
COMPARISON OF FOUR CODES FOR

SOLVING BOUNDARY VALUE PROBLEMS FOR ORDINARY

DIFFERENTIAL EQUATIONS

Min Cao

B .Sc., Lanzhou University, 1985

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department
d

Mathematics & Statistics

O Min Cao 1990

Simon Fraser University

November, 1990

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopy or other means, without the permission of the author.

APPROVAL

Name: Min Cao

Degree: Master of Science (Numerical Analysis)

Title of Thesis: Comparison of Four Codes for Solving Boundary Value

Problems for Ordinary Differential Equations

Examining Committee:

Chairman: Dr. A. Lachlan

- - - - - - - - - - - - w--------I<-
Dr. M. Trummer

- - - - - 4 - - - - - - -&--,--------
Dr. T. T g
External Examiner

PART I A L COPYH I Gt iT L l CLNSC
. \

I hereby g r a n t t o Simon Fraser- l l r l i v e r s i t y tho r i g h l to lend

my t h e s i s , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown be low)

t o users o f t h e Simon Fraser U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e cop ies o n l y f o r such users o r i n response t o a reques t f rom t h e

l i b r a r y o f any o t h e r u n i v e r s i t y , o r o t h e r educa t iona l i n s t i t u t i o n , on

' i t s own beha l f o r f o r one of i t s users . I f u r t h e r agree t h a t pe rm iss i on

. f o r m u l t i p l e copy ing o f t h i s work f o r s c h o l a r l y purposes may be g ran ted

by me o r t h e Dean o f Graduate S tud ies . I t i s unders tood t h a t copy ing

o r pub1 l c a t i o n o f t h i s work f o r f i n a n c i a l g a i n sha l 1 n o t be a l lowed

w i t h o u t my w r i t t e n permiss ion.

T i t l e o f Thes is /Pro ject /Extended Essay .

Author : - -
(s i g n a t u r e)

(name

(d a t e)

Comparison of Four Codes for Solving Boundary Value

Problems for Ordinary Differential Equations

Abstract

The focus of this thesis is to compare four codes for solving boundary value

problems (BVP) for ordinary differential equations (ODE), namely COLNEW,

COLSYS, HAGRON and MUTS. Background information concerning the riumerical

methods that underlay these four codes, as well as information concerning how to use

the four codes, is included. The four codes are compared according to many important

criteria such as robustness, timing, and ease of use.

A considerable portion of this thesis is devoted to the discussion of various
issues concerning the comparison of codes, such as the validity of conclusions

resulting from a comparison of codes and the methods for making a comparison. The

need for and the difficulties of comparing codes, in particular in our context of solving

BVP for ODE, are discussed. A traditional method of comparison where the

performance of the codes are compared under similar input parameter settings is

examined. A different approach that compares the performance of the codes under the

condition that the numerical solutions produced by the codes are of the similar quality
is proposed. The relationship between these two approaches, as well as their relative

merits, are also discussed.

To my parents

Acknowledgements

I am deeply indebted to my family, especially to my mother Kun-Xiang Lan, my

father Kan Cao, for their constant encouragement, and to my wife Xiu-Qing Chen, for

her full support and her help in typing this thesis.

I would also like to express my appreciation for the useful comments I received

from Dr. B. Bhattacharya, Dr. M. Trummer, and Dr. T. Tang. I sincerely thank Mrs. S.

Holmes for her keeping me informed of the important deadlines related to my defence

and submission of this thesis, and Mrs. C.E. Dwyer for her help with my English.

Finally, I would like to thank my supervisor Dr. R.D. Russell for his patience,

suggestions and many important discussions I have had with him in the one year

period of writing this thesis.

Table of Contents

Title Page

Approval

Abstract

Dedication

Acknowledgements

Table of Contents

Introduction

Chapter One: BVP for ODE and Some Related Issues

1.1 BVP for Ordinary Differential Equation
1.2 A Few Methods for Solving IVP for ODE

1.3 Some Ideas for Solving BVP for ODE

Chapter Two: The Comparison of the Codes (I)- the Difficulties
and Criteria for Comparing BVPODE Codes

2.1 The Comparison of Codes and the Validity of Its results

2.2 Criteria for Comparing Codes of BVFODE and Their Classification
2.3 Comments on the Criteria We Choose
2.4 Numerical Methods Related Issues and the

Principle of Our Comparison

2.5 The Selection of Test Problems

Chapter Three: How to Use the Four Codes

3.1 COLNEW and COLSYS
3.2 HAGRON

Page

I

I I

i11

IV

v
VI

1

5

5
9

13

2 1

2 1

24

25

29

29

33

33
43

Chapter Four: The Comparison of the Codes (11)--the Basic Design
and the Results of Our Comparison.

4.a The Basic Design of Our Comparison

4.b The Comparison of the Codes

4.c The Conclusions

References

Appendix (I): Testing and Test Problems

Appendix (11): The Graphs

Appendix (In): Testing Results

Introduction

The proliferation of mathematical software has increased the need to develop

methods of evaluating the software, in order to determine their relative merits. The

software user, on one hand, certainly needs information concerning the relative merits

of the software in order to use them properly. The numerical analyst and the software

developer, on the other hand, need to evaluate their own software in order to compare

with others'. It becomes a common practice among the numerical analysts to use

software evolution and comparison to provide justification for their methods and

programs [6], [17].

a) Three commonly used methods of comparison

The evolution of software usually has three stages as illustrated by Figure 1.

Naturally, three types of comparison are common: 1) The comparison of methods by

using some theoretical criteria, 2) The comparison of algorithms (e.g. in terms of

operation counts), 3) The comparison of codes.

In a field of high complexity such as the numerical solution of boundary value

problems for ordinary differential equations, the comparison of methods suffers

technically from the fact that the numerical methods can be so different that they may

have little common ground to be compared with. The comparison of algorithms also has

serious drawbacks. Pereyra and Russell gave the following good example of the

drawback of comparison of algorithms in [17]. Operation counts for collocation and

Ritz method for solving elliptic PDE (partial differential equation) have been made in

[18], [l l] , [9] and [26]. Each contains modifications of the algorithms giving improved

operation counts over the previous results. While the second and the third view

collocation as more efficient, both in terms of the counts and the authors' resulting

Numerical Methods

Figure 1

Algorithms

i

Codes

codes, the fourth improves upon the counts for Ritz method and concludes that Ritz is

more efficient.

Apart from the drawbacks of the first two types of comparison, the need for the

comparison of codes is also reflected by the facts that neither the comparison of

methods nor the comparison of algorithms provide certain information about the codes.

Figure 2 further illustrates this point. The fact that there are different ways in which a

method or an algorithm can be implemented severely weakened the connection

between the observations resulting from the first two types of comparison and the

observations from the comparison of two specific codes. The comparison of codes

therefore cannot be replaced by a trivial extension of the observations from either one

or both of the first two types of comparison. It is our view that the results from the

three different types of comparison are not that closely related and consistent as they

appear to be. Neither does the superiority of an algorithm resulting from the second

type of comparison imply the superiority of some codes based upon that algorithm, nor

does a superior method necessarily lead to a superior code. In one words, in the

process of software evolution, superiority at one stage may not be inherited by the

stages that follows. This puts the comparison of codes into an irreplaceable position of

its own and it often makes the first two types of comparison less attractive, especially

to the user of the codes, since for them, it is the performance of the codes, not the

superiority of the methods or the algorithms, that counts the most.

Figure 2

&Numerical Method

Algorithm 1 Algorithm 2

Code 1 Code 2 Code 3 Code 4

One may notice that so far we have not fully explained what we mean by

'superior' and what we mean by the comparison of methods or the comparison of

algorithms. Unfortunately, the literature of software evaluation is by no means near

maturity. There are few criteria of comparison that everybody agrees on. Thus

'superior' and 'comparison' are very much subjective concepts. While it seems

unrealistic to have a set of criteria for evaluating all kinds of software, if we restrict

ourselves in a specific field, meaningful comparison is not impossible.

b) An overview of this thesis

In this thesis, we shall concentrate on comparison of four codes* for solving

boundary value problem (BVP) for ordinary differential equation (ODE). Our purpose

is to discuss various issues concerning the comparison of codes in this specific field

through actually comparing four of them. Users of these codes may also benefit from

our discussion.

The first chapter of this thesis covers some background material concerning the

boundary value problem for ordinary differential equation and the basic numerical

methods that eventually lead to the four codes. The last three chapters discuss the

criteria for comparison and describe the four codes that we are interested in.

Comparison of these codes centred on the discussed criteria is then conducted.

More specifically, Chapter One serves as an introduction to BVP for ODE and

the initial value problem (IVP) for ODE. It also contains description of some simple

numerical methods that aimed at solving IVP and BVP for ODE. The difficulties of

BVP for ODE are examined from a numerical analysis point of view.

Chapter Two is devoted to various criteria and difficulties for comparing

mathematical software, in particular, the criteria and difficulties for comparing

ODEBVP codes. It also carries on the discussion about the relationships among the

three types of comparison we mentioned in the last section. No sophisticated

mathematics is involved in this chapter. Users of BVP codes may find this chapter

useful.

Chapter Three consists mainly of the description of the four codes we compare.

Since all of them can be fairly difficult to use, especially to users who have little

experience with BVP for ODE, and some of them do not have complete documentation

available due to the undergoing changes, our description is aimed at diminishing this

problem by providing guidance on how to use them.

Chapter Four is a detailed report of the comparison of the four codes. It covers

both how the comparison is conducted and what we observed through our comparison.

It is important that the observations are only valid for the versions of the codes we

currently have. However, some of the observations are unlikely to be affected by any

future implementations. We shall point this out whenever we go through situations of

this kind.

* The list of the four codes and the date they were received:

COLNEW by Bader, G. and Ascher, U.. Received in October 1988.

COLSYS by Ascher, U., Christiansen, J., and Russell, R. D.. Received in July 1988.

HAGRON by J.R. Cash and Margaret H. Wright. Received in May, 1990.

MUTS by R. M. M. Mattheij and G. W. M. Staarink. Received in November 1988.

Chapter 1 BVP for ODE and Some Related Issues

This chapter is concerned with background material about BVP for ODE

including the general formulation of a BVP for ODE, the numerical methods for BVP

and the numerical methods for the related problem of solving IVP for ODE. Section 1

discusses various forms of ordinary differential equations and boundary conditions.

Section 2 describes briefly how a few typical IVP methods work. Section 3 describes

the basic idea of those numerical methods that are related to the four codes. We do not

intend to provide detailed discussion about IVP and BVP theory. Also we assume that

the reader has certain numerical analysis background. Thus we merely describe some

basic ideas to acquaint the reader with how IVP and BVP are solved numerically. We

shall also emphasize those issues that separate BVP methods from IVP methods.

I .I BVP for Ordinary Differential Equation

Example 1 .I .I

A simple second order IVP has the form

y" = f (x, YI Y')

Similarly, a simple second order BVP has the form

If f(x,y,y') is linear in y and y', then we have a linear equation. It takes a

simpler form

Y"(x)- c,(x)Y'(x) -c~x)Y(x) = dx). (1.l.lb)

where co(x), cl(x) and q(x) are functions of x. Usually one assumes that general

ordinary differential equation can be written as a first order system

where y(x)=(y,(x), ...,yn(x))T is the unknown function and

is generally a non-linear right hand side. For linear problems the ODE simplifies to

Y #=A (x)Y + dx) acxcb (1.1.3b)

where the matrix A(x)~R""and the vector q(x)€Rnare functions of x.

Some of the BVPODE codes deal with first order systems exclusively. Among

the four codes we are interested in, HAGRON and MUTS require the user to change

high order equations into a first order system before they can be applied. To show how

to convert a high order ODE into a first order system (also see [2]), we consider the
general form of the mixed order ODE system that has d equations and the ith equation

is of order mi

where m,'s are integers and f,'s are generally nonlinear functions.

Let Z(U) = (U ~ , U ' , , - . , U , ~ ~ - ~) ~4,"',~d,"',~~m1-1))T, then (1.1.4) is converted to the form of

(1.1.3~)

A first order system of ODE (1.1.3~) is normally supplemented by a two-point

where g = (gl,g2,-.-,gJT is generally a nonlinear function and 0 is the zero vector in Rn.

One may notice that (1.1.5~) is a special case since only two end points are involved.

Nevertheless, it is the most popular form of boundary condition for an ODE, and most

BVPODE codes can only be applied when the boundary condition for an ODE is in this

form. When g is linear in y(a) and y(b), we have linear boundary condition. The general

form of linear two-point boundary condition for a first order system is

where B , , B ~ E R"",JkRn. A very important case arises when (I .I Sb) simplify to (also

see Chapter One in 121)

(I .I Sc) is called separated linear boundary conditions. Similarly, if (I .I 5a) simplify to

then we have separated nonlinear boundary condition. A significant portion of the

currently available software for BVP assumes that the boundary conditions are

separated. In fact, general boundary conditions (I .I Sa) can always be convened to

one with separated boundary conditions [2]. More general boundary conditions arise

when there are some other points rather than just two end points that are involved in a

boundary condition. We call this kind of boundary condition a multipoint boundary

condition. Linear multipoint boundary conditions have the form

where Bl,B2,-..,BJ~R",$~Rn and a = xlc x2 c ..- c xJ = b. The most general form of

multipoint boundary condition of interest is of the form

(I .I Sf)

where a = x, ex2< ... <xJ = b and g,'s are linear functions.

(1 .I .4) together with (I . I .Sf) form the most complicated BVP for ODE that can

be directly handled by the available BVPODE codes so far.

A multipoint BVP, like a high order ODE, can be converted to simpler form [2].
By transforming each of the subintervals [xi, xi+,] onto a fixed interval, say, [OJ] and

writing the ODE for the independent variable

for j = l,Z,.-,n

one can transfer a multipoint BVP into a two-point BVP. To see how this works, We

consider the following example:

X - X .
where A(x), B,, ..., BJ€Rmn; q(x), &Rn, and a = xl<x2< ... <xJ = b with t = -.--A- for

X,+l - xj
j=I ,..., J - I . (1 . I .6) becomes n ODEs on [O,I]. We thus have in total (J-1)xn ODEs.
With new variable t~[0 ,1] , (1.1.7) becomes n B.C. which are specified at interval

endpoints 0 and I . These n new B.C. together with the nx(J-2) additional B.C.

resulting from the interior break points xi, j = 2,3,-- J-I will be the new B.C. for the (J-

1)xn ODEs resulting from the transformation.

HAGRON and MUTS solve only first order systems with two-point boundary

conditions. Using the above transformation, one can change any multipoint BVP into a

two-point BVP and then apply the codes. Thus the above transformation in some

sense justified these codes that deal with two-point BVP only. However, such a

transformation cannot be done without cost. As one can see from the example above,

the size of the system is dramatically increased after the transformation. When it

comes to solving the BVP by numerical means, this kind of size increase means that

the process will be more expensive than solving a similar system in its original size.

Sometimes the transformed system can be simply out of the reach of the BVPODE

codes, because of various reasons such as a code may be designed to handle an ODE

system of limited size.

1.2 A Few Methods for Solving IVP for ODE

Compared with the development of numerical methods for solving BVP,

literature for solving IVP was much earlier in maturing. Robust codes for IVP appeared

long before the births of the four codes we are about to discuss. Big software packages

such as NAG or IMSL have many reliable routines for IVP, but have only a few

routines for BVP. This is mainly due to the facts that BVP are generally more difficult

than IVP in the context of numerical analysis, and the difficulties of BVP was not fully

recognized until the last decade. To understand the difficulties of BVP, it is essential

to know how an IVP and a BVP may be solved numerically. In this section, we will

discuss how some numerical methods for IVP work.

Consider a simple initial value problem

A partition of the domain 0 = to < t, <-.< rkc... generally has varied step sizes

hi = ti+, - ti. i.e. the value of hi depends on i . For simplicity, we will only consider the

special cases where his are all equal to a constant h. There are many IVP methods

that can be used to solve (2.2.1a&b). Roughly, they can be divided into two types. The

first type of methods is the so'called 'one step methods'. These one step methods

calculate ui+,, the numerical solution at point ti+,, using only information at r,. The

second type of methods is the multistep methods by which not only information at the

point ti but also information at ti.,, ti.z,-,ti.,(m >1) is used to calculate ui+,.

Example 1.2.1 : Euler's Method

The well known Euler's method is an explicit one step method where

The motivation for this formula is linear extrapolation [25] , as suggested in

Figure 1.2.1. If u, is given (set equal to the initial value u(O)), it is a straightforward

matter to apply (2.2.2) to compute successive values ul, u2, -., as is illustrated by the

simple algorithm below.

Figure 1.2.1 EulerS Method

Algorithm for Euler's method:

Step I: ~0 = u(0)

Step 2 : ui+/ = ui + hf(ti,ui) i = 1,2,...,n

There are two common ways that a one step method may be derived. One way

is to use Taylor expansion and another way is to use numerical quadrature. To see

how Euler's formula is derived, we expand the exact solution for (2.2.1a&b) u at ti

As R(ti+,) is of order of h2, it is negligible provided that step size h is small. When

R(ti+l) is negligible, the above equdtion is well approximated by (2.2.2) in the sense

that ui 's satisfying (2.2.2) are good approximations of u(ti)'s. Assuming that h is small

and R(t i+/) is negligible, by dropping R(ti) and replacing the exact solution u(t,) by

numerical approximation uk in the Taylor expansion above, we get Euler's formula. One

the other hand, one can use the fundamental theorem of calculus and use the following

equation

that is

Replacing the integral in the right hand side of the above equation by the quadrature

formula that approximates the integral using (ti+l-tJf(ti,u(tJ) and replacing the ti)'^ by

ui 's as we did above, we then have the Euler's formula.

Incidentally, most of the numerical methods for solving ODE (not just one step

methods) can also be derived by the two approaches we briefly explained above. For

more concerning the derivation of the numerical methods and the theoretical aspects of

the methods, please see [2] and [25].

Assume we know uis at the first m - I meshpoints:

An explicit m step method has the form

and an implicit m step method has the form

where ~tkJhJukJuk.,...,uk.J and p(rkJ ~ , U ~ + ~ , U ~ , U ~ + . . J ~ k L m) are known functions.

Example 2.2.2 : Some examples of multistep schemes are given below.

The Adams-Bashforth explicit four step method is

The Adams-Moulton implicit four step method is

In order to use an explicit m step method to solve (1.2.1 a&b), one needs to

know uJ,u2, ..., u,., to proceed. This is usually done by using a one step method, e.g.

Euler's method. A simple algorithm for an Adams-Bashforth method would be

Step 1: Calculate ul,u2,u3 by using some one step method

for i = 4,5,6, -..

The implementation of an implicit m step method is more complicated. While

one can still rely on a one step method such as Euler's method to calculate uJ, u2,-., u,.

,, more efforts are needed in the second step in order to calculate U,,U,+~,... . One

commonly used strategy is known as the Predictor-Corrector method. We use the

following simple algorithm for an Adams-Moulton method as an example to illustrate

how an implicit multistep method with a Predicator-Corrector technique is typically

implemented

Step I : Calculate U I , uz, ul by using some one step method

Step 2: Calculating ui for i =

2.1 Estimate uoi+, by some method, e.g. Adams-Bashforth scheme.

2 2 Calcufatej" = f(ti+l,~ni+,)

h
2 3 un+li+, = ~i + z[9f' + 1 ? f (~ ,u i) - 5f(ti. J.4. J) + f(fi.2rui.2) I

2.4 Go back to 2.2 until u"+'~+, converges to a satisfactory accuracy.

Generally, a simple one step method like Euler's method can be easily carried

out. A multistep method, especially an implicit multistep method, needs more effort.

But its order of truncation error is usually higher than that of Euler's method. Euler's

method has a local truncation error of order 1. In our examples, both Adams-Bashforth

and Adams-Moulton's methods are of order two [25]. Among the numerical methods

for ordinary differential equations, one family of methods, known as Runge-Kutta

methods, have been very widely used since it has the advantages of both a simple one

step method and a multistep method, i.e. it is a family of high order one step methods.

We only look at a simple example of an explicit Runge-Kutta method for IVP in this

section, and leave the discussion about general Runge-Kutta methods to the next

section. Like the one step Euler's method, an explicit Runge-Kutta scheme also has

the form

but the function q(ti,ui,h) is no longer necessarily a linear function of ui and f. The

following example is a second order Runge-Kutta method known as Heun's method.

Example 2.2.3: Heun's Method is

Since it is an explicit method, in order to apply it to solve IVP, the algorithm described

in example 2.2.1 can also be used for its implementation.

The above are a few well known IVP methods. What they have in common is

that they are all local in nature. Namely the methods are based on the relationships of

the numerical solution at only a few neighbouring (local) mesh points. e.g. an Adams-

Bashforth method is solely based on the a relationship among ui+,, ui, ui.,, ui-~, ui.~. The

fact that complete information about the solution at the initial point is known enables

these methods to be proceeded iteratively in a fixed direction in the sense that the

numerical solution values at the mesh points u,, uz,-, uk,-- are calculated one a t a time

in the order of their corresponding mesh points. It turns out that this is what separates

BVP methods from IVP methods (also see [2]). It is also the major reason that an

IVP is generally easier to solve numerically than BVP as one will see as we continue

our discussion.

1.3 Some ideas about solving BVP

The detailed methods and techniques involved in designing the four codes we

are interested in varies from code to code to different degrees. But the basic ideas that

lies behind them can be roughly divided into two types. The fist type of ideas are

those that suggest one solve a BVP for ODE via solving its related IVP. Numerical

methods based on these ideas are referred to as initial value methods (for BVP). The

second type of ideas involve spline-collocation or implicit Runge-Kutta approach, and

the related methods are referred to as finite difference methods. Among the four codes

we are interested in, only MUTS is based on a method that belongs to the first type

[15]. COLNEW and COLSYS use spline-collocation [3], [I]. HAGRON is based on

a special implicit Runge-Kutta methods with deferred correction [4], [5] , [6].

The first type of ideas is very natural in the sense that to construct a method

for solving BVP by relating a BVP to its corresponding IVP, one can then take ful l

advantage of the existing numerical tools for solving IVP. To see how this might be

done, we consider the following simple example

Example 1.3.1 Single shooting method for general linear two-point BVP

Consider a general linear two-point BVP

acxcb

where A(x), B,, B,E RhYn and y(x), q(x), PE Rn

If the general solution of (1.3.1~) y(x) can be expressed as

where Y(x) is a matrix function, s is a parameter vector (sER*) and v(x) is a particular

solution of (1.3.Ia), and if (1.3.1a&b) has a unique solution, then there must exist an

unique s that corresponds to this solution. To find such a s, let's substitute (I .3.2) into

(I .3.lb)

or

Letting

then we have Qs =J*. (1.3.3)

Thus s can be calculated by using (1.3.3) and (I.3.la&b) is then solved. However,

there still remain a few important questions that need to be answered: I) Does there

exist a general solution of the form (1.3.2) ? 2) Is there a unique solution to (1.3.3), i.e.
is the Q matrix nonsingular ? 3) What does the above process of solving BVP have to

do with solving IVP ?

Under the condition that A(x), q(x) are continuous on [a,b], and (1.3.1a&b) has

an unique solution, one can show that the n homogeneous first-order systems

Y'(x) = A(x)Y(x) acxcb (1.3.4~)

where Y(x),A(x),IER~*, I is identity matrix and the first-order linear system

v'(x) = A(x)v(x) + q(x) acxcb (1.3 Sa)

v(a) = a (a E Rn) (1.3.5 b)

will all have unique solutions [2]. Using the solutions of (1.3.4a&b) and (1.3.4a&b),

one can form a general solution of (1.3.1~) by substituting the solutions into (1.3.2).

Furthermore, the resulting Q matrix in (1.3.3) is then a nonsinguler matrix. To answer

the third question, we notice that both (1.3.4a&b) and (1.3.5a&b) are IVPs. Thus the

method described above can be.implemented by using the following algorithm that

involves heavy use of an IVP code.

Step I: Integrate (1.3.4a&b), (1.3.5a&b) numerically by using an IVP code,

and obtain Yh(b), vh(b) (the numerical solution of Y and v at b).

Step 2: Form Q and#* and solve (1.3.3) for sh.

Step 3: Integrate (1.3.1~) with the following initial condition

numerically using an IVP code.

The numerical solution of (l.3.Ia&c) is then the numerical solution
of (l.3.la&b).

We conclude this example by pointing out that despite its mathematical

elegance, the method described above is by no means always practical. One major

reason for this is the fact that yh(a) is only an approximation of y(a). When the IVP for

(1 . 3 . 1 ~) is very sensitive to the change of the initial value, use of yh(a) and y(a) as

initial conditions will lead to totally different solutions. In this case, the solution of

(1.3.1a&c) cannot be used to approximate the solution of the IVP (1 . 3 . 1 ~) with initial

value y(a) and is therefore not the solution of (l . j . la&b) . The techniques and methods

behind MUTS are far more sophisticated than what was described above [14].

Nonetheless, one can get some basic idea concerning how a BVP can be solved via

solving IVP from this example. See [2] for a complete coverage of shooting methods.

One may have already noticed that whether a problem is linear or not had little

effect on the IVP methods we discussed above. But nonlinear BVP have to be treated

quite differently and are usually considerably more expensive to solve than linear

BVP. The general idea of approaching a nonlinear BVP is to adapt numerical methods

for linear BVP and use Newton's iteration. To see how this can be done, we consider a

simple finite difference method-the trapezoidal scheme for solving (1 . 1 . 3 ~) with

general nonlinear two-point boundary conditions (I .I 5)

~ ' = f (x , ~) a<x<b (I . 1.30)

Example 1.3.2: Trapezoidal Scheme

We first discuss how the trapezoidal scheme works on the linear problem

(1.3.la&b). Given a mesh z: a = x ~ < x ~ < - ~ < x ~ + ~ = 6, the so called trapezoidal scheme
is the following discretization of (1.3.la)

I I I
Letting Si = -hilI - ~ A (x J , Ri = h;' I - ?A(xi+,), gi = 2 [q(xi+') + q(xi)] (1.3.6b)

then we can write (1 .3 .6~) in matrix form

(1.3.7) gives the numerical solution of (lJ . la&b) at the mesh points.

Recall that Newton's method for solving system of equation

F(s) = 0 (1.3.8a)

involves an iterative procedure

P+' = G(sm) m = 0, 1,2, ...

dF(s)
where C(s) =s-[FO(s)]-IF(s),and F'(s) = is the Jacobian matrix. This can also

be written as

To illustrate Newton's method for solving nonlinear BVP, consider the

following example. The trapezoidal scheme for (1 .I .3a) with boundary condition

(1 .I Jb) is given by (I .3.9a&b) below.

~ Y I , Y N + I) = 0 (1.3.9b)

Let the nonlinear algebraic equations (1 .3 .8~) be (1.3.9a&b) with

S Eyn = (Y I , Y ~ , " ' , Y N + I) ~ , S E RN+I

Using difference operator notation for (1 .3 .9~) we obtain

and F(s) = (N,yl,. -,N,yN, g(y1,yN+,))T. Newton's iteration (l.3.8b) gives
Wi+1 - Wi I

hi
- ~ A (X ~ + ~) W ~ + ~ + A W w J = - N a p I l i S N (1.3.10b)

Here, yXm are known from values from a previous iteration gl$ is an initial guess) and

The next iteration is given, according to (1.3.8c), by y/"+l = y p + wi , i = 1,2 , -, N+I.

The system (1.3.10) for the correction vector w, is a linear system of equations which

looks like a trapezoidal discretization of some linear problem. In each iteration, we

performed two operation in succession4iscretization and linearization. This method

can be implemented by using the following algorithm:

Algorithm: Trapezoidal scheme with Newton's method

Input: A BVP (1.1.3~) and (1.1.5b), a mesh n, an initial guess of solution values y f
at mesh points, and a tolerance TOL.

Output: Solution vatues at mesh points.

Repeat

I . Generate B,, B, by (l.3.IIb) and setJ = - g (~ ~ , y ~ + ~) .

2: For i = I,2,...,N DO

Generate S , Ri and qiof (1.3.6b) using (1.3.11a) and qi = -Nai . At the
end of this iteration, the matrix A and the right hand side vector J have
been generated.

3: Solve A w, = J for w,

4: For i = 1,2, .-, N+I DO

5: Stop i f lwd I TOL or the iteration limit is exceeded.

The trapezoidal scheme discussed above is one of the simplest finite difference

methods for solving BVP. Like the single shooting method, this method is simple but

is rarely used in practice. Its biggest disadvantage is that this method has a local

truncation error of order 2 (see [2] for more details). If high accuracy is desired, then a

higher order scheme is more effective. Nevertheless, from this example, one can see

that the nonlinear BVP are indeed more complicated to solve than the linear BVP

since it involves Newton's iteration. But for most of the IVP methods, as we

mentioned earlier, nonlinearity has little effect on them.

To continue our discussion about the nature of the numerical methods for IVP

and BVP with respect to the formulations of BVP and IVP, we point out that since the

information about the solution is given at the (at least) two boundary points for a

BVP, but at none of these points the information is completely known, it is then

impossible to use local methods such as those methods for IVP we discussed above.

Consequently, the numerical solution yilsare not determined one at a time in some

linear order, rather they are determined simultaneously by some global relation such as

(1.3.7) that connects all yis through out the entire mesh 121.

Let us now carry on our discussion about Runge-Kutta methods. we started in

the last section. A general k-stage Runge-Kutta scheme for y' = f(x,y) is defined by

where

The points xg are given by

- xi + h,pj xii - I S j S k , I I i I N (I .3.12c)

the "canonical points". Thus the points xij, which are sometimes called collocation

points, are N scaled translations of the canonical set of k points p,, p2, ..., pk into each

subinterval of the mesh a. With k(k+2) free parameters, a k-stage Runge-Kutta

scheme can archive a high order of accuracy. A Runge-Kutta scheme is explicit if p, =

0 and aj, = 0 for all j S 1, and implicit otherwise. For initial value problems, explicit

methods have obvious advantages over implicit ones even though they have fewer free

parameters to choose from. With an implicit method, one can still use a simple

"marching algorithm", such as the algorithm for Euler's method, to calculate ui's from

the left to the right one at a time. But for boundary value problems, implicitness are

inherent in the problems in the sense that numerical solution values on 7~ are obtained

simultaneously. Thus the "marching algorithm" becomes impossible and the biggest

advantage of explicit methods disappears. It therefore makes sense to use implicit

ones by which one can make use of all the k(k+2) free parameters and get the most

out of the methods in terms of accuracy and efficiency [2]. Implicit Runge-Kutta

methods play an important role in the literature of finite difference methods for solving

BVP. The methods behind COLNEW, COLSYS and HAGRON all have close ties

with it.

The above are just some basic ideas for solving BVP for ODE. As our interest

is in comparing the codes rather than the methods, we will not dig further into the

numerical methods for BVP for ODE. To finish this chapter, we point out once again

that the methods we had discussed above are only illustrative but by no means

complete or close to the methods that are behind the four codes. We hope that this

chapter can get those reader who are not familiar with the BVP for ODE started

getting to know the basic types of BVP for ODE and the basic ideas for solving BVP

for ODE, as well as the difference between IVP and BVP from a numerical methods

point of view. The four codes we. are about to compare are based on the most advanced

developments in the field of BVP for ODE. The methods and techniques involved are

so sophisticated that it is difficult for us to come up with some simple versions that

can be included here. For those who are interested in details of the theoretical

background of the codes, [2] has the most complete and up-to-date coverage of the

background information.

Chapter 2 The Comparison of Codes (I)
--General Discussion on the Difficulties and Criteria of Comparing

Codes for BVPODE

The lack of sufficient commonly agreed upon criteria is indubitably the most

serious problem of the comparison of codes. This problem not only causes technical

difficulties for the comparison, but also limits the validity of conclusions resulting from

any comparison. Even if one restricts himself in the comparison of codes in a narrow

field, one still cannot totally get away with this problem. Both [5], [6] for HAGRON

and [15] for MUTS have some discussion involving COLSYS, but the authors are very

cautious in making any explicit comparison between their codes and COLSYS. People

have been avoiding making direct comparison because of its problems. The common

notion about comparison that it must end up with telling the good ones from the bad

ones also contributed to people's reluctance of making direct comparison. Thus it

seems important to make it clear what we mean by "comparison", in particular, the

"comparison of BVPODE codes".

2.1 The Comparison of Codes and the Validity of Its Results

There exist many criteria that are relevant to the comparison of codes. The

problem of the lack of commonly agreed criteria is mainly due to the fact that people

have different opinions about the weights each of those possible criteria should

receive. CPU time is definitely a possible criterion, so is the accuracy. For people with

very limited computing resources, CPU time may be just as important as accuracy. On

the other hand, for people who need high accuracy and have abundant computing

resources, CPU time may not be what they are concerned about. A code may be too

slow to be competitive today, but with faster computers that are bound to come

tomorrow, it may become very competitive due to its advantages in some other

aspects. Realizing that the importance for each of the possible criteria varies with

individuals and time, it make sense to simply put the weights' issue aside and not to

judge the overall performance of a code according to several simple criteria. "Linear

Ordering" does not apply in the context of the comparison of codes [17]. Realistically,

what one can archive is to use as many relevant criteria as possible and compare the

codes by using these criteria separately. Thus a meaningful comparison of codes may

simply be a collection of information resulting in comparing the codes according to

many specific criteria. It is not an attempt to tell the good ones from the bad ones, and

it does not assign the weights to the criteria. Rather, it simply provides the user with

plain facts about the codes and enables them to assess the codes' relative overall

performances according to the criteria that they are most concerned about. However,

we do not rule out the possibility of having a meaningful overall assessment as a part

of a general comparison. In fact, there have previously been quite useful comparisons

of codes for numerical quadrature, scalar nonlinear equation solvers, and comparisons

of codes for IVPODE (see [12], [24]). In these cases, however, the codes were

intended to solve the same problems and the design criteria were basically the same.

The solution of BVPODE necessitates many types of numerical consideration.

In Figure 2.1 below, BVP for ODE is connected to the other areas such as

approximation theory, numerical linear algebra and optimization. It is in this sense we

say that solving BVP for ODE is of high complexity. This complexity of BVP for ODE

makes 'the method for BVP for ODE' or 'the algorithm for a BVP for ODE code' very

vague. If we interpret 'the method for BVP for ODE' as the basic numerical scheme

that can solve BVP for ODE in theory (and do not include those considerations for

actual implementation), and interpret an algorithm as a detailed scheme based on a

numerical method that is ready for coding by using some computer language, then this

complexity certainly prevents us from extending the observations resulting from

comparing the codes to the comparison of the methods or comparison of algorithms.

COLNEW and COLSYS are based on the same method, i.e. the collocation method for

BVP, but COLNEW is generally faster than COLSYS in terms of CPU time needed for

solving the same problem. Codes based on different implementations of a certain

numerical method can be so different in many aspects of their performance that even

with a considerable amount of expertise, it is still hard for one to tell whether a

relative merit of a code is due to the code's underlying method. In the example

mentioned earlier, COLNEW is only different from COLSYS in terms of the types of

spline used for the representation of the numerical solutions, and the linear system

solvers. The difference between COLNEW and COLSYS in terms of speed is often

simply due to their different linear system solvers. If a code is faster than COLSYS,

and is slower than COLNEW, we probably cannot say anything concerning the

comparison between the numerical method that lies behind that code and the

collocation method in terms of speed. In fact, every part that attached to BVPODE in

Figure 2.1 is very important to a BVPODE code that involves it. An improvement over

any participating part can dramatically improve the performance of a code. Thus the

validity of the results resulting from a comparison of codes is very much limited to the

related codes themselves.

Approximation 11-1 WI'oIX 1-71 Quadrature

IVPODE Optimization

Figure 2.1 Reproduced from [17] by permission of the authors

.

1 I

Even if we restrict the validity of the comparison to the participating codes, we

still have to answer to what degree our comparison represents the true relationships

among the codes. The problem that still challenges the validity of a comparison is that

many criteria can only be applied with some test problems. Accuracies of a code (or

accuracy of the numerical solutions that a code can obtain), for example, usually cannot

be determined without some test problems, and it also varies from test problems to

test problems. The accuracy of one code may be better on one test problem than that of

the other codes, and may be worse on another test problem. The validity of a general

conclusion concerning accuracy is very much based upon the hope that the test

problems involved are somewhat 'typical' and can represent. (if not every) almost

every type of problems we may encounter in practice. While a standard set of test

problems that have all the desirable properties, such as be typical or representative,

might be possible for comparison of codes in some other fields, it is not a realistic idea

in our context of comparing BVPODE codes (see [17], [21]).

Rounding
Error Analysis

Numerical
Linear Algebra

Nonetheless, a general comparison of codes is usually subjective in nature and

the real strength of a comparison often lays in the correct subjective input (or
expertise) from those who make the comparison. A comparison of codes can involve
only a limited number of test problems, but the observations resulting from these test

problems can reflect the true relationships among the codes to some degree. With

correct subjective input, the results of a comparison can be valid far beyond the limited

number of test problems involved.

2.2 Criteria for Comparing Codes for BVPODE and Their Classification

Pereyra and Russell divided the criteria related to the comparison of BVPODE
codes into the following three categories 1) general "objective" (more quantitative)

criteria, 2) general "subjective" (more qualitative) criteria and 3) subjective criteria
particularly relevant to BVPODE codes [17]. The first category includes timing

(speed), storage, portability and program correctness. The second category includes

ease of use and robustness, and the third category includes user feedback, error

estimation, termination criteria, program parameters and program driver. Ironically, the

objective criteria are among those criteria that are most difficult to be implemented and

very often, the comparison related to these criteria need a considerable amount of

subjective input in order to be complete. The speeds of the codes, for example, are
generally not comparable except on some concrete examples (or test problems as
mentioned above). To draw general conclusions concerning the relative speeds of the

codes through some concrete examples certainly needs a considerable amount of

subjective input.

In our comparison in the last chapter, apart from most of the criteria mentioned

above, we will also take into consideration the number of points in the final mesh, the

distribution of the final mesh points and the location of the maximum absolute error. A

meaningful classification, like the one provided by Pereyra and Russell in [17], can

help us understand the nature of the criteria and therefore the importance and validity

of the observations related to the criteria. Indeed, there are many common aspects of

the criteria that are worth noticing and can be used to make useful classification. The

following are two classifications we will refer to later in our discussion. 1) According

to whether or not a criterion has to depend on test problems, one may classify the

criterion by 'test problem dependent' or 'non-test problem dependent'. Among those

criteria mentioned above, timing, storage, accuracy, robustness, the number of mesh

points in the final mesh, the distribution of the final mesh and the location of the

maximum error are test problem dependent. The rest, e.g. ease of use, termination

criteria and program parameter, can be considered as non-test problem dependent. 2)

According to whether or not the criteria are about the technical details of codes' design

or codes' performance, one may classify them as 'structure type criteria' and

'performance type criteria'. All the test problem dependent criteria, timing, storage,

accuracy, plus ease of use can be considered as performance type criteria. The rest,

such as termination criteria and error estimation are structure type criteria.

2.3 Comments On The Criteria We Choose

Most of the criteria we mentioned above will be used by us and they can be

well understood without further explanation. But some of them deserve some

explanation. The following is the list of criteria we will use in the comparison in the

last chapter. In order to be precise, we also provide a short description of those criteria

that may not be clear to everyone.

a) Codes' Drivers Related criteria

I : The form of the BVPODE that can be directly dealt with by each code.

We choose this as one of our criteria because some of the codes can only solve

BVPODE that are in a very.specific form. Information concerning this aspect is

supposed to be useful to code users.

2: Input information

2.1 Input parameters

Each code has many parameters through which useful information is conveyed

to the code. Some of them, such as a linear (nonlinear) indicator parameter, are

easy to determine. But the others, such as the tolerance parameter, are more

difficult to choose. We will have some general description concerning the use of the

input parameters in the third chapter, and we will comment on those critical

parameters in chapter four when we make our comparison.

2.2 Input subroutines

Input subroutines are the major channels to convey the information concerning
a BVPODE to the codes. Each input subroutine usually describes one aspect of

the problem. For example, most of the four codes involve an input subroutine that
conveys the information of the ODE (or ODE system) to the codes and an input
subroutine that conveys the information of the boundary value equations to the

codes. It is plausible for a code to have more subroutines in order to channel more
information through to the code. However, not only the number of necessary input

subroutines is often restricted by the underlying method, but also there exists the

problem of trade off between the amount of information one wants to channel

through and the complexity (or efficiency) of the driver. This is a useful criterion

since it is related to both the least amount of information a code uses to solve the

problem and the complexity of the driver.

3: Ease of use

It is useful to have the difficulties we had encountered from time to time when
we used the codes included here so that those who do not have much experience

with BVPODE codes can learn to avoid them. The relative ease of use of the four

codes will be assessed through comparing these difficulties.

6) Other performance type criteria

4: Timing (we will only use CPU time on some specific test problems)

5: Storage

6: Accuracy (measured by the maximum error. see Appendix 11)

7: Portability

8: Robustness

There are a few things that are worth commenting on here. Among the above
list, most of the criteria are test problem dependent. Timing, accuracy and storage

are not only test problem dependent, but also 'input parameter dependent' and

depend on each other in the sense that even with a fixed test problem, they may

still vary with different combinations of input parameters and they are also related

to each other. COLSYS and COLNEW, for example, will use different mesh

selection strategies, depending upon whether or not the allotted storage is a

limiting factor. If it is, the codes may solve a problem using less storage than if

unlimited storage is provided. At the same time, the accuracy of the solution may

be worse than it would be when unlimited storage is provided. With so many

factors related to each of these criteria, it is not realistic to find the best set of

parameters that would give the code the best performance in terms of all these

criteria. This is an important issue and we will have technical details about the

implementation of these criteria later in the last chapter and Appendix 11.

c) Criteria related to the design of the codes.

9: Termination criteria

A code may be terminated for many reasons such as a satisfactory numerical

solution is found (this is called normal termination), the allowed storage space is

insufficient, code overflow or even the elapsed time since the code started running

exceeds some limit. All these reasons except the first one are called abnormal

terminations. By termination criteria here we simply mean the mechanisms that

are built in the code that lead to the normal returns from the codes. We will

examine these mechanisms .as well as their relationship with tolerance in the

fourth chapter. The other abnormal causes for terminations will be discussed when

we compare the robustness of the codes.

10: User feedback

By user feedback, we mean the information about the procedures for solving a

BVPODE and the correctness of the driver provided by the codes. This information

might be an abnormal return from the code like a warning message indicating a

certain parameter value is not properly set, or simply feedback information like the

number of points in the current mesh. With more than one choice of a code, a user

(especially if he/she is not familiar with the merits of various BVP codes) is likely

to choose the one that is the most 'user friendly' one. When writing a code,

knowing what kind of feedback information the user may need to know the most

and providing the user with the access to this information can often result in a user

friendly code. It is also important not to burden the user with feedback information

that is not of great importance to them.

d) Solution related criteria

13: The number and the distribution of the final mesh points

14: The form of the solution

15: Error analysis (Location of the maximum error and the graph of the total error)

It would not be of such a great importance to look at these issues if all the

codes we are interested in provide solutions on the entire domain upon normal

returns from the codes. Since some of the codes return with a solution at only a

finite number of final mesh points, and the gap between a continuous solution and a

discrete one cannot be bridged by simple interpolation [19], these issues become

very important. One can say nothing about the relative efficiency concerning two

codes if one takes ten CPU seconds and returns with a solution at one hundred

points and another one uses only five CPU seconds but returns with a solution at

only, say, forty points for the same objective problem. Neither can one say

anything concerning the relative efficiency if one code uses more time or storage

and returns with a solution that characterize the true solution very well and

another one uses less time and storage but returns with a solution from which only

part of the true solution can be read off. An exaggerated example of this type is

that a code terminates with a set of final mesh point that are all in the upper half of

the domain except the lower end point. It is then very unlikely that one can tell the

behaviour of the solution at the lower half of the domain by looking at the discrete

solution at these mesh points.

Thus a comparison of codes with respect to only time or storage is incomplete

since the ultimate goal of a code is to provide a good solution to problems. The

quality of the numerical solutions from each code must also be taken into

consideration. In our view, this quality should have at least the following aspects

1) accuracy of the solution, 2) the number of the final mesh points, 3) the

distribution of the final mesh points (versus the shape of the true solution on test

problems). We will look into these three issues in our comparison in Chapter Four.

2.4 Numerical Methods Related Issues and the Principle of Our Comparison

There are differences among the codes that can be directly traced back to the

methods which the codes are built upon. The types of BVPODE that the codes can be

directly applied to, the forms of solutions provided by the codes and whether or not a

code has built in adapted mesh selection strategy are three most important differences

of this kind.

The difficulty of comparing these differences is that they are often related to the

designers' original purposes of writing the codes. If a code is written to solve two point

boundary value problems only, for example, is it still a disadvantage of the code that it

can not be directly used for a multipoint boundary value problem? Should not one

compare this code to other codes with respect to the type of problems a code is

addressed to at all?

When making a general comparison, we believe it is important to emphasize

the common side of these codes' goals. The types of BVPODE these codes are aimed

at or the forms of solution they provide may differ to some degree, but they all share

the same original motivation, i.e. they are all motivated to solve BVP for ODE: This is

the 'lowest common denominator' of their goals and it is on this ground that we are

comparing the four codes.

In this thesis, we will treat all the four codes as general purpose codes for

solving boundary value problems for ordinary differential equations regardless of the

differences mentioned above. It is our principle that what we are comparing are simply
BVPODE codes, not a code aimed at a certain type of BVPODE that results in a

solution in a certain form and another code aimed at another type of BVPODE that
provides a solution in another form. Every aspect of the codes we included in the last

section, whether or not it is related to the designer's original purposes of writing the

code, will be compared.

2.5 The Selection of Test Problems

We finish this chapter with a few words on how test problems are usually

selected by many experts in this BVPODE field. We will follow their expertise on

selecting the test problems. For the complete set of test problems we are going to

use, please see appendix (I).

2.5.1 What do we want from the test problems

First, we need to use test problems in order to carry out the comparison

concerning those test problem dependent criteria. Second, we want the test problems

to be somewhat representative so that the comparison related to these test problems

is somewhat trustable. These concerns are our guidance for selecting test problems.

To convert the above concerns into concrete criteria of selecting test problems,

we notice that the test problem dependent criteria, especially robustness, require that

the test problem includes nontrivial problems, as well as BVPODE of different types.

2 5.2 Test problems involving parameters

It is a common practice among the BVPODE experts to use test problems that

involve one or more parameters which control the difficulty of the problem (see [I],

[21, 141, [61, E81, [171).

For a BVPODE code, the difficulty of a problem is usually represented by the

nonsmoothness of its solution. Since all the codes are based on numerical methods

that rely on the assumption that the object problems have somewhat smooth solutions

to work properly, we expect that as the problem gets rougher and rougher, the

performance of the codes will become worse and worse, and the codes will eventually

fail to solve the problem. Thus it is ideal to select test problems with different degrees

of difficulties to test the robustness of the codes. One reason for using test problems

with parameters is that they provide us with the different degrees of difficulties.

It is generally difficult to compare the degrees of difficulties of different

problems, but is relatively easy to predicate the change of the degree of difficulty for a

problem involving parameters when one changes the values of its parameters. This is

another reason we use test problems involving parameters.

2 53 A few types of common nontrivial BVPs for ODE

While we will only use those test problems that we believe are somewhat

representative, developing strategies for finding a set of representative problems for

boundary value problems for ordinary differential equation is too big a subject to be

dealt with here. We will not spend too much effort on this, rather we merely mention

the four basic types of nonsmoothness behaviour of the solutions for ODE for BVP.

The first type is boundary layer type (BL), such as the one shown in example

one on the next page. The second type is the turning point type (TPT) such as the one

shown in example two on the next page. The third type is oscillatory type (OSC) such

as a high frequency sine or cosine wave, e.g. example three on the next page. The

fourth type is spike type (SPK), such as the one shown in example four on the next

page [17]. It follows naturally that a solution might have a boundary layer and have a

turning point at the same time. Due to various expenses, we will only have test

problems that have exact solutions that belong to each one of the four types above.

Chapter 3 How to Use the Four Codes

The purpose of this chapter is to acquaint the reader with the procedures for

running the four codes. It also serves as preliminaries for comparing the codes in terms

of the criteria related to the form of the driver such as 'input parameters' and 'ease of

use ' etc. As some of the codes are still undergoing changes, the procedures described

in this chapter are strictly for the versions of the four codes we currently have. The

procedure for running each code we provide below include the type of BVPODE each

code is addressed to, information for how to set up input parameters, input (user

supplied) subroutines for each code and user feedback that is available from each code.

A sample driver for solving the following nonlinear two point boundary value problem

for each code is also included.

Example 3.1 A two point BVPODE

3.1 : COLNEW and COLSYS

COLNEW is a modified version of COLSYS where the linear solver and the

bases for representing the numerical solution are different from COLSY S . Despite

these differences, the two codes have exactly the same set of input parameters, input

subroutines and the forms of the drivers for running them can be exactly the same.

Since the two codes also provide the same user feedback information and their

difference is not what we are concerned about in this chapter, we will treat them as if

they are the same and the procedure described in this section is therefore for running

both of them.

3.1 .I The classes of BVPODE COLNEW and COLSYS are addressed to

COLNEW and COLSYS solve a mixed-order system of ODE subject to

separated, multipoint boundary conditions given by

where u(x) = (ul(x),uz(x), . . .,ud(x))T is the exact solution

boundary points satisfy a = cl S c2 E-5 cm. = b and

d

vector, m* = Crn, , the

mi (i=1,2,.-,d), the order of the ith differential equation satisfy 15 m , g . The functions
fi and gi are generally nonlinear.

3.1.2 Code Parameters

Both COLSYS and COLNEW are headed by

SUBROUTINE COLSYS(NCOMP, M, ALEFT, ARIGHT, ZETA, IPAR,
+ LTOL,TOL, FlXPNT, ISPACE, FSPACE, IFLAG,

+ FSUB, DFSUB, GSUB, DGSUB, GUESS)

The variables in the first two lines of the heading are input parameters. The

last five in the third line of the heading are the names of the input subroutines. We

now explain how to set up these parameters one by one according to the order they
appear in the calling sequence. Unless specified otherwise, the parameters are input

parameters.

NCOMP: = d - the number differential equations (S-20).

MU) : order of the jth differential equation, 1 -< j ,< NCOMP.

ALEFT = a, ARIGHT = b: interval end points.

NCOMP

ZETA(j): = G 1S j S &ti , Must be mesh points in all meshes used.
1-1

See description of IPAR(I1) and FIXPNT below.

IPAR: An integer array of dimension 11. A list if the parameters in IPAR and

their meaning follows:

IPAR(1): = 0 if the problem (3 . 1 ~) is linear in z(u(x)).
= I if the problem (3 . 1 ~) is nonlinear in z(u(x)) .

IPAR(2): = number of collocation points per subinterval and .
m, = max{mj, j=l,. . . ,dJ I IPAR(2) I 7 (Recall that m, 1 4) .

IPAR(3): = number of subintervais in the initial mesh (>O). If on entry IPAR(3) is

equal to 0, then COLSYS arbitrarily sets IPAR(3) to be 5 .

IPAR(4): = number of solution and derivative tolerances. 0 I I P A R (4) I m*

IPAR(5): = dimension of FSPACE (see description of FSPACE).

IPA R (6): = dimension of ISPACE. (see description of ISPACE).

IPAR(7): output control

= - I for full diagnostic printout

= 0 for selected printout

= + I for no printout

IPAR(8): = 0 causes COLSYS to generate a uniform initial mesh.

= I if the initial mesh n: a = xI I x 2 - - < " ' - - < x , ~ (~) + ~ = b is provided by the

user. In this case, the initial mesh must be defined in FSPACE by

FSPACE(j) = xi.

= 2 if the initial mesh is supplied by the user as with IPAR(8) =I, and

in addition no adaptive mesh selection is to be done.

IPAR(9): =O if no initial guess for the solution is provided.

= I if an initial guess is provided by the user in subroutine GUESS.

=2 if an initial mesh and approximate solution coefficients are provided

by the user in FSPACE. (The former and new mesh are the same.)

=3 if a former mesh and approximate solution coefficients are provided

by the user in FSPACE, and the new mesh is to be taken twice as
coarse, i.e.,every second point from the former mesh.

=4 if in addition to a former initial mesh and approximate solution

coefficients, a new mesh is provided in FSPACE as well.

*** See description of output for further details on IPAR(9) = 2, 3 , 4

IPAR(l0): = 0 if the problem is regular

= 1 if the fust relax factor if small, and the nonlinear iteration does not

rely on past convergence (use for an extra sensitive nonlinear problem

only).

= 2 if we are to return immediately upon (a) two successive

nonconvergences,or (b) after obtaining an error estimate for the

first time.

IPAR(l1): = number of fixed points in the mesh other than ALEFT and ARIGHT.

LTOL: an integer array of dimension IPAR(4). LTOL(j) = k specifies that the

jlh tolerance in TOL controls the error in the kth component of z(u(x)).

TOL: a real array of dimension IPAR(4). TOL(j) is the error tolerance on the

LTOL(j)Ih component of z(u). The code will attempts to satisfy on each

subinterval /(z(v) - z (u)) ~ ~ ~ ~ ~ ~ ITOL(j) (/ z (u) ~ ~ ~ Y ~) I + 1) i f V (X) is the

approximate solution vector. (u(x) is the exact solution of (3.la&b))

FIXPNT: an array of dimension IPAR(l1). It contains the points, other than

ALEFT and ARIGHT, which are to be included in every mesh.

ISPACE: an integer work array of dimension IPAR(6). Its size provides a

constraint on the maximum mesh points.

FSPACE: a real work array of dimension IPAR(5). Its size provides a constraint

on the maximum mesh size.

IFLAG: the mode of return from COLSYS, output parameter.
= I for normal return.

= 0 if the collocation matrix is singular.

= - I if the expected number of subintervals exceeds storage specifications.

=-2 if the nonlinear iteration has not converged.

=-3 if there is an input error.

3.1.3 Input (user supplied) Subroutines

The following five subroutines must be declared external in the main program

which calls either COLSYS or COLNEW.

SUBROUTINE FSUB:

This subroutine is for evaluating fi(x,z(u(x))). It should have the heading

SUBROUTINE FSUB (X , Z, F)

where X =x, Z = z and F is the vector containing the values of 5, as defined in

(3.2a&b) above.

SUBROUTINE DFSUB:

This subroutine is for evaluating the Jacobian of F at a point X. It should have

the heading

SUBROUTINE DFSUB(X , 2, DF)

where Z = z(u(x)) is defined as for FSUB and the d m * array DF should be filled

by the partial derivatives of F, i.e. for a particular call, the subroutine returns with

2L DF(i, j) = (i = I , 2. ... ,dl j = I . 2 ,-- , m*) at point X.
I

SUBROUTINE GSUB:

This subroutine is for evaluating the j lh side condition gi at a point x = ZETA(j)
(l g 4 n *) . It should have the heading

SUBROUTINE GSUB(J, 2, G)

where Z is, as for FSUB, z(u(x)) , G is a scalar containing g, as defined in (3.26).

SUBROUTINE DGSUB:

This subroutine is for evaluating the partial derivatives of gjDs w.r.t z(u(x)). It
should have the heading

a where Z is again z(u(x)). J is, as for GSUB, the index of the side condition. DG is a

m* dimensional vector that contains the partial derivatives DG(k) = 5%~ , k=l,.. . ,m*.
az,

SUBROUTINE GUESS:

This subroutine is for evaluating the initial approximation for Z = z(u(x)) and

for evaluating the vector DMVAL which contains the derivative of the jth
P3"?

component of the initial approximation u(x). i.e. DMVAL = wj , where mj is the

order of the j th equation in (3 .2~) and j = 1 ,2 , ... , d (NCOMP). ***Note that this

subroutine is needed only for nonlinear problems if using IPAR(9) = 1. It should

have the heading

SUBROUTINE GUESS(J, 2, DMVAL).

3.1.4 User feedback from COLSYS and COLNEW

Users can get a various amount of feedback via the three options of IPAR(7)

and IFLAG which is the mode of returning from COLSYS and COLNEW. When

IFLAG(7) is set to - I , one gets the maximum feedback which includes the following:

1: Verification of some key input information including a) the number of differential

equations, 6) if the system is nonlinear, c) side condition points,and d) number of

collocation points per interval.

2: The possible maximum number of subintervals (determined by the dimensions of

both FSPACE and ISPACE).

3: The current mesh and approximate solution values at the mesh points.

4: Solution error estimates. [17].

5: If the problem is nonlinear, the programs also provide an account of how the

nonlinear iteration is proceeding.

6: The five modes of return from IFLAG (see IFLAG above).

3.1.5 Solution Evaluation and Simple Continuation(with IPAR(9) 1 2)

On normal return from COLSYS, the arrays FSPACE and ISPACE
information specifying the approximate solution. In particularly, the final mesh points

are contained by the first I S P A C E (l) + l components of FSPACE. To produce the

solution vector z (u (x)) at any point x (a S x -< b) , one should use the following

statement

CALL APPSLN(X, Z , FSPACE, ISPACE)

where X = x, Z = z(u(x)) and APPSLN is a subroutine (comes with COLSYS or

COLNEW) for evaluating z(u(x)) that when given x, FSPACE and ISPACE, returns

with Z(x) (i.e. z(u(x))) .

When using COLSYS or COLNEW, the resulting solution is defined by the

first (7 + N C O M P) components of ISPACE and the first ISPACE(7) components of

F S P A C E , i . e . I S P A C E (l) , ... , I S P A C E (7 + N C O M P) and F S P A C E (l) , ...
,FSPACE(ISPACE(7)). Thus when evaluating the approximate solution at a specific

point x, APPSLN only uses these components of ISPACE and FSPACE.

A formerly obtained solution can be used as the first approximation for the

nonlinear iteration for a new problem by setting IPAR(9) = 2, 3, or 4. This is called

continuation. When IPAR(9) is 2 or 3 , in order to do continuation, one only need to

initialize ISPACE and FSPACE for the new problem by using ISPACE(I), ... ,

ISPACE(7+NCOMP) and FSPACE(I), ... ,FSPACE(ISPACE(7)), which define the

former solution and set IPAR(3) = ISPACE(1) (the size of the former mesh). When

IPAR(9) is 4, one has to provide an initial mesh of size IPAR(3) and put the initial

mesh into the first IPAR(3) components of FSPACE. In this case, ISPACE for the new

problem is still initialized by using the first (7+NCOMP) components of ISPACE which

define the former solution. The initial FSPACE for the new problem must contain the

IPAR(3) new mesh points as its first IPAR(3) components followed by the first

ISPACE(7) values in FSPACE that define the former solution (see IPAR(9) for more

details).

3.1.6 Sample Driver for Example (3.la&b&c) with COLSYS or COLNEW

C SAMPLE DRIVER PROGRAM.
C
C SOLVING EXAMPLE 3.1 BY USING COLTYS OR COWEW.
C
C MAIN PROGRAM
C

IMPLICIT REAL"8 (A-H,O-2)
C
C SET UP PARAMETERS
C

PARAMETER (NCOMP=2)
PARAMETER (IPARI =I)
PARAMETER (IPAR2=4)
PARAMETER (IPAR3=0)
PARAMETER (IPAR4=2)
PARAMETER (IPARS=6000)
PARAMETER (IPAR6=3OO)
PARAMETER (IPAR7=-I)
PARAMETER (IPAR8=0 1
PARAMETER (IPAR9=1)
PARAMETER (IPARIO=O)
PARAMETER (IPARII =O 1
PARAMETER (MSTAR=2)

C
C SET UP ARRAYS
C

REAL*8 ALEFT,ARIGHT,TOL(IPAR4),FSPACE(IPARS)X
REAL*8 EPS,FIXPNT,ZETA(MSTAR),Z(MSTAR),U(MSTAR)
INTEGER M(NCOMP),lSPACE(IPAR6),LTOL(IPAR4),lPAR(I 1)JFLAG
INTEGER KEY.PR.RES(2)
EXTERNAL FSUBPFSUB,GSUB,DGSUB,GUESS
COMMON IPARAMEIMPARAI ,MPARA2

C
MPARAl =USTAR
MPARAZ=NCOMP
IPAR(l)=IPARl
IPAR(Z)=lPARS
IPAR(3)=IPAR3
IPAR(4)=IPAR4
IPAR(S)=IPARS
IPAR(6)=IPAR6
IPAR(7)=1PAR7
IPAR(B)=lPARB
IPAR(9)=IPAR9
IPAR(1 O)=IPARIO
IPAR(1 l)=IPARll

C
DO 3 l=l,ll

3 PRW,'I='J,' IPAR=',lPAR(I)
C

AL.EFT=O.ODO
ARIGHT=l .OD0

C
ZETA(l)=ALEFT
ZETA(2)=ARlGHT

C
M(l)=l
M(2) = 1

C
LTOL(I)= I
LTOL(2)=2
TOL(l)=I.D4
TOL(2)=194

C
CALL COLSYS(NCOMP,U,ALEFT,ARIGHT,ZETA,IPAR,LTOL,

+ TOL,FIXPNTJSPACE,FSPACE,IFLAG,

PRIMP,"+** FILAG = 'JFLAG
C
C CALCULATE THE MAXIMUM ERROR ON 200 EQUAL. DISTANCE POINT

SP=O.DO
S Q 4 0 0
X=ALEFT
RINCRE=(ARIGHT-ALEFT)I2OO.DO
ENDPNT=ARIGHT+RINCRE/2.DO
CALL APPSLN (X, Z, FSPACE, ISPACE)
CALL ACCURA (X,U)
P=DABS(U(l)-Z(1))
Q=DABs(W)-2(2))
SP=DMAXl(SP,P)
SQ=DMAXl(SQ,Q)
PRINT 40, XJ,Q
X=X+RINCRE
IF(XLT.ENDPNT) GOT0 30

PRINT+.THE MAXIMUM ERROR1 IS: ' S P
PRIW;THE MAXIMUM ERROR2 IS: '>Q

C40 FORMAT(lX,F5.2,4X,'ERROR Ul : 'D14.6,' ERRORZ: 'D14.6)
STOP
END

C
C *** SUBROUTINE GUESS ***
C

SUBROUTINE GUESS(X,Z,DMVAL)
IMPUCII' REAL*8 (A-H,O-2)
COMMONIPARAMEIMSTAR,NCOMP
REAL*8 X,Z(MSTAR),DMVAL(MSTAR)

a2)=I.DO+X
Z(l)=l.D0/2(2)
DMVAL(I)= - I .DOI(2(2)*2(2))
DMVAL(2)= 1 .DO
RETURN
END

*** SUBROUTINE FSUB ***
SUBROUTINE FSUB(XZF)
IMPLJCR REAL*8 (A-H.0-2)
COMMONlPARAMElMSTAR,NCOMP
REAL*8 Z(MSTAR),F(NCOMP)
F(I)=-2.DOI(Z(2)*Z(2))
F(2)=Z(Z)*Z(2)-1 .DOIZ(I)+DEXP(X)
RETURN
END

***SUBROUTINE DFSUB ***
SUBROUTINE DFSUB(X,Z,DF)
IMPUCrr REAL*8 (A-H,O-2)
COMMONlPARAMElMSTAR.NC0MP
REAL*8 Z(MSTAR),DF(NCOMP,MSTAR),X
DF(I,I)=ODO
DF(1,2)=4.D0/(2(2)*2(2)*Z(2))
DF(2,1)=1 .DOl(2(l)*z(I))
DF(2,2)=200*2(2)
RETURN
END

*** SUBROUTINE GSUB ***
SUBROUTINE GSUB(1Z.G)
IMPLICIT REAL*8 (A-H.0-2)
COMMONlPARAMElMSTAR.NC0MP
REAL*8 Z(MSTAR),G

GO TO (1 .W
G=Z(I)-I DO
RETURN
Gzz(2)-DEXP(1 .ODO)
RETURN
END

SUBROVTINE DGSUB(1,ZDG)
IMPWCII' REAL*8 (A-H.0-2)
COMMONlPARAMElMSTAR,NCOMP
REAL*8 Z(MSTAR),DG(MSTAR)

IF(I.EQ.l) THEN
DG(I)=I DO
DG(2)=0DO

ELSE
DG(l)=ODO
DG(2)= I DO

ENDIF
RETURN
END

C
C *** SUBROUTINE ACCURA ***
C

SUBROUTINE ACCURA(X,U)
C
C SUBROUTINE FOR EVALUATING THE EXACT SOLUTION
C

IMPLICIT REAL*8 (A-H.0-2)
COMMONIPARAMEIMSTAR,NCOMP
REAL*8 X,U(MSTAR)
U(I)=DEXP(-2 .DO*X)
U(2) = DEXP(X)
RETURN
END

3.2 HAGRON

HAGRON is designed to solve first order systems of two point boundary value

problems. It is based on an implicit Runge-Kutta method (see [4], [S], [6]) and is still

undergoing changes. The current version of HAGRON we have is a preliminary

version which we have gratefully received from the authors. We do not yet have a

complete code documentation for this version. The following is some information about

the functions of the code's parameters and input subroutines we gathered when we ran

the code.

3.2.1 The type of BVPODE HAGRON is addressed to

HAGRON solves a two-point boundary value problem for a system of first

order ordinary differential equations given by

where u(x) = (ul(x), u2(x), ... , u,,(x))~ is the exact solution,A{x, u(x)) and g,(&, u(&))

are generally nonlinear functions, and there is a integer k (l,<k-<) such that

3.2.2 Code Parameters

HAGRON is headed by

SUBROUTINE HAGRON (ICOMP, ZETA, PAR, LTOL, TOL, FIXPNT,
+ ISPACE, FSPACE, U, IFLAG,

+ FSUB, DFSUB, GSUB, DGSUB, SOLUTN)

Like COLSYS and COLNEW, the variables in the first two lines of the heading

are input parameters. The last five in the third line are the names of the input

subroutines. The following is a list of these parameters with explanation. Unless

specified otherwise, the parameters are input parameters.

ICOMP:

ZETA(J):

IPA R:

IPAR(1):

IPAR(2):

IPA R (3) :

IPAR(4):

IPAR(5):

IPAR(6):

IPAR(7):

= d - the number of differential equations.

jth side condition point (boundary point 4). Must satisfy (3 . 2 ~) .

An integer array of dimension 16. A list of the parameters in IPAR and

their meaning follows:

= 0 if system (3.2a&b) is linear.

= I if system (3.2a&b) is nonlinear.

= the number of side conditions at the left hand end of the region (a).

= the number of subintervals in the initial mesh (>O). If on entry

IPAR(3) is equal to 0 , HAGRON arbitrarily set IPAR(3) to be 6 .

= number of solution tolerances.

= dimension of FSPACE (see description of FSPACE).

= dimension of ISPACE (see description of ISPACE).

output control

IPAR (I 0):

IPAR(1 I) :

IPAR(I2):

= - I for full diagnostic printout

= 0 for selected printout

= +I for no printout

= 0 causes HAGRON to generate a uniform initial mesh.

= I if the initial mesh K: a = X , -<xz s ' ' - -<~IPAR13)+1 = b is provided by the

user. In this case, the initial mesh must be defined in FSPACE by

FSPACE(j) = xi.

=O if no initial guess for the solution is provided.

=I if an initial guess is provided by the user in subroutine SOLUTN.

=2 if an initial mesh and approximate solution are provided by the user.

The mesh is in FSPACE, the solution is in u (see description for u).

= number of fixed points in the mesh other than a and b in (3 . 2 ~) . It is

the dimension of FIXPNT.

Currently not in use.

= 0 unscaled merit function is used for nonlinear iteration.
= I scaled merit function and watchdog are used for nonlinear iteration.

Currently not in use.

Currently not in use.

Only effective when IPAR(l2) is set to I . This parameter specifies the

maximum number of consecutive iterations in a Newton iteration

procedure during which the unscaled merit function is allowed to

increase (consecutively). For users who are not familiar with Newton's

iteration with watchdog technique, the default value for this parameter

is recommended (in the present code, this default value is 8) .

Only effective when IPAR(I2) is set to I . This parameter specifies the

number of iterations in the beginning of Newton's iteration procedure at

LTOL:

TOL:

which the watchdog does not bark at any "substantial increase" in

unscaled merit function. For users who are not familiar with Newton's

iteration with watchdog technique, the default value for this parameter

is recommended. (In the current version of HAGRON, "substantial

increase" means " increase by a factor of loo", and the default value for
IPAR(16) is 5.)

an integer array of dimension IPAR(4). LTOL(j) = k specifies that the
jth tolerance in T O L controls the error in the kth component of u(x). We
also need that 1 I LTOL(1) S LTOL(2) S ... SLTOL(IPAR(4)) I ICOMP.

a real array of dimension IPAR(4). TOL(j) is the error tolerance on the

LTOL(j)lh component of u(x) . The code attempts to satisfy at each grid

point x

where v(x) is the approximate solution vector at the grid point x (u(x) is

the exact solution of (3.2a&b)).

FIXPNT: an array of dimension IPAR(l1). It contains the points, other than

ALEFT and ARIGHT, which are to be included in every mesh.

ISPACE: an integer work array of dimension IPAR(6). Its size provides a

constraint on the maximum mesh points.

FSPACE: a real work array of dimension IPAR(5). Its size provides a constraint

on the maximum mesh size.

U: A 1 dimensional vector that holds the approximate solution for (3.2a&b).

IFLAG: the mode of return from HAGRON. A output parameter.

= 1 for normal return.

= 0 if the collocation matrix is singular.

= - I if the expected number of subintervals exceeds storage specifications.

=-2 if the nonlinear iteration has not converged.

=-3 if there is an input error.

3.2.3 Input (user supplied) Subroutines

The following five subroutines must be declared external in the main program

which calls HAGRON.

SUBROUTINE FSUB:

This subroutine is for evaluatingL{x,u(x)). It should have the heading

SUBROUTINE FSUB (X, U, F)

where X =x, U = u(x) and F is the vector containing the values off;,, as

defined in (3.3a& b) above.

SUBROUTINE DFSUB:

This subroutine is for evaluating the Jacobian of F at a point X. It should have

the heading

SUBROUTINE DFSUB(X, U, DF)

where U = u(x) and the dxd array D F should be filled by the partial derivatives

of F, i.e. for a particular call, the subroutine returns with

x DF(i, j) = du. (i = 1 ,2 , ,dl j = 1. 2, --. , d) at point X.
I

SUBROUTINE GSUB:

This subroutine is for evaluating the jth side condition gi.at a point x = ZETA(j)

(1q'Gf). It should have the heading

SUBROUTINE GSUB(J, U, G)

where U =u(x) and G is a scalar containing gj as defined in (3.3b).

SUBROUTINE DGSUB:

This subroutine is for evaluating the partial derivatives of gj's w.r.t u(x). It should

have the heading

SUBROUTINE DGSUB(J , U , DG)

where U is again u(x). J is, as for GSUB, the index of the side condition. DG is a d

dimensional vector that contains the partial derivatives DG(k) = & , k=l ,..., d .
J4

SUBROUTINE SOLUTN:

This subroutine is for evaluating the initial approximation for u(x) . It is only

needed when IPAR(9) = 1 and it should have the heading

SUBROUTINE SOLUTN(X, U)

where X = x and U = u(x).

3.2.4 User feedback from HAGRON

Like using COLSYS and COLNEW, users can get a various amount of

feedback via the three options of IPAR(7) and IFLAG which is the mode of returning

from HAGRON. When IFLAG(7) is set to -1, one get the maximum feedback which

includes the following:

1: Verification of some key input information including a) the number of differential

equations, 6) if the system is nonlinear, c) side condition points,and d) components

of u that require tolerances.

2: The possible maximum number of subintervals (determined by the dimensions of

both FSPACE and ISPACE).

3: The number of points in the current mesh.

4: Parameters concerning deferred correction procedure.

5: If the problem is nonlinear, the programs also provide an account of how the

nonlinear iteration is proceeding.

6: The five modes of return from IFLAG (see IFLAG above).

3.1.5 Output and Simple Continuation (with IPAR(9) = 2)

Unlike COLSYS and COLNEW, HAGRON does not have a subroutine that

evaluates the solution at any point x (a I x I b). HAGRON only provides an

approximate solution at a finite number of final mesh points. On normal return from

HAGRON, the array FSPACE contains the final mesh while the one dimensional array

U contains the solution. More specifically, the first d (or ICOMP) components of U is
just v(FSPACE(l)), the second d components that follows is v(FSPACE(2)) and so on.

Like COLSYS and COLNEW, the number of final mesh points is ISPACE(l)+l, i.e.

is the final mesh.

To do continuation with HAGRON, one has to setting IPAR(9)=2 and put the

starting approximate solution in U in the way we described above and put the

corresponding mesh points in FSPACE.

3.1.6 Sample Driver for solving (3.la&b&c) with HAGRON

c PROGRAM D R ~ V E R
C
C THIS IS THE SAMPLE DRIVER PROGRAM FOR HAGRON
C

IMPLICIT REAL*8 (A-H,O-2)
C

PARAMETER(NCOMP = 2)
PARAMETER(IPARl = 1
PARAMETER(IPAR2 = 1

)
)

PARAMETER(IPAR3 = 0)
PARAMETER(IPAR4 = 2)
PARAMETER(IPARS = 25000)
PARAMETER(IPAR6 = 15000)
PARAMETER(IPAR7 = -1)
PARAMETER(IPAR8 = 0)
PARAMETER(IPAR9 = 0)
PARAMETER(IPARlO = 0
PARAMETER(IPARll = 0

1
)

PARAMETER(IPARl2 = 1)
PARAMETER(IPAR13 = 0)

REAL*8 FSPACE(IPARS),ZETA(NCOMP),TOL(IPAR4)
REAL*8 U(lSOOO).FIXPhT(2),UU(NCOMP,4000)
INTEGER ISPACE(IPAR6)JPAR(2O).LTOL(IPAR4),RES(2)
EXTERNAL FSUB, DFSUB, GSUB, DGSUB, SOLUTN
COMMONIPARAMEIMPARAI

SET UP IPAR AND SOME CONSTANTS

MPARAI =
IPAR(1) =
IPAR(2) =
IPAR(3) =
IPAR(4) =
IPAR(5) =
IPAR(6) =
IPAR(7) =
IPAR(8) =
IPAR(9) =
IPAR(I0) =
IPAR(I1) =
IPAR(I2) =
IPAR(13) =
IPAR(I4) =
IPAR(I5) =
IPAR(16) =
IPRINT =
IMERIT =
IWATCH =
KWATCH =

NCOMP
IPARl
IPAR2
IPAR3
IPA R4
IPA R5
IPAR6
IPAR7
IPAR8
IPAR9
IPARIO
IPARll
IPARl2
IPAR13
IPARl4
lPARl5
IPAR16
IPA R(7)
IPAR(I2)
IPAR(l.5)
IPA R(16)

SET BOUNDARY VALUE CONDITION

ALEFT = O.OD0
ARIGHT = 1 .OD0

ZETA(1) = ALEFT
ZETA(2) = ARIGHT

SET TOLERANCES FOR U

WRITE(6.130) NCOMP
IF(IPAR(I).EQ.l) THEN
IF(1MERIT .EQ. I) WRITE(6.110)
IF(1MERIT .EQ. 0) WRkTE(6.120)
WRITE(6.150) IWATCH. KWATCH
ENDIF

CALL TIME(O,O,RES)
CALL HAGRON(NCOMP,ZETA,IPAR~L,TOL,FIXPhT,ISPACE,

1 FSPACE,UJF~GJSUBpFSUB,GSUBPGSUB,SOLUTN)
CALL TIME(3,-1,RES)
WRITE(6,*) 'CPU IN MILLISECONDS: ',RES(I)
WRITE(6,*) 'ELT IN MILLlSECONDS: 'JES(2)

NPI IS THE TOTAL NUMBER OF POINTS IN THE FINAL MESH

NPI =ISPACE(I)+I
PRINT*,'FSPACE(NPI)=',FSPACE(NPI)
WRITE(6.170) IFLAG, NPI
NTOL=IPAR(4)
INCP = I
IF(NP1 .GTAS) INCP = 5
IF(NP1 GT.80) INCP = 10
IF(NP1 GT.400) INCP = 50
IF(NP1 .GT.1000) INCP = 75
CALL JSJAI(UJVP1 ,NCOMP,UU)
PRINP,'IF YOU WANT THE OUTPUT ON U(KK), INPUT KK PLEASE'
PRINT*.'OR ENTER ZERO FOR EXIT'
READ(*,*) KK
IF(KK.EQ.0) GOT0 200
ERRMAX=O.DO
DO 20 I=I,NPIJNCP
XX=FSPACE(I)
CALL EXACT(KKXX,SOL)
ER=DABS(SOL-UU(KKJ))
ERRMAX=DMAXI(ERRMAX,ER)
WRlTE(6.180) I,XXSOL,UU(KKJ).ER
CONTINUE
PRINT*,'*** THE MAXIMUE A-ERROR AT MESH PTNS IS: ',ERRMAX
GOT0 100

FORMAT(' SCALED MERIT FUNCTION')
FORMAT(' UNSCALED MERIT FUNCTION')
FORMAT(' NUMBER OF COMPONENTS = ',IS)
FORMAT(' WATCHDOG ITERATION LIMIT'J5JX.WATCHDOG MIN'J5)
FORMAT(1H. 6HIFLAG=, IS,SX,I6HNUMBER OF POINTSJS)
FORMAT(IXJSJ(1 PGI 7.7),l PG20.10)
STOP
END

*** SUBROVTINE SOLUTN ***

SUBROUTINE SOLUTN(X,Z)
IMPUCIT REALS8 (A-H,O-2)
COMMONIPARAMEINCOMP
REAL*8 2(NCOMP)

Z(2)=1 .DO+X
Z(1)=1 .DolZ(2)
RETURN
END

C *** SUBROUTINE FSUB ***
C

SUBROUTINE FSUB(XZF)
IMPWCIT REAL*8 (A-H.0-2)
COMMON IPARAMEINCOMP
REAL*8 Z(NCOMP),F(NCOMP)
F(l)=-2DOl(Z(2)*Z(2))
F(2)=2(2)*2(2)-lIZ(l)+DEXP(X)
RETURN
END

C
C *** SUBROUTINE DFSUB ***
C

SUBROUTINE DFSUB(X,Z,DF)

IMPLICIT REAL*8 (A-H.0-Z)
COMMONIPARAMElNCOMP
REAL18 Z(NCOMP),DF(NCOMP,NCOMP)

DF(I,l)=O.ODO
DF(l.2)=4.D0/(2(2)*Z(2)*2(2))
DF(2,1)= 1 90/(2(1)*2(1))
DF(2.2)=2.ODO*Z(2)
RETURN
END

*** SUBROUTINE GSUB ***

SUBROUTINE GSUB(1,Z.G)
IMPLICIT REAL*8 (A-H.0-Z)
COMMONIPARAMEINCOMP
REALZ8 Z(NCOMP),G
GO TO (12)1
G=Z(l)-ID0
RETURN
G=Z(2)-DEXP(1.DO)
RETURN
END

*** SUBROUTINE DGSUB ***

SUBROUTINE DGSUB(IZ,DG)
IMPLICIT REAL*8 (A-H.0-Z)
COMMONIPARAMEINCOMP
REAL*8 Z(NCOMP),DG(NCOMP)

DO 10 J=12
DG(J)=O.ODO
GO TO (12)J
DG(l)=I.ODO
RETURN
DG(2)=1 .OD0
RETURN
END

*** SUBROUTINE EXACT ***

SUBROUTINE EXACT(KKJX,SOL)

SUBROUTINE FOR EVALUATING THE EXACT SOLUTION

IMPLICIT REAL"8 (A-H.0-Z)
GO TO (12). KK
SOL=DEXP(-2DO"XX)
RETURN
SOL=DEXP(XX)
RETURN
END

SUBROUTINE JS.lM(U,h'PI,NCOMP,UU)

SUBROUTINE FOR PUlTING THE SOLUTION INTO A NCOMP BY NPl ARRAY

IMPLICIT REAL*8 (A-H.0-Z)
REAL*8 U(25002),UU(NCOMP,NPl)

DO 10 I=l,NPl
DO 10 J=l NCOMP
UU(JJ)=U(NCOMP*(l-l)+J)

10 CONTINUE
RETURN
END

3.3 MUTS

MUTS is based on a multiple shooting method for two point boundary value

problems for ODE [15]. It consists of two subroutines, namely MUSL for linear two

point boundary value problems and MUSN for nonlinear problems. The driver programs

for MUSL and MUSN are not exact the same. The following are some details about

how to use them.

3.3.1 MUSL

3 . 3 . 1 ~ The classes of problem that MUSL is addressed to

MUSL solves a linear two-point boundary value problem

where y , J, r ~ R n , and L, Ma, M,E R-.

3.3.1 b Input Parameters

Subroutine MUSL is headed by

SUBROUTINE MUSL(FLIN, FDIF, N, IHOM, A, B, MA, MB, BCV,
+ AMP,ER, NRTI, TI, NTI, Y , U, NU, Q, D, KPART,

PHIREC, W , LW, IW, LIW, IERROR)

The following is information about the parameters in the heading.

N : The order of the system (3.4a&b).

IHOM: = 0 if the system (3.4a&b) is homogeneous.

= 1 if the system (3.4a&b) is inhomogeneous.

A, B: The two boundary points.

'Ma, M,: The N x N matrices in (3 .4b) .

BCV: An real N dimensional array containing# in (3.4b).

A M P : On entry AMP must contain the allowed incremental factor of the
homogeneous solutions between two successive output points. If the
increment of a homogeneous solution between two successive output

points becomes greater than 2 x A M P , a new output point is inserted.

When the input value of AMP is less than or equal to 1 , a default value

is assumed. The default value of AMP varies with the value of NRTI. If
NRTI = 0, then the default value of AMP is

If NRTI 2 1 , then the default value is infinity.

ER: An real array of dimension 5.

On entry ER(1) must contain a relative tolerance for solving the

differential equation. If the relative tolerance is smaller than 10-12 the

subroutine will change ER(1) into 10-12 + ER(3).

On entry ER(2) must contain an absolute tolerance for solving the

differential equation, ER(3) must contain the machine precision.

On exit ER(2) and ER(3) are unchanged.

See 3 . 3 . I e for ER(4) and ER(5).

NRTI: On entry NRTI is used to specify the required output points. There are

three ways to specify the required output points:

1) NRTI = 0, the subroutine automatically determines the output points

using the allowed incremental factor AMP.

2) NRTI = I , the output points are supplied by the user in the array TI .

TI:

NTI:

Y:

U:

NU:

3) NRTI > I , the subroutine computes the (NRTI+I) output points

T W by

so TI(1) = A and TI(NRTI+ 1) = B .

Depending on the allowed incremental factor AMP, more output points

may be inserted in cases 2 and 3 .

Also see 3.3. le .

A real array of dimension NTI. On entry: if NRTI = I , TI must contain

the required output points in monotone order:

1 denotes the total number of required output points.

Also see 3.3.1e.

NTI is the dimension of TI and one of the dimensions of the arrays X,

UIQ, D, PHIREC. NTI must satisfy

NTI 2 the total number of output points + 3.

i.e. if the routine was called with NRTI > I and AMP I I the total

number of output points is the entry value of NRTI + I , so NTI should

be at least the entry value of NRTI + 4. Unchanged on exit.

A real may of dimension (N,NTI). Also see 3.3.1e.

A real array of dimension (NUINTI). Also see 3.3.1e.

NU is one of the dimensions of U and PHIREC. NU must satisfy

Unchanged on exit.

KPART:

PHIREC:

W:

LW:

IW:

LIW:

IERROR:

A real array of dimension (N,NJVTI). See 3.3. le for more details.

A real array of dimension (N,NTI). If IHOM = 0, the array D has no real

use and the user is recommended to use the same array for the Y and D.

If IHOM = 1, on exit D(i,k) i=1,2,..-JV contains the inhomogeneous term

d(k), k=1,2,.-JVRTI, of the multiple shooting recursion. Also see 3.3.Ie.

Integer. Also see 3.3.Ie.

A real array of dimension (NUJVTI). Also see 3.3.Ie.

A real array of dimension (LW). Used as work space.

LW is the dimension of W and LW L 8xN + 2xNxN. Unchanged on exit.

An integer array of dimension (LIW). Used as work space.

LIW is the dimension of IW. LIW 2 3xN. Unchanged on exit.

Integer. Error indicator (see user feedback below for details).

3.3.1 c Input Subroutines

SUBROUTINE FLIN:

This subroutine evaluates8 the homogeneous part of the differential equation

L(t)y(t) in (3.4a). It must have the heading

SUBROUTINE FLIN(T, Y, F)

where t = T, y(t) = Y and F is the N dimensional vector containing L(t)y(t). FLIN
must be declared as EXTERNAL in the program from which MUSL is called.

SUBROUTINE FDIF:

This subroutine evaluates the right-hand-side of the inhomogenous differential

equation L(t)y(t) + r(t) in (3 . 4 ~) . It must have the heading

SUBROUTINE FDIF(T, Y , F)

where t = T, y(t) = Y and F is the N dimensional vector containing L(t)y(t) + r(t) ,

and it must be declared EXTERNAL in the program from which MUSL is called.

In case the system (3.4a) is homogeneous, FDIF is the same as FLIN.

3.3.1 d User feedback from MUSL

MUSL provide a wide range of user feedback through an error indicator

IERROR. This indicator indicates 15 different kinds of mode of return from MUSL.

These modes are either specific terminal errors or specific warning messages. The

following are these 15 modes

IERROR: Integer. Error indicator.

= 0 . No errors detected .

= 100. Input error. This is caused by at least one of the following:
Nx(N+l)

N<l,IHOM<O,NRTI<O,NTI<5,NU< ,or A=B .

Terminal error.

= 101. Input emrf either ER(1) or ER(2) or ER(3) is negative.

Terminal error.

= 103. Input error: either LW c 8xN + 2 x N m or LIW c 3 x N .
Terminal error.

= 120. Input error: the routine was called with NRTI = I , but the given

output points in the array TI are not in monotone order.

Terminal error.

= 121. Input error: the routine was called with NRTI = I , but the first

given output point or the last output point is not equal to A or B.
Terminal error.

= 122. Input error: the value of NTI is too small; the number of output
points is greater than NTI - 3. Terminal error.

= 200. This indicates that there is a minor shooting interval on which

the incremental growth is greater than the AMP. This is to be attributed

to the used method for computing the fundamental solution, and may

jeopardize the global accuracy if

Warning error.

= 213. This indicates that the relative tolerance was too small. The

subroutine has changed it into a suitable value. Warning error.

= 215. This indicates that during integration the particular solution or a

homogeneous solution has vanished, making a pure relative error test

impossible. Must use non-zero absolute tolerance to continue.
Terminal error.

= 216. This indicates that during integration the requested accuracy

could not be achieved. User must increase error tolerance.
Terminal error.

= 218. This indicates that the input parameter N ,Q), or that either the

relative tolerance or the absolute tolerance is negative.Termina1 error.

= 240. This indicates that the global error is probably larger than the

enor tolerance due to instabilities in the system. Most likely the
problem is ill-conditioned. Output value is the estimated error
amplification factor ER(5). Warning error.

= 250. This indicates that one of the U(k) is singular. Terminal error.

= 260. This indicates that the problem is probably too ill-conditioned

with respect to the boundary condition. Terminal error.

3.3.Ie Output from MUSL

On normal return from MUSL, there are two types of output available. They are

the approximate solution related outputs and the others.

Approximate Solution related Outputs:

NRTI: On exit, NRTI contains the total number of output points.

TI: On exit, TI(i), i = 1,2, ..., NRTI contains the output points.

Y: On exit Y(i,k) , i=1,2,.-,N contains the solution of the BVP at the output

points TI(k), k=1,2, . ..,NRTI.

Other Outputs:

The following output may not be of great importance to those who are not

interested in the details of solving BVPODE with multiple shooting method. Please

see [14] and [2] for more details.

ER(4): On exit ER(4) contains an estimate of the condition number of the

boundary value problem.

ER1(5) : On exit ER(5) contains an estimated error amplifzation factor.

U: On exit U(i,k) i=1,2,...,NU contains the relevant elements of the upper

triangular matrix U(k), k=2,...,NRTI . The elements are stored column-

wise, the jth column of U(k) is stored in U(nj+l, k), U(nj+2, k), - - - ,
Oxj. (See [14] for U(k).) U(nj+j, k), where nj =

KPART:

PHIREC:

On exit Q(i j,k) i=1,2,...,N1 j=1,2,...SJ contains the N columns of the

orthogonal matrix Q(k), k=I,...,NRTI . (See [14] for Q.)

If IHOM = 0 the array D has no real use and the user is recommended

to use the same array for the Y and D. If IHOM = 1, on exit D(i,k)

i =1,2,-JV contains the inhomogeneous term d(k), k=I,2,...,NRTI1 of

the multiple shooting recursion. (See [14] for d(k).)

On exit KPART contains the global k-partition of the upper triangular

matrices U(k).

On exit PHIREC contains a fundamental solution of the multiple

shooting recursion. The fundamental solution is upper triangular and is

stored in the same way as the U(k).

3.3.1f Sample driver for solving (3Sa&b) using MUSL

The following is a sample driver program for solving (3.5a&b) using MUSL.

C
C SAMPLE DRIVER PROGRAM
C
C SOLVING EXAMPLE (3Sadrb) BY USING MUSL
C
C PROGRAM MAIN
C

IMPLICIT REAL'8 (A-H.0-Z)
C
C SET UP OBJECTIVE PROBLEM RELATED PARAMETERS
C

PARAMETER (A=O.ODO. B=I.ODO, IHOM=I, N=2)
C
C SET UP PROGRAM ARRAYS' DIMENSION RELATED PARAMETERS
C

PARAMETER (NTId00, NU=IO , LW=40, LIW=20)
C
C SET UP ARRIES AND CONSTANTS
C

REALS8 MA(N,N),MB(N,N),BCV(N).SOL(N)
REAL*8 ER(s),TI(NTI),Y(NNI),Q(N~~N~)~~(N~~~)
REAL*8 D(Nml) ,PHIREC(NUWI) ,w(Lw)
INTEGER NRTI,KP,IW(LIW),IERRO,KPART
INTEGER RES(2)
COMMON 1PARAMIIEPS.NZ
EXTERNAL FLlNFDIF

PRlNT*,'MUS EXAMPLE (35adrb) OUTPUT POINTS 300'
PRINT*,'INPUT EPS'
READ(6.*) EPS

MORE PROGRAM PARAMETERS

ERI: R-TOL.ER2: A-TOL.ER3: M-EPS

SET UP B.C. MATRIX AND VECTOR

Do5 I=lJV
BCV(l)=O.DO
DO5 J-lh'
MA(IJ)=ODO
MB(IJ)=ODO
CONTINUE
MA(I,l)=I .DO
MB(2,1)=1 .DO
XX=I .ODOIEPS
BCV(l)=XX-I .DOI(EPS+I .DO)
BCV(Z)=-XX+l .DOI(l .DO+EPS)

CALL, TIME(0,OIES)
CALL MUS~FLlN,FDIFflJHOMAB~A~B,BCV~MP,ER~RTI,TI,
+ NTI,Y,U,NU,Q,D,KPART.PHIREC,W,LW,IWLIW.IERROR)
CALL TIME(3,-1,RES)
WRITE(*,*) **CPU IN MILLISECONDS: ',RES(l)
WRITE(*,*) '**ELT IN MILLISECONDS: 'JES(2)

CALCULATE THE ERROR

SP=O.DO
ss=o.Do
DO 50 J=I flRTI
XX=TI(J)
CALL EXACT(XX,SOL)
P=DABS(SOL(I)- Y(1 J))
S=DABS(SOL(2)-Y(2J))
SP= DMAXl(P.SP)
SS = DMAXI (S,SS)
WRITE(6,60) XX.P,S
CONTINUE
FORMAT(lXJ8.6,' ERI: O.Dl6.8,' ER2: I.Dl6.8)
PRINT*,'NRTI=',NRTI
PRINT*,'** MAXIMUM El: '9
PRINT*,** MAXIMUM E2: 'SS
STOP

END

*** SUBROUTINE FUN ***

SUBROUTINE FWN(T,Y,F)
IMPUCrr REAL.*8 (A-H.0-Z)
COMMONIPARAM1IEPS.NZ
REAL.*8 Y(NZ),F(NZ)

HOMOGENOUS PART OF THE R-H SIDE

F(l)= Y(2)
F(2)=ODO
R E T U R N
END

*** SUBROUTNE FDIF ***

SUBROUTINE FDIF(T,Y.F)
IMPUCIT R M . 8 (A-H.0-Z)
COMMONIPARAM1IEPS.NZ
REAL*8 Y(NZ),F(NZ)

R-H FUNCTION EVALUTION

PP=(T+EPS)
XX=PP*PP*PP
PP=T-EPS-I .DO
W=PP*PP*PP
F(I)= Y(2)
F(2)=2.DOIXX+Z .DO/ W
R E T U R N
END

*** SUBROUTINE EXACT ***

SUBROUTINE EXACT(T,SOL)
IMPUCrr REAL*8 (A-H.0-Z)
COMMON/PARAMI/EPS,NZ
REAL.*8 SOUNZ)

PP=I .DOI(EPS+T)
QQ=I DOI(T-EPS-I DO)
Soy l)=PP+QQ
sOyz)=-PP*PP-QQ*QQ
R E T U R N
END

3.32 MUSN

3.3.2~ The classes of BVPODE that MUSL is addressed to

MUSN solves a nonlinear two-point boundary value problem

Y' =fO, Y) actcb

g(y(a), Y (b)) = 0

where y, f, g, 0 E Rn and y, f, g are n dimensional vector functions.

3.3.26 Input Parameters

Subroutine MUSN is headed by

SUBROUTINE MUSN(FDIF, YOT, G, N, A, B, ER, TI, NTI, NRTI, AMP,

+ ITLJM, Y, Q, U, NU, D, PHI, KP, W, LW, IW, LIW,
WG, LWG, IERROR)

The following is information about the parameters in the heading.

N :

A, B:

ER:

= n. The order of the system (3.6a&b).

The two boundary points. i.e. a = A, b = B.

A real array of dimension 5 .

On entry ER(1) must contain the required tolerance for solving the

differential equation.

On entry ER(2) must contain the initial tolerance with which a first

approximate solution will be computed. This approximate solution is

then used as an initial approximation for the computation of a solution

with a tolerance ER(2)xER(2) and so on until the required tolerance is

reached. The initial tolerance that is actually used by the code is not

necessarily the input value of ER(2). To avoid an inappropriate input

value of ER(2), the code always uses max{ ER(I), min(ER(2), lo-*)} as

the initial tolerance.

On entry ER(3) must contain machine precision.

On exit ER(I), ER(2) and ER(3) are unchanged.

See 3.3.2e for ER(4) and ER(5).

NRTI: On entry NRTI is used to specify the required output points. There are
three ways to specify the required output points:

1) NRTI = 0, the subroutine automatically determines the output points .

using the allowed incremental factor AMP (see AMP below).

2) NRTI = I , the output points are supplied by user in the array TI.

3) NRTI > 1, the subroutine computes the (NRTI+l) output points

T W by

so TI(1) = A and TI(NRTI+l) = B .

Depending on the allowed incremental factor AMP, more output points

may be inserted in cases 2 and 3.

Also see 3.3.2e.

TI: A real array of dimension NTI. On entry: if NRTI = 1 , TI must contain

the required output points in monotone order:

1 (determined by NRTI) is the total number of required output points.

Also see 3.3.2e.

NTI: Integer. NTI is one of the dimensions of TI, Y, S, Q, U and PHI. It

must satisfy

NTI 2 the total number of output points + 1.

i .e. if the routine was called with NRTI > I, NTI may be equal to the

entry value of NRTI + I . Unchanged on exit.

A M P : On entry AMP must contain the allowed increment between two

successive output points. A M P is used to determine output points and
to assure that the increment between two output points is at most
A M P x A M P . A small value for A M P may result in a large number of
output points.

Unless I c AMP c O . ~ S X (E R (I) I E R (~)) ~ J , the default value

AMP = 0.25x(ER(l)lER(3))0-' is used.

Unchanged on exit.

ITLIM: Integer. Maximum number of iterations allowed.

Y: A real array of dimension (N,NTI). Also see 3.3 .2e .

U: A real array of dimension (NU,NTI). Also see 3.3 .2e .

N U : N U is one of the dimensions of U and PHI. N U must satisfy

Unchanged on exit:

a. A real array of dimension (N,NSJTI). See 3.3.2e for more details.

D: A real array of dimension (N,NTI). On exit D(.,i) i=1,2,--,NRTI contain

the inhomogeneous term of the incremental recur'sion.

KP: Integer. Also see 3.3 .1e .

P H I : A real array of dimension (N U M I) . Also see 3 .3 . Ie .

W:

LW:

IW:

LIW:

WG:

LWG:

A real array of dimension (LW). Used as work space.

LW is the dimension of W and LW 2 7xN +3xNxNTI + 4xNxN.

Unchanged on exit.

An integer array of dimension (LIW). Used as work space.

LIW is the dimension of IW. LIW 13xN + M I . Unchanged on exit.

A real array of dimension LWG. WG is used to restore the integration

grid points.

Integer. LWG is the dimension of WG. LWG must satisfy
I

LWG 2 3 x (total number of grid points).

The minimum number of grid points between two successive output

points is 5, so the minimum value for LWG is the number of actually

used output points. Initially a crude estimate for LWG has to be made.

Also see IERROR 219 in 3.3.2e.

IERROR: Integer. Error indicator (see user feedback below for details).

3 . 3 . 2 ~ Input Subroutines

SUBROUTINE FDIF:

This subroutine evaluates the right-hand-side f(t,y) in (3 . 6 ~) . It must have the

heading

SUBROUTINE FDIF(T, Y, F)

where t = T, y(t) = Y and F is the N dimensional vector contai .ng f(t ,y). FDIF
must be declared EXTERNAL in the program from which MUSN is called.

SUBROUTINE YOT:

This subroutine evaluates the initial approximate solution yo(?) supplied by the

user for any t = T . It must have the heading

SUBROUTINE YOT(T, Y)

where t = T and Y is an N dimensional vector that yo(?) = Y. YOT must be declared

as EXTERNAL in the program from which MUSN is called.

SUBROUTINE G :

This subroutine evaluates g(y(a),y(b)) in (3.6b) as well as the Jacobians

It must have the heading

SUBROUTINE G(N, YA, YB, FG, DGA, DGB)

where YA, YB, FGERN, DGA, DGB€RNYN. y(a) = YA, y(b) = YB, FG = g(y(a),y(b))

and DGA, DGB contain the first and second Jacobians shown above, respectively.

G must be declared as EXTERNAL in the program from which MUSN is called.

3.3.2d User feedback from MUSN

Like MUSL, MUSN also provides a wide range of user feedback through error

indicator IERROR. This indicator indicates 15 different kinds of mode of return from

MUSN. These modes are either specific terminal errors or specific warning messages.

The following are these 15 modes

IERROR: Integer. Error indicator.

= 0. No errors detected.

= 01. Input error: either ER(1) or ER(2) or ER(3) is negative.

Terminal error.

Nx(N + 1)
= 05. Input error: either N c l or N T k 3 or NRTIcO or NU c

or A = B. Terminal error.

= 06. Input error: either LW c 7xN + 3xNxNTI + 4xNxN or
LIW c 3xN + NTI. Terminal error.

= 20. Input error: the routine was called with NRTI = I , but the given

output points in the array TI are not in monotone order.

Terminal error.

= 21. Input error: the routine was called with NRTI = 1 , but the first
given output point or the last output point is not equal to A or B.

Terminal error.

= 22. Input error: the value of NTI is too small, the number of output

points is greater than NTI - 1 . Terminal error.

= 23. Input error: the value of LWG is less than the number of output

points. Increase the dimension of the array WG and the value of LWG.
Terminal error.

= 216. This indicates that during integration the requested accuracy
could not be achieved. User must increase error tolerance.

Terminal error.

= 219. This indicates that the routine needs more space to store the

integration grid points. An estimation for the required workspace (i.e.

the value of LWG) is given. Terminal error.

= 230. This indicates that the Newton iteration fails to converge.

Terminal error.

= 231. This indicates that the number of iterations has become greater

than ITLIM. Terminal error.

= 240. This indicates that the global error is probably larger than the

error tolerance due to instabilities in the system. Most likely the

problem is ill-conditioned. Output value is the estimated error

amplification factor ER(5). Warning error.

= 250. This indicates that one of the upper triangular matrices U is
singular. Terminal error.

= 260. This indicates that the problem is probably too ill-conditioned

with respect to the boundary conditions. Terminal error.

3.3.2e Output from MUSN

On normal return from MUSN, like MUSL, there are two types of outputs

available. They are the approximate solution related outputs and the others.

Approximate Solution related Outputs:

NRTI: On exit, NRTI contains the total number of output points.

TI: On exit, TI(i), i = 1,2, ..., NRTI contains the output points.

Y: On exit Y(i,k) , i=1,2,...,N contains the solution of the BVP at the output

point TI(k), k=1,2, ..., NRTI.

Other Outputs:

The following output may not be of importance to those who are not interested

in the details of solving BVPODE with the multiple shooting method. Please see [14]

and [2]. for more details.

ER(4) : On exit ER(4) contains an estimation of the condition number of the
boundary value problem (see [2] , [14]) .

ER(5) : On exit ER(5) contains an estimated error amplification factor.

U: On exit U(.,i) i=I,Z,...,NRTI contains the the upper triangular factors of

the incremental recursion. The elements are stored column wise. The jth

column of U is stored in U(nj+ I , k), V(nj+2, k), ... , U(n,+j, k),

where nj = w. (see [14] for u.)

On exit Q(.,.,i), i=1,2, ... ,NRTI contains the orthogonal factors of the
incremental recursion.

On exit D(.,i) i=1,2, ... ,NRTI contain the inhomogeneous term of the

incremental recursion.

KP: On exit KP contains the dimension of the increasing solution space.

PHI: On exit PHI(.,i), i = I,2, ... ,NRTI contains the fundamental solution of the

incremental recursion. The fundamental solution is upper triangular and

stored in the same way as the upper triangular U .

3.3.2f Sample driver program for solving (3.Ia&b) using MUSN

C
C SAMPLE DRIVER PROGRAM
C
C SOLVING EXAMPLE (3.ladrb) USING MUSN
C
C MAIN PROGRAM
C

IMPWCrr DOUBLE PRECISION (A-H.0-Z)
C
C . SET U P PARAMETERS
C

PARAMETER (A=O.DO.B=l .DO,h'=Z,R"LIM=SO)

PARAMETER (NRTI=299,NTl=400,NU=20,LW=2600,LJW=600,LWG=400)

REAL*8 ER(S).TI(NTl),Y(NNI),&(NflNI),U(NUflI)
REAL*8 D(N,NTI),PHlREC(NU,KTI), W(LW), WG(L WG),SOL(N)
INTEGER KPART,IW(LIW),IERROR
INTEGER R ES(2)
EXTERNAL FDIF.Ym,G
COMMON IPARAMEINZ

ER(I)=l .D-6
ER(2)=1 .D-2
ER(3)=0.20D-IS
AMP = 100
N Z = N

CALL TIME(0,OLES)
CALL MUSN(FDIF.YOT.G&Ad.ER,TI~I&RTIPMP,~LIM,Y,Q,UNU,
+ D,PHIREC,KPART,WLW,IWLIW,WG,LWG,IERROR)

CALL TIME(3,-1,RES)
PRINT.%PU IN MIUSECONDS: ',RES(I)
PRINT*,'ELT IN MILISECONDS: 'JES(2)

SP=O.DO
SR=O.DO
DO 20 I=I ,NRTI
X=TI(I)
CALL EXACT(X,NSOL)
P=DABS(SOL(l)- Y(l ,I))
R = DABS(SOL(2)- Y(2J))
SP= DMAXI(SP,P)
SR=DMAXI(SR,R)
WRlTE(6,40) X,PJ
FORMAT(lX,F8.4,4X,'ERRORl:',D12.6,' ERROR2:'912.6)
CONTINUE
PRINT,THE MAXIMUM ERROR1 IS: ' S P
PRINT*,THE MAXIMUM ERROR2 IS: ' J R
STOP
END

*** SUBROUTINE FDIF ***

SUBROVTINE FDIF(T,Y,F)
IMPLICIT REAL*8 (A-H.0-2)
COMMONlPARAMElN
REAL*8 Y(N),F(N)

F(1) = -2 .DOI(Y(2)* Y(2))
F(2) = Y(2)* Y(2)-I .DOIY(I)+DEXP(T)
RETURN
END

*** SUBROUTINE Y m ***

SUBROOTINE YOT(T,Y)
IMPUCrr REAL18 (A-H.0-Z)
COMMONlPARAMElN
REAL*8 Y(N)

Y(1) = I.DOl(I.DO+X)
Y(2) = I .DO
RETURN
END

SUBROUTINE G(N,XA,XB,FG,DGA,DGB)
IMPUCrr R W * 8 (A-H,O-2)
REAL*8 XA(N)XB(N),FG(N),DGA(N.N).DGB(N.N)

DO 20 I=IN
DO 20 / = I N
DGA(II)=OLm
DGB(IJ)=OLm
CONTINUE

RETURN
END

*** SUBROUTINE EXACT ***

SUBROUTINE EXACT(X.N,SOL)
1MPLKlT R W * 8 (A-H.0-2)
REAL*8 SOL(N)

RETURN
END

Chapter 4: The Comparison of the Codes (11)
-The Basic Design of Our Comparison and the Results of Comparing

the Four Codes

This chapter is mainly concerned with comparing the four codes with respect to

those issues discussed in Chapter Two. The date that we received each one of the four

codes is shown in the end the Introduction. The comparison conducted here is based

on the versions of the four codes we received and the resulting conclusions may not be

applied to different versions of these codes. We will have some general discussion

about the design of the comparison and how our comparison is conducted in the first

section. In the second section we will have detailed comparison with respect to the

criteria discussed in Chapter Two. We will conclude this thesis by summarizing our

observations which resulted from comparing the codes in the third section of this

chapter.

4.a The Basic Design of Our Comparison

In Chapter Two, we have discussed many criteria the are relevant to the

comparison of the codes. But how to design a comparison so that all these criteria can

be fully utilized is still a problem. In this section, we focus on explaining how we are

going to use those test problem dependent criteria to develop a quality of solution

oriented comparison. Furthermore, we will discuss our basic strategy of conducting a

comparison in this type by using a critical input parameter - the tolerance.

4 . ~ 1 Quality of solution oriented comparison

One of the most important pans of comparison of codes is to evaluate the

relative efficiencies of the codes. The relative efficiencies of the codes on a certain test

problem, though still a vague concept, can usually be determined by using the test

problem dependent criteria such as the time and storage they require to solve the

problem. Test problems without the known exact solutions have been used before. But

in order to fully utilize criterion accuracy, we purposely choose the test problems so

that they all have known exact solutions. Up to now, relative efficiency remains to be a

concept that has be widely used but not very well defined. A quite common strategy of

measuring the relative efficiency of the codes has been that of first setting up the input

parameters for each code such that all the codes have more or less the same

parameter setting, and then compare the resulting timing, storage and accuracy from

each code. The underlying motivation for this, we believe, is that when the codes have

the same parameter setting, they are given the same amount of input, and therefore i t

is justifiable to compare the efficiencies of the codes in terms of the resulting CPU time

and storage used since these efficiencies are the yields of the same input.

But it seems to us that this plausible strategy may not be appropriate for our
purpose of comparing the four codes because of the fact that parameters that bear the
same names, are supposed to have similar functions and were assigned the same

values can play quite different roles in different programs. More importantly, not all the
parameters are relevant to the efficiencies of the codes. Even if two different programs
have exact the same parameter setting, the comparison of the results from the two

programs that correspond to that setting may not be very meaningful. Let's use an

exaggerated example to further illustrate this point: Two codes A and B have exactly

the same set of parameters. When we apply them to solve the same problem, all the

parameters for both programs are set to be the same constants except, say, the

tolerance. When varying the tolerance, we observe that for both codes, the results get

strictly better and better as the tolerance decreases. Furthermore, the two codes
would have exactly the same results when the tolerance for code A is TOL and the
tolerance for code B is IOxTOL. Thus a comparison according to the same setting of

parameters would result in a consistently better performance of code B over code A.
However, in our opinion, this is not a fair comparison since tolerance is just a

parameter and it is not related to the cost of running the codes in any way.

Furthermore, the two codes A and B have exact the same capabilities and

efficiencies under our assumption in the sense that no matter how well code B can

perform, code A can achieve exactly the same performance at no extra cost and vice

versa. The only thing different is that the two codes always attain the same level of

performance with different tolerances. With a minor modification to code A, i.e. set
TOL to be equal to TOLI10, the two codes would then perfom exactly the same.

Whether the accuracy of the solution each code produces responds well to the

tolerance that the user provides is an important aspect of the code and we will come to

this point later on. But we felt that tolerance itself may not be considered as a

performance index and is not important when it comes to timing efficiency or storage

efficiency of the code. We are not in an 'input output' situation where the tolerance is

the input and the result is the output when we compare the timing and storage

efficiencies, even though it appears that we are.

In this thesis, we are mainly concerned with the potential of the performance of

the codes rather than how well the codes can perform at a certain input parameter

setting which, as was indicated by the example above, is not always relevant to the

potential efficiencies of the codes. In order to design a comparison that focuses on how

well the codes can perform (not how well they can perform under the similar input

parameter settings), we split the performance related criteria into two groups

according to the nature of these criteria. It is clear that when writing or running a code,

what we are really after is a good quality solution to the problems we want to solve. In

order to calculate the numerical solution, we need computing time and storage. One

may consider the numerical solution we are after as the 'goods' and the timing and

storage as the 'cost'. We intend to make a split of the criteria according to whether the

criteria are about the 'goods' or 'cost'. From now on, except those that are related to

the quality of the solution, all performance type criteria, most importantly timing and

storage, will be referred to as cost indexes. They, as a group, define the cost needed

by the codes to solve a problem. Those that are related to the quality of the numerical

solution form another group and determine the quality of the solution produced by the

codes. Based on this split, there are two possible aspects of the codes that can be

revealed by a comparison. One may compare the best quality of the solution that is

attained by each code during an experiment. More practically, one may gather those

runs from the codes that yield solutions with similar quality and then compare the

codes for these runs according to the cost indexes to reveal the relative efficiency. In

another words, it is then possible to use peak quality solutions produced by each code

and the relative efficiencies defined by cost versus solution quality to make a

comparison. We call this the quality of solution oriented comparison. This new way of

comparing the test problem related efficiencies will be referred to as QSO approach

later in our discussion.

The advantage of a QSO approach is that it gives the relative efficiency a clear

meaning. More importantly, the information concerning the connection between the

cost and the quality contained by the data is utilized by comparisons of this type. The

comparison where codes are compared under similar input parameter settings,

however, is weak in making use of this kind of information.

However, the appealing ideas we have above suffer from the problem of being

not very practical and are usually difficult to carry out. The peak quality solution, for

example, will remain to be just an idea in this thesis and will not be an issue of our

comparison due to the difficulties of getting the peak quality solution of the codes on

any test problem. On the other hand, the major obstacle for making use of the relative

efficiency described above is that there may not be a commonly agreed upon way of

setting up numerical solution quality levels. It is unrealistic for us to find some kind of

'standard' that can quantify the solution quality levels in a way that it makes sense to

everybody. An individual user that is particularly concerned with a specific aspect of

the solution can set up a quality scale according to what helshe is concerned about.

When one is only concerned about the maximum error at the mesh points or the

average of the squared errors at the mesh points, for example, one can then set up

some quality levels associated with the maximum error or the average mentioned

above. The quality of the solutions is then quantified. Despite the fact that there exist

many different quantitative features of the numerical solution, the most common focus

for many experts has always been the maximum absolute error at the mesh points.

Though we intend to look beyond the quantitative features of the numerical solutions

as was indicated in Chapter Two, when evaluating the relative efficiencies of the

codes, it is difficult for us to take into consideration the qualitative aspects of the

solutions. Thus we will only use the maximum absolute error at the mesh points (for

codes that provide continuous solution, the maximum absolute error at thirty equally

spaced points in the domain will also be considered sometimes) to judge the quality of

the solution. The qualitative features we mentioned in Chapter two, i.e. the form of the

solution and the distribution of the final mesh points are not test problem dependent

and will be compared separately.

4 . ~ 3 Collecting test problems related information for comparison

How do we collect test problem related information so that we can carry out the

comparison concerning the test problem dependent criteria ? In'particular, how can we

find out the costs each code needs to obtain solutions at different quality levels to

reveal the relative efficiencies ?

Each one of the four codes has more than ten input parameters that has to be

set by the user. Some of the parameters can assume infinitely many different values.

Thus it is virtually impossible to exhaust all the possible combinations of these

parameters and collect information such as timing, storage and accuracy that follows.

Having ruled out the possibility of looking into every combination of the input

parameters, it is clear that we have to find a way to collect information such that not

only the way is feasible and practical, but also the information collected this way can

best represent the capabilities of the codes and is sufficient to support our comparison.

Such a way is often referred to as 'testing'.

Fortunately, among the many input parameters, only a few may influence the

timing, storage and accuracy that related to the codes. In many cases, the influence of

a single parameter can be so dramatic that the influence of the other parameters is

negligible. Based on our experience with the four codes, when compared with other

parameters, tolerance, the parameter that is supposed to impose the desired degree of

accuracy on the numerical solution in some way, is one of the input parameters that

consistently has a dramatic influence on the performance of the codes, no matter what

kind of test problems we use. Furthermore, it is designed to influence the solution in a

fairly predictable way (we will come to this in the next paragraph) and it is the only

such a parameter that every code has in common. Despite many problems it may

cause, in order to get rid off the difficulties of being entangled by the infinitely many

combinations of the input parameters and infinitely many solutions that follows, some

kind of 'clear cut' approach is inevitable. Our 'clear cut' approach in this thesis is that

when using the codes to solve a test problem, we set all the input parameters except

the tolerance in a way that we believe will best serve the codes in terms of producing

quality solutions by them. We then vary the tolerances from 1.0-2, 1 . 04 , 1.0-6 to

1.0-8 and run the codes with these values of tolerance to collect information such as

accuracy, timing and storage that we need to reveal the relative efficiencies. We will

provide more details about this approach in Appendix (I). As one will see from there,

this approach is feasible and practical.

The four codes differ from one another in the number of tolerances allowed.

COLNEW, COLSYS and HAGRON allow the user to specify a tolerance for each

variable (in the case of COLNEW and COLSYS, these variables may be any

component of z in 3.2a&b), while MUTS allows a user to provide only two tolerances.

The impact the tolerances have on the performance of the codes is usually test

problem dependent and varies from code to code. Based on our experience with the

four codes, when we set all the input parameters except the tolerance in the way we

discussed above, the CPU time and storage needed by each code for solving a problem

generally increases as the tolerance decreases, but the accuracy of the solution

generally gets better, provided that the codes return normally. Thus when we take the

above approach, we can get solutions in difierent quality level as well as the related

costs upon normal returns from the codes. On the other hand, if the codes fail at some

small tolerance, we then know the limits of the codes in terms of the best quality

solution the codes can provide. These limits, as well as the reasons for failure when

the codes are brought to these limits, are important for comparing the codes in terms of

the robustness of the codes, and to what degrees a BVP for ODE can be solved by the

codes.

Being able to find out the solutions at different quality levels together with

their accompanying costs, and detect the limits that are mentioned above enables us

to collect information about these solutions and costs and carry out the test problem

related comparison. The information collected by this approach is exactly what a QSO

type of comparison needs.

4.b The Comparison of the Codes

4.61 Codes' driver related comparison

I) The form of the BVPODE that can be directly dealt with by each code

COLNEW and COLSYS can be directly applied to a system of ODE with high

order (greater than 1) equations while HAGRON and MUTS solve first order system

exclusively. When using HAGRON and MUTS for a system of ODE with high order

equations, one must first rewrite the system as a first order system. For details on

how to change a higher order equation into a fust order system, please see section one

of the first chapter.

COLNEW and COLSYS accept multipoint boundary conditions but require that

they are separated. The current version of HAGRON accepts two point separated

boundary conditions only. MUTS is not restricted to separated boundary conditions but

like HAGRON, it accepts two point boundary conditions only.

The form of the BVPODE that can be directly dealt with by each code is not

critical in theory since a mixed order system with general multipoint boundary

conditions can be recast into a first order system with separated two point boundary

conditions, which all the four codes can be directly applied to [2]. However, when a

higher order equation is changed into an equivalent first order system, a multipoint

boundary condition is changed into an equivalent two point boundary condition, or s

non-separated boundary condition is changed into a separated one, the number of

equations will be increased and the transformation needed may be rather cumbersome.

Thus this issue does reveal the disadvantages and advantages of each code in the

sense that when a problem is not in the form that the a code can be directly applied to,

the transformed problem may be much more expensive to solve due to the increase in

dimension of the problem. The transformation needed can also be a great difficulty to

many users.

Whether this issue brings advantages or disadvantages to a code will certainly

change according to different users. If you only want to solve a two point boundary

problem, being able to solve a multipoint boundary problem is not an advantage to you.

Otherwise, it is. Nevertheless, we noticed that while the types of problems that can

be directly handled by COLNEW, COLSYS and MUTS are not entirely overlapping,

they contain the type of problems that HAGRON can be directly applied to.

2) Input parameters

There are roughly two types of input parameters. The first type are those that

are used to describe the objective problem, such as the dimension of problem or

whether the problem is linear or nonlinear. These parameters are objective problem

dependent, and the user cannot choose these parameters freely. The second type are

those that have to be set by the user when using the codes. This type of parameters

includes the tolerances, the dimensions of some working arrays, etc. The setting of

this type of parameters, like tolerance we discussed in the last section, is usually

critical to the performance of a code.

3) Input subroutines

COLNEW, COLSYS and HAGRON all need four subroutines for linear

problems and an optional fifth subroutine for nonlinear problems (see Chapter Three

for the description of the subroutines). Through these subroutines, the right hand side

of the equation, the boundary conditions and their the first derivatives are evaluated

and conveyed to the codes. When solving a nonlinear problem with the optional fifth

subroutine, the initial solution as well as some of its derivatives are also conveyed to

the codes.

MUTS, on the other hand, needs only two subroutines when solving a linear

problem and three subroutines when solving a nonlinear one. When solving a linear

problem, it differs from the other three by having a parameter to tell the code whether

or not the problem is homogeneous. The two subroutines needed are used to evaluate

the homogeneous part of the system and the whole right hand side of the system. In

the case of a homogeneous problem, one only needs one subroutine. When solving

nonlinear problems, the three subroutines needed are used to evaluate the right hand

side of the system, the initial solution, and the boundary conditions together with the

derivatives of the boundary conditions.

When the derivatives of the right hand side of the system are easily available,

the first three codes appear to have the advantage of making use of more information.

But when the first derivatives are not easily available, MUTS has the advantage of not

depending on these derivatives, and in this case it is the easiest choice.

4) Ease of Use (I)

If compared with codes for many other purposes, all the four codes are fairly

difficult to use in general. In particular, COLNEW, COLSYS and HAGRON require

the derivatives for both the right hand side of the system and boundary conditions.

When the right hand side gets complicated, this may be the place to watch out for the

errors. The current version of HAGRON puts the numerical solution into a one

dimensional array that is not well explained by the available documents. MUTS is

relatively easier to use in terms of the complexity of its driver. This is particularly the

case when one solves a linear problem, and needs only two simple subroutines.

All the codes appear to have a common problem of having too many options or

too much output information for ordinary users. The setting of IPAR(10) for COLNEW

and COLSYS, IPAR(IS), IPAR(16) for HAGRON and output arrays U, Q, D from

MUTS, for example, may not be of great importance to an ordinary user, but their

presence surely makes the codes more difficult to run since it is hard to decide what to
do with them. While we noticed that the codes, such as HAGRON, are still in an

experimental stage, a practical idea for diminishing this problem may be producing
different versions of a code that suit different groups of users.

4.62 Comparison concerning the qualitative aspects of the solution

I) The form of the solution

The four codes offer two different types of solutions. COLNEW and COLSYS

produce continuous solutions on the entire domain. HAGRON and MUTS produce

solutions at some mesh points that are either chosen by the user or automatically

determined by the code.

When one is only concerned with the solution at some discrete points, one may

not care about whether a code produces continuous or discrete solution. But the same
thing cannot be said when one wants a continuous solution on the entire domain. The

ability of being able to produce a continuous solution is clearly an advantage. In this

sense, the solutions from COLNEW and COLSYS are more desirable.

2) The number and the distribution of the final mesh points

It had been considered to. be more efficient if a code can solve a problem with

fewer final mesh points. Since the number of final mesh points is directly related to the

storage that is needed to produce a solution, the minimum number of final mesh points
on which a code can provide a satisfactory solution may be used to reveal the minimum

amount of storage each code needs in order to solve the problem (the solution one

gets with this minimum storage is usually not as good as the solution when more

storage is supplied and be used by a code). But it is not appropriate to compare the

number of final mesh points needed by a code that produces a discrete solution with

that of a code that produces a continuous solution. If we put aside other issues
concerning the quality of solution, it is true that if a code produces a continuous
solution, the fewer the number of final mesh points are, the less the amount of storage

the code needs to solve the problem, and then the more efficient the code is. When you

have a continuous solution, the solution at the mesh points (though it is usually of

higher accuracy) is not of particular importance. But when you only have a solution at

some discrete mesh points, the fewer the number of final mesh points there are, the

less the program tells the user. Thus a big or small number of final mesh points has

both an advantage and disadvantage if a code only produces a discrete solution. When

two codes can solve a problem with the similar amount of storage, the one with the

bigger number of final mesh points is clearly more efficient in the sense that it tells the

user more.

The distribution of the final mesh points is also very important. When solving a

real problem where the exact solution is not known, users have to rely on the code to

provide a numerical solution that can best characterize the unknown exact solution.

Our first test problem has a boundary layer near zero (see 114). Assuming that we

are not aware of this boundary layer, when using COLNEW, COLSYS and HAGRON

to solve this problem, the mesh points can be automatically determined by the codes.

One can see from one of the graphs on 114, 115, 117, 120-125 that the final mesh

points from these three codes are very reasonably distributed in the sense that the

density of the points in the small region where one of the solutions changes rapidly is

much higher than the density in any other places. With the distributions of the final

mesh points like this, the behaviour of the exact solutions are then well characterized.

But when we use MUTS, we have to set the mesh points all by ourselves. Given that

we do not know the existence of the boundary layer, we are simply not able to set the

points reasonably as was automatically done by the other three codes. The only thing

we can do is to choose a set of equally spaced points in the domain. But the boundary

layer can be easily missed if the number of points we choose is not big enough.

However, a big number of mesh points usually results in not only a big storage

requirement, but also a big amount of CPU time. We do not want to go that far as to

discuss the mesh selection strategy used by COLNEW, COLSYS and HAGRON and

whether this strategy can or cannot be adapted by MUTS. From a pure user point of

view, the first three have a clear advantage over MUTS for their ability of detecting the

important features of the solution by themselves and their ability of distributing the

mesh points efficiently. It is possible, however, to let MUTS determine the output

points by itself by setting NRTI to zero and set AMP to some small value. But the

distribution of the output points is not determined by the shape of the exact solution of

the problem as was by the first three, rather it is determined by the shape of the

corresponding fundamental solution [2]. Consequently, the exact solution usually

cannot be well characterized by the numerical solution from MUTS. See 118, 126 and

127 for examples.

3) Error analysis

By looking at the location of the maximum absolute error and the graph of the

absolute errors at the final mesh points, we expected to see some kind of patterns

regarding these two aspects to emerge from our experiments that might be related to

each code. We anticipated that the errors at the points in those regions where the

solution changes dramatically would be bigger and the maximum error would be

located at these points. But to our surprise, this did not always happen. From the

graphs in Appendix 11, one can see that the maximum errors are not always located at

the places that we thought they should be although in some cases (see 120-122) they

are. The overall error curves for the four codes are also somewhat random except that

the curves for HAGRON appears to have more oscillations.

We intended to include error analysis as a part of the quality of solution. But

the observation that there is unlikely to exist any pattern that the errors follow makes

this issue incompatible. Should more test problems and data become available, some

useful patterns might be found.

4.b3 Relative efficiencies and robustness

The following is a comparison concerning the test problem dependent criteria,

mainly the relative efficiencies defined in the first section, as well as robustness, of the

four codes on the eleven test problems we chose. Though a quantified comparison is

more desirable, we felt that the testing we conducted is more supportive to a

qualitative comparison, and the comparison we have below is more qualitative than

quantitative.

1) Quality of solution oriented efficiency

1.1) Timing

The comparison between COLNEW and COLSYS is straightforward because

they both use the same mesh selection strategy and both produce continuous

solutions. If the accuracies of their solutions are the same, then the solutions can

usually be considered to be of the same quality. Even though there are some

exceptions, COLNEW is generally more efficient in terms of CPU time needed to

produce a solution of certain degree of accuracy than COLSYS. In most cases, the

ratio of COLNEW's and COLSYS's CPU times that correspond to the same accuracy

is between 0.9 and 0.7 (see Appendix I11 1.a).

About one and half year ago, we did a separate study comparing COLNEW to

COLSYS. One of the main purposes of that study is to find out the reason why

COLNEW is usually faster than COLSYS. For each test run, we monitored the

amount of CPU time a code spent on its linear system solver and the total amount of

CPU time it spent on the test run. We then compared these CPU time for the two

codes under the condition that the input parameter settings (for the two code)

associated with these CPU time are the same (this is easy to do since COLSYS and

COLNEW have exactly the same set of input parameters). From the data we

collected, we found that the proportion of CPU time used by the linear system solver in

COLSYS is much higher than that proportion of COLNEW. The difference between the

amount of CPU time used by the two linear system solvers is often close to the

difference between the total amount of CPU time used by the two codes. Based on

these observations, we believe that the linear system solver in COLSYS is the major

reason for COLSYS being slower than COLNEW. Decisive evidence for this may be

found if one replaces the linear system solver in COLSYS with the linear system

solver in COLNEW.

When we compare COLNEW, COLSYS with HAGRON, it appears to us that

HAGRON is competitive with COLNEW and COLSYS in terms of the CPU times
needed in order to produce solutions of the same quality, regardless of the type of

maximum error for COLNEW and COLSYS that is used for measuring the solution

quality (see Appendix 1 for the description of error types). In Appendix 111, we

compared the four codes in term of timing a pair at a time on all the test problems. By

and large, when the first type of error for COLNEW and COLSYS is used, HAGRON

outperforms COLNEW and COLSYS in terms of this criterion on L2, L5 and L6.

COLNEW outperforms HAGRON on L1, L3, L4, N2 and N4. COLSYS outperforms

HAGRON on L1, L3, L4, and N2 (see the related tables in Appendix I11 1.a). A

comparison based on the second type of maximum error for COLNEW and COLSYS
also gave us similar results (also see Appendix I11 1.a). With limited test problems, it
is hard to tell whether this relative efficiency is related to the dimensions or the

behaviour of the exact solutions of the test problems. Taking into consideration that

our test problems were independently selected in the sense that they were chosen

before we ran them with the four codes, it is fair to say that HAGRON is competitive

with COLNEW and COLSYS on this issue.

It is most difficult to compare the rest of the four codes with MUTS mainly
because it requires the user to specify the number of output points, and both the CPU

time needed by MUTS and the accuracy of the solution depend not only upon the value
of tolerances but also the number of output points. When running MUTS on L3 with

a = l l , TOL=lB-4, for example, the following table shows what we get when we vary

the number of output points:

NRTI CPU ERROR

.32D-2

.23D-5

200 289 .70D-7

CPU is measured in milliseconds.

Even though the code can determine the output points by itself when NRTI is set to

zero, we found that no matter how small we set AMP to be (as required, it has to be

greater than I), we often only got output at the two boundary points. Such examples

are those homogenuous linear problems with right hand sides equal to zero. In these

cases, the fundamental solutions are all constants and no matter how small AMP one

set, one cannot get additional output points. With only two output points, we simply
cannot say that the quality of the solution is compatible with that of the other three.
Thus it is necessary to set it to some value that is reasonably bigger than zero.

According to our experience with MUTS, when the required number of output points is

big (more than 300), MUTS is considerably slower than the other three. We thought

about using the final mesh points from COLNEW, COLSYS or HAGRON as the

required output points for MUTS and then compare the resulting CPU time and

accuracy with that of the others, but we decided not to do so because this will put

MUTS in an secondary position and there is no sensible justification for this. In the

meantime, it is also difficult for us to collect the data if values of NRTI are allowed to
vary among all the positive integers. We eventually decided to set NRTI to be the

smallest number of in the set {20,50,100,200,300} that produces an accuracy that is

about the same size as the value of the corresponding tolerance (also see Appendix

I). With the input parameter settings described above, we found that MUTS runs

slower than the other three on most of the ten test problems (one of the eleven test

problem is not used except for comparing the robustness) in terms of CPU time needed
to reach a certain degree of accuracy (see Appendix I11 1.a). While this is observed
through using a particular set of input parameters on the ten test problems we

selected, we believe that MUTS, when compared to the other three, is generally less

efficient in terms of timing efficiency we described above.

1.2) Storage

It is extremely difficult to keep track of exactly how much storage a code needs

in order to produce a solution at a certain degree of accuracy. When using COLNEW,

COLSYS and HAGRON, one has to provide more than what the codes need in order
to run the codes. Because one never knows how much storage they will really need
beforehand, when writing the driver, one usually can only take a guess and the
question that follows is that there are two storages here, one is that provided by the
user, another one is that actually needed by the code. Which one should we compare ?

Furthermore, like MUTS where the number of output point is related to the quality of

solution, the quality of solution of the three codes may be related to the amount of

storage available. COLSYS, for example, can often produce decent solutions even

when it needs more storage to insure that the required tolerance is achieved. When

solving L3 with a=55, TOL=I.D-8, with sufficient and insufficient storage, the

solutions differ in quality but they are both acceptable.

ERR 1 1 15D-9 .696D- 11

ERR2 .273D-8 .562D- 1 1

I.S. = insufficient storage, S.S. = sufficient storage, FMP = number of final mesh points

ERR1 = the max error at mesh points. ERR2 = the max error at 30 equidistant points

We did record the numbers of final mesh points when we ran the codes. It is

possible to detect the maximum number of final mesh points allowed by a code when

the amount of storage as well as the dimension of the object problem are known. But

since the same storage allocation for different codes may result in a different maximum

number of final mesh points, and different codes may need different amounts of storage

in order to produce the same number of final mesh points, the relationship between the

storage that is actually used by each code and the number of points in the final mesh is

not clear. This makes it difficult to compare the codes' storage efficiency via the

number of final mesh points we recorded. However, if we look at only a single code

with a fixed input parameter setting, more final mesh points or output points always

goes with a bigger storage requirement needed by the code. See section Testing

(Appendix I) for details about how the storage for each code is set when we run the

test problems.

Due to the above difficulties, we felt that with the set of data we collected on

the ten test problems, a detailed comparison of the relative efficiency in terms of the

storage versus the quality of the solution is not possible.

However, it is possible to comment on the flexibility each code has on the use

of storage. When using COLNEW, COLSYS or HAGRON, if IPAR(l1) is set to zero,

the final mesh is totally determined by the codes themselves. Even when IPAR(11) is

not equal to zero, usually there are still many points in the final mesh that are

determined by the codes. Thus the final meshes for these three codes are more or less

beyond the user's control. Since the final mesh is very closely related to the storage

requirements of each code, the storage requirements for the codes are also beyond the

user's control. Recall that the ability of automatically determining the final mesh points

brought advantages to the three codes when we discuss the quality of solutions. This

same issue is now bringing the three codes disadvantages. With storage requirements

that can not be controlled by the user, the codes may waste storage to produce some

undesirable information for the user at those mesh points that are not needed by, the

user. When one only wants the solution at one point in the domain, for instance, the

three codes still have to include many other points in their final mesh and produce

solutions at these points. Another clear pattern which emerged from the data we

collected is that the storage needed by COLNEW, COLSYS and HAGRON usually

increases dramatically as the accuracy of the solution one wants increases. This is

evidenced by the fact that as we increase the tolerance during our experiment, often

the number of points in the final mesh for these three codes also increases rapidly (see

Appendix I11 section c).

Unlike the other three codes, in order to improve the accuracy of its numerical

solution, MUTS usually does not need more storage. It is difficult to say exactly how

much storage it really needs in order to solve a certain problem even if the number of

output points is supplied by the user. The parameter AMP is often responsible for

those output points that are not part of output points supplied by the user. Based on

our experience, MUTS is generally more flexible than the other three codes in terms of

making use of the storage to serve users' various needs. When we solve L1 with

eps=l.D-2, TOL=l.D-4 and IPAR(1 l)=O, for example, the following is the (minimum)

number of points in the final mesh we found

Code

COLNEW

COLSYS

One might be able to set the array FIXPNT to get different numbers of points in the

final mesh for COLNEW, COLSYS and HAGRON, but when you want only the output

at the two boundary points, it is unlikely that the three codes can match MUTS which

can give you exactly the solutions at the two boundary points only. When one only

FMP

11

11

HAGRON

MUTS

wants the numerical solutions at certain points and the value of AMP is properly set,

MUTS can usually do the job very efficiently without producing any undesirable

32

2

information at any other points. Even when one wants a highly accurate solution at

only a few points, with small tolerance, MUTS can usually produce solutions at a

higher degree of accuracy without any additional output points and storage. This

clearly brings MUTS an advantage over the other three codes, and it means a big
saving in storage when one wants a highly accurate solution at only a few output

FMP = the number of points in the final mesh

points.

How important this feature is to the portability of a code in terms of the

feasibility of using the code on all kinds of machines is beyond the scope of this thesis.

Our speculation is that this feature may make a code like MUTS a very natural

candidate for small machine with a small amount of storage available. The other three,

on the other hand, are resmcted by their basic needs for big storage.

3) Robustness

Robustness, the reliability of the codes or more precisely the 'degree to which

they can solve a large class of problems and exit gracefully if not' [17], is a very

important issue not only to the software developers, but also to the codes users.

In order to compare the codes on this issue, when running the codes on the test

problems, we looked at the following four aspects: 1) At what level of difficulties

(when a test problems with a parameter that controls difficulties of the problem is

used, the level of difficulties is represented by the value of the parameter) that each

one of them starts to fail. 2) For what reason a code fails and is the failure easy to fix.

3) What one can still get when a code fails. 4) the flexibility of the codes in dealing

with problems that involve some singularities. By fail or failure above, we simply mean

any kind of abnormal exit from the codes or normal exit with a wrong solution. It

should be noted that when running a code on a test problem, in case the codes are very

expensive to run, only the first or the first and the second failure is recorded, i.e. we

did not run the code for different values of the parameter(s) that correspond to even

higher degree difficulties. The following comparison is based on the testing described

in Appendix I.

Our observations concerning the first aspect of robustness are mainly from the

runs on the three linear test problems L1, L4, L5 and two nonlinear test problems N2

and N3 where the program failures had occurred. All these five test problems, as it is

described in Appendix 1, have some parameters that control the difficulties of the

problems. When we test the codes on a test problem of this kind, the difficulty of the

problem always increases in the order of the tables by which the test results are

recorded (see Appendix 111, 3). e.g. the second table in table page 1 in Appendix 111

section three correspond to a problem of higher degree of difficulty than that of the first

table. From the data we collected (see Appendix 111 section two), it appears to us that

COLNEW, COLSYS and HAGRON are more capable in terms of their ability to solve

difficult problems than MUTS. On the five test problems where most of the codes

failures occurred, i.e. L1, L4, L5 and N3, MUTS failed the earliest on L1, LA and N3.

On test problem N2, it is the only code that had failures. COLNEW, COLSYS and

HAGRON appear to be quite competitive on this issue since they all failed on L1, L2,

and L3 at the same degrees of difficulties. Though we noticed that HAGRON also had

failures on N3, it is difficult for us to make any comment beyond what we had above

due to the limited number of test problems we had.

In our experiments, the causes for the codes' failures are mainly: 1) the storage

needed exceeds the allowed limit. 2) program overflow (e.g. a divisor is found to be

zero or an exponent is outside the domain of the machine exponential function). 3) the

clock time needed exceeds fifteen minutes. 4) Unacceptable solution in terms of both

absolute error and relative error. Program failures for COLNEW and COLSYS are

mostly due to the first kind cause, i.e. storage needed exceeds the allowed limit. The

only other cause of failure we experienced for these two codes is the fourth cause.

Failures for HAGRON are also mainly due to the first kind of cause. The second major

cause for HAGRON is also unacceptable solutions. Apart from these two causes we

also experienced occasional program overflow as well as the third kind of cause.

Unlike the first three codes, the limited storage brings little trouble to MUTS. Instead,

most of the failures for MUTS are caused by unacceptable solutions and program

overflow. Occasionally, we also found that the number of nonlinear iterations needed is

greater than the limit (50 times) is responsible for the failure. In one case, the third

one in the list is found to be the cause.

Among all the causes for failures, in our opinion, only the first cause is easy to

fix as long as getting more storage is not a problem. Often, when COLNEW, COLSYS

or HAGRON fail because of this reason, we add some more storage to the codes and

then the codes work properly. The second kind of cause is harder to deal with but one

may try to change the parameter setting of the code and sometimes one can avoid this

problem. When solving L1 using MUTS with eps = l.D-4 and TOL = l.D-2 , for

example, we found that when we change the parameter NRTI (shown in the table

below), we can get rid of the overflow.

The third cause, though it appears to be easy to deal with, is a difficult one for people

with limited computing resources. As a matter of fact we did not intend to relate it to

the robustness of the codes in the beginning. When we started running the codes on

the test problems, we simply let a program run until it stopped by itself. However, we
soon found that we must impose a elapsing time limit on the runs due to the

unaffordable computing expenses. When using HAGRON on L4 with eps = 1 .D-4 and

TOL = 1.0-8, we tried to let the program stop by itself so that we could bring the

program to its limit and see how much time the program may take on that problem. But

it did not stop for three hours and it was eventually interrupted by the system manager

when the computer account was suspended due to the excessive use of computing

fund over the limit that the account was allowed. Another example is when ,we used
MUTS on L1 with eps = l.D-4, TOL = l.D-6 and NRTI = 100, the program did not

stop for about an hour and had to be-interrupted by us due to the expenses. The last

cause is more serious in the sense that if the exact solution is not known, the user

may have no idea whether or not an abnormal exit due to this cause has happened.

When the exact solution of the problem has a very sharp spike or is highly oscillatory

in a small region and is relatively very smooth in the rest of the domain, for example,

the codes may not be able to detect the spike or oscillatory behaviour of the exact

solution as the initial mesh is not fine enough for some mesh points to fall into the

rough region. This often is the reason for the fourth type of failure. Provided that the

rough region is not too small, this may be avoided by either increasing the number of

final mesh points or using a tighter tolerance to produce finer meshes and increase the

chance of detecting this kind of rough region. When we solve L4 using COLNEW,

COLSYS and HAGRON with eps=l.D-4, for example, we observed the following.

HAGRON I l.D-2 I default(=6) 1 . loo00 I
COLNEW

COLSYS

TOL

1 .D-2

1 .D-2

COLNEW

COLSYS

HAGRON

NMIP

default(=5)

default(=5)

TOL

l.D-2

l.D-2

1 .D-2

ERRmax
1133.18

1133.18

NMIP

20

30

100

ERRmax
0.39D- 1

1.77D- 1

2.95

I I TOL I NMIP I ERR,, I

- -

NMIP = number of points in the initial mesh.

COLNEW

COLSYS

HAGRON

It is clear that the solutions from the three codes in the first table is not acceptable. By

increasing the number of points in the initial mesh or tightening the tolerance (or both),

one may get a much more accurate solution. Thus using tighter tolerance or a finer

initial mesh can reduce the possibility of this kind of failure.

When a code fails due to the second and third causes, we do not have a

solution. When a code fails due to the last cause, we have a wrong solution. Thus if a

code fails due to one of these three causes, we cannot get anything from the code. On

0.24D-3

0.55D-1

0.23D-2

1.0-4

1.0-4

1.0-4

the other hand, one often can get useful information from failures due to the first kind of

cause. In particular, COLNEW and COLSYS often can still provide a partially

converged solution in the case of this kind of failure, e.g. Table 1 and Table 2 in section

three of Appendix 111. One may make use of these partially converged solutions for

continuation as was described in Chapter Three.

defaul t(=5)

default(=S)

default(=6)

There are some problems that involve some harmless singularities. As an
example, L7 is a simple second order two point boundary problem, but the coefficient

mamx has a singularity point 0. COLNEW and COLSYS do not have to evaluate the

coefficient matrix at the boundary points, thus such a singularity is of no threat to

them. The ability of dealing with problems of this type naturally enhanced their

robustness in the sense that they solve a broader range of problems. On the other

hand, a singularity of this type is somewhat insurmountable to HAGRON and MUTS

due to their dependence on the values of coefficient matrix at the boundary points.

Based on the discussion above, COLNEW, COLSYS and HAGRON appear to
be clearly more robust than MUTS. Not only they have fewer failures than MUTS but

also the causes for their failures are more concentrated and less harmful. Furthermore,

during our testing, we had experienced the fewest number and types of abnormal exits

from COLNEW and COLSYS. Even when the needed storage exceeded the allowed

limit, COLNEW and COLSYS were often able to bring us some reasonable solutions

and more importantly they were able to terminate by themselves in a relatively short

period of time. Add all these to their ability in dealing with the problems with

singularities, COLNEW and COLSYS, in our opinion, are even somewhat stronger

than the current version of HAGRON with respect to the robustness of the code.

We conclude the comparison of the robustness of the codes by pointing out that

according to the separate study we conducted a year ago and our testing results in

Appendix 111, COLNEW did not appear to be more robust than COLSYS though it

uses a different bases for representing the numerical solution. The robustness of

COLNEW and COLSYS is deeply rooted in the spline-collocation method and this

robustness did not seem to be improved by the new bases used in COLNEW.

4.64 Accuracy, tolerance and termination criteria

The accuracy of the numerical solution a code produces, the input tolerances

and termination criteria for the code are very closely related to each other. By accuracy

of the numerical solution, we mean the absolute or relative eiror of the numerical

solution. The tolerances, on the other hand, are some input parameters that have great

influence on the accuracy of the numerical solutions through the role they play in the

termination criteria. In theory, when the tolerances decrease, the numerical solution

gets more accurate.

As was described in the last chapter, the termination criteria for COLNEW and

COLSYS is: if TOL(j) is the tolerance related to the LTOL(j)th component of z(u), the

codes will attempts to satisfy on each subinterval

where v(x) is the approximate solution vector and u(x) is the ex.act solution of 3.la&b.
The termination criterion for HAGRON is: if TOL(j) is the tolerance related to the

LTOL(j)th component of u(x), the code will attempt to satisfy at each grid point x

where v(x) is the approximate solution vector at the grid point x and u(x) is the exact

solution of 3.2a&b. The norms involved in the two inequalities are maximum norms.

How these termination criteria were approximately carried out by the codes is

not our concern here. But the influence of tolerance on the accuracy of the solution is

now clear. It is not the real accuracy of the numerical solution yet the numerical

solution is expected to be more and more accurate as the tolerance decreases. Users

may like the idea of having an input parameter that can be used to specify the accuracy

of the numerical solution they want rather than a tolerance that is not really the
accuracy of the numerical solution. But this is clearly impossible since the exact
solution is not known.

It is important to see that the input tolerance is neither always an upper bound

for the absolute errors of numerical solutions nor always an upper bound for the

relative errors. For a specific problem, it can be considered as one (and only one) of

these two bounds. If the size (maximum norm) of the numerical solution for a certain

problem is smaller than ten, the input tolerance can be considered approximately as an

upper bound on absolute error of the numerical solution. Otherwise, it can be

considered as an upper bound on the relative error.

When one uses these three codes, how should one impose a desired accuracy

on the numerical solution by using the input tolerance ? If the size of the exact solution

is completely unknown, one does not know whether the input tolerance is going to play

a role as an upper bound for the absolute error or an upper bound for the relative error.

In this case one has to rely on a test run (when testing the size of the solution, in

order to save computing time, set the tolerance to a relatively bigger values, say 0.1)

to find out the size of the solution. Once the approximate size of the solution is known,

if this size is smaller than ten, user specified tolerance imposes an upper bound on the

absolute error of the numerical solution, otherwise the tolerance imposes an upper
bound on the relative error.

Unlike COLNEW, COLSYS and HAGRON, MUTS has only two tolerances

regardless the dimension of the problem (see parameter ER in Chapter Three-MUTS'
documentation). Though we do not have information on how the two tolerances are

involved in the termination criteria of the code, in MUSL ER(1) and ER(2) stand for

the relative and absolute error tolerances, respectively.

L6 is an example where the domain of the problem and magnitude of the

solution (rather than the difficulty of the problem) are controlled by two parameters.

One can see that as the magnitude of the solution increases, the absolute error

increases but a simple calculation can show that the relative error stays more or less

the same. The maximum absolute error of the numerical solution is not always equal to

or less than the corresponding tolerance, but the relative error always is. When one

sets the tolerance to a certain value, say l.D-4, one will not be able to know whether

this tolerance will result in a maximum absolute error that is less than l.D-4 or a

relative error that is less than l.D-4 until the numerical solution is calculated,

provided that the code terminates exactly as we described above. If the magnitude of

the solution is less than one hundred, then the maximum absolute error of the

numerical solution is about or less than l.D-4. Otherwise the relative error is about or

less than l.D-4.

4.b5 User feedback

Each one of the four codes provides many kinds of feedback. It is difficult to say

a code is superior to the others in terms of its user feedback since the feedback is

often tied with the codes' underlying numerical methods. COLNEW, for example, can

provide the user with a complete mesh as well as the approximate numerical solution

at the mesh point at every step. But when one uses MUTS, since the mesh points are

often chosen by the user and may not vary in the process of solving the problem, there

may not be such a varying mesh like that of COLNEW that the user may be interested

in.

However, it is possible to comment on the focus of the user feedback of each

code. Codes that are based on finite difference methods, i.e. COLNEW, COLSYS and

HAGRON, provide more information about their process of solving the problem such

as the current mesh and have less feedback about the driver setting (input parameters

and input subroutines). The biggest problem is that the programs are not able to tell

the user whether the allotted storage is enough until the user has a test run. MUTS,

on the other hand, provides more feedback about the correctness of the driver. The

storage needed by MUTS usually can be estimated very accurately before running the

code. However, once the code starts running, little about the process of solving the

problem is available.

For all the four codes, modifications concerning their user feedback are needed

before they are used to serve people with little knowledge about the literature of

ODEBVP. We recommend that the user supplied derivatives be checked by the codes.

This may be done by using a standard driver program that calls the routines having

this purpose from a software library or by including a subroutine in the codes that does

the checking. As incorrect derivatives are the major problem when writing a driver,

such a checking is important.

4.66 Ease of use (11)

In Ease of use (I), we compared the codes on this issue by focusing on the

complexity of their drivers. The following are some more observations that can be

related to the ease of use for the codes.

Even though we used the whole of Chapter three to describe the meaning of the

input parameters and subroutines and explain how to use the codes, there are still a

few hidden problems that are important to know about for using the codes properly.

From Chapter three, one can hardly see the importance of many input parameters such

as IPAR(2) for COLNEW and COLSYS. Can we set this parameter to any legal value

described by the program documents? What kind of impact do these parameters have

on the solutions? When solving L2 with eps = l.D-6 and TOL = l.D-2 using COLSYS

and COLNEW, we observed the following change of the maximum absolute error at

the mesh points:

**The last two columns above coincide to the number of digits shown above.

COLSYS

0.29D-5

IPAR(2)

3

COLNEW

0.29D-5

We mentioned how the number of output points can affect the returns from MUTS

when we compare the robustness of the code. The number of output points also affects

the accuracy of the solution. When using MUTS to solve L2 with the same eps and

TOL above, the following table shows how the accuracy of the numerical solution

changes with the number of output points:

These parameters often significantly affect the solutions, especially when the

tolerance is not very small (>l.D-2).

NRTI

20

50

100

200

Another interesting observation is about the tolerance. It is clear from 4.b4 that

the tolerances are not the desired accuracy. But it may be considered as a good

approximation of the upper bound of the absolute accuracy when the norm of the
solution is reasonably small and may be considered as that of the relative accuracy
when the norm is big. A question that arises naturally here is how well does the

accuracy of the numerical solution correspond to the input tolerance?

ERROR,,

0.14

0.18D- 1

0.16

0.22D- 1

Based on our testing, all the four codes respond well to the user specified

tolerance if one is only concerned that the resulting accuracy is not greater than the

tolerance. For all the four codes, when the norm of the solution is small, the maximum
absolute error is usually less than or of the same size as the tolerance. When the

norm of the solution is big, the maximum relative error is usually less than or of the
same size of the tolerance. In the case of the smooth problems, all the four codes
usually give accuracies that are far smaller than the input tolerances (see section

three in Appendix I11 for the results on L6 for an example). In particular, HAGRON

has fewer input parameters that affect the solutions. Its numerical solutions also

appear to have a stronger relationship with the input tolerance than the other three

codes. When the it exits normally, the accuracy of the numerical solution is usually

about the same size as the tolerance and sometimes less than the input tolerance. For
the other three codes, the accuracy of the numerical solution may be bigger than the

tolerance if some other parameters, such as IPAR(2) for COLSYS and COLNEW and

NRTI for MUTS, are not properly set. This makes HAGRON easier to use in terms of
getting the desired accuracy by setting the tolerance, as how to set NRTI for MUTS or

IPAR(2) for COLNEW and COLSYS is a very difficult question. As the last remark

concerning the ease of use, we point out that this feature of HAGRON is important

and very useful to ordinary users for whom the role of the parameters is difficult to

understand yet the confidence about the correctness of the solution is critical.

For a brief discussion concerning the relative timing efficiency involving the
correspondence between the tolerance and the accuracy, please see part 1.b in

Appendix HI.

4.c Conclusions

By evaluating the relative efficiency of the codes using a QSO approach, we are
actually comparing the potential ability of the codes. The question that how these

revealed potentials might be utilized is left behind.

However, it is not difficult to see that QSO approach can be useful. When
comparing HAGRON with COLSYS, for example, the traditional approach leads to the

conclusion that HAGRON is faster than COLSYS (see [5] , [6] and section lb in

Appendix 111 of in thesis), while our QSO comparison indicates that COLSYS is quite
competitive with HAGRON in terms of speed (see la in Appendix 111). Why do these

two approaches lead to different results? When using the traditional approach, a code

can be faster than another one even if the two codes converge to the exact solution at

the same speed, as long as one code has a better error estimator and stops earlier
than another one when the required tolerance is satisfied. By taking a QSO approach,

the effect of the error estimator is eliminated, and a code can be faster only when it
converges to the exact solution faster. Thus the results of the two different approaches
indicates that the speeds the two codes converge to the exact sblution are competitive

but HAGRON has a better error estimator. However, we must emphasize that

comparing these codes using a QSO approach is strongly biased against HAGRON

since the efficiency of the error estimator involved in each code is purposely discounted

and having a good error estimator is one of the strongest advantages of HAGRON.

Incidentally, the fact that HAGRON has a better error estimator was well known

among BVPODE experts. Our study fully agrees with what was known. Furthermore,

by including a QSO type of comparison, this study also reveals that HAGRON does

not generally converge to the exact solution faster than COLSYS.

The traditional approach has many distinct merits of its own, e.g. its results can

be easily understood and utilized by the user. However, most of the codes do not yet

have the abilities to communicate with the user so well that what the user wants can

always be precisely translated into some input parameter settings and then carried out

by the codes. When a user wants a solution of an accuracy l.D-4, for example, there is

no code that it can guarantee an accuracy of l.D-4 by using certain input parameter

setting. There are always some random factors involved in the process of solving the

objective problems and these random factors make it impossible to predict fairly

accurately the goodness of the solution by just look at the input parameters. Thus we

felt that the input parameter setting for ODEBVP codes, though it often carries our

expectation of the numerical solution and with a certain amount of experience it can be

used to predict the goodness of solutions to some degree, does not have a definite

relationship with the numerical solutions. The relative efficiency with respect to certain

input parameter settings is therefore not the relative efficiency with respect to the

quality of numerical solution, and it cannot give us the insight concerning the potential

of the codes.

Nevertheless, if all the codes have almost the same sets of input parameters,

the parameters in different codes that bear the same names also function similarly in

the codes they belong to and the quality of the solutions produced by each code can be

very much determined by their input parameters in a common way, then different codes

with the same parameter setting will produce numerical solutions that are of the

similar qualities. In this case, the quality of numerical solution oriented approach is not

of too much difference from the traditional approach due to connection between the

numerical solutions and the input parameter setting. Compared with the traditional

approach, it is certainly less favourable since the resulting relative efficiency is not of

an immediate use to the user.

When making the comparison, from time to time, we felt the desire to use some

statistical techniques. For example, for a given value of TOL, there may exist some

significant statistical relationship between the accuracy of the numerical solution and

the setting of IPAR(2) in COLNEW and COLSYS. However, we were not able to

draw any conclusions on this basis due to the lack of a strategy of selecting test

problems and the limited number of test problems we have.

We started out our comparison by taking a different approach, but our finding
fully coincides with that of Pereyra and Russell [17]. Our first comment on the general
performance of the codes is that all four codes are very sophisticated and are fully

capable of dealing with smooth and moderately rough problems. As was evidenced by

our comparison above, if one weighs all the issues equally and has no preference to

any specific aspects of the codes, the relationships of the codes are clearly that they

are complementary to each other rather than competitive. None of them outperforms

the others with respect to all the important issues we have considered. Even though

their robustness has not been fully explored, considering the degrees of difficulties of
those artificial problems they can handle, we have to say that all the four codes are
very robust. While still undergoing modifications from time to time, all of them are well
written, Taking into consideration that there exists some kind of minimum difficulties

one has to overcome when using a ODEBVP code (after all, one cannot expect an

ODEBVP code to be as easy to use as a code for solving the linear systems), the

codes are reasonably easy to use and quite user friendly in the sense that they provide

various types of feedback to the user. Even when they fail, the reasons for failure are

often clearly given. Based on our experience, the four codes perform very well

regardless the size of the tolerance on smooth problems. On rough problems, the

codes seem to have a better performance when the tolerance is set to some value of
moderate size (around l.D-6). However, if timing, storage or efficiency is not a

concern compared to the quality of the solution, one may set the tolerance to a much

smaller value (around 1 .D- 10).

As a brief summary to our comparison above, COLNEW and COLSYS are

strong in terms of robustness, timing efficiency, the quality of numerical solutions and

the classes of problems they can be directly applied to. COLNEW is often even

stronger than COLSYS in terms of timing efficiency. Though there are some input

parameters that might be difficult to use or not of too much use for ordinary users, our
recommendation is to set them to default values. Unless the tolerance is big (say,

>l.D-2), these parameters do not have much effect on the numerical solutions. These

two codes, based on our experience, can usually solve the smooth problems and

moderately rough problems to such a degree that the resulting accuracy of the

numerical solution on the entire domain is approximately of the same size as the

smallest machine number and they are both very reliable even on rough problems.

Though they perform quite well, these two codes, in particular their speeds with

respect to a certain input parameter setting, can be further improved. Compared with
HAGRON, their potential (the rates of convergence) are not fully utilized because of

their inefficient error estimators, in the sense that they often spend more CPU time to

produce a solution that satisfies a certain accuracy requirement than they really need.
As a result, they often seem to be slower than HAGRON when one makes a
comparison using the traditional approach. It is possible to build a more accurate error

estimator based on deferred correction method for these two codes. We believe it is

important that their error estimators be improved ,so that their potential ability can be

fully released.

HAGRON is strong in terms of timing efficiency, easy of use, robustness and

the quality of the numerical solution. Due to the close ties between its underlying

numerical method and the method behind COLSYS and COLNEW, the driver for

HAGRON bears a lot of resemblance to that of COLNEW and COLSYS, but it has
fewer input parameters that may affect its numerical solution, and we experienced

much less variation in its solutions when we change the input parameter values as

long as the tolerance is fixed. HAGRON can also solve smooth and moderately rough

problems to the degree that the numerical solutions have a maximum error about the

same size as the smallest machine number at its final mesh points. It is very reliable

in general, but the problem that it may take a huge amount of computing time yet fail to

solve a certain problem (see L4 for example) is somewhat disturbing. It would be nice

if such a problem is resolved.

MUTS is strong in storage efficiency, ease of use and is fairly robust on smooth

and moderately rough problems. It is able to deal with non-separated boundary
condition directly. Its flexibility on the use of storage brings a unique storage efficiency

to the code, but it does not have the ability of detecting the shape of the solution all by

itself and it is not as reliable as the other three codes. Like HAGRON, it may take a

huge amount of computing time yet fail to solve a certain problem. Its numerical

solutions are generally very accurate but the accuracy depend heavily on the number of

output points. Compared with the other three codes, it also seems to be slower. In

order to be competitive with the other three (especially on rough problems), significant

improvement concerning its robustness and speed has to be made. We also notice,

however, that MUTS is based upon multiple shooting method which is not the best

choice for dealing with problems of singular perturbation type. Users should keep this

point in mind when solving problems of singular perturbation type.

Finally, we point out that our comparison is based on the eleven test problems

and the conclusions may be changed if one is only concerned with a certain type of

problem or a certain aspect of the codes. Our goal has been to provide some useful

discussion and raise some questions on the comparison of ODEBVP codes, as well as

to provide some useful information to the code user. We hope a reader can benefit from

our discussion in these two respects.

REFERENCES

I: U. Ascher, J. Christiansen and R.D. Russell: Collocation Software for Boundary-
Value ODES-ACM Trans. on Math. Software. June, 1981.

2: U. Ascher, R.M.M. Mattheij and R.D. Russell: Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations-Prentice Hall, 1988.

3: G. Bader and U. Ascher: A New Basis Implementation for a Mixed Order
Boundary Value ODE Solver-SIAM J. Stat. Comput. July, 1987.

4: J.R. Cash: Numerical Integration of Non-Linear Two-Point Boundary-Value
Problems Using Iterated Deferred Corrections (I)-Comput. Math. Appl. 1986.

5: J.R. Cash: Numerical Integration of Non-Linear Two-Point Boundary-Value
Problems Using Iterated Deferred Corrections (IIfiSIAM J. Numer. Anal. 1988.

6: J.R. Cash and Margaret H. Wright: A Deferred Correction Method for Nonlinear
Two-Point Boundary Value Problems: Implementation and Numerical
Evaluation-Manuscript, 1990.

7: B. Ford, G.S. Hodgson and D.K. Sayers: Evaluation of Numerical Software
Intended for Many Machines-Is It Possible?-in [8], pp. 317-330.

8: L.D. Fosdick: Pe@ormance Evaluation of Numerical Software-Proc. of IFIP TC
2.5, North Holland, Amsterdam, 1979.

9: E.D. Frind and G.F. Pinder: A Collocation Finite Element Method for Potential
Problems that Arise in irregular Domains-Int. J. Num. Eng. 14, 1979.

10: W.M. Gentleman: Discussion of General Aspects of Performance Evaluation
in [8], pp. 89-92.

11: E.N. Houstis, R.E. Lynch, T.S. Papatheodoru and J.R. Rice: Evaluation of
Numerical Methods for Elliptic Partial Differential Equations-J. Comput.
Phys. 27, pp. 323-350, 1978.

12: D. Kahaner Comparison of Numerical Quadrature Formular--[20], pp. 229-259.

13: F.A. Lootsma: Pe@ormance Evaluation of Non-linear ~ r o ~ r a m r n i n ~ Codes from
the Viewpoint of the Decision Maker-in [8], pp. 285-297.

14: J.N. Lyness: Pe@ormance Profiles and Software Evaluation--in [8], pp. 51-58.

15: R.M.M. Mattheij and G.W.M. Staarink: An Efficient Algorithm for Solving
General Linear Two-point BVP-SIAM J. Sci. Stat. Comp. 5, 1984.

16: J.A. Nelder: Experimental Design and Software Evaluation-in [81, pp 309-316.

V. Pereyra and R.D. Russell: Difficulties of Comparing Complex Mathematical
Software: General Comments and the BVODE Case-Acta Cient. Venezolana
33 (1982), 15-22.

P.M. Prenter and R.D. Russell: Orthogonal Collocation for Elliptic partial
differential Equations-SIAM J. Numer. Anal. 13, 1976.

S. Pruess: Interpolation Schemes for Collocation Solutions of Two Point
Boundary Value Problems-SIAM J. Sci. Stat. Comput. 7, 1986.

J.R. Rice, Editor: Mathematical Software--Academic Press 197 1

R.D. Russell: Global Codes for BVODES and Their Comparison-Proc. of
Workshop on Numerical Integration of Differential Equations,
Springer Lecture Notes, 1980.

R.D. Russell and J.M. Varah: A Comparison of Global Methods for Linear Two-
point Boundary Value Problems-Math. of Comp. 29, pp. 1-13, 1975.

L.F. Shampine: Discussion on the Performance Evaluation in Ordinary
DifSerential Equations-in [8], pp. 21 5-217.

L.F. Shampine, H.A. Watts and S.M. Davenport: Solving Nonstiff Ordinary
differential Equations - the State of the Art-SIAM Review 18, 1976.

Lloyd N. Trefethen: A course in Finite Difference and Spectral Methods-
Manuscript, 1988.

A. Weiser, S.L. Eisenstat and M.H. Schultz: On Solving Elliptic Equations to
Moderate AccuracpSIAM J. Numer. Anal. 17,99. 908-929, 1980.

Appendix (I) Testing and Test Problems

All testing involved in this thesis was done on Simon Fraser University MTSG

(IBM-4300), using the Fortran 77 compiler and double precision. The smallest double

precision machine number on SFU MTSG is approximately 2.0~10-16.

Most of the eleven test problems we selected have a parameter that controls

the difficulties of the problems. For these problems, we set the parameter to four

different values to get four different degrees of difficulties, and then for each degree of

difficult we vary the value of tolerance a few times (the values of tolerance we usually

choose are l.D-2, l.D-4, l.D-6 and l.D-8) to collect the information shown in the

tables in Appendix 111. If we distinguish the same test problems with different degrees

of difficulties, then the total number of test problems we have is 35. Among the test

problems, L7 is only used in our discussion concerning robustness. No run concerning

this test problem is recorded.

As the major reason for abnormal exits from COLNEW, COLSYS and

HAGRON is that the user supplied storage is insufficient, it is important that when

we speak about an abnormal exit of this kind, the corresponding amount of supplied

storage is available for reference. During our testing, we provided all the three codes

with a fixed amount of workspace (represented by the sum of IPAR(5) and IPAR(6))

which accounts for more than 99% of the total storage supplied to the codes. The sum

of IPAR(5) and IPAR(6) is fixed to be 200,000 throughout our testing. This fixed sum

translates to a limit on the maximum number of grid points that each code can use.

When setting IPAR(3) in COLNEW and COLSYS to its default value, for the two

dimensional problems, the limit on COLNEW is 2856, the limit on COLSYS is 3124.

For three dimensional problem, this limit is 1297 for COLNEW and 1427 for COLSYS.

For a five dimensional problem, this limit is 583 for COLNEW and 618 for COLSYS.

For HAGRON, this limit is 4857 for two dimensional problems, 2766 for three

dimensional problems and 1264 for five dimensional problems. Thus when we speak

about an abnormal exit due to insufficient storage from one of the three codes, the

storage refers to the sum described above.

The CPU time is recorded by using a MTSG system subroutine TIME that can

provide a measurement of CPU time in milliseconds. The CPU times in the tables in

Appendix 111 are all in milliseconds. When we repeat runs for a code with a fixed set of

input parameters on a test problem, we observed that the CPU time for each run may

vary quite a bit. The maximum variation we observed is about 5%.

The maximum errors recorded for all the four codes are the maximum absolute

errors between the numerical solutions from the codes and the exact solutions. For

HAGRON and MUTS, this maximum error is based on the absolute errors calculated

at all the final mesh points. For COLNEW and COLSYS, we recorded both the

maximum error at their final mesh points (first type of maximum error) and the

maximum error at 30 equidistant points in the domain (second type of maximum error).

Due to the fact that the form of the numerical solution is discounted when we evaluate

the relative efficiency of the codes, our focus on the maximum error from COLNEW

and COLSYS has been the first type of maximum error. In our discussion in Chapter

Four, unless specified, the maximum error involved for these two codes is the first

type of maximum error.

When we evaluate the relative efficiency of the codes, we have to compare the

size of the errors. If the ratio of two errors is between 0.1 and 10, we consider that

they are of the same size.

We did not intend to fully explore the potentials of the four codes due to various

expenses. One may use a good initial guess to save some CPU time or even to

compromise the problem of insufficient storage. One may also consider using

continuation to fully utilize the partially converged results from the previous runs. But

during our testing, we did not go that far, rather we always set the initial guess to zero

if an initial guess is needed or set them to one if zero is obviously not the correct

guess. Having noticed that the accuracy for MUTS is often affected by the total number

of output points and the accuracy for COLNEW and COLSYS may be affected by the

setting of IPAR(2), when we run MUTS we always vary the output points among the

following set of values (20,50,100,200,300) and record the run corresponding to the

smallest number in the set that results in an accuracy that is of the same size as or

smaller than the one of the related tolerance (more specifically, ER(2) for linear

problems and ER(1) for nonlinear problems). When we run COLNEW and COLSYS,

we usually vary IPAR(2) a bit and record the run with the best accuracy. This is not a

big trouble since the legal values for IPAR(2) is very limited. We would like to point

out here that the runs we recorded are not necessarily the favourable runs for the

codes since as the the accuracy increases, the CPU time and the storage requirement

usually increase as well.

When using COLNEW, COLSYS and HAGRON on the ten test problems, for

each run the tolerances are all set to the values shown in the first columns of the

tables in appendix 111. When using MUTS on the linear problems, ER(1) is set to be

ER(2)/100 and ER(2) are the values that are recorded in the first columns of the table

in Appendix 111. When using MUTS on nonlinear problems, ER(1) is recorded in the

first column of the tables in Appendix I11 and the corresponding ER(2) is set to be

ER(1)xlOO. The resulting test problem dependent comparison in Chapter Four is

totally based on the testing described above. Should the method of testing be different,

the observations may not be the same.

The following is the set of eleven test problems we collected. They are all

artificial problems where the exact solutions are known. Except for L5, L6 and the four

nonlinear test problems that we added ourselves, the test problems are from [2], [S] ,

[6] and [17].

Linear Test Problems

(LI .al)

(LI .a2)

Boundary condition:

Exact solution:

~ ~ (0) = 2, ~ ~ (0) = ~ ~ (1) = ~ ~ " (0) = ~ ~ " (1) = 0 (Ll .b)

-x
y, = e x p (7) + cos(m)

1 07

(LI .el)

y2 = sin(nx) (Ll .c2)

ql(x) and q2(x) are functions such that yl and y2 satisfy LI .al&a2.

2: Equation(TPT):

-3Ey
Y" = (& + t2)2 -0.1 <t<O.I (L2 .a)

Boundary Condition:

Exact Solution:

3: Equation(0SC):

Boundary Condition:

Exact Solution:

Boundary Condition:

where ti9 is an odd integer.

Exact Solution:

5: Equation(BL):

Boundary Condition:

Exact Solution:

Boundary Conditon:

Exact Solution:

(M . b2)

(M . b3)

(U.b4)

Boundary Condition:

u'(0) = u(1) = 0

Exact Solution:

Nonlinear Test Problems

I : Equation(SM):

Boundary Condition:

y1(0) = 1, y2(0 = e1

Exact Solution:

y, = e-2t , Y 2 = 8

(NI .al)

(NI .a2)

(N l .b)

(NI .c)

yl' = 3 r yZ2 COS(rx) O c x c l

y2'= - r c o s (r x)

Boundary Condition:

yl(0) = 0, y , (l) = - sin(r)

Exact Solution:

yl = s i d (rx), y2 = - sin(rx)

Boundary Condition:

Exact Solution:

~ 1 ' = 2(Y3 - Y,) Ocxc l

y2' = y4 + ys - x - 2 sin(x)

Boundary Condition:

Y ~ O) = ydo) = 0 (N4.bI)

y2(I) = e, y3(I) = e + I , yS(I) = sin(I) + e (N4.62)

Exact Solution:

Appendix (11) The Graphs

As a reference for our discussion in Chapter Four, we include here the graphs

we produced for test problems L1, L4, L5 and some of the graphs for N3.

In order to support our discussion in Chapter Four, we produced two types of

graphs. The first type are those used to show the distributions of the final mesh points

versus the shapes of the exact solutions. The second type are those that are used to

show the graphs of the absolute errors versus the exact solutions. We were hoping

that these two types of graphs can guide us to some patterns concerning the

behaviours of the distribution of the final mesh points or the locations of the maximum

absolute errors at the mesh points. The detailed discussion about our finding is in

Chapter Four.

To visualize the distribution of the final mesh points, we used the histogram of

these points. A histogram is a bar chart where the height of a bar stands for the

number of data (in our case, the number of points in the final mesh) that fall into the

interval on which the bar stands. Thus if two bars have the same widths and heights,

that means the same number of data points fall into the two intervals on which the two

bars stand and therefore the two intervals have the same average density of data

points. With a fixed width, the higher the bar, the higher the average density of data

points in the interval. To visualize the pattern of the errors at the mesh points, we

simply graph the error functions (the difference between the numerical solution and the

exact solution at the mesh points) and then compare it with the exact solutions. Often,

the magnitude of the heights of the bars and the magnitude of the error functions are

too far apart from that of the exact solutions. In these cases, we made some

adjustments so that everything in our graph is of the same magnitude. Otherwise, the

error functions would look like a straight line.

On each graph, most of the related important parameters are indicated. All the

graphs are annotated. In the annotations, Y, Y1 or Y2 are used to denote the exact

solutions and ERROR, ERROR1, ERROR2 are used to denote the error functions. The

width of the bars in the histogram are indicated in the graph. The adjustment we made

is also indicated in the graph. For example, 13*Y1 in GP1 means that the first solution

for the problem shown on the graph is the first exact solution multiplied by 13. We

used 'the frrst solution' here and hope that this will not cause too much confusion.

COLNEW.Ll (EPS ;. 1 .D-3, TOL = 1 .D-G)
I3rors nl llio Final Mesh 130inls lor Y 1 -

COLSYS.Ll (EPS - 1 .D-3. TOL = 1.0-6)
DistriLwlion of Iho Final Mesh Points

COl-f YS.LI (III'S = 1.0-3, TOL 1 .D-G)
Errors nl llio I W l Mcsh I'oinls for Y 1

COLSYS.Lt jl3'S - 1.0-3. TOL = 1 .D-G)
Errors nI llro I'irrol Mosh I'oinls lor Y 2 .-- ---

I.IAGlION.Ll (EPS = 1.0-3, TOL = 1 .D-G)
Errors ial tho Final Mosh Poinls lor Y1 .----

'' I!; Y I. ' * IS ~ 1 1 0 l l ~ (I . ~ l 7)

'' I!; :IS'Y I. '--' IS 3 S Y 2

a
Ilw rk~lo riro ul Ilu Ilto(panr k IM

I.IAGnON.Ll (EPS = 1.04, TOL E 1 .D-G)

------ Errors ill tho Final Moslr 130inls lor Y2 -

J I 1i.L 1 (Cl'S.-- 1.0-3. TOL1=1 .D-6. T01.2=1 .D4)
Ijrrors nl lho I~IKII Mash I'oinls lor Y 1 - ---.*-

MU'I'SLl (EPS-1 .D3, TOLl -1 .D-G, TOL2=1 .D4)
Errors nl llro Izinal Mosli Points lor Y2

--.-- .--

COLNEW.1-4 (EI'S = 1 .D-2. TOL = 1 - 0 - G)
Errors al 1110 1-inn1 Mosh I1oinls - .-. ---- -

C0LSYS.l-4 (E l 3 = 1.0-2, TOL - 1 .D-6)
I'rrors al tho Final Mesh I'olrils - - - . -- - _ _ -

COI.SYS.L4 (EPS I 1 .D-2. TOL - 1.0.6)
Dislribulion of llw Flnal Mosh Poinls ---- -

I
T l n rIl!l~ rlao ol UWI IdsloU(a111 IS 111 1

I IAGI\ON.L4 (W S = 1.0-2. TOL = 1 .D-G)
Dislrihulion of 1110 Final Mosh Poinls
.--.- -- -

I
1 lu rlqc ruo ol UUI Ihlqpan k 111 1

I~IAGI2ON.LI (EPS = 1.0-2. TOL = 1 .D-G)

- --
Errors a1 1110 Izinnl Mash Poinls

C0LNEW.I-5 (EPS = 1.0-2, TOL 0 1 .D-4)

-- - Oislribulion of 1110 Final Mosh Points

COLNEW.LS (EPS - 1 .D-2. TOL 1 .D-4)

- .-
Errors al Iho Final Mosh Polnls

COLNEW.LS (EPS = 1 .D-2, TOL = 1 .D4)
Dislribulion of 1110 Flnrrl Mosh Poinls

COLSYS.LS (CPS = 1 .D-2. TOL - 1 .D-4)
Errors a1 tho Final Mosh Polnls

I-IACI1ON.LS (EPS = 1 .D-2. TOL 9 1.0-4)
Dislribulion of Itlo Final Mosli Poinls

- 1 1 I
0 U 0.2

1 I
0.4 0.6 0.8 1 .O

I

I
1 lu rlup rlre 01 llw 1ILlogca111 b 111 1

t-1AGRON.LS (EPS 0 1 .D-2. TOL'- 1 .D-4)
Errors at tho Final Mosh Points

MUTS.LS (EPS-1 .D-2. TOLl=l .D-3. TOL291 .D-10)
Dislribulion of lho Final Mosli Points

MUTS.LS EPSaI .D-2. TOL1-1 .D-9.TOL2-l.D-10)
krrors at tho Anal Morh Polnls

MUTS.N3 (EI3S=1 .D-2. TOL1=1 .D-2. TOL2-1 . D l)
- Dislribulion of 1110 Final Moslt Points --

Appendix (111) Testing Results

This Appendix has three parts. The third part contains all the raw data we

collected. The first two parts of each contains some condensed information concerning

a specific aspect of the data. These two parts are based on the data we have in the

third part and may help the reader to understand better some of the conclusions we

have in Chapter Four.

I: Timing Efficiency

I .a) Quality of Solution Oriented Efficiency

In the tables shown below, we compare the timing efficiency of the four codes a

pair at a time. At the top of each table, the two codes that are compared is stated. The

first column of each table contains the values of eps, and the first row of the table

contains the problem number (see test problems in Appendix I). The rest of the cells

are used to indicate our opinion (based on the data we collected) concerning the

relative timing efficiency of the codes stated above the table. If '@' is shown at, say

the cell corresponds to L2 and 1.0-2, it means that the first code shown above the

table is more efficient than the second one on test problem L2 with an eps 1.0-2 in

terms of the quality of solution oriented efficiency. On the other hand, '%' will be used

to indicated the opposite. If such a relative efficiencies is not clear from our data, we

will leave the cell blank. However, NI and N4 do not have an eps and L6 has two

parameters that can vary. In order to make it easy for the reader to visualize the

overall comparison concerning all the test problems, we include the comparison

concerning these three test problems in our tables, and hereby remind the reader that

cells in the columns headed by NI and N3 represent the same test problems. For cells

in the column headed by M, 1.0-2 represents (0,1), 1.0-4 represents (43) and so on.

To see how the tables are filled, when running L1 with eps equal to 1.0-2 using

COLNEW and COLSYS, from data table 1 and 2 one can see that for the four runs we

listed, if we match the maximum errors produced by the two codes and compare the

corresponding CPU times, COLNEW is faster. e.g. when the first type of maximum

error is I .D-4,1.D-6 and 1 .D-8, respectively, the corresponding CPU times (in

milliseconds) for COLNEW are 140, 226, and 441; for COLSYS these CPU times are

18.5, 324, and 373. Thus we put in the cell in the first table below that corresponds Ll

and 1 0 - 2 a '@'. The comparison conducted here is subjective. As a supplement to this

comparison, all the raw data we collected are attached in the raw data tables in the

third section of this Appendix.

There are two different types of tables that involve COLNEW or COLSYS. The

first type of tables compares COLNEW or COLSYS to other codes by using the first

type of errors from the two codes (see Appendix I), and the second type uses the

second type of errors. Whether or not a table is in the first or second type is indicated

by the heading of the table.

It should be noticed that we do not compare a code to other codes in terms of

quality of solution oriented efficiencies on the problems it fails to solve, and we put

into the cells that correspond problems on which at least one of the two codes

compared completely fail one of the following three symbols: ff, sf and fs. 'ff' stands for

both codes compared failed, 'fs' and 'sf' stand for when only the first code and only the

second code failed, respectively.

Codes: COLNEW and COLSYS (Type I)

Codes: COLNEW and HAGRON (Type I)

Codes: COLNEW and MUTS (Type I)

Codes: COLSYS and HAGRON (Type I)

Codes: COLSYS and MUTS (Type I)

Codes: HAGRON and MUTS

- - -- -

Codes: COLNE W and COLSYS (Type II)

Codes: COLNEW and HAGRON (Type 11)

Codes: COLNEW and MUTS (Type 11)

Codes: COLSYS and HAGRON (Type 11)

Codes: COLSYS and MUTS (Type 11)

I .b) Relative Efficiency Involving the Tolerance Settings

The following tables compare the resulting CPU times for the cases where the

codes have the same tolerance setting, and the maximum absolute errors from the

codes are of the same size as or less than the tolerance. By doing so, the exact values

of the maximum errors are discounted but the response of the solution to the input

tolerance is partially utilized. To users who want to interpret the input tolerance as the

upper bound of the maximum absolute errors they prepare to tolerate, and only demand
that the errors are of the same size as or less than the tolerance, such a relative
efficiency answers the question that how efficient the codes can be in terms of the CPU

times they need to satisfy the users' demand. Should the maximum relative errors be
available, a timing efficiency in terms of the CPU times needed by the codes in order to

achieve relative errors that are of the same size as or less than the specified tolerance

may also be revealed.

The approach of revealing the relative efficiencies we described above is a

compromise between the approach that compares the codes only under the similar

input parameter settings and the quality of solution oriented comparison where the

input parameter settings are not involved. Compared with the approach that compares

the codes only under the similar parameter settings, the above approach takes into

consideration some of the responses of the solution to the tolerance, in the sense that

the relative efficiencies are evaluated under the condition that the maximum errors are

not greater than the tolerance. When compared with the quality of solution oriented

comparison, the information concerning the quality of the solution is not fully utilized

but it takes into consideration the relationship between the solution and tolerance.

The approaches we newly discussed here may be useful and practical if the role

that the tolerance plays in the termination criteria is further explored and the

magnitude of the solution is also taken into consideration. We mentioned in Chapter

Four that accuracies of the numerical solutions from HAGRON appear to have a

stronger relationship with input tolerance than that of the other codes. This is also

indicated by the observation that while the accuracies of the solutions from the codes

are usually all less than the input tolerance, the solutions produced by HAGRON are

often closer to the input tolerance than the solutions of the others. If a user is satisfied

as long as the accuracy is close to a certain value of the tolerance (i .e . a better

accuracy is not needed), then HAGRON has an clear advantage as it usually does not

spend much time trying to improve the solution that is already satisfactory. This brings

HAGRON a better timing efficiency as one can see from the tables below.

Note: The meaning of '@', '%' and 'ff' etc. are the same as they are in I .a

Codes: COLNEW and COLSYS (Type I)

Codes: COLNEW and HAGRON (Type I)

Codes: COLNEW and MUTS (Type I)

Codes: COLSYS and HAGRON (Type I)

Codes: COLSYS and MUTS (Type I)

Codes: HAGRON and MUTS

Codes: COLNEW and COLSYS (Type 11)

Codes: COLNEW and HAGRON (Type 11)

Codes: COLNEW and MUTS (Type 11)

Codes: COLSYS and HAGRON (Type II)

Codes: COLSYS and MUTS (Type 11)

2: The Degrees of Difficulties of the Test Problems Where the Codes Failed

The following tables indicate the degrees of difficulties of the test problems at

which the codes failed or program failure started to occur. By 'failed at certain degree of

difficulty of a problem', we mean that the four runs that correspond to four different

tolerance settings on a test problem with a certain degree of difficult all failed, and in

this case we put a '@' at the corresponding cell. e.g. COLNEW failed on L1 when eps

is set to I .D-8 for all the four runs, thus we put a '@' at the cell that corresponds to L1

and 1.0-8. If not all runs failed but at least one of the runs did, we will put a '%' in the

corresponding cell. Should a code successfully solve a problem at all the four runs, we

will leave the corresponding cell blank. For a complete set of code failures on the test

problems and the reasons for failures, see the raw data tables in the next section.

Codes: COLNEW

Codes: COLSYS

Codes: HACRON

Codes: MUTS

3: Raw Data Tables

The tables below contain the detailed results from our testing. In Appendix I,

we have provided the details about our testing. With those details and the parameters

shown in the tables below, the testing should be fairly easily reconducted. The

meaning for the headings of each column in the tables are explained at the bottom of

each table. The following is a list of notation we use to indicate various abnormal exits

from the codes:

% - The supplied storage is not enough (exit with solution);

@ - The supplied storage is not enough (exit with no solution);

* - Program overflow;

- Wrong solution (due to unreasonably big error);

-
$ - Elapsed time is more than 114 hour (runs are stopped manually);

$$ - The number of iterations needed exceed 50.

One may notice that some of the tables are left blank. This is because the code

failed to solve the problem with lower difficulties (usually this is indicated by the

results in the tables above the blank tables) and the failures are accompanied by big

costs. It is difficult for us to quantify everything we say. For example, when we say

'wrong solution due to unreasonably big error', we just want to remind the reader that

the error indicated by I#', in our opinion, is too big or at least unusual. One may hold a

different view about this if one takes into consideration the magnitude of the maximum

value of the solution or the relative error. Often, when a code fails because the

supplied storage is not enough, it may be able to provide the user with the partially

converged solutions. '96' in the above list is used to indicated the failures of this type. If

the current mesh points and the partially converged solution are not available at the

time a code fails, we use @ above to indicate the failure.

T
A

B
L

E
 1

C
O
D
E
:
 C
OL
h'
EW

TE
ST

 P
R
O
B
L
E
M
:
 L

I

EP
S:

 I
D
2

T
O

1

F
M

P

C
P

U

M
AX

 E
RR

O
R

M
AX

ER

RO
R'

I
ID

-2

I
I1

I

14
0

I
0

3
0

0
4

I

0.
14

0-
2

1

EP
S:

 J
D

-I

T
O

L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

U
 E

PJ
O

R'

1
0

-2

1
81

I

94
3

1
0.

62

1
0

2
6

0
-1

I
D

4

(
81

28

86

(
O

56
D

-I
0

I
05

40
-1

0

EP
S:

 I
D
-
6

T
O

1

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX

ER
RO

R*

1
0

-2

1
56

3
1

18
91

3
I

0
2

0
0

-1

I
0.

18
0-

8

EP
S:

 I
D

4

T
O

1

F
M

P

C
P

O

M
AX

 E
RR

O
R

M
AX

ER

RO
R'

i

C
O
D
E
:
 C

O
LS

YS

T
E

ST
 P
R
O
B
L
E
M
:
 L

I

E
P

S:
 I

0
2

E
P

S:
 I

D
4

T
O

1

F
M

P

C
PU

M

AX

ER
RO

R
M

AX
 E

RR
O

R'

I

T
O

1

F
M

P

C
PL

;
M

AY
 D

R
O

R

h
L

U
 E

RR
O

R.

1
0

-2

1
81

10

38

(
0.

64
0-

1
1

0.
12

0-
6

1
0

-2

E
P

S:
 1

0
6

T
O

L

F
M

P

CP
U

M

hX
 E

RR
O

R
M

AX
 E

RR
O

R.

I
1

0
-2

I

.
61

9
1

24
68

8
1

0.
74

0-
1

1
0.

74
0-

1

I I

E
P

S:
 J

D
d

1 8
5

I
0

3
0

0
4

(

0.
15

0-
2

T
O

1

F
M

P

CP
U

M
AY

 E
RR

O
R

M
AX

 E
KR

O
R'

1.
X

 5
i

1 .m
i

1.
00

 %

1.
00

 4
;

14
7

26
26

6

28
34

0

24
49

6

1
0

-2

I
D

4

1
0

-6

ID
-8

'

?
1.

00

0.
85

0.
85

I .
00

11

40
5

40
5

61
9

TA
B

LE
 3

T

A
B

L
E

 4

C
O

D
E

:
H

A
G

R
O

N

T
E

ST
 P

R
O

B
LE

M
:

L
I

T
O

L

F
M

P

C
PU

M

AX
 E

R
R

O
R

M

h
x

U
IR

O
R

*

ID
-2

I

52

I
17

51

1
0.

16
04

I

E
P

S:
 1

.0
1

T
O

L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

LP
S:

 1
9

6

'

1

0
-2

I D
4

I D
-6

I D
-8

T
O

L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R*

ID
-2

I

11
2

1
21

66
8

(
0.

11
0-

3
(

I D
4

24

7
I

14
79

0
1

02
00

-6

1

E
P

S:
 I

D
4

23

32

57

72

T
O

1

F
M

P

C
PU

M

h
x

ER
RO

R
M

AX

ER
RO

R'

I D
-2

I

2
1

16
15

0
I

@

I
I

C
O

D
E

:
M

U
T

S
T

E
ST

 P
R

O
B

LE
M

:
L

1

24
0

48
3

64
5

I0
13

TO
L

F
M

P

C
PU

M

AX
 E

R
R

O
R

M

AX
 E

RR
O

R'

1
0

-2

1
20

28

1
(

0.
43

D
-3

1

I
0.

80
0-

3

0.
44

0-
5

0.
72

00
7

O
.4

O
D

-9

T
O

L

F
M

P

C
PU

M

AX

E
R

R
O

R

M
AX

 E
RR

O
R'

1
0

-2

1
10

0
1

20
74

3
1

0.
69

0-
7

(
I

LP
S:

 1
9

6

T
O

L

F
M

P

C
PU

M

AT
 E

R
R

O
R

M

AX

ER
RO

R*

I
1

0
-2

I

20

I
S

I

E
P

S
:I

W

TO
L

F
M

P

C
PU

M

hX
 E

R
R

O
R

M

AX

ER
RO

R*

I
I

TA
BL

E
5

T
A

B
L

E
 6

C
O

D
E

:
C

O
LX

E
H

'
TE

ST
 P

R
O

B
LE

M
:
k2

EP
S:

 I
D2

T
O

1

F
M

P
CP
U

M
A

X
E

4R
O

R

M
AX

 E
RR

O
R'

I
ID

-2

1
I1

1

24

I
O

.IO
D

-6

I
05

30
-7

EP
S:

 I
9-
I

EP
S:

 I
D

4

T
O

1

F
M

P
C

PU

M
AX

 W
O

R

M
AX

 E
R

R
O

R
*

T
O

1

F
M

P
C

PU

M
AX

 E
R

R
O

R

M
AX

 E
R

R
O

R
*

ID
-2

I
D

4

I D
-6

EP
S:

 I
D
8

T
O

1

FA
! P

Ce

DU

M
AX

 E
R

R
O

R

M
.C

Y
ER

R
O

R
*

ID
-2

(

1

I I

I
28

I

0.
90

1

0.
80

I
D

4

(
10

5
78

7
(

0.
93

0-
6

1
0.

11
0-

5

41

41

:I

C
O

D
E

:
C

O
L

SY
S

TE
ST

 P
R

O
B

L
E

M
:
L2

15
1

16
5

33
1

T
O

1

F
M

P

C
PU

M

AX
 E

R
R

O
R

M

AX
 E

R
R

O
R

*

I D
-2

I

11

I
26

1

0
.1

3
0

4

(
O

&
D

-7

I
D

4

(
I1

26

(

0
.1

3
0

4

1
0.

84
0-

7

E
PS

:
I
D
4

02
3D

-5

0.
66

0-
7

0.
63

0-
1

1

0
2

4
0

4

0.
19

0-
7

02
60

-1
3

E
PS

:
I
D
6

T
O

1

T
M

P

C
PU

M

AX
 E

R
R

O
R

M

AX
 E

R
R

O
R

*

T
O

1

IM
P

C

PU

M
AX

 E
R

R
O

R

M
AX

 E
RR

O
R'

I
1

0
-2

1

-
89

41

5
(

0
2

9
0

-5

1
0

3
0

0
-5

E
PS

:
I
S
d

02
C

D
-6

0.
74

0-
7

0.
69

0-
12

0
5

0
0

-1
2

T
O

1

F
M

P
C

PU

M
AX

 E
R

R
O

R

M
AX

 E
R

R
O

R
*

I
1 D

-2

I
11

I

26

I
0.

90

0.
80

I

0
2

4
0

-5

0.
19

0-
6

05
60

-1
2

0.
71

0-
12

17
1

1 7
4

46
3

49
8

1
0

-2

1 D
4

ID
-6

I D
-8

41

21

41

53

T
A

B
L

E
 7

T

A
B

L
E

 8

C
O

D
E

:
H

A
G

R
O

N

T
E

ST
 P

R
O

B
LE

M
:
L2

C
O

D
E

:
M

U
T

S
T

E
ST

 P
R

O
B

L
E

M
:
L1

EP
S:

 I
.D

2
E

PS
:

ID
2

T
O

L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R*

ID
-2

I

7
I

10

I
0

8
8

0
4

I

I
D

4

I
7

I4

1
0

2
6

0
-7

1

T
O

L

IM
P

C

P
V

M

AT
 E

RR
O

R
M

AX
 E

RR
O

R*

I
1

0
-2

I

20

34

1
0

1
7

0
-1

1

EP
S:

 I
 D

-4

E
PS

:
1

9
-1

T
O

L

F
M

P

CP
U

M

AX
 E

RR
O

R
Mc
eY
 E

RR
O

R'

ID
-2

I

16

I
55

I

0.
76

04

I
I

D
4

19

M

)
I

0
2
5
D
-
6

I
1

EP
S:

 I
D

4

TO
L

IM
P

C

PU

M
AX

 E
RR

O
R

M
AX

 E
R

R
O

R
.

E
PS

:
I

9
6

T
O

L

F
M

P

CP
U

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R*

I
1

0
-2

I

26

I
1'9

I

0
5

9
0

-3

I
1

0
5

2
0

-2

0
.4

5
0

4

0.
13

0-
5

0.
41

0-
7

T
O

1
F

M
P

C
PU

M

AT
 E

RR
O

R
M

AX
 L

RR
O

R'

1
0

-2

1
50

83

1

0.
17

0-
1

(

35

40

67

13
4

I D
-
2

1 D
-4

I D
-6

I
D

4

*

E
PS

:
1D

d

20

20

20

20

E
PS

:
ID

d

T
O

L

F
M

P

CP
U

M

AX
 U

R
O

R

M
AX

 E
RR

O
R'

I
ID

-2

7
1

P
n

6
7

I

I
TO

L
F

M
P

C
PU

M

AT
 E

RR
O

R
M

AX
 E

RR
O

R'

I
D

S
 -

I
30

0
I

70
0

I
0.

80
!3

4
I

I

T
A

B
L

E
 9

TA

B
LE

 1
0

C
O

D
E

:
C

O
Lh

'E
W

T

E
ST

 P
R

O
B

LE
M

:
U

C
O

D
E

:
C

O
L

SY
S

T
E

ST
 P

R
O

B
LE

M
:
U

E
PS

:
IN

1

T
O

1
F

M
P

C
P

U

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

2

1
0

-2

1
I1

I

46

(
0

2
5

0
-1

1

I
0.

90
04

I
D

4

1
I1

46

1

02
50

-1
1

1
0.

90
04

T
O

1
F

M
P

C
PO

M

AX
 C

RR
O

R
M

A
X

E
R

R
O

R
.

I
1

0
-2

11

1

62

(
0

2
1

0
-1

1

1
0

.9
0

0
4

E
PS

:
1/

33

T
O

1
F

M
P

C
P

U

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

T

O
1

F

M
P

CP

L,

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R'

1
0

-2

1
I I

I

62

1
0

3
4

0
-5

1

0.
18

0-
3

I 0
4

21

14

2
1

0.
44

0-
9

1
03

00
-6

EP
S:

 1
/5

5
E

PS
:

1/
35

T
O

1
F

M
P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

1
0

-2

1
41

1

IM

(
0.

87
0-

8
1

0.
10

0-
5

T
O

1
F

M
P

CP
U

M

AX
 E

RR
O

R
M

AX
 E

R
R

O
R

.

1
1

0
-2

41

I

19
8

I
0.

12
0-

5
1

0
2

0
0

4

1

TO
L

F
M

P
C

PU

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

1
0

-2

(
41

I

21
 7

I

0
5

9
0

4

I
0.

15
0-

5

I
D

4

I
16

1
64

6
I

0
3

9
0

-1
0

1

0.
13

0-
7

T
O

1
F

M
P

CP
U

M

fl
 E

RR
O

R
M

AX
 E

RR
O

R'

1
0

-2

4
1

24
6

1
0

.4
9

0
4

(

0
.1

7
0

4

T
A

B
L

E
 1

1
TA

B
LE

 1
2

C
O

D
E

:
H

A
G

R
O

S
TE

ST
 P

R
O

B
LE

M
:
U

E
P

S
:

1/
11

T
O

L

F
M

P

C
P

U

M
A

X
ER

R
O

R

M
AX

 E
R

R
O

R
*

E
P

S
:

1/
33

T
O

L

F
M

P

C
P

U

M
A

X
ER

R
O

R

M
AX

 E
R

R
O

R
*

E
P

S
:

IN
S

T
O

L

F
M

P

C
P

U

M
AX

 .
LU

O
R

M

AX
 E

R
R

O
R

*

1
0

-2

16
7

1
73

4
1

0
2

4
D

J

I
1

E
P

S
:
In

7

C
O

D
E

:
M

L
T

S

T
O

L

F
M

P

C
P

U

M
AX

 U
R

O
R

M

AX
 E

R
R

O
R

*

TE
ST

 P
R

O
B

L
E

M
:
U

1
0

.2

I
D

4

I
D

4

I
D

4

E
P

S
:

1/
11

29
2

44
3

64
2

19
77

E
P

S
:

11
33

T
O

L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

A
X

LR
R

O
R

.

TO
L

F
M

P

CP
C

M
AX

 E
RR

O
R

M
AX

 E
R

R
O

R
*

1
0

-2

50

I
10

2
(

0.
14

D
-1

I

I

1
0

-2

I
20

12
19

15
02

43
60

67
56

E
P

S
:

ld
J

38

(
0.

48
D

-2

1

0.
17

0-
2

0.
66

0-
8

0.
33

D
-9

0.
1 1

0-
12

TO
L

F
M

P

C
PU

M

u
 ER

RO
R

M
A

X
ER

R
O

R
'

I
1

0
-2

1

20

10
0

1
0.

76
0.

1
1

1

I D
4

50

I

94

I
0

3
4

0
4

I

I

E
P

S
:

11
77

TO
L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

R
R

O
R

*
I

TA
B

LE
 1

3
TA

B
LE

 1
4

C
O

D
E

:
C

O
LV

E
W

TE

ST
 P

R
O

B
LE

M
:
L4

U
S

:
 1

9
1

TO
L

F
M

P

CP
V

M
AX

 E
RR

O
R

M
AX

 E
R

R
O

R
*

1
0

.2

1
41

1

15
9

I
01

9D
-6

(

0.
17

0-
5

E
PS

:
I

D
4

T
O

L

F
M

P
C

PU

M
AX

 E
RR

O
R

M
AX

 E
R

R
O

R
.

I
1

0
-2

1

9
1

23

1
11

33
.1

81

(
25

17
20

U
S

:
 I

D
4

T
O

L

F
M

P
C

PU

M
AX

 E
RR

O
R

M
AX

 E
RR

OR
'

U
S

:
 I

D
4

T
O

L

F
M

P
C

PU

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

I
I

I
I

C
O

D
E

:
C

O
LS

YS

TE
ST

 P
R

O
B

LE
M

:
L

 4

E
PS

:
I

D
1

T
O

L

F
M

P
C

PU

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

1
0

-2

1
21

I4

3
1

O
J6

D
-5

1

03
40

-5

TO
L

F
M

P
CP

U

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

I
1

0
-2

1

9
1

23

1
11

33
.1

8
t

1
25

17
11

E
PS

:
I

D
6

E
PS

:
I

D
4

TO
L

F
M

P
C

PV

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

I

I
I

I
I

I

T
O

L

F
M

P
C

PU

M
AX

 C
TR

O
R

M

AX
 E

RR
O

R'

I
1

0
.2

1

7

27

(
33

52
.7

2X

1
21

47
6.

85

T
A

B
L

E
 1

5

C
O

D
E

:
X

A
G

R
O

N

T
E

ST
 P

R
O

B
LE

M
:
L4

E
PS

:
I

D
1

T
O

1

F
M

P

C
PU

M

AX
 W

O
R

M

AX
 E

RR
O

R*

ID
-2

(

37

1
12

7
1

0.
18

0-
2

1
1

LP
S:

 1
9

-1

T
O

1
 '

F
M

P

C
PU

M

AX
 E

R
R

O
R

M

AX
 E

RR
O

R'

1
0

-2

1
7

I
9

I
lo

w
0

I
I

D
4

I

13
95

54

35

1
02

30
-2

1

T
O

1

F
M

P
C

PU

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R'

1
0

-2

1
7

I
9

1
ID

+
6

#

I
I

D
4

I

7
9

I
ID

-6
8

I

I

EP
S:

 I
1

M

T
O

L

F
M

P
C

PU

M
AX

 W
O

R

M
AX

 f
RR

O
R'

I
I

1
I

I
I

C
O

D
E

:
M

U
TS

TE

ST
 P

R
O

B
U

M
:
L4

E
PS

:
I

D
1

T
O

1

F
M

P

C
PU

M

AX
 E

R
R

O
R

M

AX
 E

RR
O

R.

L
P

S:
 I

D
4

T
O

L

F
M

P

C
PU

M

AX
 E

R
R

O
R

M

AY
 E

RR
O

R*

LP
S:

 I
D

4

T
O

1

F
M

P

CP
U

M

AX
 E

RR
O

R
M

AX
 W

O
K

"
 4

1
0

-2

I
30

1
I

45
 7

I

ID
+

6
#

I

I
D

4

30
2

4S
3

1
ID

+
6

#

1

LP
S:

 I
D

d

T
O

L

F
M

P
CP

L'

M
AX

 W
O

R

M
AX

 E
RR

O
R'

ID
-2

30

3
47

7
I

lD
t8

#

I
1

TA
B

LE
 1

7
T

A
B

L
E

 1
8

C
O

D
E

:
C

O
L.

VE
W

T

E
ST

 P
R

O
B

LE
M

:
L

5

EP
S:

 1
.D

.2

EP
S:

 I
W

T
O

L

F
M

P

C
P

U

M
AX

 m
R

O
R

M

AX
 E

RR
O

R'

TO
L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R*

1
0

-2

1
I I

44

I
91

60
15

55
 #

(

93
99

59
26

 *
I

D
4

(

16
1

25
46

I

0.
l4

D
-3

1

O
.1

3D
-3

T
O

L

F
M

P

C
PU

M

AT
 W

O
R

M

AX
 U

R
O

R
'

TO
L

F
M

P

C
PU

M

AT
 E

RR
O

R
M

AX
 E

RR
O

R*

1
0

-2

1
I1

I

46

(
88

92
82

64
 #

(

9?
10

28
55

I
D

4

I
I I

44

1

89
89

62
55

 #

1
93

09
79

55

.

O
.4

8D
-2

0.
83

D
-6

0.
13

0-
10

05
2D

-1
1

1 7
5

2%

43
6

41
5

1
0

-2

1
0

4

-1
 D

-6

I
D

4

+

P

C
O

D
E

:
C

O
L

SY
S

0.
47

0-
2

0.
81

0-
6

0.
70

0-
9

0.
11

0-
9

29

45

61

41

T
E

ST
 P

R
O

B
L

E
M

:
LS

E
PS

:
1.

D
.l

TO
L

F
M

P

C
PU

M

AX
 L

RR
O

R
M

A
X

 E
RR

O
R*

1
0

-2

1'
29

22

0
(

0.
48

D
-2

1

0.
47

0-
2

0
2

7
0

-5

0
9

6
~

-6

0
3

8
0

-7

02
4D

-7

10
77

1/
41

I2
24

14
89

1
0

-2

1
0

4

I
D

4

ID
-8

E
PS

:
J

W

0
2

6
0

-5

0.
93

D
-6

03
6D

-7

0
2

4
0

-7

61

57

13
3

- 12
9

E
PS

:
ID

-6

T
O

L

F
M

P

CP
U

M

AX
 E

RR
O

R
M
A
X
 E

R
R

O
R

*

E
PS

:
I

D
4

T
O

1
F

Y
P

C

PU

M
AX

 U
R

O
R

M

AX
 E

RR
O

R'

0
3

7
0

-3

O
JJ

D
J

03
7D

-7

0.
43

0-
8

12
08

15
01

17
76

2/
46

1
0

-2

I
D

4

I
D

4

1 D
-8

1
0

-2

I
I I

0
3

5
0

-3

0
5

 ID
-5

03
5D

-7

0.
4I

D
-8

10
5

15
3

13
3

12
9

25

(
79

96
00

1
1

93
35

12
58

TO
L

F
M

P

C
PU

M

AX
 U

R
O

R

M
AX

 E
RR

O
R*

1
0

-2

I D
4

1D
-6

79
99

96
00

 1

79
99

96
00

 1

0.
64

 B

93
1 0

29
26

93
10

29
26

0.
62

I1

I1

31
25

26

26

32
12

6

T
A

B
L

E
 19

C
O

D
E

:
H

A
G

R
O

N

T
E

ST
 P

R
O

B
LE

M
:
LJ

LP
S:

 I
D

4

T
O

1
F

M
P

C

PU

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

1
0

-2

1
25

10

0
I

O
J2

D
J

1
I

T
O

1
F

M
P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

Rw

LP
S:

 I
D

-6

T
O

1
F

M
P

C

PU

M
AX

 U
R

O
R

M

AX
 E

RR
O

R*

I
1D

.2

I
16

9
1

24
63

(

0.
13

04

1
1

EP
S:

 I
D

d

T
O

L

F
M

P
C

PU

M
AX

 U
R

O
R

M

AX
 E

RR
O

R*

C
O

D
E

:
M

U
T

S
T

E
ST

 P
R

O
B

L
E

M
:
LI

E
PS

:
1

9
1

T
O

1
F

Y
P

C

PU

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

ID
-2

I

20

I
55

I

0.
12

D
-2

1

1
0

-4

20
'

86

I
0

3
6

D
4

(

LP
S:

 I
D

4

T
O

1
F

M
P

CP
U

M

AX
 E

RR
O

R
M

AX
 L

RR
O

R'

I
ID

-2

1
20

1

99

(
0.

15
0-

1
I

1

LP
S:

 I
D

6

T
O

1
,

F
M

P

CP
L'

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

1
0

-2

1
30

0
1

64
0

1
1.

66

I

7
0

1

IM
P

C

PU

M
hX

 E
RR

O
R

M
AX

 L
RR

O
R*

1

0
.2

1

30
0

1
69

8
1

13
28

.9
9:

1

I
D

4

30
0

10
72

I

5?
.6

&

I

T
A

B
L

E
 2

1
T

A
B

L
E

 2
2

C
O

D
E

:
C

O
LK

E
W

T

E
ST

 P
R

O
B

U
M

:
L

6

D
O

M
A

IN
:

(0
.1

)

TO
L

F
M

P

C
f U

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

1
0

-2

I
I I

I

96

1
0.

63
0-

12

1
0.

61
0-

7

ID
-9

I

21

21
7

1
02

80
-1

3
1

0.
19

0-
8

D
O

M
A

IN
:

(4
s)

T
O

L

F
M

P

C
P

U

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

TO
L

F
M

P

C
P

U

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

1
0

-2

I I

I
95

I

0
5

6
0

-5

(
0

3
3

1
0

-9

(
21

22

2
I

0.
18

04

(
0.

18
0.

1

D
O

M
A

IN
:

(1
4.

15
)

TO
L

F
M

P

CP
L'

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

1
0

-2

I
I I

I

5'4

0.
91

1

87
01

7

C
O

D
E

:
C

O
LS

YS

T
E

ST
 P

R
O

B
LE

M
:
L6

D
O

M
A

IN
:

(O
J)

TO
L

FM
 P

C
P

U

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

I
I D

-2

1
I1

1

11
1

I
0

5
8

0
-1

2

(
0.

61
0-

7

T
O

L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

1
0

.2

1
I I

1

11
1

I
0.

18
0-

8
1

0.
18

0-
3

D
O

M
A

IN
:
(8
9)

TO
L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

TO
L

IM
P

C

PU

M
AX

 E
RR

O
R

M
AX

 E
RR

OR
'

I
I D

.2

I I

1
11

1
1

0.
86

1

67
01

7

TA
B

LE
 2

3
TA

B
LE

 2
4

C
O

D
E

:
H

A
G

R
O

N

TE
ST

 P
R

O
B

LE
M

:
L6

D
O

M
A

IK
:

(O
J)

D
O

M
A

IN
:

(4
5

)

T
O

L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

D
O

M
A

IN
:

(8
9

)

0
2

8
0

4

03
4D

-1
1

0.
13

0-
12

0.
16

D
-1

4

T
O

L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

T
O

L

F
M

P

C
P

O

M
AX

 E
RR

O
R

M
AX

 E
R

R
O

R
9

ID
-2

1

7
22

1

2 5
0

22

80

10
2

21
1

ID
-2

1
0

-9

1
0

-1
0

10
-1

2

D
O

M
A

IN
:

(1
4,

15
)

7 13

19

33

0.
64

0-
3

0.
10

~
-7

03
90

.9

+

P

T
O

L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

ID
-2

I

7
22

1

40
86

dl
Z

I

C
O

D
E

:
M

U
TS

\3

T
E

ST
 P

R
O

B
LE

M
:
L6

22

78

10
1

1
0

-2

1 D
-9

1
0

-1
0

D
O

M
A

IN
:

@
,I

)

0.
73

0-
11

10

-1
2

1
37

7 13

19

T
O

L

F
M

P

C
PU

M

AX
 E

R
R

O
R

M

AX
 f

R
R

O
R

*

21
1

-

D
O

M
A

IN
:

(4
5

)

T
O

L

F
M

P

C
PU

M

AX

E
R

R
O

R

M
AX

 E
R

R
O

R
*

1

D
O

M
A

IN
:

(8
9

)

TO
L

F
M

P

C
PU

M

AX
 E

R
R

O
R

M

AX
 E

RR
O

R*

T
O

L

IM
P

C

PU

M
AX

 U
R

O
R

M

AX
 E

RR
O

R*

I
1

0
-2

I

30
3

I
10

53

1
I5

0

1
I

T
A

B
U

 2
5

T
E

ST
 P

R
O

B
LE

M
:

A
'J

TA
B

LE
 2

6

C
O

D
E:

 C
O

M
E

W

T
E

ST
 P

R
O

B
U

M
:

A
'2

C
O

D
E

:
C

O
W

E
M

'

C
O

D
E

: C
O

LJ
YS

T
O

1
F

M
P

C

P
U

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

T
O

1
IM

P

C
PU

M

AX
 E

RR
O

R
M

AT
 E

RR
O

R*

1
0

-2

1
I I

1

1 7
6

1
0.

11
D

-1
2

1
0.

71
04

C
O

D
E

: H
A

C
R

O
N

0
.7

1
0

4

0.
71

04

0.
71

04

0
.7

1
0

4

T
O

1
f

M
P

C

PU

M
AX

 E
RR

O
R

M
hX

 E
RR

O
R'

I
1

0
-2

1

7
I

63

I
0

2
5

0
4

1

I

0.
87

0-
13

0.
81

0-
13

0.
81

0-
13

0.
81

0-
13

C
O

D
E

:
M

L'
TS

1
 75

19
2

1 P
I

21
4

ID
-2

I
D

4

I
D

4

I D
4

TO
L

F
M

P
C

PU

M
A

X
U

R
O

R

M
AX

' E
RR

O
R'

I I

I I

I1

I1

TO
L

F
M

P
C

PU

M
AX

 E
RR

O
R

M
AX

 E
R

R
O

R
.

I
D

4

I I

11
8

02
40

-1
5

0.
18

0-
9

I D
d

I I

12

0
02

40
-1

5
0.

18
0-

9

I
D

4

I I

11
9

02
40

-1
5

0.
18

0-
9

T
O

1
F

M
P

C

P
U

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R'

T
O

1
F

M
P

C
PU

M

AX
 U

lR
O

R

M
A

X
 E

RR
O

R'

1
0

-2

I
D

4

1
0

-6

I D
-8

1
0

-2

I
D

4

ID
-6

ID
-8

TO
L

F
M

P
C

PU

M
AX

 E
RR

O
R

M
AX

 E
R

R
O

R
*

0.
11

0-
11

0.
11

0-
11

0.
19

0-
13

0.
76

0-
14

0.
16

0-
5

0.
16

0-
5

0.
14

0-
6

0.
62

0-
9

I I

1 9
6

1

I I

21

81

16
1

0.
15

0.
2

-
0

2
5

0
-5

-

0.
18

0.
7

0.
70

0-
8

I I

21

61

1
0

-2

I
D

4

1
0

-6

ID
-8

.

1
%

28
3

81
8

1 9
9

20
5

85
6

16
14

25
4

58
5

10
58

16
80

21

41

81

16
1

0
.6

5
0

4

0.
10

0-
I1

03
10

.1
3

0.
99

D
-1

4

0
2

0
0

-7

1
6

3
7

0
-3

03
60

-1
0

0.
88

0-
14

0.
95

0-
14

0
.1

6
0

4

0
41

0-
7

0.
69

0-
11

TA
B

LE
 2

9

C
O

D
E

:
M
C
T
S

TE
ST

 P
R

O
B

U
M

:
h'

2
C

O
D

E
:

C
O

W
'E

W

TE
ST

 P
R

O
B

LE
M

:
h'

3

E
P

S:
 I

D
2

T
O

L

F
M

P

C
P

U

M
AX

 E
RR

O
R

M
AX

 E
RR

O
R*

I
1

0
-2

1

20

1
22

9
I

0
5

0
-2

(

I

TO
L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AT
 E

RR
O

R*

1

T
O

L

F
M

P

C
PU

M

AT
 E

RR
O

R
M

AX
 E

RR
O

R'

A
3

0

T
O

L

F
M

P

C
PU

M

AT
 E

RR
O

R
M

AX

ER
RO

R'

C

T
O

L

F
M

P

C
PU

M

AT
 E

R
R

O
R

M.
4X
 E

R
R

O
R

*

1
0

-2

I
81

41

67

1
0.

14
0-

10

1
0.

46
0-

9
I

D
4

81

1

44
01

1

0.
19

04

1
0

2
3

0
4

T
O

L

F
M

P

C
PU

M

AT
 U

R
O

R

MA
Y

ER
RO

R.

1
0

-2

I
I1

15

9
1

02
80

-1

1
02

4
1

E
P

S:
 I
D
d

I .
U

1.

45

I .
45

T
O

L

F
M

P

C
PU

M

AX

ER
RO

R
M

AX
 E

RR
O

R'

ID
-2

I

'
I1

10

1
1

03
80

-1

(
0.

45

I
I

3

65
26

65

26

65
26

ID
-2

I

D
4

1

0
-6

EP
S:

 I
D

d

30
0

30
0 - 300

T
O

L

F
M

P

C
PU

M

AT
 E

RR
O

R
M

AX
 E

RR
O

R.

1
0

-2

I
I1

I

86

(
03

90
-1

[

0.
45

I

D
4

65

13

97

(
0.

62
0.

10

1
0.

13
0-

18

TA
BL

E
3 1

TA

BL
E

32

C
O

D
E

:
C

O
L

SY
S

TE
ST
 P

R
O

B
LE

M
:

h'
3

C
O

D
E

:
H

A
C

R
O

N

T
E

ST
 P

R
O

B
L

E
M

:
X

3

E
P

S
:

ID
-1

E

P
S

:
ID

4

7
0

1

F
M

P

C
P

U

M
A

T
ER

RO
R

M
A

X
E

R
R

O
R

.

1
0

-2

I
21

I

11
09

(

O
.4

7D
-6

1

O
J8

D
-6

I
D

4

1
21

11

11

I
0.

47
D

-6

I
05

80
-6

TO
L

F
M

P

C
PU

M

AX
 E

RR
O

R
M

A
X

.E
RR

O
Rw

-

1
0

-2

1
25

I

6 7
2

(
02

1D
.5

I

I
D

4

1
35

96

4
1

O
JI

D
d

1

IP
S

:
I

D
4

E

P
S

:
I

D
4

7O
L

F

M
P

C

PU

M
A

X
L

U
O

R

M
U

E
R

R
O

R
'

1
0

-2

1
68

I

32
55

I

0.
8l

D
-6

(

I
D

4

1
17

1
38

95

I
0.

43
D

-1
0

I
1

T
O

1
F

M
P

C

P
U

M

A
T

ER
RO

R
M

A
T

ER
RO

R*

ID
-2

I

I1

I
1 7

3
I

0
2

8
0

-1

I
0

2
4

J
D

4

I
IS

43

2
I

0.
15

04

1
0

5
6

D
4

E
P

S
:

I
D

6

TO
L

F
M

P

C
PU

M

.i
X

 U
3

O
R

M

AX
 E

RR
O

R*

1
1

0
-2

1

.
17

13

I
37

23
0

1
1

.
0

~

1
1

T
O

1
F

M
P

C

P
U

M

AX
 E

RR
O

R
M

AX
 E

RR
OR

'

E
P

S
:

I
D

4

TO
L

FM
P

C

PU

M
AX

 E
RR

O
R

M
AX

 U
S'

O
R

*

ID
-2

I

JI

I
97

(

03
9D

-I

1
0.

45

I
D

4

(
65

16

14

1
0.

13
0-

8
1

0
2

2
0

-8

0.
45

0.
69

0-
11

,0
36

0-
12

1
0

-2

I D
4

J D
-6

TO
L

IM
P

C

PU

M
AX

 E
RR

O
R

M
M

'
ER

RO
R*

1
0

-2

(
I

I
@

I

I
D

4

I
(3

1

I I

33

39

11
5

89
8

82
6

0
3

9
0

-1

0.
11

0-
7

0
2

2
0

-8

TA
B

LE
 3

3

C
O

D
E

:
M

V
T

S

TA
B

LE
 3

4

T
E

5T
 P

R
O

B
LE

M
:

h'
4

T
E

ST
 P

R
O

B
U

M
:

h'
3

E
P

S:
 1

0
2

T
O

1

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R*

1
0

-2

1
96

I
33

36

1
05

7D
-9

1

I
D

1

96

4#

I
0

5
7

0
-9

1

E
P

S:
 I

D
4

T
O

1

F
M

P

C
PV

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R*

1
0

-2

(
1

SS

I

T
O

1

F
M

P

C
PU

M

AX
 E

RR
O

R
M

AX
 E

RR
O

R*

i

T
O

L

F
M

P

C
PU

#A

X
tR

R
O

R

M
AX

 E
RR

O
R'

K
IR

.
rw

 - m
r

W
U

IU
 o

r
m

rn
 n
 m

r
rh

r:
 u

rv
r

D
V

- cru
 m

r
n
 u

n
u

s
~

~
o

r
~

s

W
 u

ro
r

- m
c

u
u

n
w

 u
#

o
r 4

7
 n

LW

?O

Im

'

w
 L

VO
T

- m
~

Y
M

U
W

U

~
O

I
 A
I
M
 L

OU
IW

VA

C
LD

ra

m

C
O

D
E

:
C

O
lh

'E
H

'

C
O

D
E

:
C

O
LS

YS

T
O

1
IM

P

C
PU

M

AX

E
R

R
O

R

M
AX

 E
RR

O
R*

T
O

1

F
M

P

CP
U

M

AX
 E

R
R

O
R

M

AY
 E

RR
O

R*

I
1

0
-2

1

11

36
1

I
0

2
7

0
-1

4

1
0.

62
0-

9
I

-
-

I
D

S

(
I I

51

7
I

0
2

8
0

-1
4

1

C
.t?

D
-9

I

0.
62

0-
9

0.
63

0-
9

0.
62

0-
9

0.
62

0-
9

C
O

D
E

: H
A

G
R

O
N

0
2

0
0

-1
4

0
5

9
0

-1
4

0.
60

0-
14

0.
60

0-
14

T
O

1
F

M
P

CP

U

M
AX

 E
kR

O
R

H
M
 E

RR
O

R'

,-

32
2

37
1

3 7
0

37
6

1
0

-2

1
0

-4

I D
d

I D
-8

C
O

D
E

:
M

L
7

S

11

I I

11

I I

T
O

1
F

M
P

CP

U

M
AX

ER

RO
R

M
AX

 E
RR

O
R'

I
1

0
-2

1

20

15
26

I

05
90

.3

I
I

