
Inheritance Reasoning and 
Head-Driven Phrase Structure Grammar 

Carl M. Vogel 

B.S. (Honors) 
Loyola University 

New Orleans, Louisiana, 1988 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

O Carl M. Vogel 1990 

SIMON FRASER UNIVERSITY 

December 1990 

All rights reserved. This thesis may not be 
reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



Approval 

Name: Carl M. Vogel 

Degree: Master of Science 

Title of Thesis: Inheritance Reasoning and Head-Driven Phrase Structure Grammar 

Examining Commitee: 

Dr. Veronica Dahl, Chairman 

Dr. Nicholas J. kercone 
Co-Senior Supervisor 

. 
~r:~rederick4.  Popowich 

- 

Co-Senior Supervisor 

, .- I *  

Dr. Robert F. Hadley 
Supervisor 

, . 
Dr. RXOI~~~ Goebel 
Department of Computing Science 
University of Alberta 
External Examiner 

ii Date Approved 



PARTIAL COPYRIGHT LICENSE 

I hereby grant t o  Slmon Fraser Un lvers l t y  the r i g h t  t o  lend 

my thesis,  p ro jec t  o r  extended essay ( the  t i t l e  o f  which i s  shown below) 

t o  users o f  the Slmon Fraser Univers i ty  L ibrary,  and t o  make p a r t i a l  o r  

s ing le  copies only f o r  such users o r  i n  response t o  a request from the 

l i b r a r y  o f  any other un ivers i ty ,  o r  other educational I n s t i t u t i o n ,  on 

i t s  own behalf o r  f o r  one o f  i t s  users. I f u r t he r  agree t h a t  permission 

f o r  mu l t i p l e  copying o f  t h l s  work f o r  scholar ly purposes may be granted 

by me o r  the Dean o f  Graduate Studies. I t  i s  understood t h a t  copying 

o r  publication o f  t h l s  work f o r  financial gain sha l l  not be allowed 

without my wr i t t en  permlsslon. 

T i t l e  o f  Thesis/Project/Extended Essay 

Inhe r i t ance  Reasoning and Head-Driven Phrase S t r u c t u r e  Grammars. 

Author: - - 
3 s i gnature 1 

Y -  

Car l  M. Vogel 

( name ) 

(date) 



Abstract 

Inheritance networks are a type of semantic network which represent both strict (classical 

implication) and defeasible (non-classical) relationships among entities. We present an 

established approach to defeasible reasoning which defines inference in terms of the construction 

of paths through a network. Much of literature on inheritance is concerned with specifying the 

most "intuitive" system of path construction. However, when considering a fundamental feature 

of these approaches-the status accorded to redundant links-we find that topological 

considerations espoused in the literature are insufficient for determining the valid inferences of a 

network. This implies that the "intuitiveness" of a particular method depends upon the domain 

being represented. Though Touretzky has demonstrated that it is unsound in some cases, the 

path-preference algorithm known as shortest path reasoning, is actually the most intuitive 

algorithm to use when reasoning about the inheritance network which represents most of the 

conceptual structure of Head-Driven Phrase Structure Grammar (HPSG). In this thesis we 

describe the HPSG formalism and detail the inheritance hierarchy which we abstract from it. The 

network itself is interesting because it is cyclic and because it contains supernodes. We specify 

the content of nodes (information structures encoded as attribute-value matrices) and the 

interpretation of links (the relative pseudocomplement relation) in the resulting inheritance 

hierarchy. The process of reasoning over the hierarchy is demonstrated, and the implications of 

this work for researchers in both unification grammars and inheritance reasoners are discussed. 

In particular, when it is applied to the inheritance network for HPSG, an inheritance reasoner 

functions as a parser for the grammar formalism. To the inheritance reasoning researcher this 

provides a semantically nontrivial application for representation using inheritance networks 

against which arguments about the intuitiveness of more complex path construction algorithms 

may be tested. 



"One fine morning in May, a slim young horsewoman might have been seen 
riding a glossy sorrel mare along the avenues of the Bois, amongst the 

flowers." 
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Chapter 1 

Introduction 

1.1. Background 

Inheritance based reasoning is an approach to reasoning about default and non-default 

knowledge. Default knowledge is a computationalist category of knowledge about the world, but 

underlying this categorization is a very old classification scheme. Aristotle distinguished between 

the primary and accidental aspects of being, a distinction which corresponds to that between 

non-default and default knowledge. 
"'Primary Being' may mean: (1) a simple body, such as earth, fire, water, and everything of 

this sort; and in general bodies and the bodies composed of them, both animals and superior 
beings, as well as their parts. But all these are called 'primary being,' because they are not 
atnibuted to something else; whereas other things are said of them .... (3) It may mean whatever is 
inmnsic to primary being in the first sense, limiting them and marking them as a this-something, 
or whatever when destroyed destroys such a primary being" (Aristotle, 1952, p.99). 

Aristotle calls the other aspects of being, those which are predicated, and which possibly change 

over time, the "accidental" properties of being. Accidental properties, which correspond to 

defaults, include "facts" of the form, "Birds fly," or "Elephants are gray," which are facts 

inasmuch as people will assert them to be true, even though many counterexamples are available. 

Touretzky (1986, p.6) calls such sentences normative: "Normative statements are statements that 

are usually true or that can be assumed to be true in the absence of contrary information." 

Because counterexamples are available, defaults cannot be represented completely by universally 

quantified formulae in first order logic (FOL; or any logic, for that matter). Furthermore, 

Aristotle claims, "In view of these many ways of being, we must first consider the accidental and 

point out that there can be no theory of it. Witness, no practical science, no art, no theoretical 

science troubles itself about it" (Aristotle, 1952, p.125). However, on that point he is no longer 

correct, for that is exactly what research in nonmonotonic reasoning is attempting to devise: well 

motivated approaches to representing and reasoning about the accidental properties of being. 

One approach to default reasoning is in the application of nonmonotonic systems based on 

1 



Introduction 2 
classical logics (McDermon and Doyle, 1980). In this approach, an operator M, meaning "is 

consistent," is added to first order logic. So, "Elephants are gray," is translated to, "All elephants 

that are not known to be not gray are gray." This statement is represented in the system as: 

(x)(elephant(x) A M(gray(x)) -> gray(x). McDermon (1982) continues work in this vein by 

including the axioms of the modal logic S4 and S5 as axioms in the nonmonotonic system. 

Moore (1985) defines an autoepistemic logic with an operator L, essentially the dual of 

McDermon and Doyle's M, which translates to, "is believed." This logic, he claims, captures the 

intuitions of nonmonotonic reasoning and corresponds to a weak version of ~ 5 ' .  Delgrande's 

(1990) approach works similarly, though he adds a conditional operator, =>, whose semantics is 

based on possible worlds rather than a fixed point construction. In Delgrande's system, 

"elephants are gray" means that under the least exceptional circumstances, if an individual is an 

elephant then that individual is gray. Reiter (1983) offers yet another approach by adding default 

rules of inference to achieve nonmonotonicity rather than by adding a nonmonotonic operator. 

However, Konolige (1987) demonstrates that this formalism is equivalent to autoepistemic logic, 

hence by Moore's (1985) argument, Reiter's system is equivalent to the nonmonotonic logic that 

McDermott and Doyle had set out to create. All of these systems are classified as non-classical 

logics in the sense that they utilize operations for forming sentences which are not truth 

functionally compositional. 

1.2. Inheritance Reasoning 

Inheritance reasoning is an alternative approach to using default logics which experiments 

with non-classical systems whose syntax is suggested by the pictorial representation of complex 

hierarchies as directed acyclic graphs. Inheritance networks descend from work on the notation 

and formal semantics of semantic networks (shown by Schubert (1975) and Schubert, et al. 

(1979) to have the full semantics of FOL). In the network approach to knowledge representation, 

concepts are represented as nodes in a network. Networks are compositional: a node in a 

network can be some other network, and the same subnetwork can be a subnetwork of several 

larger supernetworks, simultaneously. The supemetwork/subnetwork relationship can exist 

without the supernetwork possessing a copy of the subnetwork. Instead, the supernetwork can 

contain a pointer to the subnetwork (or, a virtual copy (Fahlrnan, 1979)). The 

'1t lacks the axiom schema LP -> P. 
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supemetwork/subnetwork relationship is also termed structure sharing. When a network is 

defined through structure sharing, that network inherits the information contained in the 

subnetwork, but not a copy of the subnetwork. This relationship is somewhat transitive. The 

information from the subnetwork is inherited, by default, to all other larger networks which 

inherit some of their structure from the composite network that made reference to the 

s~bne twork .~  But, the relationship is not fully transitive, since the inheritance can be explicitly 

cancelled or ovemdden by less direct means. A network used to denote the structure sharing in a 

semantic network is known as an inheritance hierarchy or as an inheritance network. Thus, an 

inheritance network is a schematic representation of a semantic network. 

The nodes of an inheritance network denote concepts defined by possibly complex 

connections of nodes and links in some semantic network, and the links in an inheritance network 

indicate the structure of information sharing. In an inheritance network consisting of two nodes 

connected by a link, the node pointed to is the supernetwork, and the node from which the link 

emanates represents the subnetwork. The link indicates that some of the information from the 

subnetwork is inherited to the supemetwork. Some researchers distinguish between strict and 

non-strict inheritance links, essentially defining strict links as those for which all of the 

information in a subnet is inherited and transitivity over chains always holds. Strict links model 

non-default knowledge and non-strict links model defaults. Because non-strict inheritance links 

are the more interesting case, we focus on those links and refer to them in the second chapter of 

this thesis simply as "links" unless the reference would cause ambiguity. Later in the thesis we 

will apply both strict and non-strict links. Inheritance reasoning is the process of determining 

among potentially many chains of inheritance links which paths should be cancelled or 

ovemdden. All paths of inheritance links represent "true" relationships, but because paths can be 

cancelled or ovemdden by exceptions expressed in more specific paths they are termed, 

"defeasible". A primary concern of the literature on inheritance reasoning is the determination of 

the "best" method for d e f ~ n g  the preferred chains of links through an inheritance network. As in 

formal logics, we call the construction of preferred paths "inference" and we refer to the 

2~dmittedly, it is anomalous to use the phrase "inherit to" rather than something usually used to express the act of 
inheriting, like "bequeath". Horty et al. (1990) consider a related issue: 

Once one adopts the bottom-up approach, the terminology of "inheritance" is no longer so appropriate; but the terminology 
has b e m e  fued, and it would introduce more confusion than it would eliminate if we tried to characterize this kind of 
reasoning process in a phrase more neutral between the topdown and the bottom-up views. @. 6) 

Likewise, we also keep the original language of inheritance. 
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definitions of path preference in an inheritance system as that system's "proof theory1'. 

Unfortunately, however, a semantic theory which unifies the various approaches to the proof 

theory of inheritance reasoning has yet to be developed (Brachman, 1983, Brachman, 1985, 

Touretzky, et al., 1987, Boutilier, 1989, Dorosh and Loui, 1989, Delgrande, 1990). 

Links in an inheritance network notation can be used to represent the natural language 

qualification, "typically" as in the sentence, "Typically, humans have two legs" (cf. "Network AB 

typically contains information contained in network A"). A main reason for adopting the network 

approach over the traditional work in formal logic stems from the conceptual freedom created by 

its distinctive graphical syntax. In particular, within the network notation the presence of 

representations for two contradictory facts, "Birds fly," and, "Birds do not fly," do not ground the 

proof of any arbitrary fact at all, as the propositions would entail if encoded in the deductive 

closure of usual logical calculi. Instead, the network notation localizes the disruption caused by 

logical inconsistency to an incongruity on the fact under consideration. But, because the network 

approach is so young it has had to spend a great deal of time outlining "proof procedures," the 

exact methods of path construction where paths correspond to valid inferences on the networks. 

Arguments for particular methods of specifying valid paths are based upon intuitions and 

computational complexity (Touretzky, et al., 1987, Sandewall, 1986, Touretzky, 1986, Ballim, et 

al., 1989). 

1.3. The Structure of this Thesis 

13.1. Extant Systems 

In the second chapter of this thesis we give a more formal articulation of inheritance 

reasoning, including a characterization of some of the more controversial issues which emerge in 

the literature. The particular family of inheritance network approaches (affectionately) called 

THAT family for Iouretzky, Horty, &d nomason is paradigmatic of the field, and in the 

second chapter we give a formal specification of THAT approach. By giving formal definitions 

and providing examples of their application, we demonstrate the syntactic, topology-based 

reasoning inherent in THAT paradigm. We also describe a closely related system that is defined 

by Geffner and Verma (1989), as well as a more distantly related approach presented by Ballim et 

al. (1989). These three specifications of inheritance reasoning do not exhaust the varieties of 
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reasoners that have been defined in the literature. Horty (1989) identifies 72 different systems for 

path-based inheritance reasoning, alone. However, the three systems that we discuss do 

characterize the field by defining the problem and indicating some of the variety that is possible. 

All of these systems are topologically based. Arguments against the appropriateness of some 

system often focus upon anomalies which arise when that method is applied to particular 

examples. The structure of such arguments is to show that for networks of a particular topology, 

the method will reach a certain conclusion, then an interpretation of the network is provided in 

which the conclusion achieved seems anomalous. Some thought on these arguments, particularly 

about their topological nature, leads to doubt about a fundamental tenet of all three approaches 

detailed within this thesis and of the literature as a whole. The assumption which we reject is that 

reasoning over a network should not be confounded by the presence of redundant links. We 

reject this assumption because it is not clear that the "redundancy" of a link is a topological 

feature of an inheritance network. 

13.2. Constructive Criticism 

Our argument about the status of topologically redundant links is presented in the second 

chapter of the thesis. Basically, we claim that since a non-strict inheritance link emanating from a 

node in an inheritance network does not entail the inheritance of all the information contained in 

that node, there is potentially other information left to be inherited through an additional link. 

Topologically, any such additional link which converges with a path containing the other link, is 

considered redundant. But, topologically redundant links are not necessarily redundant with 

respect to the information inherited. The status of topologically redundant links is significant 

because they form the basis of Touretzky's (1986) counterexample to the soundness of shortest 

path reasoning (Fahlman, 1979). If topologically redundant links are not necessarily semantically 

redundant, then we should give serious reconsideration to shortest path reasoning, because the 

computational complexity of shortest path reasoning is a linear function of the number of nodes in 

the directed acyclic graph, while Touretzky's system, which makes provisions for topologically 

redundant links, has been shown to be NP-Hard (Selman and Levesque, 1989). 
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13.3. An Application 

In this light, we turn to the application of inheritance reasoning to linguistic analysis. 

Thomason (1989) has emphasized the need in this stage of research in inheritance reasoning to 

address its application. Extant arguments in the literature in favor of one or another approach to 

path based inheritance primarily focus on particular example networks. But, because the 

examples are founded upon trivial3 concept hierarchies it is difficult to comment effectively on 

the appropriateness of any particular method. We devote the second half of this thesis to 

providing a significant application, a non-trivial concept hierarchy in which shortest path 

reasoning is quite useful. The application is in the analysis of language within the framework of 

Head-Driven Phrase Structure Grammars (HPSG) (Pollard and Sag, 1987), using shortest path 

inheritance. This is a well motivated application for two main reasons. Many papers have been 

written about parsing as deduction ( (Menzel, 1987). (van der Linden, 1989), and (Konig, 

1989) are just three of them); deduction and inheritance reasoning are both forms of reasoning, so 

it is promising to consider parsing as inheritance reasoning, and moreover, there may be 

computational or other methodological advantages to using inheritance reasoners as parsing 

mechanisms. Another consideration is that inheritance reasoners are built for doing default 

inference. That is, they intend to represent the generality of statements like, "birds fly," without 

resolving to an inconsistency given a specific non-flying bird. Similarly for parsing, we have an 

intuition that rules of grammar exist and also the observation that grammar rules have exceptions. 

Ergo, inheritance reasoners are ideal parsers. 

Although defaults provide an initial motivation for using inheritance reasoning to parse 

sentences because of defaults' implicit representation of exceptions, in our application of 

inheritance reasoning we use default links whose interpretation is weaker than typicality. The 

interpretation of non-strict links is possibility. Thus, instead of encoding, "Sentences rypically 

have a subject followed by a verb and object," we encode, "A noun phrase can have a determiner 

followed by a noun." An unfortunate result of the weaker interpretation is that exceptions must 

be encoded explicitly. Essentially, this means that non-strict links are disjunctive. But, both sorts 

of links still represent the classification of concepts, and information is inherited across links. 

Links in our system are further characterized and differentiated from traditional work on 

inheritance in Chapter Four. 

3 ~ h e  examples are not especially trivial in topology but in subject matter. 
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We provide a brief introduction to HPSG in the third chapter of this thesis. HPSG is a 

frame-based language for describing linguistic phenomena. Like similar unification grammar 

formalisms, HPSG is distinguished from traditional phrase structure grammar formalisms by its 

extremely lexical orientation and its de-emphasis of grammar rules. Lexical enmes encode 

constraints (i.e., major category, form, subcategorization, etc.) associated with words and their 

combination into more complex phrase structures. Objects that take the place of grammar rules 

are also encoded within the same formal language, as are "universal" principles of grammar. 

Grammar rules in HPSG are more schematic and, thus, fewer in number than traditional phrase 

structure rules. Rather than providing a phrase structure rule for each part of speech (i.e., S -> h'P 

VP, NP -> Det N, VP -> V Adv, etc.), HPSG provides rules for different sorts of headed 

structures. For example, one kind of headed structure has a head daughter which is preceded by 

its complement (i.e., a noun, the head daughter of a noun phrase, is preceded by a determiner 

which is the head daughter's complement; a verb phrase, the head daughter of a sentence, is 

preceded by its subject which the head daughter's complement). In the third chapter of the thesis, 

we show the structure of the formalism provided by HPSG in more detail, and we show how it is 

used to describe linguistic phenomena. 

We then abstract from HPSG a network of concepts which we call the operative 

hierarchy of HPSG. Discussion already exists about the lexical hierarchy built into HPSG 

(Pollard and Sag, 1987, Flickinger, 1987). But we take this network as a definitional hierarchy, 

one which is used to define the concepts present as nodes in the operative hierarchy. Inheritance 

reasoning over the operative hierarchy constructs analyses of linguistic objects in the frame based 

language of HPSG. This observation is related to research presented by Steel and De Smedt 

(1983) and by Brachrnan and Schmolze (1985). In Chapter Four we explain our analysis and 

demonstrate how it is more complete than the previous, related analyses. Our explanation-details 

the contents of nodes and the interpretation of the links (a specialized sort of structure sharing 

relationship). We present a picture of the overall network. This network is topologically 

interesting because it contains a cycle, and because we allow inheritance links to point to the 

interiors of nodes (a node pointed into in this way is referred to as a supernode). We give an 

illustrative example of the process of reasoning over this network. Shortest path reasoning seems 

to be the most appropriate form of reasoning to use. In Chapter Five also provide a Prolog 

implementation of the operative hierarchy and a shortest path reasoner for reasoning over the 

inheritance network. Since the reasoner constructs HPSG analyses of linguistic objects, this 

reasoner constitutes an HPSG parser. 
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13.4. Extensions 

One advantage of our analysis of HPSG from the point of view of inheritance reasoning is 

that it leads to a principled treatment of a particular class of ill-formed input to a natural language 

processor (cf. Fass, et al. (1990), Fass and Hall (1990)). This class is one in which a user has true 

beliefs whose representation is missing from the system. When a user correctly uses a word 

which is unknown to a system lexicon, we can, through inheritance, determine some of the 

information about the word that is missing. To achieve this we add an additional node and link to 

the operative hierarchy. The fifth chapter of this thesis describes that extension, and details the 

corresponding extension to the implementation. We discuss some of the limitations of this 

approach as well. Theoretically, it is quite a restrictive assumption to hold that all system 

unknown words are used correctly, though we feel that this assumption is a psychologically valid 

one to make (the assumption is consistent with the maxim of quality (Grice, 1975)). Practically, 

the extension adds complexity to the reasoning process. Observation of our experiments lead us 

to conclude that by avoiding chronological backtracking, constraint based reasoning could 

provide a more practical framework than inheritance reasoning from which to explore this 

problem. 

13.5. Reflections 

Finally, we conclude the thesis by summarizing its contributions, and we describe 

directions for further research in this area. Our analysis of the status of topologically redundant 

links argues for resurrecting the shortest path reasoner. Our application of this reasoner to Head- 

Driven Phrase Structure Grammars provides useful insights into problems of robust parsing. This 

leads us to try similar applications for other unification grammar formalisms and hints at a 

potentially better articulation of the problem in the language of constraint based reasoning. In a 

different direction, our analysis of topologically redundant links points us towards considering the 

semantics of inheritance systems, with some concrete ideas about semantic foundations in which 

the redundancy of links is clearly a non-topological issue. 



Chapter 2 

Path Based Inheritance 

In this chapter we present a detailed description of inheritance reasoning. We 

demonstrate the motivations behind the inheritance-based approach to knowledge representation 

and present samples from the literature. Our purpose is to give the reader a feel for the discussion 

that dominates the literature: essentially, the discussion is of proof-theoretic issues about the 

structure of valid inferences. To this end we present the proof theory of a dominant approach in 

the field, that defined by Horty, et al. (1987), and in light of this presentation we also describe 

two related systems (Gefier and Verma, 1989, Ballim, et al., 1989). Throughout, we discuss 

advantages and limitations of path based inheritance reasoning. 

2.1. THAT Family Inheritance 

In THAT family of inheritance networks, nodes represent individuals, concepts, and 

properties, and links represent the classification of connected nodes. A link between two nodes in 

the form A--->B denotes the fact that As are typically classified as Bs ("As are Bs"). Another sort 

of link, one with a slash through it (-I->), is a negative link. The negative link A-1->B indicates 

that As are not typically classified classified as Bs. The example hierarchy depicted in Figure 2-1 

contains only one negative link, the link which connects the node labeled, "Royal Elephant," to 

the node labeled, "Gray Thing." The other links are positive links and assert positive typicalities. 

An explanatory paraphrase of the interpretation intended by Touretzky for Figure 2-1 is as 

follows: elephants are typically gray, royal elephants are not typically gray, royal elephants are 

typically elephants, .... The goal of an inheritance reasoner presented with a network of such facts, 

is to determine what additional facts are implicit in the network, in answer to questions such as, 

"Is Clyde gray?" We determine whether Clyde is gray by finding a valid path between the nodes 

for Clyde and Gray Thiig. A path is made up of a chain of links, but not all chains of links in an 

inheritance network constitute valid paths. An inheritance reasoner is the set of definitions which 

specify the method of construction of valid paths through a network. 
9 
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Figure 2-1: The Quintessential Inheritance Hierarchy. 

2.1.1. Paths 

An expansion of a network, which corresponds to the deductive closure of a theory stated 

in a logic or an extension of a default system, is a set of permitted (valid) path through the 

network. This set of paths is defined straightforwardly by induction, with the assumption that all 

paths and networks will be acyclic. Individuals (as opposed to concepts or classes) may appear 

only in the first node of a path, but they do not necessarily have to occur in the path at all. Any 

link in a network is a path; if the link is of the form, p--->r, then it is a positive path, and if it is of 

the form p-1->r, then it is a negative path. Since we assume the network to be acyclic, every path 

will have both a first node and a last node. Let x vary over positive paths; htNode(x)  denotes 

the last node in path x, and FirstNode(x) denotes the first node in path x. The length of a path is 

the number of links that it contains. For a given network, if x is a positive path, LastNode(x)--->r 

is a link, and r does not occur as a node in x, then x--->r is a positive path as well. 

Symmetrically, if htNode(.rc)-1->r is a link contained in the network and r does not occur in x, 
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then x-/->r is a negative path. Since we assume x to vary over only positive paths, this means 

that negative links can occur only at the end of a path. The polarity of a path is determined by its 

last link: a path whose last link is negative is called a negative path, and all other paths are 

positive. An alternative convention used when paths grow cumbrously long is to write paths as 

strings of nodes; "xr" and "7C/T" are abbreviations for the aforementioned paths. Sometimes we 

use the metanotation -#-> to indicate a link whose polarity is unspecified. 

The above definition of paths is not contested in the literature, though Geffner and Verma 

(1989) do release the restriction against cyclic paths (the "occurs" check) and manage to prove 

that in the case of negative cycles no complications are introduced which confound their 

definitions of path construction. A negative cycle is something like p--->q--->r-/->p; the cycle 

occurs using the single negative link allowed in the path. Since a negative link can occur only at 

the end of a path, a path containing a negative cycle will still have a last node. Though we can 

can construct an endless chain of links because of the cycle, we cannot construct a path that has a 

link after the negative link. Negative cycles are less problematic than arbitrary cycles because 

they do not lead to paths of infinite length. 

Figure 2-2 depicts a network containing the chain of links, p--->q-1->r-/->s. This full 

Figure 2-2: A Network with a Generalized Path of Length Three. 

chain of links is not a path since it contains two negative links. The paths contained in the 

network are in the set {pq, q/r, r/s, W r ] .  No path connects p or q to s; hence from this graph we 

can draw no conclusions about p or q in relation to s. A generalized path is defined as any 

succession of l inks th is  is a generalization of the definition of paths in which .R: may vary over 

positive or negative paths. Thus, N r / s  is a generalized path contained in Figure 2-2. Any chain 

of links through a network qualifies as a generalized path. The degree of a path in a specific 

network is the number of links in the longest generalized path whose endpoints coincide with the 

path in question (Horty, et al., 1990, p.13). Note that the degree of a path can be greater than its 

length For example, a path consisting of a single link (length equal to one) can have a degree of 
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Figure 2-3: The Link p--->r Has a Degree of Two. 

more than one. This situation is illustrated in Figure 2-3; the path pr  has a length of one, but a 

degree of two, because the path pqh is the longest generalized path connecting the two endpoints 

p and r. Another useful fact about the degree of a path of length m is that the path will be strictly 

greater than the degree of the subpath that contains the path's first m-1 links, as shown in 

Theorem 1. 

Theorem 1: If x is a path of the form a-#->z having degree n, then a is a 
positive path with degree less than n. 

Proof: 
1. Regardless of the polarity of the link from LastNode(a) to z, no other link 

in x can be a negative link, or x would not be a path. Thus, a is a positive 
path. 

2. To show that the degree of a is less than n: 
a. Let a = FirstNode(a). By the definition of degree, n is the length 

of the longest generalized path x', between the endpoints a and z 
of x. 

b. Let z be the longest generalized path between the endpoints of a. 
The degree of a is the length of z. Then z-#->z constitutes a 
generalized path between a and z. 

c. If the length of z (the degree of a )  is greater than or equal to n, 
then 2-#->z has length of at least n + 1. But, this means that the 
degree of z-#->z, hence the degree of a-#->z is at least n + 1. This 
contradicts our assumption that the degree of a-#->z is n. 
Therefore, the length of z (the degree of a) must be less than n. 

Introducing the concept of a path's degree also introduces the possibility that there can be 

more than one path between two nodes. Part of the task of an inheritance system is to define 

procedures for adjudicating among several possibly conflicting paths between two nodes. Further 

definitions impose the restrictions which allow choices to be made. The chosen paths are 

permitted. 
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2.1.2. Permitted Paths 

Permitted paths are determined by the definitions of a particular reasoning system; 

different reasoners sanction different paths as permitted. Reasoners can be skeptical or credulous 

in regard to conflicting paths, upwards or downwards in direction of processing, or any member 

of a host of different dimensions to defining path permission (Touretzky, et al., 1987). The 

systems discussed in this thesis have in common the stipulation that all direct links contained in a 

network are sanctioned as permitted paths. Differences emerge with respect to paths of more than 

one link, also called compound paths, that conflict with other paths. According to the upwards, 

decoupled, restricted skeptical reasoner of Horty, et al. (1990), a path is permitted unless it is 

preempted, cancelled, or redundant with respect to a path that is not permitted. If a path is 

permitted in a network, then we say that the expansion of the network contains the implicit link 

between the endpoints of the path. By defining permitted paths, preemption, and cancellation in 

the language of FOL, instead of adopting the network notation of Horty, et al., we can provide a 

more transparent translation into an implementation in Prolog. 

Expressing the definitions in logic does not give us the semantics of FOL for inheritance 

reasoning itself, but for our reasoning about inheritance. This is essentially an application of the 

syntactic method proposed by Morgan (1976) for theorem proving in nonclassical logics. In the 

syntactic method the proof theory of a nonclassical propositional logic is restated in terms of a 

first order provability predicate. Theorem proving in first order logic is sound and complete with 

respect to the theorems of the object logic, and "no semantic theory is required, so very exotic 

systems can be studied even when no semantic theory is available" (Morgan, 1976, p.856). The 

clauses which result in the first order representation of the logic'studied using the syntactic 

method turn out to be Horn clauses; though we have not used the provability predicate exactly as 

did Morgan (1976), we are still able to apply his results. Integrated in the following discussion is 

a restatement of the following definitions in Prolog relations, and these Prolog relations allow us 

to test the implications of inheritance reasoning definitions on various networks. 

Path preemption allows more specific information that is contained in a direct link to 

ovemde conflicting information in a more general (longer) path. This topological ordering of 

paths is called the inferential distance ordering (Touretzky, 1986). Only direct conflicting links 

can preempt other paths, though a preempting link may be part of a longer path. 

Definition 2: Let x, x', and p be variables over positive paths. 
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Figure 2-4: Link X-/->Y preempts the path XRVY. 

1. A positive path xy is preempted by a link p-/->y if there exists a permitted path 
x' such that FirstNode(x)=FirstNode(x') and LartNode(x)=LartNode(x'), and 
either FirstNode(x')-1->y is a link in the network and p=FirstNode(x'), or for 
some subpath p of x' FirstNode(p)-/->y is a link in the network and 
p=FirstNode(p). 

2. A negative path xly is preempted by a link p--->y if there exists a permitted 
path x' such that FirstNode(x)=FirstNode(x') and LastNode(x)=LastNode(d), 
and either FirstNode(x')--->y is a link in the network and p=FirstNode(x'), or 
for some subpath p of x' FirstNode(p)--->y is a link in the network and 
p=FirstNode(p). 

Examples of preemption are presented graphically in Figures 2 4  and 2-5. In both figures a 

Figure 2-5: Path XRVY is off-path preempted by the link Z-/->Y. 

positive path is preempted by a negative path. Matching the definition to the network in Figure 

2 4 ,  both n and ~t' correspond to the path XRV. The endpoints of x and x' coincide, and 

FirstNode(x')-I->Y is a link in the network, so XRVY is preempted by the link X-I->Y. In 

Figure 2-5, n still corresponds to XRV, but x' corresponds to XZV, and p to ZV. 

FirstNode(p)-1->y is the link that preempts the path XRVY. This second example is an instance 

of off-path preemption (Touretzky, et al., 1987). Essentially, XZfY is said to be more specific 

than both XZVY and XRVY. 

Compound paths which conflict are subject to cancellation. The difference between 

cancellation and preemption is that neither conflicting path is permitted after cancellation, but 

preemption does permit one of its conflicting paths. Consider the network depicted in Figure 2-6 

which has a topology somewhat in between that of Figures 2 4  and 2-5. Although paths x and n' 

exist whose endpoints coincide, no a' exists that has a subpath p whose first node participates in a 
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Figure 2-6: Paths XZY and XRVY cancel each other. 

preempting link. Neither XZrY nor XRVY is favored over the other. Since we are defining a 

skeptical reasoner, we say that the paths cancel each other-neither is permitted. A credulous 

reasoner would resolve to two extensions from the network, one in which Xs are Ys and another 

in which X's are not Ys. On the other hand, if the network consisted of two conflicting links, then 

we would say that it contains an inconsistency. 

preempted (From, Through, To, Preemptor) : - 
chain (From, Through, To) , 
complement (To, NotTo) , 
link (Preemptor,NotTo) , 
lastnode (Front, Last, Through) , 
perrnitted(From,OtherThrough,Last), 
member (Preemptor, [From 1 OtherThrough] ) . 

Figure 2-7: The Definition of Preemption in Prolog. 

In Figure 2-7 we give a restatement of the definition of preemption as a Prolog relation 

between a path (specified in the arguments From, Through, To; items beginning with an 

uppercase letters are understood as variables) and a node on more specific conflicting paths (the 

argument, Preemptor). While From, Through, and To are all variables, we assume that From and 

To vary over nodes, and that Through varies over lists of nodes with positive, not negative, links 

implicitly connecting those nodes in the order of occurrence in a given list. The preempted 

relation can hold only if the chain of links described by the path From--->Through-#->To is 

actually a chain of links in the network. The relations complement and link determine whether 

there is a conflicting path terminating at the node To. The path, From--->OtherThrough--->Last, 

corresponds to x' in Definition 2. The relation lmtnode verifies that LartNode(~) = 

LartNode(d), and the invocation of permitted (defined later) verifies that .n' is actually permitted. 

Finally, the call to member is used to determine if the first node of x' or the first node of some 

subpath of x' participates in the conflicting link. 

Figure 2-8 depicts a Prolog translation of the network given in Figure 2-5. Links are 
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link (x, r . 
link (r, v) . 
link (v, y) . 
link (x, z) . 
link (z, v) . 
link(z,not (y) ) . 

Figure 2-8: A Prolog Translation of Figure 2-5. 

encoded as two place relations. The polarity of a link is indicated in the second argument. A 

positive link A--->B is encoded as link(a,b), and the negative link A-/->B is encoded as 

link(a,not(b)). In the Prolog session reproduced in Figure 2-9, we show the application of the 

no 

Figure 2-9: "Which Paths between x and y Are Preempted?" 

relation preempted to determine what paths between the nodes x and y of Figure 2-8 are 

preempted and what the preempting node is. In a Prolog terminal session, user input is entered 

after a question mark. In Figure 2-9 user input is shown with added emphasis. The entry of a 

semicolon indicates the user's request to the interpreter to find another way to satisfy the query. 

Two preempted paths are returned in this fashion, x n y  and xzvy, and both paths are preempted by 

the node z. Since preempted is a reversible Prolog relation, we can also ask, for instance, for all 

the paths which terminate at y but are preempted. This invocation, also for the network shown in 

Figure 2-8 is represented in Figure 2-10. We see that there are three preempted paths that 

I ?- preempted ( X I  Y, y, W) . 

W = z, 
X = z, 
Y = [v] ? ; 

no 

Figure 2-10: "Which Preempted Paths Terminate at y?" 

terminate at y: xrvy, xzvy, and zvy. 
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Definition 2 only partially specified what it takes to preempt a path. The definition made 

reference to the existence of permitted paths, which has yet to be defined. The paths sanctioned 

by an arbitrary network are determined by upwards construction of paths of increasing degree; the 

formal definition follows: 
Definition 3: Path Permission 

1.Let xbe apath. 
a. If x is a direct link, then x is permitted. 

b. If the degree of x is one then x is a direct link, by the definition of 
degree, hence x is permitted. 

2. Let x be a compound path of degree n. Assume that all permitted paths with 
degree less than n are known. 

a. If x is a positive path then it has the form az (i.e., LastNode(a)--->z is 
a link in the network). The path a is positive, and by Theorem 1 the 
degree of a is less than n. The path x is permitted iff 

i. a is permitted, 

ii. FirstNode(a)lz is not a direct link in the net, 

iii. Let p be a variable over positive paths. For all paths p/z with 
FirstNode(p)=FirstNode(a) that conflict with the path az there 
exists some path which preempts p/z. 

b. If x is a negative path (it has the form, d z ) ,  then x is permitted only 
under the conditions symmetric to those stated in a. That is, iff: 

i. a is permitted, 

ii. FirstNode(a)z is not a direct link in the net, 

iii. For all paths pz with FirstNode(P)=FirstNode(a) that conflict 
with the path d z  there exists some path which preempts pz. 

Definition 3 follows the inductive structure of the path based definition provided by 

Horty, et al. (1990), even though Definition 3 is not stated in their network notation. The 

definition still proceeds with upwards construction of paths of increasing degree. The reason for 

basing the definition on increasing degree rather than increasing path length is that in some 

instances, information about a longer path is necessary to determine the permission of a shorter 

path (Horty, et al., 1990). An example of a situation in which information about a longer path is 

required occurs when two paths conflict, and one is shorter than the other as in Figure 2-6. 

According to these definitions, if those paths intersect only at their endpoints, they will cancel 

each other. Cancellation is stipulated by the third condition on the permission of R in Definition 

3. This condition states that x is permitted only if all conflicting paths are preempted. Since x 

has a degree of n, we know of all paths which could conflict with x. By the definition of degree, 

none of the conflicting paths is longer than n. The degree of a path becomes significant only 
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during the examination of compound paths for the existence of conflicting paths. ~bnf l i c t i n~  

paths are handled trivially in the case of direct links. All direct links are sanctioned as paths 

through a network, even conflicting links. If a direct link conflicts with a compound path then the 

definition of preemption is satisfied and the direct llnk preempts the compound path. In the case 

of conflicting compound paths, it is known that none of the conflicting paths has a degree of 

greater than n, and all shorter paths between the same endpoints are known, because Definition 3 

proceeds on increasing degree. 

A restatement of Definition 3 in Prolog is shown in Figure 2-1 1. This new definition has 

a different structure from Definition 3 in that the Prolog definition is not stated explicitly in terms 

of increasing degree, although it relies on the relationship between the degree of a path and the 

degree of a subpath as stated in Theorem 1. In the component of the logic program that must 

examine potentially longer paths for conflict, the definition refers to those paths directly using the 

term, chain. This term simply represents a chain of links between the endpoints From and To, if 

permitted (From, [ I  , To) : - 
link (From, To) . 

% From=FirstNode (Pi) , To=z . 
permitted(From,Through,To) :- 

% Last-#->z is a link. 
link (Last, To) , 
% Last=LastNode (Alpha) . 
lastnode (Front, Last, Through) , 
% From-#->z is not a direct conflicting link. 
complement (To, NotTo) , 
not (link (From, NotTo) ) , 
% Alpha is permitted. 
permitted (From, Front ,Last) , 
% For all Otherpaths that do conflict, 
% some path preempts each. 
not (unpreempted (From, Otherpath, NotTo) ) . 

%Direct links are not preempted. 
unpreempted(From, [],To) :- 

link (From, To) . 
%True when unpreempted paths exist. 
unpreempted(From,Through,To) :- 

%A path exists between From and To. 
chain (From, Through, To) , 
lastnode (Front, Last-rough) , 
%From--->Through is permitted. 
permitted (From, Front, Last) , 
%No preempting path exists. 
not (preempted (From, Through* By) ) . 

Figure 2-11: The Definition of Permission in Prolog. 

such a chain exists in the network. The length of the chain, which corresponds to degree, is 
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insignificant. Reference to the term chain stems from the invocation, 

not(unpreempted(From,OtherPath,NotTo)). The definition of unpreempted determines whether 

there is an OtherPath which is not preempted. Invoking not(unpreempted) with NotTo instead of 

To verifies the condition that for all Otherpaths which do exist in conflict, none are permitted. If 

an OtherPath did exist that was not preempted then unpreempted would hold true, and 

not(unpermitted) would be false. If not(unpermitted) fails to hold, this indicates the existence of a 

conflicting path, and neither path is permitted. 

The basis case in Figure 2-1 1 is the first permitted clause which states that all direct links 

in a network are permitted. An additional base clause to permit paths of degree one is 

unnecessary since the set of paths whose degree is one is a subset of the set of paths that are direct 

links. The three argument positions of the permitted predicate represent From, Through, and To, 

as described above. From--->Through maps to a in the formal definition of permission, and To 

maps to z. The empty list in the Through position of the term for the basis indicates that no 

intermediate nodes lie on the path. The second rule defines permission in the general case. Since 

we use the relation complement, in defining this rule, the same rule stipulates the permission of 

both positive and negative paths in a single rule. The relations, link and lastnode, verify that 

LastNode(a)-#->z is a link contained in the network, and the relation not(1ink) stipulates that a 

directly conflicting link cannot be present in the network (for then, that link would be permitted, 

and the path under consideration is preempted). The recursive reference to permitted specifies 

that the subpath a must itself be permitted (From--->Through). Finally, the relation unpreernpted 

holds when the path specified as input through its arguments is actually a chain of links through 

the network which is not itself preempted. Thus, the specification, not(unpreempted), stipulates 

that no conflicting, unpreempted paths exist. This is equivalent to the specification in the formal 

definition that is expressed: for all paths that conflict with a-#->z, there exists some path which 

preempts each conflicting path. The clauses which make up the definitions of unpreempted and 

permitted implement Definition 3 even though a different ordering is stated on those constraints. 

The order of the restrictions stated in the Prolog definition is guided by efficiency considerations 

in limiting the search space. 

In Figure 2-12 we include a Prolog session that applies the Prolog definitions given above 

to the network shown in Figure 2-5 and translated to Prolog in Figure 2-8. Only the negative path 

from x to y is permitted. Other paths which have x as a first node are permitted, but only the one 

negative path ends at y. 
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( ?- p e r m i t t e d  ( x ,  Through*) . 
Through = [ I ,  
T o = r ? ;  

Through  = [ I ,  
T o = z ? ;  

Through = [r I ,  
T o = v ? ;  

Through = I z  1, 
T o = v ? ;  

Through  = [ z ]  , 
To = n o t  (y) ? ; 

no 

Figure 2-12: "Which Paths Beginning at Node x Are Permitted?" 

Consider an example taken from Touretzky, et al.  (1987) (Figure 2-13). Assuming a 

Figure 2-13: Preemption by A-1->D Permits the Conclusion A--->I?. 

skeptical reasoner, it initially appears that no conclusions about whether As are Es should be 

forthcoming, since there are conflicting paths from A to E. However, the definitions do not 

sanction the inference of E from A. ABDj'E is not a path permitted by the network, because its 

subpath, ABD, is preempted by the link A D .  The intuition is that AD contains more specific 

information about A's D-ness than is in the chain of links, ABD (and we know from the 

definitions that no path can contain two negative links, so A/D/E does not conflict). Hence 

ABCE is a permitted path. Figure 2-14 depicts a translation of the network from Figure 2-13 into 

Prolog, and Figure 2-15 demonstrates a Prolog session in which the permission and preemption of 

paths is verified. 
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l i n k  ( a ,  b )  . 
l i n k  ( b ,  c )  . 
l i n k  ( b ,  d )  . 
l i n k  ( c , e )  . 
l i n k  ( d ,  n o t  ( e )  ) . 
l i n k  ( a ,  n o t  ( d )  ) . 

Figure 2-14: A Prolog Translation of the Network Depicted in Figure 2-13. 

I ?-  p e r m i t t e d  (a ,  Y, e )  . 

no 
I ? -  p r e e m p t e d  ( a ,  Th rough ,  To, By) . 
By = a ,  
Through = [ b ] ,  
T o = d ? ;  

Figure 2-15: Upwards Reasoning: Preemption of ABD Permits the Conclusion A--->E. 

Of course, the difference between implications of a network obtained by inspecting it for 

direct or conflicting paths, and the implications made according to a given reasoner suggests that 

the definitions are process oriented. The reasoner defined by Horty, et al., (1990) which we 

describe herein is an upwards reasoner (cf. Touretzky, et al., 1987). In contrast, a downwards 

reasoner would be able to conclude nothing about the relationship between A and E in Figure 

2-13 because of the ambiguity of the relationship between B and E. The difference hinges on the 

order of links considered in path construction, and this suggests that no declarative semantics can 

be devised as a foundation to both upwards and downwards restricted skeptical reasoners. 

Though some of the issues we discuss here are common to upward and downward reasoners, we 

assume an upward mode of processing, in accordance with the definitions from Horty, et al. 

(1990), given above. 

2.2. Redundancy and Stability 

One proof theoretic consideration present in both upward and downward (credulous or 

restricted skeptical) reasoners is that the reasoning process should not be confounded by the 

presence of redundant links. The network shown in Figure 2- 16 contains a link, A--->C, which is 

considered redundant with respect to the path ABC. Networks of this topology were used by 

Touretzky (1986) as counterexamples to illustrate the inappropriateness of shortest path reasoning 

(Fahlman, 1979). The counterexamples demonstrate that if a shortest path reasoning mechanism 
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is used, then in the network in Figure 2-16, for example, it is wholly arbitrary whether the 

reasoner will reach a conclusion based on the positive or negative paths of the same length from 

A to D. Reasoners which exhibit such nondeterministic behavior are said to be unstable. The 

disproof provided by the example relies on the assumption is that the link B/D provides more 

specific information about A's D-ness than does the path ABCD, but that the link A--->C is 

merely redundant with respect to ABCD. We dispute that assumption. 

While we do agree that the network {A--->B, A--->B), consists of a redundant link, we 

do not agree that this is necessarily the case for the network {A--->B, B--->C, A- - -XI .  The last 

Figure 2-16: A Network Containing a Redundant Link. 

link, A--->C, is redundant, according to Horty, et al. (1990), since we already have ABC, and 

A--->C contains only the information present in the longer path. But, if A--->C is redundant in 

Figure 2-16, then B-/->D is incoherent, because if the former edge is giving only information 

already contained in ABC, then the latter is giving information totally at odds with BCD. If there 

is no more information that is left unexpressed by the path ABC, then the same is true of the path 

BCD, and there is nothing else to express about the path, let alone something contrary to the path. 

Rather, if one of those links can contain more specific information than the longer corresponding 

path, then both paths must have that potential. 

Admittedly, it is disconcerting to think of the link A--->C as non-redundant given that the 

links are intended to represent, "is a." It would seem that the is a-ness of A--->C should be 

contained already in ABC. However, this is merely because an adequate explication of the 

meaning of "is a" has yet to be offered (c.f. Aristotle, 1952; Rosch and Lloyds, 1978; Brachrnan 

1983). It is absolutely certain, especially for upwards reasoners, that set containment is not the 

correct interpretation of "is a". If set containment were the correct interpretation, then coupling 

would be present. Coupling occurs when properties of a subclass are in agreement with 
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properties of a superclass. In a network that admits defeasible links, coupling is not a necessary 

condition for transitivity. "Downward reasoners necessarily produce coupled theories because the 

only properties a node can inherit are those of its superiors. Upward reasoners are not so 

constrained" (Touretzky, et al., 1987, p.479). This quotation admits that an individual or class 

has properties independent of the nodes to which it is linked, and these individuals and classes are 

categorized on the basis of these properties. That is, being connected to a node as in A--->B does 

not completely specify the node A. Other information about A is contained in A--->C just as 

information contained about B in B-1->D is not contained in BCD. Researchers in THAT 

paradigm seem to recognize this possibility when they discuss the intuitions behind their 

reasoners, particularly Horty, et al. (1990) who, recall, have implemented an upwards reasoner, 

but their definitions ignore this possibility. 

For an example of a situation in which coupling does not occur, consider an analogy from 

international relations. The United States defends Kuwait because of Kuwait's global importance 

as an oil producing nation. Kuwait defends Palestine because of its Arab sympathy. The 

U. S. may or may not defend Palestine. Neither situation follows as a matter of course from the 

other two. We could represent this in the network shown in Figure 2-17, in which nodes 

represent nations and links are interpreted as "defends". As the network stands we would 

Figure 2-17: An Uncoupled Network. 

rightfully conclude using inheritance that the U. S. defends Palestine. But, additional information 

is required if this is to be an explicit fact encoded in the network. Additional information about 

the U. S.-that the U. S. defends Palestine because defending nations is the right thing to 

do--would be sufficient to ground the explicit coding of the link. This information is associated 

with the node for the U. S. but is not included in the link which indicates that the U. S. defends 

Kuwait. Equally, we require additional information about the U. S.-that the U. S. does not 

defend Palestine because Palestine does not control resources of interest to the U. S . t o  add a 
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negative link between the nodes for the U. S. and Palestine. The truth of either situation about the 

U. S. can ground an explicit link, but neither the positive nor the negative link is contained in the 

original two links. Either link encoded explicitly is qualitatively different from a link derived 

from inference. In inheritance reasoning, links do not represent superclass/subclass relations, but 

they do indicate classification. A link is a classification of some information at a node, but not 

necessarily of all of that information. If a single link does not classify all of the information at a 

node, then other links emanating from that node represent different information. They are not 

redundant. If it is possible to find different information to be classified with the link B-/->D even 

though B--->C and C--->D, then it is also possible to find different information from that 

classified by A--->B and B--->C to be classified with the link A--->C. 

Touretzky (1986) acknowledges that something is important about "redundant" links. He 

claims, "we cannot easily ban redundant statements because there are no truly redundant 

statements in a system that allows exceptions" (p.10)4. But, it is evident from the example he 

gives that he considers the link A--->C, above, to be redundant, since he contrasts the status of 

that link with the link C--->E added to the the network shown in Figure 2-16. The modified 

network is illustrated in Figure 2-18. He claims that C--->E is not redundant. Touretzky (1986) 

Figure 2-18: A--->C Is Considered Redundant, but C--->E Is Not. 

argues that we would want to be able to infer that Bs are Es via BCE, even though Bs are not Ds. 

Note that this inference cannot occur in the upwards reasoner without the link C---BE. Stability is 

the property of an inheritance reasoner's being able to construct the same inferences from a 

4~oureeky's  statement makes clear that the networks he deals with are quite distinct from the inheritance networks 
considered by David Israel, (1983). Israel assumes that the descendants of a node in an inheritance taxonomy are all 
mutually exclusive. But, the presence of redundant links in a network implies the presence of chains of descendancy 
fkom a node which are not mutually exclusive. Indeed, a classic example in the inheritance literature, the Nixon 
Diamond which demonstrates the ambiguity caused by two conflicting paths, is a problem because Quakerism and 
Republicanism are not mutually exclusive modes of socio-political philosophy. If they were mutually exclusive, the 
diamond would be held forward as an example of inconsistency, not merely ambiguity. 
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network augmented by explicit links derived from inferences. Thus, the system described by 

Touretzky exhibits instability. Horty, et al. (1990) take the same position as Touretzky (1986); 

they provide the rationale that stability is not always a desirable property for inheritance 

reasoners, but the importance of stability is relative to the topology of the networks reasoned 

over. However, given that there are conflicting paths through the networks of both Figures 2-16 

and 2-1 8, using a skeptical style of reasoning we should not be able to conclude anythmg in either 

case. Inconclusiveness with regard to the networks corresponds exactly with Boutilier's (1989) 

minimal-model semantic account of inheritance systems. Boutilier points out that this 

inconsistency in labeling links redundant makes it hard to justify the use of the inferential 

distance ordering at all. He provides an alternative set of definitions for preemption that has the 

effect of labelling both A--->C and C--->E as redundant links. Topologically, this labelling is 

more consistent than the definitions of Touretzky (1986) and Horty, et al. (1990), and secures 

stability for the reasoner. Boutilier's reasoner will conclude of both networks (shown in Figures 

2-16 and 2-18) that As are not Es. However, this stability is maintained by keeping redundancy 

as a topological property of a network rather than as a semantic property. 

THAT approach to inheritance reasoning is based upon the inferential distance ordering 

of paths in a network. When conflicting paths arise the most specific path is preferred. 

Boutilier's work points out an inconsistency in THAT approach and patches it to make the 

topological definition of "most specific paths" consistent. New links can be added to the 

networks of both Horty, et al. (1990) and Boutilier (1989). In both systems, some links add new, 

more specific information and other links are considered redundant. The polarity of an added link 

relative to the path it spans determines whether the added link is redundant or more specific. 

Some new links can provide more specific information than was known before the addition, but 

only if the new link represents information that is completely contrary to what was known before 

the addition. If the additional information provided by a new link is not completely contrary to 

what was known, the new link is to be considered redundant. This seems incoherent, particularly 

in the case of Horty, et al. (1990), who explain the virtues of upwards processing, that a node has 

properties independent of the more general nodes in the network. While Boutilier (1989) 

indicates that some links may be "independently justified" he does not indicate how this might be 

encoded in a network for links which are otherwise topologically redundant. 

We are not arguing that redundant paths do not exist, but we do claim that redundancy 
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cannot be identified from the topology of the semantic network (if it could, the graph could hardly 

be claimed to represent a semantic network). Possible cases of redundancy may be identified. 

This is shown by the fact that the reasoners discussed herein do reason around "redundant" paths 

correctly when the network has a friendly interpretation. Consider an unfriendly interpretation of 

Figure 2-16: let A = Honda; B = dirt bike; C = motor vehicle; D = something used to get to work; 

E = something used for transportation. None of these nodes stand for individuals. If we take a 

particular individual, 0, and add the link @--->A, then we are forced to conclude, using THAT 

style of reasoning, that although 0 is a Honda, it is not used to get to work, and we can reach no 

conclusion about whether it is a mode of transportation. We do not insist on the conclusion that 

O is used to get to work, but rather that no conclusion is possible since the topology of the 

network is ambiguous. In this interpretation, the link A--->C contains information which is not in 

the path ABC. This information is lost when reasoning is based on topological considerations 

alone. Without examining the interpretation of the net, it is impossible to know whether or not a 

given path actually is redundant. Topological considerations do not provide enough material to 

make the classification. This consideration will emerge again later in this thesis, but presently we 

consider altemative systems and other critical approaches to THAT style of inheritance. 

2.3. Two Alternative Systems 

In this section we consider two altemative systems of path based inheritance in 

comparison with THAT approach. We avoid characterizing any system as "more intuitive" than 

another, since "intuition" is a conclusion based on semantics, and we will not characterize an 

acceptable semantics for inheritance systems apart from the motivating notion of "typicality." 

Where possible, we point out formal distinctions which cause one system to behave differently 

than another. The systems that we describe here do not fall into the space of 72 distinct 

possibilities that Horty (1989) claims for path based reasoners because the two systems that we 

describe, those of Geffner and Verma (1989) and of Ballim, et al. (1989) are not purely path 

based. The system of Geffner and Verma introduces a derivability relation on top of the notion of 

paths. Work more closely related to THAT family of research classifies the inference 

corresponding to the endpoints of a derived path as an implicit link with the same status as an 

explicit link (thus causing the problems with redundancy and instability that we noted in the last 

section). Lnstead, Geffner and Verma distinguish inferences by referring to them with the 

derivability relation, as we shall explain in more detail shortly. The system of Ballirn, et al. 
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(1989) is removed from THAT sort of path precedence in a different direction. Ballim, et al. 

calculate path precedence from inclination quantifiers associated with each path. While their 

system still bases its preferences upon purely topological considerations, it provides a framework 

into which other considerations can be incorporated. 

23.1. Geffner and Verma 

Geffner and Verma (1989) present an alternative system for defeasible inheritance which 

is based in THAT tradition of path based inheritance, but which differs in defining inheritance 

relative to a derivability relation "I-". We give definitions which are equivalent to those stated by 

Geffner and Verma, and we accompany the definitions with their Prolog translations. 

Definition 4: Derivability for nodes. 
1. If p is a node in a network, then p I- p. 

Though it is not stated by Gef!ker and Verma, a careful reading reveals that to obtain behavior 

expected of the derivability relation, the relation must be reflexive with respect to nodes in a 

hierarchy even though no links exist in the network which connect node to itself. The usual 

method of defining path based inheritance is to consider a link connecting two nodes to be the 

minimum wherewithal required to complete inheritance. 

Definition 5: Derivability for links. 
1. If p--->r is a link in the network, then p I -  r. 

2. If p-/->r is a link in the network, then p I- -r. 

On the other hand, a usual treatment is to consider each direct link contained in a network as 

supporting the inference corresponding to its endpoints. Recall that it is considered a 

methodological advantage of inheritance reasoners over FOL that a network can contain directly 

conflicting links supporting contradictory conclusions without supporting any arbitrary 

conclusion from the basis of contradictory links, unlike a contradiction contained in the deductive 

closure of a theory expressed in FOL. 

Definition 6: Derivability for chains. 
1. If 

a. p I- q, and 

b. q--->r is a link in the network, and 

c. every path K-/-zr with FirstNode(~) = p in the network is defeated by 
the node p, 

then p I- r (chaining occurs). 

2. If 
a. p I-  q, and 
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b. q-1->r is a link in the network, and 

c. every path n--->r with FirstNode(x) = p in the network is defeated by 
the node p, 

then p I- -r (chaining occurs). 

The sense of path used here is exactly the same used earlier, permitted paths in THAT material 

occupy the same place as the derivability relation in Geffner and Verma (1989). Defeat will be 

defined shortly in Definition 7. 

Note that Definition 5 is a special case of Definition 6 in which p is identical with q. 

Thus, the two Prolog relations given in Figure 2-19 explicitly cover the conditions of Definitions 

d e r i v e d  (From, From) . 
d e r i v e d  (From, To) : - 

% A  c h a i n  of  l i n k s  e x i s t s  between t h e  e n d p o i n t s  
c h a i n  (From, Through, To) , 
l i n k  ( L a s t ,  T o ) ,  % q-#->r i s  a  l i n k .  
d e r i v e d  (From, L a s t )  , % p  I -  9 
complement (To,NotTo) , 
% No u n d e f e a t e d ,  c o n f l i c t i n g  p a t h  e x i s t s .  
n o t  ( u n d e f e a t e d  (From, Thru, NotTo) ) . 

u n d e f e a t e d  (From, Thru,  To) : - 
% A p a t h  From--->Thru--->To e x i s t s .  
c h a i n  (From, Thru,  To) , 
%The p a t h  i s  n o t  d e f e a t e d .  
n o t  ( d e f e a t e d  (Defea to r ,F rom,Thru ,To)  ) . 

Figure 2-19: A Prolog Translation of Definitions 4 ,5  and 6. 

4 and 6. The first Prolog relation specifies the base case stated in Definition 4. The second 

relation specifies the general case. The derivability relation holds between the endpoints of a 

chain of links only if a chain with those endpoints exists in the network. The relation link verifies 

that the link q-#->r is in the network, and derived verifies that p I- q. The ordering of these 

relations is different in the Prolog definitions than in Definition 6 for efficiency considerations. 

The variables From, Lust, and To used in the relations shown in Figure 2-19 correspond to p, q, 

and r, respectively, in Definition 6. The last two relations in the Prolog rule, complement and 

not(undefeated), verify that every complementary chain of links between From and To is 

defeated. This relation is verified using a negated existential statement (it is not the case that a 

path exists which is not defeated). 

Definition 7 defines the notion of defeat in terms of the dominance relation. A link or 

compound path x-#->r is defeated when a conflicting link exists whose first node derives some 

node in x. Definition 7 is restated in the two Prolog relations shown 
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Definition 7: Defeat 

Let x be a path whose length is greater than zero. Then x is either a direct link 
of the form P-#->r where p and r are nodes, or x has the form ap-#->r where a is a path 
whose length is greater than or equal to zero and P is a path whose length is strictly 
greater than zero. 

A path P-#->r is defeated by a node n if w dominates P and n I -  w. 

d e f e a t e d  ( N ,  From, ChainJo)  : - 
dominates  ( SomeNode, From, Chain,  To) , 
d e r i v e d  ( N ,  SomeNode) . 

defeated(N,From,  [ P I A t h l , T o )  :- 
d e f e a t e d  ( N ,  P ,Ath ,  To) 

Figure 2-20: The Definition of Defeat in Prolog. 

in Figure 2-20. The first relation is a straightforward translation of the definjtion for the cases in 

which P is a single node and in which the length of a is zero. The second rule stipulates that a 

chain of links is defeated ([PIAth]) if a suffixed constituent chain (Ath, which corresponds to P) is 

defeated; this is the case in which a is greater than zero. 

Definition 8: Dominance 
1. A path n-/->r is dominated by a link p--->r if p I- FirstNode(x). 

2. Symmetrically, a path x--->r is dominated by a link p-/->r if p I- FirstNode(x). 
In either case, it is also said that the path is dominated by the node p. 

dominates  (Node, Fromf Chain,  To) : - 
complement (To, NotTo) , 
l i n k  (Node, NotTo) , 
d e r i v e d  (Node, From) . 
Figure 2-21: The Definition of Dominance Stated in Prolog. 

A translation of the definition of dominance as a Prolog relation is shown in Figure 2-21. 

A difference in these definitions and those of Horty, et al. (1990) is that the inferences 

sanctioned by the network are those derived from the network using the derivability relation, 

rather than those which correspond to the endpoints of valid paths. In THAT family networks, 

we can identify a continuum of pathhood: the links in the net, which are explicitly encoded; 

paths, which are a subset of the generalized paths (chains of links) through the network; and 

permitted paths, a subset of the paths. Within the system just defined there are two additional 

graduations: nodes, as mentioned in the definitions; links as in THAT family; paths, also as in 

THAT family; the binary derivability relation, corresponding to permitted paths; and certified 

paths. A certified path through a network is just a path which is not defeated. The derivability 

relation always holds between the endpoints of a certified path. The derivability relation 
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introduces a finer graduation because in some cases the definitions allow us to conclude that the 

derivability relation between its endpoints of some defeated paths also holds. An example taken 

from Gef ie r  and Verma (1989) may clarify how such a derivation can hold. 

Tweety 0 

Figure 2-22: Certified Paths vs. Derivability. 

In Figure 2-22 from Geffner and Verma (1989), consider the path 

Tweety--->penguin--->bird--->thing-/->fly (or even the path Tweety--->bird--->thing-/->fly, 

which is considered redundant with respect to that path). Figure 2-23 shows a Prolog session in 

which queries are made using the above relations and a translation of the network given in Figure 

2-22. We want to know whether Tweety I- -fly and whether the path sanctioning this derivation 

is certified. Definition 6 divides this question into constituent questions. Clearly, Tweety I- thing, 

since that derivation involves no canceled links, and thing -I-> fly is a link in the network. In 

Figure 2-23, we see that the relation, derived(tweety,thing) holds. The second part of the question 

addresses whether there is any path from Tweety to fly which is not defeated. We invoked the 

relation chain in the Prolog session shown in Figure 2-23 with a variable as an argument so that 

we could locate all of the paths between Tweety and fly. Two paths exist, the one through 
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penguin and bird, and the topologically redundant path through bird. No undefeated path exists 

since paths containing the link bird--->fly (the only paths which could conflict) are defeated by 

the node penguin (Tweety--->bird--->fly is defeated because a consequence of Tweety, penguin, 

defeats bird--->fly). So, the derivation is permitted using the path 

Tweety--->penguin--->bird--->thing-/->fly: Tweety I -  -fly. However, in the same way that the 

node penguin defeats bird--->fly, the node bird defeats the link thing-/->fly. The last three Prolog 

rule invocations shown in Figure 2-23 show that the derivation relation holds even though the 

relevant path is defeated. This means that the derivation between the endpoints of the path is 

sanctioned, but the path itself is not a certified path in the network. 

I ? -  d e r i v e d  ( t w e e t y ,  t h i n g )  . 
Yes 

I ?- c h a i n  ( t w e e t y ,  X, f l y )  . 
X = [ p e n g u i n ,  b i r d ]  ? ; 

X = [ b i r d ]  ? ; 

no 
I ?- d e f e a t e d ( B y ,  t w e e t y ,  [ p e n g u i n ,  b i r d ] ,  f l y )  . 
By = p e n g u i n  ? ; 

no 
I ?-  d e f e a t e d ( B y ,  t w e e t y ,  [ b i r d ] ,  f l y )  . 
By = p e n g u i n  ? ; 

no 
I ?- d e r i v e d  ( t w e e t y ,  n o t  ( f l y )  ) . 
Yes 

I ?- d e f e a t e d  (By, t w e e t y ,  [ p e n g u i n ,  b i r d ,  t h i n g ]  , n o t  ( f l y )  ) . 
By = b i r d  ? ; 

no 
I ?-  d e f e a t e d  (By, t w e e t y ,  [ b i r d ,  t h i n g ] ,  n o t  ( f l y )  ) . 
By = b i r d  ? ; 

no 

Figure 2-23: A Prolog Session. 

Though the derivability relation can exist between the endpoints of a defeated path, when 

this actually occurs there is some other undefeated path for which the relation holds as well. To 

understand why, suppose that some complex path is defeated and the derivability relation holds 
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between its endpoints, but no other path exists between the same endpoints. For the network we 

used in Figure 2-22 and the discussion in the last paragraph, we suppose that we can remove the 

link between penguin and fly and still obtain the inference that tweety does not fly. The resulting 

network is given in Figure 2-24. Because no other paths exist, there is no other path to defeat the 

Tweety 0 

Figure 2-24: Certified Paths vs. Derivability. 

defeating path. In the example, the link between bird and fly forms the basis of the defeating 

path. But, that means that the defeating path constitutes an undefeated conflicting path between 

the endpoints of the path originally under consideration (the defeated path). In the network 

shown in Figure 2-24, the defeated , path . is one ending with the link bird-/->thing. However, if 

this is the case then by the definition of chaining the derivability relation fails to hold between the 

endpoints of the defeated path, and this failure contradicts the assumption that we made at the 

outset. This proves5 that the derivability relation is closely tied to the existence of some 

corresponding certified path. For the example given in Figure 2-24 this means that we cannot 

conclude that tweety does not fly. But, it is interesting that the derivability relation can be proven 

with respect to some defeated path relying on the certified path only indirectly. 

S ~ e  make a different argumenL but the result corresponds to Geffner and Verma's (1989) correspondence theorem. 
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Indirection is incorporated into the definitions and allows defeat to cascade across paths. 

In discussing Figure 2-22 we noted that the link bird--->fly is defeated, but this link is itself the 

cause of the defeat of the link thing-/->fly. Another interesting consequence of the definitions 

arises in networks that contain explicit inconsistencies. Given an inconsistent network { A--->B, 

A-/->B}, for instance, both links are derivable, even though both links are defeated by the node 

A, as can be seen in the Prolog session shown in Figure 2-25. In THAT work which we described 

I ? -  d e r i v e d ( a , X )  . 

no 
I ? -  d e f e a t e d  (By, a ,  [ I ,  n o t  ( b )  ) . 

no 
I ?- l i s t i n g  ( l i n k )  . 
l i n k  ( a ,  b )  . 
l i n k  ( a ,  n o t  ( b )  ) . 
Yes 

Figure 2-25: An Inconsistent Network. 

earlier, the definitions label both links as permitted paths. Since permitted paths in THAT family 

of inheritance sanctions inferences corresponding to the endpoints of the paths, permitted paths 

correspond to the derivability relation. So, both THAT family and Geffner and Verma sanction 

the inconsistent inferences simultaneously. But, in the system outlined by Geffner and Verma we 

can label the inconsistent links, "defeated" because of the extra graduations in classifying chains 

of links. The links are not mutually preemptive under the definitions provided by Horty, et al. 

(1990). 

The specification of defeat and the rippling property associated with it imbue the reasoner 

defined by Geffner and Vema with acute instability. 
We have chosen to reject cumulativity [stability]. Indeed, we are inclined to believe that 

cumulativity is not necessarily a property of 'correct' defeasible inference but a property about 
belief dynamics, namely a 'rational' policy of belief revision in the light of new information. 
(Geffner and Verma, 1989, p.10) 
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Gefher and Verma continue, pointing out that in some cases it seems appropriate to preserve 

derivability with the addition of "redundant" and even new information, and in other cases this is 

inappropriate. What Geffner and Verma see as distinguishing these cases is not clear, however, it 

is something other than a topological consideration. This facet of the system presented by 

Gefher and Verma, in distinction to the work more closely aligned with THAT paradigm, 

motivate its inclusion in the present discussion. 

23.2. Link Arithmetic 

Ballim, et al. (1989) present yet another approach to path based inheritance, and it is 

representative of the approach to path construction based on link arithmetic. Link arithmetic is 

the association of numeric values with links and the computation of values for the chaining of 

adjoining links. Additional rules impose a preference ordering based on the certainty values thus 

associated with the composite links. In the abstract, a link arithmetic approach is not based on the 

topology of paths, since the preference of one path over another is determined by an ordering of 

the certainty factors associated with each inference. The arithmetic for determining those 

certainty factors does not have to be guided by topological considerations. However, the system 

of Ballim, et al. (1989) is defined so that the arithmetic respects topological considerations. 

Ballim, et al. (1989) call the relationship that holds between the endpoints of links and all 

other valid paths an effective relationship. Associated with each effective relationship (ER) is an 

inclination qualifier or leaning which indicates the relative leaning we have towards accepting a 

given ER. Links in a net are all assigned inclination qualifiers of zero, and the inclination 

qualifiers for ERs on complex paths are derived from the link basis. Preference is given to paths 

whose ERs have smaller inclination qualifiers, and since no value smaller than zero can arise, all 

links in a network have equal preference, just as in THAT family and Geffner and Verma (1989). 

Ballim, et al. define an arithmetic for combining paths and for giving them a preference ordering. 

This arithmetic encodes topological considerations like preferring shorter paths over longer paths, 

and paths of strict links over paths mixed with defeasible links. 

Rules are given for constructing complex ERs. There is a set of rules rather than a single 

rule because Ballirn, et al. include both strict and defeasible links in their nets, and the two sorts 

of links are treated as fundamentally different. The combination of different sorts requires 

different rules. The heterogeneous system addresses Brachman's criticisms that defeasible nets 
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cannot represent definitions of composite concepts (cf. Brachman, (1983, 1985)). Horty and 

Thomason (1988) have also addressed this criticism. A link or ER can be positive or negative, 

strict or defeasible. Rules govern the computation of inclination qualifiers associated with 

various combinations. Some combinations, like the chaining of any link after a negative (strict or 

defeasible) link, are not permitted. For those combinations that are allowed, the leaning 

associated with the ER for the combined path is taken as the maximum of the leanings of the 

path's constituents, or in some cases, that same maximum value plus some constant. When the 

combination involves any sort of link followed by a strict link, the constant is zero; if it involves a 

strict link followed by a defeasible link, the constant is one; and if two defeasible links are 

combined the constant is two. Since preference is given to ERs with smaller inclination 

qualifiers, the net effect is that an ER for a complex path has a greater inclination qualifier (less 

inclination) than either of its constituents. 

An additional set of rules over the different combinations of paths is designed to state 

relationships among multiple ERs (multiple paths between endpoints). The two general 

possibilities are specialization, in which two ERs have the same polarity, and conflict, in which 

two ERs have opposite polarity. A final set of rules imposes a preference ordering on ERs. 

Invalidation rules eliminate some conflicting ERs, and precedence rules order paths by increasing 

inclination qualifiers. As the preference order on ERs is a partial ordering and two ERs may have 

equal leanings, the theory stated by Ballim, et al. (1989) is a sort of skeptical reasoner. Faced 

with two ERs with equal inclination qualifiers the reasoner aborts under the recognition of 

ambiguity. 

Without enumerating the rules in detail, we can still see interesting features in this system. 

First of all, the approach of Ballim, et al. reasons over nets that mix both strict and defeasible 

links. Horty and Thomason (1988) present an alternative approach to mixed inheritance, but their 

presentation is squarely path based. The system of Ballim, et al., is different because of its link 

arithmetic. Ballim, et al. (1989) do not attempt to argue that the particular set of arithmetic 

functions provided in their tables of rules are the most appropriate functions. However, the 

behavior induced by the link arithmetic rules in the present system agrees with the heterogeneous 

system of Horty and Thomason on at least one point. Horty and Thomason (1988) argue: 
In the context of defeasible networks, it makes good sense to say that direct information can be 

camed only by direct links: any compound path represents an argument that can itself be 
undermined. In the context of mixed nets, however, certain kinds of compound paths can 
legitimately be thought to carry direct information-namely, compound paths consisting of a 
single defeasible link followed by a smct segment of any length." (p.430) 
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In prefering ERs with smaller leanings, and given the particular set of functions for path 

combination, Ballim, et al. (1989) also indicate a preference for the same form of heterogeneous 

path described by Horty and Thomason. It is interesting that the path described is prefered in 

both systems to a path which appears topologically equivalent, in which a strict segment of any 

length is followed by a single defeasible link. 

We also note that an ER is very much like the derivability relation of Geffner and Verma 

(1989), in that it is a relation between the endpoints of a path. Nonetheless, because of the 

specification of path precedence in terms of simple link arithmetic we obtain a different sort of 

instability from that advocated by Geffner and Verma. We refer to Figure 2-26 for our 

explanation. In Figure 2-26 the dark arrows represent strict links, and the light arrows represent 

Figure 2-26: An Ambiguous Net with Both Strict and Defeasible Links. 

defeasible links. The rules for combining ERs stipulate that the leaning associated with every 

link is zero. Applying those rules, we determine that there are two conflicting ERs between A 

and F, and both have the inclination qualifier 7. Hence the net is ambiguous. However, if 

"redundant" links are added for the ERs between B and D and D and F, respectively, we obtain 

the network shown in Figure 2-27. Even if the leaning on each of the new links is not specified as 

Figure 2-27: Instability: An Ambiguous Net with Redundant Links Added. 

zero, but as 2 (which corresponds to the leaning associated with the ER derived from both BCD 

and DEF according to procedural application of the rules), we are able to construct a path ABDF 

whose ER is 5. The network depicted in Figure 2-27 is no longer ambiguous because the ER 

whose leaning is 5 is prefered to the ER for AGHJIF. The addition of topologically redundant 
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links to a network causes the reasoner to make different inferences from the network; this is 

unstable behavior. 

The instability lies in the link arithmetic which makes the theory interesting. Note that 

the theory is not a semantic account of inheritance; the leanings assigned to ERs, even to links, 

have nothing to do with the probabilities that given links represent factual information. Instead, 

leanings encode information about the number of links in a given chain. The more links the 

larger the value of the inclination qualifier. Examining modified nets with redundant links added, 

we can construct shorter chains between the same endpoints and, hence, derive smaller leanings. 

Using link arithmetic is a promising approach, because if semantic information is encoded in 

leanings rather than merely topological information, then there is a clear way to identify 

semantically redundant links from links that are merely topologically redundant. 

2.4. Summary 

This chapter has presented three systems of path based inheritance, pointing out the 

syntactic flavor of the systems. They are all topologically based and lacking an associated 

semantics. Two of the systems have been reformulated as logic programs (the third system has 

already been implemented in Prolog by its authors) to verify assertions about the derivability of 

conclusions in both systems. THAT paradigm defines the field, but we react against its position 

on the primacy of topological considerations in inheritance reasoning and the problem of 

redundant links. Geffner and Verma take a different position from THAT group on the property 

of stability, a property which is related to the status of redundant links within an inheritance 

reasoning system. They reject the view that the property is an essential one for inheritance 

reasoners to have in all cases, though Geffner and Verma define their system so that it has the 

property in some cases. Ballim, et al. go even further in allowing instability into their system. 

Strong arguments for stability have been put forward (Boutilier, 1989). but these have been based 

on the desire to preserve the inferential distance ordering. The inferential distance ordering is a 

topological ordering which overlooks the potential for topologically redundant links to contain 

non-redundant information. We feel that since topologically redundant links can be non- 

redundant in terms of the information they represent, it is sensible for a reasoner to obtain 

different results when those links are added. Topological instability in a system designed with the 

understanding that a topologically redundant link is not necessarily semantically redundant, is 
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therefore correct: instability means that the system reaches a different set of conclusions in the 

light of new information. 

Touretzky (1986) proposed the inferential distance ordering to correct the problem he saw 

with shortest path reasoning. Recall the inheritance network in Figure 2-1, with which we began 

this chapter. Without the link Clyde--->Elephant, a shortest path reasoner will reach the correct 

conclusion that Clyde is not gray, but with that topologically redundant link there is another path 

of the same length which sanctions the inference that Clyde is in fact gray. It is indeterminate 

which path will be found first, and therefore there is no way to know what the conclusion will be 

about Clyde's grayness. Semantically, for the network whose interpretation is about Clyde, we 

want to conclude that Clyde is not gray. But for the interpretation that we provided in Section 2.2 

the correct conclusion was ambiguous because the topologically redundant link camed 

information not contained in the other path. If it is known, based on the interpretation of the net 

that topologically redundant links can contain new information, then the counterexample to 

shortest path reasoning loses its force. This is significant because the computational complexity 

of shortest path reasoning is a linear function of the number of nodes in the directed acyclic graph 

that constitutes the network, but Touretzky's (1986) system is NP-Hard, as is the system of 

Geffner and Verma (1989) (Selman and Levesque, 1989). The de-coupled, upward processing, 

restricted skeptical reasoner of Horty, et al. (1990) is tractable (Selman and Levesque, 1989), and 

still maintains the inferential distance ordering, but maintaining the ordering is somewhat 

inconsistent in this case, since, as we have argued, its being de-coupled allows the possibility for 

topologically redundant links to contain new information. These considerations reinforce our 

intuition that shortest path reasoning is still useful. In the following chapters we provide an 

application for inheritance reasoning in which a shortest path mechanism is extremely useful. 



Chapter 3 

Head Driven Phrase Structure Grammars 

In the next chapter we present a cyclic inheritance network which captures most of the 

conceptual structure of Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1987). 

We describe the content of nodes and the semantics of links which comprise this inheritance 

hierarchy. Further, we specify the nature of the path-based reasoning required by HPSG over the 

network, reasoning which is not confounded by the presence of a cycle. 

Before describing our characterization of HPSG as an inheritance hierarchy, we first 

highlight some of the distinctive features of this unification-based grammar formalism (Shieber, 

1986) for representing the structure of natural languages. That is the task of the present chapter. 

HPSG is a grammar formalism that incorporates aspects of traditional lexical grammar 

formalisms like categorial grammar (Oehrle, Bach and Wheeler, 1988) along with some aspects 

of contemporary linguistic theories like generalized phrase structure grammar (Gazdar et al, 

1985). As a lexical formalism HPSG places reduced emphasis on grammar rules and increased 

emphasis on the lexicon. The "rules1' state in very schematic terms how units of discourse may 

combine to form more complex units (or in a top down analysis, how complex units of discourse 

may be decomposed into their constituents). Rather than writing a rule of the form, S --> NP VP, 

we talk of more abstract entities like "heads" and "complements". For example, the head of a 

sentence is a VP, and the complement is the NP subject; the head of a VP is a verb; the head of a 

NP  is a noun, and the complement is a determiner. Rules for string rewriting are replaced by 

information structures called signs which are encoded as attribute-value matrices. Signs can have 

complex internal structure, including a daughter feature whose value is also a sign. Phrasal signs 

have head and complement daughters. Using the abstraction of heads and complements, a single 

schematic rule which states a structural relationship between a head daughter and the related 

complement daughters of a phrasal structure can be used to characterize the grammaticality of a 

number of constructions. For example, the string rewriting rules S --> NP VP and NP --> Det 

39 
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Nom can both be replaced by a single sign in which S or NP corresponds to the sign (the mother), 

NP or Det corresponds to the complement daughter, and VP or Nom corresponds to the head 

daughter. The mother sign and its daughters are not marked for specific category information, but 

do encode constraints on other features of lexical signs and phrasal signs marked with those 

categories to allow particular combinations. 

While HPSG requires a number of grammar rules to cover a substantial portion of 

English, this number is still less than ten (cf. the context-free covering grammar for the 

transformational grammar system developed by the MITRE corporation in the 60s had 550 

grammar rules (Grishrnan, 1986)). Other unification based formalisms, like Tree Unification 

Grammar (Popowich, 1989). require only one rule. The information abstracted away from the 

rules (the labeling of an object as "N" or "Det") is relocated to the lexicon. Universal principles6 

are also used to state additional constraints on the sharing of information between a mother sign 

and its daughters. For instance, the Head Feature Principle states that the head features of a 

mother sign (its part of speech, among other things) are identical to the head features of its head 

daughters. The major category of a sentence is "verb" since that is the major category of its head 

daughter. Likewise, a VP obtains its major category from its head daughter, a lexical entry 

marked as a verb. Thus, the schematic rules and principles direct the inheritance of information 

from the lexicon to more complex expressions. Another interesting aspect of unification 

grammar formalisms like HPSG is that they are monosnatal in their representational ontology: 

lexical entries, rules, and general principles are all stated within a single level of formal 

representation. 

3.1. Signs 

The fundamental unit of discourse in HPSG is the sign. Signs are represented with 

attribute value matrices (AVMs) in a simple frame representation language. The attributes and 

values of a sign contain phonological, syntactic and semantic information of linguistic 

constituents. For our discussion, we need consider only a portion of these features. 

The top level attributes of signs are PHON, SYN and SEM which indicate phonology, 

syntax, and semantics. Signs are partitioned into phrasal signs and lexical signs. Phrasal signs 

6 ~ o l l ~ d  and Sag (1987) claim that these hold for all natural languages which can be represented using HPSG. 
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are distinguished from lexical signs by a top level feature called DTRS which contains 

constituency information; lexical signs do not have this feature. The value of the DTRS feature is 

called a Headed-Structure, though sometimes phrasal signs are themselves referred to as headed- 

structures as well. HPSG uses the DTRS feature of phrasal signs to represent the constituent 

structure of a mother s i p  in terms of its head daughter (HEAD-DTR) and its complements 

(COMP-DTRS). There are other types of daughters like adjuncts and filler daughters which need 

not concern us here. 

SYN values are classified into LOC and NONLOCAL features. Important LOC features 

are HEAD, SUBCAT and LEX. HEAD features record syntactic information usually associated 

with words, information like major category in linguistic classification, form (relative to 

category), case, aspects of agreement, and constraints on adjuncts. SUBCAT is a list of other 

signs, in decreasing order of obliqueness, with which the mother sign needs to combine in order 

to be saturated with respect to its classification in a subsumption hierarchy. A phrasal sign is 

saturated if its SUBCAT list is empty. "Obliqueness" refers to an ordering imposed on the 

constituents of a sentence; "indirect object, direct object, subject," is a listing of constituents in 

decreasing order of obliqueness (Pollard and Sag, 1987;p.71). Later we will discuss a 

grammatical principle which constrains the sharing of information between the SUBCAT and 

COMP-DTRS list of a mother sign and its HEAD-DTR. For now, we indicate that lexical entries 

within a particular classification (like major category) are marked to subcategorize for signs that 

contain particular information. A noun subcategorizes for a determiner. The phrasal sign for a 

NP is saturated if it contains the requisite information about its noun head daughter and its 

determiner complement. In general terms, a phrase structure categorized by a set of head features 

is a complete structure when its constituent structure represents each of the signs mentioned on 

the SUBCAT list of the HEAD-DTR of the mother sign, subject to other constraints imposed by 

the grammar principles to be described shortly. LEX is a binary valued feature which correlates 

but does not coincide with the distinction between lexical and phrasal signs (Pollard and Sag, 

1987, p.73). 

Using these features, we may construct a sign to describe the lexical entry for "did" as in 

Figure 3-1. Note that we have abbreviated this lexical sign by removing the NONLOCAL and 

the SEM attributes. The appearance of VP[BSE] and NP[NOM] in the SUBCAT list indicates 

that "did" must combine with a base-form verb phrase and a nominative noun phrase to produce a 
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- did 
v 

FORM FIN 

- 

I - 
SUBCAT <VP[BSEl, NPINOMl> 

- 

Figure 3-1: Lexical Entry for "did". 

NOM " I 

Figure 3-2: Sign Abbreviations. 

complete (saturated) constituent. VP[BSE] and NP[NOM] are actually abbreviations for the signs 

introduced in Figure 3-2 (Pollard and Sag, 1987, p.69). A similar sign can be used to define a 

lexical entry for the transitive verb, "kissed". The only differences for the features that we have 

mentioned here is that VP[BSE] would be replaced by NP, and, of course, the new lexical sign 

would have a different phonology. In our discussion, PHON represents just orthography. Signs 

can be ordered by relative informedness (subsumption) into a lattice structure such that a given 

abbreviation stands for the class of signs represented by a node in this hierarchy and the class of 

all subsumed signs. This ordering enables a formal specification of lexical types. 
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3.2. Lexical Types 

A herarchy of lexical types allows the specification of complex types in terms of less 

complex types higher in the hierarchy. We say that a sign A is more complex than a sign B if A is 

subsumed by B (i.e., A is more informed than B). The use of complex types eliminates 

considerable redundancy from the lexicon since individual lexical entries can be characterized by 

inheritance over elements from the lexical hierarchy rather than by their complete (explicit) 

specifications as signs. 

Following Pollard and Sag (1987, $8), the lexical type sign is the root of lexical hierarchy. 

This type has two subtypes, lexical-sign and phrasal-sign. Lexical-signs are either 

major-lexical-signs or minor-lexical-signs, with the former partitioned on either the value of their 

HEAD features (i.e., noun, adjective, verb or preposition) or on the value of their SUBCAT 

features (i.e., saturated or unsaturated). One can define a subtype like v-trans in terms of the 

types verb and nonempry which would result in v-nuns inheriting all of the features specified in 

those two types and all of the types used to define verb and nonernpfy. A particular lexical entry 

like walk could then be defined in terms of v-tram, also inheriting supertype information. 

Inheritance is facilitated by two types of path based reasoning (cf., Touretzky, Horty and 

Thomason, 1987) over this multiple inheritance hierarchy, normal (shortest path reasoning) and 

complete (fully skeptical reasoning) (Shieber, 1986, Flickinger, 1987). 

Lexical types are not the only means of structuring information in the lexicon. 

Dependencies between two lexical entries (or lexical types) can also be stated with the use of 

lexical (redundancy) rules. We will not be concerned with these rules here, as there is some 

question of their necessity (Flickinger, personal communication). 

3.3. Grammar Rules and Principles 

HPSG, as a linguistic theory, is a discussion about constraints on the combination of 

signs. A basic tenet of HPSG is that the HEAD-DTR of a phrasal sign is itself a sign. Syntactic 

and semantic information is shared between those two signs, as well as among the other 

complement. of the HEAD-DTR, according to the constraints imposed by the few grammar rules 

and the universal and language specific principles. The rules and principles are expressed as 

information structures-they are stated in terms of signs just as are lexical entries. 
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33.1.  Principles 

The grammatical principles independently constrain information contained in signs. The 

Head Feature Principle restricts the sharing of HEAD information between a mother sign and its 

HEAD-DTR. The Subcategorization Principle mediates SUBCAT information between a mother 

sign and its HEAD-DTR in terms of the mother sign's COMP-DTRS. The Semantics Principle 

defines the sharing of SEM information among a mother sign and all of its daughters, as does the 

English Constituent Ordering Principle for PHON information. The Adjuncts Principle, which 

plays a key role in the treatment of modifiers, actually violates the formal language used within 

HPSG since it imposes a relational rather than a functional constraint (Pollard and Sag, 1987, 

p.163), and for this reason we will not consider it any further at this time. 

Figure 3-3: Head Feature Principle. 

The Head Feature Principle is illustrated in Figure 3-3. Structure sharing of values among 

features is denoted by a common index. The signs shown in Figure 3-3 follow the abbreviatory 

convention adopted by Pollard and Sag (1987) which allows reference to values inside nested 

AVMs by writing the paths of attribute names (separated by vertical bars) which lead to these 

values. The Subcategorization and Constituent Ordering Principles are abbreviated in Figure 3-4 

as signs without the relative pseudocomplement operator (=>). The Subcategorization Principle 

- - 

PHON order(@ ,Q ) 

pz2s q 
- English Constituent - 

Ordering Principle 

append@ ,Q 
COMP-DTRS O I 

- 2 

Subcategorization Principle 

Figure 3-4: Subcategorization and Constituent Ordering Principles. 

enforces the following constraint on mother phrasal signs: the first elements (the first elements 
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are the most oblique elements) of the SUBCAT list of the HEAD-DTR of the mother sign are also 

the COMP-DTRS of the mother sign; the SUBCAT list of the mother sign takes its value from 

everythmg else on the SUBCAT list of the HEAD-DTR (the least oblique elements). Let A, B, 

C, and D be signs. A mother sign whose SUBCAT list has the value <C, D> and whose COAIIP- 

DTRS list has the value <A, B> will also have a HEAD-DTR whose SUBCAT list has the value 

<A, B, C, D>. 

Suppose we have a phrasal sign that is consistent with respect to the Subcategorization 

Principle. Let that phrasal sign be the mother sign, and let the lexical entry for "kissed", 

mentioned earlier, be the sign that fills in the value of the HEAD-DTR of the mother s i p .  Also, 

suppose that the phrasal sign for "the cat" is the only member of the mother sign's COW-DmS 

list. The mother sign constitutes a partial analysis of the sentence, "Mary lussed the cat." The 

specification of the value of the SUBCAT list of the HEAD-DTR and the COMP-DTRS list of 

the mother sign taken in conjunction with the Subcategorization Principle provides enough 

information to determine that the mother sign still subcategorizes for a constituent structure. The 

NP[Nom] that is the least oblique element (the subject) of the SUBCAT list on the lexical entry 

for "kissed" is the value of the SUBCAT list of the mother sign. The complete HPSG analysis of 

the sentence, "Mary kissed the cat," will have the mother sign that we just described as its HEAD- 

DTR. The mother sign for "Mary kissed the cat," (the grandmother sign) will have the mother 

sign for "kissed" as its HEAD-DTR, and the COMP-DTRS of the grandmother sign will contain 

the lexical sign for "Mary" as its single element. The SUBCAT list of the grandmother sign will 

be empty, as constrained by the Subcategorization Principle. 

Figure 3-5 diagrams the structure of the analysis of the sentence, "Mary kissed the cat." 

Each node in the diagram contains some of the features of the sign represented by that node. The 

entire diagram corresponds to the grandmother sign for "Mary kissed the cat." Dark arrows point 

to the sign in the value of a HEAD-DTR feature, and light arrows point to an element on a 

COMP-DTRS list. The values of some head features for each sign are shown (MAJ, FORM, 

INV, AUX, NUM, PER, GEN). Elements of SUBCAT lists are represented by the same selection 

of values for head features that mark nodes. The empty subcat list is indicated with "ow. Figure 

3-5 illustrates the assignment of values discussed in the last paragraph. The constituent structure 

of "the cat" is not depicted. 
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PHON 'Mary kissed h e  cat' 
HEAD [v, minus, minus, [sng, 3rd, fern]] 
SUBCAT o 

PHON 'Mary' PHON 'kissed the cat' 
HEAD [n, minus, nom, [sng, 3rd, fern]] HEAD [v, minus, minus, [sng, 3rd, fem]] 
SUBCAT o SUBCAT c [n, minus, nom, [sng, 3rd, fem]] > 

PHON 'the cat' PHON 'kissed' 
HEAD [n, minus, obj, [sng, 3rd11 HEAD [v, minus, minus, [sng, 3rd, femll 
SUBCAT o SUBCAT < [n, minus, obj, [sng, 3rdIl , 

[n, minus, nom, [sng, 3rd, fern]] > 

Figure 3-5: Constituent Structure of "Mary kissed the cat." 

The Constituent Ordering Principle articulates the constraints between constituent 

structures of a phrasal sign and the phonology of the phrasal structure. In Figure 3-4 we see that 

this constraint is stated in terms of an as yet undefined function called "order". Actually, we did 

indicate some of the constraints imposed by order in the introduction to this thesis. Informally, 

the phonology of a mother sign can be defined as the combination of the phonologies of the 

constituent daughters (again, we consider only the HEAD-DTR and COW-DTRS). If the 

HEAD-DTR is lexical, the phonology of the HEAD-DTR will precede the phonologies of the 

COW-DTRS in the combined phonology of the mother sign, just as "kissed" precedes "the cat" 

in the predicate of the sentence "Mary kissed the cat." If the HEAD-DTR is not lexical, then the 

phonologies of the COMP-DTRS will precede the phonology of the HEAD-DTR, as "Mary" 

precedes the phrase, "kissed the c a ~ "  These two rules are the basis of the definition of order. 

Some controversy surrounds the exact statement of the principle within the formal structure of 

HPSG, but this debate is outside the scope of this thesis. A more complete formal discussion can 

be found in Pollard and Sag (1987). 
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All of the universal principles are assumed to apply in conjunction with any grammar 

rule. In the theory, this is achieved through the use of the relative pseudocomplement operator. 

The details of this operator need not concern us yet, but two example applications of the operator 

(=>) are shown in Figure 3-6. The net effect of the operator is that the principles all unify with 

each other into a single relation between a relatively vacuous headed structure (its only 

specification is that it is a phrasal sign) antecedent and a more fully specified consequent (Pollard 

and Sag, 1987). The resulting sign contains all of the constraints imposed by each of the 

principles. The Head Feature Principle as illustrated in Figure 3-3 includes the use of the relative 

pseudocomplement operator. In Figure 3-4 we omitted the operator and gave only signs produced 

by the mapping. Any sign which satisfies the constraints stated in the principles will be unifiable 

with the signs depicted in Figure 3-4. Furthermore, any sign unifiable with the information 

structure for a rule must also be unifiable with these structures derived from the mapping to be 

considered valid. We take advantage of the mapping provided by the operator in our 

implementation of KPSG. 

- 

Fact One 

Fact Two 
- 

Fact One 

Fact Two 

I Fact One 

Figure 3-6: Two Example Applications of the Relative Pseudocomplement Operator. 

33.2. Rules 

The "rules" of HPSG constrain the structure of constituency. The first rule illustrated in 

Figure 3-7 is responsible for combining heads with their final complement (i.e., their "subject"). 

Rule One describes the structure of a saturated phrasal sign (it has an empty SUBCAT list) that 

has a non lexical HEAD-DTR. The phrasal sign for "kissed John" is an example of a non lexical 

sign that can fill the value of a HEAD-DTR for such a saturated phrasal sign. The saturated 



Head Driven Phrase Structure Grammars 48 
phrasal sign also has a single complement daughter which, we know from the Subcategorization 

Principle, is the least oblique complement, the subject of the sentence. The notation <[I> 
indicates a single element list whose element can be any sign. The second rule is for combining 

lexical heads with all but their final complements. Rule Two describes the structure of a phrasal 

- 
Rule One 

L LEX 

Rule Two 

L LEX +i 
- 

Rule Three 

Figure 3-7: Grammar Rules. 

sign for an unsaturated constituent of a sentence. The sign for the rule has a single element on its 

SUBCAT list. When the rule is affixed as the HEAD-DTR of some mother sign the 

Subcategorization Principle dictates that this element of the SUBCAT list will be the single 

element on the COMP-DTRS list of the mother. That complement daughter is the final 

complement. This rule thus describes structures like "kissed John," which have yet to combine 

with a final complement. The HEAD-DTR is a lexical sign (LEX +), the lexical entry for 

"kissed". The lexical entry for "John" unifies with the more oblique element of the SUBCAT list 

on the lexical entry for "kissed", and the remaining element of the SUBCAT list of the lexical 

sign is the only element of the SUBCAT list of the mother sign. Rule Three coordinates lexical 

heads in inverted constructions in which lexical heads marked INV + (like "did") combine with 

all of their complements including the subject. The third rule represents saturated signs for 
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phrase structures like, "Did Mary Walk?" A fourth rule for treating adjuncts is tentatively put 

forward in (Pollard and Sag, 1987), but as is indicated (p.165), its necessity is uncertain. Due to 

the potential problems with the HPSG treatment of adjuncts, in this discussion we have restricted 

ourselves to the first three grammar rules. However, omitting Rule Four also eliminates 

constructions like, "Mary walks quickly," or "John hssed Mary on the cheek," from our 

discussion as well. 

In Figure 3-8 we include a phrase structure tree for the sentence, "Mary walks." The tree 

is drawn with TreeTool (Baker, et al., 1990), but includes some information that is not related to 

our discussion. Each node represents information contained in some of the values of the 

corresponding mother sign. The first line at each node represents the value of the PHON 

attribute, the second includes some HEAD features, and the third line shows HEAD features of 

the elements on the SUBCAT list of the node. "Mary walks," is an interesting sentence to 

examine, because even though it is just a two word sentence it has virtually the same constituent 

structure as the sentence with a transitive verb, "Mary kissed John." The lowest node is the 

lexical entry for "walks" which is combined with a null COW-DTRS list according to Rule Two, 

as discussed above. The mother sign thus created is non-lexical, and by the Subcategorization 

Principle, it has a most oblique complement remaining on its SUBCAT list, just as the lexical 

sign for "walks" had a single element on its SUBCAT list. That mother sign can stand as the 

value of the HEAD-DTR of a grandmother sign that is consistent with respect to Rule One. In this 

case, the COIvlP-DTRS list is not empty; it takes as its the single element the lexical entry for 

"Mary". The resulting grandmother sign is saturated. Its phonology is appropriate for the 

combination of a non-lexical HEAD-DTR with its complement. Note that a different phonology 

would obtain if we tried to saturate the grandmother sign with the lexical HEAD-DTR for 

"walks", instead. In that case, the phonology of the grandmother sign as dictated by the ordering 

principle would be "Walks Mary." However, that combination is not sanctioned, since Rule One, 

which such a combination invokes, requires that the HEAD-DTR be non-lexical, as was shown in 

Figure 3-7. 

Each of the grammar rules is a sign that is also subject to the informational constraints 

imposed by the grammar principles, as we have mentioned. Since all objects of discourse 

expressed using the formalism (phrase structures, lexical entries, rules, principles) are expressed 

as signs, a natural way to specify the relationships among these objects and to describe the 
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Figure 3-8: A TreeTool Phrase Structure Tree. 
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accumulation and satisfaction of constraints imposed by each object is to arrange them as nodes 

in an inheritance hierarchy beyond the lexical hierarchy. Inheritance reasoning over this 

hierarchy constructs valid HPSG analyses of phrasal structures. The structure of the network so 

constructed and the significance of reasoning over this network are detailed in the next chapter. 

Essentially, an inheritance reasoner which operates over the network is a parser for HPSG. 



Chapter 4 

A non-Trivial Inheritance Network for HPSG 

Inheritance reasoning provides a metaphor for describing work done in A1 just as systems 

dynamics, search, and deductive logic have provided ways of articulating problems in the past. 

This chapter is an analysis, couched in the language of inheritance systems, of the theoretical 

foundations and implementation of Head-Driven Phrase Structure Grammars. It includes an 

analysis of the theoretical underpinnings of HPSG as an instance of a two dimensional multiple 

inheritance hierarchy. The chapter also describes the process of reasoning over this hierarchy. 

An implementation of the network and reasoner is deferred to Chapter 5. The analysis of HPSG 

as an inheritance network is based on an interpretation for "is a" links that is quite different from 

most other approaches to inheritance reasoning. It is different in that the polarity of a link is 

determined dynamically based upon the exact information contained in the nodes at each end. 

The interpretation is based on the relative pseudocomplement operator. The relative 

pseudocomplement of two concepts, as in A=>B, is another concept, C, which consists of 

inherited material, the information in B that is not in A. An advantage of analyzing HPSG as an 

inheritance network in this way is that an inheritance reasoner operating over this network 

constitutes a parser for the formalism. 

HPSG parsers have been written before: Proudian and Pollard (1985) developed a chart 

parser for an early version of the formalism, and a Lisp based parser for the developing formalism 

has been maintained by researchers at Hewlett-Packard (Gawron, et al., l982), Prolog and Lisp 

based chart parsers for later versions of HPSG have been developed by Popowich and Vogel (to 

appear), McFetridge and Cercone (1990), and Franz (forthcoming). The advantage of pursuing a 

parsing strategy for HPSG other than chart parsing is the clarity with which the alternative parser 

might be stated. Once the inheritance network is defined for HPSG, the parser is just a shortest 

path reasoner that operates over the network. Though chart parsing is quite straightforward and 

easy to understand, shortest path reasoning is even easier. 

52 
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In Chapter Two we demonstrated that path based inheritance can be stated concisely in 

Horn clause logic; it remains to be shown whether an inheritance reasoner can be adapted as a 

parser in a way that makes it any better than other approaches to parsing. This chapter attempts to 

address these issues. It is not obvious that inheritance reasoning can be applied, since we have 

already indicated that the network which we will be examining is cyclic, and that traditional 

inheritance reasoners are not equipped to handle all cyclic networks. THAT approach does not 

handle them at all, and Geffner and Verma (1989) handle cyclic networks only if the cycles are 

negative cycles. 

An ovemding motivation for this chapter comes from the urge to make analogies. A 

literature on reasoning and parsing exists already (Porter, 1987, Menzel, 1987, van der Linden, 

1989, Konig, 1989, Evans and Gazdar, 1989, Frisch, 1989). Inheritance reasoning provides 

another form of inference, so it is hopeful that an analogy will hold between parsing and 

inheritance reasoning as well. Indeed, Steels and De Smedt (1983) and Brachrnan and Schmolze 

(1985) have also noticed pans of this analogy, and we discuss their work as well. But, we feel 

that ours is a more complete analysis. We outline the network which underlies HPSG, the 

process of reasoning over the network, and extensions which this approach suggests. For 

example, we are able to use an inheritance based system to control the inheritance of information 

to HPSG representations of unknown words that appear in sentences. In the next chapter, we 

indicate how both the network and reasoner have been implemented in Prolog. We also outline 

the extension to the network to accommodate unknown words, and provide a corresponding 

implementation. 

4.1. Related Analyses 

It is easy to see the relationship between HPSG and frame-based representation 

languages: HPSG is essentially one of them. Steels and De Smedt (1983) present ideas for 

syntactic processing based on frame representations of linguistic objects, in which frames for 

linguistic objects are arranged into a hierarchy. Reasoning over hierarchies created within the 

framework amounts to the classification of objects, either through generalization to find the 

major category of a word, for instance, or through refinement to locate terminal information like 

the spelling of a word. These two processes are discussed in relation to several example frame 

descriptions, though the formal details of the representation (to describe with generality the 
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coverage intended by the representation) and the specification of the reasoning mechanism are 

omitted. That is, Steels and De Smedt note that a reasoning process over the hierarchy created by 

a frame based description of linguistic objects can be used to perform functions like constraint 

verification that are useN to parsing, but they do not give the formal details of such a reasoning 

process, nor do they commit to a general theory of representation. HPSG provides a general 

theory of representation for linguistic knowledge, as we saw in the last chapter. Below, we 

indicate how a network may be abstracted from this theory and detail the reasoning process which 

serves as a parser for the formalism. 

In another frame-based system, Brachman and Schrnolze (1985) also describe the 

application of KL-ONE to parsing. Their system works in unison with RUS, a parser developed 

by Bobrow (1979) to construct parses which represent syntactic and semantic information. A 

subsystem called PSI-KLONE is used to translate the syntactic information provided by RUS to 

concepts represented in KL-ONE. 
The ability to build such interpretations is a test of semantic coherence (if the semantic 

interpreter fails, the fragment is incoherent); the result of the process is passed back to the RUS 
parser. RUS does not need to parse an entire sentence before calling upon PSI-KLONE, 
however, it does impose a certain order upon the fragments it sends: 

1. It first parses enough of a sentence, which is a clause, to find a plausible head verb. 
PSI-KLONE is informed that a clause has  been found with the given head verb and with 
the remaining constituents unspecified. 

2. Next, RUS passes the logical subject of the clause to PSI-KLONE. .If it must parse 
further in order to obtain the logical subject, it does so. Otherwise, it does so without 
further parsing. This strategy of parsing as needed is followed throughout. 

3. The logical object is passed next. 

4. Pre-modifiers of the clause are passed, from right-most to left-most. 

5. Post-modifiers are passed, from left-most to right-most. 

6. Finally, PSI-KLONE is informed that the clause is complete. 
(Brachman and Schmolze, 1985;p.206) 

The process described indicates a head-driven sort of algorithm, though it is not as schematically 

head-driven as is HPSG. "Head-driven" indicates that the parsing algorithm is not concerned 

with left-to-right processing of the sentence, but inside-out parsing in which the most important 

parts (i.e., the heads) of phrase structures are located first, and complements are associated with 

those important parts. Thus, a noun is the head of a noun phrase, and a verb is the head of a 

clause. A head-driven algorithm is one that finds the head first. The system described by 

Brachrnan and Schmolze is much more explicit in referring to objects that can act as heads, rather 

than just referring to heads schematically. However, that is just a comparison between their 



A non-Trivial Inheritance Network for HPSG 55 
representation of grammar and HPSG, not a statement about how we each use the representations 

with inheritance. Brachman and Schmolze express interest only in further semantic classification 

of syntactically identifiable objects. Though they feed this information back to the syntactic 

processor, they do not recognize the potential for a truly integrated system which represents 

semantic information in the same way that it represents syntactic information such that 

inheritance mechanisms can be used to implement both syntactic and semantic classification at 

the same time during parsing. Brachman and Schmolze do describe the syntactic and semantic 

recoat ion processes as executing in parallel, but as distinct processes, without the realization 

that a single process, the process that they use for semantic classification, can do both. All that is 

required is a unified representation formalism and the realization that subsequently only a single 

classification process is required. The representation language is provided by HPSG. Neither 

Steels and De Smedt (1983) nor Brachman and Schmolze (1985) make explicit the fact that 

inheritance reasoning over the hierarchy of descriptors (of both syntactic and semantic 

information) constitutes parsing, and a contribution of this chapter is to make clear that this is the 

case by elucidating the inheritance network which is implicit in the application of HPSG and 

specifying the reasoning algorithm required. Further, we point out how easily the analysis may 

be extended to achieve more robust behavior-the parser is able to construct analyses of many 

words which are not included in the lexicon. 

4.2. HPSG as an Inheritance Network 

Two aspects of Head-Driven Phrase Structure Grammar are of particular interest to us: 

one is its nature as a formal language for expressing a theory of linguistics (i.e., for specifying 

grammar rules, lexical entries, and universal principles), and the other involves a use of that 

formal language to describe a specific grammar which actually makes predictions about linguistic 

phenomena. Both of these views can be captured within the framework of inheritance reasoning. 

We elucidate from HPSG an inheritance network that represents its conceptualization of linguistic 

representation, and we demonstrate how both views of HPSG can be obtained through specific 

sorts of processing over the hierarchy. We describe the peculiar demands that the network 

imposes on inheritance reasoning systems to yield appropriate results. Finally, we indicate the 

relationship between inheritance reasoning and parsing. 

HPSG is a multiple inheritance hierarchy in two dimensions. The first dimension is 



A non-Trivial Inheritance Network for HPSG 56 
definitional. This primitive dimension is used to articulate the structure of signs. The exact 

specifications are outlined by Pollard and Sag (1987). Pollard and Sag also include discussion of 

the inheritance which is at work here. The mode of reasoning executed over these networks, at 

least in the hierarchy of lexical types, is a combination of shortest path and skeptical reasoning. 

This dimension was discussed in the last chapter, and is the focus of a great deal of research in the 

application of inheritance reasoning to natural language understanding (Bouma, 1990, Carpenter, 

1990, Russell, et al., 1990, Fraser and Hudson, 1990). For a description of the reasoning 

processes involved specifically in HPSG we point to the work of Shieber (1986) who speculates 

on the skeptical behavior in the face of inconsistencies, as well as of Flickinger (1985) who 

describes two corresponding modes called normal and complete inheritance. We are concerned in 

the present work with a second dimension of HPSG, its operative hierarchy. While the primitive 

dimension is used to define the structure of signs, the operative dimension relates signs to each 

other. 

4.2.1. Nodes 

Signs are the formal constructs that we use to encode the information relevant to linguistic 

phenomena. HPSG is an interesting formal language because it uses signs both to encode 

information abstracted from lexical items, phrases, and sentences, and to express constraints on 

the combination (or decomposition) of signs. Roughly, to be the sign for a specific sentence, the 

putative sign must unify with the sign that expresses the constraints sanctioned by the theory. It is 

not as simple as this, though, since some of the constraints are expressed through relations 

between signs stated in terms of the relative pseudocomplement operator (=>). This operator will 

be described in detail in the next section. 

We take signs to correspond to nodes in an inheritance hierarchy. This is reasonable, after 

all, since signs are attribute-value matrices-they are information structures-and, inheritance 

networks represent formal encodings7 of conceptual structures. More precisely, the nodes in the 

operative hierarchy of HPSG are the signs which encode the grammar's rules and principles. For 

example, three of the nodes contain the information given in the signs of Figure 3-7, one sign at 

each node. Nodes are complex structures which can contain signs internally, as well. Recall that 

7~asper and Rounds (1986) go so far as to ground these encodings in formal logic. 
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Figure 4-1: Grammar Rules. 

the HEAD-DTR of a phrasal sign is itself a sign and that the value COMP-DTRS feature is a list 

of signs. Nodes can also be lists of signs. 

4.2.2. Links 

HPSG includes several universal grammar principles which are stated using =>. It is the 

semantics of this operator that suggests the application of inheritance reasoning to representing 

HPSG. When this operator is applied to information structures A and B as in, "A => B," it yields 

an information structure, C, the minimal structure whose unification with A is subsumed by B 

(Pollard and Sag, 1987, p.43). If A is at least as informed as B, then C is vacuous (it will unify 

with anyrhmg). If B is more informed than A, then C is the information in B that is not in A. In 

the corresponding inheritance network, A and B are associated with nodes in a network and C is 

the information that is inherited. The arrowheads on links in Figure 4-2 indicate the direction of 

information flow. In Figure 4-2, when it is the case that B contains more information than A, C is 

the information that is inherited. Since the relative pseudocomplement is an operation over a 

certain type of lattice structure in which A v -A = Top is not a theorem, for arbitrary feature 



A non-Trivial Inheritance Network for HPSG 

Figure 4-2: Relative Pseudocomplement and the Operative Hierarchy. 

structures it is possible that C will not be unique, or equivalently, that it will be an infmite 

disjunction even though neither A nor B in the expression A => B contains an infinite disjunction. 

However, Pollard .and Sag point out that this does not arise in their application of the operator. 

Moreover, we are not particularly interested in the inherited object C, in itself. Rather, we are 

concerned with the inheritance of the information in C to nodes above B in the hierarchy. The 

node immediately above B is A, so we are interested in the way the information in the 

relationship between C and A. Particularly, we want to know about the unification of C with A 

(not with B; see Figure 4-2). 

Theorem 1: (Curry, 1963) 

Theorem 1 is a useful fact about relatively pseudocomplemented lattices (also called absolute 

implicative lattices), because it means that the unification of A with C can be calculated simply 

by taking the unification of A with B without isolating C. 

If A and B are inconsistent with respect to each other (A and B fail to unify; A A B yields 

bonom), then the information inherited through C to A causes an inconsistency at that node. 

Further chaining of links is fruitless, because bonom is inherited to A, and bottom will be 

inconsistent with any other node linked to B through A. This situation corresponds to the 

presence of a negative link in the hierarchy. Given a procedural interpretation, this means that the 

polarity of a link in the hierarchy with the semantics of => is determined dynamically, depending 

on the information contained in nodes at either end. Declaratively, we can say that a link is used 

in a network to represent a relationship between two nodes; the content of the link, its polarity 

and the information inherited across it, is determined in terms of the stated relation by the 

information contained at the respective nodes. 
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Figure 4-3: Universal Grammar Principles. 

In presenting the universal principles of grammar, Pollard and Sag use the relative 

pseudocomplement operator, and in their usage A is vacuous with respect to a class of signs 

(headed structures, for instance)--A conveys no information except for the class of signs used as 

a reference set, but B is also assumed to be a member of this set. This forces the inheritance of all 

the information contained in B just as in classical implication. This allows us to present the 

grammar principles as individual signs rather than as relations between signs: the signs in Figure 

3-4 show the information that is actually inherited, C, in a couple of the universal grammar 

principles. In the network, strict links are used to encode the relationship between a vacuous sign 

and a specified sign. 

Our interpretation of links is somewhat different from the interpretation that we 

encountered in Chapter Two. The difference is in the way we understand polarity as dynamically 

determined. Aside from that difference, our links have the same function of classification as the 

l i i s  in the upwards de-coupled restricted skeptical reasoner of Horty, et al. (1990): links classify 

some of the complex structure beneath them in terms of the structures above them. The 

properties that hold beneath the link do not necessarily all agree with those above the link. 

Because of our difference on the polarity of links, a more informative English translation of our 

links than, "is a" might be "can be a". One implication of this difference to which we will return 

later is that the absence of a link between two nodes makes a strong statement that those two 

nodes do not relate. When we perform inheritance reasoning over a chain of links we are 

attempting to determine the polarity of the relationship between its endpoints; we are not 

attempting to construct an implicit link that can be added to the network. As indicated in the 

introduction, non-strict links are used to enumerate the ways in which one sign can be classified 

as another sign. The interpretation of non-strict links is weaker than the typicality interpretation 

of default links traditionally. 
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4.2.3. The Inheritance Network for HPSG 

Ideal sign a 

Figure 4-4: The Operative Dimension of HPSG as an Inheritance Hierarchy. 

Having described the content of nodes and the semantics of links, we now are in a 

position to give the inheritance network which corresponds to the operative dimension of HPSG. 

We actually present the inheritance hierarchy for only that subset of HPSG whose implementation 

was described by Popowich and Vogel (1990); however, this subset constitutes most of HPSG as 

presented by Pollard and Sag (1987), and we suspect that when analyzed, the remainder of that 

incarnation of HPSG will be consistent with the treatment described herein. Observe that the 

network shown in Figure 4-4 contains several departures from the usual notation for inheritance 

networks. First we note that there are three sorts of arrows. The dashed arrows are non-strict. 

This indicates that any given rule may or may not apply to the set of signs below it. A dark 
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dashed arrow has the semantics of an operator called ->, also a relative pseudocomplement 

operator, but one which is a generalization of => over lists of signs (i.e., it relates a list of signs to 

another list of signs). For A->B where A and B are lists of signs, C contains information about 

the signs in B which is not present in the list A. As we shall see shortly, a path through the 

hierarchy has breadth as well as length, since a path between the node at the bottom of the 

hierarchy and the node for one of the rules consists of two parallel links. These links are not 

redundant as they contain different information. One corresponds to -> and the other to =>. Note 

that these links point into the nodes for the rules rather than simply to them. This is a useful 

notion which exploits the fact that inheritance sometimes involves complex concepts at nodes. 

Inheritance is allowed to a node through component concepts of the node. We refer to such 

complex nodes as supernodes. In reference to HPSG, we can think of a mother sign as a 

supemode and the HEAD-DTR of a mother sign as a component concept. With respect to the 

signs presented in Figure 3-7, the list-valued links are for inheritance into the COMP-DTRS 

attribute, and the other defeasible links point to the HEAD-DTRS attribute. Inheritance through 

supemodes appears to be equivalent to the inheritance of role values in the extended theory of 

inheritance reasoning presently being formulated within THAT paradigm (Thomason, personal 

communication). 

A summary of the network follows. Grammar principles are headed structures. Each of 

the grammar rules is a headed structure. A headed structure can be the sign which describes the 

complete HPSG analysis of an utterance, and it can be one member of a set of signs that are 

HPSG analyses for constituent structures of an utterance. A sign can be the HEAD-DTR of any 

of the grammar rules. A list of signs can be the COMP-DTRS of any of the grammar rules. 

Other aspects of the hierarchy will become apparent as we explain the process of reasoning over 

the network. This includes an explanation of the nodes at the top and bottom of the hierarchy, as 

well as the link which renders the network cyclic. Just as in the inheritance literature detailed in 

Chapter Two, reasoning is a syntactic operation based upon the construction of valid paths 

through the network, where the construction of a path is guided by the information contained in 

the nodes. 
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4.3. Inheritance Reasoning 

We assume the existence of the operative hierarchy which emerges from our language 

(HPSG) for describing linguistic phenomena. The network can be used to verify the structure of a 

particular HPSG grammar. We begin with a sentence and a set of features that are relevant and 

inherent in the structure of that sentence: we know how the sentence is to be classified using the 

language of signs as if the sentence were a lexical entry. This classification is the "idealu8 sign 

which is at the top of the hierarchy. HPSG gives proposals about the way signs should interact. 

These are the principles and nodes which constitute the lower nodes in the hierarchy. The bottom 

node is a partially specified set of signs which can be constituents of the ideal. We use the 

operative hierarchy to verify that it is possible to trace an inheritance path through the network, 

from the set of constituent structures at the bottom, beginning with the lexical signs 

corresponding to words appearing in the sentence, through all of the composite constituent 

smctures, to the structure of the ideal. Recall from Chapter 2 that no path can have a negative 

link as any but its last link. If a positive path exists, then a sign which is unifiable with ideal sign 

is also a member of the set at the bottom because of the cyclic link. If more than one path is 

found, we want to keep all of them, because they all represent valid, if distinct, analyses. That we 

keep all valid paths, even if they do not agree with each other, indicates that we sanction a form 

of credulous reasoning - we do not refrain from reaching conclusions when several mutually 

inconsistent conclusions are available. However, we are most interested in the analysis 

corresponding to the shortest path. If no path is found, an inconsistency has been inherited 

through the relative pseudocomplement as was described in Section 5. 

Any particular use of the operative hierarchy is an exercise in determining the analysis 

(or, for that matter, the generation) of an utterance expressed in signs, as sanctioned by an HPSG 

grammar. To demonstrate the form of inheritance reasoning required, we provide an HPSG 

analysis of a simple sentence, "Mary walks," using the operative hierarchy. The literature on 

inheritance reasoning systems provides example hierarchies like the one shown again in Figure 

4-5 and shows the process of reasoning about its nodes, as in, for instance, determining whether 

Clyde is a gray thing. So too, for HPSG: we begin with the operative hierarchy and a sentence, 

'we realize that "ideal" already has a formal definition in reference to partial orders in discrete mathematics, 
however we use it in its more colloquial sense of "perfect". 
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Figure 4-5: Touretzky's Example of a Concept Hierarchy. 

"Mary walks", and ascertain whether sign("Mary  walk^")^, the node at the top of the hierarchy, is 

a member of the initially undetermined part of the set of signs at the bottom of the hierarchy, 

{sign("Mary"),si~("wallcs"), ... }. If it is not a member then inheritance in the hierarchy yields an 

inconsistency, and this means that the sentence with which we began is not sanctioned by HPSG 

as a grammatical utterance. 

43.1. An Example 

Using this example we begin with a partially specified set, {sign("MaryV), 

sign("walks"), ...). Consider a member of this set, sign("walks"), for instance in Figure 4-6, and 

recall the sign for Rule One given in Figure 3-7. The HEAD-DTR of Rule One fails to unify with 

sign("walks"), because the SYNlLOClLEX feature of sign("walks") is specified as "+". 

9 ~ e  allow ourselves the notational ease of selecting the sign relevant to discussion, whether it be from the set of 
ideals, for complex sentences, or from the lexicon for specific words, by writing it as  a function of the appropriate 
string. 
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Figure 4-6: Lexical Entry for "walks". 

Therefore, we have an inconsistency, a negative link in the hierarchy, and we proceed no further 

on that path (we f o l l o ~  the convention that there can be at most one negative link in a path, and if 

a negative link exists in a path, it is the last link in the path - recall the earlier mention of futility 

of chaining past a negative link). But we are still able to consider other paths. The path through 

the node for Rule W e e  is also a negative link because of the specification of the 

SYNlLOClHEADlINV feature for sign("walks"). The unification of sign("wa1ks") with HEAD- 

DTR of Rule Two succeeds. It is important to note, though, that the unification is not destructive 

with respect to the node for Rule Two. The value of the COMP-DTRS feature of Rule Two 

unifies with the empty list. We consider the inheritance of information from the result of that 

unification with the node for the grammar principles' sign (only one sign, since we constructed 

from the sign for each principle, the single sign which represents their unification), for that 

information inherits to the "Headed Structure" node, as well. This unification also succeeds, and 

though unification with sign("Mary walks") does not, inheritance is admitted along the path to the 

set of signs at the bottom of the hierarchy, completing a cycle, and further specifying that set - 

the sign in Figure 4-7 is known to be a member. 

This sign will unify with the HEAD-DTR of Rule One (note that it will also unify with 

the HEAD-DTR of Rule Two since, as mentioned above, the earlier unification was not 

destructive) since it is not specified for the SYNlLOClLEX feature at all, and furthermore, 

<sign("Mary")> will unify with the value of COMP-DTRS on Rule One. The result of these 

unifications is itself consistent with the node for the principles, hence inheritance is successful to 

that node. It also happens that sign("Mary walks") is consistent with the result from the last 

point, which, as before, is also inherited back down to the set of signs that is not h l l y  determined, 
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Figure 4-7: Inherited Information. 

and this implies that sign("Mary walks") is indeed a member of that set. Hence, what would be 

considered the "ideal" feature specification of the sentence, "Mary walks," using the primitive 

hierarchy and the intuitions that the linguists had hoped to capture is actually realized in the 

HPSG's operative dimension. The sentence, "Mary walks," is considered grammatical. Formally 

speaking, it is grammatical because at least one path exists from a partially specified set of signs 

which includes the lexical entries for each word in the sentence, through the concept nodes 

outlined by the theory, to the ideal sign specification. The presence of more than one such path 

indicates an ambiguity. 

An utterance is ruled ungrammatical only if no path is permitted through the hierarchy. 

Consider the example utterance, "Walks Mary." Inheritance goes through from the lexical sign 

for "walks" and the null sublist of analyses to the head and complement daughters, respectively, 

of Rule Two. The resulting sign is passed through the cyclic link back down, giving further 

specification to the list of analyses. The phrasal sign for "walks" and the sublist of the analyses 

containing lexical sign for "Mary" as its single element successfully unify with the head and 

complement daughters of Rule One, but not with those of any of the other rules. However, there 

is a strict link between the node for the Principles and the Headed Structure. That inheritance will 

succeed, and the information inherited through Rule One is consistent with the information 

inherited from the Constituent Ordering Principle which states that a phrasal head follows its 

complements. However, this means that the phonology of the sign thus constructed is "Mary 

walks." This is inconsistent with the specification of the phonology on the ideal sign, causing a 

negative link. But that inconsistency blocks the only possible path of inheritance, since chaining 

is abandoned on a particular path after the appearance of an inconsistency and chaining did not 

succeed through Rule Two or Rule Three. Thus, the utterance is ruled ungrammatical. 
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Figure 4-8: A Path Trace through the Operative Hierarchy for "Mary walks". 

Informal traces for the paths of reasoning through the operative hierarchy for "Mary 

walks" and "Walks Mary" are shown in Figures 4-8 and 4-9. Beginning at the bottom, we have 

the patially specified list of analyses containing entries for each of the words in the sentence. 

From that node, one link cames the information in the lexical sign for walks to the HEAD-DTR 

of Rule Two, and the other link carries the empty list to the COMP-DTRS of Rule Two. The 

destination of both links is inside the node for the rule. The information in the supemode Rule 
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Figure 4-9: A Path Trace through the Operative Hierarchy for "Walks Mary". 

Two (including the information inherited from below) is combined with the information in the 

grammar principles and results in the addition of information to the list of analyses at the bottom 

of the hierarchy. That cycle is not depicted in the topology of the graph, because it would be 

difficult to illustrate the sequence of links in the path using graphic cycles. Instead, some nodes 

are boxed as an indication that a sign is to be added to the partially specified list of analyses. 

Those directives to augment the specification of the analyses list indicate the traversal of a cycle 
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in the operative hierarchy. The path of inheritance can thus be traced from the list of analyses at 

the bottom of the hierarchy to the ideal specification at the top. However, the two figures are not 

identical. The trace shown in Figure 4-9 shows the discovery of a negative path during the 

reasoning process. Note that we can construct the same analysis of "Walks Mary" as for "Mary 

walks". But, this construction is inconsistent with the specification of the ideal sign whose 

phonology is "Walks Mary." The inheritance does not go through. These traces suggest how 

reasoning over the operative hierarchy with information specified in the list of analyses can be 

viewed in a way as involving acyclic paths. A particular sign that appears in the list of 

constituent analyses will be successfully inherited only once. When a sign is inherited from the 

list of analyses it is inherited into a supemode, and the information added to the supemode as the 

result of unification is inherited back down to the list of analyses. If links that classify the list of 

analyses are understood as emanating instead from individual signs that appear in the list, each 

sign (node) will occur only once in any particular path. However, this would mean that nodes and 

links are constructed "on the fly". 

43.2. Stability 

The cyclic structure of the network does not pose the problems that it would for 

inheritance systems in general, because infinite paths cannot be constructed from the stated 

hierarchy and because application of this network did not require the resolution of conflicting 

paths. For this reason, neither is the presence of redundant paths a problem, because multiple 

paths represent multiple analyses. We do not want to disregard any of them, particularly if those 

analyses are mutually inconsistent. A collection of paths that are not mutually inconsistent 

indicates a problem with the grammar; it allows spurious ambiguities. In the network that we 

have discussed, the addition of a redundancy to the network would be achieved by augmenting 

the operative hierarchy with the explicit information that the sign for a particular utterance has a 

particular definition. Really, this means that we add a redundant node to the hierarchy, a new 

"ideal" node for each utterance added. In such a revised network we are asserting that the ideal 

sign for an utterance is given either by reasoning over the operative hierarchy, or by simply 

looking at the redundant entry for that utterance. The only way instability could be introduced is 

if we add a redundant entry for an utterance which is exceptional in some way (e.g. the sign for 

"Walks Mary"). If the redundant entry could not have been derived from reasoning over the 

operative hierarchy (which is what it means for the entry to be exceptional), then different 
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conclusions will be reached by the reasoner. However, if the redundant entry could not have been 

derived from reasoning over the operative hierarchy then the entry is not a valid representation of 

the utterance using HPSG. It is inappropriate to add redundant links to the operative hierarchy, 

because, as we have discussed, the polarity of each link is determined dynamically depending 

upon the information stated at both ends. In topological terms, an added redundant link would 

bypass at least one node in a longer chain of X i s .  But, bypassing nodes means that the 

information contained in those nodes is excluded from the chain of reasoning. If information is 

omitted from a chain of reasoning we could indeed obtain unstable behavior. However, the result 

would again be invalid within the framework of HPSG. The resulting network would no longer 

be an encoding of HPSG's operative hierarchy. 

It is because we know that we will not have to factor out topologically redundant links 

that we can safely apply the shortest path reasoner to the network. A shortest path still produces a 

specificity ordering for paths through the network, though it is less complex than the inferential 

distance ordering of Touretzky (1986). The more complex reasoners outlined in Chapter Two are 

less applicable than the shortest path reasoner, because those reasoners are intended for networks 

in which topological redundancy is identical with actual redundancy. Also recall the 

computational complexity issues raised in the introduction. The computational complexity of 

shortest path reasoning is a linear function of the number of nodes in the directed acyclic graph, 

while Touretzky's (1986) system based on the inferential distance ordering has been shown to be 

NP-Hard (Selrnan and Levesque, 1989). The system of Geffner and Verma (1989) is NP-hard as 

well. The reasoner of Horty et al. (1990) is tractable (Selman and Levesque, 1989), but does not 

appear to be nearly as efficient as the shortest path reasoner. It is therefore fortunate that within 

the network we require, topologically redundant links do not present a problem. 



Chapter 5 

Applications of Inheritance Reasoning for HPSG 

Recall that there are two aspects of HPSG, grammars written within the formalism, and 

the formalism itself. Both aspects involve the operative hierarchy, but the distinction is apparent 

with respect to the sentences we pose against the hierarchy. To use it as a grammar formalism is 

to use HPSG as a formal language to specify a grammar, which of course may require debugging, 

so we pose simple structures whose ideal signs are obvious, and we verify that inheritance is 

permitted from constituent structures. On the other hand, when we use a particular HPSG 

grammar, we assume that it does not need any adjustment, and we use it to construct signs to 

discover what they look like and examine its predictions for novel sentences. 

The example described for "Mary walks," in Chapter Four demonstrates the use of 

HPSG's operative hierarchy as a grammar formalism. We began with simple sentences, whose 

complete signs are apparent, and we verified that the structure of the grammar actually allows the 

construction of ideal signs from the signs which should be their constituent structures, according 

to the various principles. If inheritance is not allowed then we know that the grammar has to be 

adjusted, either in the way information is abstracted into signs in the lexicon, or in the way the 

combination of information is constrained the principles and rules. It is also possible that further 

consideration will deem that some paths through the network reflect spurious analyses which 

need to be ruled out by changing the nodes in the hierarchy. This occurred in our research 

(Popowich and Vogel, 1990) leading us to a refinement in the statement of Rule Two. Similar 

tuning of the grammar formalism occurs throughout Pollard and Sag (1987). 

In this chapter we focus upon the second use of the operative hierarchy, the construction 

of signs for novel sentences. This chapter extends the work presented in the last chapter and in 

Vogel and Popowich (1990). Here we discuss how the network and reasoner outlined in Chapter 

Four can be implemented in Prolog. We also discuss how the network presented in Chapter Four 
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can be extended to cope with an extreme form of novel input by representing the inheritance of 

information to signs for words that are unknown to the lexicon. We provide a corresponding 

extension to our implementation of the network Throughout, we indicate the limitations of the 

theoretical approach and of our implementation. 

5.1. Parsing 

Clearly, the second use of the operative hierarchy is closely related to parsing. Parsing a 

sentence is the determination of its constituent analysis just as in the second use of the operative 

hierarchy is to construct a sign formulation for a sentence (if one exists). So, a machine 

implementation of an HPSG grammar is a machine implementation of a reasoning mechanism 

which operates over the HPSG operative hierarchy. Of course, it is valid (and a claim that we in 

fact make when we say that we have constructed a tool which is useful to linguists) to point out 

that a parser is useful for the grammar verification usage of the hierarchy as well, since if a sign 

cannot be built for a sentence that should be covered (or if the parser constructs a sign for a 

sentence that it should not), then we have used the parser to discover errors in the grammar's 

predictions, and a problem exists with the grammar that needs to be remedied. But, in the 

abstract, the problem is patched by determining the structure that should be present, the nature of 

the ideal sign, and how the nodes in the hierarchy need be modified in order for inheritance to go 

through. 

5.1.1. An Implementation 

We present a straightforward implementation in Prolog of both the operative hierarchy 

and a reasoner which operates over that network. The primitive hierarchy and reasoning over it 

are taken from Popowich and Vogel (to appear). The reasoning is a process of unrestricted 

skepticism in reasoning over a hierarchy of lexical types. The operative hierarchy is encoded as a 

set of links annotated with the restrictions entailed by the rules and principles. Shortest path 

reasoning over this hierarchy is then just simple path construction through the net. The 

inheritance of information is accomplished through Prolog's built in unification and with shared 

variables. 

The reasoner is given in Figure 5- 1. This program uses the backtracking control structure 

of Prolog to build a path between two nodes in a graph. Since the control structure of Prolog is 
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%link (From, To) . 

inherit (Composite, [ 1 , Classification) : - 
link (Composite, Classification) . 

inherit(Composite, [OutsideTolThrough],Classification) : -  
link (Composite, OutsideTo) , 
inherit (OutsideTo, Through, Classification) . 

Figure 5-1: An Inheritance Reasoner in Prolog. 

depth first, the reasoner is not guaranteed to produce the shortest path for an arbitrary directed 

acyclic graph, nor is it guaranteed to terminate for an arbitrary directed graph with cycles. 

However, for the specific network that we need to process, the reasoner produces the desired 

results. Links in a graph are represented using the term notation, link(From,To). The first inherit 

predicate states that a path of inheritance between two nodes exists if there is a direct link 

between those two nodes. The recursive rule states that there is a path of inheritance between two 

nodes A and B if there is a direct link between one of the nodes ( A )  and some other node and if a 

path of inheritance exists between that other node and B. Consider the toy network shown in 

Figure 5-2 which represents just the topology of the operative hierarchy. Reasoning over this 

link (analysis, rules and principles) . 
link (rules andgrinciples, ideal) . 
link (rules-and-principles, - analysis) . 

Figure 5-2: A Prolog Network for the Topology of the Operative Hierarchy. 

network produces paths in increasing order of length. The shortest path is found first, as depicted 

in Figure 5-3 

I ? -  inherit (analysis, Through, ideal) . 
Through = 

[rules - and_principles] ? ; 

Through = 

[rules - and-principles,analysisIrules - and-principles] ? 

Figure 5-3: Reasoning through the Toy Network. 

A short Prolog program which invokes the reasoner on the actual Prolog encoding of the 

network is given in Figure 5-4. The final line of code shown in Figure 5-4 specifies the actual 

invocation of inheritance from the partially specified list of analyses (asserted to the database 

inside the term, analysis) to the sketch of the ideal sign (asserted inside the term, ideal). The 

variable Through is instantiated as the list of nodes that make up the shortest path between the 

analyses and the ideal sign. 

The structure of the full network is given in Figure 5-5. The complexity of the link 
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parse :- 

abolish (ideal, 1) , abolish (analysis, 1) , abolish (real, 1) , 
read sent (Wordlist), 
init-list (~ord~ist, ~nalysis) , 
asserta (analysis (~nal~sis) 1 ,  
sketch ideal (WordList, Ideal), 
asserta(idea1 (ideal) ) , 
inherit (analysis (Analysis) , Through, ideal (Tdeal) . 

Figure 5-4: Invoking Inheritance. 

structure in Figure 5-5 (rather than simply "link(From,To)"), allows the encoding of the more 

interesting features of nodes in the hierarchy that we described earlier (e.g., a link can connect a 

node to another node that is inside a larger node). The additional complexity in the actual nodes, 

as we shall see, increases the complexity of the reasoning process. Notice that only three links 

link (analysis (Analysis) , rules (Rule) ) : - 
analysis (Analysis), 
rules (Rule) , 
path (Rule, dtrs : head-dtr, Head), 
element(Element,Analysis), 
sign-unif y (Head, Element) , 
path (Rule, dtrs :comppatho,dtrsI Comps) , 
select from(Elements,Analysis), 
sign uzif (~lement st Comps) . 

link (rules ( ~ 7 ,  ideal (ideal) ) : - 
nonvar (Ideal) , 
sign-unify (Y, Ideal) , 
graph (c, [Ideal] ) , 
asserta (real (Ideal) ) . 

link (rules (Rule) , analysis ( [Rule 1 Analyses] ) ) : - 
analysis (Analyses) , 
not (member (Rule, Analyses) ) , 
retract (analysis (Analyses) ) , 
asserta(analysis([Rule IAnalyses])) . 

rules (Rule) : - 
rule (N, Rule) . 

select f rom(Y\Y, Analysis) . 
select:•’ rom(~lements, Analysis) : - 

subset (Subset, Analysis), 
convert2dl( [Element] , Elements) . 

Figure 5-5: The Operative Hierarchy in Prolog. 

are indicated. Some of the individual links have been coalesced. For instance, there is not a 

separate link for each of the rules since they can be represented by a single clause that represents 

all of them. An individual rule is selected as a possible path to take through the term rules(Ru1e). 

This is done to allow a simpler Prolog representation of the network. An implementation which 

codes each link separately is shown in Figure 5-6. An examination of the amount of code that is 

identical among the definitions makes clear why we opted to combine them into a single 

definition. 
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link (analysis (Analysis) , rule) ) : - 

analysis (Analysis) , 
rule (l,Rule), 
path (Rule, dtrs :head dtr, Head) , 
elernent(Element,~na~~sis), 
sign unify (Head, Element) , 
pathT~ule, dtrs :camp-dtrs, comps) , 
select from (Elements, Analysis) , 
sign - unify (~lements, Comps) . 

link (analysis (Analysis) , rules (Rule) ) : - 
analysis (Analysis) , 
rule (2, Rule) , 
path (Rule, dtrs :head dtr, Head) , 
element(Element,~na~~sis), 
sign unify (Head, Element) , 
pathTRule, dtrs : comp-dtrs ,Camps) , 
select from (Elements, Analysis) , 
sign-unif (~lement s ,Camps) . 

link (analysis (Analysis) , rules (Rule) ) : - 
analysis (Analysis), 
rule (3,Rule), 
path (Rule, dtrs :head dtr, Head), 
element(Element,~na~~sis), 
sign unify (Head, Element) , 
pathT~ule,dtrs:comp dtrs,Comps) , 
select from (~lements, ~na1~si.s) , 
sign-unify (~lements, comps) . 

Figure 5-6: A Different Encoding of Three Links. 

Recall from the discussion of links that appeared in Chapter Four, if a given link 

represents A => B and if A is vacuous, then all of the information contained in B is inherited. We 

take advantage of this fact by simplifying the operative hierarchy so that its vacuous node is 

replaced with one containing the information that the vacuous node is guaranteed to inherit. In 

Figure 4-4 the node for the Headed Structure (also depicted as a sign in the Head Feature 

Principle as shown in Figure 3-3) is vacuous with respect to the class of signs denoted by the 

unif~cation of the signs to the right of the relative pseudocomplement operator in the original 

statement of each of the grammar principles. This means that all of the information in the node 

for the Principles, as well as for each rule, is inherited to the Headed Structure node. We take 

advantage of this by actually implementing a simplified hierarchy in which inheritance into the 

vacuous node has been "preprocessed". The simplified hierarchy is depicted in Figure 5-7. It is 

easier then to see the relationship between the code given in Figure 5-5 and the operative 

hierarchy. There is a complex link between the node for the list of analyses and the node for the 

rules which has the node for the principles inherited into it. There is a link between the node for 
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the rules and the ideal sign. Finally, there is a link from that node back down to the list of 

analyses. The Prolog code maps directly to the hierarchy in Figure 5-7 which condenses the 

topological structure of the operative hierarchy. 

Ideal Sign 7' 
I 

Rules - 

\principles A Rule 1 Principles A Rule 2 Principles A Rule 3 A 

( s i  g n . . .  , ) 

Figure 5-7: Simplified HPSG Inheritance Hierarchy. 

Consider the first of the links. We have a link from an element of the list of analyses to 

the head-drr of the sign for some rule. The value of the head-dtr is referenced using a path 

equation applied to that rule. A path equation is a relation which verifies that a particular value 

lies at the end of a list of nested attributes in a sign. The same equation can also be used to 

retrieve the value associated with some attribute deep within a sign. The expression 

sign-unifi(Head,Element) verifies the unification of the head-dtr and the Element in accordance 

with the way we described the calculation of inheritance for A => B in the last chapter1'. 

'O~iven A => B, we are interested in A A C where C is is the inherited information; this can be computed with A A 

B. 
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Similarly, a sublist of the list of analyses is joined to the comp-dm feature of the same rule. This 

link predicate coalesces the set of dashed links connecting the list of analyses to the next node in 

the hierarchy shown in Figure 5-7. The second link connects the node for the rules to the ideal 

sign. For that link, if inheritance goes through we construct a graphic representation (an example 

of this output as processed by TreeTool (Baker, et al., 1990) is included later in Figure 5-16) and 

assert the fact that an analysis has been constructed. The final link predicate is the link from the 

rules back down to the list of analyses. We add a sign inherited to this list simply by retracting 

the old list and asserting the more fully specified list. 

Figure 5-8 depicts the application of the inheritance reasoner to the parsing of three 

I ?- p a r s e .  
I :  mary walks .  
r u l e s  ( w i t h  [ m a r y , w a l k s l )  --- > 

i d e a l  ( w i t h  [mary, walks1 . 
a n a l y s i s  ---> r u l e s  ( w i t h  [mary, walks]  ) . 
r u l e s  ---> a n a l y s i s  ( w i t h  [wa lks ]  . 
a n a l y s i s  ---> r u l e s  ( w i t h  [wa lks ]  ) . 
P a r s e  Found a t  T i m e :  1 . 7 7  s e c s .  

I ?- p a r s e .  
I : mary l o v e s  john .  
r u l e s  ( w i t h  [mary, l o v e s ,  john] ) --- > 

i d e a l  ( w i t h  [mary, l o v e s ,  john] ) . 
a n a l y s i s  ---> r u l e s  ( w i t h  [mary, l o v e s ,  john]  ) . 
r u l e s  ---> a n a l y s i s  ( w i t h  [ l o v e s ,  john] ) . 
a n a l y s i s  ---> r u l e s  ( w i t h  [ l o v e s ,  john] ) . 
P a r s e  Found a t  Time: 2 . 5 3  s e c s .  

I ?-  p a r s e .  
I :  mary l o v e s  s e v e r a l  c o o k i e s .  
r u l e s  ( w i t h  [mary, l o v e s ,  seve ra1 ,cook ies l  ) --- > 

i d e a l  ( w i t h  [mary, l o v e s ,  s e v e r a 1 , c o o k i e s l )  . 
a n a l y s i s  ---> r u l e s  ( w i t h  [mary, l o v e s ,  s e v e r a l ,  c o o k i e s ]  ) . 
r u l e s  ---> a n a l y s i s  ( w i t h  [ l o v e s ,  s e v e r a l ,  c o o k i e s l  ) . 
a n a l y s i s  ---> r u l e s  ( w i t h  [ l o v e s ,  s e v e r a l ,  c o o k i e s l  ) . 
r u l e s  ---> a n a l y s i s  ( w i t h  [ s e v e r a l , c o o k i e s l )  . 
a n a l y s i s  ---> r u l e s  ( w i t h  [ s e v e r a l , c o o k i e s l )  . 
r u l e s  ---> a n a l y s i s  ( w i t h  [ c o o k i e s ]  ) . 
a n a l y s i s  ---> r u l e s  ( w i t h  [ c o o k i e s ]  ) . 
P a r s e  Found a t  Time: 9 . 0 9  s e c s .  

Yes 

Figure 5-8: Three Sentences Parsed by an Inheritance Reasoner 
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sentences. Parsing was invoked with the command parse, and a sentence was entered. Beneath 

each sentence is a listing of system output. The output includes a trace of the links followed 

through the simplified version of the operative hierarchy shown in Figure 5-7. The links are 

listed in the reverse order of their traversal, so the actual path must be read from the bottom up. 

Times required for parse completion are shown beneath the trace of links. 

Inheritance reasoning over a lexical, unification-based grammar formalism is clearly a 

straightforward process, but the current implementation is not particularly efficient. The timings 

shown in Figure 5-8 indicate exponential growth. Recall the large underspecified node at the 

bottom of the hierarchy (represented by the term analysis); the process of choosing elements and 

subsets of that node to try to inherit is computationally expensive. That process, which is 

implemented in the selectfrom predicate illustrated in Figure 5-5, refers to the subset relation. 

Choosing arbitrary subsets of an ever growing list is an expensive operation. One heuristic can be 

devised by noticing that a great number of the grammatical structures represented using HPSG 

involve the combination of a HEAD-DTR with a single complement. This implies that subsets 

taken from the list of analyses need only have one element. Thus, the definition of selectfrom 

that we actually use chooses potential complements accordingly. The definition is given in 

Figure 5-9. Note that this redefinition is merely heuristic, though, since for analyses involving 

select from (Y\Y, Analysis) . 
selectw•’ - rom (~lements, Analysis) : - 

element(Element,Analysis), 
convert2dl( [Element] I Elements) . 

Figure 5-9: Heuristic Selection of Analyses. 

Rule Three, a HEAD-DTR combines with two complement daughters. The existing system no 

longer covers Rule Three since it can accommodate only a HEAD-DTR and a single COMP- 

DTR. However, it would be straightforward and still more efficient than the original definition to 

allow subsets of restricted size (up to two elements, for instance) of the analyses to be examined. 

The subset selection function does not need to be generalized at all to accommodate other 

unification grammar formalisms. In Tree Unification Grammar (Popowich, 1988) and 

Unification Categorial Grammar (Calder, Klein, and Zeevat, 1988) all branching is binary, so 

single element subsets would satisfy all possible constituent structures. While our restriction is 

heuristic for HPSG it is sufficient for some other UGs. An additional, global restriction can be 

added to the network to guarantee that the only partial analyses ever constructed are analyses that 

represent surface structure strings which are actually substrings of the original sentence. The 
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a l m o s t - i d e a l  ( R u l e )  : - 

p a t h  ( R u l e ,  p h o n ,  o r d e r  ( A 3 )  ) , 
o r d e r  ( A ,  B, B u i l t P h o n )  , 
u n d i f f  ( B u i l t P h o n ,  S t r i n g ) ,  
i d e a l  ( S i g n ) ,  
p a t h  ( S i g n ,  p h o n ,  I d e a l P h o n )  , 
s u b s t r i n g  ( I d e a l P h o n ,  S t r i n g )  . 

a l m o s t  - i d e a l  ( R u l e )  : - 
p a t h  ( R u l e ,  p h o n ,  B u i l t P h o n )  , 
u n d i f f  ( B u i l t P h o n ,  S t r i n g )  , 
i d e a l  ( S i g n ) ,  
p a t h  ( S i g n ,  p h o n ,  I d e a l P h o n )  , 
s u b s t r i n g  ( I d e a l P h o n ,  S t r i n g )  . 

Figure 5-10: Additional Heuristic Selection of Analyses. 

code which implements this restriction is given in Figure 5-10 and can be invoked either from the 

link which connects analyses to rules or from the link leading from the rules back down to the 

analyses. 

Another source of gross inefficiency is our representation of signs themselves. Note that 

the definitions of select from in Figures 5-5 and 5-9 reference difference lists. Some values in 

signs are represented as difference lists, following Popowich and Vogel (1990). The values of 

PHON, SUBCAT, and COMP-DTRS are all represented in this fashion. While this allows 

efficient invocation of the append function which is used in the Subcategorization Principle (c.f., 

Figure 3-4), the behavior of difference lists requires that the occurs check be built in to the 

unification of two signs. This is one reason why the links as implemented in Figure 5-5 invoke 

sign-unify rather than using just Prolog's built in unification and shared variables to accomplish 

this unification. Another reason is that under the present encoding of signs, other functions 

besides append must also be evaluated. The order function which relates the constituents of a 

sign to its phonology must also be evaluated when unifying phrasal signs that have been inherited 

through the node containing the information in the grammar principles. The order function is 

invoked during the unification of two signs, and for more complex signs, this unification takes 

much more time. A better representation of functions used as values in sign would greatly 

enhance the efficiency of the system. 
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5.2. Inheritance Reasoning versus Chart Parsing 

We need to compare the parser that is constituted by an inheritance reasoner over the 

HPSG operative hierarchy with other parsing methods. In theory, since we have constructed a 

concept hierarchy specifically for HPSG, the inheritance reasoner should be extremely efficient in 

constructing paths, because all we need is a shortest path through the hierarchy. However, 

complexity is introduced because inheritance is determined across a link by comparing the 

information contained in nodes at either end. So, the complexity of the reasoner is determined by 

the complexity of the process for determining the unification of A and B. In our system we have 

chosen a representation for signs which is not particularly space or time efficient. 

In comparison with the algorithm of a chart parser for HPSG (Popowich and Vogel, 

1990), the inheritance parser is less efficient. In a chart parser, a sentence is represented by a 

graph, where nodes in the graph represent positions between words in the sentence being parsed. 

Edges correspond to analyses of the words and complex structures derived from the words 

according to the grammar being processed. An edge is marked with the sign (also called the 

edge's category) for the analyses the edge represents. The endpoints of an edge indicate its 

position in the chart and the span of its analysis. New edges representing analyses of larger 

constituent structures of the sentence are introduced to the chart through a waiting list as the 

product of one of two processes. Rule Invocation determines that the category associated with 

some edge satisfies the HEAD-DTR of some grammar rule and creates new edges for each rule 

satisfied in this fashion. These new edges are placed on a waiting list to be processed. The new 

edges each have an associated list of expectations, signs that the new edge needs to combine with, 

which is taken from the COMP-DTRS feature of the sign that marks the new edge. The 

Completer compares the next edge (also called the current edge) on the waiting list with the edges 

in the chart, looking for edges that "meet" the current edge satisfying some of the expectations of 

one of them. A new composite edge with some or all of its expectations satisfied is created and 

added to the waiting list. When an edge is created that spans the chart and has all of its 

expectations satisfied a successful parse has been created. 

The chart parsing process is time efficient, though the parser presented in Popowich and 

Vogel (1990) has unification expenses similar to the inheritance reasoner's built into its 

subprocesses. The unification employed is built on top of regular Prolog unification to include 
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the occurs check. This is not a linear time process. During Rule Invocation, the test of 

satisfaction between the sign marking an edge and the HEAD-DTR is unification. The signs for 

the grammar principles are assumed to be unified into the signs for each of the rules prior to 

considering any sentences, so the mother sign which results from the unification is assumed to be 

consistent with the grammar principles as well as the successful rule. If edges satisfy the meets 

condition then the Completer step also involves unification to verify that the sign marking one of 

the edges satisfies a sign on the expectations list on the other. 

In the inheritance reasoner the functions of both the Rule Invocation and the Completer 

steps of the chart parser are taken up by the link from the list of analyses to the node for the rules. 

One sign is selected from the list of analyses as a potential HEAD-DTR and a sublist of signs is 

selected from the list of analyses as potential COMP-DTRS. Both selections require verification 

through unification, just as in the chart parser. However, the chart parser makes good use of the 

"meets" condition as a preliminary test for whether the unification with the COMP-DTRS is 

likely to go through. If edges do not meet further unification is not attempted. The inheritance 

reasoner lacks such a condition. Moreover, selecting sublists of the list of analyses is not an 

efficient process in itself, as was mentioned earlier. This is exacerbated by the fact that the list of 

analyses grows during the reasoning process-there are increasingly more sublists to consider, 

including sublists that has been considered for previous constituent analyses. On the other hand, 

the chart parser takes advantage of a distinction between edges in the chart and edges waiting in a 

list to be processed. The chart parser selects one edge from the waiting list at a time, and though 

the edges archived in the chart can cause the creation of new edges by combining with the current 

edge during the Completer step, an edge that is archived in the chart never have to be re- 

examined for the Rule Invocation step. Mike Reape (personal communication) has designed an 

algorithm which functions very much like the inheritance process described herein, but instead of 

a list of analyses, his system maintains a bag of unused constituents. Once a sign is used as a 

daughter in a new sign, the new sign is added to the bag and the old sign is thrown away. 

Compare the results obtained by the inheritance parser on a sentence, "Mary loves several 

cookies," with the results of the same sentence processed by the Prolog chart parser of Popowich 

and Vogel (1990). Output from the chart parser is shown in Figure 5-1 1, and the results of the 

inheritance reasoner are given in Figure 5-12. These two systems are comparable because the are 

both written in Prolog and based upon the same lexical hierarchy, and they both offer the same 
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I ?-  parse. 
I :  mary loves several cookies. 
initializing: place inactive edge 1 ([mary]) 

in waitinglist. 
initializing: place inactive edge 2 ([loves]) 

in waitinglist . 
initializing: place inactive edge 3 ([several]) 

in waitinglist . 
initializing: place inactive edge 4 ([cookies]) 

in waitinglist. 
predictor: place inactive edge 5 ([cookies]) 

in waitinglist (used rule 2). 
predictor: place active edge 6, built from [loves] 

in waitinglist (used rule 2) . 
completer: place inactive edge 7 ([loves,mary]) 

in waitinglist. 
predictor: place active edge 8, built from [cookiesl 

in waitinglist (used rule 1) . 
completer: place inactive edge 9 ([several,cookiesl) 

in waitinglist. 
predictor: place active edge 10, built from [loves,mary] 

in waitinglist (used rule 1) . 
completer: place inactive edge 11 

([loves,several,cookies]) in waitinglist. 
predictor: place active edge 12, built from 

[loves, several, cookies] in waitinglist 
(used rule 1). 

completer: place inactive edge 13 
( [mary, loves, severa1,cookiesl ) in waitinglist 

Parse Found at Time: 4.931 secs. 

Figure 5-11: A Chart Parse of "Mary loves several cookies." 

I ?- parse. 
I: mary loves several cookies. 
rules (with [mary, loves, several, cookies] ) --- > 

ideal (with [mary, loves, several,cookies] ) . 
analysis ---> rules (with [mary, loves, several, cookiesl ) . 
rules ---> analysis (with [loves, several, cookiesl . 
analysis ---> rules (with [loves, several, cookies] ) . 
rules ---> analysis (with [several, cookiesl ) . 
analysis ---> rules (with [several,cookies]). 
rules ---> analysis (with [cookies] ) . 
analysis ---> rules (with [cookies] ) . 
Parse Found at Time: 9.14 secs. 

Figure 5-12: An Inheritance Parse of "Mary loves several cookies." 

coverage of HF'SG. All of the words used in the sentence are represented in the lexicon. The 

chart parser is clearly more efficient, but some of the extra computation involved in the 

inheritance reasoner follows from the slightly different representation used for signs, and the 
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corresponding modification to the unification procedure. Recall from Chapter 2 that functions 

can appear as the values of features of signs (particularly in the grammar principles). The chart 

parser implements an efficient way to evaluate these functions when constructing mother signs 

from constituents. However, the inheritance reasoner leaves the functions in place as values. As 

a consequence, order must be evaluated each time a phrasal sign is unified with another sign. 

Thus, not only does the inheritance parser have more unifications to consider because it lacks a 

"meets" condition and attempts Rule Invocation more than it needs to, its unification algorithm i? 

less efficient as well. A better representation of functions within signs could greatly improve the 

efficiency of the inheritance reasoner. 

Yes 
I ?- parse .  
I :  mary loves seve ra l  cookies.  
i n i t i a l i z i n g :  p lace  i n a c t i v e  edge 1 ( [mary] ) , 

b u i l t  from en t ry  mary, i n  s t a c k .  
i n i t i a l i z i n g :  p lace  i n a c t i v e  edge 2 ( [ l o v e s ] ) ,  

b u i l t  from en t ry  loves,  i n  s t a c k .  
i n i t i a l i z i n g :  p lace  i n a c t i v e  edge 3 ( [ s e v e r a l ] ) ,  

b u i l t  from e n t r y  s e v e r a l ,  i n  s t ack .  
i n i t i a l i z i n g :  p lace  i n a c t i v e  edge 4 ( [ c o o k i e s ] ) ,  

b u i l t  from en t ry  cookies ,  i n  s t ack .  
p r e d i c t o r :  p l ace  i n a c t i v e  edge 5  ( [ c o o k i e s ] ) ,  

b u i l t  from edge ( 4 )  and r u l e  ( 2 )  , i n  s t a c k .  
p r e d i c t o r :  p l ace  a c t i v e  edge 6  ( [ c o o k i e s ] ) ,  

b u i l t  from edge (5)  and r u l e  (1) , i n  s t a c k .  
completer: p l ace  i n a c t i v e  edge 7 ( [ s e v e r a l , c o o k i e s ] ) ,  

b u i l t  from edge (3 )  and edge ( 6 ) ,  i n  s t a c k .  
p r e d i c t o r :  p l ace  a c t i v e  edge 8 ( [ l o v e s ] ) ,  

b u i l t  from edge ( 2 )  and r u l e  ( 2 ) ,  i n  s t a c k .  
completer: p l ace  i n a c t i v e  edge 9 

( [ loves ,  seve ra l ,  cookies] ) , 
b u i l t  from edge ( 8 )  and edge ( 7 )  , i n  s t a c k .  

p r e d i c t o r :  p l ace  a c t i v e  edge 1 0  
( [ loves ,  seve ra l ,  cookies] ) , 
b u i l t  from edge ( 9 )  and r u l e  (1) , i n  s t a c k .  

completer: p l ace  i n a c t i v e  edge 11 
([mary,loves,several,cookies]), 
b u i l t  from edge (1) and edge ( l o ) ,  i n  s t ack .  

Parse Found a t  0 . 9 6 7  secs .  

Done a t  1.034 s e c s .  

Yes 

Figure 5-13: A Better Chart Parse of "Mary loves several cookies." 

However, the modified chart parser constructed by Popowich (Popowich and Vogel, 

pear) exhibits a dramatic increase in efficiency over the first chart parser and at the same time 

offers greater coverage of HPSG. Figure 5-13 shows the performance of the modified parser on 
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the sentences benchmarked earlier. Some of the speedup can be accounted for the fact that the 

parser was compiled and run under Quintus Prolog rather than interpreted under Sicstus Prolog as 

was true for the tests shown in Figures 5-11 and 5-12. The modified chart parser also uses a 

different specification of the lexical hierarchy. But, the impact of these differences is not 

significant. The increase in efficiency is achieved by representing the constituent structure of 

phrasal signs implicitly in the edges of the chart. It remains to be seen if an analogous 

representation can be devised for the inheritance reasoner. 

In short, the chart parsing approach provides finer distinctions in the classification of 

objects being processed (e.g., edges in the chart vs. edges waiting to be processed). These 

distinctions allow the chart parser to operate more efficiently than the inheritance reasoner, and it 

is not clear how to incorporate such distinctions into the reasoner. On the other hand, the 

inheritance reasoner is conceptually simpler than the chart parser. For that reason it is useful as a 

pedagogical tool to explain the working of the formalism. Popowich (1990) uses an approach 

related to the inheritance described herein to explain the formal properties of Tree Unification 

Grammar. Additionally, the inheritance reasoning approach provides a principled way to cope 

with some types of ill-formed input. 

5.3. Robust Parsing 

A long standing problem for natural language processors is handling ill-formed input. 

One aspect of this problem is handling errors that are caused by the user's knowing and using 

something which is unknown to a parsing system. For instance, the use of a sentence which 

includes words unknown to the system lexicon (even through morphological analysis) presents a 

difficult problem to sentence recognition. However, the vocabulary of inheritance offers an 

elegant way to state a partial solution: information about unknown words may be inferred 

through inheritance. This section describes how this is accomplished in theory and then details 

how these extensions are incorporated into the implementation. Though we have seen that the 

implementation as it stands is not very efficient, the extension for the new link does not cause a 

significant further decrease in efficiency. 
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5 3 . 1 .  Extending the Operative Hierarchy 

First, it is essential to extend the specifications of the operative hierarchy to include a 

statement about the relationship between the lexicon and the node at the bottom of the operative 

hierarchy that was shown in F i e r e  4-4. As with the unmodified operative hierarchy, we can 

simplify this network to take advantage of its having a vacuous node. The revised operative 

hierarchy is given in Figure 5-14. In this network the node which formerly was at the bottom and 

Ideal sign a 

Lexicon: { ... ) Cl) 
Figure 5-14: Revised HPSG Inheritance Hierarchy. 
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represented the partially specified list of analyses corresponding to the lexical enmes for each of 

the words used in the sentence under consideration, is now slightly different, initially specified 

with a simpler set of entries. The only information known about these entries is that their PHON 

features are specified with strings corresponding to words in the sentence. Other information 

(major category, etc.) will be inherited from the lexicon. The entire lexicon is represented in the 

node at the bottom of the revised hierarchy. 

The problem presented by a word which is unknown to the lexicon is that there is no 

origin from which to inherit the information required for parsing. However, recall that the 

lexicon is founded upon what we called the primitive hierarchy of types. Essentially, this 

hierarchy will be specified as the origin. A particular word, "kisses", for instance, is defined in 

terms of inheritance of information from lexical classes like word, verbt (for transitive verb), etc. 

So, we assume that a word used in a sentence but not present in the lexicon must really be a word. 

A fundamental assumption made in using HPSG is that the lexical structure of any word can be 

represented. Hence, an unknown word can be classified in terms of some general level in the 

lexical hierarchy. Individual words are just very specific entries in the hierarchy. So, we can 

generalize the notion of a lexicon from including simply words to also including enmes for more 

general elements like verbt. The only difference between the entry for a specific word, "kisses", 

(in the absence of semantic information) and a general entry for verbt is that the latter will lack a 

specification of the value of PHON. 

The problem of recognizing an unknown word is then reduced to finding the most 

appropriate general entry to use as its classification. This, too, is satisfied through inheritance. 

For instance, given a sentence like, "Olga walks," in which "Olga" is unknown to the lexicon, 

from the fact that "walks" subcategorizes for a noun phrase and the assumption that "Olga" is a 

word which is used correctly, we can determine that "Olga" is a noun phrase. Clearly, when 

semantic information is present in the known words, this can also be inherited to the unknown 

component. Note that this is not a foolproof strategy, since if "hates" is a verb that is unknown to 

the lexicon, the same strategy will determine that "hates" is a noun in the assumed grammatical 

sentence, "Hates walks." This inheritance is facilitated by the link from the lexicon to the 

underspecified list of partial analyses: in the usual case an entry in the list marked with the 

phonology of a particular word inherits the rest of the syntactic and semantic information known 

about the word in the lexicon, and, in the exceptional case of an unknown word the entry inherits 
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a hypothetical classification of the word. Given the way we have defined inheritance over the 

network as the construction of the shortest path to the node for the ideal (now, from the lexicon, 

instead of from the underspecified list of partial analyses), the only classifications of the word 

which will contribute to the shortest path are classifications which are consistent with respect to 

the other nodes in the hierarchy. That is, under the assumption of input correcmess, the only 

consistent classification of "Olga" and "hates" is that they are noun phrases. 

53.2. Implementing the New Link 

The implementation of this extension is straightforward. It involves adding a link to the 

network corresponding to the link introduced in Figure 5-14. This encoding of the new link is 

given in Figure 5-15. A parse is denoted in the revised system by a successful instantiation of the 

link (lexicon (Wordlist) , analysis (Analysis) ) : - 
link* (lexicon (Wordlist) , analysis (Analysis) ) , 
asserta (analysis (Analysis) ) . 

link* (lexicon ( [I ) , analysis ( [ I  ) ) . 
link* ( 
lexicon([WordlSentence]), 
analysis ( [ [-dtrs, [phon, [Word 1 El \El 1 Sign] 1 Others] ) ) : - 

entry( [ dtrs, [phon, [Word] 1 l Sign] ) , 
link* (lexicon (sentence) ,analysis (others) ) . 

Figure 5-15: The Additional Link, in Prolog. 

Prolog query: 
inherit (lexicon (Wordlist) , Through, ideal (Ideal) ) . 

Finally, we allow a more general lexicon which allows as entries a larger portion of the lexical 

hierarchy. Within the revised lexicon, we allow as lexical entries such items as verbt, verbi, np, 

and even word, which lack the specification of phonological or semantic information and, in the 

case of word, even lacks a specification of major category. Recall that in theory, the lexicon is 

the lexical hierarchy, but for pragmatic reasons it becomes useful to draw a cut through the 

hierarchy and label all things below the cut as indexable by the system. Thus, the old lexicon just 

allowed terminal symbols, and our new lexicon includes nodes at a more general level in the 

hierarchy. 

It is most striking that in practice this system can be used on a sentence like, "Mary kisses 

John," for which the lexicon lacks an entry for the word "kisses", and yet, the system is still able 

to determine the complex structure required of a lexical entry for the word, simply based on the 

information known through "Mary" and "John". Our system can recognize the sentences, "Mary 
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smiles," and "Mary kisses John," even though "smiles" and "kisses" are unknown, because the 

system assumes that the sentences are grammatical, that the words are used correctly, and because 

our lexicon knows about such classifications as verbr and verbi for transitive and intransitive 

verbs, respectively. Figure 5-16 displays the TreeTool output of the phrase structure tree derived 

from the HPSG sign for the sentence, "Mary ingests several cookies." The depicted HPSG 

analysis was constructed using the shortest path reasoner over the network that we have given and 

implemented in Prolog. The word "ingests" was unknown to the system lexicon, yet through 

inheritance the system is still able to determine that it is a transitive verb. Note that the node with 

the phonology, [ingests], has two elements on its SUBCAT list. Some of the information did not 

fit on the screen, but this omission is insignificant since this node obtained its information from 

other nodes in the phrase structure tree. All of the other terminal nodes in the tree represent 

lexical entries. But the node for "ingests" obtained only the major category classification from 

the lexicon, and it obtained that information through the confirmation of the hypothesis that if 

"ingests" is a verb, then a valid path can be constructed through the operative hierarchy. Other 

specific information, like the agreement features on the head of "ingests" (recorded in the second 

line of information on the node) and the head features of the items subcategorized for (partially 

depicted in the third line for that node), is inherited from the node for the universal principles (the 

Head Feature Principle and the Subcategorization Principle) with exact values instantiated 

through inheritance from the known lexical entries in the sentence. It took the inheritance 

reasoner 9.42 seconds to construct a parse for the sentence (c.f., Figure 5-8 shows the timing for a 

similar sentence in which all the words were present in the lexicon). 

Our ongoing experimentation with this system involves using inheritance to determine the 

structure of entries that the system does not know about as lexical entries nor in the less specific 

classification according to major category. For instance, suppose that our lexicon does not 

include an entry from the lexical hierarchy for determiners. If the word "each" also lacks explicit 

representation in the lexicon then, of the classifications that we mentioned earlier, word is the 

only one which provides a structure which will sanction the phrase, "each cookie." Since word is 

extremely underspecified, the system should still be able to construct a complete path, and 

moreover, inheritance through the path should also specify that "each" is a determiner, since that 

is consistent with the subcategorization of "cookie". However, this is not handled by the present 

system because of remaining inefficiencies in its memory management. 
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Figure 5-16: "Ingests" Was Not in the Lexicon. 

Neither can we argue that the system is actually efficient at recognizing the unknown 

words that it does recognize. The code for the reasoner given in Figure 5-5 is stated so simply 

because it relies on the control structure of Prolog to implement its search. This means that it 
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does a lot of backtracking, particularly in the case of unknown words. Note, however, that prior 

to including the general classification word as a lexical entry, the system would discover in a 

finite amount of time and space (i.e., without crashing by exhausting the resources) whether a 

consistent set of classifications is possible. The system w2l backtrack and move forward until it 

can find a way to categorize an unknown word in a way that is consistent with respect to the rest 

of the sentence. While this is not particularly efficient, it does have the utility of suggesting a 

better solution, since it casts the problem into the more refined vocabulary of constraint 

satisfaction. In constraint satisfaction problems we try to find consistent labelings of words using 

the notation of the lexical hierarchy where consistency is defined relative to the operative 

hierarchy as outlined in this chapter. Our future work in this area includes a restatement of the 

above system using the tools provided by constraint logic programming, as codified in the 

language Echidna (Havens, et al., 1990). 



Chapter 6 

Discussion 

We have focussed upon the formal definition and application of inheritance reasoning. 

We provided a clarification of a system for path based inheritance proposed by Horty, et al. 

(1990). Our clarification included a reimplementation of their system in simple Prolog relations. 

The accompanying analysis identified in their system an inconsistent treatment of certain 

topologically redundant links. We also outlined two other inheritance reasoning systems, those of 

Geffner and Verma (1989) and Ballirn, et al. (1989), and indicated the treatment of topologically 

redundant links within those systems as well. Traditional inheritance reasoning systems discount 

the complex structures represented by nodes in an inheritance network as well as the fact that 

different links emanating from a single node can represent different information about the node. 

However, reasoning that accommodates this fact is more complex than path based inheritance 

which uses topology alone. The link arithmetic approach is promising because it provides a 

framework for inheritance reasoning based on something more than topology. 

To the researcher in inheritance reasoning, this thesis provides another dimension to the 

space of possible path based inheritance systems: the seventy-third possibility will be a reasoner 

that does not discount topologically redundant links as semantically redundant (cf. Chapter One, 

p. 5). Further proof theoretic research is needed in path based inheritance reasoning to determine 

the implications entailed by the assumption that all links in a network convey new information. It 

would also be interesting to study the impact of the assumption on non-topological approaches to 

inheritance. The link arithmetic approach to inheritance provides a framework that is amenable to 

the incorporation of non-topological information into the reasoning process. In such a system, the 

leaning associated with a path would carry semantic information like the statistic which 

represents the frequency at which a statement such as "Elephants are gray," is true in some 

population. A new statistical semantics may be unecessary since such approaches already exist 

(Zadeh, 1987, Bacchus, 1989), but study is needed to determine exactly how the information 
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contained in a node and classified by a set of links can be represented using statistical 

information. 

Thomason (1989) has indicated that research in inheritance reasoning has reached a stage 

in whlch feedback is required from research in applying these formal systems to the 

representation of knowledge. This thesis provides one such application by representing the 

fundamental concepts of HPSG in an inheritance network. The system that we present embodies 

some of the ideas discussed in Chapter Two, where we argued that the information contained in a 

node and inherited through a link should not be discounted in favor of purely topological 

processing. Individual links in network for HPSG do not exhaustively classify the nodes that they 

connect; multiple links emanating from a single node represent different information. However, 

in this system the computation of inheritance across a link is complex. The computation of this 

inheritance requires the comparison of the information contained at each end using unification. 

While this test on the traversal of a link also makes the system analogous to ATNs (Woods, 

1970), the system is different from ATNs in that the test involves the nodes at both ends of the 

link. Nonetheless, reasoning over this network provides useful inferences in the form of si,m 

that correspond to HPSG analyses of individual sentences; reasoning over the network thus 

implements a parser. Popowich (1990) is another example of another recent attempt to use 

inheritance reasoning as a parsing mechanism. 

This application does not give rise to the testing of competing inheritance reasoners 

because it does not require the resolution of conflicting paths, though this could be an issue for a 

working natural language understanding system that includes a larger subset of HPSG (e.g. 

adding lexical rules), nor do redundant links present a problem. However, because of these 

features that simplify the problem, shortest path reasoning is applicable. Nonetheless, in light of 

the complexity of computing inheritance in the manner that we have described, the feedback that 

we provide to researchers in inheritance reasoning is a reiteration of the fact that further research 

would be useful into the strictly topological processing of networks whose links all contain 

unique information. 

The application of inheritance reasoning to parsing does prove fruitful for the researcher 

in natural language understanding, because it suggests a principled treatment of a form of ill- 

formed input to a natural language processor. Information about words contained in an input 
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sentence that are unknown to the system lexicon can be inherited from the lexical hierarchy and 

from other words used in the sentence. It would be extremely useful to conduct further research 

in this area. For instance, it would be interesting to develop an inheritance based system which 

can discover the grammatical category of an unknown word solely from the information 

contained in signs for other words even if the grammatical category of the unknown word is itself 

omitted from the lexical hierarchy. The relationship between this treatment of unknown words 

and the semantic treatment provided by other approaches should also be examined (DeJong and 

Waltz, 1983, McFemdge and Groeneboer, 1989). 

In Chapter Five we pointed out that work is required to make the implementations of the 

inheritance network and reasoner elegant and efficient. Presently, the implementations are 

neither elegant nor efficient. The research presented in Popowich and Vogel (to appear) based on 

the chart parsing methodology suggests some directions to follow in improving the representation 

of the network. A better representation of signs could eliminate the need for anythlng more than 

the built-in Prolog unification algorithm. The distinctions between data structures used by chart 

parsers to limit the numkr of times a particular sign needs to be processed may also be useful to 

incorporate into the network. Further investigation is required to determine whether these ideas 

can be incorporated into the inheritance reasoner. 
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