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ABSTRACT

-

This thesis is a study of tree-factorizations of complete graph with particular
emphasis on path factorizations. In the first two chapters of this thesis, we present a
~ survey of results on G-decompositions and G-factorizations of complete graphs. In
addition, we introduce some of the basic techniques which will be used to prove the

main results in this thesis; in particular, the major construction lemma is presented.

In Chapter 3, we show that necessary and sufficient conditions for AKj, to have
a Ty-factorization, where Ty is a tree with k vertices and satisfying certain additional
assumptions, are n =0 (mod k) and A(n-1) = 0 (mod 2(k-1)). Specializing these
results gives necessary and sufficient conditions under which K; has a cp-
factorization, where cp is a caterpillar with an odd number of vertices (implying that
the star factorization problem is completely resolved), and under which AK,, has a Py-

factorization. Previously only partial results were known in these cases.

In Chapter 4, we show that necessary and sufficient conditions for the
existence of an almost resolvable Py-factorization of AK;, are n = 1 (mod k) and Ank/2
=0 (mod k-1), and in Chapter 5, we show that necessary and sufficient conditions for
AK, to have a (P(s), Px(t))-factorization are n = 0 (mod 2), n =0 (mod k) and ks +

2t(k-1) = Ak(n-1).

Finally, in the last chapter, we present partial results on path factorizations of
complete multipartite graphs. We show that when n =0 (mod k) or r = 0 (mod k),
AK(n, r) has a Px-factorization if and only if A(r-1)nk = 0 mod 2(k-1)).
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Chapter 1. Introduction

Let G be a graph. A spanning subgraph H of G is a subgraph for which V(H) =
V(G) and E(H) ¢ E(G). An H-factor of G is a spanning subgraph of G in which each
component is isomorphic to H, and an almost H-factor of G is an H-factor of G-v for
some vertex v. An H-decomposition of a graph G is defined to be a partition of E(G)
into a set of edge-disjoint subgraphs each of which is isomorphic to H. If this set of
graphs can be partitioned into H-factors (respectively almost H-factors), then we say
G has a resolvable (respectively almost resolvable) H-decomposition or G has an H-
factorization (respectively almost H-factorization). If G has an H-decomposition,
then we write H | G. Similarly, we write H Iy G if G has a resolvable H-

decomposition, and H I,z G if G has an almost resolvable H-decomposition.

One natural question to ask is "Given graphs G and H, what are the
necessary and sufficient conditions for the existence of an H-decomposition (an H-
factorization or an almost H-factorization) of G?" In the remainder of this chapter, we
will give a brief survey of some of the main results concerning these problems and also
an overview of the work presented in the rest of the thesis. (All undefined

terminologies are given in the appendix.)

Little work has been done when G is an arbitrary graph. Alon [1] showed that
G has a t-matching decomposition if and only if IE(G)! =0 (mod t) and A(G) <
I[E(G)l/t with only a finite number of exceptions. Caro and Schonheim [11] proved
that G has a P3-decomposition if and only if [E(G)l =0 (mod 2). In general, given
graphs G and H, the problem of determining if G has an H-decomposition (or a H-
factorization) is very hard. Most results to date have been obtained when G = AKy;

but even in this case not a lot is known.



Suppose IVH)l = k and n 2 k. Necessary conditions for the existence of an

H-decomposition of AK,, are:

e An(n-1)/2 = 0 (mod IE(H)I) and
¢ X(n—l) =0 (mOd ng(db d29 seey dk)), _

where d;, i = 1, ..., k, are the degrees of the vertices in H. (1.1)

The first condition in (1.1) follows from the fact that the total number of edges
in AK; must be divisible by the number of edges in H. The second follows as the

degree of a vertex in AK,, is the sum of some of the dj's.

When H is a complete graph, showing the existence of an H-decomposition of
AK, is equivalent to showing the existence of a balanced incomplete block design
BIBD(n, k, A). The hundreds of papers dealing with the construction of balanced
incomplete block designs testify to the interest in this problem. We will mention only
the most basic results for small k and the asymptotic results of Wilson. The first
concerns the so-called Steiner triple systems. There are many proofs of this result

(see for example [39]).
1.1 Theorem. K3 | K,, if and only if n = 1, 3 (mod 6).
For small values of k (k < 5) Kx-decompositions were constructed by Hanani.

1.2 Theorem [15] [16]. For k = 3, 4 or 5 and every positive integer A, K | AKj, if and
only if A(n-1) = 0 (mod k-1) and An(n-1) = 0 (mod k(k-1)), unless (n, k, A) = (15, 5,

2) in which case no such decomposition exists.

When k > 5, there are many partial results and we will not discuss them. For

general k, Wilson [40] proved that the necessary conditions in (1.1) are



asymptotically sufficient. We are going to state a more general version of his result;

this is one of the most general theorems concerning the graph decomposition problem.

1.3 Theorem [29]. For any graph H, every sufficiently large complete graph K, is the
edge-disjoint union of copies of H, where IV(H)| = k, provided that

(1) IE(H)I divides n(n-1)/2 and

(2) n=1 (mod gecd(d,, dy, ..., dy)) where d;, i = 1, ..., k, are the degrees of the

vertices in H.

However, the problem of determining "exactly” when the necessary conditions

are sufficient for the existence of an H-decompositions of K, remains.

For G = K,,, it was shown by Harary, Robinson and Worthald [18] that the
necessary condition for the decomposition of K;, into t isomorphic edge-disjoint
subgraphs is sufficient, namely, that n(n-1)/2 = 0 (mod t). However, their proof does
not specify exactly what the subgraph is. Thus, it is quite natural to ask this
decomposition question for specified families of subgraphs H (and in fact this has been

done).

Huang and Rosa [23] provided necessary and sufficient conditions for the
existence of H-decompositions of K, for all "small trees H"; that is, trees with 9 or
fewer vertices. Tarsi [33] [34] gave necessary and sufficient conditions for the
existence of Px- and K x.1- decompositions of AKj, (that is, path decompositions and
star decompositions). In particular, Ringel [31] conjectured that for any tree T with
I[E(T)l =n, T | Kop+1. Kotzig strengthened this by conjecturing that every complete
graph Kjp.1 has a cyclic decomposition into trees isomorphic to T, where IE(T)l = n.
This is equivalent to asserting that every tree T is graceful, that is, that there exists a

one to one labelling ¢: V(T) — {0, 1, ..., E(T)} such that all the values | ¢@i) - ¢() |,



where ij € E(T ), are distinct. Although this problem is still unresolved, the conjecture
has stimulated numerous papers dealing with various special cases. A discussion of

much of this work can be found in the recent survey paper [12].

When H = Cy, it has long been conjectured that the conditions in (1.1) are
sufficient. This problem has attracted a lot of attention. Cases for which (1.1) is

- sufficient include the following:

(a) k = p* or 2p" for some prime p [3],

(b) k <31 and kis odd, and k < 18 and k is even [7][9],
() n=1 (mod 2k) [25], and

(d) n = k (mod 2k), where k is odd [24].

Details of this problem and related results are discussed in [32].

We next consider the question of the existence of resolvable H-
decompositions of AK,,. Since we require the decompostions to be resolvable, then
there are three obvious necessary conditions;

*n =0 (mod k),

* Ak(n-1)/2 = 0 (mod IE(H)!) and

« there exists integers X1, X2, ..., X, such that x;d; + xod3 + ... + xidy = A(n-1)

and xj + X2 + ... + Xg = Ak(n-1)/(2(k-1)), where (d;, d, ..., di) is the degree

sequence of H. (1.2)

The first follows by observing that an H-factor is a spanning subgraph, the
second follows as [E(AKy)| must be a multiple of the number of edges in an H-factbr,
and the third follows from degree requirements (x; is the number of factors in which a

given vertex has degree d;).



When H = K3, such a decomposition is known as a 1-factorization and it is
well known that AK; has a 1-factorization if and only if n = 0 (mod 2). When H = Kj,
the decomposition is known as a Kirkman triple system. Ray-Chaudhuri and Wilson
[28] proved that K, has a K3-factorization if and only if n = 3 (mod 6). They also

~ gave necessary and sufficient conditions for the existence of a resolvable K-

" decomposition of K,. Recently, L. Zhu [42] and M. Greig [13] proved that (1.2) is
sufficient when k = 5 and k = 8, respectively, except for about one hundred possible
values of n in each case. (Note that when H = Ky, such a decomposition is equivalent

to the existence of a resolvable balanced incomplete block design.)

The well known Oberwolfach problem (first formulated by Ringel and first
mentioned in [14]) in the uniform case asks for a Cy-factorization of K,. For a
complete solution to this problem when k 2 4 (k = 3 is the Kirkman triple system) see
[2] and [20]. Note that this is one of the few factorization problems to be completely

solved.

The case when H = P;, was solved many years ago by Walecki [27]. (This is
also known as a Hamilton path decomposition.) The first step towards a general
solution for path factorization was made by J. Horton [21] who proved the following

result:
1.4 Theorem [21]. P3 Ig AK, if and only if n =0 (mod 3) and A(n-1) =0 (mod 4).

Using a result of Ray-Chaudhuri and Wilson [28], Horton also showed that the
necessary conditions for the existence of a Py-factorization of K, are asymptotically
sufficient; that is, if n is large enough and n and k satisfy the necessary conditions in
(1.2), then there is a Py-factorization of K,,. For even A and even k the existence of

Py-factorizations of AK, was completely resolved in [41] where it was shown that



conditions in (1.2) are both necessary and sufficient. In Chapter 3, we will settle this

problem completely.

Another family of trees H to be considered are stars. For A = 1, Huang [22]
proved that if k is even, then a resolvable Kl,k-l-decomposition of K, does not exist for
any n, and when k is odd she proved that the necessary conditions in (1.2) are
- asymptotically sufficient. Recently, Lonc [26] used similar techniques to prove that if
T is a graceful tree with IV(T)l = k, where k is odd, then the necessary conditions in
(1.2) are also asymptotically sufficient. This generalizes both the results of Horton
and Huang as all paths and stars are graceful. In Chapter 3, we will also show that
(1.2) is both necessary and sufficient for some other classes of trees. In particular, we
give necessary and sufficient conditions for Py Ir AKy, and also for H Ig K, and H Ig
AK,, where H is an odd order caterpillar and A is even. When A is odd and A > 1, we
have a similar result but with a finite number of possible exceptions for n when k and A
are fixed. These results yield a complete answer to the question of the existence of
K, x-1-factorizations of K, (and so generalize Huang's result). We also extend this
work to the directed case, where we consider the existence of an oriented tree

factorization of a complete symmetric directed graph K;.

Finally, we consider the question of the existence of almost H-factorizations of
AK,. Again we easily obtain necessary conditions for almost resolvable
. decompositions, namely

n = 1 (mod k) and nkA/2 =0 (mod I[E(H)I). (1.3)

When H = K>, an almost Kg-factorization is known as a near 1-factorization,
and AK, has a near 1-factorization if and only if n = 1 (mod 2). The only other family of
graphs H to have been considered prior to this thesis are cycles. When H = Cy, from

the necessary conditions, we know that A must be even and hence it is enough to



solve this problem for A = 2. Burling and Heinrich [10] showed that there is an almost
Ck-factorization of AK, when k is even and conditions (1.3) hold. For the case k odd,
Bennett and Sotteau [5] showed that the conditions of (1.3) are sufficient when k = 3
(these are known as almost resolvable Kirkman triple systems) and Heinrich, Lindner
and Rodger [19] proved that when k 2 5, the conditions of (1.3) are also sufficient. In
: the same way as we can think of the question of the existence of a Pc-factorization of
AK,asa generaliiation of that of the existence of a 1-factorization of AK,, we can
analogously view an almost Px-factorziaton of AK; as a generalization of an almost 1-
factorization of AK,,. In Chapter 4, we will prove that Py |,z AK,, if and only if n =1

(mod k) and nkA/2 = 0 (mod k-1).

One generalization of the above factorization problem is what we call an
(H1(s), Ha(t))-factorization of AK,. This is defined to be a partition of AK, into s H;-
factors and t Hy-factors, where Hj, and H; are two given graphs. Very little is known
for such factorizations. Rees [30] gave necessary and sufficient conditions for (Pa(s),
Cs(t))-factorizations of AK;. When H; = P,, and H; = P3, or Hy = P4, necessary and
sufficient conditions for (H;(s), Ha(t))-factorizations of AK,, are given in [41]. In
Chapter 5, we will show that AK;, has a (Py(s), Pi(t))-factorization if and only if n=0

(mod 2), n =0 (mod k) and ks +2t(k-1) = Ak(n-1).

Thinking of AK; as a special case of AK(n, r) (the complete r-partite graph with
part size n) leads us to the general question of necessary and sufficient conditions
under which AK(n, r) has an H-decomposition (or a H-factorization) for a given graph
H. Ushio, Tazawa and Yamamoto [38] gave necessary and sufficient conditions for
AK(n, r) to have a Kl,s-decompositiOn and later Ushio [37] presented a similar result
in which he also asked that the decomposition to be balanced (each vertex is required
to belong to same number of K; ). Auerbach and Laskar [4] proved that K(n, r) has a

Hamilton cycle decomposition if and only if n(r-1) is even.



We will consider Px-factorizations of AK(n,r). It is not difficult to see that for

AK(n, r) to have a Py-factorization, necessary conditions are
nr = 0 (mod k) and A(r-1)kn =0 (k-1). , (1.4)

Ushio [36] proved that when k = 3, these conditions are sufficient. In Chapter
6, we will show that when n=0 (mod k) orr =0 (mod k), (1.4) is sufficient for the
existence of a Py-factorization of AK(n, r). ( Note that this provides necessary and
sufficient conditions for the existence of a Px-factorization of AK(n, r) whenever k is
prime.) As corollaries, we also show that these conditions are sufficient for all k when

r=2,3.



Chapter 2. Quotient graphs and building blocks
2.1. The quotient graph

In this section we define the quotient graph of a graph, a fundamental concept

essential to all the results in this thesis.
k
2.1.1 Definition. Let G be a k-partite graph with V(G) = i=u1Xi. We call G

compressible if for alliand j, 1 £ i<j<k, IXjl = IX|jl and the bipartite subgraph on
vertex-set X; U X; with bipartition (X;, Xj) is ©({i, j})-regular, where 1 is a mapping

from the set {{i, j} : 1 < i#j <k} to the non-negative integers.

2.1.2 Definition. Let G be a compressible graph. Then the quotient graph, Q(G), has
V(Q(G)) = {1, 2, ..., k} and the edge ij has multiplicity ({1, j}), 1 Si<j<k.

2.1.3 Remark. Suppose n =kq. We write VAAK) = {(i,j): 1<i<q,1<j<k} =
k
ig{ H; = j-E{Vj’ where Hi={(i,j): 1 £j<kjand V;={(i,j): 1<i<q}. LetXbea

k
subgraph of AK,. If X is compressible with respect to the vertex-partition jL{ V;, we
r‘f =

denote the quotient of X by Qy(X) and call it the V-quotient. If X is compressible

. .. q . .
with respect to the vertex-partition A H;, then we call the quotient the H-quotient
J=

and denote it by Qu(X).

The concept of quotient graphs (both H- and V-quotients) will serve as a
major tool in our proof. Their importance in tree-factorizations is seen in the following

lemma.

2.1.4 Lemma. If G is a compressible multipartite graph and Q(G) has a factorization
into r tree-factors S1, S2, ..., St, where Siis a Ti-factor and Ti is a tree, then so does

G.



o
Proof.  Suppose that V(G) = j:{ V;and Q(G) has a tree-factorization with tree-

factors S1, S2, ..., S*, where Si is a Ti-factor and Ti is a tree. To each edge pq € E(SY),
associate a 1-factor Fpiqfrom the ©({p,q})-regular bipartite subgraph with vertex-set
VpU Vg Do this in such a way that the 1-factors associated with é given edge form
- a 1-factorization of the corresponding bipartité subgraph.
Clearly _ th: Fl is a Ti-factor of G.

Notice that this result implies that if both AK;— G and Q(G) have tree-
factorizations for a given family of trees, then so too does AK,. This is exactly the
strategy we will use to prove our main results. For example, in order to show that

AK; has a (P(s), Ti(t))-factorization we will find a compressible graph G such that

both AK; - G and Q(G) have easily constructed (P(s), Tx(t))-factorizations.

2.2 Building blocks

The following basic lemmas will be used often in the rest of thesis in

determining required factorizations of quotient graphs.

4 .
2.2.1 Lemma. Let G be a graph with V(G) = {1, 2, ..., k} and X =(1,2, ...,k) be a k-

cycle of G. Then

N .
(a) the graph G=AXuU (j&{ Pi), where P1, P2, ... PN are N vertex-disjoint

paths of X with lengths kj, ks, ..., ky respectively, k; =0 and Ak + kj+...+ kn
=0 (mod k-1). ‘

®)  the graph G = ;X U AyY, where A; + Ay = 0 (mod k-1), k is odd, Ay is
even and Y is the k-cycle (1, (k+1)/2, k, (k=1)/2, k-1, (k=3)/2, k-2, ..., (k+3)/2),

then G has a Py-factorization.

10



Proof. (a) If A = 0, then N = 1 and hence G = Py and the claim is trivial.
Therefore, we assume A is a positive integer. If all the k; are zero, then Ak = t(k—1)
and we construct the following t Py-factors in G:

PG) = [ 1+i(k-1), 2+ i(k—1), ..., k+i(k-1) ], 0 i< t—1.

If precisely one of the k; is not zero, we may assume k; # 0 and P! =[1, 2, ..,,

ki+1]. Then Ak + k; = t(k—1) and G has a Py-factorization with factors:
P@G) =[ 1+ i(k-1), 2+ i(k-1), ..., k+ i(k=1) ], 0 €i < t-1.

For the general case when Ak+k;+...+kn = t(k-1) (A > 0, N 2 0), we apply
double induction on t and N. It is not difficult to see that t 2 2 and when t = 2 the
factorization is trivial as A = 1 and kj+...+kny = k-2. For t > 2 and assuming that
Pl =11, 2, ..., ky+1], we delete the k-path [1, 2, ..., k] from G. The new graph G' has
t' =t-1 and N' = N or N-1. Applying the induction assumption to the resulting graph,

we obtain a Py-factorization of G.

(b) If one of A; and A, is zero, the Py-factorization follows as in (a) when all k;
equal zero. Thus we assume AjA2 # 0. Let Aok = (k-1)p+x, 0 < x < k-2 (Note that if
x = 0, then both 11X and A,Y have Py-factorizations). Since A, and k-1 are even,
then x must be even. Let P = [1, (k+1)/2, k, (k-1)/2, k-1, (k-3)/2, ..., (k-x+3)/2,

k - (x-2)/2] which is an (x+1)-path of Y. By (a), A,Y — P is P-factorable. Let P(1) =
(1,2, ..., (k-x+1)/2] and P(2) = [(k+3)/2, (k+5)/2, ..., k-(x-2)/2]. By the definition of
Y, P(1)UPUP(2) is a k-path. Again by (a), A1 X - P(1) - P(2) is P¢-factorable. 1

2.2.2 Lemma. (a) If Ak is even, and k > 3, then AKy has a P,-factorization.
(b) If Ak is odd, and k = 3, then AKjy - N, where N is a set of (k-1)/2

independent edges, has a Py-factorization.

{

11



Proof. The results follow immediately from the well-known facts that Ky has a Py-
factorization when k is even, and that Ky - N has a Py-factorization when k is odd.
(To prove (b) one also needs to observe that (when k is odd) every path of length k-1
in K is the union of two disjoint sets of (k-1)/2 independent edges;) For
completeness we now give the factorizations of Ky and Ky - N, where V(Ky) =

' V(g - N) = {1, 2, ..., k}. When k is even the paths are P(i) = [i, 1+, k-1+, 2+,
k-2, ..., k/242+, k/2-1+, k/2+1+i, k/2+i}, 1 £ i <k/2, and when k is odd they are
Qa4) = [i, 1H, k-1+i, 2+, k-2+, ..., (k-1)/2-1+, (k+1)/2+1+, (k-1)/2+i, (k+1)/2+i],
1< i < (k-1)/2. Note that we have the freedom to choose the near 1-factors in each
of the A copies of Ky so that they form | A/2] paths of length k-1 and X - 2L A/2] near

1-factors. When A is odd that near 1-factor is N. |

2.2.3 Lemma. Let Ty be a tree on k vertices and assume that AKy has a Ty-

factorization. Then AKyx - AF, where F is a 1-factor of Ky, has a Ty-factorization.

Proof. We need only consider the case A = 1. Let V(Kxx) = X U Y, where X = {x,
X2,..., Xk} and Y = {y1, y2,..., Yk}, and let V(Ky) = {1, 2,..., k}.

Assume Ky has a Tx-factorization. Let T be one of the Ty-factors in such a
factorization. In Ky x we define the Ti-factor {xiy;, X;y; : ij € E(T)}. Repeating for each
factor in the Ty-factorization of Ky we obtain a Tx-factorization of Ky x - F, where F =

{Xl}’l, X2Y 250009 XkYk}- i

Notice that by relabelling vertices in Lemma 2.2.3 the 1-factor F can be chosen

arbitrarily.

12



2.2.4 Lemma. Let k be odd.
(a) If k 2 3, Kk41 is the union of (k+1)/2 k-paths and a (k+3)/2-path.
(b) If k 2 5, then Ky is the union of (k+1)/2 Py-factors and one edge.

Proof. (a) Suppose V(Ky41) = {1, 2, ..., k+1}. Let §; = [ k+1+, 1+, k+, 2+, k+i-1,
’ 3+, ..., (k-1)/2+i, (k+3)/2+i ], where 0 <i < (k-1)/2. It is easy to see that the paths
Si, 0 <1 £ (k-1)/2, form a set of edge-disjoint k-paths. Furthermore, the remaining

edges of Kxi; comprises the (k+3)/2-path: [k+1, k, ..., (k+1)/2].

(b) Assume V(Kxx) = {uy, uy, ..., ux} U {vy, va, ..., vg}. Let k= 2x+1 and let
G* be the subgraph of Kyx41,2x+1 With edge set: {u;vit1, v, uivitie (1,2, ...,
2x+1}} U {ujvaxs24i, Vilax+2-i 1€ {2, ..., x}}. (Note that subscripts are reduced
modulo k.) First we are going to show that G* is the union of a Hamilton path and a

Py 41-factor.

When x = 2, the Hamilton path is {us, vs, uj, v1, Uz, V4, U3, v, Ug, v3] and the

Ps-factor is [uy, va, ua, v3, us] U [vi, us, va, ug, vs].

When x > 2, the Hamilton path is [Vx+1, Ux+2, Vxs Ux+1> Vx+2, Uxs Vx-1, Ux+3»
Va3 eees U3, V2, Ux, V2x, U2, V1, U1, V2xsl, Uzx+1] and the Payyy-factor is [ug, v2, uz,
V3, oy Uy, V1, Ux+1] U P, where P = [Vy, Udxt1, Vax, U2x-15 +eos Ux#S5s Vx+ds Uxs3s V425
Ux+2, Vx43s Ux+ds V455 -0 V2x-1, U2x, V2x+1] When x is even, and [v1, U2x+1, Vax, U2x-15

vees Uxdy V43, Ux42, Vx+2, Ux43, Vxads «oer V2x-1, U2x, V2x+1] When x is odd.

Now we show that Kax.1,2x+1 can be decomposed into two parts, so that one
has a Pyx41-factorization and the other is isomorphic to G*. It is easy to see that this

implies the claim of the lemma.
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Let V(Kox+1) = {0, 1, 2, ..., 2x}. The complete graph Kox.1 is the union of x

edge-disjoint Hamilton paths and a set of x independent edges which we will specify.

When x = 0 (mod 2), let the Hamilton paths be H; = [1+, x-+H, 2+, x-1+, ...,
(x/2)+i, (x/2)+1+i, oo, (3x/2)+1+i, 3x/2 + i, ..., 2x-1+, X+2+, 2X-H, x+1+i], where 0 <i

- £x-1, and the x independent edges be N = {(1+i)(x+1+i) : 0<i < x-1}.

When x = 1 (mod 2), let the Hamilton paths be H; = [1+i, x+i, 2+i, x-1+, 3+,
wey X+3)/2 +1, (x+1)/2 +1, o0, Bx+1)/2 + 1, (B3x+3)/2 +1, ..., 2x-1+i, x+2+, 2x+Hi,
x+1+i] where 0 <i < x-1, and the x independent edges be N = {(1+i)(x+1+i) : 0 <i <

x-1}.

We now let V(Kax+1,2x+1) = {Uee, U1, .o, U2x}U{Veo, V1, ..., V2x} and let G be
the subgraph of Koxs1,2x+1 induced by the edge-set ):_L_.Ji {upvg, uqvp : pq € H;j}, and G
be the subgraph induced by the edge-set {u,vg, ugvp: pg€ HoUN } U {uyv,:pe
{oo, 1, 2, ..., 2x} }. From the definition of G, we can see that G is isomorphic to G*,
where G* is the union of one Hamilton path and one Pa4.1-factor. We claim the Gj is
Pax+1-factorable since the subgraph of Koyy1,2x+1 induced by the edge-set {upvg, ugvp
: pq € H;} is a Pox41-factor. Finally, observing that deletion of the appropriate edge in

a Hamilton path of Kax,1.2x+1 Yields a Pyx4g-factor, the proof is completed. |

Notice that the single edge remaining in (b) of Lemma 2.2.4 can be chosen

arbitrarily.

2.2.5 Lemma. Let k be even and k 2 4. The graph Ky, is the union of k/2 k-paths

and a k-cycle.

Proof. Let V(Ki41) = {o0, 1, 2, ..., k}. We define k/2 k-paths to be
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So=[k, o, 1, k-1, 2, k-2, 3, ..., k/2-1, k/2+1], and

Si=[k/2 H, oo, 1+1, k-1+1, 2+ 1, k-2+ 1, 3+ 1, k-3+1, ..., k/2 -1+ 1, k/2 +1+],
where 1 <1 <k/2-1.

It is not difficult to verify that if we delete the k-cycle (1, 2, ..., k) from Ki+1,

k/2-1
~ then the remaining graph is R S;. &
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Chapter 3. Resolvable tree decompositions
3.1 Even tree factorizations of AK, and tree factorizations of 2uK,.

From Chapter 1, we know that necéssary conditions for Ty lg AK, aren=0
(mod k), Ak(n-1) = 0 (mod 2(k-1)) and the existence of integers xi, X2, ..., Xk, such
that x;d; + xod2 + ... + xpdy = A(n-1) and x; + X2 + ... + X = Ak(n-1)/(2(k-1)), where
(di, dy, ..., di) is the degree sequence of Tx. We believe that they are sufficient for all

trees and a goal of this chapter is to provide support for this belief.

We begin this section by considering the existence of tree factorizations of AK,
when A is even or the tree has even order. Corollaries to the main theorem of this
section provide complete answers for some interesting classes of trees. Thoughout, a

tree with k vertices will be denoted by Tk.

3.1.1 Definition. A double 1-factor of the graph AG, A 2 2, is determined by taking a

1-factor of G and giving each edge in that 1-factor multiplicity two.

We remark that the trees we consider in this chapter satisfy either Tx | Ky or
Tk | 2Ky. It is easy to check that in both cases the third necessary condition (as stated

above) is trivially satisfied when kA is even.

3.1.2 Theorem. Suppose that kA is even.
(1) If Ty | Kx, then T I AK,, if and only if n = 0 (mod k) and
Ak(n-1) = 0 (mod 2(k-1)).
(2) If Ty | 2Ky, then Ty Iz 2uK,, if and only if n =0 (mod k) and
pk(n-1) = 0 (mod k-1).

Proof. Before starting the proof, observe that the assumption Ty | Kx implies that k is

even. Let A* € {1, 2}. We show that if Ty | A¥*Ky, then for A =0 (mod A*),
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Ty lr AK,, if ahd only if n = 0 (mod k) and Ak(n-1) =0 (mod 2(k-1)). It is easy to see
that this statement implies both (1) and (2). The necessity of each of the conditions
can be established easily by applying counting arguments to vertices and edges. For
the sufficiency, we will show that Ty Iy AK;, where A = 0 (mod A*) by constructing a
compressible subgraph G of AK,, such that both Q(G) and AK,- G have a Tx-
factorization. Let n = kq. The given congruence conditions imply A(g-1) = 0 (mod
2(k-1)) when k is odd (then A must be even) and A(q-1) = 0 (mod k-1) when k is
even (since Ak(n-1) = Ak(kg-1) = Ak(k(g-1) +k-1)).

k
Let VOK,) = (G, j) : 1$i$q,1$j$k}=i§{Hi=ngj,where

Hi={G,j): 1<j<k}and V;={(i,j): 1 i< q}. We will use the fact that
AKp = M(Kg ® Ky). (See appendix for the definition of H® G.)

The proof of the theorem is divided into two parts depending on the parity of q.
Case 1: q even.

When q is even K, admits a 1-factorization {Fi, Fy, ..., Fg.1}. To each 1-
factdr F;, 1 £i< g-1, there corresponds in AK,, a subgraph which is the vertex disjoint
union of g/2 copies of AKy x. By Lemma 2.2.3, AKy  is the union of Ak/2 Ty-factors and
A 1-factors. Notice that when A is odd, A different 1-factors can be used, and if A is
even the A/2 double 1-factors can be chosen independently. Furthermore, each of the
subgraphs AKy of AK, associated with the vertices of K has a Ty-factorization
consisting of Ak/2 Ty-factors. Removing these (q-1)Ak/2 + Ak/2 = Akq/2 Tx-factors

from AK, leaves a subgraph which we will denote by R.

Notice that R is not uniquely determined in the sense that we have

considerable freedom in arranging the 1-factors remaining in each subgraph

KHi,Hj, 1 <i<j < q. We need to show that they can be chosen so as to produce a
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subgraph R which has a Ty-factorization. This is done by choosing R so that Qv(R)

has a Ty-factorization.

We first consider the case when k is odd. By assumption Tk | 2K. In R there
are A/2 double 1-factors in KHi,HJ.. Since X(q—l) = 0 (mod 2(k-1)) and k is odd, then
A(g-1)/2 is even and so (as q is even) A =0 (mod 4). It is not difficult to see that R is

‘compressible and Qu(R) = (A/2)(2K,) and (A/2)Kq has a Hamilton cycle factorization
with cycles W1, W, ..., Waq.1y4. Each edge ij of Wy corresponds to a double 1-factor
in Ky, H; Since k is odd, Ky also has a Hamilton cycle factorization with cycles Y,
Y2, ..., Yk-1y2. We show that for a given Y;, we can use any W; to construct a
subgraph of R with 2Y; as its V-quotient. Assuming this it follows that for any fixed
set of (k-1)/2 Hamilton cycles in (A/2)Kg, we can construct a subgraph of R with
Qv(R) = 2Ky.

Without loss of generality, assume W; = (1, 2, ..., q) and Y; = (y1, y2, - YK)-

In Ky _H,,;. 1< s < q, we choose the double 1-factor {(s, y1)(s+1, y2), (s, y1)(s+1, y2),

(S, y2)(S+ls y3)s (S, Y2)(S+1, )’3), ceey (S, Yk-l)(s"'l, Yk),(s, Yk-l)(s"‘l, Yk)’ (S, Yk)(S+1,
y1)s (8, Y)(s+1, y1),}. Let this subgraph of R be R'. Then there is a double 1-factor

between Vyj and Vyj +1» Where 1 <£j < k. Therefore R' is compressible and has 2Y; as

its V-quotient.

Since A(q-1) = 0 (mod 2(k-1)), we know that A(q-1)/4 = 0 (mod (k-1)/2).
Assume A(g-1)/4 = m(k-1)/2 and construct R with Qy(R) = 2mKy which, by
assumption, is Ty-factorable. Note that the édges of AK;-R contribute Akq/2 T-
factors and those of R yield a further Ak(g-1)/(2(k-1)) for a total of
Ak(n-1)/(2(k-1)) Tx-factors. So we have all the Ty-factors.

. We now consider the case when k is even. The graph Kx admits a

1-factorization with 1-factors fy, f, ..., fi.1. (Recall that (Fy, Fy, ..., Fgq} isa
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1-factorization of Kg.) We will show that for f;, 1 Si < k-1, we can use any Fj,
1< j £ -1, to construct a subgraph of R which has f; as its V-quotient. We will
then use k-1 of the 1-factors Fj, 1 < j < g-1, to construct a subgraph of R such
that Qy(R) = K.

Without loss of generality, assume f; = {y1y2, y3y4, ..., Yk-1yx} and Fj =
{12, 34, ..., (g-1)q}. In (Hos.1, Hos), choose the 1-factor {(2s-1, y1)(2s, y2),

(2s-1, y2)(2s, y1), (2s-1, y3)(2s, ya), (2s-1, y4), (2s, y3), ..., (25-1, yK1)(2s, yu),
(2s-1, yK)(2s, yk-1)}, where s € { 1, 2, ..., g/2}. Let this subgraph of R be R'. There is

a 1-factor between Vy;and Vy. ;. where 1 < j <k, and therefore R' is compressible

and Qy(R") = f.

When A* = 1, there are A 1-factors of KH,H in R which can be chosen

independently. (Notice that AK is the union of A(q-1) edge disjoint 1-factors.) Since
A(g-1) = 0 (mod k-1), let m = A(q-1)/(k-1) and choose R such that Qy(R) = mKy

which is Ty-factorable.

When A* =2, there are A/2 double 1-factors of KHi,H,- each of which can be

choosen independently. From the condition that A(q-1) = 0 (mod (k-1)) and the fact
that k and A are both even we have A(g-1)/2 = 0 (mod k-1). Let m =
A(g-1)/(2(k-1)). It is not difficult to see that we can choose R such that

Qv(R) = 2mK.

In either case we obtain a Ty-factorization of AK, with Ak(n-1)/(2(k-1))

Ty-factors.
Case 2: qis odd

In this case Kq admits a near 1-factorization with near 1-factors NFy, NFy, ...,

NFq. To each NF;, there corresponds, in AK;, a subgraph which is the vertex-disjoint
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union of (q-l)/Z copies of AKyx and one copy of AKy. By Lemma 2.2.3 and the
assumption that Ty Ir AKy, each near 1-factor produces Ak/2 Ty-factors. Removing

these Akq/2 Ty-factors from AKy, leaves a subgraph S consisting of A 1-factors in

K, 1, where 1<i < j < q. We will show that S can be chosen so that it has a Ty-

factorization. Again we consider separately the cases k odd and k even.

If k is odd, then A is even and both 0»/2)(2K<1) (which we can think of as the
H-quotient of R) and Ky have Hamilton cycle factorizations. We use the same method

as in the case when q was even to achieve a factorization.

If k is even, then Ky admits a 1-factorization with 1-factors fi, fs, ..., fi_;. Since
q is odd, K4 has a Hamilton cycle decomposition. We show that for a given f;, we can
use any one of the Hamilton cycles, say C, in this decomposition of Kg, say H, to
construct a subgraph of S such that its V-quotient is 2f;. Then we can use the same

method as before to construct a subgraph of S with quotient 2Kj.

Without loss of generality, assume that f; = {y;y2, ¥3¥4, ---» Yk-1¥k} and

C=(1,2,..,q). Wechoose in Ky _g,,, the 1-factor {(s, y1)(s+1, y2),

8+1
(s, y2)(s+1, y1), (s, y3)(s+1, ya), (5, ya)(s+1,y3),..., (S, Yk-1)(5+1, ¥),
(S, yo)(s+1, yx-1)}, where 1 <s < q. Let this subgraph of S be S'. Then the induced

graph on vertex set Vyj v Vyj +1» Where 1 £j <k, is a 2-factor. Therefore S'is

compressible and Qy(S') = 2f; .

When A* = 1, M(g-1) = 0 (mod k-1) is equivalent to A(g-1)
= 0 (mod 2(k-1)) as k is even. In this case there are A 1-factors of KHi,H,- in S which
can be chosen independently. (Notice that AK, is the union of A(q-1)/2 Hamilton
cycles.) Assume 2m(k-1) = A(g-1). Then we can construct S such that Qv(S) =
2mKy. (Note that for each Hamilton cycle in Ky, we obtain in Qy(S) a copy of 2f; for

some i.) By assumption Tk | 2mKj.
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When A* =2, there are A/2 double 1-factors of Ky, i, in S which can be chosen
independently. Notice that (A/2)Kg is the union of A(g-1)/4 Hamilton cycles. It is
easy to see that as k, A and g-1 are even, l(q-l) = 0 (mod k-1) implies A(q-1) =0
(mod 4(k-1)). Assuming 4m(k-1) = A(g-1), we can construct an S éuch that Qvy(S) =
4mKy which by assumption is Tx-factorable. (Notice that in this case, for each

Hamilton cycle in Kg, we obtain in Qv(S) a copy of 4f; for some i.) |

We now give some classes of trees for which either we have a tree-

factorization of Ky or of 2Kj.

3.1.3 Corollary: When k is even, Py Ir AK,, if and only if n = 0 (mod k) and
Ak(n-1) =0 (mod 2(k-1)).

Proof. We know that when k is even, Ky has a P-decomposition. Hence the claim

follows immediately from Theorem 3.1.2(a). |

There are also families of trees Ty, k even, for which Ty | K. Several
examples are given in [23]. (These include trees with a certain symmetry property.)
Hence for these trees we have necessary and sufficient conditions for the existence of

tree factorizations of AK,,.

When A is even we can obtain necessary and sufficient conditions for tree
factorizations of AKj, for another family of trees; namely graceful trees, which we have

already defined in Chapter 1.

3.1.4 Corollary: Let Ty be a graceful tree. Then Ty Ig 2UK,, if and only if n =0 (mod k)
and pk(n-1) =0 (mod k-1).

Proof. Since Ty is graceful, T IR 2K (a short proof can be found in [26]). Hence the

claim follows immediately from Theorem 3.1.2(b). &
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3.1.5 Corollary: When A is even, Py Ig AK,, if and only if n = 0 (mod k) and
Ak(n-1) = 0 (mod 2(k-1)).

Proof. We know that Py is a graceful tree [12]. Hence the claim follows immediately

from Corollary 3.1.4. 1

We complete this section by looking briefly at a directed analogue of the tree

factorizations. Let Ky be the complete symmetric digraph on n vertices. Let di-Py be a
directed path of length k-1, i-K; x 1 be a directed star with all arcs directed towards
the centre and 0-K] k.1 be a directed star with all arcs directed away from the centre.

Let A = {di-Py, i-K;1 k-1, 0-Kix1: k=2, 3, )

It is not difficult to see that the techniques used above can be used to prove the

following results.

3.1.6 Theorem: Let DTy be an oriented tree obtained by assigning an orientation to

each edge of Tyx. Under the assumption the DT | Ki, DTy I AK} if and only if
n =0 (mod k) and Ak(n-1) =0 (mod k-1).

3.1.7 Corollary: Let X € A- {di-P3, di-P5} and k = IV(X)l. Then X I AKY ifand
only if n = 0 (mod k) and Ak(n-1) = 0 (mod k-1).

Proof. It is easy to see that i-Kj .| K"f( and o-Kjy1! K"f(, and that when k is even,
di-Py | K"f( When k is odd, Tillson [35] showed that di-Py | K"i( providek 2 7. Itis
easy to show that di-Py does not factor K"f(, k € {3, 5}. Therefore the claim follows

immediately from Theorem 3.1.6. 1
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3.2 Odd tree factorizations of Kn

As before, Tk denotes a tree with k vertices. In this section, we give necesary
and sufficient conditions for K, to have a Ty-factorization when k is odd and Ty has
certain properties. Recall that necessary conditions for the existence of a Ty-
factorization of K, are n = 0 (mod k) and n =1 (mod 2(k-1)). Letting n =km, we see
that as k is odd, m must be odd as well. We will show that under the assumptions that
Tk | 2Ky, where k is odd and T is bipartite spreadable (which we define next), we can
construct Ty-factorizations of Ky for all admissible m. But first we introduce a

definition.

3.2.1 Definition. Let Ty be a tree on k vertices with V(Ty) = {1, 2, ..., k}. We call Ty
bipartite spreadable if for some i, 1 <i <k, Ty has bipartite representation: {a;, ay, ...,
a;}U{bis1, bis2, .., b} = {1, 2, ..., k}, so that {b, - ag (mod k): agbp, € E(Ty)} = {1, 2,
. k-1}.

Let m = 2t+1 and V(K1) = {e0, 1, 2, ..., 2t}. Let Z; be the Hamilton cycle of
Ko+ described by Z; = (oo, i+1, i+2, i+2t, 143, i+2t-1, ..., i+t, i+t+2, i+t+1), 0 <i < t-1,
where calculations are modulo 2t on the residues 1, 2, ..., 2t. We define 3 = {Zg, Z, ...,
Z.1} and observe that 3 is a Hamilton cycle factorization of Ky¢,;. Finally, for
convenience we write Z; = (ag, a1,i ..., 21,i) Where ag; = oo, azp.1; = i+2t+2-p and azp

=i+p+l,1<p<t.

2s+1 -1
Let k = 2s+1 and V(Ky) =js=ul) Hj= (:C{ Vi) U Ve where V; = {(1, i), 2, i), ...,

(2s+1, 1)}, forie {eo, 1, ..., m-1}, and H; = {(j, ), G, 1), G, 2), ..., , m-1)} forj e {1, 2,
e 28+1}. Let Z = (xq, X2, ..., Xm) be an m-cycle of K,,. We define M(Z), a subgraph of
K,, to be —Kzsﬂ ® Z, and hence (u, v)(p, qQ) € E(M(2)) if and only if {v, q} = {xi, X;+1)

for some i. Clearly, we can view K;, as the union of m vertex-disjoint copies of Ky, on
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the vertex-sets V.,,,, Vi, ..., V.1, and the (m-1)/2 edge-disjoint subgraphs isomorphic
to M(Z) = Ko ® Z;, where Z; € 3. We now present several technical lemmas which
are essential for the proof of the main theorem. The first of our lemmas investigates

properties of the subgraph M(Z).

3.2.2 Lemma. Let Ty, be a bipartite spreadable tree on 2s+1 vertices. Let Z be an
m-cycle of Ky,. Then M(Z), is the edge-disjoint union of 2s+1 Tog+1-factors and a
subgraph S which consists of 2s+1 edge-disjoint m-cycles. If m = 0 (mod 2s+1), S can

be chosen to be a compressible graph such that Qu(S) = Cos+1.

Proof. Let Z = (xo, X1, ..., Xm-1)- By the definition of bipartite spreadable, Tys+1 has
bipartite representation (A', B"), where A'NnB'=@ and A' UB'={1, 2, ..., 2s+1}.

-1
Then 2s+1 edge-disjoint Tos4;-factors of M(Z) are G; = j&;JO {(ar +1, xj)(be + 1, Xj41)
: 2
a, € A',b,e B and a,b; € E(T241)}, 0 <i<2s. The edges of S = M(Z) - iE-jO G; are
25+1
made up of 2s+1 edge-disjoint m-cycles; as S = Ql {(G, x0), (4, X1), ..., (s Xm-1))}. If m

2s+1
= 0 (mod 2s+1), we can relabel the vertices of M(Z) so that S = f_ul {(q, xg), (i+1, x3),

weo (i+m-1, xn.1))}. Then S is a compressible graph and Qg(S) = Cps41. |

We wish to use a similar idea in the case when m # 0 (mod 2s+1). To do this

we need the notion of a y-variation cycle.

3.2.3 Definition. Let V(K,,) be defined as above, where n = mk. An m-cycle C of K, is a
y-variation cycle if

D VO NV;=3,ie {o,1,..,m-1}, and

(2) if C* is the directed cycle obtained from C, then C* has y A-arcs and m-y B-
arcs, or m-y A-arcs and y B-arcs, where ((x1, y1), (X2, y2)) is an A-arc if x; = x1+1,
and a B-arc if x5 = x1-1. (Note that the first coordinate is reduced to modulo k to the

residues 1, 2, ..., k.)
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3.2.4 Remark: Assume m # 0 (mod 2s+1), m is odd, and there exists a positive even
integer y such that m-2y =0 (mod 2s+1) and m - 2y 2 0. Then we can construct a y-

variation m-cycle in M(Z), where Z is an m-cycle of Ky,. For example, if Z = (oo, 1, 2,
wy m-1), then C = ((1, o), (2, 1), ..., (y, y-1), (y+1, y), (¥, y+1), (y§l, y+2), ..y

(3, m-2), (2, m-1)) is a y-variation m-cycle. Thus we need to know when a suitable

value for y exists.
The next lemma shows that if m 2 6s+1, such y always exists.

3.2.5 Lemma. Letm 2 6s+1 and m is odd. Then there exists a positive even integer y

such that m - 2y = 0 (mod 2s+1) and 0 <y < 4s.

Proof. First we show that there exists a positive even integer y such that m - 2y =0
(mod 2s+1). If m= 0 (mod 2s+1) it suffices to choose y = 0. So we assume m # 0
(mod 2s+1). If m - (2s+1) = 0 (mod 4), then we put y = (m-(2s+1))/2. Otherwise,

m - 3(2s+1) =0 (mod 4) and y = (m - 3(2s+1))/2. We now show that y can be chosen
between 0 and 4s. Observe first that y # 0 (mod 2s+1). If y > 4s, then write y =
(4s+2)p+q, where 0 < q < 4s. Since y is even q must also be even and hence we can

replacey by q. 1

3.2.6 Lemma. Let Ty, be a bipartite spreadable tree on 2s+1 vertices. Assume m # 0
(mod 2s+1), and let y 2 4 be an even integer such that m-2y = 0 (mod 2s+1), m - 2y 2
0 and y < 4s. Then M(Zo) U M(Z;) U M(Zyp) is the edge-disjoint union of 3(2s+1)
Tos+1-factors and a subgraph S where Qu(S) = 3Cys41.

Proof. Using Remark 3.2.4, we consi:ruct three y-variation m-cycles in K,

corresponding to Zy, Z; and Zyp, respectively, as follows:
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B1 = ((1, ap,0), (2, a1,0); «.s (¥> 2y.1,0)s (y+1, ay,0), (¥, ay+1,0), (¥-1, ay+2,0); -.. ,
(3, am-2,0), 2, am-1,0)),

B2 =((1, ay-21), (2, ay-1,1), .. 5 (¥, 2y.3,1), (y+1, azy-2,1), (¥, a2y-1,1),
(5-1, 82y.1)s o » (3o Bya)s 25 2y3.0)), |

B3 = ((1, ao,ys2), (2s+1, a1,y2), (25, az,y2), ... » (25-y43, ay.1,9/2)s
(2s-y+2, ayyp), (2s-y+3, ayi1,y2), (25-y+4, ays2,y2)s .- 5 (25, am.2,yp2),

(2s+1, am.1,y/2))-

By Lemma 3.2.2, we know that M(Zg) is the union of 2s+1 To,i-factors and a
subgraph S;, where S; is a collection of 2s+1 edge-disjoint m-cycles. We now use B; to

determine S, and define

2s
E(S1) = & {(utj, v)(w+j, 2): (u,v)(w,z) € E(By)}.

Similarly we can define S; and S3 corresponding to B, and B3, respectively:

E(S2) = j§ {(u+j, v)(w+j, 2): (u,v)(w,z) € E(B,)} and

E(S3) = j:kgs {(ut], v(w+j, 2): (u,viw,z) € E(B3)}.

We delete the 3(2s+1) Tzs+1-factors from M(Zo) U M(Z1) U M(Zyy2) and what
remains is the subgraph S which consists of the 3m(2s+1) edges of Sy, S and S3. We
will show that the subgraph of § with vertex-set H; U H; is 3-regular if j = i+1 or j=i-1,
and empty otherwise. From this it follows that S is compressible and then

Qu(S) = 3C11.

By the definition of S;, 1 <i < 3, we see there is no edge in S from H; to H; if j #
i+l orj# i-1. Now we consider the subgraph of S with vertex-set H;U H;y1, 1 i <

2s+1, and determine the degree of vertices (i, j) and (i+1, j) where j € {e, 1, ..., m-1}.
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We will denote by degsj(v) the degree of vertex v in H; U H;,;, which is contributed

ffomSj,lst3.

degg, ((i, ay,0)) = degs, ((i+1, ap,0)) =0
degg, (i, ag,0)) = degg, ((i+1, ay,0)) =2
degs, (G, a;,0)) = degg, ((i+1, 3;0) =1 ifj=0,y.

degs,((i, azy-2,1)) = degs,((i+1, ay21)) =0
degs,((, ay-2,1)) = degg,((i+1, azy-21)) =2
degs, (i, a;,1)) = degg,((+1, a;,)) =1 if j# y-2, 2y-2.

degg,((, a0,yp)) = degs,((i+1, ay,ypn)) =0
degg,((i, ay,yp2)) = degs,((i+1, ag,y2)) =2
degg, (G, ajyn)) = degs,((i+1, ajyp)) =1 ifj=0,y.

Recall that we defined ago = agy2 =0, ayp=2ay21 = 1+ y/2 and azy 21 = ayyp=

y+1. Hence degg((i, j)) = degg((i+1, j)) =3, where j € {ee, 1, ... , m-1}. Therefore

Qu(S) is indeed a (2s+1)-cycle with multiplicity 3. This completes the proof. I

Notice that M(Zp) U M(Z;) U M(Zyp) = M(Z) U M(Zi11)L M(Ziyp2),
where i is any positive integer. Also, by relabelling i necessary, we can assume Cogig

=(1, 2, ..., 2s+1).

3.2.7 Lemma. Let Ty, be a bipartite spreadable tree on 2s+1 vertices. If m = 6s+1,
then M(Zp) U M(Z;) U M(Zy;) is the edge-disjoint union of 3(2s+1) Tos4;-factors and

a compressible subgraph S where Qu(S) = 3Cys41.

Proof. Observe that 6s+1 - 2(2s) = 0 (mod 2s+1) and so by Remark 3.2.4,
corresponding to Zy, Zs and Zy;, respectively, we can construct three y variation m-

cycles By, By, and B3 in K;,, where
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B1 = ((1, a0,0); (2, a1,0), ---» (28, 225.1,0), (251, az4,0), (25, a24+1,0),
(25-1, a2542,0)5 - » (3, am-2,0) (2, am-1,0))s

B2 = ((1, a1,6), (2, 82,5), - 5 (25, 825,6), (25+1, A2541,6), (25, 2542,5),
@51, 82643,8)s - » (3» Bm1.0)s (20 B0,5)), and |

B3 = ((1, a0,26), (2541, a1,25), (25, 2,26); --- 5 (3, A45,25)> (2, A4s+1,25),

(39 a4s+2,2s)y (4, a4$+3,2s)a LAL N ] (289 am-2,2s), (25+19 am-1,2s))'

By Lemma 3.2.2, we know that we can delete 3(2s+1) Ta,1-factors from M(Zg)
U M(Zs) U M(Zy) and, if we call the remaining subgraph S and note that agp = ag s =
oo, a2:0= a1,s = 1+ s and as41 5 = a4541,2s = 1, then, as in Lemma 3.2.6 we can show
that the subgraph of S with bipartition (H;, H;) is 3-regular if j =i+1 or j = i-1, and

empty otherwise. From this it follows that S is compressible and Qu(S) = 3Cy41. |

Again note that by suitably relabelling we can choose Cyg,; to be an arbitrarily

(2s+1)-cycle in Kagyg.

Observe that in Lemma 3.2.6, we require y =2 4. However, in the proof of the
main theorem, we will need a similar result for y = 2. The following lemma serves this

purpose.

3.2.8 Lemma. Let Ty be a bipartite spreadable tree oh 2s+1 vertices. If m-4 =0
(mod 2s+1), then M(Zp) U M(Z) U M(Z,) is the edge-disjoint union of 3(2s+1)

Tos+1-factors and a subgraph S where Qu(S) = 3Cys41.

Proof. Observe that agj = ag2 =e°, a40= a2 =3 and ag o = a32=4. We use the

same construction as in Lemmas 3.2.6 and 3.2.7 to achieve the desired factorization. il

3.2.9 Lemma. Let Ty be a bipartite spreadable tree on 2s+1 vertices. Assume m 2

6s+5. Then both M(Zp) U M(Z,;) and M(Zp) U M(Z,) are the edge-disjoint union of
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2(2s+1) Tgs+1;factors and subgraphs S and ', respectively, where Qu(S) = Qu(S") =
2Cas41.

Proof. Observe that a; o =a3,; =1 and a2j+1,0 = 43,1 =M - if 1 £2j+1 <m-4 (or

0 <2j< m-5). Let y be a positive even integer such thatm -2y =0 ‘(mod 2s+1) and

0 <y < 4s; from which it follows that 0 <y < m-5. According to Remark 3.2.4,
corresponding to Zy and Z; respectively, we construct two y-variation m-cycles B; and

B, in K, where

BI = ((19 al,())a (2, 8.2,()), eeey (Ya ay.O), (Y"‘la ay+1,0)$ (Y, ay+2,0)s see s (39 am-l,()),
(2, ag,0)) and
B2 = ((1’ a3,1)’ (28+19 a4,1)9 (25’ a5,1)9 see g (25‘y+3, ay+2,l)a

(25-y+2, ay43,1), (25-y+3, ay44,1), ..., (2s, a1,1), (2s+1, az1)).

Using Lemma 3.2.2, we know that we can delete 2(2s+1) Tys+1-factors from

M(Zp) U M(Z,) such that the remaining graph is S = S; U S,, where

2s
E(Sy) = j-_—k(J) {(u+j, v)(W+j, z): (u,v)(w,z) € E(B;)} and

2s
E(Sy) = i~ {(u+j, v)(w+], 2): (u,v)(w,z) € E(By)}.

Arguing as in Lemma 3.2.6, we can show that the subgraph of S with bipartition
(Hj, Hj) is 2-regular if i = j+1 or i = j-1, and empty otherwise. From this it follows that S

is compressible and Qu(S) = 2Cas+1.

Similarly if we consider M(Zo) U M(Zp), then aj0=as2=1and ag10 =
azjs5,2 = m-j if 0 < 2j < m-7. By using the same technique as above we can show that
M(Zy) U M(Z,) is the union of 2(2s+1) edge-disjoint Tog.q-factors and a subgraph S'
where Qu(S') = 2Cas41. |

We are now ready to state and prove the main theorem of this section.
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3.2.10 Theorem. Let Ty, be a bipartite spreadable tree on 2s+1 vertices so that

Tas+1 | 2Kos41. Then Tagyg |k Ky if and only if n = 0 (mod 2s+1) and n = 1 (mod 4s).
Proof. The necessity of the conditions is obvious. We now show their sufficiency.

Let n = (2s+1)m. From the second of the necessary conditions we can show

that m = 4sp+2s+1 for some positive integer p. Let p = (2s+1)q+, 0 €1 < 2s.

If i = 0, then m = (2s+1)(4sq+1) and n = (2s+1)2(4sq+1). Let S = (Z, ...,
Zm-3)12} be as defined in the beginning of this section. As m =0 (mod 2s+1), it
follows from Lemma 3.2.2 that M(Z;) is the edge-disjoint union of 2s+1 Ty, -factors
and a subgraph §; with Q(S;) = Cas+1, 0 £ j £ (m-3)/2. Thus in K;, we obtain
(2s+1)(m-1)/2 Tgys4+1-factors. The subgraphs S;, 0 < j < (m-3)/2, can be chosen so
that QH((n;\jo) RSJ-) = (4sq+2q+1)Kos41 as each Cygyq can be chosen independently. On

deleting those (2s+1)(m-1)/2 Tas41-factors, the subgraph remaining in K; is the union
(m-3)12
of ng S; and m vertex-disjoint copies of K41 (on the vertex sets Vi, Vg, ..., V).

The H-quotient of this subgraph is 2(2sq+q+1)Kys4+1 which by assumption is Tyg.1-
factorable. By Lemma 2.1.4, we have a Tas4;-factorization of K,,. (Note that the total

number of Tag1-factors is (2s+1)(2sq+q+1) + (2s+1)(m-1)/2 = (2s+1)(n-1)/(4s).)

If i # 0, then m = 4s(2s+1)q+4si+2s+1 = 2t+1. If {0, 1, ..., t-1} can be

partitioned into s 3-sets Ay, u =1, 2, ..., s, and (t-3s)/2 2-sets By, v=1, 2, ...,
(t-38)/2, such that jéJA M(Z;) is the union of 3(2s+1) Tos,;-factors and a subgraph

with H-quotient 3Cy;4, and j& M(Z;) is the union of 2(2s+1) Tos,1-factors and a

subgraph with H-quotient 2Cp;4, then we can achieve the desired factorizations as
follows. Arrange the s H-quotients 3Cps41 S0 that their union is 3Kys,1. By including

the edges of the Vj, 1 <j < m, we have a subgraph with H-quotient 4Ks.,;. Since (t-
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38)2 = s((2s+i)q+i-1), we can arrange the (t-3s)/2 copies of 2Cas41 so that their

union is 2((2s+1)q + i-1)Kosy41. Since Togyg lr 2Kos41, we have a Togyg-factorization.

The remainder of the proof will be spent on showing how to partition 3. For
convenience, we define a triplet X to be a 3-set of integers such that j& M(Z)) is the

union of 2s+1 Tys41-factors and a subgraph with H-quotient 3Cy;541 and define a
doublet Y to be a pair of integers such that J& M(Z;) is the union of 2s+1 Tas41-

factors and a subgraph with H-quotient 2Cps41. Let Ik = {0, 1, 2, .., x-1}. All we
need to show is that I,.; can be partitioned into s triplets and (t-3s)/2 doublets. We

first deal with the case when q # 0.
Case 1. q = 0.

When i is odd, y = 2s-i+1 is a positive even integer solution of m-2y = 0 (mod
2s+1). Clearly m # 0 (mod 2s+1) and m 2 2y. Assume first that y 2 4. Then by
Lemma 3.2.6, {0, 1, s - (i-1)/2} is a triplet. We will locate s disjoint triplets in I;_;

such that on removing them, the remainder can be partitioned into (t-3s)/2 doublets.

When y/2 = s - (i-1)/2 is even and greater than 2, then {0, 1, ..., s - (i-1)/2} =
{0, 1, s - (i-1)/2} U X, where X = {2, 3}Uu{4, 5}u...u{s - (i+3)/2, s - (i+1)/2}. By
Lemma 3.2.9, X is partitioned into doublets. Now as s(s-(i-3)/2 ) <t =
2s(2s+1)q+2si+s, this implies that we can partition I;.; into s triplets and (t-3s)/2

doublets.

When y/2 = s - (i-1)/2 is odd, then {0, 1, ..., s - (-1)/2, s - (i-3)2} =
{0, 1, s - (i-1)/2} U X, where X = {2, 3}u{4, 5}u...u{s - (i+5)/2, s - (1I+3)2}v
{s - (i+1)/2, s - (i-3)/2} and by applying Lemma 3.2.9, this, together with

s(s-(i-3)/2 +1)) < t, implies a similar conclusion to that above.
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When y = 2, we use Lemma 3.2.8 instead of Lemma 3.2.6 which means that we

will group (0, 1, 2} instead of {0, 1, s-(i-1)/2}, since {0, 1, 2} is a triplet in this case.

If i is even, then y = 4s+2-i is a positive even integer solution of m-2y = 0
(mod 2s+1) and m - 2y > 0. We can use the same method as when i is odd to achieve

the partition.
Case 2. q = 0.

The method used in Case 1 will not work here since t = s(2i+1) is now
considerably smaller. But using Lemmas 3.2.6- 3.2.9 and a new strategy, we can still
achieve the required partition. We know m = 4si+2s+1 and consider separately the

cases i odd and i even.
Suppose that i is odd. When i = 1, then m = 6s+1, Kgs41 has 3s Hamilton
-1
cycles, and {0, 1, ..., 3s-1} = jzzJo{j,j+s, j+2s}. By Lemma 3.2.7, {j, s+j, 2s+j}isa
triplet.
When 3 <i < 2s-5, it follows that m 2> 2(2s +1-i) and 2s +1-i is a positive

even integer solution of m-2y = 0 (mod 2s+1). By Lemma 3.2.6, {0, 1, s - (i-1)/2} is

a triplet.

Suppose first that s - (i-1)/2 even. Let S = {0, 2, 4, ..., s- (i+3)/2} and R =
Insi " N {j, 1+j, s - (i-1)/2 +j}. (The set R is obtained by removing (s - (i-1)/2)/2

disjoint triplets from I ;.)

If IRI is even, then Ips; can be partitioned into (s - (i-1)/2)/2 triplets and
(s - (i+3)/2)/4 doublets. It is easy to see that i(2s-i) < s(2i+1)=t. Also
i(s-(i-1)/2)-2s = ((2s-i)(i-2)-1)/2 2(5(i-2)-1)/2 = 2i-5 > 0, which implies that
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i(s- (i-1)/2)/2 (>. s. Therefore, as i(2s-i) < t, we can Write

L.l = Ips.i U (Isit+ (2s-1)) U ... U (Ipg; + (-1)(2s-i)) U Lii2s-i)+i(2s-i). We can
locate (s-(i-1)/2)/2 triplets in each Iy j+j(2s-i+1), 0 < j < i-1, and can always find s
disjoint triplets as i(s-(i-1)/2)/2 > s. As IRl is even, the remainder of I;.; can be
partitioned into doublets, ( to see this note we can partition the remainder into pairs of

“the form {x, x+1} or {x, x+2}; and by Lemma 3.2.9 they are doublets.

If IRI is odd, consider Iy i+ in which we can locate (s - (i-1)/2)/2 disjoint
triplets as before. Then R'= I iy g N {j, 14j, s - (i-1)/2 +j} and IR'l is even. Thus
R' can be partitioned into doublets of the type described in Lemma 3.2.9. In this case

we also require i(2s-i+1) < s(2i+1) = t which is obviously true.

On the other hand, if s-(i-1)/2isodd let S = {0, 2, ..., s - (i+5)/2} and R =

Ins i1 -.ké {j, 14j, s - (i-1)/2 +j}. This shows that we can locate (s - (i+1)/2)/2
j€

triplets in I5 ;1. If IRl is even, then Ipg ;. can be partitioned into (s - (i+1)/2)/2
triplets and (s - (i+1)/2)/4 doublets, where the pairs are chosen according to Lemma
3.2.9. Since i(2s-i-1) + s-(i-3)/2 < s(2i+1) = t, we can write I;_; as in the last case.
Thus we can choose i(s - (i+1)/2)/2 +1 triplets in I;;. All that remains is to show that
i(s-(i+1)/2)/2 +1 2 s. This follows as i(s-(i+1)/2) - 2(s-1) = ((2s-1)({i-2) - (3i-4))/2
2 (5G-2) - (3i-4))/2 = 1-320. (Recall that 3 £i £ 2s-5.) If IRl is odd, then
proceed as before but use Iy ; instead of Ips.;.;. Again we need to show i(2s-i) + s-

(i-3)/2 < s(2i+1) =t and i(s-(i+1)/2)/2 +12= s; both of which are easily verified.
This leaves only two possibilities for odd i.

When i = 2s-3, m = 852-10s+1. Then m - 8 = 0 (mod 2s+1) (y=4) and by
Lemma 3.2.6, {j, 1+j, 2+j} is a triplet.
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When i = 2s-1, m = 8s2-2s+1. Then m - 4 = 0 (mod 2s+1) and by Lemma
3.2.8, {j, 1+j, 2+j} is a triplet.

Finally, we consider the case i even.

Suppose 2 <i < 2s. Theny = 4s-i+2 is a positive even integer solution of m -
2y = 0 (mod 2s+1), m 2 2y and m = 4si+2s+1. By Lemma 3.2.6, {0, 1, 2s+1 - i/2} is a
triplet.

Suppose first that 2s+1 - i/2iseven. LetS=(0,2,..,2s-1-1i/2} andR =
Tgsie1 - ké {j, 1+j, 2s +1- i/2 +j}, noting that we have removed (2s+1 - i/2)/2 disjoint
j€

triplets from Isg 1.

If [Rl is even, then R can be partitioned into doublets. Clearly (4s+1-i)(i/2) <
s(2i+1) =tand (i/2)(2s+1 - i/2) - 2s = (2s - i/2)(i/2 -1) 2 0, when 2 <i < 2s, which
implies (i/2)(2s+1-i/2)/2 2 s. Thus we can locate s disjoint triplets in I;; and the
remainder can be partitioned into doublets. If IRl is odd, we use R' = I5.i42 -

Lé {j, 14j, 2s +1- i/2 +j}. Then to complete the proof we require (4k+2-i)i/2 < s(2i+1)
j€

=t and (i/2)(2s+1-1/2)/2 2 s, when 2 <i < 2s. Both inequalities can be verified easily.

Suppose then that 2s+1- i/2 is odd (which implies i =2 4). Let S = {0, 2, ...,
25 -2 -if2} and R = Iy - N {j, 1+j, 2s+1- i/2 +j}. If IRl is even, then as before we
JE

only need to show (4s-1)i/2 < s(2i+1)=t and (i/2)(s-i/4) = s, when 4 £i< 2s. As
i(s - 1/4) - 2s = (i/2 -1)(2s - i/2) - i/2 2 0, when i 24, the second follows. If IRl is odd,
then we consider l4s.;41 and require the inqualities (4s-i+1)i/2 < s(2i+1) =t and

(i/2)(s-i/4) 2 s, where 2 <1i < 2s; which clearly hold.

This completes the proof. Il
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There are some interesting trees which are bipartite spreadable and also have

the property Tx | 2Ky, for example, paths and stars.

3.2.11 Corollary. If k is odd, then Py Ig K, if and only if n = 0 (mod k) and
n=1 (mod 2(k-1)).

Proof. It is obvious that Py is bipartite spreadable and Py | 2Ky. Hence the claim

follows immediately from Theorem 3.2.10. §

3.2.12 Corollary. If k is odd, then Kj k. [r Kj, if and only if n =0 (mod k) and
n =1 (mod 2(k-1)).

Proof. It is obvious that K; x.; is bipartite spreadable and K;j k-1 | 2Ky. Hence the

claim follows immediately from Theorem 3.2.10. 1

We know that when k is even, there does not exist n such that K; x.; Ir Kp.
Hence we can completely solve the problem for the existence of star factorizations of

|

We now exhibit another interesting class of bipartite spreadable trees. Let P;
= [v1, Vo, ..., V] be a path on r vertices. The caterpillar cp(ky, ka, ..., ky) is the tree
obtained from P; by adding to P; kj+ko+...+k; additional vertices {vi;:1<i<rand

1<j<k), and the additional edges {vj;jvi:for 1 <i<rand1<j<k}.
3.2.13 Lemma. The caterpillar cp(k, ka, ..., k;) is bipartite spreadable.

Proof. Let T = cp(ky, kp, ..., k) and k = r+kj+ko+...+k;. Assign k to vy, 1,2,..k; to

V1,1 v Vikys ki+1 to vp, k-1, k-2, ... k-ka to va 1, ..., V2,kys k-ks-1 to v3 and k;+2,

k143, ..., ki+k3+1 to v31 V3.2, ..., V3 k5 and so on. It is easy to check that this labelling
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indeed satisfies the requirement. (Actually, this is just the well known graceful

labelling of caterpillars [12].) |

3.2.14 Corollary. If k = r+k;+ko+...+k; is odd, then cp(ky, ko, ..., ky) Ir Ky if and only if
n=0 (mod k) and n =1 (mod 2(k-1)).

Proof. This claim follows immediately form Lemma 3.2.13 and Theorem 3.2.10 and

the fact that all caterpillars are graceful which implies that cp(ky, k, ..., ki) | 2Ky. I

It is also easy to give a class of trees Tx which are bipartite spreadable (but not
caterpillars) and which also have the property that Ty | 2Ky. The following example can
be extended to an infinite class of trees: V(Tg) = {1, 2, ..., 8} and E(Tg) = {35, 54, 47,
71, 18, 72, 26}. We éan build a T from Tg by adding the vertex 9 and the edge 91, Tyo
by adding to Ty the vertex 10 and the edge, (10)1 and so on. Of course, this idea can be

extended to construct an infinite family from any bipartite spreadable tree.

A natural question is to ask if we can extend Theorem 3.2.10 to values of A other
than 1. Recall that necessary conditions for the existence of a Ty-factorization of AK,
are n = 0 (mod k) and A(n-1) = 0 (mod 2(k-1)). The results of the last section
answered the question for even A. A careful study of the proof of Theorem 3.2.10 yields

the following result which we state without proof.

3.2.15 Theorem. Assume A is odd and A >1. Let Tas,1 be a bipartite spreadable tree
on 2s+1 vertices. Assume Ta,,; | 2Kog41. Then Tagy1 Ig AKj if and only if n = 0 (mod

2s+1) and A(n-1) = 0 (mod 4s) with only finitely many possible exceptions.

The “finitely many” of the theorem can be expressed more specifically as
follows: For fixed k and A, the claim holds for all n = m(2s+1) where m 2 max{6s+1,

1+ 4s¥/A}.

36



3.3 Resolvable Py-decomposition of AK,

In this section, we are interested in determining necessary and sufficient
conditions for the existence of a Px-factorization of AK,. We already have such

conditions in the following cases.

(1) k = 3 (Theorem 1.4),
(2) k even or A even (Corollaries 3.1.3 and 3.1.5),
(3) k odd and A = 1 (Corollary 3.2.11).

The purpose of this section is to provide necessary and sufficient conditions in
the case Ak odd, A > 1. Combined with the results we mentioned above the question
of the existence of Py-factorizations of AK, will be completely resolved. We state the

complete result as follows.

3.3.1 Theorem. When k = 3, AK,, has a Py-factorization if and only if

n = 0 (mod k) and Ak(n-1) = 0 (mod 2(k-1)).

As in previous cases, we begin with a lemma which will be the "building

block" of the proof of our main result.

3.3.2 Lemma. (a) If k is odd and k 2 3, then AKyx - W(L), where W(A) is the union
of A subgraphs of Ky x each consisting of (k-1)/2 vertex disjoint cycles of length 4 and

an independent edge, has a Px-factorization.

(b) If k is odd, k 2 3 and A is even, then AKx - C(A/2), where C(A/2) is the

union of A/2 Hamilton cycles in Ky, has a Py-factorization.
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Proof. In (a) we need only consider the case A = 1, and in (b) the case A = 2. Let
V(K = V2Kkx) =X U Y where X = {x1, X2,..., Xk} and Y = {yy, y2,..., yk}, and let
VK =1{1, 2,..., k}.

(a) We know by Lemma 2.2.2(b) that Ky - N has a Py-factorization (recall that N
is an almost 1-factor). Let P be one of the k-paths in such a factorization. From P
we define in Ky x the Pi-factor {xiy;, x;yi : ij € E(P)}. Repeating for each k-path in the
Py-factorization of Ky - N we obtain a Py-factorization of Ky x - W(1), where W(1) =

{xiy;, xjyi 1 ij € E(N)} U {x1y1, X2¥2,-.., XkYk}-

(b) In this case a direct construction will be given. First observe that if k = 2s+1,
then the 2k edges E = {X;¥iss-1, Xi¥iss+1 ¢ 1 £ 1 <k} form a Hamilton cycle in 2Ky x. We
consider separately the cases k = 4t+1 and k = 4t+3, and denote the k Pc-factors of
2Kx x - C(1) by P(1), P(2),..., P(k). In each case we give P(1) from which P(i+1),1 < i
< k-1, is obtained as follows: Xj4jyi+s € E(P(1+)) if and only if xjy; € E(P(1))

When k = 4t+1, P(1) = {[x1, Y1, X2t Y25 X2t-15 ¥3see0» Yt» X415 Y3t+1» X3t425 Y3t
X3t43ees Y2t425 Xdt+1ls [Y21 X2, Y21-15 X35000s Xty Yi+1> X3t4+1s Y3t425 X3toeees Ydta1, X2t415
Yat+11}, and when k = 4t+3, P(1) = {[X1, Y1, X2t+1> Y25 X2ts Y3se+0» X425 Yial> X3t435 Y3142
X3t+ds Y3t+lseers Y2435 Xdt+3]s [Y2t+15 X2, Y21, X35ees Y1425 X1y Y3t43s X3142, Y3t4ds X3t4lseee

X2t43, Yare3, X262, Y2u+2] ). 1

3.3.3 Remark. Observe that in the construction given in Lemma 3.3.2(b) all
"vertical" edges (that is, edges xiy;, 1 £ i < k) are contained in paths of the
factorization. It is not difficult to show that in Lemma 3.3.2(a), provided k = 5, we can
permute the vertices of Y so that here also all vertical edges are in paths of the
factorization. When k =5 and k = 7 permute the vertices so that W(1) has the form

shown in Figure 3.3.1 with vertex bipartition (A, B), where A = {a;, ...,ax} and B =
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{b1, ..., bx}. Itiduction then takes care of all other values of k, as is shown in the cases
k =9 and k = 11. Observe that if we identify the vertices a; and b;, 1 < i <k, (as
shown in Figure 3.3.2), then the resulting multigraph is the union of a Hamilton cycle

and a Hamilton path.

k=5
A A
B m B
k=17 k=11
Figure 3.3.1
k=5 k=9
k=7 k=11
Figure 3.3.2

We now give the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1.

As we have stated several times, the conditions n = 0 (mod k) and Ak(n-1) =

0 (mod 2(k-1)) are necessary for the existence of the factorization. To show they are
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also sufficient, all that remains is the case when Ak is odd and A # 1, k # 3 (the other

cases have been done as we mentioned in the begining of this section).

The necessary conditions imply that n = kr and 2(k-1)IAk(kr-1). The
divisibility condition implies that (k-1)IA(r-1) when Ak is odd. Notice that Ak odd

implies r odd.
Let VAKy) = {G,)): 1S i <1, 1< < k) = UHy= ,-551 V; , where

Hi={@Gj): 1<j < k}andVj={@,j):1< i < r}. Note that AK,=MK; ® Ky).

We shall later define a subgraph S of AK,, . The edges of S will be given by
EQS) = (ls iL<)erWij(7L) ) U (igf N;) where W;;(A) is the union of A subgraphs of K b
each isomorphic to the graph W(1) described in Remark 3.3.3, and N; is a set of

(k-1)/2 independent edges on the vertex set H;.

We first show that the graph AK, - S has a Py-factorization. Since r is odd, K;
has a near 1-factorization with near 1-factors Mj, My, ..., M;, and to each of these
there corresponds in AK;, a subgraph which is the vertex-disjoint union of (r-1)/2
copies of AKi x and one copy of AKy. Then Lemma 3.3.2(a) yields A(k-1)/2 Py-factors
in each AKy x. By Lemma 2.2.2(b) we have (Ak-1)/2 Py-factors in AKy, Notice that in
the copy of AKx only A(k-1)/2 of a possible (Ak-1)/2 Py-factors are used. So for each
near 1-factor we obtain A(k-1)/2 Py-factors. On each vertex set Vi, 1 <i < 1, there
remains a subgraph consisting of (A-1)/2 paths of length k-1 and a set of (k-1)/2
independent edges. Together (that is, over all i) these paths constitute a further (A-
1)/2 Py-factors of AK,. When all these A(k-1)1/2 + (A-1)/2 = (Ar(k-1)+(A-1))/2 Py-

factors are deleted from AK; what remains is the subgraph S.

All that remains is to prove that there is a subgraph S which is compressible

and Qv(S) has a Py-factorization.
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We begin with a 2-factorization of K, and then direct each of the cycles. If the
edge ij € E(Ky) is directed (i,j), let Wy;(A) = AW(1), where W(1) is as described in
Figures 3.3.1 and 3.3.2 and A=H;and B = HJ Let N; = {(i,2))({,2j+1): 1 £j <
(k-1)/2}. This has now defined our subgraph S. Then Qv(S) is the union of a path of
length k-1 with edge multiplicity A(r-1)/2 (corresponding to the Hamilton paths of the

’Wij) and of a cycle of length k in which the edges 2j(2j+1), 1 < j < (k-1)/2, have
multiplicity A(r-1)/2 + 1 and the others have multiplicity A(r-1)/2 (these cycles
correspond to the Hamilton cycles of the Wj; and Nj). Since A(r-1) = s(k-1), for some
integer s, then A(r-1)/2 = (k-1)(s-1)/2 +(k-1)/2 and A(r-1)/2 +1 = (k-1)(s-1)/2 +
(k+1)/2. (Note that it is only at this point that the construction fails for k = 3.) We
obtain A(r-1)/2 Py-factors from the A(r-1)/2 k-paths in Qvy(S) and by applying Lemma
2.2.1(a) to the remainder of Qv(S) we obtain further (sk+1)/2 Py-factors. (Note that s
is odd and this can be shown as follows: Let Ak(r(k-1) + r-1) = 2(k-1)q. Then
s(k-1)k = Ak(r-1) = (k-1)(2q - Akr) which is equivalent to sk = 2q - Akr implying
that s is odd.)

As a final check we observe that there are A(r-1)/2 + (sk+1)/2 Pg-factors in S,
and adding these to the previously found Py-factors we have a total of

Ak(rk-1)/(2k-2) Py-factors as required. 1

41



Chapter 4. Almost Resolvable Pk-decompositions of AKn

In this chapter we give necessary and sufficient conditions for the existence of
almost resolvable Py-decompositions of AK,. A special case of this main theorem is

dealt with in the following lemma.

4.1 Lemma. Let k be even and k 2 4. The graph AKy,, has an almost P,-factorization

if and only if A(2k+1) = 0 (mod k-1).

Proof. Counting edges results in the necessary condition A(2k+1) = 0 (mod k-1). We
now construct factorizations when this condition is met. Let V(AK2k+1) = (1, 2, ...,
2k+1)}. Suppose first that A =0 (mod k-1). We only need to show that (k-1)Kzk+1 has
an almost Pg-factorization. Let G(1,i) = G(2,i) = ... = G(k/2 -1,i) = [1+H, k+H, 2+, k-1+,
ooy K/2 42+, k/2 +1, 3k/2 +1 +H]) U [2k+1H, k+2-H, 2k+H, k+3+, ..., 3k/2+, 3k/2 42+, k/2
+1+] and G(k/2, 1) = [1+i, k+1+, 2H, k+i, ..., k/2 H, k/24+2+i] U [k+2+, k+3H, ...,

2k+1+], 0 £1i £ 2k. Each G(j, i) is an almost Py-factor and it is not difficult to verify that
k/2 2k
S LGG.D = (k-DKokr1-
On the other hand, if A # 0 (mod k-1), then gcd(2k+1, k-1)=3. Let 2k+1 = 3p and
k-1 = 3q, where gcd(p, q) = 1. Hence A = 0 (mod q) and we only need to show that

qKok+1 has an almost Py-factorization.

When q = 1, let G(0, 3j) = [2+3j, 9+3j, 3+3j, 8+3j] U [1+3j, 6+3j, 4+3j, 7+3i] and
G(1, 3j) = [4+3j, 2+3], 5+3j, 1+3j] U [ 6+3j, T+3;, 8+3j, 9+3j], where 0 < j < 2.

When q >1 (and noting that q must be odd), for 0 <s<2,0<t< 2k, let P(s, t) =
[2+s+t, 2k+1+4s+t, 3+s+t, 2k+s+t, ..., k/2 +s+t, 3k/2 +3+s+t, k/2 +1+s+t, 3k/2 +2+s+t] U

[1+s+t, k+2+s+t, 3k+1+s+t, k+3+s+t, 3k+s+t, ..., 3k/2 +s+t, 5k/2 +3+s+t, 3k/2 +1+s+t).
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First let us look at an example. Assume q = 3. Thenk = 10 and p = 7. It is easy
to see that if we can partition E(3K,,) into 35 almost P,,-factors, then we are done. We
construct them as follows. Let G(0, 3j) = P(0, 3j), G(1, 3j) = P(1, 3j), G(2, 3j) = G(3, 3j)
= P(2, 3j) and G(4, 3j) = [3+3j, 1+3j, 4+3], 3J = 7;-3j, 18+3j] U [8+3], 9+3j, ..., 16+3],

17+3j], where 0 <j < 6. It is easy to see that Y% P@, 3j) = 2K+ - 2C, where C =

6 4
(1,2, ..,21). Therefore, jk_JOik_JO G(, 3j) = 3Ka;.

In general, we will use the same idea. Let G(, 3j) = P(0, 3j), 0 <1< (g-3)/2,
G(, 3j) = P(1, 3j), (q-1)/2 <i< g-2, G(, 3j) = P(2, 3j), g-1 <i < (3g-3)/2, and
G((3g-1)/2, 3j) = [3+3], 2k+2+43j, 4+3j, 2k+143j, ..., k/2 +2+3j, 3k/2 +3+3j] L [k/2 +3+3j,
k/2+4+3j, ..., 3k/2 +1+3j, 3k/2 +2+3j], where 0 < j < p-1. (Notice that (3q+1)/2 = k/2.)

-1k/2-1 -1 2
Again it can be shown that fg 'U G, 3) = qKaxs1. Notice that ?‘d O, PG, 3j)
j=0 i=0 j=0 i=0
= 2Kok+1 - 2C, where C = (1, 2, ..., 2k+1). The rest of the proof follows easily from this.

We next specify certain subgraphs of AKj, which will play important roles in

the proof of the main theorem.
4.2 Definition. Let m be even, let V= {1, 2, ..., k}, and let V(Kjnx+1) = {eo} U (i{_nJlVi),

where V;j = Vx{i}. Let C be the (m+1)-cycle, C = (1, 2, ..., m+1) and P be the m-path,
P=11,2,..,m].

(a) Let Q = {G1, Ga,..., Gms1} ® C, where V(G)) = V;, 1 £i<m, V(Gpq4q) = {e},
Gi= Ky, for 2<i<m-1, Gnm = Gy = K¢ and Gp41 = K. (Note that since K41 has a
Cm+1-factorization, it is easy to see that Kpk.+1 can be decomposed into m/2
isomorphic copies of . We now define certain subgraphs of Q - {e} = {Gy, G3,...,
Gn} ®P.
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(b) When k is odd, we let A € Q - {e} be the subgraph induced by the edge-set:
k m1
& U9 (G, DG+, i+D), G, i+DG+1, D)

U {(§, DG + &-1)/2, 1), G, DG+1, 1))
U {(, m)§ + (k-1)/2, m), (j, m)(j+1, m)}} (see Figure 4.1)

Figure 4.1 k=5, m=6

(c) When k is even and m 24, let B ¢ Q - {0} be the subgraph induced by the

edge-set:

k/2
o {{@i-1, j)2i, j+1), (21, j)(2i-1, j+1) : j=1, 3, ..., m-1 }

U {(2, ))Qi+1, j+1), (2i+1, )i, j+1) 1j =2, 4, ..., m-2 }} (see Figure. 4.2)

Figure42 k=6, m=6



Next we define a family of graphs u(j), 1 <jsm,by uG)={ BUCQ, j) U
C(m, j) : C(1, j) and C(m, j) are k-cycles in V; and Vy,, respectively, where C(1, j)
contains the edge (j,1)(j+1,1), and C(m, j) contains the edge (j,m)(j+1,m)}.

(d) If m >4, let X* < Q - {co} be the subgraph »induced by the edge set:

ig{ r;k;)i {d4, A, j+1} v {G,13E+1, 1), (i, m)(@i+1, m)}} (see Figure 4.3)

Figure 4.3 k=5, m=6
Before we begin to study these subgraphs we need another definition.

Definition 4.3. Let K, ; have an ordered bipartition (U, V), where U = {(1,u), (2,u), ...,
(s,u)} and V = {(1,v), 2,v), ..., (s,v)}. The distance of the edge e = (i,u)(j,v) is
defined to be j - i (mod s). Observe that the set of edges with distance i form a 1-
factor and we say that this 1-factor has distance i. Let X = [xy, X2, ..., Xp] be a p-path
of K. The distance sequence ds(X) = <dy, dy, ...dp.1> is the sequence of distances
of the corresponding edges; that is, d; is the distance of the edge x;x;;1. Note that X
is uniquely determined by its first vertex and its distance sequence. So we can write

X= [X1 : <d1, d2, ooy dp_1>].

Lemma 4.4. For even k, the graph Q - X* is almost Px-factorable.
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Proof. We will construct an almost Py-factorization of Q - X*. Let X be the subgraph

obtained from X* by deleting the two k-cycles on Vi and Vp,.

Case 1. k = 0 (mod 4).

First we give the construction for k = 4 which illustrates the technique used in

the general case, even though the general construction does not cover the case k = 4.

For 0<i<3,let PG, 1) = [(2+,1), (14, 2), (4+,1), 2+, 2)I;
let PG, §) = [(3+, j), 2+, j+1), 4+, j), (1+, j+1)], where 2 < j < m-2; and
let P(i, m-1) = [(3+, m-1), (1+, m), (4+i, m-1), (3+i, m)].

Notice that ds(P(i, j)) = <3, 1, 2>. The vertices of £ which are not covered by

-1
jn[_lu1 P@, j) are (1+, 1), (3+,1), 2+, m) and (4+i, m) and eo.

Let C(i) = [(3H, 1), (1+H, 1), e, (24, m)], where 0 <i < 1, and D(j) = [(1+},1),
oo, (2+j, m), (4+j, m)], 2 <j < 3. It is not difficult to see that C(0)LC(1)LD(2)LUD(3)
will use all edges of the form (i, 1) and (i, m), and all edges of G; and Gy, (recall
the definition of Q) except the two 4-cycles ((1,1), (2, 1), (3, 1), (4, 1)) and ((1, m),
(2, m), (3, m), (4, m)). Therefore we obtain four almost P4-factors of Q - X*: C(i) U

-1 .m-1
(jniu1 PG, j)),1=0, 1, and D(i) L (jn:u1 P(, j))), i = 2, 3. These form an almost P4-

factorization of Q - X*,

We now move to the more general case, k > 4. We construct the following k-
paths and note their distance sequences. We remark that in the rest of the proof, we

always assume that the edge (x, i)(y, i+1) has distance y - x (mod k).

For0<i<k-1:
let P,1) = [(3k/4 +, 1), (Bk/4 +1+, 2), ..., (k/2 +2+i, 1), (k-1H, 2), (k+i, 1),
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(k/2 +, 2), (k-1+, 1), ..., (3k/4 +1+i, 1), (3k/4 -1+, 2), (k/4 +1+i, 1), (3k/4+, 2)],
and hence ds(P(i,1)) = <1, 2, ..., k/2 -3, k-1, k/2, k/2 +1, ..., k-2, k/2 -2, k/2 -1>;

let P(l9 J) = [(k9 J)’ (k'l, j+1)9 (19 j)9 seey k/2 '1: J)a (k/2, j+1)]9 and hence
ds(PG, j) )= <k-1,k-2,..,2,1>,2<j< m-2; and

let P(i, m-1) = [(k/4 +i, m-1), (3k/4 +1+i, m), (k/4 -1+i, m-1), (k/4 +1+i, m),
vy (k/2 -1+, m), (k+i, m-1), (k/2 +i, m), (k/2 -1+, m-1), (2+i, m), ...,
(k/4 +1+i, m-1), (k/4 +i, m)] and hence ds(P(i, m-1)) = <k/2 +1, k/2 +2, 2, 3, ..., k/2,
1, k/2 +3, k/2 +4, ..., k-1>.

-1
The vertices of Q which are not covered by Jniul P(i, j) are {eo} U {(14,1),

2H, 1), ..., (k/4 +, 1), (k/4 +2+i, 1), (k/4 +3+i, 1), ..., (k/2 +1+H, 1)} U {(1+, m),
(k/2 +1+, m), (k/2 +2+, m), ..., (3k/4 +i, m), (3k/4 +2+, m), (3k/4 +3+i, m), ...,
(k+i, m)}.

Let C(i) = [(k/2 +1+, 1), (1+i, 1), (k/2 +, 1), 2+, 1), ..., (/4 +2+i, 1),

(k/4 +i, 1), oo, (3k/4 +i, m), (3k/4 +2+, m), (3k/4 -1+, m),..., (k+i, m), (k/2 +1+i, m)],
0 <i<K/2 -1, and DG) = [(1+, 1), (2 +, 1), @+, 1), ..., (/4 +24, 1), (K/4 +, 1), %,
(3k/4 +, m), (3k/4 +2+, m), (3k/4 -1, m),..., (k+i, m), (k/2 +1+i, m), (1+, m)],

k/2 <i < k-1.

k/2-1 k-1
It is not difficult to see that (i Y CG)) v (j 51{/ ) D(j)) will use all edges of the

forms oo(i, 1) and =(i, m), and all edges of G; and Gy, except for the two k-cycles

(1,n, 2,1, ..., k,1)) and ((1, m), (2, m), ..., (k, m)). Therefore we obtain k almost
-1 -1
Pyfactors of Q - X*: C(i) U (J_“Q1 PG, §)),i=0, 1, ..., k/2 -1, and D(i) U é“yl P(, j)),

i=k/2, k/2 +1, ..., k-1. These form an almost Py-factorization of Q - X*,

Case 2. k =2 (mod 4).
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Again, for0 <i<k-1:

let PG, 1) = [(k/2 +2+i, 1), (k+i,‘ 2), ..., ((3k+2)/4 +i, 1), ((3k+6)/4 +i, 2),
((k+6)/4 +, 1), ((3k+2)/4 +, 2), ((3k+6)/4, 1), ((3k-2)/4, 2), ((3k+10)/4, 1), ...,
k, 1), (k/2 +1, 2)], and ds(P(@, 1)) = <(k/2);2, (k/2)-3, ..., 1, k/2, (k/2)-1, k-1,
k-2, ..., (k/2)+1>;

let PG, j) = [(1+, ), (kH, j+1), @+, j), ..., (k/2+, j), (k/2 +1+, j+1)], and
ds(P(G, j) = <k-1, k-2, ..., 1>, 2 <j < m-1; and

let PG, m-1) = [(1+, m-1), (k/2 +, m), ..., (k+6)/4 +, m), (k+2)/4 +i, m-1),
((3k+6)/4 +i, m), (k+6)/4 +, m-1), (k+2)/4 +, m), ..., (k/2 +, m-1), (2+i, m)], and
ds(Pd, m-1)) = <k/2 -1, k/2 -2, ..., 1, k/2 +1, k/2, k-1, k-2, ..., k/2 +2>.

m-1
As before, the vertices of Q which are not covered by jgl P(, j) are {eo} U

{(141,1), @+, 1), ..., (+2)/4 +, 1), ((k+10)/4 +, 1), ..., (k/2 +1+i,1)} U
{(k/2 +1+i, m), ((k/2 +2+, m), ..., ((3k+2)/4 +i, m), ((3k+10)/4 +i, m),...,

(k+1+i, m)}. We now use them to construct a k-path and an isolated vertex.

Let CG) = [(1+, 1), (/2 +1+, 1), 2H, 1), (/2 +, 1), ..., (k+10)/4 +i, 1),
((k+2)/4 +, 1), 0, (3k+2)/4 +i, m), (3k+10)/4 +, m), ..., (k+i, m), (k/2 +2+i, m),
(141, m)], 0 S i< K2 -1, and let DG) = [(K/2 +14i, 1), 2+, 1), (k/2 4, 1), ..,
((k+10)/4 +, 1), (k+2)/4 +, 1), oo, (3k+2)/4 +, m), (3k+10)/4 +, m), ..., (k+i, m),
(k/2 +2+i, m), (1+, m), (k/2 +1+i, m)], k/2 < i < k-1.

k/2-1 k-1
It is not difficult to see that (, C@) v (j Ye D(j)) will use all edges of the

forms oo(i, 1) and (i, m) and all edges of G; and Gy, except two k-cycles ((1,1),

2,1), ..., (k,1)) and ((1, m), (2, m), ..., (k, m)). Therefore we obtain k almost Py-
-1 -1

factors of Q - X*: C(i) LU (j“;u1 PG, )),1=0, 1, .., k/2 -1, and D(i) U (jniu1 P(, j)),
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i=k/2,k/2 +1; v k-1 These form an almost Pk-factorization of Q - X*, Thus we

cbmplete the proof. |

4.5 Lemma. Let Q, A and U(j) be defined as in Definition 4.2.
(a) If k is odd, then the graph 2Q - A has an almost Pk-factorizatioh.
(b) If k is even, then the graph Q - b(j) has an almost Px-factorization, for some

b() € UQG). (Recall that pu(j) was defined in Definition 4.2 (c).)
Proof (a) First we partition the edges of A into A; U Aj, where A1 = A as follows:

Let A; have edge-set

{G, jA+1, j+1): 1 <£j<m-1,1<i <k} U {({, m)@i+1, m), (i, m)(i+(k-1)/2, m):
i=1,2,.,k).

and let A, have edge-set

{(+1, G, j+1): 1 £j<m-1, 1<i<k } U {(, DG+ 1), G, DGE+HE-1)/2, 1)
i=1,2,..,k}.

Since 2Q - A can be partitioned into(Q - A))U(Q - Ay),and Q- A =
Q - A,, once we show that Q - A; is almost P-factorable we will be done. We now

describe an almost Py-factorization of Q - A;.

Let P, j) = [((k+1)/2 +j + i, j+1), ((k+1)/2 +j + 1, ), ((k-1)/2 +j+i, j +1),
(k+3)2 +j+1,7)), ..., k- l +J +1,j), (1 +j +1, j+1)], where 0 i< k-1 and

1 £j<m-1. Notice that u P(, j) uses all edges of Kv,v,,, except for the 1-factor

xk_Jl{(X, P(x+1, j+1)} (since ds(P(, j)) = <0, k-1, k-2, ..., 2>). It is not difiicult to see
-1

that ;:-)1 P(, j) is a set of m-1 vertex-disjoint k-paths. There are k+1 vertices of V(£2)

m-1
which are not covered by j=L1) P(i, j); they are {eo, (1+, 1), (2H, 1), ..., ((k+1)/2 H,

1)} U {(m + (k+1)/2 +, m), (m + (k+3)/2 +i, m), ..., (m-1+, m)}. On these k+1
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vertices we must define a k-path and an isolated vertex. This contruction is divided

into two parts (examples of each are given in Figure 4.4).

Figure 4.4
Case 1: k = 3 (mod 4).

Let X(@) = [(1+i, 1), ((k+1)/2+, 1), @+, 1), ((k-1)/2+, 1), B3+, 1), (k-
324, 1), ..., (494 + 1, 1), (k+1)/4 + 1, 1), (k+5)/4 + 1, 1), o0, ((k+1)/2 + y + i, m),
Q+yH, m), (k-1)/2 +y + i, m), G+y+, m), ..., (k+1)/4 + y +1i, m)], where y = m +
k-3)2andi=0,1,2, .., k1.

Case 2: k = 1 (mod 4).

Let X@) = [(1+, 1), ((k+1)/2+, 1), 2+, 1), ((k-1)/2+i, 1), ..., ((k+1)/4 +1i, 1),
(k+7)/4 +1,1), (k+3)/4 + i, 1), oo, ((k+1)/2 + y + i, m), 2+y+i, m), ((k-1)/2 +y +1,
m), ..., (k+7)/4 +y +1i, m)}, where y =m + (k-3)/2andi=0, 1, 2, ..., k-1.

k-1
In both cases, N X(i) uses all edges of Q of the form eo(j,1) and oo(j, m) and

all edges in V and Vy, except for the two k-cycles: ((1, m), (2, m), ..., (k, m)) and ((1,
m-1
m), ((k+1)/2, m), (k, m), ((k-1)/2, m), ..., ((k+3)/2, m)). Thus X({) v ( Y P(, j)) is
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k-1 - m-1
an almost Py-factor of Q - A; and hence N (X@G) v ( jk_)l P(, j)) ) is an almost Py-

factorization of Q - A;.

(b) First we show that X* is isomorphic to one of the elements in (1) (see
Definition 4.2(c)). Let B* = B U {(1,1)(2,1), (1,m)(2,m)} (recall Definition 4.2). We
know that B is the union of k disjoint m-paths and it is not difficult to see that the
vertices of each V; can be permuted so that B* is isomorphic to one of X; =
Xu{(1,1)(2,1), (1,m)(2,m)}, X3 =XuU{(1,1)2,1), 2,m)(3,m)} or X3 =
Xu{(1,1)(2,1), (3,m)(4,m)}, where X =i§ {IG,1), (,2), ..., (i;m)]}. We can obtain X*

from Xj, X5 and X3, by adding edges. This implies that X* is isomorphic to one of the
graphs in p(1).

It is not difficult to see that we can use the same method to show that X* is
isomorphic to some element of U(j), for any j, 1 <j <k. Thus for each j, 1 £j <Kk, there
is an element b(j) of u(j) such that b(j) = X* and so by Lemma 4.4, Q - b(j) has an

almost Py-factorization. |
We now state and prove the main theorem.

4.6. Theorem. AK, has an almost resolvable Pyx-decomposition if and only if

n = 1 (mod k) and Akn/2 = O(mod k-1).

Proof. The necessity of the conditions can be easily obtained by applying counting
argument on vertices and edges. We now show their sufficiency. We first give a proof
in the case when k = 3 and then prove the result for general k. In the general case we
divide the proof into two parts éccording to the parity of m, where n = km+1.
Throughout the proof, we will use the following technique: find a subgraph G of AK;
which contains an isolated vertex v, such that AK,, - G has an almost Py-factorization

and G - {v} is compressible and has a Py-factorization..
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Case 1.k =3.

Here the conditions given in the statement of the theorem reduce to n = 1 (mod

3) and An = 0 (mod 4). The following three cases exhaust all possibilities for n and A.
Case 1.1. n =4 (mod 12) and all values of A.’

In this case it suffices to show that K, has an almost resolvable Ps-
decomposition. Let n = 4(3x+1) and V(Ky) = {(i,j) : 1 <1<4,1<j< 3x+1). Let V; =
{G,j):1<i<4},j=1,2,..,3x+land Hj={(i,j) : 1 £j<3x+1},i=1,2,3,4. Then
Kn = K4 ® Kixs1. Let G =Ky ® Kayy; < Ky Clearly G is compressible with a V-
quotient 4K3x,3. We know that 2K3,4; admits an almost resolvable Cs;-decomposition
[5], and hence 4K3,4; can be decomposed into 3x+1 isomorphic copies of 2H, where H
is the union of an isolated vertex and x vertex-disjoint K3's. Note that the edge ij in H
corresponds to a 1-factor in Kv,v,and the isolated vertex corresponds to a Ky.
Furthermore, the edge sets of both 2K3 and K, are the union of three 3-paths.
Therefore the subgraph of K, corresponding to 2H has an almost resolvable P3-

decompositioh and which implies that K;, has an almost resolvable P3-decomposition.
Case 1.2. n = 10 (mod 12) and A =2 (mod 4).

Here it suffices to show that 2K, has an almost resolvable P3-decomposition.
Let n =3(4x+3)+1, V2Kp) = {=} U {({,j) : 1 £i<3,1<j<4x+3}, V= {(, j) : 1 i
<3}, where 1 <j<4x+3 and H;= {(i, j) : 1 <j <4x+3}, where 1<i < 3. Clearly 2K, =
{2Kj, ..., 2K3, K1} ®2K4x+4 (see its definition in the appendix). We know that Kx.4
has a 1-factorization and in 2K, each one factor corresponds to 2x+1 vertex-disjoint
2K3 3 and one 2K4 with vertex set {eo, (1,i), (2,i), (3,i)}. It is not difficult to see that
2K4 is the union of four 3-paths and the subgraph Tj, where E(T;) = {(1,i)(3,i),
(L,)(3,i), (2,1)(3,1), (1,1)(2,1)}, and 2K3 3 is the union of four P3-factors and one 2Kj.

52



On deleting féur almost P3-factors in the subgraph corresponding to each 1-factor in
K4x+4, what remains is a subgraph, R* of 2K, in which e is an isolated vertex. In R*
the subgraph R;; induced by (V;,V;) is 2K2, and the subgraph induced by V;is T;. Itis
easy to see that R* is not uniquely determined because of the freedom in choosing
each of the R;;. We will show that the R;; can be chosen so that the resulting R* has

-an almost resolvable P3-decomposition.

Let R = R*- {eo} and observe that we only need show that R has a P3z-
factorization. Let V(Kux+3) = {1, 2, ..., 4x+3}. We know that K4x,3 has a Hamilton
cycle decomposition with cycles hy, ..., hax41. Assign an orientation to each h; to
create a directed cycle. If ij is an arc from i to j of hy, 1 Sk <x, let E(R;p) = {(1,)(2,j),
(1,)(2,)}, and if x+1 £k < 2x+1, let E(Ryy) = {(2,i)(3,)), (2,1)(3,j)}. Under this
arrangement, Qg(R) is a 3-cycle in which one edge (13) has multiplicity 2, the second
(12) has multiplicity 2x+1 and the third (13) has multiplicity 2x+3. Since Qyg(R) is P3-

factorable, we can apply Lemma 2.1.4 to conclude that R is P3-factorable.
Case 1.3. n = 1 (mod 3) and A = 0 (mod 4).

In this case it is enough to show that 4K, has an almost resolvable P3-
decomposition. Let n = 3x+1. Since 2K, admits an alrhost resolvable Cs-
decomposition, 4K; can be decomposed into n isomorphic copies of 2H, where H is the
union of x vertex-disjoint 2K3's and an isolated vertex. As 2Kj is the union of three

3-paths, 2H has an almost resolvable P3-decomposition and so too does 4K,

53



Case 2. k> 4.

Since n = 1 (mod k) we write n = mk+1. Let VOAK,) = {0} U {(i,j): 1<i<Kk,
I<jsm},V;={@Gj):1<i<k},forl1<j<m,andH;={@,j):1<j<m},for1<i<

k. Observe that AK;, = {AKy, ..., AKf, K1}®7\,Km+1.
Case 2.1. m is odd.

Let R be a subgraph of AK; with vertex set V(AKy) - {s}. For even k, let the
m
edge-set E(R) be (1s¥j5m F;(A) U ( ] Ni(A)), where F;j(A) is the union of A 1-
factors in the subgraph XKVi.Vj and Nj(A) is the union of A k-cycles in the subgraph
AKy, When kis odd, let EQR) = (_uU_ E(A\) U (U Mi(A)), where Ey(\) is the
i 1<i<j<m i=1

union of A edges in the subgraph AKv, v,and M;(}) is the union of A edge-disjoint
(k+3)/2-paths in the subgraph AKy..

We will show that the graph AK,- R has an almost resolvable Pg-
decomposition. Since m is odd, Km+1 admits a 1-factorization with factors fy, fs, ..., fm.
To each factor f; there corresponds, in AKp, a subgraph H; which is the vertex-disjoint
union of (m-1)/2 copies of AKy x and one copy of AKy41. By Lemma 2.2.3, when k is
even AKyx - F(A), where F(A) is the union of A l-faétors of AKkx, has a Py-
factorization, and by Lemma 2.2.5 AKy,; - N(A), where N(A) is the union of A k-
cycles of AKy,1, has a Py-decomposition. By Lemma 2.2.4, when k is odd AKy -
E(A), where E()) is the union of A edges of AK k, has a P¢-factorization, and AKy4;-
M(A), where M(A) is the union of A (k+3)/2-paths of AKk+1, has a Pg-decomposition.
Therefore H; contains Ak/2 edge-disjoint almost Py-factors of AK; when k is even, and
A(k+1)/2 when k is odd. Remove these almost Px-factors from each H;, and denote

the remaining subgraph of AK, by R*. It is not difficult to see (from Lemmas 2.2.4 and
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2.2,5) that M(A) and N(A) can be chosen so that in R*, o= is an isolated vertex and R

= R*- {oo}. Thus AK, - R has an almost resolvable P-decomposition.

All that remains is to prove that there is a graph R as described above which

has a Py-factorization. We consider two cases depending on the parity of k.
Case 2.1.1. Kk is even.

Since m is odd, K, has a Hamilton cycle decomposition. Assign an orientation to
each cycle to create (m-1)/2 directed cycles. If ij is an arc from i to j in one of the
resulting directed cycles, let Fy; = {(1,i)(2,j), (2,D)(3,j), ..., (k,i)(1,j)} be a 1-factor of
AKv,v,and Fj(A) = AFj. Let Ni(A) be the k-cycle ((1,i), (2,1), ..., (k,i)) with multiplicity
A. The Hamilton cycle decomposition of Ky, guarantees both that in R the subgraph
induced by the bipartition (Hj, H;41) is (m+1)A/2-regular, and R has H-quotient
(A(m+1)/2)Cy. Since nAk/2 = 0 (mod k-1) (one of the necessary conditions) and nAk/2 =
(km+1)Ak/2 = A(mk+k-(k-1))k/2 = Ak2(m+1)/2 - Ak(k-1)/2, then Ak(m+1)/2 = 0 (mod
k-1). Lemma 2.2.1(a) gives a Py-factorization of Qy(R) and thus by Lemma 2.1.4, R has

a P-factorization.
Case 2.1.2. k is odd.

Write A(k+1)/2 = kx1+y1, 0 S y; £ k-1. Let M;(A) be the union of the k-cycle
(1, 1), 2, 1), ..., (k, 1)) with multiplicity x; and the (y,+1)-path [(1, i), (2, i), ...,
(y1+1, 1)). (By Lemma 2.2.4, this is possible by properly arranging the A (k+3)/2-
paths.) As m is odd, AK,, has a Hamilton cycle decomposition with cycles hy, h, ...,
hy(m-1)/2. Assign an orientation to each of these cycles to create A(m-1)/2 directed
cycles. Assume A(m-1)/2 = kxa+y3, 0 <y <k-1. Let ij be an arc fromito jin hp. If 1
< p < kxy, let {(p, D)(p+1, j)}e E;;(A) and if p > kxa, let {(p-kxa+y1, i)(p-kxa+y1+1, j)}
€ Ejj(A). Let y1+ys = kxs+y3, 0 < x3< 1,0 < y3<k-1. In R the subgraph on vertex-set
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H; U Hyy, is bipartite and (x;+x2+x3+1)-regular if 1 < 1 < ys3+1, and is bipartite and
(x1+x2+x3)-regular if y3+1 <i<k. Itis not difficult to see that R is compressible and
Qu(R) is the union of a k-cycle with multiplicity x;+x3+x3 and a (y3+1)-path. Since
(x1+x2+x3)k+y3 = (A(k+1)/2 - y1)+(Mm-1)/2 - y2)+(y1 + y2 - y3) +y3 = Mk+1)/2 +
A(m-1)/2 = A(k+m)/2, and nA/2 = (km+1)A/2 = ((k-1)(m-1)+k+m)A/2 = 0 (mod k-1)
l implies A(k+m)/2 = 0 (mod k-1), then (x1+x2+x3)k+y3 = 0 (mod k-1). By Lemma

2.2.1(a) Qu(R) has a Pi-factorization and hence R has a Py-factorization.
Case 2.2. m is even.

Case 2.2.1. k is odd. As in the case when m is odd, we begin by defining a subgraph S of
m
AKp - {eo}. Let E(S) = (l<iL<Jj<mWij(7»/2)) v (igl Ni(A/2) U Mi(A/2)), where W;;(A/2)=

(MZ)Wl_p and wlj = {(p71)(p+1,.])a (P"'lsl)(P,j): p=1$ ooy k}a Nl()\'/z) is the k'cy(:le ((1:1),
(2,1, ..., (k,i)) with multiplicity A/2, and Mj(A/2) is the k-cycle ((1, i), ((k+1)/2, 1), (k, 1),
(k-1)/2, i), k-1, 1), ..., ((k+3)/2, i)) with multiplicity A/2. (The necessary conditions

imply that A is even.)

We claim that the graph AK,-S has an almost resolvable Px-decomposition.
Recalling the definitions of Q and A (Definition 4.2), we know that AK x4 can be
decomposed into m/2 copies of AQ (using Hamilton cycle decompositions of Kp+1) and
that S is the union of m/2 copies of (A/2)A. Thus AKyk+1 - S is the union of mA/4
copies of 2Q - A. By Lemma 4.5(a), 2Q - A is almost Px-factorable and therefore

AK; - S has an almost resolvable Pg-decomposition.

As in the previous cases, all that remains is to show that S has a Py-
factorization. By the definition of S, it is compressible and Qy(S) is the union of the k-
cycle (1, 2, ..., k) with multiplicity (m-1)A/2 + A/2 and the k-cycle (1, (k+1)/2, k, (k-
1)/2, k-1, (k-3)/2, k-2, ..., (k+3)/2) with multiplicity A/2. Since k is odd, we have nA/2
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= 0 (mod k-l); Also, nA/2 = AM(mk+1)/2 = A((m+1)k - (k-1))/2 = Mm+1)k/2 - A(k-
1)/2 and hence A(m+1)/2 = 0 (mod k-1) (remember, A is even). Applying Lemma

2.2.1(b), Qu(S) has a Py-factorization and hence so too does S.

Case 2.2.2. k is even. The case m = 2 was dealt with in Lemma 4.1. We may now
assume that m > 4. We first construct a compressible subgraph S of Kyx+1 with V(S)
= V(Kp) - {e= } such that Kyk+1- S is almost Py-factorable and Qg(S) is the union of
the single edge j(j+1), where j € {1, 2, ..., k}, and the k-cycle, (1, 2, ..., k), in which

edges alternately have multiplicities m/2 and m/2 -1.

We know that K+ can be decomposed into m/2 isomorphic copies of Q, say
Q1, Qy, ..., Qnp. For each Q;, define U(j); in the same way that LL(j) was defined for
Q in Definition 4.2. Similarly we define B;, C(i1,j); and C(in,,j); where {ij, i} = {x, y}
if oo is adjacent to Vy and Vy in Q;. By Lemma 4.5(b), Q; - b(j); is almost Py-
factorable, where b(j); € 1(j); and thus Kmk+1- TL=/)21 b(j); is almost Py-factorable. Let P
= U {CA i~ Gi)G+1,11), Climdi- Goim)G+1,in)}. Obviously P U {eo} is an almost

m/2
Py-factor of Kpyyq. Let S = Y b(j); - P. Then Kyk+1 - S has an almost Py-

factorization. To see that S is compressible and Qy(S) is as stated, we first recall the
structure of B (as in Definition 4.2). Note that each vertex of the subgraph induced by
(Hji.1, Hy) 1 <1< k/2, has degree my/2 (there is a contribution of 1 from each ) and
that each vertex (2i,x) or (2i+1,x) of the subgraph induced by (Ha;, Hi+1), where

1 £1<k/2-1, has degree m/2 - 1 (a contribution of 1 from all £, except the one
containing the edge oox). Finally, there are the edges {(j,i)(j+1,i): 1 <i<m}. Clearly

S is compressible and Qu(S) is as described.

Define C* to be the k-cycle (1, 2, ..., k) in which edges alternately have
multiplicities m/2 on edges {12, 34, ..., (k-1)k} and m/2 -1 on the others. Similarly C,,

is the k-cycle (1, 2, ..., k) in which the edge of multiplicity m/2 are {23, 45, ..., k1} and
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the others hav'c‘multiplicity m/2 -1. (Although Qy(S) is the union of the k-cycle C*

and the edge j(j+1), it is not difficult to see that we could also define an S* so that
Qu(S*) is the union of the k-cycle C, and the edge j(j+1).)

The graph AK;, has a factorization into A copies of Ky,. For the ith copy,

A
1 <i<A, we will construct a compressible subgraph S; so that both QH(iEfS ) is

'Pk-factorable and K, - S; is almost Py-factorable. We divide the proof into two cases

according to the parity of A.

Case 2.2.2.1 : A is even. We define S; for the ith copy of K, as follows. If 1 <i < A/2,

choose S; so that its H-quotient graph is the union of C* and the edge i(i+1), and if
A/2 <i <A choose S;so that Qu(S;) is the union of Cy« and the edge i(i+1). With this

A
definition and letting A = xk+y, 0 £y <k-1, QH(iﬁfsi) is the union of a k-cycle (1, 2, ...,
k) with multiplicity x + A(m-1)/2 and the (y+1)-path [1, 2, ..., y+1]. Since
k(x + A(m-1)/2) +y = kx+y + Ak(m-1)/2 = A((mk+1) - (k-1))/2 = 0 (mod k-1), by

Lemma 2.2.1(a), this quotient graph is Px-factorable.
Case 2.2.2.2 : A is odd. As in Case 2.2.2.1 we begin by defining all §; 1 <i<A.

If A < k/2, choose S;, 1 i< (A-1)/2, so that its H-quotient graph is the union
of C* and the edge (2i-1)2i, and if (A+1)/2 <i <A choose it so that the H-quotient is

A
the union of Cy« and the edge (2i-1)2i. Under this arrangement, QH(i;{Si) is the union

of the k-cycle (1, 2, ..., k) with multiplicity (A-1)(m-1)/2 + m/2 - 1, a 2(A+1)-path and
(k-2A-2)/2 independent edges (the path and the independent edges are edge-disjoint
subgraphs of (1, 2, ..., k)). Since k((A-1)(m-1)/2 + m/2 -1) + 2A +1 + (k-2A-2)/2 =
A{(mk+1) -(k-1))/2 = 0 (mod k-1), then by Lemma 2.2.1(a), Qn(ingSi) is Px-

factorable.
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If A 2 k/2, we will choose (A-1)/2 of the S; so that Qg(S;) is the union of C*
and a single edge, and the remaining (A+1)/2 of S; so that Qu(S;) is the union of C,
and a single edge. All the single edges in the first k/2 of the S;are {12, 34, ..., (k-1)k}
and the rest of them are to be arranged as the union of the k-cycle ( 1‘, 2, ..., k) with
~multiplicity x and the (y+1)-path [1, 2, ..., y+1], where A -k/2 =kx +y,0 <y < k-1.
‘Now QH(igSi) is the union of a k-cycle with multiplicity (A-1)(m-1)/2 + m/2 -1 +

(1+x) and the (y+1)-path [1, 2, ...y+1]. Since ((A-1)(m-1)/2 + m/2 +x)k + y =
A
A((km+1) - (k-1))/2 = 0 (mod k-1), then again by Lemma 2.2.1(a), QH(ii{si) is Py-

factorable. The proof is complete. 1

We showed in Chapter 3 that for AK, to have a Pi-factorization the obvious
necessary conditions determined by simple counting on edges and vertices are
sufficient. We have now shown that similar conditions are necessary and sufficient for
an almost Py-factorization of AKj,. These are both special cases of a more general
question: what conditions other than those obtained by counting must be imposed on
m, k, r and A so that AKk4r, 0 Sr< k, has a factorization in which each factor
consists of m vertex disjoint paths Py and r isolated vertices (note that instead of r
isolated vertices we might also ask for a path of length r-1). We feel that those simple
conditions obtained by counting are also sufficient but expect that it will be difficult to

show this.
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Chapter 5. Resolvable mixed path decomposition of AK,

In this chapter we are interested in the construction of factorizations of AK,, in
which each factor is one of two types. As defined in Chapter 1, a (G(s), H(t))-
factorization of AK,, is a factorization in which s of the factors are G-factors and t are
H-factors. Our interest in this chapter is in finding necessary and sufficient
conditions for the existence of a (Pa(s), Pk(t))-factorization of AK,. In view of earlier
results we will assume that st # 0 and that k > 3. The goal is to prove the following
result. (Observe that simple counting, first on vertices and second on edges, yields

the necessary conditions of the theorem.)

5.1 Theorem For k > 2 the complete multigraph AKp has a factorization into s+t
spanning subgraphs (st # 0), s of which are 1-factors and t of which are P¢-factors
(that is, a (P2(s), Pk(t))-factorization) if and only if n =0 (mod 2), n =0 (mod k) and
ks + 2t(k-1) = Ak(n-1).

As usual, we begin with some basic constructions, and then go on to use them

to prove the main theorem.

5.2 Lemma. Let k be odd.
(a) Kok - P2(1) has a Pi-factorization, where P5(1) is a 1-factor.

(b) Kok 2k - C4(1) has a Py-factorization, where C4(1) is a C4-factor.

Proof. (a) Let V(Kzx) = (1, 2, ..., 2k}. Consider a Pyc-factorization of Kzx. Each path
P@) = [i, 1+, 2k-1+H, 2+, 2k-2H,..., k+2+i, k-1+i, k+1+H, k+i], 1 <1 <k, of the
factorization is the union of two paths of length k and the edge
((3k+1)/2+i)((k+1)/2+i). Observe that these k edges are in fact the edges of a 1-

factor in Kpx. Deleting them from the paths yields a Py-factorization of Ky - P2(1).
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(b) Let V(Koxox) =X U Y, where X = {x, ..., X2k} and Y = {y, ..., yax}. We
know that Kox - P2(1) has a Py-factorizaiton. If P is one of these Px-factors, then
{xiy;» xjyi : ij € E(P)} is a Pi-factor of Kok k. On deleting the resulting k Py-factors
from Kai 2k, what remains is {xiy;, Xjyi : ij € E(P2(1))} U (xiyi : 1 <1< 2k}, which is a

Cy-factor. |

5.3 Remark. It is not difficult to see that in Lemma 5.2(b) we can permute the
vertices of Kok ok in such a way that if the vertex bipartition is (A, B), where

A = {ay, ..., agx} and B = {by, ..., bak}, then C4(1) consists of the k 4-cycles

C@) = (a2i+1, b2i+3, 22142, b2is4), 1 <1< k. We define T to be the graph obtained from
C4(1) by identifying the vertices a; and b;, 1 <i < 2k. If the vertices of T are labelled

V(T) = {v1, v2, ..., var}, then T is the union of the four 1-factors:

F1 = {vaivais1: 1 €i <k},
Fy = {viv3} U {vave} U {vaisavaire 1 1 Si<k-2},
F3 = {viva} U {V2iravaise, Vairivaisz ti€ {1, 3, ..., k-2}} and

Fa= {v3ve} U {V2i+6V2is8, V2isaVaiss i€ {1, 3, ..., k-2}}. ]

5.4 Lemma. Let k be odd and V(G) = {1, 2, ..., 2k}. If G =((k-1)/2)T (where T is

described in Remark 5.3), then G has a Py-factorization.

Proof. Let V(G) = {1, 2, ..., 2k}. First select the Px-factors
P@) = {[2i+]1, 2i+4, 2i+5, 2i+8, 2i+9, ..., 2i+2k-5, 2i+2k-2, 2i+2k-1],
[2i42, 2i+3, 2i+6, 2i+7, 2i+10, ..., 2i+2k-4, 2i+2k-3, 2i+2k]},
1<i £(k-1)/2, and
R(@) = {[2i+k, 2i+k+2, 2i+k+4, ..., 2i+k-4, 2i+k-2],
[2i+k+1, 2i+k+3, 2i+k+5, ..., 2i+k-3, 2i+k-1]}, 1 £ i < (k-1)/2.
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The edges remaining form the last Py-factor which is
{[1,4,5,8,9, .., k-4, k-1, k, k+2, k+4, ..., 2k-1],
[2,3,6,7,10, ..., k-3, k-2, k+1, k+3, k+5, ..., 2k]} if k = 1(mod 4), and
{[1,4,5,8,9, ... k-3, k-2, k+1, k+3, ..., 2k], |
[2,3,6,7,10, .., k-4, k-1, k, k+2, ..., 2k-1]} if k = 3(mod 4). 1

We now prove the main theorem of this section.
Proof of Theorem 5.1.

The necessity has already been addressed. To show the sufficiency of the

conditions, we will divide the proof into two cases according to the parity of k.
Case 1. k is even.

From the first two necessary conditions we know that n = kr, and from the

condition ks + 2(k-1)t = Ak(n-1) we obtain s = A(r-1) (mod k-1).

Let VAKp) = {(i,j): 1< i <1, 1< j<k} =i_Jin=j

Hi={(,j) : 1< j<k}and Vj= (G, j): 1 < i<}, so that AK, = A(K; ® K.

L

V; where

To each edge ij of AK, associate in AKy a 1-factor Fyj of Ki,u. LetR be the
subgraph of AK, consistihg of the union of these 1-factors. Each vertex in R has
degree A(r-1). First we will show that the 1-factors can be chosen so that R has a
(P2(s1),Pk(t1))-factorization for 0 < sy < A(r-1) and s; = A(r-1) (mod k-1).

Let s; =A(r-1) - q(k-1).

Let the 1-factor Fy; be either the 1-factor

C; = {(4, 2m-1)(j, 2m), (i, 2m)(j, 2m-1) : 1 < m < k/2} or the 1-factor
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Dj = {(i, 2m-1)(j, 2m-2), (i, 2m-2)(j, 2m-1) : 1 < m < k/2}. Call the first of these

1-factors a type C 1-factor and the second type D.

We claim that the 1-factors Fj; can be chosen in such a way that each vertex

belongs to at least q(k/2-1) 1-factors of type C and at least q(k/2) of btype D.

If r is even take a 1-factorization of AK;. To each edge of AK; determined by s;
+ q(k/2-1) of the 1-factors associate a type C 1-factor and to the edges from
remaining gk/2 1-factors associate a type D 1-factor. If r is odd, then A(r-1) is even
and AK; has a 2-factorization. If s; + q(k/2-1) is even (and consequently so is
q(k/2)), then to each edge of AK;determined by (s; + q(k/2-1))/2 of the 2-factors
associate a type C 1-factor and to the remaining edges associate a type D 1-factor. If
s1 + q(k/2-1) is odd (and consequently so is q(k/2)), then to each edge of AK;
determined by (s; - 1 + q(k/2-1))/2 of the 2-factors associate a type C 1-factor and to
the remaining edges associate a type D 1-factor. (Note that s; 2 1 since if 57 =0,

then A(r-1) = q(k-1) which is impossible as k-1, q and r are all odd.)

It is not difficult to see that R is compressible and Qy(R) consists of the edge-
disjoint union of s; 1-factors and q cycles of length k in which alternate edges have
multiplicities k/2-1 and k/2. By Lemmas 2.2.1(a) and 2.1.4 the graph R has a (Py(s1),

Py (t1))-factorization.

Next we show that AK, - R has a (Py(s3), Px(tp))-factorization for any sj,

0 < sy £ Ar(k-1) and s =0 (mod k-1).

If r is even, AK; admits a 1-factorization with 1-factors Fy, Fy, ..., Fo.1), and
to each 1-factor there corresponds in AK; - R a (Kgk - P2(1))-factor. Thus AK, - R
has a ((Kgx - P2(1))(A(r-1)), Kx(A))-factorization.
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If 1 is odd AK; admits a near 1-factorization with near 1-factors M;, My, ..., My,
and each near 1-factor M corresponds in AKjy - R to a Y-factor, where Y consists of
the vertex-disjoint union of (r-1)/2 copies of Ky - P2(1) and one copy of K,. Thus

AK, - R has a Y-factorization.

We note that since k is even, Lemmas 2.2.2 and 2.2.3 assure us that each of
Kix-P2(1), Kx and Y has a Py-factorization consisting of k/2 P,-factors. But these
three graphs also have 1-factorizations made up of k-1 1-factors. So in each of the
((Kxx-P2(1))(A(@-1)), Kk(A))-factorizations of AK; - R (r even), and the Y-
factorization of AK, - R (r odd), we replace so/(k-1) of the factors by 1-factors and the

remainder by Py-factors.

The theorem then follows by letting s; = s and s = 0 if s < A(r-1), and
s; = A(r-1) and sp = s - A(-1) if s 2 A(r-1).

Case 2. k is odd.

From the first two necessary conditions we know that n = 2kr, and from the
condition ks + 2(k-1)t = Ak(n-1) we obtain s = A(2r-1) (mod 2(k-1)). The
construction to be presented is quite similar to that givén when k is even.

T

.. . . 2k

Let VAKy) = {(,j): 1<isr, 1<j<2k} = Y H; = .UIVj, where
= =

H; = {(,j) : 1<j<2k} and V= {(i,j): 1 Si<r} and again note that

lKn = l(Kr ® KZk).

To each edge ij of AK, associate in AK; a C4-factor Cj;of Ky gy. To each vertex
bHj
i of AK, associate A 1-factors, H, 1 <€ <A, of the graph AKy, with vertex-set Hy. Let
‘0
R be the A(2r-1)-regular subgraph of AK; consisting of the union of these C,-factors

and 1-factors. As in the previous case, we begin by showing that these factors can be
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chosen so that R has a (Py(sy), Pk(tl))-factorizaﬁon for 0 <s; <AQr-1) and 51 =

A(2r-1) (mod 2(k-1)). Let sy = AQ2r-1) - 2q(k-1).

Suppose A(r-1) is even. Then AK, has a 2-factorization. We arbitrarily direct
the cycles in the 2-factorization so yielding a directed AK; in which each vertex has
both in- and out-degree A-1)/2. If the edge ij is directed from i to j (that is, it
becomes the arc (i, j)), then let C;; be a copy of C4(1) as described in Remark 5.3 but
with A = H; and B = H;. Thus QV(;;':JJCiJ') = (Mr-1)/2)T. For each i choose the H;,
where 1 € € <A, so that:

L\/4] of them are Fi ={(, 2j)(, 2j+1) : 1 Sj<k);

LA/4] are Fy = {G,1)G, 3), G, 4)d, 6)} U {(, 2j+3)(, 2i+6) : 1 <j < k-2};

LA/4] are F = {G, 1)G, 4)} U {G, 2j+4)G, 2j+6), G, 2j+1)G, 2j+3): j € (1,3, .., k-2}};
Li/alare Fi =(G, 3)G, 6)} U (G, 2j+6), 2i+8), (i, 2i+3)G, 2+5) 1 j & {1, 3, ..., k-2}}
(where Fj is analogous to F; as given in Remark 5.3) and the remaining A' = A -

r A
4l 2/4] are chosen arbitrarily. Thus Qv(.u1 Y H}) consists of | /4] copies of T and A’
1=1 &=

1-factors and therefore Qy(R) consists of A(r-1)/2 + LA/4]) =L A2r-1)/4] edge-
disjoint copies of T and A' 1-factors. We use Lemma 5.4 to determine a Py-
factorization of (q(k-1)/2)T; and since 2q(k-1) < A(2r-1) there are q(k-1)/2 copies of
T available. Each of the remaining copies of T in Qy(R) has a 1-factorization. This

now yields a (P2(sy), Px(t1))-factorization of R.

We next consider the case when A(r-1) is odd (and hence A is odd). In this
case AK, - F, where F is a 1-factor, has a 2-factorization. Proceed to define R as in
the previous case using the 2-factorization of AK, - F. To the remaining edges ij of
AK; (those of the deleted 1-factor F) associate the C4-factor {((i, 2p), (j, 2p), (i,
2p+1), (j, 2p+1)): 1 <p <k}. Again choose the A 1-factors Hf so that Qv(igjl ek:Jl Hf)

contains [ A/4 ] copies of T and A' 1-factors. Furthermore, if A' = 3, choose those ' 1-
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factors to be F‘Z, Fj and F, as given previously. Let us now analyse the subgraph R.
H consists of a 1-factor F' = {(i, 2p)(j, 2p), (1, 2p+1)(j, 2p+1) : 1 <p<k,ije F} and a
subgraph R'. If A' = 3, Qv(R') consists of (A(2r-1)-1)/4 edge-disjoint copies of T, and
if A' =1, Qv(R") consists of (A(2r-1)-3)/4 edge-disjoint copies of T and two 1-factors.
In each case there are at least q(k-1)/2 copies of T available and by Lemma 5.4 we
have a P-factorization of (q(k-1)/2)T. Applying Lemma 2.1.4 Qy(R"), (and therefore
R') has a (Pa(s;-1), Pi(ty))-factorization. So R has a (P2(s;), Px(t1))-factorization

as required.

The final step, in which we show that AK;, - R has a (Pa(s2), Pi(t2))-
factorization for any s, 0 < sy < 2Ar(k-1) and sz = 0 (mod 2(k-1)), is quite

straightforward.

If r is even we use a 1-factorization of K, to obtain a
((Kak 2k - C4(1))(A(x-1)), Kok - P2(1))(A))-factorization of AK,- R, and if r is odd
we use a near 1-factorization of K, to obtain a Z-factorization of AK, - R, where Z is
the vertex-disjoint union of (r-1)/2 copies of Koy 2k - C4(1) and one copy of Koy -
P5(1). By Lemma 5.2 the graphs Kok ox - C4(1) and Kok - P2(1) have Py-
factorizations, each with k Py-factors. In addition, they both have 1-factorizations
with 2k-2 1-factors. So on sy/2(k-1) occasions we choose the 1-factorization and on

the remaining occasions the Py-factorization.

The theorem is now completed by letting s; = s and s = 0 if

s £ A(2r-1), and s; = A(2r-1) and sy = s - A(2r-1) if s 2 A(2r-1). |
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Chapter 6 Pk-factorizations of AK(n,r)

Necessary conditions for the existence of a Py-factorization of AK(n,r) are
nr = 0 (mod k) (as each factor is a union of disjoint paths on k vertices) and A(r-1)nk
= 0 mod 2(k-1)) (as IE(AK(n,r))| must be divisible by the number of edges in a Py-
factor). We would like to show that these conditions are also sufficient. As we
mentioned in Chapter 1 Ushio [36] proved that when k = 3 the conditions are
sufficient, and Bermond [6] later gave a short proof of this. In this section, we extend
the result for k > 3 and show that the two conditions are sufficient if n = 0 (mod k) or r
= 0 (mod k). (This implies, for example, that they are sufficient if k is prime.) We will
also show that they are sufficient when r = 2 and r = 3. In general, however, this

problem remains unresolved.

Let V(Kk ® C) = {1, ., k} x {1, ..., 1}, Hi = {(i,j) : 1 <j <1}, where 1 <i<k,

and Vj={(i,j): 1 <i<r},where 1 <j<k.
Once again we begin with a technical lemma.

6.1 Lemma. Let k be a positive integer, k > 4, and r be odd. The graph Ky ® C; is the
union of k Py-factors and a subgraph S such that Qg(S) = Cx.

Proof. We will construct k Px-factors of Kk ® C; so that on their deletion, the
remaining subgraph is induced by one of the following two edge-sets: {(i, j)(i+1, j+1):
1<i<k,1<j<r}or{(ja-1,j+1): 1 £i<k,1<j<r}). Denoting these induced
graphs by G, and G, respectively, it is not difficult to see that Qu(Gi) = Qu(Gy) =

Cx. We divide the proof into four cases.
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Case 1. k = 0 (mod 4).

Whenk=4,for0<j<3,let |

P(1, j) = [(14), 2), (14, 1), (2+j, 2), (4+j, D],

P2, j) = [(24], 3), (44], 2), (4+j, 3), (3+j, 2)],

PQt+1, j) = [+, 2t+2), (14), 2t+1), 3+, 26+2), (3+j, 2t+1)], 1 £t < @-1)/2,

and P(2t, j) = [(4+], 2t+1), (4+j, 20), (2+), 2t+1), (14, 20], 2 <t < @-1)/2.
Then i-;l PG, j) is a P4-factor and E(K4 ® C,) - }j;o iC=)11>(i, ) =

{G,j)G-1,j41):1<i<4,1<j<r}). (See Figure 6.1.)

X}%
/o

Figure 6.1

When k 2 8, as in the case k = 4, we let P(i, j) be a path in the bipartite
subgraph of i(—k ® C; on vertex set (V;, Vi+1). We will use the notation of definition

4.3. and we will use the convention that the distance of the edge (s, i)(t, i+1) is t-s.

For 0 <j<k-1, put

P(1, j) = [(14, 2): <0,1, ..., k-2>],

P2, j) = [(k/2 +j, 3): <k/2,k/2+1, ..,k2,0, 1, ..., k/2 -1>],

PQ2t+1, j) = [(k/4 +1+j, 2t+1): <0, k/2 +1,k/2+2,2,3, .., k/2, 1, k/2 +3, k/2 +4,
. k-2>], 1€t < (r-1)/2 and

P(2t, j) = [(3k/4 +14, 2t+1): <0, 1,2, ..., K2 2, k-2, k2 -1, k/2, ..., k-3>],
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'25 t < (r-1)/2. (See Figure 6.2 which illustrates the case k=8 and r=5.)

o o
o
o
o
o

o

o o o

o

Figure 6.2

Case 2. k =1 (mod 4).

When k2 5, for 0 <j <k-1, let

P(1, j) = [((k+3)/2 +j, 2): <0, k-2, k-3, ..., 1>],

P2, j) =[(2+, 3): <2,3,..,k-2,0, 1>],

P@3,j) =[(1 +j, 4): <0, 1, ..., k-2)],

P(2t, j) = [((k+3)/2 +j, 2t+1): <0, k-2, k-3, ..., 1>], 2 <t < (r-1)/2 and

PQ2t+1, j) = [(k+7)/4 + j, 2t+2): <(k+3)/2, (k+5)/2, ..., k-2, O, (k+1)/2,
1, 2, ..., (k-1)/2>], where 2 St < (r-1)/2.

(In Figure 6.3 the case whenk =9 andr =5 is given.)

o 0 OO0 O

OO0 OO0

Figure 6.3
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Case 3. k = 2 (mod 4).

Whenk=6,for0<j<5let

P(1, j) = [(1+4), 2): <0, 1, 2, 3, 4>],

P2, j) = [(6+}, 3): <2, 1, 0, 4, 3>], |

PQ2t+1, j) = [(4+, 2t+2): <3, 2, 1, 0, 4>], where 1 <t < (r-1)/2 and
P(2t, j) = [(6+), 2t+1): <1, 0, 4, 2, 3>], where 2 < t < (r-1)/2.

When k 2 10, for 0 <j <k-1, let

P(1, ) = [(14, 2): <0, 1,2, ..., k-2>],

P2, j) = [(k/2 +1 +, 3): <k/2 +1,k2+2,..,k-2,0, 1, ..., k/2 -2,
k/2 -1, k/2>],

PQ2t+1, j) = [(2+ j, 2t+2): <k/2 +2,k/2 +3, ..., k-2, k/2, k/2 +1,0,1, ...,
k/2 -1>], 1 £t < (r-1)/2 and,

P(2t, j) = [((B3k+6)/4 + j, 2t+1): <1,2,...,k/2-1,0,k/2,k/2 +1, ..,

k-2>], where 2 <t < (r-1)/2.

(Shown in Figure 6.4 inthe case k=10 andr=35.)

o o
0
o
o
o o o
o o o
o
o
o
o o]
Figure 6.4
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Case 4. k = 3 (mod 4).

In this case the general pattern covers all cases. (Recall that k > 4.)
For 0 <j < k-1, let
P(1, j) = [((k+1)/4 +]j, 1): <1, 2, ..., (k-1)/2, 0, (k+1)/2,
k+3)/2, ..., k-2>],
P2, j) = [Bk+1)/4 +j, 2): <0, (k+1)/2, (k+3)/2, 2, 3, ..., (k-1)/2, 1, (k+5)/2,
k+7)/2, ..., k-2>],
P@3,j) =2 +j, 3): <k-2, k-3, ..., 1, 0>],
P(2t, j) = [((k+1)/4 +j, 21): <1, 2, ..., (k-1)/2, O, (k+1)/2,
(k+3)/2, ..., k-2>], 2 <t < (r-1)/2 and
PQ2t+1, j) = [((k+3)/2 + j, 2t+1): <(k-3)/2, (k-5)/2, ..., 1, O, (k+1)/2,
(k-1)/2, k-2, k-3, ..., (k+3)/2>], 2 £t < (r-1)/2.
(See Figure 6.5 for the case k =7 and r = 3.)

o

o

o

o \\o
o
o
O

Figure 6.5

We now state and prove the main theorem of this section.

Theorem 6.2. If Akn(r-1) = 0 (mod 2(k-1)) and r = 0 (mod k) or n = 0 (mod k), then

Pk IR XK(n,r).
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Proof. Let VAAK(n,r)) = {1, ..., n} x {1, .., r}, Hj={({,}): 1 £j<r}, where 1 £i<n

and V= {(i,j) : 1 £i<n}, where 1 <j<r. Supposer=0 (mod k). It is easy to see
n

that AK(n, r) is compressible with respect to vertex-partition ] V; and hence

Qv(AK(n,r)) = nAK;. By Theorem 3.3.1 Pylg nAK; if and only if r = 0 (mod k) and

nAk(r-1) = 0 (mod 2(k-1)) and hence by Lemma 2.1.4, Py Ix AK(n,1). In this case, we

are done.

We now consider the case when Akn(r-1) = 0 (mod 2(k-1)) and n = 0 (mod k).
Let n = km. We first show that if Py Iz AmK(k,r), then P, I AK(n,r).

Let Xy,v be a subset of V(AK(mk,1)) = {1, 2, ..., mk} x {1, 2, ..., r}, where Xy
= {((u-1)m +1, v), ((u-1)m+2, v), ..., (um, v)}, 1 Su<kand 1 £v<r Let P(1), P(2),
..., P(s) be the Py-factors of a Pg-factorization of AmK(k,r), where s =
Am(r-1)k2/(2(k-1)). Corresponding to each P(i), we construct a Px-factor p(i) of
AK(mk, r) as follows: With each edgé (u,v)(p,q) € E(P(i)), associate a 1-factor
F((u,v)(p.q)) from Kx,,, Xpq Clearly, the induced subgraph with edge-set {e :
e € F((u,v)(p,q)), where (u,v)(p,q) € E(P(i))} is a Px-factor of AK(mk,r). Since

AKXy v, has a 1-factoriation with Am 1-factors it is easy to see that this method

Xpq

does indeed give a Py-factorization of AK(n,r).

To complete the proof it only remains to show that Py Ig lmK(k,r). The proof is

divided into two parts according to the parity of r.
Case 1. r odd.

The graph pK(k,r), where B = Am, can be decomposed into p(r-1)/2
isomorphic copies of fk ® C;. By Lemma 6.1 _ﬁk ® C; is the union of k P¢-factors

and a subgraph with H-quotient Cy. Hence we can delete pu(r-1)k/2 Py-factors from
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uK(k,r) so thét_ the remaining graph has H-quotient ((r-1)p/2)Cy, which by Lemma
2.2.1(a) and the fact that (r-1)i/2 = 0 (mod k-1) is Py-factorable.

Case 2. r even.
First consider k to be even. Let R =1s\iij<k F;;(), where Fj;(1t) is the union of p

I-factors in Ky, v e (Notice that R is not uniquely determined.)

We claim pK(n,r) - R has a Py-factorzation. To see this begin by observing
that as r is even, the graph pK; has a 1-factorization fi, f, ..., fyu¢-1y. In pK(n,r), each
1-factor corresponds to 1/2 vertex-disjoint copies of Kyx. By Lemma 2.2.3, Ky - F,
where F is a 1-factor, has a Py-factorization. By chosing F appropriately we can

delete ku(r-1)/2 Py-factors from puK(n,r) so that the subgraph remaining is R.

We now show that there exists such an R which is also Px-factorable. For
each edge xy € E(f;}), 1 €i< Lu(r-l)/2_|, let Fyy be the 1-factor of uKVx’Vy defined by
ny = {(1’ X)(z’ y')’ (2’ X)(i’ Y)’ (33 X)(4, Y), (43 X)(3, Y), seey (k'l, X)(k, Y), (k, X),
(k-1, y)}. Otherwise, if Lp(-1)/2J+1 <i < u(r-1), let By = {(2)3.y),

(3, X)(Z,Y), (4’ X)(S, y)’ (5’ X)(4, Y), ey (1’ X)(k, Y), (k’ X), (13 Y)}° Let R = XL; Fx,y-
Then Qy(R) is a k-cycle in which each edge has multiplicity p(r-1)/2 when p(r-1) is
even, and a k-cycle in which edges alternately have multiplicities (u(r-1)-1)/2 and
(u(@r-1)+1)/2 when p(r-1) is odd. Since p(r-1)k/2 = 0 (mod k-1) we can apply

Lemma 2.2.1(a) to show that in either case Qg(R) is Py-factorable.

When k is odd, Lemma 2.2.3 states that 2Ky x - 2F, where F is an arbitrary 1-
factor of Ky x, has a Py-factorization. Let R= 1<Liij<r2Fij(u/2), where Fj;(1/2) is the

union of u/2 1-factors of Ky, v.. As before, we can show uK(n, r) - R has a P-
Y]

factorizaton. Then we will show that there exists such an R which also has a Py-

factorization. Observe that 1 = Am = 0 (mod 4) as k is odd and r is even. In this
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case, we let Fjj(11/2) = (/4)P, where P = {(s, )(s+1, j), (s+1,i)(s, j) : 1<s<k}). It
is not difficult to see that Qu(R) = (u(r-1)/2)Cx. Since p(r-1)k/2 = 0 (mod k-1), by

Lemma 2.2.1, Qyg(R) has a Py-factorization. Therefore, the proof is complete. 1

We now use Theorem 6.2 to prove two more results. But we first state a result

due to Auerbach and Laskar [4].
6.3 Theorem. [4]. If (r-1)n is even, then K(n,r) has a C,,-decomposition
6.4 Corollary. Py Ig AK(n,2) if and only if 2n = 0 (mod k) and Ank = 0 (mod 2(k-1)).

Proof. The necessity follows immediately from applying a counting argument on
vertices and edges. For the sufficiency, we suppose that 2n =0 (mod k) and Ank =0
(mod 2(k-1)). If k is odd, then n = 0 (mod k) and by Thorem 6.2 we are done.

If k = 2m, then n = 0 (mod m) and the second condition becomes An = 0 (mod
2m-1) which implies gA = 0 (mod 2m-1), where n = mq. As in the proof of Theorem
6.2 we only need to show that QAKy, ,, has a Py-factorization. Let V(qQAKp m) =

{a1, ag, ..., am} L {by, by, ..., b }.

When m is even, K, has a Cop-factorization (Theorem 6.3) and by Lemma

2.2.1(a) gACan has a Pyy,-factorization since gA =0 (mod 2m-1).

When m is odd, Ky m - F has a Copy-factorization. We divide the remaining Aq
1-factors into p groups with 2m-1 in each (assuming Aq = p(2m-1)). Fix a group
made up of, say, fi, 2, ..., fom.1, where fy =fo = ..=f, = {ajb; : 1 =1, 2, ..., m} and
fme1=...= fam-1 = {a;bj41,1=1,2, ..., m}. Thenfj U fy,y; - abiyy, i=1,2,..m-1,is a
Pon-factor, as is f, U {ajbj+1,1 =1, ..., m-1}. Hence, QAK m has a Py-factorziation

and so does AK(n, 1) 1
6.5 Corollary. Py Ir AK(n,3) if and only if 3n = 0 (mod k) and 3Ank = 0 (mod k-1).
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Proof. The necessity follows immediately on applying counting argument to vertices
and edges. For sufficiency, if k =1 or 2 (mod 3), then n = 0 (mod k) and by Theorem

6.2 we are done.

When k = 0 (mod 3), we let n = kq and show that Py Iz AgK(k,3). By
Theorem 6.3, Csx Iz K(k,3). From the given conditions, 3kAq = 3An =0 (mod k-1) or
Aq =0 (mod k-1). We only need to show AqCsy has a Pg-factorization. Since
(k-1)Csy has a Pi-factorization with factors {[(ik+j+1), (ik+j+2),..., (ik+j+k-1),

(ik+j+k)] : 0<£1<2},0 <j< k-1, then the result follows immediately. |

It is not difficult to see that by using the quotient technique, we can obtain
many tree factorization results for AK(n, r). We suspect that the necessary
conditions (obtained by counting arguments) for the existence of a tree factorization

of AK(n, r) are sufficient.
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Chapter 7. Summary

At this stage, we see that the concept of the quotient graph of a graph plays
a very important role in the construction of factorizations of AK; and AK(n, r). This

is a technique which should be further exploited.

Several of the problems we mentioned in this thesis can be easily

generalized. For example, we can ask the following questions:

1. What are necessary and sufficient conditions for AKj, to have a (Ps(x), P(y))-

factorization?

2. Are the necessary conditions for AKj, to have an almost H-factorization given in

Chapter 1 sufficient when H is a tree other than a path?

3. Can we get some similar factorization results when H is a directed graph and we

are factorizing the complete symmetric digraph?

Another interesting problem is the following: What are necessary and
sufficient conditions for an almost resolvable H-decomposition of AKj, to be
balanced? (Let V(H) = {vj, v2, ..., vk}. An H-decomposition is called balanced if
there exist integers aj, ay, ..., ak, where a; +az +...+ ag is the total number of factors,
so that each vertex of AK,, plays the role of v; in a; of the H-factors, 1 £i<k.) Itis

easy to see that all resolvable decompositions are balanced.

Finally, we state once again the particularly interesting question: For what
even k does Ty | K? At present there seem to be no known techniques other than

that of searching for a cyclic decomposition.
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Appendix

Xy : an edge joining vetex x to vertex y.
(X, y) : an arc directed from vertex x towards vertex y.

AG : a multigraph obtained by assigning each edge of G multiplicity A.

Kp : the complete symmetric digraph on n vertices.

K,: the complete graph on n vertices in which each pair of vertices is joined by
exactly one edge.

K(nr) : the complete r—partité graph in which each part has size n.

Kap : the complete bipartite graph with bipartition (A, B).

Ka : the complete graph with vertex set A.

K k1 : astar with k vertices.

Py (or k-path) : a path with k vertices.

Ck (or a k-cycle) : a cycle with k vertices.

t-matching : a set of t independent edges.

1-factor of a graph G : a spanning subgraph of G which is the union of IV(G)I/2-
matching.

near 1-factor of a graph G : a spanning subgraph of G which is the union of
a (IV(G)I-1)/2 -matching and an isolated vertex.

G: the complement of G.

A U B : the graph induced by the edge-set E(A) U E(B).

A - B : the graph induced by the edge set E(A) - E(B) if B is a subgraph of A.

G - {v} : the graph obtained from G by deleting the vertex v and all edges incident

with v.

F ® G: Let G be a graph with V(G) = {1, 2, ..., x}, and let F = {S;, So, ..., Sx} be

a family of graphs. F ® G is defined to be the graph obtained by replacing
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vertex'i.of G by S;, 1 i < x, and inserting all possible edges between S;
and S; with multiplicity A exactly when the edge ij in G has multiplicity A

When all §; are isomorphic to S, we will write S ® G.
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