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ABSTRACT 

Given a graph G, a perfect matching of G is a set of independent edges which 

together cover all the vertices of G. We define G to be n-extendable if i t  contains a 

set of n independent edges and every set of n independent edges can be extended to a 

perfect matching of G. 

In Chapter 1, having surveyed importan: results in the history of factor theory 

and presented a brief background to most of the problems I deal with here, I then 

present some frequently used definitions and notations, and several preliminary 

results. 

In Chapter 2 tree-factor covered graphs are discussed. A tree-factor of a 

graph G is a spanning subgraph of G each component of which is a tree. A necessary 

and sufficient condition is obtained for a graph to have the property that every 

subgraph K l S k  can be extended to a tree-factor. The main technique used for this 

problem is the augmenting path method. 

In Chapter 3,  I study the effect of deleting edges from n-extendable graphs and 

prove that a conjecture of Saito is true for bipartite graphs. For general graphs, in light 

of a recent counter-example of Gyori, I give what is, in some sense, a best possible 

result with respect to this conjecture. Further generalizations of n-extendability are 

introduced and graphs with these properties are characterized. 



In Chapter 4, I consider the extendability of products of g n p h s .  Thew rssultl; 

oive an easy way to construct a large family of n-extendable graphs. Two-estt.nil,~l~lt. 
b 

generalized Petersen graphs and two-extendable Cay ley graphs on nbelian goups :ire 
w 

also classified. T h e  former classification confirms a conjecture of Canimack and 

Schrag. 

In the last chapter, I count the number of star-factors i n  graphs ;ind also 

discuss the extendability of powers of graphs. A Nordhaus-Gaddum type of result I'or 

matchings is obtained. 
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Chapter 1. Introduction, 

9 f ,I. Background. 

Let us look back at the brief history of graph factor theory- The first paper we 

are aware of was written by. Petersen 1461 in 1891. He proved that a graph G is 2-  

f'ctorabte if  and only if G is an even regular graph and pointed out that the 

factorization of graphs with odd regular degree is much more complicated than the 

even case. He also showed that any connected 3-regular graph having no more than 

two cut-edges can be decomposed into a I-factor and a 2-factor- Forty years later, 

K6nig f30f studied 1-factors in bipartite graphs and proved that every k-regular 

bipartite graph is the union of k edge-disjoint perfect matchings. The importance of 

Konig's theorem (the so-cdled Konig Edge Colouring Theorem) is that it established 

the relationship between edge co!ourings of graphs and factorizations. The Konig 

Edge Colouring Theorem says that if G is a bipartite graph, then the chromatic index of 

G is equal to the maximum d e g r ~ e  af the vertices of G.  A characterization of bipartite 

graphs with a perfect matching was obtained by Hall [21] in 1935. However, this 

resuit was implied by the earlier work of Konig [30], and consequently it has come to 

be known as the Konig-Hall Theorem (or the Marriage Theorem). 

A big step in factor theory was the establishment of criterion, both necessary 

and sufficient, for a graph to have a 1-factor (perfect matching). This result, which 

may be considered as one of the most fundamental results in graph theory, was found 

by Tutte [Sf in 1937. Later, in the early 1950's, Tutte [551 proved his so-called "f- 

f a x x  Theorem" which is a characterization of graphs with f-factors. A short and 

rlzgrent prwf of this theorem {given later by Tutte [%I) involved transforming the f- 

fac~or pbgern into a 1-factor problem. The main technique he use$ is now referred to 

as an alternating nails argument, and was also used by Gallai El91 to study the k- 



factors in regular graphs. It has become a powerful method in  present-day gs;~ph 

theory. A necessary and sufficient conditions for the existence of a (g ,  t)-factor in  ;i 

graph was obtained by Lov5sz [39] in 1970 and since then the theory of graph factors 

has gown  rapidly. Although many types of factors have been considered, research 

has mainly concentrated on two types; factors with constraints related to degree, so 

called degree-factors, and rhe factors which have each of their components isomorphic 

to one of a given set of subgraphs, referred as component-factor. One of earliest 

papers, we aware of which , deals with component-factors is that of Kirkpatrick and 

He11 [59]. The interested reader can also refer to [I ] ,  1371 and 1441 for more 

information on graph factors. 

In graph theory, much research has been concerned with the problem of 

extending subgraphs with certain properties in a graph G to spanning subgraphs of G 

with the same properties. For instance, Hendry [22] studied graphs in which every 

nonhamiltonian cycle can be extended to a cycle with one more vertex; Liu 13.1, 35 1 

characterized graphs in which every edge can be extended to an [a, bl-factor or an f- 

factor; Yu and Chen 1591 gave a necessary and sufficient condition for a graph to have 

the property that every claw subgraph can be extended to a tree-factor; and Kano 1271 

obtained several sufficient conditions for an r-edge-connected graph to have the 

property that a given edge-set can be extended to a perfect matching. However, a 

great deal of such work has focused on the property of n-extendability. (A graph is 

said to be n-ex tendable  if it contains n independent edges and any set of n 

independent edges can be extended to a perfect matching.) The concept of n -  

extendability seems to have its early roots in a paper of Hetyei [26] who studied i t  for 

bipartite graphs, and papers of Kotzig (see 1441) who used i t  to develop a 

decomposition theory for graphs with perfect matchings. In rhis early paper Fietyei 

obtained three different characterizations of 1-extendable bipartite graphs. Later 

Loviisz and Plumer 1421 gave another characterization which they referred to as an 



"Ear Structure Theorem". Necessary and sufficient conditions for a graph to be 1- 

extendable were given by Little, Grant and Holton [33]. An analogous 

characterization of n-extendable graphs has recently been obtained by the author and 

is presented in Chapter 3 of this thesis. 

There are two good reasons for studying n-extendable graphs. These are the 

desire to know more about the structure of graphs with perfect matchings, and the 

desire to determine good lower bounds on the number of different perfect matchings in 

a graph. Motivated by these problems, Lovrisz [40] began to develop a new structure 

theory for graphs with perfect matchings, and two important new families of graphs - 

bicritical graphs and elementary graphs - were introduced. LovAsz showed that in a 

certain sense any graph with a perfect matching could be constructed using only 

elementary bipartite graphs and bicritical graphs as building blocks. This 

decomposition can be pushed one step further by decomposing bicritical graphs into 3- 

connected bicritical graphs (also called bricks). The new decomposition is referred to 

as Brick Decomposition and for a 1-extendable graph it is uniquely determined (up to 

isomorphism and the mukiplicity of edges). (Brick Decomposition has also turned out 

to be very useful in the study of the matching lattice (Lova'sz [41]).) Subsequent to 

this early work, the study of these two classes of graphs was continued by Lovisz 

and Plummer [42, 431. Today much attention is still focused on understanding the 

structure of 3-connected bicritical graphs as, unfortunately, their structure is still quite 

unclear. 

In 1980, Plummer 1471 studied the properties of n-extendable graphs and 

showed that every 2-extendable graph is either bipartite or a brick. Motivated by this 

result he [39, 501 further looked at the relationship between n-extendability and other 

graphic parameters (e-g., degree, connectivity, genus, toughness). Recently, Schrag 

and Cammack [ 52 ]  and Yu [62] classified the 2-extendable generalized Petersen 

graphs, and Chan, Chen and Yu [ I l l  classified the 2-extendable Cayley graphs on 



abelian groups. Further results concerning n-extendability will be discussed i n  this 

thesis. 

The organization of the thesis is as follows. In Chapter 1, having surveycd 

important results in the history of factor theory and presented a brief background to 

most of the problems we deal with here, we then present some frequently used 

definitions and notations, and several preliminary results. 

In Chapter 2 we discuss tree-factor covered graphs. A tree-factor of a graph G 

is a spanning subgraph of G each component of which is a tree. We obtain ;i 

necessary and sufficient condition for a graph to have the property that every subgraph 

Kl,k can be extended to a tree-factor. The main technique used for this problem is the 

augmenting path method. 

In Chapter 3, we study the effect of deleting edges from n-extendable graphs 

and prove that a conjecture of Saito is true for bipartite graphs For general graphs, in 

light of a recent counterexample of Gyori, we give what is, in some sense, a best 

possible result with respect to this conjecture. We introduce further generalizations of 

n-extendability and characterize graphs with these properties. 

In Chapter 4, we consider the extendability of products vf graphs. These 

results give us an easy way to construct a large family of n-ex~endrtble graphs. We 

also classify 2-extendable generalized Petersen graphs and 2-extendable Cayley 

graphs on abelian groups. The former classification confirms a conjecture of Cammack 

and Schrag [9]. 

In the last Chapter, we count the number of star-factors in graphs and also 

discuss the extendability of powers of graphs. 

81.2. Terminology and notations. 

All graphs in this thesis are finite and have no loops or multiple edges. 



For a graph G, we denote the vertex-set and the edge-set by V(G) and E(G), 

respectively. The order of a graph G is IV(G)I. For any set S C V(G), we denote by 

G-S the subgraph of G obtained by deleting the vertices of S together with their 

incident edges, and by G[S] the subgraph of G induced by S. For T c E(G) we denote 

by G-T the graph obtained by deleting the edges of T from G and by GUT the graph 

obtained by adding the edges of T to G. If T = (e l ,  we write GUT as Gue.  Denote 

the maximum and the minimum degree of G by A(G) and 6(G), respectively. The 

neighbourhood-set of S in G is denoted by NG(S) and is the set of ail vertices in G 

which have a neighbour in S. We use o(G) to denote the number of odd components in 

a graph G, and I(G) denotes the set of isolated vertices in G (i(G) = II(G)I). The 

complement of G, denoted by G, is that graph having the same vertex-set as G, but 

in which two vertices are adjacent if and only if they are not adjacent in G. For a graph 

G, if S, T E V(G), the set of edges with one end-vertex in S and the other in  T is 

expressed by Ec(S, T), and we let eG(S, T) = IEG(S, T)I. If x and y are two vertices of 

a graph G, we denote by dc(x, y) the distance between x and y in G. 

A perfect matching, or 1-factor, of a graph G is a set of independent edges 

which together cover all the vertices of G. For a positive integer t, a t-matching of G 

is a set of t independent edges of G. We call a graph G t-matching covered if every 

edge of G belongs to a t-matching. A graph G is n-extendable if it contains a set of n 

independent edges and every set of n independent edges can be extended to a perfect 

matching of G .  We call G 0-extendable if it has a perfect matching. An edge of the 

graph G is allowed if it lies in some perfect matching of G. A graph is elementary if 

its allowed edges form a connected subgraph. A graph G is said to be bicritical if for 

every pair of distinct vertices u and v in V(G) G-{u, v)  has a perfect matching (so 

bicritical graphs are 1-extendable). A 3-connected bicritical graph is called a brick. 

A graph G is said to be factor-critical if G-v has a perfect matching for every 

VE V(G). 



The cycle, the path, the complete graph and the independent set \vith n vertices 
- 

will be denoted by G, Pn, K, and K,, respectively. If V(C,) = V(P,) = (v l ,  V?, . . ., V, ) 

we write C, = vlv2 ... v,vl, where E(C,) = {vlv2,  v3v4, ..., v,-lv,, v,vl) and P,, = 

V I V ~  ... v,, where E(P,) = (vlv2, ~ 3 ~ 4 ,  ..., V,-~V,]. 

For disjoint graphs G1 and G2, the sum G1+G2 is the graph which has vertex- 

set V(G1)uV(G2) and edge-set E ( G I ) u E ( G ~ ) u ( x ~  I XE V(G1), y~ V(G2)] .  

The cartesian product G1 x G2 of G1 and G2 (also called the cartesian sum) 

has vertex-set V(Gl) x V(G2) and the vertex (ul ,  u2) is adjacent to (v l ,  v?)  if  ;md 

only if either ul = vl and u;! is adjacent to v2 in G2, or u2 = v2 and u l  is adjacent to v i  

in GI. 

The wreath product G1 C3 G2 of G1 and G2 (also called the composition, tensor 

product, or lexicographic product) is the graph with vertex-set V(Gl) x V(G2) and an 

edge joining (ul, u2) to (vl, v2) if and only if either u l  is adjacent to vl in G I ,  or u l  = vl 

and u2 is adjacent to v2 in G2. 

By the definitions of the cartesian and the wreath products, it is easy to check 

that both products are associative and cartesian product is commutative, but the 

wreath product is not. These definitions are illustrated in Figure 1.1 when G 1 = P2 

and G2 = P3. 

G l  . G1 G I  G I  

Figure 1.1 



We have only listed the definitions and notations most frequently used in the 

thesis. Some special terminologies will be introduced in the separate sections. All 

notations used but not defined in this thesis can be found in [6] .  

3 1.3. Preliminary results. 

In this section, we list some results which will be used very often in the rest of 

the thesis. 

Theorem 1.3.1 (Tutte's Theorem [54]) A graph G has a perfect matching if and only 

if o(G-S) S ISI, for all S G V(G). 

Theorem 1.3.2 (Little, Grant and Holton [33]) Let G be a graph of even order. Then 

G is 1-extendable if and only if for all S G V(G), 

(1) o(G-S) 2 IS1 and 

(2) o(G-S) = IS1 implies that S is an independent set. 

Theorem 1.3.3 (See 1441) A graph G is factor-critical if and only if G has an odd 

number of vertices and o(G-S) I ISI, for all 0 ZI S S V(G). 

Theorem 1.3.4 (Plummer [47]) Let n and p be positive integers with p even and p 2 

2n+2. If G is a graph with p vertices, then the following claims hold. 

( I )  If G is n-extendable, then G is also (n-1)-extendable. 

(2) If G is a connected n-extendable graph, then G is (n+l)-connected. 

(3) If p 2 4 and 6(G) 2 5 + n. then G is n-extendable. 



Theorem 1.3.5 (Plummer [37]) Let G be a 2-extendable gruph \i.ith at least sis 

vertices. Then G is either bicritical or elementary rind bipartite. 

Theorem 1.3.6 (Hall's Theorem, see [ 6 ] )  Let B(X, Y) be a bipartite graph. Thcn 

B(X, Y) has a matching of X into Y if and only if IN(S)I 2 IS1 for all S L X. 



Chapter 2. On tree-factor covered graphs. 

52.1. Introduction. 

For a given set of graphs, an F-subgraph of a graph G is a subgraph M of G 

each component of which is isomorphic to one of the subgraphs in the set 7. 

Moreover, if M is a spanning F-subgraph, then M is called an F-factor of G. An y- 

subgraph M of G is said to be maximum, if G has no F-subgraph M' with IV(M)I < 

lV(Mt)l. 

In particular, if F= S(n) = (Kl,k I 1 I k < n),  then an 7-factor of G is also called 

a star-factor, or an S(n)-factor. If F = T(n), the set of all trees with at least one and 

no more than n edges, then an 7-factor of G is also called a tree-factor, or a T(n)- 

factor. 

Let a and b be integers such that 0 I a I b. We say that H is an [a, b]-graph 

if a I dG(x) I b, for all x E V(H). If a spanning subgraph H of a graph G is also an 

[a, b]-graph, then we call H an [a, b]-factor. 

A graph G is F-factor k-covered, 1 I k I A(G), if for every subgraph KlVk of 

G there exists an 7-factor of G containing it. An example of a (K1,l, K1,*)-factor 2- 

covered graph is shown in Figure 2.1. 

Figure 2.1 



In [32] Liirie introduced the concept of a 1-estendrtble graph, ~vt1ic.h i n  o u r  

terminology is a (K2)-factor 1-covered graph and gave a criterion for clnssifyi:,~ 1 - 

extendable graphs. (In fact, Little called these graphs factor-covered graphs; the term 

1-extendable being introduced by Plummer 1471.) Later Little, Grant and Hulton 133 1 

generalized Little's result to t-matchings, and showed that a graph G is t-matching 1 -  

covered if and only if it has a t-matching and each subset S of V(G). for which G - S  

has precisely ISI+IV(G)I-2t odd components, is an independent set. I n  this section 

we generalize these earlier ideas and consider what we call tree-fxtor k-cowrccf 

graphs. These are graphs with the property that every subgraph K l V k  (or k-claw) lics 

in a tree-factor; that is, if the graph has n+l vertices, then it is T(n)-factor li-covercd. 

We will give a criterion for a graph to be tree-factor k-covered. This is a 

generalization of the characterization of a graph having tree-factor. 

If H is a graph, recall that I(H) denotes the set of isolated vertices of H ,  and 

i(H) = lI(H)l. 

52.2. Characterization of tree-factor k-covered graphs. 

The following theorem is proved by Las Vergnas [31] in 1972. 

Theorem 2.2.1 (Las Vergnas [31]) Let G be a graph. Then G has a 11, nl-fxtor, n 

2 2, if and only if i(G-S) I nlSl for every S E V(G). 

Las Vergnas [31, Remark 3.51 observed that G has a [ I ,  n]-factor if and only i f  

it has an S(n)-factor. In fact, Las Vergnas claimed that with respect to edges, an 

S(n)-factor is a minimal [I, n]-factor and there is a polynomial algorithm to produce 



an S(nj-factor from a given [ I ,  n]-factor. These results lead to 2 characterization of 

graphs wirh an S(n)-factor. 

Theorem 2.2.2 Let G be a graph. Then G has an S(n)-factor, n 2 2, if and only if 

i!G-S) < nlSl for every S G V(G). 

Theorem 2.2.2 was also proven independently by Hell and Kirkpatrick [23], and 

Amahashi and Kano [2 ] .  Moreover, the above results are also explicitely mentioned 

in [25j. 

Since a T(n)-factor is a [ l ,  n]-factor and a union of spanning trees of the 

components of a [ I ,  n]-factor is a T(n)-factor, we obtain the following result from 

Theorem 2.2.1. 

Theorem 2.2.3 The graph G has a T(n)-factor, n 2 2, if and only if i(G-S) I nlSl for 

every S G V(G). 

Theorem 2.2.3 gives a criterion for the existence of a T(n)-factor in a graph. 

So, in order to provide a characterization of T(n)-factor k-covered graphs, we need 

only to add more conditions to this. For this, we require more definitions and lemmas. 

This work is joint with C. P. Chen. 

Let G be a graph and A G V(G). If there exists a T(n)-subgraph of G which 

spans A, then A is called T(n)-saturated. Let M be a T(n)-subgraph of G and let 

x , y ~  V(G) (x + y). If x and y belong to the same component of M, then we say that x 

matches y under M. 

For a graph G,  

Geomemcally, defect(G) 

defect(G) = max (i(G-S)-nlSI) is the defect of G. 
S G V ( G )  

is the number of vertices missing from a:,y maximum T(n)- 



scbgraph of G .  Put D(G) = ( S  I S C V(G) and i(G-S)-nlSI = dsfect(G)) .  Clearly. 

defect(G) I 0 for any graph G (put S = 0), and by Theorem 2.2.3 G h:is a T(n)-frlc-ror 

if and only if defect(G) = 0. 

We will need the following three lemmas. Lemma 2.2.4 has been proven 

independently by Las Vergnas [31], Heli and Kirkpatrick 1231 and Y u  1601, 

Lemma 2.2.4 For every maximum S(n)-subgraph M of a graph G 

IV(M)I = IV(G)I-defect(G). 

Lemma 2.2.5 For every maximum T(n)-subgraph M of s graph G, 

IV(M)I = IV(G)I-defect(G). 

Proof: Given a maximum T(n)-subgraph, we can delete edges to get an S(11)- 

subgraph on the same number of vertices. The S(n)-subgraph is maximum for if not, 

since an S(n)-subgraph is a T(n)-subgraph, M would not be maximum. 0 

Theorem 2.2.6 Let G be a graph without a T(n)-factor (n 2 2 ) ,  and let  so^ D(Ci). 

Then there exists a set Vo, V o C  I(G-So) and IVol = defecr(G), such that G-Vo has :I 

T(n)-factor. 

Proof: As So€ D(G), i(G-So) = nlSol+defect(G). Also, in  any T(n)-subgraph of Cj 

each vertex in So matches with at most n vertices in I(G-So). Therefore, any T(n)- 

subgraph of G leaves at least defect(G) unsaturated vertices in I(G-So). 

Let M be a maximum T(n)-subgraph of G7 and Vo be the set of all vertices in 

I(G-So) unsaturated under M. Then lVol 2 defect(G). But, by Lemma 2.2.5, defect(G) 

= IV(G)-V(M)I 2 IVol 2 defect(G) and so lVol = defect(G). Therefore M is a T(n)- 

factor of G-vo. U 



The following theorem is fundamental to the proof of our main theorem. 

Theorem 2.2.7 Let G be a graph, and K a Kl,k subgraph of G,  where 1 I k I n. Thm 

G has a T(n)-factor containing K, n 2 2, if and only if 

(1)  i(G-S) < nlSl for every 9 G V(G), and 

( 2 )  i(G*-S) 5 nlSl+(n-k) for every S G V(G*), where G* = G-V(K). 

Proof: We first prove the necessity of the conditions. Let M be a T(n)-factor in  G 

which contains K. Denote by C the component of M which contains K. Let A = V(C)- 

V(K). Since CE T(n), we have IV(C)I I n+l. Moreover, IV(K)I = k + l  and thus IAI 5 

n-k. Set G* = G-V(K). Because G-V(C) = G*-A has a T(n)-factor, then by 

Theorem 2.2.3 we have i(G*-A-S*) I nlS*l for every S* G V(G*)-A. Let 

S G V(G*). Then S-A 'Z V(G*)-A and i(G*-A-(S-A)) < nlS-AI. Therefore, 

i(G*-S) I i(G*-A-(S-A))+IAI < nlS-AI+IAI I nlSl+(n-k). 

Consequently, condition (2) holds. Condition (1) holds by Theorem 2.2.3. 

It now remains to prove the sufficiency of the conditions. We will do this by 

giving an augmenting path procedure to construct a T(n)-factor containing K. 

Suppose that conditions (1) and (2) hold. Condition (1) simply tells us that G 

has a T(n)-factor. 

If G* has a T(n)-factor F, then FuK is a T(n)-factor of G containing K. 

Suppose then that G* has no T(n)-factor. From this and condition (2) we have n-k 2 

defect(G*) > 0. Let So€ D(G*). Then i(G*-So)-nlSol = defect(G*). It follows from 

Lemma 2.2.6 that there exists a set Vo, Vo G I(G*-So), so that lVol = defect(G*) and 

G*-Vo has a T(n)-factor Mo; that is, Mo is a T(n)-factor in G-V(IC)-Vo. Notice that 

hqo consists of n-stars and each n-star has its centre in So and n leaves in I(G*-So)- 

vo- 



Figure 2.2 

Suppose that for every vE Vo, N ~ ( { v ) ) n v ( K )  # 0. For each v€ Vo choose a 

vertex V'E NG((v))nV(K), and let Eo be the set of edges vv'. So lEol = defect(G*) 

and To = G[E-ouE(K)] is a spanning tree containing K in G[VouV(K)] (see Figure 

2.2). Since 

IE(To)l = defect(G*)+IE(K)I I (n-k)+k = n, 

To is a T(n)-factor containing K in GIV(K)uVo], and MouTD is a T(n)-Fmor of G 

containing K. 

Otherwise, there exists a vertex v, v€ Vo, such that N G ( v ) n V t K j  = C3. For 

every A G So, recall that NI(A) is the neighburhood of A in I{G*-So). Denote by 

rM,(A) the set of vertices which are matched under Mo with vertices in A. 

Set 

SI  = { X I  X E  S o a n d x v ~ E ( G ) )  

S2 = ( X  I x E SO-S1 and fi((x))nrM,(S1) # 0 )  

S3 = {x I x E So-(SluSr) and NI({x)}nTMo(S2) # 0)  



ffi-: 

S,, = { x  ! x E So-( u Sq j and X~({xf)nT~~,(S,-i> ;. B), 

where rn fs the maximum integer satisfying the above properties. 

Since G has a Xnl-factor, G has no isolated vertices. This implies that S l  # 

m 

. Since So€ DG*). Ihe subset SJ of So satisfies 
1'1 

m n 

IrM,( SI )I = r~ i y Sj I. 
J'H 3 - 8  

m 

We cfaim that rM,( " Sj )nN@f(K)) f 0. Since S ,  is the last set definzd, there is 
1'1 

m rn rn 

no edge from So - Sj to Th$,( Sj ). If rM,( " Sj )nNr(V(Kj) = 0, then I(G- 
J'S j-! J =  1 

rn m 

u Sq) 2 FM,( Sj) (see Fi-eure 2.3, where dotted lines indicate the edges of IMo). 
1 = ~ ' f  

m 

Since Nc(v) G S1, then rE I(G- u Sj) and hence 
1'1 

m rn 

i(G - w S j  ) 2 n l a~ Sj 1+1, 
I =  j - I  

which is contrary to / I  ). 

Figure 2.3 
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Let yr be a vertex of (Th~.I,(S,)-S,)nN r(V(K)) and x, be the vertex of S, 

matching y, under Mo. For 2 I i I r, let yi-1 be the vertex which is adjacent to s, in 

rMo(Si-I) and xi-1 the verrex of Si-l matching yi.1 under Mo. Let x l  be 3 vcrtrs 

matching yl in S1. 

Set  

MI = Wf X I Y I P  --, xrYrIufxlv, x2Y1, - . - 3  xryr-11, 

and V1 = ( V o - ( v J ) ~ ( y , } .  Then, from the construction of Sj, M1 is a T(n)-factor in 

G*-VI (see Figure 2.4)- 

Figure 2.4 



If, for every UE V1, NG({u))nV(K) z 0, then the proof is finished by the same 

argument as applied earlier to Vo. Otherwisz, there is a vertex u ' f  V1 with no 

neighbours in K and we repeat the argument to obtain the independent set VZ. 

Continuing in this way we eventually reach a vertex-set Vp (p 5 IVol) and a T(n)- 

factor Mp in G*-Vp, so that every vertex in Vp is adjacent to V(K) (that is, 

N G (  ( v  ) )nV(K)  ;t 0 for all VE Vp). An application of the first argument now 

con~pletes the proof. 0 

Corollary 2.2.8 Let G be a graph and 1 I k I n. If i(G-S) I nlSI-(n+l )k for every S 

G V(G), then G is T(n)-factor k-covered (n 2 2). 

Proof: Clearly condition (1) of Theorem 2.2.7 is satisfied. 

For any given KlSk subgraph K of G, set ti* = G-V(K). For every S C V(G*), 

we have 

i(G*-S) = i(G-V(K)-S) I nlV(K)uSI-(n+l)k 

= nlSl+n(k+l)-(n+l)k = nlSl+(n-k). 

Thus, condition (2) of Theorem 2.2.7 is also satisfied. So G has a T(n)-factor 

containing K and G is therefore T(n)-factor k-covered. 

For a fixed k-claw K of G, from Theorem 2.2.7 we obtain necessary and 

sufficient conditions for the existence of a T(n)-factor containing K. Our next step is 

to obtain a characterization of T(n)-factor k-covered graphs. Such a characterization 

will necessarily be independent of the choice of k-claw. 

Theorem 2.2.9 Let G be a graph, and 1 I k I n. Then G is T(n)-factor k-covered, n 2 

2, if and only if 

(I)  i(G-S) I nlSl for every S C V(G) and 

(2) i(G-S) > nlSl-(n+l)k implies that A(G[S]) < k. 



Proof: Suppose that G is T(nj-factor k-covered and so condition ( 1 )  holds. Supposc 

that there exists a subset of vertices So, So C V(G), such that nlSol 2 i(G-So) > 

nlSol-(n+l)k and A(GISoJ) 2 k. Since A(G[So]) 2 k, then GISo] contains a 

subgraph K. Set G* = G-V(K) and S = So-V(K). Then 

i(G*-S) = i(G-V(K)-(So-V(K))j = i(G-So) 2 nlSol-(n+l)k+ 1 

= nlSl+(n-k)+l 

and so by Theorem 2.2.7 G has no T(n)-factor containing K, a contradiction. 

We next prove the sufficiency of the theorem. Suppose that there were :i I( 1 ,k 

subgraph K of G such that G had no T(n)-factor containing K. Set G* = G-V(K). By 

Theorem 2.2.7 there exists a set S, S G V(G*), such that i(G*-S) > nlSl+(n-kj. Set 

So = SuV(K). Then 

i(G-So) = i(G*-S) > nlSl+n-k = nlSol-k(n+l). 

But A(GISo]) 2 A(K) = k, and we have found a set S which does not satisfy (2). C] 

Note that from Theorem 2.2.1 and Theorem 2.2.3 i t  follows that the existence of 

a star-factor or of a tree-factor in a graph is the same. But, tree-factor covered 

graphs do not necessarily satisfy the conditions for star-factor covered graphs. For 

example, the path of length 3, P4, is T(3)-factor I-covered but not S(3)-factor 1 -  

covered. In this sense, the conditions for the existence of S(n)-factor I -covered 

graphs are stronger than those required for T(n)-factor 1-covered graphs. 

To conclude this chapter, we present the following open problem: 

Problem: Characterize star-fac tor covered graphs. 



Chapter 3. On n-extendable graphs. 

$3.1. Introduction. 

Recall that a graph G is n-extendable if it contains a set s f  n independent 

edges and every set of n independent edges can be extended to a perfect matching of 

G. The family of n-extendable graphs is quite large. For example, the cube (see 

Figure 3.1), the tetrahedron, the dodecahedron and the complete bipartite graph K,,, 

are 2-extendable. In fact, if the minimum degree 6(G) is larger than n+lV(G)1/2 and 

IV(G)I 2 4, then G is n-extendable (see Theorem 1.3.4 (3)). 

Figure 3.1 The cube is 2-extendable 

Plummer [47], [50] studied properties of n-extendable graphs, and the 

relationship between n-extendability and connectivity. In particular, he investigated 

the effect on extendability when an edge is deleted from an n-extendable graph, and 

showed that for any edge e = xy of an n-extendable graph G (n 2 I), G-e is (n-1)- 

extendable. In the case when an edge is added rather than deleted, Saito [51] made 

the following conjecture: 

Saito's conjecture: If a connected graph G is n-extendable and G K,,, or K2, 

for some r, then there exists an edge e c ~ ( G )  such that G u e  is n-extendable. 



For n=l, Saito noted that the conjecture can be easily proven and such a prooi 

will be presented in the next section. Very recently, Gyori (personal communicst ion) 

proved that K, x K, is a counterexample to Saito's conjecture. In particular, he 

showed that if both r and rn are even then K, x K, is (f + -1)-extendable, 

edge eE E( K, x K, ) the graph (K, x K,)ue is not (: + 5 - 1)-extendable. 

3.2, we shall show that the conjecture is true if G is bipartite, and that 
- 

but for :my 

In section 

if G is not 

bipartite and eE E(G), then G u e  is (n-1)-extendable. In  light of Gyiiri's 

counterexample, this result is, in same sense, best possible. However, i t  would be 

interesting to determine all n-extendable graphs G in which there exists an edge 

e c  E(G) such that G u e  is n-extendable. In other words, are K, x K, h e  only 

counterexamples to Saito's conjecture? 

Little, Grant and Holton [33] gave good characterizations of I-extendable 

graphs and 1-extendable bipartite graphs. In 1971, Brualdi and Perfect [71 g i v e  a 

characterization of n-extendable bipartite graphs, but their result is described in terms 

of matrices and system of distinct representatives. The more results on n-extendable 

bipartite graphs were obtained by Plummer [48]. In particular, Brualdi and Csima (81 

proved that a k-regular bipartite graph of order 2m is n-extendable if and only if k = 1 

or n I 2k-m. In section 3.3, we shall give criteria for a graph to be n-extendable (n 2 

1). Since n-extendable graphs must have a 1-factor, we deal only with graphs of even  

order. For graphs of odd order, we generalize the idea of n-extendability a n d  

introduce n$ -extendability. A graph G is nl-extendable if ( I )  for any vertex v of 

V(G) there exists a set of n independent edges in G which miss v and (2) for every 

vertex v and every set of n independent edges el = xlyl,  e;! = x2y2, ..., en = x,y, 

missing v, there exists a near perfect matching of G which contains el, e2, ..., en and 
1 

misses v. Analogous to n-extendability, we study the properties of n? -ex tendable 



graph and give a characterization of these graphs. The generalizations of factor- 

critical and bicritical to I$ -extendability are also discussed. 

Several results in this chapter will be based on the following observation. 

Observation 3.1.1 A graph G, IV(G)I 2 2n+2, is n-extendable if and only if for any 

matching M of size i (1 I i I n) the graph G-V(M) is (n-i)-extendable. 

Proof: Suppose that G is n-extendable. For any matching M of size i (1 I i < n), let 

H = G-V(M). Observe that by Theorem 1.3.4 (1) H has a perfect matching. Let M' 

be a matching of H with n-i edges. Then MUM' is an n-matching of G and thus there 

exists a perfect matching P of G containing MUM'. Clearly, P-M is a perfect matching 

of H which contains M' and so H is (n-i)-extendable. 

Conversely, for any matching Q of size n in G, let M be a subset of Q with i 

edges. By assumption G-V(M) is (n-i)-extendable. Thus there exists a perfect 

matching P of G-V(M) containing Q-M and therefore PuM is a perfect matching of G 

containing Q. C] 

$3.2. Om Saito's conjecture. 

We start this section by stating the characterization of 1-extendable bipartite 

graphs obtained by Little, Grant and Holton [33]. 

Theorem 3.2.1 (Little, Grant and H o l m  [33]) Let B(X, Y) be a bipartite graph with 

IXI = IYI. Then B(X, Y) is 1-extendable if and only if for every non-empty proper 

subset S of X we have INY(S)I > ISI, where NY(S) is the neighbourhood of S in Y. 



In order to prove Saito's conjecture for n = I ,  we introduce the closure of ;i 1-  

extendable graph G. This is the graph obtained from G by recursively joining pairs of 

nonadjacent vertices x and y such that G u ( x y )  is 1-extendable unri l  no such pair  

remains. We denote the closure of G by c(G). Notice that c(G) is 1-extendable. 

Lemma 3.2.2 c(G) is well defined. 

Proof: Let G1 and G2 be two graphs obtained from G by recursively joining pairs of 

nonadjacent vertices x and y such that G u ( x y )  is I-extendable un t i l  no such pair  

remains. Denote by el, e2, ..., em and fl, f2, ..., f, the sequences of edges added to G i n  

obtaining GI and G2, respectively. We shall show that each e; is an edge of G2 and 

each fj is an edge of GI. 

Let ek+l = uv be the first edge in the sequence el, e2, ..., em that is not an edge 

of G2. Set H = Gu{el ,  e2, ..., ek). It follows from the definition of G I  that H U ( ~ ~ + ~  ) 

is 1-extendable. By the choice of ek+l, H is a spanning subgraph of G2. Since 

ek+lE E(G1), there exists a perfect matching F of H u  (ek+l J contairling ek+l and F is 

a perfect matching of G2u{ek+l]. That is, ek+lE E(G2). This is a contradiction, since 

u and v are nor adjacent in G2. Therefore each e; is an edge of G2 and, similarly fj is an 

edge of GI. Hence G1 = G2 and c(G) is well defined. 0 

The next result is the case n = 1 of Saito's conjecture. We state it i n  the form 

of closure. The proof was first sketched by Saito (private communication). 

Theorem 3.2.3 If a connected graph G is 1-extendable, then c(G) is K2, or K,,,, 

where IV(G)I = 2r. 

Proof: In a connected, 1-extendable graph G, let F = (xlyl ,  x2y2, ..., x,y,) be a 

perfect matching of G. Since G is connected, there is an edge adjacent to two edges of 

F. Suppose this edge is xly2. Then x2ylE c(G) as F- {xIyl, x2y2 ) v I x y2, x2y 1 } is a 



perfect matching containing ~ 2 ~ 1 .  Therefore ( x l ,  yl ,  x2, y2) induces a complete 

bipartite graph K2,2 in c(G). Suppose we have the subgraph Kt., with vertices (x,, s2, 

..., x,, yl, y2, ..., yt)  and t c r. Since 6 is connected, there exists an edge of G joining a 

vertex of { x:, x2, ..., XL, yi7 Y2, .-., yt) to One of ( x ~ + l ,  Xt+2, ..., Xr, Yt+l, Yt+2, ..., yr} , Say 

xiyt+lE E(G). Then x,+ly;E c(G). Hence xt+lyj (j # i) is an edge of c(G) as F-{xiyi, 

xjyj, xt+lyt+l )U (x,+ryj, xjyi, x;yt+l) and, similarly, xjyt+l (i # i) lie in c(G). So we 

have a subgraph K,+l,,+l in c(G). Continuing this argument, we conclude that c(G) 

contains a subgraph K,,. 

If both (x l ,  x2, ..., x,) and ( y l ,  y2, .-., yr) are independent sets in G, then c(G) 

Z K,,, and we are done. Otherwise, without loss of  generality, assume that 

xlx2E E(G). Then clearly y 1 y ~ E  E(c(G)). Since ~ 1 x 2 ,  y l y 2 ~  E(c(G)), then x l x i ~  

E(c(G)) (3 I i I r) as F - (x ly l ,  ~ 2 ~ 2 ,  x ~ ~ ~ ) u ( x ~ x ~ ,  x2y;, y1y2) (see Figure 3.2) is a 

perfect matching containing xlxi. A similar argument yields ylyi€ E(c(G)) for 3 I i I 

r. From this we can deduce that for all i and j both xixj and yiyj are contained in 

perfect matchings. Therefore c(G) E K2,- 

Figure 3.2 

We now prove that Saito's conjecture holds if G is a bipartite graph. 



Theorem 3.2.4 If the connected bipartite graph G = B(X,Y) is n-extendable, then for 

any edge e = xy of ~(ii) ,  with x c  X and y€ Y. G u e  is n-extendable. 

Proof: Suppose that the conclusion of the theorem is false. Then there exists an 11- 

extendable bipartite graph G = B(X,Y) so that for some edge e = sy, where X E  S ,  

y e  Y and x y ~  ~ ( 6 ) .  G u e  is not n-extendable. Thus there exist n independenr edges 

of G u e  which cannot be extended to a perfect matching. Since G is n-extendable. one 

of these edges is e. Let the others be el, e2, ..., en-1, where e; = xiy; ( 1  2 i 5 n - l ) ,  

X i €  X and y;E Y. Let X' = X-(x, xl, ..., xn-l} and Y' = Y-(y, yl, ..., yn-1). Since 

B(X',Y9) has no 1-factor, by Theorem 1.3.6 (Hall's Theorem) there exists a set S S' 

such that INy.(S)I < ISI. Now INy.uIy)(S)I I INy(S)I+l or INy~,(,l(S)I I ISI, and thirs 

by Theorem 3.2.1, the bipartite graph B(X1u (x) ,  Y ' u  ( y )) = G- [xl ,  x2, ..., xn. 1, y1, y2, 

..., y,-1) is not 1-extendable. But this contradicts Observation 3.1.1. 0 

Corollary 3.2.5 Saito's conjecture is true for the case of bipartite graphs. 

Note that if G is as described in Theorem 3.2.4, then for any edge e with V(e) 

G X or Y, G-V(e) is a bipartite graph with a different numbers of vertices in  each 

bipartition. So G-V(e) has no perfect matching. Thus G u e  is not even 1-extendable. 

So it was important to choose the edges as described in Theorem 3.2.4. In the case of 

non-bipartite graphs Gyori has provided examples of graphs which are counter- 

examples to Saito's conjecture. We will show that the graph K2, x K2 is such a 

counterexample. 

Theorem 3.2.6 (Gyiiri) For any integer r 2 1, K2, x K2 is r-extendable. But for any  

edge e, e€ E( K2, x K2 ), the graph (Kz, x K2)ue  is not r-extendable. 



Proof: in Theorem 4.2.9 we shall prove that if H is k-extendable, then K x K2  is 

(k+l)-extendable. Using this and the fact that Kzr is (r-1)-extendable, then K2, x K2 

is r-extendable. 

Let V(K2,) = ( x l ,  x2, ..., x2,) and V(K2) = (1, 21. Then E( K2, x Kz ) = 

((x;,  I)(xj7 2) 1 xi + xj). To show that (K2r x K2)ue  is not r-extendable for each 

e€ E( Ka x K2 ) we need only to consider the edge e = (xl , l)(x2, 2). Let el = 

( ~ 3 %  1)(x4, I), e2 = (x5, l)(x6, 11, ..., e,-I = (xzr-17 1 ) ( ~ 2 r t  1). Then e, el, e2, ..., are 

r independent edges of K2, x K2 and (x2, 1) is an isolated vertex of (K2, x K2)-V({e, 

c 1 ,  e2, ..., G-1)) .  Hence (K2r x K2)ue is not r-extendable. 0 

Actually, Gyori proved that if both r and m are even then K, x K, is a 

counterexample to Saito's conjectuie. Although Saito's conjecture is not true in  

general, we can prove that if G is not bipartite, then for any edge e, e e  E(G), G u e  is 

(n-1)-extendable. This result is rather strong in the sense that it holds for all edges 

and in view of the falsity of the conjecture this is the best one can expect. 

To reach this main result we need the following lemma. 

Lemma 3.2.7 If G is a connected n-extendable graph (n 2 2) and M is a matching of 

size i ( I  I i I n-1) in G, then G-V(M) is connected. 

Proof: Suppose that C-V(M) is disconnected, where M is a matching of size i (1 I i 

5 n-1). Let el, e2, ..., ei be the edges of M and ej = xjyj (1 I j 5 i). Consider the 

graphs Go= G, GI = Go-(xl, yl ] ,  G2= GI-(x2, y2), ..., Gi= Gi - l -{~ i ,  yi) = G-V(M). 

Since Go is connected and n-extendable (n 2 2), by Theorem 1.3.4 (2) it is at least 3- 

connected. Thus G1 is connected. Since Gi is disconnected, there exists an h,  where 

1 I h I i - I ,  such that Gh is connected but Gh+1 is disconnected. Also, by Observation 

3.1 . l ,  Gh is (n-h)-extendable, and so, as n 2 i+l and h I i-1, Gh is at least 2- 



exrendable. From Theorem 1.3.4 ( 2 ) ,  Gh is 3-connected. and this implies that Gh+ = 

G h - ( ~ h + l ,  yh+l] is connected, which is a contradiction. 0 

We will now prove the main result in this section. 

Theorem 3.2.8 Suppose that G is a connected, n-extendable (n 2 1 ), non-bip;~rtite 
- 

graph of order at least 2n+2. For any edge e = xyE E(G), G u e  is (n-  1)-extendable. 

Proof: Suppose that the connected, non-bipartite graph G is n-extendable. If for any 
- 

edge e = xyE E(G), G u e  is n-extendable, then by Theorem 1.3.4 ( I ) ,  we are done. 
- 

So we assume that for some e, e = x y ~  E(G), G u e  is not n-extendable. 

Suppose also that C u e  is not (n-1)-extendable, although by Theorem 1.3.3(1) 

G is. Then there exist n-1 independent edges (including e) which cannot be extended 

to a perfect matching of Gue.  Let these edges be e = xy, el = xlyl, ..., e , , . ~  = x,-2yn-z. 

Thus there is no perfect matching in the subgraph 6' = G-(x, y, xl, y l ,  ..., xnA2, Y , , . ~ ) .  

By Theorem 1.3.1 (Tutte's theorem), there exists a subset S of V(G') such that  

o(G1-S) 2 ISI+l and a simple parity argument then yields o(G1-S) 2 IS1+2. Let S' = 

Su{x,y). We will show that S' is an independent set in G" = G- { xl, y l ,  .-., xn.2, ~ n - 2  1 .  

Clearly, 

o(GW-S') = o(G'-S) 2 IS1+2 = IS'I. 

But since G" is 2-extendable (by Observation 3.1.1), it follows from Theorem 1.3.4(1) 

that G" is 1-extendable. Theorem 1.3.2 then yields, o(G"-S') 5 IS'I and hence 

o(G"-S') = IS'I. Theorem 1.3.2 now implies that S' is independent in G". 

Next, we shall prove that each odd component of G"-S' is a singleton. I f  not, 

let O1 be an odd component of G"-S' with 1011 2 3. By Lemma 3.2.7, G" is connected. 

Moreover, from Theorem 1.3.4 (2), G" is 3-connected (and IS'I 2 3). Consider the 

fouowing version of Menger's Theorem ([12, ~1631): 



"A graph G of order p 2 2n is n-connected if and only if for every two disjoint 

sets V1 and V2 of n vertices each, there exist n vertex-disjoint paths connecting V i  

and V2." 

Using this i t  follows that there exist two independent edges f and ,a from O1 to two 

vertices of S', say ul,u2. Let z l  and 22 be the end-vertices o f f  and g in 0 1 .  Letting S" 

= S1-(ul, ~ 2 1 ,  

o((G"-{u17 u2, Z I ,  z2])-St') 2 0(G1'-S') = IS'I > IS"I. 

That is, G"-(ul, u2, zl, z2) has no perfect matching, which contradicts the fact that G" 

is 2-extendable. So loll = 1. 

Since G" is 2-extendable and connected it follows that, as o(GM-St) = IS'I, G"- 

S' has no even components. Thus d l  components of G"-S' are singletons, and as S' is 

independent, G" is a bipartite graph. 

Finally, we show that G[V(GW)u(xl, yl)]  is bipartite. 

From Lemma 3.2.7, we know that G* = G[V(G")u{xl, yl ) I  is connected. By 

Observation 3.1.1, G* = GIV(G")u(xl ,  y l ) l  = G-(x2, ~ 2 ,  ..., xn-2, yn-2) is 3- 

extendable, and so is 4-connected. Let the bipartition of G" be X W u Y "  where IX"I = 

IY"1. Since G* is 4-connected, each of x l  and yl has degree at least 4. If G* is not 

bipartite either N((x1, yl]) E X" (or Y") or at least one of xl and yl has a neighbour 

in each of X" and Y". The fust case is eliminated as it implies G* is not Zextendable. 

In the second case, suppose that xl has a neighbour in each of X" and Y". But then 

either IN((xl, y l ) ) n X W I  2 2 or IN((xl, yl))nY"I 2 2 and again G* is not 2- 

extendable. So G* is bipartite. Therefore, we can add each of {el, e2, ..., e , 4  to G" 

one by one and conclude that GIV(G")u(xl, yl, ..., x,a, yn-2)1 = G is bipartite. But 

this contradicts the assumption. 0 



Even though Saito's conjecture is not true for nm-bipartite graphs, i t  does hold 

for all such graphs with large enough minimum degree. We conclude this section tvith 

a statement of that result. 

Theorem 3.2.9 Saito's conjecture holds for any n-extendabIe gaph  of order p, p 2 4 

and minimum degree 6(G) 2 +n. 

Proof: Since the minimum degree 6(G) 2 + n,  G is a non-bipartilr graph. The 

result follows from Theorem 1.3.4 (3) immediately. 0 

$3.3 Some generalizations related to n-extendability. 

We begin by giving a characterization of n-extendable graphs which is a 

generalization of Theorem 1.3.2. 

Theorem 3.3.1 A graph G is n-extendable (n 2 1) if and only if for any S G V(G) 

(1) o(G-S) I ISI and 

(2) o(G-S) = ISI-2k (0 I k I n-1) impIies that FIS) I k, where F(S) is the 

size of maximum matching in G[S]. 

Proof: "a" As G has a perfect matching (1) follows from Theorem 1.3.1. Suppose 

o(G-S) = ISI-2k (0 I k I n-1) for some vertex-set S G V(G). We consider first the 

case that k = n-1. In this case, assume F(S) > n-1. Let e; = xiyi (1 5 i < n-I)  be n- 1 

independent edges in GIs]. By Observation 3.1.1, G-{xl, yi,  ..., x,-1, y,_l)  is 1 - 

extendable. Let G' = G-jxl, y1, ..., x,l, ynVl) and S' = S-{xl, yl, -.-, x,-1, y,- 1 j .  Then 

o(G1-S') = o(G-S) = ISI-2(n-1) = IS'I. By Theorem 1-3.2, S' is an independent set. 

Thus F(S) I F(S1)+(n-1) = n-1 = k, a contradiction. Since k-extendability implies 

(k-1)-extendability, (2) holds for 0 I k 5 n-2. 



"e" The prmf w i l  use induction on n. 

If  n = 1, the claim holds from Theorem 1.3.2 as F(S) = O means that S is 

independent. 

Suppore rhat the claim holds for n < r. Consider n = r. By the induction 

hypothesis, ( I )  and (2) imply that G is (r-1)-extendable. If G is r-extendable, we are 

done. Otherwise, there exist r-l independent edges ei = xiyi (1 5 i 5 r-I) so that G' = 

G- f x 1, YF, ..., x,-I, yt-1 J is not I-extendable. Since G' has a perfect matching, 

condition 6 % ) of Theorem 1-3.2 holds. Thus, if G' is not I -extendable, then there exists 

a set S' f; V(G') so that &G'-S*) = IS1 and F(S') 2 1. Let S = S 'wfx l ,  yl,  ..., x,-1, 

y,.l f -  Then o(G-S) = ofG"-S') = fS'I = ISI-2(r-1) and F(S) 2 F(S'))tr-1) 2 r, which 

contndias condition f 2). 

Next we study relationships between n-extendability and 4 -extendability. It 

1 rums out that they are very similar. If a new vertex joins to all vertices of an ny - 

extendable graph G ,  then the resulting graph is (n+l)-extendable. Thus (n+l j- 

extendable graphs can be obtained by &is manner and in this sense, 4 -exrendability - 
is weaker than (nc1)-extendabiliry. On the other hand, if G is 4 -extendable, then 

for any vertex v€ V(G). G-v is n-extendable. Hence n$ -extendability is *'stronger1' 

&an n-extendability. However, there exist (n+l)-extendable graphs with the 
a propmy that on deletion of some vertex the resulting graph is not n s  -extendable; for 

r5cmpk. &e cube G of Figure 3.2 is 2-extendable but on deleting zny vertex v, G-v is 
1 nor 17 -extendable. So it is natural to think of n i  -extendability as lying between n - 

and (*+I)-extenhbiliry. Not surprising then, we can characterize all ni -extendable 

graphs in xwms of n-extendable and (n+t)-extendable graphs. " 

Theorem 3.3.2 A gnpb G of odd order is 4 extendable if and only if GcKl  is 



Proof: Assume that G is n?; -extendable. Let H = G+KI, where V ( K I  I = r )  il~ld - 
choose n+l independent edges, e; = xiyi (i = 1, 2, ..., n+ 1) of E(H). 

Case 1 .  All n+l  independent edges lie in E(G). Since G is n i  -cxtend:d~lc., - 
there exists a near perfect matching M containing el ,  e l ,  ..., en and missing snTl in 6 .  

Let w be the vertex adjacent to  yn,l in M. Then M - ( ~ y ~ + ~ ] u { w z .  xn+ly,+l) will he a 

perfect matching of H containing el, ez, ..-, %+I. 

Care 2. Suppose that one of el,  e2, ..., en+l is not in E(G), say en+ 1. Let e,, + 1 = 

zw, where w E V(G)-fxl, y ~ ,  ..., x,, y,}. Then there exists a near perfect matching M 

of G containing e l ,  e2, ..., e,, and missing the vertex w. Thus M u ( z w )  is a perfect 

matching of H as required- 

Conversely, for any n independent edges el, e2, ..., e, of E(G) and vertex v of 

V(G) not lying on these edges, there exists a perfect matching M of H containing el, 

ez, .-., e,,, vz. Then M' = M-(2) is a near perfect matching of G which contains e l ,  e2, 

..., e, and misses v. /-j 

Remark 3.3.3 Even though when G is  4 -extendable, G+KI is (n+l)-extendable, i t  

1 is not the case that if G is n-extendable, then G+Kl is n, -extendable. For example, 

the cycle C6 is 1-extendable, but C6+K1 is not I+ -extendable 

From the definition of $ -extendability, we have the following observation. 

Observation 3.3.4 A graph G is $ -extendable if and only if G-v is n-extendable fur 

m y  vertex VE V(G). 

We now give a characterization of I$ -extendable graphs. 

Theorem 3.35 A p p h  G is 1: -extendable if and only if for any S G V(G), S t O, 



(1) o(G-S) 5 ISI-1 and 

(2) if both o(G-S) = ISI-1 and IS1 1 3, then S is independent. 

Proof: "=1" If G is 1: -extendable, then G is factor-critical, and by Theorem 1.3.3 

condition (1) holds. 

Suppose there exists a vertex-set S of V(G) with IS1 2 3 such that o(G-S) = 

ISI-1 but S is not independent. Let e = xyE E(G[S]) and zc  S-(x,y). Let G' = G-(2) 

and S' = S-(z).  Then, as by Observation 3.3.4 G' is 1-extendable, it follows that 

o(G1-S') = o(G-S) = ISI- 1 = IS'I. From Theorem 1.3.2 St must be an independent. But 

this contradicts the fact that eE E(G[Si]). 

"e" Condition (1) guarantees that G has an odd number of vertices (choose S 

= ( v ) ,  VE V(G)) and then Theorem 1.3.3 implies that G is factor-critical. But we need 

the stronger result that G-(v) is 1-extendable for any VE V(G). Suppose that for 

V E  V(G) and e e  E(G-V) there is no perfect matching in G-v containing e. Since G-v 

has a perfect matching, then by Theorem 1.3.2 and Theorem 1.3.1 we know that there 

exists a vertex-set S Z V(G-V) so that o(G-v-S) = IS1 and S is not independent. 

Thus IS1 2 2. Let S" = Su{v) .  Then o(G-S") = o(G-v-S) = IS1 = 1S"I-1 and IS"l 2 3, 

but S" is not independent. This contradicts condition (2). 0 

Theorem 3.3.6 A graph G is I$ -extendable if and only if for any S G V(G), S # 0, 

(1) o(G-S) I ISI-1 and 

(2) if o(G-S) = ISI-2k-1 (0 5 k 5 n-1) and IS1 2 2k+3 for some vertex-set S G 

V(G), then F(S) 5 k, where F(S) is the size of maximum matching in G[S]. 

Proof: The proof will be by induction on n. 

If n = I, we use the claim of Theorem 3.3.5. 

Suppose the theorem holds when n < r, and consider the case n = r. 

* Assuming that G is r i  -extendable, it follows that G is factor-critical. 

Thus (1) follows from Theorem 1.3.3, If o(G-S) = ISI-2k-1 (0 I k I r-2) and IS1 2 



2k+3, then by the induction hypothesis, F(S) I k. Suppose then that there exists ;t 

set S such that o(G-S) = 1st-2(r-1)-1 and IS1 2 2r+l (k = r-1), but F(S) 2 r. Let e; = 

xiyi (1 5 i I r) be r independent edges in G[S], vE S' = S-(xl ,  yl ,  ..., x,, y,) and G' = 

G-{x l ,  yl ,  ..., x,, y,, v). Then o(G1-S') = o(G-S) = ISI-2r+l = ISt1+2 > IS'I and by 

Tutte's theorem, G' has no perfect matching. This contradicts the hc t  that G is & - 
* 

extendable. 

' I t  " Suppose that conditions (1) and (2) hold but G is not r i  -extendable. 

Then there exists a vertex VE V(G) such that G-v is not r-extendable. Applying 

Observation 3.1.1, there exist independent edges e; = xiyi (1 I i I r-1) so that G' = G- 

V-{xl, yl, ..., ~ ~ - 1 ,  yr-l) is not 1-extendable. However, from the induction hypothesis 

G is (r-1); -extendable and thus G' has a perfect matching. Then from Theorem 1.3.1 

for all S G V(G'), o(G'-S) I ISI. But now as G' is not 1-extendable, from Theorem 

1.3.2, there exists a set S' S V(G') such that o(G'-St) = IS'I and S' is not independent. 

Let S = S 'u (v ,  XI, yl, ..., xr-1, yr-1). Then o(G-S) = o(G'-S') = IS'I = ISI-2(r-1)- 1 = 

1st-2r+l and so IS1 = IS'1+2(r-l)+l 2 2+2(r-l)+l = 2r+l. But F(S) 2 F(S1)+(r-I) 2 r, 

which contradicts condition (2) when k = r-1. C] 

Corollary 3.3.7 If G is an 4 -extendable graph, then G is also (n-l$ -extendable. 

We now turn to study some of the properties of I-$ -extendable graphs. They 

are analogous to those of n-extendable graphs. 

Theorem 3.3.8 If G is a graph of order 2r+l, r 2 n+ l  2 2 and 6(G) 2 r+n+l, then (; is 

nf -extendable. Moreover, the lower bound on 6(G) is sharp. 

Proof: By Observation 3.3.4, we need only to show that for any VE V(G) G-v is n -  

extendable. For any VE V(G), 6(G-v) 2 6(G)-1 2 r+n. From Theorem 1.3.4 (3), G-v 

is n-extendable and we are done. 



- 
To see that the bound is sharp, consider the graph G = K,,, + K,-n+l. Since r 2 

n+l, we take a vertex v and n independent edges x,y,, x2y2, ..., x,y, from K,,,. There 
- 

remain r-n-1 vertices in K,, which cannot be matched to the r-n+l vertices in 

Thus 6(G) = r+n and G is not I-$ -extendable. 0 

Theorem 3.3.9 If G is connected and n i  -extendable (n 2 I), then G is (n+Z)- 

1 connected and, moreover, there exists an 5 -extendable graph G of connectivity n+2. 

Prwf: If G is n t  -extendable, then, by Theorem 3.3.2, G+K1 is (n+l)-extendable. 

Since G+K1 is connected, by Theorem 1.3.4 (2), G+K1 is (n+2)-connected. Let K1 = 

( u ) .  Since n 2 1, G-v = (G+K1)-{u,v) is connected for any vE V(G). By Observation 

3.3.4, G-v is n-extendable for any v€ V(G). Thus G-v is (n+l)-connected by 

applying Theorem 1.3.4 (2). 

Suppose that G is not (n+2)-connected. Then there exists a cut-set S G 

V(G), IS1 = n+l. For any VE S, S-{v) is a cut-set of G-v. Since IS-(vf l = n,  this  

contradicts the fact that G-v is (n+l)-connected. 

%+2 

Figure 3.3 

To see that an nf -extendable graph might not be (n+3)-connected, we 

- 
consider the graph G = Kn+2+(KpuKq) where n+2+p+q is odd and p 2 q 2 2n+2. 



- 
Clearly G is not (n+3)-connected as V(Kn+2) is a cut-set of size n+2. We next show 

1 that G is n~ -extendable. For any given n independent edges ei = xiyi, 1 S i I n. and a 

vertex v P  Ixl, yl, x2, j'2, - - - 9  xn, yn}, let S = Cv, XI, yl, x2, Y2, ..-. Xn, ~ n ) .  V1 = V(Kp)-S. 
- 

V2 = V(Kn+2)-S and V3 = V(Kq)-S (see Figure 3.3). We now need only to show that 

G-S has a perfect matching. Clearly, the existence of a perfect matching in the graph 

G-S is equivalent to a partition of V2 into two subsets V2', V2" such that IV2'l 5 IV1l, 

1V2"I I W31, IV2'I E lVlt (mod 2), and IV2"l = IV31 (mod 2). As IV(G)I is odd and p, cl 

2 2n+2, we have that IVlI+IV21+1V31 = IV(G)I-IS1 = p+q+l-n is even and IVII+IV31 2 

IV21+2. Therefore the required partition (V2', V2") can always be achieved. This 

completes the proof. [I 

Remark 3.3.10 Theorem 3.3.10 does not hold for n = 0; that is, for factor-critic11 
1 graphs. The graph below provides an example of a -extendable graph which is not 

Figure 3.4 This factor-critical graph is not 2-connected. 

Corollary 3.3.11 If G is an $ -extendable graph of order p, p 5 2n+5, and i f  u is a 

vertex of degree n+2 in G, then NG(u) is an independent set. 

Proofi Suppose u is a vertex of degree n+2 in an nf -extendable graph G and let 

NG(u) = {vl, v2, ..-, v,,~). Since p > 2n+4, we can choose n+l vertices wl, w2, ..., 



w,+l in V(G)-NG(u)-(u). As G is (n+2)-connected, by Menger's theorem ([12, 

p163j) we have ni-2 vertex-disjoint paths joining Nc(u) and (wl ,  w2, ..., wn+l, u). 

Hence there are n+2 independent edges el = vlu, e2 = v2wlt, ..., en+;! = v ~ + ~ w ~ + ~ ' ,  

where w;' is the last vertex on the path from wi to Vi+l. 

Suppose now that NG(u) is not independent, say v l v 2 ~  E(G). Then vlv2, e4, 

e5, ..., e,+2 are n independent edges. Since u is an isolated vertex of G-NG(u), there 

exists no near perfect matching containing vlv2, e4, e5, ..., %+2 and missing v3. This 
1 contradicts the fact that G is n~ -extendable. 0 

A graph G is called n-critical if the deletion of any n vertices of V(G) results 

in a graph with a perfect matching. This concept is a generalization of the notions of 

factor-critical and bicritical which correspond to the cases when n = 1 and n = 2, 

respectively. Hereafter, we will often refer to factor-critical graphs as 1-critical and 

bicritical graphs as 2-critical. Here we present a characterization of n-critical graphs. 

Theorem 3.3.12 A graph G is n-critical if and only if IV(G)I = n (mod 2) and for any 

vertex-set S G V(G) with IS1 2 n, o(G-S) S ISI-n. 

Proof: "3" Suppose that G is n-critical. Then it is immediate that IV(G)I = n (mod 

2). Suppose there is a vertex-set S !Z V(G) with IS1 2 n and o(G-S) > ISI-n. Delete 

n vertices vl, v2, ..., Vn from S and denote the remaining set by S'. Then o(G-(vl, v2, 

..., v,)-S') = o(G-S) > ISI-n = IS'I and by Tutte's theorem, G-{vl, v2, ..., v,] has no 

perfect matching. But this contradicts the hypothesis. 

"e" Suppose that IV(G)I = n (mod 2) and for any vertex-set S G V(G) with 

[Sf 2 n, o(G-S) S ISI-n but G is not n-critical. Then there exist n vertices vl, v2, ..., Vn 

such that G-(vl,  v2, ..., v,] has no perfect matching. Using Tutte's theorem again, 

there exists a set St G V(G)-(vI,  v2, ..., v,) SO that o(G-{vl, v2, ..., v,)-St) > IS'I. 

Let S = S' u { v l ,  v2, ..., vn]. Then o(G-S) > IS'I = ISI-n, a contradiction. 8 



There are several possible generalizations of n-extendability. One of the 

generalizations is to consider all graphs G satisfying the property that for any 111- 

matching M and a set of n distinct vertices ul, u2, ..., u, of G, none of which is incident 

with any edge of M, there exists any perfect matching M* of G such that  M hZ* and 

u;u, E M* for 1 5 i, j l  n and i # j. Another generalization is to study graphs with the 

property that for any m independent edges and any n vertices not incident with any  

one of these rn edges, there is a t-matching in G containing the m edges but missing 

all n vertices. The former is called (rn,n)-extendability and was studied by Liir m d  

Yu 1363. This concept is stronger than n-extendability and is very helpful for studying 

the properties of n-extendable graphs. 



Chapter 4. Classifications of some families of n-extendable graphs. 

$4.1. Introduction. 

In this chapter, we discuss the extendability properties of several families of 

graphs. First, we consider various products of graphs. Two types of products - 

cartesian product and wreath product - will be studied. The product of certain graphs 

(for example, C, x C,, C, x P,) are often the "skeletons" (that is, the spanning 

subgraphs) of symmeuic graphs and thus knowledge of their extendability will be very 

helpful in understanding the extendability of symmetric graphs. In addition, the 

question of the extendability of products of g ra~hs  is in itself particularly interesting. 

Products of graphs also provide us with an easy way to construct n-extendable graphs 

with low degree. 

Second, using the results obtained on the extendability of products of graphs 

we are able to classify 2-extendable Cayley graphs on abelian groups. This is closely 

related to an earlier result of Chen and Quimpo [15], who proved that every abelian 

Cayley graph has a Hamiltonian cycle containing a given edge. Their result implies 

that every abelian Cayley graph is 1-extendable. These results add significantly to our 

understanding of abelian Cayley graphs. 

At the last section of this chapter, we consider generalized Petersen graphs. 

In [lo], Castagna and Prins proved that all generalized Petersen graphs, except for 

the Petersen graph itself, have a 1-factorization. This result indicates that 

generalized Petersen graphs are in some sense "1-factor rich" and so we might hope 

that they are n-extendable for reasonably large n. In [9], Cammack and Schrag 

conjectured precisely which generalized Petersen graphs are Zextendable. We shall 

prove their conjecture and hence classify all 2-extendable generalized Petersen 

graphs. 



Let T be an abelian group with operation +, and S a generating set of such 

that the identity element 0 is not in S and -x€ S for each x E  S. The Cayley graph 

G(T; S) on T is defined by: 

V(G(T; S)) = T and E(G(T; S)) = { xy I x, y f  T, - x + y ~  S ). 

As an example consider the Cayley graph (Figure 4.1) where T = Z4 x Z2 = 

NO, 01, (1, 01, (2, 01, (3, 01, (0, 11, (1, 11% (2% U, (3, 1)) and S = {(O, 11, (1% 01, (3,  0). 

(1, 11, (3, 1)). 

The edge xy in G(T; S) is said to be of type a (or an a-edge) if - x + y ~  (a, - a ) .  

For convenience, if S = {al, a2, ..., a,), we shall often denote G(T; S) by G(T; a*,  a2, 

..., ad.  

For each a€ r, we shall denote by 8, the mapping from T to T defined by 0,(x) 

= a+x. Clearly, 8, is an automorphism of G(T; S), from which it follows that every 

Cayley graph is vertex-transitive (for any two vertices x and y in T, 8 y - x ( ~ )  = y). 

This also implies that every Cayley graph G(T; S) is regular and in fact the degree of 

each vertex is ISI. 

The generalized Petersen graph GP(p, k) (p > k)  has vertex-set U u V ,  

where U = {uo, ul, -.., U,~J and V = {vo, vl, ..-, vp-lj, and edge-set (uivi, U i U i + l ,  ViVl,k 

I i = 0, 1, ..., p-1), where all subcript arithmetic is performed modulo p. The 

generalized Petersen graph GP(7, 2) is given (Figure 4.2). 



Figure 4.2 GP(7, 2) 

$4.2. The extendability of products of graphs. 

We start this section with the cartesian product. For convenience, we denote 

the subgraph induced by V(Gl) x (vl, v2, ..., v,) (where (vl,  v2, ..., v,) c V(G2)) in 

GI  x G2 by G1 x (vl ,  vz, ..., Vr).  Thus V(G1) x {i)  is a copy of GI. If v; and vj are 

adjacent in G2, then V(Gl) x (vi, vj) is isomorphic to G1 x P2. 

Let e = (XI, x2, ..., xk) (y1, y2, ..., yk) be an edge of the graph G1 x G2 x ... x 

Gk. By the definition of cartesian product, there exists an integer i so that XiyiE E(Gi) 

and xj = yj for j = 1, 2, ..., i-1, i+l, ..., k. We denote xiyi by e* and call it the projection 

of e. For an edge e = (al, a*, ..., a,-l, x, a,+l, ..., a,-l, a)(al, a2, ..., a,-1, y, a,+l, ..., a,-1, 

a) of G1 x G2 x ... x G,-l x (a] (notice xyc E(Gr)) the clone of e in G1 x G 2  x ... x 

G,_ ,  x (b)  is defined to be the edge (al, a2, ..., a,-1, x, ar+l, ..., a,,-1, b)(al, a2, ..., a,-1, y, 

a,,,, ..., a,-1, b). For the set of edges (el, e2, ..., q) E E(G), we denote by V({el, e2, 

..., G]) the set of all end-vertices of el, e2, ..., q. 

Our first object is to study the extendability of C, x P,, where m > 3 and n 2 2. 

Let el = (a, b)(c, d) and e2 = (u, v)(w, x) be independent edges in C, x P,. We say 



that el and e2 are perpendicular if either both a = c and v = x, or both b = d aud u = w. 

Otherwise, el and e;? are said to be parallel. The following result was obtained by 

Chen and Quimpo [15] in their study of Hamilton cycles in abelian Cayley graphs. 

Lemma 4.2.1 Let m and n be positive integers with mn even, m 1 4 and n 2 2. Then 

C, x P, is 1-extendable. 

Lemma 4.2.2 Let m and n be positive integers with mn even, m 2 4 and n 2 2. Then 

any two independent and perpendicular edges of C, x P, can be extended to a perfect 

matching of C, x P,. 

Proof: Let C, = 12 ... ml and P, = 12 ... n. Without loss of generality, let el = (a, b) 

(a, b+l) and e2 = (u, v)(u+l, v) be two independent perpendicular edges of C, x P,. 

Figure 4.3 m is even, v = b+l 

We first consider the case when m is even. If v = b or b+l, then i t  is easy to 

see that M = {el, (u, b)(u+l, b), (u, b+l)(u+l, b+l))u((g,  b)(g, b+l) I g~ V(C,j- ( a ,  

u, u+l))  is a perfect matching of C, x P2, where P2 = b(b+l) (for example, see Figure 

4.3), which contains el and e2. M can be extended to a perfect matching of C, x P,, 

since the subgraph of C ,  x P, induced by the set of vertices not in M can be 

decomposed into n-2 disjoint even cycles of length m; C, x ( i ) ,  i~ V(P,)- (b, b+ 1 ). If 



v # b or b+l, let M = ((g, b)(g, b+l) I g~ V(C,))uN, where N is a perfect matching of 

the subgraph C, x ( v ]  containing e2 (for example, see Figure 4.4). Then M is a set of 

independent edges containing el and e2 which can be extended to a perfect matching of 

C, x P,, for the same reason as above. 

Figure 4.4 m is even, v # b or b+! 

We next consider the case when m is odd, in which case n must be even. 

Again, assume that v = b or b+l (say b+l). If v = b+l is even, then M = {el,  ez, 

(u ,  b):u+-1, b)]u((g,  b)(g, b+l) I g~ V(C,)-{a, u, u+ l ) )  (see Figure 4.5) is a set of 

independent edges containing el and e2. This set can be extended to a perfect 

matching of C ,  x P, since the subgraph s f  C ,  x P, induced by the set (if this set is not 

empty) of vertices not in M can be decomposed into the subgraphs C ,  x (2x-1, 2x1 Z 

P Lm x P?, x = 1, 3, ..., b-2, b+2, ..., n-1, each of which has a perfect matching. On the 

other hand, when v = b+l is odd, choose y to be any vertex of V(C,)-{a, u, u+l). Let 

M = {el, e2, (u, b)(u+L b), (y, W ( y ,  W, (y, b+l)(y, b+2))uI(g9 Mg,  b+l)  I g f a, 

u, u+l , y ). Then M is a set of independent edges containing el and e2 (an example is 

given in Figure 4.6), which can be extended to a perfect matching of C, x P,, as the 

saibgraph of C ,  x P, induced by the set of vertices not in M can be decomposed into 

two even paths P = (y+l, b-1) (y+2, b-1) ...(y- 1, b-1) and Q = (y+l, b+2) 



(y+2, b+2) ...(y- 1, b+2), and the subgraphs C ,  x (x ,  x + l )  Z C, x P2, s = 1, 3, ..., h-3, 

b+3, ..,, n-1, each of which has a perfect matching. 

b b+l 

Figore 4.5 m is odd, v = b+l is even 

b- l b b+l 

Figure 4.6 m is odd, v = b+l is odd 

All that remains is to consider the case when m is odd and v # b or b + l .  

Without loss of generality, we may assume that v > b+l. If  v is odd, let H and K be 

the graphs induced by the vertex-sets ((g, h) I h < v )  and { ( g ,  h) 1 h > v ) ,  

respectively. Since H z C, x P,-l and K r C, x P,,-,+I, v is cdd and n is even, then by 

Lemma 4.2.1, H has a perfect matching MI containing el and K has perfect marching 



.M2 containing ez- Hence iMIwM2 is a perfect matching of  C, x P, containing el and 

ez. ff v is even and v > b+2, Iet H and K be the graphs induced by the vertex-sets 

{(g, h) f h < v-1 j and f ( g ,  h) i h 2 v-1 j ,  respectively. Again by Lemma 4.2.1 H has a 

perfect marching .MI containing el, K has a perfect matching containing e2 and 

iM wM2 is a perfect matching of C, x P, containing el and e;?. The final case is that v 

= bc2 and v is even. Choose a vertex yE V(C,)-(a, u, u + l ]  so that y = u-2 or u+2. 

t e t M = f e l , e 2 ,  (y,b-I)(y,b),(y,b+l)(y,b+2)luI(g,b)(g,b+l)~g~V(Cm)-Ia. 

y )  f (see Figure 4.7). Then M is a set of independent edges containing el and e2 

which can be extended ro a perfect matching of C, x P,, since the subgraph of C, x P, 

induced by the set of vertices not in iM can be decomposed into two even paths P = 

& I ,  y+l)(b-I, y+2) ... (b-1, y-2j(b-1, y-1) and Q = (b+2, y+l)(b+2, y+2) ...( b+2, 

u-1) (where addition in the second coordinate is taken by modulo rn) and the 

subgraphs C,  x (x, x+ l )  z C,x P2, XE f l , 3 ,  ..,, b-3, b+3, ..., n-13, each of which has 

a perfect matching. 

b- I b b+I b+Z 

Egure 4.7 m is odd, v = b+2 is even. 



Lemma 4.2.3 If GI is a 1-extendable graph with IV(G1)l 2 4 and G 2  is a connected 

graph of order at least 2, then G1 x G2 is 2-extendable. 

Proof: Let el = (al, bI)(cll dl)  and e2 = (az, b2)(c?, d2) be two independent edges of' 

G I  x G2- We consider the following cases. 

Case 1. bl = d l  # b;? =d2. 

In this case, alcl, azcz E E(Gl). Since GI  is 1-extendable, there exist perfect 

matchings F1 and F2 in G1 containing alcl and a2c2 respectively. Thus ((g, x)(h, x) I 

g h e  F1, XE V(G2)-{b2) ) ~ ( ( g ,  b2)(h, b2) I g h ~  F2J is a perfect matching in GI  x G 

containing el and e2. 

Cme2. bl =d l=b2=d2 .  

Let bl = dl  = b2 = d2 = x and suppose that xy is an edge of G2. Since G I  is I -  

extendable, there exists a perfect matching F, of G1 x { z) for zE V(G2)- ( x, y ]. Then 

el and e2 are contained in the following perfect matching of G1 x G2: 

{el,  e2, (al, y)(cl, y), (a2, Y)(c~, y))u{(g,  x)(g, Y) I gE V ( G l ) - h  C I ,  ;12* ~ 2 1  1 

w(F, zE V(G2)-(x, Y H  

Case 3. a1 = cl #a;! = cz. 

Since GI is 1-extendable, from Theorem 1.3.4 (2) we have &(GI) 2 2. Choose 

XE &,(al)-{a2). The extendability of GI implies that there is a perfect matching F in 

GI  which contains xal. Let y be the vertex matched to a2 in F. We have the following 

perfect matching of GI x G2 which contains el  and e2: 

{el, (x, bl)(x, d l W i  ( a ,  f)(x, f) 1 f~ V(G2)- { bl, dl I )u { e2, (y, W y ,  d2) 1 u 



is a perfect matching of G1 x G2 containing el and e2. 

Case 5. bl = dl and a;! = c2. 

Let F1 be a perfect matching of GI containing alcl. If bl is b2 or d2, say b2, 

then el and e* are contained in the following perfect matching of G1 x G2 : 

{el, e2, (al, d2)(~1, d 2 ) h ~ h  b2)(x, d2) I XE V ( G I ) - ~  cl, a2)uI(g, y)(h, y) 

I F1, y V(G2)- I b2, d2 I I - 
If b l  is neither b2 nor d2, then the following perfect matching of G1 x G2 contains el 

and e2 (recall that F1 contains alcl): 

I(g, y)(h Y) I ghE Fi, YE V(G2)-[b2, d2) lu ( (x ,  b2)(~,  d2) I xE V(G1)). 0 

Ccrollary 4.2.4 C2, x P, is 2-extendable, for n 2 2 and m 2 2. 

Proof: Since C2, is 1-extendable, by Lemma 4.2.3 C2, x P, is 2-extendable. 0 

Corollary 4.2.5 If mn is even, then C, x C, is 2-extendable. 

Proof: If mn is even, then one of m and n is even. Thus one of C, and C, is 1 - 

extendable. By Lemma 4.2.3 C, x C ,  is 2-extendable. 0 

Corollary 4.2.6 Let G be a 1-extendable graph. Then G x P2 is 2-extendable. 

At this point we know that C, x P, is 2-extendable when m 2 4 is even and n 

2 2.  When m is odd and n is even we have only partial results (Lemma 4.2.1). We 

next complete the case wher? m is odd. 

Lemma 4.2.7 The graph C2n+l x Pa is 2-extendable if and only if n 2 2 and r 2 2. 

Proof: Let CZn+1 = 12 ...( 2n+l)l  and P2, = 12 ...( 2r). Let el and e2 be any two 

independent edges of C2,+1 X Pzr. 



There exists no perfect matching of C2n+, x P2 containing the edges e l  = 

(1, 1)(2, 1) and e2 = ( 2 ,  2)(3, 2) and there is no perfect matching of Cj x P 2 ,  

containing the edges el = (1, 1)(2, 1) and e2 = (2, 2)(3, 2). 

Suppose that n 2 2 and r 1 2. In view of Lemma 4.2.2, we need only consider 

the case when the independent edges el and e;! are parallel. Let el = (3, b)(c, d) rind 

e:! = (u, v)(w, x). 

Case 1. b = d (and hence v = x). 

If b = v, choose a vertex y in P2, adjacent to b so that P2,-(b, y )  is the union of 

two paths, P2, and P2h- Then M = {el, e2, (a, y)(c. y), (u, y)(w, y ) W l ( g ,  b)(g, y) I 

gE V(C2n+1)-{a, c, u, w } )  is a set of independent edges containing el and e2. Since 

the subgraph of x P2, induced by vertices not in M is a union of C2n+l x PZm and 

C2ntl x P2h, each of which has a perfect matching, M can be extended to n perfect 

matching of C2n+1 x P2,. 

Otherwise, we may assume b < v. If v = b+l and b is even or v > b+l, then el 

and e2 lie in different copies of C2n+l x (x, x+1) Z C2n+1 x P2, x = 1, 3, . .., 2s-  1. Since 

CZntl x P2 is 1-extendable (Lemma 4.2.1), there is a perfect matching containing el 

and e2 in Cb+l x Pa. Suppose v = b+l and b is odd. If ](a, c ) n ( u ,  w)l = 0 or 2, then 

M = (el ,  e2, (a, b+l)(c, b+l), (u, b)(w, b)lu{(g, Wg,  b+l) I g~ V(C2,+1)-b, c ,  u, 

w ) )  is a perfect matching of C2n+l x (b, b+l) which (as above) can be extended to a 

perfect matching of C2n+l x P2* containing el and e2. If I(a, c ) n ( u ,  w]I = 1, say c = u,  

then choose two vertices y, z in P2, so that either b(b+l)yz or yzb(b+l) is a path in 

P2= (this is possible as r 2 2 and b is odd). If the path is b(b+l)yz, then let M = (el, 

e2, (w, b)(w+l, b), (w+L b+l)(w+l, y), (w+l, z)(w, z), (w, y ) k  y), (c, d f a ,  z), 

(a, b+l)(a, y ) )u ( (g ,  bNg, b+U, (g, yXg, 2) I gE V(C2,+1)-(a7 c, w, w+lJ  1 (see 

Figure 4.8). By our earlier discussion it is clear that M can be extended to a perfect 

matching of C2n+l x P2r. (A similar proof applies when the path is yzb(b+ 1 ).) 



Figure 4.8 

Case 2. a = c (and hence u = w and we may assume d = b+l and x = v+l). 

Case 2.1. lib, b+l)n{v, v+l)l = 2, so b = v. 

If P2,-(b, b+l)  is the union of even paths, then M = ((g, b)(g, b+l) I 

g~ V(C2n+l)) is a perfect matching of CZntl x P2 containing el and e2 which can easily 

be extended to a perfect matching of X 

If P2r- (b, b+l ) is the union of two odd paths, then b is even and C2n+l x { b- 1, 

b, b+l, b+2) Z C2n+l x P4. Without loss of generality, we assume 1 = a < u 5 2n. 

Then M = {(g, b)(g, b+l) I gE V(C2n+1)-{2n+l ) )U {(2n+l, b-1)(2n+l, b), (2n+l, 

b+1)(2n+l, '3+2))u((l, f)(2, f), (3, f)(4, f ) ,  ..., (2n-1, f)(2n, f )  I f~ {b-1, b+2) ] (see 

Figure 4.9) is a perfect matching of C2n+l x (b-1, b, b+l, b+2) and can easily be 

extended to a perfect matching of C2n+1 X 

Case 2.2. I(b, b+l ) n (v, v+l)l = 1, say b+l = v. 

Choose a vertex y which is adjacent to b or b+2 such that P2,-(b, b+l, b+2, y )  

is the union of even paths. Assume that y = b+3. As above we need only find a 

perfect matching of C2n+l x P4, V(P4) = (b, b+l, b+2, b+3), containing el and e2. 

Choose a vertex z of C2n+l SO that C2n+l-(a, u, z )  is the union sf even paths. Then 

(C2n+l X (b))-((a, b)) ,  (C2n+l X Ib+l))-[(a, b+l), (u, b+l), (z, b+l)),  (C2n+l X 

{b+2])-((a, b+2), (u, b+2), (2, b+2)) and (C2n+l x (b+3 1)- {(a, b+3)) are unions of 



even paths (see Figure 4.10). Hence there exists a perfect matching i n  C2,,+L x ( b ,  

b+l, b+2, b+3} containing el and e2, (2, b+l)(z, b+2) and (a, b+?)(a, b+3). 

b-1 b b+l b+2 

Figure 4.9 

Figure 4.10 

Case 2.3. I(b, b+l ) n ( v ,  v+l )I = 0, and assume b+l < v. 

If v = b+2 and b is odd or v > b+2, then there exists an even integer y so that 

b+l I y I b+2, el lies in C2n+l x f l , 2 ,  ..., y} and 22 lies in C2n+l x ( y + l ,  ..., 2r) both of 

which are 1-extendable by Lemma 4.2.1. Therefore el and e2 are contained ir; a 

perfect matching of Chi x P2r. Finally, suppose v = b+2 and b is even. If a = u, we 



may assume a = 1. Then M = [el ,  e2, (2n+l, b-1)(2n+l, b), (2n+l, b+1)(2n+l, b+2), 

(2n+l, b+3)(2n+l, b + 4 ) ) ~  ((d, g)(d, g+l) I dE V(C2n+l)-{ 1, 2n+l),  gE (b, b+2) ) u 

((d, g)(d+l, g) I d~ (1, 3, ..., 2n-11, gE (b-1, b+4] j (see Figure 4.1 1) is a perfect 

n~atching of CZn+* x {b-1, b, b+l, b+2, b+3, b+4) and can easily be extended to a 

perfect matching of C2n+l x P2r. If a z U, then there exists a vertex z in Czn+l such 

that C2,+] -(a,  u, z) is the union of even paths. As in the case when a = u, there is a 

perfect matching in C2n+l X P6, V(P6) = {b- 1, b, b+l, b+2, b+3, b+4), which contains 

(a, b)(a, b+l), (a, b+2)(a, b+3), (u, b)(u, b+l), (u, b+2)(u, b+3), (2 ,  b-l)(z, b), (2, 

b+l)(z, b+2) and (z, b+3)(z, b+4). Hence there is a perfect matching of C2n+l x P2r 

which contains el and e2. 

b- 1 b b+l b+2 b+3 b+4 

Figure 4.1 1 

We have ended a long battle to determine the 2-extendability of C, x P,. 

Basically, we exhaustively considered all possible choices of two independent edges 

and for each of them we found a perfect matching containing the given edges. It will be 

much more complex to determine all m and n under which C, x P, is 3-extendable if 

we attempt to consider a l l  possible sets of three independent edges. Because C, x P, 



is the "skeleton" of each abelian Cayley graph, ir will be even more complicated to 

classify 3-extendable abelian Cayley graphs. As regards the 2-extendability of C,, x 

P,, we summarize the results of Corollary 4.2.4 and Lemma 3.2.7 in the following 

theorem. 

Theorem 4.2.8 Let m and n be positive integers with mn even. Then C,, x P, is 2 -  

extendable for all values of m and n except when m = 3, and when both n = 2 and 111 is 

odd. In these cases C, x P, is not Zextendable. 

We next discuss the extendability of product of graphs. This allows us to 

construct graphs with high extendability from graphs with low extendability by taking 

cartesian products. First, we need the following lemma. 

Lemma 4.2.9 Suppose that G1 is a connected !-extendable graph of order at least 

four and G2, ..., Gk are connected graphs of orders at least two. Let el, e;?, ..., ek be k 

edges of G1 x G 2  x ... x Gk. If at most one of el*, e2*, ..., ek* (the projections of e l ,  

e2, -.., ek) belongs to GI, then for any vertex y e  V(G1 x ... x Gk) there exists a vertex 

x adjacent to y but not adjacent to an end-vertex of any ei (1 5 i I k). 

Proof: Let y = (al, a;?, ..., ak). Since G1 is 1-extendable and IV(GI)I 2 4, then by 

Theorem 1.3.4 (2),  &,(al) 2 2 and there exist two vemces al', a, ' in GI so that a l ' a l ,  

a lWalE E(G1) and el* # al'alU. When none of el*, e2*, ..., ek* belongs to G 1 ,  we 

choose all, al" to be any two neighbours of a1 in G ; .  

As Gi (2 I i I k) are connected graphs of order at least two, 6(Gi) L 1 .  Let ai '  

be a neighbour of ai in Gi, for 2 I i 5 k. Then (al', a2, ..., ak), (al", a2, ..., ak), (a l ,  a?', 

-.., ak), ..., (al, a2, ..., ak-1, akt) are k+l neighbours of y in G1 x G2 x ... x Gk. By the 

definition of G1 x G2 x ..- x Gk, there is no edge among these k+l vertices except 

possibly the edge (al', a2, ..., %)(al", a2, ..., ak). Since el * # al'al ", each edge e; 



covers ac most one of these k-+l vertices. Therefore, there exists a neighbour of y 

which is not adjacent to an end-vertex of any ei (1 2 i 2 k). 0 

Gyijri and Plummer [20] studied extendability of cartesian product of graphs 

and proved that if GI is k-extendable and G2 is h-extendable, then GI  x G2 is (k+h- 

1 )-extendable. We have obtained the following result regarding extendability of 

products of graphs, in which we only require that one of graphs is 1-extendable; the 

other can be any graph of order at least two. 

Theorem 4.2.10 Let G1 be a 1-extendable graph with IV(G1)l 2 4 and G2, ..., Gk be 

connected graphs of order at least two. Then G1 x G2 x ... x Gk is k-extendable. 

Proof: We will use induction on k and the fact (Theorem 1.3.4 (1)) that if a graph is 

n-extendable it is also (n-2)-extendable. 

The case k = 2 was proven in Theorem 4.2.3. 

Suppose that the claim holds for k I n-1 and consider the case k = n. Let el, 

ez, .... e, be n independent edges of GI x G2 x ... x Gk. By the symmetry of G2, G3, ..., 

G,, we need only consider the following cases: 

Case 1. The projectors ei* satisfy ei*€ E(Gi), 1 I i I n. Let e,,* = ab. 

Case 1.1. (el, e2, ..., G - ~ ) ~ E ( G ~  x G2 x ... x Gn-1 x (a, b)) = 0. 

By the induction hypothesis, for each CE V(G,)-(a,b) there exists a perfect 

matching Fc of G1 x G2 x ... x Gn-l x (c) each of which contains clones of the edges el, 

e2, .--. e,,-1. Then 

F = u(F ,  I c c  V(Gn)-Ca, b) l u ( ( a i ,  a2, -.-, an-1, W i ,  a2, ..., an-l, b) I (ai, a2, 

.... a , _ l > ~  V(GI x G2 x ... x Gnel)) 

is a perfect matching of GI x G2 x ... x G,containing the edges el, e2, ..., G. 

Case 1.2. {el, e2, ..., en-l)nE(G1 x G2 x ... x Gn-1 x {a)) * 0 and {el, e2, ..., 

}nE(Gl x G2 x ... x Gn-1 x (b)) = 0. 



Assume that el, ez, ..., e, are in G1 x G2 x ... x Gn.1 x ( a ) .  For erich CE V(G,,)- 

{a, b ] ,  let Fc be a perfect matching of GI x G2 x ... x Gn-1 x { c )  containing the clont. of 

each of the edges of %+I, ~ + 2 ,  ..., e,,-1. Let el', ez', ..., er', respectively. be clones of the 

edges el, e2, ..., e, in G1 x G2 x ... x Gn-1 x (b )  and let H be the vertex-set of G I  G 2  

x ... x Gn-1 x ( a )  excluding the end-vertices of el, e2, ..., e, in GI x G 2  x ... x G,. I x 

(a]. Then 

F = u(F,  I CE V(G,)-(a,bl ) u ( e l ,  e2, ..., e,, el', el', ..., ~ ' l u ( ( z ~ ,  27, ..., zII.lr 

a)(zl, 22, ..., zn-1, b) I (21, 22, .-., Zn-1, a)€ HI  

is a perfect matching of GI x G2 x ... x G, containing el, e2, ..., en. 

Case 1.3. (el, e2, ..., en- l )nE(GI  x G2 x ... x Gn-l x ( a ) )  # 0 and ( e l ,  t.2, ..., 

en- l )nE(G1 x G2 x ... x Gn-l x (b) )  + 0. 

Without loss of generality, assume that el ,  el, ..., e, are in G I  x G 2  i ~ .  ... x Gn.1 

x {a) and q + l ,  er+2, ..., %+,, r+s I n-1, are in G1 x G2 x ... x Gn-1 x ( b ) .  Let en = xy, 

where x = (xl, x2, ..., xn-1, a) and y = (xl, ~ 2 ,  ..., x,-I, b). Let e,+I', er+*', ..., er+s' be tht: 

clones of e,+l, er+;?, ..., e,+,, respectively, in GI x G2 x ... x Gn-] x ( a ) .  By  Lemma 

4.2.9, there exists a vertex z in G1 x G2 x ... x G,-, x ( a )  which is adjacent to x but 

not adjacent to any of the end-vertices of el, e2, ..., q, e,+l', e,+2', ..., e,,,'. Let z = (zI ,  

22, ..., G-1, a) and w = (21, z2, ..., z,,-1, b). By the induction hypothesis, there exists n 

perfect matching F1 in G1 x G2 x ... x Gn-1 x ( a )  which contains el, e2, ..., e, and xz, 

and a perfect matching F2 in G1 x G 2  x ... x Gn-1 x (b )  which contains % + I ,  e,+2, ..., 

e,+, and wy. Then the following perfect matching of GI x G2 x ... x Gn.1 / ( a ,  b ]  can 

easiiy be extended to a perfect matching of GI x G2 x ... x Gn.1 x Gn which contains L 1, 

ez, ..., e,,: 

F = (FI-(XZI)U(F~-(WYI)UIX~, WZ).  

Case 2. All of el, e2, ..., e, lie in the product of exactly n-1 of the graphs GI ,  

G2, ... Gn. We may assume that they all lie in u { G l  x G ~ x  ... x Gn.1 x l a )  I 

a€ V(G,)] or they all lie in u( [b )  x G2 x ... x G ,  I b~ V(GI)).  



Case 2.1. Suppose that for some a€ V(G,) all of el, e2, ..., e, are in G1 x G2 x 

... x Gn-l x ( a )  or for some b~ V(Gl), all are in {b) x G2 x ... x G,. 

We begin with the first case. Let ac be an edge of G,. Let el', e2', ..., en' be the 

clones of el, e2, ..., en in GI x G2 x ... x Gn-1 x [c) .  Then 

F = {el, e2, ..., %, el', e2', ..., e , ' )u{(a l ,  a2, ..., an-1, a)(al, a2, ..., a,+ c )  1 (21, 

a2, ..., a,_], a)€ V(G1 x G2 x ... x Gn-1 x (a))-V((e1, e2, ..-, %I))  

is a perfect matching of GI x G2 x ... x Gn-1 x (a, c )  which can be extended to a perfect 

matching of G1 x G2 x ... x Gn-l x Gn- 

In the second case, let F1 be a perfect matching of GI and c be the vertex which 

is adjacent to b in F1. Let el', e2', ..., en' be the clones of el, e2, ..., e, in (c)  x G2 x ... x 

G,. Then 

F = {el, e?, ..., en, el', e i ,  ..., % ' j u  ((b, a2, ..., a,), (c, a2, ..., a,) I (b, a?, a3, ..., 

an)€ V((b1 x G2 x G3 x .-. x Gn)-V(Iei, e2, ..., % ) ) I  

is a perfect matching of {b, c)  x G2 x ... x G,. Hence Fu{(g, a2, ..., a,), (h, a2, ..., a,) I 

(a2, a3, ..., a,)€ V(G2 x G2 x ... x G,), g h ~  F1-{bc)) is a perfect matching of G1 x G2 

x ... x Gn-l x G,. 

Case 2.2. Suppose that el, e2, ..., e, are contained in different copies of G1 x G2 

x ... x Gn-1; say in G1 x G2 x ... x x (a;) (1 I i 5 r, 2 I r). By the induction 

hypothesis, G1 x G2 x ... x Gn-l x {a;) is (n-1)-extendable. Hence the edges of el, 

ez, ..., e, in G1 x G2 x ... x G,-l x {a;) are contained in a perfect matching of G1 x G2 x 

. x G x ( a .  Let M be the union of such perfect matchings. Then M can be 

extended to a perfect matching of GI x G2 x ... x G, (as G1 x G2 x ... x Gn-l has a 

perfect matching by the induction hypothesis). 

Cure 2.3. Suppose that el, e2, ..., e, are contained in different copies of G2 x G3 

x. ... x G,. If there exists a Gr which does not contains any q* (1 5 i I n), then el, e2, 

-.., e, are in u { G l  x G2 x ... x Gr-l x Gr+1 x ... x G,x (a)  I a€ V(G,)) and the proof 

foIlows as in Case 2.2. So we assume that each of G2, G3, ..., Gn contains at least one 



of el*, e2*, ..., e,,*. Since n 2 3, one of G2, G3, ..., Gn contains exactly one of el*, e2*, 

..., G*. Suppose the graph is Gn and the edge is %* = ab. Let en = xy, where s = (sl, 

x2, ..., xn-l, a) and y = (xl, x2, ..., x,-1, b). By Lemma 4.2.9, there exists a vertex z = 

(z1, 22, ..., ~ ~ - 1 ,  a) in G1 x  G2 x  ... x  Gn-l x ( a )  which is adjacent to x but not adjacent 

to an end-vertex of any el, e2, ..., en-l. Without loss of generality, assume that el, c?, 

..., e, are contained in G1 x G2 x ... x  Gn-l x  (a )  and em+l, e,+2, ..., em+, are contained 

in G1 x G 2 x  ... x Gn-*x {b). Let w = (zl, 22, ..., zn-1, b). Since GI  x G 2  x ... x G,,-l is 

(n-1)-extendable, there exist F1 and F;! in G1 x  G2 x ... x  Gn-l x  { a )  and GI x Gr :< ... 

x G,-l x  (b ] ,  respectively, containing el, e2, ..., em, xz and e,+l, em+.z, ..., y v  

respectively. Then 

F = (F~ - (XZ ) )U (F~ -~YW) )U (X~ ,  wzl 

is a perfect matching of G1 x  G2 x ... x Gn-l x (a, b).  Moreover, F can be extended to 

a perfect matching of GI x  G2 x ... x G, containing el, e2, ..., en as G1 x G2 x ... x Gn., 

x  (V(Gn)-(a, b)) has a perfect matching which contains e,+,+l, em+,+2, ..., en., by the 

induction hypothesis. 0 

The k-cube, denoted by Qk, is the graph whose vertices are the ordered k -  

tuples of 0's and l's, two vertices being joined if and only if they differ in exactly onc 

coordinate. Notice that the k-cube has 2' vertices, k2'-' edges and is isomorphic-to 

Pz x  P2 x ... x P2 (k times). 

Corollary 4.2.11 the n-cube is (n- 1 )-extendable. 

Proof: Since the n-cube Q,, can be expressed as Q,, 2 C4 x P2 x ... x P2 (whew P2 

occurs n-2 times in the product), then by Theorem 4.2.10, it is (n-1)-extendable. C 

Remark 4.2.12 Theorem 4-2.10 is best possible. To see this, consider the (n+l)- 

cube &+I. According to Corollary 4.2.11, is n-extendable. But since Q,+] is 



(n+l)-regular, i t  cannot be (n+l)-extendable (in view of Theorem 1.3.4(2)). Also, 

the condition that G I  is 1-extendable in Theorem 4.2.9 cannot be omitted. For 

example, let G be any graph with 6(G) = 1. Then G x P2 x ... x P2 (where P2 occurs 

n- I  times in the product) has a vertex of degree n. In light of Theorem 1.3.4 ( 2 ) ,  G is 

not I -extendable and G x P2 x ... x P2 is not n-extendable. 

We next consider the extendability of the wreath product of graphs. It seems 

that determining the extendability of the wreath product of graphs is rather difficult 

compared with determining the extendability of the cartesian product of graphs. We 

have not been able to obtain a general result like Theorem 4.2.10 for the wreath 

product. To better understand the extendability of the wreath product 
- 

study the wreath products of some special graphs; for example C, €3 K,, 
- 

grrtph C5 €3 K3 is shown in Figwe 4.12. 

Figure 4.12 

of graphs, we 

K, @ k,. The 

Theorem 42.13 Let rn be even. If r is even and r 2 6, then C, @ I?. is n-extendable 
- 

2nd if  r is odd, then n is even and C, 8 K, is ;-extendable. 
- 

Proof: Let C,= 012.4-1)0 and K, = { O ,  1, ..., n-1). 



When r is even and r 2 6, we use induction on n. 
- 

If n = 1,  then C, 63 K, E Cr is I-extendable. 

Suppose that the claim holds for n < k and consider the case n = k. For any k 
- - 

independent edges el, ez, ..., Q in C, C3 Kk, at most two of the sets ( i )  x V ( K k ) ,  

iE V(C,), have the property that each of their vertices lies in one of the edges el. cz, 

..., ek. Call such sets entirely saturated and call a vertex saturated by an edge i f  it  

lies on the edge. Suppose that there are exactly b such sets (be  (0,  1 ,  2 ) )  and choose 

one of el, e2, ..., ek, say el, so h a t  exaciIy b end-vertices of el lie in entirelv saturrtted 

sets. Without loss of generality, we may assume that el = (0, 0)(1, 0). Since none of 
- 

( ( i} x V(Kk) I i = 2, 3, ..., r-1 ) is entirely saturated by e l ,  ez, ..., ek, there exists it 

- 
vertex v ; ~  V(Kk), 2 I i 5 r-1, such that (i, ~ i )  is not saturated by el, e2, ..., ek in  ( i ]  x 

- 
v(kk). Obviously, (C,@ fr)-((0, O) ,  (1, U), (2, "2). .... (r-1, v,.~)] a C, Q Kx.1 and 

so by the induction hypothesis there exists a perfect matching F of C, Q Kk.] 

containing e2, e3, ..., ek. Hence Fu((0, 0)(1, O), (2, v2)(3, v3). ..., (r-2, ~ , - ~ ) ( r -  1 ,  - 
v , - ~ )  f is a perfect matching of C, 8 Kk coritaining the edges el, el, ..., ck. 

When r is odd, &en n is even and we lea n = 2m. We use induction on m. 

It is easy to show that 8 kz is 1-extendable. 

Suppose that the claim is true for 1 I m < k and consider the casc m = k. For 
- 

any k independent edges el, e2, ..., el, in C, @ Ka, at most two of the sets { i ) x 

v ( K ~ ~ ) ,  i~ V(CJ, have at least k of their vertices saturated by el, e2, ..., ek .  Suppose 

there are exactly b such sets ( b ~  (0, 1, 2)) and choose one of el, e2, ..., ek, say el,  

such that exactly b end-vertices of e l  lie in such sets. Again we may assume cl = 

( 0  1 , O )  Since (0) @ kv and { 1 ) 8 are independent sets in C,  8 KZk, there 

exist vertices (0, yo) and (I ,  yl), yo # 0, yr f~ 0, which are not saturated by el, e2, ..., 
- 

ek.  Furthermore, since {if x V(K2~) (i = 2, 3, ,.., r- 1) has no more than k- l saturated 
- 

vertices, there exist two unsaturated vertices (i, yi) and (i, 2;) in [ i j  /: V%K2k)- 



- 
Ckarly, fG @ K 2 k f - ( f t &  0). 61.0). fCt, yo), (1. y1 ) )u{ ( i ,  yi), (i, zi) I i = 2,  3, ..., r-1)) 

2 C, @ SZlk- l l .  Then by the inducrion hyporhesis, there exists a perfect matching F of 
- 

C, G3 lizsk. containing e2, e3, .--, ek- Hence Fu f (8, @(I,  O), (0, yo)(l, yl) ,  ( 2 ,  y2)(3, 

Y3) .  ( 2 ,  Z Z J ( ~ .  ~ 3 ) ,  ..., @-2, yr-2jfi-I, ~ r - 1 ) ~  fr-2, 2,-2)(r-1, z,-~)) is a perfect matchiilg 
- 

of C, C3 Ka confaining el, er, .... q. The inducrion is complete. 

Remark 4.2.14 Theorem 4.2.13 is the best possible in the sense that C, 8 K, is not 

( n i  1)-extendable if r is even fr 2 61, and is not (5 +I)-extendable if r is odd. To see 

this, when r = 2m, let %,I = (0, i)(l, i), 0 L i I n-1, = (3, 0)(4, O), and S = { (3, j) i 
- 

1 I j 5 n-1).  Then there are n+l odd components in (C, 0 K,)-V({el,  e2, ..., %,I] ) -  

S. But ISi = n- 1 .  and by Theorem 1.3.1 there is no perfect matching in C, @ &-V( ( e  
- 

srl  ..-. %,I))  and hence C, @ K, has no perfect matching containing el,  ez, ,.., e,+l 

%see Figure 4.13). When r is odd, then n is even. Let n = 2m and ei+l = (0, i ) ( l ,  i), 0 

S i I r n .  Lets= ((O,j),(l,j)fj=m+l,.-., 2m-l]u{(k, h) I k = 3 , 5  ,..., r-2; h = 0 ,  1 ,  



.... Im-1). Then iSI =2(m-1)+2rn. = m(r-I)-? and o((C,O i < 2 , ) - ~ ( ( c l .  c:. .... 
- 

e n  S = r - )  By Theorem 1.3.1, there is no perfect matching in C, Q K2,, ,-  
- 

V((el, e2, ..., %,I}). Thus there is no perfect matching of C, @ K2, containing el, s2, 

..., (see Figure 4.14). 

f31@&, 

Figure 4.14 

The second object of our study of the wreath product is to consider K, 8 k,, 

commonly refereed to as the complete multipartite graph, which is ( r- 1 )n -regular and 

has m vertices. 

Theorem 4.2.15 If rn is even (r > 3), then K, Q in is -extendable. 
- 

(r-7)n ProoP: Let V(&) = {O,  1, 2, ..., r-1) and K, = (0, 1, ..., n-1 J. Let m = -+ and el ,  q, - 
- 

..., em be m independent edges of K, QD K,. 
- 

We claim that for any 2n vertices of Kr 63 K,, there exists an n-marching which 

saturates all these vertices. The proof of this claim uses induction on n. If n = 1 ,  then 



- 
K, 8 K, 2 K, and the result is immediate. Suppose that the claim is true for n < k and 

- 
let 1-1 be a set of 2k vertices chosen from K, Kk. 

- 
Since at most two of the sets ( i )  x V(Kk) (0 I i I r-1) are contained in H, we 

- 
choose r vertices vo, vl, ..., vr_l each from a different {i)  x V(Kk) such that exactly two 

of them are in H, say vo and vl. As vo and vl belong to different {i} x v(kk), we have 
- - - 

V O V , E  E(K, (€3 Kk). Deleting vo, vl, ..., v,-1 from K, 8 Kk, we obtain K, O KkTl. By the 

induction hypothesis, there exists a (k-1)-matching M covering all these 2k-2 

vertices of H-(vo, vl  ). Hence M u  (vo, vl ) is a k-matching as required. 
- - 

Let el, e2, ..., em be m independent edges of Kr €3 K,. Then IV(K, O K,)l- 

iV( ( e l ,  e2, ..., em})  = rn-2m = 2n. We know that there exists an n-matching M 

saturating all these 2n vertices. Hence M u ( e l ,  e2, ..., em) is a perfect matching of K, 
- 

Q K, containing el, ez, ..., e,,,. 0 

- 
( r - ? ) n ~ ?  Remark 4.2.16 Theorem 4.2.15 is also best possible as Kr 8 K, is not 

extendable. To see this, we consider two cases according the parity of r. Let V(K,) = 
- 

(0, 1, 2, ..., r-1) and V(K,) = (1,2, ..., n). 

- - - 
~ ~ ( ~ - 2 ) ~ ) / 2 + 1 ) )  S (Kn/2-1 + K d - l )  + Kn which has no pedect matchiong. Hence there is 

- 
no perfect matching of Kr C3 K, containing el, e2, ..., e((,-2),)/r+l (see Figure 4.15). 

If r is even, let el = (2, 1)(3, I), e2 = (2, 2)(3, 2), ..., e, = (2, n)(3, n), e,+l = 

e((r-4)n)n+2 = (r-4. W - 3 ,  21, ---, e((r+nl,z = (r-4 n)(r-3, nI7 e((r~ln)/2+l = (r- 1, I )to, 1 j, 

---. e((r-s)nmdn/?l = @-I. r$1)(0, f ;I), e((r-qny2+m12kl = (0, ry+ 1)(1, ry+ 1), ..., 



- 
e((,-2),)/2 = (0, n)(L n)t e((r-2)n)/?+l = (r-1, n) ( l ,  1). Then K, G K , - V (  ( e l ,  e? ,  ..., 

Figure 4.15 

Figure 4.16 



Lemma 4.2.17 Let G be a k-extendable graph of order at least 2k+2. Then for any m 

independent edges el, e2, ..., e, and n vertices vl, v2, ..., v, of G (m+n < k)  there exist 

k+l-(m+n) independent edges which are not incident with V((el, ez, ..., e m ) ) u ( v l ,  

vz, ..., v,, ) .  

Proof: Since G is k-extendable, there exists a perfect matching F containing el ,  e2, 

..., em. Let FI be the subset of F consisting of all edges in F which have at least one 

of ( vl, v2, ..., v, ) as an end-vertex. From Observation 3.1.1 G1 = G-V( ( e l ,  ez, ..., 

em j u F 1 )  is (k-m-IFtl)-extendable. Since IV(Gl)I 2 2(k-m-IF11)+2 arid k-m-IF1l 2 

k-m-n, by Theorem 1.3.4 (1) G1 is (k-m-n)-extendable and each perfect matching of 

G 1 contains at least k+l-(m+n) edges. Therefore, there exist k+ 1 -(m+n) 

independent edges of G which are not incident with V((el, e2, ..., e m ) ) u ( v l ,  v2, ..., 

vn). 0 

Theorem 4.2.18 If G is a k-extendable graph of order at least 2k+4, then P2 O G is 

(k+2)-extendable. 

Proof: Let P2 = 01 and el, e2, ..., ek+2 be any k+2 independent edges of P2 O G. 

Suppose that no edge of e l ,  e2, ..., ek,;! belongs to { I )  x G. Let el, ez, ..., em 

be in (0) x G and e,+l, e,+2, ..., ek+2 be in P2 63 V(G). Let ej = (0, yj)(l, zj), m+l I j 

5 k+2 and let F be a perfect matching of (1) x G .  Let F1 be the subset of F consisting 

of all edges in F which have at least one of (z,+l, z,,~, ..., z ~ + ~ )  as an end-vertex. 

Since IV(G)I 2 2k+4, there are at least m edges el', e2', ..., h' of F which are not 

incident to any of F1. Hence (P2 63 G)-V((el, e2, ..., ek+2, el', ez', ..., em'}) has P2 O 
- 
Z \ ' ( C ) I - ( ~ + ~ + ~ )  as a spanning subgraph and P2 @ G then has a perfect matching which 

contains el, el, ..., ek+2. 

Otherwise, suppose that rn (m 2 1)  of el, e2, ..., q + 2  are in (0) x G ,  n (n 2 1) 
- 

of them are in [ 1 ) x G and p (p > 0) of them lie in P2 63 K,",,. Thus m+n+p = k+2 and 



p 5 k. Without loss of generality, let e; = (0, ui)(O, vi)  (1 5 i I m). el = (1,  w,)(l ,  s , ) ,  

(m+l 5 j I rn-tn) and eh = (0, yh)(l, zh) (m+n+l I h 5 m+n+p) be such edges. 

Assume that rn 2 n. Since { l  ) x G z G is k-extendable, by Lemma 4.2.17, for edges 

e,+l, em,2, ..., em+n and vertices (1, z,+,+l), ..., (1, z,+,+~), there exist m-n edges g,, 

8 2 ,  ..., gm-n (note that k+l-(n+p) 2 m-n as n 2 1) such that V ( ( g l ,  92,  ..., g ,,,., ))n 

+ 2 - e n  ( 1  n . ( 1  + +  = 0. Since (P? Q G ) -  

V((e1, e2, ..., em+,, gl, g2, ..., g,-,I)-((0, yh), (1, zh) I m+n+l I h 5 m + n + p ]  contains 
- - 

P2 @ KIV(G)I-2m-p as a spanning subgraph and P2 @ KIV(G)I-2m-p centninly has a perfect 

matching, P2 @ G has a perfect matching containing el,  e2, ..., ek+2. 

There is no example to show that Theorem 4.2.18 is best possible. I n  fact, ~ v c  

believe that the extendability of P2 8 G should be much larger than k+2 if G is 11 k- 

extendable graph. 

$4.3. On 2-extendable abelian Cayley graphs. 

Throughout this section we shall refer to a connected Cayley graph o ! ~  ;in 

abelian group T, simply as a abelian Cayley graph. When the abelian group is cyclic, 

or r z &, the Cayley graph G(T; S) is called a circulant and is denoted by &(S). 

In this section (which is joint work with 0. Chan and C. C. Chen), we shall 

classify the 2-extendable abelian Cayley graphs. Surprisely, i t  turns out that all 

abelian Cayley graphs which are not Zextendable are circulants. We state this rmult 

formally below; its proof being the main target of this section. 



Theorem 4.3.1 Let G = G(T; S) be a Cayley graph on an even order abelian group T. 

The graph G is 2-extendable if and only if it is not isomorphic to any of the following 

graphs: 

(1) Z2,,(l, 2n-I), n 2 3; 

(11) Z2,(1, 2, 2n- 1, 2n-2), n 2 3; 

(111) Z4n(l, 4n-1, h ) ,  n 2 2; 

(IV) Z4n+2(2, 4n, 2n+l j, n l 1; and 

(V) Z4n+2(l, 4n+l, 2n, 2n+2), n 2 1. 

Note that the graph in  (I) is just an even cycle of length 2n, whereas that in 

(IV) is isomorphic ro C2n+l x PZ. 

We shall approach the proof by showing that for any two independent edges of 

G(T; S) there is a spanning subgraph of G which is the product of a cycle C, and a 

path P, which contains these two edges. We can then apply Theorem 4.2.8 to this 

subgraph and use the structure of G(r ;  S) to classify the 2-extendable abelian Cayley 

graphs. We begin the proof with the following lemmas. 

Lemma 4.3.2 (Chen and Quimpo 1153) Every Cayley graph of even order is 1- 

extendable. 

From Lemma 4.3.2 and Corollary 4.2.6, we have the following. 

Corollary 4.3.3 Let G be a Cayley graph. Then G x P2 is 2-extendable. 

Lemma 43.4 The cycle CZn is 2extendable if and only if n = 2. 

Proof: Clearly, Cq is 2-extendable. If n 2 3, let C2, = v l v 2 - . . ~ 2 ~ ~ l .  There is no perfect 

matching in C2, containing the edges vlv2 and v4v5. 0 



Let T be an abelian group and S 5; T.  We denote by <S> the subgroup 

generated by the elements of S in T. We denote by o(a) = I<aA the order of clzment 

a in I?. Let <a> = (0, a, 2a, ..., (r-1)a) where r = o(a). We use b+<a> to represent 

the set (b ,  b+a, b+2a, ..., b+(r-l)a}. 

At this stage let us look more closely at the structure of abelian Cayley graphs. 

For any a€  S G r the graph G(<a>; (a, -a))  is a cycle of length o(a) and G(T; S) has 

a spanning subgraph consisting of the union of ITl/o(a) disjoint cycles of length o(a). 

If b e  <a>, r = o(a) and s = o(b), then the graph G(<a, b>; (a ,  -a, b, - b ) )  has vt.rtcs- 

set (ia+jb 1 0 I i I r-1, 0 5 j I s-1) and contains s disjoint cycles Co, C i ,  ..., C,., of 

length r (which are all edges of type a in G(<a, b>; (a ,  -a, b, -b])). Moreover, there 

is a perfect matching between Ci and Ci+l, 0 I i I r-2, which is made up  of edges of 

type b in G(<a, b>; (a, -a, b, -b)). By relabelling (if necessary), we see that G(<;I, 

b>; (a, -a, b, -b ) )  contains a spanning subgraph isomorphic to C ,  ic P,. I f  'r is ;I 

subset of S with T = -T, then G(<T>; T) is a subgraph of G(T; S)  and Ci(r; S )  has ;I 

spanning subgraph which is the union of ITI/I<T>I vertex-disjoint copies of G(<T>; 

T)  - 

Lemma 4.3.5 Let G(T; S) be an abelian Cayley graph and T be a nonempry subser of 

S with -T = T. Then any perfect matching of G(cT>; T) can be extended to a purfccr 

matching of G(T; S). 

Froof: This follows immediately from the fact that G(T; S) can be decomposed into 

copies of G(<T>; T). [f 

Recall that the edge xy in G(T; S) is  said to Se of type a (or an a-edge) i f  

y-xE (a, -a}. Hence, if xy is of type a, then either y = x+a or  x = y+a. Also, if H = 



G(<T>; T) E G(T; S), then if cE T the subgraph 0,(H) is a graph with V(B,(H)) = 

V(Hj+c and (x+c)(y+c)E E(0,W)) if and only if xyE E(H). Note 0,(H) G H. 

Lemma 4.3.6 Let G be an abelian Cayley graph of even order. Then any two 

independent edges of different types are contained in a perfect matching of G. 

Proof: Let G = G(T; S), where T is a finite abelian group of even order. Let el = ab 

and e* = cd be edges of G of types s and t, respectively, where s,tE S and sB ( t ,  - t] .  

As G is vertex-transitive, we may assume that a = 0 and b = s. We shall consider 

the following cases: 

Case 1. s is of even order 2n and t E <s>. 

Let H be the Cayley graph G(<s, t>; (s, t,- s, -t)). Then H has a spanning 

subgraph K isomorphic to C2, x P,, m 2 2, whose edge-set contains el. If e;! is an 

edge of H, then we may choose K so that el, e 2 ~  E(K) and hence by Corollary 4.2.4 

there is a perfect matching in H which contains el and e;! and, by Lemma 4.3.5, can be 

extended to a perfect matching of G.  On the other hand, if e2 is not an edge of H, then 

e l  is in BC(H) for some c. By Lemma 4.3.2 there is a perfect matching M in H 

containing el and a perfect matchifig M' in 8,(H) containing ez. Since G(T; S) has a 

spanning subgraph which is the union of Ill/l<s, ol copies of I I ,  we can extend MUM' 

to rr perfect matching of G. 

Case 2. s is of even order 2n and t~ <s>. 

Let H be the Cayley graph G(<s>;{s, t, -s, - t)) ,  where t = ks. If ez is not an 

edge of H, then we can settle this case as in Case 1. Hence we may assume that e2 is 

an edge of H with c = c's, d = d's and c' < d'. Note that k~ {c'-d', d'-c'). We then have 

the following four subcases to consider. For each case, we find a matching M 

containing el and e2 such that V(H)-V(M) can be partitioned so that the subgraphs 

induced by the vertices in each pa r  are of even order and contain a Hamilton path. 



Then el and ez can be extended to a perfect matching of H. Applying Lemma 4.3.5 

again, G has a perfect matching containing el and e2. 

Case 2.1. If k is odd and c' is even, then d' is odd. Putting M = ( e l ,  22). we 

have the even paths (2s)(3s) ...(( c'-1)s), ( (c t+l)s)((c '+2)s)  ...((dl- 1 ) s )  a n d  

((dl+l)s)  ...(( 211-1)s). 

Case 2.2. If k is odd and c' is odd, then let M = ( e l ,  e*, ( ( c l -  l)sl((d'- 1 Is), 

((c'+l)s)((dl+l)s)). In this case d' is even and the even paths are (Zs)(3s) ... 

((c'-2>s), ((cV+2)s)((c'+3)s) ...(( dl-2)s) and ((d1+2)s) ...(( 2n-1)s). 

Case 2.3. If k is even and c' is even (hence d' is even), then let M = ( e l ,  c ~ ,  

((c'+l)s)((d'+l)s)). The even paths are (2s)(3s) ...(( c'- 1 )s), ((c1+2)s)((c'+3)s) .. 

((d'- 1)s) and ((d'+2js) ...(( 2n- 1)s). 

Case 2.4. If k is even and c' is odd, then d' is odd. Let M = { e l ,  c?, ( (c ' -  1 )s) 

((d'- 1)s) J and the even paths are (2s)(3s) ...(( c'-2)s), ((c'+ l)s)((cl+ 1 )s). '(dl-2)s) 

and ((dl+l)s) ...( (2n-1)s). 

Case 3 .  Both s and t have odd order. 

As I? is of even order, there exists an elemrnt r€ S of e e n  order. I-lencc 

rE V(H), where H is the Cayley graph G(<s, t>; (s, t, -s,- t ) ) .  Let K be the Caylcy 

graph G(<r, s, t>; {r, -r, s, -s, t, - t )) .  If e2 is not an edge of K, then c2 is i n  a 

subgraph K' = O,(K) z K for some c $5 <r, s, t>. By Lemma 4.3.2 there is a perfect 

matching M in K containing el and a perfect matching M' in K' containing e2. Then 

MUM' can be extended to a perfect matching of G by Lemma 4.3.5. Hence, we 

assume that e2E E(K). Since r E V(H) and I is of even order, K has a spanning 

subgraph which is isomorphic to H x P2, (where 2t = o(r)). Furthermore, K can be 

partitioned into copies of L H x P2, where V(L) = V(H)uV(O,(H)). By Corollary 

4.3.3, L is 2-extendabIe (and hence 1-extendable) and therefore there exists a perfect 

matching M in K which contains el  and e2, and can be extended to a perfect matching 

ofG. f7 



Lemma 4.3.7 The Cayley graph Z2,(1, 2n-I, n), n > 2, is 2-extendable if and only if n 

is odd. 

Proof: Let G = Z2,(1, 2n- 1, n). If n is even, we let el = 01, e2 = (n- 1)n and S = (3, 5 ,  

..., n-3, n+2, n+4, ..., 2n-2). Then IS1 = n-3 and (G-V((el, e2]))-S is a union of n-1 

isolated vertices. By Tutte's theorem there is no perfect matching in G-V({el, e 2 ) )  

and hence no perfect matching in G containing el and e2. 

Assume that n is odd. Let el = ab and e2 = cd be two independent edges of G. 

In view of Lemma 4.3.6, we may assume that they are of the same type. If they are of 

type n, then they are contained in the perfect matching consisting of all edges of type 

n. Thus we need only to consider the case when they are of type 1. Without loss of 

generality, we may assume that a = 0, b = 1 and d = c+l .  If c is even, then el and ez 

are contained in the perfect matching consisting of all edges x(x+l), where x = 0, 2, 4, 

..., 2(n-1). So, let c be odd. Then there exists an even integer y e  (2, 3, ..., c-1 ) , such 

that el lies on the cycle C = 012 ...y(y+ n)(y+n+l) ...( 2n-1)O of length n+l and e;! lies 

on the path P = (y+l)(y+2) ...(y+ n-1). (In fact y = 2 or n-1 depending on c.) As C is 

;in even cycle, it has a perfect matching containing el. Also, as P is of even order and 

y+l  is odd, P has a perfect matching M2 containing e2. Then M l u M 2  is a perfect 

rnstching of G containing el and ez. 0 

Let H be a spanning subgraph of a graph G. We cdled H an even path factor 

of G if each component of H is a path of even order. 

Lemma 5.33 The Cayley graph Z4n+2(1* 4n+l, k, 4n+2-k), where n 2 1 and k < 

Zn+I. is 2-extendable if and only if k # 1,2 or 2n. 

Proof: Let G = &,+2(1, 4n+l, k, 4n+2-k). If k = 1, then G is not 2-extendable, by 

Lemma 4.3.4. If k = 2, let el = 01 and ez = 34. Then 2 is an isolated vertex of G- 



V({el, e2])  and there is no perfect matching in G containing el and el. If  k = 211, there 

is no perfect matching containing e l  = 01 and ez = (2n+1)(2n+2) as (G-V((e,, e 2 ) ) ) -  

{3 ,  5, ..., 211-1, 2n+4, ..., 4n] consists of 2n isolated vertices (note l(3, 5, ..., 2n- 1, 

2n+4, ..., 4n)l = 211-2). 

Conversely, assume that k # 1, 2, 2n. Let el = ab and e2 = cd, a < b and c < d ,  

be two independent edges of G .  As G is vertex-transitive, we may assume that a = 

0. By Lemma 4.3.6, we can assume that el and e2 are of the same type. We consider 

the following cases: 

Case 1. k is odd. 

If el = 01, then e2 = c(c+l) and by vertex-transitivity we may assume that c I 

2n+l. Assume first that c is even. Then M = (2i(2i+l) I i = 0, I ,  ..., 2n) is a perfect 

matching containing el  and ez. If c is odd, then ez is contained in  the even cycle C -1 

-l)c(c+l)...(c-l+k)(c-1) (which has a perfect matching M2 containing e?) and el is 

contained in the even path P = (c+k)(c+k+l) ...( 4n+2)Ol2 ...( c-2) which has a perfect 

matching MI containing el. Then MluM2 is a perfect matching of G containing el and 

e2. 

Next, let el  = Ok. Then e;! = c(c+k) and we have the followirig casts to 

consider. 

Case 1.1. c is odd and c < k. 

Let M = (e l ,  e2, (c+l)(c+k+l)].  Then G-V(M) has an even path factor 

12 ...( c-l) ,  (c+2)(c+3)...(k-I), (k+l)(k+2) ...( c+k-1) and (c+k+Z)(c+k+3) ... (4n+I). 

Thus M can be extended to a perfect matching of G. 

Case 1.2. c is odd and c > k. 

Let M = (el,  e2, (c-l)(c+k-1), (c+l)(c+k+l)). Then, as G-V(M) has an even 

path factor 12 ...( k-I), (k+l)(k+2) ...( c-2), (c+2)(c+3) ...( c+k-2), and (c+k+2)(c+k+3) 

.,.(4n+l), M can be extended to a perfect matching of G .  

Case 1.3. c is even and c c k. 



Let M = ( e l ,  ez, (c-l)(c+k-1)). Since G-V(M) has an even path factor 

12...ic-I), (c+l)(c+2)...(k-I), (k+l)(k+2) ...( c+k-2), and (c+k+l)(c+k+2) ...( 4 n + l ) ,  

M can be extended to a perfect matching of G .  

Case 1.4. c is even and c > k. 

Let M = (el ,  e2). Using the same idea as in the previous case, because G- 

V(M) has an even path factor 12 ...( k-I), (k+l)(k+2) ...( c-I), (c+l)(c+2) ...( c+k- I ) ,  

and (c+k+l)(c+k+2j ...( 4n+l), M can be extended to a perfect matching of G. 

Thus Case 1 is dealt with. We now suppose that k is even. 

Case 2. k is even. 

If el = 01, then d = c+l and again by vertex-transitivity we may assume that c 

S 2n+l. When c is even, M = (2i(2i+l) I i = 0, 1, ..., 2n) is a suitable perfect matching. 

If c is odd, let M = (01, (c-l)(c-l+k), c(c+l), (c+2)(c+k+2), (c+k)(c+k+l)}. Then M 

is a set of independent edges containing el and e2 and G-V(M) has an even path 

factor 23 ...( c-2), (c+3)(c+4) ...( c+k-2) and (c+k+3)(c+k+4) ...( 4n+ 1). Thus M can be 

extended to a perfect matching of G .  

Finally, let el = Ok. We then have the following subcases to consider. In each 

subcase, as in the subcases of Case 1, we construct a matching M so that G-V(M) 

has an even path factor and then M can be extended to a perfect matching of G. 

Case 2.1. c isoddandc < k. 

In this case, let M = {el, e2) and it is easy to see that G-V(M) has an even 

path factor. 

Case 2.2. c is odd and c > k. 

As k # 2n we have either c-k 2 3 or 4n-c-k+2 2 3. By vertex-transitivity we 

may assume the former holds. Let M = (el, e2, (c- l)(c+k-1), 1 (k+l)). Then M can 

be extended to a perfect matching of G. 

Case 2.3. c is even and c < k. 



Let M = {el,  e2, (c-l)(c+k-1), (c+l)(c+k+l)). As  in Case 2.1 XI can be 

extended to a perfect marching of G. 

Case 2.4. c is even and c > k. 

Let M = (el, ez, (c+l)(c+k+l), l (k+l)} .  Again M can be extended to a perfect 

matching of G. Cf 

Lemma 4.3.9 The Cayley graph Z4,(l, 4n- 1, k, 4n-k), 1 I k I 2n, n 1 2 ,  is 2- 

extendable if and only if k * 1,2,2n. 

Proof: Let G = Z4,(l, 4n-1, k, 4n-k). If k = 1, then G is not 2-extendable by Lemnia 

3.3.4. If k = 2, then G is not textendable as there is no perfect matching containing 

01 and 34. If k = 2n, then G is not 2-extendable by Lemma 4.3.7. 

Conversely, assume that k is different from 1, 2 and 2n. Let el = ab and e2 = 

cd, a < 5 and c < d, be two independent edges of G. As G is vertex-transrive, we mity 

Iet a = 0. By Lemma 4.3-6, we may assume that el and e2 are of the same type t ,  

t~ { 1, k).  We have the following cases to consider. 

Case 1. t = 1. 

By vertex-transitivity, we may assume that c 5 2n. If c is even, then [ O l ,  23, 

..., (4n-2)(4n-1)) is a perfect matching containing el and e2. Assume that c is odd. If 

k is odd, let M = (el, e2, (c-l)(c+k-1)). Then G-V(M) has an even path fxtor and 

so M can be extended to a perfect matching of G. On the other hand, if k is even, let 

M = {el, e2, (c-l)(c+k-I), (c+2)(c+k+2)). Then, for the same reason as in  the 

previous case, M can be extended to a perfect matching of G.  

Case 2. t = k. 

In each subcase we construct a matching M containing el = Ok and e2 = c(c+k) 

such that G-VtM) has an even path factor from which it follows that M can be 

extended to a perfect matching of G. If k is odd, let 



if c is odd and c < k; 

if c is odd and c > k; 

if c  is even and c < k; 

if c is even and c > k. 

i f c  is oddandc < k; 

if c is odd and c 2 k+3; 

i ic  is odd and c = k+l; 

if c  is even and c < k; 

if c is even and c > k. 

It is easy to see that M is as required. The proof is now complete. 0 

Lemma 4.3.10 The Cayfey graph Z2,(1, 211-1, 2, 211-2, n-1, n+l), n 2 4, is 2- 

extendable. 

Proof: Let G = &,(I, 2n-I, 2, 2n-2, n-1, n+l) and let el = ab, e2 = cd be two 

independent edges of G with a < b and c < d. As G is vertex-transitive, we may 

assume that a = 0 and by Lemma 4.3.6, we may assume that el and e2 are of the 

same type t. 

Custrl.t= 1. 

By the vertex-rransitivity of G, we may assume that b = 1 and c 5 n. If n is 

even, then by L e m a  4.3.9 the spanning subgraph Z2,(1, 211-1, n-1, n+l) of G is 2- 

sxtendable and so el and e2 can be extended to a perfect matching of C. Suppose then 

that n is d d .  If  c is even, then el and e2 are contained in the perfect matching (01, 23, 

-.-. Q2n-2)(2n-l)j of G. On the other hand, if c is odd, let M = {el, e2, (c-l)(c+n-2>, 

tc-irn-3)(c+-n-l)), Then M can be extended to a perfect matching of G, as G-V(M) 

has an even path factor: 23&-21, (t+2)(c+3) ..,[c+n-4) and (c+n)(c+n+l) ...( 211-1). 



Case 2. t = 2. 

Again by vertex-transitivity, we may assume that b = 2 and c I 11. If c = 1 ,  

then the vertices of G which are not on el or ez lie on the even path 45 ...( Zn-1)  and so 

G has perfect matching containing e l  and e l .  Let c > 1 and recall that n 2 4. 

According to the parity of c, we construct a matching M so that G-V(M) has 3n e\.cn 

path factor and hence M can be extended to a perfect matching of G. 

Case 3. t = n- 1. 

We may assume that b = n- 1 and c I n by vertex-transitivity of G. I f  n is 

even, then by Lemma 4.3.9, the spanning subgraph Zzn( 1, 2n- 1,  n- 1,  n+ 1 ) of G is 2-  

extendable and so G has a perfect matching containing el and ez. When n is odd, we 

have several subcases t o  discuss. For each subcase, as  in the proof of C x e  2 of 

Lemma 4.3.9, we construct a matching M containing el and e2 such that G-V(M) has 

an even path factor, and hence M can be extended to a perfict matching of G. 

Assuming e l  = O(n-1). The desired matching M is as follows: 

{e l ,  e2, (c- l)(c+l), (c+n-2)(c+n) ) i f c  is even and c < n-I; 

i f c i s o d d a n d c < n - I ;  

{el ,  e2, (n-2)(2n-3), (2n-4)(2n-2)) if c is odd and c = n. 

Lemma 4.3.11 The Cayley graph Z2,(1, 211-1, 2, 2n-2, n), n 2 3, is 2-extendable. 

Proof: Let G = Z2,(1, 2a-1, 2, 2n-2, n) and let el = ab, e;! = cd be two independent 

edges of G with a < b and c < d. By the vertex-transitivity of G and Lemma 4.3.6, we 

may assume that el = Ot, e2 = c(c+t) and e I n. 

Case 1. t = 2 ,  



If c is even, then el and e2 are contained in  the perfect matching (01, 23, ..., 

1211-2jC2n-1 j )  of G .  If both c and n are odd, let M = (el ,  el, 2(n+2)). Then M can be 

extended to a pe~fect matching of G as G-V(M) has an even path factor 34 ...( c-I),  

(c+2)(c+3j ... ( n + l )  and (n+3)(n+4) ... (2n-1). If c is odd and n is even, let 

?hen G-V(M) has an even path factor 56 ..A, (n+4j(n+5j ...( 2n-1) (if c = 3) or 56 ... 

(c -  I ) ,  (c+2)lc+3) ... (n+2), (n+4)(n+5) ...( 2n-1 j (if c 2 5) .  

If c = 1 ,  then sl = 02 and e2 = 13 are contained in the perfect matching (02, 13, 

35, ..., (2n-2)(2n-I)) of G. If c > 1, recall that n 2 3. With respect to the parity of c, 

we construct a matching M so that C-V(M) has an even path factor and hence M can 

be extended to a penLz: rmr:hing o * G. 

Case 3. t = n .  

The set of all edges of type n in G form a perfect matching of G which contains 

el and e2. 0 

Now we are ready to prove the main theorem. 

Proof of Theorem 4.3.1: We first assume that G = G(T; S) is isomorphic to one of 

the given graphs. 

The graph Z2,(1, 2x1-11, n 2 3 is not 2extendable, by Lemma 4.3.4. 

By Lemmas 4.3.8 and 4.3.9 the graph &,(I, 2, 2n-1, 2n-2), n 2 3 is not 2- 

extendable. 



The graph &,(I, 4n-1, 2n). n 2 2 is not 2-extendable, by Lemma 4.3.7. 

If G = Gn+2(2, 4n, 2n+l), n 2 1, then G is isomorphic to C7,*+) x P2 and so by 

Lemma 4.2.7 is not 2-extendable. 

Finally, the graph Z3n+2(1, 4n+1, 2n, 2n+2), n 2 1 is not 2-extendable, by 

Lemma 4.3.8. 

Conversely, assume that G is not isomorphic to any of the listed griaphs. We. 

shall prove that G is 2-extendable. 

If G is regular of degree 2, then it must be a 4-cycle and so is 2-estendable. 

If G is regular of degree 3, then IS1 = 3 and we let S = (a, b, c}. If a, b and c ;Ire 

of order 2, then, as G is connected, G is isomorphic to the complete graph #., or the 

cube C4 x P2 and is so 2-extendable. Otherwise, as S = -S we may assume that a+b 

= 0 and c+c = 0. If cE <a>, then G C, x P2 where m = o(a). By hypothesis (G Z 

Z4n+2(2, 4n, 2n+l)), m must be even, and so by Corollary 4.2.3, G is 2-extendable. 

On the other hand, if CE <a>, h e n  a must be of even order 2n and c = na. Hence G z 

Z2,(1, Zn-1, n) and so (by hypothesis) n must be odd. Hence G is 2-extendable, by 

Lemma 4.3.7. 

If G is regular of degree 4, let S = (a, b, c, d).  Suppose a, b, c and d are of order 

2, rhen G is isomorphic to one of Kq x P2, K4,4, or C4 x C4 and so is ?-extendable. 

Suppose a and b are of order 2 and c+d = 0. Let el and e2 be independent 

edges of G. By Lemma 4.3.6, we may assume that el and e2 are the same type. I f  

they are of a or b, then the set of all edges of type a or of type b will be a suitablc 

perfect matching. Thus, we may assume that they are of type c. 

If a€ <c>, then c must be of even order 2n, a = nc and b4  <o. Hence G has a 

spanning subgraph G(T; (b, c ) )  which is isomorphic to C2, x P2 and contains the 

edges er and e2. By Cm01h-y 4-2.4, G has a perfect matching containing el and e2. 

Assume that neither a nor b is in <c>. If c is of odd order k, then G is isomorphic to 

C& x P2 x P2 which, since C& x P2 is I-extendable, is 2-extendable by Corollary 4.2.6. 



If c is of even order, either G C2, x P2 x P2 and we are done as in the odd case, or G 

has a spanning subgraph H, H f Ck x P2, which contains both el and e2 and again we 

are done as C2, P2 is 2-extendable. 

Finally, assume that a+b = 0 and c+d = 0. At least one of a and c (say a) is of 

even order 2n (since G has even order). If c E <a>, then for any two independent 

edges el and e2 of type c in G, there exists a spanning subgraph of G which is 

isomorphic to C2, x P,, m 2 2, and contains el and e2. By Corollary 4.2.4, G has a 

perfect matching containing el and e2. If c E <a>, then c = ta, t 6E { 1, 2, n, n-1) (as G 

Z2*(1, 2, 2n- 1, 2n-2)) and Gl<a, c>; (a, b, c, d ) )  Z Z2,(1, 2n- 1, t ,  2n-t). Therefore 

by Lemmas 4.3.8 and 4.3.9, G is 2-extendable. 

Hence, we may assume that G is regular of degree at least 5. Let el and e2 be 

any two independent edges of G. As usual, by Lemma 4.3.6, we need only to consider 

the case when el and e2 are of the same type (say a). As G is vertex-transtive, we 

may assume that el = Oa. Now, we need only to consider the following two cases. 

Case 1. a is of order 2n. 

If n = 1, then all the edges of type a in G will be a suitable perfect matching of 

G .  Hence, we may let n 2 2. Then the set of all edges of type a forms a spanning 

subgraph of G which is the disjoint union of 2n-cycles. If el and ez lie on two distinct 

cycles, then clearly they can be extended to a perfect matching of G. Otherwise they 

are on the same cycle and we let e2 = (ta)((t+l)a), 1 < t < 2n-1. If <a> # T, then 

there exists bE S such that bE <a>. Then if the order of b is m, m 2 2, G(<a, b>; 

trr, -a, b, -b)) E G has a spanning subgraph H isomorphic to Cz, x P, and containing 

c~ and el. By Corollary 4.2.4, el and e2 can be extended to a perfect matching of H, 

which in turn can be extended to a perfect matching of G by Lemma 4.3.5. Finally, we 

assume that <a> = r (so b~ <a> for all bE S); that is, G is a circulant. As G is of 

degree at least 5, we have iSI 2 5. If S = {a, (2n-l)a, 2a, (2n-2)a, (a-l)a, (n+l)a), 

&en G Z Zh(l, 2n-1, 2, 2n-2, n-1, n+I) and by Lemma 4.3.10 G is 2-extendable. 



Otherwise, there exists b€ S-(a, (2x1- l)a, 23, (2n-?)a, (n -  1 )a, (n+ 1 ) a } .  I f  n is t ~ i d ,  

then Lemmas 3.3.7 and 4.3.8 imply that the subgraph induced by the set of a11 edges of 

types a and b is a 2-extendable spanning subgraph of G. Hence t t l  and e. c,tn be 

extended to a perfect matching of G .  On the other hand, if n is even. by Lcmnla -1.3.) I .  

we may assume S # (1,  211-1. 2, 2n-2, n} .  Thus there exists a n  elenlent of S orhcr 

than a, (2n-l)a, 2a, (2n-2)a and na. Then from Lemma 4.3.9, the subgraph induced by 

the set of all edges of types a and c is a 2-extendable spanning subgraph of G .  k i e n i ~  

el and e2 can be extended to a perfect matching of G. 

Case 2. a is of order 2n+ 1. 

As r is of even order, there exists an element b~ S of even order and so 

bE <a>. Let m be the smallest positive integer such that mb€ <a>. Then rn is evcn. 

Let H be the subgraph of G induced by the vertex-set (ib+<a> I i = 0. 1, ..., rn-11,  so 

M is G(<a, b>; (a, -a, b, -b}). 

If rn 2 4, let Hi be the subgraph of H induced by all the edges of type a and b on 

the vertex-set {ib+<a>Juf(i+l)b+<a>), i = 0, 2, 4, ..., m-2. Clearly Hi Z CZncl x P2 

and is thus 1-extendable. If e l  and ez are in different Hi, there is clearly (by Lemma 

3.3.5) a perfect matching of H containing them, and hence there is such a perfect 

matching in G. Otherwise, e;! is an edge in  Ho. If e2 = (sa)((s+l)a) for some s, 1 c s 

< 2n, let M = {el, e2, b(b+a), (b+sa)(b+(s+l)a)]u ((ka)[b+ka) I k it 0, 1, s, s+ 1 j. 

Then M is a perfect matching of Ho containing el and e2. So we can extend M to a 

perfect matching of H and h e n  to one of C ,  by Lemma 4.3.5. Next, let e2 = 

(btsa)(b+(s+l)a) for some 1 I s 5 2n. If IfO, l ] n { s ,  s+l) l  = 0, then M = {el ,  q, 

b(hta>, (sa)((s+l)a))u((ka)(b+ka) I k # 0, 1, s, s+l)  is a perfect matching of Ho 

containing el and ez. We can then extend M to a perfect matching of H and hence to 

one of G, I f i f O ,  I f n C s ,  s+l)l # 0, then we have either (0, 1) = {s, s+ lJ  or I(0, 

1 l n f s ,  s+l)i = 1, fn the former case, M = (el, e2 )u  {(ka)fb+ka) 1 k ?t 0, 1 ) is a 

perfea matching of l& containing el and ez. We can then extend M to a perfect 



matching of H and hence to one of G. In the latter case, by vertex-transitivity we may 

assume s = 1 and we consider the subgraph H. Let (m-l)b+ta be the vertex in H,-l 

wch that mb+ta = 2a. Let M = (el ,  e2, (2a)((m-l)b+ta), b(2b))u((ka)(b+ka) I k # 

0. 1. 2 ) .  Then M can be extended to a perfect matching of H since the subgraphs 

induced by the vertex-sets (2b+<a> 1-(2b) and ((m- l)b+<a>)-((m- l)b+ta) have 

even path factors and the subgraph induced by the vertex-set (ib+<a> I i = 3, 4, ..., 

m-2 f is isomorphic to C&+l x Pa, where r = (m-4)/2, and hence by Lemma 4.3.5 to a 

perfect matching of G containing el and e2. 

Finally, we need only to consider the case when m = 2 .  Following the 

argument in the case m 2 4 we may assume e2 = (b+a)(b+2a). If <a, b> # T, then 

there exists CE S-<a,b> (recall that <a, b> = V(H)). Let K be the subgraph of G ( a ,  

b, c>; {a, -a, b, -b, c, -c)) induced by the vertices <a, b>u(c+<a, b>). Then K has 

the following perfect matching which contains el and e2: 

M = (e l ,  e2, c(c+a), (c+b+a)(c+b+2a), (2a)(2a+c), b(b+c)) 

u((g)(g+c) 1 g~ V@)-(0, s, 2% b, a+b, 2a+b) 1. 

And M can be extended to a perfect matching of G, as the subgraph of G induced by 

the set of all vertices of V(G)-V(K) contains a spanning subgraph which is the 

disjoint union of c o ~ i e s  af H (which has a perfect matching). Therefore it remains to 

consider the case when <a, b> = r. As G is regular of degree at Ieast 5, there exists 

c~ S-(a, -a, b, -b). Since m = 2, V(G) = <a>u(b+<a>) and c = ta or b+ta for some 

i < r S n .  

If c = ta with t 2 3, then M = {el ,  e2, (2a)((2+t)a), ( ta)((t+l)a),  

(b+(t+l)a)(b+(tt2)a), b(b+ta))w{(sa)(b+sa) I s # 0, 1, 2, t, t+l ,  t+2) is a perfect 

matching of G containing el md e;?. If c = 2a, then M = {el, e2, (2a)(4a), (3a)(b+3a)} 

is a set of independent edges containing el and e2 so that G-V(M) has an even p ~ t h  

factor- Thus G has a perfect matching containing el and e2. This leaves us with the 

case c = b+m As c f b, then r # 0 and as c # -b, then 2b # 2tna. If t 2 3, then M = 



( e l ,  ez, c(a+c), (bia-c)(b+2a-c))u (x(x+cl 1 x €  <a>-(0, a, b+a-c, b+2a-c f ) is ;i 

perfect matching of G containing el and ez- If t = 1, M = ( e l .  ez] u ( x(x+c) i SE <a>- 

[ O ,  a ) }  is a perfect matching of G containing el and ez. Finally, we assume t = 2. 

Then 2b ;t 4na = (2n-1)a. If also 2b ;t 0, then M = (el ,  er, (2b+a)(2b+2a), (-b)(a-b)) 

u{y(y+b) I YE (b+<a>)-{b+a, b+2a, -b, a-b] 1 is a perfect matching of G containing 

el  and e2. Finally, if 2b = C, then M = ( e l ,  e2, (3a)(4a), (-c)(n-c) ) u ( y( y+c) I 

YE (b+<a>)-{b+a, b+2a, -c, a-c)) (where c = b+2a) is a suitable perfect matching of 

G containing el and e2. [If 

To end this section, we would like to raise the following problems. 

Problem 4.3.11. Characterize all 3-extendable abelian Cayley graphs and, in general, 

all k-extendable abelian Cayley graphs. 

Lovasz and P h m m e r  (see 14-41) proved that every vertex-transitive graph of 

even order is  1 -extendable. Since Cayley graphs are vertex-transitive, any Cay ley 

graph of even order i s  I-extendable. It is not known which Cayley graphs art: 2- 

extendable. 

Problem 4.3.12. Characterize all 2-extendable Cayley graph. 

84.4. Classification of 2-extendable generalized Petersen graphs. 

Reed1 that the generafized Petersen graph GP(p, k) (p > k) has vertex-set 

UUV where U = (uo, u ~ ,  ..., j and V = (vo, vl, ..., vp-1 ), and edge-set { uivi, uiw;+., , 

V i V i a  f i = 0, 1, ..., p-1 ), w h e  all suhipt  arithmetic is performed rnodufo p. One 



easily sees rhat GPtp, k) is 1-extendable. The study of 2-extendability of these 

graphs was begun by Schrag and Cammack [52 ,  531 who gave necessary and - 
sufficierit conditions for the 2-extendability of GP(p, k), when 1 I k 5 7.  In this 

section, we shall prove the following main result. 

Theorem 4.4.1 For k 2 3, the generalized Petersen graph GP@, k) is 2-extendable if 

and only if p # 2k or 3k. 

For convenience, we calf the edge uivi a spoke and the edge v;v;+k a chord. 

The next result is easily deduced from the definition of GP(p, k). 

Theurem 4-4.2 For any positive integers p, k with p > k 2 3: 

(i) GP(p, k) 2 GP(p, p-k); and 

(ii) GP(p, k) has a aiangle if and only if p = 3k. 

Proof: (i) This follows directly from the definition s f  GP(p, k). 

(ii) Suppose p > k 2 3. If GP@, k) has a mangle, then the triangle must occur 

on the vertices of V. Thus there exist r, s, and t with r I s I t so that v,v,, v,v,, and 

v,v, are edges of GP(p, k). But s-r I t-s E r-t = k (mod p) and thus p = 3k. On the 

other hand, if p = 3k, then we have a mangle on the vertex-set {vo, vk, ~3). 0 

As a consequence of Theorem 4.4.2 (i), we will henceforth assume p 2 2k. 

Next, we quote three results from Schrag and Carnmack E52, 531 which we present as 

iernmns. 

Lemma 4.4.3 ( S h g  and Cammack f531) For dl k 2 2, GP(2k, k) and GP(3k, k) are 

nor ?-extendable- 



Lemma 4.4.4 (Schrag and Cammack [ 5 2 ] )  if k 2 4. then any pair of independent 

edges of GP(p, k), at feast one of which is a spoke, can be extended to a perfect 

matching. 

Lemma 4.4.5 (Schrag and Cammack [52, 531) If 3 I k I 7, GP(p, k) is 2-extendable 

if and onIy if p # 2k or 3k. 

In order to prove Theorem 4.4.1, we need to show that for any two independent 

edges el, e2 of GP(p, k) (p # 2k or 3k) there exists a perfect matching containing e l  

and e2. Depending on the location of el and e2, we consider the following six cases: 

( I )  Both el and e2 are spokes. 

(2) el is a chord and ez is a spoke. 

(3) el has both end-vertices in U and e2 is a spoke. 

(4) Both el and e2 are chords. 

(5) el has both end-vertices in U and e2 is a chord. 

(6) Both el and e2 have their end-vertices in U. 

From Lemmas 4.4-4 and 4.4.5, we need only consider k 2 8 and the non-spoke 

cases (4), (5) and (6). In the proof of Theorem 4.4.1, we will study these oases 

separately and show that in each case we can always find a perfect matching 

containing both el and e2. For convenience, we introduce a lemma and some notation. 

Let S(p, k) denote the set of all spokes of GP(p, k). Given a chord viv;+k, we 

call the two chords Vi-lVi-l+k and v;+lv;+l+k the neighbour chords of viv;+k. By the 

definition of GP(p, k), Gm is an p-cycle and G[V] is a 2-regular graph (we suppose 

p # 2k). An even cycle C in GP(p, k) is called iilternating if the edges of C appear 

alternately in (uivi I 0 5 i 5 p-1) and ( u ~ u ~ + ~ ,  vivi+k I 0 5 i _< p-1 }. 

Lemma 4.4.6 Consider tbe graph GP(p, k), g # 2k, 3k, md k 2 3: 



Ci) If two edges el, e2 of ( u ~ u ~ + ~ ,  ViVi+k I 0 5 i 5 p-1 ) are in an alternating cycle, 

then there exists a perfect matching in GP(p, k) containing el and ez. 

(ii) Let C1 and C2 be vertex-disjoint alternating cycles in GP(p, k). If e;E Ci 

(i = 1,  2), then there exists a perfect matching containing el and ez. 

Proof: (i) Let C be an alternating cycle in GP(p, k). Then F = C-(uivi I u ivg C ) V  

f Stp, k)-E(C)) is a perfect marching containing el and e2. 

(ii) Let F1, F2 be perfect matchings in C1, C2, respectively, which contain el, 

ez. Then F = F I ~ F 2 u { S ( p ,  k)-E(CI)-E(C2)} is a perfect matching containing el and 

e2- O 

We now turn to prove the main theorem. 

Proof of Theorem 4.4.1: By Lemma 4.4.3, we need only to show that if p # 2k or 3k, 

then for any two independent edges el, e2 in GP(p, k) we can find w n e  perfect 

matching containing them both, From Lemma 4.4.4 and Lemma 4.4.5 it suffices to 

consider k 2 8 and the non-spoke cases as follows: 

Case 1. Both el and e2 are chords. 

Since el and e2 are independent chords, we may assume that el = V O V ~  and e2 = 

v;v;,k, where (0, k ) n ( i ,  i+k) = 0. Wit'lout loss of generality, we suppose that el and 

e2 satisfy (a) p > i+k > i > k > 0 or (b) p > i+k > k > i > 0. (Note that if i > k and i+k 

> p, we can relabel so that v; becomes vg and then we are in case(b).) 

Case 1.1. Suppose p > i + k > i  >k>0, 

( I )  If i = k + l  and i+k = p-1, then p = 2k+2. In this case, we have an 

&mating cycle C = vov~u~nk+lvk+lvp-luP~U0V0 and by Lemma 4.4.6 (i), we are done. 

(2) If i = k+l and i+k = p-2, then p = 2k+3. Since k 2 8, we can construct a 

perfect matching F containing el = vovk and e2 = Vk+lV2fr+l as follows (see Figure 

4- 17): 



F = (el ,  e2, Vk-3V2k9 Vk-2v~k-2, Vk-1v2k-1, u ~ u ~ + ~  I j = k--7, k- 1. k+ 1 .  

2k-2, 2k, 2k+2ju{S(p,  k)-(ujv, 1 k-3 I j I k+2 or 2k-2 5 j 5 p)  ) .  

(3) If i = k+2 and i+k = p-1, then p = 2k+3 and by isomorphism, this cast. is 

exactly the same as ( 2 ) .  

(4) If i = k + l  and i+k c p-2, then we obtain two disjoint alternating 8-cycles 

C l  and C2 with eiE C i  (i = 1,2), where CI  = uovovkutuk.~vk.~vp-~ u p . l u o  and C: = 

UjViVi+k Ui+kUi+k+lVi+k+lVi+lui+lUi. Applying Lemma 4.4.6 (ii) we are done. 

(5) If i > k+2 and i+k = p-1, then by isomorphism this case is exactly the same 

as (4). 

(6) If i > k+l  and i+k < p-1, then we can use the spokes and the neighbour 

chords of el  and e2 to form a perfect matching F which contains el and ez. The pertct  

matching F is as follows (see Figure 4.18): 

F = {el ,  e2, VplVk-l, v ~ - ~ v ~ - ~ + ~ ) V { U ~ U ~ + ~  I j = k-1, i-1, i+k- 1, P-1 )U (S(p, k)-  

Fig-me 4.17 

Case 1.2. Suppose p > i+k > k > i > 0. 

(1) If i = 1, then F = {el. e 2 ) V {  S(p, k)-{ujvj I j = 0, 1, k, k+l ) }U f uoul ,  

ukuktl) is a perfect matching containing el = vovk and e2 = vlvk,~. 



( 2 )  If i = 2, then as k 2 8, p 2 16 and there is at least one vertex between v; 

and vk. Thus we can use the spokes and the neighbour chords of el and ez to form a 

perfect matching F containing el and e2 as follows (see Figure 4.19): 

F = (v,vj+), I 0 I j 5 3)V(S(p, k)-{ujvj I0 I j I 3 or k I j I k+?} ) U { U ~ U ~ + ~  I j = 

0,2, k, k+2). 

Figure 4.19 

(3) If i > 3, then there are at least two vertices of V between vo and vi. So we 

can find neighbour chords vlvk+l and vi-lvj-l+k for el and e2, respectively, to obtain 

two disjoint alternating 8-cycles C1 = uoulvlvk,~ uk+lukvkvouo and C2 = ui-luivivi+k 

Ui+kUi-1+kVi-l+kVi-1Ui-l SO that eiE Ci (i = 1, 2). Now applying Lemma 4.4.6 (ii) we are 

done. 

Case 2. el  lies in G[U] and e2 is a chord. 

AS before, we suppose el = uoul and e2 = vivi+k. Let So = (vo, vl ), sI = {vk, 

vktf  1. S2 = b p - k ,  vp-k+l 1 and D = {vovk, vlvk+l, vovp-k, vlvp-k+l I -  Then SluS;! is a 

set of vertices which are adjacent to So in V, and D is a set of chords incident with So. 

Since p # Zk, then either lSlnS21 = 0 (see Figure 4.20) or 1SlnS21 = 1 (see Figure 

4.21). In the second case we must have p = 2k+l. 

Case 2.1. Suppose el, is one of D. If e2 = vovk or e2 = vlvk+l , then F = {uoul, 

V O V ~ ,  V I V ~ + ~ ,  u k u k + l ) ~ { S ( p ,  k)-{ujvj 1 j = 0, 1, k, k+l))  is a perfect matching 



containing el and e2. A similar perfect matching is constructrd if e2 = V I V , , . ~ , ,  or C: = 

VOVp-k- 

Figures 4.20 Figure 4.2 1 

Case 2.2. Suppose that the end-vertices of e2 are disjoint from S ,us2. 
(I) Suppose IS1fiS21 = 0. If k = 3 and i = p-1, then C = u ~ u ~ ~ ~ ~ ~ - ~ u ~ - ~ u ~ . ~ v ~ ~  

V ~ U ~ U ~ V ~ V O U O  is an alternating cycle containing el = uoul and e2 = vp-1v2. Otherwise, 

there exists a neighbour chord oi e2 which has at most one end-vertex i n  S I u S 2  and 

no end-vertex in So. Suppose that Vi+lv;+k+l is such a neighbour chord (if  i t  is 

vi-lvi+k-l essentially the same procedure applies). Since SlnS2= QI, one of S1 and S2 

is disjoint from { v ~ + ~ ,  vi+k+f ), say S1. Then F = (el = uoul, u k u k + l ,  vovk, V I  vk+l, 

UiUi+l,  e2 = ViVi+kt Vi+lvi+k+l, u ~ + ~ u ~ + ~ + ~  ]U f S(P, k)-(ujvj 1 j = 0. 1, k, k+l, i, i-i-1, i+k, 

itki-I) ) is a suitable perfect matching. 

(2) The case lSEnS2P = 1 is quite similar to ( I f -  There exists a neighbour 

chord of e;? which has at most one end-vertex in S1VS2. We construct a perfect 

matching containing el and e2 by the same argument as (1). 

Case 2.3. Suppose the end-vertices of ez = v ~ v ~ + ~  join exactly one of SltrS2. 

(I) When SlnS2= 0, we may assume p > p-k+l > p-k > k+l > k > 1. By the 

symmetry of GP(p, k), we need only consider the following two cases: 

(a) vi+k = vp-k+l (see Figure 4.22) and 



(b) Vi+k = vp-k (see Figure 4.23). 

Figure 4.22 Figure 4.23 

In case (a), since iE S1, p # 2k+l and k 2 8, there exists a neighbour chord d of 

e2 such that the end-vertices of d do not intersect SIUSo and we have the situation as 

in case 2.2 (1) and hence a perfect matching containing el and e2. 

For (b), consider the neighbour chord Vi+k+lVi+l  of e2. If ~ ~ + ~ e  S 1, then we 

have the situation as above. If v i + l ~  S1, then since viE S1, vi+l = vk. Since k 1 8, the 

neighbour chord v;+k-lvi-l of e2 is disjoint from SoUSl and we proceed as before. 

(2) Suppose now that ISlnS21 = 1, that is, p = 2k+l. Since e;! has an end- 

vertex in S I U  S2, either e2 = V2Vk+2 or e2 = vkV2k. By symmetry we assume e;! = 

v2vkt2. From k 2 8, then d = V3Vk+3 is a neighbour chord of e2 which has no end- 

vertex in SOUS 1US2, so as before we are done. 

Case 2.4. Suppose that both end-vertices of e2 are in SIuS2.  

(1) For ISlnS21 = 0, as G[V] has no triangle, either e2 = vk+lvp-k or e2 = 

vkvp-k+l (see Figures 4.24 and 4.25). In both cases, we can find an alternating 12- 

cycle C containing el and e2 as follows: 

For e2 = vk+lvp-k, C = ~ ~ ~ ~ ~ k ~ k ~ k + l ~ k + ~ ~ ~ - k ~ ~ - k u ~ - k + i v ~ - k + l v  1 ul  uo. 

For e2 = VkVp-k+l, C = ~ 0 V 0 V ~ - k ~ ~ - k ~ ~ - k + l ~ ~ - k + l V k U k ~ k + 1 v k + 1 v 1  ulU& 

We now apply Lemma 4.4.6 (i) to obtain a suitable perfect matching. 



Figure 4.24 Figure 4.25 

(2) If ISlnS21 = 1, then both end-vertices of e2 lying in (SlUS2)-(SlnS2) 

implies k = 2; which is a contradiction. 

Case 3. Both el and e2 lie in G[U]. 

f(p-2)/21 (in which case an alternating 8-cycle containing el and e2 is easily found), if 

i 5 p/2 snd k < p12, then SonTl = S2nTo = 0. Now we consider S1nTo as follows. 

Case 3.1. If x 2 k or x I k-4, then SlnTo = 0. Thus we obtain two disjoint 

alternating cycles C1 and C2: 

C1= UO~lvlvk+l~k+lUkVk~O~~~ 

C2 = UiUi+lVi+lVi+k+lUi+k+lUi+kVi+kViui- 

By Lemma 4.4.6 (ii), there is a perfect matching containing el and e2. 

Three values of x are unaccounted for and we consider each separately. 

Case 3.2. If k = x+l = i-1, then ISInTol = 1 and e2= Uk+lUk+2. 

( I )  If IS2nT11 = 2, then vp-k = V2k+l and vp-k+l = V2k+2 (see Figure 4.26). We 

now have an alternating cycle C = uoulv~vk+luk+luk+2vk+2v2k+2u2k+2u2k+lv2k+lvo~o 



containing el  and e2 and hence by Lemma 4.4.6 (i) we have the desired perfect 

matching. 

(2) If IS2nT1i = 1, then, as G[Vl has no triangle, V2k+2 = vp-k (see Figure 

4.27). Thus p = 3k+2. Since k 2 8, there are at least two vertices between vl and 

vk+l, between Vk+2 and vzk+l, and between v2k+3 and vo. So we have an alternating 

cycle C containing el  and e2: 

C = U0U1V1Vk+1Uk+l~k+2Vk+2V2k+2~2k+2~2k+lV2k+lV3k+lU3k+l~3kV3kV2kU2k U 2 k - 1  

V2k-lvk-1Uk-1UkvkVOu0. 

By Lemma 4.4.6 (i), we are done. 

Figures 4.26 Figure 4.27 

(3) If IS2nT11 = 0, then S2 and TI are disjoint. Since S2nTo = SonTl = 0 (so 

V2k+2 = vo Or V&+2 = v1 is impossible), we easily find two alternating 8-cycles 

containing el  and ez, respectively. Applying Lemma 4.4.6 (ii) finishes the case. 

Case 3.3. If k = x+2 = i, then S1 = To and e2 = tlk~k+l. NOW C = U O V O V ~ U ~ U ~ + ~  

vk+lvlulug is an alternating cycle containing el and e2 and from Lemma 4.4.6 (i), there 

is a perfect matching containing el  and e2. 

Case 3.4. If k = x+3 =i+l,  then lSlnTol = 1 and e2= uk-luk. 

(1) If IS2nTlI = 2, then vp-k = v2k-1 and vp-k+l = V2k (see Figure 4.28). We 

obtain an alternating cycle C conraining el and e2: 



C = UOU lVlV2k~2k~2k-lV2k-1Vk-lUk-~UkVkV0~0- 

By Lemma 4.4.6 ( 1 ) ,  we are done in this case. 

Figure 4.28 

(2) If IS2nT11 = 1, then, as G[V] has no triangle, v2k-1 = vp-k+l. Thus p = 3k-2 

and the following perfect matching contains el and e2 (see Figures 4.29 and 4.30): 

If k is even, F = (uk-2vk-2, UOul, Uk-luk, U2k-lU2k9 V l V k + l ,  vOv2k-2, Vk-1v2k-1, 

vkvZk) u (S(P, k)-(ujvj I O I j I 2k) )U ( v ~ v ~ + ~  I 2 5 j 5 k - 3 ) ~  ( ~ j U j + ~  I j = 2,  4, ..., k-4, 

k+l, k+3, ..., 2k-3). 

If k is odd, F = (vjvjtk I Q I j I k-1 )U ( ~ j U j + ~  I j = 0, 2, 4, ..., 2k-2) U (ujvj I 2k I 

Figure 4.29 Figure 4.30 



(3) The case IS2nTII = 0 follows exactly as case 3.2 (3). 

The yrmf  is now complete. 0 



Chapter 5. Some results about factors. 

$5.1. Introduction. 

For a fixed integer k, let S(k) = {KIvi  I 1 I i 2 k). An S(k)-factor of a graph G 

is a spanning subgraph of G, each component of which is isomorphic to a member of 

S(k). (Note that an S(1)-factor is simply a I-factor.) An S(k)-facror is proper if one 

of its components is isomorphic to Kl,k. The complete bipartite graph Kl,k is called a 

k-star (or simply a star). (So we will often call an S(k)-factor a star-factor.) 

In 1947, Tutte f54) gave a criterion for a graph to have an S(1)-factor (that is, 

a I-factor). This criterion was then used by others to study properties of graph with 

1-factors. In particular, Lovisz (401 showed that a graph with a unique 1-factor 

cannot have large minimum degree, and Hetyei (see [40]) determined the largest 

number of edges in a graph with a unique perfect matching. Lovsisz [40] and Zaks [66] 

gave a lower bound on the number of 1-factors in an n-connected graph. 

We are interested in S(k)-factors when k 2 2. A characterization of S(k)- 

factor for k 2 2 was given by Las Vergnas [31], Hell and Kirkpatrick [23] and 

Amahashi and Kano [2] independently. In section 5.2, we study the structure of those 

graphs with a unique S(k)-factor, k 2 2; obtaining an upper bound on the number of 

edges such a graph can have, and constructing an extremal graph with a unique S(k)- 

factor which attains that bound_ In section 5.3, we show that any r-regular graph of 

order n has at least n distinct S(k)-factors (1 I k I r). 

The final section, section 5.4, contains a discussion of the extendability of 

power graphs. The nh power of a graph G has the same vertex set as G and two 

vertices are adjacent if and only if their distance in G is at most n. Chartrand at al. 

(141 showed that the square G* of a connected graph G contains a perfect matching if 



and only if G has even order. We consider the extendability of power graphs arid 

show that for any connected graph G .  G' is elementary and G' is I-extendable. 

In 1956, Nordhaus and Gaddum 1451 derived two inequalities for the chromatic 

number of a simple graph G of order n and its complement C as follows: 

r 2 - 6 1 5  X ( ~ ) + X ( G )  5 n+l and 

This result has had considerable impact, and has been generalized and modified in 

various directions. Nordhaus-Gaddum type results concerning different graphic 

parameters, for example edge-colouring number, achromatic number, pseudoa- 

chromatic number, covering number, independent number, pani tion number etc. (see 

[13]), have been obtained by different researchers. In the last section of this chapter, 

we obtain a Nordhaus-Gaddum type of result for matching. 

$5.2. Graphs with a unique S(k)-factor. 

In order to study the smcture of those graphs witn a unique S(k)-factor, we 

need to introduce certain notation. 

In the star KlVi, i 2 2, we call the vertex of degree i the centre, and the vertices 

of degree 1 the leaves. In K,,l we arbitrarily prescribe one vertex to be the centre and 

the other the leaf. 

Let F be an S(k)-factor of G ,  and suppose that F has mi components which are 

isomorphic to 1 5 i S k: implying that Zmi(l+i) = IV(G)I. We denote the centres 

of these mi stars by x(i, I), x(i, 2),  ..., x(i, mi), 1 5 i 5 k, and the leaves of the star 

with centre x(i, j) by y,(i, j), y2(i, j) ,..., yi(i, j). So the components of F can be 

described by S( i ,  j) = ( [x(i, j); yl(i, j), ..., yi(i, j)) I I 5 i I k, 1 A j 2 mi ). For 



convenience we write x(1, j) = x, and yl(l ,  j) = yj. Finally, we let S, denote the set of 

all centres; S , =  {x(i, j) I 1  Ii <k, 1 I j  I m ; ) .  

For k = 1, an S(1)-factor is simply a 1-factor. Hetyei (see [53) has 

determined that the largest number of edges in the graph G of order 2m with a unique 

I-factor is m2. Hence, we may now restrict our atrention to the case k 2 2.  

Lemma 5.2.1 If G has a unique S(K)-factor F, k 2 2, then there is a set S, S G V(G), 

so that I(G-S) = V(G)-S, and IS1 is the number of components in F. 

Proof: We will show that the centres of the stars K1,1 in the S(k)-factor can be 

chosen so that S, satisfies the requirment. First we choose the centres of the KlS1 

ztrbitarily and let S be the resulting set S,. Since F is unique, the only possible edges 

in G[V-S] are those joining leaves of stars K1,*. Suppose we have such an edge, say 

yiy,. Then xj and x, have no other neighbours in (yl,  ..., yj-1, yj+l, ..., y,-l, y,+l, ..., 

y,,] or we get a path of length 5 and hence two KIq2instead of the three Kl ,~ ' s .  Also 

xjyIE E(G) and xtyjE E(G), or the edges xjyj, xtyt are replaced by a KlS3-  Finally 

xjx,E E(G). Exchange the centre-leaf roles of xjyj anci x,yf,and let S' = (S-(xj, x,)) 

LJ(yj. yt).  Then IE(G[V-S'])I < IE(G[V-S])I. Now we may proceed inductively to 

complete the proof. 0 

From now on, we asuume that S, satisfies I(G-Sc) = V(G)-Sc. The following 

lemma is easily proven. 

Lemma 5.2.2 Suppose the graph G has a unique S(k)-factor F. Then the only 

vertices that the leaves of any component KlVi (2 5 i 5 k) of F can be adjacent to are 

their own centres and the centres of k-stars. 



We next show that for k 2 2, a graph with a proper unique S(k)-factor {rh;~t is. 

the graph has a unique S(k)-factor, and that unique S[k)-factor is proper) hss 31 Icasr 

k vertices of degree one. Note that this result does not hold when k = 1 .  

Theorem 5.2.3 If G has a unique S(k)-factor F (k 2 2). and F is proper, then G has k 

vertices of degree 1 which have a common neighbour. 

Proof: Consider the k-stars in F. The leaves of S(k, i) cannot be adjacent to ar~y 

other vertices except centres of k-stars. So if the S(k)-factor has only one k-st;~r, we 

are done. Otherwise we assume that for each k-star there is an edge from one of irs 

leaves to the centre of another k-star. Construct a digraph H with V(M) = (S(k, i )  I 

1 I i I mkJ and (S(k, i), S(k, j ) ) ~  A(H) if there is an edge from a leaf of S(k, i )  to thc 

centre of S(k, j). If H has a directed cycle of length at least two, we exch:~nge edges 

between the k-stars on this cycle to get another S(k)-factor. So we suppose 1-1 is 

acyclic. Then H has a vertex with outdegree 0 meaning that there are no edges ou[ of 

the leaves of the corresponding k-star and so the leaves of this k-star are the vertices 

of degree 1 in G. 

Corollary 5.2.4 If G has a proper S(k)-factor (k 2 2) ,  and 6(G) 2 2, then G has at 

least two S(k)-factors. 

Proof: Suppose that G has only one S(k)-factor. By Theorem 5.2.3, we have 6 ( G )  = 

1. This contradicts 6(G) 2 2. Thus G has at least two S(k)-factor. C] 

Remark 5.25 At this point it is helpful to provide the reader with a description of 

what we now know of graphs with a unique S(k)-factor F, as shown in Figure 5.1 (the 

centres are at the top). We describe the other edges which may lie in the graph. 

From the leaves of the k-stars we have edges to centres of k-stars so that the 

digraph H of Theorem 52.3 is acyclic (so H is a subdigraph of the transitive tourament 



o n  mk vertices). Leaves of i-stars, 2 5 i I k, can only be adjacent to centres of k- 

mr:s. Leaves of I-srars can only be adjacent to their centres. Any two centres can 

be adjacent but if the centre of a 1-star in F is adjacent to another centre its leaf is not 

also adjacent to that centre, unless it is the centre of a k- or (k-1)-star. By Lemma 

5.2.1 no leaves are adjacent. 

Figure 5.1 

In order to provide an upper bound on the number of edges in a graph G with n 

vertices and a unique S(k)-factor F (k 2 2), we associate with G and F two graphs GI 

and F1 which we now describe. 

Without loss of generality, suppose that mk # 0 and let S(k, 1) be the k-star 

whose leaves are vertices of degree 1 in G (as described in Theorem 5.2.3). 

Let V(GI) = V(G), where the edges of G1 are those of G except that if both 

x(i I ,  j)ys(i2, r)E E(G) and x(i1, j)x(i2, r)E E(G), then x(il, j)x(i2, r)E E(G and 

x(i1, j)ys(i2, r)4 E(Gl). So IE(G)I = IE(GI)I. 

Define F1 as follows: 

V(FI) = V(F) = V(G) 

E(Fl) = fx(k, s ) x ~ ,  r) I x(i, S) # xCj, r), 1 5 i, j I k, 1 I s I mi, 1 I r I m j ] u  

(x(k, s)y,(i, h) I s = 1,2, ..., mk; if i = k, then s + l l  h I mk, 1 I r I k; 

and if 1 I i < k, then 1 5 h I mi, 1 5 r I i)uE(F). 

Th~tt is, F1 contains all edges of the S(k)-factor F, a complete subgraph on the vertex- 

set S,, and contains edges from leaves to centres of k-stars. It is easy to see that in 

F,, F is the unique S(k)-factor. 



Lemma 5.2.6 For a given graph G with a proper unique S(k)-factor F (k 2 2) .  we 

define GI and FI as above. Then IE(G1)I I IE(Fj)I+E where if k = 2 and in, = 2 or 3. 

or if mk-1 = 1 and m l 2  1, then E = 1, and in all other cases E = 0. 

Proof: We prove the lemma by constructing a one-to-one mapping f from E(G1) or 

E(G 1)-{e), eE E(G 1) (as appropriate!, into E(FI). 

The mapping f acts as the identity on (1 )  the edges of the S(k)-factor F = 

uS(i, j), (2) the edges x(k, s)y,(i, h ) ~  E(Gl), and (3) tne edges x(i, s)x(j, r)E E(G I ). 

By Lemma 5.2-2 all that remains is to define the action of f on the edges 

ysx(i, j ) ~  E(Gl), 1 I i 5 k-1. If ysx(i, j ) ~  E(Gl), then, by the construction of G 1 ,  

xsx(i, j)E E(G1) and so both ysx(i, j) and x,x(i, j) are edges of G. If 2 I i 2 k-2 we 

then obtain another S(k)-factor in G. So y,x(i, j ) ~  E(Gl) implies that i~ ( 1, k-1, k) .  

We have already defined f(ysx(k, j)) so only two cases remain. Consider first 

ysx(k-I, j ) ~  E(Gl), k-1 # 1 so k 2 3. 

If mk-1 = 1, let I = (s I ysx(k-1, ~ ) E E ( G ~ ) ) .  It is easy to see that if s, rE I, s ;t 

r, then x,xrE E(G1). Provided that 111 2 3, we can extend the one-to-one map f by 

mapping (ysx(k-1, 1) I s€ I) into (xsxr I s, r e  I, s ;t r). If 0 < III < 3 such an extention 

is only possible from {ysx(k-1, 1) I s€ I-(j), j~ I )  into (xrxsl r, SE I, r # s )  and we 

have E = 1. Jf mk-12 2, it is easy to see that if ysx{k-1, j ) ~  E(G1), then ysx(k- 1, j), 

x,x(k-1, j ) ~  E(G) and as the S(k)-factor is unlque, then for t # j y,x(k-1, t), x,x(k-1, 

t)E E(G) and hence are not edges of E(Gl). So we put f(ysx(k-1, j)) = x,x(k-I, t). 

Finally we consider the edges yixj€ E(Gl), i + j. Cleary ml 2 2 (or there are 

no such edges). If k 2 3 and yixj€ E(Gl), i ;~t j, then XixjE E(G1) and both yixj and xixj 

are edges of E(G) and we can construct a 3-star instead of two 1-stars, a 

contradiction. So k = 2. If mi = 2 or 3 then either there are no edges of type yjxj, i # 

j, or the subgraphs spanned by the 1-stars are isomorphic to one of the four shown in 

Figure 5.2 (a) (b) (c) (d). 



In each case of (a], (b) and (c) the edge ~ 1 x 2  has no image, and in the fourth 

(Figure 5.2(6)) put f(y3x2) = ~ 1 x 3  ( x l x 3 e  E(GI)). (Observe that if mk-1 = 1 and III is 

2 or 3, then i, jE 1 yixjE E(GI) and no conflict can arise.) 

Figure 5.2 

What now remains is the case k = 2 and m l 2  4. In GI let G1' = Gl[ (x l ,  ..., 

x,,, yl, ..., yml)J  and in F1 F1' = Fl[{xl, ..., xml, y1, ..., Yml}]. If we can show that 

IE(G 2 IE(FIr)1 we will be able to define f on these remaining edges and so obtain 

the described one-to-one mapping. 

The proof is by induction on ml. Calculation shows that the claim is valid when 

ml = 4. Suppose now that the claim holds for ml c m and consider the case ml = m. 

Without loss of generility suppose that ylx2E E(G implying that ~ 1 x 2 ~  E(G 

xlyie  E(Gl) ,  2 5 i S m, xlxj6E E(G1) and ylxj6E E(Gl), 3 I j I rn. Thus IE(Glr)l = 

IE(G1'- (x l ,y l  ))l+3. But IE(F1')I = IE(F1r-{xl,yl ))l+m and by the induction 

hypothesis IE(G,'-(x,,yl)l 5 tE(Fl1-(xl,y,))l so IE(G1')l I I(G(FIB)1+3-m I IE(F1')I 

3s required. 

Thus we have described the required mapping f and the proof is complete. 0 

From Remark 5.2.5 and Lemma 5.2.6, we now are able to describe exactly the 

graphs with maximum number of edges which have F as a proper unique S(k)-factor. 



Corollary 5.2.7 If a ,mph G has the subgrsph F as a proper unique S(k)-factor, rhrn 

IE(G)I 5 IE(F,)l+l. 

We next look at all S(k)-factors F on n vertices and determine that one for 

which IE(F,)I is maximized. Given n and k 2 2 we denote by f(n, k) the maximum 

number of edges in a graph on n vertices which has a proper unique S(k)-factor. 

Hence for any graph G of order n which has a proper unique S(k)-factor we have 

fE(G)l I f(n, k). 

Theorem 5.2.8 If a graph G of order n has proper unique S(k)-factor (k 2 2) ,  then 

6 
i f k = 2 a n d n = 0 , 2 ( m o d 3 )  

(n- 1 )(n+2) 
6 

if k = 2  a n d n r  1 (mod 3) 

(n- 1 Xn+3) 
8 

i f k = 3 a n d n = l  (mod4) 

f(n, k) = { &+I 8 i f k = 3  a n d n = 3  (mod4) 

n(n+2> 
8 

if k = 3 and n is even 

<1-k)~-9 +* 
8 

i f k 2 4 a n d n + k  (mod2) 

(n-k)(n-k-2) _&n 
8 

i f k 2 4 a n d n = k ( m o d 2 )  

Proof: As mentioned in the begining of this section we assume k 2 2. Supposr: that 

G has a proper unique S(k)-factor F which has mi components isomorphic to K1,;. 
k k .  

Then n = lV(G)I = C mi(i+l). Thus, letting m = C mi, the number of edges in FI is 
i= 1 i= 1 

given by 



k k k- 1 
where m = Cmi and n = zmifi+l). Setting m* = Cmi, we obtain 

i=l  i=l i= 1 

If mk is fixed, then g(F) is a quadric function about m* and reaches its 

maximum value when m* is maximized. Hence, in order to maximize g(F) one should 

take as many components as possible in F. Hence m3 = rn4 = ... = mk-l= 0 and m2 = 0 
1 or I. Therefore determing 2 f(n, k) now becomes an integer programming problem as 

S. t. 2m1+3m2+(k+l)mk = n 
(IP) 

ml, m2, mk2O integers 

We now start to determine the solutions for (IP). 
1 If n-(k+l)mk is even, then m2 = 0 and ml = 2 (n-(k+l)mk), and if n-(k+l)mk is 

I odd, then m2 = 1 and MI=: (n-3-(k+l)mk). Moreover, in order to obtain the value of 

rnk which maximizes gO;) we consider following cases. 

(1) Suppose that n-(k+l)rnk is even, that is n = (k+l)mk+2ml and m = ml+mk. 

Suppose that kt1 is even (so k 2 3) and mk 2 2. Let F be an S(k)-factor with 
k+l 

IV(E)I = iV(F')f, w' = mk-1, ml' = ml+ 7 and mj' = mj = 0,2 I j I k-1. So 



So g(F) 2 g(F) and the maximum number of edges is obtained when we have only  

one k-star in F. 

Suppose that k+l is odd and Ink 2 2, we let F' be an S(k)-factor with mL' = 
k-2 k-7  mr-1 k-stars and therefore one 2-star and ml' = ml+ r 1-stars. So m' = rnl+mk+ 7 
i. - 

and 
k-2 k-4 

g(F1) = (ml+mk+ )(ml+mk+ 7 )+mk(kmk+2m1+2). ( 5 . 2 . 3 )  

Thus, from (5.2.2) and (5.2.4), we have 
(k-2)(k-4) 

g(Ft)-g(F) = (k-4)ml+ 4 2 0  i f k 2 4 .  ..- (5.2.5) 

So for k = 2 we expect to have as many 2-stars as possible. This case will later be 

considered in more detail. 

(2) Suppose that n-(k+l)mk is odd, that is n = (k+l)mk+3+2ml and 111 = 

Suppose that k+l  is even and mk 2 2, we let F' be an S(k)-factor with mk' = 
k+ 1 k+ 1 

mk-1, m i  = m2 = 1, mlt = ml+ and m' = ml+mk+ y . So 

g(F) = (ml+mk+ 1 )(ml+mk)+(mk+l )(kmk+2m1+4) (5.2.6) 
k+ 1 k- 1 

and g(F') = (ml+mk+ 2 )(ml+mk+ 7 )+mk(kmk+2m1+5). 

If k = 3, then we expect to have many k-stars. This case will later be considered in 

detail. 

Suppose that k+l  is odd and mk 2 2, we let F' be an S(k)-factor with mk' = 
k+4 k+2 

mt-1, m i  = 0, ml' = ml+ and m' = ml+mk+ ,+ . So 

Thus, fkom (2.6) and (2.8), we have 
k(k+2) 

g(F)-g(F) = (k-2)ml+ 7 -4>O i f k 2 4  ... (5.2.9) 

If k = 2, then it is better to have more k-stars. 



From the above discussion we conclude that. except when (1) k = 2 and (2) k 

= 3 and n is odd, if G has a unique proper S(k)-factor F and as many edges as 

possible, we should choose F to have exactly one k-star, at most one 2-star and all 

other components 1-stars. 

So if k 2 4 we easily obtain 
(n-kj2-9 +n IE(FI)I = , if n + k (mod 2) and 

IE(Fl)I = (n-k)(n-k-2) 
8 +n if n r k (mod 2). 

n-4 n ( n t 2 )  If k = 3 and n is even, then m3 = 1, m2 = 0 and ml = 1. Thus we have IE(FI)I = -7. 

We now study the exceptional cases. 

When k = 2, from (5.2.5) and (5.2.9), we see that g(F) attains its the 

maximum if m2 is maximized. So, with fixed n, F1 has the most edges if the S(k)- 

factor F has as many 2-stars as possible. Hence, if n s 0 (mod 3), then ml = 0, m;! = 
n n(n+l)  n-4 (n+2)(n- 1 )  
- and IE(F1)l = ; if n = 1 (mod 3), then ml = 2, m2 = 7 and IE(Fl)I = 3 6 ' 

n-2 n(n+ 1) 
and if n s 2 (mod 3), then ml = 1, mz = 7 and lE(F1)l = - 6 .  

When k = 3 and n is odd, we see from (5.2.7) that g(F) is an increasing 

function of m3. So, with fixed n, F1 has the most edges if F has as many 3-star as 
n-S (n-l)(n+3). possible. Hence, if n = 1 (mod 4), then ml = 1, m2 = 1, m3 = ;i- and IE(Fl)I= , 

n-3 (n+ 
and if n = 3 (mod 4). then ml = 0, m2 = 1, m3 = q and IE(F1)l = 8 

Summarizing the above conclusions, we obtain 
n(n+l) 

6 i f k = 2 a n d n = 0 , 2 ( m o d 3 )  
(n- l)(n+21 

6 i f k = 2 a n d n = 1  (mod3) 

(n- l)(n+3) 
8 i f k = 3 a n d n = 1  (mod4) 

(n+1 l2 
IE(Fl)I =( i f k = 3 a n d n r 3  (mod4) 

n(n+2) 
8 i fk=3andn i seven  

{r1-k)~-9 +. 
8 i f k 2 4 a n d n + k  (mod2) 

in-kxn-k-2) 
8 +n i fkL4andn-=k(mod2)  



But, by Lemma 5.2.6, we have that f(n, k) = IE(Fl)I+E where if k = 2. and ml = 2 or 3, 

or if mk-1 = 1, then & = 1, and otherwise & = 0. From the calculating, this implies that if 

k = 2 and n - 0, 1 (mod 3), or if k = 3 and n = 1 or 3 (mod 4), then E = 1; othertvisc E = 

0. Therefore, we obtain the desired f(n, k). 0 

Corollary 5.2.9 If a graph H of order n has an S(k)-factor and IE(H)I > f(n,k), where 

f(n, k) is as defined in the Theorem 5.2.8, then H has at least two S(k)-ftlctors. 

Remark 5.2.10 Hetyei (see [40]) proved that if a graph G of order 21-11 has a 1-factor 

and IE(G)I > m2, then G has at least two 1-factors. So this corollary is an extension 

of Hetyei's result. 

95.3. The number of S(k)-factors in an r-regular graph. 

For graphs HI and H2, the join of H1 and Hz, denote H1+H2, is obtained from 

HluH2 by joining all vertices in V(H1) to those in V(H2). Let ec(S1, S2) where S 1 LZ 

V(G) and S2 G V(G), denote all edges in G which have one end in S1 and the other in 

S2- 

The following result will be used in this section. 

Theorem 5.3.1 (Las Vergnas [31]; Hell and Kirkpatrick [23] and Amahashi and 

Kano [2]) For k 2 2, the graph G has an S(k)-factor if snd only if 

i(G-S) I klSl for all S G V(G). 



Theorem 5.3.2 Let G be a connected r-regular graph (r 2 4) of order n which is not 

isomorphic to K,,,. Then G has at least n star-factors each of which is either a proper 

S(rj-factor or a proper S(r-1)-factor. 

Proof: Let XE V(G) and the neighbours of x be denoted by NG(x) = {yI, y2, ..., y r ) .  

Let Gx = G[V(G)-(x)-NG(x)] and I(Gx) = (21. 22, ..., zh} (Recall that I(Gx) denotes 

the set of isolated vertices in Gx). Obviously, we have h I r-1. We study the 

srructrue of G by considering several cases. 

(i) Suppose II(Gx)I = 0, In this case we claim that Gx has an S(r-1)-factor or 

G Kr+I,r+l-F, where F is a 1-factor in K,+l,,+l. If Gx has no S(r-1)-factor, then by 

Theorem 5.3.1 there exists a set S in V(Gx) so that i(Gx-S) > (r-1)ISI. Since 

N (I(Gx-S)) SE SUNG(X), on counting edges between SUNG(X) and I(Gx-S) we 

have r.II(Gx-S)I I rlSl+r(r-1) or ISl+r-1 2 i(Gx-S) > (r-1)ISI. Simplifying we get IS1 

= 0 or 1 as r 2 4. But I(Gx) = 0, so S # 0 and thus IS1 = 1. Let S = (s) .  Then 

i(Gx-(s]) I r. But i(Gx-(s)) > (r-1), and thus i(Gx-(s)) = r. Moreover, as r.i(G,- 

( s ) )  = r* = e ~ ( I ( G ~ - ( s j  , { s } u N ~ ( x ) )  and G is connected, it follows that G z 

K,,l ,,+l-F and the claim is proved. 

(ii) If II(Gx)I = r-1, it is easy to see that G K,,. Which has been excluded. 

(iii) If 0 < II(Gx)I c r-1 and V(G) = I(Gx)v ( x )  v N ~ ( x ) ,  then G r (x ,  z l ,  ..., 

~ t t ) +  GI(YI, ~ r ) l .  

(iv) Suppose that 0 c II(Gx)I < r-1 and V(G) ;t I ( G X ) ~ ( x ) ~ N ~ ( x ) .  Let Gx' 

= G[V(G)-{x, zl, ..., zh, yl, ...; y,)]. Then IV(GXt)I 2 2 and I(GXf) = 0. We will show 

that Gx' has an S(r-2)-factor. In fact, if G,' has no S(r-2)-factor, then by Theorem 

5.3.1 there exists a set S' in V(G,') so that i(G,'-S') > (r-2)IS'I. Moreover, as I(GXt) 

= 0, S' is non-empty. Counting edges we have 

(r-2)1S11 < i(GxS-S') I IS'l+r-h-1 
2-h or 1 5 IS'! < (r-h-l)/(r-3) = l +  . 



Since r 2 4 and h is a positive integer, h = 1. This implies that IS'I = 1. Thus tvc have 

i - S t )  = - 1  Now each vertex of I(G,'-S') is adjacent to the one vertex of S' and to 

r-1 vertices of {yl ,  y2, ..., y,}. But as x and zl are each adjacent to all of ( y l ,  yz, ..., 

y,], we have at least 2r+(r-1)2 = r2+1 edges incident with (y l ,  y2, .... y,) which is 

impossible. 

Thus we conclude that G must be as described in (i),(ii) and (iv) and we now 

study these graphs. 

If G Z K,+1,,+1-F or G Z {x, zl, z2, ..., zh)+G[(yl, y2, ..., y,)], i t  is not hard to 

find n proper S(r-1)-factors in G. In case (i), each vertex u of G is the centre of an r- 

star which is easily extended to an S(r)-factor and this S(r)-factor has the only r-star 

centred at u; thus giving n distint proper S(r)-factors in G. In (iv), each vertex is the 

centre of the only (r-1)-star of the S(r-1)-factor. Thus we obtain n proper S(r-1)- 

factors and each of these S(r-1)-factors has only one (r-1)-star centred at the 

different vertices. We have the required factors. 0 

55.4. Miscelianeous results on perfect matchings. 

Chamand et al. [14] have studied perfect matchings in the square of a graph 

and showed that for any connected graph G the square G* has a perfect matching if 

and only if G has even order. In this section, we study further properties of power 

graphs with respect to perfect matchings. In particular we look at when the power 

graphs are elementary and when they are 1-extendable. In order to do so, we start by 

studying trees and the powers of trees. 

Lemma 5.4.1 For any tree T, there exists either a leaf which is adjacent to a vertex 

of degree two or two leaves with a common nzighbour in T. 



Proof: Let P be a longest path in T and x an end-vertex of P. Consider the vertex y 

which is adjacent to x. If y is of degree 2, we are done. If y has degree at least 3, then 

one of its neighbours is a leaf as otherwise P is not a longest path. 0 

Lemma 5.4.2 For any tree T of order 2m: 

(1) there exists a perfect matching F in T' which has at least one edge of T; and 

(2) there exists a perfect matching F in T' with at least two edges of T, unless T 

is isomorphic to K1.2m-1. 

Proof: Use induction on m. 

Obviously, both of (1) and (2) are true for m = 2. 

Suppose that (1) holds for m < n, Let m = n 2 3 and T be any tree of order 2n. 

If T contains a leaf x which is adjacent to a vertex y of degree 2, then by the induction 

hypothesis (T-(x, y ) ) 2  has a perfect matching F, and F1u(xy) is a suitable perfect 

matching of T ~ .  Otherwise, by Lemma 5.4.1, there exist two leaves x and y with a 

common neighbour in T. Thus xy€ E ( T ~ ) .  Again by the induction hypothesis 

2 
(T-(x, y)) has a perfect matching F which contains at least one edge of T-(x, y).  

Then F u ( x y )  is a suitable perfect matching of T ~ .  

Next, we suppose that (2) is true for m < n. Let m = n 2 3 and let T be a tree 

of order 2n, T & K1,2n-1. By Lemma 5.4.1 there are vertices x and y in T so that either 

x is a leaf adjacent to y which has degree two, or x and y are leaves with a common 

3 neighbour. Let T' = T-(x, y). If T & K1,2n-3, then by induction hypothesis, (T') has a 

perfect matching F' with at least two edges of T and F'u{xy) is a suitable perfect 

matching in T'. Suppose that T r K12,.4. Let the centre of K1,2n-3 be u and the leaves 

be vl, v2, ..., ~ 2 ~ 3 .  Since T Z K1.2n-17 T must be isomorphic to one of the three trees 

given in Figure 5.3. 



In Figures 5.3(a) and 5.3(b), F = {xy, u v l ,  ~ 2 ~ 3 ,  ..., V 2 n - 4 ~ l n - 3 )  is 3 perfect 

3 marching of T containing two edges of T, and in Figure 5.3(c), F = (xvl, uv?, y v j ,  

~ 4 ~ 5 ,  ..., v ~ ~ - ~ v ~ ~ - ~ )  is a perfect matching o f ?  containing two edges of T. 

(b  

Figure 5.3 

This completes the proof. 0 

Recall that a graph is elementary if the set of all edges which lie in perfect 

matching of G (allowed edges) form a connected subgraph. Note that the allowed 

edges form a spanning subgraph. Clearly, for connected graphs the property of being 

elementary is weaker than that of being 1-extendable. So  we begin by studying when 

powers of trees are elementary. 

2 Theorem 5.4.3 If T is a tree of even order, then T is an elementary graph. 

Proof: Let IV(T)I = 2n and P = vlv2 ... v,+l be a longest path in the  tree T. Then 

d ~ ( ~ 1 )  = dT(v,+l) = 1- 

Claim Let z = v3 (if dT(v2) = 2) or  v2 (if dT(v2) 2 3). Then there exists a 

perfect matching F of '? so that the edge of F which is adjacent to r is in T. 



The proof of the claim uses induction on m. When m = 2, then T Z K1,2n-1 afid 

the claim follows easily. If m = 3, then T is isomorphic to the graph shown in Figure 

5.4. If d(v2) = d(v3) s 0 (mod 2) take the edge vlv2 and v3v4 in F and if d(v2) = d(v3) 

r 1 (mod 2) put the edge ~ 2 ~ 3  in F. 

Figure 5.4 

Suppose that the claim holds when m < k. Let m = k 2 4 and choose eE E ( T ~ ) ,  

where 

VkVk+ 1 if d ~ ( v ~ )  = 2 and 

e = 

v'vk+ 1 if d ~ ( v k )  2 3 and v' E N(vk)- ( v ~ - ~ ,  v ~ , ~ ) ,  d ~ ( v ' )  = 1 

Set T' = T-V(e). By the induction hypothesis, ( T ) ~  has a perfect matching F' of the 

required type, and so F v ( e )  is a suitable perfect matching in T*. This proves the 

claim. 

We now use induction on IV(T)I to prove the theorem. 

It is easy to check that the theorem is true for n = 2 and n = 3. 

Suppose that the theorem holds for n I k. Let n = k 2 4. If d(v2) = 2, by the 

claim, there exists a perfect matching F of so that the edge e = v3y of F is in E(T). 

This implies that v l v 2 ~  F. Then F = F-(vlv2, e )u (v lv3 ,  v2y) is a perfect matching of 

T'. Since the allowed edges in (T-(vl, v2)12 form a connected subgraph by the 



induction hypothesis (and are d s o  allowed edges in T'), and vlv, and v:y :ue allowed 

edges, then the allowed edges of T~ form a connected subgraph. 

If d(v2) 1 3, then by the claim there exists a perfect matching F so that the 

edge e of F which is adjacent to v2 is in E(T). If e = V2V3, then there exists a leaf v'  

(adjacent to v2) so that v'vl€ E(P;). Then F' = F-(v8vl,  e ) u ( v l v z ,  v1v3) is a perfect 
2 matching of T ~ .  By the induction hypothesis. (T-(v', v l ) )  is elementary. Since v l b  

2 and v'v3 are allowed edges, T is also an elementary graph. If e = vzy and y z v~ 

(nctice that y must be a leaf), we may assume y = vl (otherwise choose yv2v3 ... v,,, 1 

as a longest path). Let V'E N(v2)- ( v l ,  v3)  and v'z€ E(F). Then F' = F-(v'z, e } u  

( v 1 v l ,  V ~ Z )  is a perfect matching of T2. Again using the induction hypothesis, 

2 ( T - ( v ,  v ) )  is elementary. Since V I V ~  and v'vl are allowed edges. T' is ;In 

elementary graph. 0 

Since trees are minimal connected graphs, we can easily generalize the above 

result to all connected graphs. 

2 Corollary 5.4.4 If G is a connected graph of even order, then G is elementary. 

Proof: Let T be a spanning tree of G. By Theorem 5.4.3. T' is elementary. Since 

2 every spanning supergraph of an elementary graph is elementary, G is also an 

elementary graph. 0 

Although for every tree T of even order T2 is elementary, i t  may not be the case 
2 2 that T is 1-extendable. For example, (P2n) is elementary but not 1-extendable. 

However, we do have the following result. 

Theorem 5.4.5 If T is a tree of even order, then l? is 1-extendable. 

Proof: Let IV(T)I = 2n. We use induction on n to prove the result. 



It is easy to see that the claim holds for n = 1 and n = 2. 

Suppose that the claim holds for n < m and let T be a tree with 2m vertices. By 

Lemma 5.4.1 we know that T has vertices vl and v2 SO that either dT(vl) = 1, dT(v2) = 

2 and v l v 2 ~  E(T), or dT(vl) = d ~ ( v ~ )  = 1 and vl and v;! have a common neighbour. Let 

T = T-(vl ,  v2). 

Case 1. Suppose that vl is adjacent to v2 in T and dT(v2) = 2. Let v3 be the 

other neighbour of v2. Let N1 = NT(v~)-v;! and N2 = NT(NI)-v3. By the induction 

3 hypothesis, (TI) is 1-extendable. To see that T' is 1-extendable, we need only to 

consider the edges of (v lv2,  v2v3, vlv3) u ( v l x  I xE N )u {vzy I yE N ) u ( v2z I 

zE N;!) . 

For the edge vlv2, let F1 be a perfect matching of ( T ) ~ .  Then F l u  (vlv2)  is a 

perfect matching of 9 containing vlv;!. 

For the edges vlx  (xE N and vzv3, let F;! be a perfect matching of ( T ' ) ~  

containing v3x, then F2-(v3x)u(vzv3, vlx] is a perfect matching of T' containing vlx 

and ~ 2 ~ 3 .  

For the edges v2y (yE N1) and vlvj ,  let F3 be a perfect matching of (T)' 

containing yvj, then F3-(yv3ju(vlv3, v2x) is a suitable perfect matching. 

FOP the edges v2z ( z ~  N2), there exists a vertex w belonging to N1 so that zw 

3 is contained in a perfect matching F4 of (T )  . Thus F4- ( z w ) u ( v l w ,  v2y) is a perfect 

marching of ?' as required. 

Case 2. Suppose that both v l  and v;! are leaves of T with a common neighbour 

3 v3- By the induction hypothesis, (T) is 1-extendable. Let N1 = NT(v3)- {vl ,  v2) and 

N;! = &(N1)-v3. TO see that T is 1-extendable, we shall show that each edge of 

(vlv2, ~ 2 ~ 3 ,  v lv3 )u (v ix  I i = 1, 2; X E N ~ ) U ( V ~ ~  I i = 1, 2; YE N2j lies in a perfect 

matching. 

For the edge vlvl, let FI be a perfect matching of (T)'. Then F lu  {vlv2) is a 

perfect matching o f f  containing vlv;!. 



For the edges vlv3 (respectively ~ 2 ~ 3 )  and vlx (respectively v2)0, X E  N ,, let 

3 F? be a perfect matching of (T) containing vjx. Then F2- { v3s ) u ( vl v3. v z x  ) 

(respectively F2-{v3x)u(v~v3.  vlx))  is a perfect matching of T' as required. 

Finally, for the edges viy (i = 1, 2; y€ N2) ,  apply the same argument as 

previously but with F3 a perfect matching containing v3y (YE N2). 0 

As before we may strengthen Theorem 5.4.5 so that it applies to nil connected 

graphs. 

Corollary 5.4.6 If G is a connected graph of even order, then G' is I -extendable. 

3 Proof: For any edge e = xy€ E(G ), let dc(x, y) = i (1 5 i I 3). Then there exists an  

induced path P of G from x to y with length i. Since any subtree of a connected graph 

can be extended to a spanning tree, there is a spanning thee T of G containing the path 

P. Hence e = x y ~  E(T'). By Theorem 5.4.5, there exists a perfect matching of T), and 

hence of G', which contains e. Therefore G~ is 1-extendable. 0 

Even though we have obtained some results on I-extendability of powers of 

graphs, there still remain many problems in this area. One is: Given n determine the 

th least integer m = m(n) so that the m power of a graph is n-extendable. We have 

shown that m(1) = 3. Another is to characterize those graphs G for  which'^^ is I -  

extendable. 

Next, we give a Nordhaus-Gaddum type of result concerning matchings. This 

result exhibits a relationship between graphs and their complements. More precisely, 

letting F(G) denote the maximum number of independent edges in G ,  we shall study 

upper and lower bounds for F(G)+F(G) and F(G)-F(G). 



- 
Theorem 5.4.7 Let G be a graph of order 2n and G 2 K;?, or K2n. Then 

The above bounds are sharp. 

Proof: For any graph G of order 2n we have F(G) f n. Hence 

To see that the bound is sharp, Let G be a perfect matching of K2n. Then F(G) =- n and 

For the lower bound, let M be a perfect matching in K2, and G any graph of 

order 2n. Then MnE(G) and M ~ E ( G ) ,  are independent edges in G and 6, 
respectively. Thus IMnE(G)I 5 F(G) and I M ~ E ( ~ ) I  S F(G). So F(G)+F(G) 5 

I M ~ E ( G ) I + I M ~ E ( ~ ) I  = IMI = n. This bound is seen to be sharp by considering G = 

F ( G ) + F ( ~ )  
For any real numbers x and y, 4xy 5 ( x + ~ ) ~ .  Thus F(G)*F(G) 5 ( )2 5 

2 n2. This bound is sharp as if G = nK2, F(G)-F(G) = n . 

Since neither G nor 6 is empty, then, as F(G)+F(G) 2 n, we have F(G)*F(G) 

2 F(G)(n-F(G)) and F(G) 2 1. Clearly, if F(G) = n, then F(G).F(G) 2 n. So we 

suppose that 1 I F(G) I n-1. The function f(x) = x(n-x) is increasing on [ I ,  11/21 and 

decreasing on [n/2, n-1] and hence 

- 
Therefore for any graph G, G B K% or k n ,  F(G)-F(G) 2 n-1. Taking G = Kl,zn.l, the 

lower bound is achieved. C] 



We remark that this theorem can easily be extended to graphs of odd order. 

Since this is more complicated we will not describe it here. 
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