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ABSTRACT 

, 

This thesis is a study of tree-factorizations of complete graph with particular 

emphasis on path factorizations. In the first two chapters of this thesis, we present a 

survey of results on G-decompositions and G-factorizations of complete graphs. In 

addition, we introduce some of the basic techniques which will be used to prove the 

main results in this thesis; in particular, the major construction lemma is presented. 

In Chapter 3, we show that necessary and sufficient conditions for hKn to have 

a Tk-factorization, where Tk is a tree with k vertices and satisfying certain additional 

assumptions, are n n 0 (mod k) and h(n-1) = 0 (mod 2(k-1)). Specializing these 

results gives necessary and sufficient conditions under which Kn has a cp- 

factorization, where cp is a caterpillar with an odd number of vertices (implying that 

the star factorization problem is completely resolved), and under which hK, has a Pk- 

factorization. Previously only partial results were known in these cases. 

In Chapter 4, we show that necessary and sufficient conditions for the 

existence of an almost resolvable Pk-factorization of hKn are n = 1 (mod k) and hnk12 

= 0 (mod k-1), and in Chapter 5, we show that necessary and sufficient conditions for 

hKn to have a (P~(s), Pk(t))-factorization are n i 0 (mod 2), n = 0 (mod k) and ks + 
2t(k-1) = hk(n-1). 

Finally, in the last chapter, we present partial results on path factorizations of 

complete multipartite graphs. We show that when n = 0 (mod k) or r n 0 (mod k), 

hK(n, r) has a Pk-factorization if and only if h(r-1)nk = 0 mod 2(k-1)). 
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Chapter 1. Introduction 

Let G be a graph. A spanning subgraph H of G is a subgraph for which V(H) = 

V(G) and E(H) G E(G). An H-factor of G is a spanning subgraph of G in which each 

component is isomorphic to H, and an almost H-factor of G is an H-factor of G-v for 

some vertex v. An H-decomposition of a graph G is defined to be a partition of E(G) 

into a set of edge-disjoint subgmphs each of which is isomorphic to H. If this set of 

graphs can be partitioned into H-factors (respectively almost H-factors), then we say 

G has a resolvable (respectively almost resolvable) H-decomposition or G has an H- 

factorization (respectively almost H-factorization). If G has an H-decomposition, 

then we write H I G. Similarly, we write H IR G if G has a resolvable H- 

decomposition, and H IARG if G has an almost resolvable H-decomposition. 

One natural question to ask is "Given graphs G and H, what are the 

necessary and sufficient conditions for the existence of an H-decomposition (an H- 

factorization or an almost H-factorization) of G?" In the remainder of this chapter, we 

will give a brief survey of some of the main results concerning these problems and also 

an overview of the work presented in the rest of the thesis. (All undefined 

terminologies are given in the appendix.) 

Little work has been done when G is an arbitrary graph. Alon [I] showed that 

G has a t-matching decomposition if and only if IE(G)I r 0 (mod t) and A(G) I 

IE(G)l/t with only a finite number of exceptions. Caro and Schonheim [I 11 proved 

that G has a P3-decomposition if and only if IE(G)I r 0 (mod 2). In general, given 

graphs G and H, the problem of determining if G has an H-decomposition (or a H- 

factorization) is very hard. Most results to date have been obtained when G = hK,; 

but even in this case not a lot is known. 



Suppose IV(H)I = k and n 2 k. Necessary conditions for the existence of an 

H-decomposition of hKn are: 

hn(n-l)/2 = 0 (mod IE(H)I) and 

h(n-1) = 0 (mod gcd(dl, dz, ..., dk)), 

where di, i = 1, ..., k, are the degrees of the vertices in H. (1.1) 

The first condition in (1.1) follows from the fact that the total number of edges 

in hKn must be divisible by the number of edges in H. The second follows as the 

degree of a vertex in hKn is the sum of some of the dis. 

When H is a complete graph, showing the existence of an H-decomposition of 

hKn is equivalent to showing the existence of a balanced incomplete block design 

BIBD(n, k, h). The hundreds of papers dealing with the construction of balanced 

incomplete block designs testify to the interest in this problem. We will mention only 

the most basic results for small k and the asymptotic results of RJilsor,. The first 

concerns the so-called Steiner triple systems. There are many proofs of this result 

(see for example [39]). 

1.1 Theorem. K3 I Kn if and only if n = 1,3  (mod 6). 

For small values of k (k I 5) Kk-decompositions were constructed by Hanani. 

1.2 Theorem [IS] [16]. For k = 3, 4 or 5 and every positive integer h, Kk I hKn if and 

only if h(n-1) 0 (mod k-1) and hn(n-1) n 0 (mod k(k-1)), unless (n, k, h) = (15,5, 

2) in which case no such decomposition exists. 

When k > 5, there are many partial results and we will not discuss them. For 

general k, Wilson [40] proved that the necessary conditions in (1.1) are 



asymptotically sufficient. We are going to state a more general version of his result; 

this is one of the most general theorems concerning the graph decomposition problem. 

1.3 Theorem [29]. For any graph H, every sufficiently large complete graph Kn is the 

edge-disjoint union of copies of H, where IV(H)I = k, provided that 

(1) IE(H)I divides n(n-1)/2 and 

(2) n = 1 (mod gcd(dl, d2, ..., dk)) where di, i = 1, ..., k, are the degrees of the 

vertices in H. 

However, the problem of determining "exactly" when the necessary conditions 

are sufficient for the existence of an H-decompositions of Kn remains. 

' For G = Kn, it was shown by Harary, Robinson and Wonnald [18] that the 

necessary condition for the decomposition of Kn into t isomorphic edge-disjoint 

subgraphs is sufficient, namely, that n(n-1)/2 = 0 (mod t). However, their proof does 

not specify exacdy whzt the subgraph is. Thus, it is quite n a m d  to ask L%S 

decomposition question for specified families of subgraphs H (and in fact this has been 

done). 

Huang and Rosa [23] provided necessary and sufficient conditions for the 

existence of H-decompositions of Kn for all "small trees H"; that is, trees with 9 or 

fewer vertices. Tarsi [33] [34] gave necessary and sufficient conditions for the 

existence of Pk- and Kl,k-1- decompositions of hKn (that is, path decompositions and 

star decompositions). In particular, Ringel [31] conjectured that for any tree T with 

IE(T)I = n, T I K2n+l. Kotzig strengthened this by conjecturing that every complete 

graph K2n+l has a cyclic decomposition into trees isomorphic to T, where IE(T)I = n. 

This is equivalent to asserting that every tree T is graceful, that is, that there exists a 

one to one labelling q: V(T) + (0, 1, ..., E(T)) such that all the values I q(i) - q(j) I ,  



where ij E E Q ,  are distinct. Although this problem is still unresolved, the conjecture 

has stimulated numerous papers dealing with various special cases. A discussion of 

much of this work can be found in the recent survey paper [12]. 

When H = Ck, it has long been conjectured that the conditions in (1.1) are 

sufficient. This problem has attracted a lot of attention. Cases for which (1.1) is 

sufficient include the following: 

(a) k = pr or 2Pr for some prime p [3], 

(b) k I 3 1 and k is odd, and k I 18 and k is even [7][9], 

(c) n = 1 (mod 2k) [25], and 

(d) n = k (mod 2k), where k is odd [24]. 

Details of this problem and related results are discussed in [32]. 

We next consider the question of the existence of resolvable H- 

decompositions of hK,. Since we require the decompostions to be resolvable, then 

there are three obvious necessary conditions: 

n = O ( m o d k ) ,  

l hk(n-1)/2 = 0 (mod IE(H)I) and 

there exists integers xl, x2, ..., xk, such that xldl + x2d2 + ... + xkdk = h(n- 1) 

and xl + x2 + ... + xk = hk(n- 1)/(2(k-1)), where (dl, d2, ..., dk) is the degree 

sequence of H. (1.2) 

The first follows by observing that an H-factor is a spanning subgraph, the 

second follows as IE(hKJ must be a multiple of the number of edges in an H-factor, 

and the third follows from degree requirements (xi is the number of factors in which a 

given vertex has degree di). 



When H = K2, such a decomposition is known as a 1-factorization and it is 

well known that W(, has a 1-factorization if and only if n = 0 (mod 2). When H = K3, 

the decomposition is known as a Kirkman triple system. Ray-Chaudhuri and Wilson 

[28] proved that Kn has a K3-factorization if and only if n = 3 (mod 6). They also 

gave necessary and sufficient conditions for the existence of a resolvable Kq- 

decomposition of Kn. Recently, L. Zhu [42] and M. Greig [13] proved that (1.2) is 

sufficient when k = 5 and k = 8, respectively, except for about one hundred possible 

values of n in each case. (Note that when H = Kk, such a decomposition is equivalent 

to the existence of a resolvable balanced incomplete block design.) 

The well known Oberwolfach problem (first formulated by Ringel and first 

mentioned in [14]) in the uniform case asks for a Ck-factorization of Kn. For a 

complete solution to this problem when k 2 4 (k = 3 is the Kirkman triple system) see 

[2] and [20]. Note that this is one of the few factorization problems to be completely 

sclv3d. 

The case when H = Pn was solved many years ago by Walecki [27]. (This is 

also known as a Hamilton path decomposition.) The first step towards a general 

solution for path factorization was made by J. Horton [21] who proved the following 

result: 

1.4 Theorem [21]. P3 I R  hKn if and only if n = 0 (mod 3) and h(n-1) = 0 (mod 4). 

Using a result of Ray-Chaudhuri and Wilson [28], Horton also showed that the 

necessary conditions for the existence of a Pk-factorization of Kn are asymptotically 

sufficient; that is, if n is large enough and n and k satisfy the necessary conditions in 

(1.2), then there is a Pk-factorization of Kn. For even h and even k the existence of 

Pk-factorizations of hKn was completely resolved in [41] where it was shown that 



conditions in (1.2) are both necessary and sufficient. In Chapter 3, we will settle this 

problem completely. 

Another family of trees H to be considered are stars. For h = 1, Huang 1221 

proved that if k is even, then a resolvable Kl,k-l-decomposition of Kn does not exist for 

any n, and when k is odd she proved that the necessary conditions in (1.2) are 

asymptotically sufficient. Recently, Lonc 1261 used similar techniques to prove that if 

T is a graceful tree with IV(T)I = k, where k is odd, then the necessary conditions in 

(1.2) are also asymptotically sufficient. This generalizes both the results of Horton 

and Huang as all paths and stars are graceful. In Chapter 3, we will also show that 

(1.2) is both necessary and sufficient for some other classes of trees. In particular, we 

give necessary and sufficient conditions for Pk I R  hKn, and also for H I R  Kn and H IR 

XK,, where H is an odd order caterpillar and h is even. When h is odd and h > 1, we 

have a similar result but with a finite number of possible exceptions for n when k and h 

are fixed. These results yield a complete answer to the question of the existence of 

Kl,k-l-factorizations of Kn (and so generalize Huang's result). We also extend this 

work to the directed case, where we consider the existence of an oriented tree 

factorization of a complete symmetric directed graph K:. 

Finally, we consider the question of the existence of almost H-factorizations of 

hKn. Again we easily obtain necessary conditions for almost resolvable 

decompositions, namely 

n = 1 (mod k) and nkh/2 m 0 (mod IE(H)I). (1.3) 

When H = K2, an almost K2-factorization is known as a near 1-factorization, 

and hKn has a near 1-factorization if and only if n e 1 (mod 2). The only other family of 

graphs H to have been considered prior to this thesis are cycles. When H = Ck, from 

the necessary conditions, we know that h must be even and hence it is enough to 



solve this problem for h = 2. Burling and Heinrich [lo] showed that there is an almost 

Ck-factorization of hKn when k is even and conditions (1.3) hold. For the case k odd, 

Bennett and Sotteau [5] showed that the conditions of (1.3) are sufficient when k = 3 

(these are known as almost resolvable Kirkman triple systems) and Heinrich, Lindner 

and Rodger [19] proved that when k 2 5, the conditions of (1.3) are also sufficient. In 

the same way as we can think of the question of the existence of a Pk-factorization of 

hKn as a generalization of that of the existence of a 1-factorization of hKn, we can 

analogously view an almost Pk-factorziaton of hKn as a generalization of an almost 1- 

factorization of hKn. In Chapter 4, we will prove that Pk IAR hKn if and only if n E 1 

(mod k) and nkh12 = 0 (mod k-1). 

One generalization of the above factorization problem is what we call an 

(Hl(s), H2(t))-factorization of hK,. This is defined to be a partition of hKn into s HI- 

factors and t H2-factors, where HI, and H2 are two given graphs. Very little is known 

for such factorizations. Rees 1301 gave necessary and sufficient conditions for (P2(s), 

C3(t))-factorizations of hKn. When HI = P2, and H2 = P3, or H2 = P4, necessary and 

sufficient conditions for (Hl(s), H2(t))-factorizations of hK, are given in [41]. In 

Chapter 5, we will show that hKn has a (P2(s), Pk(t))-factorization if and only if n = 0 

(mod 2), n = 0 (mod k) and ks +2t(k-1) = hk(n-1). 

Thinking of hK, as a special case of hK(n, r) (the complete r-partite graph with 

part size n) leads us to the general question of necessary and sufficient conditions 

under which hK(n, r) has an H-decomposition (or a H-factorization) for a given graph 

H. Ushio, Tazawa and Yamamoto [38] gave necessary and sufficient conditions for 

hK(n, r) to have a K1,,-decomposition and later Ushio [37] presented a similar result 

in which he also asked that the decomposition to be balanced (each vertex is required 

to belong to same number of K1,,). Auerbach and Laskar [4] proved that K(n, r) has a 

Hamilton cycle decomposition if and only if n(r-1) is even. 



We will consider Pk-factorizations of hK(n,r). It is not difficult to see that for 

hK(n, r) to have a Pk-factorization, necessary conditions are 

nr i 0 (mod k) and h(r-1)kn n 0 (k-1). (1.4) 

Ushio [36] proved that when k = 3, these conditions are sufficient. In Chapter 

6, we will show that when n i 0 (mod k) or r E 0 (mod k), (1.4) is sufficient for the 

existence of a Pk-factorization of hK(n, r). ( Note that this provides necessary and 

sufficient conditions for the existence of a Pk-factorization of hK(n, r) whenever k is 

prime.) As corollaries, we also show that these conditions are sufficient for all k when 

r = 2,3. 



Chapter 2. Quotient graphs and building blocks 

2.1. The quotient graph 

In this section we define the quotient graph of a graph, a fundamental concept 

essential to all the results in this thesis. 

k 
2.1.1 Definition. Let G be a k-partite graph with V(G) = UXi. We call G 

i=1 

compressible if for all i and j, 1 I i < j I k, lXil = lXjl and the bipartite subgraph on 

vertex-set Xi u Xj with bipartition (Xi, Xj) is z({i, j))-regular, where z is a mapping 

from the set ({i, j) : 1 I i + j I k)  to the non-negative integers. 

2.1.2 Definition. Let G be a compressible graph. Then the quotient graph, Q(G), has 

V(Q(G)) = (1, 2, ..., k)  and the edge ij has multiplicity z({i, j)), 1 I i < j I k. 

2.1.3 Remark. Suppose n = kq. We write V(AKn) = {(i, j) : 1 I i I q , 1 I j I k)  = 
9 k 
U H i =  uVj,whereHi=[( i , j ) :  1 S j S k j  andVj={i(i,j): I S i S q j .  L e t X b e a  

i=l j=1 
k 

subgraph of AK,. If X is compressible with respect to the vertex-partition ,u Vj, we 
r' 

~ = l  

denote the quotient of X by Qv(X) and call it the V-quotient. If X is compressible 
9 

with respect to the vertex-partition .u Hj, then we call the quotient the H-quotient 
~ = 1  

and denote it by QH(X). 

The concept of quotient graphs (both H- and V-quotients) will serve as a 

major tool in our proof. Their importance in tree-factorizations is seen in the following 

lemma. 

2.1.4 Lemma. If G is a compressible multipartite graph and Q(G) has a factorization 

into r tree-factors S1, S2, ..., Sr, where Si is a Ti -factor and Ti is a tree, then so does 

G. 



k 
Proof. Suppose that V(G) = .u Vj and Q(G) has a tree-factorization with tree- 

J=1 

factors S1, S2, ..., ST, where Si is a T'-factor and T' is a tree. To each edge pq E E(Si), 

associate a 1-factor ~ j ~ f k o r n  the .r((p,q))-regular bipartite subgraph with vertex-set 

Vp u Vq. DO this in such a way that the 1-factors associated with a given edge form 

a 1-factorization of the corresponding bipartite subgraph. 

Clearly u. F;~  is a Ti-factor of G. I 
WE E(S1) 

Notice that this result implies that if both hKn- G and Q(G) have tree- 

factorizations for a given family of trees, then so too does hKn. This is exactly the 

strategy we will use to prove our main results. For example, in order to show that 

hKn has a (P2(s), Tk(t))-factorization we will find a compressible graph G such that 

both hKn - G and Q(G) have easily constructed (P~(s), Tk(t))-factorizations. 

2.2 Building blocks 

The following basic lemmas will be used often in the rest of thesis in 

determining required factorizations of quotient graphs. 

2.2.1 Lemma. Let G be a graph with V(G) = {1,2, ..., k) and X = (1,2, ...., k) be a k- 

cycle of G. Then 

N 
(a) the graph G = hX u ( .u Pj ), where Pl, P2, ..., PN are N vertex-disjoint 

J=1 

paths of X with lengths kl, k2, ..., kN respectively, ki 2 0 and hk + kl+ ...+ k~ 

r 0 (mod k-1). 

(b) thegraphG=hlXuh2Y,wherehl+h2=O(modk-l),kisodd, h2is 

even and Y is the k-cycle (1, (k+1)/2, k, (k-1)/2, k-1, (k-3)/2, k-2, ..., (k+3)/2), 

then G has a Pk-factorization. 



Proof. (a) If h = 0, then N = 1 and hence G G Pk and the claim is trivial. 

Therefore, we assume h is a positive integer. If all the ki are zero, then hk = t(k-1) 

and we construct the following t Pk-factors in G: 

P(i) = [ 1+ i(k-1), 2+ i(k-1), ..., k+ i(k-1) 1, 0 I i I t-1 . 

If precisely one of the ki is not zero, we may assume kl # 0 and Pl = [l, 2, ..., 
kl+l]. Then hk + kl = t(k-1) and G has a Pk-factorization with factors: 

For the general case when hk+kl+ ...+ kN = t(k-1) (h > 0, N 2 O), we apply 

double induction on t and N. It is not difficult to see that t 2 2 and when t = 2 the 

factorization is trivial as h = 1 and kl+ ...+ kN = k-2. For t > 2 and assuming that 

Pl = [I, 2, ..., kl+l], we delete the k-path [I, 2, ..., k] from G. The new graph G' has 

t' = t-1 and N' = N or N-1. Applying the induction assumption to the resulting graph, 

we obtain a l?k-factorization of G. 

(b) If one of hl and h2 is zero, the Pk-factorization follows as in (a) when all ki 

equal zero. Thus we assume hlh2 f 0. Let h2k = (k-l)p+x, 0 < x I k-2 (Note that if 

x = 0, then both hlX and h2Y have Pk-factorizations). Since h2 and k-1 are even, 

then x must be even. Let P = [I, (k+1)/2, k, (k-1)/2, k-1, (k-3)/2, ..., (k-x+3)/2, 

k - (x-2)/2] which is an (x+l)-path of Y. By (a), h2Y - P is Pk-factorable. Let P(l) = 

[I, 2, ..., (k-x+1)/2] and P(2) = [(k+3)/2, (k+5)/2, ..., k-(x-2)/2]. By the definition of 

Y, P(l)uPuP(2) is a k-path. Again by (a), hlX - P(1) - P(2) is Pk-factOrable. I 

2.2.2 Lemma. (a) If hk is even, and k 2 3, then hKk has a Pk-factorization. 

(b) If hk is odd, and k 2 3, then hKk - N, where N is a set of (k-1)/2 

independent edges, has a Pk-factorization. 

2 



Proof. The results follow immediately from the well-known facts that Kk has a Pk- 

factorization when k is even, and that Kk - N has a Pk-factorization when k is odd. 

(To prove (b) one also needs to observe that (when k is odd) every path of length k-1 

in Kk is the union of two disjoint sets of (k-1)/2 independent edges.) For 

completeness we now give the factorizations of Kk and Kk - N, where V(Kk) = 

V(Kk - N) = (1, 2, ..., k). When k is even the paths are P(i) = [i, l+i, k-l+i, 2+i, 

k-2+i, ..., k/2+2+i, k/2-l+i, k/2+l+i, k/2+i], 1 I i S k/2, and when k is odd they are 

Q(i) = [i, l+i, k-l+i, 2+i, k-2+i, ..., (k-1)/2-l+i, (k+1)/2+l+i, (k- 1)/2+i, (k+1)/2+i], 

1 I i I (k-1)/2. Note that we have the freedom to choose the near 1-factors in each 

of the h copies of Kk so that they form Lu2j paths of length k-1 and h - d h ~ J  near 

1-factors. When h is odd that near 1-factor is N. I 

2.2.3 Lemma. Let Tk be a tree on k vertices and assume that hKk has a Tk- 

factorization. Then hKk,k - hF, where F is a 1-factor of KkVk, has a Tk-factorization. 

Proof. We need only consider the case h = 1. Let V(Kkk) = X u Y, where X = {xl, 

x2 ,..., xk) and Y = {yl, y2 ,..., yk), and let V(Kk) = (1,2 ,..., k). 

Assume Kk has a Tk-factorization. Let T be one of the Tk-factors in such a 

factorization. In Kk,k we define the Tk-fact0r (xiyj, xjyi : ij E E(T)). Repeating for each 

factor in the Tk-factorization of Kk we obtain a Tk-factorization of Kk,k - F, where F = 

( ~ 1 ~ 1 ,  X2y2,~ xk~k). 1 

Notice that by relabelling vertices in Lemma 2.2.3 the 1-factor F can be chosen 

arbitrarily. 



2.2.4 Lemma. Let k be odd. 

(a) If k 2 3, Kk+l is the union of (k+1)/2 k-paths and a (k+3)/2-path. 

(b) If k 2 5, then Kkg is the union of (k+1)/2 Pk-factors and one edge. 

Proof. (a) Suppose V(Kk+l) = (1,2, ..., k+l). Let Si = [ k+l+i, l+i, k+i, 2+i, k+i-1, 

3+i, ..., (k-1)/2+i, (k+3)/2+i 1, where 0 I i I (k-1)/2. It is easy to see that the paths 

Si, 0 5 i I (k-1)/2, form a set of edge-disjoint k-paths. Furthermore, the remaining 

edges of Kk+1 comprises the (k+3)/2-path: [k+l, k, ..., (k+1)/2]. 

(b) Assume V(Kkk) = (ul, u2, ..., uk) u (vl, v2, ..., vk). Let k= 2x+1 and let 

G* be the subgraph of K2x+1,2x+1 with edge set: ( u ~ v ~ + ~ ,  ui+lvi, uivi : i E (1, 2, ..., 
2 ~ + 1 ) )  u ( u ~ v ~ ~ + ~ - ~ ,  vju2,+2-i : i E (2, ..., x)). (Note that subscripts are reduced 

modulo k.) First we are going to show that G* is the union of a Hamilton path and a 

P2x+l-factor. 

When x > 2, the Hamilton path is [v,+l, ux+2, v,, u,+l, vx+2, u,, v,-1, ux+3, 

V X + ~ ,  ..., ~ 3 ,  ~ 2 ,  U ~ X ,  V ~ X ,  ~ 2 ,  vi, ui, ~ 2 ~ + 1 ,  u2,+il and the P2,+1-factor is [ul, v2, u2, 

~ 3 ,  ..., u,, V,+I, ux+d u P, where P = [vl, u2,+1, VZX, UZX-I, ..., ux+5, vx+4, ux+3, vx+2, 

ux+2, vx+3, ux+4, vx+5, ..., v2,-1, U ~ X ,  ~ 2 ~ + 1 1  when x is even, and [vl, uz,+l, VZ,, U~X-I ,  

..., UX+~,  VX+~,  ux+2, vx+2, ux+3, vx+4, ..., V~X-I,  u2,, v2,+1] when x is odd. 

Now we show that K2x+1,2x+1 can be decomposed into two parts, so that one 

has a P2,+1-factorization and the other is isomorphic to G*. It is easy to see that this 

implies the claim of the lemma. 



Let V(K2x+l) = {-, 1,2, ..., 2x). The complete graph K2x+1 is the union of x 

edge-disjoint Hamilton paths and a set of x independent edges which we will specify. 

When x = 0 (mod 2), let the Hamilton paths be Hi = [l+i, x+i, 2+i, x-l+i, ..., 
(x/2)+i, (x/2)+l+i, -, (3x/2)+l+i, 3x/2 + i, ..., 2x-l+i, x+2+i, 2x+i, x+l+i], where 0 I i 

I x-1, and the x independent edges be N = {(l+i)(x+l+i) : 0 1  i I x-1). 

When x r 1 (mod 2), let the Hamilton paths be Hi = [l+i, x+i, 2+i, x-l+i, 3+i, 

..., (x+3)/2 + i, (x+1)/2 + i, -, (3x+1)/2 + i, (3x+3)/2 + i, ..., 2x-l+i, x+2+i, 2x+i, 

x+l+i] where 0 I i I x-1, and the x independent edges be N = {(l+i)(x+l+i) : 0 I i I 

x-1). 

We now let V(K2x+1,2x+1) = {u,, u1, ..., U~~)U{V, ,  v1, ..., vZx) and let G1 be 
x-1 

the subgraph of K2x+1,2x+1 induced by the edge-set u {upvq, uqvp : pq E Hi), and G2 
i= 1 

be the subgraph induced by the edge-set {upvq, uqvp : pq E Ho u N ) u {upvp : p E 

(-, 1, 2, ..., 2x1). From the definition of G2 we can see that G2 is isomorphic to G*, 

where G* is the union of one Hamilton path and one P2x+l-factor. We claim the G1 is 

P2x+l-factorable since the subgraph of K2x+1,2x+1 induced by the edge-set {upvq, uqvp 

: pq E Hi) is a P2x+1-factor. Finally, observing that deletion of the appropriate edge in 

a Hamilton path of K2x+1,2x+1 yields a P2x+l-factor, the proof is completed. I 

Notice that the single edge remaining in (b) of Lemma 2.2.4 can be chosen 

arbitrarily. 

2.2.5 Lemma. Let k be even and k 2 4. The graph Kk+l is the union of k/2 k-paths 

and a k-cycle. 

Proof. Let V(Kk+1) = {- , 1,2, ..., k). We define k/2 k-paths to be 



So = [k, -, 1, k- l ,2 ,  k-2,3, ..., k/2- 1, k/2+1], and 

Si= [k/2 +i, 00, 1+ i , k-l+ i, 2+ i, k-2+ i, 3+ i, k-3+ i, ..., k/2 -1+ i, k/2 +l+i], 

where 1 I; i S k/2-1. 

It is not difficult to verify that if we delete the k-cycle (1,2, ..., k) from Kk+l, 
k/2-1 

then the remaining graph is . Si. I 
1= 



Chapter 3. Resolvable tree decompositions 

3.1 Even tree factorizations of hK, and tree factorizations of 2pK,. 

From Chapter 1, we know that necessary conditions for Tk I, hK, are n = 0 
(mod k), hk(n-1) = 0 (mod 2(k-1)) and the existence of integers xl, x2, ..., xk, such 

that xldl + x2d2 + ... + xkdk = h(n-1) and xl + x2 + ... + xk = hk(n-1)/(2(k-1)), where 

(dl, d2, ..., dk) is the degree sequence of Tk. We believe that they are sufficient for all 

trees and a goal of this chapter is to provide support for this belief. 

We begin this section by considering the existence of tree factorizations of hKn 

when h is even or the tree has even order. Corollaries to the main theorem of this 

section provide complete answers for some interesting classes of trees. Thoughout, a 

tree with k vertices will be denoted by Tk. 

3.1.1 Definition. A double l-factor of the graph hG, h 2 2, is determined by taking a 

1-factor of G and giving each edge in that 1-factor multiplicity two. 

We remark that the trees we consider in this chapter satisfy either Tk I Kk or 

Tk I 2Kk. It is easy to check that in both cases the third necessary condition (as stated 

above) is trivially satisfied when kh is even. 

3.1.2 Theorem. Suppose that kh is even. 

(1) If Tk I Kk, then Tk IR hKn if and only if n E 0 (mod k) and 

hk(n-1) E 0 (mod 2(k-1)). 

(2) If Tk I 2Kk, then Tk 1, 2pKn if and only if n 0 (mod k) and 

pk(n-1) = 0 (mod k-1). 

Proof. Before starting the proof, observe that the assumption Tk I Kk implies that k is 

even. Let h* E { 1,2). We show that if Tk I h*Kk, then for h = 0 (mod h*), 



Tk I R  hKn if and only if n = 0 (mod k) and &(n-1) = 0 (mod 2(k-1)). It is easy to see 

that this statement implies both (1) and (2). The necessity of each of the conditions 

can be established easily by applying counting arguments to vertices and edges. For 

the sufficiency, we will show that Tk IR hKn, where h = 0 (mod h*) by constructing a 

compressible subgraph G of hKn such that both Q(G) and hKn- G have a Tk- 

factorization. Let n = kq. The given congruence conditions imply h(q-1) r 0 (mod 

2(k-1)) when k is odd (then h must be even) and h(q-1) r 0 (mod k-1) when k is 

even (since hk(n-1) = hk(kq-1) = hk(k(q-1) +k-1)). 

9 k 
Let V(hKn) = ((i, j) : 1 I i  I q ,  1 I j  Sk) = u Hi = uVj ,  where 

i= 1 j= 1 

Hi={(i,j): 1 I j I k )  andVj=((i,j): 1 I i I q ) .  Wewillusethefactthat 

XKn = h(Kq 03 Kk). (See appendix for the definition of H 03 G.) 

The proof of the theorem is divided into two parts depending on the parity of q. 

Case 1: q even. 

When q is even Kq admits a 1-factorization (F1, F2, ..., Fq-l ). To each 1- 

factor Fi, 1 I i I q-1, there corresponds in hKn a subgraph which is the vertex disjoint 

union of q/2 copies of By Lemma 2.2.3, hKkg is the union of W 2  Tk-factors and 

h 1-factors. Notice that when h is odd, h different 1-factors can be used, and if h is 

even the h/2 double 1-factors can be chosen independently. Furthermore, each of the 

subgraphs hKk of hKn associated with the vertices of I?, has a Tk-factorization 

consisting of hk/2 Tk-factors. Removing these (q-l)hk/2 + hk/2 = hkq/2 Tk-factors 

from hK, leaves a subgraph which we will denote by R. 

Notice that R is not uniquely determined in the sense that we have 

considerable freedom in arranging the 1-factors remaining in each subgraph 

KH~,,H~, 1 I ic  j I q. We need to show that they can be chosen so as to produce a 



subgraph R which has a Tk-factorization. This is done by choosing R so that Qv(R) 

has a Tk-factorization. 

We first consider the case when k is odd. By assumption Tk I 2Kk. In R there 

are h/2 double 1-factors in KHiVHj. Since h(q-1) = 0 (mod 2(k-1)) and k is odd, then 

h(q-1)/2 is even and so (as q is even) h = 0 (mod 4). It is not difficult to see that R is 

compressible and @(R) = (h/2)(2%) and (h/2)% has a Hamilton cycle factorization 

with cycles W1, W2, ..., Wli(q-1y4. Each edge ij of W, corresponds to a double 1-factor 

in Since k is odd, Kk also has a Hamilton cycle factorization with cycles Y1, 

Y2, ..., Y(k-1)/2. We show that for a given Yi, we can use any Wj to construct a 

subgraph of R with 2Yi as its V-quotient. Assuming this it follows that for any fixed 

set of (k-1)/2 Hamilton cycles in (h/2)%, we can construct a subgraph of R with 

Qv(R) = 2Kk. 

Without loss of generality, assume Wj = (1, 2, ..., q) and Yi = (yl, y2, ..., yk). 

In K H ~ , I C I ; ~ + ~ ~  15 s S q, we choose the double 1-factor {(s, yr)(s+l, y2), (s, yl)(s+l, y2), 

(s, YZ)(S+~, ~ 3 1 9  (s, YZ)(S+~, YS), - a o ,  (s, yk-l)(s+l, yk),(s, yk-l)(s+l, yk), (s, yk)(s+l, 

yl), (s, yk)(s+l, yl),). Let this subgraph of R be R'. Then there is a double 1-factor 

between Vyj and Vyj+l, where 1 S j 5 k. Therefore R' is compressible and has 2Yi as 

its V-quotient. 

Since h(q- 1) = 0 (mod 2(k- I)), we know that h(q- l)/4 = 0 (mod (k- 1)/2). 

Assume h(q- l)/4 = m(k- 1)/2 and construct R with QV(R) = 2mKk which, by 

assumption, is Tk-factorable. Note that the edges of hK,-R contribute hkql2 Tk- 

factors and those of R yield a further &(q-1)/(2(k-1)) for a total of 

hk(n- 1)/(2(k- 1)) Tk-factors. So we have all the Tk-factors. 

We now consider the case when k is even. The graph Kk admits a 

1-factorization with 1-factors fl, f2, ..., fk-1. (Recall that (F1, F2, ..., Fq-l ) is a 



1-factorization of &.) We will show that for fi, 1 S i S k-1, we can use any Fj , 

1 I j I q-1, to construct a subgraph of R which has fi as its V-quotient. We will 

then use k-1 of the 1-factors Fj, 1 I j 5 q-1, to construct a subgraph of R such 

that Qv(R) = Kk. 

Without loss of generality, assume fi = (y1y2, y3y4, ..., yk-lyk) and Fj = 

( 12, 34, ..., (q-1)q). In H2& choose the 1-factor ((2s-1, y1)(2s, y2), 

(2s-1, y2)(2s, yl), (2s-1, y3)(2s, ~ 4 1 ,  (2s-1, y4), (2s, y3), .-, (2s-1, yk-1)(2~, yk), 

(2s-1, yk)(2s, yk-l)), where s E { 1, 2, ..., q/2). Let this subgraph of R be R'. There is 

a 1-factor between Vyj and Vyj+l, where 1 5 j 5 k, and therefore R' is compressible 

and QV(R') = fi. 

When h* = 1, there are X 1-factors of KH,H, in R which can be chosen 

independently. (Notice that hK, is the union of h(q-1) edge disjoint 1-factors.) Since 

h(q-1) a 0 (mod k-1), let m = h(q-l)/(k-1) and choose R such that Qv(R) = mKk 

which is Tk-factorable. 

When h* = 2, there are )JZ double 1-factors of KH~HI each of which can be 

choosen independently. From the condition that h(q-1) = 0 (mod (k-1)) and the fact 

that k and h are both even we have h(q-1)/2 = 0 (mod k-1). Let m = 

h(q-1)/(2(k-1)). It is not difficult to see that we can choose R such that 

Qv(R) = 2mKk. 

In either case we obtain a Tk-factorization of hKn with hk(n- 1)/(2(k- 1)) 

Tk-factors. 

Case 2: q is odd 

In this case Kq admits a near 1-factorization with near 1-factors NF1, NF2, ..., 
NFg. To each NFi, there corresponds, in hKn, a subgraph which is the vertex-disjoint 



union of (q-1)/2 copies of hKu and one copy of hKa. By Lemma 2.2.3 and the 

assumption that Tk IR hKk, each near 1-factor produces hk/2 Tk-factors. Removing 

these &q/2 Tk-factOrs from hK,, leaves a subgraph S consisting of h 1-factors in 

KH,H~, where 1 I  i < j I q. We will show that S can be chosen so that it has a Tk- 

factorization. Again we consider separately the cases k odd and k even. 

If k is odd, then h is even and both (hJ2)(2Kp) (which we can think of as the 

H-quotient of R) and Kk have Hamilton cycle factorizations. We use the same method 

as in the case when q was even to achieve a factorization. 

If k is even, then Kk admits a 1-factorization with 1-factors fl, f2, ..., fk-l. Since 

q is odd, Kq has a Hamilton cycle decomposition. We show that for a given fi, we can 

use any one of the Hamilton cycles, say C, in this decomposition of Kg,  say H, to 

construct a subgraph of S such that its V-quotient is 2fi. Then we can use the same 

method as before to construct a subgraph of S with quotient 2Kk. 

Without loss of generality, assume that fi = {y1y2, y3y4, ..., yk-lyk) and 

C = (1, 2, ..., q). We choose in KH,,H,+, the 1-factor {(s, yl)(s+l, yz), 

(s, y2)(s+l, yl), (s, ~3)(s+l ,  ~ 4 1 9  (s, ~4)(~+19~3),...9 (s, ~k-l)(s+l, yk), 

(s, yk)(s+l, yk-I)), where 1 I s 2 q. Let this subgraph of S be Sf. Then the induced 

graph on vertex set Vyj u Vyj+,, where 1 5 j 5 k, is a 2-factor. Therefore Sf is 

compressible and Qv(Sf) = 2fi . 

When h* = 1, h(q-1) = 0 (mod k-1) is equivalent to h(q-1) 

= 0 (mod 2(k-1)) as k is even. In this case there are X 1-factors of KH~,H~ in S which 

can be chosen independently. (Notice that h& is the union of h(q-1)/2 Hamilton 

cycles.) Assume 2m(k-1) = h(q-1). Then we can construct S such that QV(S) = 

2 d k .  (Note that for each Hamilton cycle in Kp, we obtain in &(S) a copy of 2fi for 

some i.) By assumption Tk I 2 d k .  



When h* = 2, there are 2,/2 double 1-factors of KH~,H~ in S which can be chosen 

independently. Notice that (h/2)Kq is the union of h(q-1)/4 Hamilton cycles. It is 

easy to see that as k, h and q-1 are even, h(q-1) m 0 (mod k-1) implies h(q-1) s 0 

(mod 4(k-1)). Assuming 4m(k-1) = h(q-1), we can construct an S such that Qv(S) = 

4mKk which by assumption is Tk-factorable. (Notice that in this case, for each 

Hamilton cycle in Kg, we obtain in Qv(S) a copy of 4fi for some i.) I 

We now give some classes of trees for which either we have a tree- 

factorization of Kk or of 2Kk. 

3.1.3 Corollary: When k is even, Pk IR hKn if and only if n = 0 (mod k) and 

hk(n-1) = 0 (mod 2(k-1)). 

Proof. We know that when k is even, Kk has a Pk-decomposition. Hence the claim 

follows immediately from Theorem 3.1.2(a). I 

There are also families of trees Tk, k even, for which Tk I Kk. Several 

examples are given in [23]. (These include trees with a certain symmetry property.) 

Hence for these trees we have necessary and sufficient conditions for the existence of 

tree factorizations of hK,. 

When h is even we can obtain necessary and sufficient conditions for tree 

factorizations of hKn for another family of trees; namely graceful trees, which we have 

already defined in Chapter 1. 

3.1.4 Corollary: Let Tk be a graceful tree. Then Tk IR 2pK, if and only if n = 0 (mod k) 

and pk(n-1) = 0 (mod k-1). 

Proof. Since Tk is graceful, Tk Ig 2Kk (a short proof can be found in [26]). Hence the 

claim follows immediately from Theorem 3.1.2(b). I 



3.1.5 Corollary: When h is even, Pk IR hK, if and only if n = 0 (mod k) and 

hk(n- 1) i 0 (mod 2(k- 1)). 

Proof. We know that Pk is a graceful tree [12]. Hence the claim follows immediately 

from Corollary 3.1.4. 1 

We complete this section by looking briefly at a directed analogue of the tree 

factorizations. Let K,* be the complete symmetric digraph on n vertices. Let di-Pk be a 

directed path of length k-1, i-K1,k-l be a directed star with all arcs directed towards 

the centre and o-Kl,k-1 be a directed star with all arcs directed away from the centre. 

Let A = (di-Pk, i-Kl,k-1, o - K ~ , ~ - ~ :  k = 2, 3, ...I. 

It is not difficult to see that the techniques used above can be used to prove the 

following results. 

3.1.6 Theorem: Let DTk be an oriented tree obtained by assigning an orientation to 

each edge of Tk. Under the assumption the DTk I K;, DTk IR hK: if and only if 

n e 0 (mod k) and hk(n-1) E 0 (mod k-1). 

3.1.7 Corollary: Let X E A- (di-P3, di-Ps) and k = IV(X)I. Then X lR hK,* if and 

only if n i 0 (mod k) and hk(n-1) = 0 (mod k-1). 

Proof. It is easy to see that i-K1*k-l I K; and O - K ~ , ~ . ~  I K t ,  and that when k is even, 

di-Pk I KC. When k is odd, Tillson [35] showed that di-Pk I K t  provide k 2 7. It is 

easy to show that di-Pk does not factor K%, k E {3,5). Therefore the claim follows 

immediately from Theorem 3.1.6. 1 



3.2 Odd tree factorizations of Kn 

As before, Tk denotes a tree with k vertices. In this section, we give necesary 

and sufficient conditions for Kn to have a Tk-factorization when k is odd and Tk has 

certain properties. Recall that necessary conditions for the existence of a Tk- 

factorization of Kn are n r 0 (mod k) and n = 1 (mod 2(k-1)). Letting n = km, we see 

that as k is odd, m must be odd as well. We will show that under the assumptions that 

Tk I 2Kk, where k is odd and Tk is bipartite spreadable (which we define next), we can 

construct Tk-factorizations of IS* for all admissible m. But first we introduce a 

definition. 

3.2.1 Definition. Let Tk be a tree on k vertices with V(Tk) = (1,2, ..., k). We call Tk 

bipartite spreadable if for some i, 1 I i 2 k, Tk has bipartite representation: (al, a2, ..., 
ai)u(bi+1, bi+2, ..., bk) = ( I ,  2, ..., k), SO that (bp - aq (mod k): agbp E E(Tk)) = (1, 2, 

..., k-1). 

Let m = 2t+l and V(K2t+l) = (00, 1,2, ..., 2t). Let Zi be the Hamilton cycle of 

K2t+l described by Zi = (-, i+l, i+2, i+2t, i+3, i+2t-1, ..., i+t, i+t+2, i+t+l), 0 I i 2 t-1, 

where calculations are modulo 2t on the residues 1, 2, ..., 2t. We define 3 = (Zo, Z1, ..., 
Zt-1) and observe that 3 is a Hamilton cycle factorization of Kzt+l. Finally, for 

convenience we write Zi = (ao,i, al,i, ..., ~ ~ i )  where ao,i = -, a2p-l,i = i+2t+2-p and azp,i 

= i+p+l, 1 S p I t. 

2s+ 1 m-1 
Let k = 2s+l and V(Kn) = .U Hj = ( .U Vi) u V, where Vi = ((1, i), (2, i), ..., 

j=l 1= 1 

( 2 s + l , i ) ) , f o r i ~  (-, 1, ..., m-l),andHj= ( ( j , ~ ) ,  (j, I), (j,2), ..., 0,m-1)) forj E (1,2, 

..., 2s+l). Let Z = (xl, x2, ..., x,) be an m-cycle of K,. We define M(Z), a subgraph of 

Kn, to be Ka+i 8 Z, and hence (u, v)@, q) E E(M(Z)) if and only if (v, q) = (xi, xi+l) 

for some i. Clearly, we can view Kn as the union of m vertex-disjoint copies of on 



the vertex-sets V,, V1, ... , V,-1, and the (m-1)/2 edge-disjoint subgraphs isomorphic 
- 

to M(Zj) = K2s+l C3 Zj, where Zj E 3. We now present several technical lemmas which 

are essential for the proof of the main theorem. The first of our lemmas investigates 

properties of the subgraph M(Z). 

3.2.2 Lemma. Let TzS+l be a bipartite spreadable tree on 2s+l vertices. Let Z be an 

m-cycle of Km. Then M(Z), is the edge-disjoint union of 2s+l T2s+1-factors and a 

subgraph S which consists of 2s+l edge-disjoint m-cycles. If m n 0 (mod 2s+l), S can 

be chosen to be a compressible graph such that QH(S) = Czs+l. 

Proof. Let Z = (xo, xl, ..., x,-l). By the definition of bipartite spreadable, T2s+l has 

bipartite representation (A', B'), where A' n B' = 0 and A' u B' = { 1, 2, ..., 2s+l). 
m-1 

Then 2s+l edge-disjoint T2s+1-factors of M(Z) are Gi = u {(a, + i, xj)(bt + i, xj+l) : 
j=O 

2s 
a, E A', bt E B' and %bt E E(TZs+1)), 0 I i I 2s. The edges of S = M(Z) - u Gi are 

i=O 
2s+l 

made up of 2s+l edge-disjoint m-cycles; as S = v {((i, xo), (i, xl), ..., (i, x ~ - ~ ) ) ) .  If m 
1= 1 

2s+l 
0 (mod 2s+l), we can relabel the vertices of M(Z) so that S = y (((i, xo), (i+l, xl), 

1= 1 

..., (i+m-1, x,-~))). Then S is a compressible graph and &(S) s C2s+l. I 

We wish to use a similar idea in the case when m f 0 (mod 2s+l). To do this 

we need the notion of a y-variation cycle. 

3.2.3 Definition. Let V(K,,) be defined as above, where n = mk. An m-cycle C of K, is a 

y-variation cycle if 

(1) V(C) n Vi# 0, i E {-, 1, ..., m-I), and 

(2) if C* is the directed cycle obtained from C, then C* has y A-arcs and m-y B- 

arcs, or m-y A-arcs and y B-arcs, where ((xl, yl), (x2, y2)) is an A-arc if x2 = xl+l, 

and a B-arc if x2 = xl-1. (Note that the first coordinate is reduced to modulo k to the 

residues 1, 2, ..., k.) 



3.2.4 Remark: Assume m f 0 (mod 2s+l), m is odd, and there exists a positive even 

integer y such that m-2y s 0 (mod 2s+l) and m - 2y 2 0. Then we can construct a y- 

variation m-cycle in M(Z), where Z is an m-cycle of K,,,. For example, if Z = (-, 1, 2, 

- 1 ,  thenC=((l,-), (2, 11, ..., (y,y-11, (y+l,y), (y,y+l), (y-1, y+2), ..., 
(3, m-2), (2, m-1)) is a y-variation m-cycle. Thus we need to know when a suitable 

value for y exists. 

The next lemma shows that if m 2 6s+l, such y always exists. 

3.2.5 Lemma. Let m 2 6s+l and m is odd. Then there exists a positive even integer y 

such that m - 2y = 0 (mod 2s+l) and 0 I y I 4s. 

Proof. First we show that there exists a positive even integer y such that m - 2y I 0 

(mod 2s+l). If m I 0 (mod 2s+l) it suffices to choose y = 0. So we assume m f 0 

(mod 2s+l). If m - (2s+l) = 0 (mod 4), then we put y = (m-(2s+1))/2. Otherwise, 

m - 3(2s+l) = C (mod 4) and y = (rn - 3(2~+1))/2. We now show that y can be chosen 

between 0 and 4s. Observe first that y f 0 (mod 2s+l). If y > 4s, then write y = 

(4s+2)p+q, where 0 c q I 4s. Since y is even q must also be even and hence we can 

replace y by q. I 

3.2.6 Lemma. Let T2,+1 be a bipartite spreadable tree on 2s+l vertices. Assume m f 0 

(mod 2s+l), and let y 2 4 be an even integer such that m-2y = 0 (mod 2s+ 1), m - 2y 2 

0 and y I 4s. Then M(Z.0) u M(Z1) u M(Z,,/z) is the edge-disjoint union of 3(2s+l) 

T2,+l-factors and a subgraph S where QH(S) 2 3C2s+l. 

Proof. Using Remark 3.2.4, we construct three y-variation m-cycles in K, 

corresponding to Zo, Z1 and ZY/2 respectively, as follows: 



By Lemma 3.2.2, we know that M(&) is the union of 2s+l T2s+1-factors and a 

subgraph S1, where S1 is a collection of 2s+l edge-disjoint m-cycles. We now use B1 to 

determine S 1 and define 

Similarly we can define S2 and S3 corresponding to B2 and B3, respectively: 

We delete the 3(2s+l) T2,+1-factors from M(Z0) u M(Z1) u M(Zy12) and what 

remains is the subgraph S which consists of the 3m(2s+l) edges of S1, S2 and S3. We 

will show that the subgraph of S with vertex-set Hi u Hj is 3-regular if j = i+l or j= i-1, 

and empty otherwise. From this it follows that S is compressible and then 

QHW E %s+i. 

By the definition of Si, 1 I i I 3, we see there is no edge in S from Hi to Hj if j # 

1 or j # - 1  Now we consider the subgraph of S with vertex-set Hi u Hi+ly 1 I i 5 

2s+l, and determine the degree of vertices (i, j) and (i+l, j) where j E {my 1, ... , m-1). 



We will denote by degsj(v) the degree of vertex v in Hi u Hi+l, which is contributed 

from Sj, 1 I j 13 .  

Recall that we defined ao.0 = ao,yn = =, ay,o = aY-2,1 = 1+ y12 and a2y-2,1 = ay,y/2= 

y+l. Hence degg((i, j)) = degS((i+l, j)) = 3, where j e {=, 1, ... , m-I). Therehe 

QH(S) is indeed a (2s+l)-cycle with multiplicity 3. This completes the proof. I 

Notice that M(Zo) u M(Z1) u M(Zy12) n M(Z) u M(Zi+l)u M(Zi+yI2), 

where i is any positive integer. Also, by relabelling if necessary, we can assume C2s+l 

= (1, 2, ..., 2s+l). 

3.2.7 Lemma. Let T2s+l be a bipartite spreadable tree on 2s+l vertices. If m = 6s+l, 

then M(Zo) u M(Zs) u M(Z2,) is the edge-disjoint union of 3(2s+l) T2s+1-factors and 

a compressible subgraph S where QH(S) = 3CzS+l. 

Proof. Observe that 6s+l - 2(2s) = 0 (mod 2s+l) and so by Remark 3.2.4, 

corresponding to Zo, Z, and Z2,, respectively, we can construct three y variation m- 

cycles B1, B2, and B3 in K,, where 



By Lemma 3.2.2, we know that we can delete 3(2s+l) T2,+l-factors from M(&) 

u M(Zs) u M(Z2,) and, if we call the remaining subgraph S and note that w.0 = a0,2~ = 

-, azs,O= a l ,  = 1+ s and a2,+1,, = ~,+1,2 ,  = 1, then, as in Lemma 3.2.6 we can show 

that the subgraph of S with bipartition (Hi, Hj) is 3-regular if j = i+l or j = i-1, and 

empty otherwise. From this it follows that S is compressible and QH(S) E 3C2s+l. I 

Again note that by suitably relabelling we can choose C2s+l to be an arbitrarily 

(2s+l)-cycle in 

Observe that in Lemma 3.2.6, we require y 2 4. However, in the proof of the 

main theorem, we will need a similar result for y = 2. The following lemma serves this 

purpose. 

3.2.8 Lemma. Let T2s+l be a bipartite spreadable tree on 2s+l vertices. If m-4 r 0 

(mod 2s+l), then M ( a )  u M(Z1) u M(&) is the edge-disjoint union of 3(2s+l) 

T2,+l-factors and a subgraph S where QH(S) G 3C2s+l. 

same construction as in Lemmas 3.2.6 and 3.2.7 to achieve the desired factorization. I 

3.2.9 Lemma. Let T2s+l be a bipartite spreadable tree on 2s+l vertices. Assume m 2 

6s+5. Then both M(&) u M(Z1) and M(&) u M ( a )  are the edge-disjoint union of 



2(2s+l) T2s+1-factors and subgraphs S and S' , respectively, where QH(S) z QH(S1) n 

2C2S+l. 

Proof. Observe that al,o = a3.1 = 1 and azj+l,o = a2j+3,l = m - j if 1 I 2 j + l  I m-4 (or 

0 I 2j I m-5). Let y be a positive even integer such that m - 2y = 0 (mod 2s+l) and 

0 5 y I 4s; from which it follows that 0 I y I m-5. According to Remark 3.2.4, 

corresponding to Zo and Z1 respectively, we construct two y-variation m-cycles B1 and 

B2 in K, where 

Using Lemma 3.2.2, we know that we can delete 2(2s+l) T2s+l-factors from 

M(Zo) u M(Z1) such that the remaining graph is S = S1 u S2, where 

Arguing as in Lemma 3.2.6, we can show that the subgraph of S with bipartition 

(Hi, Hj) is 2-regular if i = j+l or i = j-1, and empty otherwise. From this it follows that S 

is compressible and QH(S) E 2C2s+l. 

Similarly if we consider M(&) u M(Z2), then al.0 = a5.2 = 1 and a2j+l,o = 

a2j+5,2 = m-j if 0 I 2j 5 m-7. By using the same technique as above we can show that 

M(Zo) u M(&) is the union of 2(2s+l) edge-disjoint T;?s+l-factors and a subgraph St 

where QH(St) 2 2C2s+l. I 

We are now ready to state and prove the main theorem of this section. 



3.2.10 Theorem. Let Tzs+l be a bipartite spreadable tree on 2s+l vertices so that 

T2,+1 I 2K2,+1. Then T2,+1 IR Kn if and only if n s 0 (mod 2s+l) and n E 1 (mod 4s). 

Proof. The necessity of the conditions is obvious. We now show their sufficiency. 

Let n = (2s+l)m. From the second of the necessary conditions we can show 

that m = 4sp+2s+l for some positive integer p. Let p = (2s+l)q+i, 0 5 i I 2s. 

If i = 0, then m = (2s+1)(4sq+l) and n = (2s+1)2(4sq+l). Let 3 = (&, ..., 
Z(m-3)/2) be as defined in the beginning of this section. As m = 0 (mod 2s+l), it 

follows from Lemma 3.2.2 that M(Zj) is the edge-disjoint union of 2s+l T2s+l-factors 

and a subgraph Sj with QH(Sj) n C2s+l, 0 I j I (m-3)/2. Thus in Kn we obtain 

(2s+l)(m-1)/2 T2,+l-factors. The subgraphs Sj, 0 I j I (m-3)/2, can be chosen so 
(m-3112 

that QH( Sj) z (4sq+2q+l)K2,+1 as each C2s+l can be chosen independently. On 
J=O 

deleting those (2s+l)(m-1)/2 T2s+l-factors, the subgraph remaining in Kn is the union 
(m-3112 

of p IFj and m vertex-disjoint copies sf K2,+1 (on the vertex sets V1, V2, ..., Vm). 
J=O 

The H-quotient of this subgraph is 2(2~q+q+l)K~,+~ which by assumption is T2s+l- 

factorable. By Lemma 2.1.4, we have a T2,+1-factorization of K,. (Note that the total 

number of T2,+l-factors is (2s+1)(2sq+q+l) + (2s+l)(m-1)/2 = (2s+l)(n-1)/(4s).) 

If i + 0, then m = 4s(2s+l)q+4si+2s+l = 2t+l. If {0, 1, ..., t-1) can be 

partitioned into s 3-sets A,, u = 1, 2, ..., s, and (t-3s)/2 2-sets Bv, v = 1, 2, ..., 
(t-3s)/2, such that .u M(Zj) is the union of 3(2s+l) T2s+1-factors and a subgraph 

JE Au 

with H-quotient 3C2s+l, and .% M(Zj) is the union of 2(2s+l) T2,1-factors and a 
JE v 

subgraph with H-quotient 2C2s+l, then we can achieve the desired factorizations as 

follows. Arrange the s H-quotients 3C2,+1 SO that their union is 3K2,+l. By including 

the edges of the Vj, 1 I j I m, we have a subgraph with H-quotient 4K2,+1. Since (t- 



3s)/2 = s((2s+l)q+i-1), we can arrange the (t-3s)/2 copies of 2C2s+1 SO that their 

union is 2((2s+l)q + i-1)K2s+l. Since T2s+l IR 2K2,+l, we have a T2s+l-factorization. 

The remainder of the proof will be spent on showing how to partition 3. For 
convenience, we define a triplet X to be a 3-set of integers such that .Y( M(Zj) is the 

JE 

union of 2s+l T2,+1-factors and a subgraph with H-quotient 3CzS+l and define a 
doublet Y to be a pair of integers such that .+ M(Zj) is the union of 2s+l TzS+l- 

F 

factors and a subgraph with H-quotient 2Ca+1. Let I, = (0, 1,2, ..., x-1). All we 

need to show is that It-l can be partitioned into s triplets and (t-3s)/2 doublets. We 

first deal with the case when q # 0. 

Case 1. q # 0. 

When i is odd, y = 2s-i+l is a positive even integer solution of m-2y = 0 (mod 

2s+l). Clearly m f. 0 (mod 2s+l) and m 2 2y. Assume first that y 2 4. Then by 

Lemma 3.2.6, (0, 1, s - (i-1)/2) is a triplet. We will locate s disjoint triplets in It-l 

such that on removing them, the remainder can be partitioned into (t-3s)/2 doublets. 

When y/2 = s - (i-1)/2 is even and greater than 2, then {0, 1, ..., s - (i-1)/2) = 

(0, 1, s - (i-1)/2) u X, where X = (2, 3)u{4, 5 ) u  ... u ( s  - (i+3)/2, s - (i+1)/2). By 

Lemma 3.2.9, X is partitioned into doublets. Now as s(s-(i-3)/2 ) < t = 

2s(2s+l)q+2si+s, this implies that we can partition Ibl into s triplets and (t-3s)/2 

doublets. 

When y/2 = s - (i-1)/2 is odd, then (0, 1, ..., s - (i-1)/2, s - (i-3)/2) = 

(0, 1, s - (i-1)/2) u X, where X = (2, 3)u(4,  5)u ... u ( s  - (i+5)/2, s - (i+3)/2)u 

(s - (i+1)/2, s - (i-3)/2) and by applying Lemma 3.2.9, this, together with 

s(s-(i-3)/2 +I)) < t, implies a similar conclusion to that above. 



When y = 2, we use Lemma 3.2.8 instead of Lemma 3.2.6 which means that we 

will group (0, 1, 2) instead of (0, 1, s-(i-1)/2), since (0, 1, 2) is a triplet in this case. 

If i is even, then y = 4s+2-i is a positive even integer solution of m-2y = 0 
(mod 2s+l) and m - 2y 2 0. We can use the same method as when i is odd to achieve 

the partition. 

Case 2. q = 0. 

The method used in Case 1 will not work here since t = s(2i+l) is now 

considerably smaller. But using Lemmas 3.2.6- 3.2.9 and a new strategy, we can still 

achieve the required partition. We know m = 4si+2s+l and consider separately the 

cases i odd and i even. 

Suppose that i is odd. When i = 1, then m = 6s+l, K6s+l has 3s Hamilton 
s- 1 

cycles, and (0, 1, ..., 3s-1) = u {j, j+s, j+2s). By Lemma 3.2.7, (j, s+j, 2s+j) is a J=O 

triplet. 

When 3 I i I 2s-5, it follows that m 2 2(2s +1-i) and 2s +1-i is a positive 

even integer solution of m-2y = 0 (mod 2s+l). By Lemma 3.2.6, (0, 1, s - (i-1)/2) is 

a triplet. 

Suppose first that s - (i-1)/2 even. Let S = (0, 2, 4, ..., s- (i+3)/2) and R = 

12s-i - {j , l+j, s - (i-1)/2 +j). (The set R is obtained by removing (s - (i-1)/2)/2 
jc 

disjoint triplets from 12s-i.) 

If IRI is even, then 12s-i can be partitioned into (s - (i-1)/2)/2 triplets and 

(s - (i+3)/2)/4 doublets. It is easy to see that i(2s-i) I s(2i+l)=t. Also 

i(s-(i-1)/2)-2s = ((2s-i)(i-2)-i)/2 2(5(i-2)-i)/2 = 2i-5 > 0, which implies that 



i(s- (i-1)/2)/2 > s. Therefore, as i(2s-i) S t, we can write 

It-1 = 12s-i U (Izs-i+ (2s-i)) V ... U (12s-i + (i-1)(2~-i)) U It-i(2s-i)+i(2~-i). We can 

locate (s-(i-1)/2)/2 triplets in each Ib_i+j(2s-i+l), 0 S j I i-1, and can always find s 

disjoint triplets as i(s-(i-1)/2)/2 > s. As IRI is even, the remainder of 1,-1 can be 

partitioned into doublets, ( to see this note we can partition the remainder into pairs of 

the form (x, x+l) or (x, x+2); and by Lemma 3.2.9 they are doublets. 

If IRI is odd, consider IzS-i+1 in which we can locate (s - (i- 1)/2)/2 disjoint 

triplets as before. Then R' = 12S-i+l - (j, l+j, s - (i-1)/2 +j) and lR'l is even. Thus 
je 

R' can be partitioned into doublets of the type described in Lemma 3.2.9. In this case 

we also require i(2s-i+l) I s(2i+l) = t which is obviously true. 

On the other hand, if s-(i-1)/2 is odd let S = (0, 2, ..., s - (i+5)/2) and R = 

1 ~ ~ ~ i - l  - u {j, l+j, s - (i-1)/2 +j). This shows that we can locate (s - (i+1)/2)/2 
je S 

triplets in 12s-i-l. If IRI is even, then 12s_i_l can be partitioned into (s - (i+1)/2)/2 

triplets and (s - (i+1)/2)/4 doublets, where the pairs are chosen according to Lemma 

3.2.9. Since i(2s-i-1) + s-(i-3)/2 I s(2i+l) = t, we can write as in the last case. 

Thus we can choose i(s - (i+1)/2)/2 +1 triplets in It-l. All that remains is to show that 

i(s-(i+1)/2)/2 +1 2 s. This follows as i(s-(i+l)/2) - 2(s-1) = ((2s-i)(i-2) - (3i-4))/2 

2 (5(i-2) - (3i-4))/2 = i - 3 2 0 . (Recall that 3 I i I 2s-5.) If IRI is odd, then 

proceed as before but use 12s-i instead of 12s-i-1. Again we need to show i(2s-i) + s- 
(i-3)/2 I s(2i+l) = t and i(s-(i+1)/2)/2 +12 s; both of which are easily verified. 

This leaves only two possibilities for odd i. 

When i = 2s-3, m = 8s2-10s+l. Then m - 8 = 0 (mod 2s+l) (y=4) and by 

Lemma 3.2.6, (j, l+j, 2+j) is a triplet. 



When i = 2s-1, m = 8s2-2s+l. Then m - 4 = 0 (mod 2s+l) and by Lemma 

3.2.8, (j, l+j, 2+j) is a triplet. 

Finally, we consider the case i even. 

Suppose 2 I i I 2s. Then y = 4s-i+2 is a positive even integer solution of m - 
2y E 0 (mod 2s+l), m 2 2y and m = 4si+2s+l. By Lemma 3.2.6, (0, 1,2s+l - i/2) is a 

triplet. 

Suppose first that 2s+l - i/2 is even. Let S = (0,2, ..., 2s -1 - i/2) and R = 
I4S-i+1 - U {j, l+j, 2s +1- i/2 +j ), noting that we have removed (2s+l - i/2)/2 disjoint 

j~ S 

triplets from bs-i+l. 

If IRI is even, then R can be partitioned into doublets. Clearly (4s+l-i)(i/2) I 

s(2i+l) = t and (i/2)(2s+l - i/2) - 2s = (2s - i/2)(i/2 -1) 2 0, when 2 I i I 2s, which 

implies (i/2)(2s+l-i/2)/2 1 s. Thus we can locate s disjoint triplets in and the 

remainder can be partitioned into doublets. If IRI is odd, we use R' = bs_i+2 - 
u (j, l+j, 2s +1- i/2 +j). Then to complete the proof we require (4k+2-i)i/2 I s(2i+l) 

j~ S 

= t and (i/2)(2s+l-i/2)/2 2 s, when 2 I i I 2s. Both inequalities can be verified easily. 

Suppose then that 2s+l- i/2 is odd (which implies i 2 4). Let S = (0, 2, ..., 
2s -2 - i/2) and R = bs-i - u (j, l+j, 2s+l- i/2 +j). If IRI is even, then as before we 

je S 

only need to show (4s-i)i/2 I s(2i+l)=t and (i/2)(s-i/4) 2 s, when 4 I i I 2s. As 

i(s - i/4) - 2s = (i/2 -1)(2s - i/2) - i/2 2 0, when i 24, the second follows. If IRI is odd, 

then we consider l&-i+l and require the inqualities (4s-i+l)i/2 I s(2i+l) = t and 

(i/2)(s-i/4) 2 s, where 2 I i I 2s; which clearly hold. 

This completes the proof. I 



There are some interesting trees which are bipartite spreadable and also have 

the property Tk I 2Kk, for example, paths and stars. 

3.2.11 Corollary. If k is odd, then Pk lR K,, if and only if n = 0 (mod k) and 

n = 1 (mod 2(k- 1)). 

Proof. It is obvious that Pk is bipartite spreadable and Pk I 2Kk. Hence the claim 

follows immediately from Theorem 3.2.10.1 

3.2.12 Corollary. If k is odd, then Kl,k-l IR Kn if and only if n 0 (mod k) and 

n = 1 (mod 2(k-1)). 

Proof. It is obvious that K1,k-l is bipartite spreadable and K1,k-l I 2Kk. Hence the 

claim follows immediately from Theorem 3.2.10.1 

We know that when k is even, there does not exist n such that Kl,k-l IR Kn. 

Hence we can completely solve the problem for the existence of star ffatoriz&ms of 

Kn. 

We now exhibit another interesting class of bipartite spreadable trees. Let Pr 

= [vl, v2, ..., vr] be a path on r vertices. The caterpillar cp(kl, k2, ..., kr) is the tree 

obtained from Pr by adding to Pr kl+k2+ ...+ kr additional vertices {vij : 1 I i I r and 

1 I j I kr), and the additional edges {vijvi : for 1 I i I r and 1 I j I kr). 

3.2.13 Lemma. The caterpillar cp(kl, k2, ..., kr) is bipartite spreadable. 

Proof. Let T = cp(kl, k2, ..., kr) and k = r+kl+k2+ ...+ kr. Assign k to vl, 1,2 ,... kl to 

V ~ J ,  ..., vl,k,, kl+l to v2, k-1, k-2, ... k-k2 to V ~ J ,  ..., v2,k2, k-k2-1 to v3 and kl+2, 

k1+3, ..., kl+k3+1 to ~ 3 . 1  ~3.2, ..., v3q  and so on. It is easy to check that this labelling 



indeed satisfies the requirement. (Actually, this is just the well known graceful 

labelling of caterpillars [12] .) I 

3.2.14 Corollary. If k = r+kl+k2+ ...+ k, is odd, then cp(k1, k2, ..., k,) I R  Kn if and only if 

n = 0 (mod k) and n n 1 (mod 2(k-1)). 

Proof. This claim follows immediately form Lemma 3.2.13 and Theorem 3.2.10 and 

the fact that all caterpillars are graceful which implies that cp(kl, k2, ..., k,) I 2Kk. I 

It is also easy to give a class of trees Tk which are bipartite spreadable (but not 

caterpillars) and which also have the property that Tk I 2Kk. The following example can 

be extended to an infinite class of trees: V(T8) = (1,2, ..., 8) and E(T8) = (35, 54, 47, 

71, 18,72,26). We can build a T9 from Tg by adding the vertex 9 and the edge 91, Tlo 

by adding to T9 the vertex 10 and the edge, (10)l and so on. Of course, this idea can be 

extended to construct an infinite family from any bipartite spreadable tree. 

A naturd questior, is to ask if we can zxand Thmern 3.2.10 to values of h other 

than 1. Recall that necessary conditions for the existence of a Tk-factorization of hKn 

are n 5 0 (mod k) and h(n-1) r 0 (mod 2(k-1)). The results of the last section 

answered the question for even h. A careful study of the proof of Theorem 3.2.10 yields 

the following result which we state without proof. 

3.2.15 Theorem. Assume h is odd and h >1. Let T2s+l be a bipartite spreadable tree 

on 2s+l vertices. Assume T2,+l I 2K2s+l. Then T2s+l IR hKn if and only if n = 0 (mod 

2s+l) and h(n-1) r 0 (mod 4s) with only finitely many possible exceptions. 

The "finitely many" of the theorem can be expressed more specifically as 

follows: For fixed k and h, the claim holds for all n = m(2s+l) where m 2 max{6s+l, 

1 + 4s2h). 



3.3 Resolvable Pk-decomposition of hK, 

In this section, we are interested in determining necessary and sufficient 

conditions for the existence of a Pk-factorization of hK,. We already have such 

conditions in the following cases. 

(1) k = 3 (Theorem 1.4), 

(2) k even or h even (Corollaries 3.1.3 and 3.13, 

(3) k odd and h = 1 (Corollary 3.2.1 1). 

The purpose of this section is to provide necessary and sufficient conditions in 

the case hk odd, h > 1. Combined with the results we mentioned above the question 

of the existence of Pk-factorizations of hK, will be completely resolved. We state the 

complete result as follows. 

3.3.1 Theorem. When k 2 3, hK, has a Pk-factorization if and only if 

n = 0 (mod k) and hk(n-1) = 0 (mod 2(k-1)). 

As in previous cases, we begin with a lemma which will be the "building 

block" of the proof of our main result. 

3.3.2 Lemma. (a) If k is odd and k 2 3, then hKk,k - W(h), where W(h) is the union 

of h subgraphs of Kk,k each consisting of (k-1)/2 vertex disjoint cycles of length 4 and 

an independent edge, has a Pk-factorization. 

(b) If k is odd, k 2 3 and h is even, then hKkk - C(h/2), where C(hI2) is the 

union of h/2 Hamilton cycles in Kkk, has a Pk-factorization. 



Proof. In (a) we need only consider the case h = 1, and in (b) the case h = 2. Let 

V(Kk,d = V(2Kkg) = X u Y where X = {XI, x2 ,..., xk) and Y = {yl, y2 ,..., yk), and let 

V(Kk) = { 1,2  ,..., k). 

(a) We know by Lemma 2.2.2(b) that Kk - N has a Pk-factorization (recall that N 

is an almost 1-factor). Let P be one of the k-paths in such a factorization. From P 

we define in Kk,k the Pk-factor {xiyj, XjYi : ij E E(P)). Repeating for each k-path in the 

Pk-factorization of Kk - N we obtain a Pk-factorization of Kk,k - W(l), where W(l) = 

{xiyj, XjYi : ij E E(N)) u ( ~ 1 ~ 1 ,  x2Y2,..., xk~k). 

(b) In this case a direct construction will be given. First observe that if k = 2s+l, 

then the 2k edges E = { ~ ~ y ~ + ~ - ~ ,  Xiyi,+l : 1 I i I k) form a Hamilton cycle in 2Kkk. We 

consider separately the cases k = 4t+l and k = 4t+3, and denote the k Pk-factors of 

2Kkk - C(1) by P(l), P(2), ..., P(k). In each case we give P(1) from which P(i+l), 1 I i 

I k-1, is obtained as follows: xi+jyi+, E E(P(l+i)) if and only if xjys E E(P(1)) 

3.3.3 Remark. Observe that in the construction given in Lemma 3.3.2(b) all 

"vertical" edges (that is, edges xiyi, 1 I i I k) are contained in paths of the 

factorization. It is not difficult to show that in Lemma 3.3.2(a), provided k 2 5, we can 

permute the vertices of Y so that here also all vertical edges are in paths of the 

factorization. When k = 5 and k = 7 permute the vertices so that W(l) has the form 

shown in Figure 3.3.1 with vertex bipartition (A, B), where A = {al, ..., ak) and B = 



(bl, ..., bk). Induction then takes care of all other values of k, as is shown in the cases 

k = 9 and k = 11. Observe that if we identify the vertices ai and bi, 1 I i I k, (as 

shown in Figure 3.3.2), then the resulting multigraph is the union of a Hamilton cycle 

and a Hamilton path. 

k =  11 

Figure 3.3.1 

k =  11 

Figure 3.3.2 

We now give the proof of Theorem 3.3.1. 

Proof of Theorem 3.3.1. 

As we have stated several times, the conditions n = 0 (mod k) and hk(n-1) = 
0 (mod 2(k-1)) are necessary for the existence of the factorization. To show they are 



also sufficient, all that remains is the case when hk is odd and h # 1, k # 3 (the other 

cases have been done as we mentioned in the begining of this section). 

The necessary conditions imply that n = kr and 2(k-l)lhk(kr-1). The 

divisibility condition implies that (k-l)lh(r-1) when hk is odd. Notice that hk odd 

implies r odd. 

r k 
Let V(hK,) = {(i, j) : 1 S i I r, 1 I j I k) = UHi= . u  Vj,  where 

i=l j=1 

Hi={(i, j):  15  j I k ) a n d V j = { ( i , j ) : l S  i 5 r). Notethat ~ K , = ~ ( K , @ K ~ ) .  

We shall later define a subgraph S of hKn . The edges of S will be given by 

E(S) = (Isigl;rWij(X) ) u (. 6 Ni) where Wij(h) is the union of h subgraphs of KH~,H~ 
1=1 

each isomorphic to the graph W(l) described in Remark 3.3.3, and Ni is a set of 

(k-1)/2 independent edges on the vertex set Hi. 

We first show that the graph hKn - S has a Pk-factorization. Since r is odd, K, 

has a near 1-factorization with near 1-factors MI, M2, ..., Mr, and to each of these 

there corresponds in hK, a subgraph which is the vertex-disjoint union of (r-1)/2 

copies of hKk,k and one copy of hKk. Then Lemma 3.3.2(a) yields h(k- 1)/2 Pk-factors 

in each hKk,k. By Lemma 2.2.2(b) we have (hk-1)/2 Pk-factors in hKk. Notice that in 

the copy of hKk only h(k-1)/2 of a possible (hk-1)/2 Pk-factors are used. So for each 

near 1-factor we obtain h(k-1)/2 Pk-factors. On each vkrtex set Vi, 1 I i I r, there 

remains a subgraph consisting of (h- 1)/2 paths of length k- 1 and a set of (k-1)/2 

independent edges. Together (that is, over all i) these paths constitute a further (h- 

1)/2 Pk-factors of hKn. When all these h(k-l)r/2 + (1-1)/2 = (hr(k-l)+(h-1))/2 Pk- 

factors are deleted from hKn what remains is the subgraph S. 

All that remains is to prove that there is a subgraph S which is compressible 

and Qv(S) has a Pk-factorization. 



We begin with a 2-factorization of Kr and then direct each of the cycles. If the 

edge ij E E(Kr) is directed (i j), let Wij(h) = hW(l), where W(l) is as described in 

Figures 3.3.1 and 3.3.2 and A = Hi and B = Hj. Let Ni = ((i,2j)(i,2j+l) : 1 I j I 

(k-1)/2). This has now defined our subgraph S. Then Qv(S) is the union of a path of 

length k-1 with edge multiplicity h(r-1)/2 (corresponding to the Hamilton paths of the 

Wij) and of a cycle of length k in which the edges 2j(2j+l), 1 I j I (k- 1)/2, have 

multiplicity h(r-1)/2 + 1 and the others have multiplicity h(r-1)/2 (these cycles 

correspond to the Hamilton cycles of the Wij and Ni). Since h(r-1) = s(k-1), for some 

integer s, then h(r-1)/2 = (k-l)(s-1)/2 +(k-1)/2 and h(r-1)/2 +1 = (k-l)(s-1)/2 + 

(k+1)/2. (Note that it is only at this point that the construction fails for k = 3.) We 

obtain h(r-1)/2 Pk-factors from the h(r-1)/2 k-paths in Qv(S) and by applying Lemma 

2.2.l(a) to the remainder of Qv(S) we obtain further (sk+1)/2 Pk-factors. (Note that s 

is odd and this can be shown as follows: Let hk(r(k-1) + r- 1) = 2(k-1)q. Then 

s(k-l)k = hk(r-1) = (k- 1)(2q - hkr) which is equivalent to sk = 2q - hkr implying 

that s is odd.) 

As a final check we observe that there are h(r-1)/2 + (sk+1)/2 Pk-factors in S, 

and adding these to the previously found Pk-factors we have a total of 

hk(rk- 1)/(2k-2) Pk-factors as required. I 



Chapter 4. Almost Resolvable Pk-decompositions of hKn 

In this chapter we give necessary and sufficient conditions for the existence of 

almost resolvable Pk-decompositions of hK,. A special case of this main theorem is 

dealt with in the following lemma. 

4.1 Lemma. Let k be even and k 2 4. The graph hKZk+l has an almost P,-factorization 

if and only if h(2k+l) = 0 (mod k- 1). 

Proof. Counting edges results in the necessary condition h(2k+l) = 0 (mod k-I). We 

now construct factorizations when this condition is met. Let V(hK2k+l) = (1, 2, ..., 
2k+l). Suppose first that 1 -= 0 (mod k-1). We only need to show that (k-1)K2k+l has 

an almost Pk-factorization. Let G(1,i) = G(2,i) = ... = G(k/2 -1,i) = [l+i, k+i, 2+i, k-l+i, 

..., k/2 +24, k/2 + i, 3k/2 +1 +i] u [2k+l+i, k+2+i, 2k+i, k+3+i, ..., 3k/2+i, 3k/2 +2+i, k/2 

+l+i] and G(k/2, i) = [l+i, k+l+i, 2+i, k+i, ..., k/2 +i, k/2+2+i] u [k+2+i, k+3+i, ..., 
2,k+!+i-i3, 0 I i I 2k+ Each G(j, i) is an almost Pk-factor and it is not difficult to verify that 

On the other hand, if h f 0 (mod k- 1), then gcd(2k+l, k- l)=3. Let 2k+l = 3p and 

k-1 = 3q, where gcd(p, q) = 1. Hence h = 0 (mod q) and we only need to show that 

qK2k+l has an almost Pk-factorization. 

When q = 1, let G(0, 3j) = [2+3j, 9+3j, 3+3j, 8+3j] u [1+3j, 6+3j, 4+3j, 7+3j] and 

G(l, 3j) = [4+3j, 2+3j, 5+3j, 1+3j] u [ 6+3j, 7+3j, 8+3j, 9+3j], where 0 1 j 1 2 .  

When q >1 (and noting that q must be odd), for 0 S s I 2,0  S t I 2k, let P(s, t) = 

[2+s+t, 2k+l+s+t, 3+s+t, 2k+s+t, ..., k/2 +s+t, 3k/2 +3+s+t, k/2 +l+s+t, 3k/2 +2+s+t] u 

[l+s+t, k+2+s+t, 3k+l+s+t, k+3+s+t, 3k+s+t, ..., 3k/2 +s+t, 5k/2 +3+s+t, 3k/2 +l+s+t]. 



First let us look at an example. Assume q = 3. Then k = 10 and p = 7. It is easy 

to see that if we can partition E(3K2,) into 35 almost Plo-factors, then we are done. We 

construct them as follows. Let G(0, 3j) = P(0, 39, G(l, 3j) = P(l, 33, G(2, 3j) = G(3, 3j) 

= P(2, 3j) and G(4, 3j) = [3+3j, 1+3j, 4+3j, 3j, ..., 7+3j, 18+3j] u [8+3j, 9+3j, ..., 16+3j, 
6 2 

17+3j], where 0 I j I 6. It is easy to see that y y P(i, 3j) = 2K2k+1 - 2C, where C = 
J=O 1=0 

6 4 
(1,2, ..., 21). Therefore, u y G(i, 3j) = 3Kzl. 

J=O 1=0 

In general, we will use the same idea. Let G(i, 3j) = P(0, 3j), 0 I i I (q-3)/2, 

G(i, 3j) = P(1, 3j), (q-1)/2 I i I q-2, G(i, 3j) = P(2, 3j), q-1 I i I (3q-3)/2, and 

G((3q-1)/2, 3j) = [3+3j, 2k+2+3j, 4+3j, 2k+1+3j, ..., k/2 +2+3j, 3W2 +3+3j] u [W2 +3+3j, 

k/2+4+3j, ..., 3k/2 +1+3j, 3W2 +2+3j], where 0 I j I p-1. (Notice that (3q+l)/2 = k/2.) 

p-1 W2 -1 p-1 2 
Again it can be shown that u G(i, 3j) = q&+l. Notice that j# yo P(i, 3j) jY i=o 

= 2K2k+l - 2C, where C = (1,2, ..., 2k+l). The rest of the proof follows easily from this. 

I 

We next specify certain subgraphs of hK, which will play important roles in 

the proof of the main theorem. 

m 
4.2 Definition. Let m be even, let V= (1, 2, ..., k), and let V(Kmk+1) = (-1 u (.uVi), 

1= 1 

where Vi = Vx{i). Let C be the (m+l)-cycle, C = (1, 2, ..., m+l) and P be the m-path, 

P = [1, 2, ..., m]. 

(a) Let C2 = (GI, G2 ,..., Gm+i) @ C, where V(Gi) = Vi, 1 I i I m, V(Gm+I) = (-1, 
- 

Gi G Kk, for 2 I i I m- 1, Gm G G1 G Kk and Gm+i z K1. (Note that since Km+1 has a 

Cm+l-factorization, it is easy to see that Kmk+1 can be decomposed into m/2 

isomorphic copies of a. We now define certain subgraphs of C2 - {-) = (GI, G2 ,. . . , 

G,) @ P. 



(b) When k is odd, we let A i2 - (-1 be the subgraph induced by the edge-set: 

Figure 4.1 k = 5, m = 6 

(c) When k is even and m 24, let B G ;;Q - (-1 be the subgraph induced by the 

edge-set: 

k12 
.u {{(2i-1, j)(2i, j+l), (2i, j)(2i-1, j+l) : j = 1, 3, ..., m-1 } 
1= 1 

u ((2i, j)(2i+l, j+ 1), (2i+l, j)(2i, j+l) : j = 2,4, ..., m-2 ) ) (see Figure. 4.2) 

Figure 4.2 k = 6, m = 6 



Next we define a family of graphs pQ), 1 5 j S m, by p(j) = ( B u C(1, j) u 

C(m, j) : C(l, j) and C(m, j) are k-cycles in V1 and V,, respectively, where C(l, j) 

contains the edge (j,l)(j+l,l), and C(m, j) contains the edge (j,m)(i+l,m)). 

(d) If m 2 4, let X* i2 - ( 0 0 )  be the subgraph induced by the edge set: 

k m-1 
u{ { (i, j)(i, j+l)) u {(i,l)(i+l, I), (i, m)(i+l, m)) ) (see Figure 4.3) 

i=l j=1 

Figure 4.3 k = 5, m = 6 

Before we begin to study these subgraphs we need mother definition. 

Definition 4.3. Let ISs,, have an ordered bipartition (U, V), where U = {(l,u), (2,u), ..., 
(s,u)) and V = {(l,v), (2,v), ..., (s,v)). The distance of the edge e = (i,u)(j,v) is 

defined to be j - i (mod s). Observe that the set of edges with distance i form a 1- 

factor and we say that this 1-factor has distance i. Let X = [xl, x2, ..., xp] be a p-path 

of K,,. The distance sequence ds(X) = <dl, d2, is the sequence of distances 

of the corresponding edges; that is, di is the distance of the edge xixi+l. Note that X 

is uniquely determined by its first vertex and its distance sequence. So we can write 

X = [xl : <dl, d2, ..., dp-1>]. 

Lemma 4.4. For even k, the graph Q - X* is almost Pk-factorable. 



Proof. We will construct an almost Pk-factorization of SZ - X*. Let X be the subgraph 

obtained from X* by deleting the two k-cycles on V1 and Vm. 

Case 1. k = 0 (mod 4). 

First we give the construction for k = 4 which illustrates the technique used in 

the general case, even though the general construction does not cover the case k = 4. 

For 0 I i I 3, let P(i, 1) = [(2+i,l), (l+i, 2), (4+i,l), (2+i, 2)]; 

let P(i, j) = [(3+i, j), (2+i, j+l), (4+i, j), (l+i, j+l)], where 2 I j I m-2; and 

let P(i, m-1) = [(3+i, m-1), (l+i, m), (4+i, m-1), (3+i, m)]. 

Notice that ds(P(i, j)) = c3, 1, 2>. The vertices of SZ which are not covered by 
m-1 
.u P(i, j) are (l+i, I), (3+i,l), (2+i, m) and (4+i, m) and -. 
~ = 1  

Let C(i) = [(3+i, I), (l+i, I), -, (2+i, m)], where 0 I i I 1, and Do) = [(l+j,l), 

=, (2+j, m), (4+j, m)j, 2 L j 5 3. it is not ciifficuit to see that C(O)uC(l)uD(2juD(3) 

will use all edges of the form =(i, 1) and =(i, m), and all edges of G1 and Gm (recall 

the definition of Q) except the two 4-cycles ((1, I), (2, I), (3, I), (4, 1)) and ((1, m), 

(2, m), (3, m), (4, m)). Therefore we obtain four almost P4-factors of SZ - X*: C(i) u 
m- 1 .m-1 

( .U P(i, j)), i = 0, 1, and D(i) u (,u P(i, j))), i = 2, 3. These form an almost P.4- 
j=l j=1 

factorization of Q - X*. 

We now move to the more general case, k > 4. We construct the following k- 

paths and note their distance sequences. We remark that in the rest of the proof, we 

always assume that the edge (x, i)(y, i+l) has distance y - x (mod k). 

For 0 I i I k-1: 

let P(i,l) = [(3k/4 +i, I), (3W4 +l+i, 2), ..., (k/2 +2+i, I), (k-l+i, 2), (k+i, I), 



(k/2 +i, 2), (k-l+i, I), ..., (3k/4 +l+i, I), (3W4 -l+i, 2), (k/4 11, (3k/4+i, 211, 

and hence ds(P(i,l)) = c1,2, ..., k/2 -3, k-1, k/2, k/2 +1, ..., k-2, k/2 -2, k/2 -I>; 

let P(i, j) = [(k, j), (k-1, j+l), (1, j), ..., (k/2 -1, j), (k/2, j+l)], and hence 

ds(P(i, j) )= ck-1, k-2, ..., 2, I>, 2 I j I m-2; and 

let P(i, m-1) = [(k/4 +i, m-1), (3k/4 +l+i, m), (k/4 -l+i, m-1), (k/4 +l+i, m), 

..., (k/2 - l+i, m), (k+i, m- 1), (k/2 +i, m), (k/2 - l+i, m- 1), (2+i, m), ..., 
(k/4 +l+i, m-1), (k/4 +i, m)] and hence ds(P(i, m-1)) = ck/2 +1, k/2 +2, 2, 3, ..., k/2, 

m-1 
The vertices of Q which are not covered by .u P(i, j) are {-) u {(l+i,l), 

J=1 

(2+i, I), ..., (k/4 +i, I), (k/4 +2+i, I), (k/4 +3+i, I), ..., (k/2 +l+i, 1)) u {(l+i, m), 

(k/2 +l+i, m), (k/2 +2+i, m), ..., (3k/4 +i, m), (3k/4 +2+i, m), (3k/4 +3+i, m), ..., 
(k+i, m)). 

Let C(i) = [(k/2 +l+i, I), (l+i, I), (k/2 +i, I), (2+i, I), ..., (k/4 +2+i, I), 

(k/4 +i, I), -, (3k/4 +i, m), (3k/4 +2+i, m), (3k/4 - l+i, m) ,..., (k+i, m), (k/2 +l+i, m)], 

0 I i I k/2 - 1, and D(i) = [(l+i, I), (k/2 +i, I), (2+i, I), ..., (k/4 +2+i, I), (k/4 +i, I), -, 

(3k/4 +i, m), (3k/4 +2+i, m), (3k/4 -1 +i, m) ,..., (k+i, m), (k/2 +l+i, m), (l+i, m)], 

k/2 I i  I k-1. 

k/2- 1 k-1 
It is not difficult to see that ( . Y C(i)) u ( . u D(j)) will use all edges of the 

I= J = W ~  

forms -(i, 1) and -(i, m), and all edges of G1 and Gm except for the two k-cycles 

((1,1), (2,1), ..., (k,l)) and ((1, m), (2, m), ..., (k, m)). Therefore we obtain k almost 
m-1 m-1 

Pk-factors of Q - X*: C(i) u ( .u P(i, j)), i = 0, 1, ..., k/2 -1, and D(i) u (u P(i, j)), 
J=1 J=1 

i = k/2, k/2 +1, ..., k-1. These form an almost Pk-factorization of - X*. 

Case 2. k a 2 (mod 4). 



Again, for8 S i S  k-1: 

let P(i, 1) = [(k/2 +2+i, I), (k+i, 2), ..., ((3k+2)/4 +i, I), ((3k+6)/4 +i, 2), 

((k+6)/4 +i, I), ((3k+2)/4 +i, 2), ((3k+6)/4, I), ((3k-2)/4, 2), ((3k+10)/4, I), ..., 
(k, I), (k/2 +1, 2)], and ds(P(i, 1)) = <(k/2)-2, (k/2)-3, ..., 1, W2, (k/2)-1, k-1, 

k-2, ..., (k/2)+1>; 

let P(i, j) = [(l+i, j), (k+i, j+l), (2+i, j), ..., (ls/2+i, j), (k/2 +I+& j+l)l, and 

ds(P(i, j) = ck-1, k-2, ..., I>, 2 S j  2 m-1; and 

let P(i, m- 1) = [(l+i, m- 1), (k/2 +i, m), ..., ((k+6)/4 +i, m), ((k+2)/4 +i, m-11, 

((3k+6)/4 +i, m), ((k+6)/4 +i, m-1), ((k+2)/4 +i, m), ..., (W2 +i, m-l), (2+i, m)], and 

m-1 
As before, the vertices of Q which are not covered by .u P(i, j) are (-1 u 

J=l 

{(l+i,l), (2+i, I), ..., ((k+2)/4 +i, I), ((k+lO)/4 +i, I), ..., (W2 +l+i,l)} u 

{ (k/% +i+i, mj, ((Id2 +2+i, mj, ..., ((3k+2)/4 +i, m), ((?k+iO)I4 +i, m) ,..., 

(k+l+i, m)). We now use them to construct a k-path and an isolated vertex. 

Let C(i) = [(l+i, I), (k/2 +l+i, I), (2+i, I), (k/2 +i, I), ..., ((k+10)/4 +i, I), 

((k+2)/4 +i, I), -, ((3k+2)/4 +i, m), ((3k+10)/4 +i, m), ..., (k+i, m), (k/2 +2+i, m), 

(l+i, m)], 0 5 i S k/2 -1, and let D(i) = [(k/2 +l+i, I), (2+i, I), (k/2 +i, I), ..., 
((k+10)/4 +i, I), ((k+2)/4 +i, I), -, ((3k+2)/4 +i, m), ((3k+10)/4 +i, m), ..., (k+i, m), 

(k/2 +2+i, m), (l+i, m), (k/2 + l+i, m)], k/2 I i I k- 1. 

kl2- 1 k- 1 
It is not difficult to see that ( . C(i)) u (. u D(j)) will use all edges of the 

1= J=m 

forms -(i, 1) and -(i, m) and all edges of G1 and Gm except two k-cycles ((1,1), 

(2,1), ..., (k,l)) and ((1, m), (2, m), ..., (k, m)). Therefore we obtain k almost Pk- 
m- 1 

factors of Q - X*: C(i) u ( .u  P(i, j)), i = 0, 1, ..., k/2 -1, and D(i) u (clP(i,  j)), 
J=1 J=1 



i = u2 ,  k/2 +1, ..., k -1. These form an almost Pk-factorization of R - X*. Thus we 

complete the proof. I 

4.5 Lemma. Let R, A and p(j) be defined as in Definition 4.2. 

(a) If k is odd, then the graph 2R - A has an almost Pk-factorization. 

(b) If k is even, then the graph Q - b(j) has an almost Pk-factorization, for some 

b(j) E p(j). (Recall that p(j) was defined in Definition 4.2 (c).) 

Proof (a) First we partition the edges of A into A1 u A2, where Al = A2 as follows: 

Let A1 have edge-set 

{(i, j)(i+l, j+l): 1 I j I m-1, 1 5 i 5 k) u {(i, m)(i+l, m), (i, m)(i+(k-1112, m): 

i = l , 2  ,..., k). 

and let A2 have edge-set 

{(i+l, j)(i, j+l): 1 S j S m-1, 1 I i S k ) u ((i, l)(i+l, I), (i, l)(i+(k-1)/2, 1): 

i =  1,2, ..., k}. 

Since 2Q - A can be partitioned into(R - Al)u(R - A2), and Q - A1 = 
R - A2, once we show that - Al is almost Pk-factorable we will be done. We now 

describe an almost Pk-factorization of Q - A1. 

Let P(i, j) = [((k+1)/2 + j + i, j+l), ((k+1)/2 + j + i, j), ((k-1)/2 +j+i, j +I), 

((k+3)/2 + j + i, j), ..., (k -1 + j + i, j), (1 + j + i, j+l)], where 0 5 i I k-1 and 
k- 1 

1 S j S m-1. Notice that Y P(i, j) uses all edges of Kvsvj+, except for the 1-factor 
la 

k 
u {(x, j)(x+l, j+l)} (since ds(P(i, j)) = cO, k-1, k-2, ..., 2>). It is not difiicult to see 

x= 1 
m-1 

that y P(i, j) is a set of m-1 vertex-disjoint k-paths. There are k+l vertices of V(R) 
J=1 

m-1 
which are not covered by . u P(i, j); they are {=, (1 +i, I), (2+i, I), ..., ((k+1)/2 +i, 

J=1 

1)) u {(m + (k+1)/2 +i, m), (m + (k+3)/2 +i, m), ..., (m-l+i, m)). On these k+l 



vertices we must define a k-path and an isolated vertex. This contruction is divided 

into two parts (examples of each are given in Figure 4.4). 

Figure 4.4 

Case 1: k 3 3 (mod 4). 

Let X(ij = [(i+i, i j ,  ((k+i)i2+i, I), @+i, I), ((k-i)j2+i, I), (3+i, I), ((k- 

3)/2+i, I), ..., ((k+9)/4 + i, I), ((k+1)14 + i, I), ((k+5)/4 + i, I), =, ((k+1)/2 + y + i, m), 

(2+y+i, m), ((k-1)/2 + y + i, m), (3+y+i, m), ..., ((k+1)/4 + y + i, m)], where y = m + 

(k-3)/2 and i = 0, 1, 2, ..., k- 1. 

Case 2: k r 1 (mod 4). 

Let X(i) = [(l+i, I), ((k+1)/2+i, I), (2+i, I), ((k-1)/2+i, I), ..., ((k+1)/4 + i, I), 

((k+7)/4 + i,l), ((k+3)/4 + i, I), 00, ((k+1)/2 + y + i, m), (2+y+i, m), ((k-1)/2 + y + i, 

m), ..., ((k+7)/4 + y + i, m)], where y = m + (k-3)/2 and i = 0, 1, 2, ..., k-1. 

k- 1 
In both cases, .Y X(i) uses all edges of Q of the form m(i.1) and -(j, m) and 

1- 

all edges in V1 and V, except for the two k-cycles: ((1, m), (2, m), ..., (k, m)) and ((1, 

m), ((k+1)/2, m), (k, m), ((k-1112, m), ..., ((k+3)/2, m)). Thus X(i) u ( c1 J=I P(i, j)) is 



k- 1 m-1 
an almost Pk-factor of Q - A1 and hence ( X(i) u ( y P(i, j)) ) is an almost Pk- i= j=l 

factorization of Q - A1. 

(b) First we show that X* is isomorphic to one of the elements in p(1) (see 

Definition 4.2(c)). Let B* = B u {(1,1)(2,1), (l,m)(2,m)) (recall Definition 4.2). We 

know that B is the union of k disjoint m-paths and it is not difficult to see that the 

vertices of each Vi can be permuted so that B* is isomorphic to one of X1 = 

Xu((1,1)(2,1), (l,m)(2,m)l, X2 = X u((1,1)(2,1), (2,m)(3,m)) or X3 = 
k 

Xu((1,1)(2,1), (3,m)(4,m)), where X = u ([(i,l), (i,2), ..., (i,m)]). We can obtain X* 
i=l 

from XI, X2 and X3, by adding edges. This implies that X* is isomorphic to one of the 

graphs in p(1). 

It is not difficult to see that we can use the same method to show that X* is 

isomorphic to some element of p(j), for any j, 1 I j I k. Thus for each j, 1 I j I k, there 

is an element b(j) of p(j) such that bu) 2 X* and so by Lemma 4.4, Q - b(j) has an 

almost Pk-factorization. I 

We now state and prove the main theorem. 

4.6. Theorem. hKn has an almost resolvable Pk-decOnIpO~itiOn if and only if 

n i 1 (mod k) and hkn12 r O(mod k-1). 

Proof. The necessity of the conditions can be easily obtained by applying counting 

argument on vertices and edges. We now show their sufficiency. We first give a proof 

in the case when k = 3 and then prove the result for general k. In the general case we 

divide the proof into two parts according to the parity of m, where n = km+l. 

Throughout the proof, we will use the following technique: find a subgraph G of hKn 

which contains an isolated vertex v, such that hK, - G has an almost Pk-factorization 

and G - {v) is compressible and has a Pk-factorization.. 



Case 1. k = 3. 

Here the conditions given in the statement of the theorem reduce to n = 1 (mod 

3) and hn = 0 (mod 4). The following three.cases exhaust all possibilities for n and h. 

Case 1.1. n = 4 (mod 12) and all values of h. 

In this case it suffices to show that Kn has an almost resolvable P3- 

decomposition. Let n = 4(3x+1) and V(Kn) = ((i, j) : 1 I i 1 4 ,  1 I j I 3x+1). Let Vj = 

( ( i , j ) : l I i I 4 ) , j = 1 , 2  ,..., 3x+landHj=((i,j):lIjI3x+l),i=l,2,3,4. Then 

Kn = K4 8 K3x+l. Let G = & 0 K3x+l E K n  Clearly G is compressible with a V- 

quotient 4K3x+1. We know that 2K3x+1 admits an almost resolvable C3-decomposition 

[5], and hence 4K3x+1 can be decomposed into 3x+1 isomorphic copies of 2H, where H 

is the union of an isolated vertex and x vertex-disjoint K3k. Note that the edge ij in H 

corresponds to a 1-factor in Kvi,vj and the isolated vertex corresponds to a Kq. 

Furthermore, the edge sets of both 2K3 and I(d are the union of tbme 3-paths. 

Therefore the subgraph of Kn corresponding to 2H has an almost resolvable P3- 

decomposition and which implies that Kn has an almost resolvable P3-decomposition. 

Case 1.2. n = 10 (mod 12) and h = 2 (mod 4). 

Here it suffices to show that 2Kn has an almost resolvable P3-decomposition. 

Let n =3(4x+3)+1, V(2Kn) = {-) u ((i, j) : 1 I i I 3  , 1 I j I 4x+3}, Vj = ((i, j) : 1 I i 

I 3  ), where 1 I j I 4x+3 and Hi= ((i, j) : 1 I j I4x+3),  where 1 I  i 53 .  Clearly 2Kn = 

(2K3, ..., 2K3, K1) @2Gx+4 (see its definition in the appendix). We know that Kqx+4 

has a 1-factorization and in 2Kn each one factor corresponds to 2x+1 vertex-disjoint 

2K3,3 and one 2K4 with vertex set (00, (l,i), (24, (3,i)). It is not difficult to see that 

2K4 is the union of four 3-paths and the subgraph Ti, where E(Ti) = {(l,i)(3,i), 

(l,i)(3,i), (2,i)(3,i), (l,i)(2,i)), and 2K3.3 is the union of four P3-factors and one 2K2. 



On deleting four almost P3-factors in the subgraph corresponding to each 1-factor in 

I&+4, what remains is a subgraph, R* of 2Kn in which - is an isolated vertex. In R* 

the subgraph Rij induced by (Vi,Vj) is 2K2, and the subgraph induced by Vi is Ti. It is 

easy to see that R* is not uniquely determined because of the freedom in choosing 

each of the Rij. We will show that the Rij can be chosen so that the resulting R* has 

an almost resolvable P3-decomposition. 

Let R = R*- {m) and observe that we only need show that R has a P3- 

factorization. Let V(&+3) = (1, 2, ..., 4x+3). We know that &+3 has a Hamilton 

cycle decomposition with cycles hl, ..., h2,+1. Assign an orientation to each hi to 

create a directed cycle. If ij is an arc from i to j of hk, 1 I k 5 x, let E(Rij) = {(l,i)(2,j), 

(l,i)(2,j)), and if x+l I k I 2x+1, let E(Rij) = {(2,i)(3,j), (2,i)(3,j)). Under this 

arrangement, QH(R) is a 3-cycle in which one edge (13) has multiplicity 2, the second 

(12) has multiplicity 2x+1 and the third (13) has multiplicity 2x+3. Since QH(R) is P3- 

factorable, we can apply Lemma 2.1.4 to conclude that R is Ps-factorable. 

Case 1.3. n = 1 (mod 3) and h = 0 (mod 4). 

In this case it is enough to show that 4Kn has an almost resolvable Pg- 

decomposition. Let n = 3x+1. Since 2Kn admits an almost resolvable Cg- 

decomposition, 4Kn can be decomposed into n isomorphic copies of 2H, where H is the 

union of x vertex-disjoint 2K3's and an isolated vertex. As 2K3 is the union of three 

3-paths, 2H has an almost resolvable P3-decomposition and so too does 4Kn. 



Case 2. k 2 4. 

Since n = 1 (mod k) we write n = rnk+l. Let V(hK& = ( 0 0 )  u {(i, j) : 1 I i 5 k, 

1 S j S m ) , V j =  ((i,j): l S i S k } , f o r l S j S m , a n d H i = { ( i , j ) :  l S j S m } , f o r l S i S  

k. Observe that hK, = {hKk, ..., hKk, K1 ) @hKm+l. 

Case 2.1. m is odd. 

Let R be a subgraph of hKn with vertex set V(hKJ - (-1. For even k, let the 
m 

edge-set E(R) be ( Fij(h)) u ( .U Ni(h)), where Fij(h) is the union of L 1- 
l l ~ < j S m  1=1 

factors in the subgraph hKvi,vj and Ni(h) is the union of h k-cycles in the subgraph 
m 

hKv,. When k is odd, let E(R) = ( V. Eij(h)) u (.u Mi(X)), where Eij(h) is the 
~ L < J S ~  1= 1 

union of h edges in the subgraph hKVi,Vj and Mi@) is the union of h edge-disjoint 

(k+3)/2-paths in the subgraph hKvi. 

We will show that the graph hK,- R has an almost resolvable Pk- 

decomposition. Since m is odd, Km+1 admits a 1-factorization with factors fl, f2, ..., f,. 
To each factor fi there corresponds, in h&, a subgraph Hi which is the vertex-disjoint 

union of (m-1)/2 copies of hKk,k and one copy of hKk+1. By Lemma 2.2.3, when k is 

even hKkqk - F(h), where F(h) is the union of h 1-factors of hKkVk, has a Pk- 

factorization, and by Lemma 2.2.5 hKk+1 - N(h), where N(h) is the union of h k- 

cycles of hKk+l, has a Pk-decomposition. By Lemma 2.2.4, when k is odd hKkVk - 

E(h), where E(h) is the union of h edges of hKk,k, has a Pk-factorization, and hKk+1- 

M(h), where M(h) is the union of h (k+3)/2-paths of hKk+1, has a Pk-decomposition. 

Therefore Hi contains hk/2 edge-disjoint almost Pk-factors of hKn when k is even, and 

h(k+1)/2 when k is odd. Remove these almost Pk-factors from each Hi, and denote 

the remaining subgraph of hKn by R*. It is not difficult to see (from Lemmas 2.2.4 and 



2.2.5) that M(h) and N(h) can be chosen so that in R*, - is an isolated vertex and R 

= R*- ( 0 0 ) .  Thus hK, - R has an almost resolvable Pk-decomposition. 

All that remains is to prove that there is a graph R as described above which 

has a Pk-factorization. We consider two cases depending on the parity of k. 

Case 2.1.1. k is even. 

Since m is odd, Km has a Hamilton cycle decomposition. Assign an orientation to 

each cycle to create (m-1)/2 directed cycles. If ij is an arc from i to j in one of the 

resulting directed cycles, let Fij = ((l,i)(2,j), (2,i)(3,j), ..., (k,i)(l,j)) be a 1-factor of 

hKvi,vjand Fij(h) = hFij. Let Ni(h) be the k-cycle ((l,i), (2,i). ..., (k,i)) with multiplicity 

h. The Hamilton cycle decomposition of Km guarantees both that in R the subgraph 

induced by the bipartition (Hi, Hi+l) is (m+l)h/2-regular, and R has H-quotient 

(h(m+l)/2)Ck. Since nhk/2 r 0 (mod k-1) (one of the necessary conditions) and n W 2  = 

(km+l)hk/2 = h(mk+k-(k-l))k/2 = hk2(m+l)/2 - hk(k-1)/2, then hk(m+l)/2 = 0 (mod 

k- 1). Lemma 2.2.1 (a) gives a Pk-factorization of QI(R) and thus by Lemma 2.1.4, R has 

a Pk-factorization. 

Case 2.1.2. k is odd. 

Write h(k+1)/2 = kxl+yl, 0 I; yl < k-1. Let Mi(h) be the union of the k-cycle 

((1, i), (2, i), ..., (k, i)) with multiplicity xl and the (yl+l)-path [(I, i), (2, i), ..., 
(yl+l, i)]. (By Lemma 2.2.4, this is possible by properly arranging the h (k+3)/2- 

paths.) As m is odd, hKm has a Hamilton cycle decomposition with cycles hl, h2, ..., 
hh(m-1)/2. Assign an orientation to each of these cycles to create h(m-1)/2 directed 

cycles. Assume h(m- 1)/2 = kx2+y2, 0 I yz I; k-1. Let ij be an arc from i to j in hp. If 1 

5 p 5 kx2, let { (p, i)(p+l, j ) ) ~  Eij(h) and if p > kxz, let ((p-lac2+yl, i)(p-kx2+yl+l, j)) 

E Eij(h). Let yl+y2 = kx3+y3, 0 I x3 I 1 ,0  I; y3 5 k-1. In R the subgraph on vertex-set 



Hi u Hi+l is bipartite and (xl+x2+x3+1)-regular if 1 5 i < y3+l, and is bipartite and 

(xl+x2+~3)-regula.r if y3+l I i I k. It is not difficult to see that R is compressible and 

QH@) is the union of a k-cycle with multiplicity xl+x2+x3 and a (y3+1)-path. Since 

(xi+~2+~3)k+y3 = (h(k+1)/2 - yl)+(h(m-1112 - yz)+(yl + y2 - y3) +y3 = h(k+1)/2 + 

h(m- 1)/2 = h(k+m)/2, and 11x12 = (krn+l)h/2 = ((k- l)(m- l)+k+m)h/2 = 0 (mod k- 1) 

implies h(k+m)/2 = 0 (mod k-1), then (x1+x2+x3)k+y3 n 0 (mod k-1). By Lemma 

2.2.l(a) QH(R) has a Pk-factorization and hence R has a Pk-factorization. 

Case 2.2. m is even. 

Case 2.2.1. k is odd. As in the case when m is odd, we begin by defining a subgraph S of 

hKn - (-1. Let E(S) = (, u. Wij(lJ2)) u (.C Ni(W2) u Mi(h/2)), where Wij(h/2)= 
I l<~<rn  I= 1 

(X/2)Wij, and Wij = ((p,i)(p+l,j), (p+l,i)(p,j): p=l, ..., k), Ni(h/2) is the k-cycle ((l,i), 

(24,  ..., (k,i)) with multiplicity V2, and Mi(h/2) is the k-cycle ((1, i), ((k+1)/2, i), (k, i), 

((k- 1)/2, i), (k- 1, i), ..., ((k+3)/2, i)) with multiplicity W2. (The necessary conditions 

imply that h is even.j 

We claim that the graph hKn-S has an almost resolvable Pk-decOmpOsitiOn. 

Recalling the definitions of Q and A (Definition 4.2), we know that hKA+l can be 

decomposed into m/2 copies of hQ (using Hamilton cycle decompositions of Km+1) and 

that S is the union of m/2 copies of (W2)A. Thus hKd+1 - S is the union of &4 

copies of 2Q - A. By Lemma 4.5(a), 2Q - A is almost Pk-factorable and therefore 

hK, - S has an almost resolvable Pk-decomposition. 

As in the previous cases, all that remains is to show that S has a Pk- 

factorization. By the definition of S, it is compressible and @(S) is the union of the k- 

cycle (1, 2, ..., k) with multiplicity (m-l)X/2 + W2 and the k-cycle (1, (k+1)/2, k, (k- 

1)/2, k-1, (k-3)/2, k-2, ..., (k+3)/2) with multiplicity h/2. Since k is odd, we have n u 2  



0 (mod k-1). Also, 11x12 = h(mk+l)/2 = h((m+l)k - (k-1))/2 = h(m+l)k/2 - h(k- 

1)/2 and hence h(m+1)/2 = 0 (mod k-1) (remember, h is even). Applying Lemma 

2.2.l(b), &(S) has a Pk-factorization and hence so too does S. 

Case 2.2.2. k is even. The case m = 2 was dealt with in Lemma 4.1. We may now 

assume that m 2 4. We first construct a compressible subgraph S of K&+l with V(S) 

= V(K,) - (- ) such that Kmk+1- S is almost Pk-factorable and &(S) is the union of 

the single edge j(j+l), where j E (1,2, ..., k), and the k-cycle, (1, 2, ..., k), in which 

edges alternately have multiplicities m/2 and m/2 -1. 

We know that Kmk+1 can be decomposed into m/2 isomorphic copies of Q, say 

Q1, 02, ..., Q,. For each Qi, define ~ ( j ) ~  in the same way that p(j) was defined for 

Q in Definition 4.2. Similarly we define Bi, C(il,j)i and C(im,j)i where {il, im) = {x, y) 

if - is adjacent to V, and Vy in Qi. By Lemma 4.5(b), Qi - b(j)i is almost Pk- 
Inn 

factorable, where b(j)i E p(i)i and thus Kmk+1- b(i)i is almost Pk-factorable. Let P 
1= 1 

Inn 
= u (C(ir,j)i - (j,ii)(j+l,ii), - Q,im)(j+l,im)). 0h ioudy  E) V (-1 is i?,n, ahest, 

i= 1 
mn 

Pk-factor of Kmk+l. Let S = u b(i)i - P. Then Kmk+i - S has an almost Pk- 
i= 1 

factorization. To see that S is compressible and &(S) is as stated, we first recall the 

structure of B (as in Definition 4.2). Note that each vertex of the subgraph induced by 

(H2i-1, H2i) 1 I i 2 W2, has degree m/2 (there is a contribution of 1 from each Qt) and 

that each vertex (2i,x) or (2i+l,x) of the subgraph induced by (H2i, H2i+l), where 

1 S i S k/2-1, has degree m/2 - 1 (a contribution of 1 from all Qt except the one 

containing the edge -x). Finally, there are the edges {(j,i)(j+l,i): 1 l i I m). Clearly 

S is compressible and QH(S) is as described. 

Define C* to be the k-cycle (1, 2, ..., k) in which edges alternately have 

multiplicities m/2 on edges { 12, 34, ..., (k-1)k) and m/2 -1 on the others. Similarly C, 

is the k-cycle (1,2, ..., k) in which the edge of multiplicity m/2 are {23,45, ..., k l )  and 



the others have multiplicity m/2 -1. (Although QH(S) is the union of the k-cycle C* 

and the edge ju+l), it is not difficult to see that we could also define an S* so that 

QH(S*) is the union of the k-cycle C, and the edge j(j+l).) 

The graph hK, has a factorization into h copies of K,. For the ith copy, 
2. 

1 I i I h, we will construct a compressible subgraph Si so that both &(.usi) is 
1= 1 

Pk-factorable and K, - Si is almost Pk-factorable. We divide the proof into two cases 

according to the parity of h. 

Case 2.2.2.1 : h is even. We define Si for the ith copy of K, as follows. If 1 I i I h/2, 

choose Si so that its H-quotient graph is the union of C* and the edge i(i+l), and if 

h/2 c i < h choose Si so that QH(Si) is the union of C* and the edge i(i+l). With this 
h 

definition and letting h = xk+y, 0 Ir y I k-1, &(.usi) is the union of a k-cycle (1,2, ..., 
1= 1 

k) with multiplicity x + h(m-1)/2 and the (y+l)-path [I, 2, ..., y+l]. Since 

k(x + h(m-1)/2) +y = kx+y + hk(m-1)/2 = h((rnk+l) - (k-1))/2 = 0 (mod k-1), by 

Lemma 2.2.l(a), this quotient graph is Pk-factorable. 

Case 2.2.2.2 : h is odd. As in Case 2.2.2.1 we begin by defining all Si 1 I i I h. 

If h c W2, choose Si, 1 I i I (h-1)/2, so that its H-quotient graph is the union 

of C* and the edge (2i-1)2i, and if (h+1)/2 I i I h choose it so that the H-quotient is 
2. 

the union of C* and the edge (2i-1)2i. Under this arrangement, QH(.LJSi) is the union 
1= 1 

of the k-cycle (1, 2, ..., k) with multiplicity (h-l)(m-1)/2 + m/2 - 1, a 2(h+l)-path and 

(k-2h-2)/2 independent edges (the path and the independent edges are edge-disjoint 

subgraphs of (1, 2, ..., k)). Since k((h-l)(m-1)/2 + m/2 -1) + 2h +1 + (k-2h-2)/2 = 
h 

h((rnk+l) -(k-1))/2 a 0 (mod k-1), then by Lemma 2.2.l(a), QH(.uS~) is Pk- 
1=1 

factorable. 



If h 2 k/2, we will choose (h-1)/2 of the Si so that QH(Si) is the union of C* 

and a single edge, and the remaining (h+1)/2 of Si so that QH(Si) is the union of C, 

and a single edge. All the single edges in the first k/2 of the Si are (12, 34, ..., (k-1)k) 

and the rest of them are to be arranged as the union of the k-cycle (1,2, ..., k) with 

multiplicity x and the (y+l)-path [I, 2, ..., y+l], where h - k/2 = kx + y, 0 I y I k-1. 

Now QH(.uSi) is the union of a k-cycle with multiplicity (h-l)(m-1)/2 + m/2 -1 + 
1= 1 

(l+x) and the (y+l)-path [I, 2, ...y+ 11. Since ((h-l)(m-1)/2 + m/2 +x)k + y = 
X 

h((km+ 1) - (k- 1))/2 = 0 (mod k- l), then again by Lemma 2.2.1 (a), QH(. u S i) is Pk- 
1=1 

factorable. The proof is complete. I 

We showed in Chapter 3 that for hKn to have a Pk-factorization the obvious 

necessary conditions determined by simple counting on edges and vertices are 

sufficient. We have now shown that similar conditions are necessary and sufficient for 

an almost Pk-factorization of hKn. These are both special cases of a more general 

question: what conditions other than those obtained by counting must be imposed on 

m, k, r and h so that hKmk+r, 0 I r < k, has a factorization in which each factor 

consists of m vertex disjoint paths Pk and r isolated vertices (note that instead of r 

isolated vertices we might also ask for a path of length r-1). We feel that those simple 

conditions obtained by counting are also sufficient but expect that it will be difficult to 

show this. 



Chapter 5. Resolvable mixed path decomposition of hK, 

In this chapter we are interested in the construction of factorizations of hK, in 

which each factor is one of two types. As defined in Chapter 1, a (G(s), H(t))- 

factorization of hKn is a factorization in which s of the factors are G-factors and t are 

H-factors. Our interest in this chapter is in finding necessary and sufficient 

conditions for the existence of a (P2(s), Pk(t))-factorization of hKn. In view of earlier 

results we will assume that st # 0 and that k 2 3. The goal is to prove the following 

result. (Observe that simple counting, first on vertices and second on edges, yields 

the necessary conditions of the theorem.) 

5.1 Theorem For k 2 2 the complete multigraph hKn has a factorization into s+t 

spanning subgraphs (st # 0), s of which are 1-factors and t of which are Pk-factors 

(that is, a (P2(s), Pk(t))-factorization) if and only if n r 0 (mod 2), n a 0 (mod k) and 

ks + 2t(k-1) = hk(n-1). 

As usual, we begin with some basic constructions, and then go on to use them 

to prove the main theorem. 

5.2 Lemma. Let k be odd. 

(a) K2k - P2(1) has a Pk-factorization, where P2(l) is a 1-factor. 

(b) K2k,2k - C4(1) has a Pk-factorization, where C4(1) is a C4-factor. 

Proof. (a) Let V(K2k) = (1, 2, ..., 2k). Consider a P2k-factorization of K2k. Each path 

P(i) = [i, l+i, 2k- l+i, 2+i, 2k-2+i ,..., k+2+i, k- l+i, k+l+i, k+i], 1 5 i I k, of the 

factorization is the union of two paths of length k and the edge 

((3k+1)/2+i)((k+1)/2+i). Observe that these k edges are in fact the edges of a 1- 

factor in Deleting them from the paths yields a Pk-factorization of Kzk - P2(1). 



(b) Let V(K2k2k) = X u Y, where X = (XI, ..., x2k) and Y = ( yl, ..., yzk). We 

know that Ku, - P2(l) has a Pk-factorizaiton. If P is one of these Pk-factors, then 

(xiyj, xjyi : ij E E(P)) is a Pk-factor of Ku,,u,. On deleting the resulting k Pk-factors 

from K2k92k, what remains is {xiyj, Xjyi : ij E E(P2(1))) u (xiyi : 1 I i I 2k), which is a 

C4-factor. I 

5.3 Remark. It is not difficult to see that in Lemma 5.2(b) we can permute the 

vertices of Ku,,2k in such a way that if the vertex bipartition is (A, B), where 

A = (al, ..., a2k) and B = {bl, ..., b2k), then C4(l) consists of the k 4-cycles 

C(i) = (a2i+i, b2i+3, a2i+2, b2i+4), 1 I i I k. We define T to be the graph obtained from 

C4(l) by identifying the vertices ai and bi, 1 I i I2k .  If the vertices of T are labelled 

V(T) = (vl, v2, ..., v2k), then T is the union of the four 1-factors: 

5.4 Lemma. Let k be odd and V(G) = ( 1,2, ..., 2k). If G = ((k- 1)/2)T (where T is 

described in Remark 5.3), then G has a Pk-factorization. 

Proof. Let V(G) = { 1, 2, ..., 2k). First select the Pk-factors 

P(i) = {[2i+l, 2i+4,2i+5, 2i+8,2i+9, ..., 2i+2k-5, 2i+2k-2,2i+2k-l], 

[2i+2,2i+3,2i+6,2i+7,2i+lO, ..., 2i+2k-4,2i+2k-3,2i+2k]), 

1 I i I (k- 1)/2, and 

R(i) = {[2i+k, 2i+k+2, 2i+k+4, ..., 2i+k-4, 2i+k-21, 

[2i+k+l, 2i+k+3, 2i+k+5, ..., 2i+k-3, 2i+k-I]), 1 I i I (k-1)/2. 



The edges remaining form the last Pk-factor which is 

([I, 4, 5, 8,9, ..., k-4, k-1, k, k+2, k+4, ..., 2k-11, 

[2,3,6,7, 10, ..., k-3, k-2, k+l, k+3, k+5, ..., 2k]) if k = l(mod 4), and 

{[I, 4, 5, 8,9, ..., k-3, k-2, k+l, k+3, ..., 2k], 

[2,3,6,7,10 ,..., k-4,k-l,k,k+2 ,..., 2k-l])ifk=3(mod4). 1 

We now prove the main theorem of this section. 

Proof of Theorem 5.1. 

The necessity has already been addressed. To show the sufficiency of the 

conditions, we will divide the proof into two cases according to the parity of k. 

Case 1. k is even. 

From the first two necessary conditions we know that n = kr, and from the 

condition its -t 2(i- i jt = Xi(n-1) we obtain s = h(r-I) (mod k- I). 

r k 
Let V(hKn) = {(i, j) : 1 5 i I r ,  1 I j I k )  = UHi= u V j  where 

i=l j=1 

Hi = {(i, j) : 1 I j I k) and Vj = ((i, j) : 1 I i I r), so that hKn = h(Kr 8 Kk). 

To each edge ij of hKr associate in WC. a 1-factor Fij of KH,,H~. Let R be the 

subgraph of hK, consisting of the union of these 1-factors. Each vertex in R has 

degree h(r-1). First we will show that the 1-factors can be chosen so that R has a 

(P2(sl),Pk(tl))-factorization for 0 I sl I h(r-1) and sl = h(r-1) (mod k-1). 

Let sl = h(r-1) - q(k-1). 

Let the 1-factor Fij be either the 1-factor 

Cij = {(i, 2m-l)(i, 2m), (i, 2m)(i, 2m-1) : 1 I m 5 k/2) or the 1-factor 



Dij = {(i, 2m-l)(j, 2m-2), (i, 2m-2)u, 2m-1) : 1 I m I W2). Call the first of these 

1-factors a type C 1-factor and the second type D. 

We claim that the 1-factors Fij can be chosen in such a way that each vertex 

belongs to at least q(k/2-1) 1-factors of type C and at least q(k/2) of type D. 

If r is even take a 1-factorization of hKr. To each edge of hKr determined by sl 

+ q(kl2-1) of the 1-factors associate a type C 1-factor and to the edges from 

remaining qld2 1-factors associate a type D 1-factor. If r is odd, then h(r-1) is even 

and hKr has a 2-factorization. If sl + q(W2-1) is even (and consequently so is 

q(k/2)), then to each edge of hKr determined by (sl + q(W2-1))/2 of the 2-factors 

associate a type C 1-factor and to the remaining edges associate a type D 1-factor. If 

sl + q(W2-1) is odd (and consequently so is q(k/2)), then to each edge of hKr 

determined by (sl - 1 + q(k/2-1))/2 of the 2-factors associate a type C 1-factor and to 

the remaining edges associate a type D 1-factor. (Note that s l 2  1 since if sl = 0, 

then h(r-i) = q(k-1) which is impossible as ic-1, q and i= are all odd.) 

It is not difficult to see that R is compressible and Qv(R) consists of the edge- 

disjoint union of sl 1-factors and q cycles of length k in which alternate edges have 

multiplicities k/2-1 and k/2. By Lemmas 2.2.l(a) and 2.1.4 the graph R has a (P2(s1), 

Pk(tl))-factorization. 

Next we show that hKn - R has a (P2(s2), Pk(t2))-factorization for any s2, 

0 I s2 5 hr(k-1) and s2 = 0 (mod k-1). 

If r is even, hKr admits a 1-factorization with 1-factors F1, F2, ...,  FA(^-^), and 

to each 1-factor there corresponds in hKn - R a (Kkk - P2(l))-factor. Thus hKn - R 

has a ((Kkk - P2(l))(h(r-1)), Kk(h))-factorization. 



The theorem then fo'oll0ws by letting S i  = S and s2 = 0 if s 5 h(r-l), and 

sl = h(r-1) and sz = s - h(r-1) if s 2 h(r-1). 

Case 2. k is odd. 

From the first two necessary conditions we kmw that n = 2kr, and from the 

condition ks + 2(k-l)t = hk(n-1) we obtain s h(2r-1) (mod 2(k-1)). The 

construction to be presented is quite similar to that given when k is even. 

r 2k 
Let V(hKn) = {(i, j) : 1 5 i 5 r, 1 5 j 5 2k) = u Hi = u vj, ,here 

i=l ~ = 1  

H = , j : 1 s j 5 2k) and Vj = ((i, j) : 1 5 i 2 r )  and again note that 

hKn = h(Kr @ K2k). 



chosen so that R has a (P2(sl), Pk(tl))-factorization for 0 S s1 I h(2r-1) and sl E 

h(2r-1) (mod 2(k-1)). Let sl = h(2r-1) - 2q(k-1). 

Suppose h(r-1) is even. Then hKr has a 2-factorization. We arbitrarily direct 

the cycles in the 2-factorization so yielding a directed hKr in which each vertex has 

both in- and out-degree h(r-1)/2. If the edge ij is directed from i to j (that is, it 

becomes the arc (i, j)), then let Clj be a copy of C4(l) as described in Remark 5.3 but 

with A = Hi and B = Hj. Thus Qv(uCij) = (h(r-1)/2)T. For each i choose the e, 
9 

where 1 5 E I h, so that: 

L w ~ J  of them  are^; ={(i, 2j)(i, 2j+l) : 1 5 j 5 k); 

LwJ a r e ~ i  = {(i,l)(i, 3), (i, 4)(i, 6)) u {(i, 2j+3)(i, 2j+6) : 1 5 j s k-2); 

LwJ are ~4 = {(i, l)(i, 4)) u {(i, 2j+4)(i7 2j+6), (i, 2j+l)(i, 2j+3): j E {I, 3, ..., k-2)); 

LwJ are F,! ={(i, 3)(i, 6)) u {(i, 2j+6)(i, 2j+8), (i, 2j+3)(i7 2j+5) : j E {I, 3, ..., k-2)) 

(where F; is analogous to F$ as given in Remark 5.3) and the remaining h' = h - 
r h  

dU41 are chosen arbitrarily. Thus Qv(.u u H!) consists o fL~14  copies of T and h' 
1=l e=l 

1 -factors and therefore QV(R) consists of h(r- 1)/2 + Lh/4J = Lh(2r- 1 )/4 J edge- 

disjoint copies of T and h' 1-factors. We use Lemma 5.4 to determine a Pk- 

factorization of (q(k-1)/2)T; and since 2q(k-1) c h(2r-1) there are q(k-1)/2 copies of 

T available. Each of the remaining copies of T in Qv(R) has a 1-factorization. This 

now yields a (P~(sI), Pk(tl))-factorization of R. 

We next consider the case when h(r-1) is odd (and hence h is odd). In this 

case hK, - F, where F is a 1-factor, has a 2-factorization. Proceed to define R as in 

- the previous case using the Zfactorization of hK, - F. To the remaining edges ij of 

hKr (those of the deleted 1-factor F) associate the C4-factor {((i, 2p), (j, 2p), (i, 
r h  

2p+l), (j, 2p+l)): 1 5 p 5 k). Again choose the h 1-factors @ so that Qv( u u H:) 
i=l e=l 

contains Lh/4J copies of T and h' 1-factors. Furthermore, if h' = 3, choose those h' 1- 



factors to be F;, F; and Fi as given previously. Let us now analyse the subgraph R. 

It consists of a 1-factor F' = ((i, 2p)(i, 2p), (i, 2p+l)(i, 2p+l) : 1 I p I k, ij E F) and a 

subgraph R'. If h' = 3, Qv(R') consists of (h(2r-1)-1)/4 edge-disjoint copies of T, and 

if h' = 1, Qv(R') consists of (h(2r-1)-3)/4 edge-disjoint copies of T and two 1-factors. 

In each case there are at least q(k-1)/2 copies of T available and by Lemma 5.4 we 

have a Pk-factorization of (q(k- 1)/2)T. Applying Lemma 2.1.4 Qv(R'), (and therefore 

R') has a (P2(s1-I), Pk(tl))-factorization. So R has a (P2(s1), Pk(tl))-factorization 

as required. 

The final step, in which we show that hKn - R has a (P2(~2), Pk(t2))- 

factorization for any s2,O I s2 I 2hr(k- 1) and s2 = 0 (mod 2(k- I)), is quite 

straightforward. 

If r is even we use a 1-factorization of Kr to obtain a 

((Ka2k - C4(l))(h(r-1)), (Ku, - P2(l))(h))-factorization of hKn - R, and if r is odd 

we use a near i-factorization sf  Kr to obtain a Z-factorization of ?& - X, where Z is 

the vertex-disjoint union of (r-1)/2 copies of Kau ,  - C4(1) and one copy of K2k - 

P2(1). By Lemma 5.2 the graphs Ku,,n - C4(l) and K2k - P2(1) have Pk- 

factorizations, each with k Pk-factors. In addition, they both have 1-factorizations 

with 2k-2 1-factors. So on s2/2(k-1) occasions we choose the 1-factorization and on 

the remaining occasions the Pk-factorization. 

The theorem is now completed by letting sl = s and s2 = 0 if 

s I h(2r-I), and sl = h(2r-1) and s2 = s - h(2r-1) if s 2 h(2r-1). I 



Chapter 6. Pk-factorizations of hK(n,r) 

Necessary conditions for the existence of a Pk-factorization of hK(n,r) are 

nr = 0 (mod k) (as each factor is a union of disjoint paths on k vertices) and h(r- 1)nk 

= 0 mod 2(k-1)) (as IE(hK(n,r))l must be divisible by the number of edges in a Pk- 

factor). We would like to show that these conditions are also sufficient. As we 

mentioned in Chapter 1 Ushio [36] proved that when k = 3 the conditions are 

sufficient, and Bermond [6] later gave a short proof of this. In this section, we extend 

the result for k > 3 and show that the two conditions are sufficient if n = 0 (mod k) or r 

= 0 (mod k). (This implies, for example, that they are sufficient if k is prime.) We will 

also show that they are sufficient when r = 2 and r = 3. In general, however, this 

problem remains unresolved. 

L e t V ( G @ C , )  = (1, ..., k) x (1, ..., r ) ,H i=  {(i, j) : 1 S j  I r ) ,  when 1 I i i k ,  

andVj = {(i, j) : 1 I i  I r ) ,  where 1 I j  I k. 

Once again we begin with a technical lemma. 

6.1 Lemma. Let k be a positive integer, k 2 4, and r be odd. The graph Ek Q C, is the 

union of k Pk-factors and a subgraph S such that &(S) = Ck. 

Proof. We will construct k Pk-factors of Ek 8 C, SO that on their deletion, the 

remaining subgraph is induced by one of the following two edge-sets: ( (i, j)(i+l, j+ 1): 

1 I i I k, 1 I j I r) or {(i, j)(i-1, j+l): 1 I i I k, 1 I j I r). Denoting these induced 

graphs by G1 and G2, respectively, it is not difficult to see that &(GI) = &(G2) = 
Ck. We divide the proof into four cases. 



Case 1. k = 0 (mod 4). 

When k = 4, for 0 5 j I 3, let 

P(1, j) = W+j, 21, U+j, 11, @+j, 2), (4+j, W, 

P(2, j) = U+j,  31, (4+j, 2), (4+j, 31, (3+j, 211, 

P(2t+l, j) = [(2+j, 2t+2), (l+j, 2t+l), (3+j, 2t+2), (3+j, 2t+l)], 1 1 t I (r-1)/2, 

and P(2t, j) = [(4+j, 2t+l), (4+j, 2t), (2+j, 2t+l), (l+j, 2t)], 2 S t I (r-1)/2. 
r 3 r 

Then u P(i, j) is a P4-factor and E( (K~ @ c) - y u P(i, j)) = 
i= 1 J=O 1=1 

{( i  ( i - 1  1 : 1 S i I 4, 1 S j I r . (See Figure 6.1.) 

Figure 6.1 

When k 2 8, as in the case k = 4, we let P(i, j),be a path in the bipartite 

subgraph of ifk 63 C, on vertex set (Vi, Vi+l). We will use the notation of definition 

4.3. and we will use the convention that the distance of the edge (s, i)(t, i+l) is t-s. 

For0 < j l k-1, put 

P(1, j) = [(l+j, 2): cO,l, ..., k-221, 

P(2, j) = [(k/2 +j, 3): <k/2,k/2 +1, ..., k-2,0, 1, ..., k/2 -I>], 

P(2t+l, j) = [(Id4 +1+ j, 2t+l): <O, ld2 +1, k12 +2,2,3, ..., k/2, 1, k/2 +3, k/2 +4, 

..., k-2>], 1S t S (r- 1)12 and 

P(2t, j) = [(3k/4 +l+j, 2t+l): c0, 1, 2, ..., k/2 -2, k-2, k/2 -1, k/2, ..., k-3>], 



2 I t I (r-1)/2. (See Figure 6.2 which illustrates the case k=8 and r=5.) 

Figure 6.2 

Case 2. k = 1 (mod 4). 

When k 2 5, for 0 I j I k-1, let 

P(1, j) = [((k+3)/2 + j, 2): <0, k-2, k-3, ..., I>], 

P(2, j) = [(2+j, 3): <2, 3, ..., k-2, 0, I>], 

P(3, j) = [(I + j, 4): <0, 1, ..., k-2)], 

P(2t, j) = [((k+3)/2 + j, 2t+l): <0, k-2, k-3, ..., I>], 2 I t I (r-1)/2 and 

P(2t+l, j) = [((k+7)/4 + j, 2t+2): <(k+3)/2, (k+5)/2, ..., k-2, 0, (k+1)/2, 

1, 2, ..., (k-1)/2>], where 2 l t l (r- 1)/2. 

(In Figure 6.3 the case when k = 9 and r = 5 is given.) 

Figure 6.3 



Case 3. k = 2 (mod 4). 

Whenk=6, fo rOI j I5 le t  

P(l, j) = [(l+j, 2): <O, 1, 2, 3, 4>], 

P(2, j) = [(6+j, 3): c2, 1, 0, 4, 3>], 

P(2t+l, j) = [(4+j, 2t+2): <3, 2, 1, 0, 4>], where 1 I t I (r-1)/2 and 

P(2t, j) = [(6+j, 2t+l): <I, 0, 4, 2, 3>], where 2 I t I (r-1)/2. 

When k 2 10, for 0 I j I k-1, let 

P(l, j) = [(l+j, 2): c0, 1, 2, ..., k-2>], 

P(2, j) = [(k/2 +1 +j, 3): <k/2 +1, k/2 +2, ..., k-2, 0, 1, ..., k/2 -2, 

k/2 -1, k/2>1, 

P(2t+l, j) = [(2+ j, 2t+2): a 2  +2, k/2 +3, ..., k-2, k/2,k/2 +1,0,1, ..., 
k/2 -I>], 1 I t I (r-1)/2 and, 

P(2t, j) = [((3k+6)/4 + j, 2t+l): e l ,  2, ..., k/2 -1,0, k/2, k/2 +1, ..., 
k-2>], where 2 I t I (r- 1)/2. 

(Shown in Figure 6.4 in the case k = 10 and r = 5. ) 

Figure 6.4 



Case 4. k = 3 (mod 4). 

In this case the general pattern covers all cases. (Recall that k 2 4.) 

For0 I j  I k-1, let 

P(1, j) = [((k+1)/4 + j, 1): ~ 1 ,  2, ..., (k-1)/2, 0, (k+1)/2, 

(k+3)/2, ..., k-2>], 

P(2, j) = [(3(k+1)/4 + j, 2): cO, (k+ 1)/2, (k+3)/2,2, 3, ..., (k- 1)/2, 1, (k+5)/2, 

(k+7)/2, ..., k-2>], 

P(3, j) = [(2 + j, 3): ~ k - 2 ,  k-3, ..., 1, 0>], 

P(2t, j) = [((k+1)/4 + j, 2t): <I, 2, ..., (k-1)/2, 0, (k+1)/2, 

(k+3)/2, ..., k-2>], 2 I t I (r-1)/2 and 

P(2t+l, j) = [((k+3)/2 + j, 2t+l): ~(k-3)/2, (k-5)/2, ..., 1, 0, (k+1)/2, 

(k- 1)/2, k-2, k-3, ..., (k+3)/2>], 2 I t I (r- 1)/2. 

(See Figure 6.5 for the case k = 7 and r = 5.) 

Figure 6.5 

We now state and prove the main theorem of this section. 

Theorem 6.2. If hkn(r- 1) = 0 (mod 2(k- 1)) and r = 0 (mod k) or n = 0 (mod k), then 

Pk IR hK(n,r). 



Proof. Let V(hK(n,r)) = (1, ..., n) x (1, ..., r), Hi = {(i, j) : 1 I j S r), where 1 I i 5 n 

and Vj = {(i, j) : 1 I i  I n), where 1 S j I r .  Supposer = 0 (mod k). It is easy to see 
n 

that hK(n, r) is compressible with respect to vertex-partition u V i  and hence 
i=l 

Qv(hK(n,r)) = nhKr. By Theorem 3.3.1 PklR d K r  if and only if r = 0 (mod k) and 

nhk(r-1) = 0 (mod 2(k-1)) and hence by Lemma 2.1.4, Pk IR hK(n,r). In this case, we 

are done. 

We now consider the case when hkn(r-1) = 0 (mod 2(k-1)) and n = 0 (mod k). 

Let n = km. We first show that if Pk I, hmK(k,r), then P, I, hK(n,r). 

Let X u ,  be a subset of V(hK(mk,r)) = (1, 2, ..., rnk) x (1, 2, ..., r), where Xu,, 

= (((u-l)m +1, v), ((u-l)m+2, v), ..., (um, v)), 1 I u I k and 1 S v S r. Let P(l), P(2), 

..., P(s) be the Pk-factors of a Pk-factorization of hmK(k,r), where s = 

hm(r- l)k2/(2(k- 1)). Corresponding to each P(i), we construct a Pk-factor p(i) of 

hK(mk, r) as follows: With each edge (u,v)(p,q) E E(P(i)), associate a 1-factor 

F((u,v)(p,q)) from Kx,,, x ~ , ~ .  Clearly, the induced subgraph with edge-set {e : 

e E F((u,v)(p,q)), where (u,v)(p,q) E E(P(i))) is a Pk-factor of hK(mk,r). Since 

h K ~ ~ ~ ,  XRq has a 1-factoriation with hm 1-factors it is easy to see that this method 

does indeed give a Pk-factorization of hK(n,r). 

To complete the proof it only remains to show that Pk IR hmK(k,r). The proof is 

divided into two parts according to the parity of r. 

Case 1. r odd. 

The graph pK(k,r), where p = hm, can be decomposed into y(r-1)/2 

isomorphic copies of Ek 0 C. By Lemma 6.1 zk @ Cr is the union of k %-factors 

and a subgraph with H-quotient Ck. Hence we can delete p(r-l)k/2 Pk-factors from 



pK(k,r) so that the remaining graph has H-quotient ((Fl)C1/2)Ck, which by Lemma 

2.2.l(a) and the fact that (r-1)p/2 = 0 (mod k-1) is Pk-factorable. 

Case 2. r even. 

First consider k to be even. Let R = u Fij(p), where Fij(p) is the union of p 
1Lcjlk 

1-factors in Kvi,vj. (Notice that R is not uniquely determined.) 

We claim pK(n,r) - R has a Pk-factorzation. To see this begin by observing 

that as r is even, the graph pK, has a 1-factorization fl, f2, ..., fp(,_l). In pK(n,r), each 

1-factor corresponds to r/2 vertex-disjoint copies of KkVk. By Lemma 2.2.3, Kk,k - F, 

where F is a 1-factor, has a Pk-factorization. By chosing F appropriately we can 

delete kp(r-1)/2 Pk-factors from pK(n,r) so that the subgraph remaining is R. 

We now show that there exists such an R which is also Pk-factorable. For 

each edge xy E E(fi), 1 5 i 5 Lp(r-l)/2J, let Fv be the 1-factor of pKvx,vy defined by 

Then QH(R) is a k-cycle in which each edge has multiplicity p(r-1)/2 when p(r-1) is 

even, and a k-cycle in which edges alternately have multiplicities (p(r-1)-1)/2 and 

(p(r-l)+l)/2 when p(r-1) is odd. Since p(r-l)k/2 = 0 (mod k-1) we can apply 

Lemma 2.2.l(a) to show that in either case QH(R) is Pk-factorable. 

When k is odd, Lemma 2.2.3 states that 2Kk.k - 2F, where F is an arbitrary 1- 
factor of KkP has a Pk-factorization. Let R = U. 2Fij(C1/2), where Fij(p/2) is the 

1<1<~51 

union of p/2 1-factors of Kvi,vjj. As before, we can show pK(n, r) - R has a Pk- 

factorizaton. Then we will show that there exists such an R which also has a Pk- 

factorization. Observe that p = hm = 0 (mod 4) as k is odd and r is even. In this 



case, we let Fij(p/2) = (p/4)P, where P = {(s, i)(s+l, j), (s+l, i)(s, j) : 1 S s S k). It 

is not difficult to see that &(R) 2 (p(r-l)/2)Ck. Since p(r-l)k/2 = 0 (mod k-l), by 

Lemma 2.2.1, &(R) has a Pk-factorization. Therefore, the proof is complete. I 

We now use Theorem 6.2 to prove two more results. But we first state a result 

due to Auerbach and Laskar [4]. 

6.3 Theorem. [4]. If (r-l)n is even, then K(n,r) has a G-decomposition 

6.4 Corollary. Pk IR hK(n,2) if and only if 2n r 0 (mod k) and hnk = 0 (mod 2(k-1)). 

Proof. The necessity follows immediately from applying a counting argument on 

vertices and edges. For the sufficiency, we suppose that 2n r 0 (mod k) and hnk = 0 

(mod 2(k-1)). If k is odd, then n = 0 (mod k) and by Thorem 6.2 we are done. 

If k = 2m, then n = 0 (mod m) and the second condition becomes hn = 0 (mod 

2m-1) which implies qh = 0 (mod 2m-I), where n = mq. As in the proof of Theorem 

6.2 we only need to show that qhKmVm has a Pk-factorization. Let V(qhKmPm) = 

{al, a2, ..., am) u {bi, b2, ..., bm). 

When m is even, Kmm has a C2,-factorization (Theorem 6.3) and by Lemma 

2.2.1 (a) qhC2, has a P2m-factorization since qh r 0 (mod 2m- 1). 

When m is odd, Kmgm - F has a C2,-factorization. We divide the remaining hq 

1-factors into p groups with 2m-1 in each (assuming hq = p(2m-1)). Fix a group 

made up of, say, fl, f2, ..., fh-i, where fl = f2 = ...= fm = {aibi : i =1,2, ..., m) and 

fm+l=...= f2rn-i = {aibi+1, i = 1,2, ..., m). Then fi u fm+i - aibi+i, i = 1,2, ... m-1, is a 

P2m-fa~t~r,  as is fm u (aibi+1, i = 1, ..., m-1 ). Hence, qhKmPm has a Pk-factorziation 

and so does hK(n, r) I 

6.5 Corollary. Pk I R  hK(n,3) if and only if 3n I 0 (mod k) and 3hnk r 0 (mod k-1). 



Proof. The necessity follows immediately on applying counting argument to vertices 

and edges. For sufficiency, if k = 1 or 2 (mod 3), then n E 0 (mod k) and by Theorem 

6.2 we are done. 

When k r 0 (mod 3), we let n = kq and show that Pk IR hqK(k,3). By 

Theorem 6.3, C3k IR K(k,3). From the given conditions, 3% = 3hn = 0 (mod k-1) or 

hq = 0 (mod k- 1). We only need to show hqC3k has a Pk-factorization. Since 

(k-1)C3k has a Pk-factorization with factors {[(ik+j+l), (ik+j+2), ..., (ik+j+k-1), 

(ik+j+k)] : 0 I i 5 2), 0 I j I k-1, then the result follows immediately. I 

It is not difficult to see that by using the quotient technique, we can obtain 

many tree factorization results for hK(n, r). We suspect that the necessary 

conditions (obtained by counting arguments) for the existence of a tree factorization 

of hK(n, r) are sufficient. 



Chapter 7. Summary 

At this stage, we see that the concept of the quotient graph of a graph plays 

a very important role in the construction of factorizations of hKn and hK(n, r). This 

is a technique which should be further exploited. 

Several of the problems we mentioned in this thesis can be easily 

generalized. For example, we can ask the following questions: 

1. What are necessary and sufficient conditions for hKn to have a (P,(x), Pt(y))- 

factorization? 

2. Are the necessary conditions for hKn to have an almost H-factorization given in 

Chapter 1 sufficient when H is a tree other than a path? 

3. Can we get some similar factorization results when H is a directed graph and we 

are factorizing t!e complete symetric digraph? 

Another interesting problem is the following: What are necessary and 

sufficient conditions for an almost resolvable H-decomposition of hKn to be 

balanced? (Let V(H) = {vl, v2, ..., vk). An H-decomposition is called balanced if 

there exist integers al, a2, ..., ak, where a1 +a2 +...+ ak is the total number of factors, 

so that each vertex of hKn plays the role of vi in ai of the H-factors, 1 I i I k.) It is 

easy to see that all resolvable decompositions are balanced. 

Finally, we state once again the particularly interesting question: For what 

even k does Tk I Kk? At present there seem to be no known techniques other than 

that of searching for a cyclic decomposition. 



Appendix 

xy : an edge joining vetex x to vertex y. 

(x, y) : an arc directed from vertex x towards vertex y. 

hG : a multigraph obtained by assigning each edge of G multiplicity h. 

: the complete symmetric digraph on n vertices. 

K,, : the complete graph on n vertices in which each pair of vertices is joined by 

exactly one edge. 

K(n,r) : the complete r-partite graph in which each part has size n. 

K A , ~  : the complete bipartite graph with bipartition (A, B). 

KA : the complete graph with vertex set A. 

K1,k-l : a star with k vertices. 

Pk (or k-path) : a path with k vertices. 

Ck (or a k-cycle) : a cycle with k vertices. 

t-matching : a set of t independent edges. 

1-factor of a graph G : a spanning subgraph of G which is the union of IV(G)1/2- 

matching. 

near 1-factor of a graph G : a spanning subgraph of G which is the union of 

a (IV(G)I-1)/2 -matching and an isolated vertex. 
- 
G : the complement of G. 

A u B : the graph induced by the edge-set E(A) u E(B). 

A - B : the graph induced by the edge set E(A) - E(B) if B is a subgraph of A. 

G - {v) : the graph obtained from G by deleting the vertex v and all edges incident 

with v. 

F @  G :  LetG be agraph withV(G) = (1,2, ..., x), andlet F = (S1, S2, ..., S,) be 

7 a family of graphs. F @ G is defined to be the graph obtained by replacing 



vertex i of G by Si, 1 I i 5 x, and inserting all possible edges between Si 

and Sj with multiplicity h exactly when the edge ij in G has multiplicity h. 

When all Si are isomorphic to S, we will write S (8, G. 
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