
SYNTACTIC MANIPULATION SYSTEMS FOR CONTEXT-DEPENDENT LANGUAGES

Michael Dyck

B.Sc., University of Winnipeg, 1984

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School -
of

Computing Science

@ Michael Dyck 1990

SIMON FRASER UNIVERSITY

August 1990

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Michael Dyck

Degree: Master of Science

Title of thesis: Syntactic Manipulation Systems for Context-Dependent Languages

Examining Committee:

Chair: Dr. Binay Bhattacharya

Dr. Rob Cameron
Senior Supervisor

~ommi t t ce Member

Dr. Nick Cercone
Committee Member

Dr. Warren Burton
Examiner

Date Approved: 1990 August 10

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Slmon Fraser Un lve rs l t y the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Univers i ty Llbrary, and t o make p a r t i a l o r

s i ng le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers l ty , o r o ther educational I n s t i t u t i o n , on

i t s own behalf o r f o r one of I t s users. 1 f u r the r agree t h a t permission

f o r mu l t l p l e copying o f t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean of Graduate Studies. It i s understood t h a t copying

o r pub l ica t ion o f t h i s work f o r f inanc ia l gain sha l l not be allowed

wi thout my w r i t t en permission.

T i t l e o f Thes i s/Project/Extended Essay

Syntact ic Manipulation Systems f o r Context-Dependent Languages.

Author :

(s,t&ature)

John Michael Dyck

(name

(date

ABSTRACT

Software developers use many tools to increase their efficiency and improve their software. A syntactic

manipulation system (SMS) is one such tool. An SMS is a set of programming-language routines that can

be used to create, manipulate, and modify the syntactic structures defined by a grammar. An SMS is

useful whenever a program manipulates data objects that are described well by a grammar; programs,

structured documents, musical scores, software specifications, mathematical formulae, and recursive data

structures are all objects that could be manipulated with an SMS.

Previous research has established a method for deriving an SMS from a context-free grammar. Thus, this

method produces SMSs that deal abstractly only with those aspects of languages that are captured by

context-free grammars. However, experience shows that programs using such SMSs routinely require

more complex, context-dependent information. For example, if a program were using an SMS to

manipulate Pascal code, it might need answers to the following questions:

"What is the type of this variable?"

"Has NEW been redefined for this scope?"

"Will this identifier conflict with any existing identifiers?"

"Where is the resolution for this forward declaration?"

"Is this argument compatible with that parameter?"

"What is the value of this constant-expression?"
0 "Where are all the calls to this procedure?"

In augmenting context-free SMSs with routines to answer such questions, previous approaches have been

ad hoc, with neither a formal strategy to determine what routines should be added, nor a method for

deriving them from a description of the target-language. This thesis provides a systematic approach to

replace the previous ad hoc approaches. Specifically, I have devised NURN, a notation for specifying

context-dependent languages in terms of relations between the nodes of context-free abstract syntax-trees.

Moreover, I have implemented Ginger, a system that takes a NURN grammar and generates the

corresponding context-dependent SMS. To demonstrate the usefulness of NURN and Ginger, I have used

NURN to fully define the syntax of Standard Pascal, and written a Pascal syntax-checker using the

resulting SMS.

iii

ACKNOWLEDGEMENTS

Thanks:
0

0

0

0

0

0

0

To my Senior Supervisor Rob Cameron, for patience, availability, and insight, for dealing

with the red tape, and for inventing GRAMPS, without which I might never have developed

NURN.

To the other members of my Examining Committee (Lou Hafer, Nick Cercone and Warren

Burton), for their time and effort in reading my thesis.

To Howard Hamilton in large quantities, the best editor a grad student could want.

To Ed Merks for technical discussions, to Cathy Levinson for cheerful legwork, and to both

for their comments on the thesis, but especially for their help in preparing my seminar.

To Brian Terry, for developing GRAFS and entrusting it to my not-so-tender care.

To Yvonne Coady, for relentless encouragement and the occasional free lunch.

To Ranabir Gupta, Pat Pattabhiraman, and Fred Popowich, for various consultations.

To the Natural Sciences and Engineering Research Council of Canada, the Province of British

Columbia, Simon Fraser University, Rob Cameron (via the SFU Centre for Systems Science),

and my dad Dave Dyck, for financial support during my career as a Masters student.

Thanks again everyone!

TABLE OF CONTENTS

Approval .. ii

Abstract ... iii

.. Acknowledgements iv

.. 1 . Introduction 1

1.1 Problem Statement .. 1

.. 1.2 Overview of this Thesis 2

2 . Context-Free Syntactic Manipulation Systems ... 3

2.1 GRAMPS-Style Grammars .. 3

.. 2.1.1 Construction rules 6

2.1.2 Repetition rules ... 7

2.1.3 Alternation rules ... 8

2.1.4 Odds and Ends .. 9

2.2 GRAMPS-Style SMSs ... 9

2.2.1 Overall organization ... 10

2.2.2 The GRAMPS derivation scheme ... 11
3 . NURN. A Notation for Defining Context-Dependent Languages ... 15

3.1 Describing Context-Dependent Languages: the NURN Approach 15

3.2 Extended Example of the NURN Approach ... 17

3.2.1 The declarationjoint and region entities .. 18

.. 3.2.2 The is - effect ive-over relation 19

3.2.3 The is - the . def ining-occurr ence-of relation 20

3.2.4 The i s-a-conf licting-declaration-nt relation 20

3.2.5 Summary .. 21

.. 3.3 Defining NURN Relations 21

3.3.1 Predefined relations ... 23

3.3.2 Relation rules for i s-ef f ec t ive-over ... 24

........ 3.3.3 Relation rules for i s-a-declarat iongoint and i s-a-r egion 29

3.3.4 A relation rule for is-the-def ining-occurrence-of 30

3.3.5 Relation rules for is - a . conf licting-declaration-t and
is undefined ... 32 .

3.3.6 Make Functions .. 34

... 3.3.7 The I S-THE-EXPANS ION-OF relation 37

3.3.8 The IS A VIOLATION relation .. 39 - -
... 3.4 Pascal Types 39

3.4.1 Multi-type literals: n i l and [I ... 39

3.4.2 Literal string-types ... 40

.. 3.4.3 Canonical set-types 41

3.4.4 The "treated as" rules .. 45

3.4.5 Summary ... 46

4 . Syntactic Manipulation Systems Based on NURN Grammars .. 47

4.1 Query Forms. Binding Patterns. Queries. and Investigators ... 47

4.2 Overview of a NURN SMS ... 48

.. 4.3 Context-Dependent Constructors Considered Harmful 50

... 4.3.1 Redundant 50

... 4.3.2 Obstructive 51

.. 4.3.3 Summary 52

.. 4.4 Generating the Routines of a NURN SMS 52

... 4.4.1 Relation in name. binding pattern in name 54

4.4.2 Relation in name. binding pattern in argument list .. 55

4.4.3 Relation in argument list. binding pattern in name .. 56

4.4.4 Relation in argument list. binding pattern in argument list 58

4.5 Generating the Investigators of a NURN SMS ... 59

4.5.1 Generating the context-free SMS ... 60

4.5.2 Constructing the predefined relations .. 60

4.5.3 Static consistency checks ... 60

4.5.4 Reduction to canonical form .. 61

4.5.5 Annotation ... 62

4.5.6 Construction of investigators .. 66

4.6 Introductory Examples Revisited ... 69

5 . Conclusions ... 73

... 5.1 Accomplishments 73

5.2 Further Research ... 74

5.2.1 Improvements to NURN .. 74

5.2.2 Improvements to Ginger ... 75

5.2.3 Open questions ... 77

Appendix 1: A GRAMPS-Style Grammar for Relation Rules and Investigators .. 78

Appendix 2: A NURN Grammar for Pascal ... 82

Appendix 3: Testing the Pascal SMS ... 174

References .. 176

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Software developers use many tools to increase their efficiency and improve their software. A syntactic

manipulation system (SMS) is one such tool. An SMS is a set of programming-language routines that can

be used to create, manipulate, and modify the syntactic objects defined by a grammar. An SMS is useful

whenever a program manipulates data objects that are described well by a grammar.

When referring to an SMS, it is important to distinguish two languages. The host-language of an SMS is a

programming language; the routines of the SMS and the programs that use these routines are written in

the host-language. On the other hand, the target-language of an SMS is the language defined by the

grammar on which the SMS is based; the syntactic objects that the SMS manipulates represent phrases in

its target-language. In most previous work with SMSs, the target-language has been a programming

language1, and may even be the SMS's host-language, but it might be a language of structured documents,

musical scores, software specifications, data descriptions, mathematical formulae, or recursive data

structures.

An SMS is particularly useful when its target-language is both human- and machine-readable. Typically,

the SMS then provides parsers and printers, routines to convert between the textual and structured

representations of target-language phrases. These routines allow thc software developer to read and write

target-language phrases in the familiar textual form and easily convert them into the structured form that

the SMS manipulates.

Cameron has established GRAMPS2 [CamIto84], a method for deriving an SMS from a context-free

grammar. Consequently, this method produces SMSs that deal abstractly only with those aspects of

languages that are captured by context-free grammars. However, experience shows that programs using

such SMSs routinely require more complex information. Roughly speaking, this information involves

concepts that arise when describing a target-language's context-dependent syntax. (This idea is clarified

in Chapter 3.) The following questions illustrate the nature of this context-dependent information when

the target-language is a procedural programming language such as Pascal.

In [CamIto84], Cameron and Ito refer to such an SMS as a metaprogramming system, since the software
developer uses it to write "metaprograms", i.e., programs written in the host-language about programs
written in the target-language.

a "GRAmmar-based MetaProgramming Scheme"

"What is the type of this variable?"

"Has NEW been redefined for this scope?"
a "Will this identifier conflict with any existing identifiers?"

"Where is the resolution for this forward declaration?"

"Is this argument compatible with that parameter?"

"What is the value of this constant-expression?"

"Where are all the calls to this procedure?"

For example, the first question involves the concept of type, which is common in describing the syntax of

context-dependent (programming) languages, but unnecessary in defining context-free languages.

To answer such questions, the software developer needs an integrated set of context-dependent routines,

specifically constructed for the target-language. Previous work [Cam87, Mer87, Mer881 indicates the

usefulness of adding such routines to a context-free SMS. However, the approaches have been ad hoc,

with neither a formal strategy to determine what routines should be added, nor a method for deriving them

from a description of the target-language. This thesis provides a systematic approach to replace the

previous ad hoc approaches.

1.2 Overview of this Thesis

In Chapter 2, I present some necessary background on context-free SMSs, reviewing GRAMPS, a method

for deriving a context-free SMS from a context-free grammar. In Chapter 3, I introduce an extension of

GRAMPS called NURN (a Notation Using Relations on Nodes), which defines context-dependent

languages in terms of relations between the nodes of context-free syntax-trees. The use of NURN is

illustrated with numerous examples drawn from a complete NURN specification for Standard Pascal.

From a NURN grammar for a target-language, one can derive a context-dependent NURN SMS. In

Chapter 4, I discuss the operation of NURN SMSs, and present Ginger, a system for automatically

generating them from NURN grammars. Finally, in Chapter 5, I summarize the contributions of this

thesis and consider directions for further research.

Appendix 1 gives a context-free syntax for NURN grammars. Appendix 2 presents a complete NURN

grammar for the programming language Standard Pascal, as defined in [ANSI83]. Appendix 3 discusses

the validation of the NURN SMS that Ginger generates from this grammar.

CHAPTER 2

CONTEXT-FREE SYNTACTIC MANIPULATION SYSTEMS

A context-pee SMS is a system for manipulating syntactic objects defined by a context-free grammar. In

the GRAMPS Report [CamIto84], Cameron and Ito introduced GRAMPS, a scheme for deriving a

context-free SMS from a grammar for the target-language. The particular form of the grammar used and

the SMS constructed has varied between implementations [CamIto84, Ter87, Mer90, MadNor881, but each

conforms to the spirit of the GRAMPS Report, and we include them all (grammars and SMSs) under the

designation "GRAMPS-style". A GRAMPS-style grammar has three important characteristics:

In formal language terms, it is equivalent to a context-free grammar.

It determines both the concrete and abstract syntax of the target-language.

It provides terminology for referring to syntactic objects and their (context-free)

relationships.

GRAMPS is an important prerequisite to NURN, the notation for defining context-dependent

target-languages that will be introduced in Chapter 3: every NURN grammar includes a GRAMPS-style

grammar, and every NURN SMS includes a GRAMPS-style SMS. This chapter will acquaint the reader

with GRAMPS-style grammars in Section 2.1, and with GRAMPS-style SMSs in Section 2.2.

2.1 GRAMPS-Style Grammars

One of the major ideas of GRAMPS is that a single grammar should determine both the concrete and

abstract syntax of the target-language. The concrete syntax defines a textual language, while the abstract

syntax defines a language of syntactic structures or syntagms. We will see in Section 2.2 that an SMS

based on such a grammar provides manipulation routines to construct, examine, and edit instances of these

syntagms (syntactic objects), with parsing and printing routines to convert between syntactic objects and

textual phrases of the target-language.

A GRAMPS-style grammar for a target-language comprises a set of rules. Concretely, each rule defines a

symbol and its production in a regular-right-part grammar for the target-language. Abstractly, each rule

defines a syntactic domain, i.e., a set of syntagms. The concrete symbol and the abstract syntactic domain

defined by a rule are related: each phrase in the sublanguage derivable from the symbol corresponds to a

single syntagm in the syntactic domain. Subsections 2.1.1 through 2.1.4 will examine GRAMPS-style rules

in detail, but first, GRAMPS-style grammars will be introduced by means of a comparison with

context-free grammars and regular-right-part grammars.

Regular-right-part grammars (RRPGs) [La1771 are equivalent in power1 to context-free grammars

(CFGs), but allow the right part of a production to be a regular expression of symbols, including union and

closure constructs as well as the simple concatenation allowed in CFGs. Using these additional constructs

often results in an RRPG that is significantly more concise than the equivalent CFG. GRAMPS-style

grammars have some of the conciseness of RRPGs, but curb their unrestricted complexity to produce a

more disciplined treatment of syntactic domains.

In an RRPG, a production can use concatenation, union, and closure in arbitrarily complex combinations.

In a GRAMPS-style grammar, these three constructs can all be used, but any particular rule can use only

one of them. The resulting three kinds of rules are called construction rules, alternation rules, and

repetition rules, respectively. Concretely, each of these rules defines one non-terminal symbol of an

RRPG for the target-language.

Typically, the target-language also has lexical symbols, or lexemes. For example, a programming language

has identifiers and numeric literals. To define these symbols, a GRAMPS-style grammar also needs

lexical rules, but GRAMPS does not constrain the form of lexical rules. Since a GRAMPS-style SMS

treats the content of a lexeme as just a sequence of characters, any notation for defining character-level

syntax is fine, as long as the parsing routines can handle it.

Formally, GRAMPS-style grammars are equivalent in power to RRPGs and CFGs: there are

straightforward conversions between the three. Therefore, outside of this section, the term "context-free"

is used with reference to any of these formalisms.

To illustrate these kinds of grammars, the following example uses a CFG, an RRPG, and a

GRAMPS-style grammar to define the syntax of a tiny language of statements, such as might appear in a

programming language. For the sake of brevity, the language has only two kinds of statements

(procedure-calls and for-loops), and only two kinds of expressions (identifiers and numerals). The

productions for identifiers and numerals are omitted, since they are lexical symbols; how they are defined

is not important to this discussion.

First, in a CFG, the syntax could be written:

Statement => ProcedureCall
Statement => ForLoop

ProcedureCall => Identifier " (" ExpressionList ") "

I By "equivalent in power", I mean that the two classes of grammars derive the same class of languages,
namely the context-free languages [La177].

ExpressionList => Expression
ExpressionList => Expression "," ExpressionList

ForLoop =>
"FOR" Identifier ":=" Expression "TO" Expression "DO"

StatementList
"END"

StatementList => Statement
StatementList => Statement ";" StatementList

Expression => Identifier
Expression => Numeral

Note how expression-lists and statement-lists, which could sensibly be considered repetitive

constructs, must nevertheless be defined recursively.

In an RRPG, the same information could be compressed into two productions:

Statement => Identifier " (" Expression ("," Expression)* ") "

I "FOR" Identifier " :=" Expression "TO" Expression "DO"
Statement (";" Statement)*

END"

Expression => Identifier I Numeral
Here, the recursive definitions of Expres sionLi s t and Statement Li s t are replaced by explicitly

repetitive constructs using the closure symbol ('* '). However, performing this replacement also eliminates

the symbols ExpressionList and StatementLis t. Similarly, ProcedureCall and ForLoop

have disappeared. This elision of symbols is fine if you are only intent on defining a textual language, but

if you want to manipulate syntactic objects, or even just talk about them, it is important that syntactic

domains have names. Thus, while RRPGs can be concise, unrestricted conciseness can lead to difficulties.

Finally, in a GRAMPS-style grammar, this syntax could appear as:

ALTERNATE CLOSED Statement IS ProcedureCall I For Loop
CONSTRUCT ProcedureCall IS

<Callee:Identifier> " (" <Arguments:ExpressionList> ") "

LIST ExpressionList OF Expression SEPARATED - BY - ","

CONSTRUCT ForLoop IS
"FOR" <LoopVariable:Identifier> ":="

<Initial:Expression> "TO" <Final:Expression> "DO"
<Body:StatementList>

"END"

LIST StatementList OF Statement SEPARATED - BY ";"

ALTERNATE OPEN Expression IS Identifier I Numeral
The particular notation used here is that accepted by my implementation of GRAFS; it is very close to the

syntax accepted by the original implementation of GRAFS [Ter87]. Each rule begins with a keyword

indicating its kind: CONSTRUCT for construction rules, LIST for repetition rules, and ALTERNATE for

alternation rules. Obviously, this grammar is not as concise as the equivalent RRPG, but it allows us to

refer to ProcedureCalls and ForLoops, and also to the Arguments of a ProcedureCall or the

Body of a For Loop. This ability to explicitly name syntactic domains and the parts of syntactic structures

is one of the major advantages of using a GRAMPS-style grammar, and is used extensively by NURN

grammars, as we will see in Chapter 3.

In the next three subsections, we will examine construction rules, repetition rules, and alternation rules,

showing how each contributes to the concrete and abstract syntax of the target-language.

2.1 .I Construction rules

Recall that in a GRAMPS-style grammar, a construction rule is a rule using concatenation. Abstractly, a

construction rule identifies a fixed sequence of syntactic domains, called its component domains, and

defines a syntactic domain that is the cross product of these component domains. That is, for a

construction rule with n component domains, a member of the rule's domain (a construction syntagm)

consists of an ordered n-tuple of syntagms: one syntagm from each component domain. Each of these

syntagms is a component of the construction syntagm. For example, the construction rule for

ProcedureCall :

CONSTRUCT ProcedureCall IS
<Callee:Identifier> " (" <Arguments:ExpressionList> ") "

has two component domains: the first is the Identifier domain and the second is the

Expres sionLi s t domain. Thus, every member of the ProcedureCall domain has two components:

the first is a syntagm in the Identifier domain and the second is a syntagm in the ExpressionList

domain. Informally, we say that every ProcedureCall consists of an Identifier and an

ExpressionList.

Terminal symbols such as keywords and punctuation do not define syntactic domains, so they do not

constitute component domains of a construction rule, and, in general, do not play a role in the abstract

syntax of the target-language. However, they certainly contribute to the concrete syntax since they are

vital when parsing and printing textual representations of syntagms.

Within a construction rule, the name of each component domain is prefixed by a unique component

name.2 These names are not significant with respect to the concrete syntax defined by the rule, but allow

one to refer to each component of a construction syntagm in a way that is both unambiguous and

suggestive of the component's semantic role in the construction. For example, in the rule for

ProcedureCall, "Callee" is the first component name and "~rguments" is the second component

name. Informally, we say that the Callee of a ProcedureCall is an Identifier and the

Arguments of a ProcedureCall is an Expres sionLis t .

A component of a construction rule can be specified to be optional. For example, in the programming

language Pascal, a Procedur eCal 1 normally includes a parenthesized Express ionL i s t , as in the

syntax given above. However, if the called procedure has no formal parameters, the Expres sionLi s t

and the surrounding parentheses are omitted. This optionality is indicated by embedding the optional

component and any associated terminal symbols in an optional phrase delimited by square brackets. Thus,

the syntax of the Pascal ProcedureCall can be written:

CONSTRUCT ProcedureCall IS
<Callee:Identifier> [" (" <Arguments:ExpressionList> ") "]

The syntactic domain denoted by an optional phrase is the union of the domain of the optional component

and the Empty domain. (The Empty domain is not itself empty, but rather has a single member with no

components.) For example, informally we say that the Arguments of a Pascal ProcedureCall is

either an ExpressionList or Empty.

2.1.2 Repetition rules

Recall that a repetition rule is a rule using closure. Abstractly, a repetition rule identifies a single syntactic

domain, called its element domain, and defines a syntactic domain that is the closure of its element

domain. That is, a member of a repetition rule's domain (a repetition syntagm) consists of a sequence of

syntagms, each from the element domain. Each of these syntagms is an element of the repetition. For

example, the repetition rule for Statement Li s t :

LIST StatementList OF Statement SEPARATED - BY ";"

has Statement as its element domain: a member of the StatementList domain consists of a

sequence of syntagms, each a member of the Statement domain. Informally. we say that a

StatementList is a sequence of Statements.

Terry's notation for repetition rules, e.g., Statement SEPARATED - BY " ; " is clearer than the RRPG

notation previously presented, e.g., Statement (" ; " Statement) * in defining the concrete syntax of

a repetition where the elements are separated by terminal symbols. The SEPARATED-BY . . . part of the

repetition rule is optional, since not all repetitions have separators.
-

For convenience, a component name can be omitted, in which case it is taken to be the same as the name
of the component domain.

2.1.3 Alternation rules

Finally, recall that an alternation rule is a rule using union. Abstractly, an alternation rule identifies a set

of syntactic domains called its alternative domains, and defines a syntactic domain that is the union of its

alternative domains. That is, any syntagm that is a member of one of the rule's alternative domains is a

member of the rule's domain. For example, the alternation rule for Statement:

ALTERNATE CLOSED Statement IS ProcedureCall I For Loop
has the ProcedureCall domain and the For LOOP domain as its alternative domains: the Statement

domain is the union of the Procedur eCall domain and the For Loop domain. Informally, we say that

a Statement is either a ProcedureCall or a ForLoop.

One might casually say that "every For LOOP is a Statement ", but there is danger in such casualness.

Consider the alternation rule for Expression :

ALTERNATE OPEN Expression IS Identifier I Numeral
Since an Expression is either an Identifier or a Numeral, one might similarly say that "every

Identifier is an Expression ". However, observe that the Callee of a ProcedureCall is an

Identifier, but is not an Expression. That is, it appears in a context that does not allow every

member of the Expression domain to appear. On the other hand, in our tiny language of statements,

syntagms in the Statement domain are always Statements. That is, a syntagm in the Statement

domain can only appear in contexts that allow any such syntagm to appear.

This distinction, which is original to this thesis, gives rise to two flavours of alternation rule, open and

closed, indicated by an additional keyword after "ALTERNATE ". Their form is otherwise the same, and the

way in which they define syntactic domains is the same, just as described above. The difference lies in the

restrictions placed on the alternative domains.) An open alternation rule puts no restrictions on its

alternative domains. A closed alternation rule requires that none of its alternative domains be used in the

definition of any other rule, or be defined by an open alternation rule. These restrictions ensure that every

syntagm in the domain defined by a closed alternation rule can only appear in contexts that allow any

member of the domain to appear. For example, the Statement domain can be defined by a closed rule,

but the Expression domain must be defined by an open rule.

In addition, there is a difference in how they are treated when deriving a GRAMPS-style SMS, as we will
see in Section 2.2.

2.1.4 Odds and Ends

In general, the elements of a repetition syntagm and the components of a construction syntagm are referred

to as children of the syntagm.

A syntagm can be a member of several alternation-rule domains, but it must be a member of exactly one

construction, repetition, or lexical domain. That domain is called the class of the syntagm, and the

construction, repetition, or lexical rule that defines that domain is the syntagm's defining rule.

A syntagm whose defining rule does not define the start symbol of the grammar is designated a fragment.

GRAMPS itself does not make this distinction, and GRAMPS-style grammars typically do not have a way

to specify the start symbol, but the term is sometimes useful in discussions.

As was pointed out earlier, the notation used here for GRAMPS-style rules is that of [Ter87], with some

slight differences. One such difference, already discussed, is the OPEN/CLOSED keyword in alternation

rules. Another difference is the set of formatting directives used. These directives supplement the

concrete syntax defined by the grammar in specifying how a pretty-printer should print a syntagm of the

grammar. My implementation of GRAFS recognizes three formatting directives: - , /, and %. Each of

these can occur in a construction rule or the separator of a repetition rule, and indicates an action that the

pretty-printer should perform any time it reaches the corresponding point when printing out a instance of

that rule.

- (~ o S p a c e r): Do not insert any white-space. (Normally, the pretty-printer inserts a blank
between adjacent tokens.)

/ (~ i n e B r e a k e r) : Insert a line-break.

% (C o n d i t i o n a l ~ r e a k e r) : Insert a line-break if the syntagm being printed is too large to

fit on a single line.

2.2 GRAMPS-Style SMSs

Recall that a GRAMPS-style SMS is an SMS that has been derived according to the GRAMPS scheme

from a GRAMPS-style grammar. This scheme and the form of the resulting SMSs are described in this

section. Although the examples will use Modula-2 as the host-language, the SMS would be much the

same using any typed, procedural language such as Pascal, Ada, or Clu. The SMS might be significantly

, different if, for example, the host-language were object-~riented.~

See [MadNor88] for a description of an object-oriented metaprogramming system.

9

2.2.1 Overall organization

As defined in Section 2.1, syntagms are ethereal mathematical objects. In a GRAMPS-style SMS, the

corresponding host-language data-type is Node; a Node is an instance of a syntagm. A syntagm can

have many distinct instances; i.e., two distinct nodes can be different instances of the same syntagm. For

convenience, we use much of the same terminology for nodes and syntagms; thus, we refer to the

components of a construction node, the elements of a repetition node, the defining rule of a node, and the

class of a node.

Just as construction and repetition syntagms consist of other syntagms, so construction and repetition nodes

contain references to their child nodes. Any given node is the root of a (sub)tree of nodes determined by

such references. This tree can be thought of as an abstract syntax-tree for some phrase in the

target-language. A parallel set of references link each node to its parent, i.e., the construction or repetition

node of which it is a child. The operations of a GRAMPS-style SMS create and destroy nodes, and

establish and change the references between them, always ensuring the context-free validity of the result,

i.e., the SMS guarantees that every node is an instance of some syntagm in the abstract syntax of the

target-language.

For a particular target-language, the corresponding SMS defines NodeDomain, an enumerated-type; the

Identifiers in the enumeration are the names of the rules in a GRAMPS-style grammar for the

target-language. For example, for our tiny language of statements defined in Section 2.1, the SMS would

have the type-declaration

TYPE NodeDomain =
(Empty,
Statement,
ProcedureCall,
ExpressionList,
For Loop,
StatementList,
Expression,
Identifier,
Numeral) ;

The function GetClass returns a NodeDomain value representing the class of a given Node.

PROCEDURE GetClass (n: Node) : NodeDomain ;

The routines of a GRAMPS-style SMS can be partitioned on the basis of how they depend on the

grammar for the target-language:

1. Grammar-derived routines are derived in name and possibly parameterization from the rules in a

GRAMPS-style grammar for the target-language. The scheme for this derivation is central to

GRAMPS and will be presented below.

2. Generic routines have the same name and parameterization in all SMSs. For example, the function

Getparent, which returns the parent of a given node (if it has one) or a null value (if it is an

orphan), is applicable to any node, from any target-language. Other examples are

GetNumberOfElements, which returns the number of elements of a repetition node.

GetElementAt, which returns the element at a particular position, and Copy, which returns a

copy of its argument. A generic routine is not necessarily grammar-independent: its operation may

be dependent on some grammar-specific information that it accesses when it is invoked. For

example, the generic procedure Delete cannot be correctly applied to just any node; only an

element of a repetition node or an optional component of a construction node can be deleted.

When Delete is invoked, it may have to consult the target-language grammar to determine if the

requested deletion is valid. In practice, generic routines requiring grammar-specific information do

not necessarily extract it from the grammar. Instead, all pertinent information is extracted from the

grammar when the SMS is constructed, and saved in data structures that allow faster access. For

example, this would almost certainly be the case for parsing routines.

Sometimes there is a choice as to whether to provide a facility of an SMS as a grammar-derived or generic

routine. We will describe an example of this situation after discussing the GRAMPS derivation scheme in

the next subsection.

This work has been done using a version of Terry's GRAFS system [Ter87], which uses the GRAMPS

scheme to automatically generate a context-free SMS from a GRAMPS-style grammar. More precisely,

given a grammar, GRAFS generates a Modula-2 module defining

1. a grammar-derived NodeDomain data-type,

2. all of the grammar-derived routines, and

3. some of the generic routines for that grammar (those that take or return a NodeDomain value).

It also generates two binary files which encode the grammar and pertinent grammar-specific information.

The rest of the generic routines reside in two permanent modules, which are conceptually part of every

SMS that GRAFS generates.

2.2.2 The G RAMPS derivation scheme

For each kind of rule in a GRAMPS-style grammar, the GRAMPS scheme specifies how to derive, for any

rule of that kind, a set of routines for handling nodes in that rule's domain. The derivation scheme

presented here is that used in my modified implementation of Terry's GRAFS system. The scheme differs

from that of the Gramps Report [CamIto84], but mainly in minor details. The only major difference is in

its recognition and treatment of two different flavours of alternation rule.

Every construction rule, repetition rule, and lexical rule yields a recognizer, a boolean function that

ascertains whether its argument is in that rule's domain. Here, the name of the function is obtained by

prepending Is - a - to the name of the rule. For example, recall the tiny grammar of statements given in

Section 2.1; the two construction rules, two repetition rules, and two (omitted) lexical rules of this grammar

yield the following re cognizer^:^

PROCEDURE Is a-ProcedureCall (X:Node) : BOOLEAN ;
PROCEDURE I s ForLoop (X:Node) : BOOLEAN ;
PROCEDURE I s-a-~x~ression~ist (X:Node) : BOOLEAN ;
PROCEDURE I s-aI~tatement~ist (X:Node) : BOOLEAN ;
PROCEDURE Is-a Identifier (X:Node) : BOOLEAN ;
PROCEDURE I s-al~umer - a1 (X : Node) : BOOLEAN ;

Every open alternation rule yields two recognizers. The syntagmatic recognizer, whose name is of the

form Is - in - the - - X domain, simply checks whether a given node is a member of the alternation

domain X defined by the rule. The contextual recognizer, whose name is of the form

Is - in - a-X-context, checks whether a given node is being used in its capacity as a member of domain

X, that is, whether it is in a context that allows any member of domain x to appear. For example, the

open alternation rule for Expression yields the following recognizers:

PROCEDURE Is in-the Expression-domain (X:Node) : BOOLEAN ;
PROCEDURE I s-in-a-~i~res - sion-cont ext (X :Node) : BOOLEAN ;

The first recognizer returns TRUE for any Identifier or Numeral; the second returns TRUE for an

Identifier or Numeral only if it stands as an Expression, i.e., only if it is in a context that allows

any member of the Expression domain. Specifically, the latter recognizer returns FALSE for the

Callee of a Procedurecall, for the Loopvariable of a ForLoOp, and for an orphan

Identifier or Numeral.

On the other hand, every closed alternation rule yields a single recognizer. Because of the restrictions

placed on its alternative domains, its syntagmatic and contextual recognizers would be essentially

equivalent6, and so can be combined into a single routine. For example, the closed alternation rule for

Statement yields the following recognizer:

PROCEDURE Is - a - Statement (X:Node) : BOOLEAN ;

Recognizers are the only routines derived for alternation and repetition rules, but construction and lexical

rules yield additional routines, as described below.

Each construction rule yields a constructor, a function that creates an instance of that rule from an

appropriate set of component nodes. The name of the function is obtained by prepending Make- to the

. name of the rule, and the names of the formal parameters are simply the names of the rule's components.

--
For brevity, only the headings of these routines are shown here, as they would appear in a Modula-2

definition module.

They would only differ for orphan nodes, a case that can easily be detected if it is deemed important.

For example, the Procedur ecall rule yields the constructor:

PROCEDURE Make ProcedureCall (Callee,Arguments: Node) : Node ; .
(* precondition: Is a Identifier(Cal1ee)

AND IS - a - ~ x ~ r e s s ~ ~ n ~ i ~ t (~ r g ~ m e n t ~) *)

The comment (delimited by (* and *)) states a constraint that Make - Procedurecall enforces on its

arguments to ensure the context-free validity of the node it creates. To build a construction node with an

optional component omitted, an empty Node is passed in as the actual parameter. An empty Node can

be obtained by calling the generic constructor Make - Empty() .

Each construction rule also yields selectors, one for each component, with names of the form

The-<component>-of. When applied to a node defined by that construction rule, a selector returns the

corresponding component of the node. For example, the Procedurecall rule, with its Callee and

Arguments components, yields two selectors:

PROCEDURE The Callee-of (X:Node) : Node ;
(* precondition: Is a ProcedureCall(X) *)

PROCEDURE The ~r~ument<of ode) : Node ;
(* precondition: Is - a - ProcedureCall(X) *)

If the same component name is used in more than one construction rule, an overloaded selector is derived.

It looks the same as other selectors, but it applies to more than one class of node. For example, if

function-calls, defined by the following rule:

CONSTRUCT Functioncall IS
<Callee:Identifier> " (" <Arguments:ExpressionList> ") "

were added to the Expression domain, then the selectors The - Callee - of and The - Arguments-of
would be declared as before, but they would each have the precondition: Is - a - Procedurecall (X)

As with construction rules, each lexical rule also yields a constructor, a function to create an instance of

that rule. Typically, a lexical constructor takes a single argument representing the spelling of the resulting

lexeme. For example, a lexical rule defining the class Identifier might yield the constructor:

PROCEDURE Make - Identifier (str : ARRAY OF CHAR) : Node ;

The recognizers, constructors, and selectors derived by the scheme outlined above constitute the

grammar-derived routines of a GRAMPS-style SMS.

The reader may have noticed that no means of creating a repetition node has been shown. This is an

. example of a facility that can be provided by either grammar-derived or generic routines, and both

approaches have been used in the various implementations of GRAMPS. In the GRAMPS Report, each

repetition rule yielded two constructors: one to create a node with no elements and one to create a

single-element node. For example, the rule defining StatementList would yield the two

grammar-derived constructors:

PROCEDURE Null StatementList 0 : Node ;
PROCEDURE ~ake-~tatement~ist - (Statement: Node) : Node ;

One could then use generic routines (such as Concat or Append) to build up larger repetitions. In more

recent GRAMPS-style SMSs (e.g., [Cam871 and my implementation of GRAFS), generic routines are

provided to create repetition nodes; the class of Node desired is specified by passing in a NodeDomain

parameter. For example, the generic routines

PROCEDURE List0 (rep class: NodeDomain) : Node ;
PROCEDURE List 1 (repIclass : NodeDomain ; el : Node) : Node ;
PROCEDURE List2 (rep - class: NodeDomain ; el,e2 : Node) : Node ;

create repetition nodes (of class rep - class) of zero, one, or two elements. Again, repetition nodes with

more elements can be built up using Concat or Append. One advantage of the latter approach is that

the resulting SMS can be significantly smaller, since there are only a small, fixed number of generic

routines instead of two grammar-derived routines for each repetition rule. In addition, if the class of

repetition node desired is to be determined dynamically, this approach is easier to use, since the desired

rep - class can be the value of an expression.

The choice between grammar-derived routines and generic routines for providing some SMS facility has

been raised here because it will reoccur when considering context-dependent SMSs.

CHAPTER 3

NURN, A NOTATION FOR DEFINING CONTEXT-DEPENDENT LANGUAGES

An SMS is derived (either manually or automatically) from a grammar for the target-language. To derive

a context-dependent SMS, we need a notation for specifying the syntax of a context-dependent

target-language. In this chapter, I introduce such a notation, called NURN, which formalizes descriptive

techniques often found in informal language definitions. Section 3.1 presents the main ideas behind

NURN, and Section 3.2 shows how these ideas can be applied to the scoping rules of statically scoped

programming languages. Section 3.3 continues this example, showing how the various features of NURN

can be used to formalize these scoping rules. Section 3.4 examines how r\

Pascal's type system.

3.1 Describing Context-Dependent Languages: the NURN Approach

NURN (a Notation Using Relations on Nodes) is a systematic means for dc

JRN can be used to specify

?scribing context-dependent

languages in terms of relationships between the nodes of abstract syntax-trees1. NURN is modelled after

descriptive techniques found in informal definitions of context-dependent languages, but enforces and

allows greater consistency. This section will explain these ideas in more detail.

The definition of a context-dependent language is almost always based on a context-free grammar that

defines a context-free superset of the language. This superset will be called the super-language. The rest

of the definition then specifies which sentences in the super-language are not sentences in the

context-dependent language. This winnowing is done in various ways. An informal description of a

programming language typically starts by introducing context-dependent entities such as defining

occurrence, scope, type, and value. Next, the description shows how these context-dependent entities

relate to each other and to the context-free entities defined by the context-free grammar. For example,

the following relationships might be described:

a defining occurrence is visible throughout its scope,

an identifier may denote a type,

two types may be compatible,

a static expression denotes a value,

a labelled statement may be the target of a goto-statement, and

a statement may threaten a variable.

Finally, certain relationships between entities are required or prohibited. For example, the following

Actually, there are three classes of entity that NURN deals with. Nodes are normally the focus of a
NURN grammar, but integers and character sequences are also used.

might be asserted:

an identifier is required to have exactly one defining occurrence,

an argument and its corresponding parameter must have compatible types,

a goto-statement is prohibited from having a target outside certain contexts, and

statements in certain contexts are prohibited from threatening certain variables.

The frequent use of this descriptive technique (notably in official language standards, such as those for

Pascal [ANSI831 and Ada [DoD83]) suggests that it is a natural way to define context-dependent

languages, and thus that a formalism based on this technique would be relatively easy to use. Moreover, a

context-dependent SMS based on such a description would be able to answer questions about entities and

the relationships between them.

Existing formalisms for defining context-dependent languages do not follow this descriptive technique.

For example, Attribute Grammars [Knu68] and the Vienna Definition Method [BjoJon82] are two of the

most popular formalisms for specifying the syntax of context-dependent languages2; both ascertain the

well-formedness of a syntactic object by consulting data structures which are constructed to encode just the

information essential to this task.

In NURN, a GRAMPS-style grammar is used to define the context-free syntax, and thus, the syntactic

domains, of the super-language. To define the domains of context-dependent entities, GRAMPS-style

rules are also used. This uniform treatment of context-free and context-dependent entities is not new with

NURN: many other researchers (e.g., [BjoJon82, DeRJul80, RepTei84, BahSne861) have observed that

context-dependent domains are described well by context-free grammars. However, in defining

context-free syntax, they use their uniform notation to define abstract syntax only, and either ignore

concrete syntax or use another formalism to define it. As with GRAMPS, NURN does not separate

concrete and abstract syntax: a GRAMPS-style grammar specifies both.

Note that when context-dependent domains are defined using context-free rules, the distinction between

"context-free" and "context-dependent" entities becomes blurred; one is less justified in making the

distinction. Previous work on adding context-dependent facilities to existing GRAMPS-style SMSs

[Cam87, Mer881 has erased the distinction even further by not having separate rules to define the

context-dependent domains; instead, certain domains defined in the context-free syntax of the

super-language are used to represent context-dependent domains, and nodes in the context-free

. syntax-tree are used to represent context-dependent entities. Viewed in a different way, there are no

context-dependent entities per se; rather, some context-free entities have an additional context-dependent

role. This strategy for representing context-dependent entities will be referred to as the double-duty

Both can be used more generally to specify dynamic semantics.

16

strategy.

For example, in Pascal, the context-dependent domain of type can be represented with the context-free

domain of TypeDef iner. That is, for every type that might arise in determining the correctness of a

Program, there is a corresponding TypeDefiner that the Program contains3, and that TypeDef iner

can be used to represent that type.

Double-duty is an attractive strategy, where the target-language permits its use, since it avoids the

introduction of extraneous domains. The examples used to introduce NURN in this chapter will follow it.

To define relationships between entities, a NURN grammar contains rules that define mathematical

relations on the domains of entities. An instance of a relation is a tuple of entities that satisfy the

definition of the relation. The relations defined by a NURN grammar fall into two groups: vidation

relations and support relations. An instance of a violation relation indicates a particular violation of the

context-dependent syntax. Support relations are used to define violation relations. The

context-dependent language is then defined to be the set of sentences in the super-language that do not

give rise to any instances of violation relations.

From the language-theoretic point of view, the support relations are only a means to an end: a relation is

useless unless it ultimately participates in some constraint. However, from a descriptive point of view, the

support relations can be just as important as the violation relations: even if a relation does not participate

in a violation, it can still help define the semantics of the language. The use of support and violation

relations wi!! become clearer ir, the next section.

3.2 Extended Examvle of the NURN Avvroach

Let us consider an extended example, demonstrating how NURN can be used to define the scoping rules

of a statically scoped programming language. This section will introduce the NURN approach, showing

how the concepts in scoping rules can be formalized as entities and relations, and Section 3.3 will show how

the relations can be defined for Pascal, as specified in the Pascal Standard [ANSI83].

The following Pascal program will be used to make the discussion more concrete:

Actually, this is not quite the case, as we will see in Section 3.4.

17

PROGRAM example ;
VAR c : goop ;

PROCEDURE P (a : real) ;
TYPE a = boolean ;
VAR c : char ;
BEGIN
c := ' Y ;

END ;

BEGIN
P (3.14)

END .
Suppose we want to know if the assignment on line 08 is valid. To answer this question, it is first necessary

to know what the identifier c on line 08 denotes. This information is context-dependent, since it cannot

be expressed by a context-free grammar. Any statically scoped programming language has, by definition,

a set of scoping rules, which determine the entity that a lexeme (e.g., an identifier) denotes. The scoping

rules for Pascal indicate that the identifier c on line 08 denotes a variable of type char, which allows

other rules to determine that the assignment is valid. Most languages descended from Algol 60 [Nau60]

have similar scoping rules, and, given a similar program, would agree that the assignment is valid. Thus,

although the discussion in the following sections focusses on the scoping rules of Pascal, it could be applied

with minor changes to many other languages.

To describe Pascal scoping rules using the NURN approach, the concepts involved must be formalized as

entities and relations. We will see that the pertinent context-dependent entities are region and

declaration-point, and the pertinent relations are

is-effective - over,
is-the - defining-occurrence-of,

is - undefined, and

is~a~conflicting~declaration~oint.

The description will proceed by first examining the two entities and then each of the relations in turn.

3.2.1 The declarationgoint and region entities

The bulk of Pascal's scoping rules specify how the occurrence of some lexeme (an identifier or label) in the

context of a declaration associates the spelling of that lexeme with some context-dependent entity (e.g., a

type, variable, or procedure) over the extent of some region of the program. We say that the lexeme is a

declaration-point and that it is effective over that region.

We can formalize the entities declaration-point and region with two unary relations

is-a-declaration~oint and is-a-region.

The most familiar example of a region is the block. However, a formal-parameter-list, a record-type, the

body of a with-statement, or the field-identifier of a selected-variable can also be a region. Each of these

five possibilities for region identifies a context-free syntactic domain. Thus, the double-duty strategy of

Section 3.1 is applicable; we can represent each region as a node in the syntax-tree of a Pascal program.

There are 3 regions (instances of is - a - region) in the example program:

the block of the program (lines 02 to 13)

the formal-parameter-list on line 04

the block of procedure p (lines 05 to 09)

Double-duty also applies to the context-dependent entity declaration-point, since every declaration-point

is a lexeme, and every lexeme is certainly a context-free entity. There are 5 declaration-points (instances

of is - a - declaration) in the example program:

the identifier c on line 02

the identifier P on line 04

the identifier a on line 04

the identifier a on line 05

the identifier c on line 06

3.2.2 The is - effective - over relation

The connection between a declaration-point and a region over which it is effective can be represented with

the binary support relation is - effective - over, so that

dp is - effective-over r
denotes that the declaration-point dp is effective over the region r. Here, dp and r are place-holders,

standing for nodes. One can liken them to the formal parameters of a procedure. There are 6 instances of

this relation in the example program:

the identifier c on line 02 is - effective - over the block of the program

the identifier I? on line 04 is - effective - over the block of the program

the identifier a on line 04 is - effective - over the formal-parameter-list it appears in

the identifier a on line 04 i s - ef f ec t ive - over the block of procedure P

the identifier a on line 05 is - effective - over the block of procedure P

the identifier c on line 06 is - effective - over the block of procedure P

3.2.3 The is - the - defining - occurrence-of relation

Pascal scoping rules dictate that to determine the entity denoted by a given lexeme, one starts at the lexeme

and moves outward (rootward in the syntax-tree) until one finds a region with a declaration-point effective

over it whose spelling matches that of the lexeme. The declaration-point so found is the defining

occurrence of that lexeme, and the lexeme denotes whatever its defining occurrence denotes. We can

express this correspondence using another binary support relation:

d is-the-defining - occurrence - of x
In the example program, to discover what the c on line 08 denotes, we search for a region that has a

declaration-point spelled "c" effective over it. There are two such regions, and the first we encounter,

moving outward from the c on line 08. is the block of procedure P (lines 05 to 09). Thus, the c on line

06 is - the-defining-occurrence - of the c on line 08.

3.2.4 The is - a - conflicting - declarationgoint relation

In Pascal, each lexeme must have exactly one defining occurrence. The Pascal Standard achieves this with

two scoping rules; the first ensures that a lexemes has at least one defining occurrence, and the second

ensures that it has at most one:

Each lexeme must have a defining occurrence.

The declaration-points effective over a given region must have distinct spellings.

Since these rules are expressing constraints that must be satisfied by programs, we formalize them as two

violation relations:

x is - undefined
if x is a label or identifier without a defining occurrence, and

d is - a - conflicting - declarationgoint
if d is a declaration-point that duplicates the spelling of another declaration-point effective over the same

region. In the example program, there is one instance of the first relation:

the identifier goop on line 02 is - undefined
because it has no defining occurrence. There are two instances of the second relation:

the identifier a on line 04 is - a - conflicting - declarat iongoint , and

the identifier a on line 05 is - a - conf licting-declarationgoint,
because they have the same spelling and are both declaration-points effective over the block of procedure

P.

3.2.5 Summary

This section has shown how the concepts involved in the scoping rules of Pascal (and thus, of many

Algol-like programming languages) can be formalized with two context-dependent entities, two support

relations, and two violation relations. The next section expands on this example, showing how to define

these entities and relations using NURN.

3.3 Defining NURN Relations

A NURN grammar consists of GRAMPS-style rules, which define domains of entities, and relation rules,

which define relations between these entities. Relations can be defined in two ways, using the three

different kinds of relation rule. (See Appendix 1 for a GRAMPS-style grammar for NURN rules.) A

relation can either be defined completely by a single Definition rule or else declared once with a

Declaration rule and then "subdefined" any number of times with Subdef inition rules. Having

two ways to define relations is simply a notational convenience for the grammar-writer; there is a

straightforward equivalence between them. As another convenience, a Subdef ini t ion rule may

subdefine more than one relation, but for simplicity, we will ignore this.

A Definition rule (and conceptually, a Declaration rule and its corresponding Subdef ini t ion

rules) consists of two parts, a head and a body. The head is a Declarator, which:

1. includes a Simple - Primary, which names the relation that the rule defines and supplies

identifiers to represent its parameters.

2. indicates the kind of the relation (whether it is primitive, derived, violation, maker, or normal)

3. indicates whether it is functional on any of its parameters.

These indicators are optional, with sensible defaults. The body gives a logical formula in terms of relations

on these parameters and other variables, which can be introduced as necessary. Here is a somewhat

contrived example of a Definition rule:

RELATION DEF NORMAL x 1 is a cousin-of x-2: FUNCTIONAL ON (x-1,x-2) :-
gp is thegarent of-p l f p I 1 is thegarent of x-1,
gp i s-thegar ent-of p12, p-2 i s-thegar - entaf x-2,
NOT (Ll is p-2)-

(* Informally, two nodes x-1 and x-2 are cousins if
they have the same grandparent gp, but
different parents.

* >
Every relation rule begins with the keyword RELATION, followed by either DEF, DECL, or SUBDEF,

indicating whether the rule is a Definition, Declaration, or Subdef ini tion, respectively. The

head and body are separated by the "if" symbol ": - ", and the end of the rule is indicated with a period.

Comments appear between " (* " and "*) ".

In the example, the head of the rule is the aeclarator:

NORMAL x-1 is-a - cousin - of x - 2: FUNCTIONAL ON (x - 1,x-2)

The binary relation is - a - cousin - of is being defined, and its two parameters are denoted by x-1 and

x - 2. It is a "normal" rule. Since this is the default, the keyword NORMAL could have been omitted. The

relation is functional on the set of both its parameters. That is, one must bind both x - 1 and x-2 to

ensure that there is at most one instance of the relation satisfying the bindings. Since "functional only on

the set of all parameters" is the default, this too could have been omitted.

The body of the rule in the example consists of a con&nction of five primaries, separated by commas. (In

general, the body of a rule can be a dishnction of conjunctions, separated by "OR".) Four of the primaries

use the relation is - thegarent - of, which is a primitive relation, relating any node to its parent (if it

has one). The last primary is a negation involving the identity relation is, another primitive relation.

In this rule, the parameters (x - 1 and x - 2) and the internal variables (gp, p - 1, and p - 2) are all node

variables, and as such, can only be bound to nodes in abstract syntax-trees. Although node variables are

the most used, there are also integer variables and character-sequence variables. That is, variables in a

NURN grammar are "typed" according to the kind of entity they bind to. This typing is indicated by the

first character of the variable's name: integer variables begin with #, character-sequence variables begin

with $, and node variables have no special prefix.

Readers familiar with the programming languagc Prolog [SteSha86] should have no trouble with NURN's

relation rules. They are both based on a subset of first-order logic, and both have a declarative semantics.

There are also some differences: Prolog rules have a procedural semantics involving depth-first execution,

whereas NURN's relation rules have no particular procedural interpretation, and are instead transformed

into an equivalent form that can be evaluated efficiently. Also, Prolog allows the arguments of a relation

to be structured with functions, whereas NURN requires that they be simple identifiers. In these two

respects, relation rules resemble the deductive laws (extensional relations) of a deductive database

[GMN84].

For definiteness, relation rules will be introduced by continuing the extended example of Section 3.2.

Specifically, this section will show how to define the relations

is-effective-over,
is - a-declaration_point,
is a region,
isItKe-def ining occurrence - of,
is undefined, a n z
is-a - - conflicting - declarationgoint,

(in that order) for the programming language Pascal. Occasional minor simplifications have been made to

ease the explanation here; see Appendix 2 for a complete NURN specification of Pascal.

There are various sources of leeway in writing a NURN grammar. One that we will see a couple of times

involves syntactic objects within fragments. While language descriptions are usually not concerned with

the correctness of any construct "smaller" than a program, such constructs commonly occur as fragments in

SMSs, and there is the question of how a NURN grammar should treat them. For example, if the

assignment-statement c : = ' j ' occurs as a fragment, should the identifier c be an instance of the relation

is - undefined? The Pascal Standard is not written to answer such questions, and the grammar-writer is

free to do what he likes.

3.3.1 Predefined relations

Since a NURN grammar defines relations in terms of other relations, there must be some predefined

relations that the grammar can use without defining. Similar to the division of routines of a

GRAMPS-style SMS, these predefined relations can be divided into grammar-derived and primitive.

Here are declarations for the primitive relations that this section will use:

RELATION DECL PRIMITIVE n 1 is n-2: FUNCTIONAL ON (n-l), (11-21 .
(* the identity relation on nodes *)

RELATION DECL PRIMITIVE p is - thegarent-of n: FUNCTIONAL ON in) .
(* p is the parent of n *)

RELATION DECL PRIMITIVE a contains d: FUNCTIONAL ON (a,d) .
(* a is an ancestor of d *)

RELATION DECL
PRIMITIVE $ s is-the-character-sequence-of n : FUNCTIONAL ON (n) .

(* $S is the sequence of characters in lexeme n *)

RELATION DECL PRIMITIVE #1 is the length of n: FUNCTIONAL ON (n) .
(* #1 is the number of elements in repetTtion node n *)

RELATION DECL
PRIMITIVE $2 IS - THE - BASE-TEN-REP-OF #i: FUNCTIONAL ON ($z), (#i) .

(* $2 is the base-ten representation of integer #i *)

As the name suggests, the grammar-derived relations are derived from the GRAMPS-style rules in the

NURN grammar. From the NURN grammar for Pascal in Appendix 2, some of the GRAMPS-style rules

relevant to the current discussion are as follows:

CONSTRUCT Block IS
["label" <:LabelList> ";"]
["const" <:ConstantDefinitionList>]
["type" < :TypeDefinitionList>]
["var" <:VariableDeclarationList>]
<:RoutineDeclarationList>
"begin"
<:Statementsequence>
end "

LIST NONEMPTY LabelList OF Label SEPARATED - BY - ","

LIST NONEMPTY ConstantDefinitionList OF ConstantDefinition
CONSTRUCT ConstantDefinition IS

<Lhs:Identifier> "=" <Rhs:Constant> ";"

LIST NONEMPTY TypeDefinitionList OF TypeDefinition
CONSTRUCT TypeDefinition IS

<Lhs:Identifier> "=" <Rhs:TypeDenoter> ";"

In the spirit of the GRAMPS derivation scheme presented in Section 2.2, these context-free rules yield

four kinds of context-free relations:

1. Domain relations: These unary relations correspond to GRAMPS-style recognizers. For example,

b is - a - Block is true when node b is a Block, and tdl is - a - TypeDef initionList is

satisfied when tdl is a TypeDef ini tionLi s t .
2. Component relations: These binary relations correspond to GRAMPS-style selectors. For example,

11 is - the - LabelList - of b indicates that the node 11 is the LabelList component of b, a

Block; id is - the - Lhs - of x is satisfied when the node id is the Lhs component of x,

which is a ConstantDef inition or a TypeDefinition or any other class of node that has a

Lhs component.

3. Element relations: These binary relations have no direct analog among GRAMPS-style routines.

For example, 1 is - a - Label - in 11 is true if the node 1 is a Label in the LabelList 11.

4. Element-selection relations: These ternary relations correspond to the generic routine

GetElementAt. For example, 1 is - the #i th - Label - in 11 is true if node 1 is the

Label at position #i in the LabelList 11.

3.3.2 Relation rules for i s-e f f ect ive-over

Recall that the support relation is - eff ective-over deals with the relationship between a

declaration-point and a region over which it is effective. We can declare this relation as follows:

RELATION DECL dp is-effective-over r .
(* Declaration-point dp is effective over region r. *)

We can then subdefine this relation with a set of Subdefinition rules. In the NURN grammar for

Pascal in Appendix 2, there are 13 subdefinitions for is - effective - over; since they are somewhat

repetitious, only 3 are presented here. The first subdefinition deals with the declaration of labels:

(* A Label in the LabelList of a Block
is a declaration-point effective over the Block.

* >
RELATION SUBDEF 1 is-effective-over b :-
1 is a Label-in 11,
11 is the-labellist-of b,
b is a lock - -

This rule can be read in many ways. As a logical formula, it could be read fairly literally as: "for all nodes

1, b, and 11 : 1 is effective over b if 1 is a Label in 11, and 11 is the LabelList component of b,

and b is a lock." A more casual reading would abbreviate this to: "1 is effective over b if 1 is a

Label in the LabelList of b, a lock." The comment shows how it would be rendered in the style

of the Pascal Standard. Note the close correspondence between the NURN definition and a careful

wording of the same idea in English.

For example, consider the following Pascal program:

01 PROGRAM example ;
02 LABEL 10, 99 ;
03 BEGIN
0 4 10: Writeln ('hello world') ;
05 GOT0 10
06 END.

There are two instances of is - effective - over ir? this program. The f s t is h a t

the label 10 on line 02 is - effective - over the block of the program

because

the label 10 on line 02 is a Label in the label-list,
the label-list is - the - ~abei~i s t of the block of the program, and
the block of the program i s-a-~lock.

That is, the following bindings for the variables 1, 11, and b satisfy the subdefintion of

is - effective - over given above:

1 is the label 10 on line 02,
11 is the label-list, and
b is the block of the program.

The second instance of is - effective - over in the example program is given by

1 is the label 99 on line 02,
11 is the label-list, and
b is the block of the program.

which corresponds to the declaration of label 99.

Another subdefinition of is-ef f ective - over, similar to that for labels, deals with the declaration of

constant-identifiers:

(* The Lhs of a ConstantDefinition in the ConstantDefinitionList
of a Block is a declaration-point effective over the Block.

* >
RELATION SUBDEF id is effective-over b :-
id is the Lhs of cd,
cd isIa-constiht~ef inition-in cdl,
cdl is-the-ConstantDefinitionList-of b,
b is - a-Block

Both of the rules shown so far subdefine the is - effective - over relation entirely in terms of

predefined relations. Similar rules exist for the declarations of type-identifiers, variable-identifiers,

procedure-identifiers, function-identifiers, parameter-identifiers, and field-identifiers; little would be

gained by presenting them all here.4 Instead, it is instructive to examine a rule which is not in this vein.

This rule deals with the identifiers of an enumerated-type. The pertinent GRAMPS-style rules are as

follows:

CONSTRUCT EnumeratedTypeDefiner IS " (" <:IdentifierList> ") "

LIST NONEMPTY IdentifierList OF Identifier SEPARATED - BY - ","
Normally, one might declare an enumerated-type as:

TYPE Primary = (Red, Green, Blue) ;

Not only does this declare the type-identifier Primary, it also declares the identifiers Red, Green, and

Blue to denote the three values of the enumerated-type that Primary denotes. However, an

enumerated-type need' not be declared by binding it to an identifier in this way. One can also write

TYPE Colour = ARRAY [(~ed, Green, ~lue)] OF Intensity ;

or

VAR PrimarySet : SET OF (Red, Green, Blue) ;

There are many such contexts in which an enumerated-type can appear, but the effect is always that the

identifiers of the enumerated-type are declared over the block that most closely contains the

enumerated-type. Here is a rule that captures this idea:

- -7

Actually, some of the rules dealing with procedure-identifiers, function-identifiers, and
parameter-identifiers are complicated by forward-declarations. The rules are still fairly straightforward,
but presenting them here would take too much time developing and explaining new relations, without
adding much to the discussion.

(* An I d e n t i f i e r i n t h e I d e n t i f i e r L i s t of an EnumeratedType
i s a dec l a r a t i on -po in t e f f e c t i v e over
t h e Block c lo se s t - con ta in ing t h e EnumeratedType.

* >
RELATION SUBDEF i d i s e f f e c t i v e - over b :-

i d i s an 1den t i f i e r - i n i d l ,
i d 1 is t h e - ~ d e n t i f i e r ~ i s t - o f e t d ,
etd i s I a - ~ n u m e r a t e d ~ ~ ~ e ~ e f i n e r ,
b i s - t h e - Block - c l o s e s t - con ta in ing e t d

In the body of this rule, the first three primaries involve predefined context-free relations, but the last uses

i s - the-Block-closest - conta in ing , which is not predefined. To define it, we can write a recursive

rule that starts at a node and climbs up the syntax-tree until it finds a Block:

RELATION DEF b i s t h e Block~closest~containing x: FUNCTIONAL ON 1x1 : -
IF (x i s a- lock) THEN
b i s x-

ELSE
p i s t hega ren t -o f x ,
b is~the~~lock~closest~containing p

END

This rules states that if x is a Block, the Block closest-containing x is x itself; otherwise, the Block

closest-containing x is the Block closest-containing p , the parent of x. The phrase

FUNCTIONAL ON (x)

indicates that for any node x, there is at most one Block closest-containing x. This property of a

relation could conceivably be deduced from the grammar, but someone reading the grammar should not

have to perform this deduction, so it is better made expli~it.~

The IF-THEN-ELSE construct is provided as another notational convenience. The above rule is

equivalent to

RELATION DEF b i s - t h e - Block - c loses t -conta in ing x: FUNCTIONAL ON 1x1 :-
x i s - a - Block,
b i s x

OR
NOT (x i s a Block),
p i s t h e j a r e n t - o f x,
b i s l t h e - Block-closest-containing p

which fails to show the intent of the rule as clearly.

One final subdefinition of i s - e f f e c t i v e - over will be presented, because it shows that the relation is

in fact recursive. It concerns with-statements. Consider the following block:

We will see in Chapter 4 that Ginger issues a warning if it cannot verify the stated functionality of a
relation.

01 VAR rec: RECORD a: integer END ;
02 BEGIN
03 rec.a:=l;
04 WITH rec DO a:=l
05 END

The two assignments are equivalent, because the with-statement "opens up a scope" in which a, the

field-identifier of the record-variable rec, can be referenced without the rec . prefix that is necessary in

the first assignment In fact, the rec. prefix in the first assignment itself opens up a scope (only one

identifier "wide") in an analogous manner. Anyway, here is a somewhat simplified syntax for the

with-statement6 and two associated subdefinitions, one for the violation relation

has - an - inappropriate - type, and one for is - ef fective-over :

CONSTRUCT WithStatement IS
"with" <:VariableAccess> "do" <Body:Statement>

(*
The VariableAccess of a WithStatement
shall be a variable possessing a record-type.

* >
RELATION SUBDEF va has-an - inappropriate-type :-
ws is a WithStatement,
va is-the-variable~ccess - of ws,
rt is-the type-of vat
NOT (rt i<a-record-type)

(*
Identifier that is effective wer

(i.e., is a field-identifier for)
the record-type possessed by
the VariableAccess of a WithStatement
is a declaration-point
effective over the region that is
the Body of the WithStatement.

* >
RELATION SUBDEF id is-effective - over st :-
ws is-a-Withstatement,
st is the-Body-of ws,
va is-the - - VariableAccess - of ws,
rt is-the-type of vat
id is - effective - over rt

The variables in this subdefinition can be bound consistently to nodes in the example block as follows:

ws: WITH rec DO a:=l online04
st: a:=l on line 04
va: rec on line 04

The simplification is to have a VariableAccess component rather than a VariableAccessList.
The true syntax for the with-statement is dealt with in Subsection 3.3.7.

rt : RECORD a : integer END on line 01
id : a on line 01

Although relations is - the - type - of and is - a - record - type have not been seen, their meaning is as

expected.

We have seen four subdefinitions of is - effective - over, and mentioned others as being similar.

Together, they fully define the is - effective - over relation. A reader familiar with Pascal may be

wondering how the predefined identifiers such as char and ord are covered by this definition, since

according to the Pascal Standard, they should act as if they had declaration-points effective over the

program. Subsection 3.3.6 will explain how.

3.3.3 Relation rules for is - a - declarationjoint and is - a - region

To define the is - a - declarationjoint relation, one could enumerate all the contexts in which a

lexeme is a declaration-point:

RELATION DEF dp is-a-declarationjoint :-
dp is a Label-in 11,
11 isIthe-~abel~ist-of b,
b is - a - Block

OR
dp is - the - Lhs-of cd,
cd is - a - ConstantDefinition

OR
dp is a Identifier in idl,
id1 is the ~dentifyer~ist of etd,
etd is-a - - ~iumerated~~~e~eTiner

OR

However, this is unnecessary; the definition of the relation is - effective - over has already identified

all of these contexts. Thus, we can say that a node is a declaration-point if there is some region that it is

effective over. Formally:

RELATION DEF dp is a declarationjoint :-
dp i s-ef f ec t ive-over r

There is a small area of disagreement between the two definitions. For example, the ~ h s of an orphan

ConstantDefinition would be an instance of the first definition of is - a - declarationjoint, but

not of the second, because there is insufficient context (a lock) to establish the necessary instance of

is - ef f ective-over. Because this disagreement occurs only for nodes within fragments, it is outside

the jurisdiction of the Pascal Standard. If the grammar-writer decides that the difference is unimportant,

the second definition is preferable, since it is less repetitious and less error-prone than the first

Similarly, for the is-a-region relation, we can write:

RELATION DEF r is-a-region :-
dp is - effective-over r

3.3.4 A relation rule for is - the-defining - occurrence-of

Defining the binary support relation is - the - defining - occurrence - of is less straightforward.

Recall that to find the defining occurrence of a lexeme, one starts at the lexeme and moves rootward in the

syntax-tree until one finds a region with a declaration-point effective over it whose spelling matches that

of the lexeme. The idea here is similar to that behind is - the - Block - closest - containing: in both

cases, given a node x, we are looking for its "nearest ancestor" (call it r) that satisfies some criterion.

With is-the - Block-c losest - containing, the criterion is very simple:

r is a Block - -
However, for is - the - defining - occurrence-of, the criterion is more complicated:

there exists a dp such that:
dp is - effective - over r and the spelling of dp equals the spelling of x.

The latter criterion involves the spelling of x, the node at which the rootward search begins. In the case

of is - the - lock - closest - containing, this node is "left behind" as successively deeper

invocations of the recursive rule travel rootward. However, with is - the defining - occurrence-of ,

it is necessary for deep invocations to "remember" x or its spelling. Therefore, an additional argument is

necessary: we need a ternary relation to do the work for the binary relation

is-the-defining-occurrence-of. '4s it happens, the ternary relation also has a uscfu!

interpretation: we can say that

d defines-the-spelling $s if - it - occurs - at x
when d would be the defining occurrence of a lexeme with spelling $s if that lexeme occurred in the

context of node x . ~ Here, the name of the variable $s begins with a $ to indicate that it binds to a

character-sequence, not to a node. It is this variable that will carry along the spelling of x in

is - the - defining - occurrence - of. The rule that defines the ternary relation is:

' This interpretation of the relation ignores the fact that x could be in a context that does not allow a
simple lexeme to appear. One could probably find an interpretation that corresponds more closely to the
syntax of the language, but it would certainly be more complex and probably less intuitive. Merks
[Merag] has a routine (DefiningOccurrenceAt) with much the same interpretation, so he is
presumably not disturbed by its generality.

RELATION DEF
d defines-the-spelling Ss if it - occurs - at x:
FUNCTIONAL ON ($ s , x) , id, XI . -

IF (dp is-effective-over x, $s is-the-spelling - of dp) THEN
d is dp

ELSE
p is thelarent-of x,
d defines-the-spelling Ss if - it - occurs - at p

END

Here we can see, in the condition of the IF-THEN-ELSE construct, the success criterion mentioned

earlier.

Specifying is - the - defining - occurrence - of is now easy:

RELATION DEF d is the def ining-occurrence-of x: FUNCTIONAL ON 1x1 :-
SS is-the-spelling of x,
d def ines-the-spelling Ss if - it - occurs - at x

The observant reader may have noticed that the is - the - spelling - of relation has not been defined,

although the word "spelling" has been used to suggest the sequence of characters in a lexeme. In fact, the

spelling of a lexeme is a slightly more involved concept.

Section 6.1.1 of the Pascal Standard states: "The representation of any letter (upper-case or lower-case,

differences of font, etc.) occurring anywhere outside a character-string ... shall be insignificant in that

occurrence to the meaning of the program." For example, an identifier declared as "foo" can be the

defining occurrence of identifiers with the character-sequences "f oo ", "FOO ", "FOO ", and so on. In

addition, Section 6.1.6 of the Standard states: "Labels ... shall be distinguished by their apparent integral

values." Thus, a label declared as "099" could be the defining occurrence of a label with the

character-sequence "099 ", "99 ", "0099 ", and so on. The spelling of an identifier or label is a

character-sequence that eliminates these differences of case and format. The way in which it does this is

not prescribed by the Pascal Standard, so I have chosen the following definition:

LEXEME Identifier IS #letter (#letter I #digit)
LEXEME Label IS #digit (#digit)

(*
The spelling of an Identifier is
the character-sequence of the Identifier,
with any upper-case letters converted to lower-case.
The spelling of a Label is
the character-sequence of the Label,
with leading zeroes removed.

* >

RELATION DEF $s is - the - spelling - of x: FUNCTIONAL ON (x) :-
x is a-Identifier,
$a i<the-character sequence-of x,
$5 is-the-lower-case - translation-of $a

OR
x is-a Label,
$2 is-the-character-sequence of x,
$S is-the-unzeroed - translation-of $2

The relations is - the - lower case translation of and is the unzeroed translation-of - - - - - -
are treated as primitive relations because NURN does not include any notation to create or examine

character-sequences, which would be necessary to define these relations. Such notation was not included

in NURN because the lexical aspects are not being emphasized in this thesis. These relations and two

other ad hoc and somewhat Pascal-specific relations:

$C is-the-charseq-for the-char value-for ordinal #ord,and
#n is-the-number - of - string - elements-in $s

are included in my NURN grammar for Pascal.

3.3.5 Relation rulesfor is - a - conflicting - declarationjoint and is-undefined

We turn finally to the violation relations is a conflicting declarationjoint and - - -
is - undefined.

Recall that dp - 1 is-a - conflicting - declarationjoint if dp 1 is a declaration-point that -
duplicates the spelling of another declaration-point (dp 2) effective over the same region. This violation -
relation is easily expressed in the following definition:

(* Two distinct declaration-points effective over the same region
must not have the same spelling.

* >
RELATION DEF
VIOLATION dp 1 is a conflicting declarationjoint :-
$S is-the-spellin~-~f dp 1, dp 1 is effective over r,
$S is-the-spelling-of dp12, dp-2 - is-effective-over - - r,
NOT (dp-1 is dp - 2)

Recall that x is - undefined if x is a label or identifier without a defining occurrence. This is also

easily expressed:

(* A Label or Identifier must have a defining occurrence. *)
RELATION DEF VIOLATION x is undefined :-

(x is a Label OR x is a ~dentifier),
NOT (dp-i s-the-def ining-occurrence - - of x)

One (possibly unintuitive) aspect of the semantics of NURN is that the logical interpretation of a negation

includes an existential quantification of any variables in its body that are not referenced outside it. In the

definition above, dp is such a variable. Thus, the definition could be read: "x is undefined if x is a -
Label or Identifier, and there does not exist a node dp such that dp

is-the-defining-occurrence_of x."

Now in fact, the Pascal Standard does not require every label or identifier to have a defining occurrence,

just those within the block of a program.

(* A Label or Identifier within the Block of a Program
must have a defining occurrence.

* >
RELATION DEF VIOLATION x is undefined :-
(x is a Label OR x is - a - ~dentifier),
b is-th&block-of p, p is - a-Program,
b contains x,
NOT (dp is - the - defining-occurrence-of x)

The Standard includes the restriction to the block of a program in order to relieve the name and

parameters of a program from having defining occurrences8, and the restriction has this effect because the

Standard is not concerned with nodes within fragments. However, in a NURN grammar, which applies

equally to such nodes, there is an added effect: any node not within a Program is also relieved from

having a defining occurrence. For example, if the assignment-statement c : = ' j ' occurs as a fragment,

the identifier c is not required to have a defining occurrence, i.e., it is not an instance of the

is - undefined relation. If this is not the desired effect, the name and parameters of a program can be

excluded explicitly:

(* A Label or Identifier
(other than the Name of a Program or
an Identifier in the Parameters of a Program)
must have a defining occurrence.

* >
RELATION DEF VIOLATION x is undefined :-

(X is - a-label OR x is-a - ~dentifier),
NOT
(
x is-the-Name of p,
p is - a-program

OR
x is a Identifier in idl,
id1 is-the parameters - of p,
p is - aI~ro&rn

) ,
NOT (dp is-the-defining-occurrence-of x)

* The name of a program has no significance and the parameters are dealt with specially.

3.3.6 Make Functions

In Subsection 3.3.1, I described how the GRAMPS-style rules of a NURN grammar implicitly define

context-free relations. In addition, they also implicitly define context-free functions9 called Make

finctions, corresponding to GRAMPS-style constructor^^^, For instance, the function

make-ConstantDef ini t ion specifies the construction of a Cons tantDef ini t ion node from its two

arguments. A Make function can only be used in a Make, a NURN primary with the appearance of an

assignment. Moreover, a Make can only appear in the definition of a maker relation. These restrictions

are imposed because Make functions are inherently non-logical constructs, and it is desirable to isolate, as

much as possible, their side-effects.

In general, Make functions are used to creates nodes to represent context-dependent entities for which

there is no suitable representative in the program. Most programming languages have a set of such entities

generally referred to as predefined entities, which exist independently from any program. These are

denoted by predefined identifiers, whose scoping must be defined somehow. In explaining Pascal scoping

rules in Section 3.1, and in defining them in Section 3.3, 1 avoided this matter, but I can now deal with it

using Make functions.

In Pascal, the rule is that predefined identifiers "shall be used as if ' their declaration-points are effective

over a region enclosing the program. This is the only rule concerning the scoping of these predefined

identifiers; otherwise, they behave like any other identifier." Therefore, it would be convenient if they

could be formally handled like any other identifier. However, in contrast to all the previous examples in

this section, the declaration-points of predefined identifiers do not exist, nor does the region that they are

supposedly effective over. That is, they do not and cannot exist in any program.

In previous work with ad hoc context-dependent SMSs, predefined identifiers have been handled in

different ways. In [Cam87], the routine Definingoccurrence returns N I L if no defining occurrence

is found within the program. Thus, predefined identifiers and undefined identifiers cause the same

response: whenever Def iningOccurrence returns N I L , one must check if the argument's spelling is

that of a predefined identifier; and even if it is, one still does not have a node representing the defining

The word "function" is used in several ways in this thesis. Here, "function" refers to a particular
construct in a NURN grammar (see Appendix 1). These should be distinguished from functions defined
in the host-language, such as the recognizers, selectors, and constructors seen in Section 2.2. Moreover,
the target-language may have constructs called "functions", particularly if it is a programming language.

lo Also, there is a single generic Make function named tail, which takes a repetition node as an
argument and returns a copy of it with the first element removed.

l1 In particular, they can be redeclared for a nested region, as opposed to languages in which they are
"reserved", thereby preventing a programmer from redefining them.

occurrence, merely the information that it is a predefined identifier. One could use an analogous

technique in writing a NURN grammar, but this would hardly be a uniform treatment of identifiers.

On the other hand, in [Mer88], a special module is constructed to house the declaration-points of

predefined identifiers. These nodes can then be returned by the routine Def iningoccurrence. The

latter technique is more attractive because it distinguishes between predefined and undefined identifiers,

provides a more uniform approach to the concept of defining occurrence, and corresponds more closely

with informal language description. Using an analogous technique in a NURN grammar requires the

ability to specify the creation of syntactic structures, and Make functions provide this ability.

We can use Make functions to build a special lock in which to house the declaration-points of the

predefined identifiers.

RELATION DEF MAKER b is-thegredefined-Block :-
b := make Block (......) -

The actual expression used to create the predefined-block is large and difficult to grasp (see Appendix 2

under Section 6.2.2.10); rather than show it here, it is more helpful to give a textual representation of the

predefined-block:

const maxint = 32767 ;

tYPe
boolean = (FALSE, TRUE) ;
integer = TheIntegerType ;
real = TheRealType ;
char = TheCharType ;
text = file of char ;

procedure rewrite (f : aFile) ;
procedure put (f : aFile) ;
procedure reset (f : aFile) ;
procedure get (f : aFile) ;
procedure read I

procedure readln I

procedure write I

procedure writeln I

procedure page I

PREDEFINED ;
PREDEFINED ;
PREDEFINED ;
PREDEFINED ;
PREDEFINED ;
PREDEFINED ;
PREDEFINED ;
PREDEFINED ;
PREDEFINED ;

procedure new ; PREDEFINED ;
procedure dispose ; PREDEFINED ;

procedure pack
(a: UnpackedArray; i: Ordinal; z : PackedArray) ; PREDEFINED;

procedure unpack
(2: PackedArray; a: UnpackedArray; i: Ordinal) ; PREDEFINED;

function abs (x: Numeric) : Numeric ; PREDEFINED ;
function sqr (x: Numeric) : Numeric ; PREDEFINED ;

function sin (x: real) : real ; PREDEFINED ;
function cos (x: real) : real ; PREDEFINED ;
function exp (x: real) : real ; PREDEFINED ;
function In (x: real) : real ; PREDEFINED ;
function sqrt (x: real) : real ; PREDEFINED ;
function arctan (x: real) : real ; PREDEFINED ;

function trunc (x: real) : integer ; PREDEFINED ;
function round (x: real) : integer ; PREDEFINED ;

function ord (x: Ordinal) : integer ; PREDEFINED ;
function chr (x: integer) : char ; PREDEFINED ;
function succ (x: Ordinal) : Ordinal ; PREDEFINED
function pred (x: Ordinal) : Ordinal ; PREDEFINED

function odd (x: integer) : boolean ; PREDEFINED
function eof : boolean ; PREDEFINED
function eoln : boolean ; PREDEFINED

begin end

Observe that syntactically, this is a lock like any other. The advantage of this is that many of the rules

that apply to "normal" blocks also apply to this one. For example, the rules already given in Section 3.3

for the is - effective - over relation say that because of the contexts in which the predefined

identifiers appear in the predefined-block, each is a declaration-point effective over this block. We can

use this fact to revise the scoping rule for finding the defining occurrence of a lexeme: if the root of the

syntax-tree is reached without finding a region having a declaration-point effective over it whose spelling

matches that of the iexeme, continue the search at the predefined-biock. We express this by revising the

rule for the relation d defines-the-spelling S s if - it-occur s - at x as follows:

RELATION DEF d defines-the-spelling Ss if it occurs at x :-
IF (dp is effective-over x, Ss is-the-spelling - ofdp) THEN
d is dp-

ELSE
IF (p is-thegarent-of x) THEN
cont is p

ELSE
cont is-thegredefined-Block,
NOT (x is - thegredefined-Block)

END,
d defines - the - spelling Ss if - it - occurs - at cont

END

If the parent p of x exists, the place to continue the search (cont) is p, and the rule recurses as before.

If the parent does not exist, x is the root of a syntax-tree: the place to continue the search is with the

predefined-block, unless we are already there, in which case the rule fails.

In the predefined-block, many of the declarations use identifiers that are not defined, e.g..

TheMaximumIntegerValue, TheIntegerType, and SomeFileType. This is not surprising:

predefined identifiers usually have definitions which cannot be expressed within the language. (Here,

boolean is a notable exception.) Since practically every program gives rise to the predefined-block, we

definitely do not want these undefined identifiers to be instances of the violation relation

is - undefined. The first alternative definition for is - undefined in Subsection 3.3.5 will give us this

assurance, since the nodes in the predefined-block are not contained by the block of a program, and are

thus relieved of having a defining occurrence.

The operation of Make functions is determined by the maker relations in which they occur. Consider all

parameters of a maker relation, and exclude those (the made parameters) that appear on the left-hand side

of a Make within the definition of the relation. The remaining parameters are the relation's unmade

parameters. For each distinct set of entities bound to the unmade parameters of a maker relation, there is

at most one instance of the relation consistent with those bindings, and if it exists, the entities bound to the

made parameters do not appear in any other instance of the relation. For example, in the

is - thegredefined - Block, there is one made parameter and no unmade parameters. Thus, there can

be only one distinct set of bindings for the unmade parameters (the empty set), and therefore, only one

instance of the relation. That is, there is only one predefined-block, which is the desired effect

3.3.7 The IS - THE - EXPANSION - OF relation

Informal descriptions of context-dependent languages sometimes employ "definition-by-equivalence".

Using this technique, a complex construct of the language is not defined per se; rather, a transformation is

given whereby any instance of this construct is expanded into an equivalent structure of simpler,

more-easily-defined constructs.

For example, consider Pascal's with-statement Here is its context-free syntax:

CONSTRUCT Withstatement IS
"with" <:VariableAccessList> "do" <Body:Statement>

LIST VariableAccessList OF VariableAccess SEPARATED-BY - ","
The context-dependent syntax of with-statements is defined only for with-statements having a single

variable-access in their variable-access-list This was given in Subsection 3.3.2. The Pascal Standard then

says that the statement

with vl, v2, ..., vn do
s

is equivalent to

with vl do
with v2 do . . .

with vn do
S

This is not the only way to define the syntax of with-statements, but it is certainly the simplest Without

the use of definition-by-equivalence, the description would have to either start with a less clear

context-free syntax for with-statements or else introduce more complicated scoping rules.

To accomodate this descriptive technique, NURN has a predeclared relation:

RELATION DECL MAKER ex IS - THE - EXPANSION-OF x: FUNCTIONAL ON (x) .
(* ex is an equivalent expansion of x into simpler constructs *)

For example, the above expansion for with-statements can be expressed as follows:

RELATION SUBDEF wex IS - THE - EXPANSION - OF w :-
w is - a - Withstatement,
st is-the Body of w,
val is-the ~ariableAccess~ist-of w,
#len is-th<-length of val,
1 en I S-GREATER-TH& 1,
va is-the 1 th-VariableAccess - in val,
wex :=
make WithStatement

(make VariableAccessList (va),
make-withstatement - (tail(val), st)

)

Conceptually, any node for which an expansion can be found is replaced by that expansion. The

replacement may also be subject to expansion, as in the example above. The rest of the NURN grammar

can then be written as if these replacements have been made.12

There are two other cases in the Pascal Standard where the use of definition-by-equivalence allows a

simple definition of context-dependent syntax. The array-type with a list of index-types

ARRAY [il, i2, ..., in] OF b
is equivalent to

ARRAY [ill OF ARRAY [i2] OF ... ARRAY [in] OF b
Similarly, the index-variable with a list of index-expressions

l 2 Whether (and how) the replacements are performed in a resulting SMS is determined by the SMS
derivation scheme used. The scheme-designer must decide whether SMSs derived according to that
scheme will present the SMS-users with the idea that they are manipulating objects of the full language or
the simpler language. If the SMS manipulates the full language, then the designer must decide how the
SMS will handle queries involving non-simple objects. If the SMS manipulates the simpler language, then
the designer must decide how the SMS will provide the conversion from the full language, and how it will
handle attempts to construct non-simple objects.

v [e l , e2, . . ., en]

is equivalent to

v[e l] [e2] ...[en]

In both cases, it is much easier to define the context-dependent syntax solely in terms of the second,

expanded form; defining it in terms of the first form would require using a much less clear context-free

syntax.

3.3.8 The IS-A - VIOLATION relation

NURN includes one other predeclared relation:

RELATION DECL x IS - A - VIOLATION .
This relation is implicitly subdefined by each violation relation in the NURN grammar. For example, if

the two violation relations seen so far were the only ones in a NURN grammar, the IS - A - VIOLATION
relation would have the following (implicit) definition:

RELATION DEE x IS - A - VIOLATION :-
x i s - undefined

OR
x is-a-conflicting-declaration-t

The IS - A - VIOLATION relation would not normally be used in a NURN grammar, but it is useful in the

resulting NURN SMS.

3.4 Pascal Twes

All the features of NURN have been shown, but it is instructive to reinforce the presentation and

emphasize NURN's generality with further examples. In this section, we will see how NURN can be used

to describe some of the trickier aspects of the Pascal type system.

3.4.1 Multi- type literals: n i l and [I

Section 6.4.4 of the Pascal Standard states: "The token n i l shall denote the nil-value in all pointer-types.

... The token n i l does not have a single type, but assumes a suitable pointer-type to satisfy the

assignment-compatibility rules, or the compatibility rules for operators, if possible." For example,

consider the following block:

VAR
p : @integer ;
q : @real ;

BEGIN
IF p=nil THEN q:=nil

END

The compatibility rules for the operator = require that p and the first occurrence of n i l have the same

type (@in teger) , and the assignment-compatibility rules require that q and the second occurrence of

n i l have the same type (@real) . Thus, the two occurrences of n i l have different types. Since most

typed entities in Pascal have a single consistent type, this case is somewhat anomalous.

Rather than translating the Standard's description into NURN, we can use a different but equivalent

approach whereby n i l has a single consistent type. The idea is to invent a unique type (called the

null-type, say) to be the type of all occurrences of n i l , and modify the definition of compatibility to

ensure that it is compatible with all pointer-types.13

The null-type is like a predefined type, in that it should exist for all programs to reference. However, it

cannot be represented in the predefined-block because this would introduce an identifier to denote it,

which would then become a predefined identifier, which would constitute an extension to Pascal. Instead,

in the same way that the whole predefined-block was created, a single orphan node is created to represent

the null-type. Since this node is used only in that capacity, and since the null-type has no structure (no

subtypes), it could just be an empty node. However, since there may be occasion to display it concretely,

an informative identifier (T h e ~ u l l ~ y p e) is used instead.

RELATION DEF MAKER t i s t h e n u l l t y p e :-
t := make - l d e n t i f i e r (" T h e ~ u l l ~ e t l)

Note that this does not introduce TheNullType as a predefined identifier, since it is not invoived in any

scoping rules.

The set-constructor [I is a similar case to n i l . Section 6.7.1 of the Pascal Standard states: "The

set-constructor [I shall denote that value in every set-type that contains no members." A satisfactory

approach is to invent a type (the empty-set-type, say), represent it with a specially-created orphan

identifier (T h e ~ m p t y S e t ~ y p e) , and ensure that it is compatible with any set-type.

3.4.2 Literal string- types

In Pascal, the type of a character-string with more than one character (e.g., " h e l l o world") is an

array-type exactly big enough to hold it (e.g., PACKED ARRAY [l. .12] OF char). This is an

undeclared type, since it does not appear in the program with the character-string. A clear and workable

approach is to represent each such undeclared array-type with a created ArrayTypeDefiner, so that it

can be treated like any other array-type. The only identifier in the created object is the identifier c h a r ,

and it will scope as desired (i.e., it will denote the predefined char-type), because when the

d e f i n e s - t h e - s p e l l i n g relation (as redefined in Subsection 3.3.6) reaches the root of the

l 3 Modula-3 [CarL89] has this idea as part of a more uniform type system.

ArrayTypeDefiner, it will search the predefined-block for the defining occurrence of char. The

relation to create these undeclared types is defined by the following rule:

RELATION DEF
MAKER t is-the-string - type-corresponding-to cs : FUNCTIONAL ON (t) , (cs) . -
cs is-a-Characterstring,
SS is-the-character-sequence-of cs,
#n is-the-number of string-elements-in Ss,
$z IS-THE-BASE-TEN-REP - OF #n,
t :=
make PackedStructuredType

(make-Ar r ayType~ef iner
(make-TypeDenoterList

(make-SubrangeTypeDefiner
(make Un~iqnedIntegerLiteral(~~1'~) I

make-~nsigned~nte~er~iteral($z) -
)

) 1

make - Identifier ("char")
)

)

3.4.3 Canonical set- types

Section 6.4.3.4 of the Pascal Standard states that for each ordinal-type (other than a subrange-type), there

exist (implicitly) two canonical set-types, packed and unpacked. These types are not declared and cannot

be denoted. The type of a set-constructor or a dyadic expression with set operands is a canonical set-type.

For example. consider the block:

TYPE
Suit = (spade,club,heart,diamond) ;
BlackSuits = PACKED SET OF spade .. club ;
RedSuits = PACKED SET OF heart .. diamond ;

VAR
s : Suit ;
b : BlackSuits ;
r : RedSuits ;
is-in-b-or-r : ARRAY [suit] OF boolean ;

BEGIN
b := [spade] ;
r := [heart,diamond] ;
FOR s := spade TO diamond DO
is - in - - b or-r[s] := (s IN b+r) ;

END

The type of the set-constructors [spade] and [heart ,diamond], and of the expression b+r, is the

packed canonical set-of-(spade, club, heart ,diamond) type. There are two independent problem

areas with canonical set-types: (1) creating them; and (2) determining from context whether the type of a

set-constructor is packed or unpacked.

Canonical set-types are similar in many respects to the array-types of character-strings presented in

Subsection 3.4.2. However, the only difference between the created array-types is the size of their

index-types. Here, canonical set-types have a more significant difference: their base-type. A canonical

set-type is represented with a SetTypeDef iner created by

make - SetTypeDefiner (bt)

where the BaseTypeDenoter argument bt is bound to the node representing the ordinal-type giving

rise to the canonical set-type. This SetTypeDef iner is then related to bt, so that it is "accessible"

from the program's syntax-tree.

RELATION DEF
MAKER st is the acked canonical set type-associated-with bt: .p - -
FUNCTIONAL-ON st) , (bt) . -
bt is-an-ordinal-type,
NOT (bt is a SubrangeTypeDefiner),
st := make-~acked~tructuredType - (make-SetTypeDefiner (bt))

RELATION DEF
MAKER st is the unpacked canonical - set - type-associated-with bt:
FUNCTIONAL-ON 1st) , (btT . -
bt is an-ordinal-type,
NOT (bt is a-SubrangeTypeDef iner) ,
st := make-~et~~~e~efiner - (bt)

RELATION DEF st is a canonical set-type :-
st i ~ - t h e ~ a c k e d ~ c ~ n o n i c a l - s ~ t - type - associated - with bt

OR
st is - the - unpacked - canonical-set - type - associated - with bt

There are problems with this representation: since two nodes cannot share a child node because this would

violate the "tree-ness" of the context-free node-structure, and since bt, the node representing the

ordinal-type giving rise to the canonical set-type, is presumably a child of some node within a program's

syntax-tree, the Make function make - SetTypeDefiner(bt) creates a SetTypeDefiner whose

BaseTypeDenoter component is only a copy of bt. To see how this creates problems, we will assume

for the moment that the original ordinal-type (and thus, the copy) is an EnumeratedTypeDefiner.

Now two things about an EnumeratedTypeDefiner are that (1) it represents an ordinal-type, and (2) it

denotes the type that it represents. Thus:

1. The copy also represents an ordinal-type, and will give rise to another pair of canonical set-types,

each with a copy of the copy, etc.. in an exponential explosion of canonical set-types.

2. The copy also denotes the type that it represents. Now a SetTypeDef iner represents a set-type,

and the base-type of a set-type is the type denoted by the BaseTypeDenoter of the

SetTypeDef iner, so the base-type of the canonical set-type will be the type represented by the

copy. However, the base-type shodd be the type represented by the original.

If, on the other hand, the original ordinal-type (and thus, the copy) is a predefined ordinal-type

represented by an identifier (The~ntegerType or ~heCharType), problems will occur because a copy

of such an identifier does not denote anything; (the original only represents a predefined type by special

dispensation).

The solution to all these problems is to deny the type-hood of the BaseTypeDenoter of a canonical

set-type. That is, it does not represent a type; instead, it is made to denote the type represented by the

original of which it is a copy. An alternative solution would use orphan identifiers to represent canonical

set-types. This representation would require very little special handling, but a concrete display of a

canonical set-type would be very uninformative.

Turning now to the second of the two independent problem areas, Section 6.7.1 of the Pascal Standard

states that a non-empty set-constructor has an unpacked canonical set-type, or if the context requires, a

packed canonical set-type. We have already seen examples (the empty set-constructor [I and nil in

Subsection 3.4.1) where the Standard's description says that context determines type. There, it was

deemed simpler to invent a type for the construct than to duplicate the Standard's description. A similar

approach could be taken here: one could invent a third class of canonical set-types (literal canonical

set-types, say) which are neither packed nor unpacked, but compatible with either. This would complicate

the compatibility m!e somewhat, and the expression-typing rule even more so, but not to an unmanageable

extent. However, it is instructive to examine how NURN can express context-determined typing.

Here is an approximation to the rule wherein the type of a set-constructor is determined:

RELATION SUBDEF t is - the - type-of sc :-
sc is-a-SetConstructor,
rt is - the - type - of - all member-designators-in sc,
IF (sc is in a-context requiring agacked set type) THEN
t is-thepacked-canonical-set-Typ - associated - with rt

ELSE
t is - the - unpacked - canonical-set - type - associated - with rt

END

Thus, it is now a question of how to define this relation:

RELATION DECL x is - in - - a context-requiring-apacked-set-type .
The Standard does not explicitly state how a context can require a packed set-type, but examination of the

Standard indicates that the constraints of compatibility and assignment-compatibility are operative here.

Assignment-compatibility is required between the expression and variable-access of an

assignment-statement, and between an actual value parameter and its corresponding formal parameter.

For example, the assignment-statement b : = [spade] appears in the block above. Since b has a packed

set-type, [spade] must assume a packed set-type. We can capture these cases with the following rule:

RELATION SUBDEF x is - in - - a context-requiring-ajacked-set-type :-
asmt is-a-AssignmentStaternent,
x is-the-Expression-of asmt,
va is the-VariableAccess-of asmt,
tv isIthe-type-of va,
tv is-a-set-type,
tv is - designated_packed

OR
x is-a-actual-value_parameter,
fp is the-formal-for x,
tfp i<the-type-of fp,
tfp is-a-set-type,
tfp is - designatedgacked

Compatibility is required between the two operands of a dyadic expression. For example, if the expression

b+ [club] had occurred in the above block, the set-constructor [club] would have to assume a packed

set-type in order to be compatible with b. Thus:

RELATION SUBDEF x is - in - - a context-requiring-ajacked-set-type :-
expr is-a-dyadic-expression,
(
y is-the-Leftoperand-of expr, x is - the - Rightoperand-of expr

OR
x is - the - Leftoperand - of expr, y is-the-Rightoperand-of expr

) I
ty is-the-type of y,
ty is a set-type,
ty isd&gnatedgacked -

To complete the definition of the relation, we need to recognize that if a dyadic expression is in a context

requiring a packed set-type, so are each of its operands. Similarly, if a bracketted-expression is in such a

context, so is its expression. For example, if b+([club] + [spade]) appeared in the block above, both

of these cases would be used to assert that the two set-constructors must assume packed set-types.

RELATION SUBDEF x is - in - a-context-requiring - agacked-set-type :-
expr is-a-dyadic-expression,
expr is-in-a-context-requiringgacked,
(x is - the-Leftoperand - of expr OR x is-the - Rightoperand-of expr)

OR
expr is-a-BrackettedExpression,
expr is-in-a-context-requiringgacked,
x is-the-Expression-of expr

3.4.4 The "treated as" rules

According to Section 6.7.1 of the Pascal Standard, an expression whose type is a subrange-type can be

"treated as" being of the host-type, and an expression whose type is a (packed or unpacked) set-type can

be "treated as" being of the corresponding (packed or unpacked) canonical set-type. These rules suggest

that it might be necessary for an expression to have two types, but in fact, this is not the case. The "treated

as" rules are only used to simplify the statement of the expression-typing rules. For example, with the

"treated as" rules, the Standard can state that the operands of set union must have the same canonical

set-type and the result will have that type. Without them, one must say something like the operands of set

union must have set-types that correspond to the same canonical set-type, and the result is the canonical

set-type corresponding to the type of either of the operands.14

This revolves around the concept of the most general type that is compatible with a given type, which I will

represent here as is - the - - MG type - for, a relation between types. Now imagine that you want to say

(in NURN) tbat an expression has the type integer or some subrange of icteger. (Never mind the context

of this NURN phrase.) You could say it as follows:

expr is-a-Expression,
te is the type of expr,
t is-the-iG-tGe-f or te,
t is - the - integer - type

If you group the second and third primaries, you get the "treated as" rule:

RELATION DEF expr can-be-treated - as-having-type t :-
te is the type of expr,
t is - The-iG - type-f or te

whereupon the NURN phrase can be written:

expr is-a-Expression,
expr can-be treated-as-having-type t,
t is - the - integer - type

On the other hand, if you group the third and fourth primaries, you get the approach I took:

l4 Oddly enough, some of this alternative phrasing does appear in the Standard, as if the authors had
forgotten that they had the "treated as" rules to fall back on. In fact, most of the Standard's definition of
compatibility is redundant, given the "treated as" rules.

RELATION DEF te is-an-integer-type :-
t is-the-MG-type-for te,
t is - the - integer-type

whereupon the NURN phrase can be written:

expr is-a-Expression,
te is-the-type-of expr,
te is-an-integer-type

3.4.5 Summary

As we have seen, NURN handles the type system of Pascal quite well, even the anomalous features. Also,

NURN rules can be written using phrasing close to what one would write naturally in a language

specification.

CHAPTER 4

SYNTACTIC MANIPULATION SYSTEMS BASED ON NURN GRAMMARS

A NURN SMS is a context-dependent SMS based on a NURN grammar. In Section 4.1, I introduce terms

to describe the operations performed by a NURN SMS, and in Section 4.2, I describe how a NURN SMS

operates. In Section 4.3, I argue that a context-dependent SMS should leave the consuuction of syntactic

objects to context-free routines. In Section 4.4, I suggest various schemes for deriving the routines of a

NURN SMS from a NURN grammar. In Section 4.5. I describe how the Ginger system automatically

generates a NURN SMS.

4.1 Ouew Forms. Bindinn Patterns. Oueries. and Investinators

A relation defined in a NURN grammar can be used to ask questions of different forms. For instance,

given the relation d i s - effective - over r discussed in Section 3.2, we can imagine asking:

1. Is declaration-point d effective over region r?

2. What declaration-points are effective over region r?

3. What regions is declaration-point d effective over?

4. What are all pairs of declaration-point and effective region?

Specifically, a query form is determined by a particular relation and for each of its parameters, an

indication of whether that parameter is bound or not Thus, for an wary relation, there are 2"

corresponding query forms. We can denote a query form by writing B for each bound parameter and U

for each unbound parameter. Thus, the examples above correspond to the four query forms:

1. B i s-ef f ec tive-over B

2. U is-effective-over B

3. B is - effective-over U

4. U is-effective - over U

We define the binding pattern of a query form as its US and BS taken in left-to-right order. For example,

U i s-ef f ective-over B and U i s-the-def ining-occurrence-of B are distinct query forms,

but they have the same binding pattern, UB.

A query is an instance of a query form for some relation, with an actual entity supplied for each bound

parameter. Answering a query consists of finding every set of entities (if any) that can be bound to the

query's unbound parameters such that they, along with the bindings supplied in the query, satisfy the

relation. Equivalently, answering a query consists of finding each instance of the relation that matches the

bindings supplied in the query.

An investigator for a query form is an algorithm that answers all queries that are instances of the query

form. When Ginger generates investigators, it expresses them in a language closely related to NURN.'

These investigators are interpreted by the SMS to answer queries with reasonable efficiency.

The extension of a relation is the set of instances of that relation; i.e., the set of entity-tuples that satisfy

the definition of the relation. Calculating the extension of a relation is equivalent to answering the query

for that relation with no parameters bound. We use the term "all-unbound" to designate the query and its

investigator. For example, Subsections 3.2.1 through 3.2.4 enumerated the extensions of the relations

involved in Pascal's scoping rules.

4.2 Overview of a NURN SMS

From a user's point of view, a NURN SMS consists of a set of host-language routines to construct and

query syntactic objects of the target-language, as specified by a NURN grammar. It is useful to

distinguish constructive and investigative routines. Any routine that changes syntactic objects is a

constructive routine. Such routines are used for constructing, deleting, and editing syntactic objects. The

constructive routines of a NURN SMS are just those that would be provided by a GRAMPS-style SMS for

the context-free super-lang~age.~ On the other hand, an investigative routine is used to answer queries; it

can be considered either context-free or context-dependent depending on whether the relation of the

queries it answers is context-free (primitive or derived from GRAMPS-style rules) or context-dependent

(defined by relation rules). The investigative routines of a NURN SMS subsume the recognizers and

selectors that would be provided by a GRAMPS-style SMS.

Besides the routines seen by the user, the SMS includes investigators and an interpreter for executing these

investigators. Since the interpreter interprets a NURN-like language, it is independent of the

target-language. When an investigative routine is called by a user program, the routine finds the

appropriate investigator in a table of investigators, prepares the arguments of the investigator, and invokes

the interpreter with the investigator and arguments.

Generating a NURN SMS consists of three relatively independent tasks: generating the investigators,

generating the investigative routines, and generating the constructive routines. The first two tasks are

considered in Section 4.5 and Section 4.4, respectively. For the third task, see [Ter87].

Ideally, a NURN SMS would monitor the creation, deletion and editing of target-language objects and

always keep the extensions of the NURN relations upto-date (or at least appear to), using efficient

I A grammar for investigators appears in Appendix 1, along with a grammar for NURN.

Section 4.3 will explain why there are no context-dependent constructors.

incremental algorithms when necessary. However, deriving these algorithms appears to be a difficult task,

and the SMSs generated by Ginger do not meet the ideal yet. Instead, they must be used in a fairly static

fashion:

1. Through calls to constructive routines, the user constructs one or more syntactic objects. (For

example, the user might call a parsing routine to parse a text-file as a program.)

2. The user calls the routine Installsubject to "install" each object, making it known to the

"investigative" portion of the SMS.

3. The user calls the routine FindAllExtensions, which first forgets any previously gathered

information, then calculates the extension of every relation with respect to the installed objects.

4. Thereafter, when the user calls an investigative routine, it merely finds those tuples in the extension

of the appropriate relation that match any bound arguments in the query.3

At first, it might appear that calculating the JW extension of all relations requires excessive effort, much

more than just calculating and remembering instances of relations as needed to answer particular queries.

For my purposes, this is not the case, since I always want a full syntax-check of the installed object(s), i.e.,

all instances of the relation IS - A - VIOLATION. Calculating the extension of this relation in the

piecemeal manner described would produce almost the full extension of each relation, and would probably

take longer than purposely calculating all extensions. Moreover, the full-extension method is far easier to

program, because recursive relations are much more formidable when using the piecemeal method.

FindAllExtensions has two aspects:

1. Interpretation: Given the all-unbound investigator for a relation and the extensions of all the

relations that it references, calculate the extension of the relation according to the semantics of

NURN rules.

2. Control: Ensure that an investigator is processed after those that it relies on.

The characterization of Control appears paradoxical for recursive investigators, each of which relies

(directly or indirectly) on itself. Control is especially important for such investigators. A recursive cluster

is a maximal set of recursive investigators such that each investigator in the cluster relies (directly or

indirectly) on every other investigator in the cluster. For instance, the investigator for U

is-the - Block - closest - containing B is in a cluster by itself; U is-effective - over U is in a

cluster with U is - effective - over B, U is - the - type - of B, and several other investigators.

Control processes each recursive cluster as a group. Initially, each of the recursive relations in a cluster is

given an empty extension as an approximation of its true extension. Then, assuming these approximations,

better approximations to the extensions of the relations are calculated. These new approximations are

Actually, that is an oversimplification. For some relations (those with huge extensions and/or simple
definitions) it is generally faster to calculate the answer to a particular query than it would be to find it in
the relation's extension. For these relations, the extension is never calculated.

used in the next iteration, and so on. This process continues until the approximations stop changing, at

which point the true extensions have been found4. This is a common approach for dealing with sets of

recursive definitions. For example, Aho, Sethi, and Ullman [ASU86] use it to solve the equations of

global data-flow analysis.

4.3 Context-Dependent Constructors Considered Harmful

As outlined in Section 4.2, a NURN SMS comprises both constructive and investigative routines, but the

constructive routines are just those that would be provided by a GRAMPS-style SMS. That is, with

respect to the NURN grammar for the target-language, the constructive routines are based solely on the

context-free GRAMPS-style rules and ignore the context-dependent relation rules. The reasons for not

providing context-dependent constructors are discussed in this section.

Recall the context-free constructor Make - ProcedureCall, discussed in Section 2.2, which constructs a

ProcedureCall and ensures the context-free validity of the result by requiring that its arguments be an

Identifier and an ExpressionList. The corresponding context-dependent constructor might be

called CD - Make-ProcedureCall and would also construct an instance of a ProcedureCall, but only

if it could ensure the context-dependent validity of the result, using pertinent context-dependent rules.

(Here, a syntactic object is deemed valid if it is free of violations or if it could appear in some context in

which it is free of violations.) If the result would be invalid, the routine would have to raise an exception

or perhaps cause a halt Generic editing routines such as Delete or Replace could also have

counterparts that ensure their context-dependent correctness of the result

Given a complete specification of a context-dependent language, context-dependent constructors could

conceivably be derived. However, such constructors would perform checking that could be redundant and

obstructive.

4.3.1 Redundant

First, context-dependent correctness is not relevant to many of the manipulations that the software

developer might perform on syntactic objects. For example, Merks [Mer87] constructed a Modula-2

compiler based on a GRAMPS-style SMS. The compiler first checks the context-dependent correctness of

a program, and then performs a series of semantics-preserving (and thus, correctness-preserving)

. transformations which gradually reduce the original program into an equivalent one expressed in

assembly-level constructs. If these correctness-preserving transformations were performed using

It is unclear what conditions will guarantee that this process terminates. One necessary condition is that
the relations be logically consistent. A sufficient condition (ignoring maker relations) is that no recursive
relation contain a negation (or if-condition) referencing a relation in the same recursive cluster.

context-dependent constructors, all the checking done by the constructors would be redundant. Some

benefit might result during the development of the transformations, when the failure of a

context-dependent constructor would indicate that a transformation is not correctness-preserving and thus,

not semantics-preserving. However, the same benefit can be obtained without using context-dependent

constructors, simply by explicitly checking the validity of the result of each transformation.

4.3.2 Obstructive

Secondly, context-dependent constructors can be obstructive when performing transformations. Since

transformations are an important application of SMSs, this case deserves careful consideration. The

clearest, most efficient, and perhaps only way for a software developer to implement a non-atomic

transformation may be as a series of editing operations where the intermediate objects violate the

context-dependent syntax.

For example, consider a metaprogram that expands subprogram-calls. (Such expansion is also known as

"inline-coding" and "unfolding".) A common problem arising in such a metaprogram occurs when the

name of an entity referenced by the called subprogram denotes a different entity at the calling-point. This

"naming-conflict" is a problem because if the subprogram call were to be expanded naively by replacing

the subprogram-call with a copy of the subprogram-text, the wrong entity would be referenced by

occurrences of the name in the copy of the subprogram-text. To resolve a naming-conflict, the

metaprogram must rename one of the conflicting entities before the expansion takes place. The effect of

this transformation is that all occurrences of the name of the entity are changed to a different name, a new

one that does not conflict.

The entity-renaming transformation can be performed simply, using a context-dependent routine to find

all occurrences of the entity's name, and a context-free editing routine to make each individual

name-change. However, the intermediate stages of this method will generally violate the

context-dependent syntax of the target-language: if an applied occurrence is edited first, it becomes

undefined, since there is no declaration yet for the new name; if the defining occurrence is changed first,

dl the applied occurrences become undefined, since there is no longer a declaration for the old name.

Thus, if this method were to be attempted using a context-dependent editing routine, it would fail at the

very first change. It might be possible, depending on the target-language and the individual case, to

introduce a declaration for the entity under the new name, change all the applied occurrences of the old

name, then delete the declaration under the old name. Failing that, it is still possible that some more

contrived sequence of context-dependent editing operations will succeed, but the point seems clear:

performing a conceptually simple transformation becomes unnecessarily difficult or even impossible using

context-dependent constructors.

As another example of how context-dependent constructors can be obstructive, a software developer might

be writing an environment to guide a novice user through the subtleties of the target-language's

context-dependent syntax. Such an environment would have to be able to endure syntactic objects with

violations, so that these violations can be demonstrated and explained to the user. In this and other

applications, the end-user does not use or interact with the SMS because there is another layer of software

inbetween. Thus, the SMS should be as flexible as possible, not making decisions that unnecessarily

restrict the applications that can use i t To disallow the creation of objects containing violations would be

just such an unnecessary restriction.

4.3.3 Summary

In summary, context-free constructors are essential to an SMS, while context-dependent ones hinder the

software developers using the SMS and make their code inefficient. Thus, context-dependent constructors

are not provided in a NURN SMS. Instead, the SMS provides investigative routines with which one can

obtain context-dependent information about objects, including whether they contain any violations of the

context-dependent syntax.

4.4 Generating the Routines of a NURN SMS

In this section, I describe several schemes for generating the investigative routines of a NURN SMS. The

routines of the different schemes provide equivalent capabilities, but they differ in their calling syntax,

their genericity, and the amount of checking that they can forcc the host-language compiler to do at

compile-time (rather than the routines at run-time). This section will concentrate on the user's view of

the routines, i.e., their "headers", because there is little difference in their implementations5. Currently,

Ginger does not generate any investigative routines, because the only application so far (a syntax-checker

for Pascal) has only required a small, fixed interface to the investigators. I look forward to future research,

involving substantial use of SMSs, to determine which of these schemes (or which combination of schemes)

is the least unpleasant to use.

To generate the investigative routines, we need a scheme that will map query forms into the routine-call

syntax of the host-language. Ideally, the scheme would preserve the readability of the simple-primaries in

a NURN grammar. Unfortunately, most programming languages have a very restricted routine-call

syntax: the routine-name followed by a list of arguments. Within this syntax, we need to specify the

relation, the binding pattern, and entities for the bound parameters. The latter are certainly arguments to

the routine, but each of the relation and binding pattern can be specified either in the name of the routine

Mostly they just inspect their parameters, find the appropriate investigator, call the interpreter (passing it
the investigator and the parameters), then unpack the results if necessary.

or in the argument list. Thus, schemes for generating SMS routines can be divided into four major kinds,

one for each combination of choices:

1. Relation in name, binding pattern in name.

2. Relation in name, binding pattern in argument list.

3. Relation in argument list, binding pattern in name.

4. Relation in argument list, binding pattern in argument list.

Each of these four kinds of scheme will be considered in a separate subsection.

Each scheme will be demonstrated, using Modula-2 [Wir85] as the host-language, on a set of nine query

forms:

B is undefined
B is-the defining occurrence of B
B isIthe-B th - 1dentif ier - in

U IS A VIOLATION
U is-aI1dentifier in B
B is-the - - def ining-occurrence - - of U

U is-the-char-type
U is-the-defining-occurrence - of B
B is - a - Identifier-in U

The first three simply confirm whether the given bindings constitute an instance of the relation. The

middle three result in a set of nodes, each of which can be bound to the unbound parameter. The last

three are functional on the bound parameters, and thus result in a single node (if any). The examples will

show how the routines generated for lhese query forms could be calied in the context of a program using

the SMS. For that purpose, assume the following variable declarations:

VAR
violations, ids in idl, uses of d : EntityList ;
x, dl id, idl, Shaf type : ode-;

Because NURN deals with three classes of entity (nodes, integers, and character-sequences), a NURN

SMS defines the Entity data type as a discriminated union of Node, Integer, and String. An

Enti tyLi s t is a list of entities and an Enti ty2Li s t is a list of pairs of them, etc. The SMS provides

generic routines for extracting the individual entities from such structures. To avoid unnecessarily

complicating the presentation, the code in this section will pretend that the Entity type is

inter-assignable with the types it unites. Thus, for example, an Integer value can be assigned to an

Entity variable or passed to an Entity value parameter, and an Entity value standing for an

Integer value can be assigned/passed to an Integer variable. (This is possible in Algol68 and

object-oriented languages and untyped languages.) The actual code needed in Modula-2 is somewhat

more verbose. For example, one would need coercion routines such as the following:

PROCEDURE EntityFromInteger (i : Integer) : Entity ;
PROCEDURE EntityToInteger (e: Entity) : Integer ;

to effect the assignments or parameter-passing described above.

4.4.1 Relation in name, binding pattern in name

The first scheme for generating investigative routines puts both the name of the relation and the binding

pattern in the name of the routine. Adapting the notation for query forms presented in Section 4.1, with

blanks replaced by underscores, yields the following routines for the relation is - effect ive-over :
PROCEDURE B - is - effective over B (dp,region: Entity) : BOOLEAN ;
PROCEDURE U - is - ef f ective-over-B (region: Entity) : EntityList ;
PROCEDURE ~ - i s-ef f ect ive-over-u (dp : Entity) : Ent i tyLi s t ;
PROCEDURE U-i s-ef fectiveIover> () : Enti ty2Li s t ;

Since the query form is statically determined by the routine name, the nature of the query result is known

at generation-time, so the routine can be declared with a fairly specific result-type (e.g., BOOLEAN vs.

Enti tyLi s t vs. Ent i ty2Lis t a b ~ v e) . ~ If a relation is functional on some set of bound parameters, the

corresponding routine is declared to return an Entity rather than an Ent i tyLi st . (If an invocation of

such a routine does not find a result, it returns the distinguished Entity None.) Demonstrating this

scheme for the nine query forms:

IF B - is - undefined (x) THEN ...
IF B-is-the-defining occurrence of B (d, x) THEN ...
IF B - is-the - - B th - 1dentif ier - in - i (id, 4, idl) THEN . . .
violations := U IS A VIOLATION 0 ; - - -
ids in id1 := U is a Identifier in B (idij ; - - - - -
use<oT - d : = B-is-the-def ining-occurrence-of -U (d) ;

char - type := U - is - the char type () ;
d := U - is - thedef ining occurrence-of-B (x) ;
id1 := B - is - - a GentifierIin - u (id) ;

The approach just outlined is sufficient, but in some cases it is possible to provide a routine with a more

readable call syntax.

1. For the binding pattern B, we can simply capitalize the first letter of the relation's name. For

example, instead of B - is - undefined, we would have:

PROCEDURE Is undefined (x:Entity) : BOOLEAN ; -
This could be used as follows:

IF Is-undefined(x) THEN ...
Applying this subscheme to the grammar-derived domain relations introduced in Subsection 3.3.1

yields the GRAMPS-style recognizers presented in Subsection 2.2.2. For example, the

Moreover, the routine could be declared with more specific parameter-types (e.g., Node instead of
Entity above).

GRAMPS-style construction rule for Block yields the domain relation n is - a - Block, which

yields the routine:

PROCEDURE Is-a-Block (n: Node) : BOOLEAN ;

2. For the binding patterns u and UB, the bound variable (if any) occupies the same position with

respect to the name of the relation in a Simple - Primary as does the argument-list with respect

to the name of the routine. For non-functional query forms, we can prefix the relation's name with

 very - ent i ty-that- ", to obtain somewhat more readable routine-calls. For example, instead

of the routines U - is - undefined and U - is - effective - over - B, we could have

PROCEDURE Every entity that-is-undefined () : EntityList ;
PROCEDURE ~verient i tyqthat - is - effective - over
(region: ~ n t i t ~) : ~ n t i t ~ ~ i s t ;

Moreover, if the relation's name begins with "is - a ", we can replace this with very " to achieve

greater abbreviation. For example, for the query forms U is - a - declarationjoint and U

is - a - Identifier - in B, we could have

PROCEDURE Every declarationgoint () : EntityList ;
PROCEDURE ~ver~-~dentifier - - in (p:Entity) : EntityList ;

Analogously, for relations whose U or UB query form is functional (e.g., U is - the - char-type,
U is - the - def ining-occurrence-of B), we can prefix the relation's name with

"The - entity - that":

PROCEDURE The - entity - that - is-the - char-type () : Entity ;
PROCEDURE The-entity-that-is-the-defining-occurrence-of
!x:Entity) : Entity ;

or, if (as in these cases, as in most cases) the name of the relation begins with "is - the - ", we can

replace this with h he" to achieve greater abbreviation:

PROCEDURE The char type () : Entity ;
PROCEDURE ~ h e d e f - ining - occurrence - of (x:Entity) : Entity ;

Applying this last subscheme to the component relations introduced in Subsection 3.3.1 yields the

selectors that would be derived according to the GRAMPS scheme presented in Section 2.2. For

example, the construction rule for lock yields the component relation n

is - the - LabelList - of p, which yields the routine:

PROCEDURE The - LabelList - of (p: Entity) : Entity ;

4.4.2 Relation in name, binding pattern in argument list

In the second scheme, the name of the relation7 is used as the investigative routine's name, and the binding

pattern is indicated in the argument list, which includes arguments for all of the relation's parameters.

With this approach, only one routine is generated for each relation; this routine works for all of the

A ternary relation has a two-part name; this is converted to a single name by joining the parts with " -- ".

relation's binding patterns. For example, the routine for the relation dp is - ef fective-over
region is

PROCEDURE is-effective - over (dp,region:Entity) : Result ;

Each call to a relation's investigative routine specifies a query form and simultaneously a query by passing

in entities for the bound parameters, and the distinguished Entity value Unknown for the unbound

parameters. For example, the call

is - effective-over (Unknown, r)

corresponds to the query form U is - effective - over B, and returns a Result representing all

defining-points effective over r .

In contrast to the first scheme, a routine does not correspond to a single query form, and thus, little can be

known about the query result at generation-time. Thus, the data type Result has to be a discriminated

union of all the possible result types, i.e., BOOLEAN, Entity, EntityList, and so on. The consequent

need for run-time discrimination means a drop in efficiency and some clumsiness in dealing with

Results.

The demonstration queries come out as follows:

IF ResultToBoolean (is-undefined(x)) THEN ...
IF ResultToBoolean (is - the - defining-occurrence of(d,x)) THEN ...
IF ResultToBoolean (is - the - - th Identifier - in (id, 4,idl)) THEN . . .
violations := ResultToEntityList (IS-A-VIOLATION (Unknown)) ;
ids in-id1 := ResultToEntityList (is-a - Identifier-in (Unknown,idl)) ;
use<of-d :=
ResultToEntityList (is-the - defining-occurrence - of (d,Unknown)) ;

char-type :=
ResultToEntity (is-the-char-type (Unknown)) ;

d :=
ResultToEntity (is-the-defining - occurrence - of unknown,^)) ;

id1 :=
ResultToEntity (is-a-Identifier-in (id,Unknown)) ;

4.4.3 Relation in argument list, binding pattern in name

In the third scheme, the binding pattern appears in the name of the routine, and the relation is indicated in

the argument list Thus, there is one routine for each binding pattern, and this routine works for all

relations that can have that binding pattern. The relation of interest is specified by name in the argument

list as a value of the data type Reln, which could be String or a language-specific enumeration.*

If String is used, then the routines are generic, and need not be generated for each target-language,
provided that the target-language does not have relations with more than three parameters.

56

PROCEDURE B (re1n:Reln; x:Entity) : BOOLEAN ;
PROCEDURE U (re1n:Reln) : EntityList ;

PROCEDURE BB (re1n:Reln; xl,x2:Entity) : BOOLEAN ;
PROCEDURE BU (re1n:Reln; xl :Entity) : EntityList ;
PROCEDURE UB (re1n:Reln; x2:Entity) : EntityList ;
PROCEDURE UU (re1n:Reln) : Entity2List ;

PROCEDURE BBB
PROCEDURE BBU
PROCEDURE BUB
PROCEDURE UBB
PROCEDURE BUU
PROCEDURE UBU
PROCEDURE UUB
PROCEDURE UUU

xl,x2,x3:Entity) :
~ 1 ~ x 2 :Entity) :
xl, x3:Entity) :

x2,x3:Entity) :
x 1 :Entity) :

x2 :Entity) :
x3:Entity) :

> :

BOOLEAN ;
EntityList ;
EntityList ;
EntityList ;
Entity2List ;
Entity2List ;
Entity2List ;
Entity3List ;

(In my NURN grammar for Pascal, no relation has more than three parameters, so this set of routines

would suffice.) In addition, for functional query forms with one unbound parameter, the SMS can provide

more convenient routines that return an Entity rather than an Enti tyLi st

PROCEDURE Uf (re1n:Reln) : Entity ;

PROCEDURE BUf (re1n:Reln; xl :Entity) : Entity ;
PROCEDURE UBf (re1n:Reln; x2:Entity) : Entity ;

PROCEDURE BBUf (re1n:Reln; ~ 1 ~ x 2 :Entity) : Entity ;
PROCEDURE BUBf (re1n:Reln; xl, x3:Entity) : Entity ;
PROCEDURE UBBf (re1n:Reln; x2,x3:Entity) : Entity ;

For the demonstration example, we wi!! assume that Reln is a lang~iage-specific enumeration, e.g.,

TYPE Reln =
(IS-A-VIOLATION,
is-a-Identifier in,
is-the - th - 1dentif ier - in,
is-the-char type,
i s-the-defining-occurrence - of,
is - undefined,

Using this enumeration, we can write the queries as follows:

IF B (is-undefined, x) THEN ...
IF BB (is - the - defining occurrence - of, dl x) THEN ...
IF BBB (is - the - - th identifier - in, id, 4, idl) THEN ...
violations := U (IS-A-VIOLATION) ;
ids in id1 := UB (is-a-Identifier in, idl) ;
use<o<d := BU (is - the - def ining-occurrenceof - , d) ;

char-type := Uf (is the-char-type) ;
d := UBf (is-the def ining-occurrence - of, x) ;
id1 := BuF (is-a - - ~dentifier-in, id) ;

4.4.4 Relation in argument list, binding pattern in argument list

In the fourth scheme, both the relation and the binding pattern are indicated in the argument list. The

binding pattern is encoded using Unknown, and the relation is specified using the Reln type. Because all

this information appears in the argument list, this is the one scheme in which the arguments can appear in

their "proper" place with respect to the name of the relation. Thus, the format of the argument-lists

reflects the syntax of simple-primaries:

PROCEDURE UnaryQuery
(arg: Entity; rel: Reln) : Result ;

PROCEDURE BinaryQuery
(left: Entity ; rel: Reln ; right: Entity) : Result ;

PROCEDURE TernaryQuery
(left : Entity ;
re1 left : Reln ;
centre : Entity ;
re1 right: Reln ;
right : Entity) : Result ;

PROCEDURE NaryQuery (rel: Reln; args: EntityList) : Result ;

The caveats regarding the Result type discussed in Subsection 4.4.2 also apply here. Also, as in

Subsection 4.4.3, if the Reln type is String these routines would be generic and could be made to work

for all target-languages. If the Reln type were an enumerated-type. it would be declared slightly

differently than in Subsection 4.4.3, because ternary relations have their two-part names in two parts here.

For the demonstration example, it would appear as

TYPE Reln =
(IS-A-VIOLATION,
is a Identifier - in,
is-the,
is-the char type,
is-thedef ining - occurrence-of ,
i s-undef in&,
th-~dentifier - - in,

and the queries would appear as follows:

IF ResultToBoolean
(UnaryQuery(x,is - undefined)) THEN ...

IF ResultToBoolean
(BinaryQuery(d,is-the-defining-occurrence - of,x)) THEN ...

IF ResultToBoolean
(TernaryQuery(id,is-the,4,th-Identifier - in,idl)) THEN ...

violations :=
ResultToEntityList

(UnaryQuery(Unknown,IS-A-VIOLATION)) ;
ids in id1 :=
~ ~ s u i t ~ o ~ n t i t ~ ~ i s t

(BinaryQuery(Unknown,is - a - Identifier - in,idl)) ;
uses of-d :=
~ e s u l t ~ o ~ n t i t ~ ~ i s t

(BinaryQuery(d,is - the - defining - occurrence - of,Unknown)) ;

char-type :=
ResultToEntity

(UnaryQuery (Unknown,is-the-char - type)) ;
d :=

ResultToEntity
(BinaryQuery (Unknown,is-the-defining - occurrence - of,x)) ;

id1 :=
ResultToEntity

(BinaryQuery (id,is - a - Identifier - in,Unknown)) ;

4.5 Generating the Investigators of a NURN SMS

A NURN grammar is a declarative specification of a context-dependent language. A corresponding SMS

includes investigators which answer queries about syntagms with respect to the specification. Conceivably,

these investigators could be derived from the NURN grammar by hand, but for a typical target-language,

the SMS would be quite large and its investigators fairly complex. Therefore, rather than build a NURN

SMS for a particular language, it is wiser to construct a system to generate a NURN SMS for any given

language. This section describes Ginger, an implemented approach to the problem of generating

reasonably efficient investigators from the rules of a NURN grammar.

Ginger generates a NURN SMS according to the following outline:

1. Generate the context-free SMS.

2. Construct the predefined relations.

3. Perform static consistency checks on the relation rules.

4. Reduce the relation rules to a canonical form.

5. Annotate the canonical rules with information used in the next step.

6. Construct investigators from the canonical rules and their annotations.

4.5.1 Generating the context-jee SMS

The input NURN grammar consists of context-free GRAMPS-style rules and context-dependent relation

rules. These two sets of rules are separated, and the context-free rules are given to my implementation of

GRAFS, which generates a GRAMPS-style SMS from them.9

4.5.2 Constructing the predefined relations

As we saw in Subsection 3.3.6, it is useful when manipulating Pascal to create declarations for its

predefined entities. Analogously, Ginger (which manipulates NURN) finds it useful to construct

Definition rules for its predefined relations (see Subsection 3.3.1). There is a fixed set of primitive

relations and a language-specific set of derived relations; Ginger derives definitions for the latter relations

from the GRAMPS-style subgrammar for the target-language.

4.5.3 Static consistency checks

NURN performs static consistency checks on the relation rules to detect syntax errors which would

preclude the suitability of the rules for further (extensive) processing.

Most of the checks deal with Declarators, which appear (one each) in Definitions and

Declarations. For convenience of reference, here is the syntax for a Declarator, as it appears in

Appendix 1:

CONSTRUCT Declarator IS
[<:Kind - Indicator>] <:Simple Primary>
[" :" "FUNCTIONAL" "ON" < ~ u n & o n a l ~ o u n d ~ a r ~ e t s : V a r S e t - List> 1
[%ITH" <Profiles:Profile - List>]

and here are the constraints on Declarators that Ginger enforces:

The Simple - Primary must declare a unique relation.

The parameters in the Simple - Primary must be distinct.

A parameter in the Simple - Primary must be a Var, not a Literal.

A Var appearing in the FunctionalBoundVarSets must reference a parameter in the

Simple - Primary.
A violation relation must have an arity of 1.

A user-written rule cannot declare a derived or primitive relation.

A user-written rule must have empty Profiles.

Here are the static constraints on a Simple-Primary appearing anywhere other than within a

Declarator:

The relation it references must have been declared, either explicitly or implicitly.
-- --

Because the context-free subgrammar can remain fairly stable while the relation rules are being
developed, a context-free SMS is generated only if the subgrammar has changed since the last generation.

Its arity and parameter-types (node, integer, or string) must agree with the declaration of the

relation referenced.

If it occurs in the head of a Subdefinition, the relation it references must have been

declared in a Declaration, not in a Definition.

There are two constraints dealing with maker relations and Make primaries:

A maker relation must contain at least one Make;

A Make cannot occur outside of a maker relation.

It is interesting to note that all of these constraints could be expressed in a NURN grammar for NURN

grammars.

4.5.4 Reduction to canonical form

The relation rules are transformed so that each relation is defined by a Definition rule. That is, if a

relation has a distributed definition consisting of a Declaration and Subdef initions, the bodies of

its various Subdef initions are joined into a single disjunction, which forms the body of a new

Definition rule1'. The head of the new rule is the Declarator appearing in the Declaration, with

the kind and functionality indicators made explicit if they were omitted. For example, assume for the sake

of illustration that the three subdefinitions given for the is - effective - over relation in Section 3.3

constitute its full definition. Then the canonical rule for is - effective over is: -
RELATION DEF NORMAL dp is - effective - over r : FUNCTIONAL ON (dp, r) : -
dp is a Label in 11,
11 is-the ~abel~ist-of r,
r is - a - BGC~

OR
dp is the Lhs of cd,
cd is-a constant~ef inition in cdl,
cdl is the-~onstant~ef inition~ist - of r,
r is - a- lock -

OR
dp is an Identifier-in idl,
id1 is the Identif ierList of etd,
etd i s-a-~nurnerated~~~e~ef iner ,
r is - the - Block - closest-containing etd

The reduction to canonical form allows Ginger to treat all rules uniformly, since they are all now

Definition rules.

lo This often involves renaming the Subdefinition's parameters to achieve consistency with the
Declaration.

4.5.5 Annotation

Recall that in a relation rule, a conjunction comprises a list of primaries. One of the major problems in

generating investigators is to find an efficient ordering (in a sense that will be defined in the next

subsection) for the primaries in each conjunction. To this end, Ginger annotates each primary with

information that will aid this search." In fact, Ginger annotates many other nodes of the canonical relation

rules (essentially, everything from definitions down to simple-primaries), because the annotation of a

primary usually depends on the relation it references (if it is a simple-primary) or its children (if it is a

structured-primary). Such dependencies tend to be recursive, and the Control aspect introduced in Section

4.2 is in fact general enough to deal with recursive relations (as well as recursive investigators), propagating

calculated information around the nodes of the relations rules.

We can identify three major annotations: upvars, profiles, and basics.

upvars: The upvars of a primary are the variables referenced within it that are also referenced outside

it12. Informally, a primary's upvars are the variables by which it communicates with its neighbouring

primaries. For example, recall the following rule from Subsection 3.3.5:

(* A Label or Identifier
(other than the Name of a Program or
an Identifier in the Parameters of a Program)

must have a defining occurrence.
* >
RELATION DEF VIOLATION x is undefined :-

(x is-a-Label OR x is-a-gent if ier) ,
NOT
(
x is the Name-of p,
p i s-a-program -

OR
x is a Identifier-in idl,
id1 TsIthe-parameters-of p,
p is - a-Program

) I

NOT (dp is-the - defining-occurrence - of x)

This definition contains a single (top-level) conjunction comprising three primaries: the first is a group (a

parenthesized disjunction), and the second and third are negations. For each of the three primaries, the

only upvar is x; neither p in the second primary nor dp in the third is used outside the primary. As a

further example, within the body of the second top-level primary, the upvars of each primary is the set of

l1 Ginger uses the annotation facility introduced in my implementation of GRAFS, which allows arbitrary
information to be associated with any Node. The facility is much like that provided by property lists in
Lisp [WinHor89].

l2 This is one annotation that does not entail recursive propagation.

variables it references.

profiles: A primary may have many profiles, each of which is a consistent mapping from its upvars

(those that are node-variables) to target-language node-classes. For example, the simple-primary id

is - the - Callee-of c has two profiles:

(id:Identifier, c:FunctionCall)
(id:Identifier, c:ProcedureStatement)

This reflects the fact that both FunctionCalls and ProcedureStatements have a Callee

component, which in either case is an Identifier. The profiles of derived relations can be derived

from the GRAMPS-style subgrammar for the target-language. These profiles are then propagated

through the nodes of the canonical relation rules.

basics: A base for a primary is a subset of its upvars assumed (for whatever purpose) to be bound.13 In

particular, each base of a simple-primary corresponds to a query form for the relation referenced by the

simple-primary. For example, the simple-primary id is - a - Identifier - in id1 has four possible

bases, corresponding to the four query forms for the relation is - a - Identifier - in:
(id,idl) -- B is a Identifier in B
(id1 -- B is-a-1dentif ier-in U
(id11 -- U isIa-~dentifier-in B
1 1 -- U is-al~dentifier-in - U

In the next subsection we will need to have a rough idea of the behaviour of a primary for various bases.

This behaviour will be used heuristically as an estimate of the size of the result of investigating the primary

with particular bindings for the variables in the base. The basics of a primary tell Ginger the behaviour of

a primary for any of its bases. Ginger distinguishes the following behaviours (in order, from "best" to

"worst"): confirmative, functional, direct, feasible, and infeasible. These behaviours are defined in terms

of a hypothetical investigation of the primary with particular bindings for the variables in the base:

1. confirmative: This is a primary's behaviour for the base with all upvars bound. The

hypothetical investigation can merely confirm or deny whether the bindings satisfy the (sub)relation

that the primary defines.

2. functional: The investigation can result in at most one binding for each unbound upvar in the

base.

3. direct: The investigation can avoid involving the u investigator for any domain relation (see

Subsection 3.3.1).

4. feasible: The investigation can avoid involving any infeasible investigators.

5. inf easible: The investigation cannot avoid involving an infeasible investigator.

Note that the first four behaviours form an inclusive series. That is, if a primary is confirmative on some

base, it is also functional, direct and feasible on that base. However, this is normally left unstated. For

l 3 The word "base" arose as an abbreviation for "bound argument set".

63

example, the predefined relation n is - a - Identifier - in p has the following basics:

{n,p) : confirmative
En) : functional
(p) : direct
(1 : feasible

Certain primitive investigators are designated a priori as infeasible. These correspond to operations with

respect to primitive relations that Ginger does not implement. Often this is because the results would

normally be very large. For instance, U is U , U is-thegarent - of U, and U is-before B

would each result in roughly as many instances as there are nodes installed in the SMS; u contains U
and U is - before u would result in even more instances. On the other hand, B

is - the - character - sequence - of U involves going from a character-sequence to all lexemes having

an equal character-sequence. This would not normally be an excessively large result, but it is something

that Ginger simply does not currently do. Ginger complains if it is forced to generate an infeasible

investigator.

Starting with the a priori basics of primitives, the basics of nodes in the canonical relations rules are

calculated by combining the basics of nodes according to their class. For example, we will consider

calculating the basics of a disjunction. A disjunction is confirmative (or direct or feasible) on some base if

all of its conjunctions are confirmative (or direct or feasible) on that base. A disjunction is infeasible on a

base if any of its conjunctions is infeasible on that base. The trickiest case for a disjunction occurs when

trying to determine whether it is functional on some base. It is necessary that all of its conjunctions be

functional on tbat base, but tbis is not sufficient; it is also necessary that h e conjunctions be mutually

exclusive on that base. That is, it is necessary that for any possible binding of entities to the variables of

the base, at most one conjunction can supply an instance matching those bindings. For example, consider

the disjunction:

x is - the - Leftoperand - of expr OR x is-the - Rightoperand-of expr

and the base (expr) . (Assume that both x and expr are upvars of the disjunction.) Both conjunctions

are functional on this base (a node expr can have at most one LeftOperand and at most one

RightOperand), but the disjunction is not functional on expr because if expr is bound to a

dyadic expression, both conjunctions can supply a binding for x. On the other hand, the disjunction

is functional on x, because a given node x cannot be both the Lef toperand of an expr and the

RightOperand of an expr. For completeness, we observe that the disjunction is confirmative on the

full base (x , expr) and feasible on the empty base () . Thus, the basics of this disjunction are:

Ex, expr) : confirmat ive
Ex1 : functional
Eexprl : direct
El : feasible

Profiles are used to help determine whether two conjunctions are mutually exclusive on some base. If we

project the profiles of a conjunction onto the base's variables, we get consistent sets of node-classes for the

base's variables. If these projections are disjoint between conjunctions, then the conjunctions must be

mutually exclusive. However, the converse is not always true. For example, consider the disjunction:

c is - a - FunctionCall, id is - the - Callee - of c
OR
c is - a - ProcedureStatement, id is-the - Callee-of c

Both conjunctions are functional on c and on id. Each conjunction has a single profile; the first

conjunction's profile is (c : FunctionCall , id : Identifier) and the second's is

(c:ProcedureStatement,id:Identifier). Theprojectionsonto c are (c:FunctionCall) and

(c : ProcedureStatement) , which are disjoint, and thus we can conclude that conjunctions are mutually

exclusive on c, and thus that the disjunction is functional on c. On the other hand, the projections onto

id are (id: Identifier) and (id: Identif ier) , which are not disjoint. Thus, we cannot conclude

from this test that the conjunctions are mutually exclusive on id or that the disjunction is functional on

id, although both assertions are in fact true. Ginger is currently fairly dumb on this point, and would

have to be told explicitly that this disjunction is functional on id.

Since relations are declared with explicit functionalities (using the optional FUNCTIONAL ON . . . part of

declarators), there is a n opportunity for a consistency check, comparing the stated and deduced

functionalities. If the two differ, a diagnostic is produced. There are three possible reasons for such a

discrepancy:

1. The grammar-writer made a mistake in the grammar.

2. Ginger is not smart enough to deduce the relation's functionality correctly.

3. The relation's functionality is intended to be different (better) than is derivable. For example, the

body of the definition of the relation dp is - the - defining - occurrence - of x does not

define a relation that is functional on x, but any non-functional extension of this relation

constitutes a violation of the context-dependent syntax of Pascal, and would be caught by the

violation relation is - a - conflicting - declarationjoint.
When the user has determined the cause for the discrepancy, the appropriate actions are, respectively:

1. Correct the grammar.

2. Ignore the diagnostic, and hope that Ginger's error does not have serious repercussions when

generating investigators. (Or currently, use the ad hoc facility mentioned above to inform Ginger of

the correct functionality.)

3. Make sure that the grammar defines a violation relation corresponding to non-functional behaviour

of the relation, and then ignore the diagnostic. (It is not going to go away.)

4.5.6 Construction of investigators

Recall that an investigator for a query form is an algorithm that answers all queries that are instances of

the query form. Ginger expresses investigators using a syntax quite similar to that for relation rules. For

example, consider the hypothetical canonical rule for is - effective - over that was created in

Subsection 4.5.4:

RELATION DEF NORMAL dp is effective over r : FUNCTIONAL ON (dp, r) : - - -
dp is-a Label-in 11,
11 is-the LabelList - of r,
r is - a - ~l&k

OR
dp is-the Lhs of cd,
cd is-a-~onstznt~ef inition in cdl,
cdl is-the-~onstant~efinit?on~ist-of r ,
r is - a - Block

OR
dp is an Identifier in idl,
id1 i<the-1dentif ier~ist-of etd,
etd is-a-EnumeratedTypeDefiner,
r is~the~Block~closest - containing etd

For the query form U is - effective - over B, Ginger could generate the following investigator:

TO GET ALL . (dp) SUCH THAT dp is-ef f ect ive over r , -
CONFIRM THAT r is a Block
GET (11) SUCH THAT 11 is the LabelList of r,
GET ALL (dp) SUCH THAT d i is-a - - ~abel-in 11
PROJECT AWAY (11)
OR
CONFIRM THAT r is a Block,
GET (cdl) SUCH ~ G ~ - c d l is the ConstantDef initionList of r,
GET ALL (cd) SUCH THAT cd 7s-aConstantDef inition - in ;dl,
GET (dp) SUCH THAT dp is-the - ~ h s - of cd,
PROJECT AWAY (cd, cdl)
OR
GET ALL (etd) SUCH THAT r is the Block closest - containing etd,
CONFIRM THAT etd is a ~numerated?ypeDefiner,
GET (id11 SUCH THAT-^^^ is the IdentifierList-of etd,
GET ALL (dp) SUCH THAT dp 7s - an - Identifier - in id1

(FORGET)

An investigator should express a reasonable method of calculating the answer to a query in terms of the

bound parameters of the query and the answers to subqueries. We will consider ihe calculation problem in

a top-down manner, with reference to the the GRAMPS-style grammar for NURN rules found in

Appendix 1. To do so, it is necessary to generalize some ideas. Here, any node of a definition rule (down

to a simple-primary) defines a relation on its upvars, and can supply instances of its extension to answer a

query. I give a theoretical statement of the extension of a node (NURN semantics), followed by a practical

statement of how such a node can answer a query (Ginger implementation). It is this latter statement that

the investigators and their subparts express.

Definition: A definition's extension (and thus, the extension of the relation it defines) is just the

extension of its body (a disjunction). Thus, a definition's answer to a query is the answer of its body to the

same query.

Disjunction: A disjunction's extension is the union of the extensions of its conjunctions. Thus, a

disjunction's answer to a query is the union of its conjunctions' answers to same query. The conjunctions'

answers are obtained in the order they appear in the disjunction, but this order makes little difference:

each will add its answer to the disjunction's answer.

Con junction: A conjunction's extension is the join of the extensions of its primaries, projected onto the

conjunction's upvars. Thus, a conjunction's answer to a query is that join, selected for the bindings of the

query. Ginger's technique for arriving at this answer is fairly involved, and is described later.

Simple - Primary: A simple-primary's extension is the extension of the relation (definition) it references,

with a name-change for each parameter corresponding to a variable argument and a selection-projection

for each parameter corresponding to a literal argument Thus, a simple-primary's answer to a query is

obtained as follows:

1. Translate the query's bindings to bindings for the parameters of the referenced definition.

2. Add bindings for any literals appearing in the simple-primary.

3. Give the resulting query to the referenced definition.

4. Translate each instance in the answer back into the simple-primary's variables.

Group: A group's extension is simply the extension of its body (a disjunction). Thus, a group's answer to

a query is its body's answer to the same query.

Negation: A negation's extension is the complement of the extension of its body. (The complement of

an extension is the set of all possible bindings for the variables of the extension, minus the bindings that

are instances in the extension.) This extension is typically huge. Even projecting it onto a single variable

base usually results in most of the nodes in existence. Therefore, a negation is infeasible for anything less

than a fully-bound query; for the fully-bound query, it is confirmative, and it answers yes iff the body's

answer to the same query is no.

I f : Ifs were expanded during the reduction of relation rules to canonical form. Thus, they are not

considered here.

Make: The extension of a make is easier to understand in terms of the extension of the maker relation in

which it occurs (see Subsection 3.3.6).

We deferred the discussion of how to calculate a conjunction's answer to a query because it is fairly

involved. In the discussion that follows, we refer to the primaries of a conjunction by their position in a

predetermined order that depends on which of the conjunction's upvars are bound. Answering a query on

a conjunction with n primaries can be viewed as enumerating the paths of a n+l-level tree (a

query-tree). Each level i in the tree has a corresponding set of bound variables BV [i] : BV [0] is the

set of variables bound in the query to the conjunction, and for i > O , BV [i] is the union of Bv [i-l] and

the upvars of the i t h primary. Each vertex at level i represents a set of bindings for the variables of

s v [i] . The root of the tree (level 0) represents the set of bindings supplied in the query to the

conjunction. For i > O , a vertex u at level i-1 is adjacent to a vertex v at level i iff the bindings of v

are compatible with both the i t h primary and the bindings of u. Thus, the vertices at level n (if any)

represent bindings compatible with the initial bindings and all primaries. These can then be projected

onto the upvars of the conjunction, to obtain the query's answer.

In effect, to answer a query on a conjunction, the NURN interpreter traverses the corresponding

query-tree. At each vertex, it uses the set of bindings there to formulate a query to the appropriate

primary, and uses the primary's answer to determine the adjacent vertices (sets of bindings) on the next

level. If the vertex is on the bottom level, the interpreter projects the set of bindings onto the

conjunction's upvars and saves the result as an instance in the conjunction's answer to the query.

Since the time required to answer the query is roughly proportional to the size (number of vertices) of the

query-tree, we would like the query-tree to be as small as possible. Using the stated algorithm, the only

way to influence the size of the query-tree is by the ordering of the primaries. Ic!ea!!y, for each base of

the conjunction, we would like an ordering that, for every possible query on that base, minimizes the size

of the resultant query-tree. In general, however, there cannot be an ordering that is optimal in this sense.

Given sufficient statistical information about subject syntagms and queries, one could conceivably find an

ordering that minimizes the expected size of the query-tree, but such information is not usually available

or reliable. Lacking an optimality criterion by which to judge orderings, it seems that the most one can ask

is that the chosen ordering seem reasonable to someone who is familiar with the target-language.

The technique that Ginger uses to find reasonable orderings for the primaries of a conjunction is a

heuristic approach using the information gathered in the previous subsection. In particular, Ginger uses

the basics of each primary. For each base of a conjunction, Ginger starts with the variables of the base as

the only bound variables, and selects the primary that has the "best" behaviour on this set of variables,

according to the confirmative-twinfeasible rating scheme. (If a tie occurs, Ginger selects the leftmost of

the primaries in the tie.) This becomes the first primary in the ordering, its upvars are added to the set of

bound variables, and it is removed from further consideration. The process repeats until each primary has

been appended to the ordering. This greedy method is an attempt to minimize the out-degree of vertices

in the query-tree as early as possible. It seems to work fairly well.

4.6 Introductorv Examples Revisited

We examine again the questions considered in Section 1.1, and show how the investigative routines of a

NURN SMS can be used to answer these questions. We will use the routines generated by the scheme

outlined in Subsection 4.4.1, including its convenient abbreviations.

1. "What is the type of this variable?"

Pertinent relation:

t is - the - type - of x: FUNCTIONAL ON (x)
Pertinent query form and routine:

U is the type-of B
PROCEDURE The - type - of (x:Entity) : Entity ;

Let v represent the variable referred to in the question. Then

The-type - of(v)
returns a Node representing its type.

2. "Has NEW been redefined for this scope?"

Pertinent relations:

d defines-the-spelling Ss if - it occurs - at x:
FUNCTIONAL ON ($st x), (d, x)-

r i s-a-required - routine : FUNCTIONAL ON (r)

Pertinent query forms and routines:

U defines the spelling B if - it - occurs - at B
B is - a - required-routine
PROCEDURE U-defines-the - spelling - - B if - it - occurs - at - B
(s,x:Entity): Entity

PROCEDURE Is - a - required - routine (r:Entity): BOOLEAN ;

Let p represent a point in the program where the definition of NEW is in question. Then

U - defines - the - spelling - - B if - it - occurs - at - B ("newW,p)
returns the defining occurrence that NEW would have if it were inserted at p, and thus

NOT Is a required routine
(U - defines-the - Jpelling - B-if-it - occurs - at - B ("new" ,p))

returns TRUE iff NEW has been redefined.

3. "Will this identifier conflict with any existing identifiers?"

Pertinent relations:

SS is-the-spelling of x: FUNCTIONAL ON (x)
d defines-the-speliing Ss if it occurs - at x:
FUNCTIONAL ON (SS, x), Id,-x)-

Pertinent query forms and routines:

U is-the-spelling-of B
U defines-the spelling B if-it-occurs - at B
PROCEDURE he-spelling-of - (x:Entity): Entity ;
PROCEDURE U defines the spelling - - B if - it - occurs-at-B
(s,x:~ntit~) : ~ n t T t ~ j

Let id represent the identifier in question, and let p represent the point at which it is to be

introduced. Then

The-spelling-of(id)

returns the spelling of id, and

U-defines-the-spelling - B-if-it-occurs - at - B(The-spelling-of(id),p)
returns the defining occurrence that id would have if it were inserted p, and thus equals None iff

there is no existing declaration for id to conflict with.

4. "Where is the resolution for this forward declaration?"

Pertinent relation:

d - 2 is-the-resolution - of d - 1: FUNCTIONAL ON (d - 21, (d-1)
Pertinent query form and routine:

U is-the-resolution-of B
PROCEDURE The - resolution - of (x:~ntity): Entity ;

Let f represent the forward-declared routine. Then

The - resolution - of(f)
returns the resolution of f .

5. "Is this argument assignment-compatible with that parameter?"

Pertinent relations:

t is the type of x: FUNCTIONAL ON (x)
t-2 is - assignable - to t - 1: FUNCTIONAL ON (t - 1, t-2)

Pertinent query forms and routines:

U is-the-type of B
B is comparabie with B
PROCEDURE The type of (x:Entity) : Entity ;
PROCEDURE B - is - assignable-to-B (t-2, t - 1 : Entity) : BOOLEAN ;

Let a represent the argument and p represent the parameter. Then

B-is - assignable - to-B (The - type of (a), The type-of (p)) - -
returns TRUE iff a is assignment-compatible with p.

6. "What is the value of this constant-expression?"

Pertinent relation:

val is - the - value-denoted - by c : FUNCTIONAL ON (c)
Pertinent query form and routine:

U is-the-value-denoted by B
PROCEDURE The-value - denoted-by (c:Entity): Entity

Let ce represent the constant-expression. Then

The - value - denoted-by(ce)
returns a node representing the value denoted by ce.

"Where are all the calls to this procedure?"

Pertinent relations:

n is - the - Name of p: FUNCTIONAL ON In), (p)
x is a applied occurrence-of d: FUNCTIONAL ON (x)
n isrthe-calle<of p: FUNCTIONAL ON in), (p)
fp is - the - formal - for ap: FUNCTIONAL ON (ap)

Pertinent query forms and routines:

U is-the-Name of B
B is-the-~ame-of U
U i s ~ a ~ a p p l i ~ o c c u r r e n c e ~ o f B
B is-the-Callee-of U
U is the-formal for B
PROCEDURE The-~Le of (p:Entity) : Entity ;
PROCEDURE B is-theI~ame-of-u (n:Entity): Entity ;
PROCEDURE ~ v e r ~ - a ~ ~ l i e d occurrence of (c :Entity) : EntityList ;
PROCEDURE B is the ~allee of U (n:Entity): Entity ;
PROCEDURE ~he-TorGl - for <apT~ntity) : Entity ;

Let p represent the procedure. (Procedures are represented by ~rocedure~eclarations.)

Then

Every - applied~occurrence~of(The~NameeOf(p))
returns a list of all applied occurrences of the name of the procedure. However, in a language with

procedural parameters, not every applied occurrence is a call to the procedure. To find all the

Procedurestatement s that call p, we iterate through the applied occurrences of p.

iter := GetIterator (Every-applied occurrence-of(The-Name - of(p)))
WHILE NextEntity (iter, applied-occ) DO
call := B is the Callee-of-U (applied-occ) ;
IF caiioNonZ THEN

(* <call> is a call to <p> *)
END

END

If we are interested in all places where p might be called, including calls as a procedural parameter,

then we can write the following recursive procedure:

PROCEDURE Find - all~ossible - calls-to-routine (r:Entity) ;
VAR
iter : Iterator ;
applied-occ : Entity ;
call : Entity ;

BEGIN
iter :=
GetIterator (Every-applied-occurrence-of(The-Name-of(r))) ;

WHILE NextEntity (iter, applied-occ) DO
call := B - is - the Callee-of-U (applied-occ) ;
IF call=None THEN

(* <applied-occ> is a procedural or functional parameter *)
~ i n d ~ a l l ~ o ~ s i b l e ~ c a l l s ~ t o ~ r o u t i n e

(B - - is the - Name - of - U(The-formal-for(app1ied - occ)))
ELSE

(* <call> is a call to <p> *)
(* do something with <call>! *)

END
END

END Find - all~ossible - calls~to~routine~named ;

and invoke it with

Find - allgossible - calls-to-routine (p) ;

(Alternatively, we could urge the grammar-writer to include the auxiliary relation

is - ajossible - call - to in the grammar, and use Everygossible~call~to(p) .)

Thus, I have demonstrated that a NURN SMS provides routines which allow queries about

context-dependent entities and their relationships to be conveniently posed.

CHAPTER 5

CONCLUSIONS

I have coined the term syntactic manipulation system (SMS) as a generalization of metaprogramming

system (MPS). In my view, an MPS is a context-free SMS for a programming language. I have proposed

and justified a distinction between two kinds of alternation rule in GRAMPS-style grammars, and

suggested how this distinction should be reflected in GRAMPS-style SMSs. I have validated Terry's

concept of GRAFS by using it extensively in my own work. At the same time, I have improved the

implementation of GRAFS, taking it from a prototype to a sturdy implementation. Two notable additions

are a more powerful parsing algorithm and an annotation facility.

I have devised and presented NURN, a new technique for defining the context-dependent syntax of

target-languages, with particular emphasis on its use for defining programming languages. NURN

features rules which use logical formulas to define relations on the nodes of abstract syntax-trees. I have

recognized and named the double-duty strategy for representing context-dependent entities using

context-free entities. This strategy was employed in previous ad hoc context-dependent extensions to

context-free SMSs.

NURN has two major advantages over existing formalisms for specifying context-dependent syntax: its

emphasis or? relationships between nodes and its simplicity. In emphasizing relationships, it encourages

formal language descriptions that use familiar concepts such as defining-occurrence, argument-parameter

binding, and naming conflict. NURN's simplicity is reflected by its relatively simple syntax; one expresses

relationships using logical formulas that are fairly close to English phrases. The combination of these two

advantages makes NURN particularly useful for formalizing informal descriptions of context-dependent

languages: given a document such as the Pascal Standard, one can translate it practically

sentence-for-sentence, preserving most of the readability of the original, into a NURN grammar for the

language. Such formalization is desirable because it brings out and resolves the incompleteness and

inconsistency common to informal descriptions.

I have demonstrated NURN's usefulness by writing a complete NURN grammar for the syntax of

Standard Pascal, with all its exceptions and anomalies. This grammar appears in Appendix 2. It is roughly

4800 lines long, including about 140 rules for the context-free syntax, and definitions for about 150

context-dependent relations.

A NURN SMS is a context-dependent SMS derived from a NURN grammar. I have characterized a

NURN SMS as comprising constructive and investigative routines, and argued that the constructive

routines should be derived solely from the context-free subgrammar for the target-language. I have

identified various schemes for deriving the investigative routines from a NURN grammar, and shown how

these routines can be used to answer context-dependent queries, such as those presented in Section 1.1.

I have designed and implemented Ginger, a system for generating context-dependent SMSs from NURN

grammars. Ginger itself is about 11,000 lines of Modula-2 code; this count does not include GRAFS or

the many application-independent utilities that they use. Of particular use was a general-purpose utility

to control the propagation of values through a set of recursive definitions, which was gradually abstracted

from Ginger-specific code.

To demonstrate the feasibility of automatically constructing a NURN SMS, I have applied Ginger to my

NURN grammar for Standard Pascal. Although Ginger does not generate any host-language routines, it

does generate investigators, which can be used by calling routines in a small fixed interface. Using these

routines, I wrote an unsophisticated but technically complete syntax-checker, which detects violations of

the context-free and context-dependent syntax of Standard Pascal. The syntax-checker has been

validated using the Pascal Validation Suite, a large set of Pascal programs more generally used for

validating and certifying Pascal processors such as interpreters and compilers (see Appendix 3).

5.2 Further Research

5.2.1 Improvements to NURN

Notation shou!d 5c added to NURN for creating and examining character-sequences.

One extension to NURN that might make it even more readable would be to allow the arguments of'

simple-primaries (currently required to be variables or literals) to be structured with functions. For

instance, instead of saying

RELATION SUBDEF id is-effective - over b :-
id is the Lhs-of cd,
cd is>-constant~ef inition-in cdl,
cdl is the constant~ef inition~ist - of b,
b is - a-~lozk -

one might say

RELATION SUBDEF id is-effective-over b :-
id is the Lhs of

(aZconstantDefini t ion in
(the ~onstant~efinition~ist - of b)),

b is - a- lock

Here, the elision of intermediate variables allows a smoother reading. One could even allow functions in

rule heads, similar to the "pattern-matching" feature of modern functional languages. For example, one

might say

RELATION SUBDEF
the-Lhs of

(a-constant~ef inition in
(the ~onstant~efinition~ist~of b))

is - effectiveover b . -
b is - a - Block

which is almost identical in phrasing to the original comment:

(* The Lhs of a ConstantDefinition in the ConstantDefinitionList
of a Block is a declaration-point effective over the Block.

* >
Whether this is more readable, however, is open to debate.

5.2.2 Improvements to Ginger

There are lots of opportunities for improving the speed of Ginger and the SMSs that Ginger generates:

1. Use faster data-structures. Many of the data-structures that Ginger uses were chosen for flexibility

and ease of use. They could probably be replaced by more efficient structures.

2. Generate and compile host-language source-code equivalent to investigators. Currently,

investigators are expressed using a syntax similar to that for relation rules and are interpreted. An

alternative approach would have Ginger translate the investigators into equivalent host-language

source-code, which would thcn be compiled into machine code. The code would be loaded as part

of the SMS and executed directly when an interface routine was invoked. The current approach

(interpretation) is generally applicable since it avoids most limitations of the host-language, but

translation to source-code would be preferable if the operation of investigators can be expressed

easily in the host-language. Host-language investigators are potentially more efficient, easier to

debug, easier to make small ad hoc changes to, and easier to connect to the host-language routines

that appear in the SMS interface.

3. Annotate nodes with their images under particular relations and, where applicable, use this readily

available information rather than performing a lookup in a possibly large extension. For example,

for the relation dp is - effective - over r , one could annotate each dp node with a list of the

r nodes that it is effective over, and vice versa.

4. Transform rules and investigators to remove redundant calculation. For instance, consider the

following investigator:

TO GET ALL (dp) SUCH THAT dp i s-ef f ec t ive-over r ,
CONFIRM THAT r is a Block
GET (11) SUCH THAT T1 is-the-Labellist-of r,
GET ALL (dp) SUCH THAT dp is-a-Label - in 11
PROJECT AWAY (1 1)
OR
CONFIRM THAT r is a Block,
GET (cdl) SUCH ~ G ~ - c d l is-the-ConstantDef initionList of r ,
GET ALL (cd) SUCH THAT cd is-a-ConstantDef inition - in ;dl,
GET (dp) SUCH THAT dp is-the-Lhs-of cd,
PROJECT AWAY (cd , cdl)
OR
GET ALL (etd) SUCH THAT r is-the-Block closest - containing etd,
CONFIRM THAT etd is a ~numerated~~~e~ef iner ,
GET (idl) SUCH THAT-& is theIdentifierList of etd,
GET ALL (dp) SUCH THAT dp is-an-~dentifier - in-id1

(FORGET)

In all three conjunctions, r is required to be a Block, and it will be tested repeatedly for this

property. A more efficient investigator would factor out the common test, as follows:

TO GET ALL (dp) SUCH THAT dp is - ef f ec tive-over r ,
CONFIRM THAT r is - a - Block,
(
GET (11) SUCH THAT 11 is-the-Labellist-of r,
GET ALL (dp) SUCH THAT dp is - a - Label - in 11
PROJECT AWAY (1 1)
OR
GET (cdl) SUCH THAT cdl is-the-ConstantDef initionList of r,
GET ALL (cd) SUCH THAT cd is a-ConstantDefinition-in cdl,
GET (dp) SUCH THAT dp is - - - the-~hs of cd,
PROJECT AWAY (cd, ~dl)
OR
GET ALL (etd) SUCH THAT r is the Block closest - containing etd,
CONFIRM THAT etd is a ~num&ated~~~eDef iner ,

GET (idl) SUCH THAT idl-is the IdentifierList of etd,
GET ALL (dp) SUCH THAT dp Ts - a;-~dentifier-in-id1

)
(FORGET)

5. Update extensions incrementally. Even within a single call to FindAllExtensions, the

extensions of recursive relations may be calculated many times, as (typically small) changes in

extensions propagate their way through the cluster. It would save significant amounts of time if the

interpreter could calculate the new extension simply by adding or subtracting the affected instances

from the old extension, rather than recalculating the extension from scratch. However, I suspect

this is a difficult problem.

6. Transform the NURN grammar to an equivalent attribute grammar and then implement that, using

any of the many techniques available.

To make a NURN SMS really useful for interactive environments, it must be able to cope with changing

objects. That is, it should be able to maintain the extensions of the relations as objects are created,

destroyed, and edited. Incremental update algorithms would be really useful here as well.

Occasionally, a user of a NURN SMS might wish for a relation in addition to those of the NURN

grammar for the target-language. Such a relation would not be necessary to define the target-language,

but would be a convenience for the SMS user. We have already seen in Section 4.6 how the relation

is - agossible - call - to would be useful. As another example, consider a relation which identifies

unused declarations:

RELATION DEF d is a unused - declaration :-
d i s-a-declarationgoint ,
NOT (a is - a - applied-occurrence-of d)

It should be possible to augment the "necessary" relations with these user-defined "convenience" relations.

5.2.3 Open questions

How should a NURN grammar handle fragments? For example, for a programming language, how should

we deal with the correctness of objects that do not occur in a program? Such objects are common in

metaprogramming systems, but language descriptions are not usually concerned with any context less than

a program, so they give us no direction in this matter. To make informed judgements, we need experience

writing NURN grammars and using the resulting SMSs.

It would be interesting to see an equivajence transforma'Lion esfabiished rrom NURN grammars to

attribute grammars.

Ginger's interpreter uses a successive-approximation technique to calculate the extensions of relations in a

recursive cluster (see Section 4.2). What are the minimal conditions necessary to ensure that the

approximations converge to a solution?

Section 4.4 sets out four different schemes for generating the investigative routines of a NURN SMS.

Deciding which of these schemes are preferable will also require some practical experience.

APPENDIX 1: A GRAMPS-STYLE GRAMMAR FOR RELATION RULES AND INVESTIGATORS

This appendix presents a GRAMPS-style grammar for NURN's relation rules and the investigators

generated by Ginger. A complete NURN grammar also includes GRAMPS-style rules; see [Ter87] for a

grammar for these. There are a few differences between the syntax presented there and the syntax used in

this thesis; the major differences have been discussed in Subsection 2.1.4.

GRAMMAR NURN IS

LIST Rule-List OF Rule SEPARATED-BY /

ALTERNATE CLOSED Rule IS Definition I Declaration I Subdef inition

CONSTRUCT Definition IS
"RELATION" "DEF" <Head:Declarator> ":-" / <Body:Disjunction> "."

CONSTRUCT Declaration IS
"RELATION" "DECL" <:Declarator> "."
CONSTRUCT Declarator IS

[<:Kind - Indicator>] <:Simple Primary>
[":" "FUNCTIONAL" "ON" < ~ u n k o n a l ~ o u n d ~ a r ~ e t s : V a r S e t - List>]
[%TH" <Profiles:Profile - List>]

ALTERNATE CLOSED Kind Indicator IS
KI Normal) XI - violation I KI Maker I Ki Externai / KI Derived - - -
KI-~r - imi t ive

CONSTRUCT KI - Normal IS "NORMAL"

CONSTRUCT KI-Violation IS "VIOLATION"

CONSTRUCT KI - Maker IS "MAKER"

CONSTRUCT KI-External IS "EXTERNAL"

CONSTRUCT KI - Derived IS "DERIVED"

CONSTRUCT KI - Primitive IS "PRIMITIVE"

LIST VarSet - List OF VarSet SEPARATED-BY - ","

CONSTRUCT VarSet IS "1" - <:Var - List> ")" -

LIST Var - List OF Var SEPARATED BY - "," -

LIST Profile - List OF Profile SEPARATED-BY - "," %

CONSTRUCT profile IS "1" - <:~lass~onstraint-~ist> - "I"

LIST ClassConstraint-List OF ClassConstraint SEPARATED - BY - ","

CONSTRUCT Classconstraint IS <:Var> - ":" - <ClassName:Id>

CONSTRUCT Subdefinition IS
"RELATION" "SUBDEF" <Head:Simple Primaries> ":-" / <Body:Disjunction> "." -
LIST Simple-Primaries OF Simple - Primary SEPARATED - BY - "," %

LIST Disjunction OF Conjunction SEPARATED - BY % "OR" %

LIST Conjunction OF Primary SEPARATED - BY - "," %

ALTERNATE OPEN Primary IS simple-primary (s tructured-primary

ALTERNATE CLOSED Simple-Primary IS Unary I Binary 1 Ternary (Nary

CONSTRUCT Unary IS <:Arg> <Relation:Id>

CONSTRUCT Binary IS
<Left - Arg:Arg> <Relation:Id> <Right-Arg:Arg>

CONSTRUCT Ternary IS
<Left Arg:Arg> <Re1 - Left:Id> <Centre-Arg:Arg> <Rel-Right:Id>
< ~ i ~ h t - Arg :Arg>

CONSTRUCT Nary IS <Relation:Id> " (" <Args:Arg - List> ") "

LIST Arg - List OF Arg SEPARATED - 9Y - ","

ALTERNATE OPEN Arg IS Var 1 Literal
ALTERNATE OPEN Var IS Id I Integer - Id 1 String - Id
LEXEME Id IS #id

LEXEME Integer - Id IS '#' #id

LEXEME String - Id IS '$' #id

SUBLEXEME #id IS #Letter 1 #Letter 1 #Digit (' - ')

CHARACTER-SET #Digit IS '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

ALTERNATE CLOSED Literal IS Integer - Literal I String Literal -

LEXEME Integer - Literal IS #Digit (#Digit]

LEXEME String - Literal IS '"I (#Letter 1 #Digit I
ALTERNATE OPEN Structured Primary IS Group I Negation - I If (Maker

CONSTRUCT Group IS " (" <Body:Disjunction> ") "

CONSTRUCT Negation IS
"NOT" <Body:Group>

CONSTRUCT If IS
"IF" <Condition:Group> "THEN"

% <Consequent:Conjunction>
"ELSE"

% <Alternate:Conjunction>
*'END"

LIST Id - List OF Id SEPARATED-BY - ","

CONSTRUCT Maker IS <:Id> ":=" <:Function-Call>

CONSTRUCT Function Call IS
<Function Name: I& % " (" <Arguments :Expr List> ") " - -

LIST Expr - List OF Expr SEPARATED BY - "," % -

ALTERNATE OPEN Expr IS Function Call I Arg -

LIST Investigator-List OF Investigator SEPARATED BY / -
CONSTRUCT Investigator IS
"TO" <:I Simple> "," /
<Body : k e s t igator-~od~> /
" (" - <:MemoStrategy> - ") " /

II I.

ALTERNATE CLOSED Memos trategy IS SaveWhole I Accumulate (Forget

CONSTRUCT SaveWhole IS "SAVE" "WHOLE"

CONSTRUCT Accumulate IS "ACCUMULATE"

CONSTRUCT Forget IS "FORGET"

ALTERNATE OPEN Investigator-Body IS
Pending Body I Primitive Body I External-Body I Copier I Selector 1 -
I - is junction

CONSTRUCT Pending - Body IS "PENDING"

CONSTRUCT Primitive - Body IS "PRIMITIVE"

CONSTRUCT External - Body IS "EXTERNAL"

CONSTRUCT Copier IS "[" <:I - Simple> "1" - " , " "COPY" "ACCUMULATION"

CONSTRUCT Selector IS
"[" <:I-Simple> " I " - "," "THEN" "SELECT" "WITH" <:VarSet>

LIST I - Disjunction OF I - Conjunction SEPARATED - BY % "OR" %

LIST I-Conjunction OF I - Primary SEPARATED - BY - "," %

ALTERNATE OPEN I-Primary IS I-Simple 1 I-Structured I Projector 1 SavePoint
ALTERNATE CLOSED I-Simple IS Conf irmer) Generator

CONSTRUCT Confirmer IS "CONFIRM" "THAT" <:Simple - Primary>

CONSTRUCT Generator IS
"GET" [<:NFI>] <GenVars:VarSet> "SUCH" "THAT" <:Simple - Primary>

CONSTRUCT NFI IS "ALL"

ALTERNATE OPEN I - Structured IS I - Group (I - Negation 1 I-If I Maker
CONSTRUCT 1-Group IS " (" <Body:I - Disjunction> ") "

CONSTRUCT I - Negation IS "ATTEMPT" "TO" <Body:I - Group> "BUT" "FAIL"

CONSTRUCT I If IS
WIF" "YOU;; "CAN" <Condition:I Group> "THEN"

% <Consequent : I - conjunct ion;
"ELSE"

% <Alternate:I - Conjunction>
"END"

CONSTRUCT Projector IS "PROJECT" "AWAY" <:VarSet>

CONSTRUCT SavePoint IS "SAVEPOINT"

LIST BasesMap OF BaseMap SEPARATED-BY - ","

CONSTRUCT BaseMap IS <:VarSet> - ":" - < : Id>

APPENDIX 2: A NURN GRAMMAR FOR PASCAL

In this appendix, the context-dependent syntax of Standard Pascal is specified in a NURN grammar.

The Pascal Standard [ANSI831 is not concerned with specifying (just) a context-dependent language, so it

intermixes context-free, context-dependent, implementation-dependent, and data-dependent restrictions

that a Pascal processor should enforce. Therefore, the term "the context-dependent syntax of Pascal"

needs clarification. Section 5.l(e) of the Pascal Standard states (in part) that "[a Pascal processor shall] be

able to determine whether or not a program violates any requirement of this standard, where such a

violation is not designated an error, and report the result of this determination to the user of the

processor". The standard does not have a term for "a violation that is not designated an error," but I

choose to call it a static vidation, because a note on the definition of "error" (in Section 3.1 of the

Standard) indicates that these violations can be detected statically, i.e., by examining just the text of the

program, without "knowledge of the data read by the program or the implementation definition of

implementation-defined features." Given this definition, the following NURN grammar specifies the set

of Pascal programs without static violations.

GRAMMAR Pasc IS

CASELESS-KEYWORDS

(*
Single-line comments beginning with "S" or "/S"
indicate the start or end (respectively)
of the corresponding section in the Pascal Standard.

* >
(* General violation. *)
RELATION DECL VIOLATION x is - not-allowed - in-this-context .
(*S 6.1: LEXICAL TOKENS. *)

(*S 6.1.1: General. *)

CHARACTER-SET #digit IS '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

(*/S 6.1.1: General. *)

(*S 6.1.2: Special-Symbols. *)

(*/S 6.1.2: Special-Symbols. *)

(*S 6.1.3: Identifiers. *)

LEXEME Identifier IS #letter (#letter I #digit)
RELATION SUBDEF
SS is-the-spelling - of id . -
id is a Identifier,
Ssid TsIthe-character sequence of id,
$S is-the-lower - case - translation - of Ssid

RELATION DECL
EXTERNAL $1 is~the~lower~case~translation - of $s : FUNCTIONAL ON ($ s)

(*/S 6.1.3: Identifiers. *)

(*S 6.1.4: Directives. *)

CONSTRUCT Directive IS <:Identifier>

RELATION SUBDEF
$S is-the-spelling-of d . -
d is a Directive,
id is the Identifier of d l
S sid 2s-the-characte<sequence of id,
$S is-the-lower - case-translation - of Ssid

(*/S 6.1.4: Directives. *)

(* S 6.1.5: Numbers. *)

LEXEME UnsignedIntegerLiteral IS #digit-sequence
(*
An UnsignedIntegerLiteral shall denote in decimal notation
a value of integer-type.

* >
RELATION SUBDEF
t i s-the-type-of expr . -
expr is-a-UnsignedIntegerLiteral,
t is-the-integer - type

- (*
The value denoted by an UnsignedIntegerLiteral
must be in the closed interval 0 to MAXINT.

* >
RELATION DEF
VIOLATION uil is - a - illegal-UnsignedIntegerLiteral

. -
uil is a UnsignedIntegerLiteral,
v is-theIvaluedenoted by uil,
zero is-the-integer value for ordinal 0,
maxint i s-the-int eger value-Gxint ,
(zero i s-greater-than OR v i s-greater-than maxint)

LEXEME UnsignedRealLiteral IS
#digit-sequence
(' . ' #digit-sequence #scale-factor I

' . ' #digit - sequence I #scale-factor)

SUBLEXEME #scale-factor IS ('e' 1 'E') [' + ' I ' - ' 1 #digit-sequence

SUBLEXEME #digit - sequence IS #digit (#digit)

(*
An UnsignedRealLiteral shall denote in decimal notation
a value of real-type.
The letter 'E' preceding a scale Factor shall mean
'times ten to the power of'.

* >
RELATION SUBDEF
t is - the-type-of expr . -
expr is a UnsignedRealLiteral,
t is-thceal-type

(*/S 6.1.5: Numbers. *)

(*S 6.1.6: Labels. *)

CONSTRUCT Label IS <:UnsignedIntegerLiteral>

(*
The apparent integral value of a Label
shall be in the closed interval 0 to 9999.
(Context-free takes care of lower bound.)
* >
RELATION DEF
VIOLATION lab is - a - illegal - Label . -
lab is a Label,
ui is-Fhe~nsigned~nteger~iteral - of lab,
v is-the-value-denotecby ui,
v is-greater-than max,
max is - the - integer - value-for-ordinal 9999

RELATION SUBDEF
SS is-the-spelling-of lab

. -
lab is a Label,
ui i s f h e ~ n s i g n e d ~ n t e ~ e r ~ i t e r a l _ o f lab,
$sui is-the-character-sequence-of ui,
$S i s ~ t h e ~ u n z e r o e d ~ t r a n ~ l a t i o n ~ o f $sui

RELATION DECL
EXTERNAL $u is-the-unzeroed - translation-of Sz : FUNCTIONAL ON ($2)

(*/S 6.1.6: Labels. *)

(*S 6.1.7: Character-Strings. *)

LEXEME CharacterString IS " ' #string-element (#string-element) " '

SUBLEXEME #s tring-element IS #apos trophe-image I #string - character

SUBLEXEME #apostrophe - image IS "' "'

CHARACTER-SET #string-character IS
1 I

l w l
!#I *$I l%l l&l l(l l)l l*l l + l I I I - ! I I

I lo1 121 131 141 151 161 171 181 191 1.1 1.1 1<1 != I I>l I?(*@ I IAl IBI
I 'C' 'Dl !El 'Fl 'GI 'HI '1' I J I IK! 'L' 'MI IN' '01 'PI I Q I IRI 1st

IT1 lul !"I l w l l x l lyl lz l I[* l \ l I l l 1 I

- 'a' 'b' 'c' 'd'
l e t I f 1 l g l lhl lit ljl lkl 111 l m l In! l o t l p l l q l l r l l s l It1 l u l

(*
A CharacterString containing a single string-element
shall denote a value of the required char-type (see 6.4.2.2:.

A CharacterString containing more than one string-element
shall denote a value of a string-type (see 6.4.3.2)
with the same number of components
as the CharacterString contains string-elements.
("packed array [l . .<#n>] of char")

* >
RELATION DECL
EXTERNAL #n is-the-number - of - string - elements - in Ss: FUNCTIONAL ON ($s]

RELATION SUBDEF
t is - the - type-of cs . -
cs is a CharacterString,
$ s isIthe-character-sequence-of cs ,
IF (1 is the number-of-string - elements-in Ss) THEN
t is - the - char - type

ELSE
t is-the-string-type-corresponding-to cs

END

RELATION DEF

MAKER t is-the-string - type - corresponding - to cs: FUNCTIONAL ON (t) , (cs) . -
cs is-a-Characterstring,
$S is-the-character-sequence of cs,
#n i s-the-number-of -s tring element s-in $ s ,
$2 IS-THE-BASE-TEN-REP - OF #n ,
t :=
make ArrayTypeDefiner

(make-~~~e~enoter~ist
(make-SubrangeTypeDefiner

(make-UnsignedIntegerLiteral("ll') ,
make-UnsignedIntegerLiteral($z)

)
),

make - Identifier("charW)
) 1

p := make-PackedStructuredTypeDefiner(t)

(* / S 6.1.7: Character-Strings. *)

(*S 6.1.8: Token-Separators. *)

COMMENT-DEL IMITERS " (" ") "

(*
There shall be at least one separator (comment,space,newline)
between any pair of consecutive tokens made up of
Identifiers, keywords, or UnsignedLiterals.

The one deviant case that will not be rejected for other reasons
is an UnsignedLiteral fellowed by a kelword.
Examples :
lOdiv 2
begin x:=10.3end

* >
LEXEME DeviantLexeme IS
#digit-sequence [' . ' #digit-sequence] [#scale - factor]
#letter (#letter)

(*/S 6.1.8: Token-Separators. *)

(*S 6.1.9: Lexical Alternatives. *)

COMMENT-DELIMITERS " (* " " *) "
COMMENT-DEL IMITERS " (*" ") "
COMMENT-DEL IMITERS " (" " *) "

(*/S 6.1.9: Lexical Alternatives. *)

(*/S 6.1: LEXICAL TOKENS. *)

(*S 6.2: BLOCKS, SCOPE AND ACTIVATIONS. *)

(*S 6.2.1: Block. *)

CONSTRUCT Block IS
["label" <:LabelList> ";"]
["const" <:ConstantDefinitionList>]
["type" <:TypeDefinitionList>]
["var" <:VariableDeclarationList>]
<:RoutineDeclarationList>
"begin"
<:Statementsequence>

"end"

LIST NONEMPTY LabelList OF Label SEPARATED-BY - ","

LIST NONEMPTY ConstantDefinitionList OF ConstantDefinition

LIST NONEMPTY TypeDefinitionList OF TypeDefinition

LIST NONEMPTY VariableDeclarationList OF VariableDeclaration

LIST RoutineDeclarationList OF RoutineDeclaration

ALTERNATE CLOSED RoutineDeclaration IS
ProcedureDeclaration I FunctionDeclaration

(*
Utility:
The Block closest-containing x
is that Block which contains x
but does not contain another Block containing that x.

* >
RELATION DEF
b is - the-Block - closest - containing x: FUNCTIONAL ON (x) . -
p is-thegarent-of x,
IF (p is-a - Block) THEN
b is p

ELSE
b is - the - Block~closest~containing p

END

(*
Label Declarations:
* >
(*
A Label in the LabelList of a Block
is a declaration-point
(as a Label)
effective over the region that is the Block.

* >
RELATION DECL lab declares - a - label .

RELATION SUBDEF
lab is a declarationgoint,
lab declares-a-label ,
lab is - effective-over b . -
lab is a Label-in 11,
11 is the LabelList - of b,
b is-<~lock

(*
The Label of a Labelledstatement
is the 'site' for the defining occurrence of that Label.

* >
RELATION DEF
slab is - the - site - for lab: FUNCTIONAL ON (slab), (lab) . -
slab is-the Label-of s, s is a Labelledstatement,
lab is the defining occurrenceIof slab,
lab declares-a-labei

(*
A Label must have exactly one site,
and the Block over which the Label is declared must be
the Block closest-containing the site.

* >
RELATION DEF
VIOLATION lab declares-a - label - with - no-site . -
lab declares-a-label,
NOT (slab is - the-site-for lab)

RELATION DEF
VIOLATION slab - 2 is - a - duplicate-label-site . -
lab declares-a-label,
slab 1 is - the - site for lab,
slab-2 - is - the - siteIfor lab,
NOT (slab - 1 is slab - 2)

RELATION SUBDEF
slab is-not - allowed - in-this - context . -
lab declares-a-label,
slab is-the site-for lab,
lab i s-ef f ect ive-over b,
NOT (b is - the - Block - closest - containing slab)

(*/S 6.2.1: Block. *)

(*S 6.2.2: Scope. *)

RELATION DECL dp is-a - declarationgoint .
RELATION DECL dp is-effective-over region .
(*
6.2.2.1:
Each Identifier or Label contained by the Block of the Program
(other than the Identifier of a Directive)
must have a defining-occurrence.

* >
RELATION DEF
x is - a - scoped-entity . -
x is-a-Label OR
(x is-a-Identifier,
NOT (x is - the-Identifier - of dir, dir is - a-Directive))

RELATION DECL VIOLATION x is - undefined .
RELATION SUBDEF
x is-undefined . -
x is a scoped-entity,
b isIthe- lock-of p, p is - a - Program,
b contains x,
NOT (d is - the-defining - occurrence-of x)

RELATION DECL Ss is-the - spelling - of x: FUNCTIONAL ON 1x1 .
(*
6.2.2.(2,3,4,5,6)
* >
RELATION DEF
d defines-the-spelling Ss if - it - occurs - at x: FUNCTIONAL ON ($s,x), (d,x) . -
IF (d-2 defines-the-spelling Ss over x) THEN
d i s d 2 -

ELSE
IF (x is a orphan) THEN
NOT (x-is - the - required-Block) ,
p is - the - required - Block

ELSE
p is - thejarent-of x

END,
d defines - the - spelling Ss if - it-occurs - at p

END

(*
for efficiency?:
* >
RELATION DEF
d def ines-the-spelling Ss over x: FUNCTIONAL ON ($st x) , Id, x)

. -
d is-effective-over x, $s is-the-spelling - of d

(*
6.2.2.7
*)
RELATION DECL VIOLATION d - 2 is~a~conflicting~declaration~oint .
RELATION SUBDEF
d - 2 is-a-conflicting-declaration-t . -
d-1 defines-the-spelling Ss over x,
d-2 defines-the-spelling Ss over x,
NOT (d-1 is d-2)

(*
6.2.2.8
* >
RELATION DEF
d is-the-def ining-occurrence - of e : FUNCTIONAL ON {el . -
e is-a-scoped-entity,
Sse is-the-spelling of e,
d defines-the-spelling Sse if - it - occurs - at e

RELATION DEF
x is~a~applied~occurrence~of d: FUNCTIONAL ON 1x1 . -
d is-the-defining-occurrence - of x,
NOT (d is x)

(*
6.2.2.9:
The defining occurrence of an Identifier or Label
must precede all applied occurrences of that Identifier or Label.

* >
RELATION DECL VIOLATION x cannot-be-used-yet .
RELATION SUBDEF
x cannot - be-used-yet . -
x is a applied - occurrence-of dl
x is-before dl
NOT Tx is - a - use-exception)

(*
6.2.2.10:
Identifiers that denote required types and routines
shall be "used as if" their defining-occurrences
have a region enclosing the Program.

* >

RELATION DEF
MAKER b is - the-required - Block: FUNCTIONAL ON (1 . -
maxint is-the-integer-value-maxint,
the boolean-type is-the-boolean type,
theIint eger-type is the-int eger-type, -
the real type is-the-real-type,
the-char-type is-the-char-type,
the-text?ile-type - is-the-textfile-type,

fpl-0neFile :=
make FormalParameterList
(make Variableparameter Section

(make IdentifierList (make Identifier ("f")) ,
make-1dentif - ier ("aFileW)-

)
) I

fpl OneNumeric :=
make FormalParameterList
(make valueparameter section

(make Identif ierList (make Identifier ("x")) ,
make-1dentif - ier ("~umeric")

)
) 1

fpl OneReal :=
make FormalParameterList
(make-valueparametersection

(make IdentifierList(make - Identifier("xW)),
make-~dentifier - ("real")

)

) I

fp1-Oneordinal :=
make-FormalParameterList
(make-ValueParameterSection

(make IdentifierList(make Identifier("xM)),
make- dent if - ier ("ordinal")

)

) 1

fpl-OneInteger :=
make FormalParameterList
(make-valueparamet er~ection

(make IdentifierList(make Identifier("x")),
make-1dentif - ier ("integer")

)
) ,

pre is-the - directivejredefined,
b :=
make Block
(make-~mpty () ,

make ConstantDefinitionList
(make - ConstantDefinition (make - Identifier("maxint"), maxint)),

make-TypeDefinitionList
(make-TypeDefinition (make-Identif ier ("boolean"), the boolean-type) ,
make-TypeDef inition (make-Identif ier ("integer "), the-integer-type) ,
make-TypeDefinition (make-Identif ier ("real"), theIreal-type) ,
make-TypeDefinition (make-Identifier("char"), the-char-type),
make-TypeDefinition (make-Identifier("text"), the-textfile-type)

) 1

make-RoutineDeclarationList
(
make ProcedureDeclaration
(make Identifier("rewrite"), fpl - OneFile, pre),
make-~rocedure~eclarat ion
(make Identifier("putW), fpl - OneFile, pre) ,
make-Procedur e~eclarat ion
(make Identifier("reset"), fpl - OneFile, Pre 1,
make-~rocedure~eclaration
(make - Identifier("getW), fpl - OneFile, pre),

make-ProcedureDeclaration
(make Identifier("readN), make-Empty(), pre),
make-~rocedure~eclaration
(make Identifier("readln"), make-Empty(), pre),
make-Procedur e~eclaration
(make-Identif ier ("write"), make-Empty() , pre) ,
make-ProcedureDeclaration
(make-Identifier("writeln"), make-Empty(), pre),
make ProcedureDeclaration
(make- denti if ier ("page"), make-Empty() , pre) ,

make ProcedureDeclaration
(make Identifier("new"), make - Empty(), pre 1,
make ~rocedure~eclarat ion
(make-1dentif ier ("dispose"), make-Empty() , pre) ,

make ProcedureDeclaration
(make-~dentifier ("pack"),
make FormalParameterList
(make-variableparameter~ection

(make IdentifierList(make Identifier("aW)),
make-1dentif - ier ("LJnpack&rray")

) I
make Valueparametersection
(make Identif ierList (make Identifier ("i")) ,
make- denti if - ier ("ordinal")

> 1

make-Variableparametersection
(make-IdentifierList(make Identifier("z")),
make - Identifier ("Packed~rra~")

)
1 1

pre),
make ProcedureDeclaration
(make-1dentif ier ("unpack"),
make-FormalParameterList
(make-Variableparametersection

(make IdentifierList(make Identifier("z")),
make11dentif ier ("~ackedArra~")

) 1

make-Variableparametersection
(make IdentifierList(make-Identifier(a)),
make11dentif ier ("UnpackedArray")

) I
make-ValueParameterSection
(make-IdentifierList(make Identifier("iW)),
make - Identifier ("ordinal")

)
1 r
pre),

make FunctionDef
(make-~dentifier ("abs"),
fpl OneNumeric,
make - Identifier ("Numeric"),
pre),

make FunctionDef
(make- denti if ier (" sqr "),
fpl OneNumeric,
make - Identifier ("Numeric"),
pre 1,

make FunctionDef
(make-1dentif ier (" sin"),
fpl OneReal,
rnakK1dentif ier("real"),
pre),

make FunctionDef
(make-1dentif ier ("cos"),
fpl OneReal,
make - Identifier("realW) ,
pre),

make FunctionDef
(make-1dentifier("exptt) ,
fpl OneReal,
make - Identifier("real"),
pre),

make FunctionDef
(make-~dentifier ("ln"),
fpl OneReal,
make - Identif ier("realW) ,
pre),

make FunctionDef
(make-1dentif ier("sqrt"),
fpl OneReal,
make - Identifier("real"),

Pre 1,
make FunctionDef
(make-~dentifier ("arctan"),
fpl OneReal,
make - Identifier ("real"),
pre),

make-FunctionDef
(make Identifier("trunc"),
fpl OneReal,
make Identifier ("integer") , -
Pre),

make-FunctionDef
(make Identifier("round"),
fpl OneReal,
make - Identifier("integer"),
pre),

make FunctionDef
(make Identifier ("ord") ,
fplpneOrdinal,
make Identifier("integer"),
pre 7 ,

make FunctionDef
(make-~dentifier ("chr"),
fpl-OneInteger,
make - Identifier("char"),
pre),

make FunctionDef
(make Identifier("succ"),
f p1 Oneordinal,
make - Identifier ("Ordinal"),
pre),

make FunctionDef
(make Identifier ("pred") ,
f pl Oneordinal,
make Identifier ("Ordinal") , -
pre),

make-FunctionDef
(make Identifier("oddW),
f pl-~ne~nteger,
make - Identifier("boolean"),
Pre) I

make-FunctionDef
(make Identifier("eofW),
makeI~rn~t~() ,
make - Identifier("boolean"),
Pre) I

make-FunctionDef
(make-Identifier("eoln"),
make-EmptyO,
make - Identifier("boolean"),

make-Statementsequence
)

RELATION DEF
MAKER dir is - the - directivegredef ined: FUNCTIONAL ON (1 . -
dir := make - Directive (make - Identifier("PREDEFINEDW))

RELATION DEF
rd is-the-required-routine - named Ss : FUNCTIONAL ON (rd) , ESS) . -
SS is-the-spelling of id,
id is the-Name of rd,
rd i s-a ~outine~eclaration in rdl ,
rdl is the-~outine~eclaration~ist - of b,
b is - tEe - required-Block

(*
6.2.2.11:
An applied occurrence of an Identifier or Label
denotes whatever its defining occurrence denotes.

* >
(*/S 6.2.2: Scope. *)

(*S 6.2.3: Activations. *)

(*/S 6.2.3: Activations. *)

(*/S 6.2: BLOCKS, SCOPE AND ACTIVATIONS. *)

(*S 6.3: CONSTANT-DEFINITIONS. *)

RELATION DECL id declares-a-constant-identifier .
RELATION DECL VIOLATION x should-be - a-constant-identifier-but-isnt .
RELATION DEF
id is - a - constant - identifier . -
d is the defining occurrence-of id,
d declares-a-constant - identifier

CONSTRUCT ConstantDefinition IS <Lhs:Identi•’ier> "=" <Rhs:Constant> ";"

(*
The Lhs of
a ConstantDefinition in
the ConstantDefinitionList of

a Block
is a declaration-point
as a constant-identifier
over the region that is the Block.

* >
RELATION SUBDEF
id is-a-declaration_point,
id declares-a-constant-identifier . -
id is the-Lhs-of cd,
cd is-a-~onstant~efinition -

RELATION SUBDEF
id is - effective-over b . -
id is the-Lhs-of cd,
cd is-a ConstantDef inition in cdl,
cdl is the-constant~ef initionlist - of b,
b is - a- lock -

(*
The Rhs of a ConstantDefinition
must not contain an applied-occurrence of
the Lhs of the ConstantDefinition.

* >
RELATION SUBDEF
ao cannot-be-used - yet . -
ao is a applied occurrence-of do,
do i s-the-~hs-of cd,
cd is-a ConstantDef inition,
c is th<~hs-of cd,
c contains ao

RELATION DECL val is - the - value - denoted - by c: FUNCTIONAL ON (c) .
(*
The Lhs of a ConstantDefinition
denotes the value denoted by
(and possesses the type possessed by)
the Rhs of the ConstantDefinition.

* >
RELATION SUBDEF
val is - the-value - denoted-by id . -
cd is-a-ConstantDefinition,
id is the-Lhs-of cd,
c isthe Rhs-of cd,
val is - the-value-denot &-by c

RELATION SUBDEF

t is - the-type - of id . -
cd is-a-ConstantDefinition,
id is the-Lhs-of cd,
c is The-~hs-of cd,
t isIthe-type-of c

(*
Each applied occurrence of a constant-identifier
denotes the value denoted by the constant-identifier.

* >
RELATION SUBDEF
val is - the-value - denoted-by id . -
id is a applied-occurrence-of dl
val is - the-value-denoted - by d

ALTERNATE OPEN Constant IS
SignedIntegerLiteral I UnsignedIntegerLiteral I
SignedRealLiteral I UnsignedRealLiteral I
SignedIdentif ier 1 Identifier I
Characterstring

CONSTRUCT SignedIntegerLiteral IS <:Sign> - <:UnsignedIntegerLiteral>
CONSTRUCT SignedRealLiteral IS <:Sign> - <:UnsignedRealLiteral>
CONSTRUCT SignedIdentifier IS <:Sign> - <:Identifier>

ALTERNATE OPEN Sign IS PlusOp I MinusOp

! *
Anything in a Constant context must denote a value.
This is automatic for the numeric and character literals.
* >
RELATION SUBDEF
id should-be-a - constant-identifier - but-isnt . -
id is a-Identifier,
id is-in a Constant context,
NOT (id TsIa-constant - identifier)

OR
id is the-Identifier of si, si is a SignedIdentifier,
NOT (id is-a-constant - identifier)- -

(*
The Identifier of a SignedIdentifier
must denote a value of real-type or of integer-type.

* >
RELATION SUBDEF
id has - a - inappropriate-type . -
si is-a-SignedIdentifier,

id is the-Identifier - of si,
t is the type-of id,
NOT (t is-the - real - type OR t is-the-integer-type)

(*
The type of a signed-thing shall be
the type of the unsigned-thing of the signed-thing.

* >
RELATION SUBDEF
t is-the-type-of sx . -
(
sx is - a-SignedIntegerLiteral, ux is-the-UnsignedIntegerLiteral-of sx

OR
sx is - a-SignedRealLiteral, ux is-the-UnsignedRealLiteral-of sx

OR
sx is-a-SignedIdentifier, ux is - the - Identifier - of sx

1 I
t is - the - type - of ux

(*
The value denoted by a signed-thing
is either the value denoted by the unsigned-thing of the signed-thing,
or that value's sign-inverse,
according to whether the Sign of the signed-thing is a PlusOp or a MinusOp,
respectively.

* >
RELATION SUBDEF
vsx is - the-value - denoted - by sx . -
(
sx is - a - SignedIntegerLiteral, ux is-the-UnsignedIntegerLiteral-of sx

OR
sx is - a-SignedRealLiteral, ux is-the-UnsignedRealLiteral-of sx

OR
sx is - a-SignedIdentifier, ux is-the-Identifier - of sx

> I
s is-the-Sign-of sx,
vux is-the-value-denoted - by ux,
(
s is-a-PlusOp, vsx is vux

OR
s is - a - MinusOp, vsx is - the-sign-inverse-of vux

)

RELATION DECL v - 1 is-the-sign-inverse-of v - 2 : FUNCTIONAL ON (v-1) , (v-2) .
(*/S 6.3: CONSTANT-DEFINITIONS. *)

(*S 6.4: TYPE-DEFINITIONS. *)

(*
Type shall be an attribute that is possessed
by every value, variable, and expression.

* >
RELATION DECL t is-the-type - of x: FUNCTIONAL ON 1x1 .
RELATION DEF
VIOLATION x should - have - a - type-but-doesnt . -
(
x is - a - genuine-expression

OR
x denotes-a-variable,
NOT

(X is a formalgarmeter in fpl,
f pl 7s-the-~ormal~arameter~ist-of rd,
rd is - a - required - RoutineDeclaration

>
>,
NOT (t is-the-type - of x)

RELATION DECL VIOLATION x has - a - inappropriate-type .
(*S 6.4.1: General. *)

RELATION DECL id declares-a type identifier .
RELATION DECL id is-a-type - TdentTfier .
RELATION SUBDEF
id is - a - type - identifier . -
d is the defining occurrence of id,
d declares - a - type-identif - ier-

CONSTRUCT TypeDefinition IS <Lhs:Identifier> "=" <Rhs:TypeDenoter> ";"

(*
The Lhs of a TypeDefinition
in the TypeDefinitionList of a Block
is a declaration-point
effective over the region that is the Block.

! : Overlap
* >
RELATION SUBDEF
id is a declarationgoint,
id declares - a - type-identif ier . -
id is the Lhs of tdef,
tdef Ts - a-Type~ef - ini tion

RELATION SUBDEF
id is - effective-over b . -
id is the-Lhs-of tdef,
tdef is-a-~y~e~ef inition in tdl ,
tdl is the Type~efinition~ist - of b,
b is-aI~lock

RELATION DECL t is-the type denoted by x: FUNCTIONAL ON (x) .
RELATION DECL VIOLATION td d e n o t e ~ - < i n a ~ ~ r o ~ r i a t e ~ t y p e .
(*
The type denoted by the Lhs of a TypeDefinition
is the type denoted by the Rhs of the TypeDefinition.

* >
RELATION SUBDEF
t is-the-type-denoted-by id . -
tdef is a TypeDefinition,
id is the-~hs of tdef,
td is-the-ms-of tdef,
t i s-the-%eIdenot ed-by td

(*
The Rhs of a TypeDefinition
must not contain an applied-occurrence of
the Lhs of the TypeDefinition,
except for applied-occurrences
in the DomainTypeIdentif ier of a PcinterTypeDef ixer .

* >
RELATION SUBDEF
ao cannot - be-used-yet . -
tdef is a TypeDefinition,
id is the-~hs of tdef,
td is-the-~hslof - - tdef ,
ao is a applied - occurrence-of id,
td contains ao,
NOT (ao is - a-use-exception)

(*
Each applied occurrence of a type-identifier
denotes the type denoted by the type-identifier.

* >
RELATION SUBDEF
t is - the - type-denoted-by id . -
id is a Identifier,
id is-a-applied occurrence-of d,
t is - the - type - denoted-by d

(*
The type of an applied occurrence
(of a constant-identifier, variable-identifier, whatever)

is the type of its defining occurrence.
* >
RELATION SUBDEF

t is-the-type-of id . -
id is-a-Identifier,
id is-a applied occurrence-of d,
t is-the-type-or d

ALTERNATE OPEN TypeDenoter IS TypeIdentif ier I TypeDefiner
ALTERNATE OPEN TypeIdentifier IS Identifier

(*
A TypeDenoter must denote a type.
(For TypeDefiners, this is automatic.)
Exceptions:
a ParameterTypeIdentifier for a required routine,
the ResultTypeIdentifier of a required routine.

* >
RELATION DEF
VIOLATION td should-denote - a - type - but - doesnt . -
td is a Identifier,
td is-in - - - a TypeIdentif ier-context,
NOT

(
td is the ParameterTypeIdentifier of fps,
fps iqa Formal~arameter~ection in fpl,
fpl is - the - FormalParameterList of rd,
rd is - a - required - ~outine~eclarition

OR
td is - the - ResultTypeIdentifier of rd,
rd is - a - required - ~outine~eclarition

),
NOT (t is - the - type-denoted - by td)

RELATION DECL t is - a - type .
(*
A TypeDefiner
(other than a PackedStructuredTypeDefiner or
the BaseTypeDenoter of a canonical set type)
shall be/represent a type.

* >
RELATION SUBDEF

t i s-a-type . -
t is-in-the-TypeDefiner-domain,
NOT (t is a-PackedStructuredTypeDefiner OR

t islthe-~aseType~enoter-of st, st is-a-canonical-set-type)

(*
A type shall denote itself.
* >
RELATION SUBDEF
t is - the-type-denoted-by t . -
t i s-a-type

ALTERNATE OPEN TypeDefiner IS
OrdinalTypeDefiner I StructuredTypeDef iner I PointerTypeDef iner

(*
"OPEN" because StructuredTypeDefiner is open.
*)

(*/S 6.4.1: General. *)

(*S 6.4.2: Simple-Types. *)

(*S 6.4.2.1: General. *)

RELATION DECL t is - a-ordinal - type .
ALTERNATE CLOSED OrdinalTypeDefiner IS
EnumeratedTypeDefiner I SubrangeTypeDef h e r

RELATION SUBDEF
t is - a - ordinal-type . -
t is-a-OrdinalTypeDefiner

(*
An ordinal-type shall determine an finite set of values.
Each value of an ordinal-type shall have an integer ordinal number.
The values of an ordinal-type shall be ordered by their ordinal numbers.
* >
RELATION DECL lo is the smallest-value of ot: FUNCTIONAL ON (ot) .
RELATION DECL hi isathe-largest - - - value - of ot: FUNCTIONAL ON (ot) .
RELATION DECL
#ord is - the - ordinal-number - of v in ot: FUNCTIONAL ON (v,ot), {#ord,ot) .

RELATION DEF
val is - a-value-of ot . -
ot is-a-ordinal-type,
#ord - lo is-the-ordinal-number-of lo in ot, lo is - the - smallest - value-of ot,

#ord-hi is-the-ordinal-number-of hi in ot, hi is the-largest-value-of ot,
#ord-val IS-IN-THE-RANGE FROM #ord lo UP-TO #ord-hi - ,
#ord-val is-the-ordinal-:umber-of Gal in ot

RELATION DEF
#n i s-the-number-of -values-def ined - by ot : FUNCTIONAL ON (ot) . -
ot is-a-ordinal-type,
#ord-lo is-the-ordinal-number of lo in ot, lo is the srnallest-value-of ot,
#ord-hi i s-the-ordinal-number-of hi in ot , hi i - s-the-larges - t-value-of ot ,
#diff IS #ord-hi MINUS #ord-lo,
#n IS #diff PLUS 1

RELATION DEF
v - 1 is-greater-than v-2 . -
ot is-the-type-of v-1,
ot is-the-type-of v-2,
ot is a ordinal type,
#ord-i 7s-the-ofhinal-number-of v-1 in ot ,
#ord-2 is-the-ordinal-number-of v-2 in ot,
#ord-1 IS-GREATER-THAN #ord - 2

(*/S 6.4.2.1: General. *)

(*S 6.4.2.2: Required Sirnple-Types. *)

RELATION SUBDEF
t is - a - ordinal-type . -
t is - the - integer-type

OR
t is - the-boolean-type

OR
t is-the-char-type

RELATION SUBDEF
t is-a-type-identifier,
t i s-a-type . -
t is - the - integer-type

RELATION DEF

t is-a-integer-type . -
rt is-the-range-type-of t,
rt is - the - integer-type

(*
(from 6.7.2.2:)
All integral values in the closed interval from - M I N T to + M I N T
shall be values of the integer-type.

*)
RELATION SUBDEF
lo is - the - smallest-value-of t . -
t is the integer-type,
maxist is-the-integer value maxint ,
lo is - the - sign - inverseof mixint

RELATION SUBDEF
hi is - the - largest-value-of t . -
t is the integer type,
hi i<the - intege<value-maxint

RELATION SUBDEF
#ord is-the-ordinal-number-of v in t . -
t is the integer type,
v is-the-integer-value - - - - for - ordinal #ord

RELATION DEF
MAKER sil is the integer-value-for-ordinal #ord:
FUNCTIONAL-ON lsil) , (#ordl . -

IF (0 IS-GREATER-THAN #ord) THEN
sign := make - MinusOp 0, #abs IS 0 MINUS #ord

ELSE
sign := make - PlusOp 0, #abs EQUALS #ord

END,
$a IS-THE-BASE-TEN-REP-OF #abs,
sil := make-SignedIntegerLiteral (sign, make - UnsignedIntegerLiteral($a))

RELATION SUBDEF
val is-the-value - denoted-by x . -
t is the integer type,
x is-a unsigned~nte~er~iteral,
Si i<-:he-character-sequence-of x,
$i IS-THE-BASE-TEN-REP-OF #ordl
#ord is-the-ordinal-number-of val in t

RELATION SUBDEF

v - 1 is - the-sign-inverse-of v-2 . -
v 1 is the-integer value-for-ordinal #ord-1,
v-2 islthe-integerjalue-for - ordinal #ord-2,
#&d-1 IS 0 MINUS #ord - 2

(* 2: The Real-Type *)
RELATION DEF
MAKER t is-the-real-type: FUNCTIONAL ON 0 . -
t := make - Identifier ("TheRealTypeW)

RELATION SUBDEF
t is-a type-identifier,
t i s-aItype . -
t is - the - real-type

(* 3: The Boolean-Type * >
RELATION DEF
MAKER t i s-the-boolean-type : FUNCTIONAL ON (1 . -
t :=
make EnumeratedTypeDefiner

(make-1dentif ier~ist
(make-Identifier ("FALSE"),
make-Identifier ("TRUE")

)
?

RELATION DEF
t is-a-boolean-type . -
rt is-the-range-type-of t,
rt is - the - boolean - type

RELATION DEF
MAKER t is-the-char-type: FUNCTIONAL . -
t := make-Identifier ("TheCharType"

RELATION SUBDEF
t is a type-identifier,
t i sIaItype . -
t is-the-char-type

RELATION DEF
t is-a-char-type

. -
rt is-the-range-type-of t,
rt is - the-char-type

(*
The ordinal number of the smallest value of the char-type shall be 0.
The rest are implementation-defined.
* 1
RELATION SUBDEF
lo is - the - smallest - value - of t . -
t is the char type,
32 is - the - ordinal - number - of lo in t

RELATION SUBDEF
hi is - the - largest - value - of t . -
t is the-char type,
126 is - the-ordinal-number - of hi in t

RELATION SUBDEF
#ord is-the - ordinal - number - of v in t . -
t is-the-char-type,
v is~the~char~value~for~ordinal #ord

RELATION DEF
MAKER cs is - the-char - value - for - ordinal #ord: FUNCTIONAL ON (cs) , (#ordl . -
SC is-the-charseq-for-the-char value-fcr-ordinal #ordl
cs := make - Characterstring ($c)

RELATION SUBDEF
val is - the - value-denoted - by cs . -
t is-the-char-type,
cs is a-Characterstring,
$C isIthe-character-sequence-of cs,
1 is the-number-of string elements in $c,
$C is-the-char seGor-theIchar-value - for - ordinal #ordl
#ord is - the - ordinal - number - of val in t

RELATION DECL
EXTERNAL Sc is-the charseefor - the - char - value - for - ordinal #ord:
FUNCTIONAL ON ($&, (#ordl

(*/S 6.4.2.2: Required Simple-Types. *)

(*S 6.4.2.3: Enumerated-Types. *)

CONSTRUCT EnumeratedTypeDefiner IS " (" <:IdentifierList> ") "

LIST NONEMPTY IdentifierList OF Identifier SEPARATED - BY - ","

(*
An Identifier in the IdentifierList of an EnumeratedTypeDefiner
is a declaration-point
effective over
the Block closest containing the EnumeratedTypeDefiner.

! : Overlap
* >
RELATION SUBDEF
id is-a-declarationgoint,
id declares-a-constant-identifier,
id is the-value-denoted - by id,
etd is - the - type-of id . -
id is a Identifier in idl,
id1 is the ~dentifier~ist of etd,
etd isIa-~EumeratedType~ef iner

RELATION SUBDEF
id is - effective - over b . -
id is a Identifier in idl,
id1 is the ~dentifier~ist of etd,
etd i sIa- num me rat edTypeDeZiner,
b is - the - Block~closest - containing etd

RELATION SUBDEF
lo is - the - smallest-value - of etd . -
etd is a EnumeratedTypeDefiner,
id1 is-the IdentifierList of etd,
lo is - the 1 th - ~dentifier-in - id1

RELATION SUBDEF
hi is-the-largest - value-of etd . -
etd is-a EnumeratedTypeDefiner,
id1 is the IdentifierList-of etd,
#n istheTength of idl,
hi is-the #n th-ydentif ier - in id1

RELATION SUBDEF
#ord is - the - ordinal - number-of id in etd . -
id is-the #i th Identifier-in idl,
id1 is the ~dentifier~ist-of etd,
etd is-a ~EumeratedTypeDef iner ,
#ord 15 #i MINUS 1

(*/S 6.4.2.3: Enumerated-Types. *)

(*S 6.4.2.4: Subrange-Types. *)

CONSTRUCT SubrangeTypeDefiner IS
<LowerBound:Constant> ".." <UpperBound:Constant>

(*
The LowerBound and the UpperBound of a SubrangeTypeDefiner
must have ordinal types,
and the type of the UpperBound must be
the same as that of the LowerBound.

* >
RELATION SUBDEF
c has-a-inappropriate-type . -
st is - a - SubrangeTypeDefiner,
(c is-the-LowerBound - of st OR c is - the - UpperBound-of st),
t is the-type of c,
NOT (t is-a-ordinal - type)

RELATION SUBDEF
st has-children - with-conflicting - types . -
st is a-SubrangeTypeDefiner,
It is-the - - type-of lb, lb is-the LowerBound of st,
ut i s-the-type-of ub, ub i s-the~~~~er~ound~of st ,
NOT (It is ut)

(*
The value denoted by the LowerBound of a SubrangeTypeDefiner
must be less than or equal to
the value denoted by the UpperBound of the SubrangeTypeDefiner.

* >
RELATION DEF
VIOLATION st is - a - empty - subrange . -
st is-a-SubrangeTypeDefiner,
lbv is-the value denoted-by lb, lb is-the LowerBound of st,
ubv is-the-valuedenoted-by ub, ub is-theI~~~er~ound~of st,
~ b v is - greater-than ubv

(*
Every ordinal-type has a range-type.
The range-type of a subrange-type is the type of its bounds.
The range-type of any other ordinal-type is the type itself.
* >
RELATION DEF
rt is-the-range - type-of ot: FUNCTIONAL ON (ot) . -

rt is-a-ordinal-type,
ot is-a-ordinal-type,
IF (ot is-a-SubrangeTypeDefiner) THEN
lb is the LowerBound of ot,
rt is-theItype-of - lb-

ELSE
rt is ot

END

RELATION SUBDEF
lo is - the-smallest - value-of st . -
st is a-SubrangeTypeDefiner,
lb i s-the LowerBound-of st ,
lo is-the-value-denoted-by - - lb

RELATION SUBDEF
hi is - the-largest-value-of st . -
st is a SubrangeTypeDefiner,
ub is-the UpperBound-of st ,
hi i s-the-value-denoted-by - - ub

RELATION SUBDEF
#ord is-the - ordinal - number - of val in st . -
st is a SubrangeTypeDefiner,
r t i s-the-range-type-of st ,
#ord Ts-the-ordinal-number - of val in rt

(*/S 6.4.2.4: Subrange-Types. *)

(*/S 6.4.2: Simple-Types. *)

(*S 6.4.3: Structured-Types. *)

(*S 6.4.3.1: General. *)

ALTERNATE OPEN StructuredTypeDefiner IS
PackedStructuredTypeDef iner I UnpackedStruc turedTypeDef iner

CONSTRUCT PackedStructuredTypeDefiner IS
"packed" <:UnpackedStructuredTypeDefiner>

ALTERNATE CLOSED UnpackedStructuredTypeDefiner IS
ArrayTypeDef iner I RecordTypeDef iner I SetTypeDefiner (
FileTypeDefiner

(*
The type denoted by a PackedStructuredTypeDefiner is
the UnpackedStructuredTypeDefiner of the PackedStructuredTypeDefiner.

It shall be designated "packed".
* >
RELATION DECL t is - designatedsacked .
RELATION SUBDEF

t is-the-type denoted by pst,
t i s-designatedjacked . -
t is the-UnpackedStructuredTypeDefiner - of pst,
ps t is-a-~acked~tructured~ype~ef iner

(*/S 6.4.3.1: General. *)

(*S 6.4.3.2: Array-Types. *)

RELATION DECL t is-a - array-type .
CONSTRUCT ArrayTypeDefiner IS
"array" " [" <IndexTypeList:TypeDenoterList> "1" "of"
<ComponentTypeDenoter:TypeDenoter>

LIST NONEMPTY TypeDenoterList OF TypeDenoter SEPARATED BY "," - -

RELATION SUBDEF
t is - a-array-type . -
t is - a - ArrayTypeDefiner

(*
The (unpacked) ArrayTypeDefiner
array [tdl,td2, ..., tdn] of ctd

is equivalent to
array [tdl] of array [td2] of . . . of array [tdn] of ctd

The PackedStructuredTypeDefiner
packed array [tdl, td2, . . . , tdn] of ctd

is equivalent to
packed array [tdl] of
packed array [td2] of

... of
packed array [tdn] of ctd

* >
RELATION SUBDEF
atdex IS - THE - EXPANSION - OF atd . -
atd is a ArrayTypeDefiner,
it1 is-the IndexTypeList-of atd,
#len i<thelength of itl,
#len IS GREATER THXN 1,
td 1 islthe 1 th TypeDenoter in itl,
ctd is - the-~orn~onent~ype~enoter of atd,
ctdex := make - ArrayTypeDef iner tail(itl), ctd) ,

IF (atd is - designatedgacked) THEN
ctdexp := make - PackedStructuredTypeDefiner (ctdex)

ELSE
ctdexp is ctdex

END,
atdex := make-ArrayTypeDefiner (make-TypeDenoterList (td - 1), ctdexp)

(*
The index-type of an array-type (ArrayTypeDefiner)
is the type denoted by
the [only] TypeDenoter in the IndexTypeList of the ArrayTypeDefiner.

* >
RELATION DEF
it is - the - index-type - of at: FUNCTIONAL ON (at) . -
at is a ArrayTypeDefiner,
tdl iz-the IndexTypeList of at,
itd is the-1 th-~~~e~enoter in tdl,
it is - the - type-denoted-by itd

(*
The index-type of an array-type
must be an ordinal-type.

* >
RELATION SUBDEF
itd denotes - a-inappropriate-type . -
at is a ArrayTypeDefiner,
tdl isthe-~ndexType~ist_of at,
itd is-the 1 th-TypeDenoter in tdl,
it is the type denoted-by itd,
NOT (Tt is - a - ordinal-type)

(*
The component-type of an array-type (ArrayTypeDefiner)
is the type denoted by the ComponentTypeDenoter of the ArrayTypeDefiner

* >
RELATION DEF
c t i s-the - array-component-type-of at : FUNCTIONAL ON (at) . -
at is a ArrayTypeDefiner,
ctd isthe ComponentTypeDenoter - of at,
ct is - the - type - denoted-by ctd

RELATION DEF
#n i s-the-number - of - component s-of at : FUNCTIONAL ON (at) . -
at is-a-ArrayTypeDefiner,
it is - the - index - type - of at,

#n is-the-number-of-values-defined-by it

(*
Any type designated packed and denoted by an array-type
having as its index-type a denotation of a subrange-type
specifying a smallest value of 1
and a largest value of greater than 1,
and having as its component-type
a denotation of the char-type,
shall be designated a string-type.

* >
RELATION DEF
t is - a-string-type . -
t is designated~acked,
t i s-a ArrayTypeDef iner ,
it is the index-type-of t ,
it i sIa-SubrangeType~ef iner ,
it is a integer-type,
lb is-the LowerBound of it, one is-the value denoted-by lb,
ub is-the-~~~er~oundlof it, ubv is the-valuedenoted - - by ub,
one i<th<integer value-f or - ordinal 17
ubv is greater-than one,
ct isfhe-array component - type - of t,
ct is - the - char-he

(*/S 6.4.3.2: Array-Types. *)

(* S 0.4.3.3: Record-Types. *)

RELATION DECL t is-a-record-type .
CONSTRUCT RecordTypeDefiner IS "record" <:FieldList> [" ; " I "end"

ALTERNATE OPEN FieldList IS FixedPart I Variantpart I FixedPartAndVariantPart
CONSTRUCT FixedPartAndVariantPart IS <:Fixedpart> ";" <:Variantpart>

LIST Fixedpart OF Recordsection SEPARATED - BY ";"

CONSTRUCT RecordSection IS <:IdentifierList> ":" <:TypeDenoter>

RELATION SUBDEF
t is-a-record-type . -
t is-a-RecordTypeDefiner

(*
Utility
* >

RELATION DEF
r t i s-the-RecordTypeDef her-closest - containing x : FUNCTIONAL ON 1x1 . . -
p is-thegarent of x,
IF (p i s-a-~ecordType~ef iner) THEN
rt is p

ELSE
rt is~the~RecordTypeDefiner~closest~containing p

END

RELATION DECL t is a field type denoter-of rt: FUNCTIONAL ON it) .
RELATION DECL id declares - a - f ie'id-identif ier .
RELATION DEF
id is - a - field - identifier . -
d is the-defining-occurrence of id,
d declares - a - field - identifier

(*
An Identifier in the IdentifierList of a RecordSection
is a declaration-point
as a field-identifier
effective over the region that is the RecordTypeDefiner
closest-containing the RecordSection,

and has the type denoted by
the TypeDenoter of the RecordSection.

! : Overlap
* >
RELATION SUBDEF
id is a declarationgoint,
id declares - a - field - identifier . -
id is a Identifier in idl,
id1 i<the ~dentifier~ist - of rs,
rs is - a - ~ecord~ection

RELATION SUBDEF
id is-effective - over rt . -
id is a Identifier in idl,
id1 is - the - ~dentifier~ist-of rs,
rs is-a-Recordsection,
rt is - the - RecordTypeDefiner~closest~containing rs

RELATION SUBDEF
t is-the-type - of id . -
id is a Identifier in idl,
id1 is - the - ~dentifier~ist-of rs,
rs is - a - Recordsection,

td is the TypeDenoter of rs,
t i s-:he-Ge-denot ed-by - td

RELATION SUBDEF
td is - a-field-type - denoter - of rt . -
td is-the-TypeDenoter of rs,
r s is a-~ecord~ec tion:
r t isIthe-~ecordType~ef iner-closes t-containing r s

CONSTRUCT VariantPart IS
"case" [<TagField:Identifier> ":"] <TagTypeIdentifier:TypeIdentifier>
"of" <:VariantList>

(*
If unempty, the TagField of a VariantPart
is a declaration-point
as a field-identifier
effective over the region that is the RecordTypeDefiner
closest-containing the VariantPart,
and has the type denoted by
the TagTypeIdentifier of the VariantPart.

! : Overlap
* >
RELATION SUBDEF
id is a-declaration_point,
id declares - a - field-identifier . -
id is a Identifier,
id is-the TagField-of vp,
vp i s - - variantpart

RELATION SUBDEF
id is - effective-over rt . -
id is a-Identifier,
id is-the TagField of vp,
vp i s-a variant part,
rt is-the - - RecordTypeDef iner-closest-containing vp

RELATION SUBDEF
tt is - the-type-of id . -
id is a Identifier,
id is-the TagField-of vp,
vp i s-a ~ a r ian t par t ,
tid iJ-~he-~agTy~e~dentif ier-of vp,
tt is - the - type - denoted-by tid

RELATION SUBDEF
tid is - a - field - type-denoter-of rt . -

tid is - the - TagTypeIdentifier - of vp,
vp is a VariantPart,
r t i s-the-~ecordType~ef - iner - closes t-containing vp

(*
The TagTypeIdentifier of a VariantPart must denote an ordinal-type.
* 1
RELATION SUBDEF
tid denotes-a-inappropriate-type . -
tid is - the - TagTypeIdentifier - of vp,
vp is a VariantPart,
tt islthe-type denoted by tid,
NOT (tt is-a-ordinal - type)

LIST NONEMPTY VariantList OF Variant SEPARATED BY ";" -
CONSTRUCT Variant IS <:ConstantList> ":" " (" <:FieldList> [" ; " I ") "

LIST NONEMPTY ConstantList OF Constant SEPARATED-BY - ","

(*
A Constant in the ConstantList of a Variant
in the VariantList of a VariantPart
is a selector-constant of the VariantPart.
(Useful for next two defs.)
* 1
RELATION DEF
c is-a-selector - constant - of vp: FUNCTIONAL ON (c! . -
c is a Constant in cl,
cl i<the-constant list-of v,
v is-a-Variant-in vl,
vl is the VariantList - of vp,
vp is-a - - variantpart

(*
The type of each selector-constant of a VariantPart
must be the range-type of
the type denoted by the TagTypeIdentifier of the VariantPart

* >
RELATION SUBDEF
c has - a - inappropriate-type . -
vp is a VariantPart,
id is-the - - TagTypeIdentif ier-of vp,
tt is the type denoted-by id,
c is-<seTecto<constant-of vp,
ct is-the type-of c,
NOT (ct i<the - range - type-of tt)

(*
The value of a selector-constant of a VariantPart
must be different from all other such values
(for the VariantPart).

*)
RELATION DEF
VIOLATION c - 2 denotes - a - duplicated~selector~value . -
vp is-a VariantPart,
c-1 is~~~selector~constant of vp,
c-2 is~a~selector~constant-of - vp,
NOT (c 1 is c-2),
v is - the - value-denoted by c 1,
v is - the - value-denotedeby - c-2 -

(*
The set of values denoted by all selector-constants of a VariantPart
must be equal to the set of values
specified by the type denoted by the TagTypeIdentifier of the VariantPart.

* >
RELATION DEF
VIOLATION vp doesnt - have-selector - constants~for~all~selector - values . -
vp is a VariantPart,
id is-the - - TagTypeIdentif ier-of vp,
tt is - the - type-denoted-by id,
val is-a-value-of tt,
NOT (c is - a - selector - constant - cf vp, val is-the-value - den~ tec l -b~ c)

RELATION SUBDEF
c is-not-allowed-in - this-context . -
vp is a VariantPart,
id is-the - - TagTypeIdentifier of vp,
tt is the type-denoted-by id,
c i s ~ ~ s e ~ e c t o r ~ c o n s t a n t ~ o f vp,
val is-the value denoted-by c,
NOT (val is - a-vaiue - of tt)

(*
*)
RELATION DEF
fl is the FieldList-associated-with val in vp:
FUNCTIONAL ON (val,vp), (fl,val) . -

vp is-a-Variantpart,
vl is - the - VariantList - of vp,
v is-a-Variant-in vl,
fl is-the - FieldList-of v,

cl is the-Constantlist-of v,
c is-:-constant in cl,
val is-the-value-denotecby c

(*/S 6.4.3.3: Record-Types. *)

(*S 6.4.3.4: Set-Types. *)

CONSTRUCT SetTypeDefiner IS "set" "of" <BaseTypeDenoter:TypeDenoter>

(*
A SetTypeDefiner defines a set-type.
* >
RELATION DEF
st is-a-set-type . -
st is-a-SetTypeDefiner
OR
st is-the-empty-set-type

RELATION SUBDEF
st is-a-type . -
st is-a-set-type

(*
The BaseTypeDenoter of a SetTypeDefiner
must denote an ordinal type.

* >
RELATION SUBDEF
btd denotes - a - inappropriate-type . -
st is-a-SetTypeDefiner,
btd is the-BaseTypeDenoter-of st,
bt is 'ihe type-denoted-by btd,
NOT (zt is-a-ordinal - type)

(*
The base-type of a set-type defined by a SetTypeDefiner
is the type denoted by the BaseTypeDenoter of the SetTypeDefiner.
The empty-set-type does not have a base-type.
* >
RELATION DEF
bt is-the - base - type-of st: FUNCTIONAL ON (st) . -
st is a SetTypeDefiner,
btd is the BaseTypeDenoter-of st,
bt is - 'ihe - 'iype - denoted-by btd

(*
The BaseTypeDenoter of a canonical set type
shall denote the ordinal type that gave rise to the canonical set type.

* >
RELATION SUBDEF
bt is-the-type-denoted - by btd . -
btd is-the - BaseTypeDenoter - of st,
(
st is - thejacked - canonical - set-type-associated - with bt
OR
st is-the-unpacked - canonical - set-type-associated-with bt

)

(*
For every non-subrange ordinal-type T,
there exist two canonical set-of-T types,
packed and unpacked.

* >
RELATION DEF
st is-a-canonical-set-type . -
st is-the~acked - canonical - set - type - associated-with bt
OR
st is-the - unpacked-canonical - set - type - associated - with bt

RELATION DEF
MAKER st is thejacked canonical-set - type - associated-with bt:
FUNCTIONAL ON (st), (btr . -
bt is a ordinal type,
NOT (-bt i s-a-Subrange~ype~efiner) ,
st := make SetTypeDefiner (bt),
p := make - PackedStructuredType~ef iner (st)

RELATION DEF
MAKER st is the unpacked-canonical-set - type - associated - with bt:
FUNCTIONAL ON (St), (bt) . -
bt is a ordinal type,
NOT (-bt is a ~Gbran~eType~ef iner) ,
st : = make - S e b e ~ e f iner (bt)

RELATION DEF
cst is~the~canonical~set~type~corresponding - to st : FUNCTIONAL ON (st) . -
bt is-the base-type-of st,
rt is-the-range-type-of bt,
IF (st isdesignatedjacked) THEN
cst is - the~acked-canonical - set - type - associated-with rt

ELSE

cst is-the-unpacked - canonical-set-type - associated-with rt
END

(*/S 6.4.3.4: Set-Types. *)

(*S 6.4.3.5: File-Types. *)

RELATION DECL t is - a - file-type .
CONSTRUCT FileTypeDefiner IS "file" "of" <ComponentTypeDenoter:TypeDenoter>

RELATION SUBDEF
t . -
t

(*
The
is

* >

is - a-file - type

is - a - FileTypeDefiner

component-type of a file-type (FileTypeDefiner)
the type denoted by the ComponentTypeDenoter of the FileTypeDefiner.

RELATION DEF
ct is - the - f ile-component-type - of f td: FUNCTIONAL ON (f td) . -
ftd is a FileTypeDefiner,
ctd i sIthe-~om~onent~ype~enoter - of f td,
ct is-the-type - denoted-by ctd

! *
A type
shall not be permissible as the component-type of a file-type
if it is either a file-type
or a structured-type having any component-type that
is not permissible as the component-type of a file-type.

* >
RELATION SUBDEF
ctd denotes-a-inappropriate-type . -
ctd is-the-ComponentTypeDenoter - of ft, ft is-a-file - type,
t is - the - type denoted-by ctd,
t is - a-invalid - file-component - type

RELATION DEF
t is - a - invalid - file-component-type . -
t is - a-file - type

OR
t is-a-array-type,
ct is-the-array component-type of t,
ct is - a - invalid-file-component&e -

OR

t is-a-record-type,
ftd is a field-type denoter-of t,
f t is - the - type denoted-by f td,
ft is - a - invalid - file - component - type

(*
There shall be a file-type
that is denoted by the required structured-type-Identifier TEXT.

A variable that possesses
the type denoted by the required structured-type-Identifier TEXT
shall be designated a <&ital('textfilet)>.

* >
RELATION DEF
MAKER t is - the - textfile - type: FUNCTIONAL ON 1) . -
t := make-FileTypeDefiner (make-Identifier("charW))

(*/S 6.4.3: Structured-Types. *)

(*S 6.4.4: Pointer-Types. *)

RELATION DEF
t is-agointer-type . -
t is - a - PointerTypeDefiner
OR
t is - the - null - type

CONSTRUCT PointerTypeDefiner IS "@" - <DomainTypeIdentifier:TypeIdentifier>

(*
6.2.2.9:
A TypeIdentifier may be the DomainTypeIdentifier of *any* PointerTypeDefiner
contained by the TypeDefinitionList
that contains the defining-occurrence of the TypeIdentifier.

* >
RELATION DEF
id is-a-use-exception . -
id is the DomainTypeIdentifier-of pt,
pt is-a-~GinterType~ef iner ,
tdl contains pt,
tdl is a TypeDefinitionList,
dp is the defining occurrence - of id,
dp is-the-~hs of td,
td i sIa-Type~efini tion-in tdl

(* / S 6.4.4: Pointer-Types. *)

(* S 6.4.5: Compatible Types. *)

(*
Used only in 6.4.6 and 6.7.2.
* >
RELATION DEF
t - 1 is - comparable-with t 2 - . -
t 1 is a ordinal type, t is the range-type of t 1,
t-2 - i s-a-ordinal-type, - - - t i s-theIrange-typeIof - t12

OR
t 1 is-the-real-type,
t-2 - is - the - real-type

OR
t-1 is-agointer type,
t-2 i s-agointerItype,
(t - 1 is - the - null-type OR t 2 is the-null-type OR t-1 is t 2) - - -

OR
t-1 is-a-set-type,
t - 2 is-a-set-type,
(
t - 1 is - the - empty-set-type

OR
t - 2 is-the-hpty - set-type

OR
cst is - the - canonical set type corresponding to t-1,
cst i s-the-canonical-setke-corresponding-to - - - t - 2

)
OR
t 1 is a string-type,
t-2 islaIstring-type, #c is-the-number - of - components of t 1,
#c is-the-number - of-components-of - t-2 -

OR
(
t-1 is - the - real - type, t - 2 is - a - integer-type

OR
t - 2 is-the-real - type, t - 1 is-a-integer-type

)

(* /S 6.4.5: Compatible Types. *)

(* S 6.4.6: Assignment-Compatibility. *)

(*
Used in 6.5.3.2, 6.6.3.2, 6.8.2.2, and 6.8.3.9.
* >
RELATION DEF
t-2 is - assignable - to t - 1 . -

NOT (t-1 is-a-invalid - file - component-type)
OR
t 1 is-comparable with t 2,
NOT (t-2 is-the-real-type, t-1 is-a-integer-type)

(*/S 6.4.6: Assignment-Compatibility. *)

(*S 6.4.7: Example of a Type-Definition-Part. *)

(*/S 6.4.7: Example of a Type-Definition-Part. *)

(*/S 6.4: TYPE-DEFINITIONS. *)

(*S 6.5: DECLARATIONS AND DENOTATIONS OF VARIABLES. *)

(*S 6.5.1: Variable-Declarations. *)

CONSTRUCT VariableDeclaration IS
<:IdentifierList> ":" <:TypeDenoter> ";"

(*
An Identifier in the IdentifierList
of a VariableDeclaration of the VariableDeclarationList of a Block
is a declaration-point
as a variable-identifier
over the region that is the Block,
and
denotes a distinct variable
possessing the type
denoted by the TypeDenoter of the VariableDeclaration.
! : Overlap
* >
RELATION SUBDEF
id is a declaration~oint,
id declares - a - variable - identifier . -
id is a Identifier in idl,
id1 is - the - ~dentifier~ist of vd,
vd is - a-~ariable~eclaration

RELATION SUBDEF
id is - effective-over b . -
id is a Identifier in idl,
id1 is - the - ~dentifier~ist of vd,
vd is a ~ariable~eclaration-in vdl ,
vdl is the VariableDeclarationList - of b,
b is - a- lock -

RELATION SUBDEF
t is - the - type-of id

. -
id is a Identifier in idl,
id1 is the-1dentifTer~ist-of vd,
vd i s-a-~ariable~eclaration,
td is-the-TypeDenoter of vd,
t is-the-type - denoted-by - td

ALTERNATE OPEN VariableAccess IS
Identifier I Componentvariable 1 HattedVariable

(*
Normally, a VariableAccess must denote a variable.
There are some exceptions in which an Identifier
occurring in the context of a VariableAccess
should not, or need not, denote a variable.

* >
RELATION DECL va denotes-a-variable .
RELATION DECL x should - denote a variable . - -
RELATION DEF
VIOLATION x should-denote - a - variable - but - doesnt . -
x should denote-a-variable,
NOT (x denotes-a - variable)

RELATION SUBDEF
va denotes-a-variable . -
va is-a - variable - identifier

OR
va is - a - field - identifier

OR
va is - a - Componentvariable

OR
va is - a - HattedVariable

(*/S 6.5.1: Variable-Declarations. *)

(*S 6.5.2: Entire-Variables. *)

RELATION DECL id declares - a - variable-identifier .
RELATION DEF
id is - a - variable - identifier . -
d is the defining occurrence of id,
d declares - a - variable-identifier

(*/S 6.5.2: Entire-Variables. *)

(*S 6.5.3: Component-Variables. *)

(*S 6.5.3.1: General. *)

ALTERNATE CLOSED Componentvariable IS IndexedVariable I SelectedVariable

(*/S 6.5.3.1: General. *)

(*S 6.5.3.2: Indexed-Variables. *)

CONSTRUCT IndexedVariable IS
<ArrayVariable:VariableAccess> " [" ~IndexList:ExpressionList> " I "

LIST NONEMPTY ExpressionList OF Expression SEPARATED-BY - ","

(*
The ArrayVariable of an IndexedVariable
must denote a variable possessing an array-type.

* >
RELATION SUBDEF
va should - denote-a-variable . -
iv is a IndexedVariable,
va is-the - - Arrayvariable - of iv

RELATION SUBDEF
va has - a - inappropriate-type . -
iv is a IndexedVariable,
va isIthe-~rra~~ariable-of iv,
t is the-type-of va,
NOT (t is-a-array-type)

(*
The IndexedVariable
v [el,e2, ..., en]

is equivalent to
v [el] [e2] . . . [en]

* >
RELATION SUBDEF
ivex IS - THE - EXPANSION-OF iv . -
iv is a IndexedVariable,
v is the Arrayvariable-of iv,
il is the IndexList of iv,
#len is-the-lengthpf ill
#len IS-GREATER-THAN 1,
e - 1 is - the 1 th - Expression-in il,
ivex :=
make IndexedVariable

(make-~ndexed~ariable (v, make-ExpressionList (e-1)) ,
tail(i1)

(*
The type of the only Expression in the IndexList of an 1ndexedVariable
must be assignable to
the index-type of the array-type of
the ArrayVariable of the IndexedVariable.

* >
RELATION SUBDEF
expr has-a-inappropriate-type . -
iv is a IndexedVariable,
il is-the-~ndex~ist of iv,
expr Ts-the 1 th ~xpression - in il,
et is-the-type of expr,
va is the-~rray~ariable - of iv,
at islthe-type-of va,
it is-the-index type of at,
NOT (et is-assignable - to it)

(*
The type of an IndexedVariable is
the component-type of
the type of the ArrayVariable of
the IndexedVariable.

* >
RELATION SUBDEF
t is-the-type-of iv . -
iv is a IndexedVariable,
t is t h e array component-type-of at,
at i<thetype-of va,
va is - the - ~rray~ariable - of iv

(*/S 6.5.3.2: Indexed-Variables. *)

(*S 6.5.3.3: Field-Designators. *)

CONSTRUCT SelectedVariable IS
<RecordVariable:VariableAccess> - " . " - <FieldSpecifier:Identifier>

(*
The Recordvariable of a SelectedVariable
must denote a variable possessing a record-type.

! : Overlap
* 1
RELATION SUBDEF
va should-denote - a-variable . -
sv is - a - SelectedVariable,

va is - the - Recordvariable - of sv
RELATION SUBDEF
va has-a-inappropriate-type . -
sv is a SelectedVariable,
va i s-the Recordvariable-of sv,
t is the-be-of va,
NOT (t is - a - record-type)

(*
An Identifier that is effective over
the record-type possessed by the RecordVariable of a SelectedVariable
is also effective over the region that is
the FieldSpecifier of the SelectedVariable.

* >
RELATION SUBDEF
d is-effective-over id . -
sv is a SelectedVariable,
id is-the FieldSpecifier of sv,
va i s-the-~ecordvar iableaf sv,
r t i s-the-type-of - - va ,
rt is-a-record-type,
d is - effective-over rt

(*
The defining-occurrence of the FieldSpecifier of a SelectedVariable
must be a field-identifier for the record-type
that is the type of the RecordVariable of the SelectedVariable.

* >
RELATION SUBDEF
id is - not - allowed - in-this - context . -
sv is a SelectedVariable,
va is-the - - Recordvariable-of sv,
rt is the-type-of va,
id is-the FieldSpecifier of sv,
d is the defining occurrence-of id,
NOT (d is - effect ive-over r t)

(*
The type of a SelectedVariable is
the type of the FieldSpecifier of the SelectedVariable.

* >
RELATION SUBDEF
t is-the-type-of sv . -
sv is a SelectedVariable,
f s is-the - - Fieldspecifier - of sv,

t is-the-type-of fs

(*/S 6.5.3.3: Field-Designators. *)

(*/S 6.5.3: Component-Variables. *)

CONSTRUCT HattedVariable IS <HeadVariable:VariableAccess> - " @ "

(*
The HeadVariable of a HattedVariable
must be a pointer-variable or a file-variable.

* >
RELATION SUBDEF
va should-denote-a - variable . -
hv is a HattedVariable,
va i s-the-~eadvar - iable-of hv

RELATION SUBDEF
va has - a-inappropriate-type . -
hv is a HattedVariable,
va i s-the - - Headvariable-of hv,
NOT (va is-agointer - variable OR va is-a-file-variable)

(*S 6.5.4: Identified-Variables. *)

(*
A pointer-variable is a VariableAccess whose type is a pointer-t-ype.
* >
RELATION DEF
va is - agointer-variable . -
va denotes-a-variable,
pt is the-type-of va,
pt is-agointer-type -

(*
An identified-variable is a HattedVariable
whose HeadVariable is a pointer-variable.

* >
RELATION DEF
va is - thegointer-variable-of hv : FUNCTIONAL ON (va) , (hv) . -
hv is a HattedVariable,
va i s-the-~eadvar iable-of hv,
va isqagointer - - variable

RELATION DEF
hv is - a - identified-variable

. -
va is - thejointer - variable-of hv

(*
The type of an identified-variable shall be
[the type denoted by]
the DomainTypeIdentifier of
the pointer-type possessed by
the pointer-variable of
the identified-variable.

* >
RELATION SUBDEF
t is - the - type-of iv . -
iv is a identified-variable,
va is-thejointer-variable - of iv,
pt is-the - - type-of va,
pt is-agointer-type,
dt is-the-DomainTypeIdentifier - of pt,
t is-the-type-denoted-by dt

(*/S 6.5.4: Identified-Variables. *)

(* S 6.5.5 : Buff er-Variables. *)

(*
A file-variable is a VariableAccess whose type is a file-type.
* >
RELATION DEF
va is - a - file - variable . -
va denotes a variable,
ft is the &e-of va,
ft is-a - - file - type

(*
A buffer-variable is a HattedVariable
whose Headvariable is a file-variable.

* >
RELATION DEF
va is - the - file - variable-of hv: FUNCTIONAL ON (va) , (hv) . -
va is the Headvariable-of hv,
hv is-a ~atted~ariable,
va is-a-file - - - variable

RELATION DEF
hv is - a - buffer-variable . -
va is - the - file-variable-of hv

(*
The type of a buffer-variable is
the component-type of
the file-type possessed by
the file-variable of the buffer-variable.

* >
RELATION SUBDEF

t is - the-type-of bv . -
bv is a buffer-variable,
va is-the file variable - of bv,
f t i s-the-typelof va,
f t is-a file type,
t is - the-f ile-component - type - of f t

(*/S 6.5.5: Buffer-Variables. *)

(*/S 6.5: DECLARATIONS AND DENOTATIONS OF VARIABLES. *)

(* S 6.6: PROCEDURE AND FUNCTION DECLARATIONS. *)

(*S 6.6.1: Procedure-Declarations. *)

RELATION DECL id declares-agrocedure identifier .
RELATION DECL VIOLATION x should - be - agrocedure - identifier-but - isnt .
RELATION DEF
id is - ajrocedure - identifier . -
d is - the - defining occurrence of id,
d declares - ajrocedur e-identif ier

CONSTRUCT ProcedureDeclaration IS
"procedure" <Name:Identifier> [" (" <:FormalParameterList> ") "] ";"
<Body:RoutineBody> ";"

RELATION SUBDEF
id declares - ajrocedure-identifier . -
id declares a routine-identifier,
id is - the - N&I< - of pd, pd is-a-ProcedureDeclaration

(*/S 6.6.1: Procedure-Declarations. *)

RELATION DECL id declares-a function-identifier .
RELATION DECL VIOLATION x should - be - - a function - identifier-but - isnt .

RELATION DEF
id is - a - function - identifier . -
d is the defining-occurrence-of id,
d declares-a-f unction-identif ier

ALTERNATE CLOSED FunctionDeclarat ion IS Func t ionDef I Funct ionRes

CONSTRUCT FunctionDef IS
"function" <Name:Identifier> [" (" <:FormalParameterList> ") "] ":"
<ResultTypeIdentifier:TypeIdentifier> ";" <Body:RoutineBody> ";"

CONSTRUCT FunctionRes IS
"function" <Name:Identifier> ";" <Body:Block> ";"

RELATION SUBDEF
id declares-a-function-identifier . -
id declares-a-routine-identifier,
id is - the - Name - of fd, fd is-a-FunctionDeclaration

(*
The ResultTypeIdentifier of a FunctionDef
must denote an ordinal-type, the real-type, or a pointer-type.

* >
RELATION SUBDEF
id denotes - a-inappropriate-type . -
id is the ResultTypeIdentifier-of fd, fd is - a - FunctionDef,
t isfhe-type-denoted-by id,
NOT (t is-a-ordinal-type OR t is-the-real - type OR t is - a~ointer - type)

(*
The Block associated with a function-identifier must contain
at least one Assignmentstatement
such that the VariableAccess of the Assignmentstatement
is an applied occurrence of the function-identifier.

* >
RELATION DEF
VIOLATION
b is~a~function~block~with~no~assignment~to~the~function~identifier . -

b is the~Block~associated_with fid,
fid declares-a - function - identifier,
NOT
(
b contains asmt,
asmt is a Assignmentstatement,
id is - the-~ariable~ccess-of asmt ,

id is a Identifier,
id is-a-applied - - - occurrence-of f id

)

(*/S 6.6.2: Function-Declarations. *)

ALTERNATE OPEN RoutineBody IS Directive I Block

(*
A ProcedureDeclaration d 2 is the resolution of ProcedureDeclaration d-1
if d 2 and d-1 are in the same RoutineDeclarationList,
their Names have the same spelling,
d 1's Body is the Directive FORWARD,
aEd d 2's Body is a Block.
Ditto <mutat is mutandis) for FunctionDeclarations .
* >
RELATION DEF
d - 2 is - the - resolution - of d-1: FUNCTIONAL ON (d-2), Id-1) . -
rdl is a RoutineDeclarationList,
d 1 isIa-~outine~eclaration-in rdl,
d-2 is a-~outine~eclaration in rdl,
(d-1 TsIa-~rocedure~eclara~ion,
d - 2 is - a - ProcedureDeclaration

OR
d 1 is a FunctionDef,
d-2 is-a-~unction~es) ,

n 1-is the-~ame of d 1,
n-2 is-the-~ameIof dI2,
$S is-~he-~pelling-of n 1,
SS is-the-spelling of n-2, -
b 1 is-the Body ofd-1,
b-1 is a ~irective, "forward" is-the-spelling-of b - 1,
b-2 isIthe Body-of d-2,
b-2 - i s-a-~iock

RELATION DEF
d - 2 is-a-resolution . -
d - 2 is - the - resolution - of d-1

(*
Every RoutineDeclaration whose Body is the Directive FORWARD
must have exactly one resolution.

* >
RELATION DEF
VIOLATION rd is - a~unresolved~forward~declaration . -
rd is a RoutineDeclaration,
body is-the-~od~ of rd,
body i s-a - - ~ i r ec tTve ,

"forward" is-the-spelling-of body,
NOT (r is - the - resolution-of rd)

(*
The Name of a RoutineDeclaration
in the RoutineDeclarationList
of a Block
is a declaration-point
over the region that is the Block,
provided that the RoutineDeclaration is not a resolution.

* >
RELATION DECL id declares - a - routine-identifier .
RELATION SUBDEF
id is a-declarationgoint,
id declares - a - routine-identifier . -
id is the Name-of rd,
rd i s ~&tine~eclaration,
NOT (rd-is - a-resolution)

RELATION SUBDEF
id is - effective - over b . -
id is the Name of rd,
rd i s ~&tini~eclaration in rdl,
rdl is :he ~outine~eclarat~on~ist-of b,
b i s-a~~lo~k,
NOT (rd is-a-resolution)

RELATION DEF
b is - the - Block - associated - with id: FUNCTIONAL ON (b), (id) . -
id is the Name-of rd,
rd is-a ~&tine~eclaration,
IF (res-is the-resolution - of rd) THEN
b is - the-~od~ - - of res

ELSE
b is - the - Body-of rd

END,
b is - a - Block

(*S 6.6.3: Parameters. *)

(*S 6.6.3.1: General. *)

LIST NONEMPTY FormalParameterList OF FormalPararneterSection SEPARATED - BY ";"

ALTERNATE CLOSED FormalParameterSection IS
ValueParameterSection I VariableParameterSection I

ProceduralParameterSection I FunctionalParameterSection

(*
A FormalParameterList comprises a sequence of formal parameters.
A FormalParameterSection declares one or more formal parameters.
* >
RELATION DEF
fp is-a-formalgarameter - in fpl . -
fp is-a-formalgarameter from fps,
fps i s-a-~ormal~arameterSection-in f pl

RELATION DEF
fp is-the #i th-f ormalgarameter - in fpl : FUNCTIONAL ON (fp) , (#it fpl) . -
fp is a formalgarameter in fpl,
IF (f i-; is-the-formalq;rameterqreceding f p) THEN
fp-0 is-the #i-0 th - formalgarameter - in fpl,
#i IS #i-0 PLUS 1

ELSE
#i EQUALS 1

END

RELATION DEF
#n i s-the-number-of -f ormal~arameter s - in f pl : FUNCTIONAL ON (f pl) . -
fpl is a FormalParameterList,
fp is-Fhe #n th-formalgarameter in fpl,
NOT (fp is - the - formalgarameter~receding fp - 2)

RELATION DEF
fp - 1 is - the - formalgarmetergreceding fp-2: FUNCTIONAL ON . -
fps is a-FormalParameterSection,
fp 1 is the #k 1 th formalgarameter from fps,
fp-2 is-the #k-2 th-f ormalgarameter-f - rom fps,
#kIl 1s-#k-2 MINUS 1
OR
fpl is a FormalParameterList,
f ps-1 is-the #s-1 th-Formalparametersection in fpl,
f ps-2 islthe #s-2 th-~ormal~arameter~ection-in - fpl ,
#s-1 IS #s-2 MINUS 1,
#n 1 is-the number-of-formalgarameters from fps - 1,
fp-1 is the-#ndl th formalgarameter from fps 1,
fp-2 - is-the - 1 th-F~rmal~arameter - From fps - 5

RELATION DEF
fp is - a - formal_parameter - from fps: FUNCTIONAL ON (fp) . -
fp is-a - Identifier - in idl,

id1 is the IdentifierList-of fps,
(fps is - a-?alue~arameter~ection OR fps is - a - variableParameterSection)

OR
fp is the-Name-of fps,
(fps is-a-~rocedural~arameter~ection OR
fps is~a~FunctionalParameterSection)

RELATION DEF
fp is - the #k th - formalgarameter - from fps: FUNCTIONAL ON (fp) , (#k,fpsj . -
fp is the #k th Identifier in idl,
id1 is - the - ~dentifier~ist-Gf fps,
(fps is-a-~alue~arameter~ection OR f ps is - a - VariableParameterSection)

OR
fp is the-Name of fps,
(f ps is-a-~rocedural~arameter~ection OR
fps is-a-FunctionalParameterSection),
#k EQUALS 1

RELATION DEF
#n is-the-number-of - f ormalgarameter s - from f ps : FUNCTIONAL ON (f ps) . -
#n is-the-length-of idl,
id1 is the-Identifierlist-of fps,
(f ps is-a-~alue~arameter~ection OR f ps is-a - Variableparametersection)

OR
#n EQUALS 1,
(fps is-a ProceduralParameterSection OR
fps is - a-~unctional~arameter~ection) -

(*
A formal parameter from a FormalParameterSection
in a FormalParameterList
is a declaration-point
effective over the region that is the FormalParameterList,
and
effective over the region that is the Block (if any)
associated with the FormalParameterList.

* >
RELATION SUBDEF
id is - a - declarationgoint . -
id is a-formalgarameter-from fps,
f ps is - a - FormalParameterSection

RELATION SUBDEF
id is - effective - over fpl . -
id is a-formalgarameter-from fps,
f ps is a-Formalparametersection - in f pl,
fpl is-a - - FormalParameterList

RELATION SUBDEF
dp is-effective - over b . -
dp is effective over fpl,
fpl is the-~or6lparameter~ist-of x,
id is the Name of x,
b is - theBlockIassociated - with id

LIST NONEMPTY ActualParameterList OF Actualparameter SEPARATED-BY - ","

ALTERNATE OPEN ActualParameter IS Expression I Wri teparameter
RELATION DEF
ap is-a-Actualparameter . -
ap is-a-Actualparameter-in apl

(*
A Writeparameter may only occur in the ActualParameterList
of a Procedurestatement whose Callee denotes WRITE or WRITELN.

* >
RELATION SUBDEF
ap is - not - allowed~in~this~context . -
ap is-a-Writeparameter,
ap is-a-Actualparameter in apl,
apl is-the - ~ctual~arameter~ist - of call,
NOT
(call is-a-ProcedureStatement,
r is the routine called by call,
(r is-the required-routine named "writew OR
r is - the-required-routineInamed - "writeln")

)

(*
ALTERNATE OPEN RoutineHeader IS
ProcedureDeclaration) FunctionDef 1
ProceduralParameterSection I FunctionalParameterSection

* >
RELATION DEF
r is - the - routine - called - by call . -
(
call is-a-ProcedureStatement, id is - the - Callee-of call

OR
call is - a - FunctionCall, id is-the - Callee - of call

OR
call is - agarameterless~function~call, id is call

),

d is-the defining occurrence - of id,
d is the-~ame of r,
(r is a ~rocedure~eclaration OR
r i s-aI~unc t ion~ef OR
r isIa ProceduralParameterSection OR
r is-a~~unctional~arameter~ection)

(*
The number of actual Parameters
must be equal to the number of formal Parameters.
(This is complicated by empty ParameterLists and
parameterless-function-calls.)

* >
RELATION DECL VIOLATION call has - the-wrong - number - of - actualgarameters .
RELATION SUBDEF
call has-the-wrong - number-of - actualgarameters . -
(
call is~agarameterless~function~call, #aps EQUALS 0

OR
(call is-a-ProcedureStatement OR call is - a-FunctionCall),
apl is - the-ActualParameterList - of call,
(
apl is-empty, #aps EQUALS 0

OR
apl is-a-ActualParameterList, #aps is-the-length - of apl

)
) I

r is-the-routine-called-by call,
fpl is-the-FornalParameterList-of i,

NOT
(
fpl has~a~variable~number~of~forma1garameters

OR
fpl is-empty, #aps EQUALS 0

OR
fpl is a-FormalParameterList,
#aps is-the-number - of - formalgarameter s - in f pl

)

(*
Only required routines can have variable-length parameter lists,
and only some of them do.
The ones that do are declared in the predefined-block
without a FormalParameterList.

* >
RELATION DEF
fpl has - a - variable - number-of-formalgarameters . -
fpl is the FormalParameterList - of rd, rd is a required RoutineDeclaration, - - -
fpl is-empty -

RELATION DEF
rd is - a-required - RoutineDeclaration . -
rd is a-RoutineDeclaration-in rdl,
rdl is the-RoutineDeclarationList-of b,
b is - the-required - lock

(*
The correspondence shall be established by the positions of the
Parameters .

* >
RELATION DEF
fp is - the-formal-for ap: FUNCTIONAL ON lap) . -
r is the-routine-called-by call,
fpl is the-FormalPararneterList of r,
apl is-the ~ctual~arameter~ist-of call,
ap isthe #i th-~ctual~arameter in apl,
fp is - the #i th-f~rmal~arameter - in fpl

(*/S 6.6.3.1: General. *)

(*S 6.6.3.2: Value Parameters. *)

CONSTRUCT ValueParameterSection IS
<:IdentifierList> ":" <ParameterTypeIdentifier:TypeIdentifier>

(*
The ParameterTypeIdentifier of a ValueParameterSection
must denote a type
that is permitted as the component-type of a file-type.

* >
RELATION SUBDEF
id denotes-a-inappropriate-type . -
id is the ParameterTypeIdentifier-of vps, vps is-a-ValueParameterSection,
t is-The-ke denoted by id,
t is - a - invali~~file~c~mponent~type

(*
An Identifier in the IdentifierList of a ValueParameterSection
is a formal parameter from the ValueParameterSection
and is a variable-identifier
whose type is the type denoted by
the ParameterTypeIdentifier of the ValueParameterSection.

* >
RELATION SUBDEF
id declares-a-variable-identifier . -

id is-a-formalgarameter from vps,
vps is - a-~alue~arameter~ec tion

RELATION SUBDEF
t is-the-type-of id . -
vps is a-ValueParameterSection,
id is <formalgarameter from vps,
tid ii-the-~arameter~~~eydentif ier-of vps,
t is-the-type - denoted - by tid

(*
An Actualparameter that corresponds to
a formal parameter from a ValueParameterSection
shall be designated an actual value parameter.

* 1
RELATION DEF
ap is-a-actual-valuegarameter . -
ap is - a-Actualparameter,
fp is the-formal for ap,
fp is-a formalg&rneter-f rom vps,
vps iJ - <~alue~arameter~ection

(*
The type of an actual value parameter
must be assignable to
the type of the corresponding formal parameter.

* !
RELATION SUBDEF
ap has - a - inappropriate-type . -
ap is a actual-value_parameter,
tap ii-the-type of ap,
fp is-the-f ormai-for ap,
tfp is-the-type of fp,
NOT (tap is-assignable-to tfp)

(*/S 6.6.3.2: Value Parameters. *)

(*S 6.6.3.3: Variable Parameters. *)

CONSTRUCT VariableParameterSection IS
"var" <:IdentifierList> ":" <ParameterTypeIdentifier:TypeIdentifier>

(*
An Identifier in the IdentifierList of a VariableParameterSection
is a formal parameter from the VariableParameterSection
and declares a variable-identifier
whose type is the type denoted by

the ParameterTypeIdentifier of the Valueparametersection.
* >
RELATION SUBDEF
id declares-a-variable-identifier . -
id is a formalgarameter from fps,
fps is - a - ~ariable~arameter~ection

RELATION SUBDEF
t is-the-type-of id . -
vps is-a-VariableParameterSection,
id is a formalgarameter from vps,
tid is the ~arameter~~~eydentifier - of vps,
t is - tge - type-denoted-by tid

(*
An Actualparameter that corresponds to
a formal parameter from a VariableParameterSection
shall be designated an actual variable parameter.

* >
RELATION DEF
ap is - a - actual - variablegarameter . -
ap is-a-ActualParameter,
fp is the formal for ap,
f p isla-f &nalg&meter-from vps,
vps is-a-Variableparametersection

(*
An actual variable parameter:

must denote a variable.
must possess the type of the corresponding formal parameter.
must not denote the TagField of a Variantpart.
must not denote a component of a variable
whose type is designated packed,
unless it is the file-parameter to a required 1/0 routine.

RELATION SUBDEF
ap should - denote - a - variable . -
ap is-a-actual-variablegarameter

RELATION SUBDEF
ap has-a-inappropriate-type . -
ap is-a-actual-variablegarameter,
fp is-the-formal-for ap,
t is the-type-of fp,
NOT (t is - the-type-of ap)

RELATION DEF
VIOLATION ap is~a~invalid~actual~variablegarameter . -
ap is-a-actual-variablegarameter,
(
ap denotes-a-tag-field

OR
ap denotes-a-component of - a-variable-of-type t,
t is designatedgacked;
NOT (ap is-a - f ilegarameter)

1

RELATION DEF
ap is-a-file2arameter . -
ap is-the 1 th Actualparameter-in apl,
apl is-the ~ctual~arameter~ist of call,
r is the routine-called by cali,
(r is - the - required-routine named "rewrite" OR
r is - the - required routine-named "put" OR
r is - the - requiredlroutine-named "reset" OR
r is - the - required - routineInamed "get"

)

RELATION DEF
va denotes-a-tag-field . -
(
va is id, id is-a-Identifier

OR
va is - a - SelectedVariable, id is - the - Fieldspecifier-of va

),
d is the defining occurrence - of id,
d is-theI~ag~ieldlof - vp

RELATION DEF
va denotes - a - component - of -a-variable-of -type t : FUNCTIONAL ON (va) . -
(
va is id, id is - a - Identifier

OR
va is - a - SelectedVariable, id is - the - Fieldspecifier-of va

) I
d is the defining occurrence - of id,
d i slef f ec t ive-over t ,
t is - a-record-type

OR
va is a IndexedVariable,
av is-the Arrayvariable-of va,
t is-The-Ge-of av,

t is-a-array-type

(*/S 6.6.3.3: Variable Parameters. *)

(*S 6.6.3.4: Procedural Parameters. *)

CONSTRUCT ProceduralParameterSection IS
"procedure" <Name: Identifier> [" (" <:FormalParameterList> ") " 1

(*
The Name of a ProceduralParameterSection
is a formal parameter from the ProceduralParameterSection
and declares a procedure-identifier
[with associated FormalParameterList?]

* >
RELATION SUBDEF
id declares-agrocedure - identifier . -
id is the Name of fps,
fps i<aProcedural~arameter~ection

(*
An Actualparameter that corresponds to
a formal parameter from a ProceduralParameterSection
shall be designated an actual procedural parameter.

* >
RELATION DEF
ap is~a~actualgroceduralgarameter . -
ap is-a-Actualparameter,
fp is the formal for ap,
fp is-a f&malg&meter-f rom fps,
fps i<a - ProceduralParameterSection

(*
An actual procedural parameter
must be a procedure-identifier
whose defining occurrence is contained by the Block of the Program.

* >
RELATION SUBDEF
ap should - be - agrocedure-identifier-but - isnt . -
ap is~a~actualgrocedura1garameter,
NOT (ap is - ajrocedure-identifier)

RELATION SUBDEF
ap is - not~allowed~in~this~context . -
ap is~a~actualjrocedura1garameter,
dap is - the - defining-occurrence - of ap,

dap is-effective over r,
r is - the - required_~lock

(*
The procedure denoted by an actual procedural parameter
and the formal-parameter
must have congruous FormalParameterLists.

* 1
RELATION SUBDEF
ap has~a~incongruous~FormalParameterList . -
ap is~a~actualgroceduralgarameter,
dp is-the-defining occurrence - of ap,
fp is the formal for ap,
dp is-the-~ame of arh,
fp is-the-~ame-of frh,
a1 isItheI~ormal~arameter~ist of arh,
f 1 is the ~ormal~arameter~ist-of frh,
NOT (fl is - congruous - with a1)-

(*/S 6.6.3.4: Procedural Parameters. *)

(*S 6.6.3.5: Functional Parameters. *)

CONSTRUCT FunctionalParameterSection IS
"function" <Name:Identifier> [" (" <:FormalParameterList> ") "] ":"
<ResultTypeIdentifier:Identifier>

(*
The Name of a FunctionalParameterSection
is a formal parameter from the FunctionalParameterSection
and declares a function-identifier.

* >
RELATION SUBDEF
id declares - a - function identifier - . -
id is the Name-of fps,
fps i Ja - Functional~arameter~ection

(*
An Actualparameter that corresponds to
a formal parameter from a ProceduralParameterSection
shall be designated an actual functional parameter.

* >
RELATIONDEF
ap is-a-actual - functionalgarameter . -
ap is a-Actualparameter,
fp is-the formal for ap,
fp is-a - - f&malgarameter - from fps,

fps is - a-FunctionalParameterSection

(*
An actual functional parameter
must be a function-identifier
whose defining occurrence is contained by the Block of the Program.

* >
RELATION SUBDEF
ap should-be-a - function - identifier-but-isnt . -
ap is~a~actual~functional~arameter,
NOT (ap is - a - function - identifier)

RELATION SUBDEF
ap is - not - allowed-in - this-context . -
ap is~a~actual~functional~arameter,
dap is the defining occurrence - of ap,
dap i sIef f ec t ive-over r ,
r is - the - required - Block

(*
The function denoted by an actual functional parameter
and the formal-parameter
must have the same result-type
and congruous FormalParameterLists.
!: The relation's name should be generalized

to indicate the possibility of mismatched result-types.
* >
RELATION SUBDEF
ap has - a - incongruous~FormalParameterList . -
ap is~a~actual~functional_parameter,
dp is-the-defining-occurrence - of ap,
fp is-the formal-for ap,
dp is the-~ame of arh,
fp is-the-~ame-of frh,
art i<th<type denoted-by artd, ar td is-the ResultTypeIdentif ier of arh,
f rt is the typedenoted by f rtd, f rtd is - the-~esultType1dentifierf - - f rh,
a1 isthe Formai~arametir~ist of arh,
f 1 is the-~ormal~arameter~ist-of f rh,
NOT (art is frt, •’1 is - congruous - with al)

(*/S 6.6.3.5: Functional Parameters. *)

(*S 6.6.3.6: Parameter List Congruity. *)

RELATION DECL VIOLATION ap has-a-incongruous FormalParameterList . -

RELATION DEF

fpl - 1 is~congruous~with fpl-2 . -
fpl 1 is-empty,
fp112 is-empty

OR
fpl 1 is a FormalParameterList,
fpl-2 is-a-Formal~arameter~ist,
#lei is-thelength of fpl 1,
#len is-the-lengthaf fpl-2, -
NOT
(fps 1 is the #i th-~ormalparametersection-in fpl-1,
f ps-2 is-the #i th FormalParameterSection-in fp1-2,
~ o ~ ~ (f ~ s - 1 - matches-fps-2)

1

RELATION DEF
fps-1 matches fps-2 . -

(
fps-1 is-a-ValueParameterSection,
fps - 2 is-a-Valueparametersection

OR
fps-1 is-a-VariableParameterSection,
fps - 2 is - a-Variableparametersection

) 1

id1 1 is - the - IdentifierList of fps-1,
idl-2 is-the-1dentifier~ist3 fps-2,
#lei is-the-length-of idl-1,
#len is-the-length-of id1 2,
ptd-1 is-the-parameterTyps1dentifier of fps 1:
ptd-2 is-the-~arameter~~~e~dentif ier-of - f ps12,
pt is-the-type-denoted-by ptd-1,
pt is - the - type - denoted-by ptd-2

OR
fps 1 is-a-ProceduralParameterSection,
fps-2 is-a-ProceduralParameterSection,
fpl-1 is the-FormalParameterList-of fps-1,
fpl-2 isIthe-Formal~arameterlist-of f ps-2,
f pl-l - is - congruous-wi th f p1-2

OR
fps 1 is a FunctionalParameterSection,
fps-2 is~a~~unctional~arameter~ection,
f pl-l is-the-FormalParameterList-of fps-1,
fpl-2 is - the - FormalParameterList-of fps-2,
f pl-l is congruous-with f p1-2,
id 1 i s - the-~esultTy~e1dent i f ier-of f ps-1,
id12 is-the-ResultTypeIdentif ier-of f ps - 2,
rt is-the-type denoted-by id-1,
rt is - the - typeaenoted-by id-2

(*/S 6.6.3.6: Parameter List Congruity. *)

(*/S 6.6.3: Parameters. *)

(*S 6.6.4: Required Procedures and Functions. *)
(*/S 6.6.4: Required Procedures and Functions. *)

(*S 6.6.5: Required Procedures. *)

RELATION SUBDEF
call has-the-wrong-number - of-actual_parameters . -
call is a-ProcedureStatement,
apl is the-~ctual~arameter~ist of call,
r is - the-routine-called - by cali,
(

(r is-the-required-routine-named "read" OR
r is - the - required - routine - named "write"),

(
apl is-empty

OR
1 is-the-length-of apl,
ap is-the 1 th-ActualParameter-in apl,
tap is-the type-of ap,
tap is - a - file-type

)
OR
r is the-required-routine-named "page",
#len-i s-the-length-of apl , #len IS-GREATER-THAN 1

OR
(r is-the-required-routine-named "new" OR

r is the required - routine - nam& "dispose") ,
apl islempty

)

(*
Several required procedures have a particular type-constraint
on the first (sometimes only) actual parameter.

* >
RELATION SUBDEF
ap has - a-inappropriate-type . -
call is a ProcedureStatement,
apl is the ActualParameterList-of call,
ap is the 7 th Actualparameter-in apl,
tap i<the-typeof ap,
r is - the - routine - called-by call,
(

(
r is - the - required-routine-named "rewrite"

OR
r is - the - required-routine-named "put"

OR

r is - the - required-routine-named "reset"
OR
r is - the - required-routine-named "get"

> 1

NOT (tap is-a-file-type)
OR
r is the-required routine named "page",
NOT (tap is-the-textf ile - type)

OR
(
r is - the - required-routine-named "new"

OR
r is - the - required-routine - named "dispose"

> 1

NOT (tap is-agointer-type)
)

(*
NEW: the first parameter must be a variable.
* >
RELATION SUBDEF
ap should - denote-a-variable . -
call is-a-ProcedureStatement,
r is - the - routine-called by call,
r is the required-routine-named "new",
apl 7s-the-~ctual~arameter~ist of call,
ap is - the 1 th - ~ctual~arameter-in - apl

(*
NEW and DISPOSE: are complicated by optional tag constants.
! : Over lap
* 1
RELATION DEF

vp is - the-Variantpar t-rai sed-by ap : FUNCTIONAL ON (ap) . -
call is-a-ProcedureStatement,
r is the routine called by call,
(r ii - the - required-routine-named "new" OR
r is the required routine named "dispose"),
apl is the ~ctual~&meterzist-of call,
ap is-the #i th Actualparameter - in apl,
IF (#i EQUALS 1) THEN
tap is - the - type-of ap,
tap is-agointer-type,
tid is the ~omai~we~dentifier - of tap,
dt isfhe-he denoted-by tid,
dt is a record-type,
•’1 is-the - - ~ield~ist-of dt

ELSE
#i-0 IS #i MINUS 1,

ap-0 is-the #i-0 th-Actualparameter-in apl,
vp-0 is-the Variantpart-raised-by ap-0,
val is-the-ialue denoted by ap,
f 1 is-the - ~ield~ist - associated-with val in vp-0

END,
(
fl is - a - Variantpart, vp is fl

OR
fl is - a-FixedPartAndVariantPart, vp is-the-Variantpart - of fl

)

RELATION SUBDEF
ap is - not-allowed-in - this-context . -
call is a ProcedureStatement,
r is the routine called by call,
(r ii - the - required-routine named "new" OR
r is the required-routine-named "dispose"),
apl i<th<~ctual~arameterList of call,
ap is-the #i th-~ctual~arameter - in apl,
#i IS-GREATER THAN 1,
#i-o IS #i MINUS 1,
ap-0 is-the #i-0 th-Actualparameter - in apl,
NOT
(vp 0 is the VariantPart raised by ap-0,
vai i sfhe-ialue-denot &by apT
fl is - the - FieldList - associated with val in vp-0 -

)

("
READ, READLN: require variable parameters.
* >
RELATION SUBDEF
ap should - denote-a-variable . -
call is-a-ProcedureStaternent,
r is the routine called by call,
(r iS - the - required-routine-named "read" OR
r is the required-routine-named "readln"),
apl is the ActualParameterList-of call,
ap i s-i-~ctual~aramet er-in apl

(*
WRITELN, READLN: apply only to textfiles.
(This can only be violated by an explicit file-variable.)
* >
RELATION SUBDEF
ap - 1 has - a - inappropriate-type . -
call is a ProcedureStatement,
r is - the - routine - called-by call,

(r is-the required routine-named "readln" OR
r is the-required-routine named "writeln") ,
apl is-the ~ctual~iirameter<ist of call,
ap-1 is-the 1 th ~ctualparameter - in apl,
tap 1 is-the-typeof ap-1,
tap-1 is a file-type,
NOT-(tap-1-is - - the-textf ile-type)

(*
READ, READLN, WRITE, WRITELN:
all have an optional file-variable as the first parameter.
If omitted, the file-variable is taken to be INPUT or OUTPUT,
as appropriate.
The other parameters have other type-constraints,
significantly depending on whether or not
the file-variable's type is TEXT.

*)
RELATION SUBDEF
ap has-a-inappropriate-type . -
call is a ProcedureStatement,
r is-the-Foutine-called by call,
(r is the required-routine-named "read" OR
r is-the-required-routine-named - - "write" OR
r is the required-routine-named "readln" OR
r is-the-required routine-named "writeln") ,
apl is-the-~ctual~arameter~ist of call,
ap 1 is-the 1 th ~ctualparametir - in apl,
tap - 1 is-the type of ap-1,
IF (tap 1 isla-f iie-type) THEN
ft is-tap - 1, NOT (ap is ap-1)

ELSE
ft is-the - textfile-type

END,
ap is-a-Actualparameter - in apl,
tap is-the type-of ap,
IF (ft is - the - textfile-type) THEN

(
(r is - the - required routine-named "read" OR
r is - the - required1routine-named "readln"),
NOT
(tap is-a-char-type OR
tap is - a - integer - type OR
tap is-the-real-type)

OR
(r is - the - required-routine-named "write" OR
r is - the - required-routine-named "writeln"),
NOT
(tap is-a-integer-type OR
tap is-the-real-type OR
tap is a-char-type OR
tap i s - - boolean-type OR

tap is-a-string-type)
)

ELSE
ct is-the-file-component - type - of ft,
(
(r is the-required-routine named "read" OR
r is-the - - required_routineInamed "readln"),
NOT (ct is-assignable-to tap)

OR
(r is - the - required-routine-named "write" OR
r is the required routine named "writeln"),
NOT (tap 7s-assignable - to ct)

)
END

(*
PACK and UNPACK have a number of constraints.
* >
RELATION SUBDEF
ap has - a - inappropriate-type . -
call is a ProcedureStatement,
apl is the-Actual~arameter~ist of call,
r is - tEe - routine-called-by cali,
(
r is the required routine named "pack",
a isIthe-1 th-Actualparameter in apl,
i is the 2 th-Actualparameter-in apl,
z is-the - 3 th - Actualparameter-in - apl

OR
r is - the - required-routine-named "unpack",
z is the 1 th ActualParameter in apl,
a is-the 2 th~ctualparameter-in apl,
i is-the - 3 th~ctual~arameter-in - - apl

) 1

ta is-the type-of a,
ti is-the-type of i,
tz is - theqtypeIof - z,
(
NOT (ta is - a - array-type, NOT (ta is-designatedgacked)), ap is a

OR
NOT (ti is - a - ordinal-type), ap is i

OR
NOT (tz is - a-array-type, tz is-designatedgacked), ap is z

OR
ta is-a-array-type,
s-1 is-the-index-type-of ta,
ti is a ordinal-type,
NOT (ti-is - assignable - to s-l),
ap is i

OR
ta is-a-array-type, tac is-the-array - component - type-of ta,

tz is-a-array-type, tzc is-the-array-component - type of tz, -
NOT (tac is tzc),
(ap is a OR ap is z)

)

(*/S 6.6.5: Required Procedures. *)

(*S 6.6.6: Required Functions. *)

(*
Functions SIN, COS, EXP, LN, SQRT, ARCTAN, TRUNC, ROUND, CHR, ODD
are fully handled by the required-Block.
Functions ABS, SQR, ORD, SUCC, PRED, EOF, EOLN
have quirks that can't be handled that way.
! : Overlap
* >
RELATION SUBDEF
call has-the-wrong - number - of - actualgarameters . -
r is-the-routine-called - by call,
(
r is the required routine named - - - -

OR
r is - the - required routine named - -

) I

NOT
(

"eof "

"eoln"

call is-agarameterless - function - call
OR
call is a FunctionCall,
apl is the ActualParameterList - of call,
1 is - the - length - of apl

)

RELATION SUBDEF
ap has - a - inappropriate-type . -
call is a FunctionCall,
apl is the ActualParameterList of call,
ap is-:he 1 th-~ctual~arameter-in - apl,
tap is-the-type of ap,
r is - the - routinecalled - by call,
(
r is the required-routine-named "abs",
NOT Ttap-is-a-integer-type OR tap is-the-real-type)

OR
r is the required routine-named "sqr",
NOT ?tap-is-a-integer-type OR tap is-the-real-type)

OR
r is - the - required-routine-named "ord",

NOT (tap is-a - ordinal-type)
OR
r is the required routine named "succ",
NOT (tap-i s-a - ordinal-type)

OR
r is the required routine named "pred",
NOT (tap-i s-a-ordinal-tyS)

OR
r is the required routine-named "eof",
NOT (tap-is-a-filetype)

OR
r is the required-routine-named "eoln",
NOT (tap-is-a-file-type)

)

RELATION SUBDEF
tap is - the - type-of call . -
call is a FunctionCall,
r is - the - routine - called-by call,
(
r is - the - required-routine-named "abs"

OR
r is - the - required-routine-named "sqr"

OR
r is - the - required - routine-named "succ"

OR
r is - the - required - routine-named "pred"

) I
apl is-the ActualParameterList of call,
ap is the 7 th-~ctual~arameter-in - apl,
tap ig-the - type - of ap

(*/S 6.6.6: Required Functions. *)

(*/S 6.6: PROCEDURE AND FUNCTION DECCARATIONS. *)

(*S 6.7: EXPRESSIONS. *)

(*S 6.7.1: General. *)

(*
An Expression shall yield a value.
* >
RELATION DEF
x is - a - genuine-expression . -
x is - in - - a Expression-context,
NOT
(x is a-actual-variablegarameter OR
x i s-a-actualgroceduralgarameter - OR

x is~a~actual~functional~arameter OR
x is - the - FracDigits-of wp, wp is-a-Writeparameter, x is-empty

)

RELATION DECL VIOLATION x has - children-with - conflicting - types .
ALTERNATE OPEN Expression IS RelationalExpres sion I SimpleExpres sion

CONSTRUCT RelationalExpression IS
<LeftOperand:SimpleExpression> <Op:RelOp>
<RightOperand:SimpleExpression>

ALTERNATE OPEN SimpleExpres sion IS AddingExpres sion I SignedTerm I Term

CONSTRUCT AddingExpression IS
<LeftOperand:SimpleExpression> <Op:AddOp> <RightOperand:Term>

CONSTRUCT SignedTerm IS <:Sign> <:Term>

ALTERNATE OPEN Term IS Mu1 tiplyingExpres sion I Factor

CONSTRUCT MultiplyingExpression IS
<LeftOperand:Term> <Op:MultOp> <RightOperand:Factor>

ALTERNATE OPEN Factor IS
VariableAccess I Functioncall I Setconstructor I
BrackettedExpression 1 NegationExpression I
UnsignedIntegerLiteral I UnsignedRealLiteral I
Characterstring I Nil

CONSTRUCT BrackettedExpression IS " (" <:Expression> ") "

(*
The type of a BrackettedExpression is that of its Expression.
* >
RELATION SUBDEF
t is-the-type-of brack . -
brack is-a-BrackettedExpression,
expr is the Expression - of brack,
t is-th<t@e - of expr

CONSTRUCT NegationExpression IS "not" <:Factor>

CONSTRUCT Nil IS "nil"
(*
The type of Nil is the null-type.
(The Standard (Section 6 . 4 . 4) says that
"Nil does not have a single type,
but assumes a suitable pointer-type
to satisfy the assignment-compatibility rules,
or the compatibility rules for operators,
if possible. "

However, this definition is not very useful for our purposes.)
*)
RELATION SUBDEF
t is-the-type-of expr . -
expr is-a-Nil,
t is-the-null-type

RELATION DEF
MAKER t is-the-null-type: FUNCTIONAL ON (1 . -
t := make - Identifier("TheNullTypetl)

(*
Set Constructors:
* >
CONSTRUCT SetConstructor IS " [" <:MemberDesignatorList> "1"

LIST MemberDesignatorList OF MemberDesignator SEPARATED-BY - ","

ALTERNATE CLOSED MemberDesignator IS SingletonDesignator I RangeDesignator

CONSTRUCT SingletonDesignator IS <:Expression>

CONSTRUCT RangeDesignator IS
<LowerLimit:Expression> ".." <UpperLimit:Expression>

(*
The type of a SetConstructor with an empty MemberDesignatorList is
the empty-set-type.
The type of a SetConstructor with a non-empty MemberDesignatorList is
the type of the first MemberDesignator in the MemberDesignatorList.

* >
RELATION SUBDEF
t is - the-type-of sc . -
sc is-a-SetConstructor,
mdl is the-MemberDesignatorList-of sc,
IF (0 is the-length-of mdl) THEN
t is - the-empty-set-type

ELSE
md is the 1 th-MemberDesignator-in mdl,
t isfhe-type-of md

END

RELATION DEF
MAKER t is-the-empty-set-type: FUNCTIONAL ON (1 . -
t := make - Identifier ("TheEmptySetType")

(*
The type of a SingletonDesignator is
the appropriate canonical-set-type of
the range-type of
the type of
the Expression of the SingletonDesignator.

* >
RELATION SUBDEF
t is-the-type-of sd . -
sd is-a-SingletonDesignator,
e is-the-Expression-of sd,
te is - the - type-of el
rt is the range-type-of te,
IF (sd isIin-a-context-requiringgacked) THEN
t is - thegacked~canonical~set~type~associated_ith rt

ELSE
t is~the~unpacked~canonical~set~type~associatedwith rt

END

(*
The types of the LowerLimit and UpperLimit of a RangeDesignator
must have the same range-type,

and the type of the RangeDesignator is
the appropriate canonical-set-type of this range-type.

* >
RELATION SUBDEF
rd has - children - with-conflicting-types . -
rd is-a-RangeDesignator,
It is - the - type of 11, 11 is the LowerLimit-of rd,
ut is-the-typelof ul, ul isItheI~~~er~imit-of rd,
rt is - the - range-type-of It,
NOT (rt is-the-range-type-of ut)

RELATION SUBDEF
t is - the - type-of rd . -
rd is-a-RangeDesignator,
It is - the - type-of 11, 11 is - the - LowerLimit - of rd,
rt is the range type-of It,
IF (rd is-in a - c o n t e x t - r e q ~ i r i n g ~ c k e d) THEN
t is - th~~cked~canonical~set~type~associated_with r t

ELSE
t is~the~unpacked~canonical~set~type - associated-with rt

END

(*
The type of each MemberDesignator in a MemberDesignatorList must be
the same.

* >

RELATION SUBDEF
mdl has~children~with~conflicting~types . -
mdl is-a-MemberDesignatorList,
md 1 is the 1 th MemberDesignator - in mdl,
t-7 isthe-typepf md 1,
md i s-a-Mernber~esignator in mdl ,
NOT (t-1 is-the-type-of &)

The "appropriate" canonical set-type is determined by context.
*)
RELATION DEF
x is-in-a-context-requiring~acked . -
asmt is-a-AssignmentStatement,
x is the Expression of asmt,
va is the ~ariableA&ess-of asmt,
tv isItheItype-of va,
tv is a set-type,
tv is-designated2acked -

OR
x is-a-actual-valuegarameter,
fp is the-formal for x,
tfp is - the - type-of fp,
tfp is-a-set type,
tfp is - designatedgacked

OR
expr is-a-dyadic-expression,
op is-the-0p-of expr, NOT (op is-a-InOp),
(
y is - the-Leftoperand - of expr, x is - the - Rightoperand-of expr

OR
x is - the - Leftoperand - of expr, y is-the Rightoperand of expr - -

) I
ty is-the-type of y,
ty is-a-set-type,
ty is - designat-acked

OR
expr is-a-dyadic-expression,
expr is-in-a-context-requiringgacked,
(x is-the-Leftoperand-of expr OR x is-the - Rightoperand of expr) -

OR
sc is-a-SetConstructor,
sc is-in a context-requiringgacked,
mdl is the-~ember~esignator~ist - of sc,
x is - a-~ember~esignator-in - m d l

(*/S 6.7.1: General. *)

(*S 6.7.2: Operators. *)

ALTERNATE CLOSED RelOp IS
~ q ~ p I UneqOp I LtOp I GtOp I LeqOp I GeqOP I InOP

CONSTRUCT EqOp IS "="
CONSTRUCT UneqOp IS "ow
CONSTRUCT LtOp IS "4'
CONSTRUCT GtOp IS ">"
CONSTRUCT LeqOp IS "<="
CONSTRUCT GeqOp IS ">="
CONSTRUCT InOp IS "in"

ALTERNATE OPEN AddOp IS PlusOp

CONSTRUCT PlusOp IS "+"
CONSTRUCT MinusOp IS "-"
CONSTRUCT OrOp IS "or"

I MinusOp

ALTERNATE CLOSED MultOp IS StarOp

CONSTRUCT StarOp IS "*"
CONSTRUCT SlashOp IS "/"
CONSTRUCT DivOp IS "div"
CONSTRUCT ModOp IS "mod"
CONSTRUCT AndOp IS "and"

(*
!: could be an auxiliary cf rule:

I SlashOp I DivOp I ModOp

ALTERNATE CLOSED DyadicEpression IS
RelationalExpression I AddingExpression I MultiplyingExpression

" >
RELATION DEF
expr is-a-dyadic-expression . -
expr is - a - RelationalExpression

OR
expr is - a - AddingExpression

OR
expr is - a - MultiplyingExpression

RELATION DEF
t is-a-relating-type . -
t is - a - ordinal - type OR t is-the-real-type OR t is - a-string type -

(*
Dyadic operations:
The types of operands and results for dyadic arithmetic operations

(* + I l '-If ' / I , 'divtf 'mod')
must be as shown in Table 2.
operands and results for dyadic boolean operations

('or', 'and')
must be of boolean type.
The types of operands and results for set operations

(# + I r ' - 1 , '*I)
must be as shown in Table 4.
The types of operands and results for relational operations

'<>I, *<I, I > ' , I>=' '<=Ir 'in')
must be as shown in Table 5.

* >
RELATION SUBDEF
x has - a - inappropriate-type . -
expr is-a-dyadic-expression,
op is-the-0p-of expr,
(X is-the-Leftoperand-of expr OR x is-the-Rightoperand-of expr),
t is-the-type-of x,
(
(op is a PlusOp OR op is-a-~inus0p OR op is-a-StarOp),
NOT (t-is-a-integer-type OR t is-the-real-type OR t is-a-set-type)

OR
op is-a-SlashOp,
NOT (t is-a-integer-type OR t is-the-real-type)

OR
(op is a DivOp OR op is-a-ModOp),
NOT (t-is-a-integer-type)

OR
(op is a OrOp OR op is-a-AndOp) ,
NOT (t-i<a-boolean-type)

OR
(op is-a-Eq0p OR op is-a-UneqOp),
NOT (t is-a-relating-type OR t is-a-set-type OR t is-2,neinter - type)

OR
(op is-a-LeqOp OR op is-a-GeqOp),
NOT (t is-a-relating-type OR t is-a-set-type)

OR
(op is-a-LtOp OR op is-a-GtOp),
NOT (t is - a-relating-type)

)
OR
expr is-a-dyadic-expression,
op is-the-0p-of expr,
op is-a-InOp,
(
x i s-the-Lef toper and-of 'expr ,
t is the type-of x,
NOT (t is - a - ordinal-type)

OR
x is - the - Rightoperand-of expr,
t is the-type-of x,
NOT Tt is-a-set-type)

)

RELATION SUBDEF

expr has-children - with - conflicting-types . -
expr is-a-dyadic-expression,
op is-the-0p-of expr,
tl is-the-type-of 1, 1 is the Leftoperand-of expr,
tr is-the-type-of r, r is-theV~ightoperand-of - - expr ,

(
(op is a-PlusOp OR op is a MinusOp OR
op i s StarOp OR op isIaI~lash0~ OR
op i s ~ a ~ ~ ~ 0 ~ OR op is-a-UneqOp OR
op is-a-LeqOp OR op is-a-GeqOp OR
op is-a-Lt0p OR op is a GtOp),
NOT (t 1 is - comparable-with-tr)

OR
op is-a-InOp,
NOT (tr is-the-empty-set - type),
NOT
(tr is-a-set-type,
bt is-the-base type of tr,
tl is - cornparabye - with bt)

)

RELATION SUBDEF
t is-the-type-of expr . -
expr is-a-dyadic-expression,
op is-the-0p-of expr,

(
(op is a PlusOp OR op is-a-Minusop OR op is-a-StarOp),
tl is-the-type-of 1, 1 is-the-Lef toperand-of expr ,
tr is-the-type-of r, r is - the - Rightoperand - of expr,
(
tl is - a - integer-type, tr is-a-integer-type, t is - the - integer-type

OR
(tl is - the - real - type OR tr is-the-real-type), t is - the - real-type

OR
tl is-a-set-type, tr is-a-set-type,
(
tl is-the-empty-set-type,
tr is-the-empty-set-type,
t is-the-empty-set-type

OR
tl is-the-empty-set-type,
NOT (tr is - the-empty-set-type),
t is tr

OR
NOT (tl is-the-empty-set-type),
tr is-the-empty-set-type,
t is tl

OR
NOT (tl is-the-empty-set-type),
NOT (tr is-the-empty-set-type),

t is-the-canonical-set-type - corresponding-to tl
)

)
OR
op is a SlashOp,
t i sfh<-real-type

OR
(op is a DivOp OR op is-a-ModOp),
t is - the-integer-type -

OR
(op is a-0rOp OR op is-a-AndOp OR op is-a-Relop),
t is-the-boolean-type

)

(*
Monadic operations:
The types of operands and results for monadic arithmetic operations
(I+' , I - I)

must be as shown in Table 3.
The types of operands and results for monadic boolean operations

('not')
must be boolean.

* >
RELATION SUBDEF
operand has-a-inappropriate-type . -
expr is-a-SignedTerm,
operand is-the-Term-of expr,
t is-the-type-of operand,
NOT (t is - a - integer - type OR t is-the-real-type)

OR
expr is-a-NegationExpression,
operand is-the-Factor-of expr,
t is-the-type-of operand,
NOT (t is-a-boolean-type)

RELATION SUBDEF
t is-the-type-of expr . -
expr is a-SignedTerm,
operand-is-the-~erm-of expr ,
top is-the-type-of operand,
(
top is-a-integer-type, t is - the - integer - type

OR
top is-the-real-type, t is - the - real-type

)
OR
expr is-a-NegationExpression,
t is - the - boolean-type

(*
The required constant-identifier MAXINT
shall denote an implementation-defined value of the integer-type.

* >
RELATION DEF
v is-the-integer-value - maxint . -
v is-the-integer - value - for - ordinal 32767

(*/S 6.7.2: Operators. *)

CONSTRUCT FunctionCall IS
iCallee:Identifier> " (" i:ActualParameterList> ") "

(*
The Callee of a FunctionCall
must denote a function.

* >
RELATION SUBDEF
id should - be - - a function - identifier - but-isnt . -
id is the Callee-of fc, fc is a FunctionCall,
NOT (id is-a-function - identifier)

(*
A function-identifier occurring in a FunctionCall context
(excluding an actual-functional-parameter)
is a parameterless-function-call.

* >
RELATION DEF
id is - agarameterless - function-call . -
id is a-function-identifier,
id is-in a Factor-context,
NOT (id isIa-actual - funct ionalgaramet er)

(*
The type of a FunctionCall or parameterless-function-call is
the type denoted by
the ResultTypeIdentifier of
the function called.

* >
RELATION SUBDEF
t is-the-type - of fc . -
(fc is-a-Functioncall OR fc is - agarameterless - function - call),
f is the routine-called-by fc,
rt is - the - ResultTypeIdentif ier-of f,

t is-the-type-denoted-by rt

(*/S 6.7: EXPRESSIONS. *)

(*S 6.8: STATEMENTS. *)

(*S 6.8.1: General. *)

ALTERNATE OPEN Statement IS Labelledstatement I Unlabelledstatement

CONSTRUCT Labelledstatement IS <:Label> ":" <:UnlabelledStatement>

ALTERNATE CLOSED Unlabelledstatement IS
Simplestatement I StructuredStatement

(*
The type of the Condition of any Statement (that has one)
must be BOOLEAN.

* 1
RELATION SUBDEF
e has-a-inappropriate-type . -
e is-the-Condition-of stmt,
stmt is a Unlabelledstatement,
t is the-tYPe-of e,
NOT (t i s-a-boo1 ean-type)

(*/S 6.8.1: General. *)

(*S 6.8.2: Simple Statements. *)

(*S 6.8.2.1: General. *)

ALTERNATE CLOSED Simplestatement IS
EmptyStatement I Assignmentstatement I Procedurestatement I Gotostatement

CONSTRUCT EmptyStatement IS

(*/S 6.8.2.1: General. *)

(*S 6.8.2.2: Assignment-Statement. *)

CONSTRUCT Assignmentstatement IS <:VariableAccess> ":=" <:Expression>

(*
The VariableAccess of an Assignmentstatement
must denote a variable or a function.

* 1
RELATION SUBDEF

va is-not-allowed - in - this - context . -
va is-the-VariableAccess of asmt,
asmt is-a-~ssignment~tat&ent,
NOT (va denotes - a - variable OR va is-a-function-identifier)

(*
If the VariableAccess of an AssignmentStatement
is a function-identifier,
the Assignmentstatement must be within the Block associated with the
defining-occurrence of the function-identifier.

* 1
RELATION SUBDEF
id is - not - allowed - in - this-context . -
id is the-VariableAccess of asmt,
asmt is - a - ~ssignmentStat&ent,
id is a function-identifier,
d i sfhe-def ining-occurrence of id,
b is the- lock-associated_with dl
NOT (b contains asmt)

(*
The type of the Expression of an AssignmentStatement
must be assignable to the type of the VariableAccess.

*)
RELATION SUBDEF
expr has-a-inappropriate-type . -
asmt is a AssignmentStatement,
te is-theltype-of expr , expr is the-Expression-of asmt ,
tv is the type-of va, va is-the-variable~ccess-of asmt,
NOT (te is - assignable-to tv)

(*/S 6.8.2.2: Assignment-Statement. *)

(*S 6.8.2.3: Procedure-Statements. *)

CONSTRUCT ProcedureStatement IS
<Callee: Identif ier> [" (" <:ActualParameterList> ") "]

(*
The Callee of a ProcedureStatement must denote a procedure.
* >
RELATION SUBDEF
id should - be - a_procedure-identifier - but - isnt . -
id is-the-Callee-of ps,
ps is a ProcedureStatement,
NOT (id-is - agrocedure-identif ier)

(*/S 6.8.2.3: Procedure-Statements. *)

(*S 6.8.2.4: Goto-Statements. *)

CONSTRUCT GotoStatement IS "goto" <:Label>

(*
The target of a GotoStatement
is the LabelledStatement whose Label
is the site of the defining occurrence of
the Label of the GotoStatement.

* >
RELATION DEF
s is - the - target - of g: FUNCTIONAL ON (g) . -
s is-a-LabelledStatement,
slab is-the-Label of s,
slab is-the-site Tor dl
d is-the-def inin; occurrence-of glab,
glab is the-labellof g,
g is - a - &tostatement

(*
6.8.1:
The Label of a LabelledStatement s
may have an applied occurrence
in a GotoStatement g
if and only if any of the following three Conditions is satisfied.
(a) s contains g.
(b) s is a Statement of a StatementSequence containing g.
(c) s is a Statement of the StatementSequence of a Block containing g.

* >
RELATION SUBDEF
g is - not - allowed~in~this~context . -
g is a GotoStatement,
s is-the - - target-of g,
NOT
(
s contains g

OR
s is a Statement-in ss,
ss contains g

OR
s is a Statement-in ss,
ss iJ the Statementsequence-of b,
b is-<~l&k,
b contains g

)

(*/S 6.8.2.4: Goto-Statements. *)

(*/S 6.8.2: Simple Statements. *)

(*S 6.8.3: Structured-Statements. *)

(*S 6.8.3.1: General. *)

ALTERNATE CLOSED Structuredstatement IS
Compoundstatement I Conditionalstatement I Repetitivestatement I
Withstatement

LIST NONEMPTY Statementsequence OF Statement SEPARATED-BY ";"

(*/S 6.8.3.1: General. *)

(*S 6.8.3.2: Compound-Statements. *)

CONSTRUCT Compoundstatement IS "begin" <:Statementsequence> "end"

(*/S 6.8.3.2: Compound-Statements. *)

(*S 6.8.3.3: Conditional-Statements. *)

ALTERNATE CLOSED Conditionalstatement IS If Statement I CaseStatement

(*/S 6.8.3.3: Conditional-Statements. *)

(*S 6.8.3.4: If-Statements. *)

CONSTRUCT Ifstatement IS
"if" <Condition:Expression> "then" <Consequent:Statement>
["else" <Alternate:Statement>]

(*/S 6.8.3.4: If-Statements. *)

(*S 6.8.3.5: Case-Statements. *)

CONSTRUCT CaseStatement IS
"case" <CaseIndex:Expression> "of" <:CaseArmList> [";"I "end"

(*
The type of the CaseIndex of a CaseStatement
must be an ordinal-type.

* >
RELATION SUBDEF
e has - a-inappropriate-type . -
cs is a CaseStatement,
e is th<~ase~ndex-of cs,
et is - the - type-of e,
NOT (et is - a - ordinal-type)

LIST NONEMPTY CaseArmList OF CaseArm SEPARATED-BY ";"

CONSTRUCT CaseArm IS <:ConstantList> ":" <:Statement>

(*
A Constant in the ConstantList of a CaseArm
in the CaseArmList of a CaseStatement
is a case-constant of the CaseStatement.
(Useful for next two defs.)
* >
RELATION DEF
c is~a~case~constant~of cs: FUNCTIONAL ON (c) . -
c is a Constant in cl,
cl iGhe- ons st ant list-of arm,
arm is-a-CaseArm-in cal,
cal is the-CaseArmList - of cs,
cs is - a - casestatement

(*
The type of each case-constant of a CaseStatement
must be the range-type of
the type of the CaseIndex of the CaseStatement.

! : Overlaps with two rules ago.
* >
RELATION SUBDEF
c has - a - inappropriate-type . -
cs is-a-Casestatement,
e is the CaseIndex of cs,
et is - the - type-of e ,
c is-a-case-constant-of cs,
ct is-the-type-of c,
NOT (ct is-the-range-type-of et)

(*
The value of a case-constant of a CaseStatement '

must be different from all other such values
(for the CaseStatement).

* >
RELATION DEF
VIOLATION c - 2 denotes~a~duplicated_case~value . -
cs is-a-CaseStatement,
c 1 is-a-case-constant-of cs,
cI2 is-a-case-cons tant-of cs ,
NOT (c 1 is c-2),
v is the value-denoted-by c-1,
v is~the~value-denoted-by c - 2

(*/S 6.8.3.5: Case-Statements. *)

(*S 6.8.3.6: Repetitive-Statements. *)

ALTERNATE CLOSED Repetitivestatement IS
Repeatstatement I WhileStatement I ForStatement

(*/S 6.8.3.6: Repetitive-Statements. *)

(*S 6.8.3.7: Repeat-Statements. *)

CONSTRUCT RepeatStatement IS
"repeat" <:Statementsequence> "until" <Condition:Expression>

(*/S 6.8.3.7: Repeat-Statements. *)

(*S 6.8.3.8: While-Statements. *)

CONSTRUCT WhileStatement IS
"while" <Condition:Expression> "do" <:Statement>

(*/S 6.8.3.8: While-Statements. *)

(*S 6.8.3.9: For-Statements. *)

CONSTRUCT ForStatement IS
"for" <ControlVariable:Identifier> ":=" <InitialValue:Expression>
<:DirIndicator> <FinalValue:Expression> "do" <:Statement>

ALTERNATE CLOSED DirIndicator IS UpTo 1 DownTo

CONSTRUCT UpTo IS "to"

CONSTRUCT DownTo IS "downto"

(*
The Controlvariable of a ForStatement must be an entire-variable
whose Identifier is declared in the VariableDeclarationList
of the Block closest-containing the ForStatement.

* >
RELATION SUBDEF
id should - denote-a-variable . -
for is a ForStatement,
id is - the - Controlvariable-of for

RELATION SUBDEF
id is - not - allowed~in~this~context . -
for is a ForStatement,
id is - the - Controlvariable-of for,

d is-the-defining-occurrence-of id,
NOT
(
d is a-Identifier-in idl,
id1 is-the-1dentif ier~ist-of vd,
vd is-a-VariableDeclaration-in vdl,
vdl is-the-VariableDeclarationList-of b,
b i s~ the~Block~closes t_conta in ing for

(*
The Controlvariable of a ForStatement
must possess an ordinal-type,
and the Initialvalue and Finalvalue
must be of a type assignable to this

* >
RELATION SUBDEF
id has-a-inappropriate-type . -
for is a-ForStatement,
id is the-controlvariable-of for,
tid is-the-type-of id,
NOT (tid is-a-ordinal-type)

RELATION SUBDEF
expr has-a-inappropriate-type . -
for is-a-Forstatement,
id is the-Controlvariable-of for,
tid is-the-type-of id,
(expr is-the-Initialvalue-of for OR
te is-the-type-of expr,
NOT (te is-assignable-to tid)

type.

expr is-the-Finalvalue-of for),

The variable denoted by the control-variable of a for-Statement
must not be threatened within
the Statement of the ForStatement
or
the RoutineDeclarationList of the Block
that closest-contains the ForStatement.

* >
RELATION DEF
VIOLATION id is-a-illegal-threat . -
cv is the-Controlvariable-of for,
for i<a-~or~tatement,
d is-the-defining-occurrence-of cv,
d is-the-defining-occurrence-of id,
id is - a - threatened-variable,

(

s is-the-Statement - of for,
s contains id

OR
rdl contains id,
rdl is-the RoutineDeclarationList of b,
b i s-the-~iock - closest - containing-f or

)

(*
A variable-identifier v is threatened
if one or more of the following Statements is true.
1) v is the VariableAccess of an Assignmentstatement.
2) v is an ActualParameter corresponding to a variable-parameter.
3) v is a ActualParameter in the ActualParameterList

of a ProcedureStatement whose Callee denotes READ or READLN.
4) v is the Controlvariable of a Forstatement.

(The Standard defines the relation
"Statement threatens variable",
but the Statement doing the threatening is not really important,
in fact it introduces redundancy:
a single threat to a variable (as an "actual variable parameter")
can give rise to many Statements threatening the variable,
because they all *contain* the threat.)

* >
RELATION DEF
id is - a-threatened-variable . -
id is - a - variable-identifier,

id is-the-VariableAccess-of asmt,
asmt is - a - Assignmentstatement

OR
id is a ActualParameter,
fp is-the formal-for id,
fp is-a f&malgarameter-from vps,
vps i<<variable~arameter~ection

OR
id is a Actualparameter-in apl,
apl is - the - ActualParameterList-of ps,
ps is a ProcedureStatement,
r is the routine-called by ps,
(r iJ - the - required routine-named "read" OR
r is - the - requiredlroutine-named "readln")

OR
id is the Controlvariable-of for,
for iJ - a - Forstatement

)

(*/S 6.8.3.9: For-Statements. *)

(*S 6.8.3.10: With-Statements. *)

CONSTRUCT WithStatement IS
"with" <:VariableAccessList> "do" <:Statement>

LIST NONEMPTY VariableAccessList OF VariableAccess SEPARATED - BY - ","

(*
The statement
with vl, v2, ..., vn do

S
is equivalent to
with vl do
with v2 do . . .

with vn do
S

* >
RELATION SUBDEF
wex IS - THE - EXPANSION OF w - . -
w is a WithStatement,
body-is the Statement of w,
val isfhe-~ariableAccess~ist-of w,
#len is-the-length of val,
#len IS GREATER-TH~N 1,
va is-the 1 th-VariableAccess-in val,
wex :=
make-Withstatement

(make VariableAccessList (va),
rnakeI~ith~tatement (tail(val), body)

)

(*
A VariableAccess in the VariableAccessList of a WithStatement
must denote a variable possessing a record-type.

* >
RELATION SUBDEF
va should - denote-a-variable . -
va is-a-VariableAccess-in val,
val is the-VariableAccessList~of with,
with iJ - a - Withstatement

RELATION SUBDEF
va has-a-inappropriate-type . -
va is-a-VariableAccess-in val,
val is the VariableAccessList-of with,
with iJ a With~tatement,
t is th<be-of va,
NOT (t is - a - record-type)

(*
An Identifier that is effective over
the record-type possessed by
the VariableAccess of a WithStatement
is also effective over the region that is
the Statement of the WithStatement.

* >
RELATION SUBDEF
d is - effective-over body . -
with is-a-Withstatement,
body is the-Statement of with,
val isfhe-~ariableAccess~ist of with,
va is-a-VariableAccess - in valy
rt is-the-type of va,
rt is a recordItype,
d is - efrective-over rt

(*/S 6.8.3.10: With-Statements. *)

(*/S 6.8.3: Structured-Statements. *)

(*/S 6.8: STATEMENTS. *)

(*S 6.9: INPUT AND OUTPUT. *)

(*S 6.9.1: The Procedure READ. *)

(*/S 6.9.1: The Procedure READ. *)

(*S 6.9.2: The Procedure READLN. *)

(*/S 6.9.2: The Procedure READLN. *)

(*S 6.9.3: The Procedure WRITE. *)

CONSTRUCT WriteParameter IS
<:Expression> ":" <TotalWidth:Expression>

11 11 [- . - <~rac~igits:~x~ression>]

(*
The type of the Totalwidth and FracDigits of a WriteParameter
must be an integer-type.

* >
RELATION SUBDEF
expr has-a-inappropriate-type . -
wp is a-Writeparameter,
(expr-i s-the-~otal~idth-of wp OR expr is - the - FracDigit s-of wp) ,
t is-the-type - of expr,

NOT (t is - a - integer-type)

(*
The FracDigits of a WriteParameter can
only if the type of the Expression of

* 1
RELATION SUBDEF
frac is-not-allowed - in-this - context . -
wp is-a-Writeparameter,
frac is-the-FracDigits - of wp,
NOT (frac is-empty),
expr is-the-Expression-of wp,
t is-the-type-of expr ,
NOT (t is - the-real-type)

be non-empty
the WriteParameter is the real-type.

(*
The type of a WriteParameter
is the type of the Expression of the WriteParameter.
(To make things easier elsewhere.)
*
RELATION SUBDEF
t is-the-type-of wp . -
wp is-a-Writeparameter,
expr is-the-Expression-of wp,
t is-the-type-of expr

i*jS 6.9.3: The Procedure WRITE. * j

(*S 6.9.4: The Procedure WRITELN. *)

(*/S 6.9.4: The Procedure WRITELN. *)

(*S 6.9.5: The Procedure PAGE. *)

(*/S 6.9.5: The Procedure PAGE. *)

(*/S 6.9: INPUT AND OUTPUT. *)

(*S 6.10: PROGRAMS. *)

CONSTRUCT Program IS
"program" <Name:Identifier> [" (" <Parameters:IdentifierList> ") "]
";" <:Block> "."

(*
The Identifiers in the Parameters of a Program
must have distinct spellings.

* >
RELATION SUBDEF

id-2 i s ~ a ~ c o n f l i c t i n g ~ d e c l a r a t i o n ~ t . -
ids is the Parameters-of p,
p is-aI~ro&m,
id 1 is a Identifier in ids,
id-2 is-a-1dentif ier-in - ids,
NOT (idIl-is id-2) ,
$5 is-the-spelling of id 1,
$5 is-the-spelling-of - id-2 -

(*
For each Identifier in the Parameters of a Program,
there must be a declaration-point
over a region that is the Block of the Program
for a variable-identifier with the same spelling.

* >
RELATION SUBDEF
id is - undefined . -
id is a Identifier in ill
il isItEe-parameters-of p,
p is-a-Program,
b is-the-Block-of p,
NOT
(d is effective-over b,
d declares-a-var iable-identif ier ,
$S is-the-spelling of dl
$S is-the-spelling-of - id)

(*
The occurrence of
the required Identifier INPUT or the required Identifier OUTPUT
in the Parameters of a Program
is a declaration-point
over the region that is the Block of the Program
as a variable-identifier
of the textfile-type.
! : Overlap
* >
RELATION SUBDEF
id is-a-declarationgoint,
id declares-a - variable-identifier . -
("input" is-the-spelling-of id OR "output" is - the-spelling-of id),
id is a Identifier-in idl, -

id1 iGhe-parameters - of p,
p is-a-Program

RELATION SUBDEF
id is-effective-over b . -

("input" is-the-spelling-of id OR "output" is-the-spelling-of id),
id is a Identifier-in idl,
id1 iGhe-parameters - of p,
p is-a-Program,
b is-the-Block - of p

RELATION SUBDEF
t is-the-type - of id . -
("input" is-the-spelling of id OR "output" is-the-spelling-of id),
id is a Identifier-in idi,
id1 izhe-parameters - of p,
p is-a-Program,
t is - the - textfile - type

(* /S 6.10: PROGRAMS. *)

APPENDIX 3: TESTING THE PASCAL SMS

The correctness of the SMS generated for Pascal, and thus, indirectly, the correctness of the NURN

specification for Pascal, was tested using Version 5.0 of the Pascal Validation Suite (PVS), a large set of

Pascal programs specifically written to validate Pascal processors (such as compilers, interpreters, etc.)

[Wich83]. The programs of the PVS are divided into eight classes, exploring the performance of a Pascal

processor with respect to various aspects of the Standard. Two of these classes (DEVIANCE and

CONFORMANCE) are relevant for testing a context-dependent SMS for Pascal.

In the DEVIANCE class, each program contains a single violation of the Pascal standard, which a Pascal

processor should detect and complain about. The Pascal SMS includes the investigative routine

U-IS-A - VIOLATION, which can detect all such violations in a Pascal program, and thus can be used as

the basis for a Pascal syntax-checker. The following Modula-2 program calls ParseInput to parse the

input stream as a Pascal Program, calls Installsub j ect and FindAllExtensions to calculate the

extensions of all relations, and finally calls u - IS - - A VIOLATION to get any instances of violation

relations. If there are none, then the input is syntactically correct.

MODULE PascalSyntaxCheck ;
FROM I0 IMPORT Writeln ;
FROM GRAFS Generic IMPORT Node ;
FROM NURN Generic IMPORT
~nstall~ubject, FindAllExtensions, U-IS-A-VIOLATION, EntityList ;

FROM Pasc IMPORT
Nodeclass, ParseInput ;

VAR prog : Node ;
BEGIN
IF ParseInput (Program, prog) THEN
Writeln ('CF parse succeeded.') ;
Installsubject (prog) ;
FindAllExtensions 0 ;
IF EntityList.1sEmpty (U-IS-A-VIOLATION ()) THEN
Writeln ('No CD violations detected.')

ELSE
Writeln ('CD violation(s) detected.')

END
ELSE
Writeln ('CF parse failed.')

END
END PascalSyntaxCheck .

When run on a DEVIANCE program, this program should either print "CF parse failed" or "CD

violat ion(s) detected ". This information alone would not be helpful to a programmer wanting to

correct a mistake, but 1) if the context-free parse fails, the ParseInput routine produces a listing which

indicates the point at which failure occurred; and 2) the syntax-checker can be modified fairly easily to

produce a listing indicating the location and nature of any context-dependent violations.

In the CONFORMANCE class, each program is valid Pascal, and should be accepted by a Pascal

processor, but produces different behaviour depending on whether some particular feature of Pascal is

correctly implemented by the processor. When the above syntax-checker is run on a CONFORMANCE

program, it should print "No CD violations detected". Note that if this occurs, it supports the idea

that the syntax-checker correctly handles the particular feature being tested, but without much certainty.

In general, some ability to execute Pascal programs is necessary to indicate whether the decisions made by

the syntax-checker (the relation-instances it establishes) are actually correct, but context-dependent SMSS

in general (and the Pascal SMS generated by Ginger in particular) do not have any execution capability1.

To paraphrase the traditional maxim of testing, CONFORMANCE programs can be used to show the

presence of errors in a syntax-checker (if it erroneously detects a violation in a valid program), but not

their absence.

The PVS contains 257 DEVIANCE programs and 212 CONFORMANCE programs. These were all

submitted to a Pascal syntax-checker similar to the one presented above. Eventually (after much

grammar-revising), it rejected all DEVIANCE programs and accepted all CONFORMANCE programs.

Thus, to the extent that the PVS allows validation of mere syntax-checkers, my NURN grammar for Pascal

has passed all tests.

Writing a Pascal interpreter (which could actually execute the PVS programs) using the routines of a
Pascal SMS would be a good demonstration of the usefulness of the SMS.

REFERENCES

American National Standards Institute, American Standard Dejnition of the Computer
Programming Language Pascal, ANSIAEEE 770 X3.97-1983, ANSI, New York, 1983.

Aho. A.V., Sethi, R., and Ullman, J.D., Compilers: Principles, Techniques, and Tods,
Addison-Wesley Series in Computer Science, Addison-Wesley, Reading, MA, 1986.

Bahlke, R. and Snelting, G., "The PSG System: from formal language definitions to
interactive programming environments", ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 4, October 1986, pp. 547-576.

Bjorner, D. and Jones, C.B., Formal Specification and Software Development,
Prentice-Hall International Series in Computer Science, Prentice-Hall, Englewood
Cliffs, NJ, 1982.

Cameron, R.D., Pascal MPS Reference Manual, School of Computing Science, Simon
Fraser University, Burnaby, 1987.

Cameron, R.D. and Ito, M.R., "Grammar-based definition of metaprogramming
systems", ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1,
January 1984, pp. 20-54.

Cardelli, L., Donahue, J., Glassman, L. Jordan, M., Kalsow, B., and Nelson, G.,
Modula- 3 Report (revised), Technical Report 52, Digital Systems Research Center,
Palo Alto, CA, 1989.

DeRemer, F. and Jullig, R., "Tree-affix dendrograrnmars for languages and
compilers", in Jones, N.D. (ed.), Semantics- Directed Compiler Generation, Lecture
Notes in Computer Science #94, Springer-Verlag, 1980. pp. 300-319.

Department of Defence, The Programming Language Ada Reference Manual,
ANSI/MIL-STD1815A-1983, American National Standards Institute, New York,
1983.

Gallaire, Herve, Jack Minker, and Jean-Marie Nicolas, "Logic and Databases: A
Deductive Approach", ACM Computing Surveys, Vol. 16, No. 2, June 1984, pp.
153-185.

Knuth, D.E., "Semantics of Context-Free Languages", Mathematical Systems Theory,
Vol. 2, No. 2, 1968, pp. 127-145.

La Londe, W.R., "Regular right part grammars and their parsers", Communications of
the ACM. Vol. 20, No. 10. October 1977, pp. 731-741.

Madsen, O.L. and Norgaard, C., An Object-Oriented Metaprogramming System, in
Shriver, B. (ed.), Proceedings of the 2Ist Annual Hawaii International Conference:
Software Track, IEEE Computer Society, 1988, pp. 406-415.

Merks, E., Compilation Using Multiple Source- t~ Source Stages, Master's Thesis,
Simon Fraser University, Burnaby, 1987.

Merks, E., AST: An Abstract Symbol Table for Modda-2, unpublished document,
1988.

Merks, E., An interactive environment for the programming language Acer, Ph.D. work
in progress, 1990.

Naur, P. (ed.), "Revised Report on the Algorithmic Language ALGOL 60",
Communications of the ACM, Vol. 6, No. 1, January 1963, pp. 1-17.

Reps, T., and Teitelbaum, T., "The Synthesizer Generator", ACM SigPlan Notices,
Vol. 19, No. 5, May 1984, pp. 42-48.

Sterling, L. and Shapiro, E., The Art of Prdog, MIT Press, Cambridge, MA, 1986.

Terry, B., Grammar- Based File Structure, Master's Thesis, Simon Fraser University,
Burnaby, 1987.

Wichmann, B.A.. and Ciechanowicz, Z.J., (eds.), Pascal Compiler Validation, John
Wiley and Sons, Cichester, 1983.

Wirth, N., Programming in Modula- 2: Third, Corrected Edition, Springer-Verlag,
New York, 1985.

Winston, P.H. and Horn, B.K.P., LISP, Third Edition, Addison-Wesley, Reading, MA,
1989.

