
Inheritance Reasoning and
Head-Driven Phrase Structure Grammar

Carl M. Vogel

B.S. (Honors)
Loyola University

New Orleans, Louisiana, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

O Carl M. Vogel 1990

SIMON FRASER UNIVERSITY

December 1990

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Carl M. Vogel

Degree: Master of Science

Title of Thesis: Inheritance Reasoning and Head-Driven Phrase Structure Grammar

Examining Commitee:

Dr. Veronica Dahl, Chairman

Dr. Nicholas J. kercone
Co-Senior Supervisor

.
~r:~rederick4. Popowich

-

Co-Senior Supervisor

, .- I *

Dr. Robert F. Hadley
Supervisor

, .
Dr. RXOI~~~ Goebel
Department of Computing Science
University of Alberta
External Examiner

ii Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Slmon Fraser Un lvers l t y the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Slmon Fraser Univers i ty L ibrary, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r other educational I n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t he r agree t h a t permission

f o r mu l t i p l e copying o f t h l s work f o r scholar ly purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r publication o f t h l s work f o r financial gain sha l l not be allowed

without my wr i t t en permlsslon.

T i t l e o f Thesis/Project/Extended Essay

Inhe r i t ance Reasoning and Head-Driven Phrase S t r u c t u r e Grammars.

Author: - -
3 s i gnature 1

Y -

Car l M. Vogel

(name)

(date)

Abstract

Inheritance networks are a type of semantic network which represent both strict (classical

implication) and defeasible (non-classical) relationships among entities. We present an

established approach to defeasible reasoning which defines inference in terms of the construction

of paths through a network. Much of literature on inheritance is concerned with specifying the

most "intuitive" system of path construction. However, when considering a fundamental feature

of these approaches-the status accorded to redundant links-we find that topological

considerations espoused in the literature are insufficient for determining the valid inferences of a

network. This implies that the "intuitiveness" of a particular method depends upon the domain

being represented. Though Touretzky has demonstrated that it is unsound in some cases, the

path-preference algorithm known as shortest path reasoning, is actually the most intuitive

algorithm to use when reasoning about the inheritance network which represents most of the

conceptual structure of Head-Driven Phrase Structure Grammar (HPSG). In this thesis we

describe the HPSG formalism and detail the inheritance hierarchy which we abstract from it. The

network itself is interesting because it is cyclic and because it contains supernodes. We specify

the content of nodes (information structures encoded as attribute-value matrices) and the

interpretation of links (the relative pseudocomplement relation) in the resulting inheritance

hierarchy. The process of reasoning over the hierarchy is demonstrated, and the implications of

this work for researchers in both unification grammars and inheritance reasoners are discussed.

In particular, when it is applied to the inheritance network for HPSG, an inheritance reasoner

functions as a parser for the grammar formalism. To the inheritance reasoning researcher this

provides a semantically nontrivial application for representation using inheritance networks

against which arguments about the intuitiveness of more complex path construction algorithms

may be tested.

"One fine morning in May, a slim young horsewoman might have been seen
riding a glossy sorrel mare along the avenues of the Bois, amongst the

flowers."

Albert Carnus
The Plague

Acknowledgements

I am grateful to my family for spoiling me from the beginning. Nick, Fred, and Bob have

each in different ways been kind enough to keep me spoiled. They have helped me out of

numerous predicaments and given me fantastic opportunities. They and a lot of other folks,

especially Sue, Jane, Tarnmy, Glenn, Pierre, and Dan (who have also helped me out of some

pretty tough spots) have all made this a superlatively fun time. Thank you, all. I will never see

my or any other saxophone without smiling and thinking of you.

Thanks also to the Jeep for keeping me on my feet.

Table of Contents

Approval
Abstract

Acknowledgements
Table of Contents
1. Introduction

1.1. Background
1.2. Inheritance Reasoning
1.3. The Structure of this Thesis

1.3.1. Extant Systems
1.3.2. Constructive Criticism
1.3.3. An Application
1.3.4. Extensions
1.3.5. Reflections

2. Path Based Inheritance
2.1. THAT Family Inheritance

2.1.1. Paths
2.1.2. Permitted Paths

2.2. Redundancy and Stability
2.3. Two Alternative Systems

2.3.1. Geffner and Verma
2.3.2. Link Arithmetic

2.4. Summary
3. Head Driven Phrase Structure Grammars

3.1. Signs
3.2. Lexical Types
3.3. Grammar Rules and Principles

3.3.1. Principles
3.3.2. Rules

4. A non-Trivial Inheritance Network for HPSG
4.1. Related Analyses
4.2. HPSG as an Inheritance Network

4.2.1. Nodes
4.2.2. Links
4.2.3. The Inheritance Network for HPSG

4.3. Inheritance Reasoning
4.3.1. An Example
4.3.2. Stability

. .
11

iv
v

vi
vii

1
1
2
4
4
5
6
8
8

9
9

10
13
21
26
27
34
37

39
40
43
43
44
47

52
5 3
55
56
57
60
62
63
68

vii

5. Applications of Inheritance Reasoning for HPSG
5.1. Parsing

5.1 .l. An Implementation
5.2. Inheritance Reasoning versus Chart Parsing
5.3. Robust Parsing

5.3.1. Extending the Operative Hierarchy
5.3.2. Implementing the New Link

6. Discussion
References

List of Figures

Figure 2-1: The Quintessential Inheritance Hierarchy. 10
Figure 2-2: A Network with a Generalized Path of Length Three. 11
Figure 2-3: The Link p--->r Has a Degree of Two. 12
Figure 2-4: Link X-1->Y preempts the path XRVY. 14
Figure 2-5: Path XRVY is off-path preempted by the link Z-I->Y. 14
Figure 2-6: Paths XZY and XRVY cancel each other. 15
Figure 2-7: The Definition of Preemption in Prolog. 15
Figure 2-8: A Prolog Translation of Figure 2-5. 16
Figure 2-9: "Which Paths between x and y Are Preempted?" 16
Figure 2-10: "Which Preempted Paths Terminate at y?" 16
Figure 2-11: The Definition of Permission in Prolog. 18
Figure 2-12: "Which Paths Beginning at Node x Are Permitted?" 20
Figure 2-13: Preemption by A-1->D Permits the Conclusion A--->E. 20
Figure 2-14: A Prolog Translation of the Network Depicted in Figure 2-13. 2 1
Figure 2-15: Upwards Reasoning: Preemption of ABD Permits the Conclusion 21

A--->E.
Figure 2-16: A Network Containing a Redundant Link. 22
Figure 2-17: An Uncoupled Network. 23
Figure 2-18: A--->C Is Considered Redundant, but C--->E Is Not. 24
Figure 2-19: A Prolog Translation of Definitions 4 , 5 and 6. 28
Figure 2-20: The Definition of Defeat in Prolog. 29
Figure 2-21: The Definition of Dominance Stated in Prolog. 29
Figure 2-22: Certified Paths vs. Derivability. 3 0
Figure 2-23: A Prolog Session. 3 1
Figure 2-24: Certified Paths vs. Derivability. 32
Figure 2-25: An Inconsistent Network. 3 3
Figure 2-26: An Ambiguous Net with Both Strict and Defeasible Links. 3 6
Figure 2-27: Instability: An Ambiguous Net with Redundant Links Added. 3 6
Figure 3-1: Lexical Entry for "did". 42
Figure 3-2: Sign Abbreviations. 42
Figure 3-3: Head Feature Principle. 44
Figure 3-4: Subcategorization and Constituent Ordering Principles. 44
Figure 3-5: Constituent Structure of "Mary kissed the cat." 4 6
Figure 3-6: Two Example Applications of the Relative Pseudocomplement Operator. 47
Figure 3-7: Grammar Rules. 4 8
Figure 3-8: A TreeTool Phrase Structure Tree. 50
Figure 4-1: Grammar Rules. 5 7
Figure 4-2: Relative Pseudocomplement and the Operative Hierarchy. 58
Figure 4-3: Universal Grammar Principles. 59
Figure 4-4: The Operative Dimension of HPSG as an Inheritance Hierarchy. 60
Figure 4-5: Touretzky's Example of a Concept Hierarchy. 63
Figure 4-6: Lexical Entry for "walks". 64
Figure 4-7: Inherited Information. 65
Figure 4-8: A Path Trace through the Operative Hierarchy for "Mary walks". 66

ix

Figure 4-9: A Path Trace through the Operative Hierarchy for "Walks Mary".
Figure 5-1: An Inheritance Reasoner in Prolog.
Figure 5-2: A Prolog Network for the Topology of the Operative Hierarchy.
Figure 5-3: Reasoning through the Toy Network.
Figure 5-4: Invoking Inheritance.
Figure 5-5: The Operative Hierarchy in Prolog.
Figure 5-6: A Different Encoding of Three Links.
Figure 5-7: Simplified HPSG Inheritance Hierarchy.
Figure 5-8: Three Sentences Parsed by an Inheritance Reasoner
Figure 5-9: Heuristic Selection of Analyses.
Figure 5-10: Additional Heuristic Selection of Analyses.
Figure 5-11: A Chart Parse of "Mary loves several cookies."
Figure 5-12: An Inheritance Parse of "Mary loves several cookies."
Figure 5-13: A Better Chart Parse of "Mary loves several cookies."
Figure 5-14: Revised HPSG Inheritance Hierarchy.
Figure 5-15: The Additional Link, in Prolog.
Figure 5-16: "Ingests" Was Not in the Lexicon.

Chapter 1

Introduction

1.1. Background

Inheritance based reasoning is an approach to reasoning about default and non-default

knowledge. Default knowledge is a computationalist category of knowledge about the world, but

underlying this categorization is a very old classification scheme. Aristotle distinguished between

the primary and accidental aspects of being, a distinction which corresponds to that between

non-default and default knowledge.
"'Primary Being' may mean: (1) a simple body, such as earth, fire, water, and everything of

this sort; and in general bodies and the bodies composed of them, both animals and superior
beings, as well as their parts. But all these are called 'primary being,' because they are not
atnibuted to something else; whereas other things are said of them (3) It may mean whatever is
inmnsic to primary being in the first sense, limiting them and marking them as a this-something,
or whatever when destroyed destroys such a primary being" (Aristotle, 1952, p.99).

Aristotle calls the other aspects of being, those which are predicated, and which possibly change

over time, the "accidental" properties of being. Accidental properties, which correspond to

defaults, include "facts" of the form, "Birds fly," or "Elephants are gray," which are facts

inasmuch as people will assert them to be true, even though many counterexamples are available.

Touretzky (1986, p.6) calls such sentences normative: "Normative statements are statements that

are usually true or that can be assumed to be true in the absence of contrary information."

Because counterexamples are available, defaults cannot be represented completely by universally

quantified formulae in first order logic (FOL; or any logic, for that matter). Furthermore,

Aristotle claims, "In view of these many ways of being, we must first consider the accidental and

point out that there can be no theory of it. Witness, no practical science, no art, no theoretical

science troubles itself about it" (Aristotle, 1952, p.125). However, on that point he is no longer

correct, for that is exactly what research in nonmonotonic reasoning is attempting to devise: well

motivated approaches to representing and reasoning about the accidental properties of being.

One approach to default reasoning is in the application of nonmonotonic systems based on

1

Introduction 2
classical logics (McDermon and Doyle, 1980). In this approach, an operator M, meaning "is

consistent," is added to first order logic. So, "Elephants are gray," is translated to, "All elephants

that are not known to be not gray are gray." This statement is represented in the system as:

(x)(elephant(x) A M(gray(x)) -> gray(x). McDermon (1982) continues work in this vein by

including the axioms of the modal logic S4 and S5 as axioms in the nonmonotonic system.

Moore (1985) defines an autoepistemic logic with an operator L, essentially the dual of

McDermon and Doyle's M, which translates to, "is believed." This logic, he claims, captures the

intuitions of nonmonotonic reasoning and corresponds to a weak version of ~ 5 ' . Delgrande's

(1990) approach works similarly, though he adds a conditional operator, =>, whose semantics is

based on possible worlds rather than a fixed point construction. In Delgrande's system,

"elephants are gray" means that under the least exceptional circumstances, if an individual is an

elephant then that individual is gray. Reiter (1983) offers yet another approach by adding default

rules of inference to achieve nonmonotonicity rather than by adding a nonmonotonic operator.

However, Konolige (1987) demonstrates that this formalism is equivalent to autoepistemic logic,

hence by Moore's (1985) argument, Reiter's system is equivalent to the nonmonotonic logic that

McDermott and Doyle had set out to create. All of these systems are classified as non-classical

logics in the sense that they utilize operations for forming sentences which are not truth

functionally compositional.

1.2. Inheritance Reasoning

Inheritance reasoning is an alternative approach to using default logics which experiments

with non-classical systems whose syntax is suggested by the pictorial representation of complex

hierarchies as directed acyclic graphs. Inheritance networks descend from work on the notation

and formal semantics of semantic networks (shown by Schubert (1975) and Schubert, et al.

(1979) to have the full semantics of FOL). In the network approach to knowledge representation,

concepts are represented as nodes in a network. Networks are compositional: a node in a

network can be some other network, and the same subnetwork can be a subnetwork of several

larger supernetworks, simultaneously. The supemetwork/subnetwork relationship can exist

without the supernetwork possessing a copy of the subnetwork. Instead, the supernetwork can

contain a pointer to the subnetwork (or, a virtual copy (Fahlrnan, 1979)). The

'1t lacks the axiom schema LP -> P.

Introduction 3
supemetwork/subnetwork relationship is also termed structure sharing. When a network is

defined through structure sharing, that network inherits the information contained in the

subnetwork, but not a copy of the subnetwork. This relationship is somewhat transitive. The

information from the subnetwork is inherited, by default, to all other larger networks which

inherit some of their structure from the composite network that made reference to the

s~bne twork .~ But, the relationship is not fully transitive, since the inheritance can be explicitly

cancelled or ovemdden by less direct means. A network used to denote the structure sharing in a

semantic network is known as an inheritance hierarchy or as an inheritance network. Thus, an

inheritance network is a schematic representation of a semantic network.

The nodes of an inheritance network denote concepts defined by possibly complex

connections of nodes and links in some semantic network, and the links in an inheritance network

indicate the structure of information sharing. In an inheritance network consisting of two nodes

connected by a link, the node pointed to is the supernetwork, and the node from which the link

emanates represents the subnetwork. The link indicates that some of the information from the

subnetwork is inherited to the supemetwork. Some researchers distinguish between strict and

non-strict inheritance links, essentially defining strict links as those for which all of the

information in a subnet is inherited and transitivity over chains always holds. Strict links model

non-default knowledge and non-strict links model defaults. Because non-strict inheritance links

are the more interesting case, we focus on those links and refer to them in the second chapter of

this thesis simply as "links" unless the reference would cause ambiguity. Later in the thesis we

will apply both strict and non-strict links. Inheritance reasoning is the process of determining

among potentially many chains of inheritance links which paths should be cancelled or

ovemdden. All paths of inheritance links represent "true" relationships, but because paths can be

cancelled or ovemdden by exceptions expressed in more specific paths they are termed,

"defeasible". A primary concern of the literature on inheritance reasoning is the determination of

the "best" method for d e f ~ n g the preferred chains of links through an inheritance network. As in

formal logics, we call the construction of preferred paths "inference" and we refer to the

2~dmittedly, it is anomalous to use the phrase "inherit to" rather than something usually used to express the act of
inheriting, like "bequeath". Horty et al. (1990) consider a related issue:

Once one adopts the bottom-up approach, the terminology of "inheritance" is no longer so appropriate; but the terminology
has b e m e fued, and it would introduce more confusion than it would eliminate if we tried to characterize this kind of
reasoning process in a phrase more neutral between the topdown and the bottom-up views. @. 6)

Likewise, we also keep the original language of inheritance.

Introduction 4
definitions of path preference in an inheritance system as that system's "proof theory1'.

Unfortunately, however, a semantic theory which unifies the various approaches to the proof

theory of inheritance reasoning has yet to be developed (Brachman, 1983, Brachman, 1985,

Touretzky, et al., 1987, Boutilier, 1989, Dorosh and Loui, 1989, Delgrande, 1990).

Links in an inheritance network notation can be used to represent the natural language

qualification, "typically" as in the sentence, "Typically, humans have two legs" (cf. "Network AB

typically contains information contained in network A"). A main reason for adopting the network

approach over the traditional work in formal logic stems from the conceptual freedom created by

its distinctive graphical syntax. In particular, within the network notation the presence of

representations for two contradictory facts, "Birds fly," and, "Birds do not fly," do not ground the

proof of any arbitrary fact at all, as the propositions would entail if encoded in the deductive

closure of usual logical calculi. Instead, the network notation localizes the disruption caused by

logical inconsistency to an incongruity on the fact under consideration. But, because the network

approach is so young it has had to spend a great deal of time outlining "proof procedures," the

exact methods of path construction where paths correspond to valid inferences on the networks.

Arguments for particular methods of specifying valid paths are based upon intuitions and

computational complexity (Touretzky, et al., 1987, Sandewall, 1986, Touretzky, 1986, Ballim, et

al., 1989).

1.3. The Structure of this Thesis

13.1. Extant Systems

In the second chapter of this thesis we give a more formal articulation of inheritance

reasoning, including a characterization of some of the more controversial issues which emerge in

the literature. The particular family of inheritance network approaches (affectionately) called

THAT family for Iouretzky, Horty, &d nomason is paradigmatic of the field, and in the

second chapter we give a formal specification of THAT approach. By giving formal definitions

and providing examples of their application, we demonstrate the syntactic, topology-based

reasoning inherent in THAT paradigm. We also describe a closely related system that is defined

by Geffner and Verma (1989), as well as a more distantly related approach presented by Ballim et

al. (1989). These three specifications of inheritance reasoning do not exhaust the varieties of

Introduction 5
reasoners that have been defined in the literature. Horty (1989) identifies 72 different systems for

path-based inheritance reasoning, alone. However, the three systems that we discuss do

characterize the field by defining the problem and indicating some of the variety that is possible.

All of these systems are topologically based. Arguments against the appropriateness of some

system often focus upon anomalies which arise when that method is applied to particular

examples. The structure of such arguments is to show that for networks of a particular topology,

the method will reach a certain conclusion, then an interpretation of the network is provided in

which the conclusion achieved seems anomalous. Some thought on these arguments, particularly

about their topological nature, leads to doubt about a fundamental tenet of all three approaches

detailed within this thesis and of the literature as a whole. The assumption which we reject is that

reasoning over a network should not be confounded by the presence of redundant links. We

reject this assumption because it is not clear that the "redundancy" of a link is a topological

feature of an inheritance network.

13.2. Constructive Criticism

Our argument about the status of topologically redundant links is presented in the second

chapter of the thesis. Basically, we claim that since a non-strict inheritance link emanating from a

node in an inheritance network does not entail the inheritance of all the information contained in

that node, there is potentially other information left to be inherited through an additional link.

Topologically, any such additional link which converges with a path containing the other link, is

considered redundant. But, topologically redundant links are not necessarily redundant with

respect to the information inherited. The status of topologically redundant links is significant

because they form the basis of Touretzky's (1986) counterexample to the soundness of shortest

path reasoning (Fahlman, 1979). If topologically redundant links are not necessarily semantically

redundant, then we should give serious reconsideration to shortest path reasoning, because the

computational complexity of shortest path reasoning is a linear function of the number of nodes in

the directed acyclic graph, while Touretzky's system, which makes provisions for topologically

redundant links, has been shown to be NP-Hard (Selman and Levesque, 1989).

Introduction
13.3. An Application

In this light, we turn to the application of inheritance reasoning to linguistic analysis.

Thomason (1989) has emphasized the need in this stage of research in inheritance reasoning to

address its application. Extant arguments in the literature in favor of one or another approach to

path based inheritance primarily focus on particular example networks. But, because the

examples are founded upon trivial3 concept hierarchies it is difficult to comment effectively on

the appropriateness of any particular method. We devote the second half of this thesis to

providing a significant application, a non-trivial concept hierarchy in which shortest path

reasoning is quite useful. The application is in the analysis of language within the framework of

Head-Driven Phrase Structure Grammars (HPSG) (Pollard and Sag, 1987), using shortest path

inheritance. This is a well motivated application for two main reasons. Many papers have been

written about parsing as deduction ((Menzel, 1987). (van der Linden, 1989), and (Konig,

1989) are just three of them); deduction and inheritance reasoning are both forms of reasoning, so

it is promising to consider parsing as inheritance reasoning, and moreover, there may be

computational or other methodological advantages to using inheritance reasoners as parsing

mechanisms. Another consideration is that inheritance reasoners are built for doing default

inference. That is, they intend to represent the generality of statements like, "birds fly," without

resolving to an inconsistency given a specific non-flying bird. Similarly for parsing, we have an

intuition that rules of grammar exist and also the observation that grammar rules have exceptions.

Ergo, inheritance reasoners are ideal parsers.

Although defaults provide an initial motivation for using inheritance reasoning to parse

sentences because of defaults' implicit representation of exceptions, in our application of

inheritance reasoning we use default links whose interpretation is weaker than typicality. The

interpretation of non-strict links is possibility. Thus, instead of encoding, "Sentences rypically

have a subject followed by a verb and object," we encode, "A noun phrase can have a determiner

followed by a noun." An unfortunate result of the weaker interpretation is that exceptions must

be encoded explicitly. Essentially, this means that non-strict links are disjunctive. But, both sorts

of links still represent the classification of concepts, and information is inherited across links.

Links in our system are further characterized and differentiated from traditional work on

inheritance in Chapter Four.

3 ~ h e examples are not especially trivial in topology but in subject matter.

Introduction 7
We provide a brief introduction to HPSG in the third chapter of this thesis. HPSG is a

frame-based language for describing linguistic phenomena. Like similar unification grammar

formalisms, HPSG is distinguished from traditional phrase structure grammar formalisms by its

extremely lexical orientation and its de-emphasis of grammar rules. Lexical enmes encode

constraints (i.e., major category, form, subcategorization, etc.) associated with words and their

combination into more complex phrase structures. Objects that take the place of grammar rules

are also encoded within the same formal language, as are "universal" principles of grammar.

Grammar rules in HPSG are more schematic and, thus, fewer in number than traditional phrase

structure rules. Rather than providing a phrase structure rule for each part of speech (i.e., S -> h'P

VP, NP -> Det N, VP -> V Adv, etc.), HPSG provides rules for different sorts of headed

structures. For example, one kind of headed structure has a head daughter which is preceded by

its complement (i.e., a noun, the head daughter of a noun phrase, is preceded by a determiner

which is the head daughter's complement; a verb phrase, the head daughter of a sentence, is

preceded by its subject which the head daughter's complement). In the third chapter of the thesis,

we show the structure of the formalism provided by HPSG in more detail, and we show how it is

used to describe linguistic phenomena.

We then abstract from HPSG a network of concepts which we call the operative

hierarchy of HPSG. Discussion already exists about the lexical hierarchy built into HPSG

(Pollard and Sag, 1987, Flickinger, 1987). But we take this network as a definitional hierarchy,

one which is used to define the concepts present as nodes in the operative hierarchy. Inheritance

reasoning over the operative hierarchy constructs analyses of linguistic objects in the frame based

language of HPSG. This observation is related to research presented by Steel and De Smedt

(1983) and by Brachrnan and Schmolze (1985). In Chapter Four we explain our analysis and

demonstrate how it is more complete than the previous, related analyses. Our explanation-details

the contents of nodes and the interpretation of the links (a specialized sort of structure sharing

relationship). We present a picture of the overall network. This network is topologically

interesting because it contains a cycle, and because we allow inheritance links to point to the

interiors of nodes (a node pointed into in this way is referred to as a supernode). We give an

illustrative example of the process of reasoning over this network. Shortest path reasoning seems

to be the most appropriate form of reasoning to use. In Chapter Five also provide a Prolog

implementation of the operative hierarchy and a shortest path reasoner for reasoning over the

inheritance network. Since the reasoner constructs HPSG analyses of linguistic objects, this

reasoner constitutes an HPSG parser.

Introduction
13.4. Extensions

One advantage of our analysis of HPSG from the point of view of inheritance reasoning is

that it leads to a principled treatment of a particular class of ill-formed input to a natural language

processor (cf. Fass, et al. (1990), Fass and Hall (1990)). This class is one in which a user has true

beliefs whose representation is missing from the system. When a user correctly uses a word

which is unknown to a system lexicon, we can, through inheritance, determine some of the

information about the word that is missing. To achieve this we add an additional node and link to

the operative hierarchy. The fifth chapter of this thesis describes that extension, and details the

corresponding extension to the implementation. We discuss some of the limitations of this

approach as well. Theoretically, it is quite a restrictive assumption to hold that all system

unknown words are used correctly, though we feel that this assumption is a psychologically valid

one to make (the assumption is consistent with the maxim of quality (Grice, 1975)). Practically,

the extension adds complexity to the reasoning process. Observation of our experiments lead us

to conclude that by avoiding chronological backtracking, constraint based reasoning could

provide a more practical framework than inheritance reasoning from which to explore this

problem.

13.5. Reflections

Finally, we conclude the thesis by summarizing its contributions, and we describe

directions for further research in this area. Our analysis of the status of topologically redundant

links argues for resurrecting the shortest path reasoner. Our application of this reasoner to Head-

Driven Phrase Structure Grammars provides useful insights into problems of robust parsing. This

leads us to try similar applications for other unification grammar formalisms and hints at a

potentially better articulation of the problem in the language of constraint based reasoning. In a

different direction, our analysis of topologically redundant links points us towards considering the

semantics of inheritance systems, with some concrete ideas about semantic foundations in which

the redundancy of links is clearly a non-topological issue.

Chapter 2

Path Based Inheritance

In this chapter we present a detailed description of inheritance reasoning. We

demonstrate the motivations behind the inheritance-based approach to knowledge representation

and present samples from the literature. Our purpose is to give the reader a feel for the discussion

that dominates the literature: essentially, the discussion is of proof-theoretic issues about the

structure of valid inferences. To this end we present the proof theory of a dominant approach in

the field, that defined by Horty, et al. (1987), and in light of this presentation we also describe

two related systems (Gefier and Verma, 1989, Ballim, et al., 1989). Throughout, we discuss

advantages and limitations of path based inheritance reasoning.

2.1. THAT Family Inheritance

In THAT family of inheritance networks, nodes represent individuals, concepts, and

properties, and links represent the classification of connected nodes. A link between two nodes in

the form A--->B denotes the fact that As are typically classified as Bs ("As are Bs"). Another sort

of link, one with a slash through it (-I->), is a negative link. The negative link A-1->B indicates

that As are not typically classified classified as Bs. The example hierarchy depicted in Figure 2-1

contains only one negative link, the link which connects the node labeled, "Royal Elephant," to

the node labeled, "Gray Thing." The other links are positive links and assert positive typicalities.

An explanatory paraphrase of the interpretation intended by Touretzky for Figure 2-1 is as

follows: elephants are typically gray, royal elephants are not typically gray, royal elephants are

typically elephants, The goal of an inheritance reasoner presented with a network of such facts,

is to determine what additional facts are implicit in the network, in answer to questions such as,

"Is Clyde gray?" We determine whether Clyde is gray by finding a valid path between the nodes

for Clyde and Gray Thiig. A path is made up of a chain of links, but not all chains of links in an

inheritance network constitute valid paths. An inheritance reasoner is the set of definitions which

specify the method of construction of valid paths through a network.
9

Path Based Inheritance

Figure 2-1: The Quintessential Inheritance Hierarchy.

2.1.1. Paths

An expansion of a network, which corresponds to the deductive closure of a theory stated

in a logic or an extension of a default system, is a set of permitted (valid) path through the

network. This set of paths is defined straightforwardly by induction, with the assumption that all

paths and networks will be acyclic. Individuals (as opposed to concepts or classes) may appear

only in the first node of a path, but they do not necessarily have to occur in the path at all. Any

link in a network is a path; if the link is of the form, p--->r, then it is a positive path, and if it is of

the form p-1->r, then it is a negative path. Since we assume the network to be acyclic, every path

will have both a first node and a last node. Let x vary over positive paths; htNode(x) denotes

the last node in path x, and FirstNode(x) denotes the first node in path x. The length of a path is

the number of links that it contains. For a given network, if x is a positive path, LastNode(x)--->r

is a link, and r does not occur as a node in x, then x--->r is a positive path as well.

Symmetrically, if htNode(.rc)-1->r is a link contained in the network and r does not occur in x,

Path Based Inheritance 11
then x-/->r is a negative path. Since we assume x to vary over only positive paths, this means

that negative links can occur only at the end of a path. The polarity of a path is determined by its

last link: a path whose last link is negative is called a negative path, and all other paths are

positive. An alternative convention used when paths grow cumbrously long is to write paths as

strings of nodes; "xr" and "7C/T" are abbreviations for the aforementioned paths. Sometimes we

use the metanotation -#-> to indicate a link whose polarity is unspecified.

The above definition of paths is not contested in the literature, though Geffner and Verma

(1989) do release the restriction against cyclic paths (the "occurs" check) and manage to prove

that in the case of negative cycles no complications are introduced which confound their

definitions of path construction. A negative cycle is something like p--->q--->r-/->p; the cycle

occurs using the single negative link allowed in the path. Since a negative link can occur only at

the end of a path, a path containing a negative cycle will still have a last node. Though we can

can construct an endless chain of links because of the cycle, we cannot construct a path that has a

link after the negative link. Negative cycles are less problematic than arbitrary cycles because

they do not lead to paths of infinite length.

Figure 2-2 depicts a network containing the chain of links, p--->q-1->r-/->s. This full

Figure 2-2: A Network with a Generalized Path of Length Three.

chain of links is not a path since it contains two negative links. The paths contained in the

network are in the set {pq, q/r, r/s, W r] . No path connects p or q to s; hence from this graph we

can draw no conclusions about p or q in relation to s. A generalized path is defined as any

succession of l inks th is is a generalization of the definition of paths in which .R: may vary over

positive or negative paths. Thus, N r / s is a generalized path contained in Figure 2-2. Any chain

of links through a network qualifies as a generalized path. The degree of a path in a specific

network is the number of links in the longest generalized path whose endpoints coincide with the

path in question (Horty, et al., 1990, p.13). Note that the degree of a path can be greater than its

length For example, a path consisting of a single link (length equal to one) can have a degree of

Path Based Znherilance

Figure 2-3: The Link p--->r Has a Degree of Two.

more than one. This situation is illustrated in Figure 2-3; the path pr has a length of one, but a

degree of two, because the path pqh is the longest generalized path connecting the two endpoints

p and r. Another useful fact about the degree of a path of length m is that the path will be strictly

greater than the degree of the subpath that contains the path's first m-1 links, as shown in

Theorem 1.

Theorem 1: If x is a path of the form a-#->z having degree n, then a is a
positive path with degree less than n.

Proof:
1. Regardless of the polarity of the link from LastNode(a) to z, no other link

in x can be a negative link, or x would not be a path. Thus, a is a positive
path.

2. To show that the degree of a is less than n:
a. Let a = FirstNode(a). By the definition of degree, n is the length

of the longest generalized path x', between the endpoints a and z
of x.

b. Let z be the longest generalized path between the endpoints of a.
The degree of a is the length of z. Then z-#->z constitutes a
generalized path between a and z.

c. If the length of z (the degree of a) is greater than or equal to n,
then 2-#->z has length of at least n + 1. But, this means that the
degree of z-#->z, hence the degree of a-#->z is at least n + 1. This
contradicts our assumption that the degree of a-#->z is n.
Therefore, the length of z (the degree of a) must be less than n.

Introducing the concept of a path's degree also introduces the possibility that there can be

more than one path between two nodes. Part of the task of an inheritance system is to define

procedures for adjudicating among several possibly conflicting paths between two nodes. Further

definitions impose the restrictions which allow choices to be made. The chosen paths are

permitted.

Path Based Inheritance
2.1.2. Permitted Paths

Permitted paths are determined by the definitions of a particular reasoning system;

different reasoners sanction different paths as permitted. Reasoners can be skeptical or credulous

in regard to conflicting paths, upwards or downwards in direction of processing, or any member

of a host of different dimensions to defining path permission (Touretzky, et al., 1987). The

systems discussed in this thesis have in common the stipulation that all direct links contained in a

network are sanctioned as permitted paths. Differences emerge with respect to paths of more than

one link, also called compound paths, that conflict with other paths. According to the upwards,

decoupled, restricted skeptical reasoner of Horty, et al. (1990), a path is permitted unless it is

preempted, cancelled, or redundant with respect to a path that is not permitted. If a path is

permitted in a network, then we say that the expansion of the network contains the implicit link

between the endpoints of the path. By defining permitted paths, preemption, and cancellation in

the language of FOL, instead of adopting the network notation of Horty, et al., we can provide a

more transparent translation into an implementation in Prolog.

Expressing the definitions in logic does not give us the semantics of FOL for inheritance

reasoning itself, but for our reasoning about inheritance. This is essentially an application of the

syntactic method proposed by Morgan (1976) for theorem proving in nonclassical logics. In the

syntactic method the proof theory of a nonclassical propositional logic is restated in terms of a

first order provability predicate. Theorem proving in first order logic is sound and complete with

respect to the theorems of the object logic, and "no semantic theory is required, so very exotic

systems can be studied even when no semantic theory is available" (Morgan, 1976, p.856). The

clauses which result in the first order representation of the logic'studied using the syntactic

method turn out to be Horn clauses; though we have not used the provability predicate exactly as

did Morgan (1976), we are still able to apply his results. Integrated in the following discussion is

a restatement of the following definitions in Prolog relations, and these Prolog relations allow us

to test the implications of inheritance reasoning definitions on various networks.

Path preemption allows more specific information that is contained in a direct link to

ovemde conflicting information in a more general (longer) path. This topological ordering of

paths is called the inferential distance ordering (Touretzky, 1986). Only direct conflicting links

can preempt other paths, though a preempting link may be part of a longer path.

Definition 2: Let x, x', and p be variables over positive paths.

Path Based Inheritance

Figure 2-4: Link X-/->Y preempts the path XRVY.

1. A positive path xy is preempted by a link p-/->y if there exists a permitted path
x' such that FirstNode(x)=FirstNode(x') and LartNode(x)=LartNode(x'), and
either FirstNode(x')-1->y is a link in the network and p=FirstNode(x'), or for
some subpath p of x' FirstNode(p)-/->y is a link in the network and
p=FirstNode(p).

2. A negative path xly is preempted by a link p--->y if there exists a permitted
path x' such that FirstNode(x)=FirstNode(x') and LastNode(x)=LastNode(d),
and either FirstNode(x')--->y is a link in the network and p=FirstNode(x'), or
for some subpath p of x' FirstNode(p)--->y is a link in the network and
p=FirstNode(p).

Examples of preemption are presented graphically in Figures 2 4 and 2-5. In both figures a

Figure 2-5: Path XRVY is off-path preempted by the link Z-/->Y.

positive path is preempted by a negative path. Matching the definition to the network in Figure

2 4 , both n and ~t' correspond to the path XRV. The endpoints of x and x' coincide, and

FirstNode(x')-I->Y is a link in the network, so XRVY is preempted by the link X-I->Y. In

Figure 2-5, n still corresponds to XRV, but x' corresponds to XZV, and p to ZV.

FirstNode(p)-1->y is the link that preempts the path XRVY. This second example is an instance

of off-path preemption (Touretzky, et al., 1987). Essentially, XZfY is said to be more specific

than both XZVY and XRVY.

Compound paths which conflict are subject to cancellation. The difference between

cancellation and preemption is that neither conflicting path is permitted after cancellation, but

preemption does permit one of its conflicting paths. Consider the network depicted in Figure 2-6

which has a topology somewhat in between that of Figures 2 4 and 2-5. Although paths x and n'

exist whose endpoints coincide, no a' exists that has a subpath p whose first node participates in a

Path Based Inheritance

Figure 2-6: Paths XZY and XRVY cancel each other.

preempting link. Neither XZrY nor XRVY is favored over the other. Since we are defining a

skeptical reasoner, we say that the paths cancel each other-neither is permitted. A credulous

reasoner would resolve to two extensions from the network, one in which Xs are Ys and another

in which X's are not Ys. On the other hand, if the network consisted of two conflicting links, then

we would say that it contains an inconsistency.

preempted (From, Through, To, Preemptor) : -
chain (From, Through, To) ,
complement (To, NotTo) ,
link (Preemptor,NotTo) ,
lastnode (Front, Last, Through) ,
perrnitted(From,OtherThrough,Last),
member (Preemptor, [From 1 OtherThrough]) .

Figure 2-7: The Definition of Preemption in Prolog.

In Figure 2-7 we give a restatement of the definition of preemption as a Prolog relation

between a path (specified in the arguments From, Through, To; items beginning with an

uppercase letters are understood as variables) and a node on more specific conflicting paths (the

argument, Preemptor). While From, Through, and To are all variables, we assume that From and

To vary over nodes, and that Through varies over lists of nodes with positive, not negative, links

implicitly connecting those nodes in the order of occurrence in a given list. The preempted

relation can hold only if the chain of links described by the path From--->Through-#->To is

actually a chain of links in the network. The relations complement and link determine whether

there is a conflicting path terminating at the node To. The path, From--->OtherThrough--->Last,

corresponds to x' in Definition 2. The relation lmtnode verifies that LartNode(~) =

LartNode(d), and the invocation of permitted (defined later) verifies that .n' is actually permitted.

Finally, the call to member is used to determine if the first node of x' or the first node of some

subpath of x' participates in the conflicting link.

Figure 2-8 depicts a Prolog translation of the network given in Figure 2-5. Links are

Path Based Inheritance
link (x, r .
link (r, v) .
link (v, y) .
link (x, z) .
link (z, v) .
link(z,not (y)) .

Figure 2-8: A Prolog Translation of Figure 2-5.

encoded as two place relations. The polarity of a link is indicated in the second argument. A

positive link A--->B is encoded as link(a,b), and the negative link A-/->B is encoded as

link(a,not(b)). In the Prolog session reproduced in Figure 2-9, we show the application of the

no

Figure 2-9: "Which Paths between x and y Are Preempted?"

relation preempted to determine what paths between the nodes x and y of Figure 2-8 are

preempted and what the preempting node is. In a Prolog terminal session, user input is entered

after a question mark. In Figure 2-9 user input is shown with added emphasis. The entry of a

semicolon indicates the user's request to the interpreter to find another way to satisfy the query.

Two preempted paths are returned in this fashion, x n y and xzvy, and both paths are preempted by

the node z. Since preempted is a reversible Prolog relation, we can also ask, for instance, for all

the paths which terminate at y but are preempted. This invocation, also for the network shown in

Figure 2-8 is represented in Figure 2-10. We see that there are three preempted paths that

I ?- preempted (X I Y, y, W) .

W = z,
X = z,
Y = [v] ? ;

no

Figure 2-10: "Which Preempted Paths Terminate at y?"

terminate at y: xrvy, xzvy, and zvy.

Path Based Inheritance 17
Definition 2 only partially specified what it takes to preempt a path. The definition made

reference to the existence of permitted paths, which has yet to be defined. The paths sanctioned

by an arbitrary network are determined by upwards construction of paths of increasing degree; the

formal definition follows:
Definition 3: Path Permission

1.Let xbe apath.
a. If x is a direct link, then x is permitted.

b. If the degree of x is one then x is a direct link, by the definition of
degree, hence x is permitted.

2. Let x be a compound path of degree n. Assume that all permitted paths with
degree less than n are known.

a. If x is a positive path then it has the form az (i.e., LastNode(a)--->z is
a link in the network). The path a is positive, and by Theorem 1 the
degree of a is less than n. The path x is permitted iff

i. a is permitted,

ii. FirstNode(a)lz is not a direct link in the net,

iii. Let p be a variable over positive paths. For all paths p/z with
FirstNode(p)=FirstNode(a) that conflict with the path az there
exists some path which preempts p/z.

b. If x is a negative path (it has the form, d z) , then x is permitted only
under the conditions symmetric to those stated in a. That is, iff:

i. a is permitted,

ii. FirstNode(a)z is not a direct link in the net,

iii. For all paths pz with FirstNode(P)=FirstNode(a) that conflict
with the path d z there exists some path which preempts pz.

Definition 3 follows the inductive structure of the path based definition provided by

Horty, et al. (1990), even though Definition 3 is not stated in their network notation. The

definition still proceeds with upwards construction of paths of increasing degree. The reason for

basing the definition on increasing degree rather than increasing path length is that in some

instances, information about a longer path is necessary to determine the permission of a shorter

path (Horty, et al., 1990). An example of a situation in which information about a longer path is

required occurs when two paths conflict, and one is shorter than the other as in Figure 2-6.

According to these definitions, if those paths intersect only at their endpoints, they will cancel

each other. Cancellation is stipulated by the third condition on the permission of R in Definition

3. This condition states that x is permitted only if all conflicting paths are preempted. Since x

has a degree of n, we know of all paths which could conflict with x. By the definition of degree,

none of the conflicting paths is longer than n. The degree of a path becomes significant only

Path Based Inheritance 18
during the examination of compound paths for the existence of conflicting paths. ~bnf l i c t i n~

paths are handled trivially in the case of direct links. All direct links are sanctioned as paths

through a network, even conflicting links. If a direct link conflicts with a compound path then the

definition of preemption is satisfied and the direct llnk preempts the compound path. In the case

of conflicting compound paths, it is known that none of the conflicting paths has a degree of

greater than n, and all shorter paths between the same endpoints are known, because Definition 3

proceeds on increasing degree.

A restatement of Definition 3 in Prolog is shown in Figure 2-1 1. This new definition has

a different structure from Definition 3 in that the Prolog definition is not stated explicitly in terms

of increasing degree, although it relies on the relationship between the degree of a path and the

degree of a subpath as stated in Theorem 1. In the component of the logic program that must

examine potentially longer paths for conflict, the definition refers to those paths directly using the

term, chain. This term simply represents a chain of links between the endpoints From and To, if

permitted (From, [I , To) : -
link (From, To) .

% From=FirstNode (Pi) , To=z .
permitted(From,Through,To) :-

% Last-#->z is a link.
link (Last, To) ,
% Last=LastNode (Alpha) .
lastnode (Front, Last, Through) ,
% From-#->z is not a direct conflicting link.
complement (To, NotTo) ,
not (link (From, NotTo)) ,
% Alpha is permitted.
permitted (From, Front ,Last) ,
% For all Otherpaths that do conflict,
% some path preempts each.
not (unpreempted (From, Otherpath, NotTo)) .

%Direct links are not preempted.
unpreempted(From, [],To) :-

link (From, To) .
%True when unpreempted paths exist.
unpreempted(From,Through,To) :-

%A path exists between From and To.
chain (From, Through, To) ,
lastnode (Front, Last-rough) ,
%From--->Through is permitted.
permitted (From, Front, Last) ,
%No preempting path exists.
not (preempted (From, Through* By)) .

Figure 2-11: The Definition of Permission in Prolog.

such a chain exists in the network. The length of the chain, which corresponds to degree, is

Path Based Inheritance 19
insignificant. Reference to the term chain stems from the invocation,

not(unpreempted(From,OtherPath,NotTo)). The definition of unpreempted determines whether

there is an OtherPath which is not preempted. Invoking not(unpreempted) with NotTo instead of

To verifies the condition that for all Otherpaths which do exist in conflict, none are permitted. If

an OtherPath did exist that was not preempted then unpreempted would hold true, and

not(unpermitted) would be false. If not(unpermitted) fails to hold, this indicates the existence of a

conflicting path, and neither path is permitted.

The basis case in Figure 2-1 1 is the first permitted clause which states that all direct links

in a network are permitted. An additional base clause to permit paths of degree one is

unnecessary since the set of paths whose degree is one is a subset of the set of paths that are direct

links. The three argument positions of the permitted predicate represent From, Through, and To,

as described above. From--->Through maps to a in the formal definition of permission, and To

maps to z. The empty list in the Through position of the term for the basis indicates that no

intermediate nodes lie on the path. The second rule defines permission in the general case. Since

we use the relation complement, in defining this rule, the same rule stipulates the permission of

both positive and negative paths in a single rule. The relations, link and lastnode, verify that

LastNode(a)-#->z is a link contained in the network, and the relation not(1ink) stipulates that a

directly conflicting link cannot be present in the network (for then, that link would be permitted,

and the path under consideration is preempted). The recursive reference to permitted specifies

that the subpath a must itself be permitted (From--->Through). Finally, the relation unpreernpted

holds when the path specified as input through its arguments is actually a chain of links through

the network which is not itself preempted. Thus, the specification, not(unpreempted), stipulates

that no conflicting, unpreempted paths exist. This is equivalent to the specification in the formal

definition that is expressed: for all paths that conflict with a-#->z, there exists some path which

preempts each conflicting path. The clauses which make up the definitions of unpreempted and

permitted implement Definition 3 even though a different ordering is stated on those constraints.

The order of the restrictions stated in the Prolog definition is guided by efficiency considerations

in limiting the search space.

In Figure 2-12 we include a Prolog session that applies the Prolog definitions given above

to the network shown in Figure 2-5 and translated to Prolog in Figure 2-8. Only the negative path

from x to y is permitted. Other paths which have x as a first node are permitted, but only the one

negative path ends at y.

Path Based Inheritance
(?- p e r m i t t e d (x , Through*) .
Through = [I ,
T o = r ? ;

Through = [I ,
T o = z ? ;

Through = [r I ,
T o = v ? ;

Through = I z 1,
T o = v ? ;

Through = [z] ,
To = n o t (y) ? ;

no

Figure 2-12: "Which Paths Beginning at Node x Are Permitted?"

Consider an example taken from Touretzky, et al. (1987) (Figure 2-13). Assuming a

Figure 2-13: Preemption by A-1->D Permits the Conclusion A--->I?.

skeptical reasoner, it initially appears that no conclusions about whether As are Es should be

forthcoming, since there are conflicting paths from A to E. However, the definitions do not

sanction the inference of E from A. ABDj'E is not a path permitted by the network, because its

subpath, ABD, is preempted by the link A D . The intuition is that AD contains more specific

information about A's D-ness than is in the chain of links, ABD (and we know from the

definitions that no path can contain two negative links, so A/D/E does not conflict). Hence

ABCE is a permitted path. Figure 2-14 depicts a translation of the network from Figure 2-13 into

Prolog, and Figure 2-15 demonstrates a Prolog session in which the permission and preemption of

paths is verified.

Path Based Inheritance
l i n k (a , b) .
l i n k (b , c) .
l i n k (b , d) .
l i n k (c , e) .
l i n k (d , n o t (e)) .
l i n k (a , n o t (d)) .

Figure 2-14: A Prolog Translation of the Network Depicted in Figure 2-13.

I ?- p e r m i t t e d (a , Y, e) .

no
I ? - p r e e m p t e d (a , Th rough , To, By) .
By = a ,
Through = [b] ,
T o = d ? ;

Figure 2-15: Upwards Reasoning: Preemption of ABD Permits the Conclusion A--->E.

Of course, the difference between implications of a network obtained by inspecting it for

direct or conflicting paths, and the implications made according to a given reasoner suggests that

the definitions are process oriented. The reasoner defined by Horty, et al., (1990) which we

describe herein is an upwards reasoner (cf. Touretzky, et al., 1987). In contrast, a downwards

reasoner would be able to conclude nothing about the relationship between A and E in Figure

2-13 because of the ambiguity of the relationship between B and E. The difference hinges on the

order of links considered in path construction, and this suggests that no declarative semantics can

be devised as a foundation to both upwards and downwards restricted skeptical reasoners.

Though some of the issues we discuss here are common to upward and downward reasoners, we

assume an upward mode of processing, in accordance with the definitions from Horty, et al.

(1990), given above.

2.2. Redundancy and Stability

One proof theoretic consideration present in both upward and downward (credulous or

restricted skeptical) reasoners is that the reasoning process should not be confounded by the

presence of redundant links. The network shown in Figure 2- 16 contains a link, A--->C, which is

considered redundant with respect to the path ABC. Networks of this topology were used by

Touretzky (1986) as counterexamples to illustrate the inappropriateness of shortest path reasoning

(Fahlman, 1979). The counterexamples demonstrate that if a shortest path reasoning mechanism

Path Based Inheritance 22
is used, then in the network in Figure 2-16, for example, it is wholly arbitrary whether the

reasoner will reach a conclusion based on the positive or negative paths of the same length from

A to D. Reasoners which exhibit such nondeterministic behavior are said to be unstable. The

disproof provided by the example relies on the assumption is that the link B/D provides more

specific information about A's D-ness than does the path ABCD, but that the link A--->C is

merely redundant with respect to ABCD. We dispute that assumption.

While we do agree that the network {A--->B, A--->B), consists of a redundant link, we

do not agree that this is necessarily the case for the network {A--->B, B--->C, A- - -XI . The last

Figure 2-16: A Network Containing a Redundant Link.

link, A--->C, is redundant, according to Horty, et al. (1990), since we already have ABC, and

A--->C contains only the information present in the longer path. But, if A--->C is redundant in

Figure 2-16, then B-/->D is incoherent, because if the former edge is giving only information

already contained in ABC, then the latter is giving information totally at odds with BCD. If there

is no more information that is left unexpressed by the path ABC, then the same is true of the path

BCD, and there is nothing else to express about the path, let alone something contrary to the path.

Rather, if one of those links can contain more specific information than the longer corresponding

path, then both paths must have that potential.

Admittedly, it is disconcerting to think of the link A--->C as non-redundant given that the

links are intended to represent, "is a." It would seem that the is a-ness of A--->C should be

contained already in ABC. However, this is merely because an adequate explication of the

meaning of "is a" has yet to be offered (c.f. Aristotle, 1952; Rosch and Lloyds, 1978; Brachrnan

1983). It is absolutely certain, especially for upwards reasoners, that set containment is not the

correct interpretation of "is a". If set containment were the correct interpretation, then coupling

would be present. Coupling occurs when properties of a subclass are in agreement with

Path Based Inhenlance 23
properties of a superclass. In a network that admits defeasible links, coupling is not a necessary

condition for transitivity. "Downward reasoners necessarily produce coupled theories because the

only properties a node can inherit are those of its superiors. Upward reasoners are not so

constrained" (Touretzky, et al., 1987, p.479). This quotation admits that an individual or class

has properties independent of the nodes to which it is linked, and these individuals and classes are

categorized on the basis of these properties. That is, being connected to a node as in A--->B does

not completely specify the node A. Other information about A is contained in A--->C just as

information contained about B in B-1->D is not contained in BCD. Researchers in THAT

paradigm seem to recognize this possibility when they discuss the intuitions behind their

reasoners, particularly Horty, et al. (1990) who, recall, have implemented an upwards reasoner,

but their definitions ignore this possibility.

For an example of a situation in which coupling does not occur, consider an analogy from

international relations. The United States defends Kuwait because of Kuwait's global importance

as an oil producing nation. Kuwait defends Palestine because of its Arab sympathy. The

U. S. may or may not defend Palestine. Neither situation follows as a matter of course from the

other two. We could represent this in the network shown in Figure 2-17, in which nodes

represent nations and links are interpreted as "defends". As the network stands we would

Figure 2-17: An Uncoupled Network.

rightfully conclude using inheritance that the U. S. defends Palestine. But, additional information

is required if this is to be an explicit fact encoded in the network. Additional information about

the U. S.-that the U. S. defends Palestine because defending nations is the right thing to

do--would be sufficient to ground the explicit coding of the link. This information is associated

with the node for the U. S. but is not included in the link which indicates that the U. S. defends

Kuwait. Equally, we require additional information about the U. S.-that the U. S. does not

defend Palestine because Palestine does not control resources of interest to the U. S . t o add a

Path Based Inheritance 24
negative link between the nodes for the U. S. and Palestine. The truth of either situation about the

U. S. can ground an explicit link, but neither the positive nor the negative link is contained in the

original two links. Either link encoded explicitly is qualitatively different from a link derived

from inference. In inheritance reasoning, links do not represent superclass/subclass relations, but

they do indicate classification. A link is a classification of some information at a node, but not

necessarily of all of that information. If a single link does not classify all of the information at a

node, then other links emanating from that node represent different information. They are not

redundant. If it is possible to find different information to be classified with the link B-/->D even

though B--->C and C--->D, then it is also possible to find different information from that

classified by A--->B and B--->C to be classified with the link A--->C.

Touretzky (1986) acknowledges that something is important about "redundant" links. He

claims, "we cannot easily ban redundant statements because there are no truly redundant

statements in a system that allows exceptions" (p.10)4. But, it is evident from the example he

gives that he considers the link A--->C, above, to be redundant, since he contrasts the status of

that link with the link C--->E added to the the network shown in Figure 2-16. The modified

network is illustrated in Figure 2-18. He claims that C--->E is not redundant. Touretzky (1986)

Figure 2-18: A--->C Is Considered Redundant, but C--->E Is Not.

argues that we would want to be able to infer that Bs are Es via BCE, even though Bs are not Ds.

Note that this inference cannot occur in the upwards reasoner without the link C---BE. Stability is

the property of an inheritance reasoner's being able to construct the same inferences from a

4~oureeky's statement makes clear that the networks he deals with are quite distinct from the inheritance networks
considered by David Israel, (1983). Israel assumes that the descendants of a node in an inheritance taxonomy are all
mutually exclusive. But, the presence of redundant links in a network implies the presence of chains of descendancy
fkom a node which are not mutually exclusive. Indeed, a classic example in the inheritance literature, the Nixon
Diamond which demonstrates the ambiguity caused by two conflicting paths, is a problem because Quakerism and
Republicanism are not mutually exclusive modes of socio-political philosophy. If they were mutually exclusive, the
diamond would be held forward as an example of inconsistency, not merely ambiguity.

Path Based Inheritance 25
network augmented by explicit links derived from inferences. Thus, the system described by

Touretzky exhibits instability. Horty, et al. (1990) take the same position as Touretzky (1986);

they provide the rationale that stability is not always a desirable property for inheritance

reasoners, but the importance of stability is relative to the topology of the networks reasoned

over. However, given that there are conflicting paths through the networks of both Figures 2-16

and 2-1 8, using a skeptical style of reasoning we should not be able to conclude anythmg in either

case. Inconclusiveness with regard to the networks corresponds exactly with Boutilier's (1989)

minimal-model semantic account of inheritance systems. Boutilier points out that this

inconsistency in labeling links redundant makes it hard to justify the use of the inferential

distance ordering at all. He provides an alternative set of definitions for preemption that has the

effect of labelling both A--->C and C--->E as redundant links. Topologically, this labelling is

more consistent than the definitions of Touretzky (1986) and Horty, et al. (1990), and secures

stability for the reasoner. Boutilier's reasoner will conclude of both networks (shown in Figures

2-16 and 2-18) that As are not Es. However, this stability is maintained by keeping redundancy

as a topological property of a network rather than as a semantic property.

THAT approach to inheritance reasoning is based upon the inferential distance ordering

of paths in a network. When conflicting paths arise the most specific path is preferred.

Boutilier's work points out an inconsistency in THAT approach and patches it to make the

topological definition of "most specific paths" consistent. New links can be added to the

networks of both Horty, et al. (1990) and Boutilier (1989). In both systems, some links add new,

more specific information and other links are considered redundant. The polarity of an added link

relative to the path it spans determines whether the added link is redundant or more specific.

Some new links can provide more specific information than was known before the addition, but

only if the new link represents information that is completely contrary to what was known before

the addition. If the additional information provided by a new link is not completely contrary to

what was known, the new link is to be considered redundant. This seems incoherent, particularly

in the case of Horty, et al. (1990), who explain the virtues of upwards processing, that a node has

properties independent of the more general nodes in the network. While Boutilier (1989)

indicates that some links may be "independently justified" he does not indicate how this might be

encoded in a network for links which are otherwise topologically redundant.

We are not arguing that redundant paths do not exist, but we do claim that redundancy

Path Based Inheritance 26
cannot be identified from the topology of the semantic network (if it could, the graph could hardly

be claimed to represent a semantic network). Possible cases of redundancy may be identified.

This is shown by the fact that the reasoners discussed herein do reason around "redundant" paths

correctly when the network has a friendly interpretation. Consider an unfriendly interpretation of

Figure 2-16: let A = Honda; B = dirt bike; C = motor vehicle; D = something used to get to work;

E = something used for transportation. None of these nodes stand for individuals. If we take a

particular individual, 0, and add the link @--->A, then we are forced to conclude, using THAT

style of reasoning, that although 0 is a Honda, it is not used to get to work, and we can reach no

conclusion about whether it is a mode of transportation. We do not insist on the conclusion that

O is used to get to work, but rather that no conclusion is possible since the topology of the

network is ambiguous. In this interpretation, the link A--->C contains information which is not in

the path ABC. This information is lost when reasoning is based on topological considerations

alone. Without examining the interpretation of the net, it is impossible to know whether or not a

given path actually is redundant. Topological considerations do not provide enough material to

make the classification. This consideration will emerge again later in this thesis, but presently we

consider altemative systems and other critical approaches to THAT style of inheritance.

2.3. Two Alternative Systems

In this section we consider two altemative systems of path based inheritance in

comparison with THAT approach. We avoid characterizing any system as "more intuitive" than

another, since "intuition" is a conclusion based on semantics, and we will not characterize an

acceptable semantics for inheritance systems apart from the motivating notion of "typicality."

Where possible, we point out formal distinctions which cause one system to behave differently

than another. The systems that we describe here do not fall into the space of 72 distinct

possibilities that Horty (1989) claims for path based reasoners because the two systems that we

describe, those of Geffner and Verma (1989) and of Ballim, et al. (1989) are not purely path

based. The system of Geffner and Verma introduces a derivability relation on top of the notion of

paths. Work more closely related to THAT family of research classifies the inference

corresponding to the endpoints of a derived path as an implicit link with the same status as an

explicit link (thus causing the problems with redundancy and instability that we noted in the last

section). Lnstead, Geffner and Verma distinguish inferences by referring to them with the

derivability relation, as we shall explain in more detail shortly. The system of Ballirn, et al.

Path Based Inheritance 27
(1989) is removed from THAT sort of path precedence in a different direction. Ballim, et al.

calculate path precedence from inclination quantifiers associated with each path. While their

system still bases its preferences upon purely topological considerations, it provides a framework

into which other considerations can be incorporated.

23.1. Geffner and Verma

Geffner and Verma (1989) present an alternative system for defeasible inheritance which

is based in THAT tradition of path based inheritance, but which differs in defining inheritance

relative to a derivability relation "I-". We give definitions which are equivalent to those stated by

Geffner and Verma, and we accompany the definitions with their Prolog translations.

Definition 4: Derivability for nodes.
1. If p is a node in a network, then p I- p.

Though it is not stated by Gef!ker and Verma, a careful reading reveals that to obtain behavior

expected of the derivability relation, the relation must be reflexive with respect to nodes in a

hierarchy even though no links exist in the network which connect node to itself. The usual

method of defining path based inheritance is to consider a link connecting two nodes to be the

minimum wherewithal required to complete inheritance.

Definition 5: Derivability for links.
1. If p--->r is a link in the network, then p I - r.

2. If p-/->r is a link in the network, then p I- -r.

On the other hand, a usual treatment is to consider each direct link contained in a network as

supporting the inference corresponding to its endpoints. Recall that it is considered a

methodological advantage of inheritance reasoners over FOL that a network can contain directly

conflicting links supporting contradictory conclusions without supporting any arbitrary

conclusion from the basis of contradictory links, unlike a contradiction contained in the deductive

closure of a theory expressed in FOL.

Definition 6: Derivability for chains.
1. If

a. p I- q, and

b. q--->r is a link in the network, and

c. every path K-/-zr with FirstNode(~) = p in the network is defeated by
the node p,

then p I- r (chaining occurs).

2. If
a. p I- q, and

Path Based Inheritance
b. q-1->r is a link in the network, and

c. every path n--->r with FirstNode(x) = p in the network is defeated by
the node p,

then p I- -r (chaining occurs).

The sense of path used here is exactly the same used earlier, permitted paths in THAT material

occupy the same place as the derivability relation in Geffner and Verma (1989). Defeat will be

defined shortly in Definition 7.

Note that Definition 5 is a special case of Definition 6 in which p is identical with q.

Thus, the two Prolog relations given in Figure 2-19 explicitly cover the conditions of Definitions

d e r i v e d (From, From) .
d e r i v e d (From, To) : -

% A c h a i n of l i n k s e x i s t s between t h e e n d p o i n t s
c h a i n (From, Through, To) ,
l i n k (L a s t , T o) , % q-#->r i s a l i n k .
d e r i v e d (From, L a s t) , % p I - 9
complement (To,NotTo) ,
% No u n d e f e a t e d , c o n f l i c t i n g p a t h e x i s t s .
n o t (u n d e f e a t e d (From, Thru, NotTo)) .

u n d e f e a t e d (From, Thru, To) : -
% A p a t h From--->Thru--->To e x i s t s .
c h a i n (From, Thru, To) ,
%The p a t h i s n o t d e f e a t e d .
n o t (d e f e a t e d (Defea to r ,F rom,Thru ,To)) .

Figure 2-19: A Prolog Translation of Definitions 4 ,5 and 6.

4 and 6. The first Prolog relation specifies the base case stated in Definition 4. The second

relation specifies the general case. The derivability relation holds between the endpoints of a

chain of links only if a chain with those endpoints exists in the network. The relation link verifies

that the link q-#->r is in the network, and derived verifies that p I- q. The ordering of these

relations is different in the Prolog definitions than in Definition 6 for efficiency considerations.

The variables From, Lust, and To used in the relations shown in Figure 2-19 correspond to p, q,

and r, respectively, in Definition 6. The last two relations in the Prolog rule, complement and

not(undefeated), verify that every complementary chain of links between From and To is

defeated. This relation is verified using a negated existential statement (it is not the case that a

path exists which is not defeated).

Definition 7 defines the notion of defeat in terms of the dominance relation. A link or

compound path x-#->r is defeated when a conflicting link exists whose first node derives some

node in x. Definition 7 is restated in the two Prolog relations shown

Path Based Inheritance
Definition 7: Defeat

Let x be a path whose length is greater than zero. Then x is either a direct link
of the form P-#->r where p and r are nodes, or x has the form ap-#->r where a is a path
whose length is greater than or equal to zero and P is a path whose length is strictly
greater than zero.

A path P-#->r is defeated by a node n if w dominates P and n I - w.

d e f e a t e d (N , From, ChainJo) : -
dominates (SomeNode, From, Chain, To) ,
d e r i v e d (N , SomeNode) .

defeated(N,From, [P I A t h l , T o) :-
d e f e a t e d (N , P ,Ath , To)

Figure 2-20: The Definition of Defeat in Prolog.

in Figure 2-20. The first relation is a straightforward translation of the definjtion for the cases in

which P is a single node and in which the length of a is zero. The second rule stipulates that a

chain of links is defeated ([PIAth]) if a suffixed constituent chain (Ath, which corresponds to P) is

defeated; this is the case in which a is greater than zero.

Definition 8: Dominance
1. A path n-/->r is dominated by a link p--->r if p I- FirstNode(x).

2. Symmetrically, a path x--->r is dominated by a link p-/->r if p I- FirstNode(x).
In either case, it is also said that the path is dominated by the node p.

dominates (Node, Fromf Chain, To) : -
complement (To, NotTo) ,
l i n k (Node, NotTo) ,
d e r i v e d (Node, From) .
Figure 2-21: The Definition of Dominance Stated in Prolog.

A translation of the definition of dominance as a Prolog relation is shown in Figure 2-21.

A difference in these definitions and those of Horty, et al. (1990) is that the inferences

sanctioned by the network are those derived from the network using the derivability relation,

rather than those which correspond to the endpoints of valid paths. In THAT family networks,

we can identify a continuum of pathhood: the links in the net, which are explicitly encoded;

paths, which are a subset of the generalized paths (chains of links) through the network; and

permitted paths, a subset of the paths. Within the system just defined there are two additional

graduations: nodes, as mentioned in the definitions; links as in THAT family; paths, also as in

THAT family; the binary derivability relation, corresponding to permitted paths; and certified

paths. A certified path through a network is just a path which is not defeated. The derivability

relation always holds between the endpoints of a certified path. The derivability relation

Path Based Inheritance 30
introduces a finer graduation because in some cases the definitions allow us to conclude that the

derivability relation between its endpoints of some defeated paths also holds. An example taken

from Gef ie r and Verma (1989) may clarify how such a derivation can hold.

Tweety 0

Figure 2-22: Certified Paths vs. Derivability.

In Figure 2-22 from Geffner and Verma (1989), consider the path

Tweety--->penguin--->bird--->thing-/->fly (or even the path Tweety--->bird--->thing-/->fly,

which is considered redundant with respect to that path). Figure 2-23 shows a Prolog session in

which queries are made using the above relations and a translation of the network given in Figure

2-22. We want to know whether Tweety I- -fly and whether the path sanctioning this derivation

is certified. Definition 6 divides this question into constituent questions. Clearly, Tweety I- thing,

since that derivation involves no canceled links, and thing -I-> fly is a link in the network. In

Figure 2-23, we see that the relation, derived(tweety,thing) holds. The second part of the question

addresses whether there is any path from Tweety to fly which is not defeated. We invoked the

relation chain in the Prolog session shown in Figure 2-23 with a variable as an argument so that

we could locate all of the paths between Tweety and fly. Two paths exist, the one through

Path Based Inheritance 31
penguin and bird, and the topologically redundant path through bird. No undefeated path exists

since paths containing the link bird--->fly (the only paths which could conflict) are defeated by

the node penguin (Tweety--->bird--->fly is defeated because a consequence of Tweety, penguin,

defeats bird--->fly). So, the derivation is permitted using the path

Tweety--->penguin--->bird--->thing-/->fly: Tweety I - -fly. However, in the same way that the

node penguin defeats bird--->fly, the node bird defeats the link thing-/->fly. The last three Prolog

rule invocations shown in Figure 2-23 show that the derivation relation holds even though the

relevant path is defeated. This means that the derivation between the endpoints of the path is

sanctioned, but the path itself is not a certified path in the network.

I ? - d e r i v e d (t w e e t y , t h i n g) .
Yes

I ?- c h a i n (t w e e t y , X, f l y) .
X = [p e n g u i n , b i r d] ? ;

X = [b i r d] ? ;

no
I ?- d e f e a t e d (B y , t w e e t y , [p e n g u i n , b i r d] , f l y) .
By = p e n g u i n ? ;

no
I ?- d e f e a t e d (B y , t w e e t y , [b i r d] , f l y) .
By = p e n g u i n ? ;

no
I ?- d e r i v e d (t w e e t y , n o t (f l y)) .
Yes

I ?- d e f e a t e d (By, t w e e t y , [p e n g u i n , b i r d , t h i n g] , n o t (f l y)) .
By = b i r d ? ;

no
I ?- d e f e a t e d (By, t w e e t y , [b i r d , t h i n g] , n o t (f l y)) .
By = b i r d ? ;

no

Figure 2-23: A Prolog Session.

Though the derivability relation can exist between the endpoints of a defeated path, when

this actually occurs there is some other undefeated path for which the relation holds as well. To

understand why, suppose that some complex path is defeated and the derivability relation holds

Path Based Inheritance 32
between its endpoints, but no other path exists between the same endpoints. For the network we

used in Figure 2-22 and the discussion in the last paragraph, we suppose that we can remove the

link between penguin and fly and still obtain the inference that tweety does not fly. The resulting

network is given in Figure 2-24. Because no other paths exist, there is no other path to defeat the

Tweety 0

Figure 2-24: Certified Paths vs. Derivability.

defeating path. In the example, the link between bird and fly forms the basis of the defeating

path. But, that means that the defeating path constitutes an undefeated conflicting path between

the endpoints of the path originally under consideration (the defeated path). In the network

shown in Figure 2-24, the defeated , path . is one ending with the link bird-/->thing. However, if

this is the case then by the definition of chaining the derivability relation fails to hold between the

endpoints of the defeated path, and this failure contradicts the assumption that we made at the

outset. This proves5 that the derivability relation is closely tied to the existence of some

corresponding certified path. For the example given in Figure 2-24 this means that we cannot

conclude that tweety does not fly. But, it is interesting that the derivability relation can be proven

with respect to some defeated path relying on the certified path only indirectly.

S ~ e make a different argumenL but the result corresponds to Geffner and Verma's (1989) correspondence theorem.

Path Based Inheritance 33
Indirection is incorporated into the definitions and allows defeat to cascade across paths.

In discussing Figure 2-22 we noted that the link bird--->fly is defeated, but this link is itself the

cause of the defeat of the link thing-/->fly. Another interesting consequence of the definitions

arises in networks that contain explicit inconsistencies. Given an inconsistent network { A--->B,

A-/->B}, for instance, both links are derivable, even though both links are defeated by the node

A, as can be seen in the Prolog session shown in Figure 2-25. In THAT work which we described

I ? - d e r i v e d (a , X) .

no
I ? - d e f e a t e d (By, a , [I , n o t (b)) .

no
I ?- l i s t i n g (l i n k) .
l i n k (a , b) .
l i n k (a , n o t (b)) .
Yes

Figure 2-25: An Inconsistent Network.

earlier, the definitions label both links as permitted paths. Since permitted paths in THAT family

of inheritance sanctions inferences corresponding to the endpoints of the paths, permitted paths

correspond to the derivability relation. So, both THAT family and Geffner and Verma sanction

the inconsistent inferences simultaneously. But, in the system outlined by Geffner and Verma we

can label the inconsistent links, "defeated" because of the extra graduations in classifying chains

of links. The links are not mutually preemptive under the definitions provided by Horty, et al.

(1990).

The specification of defeat and the rippling property associated with it imbue the reasoner

defined by Geffner and Vema with acute instability.
We have chosen to reject cumulativity [stability]. Indeed, we are inclined to believe that

cumulativity is not necessarily a property of 'correct' defeasible inference but a property about
belief dynamics, namely a 'rational' policy of belief revision in the light of new information.
(Geffner and Verma, 1989, p.10)

Path Based Znheritnnce 34
Gefher and Verma continue, pointing out that in some cases it seems appropriate to preserve

derivability with the addition of "redundant" and even new information, and in other cases this is

inappropriate. What Geffner and Verma see as distinguishing these cases is not clear, however, it

is something other than a topological consideration. This facet of the system presented by

Gefher and Verma, in distinction to the work more closely aligned with THAT paradigm,

motivate its inclusion in the present discussion.

23.2. Link Arithmetic

Ballim, et al. (1989) present yet another approach to path based inheritance, and it is

representative of the approach to path construction based on link arithmetic. Link arithmetic is

the association of numeric values with links and the computation of values for the chaining of

adjoining links. Additional rules impose a preference ordering based on the certainty values thus

associated with the composite links. In the abstract, a link arithmetic approach is not based on the

topology of paths, since the preference of one path over another is determined by an ordering of

the certainty factors associated with each inference. The arithmetic for determining those

certainty factors does not have to be guided by topological considerations. However, the system

of Ballim, et al. (1989) is defined so that the arithmetic respects topological considerations.

Ballim, et al. (1989) call the relationship that holds between the endpoints of links and all

other valid paths an effective relationship. Associated with each effective relationship (ER) is an

inclination qualifier or leaning which indicates the relative leaning we have towards accepting a

given ER. Links in a net are all assigned inclination qualifiers of zero, and the inclination

qualifiers for ERs on complex paths are derived from the link basis. Preference is given to paths

whose ERs have smaller inclination qualifiers, and since no value smaller than zero can arise, all

links in a network have equal preference, just as in THAT family and Geffner and Verma (1989).

Ballim, et al. define an arithmetic for combining paths and for giving them a preference ordering.

This arithmetic encodes topological considerations like preferring shorter paths over longer paths,

and paths of strict links over paths mixed with defeasible links.

Rules are given for constructing complex ERs. There is a set of rules rather than a single

rule because Ballirn, et al. include both strict and defeasible links in their nets, and the two sorts

of links are treated as fundamentally different. The combination of different sorts requires

different rules. The heterogeneous system addresses Brachman's criticisms that defeasible nets

Path Based Znherirance 35
cannot represent definitions of composite concepts (cf. Brachman, (1983, 1985)). Horty and

Thomason (1988) have also addressed this criticism. A link or ER can be positive or negative,

strict or defeasible. Rules govern the computation of inclination qualifiers associated with

various combinations. Some combinations, like the chaining of any link after a negative (strict or

defeasible) link, are not permitted. For those combinations that are allowed, the leaning

associated with the ER for the combined path is taken as the maximum of the leanings of the

path's constituents, or in some cases, that same maximum value plus some constant. When the

combination involves any sort of link followed by a strict link, the constant is zero; if it involves a

strict link followed by a defeasible link, the constant is one; and if two defeasible links are

combined the constant is two. Since preference is given to ERs with smaller inclination

qualifiers, the net effect is that an ER for a complex path has a greater inclination qualifier (less

inclination) than either of its constituents.

An additional set of rules over the different combinations of paths is designed to state

relationships among multiple ERs (multiple paths between endpoints). The two general

possibilities are specialization, in which two ERs have the same polarity, and conflict, in which

two ERs have opposite polarity. A final set of rules imposes a preference ordering on ERs.

Invalidation rules eliminate some conflicting ERs, and precedence rules order paths by increasing

inclination qualifiers. As the preference order on ERs is a partial ordering and two ERs may have

equal leanings, the theory stated by Ballim, et al. (1989) is a sort of skeptical reasoner. Faced

with two ERs with equal inclination qualifiers the reasoner aborts under the recognition of

ambiguity.

Without enumerating the rules in detail, we can still see interesting features in this system.

First of all, the approach of Ballim, et al. reasons over nets that mix both strict and defeasible

links. Horty and Thomason (1988) present an alternative approach to mixed inheritance, but their

presentation is squarely path based. The system of Ballim, et al., is different because of its link

arithmetic. Ballim, et al. (1989) do not attempt to argue that the particular set of arithmetic

functions provided in their tables of rules are the most appropriate functions. However, the

behavior induced by the link arithmetic rules in the present system agrees with the heterogeneous

system of Horty and Thomason on at least one point. Horty and Thomason (1988) argue:
In the context of defeasible networks, it makes good sense to say that direct information can be

camed only by direct links: any compound path represents an argument that can itself be
undermined. In the context of mixed nets, however, certain kinds of compound paths can
legitimately be thought to carry direct information-namely, compound paths consisting of a
single defeasible link followed by a smct segment of any length." (p.430)

Path Based Inheritance 36
In prefering ERs with smaller leanings, and given the particular set of functions for path

combination, Ballim, et al. (1989) also indicate a preference for the same form of heterogeneous

path described by Horty and Thomason. It is interesting that the path described is prefered in

both systems to a path which appears topologically equivalent, in which a strict segment of any

length is followed by a single defeasible link.

We also note that an ER is very much like the derivability relation of Geffner and Verma

(1989), in that it is a relation between the endpoints of a path. Nonetheless, because of the

specification of path precedence in terms of simple link arithmetic we obtain a different sort of

instability from that advocated by Geffner and Verma. We refer to Figure 2-26 for our

explanation. In Figure 2-26 the dark arrows represent strict links, and the light arrows represent

Figure 2-26: An Ambiguous Net with Both Strict and Defeasible Links.

defeasible links. The rules for combining ERs stipulate that the leaning associated with every

link is zero. Applying those rules, we determine that there are two conflicting ERs between A

and F, and both have the inclination qualifier 7. Hence the net is ambiguous. However, if

"redundant" links are added for the ERs between B and D and D and F, respectively, we obtain

the network shown in Figure 2-27. Even if the leaning on each of the new links is not specified as

Figure 2-27: Instability: An Ambiguous Net with Redundant Links Added.

zero, but as 2 (which corresponds to the leaning associated with the ER derived from both BCD

and DEF according to procedural application of the rules), we are able to construct a path ABDF

whose ER is 5. The network depicted in Figure 2-27 is no longer ambiguous because the ER

whose leaning is 5 is prefered to the ER for AGHJIF. The addition of topologically redundant

Path Based Znhenfance 37
links to a network causes the reasoner to make different inferences from the network; this is

unstable behavior.

The instability lies in the link arithmetic which makes the theory interesting. Note that

the theory is not a semantic account of inheritance; the leanings assigned to ERs, even to links,

have nothing to do with the probabilities that given links represent factual information. Instead,

leanings encode information about the number of links in a given chain. The more links the

larger the value of the inclination qualifier. Examining modified nets with redundant links added,

we can construct shorter chains between the same endpoints and, hence, derive smaller leanings.

Using link arithmetic is a promising approach, because if semantic information is encoded in

leanings rather than merely topological information, then there is a clear way to identify

semantically redundant links from links that are merely topologically redundant.

2.4. Summary

This chapter has presented three systems of path based inheritance, pointing out the

syntactic flavor of the systems. They are all topologically based and lacking an associated

semantics. Two of the systems have been reformulated as logic programs (the third system has

already been implemented in Prolog by its authors) to verify assertions about the derivability of

conclusions in both systems. THAT paradigm defines the field, but we react against its position

on the primacy of topological considerations in inheritance reasoning and the problem of

redundant links. Geffner and Verma take a different position from THAT group on the property

of stability, a property which is related to the status of redundant links within an inheritance

reasoning system. They reject the view that the property is an essential one for inheritance

reasoners to have in all cases, though Geffner and Verma define their system so that it has the

property in some cases. Ballim, et al. go even further in allowing instability into their system.

Strong arguments for stability have been put forward (Boutilier, 1989). but these have been based

on the desire to preserve the inferential distance ordering. The inferential distance ordering is a

topological ordering which overlooks the potential for topologically redundant links to contain

non-redundant information. We feel that since topologically redundant links can be non-

redundant in terms of the information they represent, it is sensible for a reasoner to obtain

different results when those links are added. Topological instability in a system designed with the

understanding that a topologically redundant link is not necessarily semantically redundant, is

Bath Based Inheritance 38
therefore correct: instability means that the system reaches a different set of conclusions in the

light of new information.

Touretzky (1986) proposed the inferential distance ordering to correct the problem he saw

with shortest path reasoning. Recall the inheritance network in Figure 2-1, with which we began

this chapter. Without the link Clyde--->Elephant, a shortest path reasoner will reach the correct

conclusion that Clyde is not gray, but with that topologically redundant link there is another path

of the same length which sanctions the inference that Clyde is in fact gray. It is indeterminate

which path will be found first, and therefore there is no way to know what the conclusion will be

about Clyde's grayness. Semantically, for the network whose interpretation is about Clyde, we

want to conclude that Clyde is not gray. But for the interpretation that we provided in Section 2.2

the correct conclusion was ambiguous because the topologically redundant link camed

information not contained in the other path. If it is known, based on the interpretation of the net

that topologically redundant links can contain new information, then the counterexample to

shortest path reasoning loses its force. This is significant because the computational complexity

of shortest path reasoning is a linear function of the number of nodes in the directed acyclic graph

that constitutes the network, but Touretzky's (1986) system is NP-Hard, as is the system of

Geffner and Verma (1989) (Selman and Levesque, 1989). The de-coupled, upward processing,

restricted skeptical reasoner of Horty, et al. (1990) is tractable (Selman and Levesque, 1989), and

still maintains the inferential distance ordering, but maintaining the ordering is somewhat

inconsistent in this case, since, as we have argued, its being de-coupled allows the possibility for

topologically redundant links to contain new information. These considerations reinforce our

intuition that shortest path reasoning is still useful. In the following chapters we provide an

application for inheritance reasoning in which a shortest path mechanism is extremely useful.

Chapter 3

Head Driven Phrase Structure Grammars

In the next chapter we present a cyclic inheritance network which captures most of the

conceptual structure of Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1987).

We describe the content of nodes and the semantics of links which comprise this inheritance

hierarchy. Further, we specify the nature of the path-based reasoning required by HPSG over the

network, reasoning which is not confounded by the presence of a cycle.

Before describing our characterization of HPSG as an inheritance hierarchy, we first

highlight some of the distinctive features of this unification-based grammar formalism (Shieber,

1986) for representing the structure of natural languages. That is the task of the present chapter.

HPSG is a grammar formalism that incorporates aspects of traditional lexical grammar

formalisms like categorial grammar (Oehrle, Bach and Wheeler, 1988) along with some aspects

of contemporary linguistic theories like generalized phrase structure grammar (Gazdar et al,

1985). As a lexical formalism HPSG places reduced emphasis on grammar rules and increased

emphasis on the lexicon. The "rules1' state in very schematic terms how units of discourse may

combine to form more complex units (or in a top down analysis, how complex units of discourse

may be decomposed into their constituents). Rather than writing a rule of the form, S --> NP VP,

we talk of more abstract entities like "heads" and "complements". For example, the head of a

sentence is a VP, and the complement is the NP subject; the head of a VP is a verb; the head of a

NP is a noun, and the complement is a determiner. Rules for string rewriting are replaced by

information structures called signs which are encoded as attribute-value matrices. Signs can have

complex internal structure, including a daughter feature whose value is also a sign. Phrasal signs

have head and complement daughters. Using the abstraction of heads and complements, a single

schematic rule which states a structural relationship between a head daughter and the related

complement daughters of a phrasal structure can be used to characterize the grammaticality of a

number of constructions. For example, the string rewriting rules S --> NP VP and NP --> Det

39

Head Driven Phrase Structure Grammars 40
Nom can both be replaced by a single sign in which S or NP corresponds to the sign (the mother),

NP or Det corresponds to the complement daughter, and VP or Nom corresponds to the head

daughter. The mother sign and its daughters are not marked for specific category information, but

do encode constraints on other features of lexical signs and phrasal signs marked with those

categories to allow particular combinations.

While HPSG requires a number of grammar rules to cover a substantial portion of

English, this number is still less than ten (cf. the context-free covering grammar for the

transformational grammar system developed by the MITRE corporation in the 60s had 550

grammar rules (Grishrnan, 1986)). Other unification based formalisms, like Tree Unification

Grammar (Popowich, 1989). require only one rule. The information abstracted away from the

rules (the labeling of an object as "N" or "Det") is relocated to the lexicon. Universal principles6

are also used to state additional constraints on the sharing of information between a mother sign

and its daughters. For instance, the Head Feature Principle states that the head features of a

mother sign (its part of speech, among other things) are identical to the head features of its head

daughters. The major category of a sentence is "verb" since that is the major category of its head

daughter. Likewise, a VP obtains its major category from its head daughter, a lexical entry

marked as a verb. Thus, the schematic rules and principles direct the inheritance of information

from the lexicon to more complex expressions. Another interesting aspect of unification

grammar formalisms like HPSG is that they are monosnatal in their representational ontology:

lexical entries, rules, and general principles are all stated within a single level of formal

representation.

3.1. Signs

The fundamental unit of discourse in HPSG is the sign. Signs are represented with

attribute value matrices (AVMs) in a simple frame representation language. The attributes and

values of a sign contain phonological, syntactic and semantic information of linguistic

constituents. For our discussion, we need consider only a portion of these features.

The top level attributes of signs are PHON, SYN and SEM which indicate phonology,

syntax, and semantics. Signs are partitioned into phrasal signs and lexical signs. Phrasal signs

6 ~ o l l ~ d and Sag (1987) claim that these hold for all natural languages which can be represented using HPSG.

Head Driven Phrase Structure Grammars 41
are distinguished from lexical signs by a top level feature called DTRS which contains

constituency information; lexical signs do not have this feature. The value of the DTRS feature is

called a Headed-Structure, though sometimes phrasal signs are themselves referred to as headed-

structures as well. HPSG uses the DTRS feature of phrasal signs to represent the constituent

structure of a mother s i p in terms of its head daughter (HEAD-DTR) and its complements

(COMP-DTRS). There are other types of daughters like adjuncts and filler daughters which need

not concern us here.

SYN values are classified into LOC and NONLOCAL features. Important LOC features

are HEAD, SUBCAT and LEX. HEAD features record syntactic information usually associated

with words, information like major category in linguistic classification, form (relative to

category), case, aspects of agreement, and constraints on adjuncts. SUBCAT is a list of other

signs, in decreasing order of obliqueness, with which the mother sign needs to combine in order

to be saturated with respect to its classification in a subsumption hierarchy. A phrasal sign is

saturated if its SUBCAT list is empty. "Obliqueness" refers to an ordering imposed on the

constituents of a sentence; "indirect object, direct object, subject," is a listing of constituents in

decreasing order of obliqueness (Pollard and Sag, 1987;p.71). Later we will discuss a

grammatical principle which constrains the sharing of information between the SUBCAT and

COMP-DTRS list of a mother sign and its HEAD-DTR. For now, we indicate that lexical entries

within a particular classification (like major category) are marked to subcategorize for signs that

contain particular information. A noun subcategorizes for a determiner. The phrasal sign for a

NP is saturated if it contains the requisite information about its noun head daughter and its

determiner complement. In general terms, a phrase structure categorized by a set of head features

is a complete structure when its constituent structure represents each of the signs mentioned on

the SUBCAT list of the HEAD-DTR of the mother sign, subject to other constraints imposed by

the grammar principles to be described shortly. LEX is a binary valued feature which correlates

but does not coincide with the distinction between lexical and phrasal signs (Pollard and Sag,

1987, p.73).

Using these features, we may construct a sign to describe the lexical entry for "did" as in

Figure 3-1. Note that we have abbreviated this lexical sign by removing the NONLOCAL and

the SEM attributes. The appearance of VP[BSE] and NP[NOM] in the SUBCAT list indicates

that "did" must combine with a base-form verb phrase and a nominative noun phrase to produce a

Head Driven Phrase Structure Grammars

- did
v

FORM FIN

-

I -
SUBCAT <VP[BSEl, NPINOMl>

-

Figure 3-1: Lexical Entry for "did".

NOM " I

Figure 3-2: Sign Abbreviations.

complete (saturated) constituent. VP[BSE] and NP[NOM] are actually abbreviations for the signs

introduced in Figure 3-2 (Pollard and Sag, 1987, p.69). A similar sign can be used to define a

lexical entry for the transitive verb, "kissed". The only differences for the features that we have

mentioned here is that VP[BSE] would be replaced by NP, and, of course, the new lexical sign

would have a different phonology. In our discussion, PHON represents just orthography. Signs

can be ordered by relative informedness (subsumption) into a lattice structure such that a given

abbreviation stands for the class of signs represented by a node in this hierarchy and the class of

all subsumed signs. This ordering enables a formal specification of lexical types.

Head Driven Phrase Structure Grammars
3.2. Lexical Types

A herarchy of lexical types allows the specification of complex types in terms of less

complex types higher in the hierarchy. We say that a sign A is more complex than a sign B if A is

subsumed by B (i.e., A is more informed than B). The use of complex types eliminates

considerable redundancy from the lexicon since individual lexical entries can be characterized by

inheritance over elements from the lexical hierarchy rather than by their complete (explicit)

specifications as signs.

Following Pollard and Sag (1987, $8), the lexical type sign is the root of lexical hierarchy.

This type has two subtypes, lexical-sign and phrasal-sign. Lexical-signs are either

major-lexical-signs or minor-lexical-signs, with the former partitioned on either the value of their

HEAD features (i.e., noun, adjective, verb or preposition) or on the value of their SUBCAT

features (i.e., saturated or unsaturated). One can define a subtype like v-trans in terms of the

types verb and nonempry which would result in v-nuns inheriting all of the features specified in

those two types and all of the types used to define verb and nonernpfy. A particular lexical entry

like walk could then be defined in terms of v-tram, also inheriting supertype information.

Inheritance is facilitated by two types of path based reasoning (cf., Touretzky, Horty and

Thomason, 1987) over this multiple inheritance hierarchy, normal (shortest path reasoning) and

complete (fully skeptical reasoning) (Shieber, 1986, Flickinger, 1987).

Lexical types are not the only means of structuring information in the lexicon.

Dependencies between two lexical entries (or lexical types) can also be stated with the use of

lexical (redundancy) rules. We will not be concerned with these rules here, as there is some

question of their necessity (Flickinger, personal communication).

3.3. Grammar Rules and Principles

HPSG, as a linguistic theory, is a discussion about constraints on the combination of

signs. A basic tenet of HPSG is that the HEAD-DTR of a phrasal sign is itself a sign. Syntactic

and semantic information is shared between those two signs, as well as among the other

complement. of the HEAD-DTR, according to the constraints imposed by the few grammar rules

and the universal and language specific principles. The rules and principles are expressed as

information structures-they are stated in terms of signs just as are lexical entries.

Head Driven Phrase Structure Grammars
33.1. Principles

The grammatical principles independently constrain information contained in signs. The

Head Feature Principle restricts the sharing of HEAD information between a mother sign and its

HEAD-DTR. The Subcategorization Principle mediates SUBCAT information between a mother

sign and its HEAD-DTR in terms of the mother sign's COMP-DTRS. The Semantics Principle

defines the sharing of SEM information among a mother sign and all of its daughters, as does the

English Constituent Ordering Principle for PHON information. The Adjuncts Principle, which

plays a key role in the treatment of modifiers, actually violates the formal language used within

HPSG since it imposes a relational rather than a functional constraint (Pollard and Sag, 1987,

p.163), and for this reason we will not consider it any further at this time.

Figure 3-3: Head Feature Principle.

The Head Feature Principle is illustrated in Figure 3-3. Structure sharing of values among

features is denoted by a common index. The signs shown in Figure 3-3 follow the abbreviatory

convention adopted by Pollard and Sag (1987) which allows reference to values inside nested

AVMs by writing the paths of attribute names (separated by vertical bars) which lead to these

values. The Subcategorization and Constituent Ordering Principles are abbreviated in Figure 3-4

as signs without the relative pseudocomplement operator (=>). The Subcategorization Principle

- -

PHON order(@ ,Q)

pz2s q
- English Constituent -

Ordering Principle

append@ ,Q
COMP-DTRS O I

- 2

Subcategorization Principle

Figure 3-4: Subcategorization and Constituent Ordering Principles.

enforces the following constraint on mother phrasal signs: the first elements (the first elements

Head Driven Phrase Structure Grammars 4 5
are the most oblique elements) of the SUBCAT list of the HEAD-DTR of the mother sign are also

the COMP-DTRS of the mother sign; the SUBCAT list of the mother sign takes its value from

everythmg else on the SUBCAT list of the HEAD-DTR (the least oblique elements). Let A, B,

C, and D be signs. A mother sign whose SUBCAT list has the value <C, D> and whose COAIIP-

DTRS list has the value <A, B> will also have a HEAD-DTR whose SUBCAT list has the value

<A, B, C, D>.

Suppose we have a phrasal sign that is consistent with respect to the Subcategorization

Principle. Let that phrasal sign be the mother sign, and let the lexical entry for "kissed",

mentioned earlier, be the sign that fills in the value of the HEAD-DTR of the mother s i p . Also,

suppose that the phrasal sign for "the cat" is the only member of the mother sign's COW-DmS

list. The mother sign constitutes a partial analysis of the sentence, "Mary lussed the cat." The

specification of the value of the SUBCAT list of the HEAD-DTR and the COMP-DTRS list of

the mother sign taken in conjunction with the Subcategorization Principle provides enough

information to determine that the mother sign still subcategorizes for a constituent structure. The

NP[Nom] that is the least oblique element (the subject) of the SUBCAT list on the lexical entry

for "kissed" is the value of the SUBCAT list of the mother sign. The complete HPSG analysis of

the sentence, "Mary kissed the cat," will have the mother sign that we just described as its HEAD-

DTR. The mother sign for "Mary kissed the cat," (the grandmother sign) will have the mother

sign for "kissed" as its HEAD-DTR, and the COMP-DTRS of the grandmother sign will contain

the lexical sign for "Mary" as its single element. The SUBCAT list of the grandmother sign will

be empty, as constrained by the Subcategorization Principle.

Figure 3-5 diagrams the structure of the analysis of the sentence, "Mary kissed the cat."

Each node in the diagram contains some of the features of the sign represented by that node. The

entire diagram corresponds to the grandmother sign for "Mary kissed the cat." Dark arrows point

to the sign in the value of a HEAD-DTR feature, and light arrows point to an element on a

COMP-DTRS list. The values of some head features for each sign are shown (MAJ, FORM,

INV, AUX, NUM, PER, GEN). Elements of SUBCAT lists are represented by the same selection

of values for head features that mark nodes. The empty subcat list is indicated with "ow. Figure

3-5 illustrates the assignment of values discussed in the last paragraph. The constituent structure

of "the cat" is not depicted.

Head Driven Phrase Structure Grammars

PHON 'Mary kissed h e cat'
HEAD [v, minus, minus, [sng, 3rd, fern]]
SUBCAT o

PHON 'Mary' PHON 'kissed the cat'
HEAD [n, minus, nom, [sng, 3rd, fern]] HEAD [v, minus, minus, [sng, 3rd, fem]]
SUBCAT o SUBCAT c [n, minus, nom, [sng, 3rd, fem]] >

PHON 'the cat' PHON 'kissed'
HEAD [n, minus, obj, [sng, 3rd11 HEAD [v, minus, minus, [sng, 3rd, femll
SUBCAT o SUBCAT < [n, minus, obj, [sng, 3rdIl ,

[n, minus, nom, [sng, 3rd, fern]] >

Figure 3-5: Constituent Structure of "Mary kissed the cat."

The Constituent Ordering Principle articulates the constraints between constituent

structures of a phrasal sign and the phonology of the phrasal structure. In Figure 3-4 we see that

this constraint is stated in terms of an as yet undefined function called "order". Actually, we did

indicate some of the constraints imposed by order in the introduction to this thesis. Informally,

the phonology of a mother sign can be defined as the combination of the phonologies of the

constituent daughters (again, we consider only the HEAD-DTR and COW-DTRS). If the

HEAD-DTR is lexical, the phonology of the HEAD-DTR will precede the phonologies of the

COW-DTRS in the combined phonology of the mother sign, just as "kissed" precedes "the cat"

in the predicate of the sentence "Mary kissed the cat." If the HEAD-DTR is not lexical, then the

phonologies of the COMP-DTRS will precede the phonology of the HEAD-DTR, as "Mary"

precedes the phrase, "kissed the c a ~ " These two rules are the basis of the definition of order.

Some controversy surrounds the exact statement of the principle within the formal structure of

HPSG, but this debate is outside the scope of this thesis. A more complete formal discussion can

be found in Pollard and Sag (1987).

Head Driven Phrase Structure Grammars 47
All of the universal principles are assumed to apply in conjunction with any grammar

rule. In the theory, this is achieved through the use of the relative pseudocomplement operator.

The details of this operator need not concern us yet, but two example applications of the operator

(=>) are shown in Figure 3-6. The net effect of the operator is that the principles all unify with

each other into a single relation between a relatively vacuous headed structure (its only

specification is that it is a phrasal sign) antecedent and a more fully specified consequent (Pollard

and Sag, 1987). The resulting sign contains all of the constraints imposed by each of the

principles. The Head Feature Principle as illustrated in Figure 3-3 includes the use of the relative

pseudocomplement operator. In Figure 3-4 we omitted the operator and gave only signs produced

by the mapping. Any sign which satisfies the constraints stated in the principles will be unifiable

with the signs depicted in Figure 3-4. Furthermore, any sign unifiable with the information

structure for a rule must also be unifiable with these structures derived from the mapping to be

considered valid. We take advantage of the mapping provided by the operator in our

implementation of KPSG.

-

Fact One

Fact Two
-

Fact One

Fact Two

I Fact One

Figure 3-6: Two Example Applications of the Relative Pseudocomplement Operator.

33.2. Rules

The "rules" of HPSG constrain the structure of constituency. The first rule illustrated in

Figure 3-7 is responsible for combining heads with their final complement (i.e., their "subject").

Rule One describes the structure of a saturated phrasal sign (it has an empty SUBCAT list) that

has a non lexical HEAD-DTR. The phrasal sign for "kissed John" is an example of a non lexical

sign that can fill the value of a HEAD-DTR for such a saturated phrasal sign. The saturated

Head Driven Phrase Structure Grammars 48
phrasal sign also has a single complement daughter which, we know from the Subcategorization

Principle, is the least oblique complement, the subject of the sentence. The notation <[I>
indicates a single element list whose element can be any sign. The second rule is for combining

lexical heads with all but their final complements. Rule Two describes the structure of a phrasal

-
Rule One

L LEX

Rule Two

L LEX +i
-

Rule Three

Figure 3-7: Grammar Rules.

sign for an unsaturated constituent of a sentence. The sign for the rule has a single element on its

SUBCAT list. When the rule is affixed as the HEAD-DTR of some mother sign the

Subcategorization Principle dictates that this element of the SUBCAT list will be the single

element on the COMP-DTRS list of the mother. That complement daughter is the final

complement. This rule thus describes structures like "kissed John," which have yet to combine

with a final complement. The HEAD-DTR is a lexical sign (LEX +), the lexical entry for

"kissed". The lexical entry for "John" unifies with the more oblique element of the SUBCAT list

on the lexical entry for "kissed", and the remaining element of the SUBCAT list of the lexical

sign is the only element of the SUBCAT list of the mother sign. Rule Three coordinates lexical

heads in inverted constructions in which lexical heads marked INV + (like "did") combine with

all of their complements including the subject. The third rule represents saturated signs for

Head Driven Phrase Structure Grammars 39
phrase structures like, "Did Mary Walk?" A fourth rule for treating adjuncts is tentatively put

forward in (Pollard and Sag, 1987), but as is indicated (p.165), its necessity is uncertain. Due to

the potential problems with the HPSG treatment of adjuncts, in this discussion we have restricted

ourselves to the first three grammar rules. However, omitting Rule Four also eliminates

constructions like, "Mary walks quickly," or "John hssed Mary on the cheek," from our

discussion as well.

In Figure 3-8 we include a phrase structure tree for the sentence, "Mary walks." The tree

is drawn with TreeTool (Baker, et al., 1990), but includes some information that is not related to

our discussion. Each node represents information contained in some of the values of the

corresponding mother sign. The first line at each node represents the value of the PHON

attribute, the second includes some HEAD features, and the third line shows HEAD features of

the elements on the SUBCAT list of the node. "Mary walks," is an interesting sentence to

examine, because even though it is just a two word sentence it has virtually the same constituent

structure as the sentence with a transitive verb, "Mary kissed John." The lowest node is the

lexical entry for "walks" which is combined with a null COW-DTRS list according to Rule Two,

as discussed above. The mother sign thus created is non-lexical, and by the Subcategorization

Principle, it has a most oblique complement remaining on its SUBCAT list, just as the lexical

sign for "walks" had a single element on its SUBCAT list. That mother sign can stand as the

value of the HEAD-DTR of a grandmother sign that is consistent with respect to Rule One. In this

case, the COIvlP-DTRS list is not empty; it takes as its the single element the lexical entry for

"Mary". The resulting grandmother sign is saturated. Its phonology is appropriate for the

combination of a non-lexical HEAD-DTR with its complement. Note that a different phonology

would obtain if we tried to saturate the grandmother sign with the lexical HEAD-DTR for

"walks", instead. In that case, the phonology of the grandmother sign as dictated by the ordering

principle would be "Walks Mary." However, that combination is not sanctioned, since Rule One,

which such a combination invokes, requires that the HEAD-DTR be non-lexical, as was shown in

Figure 3-7.

Each of the grammar rules is a sign that is also subject to the informational constraints

imposed by the grammar principles, as we have mentioned. Since all objects of discourse

expressed using the formalism (phrase structures, lexical entries, rules, principles) are expressed

as signs, a natural way to specify the relationships among these objects and to describe the

Head Llrivcn Phrase Structure Grammars

Figure 3-8: A TreeTool Phrase Structure Tree.

Head Driven Phrase Structure Grammars 5 1
accumulation and satisfaction of constraints imposed by each object is to arrange them as nodes

in an inheritance hierarchy beyond the lexical hierarchy. Inheritance reasoning over this

hierarchy constructs valid HPSG analyses of phrasal structures. The structure of the network so

constructed and the significance of reasoning over this network are detailed in the next chapter.

Essentially, an inheritance reasoner which operates over the network is a parser for HPSG.

Chapter 4

A non-Trivial Inheritance Network for HPSG

Inheritance reasoning provides a metaphor for describing work done in A1 just as systems

dynamics, search, and deductive logic have provided ways of articulating problems in the past.

This chapter is an analysis, couched in the language of inheritance systems, of the theoretical

foundations and implementation of Head-Driven Phrase Structure Grammars. It includes an

analysis of the theoretical underpinnings of HPSG as an instance of a two dimensional multiple

inheritance hierarchy. The chapter also describes the process of reasoning over this hierarchy.

An implementation of the network and reasoner is deferred to Chapter 5. The analysis of HPSG

as an inheritance network is based on an interpretation for "is a" links that is quite different from

most other approaches to inheritance reasoning. It is different in that the polarity of a link is

determined dynamically based upon the exact information contained in the nodes at each end.

The interpretation is based on the relative pseudocomplement operator. The relative

pseudocomplement of two concepts, as in A=>B, is another concept, C, which consists of

inherited material, the information in B that is not in A. An advantage of analyzing HPSG as an

inheritance network in this way is that an inheritance reasoner operating over this network

constitutes a parser for the formalism.

HPSG parsers have been written before: Proudian and Pollard (1985) developed a chart

parser for an early version of the formalism, and a Lisp based parser for the developing formalism

has been maintained by researchers at Hewlett-Packard (Gawron, et al., l982), Prolog and Lisp

based chart parsers for later versions of HPSG have been developed by Popowich and Vogel (to

appear), McFetridge and Cercone (1990), and Franz (forthcoming). The advantage of pursuing a

parsing strategy for HPSG other than chart parsing is the clarity with which the alternative parser

might be stated. Once the inheritance network is defined for HPSG, the parser is just a shortest

path reasoner that operates over the network. Though chart parsing is quite straightforward and

easy to understand, shortest path reasoning is even easier.

52

A non-Trivial Inherifance Network for HPSG 53
In Chapter Two we demonstrated that path based inheritance can be stated concisely in

Horn clause logic; it remains to be shown whether an inheritance reasoner can be adapted as a

parser in a way that makes it any better than other approaches to parsing. This chapter attempts to

address these issues. It is not obvious that inheritance reasoning can be applied, since we have

already indicated that the network which we will be examining is cyclic, and that traditional

inheritance reasoners are not equipped to handle all cyclic networks. THAT approach does not

handle them at all, and Geffner and Verma (1989) handle cyclic networks only if the cycles are

negative cycles.

An ovemding motivation for this chapter comes from the urge to make analogies. A

literature on reasoning and parsing exists already (Porter, 1987, Menzel, 1987, van der Linden,

1989, Konig, 1989, Evans and Gazdar, 1989, Frisch, 1989). Inheritance reasoning provides

another form of inference, so it is hopeful that an analogy will hold between parsing and

inheritance reasoning as well. Indeed, Steels and De Smedt (1983) and Brachrnan and Schmolze

(1985) have also noticed pans of this analogy, and we discuss their work as well. But, we feel

that ours is a more complete analysis. We outline the network which underlies HPSG, the

process of reasoning over the network, and extensions which this approach suggests. For

example, we are able to use an inheritance based system to control the inheritance of information

to HPSG representations of unknown words that appear in sentences. In the next chapter, we

indicate how both the network and reasoner have been implemented in Prolog. We also outline

the extension to the network to accommodate unknown words, and provide a corresponding

implementation.

4.1. Related Analyses

It is easy to see the relationship between HPSG and frame-based representation

languages: HPSG is essentially one of them. Steels and De Smedt (1983) present ideas for

syntactic processing based on frame representations of linguistic objects, in which frames for

linguistic objects are arranged into a hierarchy. Reasoning over hierarchies created within the

framework amounts to the classification of objects, either through generalization to find the

major category of a word, for instance, or through refinement to locate terminal information like

the spelling of a word. These two processes are discussed in relation to several example frame

descriptions, though the formal details of the representation (to describe with generality the

A non-Trivial Inheritance Network for HPSG 54
coverage intended by the representation) and the specification of the reasoning mechanism are

omitted. That is, Steels and De Smedt note that a reasoning process over the hierarchy created by

a frame based description of linguistic objects can be used to perform functions like constraint

verification that are useN to parsing, but they do not give the formal details of such a reasoning

process, nor do they commit to a general theory of representation. HPSG provides a general

theory of representation for linguistic knowledge, as we saw in the last chapter. Below, we

indicate how a network may be abstracted from this theory and detail the reasoning process which

serves as a parser for the formalism.

In another frame-based system, Brachman and Schrnolze (1985) also describe the

application of KL-ONE to parsing. Their system works in unison with RUS, a parser developed

by Bobrow (1979) to construct parses which represent syntactic and semantic information. A

subsystem called PSI-KLONE is used to translate the syntactic information provided by RUS to

concepts represented in KL-ONE.
The ability to build such interpretations is a test of semantic coherence (if the semantic

interpreter fails, the fragment is incoherent); the result of the process is passed back to the RUS
parser. RUS does not need to parse an entire sentence before calling upon PSI-KLONE,
however, it does impose a certain order upon the fragments it sends:

1. It first parses enough of a sentence, which is a clause, to find a plausible head verb.
PSI-KLONE is informed that a clause has been found with the given head verb and with
the remaining constituents unspecified.

2. Next, RUS passes the logical subject of the clause to PSI-KLONE. .If it must parse
further in order to obtain the logical subject, it does so. Otherwise, it does so without
further parsing. This strategy of parsing as needed is followed throughout.

3. The logical object is passed next.

4. Pre-modifiers of the clause are passed, from right-most to left-most.

5. Post-modifiers are passed, from left-most to right-most.

6. Finally, PSI-KLONE is informed that the clause is complete.
(Brachman and Schmolze, 1985;p.206)

The process described indicates a head-driven sort of algorithm, though it is not as schematically

head-driven as is HPSG. "Head-driven" indicates that the parsing algorithm is not concerned

with left-to-right processing of the sentence, but inside-out parsing in which the most important

parts (i.e., the heads) of phrase structures are located first, and complements are associated with

those important parts. Thus, a noun is the head of a noun phrase, and a verb is the head of a

clause. A head-driven algorithm is one that finds the head first. The system described by

Brachrnan and Schmolze is much more explicit in referring to objects that can act as heads, rather

than just referring to heads schematically. However, that is just a comparison between their

A non-Trivial Inheritance Network for HPSG 55
representation of grammar and HPSG, not a statement about how we each use the representations

with inheritance. Brachman and Schmolze express interest only in further semantic classification

of syntactically identifiable objects. Though they feed this information back to the syntactic

processor, they do not recognize the potential for a truly integrated system which represents

semantic information in the same way that it represents syntactic information such that

inheritance mechanisms can be used to implement both syntactic and semantic classification at

the same time during parsing. Brachman and Schmolze do describe the syntactic and semantic

recoat ion processes as executing in parallel, but as distinct processes, without the realization

that a single process, the process that they use for semantic classification, can do both. All that is

required is a unified representation formalism and the realization that subsequently only a single

classification process is required. The representation language is provided by HPSG. Neither

Steels and De Smedt (1983) nor Brachman and Schmolze (1985) make explicit the fact that

inheritance reasoning over the hierarchy of descriptors (of both syntactic and semantic

information) constitutes parsing, and a contribution of this chapter is to make clear that this is the

case by elucidating the inheritance network which is implicit in the application of HPSG and

specifying the reasoning algorithm required. Further, we point out how easily the analysis may

be extended to achieve more robust behavior-the parser is able to construct analyses of many

words which are not included in the lexicon.

4.2. HPSG as an Inheritance Network

Two aspects of Head-Driven Phrase Structure Grammar are of particular interest to us:

one is its nature as a formal language for expressing a theory of linguistics (i.e., for specifying

grammar rules, lexical entries, and universal principles), and the other involves a use of that

formal language to describe a specific grammar which actually makes predictions about linguistic

phenomena. Both of these views can be captured within the framework of inheritance reasoning.

We elucidate from HPSG an inheritance network that represents its conceptualization of linguistic

representation, and we demonstrate how both views of HPSG can be obtained through specific

sorts of processing over the hierarchy. We describe the peculiar demands that the network

imposes on inheritance reasoning systems to yield appropriate results. Finally, we indicate the

relationship between inheritance reasoning and parsing.

HPSG is a multiple inheritance hierarchy in two dimensions. The first dimension is

A non-Trivial Inheritance Network for HPSG 56
definitional. This primitive dimension is used to articulate the structure of signs. The exact

specifications are outlined by Pollard and Sag (1987). Pollard and Sag also include discussion of

the inheritance which is at work here. The mode of reasoning executed over these networks, at

least in the hierarchy of lexical types, is a combination of shortest path and skeptical reasoning.

This dimension was discussed in the last chapter, and is the focus of a great deal of research in the

application of inheritance reasoning to natural language understanding (Bouma, 1990, Carpenter,

1990, Russell, et al., 1990, Fraser and Hudson, 1990). For a description of the reasoning

processes involved specifically in HPSG we point to the work of Shieber (1986) who speculates

on the skeptical behavior in the face of inconsistencies, as well as of Flickinger (1985) who

describes two corresponding modes called normal and complete inheritance. We are concerned in

the present work with a second dimension of HPSG, its operative hierarchy. While the primitive

dimension is used to define the structure of signs, the operative dimension relates signs to each

other.

4.2.1. Nodes

Signs are the formal constructs that we use to encode the information relevant to linguistic

phenomena. HPSG is an interesting formal language because it uses signs both to encode

information abstracted from lexical items, phrases, and sentences, and to express constraints on

the combination (or decomposition) of signs. Roughly, to be the sign for a specific sentence, the

putative sign must unify with the sign that expresses the constraints sanctioned by the theory. It is

not as simple as this, though, since some of the constraints are expressed through relations

between signs stated in terms of the relative pseudocomplement operator (=>). This operator will

be described in detail in the next section.

We take signs to correspond to nodes in an inheritance hierarchy. This is reasonable, after

all, since signs are attribute-value matrices-they are information structures-and, inheritance

networks represent formal encodings7 of conceptual structures. More precisely, the nodes in the

operative hierarchy of HPSG are the signs which encode the grammar's rules and principles. For

example, three of the nodes contain the information given in the signs of Figure 3-7, one sign at

each node. Nodes are complex structures which can contain signs internally, as well. Recall that

7~asper and Rounds (1986) go so far as to ground these encodings in formal logic.

A non-Trivial Inheritance Network for HPSG

HEAD-DTRISYNILOCLEX
COMP-DTRS

Rule One

L LEX

91
-J

Rule Two

L -
Rule Three

Figure 4-1: Grammar Rules.

the HEAD-DTR of a phrasal sign is itself a sign and that the value COMP-DTRS feature is a list

of signs. Nodes can also be lists of signs.

4.2.2. Links

HPSG includes several universal grammar principles which are stated using =>. It is the

semantics of this operator that suggests the application of inheritance reasoning to representing

HPSG. When this operator is applied to information structures A and B as in, "A => B," it yields

an information structure, C, the minimal structure whose unification with A is subsumed by B

(Pollard and Sag, 1987, p.43). If A is at least as informed as B, then C is vacuous (it will unify

with anyrhmg). If B is more informed than A, then C is the information in B that is not in A. In

the corresponding inheritance network, A and B are associated with nodes in a network and C is

the information that is inherited. The arrowheads on links in Figure 4-2 indicate the direction of

information flow. In Figure 4-2, when it is the case that B contains more information than A, C is

the information that is inherited. Since the relative pseudocomplement is an operation over a

certain type of lattice structure in which A v -A = Top is not a theorem, for arbitrary feature

A non-Trivial Inheritance Network for HPSG

Figure 4-2: Relative Pseudocomplement and the Operative Hierarchy.

structures it is possible that C will not be unique, or equivalently, that it will be an infmite

disjunction even though neither A nor B in the expression A => B contains an infinite disjunction.

However, Pollard .and Sag point out that this does not arise in their application of the operator.

Moreover, we are not particularly interested in the inherited object C, in itself. Rather, we are

concerned with the inheritance of the information in C to nodes above B in the hierarchy. The

node immediately above B is A, so we are interested in the way the information in the

relationship between C and A. Particularly, we want to know about the unification of C with A

(not with B; see Figure 4-2).

Theorem 1: (Curry, 1963)

Theorem 1 is a useful fact about relatively pseudocomplemented lattices (also called absolute

implicative lattices), because it means that the unification of A with C can be calculated simply

by taking the unification of A with B without isolating C.

If A and B are inconsistent with respect to each other (A and B fail to unify; A A B yields

bonom), then the information inherited through C to A causes an inconsistency at that node.

Further chaining of links is fruitless, because bonom is inherited to A, and bottom will be

inconsistent with any other node linked to B through A. This situation corresponds to the

presence of a negative link in the hierarchy. Given a procedural interpretation, this means that the

polarity of a link in the hierarchy with the semantics of => is determined dynamically, depending

on the information contained in nodes at either end. Declaratively, we can say that a link is used

in a network to represent a relationship between two nodes; the content of the link, its polarity

and the information inherited across it, is determined in terms of the stated relation by the

information contained at the respective nodes.

A non-Trivial Inherbnce Network for HPSG 59

L
English Constituent J
Ordering Principle

[~ ~ O C [m c A T @

HEAD-DTRlSYNILoClSUBCAT append(O
COW-DTRS Q

d

Subcategorization Principle

Figure 4-3: Universal Grammar Principles.

In presenting the universal principles of grammar, Pollard and Sag use the relative

pseudocomplement operator, and in their usage A is vacuous with respect to a class of signs

(headed structures, for instance)--A conveys no information except for the class of signs used as

a reference set, but B is also assumed to be a member of this set. This forces the inheritance of all

the information contained in B just as in classical implication. This allows us to present the

grammar principles as individual signs rather than as relations between signs: the signs in Figure

3-4 show the information that is actually inherited, C, in a couple of the universal grammar

principles. In the network, strict links are used to encode the relationship between a vacuous sign

and a specified sign.

Our interpretation of links is somewhat different from the interpretation that we

encountered in Chapter Two. The difference is in the way we understand polarity as dynamically

determined. Aside from that difference, our links have the same function of classification as the

l i i s in the upwards de-coupled restricted skeptical reasoner of Horty, et al. (1990): links classify

some of the complex structure beneath them in terms of the structures above them. The

properties that hold beneath the link do not necessarily all agree with those above the link.

Because of our difference on the polarity of links, a more informative English translation of our

links than, "is a" might be "can be a". One implication of this difference to which we will return

later is that the absence of a link between two nodes makes a strong statement that those two

nodes do not relate. When we perform inheritance reasoning over a chain of links we are

attempting to determine the polarity of the relationship between its endpoints; we are not

attempting to construct an implicit link that can be added to the network. As indicated in the

introduction, non-strict links are used to enumerate the ways in which one sign can be classified

as another sign. The interpretation of non-strict links is weaker than the typicality interpretation

of default links traditionally.

A non-Trivial Inheritance Network for HPSG
4.2.3. The Inheritance Network for HPSG

Ideal sign a

Figure 4-4: The Operative Dimension of HPSG as an Inheritance Hierarchy.

Having described the content of nodes and the semantics of links, we now are in a

position to give the inheritance network which corresponds to the operative dimension of HPSG.

We actually present the inheritance hierarchy for only that subset of HPSG whose implementation

was described by Popowich and Vogel (1990); however, this subset constitutes most of HPSG as

presented by Pollard and Sag (1987), and we suspect that when analyzed, the remainder of that

incarnation of HPSG will be consistent with the treatment described herein. Observe that the

network shown in Figure 4-4 contains several departures from the usual notation for inheritance

networks. First we note that there are three sorts of arrows. The dashed arrows are non-strict.

This indicates that any given rule may or may not apply to the set of signs below it. A dark

A non-Trivial Inheritance Network for HPSG 61
dashed arrow has the semantics of an operator called ->, also a relative pseudocomplement

operator, but one which is a generalization of => over lists of signs (i.e., it relates a list of signs to

another list of signs). For A->B where A and B are lists of signs, C contains information about

the signs in B which is not present in the list A. As we shall see shortly, a path through the

hierarchy has breadth as well as length, since a path between the node at the bottom of the

hierarchy and the node for one of the rules consists of two parallel links. These links are not

redundant as they contain different information. One corresponds to -> and the other to =>. Note

that these links point into the nodes for the rules rather than simply to them. This is a useful

notion which exploits the fact that inheritance sometimes involves complex concepts at nodes.

Inheritance is allowed to a node through component concepts of the node. We refer to such

complex nodes as supernodes. In reference to HPSG, we can think of a mother sign as a

supemode and the HEAD-DTR of a mother sign as a component concept. With respect to the

signs presented in Figure 3-7, the list-valued links are for inheritance into the COMP-DTRS

attribute, and the other defeasible links point to the HEAD-DTRS attribute. Inheritance through

supemodes appears to be equivalent to the inheritance of role values in the extended theory of

inheritance reasoning presently being formulated within THAT paradigm (Thomason, personal

communication).

A summary of the network follows. Grammar principles are headed structures. Each of

the grammar rules is a headed structure. A headed structure can be the sign which describes the

complete HPSG analysis of an utterance, and it can be one member of a set of signs that are

HPSG analyses for constituent structures of an utterance. A sign can be the HEAD-DTR of any

of the grammar rules. A list of signs can be the COMP-DTRS of any of the grammar rules.

Other aspects of the hierarchy will become apparent as we explain the process of reasoning over

the network. This includes an explanation of the nodes at the top and bottom of the hierarchy, as

well as the link which renders the network cyclic. Just as in the inheritance literature detailed in

Chapter Two, reasoning is a syntactic operation based upon the construction of valid paths

through the network, where the construction of a path is guided by the information contained in

the nodes.

A non-Trivial Inheritance Nehvork for HPSG

4.3. Inheritance Reasoning

We assume the existence of the operative hierarchy which emerges from our language

(HPSG) for describing linguistic phenomena. The network can be used to verify the structure of a

particular HPSG grammar. We begin with a sentence and a set of features that are relevant and

inherent in the structure of that sentence: we know how the sentence is to be classified using the

language of signs as if the sentence were a lexical entry. This classification is the "idealu8 sign

which is at the top of the hierarchy. HPSG gives proposals about the way signs should interact.

These are the principles and nodes which constitute the lower nodes in the hierarchy. The bottom

node is a partially specified set of signs which can be constituents of the ideal. We use the

operative hierarchy to verify that it is possible to trace an inheritance path through the network,

from the set of constituent structures at the bottom, beginning with the lexical signs

corresponding to words appearing in the sentence, through all of the composite constituent

smctures, to the structure of the ideal. Recall from Chapter 2 that no path can have a negative

link as any but its last link. If a positive path exists, then a sign which is unifiable with ideal sign

is also a member of the set at the bottom because of the cyclic link. If more than one path is

found, we want to keep all of them, because they all represent valid, if distinct, analyses. That we

keep all valid paths, even if they do not agree with each other, indicates that we sanction a form

of credulous reasoning - we do not refrain from reaching conclusions when several mutually

inconsistent conclusions are available. However, we are most interested in the analysis

corresponding to the shortest path. If no path is found, an inconsistency has been inherited

through the relative pseudocomplement as was described in Section 5.

Any particular use of the operative hierarchy is an exercise in determining the analysis

(or, for that matter, the generation) of an utterance expressed in signs, as sanctioned by an HPSG

grammar. To demonstrate the form of inheritance reasoning required, we provide an HPSG

analysis of a simple sentence, "Mary walks," using the operative hierarchy. The literature on

inheritance reasoning systems provides example hierarchies like the one shown again in Figure

4-5 and shows the process of reasoning about its nodes, as in, for instance, determining whether

Clyde is a gray thing. So too, for HPSG: we begin with the operative hierarchy and a sentence,

'we realize that "ideal" already has a formal definition in reference to partial orders in discrete mathematics,
however we use it in its more colloquial sense of "perfect".

A non-Trivial Inheritance Network for HPSG

Figure 4-5: Touretzky's Example of a Concept Hierarchy.

"Mary walks", and ascertain whether sign("Mary walk^")^, the node at the top of the hierarchy, is

a member of the initially undetermined part of the set of signs at the bottom of the hierarchy,

{sign("Mary"),si~("wallcs"), ... }. If it is not a member then inheritance in the hierarchy yields an

inconsistency, and this means that the sentence with which we began is not sanctioned by HPSG

as a grammatical utterance.

43.1. An Example

Using this example we begin with a partially specified set, {sign("MaryV),

sign("walks"), ...). Consider a member of this set, sign("walks"), for instance in Figure 4-6, and

recall the sign for Rule One given in Figure 3-7. The HEAD-DTR of Rule One fails to unify with

sign("walks"), because the SYNlLOClLEX feature of sign("walks") is specified as "+".

9 ~ e allow ourselves the notational ease of selecting the sign relevant to discussion, whether it be from the set of
ideals, for complex sentences, or from the lexicon for specific words, by writing it as a function of the appropriate
string.

A nun-Trivial Inheritance Network for HPSG

[m o N ~ l X r

SYN - LOC

Figure 4-6: Lexical Entry for "walks".

Therefore, we have an inconsistency, a negative link in the hierarchy, and we proceed no further

on that path (we f o l l o ~ the convention that there can be at most one negative link in a path, and if

a negative link exists in a path, it is the last link in the path - recall the earlier mention of futility

of chaining past a negative link). But we are still able to consider other paths. The path through

the node for Rule W e e is also a negative link because of the specification of the

SYNlLOClHEADlINV feature for sign("walks"). The unification of sign("wa1ks") with HEAD-

DTR of Rule Two succeeds. It is important to note, though, that the unification is not destructive

with respect to the node for Rule Two. The value of the COMP-DTRS feature of Rule Two

unifies with the empty list. We consider the inheritance of information from the result of that

unification with the node for the grammar principles' sign (only one sign, since we constructed

from the sign for each principle, the single sign which represents their unification), for that

information inherits to the "Headed Structure" node, as well. This unification also succeeds, and

though unification with sign("Mary walks") does not, inheritance is admitted along the path to the

set of signs at the bottom of the hierarchy, completing a cycle, and further specifying that set -

the sign in Figure 4-7 is known to be a member.

This sign will unify with the HEAD-DTR of Rule One (note that it will also unify with

the HEAD-DTR of Rule Two since, as mentioned above, the earlier unification was not

destructive) since it is not specified for the SYNlLOClLEX feature at all, and furthermore,

<sign("Mary")> will unify with the value of COMP-DTRS on Rule One. The result of these

unifications is itself consistent with the node for the principles, hence inheritance is successful to

that node. It also happens that sign("Mary walks") is consistent with the result from the last

point, which, as before, is also inherited back down to the set of signs that is not h l l y determined,

A non-Trivial Inheritance Network for HPSG

SYNILOCISUBCAT < NP[NOM] >

1 DTRS r HEAD-DTR SYNlLOClSUBCAT < NP[NOM] >

Figure 4-7: Inherited Information.

and this implies that sign("Mary walks") is indeed a member of that set. Hence, what would be

considered the "ideal" feature specification of the sentence, "Mary walks," using the primitive

hierarchy and the intuitions that the linguists had hoped to capture is actually realized in the

HPSG's operative dimension. The sentence, "Mary walks," is considered grammatical. Formally

speaking, it is grammatical because at least one path exists from a partially specified set of signs

which includes the lexical entries for each word in the sentence, through the concept nodes

outlined by the theory, to the ideal sign specification. The presence of more than one such path

indicates an ambiguity.

An utterance is ruled ungrammatical only if no path is permitted through the hierarchy.

Consider the example utterance, "Walks Mary." Inheritance goes through from the lexical sign

for "walks" and the null sublist of analyses to the head and complement daughters, respectively,

of Rule Two. The resulting sign is passed through the cyclic link back down, giving further

specification to the list of analyses. The phrasal sign for "walks" and the sublist of the analyses

containing lexical sign for "Mary" as its single element successfully unify with the head and

complement daughters of Rule One, but not with those of any of the other rules. However, there

is a strict link between the node for the Principles and the Headed Structure. That inheritance will

succeed, and the information inherited through Rule One is consistent with the information

inherited from the Constituent Ordering Principle which states that a phrasal head follows its

complements. However, this means that the phonology of the sign thus constructed is "Mary

walks." This is inconsistent with the specification of the phonology on the ideal sign, causing a

negative link. But that inconsistency blocks the only possible path of inheritance, since chaining

is abandoned on a particular path after the appearance of an inconsistency and chaining did not

succeed through Rule Two or Rule Three. Thus, the utterance is ruled ungrammatical.

A non-Trivial Inheritance Network for HPSG

ideal-sign('Mary walks')

A

Analyses:

Figure 4-8: A Path Trace through the Operative Hierarchy for "Mary walks".

Informal traces for the paths of reasoning through the operative hierarchy for "Mary

walks" and "Walks Mary" are shown in Figures 4-8 and 4-9. Beginning at the bottom, we have

the patially specified list of analyses containing entries for each of the words in the sentence.

From that node, one link cames the information in the lexical sign for walks to the HEAD-DTR

of Rule Two, and the other link carries the empty list to the COMP-DTRS of Rule Two. The

destination of both links is inside the node for the rule. The information in the supemode Rule

A non-Trivial Inheritance Network for HPSG

ideal-sign('Wa1ks Mary')

A

//

Add sign('Mary walks') to Analyses

Add sign('walks', lex -) to Analyses

Figure 4-9: A Path Trace through the Operative Hierarchy for "Walks Mary".

Two (including the information inherited from below) is combined with the information in the

grammar principles and results in the addition of information to the list of analyses at the bottom

of the hierarchy. That cycle is not depicted in the topology of the graph, because it would be

difficult to illustrate the sequence of links in the path using graphic cycles. Instead, some nodes

are boxed as an indication that a sign is to be added to the partially specified list of analyses.

Those directives to augment the specification of the analyses list indicate the traversal of a cycle

A non-Trivial Inheritance h7etwork for HPSG 68
in the operative hierarchy. The path of inheritance can thus be traced from the list of analyses at

the bottom of the hierarchy to the ideal specification at the top. However, the two figures are not

identical. The trace shown in Figure 4-9 shows the discovery of a negative path during the

reasoning process. Note that we can construct the same analysis of "Walks Mary" as for "Mary

walks". But, this construction is inconsistent with the specification of the ideal sign whose

phonology is "Walks Mary." The inheritance does not go through. These traces suggest how

reasoning over the operative hierarchy with information specified in the list of analyses can be

viewed in a way as involving acyclic paths. A particular sign that appears in the list of

constituent analyses will be successfully inherited only once. When a sign is inherited from the

list of analyses it is inherited into a supemode, and the information added to the supemode as the

result of unification is inherited back down to the list of analyses. If links that classify the list of

analyses are understood as emanating instead from individual signs that appear in the list, each

sign (node) will occur only once in any particular path. However, this would mean that nodes and

links are constructed "on the fly".

43.2. Stability

The cyclic structure of the network does not pose the problems that it would for

inheritance systems in general, because infinite paths cannot be constructed from the stated

hierarchy and because application of this network did not require the resolution of conflicting

paths. For this reason, neither is the presence of redundant paths a problem, because multiple

paths represent multiple analyses. We do not want to disregard any of them, particularly if those

analyses are mutually inconsistent. A collection of paths that are not mutually inconsistent

indicates a problem with the grammar; it allows spurious ambiguities. In the network that we

have discussed, the addition of a redundancy to the network would be achieved by augmenting

the operative hierarchy with the explicit information that the sign for a particular utterance has a

particular definition. Really, this means that we add a redundant node to the hierarchy, a new

"ideal" node for each utterance added. In such a revised network we are asserting that the ideal

sign for an utterance is given either by reasoning over the operative hierarchy, or by simply

looking at the redundant entry for that utterance. The only way instability could be introduced is

if we add a redundant entry for an utterance which is exceptional in some way (e.g. the sign for

"Walks Mary"). If the redundant entry could not have been derived from reasoning over the

operative hierarchy (which is what it means for the entry to be exceptional), then different

A non-Trivial Inheritance Network for HPSG 6 9
conclusions will be reached by the reasoner. However, if the redundant entry could not have been

derived from reasoning over the operative hierarchy then the entry is not a valid representation of

the utterance using HPSG. It is inappropriate to add redundant links to the operative hierarchy,

because, as we have discussed, the polarity of each link is determined dynamically depending

upon the information stated at both ends. In topological terms, an added redundant link would

bypass at least one node in a longer chain of X i s . But, bypassing nodes means that the

information contained in those nodes is excluded from the chain of reasoning. If information is

omitted from a chain of reasoning we could indeed obtain unstable behavior. However, the result

would again be invalid within the framework of HPSG. The resulting network would no longer

be an encoding of HPSG's operative hierarchy.

It is because we know that we will not have to factor out topologically redundant links

that we can safely apply the shortest path reasoner to the network. A shortest path still produces a

specificity ordering for paths through the network, though it is less complex than the inferential

distance ordering of Touretzky (1986). The more complex reasoners outlined in Chapter Two are

less applicable than the shortest path reasoner, because those reasoners are intended for networks

in which topological redundancy is identical with actual redundancy. Also recall the

computational complexity issues raised in the introduction. The computational complexity of

shortest path reasoning is a linear function of the number of nodes in the directed acyclic graph,

while Touretzky's (1986) system based on the inferential distance ordering has been shown to be

NP-Hard (Selrnan and Levesque, 1989). The system of Geffner and Verma (1989) is NP-hard as

well. The reasoner of Horty et al. (1990) is tractable (Selman and Levesque, 1989), but does not

appear to be nearly as efficient as the shortest path reasoner. It is therefore fortunate that within

the network we require, topologically redundant links do not present a problem.

Chapter 5

Applications of Inheritance Reasoning for HPSG

Recall that there are two aspects of HPSG, grammars written within the formalism, and

the formalism itself. Both aspects involve the operative hierarchy, but the distinction is apparent

with respect to the sentences we pose against the hierarchy. To use it as a grammar formalism is

to use HPSG as a formal language to specify a grammar, which of course may require debugging,

so we pose simple structures whose ideal signs are obvious, and we verify that inheritance is

permitted from constituent structures. On the other hand, when we use a particular HPSG

grammar, we assume that it does not need any adjustment, and we use it to construct signs to

discover what they look like and examine its predictions for novel sentences.

The example described for "Mary walks," in Chapter Four demonstrates the use of

HPSG's operative hierarchy as a grammar formalism. We began with simple sentences, whose

complete signs are apparent, and we verified that the structure of the grammar actually allows the

construction of ideal signs from the signs which should be their constituent structures, according

to the various principles. If inheritance is not allowed then we know that the grammar has to be

adjusted, either in the way information is abstracted into signs in the lexicon, or in the way the

combination of information is constrained the principles and rules. It is also possible that further

consideration will deem that some paths through the network reflect spurious analyses which

need to be ruled out by changing the nodes in the hierarchy. This occurred in our research

(Popowich and Vogel, 1990) leading us to a refinement in the statement of Rule Two. Similar

tuning of the grammar formalism occurs throughout Pollard and Sag (1987).

In this chapter we focus upon the second use of the operative hierarchy, the construction

of signs for novel sentences. This chapter extends the work presented in the last chapter and in

Vogel and Popowich (1990). Here we discuss how the network and reasoner outlined in Chapter

Four can be implemented in Prolog. We also discuss how the network presented in Chapter Four

Applications of Inheritance Reasoning for HPSG 7 1
can be extended to cope with an extreme form of novel input by representing the inheritance of

information to signs for words that are unknown to the lexicon. We provide a corresponding

extension to our implementation of the network Throughout, we indicate the limitations of the

theoretical approach and of our implementation.

5.1. Parsing

Clearly, the second use of the operative hierarchy is closely related to parsing. Parsing a

sentence is the determination of its constituent analysis just as in the second use of the operative

hierarchy is to construct a sign formulation for a sentence (if one exists). So, a machine

implementation of an HPSG grammar is a machine implementation of a reasoning mechanism

which operates over the HPSG operative hierarchy. Of course, it is valid (and a claim that we in

fact make when we say that we have constructed a tool which is useful to linguists) to point out

that a parser is useful for the grammar verification usage of the hierarchy as well, since if a sign

cannot be built for a sentence that should be covered (or if the parser constructs a sign for a

sentence that it should not), then we have used the parser to discover errors in the grammar's

predictions, and a problem exists with the grammar that needs to be remedied. But, in the

abstract, the problem is patched by determining the structure that should be present, the nature of

the ideal sign, and how the nodes in the hierarchy need be modified in order for inheritance to go

through.

5.1.1. An Implementation

We present a straightforward implementation in Prolog of both the operative hierarchy

and a reasoner which operates over that network. The primitive hierarchy and reasoning over it

are taken from Popowich and Vogel (to appear). The reasoning is a process of unrestricted

skepticism in reasoning over a hierarchy of lexical types. The operative hierarchy is encoded as a

set of links annotated with the restrictions entailed by the rules and principles. Shortest path

reasoning over this hierarchy is then just simple path construction through the net. The

inheritance of information is accomplished through Prolog's built in unification and with shared

variables.

The reasoner is given in Figure 5- 1. This program uses the backtracking control structure

of Prolog to build a path between two nodes in a graph. Since the control structure of Prolog is

Applications of Inheritance Reasoning for HPSG
%link (From, To) .

inherit (Composite, [1 , Classification) : -
link (Composite, Classification) .

inherit(Composite, [OutsideTolThrough],Classification) : -
link (Composite, OutsideTo) ,
inherit (OutsideTo, Through, Classification) .

Figure 5-1: An Inheritance Reasoner in Prolog.

depth first, the reasoner is not guaranteed to produce the shortest path for an arbitrary directed

acyclic graph, nor is it guaranteed to terminate for an arbitrary directed graph with cycles.

However, for the specific network that we need to process, the reasoner produces the desired

results. Links in a graph are represented using the term notation, link(From,To). The first inherit

predicate states that a path of inheritance between two nodes exists if there is a direct link

between those two nodes. The recursive rule states that there is a path of inheritance between two

nodes A and B if there is a direct link between one of the nodes (A) and some other node and if a

path of inheritance exists between that other node and B. Consider the toy network shown in

Figure 5-2 which represents just the topology of the operative hierarchy. Reasoning over this

link (analysis, rules and principles) .
link (rules andgrinciples, ideal) .
link (rules-and-principles, - analysis) .

Figure 5-2: A Prolog Network for the Topology of the Operative Hierarchy.

network produces paths in increasing order of length. The shortest path is found first, as depicted

in Figure 5-3

I ? - inherit (analysis, Through, ideal) .
Through =

[rules - and_principles] ? ;

Through =

[rules - and-principles,analysisIrules - and-principles] ?

Figure 5-3: Reasoning through the Toy Network.

A short Prolog program which invokes the reasoner on the actual Prolog encoding of the

network is given in Figure 5-4. The final line of code shown in Figure 5-4 specifies the actual

invocation of inheritance from the partially specified list of analyses (asserted to the database

inside the term, analysis) to the sketch of the ideal sign (asserted inside the term, ideal). The

variable Through is instantiated as the list of nodes that make up the shortest path between the

analyses and the ideal sign.

The structure of the full network is given in Figure 5-5. The complexity of the link

Applications of Inheritance Reasoning for HPSG
parse :-

abolish (ideal, 1) , abolish (analysis, 1) , abolish (real, 1) ,
read sent (Wordlist),
init-list (~ord~ist, ~nalysis) ,
asserta (analysis (~nal~sis) 1 ,
sketch ideal (WordList, Ideal),
asserta(idea1 (ideal)) ,
inherit (analysis (Analysis) , Through, ideal (Tdeal) .

Figure 5-4: Invoking Inheritance.

structure in Figure 5-5 (rather than simply "link(From,To)"), allows the encoding of the more

interesting features of nodes in the hierarchy that we described earlier (e.g., a link can connect a

node to another node that is inside a larger node). The additional complexity in the actual nodes,

as we shall see, increases the complexity of the reasoning process. Notice that only three links

link (analysis (Analysis) , rules (Rule)) : -
analysis (Analysis),
rules (Rule) ,
path (Rule, dtrs : head-dtr, Head),
element(Element,Analysis),
sign-unif y (Head, Element) ,
path (Rule, dtrs :comppatho,dtrsI Comps) ,
select from(Elements,Analysis),
sign uzif (~lement st Comps) .

link (rules (~ 7 , ideal (ideal)) : -
nonvar (Ideal) ,
sign-unify (Y, Ideal) ,
graph (c, [Ideal]) ,
asserta (real (Ideal)) .

link (rules (Rule) , analysis ([Rule 1 Analyses])) : -
analysis (Analyses) ,
not (member (Rule, Analyses)) ,
retract (analysis (Analyses)) ,
asserta(analysis([Rule IAnalyses])) .

rules (Rule) : -
rule (N, Rule) .

select f rom(Y\Y, Analysis) .
select:•’ rom(~lements, Analysis) : -

subset (Subset, Analysis),
convert2dl([Element] , Elements) .

Figure 5-5: The Operative Hierarchy in Prolog.

are indicated. Some of the individual links have been coalesced. For instance, there is not a

separate link for each of the rules since they can be represented by a single clause that represents

all of them. An individual rule is selected as a possible path to take through the term rules(Ru1e).

This is done to allow a simpler Prolog representation of the network. An implementation which

codes each link separately is shown in Figure 5-6. An examination of the amount of code that is

identical among the definitions makes clear why we opted to combine them into a single

definition.

Applications of Inheritance Reasoning for HPSG
link (analysis (Analysis) , rule)) : -

analysis (Analysis) ,
rule (l,Rule),
path (Rule, dtrs :head dtr, Head) ,
elernent(Element,~na~~sis),
sign unify (Head, Element) ,
pathT~ule, dtrs :camp-dtrs, comps) ,
select from (Elements, Analysis) ,
sign - unify (~lements, Comps) .

link (analysis (Analysis) , rules (Rule)) : -
analysis (Analysis) ,
rule (2, Rule) ,
path (Rule, dtrs :head dtr, Head) ,
element(Element,~na~~sis),
sign unify (Head, Element) ,
pathTRule, dtrs : comp-dtrs ,Camps) ,
select from (Elements, Analysis) ,
sign-unif (~lement s ,Camps) .

link (analysis (Analysis) , rules (Rule)) : -
analysis (Analysis),
rule (3,Rule),
path (Rule, dtrs :head dtr, Head),
element(Element,~na~~sis),
sign unify (Head, Element) ,
pathT~ule,dtrs:comp dtrs,Comps) ,
select from (~lements, ~na1~si.s) ,
sign-unify (~lements, comps) .

Figure 5-6: A Different Encoding of Three Links.

Recall from the discussion of links that appeared in Chapter Four, if a given link

represents A => B and if A is vacuous, then all of the information contained in B is inherited. We

take advantage of this fact by simplifying the operative hierarchy so that its vacuous node is

replaced with one containing the information that the vacuous node is guaranteed to inherit. In

Figure 4-4 the node for the Headed Structure (also depicted as a sign in the Head Feature

Principle as shown in Figure 3-3) is vacuous with respect to the class of signs denoted by the

unif~cation of the signs to the right of the relative pseudocomplement operator in the original

statement of each of the grammar principles. This means that all of the information in the node

for the Principles, as well as for each rule, is inherited to the Headed Structure node. We take

advantage of this by actually implementing a simplified hierarchy in which inheritance into the

vacuous node has been "preprocessed". The simplified hierarchy is depicted in Figure 5-7. It is

easier then to see the relationship between the code given in Figure 5-5 and the operative

hierarchy. There is a complex link between the node for the list of analyses and the node for the

rules which has the node for the principles inherited into it. There is a link between the node for

Applications of Inheritance Reasoning for HPSG 75
the rules and the ideal sign. Finally, there is a link from that node back down to the list of

analyses. The Prolog code maps directly to the hierarchy in Figure 5-7 which condenses the

topological structure of the operative hierarchy.

Ideal Sign 7'
I

Rules -

\principles A Rule 1 Principles A Rule 2 Principles A Rule 3 A

(s i g n . . . ,)

Figure 5-7: Simplified HPSG Inheritance Hierarchy.

Consider the first of the links. We have a link from an element of the list of analyses to

the head-drr of the sign for some rule. The value of the head-dtr is referenced using a path

equation applied to that rule. A path equation is a relation which verifies that a particular value

lies at the end of a list of nested attributes in a sign. The same equation can also be used to

retrieve the value associated with some attribute deep within a sign. The expression

sign-unifi(Head,Element) verifies the unification of the head-dtr and the Element in accordance

with the way we described the calculation of inheritance for A => B in the last chapter1'.

'O~iven A => B, we are interested in A A C where C is is the inherited information; this can be computed with A A

B.

Applicahns of Inheritance Reasoning for HPSG 76

Similarly, a sublist of the list of analyses is joined to the comp-dm feature of the same rule. This

link predicate coalesces the set of dashed links connecting the list of analyses to the next node in

the hierarchy shown in Figure 5-7. The second link connects the node for the rules to the ideal

sign. For that link, if inheritance goes through we construct a graphic representation (an example

of this output as processed by TreeTool (Baker, et al., 1990) is included later in Figure 5-16) and

assert the fact that an analysis has been constructed. The final link predicate is the link from the

rules back down to the list of analyses. We add a sign inherited to this list simply by retracting

the old list and asserting the more fully specified list.

Figure 5-8 depicts the application of the inheritance reasoner to the parsing of three

I ?- p a r s e .
I : mary walks .
r u l e s (w i t h [m a r y , w a l k s l) --- >

i d e a l (w i t h [mary, walks1 .
a n a l y s i s ---> r u l e s (w i t h [mary, walks]) .
r u l e s ---> a n a l y s i s (w i t h [wa lks] .
a n a l y s i s ---> r u l e s (w i t h [wa lks]) .
P a r s e Found a t T i m e : 1 . 7 7 s e c s .

I ?- p a r s e .
I : mary l o v e s john .
r u l e s (w i t h [mary, l o v e s , john]) --- >

i d e a l (w i t h [mary, l o v e s , john]) .
a n a l y s i s ---> r u l e s (w i t h [mary, l o v e s , john]) .
r u l e s ---> a n a l y s i s (w i t h [l o v e s , john]) .
a n a l y s i s ---> r u l e s (w i t h [l o v e s , john]) .
P a r s e Found a t Time: 2 . 5 3 s e c s .

I ?- p a r s e .
I : mary l o v e s s e v e r a l c o o k i e s .
r u l e s (w i t h [mary, l o v e s , seve ra1 ,cook ies l) --- >

i d e a l (w i t h [mary, l o v e s , s e v e r a 1 , c o o k i e s l) .
a n a l y s i s ---> r u l e s (w i t h [mary, l o v e s , s e v e r a l , c o o k i e s]) .
r u l e s ---> a n a l y s i s (w i t h [l o v e s , s e v e r a l , c o o k i e s l) .
a n a l y s i s ---> r u l e s (w i t h [l o v e s , s e v e r a l , c o o k i e s l) .
r u l e s ---> a n a l y s i s (w i t h [s e v e r a l , c o o k i e s l) .
a n a l y s i s ---> r u l e s (w i t h [s e v e r a l , c o o k i e s l) .
r u l e s ---> a n a l y s i s (w i t h [c o o k i e s]) .
a n a l y s i s ---> r u l e s (w i t h [c o o k i e s]) .
P a r s e Found a t Time: 9 . 0 9 s e c s .

Yes

Figure 5-8: Three Sentences Parsed by an Inheritance Reasoner

Applications of Inheritance Reasoning for HPSG 77
sentences. Parsing was invoked with the command parse, and a sentence was entered. Beneath

each sentence is a listing of system output. The output includes a trace of the links followed

through the simplified version of the operative hierarchy shown in Figure 5-7. The links are

listed in the reverse order of their traversal, so the actual path must be read from the bottom up.

Times required for parse completion are shown beneath the trace of links.

Inheritance reasoning over a lexical, unification-based grammar formalism is clearly a

straightforward process, but the current implementation is not particularly efficient. The timings

shown in Figure 5-8 indicate exponential growth. Recall the large underspecified node at the

bottom of the hierarchy (represented by the term analysis); the process of choosing elements and

subsets of that node to try to inherit is computationally expensive. That process, which is

implemented in the selectfrom predicate illustrated in Figure 5-5, refers to the subset relation.

Choosing arbitrary subsets of an ever growing list is an expensive operation. One heuristic can be

devised by noticing that a great number of the grammatical structures represented using HPSG

involve the combination of a HEAD-DTR with a single complement. This implies that subsets

taken from the list of analyses need only have one element. Thus, the definition of selectfrom

that we actually use chooses potential complements accordingly. The definition is given in

Figure 5-9. Note that this redefinition is merely heuristic, though, since for analyses involving

select from (Y\Y, Analysis) .
selectw•’ - rom (~lements, Analysis) : -

element(Element,Analysis),
convert2dl([Element] I Elements) .

Figure 5-9: Heuristic Selection of Analyses.

Rule Three, a HEAD-DTR combines with two complement daughters. The existing system no

longer covers Rule Three since it can accommodate only a HEAD-DTR and a single COMP-

DTR. However, it would be straightforward and still more efficient than the original definition to

allow subsets of restricted size (up to two elements, for instance) of the analyses to be examined.

The subset selection function does not need to be generalized at all to accommodate other

unification grammar formalisms. In Tree Unification Grammar (Popowich, 1988) and

Unification Categorial Grammar (Calder, Klein, and Zeevat, 1988) all branching is binary, so

single element subsets would satisfy all possible constituent structures. While our restriction is

heuristic for HPSG it is sufficient for some other UGs. An additional, global restriction can be

added to the network to guarantee that the only partial analyses ever constructed are analyses that

represent surface structure strings which are actually substrings of the original sentence. The

Applications of Inheritance Reasoning for HPSG
a l m o s t - i d e a l (R u l e) : -

p a t h (R u l e , p h o n , o r d e r (A 3)) ,
o r d e r (A , B, B u i l t P h o n) ,
u n d i f f (B u i l t P h o n , S t r i n g) ,
i d e a l (S i g n) ,
p a t h (S i g n , p h o n , I d e a l P h o n) ,
s u b s t r i n g (I d e a l P h o n , S t r i n g) .

a l m o s t - i d e a l (R u l e) : -
p a t h (R u l e , p h o n , B u i l t P h o n) ,
u n d i f f (B u i l t P h o n , S t r i n g) ,
i d e a l (S i g n) ,
p a t h (S i g n , p h o n , I d e a l P h o n) ,
s u b s t r i n g (I d e a l P h o n , S t r i n g) .

Figure 5-10: Additional Heuristic Selection of Analyses.

code which implements this restriction is given in Figure 5-10 and can be invoked either from the

link which connects analyses to rules or from the link leading from the rules back down to the

analyses.

Another source of gross inefficiency is our representation of signs themselves. Note that

the definitions of select from in Figures 5-5 and 5-9 reference difference lists. Some values in

signs are represented as difference lists, following Popowich and Vogel (1990). The values of

PHON, SUBCAT, and COMP-DTRS are all represented in this fashion. While this allows

efficient invocation of the append function which is used in the Subcategorization Principle (c.f.,

Figure 3-4), the behavior of difference lists requires that the occurs check be built in to the

unification of two signs. This is one reason why the links as implemented in Figure 5-5 invoke

sign-unify rather than using just Prolog's built in unification and shared variables to accomplish

this unification. Another reason is that under the present encoding of signs, other functions

besides append must also be evaluated. The order function which relates the constituents of a

sign to its phonology must also be evaluated when unifying phrasal signs that have been inherited

through the node containing the information in the grammar principles. The order function is

invoked during the unification of two signs, and for more complex signs, this unification takes

much more time. A better representation of functions used as values in sign would greatly

enhance the efficiency of the system.

Applications of Inheritance Reasoning for HPSG
5.2. Inheritance Reasoning versus Chart Parsing

We need to compare the parser that is constituted by an inheritance reasoner over the

HPSG operative hierarchy with other parsing methods. In theory, since we have constructed a

concept hierarchy specifically for HPSG, the inheritance reasoner should be extremely efficient in

constructing paths, because all we need is a shortest path through the hierarchy. However,

complexity is introduced because inheritance is determined across a link by comparing the

information contained in nodes at either end. So, the complexity of the reasoner is determined by

the complexity of the process for determining the unification of A and B. In our system we have

chosen a representation for signs which is not particularly space or time efficient.

In comparison with the algorithm of a chart parser for HPSG (Popowich and Vogel,

1990), the inheritance parser is less efficient. In a chart parser, a sentence is represented by a

graph, where nodes in the graph represent positions between words in the sentence being parsed.

Edges correspond to analyses of the words and complex structures derived from the words

according to the grammar being processed. An edge is marked with the sign (also called the

edge's category) for the analyses the edge represents. The endpoints of an edge indicate its

position in the chart and the span of its analysis. New edges representing analyses of larger

constituent structures of the sentence are introduced to the chart through a waiting list as the

product of one of two processes. Rule Invocation determines that the category associated with

some edge satisfies the HEAD-DTR of some grammar rule and creates new edges for each rule

satisfied in this fashion. These new edges are placed on a waiting list to be processed. The new

edges each have an associated list of expectations, signs that the new edge needs to combine with,

which is taken from the COMP-DTRS feature of the sign that marks the new edge. The

Completer compares the next edge (also called the current edge) on the waiting list with the edges

in the chart, looking for edges that "meet" the current edge satisfying some of the expectations of

one of them. A new composite edge with some or all of its expectations satisfied is created and

added to the waiting list. When an edge is created that spans the chart and has all of its

expectations satisfied a successful parse has been created.

The chart parsing process is time efficient, though the parser presented in Popowich and

Vogel (1990) has unification expenses similar to the inheritance reasoner's built into its

subprocesses. The unification employed is built on top of regular Prolog unification to include

Applications of Inheritance Reasoning for HPSG 80
the occurs check. This is not a linear time process. During Rule Invocation, the test of

satisfaction between the sign marking an edge and the HEAD-DTR is unification. The signs for

the grammar principles are assumed to be unified into the signs for each of the rules prior to

considering any sentences, so the mother sign which results from the unification is assumed to be

consistent with the grammar principles as well as the successful rule. If edges satisfy the meets

condition then the Completer step also involves unification to verify that the sign marking one of

the edges satisfies a sign on the expectations list on the other.

In the inheritance reasoner the functions of both the Rule Invocation and the Completer

steps of the chart parser are taken up by the link from the list of analyses to the node for the rules.

One sign is selected from the list of analyses as a potential HEAD-DTR and a sublist of signs is

selected from the list of analyses as potential COMP-DTRS. Both selections require verification

through unification, just as in the chart parser. However, the chart parser makes good use of the

"meets" condition as a preliminary test for whether the unification with the COMP-DTRS is

likely to go through. If edges do not meet further unification is not attempted. The inheritance

reasoner lacks such a condition. Moreover, selecting sublists of the list of analyses is not an

efficient process in itself, as was mentioned earlier. This is exacerbated by the fact that the list of

analyses grows during the reasoning process-there are increasingly more sublists to consider,

including sublists that has been considered for previous constituent analyses. On the other hand,

the chart parser takes advantage of a distinction between edges in the chart and edges waiting in a

list to be processed. The chart parser selects one edge from the waiting list at a time, and though

the edges archived in the chart can cause the creation of new edges by combining with the current

edge during the Completer step, an edge that is archived in the chart never have to be re-

examined for the Rule Invocation step. Mike Reape (personal communication) has designed an

algorithm which functions very much like the inheritance process described herein, but instead of

a list of analyses, his system maintains a bag of unused constituents. Once a sign is used as a

daughter in a new sign, the new sign is added to the bag and the old sign is thrown away.

Compare the results obtained by the inheritance parser on a sentence, "Mary loves several

cookies," with the results of the same sentence processed by the Prolog chart parser of Popowich

and Vogel (1990). Output from the chart parser is shown in Figure 5-1 1, and the results of the

inheritance reasoner are given in Figure 5-12. These two systems are comparable because the are

both written in Prolog and based upon the same lexical hierarchy, and they both offer the same

Applications of Inheritance Reasoning for HPSG
I ?- parse.
I : mary loves several cookies.
initializing: place inactive edge 1 ([mary])

in waitinglist.
initializing: place inactive edge 2 ([loves])

in waitinglist .
initializing: place inactive edge 3 ([several])

in waitinglist .
initializing: place inactive edge 4 ([cookies])

in waitinglist.
predictor: place inactive edge 5 ([cookies])

in waitinglist (used rule 2).
predictor: place active edge 6, built from [loves]

in waitinglist (used rule 2) .
completer: place inactive edge 7 ([loves,mary])

in waitinglist.
predictor: place active edge 8, built from [cookiesl

in waitinglist (used rule 1) .
completer: place inactive edge 9 ([several,cookiesl)

in waitinglist.
predictor: place active edge 10, built from [loves,mary]

in waitinglist (used rule 1) .
completer: place inactive edge 11

([loves,several,cookies]) in waitinglist.
predictor: place active edge 12, built from

[loves, several, cookies] in waitinglist
(used rule 1).

completer: place inactive edge 13
([mary, loves, severa1,cookiesl) in waitinglist

Parse Found at Time: 4.931 secs.

Figure 5-11: A Chart Parse of "Mary loves several cookies."

I ?- parse.
I: mary loves several cookies.
rules (with [mary, loves, several, cookies]) --- >

ideal (with [mary, loves, several,cookies]) .
analysis ---> rules (with [mary, loves, several, cookiesl) .
rules ---> analysis (with [loves, several, cookiesl .
analysis ---> rules (with [loves, several, cookies]) .
rules ---> analysis (with [several, cookiesl) .
analysis ---> rules (with [several,cookies]).
rules ---> analysis (with [cookies]) .
analysis ---> rules (with [cookies]) .
Parse Found at Time: 9.14 secs.

Figure 5-12: An Inheritance Parse of "Mary loves several cookies."

coverage of HF'SG. All of the words used in the sentence are represented in the lexicon. The

chart parser is clearly more efficient, but some of the extra computation involved in the

inheritance reasoner follows from the slightly different representation used for signs, and the

Applications of Inheritance Reasoning for HPSG 82
corresponding modification to the unification procedure. Recall from Chapter 2 that functions

can appear as the values of features of signs (particularly in the grammar principles). The chart

parser implements an efficient way to evaluate these functions when constructing mother signs

from constituents. However, the inheritance reasoner leaves the functions in place as values. As

a consequence, order must be evaluated each time a phrasal sign is unified with another sign.

Thus, not only does the inheritance parser have more unifications to consider because it lacks a

"meets" condition and attempts Rule Invocation more than it needs to, its unification algorithm i?

less efficient as well. A better representation of functions within signs could greatly improve the

efficiency of the inheritance reasoner.

Yes
I ?- parse .
I : mary loves seve ra l cookies.
i n i t i a l i z i n g : p lace i n a c t i v e edge 1 ([mary]) ,

b u i l t from en t ry mary, i n s t a c k .
i n i t i a l i z i n g : p lace i n a c t i v e edge 2 ([l o v e s]) ,

b u i l t from en t ry loves, i n s t a c k .
i n i t i a l i z i n g : p lace i n a c t i v e edge 3 ([s e v e r a l]) ,

b u i l t from e n t r y s e v e r a l , i n s t ack .
i n i t i a l i z i n g : p lace i n a c t i v e edge 4 ([c o o k i e s]) ,

b u i l t from en t ry cookies , i n s t ack .
p r e d i c t o r : p l ace i n a c t i v e edge 5 ([c o o k i e s]) ,

b u i l t from edge (4) and r u l e (2) , i n s t a c k .
p r e d i c t o r : p l ace a c t i v e edge 6 ([c o o k i e s]) ,

b u i l t from edge (5) and r u l e (1) , i n s t a c k .
completer: p l ace i n a c t i v e edge 7 ([s e v e r a l , c o o k i e s]) ,

b u i l t from edge (3) and edge (6) , i n s t a c k .
p r e d i c t o r : p l ace a c t i v e edge 8 ([l o v e s]) ,

b u i l t from edge (2) and r u l e (2) , i n s t a c k .
completer: p l ace i n a c t i v e edge 9

([loves , seve ra l , cookies]) ,
b u i l t from edge (8) and edge (7) , i n s t a c k .

p r e d i c t o r : p l ace a c t i v e edge 1 0
([loves , seve ra l , cookies]) ,
b u i l t from edge (9) and r u l e (1) , i n s t a c k .

completer: p l ace i n a c t i v e edge 11
([mary,loves,several,cookies]),
b u i l t from edge (1) and edge (l o) , i n s t ack .

Parse Found a t 0 . 9 6 7 secs .

Done a t 1.034 s e c s .

Yes

Figure 5-13: A Better Chart Parse of "Mary loves several cookies."

However, the modified chart parser constructed by Popowich (Popowich and Vogel,

pear) exhibits a dramatic increase in efficiency over the first chart parser and at the same time

offers greater coverage of HPSG. Figure 5-13 shows the performance of the modified parser on

Applications of Inheritance Reasoning for HPSG 83
the sentences benchmarked earlier. Some of the speedup can be accounted for the fact that the

parser was compiled and run under Quintus Prolog rather than interpreted under Sicstus Prolog as

was true for the tests shown in Figures 5-11 and 5-12. The modified chart parser also uses a

different specification of the lexical hierarchy. But, the impact of these differences is not

significant. The increase in efficiency is achieved by representing the constituent structure of

phrasal signs implicitly in the edges of the chart. It remains to be seen if an analogous

representation can be devised for the inheritance reasoner.

In short, the chart parsing approach provides finer distinctions in the classification of

objects being processed (e.g., edges in the chart vs. edges waiting to be processed). These

distinctions allow the chart parser to operate more efficiently than the inheritance reasoner, and it

is not clear how to incorporate such distinctions into the reasoner. On the other hand, the

inheritance reasoner is conceptually simpler than the chart parser. For that reason it is useful as a

pedagogical tool to explain the working of the formalism. Popowich (1990) uses an approach

related to the inheritance described herein to explain the formal properties of Tree Unification

Grammar. Additionally, the inheritance reasoning approach provides a principled way to cope

with some types of ill-formed input.

5.3. Robust Parsing

A long standing problem for natural language processors is handling ill-formed input.

One aspect of this problem is handling errors that are caused by the user's knowing and using

something which is unknown to a parsing system. For instance, the use of a sentence which

includes words unknown to the system lexicon (even through morphological analysis) presents a

difficult problem to sentence recognition. However, the vocabulary of inheritance offers an

elegant way to state a partial solution: information about unknown words may be inferred

through inheritance. This section describes how this is accomplished in theory and then details

how these extensions are incorporated into the implementation. Though we have seen that the

implementation as it stands is not very efficient, the extension for the new link does not cause a

significant further decrease in efficiency.

Applications of Inheritance Reasoning for HPSG
5 3 . 1 . Extending the Operative Hierarchy

First, it is essential to extend the specifications of the operative hierarchy to include a

statement about the relationship between the lexicon and the node at the bottom of the operative

hierarchy that was shown in F i e r e 4-4. As with the unmodified operative hierarchy, we can

simplify this network to take advantage of its having a vacuous node. The revised operative

hierarchy is given in Figure 5-14. In this network the node which formerly was at the bottom and

Ideal sign a

Lexicon: { ...) Cl)
Figure 5-14: Revised HPSG Inheritance Hierarchy.

Applications of Inheritance Reasoning for HPSG 85
represented the partially specified list of analyses corresponding to the lexical enmes for each of

the words used in the sentence under consideration, is now slightly different, initially specified

with a simpler set of entries. The only information known about these entries is that their PHON

features are specified with strings corresponding to words in the sentence. Other information

(major category, etc.) will be inherited from the lexicon. The entire lexicon is represented in the

node at the bottom of the revised hierarchy.

The problem presented by a word which is unknown to the lexicon is that there is no

origin from which to inherit the information required for parsing. However, recall that the

lexicon is founded upon what we called the primitive hierarchy of types. Essentially, this

hierarchy will be specified as the origin. A particular word, "kisses", for instance, is defined in

terms of inheritance of information from lexical classes like word, verbt (for transitive verb), etc.

So, we assume that a word used in a sentence but not present in the lexicon must really be a word.

A fundamental assumption made in using HPSG is that the lexical structure of any word can be

represented. Hence, an unknown word can be classified in terms of some general level in the

lexical hierarchy. Individual words are just very specific entries in the hierarchy. So, we can

generalize the notion of a lexicon from including simply words to also including enmes for more

general elements like verbt. The only difference between the entry for a specific word, "kisses",

(in the absence of semantic information) and a general entry for verbt is that the latter will lack a

specification of the value of PHON.

The problem of recognizing an unknown word is then reduced to finding the most

appropriate general entry to use as its classification. This, too, is satisfied through inheritance.

For instance, given a sentence like, "Olga walks," in which "Olga" is unknown to the lexicon,

from the fact that "walks" subcategorizes for a noun phrase and the assumption that "Olga" is a

word which is used correctly, we can determine that "Olga" is a noun phrase. Clearly, when

semantic information is present in the known words, this can also be inherited to the unknown

component. Note that this is not a foolproof strategy, since if "hates" is a verb that is unknown to

the lexicon, the same strategy will determine that "hates" is a noun in the assumed grammatical

sentence, "Hates walks." This inheritance is facilitated by the link from the lexicon to the

underspecified list of partial analyses: in the usual case an entry in the list marked with the

phonology of a particular word inherits the rest of the syntactic and semantic information known

about the word in the lexicon, and, in the exceptional case of an unknown word the entry inherits

Applications of Inheritance Reasoning for HPSG 86
a hypothetical classification of the word. Given the way we have defined inheritance over the

network as the construction of the shortest path to the node for the ideal (now, from the lexicon,

instead of from the underspecified list of partial analyses), the only classifications of the word

which will contribute to the shortest path are classifications which are consistent with respect to

the other nodes in the hierarchy. That is, under the assumption of input correcmess, the only

consistent classification of "Olga" and "hates" is that they are noun phrases.

53.2. Implementing the New Link

The implementation of this extension is straightforward. It involves adding a link to the

network corresponding to the link introduced in Figure 5-14. This encoding of the new link is

given in Figure 5-15. A parse is denoted in the revised system by a successful instantiation of the

link (lexicon (Wordlist) , analysis (Analysis)) : -
link* (lexicon (Wordlist) , analysis (Analysis)) ,
asserta (analysis (Analysis)) .

link* (lexicon ([I) , analysis ([I)) .
link* (
lexicon([WordlSentence]),
analysis ([[-dtrs, [phon, [Word 1 El \El 1 Sign] 1 Others])) : -

entry([dtrs, [phon, [Word] 1 l Sign]) ,
link* (lexicon (sentence) ,analysis (others)) .

Figure 5-15: The Additional Link, in Prolog.

Prolog query:
inherit (lexicon (Wordlist) , Through, ideal (Ideal)) .

Finally, we allow a more general lexicon which allows as entries a larger portion of the lexical

hierarchy. Within the revised lexicon, we allow as lexical entries such items as verbt, verbi, np,

and even word, which lack the specification of phonological or semantic information and, in the

case of word, even lacks a specification of major category. Recall that in theory, the lexicon is

the lexical hierarchy, but for pragmatic reasons it becomes useful to draw a cut through the

hierarchy and label all things below the cut as indexable by the system. Thus, the old lexicon just

allowed terminal symbols, and our new lexicon includes nodes at a more general level in the

hierarchy.

It is most striking that in practice this system can be used on a sentence like, "Mary kisses

John," for which the lexicon lacks an entry for the word "kisses", and yet, the system is still able

to determine the complex structure required of a lexical entry for the word, simply based on the

information known through "Mary" and "John". Our system can recognize the sentences, "Mary

Applications of lnheritnnce Reasoning for HPSG 87
smiles," and "Mary kisses John," even though "smiles" and "kisses" are unknown, because the

system assumes that the sentences are grammatical, that the words are used correctly, and because

our lexicon knows about such classifications as verbr and verbi for transitive and intransitive

verbs, respectively. Figure 5-16 displays the TreeTool output of the phrase structure tree derived

from the HPSG sign for the sentence, "Mary ingests several cookies." The depicted HPSG

analysis was constructed using the shortest path reasoner over the network that we have given and

implemented in Prolog. The word "ingests" was unknown to the system lexicon, yet through

inheritance the system is still able to determine that it is a transitive verb. Note that the node with

the phonology, [ingests], has two elements on its SUBCAT list. Some of the information did not

fit on the screen, but this omission is insignificant since this node obtained its information from

other nodes in the phrase structure tree. All of the other terminal nodes in the tree represent

lexical entries. But the node for "ingests" obtained only the major category classification from

the lexicon, and it obtained that information through the confirmation of the hypothesis that if

"ingests" is a verb, then a valid path can be constructed through the operative hierarchy. Other

specific information, like the agreement features on the head of "ingests" (recorded in the second

line of information on the node) and the head features of the items subcategorized for (partially

depicted in the third line for that node), is inherited from the node for the universal principles (the

Head Feature Principle and the Subcategorization Principle) with exact values instantiated

through inheritance from the known lexical entries in the sentence. It took the inheritance

reasoner 9.42 seconds to construct a parse for the sentence (c.f., Figure 5-8 shows the timing for a

similar sentence in which all the words were present in the lexicon).

Our ongoing experimentation with this system involves using inheritance to determine the

structure of entries that the system does not know about as lexical entries nor in the less specific

classification according to major category. For instance, suppose that our lexicon does not

include an entry from the lexical hierarchy for determiners. If the word "each" also lacks explicit

representation in the lexicon then, of the classifications that we mentioned earlier, word is the

only one which provides a structure which will sanction the phrase, "each cookie." Since word is

extremely underspecified, the system should still be able to construct a complete path, and

moreover, inheritance through the path should also specify that "each" is a determiner, since that

is consistent with the subcategorization of "cookie". However, this is not handled by the present

system because of remaining inefficiencies in its memory management.

Applications of Inheritance Reasoning for HPSG

Figure 5-16: "Ingests" Was Not in the Lexicon.

Neither can we argue that the system is actually efficient at recognizing the unknown

words that it does recognize. The code for the reasoner given in Figure 5-5 is stated so simply

because it relies on the control structure of Prolog to implement its search. This means that it

Applications of Inheritance Reasoning for HPSG 89
does a lot of backtracking, particularly in the case of unknown words. Note, however, that prior

to including the general classification word as a lexical entry, the system would discover in a

finite amount of time and space (i.e., without crashing by exhausting the resources) whether a

consistent set of classifications is possible. The system w2l backtrack and move forward until it

can find a way to categorize an unknown word in a way that is consistent with respect to the rest

of the sentence. While this is not particularly efficient, it does have the utility of suggesting a

better solution, since it casts the problem into the more refined vocabulary of constraint

satisfaction. In constraint satisfaction problems we try to find consistent labelings of words using

the notation of the lexical hierarchy where consistency is defined relative to the operative

hierarchy as outlined in this chapter. Our future work in this area includes a restatement of the

above system using the tools provided by constraint logic programming, as codified in the

language Echidna (Havens, et al., 1990).

Chapter 6

Discussion

We have focussed upon the formal definition and application of inheritance reasoning.

We provided a clarification of a system for path based inheritance proposed by Horty, et al.

(1990). Our clarification included a reimplementation of their system in simple Prolog relations.

The accompanying analysis identified in their system an inconsistent treatment of certain

topologically redundant links. We also outlined two other inheritance reasoning systems, those of

Geffner and Verma (1989) and Ballirn, et al. (1989), and indicated the treatment of topologically

redundant links within those systems as well. Traditional inheritance reasoning systems discount

the complex structures represented by nodes in an inheritance network as well as the fact that

different links emanating from a single node can represent different information about the node.

However, reasoning that accommodates this fact is more complex than path based inheritance

which uses topology alone. The link arithmetic approach is promising because it provides a

framework for inheritance reasoning based on something more than topology.

To the researcher in inheritance reasoning, this thesis provides another dimension to the

space of possible path based inheritance systems: the seventy-third possibility will be a reasoner

that does not discount topologically redundant links as semantically redundant (cf. Chapter One,

p. 5). Further proof theoretic research is needed in path based inheritance reasoning to determine

the implications entailed by the assumption that all links in a network convey new information. It

would also be interesting to study the impact of the assumption on non-topological approaches to

inheritance. The link arithmetic approach to inheritance provides a framework that is amenable to

the incorporation of non-topological information into the reasoning process. In such a system, the

leaning associated with a path would carry semantic information like the statistic which

represents the frequency at which a statement such as "Elephants are gray," is true in some

population. A new statistical semantics may be unecessary since such approaches already exist

(Zadeh, 1987, Bacchus, 1989), but study is needed to determine exactly how the information

Discussion 91
contained in a node and classified by a set of links can be represented using statistical

information.

Thomason (1989) has indicated that research in inheritance reasoning has reached a stage

in whlch feedback is required from research in applying these formal systems to the

representation of knowledge. This thesis provides one such application by representing the

fundamental concepts of HPSG in an inheritance network. The system that we present embodies

some of the ideas discussed in Chapter Two, where we argued that the information contained in a

node and inherited through a link should not be discounted in favor of purely topological

processing. Individual links in network for HPSG do not exhaustively classify the nodes that they

connect; multiple links emanating from a single node represent different information. However,

in this system the computation of inheritance across a link is complex. The computation of this

inheritance requires the comparison of the information contained at each end using unification.

While this test on the traversal of a link also makes the system analogous to ATNs (Woods,

1970), the system is different from ATNs in that the test involves the nodes at both ends of the

link. Nonetheless, reasoning over this network provides useful inferences in the form of si,m

that correspond to HPSG analyses of individual sentences; reasoning over the network thus

implements a parser. Popowich (1990) is another example of another recent attempt to use

inheritance reasoning as a parsing mechanism.

This application does not give rise to the testing of competing inheritance reasoners

because it does not require the resolution of conflicting paths, though this could be an issue for a

working natural language understanding system that includes a larger subset of HPSG (e.g.

adding lexical rules), nor do redundant links present a problem. However, because of these

features that simplify the problem, shortest path reasoning is applicable. Nonetheless, in light of

the complexity of computing inheritance in the manner that we have described, the feedback that

we provide to researchers in inheritance reasoning is a reiteration of the fact that further research

would be useful into the strictly topological processing of networks whose links all contain

unique information.

The application of inheritance reasoning to parsing does prove fruitful for the researcher

in natural language understanding, because it suggests a principled treatment of a form of ill-

formed input to a natural language processor. Information about words contained in an input

Discussion 92
sentence that are unknown to the system lexicon can be inherited from the lexical hierarchy and

from other words used in the sentence. It would be extremely useful to conduct further research

in this area. For instance, it would be interesting to develop an inheritance based system which

can discover the grammatical category of an unknown word solely from the information

contained in signs for other words even if the grammatical category of the unknown word is itself

omitted from the lexical hierarchy. The relationship between this treatment of unknown words

and the semantic treatment provided by other approaches should also be examined (DeJong and

Waltz, 1983, McFemdge and Groeneboer, 1989).

In Chapter Five we pointed out that work is required to make the implementations of the

inheritance network and reasoner elegant and efficient. Presently, the implementations are

neither elegant nor efficient. The research presented in Popowich and Vogel (to appear) based on

the chart parsing methodology suggests some directions to follow in improving the representation

of the network. A better representation of signs could eliminate the need for anythlng more than

the built-in Prolog unification algorithm. The distinctions between data structures used by chart

parsers to limit the numkr of times a particular sign needs to be processed may also be useful to

incorporate into the network. Further investigation is required to determine whether these ideas

can be incorporated into the inheritance reasoner.

References

Aristotle. (1952). Metaphysics: Book Delta. Ann Arbor: University of Michigan Press.
Richard Hope, trans. Reprinted, 1987.

Bacchus, Fahiem. (1989). A Modest, but Semantically Well Founded, Inheritance Reasoner.
Proceedings of the 11th International Joint Conference on Artificial Intelligence. Detroit,
Michigan.

Baker, Sue, Rob Harnrn, and Fred Popowich. (1990). The TreeTool User's Manual. CMPT TR
90-09. Simon Fraser University, Bumaby, BC.

Ballim, Afzal, Sylvia Candelaria de Ram, Dan Fass. (1989). Reasoning Using Inheritance from a
Mixture of Knowledge and Beliefs. Knowledge Based Computer Systems, Proceedings of
KBCS89 (Bombay, India). New Delhi, Narosa Publishing House.

Bobrow, R. J. (1979). The RUS Natural Language Parsing Framework. Research in Natural
Language Understanding, Annual Report (Report Number 4274). Cambridge, MA: Bolt,
Beranek and Newman.

Bouma, Gosse. (1990). Non-Monotonic Inheritance and Unification. In W. Daelemans and
G. Gazdar (Eds.), Inheritance in Natural Language Processing Workshop Proceedings.
Institute for Language Technology and Artificial Intelligence, Tilburg University, Holland.

Boutilier, Craig. (1989). A Semantical Approach to Stable Inheritance Reasoning. Proceedings
of the 1 l t h International Joint Conference on Artificial Intelligence. Detroit, Michigan.

Brachman, Ronald J. (1983). What ISA Is and Isn't: An Analysis of Taxonomic Links in
Semantic Networks. IEEE Computer, 16(10), 30-6.

Brachman, Ronald J. (1985). I Lied about the Trees, or Defaults and Definitions in Knowledge
Representation. The AI Magazine, 6, 80-93.

Brachman, Ronald J., and James Schmolze. (1985). An Overview of the KL-ONE Knowledge
Representation System. Cognitive Science, 9, 17 1-2 16.

Calder, Jo, Ewan Klein, and Henk Zeevat. (1988). Unification Categorial Grammar: A Concise,
Extendable Grammar for Natural Language Processing. 12th International Conference on
Computational Linguistics. Budapest, Hungary.

Carpenter, Bob. (1990). Typed Feature Structures: Inheritance, (1n)equality and Extensionality.
In W. Daelemans and G. Gazdar (Eds.), Inheritance in Natural Language Processing
Workshop Proceedings. Institute for Language Technology and Artificial Intelligence,
Tilburg University, Holland.

Curry, Haskall B. (1963). The Foundations of Mathematical Logic. New York: McGraw Hill.

DeJong, Gerald F., and David L. Waltz. (1983). Understanding Novel Language. Computers and
Mathematics with Applications, 9(1), 13 1-47.

Delgrande, Jim. (1990). A Semantics for a Class of Inheritance Networks. Proceedings of the
93

8th Biennial Conference of the Canadian Society for Computational Studies of Intelligence.
Ottawa, Ontario.

Dorosh, Jennie and Ronald P. Loui, eds. (1989). Edited Transcription of The Workshop on
Defeasible Reasoning with Specificity and Multiple Inheritance, St. Louis, April 1989.
Washington University, St. Louis, MO.

Evans, Roger and Gerald Gazdar. (1989). Inference in DATR. Proceedings of the 4th
Conference of the European Chapter of the Association for Computational Linguistics.
Manchester, England.

Fahlman, S. E. (1979). NETL: A System for Representing and Using Real-World Knowlege.
Cambridge, MA: The MIT Press.

Fass, Dan and Gary Hall. (1990). A Belief-Based View of Jll-Formed Input. Computational
Intelligence '90. Milan, Italy.

Fass, Dan, Nick Cercone, Gary Hall, Chris Groenboer, Paul McFetridge, and Fred Popowich.
(1990). A Classification of User-System Interactions in Natural Language, with Special
Reference to 'Ill-Formed Input'. Proceedings of the 5th Rocky Mountain Conference on
Artificial Intelligence. RMCAI-90, Las Cruces, NM.

Flickinger, Dan. (1987). Lexical Rules in the Hierarchical Lexicon. Doctoral dissertation,
Stanford University, CA.

Flickinger, Dan, Carl Pollard and Tom Wasow. (1985). Structure-Sharing in Lexical
Representation. Proceedings of the 23rd Annual Meeting of the Association for
Computational Linguistics. University of Chicago, Chicago, IL.

Franz, A. (forthcoming). A Parser for KPSG. Carnegie Mellon University Laboratory for
Computational Linguistics Technical Report.

Fraser, Norman and Richard Hudson. (1990). Word Grammar: an Inheritance-Based Theory of
Language. In W. Daelemans and G. Gazdar (Eds.), Inheritance in Natural Language
Processing Workshop Proceedings. Institute for Language Technology and Artificial
Intelligence, Tilburg University, Holland.

Frisch, Alan M. (1989). A General Framework for Sorted Deduction: Fundamental Results on
Hybrid Reasoning. Proceedings of the First International Conference on Principles of
Knowledge Representation and Reasoning. Toronto, Canada.

Gawron, J. M., J. King, J. Lamping, E. Loebner, E. A. Paulson, G. K. Pullum, I. A. Sag, and
T. Wasow. (1982). Processing English with a Generalized Phrase Structure Grammar.
Proceedings of the 20th Annual Meeting of the Association for Computational Linguistics.
Toronto, Ontario.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, and Ivan Sag. (1985). Generalized Phrase
Structure Grammar. Basil Blackwell, London, England.

Geffner, Hector and Tom Verma. (1989). Inheritance = Chaining + Defeat. CSD-890039.
University of California, Los Angeles.

Grice, H. Paul. (1975). Logic and Conversation. In Peter Cole and Jerry L. Morgan (Eds.),
Syntax and Semantics, Volume 3. New York: Academic Press.

Grishman, Ralph. (1986). Computational Linguistics, An Introduction. Cambridge University
Press, Cambridge, England.

Havens, William S., Susan Sidebottom, Miron Cuperman, Rod Davison, Severin Gaudet, and
Greg Sidebottom. (1990). Echidna Constraint Reasoning System: Programming Langage

95
Manual Version 0. CSS-IS TR 90-07. Expert System Laboratory, Centre for Systems
Science, Simon Fraser University, Bumaby, BC.

Horty, John. (1989). Discussion Session: Research Strategies: Individual Perspectives. In
Dorosh, Jennie and Ronald P. Loui, eds. (Eds.), Edited Transcription of The Workshop on
Defeasible Reasoning with Specificity and Multiple Inheritance, St. Louis, April 1989.
Washington University, St. Louis, MO. Panel Members: David Poole, Fahiem Bacchus,
James Delgrande, John Horty; Ben Grosof, Moderator.

Horty, John, Richmond Thomason, and David Touretzky. (1990). A Skeptical Theory of
Inheritance in Nonmonotonic Semantic Networks. Artificial Intelligence, 42(2-3), 31 1-48.

Israel, David J. (1983). Interpreting Network Formalisms. Computers and Mathematics with
Applications, 9(1), 1-13.

Konig, Ester. (1989). Parsing as Natural Deduction. Proceedings of the 27th Annual Meeting of
the Association for Computational Linguistics. Vancouver, BC.

Kasper, Robert, and William Rounds. (1986). A Logical Semantics for Feature Structures.
Proceedings of the 24th Annual Meeting of the Association for Computational Linguistics.
Columbia University, New York, NY.

Konolige, Kurt. (1987). On the Relation Between Default Theories and Autoepistemic Logic.
Proceedings of the 10th International Joint Conference on Artificial Intelligence. Milan,
Italy.

McDermott, Drew and Jon Doyle. (1980). Non-Monotonic Logic I. Artificial Intelligence,
13(1-Z), 41-72.

McFetridge, Paul, and Nick Cercone. (1990). The Evolution of a Natural Language Interface:
Replacing a Parser. Proceedings of Computational Intelligence 90. Universith di Milano,
Milan, Italy.

McFetridge, Paul and Chris Groeneboer. (1989). Novel Terms and Cooperation in a Natural
Language Interface. Knowledge Based Computer Systems, Proceedings of KBCS89
(Bombay, India). New Delhi, Narosa Publishing House.

Menzel, Wolfgang. (1987). Automated Reasoning about Natural Language Correctness.
Proceedings of the 3rd Conference of the European Chapter of the Association for
Computational Linguistics. Copenhagen, Denmark.

Moore, Robert C. (1985). Semantical Considerations on Nonmonotonic Logic. Artificial
Intelligence, Vol. 25(1).

Morgan, Charles G. (1976). Methods for Automated Theorem Proving in Nonclassical Logics.
IEEE Transactions on Computers, Vol. C25(8).

Oehrle, Richard, Emmon Bach, and Deirdre Wheeler. (1988). Categorid Grammars and
Natural Language Structures. D. Reidel, Dordrecht, Holland.

Pollard, Carl, and Ivan Sag. (1987). Information-Based Syntax and Semantics, Volume 1:
Fundamentals. Centre for the Study of Language and Information, Stanford University,
CA.

Popowich, Fred. (1988). Reflexives and Tree Unification Grammar. Doctoral dissertation,
Centre for Cognitive Science, University of Edinburgh, Edinburgh, Scotland.

Popowich, Fred. (1989). Tree Unification Grammar. Proceedings of the 27th Annual Meeting of
the Association for Computational Linguistics. Vancouver, BC.

96
Popowich, Fred. (1990). Tree Unification Grammar, Parsing and Inheritance Networks.

CSSILCCR TR 90-15, CMPT TR 90-07. Simon Fraser University, Bumaby, BC.

Popowich, Fred and Carl Vogel. (1990). Chart Parsing Head-Driven Phrase Structure Grammar.
CSS-IS TR 90-01, CMPT TR 90-01. Simon Fraser University, Bumaby, BC.

Popowich, Fred and Carl Vogel. (to appear). A Logic-Based Implementation of Head-Driven
Phrase Structure Grammar. Proceedings of the Third International Workshop on Natural
Language Understanding and Logic Programming. NLULP3, Lidinigo, Stockholm.
January 23-25, 1991, Also to appear in Natural Language Understanding and Logic
Programming II I . Charles Brown and Gregers Koch, eds. Amsterdam: North Holland.

Porter, Harry H., 111. (1987). Incorporating Inheritance and Feature Structures into a Logic
Grammar Formalism. Proceedings of the 25th Annual Meeting of the Association for
Computational Linguistics. University of Chicago, Chicago, IL.

Reape, Mike. (August 1990). (Personal communication). Centre for Cognitive Science,
University of Edinburgh, 2 Buccleuch Place, Edinburgh EH8 9LW.

Reiter, Raymond and Giovanni Criscuolo. (1983). Some Representational Issues in Default
Reasoning. Computers and Mathematics with Applications, 9(1), 15-27.

Russell, Graham, John Carroll and Susan Warwick. (1990). Multiple Inheritance in a
Unification-Based Lexicon. In W. Daelemans and G. Gazdar (Eds.), Inheritance in Natural
Language Processing Workshop Proceedings. Institute for Language Technology and
Artificial Intelligence, Tilburg University, Holland.

Sandewall, E. (1986). Nonmonotonic Inference Rules for Multiple Inheritance with Exceptions.
Proceedings of IEEE, 74(10), 1345-53.

Schubert, Len. (1975). Extending the Expressive Power of Semantic Networks. Proceedings of
the 4th International Joint Conference on Artificial Intelligence. Tbilisi, USSR.

Schubert, Len, Randy Goebel, and Nick Cercone. (1979). The Structure and Organization of a
Semantic Net for Comprehension and Inference. In N. V. Findler (Eds.), Associative
Networks: Representation and Use of Knowledge by Computers. New York: Academic
Press.

Selrnan, Bart, and Hector Levesque. (1989). The Tractability of Path-Based Inheritance.
Proceedings of the I I th International Joint Conference on Artijicial Intelligence. Detroit,
Michigan.

Shieber, Stuart. (1986)..An Introduction to UniJication-Based Approaches to Grammar. The
University of Chicago Press, Chicago, IL.

Steels, L. and Koenraad De Smedt. (1983). Some Examples of Frame-Based Syntactic
Processing. In Fr. Daems and L. Goossens (Eds.), Een Spyeghel voor G. Jo Steenbergen.
Leuven, Arnersfoort: Acco.

Thomason, Richmond. (1989). Discussion Session: Questions of Substance or Mere Clashes of
Intuition? In Dorosh, Jennie and Ronald P. Loui, eds. (Eds.), Edited Transcription of The
Workshop on Defeasible Reasoning with Specificity and Multiple Inheritance, St. Louis,
April 1989. Washington University, St. Louis, MO. Panel Members: Jon Doyle, David
Israel, Kurt Konolige, Richmond Thomason; David Etherington, Moderator.

Touretzky, David. (1986). The Mathematics of lnheritance Systems. Los Altos, CA: Morgan
Kaufman.

Touretzky, David, John Horty, Richard Thomason. (1987). A Clash of Intuitions: The Current
State of Nonmonotonic Inheritance Systems. Proceedings of the 10th International Joint
Conference on Artificial Intelligence. Milan, Italy.

97
van der Linden, Erik-Jan. (1989). Larnbek Theorem Proving and Feature Unification.

Proceedings of the 4th Conference of the European Chapter of the Association for
Computational Linguistics. Manchester, England.

Vogel, Carl and Fred Popowich. (1990). Head-Driven Phrase Structure Grammar as an
Inheritance Hierarchy. In W. Daelemans and G. Gazdar (Eds.), Inheritance in Natural
Language Processing Workshop Proceedings. Institute for Language Technology and
Artificial Intelligence, Tilburg University, Holland. Also appeared as CSSILCCR TR
90-03, Centre for Systems Science, Simon Fraser University, Bumaby, B.C.

Woods, William A. (1970). Transition Network Grammars for Natural Language Analysis.
Communications of the ACM, 13,591-606.

Zadeh, Lofti A. (1987). Commonsense and Fuzzy Logic. In N. Cercone and G. McCalla (Eds.),
The Knowledge Frontier. New York: Springer Verlag.

