overall recogni- r, 

t i t tn  rate is 60.6% which is satisfying for isolated-phoneme recognition if we compare 

that rcwll  t t o  the perforrrtances of other phoneme recognizers [l2]. 

'I'he low rccogrlitiori rates for isolated-phoneme recognition suggest that isolated- 

word nxognitior~ with a small vocabulary is easier t o  perform with word units than 

st1 t~word units. E:fkctively, the recognition rates for isolated-word recognition are 

higher tl~arl for isolated-phoneme recognition. Moreover: subword units introduce 

;LII ad& tiurtal burden t_v imposing the implementation of a procedure to reconstruct 

the words from phorte~nes. 



I Recognitiorl rates (5%) 

Table 7.5: Isolated-phoneme recognition results for pilo~it:rrlc '' xn 



I Recognition rates (%) 



7.3 Single codebock VQ-HMM recognition 

In this thesis, three single codebook VQ-H,2Ih,I recognizers art. studicd (Sc~t   oil ti..'). 

We want to find which type of codevectors, either fro111 urii vcrsal cotit4)oo ks, ~sortl- 

specific codebooks or phoneme-specific codebooks, gives the Lest pcrfor~i~artcc~ fos i\ 

discrete HMM recognizer. 

Based on the results of the VQ recognizers, we liavc st%t tlic sins of t fw word- 

specific codebooks to 16 and the size of the phont~rne-specific codc1xx)ks to S. 1"w 

universal codeboaks, the size was set according to tltt, total rlurrilwr of ct>d(w~tors 

in the global codebaoks. 

For the: studio database, only universal d t~bociks  atid word-spc.c.ifir- coclcal)c~oks 

I I 

have bem trairrtd since no phoneme tokens were avaiiat~lr*. I t t e  sin- of I I I I ~ V W S ~ ~  

codebooks was ,:xed to the total number of codcvectors contitirrrd i r i  t t ~ t .  w o ~ t i -  

specific codebooks(l0 words x 16 codevectors/\n~urd = If;:) todt-vec-tors). 

For the telephone database, I! word-specific cadct~:&s arttl 22 ~)l ictr i i .rr lc*-sj )c .c . i f ic .  

codebooks were trained. An additional phonernt: codcimctk t v ~ ?  trairtc4 wit 11 silwit 

frames. The addition of a silence codetook is justifiable t ~ y  tilt. f,;t that I t t i t I lY  fr;lr:ivs 

of the input tokens are silent. The total number of codevr~cttm f o r  tit(% wttr(l-spc.t.ific 

(I1 x 16) and phoneme-specific (22 x 5) global cctdef~cloks is 176 co&w.t.tr~rs. .%, 

universal codebooks of size 176 were trained. 

The results of the three single codebook VQ-HMM recognizers are sItown i n  

Table 7.7. Two observations can be made: 

9 The addition of HMMs improves the performance. When we cornprt: the 



'I.ablt: 7.7: Isolated-word recognition with single c~debook VQ-HMM systems 

Recognition system 

Universal 

Giobal word 

Global phoneme 

petforrriance of the best single codebook VQ-HMM system to the bcst results 

of  the VQ recognizers, we obtain an improvement ~f 1.5% (from 96.5% to 98%) 

for the studio database and an improvement of 5.4% (from 78.2% to 83.6%) 

f o r  the telephone database. 

'I he results are unclear to know which single codebook VQ g i ~ e s  the best per- 

forniance. The studio database shows that the word-specific global codebook 

gives slightty better resuits than the universal codebook, whereas the tele- 

phone database gives opposite results; the word-specific and phoneme-specific 

global codebooks don't perform as well as the universal codetook recognizer. 

"'he contradiction in the results may be explained by the differences between 

the two databases. 

Studio 

97.5% 

98.0% 

'I ' trt  telephone database contains a larger variety of talkers than the studio 

database. Therefore, the feature vectors of the telephone database may be more 

sparsely spread in the vector space than those of the studio database. If the fea- 

ture vectors are sparsely spread, they shoufd be V ~ C L O F  qsmtizd with c~devectcrs 

covering we11 the whole vector space. The codevectors of universal codebooks are 

r:sualiy wet! trained for such cases; that may explain the superiority in performance 

Telephone 

83.6% 

81.8% 

?7.8% 



of universal codebooks for the telephone datnbasc. 

On the other hand, word-specific and pho~ienlt~-spt~citic codcbooks arc tsni~~cd to 

cover restricted regions of the vector space. Each coiit~ho~li is t rainccl iiitiCptwtlt.rl t,ly 

from the other codebooks. This means that diKerent cocic+oolcs rmy c'ovct. i r ~ t c y - -  

secting regions of the vector space. So, codevectors of different c.ocic*t~ooks c-a11 Iw 

positio~ed very near to each other. This lets some big arcas of thc* vcsc-tus :I .+ )tic(* to 

be uncovered by the codebooks. If the input vectors fall iuto tticst. critical sc@cms, 

the quantization error will be high. If the input vectors stay withi11 then rcy?joris 

I I covered by the codebooks, quantization is satisfying. 1 i i ~  previous argu~lic~lit 111ay 

explain why, for the studio database, the word-specific coclct)ook VQ gave gooti IY- 

sults. Since the talkers of the studio database are not very divcrsifii4, thc f(~;lt,urc~ 

vectors may stay in specific regions of the vector space. 

We intend, in the next section, to  still use word-specific cot1c~)ooks for vt.c.tor 

qumtization, but this time, the system conceived will cbxploit Lc:ttr.r tlit. ;tdva~~t;~gc.s 

that word-specific VQs can provide to isolated-word rccognitiorl. 

Word-specific codebook VQ-HMM recogni- 

t ion 

The next recognition systems have a common characteristic, tfwy all tlst. wrirtf- 

specific codebooks to  generate a set of word-specific VQ scqucnws. In Chapter 6, 
f \ I  three word-specific VQ-HMM recognizers were presented. I rte restilt. arc ~inrrra- 

rized in the followi~g sectims. 



7.4.1 Recognition with the candidate selector VQ-HMM 

system 

Fw the "candidate selector VQ-HMM system" (Section 6.3.11, a distortion score is 

<:alculated for each word. The distortion score reflects the quantization distorti~n 

associated to a word. Only the candidates giving the lowest quantization distor- 

tions are selected for transmission to the HMM stage. Tests were carried out for 

rvctry possible number of candidate pre-selection. When only one candidate is se- 

lected, recognition is uniquely based on the VQ scores. When all the candidates are 

corisidered, the VQ scores are ignored. 

The tests are made with word-specific codebooks of 16 codevectors. And, as it 

was mentioned ir, Section 7.2.1, we now use the composite distance metric weights 

(1,2,0,0.1) for the studio dztabase and (1,2,0,0.5) for the telephone database. Ex- 

perirnents were conducted with the two databases and the results are shown in 

Table 7.8. The results suggest that: 

Gerlerally, the performance decreases when the number of candidates increases. 

This means that the parallel branch configuration gives better results with VQ 

distortion scores than with H3fM output probabilities. 

?'he best performance for the telephone database is obtained when 2 candidates 

are selected. This result suggests that a candidate selector pre-processor can 

be justified for some a p p h t i o n .  

'The o~erdt performance of the candidate selector VQ-H3fM system is bad be- 

cause the parallel branch system fails to take advantage of the HMM stage; the best 



Table 7.8: Recognition rates for candidate selector 'iQ-II hl hI s y s t c ~ i ~  

performances were obtained when only one candidate is selected fro111 tlw VC) stitgc* 

and transferred to the HMM stage. In such a case, the recvgititioit rfecisioi~ is t l o ~ i r :  

at the 'LrQ stage only. The next suggested system, thc ~<>illbinecl VC)-f Ihlllil, 1 1 1 ; t k c ~ i  

2 more direct use of the HXXl and VQ scores. 

7.4.2 Recognition with the combined VQ-HMM system 

The parallel branch coafipration is again tested a~tci all ~ i i r .  word  VQ s t y u t ~ ~ c ~ s  

are connected to the xord HllXs .  The VQ distorticju scores aiitl tibe I f M M  i , i i L j ~ i j t ,  

probabilities are combined with the fullowing eyuatiori (see Srtctiori 6.3.2) : 

The testing conditions and the resufts are sunmtarized ir i  '1;itlc 7.3. \VIWII ( ' -- 0 

and K = I, only the HhIM probabilities are used for the firlal dccisiort. ti'1lc.n C -- i 

and K = 0, only the VQ distortions are used. The spteni wa, tc-stt:c! agaiu wi th  

(1,2,0,0.i j for the studio database and (1,2,0,0.51 for the telrphorie database - 
(see Section 7-21). 

The results of Table 7.9 shew that: 



Table 7.9: Recognition rates for the combint:d VQ- 1-1 ill h.I systc~11 

C /  K 

an improvement is achieved when D, and PI art: cr>nit)ilied togt:illc:r, ~ . i ~ t , t ~ ( b r  

than used separately. This means that VQ distortion scores co~ltairl nsc:ful 

complementary information to the HMM probaLilities. 12 mow sopltistic~~tc~~l 

method, like neilral networks, could corr~bine c v c ~  bctter thcsc~ picws of ii~for- 

mation than the simple equation proposed for this system. 

we obtained the best overall performances so far. Effectively, tllis syst,cl~ir is 

superior by 0.5% for the studio database and 0.4% for the telepi~ctnc ditti~lj;t~(~ 

to  the best single codebook VQ-I-IMM systerrl (see 'h t j l r :  7.7). 'J'hc:rc: is all 

improvement despite the fact that the parallel coi:figi:ration gi vcs low p t d o r -  

mance (76% or 73.1%) when only HMM protahilitit:~ are ust:d. 

Studio ~e/ t>p/ i  o 11 t 

78.2 

- 

82.9 

54* 

83.27 

1 0  94 

94.5 

98.5" 

35.5 

9s 

! 

1 

-0.0000001 

-0.000008 

1 

1 

-0.00001 

-0.00002 



Table 7.10: Recognitior! rates for the global codebook and VQ-HMM c~rnbination 

7.4.3 Recognition with word-specific global codebook and 

VQ-HMM information combination 

Telephone ( c I  K 

The word-specific global codeboo!; system (Section 6.2) can generate word-specific 

VQ distortion scores. We know from previous results that the global codebook 

system achieves good performance, so, it is interesting to verify if combining VQ 

distortions and IiMhl probabilities iaproves the performance of that system. The 

i r Q  and HMkl scores are combined again using Equation 7.1. 

Studio 

The results of Table 7.10 indicate that no improvement is obtained from the 

combina,tion of VQ and HMM informations for the global word-specific codebook 

system (when compared to Table 1.7). 



Table 7.11: Recognition rates with candidate sclector and VQ-IIhlX1 i~lfur~iii~t.ioli 

combination 

Sb. of candidates 

7.4.4 Recognition with candidate pre-selection and VQ- 

HMM information combinat ion 

3 

98 

83.0 

The idea for the next system is to join together in a rarallei t)ranc.h systc~~l ,  ;L ( a n -  

didate selector and a combination of VQ distortion scores wit ti f lMM prol)i~l)ili t i s .  

The system is identical to the recognizer shown in Fig. 6.5, but i11 ittlditicm, t . 1 ~  

accumulated composite distance metrics are transferred to ?!K fixla1 &cision l ) l o c + .  

This means that the VQ distortion scores are used for car~didatc st.lw-tio11 ~ L I I ( I  for 

the final recognition decision. The tests were done with the optirrlnl corirltir~at~ioli 

factor IC obtained in Table 7.9. 
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We denote from this system no amelioratiori of perforrriancc, i .  1.. , ttlc: "d l  

candidates" recognizer gives the optimal rates (see 'l'al,le 7.1 1 ) . N(:vvst,l~t:I(~~s, wc 

can observe that a limited number of candidates show also optiriial 1)(~rfor111ar~c.c.s. 

As a matter of fact, 5 candidates prove to bc sufficient. 'I'Ilcrr:forc, with tllc: carldi(!atc: 

selector, the computational complexity cart be cut Ly half wi tllout aff;:c:ti~ig t l ~ :  firral 

results. 
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1.4.5 Recognition with the fully interconnected word-specific 

VQ-MMM system 

1 ., 1 he fastst rtlcogni tiori experiment vtas carried out with the fully interconnected word- 

spt~cific VQ-IIMAI system discussed in Section 6.3.3. The recognizer is built to make 

full usc of the word-specific VQ sequences. As a matter of fact, each HMM model 

is trair~ed and tested with the whole set of word-specific VQ index sequences. 

Tht: results for this system are: 99.5% recognition rate for the studio database 

ard 85.8% for the telephone database. In both cases, the performance is superior 

to the best performance obtained so far. In fact, the current results are the best 

r<*sults that art- achieved in this thesis. The results imply that: 

a higl~ei riurnber of observation sequences can significantly improve the per- 

formance (about 2% of improvement when compared to the best result of the 

single codebook VQ-HMM system). 

a word HMM is better trained by observing the whole set of word-specific VQ 

sequences than by observing a single observation sequence. 

The advantages of this system are obtained at the expense of a higher amount 

of c-amputations, since more index sequences need to be ~rocessed in the HMM 

stage. \Yhcn we compare the computational complexity of the fully interconnected 

co~figuration to the parallel configuration, we realize that although the VQ stage 

requires the same amount of computations in both cases, the fully interconnected 

configuration requires approximately ten times more computations than the paral- 

Icl corlfiguration for the HMM stage. The amount of additional computations is 



proporiiona: to t h e  size of the vocabular~. Itlost of t i i t -  aiiditio~ial c . o ~ ~ t ~ ) i i t ; i t i o l t s  

come from the muitipiication of the indepc~ident out p1:i q m i t d  prot)atjif i t iris ( w c .  

Section 6.3.3). The nnrnber of computations is acccptabltx a h  1o1lg as t I l i a  t.<>~iil,t~litl.y 

is small. which is the case for our databases. 



CHAPTER 8 

CONCLUSION 

'I'ltt! ot~jective of this thesis was to investigate a reliable isolated-digit recognizer. 

Iklyirtg upon the state of the art research, we decided to utilize vector quantization 

and hidden Markov models. The recognition procedure was divided into three stages: 

fvature extraction; VQ: and H M M .  The basic components of each stage were first 

&scribed arid we then proposed systems linking the above three stages. 

in this thesis, additional VQ information was combined with HMM information 

t o  pcrforn: recogaition. The use of distortion scores was proposed as an alternative 

to coriventional irQ-tISf.\f sysr-ems where VQ is s i m p k  used as a pre-processing 

stage for IISfhls, \Ye suggested three types of recognizer: VQ recopizers: single 

c-odtbwk \'Q- f i l f  3f recognizers and word-specific codebook VQ-HMM recognizers. 

VQ rtcilgrrizcrs were tested t.z check the usefulness of t'Q distortion scores for 

rrcugnitian. Then, single codebwk YQ-HSIM recognizers were introduced to show 

how 145151 n~ocfels can I~prcli-e the performances of a i'Q recognizer. Finally, word- 



specific codebook i7Q-HSIM recognixrs were propascd iri t ti t 1 1 ~  i r ~ t  c>nt ion t t) rt-rify 

if t 'Q distortion scores can be added in the  process of t ht .  rtxwg~lit ioti cIt~t.isio11 

when HMMs are used. The word-specific codcbook L7Q- f l Ll X I  recogriizcv-s \wr-ta iiist, 

proposed to check if the performances of an !IhlXI systcni could I)t .nt.fit  frolit a.11 

increased number of observation sequences. 

We found out that VQ distortion scores helped to i~~~prttvt .  t Ili. ~tt.~.fttl.r~i;~i~(.t~ d o u s  

system. We concluded that VQ information is cornplc~~~~twtary to f I A1 A1  i r i for t~mt i o r ~  

r 3 and can be advantageously used for recognition. 1  lit^ rtwtits also sltowc4 t l ~ t  a11 

improvement is obtained when each H M M  is trained wi th  a scbt o f  ~vor(l-spt~c.ific VCJ 

index sequences. These results suggest that niultiple VQ scytlcaticcks has(. ;tcl~atiLitg(b~ 

over a single VQ sequence systems. However, the irnplcrnerttatio~~ of 111or.c. sclclitcl~ic~c~s 

must respect the limits imposed by the cornput;ttiorial c.ontpl(~xit,y i t r~ ( l  tiicx powssi~rg 

time allowed. 

The recognition rates obtained were very good whert tilt* rtxog~~izc.r w a s  tvsf.c.d 

with a studio recorded database. The results went up to '39.5% rrr.cogl~itior~. W ~ I ~ T I  

we used a database recorded over telephone lines, the results weria 85.8% i 11 tl~rr. I~r-st 

case. This means that more work has to be done to ovc*rccmicb ttic: tiifJic.ul t.it.s j)rc*sc.rrt, 

in noisy and irregular environments such as tc.lcphonc: lirws. 



Appendix A: 

Telephone Database Speech File Pre-Processing 

Oricc! thc: telephone database tokens were digitized on 16 bits, they were converted 

to 12 bits by discarding the 4 least sigriificrtnt bits, in order to be compatible with 

t,tti. I ) / A  cortvcnrter. 

'I'hc sarnpled data, in binary format, was stored on two-byte unsigned integers. 

' I ' f ~ c x  integers ranged from 0 to 32767 (0 to 7FFF Hex) with the low-byte coming 

first. Zero amplitude was represented by the value 16384 (4000 Hex). The low-byte 

arid the high-byte were inverted. The 16 bits integers were finally divided by 8 to 

hc stored a n  12 bits (0 to 4095). 

'I'hc word t o k ~ n s  and the phoneme tokens were segmented with MacSpeech Lab 

I 1  (hlacintosh). T h e  resulting tokens were put in individual files and transferred 

back to the Sun syste~n. The final digital signals were centered around 0 (signal 

raiigcx f 20-18) which made possible their audition with the D/A converter of the 

1C'S- 100 board. 
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