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Comparison of Four Codes for Solving Boundary Value 

Problems for Ordinary Differential Equations 

Abstract 

The focus of this thesis is to compare four codes for solving boundary value 

problems (BVP) for ordinary differential equations (ODE), namely COLNEW, 

COLSYS, HAGRON and MUTS. Background information concerning the riumerical 

methods that underlay these four codes, as well as information concerning how to use 

the four codes, is included. The four codes are compared according to many important 

criteria such as robustness, timing, and ease of use. 

A considerable portion of this thesis is devoted to the discussion of various 
issues concerning the comparison of codes, such as the validity of conclusions 

resulting from a comparison of codes and the methods for making a comparison. The 

need for and the difficulties of comparing codes, in particular in our context of solving 

BVP for ODE, are discussed. A traditional method of comparison where the 

performance of the codes are compared under similar input parameter settings is 

examined. A different approach that compares the performance of the codes under the 

condition that the numerical solutions produced by the codes are of the similar quality 
is proposed. The relationship between these two approaches, as well as their relative 

merits, are also discussed. 
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Introduction 

The proliferation of mathematical software has increased the need to develop 

methods of evaluating the software, in order to determine their relative merits. The 

software user, on one hand, certainly needs information concerning the relative merits 

of the software in order to use them properly. The numerical analyst and the software 

developer, on the other hand, need to evaluate their own software in order to compare 

with others'. It becomes a common practice among the numerical analysts to use 

software evolution and comparison to provide justification for their methods and 

programs [6], [17]. 

a) Three commonly used methods of comparison 

The evolution of software usually has three stages as illustrated by Figure 1. 

Naturally, three types of comparison are common: 1 )  The comparison of methods by 

using some theoretical criteria, 2) The comparison of algorithms (e.g. in terms of 

operation counts), 3) The comparison of codes. 

In a field of high complexity such as the numerical solution of boundary value 

problems for ordinary differential equations, the comparison of methods suffers 

technically from the fact that the numerical methods can be so different that they may 

have little common ground to be compared with. The comparison of algorithms also has 

serious drawbacks. Pereyra and Russell gave the following good example of the 

drawback of comparison of algorithms in [17]. Operation counts for collocation and 

Ritz method for solving elliptic PDE (partial differential equation) have been made in 

[18], [l l] ,  [9] and [26]. Each contains modifications of the algorithms giving improved 

operation counts over the previous results. While the second and the third view 

collocation as more efficient, both in terms of the counts and the authors' resulting 

Numerical Methods 

Figure 1 

Algorithms 

i 

Codes 



codes, the fourth improves upon the counts for Ritz method and concludes that Ritz is 

more efficient. 

Apart from the drawbacks of the first two types of comparison, the need for the 

comparison of codes is also reflected by the facts that neither the comparison of 

methods nor the comparison of algorithms provide certain information about the codes. 

Figure 2 further illustrates this point. The fact that there are different ways in which a 

method or an algorithm can be implemented severely weakened the connection 

between the observations resulting from the first two types of comparison and the 

observations from the comparison of two specific codes. The comparison of codes 

therefore cannot be replaced by a trivial extension of the observations from either one 

or both of the first two types of comparison. It is our view that the results from the 

three different types of comparison are not that closely related and consistent as they 

appear to be. Neither does the superiority of an algorithm resulting from the second 

type of comparison imply the superiority of some codes based upon that algorithm, nor 

does a superior method necessarily lead to a superior code. In one words, in  the 

process of software evolution, superiority at one stage may not be inherited by the 

stages that follows. This puts the comparison of codes into an irreplaceable position of 

its own and it often makes the first two types of comparison less attractive, especially 

to the user of the codes, since for them, it is the performance of the codes, not the 

superiority of the methods or the algorithms, that counts the most. 

Figure 2 
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One may notice that so far we have not fully explained what we mean by 

'superior' and what we mean by the comparison of methods or the comparison of 

algorithms. Unfortunately, the literature of software evaluation is by no means near 

maturity. There are few criteria of comparison that everybody agrees on. Thus 

'superior' and 'comparison' are very much subjective concepts. While it seems 

unrealistic to have a set of criteria for evaluating all kinds of software, if we restrict 

ourselves in a specific field, meaningful comparison is not impossible. 

b) An overview of this thesis 

In this thesis, we shall concentrate on comparison of four codes* for solving 

boundary value problem (BVP) for ordinary differential equation (ODE). Our purpose 

is to discuss various issues concerning the comparison of codes in this specific field 

through actually comparing four of them. Users of these codes may also benefit from 

our discussion. 

The first chapter of this thesis covers some background material concerning the 

boundary value problem for ordinary differential equation and the basic numerical 

methods that eventually lead to the four codes. The last three chapters discuss the 

criteria for comparison and describe the four codes that we are interested in. 

Comparison of these codes centred on the discussed criteria is then conducted. 

More specifically, Chapter One serves as an introduction to BVP for ODE and 

the initial value problem (IVP) for ODE. It also contains description of some simple 

numerical methods that aimed at solving IVP and BVP for ODE. The difficulties of 

BVP for ODE are examined from a numerical analysis point of view. 

Chapter Two is devoted to various criteria and difficulties for comparing 

mathematical software, in particular, the criteria and difficulties for comparing 

ODEBVP codes. It also carries on the discussion about the relationships among the 

three types of comparison we mentioned in the last section. No sophisticated 

mathematics is involved in this chapter. Users of BVP codes may find this chapter 

useful. 

Chapter Three consists mainly of the description of the four codes we compare. 

Since all of them can be fairly difficult to use, especially to users who have little 



experience with BVP for ODE, and some of them do not have complete documentation 

available due to the undergoing changes, our description is aimed at diminishing this 

problem by providing guidance on how to use them. 

Chapter Four is a detailed report of the comparison of the four codes. It covers 

both how the comparison is conducted and what we observed through our comparison. 

It is important that the observations are only valid for the versions of the codes we 

currently have. However, some of the observations are unlikely to be affected by any 

future implementations. We shall point this out whenever we go through situations of 

this kind. 

* The list of the four codes and the date they were received: 

COLNEW by Bader, G. and Ascher, U.. Received in October 1988. 

COLSYS by Ascher, U., Christiansen, J., and Russell, R. D.. Received in July 1988. 

HAGRON by J.R. Cash and Margaret H. Wright. Received in May, 1990. 

MUTS by R. M. M. Mattheij and G. W. M. Staarink. Received in November 1988. 



Chapter 1 BVP for ODE and Some Related Issues 

This chapter is concerned with background material about BVP for ODE 

including the general formulation of a BVP for ODE, the numerical methods for BVP 

and the numerical methods for the related problem of solving IVP for ODE. Section 1 

discusses various forms of ordinary differential equations and boundary conditions. 

Section 2 describes briefly how a few typical IVP methods work. Section 3 describes 

the basic idea of those numerical methods that are related to the four codes. We do not 

intend to provide detailed discussion about IVP and BVP theory. Also we assume that 

the reader has certain numerical analysis background. Thus we merely describe some 

basic ideas to acquaint the reader with how IVP and BVP are solved numerically. We 

shall also emphasize those issues that separate BVP methods from IVP methods. 

I .I BVP for Ordinary Differential Equation 

Example 1 .I .I 

A simple second order IVP has the form 

y" = f (x, YI Y') 

Similarly, a simple second order BVP has the form 

If f(x,y,y') is linear in y and y', then we have a linear equation. It takes a 

simpler form 

Y"(x)- c,(x)Y'(x) -c~x)Y(x) = dx). (1.l.lb) 

where co(x), cl(x) and q(x) are functions of x. Usually one assumes that general 

ordinary differential equation can be written as a first order system 



where y(x)=(y,(x), ...,yn(x ))T is the unknown function and 

is generally a non-linear right hand side. For linear problems the ODE simplifies to 

Y #=A (x)Y + dx)  acxcb (1.1.3b) 

where the matrix A(x)~R""and the vector q(x)€Rnare functions of x. 

Some of the BVPODE codes deal with first order systems exclusively. Among 

the four codes we are interested in, HAGRON and MUTS require the user to change 

high order equations into a first order system before they can be applied. To show how 

to convert a high order ODE into a first order system (also see [2]), we consider the 
general form of the mixed order ODE system that has d equations and the ith equation 

is of order mi 

where m,'s are integers and f,'s are generally nonlinear functions. 

Let Z(U) = ( U ~ , U ' , , - . , U , ~ ~ - ~ )  ~4,"',~d,"',~~m1-1))T, then (1.1.4) is converted to the form of 

(1.1.3~) 



A first order system of ODE (1.1.3~) is normally supplemented by a two-point 

where g = (gl,g2,-.-,gJT is generally a nonlinear function and 0 is the zero vector in Rn. 

One may notice that (1.1.5~) is a special case since only two end points are involved. 

Nevertheless, it is the most popular form of boundary condition for an ODE, and most 

BVPODE codes can only be applied when the boundary condition for an ODE is in this 

form. When g is linear in y(a) and y(b), we have linear boundary condition. The general 

form of linear two-point boundary condition for a first order system is 

where B , , B ~ E  R"",JkRn. A very important case arises when (I .I Sb) simplify to (also 

see Chapter One in 121) 

(I .I Sc) is called separated linear boundary conditions. Similarly, if (I .I 5a) simplify to 

then we have separated nonlinear boundary condition. A significant portion of the 

currently available software for BVP assumes that the boundary conditions are 

separated. In fact, general boundary conditions (I  .I Sa)  can always be convened to 

one with separated boundary conditions [2]. More general boundary conditions arise 

when there are some other points rather than just two end points that are involved in a 

boundary condition. We call this kind of boundary condition a multipoint boundary 

condition. Linear multipoint boundary conditions have the form 

where Bl,B2,-..,BJ~R",$~Rn and a = xlc x2 c ..- c xJ = b. The most general form of 

multipoint boundary condition of interest is of the form 

(I .I Sf) 



where a = x, ex2< ... <xJ = b and g,'s are linear functions. 

(1 .I .4) together with ( I  . I  .Sf) form the most complicated BVP for ODE that can 

be directly handled by the available BVPODE codes so far. 

A multipoint BVP, like a high order ODE, can be converted to simpler form [2]. 
By transforming each of the subintervals [xi, xi+,] onto a fixed interval, say, [OJ] and 

writing the ODE for the independent variable 

for j = l,Z,.-,n 

one can transfer a multipoint BVP into a two-point BVP. To see how this works, We 

consider the following example: 

X - X .  
where A(x), B,, ..., BJ€Rmn; q(x), &Rn, and a = xl<x2< ... <xJ = b with t = -.--A- for 

X,+l - xj 
j=I ,..., J - I .  (1 . I  .6) becomes n ODEs on [O,I]. We thus have in total (J-1)xn ODEs. 
With new variable t~[0 ,1] ,  (1.1.7) becomes n B.C. which are specified at interval 

endpoints 0 and I .  These n new B.C. together with the nx(J-2) additional B.C. 

resulting from the interior break points xi, j = 2,3,-- J-I will be the new B.C. for the (J- 

1)xn ODEs resulting from the transformation. 

HAGRON and MUTS solve only first order systems with two-point boundary 

conditions. Using the above transformation, one can change any multipoint BVP into a 

two-point BVP and then apply the codes. Thus the above transformation in some 

sense justified these codes that deal with two-point BVP only. However, such a 

transformation cannot be done without cost. As one can see from the example above, 

the size of the system is dramatically increased after the transformation. When it 

comes to solving the BVP by numerical means, this kind of size increase means that 

the process will be more expensive than solving a similar system in its original size. 

Sometimes the transformed system can be simply out of the reach of the BVPODE 



codes, because of various reasons such as a code may be designed to handle an ODE 

system of limited size. 

1.2 A Few Methods for Solving IVP for ODE 

Compared with the development of numerical methods for solving BVP, 

literature for solving IVP was much earlier in maturing. Robust codes for IVP appeared 

long before the births of the four codes we are about to discuss. Big software packages 

such as NAG or IMSL have many reliable routines for IVP, but have only a few 

routines for BVP. This is mainly due to the facts that BVP are generally more difficult 

than IVP in the context of numerical analysis, and the difficulties of BVP was not fully 

recognized until the last decade. To  understand the difficulties of BVP, it is essential 

to know how an IVP and a BVP may be solved numerically. In this section, we will 

discuss how some numerical methods for IVP work. 

Consider a simple initial value problem 

A partition of the domain 0 = to < t, <-.< rkc... generally has varied step sizes 

hi = ti+, - ti. i.e. the value of hi depends on i .  For simplicity, we will only consider the 

special cases where his are all equal to a constant h. There are many IVP methods 

that can be used to solve (2.2.1a&b). Roughly, they can be divided into two types. The 

first type of methods is the so'called 'one step methods'. These one step methods 

calculate ui+,, the numerical solution at point ti+,, using only information at r,. The 

second type of methods is the multistep methods by which not only information at the 

point ti but also information at ti.,, ti.z,-,ti.,(m >1) is used to calculate ui+,. 

Example 1.2.1 : Euler's Method 

The well known Euler's method is an explicit one step method where 



The motivation for this formula is linear extrapolation [25] ,  as suggested in 

Figure 1.2.1. If u, is given (set equal to the initial value u(O)), it is a straightforward 

matter to apply (2.2.2) to compute successive values ul, u2, -., as is illustrated by the 

simple algorithm below. 

Figure 1.2.1 EulerS Method 

Algorithm for Euler's method: 

Step I: ~0 = u(0) 

Step 2 : ui+/ = ui + hf(ti,ui) i = 1,2,...,n 

There are two common ways that a one step method may be derived. One way 

is to use Taylor expansion and another way is to use numerical quadrature. To see 

how Euler's formula is derived, we expand the exact solution for (2.2.1a&b) u at ti 

As R(ti+,) is of order of h2, it is negligible provided that step size h is small. When 

R(ti+l) is negligible, the above equdtion is well approximated by (2.2.2)  in the sense 

that ui 's satisfying (2.2.2) are good approximations of u(ti)'s. Assuming that h is small 

and R(t i+/ )  is negligible, by dropping R(ti) and replacing the exact solution u(t,) by 

numerical approximation uk in the Taylor expansion above, we get Euler's formula. One 



the other hand, one can use the fundamental theorem of calculus and use the following 

equation 

that is 

Replacing the integral in the right hand side of the above equation by the quadrature 

formula that approximates the integral using (ti+l-tJf(ti,u(tJ) and replacing the  ti)'^ by 

ui 's as we did above, we then have the Euler's formula. 

Incidentally, most of the numerical methods for solving ODE (not just one step 

methods) can also be derived by the two approaches we briefly explained above. For 

more concerning the derivation of the numerical methods and the theoretical aspects of 

the methods, please see [2] and [25]. 

Assume we know uis at the first m - I meshpoints: 

An explicit m step method has the form 

and an implicit m step method has the form 

where ~tkJhJukJuk.,...,uk.J and p(rkJ ~ , U ~ + ~ , U ~ , U ~ + .  . J ~ k L m )  are known functions. 

Example 2.2.2 : Some examples of multistep schemes are given below. 

The Adams-Bashforth explicit four step method is 



The Adams-Moulton implicit four step method is 

In order to use an explicit m step method to solve (1.2.1 a&b), one needs to 

know uJ,u2, ..., u,., to proceed. This is usually done by using a one step method, e.g. 

Euler's method. A simple algorithm for an Adams-Bashforth method would be 

Step 1: Calculate ul,u2,u3 by using some one step method 

for i = 4,5,6, -.. 

The implementation of an implicit m step method is more complicated. While 

one can still rely on a one step method such as Euler's method to calculate uJ,  u2,-., u,. 

,, more efforts are needed in the second step in order to calculate U,,U,+~,... . One 

commonly used strategy is known as the Predictor-Corrector method. We use the 

following simple algorithm for an Adams-Moulton method as an example to illustrate 

how an implicit multistep method with a Predicator-Corrector technique is typically 

implemented 

Step I :  Calculate U I ,  uz, ul by using some one step method 

Step 2: Calculating ui for i = 

2.1 Estimate uoi+, by some method, e.g. Adams-Bashforth scheme. 

2 2  Calcufatej" = f(ti+l,~ni+,) 

h 
2 3  un+li+, = ~i + z[ 9f' + 1 ? f (~ ,u i )  - 5f(ti. J.4. J )  + f(fi.2rui.2) I 

2.4 Go back to 2.2 until u"+'~+, converges to a satisfactory accuracy. 

Generally, a simple one step method like Euler's method can be easily carried 

out. A multistep method, especially an implicit multistep method, needs more effort. 

But its order of truncation error is usually higher than that of Euler's method. Euler's 

method has a local truncation error of order 1. In our examples, both Adams-Bashforth 



and Adams-Moulton's methods are of order two [25].  Among the numerical methods 

for ordinary differential equations, one family of methods, known as Runge-Kutta 

methods, have been very widely used since it has the advantages of both a simple one 

step method and a multistep method, i.e. it is a family of high order one step methods. 

We only look at a simple example of an explicit Runge-Kutta method for IVP in this 

section, and leave the discussion about general Runge-Kutta methods to the next 

section. Like the one step Euler's method, an explicit Runge-Kutta scheme also has 

the form 

but the function q(ti,ui,h) is no longer necessarily a linear function of ui and f. The 

following example is a second order Runge-Kutta method known as Heun's method. 

Example 2.2.3: Heun's Method is 

Since it is an explicit method, in order to apply it to solve IVP, the algorithm described 

in example 2.2.1 can also be used for its implementation. 

The above are a few well known IVP methods. What they have in common is 

that they are all local in nature. Namely the methods are based on the relationships of 

the numerical solution at only a few neighbouring (local) mesh points. e.g. an Adams- 

Bashforth method is solely based on the a relationship among ui+,, ui, ui.,, ui-~,  ui.~. The 

fact that complete information about the solution at the initial point is known enables 

these methods to be proceeded iteratively in a fixed direction in the sense that the 

numerical solution values at the mesh points u,, uz,-, uk,-- are calculated one a t  a time 

in the order of their corresponding mesh points. It turns out that this is what separates 

BVP methods from IVP methods (also see [2]). It is also the major reason that an 

IVP is generally easier to solve numerically than BVP as one will see as we continue 

our discussion. 

1.3 Some ideas about solving BVP 

The detailed methods and techniques involved in designing the four codes we 

are interested in varies from code to code to different degrees. But the basic ideas that 



lies behind them can be roughly divided into two types. The fist type of ideas are 

those that suggest one solve a BVP for ODE via solving its related IVP. Numerical 

methods based on these ideas are referred to as initial value methods (for BVP). The 

second type of ideas involve spline-collocation or implicit Runge-Kutta approach, and 

the related methods are referred to as finite difference methods. Among the four codes 

we are interested in, only MUTS is based on a method that belongs to the first type 

[15]. COLNEW and COLSYS use spline-collocation [3], [I]. HAGRON is based on 

a special implicit Runge-Kutta methods with deferred correction [4], [5 ] ,  [6]. 

The first type of ideas is very natural in the sense that to construct a method 

for solving BVP by relating a BVP to its corresponding IVP, one can then take ful l  

advantage of the existing numerical tools for solving IVP. To see how this might be 

done, we consider the following simple example 

Example 1.3.1 Single shooting method for general linear two-point BVP 

Consider a general linear two-point BVP 

acxcb 

where A(x), B,, B,E RhYn and y(x), q(x), PE Rn 

If the general solution of (1.3.1~) y(x) can be expressed as 

where Y(x) is a matrix function, s is a parameter vector (sER*) and v(x) is a particular 

solution of (1.3.Ia), and if (1.3.1a&b) has a unique solution, then there must exist an 

unique s that corresponds to this solution. To find such a s, let's substitute (I .3.2) into 

(I .3.lb) 

or 

Letting 



then we have Qs =J*. (1.3.3) 

Thus s can be calculated by using (1.3.3) and (I.3.la&b) is then solved. However, 

there still remain a few important questions that need to be answered: I)  Does there 

exist a general solution of the form (1.3.2) ? 2) Is there a unique solution to (1.3.3), i.e. 
is the Q matrix nonsingular ? 3) What does the above process of solving BVP have to 

do with solving IVP ? 

Under the condition that A(x), q(x) are continuous on [a,b], and (1.3.1a&b) has 

an unique solution, one can show that the n homogeneous first-order systems 

Y'(x) = A(x)Y(x) acxcb (1.3.4~) 

where Y(x),A(x),IER~*, I is identity matrix and the first-order linear system 

v'(x) = A(x)v(x) + q(x) acxcb (1.3 Sa) 

v(a) = a ( a  E Rn) (1.3.5 b) 

will all have unique solutions [2]. Using the solutions of (1.3.4a&b) and (1.3.4a&b), 

one can form a general solution of (1.3.1~) by substituting the solutions into (1.3.2). 

Furthermore, the resulting Q matrix in (1.3.3) is then a nonsinguler matrix. To answer 

the third question, we notice that both (1.3.4a&b) and (1.3.5a&b) are IVPs. Thus the 

method described above can be.implemented by using the following algorithm that 

involves heavy use of an IVP code. 

Step I: Integrate (1.3.4a&b), (1.3.5a&b) numerically by using an IVP code, 

and obtain Yh(b), vh(b) (the numerical solution of Y and v at b). 

Step 2: Form Q and#* and solve (1.3.3) for sh. 

Step 3: Integrate (1.3.1~) with the following initial condition 

numerically using an IVP code. 



The numerical solution of (l.3.Ia&c) is then the numerical solution 
of (l.3.la&b). 

We conclude this example by pointing out that despite its mathematical 

elegance, the method described above is by no means always practical. One major 

reason for this is the fact that yh(a) is only an approximation of y(a). When the IVP for 

( 1 . 3 . 1 ~ )  is very sensitive to the change of the initial value, use of yh(a) and y(a) as 

initial conditions will lead to totally different solutions. In this case, the solution of 

(1.3.1a&c) cannot be used to approximate the solution of the IVP ( 1 . 3 . 1 ~ )  with initial 

value y(a) and is therefore not the solution of ( l . j . la&b) .  The techniques and methods 

behind MUTS are far more sophisticated than what was described above [14]. 

Nonetheless, one can get some basic idea concerning how a BVP can be solved via 

solving IVP from this example. See [2] for a complete coverage of shooting methods. 

One may have already noticed that whether a problem is linear or not had little 

effect on the IVP methods we discussed above. But nonlinear BVP have to be treated 

quite differently and are usually considerably more expensive to solve than linear 

BVP. The general idea of approaching a nonlinear BVP is to adapt numerical methods 

for linear BVP and use Newton's iteration. To see how this can be done, we consider a 

simple finite difference method-the trapezoidal scheme for solving ( 1 . 1 . 3 ~ )  with 

general nonlinear two-point boundary conditions ( I  .I 5)  

~ ' = f  ( x , ~ )  a<x<b ( I .  1.30) 

Example 1.3.2: Trapezoidal Scheme 

We first discuss how the trapezoidal scheme works on the linear problem 

(1.3.la&b). Given a mesh z: a = x ~ < x ~ < - ~ < x ~ + ~  = 6, the so called trapezoidal scheme 
is the following discretization of (1.3.la) 

I I I 
Letting Si = -hilI - ~ A ( x J ,  Ri = h;' I - ?A(xi+,), gi = 2 [q(xi+') + q(xi)] (1.3.6b) 



then we can write (1 .3 .6~)  in matrix form 

(1.3.7) gives the numerical solution of ( lJ . la&b) at the mesh points. 

Recall that Newton's method for solving system of equation 

F(s) = 0 (1.3.8a) 

involves an iterative procedure 

P+' = G(sm) m = 0, 1,2,  ... 

dF(s) 
where C(s)  =s-[FO(s)]-IF(s),and F'(s) = is the Jacobian matrix. This can also 

be written as 

To  illustrate Newton's method for solving nonlinear BVP, consider the 

following example. The trapezoidal scheme for ( 1  .I .3a) with boundary condition 

(1  .I Jb)  is given by ( I  .3.9a&b) below. 

~ Y I , Y N + I )  = 0 (1.3.9b) 

Let the nonlinear algebraic equations (1 .3 .8~)  be (1.3.9a&b) with 

S Eyn = ( Y I , Y ~ , " ' , Y N + I ) ~ ,  S E  RN+I 

Using difference operator notation for (1 .3 .9~)  we obtain 



and F(s) = (N,yl,. -,N,yN, g(y1,yN+,))T. Newton's iteration (l.3.8b) gives 
Wi+1 - Wi I 

hi 
- ~ A ( X ~ + ~ ) W ~ + ~  + A W w J  = - N a p  I l i S N  (1.3.10b) 

Here, yXm are known from values from a previous iteration gl$ is an initial guess) and 

The next iteration is given, according to (1.3.8c), by y/"+l = y p  + wi , i = 1,2 ,  -, N+I. 

The system (1.3.10) for the correction vector w, is a linear system of equations which 

looks like a trapezoidal discretization of some linear problem. In each iteration, we 

performed two operation in succession4iscretization and linearization. This method 

can be implemented by using the following algorithm: 

Algorithm: Trapezoidal scheme with Newton's method 

Input: A BVP (1.1.3~) and (1.1.5b), a mesh n, an initial guess of solution values y f 
at mesh points, and a tolerance TOL. 

Output: Solution vatues at mesh points. 

Repeat 

I .  Generate B,, B, by (l.3.IIb) and setJ = - g ( ~ ~ , y ~ + ~ ) .  

2: For i = I,2,...,N DO 

Generate S ,  Ri and qiof (1.3.6b) using (1.3.11a) and qi = -Nai .  At the 
end of this iteration, the matrix A and the right hand side vector J have 
been generated. 

3: Solve A w, = J for w, 

4: For i = 1,2,  .-, N+I DO 



5: Stop i f lwd I TOL or the iteration limit is exceeded. 

The trapezoidal scheme discussed above is one of the simplest finite difference 

methods for solving BVP. Like the single shooting method, this method is simple but 

is rarely used in practice. Its biggest disadvantage is that this method has a local 

truncation error of order 2 (see [2] for more details). If high accuracy is desired, then a 

higher order scheme is more effective. Nevertheless, from this example, one can see 

that the nonlinear BVP are indeed more complicated to solve than the linear BVP 

since it involves Newton's iteration. But for most of the IVP methods, as we 

mentioned earlier, nonlinearity has little effect on them. 

To continue our discussion about the nature of the numerical methods for IVP 

and BVP with respect to the formulations of BVP and IVP, we point out that since the 

information about the solution is given at the (at least) two boundary points for a 

BVP, but at none of these points the information is completely known, it is then 

impossible to use local methods such as those methods for IVP we discussed above. 

Consequently, the numerical solution yilsare not determined one at a time in some 

linear order, rather they are determined simultaneously by some global relation such as 

(1.3.7) that connects all yis through out the entire mesh 121. 

Let us now carry on our discussion about Runge-Kutta methods. we started in 

the last section. A general k-stage Runge-Kutta scheme for y' = f(x,y) is defined by 

where 

The points xg are given by 

- xi + h,pj xii - I S j S k , I  I i I N  ( I  .3.12c) 

the "canonical points". Thus the points xij, which are sometimes called collocation 

points, are N  scaled translations of the canonical set of k points p,, p2, ..., pk into each 

subinterval of the mesh a. With k(k+2) free parameters, a k-stage Runge-Kutta 



scheme can archive a high order of accuracy. A Runge-Kutta scheme is explicit if p, = 

0 and aj, = 0 for all j S 1, and implicit otherwise. For initial value problems, explicit 

methods have obvious advantages over implicit ones even though they have fewer free 

parameters to choose from. With an implicit method, one can still use a simple 

"marching algorithm", such as the algorithm for Euler's method, to calculate ui's from 

the left to the right one at  a time. But for boundary value problems, implicitness are 

inherent in the problems in the sense that numerical solution values on 7~ are obtained 

simultaneously. Thus the "marching algorithm" becomes impossible and the biggest 

advantage of explicit methods disappears. It therefore makes sense to use implicit 

ones by which one can make use of all the k(k+2) free parameters and get the most 

out of the methods in terms of accuracy and efficiency [2]. Implicit Runge-Kutta 

methods play an important role in the literature of finite difference methods for solving 

BVP. The methods behind COLNEW, COLSYS and HAGRON all have close ties 

with it. 

The above are just some basic ideas for solving BVP for ODE. As our interest 

is in comparing the codes rather than the methods, we will not dig further into the 

numerical methods for BVP for ODE. To finish this chapter, we point out once again 

that the methods we had discussed above are only illustrative but by no means 

complete or close to the methods that are behind the four codes. We hope that this 

chapter can get those reader who are not familiar with the BVP for ODE started 

getting to know the basic types of BVP for ODE and the basic ideas for solving BVP 

for ODE, as well as the difference between IVP and BVP from a numerical methods 

point of view. The four codes we. are about to compare are based on the most advanced 

developments in the field of BVP for ODE. The methods and techniques involved are 

so sophisticated that it is difficult for us to come up with some simple versions that 

can be included here. For those who are interested in details of the theoretical 

background of the codes, [2] has the most complete and up-to-date coverage of the 

background information. 



Chapter 2 The Comparison of Codes (I) 
--General Discussion on the Difficulties and Criteria of Comparing 

Codes for BVPODE 

The lack of sufficient commonly agreed upon criteria is indubitably the most 

serious problem of the comparison of codes. This problem not only causes technical 

difficulties for the comparison, but also limits the validity of conclusions resulting from 

any comparison. Even if one restricts himself in the comparison of codes in a narrow 

field, one still cannot totally get away with this problem. Both [5], [6] for HAGRON 

and [15] for MUTS have some discussion involving COLSYS, but the authors are very 

cautious in making any explicit comparison between their codes and COLSYS. People 

have been avoiding making direct comparison because of its problems. The common 

notion about comparison that it must end up with telling the good ones from the bad 

ones also contributed to people's reluctance of making direct comparison. Thus it 

seems important to make it clear what we mean by "comparison", in particular, the 

"comparison of BVPODE codes". 

2.1 The Comparison of Codes and the Validity of Its Results 

There exist many criteria that are relevant to the comparison of codes. The 

problem of the lack of commonly agreed criteria is mainly due to the fact that people 

have different opinions about the weights each of those possible criteria should 

receive. CPU time is definitely a possible criterion, so is the accuracy. For people with 

very limited computing resources, CPU time may be just as important as accuracy. On 

the other hand, for people who need high accuracy and have abundant computing 

resources, CPU time may not be what they are concerned about. A code may be too 

slow to be competitive today, but with faster computers that are bound to come 

tomorrow, it may become very competitive due to its advantages in some other 

aspects. Realizing that the importance for each of the possible criteria varies with 

individuals and time, it make sense to simply put the weights' issue aside and not to 

judge the overall performance of a code according to several simple criteria. "Linear 

Ordering" does not apply in the context of the comparison of codes [17]. Realistically, 

what one can archive is to use as many relevant criteria as possible and compare the 

codes by using these criteria separately. Thus a meaningful comparison of codes may 

simply be a collection of information resulting in comparing the codes according to 



many specific criteria. It is not an attempt to tell the good ones from the bad ones, and 

it does not assign the weights to the criteria. Rather, it simply provides the user with 

plain facts about the codes and enables them to assess the codes' relative overall 

performances according to the criteria that they are most concerned about. However, 

we do not rule out the possibility of having a meaningful overall assessment as a part 

of a general comparison. In fact, there have previously been quite useful comparisons 

of codes for numerical quadrature, scalar nonlinear equation solvers, and comparisons 

of codes for IVPODE (see [12], [24]). In these cases, however, the codes were 

intended to solve the same problems and the design criteria were basically the same. 

The solution of BVPODE necessitates many types of numerical consideration. 

In Figure 2.1 below, BVP for ODE is connected to the other areas such as 

approximation theory, numerical linear algebra and optimization. It is in this sense we 

say that solving BVP for ODE is of high complexity. This complexity of BVP for ODE 

makes 'the method for BVP for ODE' or 'the algorithm for a BVP for ODE code' very 

vague. If we interpret 'the method for BVP for ODE' as the basic numerical scheme 

that can solve BVP for ODE in theory (and do not include those considerations for 

actual implementation), and interpret an algorithm as a detailed scheme based on a 

numerical method that is ready for coding by using some computer language, then this 

complexity certainly prevents us from extending the observations resulting from 

comparing the codes to the comparison of the methods or comparison of algorithms. 

COLNEW and COLSYS are based on the same method, i.e. the collocation method for 

BVP, but COLNEW is generally faster than COLSYS in terms of CPU time needed for 

solving the same problem. Codes based on different implementations of a certain 

numerical method can be so different in many aspects of their performance that even 

with a considerable amount of expertise, it is still hard for one to tell whether a 

relative merit of a code is due to the code's underlying method. In the example 

mentioned earlier, COLNEW is only different from COLSYS in terms of the types of 

spline used for the representation of the numerical solutions, and the linear system 

solvers. The difference between COLNEW and COLSYS in terms of speed is often 

simply due to their different linear system solvers. If a code is faster than COLSYS, 

and is slower than COLNEW, we probably cannot say anything concerning the 

comparison between the numerical method that lies behind that code and the 

collocation method in terms of speed. In fact, every part that attached to BVPODE in 

Figure 2.1 is very important to a BVPODE code that involves it. An improvement over 



any participating part can dramatically improve the performance of a code. Thus the 

validity of the results resulting from a comparison of codes is very much limited to the 

related codes themselves. 

Approximation 11-1 WI'oIX 1-71 Quadrature 

IVPODE Optimization 

Figure 2.1 Reproduced from [17] by permission of the authors 
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Even if we restrict the validity of the comparison to the participating codes, we 

still have to answer to what degree our comparison represents the true relationships 

among the codes. The problem that still challenges the validity of a comparison is that 

many criteria can only be applied with some test problems. Accuracies of a code (or 

accuracy of the numerical solutions that a code can obtain), for example, usually cannot 

be determined without some test problems, and it also varies from test problems to 

test problems. The accuracy of one code may be better on one test problem than that of 

the other codes, and may be worse on another test problem. The validity of a general 

conclusion concerning accuracy is very much based upon the hope that the test 

problems involved are somewhat 'typical' and can represent. (if not every) almost 

every type of problems we may encounter in practice. While a standard set of test 

problems that have all the desirable properties, such as be typical or representative, 

might be possible for comparison of codes in some other fields, it is not a realistic idea 

in our context of comparing BVPODE codes (see [17], [21]). 

Rounding 
Error Analysis 

Numerical 
Linear Algebra 



Nonetheless, a general comparison of codes is usually subjective in nature and 

the real strength of a comparison often lays in the correct subjective input (or 
expertise) from those who make the comparison. A comparison of codes can involve 
only a limited number of test problems, but the observations resulting from these test 

problems can reflect the true relationships among the codes to some degree. With 

correct subjective input, the results of a comparison can be valid far beyond the limited 

number of test problems involved. 

2.2 Criteria for Comparing Codes for BVPODE and Their Classification 

Pereyra and Russell divided the criteria related to the comparison of BVPODE 
codes into the following three categories 1) general "objective" (more quantitative) 

criteria, 2) general "subjective" (more qualitative) criteria and 3) subjective criteria 
particularly relevant to BVPODE codes [17]. The first category includes timing 

(speed), storage, portability and program correctness. The second category includes 

ease of use and robustness, and the third category includes user feedback, error 

estimation, termination criteria, program parameters and program driver. Ironically, the 

objective criteria are among those criteria that are most difficult to be implemented and 

very often, the comparison related to these criteria need a considerable amount of 

subjective input in order to be complete. The speeds of the codes, for example, are 
generally not comparable except on some concrete examples (or test problems as 
mentioned above). To draw general conclusions concerning the relative speeds of the 

codes through some concrete examples certainly needs a considerable amount of 

subjective input. 

In our comparison in the last chapter, apart from most of the criteria mentioned 

above, we will also take into consideration the number of points in the final mesh, the 

distribution of the final mesh points and the location of the maximum absolute error. A 

meaningful classification, like the one provided by Pereyra and Russell in [17], can 

help us understand the nature of the criteria and therefore the importance and validity 

of the observations related to the criteria. Indeed, there are many common aspects of 

the criteria that are worth noticing and can be used to make useful classification. The 

following are two classifications we will refer to later in our discussion. 1) According 

to whether or not a criterion has to depend on test problems, one may classify the 

criterion by 'test problem dependent' or 'non-test problem dependent'. Among those 



criteria mentioned above, timing, storage, accuracy, robustness, the number of mesh 

points in the final mesh, the distribution of the final mesh and the location of the 

maximum error are test problem dependent. The rest, e.g. ease of use, termination 

criteria and program parameter, can be considered as non-test problem dependent. 2) 

According to whether or not the criteria are about the technical details of codes' design 

or codes' performance, one may classify them as 'structure type criteria' and 

'performance type criteria'. All the test problem dependent criteria, timing, storage, 

accuracy, plus ease of use can be considered as performance type criteria. The rest, 

such as termination criteria and error estimation are structure type criteria. 

2.3 Comments On The Criteria We Choose 

Most of the criteria we mentioned above will be used by us and they can be 

well understood without further explanation. But some of them deserve some 

explanation. The following is the list of criteria we will use in the comparison in the 

last chapter. In order to be precise, we also provide a short description of those criteria 

that may not be clear to everyone. 

a) Codes' Drivers Related criteria 

I :  The form of the BVPODE that can be directly dealt with by each code. 

We choose this as one of our criteria because some of the codes can only solve 

BVPODE that are in a very.specific form. Information concerning this aspect is 

supposed to be useful to code users. 

2: Input information 

2.1 Input parameters 

Each code has many parameters through which useful information is conveyed 

to the code. Some of them, such as a linear (nonlinear) indicator parameter, are 

easy to determine. But the others, such as the tolerance parameter, are more 

difficult to choose. We will have some general description concerning the use of the 



input parameters in the third chapter, and we will comment on those critical 

parameters in chapter four when we make our comparison. 

2.2 Input subroutines 

Input subroutines are the major channels to convey the information concerning 
a BVPODE to the codes. Each input subroutine usually describes one aspect of 

the problem. For example, most of the four codes involve an input subroutine that 
conveys the information of the ODE (or ODE system) to the codes and an input 
subroutine that conveys the information of the boundary value equations to the 

codes. It is plausible for a code to have more subroutines in order to channel more 
information through to the code. However, not only the number of necessary input 

subroutines is often restricted by the underlying method, but also there exists the 

problem of trade off between the amount of information one wants to channel 

through and the complexity (or efficiency) of the driver. This is a useful criterion 

since it is related to both the least amount of information a code uses to solve the 

problem and the complexity of the driver. 

3: Ease of use 

It is useful to have the difficulties we had encountered from time to time when 
we used the codes included here so that those who do not have much experience 

with BVPODE codes can learn to avoid them. The relative ease of use of the four 

codes will be assessed through comparing these difficulties. 

6) Other performance type criteria 

4: Timing ( we will only use CPU time on some specific test problems) 

5: Storage 

6: Accuracy (measured by the maximum error. see Appendix 11) 

7: Portability 

8: Robustness 

There are a few things that are worth commenting on here. Among the above 
list, most of the criteria are test problem dependent. Timing, accuracy and storage 



are not only test problem dependent, but also 'input parameter dependent' and 

depend on each other in the sense that even with a fixed test problem, they may 

still vary with different combinations of input parameters and they are also related 

to each other. COLSYS and COLNEW, for example, will use different mesh 

selection strategies, depending upon whether or not the allotted storage is a 

limiting factor. If it is, the codes may solve a problem using less storage than if 

unlimited storage is provided. At the same time, the accuracy of the solution may 

be worse than it would be when unlimited storage is provided. With so many 

factors related to each of these criteria, it is not realistic to find the best set of 

parameters that would give the code the best performance in terms of all these 

criteria. This is an important issue and we will have technical details about the 

implementation of these criteria later in the last chapter and Appendix 11. 

c) Criteria related to the design of the codes. 

9: Termination criteria 

A code may be terminated for many reasons such as a satisfactory numerical 

solution is found (this is called normal termination), the allowed storage space is 

insufficient, code overflow or even the elapsed time since the code started running 

exceeds some limit. All these reasons except the first one are called abnormal 

terminations. By termination criteria here we simply mean the mechanisms that 

are built in the code that lead to the normal returns from the codes. We will 

examine these mechanisms .as well as their relationship with tolerance in the 

fourth chapter. The other abnormal causes for terminations will be discussed when 

we compare the robustness of the codes. 

10: User feedback 

By user feedback, we mean the information about the procedures for solving a 

BVPODE and the correctness of the driver provided by the codes. This information 

might be an abnormal return from the code like a warning message indicating a 

certain parameter value is not properly set, or simply feedback information like the 

number of points in the current mesh. With more than one choice of a code, a user 

(especially if he/she is not familiar with the merits of various BVP codes) is likely 



to choose the one that is the most 'user friendly' one. When writing a code, 

knowing what kind of feedback information the user may need to know the most 

and providing the user with the access to this information can often result in a user 

friendly code. It is also important not to burden the user with feedback information 

that is not of great importance to them. 

d) Solution related criteria 

13: The number and the distribution of the final mesh points 

14: The form of the solution 

15: Error analysis (Location of the maximum error and the graph of the total error) 

It would not be of such a great importance to look at these issues if all the 

codes we are interested in provide solutions on the entire domain upon normal 

returns from the codes. Since some of the codes return with a solution at only a 

finite number of final mesh points, and the gap between a continuous solution and a 

discrete one cannot be bridged by simple interpolation [19], these issues become 

very important. One can say nothing about the relative efficiency concerning two 

codes if one takes ten CPU seconds and returns with a solution at one hundred 

points and another one uses only five CPU seconds but returns with a solution at 

only, say, forty points for the same objective problem. Neither can one say 

anything concerning the relative efficiency if one code uses more time or storage 

and returns with a solution that characterize the true solution very well and 

another one uses less time and storage but returns with a solution from which only 

part of the true solution can be read off. An exaggerated example of this type is 

that a code terminates with a set of final mesh point that are all in the upper half of 

the domain except the lower end point. It is then very unlikely that one can tell the 

behaviour of the solution at the lower half of the domain by looking at the discrete 

solution at these mesh points. 

Thus a comparison of codes with respect to only time or storage is incomplete 

since the ultimate goal of a code is to provide a good solution to problems. The 

quality of the numerical solutions from each code must also be taken into 

consideration. In our view, this quality should have at least the following aspects 

1) accuracy of the solution, 2) the number of the final mesh points, 3) the 



distribution of the final mesh points (versus the shape of the true solution on test 

problems). We will look into these three issues in our comparison in Chapter Four. 

2.4 Numerical Methods Related Issues and the Principle of Our Comparison 

There are differences among the codes that can be directly traced back to the 

methods which the codes are built upon. The types of BVPODE that the codes can be 

directly applied to, the forms of solutions provided by the codes and whether or not a 

code has built in adapted mesh selection strategy are three most important differences 

of this kind. 

The difficulty of comparing these differences is that they are often related to the 

designers' original purposes of writing the codes. If a code is written to solve two point 

boundary value problems only, for example, is it still a disadvantage of the code that it 

can not be directly used for a multipoint boundary value problem? Should not one 

compare this code to other codes with respect to the type of problems a code is 

addressed to at all? 

When making a general comparison, we believe it is important to emphasize 

the common side of these codes' goals. The types of BVPODE these codes are aimed 

at or the forms of solution they provide may differ to some degree, but they all share 

the same original motivation, i.e. they are all motivated to solve BVP for ODE: This is 

the 'lowest common denominator' of their goals and it is on this ground that we are 

comparing the four codes. 

In this thesis, we will treat all the four codes as general purpose codes for 

solving boundary value problems for ordinary differential equations regardless of the 

differences mentioned above. It is our principle that what we are comparing are simply 
BVPODE codes, not a code aimed at a certain type of BVPODE that results in a 

solution in a certain form and another code aimed at another type of BVPODE that 
provides a solution in another form. Every aspect of the codes we included in the last 

section, whether or not it is related to the designer's original purposes of writing the 

code, will be compared. 

2.5 The Selection of Test Problems 



We finish this chapter with a few words on how test problems are usually 

selected by many experts in this BVPODE field. We will follow their expertise on 

selecting the test problems. For the complete set of test problems we are going to 

use, please see appendix (I). 

2.5.1 What do we want from the test problems 

First, we need to use test problems in order to carry out the comparison 

concerning those test problem dependent criteria. Second, we want the test problems 

to be somewhat representative so that the comparison related to these test problems 

is somewhat trustable. These concerns are our guidance for selecting test problems. 

To convert the above concerns into concrete criteria of selecting test problems, 

we notice that the test problem dependent criteria, especially robustness, require that 

the test problem includes nontrivial problems, as well as BVPODE of different types. 

2 5.2  Test problems involving parameters 

It is a common practice among the BVPODE experts to use test problems that 

involve one or more parameters which control the difficulty of the problem (see [I],  

[21, 141, [61, E81, [171). 

For a BVPODE code, the difficulty of a problem is usually represented by the 

nonsmoothness of its solution. Since all the codes are based on numerical methods 

that rely on the assumption that the object problems have somewhat smooth solutions 

to work properly, we expect that as the problem gets rougher and rougher, the 

performance of the codes will become worse and worse, and the codes will eventually 

fail to solve the problem. Thus it is ideal to select test problems with different degrees 

of difficulties to test the robustness of the codes. One reason for using test problems 

with parameters is that they provide us with the different degrees of difficulties. 

It is generally difficult to compare the degrees of difficulties of different 

problems, but is relatively easy to predicate the change of the degree of difficulty for a 



problem involving parameters when one changes the values of its parameters. This is 

another reason we use test problems involving parameters. 

2 53 A few types of common nontrivial BVPs for ODE 

While we will only use those test problems that we believe are somewhat 

representative, developing strategies for finding a set of representative problems for 

boundary value problems for ordinary differential equation is too big a subject to be 

dealt with here. We will not spend too much effort on this, rather we merely mention 

the four basic types of nonsmoothness behaviour of the solutions for ODE for BVP. 

The first type is boundary layer type (BL), such as the one shown in example 

one on the next page. The second type is the turning point type (TPT) such as the one 

shown in example two on the next page. The third type is oscillatory type (OSC) such 

as a high frequency sine or cosine wave, e.g. example three on the next page. The 

fourth type is spike type (SPK), such as the one shown in example four on the next 

page [17]. It follows naturally that a solution might have a boundary layer and have a 

turning point at the same time. Due to various expenses, we will only have test 

problems that have exact solutions that belong to each one of the four types above. 





Chapter 3 How to Use the Four Codes 

The purpose of this chapter is to acquaint the reader with the procedures for 

running the four codes. It also serves as preliminaries for comparing the codes in terms 

of the criteria related to the form of the driver such as 'input parameters' and 'ease of 

use ' etc. As some of the codes are still undergoing changes, the procedures described 

in this chapter are strictly for the versions of the four codes we currently have. The 

procedure for running each code we provide below include the type of BVPODE each 

code is addressed to, information for how to set up input parameters, input (user 

supplied) subroutines for each code and user feedback that is available from each code. 

A sample driver for solving the following nonlinear two point boundary value problem 

for each code is also included. 

Example 3.1 A two point BVPODE 

3.1 : COLNEW and COLSYS 

COLNEW is a modified version of COLSYS where the linear solver and the 

bases for representing the numerical solution are different from COLSY S . Despite 

these differences, the two codes have exactly the same set of input parameters, input 

subroutines and the forms of the drivers for running them can be exactly the same. 

Since the two codes also provide the same user feedback information and their 

difference is not what we are concerned about in this chapter, we will treat them as if 

they are the same and the procedure described in this section is therefore for running 

both of them. 

3.1 .I The classes of BVPODE COLNEW and COLSYS are addressed to 

COLNEW and COLSYS solve a mixed-order system of ODE subject to 



separated, multipoint boundary conditions given by 

where u(x) = (ul(x),uz(x), . . .,ud(x))T is the exact solution 

boundary points satisfy a = cl S c2 E-5 cm. = b and 

d 

vector, m* = Crn, , the 

mi (i=1,2,.-,d), the order of the ith differential equation satisfy 15 m , g .  The functions 
fi and gi are generally nonlinear. 

3.1.2 Code Parameters 

Both COLSYS and COLNEW are headed by 

SUBROUTINE COLSYS(NCOMP, M, ALEFT, ARIGHT, ZETA, IPAR, 
+ LTOL,TOL, FlXPNT, ISPACE, FSPACE, IFLAG, 

+ FSUB, DFSUB, GSUB, DGSUB, GUESS) 

The variables in the first two lines of the heading are input parameters. The 

last five in the third line of the heading are the names of the input subroutines. We 

now explain how to set up these parameters one by one according to the order they 
appear in the calling sequence. Unless specified otherwise, the parameters are input 

parameters. 

NCOMP: = d - the number differential equations (S-20). 

MU) : order of the jth differential equation, 1 -< j ,< NCOMP. 

ALEFT = a, ARIGHT = b: interval end points. 

NCOMP 

ZETA(j): = G 1S j  S &ti , Must be mesh points in all meshes used. 
1-1 



See description of IPAR(I1) and FIXPNT below. 

IPAR: An integer array of dimension 11. A list if the parameters in IPAR and 

their meaning follows: 

IPAR(1): = 0 if the problem ( 3 . 1 ~ )  is linear in z(u(x)). 
= I if the problem ( 3 . 1 ~ )  is nonlinear in z(u(x)) .  

IPAR(2): = number of collocation points per subinterval and . 
m, = max{mj, j=l,. . . ,dJ I IPAR(2) I 7 (Recall that m, 1 4 ) .  

IPAR(3): = number of subintervais in the initial mesh (>O). If on entry IPAR(3) is 

equal to 0, then COLSYS arbitrarily sets IPAR(3) to be 5 .  

IPAR(4): = number of solution and derivative tolerances. 0 I I P A R ( 4 )  I m* 

IPAR(5): = dimension of FSPACE (see description of FSPACE). 

IPA R (6): = dimension of ISPACE. (see description of ISPACE). 

IPAR(7): output control 

= - I  for full diagnostic printout 

= 0 for selected printout 

= + I  for no printout 

IPAR(8): = 0 causes COLSYS to generate a uniform initial mesh. 

= I if the initial mesh n: a = xI I x 2  - - < " ' - - < x , ~ ( ~ ) + ~  = b is provided by the 

user. In this case, the initial mesh must be defined in FSPACE by 

FSPACE(j) = xi. 

= 2 if the initial mesh is supplied by the user as with IPAR(8) =I, and 

in addition no adaptive mesh selection is to be done. 

IPAR(9): =O if no initial guess for the solution is provided. 

= I  if an initial guess is provided by the user in subroutine GUESS. 



=2 if an initial mesh and approximate solution coefficients are provided 

by the user in FSPACE. (The former and new mesh are the same.) 

=3 if a former mesh and approximate solution coefficients are provided 

by the user in FSPACE, and the new mesh is to be taken twice as 
coarse, i.e.,every second point from the former mesh. 

=4 if in addition to a former initial mesh and approximate solution 

coefficients, a new mesh is provided in FSPACE as well. 

*** See description of output for further details on IPAR(9) = 2, 3 , 4  

IPAR(l0): = 0 if the problem is regular 

= 1 if the fust relax factor if small, and the nonlinear iteration does not 

rely on past convergence (use for an extra sensitive nonlinear problem 

only). 

= 2 if we are to return immediately upon (a) two successive 

nonconvergences,or (b) after obtaining an error estimate for the 

first time. 

IPAR(l1): = number of fixed points in the mesh other than ALEFT and ARIGHT. 

LTOL: an integer array of dimension IPAR(4). LTOL(j) = k specifies that the 

jlh tolerance in TOL controls the error in the kth component of z(u(x)). 

TOL: a real array of dimension IPAR(4). TOL(j) is the error tolerance on the 

LTOL(j)Ih component of z(u). The code will attempts to satisfy on each 

subinterval /(z(v) - z ( u ) ) ~ ~ ~ ~ ~ ~  ITOL(j)  ( / z ( u ) ~ ~ ~ Y ~ ) I  + 1)  i f  V ( X )  is the 

approximate solution vector. (u(x) is the exact solution of (3.la&b)) 

FIXPNT: an array of dimension IPAR(l1). It contains the points, other than 

ALEFT and ARIGHT, which are to be included in every mesh. 

ISPACE: an integer work array of dimension IPAR(6). Its size provides a 

constraint on the maximum mesh points. 



FSPACE: a real work array of dimension IPAR(5). Its size provides a constraint 

on the maximum mesh size. 

IFLAG: the mode of return from COLSYS, output parameter. 
= I for normal return. 

= 0 if the collocation matrix is singular. 

= - I  if the expected number of subintervals exceeds storage specifications. 

=-2 if the nonlinear iteration has not converged. 

=-3 if there is an input error. 

3.1.3 Input (user supplied) Subroutines 

The following five subroutines must be declared external in the main program 

which calls either COLSYS or COLNEW. 

SUBROUTINE FSUB: 

This subroutine is for evaluating fi(x,z(u(x))). It should have the heading 

SUBROUTINE FSUB ( X ,  Z, F ) 

where X =x, Z = z and F is the vector containing the values of 5, as defined in 

(3.2a&b) above. 

SUBROUTINE DFSUB: 

This subroutine is for evaluating the Jacobian of F at a point X. It should have 

the heading 

SUBROUTINE DFSUB( X ,  2, DF) 

where Z = z(u(x)) is defined as for FSUB and the d m *  array DF should be filled 

by the partial derivatives of F, i.e. for a particular call, the subroutine returns with 

2L DF(i, j) = (i = I ,  2. ... ,dl j = I .  2 ,-- ,  m*) at point X. 
I 

SUBROUTINE GSUB: 



This subroutine is for evaluating the j lh side condition gi at a point x = ZETA(j) 
( l g 4 n * ) .  It should have the heading 

SUBROUTINE GSUB( J, 2, G)  

where Z is, as for FSUB, z(u(x)) , G is a scalar containing g, as defined in (3.26). 

SUBROUTINE DGSUB: 

This subroutine is for evaluating the partial derivatives of gjDs w.r.t z(u(x)). It 
should have the heading 

a where Z is again z(u(x)). J is, as for GSUB, the index of the side condition. DG is a 

m* dimensional vector that contains the partial derivatives DG(k) = 5%~ , k=l,.. . ,m*. 
az, 

SUBROUTINE GUESS: 

This subroutine is for evaluating the initial approximation for Z = z(u(x)) and 

for evaluating the vector DMVAL which contains the derivative of the jth 
P3"? 

component of the initial approximation u(x). i.e. DMVAL = wj , where mj is the 

order of the j th equation in (3 .2~)  and j = 1 ,2 ,  ... , d (NCOMP). ***Note that this 

subroutine is needed only for nonlinear problems if using IPAR(9) = 1.  It should 

have the heading 

SUBROUTINE GUESS(J, 2, DMVAL). 

3.1.4 User feedback from COLSYS and COLNEW 

Users can get a various amount of feedback via the three options of IPAR(7) 

and IFLAG which is the mode of returning from COLSYS and COLNEW. When 

IFLAG(7) is set to - I ,  one gets the maximum feedback which includes the following: 



1: Verification of some key input information including a) the number of differential 

equations, 6 )  if the system is nonlinear, c) side condition points,and d) number of 

collocation points per interval. 

2: The possible maximum number of subintervals (determined by the dimensions of 

both FSPACE and ISPACE). 

3: The current mesh and approximate solution values at the mesh points. 

4: Solution error estimates. [17]. 

5: If the problem is nonlinear, the programs also provide an account of how the 

nonlinear iteration is proceeding. 

6: The five modes of return from IFLAG (see IFLAG above). 

3.1.5 Solution Evaluation and Simple Continuation(with IPAR(9) 1 2 )  

On normal return from COLSYS, the arrays FSPACE and ISPACE 
information specifying the approximate solution. In particularly, the final mesh points 

are contained by the first I S P A C E ( l ) + l  components of FSPACE. To produce the 

solution vector z ( u ( x ) )  at any point x (a S x  -< b) ,  one should use the following 

statement 

CALL APPSLN( X, Z ,  FSPACE, ISPACE) 

where X = x,  Z = z(u(x))  and APPSLN is a subroutine (comes with COLSYS or 

COLNEW) for evaluating z(u(x))  that when given x,  FSPACE and ISPACE, returns 

with Z(x) (i.e. z(u(x))) .  

When using COLSYS or COLNEW, the resulting solution is defined by the 

first ( 7 + N C O M P )  components of ISPACE and the first ISPACE(7)  components of 

F S P A C E ,  i . e .  I S P A C E ( l ) ,  ... , I S P A C E ( 7 + N C O M P )  and F S P A C E ( l ) ,  ... 
,FSPACE(ISPACE(7)).  Thus when evaluating the approximate solution at a specific 

point x,  APPSLN only uses these components of ISPACE and FSPACE. 



A formerly obtained solution can be used as the first approximation for the 

nonlinear iteration for a new problem by setting IPAR(9) = 2, 3, or 4. This is called 

continuation. When IPAR(9) is 2 or 3 ,  in order to do continuation, one only need to 

initialize ISPACE and FSPACE for the new problem by using ISPACE(I), ... , 

ISPACE(7+NCOMP) and FSPACE(I), ... ,FSPACE(ISPACE(7)), which define the 

former solution and set IPAR(3) = ISPACE(1) (the size of the former mesh). When 

IPAR(9) is 4, one has to provide an initial mesh of size IPAR(3) and put the initial 

mesh into the first IPAR(3) components of FSPACE. In this case, ISPACE for the new 

problem is still initialized by using the first (7+NCOMP) components of ISPACE which 

define the former solution. The initial FSPACE for the new problem must contain the 

IPAR(3) new mesh points as its first IPAR(3) components followed by the first 

ISPACE(7) values in FSPACE that define the former solution (see IPAR(9) for more 

details). 

3.1.6 Sample Driver for Example (3.la&b&c) with COLSYS or COLNEW 

C SAMPLE DRIVER PROGRAM. 
C 
C SOLVING EXAMPLE 3.1 BY USING COLTYS OR COWEW. 
C 
C MAIN PROGRAM 
C 

IMPLICIT REAL"8 (A-H,O-2) 
C 
C SET UP PARAMETERS 
C 

PARAMETER ( NCOMP=2 ) 
PARAMETER ( IPARI =I ) 
PARAMETER ( IPAR2=4 ) 
PARAMETER ( IPAR3=0 ) 
PARAMETER ( IPAR4=2 ) 
PARAMETER ( IPARS=6000 ) 
PARAMETER ( IPAR6=3OO ) 
PARAMETER ( IPAR7=-I ) 
PARAMETER ( IPAR8=0 1 
PARAMETER ( IPAR9=1 ) 
PARAMETER ( IPARIO=O ) 
PARAMETER ( IPARII =O 1 
PARAMETER ( MSTAR=2 ) 

C 
C SET UP ARRAYS 
C 

REAL*8 ALEFT,ARIGHT,TOL(IPAR4),FSPACE(IPARS)X 
REAL*8 EPS,FIXPNT,ZETA(MSTAR),Z(MSTAR),U(MSTAR) 
INTEGER M(NCOMP),lSPACE(IPAR6),LTOL(IPAR4),lPAR(I 1)JFLAG 
INTEGER KEY.PR.RES(2) 
EXTERNAL FSUBPFSUB,GSUB,DGSUB,GUESS 
COMMON IPARAMEIMPARAI ,MPARA2 



C 
MPARAl =USTAR 
MPARAZ=NCOMP 
IPAR(l)=IPARl 
IPAR(Z)=lPARS 
IPAR(3)=IPAR3 
IPAR(4)=IPAR4 
IPAR(S)=IPARS 
IPAR(6)=IPAR6 
IPAR(7)=1PAR7 
IPAR(B)=lPARB 
IPAR(9)=IPAR9 
IPAR(1 O)=IPARIO 
IPAR(1 l)=IPARll 

C 
DO 3 l=l,ll 

3 PRW,'I='J,' IPAR=',lPAR(I) 
C 

AL.EFT=O.ODO 
ARIGHT=l .OD0 

C 
ZETA(l)=ALEFT 
ZETA(2)=ARlGHT 

C 
M(l)=l  
M(2) = 1 

C 
LTOL(I)= I 
LTOL(2)=2 
TOL(l)=I.D4 
TOL(2)=194 

C 
CALL COLSYS(NCOMP,U,ALEFT,ARIGHT,ZETA,IPAR,LTOL, 

+ TOL,FIXPNTJSPACE,FSPACE,IFLAG, 

PRIMP,"+** FILAG = 'JFLAG 
C 
C CALCULATE THE MAXIMUM ERROR ON 200 EQUAL. DISTANCE POINT 

SP=O.DO 
S Q 4 0 0  
X=ALEFT 
RINCRE=(ARIGHT-ALEFT)I2OO.DO 
ENDPNT=ARIGHT+RINCRE/2.DO 
CALL APPSLN (X, Z, FSPACE, ISPACE) 
CALL ACCURA (X,U) 
P=DABS(U(l)-Z(1)) 
Q=DABs(W)-2(2)) 
SP=DMAXl(SP,P) 
SQ=DMAXl(SQ,Q) 
PRINT 40, XJ,Q 
X=X+RINCRE 
IF(XLT.ENDPNT) GOT0 30 

PRINT+.THE MAXIMUM ERROR1 IS: ' S P  
PRIW;THE MAXIMUM ERROR2 IS: '>Q 

C40 FORMAT(lX,F5.2,4X,'ERROR Ul  : 'D14.6,' ERRORZ: 'D14.6) 
STOP 
END 

C 
C *** SUBROUTINE GUESS *** 
C 



SUBROUTINE GUESS(X,Z,DMVAL) 
IMPUCII' REAL*8 (A-H,O-2) 
COMMONIPARAMEIMSTAR,NCOMP 
REAL*8 X,Z(MSTAR),DMVAL(MSTAR) 

a2)=I.DO+X 
Z(l)=l.D0/2(2) 
DMVAL(I)= - I  .DOI(2(2)*2(2)) 
DMVAL(2)= 1 .DO 
RETURN 
END 

*** SUBROUTINE FSUB *** 
SUBROUTINE FSUB(XZF) 
IMPLJCR REAL*8 (A-H.0-2) 
COMMONlPARAMElMSTAR,NCOMP 
REAL*8 Z(MSTAR),F(NCOMP) 
F(I)=-2.DOI(Z(2)*Z(2)) 
F(2)=Z(Z)*Z(2)-1 .DOIZ(I)+DEXP(X) 
RETURN 
END 

***SUBROUTINE DFSUB *** 
SUBROUTINE DFSUB(X,Z,DF) 
IMPUCrr REAL*8 (A-H,O-2) 
COMMONlPARAMElMSTAR.NC0MP 
REAL*8 Z(MSTAR),DF(NCOMP,MSTAR),X 
DF(I,I)=ODO 
DF(1,2)=4.D0/(2(2)*2(2)*Z(2)) 
DF(2,1)=1 .DOl(2(l)*z(I)) 
DF(2,2)=200*2(2) 
RETURN 
END 

*** SUBROUTINE GSUB *** 
SUBROUTINE GSUB(1Z.G) 
IMPLICIT REAL*8 (A-H.0-2) 
COMMONlPARAMElMSTAR.NC0MP 
REAL*8 Z(MSTAR),G 

GO TO (1 .W 
G=Z(I)-I DO 
RETURN 
Gzz(2)-DEXP(1 .ODO) 
RETURN 
END 

SUBROVTINE DGSUB(1,ZDG) 
IMPWCII' REAL*8 (A-H.0-2) 
COMMONlPARAMElMSTAR,NCOMP 
REAL*8 Z(MSTAR),DG(MSTAR) 

IF(I.EQ.l) THEN 
DG(I)=I DO 
DG(2)=0DO 

ELSE 
DG(l)=ODO 
DG(2)= I DO 



ENDIF 
RETURN 
END 

C 
C *** SUBROUTINE ACCURA *** 
C 

SUBROUTINE ACCURA(X,U) 
C 
C SUBROUTINE FOR EVALUATING THE EXACT SOLUTION 
C 

IMPLICIT REAL*8 (A-H.0-2) 
COMMONIPARAMEIMSTAR,NCOMP 
REAL*8 X,U(MSTAR) 
U(I)=DEXP(-2 .DO*X) 
U(2) = DEXP(X) 
RETURN 
END 

3.2 HAGRON 

HAGRON is designed to solve first order systems of two point boundary value 

problems. It is based on an implicit Runge-Kutta method (see [4], [S], [6]) and is still 

undergoing changes. The current version of HAGRON we have is a preliminary 

version which we have gratefully received from the authors. We do not yet have a 

complete code documentation for this version. The following is some information about 

the functions of the code's parameters and input subroutines we gathered when we ran 

the code. 

3.2.1 The type of BVPODE HAGRON is addressed to 

HAGRON solves a two-point boundary value problem for a system of first 

order ordinary differential equations given by 

where u(x) = (ul(x), u2(x), ... , u,,(x))~ is the exact solution,A{x, u(x)) and g,(&, u(&)) 

are generally nonlinear functions, and there is a integer k (l,<k-<) such that 

3.2.2 Code Parameters 



HAGRON is headed by 

SUBROUTINE HAGRON (ICOMP, ZETA, PAR, LTOL, TOL, FIXPNT, 
+ ISPACE, FSPACE, U, IFLAG, 

+ FSUB, DFSUB, GSUB, DGSUB, SOLUTN) 

Like COLSYS and COLNEW, the variables in the first two lines of the heading 

are input parameters. The last five in the third line are the names of the input 

subroutines. The following is a list of these parameters with explanation. Unless 

specified otherwise, the parameters are input parameters. 

ICOMP: 

ZETA(J): 

IPA R: 

IPAR(1): 

IPAR(2): 

IPA R (3) :  

IPAR(4): 

IPAR(5): 

IPAR(6): 

IPAR(7): 

= d - the number of differential equations. 

jth side condition point (boundary point 4). Must satisfy ( 3 . 2 ~ ) .  

An integer array of dimension 16. A list of the parameters in IPAR and 

their meaning follows: 

= 0 if system (3.2a&b) is linear. 

= I if system (3.2a&b) is nonlinear. 

= the number of side conditions at the left hand end of the region (a). 

= the number of subintervals in the initial mesh (>O). If on entry 

IPAR(3) is equal to 0 ,  HAGRON arbitrarily set IPAR(3) to be 6 .  

= number of solution tolerances. 

= dimension of FSPACE (see description of FSPACE). 

= dimension of ISPACE (see description of ISPACE). 

output control 



IPAR ( I  0):  

IPAR(1 I ) :  

IPAR(I2): 

= - I  for full diagnostic printout 

= 0 for selected printout 

= +I for no printout 

= 0 causes HAGRON to generate a uniform initial mesh. 

= I if the initial mesh K: a = X ,  -<xz s ' ' - -<~IPAR13)+1 = b is provided by the 

user. In this case, the initial mesh must be defined in FSPACE by 

FSPACE(j) = xi. 

=O if no initial guess for the solution is provided. 

=I if an initial guess is provided by the user in subroutine SOLUTN. 

=2 if an initial mesh and approximate solution are provided by the user. 

The mesh is in FSPACE, the solution is in u (see description for u). 

= number of fixed points in the mesh other than a and b in ( 3 . 2 ~ ) .  It is 

the dimension of FIXPNT. 

Currently not in use. 

= 0 unscaled merit function is used for nonlinear iteration. 
= I  scaled merit function and watchdog are used for nonlinear iteration. 

Currently not in use. 

Currently not in use. 

Only effective when IPAR(l2) is set to I .  This parameter specifies the 

maximum number of consecutive iterations in a Newton iteration 

procedure during which the unscaled merit function is allowed to 

increase (consecutively). For users who are not familiar with Newton's 

iteration with watchdog technique, the default value for this parameter 

is recommended (in the present code, this default value is 8) . 

Only effective when IPAR(I2) is set to I .  This parameter specifies the 

number of iterations in the beginning of Newton's iteration procedure at 



LTOL: 

TOL: 

which the watchdog does not bark at any "substantial increase" in 

unscaled merit function. For users who are not familiar with Newton's 

iteration with watchdog technique, the default value for this parameter 

is recommended. ( In the current version of HAGRON, "substantial 

increase" means " increase by a factor of loo", and the default value for 
IPAR(16) is 5. )  

an integer array of dimension IPAR(4). LTOL(j) = k specifies that the 
jth tolerance in T O L  controls the error in the kth component of u(x).  We 
also need that 1 I LTOL(1) S LTOL(2) S ... SLTOL(IPAR(4)) I ICOMP. 

a real array of dimension IPAR(4). TOL(j)  is the error tolerance on the 

LTOL(j)lh component of u(x) .  The code attempts to satisfy at each grid 

point x 

where v(x) is the approximate solution vector at the grid point x (u(x)  is 

the exact solution of (3.2a&b)). 

FIXPNT: an array of dimension IPAR(l1).  It contains the points, other than 

ALEFT and ARIGHT, which are to be included in every mesh. 

ISPACE: an integer work array of dimension IPAR(6). Its size provides a 

constraint on the maximum mesh points. 

FSPACE: a real work array of dimension IPAR(5). Its size provides a constraint 

on the maximum mesh size. 

U: A 1 dimensional vector that holds the approximate solution for (3.2a&b). 

IFLAG: the mode of return from HAGRON. A output parameter. 

= 1 for normal return. 

= 0 if the collocation matrix is singular. 

= - I  if the expected number of subintervals exceeds storage specifications. 



=-2 if the nonlinear iteration has not converged. 

=-3 if there is an input error. 

3.2.3 Input (user supplied) Subroutines 

The following five subroutines must be declared external in the main program 

which calls HAGRON. 

SUBROUTINE FSUB: 

This subroutine is for evaluatingL{x,u(x)). It should have the heading 

SUBROUTINE FSUB ( X, U, F ) 

where X =x, U = u(x) and F is the vector containing the values off;,, as 

defined in (3.3a& b) above. 

SUBROUTINE DFSUB: 

This subroutine is for evaluating the Jacobian of F at a point X. It should have 

the heading 

SUBROUTINE DFSUB( X, U, DF) 

where U = u(x) and the dxd array D F  should be filled by the partial derivatives 

of F, i.e. for a particular call, the subroutine returns with 

x DF(i, j) = du. (i = 1 ,2 ,  ,dl j = 1. 2, --. , d) at point X. 
I 

SUBROUTINE GSUB: 

This subroutine is for evaluating the jth side condition gi.at a point x = ZETA(j) 

(1q'Gf). It should have the heading 

SUBROUTINE GSUB( J, U, G) 

where U =u(x) and G is a scalar containing gj as defined in (3.3b). 



SUBROUTINE DGSUB: 

This subroutine is for evaluating the partial derivatives of gj's w.r.t u(x). It should 

have the heading 

SUBROUTINE DGSUB( J ,  U ,  DG) 

where U is again u(x). J is, as for GSUB, the index of the side condition. DG is a d 

dimensional vector that contains the partial derivatives DG(k) = & ,  k=l ,..., d .  
J4 

SUBROUTINE SOLUTN: 

This subroutine is for evaluating the initial approximation for u(x) . It is only 

needed when IPAR(9) = 1 and it should have the heading 

SUBROUTINE SOLUTN(X, U )  

where X = x and U = u(x). 

3.2.4 User feedback from HAGRON 

Like using COLSYS and COLNEW, users can get a various amount of 

feedback via the three options of IPAR(7) and IFLAG which is the mode of returning 

from HAGRON. When IFLAG(7) is set to -1, one get the maximum feedback which 

includes the following: 

1: Verification of some key input information including a) the number of differential 

equations, 6)  if the system is nonlinear, c) side condition points,and d )  components 

of u that require tolerances. 

2: The possible maximum number of subintervals (determined by the dimensions of 

both FSPACE and ISPACE). 

3: The number of points in the current mesh. 

4: Parameters concerning deferred correction procedure. 



5: If the problem is nonlinear, the programs also provide an account of how the 

nonlinear iteration is proceeding. 

6: The five modes of return from IFLAG (see IFLAG above). 

3.1.5 Output and Simple Continuation (with IPAR(9) = 2) 

Unlike COLSYS and COLNEW, HAGRON does not have a subroutine that 

evaluates the solution at any point x (a I x  I b). HAGRON only provides an 

approximate solution at a finite number of final mesh points. On normal return from 

HAGRON, the array FSPACE contains the final mesh while the one dimensional array 

U contains the solution. More specifically, the first d (or ICOMP) components of U is 
just v(FSPACE(l)), the second d components that follows is v(FSPACE(2)) and so on. 

Like COLSYS and COLNEW, the number of final mesh points is ISPACE(l)+l, i.e. 

is the final mesh. 

To do continuation with HAGRON, one has to setting IPAR(9)=2 and put the 

starting approximate solution in U in the way we described above and put the 

corresponding mesh points in FSPACE. 

3.1.6 Sample Driver for solving (3.la&b&c) with HAGRON 

c PROGRAM D R ~ V E R  
C 
C THIS IS THE SAMPLE DRIVER PROGRAM FOR HAGRON 
C 

IMPLICIT REAL*8 (A-H,O-2) 
C 

PARAMETER( NCOMP = 2 ) 
PARAMETER( IPARl = 1 
PARAMETER( IPAR2 = 1 

) 
) 

PARAMETER( IPAR3 = 0 ) 
PARAMETER( IPAR4 = 2 ) 
PARAMETER( IPARS = 25000 ) 
PARAMETER( IPAR6 = 15000 ) 
PARAMETER( IPAR7 = -1 ) 
PARAMETER( IPAR8 = 0 ) 
PARAMETER( IPAR9 = 0 ) 
PARAMETER( IPARlO = 0 
PARAMETER( IPARll = 0 

1 
) 

PARAMETER( IPARl2 = 1 ) 
PARAMETER( IPAR13 = 0 ) 



REAL*8 FSPACE(IPARS),ZETA(NCOMP),TOL(IPAR4) 
REAL*8 U(lSOOO).FIXPhT(2),UU(NCOMP,4000) 
INTEGER ISPACE(IPAR6)JPAR(2O).LTOL(IPAR4),RES(2) 
EXTERNAL FSUB, DFSUB, GSUB, DGSUB, SOLUTN 
COMMONIPARAMEIMPARAI 

SET UP IPAR AND SOME CONSTANTS 

MPARAI = 
IPAR(1) = 
IPAR(2) = 
IPAR(3) = 
IPAR(4) = 
IPAR(5) = 
IPAR(6) = 
IPAR(7) = 
IPAR(8) = 
IPAR(9) = 
IPAR(I0) = 
IPAR(I1) = 
IPAR(I2) = 
IPAR(13) = 
IPAR(I4) = 
IPAR(I5) = 
IPAR(16) = 
IPRINT = 
IMERIT = 
IWATCH = 
KWATCH = 

NCOMP 
IPARl 
IPAR2 
IPAR3 
IPA R4 
IPA R5 
IPAR6 
IPAR7 
IPAR8 
IPAR9 
IPARIO 
IPARll  
IPARl2 
IPAR13 
IPARl4 
lPARl5 
IPAR16 
IPA R(7) 
IPAR(I2) 
IPAR(l.5) 
IPA R(16) 

SET BOUNDARY VALUE CONDITION 

ALEFT = O.OD0 
ARIGHT = 1 .OD0 

ZETA(1) = ALEFT 
ZETA(2) = ARIGHT 

SET TOLERANCES FOR U 

WRITE(6.130) NCOMP 
IF(IPAR(I).EQ.l) THEN 
IF(1MERIT .EQ. I )  WRITE(6.110) 
IF(1MERIT .EQ. 0 )  WRkTE(6.120) 
WRITE(6.150) IWATCH. KWATCH 
ENDIF 

CALL TIME(O,O,RES) 
CALL HAGRON(NCOMP,ZETA,IPAR~L,TOL,FIXPhT,ISPACE, 

1 FSPACE,UJF~GJSUBpFSUB,GSUBPGSUB,SOLUTN) 
CALL TIME(3,-1,RES) 
WRITE(6,*) 'CPU IN MILLISECONDS: ',RES(I) 
WRITE(6,*) 'ELT IN MILLlSECONDS: 'JES(2) 



NPI IS THE TOTAL NUMBER OF POINTS IN THE FINAL MESH 

NPI =ISPACE(I)+I 
PRINT*,'FSPACE(NPI)=',FSPACE(NPI) 
WRITE(6.170) IFLAG, NPI 
NTOL=IPAR(4) 
INCP = I 
IF(NP1 .GTAS) INCP = 5 
IF(NP1 GT.80) INCP = 10 
IF(NP1 GT.400) INCP = 50 
IF(NP1 .GT.1000) INCP = 75 
CALL JSJAI(UJVP1 ,NCOMP,UU) 
PRINP,'IF YOU WANT THE OUTPUT ON U(KK), INPUT KK PLEASE' 
PRINT*.'OR ENTER ZERO FOR EXIT' 
READ(*,*) KK 
IF(KK.EQ.0) GOT0 200 
ERRMAX=O.DO 
DO 20 I=I,NPIJNCP 
XX=FSPACE(I) 
CALL EXACT(KKXX,SOL) 
ER=DABS(SOL-UU(KKJ)) 
ERRMAX=DMAXI(ERRMAX,ER) 
WRlTE(6.180) I,XXSOL,UU(KKJ).ER 
CONTINUE 
PRINT*,'*** THE MAXIMUE A-ERROR AT MESH PTNS IS: ',ERRMAX 
GOT0 100 

FORMAT(' SCALED MERIT FUNCTION') 
FORMAT(' UNSCALED MERIT FUNCTION') 
FORMAT(' NUMBER OF COMPONENTS = ',IS) 
FORMAT(' WATCHDOG ITERATION LIMIT'J5JX.WATCHDOG MIN'J5) 
FORMAT(1H. 6HIFLAG=, IS,SX,I6HNUMBER OF POINTSJS) 
FORMAT(IXJSJ(1 PGI 7.7),l PG20.10) 
STOP 
END 

*** SUBROVTINE SOLUTN *** 

SUBROUTINE SOLUTN(X,Z) 
IMPUCIT REALS8 (A-H,O-2) 
COMMONIPARAMEINCOMP 
REAL*8 2(NCOMP) 

Z(2)=1 .DO+X 
Z(1)=1 .DolZ(2) 
RETURN 
END 

C *** SUBROUTINE FSUB *** 
C 

SUBROUTINE FSUB(XZF) 
IMPWCIT REAL*8 (A-H.0-2) 
COMMON IPARAMEINCOMP 
REAL*8 Z(NCOMP),F(NCOMP) 
F(l)=-2DOl(Z(2)*Z(2)) 
F(2)=2(2)*2(2)-lIZ(l)+DEXP(X) 
RETURN 
END 

C 
C *** SUBROUTINE DFSUB *** 
C 

SUBROUTINE DFSUB(X,Z,DF) 



IMPLICIT REAL*8 (A-H.0-Z) 
COMMONIPARAMElNCOMP 
REAL18 Z(NCOMP),DF(NCOMP,NCOMP) 

DF(I,l)=O.ODO 
DF(l.2)=4.D0/(2(2)*Z(2)*2(2)) 
DF(2,1)= 1 90/(2(1)*2(1)) 
DF(2.2)=2.ODO*Z(2) 
RETURN 
END 

*** SUBROUTINE GSUB *** 

SUBROUTINE GSUB(1,Z.G) 
IMPLICIT REAL*8 (A-H.0-Z) 
COMMONIPARAMEINCOMP 
REALZ8 Z(NCOMP),G 
GO TO (12)1  
G=Z(l)-ID0 
RETURN 
G=Z(2)-DEXP(1.DO) 
RETURN 
END 

*** SUBROUTINE DGSUB *** 

SUBROUTINE DGSUB(IZ,DG) 
IMPLICIT REAL*8 (A-H.0-Z) 
COMMONIPARAMEINCOMP 
REAL*8 Z(NCOMP),DG(NCOMP) 

DO 10 J=12 
DG(J)=O.ODO 
GO TO (12)J 
DG(l)=I.ODO 
RETURN 
DG(2)=1 .OD0 
RETURN 
END 

*** SUBROUTINE EXACT *** 

SUBROUTINE EXACT(KKJX,SOL) 

SUBROUTINE FOR EVALUATING THE EXACT SOLUTION 

IMPLICIT REAL"8 (A-H.0-Z) 
GO TO (12). KK 
SOL=DEXP(-2DO"XX) 
RETURN 
SOL=DEXP(XX) 
RETURN 
END 

SUBROUTINE JS.lM(U,h'PI,NCOMP,UU) 

SUBROUTINE FOR PUlTING THE SOLUTION INTO A NCOMP BY NPl ARRAY 

IMPLICIT REAL*8 (A-H.0-Z) 
REAL*8 U(25002),UU(NCOMP,NPl) 



DO 10 I=l,NPl 
DO 10 J=l NCOMP 
UU(JJ)=U(NCOMP*(l-l)+J) 

10 CONTINUE 
RETURN 
END 

3.3 MUTS 

MUTS is based on a multiple shooting method for two point boundary value 

problems for ODE [15]. It consists of two subroutines, namely MUSL for linear two 

point boundary value problems and MUSN for nonlinear problems. The driver programs 

for MUSL and MUSN are not exact the same. The following are some details about 

how to use them. 

3.3.1 MUSL 

3 . 3 . 1 ~  The classes of problem that MUSL is addressed to 

MUSL solves a linear two-point boundary value problem 

where y ,  J, r ~ R n  , and L, Ma, M,E R-. 

3.3.1 b Input Parameters 

Subroutine MUSL is headed by 

SUBROUTINE MUSL(FLIN, FDIF, N,  IHOM, A, B, MA, MB, BCV, 
+ AMP,ER, NRTI, TI, NTI, Y ,  U, NU, Q, D, KPART, 

PHIREC, W ,  LW, IW, LIW, IERROR) 

The following is information about the parameters in the heading. 

N :  The order of the system (3.4a&b). 

IHOM: = 0 if the system (3.4a&b) is homogeneous. 

= 1 if the system (3.4a&b) is inhomogeneous. 



A,  B: The two boundary points. 

'Ma, M,: The N x N  matrices in (3 .4b) .  

BCV: An real N dimensional array containing# in (3.4b).  

A M P :  On entry AMP must contain the allowed incremental factor of the 
homogeneous solutions between two successive output points. If the 
increment of a homogeneous solution between two successive output 

points becomes greater than 2 x A M P ,  a new output point is inserted. 

When the input value of AMP is less than or equal to 1 ,  a default value 

is assumed. The default value of AMP varies with the value of NRTI. If 
NRTI = 0, then the default value of AMP is 

If NRTI 2 1 ,  then the default value is infinity. 

ER:  An real array of dimension 5. 

On entry ER(1) must contain a relative tolerance for solving the 

differential equation. If the relative tolerance is smaller than 10-12 the 

subroutine will change ER(1) into 10-12 + ER(3). 

On entry ER(2) must contain an absolute tolerance for solving the 

differential equation, ER(3) must contain the machine precision. 

On exit ER(2) and ER(3) are unchanged. 

See 3 . 3 . I e  for ER(4) and ER(5). 

NRTI: On entry NRTI is used to specify the required output points. There are 

three ways to specify the required output points: 

1 )  NRTI = 0, the subroutine automatically determines the output points 

using the allowed incremental factor AMP.  

2)  NRTI = I ,  the output points are supplied by the user in the array TI .  



TI: 

NTI: 

Y:  

U: 

NU: 

3) NRTI > I ,  the subroutine computes the (NRTI+I) output points 

T W  by 

so TI(1) = A and TI(NRTI+ 1 )  = B . 

Depending on the allowed incremental factor AMP, more output points 

may be inserted in cases 2 and 3 .  

Also see 3.3. le .  

A real array of dimension NTI. On entry: if NRTI = I , TI must contain 

the required output points in monotone order: 

1 denotes the total number of required output points. 

Also see 3.3.1e. 

NTI is the dimension of TI and one of the dimensions of the arrays X, 

UIQ, D, PHIREC. NTI must satisfy 

NTI 2 the total number of output points + 3. 

i.e. if the routine was called with NRTI > I and AMP I I the total 

number of output points is the entry value of NRTI + I ,  so NTI should 

be at least the entry value of NRTI + 4. Unchanged on exit. 

A real may of dimension (N,NTI). Also see 3.3.1e. 

A real array of dimension (NUINTI). Also see 3.3.1e. 

NU is one of the dimensions of U and PHIREC. NU must satisfy 



Unchanged on exit. 

KPART: 

PHIREC: 

W: 

LW: 

IW: 

LIW: 

IERROR: 

A real array of dimension (N,NJVTI). See 3.3. le  for more details. 

A real array of dimension (N,NTI). If IHOM = 0, the array D has no real 

use and the user is recommended to use the same array for the Y and D. 

If IHOM = 1, on exit D(i,k) i=1,2,..-JV contains the inhomogeneous term 

d(k), k=1,2,.-JVRTI, of the multiple shooting recursion. Also see 3.3.Ie.  

Integer. Also see 3.3.Ie. 

A real array of dimension (NUJVTI). Also see 3.3.Ie. 

A real array of dimension (LW). Used as work space. 

LW is the dimension of W and LW L 8xN + 2xNxN. Unchanged on exit. 

An integer array of dimension (LIW). Used as work space. 

LIW is the dimension of IW. LIW 2 3xN. Unchanged on exit. 

Integer. Error indicator (see user feedback below for details). 

3.3.1 c Input Subroutines 

SUBROUTINE FLIN: 

This subroutine evaluates8 the homogeneous part of the differential equation 

L(t)y(t) in (3.4a). It must have the heading 

SUBROUTINE FLIN(T, Y, F)  

where t = T, y(t) = Y and F is the N dimensional vector containing L(t)y(t). FLIN 
must be declared as EXTERNAL in the program from which MUSL is called. 

SUBROUTINE FDIF: 

This subroutine evaluates the right-hand-side of the inhomogenous differential 

equation L(t)y(t) + r(t) in ( 3 . 4 ~ ) .  It must have the heading 



SUBROUTINE FDIF(T, Y ,  F) 

where t = T, y(t) = Y and F is the N dimensional vector containing L(t)y(t) + r( t) ,  

and it must be declared EXTERNAL in the program from which MUSL is called. 

In case the system (3.4a) is homogeneous, FDIF is the same as FLIN. 

3.3.1 d User feedback from MUSL 

MUSL provide a wide range of user feedback through an error indicator 

IERROR. This indicator indicates 15 different kinds of mode of return from MUSL. 

These modes are either specific terminal errors or specific warning messages. The 

following are these 15 modes 

IERROR: Integer. Error indicator. 

= 0 .  No errors detected . 

= 100. Input error. This is caused by at least one of the following: 
Nx(N+l)  

N<l,IHOM<O,NRTI<O,NTI<5,NU< ,or A=B . 

Terminal error. 

= 101. Input emrf either ER(1) or ER(2) or ER(3) is negative. 

Terminal error. 

= 103. Input error: either LW c 8xN + 2 x N m  or LIW c 3 x N .  
Terminal error. 

= 120. Input error: the routine was called with NRTI = I ,  but the given 

output points in the array TI are not in monotone order. 

Terminal error. 

= 121. Input error: the routine was called with NRTI = I ,  but the first 



given output point or the last output point is not equal to A or B. 
Terminal error. 

= 122. Input error: the value of NTI is too small; the number of output 
points is greater than NTI - 3. Terminal error. 

= 200. This indicates that there is a minor shooting interval on which 

the incremental growth is greater than the AMP. This is to be attributed 

to the used method for computing the fundamental solution, and may 

jeopardize the global accuracy if 

Warning error. 

= 213. This indicates that the relative tolerance was too small. The 

subroutine has changed it into a suitable value. Warning error. 

= 215. This indicates that during integration the particular solution or a 

homogeneous solution has vanished, making a pure relative error test 

impossible. Must use non-zero absolute tolerance to continue. 
Terminal error. 

= 216. This indicates that during integration the requested accuracy 

could not be achieved. User must increase error tolerance. 
Terminal error. 

= 218. This indicates that the input parameter N ,Q), or that either the 

relative tolerance or the absolute tolerance is negative.Termina1 error. 

= 240. This indicates that the global error is probably larger than the 

enor tolerance due to instabilities in the system. Most likely the 
problem is ill-conditioned. Output value is the estimated error 
amplification factor ER(5). Warning error. 



= 250. This indicates that one of the U(k) is singular. Terminal error. 

= 260. This indicates that the problem is probably too ill-conditioned 

with respect to the boundary condition. Terminal error. 

3.3.Ie Output from MUSL 

On normal return from MUSL, there are two types of output available. They are 

the approximate solution related outputs and the others. 

Approximate Solution related Outputs: 

NRTI: On exit, NRTI contains the total number of output points. 

TI: On exit, TI(i), i = 1,2, ..., NRTI contains the output points. 

Y: On exit Y(i,k) , i=1,2,.-,N contains the solution of the BVP at the output 

points TI(k), k=1,2, . ..,NRTI. 

Other Outputs: 

The following output may not be of great importance to those who are not 

interested in the details of solving BVPODE with multiple shooting method. Please 

see [14] and [2] for more details. 

ER(4): On exit ER(4) contains an estimate of the condition number of the 

boundary value problem. 

ER1(5) : On exit ER(5) contains an estimated error amplifzation factor. 

U: On exit U(i,k) i=1,2,...,NU contains the relevant elements of the upper 

triangular matrix U(k), k=2,...,NRTI . The elements are stored column- 

wise, the jth column of U(k) is stored in U(nj+l, k), U(nj+2, k), - - -  , 
Oxj. (See [14] for U(k).) U(nj+j, k), where nj = 



KPART: 

PHIREC: 

On exit Q(i j,k) i=1,2,...,N1 j=1,2,...SJ contains the N columns of the 

orthogonal matrix Q(k), k=I,...,NRTI . (See [14] for Q.) 

If IHOM = 0 the array D has no real use and the user is recommended 

to use the same array for the Y and D. If IHOM = 1, on exit D(i,k) 

i =1,2,-JV contains the inhomogeneous term d(k), k=I,2,...,NRTI1 of 

the multiple shooting recursion. (See [14] for d(k).) 

On exit KPART contains the global k-partition of the upper triangular 

matrices U(k). 

On exit PHIREC contains a fundamental solution of the multiple 

shooting recursion. The fundamental solution is upper triangular and is 

stored in the same way as the U(k). 

3.3.1f Sample driver for solving (3Sa&b) using MUSL 

The following is a sample driver program for solving (3.5a&b) using MUSL. 

C 
C SAMPLE DRIVER PROGRAM 
C 
C SOLVING EXAMPLE (3Sadrb) BY USING MUSL 
C 
C PROGRAM MAIN 
C 

IMPLICIT REAL'8 (A-H.0-Z) 
C 
C SET UP OBJECTIVE PROBLEM RELATED PARAMETERS 
C 

PARAMETER (A=O.ODO. B=I.ODO, IHOM=I, N=2 ) 
C 
C SET UP PROGRAM ARRAYS' DIMENSION RELATED PARAMETERS 
C 

PARAMETER (NTId00,  NU=IO , LW=40, LIW=20 ) 
C 
C SET UP ARRIES AND CONSTANTS 
C 



REALS8 MA(N,N),MB(N,N),BCV(N).SOL(N) 
REAL*8 ER(s),TI(NTI),Y(NNI),Q(N~~N~)~~(N~~~) 
REAL*8 D(Nml) ,PHIREC(NUWI) ,w(Lw)  
INTEGER NRTI,KP,IW(LIW),IERRO,KPART 
INTEGER RES(2) 
COMMON 1PARAMIIEPS.NZ 
EXTERNAL FLlNFDIF 

PRlNT*,'MUS EXAMPLE (35adrb) OUTPUT POINTS 300' 
PRINT*,'INPUT EPS' 
READ(6.*) EPS 

MORE PROGRAM PARAMETERS 

ERI: R-TOL.ER2: A-TOL.ER3: M-EPS 

SET UP B.C. MATRIX AND VECTOR 

Do5 I=lJV 
BCV(l)=O.DO 
DO5 J-lh' 
MA(IJ)=ODO 
MB(IJ)=ODO 
CONTINUE 
MA(I,l)=I .DO 
MB(2,1)=1 .DO 
XX=I .ODOIEPS 
BCV(l)=XX-I .DOI(EPS+I .DO) 
BCV(Z)=-XX+l .DOI(l .DO+EPS) 

CALL, TIME(0,OIES) 
CALL MUS~FLlN,FDIFflJHOMAB~A~B,BCV~MP,ER~RTI,TI, 
+ NTI,Y,U,NU,Q,D,KPART.PHIREC,W,LW,IWLIW.IERROR) 
CALL TIME(3,-1,RES) 
WRITE(*,*) **CPU IN MILLISECONDS: ',RES(l) 
WRITE(*,*) '**ELT IN MILLISECONDS: 'JES(2) 

CALCULATE THE ERROR 

SP=O.DO 
ss=o.Do 
DO 50 J=I flRTI 
XX=TI(J) 
CALL EXACT(XX,SOL) 
P=DABS(SOL(I)- Y(1 J ) )  
S=DABS(SOL(2)-Y(2J)) 
SP= DMAXl(P.SP) 
SS = DMAXI (S,SS) 
WRITE(6,60) XX.P,S 
CONTINUE 
FORMAT(lXJ8.6,' ERI: O.Dl6.8,' ER2: I.Dl6.8) 
PRINT*,'NRTI=',NRTI 
PRINT*,'** MAXIMUM El:  '9 
PRINT*,** MAXIMUM E2: 'SS  
STOP 



END 

*** SUBROUTINE FUN *** 

SUBROUTINE FWN(T,Y,F) 
IMPUCrr REAL.*8 (A-H.0-Z) 
COMMONIPARAM1IEPS.NZ 
REAL.*8 Y(NZ),F(NZ) 

HOMOGENOUS PART OF THE R-H SIDE 

F(l)= Y(2) 
F(2)=ODO 
R E T U R N  
END 

*** SUBROUTNE FDIF *** 

SUBROUTINE FDIF(T,Y.F) 
IMPUCIT R M . 8  (A-H.0-Z) 
COMMONIPARAM1IEPS.NZ 
REAL*8 Y(NZ),F(NZ) 

R-H FUNCTION EVALUTION 

PP=(T+EPS) 
XX=PP*PP*PP 
PP=T-EPS-I .DO 
W=PP*PP*PP 
F(I)= Y(2) 
F(2)=2.DOIXX+Z .DO/ W 
R E T U R N  
END 

*** SUBROUTINE EXACT *** 

SUBROUTINE EXACT(T,SOL) 
IMPUCrr REAL*8 (A-H.0-Z) 
COMMON/PARAMI/EPS,NZ 
REAL.*8 SOUNZ)  

PP=I .DOI(EPS+T) 
QQ=I DOI(T-EPS-I DO) 
Soy l )=PP+QQ 
sOyz)=-PP*PP-QQ*QQ 
R E T U R N  
END 

3.32 MUSN 

3.3.2~ The classes of BVPODE that MUSL is  addressed to 

MUSN solves a nonlinear two-point boundary value problem 

Y' =fO, Y) actcb 



g(y(a), Y (b)) = 0 

where y, f, g, 0 E Rn and y, f, g are n dimensional vector functions. 

3.3.26 Input Parameters 

Subroutine MUSN is headed by 

SUBROUTINE MUSN(FDIF, YOT, G, N, A, B, ER, TI, NTI, NRTI, AMP, 

+ ITLJM, Y,  Q, U, NU, D, PHI, KP, W,  LW, IW, LIW, 
WG, LWG, IERROR) 

The following is information about the parameters in the heading. 

N :  

A, B: 

ER: 

= n. The order of the system (3.6a&b). 

The two boundary points. i.e. a = A, b = B. 

A real array of dimension 5 .  

On entry ER(1) must contain the required tolerance for solving the 

differential equation. 

On entry ER(2) must contain the initial tolerance with which a first 

approximate solution will be computed. This approximate solution is 

then used as an initial approximation for the computation of a solution 

with a tolerance ER(2)xER(2) and so on until the required tolerance is 

reached. The initial tolerance that is actually used by the code is not 

necessarily the input value of ER(2). To avoid an inappropriate input 

value of ER(2), the code always uses max{ ER(I), min( ER(2), lo-*)} as 

the initial tolerance. 

On entry ER(3) must contain machine precision. 

On exit ER(I), ER(2) and ER(3) are unchanged. 

See 3.3.2e for ER(4) and ER(5). 



NRTI: On entry NRTI is used to specify the required output points. There are 
three ways to specify the required output points: 

1 )  NRTI = 0,  the subroutine automatically determines the output points . 

using the allowed incremental factor AMP (see AMP below). 

2)  NRTI = I ,  the output points are supplied by user in the array TI. 

3) NRTI > 1,  the subroutine computes the (NRTI+l)  output points 

T W  by 

so TI(1) = A and TI(NRTI+l) = B . 

Depending on the allowed incremental factor AMP, more output points 

may be inserted in cases 2 and 3. 

Also see 3.3.2e. 

TI: A real array of dimension NTI. On entry: if NRTI = 1 , TI must contain 

the required output points in monotone order: 

1 (determined by NRTI) is the total number of required output points. 

Also see 3.3.2e. 

NTI: Integer. NTI is one of the dimensions of TI, Y, S, Q, U and PHI. It 

must satisfy 

NTI 2 the total number of output points + 1. 



i .e.  if the routine was called with NRTI > I, NTI may be equal to the 

entry value of NRTI + I .  Unchanged on exit. 

A M P :  On entry AMP must contain the allowed increment between two 

successive output points. A M P  is used to determine output points and 
to assure that the increment between two output points is at most 
A M P x A M P .  A small value for A M P  may result in a large number of 
output points. 

Unless I c AMP c O . ~ S X ( E R ( I ) I E R ( ~ ) ) ~ J ,  the default value 

AMP = 0.25x(ER(l)lER(3))0-' is used. 

Unchanged on exit. 

ITLIM: Integer. Maximum number of iterations allowed. 

Y: A real array of dimension (N,NTI). Also see 3.3 .2e .  

U: A real array of dimension (NU,NTI). Also see 3.3 .2e .  

N U :  N U  is one of the dimensions of U and PHI. N U  must satisfy 

Unchanged on exit: 

a. A real array of dimension (N,NSJTI). See 3.3.2e for more details. 

D: A real array of dimension (N,NTI). On exit D(.,i) i=1,2,--,NRTI contain 

the inhomogeneous term of the incremental recur'sion. 

KP: Integer. Also see 3.3 .1e .  

P H I :  A real array of dimension ( N U M I ) .  Also see 3 .3 . Ie .  



W: 

LW: 

IW: 

LIW: 

WG: 

LWG: 

A real array of dimension (LW). Used as work space. 

LW is the dimension of W and LW 2 7xN +3xNxNTI + 4xNxN. 

Unchanged on exit. 

An integer array of dimension (LIW). Used as work space. 

LIW is the dimension of IW. LIW 13xN + M I .  Unchanged on exit. 

A real array of dimension LWG. WG is used to restore the integration 

grid points. 

Integer. LWG is the dimension of WG. LWG must satisfy 
I 

LWG 2 3 x (total number of grid points). 

The minimum number of grid points between two successive output 

points is 5, so the minimum value for LWG is the number of actually 

used output points. Initially a crude estimate for LWG has to be made. 

Also see IERROR 219 in 3.3.2e. 

IERROR: Integer. Error indicator (see user feedback below for details). 

3 . 3 . 2 ~  Input Subroutines 

SUBROUTINE FDIF: 

This subroutine evaluates the right-hand-side f(t,y) in ( 3 . 6 ~ ) .  It must have the 

heading 

SUBROUTINE FDIF(T, Y, F) 

where t = T,  y( t )  = Y and F is the N dimensional vector contai .ng f(t ,y).  FDIF 
must be declared EXTERNAL in the program from which MUSN is called. 



SUBROUTINE YOT: 

This subroutine evaluates the initial approximate solution yo(?) supplied by the 

user for any t = T .  It must have the heading 

SUBROUTINE YOT(T, Y )  

where t = T and Y is an N dimensional vector that yo(?) = Y.  YOT must be declared 

as EXTERNAL in the program from which MUSN is called. 

SUBROUTINE G :  

This subroutine evaluates g(y(a),y(b))  in (3.6b) as well as the Jacobians 

It must have the heading 

SUBROUTINE G(N, YA, YB, FG, DGA, DGB) 

where YA, YB, FGERN, DGA, DGB€RNYN. y(a) = YA, y(b) = YB, FG = g(y(a),y(b))  

and DGA, DGB contain the first and second Jacobians shown above, respectively. 

G must be declared as EXTERNAL in the program from which MUSN is called. 

3.3.2d User feedback from MUSN 

Like MUSL, MUSN also provides a wide range of user feedback through error 

indicator IERROR. This indicator indicates 15 different kinds of mode of return from 

MUSN. These modes are either specific terminal errors or specific warning messages. 

The following are these 15 modes 

IERROR: Integer. Error indicator. 

= 0. No errors detected. 



= 01. Input error: either ER(1) or ER(2) or ER(3) is negative. 

Terminal error. 

Nx(N + 1 )  
= 05. Input error: either N c l  or N T k 3  or NRTIcO or NU c 

or A = B. Terminal error. 

= 06. Input error: either LW c 7xN + 3xNxNTI + 4xNxN or 
LIW c 3xN + NTI. Terminal error. 

= 20. Input error: the routine was called with NRTI = I ,  but the given 

output points in the array TI are not in monotone order. 

Terminal error. 

= 21. Input error: the routine was called with NRTI = 1 ,  but the first 
given output point or the last output point is not equal to A or B. 

Terminal error. 

= 22. Input error: the value of NTI is too small, the number of output 

points is greater than NTI - 1 .  Terminal error. 

= 23. Input error: the value of LWG is less than the number of output 

points. Increase the dimension of the array WG and the value of LWG. 
Terminal error. 

= 216. This indicates that during integration the requested accuracy 
could not be achieved. User must increase error tolerance. 

Terminal error. 

= 219. This indicates that the routine needs more space to store the 

integration grid points. An estimation for the required workspace (i.e. 



the value of LWG) is given. Terminal error. 

= 230. This indicates that the Newton iteration fails to converge. 

Terminal error. 

= 231. This indicates that the number of iterations has become greater 

than ITLIM. Terminal error. 

= 240. This indicates that the global error is probably larger than the 

error tolerance due to instabilities in the system. Most likely the 

problem is ill-conditioned. Output value is the estimated error 

amplification factor ER(5). Warning error. 

= 250. This indicates that one of the upper triangular matrices U is 
singular. Terminal error. 

= 260. This indicates that the problem is probably too ill-conditioned 

with respect to the boundary conditions. Terminal error. 

3.3.2e Output from MUSN 

On normal return from MUSN, like MUSL, there are two types of outputs 

available. They are the approximate solution related outputs and the others. 

Approximate Solution related Outputs: 

NRTI: On exit, NRTI contains the total number of output points. 

TI: On exit, TI(i), i = 1,2, ..., NRTI contains the output points. 

Y: On exit Y(i,k) , i=1,2,...,N contains the solution of the BVP at the output 

point TI(k), k=1,2, ..., NRTI. 

Other Outputs: 



The following output may not be of importance to those who are not interested 

in the details of solving BVPODE with the multiple shooting method. Please see [14] 

and [2]. for more details. 

ER(4) : On exit ER(4) contains an estimation of the condition number of the 
boundary value problem (see [2 ] ,  [14]) .  

ER(5) : On exit ER(5) contains an estimated error amplification factor. 

U: On exit U(.,i) i=I,Z,...,NRTI contains the the upper triangular factors of 

the incremental recursion. The elements are stored column wise. The jth 

column of U is stored in U(nj+ I ,  k), V(nj+2, k), ... , U(n,+j, k), 

where nj = w. (see [14] for u.) 

On exit Q(.,.,i), i=1,2, ... ,NRTI contains the orthogonal factors of the 
incremental recursion. 

On exit D(.,i) i=1,2, ... ,NRTI contain the inhomogeneous term of the 

incremental recursion. 

KP: On exit KP contains the dimension of the increasing solution space. 

PHI: On exit PHI(.,i), i = I,2, ... ,NRTI contains the fundamental solution of the 

incremental recursion. The fundamental solution is upper triangular and 

stored in the same way as the upper triangular U .  

3.3.2f Sample driver program for solving (3.Ia&b) using MUSN 

C 
C SAMPLE DRIVER PROGRAM 
C 
C SOLVING EXAMPLE (3.ladrb) USING MUSN 
C 
C MAIN PROGRAM 
C 

IMPWCrr  DOUBLE PRECISION (A-H.0-Z) 
C 
C . SET U P  PARAMETERS 
C 

PARAMETER (A=O.DO.B=l .DO,h'=Z,R"LIM=SO ) 



PARAMETER (NRTI=299,NTl=400,NU=20,LW=2600,LJW=600,LWG=400 ) 

REAL*8 ER(S).TI(NTl),Y(NNI),&(NflNI),U(NUflI) 
REAL*8 D(N,NTI),PHlREC(NU,KTI), W(LW), WG(L WG),SOL(N) 
INTEGER KPART,IW(LIW),IERROR 
INTEGER R ES(2)  
EXTERNAL FDIF.Ym,G 
COMMON IPARAMEINZ 

ER(I)=l .D-6 
ER(2)=1 .D-2 
ER(3)=0.20D-IS 
AMP = 100 
N Z = N  

CALL TIME(0,OLES) 
CALL MUSN(FDIF.YOT.G&Ad.ER,TI~I&RTIPMP,~LIM,Y,Q,UNU, 
+ D,PHIREC,KPART,WLW,IWLIW,WG,LWG,IERROR) 

CALL TIME(3,-1,RES) 
PRINT.%PU IN MIUSECONDS: ',RES(I) 
PRINT*,'ELT IN MILISECONDS: 'JES(2)  

SP=O.DO 
SR=O.DO 
DO 20 I=I ,NRTI 
X=TI(I) 
CALL EXACT(X,NSOL) 
P=DABS(SOL(l)- Y(l  ,I)) 
R = DABS(SOL(2)- Y(2J))  
SP= DMAXI(SP,P) 
SR=DMAXI(SR,R) 
WRlTE(6,40) X,PJ 
FORMAT(lX,F8.4,4X,'ERRORl:',D12.6,' ERROR2:'912.6) 
CONTINUE 
PRINT,THE MAXIMUM ERROR1 IS: ' S P  
PRINT*,THE MAXIMUM ERROR2 IS: ' J R  
STOP 
END 

*** SUBROUTINE FDIF *** 

SUBROVTINE FDIF(T,Y,F) 
IMPLICIT REAL*8 (A-H.0-2) 
COMMONlPARAMElN 
REAL*8 Y(N),F(N) 

F(1) = -2 .DOI(Y(2)* Y(2)) 
F(2) = Y(2)* Y(2)-I .DOIY(I)+DEXP(T) 
RETURN 
END 

*** SUBROUTINE Y m  *** 

SUBROOTINE YOT(T,Y) 
IMPUCrr REAL18 (A-H.0-Z) 
COMMONlPARAMElN 
REAL*8 Y(N) 

Y(1) = I.DOl(I.DO+X) 
Y(2) = I .DO 
RETURN 
END 



SUBROUTINE G(N,XA,XB,FG,DGA,DGB) 
IMPUCrr R W * 8  (A-H,O-2) 
REAL*8 XA(N)XB(N),FG(N),DGA(N.N).DGB(N.N) 

DO 20 I=IN 
DO 20 / = I N  
DGA(II)=OLm 
DGB(IJ)=OLm 
CONTINUE 

RETURN 
END 

*** SUBROUTINE EXACT *** 

SUBROUTINE EXACT(X.N,SOL) 
1MPLKlT R W * 8  (A-H.0-2) 
REAL*8 SOL(N) 

RETURN 
END 



Chapter 4: The Comparison of the Codes (11) 
-The Basic Design of Our Comparison and the Results of Comparing 

the Four Codes 

This chapter is mainly concerned with comparing the four codes with respect to 

those issues discussed in Chapter Two. The date that we received each one of the four 

codes is shown in the end the Introduction. The comparison conducted here is based 

on the versions of the four codes we received and the resulting conclusions may not be 

applied to different versions of these codes. We will have some general discussion 

about the design of the comparison and how our comparison is conducted in the first 

section. In the second section we will have detailed comparison with respect to the 

criteria discussed in Chapter Two. We will conclude this thesis by summarizing our 

observations which resulted from comparing the codes in the third section of this 

chapter. 

4.a The Basic Design of Our Comparison 

In Chapter Two, we have discussed many criteria the are relevant to the 

comparison of the codes. But how to design a comparison so that all these criteria can 

be fully utilized is still a problem. In this section, we focus on explaining how we are 

going to use those test problem dependent criteria to develop a quality of solution 

oriented comparison. Furthermore, we will discuss our basic strategy of conducting a 

comparison in this type by using a critical input parameter - the tolerance. 

4 . ~ 1  Quality of solution oriented comparison 

One of the most important pans of comparison of codes is to evaluate the 

relative efficiencies of the codes. The relative efficiencies of the codes on a certain test 

problem, though still a vague concept, can usually be determined by using the test 

problem dependent criteria such as the time and storage they require to solve the 

problem. Test problems without the known exact solutions have been used before. But 

in order to fully utilize criterion accuracy, we purposely choose the test problems so 

that they all have known exact solutions. Up to now, relative efficiency remains to be a 

concept that has be widely used but not very well defined. A quite common strategy of 

measuring the relative efficiency of the codes has been that of first setting up the input 

parameters for each code such that all the codes have more or less the same 



parameter setting, and then compare the resulting timing, storage and accuracy from 

each code. The underlying motivation for this, we believe, is that when the codes have 

the same parameter setting, they are given the same amount of input, and therefore i t  

is justifiable to compare the efficiencies of the codes in terms of the resulting CPU time 

and storage used since these efficiencies are the yields of the same input. 

But it seems to us that this plausible strategy may not be appropriate for our 
purpose of comparing the four codes because of the fact that parameters that bear the 
same names, are supposed to have similar functions and were assigned the same 

values can play quite different roles in different programs. More importantly, not all the 
parameters are relevant to the efficiencies of the codes. Even if two different programs 
have exact the same parameter setting, the comparison of the results from the two 

programs that correspond to that setting may not be very meaningful. Let's use an 

exaggerated example to further illustrate this point: Two codes A and B have exactly 

the same set of parameters. When we apply them to solve the same problem, all the 

parameters for both programs are set to be the same constants except, say, the 

tolerance. When varying the tolerance, we observe that for both codes, the results get 

strictly better and better as the tolerance decreases. Furthermore, the two codes 
would have exactly the same results when the tolerance for code A is TOL and the 
tolerance for code B is IOxTOL. Thus a comparison according to the same setting of 

parameters would result in a consistently better performance of code B over code A. 
However, in our opinion, this is not a fair comparison since tolerance is just a 

parameter and it is not related to the cost of running the codes in any way. 

Furthermore, the two codes A and B have exact the same capabilities and 

efficiencies under our assumption in the sense that no matter how well code B can 

perform, code A can achieve exactly the same performance at no extra cost and vice 

versa. The only thing different is that the two codes always attain the same level of 

performance with different tolerances. With a minor modification to code A, i.e. set 
TOL to be equal to TOLI10, the two codes would then perfom exactly the same. 

Whether the accuracy of the solution each code produces responds well to the 

tolerance that the user provides is an important aspect of the code and we will come to 

this point later on. But we felt that tolerance itself may not be considered as a 

performance index and is not important when it comes to timing efficiency or storage 

efficiency of the code. We are not in an 'input output' situation where the tolerance is 



the input and the result is the output when we compare the timing and storage 

efficiencies, even though it appears that we are. 

In this thesis, we are mainly concerned with the potential of the performance of 

the codes rather than how well the codes can perform at a certain input parameter 

setting which, as was indicated by the example above, is not always relevant to the 

potential efficiencies of the codes. In order to design a comparison that focuses on how 

well the codes can perform (not how well they can perform under the similar input 

parameter settings), we split the performance related criteria into two groups 

according to the nature of these criteria. It is clear that when writing or running a code, 

what we are really after is a good quality solution to the problems we want to solve. In 

order to calculate the numerical solution, we need computing time and storage. One 

may consider the numerical solution we are after as the 'goods' and the timing and 

storage as the 'cost'. We intend to make a split of the criteria according to whether the 

criteria are about the 'goods' or 'cost'. From now on, except those that are related to 

the quality of the solution, all performance type criteria, most importantly timing and 

storage, will be referred to as cost indexes. They, as a group, define the cost needed 

by the codes to solve a problem. Those that are related to the quality of the numerical 

solution form another group and determine the quality of the solution produced by the 

codes. Based on this split, there are two possible aspects of the codes that can be 

revealed by a comparison. One may compare the best quality of the solution that is 

attained by each code during an experiment. More practically, one may gather those 

runs from the codes that yield solutions with similar quality and then compare the 

codes for these runs according to the cost indexes to reveal the relative efficiency. In 

another words, it is then possible to use peak quality solutions produced by each code 

and the relative efficiencies defined by cost versus solution quality to make a 

comparison. We call this the quality of solution oriented comparison. This new way of 

comparing the test problem related efficiencies will be referred to as QSO approach 

later in our discussion. 

The advantage of a QSO approach is that it gives the relative efficiency a clear 

meaning. More importantly, the information concerning the connection between the 

cost and the quality contained by the data is utilized by comparisons of this type. The 

comparison where codes are compared under similar input parameter settings, 

however, is weak in making use of this kind of information. 



However, the appealing ideas we have above suffer from the problem of being 

not very practical and are usually difficult to carry out. The peak quality solution, for 

example, will remain to be just an idea in this thesis and will not be an issue of our 

comparison due to the difficulties of getting the peak quality solution of the codes on 

any test problem. On the other hand, the major obstacle for making use of the relative 

efficiency described above is that there may not be a commonly agreed upon way of 

setting up numerical solution quality levels. It is unrealistic for us to find some kind of 

'standard' that can quantify the solution quality levels in a way that it makes sense to 

everybody. An individual user that is particularly concerned with a specific aspect of 

the solution can set up a quality scale according to what helshe is concerned about. 

When one is only concerned about the maximum error at the mesh points or the 

average of the squared errors at the mesh points, for example, one can then set up 

some quality levels associated with the maximum error or the average mentioned 

above. The quality of the solutions is then quantified. Despite the fact that there exist 

many different quantitative features of the numerical solution, the most common focus 

for many experts has always been the maximum absolute error at the mesh points. 

Though we intend to look beyond the quantitative features of the numerical solutions 

as was indicated in Chapter Two, when evaluating the relative efficiencies of the 

codes, it is difficult for us to take into consideration the qualitative aspects of the 

solutions. Thus we will only use the maximum absolute error at the mesh points (for 

codes that provide continuous solution, the maximum absolute error at thirty equally 

spaced points in the domain will also be considered sometimes) to judge the quality of 

the solution. The qualitative features we mentioned in Chapter two, i.e. the form of the 

solution and the distribution of the final mesh points are not test problem dependent 

and will be compared separately. 

4 . ~ 3  Collecting test problems related information for comparison 

How do we collect test problem related information so that we can carry out the 

comparison concerning the test problem dependent criteria ? In'particular, how can we 

find out the costs each code needs to obtain solutions at different quality levels to 

reveal the relative efficiencies ? 

Each one of the four codes has more than ten input parameters that has to be 

set by the user. Some of the parameters can assume infinitely many different values. 

Thus it is virtually impossible to exhaust all the possible combinations of these 



parameters and collect information such as timing, storage and accuracy that follows. 

Having ruled out the possibility of looking into every combination of the input 

parameters, it is clear that we have to find a way to collect information such that not 

only the way is feasible and practical, but also the information collected this way can 

best represent the capabilities of the codes and is sufficient to support our comparison. 

Such a way is often referred to as 'testing'. 

Fortunately, among the many input parameters, only a few may influence the 

timing, storage and accuracy that related to the codes. In many cases, the influence of 

a single parameter can be so dramatic that the influence of the other parameters is 

negligible. Based on our experience with the four codes, when compared with other 

parameters, tolerance, the parameter that is supposed to impose the desired degree of 

accuracy on the numerical solution in some way, is one of the input parameters that 

consistently has a dramatic influence on the performance of the codes, no matter what 

kind of test problems we use. Furthermore, it is designed to influence the solution in a 

fairly predictable way (we will come to this in the next paragraph) and it is the only 

such a parameter that every code has in common. Despite many problems it may 

cause, in order to get rid off the difficulties of being entangled by the infinitely many 

combinations of the input parameters and infinitely many solutions that follows, some 

kind of 'clear cut' approach is inevitable. Our 'clear cut' approach in this thesis is that 

when using the codes to solve a test problem, we set all the input parameters except 

the tolerance in a way that we believe will best serve the codes in terms of producing 

quality solutions by them. We then vary the tolerances from 1.0-2, 1 . 04 ,  1.0-6 to 

1.0-8 and run the codes with these values of tolerance to collect information such as 

accuracy, timing and storage that we need to reveal the relative efficiencies. We will 

provide more details about this approach in Appendix (I). As one will see from there, 

this approach is feasible and practical. 

The four codes differ from one another in the number of tolerances allowed. 

COLNEW, COLSYS and HAGRON allow the user to specify a tolerance for each 

variable (in the case of COLNEW and COLSYS, these variables may be any 

component of z in 3.2a&b), while MUTS allows a user to provide only two tolerances. 

The impact the tolerances have on the performance of the codes is usually test 

problem dependent and varies from code to code. Based on our experience with the 

four codes, when we set all the input parameters except the tolerance in the way we 



discussed above, the CPU time and storage needed by each code for solving a problem 

generally increases as the tolerance decreases, but the accuracy of the solution 

generally gets better, provided that the codes return normally. Thus when we take the 

above approach, we can get solutions in difierent quality level as well as the related 

costs upon normal returns from the codes. On the other hand, if the codes fail at some 

small tolerance, we then know the limits of the codes in terms of the best quality 

solution the codes can provide. These limits, as well as the reasons for failure when 

the codes are brought to these limits, are important for comparing the codes in terms of 

the robustness of the codes, and to what degrees a BVP for ODE can be solved by the 

codes. 

Being able to find out the solutions at different quality levels together with 

their accompanying costs, and detect the limits that are mentioned above enables us 

to collect information about these solutions and costs and carry out the test problem 

related comparison. The information collected by this approach is exactly what a QSO 

type of comparison needs. 

4.b The Comparison of the Codes 

4.61 Codes' driver related comparison 

I )  The form of the BVPODE that can be directly dealt with by each code 

COLNEW and COLSYS can be directly applied to a system of ODE with high 

order (greater than 1) equations while HAGRON and MUTS solve first order system 

exclusively. When using HAGRON and MUTS for a system of ODE with high order 

equations, one must first rewrite the system as a first order system. For details on 

how to change a higher order equation into a fust order system, please see section one 

of the first chapter. 

COLNEW and COLSYS accept multipoint boundary conditions but require that 

they are separated. The current version of HAGRON accepts two point separated 

boundary conditions only. MUTS is not restricted to separated boundary conditions but 

like HAGRON, it accepts two point boundary conditions only. 



The form of the BVPODE that can be directly dealt with by each code is not 

critical in theory since a mixed order system with general multipoint boundary 

conditions can be recast into a first order system with separated two point boundary 

conditions, which all the four codes can be directly applied to [2]. However, when a 

higher order equation is changed into an equivalent first order system, a multipoint 

boundary condition is changed into an equivalent two point boundary condition, or s 

non-separated boundary condition is changed into a separated one, the number of 

equations will be increased and the transformation needed may be rather cumbersome. 

Thus this issue does reveal the disadvantages and advantages of each code in the 

sense that when a problem is not in the form that the a code can be directly applied to, 

the transformed problem may be much more expensive to solve due to the increase in 

dimension of the problem. The transformation needed can also be a great difficulty to 

many users. 

Whether this issue brings advantages or disadvantages to a code will certainly 

change according to different users. If you only want to solve a two point boundary 

problem, being able to solve a multipoint boundary problem is not an advantage to you. 

Otherwise, it is. Nevertheless, we noticed that while the types of problems that can 

be directly handled by COLNEW, COLSYS and MUTS are not entirely overlapping, 

they contain the type of problems that HAGRON can be directly applied to. 

2) Input parameters 

There are roughly two types of input parameters. The first type are those that 

are used to describe the objective problem, such as the dimension of problem or 

whether the problem is linear or nonlinear. These parameters are objective problem 

dependent, and the user cannot choose these parameters freely. The second type are 

those that have to be set by the user when using the codes. This type of parameters 

includes the tolerances, the dimensions of some working arrays, etc. The setting of 

this type of parameters, like tolerance we discussed in the last section, is usually 

critical to the performance of a code. 

3) Input subroutines 

COLNEW, COLSYS and HAGRON all need four subroutines for linear 

problems and an optional fifth subroutine for nonlinear problems (see Chapter Three 



for the description of the subroutines). Through these subroutines, the right hand side 

of the equation, the boundary conditions and their the first derivatives are evaluated 

and conveyed to the codes. When solving a nonlinear problem with the optional fifth 

subroutine, the initial solution as well as some of its derivatives are also conveyed to 

the codes. 

MUTS, on the other hand, needs only two subroutines when solving a linear 

problem and three subroutines when solving a nonlinear one. When solving a linear 

problem, it differs from the other three by having a parameter to tell the code whether 

or not the problem is homogeneous. The two subroutines needed are used to evaluate 

the homogeneous part of the system and the whole right hand side of the system. In 

the case of a homogeneous problem, one only needs one subroutine. When solving 

nonlinear problems, the three subroutines needed are used to evaluate the right hand 

side of the system, the initial solution, and the boundary conditions together with the 

derivatives of the boundary conditions. 

When the derivatives of the right hand side of the system are easily available, 

the first three codes appear to have the advantage of making use of more information. 

But when the first derivatives are not easily available, MUTS has the advantage of not 

depending on these derivatives, and in this case it is the easiest choice. 

4) Ease of Use (I) 

If compared with codes for many other purposes, all the four codes are fairly 

difficult to use in general. In particular, COLNEW, COLSYS and HAGRON require 

the derivatives for both the right hand side of the system and boundary conditions. 

When the right hand side gets complicated, this may be the place to watch out for the 

errors. The current version of HAGRON puts the numerical solution into a one 

dimensional array that is not well explained by the available documents. MUTS is 

relatively easier to use in terms of the complexity of its driver. This is particularly the 

case when one solves a linear problem, and needs only two simple subroutines. 

All the codes appear to have a common problem of having too many options or 

too much output information for ordinary users. The setting of IPAR(10) for COLNEW 

and COLSYS, IPAR(IS),  IPAR(16) for HAGRON and output arrays U, Q, D from 



MUTS, for example, may not be of great importance to an ordinary user, but their 

presence surely makes the codes more difficult to run since it is hard to decide what to 
do with them. While we noticed that the codes, such as HAGRON, are still in an 

experimental stage, a practical idea for diminishing this problem may be producing 
different versions of a code that suit different groups of users. 

4.62 Comparison concerning the qualitative aspects of the solution 

I) The form of the solution 

The four codes offer two different types of solutions. COLNEW and COLSYS 

produce continuous solutions on the entire domain. HAGRON and MUTS produce 

solutions at some mesh points that are either chosen by the user or automatically 

determined by the code. 

When one is only concerned with the solution at some discrete points, one may 

not care about whether a code produces continuous or discrete solution. But the same 
thing cannot be said when one wants a continuous solution on the entire domain. The 

ability of being able to produce a continuous solution is clearly an advantage. In this 

sense, the solutions from COLNEW and COLSYS are more desirable. 

2 )  The number and the distribution of the final mesh points 

It had been considered to. be more efficient if a code can solve a problem with 

fewer final mesh points. Since the number of final mesh points is directly related to the 

storage that is needed to produce a solution, the minimum number of final mesh points 
on which a code can provide a satisfactory solution may be used to reveal the minimum 

amount of storage each code needs in order to solve the problem (the solution one 

gets with this minimum storage is usually not as good as the solution when more 

storage is supplied and be used by a code). But it is not appropriate to compare the 

number of final mesh points needed by a code that produces a discrete solution with 

that of a code that produces a continuous solution. If we put aside other issues 
concerning the quality of solution, it is true that if a code produces a continuous 
solution, the fewer the number of final mesh points are, the less the amount of storage 

the code needs to solve the problem, and then the more efficient the code is. When you 



have a continuous solution, the solution at the mesh points (though it is usually of 

higher accuracy) is not of particular importance. But when you only have a solution at 

some discrete mesh points, the fewer the number of final mesh points there are, the 

less the program tells the user. Thus a big or small number of final mesh points has 

both an advantage and disadvantage if a code only produces a discrete solution. When 

two codes can solve a problem with the similar amount of storage, the one with the 

bigger number of final mesh points is clearly more efficient in the sense that it tells the 

user more. 

The distribution of the final mesh points is also very important. When solving a 

real problem where the exact solution is not known, users have to rely on the code to 

provide a numerical solution that can best characterize the unknown exact solution. 

Our first test problem has a boundary layer near zero (see 114). Assuming that we 

are not aware of this boundary layer, when using COLNEW, COLSYS and HAGRON 

to solve this problem, the mesh points can be automatically determined by the codes. 

One can see from one of the graphs on 114, 115, 117, 120-125 that the final mesh 

points from these three codes are very reasonably distributed in the sense that the 

density of the points in the small region where one of the solutions changes rapidly is 

much higher than the density in any other places. With the distributions of the final 

mesh points like this, the behaviour of the exact solutions are then well characterized. 

But when we use MUTS, we have to set the mesh points all by ourselves. Given that 

we do not know the existence of the boundary layer, we are simply not able to set the 

points reasonably as was automatically done by the other three codes. The only thing 

we can do is to choose a set of equally spaced points in the domain. But the boundary 

layer can be easily missed if the number of points we choose is not big enough. 

However, a big number of mesh points usually results in not only a big storage 

requirement, but also a big amount of CPU time. We do not want to go that far as to 

discuss the mesh selection strategy used by COLNEW, COLSYS and HAGRON and 

whether this strategy can or cannot be adapted by MUTS. From a pure user point of 

view, the first three have a clear advantage over MUTS for their ability of detecting the 

important features of the solution by themselves and their ability of distributing the 

mesh points efficiently. It is possible, however, to let MUTS determine the output 

points by itself by setting NRTI to zero and set AMP to some small value. But the 

distribution of the output points is not determined by the shape of the exact solution of 

the problem as was by the first three, rather it is determined by the shape of the 



corresponding fundamental solution [2]. Consequently, the exact solution usually 

cannot be well characterized by the numerical solution from MUTS. See 118, 126 and 

127 for examples. 

3) Error analysis 

By looking at the location of the maximum absolute error and the graph of the 

absolute errors at the final mesh points, we expected to see some kind of patterns 

regarding these two aspects to emerge from our experiments that might be related to 

each code. We anticipated that the errors at the points in those regions where the 

solution changes dramatically would be bigger and the maximum error would be 

located at these points. But to our surprise, this did not always happen. From the 

graphs in Appendix 11, one can see that the maximum errors are not always located at 

the places that we thought they should be although in some cases (see 120-122) they 

are. The overall error curves for the four codes are also somewhat random except that 

the curves for HAGRON appears to have more oscillations. 

We intended to include error analysis as a part of the quality of solution. But 

the observation that there is unlikely to exist any pattern that the errors follow makes 

this issue incompatible. Should more test problems and data become available, some 

useful patterns might be found. 

4.b3 Relative efficiencies and robustness 

The following is a comparison concerning the test problem dependent criteria, 

mainly the relative efficiencies defined in the first section, as well as robustness, of the 

four codes on the eleven test problems we chose. Though a quantified comparison is 

more desirable, we felt that the testing we conducted is more supportive to a 

qualitative comparison, and the comparison we have below is more qualitative than 

quantitative. 

1)  Quality of solution oriented efficiency 

1.1) Timing 



The comparison between COLNEW and COLSYS is straightforward because 

they both use the same mesh selection strategy and both produce continuous 

solutions. If the accuracies of their solutions are the same, then the solutions can 

usually be considered to be of the same quality. Even though there are some 

exceptions, COLNEW is generally more efficient in terms of CPU time needed to 

produce a solution of certain degree of accuracy than COLSYS. In most cases, the 

ratio of COLNEW's and COLSYS's CPU times that correspond to the same accuracy 

is between 0.9 and 0.7 (see Appendix I11 1.a). 

About one and half year ago, we did a separate study comparing COLNEW to 

COLSYS. One of the main purposes of that study is to find out the reason why 

COLNEW is usually faster than COLSYS. For each test run, we monitored the 

amount of CPU time a code spent on its linear system solver and the total amount of 

CPU time it spent on the test run. We then compared these CPU time for the two 

codes under the condition that the input parameter settings (for the two code) 

associated with these CPU time are the same (this is easy to do since COLSYS and 

COLNEW have exactly the same set of input parameters). From the data we 

collected, we found that the proportion of CPU time used by the linear system solver in 

COLSYS is much higher than that proportion of COLNEW. The difference between the 

amount of CPU time used by the two linear system solvers is often close to the 

difference between the total amount of CPU time used by the two codes. Based on 

these observations, we believe that the linear system solver in COLSYS is the major 

reason for COLSYS being slower than COLNEW. Decisive evidence for this may be 

found if one replaces the linear system solver in COLSYS with the linear system 

solver in COLNEW. 

When we compare COLNEW, COLSYS with HAGRON, it appears to us that 

HAGRON is competitive with COLNEW and COLSYS in terms of the CPU times 
needed in order to produce solutions of the same quality, regardless of the type of 

maximum error for COLNEW and COLSYS that is used for measuring the solution 

quality (see Appendix 1 for the description of error types). In Appendix 111, we 

compared the four codes in term of timing a pair at a time on all the test problems. By 

and large, when the first type of error for COLNEW and COLSYS is used, HAGRON 

outperforms COLNEW and COLSYS in terms of this criterion on L2, L5 and L6. 

COLNEW outperforms HAGRON on L1, L3, L4, N2 and N4. COLSYS outperforms 



HAGRON on L1, L3, L4, and N2 (see the related tables in Appendix I11 1.a). A 

comparison based on the second type of maximum error for COLNEW and COLSYS 
also gave us similar results (also see Appendix I11 1.a). With limited test problems, it 
is hard to tell whether this relative efficiency is related to the dimensions or the 

behaviour of the exact solutions of the test problems. Taking into consideration that 

our test problems were independently selected in the sense that they were chosen 

before we ran them with the four codes, it is fair to say that HAGRON is competitive 

with COLNEW and COLSYS on this issue. 

It is most difficult to compare the rest of the four codes with MUTS mainly 
because it requires the user to specify the number of output points, and both the CPU 

time needed by MUTS and the accuracy of the solution depend not only upon the value 
of tolerances but also the number of output points. When running MUTS on L3 with 

a = l l ,  TOL=lB-4, for example, the following table shows what we get when we vary 

the number of output points: 

NRTI CPU ERROR 

.32D-2 

.23D-5 

200 289 .70D-7 

CPU is measured in milliseconds. 

Even though the code can determine the output points by itself when NRTI is set to 

zero, we found that no matter how small we set AMP to be (as required, it has to be 

greater than I), we often only got output at the two boundary points. Such examples 

are those homogenuous linear problems with right hand sides equal to zero. In these 

cases, the fundamental solutions are all constants and no matter how small AMP one 

set, one cannot get additional output points. With only two output points, we simply 
cannot say that the quality of the solution is compatible with that of the other three. 
Thus it is necessary to set it to some value that is reasonably bigger than zero. 

According to our experience with MUTS, when the required number of output points is 

big (more than 300), MUTS is considerably slower than the other three. We thought 

about using the final mesh points from COLNEW, COLSYS or HAGRON as the 

required output points for MUTS and then compare the resulting CPU time and 

accuracy with that of the others, but we decided not to do so because this will put 



MUTS in an secondary position and there is no sensible justification for this. In the 

meantime, it is also difficult for us to collect the data if values of NRTI are allowed to 
vary among all the positive integers. We eventually decided to set NRTI to be the 

smallest number of in the set {20,50,100,200,300} that produces an accuracy that is 

about the same size as the value of the corresponding tolerance (also see Appendix 

I). With the input parameter settings described above, we found that MUTS runs 

slower than the other three on most of the ten test problems (one of the eleven test 

problem is not used except for comparing the robustness) in terms of CPU time needed 
to reach a certain degree of accuracy (see Appendix I11 1.a). While this is observed 
through using a particular set of input parameters on the ten test problems we 

selected, we believe that MUTS, when compared to the other three, is generally less 

efficient in terms of timing efficiency we described above. 

1.2) Storage 

It is extremely difficult to keep track of exactly how much storage a code needs 

in order to produce a solution at a certain degree of accuracy. When using COLNEW, 

COLSYS and HAGRON, one has to provide more than what the codes need in order 
to run the codes. Because one never knows how much storage they will really need 
beforehand, when writing the driver, one usually can only take a guess and the 
question that follows is that there are two storages here, one is that provided by the 
user, another one is that actually needed by the code. Which one should we compare ? 

Furthermore, like MUTS where the number of output point is related to the quality of 

solution, the quality of solution of the three codes may be related to the amount of 

storage available. COLSYS, for example, can often produce decent solutions even 

when it needs more storage to insure that the required tolerance is achieved. When 

solving L3 with a=55, TOL=I.D-8, with sufficient and insufficient storage, the 

solutions differ in quality but they are both acceptable. 

ERR 1 1 15D-9 .696D- 11 

ERR2 .273D-8 .562D- 1 1 

I.S. = insufficient storage, S.S. = sufficient storage, FMP = number of final mesh points 

ERR1 = the max error at mesh points. ERR2 = the max error at 30 equidistant points 



We did record the numbers of final mesh points when we ran the codes. It is 

possible to detect the maximum number of final mesh points allowed by a code when 

the amount of storage as well as the dimension of the object problem are known. But 

since the same storage allocation for different codes may result in a different maximum 

number of final mesh points, and different codes may need different amounts of storage 

in order to produce the same number of final mesh points, the relationship between the 

storage that is actually used by each code and the number of points in the final mesh is 

not clear. This makes it difficult to compare the codes' storage efficiency via the 

number of final mesh points we recorded. However, if we look at only a single code 

with a fixed input parameter setting, more final mesh points or output points always 

goes with a bigger storage requirement needed by the code. See section Testing 

(Appendix I) for details about how the storage for each code is set when we run the 

test problems. 

Due to the above difficulties, we felt that with the set of data we collected on 

the ten test problems, a detailed comparison of the relative efficiency in terms of the 

storage versus the quality of the solution is not possible. 

However, it is possible to comment on the flexibility each code has on the use 

of storage. When using COLNEW, COLSYS or HAGRON, if IPAR( l1 )  is set to zero, 

the final mesh is totally determined by the codes themselves. Even when IPAR(11) is 

not equal to zero, usually there are still many points in the final mesh that are 

determined by the codes. Thus the final meshes for these three codes are more or less 

beyond the user's control. Since the final mesh is very closely related to the storage 

requirements of each code, the storage requirements for the codes are also beyond the 

user's control. Recall that the ability of automatically determining the final mesh points 

brought advantages to the three codes when we discuss the quality of solutions. This 

same issue is now bringing the three codes disadvantages. With storage requirements 

that can not be controlled by the user, the codes may waste storage to produce some 

undesirable information for the user at those mesh points that are not needed by, the 

user. When one only wants the solution at one point in the domain, for instance, the 

three codes still have to include many other points in their final mesh and produce 

solutions at these points. Another clear pattern which emerged from the data we 

collected is that the storage needed by COLNEW, COLSYS and HAGRON usually 

increases dramatically as the accuracy of the solution one wants increases. This is 



evidenced by the fact that as we increase the tolerance during our experiment, often 

the number of points in the final mesh for these three codes also increases rapidly (see 

Appendix I11 section c). 

Unlike the other three codes, in order to improve the accuracy of its numerical 

solution, MUTS usually does not need more storage. It is difficult to say exactly how 

much storage it really needs in order to solve a certain problem even if the number of 

output points is supplied by the user. The parameter AMP is often responsible for 

those output points that are not part of output points supplied by the user. Based on 

our experience, MUTS is generally more flexible than the other three codes in terms of 

making use of the storage to serve users' various needs. When we solve L1 with 

eps=l.D-2, TOL=l.D-4 and IPAR(1 l)=O, for example, the following is the (minimum) 

number of points in the final mesh we found 

Code 

COLNEW 

COLSYS 

One might be able to set the array FIXPNT to get different numbers of points in the 

final mesh for COLNEW, COLSYS and HAGRON, but when you want only the output 

at the two boundary points, it is unlikely that the three codes can match MUTS which 

can give you exactly the solutions at the two boundary points only. When one only 

FMP 

11 

11 

HAGRON 

MUTS 

wants the numerical solutions at certain points and the value of AMP is properly set, 

MUTS can usually do the job very efficiently without producing any undesirable 

32 

2 

information at any other points. Even when one wants a highly accurate solution at 

only a few points, with small tolerance, MUTS can usually produce solutions at a 

higher degree of accuracy without any additional output points and storage. This 

clearly brings MUTS an advantage over the other three codes, and it means a big 
saving in storage when one wants a highly accurate solution at only a few output 

FMP = the number of points in the final mesh 

points. 

How important this feature is to the portability of a code in terms of the 

feasibility of using the code on all kinds of machines is beyond the scope of this thesis. 



Our speculation is that this feature may make a code like MUTS a very natural 

candidate for small machine with a small amount of storage available. The other three, 

on the other hand, are resmcted by their basic needs for big storage. 

3) Robustness 

Robustness, the reliability of the codes or more precisely the 'degree to which 

they can solve a large class of problems and exit gracefully if not' [17], is a very 

important issue not only to the software developers, but also to the codes users. 

In order to compare the codes on this issue, when running the codes on the test 

problems, we looked at the following four aspects: 1) At what level of difficulties 

(when a test problems with a parameter that controls difficulties of the problem is 

used, the level of difficulties is represented by the value of the parameter) that each 

one of them starts to fail. 2) For what reason a code fails and is the failure easy to fix. 

3) What one can still get when a code fails. 4) the flexibility of the codes in dealing 

with problems that involve some singularities. By fail or failure above, we simply mean 

any kind of abnormal exit from the codes or normal exit with a wrong solution. It 

should be noted that when running a code on a test problem, in case the codes are very 

expensive to run, only the first or the first and the second failure is recorded, i.e. we 

did not run the code for different values of the parameter(s) that correspond to even 

higher degree difficulties. The following comparison is based on the testing described 

in Appendix I. 

Our observations concerning the first aspect of robustness are mainly from the 

runs on the three linear test problems L1, L4, L5 and two nonlinear test problems N2 

and N3 where the program failures had occurred. All these five test problems, as it is 

described in Appendix 1, have some parameters that control the difficulties of the 

problems. When we test the codes on a test problem of this kind, the difficulty of the 

problem always increases in the order of the tables by which the test results are 

recorded (see Appendix 111, 3). e.g. the second table in table page 1 in Appendix 111 

section three correspond to a problem of higher degree of difficulty than that of the first 

table. From the data we collected (see Appendix 111 section two), it appears to us that 

COLNEW, COLSYS and HAGRON are more capable in terms of their ability to solve 

difficult problems than MUTS. On the five test problems where most of the codes 

failures occurred, i.e. L1, L4, L5 and N3, MUTS failed the earliest on L1, LA and N3. 



On test problem N2, it is the only code that had failures. COLNEW, COLSYS and 

HAGRON appear to be quite competitive on this issue since they all failed on L1, L2, 

and L3 at the same degrees of difficulties. Though we noticed that HAGRON also had 

failures on N3, it is difficult for us to make any comment beyond what we had above 

due to the limited number of test problems we had. 

In our experiments, the causes for the codes' failures are mainly: 1) the storage 

needed exceeds the allowed limit. 2) program overflow (e.g. a divisor is found to be 

zero or an exponent is outside the domain of the machine exponential function). 3) the 

clock time needed exceeds fifteen minutes. 4) Unacceptable solution in terms of both 

absolute error and relative error. Program failures for COLNEW and COLSYS are 

mostly due to the first kind cause, i.e. storage needed exceeds the allowed limit. The 

only other cause of failure we experienced for these two codes is the fourth cause. 

Failures for HAGRON are also mainly due to the first kind of cause. The second major 

cause for HAGRON is also unacceptable solutions. Apart from these two causes we 

also experienced occasional program overflow as well as the third kind of cause. 

Unlike the first three codes, the limited storage brings little trouble to MUTS. Instead, 

most of the failures for MUTS are caused by unacceptable solutions and program 

overflow. Occasionally, we also found that the number of nonlinear iterations needed is 

greater than the limit (50 times) is responsible for the failure. In one case, the third 

one in the list is found to be the cause. 

Among all the causes for failures, in our opinion, only the first cause is easy to 

fix as long as getting more storage is not a problem. Often, when COLNEW, COLSYS 

or HAGRON fail because of this reason, we add some more storage to the codes and 

then the codes work properly. The second kind of cause is harder to deal with but one 

may try to change the parameter setting of the code and sometimes one can avoid this 

problem. When solving L1 using MUTS with eps = l.D-4 and TOL = l.D-2 , for 

example, we found that when we change the parameter NRTI (shown in the table 

below), we can get rid of the overflow. 



The third cause, though it appears to be easy to deal with, is a difficult one for people 

with limited computing resources. As a matter of fact we did not intend to relate it to 

the robustness of the codes in the beginning. When we started running the codes on 

the test problems, we simply let a program run until it stopped by itself. However, we 
soon found that we must impose a elapsing time limit on the runs due to the 

unaffordable computing expenses. When using HAGRON on L4 with eps = 1 .D-4 and 

TOL = 1.0-8, we tried to let the program stop by itself so that we could bring the 

program to its limit and see how much time the program may take on that problem. But 

it did not stop for three hours and it was eventually interrupted by the system manager 

when the computer account was suspended due to the excessive use of computing 

fund over the limit that the account was allowed. Another example is when ,we used 
MUTS on L1 with eps = l.D-4, TOL = l.D-6 and NRTI = 100, the program did not 

stop for about an hour and had to be-interrupted by us due to the expenses. The last 

cause is more serious in the sense that if the exact solution is not known, the user 

may have no idea whether or not an abnormal exit due to this cause has happened. 

When the exact solution of the problem has a very sharp spike or is highly oscillatory 

in a small region and is relatively very smooth in the rest of the domain, for example, 

the codes may not be able to detect the spike or oscillatory behaviour of the exact 

solution as the initial mesh is not fine enough for some mesh points to fall into the 

rough region. This often is the reason for the fourth type of failure. Provided that the 

rough region is not too small, this may be avoided by either increasing the number of 

final mesh points or using a tighter tolerance to produce finer meshes and increase the 

chance of detecting this kind of rough region. When we solve L4 using COLNEW, 

COLSYS and HAGRON with eps=l.D-4, for example, we observed the following. 

HAGRON I l.D-2 I default(=6) 1 .  loo00 I 
COLNEW 

COLSYS 

TOL 

1 .D-2 

1 .D-2 

COLNEW 

COLSYS 

HAGRON 

NMIP 

default(=5) 

default(=5) 

TOL 

l.D-2 

l.D-2 

1 .D-2 

ERRmax 
1133.18 

1133.18 

NMIP 

20 

30 

100 

ERRmax 
0.39D- 1 

1.77D- 1 

2.95 



I I TOL I NMIP I ERR,, I 

- - 

NMIP = number of points in the initial mesh. 

COLNEW 

COLSYS 

HAGRON 

It is clear that the solutions from the three codes in the first table is not acceptable. By 

increasing the number of points in the initial mesh or tightening the tolerance (or both), 

one may get a much more accurate solution. Thus using tighter tolerance or a finer 

initial mesh can reduce the possibility of this kind of failure. 

When a code fails due to the second and third causes, we do not have a 

solution. When a code fails due to the last cause, we have a wrong solution. Thus if a 

code fails due to one of these three causes, we cannot get anything from the code. On 

0.24D-3 

0.55D-1 

0.23D-2 

1.0-4 

1.0-4 

1.0-4 

the other hand, one often can get useful information from failures due to the first kind of 

cause. In particular, COLNEW and COLSYS often can still provide a partially 

converged solution in the case of this kind of failure, e.g. Table 1 and Table 2 in section 

three of Appendix 111. One may make use of these partially converged solutions for 

continuation as was described in Chapter Three. 

defaul t(=5) 

default(=S) 

default(=6) 

There are some problems that involve some harmless singularities. As an 
example, L7 is a simple second order two point boundary problem, but the coefficient 

mamx has a singularity point 0. COLNEW and COLSYS do not have to evaluate the 

coefficient matrix at the boundary points, thus such a singularity is of no threat to 

them. The ability of dealing with problems of this type naturally enhanced their 

robustness in the sense that they solve a broader range of problems. On the other 

hand, a singularity of this type is somewhat insurmountable to HAGRON and MUTS 

due to their dependence on the values of coefficient matrix at the boundary points. 

Based on the discussion above, COLNEW, COLSYS and HAGRON appear to 
be clearly more robust than MUTS. Not only they have fewer failures than MUTS but 

also the causes for their failures are more concentrated and less harmful. Furthermore, 

during our testing, we had experienced the fewest number and types of abnormal exits 

from COLNEW and COLSYS. Even when the needed storage exceeded the allowed 

limit, COLNEW and COLSYS were often able to bring us some reasonable solutions 



and more importantly they were able to terminate by themselves in a relatively short 

period of time. Add all these to their ability in dealing with the problems with 

singularities, COLNEW and COLSYS, in our opinion, are even somewhat stronger 

than the current version of HAGRON with respect to the robustness of the code. 

We conclude the comparison of the robustness of the codes by pointing out that 

according to the separate study we conducted a year ago and our testing results in 

Appendix 111, COLNEW did not appear to be more robust than COLSYS though it 

uses a different bases for representing the numerical solution. The robustness of 

COLNEW and COLSYS is deeply rooted in the spline-collocation method and this 

robustness did not seem to be improved by the new bases used in COLNEW. 

4.64 Accuracy, tolerance and termination criteria 

The accuracy of the numerical solution a code produces, the input tolerances 

and termination criteria for the code are very closely related to each other. By accuracy 

of the numerical solution, we mean the absolute or relative eiror of the numerical 

solution. The tolerances, on the other hand, are some input parameters that have great 

influence on the accuracy of the numerical solutions through the role they play in the 

termination criteria. In theory, when the tolerances decrease, the numerical solution 

gets more accurate. 

As was described in the last chapter, the termination criteria for COLNEW and 

COLSYS is: if TOL(j) is the tolerance related to the LTOL(j)th component of z(u), the 

codes will attempts to satisfy on each subinterval 

where v(x) is the approximate solution vector and u(x) is the ex.act solution of 3.la&b. 
The termination criterion for HAGRON is: if TOL(j) is the tolerance related to the 

LTOL(j)th component of u(x), the code will attempt to satisfy at each grid point x 



where v(x)  is the approximate solution vector at the grid point x and u(x )  is the exact 

solution of 3.2a&b. The norms involved in the two inequalities are maximum norms. 

How these termination criteria were approximately carried out by the codes is 

not our concern here. But the influence of tolerance on the accuracy of the solution is 

now clear. It is not the real accuracy of the numerical solution yet the numerical 

solution is expected to be more and more accurate as the tolerance decreases. Users 

may like the idea of having an input parameter that can be used to specify the accuracy 

of the numerical solution they want rather than a tolerance that is not really the 
accuracy of the numerical solution. But this is clearly impossible since the exact 
solution is not known. 

It is important to see that the input tolerance is neither always an upper bound 

for the absolute errors of numerical solutions nor always an upper bound for the 

relative errors. For a specific problem, it can be considered as one (and only one) of 

these two bounds. If the size (maximum norm) of the numerical solution for a certain 

problem is smaller than ten, the input tolerance can be considered approximately as an 

upper bound on absolute error of the numerical solution. Otherwise, it can be 

considered as an upper bound on the relative error. 

When one uses these three codes, how should one impose a desired accuracy 

on the numerical solution by using the input tolerance ? If the size of the exact solution 

is completely unknown, one does not know whether the input tolerance is going to play 

a role as an upper bound for the absolute error or an upper bound for the relative error. 

In this case one has to rely on a test run (when testing the size of the solution, in 

order to save computing time, set the tolerance to a relatively bigger values, say 0.1) 

to find out the size of the solution. Once the approximate size of the solution is known, 

if this size is smaller than ten, user specified tolerance imposes an upper bound on the 

absolute error of the numerical solution, otherwise the tolerance imposes an upper 
bound on the relative error. 

Unlike COLNEW, COLSYS and HAGRON, MUTS has only two tolerances 

regardless the dimension of the problem (see parameter ER in Chapter Three-MUTS' 
documentation). Though we do not have information on how the two tolerances are 



involved in the termination criteria of the code, in MUSL ER(1) and ER(2) stand for 

the relative and absolute error tolerances, respectively. 

L6 is an example where the domain of the problem and magnitude of the 

solution (rather than the difficulty of the problem) are controlled by two parameters. 

One can see that as the magnitude of the solution increases, the absolute error 

increases but a simple calculation can show that the relative error stays more or less 

the same. The maximum absolute error of the numerical solution is not always equal to 

or less than the corresponding tolerance, but the relative error always is. When one 

sets the tolerance to a certain value, say l.D-4, one will not be able to know whether 

this tolerance will result in a maximum absolute error that is less than l.D-4 or a 

relative error that is less than l.D-4 until  the numerical solution is calculated, 

provided that the code terminates exactly as we described above. If the magnitude of 

the solution is less than one hundred, then the maximum absolute error of the 

numerical solution is about or less than l.D-4. Otherwise the relative error is about or 

less than l.D-4. 

4.b5 User feedback 

Each one of the four codes provides many kinds of feedback. It is difficult to say 

a code is superior to the others in terms of its user feedback since the feedback is 

often tied with the codes' underlying numerical methods. COLNEW, for example, can 

provide the user with a complete mesh as well as the approximate numerical solution 

at the mesh point at every step. But when one uses MUTS, since the mesh points are 

often chosen by the user and may not vary in the process of solving the problem, there 

may not be such a varying mesh like that of COLNEW that the user may be interested 

in. 

However, it is possible to comment on the focus of the user feedback of each 

code. Codes that are based on finite difference methods, i.e. COLNEW, COLSYS and 

HAGRON, provide more information about their process of solving the problem such 

as the current mesh and have less feedback about the driver setting (input parameters 

and input subroutines). The biggest problem is that the programs are not able to tell 

the user whether the allotted storage is enough until the user has a test run. MUTS, 

on the other hand, provides more feedback about the correctness of the driver. The 



storage needed by MUTS usually can be estimated very accurately before running the 

code. However, once the code starts running, little about the process of solving the 

problem is available. 

For all the four codes, modifications concerning their user feedback are needed 

before they are used to serve people with little knowledge about the literature of 

ODEBVP. We recommend that the user supplied derivatives be checked by the codes. 

This may be done by using a standard driver program that calls the routines having 

this purpose from a software library or by including a subroutine in the codes that does 

the checking. As incorrect derivatives are the major problem when writing a driver, 

such a checking is important. 

4.66 Ease of use (11) 

In Ease of use (I), we compared the codes on this issue by focusing on the 

complexity of their drivers. The following are some more observations that can be 

related to the ease of use for the codes. 

Even though we used the whole of Chapter three to describe the meaning of the 

input parameters and subroutines and explain how to use the codes, there are still a 

few hidden problems that are important to know about for using the codes properly. 

From Chapter three, one can hardly see the importance of many input parameters such 

as IPAR(2) for COLNEW and COLSYS. Can we set this parameter to any legal value 

described by the program documents? What kind of impact do these parameters have 

on the solutions? When solving L2 with eps = l.D-6 and TOL = l.D-2 using COLSYS 

and COLNEW, we observed the following change of the maximum absolute error at 

the mesh points: 

**The last two columns above coincide to the number of digits shown above. 

COLSYS 

0.29D-5 

IPAR(2) 

3 

COLNEW 

0.29D-5 



We mentioned how the number of output points can affect the returns from MUTS 

when we compare the robustness of the code. The number of output points also affects 

the accuracy of the solution. When using MUTS to solve L2 with the same eps and 

TOL above, the following table shows how the accuracy of the numerical solution 

changes with the number of output points: 

These parameters often significantly affect the solutions, especially when the 

tolerance is not very small (>l.D-2). 

NRTI 

20 

50 

100 

200 

Another interesting observation is about the tolerance. It is clear from 4.b4 that 

the tolerances are not the desired accuracy. But it may be considered as a good 

approximation of the upper bound of the absolute accuracy when the norm of the 
solution is reasonably small and may be considered as that of the relative accuracy 
when the norm is big. A question that arises naturally here is how well does the 

accuracy of the numerical solution correspond to the input tolerance? 

ERROR,, 

0.14 

0.18D- 1 

0.16 

0.22D- 1 

Based on our testing, all the four codes respond well to the user specified 

tolerance if one is only concerned that the resulting accuracy is not greater than the 

tolerance. For all the four codes, when the norm of the solution is small, the maximum 
absolute error is usually less than or of the same size as the tolerance. When the 

norm of the solution is big, the maximum relative error is usually less than or of the 
same size of the tolerance. In the case of the smooth problems, all the four codes 
usually give accuracies that are far smaller than the input tolerances (see section 

three in Appendix I11 for the results on L6 for an example). In particular, HAGRON 

has fewer input parameters that affect the solutions. Its numerical solutions also 

appear to have a stronger relationship with the input tolerance than the other three 

codes. When the it exits normally, the accuracy of the numerical solution is usually 

about the same size as the tolerance and sometimes less than the input tolerance. For 
the other three codes, the accuracy of the numerical solution may be bigger than the 



tolerance if some other parameters, such as IPAR(2) for COLSYS and COLNEW and 

NRTI for MUTS, are not properly set. This makes HAGRON easier to use in terms of 
getting the desired accuracy by setting the tolerance, as how to set NRTI for MUTS or 

IPAR(2) for COLNEW and COLSYS is a very difficult question. As the last remark 

concerning the ease of use, we point out that this feature of HAGRON is important 

and very useful to ordinary users for whom the role of the parameters is difficult to 

understand yet the confidence about the correctness of the solution is critical. 

For a brief discussion concerning the relative timing efficiency involving the 
correspondence between the tolerance and the accuracy, please see part 1.b in 

Appendix HI. 

4.c Conclusions 

By evaluating the relative efficiency of the codes using a QSO approach, we are 
actually comparing the potential ability of the codes. The question that how these 

revealed potentials might be utilized is left behind. 

However, it is not difficult to see that QSO approach can be useful. When 
comparing HAGRON with COLSYS, for example, the traditional approach leads to the 

conclusion that HAGRON is faster than COLSYS (see [ 5 ] ,  [6] and section lb  in 

Appendix 111 of in thesis), while our QSO comparison indicates that COLSYS is quite 
competitive with HAGRON in terms of speed (see la  in Appendix 111). Why do these 

two approaches lead to different results? When using the traditional approach, a code 

can be faster than another one even if the two codes converge to the exact solution at 

the same speed, as long as one code has a better error estimator and stops earlier 
than another one when the required tolerance is satisfied. By taking a QSO approach, 

the effect of the error estimator is eliminated, and a code can be faster only when it 
converges to the exact solution faster. Thus the results of the two different approaches 
indicates that the speeds the two codes converge to the exact sblution are competitive 

but HAGRON has a better error estimator. However, we must emphasize that 

comparing these codes using a QSO approach is strongly biased against HAGRON 

since the efficiency of the error estimator involved in each code is purposely discounted 

and having a good error estimator is one of the strongest advantages of HAGRON. 

Incidentally, the fact that HAGRON has a better error estimator was well known 



among BVPODE experts. Our study fully agrees with what was known. Furthermore, 

by including a QSO type of comparison, this study also reveals that HAGRON does 

not generally converge to the exact solution faster than COLSYS. 

The traditional approach has many distinct merits of its own, e.g. its results can 

be easily understood and utilized by the user. However, most of the codes do not yet 

have the abilities to communicate with the user so well that what the user wants can 

always be precisely translated into some input parameter settings and then carried out 

by the codes. When a user wants a solution of an accuracy l.D-4, for example, there is 

no code that it can guarantee an accuracy of l.D-4 by using certain input parameter 

setting. There are always some random factors involved in the process of solving the 

objective problems and these random factors make it  impossible to predict fairly 

accurately the goodness of the solution by just look at the input parameters. Thus we 

felt that the input parameter setting for ODEBVP codes, though it often carries our 

expectation of the numerical solution and with a certain amount of experience it can be 

used to predict the goodness of solutions to some degree, does not have a definite 

relationship with the numerical solutions. The relative efficiency with respect to certain 

input parameter settings is therefore not the relative efficiency with respect to the 

quality of numerical solution, and it cannot give us the insight concerning the potential 

of the codes. 

Nevertheless, if all the codes have almost the same sets of input parameters, 

the parameters in different codes that bear the same names also function similarly in 

the codes they belong to and the quality of the solutions produced by each code can be 

very much determined by their input parameters in a common way, then different codes 

with the same parameter setting will produce numerical solutions that are of the 

similar qualities. In this case, the quality of numerical solution oriented approach is not 

of too much difference from the traditional approach due to connection between the 

numerical solutions and the input parameter setting. Compared with the traditional 

approach, it is certainly less favourable since the resulting relative efficiency is not of 

an immediate use to the user. 

When making the comparison, from time to time, we felt the desire to use some 

statistical techniques. For example, for a given value of TOL, there may exist some 

significant statistical relationship between the accuracy of the numerical solution and 



the setting of IPAR(2)  in COLNEW and COLSYS. However, we were not able to 

draw any conclusions on this basis due to the lack of a strategy of selecting test 

problems and the limited number of test problems we have. 

We started out our comparison by taking a different approach, but our finding 
fully coincides with that of Pereyra and Russell [17]. Our first comment on the general 
performance of the codes is that all four codes are very sophisticated and are fully 

capable of dealing with smooth and moderately rough problems. As was evidenced by 

our comparison above, if one weighs all the issues equally and has no preference to 

any specific aspects of the codes, the relationships of the codes are clearly that they 

are complementary to each other rather than competitive. None of them outperforms 

the others with respect to all the important issues we have considered. Even though 

their robustness has not been fully explored, considering the degrees of difficulties of 
those artificial problems they can handle, we have to say that all the four codes are 
very robust. While still undergoing modifications from time to time, all of them are well 
written, Taking into consideration that there exists some kind of minimum difficulties 

one has to overcome when using a ODEBVP code (after all, one cannot expect an 

ODEBVP code to be as easy to use as a code for solving the linear systems), the 

codes are reasonably easy to use and quite user friendly in the sense that they provide 

various types of feedback to the user. Even when they fail, the reasons for failure are 

often clearly given. Based on our experience, the four codes perform very well 

regardless the size of the tolerance on smooth problems. On rough problems, the 

codes seem to have a better performance when the tolerance is set to some value of 
moderate size (around l.D-6). However, if timing, storage or efficiency is not a 

concern compared to the quality of the solution, one may set the tolerance to a much 

smaller value (around 1 .D- 10). 

As a brief summary to our comparison above, COLNEW and COLSYS are 

strong in terms of robustness, timing efficiency, the quality of numerical solutions and 

the classes of problems they can be directly applied to. COLNEW is often even 

stronger than COLSYS in terms of timing efficiency. Though there are some input 

parameters that might be difficult to use or not of too much use for ordinary users, our 
recommendation is to set them to default values. Unless the tolerance is big (say, 

>l.D-2), these parameters do not have much effect on the numerical solutions. These 

two codes, based on our experience, can usually solve the smooth problems and 



moderately rough problems to such a degree that the resulting accuracy of the 

numerical solution on the entire domain is approximately of the same size as the 

smallest machine number and they are both very reliable even on rough problems. 

Though they perform quite well, these two codes, in particular their speeds with 

respect to a certain input parameter setting, can be further improved. Compared with 
HAGRON, their potential (the rates of convergence) are not fully utilized because of 

their inefficient error estimators, in the sense that they often spend more CPU time to 

produce a solution that satisfies a certain accuracy requirement than they really need. 
As a result, they often seem to be slower than HAGRON when one makes a 
comparison using the traditional approach. It is possible to build a more accurate error 

estimator based on deferred correction method for these two codes. We believe it is 

important that their error estimators be improved ,so that their potential ability can be 

fully released. 

HAGRON is strong in terms of timing efficiency, easy of use, robustness and 

the quality of the numerical solution. Due to the close ties between its underlying 

numerical method and the method behind COLSYS and COLNEW, the driver for 

HAGRON bears a lot of resemblance to that of COLNEW and COLSYS, but it has 
fewer input parameters that may affect its numerical solution, and we experienced 

much less variation in its solutions when we change the input parameter values as 

long as the tolerance is fixed. HAGRON can also solve smooth and moderately rough 

problems to the degree that the numerical solutions have a maximum error about the 

same size as the smallest machine number at its final mesh points. It is very reliable 

in general, but the problem that it may take a huge amount of computing time yet fail to 

solve a certain problem (see L4 for example) is somewhat disturbing. It would be nice 

if such a problem is resolved. 

MUTS is strong in storage efficiency, ease of use and is fairly robust on smooth 

and moderately rough problems. It is able to deal with non-separated boundary 
condition directly. Its flexibility on the use of storage brings a unique storage efficiency 

to the code, but it does not have the ability of detecting the shape of the solution all by 

itself and it is not as reliable as the other three codes. Like HAGRON, it may take a 

huge amount of computing time yet fail to solve a certain problem. Its numerical 

solutions are generally very accurate but the accuracy depend heavily on the number of 

output points. Compared with the other three codes, it also seems to be slower. In 



order to be competitive with the other three (especially on rough problems), significant 

improvement concerning its robustness and speed has to be made. We also notice, 

however, that MUTS is based upon multiple shooting method which is not the best 

choice for dealing with problems of singular perturbation type. Users should keep this 

point in mind when solving problems of singular perturbation type. 

Finally, we point out that our comparison is based on the eleven test problems 

and the conclusions may be changed if one is only concerned with a certain type of 

problem or a certain aspect of the codes. Our goal has been to provide some useful 

discussion and raise some questions on the comparison of ODEBVP codes, as well as 

to provide some useful information to the code user. We hope a reader can benefit from 

our discussion in these two respects. 
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Appendix (I) Testing and Test Problems 

All testing involved in this thesis was done on Simon Fraser University MTSG 

(IBM-4300), using the Fortran 77 compiler and double precision. The smallest double 

precision machine number on SFU MTSG is approximately 2.0~10-16. 

Most of the eleven test problems we selected have a parameter that controls 

the difficulties of the problems. For these problems, we set the parameter to four 

different values to get four different degrees of difficulties, and then for each degree of 

difficult we vary the value of tolerance a few times (the values of tolerance we usually 

choose are l.D-2, l.D-4, l.D-6 and l.D-8) to collect the information shown in the 

tables in Appendix 111. If we distinguish the same test problems with different degrees 

of difficulties, then the total number of test problems we have is 35. Among the test 

problems, L7 is only used in our discussion concerning robustness. No run concerning 

this test problem is recorded. 

As the major reason for abnormal exits from COLNEW, COLSYS and 

HAGRON is that the user supplied storage is insufficient, it is important that when 

we speak about an abnormal exit of this kind, the corresponding amount of supplied 

storage is available for reference. During our testing, we provided all the three codes 

with a fixed amount of workspace (represented by the sum of IPAR(5) and IPAR(6)) 

which accounts for more than 99% of the total storage supplied to the codes. The sum 

of IPAR(5) and IPAR(6) is fixed to be 200,000 throughout our testing. This fixed sum 

translates to a limit on the maximum number of grid points that each code can use. 

When setting IPAR(3) in COLNEW and COLSYS to its default value, for the two 

dimensional problems, the limit on COLNEW is 2856, the limit on COLSYS is 3124. 

For three dimensional problem, this limit is 1297 for COLNEW and 1427 for COLSYS. 

For a five dimensional problem, this limit is 583 for COLNEW and 618 for COLSYS. 

For HAGRON, this limit is 4857 for two dimensional problems, 2766 for three 

dimensional problems and 1264 for five dimensional problems. Thus when we speak 

about an abnormal exit due to insufficient storage from one of the three codes, the 

storage refers to the sum described above. 



The CPU time is recorded by using a MTSG system subroutine TIME that can 

provide a measurement of CPU time in milliseconds. The CPU times in the tables in 

Appendix 111 are all in milliseconds. When we repeat runs for a code with a fixed set of 

input parameters on a test problem, we observed that the CPU time for each run may 

vary quite a bit. The maximum variation we observed is about 5%. 

The maximum errors recorded for all the four codes are the maximum absolute 

errors between the numerical solutions from the codes and the exact solutions. For 

HAGRON and MUTS, this maximum error is based on the absolute errors calculated 

at all the final mesh points. For COLNEW and COLSYS, we recorded both the 

maximum error at their final mesh points (first type of maximum error) and the 

maximum error at 30 equidistant points in the domain (second type of maximum error). 

Due to the fact that the form of the numerical solution is discounted when we evaluate 

the relative efficiency of the codes, our focus on the maximum error from COLNEW 

and COLSYS has been the first type of maximum error. In our discussion in Chapter 

Four, unless specified, the maximum error involved for these two codes is the first 

type of maximum error. 

When we evaluate the relative efficiency of the codes, we have to compare the 

size of the errors. If the ratio of two errors is between 0.1 and 10, we consider that 

they are of the same size. 

We did not intend to fully explore the potentials of the four codes due to various 

expenses. One may use a good initial guess to save some CPU time or even to 

compromise the problem of insufficient storage. One may also consider using 

continuation to fully utilize the partially converged results from the previous runs. But 

during our testing, we did not go that far, rather we always set the initial guess to zero 

if an initial guess is needed or set them to one if zero is obviously not the correct 

guess. Having noticed that the accuracy for MUTS is often affected by the total number 

of output points and the accuracy for COLNEW and COLSYS may be affected by the 

setting of IPAR(2), when we run MUTS we always vary the output points among the 

following set of values (20,50,100,200,300) and record the run corresponding to the 

smallest number in the set that results in an accuracy that is of the same size as or 

smaller than the one of the related tolerance (more specifically, ER(2) for linear 

problems and ER(1) for nonlinear problems). When we run COLNEW and COLSYS, 



we usually vary IPAR(2) a bit and record the run with the best accuracy. This is not a 

big trouble since the legal values for IPAR(2) is very limited. We would like to point 

out here that the runs we recorded are not necessarily the favourable runs for the 

codes since as the the accuracy increases, the CPU time and the storage requirement 

usually increase as well. 

When using COLNEW, COLSYS and HAGRON on the ten test problems, for 

each run the tolerances are all set to the values shown in the first columns of the 

tables in appendix 111. When using MUTS on the linear problems, ER(1) is set to be 

ER(2)/100 and ER(2) are the values that are recorded in the first columns of the table 

in Appendix 111. When using MUTS on nonlinear problems, ER(1) is recorded in the 

first column of the tables in Appendix I11 and the corresponding ER(2) is set to be 

ER(1)xlOO. The resulting test problem dependent comparison in Chapter Four is 

totally based on the testing described above. Should the method of testing be different, 

the observations may not be the same. 

The following is the set of eleven test problems we collected. They are all 

artificial problems where the exact solutions are known. Except for L5, L6 and the four 

nonlinear test problems that we added ourselves, the test problems are from [2], [ S ] ,  

[6] and [17]. 

Linear Test Problems 

(LI .al) 

(LI .a2) 

Boundary condition: 

Exact solution: 

~ ~ ( 0 )  = 2, ~ ~ ( 0 )  = ~ ~ ( 1 )  = ~ ~ " ( 0 )  = ~ ~ " ( 1 )  = 0 (Ll  .b) 

-x 
y, = e x p ( 7 )  + cos(m) 

1 07 

(LI .el) 



y2 = sin(nx) (Ll .c2) 

ql(x) and q2(x) are functions such that yl and y2 satisfy LI .al&a2. 

2: Equation(TPT): 

-3Ey 
Y" = (& + t2)2 -0.1 <t<O.I (L2 .a) 

Boundary Condition: 

Exact Solution: 

3: Equation(0SC): 

Boundary Condition: 

Exact Solution: 

Boundary Condition: 

where ti9 is an odd integer. 

Exact Solution: 



5: Equation(BL): 

Boundary Condition: 

Exact Solution: 

Boundary Conditon: 

Exact Solution: 

( M .  b2) 

( M .  b3) 

(U.b4) 



Boundary Condition: 

u'(0) = u(1) = 0 

Exact Solution: 

Nonlinear Test Problems 

I :  Equation(SM): 

Boundary Condition: 

y1(0) = 1, y2(0 = e1 

Exact Solution: 

y, = e-2t , Y 2 = 8  

(NI .al)  

(NI .a2) 

( N l  .b) 

(NI .c) 



yl' = 3 r yZ2 COS( rx ) O c x c l  

y2'= - r c o s ( r x )  

Boundary Condition: 

yl(0) = 0, y , ( l )  = - sin( r ) 

Exact Solution: 

yl = s i d (  rx ), y2 = - sin( rx ) 

Boundary Condition: 

Exact Solution: 

~ 1 '  = 2( Y3 - Y,) Ocxc l  

y2' = y4 + ys - x - 2 sin(x) 

Boundary Condition: 



Y ~ O )  = ydo)  = 0 (N4.bI) 

y2(I) = e, y3(I) = e + I ,  yS(I) = sin(I) + e (N4.62) 

Exact Solution: 



Appendix (11) The Graphs 

As a reference for our discussion in Chapter Four, we include here the graphs 

we produced for test problems L1, L4, L5 and some of the graphs for N3. 

In order to support our discussion in Chapter Four, we produced two types of 

graphs. The first type are those used to show the distributions of the final mesh points 

versus the shapes of the exact solutions. The second type are those that are used to 

show the graphs of the absolute errors versus the exact solutions. We were hoping 

that these two types of graphs can guide us to some patterns concerning the 

behaviours of the distribution of the final mesh points or the locations of the maximum 

absolute errors at the mesh points. The detailed discussion about our finding is in 

Chapter Four. 

To visualize the distribution of the final mesh points, we used the histogram of 

these points. A histogram is a bar chart where the height of a bar stands for the 

number of data (in our case, the number of points in the final mesh) that fall into the 

interval on which the bar stands. Thus if two bars have the same widths and heights, 

that means the same number of data points fall into the two intervals on which the two 

bars stand and therefore the two intervals have the same average density of data 

points. With a fixed width, the higher the bar, the higher the average density of data 

points in the interval. To visualize the pattern of the errors at the mesh points, we 

simply graph the error functions (the difference between the numerical solution and the 

exact solution at the mesh points) and then compare it with the exact solutions. Often, 

the magnitude of the heights of the bars and the magnitude of the error functions are 

too far apart from that of the exact solutions. In these cases, we made some 

adjustments so that everything in our graph is of the same magnitude. Otherwise, the 

error functions would look like a straight line. 

On each graph, most of the related important parameters are indicated. All the 

graphs are annotated. In the annotations, Y, Y1 or Y2 are used to denote the exact 

solutions and ERROR, ERROR1, ERROR2 are used to denote the error functions. The 

width of the bars in the histogram are indicated in the graph. The adjustment we made 

is also indicated in the graph. For example, 13*Y1 in GP1 means that the first solution 

for the problem shown on the graph is the first exact solution multiplied by 13. We 

used 'the frrst solution' here and hope that this will not cause too much confusion. 



COLNEW.Ll (EPS ;. 1 .D-3, TOL = 1 .D-G) 
I3rors nl llio Final Mesh 130inls lor Y 1 - 



COLSYS.Ll (EPS - 1 .D-3. TOL = 1.0-6) 
DistriLwlion of Iho Final Mesh Points 



COl-f YS.LI (III'S = 1.0-3, TOL 1 .D-G) 
Errors nl llio I W l  Mcsh I'oinls for Y 1 

COLSYS.Lt jl3'S - 1.0-3. TOL = 1 .D-G) 
Errors nI llro I'irrol Mosh I'oinls lor Y 2  .-- --- 



I.IAGlION.Ll (EPS = 1.0-3, TOL = 1 .D-G) 
Errors ial tho Final Mosh Poinls lor Y1 .---- 
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I.IAGnON.Ll (EPS = 1.04, TOL E 1 .D-G) 
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J I 1i.L 1 (Cl'S.-- 1.0-3. TOL1=1 .D-6. T01.2=1 .D4) 
Ijrrors nl lho I~IKII Mash I'oinls lor Y 1 - ---.*- 

MU'I'SLl (EPS-1 .D3, TOLl -1 .D-G, TOL2=1 .D4) 
Errors nl llro Izinal Mosli Points lor Y2 

--.-- .-- 



COLNEW.1-4 (EI'S = 1 .D-2. TOL = 1 - 0 - G )  
Errors al 1110 1-inn1 Mosh I1oinls - .-. ---- - 



C0LSYS.l-4 ( E l 3  = 1.0-2, TOL - 1 .D-6) 
I'rrors al tho Final Mesh I'olrils - - - . -- - _ _  - 

COI.SYS.L4 (EPS I 1 .D-2. TOL - 1.0.6) 
Dislribulion of llw Flnal Mosh Poinls ---- - 

I 
T l n  rIl!l~ rlao ol UWI IdsloU(a111 IS 111 1 



I IAGI\ON.L4 ( W S  = 1.0-2. TOL = 1 .D-G) 
Dislrihulion of 1110 Final Mosh Poinls 
.--.- -- - 

I 
1 lu rlqc ruo ol UUI Ihlqpan k 111 1 

I~IAGI2ON.LI (EPS = 1.0-2. TOL = 1 .D-G) 

- -- 
Errors a1 1110 Izinnl Mash Poinls 



C0LNEW.I-5 (EPS = 1.0-2, TOL 0 1 .D-4) 

-- - Oislribulion of 1110 Final Mosh Points 

COLNEW.LS (EPS - 1 .D-2. TOL 1 .D-4) 

- .- 
Errors al Iho Final Mosh Polnls 



COLNEW.LS (EPS = 1 .D-2, TOL = 1 .D4) 
Dislribulion of 1110 Flnrrl Mosh Poinls 

COLSYS.LS (CPS = 1 .D-2. TOL - 1 .D-4) 
Errors a1 tho Final Mosh Polnls 



I-IACI1ON.LS (EPS = 1 .D-2. TOL 9 1.0-4) 
Dislribulion of Itlo Final Mosli Poinls 

- 1 1  I 
0 U 0.2 
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1 lu rlup rlre 01 llw 1ILlogca111 b 111 1 

t-1AGRON.LS (EPS 0 1 .D-2. TOL'- 1 .D-4) 
Errors at tho Final Mosh Points 



MUTS.LS (EPS-1 .D-2. TOLl=l .D-3. TOL291 .D-10) 
Dislribulion of lho Final Mosli Points 

MUTS.LS EPSaI .D-2. TOL1-1 .D-9.TOL2-l.D-10) 
krrors at tho Anal Morh Polnls 



MUTS.N3 (EI3S=1 .D-2. TOL1=1 .D-2. TOL2-1 . D l )  
- Dislribulion of 1110 Final Moslt Points -- 



Appendix (111) Testing Results 

This Appendix has three parts. The third part contains all the raw data we 

collected. The first two parts of each contains some condensed information concerning 

a specific aspect of the data. These two parts are based on the data we have in the 

third part and may help the reader to understand better some of the conclusions we 

have in Chapter Four. 

I: Timing Efficiency 

I .a) Quality of Solution Oriented Efficiency 

In the tables shown below, we compare the timing efficiency of the four codes a 

pair at a time. At the top of each table, the two codes that are compared is stated. The 

first column of each table contains the values of eps, and the first row of the table 

contains the problem number (see test problems in Appendix I). The rest of the cells 

are used to indicate our opinion (based on the data we collected) concerning the 

relative timing efficiency of the codes stated above the table. If '@' is shown at, say 

the cell corresponds to L2 and 1.0-2, it means that the first code shown above the 

table is more efficient than the second one on test problem L2 with an eps 1.0-2 in  

terms of the quality of solution oriented efficiency. On the other hand, '%' will be used 

to indicated the opposite. If such a relative efficiencies is not clear from our data, we 

will leave the cell blank. However, NI and N4 do not have an eps and L6 has two 

parameters that can vary. In order to make it easy for the reader to visualize the 

overall comparison concerning all the test problems, we include the comparison 

concerning these three test problems in our tables, and hereby remind the reader that 

cells in the columns headed by NI and N3 represent the same test problems. For cells 

in the column headed by M, 1.0-2 represents (0,1), 1.0-4 represents (43) and so on. 

To see how the tables are filled, when running L1 with eps equal to 1.0-2 using 

COLNEW and COLSYS, from data table 1 and 2 one can see that for the four runs we 

listed, if we match the maximum errors produced by the two codes and compare the 

corresponding CPU times, COLNEW is faster. e.g. when the first type of maximum 

error is I .D-4,1.D-6 and 1 .D-8, respectively, the corresponding CPU times (in 

milliseconds) for COLNEW are 140, 226, and 441; for COLSYS these CPU times are 

18.5, 324, and 373. Thus we put in the cell in the first table below that corresponds Ll  

and 1 0 - 2  a '@'. The comparison conducted here is subjective. As a supplement to this 



comparison, all the raw data we collected are attached in the raw data tables in the 

third section of this Appendix. 

There are two different types of tables that involve COLNEW or COLSYS. The 

first type of tables compares COLNEW or COLSYS to other codes by using the first 

type of errors from the two codes (see Appendix I), and the second type uses the 

second type of errors. Whether or not a table is in the first or second type is indicated 

by the heading of the table. 

It should be noticed that we do not compare a code to other codes in terms of 

quality of solution oriented efficiencies on the problems it fails to solve, and we put 

into the cells that correspond problems on which at least one of the two codes 

compared completely fail one of the following three symbols: ff, sf and fs. 'ff' stands for 

both codes compared failed, 'fs' and 'sf' stand for when only the first code and only the 

second code failed, respectively. 

Codes: COLNEW and COLSYS (Type I) 

Codes: COLNEW and HAGRON (Type I )  

Codes: COLNEW and MUTS (Type I )  



Codes: COLSYS and HAGRON (Type I) 

Codes: COLSYS and MUTS (Type I) 

Codes: HAGRON and MUTS 

- -  -- - 

Codes: COLNE W and COLSYS (Type II) 

Codes: COLNEW and HAGRON (Type 11) 



Codes: COLNEW and MUTS (Type 11) 

Codes: COLSYS and HAGRON (Type 11) 

Codes: COLSYS and MUTS (Type 11) 

I .b) Relative Efficiency Involving the Tolerance Settings 

The following tables compare the resulting CPU times for the cases where the 

codes have the same tolerance setting, and the maximum absolute errors from the 

codes are of the same size as or less than the tolerance. By doing so, the exact values 

of the maximum errors are discounted but the response of the solution to the input 

tolerance is partially utilized. To users who want to interpret the input tolerance as the 

upper bound of the maximum absolute errors they prepare to tolerate, and only demand 
that the errors are of the same size as or less than the tolerance, such a relative 
efficiency answers the question that how efficient the codes can be in terms of the CPU 

times they need to satisfy the users' demand. Should the maximum relative errors be 
available, a timing efficiency in terms of the CPU times needed by the codes in order to 

achieve relative errors that are of the same size as or less than the specified tolerance 

may also be revealed. 



The approach of revealing the relative efficiencies we described above is a 

compromise between the approach that compares the codes only under the similar 

input parameter settings and the quality of solution oriented comparison where the 

input parameter settings are not involved. Compared with the approach that compares 

the codes only under the similar parameter settings, the above approach takes into 

consideration some of the responses of the solution to the tolerance, in the sense that 

the relative efficiencies are evaluated under the condition that the maximum errors are 

not greater than the tolerance. When compared with the quality of solution oriented 

comparison, the information concerning the quality of the solution is not fully utilized 

but it takes into consideration the relationship between the solution and tolerance. 

The approaches we newly discussed here may be useful and practical if the role 

that the tolerance plays in the termination criteria is further explored and the 

magnitude of the solution is also taken into consideration. We mentioned in Chapter 

Four that accuracies of the numerical solutions from HAGRON appear to have a 

stronger relationship with input tolerance than that of the other codes. This is also 

indicated by the observation that while the accuracies of the solutions from the codes 

are usually all less than the input tolerance, the solutions produced by HAGRON are 

often closer to the input tolerance than the solutions of the others. If a user is satisfied 

as long as the accuracy is close to a certain value of the tolerance ( i .e .  a better 

accuracy is not needed), then HAGRON has an clear advantage as it usually does not 

spend much time trying to improve the solution that is already satisfactory. This brings 

HAGRON a better timing efficiency as one can see from the tables below. 

Note: The meaning of '@', '%' and 'ff' etc. are the same as they are in I .a 

Codes: COLNEW and COLSYS (Type I )  



Codes: COLNEW and HAGRON (Type I) 

Codes: COLNEW and MUTS (Type I )  

Codes: COLSYS and HAGRON (Type I) 

Codes: COLSYS and MUTS (Type I) 

Codes: HAGRON and MUTS 



Codes: COLNEW and COLSYS (Type 11) 

Codes: COLNEW and HAGRON (Type 11) 

Codes: COLNEW and MUTS (Type 11) 

Codes: COLSYS and HAGRON (Type II) 

Codes: COLSYS and MUTS (Type 11) 



2: The Degrees of Difficulties of the Test Problems Where the Codes Failed 

The following tables indicate the degrees of difficulties of the test problems at 

which the codes failed or program failure started to occur. By 'failed at certain degree of 

difficulty of a problem', we mean that the four runs that correspond to four different 

tolerance settings on a test problem with a certain degree of difficult all failed, and in  

this case we put a '@' at the corresponding cell. e.g. COLNEW failed on L1 when eps 

is set to I .D-8 for all the four runs, thus we put a '@' at the cell that corresponds to L1 

and 1.0-8. If not all runs failed but at least one of the runs did, we will put a '%' in  the 

corresponding cell. Should a code successfully solve a problem at all the four runs, we 

will leave the corresponding cell blank. For a complete set of code failures on the test 

problems and the reasons for failures, see the raw data tables in the next section. 

Codes: COLNEW 

Codes: COLSYS 

Codes: HACRON 



Codes: MUTS 

3: Raw Data Tables 

The tables below contain the detailed results from our testing. In Appendix I, 

we have provided the details about our testing. With those details and the parameters 

shown in the tables below, the testing should be fairly easily reconducted. The 

meaning for the headings of each column in the tables are explained at the bottom of 

each table. The following is a list of notation we use to indicate various abnormal exits 

from the codes: 

% - The supplied storage is not enough (exit with solution); 

@ - The supplied storage is not enough (exit with no solution); 

* - Program overflow; 

# - Wrong solution (due to unreasonably big error); 

- 
$ - Elapsed time is more than 114 hour (runs are stopped manually); 

$$ - The number of iterations needed exceed 50. 

One may notice that some of the tables are left blank. This is because the code 

failed to solve the problem with lower difficulties (usually this is indicated by the 

results in the tables above the blank tables) and the failures are accompanied by big 

costs. It is difficult for us to quantify everything we say. For example, when we say 



'wrong solution due to unreasonably big error', we just want to remind the reader that 

the error indicated by I#', in our opinion, is too big or at least unusual. One may hold a 

different view about this if one takes into consideration the magnitude of the maximum 

value of the solution or the relative error. Often, when a code fails because the 

supplied storage is not enough, it may be able to provide the user with the partially 

converged solutions. '96' in the above list is used to indicated the failures of this type. If 

the current mesh points and the partially converged solution are not available at the 

time a code fails, we use @ above to indicate the failure. 
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