COMPARISON OF FOUR CODES FOR
SOLVING BOUNDARY VALUE PROBLEMS FOR ORDINARY
DIFFERENTIAL EQUATIONS

by

Min Cao
B.Sc., Lanzhou University, 1985

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department
of
Mathematics & Statistics

© Min Cao 1990
Simon Fraser University

November, 1990

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopy or other means, without the permission of the author.

APPROVAL

Name: Min Cao
Degree: Master of Science (Numerical Analysis)
Title of Thesis: Comparison of Four Codes for Solving Boundary Value

Problems for Ordinary Differential Equations

Examining Committee:

Chairman: Dr. A. Lachlan

(I A V4 D GO

Dr. R.D. Russell
Senior Supervisor

Drj B. Bhattacharya

------------ 1>~ ---*—-\"-_S -
Dr. M. Trummer

..... [L I e P

Dr. T. Tang
External Examiner

Date Approved: ... November 8, 1990

PARTIAL _COPYRIGHT LICLNSE

I hereby grant to Simon Fraser University the right to lend
my thesis, project or extended eséay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on
"its own behalf or for one of its users. | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financial gain shall not be allowed

without my written permission.

" Title of Thesis/Project/Extended Essay

CUMYcLVQ';m\ 0{: ;vw(Codas @(g""/\)&ﬂ‘ P)O\AMJ\MV\'I

\TQ/L«J»QWM& r@w @Yﬁ_:\vuu\i DQ—‘(LQVQLJ\”QM %w&t\oM

Author: - -

(signature)

my CAo

(name)

Nev.lo , 890

(dafe)_

Comparison of Four Codes for Solving Boundary Value
Problems for Ordinary Differential Equations

Abstract

The focus of this thesis is to compare four codes for solving boundary value
problems (BVP) for ordinary differential equations (ODE), namely COLNEW,
COLSYS, HAGRON and MUTS. Background information concerning the numerical
methods that underlay these four codes, as well as information concerning how to use
the four codes, is included. The four codes are compared according to many important
criteria such as robustness, timing, and ease of use.

A considerable portion of this thesis is devoted to the discussion of various
issues concerning the comparison of codes, such as the validity of conclusions
resulting from a comparison of codes and the methods for making a comparison. The
need for and the difficulties of comparing codes, in particular in our context of solving
BVP for ODE, are discussed. A traditional method of comparison where the
performance of the codes are compared under similar input parameter settings is
examined. A different approach that compares the performance of the codes under the
condition that the numerical solutions produced by the codes are of the similar quality
is proposed. The relationship between these two approaches, as well as their relative
merits, are also discussed.

111

IV

To my parents

Acknowledgements

I am deeply indebted to my family, especially to my mother Kun-Xiang Lan, my
father Kan Cao, for their constant encouragement, and to my wife Xiu-Qing Chen, for
her full support and her help in typing this thesis.

I would also like to express my appreciation for the useful comments I received
from Dr. B. Bhattacharya, Dr. M. Trummer, and Dr. T. Tang. I sincerely thank Mrs. S.
Holmes for her keeping me informed of the important deadlines related to my defence
and submission of this thesis, and Mrs. C.E. Dwyer for her help with my English.

Finally, I would like to thank my supervisor Dr. R.D. Russell for his patience,
suggestions and many important discussions I have had with him in the one year
period of writing this thesis.

Table of Contents

Page
Title Page I
Approval II
Abstract 111
Dedication 1v
Acknowledgements \%
Table of Contents : VI
Introduction 1
Chapter One: BVP for ODE and Some Related Issues 5
1.1 BVP for Ordinary Differential Equation 5
1.2 A Few Methods for Solving IVP for ODE 9
1.3 Some Ideas for Solving BVP for ODE 13
Chapter Two: The Comparison of the Codes (I)— the Difficulties
and Criteria for Comparing BVPODE Codes 21
2.1 The Comparison of Codes and the Validity of Its results 21
2.2 Criteria for Comparing Codes of BVPODE and Their Classification 24
2.3 Comments on the Criteria We Choose 25
2.4 Numerical Methods Related Issues and the
Principle of Our Comparison : 29
2.5 The Selection of Test Problems 29
Chapter Three: How to Use the Four Codes 33
3.1 COLNEW and COLSYS 33
3.2 HAGRON 43

V1

3.3 MUTS 53

Chapter Four: The Comparison of the Codes (II)—the Basic Design

and the Results of Our Comparison. 73

4.a The Basic Design of Our Comparison 73

4.b The Comparison of the Codes 78

4.c The Conclusions 98
References 103
Appendix (I): Testing and Test Problems 105
Appendix (II): The Graphs 113
Appendix (IIT): Testing Results 128

Vil

Introduction

The proliferation of mathematical software has increased the need to develop
methods of evaluating the software, in order to determine their relative merits. The
software user, on one hand, certainly needs information concerning the relative merits
of the software in order to use them properly. The numerical analyst and the software
developer, on the other hand, need to evaluate their own software in order to compare
with others’. It becomes a common practice among the numerical analysts to use
software evolution and comparison to provide justification for their methods and
programs [6], [17].

a) Three commonly used methods of comparison

The evolution of software usually has three stages as illustrated by Figure 1.
Naturally, three types of comparison are common: /) The comparison of methods by
using some theoretical criteria, 2) The comparison of algorithms (e.g. in terms of
operation counts), 3) The comparison of codes.

Numerical Methods Algorithms Codes

Figure 1

In a field of high complexity such as the numerical solution of boundary value
problems for ordinary differential equations, the comparison of methods suffers
technically from the fact that the numerical methods can be so different that they may
have little common ground to be compared with. The comparison of algorithms also has
serious drawbacks. Pereyra and Russell gave the following good example of the
drawback of comparison of algorithms in [17]. Operation counts for collocation and
Ritz method for solving elliptic PDE (partial differential equation) have been made in
[18], [11], [9] and [26]. Each contains modifications of the algorithms giving improved
operation counts over the previous results. While the second and the third view
collocation as more efficient, both in terms of the counts and the authors' resulting

codes, the fourth improves upon the counts for Ritz method and concludes that Ritz is
more efficient.

Apart from the drawbacks of the first two types of comparison, the need for the
comparison of codes is also reflected by the facts that neither the comparison of
methods nor the comparison of algorithms provide certain information about the codes.
Figure 2 further illustrates this point. The fact that there are different ways in which a
method or an algorithm can be implemented severely weakened the connection
between the observations resulting from the first two types of comparison and the
observations from the comparison of two specific codes. The comparison of codes
therefore cannot be replaced by a trivial extension of the observations from either one
or both of the first two types of comparison. It is our view that the results from the
three different types of comparison are not that closely related and consistent as they
appear to be. Neither does the superiority of an algorithm resulting from the second
type of comparison imply the superiority of some codes based upon that algorithm, nor
does a superior method necessarily lead to a superior code. In one words, in the
process of software evolution, superiority at one stage may not be inherited by the
stages that follows. This puts the comparison of codes into an irreplaceable position of
its own and it often makes the first two types of comparison less attractive, especially
to the user of the codes, since for them, it is the performance of the codes, not the
superiority of the methods or the algorithms, that counts the most.

.Numerical Method

e ~

Algorithm 1 Algorithm 2
Code 1 Code 2 Code 3 Code 4
Figure 2

One may notice that so far we have not fully explained what we mean by
‘superior’ and what we mean by the comparison of methods or the comparison of
algorithms. Unfortunately, the literature of software evaluation is by no means near
maturity. There are few criteria of comparison that everybody agrees on. Thus
‘superior’ and ‘comparison’ are very much subjective concepts. While it seems
unrealistic to have a set of criteria for evaluating all kinds of software, if we restrict
ourselves in a specific field, meaningful comparison is not impossible.

b) An overview of this thesis

In this thesis, we shall concentrate on comparison of four codes* for solving
boundary value problem (BVP) for ordinary differential equation (ODE). Our purpose
is to discuss various issues concerning the comparison of codes in this specific field
through actually comparing four of them. Users of these codes may also benefit from
our discussion.

The first chapter of this thesis covers some background material concerning the
boundary value problem for ordinary differential equation and the basic numerical
methods that eventually lead to the four codes. The last three chapters discuss the
criteria for comparison and describe the four codes that we are interested in.
Comparison of these codes centred on the discussed criteria is then conducted.

More specifically, Chapter One serves as an introduction to BVP for ODE and
the initial value problem (IVP) for ODE. It also contains description of some simple
numerical methods that aimed at solving IVP and BVP for ODE. The difficulties of
BVP for ODE are examined from a numerical analysis point of view.

Chapter Two is devoted to various criteria and difficulties for comparing
mathematical software, in particular, the criteria and difficulties for comparing
ODEBVP codes. It also carries on the discussion about the relationships among the
three types of comparison we mentioned in the last section. No sophisticated
mathematics is involved in this chapter. Users of BVP codes may find this chapter
useful.

Chapter Three consists mainly of the description of the four codes we compare.
Since all of them can be fairly difficult to use, especially to users who have little

experience with BVP for ODE, and some of them do not have complete documentation
available due to the undergoing changes, our description is aimed at diminishing this
problem by providing guidance on how to use them.

Chapter Four is a detailed report of the comparison of the four codes. It covers
both how the comparison is conducted and what we observed through our comparison.
It is important that the observations are only valid for the versions of the codes we
currently have. However, some of the observations are unlikely to be affected by any
future implementations. We shall point this out whenever we go through situations of
this kind.

* The list of the four codes and the date they were received:

COLNEW by Bader, G. and Ascher, U.. Received in October 1988.

COLSYS by Ascher, U., Christiansen, J., and Russell, R. D.. Received in July 1988.
HAGRON by J.R. Cash and Margaret H. Wright. Received in May, 1990,

MUTS by R. M. M. Mattheij and G. W. M. Staarink. Received in November 1988.

Chapter 1 BVP for ODE and Some Related Issues

This chapter is concerned with background material about BVP for ODE
including the general formulation of a BVP for ODE, the numerical methods for BVP
and the numerical methods for the related problem of solving IVP for ODE. Section 1
discusses various forms of ordinary differential equations and boundary conditions.
Section 2 describes briefly how a few typical IVP methods work. Section 3 describes
the basic idea of those numerical methods that are related to the four codes. We do not
intend to provide detailed discussion about IVP and BVP theory. Also we assume that
the reader has certain numerical analysis background. Thus we merely describe some
basic ideas to acquaint the reader with how IVP and BVP are solved numerically. We
shall also emphasize those issues that separate BVP methods from IVP methods.

1.1 BVP for Ordinary Differential Equation
Example 1.1.1

A simple second order IVP has the form
y'=f(xyy) x>a (1.1.1a)
ya) =0y, y'(a) = o (1.12a)
Similarly, a simple second order BVP has the form

Y '=f(x,y.y’) a<x<b (1.1.1a)

ya) =B, y(b) =, (1.12b)

If f(x,y,y") is linear in y and y’, then we have a linear equation. It takes a
simpler form

Y'(x)- c(x)y'(x) -co(x)y(x) = q(x). (1.1.1b)

where co(x), ¢;(x) and g(x) are functions of x. Usually one assumes that general
ordinary differential equation can be written as a first order system '

Y=f(xy) a<x<b (1.13a)

where y(x)=(y\(x),...,y(x))T is the unknown function and
F(xy) =(hi(x.y), - fulxy))T
is generally a non-linear right hand side. For linear problems the ODE simplifies to
y'=A(x)y+q(x) a<x<b (1.1.3b)
where the matrix A(x)e R¥" and the vector ¢g(x)eR" are functions of x.

Some of the BVYPODE codes deal with first order systems exclusively. Among
the four codes we are interested in, HAGRON and MUTS require the user to change
high order equations into a first order system before they can be applied. To show how
to convert a high order ODE into a first order system (also see [2]), we consider the
general form of the mixed order ODE system that has d equations and the i*4 equation
is of order m;

un(m.)(x) =fn(x; ul: ul’: *t%y ul(m‘_l)) u2) uZi) %y ud: tcy ua!”“—l)) (1.1.4)
a<x<b, n=12,..d
where m,'s are integers and f,'s are generally nonlinear functions.

Let z(u) = (u;u'y,-u,("1-1) »uz,---,u,,,---,u,f"'l-‘))T, then (I.1.4) is converted to the form of
(1.1.3a)

z'ml = fl(xn.z)
z'm1+1 = zm1+2

oooooo

2w = fxiz(u) M =3 my

k=1

A first order system of ODE (/.].3a) is normally supplemented by a two-point

boundary condition
g(y(a), (b)) =0 (1.15a)

where g = (g,,82,---,8,)7 is generally a nonlinear function and 0 is the zero vector in R".
One may notice that (1.1.5a) is a special case since only two end points are involved.
Nevertheless, it is the most popular form of boundary condition for an ODE, and most
BVPODE codes can only be applied when the boundary condition for an ODE is in this
form. When g is linear in y(a) and y(b), we have linear boundary condition. The general
form of linear two-point boundary condition for a first order system is

B.y(a)+B, y(b) = S (1.1.5b)

where Bg,Bpe R™, € R". A very important case arises when (1.1.5b) simplify to (also
see Chapter One in [2])

B.y(a) = B,
B,y(b) = B, (1.15¢)

(1.1.5c¢) is called separated linear boundary conditions. Similarly, if (1.1 5a) simplify to

g/(y(a))=0
g:y(b)) =0 (1.1.5d)

then we have separated nonlinear boundary condition. A significant portion of the
currently available software for BVP assumes that the boundary conditions are
separated. In fact, general boundary conditions (/.1.5a) can always be converted to
one with separated boundary conditions [2]. More general boundary conditions arise
when there are some other points rather than just two end points that are involved in a
boundary condition. We call this kind of boundary condition a multipoint boundary
condition. Linear multipoint boundary conditions have the form
J

DBy(x) =B (1.1.5¢)

j=1

where B,,B,,---,B,eR*™, feR" and a = x,< x; < -+ < x; = b. The most general form of
multipoint boundary condition of interest is of the form

8iz(y(x;)) = 0 I<j<J (1.1.5f)

where @ = x,<x,<...<x; = b and g/'s are linear functions.

(1.1.4) together with (I.1.5f) form the most complicated BVP for ODE that can
be directly handled by the available BVPODE codes so far.

A multipoint BVP, like a high order ODE, can be converted to simpler form [2).
By transforming each of the subintervals [x;, x;,] onto a fixed interval, say, [0,1] and
writing the ODE for the independent variable

X -X;

=
Xjs1 = Xj

for j: 1,2,--,n

one can transfer a multipoint BVP into a two-point BVP. To see how this works, We
consider the following example:

y'=A(x)y+q(x) a<x<b (1.1.6)

J
> Bjy(xj) =B (1.17)

j=1

where A(x), B,,....B,e R™*; q(x), BeR* and a = x;<x;<...<X; = b with t = x- xi for
jel = Xj

Jj=1,---J-1. (1.1.6) becomes n ODEs on [0,]]. We thus have in total (J-1)xn ODEs.
With new variable te[0,1],(1.1.7) becomes n B.C. which are specified at interval
endpoints 0 and I. These n new B.C. together with the nx(J-2) additional B.C.
resulting from the interior break points x;, j = 2,3,---,J-1 will be the new B.C. for the (J-
I)xn ODEs resulting from the transformation.

HAGRON and MUTS solve only first order systems with two-point boundary
conditions. Using the above transformation, one can change any multipoint BVP into a
two-point BVP and then apply the codes. Thus the above transformation in some
sense justified these codes that deal with two-point BVP only. However, such a
transformation cannot be done without cost. As one can see from the example above,
the size of the system is dramatically increased after the transformation. When it
comes to solving the BVP by numerical means, this kind of size increase means that
the process will be more expensive than solving a similar system in its original size.
Sometimes the transformed system can be simply out of the reach of the BVPODE

codes, because of various reasons such as a code may be designed to handle an ODE
system of limited size.

1.2 A Few Methods for Solving IVP for ODE

Compared with the development of numerical methods for solving BVP,
literature for solving IVP was much earlier in maturing. Robust codes for IVP appeared
long before the births of the four codes we are about to discuss. Big software packages
such as NAG or IMSL have many reliable routines for IVP, but have only a few
routines for BVP. This is mainly due to the facts that BVP are generally more difficult
than IVP in the context of numerical analysis, and the difficulties of BVP was not fully
recognized until the last decade. To understand the difficulties of BVP, it is essential
to know how an IVP and a BVP may be solved numerically. In this section, we will
discuss how some numerical methods for IVP work.

Consider a simple initial value problem
u' = f(tu) x>0 (2.2.1a)

u(0) = up (2.2.1b)

A partition of the domain 0 = ¢, < f; <-...<f;<--- generally has varied step sizes
hi = ti.; - t; i.e. the value of h; depends on i. For simplicity, we will only consider the
special cases where h/'s are all equal to a constant 4. There are many IVP methods
that can be used to solve (2.2.1a&b). Roughly, they can be divided into two types. The
first type of methods is the so'called 'one step methods'. These one step methods
calculate u;,,, the numerical solution at point ;,,, using only information at t;, The
second type of methods is the multistep methods by which not only information at the
point ¢; but also information at t;}, £;5,++,li..(m >1) is used to calculate u;,,.

Example 1.2.1: Euler's Method

The well known Euler's method is an explicit one step method where

Uiy = Ui+ hf(t,u). (2.2.2)

The motivation for this formula is linear extrapolation [25], as suggested in
Figure 1.2.1. If u, is given (set equal to the initial value u(0)), it is a straightforward
matter to apply (2.2.2) to compute successive values u;, uy, -, as is illustrated by the
simple algorithm below.

Ui+1
Ui

i M
1 i

ti ti+1

Figure 1.2.1 Euler's Method

Algorithm for Euler's method:
Step 1: uy = u(0)
Step 2 : u,; = u;+ hf(t,u;) i=12,.-n
There are two common ways that a one step method may be derived. One way

is to use Taylor expansion and another way is to use numerical quadrature. To see
how Euler's formula is derived, we expand the exact solution for (2.2.1a&b) u at ¢;

u(ti,,) = u(t) + (ti,, - tju'(t) + R(1.,,),
that is u(ti,;) = u(t) + hf(t,u(t)) + R(t,,,).

As R(t;,,) is of order of A2, it is negligible provided that step size h is small. When
R(t;+1) is negligible, the above equdtion is well approximated by (2.2.2) in the sense
that u; 's satisfying (2.2.2) are good approximations of u(t;)’s. Assuming that A is small
and R(t;,,) is negligible, by dropping R(t;) and replacing the exact solution u(t,) by
numerical approximation 4, in the Taylor expansion above, we get Euler's formula. One

10

the other hand, one can use the fundamental theorem of calculus and use the following
equation

u(t,)) - u(t) = f‘u'(t) dt

bivi

that is U(t;,;) - u(t) = J“f(t,u(t)) dt

bivi

Replacing the integral in the right hand side of the above equation by the quadrature
formula that approximates the integral using (t;,,-1;)f(;u(t;)) and replacing the u(t;)'s by
u; 's as we did above, we then have the Euler's formula.

Incidentally, most of the numerical methods for solving ODE (not just one step
methods) can also be derived by the two approaches we briefly explained above. For
more concerning the derivation of the numerical methods and the theoretical aspects of
the methods, please see [2] and [25].

Assume we know u;'s at the first m -] meshpoints:
Iy t L)

Uy u; U,
An explicit m step method has the form
Up,,'= O(tuhuy Uy gy Uy)
and an implicit m step method has the form
Uper = @t Rl 1, Ui Ui, Uim)
where @(t,,h,uy,ly.,...,Us.) and @ty b, Uy,), Us, Uy ..., Uy.,) aT€ known functions.

Example 2.2.2: Some examples of multistep schemes are given below.
The Adams-Bashforth explicit four step method is
h
Upp) = U; + EZ[55f(ti,ui) - SH(tir,uir) + 37f(8i1,ui2) - f(tistis)]

11.

The Adams-Moulton implicit four step method is
h
Uis) = Ui + 2—4[Htirthinr) + 19f(t,u) - Sf(ti 1, ui0) + fltizuiz)]

In order to use an explicit m step method to solve (1.2.1a&b), one needs to
know u,,u,,...,u, to proceed. This is usually done by using a one step method, e.g.
Euler's method. A simple algorithm for an Adams-Bashforth method would be

Step 1: Calculate ul ,u2,u3 by using some one step method

h
Step 2: u; ;= u; + ﬁ[S55f(ti.ui) - SH(tiruig) + 37f(ti i) - f(tisuis) 1
for i= 4'5'6'

The implementation of an implicit m step method is more complicated. While
one can still rely on a one step method such as Euler's method to calculate u;, u;,--, U
1» more efforts are needed in the second step in order to calculate u,,u,.;,---. One
commonly used strategy is known as the Predictor-Corrector method. We use the
following simple algorithm for an Adams-Moulton method as an example to illustrate
how an implicit multistep method with a Predicator-Corrector technique is typically
implemented

Step 1: Calculate u:, uz2, us by using some one step method
Step 2: Calculating u; fori=4,5,6,--

2.1 Estimate u’;,, by some method, e.g. Adams-Bashforth scheme.

i+l

22 Calculate f* = f(t;.,u%.1)
h
23 wl =ui+ 54 " + 19f(t,w) - SA(tinuit) + fltiztin)]
2.4 Go back 10 2.2 until ™', , converges to a satisfactory accuracy.

Generally, a simple one step method like Euler's method can be easily carried
out. A multistep method, especially an implicit multistep method, needs more effort.
But its order of truncation error is usually higher than that of Euler's method. Euler's
method has a local truncation error of order 1. In our examples, both Adams-Bashforth

12

and Adams-Moulton's methods are of order two [25]. Among the numerical methods
for ordinary differential equations, one family of methods, known as Runge-Kutta
methods, have been very widely used since it has the advantages of both a simple one
step method and a multistep method, i.e. it is a family of high order one step methods.
We only look at a simple example of an explicit Runge-Kutta method for IVP in this
section, and leave the discussion about general Runge-Kutta methods to the next
section. Like the one step Euler's method, an explicit Runge-Kutta scheme also has
the form

Wirs = W; + ho(t,u,h).

but the function ¢(t,u;,h) is no longer necessarily a linear function of u; and f. The
following example is a second order Runge-Kutta method known as Heun's method.

Example 2.2.3: Heun's Method is
h 2 2
Uis) = Ui + 4 [flt,u) + 3f(1; + §h, +3 hf(t,u))].

Since it is an explicit method, in order to apply it to solve IVP, the algorithm described
in example 2.2.1 can also be used for its implementation.

The above are a few well known IVP methods. What they have in common is
that they are all local in nature. Namely the methods are based on the relationships of
the numerical solution at only a few neighbouring (local) mesh points. e.g. an Adams-
Bashforth method is solely based on the a relationship among u;,,, u;, u;.;, ;. u;.;. The
fact that complete information about the solution at the initial point is known enables
these methods to be proceeded iteratively in a fixed direction in the sense that the
numerical solution values at the mesh points u,, u,, -, U, -+ are calculated one at a time
in the order of their corresponding mesh points. It turns out that this is what separates
BVP methods from IVP methods (also see [2]). It is also the major reason that an
IVP is generally easier to solve numerically than BVP as one will see as we continue
our discussion.

1.3 Some ideas about solving BVP

The detailed methods and techniques involved in designing the four codes we
are interested in varies from code to code to different degrees. But the basic ideas that

13

lies behind them can be roughly divided into two types. The first type of ideas are
those that suggest one solve a BVP for ODE via solving its related IVP. Numerical
methods based on these ideas are referred to as initial value methods (for BVP). The
second type of ideas involve spline-collocation or implicit Runge-Kutta approach, and
the related methods are referred to as finite difference methods. Among the four codes
we are interested in, only MUTS is based on a method that belongs to the first type
[15]. COLNEW and COLSYS use spline-collocation [3], [1]. HAGRON is based on
a special implicit Runge-Kutta methods with deferred correction [4], [S], {6].

The first type of ideas is very natural in the sense that to construct a method
for solving BVP by relating a BVP to its corresponding IVP, one can then take full
advantage of the existing numerical tools for solving IVP. To see how this might be
done, we consider the following simple example

Example 1.3.1 Single shooting method for general linear two-point BVP
Consider a general linear two-point BVP
y'=A(x)y + q(x) a<x<b (1.3.1a)
Byy(a) + Byy(b) = S (1.3.1b)

where A(x), B,, B, R™® and y(x), q(x), e R®

If the general solution of ¢(I.3.1a) y(x) can be expressed as
y(x) = ‘Y(x)s + v(x) a<x<b - (1.3.2)

where Y(x) is a matrix function, s is a parameter vector (seR?) and v(x) is a particular
solution of (1.3.1a), and if (1.3.1a&b) has a unique solution, then there must exist an
unique s that corresponds to this solution. To find such a s, let's substitute (1.3.2) into
(1.3.1b)

B,[Y(a)s + v(a)]+B,[Y(b)s + v(b)] =
or [B.Y(a) + B,)Y(b)]s+B,v(a)+B,v(b) = .

Letting Q =B, Y(a) + B,Y(b)

14

B*=p- B.,v(a) - B,y(b)

then we have Qs = f*. (1.3.3)
Thus s can be calculated by using (1.3.3) and (/.3.1a&b) is then solved. However,
there still remain a few important questions that need to be answered: 1) Does there
exist a general solution of the form (1.3.2) ? 2) Is there a unique solution to (1.3.3), i.e.
is the Q matrix nonsingular ? 3) What does the above process of solving BVP have to
do with solving IVP ?

Under t‘hc condition that A(x), g(x) are continuous on [a,b], and (1.3.1a&b) has
an unique solution, one can show that the n homogeneous first-order systems
Y'(x) = A(x)Y(x) a<x<b (1.3.4a)
Ya)=1 (1.3.4b)
where Y(x),A(x),le R™™, I is identity matrix and the first-order linear system
v(x) = A(x)v(x) + q(x) a<x<b (1.3.5a)
va) =« (€ Rn) (1.3.5b)

will all have unique solutions [2]. Using the solutions of (1.3.4a&b) and (1.3 .4a&b),
one can form a general solution of (1.3.1a) by substituting the solutions into (1.3.2).
Furthermore, the resulting Q matrix in (1.3.3) is then a nonsinguler matrix. To answer
the third question, we notice that both (1.3.4a&b) and (1.3.5a&b) are IVPs. Thus the
method described above can be.implemented by using the following algorithm that
involves heavy use of an IVP code.

Step 1. Integrate (1.3.4a&b), (1.3.5a&b) numerically by using an IVP code,

and obtain YA(b), vA(b) (the numerical solution of Y and v at b).
Step 2: Form Q and f* and solve (1.3.3) for sh.
Step 3. Integrate (1.3.1a) with the following initial condition
yia) = s +o (1.3.1c)
numerically using an IVP code.

15

The numerical solution of (1.3.1a&c) is then the numerical solution
of (1.3.1a&b).

We conclude this example by pointing out that despite its mathematical
elegance, the method described above is by no means always practical. One major
reason for this is the fact that yA(a) is only an approximation of y(a). When the IVP for
(1.3.1a) is very sensitive to the change of the initial value, use of y(a) and y(a) as
initial conditions will lead to totally different solutions. In this case, the solution of
(1.3.1a&c) cannot be used to approximate the solution of the IVP (1.3.1a) with initial
value y(a) and is therefore not the solution of (1.3.1a&b). The techniques and methods
behind MUTS are far more sophisticated than what was described above [14].
Nonetheless, one can get some basic idea concerning how a BVP can be solved via
solving IVP from this example. See [2] for a complete coverage of shooting methods.

One may have already noticed that whether a problem is linear or not had little
effect on the IVP methods we discussed above. But nonlinear BVP have to be reated
quite differently and are usually considerably more expensive to solve than linear
BVP. The general idea of approaching a nonlinear BVP is to adapt numerical methods
for linear BVP and use Newton's iteration. To see how this can be done, we consider a
simple finite difference method—the trapezoidal scheme for solving (1.1.3a) with
general nonlinear two-point boundary conditions (1.1.5)

y=f(xy) a<x<b (1.13a)

g(y(a)y(b)) =0 (1.1.5b)
Example 1.3.2: Trapezoidal Scheme

We first discuss how the rrapezoidal scheme works on the linear problem
(1.3.1a&b). Given a mesh #: @ = x,<x,<--<xn,; = b, the so called trapezoidal scheme
is the following discretization of (1.3.1a)

!H[- 2;’

1
h, =5 [A(X;1)Yinr + A(x)yd + E[‘I(xm) +¢q(x)] i=1.2,.N. (1.3.6a)

N |~

1 1 1
Letting S, =-h'I - EA(xi)» R;=h'I- EA(XM),) [q(xi.1) + q(x)] (1.3.6b)

16

then we can write (1.3.6a) in matrix form

—S : R, Y] —41-

S, R, Y2 q:
’ . ’ = . (1.3.7)

Sy Ry . qn

_B, B, Vet _ﬁ -

(1.3.7) gives the numerical solution of (1,3.1a&b) at the mesh points.
Recall that Newton's method for solving system of equation
F(s)=0 (1.3.8a)

involves an iterative procedure
sm+l = G(sm) m=0,1,2,..
where G(s) =s - [F'(s)]'F(s), and F'(s) = @;9_?2 is the Jacobian matrix. This can also
be written as
F'(sm)w=-F(s™) (1.3.8b)
smtl = gm 4+ w (1.3.8¢)
To illustrate Newton's method for solving nonlinear BVP, consider the

following example. The trapezoidal scheme for (I1.1.3a) with boundary condition
(1.15b) is given by (1.3.9a&b) below.

hﬁ:_& = %[f(x.'m)‘m) +f(xu)‘)] i =1»2,;N (1 39(1)
g(¥ryn.) =0 (1.3.9b)

Let the nonlinear algebraic equations (1.3.8a) be (1.3.9a&b) with

S =y = (YnY2 - Yne)T seRN+!

Using difference operator notation for (1.3.9a) we obtain

Noi= 20 2) + S50 (1.3.10a)

17

and F(s) = (Ngy.,-\N<¥n, 8(¥1,¥x.1))T. Newton's iteration (1.3.8b) gives
w1
—'-‘—‘w’h, “ -3 [A(xi)winy + A()w] = -Ny/ I<isSN (1.3.10b)

B.w; +B,wy.; = -g(¥y/™Yn.1™). (1.3.10c)

Here, y,/» are known from values from a previous iteration (y,0 is an initial guess) and

A(x) = %(x,-,y,"‘) (1.3.11a)
p, =R p BBV Gy oy (13.010)

The next iteration is given, according to (1.3.8c), by ymt! =ym + w;,i=1,2, .., N+1.
The system (1.3.10) for the correction vector w, is a linear system of equations which
looks like a trapezoidal discretization of some linear problem. In each iteration, we
performed two operation in succession—discretization and linearization. This method
can be implemented by using the following algorithm:

Algorithm: Trapezoidal scheme with Newton's method

Input: A BVP (1.1.3a) and (1.1.5b), a mesh &, an initial guess of solution values y,0
at mesh points, and a tolerance TOL.

Output: Solution values at mesh points.

Repeat
1. Generate B,, B, by (1.3.11b) and set = -g(¥,,¥n.1)-
2:Fori=12,..N DO
Generate S, R; and q,of (1.3.6b) using (1.3.11a) and q; = -Ny;. At the

end of this iteration, the matrix A and the right hand side vector f3 have
been generated.

3: Solve Aw, = B for w,
4:Fori=1,2,---,N+1 DO

Yi=yit w;

18

5: Stop if [wd < TOL or the iteration limit is exceeded.

The trapezoidal scheme discussed above is one of the simplest finite difference
methods for solving BVP. Like the single shooting method, this method is simple but
is rarely used in practice. Its biggest disadvantage is that this method has a local
truncation error of order 2 (see [2] for more details). If high accuracy is desired, then a
higher order scheme is more effective. Nevertheless, from this example, one can see
that the nonlinear BVP are indeed more complicated to solve than the linear BVP
since it involves Newton's iteration. But for most of the IVP methods, as we
mentioned earlier, nonlinearity has little effect on them.

To continue our discussion about the nature of the numerical methods for IVP
and BVP with respect to the formulations of BVP and IVP, we point out that since the
information about the solution is given at the (at least) two boundary points for a
BVP, but at none of these points the information is completely known, it is then
impossible to use local methods such as those methods for IVP we discussed above.
Consequently, the numerical solution y;'s are not determined one at a time in some
linear order, rather they are determined simultaneously by some global relation such as
(1.3.7) that connects all y;'s through out the entire mesh [2].

Let us now carry on our discussion about Runge-Kutta methods. we started in
the last section. A general k-stage Runge-Kutta scheme for y’ = f(x,y) is defined by

k
Yiar =Y+ hlzﬂ}fy 1 <i<N (13.120)
1
k
where fi = f(xp i + b 20ufs) 1<j <k (13.12b)
=1

The points x; are given by

with
05pSp S Sps1 (1.3.124d).

the "canonical points". Thus the points x;, which are sometimes called collocation
points, are N scaled translations of the canonical set of k points p,, p;, ---, p; into each
subinterval of the mesh 7. With k(k+2) free parameters, a k-stage Runge-Kutta

19

scheme can archive a high order of accuracy. A Runge-Kutta scheme is explicit if p, =
0 and ¢y, = O for all j <1, and implicit otherwise. For initial value problems, explicit
methods have obvious advantages over implicit ones even though they have fewer free
parameters to choose from. With an implicit method, one can still use a simple
"marching algorithm”, such as the algorithm for Euler's method, to calculate u;'s from
the left to the right one at a time. But for boundary value problems, implicitness are
inherent in the problems in the sense that numerical solution values on 1t are obtained
simultaneously. Thus the “marching algorithm” becomes impossible and the biggest
advantage of explicit methods disappears. It therefore makes sense to use implicit
ones by which one can make use of all the k(k+2) free parameters and get the most
out of the methods in terms of accuracy and efficiency [2]. Implicit Runge-Kutta
methods play an important role in the literature of finite difference methods for solving
BVP. The methods behind COLNEW, COLSYS and HAGRON all have close ties
with it.

The above are just some basic ideas for solving BVP for ODE. As our interest
is in comparing the codes rather than the methods, we will not dig further into the
numerical methods for BVP for ODE. To finish this chapter, we point out once again
that the methods we had discussed above are only illustrative but by no means
complete or close to the methods that are behind the four codes. We hope that this
chapter can get those reader who are not familiar with the BVP for ODE started
getting to know the basic types of BVP for ODE and the basic ideas for solving BVP
for ODE, as well as the difference between IVP and BVP from a numerical methods
point of view. The four codes we. are about to compare are based on the most advanced
developments in the field of BVP for ODE. The methods and techniques involved are
so sophisticated that it is difficult for us to come up with some simple versions that
can be included here. For those who are interested in details of the theoretical
background of the codes, [2] has the most complete and up-to-date coverage of the
background information.

20

Chapter 2 The Comparison of Codes (I)

—General Discussion on the Difficulties and Criteria of Comparing
Codes for BVPODE

The lack of sufficient commonly agreed upon criteria is indubitably the most
serious problem of the comparison of codes. This problem not only causes technical
difficulties for the comparison, but also limits the validity of conclusions resulting from
any comparison. Even if one restricts himself in the comparison of codes in a narrow
field, one still cannot totally get away with this problem. Both [5], [6] for HAGRON
and [15] for MUTS have some discussion involving COLSYS, but the authors are very
cautious in making any explicit comparison between their codes and COLSYS. People
have been avoiding making direct comparison because of its problems. The common
notion about comparison that it must end up with telling the good ones from the bad
ones also contributed to people's reluctance of making direct comparison. Thus it
seems important to make it clear what we mean by “comparison”, in particular, the
"comparison of BVPODE codes".

2.1 The Comparison of Codes and the Validity of Its Results

There exist many criteria that are relevant to the comparison of codes. The
problem of the lack of commonly agreed criteria is mainly due to the fact that people
have different opinions about the weights each of those possible criteria-should
receive. CPU time is definitely a possible criterion, so is the accuracy. For people with
very limited computing resources, CPU time may be just as important as accuracy. On
the other hand, for people who need high accuracy and have abundant computing
resources, CPU time may not be what they are concerned about. A code may be too
slow to be competitive today, but with faster computers that are bound to come
tomorrow, it may become very competitive due to its advantages in some other
aspects. Realizing that the importance for each of the possible criteria varies with
individuals and time, it make sense to simply put the weights issue aside and not to
judge the overall performance of a code according to several simple criteria. "Linear
Ordering"” does not apply in the context of the comparison of codes [17]. Realistically,
what one can archive is to use as many relevant criteria as possible and compare the
codes by using these criteria separately. Thus a meaningful comparison of codes may
simply be a collection of information resulting in comparing the codes according to

21

many specific criteria. It is not an attempt to tell the good ones from the bad ones, and
it does not assign the weights to the criteria. Rather, it simply provides the user with
plain facts about the codes and enables them to assess the codes' relative overall
performances according to the criteria that they are most concerned about. However,
we do not rule out the possibility of having a meaningful overall assessment as a part
of a general comparison. In fact, there have previously been quite useful comparisons
of codes for numerical quadrature, scalar nonlinear equation solvers, and comparisons
of codes for IVPODE (see [12], [24]). In these cases, however, the codes were
intended to solve the same problems and the design criteria were basically the same.

The solution of BVPODE necessitates many types of numerical consideration.
In Figure 2.1 below, BVP for ODE is connected to the other areas such as
approximation theory, numerical linear algebra and optimization. It is in this sense we
say that solving BVP for ODE is of high complexity. This complexity of BVP for ODE
makes 'the method for BVP for ODE' or 'the algorithm for a BVP for ODE code' very
vague. If we interpret 'the method for BVP for ODE' as the basic numerical scheme
that can solve BVP for ODE in theory (and do not include those considerations for
actual implementation), and interpret an algorithm as a detailed scheme based on a
numerical method that is ready for coding by using some computer language, then this
complexity certainly prevents us from extending the observations resulting from
comparing the codes to the comparison of the methods or comparison of algorithms.
COLNEW and COLSYS are based on the same method, i.e. the collocation method for
BVP, but COLNEW is generally faster than COLSYS in terms of CPU time needed for
solving the same problem. Codes based on different implementations of a certain
numerical method can be so different in many aspects of their performance that even
with a considerable amount of cxpcrtirsc, it is still hard for one to tell whether a
relative merit of a code is due to the code's underlying method. In the example
mentioned earlier, COLNEW is only different from COLSYS in terms of the types of
spline used for the representation of the numerical solutions and the linear system
solvers. The difference between COLNEW and COLSYS in terms of speed is often
simply due to their different linear system solvers. If a code is faster than COLSYS,
and is slower than COLNEW, we probably cannot say anything concerning the
comparison between the numerical method that lies behind that code and the
collocation method in terms of speed. In fact, every part that attached to BVPODE in
Figure 2.1 is very important to a BVPODE code that involves it. An improvement over

22

any participating part can dramatically improve the performance of a code. Thus the
validity of the results resulting from a comparison of codes is very much limited to the
related codes themselves.

IVPODE Optimization
Approximation Numerical
Theory BVPODE Quadrature
Rounding Numerical
Error Analysis Linear Algebra

Figure 2.1 Reproduced from [17] by permission of the authors

Even if we restrict the validity of the comparison to the participating codes, we
still have to answer to what degree our comparison represents the true relationships
among the codes. The problem that still challenges the validity of a comparisori is that
many criteria can only be applied with some test problems. Accuracies of a code (or
accuracy of the numerical solutions that a code can obtain), for example, usually cannot
be determined without some test problems, and it also varies from test problems to
test problems. The accuracy of one code may be better on one test problem than that of
the other codes, and may be worse on another test problem. The validity of a general
conclusion concerning accuracy is very much based upon the hope that the test
problems involved are somewhat 'typical’ and can represent. (if not every) almost
every type of problems we may encounter in practice. While a standard set of test
problems that have all the desirable properties, such as be typical or representative,
might be possible for comparison of codes in some other fields, it is not a realistic idea
in our context of comparing BVPODE codes (see [17], [21]).

23

Nonetheless, a general comparison of codes is usually subjective in nature and
the real strength of a comparison often lays in the correct subjective input (or
expertise) from those who make the comparison. A comparison of codes can involve
only a limited number of test problems, but the observations resulting from these test
problems can reflect the true relationships among the codes to some degree. With
‘correct subjective input, the results of a comparison can be valid far beyond the limited
number of test problems involved.

2.2 Criteria for Comparing Codes for BVPODE and Their Classification

Pereyra and Russell divided the criteria related to the comparison of BVPODE
codes into the following three categories 1) general "objective” (more quantitative)
criteria, 2) general "subjective” (more qualitative) criteria and 3) subjective criteria
particularly relevant to BVPODE codes [17]. The first category includes timing
(speed), storage, portability and program correctness. The second category includes
ease of use and robustness, and the third category includes user feedback, error
estimation, termination criteria, program parameters and program driver. Ironically, the
objective criteria are among those criteria that are most difficult to be implemented and
very often, the comparison related to these criteria need a considerable amount of
subjective input in order to be complete. The speeds of the codes, for example, are
generally not comparable except on some concrete examples (or test problems as
mentioned above). To draw general conclusions concerning the relative speeds of the
codes through some concrete examples certainly needs a considerable amount of
subjective input. .

In our comparison in the last chapter, apart from most of the criteria mentioned
above, we will also take into consideration the number of points in the final mesh, the
distribution of the final mesh points and the location of the maximum absolute error. A
meaningful classification, like the one provided by Pereyra and Russell in [17], can
help us understand the nature of the criteria and therefore the importance and validity
of the observations related to the criteria. Indeed, there are many common aspects of
the criteria that are worth noticing and can be used to make useful classification. The
following are two classifications we will refer to later in our discussion. 1) According
to whether or not a criterion has to depend on test problems, one may classify the
criterion by 'test problem dependent' or 'non-test problem dependent’. Among those

24

criteria mentioned above, timing, storage, accuracy, robustness, the number of mesh
points in the final mesh, the distribution of the final mesh and the location of the
maximum error are test problem dependent. The rest, e.g. ease of use, termination
criteria and program parameter, can be considered as non-test problem dependent. 2)
According to whether or not the criteria are about the technical details of codes' design
or codes' performance, one may classify them as 'structure type criteria' and
'performance type criteria'. All the test problem dependent criteria, timing, storage,
accuracy, plus ease of use can be considered as performance type criteria. The rest,
such as termination criteria and error estimation are structure type criteria.

2.3 Comments On The Criteria We Choose

Most of the criteria we mentioned above will be used by us and they can be
well understood without further explanation. But some of them deserve some
explanation. The following is the list of criteria we will use in the comparison in the
last chapter. In order to be precise, we also provide a short description of those criteria
that may not be clear to everyone.

a) Codes' Drivers Related criteria
I1: The form of the BVPODE that can be directly dealt with by each code.

We choose this as one of our criteria because some of the codes can only solve
BVPODE that are in a very specific form. Information concerning this aspect is
supposed to be useful to code users.

2: Input information
2.1 Input parameters

Each code has many parameters through which useful information is conveyed

to the code. Some of them, such as a linear (nonlinear) indicator parameter, are

easy to determine. But the others, such as the tolerance parameter, are more
difficult to choose. We will have some general description concerning the use of the

25

input parameters in the third chapter, and we will comment on those critical
parameters in chapter four when we make our comparison.

2.2 Input subroutines

Input subroutines are the major channels to convey the information concerning
a BVPODE to the codes. Each input subroutine usually describes one aspect of
the problem. For example, most of the four codes involve an input subroutine that
conveys the information of the ODE (or ODE system) to the codes and an input
subroutine that conveys the information of the boundary value equations to the
codes. It is plausible for a code to have more subroutines in order to channel more
information through to the code. However, not only the number of necessary input
subroutines is often restricted by the underlying method, but also there exists the
problem of trade off between the amount of information one wants to channel
through and the complexity (or efficiency) of the driver. This is a useful criterion
since it is related to both the least amount of information a code uses to solve the
problem and the complexity of the driver.

3: Ease of use

It is useful to have the difficulties we had encountered from time to time when
we used the codes included here so that those who do not have much cxpcricncc
with BYPODE codes can learn to avoid them. The relative ease of use of the four
codes will be assessed through comparing these difficulties.

b) Other performance type criteria

4: Timing (we will only use CPU time on some specific test problems)
5: Storage .

6: Accuracy (measured by the maximum error. see Appendix II)

7: Portability

8: Robustness

There are a few things that are worth commenting on here. Among the above
list, most of the criteria are test problem dependent. Timing, accuracy and storage

26

are not only test problem dependent, but also ‘input parameter dependent' and
depend on each other in the sense that even with a fixed test problem, they may
still vary with different combinations of input parameters and they are also related
to each other. COLSYS and COLNEW, for example, will use different mesh
selection strategies, depending upon whether or not the allotted storage is a
limiting factor. If it is, the codes may solve a problem using less storage than if
unlimited storage is provided. At the same time, the accuracy of the solution may
be worse than it would be when unlimited storage is provided. With so many
factors related to each of these criteria, it is not realistic to find the best set of
parameters that would give the code the best performance in terms of all these
criteria. This is an important issue and we will have technical details about the
implementation of these criteria later in the last chapter and Appendix II.

c) Criteria related to the design of the codes.

9: Termination criteria

10:

A code may be terminated for many reasons such as a satisfactory numerical
solution is found (this is called normal termination), the allowed storage space is
insufficient, code overflow or even the elapsed time since the code started running
exceeds some limit. All these reasons except the first one are called abnormal
terminations. By termination criteria here we simply mean the mechanisms that
are built in the code that lead to the normal returns from the codes. We will
examine these mechanisms .as well as their relationship with tolerance in the
fourth chapter. The other abnormal causes for terminations will be discussed when
we compare the robustness of the codes.

User feedback

By user feedback, we mean the information about the procedures for solving a
BVPODE and the correctness of the driver provided by the codes. This information
might be an abnormal return from the code like a warning message indicating a
certain parameter value is not properly set, or simply feedback information like the
number of points in the current mesh. With more than one choice of a code, a user
(especially if he/she is not familiar with the merits of various BVP codes) is likely

27

d)

13:
14:
15:

to choose the one that is the most ‘user friendly’ one. When writing a code,
knowing what kind of feedback information the user may need to know the most
and providing the user with the access to this information can often result in a user
friendly code. It is also important not to burden the user with feedback information
that is not of great importance to them.

Solution related criteria

The number and the distribution of the final mesh points
The form of the solution
Error analysis (Location of the maximum error and the graph of the total error)

It would not be of such a great importance to look at these issues if all the
codes we are interested in provide solutions on the entire domain upon normal
returns from the codes. Since some of the codes return with a solution at only a
finite number of final mesh points, and the gap between a continuous solution and a
discrete one cannot be bridged by simple interpolation [19], these issues become
very important. One can say nothing about the relative efficiency concerning two
codes if one takes ten CPU seconds and returns with a solution at one hundred
points and another one uses only five CPU seconds but returns with a solution at
only, say, forty points for the same objective problem. Neither can one say
anything concerning the relative efficiency if one code uses more time or storage
and returns with a solution that characterize the true solution very well and
another one uses less time and storage but returns with a solution from which only
part of the true solution can be read off. An exaggerated example of this type is
that a code terminates with a set of final mesh point that are all in the upper half of
the domain except the lower end point. It is then very unlikely that one can tell the
behaviour of the solution at the lower half of the domain by looking at the discrete
solution at these mesh points.

Thus a comparison of codes with respect to only time or storage is incomplete
since the ultimate goal of a code is to provide a good solution to problems. The
quality of the numerical solutions from each code must also be taken into
consideration. In our view, this quality should have at least the following aspects
1) accuracy of the solution, 2) the number of the final mesh points, 3) the

28

distribution of the final mesh points (versus the shape of the true solution on test
problems). We will look into these three issues in our comparison in Chapter Four.

2.4 Numerical Methods Related Issues and the Principle of Our Comparison

There are differences among the codes that can be directly traced back to the
methods which the codes are built upon. The types of BYPODE that the codes can be
directly applied to, the forms of solutions provided by the codes and whether or not a
code has built in adapted mesh selection strategy are three most important differences
of this kind.

The difficulty of comparing these differences is that they are often related to the
designers' original purposes of writing the codes. If a code is written to solve two point
boundary value problems only, for example, is it still a disadvantage of the code that it
can not be directly used for a multipoint boundary value problem? Should not one
compare this code to other codes with respect to the type of problems a code is
addressed to at all?

When making a general comparison, we believe it is important to emphasize
the common side of these codes' goals. The types of BYPODE these codes are aimed
at or the forms of solution they provide may differ to some degree, but they all share
the same original motivation, i.e. they are all motivated to solve BVP for ODE. This is
the 'lowest common denominator' of their goals and it is on this ground that we are
comparing the four codes.

In this thesis, we will treat all the four codes as general purpose codes for
solving boundary value problems for ordinary differential equations regardless of the
differences mentioned above. It is our principle that what we are comparing are simply
BVPODE codes, not a code aimed at a certain type of BVPODE that results in a
solution in a certain form and another code aimed at another type of BVPODE that
provides a solution in another form. Every aspect of the codes we included in the last
section, whether or not it is related to the designer's original purposes of writing the
code, will be compared.

2.5 The Selection of Test Problems

29

We finish this chapter with a few words on how test problems are usually
selected by many experts in this BVPODE field. We will follow their expertise on
selecting the test problems. For the complete set of test problems we are going to
use, please see appendix (I).

2.5.1 What do we want from the test problems

First, we need to use test problems in order to carry out the comparison
concerning those test problem dependent criteria. Second, we want the test problems
to be somewhat representative so that the comparison related to these test problems
is somewhat trustable. These concerns are our guidance for selecting test problems.

To convert the above concerns into concrete criteria of selecting test problems,
we notice that the test problem dependent criteria, especially robustness, require that
the test problem includes nontrivial problems, as well as BVPODE of different types.

2.5.2 Test problems involving parameters

It is a common practice among the BVPODE experts to use test problems that
involve one or more parameters which control the difficulty of the problem (see [1],

(2], 4], (6], (8], [17]).

For a BVPODE code, the difficulty of a problem is usually represented by the
nonsmoothness of its solution. Since all the codes are based on numerical methods
that rely on the assumption that the object problems have somewhat smooth solutions
to work properly, we expect that as the problem gets rougher and rougher, the
performance of the codes will become worse and worse, and the codes will eventually
fail to solve the problem. Thus it is ideal to select test problems with different degrees
of difficulties to test the robustness of the codes. One reason for using test problems
with parameters is that they provide us with the different degrees of difficulties.

It is generally difficult to compare the degrees of difficulties of different
problems, but is relatively easy to predicate the change of the degree of difficulty for a

30

problem involving parameters when one changes the values of its parameters. This is
another reason we use test problems involving parameters.

2.53 A few types of common nontrivial BVPs for ODE

While we will only use those test problems that we believe are somewhat
representative, developing strategies for finding a set of representative problems for
boundary value problems for ordinary differential equation is too big a subject to be
dealt with here. We will not spend too much effort on this, rather we merely mention
the four basic types of nonsmoothness behaviour of the solutions for ODE for BVP.

The first type is boundary layer type (BL), such as the one shown in example
one on the next page. The second type is the turning point type (TPT) such as the one
shown in example two on the next page. The third type is oscillatory type (OSC) such
as a high frequency sine or cosine wave, e.g. example three on the next page. The
fourth type is spike type (SPK), such as the one shown in example four on the next
page [17]. It follows naturally that a solution might have a boundary layer and have a
turning point at the same time. Due to various expenses, we will only have test
problems that have exact solutions that belong to each one of the four types above.

31

- —-— - - —
]
- :
X .
£T ®ET GV WwI e WY WY Fe 4P o W 8 3% i
¥l i
ﬁq.T c
i
H
i
N
i
—
1
: 1
3 " tt
w _J
y B 3 \
: i
! i
; TR i
i
i
m\
1 b 4
$ " 1 L I s T T O - T 2 T,) .
_ ———
} i
. .
(g d
m r
1
H
.
i ~
i
et
]
H
" i
i
.
1
!
.
' H
:

- — - — . o— —

7 _m
< E
3 th
m ‘J.m
i @ & & & i °
) 3
n ' ::qlq.-nq.-;::,]
T
g
| \
)
v) ..?..

i
: €T3

| N

T S O . ————— — . . o ¥

32

Chapter 3 How to Use the Four Codes

The purpose of this chapter is to acquaint the reader with the procedures for
running the four codes. It also serves as preliminaries for comparing the codes in terms
of the criteria related to the form of the driver such as 'input parameters’ and 'ease of
use ' etc. As some of the codes are still undergoing changes, the procedures described
in this chapter are strictly for the versions of the four codes we currently have. The
procedure for running each code we provide below include the type of BVPODE each
code is addressed to, information for how to set up input parameters, input (user
supplied) subroutines for each code and user feedback that is available from each code.
A sample driver for solving the following nonlinear two point boundary value problem
for each code is also included.

Example 3.1 A two point BVPODE

-2

Y= ? 12429 (3.1a)
) 1

y'=y2-—T+é (3.1b)
i

¥i(0) =1, y(I) = ¢! (3.1c)

3.1: COLNEW and COLSYS

COLNEW is a modified version of COLSYS where the linear solver and the
bases for representing the numerical solution are different from COLSYS. Despite
these differences, the two codes have exactly the same set of input parameters, input
subroutines and the forms of the drivers for running them can be exactly the same.
Since the two codes also provide the same user feedback information and their
difference is not what we are concerned about in this chapter, we will treat them as if

they are the same and the procedure described in this section is therefore for running
both of them.

3.1.1 The classes of BVPODE COLNEW and COLSYS are addressed to

COLNEW and COLSYS solve a mixed-order system of ODE subject to

33

separated, multipoint boundary conditions given by
u™ = fi(x; z(u(x))) i=l,d asxsb (32a)

g{z(u({))) =0 j=1,-m* (3.2b)

d
where u(x) = (u;(x),u;(x),...,uys(x))T is the exact solution vector, m* = Zm, , the
=1

boundary points satisfy a = {; < {; <--s{,. =b and
Z(u(X))= (1), 1 °(X), -+ ™1-1() S Up(X) 1y "(X) o WMD) oo SULX) U LX), oo ™) (X))T.

m; (i=1,2,...,d), the order of the i** differential equation satisfy 1< m,<4. The functions
f: and g; are generally nonlinear. ‘

3.1.2 Code Parameters
Both COLSYS and COLNEW are headed by

SUBROUTINE COLSYS(NCOMP, M, ALEFT, ARIGHT, ZETA, IPAR,
+ LTOL,TOL, FIXPNT, ISPACE, FSPACE, IFLAG,
+ FSUB, DFSUB, GSUB, DGSUB, GUESS)

The variables in the first two lines of the heading are input parameters. The
last five in the third line of the heading are the names of the input subroutines. We
now explain how to set up these parameters one by one according to the order they
appear in the calling sequence. Unless specified otherwise, the parameters are input

parameters.
NCOMP: = d — the number differential equations (<20).
M(j): order of the j** differential equation, I <j S NCOMP.

ALEFT = a, ARIGHT = b: interval end points.
NCOMP

ZETA(j): =¢§,1<j < Zm,- , Must be mesh points in all meshes used.

j=1

34

IPAR:

IPAR(1):

IPAR(2):

IPAR(3):

IPAR(4):
IPAR(5):
IPAR(6):

IPAR(7):

IPAR(8):

IPAR(9):

See description of IPAR(11) and FIXPNT below.

An integer array of dimension /1. A list if the parameters in /PAR and
their meaning follows:

= 0 if the problem (3.1a) is linear in z{u(x)).
=] if the problem (3./a) is nonlinear in z(u(x)).

= number of collocation points per subinterval and .

Mupay = max{m,, j=1,---,d} <IPAR(2) <7 (Recall that m,,, <4).

= number of subintervals in the initial mesh (>0). If on entry /PAR(3) is
equal to 0, then COLSYS arbitrarily sets /[PAR(3) to be 5.

= number of solution and derivative tolerances. 0 </PAR(4) <m'
= dimension of FSPACE (see description of FSPACE).

= dimension of ISPACE. (see description of ISPACE).

output control

= -] for full diagnostic printout
=0 for selected printout
= +1 for no printout

= 0 causes COLSYS to generate a uniform initial mesh.

=] if the initial mesh #: @ = x; < x; <---< Xjparez)+1 = b is provided by the
user. In this case, the initial mesh must be defined in FSPACE by
FSPACE(j) = x;.

= 2 if the initial mesh is supplied by the user as with IPAR(8) =1, and
in addition no adaptive mesh selection is to be done.

=0 if no initial guess for the solution is provided.

=1 if an initial guess is provided by the user in subroutine GUESS.

35

IPAR(10):

IPAR(11):

LTOL.:

TOL.:

FIXPNT:

ISPACE:

=2 if an initial mesh and approximate solution coefficients are provided
by the user in FSPACE. (The former and new mesh are the same.)

=3 if a former mesh and approximate solution coefficients are provided
by the user in FSPACE, and the new mesh is to be taken twice as
coarse, i.e.,every second point from the former mesh.

=4 if in addition to a former initial mesh and approximate solution
coefficients, a new mesh is provided in FSPACE as well.

*** See description of output for further details on IPAR(9) = 2, 3,4
= 0 if the problem is regular

= 1 if the first relax factor if small, and the nonlinear iteration does not
rely on past convergence (use for an extra sensitive nonlinear problem
only).

= 2 if we are to return immediately upon (a) two successive
nonconvergences,or (b) after obtaining an error estimate for the
first time.

= number of fixed points in the mesh other than ALEFT and ARIGHT.

an integer array of dimension JPAR(4). LTOL(j) = k specifies that the
j** tolerance in TOL controls the error in the k* component of z(u(x)).

a real array of dimension IPAR(4). TOL(j) is the error tolerance on the
LTOL(j)*» component of z(u). The code will attempts to satisfy on each

subinterval /(z(v) - z(u))rouyl < TOL{j) (/z(w)rouyl/ + 1) if w(x) is the
approximate solution vector. (u(x) is the exact solution of (3.1a&b))

an array of dimension /PAR(11). It contains the points, other than
ALEFT and ARIGHT, which are to be included in every mesh.

an integer work array of dimension /PAR(6). Its size provides a
constraint on the maximum mesh points.

36

FSPACE: areal work array of dimension /PAR(5). Its size provides a constraint
on the maximum mesh size.

IFLAG: the mode of return from COLSYS, output parameter.
=] for normal return.
= () if the collocation matrix is singular.
=-1 if the expected number of subintervals exceeds storage specifications.
=-2 if the nonlinear iteration has not converged.
=-3 if there is an input error.

3.1.3 Input (user supplied) Subroutines

The following five subroutines must be declared external in the main program
which calls either COLSYS or COLNEW.

SUBROUTINE FSUB:
This subroutine is for evaluating f(x,z(u(x))). It should have the heading
SUBROUTINE FSUB (X,Z,F)

where X =x, Z = z and F is the vector containing the values of f;, as defined in
(3.2a&b) above.

SUBROUTINE DFSUB:

This subroutine is for evaluating the Jacobian of F at a point X. It should have
the heading

SUBROUTINE DFSUB(X, Z, DF)

where Z = z(u(x)) is defined as for FSUB and the d>on* array DF should be filled
by the partial derivatives of F, i.e. for a particular call, the subroutine returns with

DF(i, j) = gzﬁ, (i=1,2,...d j=1,2,-,m*) atpointX.

SUBROUTINE GSUB:

37

This subroutine is for evaluating the j** side condition g; at a point x = ZETA(j)
(1<j<m*). It should have the heading

SUBROUTINE GSUB(J, Z, G)
where Z is, as for FSUB, z(u(x)) , G is a scalar containing g, as defined in (3.2b).

SUBROUTINE DGSUB:

This subroutine is for evaluating the partial derivatives of g;'s w.r.t z(u(x)). It
should have the heading

SUBROUTINE DGSUB(I, Z, DG)

where Z is again z(u(x)). J is, as for GSUB, the index of the side condition. DG is a

m* dimensional vector that contains the partial derivatives DG(k) = g‘;‘ ,k=1,-...m*.
k

SUBROUTINE GUESS:

This subroutine is for evaluating the initial approximation for Z = z(u(x)) and
for evaluating the vector DMVAL which contains the mjh derivative of the jth

iy
oxi
order of the j** equation in (3.2a) and j = 1, 2, .-- , d (NCOMP). ***Note that this
subroutine is needed only for nonlinear problems if using /PAR(9) = 1. It should

component of the initial approximation u(x). i.e. DMVAL = , where m; is the

have the heading
SUBROUTINE GUESS(J, Z, DMVAL).
3.1.4 User feedback »from COLSYS and COLNEW
Users can get a various amount of feedback via the three options of IPAR(7)

and IFLAG which is the mode of returning from COLSYS and COLNEW. When
IFLAG(7) is set to -1, one gets the maximum feedback which includes the following:

38

1: Verification of some key input information including a) the number of differential
equations, b) if the system is nonlinear, c) side condition points,and d) number of
collocation points per interval.

2: The possible maximum number of subintervals (determined by the dimensions of
both FSPACE and ISPACE).

3: The current mesh and approximate solution values at the mesh points.
4: Solution error estimates. [17].

5: If the problem is nonlinear, the programs also provide an account of how the
nonlinear iteration is proceeding.

6: The five modes of return from IFLAG (see IFLLAG above).
3.1.5 Solution Evaluation and Simple Continuation(with /PAR(9) 2 2)

On normal return from COLSYS, the arrays FSPACE and ISPACE contain
information specifying the approximate solution. In particularly, the final mesh points
are contained by the first ISPACE(1)+1 components of FSPACE. To produce the
solution vector z(u(x)) at any point x (a <x < b), one should use the following
statement

CALL APPSLN(X, Z, FSPACE, ISPACE)

where X = x, Z = z(u(x)) and APPSLN is a subroutine (comes with COLSYS or
COLNEW) for evaluating z(u(x)) that when given x, FSPACE and ISPACE, returns
with Z(x) (i.e. z(u(x))).

When using COLSYS or COLNEW, the resulting solution is defined by the
first (7+NCOMP) components of ISPACE and the first ISPACE(7) components of
FSPACE, i.e. ISPACE(1), ... ,ISPACE(7+NCOMP) and FSPACE(I),
,FSPACE(ISPACE(7)). Thus when evaluating the approximate solution at a specific
point x, APPSLN only uses these components of /ISPACE and FSPACE.

39

A formerly obtained solution can be used as the first approximation for the
nonlinear iteration for a new problem by setting /PAR(9) = 2, 3, or 4. This is called
continuation. When IPAR(9) is 2 or 3, in order to do continuation, one only need to
initialize /ISPACE and FSPACE for the new problem by using ISPACE(1), ... ,
ISPACE(7+NCOMP) and FSPACE(l), ... ,FSPACE(ISPACE(7)), which define the
former solution and set /[PAR(3) = ISPACE(1) (the size of the former mesh). When
IPAR(9) is 4, one has to provide an initial mesh of size JPAR(3) and put the initial
mesh into the first IPAR(3) components of FSPACE. In this case, ISPACE for the new
problem is still initialized by using the first (7+NCOMP) components of /ISPACE which
define the former solution. The initial FSPACE for the new problem must contain the
IPAR(3) new mesh points as its first /PAR(3) components followed by the first
ISPACE(7) values in FSPACE that define the former solution (see /PAR(9) for more
details).

3.1.6 Sample Driver for Example (3.Ja&bd&c) with COLSYS or COLNEW

C SAMPLE DRIVER PROGRAM.

(&

C SOLVING EXAMPLE 3.1 BY USING COLSYS OR COLNEW.

C

C MAIN PROGRAM

C
IMPLICIT REAL*8 (A-H,0-2Z)

C

C SET UP PARAMETERS

C
PARAMETER (NCOMP=2
PARAMETER (IPARI=1
PARAMETER (IPAR2=4
PARAMETER (IPAR3=0
PARAMETER (IPAR4=2
PARAMETER (IPAR5=6000
PARAMETER (IPAR6=300
PARAMETER (IPAR7=-1
PARAMETER (IPAR8=0
PARAMETER (IPAR9=1]
PARAMETER (IPARI10=0
PARAMETER (IPARII=0
PARAMETER (MSTAR=2

N N N N N N N N N N N S N

c

C SET UP ARRAYS

C
REAL*8 ALEFT ARIGHT ,TOL(IPAR4),FSPACE(IPARS).X
REAL*8 EPS,FIXPNT,ZETA(MSTAR),Z(MSTAR),U(MSTAR)
INTEGER M(NCOMP),ISPACE(IPARG)LTOL(IPAR4) IPAR(11},IFLAG
INTEGER KEY,PR,RES(2)
EXTERNAL FSUB,DFSUB,GSUB,DGSUB,GUESS
COMMON IPARAME/MPARAI ,MPARA2

40

Ow

OO0 O

30

MPARAI=MSTAR
MPARA2=NCOMP
IPAR(1)=IPARI
IPAR(2)=1PAR2
IPAR(3)=IPAR3
IPAR(4)=IPAR4
IPAR(S)=IPARS
IPAR(6)=IPARG
IPAR(7)=IPAR7
IPAR(8)=IPAR8
IPAR(9)=IPAR9
IPAR(10)=IPARIO
IPAR(11)=IPARI]

DO3 =111
PRINT*,'I="1,' IPAR="IPAR(I)

ALEFT=0.0D0
ARIGHT=1.0D0

ZETA(1)=ALEFT
ZETA(2)=ARIGHT

M(l)=1
M(2)=1

LTOL(1)=1
LTOL(2)=2
TOL(1)=1.D4
TOL(2)=1.D4

CALL COLSYS(NCOMP .M ALEFT.ARIGHT,ZETA,IPARLTOL,
+ TOL,FIXPNT,ISPACE FSPACE,IFLAG,
+ FSUB.DFSUB,GSUB.DGSUB,GUESS)

PRINT* *** FILAG = 'IFLAG

CALCULATE THE MAXIMUM ERROR ON 200 EQUAL DISTANCE POINT

SP=0.D0

5Q=0.D0

X=ALEFT .
RINCRE=(ARIGHT-ALEFT)/200.D0
ENDPNT=ARIGHT +RINCRE!2.DO
CALL APPSLN (X, Z, FSPACE, ISPACE)
CALL ACCURA (X,U)
P=DABS(U(1)-Z(1))
Q=DABS(U(2)-42))
SP=DMAXI(SP.P)
SQ=DMAXI(5Q.Q)

PRINT 40, X.P,Q

X=X+RINCRE

IF(X LT .ENDPNT) GOTO 30

PRINT*, THE MAXIMUM ERRORI! IS: 'SP
PRINT*, THE MAXIMUM ERROR2 IS: 'SQ

Cc40 FORMAT(1X,F5.2,4X,'ERROR Ul: 'D14.6,' ERROR2: 'DI14.6)

c
c
c

sTop
END

*#+ SUBROUTINE GUESS ***

41

ann

anOn

ana

anon

SUBROUTINE GUESS(X,Z,DMVAL)
IMPLICIT REAL*8 (A-H,0-Z)
COMMONIPARAMEIMSTAR NCOMP
REAL*8 X,Z(MSTAR),DMVAL(MSTAR)

Z(2)=1.D0+X

Z(1)=1.D01Z(2)

DMVAL(1)= -1.DO/(Z(2)*Z(2))
DMVAL(2)= 1.D0

RETURN

END

*** SUBROUTINE FSUB ***

SUBROUTINE FSUB(X.Z,F)

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/PARAME/MSTAR NCOMP
REAL*8 Z(MSTAR),F(NCOMP)
F(1)=-2.D01(Z(2)*Z2))
F(2)=2(2)*Z(2)-1.D0/Z(1)+ DEXP(X)
RETURN

END

+ SUBROUTINE DFSUB *

SUBROUTINE DFSUB(X,Z.DF)

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/PARAMEI/MSTAR NCOMP
REAL*8 Z(MSTAR)DF(NCOMP MSTAR).X
DF(1,1)=0D0

DF(1,2)=4.D0N(Z(2)*Z(2)*Z(2))
DF(2,1)=1.D0/(Z(1)*Z1))

DF(2,2)=2.D0*Z(2)

RETURN

END

s+ SUBROUTINE GSUB ***

SUBROUTINE GSUB(1,Z,G)

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/PARAMEI/MSTAR NCOMP
REAL*8 Z(MSTAR),G

GOTO(12)d
G=Z1)-1D0
RETURN
G=22)-DEXP(1.0D0)
RETURN

END

*** SUBROUTINE DGSUB ***

SUBROUTINE DGSUB(1,2,DG)
IMPLICIT REAL*S (A-H,0-Z)
COMMON/I/PARAME/MSTAR NCOMP
REAL*8 Z(MSTAR),DG(MSTAR)

IF(1.EQ.1) THEN
DG(1)=1D0
DG(2)=0.D0

ELSE
DG(1)=0.D0
DG(2)=1D0

42

ENDIF

RETURN

END

*++ SUBROUTINE ACCURA ***
SUBROUTINE ACCURA(X,U)

SUBROUTINE FOR EVALUATING THE EXACT SOLUTION

anna ann

IMPLICIT REAL*8 (A-H,0-Z)
COMMONIPARAMEIMSTAR NCOMP
REAL*8 X ,U(MSTAR)
U(1)=DEXP(-2.D0*X)

U(2)=DEXP(X)

RETURN

END

3.2 HAGRON

HAGRON is designed to solve first order systems of two point boundary value
problems. It is based on an implicit Runge-Kutta method (see [4], [5], [6]) and is still
undergoing changes. The current version of HAGRON we have is a preliminary
version which we have gratefully received from the authors. We do not yet have a
complete code documentation for this version. The following is some information about
the functions of the code's parameters and input subroutines we gathered when we ran
the code.

3.2.1 The type of BYPODE HAGRON is addressed to

HAGRON solves a two-point boundary value problem for a system of first
order ordinary differential equations given by

u; = f{x, u(x)), i=12,...d as<x<b (3.3a)
g(¢, u() =0 j=12, - .d (3.3b)

where u(x) = (uy(x), us(x), ... , ugx))T is the exact solution, fi(x, u(x)) and g;(&, u(g;))
are generally nonlinear functions, and there is a integer k (1<k<d) such that

a=4=6==<bu=Cu2==80=b (3.3¢)
3.2.2 Code Parameters

43

HAGRON is headed by

SUBROUTINE HAGRON (ICOMP, ZETA, IPAR, LTOL, :I‘OL, FIXPNT,

ISPACE, FSPACE, U, IFLAG,
FSUB, DFSUB, GSUB, DGSUB, SOLUTN)

Like COLSYS and COLNEW, the variables in the first two lines of the heading
are input parameters. The last five in the third line are the names of the input

subroutines. The following is a list of these parameters with explanation. Unless

specified otherwise, the parameters are input parameters.

ICOMP:

ZETA(J):

IPAR:

IPAR(1):

IPAR(2):

IPAR(3):

IPAR(4):

IPAR(S5):

IPAR(6):

IPAR(7):

= d — the number of differential equations.
Jj*h side condition point (boundary point {)). Must satisfy (3.2c).

An integer array of dimension /6. A list of the parameters in JPAR and
their meaning follows:

= 0 if system (3.2a&b) is linear.
=] if system (3.2a&b) is nonlinear.

= the number of side conditions at the left hand end of the region (a).

= the number of subintervals in the initial mesh (>0). If on entry
IPAR(3) is equal to 0, HAGRON arbitrarily set JPAR(3) to be 6.

= number of solution tolerances.
= dimension of FSPACE (see description of FSPACE).
= dimension of ISPACE (see description of ISPACE).

output control

= -1 for full diagnostic printout
= 0 for selected printout
= +/ for no printout

IPAR(8): = 0 causes HAGRON to generate a uniform initial mesh.

= I if the initial mesh #: a = x; <x; << Xjpargz)os = b is provided by the
user. In this case, the initial mesh must be defined in FSPACE by
FSPACE(j) = x;.

IPAR(9): =0 if no initial guess for the solution is provided.
=1 if an initial guess is provided by the user in subroutine SOLUTN.

=2 if an initial mesh and approximate solution are provided by the user.
The mesh is in FSPACE, the solution is in u (see description for u).

IPAR(10): = number of fixed points in the mesh other than a and b in (3.2a). It is
the dimension of FIXPNT.

IPAR(11): Currently not in use.

IPAR(12): = 0 unscaled merit function is used for nonlinear iteration.
=] scaled merit function and watchdog are used for nonlinear iteration.

IPAR(13): Currently not in use.
IPAR(14): Currently not in use.

IPAR(15): Only effective when IPAR(12) is set to I. This parameter specifies the
maximum number of consecutive iterations in a Newton iteration
procedure during which the unscaled merit function is allowed to
increase (consecutively). For users who are not familiar with Newton's
iteration with watchdog technique, the default value for this parameter
is recommended (in the present code, this default value is 8) .

IPAR(16): Only effective when IPAR(12) is set to 1. This parameter specifies the
number of iterations in the beginning of Newton's iteration procedure at

45

LTOL.:

TOL.:

FIXPNT:

ISPACE:

FSPACE:

IFLAG:

which the watchdog does not bark at any "substantial increase" in
unscaled merit function. For users who are not familiar with Newton's
iteration with watchdog technique, the default value for this parameter
is recommended. (In the current version of HAGRON, "substantial
increase” means " increase by a factor of /00", and the default value for
IPAR(16)is 5.)

an integer array of dimension IPAR(4). LTOL(j) = k specifies that the
Jth tolerance in TOL controls the error in the k** component of u(x). We
also need that] SLTOL(1) SLTOL(2) <... <LTOL(IPAR(4)) <ICOMP.

a real array of dimension IPAR(4). TOL(j) is the error tolerance on the
LTOL(j)* component of u(x). The code attempts to satisfy at each grid
point x

/(v(x) - u(x))LTouj/ S TOL(j) max(/ V(X)Lrow/ » 1)

where v(x) is the approximate solution vector at the grid point x (u(x) is
the exact solution of (3.2a&b)).

an array of dimension IPAR(11). It contains the points, other than
ALEFT and ARIGHT, which are to be included in every mesh. '

an integer work array of dimension /PAR(6). Its size provides a
constraint on the maximum mesh points.

a real work array of dimension JPAR(S). Its size provides a constraint
on the maximum mesh size.

A 1 dimensional vector that holds the approximate solution for (3.2a&b).

the mode of return from HAGRON. A output parameter.

=] for normal return.

= (0 if the collocation matrix is singular.

=-1 if the expected number of subintervals exceeds storage specifications.

46

=-2 if the nonlinear iteration has not converged.
=-3 if there is an input error.

3.2.3 Input (user supplied) Subroutines

The following five subroutines must be declared external in the main program
which calls HAGRON.

SUBROUTINE FSUB:
This subroutine is for evaluating f{x,u(x)). It should have the heading
SUBROUTINE FSUB (X, U,F)

where X =x, U = u(x) and F is the vector containing the values of f;, as
defined in (3.3a&b) above.

SUBROUTINE DFSUB:

This subroutine is for evaluating the Jacobian of F at a point X. It should have
the heading

SUBROUTINE DFSUB(X, U, DF)

where U = u(x) and the dxd array DF should be filled by the partial derivatives
of F, i.e. for a particular call, the subroutine returns with

DF(i, j) = %‘I (i=1,2,--d, j=1,2,--,d) atpointX.

SUBROUTINE GSUB:

This subroutine is for evaluating the j*# side condition g;at a point x = ZETA(j)
(1<j<d). It should have the heading

SUBROUTINE GSUB(J, U, G)

where U =u(x) and G is a scalar containing g; as defined in (3.3b).

47

SUBROUTINE DGSUB:

This subroutine is for evaluating the partial derivatives of g;’s w.r.t u(x). It should
have the heading

SUBROUTINE DGSUB(J, U, DG)

where U is again u(x). J is, as for GSUB, the index of the side condition. DG is a d

%

dimensional vector that contains the partial derivatives DG(k) = c?u; yk=1,-d.

SUBROUTINE SOLUTN:

This subroutine is for evaluating the initial approximation for u(x) . It is only
needed when IPAR(9) = 1 and it should have the heading

SUBROUTINE SOLUTN(X, U)
where X = x and U = u(x).
3.2.4 User feedback from HAGRON

Like using COLSYS and COLNEW, users can get a various amount of
feedback via the three options of IPAR(7) and IFLAG which is the mode of returning
from HAGRON. When IFLAG(7) is set to -1, one get the maximum feedback which
includes the following:

1: Verification of some key input information including a) the number of differential
equations, b) if the system is nonlinear, ¢) side condition points,and d) components

of u that require tolerances.

2: The possible maximum number of subintervals (determined by the dimensions of
both FSPACE and ISPACE).

3: The number of points in the current mesh.

4: Parameters concerning deferred correction procedure.

48

5: If the problem is nonlinear, the programs also provide an account of how the
nonlinear iteration is proceeding.

6: The five modes of return from IFLAG (see IFLAG above).
3.1.5 Output and Simple Continuation (with IPAR(9) = 2)

Unlike COLSYS and COLNEW, HAGRON does not have a subroutine that
evaluates the solution at any point x (a <x < b). HAGRON only provides an
approximate solution at a finite number of final mesh points. On normal return from
HAGRON, the array FSPACE contains the final mesh while the one dimensional array
U contains the solution. More specifically, the first d (or ICOMP) components of U is
just W(FSPACE(1)), the second d components that follows is v(FSPACE(2)) and so on.
Like COLSYS and COLNEW, the number of final mesh points is ISPACE(1)+1, i.e.

a =FSPACE(1)<FSPACE(2)<---<FSPACE(ISPACE(1)+1) =b
is the final mesh.

To do continuation with HAGRON, one has to setting JPAR(9)=2 and put the
starting approximate solution in U in the way we described above and put the
corresponding mesh points in FSPACE.

3.1.6 Sample Driver for solving (3.la&bd&c) with HAGRON

PROGRAM DRIVER
THIS IS THE SAMPLE DRIVER PROGRAM FOR HAGRON

O a00n

IMPLICIT REAL*8 (A-H,0-Z)

PARAMETER(NCOMP =2
PARAMETER(IPARI = 1
PARAMETER(IPAR2 = |
PARAMETER(IPAR3 =0
PARAMETER(IPAR4 =2
PARAMETER(IPARS = 25000
PARAMETER(IPARG = 15000
PARAMETER(IPAR7 = -1
PARAMETER(IPAR8 =0
PARAMETER(IPAR9 =0
PARAMETER(IPARIO =0
PARAMETER(IPARII =0
PARAMETER(IPARI2 = |
PARAMETER(IPARI3 =0

N N N N N N N Nt Nt Nt N N S S

49

aan

ann

aan

PARAMETER(IPARI4 =0)
PARAMETER(IPARIS = 8)
PARAMETER(IPARI6 = 5)

REAL*8 FSPACE(IPARS),ZETA(NCOMP),TOL(IPAR4)
REAL*8 U(15000),FIXPNT{(2),UU(NCOMP 4000)
INTEGER ISPACE(IPARG)IPAR(20),LTOL(IPAR4),RES(2)
EXTERNAL FSUB, DFSUB, GSUB, DGSUB, SOLUTN
COMMONIPARAMEIMPARAI

SET UP IPAR AND SOME CONSTANTS

MPARAl = NCOMP
IPAR(1) = IPARI
IPAR(2) = IPAR2
IPAR(3) = IPAR3
IPAR(4) = IPAR4
IPAR(S) = IPARS
IPAR(6) = IPAR6
IPAR(7) = IPAR7
IPAR(8) = IPARS
IPAR(9) = IPAR9
IPAR(10) = IPARIO
IPAR(11) = IPARII
IPAR(12) = IPARI2
IPAR(13) = IPARI3
IPAR(14) = IPARI4
IPAR(IS) = IPARIS
IPAR(16) = IPARI6
IPRINT = IPAR(7)
IMERIT = IPAR(12)
IWATCH = IPAR(15)
KWATCH = IPAR(16)

SET BOUNDARY VALUE CONDITION

ALEFT = 0.0D0
ARIGHT = 1.0D0

ZETA(1) = ALEFT
ZETA(2) = ARIGHT

SET TOLERANCES FOR U

LTOL(1) = 1
LTOL(2) = 2

TOL(1) = 1.D4
TOL(2) = 1.D4

WRITE(6,130) NCOMP
IF(IPAR(1).EQ.1) THEN
IF(IMERIT .EQ. 1) WRITE(6,110)
IF(IMERIT .EQ. 0) WRITE(6,120)
WRITE(6,150) IWATCH, KWATCH
ENDIF

CALL TIME(0,0,RES)

CALL HAGRON(NCOMP,ZETA IPARLTOL,TOL,FIXPNT ISPACE,
. FSPACE,U IFLAG,FSUB.DFSUB,GSUB,DGSUB,SOLUIN)

. CALL TIME(3,-1,RES)
WRITE(6,*) ‘CPU IN MILLISECONDS: *RES(1)
WRITE(6,*) ‘ELT IN MILLISECONDS: ',RES(2)

50

O O0n0n

100

20

110
120
130
150
170
180
200

ann

00

NP1 IS THE TOTAL NUMBER OF POINTS IN THE FINAL MESH

NP1=ISPACE(1)+1

PRINT* 'FSPACE(NP1)=",FSPACE(NPI)
WRITE(6,170) IFLAG, NP1
NTOL=IPAR(4)

INCP =1

IF(NP1.GT45) INCP = 5

IF(NP1.GT.80) INCP = 10

IF(NP1.GT 400) INCP = 50
IF(NP1.GT.1000) INCP = 75

CALL JSJAUNPINCOMP,UU)
PRINT*'IF YOU WANT THE OUTPUT ON U(KK), INPUT KK PLEASE’
PRINT*'OR ENTER ZERO FOR EXIT'
READ(**) KK

IF(KK.EQ.0) GOTO 200

ERRMAX=0.D0O

DO 20 1=1,NP1,INCP

XX=FSPACE(l)

CALL EXACT(KKXX.SOL)
ER=DABS(SOL-UU(KK I))
ERRMAX=DMAXI(ERRMAX,ER)
WRITE(6,180) 1.XX.SOL,UU(KK.I),ER
CONTINUE

PRINT*,"*** THE MAXIMUE A-ERROR AT MESH PTNS IS: ", ERRMAX
GOTO 100

FORMAT(' SCALED MERIT FUNCTION')

FORMAT(’ UNSCALED MERIT FUNCTION’)

FORMAT(' NUMBER OF COMPONENTS = *I5)

FORMAT(' WATCHDOG ITERATION LIMIT' 155X, WATCHDOG MIN"I5)
FORMAT(IH , 6HIFLAG=, I5,5X,16HNUMBER OF POINTS,I5)
FORMAT(1X,15,3(1PG17.7),1PG20.10)

sTop

END

s*s SUBROUTINE SOLUTN ***

SUBROUTINE SOLUTN(X,Z)
IMPLICIT REAL*8 (A-H,0-2)
COMMONIPARAMEINCOMP
REAL*8 Z(NCOMP)

Z(2)=1.D0+X
Z(1)=1.D0/IZ(2)
RETURN
END

% SUBROUTINE FSUB *

SUBROUTINE FSUB(X,Z,F)
IMPLICIT REAL*S (A-H,0-Z)
COMMON IPARAMEINCOMP
REAL*8 Z(NCOMP),F(NCOMP)
F(1)=-2.DOI(Z(2)*Z(2))
F(2)=2(2)*Z(2)-1/Z(1)+DEXP(X)
RETURN

END

% SUBROUTINE DFSUB *
SUBROUTINE DFSUB(X,Z,DF)

51

06O

OO0

10

N~ anat o600 N

anNna 6600

9]

IMPLICIT REAL*8 (A-H,0-2Z)
COMMONI/PARAMEINCOMP
REAL*8 Z{NCOMP),DF(NCOMPNCOMP)

DF(1,1)=0.0D0
DF(1,2)=4.DONZ(2)*Z(2)*Z(2))
DF(2,1)=1D0(Z(1)*Z(1))
DF(2,2)=2.0D0%Z(2)
RETURN

END

*** SUBROUTINE GSUB ***

SUBROUTINE GSUB(1,Z,G)
IMPLICIT REAL*8 (A-H,0-Z)
COMMONIPARAMEINCOMP
REAL*8 Z(NCOMP),G
GOTO(12)1

G=2Z(1)-1.D0

RETURN
G=2(2)-DEXP(1.D0)
RETURN

END

** SUBROUTINE DGSUB ***

SUBROUTINE DGSUB(1,Z,DG)
IMPLICIT REAL*8 (A-H,0-2)
COMMONI/PARAMEINCOMP
REAL*8 ZINCOMP),DG(NCOMP)

DO 10J=12
DG(J)=0.0D0
GOTO(12)]
DG(1)=1.0D0
RETURN
DG(2)=1.0D0
RETURN
END

ss+ SUBROUTINE EXACT **

SUBROUTINE EXACT(KK.XX.SOL)

SUBROUTINE FOR EVALUATING THE EXACT SOLUTION
IMPLICIT REAL*8 (A-H,0-Z)

GOTO(12), KK

SOL=DEXP(-2.D0*XX)

RETURN

SOL=DEXP(XX)

RETURN

END

ss+ SUBROUTINE JSJAI ++*

SUBROUTINE JSJAI(UNP1,NCOMP,UU)

SUBROUTINE FOR PUTTING THE SOLUTION INTO A NCOMP BY NP1 ARRAY

IMPLICIT REAL*8 (A-H,0-2Z)
REAL*8 U(25002),UU(NCOMP.NPI)

52

DO 10 1=1.NP!

DO 10 J=1 NCOMP

UUJ)=UNCOMP*(I-1)+J)
10 CONTINUE

RETURN

END

3.3 MUTS

MUTS is based on a multiple shooting method for two point boundary value
problems for ODE [15]. It consists of two subroutines, namely MUSL for linear two
point boundary value problems and MUSN for nonlinear problems. The driver programs
for MUSL and MUSN are not exact the same. The following are some details about
how to use them.

3.3.1 MUSL
3.3.1a The classes of problem that MUSL is addressed to
MUSL solves a linear two-point boundary value problem
y(1) = L(t) y(t) + r(1) a<i<b (3.4a)
M. y(a) + Myy(b) =S (3.4b)
where y, B, reR?, and L, M,, M,e R,
3.3.1b Input Parameters
Subroutine MUSL is headed by

SUBROUTINE MUSL(FLIN, FDIF, N, I[HOM, A, B, MA, MB, BCV,
+ AMP.ER, NRTI, TI, NTI, Y, U, NU, Q, D, KPART,
PHIREC, W, LW, IW, LIW, IERROR)

The following is information about the parameters in the heading.
N: The order of the system (3.4a&b).

IHOM: = () if the system (3.4a&b) is homogeneous.
=] if the system (3.4a&b) is inhomogeneous.

53

‘Mm Mb.'

BCV:

AMP:

ER:

NRTI:

The two boundary points.
The NxN matrices in (3.4b).
An real N dimensional array containing 8 in (3.4b).

On entry AMP must contain the allowed incremental factor of the
homogeneous solutions between two successive output points. If the
increment of a homogeneous solution between two successive output
points becomes greater than 2xAMP, a new output point is inserted.
When the input value of AMP is less than or equal to 1, a default value
is assumed. The default value of AMP varies with the value of NRTI. If
NRTI = 0, then the default value of AMP is

max{ ER(1), ER(2) } | ER(3)
If NRTI 21, then the default value is infinity.
An real array of dimension 5.

On entry ER(1) must contain a relative tolerance for solving the
differential equation. If the relative tolerance is smaller than 10-/2 the
subroutine will change ER(1) into 10-12 + ER(3).

On entry ER(2) must contain an absolute tolerance for solving the
differential cquatidn, ER(3) must contain the machine precision.

On exit ER(2) and ER(3) are unchanged.
See 3.3.1e for ER(4) and ER(5).

On entry NRTI is used to specify the required odtput points. There are
three ways to specify the required output points:

1) NRTI = 0, the subroutine automatically determines the output points
using the allowed incremental factor AMP.

2) NRTI = 1, the output points are supplied by the user in the array T1.

54

TI:

NTI:

NU:

3) NRTI > 1, the subroutine computes the (NRTI+1) output points
TI(K) by

TI(k) = A + ﬂ%%’—’“;

soTI(1) = A and TI(NRTI+1) = B .

Depending on the allowed incremental factor AMP, more output points
may be inserted in cases 2 and 3.

Also see 3.3.1e.

A real array of dimension NTI. On éntry: if NRTI = 1, TI must contain
the required output points in monotone order:

A=TI(]l)<...<Tl(l) =B
I denotes the total number of required output points.
Also see 3.3.1e.

NTI is the dimension of T/ and one of the dimensions of the arrays X,
U,Q, D, PHIREC. NTI must satisfy '

NTI 2 the total number of output points + 3.

i.e. if the routine was called with NRTI > 1 and AMP <1 the total
number of output points is the entry value of NRTI + 1, so NTI should
be at least the entry value of NRTI + 4. Unchanged on exit.

A real array of dimension (N,NTI). Also see 3.3.1e.
A real array of dimension (NU,NTI). Also see 3.3.1e.

NU is one of the dimensions of U and PHIREC. NU must satisfy

wy 2D

35

Unchanged on exit.
o A real array of dimension (N,N,NTI). See 3.3.1e for more details.

D: A real array of dimension (N,NTI). If [HOM = 0, the array D has no real
use and the user is recommended to use the same array for the Y and D.
If THOM = 1, on exit D(i,k) i=12,---,N contains the inhomogeneous term
d(k), k=1,2,.-- NRTI, of the multiple shooting recursion. Also see 3.3./e.

KPART: | Integer. Also see 3.3.1e.

PHIREC: A real array of dimension (NU,NTI). Also see 3.3.1e.

W: A real array of dimension (LW). Used as work space.

LW: LW is the dimension of W and LW 2 8xN + 2xNxN. Unchanged on exit.
IW: An integer array of dimension (LIW). Used as work space.

LIW: LIW is the dimension of /W. LIW 2> 3xN. Unchanged on exit.

IERROR: Integer. Error indicator (see user feedback below for details).

3.3.1c Input Subroutines

SUBROUTINE FLIN:

This subroutine evaluates-the homogeneous part of the differential equation
L(t)y(t) in (3.4a). It must have the heading

SUBROUTINE FLIN(T, Y, F)

where t = T, y(t) = Y and F is the N dimensional vector containing L(t)y(t). FLIN
must be declared as EXTERNAL in the program from which MUSL is called.

SUBROUTINE FDIF:

This subroutine evaluates the right-hand-side of the inhomogenous differential
equation L(t)y(t) + r(t) in (3.4a). It must have the heading

56

SUBROUTINE FDIF(T, Y, F)

where t =T, y(t) = Y and F is the N dimensional vector containing L(t)y(t) + r(1),
and it must be declared EXTERNAL in the program from which MUSL is called.

In case the system (3.4a) is homogeneous, FDIF is the same as FLIN.

3.3.1d User feedback from MUSL

MUSL provide a wide range of user feedback through an error indicator
IERROR. This indicator indicates /5 different kinds of mode of return from MUSL.
These modes are either specific terminal errors or specific warning messages. The
following are these /5 modes

IERROR: Integer. Error indicator.
= (. No errors detected .

= 100. Input error. This is caused by at least one of the following:

N < 1,IHOM <0, NRTI < 0, NTI < 5, NU <w,orA=B.

Terminal error.

= 101. Input error: either ER(1) or ER(2) or ER(3) is negative.
Terminal error.

= 103. Input error: either LW < 8xN + 2xNxN or LIW < 3xN .
Terminal error.

= 120. Input error: the routine was called with NRTI = 1, but the given
output points in the array T/ are not in monotone order.

Terminal error.

= 121. Input error: the routine was called with NRTI = 1, but the first

57

given output point or the last output point is not equal to A or B.
Terminal error.

= 122. Input error: the value of N7 is too small; the number of output
points is greater than NTI - 3. Terminal error.

= 200. This indicates that there is a minor shooting interval on which
the incremental growth is greater than the AMP. This is to be attributed
to the used method for computing the fundamental solution, and may
jcopardizc the global accuracy if

ER(3)xAMP > max{ER(1), ER(2))}.
Waming error.

= 21]3. This indicates that the relative tolerance was too small. The
subroutine has changed it into a suitable value. Warning error.

= 215. This indicates that during integration the particular solution or a
homogeneous solution has vanished, making a pure relative error test
impossible. Must use non-zero absolute tolerance to continue.
Terminal error. '

= 216. This indicates that during integration the requested accuracy
could not be achieved. User must increase error tolerance.
Terminal error.

= 218. This indicates that the input parameter N <0, or that either the
relative tolerance or the absolute tolerance is negative.Terminal error.

= 240. This indicates that the global error is probably larger than the
error tolerance due to instabilities in the system. Most likely the
problem is ill-conditioned. Output value is the estimated error
amplification factor ER(5). Warning error.

58

= 250. This indicates that one of the U(k) is singular. Terminal error.

= 260. This indicates that the problem is probably too ill-conditioned
with respect to the boundary condition. Terminal error.

3.3.1e Output from MUSL

On normal return from MUSL, there are two types of output available. They are

the approximate solution related outputs and the others.

Approximate Solution related Outputs:

NRTI:

TI:

Other Qutputs:

On exit, NRTI contains the total number of output points.
On exit, TI(i), i = 1,2, ...,NRTI contains the output points.

On exit Y(i,k) , i=1,2,.--,N contains the solution of the BVP at the output
points TI(k), k=1,2, ..., NRTI.

The following output may not be of great importance to those who are not

interested in the details of solving BVPODE with multiple shooting method. Please
see [14] and [2] for more details.

ER(4):

ER(5):

On exit ER(4) contains an estimate of the condition number of the
boundary value problem.

On exit ER(5) contains an estimated error amplification factor.

On exit U(i,k) i=1,2,---NU contains the relevant elements of the upper
triangular matrix U(k), k=2,.-- ,NRTI. The elements are stored column-
wise, the j** column of U(k) is stored in U(n;+1, k), U(n+2, k), ---,

U(n;+j, k), where n; = ﬁLIé)_’_‘_l (See [14] for U(k).)

59

KPART:

PHIREC:

On exit Q(ij k) i=1,2,....N, j=12,...,N contains the N columns of the
orthogonal matrix Q(k), k=1,...,NRTI. (See [14] for Q.)

If IHOM = 0 the array D has no real use and the user is recommended
to use the same array for the Y and D. If JHOM = 1, on exit D(i,k)

i =1,2,...N contains the inhomogeneous term d(k), k=1,2,-...NRTI, of
the multiple shooting recursion. (See [14] for d(k).)

On exit KPART contains the global k-partition of the upper triangular
matrices U(k).

On exit PHIREC contains a fundamental solution of the multiple
shooting recursion. The fundamental solution is upper triangular and is
stored in the same way as the U(k).

3.3.1f Sample driver for solving (3.5a&b) using MUSL

" 2 2
1 1 1 1
)'(0)=‘;:'- (e+1) y(1)=(8+1) ‘? (3.5b)

The following is a sample driver program for solving (3.5a&b) using MUSL.

(o

C SAMPLE DRIVER PROGRAM

C

C SOLVING EXAMPLE (35a&b) BY USING MUSL
C

C PROGRAM MAIN

(9]

IMPLICIT REAL*8 (A-H,0-Z)

SET UP OBJECTIVE PROBLEM RELATED PARAMETERS
PARAMETER (A=0.0D0, B=1.0D0, IHOM=1, N=2)

SET UP PROGRAM ARRAYS' DIMENSION RELATED PARAMETERS
PARAMETER (NTI=400, NU=10 , LW=40 , LIW=20)

SET UP ARRIES AND CONSTANTS

aOnNn O6060 60606

60

ann

anNn

ann

ann

50
60

REAL*8 MA(NN),MB(N.N),BCV(N),SOL(N)

REAL*8 ER(5),TI(NTI).Y(N.NTI),Q(N.N.NTI),U(NU.NTI)
REAL*8 D(N.NTI),PHIREC(NUNTI),W(LW)

INTEGER NRTI,KP.IW(LIW),IERRO KPART

INTEGER RES(2)

COMMON IPARAM1/EPS.NZ

EXTERNAL FLIN FDIF

PRINT*,’MUS EXAMPLE (3 5a&b) OUTPUT POINTS 300
PRINT*,INPUT EPS’
READ(6,*) EPS

MORE PROGRAM PARAMETERS

NZ=N
AMP=100
NRTI=299

ERI: R-TOL,ER2: A-TOL,ER3: M-EPS

ER(1)=1.D-10
ER(2)=1.D-6
ER(3)=0.2D-15

SET UP B.C. MATRIX AND VECTOR

DOS I=IN

BCV(1)=0.D0

DOS J=IN

MA(1J)=0.D0

MB(1J)=0.D0

CONTINUE

MA(1,1)=1.D0

MB(2,1)=1.D0
XX=1.0DO/EPS
BCV(1)=XX-1.DO/(EPS+1.D0)
BCV(2)=-XX+1.D0/(1.DO+EPS)

CALL TIME(0,0.RES)

CALL MUSL(FLIN,FDIF N,IHOM.A.B.MAMB,BCV.AMP.ERNRTLTI,
+ NTLY,UNU.Q,D.KPART PHIREC,W,LW,IW LIW,IERROR)
CALL TIME(3,-1,RES)

WRITE(*,*) **CPU IN MILLISECONDS: ",RES(I)

WRITE(*,*) "**ELT IN MILLISECONDS: ",RES(2)

CALCULATE THE ERROR

SP=0.D0

$5=0.D0

DO 50 J=I1NRTI

XX=TI(J)

CALL EXACT(XX.SOL)
P=DABS(SOL(1)-Y(1.J))
S=DABS(SOL(2)-Y(2,J))
SP=DMAXI(P.SP)
SS=DMAXI(S.SS)

WRITE(6,60) XX,P.S
CONTINUE

FORMAT(IX.F8.6 ERI:'DI168,’ ER2:'DI6.8)
PRINT*,'NRTI="NRTI
PRINT*,"** MAXIMUM El: 'SP
PRINT*"** MAXIMUM E2: 'SS
STOP

61

END

**+ SUBROUTINE FLIN **+

ann

SUBROUTINE FLIN(T,Y,F)
IMPLICIT REAL*8 (A-H,0-Z)
COMMONIPARAM!IEPS,NZ
REAL*8 Y(NZ),F(NZ)

HOMOGENOUS PART OF THE R-H SIDE

ann

F(1)=Y(2)
F(2)=0.D0
RETURN
END

*+% SUBROUTINE FDIF ***

ann

SUBROUTINE FDIF(T Y F)
IMPLICIT REAL*8 (A-H,0-Z)
COMMONIPARAMIIEPS NZ
REAL*8 Y(NZ),F(NZ)

R-H FUNCTION EVALUTION

ann

PP=(T+EPS)
XX=PP*PP*PP
PP=T-EPS-1.D0
YY=PP*PP*PP
F(1)=Y(2)
F(2)=2.DOIXX+2.DOIYY
RETURN

END

*** SUBROUTINE EXACT ***

ann

SUBROUTINE EXACT(T,SOL)
IMPLICIT REAL*8 (A-H,0-2Z)
COMMONIPARAMIIEPS,NZ
REAL*8 SOL(NZ)

PP=1.DO/EPS+T)
QQ=1.DO0NT-EPS-1.D0)
SOL(1)=PP+QQ
SOL(2)=-PP*PP-QQ*QQ
RETURN -
END

3.3.2 MUSN

3.3.2a The classes of BYPODE that MUSL is addressed to

MUSN solves a nonlinear two-point boundary value problem

Yy =fty) a<t<b (3.6a)

62

g(y(a),y(b)) = 0 (3.6b)

where y, f, g, 0 € R* and y, f, g are n dimensional vector functions.

3.3.2b Input Parameters

ER:

Subroutine MUSN is headed by

SUBROUTINE MUSN(FDIF, YOT, G, N, A, B, ER, TI, NTI, NRTI, AMP,

ITLIM, Y, Q, U, NU, D, PHI, KP, W, LW, IW, LIW,
WG, LWG, IERROR)

The following is information about the parameters in the heading.

= n. The order of the system (3.6a&b).
The two boundary points. i.e.a = A, b = B.
A real array of dimension 5.

On entry ER(1) must contain the required tolerance for solving the
differential equation.

On entry ER(2) must contain the initial tolerance with which a first
approximate solution will be computed. This approximate solution is
then used as an initial approximation for the computation of a solution
with a tolerance ER(2)xER(2) and so on until the required tolerance is
reached. The initial tolerance that is actually used by the code is not
necessarily the input value of ER(2). To avoid an inappropriate input
value of ER(2), the code always uses max{ ER(1), min(ER(2), 10-?)} as
the initial tolerance.

On entry ER(3) must contain machine precision.
On exit ER(1), ER(2) and ER(3) are unchanged.
See 3.3.2e for ER(4) and ER(S).

63

NRTI:

TI:

NTI:

On entry NRTI is used to specify the required output points. There are
three ways to specify the required output points:

1) NRTI = 0, the subroutine automatically determines the output points
using the allowed incremental factor AMP (see AMP below).

2) NRTI = 1, the output points are supplied by user in the array 71.

3) NRTI > 1, the subroutine computes the (NRTI+1) output points
TI(k) by

(k-1)x(B - A)
NRTI

Ti(k) = A +
so TI(1) = A and TI(NRTI+1) = B.

Depending on the allowed incremental factor AMP, more output points
may be inserted in cases 2 and 3.

Also see 3.3.2e.

A real array of dimension NTI. On entry: if NRTI = 1, T must contain
the required output points in monotone order:

A=TIKl)< .- <Til)=B
I (determined by NRTI) is the total number of required output points.
Also see 3.3.2e.

Integer. NTI is one of the dimensions of 7/, Y, S, Q, U and PHI. It
must satisfy

NTI 2 the total number of output points + 1.

AMP:

ITLIM:

NU:

KP:

PHI:

i.e. if the routine was called with NRTI > I, NTI may be equal to the
entry value of NRTI + 1. Unchanged on exit.

On entry AMP must contain the allowed increment between two
successive output points. AMP is used to determine output points and
to assure that the increment between two output points is at most
AMPXxAMP. A small value for AMP may result in a large number of
output points.
Unless 1 < AMP < 0.25x(ER(1)/IER(3))°5, the default value

AMP = 0.25x(ER(1)/ER(3))°5 1is used.
Unchanged on exit.
Integer. Maximum number of iterations allowed.
A real array of dimension (N,NTI). Also see 3.3.2e.

A real array of dimension (NU,NTI). Also see 3.3 .2e.

NU is one of the dimensions of U and PHI. NU must satisfy

Nx(N+1)

Unchanged on exit.
A real array of dimension (N,N,NTI). See 3.3.2e for more details.

A real array of dimension (N,NTI). On exit D(.,i) i=1,2,--,NRTI contain
the inhomogeneous term of the incremental recursion.

Integer. Also see 3.3.1e.

A real array of dimension (NUNTI). Also see 3.3.1e.

65

w: A real array of dimension (LW). Used as work space.

LW: LW is the dimension of W and LW 2 7xN +3xNxNTI + 4xNxN.
Unchanged on exit.

IW: An integer array of dimension (L/W). Used as work space.

LIW: LIW is the dimension of /IW. LIW 2 3xN + NTI. Unchanged on exit.

WG: A real array of dimension LWG. WG is used to restore the integration
grid points.

LWG: Integer. LWG is the dimension of WC. LWG must satisfy

1
LWG 2 5% (total number of grid points).

The minimum number of grid points between two successive output
points is 5, so the minimum value for LWG is the number of actually
used output points. Initially a crude estimate for LWG has to be made.
Also see IERROR 219 in 3.3.2e.

IERROR: Integer. Error indicator (see user feedback below for details).

3.3.2¢ Input Subroutines
SUBROUTINE FDIF:

This subroutine evaluates the right-hand-side f(t,y) in (3.6a). It must have the
heading

SUBROUTINE FDIF(T, Y, F)

where t = T, y(t) = Y and F is the N dimensional vector containing f(t,y). FDIF
must be declared EXTERNAL in the program from which MUSN is called.

66

SUBROUTINE YOT:

This subroutine evaluates the initial approximate solution y0(t) supplied by the
user for any ¢ = T. It must have the heading

SUBROUTINE YOT(T, Y)

where t = T and Y is an N dimensional vector that y0(t) = Y. YOT must be declared
as EXTERNAL in the program from which MUSN is called.

SUBROUTINE G:

This subroutine evaluates g(y(a),y(b)) in (3.6b) as well as the Jacobians

Qg(at:‘,v) Qg(u,v)

atu = y(a), v arv =y(b)

It must have the heading
SUBROUTINE G(N, YA, YB, FG, DGA, DGB)
where YA, YB, FGeR¥, DGA, DGBeRN¥_y(a) = YA, y(b) = YB, FG = g(y(a),y(b))
and DGA, DGB contain the first and second Jacobians shown above, respectively.

G must be declared as EXTERNAL in the program from which MUSN is called.

3.3.2d User feedback from MUSN

Like MUSL, MUSN also provides a wide range of user feedback through error
indicator IERROR. This indicator indicates 15 different kinds of mode of return from
MUSN. These modes are either specific terminal errors or specific warning messages.
The following are these 15 modes

IERROR: Integer. Error indicator.

= 0. No errors detected.

67

= 01. Input error: either ER(1) or ER(2) or ER(3) is negative.
Terminal error.

Nx(N + 1)

= 05. Input error: either N<I or NTI<3 or NRTI<0 or NU < 2

or A = B. Terminal erTor.

= 06. Input error: either LW < 7xN + 3XNXNTI + 4xNxN or
LIW < 3xN + NTI. Terminal error.

= 20. Input error: the routine was called with NRTI = I, but the given
output points in the array T/ are not in monotone order.
Terminal error.

= 21. Input error: the routine was called with NRTI = 1, but the first
given output point or the last output point is not equal to A or B.
Terminal error.

= 22. Input error: the value of NTI is too small, the number of output
points is greater than NT/ - 1. Terminal error.

= 23. Input error: the value of LWG is less than the number of output
points. Increase the dimension of the array WG and the value of LWG.
Terminal error.

= 216. This indicates that during integration the requested accuracy
could not be achieved. User must increase error tolerance.
Terminal error.

= 219. This indicates that the routine needs more space to store the
integration grid points. An estimation for the required workspace (i.e.

68

the value of LWG) is given. Terminal error.

= 230. This indicates that the Newton iteration fails to converge.
Terminal error.

= 231. This indicates that the number of iterations has become greater
than ITLIM. Terminal error.

= 240. This indicates that the global error is probably larger than the
error tolerance due to instabilities in the system. Most likely the
problem is ill-conditioned. Output value is the estimated error
amplification factor ER(5). Warning error.

= 250. This indicates that one of the upper triangular matrices U is
singular. Terminal error.

= 260. This indicates that the problem is probably too ill-conditioned
with respect to the boundary conditions. Terminal error.

3.3.2e Output from MUSN

On normal return from MUSN, like MUSL, there are two types of 'outputs
available. They are the approximate solution related outputs and the others.

Approximate Solution related Outputs:

NRTI: On exit, NRTI contains the total number of output points.
TI: On exit, TI(i), i = 1,2, ---,NRTI contains the output points.
Y: On exit Y(i,k) , i=1,2,-..,N contains the solution of the BVP at the output

point TI(k), k=1,2, .- NRTI.

Other Outputs:

69

The following output may not be of importance to those who are not interested
in the details of solving BVPODE with the multiple shooting method. Please see [14]
and [2] for more details.

ER(4): On exit ER(4) contains an estimation of the condition number of the
boundary value problem (see [2], [14]).

ER(5): On exit ER(5) contains an estimated error amplification factor.

U: On exit U(.,i) i=1,2,..,NRTI contains the the upper triangular factors of
the incremental recursion. The elements are stored column wise. The jt&
column of U 'is stor_ed in U(ni+1, k), U(n+2, k), -, U(ni+j, k),
M‘l. (See [14] for U.)

where n; = 2

o On exit Q.,.,i), i=1,2, ..., NRTI contains the orthogonal factors of the
incremental recursion.

D: On exit D(.,i) i=1,2,....NRTI contain the inhomogeneous term of the
incremental recursion.

KP: On exit KP contains the dimension of the increasing solution space.

PHI: On exit PHI(.,i), i = 1,2,....NRTI contains the fundamental solution of the
incremental recursion. The fundamental solution is upper triangular and
stored in the same way as the upper triangular U.

3.3.2f Sample driver program for solving (3.1a&b) using MUSN

c

C SAMPLE DRIVER PROGRAM

c

C SOLVING EXAMPLE (3.1a&b) USING MUSN
c

C MAIN PROGRAM

IMPLICIT DOUBLE PRECISION (A-H,0-2)
SET UP PARAMETERS

ana O

PARAMETER (A=0.D0,B=1 DON=2ITLIM=50)

70

40
20

ann

ann

PARAMETER (NRTI=299,NTI=400,NU=20LW=2600,LIW=600,LWG=400)

REAL*8 ER(S),TI(NTI),Y(N.NTI),Q(N.N.NTI1),U(NUNTI)
REAL*8 D(NNTI),PHIREC(NU,NTI),W(LW)WG(LWG),SOL(N)
INTEGER KPART,IW(LIW),IERROR

INTEGER RES(2)

EXTERNAL FDIF.YOT.G

COMMON /IPARAMEINZ

ER(1)=1.D-6

ER(2)=1.D-2

ER(3)=0.20D-15

AMP = 100

NZ=N

CALL TIME(0,0,RES)

CALL MUSN(FDIF.,YOT,G.N.A.B,ERTINTI.NRTLAMP ITLIM.Y,Q,UNU,
+ D,PHIREC KPART W LW IW.LIW WG ,LWG,IERROR)

CALL TIME(3,-1,RES)

PRINT*,'CPU IN MILISECONDS: *RES(1)

PRINT*,'ELT IN MILISECONDS: ' ,RES(2)

SP=0.D0

SR=0.D0

DO 20 1=1,NRTI

X=TI1)

CALL EXACT(XN.,SOL)
P=DABS(SOL(1)-Y(1,]))
R=DABS(SOL(2)-Y(2.1))

SP=DMAXI1(SP.P)

SR=DMAXI(SR.,R)

WRITE(6,40) X,P.R
FORMAT(IX,F8.4,4X,'ERRORI:",D12.6,” ERROR2:',DI2.6)
CONTINUE

PRINT*, THE MAXIMUM ERRORI IS: 'SP
PRINT*, THE MAXIMUM ERROR2 IS: "SR
sTop

END

% SUBROUTINE FDIF *

SUBROUTINE FDIF(T,Y F)
IMPLICIT REAL*8 (A-H,0-2Z)
COMMONIPARAMEIN
REAL*8 Y(N),F(N)

F(1) =-2.D0/(Y(2)*Y(2))

F(2) =Y(2)*Y(2)-1.D01Y(1)+DEXP(T)
RETURN

END

s++ SUBROUTINE YOT ***

SUBROUTINE YOT(T,Y)
IMPLICIT REAL*8 (A-H,0-Z)
COMMONIPARAMEIN
REAL*8 Y(N)

Y(I) = 1.D0/(1.DO+X)
Y(2) = 1.D0
RETURN

END

71

aonOn0n

*+% SUBROUTINE G ***

SUBROUTINE G(N XA XB,FG.DGADGB)

IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 XA(N).XB(N).FG(N).DGA(N.N),DGB(NN)

FG(1)=XA(1)-1.D0
FG(2)=XB(2)-DEXP(1.D0)

DO20I1=IN
DO 20J=IN
DGA(1.J)=0D0
DGB(1.J)=0D0
CONTINUE

DGA(1,1)=1.D0
DGB(2,2)=1D0

RETURN
END

#3% SUBROUTINE EXACT *%*
SUBROUTINE EXACT(X.N.SOL)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 SOL(N)

SOL(1)=DEXP(-2.D0*X)
SOL(2)=DEXP(X)

RETURN
END

72

Chapter 4: The Comparison of the Codes (II)

—The Basic Design of Our Comparison and the Results of Comparing
the Four Codes

This chapter is mainly concerned with comparing the four codes with respect to
those issues discussed in Chapter Two. The date that we received each one of the four
codes is shown in the end the Introduction. The comparison conducted here is based
on the versions of the four codes we received and the resulting conclusions may not be
applied to different versions of these codes. We will have some general discussion
about the design of the comparison and how our comparison is conducted in the first
section. In the second section we will have detailed comparison with respect to the
criteria discussed in Chapter Two. We will conclude this thesis by summarizing our
observations which resulted from comparing the codes in the third section of this
chapter.

4.a The Basic Design of Our Comparison

In Chapter Two, we have discussed many criteria the are relevant to the
comparison of the codes. But how to design a comparison so that all these criteria can
be fully utilized is still a problem. In this section, we focus on explaining how we are
going to use those test problem dependent criteria to develop a quality of solution
oriented comparison. Furthermore, we will discuss our basic strategy of conducting a
comparison in this type by using a critical input parameter — the tolerance.

4.al Quality of solution oriented comparison

One of the most important parts of comparison of codes is to evaluate the
relative efficiencies of the codes. The relative efficiencies of the codes on a certain test
problem, though still a vague concept, can usually be determined by using the test
problem dependent criteria such as the time and storage they require to solve the
problem. Test problems without the known exact solutions have been used before. But
in order to fully utilize criterion accuracy, we purposely choose the test problems so
that they all have known exact solutions. Up to now, relative efficiency remains to be a
concept that has be widely used but not very well defined. A quite common strategy of
measuring the relative efficiency of the codes has been that of first setting up the input
parameters for each code such that all the codes have more or less the same

73

parameter setting, and then compare the resulting timing, storage and accuracy from
each code. The underlying motivation for this, we believe, is that when the codes have
the same parameter settihg, they are given the same amount of input, and therefore it
is justifiable to compare the efficiencies of the codes in terms of the resulting CPU time
and storage used since these efficiencies are the yields of the same input.

But it seems to us that this plausible strategy may not be appropriate for our
purpose of comparing the four codes because of the fact that parameters that bear the
same names, are supposed to have similar functions and were assigned the same
values can play quite different roles in different programs. More importantly, not all the
parameters are relevant to the efficiencies of the codes. Even if two different programs
have exact the same parameter setting, the comparison of the results from the two
programs that correspond to that setting may not be very meaningful. Let's use an
exaggerated example to further illustrate this point: Two codes A and B have exactly
the same set of parameters. When we apply them to solve the same problem, all the
parameters for both programs are set to be the same constants except, say, the
tolerance. When varying the tolerance, we observe that for both codes, the results get
strictly better and better as the tolerance decreases. Furthermore, the two codes
would have exactly the same results when the tolerance for code A is TOL and the
tolerance for code B is I0XTOL. Thus a comparison according to the same setting of
parameters would result in a consistently better performance of code B over code A.
However, in our opinion, this is not a fair comparison since tolerance is just a
parameter and it is not related to the cost of running the codes in any way.
Furthermore, the two codes A and B have exact the same capabilities and
efficiencies under our assumption in the sense that no matter how well code B can
perform, code A can achieve exactly the same performance at no extra cost and vice
versa. The only thing different is that the two codes always attain the same level of
performance with different tolerances. With a minor modification to code A, i.e. set
TOL to be equal to TOL/10, the two codes would then perform exactly the same.

Whether the accuracy of the solution each code produces responds well to the
tolerance that the user provides is an important aspect of the code and we will come to
this point later on. But we felt that tolerance itself may not be considered as a
performance index and is not important when it comes to timing efficiency or storage
efficiency of the code. We are not in an 'input output' situation where the tolerance is

74

the input and the result is the output when we compare the timing and storage
efficiencies, even though it appears that we are.

In this thesis, we are mainly concerned with the potential of the performance of
the codes rather than how well the codes can perform at a certain input parameter
setting which, as was indicated by the example above, is not always relevant to the
potential efficiencies of the codes. In order to design a comparison that focuses on how
well the codes can perform (not how well they can perform under the similar input
parameter settings), we split the performance related criteria into two groups
according to the nature of these criteria. It is clear that when writing or running a code,
what we are really after is a good quality solution to the problems we want to solve. In
order to calculate the numerical solution, we need computing time and storage. One
may consider the numerical solution we are after as the ‘goods' and the timing and
storage as the ‘cost’. We intend to make a split of the criteria according to whether the
criteria are about the 'goods' or ‘cost'. From now on, except those that are related to
the quality of the solution, all performance type criteria, most importantly timing and
storage, will be referred to as cost indexes. They, as a group, define the cost needed
by the codes to solve a problem. Those that are related to the quality of the numerical
solution form another group and determine the quality of the solution produced by the
codes. Based on this split, there are two possible aspects of the codes that can be
revealed by a comparison. One may compare the best quality of the solution that is
attained by each code during an experiment. More practically, one may gather those
runs from the codes that yield solutions with similar quality and then compare the
codes for these runs according to the cost indexes to reveal the relative efficiency. In
another words, it is then possible to use peak quality solutions produced by each code
and the relative efficiencies defined by cost versus solution quality to make a
comparison. We call this the quality of solution oriented comparison. This new way of
comparing the test problem related efficiencies will be referred to as QSO approach
later in our discussion.

The advantage of a QSO approach is that it gives the relative efficiency a clear
meaning. More importantly, the information concerning the connection between the
cost and the quality contained by the data is utilized by comparisons of this type. The
comparison where codes are compared under similar input parameter settings,
however, is weak in making use of this kind of information.

75

However, the appealing ideas we have above suffer from the problem of being
not very practical and are usually difficult to carry out. The peak quality solution, for
example, will remain to be just an idea in this thesis and will not be an issue of our
comparison due to the difficulties of getting the peak quality solution of the codes on
any test problem. On the other hand, the major obstacle for making use of the relative
efficiency described above is that there may not be a commonly agreed upon way of
setting up numerical solution quality levels. It is unrealistic for us to find some kind of
'standard’ that can quantify the solution quality levels in a way that it makes sense to
everybody. An individual user that is particularly concerned with a specific aspect of
the solution can set up a quality scale according to what he/she is concerned about.
When one is only concerned about the maximum error at the mesh points or the
average of the squared errors at the mesh points, for example, one can then set up
some quality levels associated with the maximum error or the average mentioned
above. The quality of the solutions is then quantified. Despite the fact that there exist
many different quantitative features of the numerical solution, the most common focus
for many experts has always been the maximum absolute error at the mesh points.
Though we intend to look beyond the quantitative features of the numerical solutions
as was indicated in Chapter Two, when evaluating the relative efficiencies of the
codes, it is difficult for us to take into consideration the qualitative aspects of the
solutions. Thus we will only use the maximum absolute error at the mesh points (for
codes that provide continuous solution, the maximum absolute error at thirty equally
spaced points in the domain will also be considered sometimes) to judge the quality of
the solution. The qualitative features we mentioned in Chapter two, i.e. the form of the
solution and the distribution of the final mesh points are not test problem dependent
and will be compared separately.

4.a3 Collecting test problems related information for comparison

How do we collect test problem related information so that we can carry out the
comparison concerning the test problem dependent criteria ? In particular, how can we
find out the costs each code needs to obtain solutions at different quality levels to
reveal the relative efficiencies ?

Each one of the four codes has more than ten input parameters that has to be
set by the user. Some of the parameters can assume infinitely many different values.
Thus it is virtually impossible to exhaust all the possible combinations of these

76

parameters and collect information such as timing, storage and accuracy that follows.
Having ruled out the possibility of looking into every combination of the input
parameters, it is clear that we have to find a way to collect information such that not
only the way is feasible and practical, but also the information collected this way can
best represent the capabilities of the codes and is sufficient to support our comparison.
Such a way is often referred to as 'testing'.

Fortunately, among the many input parameters, only a few may influence the
timing, storage and accuracy that related to the codes. In many cases, the influence of
a single parameter can be so dramatic that the influence of the other parameters is
negligible. Based on our experience with the four codes, when compared with other
parameters, tolerance, the parameter that is supposed to impose the desired degree of
accuracy on the numerical solution in some way, is one of the input parameters that
consistently has a dramatic influence on the performance of the codes, no matter what
kind of test problems we use. Furthermore, it is designed to influence the solution in a
fairly predictable way (we will come to this in the next paragraph) and it is the only
such a parameter that every code has in common. Despite many problems it may
cause, in order to get rid off the difficulties of being entangled by the infinitely many
combinations of the input parameters and infinitely many solutions that follows, some
kind of ‘clear cut' approach is inevitable. Our ‘clear cut' approach in this thesis is that
when using the codes to solve a test problem, we set all the input parameters except
the tolerance in a way that we believe will best serve the codes in terms of producing
quality solutions by them. We then vary the tolerances from 1.D-2, 1.D-4, 1.D-6 to
1.D-8 and run the codes with these values of tolerance to collect information such as
accuracy, timing and storage that we need to reveal the relative efficiencies. We will
provide more details about this approach in Appendix (I). As one will see from there,
this approach is feasible and practical.

The four codes differ from one another in the number of tolerances allowed.
COLNEW, COLSYS and HAGRON allow the user to specify a tolerance for each
variable (in the case of COLNEW and COLSYS, these variables may be any
component of z in 3.2a&b), while MUTS allows a user to provide only two tolerances.
The impact the tolerances have on the performance of the codes is usually test
problem dependent and varies from code to code. Based on our experience with the
four codes, when we set all the input parameters except the tolerance in the way we

71

discussed above, the CPU time and storage needed by each code for solving a problem
generally increases as the tolerance decreases, but the accuracy of the solution
generally gets better, provided that the codes return normally. Thus when we take the
above approach, we can get solutions in different quality level as well as the related
costs upon normal returns from the codes. On the other hand, if the codes fail at some
small tolerance, we then know the limits of the codes in terms of the best quality
solution the codes can provide. These limits, as well as the reasons for failure when
the codes are brought to these limits, are important for comparing the codes in terms of
the robustness of the codes, and to what degrees a BVP for ODE can be solved by the
codes.

Being able to find out the solutions at different quality levels together with
their accompanying costs, and detect the limits that are mentioned above enables us
to collect information about these solutions and costs and carry out the test problem
related comparison. The information collected by this approach is exactly what a QSO
type of comparison needs.

4.b The Comparison of the Codes
4.b1 Codes' driver related comparison
1) The form of the BVPODE that can be directly dealt with by each code

COLNEW and COLSYS can be directly applied to a system of ODE with high
order (greater than 1) equations while HAGRON and MUTS solve first order system
exclusively. When using HAGRON and MUTS for a system of ODE with high order
equations, one must first rewrite the system as a first order system. For details on
how to change a higher order equation into a first order system, please see section one
of the first chapter.

COLNEW and COLSYS accept multipoint boundary coriditions but require that
they are separated. The current version of HAGRON accepts two point separated
boundary conditions only. MUTS is not restricted to separated boundary conditions but
like HAGRON, it accepts two point boundary conditions only.

78

The form of the BVPODE that can be directly dealt with by each code is not
critical in theory since a mixed order system with general multipoint boundary
conditions can be recast into a first order system with separated two point boundary
conditions, which all the four codes can be directly applied to [2]. However, when a
higher order equation is changed into an equivalent first order system, a multipoint
boundary condition is changed into an equivalent two point boundary condition, or a
non-separated boundary condition is changed into a separated one, the number of
equations will be increased and the transformation needed may be rather cumbersome.
Thus this issue does reveal the disadvantages and advantages of each code in the
sense that when a problem is not in the form that the a code can be directly applied to,
the transformed problem may be much more expensive to solve due to the increase in
dimension of the problem. The transformation needed can also be a great difficulty to
many users.

Whether this issue brings advantages or disadvantages to a code will certainly
change according to different users. If you only want to solve a two point boundary
problem, being able to solve a multipoint boundary problem is not an advantage to you.
Otherwise, it is. Nevertheless, we noticed that while the types of problems that can
be directly handled by COLNEW, COLSYS and MUTS are not entirely overlapping,
they contain the type of problems that HAGRON can be directly applied to.

2) Input parameters

There are roughly two types of input parameters. The first type are those that
are used to describe the objective problem, such as the dimension of problem or
whether the problem is linear or nonlinear. These parameters are objective problem
dependent, and the user cannot choose these parameters freely. The second type are
those that have to be set by the user when using the codes. This type of parameters
includes the tolerances, the dimensions of some working arrays, etc. The setting of
this type of parameters, like tolerance we discussed in the last section, is usually
critical to the performance of a code.

3) Input subroutines

COLNEW, COLSYS and HAGRON all need four subroutines for linear
problems and an optional fifth subroutine for nonlinear problems (see Chapter Three

79

for the description of the subroutines). Through these subroutines, the right hand side
of the equation, the boundary conditions and their the first derivatives are evaluated
and conveyed to the codes. When solving a nonlinear problem with the optional fifth

subroutine, the initial solution as well as some of its derivatives are also conveyed to
the codes.

MUTS, on the other hand, needs only two subroutines when solving a linear
problem and three subroutines when solving a nonlinear one. When solving a linear
problem, it differs from the other three by having a parameter to tell the code whether
or not the problem is homogeneous. The two subroutines needed are used to evaluate
the homogeneous part of the system and the whole right hand side of the system. In
the case of a homogeneous problem, one only needs one subroutine. When solving
nonlinear problems, the three subroutines needed are used to evaluate the right hand
side of the system, the initial solution, and the boundary conditions together with the
derivatives of the boundary conditions.

When the derivatives of the right hand side of the system are easily available,
the first three codes appear to have the advantage of making use of more information.
But when the first derivatives are not easily available, MUTS has the advantage of not
depending on these derivatives, and in this case it is the easiest choice.

4) Ease of Use (I)

If compared with codes for many other purposes, all the four codes are fairly
difficult to use in general. In particular, COLNEW, COLSYS and HAGRON require
the derivatives for both the right hand side of the system and boundary conditions.
When the right hand side gets complicated, this may be the place to watch out for the
errors. The current version of HAGRON puts the numerical solution into a one
dimensional array that is not well explained by the available documents. MUTS is
relatively easier to use in terms of the complexity of its driver. This is particularly the
case when one solves a linear problem, and needs only two simple subroutines.

All the codes appear to have a common problem of having too many options or
too much output information for ordinary users. The setting of IPAR(10) for COLNEW
and COLSYS, IPAR(15), IPAR(16) for HAGRON and output arrays U, Q, D from

80

MUTS, for example, may not be of great importance to an ordinary user, but their
presence surely makes the codes more difficult to run since it is hard to decide what to
do with them. While we noticed that the codes, such as HAGRON, are still in an
experimental stage, a practical idea for diminishing this problem may be producing
different versions of a code that suit different groups of users.

4.b2 Comparison concerning the qualitative aspects of the solution

1) The form of the solution

The four codes offer two different types of solutions. COLNEW and COLSYS
produce continuous solutions on the entire domain. HAGRON and MUTS produce
solutions at some mesh points that are either chosen by the user or automatically
determined by the code.

When one is only concerned with the solution at some discrete points, one may
not care about whether a code produces continuous or discrete solution. But the same
thing cannot be said when one wants a continuous solution on the entire domain. The
ability of being able to produce a continuous solution is clearly an advantage. In this
sense, the solutions from COLNEW and COLSYS are more desirable.

2) The number and the distribution of the final mesh points

It had been considered to.be more efficient if a code can solve a problem with
fewer final mesh points. Since the number of final mesh points is directly related to the
storage that is needed to produce a solution, the minimum number of final mesh points
on which a code can provide a satisfactory solution may be used to reveal the minimum
amount of storage each code needs in order to solve the problem (the solution one
gets with this minimum storage is usually not as good as the solution when more
storage is supplied and be used by a code). But it is not appropriate to compare the
number of final mesh points needed by a code that produces a discrete solution with
that of a code that produces a continuous solution. If we put aside other issues
concerning the quality of solution, it is true that if a code produces a continuous
solution, the fewer the number of final mesh points are, the less the amount of storage
the code needs to solve the problem, and then the more efficient the code is. When you

81

have a continuous solution, the solution at the mesh points (though it is usually of
higher accuracy) is not of particular importance. But when you only have a solution at
some discrete mesh points, the fewer the number of final mesh points there are, the
less the program tells the user. Thus a big or small number of final mesh points has
both an advantage and disadvantage if a code only produces a discrete solution. When
two codes can solve a problem with the similar amount of storage, the one with the
bigger number of final mesh points is clearly more efficient in the sense that it tells the
user more.

The distribution of the final mesh points is also very important. When solving a
real problem where the exact solution is not known, users have to rely on the code to
provide a numerical solution that can best characterize the unknown exact solution.
Our first test problem has a boundary layer near zero (see 114). Assuming that we
are not aware of this boundary layer, when using COLNEW, COLSYS and HAGRON
to solve this problem, the mesh points can be automatically determined by the codes.
One can see from one of the graphs on 114, 115, 117, 120-125 that the final mesh
points from these three codes are very reasonably distributed in the sense that the
density of the points in the small region where one of the solutions changes rapidly is
much higher than the density in any other places. With the distributions of the final
mesh points like this, the behaviour of the exact solutions are then well characterized.
But when we use MUTS, we have to set the mesh points all by ourselves. Given that
we do not know the existence of the boundary layer, we are simply not able to set the
points reasonably as was automatically done by the other three codes. The only thing
we can do is to choose a set of equally spaced points in the domain. But the boundary
layer can be easily missed if the number of points we choose is not big enough.
However, a big number of mesh points usually results in not only a big storage
requirement, but also a big amount of CPU time. We do not want to go that far as to
discuss the mesh selection strategy used by COLNEW, COLSYS and HAGRON and
whether this strategy can or cannot be adapted by MUTS. From a pure user point of
view, the first three have a clear advantage over MUTS for their ability of detecting the
important features of the solution by themselves and their ability of distributing the
mesh points efficiently. It is possible, however, to let MUTS determine the output
points by itself by setting NRTI to zero and set AMP to some small value. But the
distribution of the output points is not determined by the shape of the exact solution of
the problem as was by the first three, rather it is determined by the shape of the

82

corresponding fundamental solution [2]. Consequently, the exact solution usually
cannot be well characterized by the numerical solution from MUTS. See 118, 126 and
127 for examples.

3) Error analysis

By looking at the location of the maximum absolute error and the graph of the
absolute errors at the final mesh points, we expected to see some kind of patterns
regarding these two aspects to emerge from our experiments that might be related to
each code. We anticipated that the errors at the points in those regions where the
solution changes dramatically would be bigger and the maximum error would be
located at these points. But to our surprise, this did not always happen. From the
graphs in Appendix II, one can see that the maximum errors are not always located at
the places that we thought they should be although in some cases (see 120-122) they
are. The overall error curves for the four codes are also somewhat random except that
the curves for HAGRON appears to have more oscillations.

We intended to include error analysis as a part of the quality of solution. But
the observation that there is unlikely to exist any pattern that the errors follow makes
this issue incompatible. Should more test problems and data become available, some
useful patterns might be found.

4.b3 Relative efficiencies and robustness

The following is a comparison concerning the test problem dependent criteria,
mainly the relative efficiencies defined in the first section, as well as robustness, of the
four codes on the eleven test problems we chose. Though a quantified comparison is
more desirable, we felt that the testing we conducted is more supportive to a
qualitative comparison, and the comparison we have below is more qualitative than
quantitative.

1) Quality of solution oriented efficiency

1.1) Timing

83

The comparison between COLNEW and COLSYS is straightforward because
they both use the same mesh selection strategy and both produce continuous
solutions. If the accuracies of their solutions are the same, then the solutions can
usually be considered to be of the same quality. Even though there are some
exceptions, COLNEW is generally more efficient in terms of CPU time needed to
produce a solution of certain degree of accuracy than COLSYS. In most cases, the
ratio of COLNEW's and COLSYS's CPU times that correspond to the same accuracy
is between 0.9 and 0.7 (see Appendix III I.a).

About one and half year ago, we did a separate study comparing COLNEW to
COLSYS. One of the main purposes of that study is to find out the reason why
COLNEW is usually faster than COLSYS. For each test run, we monitored the
amount of CPU time a code spent on its linear system solver and the total amount of
CPU time it spent on the test run. We then compared these CPU time for the two
codes under the condition that the input parameter settings (for the two code)
associated with these CPU time are the same (this is easy to do since COLSYS and
COLNEW have exactly the same set of input parameters). From the data we
collected, we found that the proportion of CPU time used by the linear system solver in
COLSYS is much higher than that proportion of COLNEW. The difference between the
amount of CPU time used by the two linear system solvers is often close to the
difference between the total amount of CPU time used by the two codes. Based on
these observations, we believe that the linear system solver in COLSYS is the major
reason for COLSYS being slower than COLNEW. Decisive evidence for this may be
found if one replaces the linear system solver in COLSYS with the linear system
solver in COLNEW.,

When we compare COLNEW, COLSYS with HAGRON, it appears to us that
HAGRON is competitive with COLNEW and COLSYS in terms of the CPU times
needed in order to produce solutions of the same quality, regardless of the type of
maximum error for COLNEW and COLSYS that is used for measuring the solution
quality (see Appendix I for the description of error types). In Appendix III, we
compared the four codes in term of timing a pair at a time on all the test problems. By
and large, when the first type of error for COLNEW and COLSYS is used, HAGRON
outperforms COLNEW and COLSYS in terms of this criterion on L2, L5 and L6.
COLNEW outperforms HAGRON on L1, L3, L4, N2 and N4. COLSYS outperforms

84

HAGRON on L1, L3, L4, and N2 (see the related tables in Appendix III 1.a). A
comparison based on the second type of maximum error for COLNEW and COLSYS
also gave us similar results (also see Appendix IIT 1.a). With limited test problems, it
is hard to tell whether this relative efficiency is related to the dimensions or the
behaviour of the exact solutions of the test problems. Taking into consideration that
our test problems were independently selected in the sense that they were chosen
before we ran them with the four codes, it is fair to say that HAGRON is competitive
with COLNEW and COLSYS on this issue.

It is most difficult to compare the rest of the four codes with MUTS mainly
because it requires the user to specify the number of output points, and both the CPU
time needed by MUTS and the accuracy of the solution depend not only upon the value
of tolerances but also the number of output points. When running MUTS on L3 with
a=11, TOL=1.D-4, for example, the following table shows what we get when we vary
the number of output points:

NRTI CPU ERROR
20 40 .32D-2
100 147 .23D-5
200 289 .70D-7

CPU is measured in milliseconds.

Even though the code can determine the output points by itself when NRTI is set to
zero, we found that no matter how small we set AMP to be (as required, it has to be
greater than 1), we often only got output at the two boundary points. Such examples
are those homogenuous linear problems with right hand sides equal to zero. In these
cases, the fundamental solutions are all constants and no matter how small AMP one
set, one cannot get additional output points. With only two output points, we simply
cannot say that the quality of the solution is compatible with that of the other three.
Thus it is necessary to set it to some value that is reasonably bigger than zero.
According to our experience with MUTS, when the required number of output points is
big (more than 300), MUTS is considerably slower than the other three. We thought
about using the final mesh points from COLNEW, COLSYS or HAGRON as the
required output points for MUTS and then compare the resulting CPU time and
accuracy with that of the others, but we decided not to do so because this will put

85

MUTS in an secondary position and there is no sensible justification for this. In the
meantime, it is also difficult for us to collect the data if values of NRTI are allowed to
vary among all the positive integers. We eventually decided to set NRTI to be the
smallest number of in the set {20,50,100,200,300} that produces an accuracy that is
about the same size as the value of the corresponding tolerance (also see Appendix
). With the input parameter settings described above, we found that MUTS runs
slower than the other three on most of the ten test problems (one of the eleven test
problem is not used except for comparing the robustness) in terms of CPU time needed
to reach a certain degree of accuracy (see Appendix III 1.a@). While this is observed
through using a particular set of input parameters on the ten test problems we
selected, we believe that MUTS, when compared to the other three, is generally less
efficient in terms of timing efficiency we described above.

1.2) Storage

It is extremely difficult to keep track of exactly how much storage a code needs
in order to produce a solution at a certain degree of accuracy. When using COLNEW,
COLSYS and HAGRON, one has to provide more than what the codes need in order
to run the codes. Because one never knows how much storage they will really need
beforehand, when writing the driver, one usually can only take a guess and the
question that follows is that there are two storages here, one is that provided by the
user, another one is that actually needed by the code. Which one should we compare ?
Furthermore, like MUTS where the number of output point is related to the quality of
solution, the quality of solution of the three codes may be related to the amount of
storage available. COLSYS, for example, can often produce decent solutions even
when it needs more storage to insure that the required tolerance is achieved. When
solving L3 with @=55, TOL=1.D-8, with sufficient and insufficient storage, the
solutions differ in quality but they are both acceptable.

L. S. S. S.
FMP 375 1281
ERR1 .115D-9 .696D-11
ERR2 .273D-8 .562D-11

LS. = insufficient storage, S.S. = sufficient storage, FMP = number of final mesh points

ERRI1 = the max error at mesh points, ERR2 = the max error at 30 equidistant points

86

We did record the numbers of final mesh points when we ran the codes. It is
possible to detect the maximum number of final mesh points allowed by a code when
the amount of storage as well as the dimension of the object problem are known. But
since the same storage allocation for different codes may result in a different maximum
number of final mesh points, and different codes may need different amounts of storage
in order to produce the same number of final mesh points, the relationship between the
storage that is actually used by each code and the number of points in the final mesh is
not clear. This makes it difficult to compare the codes' storage efficiency via the
number of final mesh points we recorded. However, if we look at only a single code
with a fixed input parameter setting, more final mesh points or output points always
goes with a bigger storage requirement needed by the code. See section Testing
(Appendix I) for details about how the storage for each code is set when we run the
test problems.

Due to the above difficulties, we felt that with the set of data we collected on
the ten test problems, a detailed comparison of the relative efficiency in terms of the
storage versus the quality of the solution is not possible.

However, it is possible to comment on the flexibility each code has on the use
of storage. When using COLNEW, COLSYS or HAGRON, if IPAR(11) is set to zero,
the final mesh is totally determined by the codes themselves. Even when IPAR(11) is
not equal to zero, usually there are still many points in the final mesh that are
determined by the codes. Thus the final meshes for these three codes are more or less
beyond the user's control. Since the final mesh is very closely related to the storage
requirements of each code, the storage requirements for the codes are also beyond the
user's control. Recall that the ability of automatically determining the final mesh points
brought advantages to the three codes when we discuss the quality of solutions. This
same issue is now bringing the three codes disadvantages. With storage requirements
that can not be controlled by the user, the codes may waste storage to produce some
undesirable information for the user at those mesh points that are not needed by the
user. When one only wants the solution at one point in the domain, for instance, the
three codes still have to include many other points in their final mesh and produce
solutions at these points. Another clear pattern which emerged from the data we
collected is that the storage needed by COLNEW, COLSYS and HAGRON usually
increases dramatically as the accuracy of the solution one wants increases. This is

87

evidenced by the fact that as we increase the tolerance during our experiment, often
the number of points in the final mesh for these three codes also increases rapidly (see
Appendix III section c).

Unlike the other three codes, in order to improve the accuracy of its numerical
solution, MUTS usually does not need more storage. It is difficult to say exactly how
much storage it really needs in order to solve a certain problem even if the number of
output points is supplied by the user. The parameter AMP is often responsible for
those output points that are not part of output points supplied by the user. Based on
our experience, MUTS is generally more flexible than the other three codes in terms of
making use of the storage to serve users' various needs. When we solve L1 with
eps=1.D-2, TOL=1.D-4 and IPAR(11)=0, for example, the following is the (minimum)
number of points in the final mesh we found '

Code FMP
COLNEW 11
COLSYS 11
HAGRON 3R

MUTS 2

FMP = the number of points in the final mesh

One might be able to set the array FIXPNT to get different numbers of points in the
final mesh for COLNEW, COLSYS and HAGRON, but when you want only the output
at the two boundary points, it is unlikely that the three codes can match MUTS which
can give you exactly the solutions at the two boundary points only. When one only
wants the numerical solutions at certain points and the value of AMP is properly set,
MUTS can usually do the job very efficiently without producing any undesirable
information at any other points. Even when one wants a highly accurate solution at
only a few points, with small tolerance, MUTS can usually produce solutions at a
higher degree of accuracy without any additional output points and storage. This
clearly brings MUTS an advantage over the other three codes, and it means a big
saving in storage when one wants a highly accurate solution at only a few output
points.

How important this feature is to the portability of a code in terms of the
feasibility of using the code on all kinds of machines is beyond the scope of this thesis.

88

Our speculation is that this feature may make a code like MUTS a very natural
candidate for small machine with a small amount of storage available. The other three,
on the other hand, are restricted by their basic needs for big storage.

3) Robustness

Robustness, the reliability of the codes or more precisely the 'degree to which
they can solve a large class of problems and exit gracefully if not' [17], is a very
important issue not only to the software developers, but also to the codes users.

In order to compare the codes on this issue, when running the codes on the test
problems, we looked at the following four aspects: 1) At what level of difficulties
(when a test problems with a parameter that controls difficulties of the problem is
used, the level of difficulties is represented by the value of the parameter) that each
one of them starts to fail. 2) For what reason a code fails and is the failure easy to fix.
3) What one can still get when a code fails. 4) the flexibility of the codes in dealing
with problems that involve some singularities. By fail or failure above, we simply mean
any kind of abnormal exit from the codes or normal exit with a wrong solution. It
should be noted that when running a code on a test problem, in case the codes are very
expensive to run, only the first or the first and the second failure is recorded, i.e. we
did not run the code for different values of the parameter(s) that correspond to even
higher degree difficulties. The following comparison is based on the testing described
in Appendix I.

Our observations concerning the first aspect of robustness are mainly from the
runs on the three linear test problems L1, L4, LS and two nonlinear test problems N2
and N3 where the program failures had occurred. All these five test problems, as it is
described in Appendix I, have some parameters that control the difficulties of the
problems. When we test the codes on a test problem of this kind, the difficulty of the
problem always increases in the order of the tables by which the test results are
recorded (see Appendix III, 3). e.g. the second table in table page 1 in Appendix III
section three correspond to a problem of higher degree of difficulty than that of the first
table. From the data we collected (see Appendix III section two), it appears to us that
COLNEW, COLSYS and HAGRON are more capable in terms of their ability to solve
difficult problems than MUTS. On the five test problems where most of the codes
failures occurred, i.e. L1, L4, LS and N3, MUTS failed the earliest on L1, L4 and N3.

89

On test problem N2, it is the only code that had failures. COLNEW, COLSYS and
HAGRON appear to be quite competitive on this issue since they all failed on L1, L2,
and L3 at the same degrees of difficulties. Though we noticed that HAGRON also had
failures on N3, it is difficult for us to make any comment beyond what we had above
due to the limited number of test problems we had.

In our experiments, the causes for the codes' failures are mainly: 1) the storage
needed exceeds the allowed limit. 2) program overflow (e.g. a divisor is found to be
zero or an exponent is outside the domain of the machine exponential function). 3) the
clock time needed exceeds fifteen minutes. 4) Unacceptable solution in terms of both
absolute error and relative error. Program failures for COLNEW and COLSYS are
mostly due to the first kind cause, i.e. storage needed exceeds the allowed limit. The
only other cause of failure we experienced for these two codes is the fourth cause.
Failures for HAGRON are also mainly due to the first kind of cause. The second major
cause for HAGRON is also unacceptable solutions. Apart from these two causes we
also experienced occasional program overflow as well as the third kind of cause.
Unlike the first three codes, the limited storage brings little trouble to MUTS. Instead,
most of the failures for MUTS are caused by unacceptable solutions and program
overflow. Occasionally, we also found that the number of nonlinear iterations needed is
greater than the limit (50 times) is responsible for the failure. In one case, the third
one in the list is found to be the cause.

Among all the causes for failures, in our opinion, only the first cause is easy to
fix as long as getting more storage is not a problem. Often, when COLNEW, COLSYS
or HAGRON fail because of this reason, we add some more storage to the codes and
then the codes work properly. The second kind of cause is harder to deal with but one
may try to change the parameter setting of the code and sometimes one can avoid this
problem. When solving L1 using MUTS with eps = 1.D-4 and TOL = 1.D-2, for
example, we found that when we change the parameter NRTI (shown in the table
below), we can get rid of the overflow. .

NRTI EXIT
20 overflow
50 overflow
100 normal

The third cause, though it appears to be easy to deal with, is a difficult one for people
with limited computing resources. As a matter of fact we did not intend to relate it to
the robustness of the codes in the beginning. When we started running the codes on
the test problems, we simply let a program run until it stopped by itself. However, we
soon found that we must impose a elapsing time limit on the runs due to the
unaffordable computing expenses. When using HAGRON on L4 with eps = 1.D-4 and
TOL = 1.D-8, we tried to let the program stop by itself so that we could bring the
program to its limit and see how much time the program may take on that problem. But
it did not stop for three hours and it was eventually interrupted by the system manager
when the computer account was suspended due to the excessive use of computing
fund over the limit that the account was allowed. Another example is when ‘we used
MUTS on L1 with eps = 1.D-4, TOL = 1.D-6 and NRTI = 100, the program did not
stop for about an hour and had to be-interrupted by us due to the expenses. The last
cause is more serious in the sense that if the exact solution is not known, the user
may have no idea whether or not an abnormal exit due to this cause has happened.
When the exact solution of the problem has a very sharp spike or is highly oscillatory
in a small region and is relatively very smooth in the rest of the domain, for example,
the codes may not be able to detect the spike or oscillatory behaviour of the exact
solution as the initial mesh is not fine enough for some mesh points to fall into the
rough region. This often is the reason for the fourth type of failure. Provided that the
rough region is not too small, this may be avoided by either increasing the number of
final mesh points or using a tighter tolerance to produce finer meshes and increase the
chance of detecting this kind of rough region. When we solve L4 using COLNEW,
COLSYS and HAGRON with cp§=1.D-4, for example, we observed the following.

TOL NMIP ERRmax
COLNEW 1.D-2 default(=5) 1133.18
COLSYS 1.D-2 default(=5) 1133.18
HAGRON 1.D-2 default(=6) 10000
TOL NMIP ERRmax
COLNEW 1.D-2 20 0.39D-1
COLSYS 1.D-2 30 1.77D-1
HAGRON 1.D-2 100 2.95

91

TOL NMIP ERRmax
COLNEW 1.D-4 default(=5) 0.24D-3
COLSYS 1.D-4 default(=5) 0.55D-1
HAGRON 1.D-4 default(=6) 0.23D-2

NMIP = number of points in the initial mesh.
It is clear that the solutions from the three codes in the first table is not acceptable. By
increasing the number of points in the initial mesh or tightening the tolerance (or both),
one may get a much more accurate solution. Thus using tighter tolerance or a finer
initial mesh can reduce the possibility of this kind of failure.

When a code fails due to the second and third causes, we do not have a
solution. When a code fails due to the last cause, we have a wrong solution. Thus if a
code fails due to one of these three causes, we cannot get anything from the code. On
the other hand, one often can get useful information from failures due to the first kind of
cause. In particular, COLNEW and COLSYS often can still provide a partially
converged solution in the case of this kind of failure, e.g. Table 1 and Table 2 in section
three of Appendix III. One may make use of these partially converged solutions for
continuation as was described in Chapter Three.

There are some problems that involve some harmless singularities. As an
example, L7 is a simple second order two point boundary problem, but the coefficient
matrix has a singularity point 0. COLNEW and COLSYS do not have to evaluate the
coefficient matrix at the boundary points, thus such a singularity is of no threat to
them. The ability of dealing with problems of this type naturally enhanced their
robustness in the sense that they solve a broader range of problems. On the other
hand, a singularity of this type is somewhat insurmountable to HAGRON and MUTS
due to their dependence on the values of coefficient matrix at the boundary points.

Based on the discussion above, COLNEW, COLSYS and HAGRON appear to
be clearly more robust than MUTS. Not only they have fewer failures than MUTS but
also the causes for their failures are more concentrated and less harmful. Furthermore,
during our testing, we had experienced the fewest number and types of abnormal exits
from COLNEW and COLSYS. Even when the needed storage exceeded the allowed
limit, COLNEW and COLSYS were often able to bring us some reasonable solutions

92

and more importantly they were able to terminate by themselves in a relatively short
period of time. Add all these to their ability in dealing with the problems with
singularities, COLNEW and COLSYS, in our opinion, are even somewhat stronger
than the current version of HAGRON with respect to the robustness of the code.

We conclude the comparison of the robustness of the codes by pointing out that
according to the separate study we conducted a year ago and our testing results in
Appendix III, COLNEW did not appear to be more robust than COLSYS though it
uses a different bases for representing the numerical solution. The robustness of
COLNEW and COLSYS is deeply rooted in the spline-collocation method and this
robustness did not seem to be improved by the new bases used in COLNEW.

4.b4 Accuracy, tolerance and termination criteria

The accuracy of the numerical solution a code produces, the input tolerances
and termination criteria for the code are very closely related to each other. By accuracy
of the numerical solution, we mean the absolute or relative error of the numerical
solution. The tolerances, on the other hand, are some input parameters that have great
influence on the accuracy of the numerical solutions through the role they play in the
termination criteria. In theory, when the tolerances decrease, the numerical solution
gets more accurate.

As was described in the last chapter, the termination criteria for COLNEW and
COLSYS is: if TOL(j) is the tolerance related to the LTOL(j)** component of z(u), the
codes will attempts to satisfy on each subinterval

I(z(v) - 2(u)) 1ol < TOL(j) (Jz2(u)roryl + 1)
where ¥(x) is the approximate solution vector and u(x) is the exact solution of 3.1a&b.

The termination criterion for HAGRON is: if TOL(j) is the tolerance related to the
LTOL(j)*» component of u(x), the code will attempt to satisfy at each grid point x

/(v(x) - u(x)) ol < TOL{j) max(/v(x).rouys 1)

93

where v(x) is the approximate solution vector at the grid point x and u(x) is the exact
solution of 3.2a&b. The norms involved in the two inequalities are maximum norms.

How these termination criteria were approximately carried out by the codes is
not our concern here. But the influence of tolerance on the accuracy of the solution is
now clear. It is not the real accuracy of the numerical solution yet the numerical
solution is expected to be more and more accurate as the tolerance decreases. Users
may like the idea of having an input parameter that can be used to specify the accuracy
of the numerical solution they want rather than a tolerance that is not really the
accuracy of the numerical solution. But this is clearly impossible since the exact
solution is not known.

It is important to see that the input tolerance is neither always an upper bound
for the absolute errors of numerical solutions nor always an upper bound for the
relative errors. For a specific problem, it can be considered as one (and only one) of
these two bounds. If the size (maximum norm) of the numerical solution for a certain
problem is smaller than ten, the input tolerance can be considered approximately as an
upper bound on absolute error of the numerical solution. Otherwise, it can be
considered as an upper bound on the relative error.

When one uses these three codes, how should one impose a desired accuracy
on the numerical solution by using the input tolerance ? If the size of the exact solution
is completely unknown, one does not know whether the input tolerance is going to play
a role as an upper bound for the absolute error or an upper bound for the relative error.
In this case one has to rely on a test run (when testing the size of the solution, in
order to save computing time, set the tolerance to a relatively bigger values, say 0.1)
to find out the size of the solution. Once the approximate size of the solution is known,
if this size is smaller than ten, user specified tolerance imposes an upper bound on the
absolute error of the numerical solution, otherwise the tolerance imposes an upper
bound on the relative error.

Unlike COLNEW, COLSYS and HAGRON, MUTS has only two tolerances

regardless the dimension of the problem (see parameter ER in Chapter Three—MUTS'
documentation). Though we do not have information on how the two tolerances are

94

involved in the termination criteria of the code, in MUSL ER(1) and ER(2) stand for
the relative and absolute error tolerances, respectively.

L6 is an example where the domain of the problem and magnitude of the
solution (rather than the difficulty of the problem) are controlled by two parameters.
One can see that as the magnitude of the solution increases, the absolute error
increases but a simple calculation can show that the relative error stays more or less
the same. The maximum absolute error of the numerical solution is not always equal to
or less than the corresponding tolerance, but the relative error always is. When one
sets the tolerance to a certain value, say 1.D-4, one will not be able to know whether
this tolerance will result in a maximum absolute error that is less than 1.D-4 or a
relative error that is less than 1.D-4 until the numerical solution is calculated,
provided that the code terminates exactly as we described above. If the magnitude of
the solution is less than one hundred, then the maximum absolute error of the
numerical solution is about or less than 1.D-4. Otherwise the relative error is about or
less than 1.D-4.

4.b5 User feedback

Each one of the four codes provides many kinds of feedback. It is difficult to say
a code is superior to the others in terms of its user feedback since the feedback is
often tied with the codes' underlying numerical methods. COLNEW, for examplc, can
provide the user with a complete mesh as well as the approximate numerical solution
at the mesh point at every step. But when one uses MUTS, since the mesh points are
often chosen by the user and may not vary in the process of solving the problem, there
may not be such a varying mesh like that of COLNEW that the user may be interested
in.

However, it is possible to comment on the focus of the user feedback of each
code. Codes that are based on finite difference methods, i.e. COLNEW, COLSYS and
HAGRON, provide more information about their process of solving the problem such
as the current mesh and have less feedback about the driver setting (input parameters
and input subroutines). The biggest problem is that the programs are not able to tell
the user whether the allotted storage is enough until the user has a test run. MUTS,
on the other hand, provides more feedback about the correctness of the driver. The

95

storage needed by MUTS usually can be estimated very accurately before running the
code. However, once the code starts running, little about the process of solving the
problem is available.

For all the four codes, modifications concerning their user feedback are needed
before they are used to serve people with little knowledge about the literature of
ODEBVP. We recommend that the user supplied derivatives be checked by the codes.
This may be done by using a standard driver program that calls the routines having
this purpose from a software library or by including a subroutine in the codes that does
the checking. As incorrect derivatives are the major problem when writing a driver,
such a checking is important.

4.b6 Ease of use (II)

In Ease of use (I), we compared the codes on this issue by focusing on the
complexity of their drivers. The following are some more observations that can be
related to the ease of use for the codes.

Even though we used the whole of Chapter three to describe the meaning of the
input parameters and subroutines and explain how to use the codes, there are still a
few hidden problems that are important to know about for using the codes properly.
From Chapter three, one can hardly see the importance of many input parametérs such
as IPAR(2) for COLNEW and COLSYS. Can we set this parameter to any legal value
described by the program documents? What kind of impact do these parameters have
on the solutions? When solving L2 with eps = 1.D-6 and TOL = 1.D-2 using COLSYS
and COLNEW, we observed the following change of the maximum absolute error at
the mesh points:

IPAR(2) COLNEW COLSYS
3 0.29D-5 0.29D-5
4 0.92 0.92
5 0.83 0.83
6 0.84 0.84
7 1.01 1.01

**The last two columns above coincide to the number of digits shown above.

96

We mentioned how the number of output points can affect the returns from MUTS
when we compare the robustness of the code. The number of output points also affects
the accuracy of the solution. When using MUTS to solve L2 with the same eps and
TOL above, the following table shows how the accuracy of the numerical solution
changes with the number of output points:

NRTI ERRORmax
20 0.14
50 0.18D-1
100 0.16
200 0.22D-1

These parameters often significantly affect the solutions, especially when the
tolerance is not very small (>1.D-2).

Another interesting observation is about the tolerance. It is clear from 4.b4 that
the tolerances are not the desired accuracy. But it may be considered as a good
approximation of the upper bound of the absolute accuracy when the norm of the
solution is reasonably small and may be considered as that of the relative accuracy
when the norm is big. A question that arises naturally here is how well does the
accuracy of the numerical solution correspond to the input tolerance?

Based on our testing, all the four codes respond well to the user specified
tolerance if one is only concerned that the resulting accuracy is not greater than the
tolerance. For all the four codes, when the norm of the solution is small, the maximum
absolute error is usually less than or of the same size as the tolerance. When the
norm of the solution is big, the maximum relative error is usually less than or of the
same size of the tolerance. In the case of the smooth problems, all the four codes
usually give accuracies that are far smaller than the input tolerances (see section
three in Appendix III for the results on L6 for an example). In particular, HAGRON
has fewer input parameters that affect the solutions. Its numerical solutions also
appear to have a stronger relationship with the input tolerance than the other three
codes. When the it exits normally, the accuracy of the numerical solution is usually
about the same size as the tolerance and sometimes less than the input tolerance. For
the other three codes, the accuracy of the numerical solution may be bigger than the

97

tolerance if some other parameters, such as IPAR(2) for COLSYS and COLNEW and
NRTI for MUTS, are not properly set. This makes HAGRON easier to use in terms of
getting the desired accuracy by setting the tolerance, as how to set NRTI for MUTS or
IPAR(2) for COLNEW and COLSYS is a very difficult question. As the last remark
concerning the ease of use, we point out that this feature of HAGRON is important
and very useful to ordinary users for whom the role of the parameters is difficult to
understand yet the confidence about the correctness of the solution is critical.

For a brief discussion concerning the relative timing efficiency involving the
correspondence between the tolerance and the accuracy, please see part 1.b in
Appendix III.

4.c Conclusions

By evaluating the relative efficiency of the codes using a QSO approach, we are
actually comparing the potential ability of the codes. The question that how these
revealed potentials might be utilized is left behind.

However, it is not difficult to see that QSO approach can be useful. When
comparing HAGRON with COLSYS, for example, the traditional approach leads to the
conclusion that HAGRON is faster than COLSYS (see [5], [6] and section 1b in
Appendix III of in thesis), while our QSO comparison indicates that COLSYS is quite
competitive with HAGRON in terms of speed (see 1a in Appendix III). Why do these
two approaches lead to different results? When using the traditional approach, a code
can be faster than another one even if the two codes converge to the exact solution at
the same speed, as long as one code has a better error estimator and stops earlier
than another one when the required tolerance is satisfied. By taking a QSO approach,
the effect of the error estimator is eliminated, and a code can be faster only when it
converges to the exact solution faster. Thus the results of the two different approaches
indicates that the speeds the two codes converge to the exact solution are competitive
but HAGRON has a better error estimator. However, we must emphasize that
comparing these codes using a QSO approach is strongly biased against HAGRON
since the efficiency of the error estimator involved in each code is purposely discounted
and having a good error estimator is one of the strongest advantages of HAGRON.
Incidentally, the fact that HAGRON has a better error estimator was well known

98

among BVPODE experts. Our study fully agrees with what was known. Furthermore,
by including a QSO type of comparison, this study also reveals that HAGRON does
not generally converge to the exact solution faster than COLSYS.

The traditional approach 'has many distinct merits of its own, e.g. its results can
be easily understood and utilized by the user. However, most of the codes do not yet
have the abilities to communicate with the user so well that what the user wants can
always be precisely translated into some input parameter settings and then carried out
by the codes. When a user wants a solution of an accuracy 1.D-4, for example, there is
no code that it can guarantee an accuracy of 1.D-4 by using certain input parameter
setting. There are always some random factors involved in the process of solving the
objective problems and these random factors make it impossible to predict fairly
accurately the goodness of the solution by just look at the input parameters. Thus we
felt that the input parameter setting for ODEBVP codes, though it often carries our
expectation of the numerical solution and with a certain amount of experience it can be
used to predict the goodness of solutions to some degree, does not have a definite
relationship with the numerical solutions. The relative efficiency with respect to certain
input parameter settings is therefore not the relative efficiency with respect to the

quality of numerical solution, and it cannot give us the insight concerning the potential
of the codes.

Nevertheless, if all the codes have almost the same sets of input pa:ﬁmcters,
the parameters in different codes that bear the same names also function similarly in
the codes they belong to and the quality of the solutions produced by each code can be
very much determined by their input parameters in a common way, then different codes
with the same parameter setting will produce numerical solutions that are of the
similar qualities. In this case, the quality of numerical solution oriented approach is not
of too much difference from the traditional approach due to connection between the
numerical solutions and the input parameter setting. Compared with the traditional
approach, it is certainly less favourable since the resulting relative efficiency is not of
an immediate use to the user.

When making the comparison, from time to time, we felt the desire to use some
statistical techniques. For example, for a given value of TOL, there may exist some
significant statistical relationship between the accuracy of the numerical solution and

99

the setting of /[PAR(2) in COLNEW and COLSYS. However, we were not able to
draw any conclusions on this basis due to the lack of a strategy of selecting test
problems and the limited number of test problems we have.

We started out our comparison by taking a different approach, but our finding
fully coincides with that of Pereyra and Russell [17]. Our first comment on the general
performance of the codes is that all four codes are very sophisticated and are fully
capable of dealing with smooth and moderately rough problems. As was evidenced by
our comparison above, if one weighs all the issues equally and has no preference to
any specific aspects of the codes, the relationships of the codes are clearly that they
are complementary to each other rather than competitive. None of them outperforms
the others with respect to all the important issues we have considered. Even though
their robustness has not been fully explored, considering the degrees of difficulties of
those artificial problems they can handle, we have to say that all the four codes are
very robust. While still undergoing modifications from time to time, all of them are well
written. Taking into consideration that there exists some kind of minimum difficulties
one has to overcome when using a ODEBVP code (after all, one cannot expect an
ODEBYVP code to be as easy to use as a code for solving the linear systems), the
codes are reasonably easy to use and quite user friendly in the sense that they provide‘
various types of feedback to the user. Even when they fail, the reasons for failure are
often clearly given. Based on our experience, the four codes perform very well
regardless the size of the tolerance on smooth problems. On rough problems, the
codes seem to have a better performance when the tolerance is set to some value of
moderate size (around 1.D-6). However, if timing, storage or efficiency is not a
concern compared to the quality of the solution, one may set the tolerance to a much
smaller value (around 1.D-10).

As a brief summary to our comparison above, COLNEW and COLSYS are
strong in terms of robustness, timing efficiency, the quality of numerical solutions and
the classes of problems they can be directly applied to. COLNEW is often even
stronger than COLSYS in terms of timing efficiency. Though there are some input
parameters that might be difficult to use or not of too much use for ordinary users, our
recommendation is to set them to default values. Unless the tolerance is big (say,
>1.D-2), these parameters do not have much effect on the numerical solutions. These
two codes, based on our experience, can usually solve the smooth problems and

100

moderately rough problems to such a degree that the resulting accuracy of the
numerical solution on the entire domain is approximately of the same size as the
smallest machine number and they are both very reliable even on rough problems.
Though they perform quite well, these two codes, in particular their speeds with
respect to a certain input parameter setting, can be further improved. Compared with
HAGRON, their potential (the rates of convergence) are not fully utilized because of
their inefficient error estimators, in the sense that they often spend more CPU time to
produce a solution that satisfies a certain accuracy requirement than they really need.
As a result, they often seem to be slower than HAGRON when one makes a
comparison using the traditional approach. It is possible to build a more accurate error
estimator based on deferred correction method for these two codes. We believe it is
important that their error estimators be improved so that their potential ability can be
fully released.

HAGRON is strong in terms of timing efficiency, easy of use, robustness and
the quality of the numerical solution. Due to the close ties between its underlying
numerical method and the method behind COLSYS and COLNEW, the driver for
HAGRON bears a lot of resemblance to that of COLNEW and COLSYS, but it has
fewer input parameters that may affect its numerical solution, and we experienced
much less variation in its solutions when we change the input parameter values as
long as the tolerance is fixed. HAGRON can also solve smooth and moderately rough
problems to the degree that the numerical solutions have a maximum error about the
same size as the smallest machine number at its final mesh points. It is very reliable
in general, but the problem that it may take a huge amount of computing time yet fail to
solve a certain problem (see L4 for example) is somewhat disturbing. It would be nice
if such a problem is resolved.

MUTS is strong in storage efficiency, ease of use and is fairly robust on smooth
and moderately rough problems. It is able to deal with non-separated boundary
condition directly. Its flexibility on the use of storage brings a unique storage efficiency
to the code, but it does not have the ability of detecting the shape of the solution all by
itself and it is not as reliable as the other three codes. Like HAGRON, it may take a
huge amount of computing time yet fail to solve a certain problem. Its numerical
solutions are generally very accurate but the accuracy depend heavily on the number of
output points. Compared with the other three codes, it also seems to be slower. In

101

order to be competitive with the other three (especially on rough problems), significant
improvement concerning its robustness and speed has to be made. We also notice,
however, that MUTS is based upon multiple shooting method which is not the best
choice for dealing with problems of singular perturbation type. Users should keep this
point in mind when solving problems of singular perturbation type.

Finally, we point out that our comparison is based on the eleven test problems
and the conclusions may be changed if one is only concerned with a certain type of
problem or a certain aspect of the codes. Our goal has been to provide some useful
discussion and raise some questions on the comparison of ODEBVP codes, as well as
to provide some useful information to the code user. We hope a reader can benefit from
our discussion in these two respects.

102

10:

11:

12:

13:

14:

15:

REFERENCES
U. Ascher, J. Christiansen and R.D. Russell: Collocation Software for Boundary-
Value ODEs—ACM Trans. on Math. Software. June, 1981.

U. Ascher, R.M.M. Mattheij and R.D. Russell: Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations—Prentice Hall, 1988.

G. Bader and U. Ascher: A New Basis Implementation for a Mixed Order
Boundary Value ODE Solver—SIAM J. Stat. Comput. July, 1987.

J.R. Cash: Numerical Integration of Non-Linear Two-Point Boundary-Value
Problems Using Iterated Deferred Corrections (I)—Comput. Math. Appl. 1986.

J.R. Cash: Numerical Integration of Non-Linear Two-Point Boundary-Value
Problems Using Iterated Deferred Corrections (II)—SIAM J. Numer. Anal. 1988.

J.R. Cash and Margaret H. Wright: A Deferred Correction Method for Nonlinear
Two-Point Boundary Value Problems: Implementation and Numerical
Evaluation—Manuscript, 1990.

B. Ford, G.S. Hodgson and D.K. Sayers: Evaluation of Numerical Software
Intended for Many Machines-Is It Possible?—in [8], pp. 317-330.

L.D. Fosdick: Performance Evaluation of Numerical Software—Proc. of IFIP TC
2.5, North Holland, Amsterdam, 1979.

E.D. Frind and G.F. Pinder: A Collocation Finite Element Method for Potential
Problems that Arise in irregular Domains—Int. J. Num. Eng. 14, 1979.

W.M. Gentleman: Discussion of General Aspects of Performance Evaluation
in [8], pp. 89-92.

E.N. Houstis, R.E. Lynch, T.S. Papatheodoru and J.R. Rice: Evaluation of
Numerical Methods for Elliptic Partial Differential Equations—J. Comput.
Phys. 27, pp. 323-350, 1978.

D. Kahaner: Comparison of Numerical Quadrature Formulas—[20], pp. 229-259.

F.A. Lootsma: Performance Evaluation of Non-linear Programming Codes from
the Viewpoint of the Decision Maker—in [8], pp. 285-297.

J.N. Lyness: Performance Profiles and Software Evaluation—in (8], pp. 51-58.

R.M.M. Mattheij and G.W.M. Staarink: An Efficient Algorithm for Solving
General Linear Two-point BVP—SIAM J. Sci. Stat. Comp. 5, 1984.

103

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

J.A. Nelder: Experimental Design and Software Evaluation—in [8], pp 309-316.

V. Pereyra and R.D. Russell: Difficulties of Comparing Complex Mathematical
Software: General Comments and the BVODE Case—Acta Cient. Venezolana
33 (1982), 15-22.

P.M. Prenter and R.D. Russell: Orthogonal Collocation for Elliptic partial
differential Equations—SIAM J. Numer. Anal. 13, 1976.

S. Pruess: Interpolation Schemes for Collocation Solutions of Two Point
Boundary Value Problems—SIAM J. Sci. Stat. Comput. 7, 1986.

J.R. Rice, Editor: Mathematical Software—Academic Press 1971

R.D. Russell: Global Codes for BVODES and Their Comparison—Proc. of
Workshop on Numerical Integration of Differential Equations,
Springer Lecture Notes, 1980.

R.D. Russell and J.M. Varah: A Comparison of Global Methods for Linear Two-
point Boundary Value Problems—Math. of Comp. 29, pp. 1-13, 1975.

L.F. Shampine: Discussion on the Performance Evaluation in Ordinary
Differential Equations—in [8], pp. 215-217.

L.F. Shampine, H.A. Watts and S.M. Davenport: Solving Nonstiff Ordinary
differential Equations - the State of the Art—SIAM Review 18, 1976.

Lloyd N. Trefethen: A course in Finite Difference and Spectral Methods—
Manuscript, 1988.

A. Weiser, S.L. Eisenstat and M.H. Schultz: On Solving Elliptic Equations to
Moderate Accuracy—SIAM J. Numer. Anal. 17, 99. 908-929, 1980.

104

Appendix (I) Testing and Test Problems

All testing involved in this thesis was done on Simon Fraser University MTSG
(IBM-4300), using the Fortran 77 compiler and double precision. The smallest double
precision machine number on SFU MTSG is approximately 2.0x10-/6.

Most of the eleven test problems we selected have a parameter that controls
the difficulties of the problems. For these problems, we set the parameter to four
different values to get four different degrees of difficulties, and then for each degree of
difficult we vary the value of tolerance a few times (the values of tolerance we usually
choose are 1.D-2, 1.D-4, 1.D-6 and 1.D-8) to collect the information shown in the
tables in Appendix IIL If we distinguish the same test problems with different degrees
of difficulties, then the total number of test problems we have is 35. Among the test
problems, L7 is only used in our discussion concerning robustness. No run concerning
this test problem is recorded.

As the major reason for abnormal exits from COLNEW, COLSYS and
HAGRON is that the user supplied storage is insufficient, it is important that when
we speak about an abnormal exit of this kind, the corresponding amount of supplied
storage is available for reference. During our testing, we provided all the three codes
with a fixed amount of workspace (represented by the sum of IPAR(S) and IPAR(6))
which accounts for more than 99% of the total storage supplied to the codes. The sum
of IPAR(5) and IPAR(6) is fixed to be 200,000 throughout our testing. This fixed sum
translates to a limit on the maximum number of grid points that each code can use.
When setting IPAR(3) in COLNEW and COLSYS to its default value, for the two
dimensional problems, the limit on COLNEW is 2856, the limit on COLSYS is 3124.
For three dimensional problem, this limit is 1297 for COLNEW and 1427 for COLSYS.
For a five dimensional problem, this limit is 583 for COLNEW and 618 for COLSYS.
For HAGRON, this limit is 4857 for two dimensional pro'blems, 2766 for three
dimensional problems and 1264 for five dimensional problems. Thus when we speak
about an abnormal exit due to insufficient storage from one of the three codes, the
storage refers to the sum described above.

105

The CPU time is recorded by using a MTSG system subroutine TIME that can
provide a measurement of CPU time in milliseconds. The CPU times in the tables in
Appendix III are all in milliseconds. When we repeat runs for a code with a fixed set of
input parameters on a test problem, we observed that the CPU time for each run may
vary quite a bit. The maximum variation we observed is about 5%.

The maximum errors recorded for all the four codes are the maximum absolute
errors between the numerical solutions from the codes and the exact solutions. For
HAGRON and MUTS, this maximum error is based on the absolute errors calculated
at all the final mesh points. For COLNEW and COLSYS, we recorded both the
maximum error at their final mesh points (first type of maximum error) and the
maximum error at 30 equidistant points in the domain (second type of maximum error).
Due to the fact that the form of the numerical solution is discounted when we evaluate
the relative efficiency of the codes, our focus on the maximum error from COLNEW
and COLSYS has been the first type of maximum error. In our discussion in Chapter
Four, unless specified, the maximum error involved for these two codes is the first
type of maximum error.

When we evaluate the relative efficiency of the codes, we have to compare the
size of the errors. If the ratio of two errors is between 0.1 and 10, we consider that
they are of the same size.

We did not intend to fully explore the potentials of the four codes due to various
expenses. One may use a good initial guess to save some CPU time or even to
compromise the problem of insufficient storage. One may also consider using
continuation to fully utilize the partially converged results from the previous runs. But
during our testing, we did not go that far, rather we always set the initial guess to zero
if an initial guess is needed or set them to one if zero is obviously not the correct
guess. Having noticed that the accuracy for MUTS is often affected by the total number
of output points and the accuracy for COLNEW and COLSYS may be affected by the
setting of IPAR(2), when we run MUTS we always vary the output points among the
following set of values {20,50,100,200,300) and record the run corresponding to the
smallest number in the set that results in an accuracy that is of the same size as or
smaller than the one of the related tolerance (more specifically, ER(2) for linear
problems and ER(1) for nonlinear problems). When we run COLNEW and COLSYS,

106

we usually vary IPAR(2) a bit and record the run with the best accuracy. This is not a
big trouble since the legal values for IPAR(2) is very limited. We would like to point
out here that the runs we recorded are not necessarily the favourable runs for the
codes since as the the accuracy increases, the CPU time and the storage requirement
usually increase as well.

When using COLNEW, COLSYS and HAGRON on the ten test problems, for
each run the tolerances are all set to the values shown in the first columns of the
tables in appendix III. When using MUTS on the linear problems, ER(1) is set to be
ER(2)/100 and ER(2) are the values that are recorded in the first columns of the table
in Appendix III. When using MUTS on nonlinear problems, ER(1) is recorded in the
first column of the tables in Appendix III and the corresponding ER(2) is set to be
ER(1)x100. The resulting test problem dependent comparison in Chapter Four is
totally based on the testing described above. Should the method of testing be different,
the observations may not be the same.

The following is the set of eleven test problems we collected. They are all
artificial problems where the exact solutions are known. Except for L5, L6 and the four
nonlinear test problems that we added ourselves, the test problems are from [2], [5],
[6] and [17].

Linear Test Problems

1: Equations(BL):
Eu," = -u; + Uy + qi(x) O<x<1 (L1.al)
= uy + up + go(x) (L1.a2)
Boundary condition:
1 (0) =2, u(0) = uy(1) = u""(0) = wy""(1) = 0 (L1.b)

Exact solution:

yi = exp(—'g') + cos(7x) (Ll.cl)

107

Y2 = sin(mx)

(L1.c2)

q1(x) and q2(x) are functions such that y; and y; satisfy L1.al &a?2.

2: Equation(TPT):

Boundary Condition:

Exact Solution:

3: Equation(OSC):

Boundary Condition:

Exact Solution:

4: Equation(SPK):

Boundary Condition:

Exact Solution:

Y e+ 2)2

0.1
X0.1) = y(-0.1) = 74 67705

y(t) = t(€ + 2)- 05

" - 2
y =a(482) O<x<l

where €1 is an odd integer.

¥0) =0, Y1) = asin(5

N . m
y=a sm(7£—

w_ (26+6(05-1P)y
Y = e+ (05-12)2

O<i<l

1
¥0)=y1) = £+ 025

108

-0.1<1<0.1

(L2.a)

(L2.b)

(L2.c)

(L3.a)

(L3.b)

(L3.c)

(L4.a)

(LA.b)

5: FEquation(BL):

Boundary Condition:

Exact Solution:

6. Equation(SM):

Boundary Conditon:

Exact Solution:

1
Y= €+ (05-1)72

w_ 2 2 0<x<l
Y Tix+ep Y(x-e-1P <x<

1 1 1 1
YO) =% -e57 YD) =e37"%

1 1
Y=x+e Y x-e-1
Y =Yr-Ys+ Y, a<t<b
Y2 =-y2 + Y,
Y3 =¥31-Ye
Y =2y,

. 7
yi(b) = et + e+ 5¢°

e2a
yAa) = -e*+ 3
yia) = - e* - e

Ye(b) = e
7
yr=e'+ e‘+5e2'

109

(L4.c)

(LS.a)

(L5.b)

(LS.c)

(L6.al)
(L6.a2)
(L6.a3)
(L6.a4)

(L6.b1)

(L6.b2)

(L6.b3)
(L6.b4)

(L6.cl)

7: Equation(SM):

Boundary Condition:

Exact Solution:

Nonlinear Test Problems

1: Equation(SM):

Boundary Condition:

Exact Solution:

eZl

Y2 =-€'+73
)'3 = - - e?l
y4 - e?l

w_ 1, 8
w=-wH (g)
u'0)=ul)=0

7
u(x)=21n(g;2")

y:i(0) =1, yil) = el

yl=e-2‘,)'2=e‘

110

(L6.c2)

(L6.c3)
(L6.c4)

O<x<1 (L7.a)

(L7.b)

(L7.c)

O<t<l (Nl.al)

(Nl.a2)

(N1.b)

(Nl.c)

2: Equation(OSC):

Boundary Condition:

Exact Solution:

3: Equation(BL):

Boundary Condition:

Exact Solution:

4: Equation(SM):

Boundary Condition:

y)'=3ry?cos(rx) O<x<l

y.'=-rcos(rx)

¥i(0) =0, y(I) = - sin(r)

yi=sin3(rx), y; = - sin(rx)

yY=2x O<x<l
" 2 4

1
¥i(0) = 0, y(0) = 1, y,(1) = exp(-)

x2
yi=x, y:=exp(-7)

Y’ =2(y;-y) O<x<l

Y2 = Y4+ ys-x-2sin(x)
Yy =y:+1
Yo = cos(\/y,) + 1

s =-ys + 2y

111

(N2.al)

(N2.a2)

(N2.b)

(N2.c)

(N3.al)

(N3.a2)

(N3.b)

(N3.c)

(N4.al)
(N4.a2)
(N4.a3)
(N4.a4)

(N4.a5)

Exact Solution:

¥1(0) = y(0) =0

Yol) =e yi (1) = e+ 1,ys(1) = sin(l) + e

Y =x

Yy =er
yi=e +x

Ye = sin(x) + x

ys = sin(x) + e*

112

(N4.b1)

(N4.b2)

(N4.cl)
(N4.c2)
(N4.c3)
(N4.c4)

(N4.c5)

Appendix (IT) The Graphs

As a reference for our discussion in Chapter Four, we include here the graphs
we produced for test problems L1, L4, L5 and some of the graphs for N3,

In order to support our discussion in Chapter Four, we produced two types of
graphs. The first type are those used to show the distributions of the final mesh points
versus the shapes of the exact solutions. The second type are those that are used to
show the graphs of the absolute errors versus the exact solutions. We were hoping
that these two types of graphs can guide us to some patterns concerning the
behaviours of the distribution of the final mesh points or the locations of the maximum
absolute errors at the mesh points. The detailed discussion about our finding is in
Chapter Four.

To visualize the distribution of the final mesh points, we used the histogram of
these points. A histogram is a bar chart where the height of a bar stands for the
number of data (in our case, the number of points in the final mesh) that fall into the
interval on which the bar stands. Thus if two bars have the same widths and heights,
that means the same number of data points fall into the two intervals on which the two
bars stand and therefore the two intervals have the same average density of data
points. With a fixed width, the higher the bar, the higher the average density of data
points in the interval. To visualize the pattern of the errors at the mesh points, we
simply graph the error functions (the difference between the numerical solution and the
exact solution at the mesh points) and then compare it with the exact solutions. Often,
the magnitude of the heights of the bars and the magnitude of the error functions are
too far apart from that of the exact solutions. In these cases, we made some
adjustments so that everything in our graph is of the same magnitude. Otherwise, the
error functions would look like a straight line.

On each graph, most of the related important parameters are indicated. All the
graphs are annotated. In the annotations, Y, Y1 or Y2 are used to denote the exact
solutions and ERROR, ERROR1, ERROR?2 are used to denote the error functions. The
width of the bars in the histogram are indicated in the graph. The adjustment we made
is also indicated in the graph. For example, 13*Y1 in GP1 means that the first solution
for the problem shown on the graph is the first exact solution multiplied by 13. We
used 'the first solution' here and hope that this will not cause too much confusion.

113

COLNEW.LY (2PPS = 1.D-3, TOL = 1.0D-G)
Listiibution of the Final Maesh Points

114

.......... //~—
C [1 i | ~J
N 149 13yt _ 18 1atve
f T 1 ! 1 1
oan 0.2 04 06 on 10
Tho liest slop siza of tha lllstq;un Is 0.03, ulins Mn 0.12125
COLNEW.L1T (EPS = 1.D-3, TOL = 1.D-G)
zrcors at the Final Mash PPoints for Y1
' © I8 v, * IS Enort*(25°1.E47)
- ! 1 T J T
no (14 04 06 o8 1.0
n

COLNEW.LT (FPS = 1.D-3, TOL = 1.D-G)
Iztrrors at tho Final Mesh Points for Y2

' el 18 Y2, * 1S Enor2°(1.€s17)
1 1 T] T f
0.0 02) 04 0.6 on 1.0
COLSYS.L1 (GPS = 1.D-3, TOL = 1.D-G)
Distribution of the Final Mesh Points
N P /4—* [. [' 1 <)
l’_.
" R * IS 1y, 18 10'Y2
S —— 1
T)I,O 0!:? ﬂl4 O.IG : 0?0 to

L]
Tiw tiest stop slza of s hiskapam Is 0.00, olhars ain 0.12175

115

(TR

COLSYS.L1 (I2PS = 1.D0-3, TOL = 1.D-G)
Lrrors at the Final Mesh Points for Y1

®
c.
c.
‘e
®e
Te.
.....

SRR s Fuett(LET)

04 06 o 10

COLSYS.L1 {P’S = 1.D-3, TOL = 1.D-G)
Lrrors al tho Final Mosh [Points for Y2

Lt 18 Y2, 18 Eao2'{V Es7)
I 1 1 | {
0o a2 n4 06 00) 1.0
]

116

o
~

-

.."3

HAGRON.L1 (5PS = 1.D-3, TOL = 1.D-6)
Distribution of the Final Mesh Points

...,
L
.

L.t 1S 2007, 1S 202
J | 1 U 1 T
0.0 0.2 0.4 0.6 os 1.0

x
Tho fiusi slop sizo of Uw Ilsiogeam i3 0.0, others me 0.12125

-HMAGION.L1 (EPS = 1.D-3, TOL = 1.D-6)
rrors at the Final Mesh Points for Y1

[iX1]

ORI I 4 B Lo 18 Cnortf(1LET)
| 1 1 1 T
0we 04 a8 on 1.0
a

117

MUTS.LY (IEPS=1.D-3, TOL1=1.D-G, TOL2a1.D-4)
Distribution of the Final Mesh Poinls

.....
LR

e,
.
..
ce,

AN uSYY, 15 95'Y2

| | 1 1 T
02 0.4 : 0.6 0.8 10

L]
Tha slop size ot o lislogeans is 1/6

HAGRON.L1 (EPS = 1.D-3, TOL = 1.D0-0)
Crrors at the Final Mesh Points for Y2

15 Y2, C T 15 Coo'(5'1L.E0)
! !] . 1
0‘0 0.2 0.4 00 o8 1.0
]

118

¢S

MUTES.LT(EPS=1.D-3, TOL1=1.D-G, TOL.221.D-4)
zrrors at the frinal Mesh Points for Y1

cen.,
e,
¢
“e.
e,
‘.
*e

LI
.
.
‘.,
*.

119

1S Y, SIS Enodl*(LC.S)

- 1 [] 1 1
0o 0.2 04 04 oa [N}
MUTS.L1 (EPSa1.D-3, TOL1=1.D-G, TOL2=1.D-4)

Errors al the Final Mesh PPoints for Y2
C 15 Euai2'(1LE12)

I
u!n 0‘2 0‘4 0'6 ol.n [X:]

COLNEW.LA (EPS = 1.0-2, TOL = 1.D-G)
Distribution of tho FFinal Mesh Points

g W Y

- | P B,

1) U 1 1 U {
0.0 02 0.4 0.6 08 10

L}
Tha slop slzo of tia histogram is 1/11

COLNEW.L4 (1S = 1.D-2, TOL = 1.D-G)
Ereors at tho Final Mesh Points

an

- // R I © 5 Enorr(LE4D)

00 : 0.2 04 06 08 1.0

120

B

-n
v

COLSYS.LA (EPS = 1.D-2, TOL = 1.D-G)
=rrors at the Final Mesh Polnls

L SIS Y. 05 Ener(tEie)
= | 1 1 1 T
(1]1] 0.2 0.4 0.6 [1 %] 1.0
COLSYS.LA (EPS = 1.D-2, TOL = 1.D-6)
A Distribution of tho Final Mesh Paints
...... 1oyno
— o 1 T 1
0'0 ! ' 10

02 04 06 0.0

Tha st sizo of Wa histogiam Is (/11

121

10

<

o
w

HAGRON.LA (PS = 1.D-2, TOL = 1.D-G)
Dislribulion ol the Final Mash Paints

U - L | 1

LIS Y A

.....
......
.....
=

"""""

0.0 02 04 06 oa 1o

X
Tha stop size of U hislogean is 1711

FIAGINON.LA (EPS = 1.D-2, TOL = 1.D-6)
Crrors at the Final Mash Paints

o IS Y, IS Ener'(5'1.E8)
- 1 i 1 T
0!0 f (ll,i! 04 06 oe . 1.0
x

122

ven

"
wh

COLNEW.L5 (EPS = 1.D-2, TOL = 1.D-4)
Distribution of tho Final Mesh Points

N

TSSO N [i—~l-—.—l weoberrs

...............
e

ceas

aa

4
...... 1S v5
| U 1 { 1
0.2 04 (X LX) to

 §
T stop slzo of Uw listogiain is 1/11

COLNEW.LS (EPS = 1.D-2, TOL = 1.D-4)
Errors at the Final Mosh Points

123

\
ol 150, ¢ _ 1S Cuot*(1.E8)
| 1 1 1 1
0.2 04 0.6 X} 1.0

COLNEW.LS (EPS = 1.D-2, TOL = 1.D-4)
Distribution of tho Final Mosh Points

8_.. 15 Y5 !

| | T] T T

[1X}] 0. 04 06 08 1.0

Tha stop sizo of lll:i histogram ls 1711
COLSYS.L5 (EPS = 1.D-2, TOL = 1.D-4)
Errors at the Final Mosh Polnts
a-
. IS Y, ' IS Cuer(LEW)
T T
0!0 0!2 0‘4 0'.0 08 - 1.0

124

HAGRON.LS (EPS = 1.D-2, TOL = 1.D-4)

Distribution of tho Final Mash Poinls

22
1

o XTI Frvvrorss SOOI bewsugns I bossssmnn: [|

st . 5 Vs .

1 T I T T

0.0 0.2 04 (X 0.8 10

Tha stop size of II:; fslogram is 111
HAGRON.LS (EPS = 1.D-2, TOL = 1.D-4)
Errors at tho Final Mosh Points

2-
a- 18 Y, Lt 1S Guort(L.Eel1)

J (/] 0!2 O.Il 0'0 0|0 l!o

L]

125

N

MUTS.LS (EPS=1.D-2, TOL1=1.D-9, TOL2=1.D-10)
Distribution of the Final Mosh Paints

-

L——l J { L o T

_--__._.1
IRREETY
...... 2saale R Laaldaas st srtitnnnnya
Lt 1S Y20 "

o0 0.2 04 06 08 1.0

x
Tha stap slza of the hislogram is 1741

MUTS.LS (EPS=1.D-2, TOL1=1.D-9,TOL21.D-10)
zrrors at tho Final Mesh Polnts

et 1SV, * 1S Enor'(2.E+5)

00 C 0 04 0.6 08 10

MUTS.N3(CPS=1.D-2, TOL1=1.D-2, TOL2=1.D-1)
Distribution of the Final Mash Points

w-
- _T — — Iy r—
- - S _ — —_— — _
.-
o~
- e S
I J | | J 1
0.0 0.2 04 0.6 08 .

x
Thir slop size ol the histogiam is 1721

127

Appendix (IIT) Testing Results

This Appendix has three parts. The third part contains all the raw data we
collected. The first two parts of each contains some condensed information concerning
a specific aspect of the data. These two parts are based on the data we have in the
third part and may help the reader to understand better some of the conclusions we
have in Chapter Four.

1: Timing Efficiency

1.a) Quality of Solution Oriented Efficiency

In the tables shown below, we compare the timing efficiency of the four codes a
pair at a time. At the top of each table, the two codes that are compared is stated. The
first column of each table contains the values of eps, and the first row of the table
contains the problem number (see test problems in Appendix I). The rest of the cells
are used to indicate our opinion (based on the data we collected) concerning the
relative timing efficiency of the codes stated above the table. If '@’ is shown at, say
the cell corresponds to L2 and 1.D-2, it means that the first code shown above the
table is more efficient than the second one on test problem L2 with an eps 1.D-2 in
terms of the quality of solution oriented efficiency. On the other hand, '%' will be used
to indicated the opposite. If such a relative efficiencies is not clear from our data, we
will leave the cell blank. However, NI and N4 do not have an eps and L6 has two
parameters that can vary. In order to make it easy for the reader to visualize the
overall comparison concerning all the test problems, we include the comparison
concerning these three test probicms in our tables, and hereby remind the reader that
cells in the columns headed by NI and N3 represent the same test problems. For cells
in the column headed by L6, 1.D-2 represents (0,1), 1.D-4 represents (4,5) and so on.
To see how the tables are filled, when running L1 with eps equal to I1.D-2 using
COLNEW and COLSYS, from data table 1 and 2 one can see that for the four runs we
listed, if we match the maximum errors produced by the two codes and compare the
corresponding CPU times, COLNEW is faster. e.g. when the first type of maximum
error is 1.D-4, 1.D-6 and 1.D-8, respectively, the corresponding CPU times (in
milliseconds) for COLNEW are 140, 226, and 441, for COLSYS these CPU times are
185, 324, and 373. Thus we put in the cell in the first table below that corresponds L1
and 1.D-2 a '@'. The comparison conducted here is subjective. As a supplement to this

128

comparison, all the raw data we collected are attached in the raw data tables in the
third section of this Appendix.

There are two different types of tables that involve COLNEW or COLSYS. The
first type of tables compares COLNEW or COLSYS to other codes by using the first
type of errors from the two codes (see Appendix I), and the second type uses the
second type of errors. Whether or not a table is in the first or second type is indicated
by the heading of the table.

It should be noticed that we do not compare a code to other codes in terms of
quality of solution oriented efficiencies on the problems it fails to solve, and we put
into the cells that correspond problems on which at least one of the two codes
compared completely fail one of the following three symbols: ff, sf and fs. ‘ff* stands for
both codes compared failed, ‘fs’ and ‘sf” stand for when only the first code and only the
second code failed, respectively.

Codes: COLNEW and COLSYS (Type 1)

e\ # LI L2 L3 L4 LS Lo N1 N2 N3 N4
1.D-2 @ @l % | @ | @ @ | % | @
1.D-4 @ @ % @ | @ | @ @ | @
1.D-6 @q |l @| % | ff |l @| @ @ | @
1.D-8 Jle@e | % | ffl | @ @ | @
Codes: COLNEW and HAGRON (Type I)
e\ # L1 L2 L3 L4 LS L6 NI N2 N3 N4
1D-2 @ | % | @ % | % % | @
1.D-4 @l % |l @]l @]l %] % @ | @
1D+ @ | ff @ | _sf
104 1% | @ | Jff | ff @ | sf
Codes: COLNEW and MUTS (Type I)
e\ # L1 L2 L3 L4 LS L6 N1 N2 N3 N4
1.D-2 @ |l@ | @ | @ » | @ | @ | @ @
1.D-4 @ % @ % @ @ sf
1.D-6 @ | ff|l| % | @ @ | sf
108 1% 1@ | ff | [fI| @ @ | sf

129

Codes: COLSYS and HAGRON (Type 1)

E\# L1 L2 L3 L4 LS L6 Ni1 N2 N3 N4
1.D-2 @ % @ @ % % %

1.D-4 @ % @ @ % % @ @

D6 | @ | % | @ | ff % @ | sf

1.D-8 If % @ | ff | Jff @ sf

Codes: COLSYS and MUTS (Type I)

e\ # Ll L2 L3 L4 LS L6 NI N2 N3 N4
1.D-2 @ @ @ @ % @ @ @ @ @
1.D-4 @ % @ % @ @ sf

1.D-6 @ @ ff % @ @ sf

1.D-8 ff % @ | 1| @ @ sf

Codes: HAGRON and MUTS

e\ # Il L2 I3 T L4 [LS [L6 | NI | N2 | N3 | N4
1.D-2 @ @ @ @ @ @ @ @ @
1.D-4 @ @ @ @ @ sf

1.D-6 @ J1 % | @ @ | ff

1.D-8 J 1l @ 1t @ | [f

Codes: COLNEW and COLSYS (Type 1I)

e\ # L1 L2 L3 L4 LS Lé N1 N2 N3 N4
D2 | @ @1 % | @ | @ % | @
1.D-4 @ @ % @ @ @ @ @

1.D-6 @ | @ % | ff |l @ | @ @

1.D-8 1l @ % | Iff1 M| @ @ | @

Codes: COLNEW and HAGRON (Type I_I)

e\ # L1 L2 L3 L4 L5 L6 N1 N2 N3 N4
1.D-2 @ % @ % % % % % @
1D4 @ % | @ @] %2 | % | @

1.D-6 @ @ | ff % % sf

1.D-8 If @ | ff | [ff %o sf

130

Codes: COLNEW and MUTS (Type II)

eE\# | LT | L2 | L3 [L# [L5 | L6 [NI | M2 | N3 | M4
1D-2 @ | @ | @|@]| % | @ |l@]|e@e]| %] @
1.D-4 @ | % | @ % @ @
1.D-6 @ | 1 % @ | sf | @
1.D-8 1 % | @ | ff1 ff @ | sf | @

Codes: COLSYS and HAGRON (Type I1)

€\ # L1 L2 L3 L4 LS L6 N1 N2 N3 N4
1D-2 @ | % | @ | @ | % | % | % | % | % | %
1D-4 @q |l %2 Tele] 2 % % | @
1D-6 @ % @ | ff % % sf
1D-8 ff % @ | 1 1. % sf
Codes: COLSYS and MUTS (Type II)
e\ # LT | L2 | L3 | L4 [L5 [6 | NI [M2 [N3 | N4
1.D-2 @ | @ | @ | @ % | @ | @ | @ | @
1D-4 @ % @ % % @ sf
1.D-6 @ | @ | ff|l % %o @ sf
D8 | ff1 % | @ | ffr 1 ff @ | sf

1.b) Relative Efficiency Involving the Tolerance Settings

The following tables compare the resulting CPU times for the cases where the
codes have the same tolerance Setting, and the maximum gbsolute errors from the
codes are of the same size as or less than the tolerance. By doing so, the exact values
of the maximum errors are discounted but the response of the solution to the input
tolerance is partially utilized. To users who want to interpret the input tolerance as the
upper bound of the maximum absolute errors they prepare to tolerate, and only demand
that the errors are of the same size as or less than the tolerance, such a relative
efficiency answers the question that how efficient the codes can be in terms of the CPU
times they need to satisfy the users' demand. Should the maximum relative errors be
available, a timing efficiency in terms of the CPU times needed by the codes in order to
achieve relative errors that are of the same size as or less than the specified tolerance
may also be revealed.

131

The approach of revealing the relative efficiencies we described above is a
compromise between the approach that compares the codes only under the similar
input parameter settings and the quality of solution oriented comparison where the
input parameter settings are not involved. Compared with the approach that compares
the codes only under the similar parameter settings, the above approach takes into
consideration some of the responses of the solution to the tolerance, in the sense that
the relative efficiencies are evaluated under the condition that the maximum errors are
not greater than the tolerance. When compared with the quality of solution oriented
comparison, the information concerning the quality of the solution is not fully utilized
but it takes into consideration the relationship between the solution and tolerance.

The approaches we newly discussed here may be useful and practical if the role
that the tolerance plays in the termination criteria is further explored and the
magnitude of the solution is also taken into consideration. We mentioned in Chapter
Four that accuracies of the numerical solutions from HAGRON appear to have a
stronger relationship with input tolerance than that of the other codes. This is also
indicated by the observation that while the accuracies of the solutions from the codes
are usually all less than the input tolerance, the solutions produced by HAGRON are
often closer to the input tolerance than the solutions of the others. If a user is satisfied
as long as the accuracy is close to a certain value of the tolerance (i.e. a better
aécuracy is not needed), then HAGRON has an clear advantage as it usually does not
spend much time trying to improve the solution that is already satisfactory. This brings
HAGRON a better timing efficiency as one can see from the tables below.

Note: The meaning of '@', '%' and ‘ff’ etc. are the same as they are in /.a

Codes: COLNEW and COLSYS (Type 1)

e # | LT | L2 [L3 | L7 | I35 | L6 | NI | N2 | N3 | N4
1.D-2 @ | % | @]| % | @ | @ @ | % | @
1.D-4 @ | @ | % @ | @ @ | @

1D-6 | ff % |]| @ @

b8 | ffl @1 % | ff 1K @ |

132

Codes: COLNEW and HAGRON (Type I)

e\ # Ll L2 L3 L4 LS L6 Nl N2 N3 N4
1D-2 @ % % @ % % %o % % %
1.D-4 @ % | @ % % % | @
1D6 % | @ | ff % % | sf
58 | 71 % @ jf % | sf
Codes: COLNEW and MUTS (Type I)
E\# Ll L2 L3 L4 LS Lo NI N2 N3 N4
1D-2 @ | @ | % % % | @ | @ @
1.D-4 @ @ % % @ sf
1.D-6 @ ff sf
1D8 | [f I I sf
Codes: COLSYS and HAGRON (Type I)
e\ # L1 L2 L3 L4 LS L6 N1 N2 N3 N4
1.D-2 @ % % % %% % % % %% %%
1.D-4 % @ % % % @
1.D-6 % | @ | ff % D | sf
08 | 7 | % | @ [ff | ff % | sf
Codes: COLSYS and MUTS (Type I)
e\ # L1 L2 L3 L4 LS L6 NI N2 N3 N4
1.D-2 @ l@ | %|l@| % | % | @ | @| @| @
1.D-4 @ % @ % sf
1.D-6 % | @ | ff sf
1D8 If @ | ff | [f sf
Codes: HAGRON and MUTS
E\ # L1 L2 L3 L4 L5 L6 N1 N2 N3 N4
1D2 @q @l 2]e!l 2] el|le@! @] %
TD4 @ % % % | @ @
1.D-6 %o If If
1.D-8 i i i If

133

Codes: COLNEW and COLSYS (Type II)

E\# Li L2 L3 L4 LS L6 N1 N2 N3 N4
D7 | @ | % |e|e|e]|ae @ % | @
1.D-4 @ P @ | @ @ | @

L.b-6 @ P | /f | @ @

1D% fJFle| % | i1 ff @

Codes: COLNEW and HAGRON (Type II)

e\ # Ll L2 L3 L4 LS L6 N1 N2 N3 N4
I.D-2 @ % [% | % | % | % | % % | % [%
1.D-4 @ % | @ % | % % | @

1D-6 % | @ | ff % % | sf

D3 77| % | @ | jr 15 % | sf

Codes: COLNEW and MUTS (Type II)

E\ # L1 L2 L3 L4 LS L6 N1 N2 N3 N4
07 | @ |@ | % | @] %[%|@]|a @
D4 | @ | @ | % % | @ @ | st

1.D-6 @ ff sf

1.D-8 If If 1 ff sf

Codes: COLSYS and HAGRON (Type II)

E\# L1 L2 L3 L4 L5 Lo N1 N2 N3 N4
1.D-2 @ % % % % % % %% % %
1.D-4 % @ % % % @

1.D-6 % @ ff % % sf

2 7 2 N 7 % | _sf

Codes: COLSYS and MUTS (Type 1I)

e\ # L1 L2 L3 L4 LS L6 Ni N2 N3 N4
1.D-2 @ | @ % | @ P » | @ | @ | @ | @
04 | @ | % | @ %o sf

1D-6 % | @ | ff sf

1D8 | Jf @ | ff 1 ff sf

134

2. The Degrees of Difficulties of the Test Problems Where the Codes Failed

The following tables indicate the degrees of difficulties of the test problems at
which the codes failed or program failure started to occur. By 'failed at certain degree of
difficulty of a problem', we mean that the four runs that correspond to four different
tolerance settings on a test problem with a certain degree of difficult all failed, and in
this case we put a ‘@' at the corresponding cell. e.g. COLNEW failed on L1 when eps
is set to 1.D-8 for all the four runs, thus we put a ‘@' at the cell that corresponds to L1
and 1.D-8. If not all runs failed but at least one of the runs did, we will put a '%' in the
corresponding cell. Should a code successfully solve a problem at all the four runs, we
will leave the corresponding cell blank. For a complete set of code failures on the test
problems and the reasons for failures, see the raw data tables in the next section.

Codes: COLNEW

e\# | LI [L2 [L3 [L4 [L5 [L6 [NI | M| N3 T M4
1D-2

104 %
1D-6 % @ %
103 @ @ | @

Codes: COLSYS

e\ # Ll L2 L3 L4 LS L6 N1 N2 N3 N4
1D-2

1D4 %
1D6 % @ | %
1D-8 @ @ | @

Codes: HAGRON

e\ # L1 L2 L3 L4 L5 L6 Ni N2 N3 N4
1.D-2

1D-4 %
1D-6 % @ % @
1.D-8 @ @ | @ @

135

Codes: MUTS

€\ # IT T L2 [L3 | La T L5 [16 | NT | N2 | N3 | N4
1D-2 %
1D-4 % @ @ @
1.D-6 @ @ % @ @
1D-8 @ @ | @ @ @

3: Raw Data Tables

The tables below contain the detailed results from our testing. In Appendix I,
we have provided the details about our testing. With those details and the parameters
shown in the tables below, the testing should be fairly easily reconducted. The
meaning for the headings of each column in the tables are explained at the bottom of
each table. The following is a list of notation we use to indicate various abnormal exits
from the codes:

% — The supplied storage is not enough (exit with solution);
@ — The supplied storage is not enough (exit with no solution);
* — Program overflow;

— Wrong solution (due to unreasonably big error);

$ — Elapsed time is more than /4 hour (runs are stopped manually);

$$ — The number of iterations needed exceed 50-

One may notice that some of the tables are left blank. This is because the code
failed to solve the problem with lower difficulties (usually this is indicated by the
results in the tables above the blank tables) and the failures are accompanied by big
costs. It is difficult for us to quantify everything we say. For example, when we say

136

‘'wrong solution due to unreasonably big error', we just want to remind the reader that
the error indicated by '#, in our opinion, is too big or at least unusual. One may hold a
different view about this if one takes into consideration the magnitude of the maximum
value of the solution or the relative error. Often, when a code fails because the
supplied storage is not enough, it may be able to provide the user with the partially
converged solutions. ‘%' in the above list is used to indicated the failures of this type. If
the current mesh points and the partially converged solution are not available at the
time a code fails, we use @ above to indicate the failure.

137

LLNIO4 TIOV4S ITVAOT I LY J0XYT RAWITYR INL = 3O4¥T TYW
SLNIOY WSIM LY HORUT RANIXYR IHL = J04YT YW
SCNOJSITUN NI INUL 14D = 143

SLviod mﬂu<\u ATTvA07 00 LY SOUXT NANITYN IHI * JOYVT TV

NSIN Tvais JHL ST SLNIOL 4O (FINAN THL * dnd Lo
00! %001 141244 619 . &at
$8°0 %001 0r€87 114 ¢al
§8°0 2001 99787 Y4 ral
00t %007 Ll i Tatl

«dOY¥T XY YOu¥I XYW nd2 dNd 704
T 543
Q8o % [-d0E0 64097 1Y.14 8al
-qelro % [-dEE0 0L 1114 Lalen
-qLco % [-dLED 1444774 1114 sal
[-g*L’o [-agrlo 8892 619 al

HONHT XVYH YOy¥3 XYW 4D dnd 101
a1 543
$-aiso §-qIso Y 601 8-al
rarro rarro £99¢ e -ai
razro »acro 2687 8 sal
9-azro [-a:80 8ot ¢ ral

HOYYI XYW YONAT XYA add dWd 101
rarsdl
8-0620 8-a970 u9 (14 8-ai!
£-069°0 8-@9r0 £LE 14 9-al
-qarLo qgzro (443 144 ral
-asro #aoso §81 1 ral

HOYYT XYHN Youy3 xvn Ndd dWd 701
a1 :543

[T ‘WITT0¥4d LSTL SAST0D 3000
IT1ave

o
HYIW TYNIS THL NI RLNIOY 40 FTENON IHL * dW4 “LLON
280 %001 LS881 £85. §al
%0 %001 rERSI £8S ai
80 %001 rESSI £8§ rail
0ol %001 444 1 rail
HONYT XYW YOuy¥I XYW 1dd dnd T0L
a1l :sd3
§-Q800 % [-Q0T0 LI681 £9§ 8:al
§-a9l'0 % [-q0T0 66881 £8§ gal
§-a6r'0 % [-Q0T0 64981 £8¢ rail
§-asto {-aqozo £1681 £9§ ral
YOAYI XYAN YOI XYW ndd dWd 701
90l ‘§d3
£1-ai60 £1-08°0 Fo9¢ iU o §al
£1-q0 £0-Qr60 SPLE 144 9al
01-asso 0r-a@9so 9887 8 ral
[-a9zo 90 £r6 8 cal
«YOYdI XYW JONYI XYW ndJ dWd 101
railisdl
6080 0r-aiso 1333 144 &ai
§-096°0 §arE0 iy 44 9-al
9-qiLo 9airo 1444 144 rail
-axro raqoso orl 44 al
«JO¥YI XYW YO¥3 XYW ndJ dNd 701
qI:Sd3

T ‘WIT04d LS3L

{I19ve

M3INTOD ‘3Q0D

138

SINIO4 TIIVIS ITIVIDT 6 LY YOUTT MAMIXYR IHL * «dO¥¥T XYN
SLNIOd HIIN 2Y 10U RIMXYR I4L = 1Q¥¥T (YN
SENOOTSITUR N IAL 14D = 14D

SLYIOd TIIVIS ATIVADT X LY YOULT MINIXYR INL * 40VXT XYW
SLNIOd MSIN 1Y 40¥¥T RIARDXYR JHL = 40077 TV

MIIM TYNIS TS N SLNIOE 4O X2EMNAN THL = M4 ‘LLON

<40¥T XYW ¥O¥YI XYA Ndd L7 101
+aT1:SdT

§ 114 rar

R 0z ar

HOAUT XYW 4Ou¥T XVA 40 7] 701
9L iSdT

Ly ool *rar

§ ool 9-ar

or-qrzo 89665 ool rail

£-d690 *L0C oor ar

<40¥¥T XYW YO¥AT XYA nds dHA 701
ral 543

6-del0 13444 (114 &al

£-aolro LE9L (114 9-al

§-a9co 929 (114 rail

£dero {82 114 . ar

d0AYT XYA AOWYT XVA NdD 7 701
e A R Pr

[T -WT190¥8d LSTL SLNK ©3d0D

ryrave

SCNOJTSITUR NI IMU 14D = 4D M
HYIM TYnid IHE NI SLNIOE 4O IR IHL = inyg Lo~

2 L2191 4 &arl

D 8EL91 4 9-ar

) [£4¢4 4 ral

] sl 4 ar

YOYYI XYW YO¥Y3 XyA nd2 dHS 701
8 :5d3

*#00'C PETT99 §92! 8sar

Lasto)74 024 626 9-al

9-qozo 0651 1444 rail

£aqrro 89912 1444 ar

HOYYT XYW YOYYI XYW N4 dNd T0L
9al Sd3

9-q6£0 13344 17240 sar

racro 08s» 182 ar

§-grio 802 174 rar

~aoro [£744 43 ar

«YOYYI XYW YO¥YI XYW nNdd dWd 704
ral:sd3

6-d0r0 £r01 144 &ar

QLo 1124 LS 9-al

§:ar»o £9r 143 ral

€-dogo 0rZ £ arl.

HO¥HT XYW YO¥YI Xyw Ndd dNS 701

a'r :sd3
[T WT190¥d IS3L NOY¥OYH ‘3d0D
£374v.L

139

SLVIOL @2vas LTTYNOT 36 LV JOUXT MANIXVN JHL * 4ON(T IYN
LLUOS NSIR ZY HO¥XT RARIXYN JRL » 10YYT IYN
SANOITITUN M IR 14D = 1D

LINIOd QIIV4S XTTYAOT X6 LY ¥OUYT RARIXYN INL = «404YT IVN
SLNIOS NETA LY 204 XT MIRDYN THL » 10407 IYN
SAVOITIITIN N IR 14D * 3D *

918Vl

HEIN TYaid THL NI S2NION 4O KTERAW THS = dR4 2o
6-dss0 6-d€T0 08L1 9t . 8&al
0l-a980 or-aseo s6ct S0t 9-al
saero $@oro 056 s0t ~atl

080 060 9z i ral
HONYI XYW YOuY3I XYA N4 dWd 704
Tl 543
or-arro or-ggro e 8 &ai
or-asro 6-q9ro 029 74 eatl
£-agero £-agro %4 s rail
$-qoso $-a6c0 sty 6 - cal
YOWYI XYW yowy3 XvA ndd CLES 704
a1 543
cr-aoso r-areo 86¢ 133 8-ai
2-as90 L-a9so £9¢ [» 9aql
4-arL’o 9-asro 144 4 rail
9-a»z0 $-arzo 744 144 ral
HONYT XYW yowyi Xxvw Nndd dAN T 701
rqlisd3
or-argo 6-arro £s 144 &ail
0r-aiso 6-asro (14 i gat
L-asg0 ¢qero 144 144 ral
£-ax80 g-asro 144 114 atl
" JNOYYT XYW YOo¥¥3 XYW ndJ LLED 704
atlsd3
T1 ‘WITE04d LSIL $AS700 ‘3700

HEIR T4 TN I SINIOY 40 TIONON THE = 414 “LON
<r-qeso 1r-gs6o oIt 9t 8-atl
or-asto or-aseo 056 {14 9-al
s-qiro 9-qs60 L8L sor ral

080 060 14 i ratl

HOYYT XYW youys xvw Ndd CLE] 704
al '5d3
Zr-aoco L-arzo 11174 [£43 &aqil
cr-aoLo 0r-a990 69¢ 174 oatr
§-Q970 §-azr»'o 1413 .14 ral
$-aoeo $-a6zo us 62 Tal

~HONYI XYA YO¥y3I XYW ndd dAS 704
rail sd3
ar-aLto 2-as9o £9¢ £ &aqil
£1-q970 [1-qevo 1113 T o-ail
£-asro 4990 1174 ir ral
9-arzo $-aeTo st r al

~JONYI XYA YOuy¥I XyW Ndd dNS 701
rqlsdI
zr-aoso 2-aqogd [74 144 &-al

0r-ass0 01-QEE0 €9 St 9-al
L-aeso 9-aoro ”n” 114 ratl
L-deso 9-aoro 44 i ail

«JONYT XYHW YO¥Y3I XYW Nnd2 dnd 701

a1 :$d3

71 ‘WTT404d 1SIL

sT1avl

M3INTO0D ‘300

140

LINIO4 TIOVES LTTVAOT OF LY ¥0UYT RANIXYN INL * 20¥¥T LYW
SLYUOJ HEIR LY SO¥YT RARIXYN JHL = ¥0U¥T IYN

SANCIOTIITUN NI IMUL 14D = 142

SLYIO4 CIIv4S 4TIYNOT o LY JOUNT RARIXYA IHL = JOUYI XYN
SLVIO¢ NTIR 1Y 80041 RANIXYR IHL = $0¥4T XV
FQANOITSITAN NI INU 14D = 14D

NSIR TYNId THL T KiNIO4 4O YTERAN TRL = a4 “1LON
9-G0g 0 002 00¢ - &ql
£-08r0 (7S 00¢ oai
1-aero or 00¢ rai
1-062°0 291 001 ral

YOYdI XYW YO¥¥3 XYW ndd LLE) 704
Falsd3

9-as70 985 00¢ &ql

50790 S7E 00z ol

£ar0 96 (s rai

1-aro £ 05 ral

«HO¥YI XYW YoXyi Xyw a4 dWJ 101
a1l ‘543

-ar»o #el 0z eal

5-Qer0 29 0z Xdi

ras70 or 0z rai

7-a750 5 0z rail

HO¥¥I XYW YOo¥vyi Xyw N4l dnd 104
rairisdd

Q€00 or* 00¢ eal

§-aEL0 6#l 00! oai

£-0570 ” 05 rai

1-aL70 ”E 0z rail

HO¥YI XYW YOX¥3 XYW N4> dW4 701
IalSd3

T ‘ATT1904d 1STL SLANW 300D
8 I79V1

NEIN Tesid IKE NI S5NIO4 40 YIERAN THL = 4WJ LN
0r-asto §56 [4.14 8-aqi
6-aero (443 {84 9-al
9-qLTo 1434 62! ral
90 [} Ll arl
HOYNT XYW JOuST XYW ndd dn4 701
~aT 543
6-asto 14 434 8-al
8-ar0 rey 6 eail
9-qiso 1714 124 rail
§-d650 651 144 ai
HONYT XYW ¥OuYI XYW ndd dnd 101
yar-sd3
0r-qiso ne 8 8-al
6-d06°0 6l re ¢ai
9-asco 09 6l ral
raeLo §§ ol -al
«HO¥YI XYW YOuw3 Xvw ndl PLZ] 701
rarisd3
or-aso ”» 44 §ai
Q970 174 [4 ¢ar.
£-q9ro {1 [4 ral
9-qsso ol [4 al
HONYI XYW YOXYT XYW ndd dNd 701
Q1 :sd3

T1 ‘ATT1804d ISIL

L T19vI

NOYOVH ‘300D

141

$INIO4 TIIVEE ITVADT O LY 20873 RANIXYN JHL = 400¥T XYN
SIVIO4 NTIN 1Y 102¥3 RARIIYN INL = ¥OUYT XYW
SCNOJISITAN NI ML 14D = NdD

NSIN T4 INL A SLNIOd 40 FIENON THL = N4 208

$LNI04 TIZv4S 4TvALT o0 LY 10X¥] RANIYYR IHL * 40303 XVN
SINIOd HTIN LY 20¥¥T NINIIVR IRL = 104¥7 XYW
SQNOJISITUN NEIRUL 142 = 42

HSTIR TvNid IHL NI SINIOL JO FIER N INL = dN4 fr 37014
[1-a9so 2-arzo 1244 91 - 8al . Zr-qos o £1-Q06°0 £65C 129 8al
6-0970 zr-aqrro 6101 14 9-al 0l-ar60 Zr-arl’o §621 143 eal
§-asio §-a650 00§ 44 rar L-aelo 0(-aé650 9r9 91 ral
~qaLro 9-q6#0 orZ 144 Tal §-asro 83650 I4¢4 44 al
JOWYI XYW YOHYT XYW Nndd dNL 704 JHONYT XYW YO¥¥3 XYW ndl PLEd 701
£Ut 'sd3 LUt :sd3 .
6-arl0 r-arro 9 8 al 2r-q9so £1-grL0 iy 82 'ale g
6-ari0 Z-qiro L19 8 9-aql [1-asso £0-AL¥0 9621 243 9-ai!
L-aseo 0[-aqi6o 662 144 ral 8-acro [r-asro 959 9t ratl
qoTo §-azlro 861 4 al $aoro 8-dL80 1314 144 -al
«HONYT XYW YONYT XYW ndo CLE] 704 HAONYT XYW AONYI XYA n4d PLE 701
§5/t 'S4 ssit °Sd3
[-asto Zr-aoro 9 8 8-aql 0r-@rE0 £1-q970 9 nr 8-al
6-Q0L0 Zr-asso 662 144 [Megs 0r[-asso £1-d¥6°0 L8010 1143 9-ai
9-qog o0 6-ar#0 1444 114 ral 2-aslo or-gero 1344 4 raql
£-aslro $-areo 29 14 aql §$-asso §-ar¥o 17z 8 al
HOWYI XYW JONNI XYW dd dWd 704 «YO¥YI XYN JONYI XYW 42 dNd 701
€&t :Sd3 €€/L -Sd3
[-asco £1-asTO (124 1#4 8-al [-QEr 0 r[-gego ors 90 alegd
6-0670 £1-ar90 [£43 9 9-aql 6-dIT0 £1-0680 8st i» [egld
83060 [-qizo 29 1 ral 9-Q06°0 [-asco oy 14 ral
8d06°0 [-qico 4% 14 aql 84060 [-asco or 14 ral
HO¥YT XYW AONYT XYW ndd dH1 701 JONYT XYW YO¥¥3 XYW ndd P 7101
tt 'sd3 Lt 'sd
€7 ‘WIT904d LSTL S4S700 ‘300I €7 ‘HNTI18048d LSTL MINTOD ‘3A0I
orI1gve 6319vL

142

SLNFOL CTIVLS ATTvADT OC Iv JOUYD RANIXYR INL = 40¥YT TVYN
SINJO4 MSIN 1Y S0¥Y] MANIXYN IRL = O8YT XYM

FCNOOTIITIN N INU 14D © 2D

SINIOC GTIVE (TTvNDT 56 I¥ JOVIT RAMIIYN INL = JOUYT IVN
! CLNIOJ NTIN 1V dOYYI NANMXYN INL * YOUYZ XYW

SANOITIITUN N INLL 34D = 14D .

NIIW TNtd IKL NT SLNIOS JO FIEMAN IRL = dNJ TLION

9-ars0 6507 00¢ el

0720 625 00¢ Eed

£aL50 £95 00¢ rat

[-GI8°0 sl oC [Xed

HOAYT XYW YOXY3I XYA Nndd dNS 701
LUt Sd3

9-a770 61 00¢ §-ar

#d0£0 96L 00¢ 9-qr

£-0850 g5 007 rail

[-a920 0ol 0z ai

YOI XYW YOu¥T XyA N4l dNS 701
§§IT °Sd3

9-aeco 76 00¢ redi

$-09€0 us 00€ oar

£ar90 %91 0§ rail

[-as10 201 0§ el

HO¥YT XYW YOYYI XYA 4D dNd 704
e/l -S43

(-d650 5T 0§ 8-al

$-asyo 01 0s oar

#arso 5 0s ral

7-as»0 G 0z al

HONNT XYW YOI XYW Ndd dAS 704
i :sdg

€T ‘WITF0Nd ISIL SLAK 330D
o I19vL

HSTN TYNIS INL N LINIOJ 40 IEMNN INL = dN4 ‘1LON
zr-arro 95,9 LL61 [ed
6-0Sr0 09¢> 759 *ar
9-99°0 081 £or rai
z-aLro 612l 76¢ ral

JOUYT XYA HOHYI XVA nd2 CLE 704
LUt :Sd3

£1-0520 769§ 6951 eaqr

6-AZE0 #0ST ots >al

6-qZs0 rerl L85 ral

§-arZ0 pEL 90 -at

HONYI XYHN ¥ONNT XYW 4D dNd T01L
§5I Sd3

£1-0080 207 ZeL &al

6-06Z0 598 F7F sar

§-asro 669 €61 rai

6-0650 (%3 6 at

HOWYI XYW YOI XYW ndd CLED T0L
EE/ 'SdT

0r-aoro IsT 6 8ar

§arro %4 6r Xl

9-asgo zrr S€ rai

§-azro 9 13 [Red

SYONYT XYW YOuYI XYW 42 dNd T01L

1 °sd3

E1 "WTT1904d LSIL

1Ievi

NOYOYH ‘330D

143

LINIO4 TIIVS ATIVA0T Of 1V HOUNT MINITYN INL * 40X¥T IVN
LLNIOY HSIM LY JOUNT MINIXYN IRL © 4O4YT XYM

FQNOJTSITIN N INL 14D = 14D

NSIN TYNIS IHL NI RLNIOd 4O FITNAN IRL = N4

‘1LON

LLNIO4 TIIV4S LTTVIADT € LY JOUYT MAMIXYM JRL * 4O¥YT XYM
LLNJOd NSIN LV JOUNT MANIYN INL = 30401 XYN

SQYOIFSITUN N INLL 14D = 14D

NSIN TYNld IRL NI LINIOY 4O YIERN INL » dN4

‘1LON

YONYT XYW ¥OX¥3I XYW ndJ dWd 101
&ar -S43
881572001 #EQLLEE #6567 §L81 §aql
LS5L9L569 #TLISEE 1744 144 ¢al
80°Z891 2 TLTISEE 17 i ral
SE8LHIT L X/4113 124 14 aqil
YONYT XYW YO¥¥3 XYW Nndd dNS 704
9Tl Sd3
80 BLTE 134344 87 &aq!
£&qizo €380 13444 144 9-al
[-arlo [-gsso ({144 1744 rail
rest #RUEENT £ 6 al
«YONYT XYW YOX¥I XYW ndd dNd 704
raisdl
§-a8£0 6-06£0 99 4 &aql
L-qgero 6-qeL0 182 &4 ¢al
§-qero 9-g6to 00t 4 rail
§-arco §aqoro 1344 1z aql
HONYT XYW YOX¥3 XYW ndd dWd 0L
a1l :Sd3
r T WT1804d LSIL SAST02 '3Qd00
rHTI9VL

HOWY¥I XYW YOY¥3I XYW ndd dWd 704
&al 'S4
19§t 2 94°959¢ 6155C LE6T aql
0ro #L58S 168+C LE6L ¢ar
/44113 #ELUYETT L9 o rail
[/4411) REXo6z! 114 6 -al
HONYT XYW YOo¥¥3 XYW N4l PLE 704
+alS43
Faceeo £-qero ¥l - ITE 8ar
§-asro §-asLo LE0! §TT~ al
rqogo £arzo L8010 1744 rail
oTLIsT #RIEELL 174 6 aqi
«HONYI XYW ¥Ooyy¥3 XvHW Ndd PLE 101
railisdl
6-dr60 0r-ag9 o L0§ 13 8al
2-qtro §-a9¢0 sor i al
9-qero Laieo 474 i ral
§-aLro 9-a6zo 651 ¢4 qi
YOYYI XYN YO¥¥I XYW Ndd dWd 704
a1 :Sd3

Y1 "HRITT904d LSITL

€1 T19VL

M3INTOD °IA0D

144

SINIOd TIOV4S LTTVADT O 1Y 10407 NAMIIYR IHL * JO¥YT IYN
ELNIOJd HTIN LY YOUYT ROARIXYN IHL * JO¥Y] XYW

SCNOJTSITUN & IMUL 14D * 1D

$L¥IO4 TIOVIS LTVNOT 2 LV ¥OUYT NAMIXYN JHL * «4O¥¥T IVR

SINJOL NSTIN ZY HOUYT MIANIXYR IHL © 40007 IYR
5QNOJICITAR N IR 1D = 1D .

NSIR TYN S IHL NI SINIOY 4O YTERAN TWL = 4W4 “LLON

88+t s6ct HOE . &at

#8+ad! S€L 473 -ar

#8+ad! 1433 1173 ral

#8+adl [744 £0€ &ar

HO¥NT XYW YOXy3 XvW 14D dWd 701
+alsd3

#9+aql L68 14113 8-ail

#9+a! 009 47]3 9al

29+a! £8% 20€ ral

29+al Ls¥ [oe &al

HONAT XYA YoXy3 Xvn nd2 LLE) 704
$al -Sd3

#009088 829 {3 &ql

#OUrLset 88y [o¢ ¢al

#L6'10001 65* {1]3 ral

666666 8 174 ar

HO¥AT XYW ¥ONAIT XYW Ndd dHd 704
railsd3

rarlto L9¥ 00€ &ai

raero 14 00¢ al

€aqsro £0€ (1014 ral

-as6o 1474 ool &ar

HOWYT XYW Y¥OUNI XYA ndd dHd 704
gl sd3

T ‘WT1908d LS3L SINK °3d0I

9 3719vL

NSIN TVNIS THL NI SINIO4 JO FTIRAN TS * NS 208

~HONYI XYW YOuu3I XYW ndJ dHd 704
+a!:sd3

s §&al

s ¢ail

29+ail 6 L rail

#9+al 6 A ar

«JO¥YI XYA YOUYI XYW ndd dWd 701
a1l 543

s &al

£€-g9€0 £866 992~ ¢atl

-aeTo 11343 11174 ratl

09001] L ral

HONYI XYW YOXu3 XvW nd2 LLE . 704
raiisdl

L-qreo i » &aqi

9-asro 80€ 174 ¢al

raieo 8l 6€ rail

-asro 1244 LE ar

HOY¥I XYW YON¥I XYW ndd LLES 704
a1l SdI

»T ‘WT1904d LS3L

NOYOYH ‘3402
sIFIgvL

145

SINIOd T2IV4T LTTVA0T 96 1Y 4ONYT MINIXYR JHL = JOYYI XV
LLNOY NTIN 1Y 103¥3 RANIXYN THL * {03¥3 XYW

SCYOSTSITIN it INLL 14D = 14D

NSIR TYNIS THL Nf SLNIOY 4O ¥TERNN THL = M4

LINIOJ QTIV4T 1TTYI0T 36 LY 104¥T MIANIXYN JHL * JOUNT YR

SINIO4 HSIN LY {OUNT NANIXYN IHL = #C¥Y IV
SANOZTSITIN NI INUL 14D * 14D .

90 %990 [42°743 7403 - 8al
90 %990 144843 7403 ¢aql
9T6201¢E6 # 0096666 9 " rail
9T6201E6 # 0096666 9 " aql
HOUYI XYA ¥yONYI XYH ndd dNd 704
Tl -S4
+3ao9o razeo £8267 Y474 &ai
qaoro raiso [EES 18U ¢ail
rarco ~qzro Lirg §9% rai
8§5ISCES # 00966L 114 i al
YON¥I XYA YONY3 XYW Ndd LLES 104
9l -:Sd3
8-di+0 8-a<ro 14414 .14 8-al
L-dsEo 4-aLeo (/724 1714 ¢al
§-aiso §-geso [ost 1371 ral
£-4aseo £-aLe0 gozt sot al
HONYT XYW YO¥¥3 XYW ndJ dWS 704
ralsdi
0l-dET0 [11-a090 8ot 9 8-ai
6-06E0 1{-azzo 919 §r ¢al
9-qso 9-a68 o0 85§ LEl rail
-airo -gsr o (1]44 6 | oal
SHOXYT XYW YOy XvA ndJ dWS 704
al 'sd3

§T ‘WITT1904d ISTL

8l TIgv.

SAST00 ‘3000

NSIR TYNid IRL NP R2vI04 4O ATERNN JHL » dnd “1LON
09°%¢ %08°€€ 20592 $261 sal
09 BOFEE 20492 sesl ¢arl
§56460€6 # §5796868 44 i ral
§5820156 # 49787688 144 i al
YONYT XYW YO¥Y3 XYW ndl dnd 701
Tl Sd3
-qoco aico 19€T £9¢t 8qi!
£eqrro £eqiro <114 £st ¢aql
£-qero £-axro 4414 144 ral
39065666 # 55510916 44 i al
HO¥YI XYW YOY¥Y3I XYW N4 dWS 701
a1l -543
4-arlo £-a70 6821 6l 8-aqi!
4-q980 4-08E0 [224] 1114 ¢al
9-ass0 9-d96 0 Il 1y ral
§a9co §-aLzo 20! 9 oal
HOYYI XYW YO¥YI XYW ndJ dNS 701
ralisdl
6-alro 1r-aiso (Y44 4 &q!
6-Q0L0 or-asro 1414 {9 ¢al
9-qi8o 9-acgo 96T §r rail
talefadr -a8ro 174 6 al
HOXYT XYW YO¥y3 XYW Ndd dNd 701
al 543

§ T WITq04d ISIL

MINTOD “3TA0D
L Tgve

146

LINIO4 GIOV4S LTTVNOT 30 LY SOAYT NOANIXYN TKS = ~40¥YT XVN
SLV/OJ HSIN LV JOUNT NANIXYN IKL * ¥OUYT XYN

SAYOITITIN N INK 14D = NdD

NIIN TYNIS JHL U LINIOJ 4O FTINAN IRL = dN4

LINIOd GIIVAT ATTYNDF O L¥ OUYT RANIXYR INL * «HOUYT XYW
LIVIOd NSIN Y BOUYT NANIXYN IS = 408¥T XYW

SQNOITITUN N INLL V4D D ¢

-~ &aql

#SE98 14424 00¢
2 £96r 17474 00¢ ¢-al
209§ ot 00¢ ral
2 66°8CE! 869 00¢ al
YO¥YT XYW YOuv3I XYW NndJ dWd 702
+q1 543
oagro 14313 00¢ 8-ai
£4r90 st 00¢ 9aqr.
-aseo 699 00¢ ral
#9910 0¥ 00¢ al
HONYT XYW Youya xvw 140 dWd 701
a1 -S43
£-3950 13344 4 8-aqi
§airo 80§ 4 eal
£a620 1 (174 ral
-asro 66 114 &ar
HOXYT XYW YO¥Y3 XYW Nnd4D CLES 701
rair-:sd3
8880 Lsy 4 &aql
9-qiso 1 4 9-al
+a9sco 98 N4 ral
&airo 173 4 &al
HO¥YI XYW Youy3 Xvn ndd ELE) 704
Tqrsd3
§T ‘HIT904d 1531 SINK ‘3409

0T TI19vL

NSIN TYNId IRL NI SUNIOA JO qTENNN IHL * iNd “1loN

s 8al

. 9-al

. al

. al

S0¥¥T XYW ¥Ou¥3 XYM 40 dnd 701
+a1 54T

azro 8555y 907 ral

rasto 13144 691 al

~40¥¥T XYW ¥O¥YT XYW PR) and 701
901 543

§arro §6Ly 06 Ialegld

§arroe 8917 (¢4 9-al

§arro 00t 1334 ral

8-also 059 ot al

~H0¥YI XYW §O¥¥d XYW N N7 101
raiisd3

r-asro 0r ot al

01-ase0 207 143 al

§-asro 81 ¢4 ral

§-azso (1114 §T al

H0¥YI XYW 40¥¥T XYW ndd dni 70L
tarsd3

§7T ‘HIT904d LSIL

61 I19VL

NOYOYH ‘3d0J

147

LVIOL QIOVSS STTVI0T XK LY JOXYT RARIZYN INL * OVYY] TYN
SLYVIOS NSTR LY 1O¥YT RANIXYN THL = 10¥YT XVR
SCNOOIITUR M IR NdD * 1D

LLNIOZ QIIVES ATTYA0T ¢ LY YOUVT RIRIIYN JHL * 40YYT IYN
$LNIOY HSIN 1Y 10¥YT NANIXYN JHL = YO¥YT XVN
SANOIISITUN X INLL 14D = 14D .

NEI® Tvid INC NI ELNIOS 4O YIURAN THL © NJ LoN
£re 80 s 8 u-ar
§69L »T0 0sy (4 or-at
§§82 ore 9§ 1z 6ar
L1048 920 1 I rarl

«HO¥YI XYW YO¥¥3 XYN Ndd dNS 704
($U'21) :NIYHOQ
rasro §-are0 13441 8 au-ar
£-aero §-auro 665 14 or-at
[-gero 9-giro 314 1z 6al
£50 §-aiso 1 I ratl
«YOX¥I XYA YON¥3 XYW nd2 PLE) 701
(6'8) ‘NIYWOQ
§-asso 8-azro rlrl 8 a-ar
9-aoro 6-Adrs0 1143 (4 orar
§-46s0 6-4Lr'0 652 1z 6al
£asro 8-48ro 1 i ar
HOXWI XYHA YOI XYW Ndd dNS 701
(s'9) :NIYHOQ
1r-asro r-asyo (1144 8 u-ar
or-asto Z1-qeco 24 14 or-at
8-doco Z[-asro L$T 1z 6al
£-ar9o r-aeso 1 I al
«HO¥YI XYW YO¥¥I XYW Ndd dind 701
(re :NIYWOd
97 ‘NT1904d LSTL §{§700 ‘3A@0J

TIgvl

NSTIW TYNId TRL NI LLNIO4 40 YIORON IHL = dNd Aon
807 [-asco 696 8 u-ar
0632 [-@6zo0 19% 14 or-ait
$82 [-d6zo 444 14 6al
L10L8 169 #6 I ail
HONYT XYH 1043 XYW 142 PLT] 701
(sr'rt) :NIYWOQ
racro 9-qs# o 056 18 u-at
£-qe» 0 9-aoro 19% 144 or-ar
[-aelo 9-ael o [444 4 6al
£5°0 §£-3g9so §6 I ail
HO¥YT XYW YO¥¥I XYH n4D dNd 101
(6'3) ‘NIYWOQ
8-dseo 6-adLl0 656 8 U-al
9-a9ro 01-@99'0 o9y Iy or-ar
§-0850 0[-ag9o -1 ¢4 1z 6a!
£-aelo 81-d61°0 s6 14 al
HONYI XYW JO¥YI XYW ndd dnd 701
(s'») NIYWOQ
-asro £1-46L0 56 8 u-atl
01-asso £1-C650 114 144 or-ar
8-qsl0 £1-48T0 17¢4 1z 6al
£-aryo 20-as9o 96 " rail
~HO¥YT XYW HOA¥I XYW nd> PLE] T0L
(r'e) :NIYWOQ

9T ANTI1904d 1SIL

2I19vL

MINTOD :3A00

148

LINIO4 TIIVES LTIVAOT O Ly J0¥YT NANIXYN IHL = JOIYT XYN
SLNIOY NEIM LY 3083 MANIXYR IHL = $0¥¥T XYN
SQNOITSITUN ¥ INLL 14D = 14D

LLNI04 aTIves LTTYNOT 0F LY 20X¥T MARIIYA KL = 4O00¥T XYN
SLNIOG MSIN 1Y YOU¥T AIMIXYN JHL * 20OXNT XY
SONOJTIITUN NI IRLL 143 = NdD .

WSIR TYNI S INL NI SLNIOL 40 YTEIMN IKL = 4mS ‘1LLoN
os ! 1314 00¢ Luar
ost £sor 00€ orat
ost £s01 00¢ sas
ost £sor 00¢ ail

HOA¥T XYW ¥yOu¥I XYW Ndd dWd 101
(st'rt) :NIYWOQ
5-ai6o £901 00¢ -al
§-qiso £901 00¢ or-at
§-gi6o £901 00¢ sal
Tarsso Ll 0§ - ats
HOWYT XYW YOuI XYW ndd dHWi 701
(6'8) ‘NIYWOQ
8-aieo 1901 00f -al
8-areo 90t 00¢ or-atr
£-3950 29¢ ool &al
£-qozo r (174 ar
HAOW¥T XYW A0YYI XYW ndd dnd 701
(§'») :NIYWOQ
[{-qogo LEE (174 U-al
6-airo 9t (174 6a!
£-aszo for (174 8-al
£-ds8go 174 (114 . al
~HON¥T XYW A0AYT XYW ndd dnd 701
(r'e) :NIywod
971 ‘WITI0¥d 1S3L SINK :300J

72 I19VL

HYIN TYNIJ KL NI SLNIO4 40 YIENNN IHL » {RJ B 7.1
[-a9to {4 LE -ail
600 01 1] or-ail
[{-24 08 114 6ai
[r980» 144 I4 al
~JOXYI XY q0¥¥T XYW ndd dnd 701
($r'vt) :NIYHOQ
o-asio [1£4 LE aU-al
§-qiro 201 .1} or-ail
aoso 8L 17 6ai
05 144 4 al
HONYT XYW HO¥YI XYW ndd dnd 70L
(6'8) NIYWOQ
[{-asLo e L8 U-ai
6-d6€0 [0l .1} or-al
£-@oro 8L 174 6ail
£-argo 144 4 al
YOYYI XYW YONYI XYH ndd P 701
(s'9) NIYWOQ
#{-a9io e £ -al
Zl-qero 201 61 or-ai
[-grs0 08 174 6al
9-aszo 144 [4 L ral
~HO¥YT XYA YOuYI XYW Nd> PLE] T0L
(ro) :NIYWOQ
97 ‘WIT40Yd LS3L NOYOYH :3A0J
€2319vL

149

LLVI04 TIIVES LTTVADT 2 Ly JOUYT RANIXYN THL = 4OVXT YN
SLNIOd HYIN 2V YOVX] NARIIVN INL = 10¥YT XY

FANOJISITIN ¥ INLL 14D = 3D

NSIN T4 THL N S2N10d 4O L3NNI = dRd

LLNI04 CIIV4S LTIV 06 v JOUYD NANIXYN JHL = JHON¥T TYN

LLVIOS NITR 1Y 4OFYD RARIIVA IS ~ ¥CIYT IV
SONOOTSITIIN NE IMU 14D = 1D .

8-00L0 $(-d66°0 0891 9r . &ait

a8l o £1-aieo g501 13 9-ql
§-sz0 11-01°0 58S [rai
-asro 9-as90 »5T 1z ral
HCNYI XYW YOuY3I Xy« ndd LLE) 704
134 4
(1-069°0 »1-0560 rI91 191 §al
£arro »(-089°0 958 18 9-ar
ra9ro 01-09€0 50z 1z rai
£aLED £-A070 661 T zal
«HONYT XYW ¥Ouy3 XYW ndd LLE) 702
oy
60770 »1-Q9L°0 818 13 §al
9-as10 £1-0610 £87 1z >ail
$-a910 11-a1ro 961 T rai
§-a91°0 11-airo 961 11 ral
HONYT XYW Yoxy3 xvin 42 dNS 101
oy
6-a8l0 S1-as70 si1 1 eat
6-a810 S1-a5Z0 0zt i ear
60810 §1-0570 81 11 rai
11-a81°0 $1-Q£70 8Il 1 ral
«HOXYT XYA YOXy3I XYW 4D LLE) 101
v

IN ‘WT1404d L1S3L
97 T19v1L

M3INTOD ‘3000

NIIR Tvnid THL N 2iNI0d 4O FIERIN THL = IR 4 ‘Liow
or-atxo (0ot ot &al
or-aryo 946 (/14 ar
§-qoco 1.8 4 ral
§-@oco 6S¢ /4 al

HONYT XYA ¥Ouya XvW N4 FLE] T0L
SLIN ‘30202

01-aLzo 144 £l ea!

Larro 174 l -al

9-asso £9 [4 rail

9-asso £9 L atl

YOYYIT XYN YOuy3 XvW N4 dNJ 104
NOYOYH :3002

8-qiLo £r-qreo e mn &ail

§-qiLo £1-qre0 414 114 9-ar

§-qiLo £1-QqIe0 £61 l rail

8-qiLo a-qarro 174 144 Tar

SYOYYT XYH YOuyI XYW Nnd2 dWd 701
$§45702 °3002

§-qiLo £1-qIrgo e i 8&ai

8-ailLo £1-qrso 414 i gal

§-qiLo £1-qrgo 414 44 ral

8-qrLo £1-qcg0 1741 i eatl

HOXYT XYW YO¥dI XYW Ndo TLE T0L
MINTOD °2000

IN ‘WT1808d LS3L
sTT19vL

150

SLNIOd TTOv4S 4TTYA03 A IV JOUYT NANIXYR INL * HOUYT XYM
SLNIO4 NSIN 1Y 308YT RARIXYN INL = ¥O¥Y3 KYN

LINIOG GFIv4S LTVADT % 1Y 10TYT RANIXYR INL = JOUY] XYN
2LNI04 HEIN 1Y 10X¥T RINIXYR JHL = 408YT XYN

SANOITSITIN N INIL 14D + N SQVOITEITUN NI INL 143 = 149 .
NSIN TVt TRE I SLNIOd 4O YIENAN TRL = dmd “LoN HEIN Traild JRE N SivI04 40 TIENON TG+ N4 ow

[r-qtro el LET . &ar) 6-dsio gr-aclro 14724 191 §al

6-Ql€0 £33 L8 ail £-asro £1-@zlo et 8 ¢al

8§-asro sty .14 rail §-aqrZo0 [r-qoro 0s¢ 44 rat

sarro ost 174 al z-asto 9-as9o 20§ 1z al

HONYT XYW YOuyI XvYw Nnd2 dNd 704 HOYYI XYA Yo¥y3 XvA ndd dNd 704
oY o€y

[r-gero 686 ¥l 8ar 8-arroe »[-Q0L°0 et IE] &:a!

6-4Ll0 244 144 *ai L-aryo r1-as90 4501 8 ail

£-q9%0 1 62 ral §-aoro r-arro 1133 (4 ral

§-aL80 174 /44 ral £-a8s0 £-qoco 1743 I ar

YOXYT XYA YoudI XvA 42 dNd 701 HOYYT XYW YouyI Xy ndd dHi 701
oty oty

Zr-asro 68> 44 &al 6-dc90 §1-qi6o 6901 "8 8al

01-asro 0st 144 al §-aro y[-QLe0 1414 (4 -al

£-Ary 0 141 174 rail §-aoro [r-arre 1444 I ral

§-acso £z L al §-aelo [r-qrro 1444 I ral

~HONYT XYW Yo¥yI XYW ndo dWd 704 «HOX¥YI XYW youya xva Ndd dNd 701
ory or:y

£1-0s6°0 ¢4 L a! £1-QLlro ¥[-aslro (/14 i 8ar/

£1-0s6°0 144 L al £r-acro r[-Qero 0£2 I ad{

8-acg0 Ll L rail £r-aelro ¥-asto [244 I ral

§-aceo 4 L ral [[-asro »[-QqoT! 1414 I al

HOWYT XYA YOI Xyw Ndo dnd 704 HO¥YT XYW YOo¥y3I Xyw ndJ dnd 704
ry 'y

IN ‘WITT90¥d LSTL NOYOYH ‘3002 IN ‘WIT1804d LS3L $A8700 ‘3002
8T I19V1L LZI19vL

151

SLNIO¢ TIIv4S £TTVADT Of ¥ 4OUXT RARIXYN INL = JOYYT YN
SINIO HSIN LY 2087 MANIIYR UL ° ¥0¥¥T XYM

SCNOITIITUN & IRLL V4D = 14D

HEIN TYNld IRL NI SINIOL 4O TTENIN JHL » dN4

LINIO¢ TIIVIS LTTYAOT 0€ LY 20¥¥1 NINIIVA INL = 40007 XYW
. SLNIOd HSIN LY ¢0U¥T MAMIXYM INL = I0%YT XYN
$ANOITIITUM N INLL 14D = 24D .

L-arlo 8-ar30 14271 {4 8aqi
91-096°0 8-aqrco Lo 6¢ 9-air
81-QE00 01-aiyo 14174 §9 rail
1341) [-q6&0 98 o Tal
«HOYYI XYW ¥Oy¥¥3 XYW ndJ LLLE 704
a1 Sd3
Zr-qrio 6-arro 4 {4 &al
9-qasro 4490 (444 113 9al
[-quro §arso 443 113 ral
§0 [-qeso 1or I al
HO¥YI XYW ¥Ou¥I XYW ndJ LLES 704
qlSd3
0r-qr9o [-geeo L98L 1744 8al
§-qigo §-aero 1334 14 9-al
Faoso +~asro 89¢ 174 ral
¥0 [-q8co 17 144 al
«HOWYT XY YOu¥3 Xyw 142 LLLE 701
raisdl
8-Q€Z0 §-d600 (4444 8 &al
8-qcT0 §asro 14344 144 9-al
§-qeco 8-q6r'o [oer 8 ral
6-09%0 or-grlr'o [4dt4 ¢4 al
HO¥YT XYA YO¥Y¥3 XYW Nndd dNd 701
Ta!l°Sd3

€N ‘WITT1904d LSIL

of T19vL

MINTOD ‘300

NEIN TYNI4 ML NI SLNIOY 4O FIUNIN THL = dNd Low

<2 e cof &al

44 0086 10¢ eal

L §978 10¢ rai

<2 9559 [o¢ al

JOYYI XYW YOyl XYW ndJ dA S 101
oY

1741 SIEL! (7] &al

9! 896 (7] §al

9Lt 9518 10¢ ral

9! 14434 [{r]3 al

HO¥YI XYW YO¥I XYW NdJ dWd 10L
oL’y

1141 9759 00¢ §-al

1744 9Z59 00g ~ 9-ar

1141 9759 00¢ ral

141 959 00¢ ar

YOXAT XYW YOX¥3 XYW ndl LLE] 101
ory

-armo s 144 &aql

[-aeo 1433 14 9-al

[-a»o (Y14 14 ral

-gsso 627 124 al

HOYT XYW YOX¥3I XYA Ndd PLE 701
(D4

IN ‘HWT1904d IS3L SLIAKN :3A00
62T19v.

152

LL¥I04 TIIVLS LTTVAOF o6 1Y HOUNT RANIXYN IHL * 20¥¥T XVR
LLNIOS HSIW LY 10XXT RIARIXYR IHI $0¥¥T XYR

SCNOJISITUN NI INUL 14D = 14D
HSIR TYid THL N SLNIOY 4O FIERON JHL = dN4

LINIO4 @2IV4S LTVNOT of LY $CUNT ROARIXYR THL * I0¥¥T XYW
. LLvO4 HSTIW LY B0UYZ RORIXYR THL * JOUYY XYW
SAVOITIITUN i INLL 14D * 1D

@ . &at

2 *ql

D rai

D rai

~HONYT XYW YOuY3I XYW nNdd PLES 701
T Sd3

%00 (0fLLE gL $ai

%00'(0£LE gl oat

%00'{ ofuLE 377 ral

%00'(ofuLE grer rail

HOXYI XYW YOXLI XYW N4 dnd 701
9-q! S43

Z-asro 1266 173 eail

or-acro $¥0L ¥4 ¢-at

01-gcyo §68¢ 1] rail

9-qIg0 §SZE §9 rat

HONYT XYA YOI XYW ndd dANd 701
raql:5d3

£1-ar90 1861 96 $aqi

[-aieo £901 s oai

9-aqiro 96 I3 rai

$aqrzo u9 §T ral

YOXYT XYHA YOX¥3 XYW nNd2 dANd 701
T aTl:°S43

EN ‘WT1404d 1531 NOYOVH 300D
e 39vL

NSIN Tvid THL NE ZLNIOJd 40 YIERIAN THL » éR4 110w
6-diL0 6-airo s6l1 £ el
£-dL6°0 £-asso 08l 6€ 9-al
8-qico §-aclo ol 59 ral

[Y4/] [-3660 L6 {4 al
YOI XYW ¥O¥¥3 XA nao 7] 701
1543
[1-as¥o 0[-aq990 17441 1Y4 &ai
Z[-a9eo §-dzco 9Z8 6€ eal
[[-369°0 ~qiro 868 13 ral
[Y4!] [-a6e0 sir 114 ral
JHOWYT XYW ¥OuNd XvA 740 7] 701
9at :SdT
L-al60 4-aiso 9zot 144 8-ail
£-asto 8-aqiro 9rg 6 ¢ar
ra9so rasro 1414 114 ral
»Z0 [-aszo (744 i ral
AON¥T XYW HOuNT XYW ndo and 701
L isdd
6-asyo 6-ar90 [(//4] It 8sal
9-gsso 9-acLro 11t ¢4 *ail
9-ges o 9-aLro o 14 ral
9-gsso 9-aL¥o 6011 ¢4 ral
HOUYT XYW 4093 XVK Y% an3 701
a1 543
EN CHITF0¥d LSIL SAS700 ‘300D

1£19v.L

153

CLNIOd TTIVLE ATTYADT Of IV JO¥YT MIRIIVA NI ~J08YT VR
SANIOY NSIR Y 3087T MIRIIYR INL = $04¥3 IVA
FCNOITSITIR NI INLL 14D = V4D

$INIO4 QFIV4S LTIYNOT OF LY 108XT WAMIXYR JHL = J4OOYT XYM
SINIOG HEIM LY $OXVT mMNMIXYN IHL = 20¥VT XYW

HEIN TYNLG SRL NI S2VI04 4O (TUNAN THL = amd 2o

-areo 96T (14 . &al

8-a9zo 13344 14 al

§-@970 14344 1]4 ral

£-d650 1747 174 al

JONYT XYW dOYYT XYA Nndd FLE] 704
SLIA ‘3202

[-arz0 1413 I4 -al

6-d6£0 £62 14 9-al

9-ggeo0 [.144 14 ral

9-qizo 98! 14 al

~AO¥YT XYA ¥O¥YI XYA ndJ dAN S 704
NOXOYH 3300

690 #[-a8T0 LS i &al

6-dt90 r(-aszo orr i ear

6090 »[-d6C0 414 i ral

6-di90 ¥1-QLT0 [9¢ i ral

«HO¥YI XYW YOI XYA ndJ PLE 701
545702 -°3002

6-3z9°0 »[-Q09°0 9LE i 8al

6-d90 p[-Qqo90 (1723 i ¢al

6-d£9°0 r[-Q650 (723 i ral

6-dt90 r[-QqOTO 443 i al

«HO¥YT XYW ¥Ou¥d XYH Ndd FLE 704

MINT0D ‘300D

PN ‘WTT90¥d LSTL
re19V1L

sQvoIIITUM N IRU 14D < N4D o
HTIR TYNJ TRL NJ SLNIOd 40 QIERAN THL = v -LLON
«HONYT XYH ¥O¥uY3 XYA 42 dNd 701
a1 543
«HO¥NT XYW qON(T XYW ndl dnd 701
a1 ‘543
3 . &al
19 ~ ¢al
s ral
s ral
HO¥HT XYW youqa XvYn Nd2 dWd 701
raiosdl
$$L60 98¢ 55 &al!
11-as90 8996 144 ear
6-0Ls 0 nor 96 ral
6-aLs0 2113 96 al
SYONYT XYW ¥o(d XYW ndd dWd 701
a1:5d3
EN CWTTIONd LSTL SION ‘3002

£€T19vL

154

