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ABSTRACT

Given a graph G, a perfect matching of G is a set of independent edges which
together cover all the vertices of G. We define G to be n-extendable if it contains a

set of n independent edges and every set of n independent edges can be extended to a

perfect matching of G.

In Chapter 1, having surveyed important results in the history of factor theory
and presented a brief background to most of the problems I deal with here, I then

present some frequently used definitions and notations, and several preliminary

results.

In Chapter 2 tree-factor covered graphs are discussed. A tree-factor of a
graph G is a spanning subgraph of G each component of which is a tree. A necessary
and sufficient condition is obtained for a graph to have the property that every
subgraph K,y can be extended to a tree-factor. The main technique used for this

problem is the augmenting path method.

In Chapter 3, I study the effect of deleting edges from n-extendable graphs and
prove that a conjecture of Saito is true for bipartite graphs. For general graphs, in light
of a recent counter-example of Gyori, I give what is, in some sense, a best possible
result with respect to this conjecture. Further generalizations of n-extendability are

introduced and graphs with these properties are characterized.



In Chapter 4, I consider the extendability of products of graphs. These results
give an easy way to construct a large tamily of n-extendable graphs. Two-extendable
generalized Petersen graphs and two-extendable Cayley graphs on abelian groups are

also classified. The former classification confirms a conjecture of Cammack and

Schrag.

In the last chapter, I count the number of star-factors in graphs and also
discuss the extendability of powers of graphs. A Nordhaus-Gaddum type of result for

matchings is obtained.
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Chapter 1. Introduction.

§1.1. Background.

Let us look back at the brief history of graph factor theory. The first paper we
are aware of was written by Petersen [46] in 1891. He proved that a graph G is 2-
factorable if and only if G i1s an even regular graph and pointed out that the
factorization of graphs with odd regular degree is much more complicated than the
even case. He also showed that any connected 3-regular graph having no more than
two cut-edges can be decomposed into a 1-factor and a 2-factor. Forty years later,
Konig {30} studied 1-factors in bipartite graphs and proved that every k-regular
bipartite graph is the union of k edge-disjoint perfect matchings. The importance of
Konig's theorem (the so-called Konig Edge Colouring Theorem) is that it established
the relationship between edge colourings of graphs and factorizations. The Konig
Edge Colouring Theorem says that if G is a bipartite graph, then the chromatic index of
G is equal to the maximum degree of the vertices of G. A characterization of bipartite
graphs with a perfect matching was obtained by Hall [21] in 1935. However, this
resuit was implied by the earlier work of Konig [30], and consequently it has come to
be known as the Koénig-Hall Theorem (or the Marriage Theorem).

A big step in factor theory was the establishment of criterion, both necessary
and sufficient, for a graph to have a 1-factor (perfect matching). This result, which
may be considered as one of the most fundamental results in graph theory, was found
bv Tutte [54] in 1947. Later, in the early 1950's, Tutte [S5] proved his so-called "f-
tactor Theorem” which is a characterization of graphs with f-factors. A short and
elegant proof of this theorem (given later by Tutte [56]) involved transforming the f-

factor problem into a 1-factor problem. The main technique he used is now referred to

as an alternating trails argument, and was alsc used by Gallai [19] to study the k-



factors in regular graphs. It has become a powerful method in present-day graph
theory. A necessary and sufficient conditions for the existence of a (g, f)-factor in a
graph was obtained by Lovasz {39] in 1970 and since then the theory of graph factors
has grown rapidly. Although many types of factors have been considered, research
has mainly concentrated on two types; factors with constraints related to degree, so
called degree-factors, and the factors which have each of their components isomorphic
to one of a given set of subgraphs, referred as component-factor. One of earliest
papers, we aware of which , deals with component-factors is that of Kirkpatrick and
Hell [29]. The interested reader can also refer to [1], [37] and [44] for more
information on graph factors.

In graph theory, much research has been concerned with the problem of
extending subgraphs with certain properties in a graph G to spanning subgraphs of G
with the same properties. For instance, Hendry [22] studied graphs in which every
nonhamiltonian cycle can be extended to a cycle with one more vertex; Liu [34, 35]
characterized graphs in which every edge can be extended to an [a, b]-factor or an f-
factor; Yu and Chen [59] gave a necessary and sufficient condition for a graph to have
the property that every claw subgraph can be extended to a tree-factor; and Kano [27]
obtained several sufficient conditions for an r-edge-connected graph to have the
property that a given edge-set can be extended to a perfect matching. However, a
great deal of such work has focused on the property of n-extendability. (A graph is
said to be n-extendable if it contains n independent edges and any set of n
independent edges can be extended to a perfect matching.) The concept of n-
extendability seems to have its early roots in a paper of Hetyei [26] who studied it for
bipartite graphs, and papers of Kotzig (see [44]) who used it to develop a
decomposition theory for graphs with perfect matchings. In this early paper Hetyel
obtained three different characterizations of l-extendable bipartite graphs. Later

Lovdsz and Plummer [42] gave another characterization which they referred to as an



"Ear Structure Theorem”. Necessary and sufficient conditions for a graph to be 1-
extendable were given by Little, Grant and Holton [33]. An analogous
characterization of n-extendable graphs has recently been obtained by the author and
is presented in Chapter 3 of this thesis.

There are two good reasons for studying n-extendable graphs. These are the
desire to know more about the structure of graphs with perfect matchings, and the
desire to determine good lower bounds on the number of different perfect matchings in
a graph. Motivated by these problems, Lovdsz [40] began to develop a new structure
theory for graphs with perfect matchings, and two important new families of graphs -
bicritical graphs and elementary graphs - were introduced. Lové4sz showed that in a
certain sense any graph with a perfect matching could be constructed using only
elementary bipartite graphs and bicritical graphs as building blocks. This
decomposition can be pushed one step further by decomposing bicritical graphs into 3-
connected bicritical graphs (also called bricks). The new decomposition is referred to
as Brick Decomposition and for a 1-extendable graph it is uniquely determined (up to
isomorphism and the multplicity of edges). (Brick Decomposition has also turned out
to be very useful in the study of the matching lattice (Lovdsz [41]).) Subsequent to
this early work, the study of these two classes of graphs was continued by Lovdsz
and Plummer [42, 43]. Today much attention is still focused on understanding the
structure of 3-connected bicritical graphs as, unfortunately, their structure is still quite
unclear.

In 1980, Plummer [47] studied the properties of n-extendable graphs and
showed that every 2-extendable graph is either bipartite or a brick. Motivated by this
result he [49, 50] further looked at the relationship between n-extendability and other
graphic parameters (e.g., degree, connectivity, genus, toughness). Recently, Schrag
and Cammack [52] and Yu [62] classified the 2-extendable generalized Petersen

graphs, and Chan, Chen and Yu {11] classified the 2-extendable Cayley graphs on



abelian groups. Further results concerning n-extendability will be discussed in this
thesis.

The organization of the thesis is as follows. In Chapter 1, having surveyed
important results in the history of factor theory and presented a brief background to
most of the problems we deal with here, we then present some frequently used
definitions and notations, and several preliminary results.

In Chapter 2 we discuss tree-factor covered graphs. A tree-factor of a graph G
is a spanning subgraph of G each component of which is a tree. We obtain a
necessary and sufficient condition for a graph to have the property that every subgraph
K1k can be extended to a tree-factor. The main technique used for this problem is the
augmenting path method.

In Chapter 3, we study the effect of deleting edges from n-extendable graphs
and prove that a conjecture of Saito is true for bipartite graphs For general graphs, in
light of a recent counterexample of Gyori, we give what is, in some sense, a best
possible result with respect to this conjecture. We introduce further generalizations of
n-extendability and characterize graphs with these properties.

In Chapter 4, we consider the extendability of products of graphs. These
results give us an easy way to construct a large family of n-exiendable graphs. We
also classify 2-extendable generalized Petersen graphs and 2-extendable Cayley
graphs on abelian groups. The former classification confirms a conjecture of Cammack
and Schrag [9].

~In the last Chapter, we count the number of étar-factors in graphs and also

discuss the extendability of powers of graphs.
§1.2. Terminology and notations.

All graphs in this thesis are finite and have no loops or multiple edges.



For a graph G, we denote the vertex-set and the edge-set by V(G) and E(G),
respectively. The order of a graph G is [V(G)l. For any set S € V(G), we denote by
G-S the subgraph of G obtained by deleting the vertices of S together with their
incident edges, and by G[S] the subgraph of G induced by S. For T € E(G) we denote
by G-T the graph obtained by deleting the edges of T from G and by GUT the graph
obtained by adding the edges of T to G. If T = {e}, we write GUT as Gue. Denote
the maximum and the minimum degree of G by A(G) and 6(G), respectively. The
neighbourhood-set of S in G is denoted by Ng(S) and is the set of all vertices in G
which have a neighbour in S. We use o(G) to denote the number of odd components in
a graph G, and I(G) denotes the set of isolated vertices in G (i(G) = II(G)!). The
complement of G, denoted by E} is that graph having the same vertex-set as G, but
in which two vertices are adjacent if and only if they are not adjacent in G. For a graph
G, if S, T & V(G), the set of edges with one end-vertex in S and the other in T is
expressed by Eg(S, T), and we let eg(S, T) = IEg(S, T)l. If x and y are two vertices of
a graph G, we denote by dg(x, y) the distance between x and y in G.

A perfect matching, or 1-factor, of a graph G is a set of independent edges
which together cover all the vertices of G. For a positive integer t, a t-matching of G
is a set of t independent edges of G. We call a graph G t-matching covered if every
edge of G belongs to a t-matching. A graph G is n-extendable if it contains a set of n
independent edges and every set of n independent edges can be extended to a perfect
matching of G. We call G 0-extendable if it has a perfect matching. An edge of the
graph G is allowed if it lies in some perfect matching of G. A graph is elementary if
its allowed edges form a connected subgraph. A graph G is said to be bicritical if for
every pair of distinct vertices u and v in V(G) G-{u, v} has a perfect matching (so
bicritical graphs are 1-extendable). A 3-connected bicritical graph is called a brick.
A graph G is said to be factor-critical if G-v has a perfect matching for every

ve V(G).



The cycle, the path, the complete graph and the independent set with n vertices
will be denoted by Cy, Py, Ky and Ky, respectively. If V(Cp) = V(Py) = (vy, va, ... vy
we write C, = viva...vqvy, where E(Cp) = {vivy, vive, ..., VooiVn, Vavy) and P, =
V1V2...vq, where E(Py) = {viva, vivy, ..., Voo1Va).

For disjoint graphs G; and G, the sum G;+G; is the graph which has vertex-
set V(G1)uUV(G3) and edge-set E(G))UE(G2)u {xy | x€ V(G), ye V(G2)].

The cartesian product G; x G, of G; and G (also called the cartesian sum)
has vertex-set V(Gj) x V(G2) and the vertex (uj, up) is adjacent to (vy, v7) if and
only if either u; = v| and u; is adjacent to v; in G, or uz = v7 and uy is adjacent to v,
in Gy.

The wreath product G; ® G, of G; and G (also called the composition, tensor
product, or lexicographic product) is the graph with vertex-set V(G;) x V(G») and an
edge joining (uy, up) to (v, vo) if and only if either u; is adjacent to vy in Gy, or u; = v,
and u; is adjacent to v, in Gj.

By the definitions of the cartesian and the wreath products, it is easy to check
that both products are associative and cartesian product is commutative, but the

wreath product is not. These definitions are illustrated in Figure 1.1 when G, = P;

and G; = Ps.
G; G G, el o
® 9 ¢ ®
G, ¢—¢ G e Ge
L @ L J
G2 o o—o ] ®
Figure 1.1



We have only listed the definitions and notations most frequently used in the
thesis. Some special terminologies will be introduced in the separate sections. All

notations used but not defined in this thesis can be found in {6].

§1.3. Preliminary results.

In this section, we list some results which will be used very often in the rest of

the thesis.

Theorem 1.3.1 (Tutte's Theorem [54]) A graph G has a perfect matching if and only
if 0(G-S) < 18I, for all S & V(G).

Theorem 1.3.2 (Little, Grant and Holton [33]) Let G be a graph of even order. Then
G is l-extendable if and only if for all S & V(G),
(1) o(G-S) < IS! and

(2) o(G-S) = ISl implies that S is an independent set.

Theorem 1.3.3 (See [44]) A graph G is factor-critical if and only if G has an odd

number of vertices and o(G-S) < ISl for all & # S < V(G).

Theorem 1.3.4 (Plummer {47]) Let n and p be positive integers with p even and p 2
2n+2. If G is a graph with p vertices, then the following claims hold.
(1) If G is n-extendable, then G is also (n-1)-extendable.

(2) If G is a connected n-extendable graph, then G is (n+1)-connected.
(3)If p2 4 and 8(G) 2§ + n, then G is n-extendable.



Theorem 1.3.5 (Plummer [47]) Let G be a 2-extendable graph with at least six

vertices. Then G is either bicritical or elementary and bipartite.

Theorem 1.3.6 (Hall's Theorem, see [6]) Let B(X, Y) be a bipartite graph. Then

B(X, Y) has a matching of X into Y if and only if IN(S)I 2IS! for all § & X.



Chapter 2. On tree-factor covered graphs.

§2.1. Introduction.

For a given set ¥ of graphs, an #-subgraph of a graph G is a subgraph M of G
each component of which is isomorphic to one of the subgraphs in the set ¥.
Moreover, if M is a spanning #-subgraph, then M is called an F-factor of G. An ¥-
subgraph M of G is said to be maximum, if G has no F-subgraph M' with IV(M)! <
V(ML

In particular, if F=S(n) = {K;x ! 1 <k <n}, then an Ffactor of G is also called
a star-factor, or an S(n)-factor. If F = T(n), the set of all trees with at least one and
no more than n edges, then an F-factor of G is also called a tree-factor, or a T(n)-
factor.

Let a and b be integers such that 0 <a < b. We say that H is an [a, b]-graph
if a < dg(x) < b, for all x € V(H). If a spanning subgraph H of a graph G is also an
[a, b]-graph, then we call H an [a, b]-factor.

A graph G is F-factor k-covered, 1 <k < A(G), if for every subgraph K; , of
G there exists an F-factor of G containing it. An example of a {K; 1, K; }-factor 2-

covered graph is shown in Figure 2.1.

Figure 2.1



In [32] Liile introduced the concept of a l-extendable graph, which in our
terminology is a {Kj}-factor 1-covered graph and gave a criterion for classitvins 1-
extendable graphs. (In fact, Little called these graphs factor-covered graphs: the term
1-extendable being introduced by Plummer {47].) Later Little, Grant and Holton {33)
generalized Little's result to t-matchings, and showed that a graph G is t-matching 1-
covered if and only if it has a t-matching and each subset S of V(G), for which G-S
has precisely ISI+IV(G)I-2t odd components, is an independent set. In this section
we generalize these earlier ideas and consider what we call tree-factor k-covered
graphs. These are graphs with the property that every subgraph K x (or k-claw) lies
in a tree-factor; that is, if the graph has n+1 vertices, then it is T(n)-factor k-covered.
We will give a criterion for a graph to be tree-factor k-covered. This is a
generalization of the characterization of a graph having tree-factor.

If H is a graph, recall that I(H) denotes the set of isolated vertices of H, and

i(H) = II(H)L.

§2.2. Characterization of tree-factor k-covered graphs.

The following theorem is proved by Las Vergnas [31] in 1972.

Theorem 2.2.1 (Las Vergnas [31]) Let G be a graph. Then G has a [1, n]-factor, n
> 2, if and only if i(G-S) < nlSl for every S & V(G).

Las Vergnas [31, Remark 3.5] observed that G has a [1, n]-factor if and only if

it has an S(n)-factor. In fact, Las Vergnas claimed that with respect to edges, an

S(n)-factor is a minimal [1, n]-factor and there is a polynomial algorithm to produce

10



an S(n)-factor from a given [1, n}-factor. These results lead to 2 characterization of

graphs with an S{n)-factor.

Theorem 2.2.2 Let G be a graph. Then G has an S(n)-factor, n = 2, if and only if

1(G-S) < nlSI for every S < V(G).

Theorem 2.2.2 was also proven independently by Hell and Kirkpatrick [23], and
Amahashi and Kano [2]. Moreover, the above results are also explicitely mentioned
in [25].

Since a T(n)-factor is a [1, n]-factor and a union of spanning trees of the

components of a [1, n]-factor is a T(n)-factor, we obtain the following result from

Theorem 2.2.1.

Theorem 2.2.3 The graph G has a T(n)-factor, n 2 2, if and only if i(G-S) < nlS! for
every S & V(G).

Theorem 2.2.3 gives a criterion for the existence of a T(n)-factor in a graph.
So. in order to provide a characterization of T(n)-factor k-covered graphs, we need
only to add more conditions to this. For this, we require more definitions and lemmas.
This work is joint with C. P. Chen.

Let G be a graph and A & V(G). If there exists a T(n)-subgraph of G which
spans A, then A is called T(n)-saturated. Let M be a T(n)-subgraph of G and let
x,y€ V(G) (x #y). If x and y belong to the same component of M, then we say that x

matches y under M.

For a graph G, defect(G) = max {1(G-S)-nlSl} is the defect of G.
S SV(G)

Geometrically, defect(G) is the number of vertices missing from any maximum T(n)-

11



subgraph of G. Put D(G) = {S 1 S S V(G) and i(G-S)-niSI = defect(G)}. Clearly,
defect(G) 2 O for any graph G (put S = @), and by Theorem 2.2.3 G has a T(n)-tactor
if and only if defect(G) = 0.

We will need the following three lemmas. Lemma 2.2.4 has been proven

independently by Las Vergnas [31], Hell and Kirkpatrick [23] and Yu [60].

Lemma 2.2.4 For every maximum S(n)-subgraph M of a graph G
IVIM)I = IV(G)I-defect(G).

Lemma 2.2.5 For every maximum T(n)-subgraph M of a graph G,
IVIM)I = IV(G)l-defect(G).
Proof: Given a maximum T(n)-subgraph, we can delete edges to get an S(n)-

subgraph on the same number of vertices. The S(n)-subgraph is maximum for if not,

since an S(n)-subgraph is a T(n)-subgraph, M would not be maximum. (]

Theorem 2.2.6 Let G be a graph without a T(n)-factor (n 2 2), and let Spe D(G).
Then there exists a set Vg, Vo & I(G-Sgp) and Vgl = defect(G), such that G-V has a
T(n)-factor.

Proof: As So€ D(G), i(G-Sp) = nlSgl+defect(G). Also, in any T(n)-subgraph of G
each vertex in Sy matches with at most n vertices in [(G-Sp). Therefore, any T(n)-
subgraph of G leaves at least defect(G) unsaturated vertices in [(G-Sg).

Let M be a maximum T(n)-subgraph of G, and Vj be the set of all vertices in
I(G-Sp) unsaturated under M. Then 1Vyl 2 defect(G). But, by Lemma 2.2.5, defect(G)
= IV(G)-V(M)!I 2 1Vl 2 defect(G) and so Vgl = defect(G). Therefore M is a T(n)-
factor of G-Vj,. 0

12



The following theorem is fundamental to the proof of our main theorem.

Theorem 2.2.7 Let G be a graph, and K a Ky subgraph of G, where 1 £k £n. Then
G has a T(n)-factor containing K, n 2 2, if and only if

(1) i(G-S) £ nlS! for every § & V(G), and

(2) i(G*-S) <€ niSl+(n-k) for every S & V(G*), where G* = G-V(K).
Proof: We first prove the necessity of the conditions. Let M be a T(n)-factor in G
which contains K. Denote by C the component of M which contains K. Let A = V(C)-
V(K). Since Ce T(n), we have IV(O)l £ n+1. Moreover, IV(K)I = k+1 and thus IAl £
n-k. Set G* = G-V(K). Because G-V(C) = G*-A has a T(n)-factor, then by
Theorem 2.2.3 we have i(G*-A-S*) < niS*! for every S* € V(G*)-A. Let
S € V(G*). Then S-A & V(G*)-A and i(G*-A-(S5-A)) <niS-Al. Therefore,

i(G*-S) £ 1(G*-A-(S8-A))+lAl < nlS-Al+lAl £ nlS!+(n-k).

Consequently, condition (2) holds. Condition (1) holds by Theorem 2.2.3.

It now remains to prove the sufficiency of the conditions. We will do this by
giving an augmenting path procedure to construct a T(n)-factor containing K.

Suppose that conditions (1) and (2) hold. Condition (1) simply tells us that G
has a T(n)-factor.

If G* has a T(n)-factor F, then FUK is a T(n)-factor of G containing K.
Suppose then that G* has no T(n)-factor. From this and condition (2) we have n-k >
defect(G*) > 0. Let So€ D(G*). Then 1(G*-Sg)-nISyl = defect(G*). It follows from
Lemma 2.2.6 that there exists a set Vg, Vo & I(G*-Sp), so that Vgl = defect(G*) and
G*-Vy has a T(n)-factor Mg; that is, Mg is a T(n)-factor in G-V(X)-V. Notice that
My consists of n-stars and each n-star has its centre in Sy and n leaves in I(G*-S)-

Vo.

13



Figure 2.2

Suppose that for every ve Vg, Ng({vNV(K) # &. For each v&€ Vg choose a
vertex v'€ Ng({v})NV(K), and let Eg be the set of edges vv'. So IEgl = defect(G*)
and Tp = G[EgUE(K)] is a spanning tree containing K in G[VouUV(K)] (see Figure
2.2). Since

IE(To)l = defect(G*)+HE(X)! < (n-k)+k = n,
Tg is a T(n)-factor containing K in G{V(K)UVy], and MpUTyp is a T(n)-factor of G
containing K.

Otherwise, there exists a vertex v, v€ Vg, such that Ng(v)nV(K) = &. For
every A & Sg, recall that Nj(A) is the neighbourhood of A in I(G*-Sy). Denote by
I'nm,(A) the set of vertices which are matched under My with vertices in A.

Set

S ={x1x € Sgand xve E(G)}

S2 = {x1x € $¢-8; and Ny({x}DnI'm(S1) # D}

S3 = {x I x € Sp-(81USz) and Ny({x)}I'm (S2) # L)

14



Sm = {x1X€ So-l  S;)and Ni({x})"M,(Sm1) = B},

s=t
where m is the maximum integer satisfying the above properties.
Since G has a T(n)-factor, G has no isolated vertices. This implies that S; #

. Since Soe D(G*), the subser J S; of Sy satisfies

=1
IFMO( :: S;h=mni J Sjl.
j=1 3=1
We claim that 'y ( S $; )INN(V(K)) # . Since S, is the last set defined, there is
j=1
no edge from Sp- U S 10 Ty G Sj). T ( U S5)INNIV(K)) = @, then I(G-
J=1 j=1 j=1
J Sp 2 Pyl J 89 (see Figure 2.3, where dotted lines indicate the edges of My).
1=l =1
Since Ng(v) € S;, then ve (G- S S; and hence
=1
(G - U S;)2nly S,

1= j=1

which is contrary to (1).

G*

1(G*-Sy)

Figure 2.3
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Let y, be a vertex of (I'y (S1)-S)MN(V(K)) and x, be the vertex of S,
matching y, under Mp. For 2 <i <, let yi.; be the vertex which is adjacent 1o x; in
I'm,(Siy) and x;) the vertex of S;.y matching yi; under Mg, Let x; be a vertex
matching y; in §;.

Set
M1 = Mp-{x1¥15 s Xryr}O{X1V, X2Y15 oos XeYre1}s
and V| = (Vo-{v}))U{y,}. Then, from the construction of §j, M, is a T(n)-factor in

G*-V, (see Figure 2.4).

I'm,(S3) Tmy(S2) I'm (S1)

N(V(K))

Figure 2.4
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If, for every u€ Vi, Ng({u})NV(K) = &, then the proof is finished by the same
argument as applied earlier to Vgo. Otherwisz, there is a vertex u'€ V| with no
neighbours in K and we repeat the argument to obtain the independent set V.
Continuing in this way we eventually reach a vertex-set V,, (p <1Vgl; and a T(n)-
factor M, in G*-Vp, so that every vertex in V, is adjacent to V(K) (that is,
Nog({v})nV(K) # O for all v€ Vp). An application of the first argument now

completes the proof. []

Corollary 2.2.8 Let G be a graph and 1 <k < n. If i(G-S) < niISl-(n+1)k for every S
< V(QG), then G is T(n)-factor k-covered (n = 2).
Proof: Clearly condition (1) of Theorem 2.2.7 is satisfied.

For any given K i subgraph K of G, set G* = G-V(K). For every S & V(G*),
we have

1(G*-S) = i(G-V(K)-S) < nlV(K)uSI-(n+1)k
= niSl+n(k+1)-(n+1)k = niSl+(n-k).

Thus, condition (2) of Theorem 2.2.7 is also satisfied. So G has a T(n)-factor

containing K and G is therefore T(n)-factor k-covered. []

For a fixed k-claw K of G, from Theorem 2.2.7 we obtain necessary and
sufficient conditions for the existence of a T(n)-factor containing K. Our next step is
to obtain a characterization of T(n)-factor k-covered graphs. Such a characterization

will necessarily be independent of the choice of k-claw.

Theorem 2.2.9 Let G be a graph, and 1 < k < n. Then G is T(n)-factor k-covered, n >
2,if and only if

(1) 1(G-S) £ nlSl for every S € V(G) and

(2) 1(G-S) > niISl-(n+1)k implies that A(G[S]) < k.

17



Proof: Suppose that G is T(n)-factor k-covered and so condition (1) holds. Suppose
that there exists a subset of vertices Sg, So & V(G), such that nlSyl = i(G-S,) >
niSol-(n+1)k and A(G[Sg)) = k. Since A(G[So]) 2 k, then G[Sp| contains a K i
subgraph K. Set G* = G-V(K) and S = Sp-V(K). Then

1(G*-S) = 1(G-V(K)-(So-V(K))) = i(G-Sp) 2 nlSpl-(n+1)k+1

= nlSI+(n-k)+1
and so by Theorem 2.2.7 G has no T(n)-factor containing K, a contradiction.

We next prove the sufficiency of the theorem. Suppose that there were a K
subgraph K of G such that G had no T(n)-factor containing K. Set G* = G-V(K). By
Theorem 2.2.7 there exists a set S, S & V(G*), such that 1(G*-S) > nIS!+(n-k). Set
So=SUV(K). Then

1(G-Sg) = i(G*-8) > niSl+n-k = nlSgl-k(n+1).
But A(G[Sg]) 2 A(K) =k, and we have found a set S which does not satisfy (2). [

Note that from Theorem 2.2.1 and Theorem 2.2.3 it follows that the existence of
a star-factor or of a tree-factor in a graph is the same. But, tree-factor covered
graphs do not necessarily satisfy the conditions for star-factor covered graphs. For
example, the path of length 3, P4, is T(3)-factor 1-covered but not S(3)-factor 1-
covered. In this sense, the conditions for the existence of S(n)-factor 1-covered
graphs are stronger than those required for T(n)-factor 1-covered graphs.

To conclude this chapter, we present the following open problem:

Problem: Characterize star-factor covered graphs.
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Chapter 3. On n-extendable graphs.

§3.1. Introduction.

Recall that a graph G is n-extendable if it contains a set of n independent
edges and every set of n independent edges can be extended to a perfect matching of
G. The family of n-extendable graphs is quite large. For example, the cube (see
Figure 3.1), the tetrahedron, the dodecahedron and the complete bipartite graph K,
are 2-extendable. In fact, if the minimum degree &(G) is larger than n+V(G)//2 and

IV(G)I =2 4, then G is n-extendable (see Theorem 1.3.4 (3)).

Figure 3.1 The cube is 2-extendable

Plummer [47], [50] studied properties of n-extendable graphs, and the
relationship between n-extendability and connectivity. In particular, he investigated
the effect on extendability when an edge is deleted from an n-extendable graph, and
showed that for any edge e = xy of an n-extendable graph G (n = 1), G-e is (n-1)-
extendable. In the case when an edge is added rather than deleted, Saito [51] made

the following conjecture:

Saito's conjecture: If a connected graph G is n-extendable and G # K or Ky,

for some r, then there exists an edge e€ E(é) such that Gue is n-extendable.
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For n=1, Saito noted that the conjecture can be easily proven and such a proot
will be presented in the next section. Very recently, Gyori (personal communication)

proved that K; x K, is a counterexample to Saito's conjecture. In particular, he

showed that if both r and m are even then K, x K, is (%+52rl -1)-extendable, but for any
edge e€ E(E—XT(;‘_) the graph (K; x Kp)we is not (% + '25 -1)-extendable. In section
3.2, we shall show that the conjecture is true if G is bipartite, and that if G is not
bipartite and e€ E(é), then Gue is (n-1)-extendable. In light of Gyoéri's
counterexample, this result is, in same sense, best possible. However, it would be
interesting to determine all n-extendable graphs G in which there exists an edge
ee E((—B) such that Gue is n-extendable. In other words, are K; x K, the only
counterexamples to Saito’s conjecture?

Little, Grant and Holton [33] gave good characterizations of 1-extendable
graphs and l-extendable bipartite graphs. In 1971, Brualdi and Perfect {7} gave a
characterization of n-extendable bipartite graphs, but their result is described in terms
of matrices and system of distinct representatives. The more results on n-extendable
bipartite graphs were obtained by Plummer [48]. In particular, Brualdi and Csima [8]
proved that a k-regular bipartite graph of order 2m is n-extendable if and only if k = 1
or n < 2k-m. In section 3.3, we shall give criteria for a graph to be n-extendable (n 2
1). Since n-extendable graphs must have a 1-factor, we deal only with graphs of even
order. For graphs of odd order, we generalize the idea of n-extendability and
introduce n% -extendability. A graph G is n% -extendable if (1) for any vertex v of
V(G) there exists a set of n independent edges in G which miss v and (2) for every
vertex v and every set of n independent edges €1 = X1y1, €2 = X2Y2, ..., €1 = XnYq

missing v, there exists a near perfect matching of G which contains ey, ez, ..., ¢, and

. .ye . 1
misses v. Analogous to n-extendability, we study the properties of n; -extendable



graph and give a characterization of these graphs. The generalizations of factor-

critical and bicritical to r12i -extendability are also discussed.

Several results in this chapter will be based on the following observation.

Observation 3.1.1 A graph G, IV(G)! 2 2n+2, is n-extendable if and only if for any
matching M of size i (1 <1i < n) the graph G-V(M) is (n-i)-extendable.

Proof: Suppose that G is n-extendable. For any matching M of size i (1 <1 < n), let
H = G-V(M). Observe that by Theorem 1.3.4 (1) H has a perfect matching. Let M'
be a matching of H with n-i edges. Then MUM' is an n-matching of G and thus there
exists a perfect matching P of G containing MUM'. Clearly, P-M is a perfect matching
of H which contains M' and so H is (n-i)-extendable.

Conversely, for any matching Q of size n in G, let M be a subset of Q with i
edges. By assumption G-V(M) is (n-i)-extendable. Thus there exists a perfect
matching P of G-V(M) containing Q-M and therefore PUM is a perfect matching of G
containing Q. []

§3.2. On Saito's conjecture.

We start this section by stating the characterization of 1-extendable bipartite

graphs obtained by Little, Grant and Holton [33].
Theorem 3.2.1 (Little, Grant and Holton [33]) Let B(X, Y) be a bipartite graph with

IXI = 1Yl. Then B(X, Y) is l-extendable if and only if for every non-empty proper
subset § of X we have INy(S)l > ISI, where Ny(S) is the neighbourhood of S in Y.
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In order to prove Saito's conjecture for n = I, we introduce the closure of a 1-
extendable graph G. This is the graph obtained from G by recursively joining pairs of
nonadjacent vertices x and y such that Gu({xy} is l-extendable until no such pair

remains. We denote the closure of G by c(G). Notice that ¢(QG) is l-extendable.

Lemma 3.2.2 c¢(G) is well defined.

Proof: Let G; and G; be two graphs obtained from G by recursively joining pairs of
nonadjacent vertices x and y such that Gu({xy} is 1-extendable until no such pair
remains. Denote by ey, ey, ..., € and f}, fp, ..., f;, the sequences of edges added to G in
obtaining G; and G, respectively. We shall show that each e; is an edge of G; and
each fj is an edge of G;.

Let ex+1 = uv be the first edge in the sequence ey, ey, ..., €y that is not an edge
of Gy. SetH=Gu{ey, ey, ..., ex}. It follows from the definition of G; that Hu{ey, )
is 1-extendable. By the choice of ex4), H is a spanning subgraph of G,. Since
ex+1€ E(Gy), there exists a perfect matching F of Hu{ey, ) containing ey, and F is
a perfect matching of GyU{ex,1}. Thatis, ex.1€ E(Gy). This is a contradiction, since

u and v are not adjacent in G,. Therefore each e; is an edge of G; and, similarly f; is an

edge of G;. Hence Gy = G; and ¢(G) is well defined. ]

The next result is the case n = 1 of Saito's conjecture. We state it in the form

of closure. The proof was first sketched by Saito (private communication).

Theorem 3.2.3 If a connected graph G is l-extendable, then c(G) 1s Ky, or K,
where IV(G)l = 2r.

Proof: In a connected, 1-extendable graph G, let F = {x;y, X2y2, .., X;¥(} be a
perfect matching of G. Since G is connected, there is an edge adjacent to two edges of

_ F. Suppose this edge is x1y2. Then x,y1€ c(G) as F-{x1y1, xay2}{x1y2, x2y1} is a
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perfect matching containing x2y:. Therefore {x;, y1, x2, y2} induces a complete
bipartite graph K3, in ¢(G). Suppose we have the subgraph K, with vertices {x;, x2,
s Xi, Y1, Y2, - Y1} @nd t <. Since G is connected, there exists an edge of G joining a
vertex of {Xy, X2, ..., X, Y1, Y25 -» Y1} tO ON€ Of { X141, X142, ooy Xpy Yiels Yi42s -or Y1}, SQY
xiy1+1€ E(G). Then x1y;€ ¢(G). Hence xi,1y;j (j # 1) is an edge of c(G) as F-{x;y;,
Xi¥i Xee1Yer1 U Xte1Yjs Xj¥is XiYe+1) and, similarly, X;yw1 (j # 1) lie in ¢(G). So we
have a subgraph Ki;j+1 in c¢(G). Continuing this argument, we conclude that ¢(G)

contatns a subgraph K, ,.

If both {xi, X2, ..., X;} and {yi1, y¥2, ..., y;} are independent sets in G, then c(G)
= K, and we are done. Otherwise, without loss of generality, assume that
x1x2€ E(G). Then clearly y,y,€ E(c(G)). Since x1x3, y1y2€ E(c(G)), then x;x;€
E(c(G)) 3 £1 <) as F-{x1y1, X2y2, Xiyi JVU{X1X}, X2¥i, Y1y2) (see Figure 3.2) is a
perfect matching containing x1x;. A similar argument yields yy;€ E(c(G)) for 3 <1 <
r. From this we can deduce that for all i and j both x;x; and y;y; are contained in

perfect matchings. Therefore c(G) = Kj;,.
Xr-1 Xr

X1 X2 3 Xi Xj
[ 2 2 2K BN .l... l
yr y2 y3 y

i Y oyl oy

Figure 3.2

We now prove that Saito's conjecture holds if G is a bipartite graph.
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Theorem 3.2.4 If the connected bipartite graph G = B(X,Y) is n-extendable. then for
any edge e = xy of E((-}), with x€ X and ye Y, Gue is n-extendable.

Proof: Suppose that the conclusion of the theorem is false. Then there exists an n-
extendable bipartite graph G = B(X,Y) so that for some edge ¢ = xy, where x€ X,
yE€ Y and xye E(é), Gue is not n-extendable. Thus there exist n independent edges
of Gue which cannot be extended to a perfect matching. Since G is n-extendable, one
of these edges is e. Let the others be e, €z, ..., €51, where €;= x;y; (1 <1 < n-1),
xi€ X and y;€ Y. Let X' = X-{x, X1, ..., Xp.1} and Y' = Y-{y, y1, ..., ¥n-1)- Since
B(X',Y') has no 1-factor, by Theorem 1.3.6 (Hall's Theorem) there exists a set S ¢ X'
such that INy(S)I < ISI. Now INy-{y)(S)I £ INy«(S)I+1 or INy-_(y;(S)I £ ISI, and thus
by Theorem 3.2.1, the bipartite graph B(X'U(x}, Y'U{y}) = G-{x1, x2, ..., Xn-1. Y1, ¥2u

.. ¥Yn.1) 1s not l-extendable. But this contradicts Observation 3.1.1.  []

Corollary 3.2.5 Saito's conjecture is true for the case of bipartite graphs.

Note that if G is as described in Theorem 3.2.4, then for any edge e with V(¢)
S X orY, G-V(e) is a bipartite graph with a different numbers of vertices in each
bipartition. So G-V(e) has no perfect matching. Thus GuUe is not even 1-extendable.
So it was important to choose the edges as described in Theorem 3.2.4. In the case of
non-bipartite graphs Gyo6ri has provided examples of graphs which are counter-
examples to Saito's conjecture. We will show that the graph Ky, x Kj is such a

counterexample.

Theorem 3.2.6 (Gyori) For any integer r 2 1, Ko, x K is r-extendable. But for any

edge e, e€ E( Ky x K3 ), the graph (K, x K3)Ue is not r-extendable.
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Proof: In Theorem 4.2.9 we shall prove that if H is k-extendable, then H x K is
(k+1)-extendable. Using this and the fact that Ky, is (r-1)-extendable, then K x K>
is r-extendable.

Let V(Kyr) = {x1, X2, ..., X2r} and V(K3) = (I, 2}. Then E( Ky xKy) =
{(xi, D(xj, 2) | x; # x;). To show that (K3, x Kz)ue is not r-extendable for each
ee E( Ky x K2 ) we need only to consider the edge e = (x1, 1)(xz, 2). Lete; =
(x3. 1)(x4, 1), €2 = (x5, 1)(x6, 1), ..., €r.1 = (X211, 1)(X2r, 1). Then e, €y, €3, ..., €1 are
r independent edges of Ka; x K2 and (x2, 1) is an isolated vertex of (Kyr x K3)-V({e,

€1, €2, ..., €.1}). Hence (Ko X Ky)Ue is not r-extendable. ]

Actually, Gyort proved that if both r and m are even then K; x K, is a
counterexample to Saito's conjectuce. Although Saito's conjecture is not true in
general, we can prove that if G is not bipartite, then for any edge e, ec E(é), Gue is
(n-1)-extendable. This result is rather strong in the sense that it holds for all edges
and in view of the falsity of the conjecture this is the best one can expect.

To reach this main result we need the following lemma.

Lemma 3.2.7 If G is a connected n-extendable graph (n = 2) and M is a matching of
size i (1 €1 <n-1) in G, then G-V(M) is connected.

Proof: Suppose that G-V(M) is disconnected, where M is a matching of size i (1 < i
< n-1). Let ey, €y, ..., €; be the edges of M and ¢;= xjyj (1 £j <1). Consider the
graphs Go= G, G1 = Go-{x1, y1}, G2 = G1-{x2, 2}, ..., Gi = Gi.1-{xi, yi} = G-V(M).
Since Gg is connected and n-extendable (n 2 2), by Theorem 1.3.4 (2) it is at least 3-
connected. Thus G is connected. Since G; is disconnected, there exists an h, where
1 £ h €i-1, such that Gy, is connected but Gy is disconnected. Also, by Observation

3.1.1, Gy, is (n-h)-extendable, and so, as n = i+1 and h < i-1, Gy, is at least 2-
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extendable. From Theorem 1.3.4 (2), Gy, is 3-connected, and this implies that Gy, =

Gr-{Xhs1, Yn+1) is connected, which is a contradiction.  []]
We will now prove the main result in this section.

Theorem 3.2.8 Suppose that G is a connected, n-extendable (n > 1), non-bipartite
graph of order at least 2n+2. For any edge e = xy€ E(E]), Gue is (n-1)-extendable.
Proof: Suppose that the connected, non-bipartite graph G is n-extendable. If for any
edge e = xy€e E(E}), Gue is n-extendable, then by Theorem 1.3.4 (1), we are done.
So we assume that for some e, € = xye E(é), Gue is not n-extendable.

Suppose also that GuUe is not (n-1)-extendable, although by Theorem 1.3.4(1)
G is. Then there exist n-1 independent edges (including e) which cannot be extended
to a perfect matching of Gue. Let these edges be € = xy, e; = x1y1, .-, 0.2 = Xn2Yn-2.
Thus there is no perfect matching in the subgraph G' = G-{x, y, X1, ¥1, ..., Xn.2, Yu.2).
By Theorem 1.3.1 (Tutte's theorem), there exists a subset S of V(G’) such that
o(G’-S) 2 ISI+1 and a simple parity argument then yields o(G'-S) 2 ISI+2. Let §' =
Su{x,y}. We will show that S’ is an independent set in G" = G-(xy, yy, ..., Xn.2, Yn-2).
Clearly,

o(G"-S") = o(G'-S) 2 ISI+2 = IS,

But since G" is 2-extendable (by Observation 3.1.1), it follows from Theorem 1.3.4(1)
that G” is l-extendable. Theorem 1.3.2 then yields, o(G"-S") < ISl and hence
o(G"-§') = IS'l. Theorem 1.3.2 now implies that S’ is independent in G".

Next, we shall prove that each odd component of G"-§' is a singleton. If not,
let O; be an odd component of G"-S' with 1041 2 3. By Lemma 3.2.7, G" is connected.
Moreover, from Theorem 1.3.4 (2), G" is 3-connected (and IS'l 2 3). Consider the

following version of Menger's Theorem ([12, p163]):

26



"A graph G of order p = 2n is n-connected if and only if for every two disjoint
sets Vy and V3 of n vertices each, there exist n vertex-disjoint paths connecting V;
and V,."

Using this it follows that there exist two independent edges f and g from O; to two
vertices of §', say uj,up. Let zy and z; be the end-vertices of f and g in Oj. Letting S"
= S-{u;, w2},

o((G"-{uy, uy, z1, 22})-8") 2 o(G"-S") = IS'l > IS"L
That is, G"-{uy, uy, z1, z2} has no perfect matching, which contradicts the fact that G"
i1s 2-extendable. So IOl = 1.

Since G" is 2-extendable and connected it follows that, as o(G"-S’) = IS, G"-
S’ has no even components. Thus all components of G"-S' are singletons, and as S' is
independent, G" is a bipartite graph.

Finally, we show that G[V(G")U{x, y1}] is bipartite.

From Lemma 3.2.7, we know that G* = G[V(G")U{x,, y;}] is connected. By
Observation 3.1.1, G* = G[V(G"U{x1, y1}] = G-{x2, Y2, --.s Xn-2, Yn-2} is 3-
extendable, and so is 4-connected. Let the bipartition of G" be X"UY" where IX"| =
IY"l. Since G* is 4-connected, each of x; and y; has degree at least 4. If G* is not
bipartite either N({x;, y1}) & X" (or Y") or at least one of x; and y; has a neighbour
in each of X" and Y". The first case is eliminated as it implies G* is not 2-extendable.
In the second case, suppose that x; has a neighbour in each of X" and Y". But then
either IN({x;, yiDNX"l 2 2 or IN({x1, y1})nY"l 2 2 and again G* is not 2-
extendable. So G* is bipartite. Therefore, we can add each of {ej, €7, ..., €52} 1o G"

one by one and conclude that G[V(G")U {x1, y1, ..., Xn-2, ¥n-2}] = G is bipartite. But

this contradicts the assumption.  []
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Even though Saito's conjecture is not true for non-bipartite graphs, it does hold
for all such graphs with large enough minimum degree. We conclude this section with

a statement of that result.

Theorem 3.2.9 Saito’s conjecture holds for any n-extendable graph of order p, p > 4

and minimum degree 8(G) > 2 +n.

Proof: Since the minimum degree 6(G) 2% + n, G 1s a non-bipartite graph. The

result follows from Theorem 1.3.4 (3) immediately. ]

§3.3 Some generalizations related to n-extendability.

We begin by giving a characterization of n-extendable graphs which is a

generalization of Theorem 1.3.2.

Theorem 3.3.1 A graph G is n-extendable (n = 1) if and only if for any S < V(G)

(1) o(G-S) < iSl and

(2) o(G-S) = ISI-2k (0 £ k £ n-1) implies that F(S) < k, where F(S) is the
size of maximum matching in G[S].
Proof: "=" As G has a perfect matching (1) follows from Theorem 1.3.1. Suppose
o(G-S) = ISI-2k (0 £ k < n-1) for some vertex-set S & V(G). We consider first the
case that k = n-1. In this case, assume F(S) > n-1. Let¢; =x;y; (1 £1<n-1} be n-1
independent edges in G[S]. By Observation 3.1.1, G-{xj, y1, -, Xn-1, ¥n-1) 15 I-
extendable. Let G' = G-{x1, ¥1, ---» Xn-1> ¥n-1} and S' = S-{xy, ¥1, ---, Xn.1, ¥Yn.1}- Then
o(G'-S") = o(G-S) = ISI-2(n-1) = 1S’l. By Theorem 1.3.2, §’ is an independent set.
Thus F(S) € F(§)+(n-1) = n-1 = k, a contradiction. Since k-extendability implies

(k-1)-extendability, (2) holds for 0 < k < n-2.
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"¢e=" The proof will use induction on n.

If n = 1, the claim holds from Theorem 1.3.2 as F(S) = 0 means that S is
independent.

Suppose that the claim holds for n < r. Consider n = r. By the induction
hvpothesis, (1) and (2} imply that G is (r-1)-extendable. If G is r-extendable, we are
done. Otherwise, there exist r-1 independent edges e;=x;y; (1 €1 <r-1) sothat G' =
G-{xy, ¥1, ..., Xr-1» Yr-1} 1s not l-extendable. Since G' has a perfect maiching,
condition (1) of Theorem 1.3.2 holds. Thus, if G’ is not 1-extendable, then there exists
a set " < V(G') so that oG-S} = IS8T and F(§8’) 2 1. Let S = S'U{x1, ¥, - Xio1s
¥r.1}- Then o(G-S) = o(G"-§8") = IS't = 18i-2(r-1) and F(S) = F(S$)+(r-1) = r, which

contradicts condition (2).  []

Next we study relationships between n-extendability and n-;— -extendability. It

.. .. . 1
turns out that they are very similar. If a new vertex joins to all vertices of an ny -

extendable graph G, then the resulting graph is (n+1)-extendable. Thus (n+1)-

extendable graphs can be obtained by this manner and in this sense, n% -extendability
ts weaker than (n+1)-extendability. On the other hand, if G is r% -extendable, then

for any vertex v€ V(G), G-v is n-extendable. Hence n% -extendability is "stronger”

than n-extendability. However, there exist (n+1)-extendable graphs with the

properiy that on deletion of some vertex the resulting graph is not n% -extendable; for

cxample, the cube G of Figure 3.1 is 2-extendable but on deleting any vertex v, G-v is

not I% -extendable. So it is natral to think of n% -extendability as lying between n

and (n+1})-extendability. Not surprising then, we can characterize all n% -extendable

graphs in icrms of n-extendable and (n+1)-extendable graphs.

Theorem 3.3.2 A graph G of odd order is n; -extendable if and only if G+K; is

{n+1}-extendable.



Proof: Assume that G is n% -extendable. Let H = G+Kj, where V(K) = {z)} and

choose n+1 independent edges, €; = x;y; (1 = 1, 2, .., n+1) of E(H).

Case 1. All n+1 independent edges lic in E(G). Since G is n% -extendable,
there exists a near perfect matching M containing ey, €, ..., €, and missing x,,, in G.
Let w be the vertex adjacent to yp+1 in M. Then M-{wypn.1 Jo{wz, Xp41Ya+1) will be a
perfect matching of H containing ey, €3, ..., €n+1.

Case 2. Suppose that one of eq, €7, ..., €p+1 1S not in E(G), say eq4y. Let ey =
zw, where w € V(G)-{x1, ¥1, --» Xn, Yn}. Then there exists a near perfect matching M
of G containing ey, €3, ..., €, and missing the vertex w. Thus Mu{zw} is a perfect
matching of H as required.

Conversely, for any n independent edges ey, €7, ..., €y of E(G) and vertex v of
V(G) not lying on these edges, there exists a perfect matching M of H containing ey,

€2, -.., €y, vZ. Then M’ = M-{z]} is a near perfect matching of G which contains ey, ¢,

..» €n and misses v. []

Remark 3.3.3 Even though when G is n% -extendable, G+K; is (n+1)-extendable, it

. . - . 1
is not the case that if G is n-extendable, then G+K; is ny -extendable. For example,

the cycle Cg is 1-extendable, but Cg+K; is not 1% -extendable
From the definition of n% -extendability, we have the following observation.

Observation 3.3.4 A graph G is n% -extendable if and only if G-v is n-extendable for

any vertex ve V(G).

We now give a characterization of n% -extendable graphs.

Theorem 3.3.5 A graph G is 13 -extendable if and only if for any S € V(G), S * 2,
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(1) o(G-S) < ISI-1 and

(2) if both o(G-S) = 1SI-1 and ISl 2 3, then S is independent.

Proof: "=" If Gis 1% -extendable, then G is factor-critical, and by Theorem 1.3.3
condition (1) holds.

Suppose there exists a vertex-set S of V(G) with ISI =2 3 such that o(G-S) =
ISI-1 but S is not independent. Let e = xy€ E(G[S]) and z€ S-{x,y}. Let G' = G-(z}
and §' = S-{z}. Then, as by Observation 3.3.4 G' is l-extendable, it follows that
0o(G'-S') = 0o(G-S) =1SI-1 = IS'l. From Theorem 1.3.2 S' must be an independent. But
this contradicts the fact that e€ E(G[S']).

"«<=" Condition (1) guarantees that G has an odd number of vertices (choose S
= {v}, ve V(G)) and then Theorem 1.3.3 implies that G is factor-critical. But we need
the stronger result that G-{v} is l-extendable for any v€ V(G). Suppose that for
ve V(G) and e€ E(G-v) there is no perfect matching in G-v containing e. Since G-v
has a perfect matching, then by Theorem 1.3.2 and Theorem 1.3.1 we know that there
exists a vertex-set S & V(G-v) so that o(G-v-S) = ISl and S is not independent.
Thus ISI 2 2. Let 8" = Su{v}. Then o(G-S") = o(G-v-§) = ISl =IS"l-1 and IS"l = 3,

but S" is not independent. This contradicts condition (2). []

Theorem 3.3.6 A graph Gis n% -extendable if and only if for any S S V(G), S # G,

(1) o(G-S) < ISI-1 and

(2) if o(G-S) = ISI-2k-1 (0 £ k £ n-1) and ISI 2 2k+3 for some vertex-set S €
V(G), then F(S) < k, where F(S) is the size of maximum matching in G[S].
Proof: The proof will be by induction on n.

If n = 1, we use the claim of Theorem 3.3.5.

Suppose the theorem holds when n <1, and consider the case n =r.

"=" Assuming that G is 1> -extendable, it follows that G is factor-critical.

2

Thus (1) follows from Theorem 1.3.3. If o(G-S) = ISI-2k-1 (0 £ k <r-2) and IS! >
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2k+3, then by the induction hypothesis, F(S) < k. Suppose then that there exists :

il

set S such that o(G-S) = ISI-2(r-1)-1 and ISI =2 2r+1 (k = r-1), but F(S) 2 r. Let ¢;

1

Xij¥i (1 <1 <) be r independent edges in G[S], v€ §' = S-{xy, yi, ..., Xp, ¥} and G' =
G-{x1, ¥1, -, X, ¥r» V}. Then o(G'-§') = o(G-S) = ISI-2r+1 = IS"I+2 > ISl and by
Tutte's theorem, G' has no perfect matching. This contradicts the fact that G is o

5

-

extendable.

" 1y

<" Suppose that conditions (1) and (2) hold but G is not r% -extendable.

Then there exists a vertex v€ V(G) such that G-v is not r-extendable. Applying
Observation 3.1.1, there exist independent edges €; = x;y; (1 £1 <r-1) so that G' = G-
v-{X1, ¥1, -.-» Xr-1, ¥r-1} is not l-extendable. However, from the induction hypothesis
Gis (r-l)% -extendable and thus G' has a perfect matching. Then from Theorem 1.3.1
for all S € V(G'), o(G'-S) < ISI. But now as G' is not l-extendable, from Theorem
1.3.2, there exists a set S' & V(G') such that o(G'-S') = IS'l and S' is not independent.
Let S = S'U{v, X1, ¥1» «+» Xr-1» ¥r-1}- Then o(G-S) = o(G'-§") = ISl = [SI-2(r-1)-1 =
[SI-2r+1 and so ISI = IS'4+2(r-1)+1 = 2+42(r-1)+1 = 2r+1. But F(S) =2 F(§)+(-1) 21,

which contradicts condition (2) when k = r-1. (]

Corollary 3.3.7 If G is an n% -extendable graph, then G is also (n-l)% -extendable.

We now turn to study some of the properties of n% -extendable graphs. They

are analogous to those of n-extendable graphs.

Theorem 3.3.8 If G is a graph of order 2r+1, r 2 n+1 2 2 and 8(G) 2 r+n+1, then G is

n% -extendable. Moreover, the lower bound on &(G) is sharp.

Proof: By Observation 3.3.4, we need only to show that for any ve V(G) G-v is n-
extendable. For any ve V(G), 8(G-v) 2 8(G)-1 = r+n. From Theorem 1.3.4 (3), G-v

is n-extendable and we are done.
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To see that the bound is sharp, consider the graph G = K, + K;.n;1. Sincer >
n+1, we take a vertex v and n independent edges x,y;, X3¥3, ..., Xnyn from K., There

remain r-n-1 vertices in K;,, which cannot be matched to the r-n+1 vertices in K; 1.

Thus 8(G) = r+n and G is not n% -extendable. []

Theorem 3.3.9 If G is connected and n% -extendable (n = 1), then G is (n+2)-
connected and, moreover, there exists an n% -extendable graph G of connectivity n+2.

Proof: If G is n% -extendable, then, by Theorem 3.3.2, G+K; is (n+1)-extendable.
Since G+K; is connected, by Theorem 1.3.4 (2), G+Kj is (n+2)-connected. Let K; =
{u}. Since n 2 1, G-v = (G+K{)-{u,v} is connected for any v€ V(G). By Observation
3.3.4, G-v is n-extendable for any v€ V(G). Thus G-v is (n+1)-connected by

applying Theorem 1.3.4 (2).

Suppose that G is not (n+2)-connected. Then there exists a cut-set S &
V(G), ISl = n+1. For any ve S, S-{v} is a cut-set of G-v. Since IS-{v}l = n, this

contradicts the fact that G-v is (n+1)-connected.

~Y
AN NAY
AR \

\\\\\\\\\\\\\\\\\\
AR A A A R R S
ARNAVLRARANR NSRS

Figure 3.3

To see that an nli -extendable graph might not be (n+3)-connected, we

consider the graph G = I—(n+2+(Kpqu) where n+2+p+q is odd and p 2 q = 2n+2.
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Clearly G is not (n+3)-connected as V(K,+3) is a cut-set of size n+2. We next show

that G is n% -extendable. For any given n independent edges €; = x;y;, 1 £i<n, and a

vertex V& (X, Y1, X2, Y2, ---» Xn» ¥n), let S = {v, x1, y1, X2, y2, ., Xn, ¥n}. V1 = V(K[)-S,
V,; = V(En+2)-s and V3 = V(Ky)-S (see Figure 3.3). We now need only to show that
G-S has a perfect matching. Clearly, the existence of a perfect matching in the graph
G-S is equivalent to a partition of V; into two subsets V', V," such that IV <1V,
V" < 1V3l, IV = 1V (mod 2), and 1V," = V3] (mod 2). As IV(G)l is odd and p, q
> 2n+2, we have that IV{I+1V,Il+IV3l = IV(G)I-ISI = p+gq+1-n is even and 1V {[+IV3l 2
IV,l+2. Therefore the required partition (V;', V,") can always be achieved. This

completes the proof. B

Remark 3.3.10 Theorem 3.3.10 does not hold for n = O; that is, for factor-critical

graphs. The graph below provides an example of a % -extendable graph which is not

2-connected.

Figure 3.4 This factor-critical graph is not 2-connected.

Corollary 3.3.11 If Gisan n% -extendable graph of order p, p 2 2n+5, and if u is a

vertex of degree n+2 in G, then Ng(u) is an independent set.

Proof: Suppose u is a vertex of degree n+2 in an n% -extendable graph G and let

Ng(@) = {vy, v, ..., vns2}. Since p > 2n+4, we can choose n+1 vertices wi, wa, ...,
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Wne1 in V(G)-Ng(u)-{u}. As G is (n+2)-connected, by Menger's theorem ([12,
p163])) we have n+2 vertex-disjoint paths joining Ng(u) and {wy, wa, ..., Wpyq, U}.
Hence there are n+2 independent edges €] = vju, €2 = Vawy{', ..., €n42 = Vpi2Wnat',
where wj' is the last vertex on the path from w; to vj;.

Suppose now that Ng(u) is not independent, say viv2€ E(G). Then vyv,, ey,
es, -.., €n+2 are n independent edges. Since u is an isolated vertex of G-Ng(u), there
exists no near perfect matching containing vivy, €4, €s, ..., €n4+2 and missing vs. This

contradicts the fact that G is n% -extendable. (]

A graph G is called n-critical if the deletion of any n vertices of V(G) results
in a graph with a perfect matching. This concept is a generalization of the notions of
factor-critical and bicritical which correspond to the cases when n = 1 and n = 2,
respectively. Hereafter, we will often refer to factor-critical graphs as 1-critical and

bicritical graphs as 2-critical. Here we present a characterization of n-critical graphs.

Theorem 3.3.12 A graph G is n-critical if and only if IV(G)l = n (mod 2) and for any
vertex-set S & V(G) with ISl = n, o(G-S) < ISl-n.
Proof: "=" Suppose that G is n-critical. Then it is immediate that [V(G)l =n (mod
2). Suppose there is a vertex-set S & V(G) with ISI 2 n and o(G-S) > ISl-n. Delete
n vertices vi, vz, ..., Vo from S and denote the remaining set by S'. Then o(G-{v,, va,
eesy Vn}-§8") = 0(G-S) > ISl-n = IS'l and by Tutte's theorem, G-{v;, v, ..., v4} has no
perfect matching. But this contradicts the hypothesis.

"e<=" Suppose that IV(G)I = n (mod 2) and for any vertex-set S € V(G) with
ISt = n, o(G-S) <ISI-n but G is not n-critical. Then there exist n vertices vy, Vs, ..., V
such that G-{vy, va, ..., v4} has no perfect matching. Using Tutte's theorem again,
there exists a set S' & V(G)-{vy, V2, -.., Vn} so that o(G-{vy, vy, ..., v}-S") > IS'L

Let S =8 U{vy, va, ..., vp}. Then o(G-S) > ISl = ISl-n, a contradiction. []
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There are several possible generalizations of n-extendability. One of the
generalizations is to consider all graphs G satisfying the property that for any m-
matching M and a set of n distinct vertices uy, uy, ..., U, of G, none of which is incident
with any edge of M, there exists any perfect matching M* of G such that M ¢ M* and
uiu; € M* for 1 <1, j<nandi# ). Another generalization is to study graphs with the
property that for any m independent edges and any n vertices not incident with any
one of these m edges, there is a t-matching in G containing the m edges but missing
all n vertices. The former is called (m,n)-extendability and was studied by Liu and
Yu [36]. This concept is stronger than n-extendability and is very helpful for studying

the properties of n-extendable graphs.
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Chapter 4. Classifications of some families of n-extendable graphs.

§4.1. Introduction.

In this chapter, we discuss the extendability properties of several families of
graphs. First, we consider various products of graphs. Two types of products -
cartesian product and wreath product - will be studied. The product of certain graphs
(for example, Cp, x Cyp, Cry x Pp) are often the “skeletons” (that is, the spanning
subgraphs) of symmetric graphs and thus knowledge of their extendability will be very
helpful in understanding the extendability of symmetric graphs. In addition, the
question of the extendability of products of granhs is in itself particularly interesting.
Products of graphs also provide us with an easy way to construct n-extendable graphs

with low degree.

Second, using the results obtained on the extendability of products of graphs
we are able to classify 2-extendable Cayley graphs on abelian groups. This is closely
related to an earlier result of Chen and Quimpo [15], who proved that every abelian
Cayley graph has a Hamiltonian cycle containing a given edge. Their result implies
that every abelian Cayley graph is 1-extendable. These results add significantly to our

understanding of abelian Cayley graphs.

At the last section of this chapter, we consider generalized Petersen graphs.
In [10], Castagna and Prins proved that all generalized Petersen graphs, except for
the Petersen graph itself, have a 1-factorization. This result indicates that
generalized Petersen graphs are in some sense "1-factor rich” and so we might hope
that they are n-extendable for reasonably large n. In [9], Cammack and Schrag
conjectured precisely which generalized Petersen graphs are 2-extendable. We shall

prove their conjecture and hence classify all 2-extendable generalized Petersen

graphs.
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Let I' be an abelian group with operation +, and S a generating set of " such
that the identity element O is not in S and -x€ S for each x€ S. The Cayley graph
G(T"; S) on T is defined by:

V(G(T; S)) =T and E(G(T; S)) = { xy | x, ye T, -x+ye S}.

As an example consider the Cayley graph (Figure 4.1) where I' = Zy x Z> =
{(0, 0), (1,0), 2, 0), (3, 0), (0, 1), (1, ), (2, 1), (3, D} and S = {(0, 1), (1, 0), (3, 1),
(1, 1), 3, D).

/ N
(1,0) (2,0) (3.0)

(0,0

(0,1) 1,1) (2,1) 3,1

Figure 4.1 The Cayley graph G(Z4 x Z; {(0, 1), (1, 0), 3, 0), (1, 1), (3, D})

The edge xy in G(I"; S) is said to be of type a (or an a-edge) if -x+y€ {a, -a}.
For convenience, if S = {aj, ay, ..., a,}, we shall often denote G(I"; S) by G(I'; ay, ap,
ooy @n)-

For each ae T, we shall denote by 6, the mapping from I" to I" defined by 0,(x)
= a+x. Clearly, 0, is an automorphism of G(I'; S), from which it follows that every
Cayley graph is vertex-transitive (for any two vertices x and y in ', By, (x) = y).
This also implies that every Cayley graph G(I"; S) is regular and in fact the degree of
each vertex is ISl

The generalized Petersen graph GP(p, k) (p > k) has vertex-set UUV,
where U = {ug, uy, ..., Up.1} and V = {vg, vy, ..., vp_l}, and edge-set {u;vj, UjUj,q, ViVisk
Ii=0,1, .. p-1}, where all subcript arithmetic is performed modulo p. The

generalized Petersen graph GP(7, 2) is given (Figure 4.2).
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Figure 4.2 GP(7, 2)

§4.2. The extendability of products of graphs.

We start this section with the cartesian product. For convenience, we denote
the subgraph induced by V(Gy) x {vy, vo, ..., v¢} (where {vy, vo, ..., v{} € V(G3)) in
G1 x G2 by Gy x {v1, va, ..., v¢}. Thus V(Gy) x {i} is a copy of G;. If v; and v; are
adjacent in Gy, then V(Gy) x {v;, v;} is isomorphic to Gy x P».

Let e = (x1, X2, ..., Xx) (Y1, ¥2, ..., Yx) be an edge of the graph G; x G x ... X
Gk. By the definition of cartesian product, there exists an integer i so that x;y;€ E(G;)
and x; =y;forj=1,2,..,11, i+, .., k. We denote x;y; by e* and call it the projection
of e. For an edge e = (ay, az, ..., ar.1, X, 8r+1, -, an.1, @)A1, A2, ..., Ar.1, Y, Ar+1s - An.1,
a) of Gy x G2 X ... X Gy x {a} (notice xy€ E(Gy)) tl}e clorneof e in Gy x Gy x ... X
Gp.1 x {b} is defined to be the edge (a,, az, ..., ar.1, X, ar+1, ..-» an-1, B)(@1, a2, ..., 3.1, Y,
ars+1s ---, an.1, b). For the set of edges {ey, €2, ..., &} & E(G), we denote by V({ej, ey,
..., €¢}) the set of all end-vertices of ey, e, ..., €.

Our first object is to study the extendability of C;, X Py, where m 2 3 and n 2 2.

Let e; = (a, b)(c, d) and e; = (u, v)(w, x) be independent edges in Cp, X P,. We say
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that e; and e; are perpendicular if either botha=candv =x,orboth b=d and u = w.
Otherwise, e and e; are said to be parallel. The following result was obtained by

Chen and Quimpo [15] in their study of Hamilton cycles in abelian Cayley graphs.

Lemma 4.2.1 Let m and n be positive integers with mn even, m = 4 and n = 2. Then

Cm X Py is l-extendable.

Lemma 4.2.2 Let m and n be positive integers with mn even, m 2 4 and n = 2. Then
any two independent and perpendicular edges of Cp, X P, can be extended to a perfect
matching of C, x Py,

Proof: Let Cp, = 12..m1 and P, = 12...n. Without loss of generality, let ¢; = (a, b)

(a, b+1) and e; = (u, v)(u+1, v) be two independent perpendicular edges of C,, x P,.

P7

N
3
I~

)

—+
4
e
+
&
=

—
Q/Q
!
1

u+l

b b+1

Figure 4.3 m s even, v = b+1
We first consider the case when m is even. If v = b or b+1, then it is easy to
see that M = (e, (u, b)(u+1, b), (u, b+1)(u+1, b+1)}u((g, b)(g, b+1) I g€ V(Cy)-1a,
u, u+1}} is a perfect matching of Cy, x P, where P, = b(b+1) (for example, see Figure
4.3), which contains e; and e;. M can be extended to a perfect matching of C, x Py,
since the subgraph of Cp x P, induced by the set of vertices not in M can be

decomposed into n-2 disjoint even cycles of length m; Cp, x {i}, i€ V(P,)-{b, b+1}. If



v# borb+l, let M = {(g, b)(g, b+1) | g€ V(Cyp)JUN, where N is a perfect matching of
the subgraph Cy, x {v} containing e, (for example, see Figure 4.4). Then M is a set of
independent edges containing e; and e which can be extended to a perfect matching of

C., > Py, for the same reason as above.

b b+1

Figure 4.4 miseven, v # b or b+l

We next consider the case when m is odd, in which case n must be even.
Again, assume that v = b or b+1 (say b+1). If v = b+1 is even, then M = {ey, ey,
(u, b)(u+1, b)}u{(g, b)(g, b+1) i g€ V(Cp)-{a, u, u+1}} (see Figure 4.5) is a set of
independent edges containing e; and e;. This set can be extended to a perfect
matching of Cy, x P, since the subgraph of C, x Py, induced by the set (if this set is not
empty) of vertices not in M can be decomposed into the subgraphs Cy, x {2x-1, 2x} =
Cmx Py x=1,3, .., b-2, b+2, .., n-1, each of which has a perfect matching. On the
other hand, when v = b+1 is odd, choose y to be any vertex of V(C,)-{a, u, u+1}. Let
M = {ey, ez, (u, b)(u+1, b), (y, b-1)(y, b), (y, b+1)(y, b+2)}U{(g, b)(g, b+1) | g # a,
u, u+l, y}. Then M is a set of independent edges containing €; and e; (an example is
given in Figure 4.6), which can be extended to a perfect matching of Cy, X Py, as the
subgraph of Cy, x P, induced by the set of vertices not in M can be decomposed into

two even paths P = (y+1, b-1) (y+2, b-1)...(y-1, b-1) and Q = (y+1, b+2)
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(y+2, b+2)...(y-1, b+2), and the subgraphs Cy, x {x, x+1} = C,; x P2, x = 1, 3, ..., b-3,

b+3, ..., n-1, each of which has a perfect matching.

b b+1

Figure 4.5 mis odd, v = b+1 is even

.

Ps

C7

b-1 b b+1
Figure 4.6 mis odd, v = b+1 is odd
All that remains is to consider the case when m is odd and v # b or b+l.
Without loss of generality, we may assume that v > b+1. If v is odd, let H and K be
the graphs induced by the vertex-sets {(g, h) | h < v} and {(g, h) | h 2 v},
respectively. Since H = C; x Py; and K = C X Py v41, v is 0dd and n is even, then by
Lemma 4.2.1, H has a perfect matching M; containing €; and K has perfect matching
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M; containing €. Hence M;UM; is a perfect matching of Cy, x P, containing e, and
e;. If v is even and v > b+2, let H and K be the graphs induced by the vertex-sets
{(g, byt h < v-1} and {(g, h) { h = v-1}, respectively. Again by Lemma 4.2.1 H has a
perfect matching M; containing €;, K has a perfect matching M, containing e; and
M;tUM; is a perfect maiching of Cn x Py containing e and e;. The final case is that v
= b+2 and v is even. Choose a vertex y€ V(Cp,)-{a, u, u+1} so that y = u-1 or u+2.
Let M = {e;, e2. (y, b-1)(y, b), (v, b+D)(y, b+2)}U{(g, b){(g, b+1) | g€ V(Cp)-{a,
vy} (see Figure 4.7). Then M is a set of independent edges containing e; and e;
which can be extended to a perfect matching of Cy, x Py, since the subgraph of C, x Py,
induced by the set of vertices not in M can be decomposed into two even paths P =
(b-1, y+I)(b-1, y+2)... (b-1, y-2)(b-1, y-1) and Q = (b+2, y+1)(b+2, y+2)...(b+2,
u-1) (where addition in the second coordinate is taken by modulo m) and the

subgraphs Cp X {x, x+1} = Cr x P2, x€ {1, 3, ..., b-3, b+3, ..., n-1}, each of which has

a perfect matching.

Pg
. 1.
<u
Cr = “ | $u+l

b-1 b b+l b+2

Figure 4.7 mis odd, v = b+2 is even.
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Lemma 4.2.3 If G; is a 1-extendable graph with IV(Gy)l 2 4 and G, is a connected
graph of order at least 2, then G; x G is 2-extendable.

Proof: Lete; = (aj, by){cy, d1) and e, = (az, bp)(c2, dz) be two independent edges of
G x G2. We consider the following cases.

Case 1. by=di#by=dy,

In this case, ajcy, azc2 € E(G1). Since G; is 1-extendable, there exist perfect
matchings F; and F; in G; containing ajc; and ajc; respectively. Thus {(g, x)(h, x) |
ghe Fy, x€ V(Gjy)-{b2} }u{(g, b2)(h, by) | ghe F;} is a perfect matching in G; x G2
containing e; and e;.

Case 2. by=d;=bz=d;.

Let by = d; = by = dy = x and suppose that xy is an edge of Gj. Since Gpis 1-
extendable, there exists a perfect matching F, of Gy x {z} for z€ V(Gy)-{x, y}. Then
e and e; are contained in the following perfect matching of G; x Gj:

{e1, 2, (a1, y)(€1, ¥) (a2, yY)(C2, Y)IO{(g, x)(g, ¥) | g€ V(G1)-{ay, ¢y, az, ¢2) )
U{F;1ze V(G2)-{x, y}}

Case 3. ay=cy#ay;=cy.

Since G; is 1-extendable, from Theorem 1.3.4 (2) we have 8(G;) = 2. Choose
x€ Ng,(a1)-{a2}. The extendability of G; implies that there is a perfect matching F in
G which contains xa;. Let y be the vertex matched to a; in F. We have the following
perfect matching of G x Gz which contains e; and e;:

{er, (x, b)(x, dp)}ui(ar, HE, D1 f€ V(G2)-{by, di}1ufer, (y, bai(y, do)ju
(a2, D(y, D | f€ V(G2)- (b2, d2} JU{ (g, D(h, D) | ghe F-(xay, yaz}, f€ V(Ga)).

Case 4. aj=cy=a;=¢3.

Let a; =c¢; = a3 =¢3 = x. Choose y to be a neighbour of x in G;. Then there
exists a perfect matching F in G; which contains xy. Thus

{e1, e2, (v, b1)(y, d1), (¥, ba)(y, d)}u{(x, D(y, ) | f€ V(G2)-{by, d1, bz, da}}
uf(g, H(h, H) | ghe F-{xy}, fe V(G2)}



is a perfect marching of G; x G2 containing €; and e;.

Case 5. by =d; and a3 = ¢».

Let F; be a perfect matching of G; containing ajc;. If by is by or dp, say by,
then ¢; and e; are contained in the following perfect matching of G; x G3 :

{e1, ez, (a1, d2)(c1, d2) JU{(x, ba)(x, d2) | x€ V(G1)-{ay, ¢, a2} U{(g, y)(h, y)
| ghe Fy, y€ V(G2)-{by, d2}}.
If by is neither by nor dj, then the following perfect matching of G; x G contains e;

and e, (recall that Fy contains a;c;):

{(g. y)(h, y) | ghe Fy, y€ V(G2)-{b2, d2} JU{(x, b2)(x, d2) | x€ V(G1)}.  []

Cerollary 4.2.4 Cy, x P, is 2-extendable, forn =2 and m = 2.

Proof: Since Cp, is 1-extendable, by Lemma 4.2.3 Cp x P, is 2-extendable. []

Corollary 4.2.5 If mn is even, then C, x C,, is 2-extendable.
Proof: If mn is even, then one of m and n is even. Thus one of C, and C, is 1-

extendable. By Lemma 4.2.3 Cp, x C, is 2-extendable. [

Corollary 4.2.6 Let G be a 1-extendable graph. Then G x P; is 2-extendable.

At this point we know that C,, x P, is 2-extendable when m > 4 is even and n
> 2. When m is odd and n is even we have only partial results (Lemma 4.2.1). We

next complete the case when m is odd.

Lemma 4.2.7 The graph Cy,,1 X P2, is 2-extendable if and onlyif n 22 andr 2 2.
Proof: Let Cyny1 = 12...(2n+1)1 and Py = 12...(2r). Let e; and e; be any two

independent edges of Capeq X Pay.
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There exists no perfect matching of Cypsy X Py containing the edges e =
(1, D)2, 1) and ez = (2, 2)(3, 2) and there is no perfect matching of C3 x P,,
containing the edges e; = (1, 1)(2, 1) and e; = (2, 2)(3, 2).

Suppose thatn 2 2 and r 2 2. In view of Lemma 4.2.2, we need only consider
the case when the independent edges e; and e; are parallel. Let e; = (a, b)(c, d) and
er = (u, v)(w, Xx).

Case 1. b=d (and hence v = x).

If b = v, choose a vertex y in Py, adjacent to b so that P,,-{b, y} is the union of
two paths, Py, and Pop. Then M = {ey, €3, (a, y)(c, ¥), (u, y)(w, y)}U{(g, b)g, y) !
g€ V(Caon+1)-{a, ¢, u, w}} is a set of independent edges containing e; and e;. Since
the subgraph of Ca,41 X Py, induced by vertices not in M is a union of Cypyq % Py, and
Con+1 X Pap, each of which has a perfect matching, M can be extended to a perfect
matching of Cop+1 X Py

Otherwise, we may assume b <v. If v=Db+1 and b is even or v > b+1, then ¢
and e; lie in different copies of Cyny X {X, x+1} = Cypy1 X Py, x =1, 3, ..., 2r-1. Since
Con+1 X P7 is 1-extendable (Lemma 4.2.1), there is a perfect matching containing e
and e; in Cyp4 X Po;. Suppose v =b+1 and b is odd. If I{a, c}Jn{u, w}! = 0 or 2, then
M = {ey, e, (a, b+1)(c, b+1), (u, b)(w, b)}U{(g, b)(g, b+1) | g€ V(Cqpyy)-{a, ¢, 1,
w)} is a perfect matching of Copny1 X {b, b+1} which (as above) can be extended to a
perfect matching of Copi1 X P2; containing e and e;. If I{a, cJn(u, w}l =1, say c = u,
then choose two vertices y, z in Py, so that either b(b+1)yz or yzb(b+1) is a path in
Py, (this is possible as r 2 2 and b is odd). If the path is b(b+1)yz, then let M = (e,
€2, (w, b)(w+1, b), (w+1, b+1)(w+1, y), (w+1, z)(w, z), (W, y)(c, y), (¢, z)(a, z),
(a, b+1)(a, y)}u{(g, b)(g, b+l), (8, y)g, 2) | g€ V(Cans1)-{a, ¢, w, wHl]j(see
Figure 4.8). By our earlier discussion it is clear that M can be extended to a perfect

matching of Cany1 X P2, (A similar proof applies when the path is yzb(b+1).)
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Figure 4.8

Case 2. a =c (and hence u = w and we may assume d = b+1 and x = v+1).

Case 2.1. I{b, b+1)Nn{v,v+1}I=2,s0b=v.

If P5,-{b, b+1} is the union of even paths, then M = ((g, b)(g, b+1) |
g€ V(Cans1)} is a perfect matching of Cy,41 X P containing e; and e; which can easily
be extended to a perfect matching of Caps1 X Por.

If P-{b, b+1} is the union of two odd paths, then b is even and Co,,q X {b-1,
b, b+1, b+2} = Cop4 X P4. Without loss of generality, we assume 1 = a < u < 2n.
Then M = {(g, b)(g, b+1) | g€ V(Capn+1)-{2n+1}}U{(2n+1, b-1)(2n+1, b), (2n+1,
b+1)(2n+1, Y+2)}u{(, H(2, ), (3, H (4, 1), ..., 2n-1, H(2n, f) | fe {b-1, b+2}} (see
Figure 4.9) is a perfect matching of Capiy X (b-1, b, b+1, b+2} and can easily be
extended to a perfect matching of Cpp41 X Pa,.

Case 2.2. I{b,b+1} n (v, v+1}I =1, say b+l =v.

Choose a vertex y which is adjacent to b or b+2 such that Pp-{b, b+1, b+2, y}
is the union of even paths. Assume that y = b+3. As above we need only find a
perfect matching of Cone1 X Py, V(Pg) = {b, b+1, b+2, b+3}, containing e; and e».
Choose a vertex z of Cppyp so that Cypyq-{a, u, z} is the union of even paths. Then
(C2ns1 % (B))-((a, DY)}, (Cons+1 x (b+1]))-{(a, b+1), (u, b+1), (z, b+D)}, (Consy X
{b+2})-{(a, b+2), (u, b+2), (z, b+2)} and (Cons1 X {b+3})-{(a, b+3)) are unions of
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even paths (see Figure 4.10). Hence there exists a perfect matching in Cs,,; x {b,

b+1, b+2, b+3} containing e; and ej, (z, b+1)(z, b+2) and (a, b+2)(a, b+3).

a=1
Cr u
b-1 b b+1 | b+2
Figure 4.9
Ps
Z
a
el /
Gl ¢ — ' 3 jl »
\ \ | VA
¢ ‘L \x: 4
b b+1 b+2 y
Figure 4.10

Case 2.3. I{b, b+1}n{v, v+1}I =0, and assume b+1 < v.

If v="0b+2 and b is odd or v > b+2, then there exists an even integer y so that
b+l <y <b+2, e; lies in Cany1 % {1, 2, ..., y} and &3 lies in Cypyq X {y+1, ..., 2r} both of
which are 1l-extendable by Lemma 4.2.1. Therefore €; and e; are contained in a

perfect matching of Copq X P2;. Finally, suppose v =b+2 and b is even. If a = u, we
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may assume a = 1. Then M = {ej, €2, 2n+1, b-1)(2n+1, b), 2n+1, b+1)(2n+1, b+2),
(2n+1, b+3)(2n+1, b+4)}u{(d, g)d, g+1) | d€ V(Cy41)-{1, 2n+1}, ge {b, b+2}}u
{(d, g)(d+1, g) 1 de (1, 3, ..., 2n-1}, g€ {b-1, b+4}} (see Figure 4.11) is a perfect
matching of Capy1 x {b-1, b, b+1, b+2, b+3, b+4} and can easily be extended to a
perfect matching of Cppe X Por. If a # u, then there exists a vertex z in Cp,41 such
that Cap+1-{a, u, z} is the union of even paths. As in the case when a = u, there is a
perfect matching in Copyq X Pg, V(Pg) = {b-1, b, b+1, b+2, b+3, b+4}, which contains
(a, b)(a, b+1), (a, b+2)(a, b+3), (u, b)(u, b+1), (u, b+2)(u, b+3), (z, b-1)(z, b), (z,
b+1)(z, b+2) and (z, b+3)(z, b+4). Hence there is a perfect matching of Cy,,1 X Py,

which contains e; and e;.

Cy

Figure 4.11

We have ended a long battle to determine the 2-extendability of C, x P,
Basically, we exhaustively considered all possible choices of two independent edges
and for each of them we found a perfect matching containing the given edges. It will be
much more complex to determine all m and n under which Cy, x P, is 3-extendable if

we attempt to consider all possible sets of three independent edges. Because Cy, x P,
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is the "skeleton" of each abelian Cayley graph, it will be even more complicated to
classify 3-extendable abelian Cayley graphs. As regards the 2-extendability of Cy, x
P,, we summarize the results of Corollary 4.2.4 and Lemma 4.2.7 in the following

theorem.

Theorem 4.2.8 Let m and n be positive integers with mn even. Then C,, x P, is 2-
extendable for all values of m and n except when m = 3, and when both n = 2 and m is

odd. In these cases Cy X P, is not 2-extendable.

We next discuss the extendability of product of graphs. This allows us to
construct graphs with high extendability from graphs with low extendability by taking

cartesian products. First, we need the following lemma.

Lemma 4.2.9 Suppose that G; is a connected !-extendable graph of order at least
four and Ga, ..., Gg are connected graphs of orders at least two. Let ey, €, ..., ex be k
edges of G) x Gg X ... x G. If at most one of e1*, ex*, ..., ex* (the projections of ¢,
e, ..., €x) belongs to Gy, then for any vertex y€ V(G x ... x Gy) there exists a vertex
x adjacent to y but not adjacent to an end-vertex of any e; (1 <1i < k).

Proof: Lety = (aj, ap, ..., ax). Since G; is l-extendable and {V(G;)l = 4, then by
Theorem 1.3.4 (2), dg,(a;) 2 2 and there exist two vertices a)', 4, ' in G; so that a;'a,
a;"a1€ E(Gy) and e1* # ay'a;”. When none of e;*, ex*, ..., ex* belongs to G, we
choose aj’, a;” to be any two neighbours of a; in G;.

As G; (2 €1 £ k) are connected graphs of order at least two, 8(G;) 2 1. Let g}
be a neighbour of a; in Gj, for 2 <1 <k. Then (a), ay, ..., ay), (a;", az, ..., ay), (aj, a7,
wey Ak)s s (41, A2, ..., 3k.1, @) are k+1 neighbours of y in G; x Gy x ... x G,. By the
definition of G; x G3 x ... x Gy, there is no edge among these k+1 vertices except

possibly the edge (a;’, az, ..., a)(a1", az, ..., a). Since e;* # a;'a;", each edge ¢;
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covers at most one of these k+1 vertices. Therefore, there exists a neighbour of y

which is not adjacent to an end-vertex of any e; (1 <i<k). []

Gy6rn and Plummer [20] studied extendability of cartesian product of graphs
and proved that if G; is k-extendable and G; is h-extendable, then G; x G, is (k+h-
1)-extendable. We have obtained the following result regarding extendability of
products of graphs, in which we only require that one of graphs is 1-extendable; the

other can be any graph of order at least two.

Theorem 4.2.10 Let G, be a 1-extendable graph with IV(G;)l 2 4 and Gy, ..., Gy be
connected graphs of order at least two. Then G; x G X ... X Gy is k-extendable.
Proof: We will use induction on k and the fact (Theorem 1.3.4 (1)) that if a graph is
n-extendable it is also (n-1)-extendable.

The case k = 2 was proven in Theorem 4.2.3.

Suppose that the claim holds for k < n-1 and consider the case k = n. Let ey,
€2, ..., €n be n independent edges of G; X G; x ... X G¢. By the symmetry of Gy, Gj, ...,
Gn. we need only consider the following cases:

Case 1. The projectors e;* satisfy e;*€ E(G;), 1 <i<n. Lete,* = ab.

Case 1.1. {ey, €2, ..., €q.1}NE(Gy X Gy x ... X Gy X {a, b}) = D.

By the induction hypothesis, for each c€ V(Gy)-{a,b} there exists a perfect
matching F¢ of G; X G2 x ... X Gy.1 x {c} each of which contains clones of the edges e,
€2, .--» €n-1. Then

F=U{F:lce V(Gy)-{a, b}}ul{(ay, ay, ..., an.1, a)(ay, ay, ..., ag.1, b) | (ay, az,
e AnDE V(G X Gy X ... X Gy1))
ts a perfect matching of G; x G x ... X G, containing the edges e, e,, ..., .

Case 1.2. {ej, ez, ..., en1}NE(G; X G2 X ... X Gp.p X {a}) # D and (e, ey, ...,

en-11NE(G); X G2 X ... x G X {b}) =D
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Assume that ey, €3, ..., € are in G; x G x ... X Gp.; x {a}. For each ce V(G,)-
{a, b}, let F. be a perfect matching of Gy x Gy x ... x Gy X {c} containing the clone of
each of the edges of €., er42, ..., €n.1. Letey', e2, ..., ¢/, respectively, be clones of the
edges ey, €2, ..., e in G; X G2 X ... X Gy.; X {b} and let H be the vertex-set of G ~ G>
X ... X Gp.1 X {a} excluding the end-vertices of €1, e, ..., &, iIn G| x G2 x ... X Gy X
{a}. Then

F=U(F.lce V(Gy)-{a,b}luler, e, .., e €1, €1, ..., & 1U{(zy, 72, .... 251,
a)(zy, 22, ..., Zn-1, D) 1 (21, 22, ..., Zn1, Q)E H)
is a perfect matching of G; X G; X ... X G, containing €, €3, ..., €p.

Case 1.3. {e1,e2, ..., eni}NE(G; x Gy x ... x Gy x {a)) = D and (e, ea, ...,
en.1]NE(G); X Gy X ... x Gy X (b)) = O.

Without loss of generality, assume that e, €3, ..., e are in G; x G x ... x Gy
x {a} and €1, €42, ..., €r4s, T+8 < 0-1, are in G X Gy x ... Xx G.; X {b}. Lete, = xy,
where x = (X1, X2, ..., Xp-1, @) and y = (X, X2, ..., X1, D). Let ers’, €r42's ooy €14’ be the
clones of €r4+1, €r+2, .., €r4s, Tespectively, in Gy x Gy x ... X G, x {a}. By Lemma
4.2.9, there exists a vertex z in G; X Gy x ... X Gp.1 x {a} which is adjacent to x but
not adjacent to any of the end-vertices of ey, €3, ..., € €41’ €425 -0y €145 Let z = (74,
Z3, ..., Zn.1, ) and w = (zy, 2y, ..., Zy.1, b). By the induction hypothesis, there exists a
perfect matching Fy in Gy x G3 x ... x G,.; x {a} which contains ey, e, ..., ¢ and xz,
and a perfect matching F; in Gy X Gy x ... x Gy.1 x {b} which contains ¢;,, €42, ...,
er+s and wy. Then the following perfect matching of G; x Gy x ... x G,.; # {a, b} can
easily be extended to a perfect matching of G; x Gg x ... x G,.; x G, which contains |,
€2, ..., €n!

F = (Fi-{xz))U(Fa-{wy))u{xy, wz}.

Case 2. All of ey, €, ..., &, lie in the product of exactly n-1 of the graphs Gy,

Gy, ... Gn. We may assume that they all lie in U{G| x Gy x ... x Gy # {a} |

a€ V(G,)} or they all lie in U{{b} x Gy x ... x G,1 be V(Gy)}.
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Case 2.1. Suppose that for some a€ V(Gy) all of ey, ey, ..., €, are in G x G; x
... X Gp.1 x {a) or for some be V(G), all are in {b} x G; x ... x G,,.

We begin with the first case. Let ac be an edge of G,. Letey, e;), ..., e, be the
clones of ey, €3, ..., €, in G} x G x ... x Gy, X {c}. Then

F = (e, ea, ..., &, €1, €2, ..., €n' JU{(ay, Az, ..., an.1, a)(ay, az, ..., an.1, €) | (a1,
a2, ..., an.1, )€ V(G1 x G2 x ... x Gy X {a})-V({ey, €z, ..., €n})]}
is a perfect matching of Gy x G X ... x Gy,.1 x {a, ¢} which can be extended to a perfect
matching of Gy X G x ... X Gp.1 X Gp.

In the second case, let F; be a perfect matching of G; and c be the vertex which
is adjacent to b in F;. Let ey, e2), ..., ;' be the clones of ey, €2, ..., ey in {c} x Gy X ... X
G,. Then

F = (e, €2, ..., €ns €1, €2, ..o en' JU{(b, ag, ..., ay), (¢, a3, ..., ay) | (b, az, as, ...,
an)€ V({b} x G2 x G3 x ... x Gp)-V({ey, e, ..., €n})]}
is a perfect matching of {b, ¢} X Gy x ... x G,. Hence FU{(g, ay, ..., ay), (h, ap, ..., ay) |
(az, a3, ..., )€ V(G2 x G2 x ... X G), ghe F;-{bc}} is a perfect matching of G; x G,
X ... X Gp.1 X Gy

Case 2.2. Suppose that ey, ey, ..., €, are contained in different copies of G; x G,
X ... X Gp.15 58y in Gy X Gy x ... X Gpy X {35} (1 £1<r1,2<71). By the induction
hypothesis, Gy x G2 x ... X G X {a;} is (n-1)-extendable. Hence the edges of ey,
€2, ..., €n In G X G2 X ... X Gy.1 X {a;} are contained in a perfect matching of G; x G, x
.. X Gp.1 x {a;}. Let M be the union of such perfect matchings. Then M can be
extended to a perfect matching of G; x Gy x ... x G, (as G; x Gy X ... X G,_; has a
perfect matching by the induction hypothesis).

Case 2.3. Suppose that ey, €y, ..., €, are contained in different copies of G, x G3
X ... X Gp. If there exists a G, which does net contains any e;* (1 <i < n), then ey, €5,
s €qare in U{Gy X Gz X ... X Gy X Gpag X ... X Gy X {a) | a€ V(Gy)) and the proof

follows as in Case 2.2. So we assume that each of G, Gs, ..., G, contains at least one
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of e1*, ea*, ..., ex*. Since n 2 3, one of Gy, G3, ..., G, contains exactly one of e *, ¢ *,

. en*. Suppose the graph is G, and the edge is e,* = ab. Let e, = xy, where x = (x;,
X2, ..» Xp-1, @) and y = (x1, X2, ..., Xp-1, b). By Lemma 4.2.9, there exists a vertex z =
(21, 22, ..y Zp.1, @) in G] X G2 X ... X Gp.1 X {a} which is adjacent to x but not adjacent
to an end-vertex of any ey, ey, ..., €,.1. Without loss of generality, assume that ey, ¢-,
.., €m are contained in Gy X Gy X ... X Gy.1 X {a} and em+1, €m+2s ... Emer Are contained
in G; X G; x ... x G X {b}. Letw =(z1, 23, ..., Zs.1, b). Since G; x G2 x ... x G| i
(n-1)-extendable, there exist Fy and Fp in Gy X Gy X ... x G X {a} and G x G2 < ...
x Gp.1 X {b}, respectively, containing €y, €2, ..., €m, XZ and €n41, €m+2, - Eer, VW
respectively. Then

F = (F1-{xz})U(F2-{yw U {xy, wz}

is a perfect matching of Gy x G, X ... X Gp.; X {a, b}. Moreover, F can be extended to
a perfect matching of Gy X G3 X ... X G, containing €, €2, ..., €n a8 G} X G2 x ... x Gy
x (V(Gp)-{a, b}) has a perfect matching which contains €mq4r+1, €m4r+2, ---» €n.1 DY the

induction hypothesis. (]

The k-cube, denoted by Qy, is the graph whose vertices are the ordered k-
tuples of O's and 1's, two vertices being joined if and only if they differ in exactly one
coordinate. Notice that the k-cube has 2¥ vertices, k25! edges and is isomorphic-to

Py x P72 x ... x P; (k times).

Corollary 4.2.11 the n-cube is (n-1)-extendable.

Proof: Since the n-cube Q, can be expressed as Q, = C4 x Py x ... x P (where P,

occurs n-2 times in the product), then by Theorem 4.2.10, it is (n-1)-extendable. (]

Remark 4.2.12 Theorem 4.2.10 is best possible. To see this, consider the (n+1)-

cube Qn+1. According to Corollary 4.2.11, Qp4; is n-extendable. But since Qp, is
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(n+1)-regular, it cannot be (n+1)-extendable (in view of Theorem 1.3.4(2)). Also,
the condition that G; is l-extendable in Theorem 4.2.9 cannot be omitted. For
example, let G be any graph with 8(G) = 1. Then G x P; x ... x P (where P, occurs
n-1 times in the product) has a vertex of degree n. In light of Theorem 1.3.4 (2), G is

not l-extendable and G x P; x ... x P, is not n-extendable.

We next consider the extendability of the wreath product of graphs. It seems
that determining the extendability of the wreath product of graphs is rather difficult
compared with determining the extendability of the cartesian product of graphs. We
have not been able to obtain a general result like Theorem 4.2.10 for the wreath
product. To better understand the extendability of the wreath product of graphs, we

study the wreath products of some special graphs; for example C, ® I_(n, K;® 12,1. The

graph Cs ® I-(3 is shown in Figure 4.12.

Figure 4.12

Theorem 4.2.13 Letmbeeven. Ifrisevenandr 2 6, then C, ® 12,, is n-extendabie
and ifris odd, then niseven and G ® I-(n 1S %-extcndable.

Proof: Let C;=012..(r-1)0 and K, = {0, 1, .., n-1}.
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When r is even and r = 6, we use induction on n.

Ifn=1,then C,® K, = C; is l-extendable.

Suppose that the claim holds for n < k and consider the case n = k. For any k
independent edges ¢, €2, ..., ex in G @ Izk, at most two of the sets {i} x V(l_(k),
i€ V(C,), have the property that each of their vertices lies in one of the edges ¢, e2,
..., €¢. Call such sets entirely saturated and call a vertex saturated by an edge if it
lies on the edge. Suppose that there are exactly b such sets (be {0, 1, 2}) and choose
one of ey, €2, ..., €, 5ay €1, so that exacily b end-vertices of e; lie in entirely saturated
sets. Without loss of generality, we may assume that e; = (0, 0)(1, 0). Since none of
{{1} x V(fik) [i=2,3, .. r-1} is entirely saturated by e, e;, ..., ex, there exists a
vertex viE V(I-(k), 2 <i<r-1, such that (i, v;) is not saturated by ej, €2, ..., ex in {i} x
V(Ky). Obviously, (C; ® Ko)-{(0, 0), (1, 0), (2, v2), ... (-1, v.)] = Cr ® Ky, and
so by the induction hypothesis there exists a perfect matching F of C, ® IEH
containing €3, e3, ..., k. Hence FU{(0, 0)(1, 0), (2, v2)(3, v3), ..., (r-2, v, 5)(r-1,
vr.1)} is a perfect matching of C; ® Izk containing the edges ey, €, ..., tk.

When r is odd, then n is even and we let n = 2m. We use induction on m.

It is easy to show that G @ 122 is 1-extendable.

Suppose that the claim is true for 1 < m < k and consider the casc m = k. For
any k independent edges e, €2, ..., ex in C; ® IE;k, at most two of the sets {i} x
V(f<2k), i€ V(C,), have at least k of their vertices saturated by ey, ez, ..., €. Suppose
there are exactly b such sets (b€ {0, 1, 2}) and choose one of ey, ez, ..., €, say ey,
such that exactly b end-vertices of e; lie in such sets. Again we may assume ¢; =
(@, 01, 0). Since {0} ® I_(zk and {1} @ I-(zk are independent sets in C, ® I.(Zk, there
exist vertices (0, yo) and (1, y1), yo # 0, y1 # 0, which are not saturated by ¢, €2, ...,
ex. Furthermore, since {i} x V(Izzk) i=2,3, .., r-1) has no more than k-1 saturated

vertices, there exist two unsaturated vertices (i, y;) and (i, z;) in {1} « V(Kyy).



Clearly, (G ® ka)'f{(Oa M, (1.0), (0, yo), (L. yN}U{(G, v), Lz 11=2,3, ., r-1})
= C; @ Syx.i;- Then by the induction hypothesis, there exists a perfect matching F of
C, ® K21, containing €3, €3, ..., ex. Hence FU{(0, 0)(1, 0), (0, yo)(1, y1), (2, y2)(3,
¥3}) (2, 2203, z3), ..., (1-2, Ye2X1-1, y1.1), (-2, ;0)(r-1, 2,1)]} is a perfect matching

of C; ® Ky containing ey, 2, .... ex. The induction is complete. []

Remark 4.2.14 Theorem 4.2.13 is the best possible in the sense that C, ® IZ,, 1S not
(n+1)-extendable if r is even {r = 6}, and is not ('—2’- +1)-extendable if r is odd. To see
this, when r = 2m, let e;,; = {0, 11, 1), 0<1<n-1,e4,; =(3,0)(4,0),and S = {(3, ) |
1 <j<n-1}. Then there are n+1 odd components in (C, ® Izn)-V({cl, €2, -eer €na1l))-
S. ButiSi = n-1, and by Theorem 1.3.1 there is no perfect matching in C; ® I—(n-V({cl,
€2, -.-» €a+1}) and hence C, ® IE,, has no perfect matching containing e;, €3, ..., €341

(see Figure 4.13). When ris odd, then n is even. Let n = 2m and ¢;,; = (0, i)(1, 1), 0

<i<m. LetS={0, 5, (L plj=m+l, ., 2m-1}Ju{k, ) 1 k=3,5,..,r-2; h=0, 1,
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- 2m-1}. Then ISl = 2(m-1)+2m- 52 = m(r-1)-2 and o((C; ® Kyp)-V(le,. ea. ..
€n+1})-S) = m(r-1). By Theorem 1.3.1, there is no perfect matching in C, ® l\wm-

V({e1, €2, ..., €n+1}). Thus there is no perfect matching of C; ® sz containing ey, ez,

..., €n+1 (see Figure 4.14).
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Figure 4.14

The second object of our study of the wreath product is to consider K, ® Kn,

commonly refereed to as the complete multipartite graph, which is (r-1)n-regular and

has rn vertices.

Theorem 4.2.15 If mis even (r2 3), then K, ® IZ,, is fr—gﬂ -extendable.
Proof: Let V(K,) ={0,1,2, ...r-1} and K, = {0, 1, ..., n-1}. Letm =22 gnd e,, e,
.» €m be m independent edges of K; ® I—(n.

We claim that for any 2n vertices of K; ® I-(n, there exists an n-matching which

saturates all these vertices. The proof of this claim uses induction on n. If n = 1, then
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K, ® I.(n = K, and the result is immediate. Suppose that the claim is true for n < k and
let H be a set of 2k vertices chosen from K; ® I_(k.

Since at most two of the sets {i} x V(I-(k) (0 <1 <r-1) are contained in H, we
choose r vertices vy, vi, ..., vy.1 each from a different {i} x V(I.(k) such that exactly two
of them are in H, say vg and v;. As vg and v; belong to different {i} x V(I-(k), we have
vovi€ E(K, ® kk). Deleting vg, vy, ..., vy.1 from K; ® I-(k, we obtain K, ® kk_l. By the
induction hypothesis, there exists a (k-1)-matching M covering all these 2k-2
vertices of H-{vg, vi}. Hence MU({vg, v1} is a k-matching as required.

Let e}, €3, ..., €n be m independent edges of K, ® IZ,,. Then IV(K; ® 12,,)1-
IV({e, ez, .., em Dl = n-2m = 2n. We know that there exists an n-matching M
saturating all these 2n vertices. Hence MuU/{ey, ey, ..., e} is a perfect maiching of K,
® I-(n containing ey, €y, ..., €m. (]

Remark 4.2.16 Theorem 4.2.15 is also best possible as K, ® K, is not =282

extendable. To see this, we consider two cases according the parity of r. Let V(K,) =
{0, 1,2, .. r-1} and V(Kp) = (1,2, .., n}.
If ris odd, lete; = (0, 1)(r-1, 1), €3 = (0, 2)(r-1, 2), ..., ey = (0, n)(r-1, n), €4y

= (1, (-2, D), ens2 = (1, 2)(r-2, 2), ..., €25 = (I, n)(T-2, n), ..., €((r-5)n)/2+1 =

5 3 5 3 -5 3
(5% DG Dy eesmns2 = G (55 2), - eeamn = (55 0G5 ), g3z =

(5 DEL D, s eeamzemanz = G EHEL D). Then (K, ® Ko)-V({ey, e, .o,
S+ ) = (IZH/N + I-(,,,g_l) + IE,, which has no perfect matchiong. Hence there is
no perfect matching of K; ® I-(n containing ey, €y, ..., €(r-2)n)2+1 (see Figure 4.15).

If riseven, lete; = (2, 1)3, 1),e2=(2,2)3,2), ....en =2, n)3,n), e,y =
(+. DG, 1), ens2 = 4, 2)(5, 2), ..., €20 = (4, 0)(5, n), ..., €-6)ny2+1 = (1-4, 1)(r-3, 1),

e(-emn+2 = (-4, 2)(r-3, 2), ..., e(r-amyz = (-4, n)(r-3, n), e(raymy2+1 = (-1, 1)(0, 1},
weee €((r-an¥2+4 21 = (-1, r%-l)(ﬂ, l—%-]), er-amn+n2l+1 = (O, r%-|+1)(1, r%_lﬂ),
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e(r-2)ny2 = (0, n)(1, n), €r-2)ny2+1 = (r-1, n)(1, 1). Then K, G Kn-\/({el. €, ..,

e(r-2my2+1}) = (Krnl1 + Kinzj1) + Ky and therefore there is no perfect matching of

K, ® Ky, containing €1, €2, ..., €-2)n)2+1 (see Figure 4.16).

el .
{0}®Kn {r-l}@Kn
€n
€n+l
(®K. [ % | (r-219K,
Figure 4.15
{(r+1)/2 ) ®K,
} % Kn
Figure 4.16
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Lemma 4.2.17 Let G be a k-extendable graph of order at least 2k+2. Then for any m
independent edges e, €, ..., €m and n vertices vy, vy, ..., V4 of G (m+n < k) there exist
k+1-(m+n) independent edges which are not incident with V({ey, e, ..., em))U{vy,
V3, ..., Vp }.

Proof: Since G is k-extendable, there exists a perfect matching F containing e), ¢3,
..., em. Let F| be the subset of F consisting of all edges in F which have at least one
of {vi, v2, ..., va} as an end-vertex. From Observation 3.1.1 G; = G-V({ey, €2, ...,
em ] WF)) is (k-m-IF l)-extendable. Since IV(G))l 2 2(k-m-IF{1)+2 and k-m-IF;l 2
k-m-n, by Theorem 1.3.4 (1) G, is (k-m-n)-extendable and each perfect matching of
G contains at least k+1-(m+n) edges. Therefore, there exist k+1-(m+n)

independent edges of G which are not incident with V({ey, €2, ..., en})U{vy, vo, ...,

vul. []

Theorem 4.2.18 If G is a k-extendable graph of order at least 2k+4, then P, ® G is

(k+2)-extendable.

Proof: Let P; =01 and ey, e,, ..., ex4+2 be any k+2 independent edges of P, ® G.

Suppose that no edge of ey, e, ..., ex+ belongs to {1} x G. Let ey, e, ..., e
be in {0} X G and €m+1, €m+2, --» €42 bE 1D P2 ® V(G). Lete; = (0, y;)(1, z)), m+1 <]
< k+2 and let F be a perfect matching of {1} x G. Let F; be the subset of F consisting
of all edges in F which have at least one of {zm+1, Zm+2, ..., Zk+2} as an end-vertex.
Since IV(G)I 2 2k+4, there are at least m edges €', €;', ..., e’ of F which are not
incident to any of Fy. Hence (P2 ® G)-V({ey, €2, ..., €x+2, €1, €2, ..., €m'}) has P, ®
k@\'((})(-(k.‘.m.Pz) as a spanning subgraph and P, ® G then has a perfect matching which
contains ey, €2, ..., €k+2-

Otherwise, suppose that m (m 2 1) of €}, €3, ..., ex+2 are in {0} X G, n (n 2 1)

of them are in {1} x G and p (p 2 0) of them liein P, ® I-(.v((;,,. Thus m+n+p = k+2 and
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p < k. Without loss of generality, let e; = (0, u)(0, v) (1 i <m), ¢ = (1, w(l, x)),
(m+1 < j < m+n) and ey = (0, yn)(1, zy) (m+n+1 < h < m+n+p) be such edges.
Assume that m 2 n. Since {1} x G = G is k-extendable, by Lemma 4.2.17, for edges
€m+1s €m+2> ---r €men and vertices (1, Zmen+1)s -or (1, Zmensp), there exist m-n edges g,
g2, ---» 8m-n (note that k+1-(n+p) 2 m-n as n = 1) such that V({g;, g2, ..., €m.n])O
(V({em+1s €m+2, - €m+n)) V{1, Zmen+1)s ooy (1, Zmensep)})) = . Since (P2 ® G)-
V({e1, €2, ---» €m+n> 1> £25 ---» E€m-n})-{(0, yn), (1, zp) | m+n+1 < h < m+n+p} contains

P, ® IZW(G),,Zm_p as a spanning subgraph and P, ® I—<IV(G)I-2m—p centainly has a perfect

matching, P, ® G has a perfect matching containing €y, €3, ..., €x+2. (]

There is no example to show that Theorem 4.2.18 is best possible. In fuct, we
believe that the extendability of P, ® G should be much larger than k+2 if G 1s a k-

extendable graph.

§4.3. On 2-extendable abelian Cayley graphs.

Throughout this section we shall refer to a connected Cayley graph on an
abelian group I, simply as a abelian Cayley graph. When the abelian group is cyclic,
or I' = Z, the Cayley graph G(T'; S) is called a circulant and is denoted by Z,(S).

In this section (which is joint work with O. Chan and C. C. Chen), we shall
classify the 2-extendable abelian Cayley graphs. Sﬁrprisely, 1t turns out that all
abelian Cayley graphs which are not 2-extendable are circulants. We state this result

formally below; its proof being the main target of this section.
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Theorem 4.3.1 Let G = G(I'; S) be a Cayley graph on an even order abelian group I'.
The graph G is 2-extendable if and only if it is not isomorphic to any of the following
graphs:

(1) Zon(l, 2n-H, n23;

(I Zya(1, 2, 2n-1, 2n-2), n 2 3;

(Ill) Z4,(1, 4n-1, 2n), n 2 2;

(IV) Z4n+2(2, 4n, 2n+1), n 2 1; and

(V) Zane2(1, 4n+1, 2n, 2n+2), n 2 1.

Note that the graph in (I) is just an even cycle of length 2n, whereas that in

(I'V) is isomorphic to Cypy4q X Pa.

We shall approach the proof by showing that for any two independent edges of
G(I'; S) there is a spanning subgraph of G which is the product of a cycle C,, and a
path P; which contains these two edges. We can then apply Theorem 4.2.8 to this
subgraph and use the structure of G(I'; S) to classify the 2-extendable abelian Cayley

graphs. We begin the proof with the following lemmas.

Lemma 4.3.2 (Chen and Quimpo {15]) Every Cayley graph of even order is 1-
extendable.

From Lemma 4.3.2 and Corollary 4.2.6, we have the following.

Corollary 4.3.3 Let G be a Cayley graph. Then G x P; is 2-extendable.

Lemma 4.3.4 The cycle Cp; is 2-extendable if and only if n = 2.
Proof: Clearly, C4 is 2-extendable. If n 2 3, let Cy, = v vs...vonvy. There is no perfect

matching in Cy, containing the edges vivy and vavs. (]
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Let I be an abelian group and S < I'. We denote by <S> the subgroup
generated by the elements of S in I'. We denote by o(a) = I<a>l the order of element
ainI. Let <a> = {0, a, 2a, ..., (r-1)a} where r = o(a). We use b+<a> 1o represent
the set {b, b+a, b+2a, ..., b+(r-1)a}.

At this stage let us look more closely at the structure of abelian Cayley graphs.
For any ae S & I" the graph G(<a>; {a, -a}) is a cycle of length o(a) and G(I"; S) has
a spanning subgraph consisting of the union of II'l/o(a) disjoint cycles of length o(a).
If b& <a>, r = o(a) and s = o(b), then the graph G(<a, b>; {a, -a, b, -b}) has vertex-
set {ia+jb 1 0 <i <r-1, 0 £j < s-1} and contains s disjoint cycles Cy, Cy, ..., Gy of
length r (which are all edges of type a in G(<a, b>; {a, -a, b, -b})). Moreover, there
is a perfect matching between C;j and Ciy;, 0 < i <r-2, which is made up of edges of
type b in G(<a, b>; {a, -a, b, -b}). By relabelling (if necessary), we see that G(<a,
b>; {a, -a, b, -b}) contains a spanning subgraph isomorphic to C, x P,. If T is a
subset of S with T = -T, then G(<T>; T) is a subgraph of G(I'; S) and G(I"; S) has a
spanning subgraph which is the union of II'l/I<T>l vertex-disjoint copies of G(<T>;

T).

Lemma 4.3.5 Let G(I'; S) be an abelian Cayley graph and T be a nonempty subset of
S witk -T = T. Then any perfect matching of G(<T>; T) can be extended to a perfect
matching of G(T"; S).

Froof: This follows immediately from the fact that G(I'; S) can be decomposed into

copies of G(<T>; T). (]

Recall that the edge xy in G(I'; S) is said to be of type a (or an a-edge) if

y-X€ {a, -a}. Hence, if xy is of type a, then either y = x+a or x = y+a. Also, if H =



G(<T>; T) @ G(T; S), then if c€ I the subgraph 6.(H) is a graph with V(8.(H)) =
V(Hj+c and (x+c)(y+c)€ E(8.(H)) if and only if xye E(H). Note 6.(H) = H.

Lemma 4.3.6 Let G be an abelian Cayley graph of even order. Then any two
independent edges of different types are contained in a perfect matching of G.

Proof: Let G = G(T'; S), where T is a finite abelian group of even order. Lete; = ab
and e; = cd be edges of G of types s and t, respectively, where s,t€ S and sé& {t, -t}.
As G is vertex-transitive, we may assume that a = 0 and b = s. We shall consider
the following cases:

Case 1. s is of even order 2n and t & <s>.

Let H be the Cayley graph G(<s, t>; {s, t,- s, -t}). Then H has a spanning
subgraph K isomorphic to Cp, x Py, m 2 2, whose edge-set contains €;. If e; is an
edge of H, then we may choose K so that e;, e;€ E(K) and hence by Corollary 4.2.4
there is a perfect matching in H which contains e; and e; and, by Lemma 4.3.5, can be
extended to a perfect matching of G. On the other hand, if e; is not an edge of H, then
e; is in B.(H) for some ¢. By Lemma 4.3.2 there is a perfect matching M in H
containing e; and a perfect matching M' in 8.(H) containing e;. Since G(I'; S) has a
spanning subgraph which is the union of II'l/is, t>| copies of H, we can extend MUM'’
to a perfect matching of G.

Case 2. s is of even order Zn and t€ <s>.

Let H be the Cayley graph G(<s>;{s, t, -s, -t}), where t = ks. If e; is not an
edge of H, then we can settle this case as in Case 1. Hence we may assume that e; 1s
an edge of H withc =c's,d =d's and ¢' < d'. Note that ke {c'-d’, d'-c'}. We then have
the following four subcases to consider. For each case, we find a matching M
containing e; and ez such that V(H)-V(M) can be partitioned so that the subgraphs

induced by the vertices in each par® are of even order and contain a Hamilton path.
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Then e; and e; can be extended to a perfect matching of H. Applying Lemma 4.3.5
again, G has a perfect matching containing €; and e;.

Case 2.1. If k is odd and ¢’ is even, then d' is odd. Putting M = (¢}, e2}, we
have the even paths (2s)(3s)...((c'-1)s), ((c'+1)s)((c'+2)s)...((d'-1)s) and
((d'+1)s)...((2n-1)s).

Case 2.2. If k is odd and ¢' i1s odd, then let M = {e1, e, ((¢'-Ds)((d'-1)s),
((c'+1)s)((d'+1)s)}). In this case d' is even and the even paths are (2s5)(3s)...
((c'-2)s), ((c'+2)s)((c'+3)s)...((d"-2)s) and ({d'+2)s)...((2n-1)s).

Case 2.3. If k is even and ¢’ is even (hence d' is even), then let M = {e|, ¢,
((c'+1)s)((d'+1)s)}. The even paths are (2s)(3s)...((c’-1)s), ((¢'+2)s)((c'+3)s)...
((d’-1)s) and ((d'+2}s)...((2n-1)s).

Case 2.4. If k is even and ¢’ 1s odd, then d' is odd. Let M = [e}, €3, ((¢'-1)s)
((d'-1)s)} and the even paths are {(25)(3s)...((c'-2)s), ((c'+1)s)((c'+1)s).. {(d'-2)s)
and {(d'+1)s)...('2n-1)s).

Case 3. Both s and t have odd order.

As T is of even order, there exists an element r€ S of even order. Hence
r& V(H), where H is the Cayley graph G(<s, t>; (s, t, -s,- t}). Let K be the Cayley
graph G(<r, s, t>; (r, -1, s, -s, t, -t}). If ep is not an edge of K, then ¢; is in a
subgraph K' = 6.(K) = K for some c € <r, s, t>. By Lemma 4.3.2 there is a perfect
matching M in K containing e; and a perfect matching M' in K' containing e;. Then
MUM' can be extended to a perfect matching of G by Lemma 4.3.5. Hence, we
assume that e;€ E(K). Since r € V(H) and 1 is of even order, K has a spanning
subgraph which is isomorphic to H x Py, (where 2t = o(r)). Furthermore, K cuan be
partitioned into copies of L = H x P,, where V(L) = V(H)UV(6,(H)). By Corollary
4.3.3, L is 2-extendable (and hence 1-extendable) and therefore there exists a perfect
matching M in K which contains e; and e, and can be extended to a perfect matching

of G. [}



Lemma 4.3.7 The Cayley graph Z3,(1, 2n-1, n), n > 2, is 2-extendable if and only if n
1s odd.
Proof: Let G = Z;,(1, 2n-1,n). If nis even, we lete;=01,e2 =(n-1)nand S = {3, 3,
..., n-3, n+2, n+4, ..., 2n-2}. Then ISI = n-3 and (G-V({e;, e2}))-S is a union of n-1
isolated vertices. By Tutte's theorem there is no perfect matching in G-V({e;, e2})
and hence no perfect matching in G containing e; and e;.

Assume that n is odd. Let e; = ab and e; = cd be two independent edges of G.
In view of Lemma 4.3.6, we may assume that they are of the same type. If they are of
type n, then they are contained in the perfect matching consisting of all edges of type
n. Thus we need only to consider the case when they are of type 1. Without loss of
generality, we may assume thata=0,b =1 and d = c+1. If c is even, then e, and ¢
are contained in the perfect matching consisting of all edges x(x+1), where x = 0, 2, 4,
.... 2(n-1). So, let ¢ be odd. Then there exists an even integer y€ {2, 3, ..., c-1}, such
that e; lies on the cycle C = 012...y(y+n)(y+n+1)...(2n-1)0 of length n+1 and e; lies
on the path P = (y+1)(y+2)...(y+n-1). (In fact y = 2 or n-1 depending on c.) As C is
an even cycle, it has a perfect matching containing e;. Also, as P is of even order and
v+1 is odd, P has a perfect matching M; containing e;. Then M;UMj is a perfect

matching of G contatning e; and e;. []

Let H be a spanning subgraph of a graph G. We called H an even path factor

of G if each component of H is a path of even order.

Lemma 4.3.8 The Cayley graph Z4,,2(1, 4n+1, k, 4n+2-k), where n 2 1 and k <
2n+1, is 2-extendable if and only if k # 1, 2 or 2n.
Proof: Let G = Zyy42(1, 4n+1, k, 4n+2-k). If k = 1, then G is not 2-extendable, by

Lemma 4.34. If k=2, lete; =01 and e; = 34. Then 2 is an isolated vertex of G-
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V({ey, e2}) and there is no perfect matching in G containing €, and ¢;. If k = 2n, there
1s no perfect matching containing €; = 01 and e; = (2n+1)(2n+2) as (G-V({ey, 3]))-
{3, 5, .., 2n-1, 2n+4, ..., 4n} consists of 2n isolated vertices (note {3, S, ..., 2n-1,
2n+4, ..., 4n}l = 2n-2).

Conversely, assume that k # 1, 2, 2n. Lete; =aband e; =c¢d, a < b and ¢ < d,
be two independent edges of G. As G is vertex-transitive, we may assume that a =
0. By Lemma 4.3.6, we can assume that e and e; are of the same type. We consider
the following cases:

Case 1. k 1s odd.

If e; = 01, then e; = c(c+1) and by vertex-transitivity we may assume that ¢ <
2n+1. Assume first that ¢ is even. Then M = {2i2i+1) 11 =0, 1, ..., 2n]} is a perfect
matching containing e; and e;. If c is odd, then e; is contained in the even cycle C =
“-De(c+1)...(c-1+k)(c-1) (which has a perfect matching M; containing €7) and ¢ is
contained in the even path P = (c+k)(c+k+1)...(4n+2)012...(c-2) which has a perfect
matching M; containing e;. Then M;UM3 is a perfect matching of G containing ¢; and
es.

Next, let e; = Ok. Then e; = c(c+k) and we have the following cases to
consider.

Case 1.1.ci1sodd and ¢ <k.

Let M = {e1, €2, (c+1)(c+k+1)}. Then G-V(M) has an even path factor
12...(c-1), (c+2)(c+3)...(k-1), (k+1)(k+2)...(c+k-1) and (c+k+2)(c+k+3)...(4n+1).
Thus M can be extended to a perfect matching of G.

Case 1.2.cisodd and c > k.

Let M = (e, €, (c-1)(c+k-1), (c+1)(c+k+1)}. Then, as G-V(M) has an even
path factor 12...(k-1), (k+1)(k+2)...(c-2), (c+2)(c+3)...(c+k-2), and (c+k+2)(c+k+3)
...(4n+1), M can be extended to a perfect matching of G.

Case 13.cisevenandc <k.



Let M = {ej, ez, (c-1)(c+k-1)}. Since G-V(M) has an even path factor
12...(c-2), (c+1)(c+2)...(k-1), (k+1)(k+2)...(c+k-2), and (c+k+1)(c+k+2) ...(4n+1),
M can be extended to a perfect matching of G.

Case }.4.cisevenand c > k.

Let M = {e;, e2}. Using the same idea as in the previous case, because G-
V(M) has an even path factor 12..(k-1), (k+1)(k+2)...(c-1), (c+1)(c+2)...(c+k-1),
and (c+k+1)(c+k+2)...(4n+1), M can be extended to a perfect matching of G.

Thus Case 1 is dealt with. We now suppose that k is even.

Case 2. k is even.

If e; = 01, then d = c+1 and again by vertex-transitivity we may assume that ¢
< 2n+l1. When ciseven, M = {2i(2i+1) 11 =0, 1, ..., 2n} is a suitable perfect matching.
If cis odd, let M = {01, (c-1)(c-1+k), c(c+1), (c+2)(c+k+2), (c+k)(c+k+1)}. Then M
is a set of independent edges containing e; and e; and G-V(M) has an even path
factor 23...(c-2), (c+3)(c+4)...(c+k-2) and (c+k+3)(c+k+4)...(4n+1). Thus M can be
extended to a perfect matching of G.

Finally, let e; = Ok. We then have the following subcases to consider. In each
subcase, as in the subcases of Case 1, we construct a matching M so that G-V(M)
has an even path factor and then M can be extended to a perfect matching of G.

Case2.1.cisodd and c <k.

In this case, let M = {e}, €3} and it is easy to see that G-V(M) has an even
path factor.

Case 2.2. cisodd and ¢ > k.

As k # 2n we have either c-k 2 3 or 4n-c-k+2 2 3. By vertex-transitivity we
may assume the former holds. Let M = {e;, €3, (c-1)(c+k-1), 1(k+1)}. Then M can
be extended to a perfect matching of G.

Case 2.3. cis even and ¢ <k.

69



Let M = {e;, €2, (c-1)(c+k-1), (c+1)(c+k+1)}. As in Case 2.1 M can be
extended to a perfect matching of G.
Case 2.4. cis even and ¢ > k.

Let M = {ey, €3, (c+1)(c+k+1), 1(k+1)}. Again M can be extended to a perfect

matching of G. ]

Lemma 4.3.9 The Cayley graph Zsn(1, 4n-1, k, 4n-k), 1 €<k < 2n,n 2 2, is 2-
extendable if and only if k # 1, 2, 2n.

Proof: Let G =Z4,(1, 4n-1, k, 4n-k). If k = 1, then G is not 2-extendable by Lemma
4.3.4. If k = 2, then G is not 2-extendable as there is no perfect matching containing
01 and 34. If k = 2n, then G is not 2-extendable by Lemma 4.3.7.

Conversely, assume that k is different from 1, 2 and 2n. Lete; =aband e; =
cd, a < b and ¢ < d, be two independent edges of G. As G is vertex-transtive, we may
let a =0. By Lemma 4.3.6, we may assume that e; and e, are of the same type t,
te {1, k}. We have the following cases to consider.

Casel.1=1.

By vertex-transitivity, we may assume that ¢ < 2n. If ¢ is even, then {01, 23,
.--» (4n-2)(4n-1)} is a perfect matching containing e; and e;. Assume that ¢ is odd. If
k is odd, let M = {eq, €32, (c-1)(c+k-1)}. Then G-V(M) has an even path factor and
so M can be extended to a perfect matching of G. On the other hand, if k is even, let
M = {eq, €3, (c-1)(c+k-1), (c+2)(c+k+2)}. Then, for the same reason as in the
previous case, M can be extended to a perfect matching of G.

Case2.t=k.

In each subcase we construct a maiching M containing e; = Ok and e; = c(c+k)
such that G-V(M) has an even path factor from which it follows that M can be

extended to a perfect matching of G. If k is odd, let
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rf{ey, ex, (c+l){c+k+1)} ifcisoddand ¢c <k;

{ej, €2, (c-1)c+k-1), (c+I)(c+k+1)]} ifcisoddand ¢ > k;
M =/
{e1, ez, (c-1){c+k-1}} ifcisevenand ¢ <k;

\{e:, €] if cis even and ¢ > k.

If k is even, let

rfey, €2} if cisodd and ¢ <k;
{ey, e, (c-1)(c+k-1), 1(k+1)} if cis odd and ¢ = k+3;
M =T {eg, e, (c+1)c+k+1), (4n-1)(k-1)} if cis odd and ¢ = k+1;
{eq, ez, (c-1)c+k-1), (c+1)(c+k+1)} ifcisevenandc < k;
\{e1, €2, (c+1)(c+k+1), 1(k+1)} ifcisevenand c > k.
It is easy to see that M is as required. The proof is now complete. []

Lemma 4.3.10 The Cayley graph Zj,(1, 2n-1, 2, 2n-2, n-1, n+1), n = 4, is 2-
extendable.
Proof: Let G = Z,,(1, 2n-1, 2, 2n-2, n-1, n+1) and let e; = ab, e; = cd be two
independent edges of G with a < b and ¢ < d. As G is vertex-transitive, we may
assume that a = 0 and by Lemma 4.3.6, we may assume that e; and e, are of the
same type t.

Casel.t=1.

By the verntex-transitivity of G, we may assume thatb=1and c <n. Ifnis
even, then by Lemma 4.3.9 the spanning subgraph Z;,(1, 2n-1, n-1, n+1) of G is 2-
extendable and so e; and e; can be extended to a perfect matching of G. Suppose then
that n is odd. If ¢ is even, then e; and e; are contained in the perfect maiching {01, 23,
ceen £20-2)20-1)} of G. On the other hand, if c is odd, let M = {eq, €3, (c-1){(c+n-2),
{c+n-3}c+n-1}}. Then M can be extended to a perfect marching of G, as G-V(M)

has an even path factor: 23...(c-2), {c+2)(c+3)...(c+n-4) and (c+n)(c+n+1)...(2n-1).
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Case2. 1=2.

Again by vertex-transitivity, we may assume thatb=2and c < n. If ¢ = I,
then the vertices of G which are not on e; or e; lie on the even path 45...(2n-1) and so
G has perfect matching containing e; and e;. Let ¢ > 1 and recall that n > 4.
According to the parity of ¢, we construct a matching M so that G-V(M) has an even

path factor and hence M can be extended to a perfect matching of G.

{e1, e2. 1(2n-1), (c+1)(c+3)]} if ¢ 1s odd
M=
{{c;, €2, 1(2n-1), (c-1)(c+1)} if c 1S even
Case 3. t =n-1.

We may assume that b = n-1 and ¢ < n by vertex-transitivity of G. If n is
even, then by Lemma 4.3.9, the spanning subgraph Zy,(1, 2n-1, n-1, n+1) of G is 2-
extendable and so G has a perfect matching containing e and e;. When n is odd, we
have several subcases to discuss. For each subcase, as in the proof of Case 2 of
Lemma 4.3.9, we construct a matching M containing €; and e; such that G-V(M) has
an even path factor, and hence M can be exitended to a perfect matching of G.

Assuming e; = 0(n-1). The desired matching M is as follows:

{e1, ez, (c-1)(c+1), (c+n-2)(c+n)) if ciseven and ¢ < n-1;
M= { {e1, ez} ifcisodd and ¢ < n-1;
{e1, &2, (n-2)(2n-3), (2n-4)(2n-2)) if cis odd and ¢ = n. [

Lemma 4.3.11 The Cayley graph Z;,(1, 2n-1, 2, 2n-2, n), n > 3, is 2-extendable.
Proof: Let G = Z,(1, 2n-1, 2, 2n-2, n) and let e; = ab, e; = ¢d be two independent
edges of G with a < b and ¢ < d. By the vertex-transitivity of G and Lemma 4.3.6, we
may assume that e; =0t, e2 = ¢(c+t) and ¢ < n.

Casgl.t=1.
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If c is even, then e; and e; are contained in the perfect matching {01, 23, ..,
{(2n-2)(2n-1)} of G. If both c and n are odd, let M = {ey, e;, 2(n+2)}. Then M can be
extended to a perfect matching of G as G-V(M) has an even path factor 34...(c-1),
(c+2)(c+3)...(n+1) and (n+3)(n+4)...(2n-1). If ¢ is odd and n is even, let

{e1, €2, 2(n+2), (n+1)(n+3)} ifc=3
M z{{cl, €2, 24, 3(n+3)} ifc25

Then G-V(M) has an even path factor 56...n, (n+4)(n+5)...(2n-1) (if ¢ = 3) or 56...
(¢c-1), (c4+2)(c+3)...(n+2), (n+4)(n+5)...(2n-1) (f c 2 §5).

Case 2.1=2.

If ¢ = 1, then 2; =02 and e; = 13 are contained in the perfect matching {02, 13,
45, ..., 2n-2)(2n-1)) of G. If ¢ > 1, recall that n 2 3. With respect to the parity of c,
we construct a matching M so that C-V(M) has an even path factor and hence M can

be extended to a pencct :ztching o7 G.

{e1, €2, 1(2n-1), (c+1)(c+3)} if c is odd
M=
{{c;, ez, 1(2n-1), (c-1)(c+1)} if c is even
Case3.t=n.

The set of all edges of type n in G form a perfect matching of G which contains

ey and es. (]

Now we are ready to prove the main theorem.

Proof of Theorem 4.3.1: We first assume that G = G(I"; S) is isomorphic 10 one of
the given graphs.

The graph Z;y(1, 2n-1), n 2 3 is not 2-extendable, by Lemma 4.3 .4.

By Lemmas 4.3.8 and 4.3.9 the graph Z,(1, 2, 2n-1, 2n-2), n 2 3 is not 2-

extendable.
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The graph Z44(1, 4n-1, 2n), n 2 2 is not 2-extendable, by Lemma 4.3.7.

If G = Z4n+2(2, 4n, 2n+1), n 2 1, then G is isomorphic to Capyy X Py and so by
Lemma 4.2.7 is not 2-extendable.

Finally, the graph Zsn,2(1, 4n+1, 2n, 2n+2), n 2 1 is not 2-extendable, by
Lemma 4.3.8.

Conversely, assume that G is not isomorphic to any of the listed graphs. We
shall prove that G is 2-extendable.

If G is regular of degree 2, then it must be a 4-cycle and so is 2-extendable.

If G is regular of degree 3, then ISI =3 and we let S = {a, b, ¢}. If 4, b and ¢ are
of order 2, then, as G is connected, G is isomorphic to the complete graph K, or the
cube C4x P; and is so 2-extendable. Otherwise, as S = -S we may assume that a+b
=0 and c+c = 0. If c& <a>, then G = C, x P, where m = o(a). By hypothesis (G £
Z4n+2(2, 4n, 2n+1)), m must be even, and so by Corollary 4.2.3, G is 2-extendable.
On the other hand, if c€ <a>, then a must be of even order 2n and ¢ = na. Hence G =
Z2n(1, 2n-1, n) and so (by hypothesis) n must be odd. Hence G is 2-extendable, by
Lemma 4.3.7.

If G is regular of degree 4, let S = {a, b, ¢, d}. Suppose a, b, c and d are of order
2, then G is isomorphic to one of K4 x P3, K44, or C4 x C4 and so is 2-extendable.

Suppose a and b are of order 2 and c+d = 0. Let e; and ¢; be independent
edges of G. By Lemma 4.3.6, we may assume that €, and e; are the same type. If
they are of type a or b, then the set of all edges of type a or of type b will be a suitable
perfect matching. Thus, we may assume that they are of type c.

If a€ <c>, then ¢ must be of even order 2n, a = nc and b& <c>. Hence G has a
spanning subgraph G(; {b, c}) which is isomorphic to Cz, X P2 and contains the
edges e; and ;. By Corollary 4.2.4, G has a perfect matching containing e; and e,.
Assume that neither a nor b is in <¢>. If ¢ is of odd order k, then G is isomorphic to

Cy x P, x P, which, since C x P, is 1-extendable, is 2-extendable by Corollary 4.2.6.
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If ¢ is of even order, either G = Cy, x P2 X P, and we are done as in the odd case, or G
has a spanning subgraph H, H = C,, x P2, which contains both €; and e; and again we
are done as Cy, x P; 1s 2-extendable.

Finally, assume that a+b = 0 and c+d = 0. At least one of a and ¢ (say a) is of
even order 2n (since G has even order). If ¢ & <a>, then for any two independent
edges e; and e; of type c in G, there exists a spanning subgraph of G which is
isomorphic to Cy, x Py, m 2 2, and contains e; and e;. By Corollary 4.2.4, G has a
perfect matching containing ¢; and e;. Ifc€<a>, thenc =1a,t & {1,2,n,n-1} (as G
x 7Zou(1, 2, 2n-1, 2n-2)) and G(<a, ¢>; {a, b, ¢, d}) = Zy,(1, 2n-1, t, 2n-t). Therefore
by Lemmas 4.3.8 and 4.3.9, G is 2-extendable.

Hence, we may assume that G is regular of degree at least 5. Let e; and e; be
any two independent edges of G. As usual, by Lemma 4.3.6, we need only to consider
the case when e; and e; are of the same type (say a). As G is vertex-transtive, we
may assume that e; = 0a. Now, we need only to consider the following two cases.

Case 1. a is of order 2n.

If n = 1, then all the edges of type a in G will be a suitable perfect matching of
G. Hence, we may let n > 2. Then the set of all edges of type a forms a spanning
subgraph of G which is the disjoint union of 2n-cycles. If e; and e; lie on two distinct
cycles, then clearly they can be extended to a perfect matching of G. Otherwise they
are on the same cycle and we let e; = (ta)((t+1)a), 1 <t < 2n-1. If <a> # T, then
there exists be S such that b& <a>. Then if the order of b is m, m = 2, G(<a, b>;
{a, -a, b, -b}) < G has a spanning subgraph H isomorphic to Cy, x Py, and containing
¢; and e;. By Corollary 4.2.4, e; and e; can be extended to a perfect matching of H,
which in turn can be extended to a perfect matching of G by Lemma 4.3.5. Finally, we
assume that <a> = I' (so be <a> for all be S); that is, G is a circulant. As G is of
degree at least 5, we have iSI 2 5. i S = {a, (2n-1)a, 2a, (2n-2)a, (n-1)a, (n+1)a},
then G = Z4(1, 2n-1, 2, 2n-2, n-1, n+1) and by Lemma 4.3.10 G is 2-extendable.
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Otherwise, there exists be S-{a, (2n-1)a, 2a, (2n-2)a, (n-Da, (n+Da}. If n is odd.
then Lemmas 4.3.7 and 4.3.8 imply that the subgraph induced by the set of all edges of
types a and b is a 2-extendable spanning subgraph of G. Hence e; and e> can be
extended to a perfect matching of G. On the other hand, if n is even, by Lemma 4.3.11,
we may assume S # {1, 2n-1. 2, 2n-2, n}. Thus there exists an element of S other
than a, (2n-1)a, 2a, (2n-2)a and na. Then from Lemma 4.3.9, the subgraph induced by
the set of all edges of types a and ¢ is a 2-extendable spanning subgraph of G. Hence
e; and e; can be extended to a perfect matching of G.

Case 2. a is of order 2n+1.

As I is of even order, there exists an element be S of even order and so
b& <a>. Let m be the smallest positive integer such that mbe <a>. Then m is even.
Let H be the subgraph of G induced by the vertex-set {ib+<a>11=0, 1, ..., m-1}, so
M is G(<a, b>; (a, -a, b, -b}).

If m 2 4, let H; be the subgraph of H induced by all the edges of type a and b on
the vertex-set {ib+<a>}U{(i+1)b+<a>},1=0, 2, 4, .., m-2. Clearly H;= Cy,,; x P;
and is thus l-extendable. If e; and e, are in different H;, there is clearly (by Lemma
4.3.5) a perfect matching of H containing them, and hence there is such a perfect
matching in G. Otherwise, € is an edge in Hy. If e; = (sa)((s+1)a) for some s, 1 <5
< 2n, let M = {e;, €2, b(b+a), (b+sa)(b+(s+1)a)}u{(kaj(b+ka) | k =0, I, s, s+1}.
Then M is a perfect matching of Hp containing e; and e;. So we can extend M to a
perfect matching of H and then to one of G, by Lemma 4.3.5. Next, let e; =
{b+sa)(b+(s+1)a) for some 1 <s < 2n. If O, 1)n{s, s+1}l =0, then M = {ey, ¢5,
b(b+a), (sa)((s+1)a)}uf{(ka)(b+ka) | k # 0, 1, s, s+1} is a perfect matching of Hy
containing e; and e;. We can then extend M to a perfect matching of H and hence to
one of G. If {0, 1} {s, s+1}1 # 0, then we have either {0, 1} = {s, s+1} or {0,
1}n{s, s+1}i = 1. In the former case, M = (e}, ez} {(ka)(b+ka) | k #0, 1} is a

perfect matching of Hyp containing e; and e;. We can then extend M to a perfect
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matching of H and hence to one of G. In the latter case, by vertex-transitivity we may
assume s = | and we consider the subgraph H. Let (m-1)b+ta be the vertex in Hy_;
such that mb+ta = 2a. Let M = {e, €3, (2a)((m-1)b+ta), b(2b)}u{(ka)(b+ka) | k #
0, 1, 2}. Then M can be extended to a perfect matching of H since the subgraphs
induced by the vertex-sets {2b+<a>}-{2b} and {(m-1)b+<a>}-{(m-1)b+ta) have
even path factors and the subgraph induced by the vertex-set {ib+<a> i =3, 4, ..,
m-2} is isomorphic t0o Czn4; % Py, where r = (m-4)/2, and hence by Lemma 4.3.5 to a
perfect matching of G containing €; and e;.

Finally, we need only to consider the case when m = 2. Following the
argument in the case m 2 4 we may assume ¢; = (b+a)(b+2a). If <a, b> # I", then
there exists c€ S-<a,b> (recall that <a, b> = V(H)). Let K be the subgraph of G(<a,
b, ¢>: {a, -a, b, -b, ¢, -c}) induced by the vertices <a, b>U{c+<a, b>). Then K has
the following perfect matching which contains e; and e:

M = {ey, ez, c(c+a), (c+b+a)(c+b+2a), (2a)(2a+c), b(b+c)}

u{gXg+c) | ge V(H)-{O, &, 2a, b, a+b, 2a+b}}.
And M can be extended to a perfect matching of G, as the subgraph of G induced by
the set of all vertices of V(G)-V(K) contains a spanning subgraph which is the
disjoint union of copies of H (which has a perfect matching). Therefore it remains to
consider the case when <a, b> = I'. As G is regular of degree at least 5, there exists
c€ S-{a, -a, b, -b}. Since m = 2, V(G) = <a>u(b+<a>) and ¢ = ta or b+ta for some
I<t<n

If ¢c =ta witht 2 3, then M = {e;, €3, ‘(2a)((2+t)a), (ta)((t+1)a),
(b+(t+Da)(b+(1+2)a), b(b+ta)}u{(sa)(b+sa) I s # 0, 1, 2, t, t+1, 1+2} is a perfect
matching of G containing e; and e;. If ¢ = 2a, then M = {e, e,, (2a)(4a), (3a)(b+3a)}
is a set of independent edges -ontaining ¢; and e; so that G-V(M) has an even path
factor. Thus G has a perfect matching containing e; and e;. This leaves us with the

case c =b+ta. Asc#b,thent#0andasc#-b,then2b#2ma. Ift>3,then M =
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{eq, e2. c(a+c), (b+a-c)(b+2a-c)}u{x(x+c) | x€ <a>-{0, a, b+a-c. b+2a-c}} is a
perfect matching of G containing e and e3. If 1t =1, M = {e;, e2}U{x{(x+¢) | x€ <a>-
{0, a}} is a perfect matching of G containing e; and e;. Finally, we assume 1 = 2.
Then 2b # 4na = (2n-1)a. If also 2b = O, then M = {ey, e, (2b+a)(2b+24), (-b){(a-b))
U{y(y+b) | ye (b+<a>)-{b+a, b+2a, -b, a-b}} is a perfect matching of G containing
e; and e;. Finally, if 2b = C, then M = {ey, e2, (3a)(da), (-c)a-c)ju{y(v+e) |
y€ (b+<a>)-{b+a, b+2a, -c, a-c}} (where ¢ = b+2a) is a suitable perfect matching of

G containing e; and €. []

To end this section, we would like to raise the following problems.

Problem 4.3.11. Characterize all 3-extendable abelian Cayley graphs and, in general,

all k-extendable abelian Cayley graphs.

Lovidsz and Plummer (see [44]) proved that every vertex-transitive graph of
even order is l-extendable. Since Cayley graphs are vertex-transitive, any Cayley
graph of even order is l-extendable. It is not known which Cayley graphs are 2-

extendable.

Problem 4.3.12. Characterize all 2-extendable Cayley graph.

§4.4. Classification of 2-extendable generalized Petersen graphs.

Recall that the generalized Petersen graph GP(p, k) (p > k) has vertex-set
UuUV where U = {ug, uy, ..., Up1} and V = {vp, vy, .., vp-1}, and edge-set {u;v;, ujuisg,

viviek 11 = 0, 1, ..., p-1}, where all subcript arithmetic is performed modulo p. One

78



easily sees that GP(p, k) is l-extendable. The study of 2-extendability of these
graphs was begun by Schrag and Cammack [52, 53] who gave necessary and
sufficient conditions for the 2-extendability of GP(p, k), when 1 < k < 7. In this

section, we shall prove the following main result.

Theorem 4.4.1 For k > 3, the generalized Petersen graph GP(p, k) is 2-extendable if

and only if p # 2k or 3k.

For convenience, we call the edge u;v; a spoke and the edge v;v,,¢ a chord.

The next result is easily deduced from the definition of GP(p, k).

Theorem 4.4.2 For any positive integers p, k with p > k 2 3:

(i) GP(p, k) = GP(p, p-k); and

(i1) GP(p, k) has a triangie if and only if p = 3k.
Proof: (i) This follows directly from the definition of GP(p, k).

(i1) Suppose p > k 2 3. If GP(p, k) has a triangle, then the triangle must occur
on the vertices of V. Thus there existr, s, and t with r £ s < t so that v,v,, vev,, and
viv, are edges of GP(p, k). But s-r=t-s =r-t =k (mod p) and thus p = 3k. On the

other hand, if p = 3k, then we have a triangle on the vertex-set {vg, vk, vax}. []

As a consequence of Theorem 4.4.2 (i), we will henceforth assume p > 2k.
Next, we quote three results from Schrag and Cammack [52, 53] which we present as

femmas.

Lemma 4.4.3 (Schrag and Cammack [53]) For all k > 2, GP(2k, k) and GP(3k, k) are

not 2-extendable.
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Lemma 4.4.4 (Schrag and Cammack [52]) If k > 4, then any pair of independent
edges of GP(p, k), at least one of which is a spoke, can be extended to a pertect

matching.

Lemma 4.4.5 (Schrag and Cammack [52, 53]) If 3 <k < 7, GP(p, k) is 2-extendable

if and only if p # 2k or 3k.

In order to prove Theorem 4.4.1, we need to show that for any two independent
edges e1, e2 of GP(p, k) (p # 2k or 3k) there exists a perfect matching containing ¢,
and e;. Depending on the location of e; and e;, we consider the following six cases:

(1) Both ¢; and e; are spokes.

(2) ey is a chord and e; is a spoke.

(3) e; has both end-vertices in U and e; is a spoke.

(4) Both e; and e; are chords.

(5) ey has both end-vertices in U and €3 is a chord.

(6) Both e, and e, have their end-vertices in U.

From Lemmas 4.4.4 and 4.4.5, we need only consider k 2 8 and the non-spoke
cases (4), (5) and (6). In the proof of Theorem 4.4.1, we will study these cases
separately and show that in each case we can always find a perfect matching
containing both e; and e;. For convenience, we introduce a lemma and some notation.

Let S(p. k) denote the set of all spokes of GP(p, k). Given a chord v;vi,, we
call the two chords vj.1Vi.j+x and vj;1Vis14x the neighbour chords of vjvi,,. By the
definition of GP(p, k), G[U] is an p-cycle and G[V] is a 2-regular graph (we suppose
p # 2k). An even cycle C in GP(p, k) is called alternating if the edges of C appear

alternately in {u;v;1 0 <i <p-1} and {uujs1, vivisk | 0 <1 <p-1}.

Lemma 4.4.6 Consider the graph GP(p, k), p # 2k, 3k, and k > 3:
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(i) If two edges e;, €3 of {ujui+}, Viviex ! 0 < i < p-1} are in an alternating cycle,
then there exists a perfect matching in GP(p, k) containing e; and e>.

(i1} Let C; and C; be vertex-disjoint alternating cycles in GP(p, k). If e;€ C;
(i =1, 2), then there exists a perfect matching containing e; and e;.
Proof: (i) Let C be an alternating cycle in GP(p, k). Then F = C-{ujv;l uy;vie C}U
{S(p, k)-E(C)} is a perfect matching containing e; and e>.

(ii) Let Fy, F; be perfect matchings in C;, C;, respectively, which contain ey,
e2. Then F = FiUFU{S(p, K)-E(C1)-E(Cy)} is a perfect matching containing e; and

€2. D

We now turn to prove the main theorem.

Proof of Theorem 4.4.1: By Lemma 4.4.3, we need only to show that if p # 2k or 3k,
then for any two independent edges e, €2 in GP(p, k) we can fird some perfect
matching containing them both. From Lemma 4.4.4 and Lemma 4.4.5 it suffices to
consider k > 8 and the non-spoke cases as follows:

Case 1. Both e; and e; are chords.

Since e; and e; are independent chords, we may assume that e} = vgvgand e; =
vivi«e where {0, k}n({i, i+k} = @. Without loss of generality, we suppose that e; and
exsatisfy (@) p>i+k >i>k>0o0r(b) p>itk >k >i1>0. (Note thatif i > k and i+k
> p, we can relabel so that v; becomes vy and then we are in case(b).)

Case 1.1. Suppose p>i+k>i>k > 0.

(1) If i = k+1 and i+k = p-1, then p = 2k+2. In this case, we have an
alternating cycle C = vgViUgliy1Vic+1Vp-1Up-1Ugvo and by Lemma 4.4.6 (i), we are done.

(2) If i = k+1 and i+k = p-2, then p = 2k+3. Since k > 8, we can construct a
perfect matching F containing e) = vpvy and ez = vi;1vor+1 as follows (see Figure

4.17)
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F = {e}, 2, Vk-3Vak, Vk2V2k2s V-1V2k-1s Vie2V2ke2 )OI {UjU50p 1] = k-3, k-1, k+1,
2k-2, 2k, 2k+2}U({S(p, k)-{ujv; k-3 < j<k+2or 2k-2<j<p}).

(3) If i = k+2 and i+k = p-1, then p = 2k+3 and by isomorphism, this case is
exactly the same as (2).

(4) If i = k+1 and i+k < p-2, then we obtain two disjoint alternating 8-cvcles
C, and C; with ¢;€ C; (i = 1,2), where C; = UQVQVKUKUK-1Vk-1Vp-1Up-1up and C; =
UiViViek UiskUisk+1Vitk+1Vi+1Ui+10;. Applying Lemma 4.4.6 (ii) we are done.

(5) If 1 > k+2 and i+k = p-1, then by isomorphism this case is exactly the same
as (4).

(6) If 1 > k+1 and i+k < p-1, then we can use the spokes and the neighbour
chords of e; and e; to form a perfect matching F which contains e; and e>. The pertect
matching F is as follows (see Figure 4.18):

F = {e1, e2, vp-1vk-1, viivia+k) U {uujea 1 j = k-1, i-1, i+k-1, p-1}U{S(p, k)-

(v 1j =k-1, k, i-1, i, i-1+k, i+k, p-1, 0}}.

Figure 4.17 Figure4.18

Case 1.2. Suppose p>i+k>k>i>0.
(I Hi1=1,then F = {e1. 2} U{S(p, k)-{ujv; 1j =0, 1, k, k+1}}U{upu;,

Uk} is a perfect matching containing e; = vgvy and €3 = vyvy,.
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(2) If i = 2, then as k 2 8, p 2 16 and there is at least one vertex between v;
and vi. Thus we can use the spokes and the neighbour chords of €; and €;to form a
perfect matching F containing e; and e; as follows (see Figure 4.19):

F={vjvju 1 0<j<3JU(S(p, k)-{uv; 10<j<s3ork<)< k+3}1 U {ujua =

0,2, k, k+2}.

Figure 4.19

(3) If i > 3, then there are at least two vertices of V between vg and v;. So we
can find neighbour chords vyvi.1 and vi.1vi.1+x for e; and e, respectively, to obtain
two disjoint alternating 8-cycles C; = ugujVvivi+1 Uk+1UkVkVoup and Cp = uj1uivivi+k
Ui kUj-14kVi-14kVi-10i-1 so that e;€ C; (i = 1, 2). Now applying Lemma 4.4.6 (ii) we are
done.

Case 2. e; lies in G[U] and e; is a chord.

As before, we suppose e; = ugu; and e; = vjvi;kx. Let So= {vg, vi}, S1= {vi,
vir1), S2= {Vpk, Vpx+1} and D = {vgvy, V1Vke1, VOVpks ViVpi+1}- Then S5;USs s a
set of vertices which are adjacent to Sg in V, and D is a set of chords incident with Sg.
Since p # 2k, then either IS;NS2l = 0 (see Figure 4.20) or IS1;NSyl = 1 (see Figure
4.21). In the second case we must have p = 2k+1.

Case 2.1. Suppose e; is one of D. If e; = vgvk or €3 = vivis1, then F = {uguy,

VOVk, V1Vk+1s UkUk+1JU{S(p, K)-{ujv; 1 j =0, 1, k, k+1}} is a perfect matching
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containing e; and e;. A similar perfect matching is constructed if e; = VIVpke] OT €2 =

VOVp-k-

ui

uo

Figures 4.20 Figure 4.21

Case 2.2. Suppose that the end-vertices of e; are disjoint from S;\US,.

(1) Suppose ISiNS,i=0. If k=3 andi=p-1,thenC = UpU 1V Vp2Up.2Up. 1 Vp.|
V2U2u3v3Vgup 1S an alternating cycle containing e€; = ugu; and e; = vp1ve. Otherwise,
there exists a neighbour chord of e; which has at most one end-vertex in S;\US; and
no end-vertex in Sg. Suppose that vi,jvi,k+1 is such a neighbour chord (if it is
Vi-1Vi+k-1 essentially the same procedure applies). Since S;NS; =@, one of Sy and S5
is disjoint from {vii, Visk+1}, say S;. Then F = {ey = uguy, UxUys1, YOVks ViViel,
Uillis], €2 = ViVieks VielVitkels GiskUisket NI {S(P, K)-{ujvil j = 0. 1, k, k+1, i, i+1, i+k,
i+k+1}} is a suitable perfect matching.

(2) The case IS;NS3l = 1 is quite similar to (1). There exists a neighbour
chord of e; which has at most one end-vertex in S;{US2. We construct a perfect
matching containing e; and e; by the same argument as (1).

Case 2.3. Suppose the end-vertices of ez = vjvi.x join exactly one of $;US,.

(1) When $11S,; = @, we may assume p > p-k+1 > p-k > k+1 >k > 1. By the
symmetry of GP(p, k), we need only consider the following two cases:

(@) Visk = Vp k41 (see Figure 4.22) and



(b) visk = vpi (see Figure 4.23).

Un-k = Un+k
Un-k+1 = Ui+k

Figure 4.22 Figure 4.23

In case (a), since i€ S1, p # 2k+1 and k = 8§, there exists a neighbour chord d of
ez such that the end-vertices of d do not intersect S;\USy and we have the situation as
in case 2.2 (1) and hence a perfect matching containing e; and e;,

For (b), consider the neighbour chord vi,x+1vi+1 of e2. If viy 1€ S, then we
have the situation as above. If v;,;€ Sy, then since vi& S1, vj+1 = vk. Since k 2 8§, the
neighbour chord v,_1vi.; of e; is disjoint from SglUS; and we proceed as before.

(2) Suppose now that IS;S3l = 1, that is, p = 2k+1. Since e; has an end-
vertex in S;\US3,, either ey = vyvy, or €3 = vivor. By symmetry we assume e; =
vovisp. From k 2 8, then d = v3vy,3 is a neighbour chord of e, which has no end-
vertex in Sg\US{\US,, so as before we are done.

Case 2.4. Suppose that both end-vertices of e; are in $;US,.

(1) For I1SiS3l = 0, as G[V] has no triangle, either e; = vy 1Vp.k O €3 =
VkVpk+1 (see Figures 4.24 and 4.25). In both cases, we can find an alternating 12-
cycle C containing e; and e, as follows:

For €3 = Vis1Vpks C = UpvoViUkUk+1Vk+1Vp-kUp-kUp-k+1Ypk+1V1U1U0.
For €3 = vivpk+1, C = UpvoVpkUpkUp-k+1Vp-k+1VkUkUk+]Vi+1V iU Up-

We now apply Lemma 4.4.6 (i) to obtain a suitable perfect matching.
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Figure 4.24 Figure 4.25

(2) If ISynS,l = 1, then both end-vertices of e, lying in (S$;US2)-(8511Sy)
implies k = 2; which is a contradiction.

Case 3. Both e; and e; lie in G[U].

We may assume e = upu; and e = ujujyg, where 1 <i <p/2. Let Sg= {vg, vi],
S1= (Vi Vks1}, S2= {Vpai, Vpks1}s To= {Vi, Vie1)s Tr = {Visk, Vieks1), and x =1-2 =
dG[U](u;, up-1. Notice that SonTo= @ and $;NT; = @. Except wheni = |_p/2_| and k =
[ (p-2)/2_l (in which case an alternating 8-cycle containing e; and e; is easily found), if
i £p/2 and k < p/2, then SoNT = $)NTy=B. Now we consider S;Ty as follows.

Case 3.1. If x 2 k or x < k-4, then S;"Ty= @. Thus we obtain two disjoint
alternating cycles C; and Cj:

C1 = U1V Vik+1Uk+1UkVKVOUO.
C2 = Uil 1 Vit 1 Viek+1 Uitk+1Ui+kV ik Villi-

By Lemma 4.4.6 (ii), there is a perfect matching containing e; and e,.

Three values of x are unaccounted for and we consider each separately.

Case 3.2. If k = x+1 =i-1, then IS;NTyl = 1 and ey = ug,juga.

(1) If 1S2NT4l = 2, then vp i = voks1 and vpg41 = vaks2 (see Figure 4.26). We

now have an alternating cycle C = ugu1Vv1Vik+1Uk+1Uk+2Vk+2V2k+2U2k+282k+1V2k+1V0UQ
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containing €; and e; and hence by Lemma 4.4.6 (i) we have the desired perfect
matching.

(2) If ISoNT;i = 1, then, as G[V] has no triangle, voxy2 = Vp.x (see Figure
4.27y. Thus p = 3k+2. Since k 2 8, there are at least two vertices between v; and
Vk+1, between v,z and vak+1, and between vai3 and vp. So we have an alternating
cycle C containing e; and es:

C = ugu V1 Vs 1Uk+1Uk+2Vk+2V2k+2U2k+2U2k+1V 2k+1V3k+1 U3k+1 U3K V3KV 2K U2k U2k .|
V2k-1Vk-1Uk-1UkVKVoUo.

By Lemma 4.4.6 (i), we are done.

@ Un-k = U2k+1

Figures 4.26 Figure 4.27

(3) If IS,NT4l =0, then S; and T, are disjoint. Since SpNTy= SoNT; = (so
V2k+2 = Vg Of Vokyp = vy is impossible), we easily find two alternating 8-cycles
containing e; and e;, respectively. Applying Lemma 4.4.6 (ii) finishes the case.

Case 3.3. If k = x+2 =1, then S; = Ty and e = ugug,;. Now C = ugvgviugug,i
Vk+1V1UjUg is an alternating cycle containing e; and e; and from Lemma 4.4.6 (1), there
is a perfect matching containing e; and e,.

Case 3.4. If k = x+3 =1+1, then IS;"Tyl = 1 and e = uk.juy.

(1) If IS,NTyl = 2, then vpy = Va1 and vpk+1 = vok (see Figure 4.28). We

obtain an alternating cycle C containing €; and e;:
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C = ugu)V1VaKUxU2k-1V2k-1Vk-1Uk-1 Uk VK VoUo.

By Lemma 4.4.6 (1), we are done in this case.

Unk = Uzk-1

f Un-k+1 = U2k

Figure 4.28

(2) If IS;AT, | = 1, then, as G[V] has no triangle, vak.1 = vp.xe1. Thus p = 3k-2
and the following perfect matching contains e; and e; (see Figures 4.29 and 4.30):

If k is even, F = {ug_pvk.2, Upuy, Uk-1Uk, U2k-1U2ks V1Vik+1, VOV2k-2, Vk-1V2k-1
vivakJULS(p, K)-{ujvj 10 < j < 2k} }U{vjvi 12 < j < k-3 {uujp 1 j =2, 4, .., k-4,
k+1, k+3, ..., 2k-3}.

Ifkisodd, F={vyvjk 10<j<k-1}U{ujuj 1j=0, 2,4, .., 2k-2}U{qjvj 1 2k <

jsp-l}.

Figure 4.29 Figure 4.30
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(3) The case IS;NT;! = 0 follows exactly as case 3.2 (3).

The proof is now complete. ]
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Chapter 5. Some results about factors.

§5.1. Introduction.

For a fixed integer k, let S(k) = {KLi I 1<i<k). An S(k)-factor of a graph G
1S a spanning subgraph of G, each component of which is isomorphic to a member of
S(k). (Note that an S(1)-factor is simply a 1-factor.) An S(k)-factor is proper if one
of its components is isomorphic to K, ,. The complete bipartite graph K, , is called a
k-star (or simply a star). (So we will often call an S(k)-factor a star-factor.)

In 1947, Tutte {54] gave a criterion for a graph to have an S(1)-factor (that is,
a l-factor). This criterion was then used by others to study properties of graph with
1-factors. In particular, Lovdsz [40] showed that a graph with a unique 1-factor
cannot have large minimum degree, and Hetyei (see [40]) determined the largest
number of edges in a graph with a unique perfect marching. Lovdsz [40] and Zaks [66]
gave a lower bound on the number of 1-factors in an n-connected graph.

We are interested in S(k)-factors when k = 2. A characterization of S(k)-
factor for k 2 2 was given by Las Vergnas [31], Hell and Kirkpatrick [23] and
Amahashi and Kano [2] independently. In section 5.2, we study the structure of those
graphs with a unique S(k)-factor, k 2 2; obtaining an upper bound on the number of
edges such a graph can have, and constructing an extremal graph with a unique S(k)-
factor which attains that bound. In section 5.3, we show that any r-regular graph of
order n has at least n distinct S(k)-factors (1 <k <r).

The final section, section 5.4, contains a discussion of the extendability of
power graphs. The n™ power G" of a graph G has the same vertex set as G and two
vertices are adjacent if and only if their distance in G is at most n. Chartrand at al.

[14] showed that the square G? of a connected graph G contains a perfect matching if



and only if G has even order. We consider the extendability of power graphs and
show that for any connected graph G, G is elementary and G’ is l-extendable.

In 1956, Nordhaus and Gaddum [45] derived two inequalities for the chromuatic

number of a simple graph G of order n and its complement G as follows:

[2vn 1< %(G)+x(G) < n+1 and

n < x(Gy-x(G) < LEH2L.
This result has had considerable impact, and has been generalized and modified in
various directions. Nordhaus-Gaddum type results concerning different graphic
parameters, for example edge-colouring number, achromatic number, pseudoa-
chromatic number, covering number, independent number, partition number etc. (see
[13]), have been obtained by different researchers. In the last section of this chapter,

we obtain a Nordhaus-Gaddum type of result for matchings.

§5.2. Graphs with a unique S(k)-factor.

In order to study the structure of those graphs witn a unique S(k)-factor, we

need to introduce certain notation.

In the star K, ;, i 2 2, we call the vertex of degree i the centre, and the vertices

of degree 1 the leaves. In K, | we arbitrarily prescribe one vertex to be the centre and

the other the leaf.

Let F be an S(k)-factor of G, and suppose that F has m, components which are
isomorphic to KLi, ! <1 < k; implying that Emi(1+i) = |V(G)l. We denote the centres
of these m; stars by x(i, 1), x(i, 2), ..., x(i, m;), 1 £i <k, and the leaves of the star
with centre x(i, j) by v:(, j), y2(, j) ,---» ¥i(i, j). So the components of F can be

described by S@, j) = {{x(, j)» y1(,3), -, yiG, P} 11 <i<k 1 <j<m). For
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convenience we write x(1, j) = x;and y,(1, j) = y;. Finally, we let S¢ denote the set of

all centres; Sc = {x(i, )11 <1<k, 1 £j<m;}.

For k = 1, an S(1)-factor is simply a 1-factor. Hetyei (see [5]) has
determined that the largest number of edges in the graph G of order 2m with a unique

1-factor is m2. Hence, we may now restrict our attention to the case k = 2.

Lemma 5.2.1 If G has a unique S(k)-factor F, k 2 2, then there is a set S, S & V(G),
so that I{G-S) = V(G)-S, and IS} is the number of components in F.

Proof: We will show that the centres of the stars Ky ; in the S(k)-factor can be
chosen so that S; satisfies the requirment. First we choose the centres of the K ;
arbitarily and let S be the resulting set S¢. Since F is unique, the only possible edges
in G[V-S] are those joining leaves of stars K, ;. Suppose we have such an edge, say
yi¥.. Then x; and x, have no other neighbours in {yy, ..., Yj=15 Yj#1s > Yi=1> Yisls -oos
¥m,} or we get a path of length 5 and hence two K, ; instead of the three Ky 1's. Also
x;y:€ E(G) and x,y;& E(G), or the edges x;yj, x;y, are replaced by a K; 3. Finally
xjx:€ E(G). Exchange the centre-leaf roles of x;y; and x;y,,and let S' = (§—{x;, x(})
Jlyj vi}. Then IE(GIV-SDI < IE(G[V-S])l. Now we may proceed inductively to

complete the proof. []

From now on, we asuume that S, satisfies I(G-S¢) = V(G)-S.. The following

lemma is easily proven.

Lemma 5.2.2 Suppose the graph G has a unique S(k)-factor F. Then the only
vertices that the leaves of any component K;; (2 i < k) of F can be adjacent to are

their own centres and the centres of k-stars.



We next show that for k = 2, a graph with a proper unique S(k)-factor (that is,
the graph has a unique S(k)-factor, and that unique S(k)-factor is proper) has at lcast

k vertices of degree one. Note that this result does not hold when k = 1.

Theorem 5.2.3 If G has a unique S(k)-factor F (k > 2), and F is proper, then G has k
vertices of degree 1 which have a common neighbour.

Proof: Consider the k-stars in F. The leaves of S(k, i) cannot be adjacent to any
other vertices except centres of k-stars. So if the S(k)-factor has only one k-star, we
are done. Otherwise we assume that for each k-star there is an edge from one of its
leaves to the centre of another k-star. Construct a digraph H with V(H) = {S(k, 1) |
1 <1<my} and (S(k, i), S(k, j)€ A(H) if there is an edge from a leaf of S(k, 1) to the
centre of S(k, j). If H has a directed cycle of length at least two, we exchange edges
between the k-stars on this cycle to get another S(k)-factor. So we suppose H is
acyclic. Then H has a vertex with outdegree 0 meaning that there are no edges out of

the leaves of the corresponding k-star and so the leaves of this k-star are the vertices

of degree 1in G. ]

Corollary 5.2.4 If G has a proper S(k)-factor (k > 2), and 8(G) 2 2, then G has at
least two S(k)-factors.

Proof: Suppose that G has only one S(k)-factor. By Theorem 5.2.3, we have 8(G) =
1. This contradicts &(G) = 2. Thus G has at least two S(k)-factor. [

Remark 5.2.5 At this point it is helpful to provide the reader with a description of
what we now know of graphs with a unique S(k)-factor F, as shown in Figure 5.1 (the
centres are at the top). We describe the other edges which may lie in the graph.

From the leaves of the k-stars we have edges to centres of k-stars so that the

digraph H of Theorem 5.2.3 is acyclic (so H is a subdigraph of the transitive tourament
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on my verticesj. Leaves of i-stars, 2 <1 < k, can only be adjacent to centres of k-
stars. Leaves of 1-stars can only be adjacent to their centres. Any two centres can
be adjacent but if the centre of a 1-star in F is adjacent to another centre its leaf is not
also adjacent to that centre, unless it is the centre of a k- or (k—1)-star. By Lemma

5.2.1 no leaves are adjacent.

mi m ms
/_/N-\ /.A-\
F e o oo o0 L e
Figure 5.1

In order to provide an upper bound on the number of edges in a graph G with n
vertices and a unique S(k)-factor F (k 2 2), we associate with G and F two graphs G;
and F; which we now describe.

Without loss of generality, suppose that mg # O and let S(k, 1) be the k-star
whose leaves are vertices of degree 1 in G (as described in Theorem 5.2.3).

Let V(G)) = V(G), where the edges of G; are those of G except that if both
x(11, j)ys(iz, € E(G) and x(iy, j)x(@i2, r)& E(G), then x(ij, j)x(i2, r)€ E(G;) and
x(i1, )ys(i2, D€ E(G1). So IE(G)I = {E(G))I.

Define F, as follows:

V(F1) = V(F) = V(G)
E(F)) = {x(k, s)x(§, ) 1 x(i, s) #x(j, 0, 1 €£1,j£k, 1 <s<m;, 1 Sr<smyju
{x(k, s)y;(i,h)Is=1,2, ..., myifi=k, thens+l<h<m, 1<r<k;
andif 1 <i<k, then1<h<m,1<r<i}UE(F).
That 1s, Fy contains all edges of the S(k)-factor F, a complete subgraph on the vertex-

set S¢, and contains edges from leaves to centres of k-stars. It is easy to see that in

F.. F is the unique S(k)-factor.
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Lemma 5.2.6 For a given graph G with a proper unique S(k)-factor F (k = 2). we
define G| and Fj as above. Then IE(G))! < {E(Fj)l+€ where if k =2 and m; = 2 or 3,
orif mg_; =1and my > 1, then € = 1, and in all other cases € = 0.
Proof: We prove the lemma by constructing a one-to-one mapping f from E(Gy) or
E(G1)—{e}, e€e E(G}) (as appropriate), into E(Fy).

The mapping f acts as the identity on (1) the edges of the S(k)-factor F =
US(, j), (2) the edges x(k, s)y((i, h)e E(G)), and (3) tne edges x(i, s)x(j, nNe E(Gy).

By Lemma 5.2.2 all that remains is to define the action of f on the edges
ysx(i, JE E(Gy), 1 €1 <k-1. If ysx(i, j)€ E(G}y), then, by the construction of Gy,
xsx(i, j)€ E(G)) and so both ygx(i, j) and x¢x(i, j) are edges of G. If 2 £i < k-2 we
then obtain another S(k)—factor in G. So ysx(i, j)€ E{(G) implies that i€ {1, k-1, k}.
We have already defined f(ysx(k, j)) so only two cases remain. Consider first
ysx(k—1, ))EE(G1), k-1 # 1sok 2 3.

Ifme_;=1,letl = {slygx(k-1, )€E(G1)}. Itis easy to see that if s, re I, s
1, then xgx & E(Gj). Provided that Il = 3, we can extend the one-to-one map f by
mapping {ysx(k—1, 1) | s€I} into {xsxp!s, r€L, s#r}. If 0 <IIl < 3 such an extention
is only possitle from {ygx(k—1, 1) | s€ I-{j}, j€ I} into {x/xsl r, s€, r#s} and we
have € = 1. If my_; 2 2, it is easy to see that if ysx(k—1, j)€ E(Gy), then yex(k-1, j),
xsx(k—1, j)€ E(G) and as the S(k)-factor is unique, then for t # j yox(k—1, t), xgx(k—1,
)¢ E(G) and hence are not edges of E(Gy). So we put f(ysx(k—1, j)) = xgx(k—1, t).

Finally we consider the edges yjxj€ E(Gy), 1 # j. Cleary my 2 2 (or there are
no such edges). If k 2 3 and yjx;€ E(Gy), i # j, then x;x;€ E(G) and both yix; and xjx|
are edges of E(G) and we can construct a 3-star instead of two l-stars, a
contradiction. So k =2. If mj =2 or 3 then either there are no edges of type yjx;, i#

}» or the subgraphs spanned by the 1-stars are isomorphic to one of the four shown in

Figure 5.2 (a) (b) (c) (d).
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In each case of (a}, (b) and (c) the edge y;x2 has no image, and in the fourth
(Figure 5.2(d)) put f(y3x2) = x1x3 (x1x3€ E(G1)). (Observe that if my_; =1 and Il is
2 or 3, then i, jJ€ [ yix;& E(G1) and no conflict can arise.)

X1 X2 X1 X2 X3 X1 X2 X3 mg
yi y2 yi Y2 y3 y1 y2 y3 y1 y2 y3
(a) (b) (c) (d)

Figure 5.2

What now remains is the case k = 2 and m; =2 4. In Gy let G;' = Gy[{xq, ...,
Xmi» ¥Y1s - Ymi }] @and in Fy Fy' = Fi[{x1, ..., Xms, ¥1, ---» Ymi}]- If we can show that
IE(G{) £ IE(F,")] we will be able to define f on these remaining edges and so obtain
the described one-to-one mapping.

The proof is by induction on m;. Calculation shows that the claim is valid when
m; = 4. Suppose now that the claim holds for m; < m and consider the case m; = m.
Without loss of generility suppose that yix2€ E(G1), implying that xyx2€ E(Gy),
x1yi€ E(G1), 2 €1 £ m, x1xj&€ E(G}) and y;xj& E(G)), 3 £j <m. Thus IE(G;) =
IE(G,"-{x,,y.})I+3. But IE(F1) = IE(F1'-{x1,y1})l+m and by the induction
hypoth=sis IE(G,"-{x,,y,}| < IEF,-{x,,y:})! so IE(G;)l £ (G(F;)+3-m £ IE(F)!
as required.

Thus we have described the required mapping f and the proof is complete.  []

From Remark 5.2.5 and Lemma 5.2.6, we now are able to describe exactly the

graphs with maximum number of edges which have F as a proper unique S(k)-factor.



Corollary 5.2.7 If a graph G has the subgrsph F as a proper unique S(k)-factor, then
[E(G)I < IE(F)i+1.

We next look at all S(k)-factors F on n vertices and determine that one for
which IE(F,)l is maximized. Given n and k 2 2 we denote by f(n, k) the maximum
number of edges in a graph on n vertices which has a proper unique S(k)-tactor.
Hence for any graph G of order n which has a proper unique S(k)-factor we have

tE(G)I < f(n, k).

Theorem 5.2.8 If a graph G of order n has proper unique S(k)-factor (k = 2), then
(oetl) 4 ifk=2andn=0, 2 (mod 3)

gn-lzﬁgng ifk=2andn=1 (mod 3)

iﬂ_-l_%!ﬁlﬂ ifk=3and n=1 (mod 4)

f(n, k) = { 4 ifk=3and n=3 (mod 4)

1@;\—22 ifk =3 and n is even

M;ﬁﬁﬂ, ifk >4 and n ¥k (mod 2)

(D) 4y if k>4 and n =k (mod 2)

Proof: As mentioned in the begining of this section we assume k = 2. Suppose that

G has a proper unique S(k)-factor F which has m; components isomorphic 1o K ;.

k K -
Then n = IV(G)l = ¥ mj(i+1). Thus, letting m = ) m;, the number of edges in Fj is
i=1 1=1

given by
K k . k k »
[E(F) = [EKm)I+3 wmit( 3 imi-k)+( 3 imi-2k }+ ~ +( 3, imj-kmy)
i=1 =1 =1 =1

m(m—1)+(mk+1)_§ im;-(k+2k+...+kmy)

i=1

(ST
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k
(m(m-l)+(mk+})(2_z 1mj-kmy)

1
2 1=1

Let
g(F) = 2LE(F)l = m(m-1)+(mg+1)(2n-2m-kmg), - (5.2.1)

K ko . k-1 .
where m = Ymjand n = Y m;(i+1), Setting m* = 3 m;, we obtain
i=1 i=t i=1

g(F) = (m*+mp)(m*-mg-3)+(mg+1)(2n-kmy)

= (m*)2-3m*-my(my+3)+(m+1)(2n-kmg).

If my is fixed, then g(F) is a quadric function about m* and reaches its
maximum value when m* is maximized. Hence, in order to maximize g(F) one should

take as many components as possible in F. Hence m3=mg=...=m;=0and my=0

or I. Therefore determing % f(n, k) now becomes an integer programming problem as

follows:
% f(n,k) = max{(m;+m3)2-3(m;+my)-my(my+3)+(my+1)(2n—kmy) }
s.t. 2m+3my+(k+1)mg =n
(IP)
my, np, mg 2 0 integers

We now start to determine the solutions for (IP).

i n-(k+1)my 1s even, then my = 0 and my =% {n-(k+1)my), and if n—(k+1)my is
odd, then mz=1 and m; =% (n-3-(k+1)my). Moreover, in order to obtain the value of
my, which maximizes g(F) we consider following cases.

(1) Suppose that n-(k+1)my is even, that is n = (k+1)mg+2m; and m = m;+my.

Suppose that k+1 is even (so k 2 3) and mg =2 2. Let F be an S(k)-factor with
IV = IV(F), m' = mg-1, my’ = m+ l%l and mj' =mj= 0,2<j<k-1. So

g(F) = (m+my)(my+myg- 1)+(my+1) (kmyg+2my) - (5.2.2)

and g(F) = (mp+my+ %—I)(m1+mk-l+ ké—l +m(kmp+2my+1).

Thus
g(F)-g(F) = (k-3ymy+ EEN > : - (5.2.3)
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So g(F') 2 g(F) and the maximum number of edges is obtained when we have only
one k-star in F.

Suppose that k+1 is odd and my > 2, we let F' be an S(k)-factor with my'

t k"2 1 "2
my-1 k-stars and therefore one 2-star and m;' = m;+ —~ 1-stars. So m' = m+my+ 5,—«

and

- -4
g(F) = (m+my+ %2 Y(my+my+ —k—2~)+mk(kmk+2m,+2). - (5.2.4)

Thus, from (5.2.2) and (5.2.4), we have

g(F)-gF) = (k-dym+ ERED 50 Gesyg - (5.2.5)

So for k = 2 we expect to have as many 2-stars as possible. This case will later be
considered in more detail.

(2) Suppose that n-(k+1)my is odd, that is n = (k+1)m+3+2m; and m =
mi+my+1.

Suppose that k+1 is even and my = 2, we let F' be an S(k)-factor with my' =

1 N k+1 . k+1
mk-l, my =mp= 1, mp = m1+T and m =m1+mk+—i—_ So

g(F) = (mp+my+1)(my+my)+(my+1)(kmg+2m+4) - (5.2.6)

and g(F) = (m+my+ 5%1- Y(mp+my+ k—zl Hmy (km+2mi+5).

Thus
gE)-gF) = (k-3ymy+ EED S0 s, - (5.2.7)

If k = 3, then we expect to have many k-stars. This case will later be considered in

detail.
Suppose that k+1 is odd and my > 2, we let F' be an S(k)-factor with my' =
! ' k+4 ) k+2
mg-1, my' =0, my’ = my+ - and m' = my+mg+ ——. So

(F) = (my+m+ 22 Y(mg+me+ © Y+my(kmy+2m; +4) - (5.2.8)
g 2 2

Thus, from (2.6) and (2.8), we have

gF)-gF) = (m+ K2 450 ifkz4 - (5.2.9)

If k = 2, then it is better to have more k-stars.



From the above discussion we conclude that, except when (1) k = 2 and (2) k
= 3 and n is odd, if G has a unique proper S(k)-factor F and as many edges as
possible, we should choose F to have exactly one k-star, at most one 2-star and all
other components 1-stars.

So if k 2 4 we easily obtain

[E(F))l = M— +n ifn¥k (mod 2) and
[E(Fy)l = Ml%‘—“—zl +n if n =k (mod 2).

n(n+2)
.

Ifk=3andniseven, thenmi=1,my=0and m; = "2—4. Thus we have IE(F)l =

We now study the exceptional cases.
When k = 2, from (5.2.5) and (5.2.9), we see that g(F) attains its the
maximum if mj is maximized. So, with fixed n, F{ has the most edges if the S(k)-

factor F has as many 2-stars as possible. Hence, if n =0 (mod 3), then m; = 0, m; =
3 and IE(F)l = E(—nstl‘)" if n =1 (mod 3), then m; =2, mp = "3;4 and IE(E;)l = (———~"+22(“‘”;

and ifn=2 (mOd 3)’ then mj = 1, rnzz'l:l:;—2 and IE(F])I - n(n6+1).

When k = 3 and n is odd, we see from (5.2.7) that g(F) is an increasing

function of m3. So, with fixed n, F; has the most edges if F has as many 3-star as

possible. Hence,ifn=1(mod4),thenm;=1, my=1, m3= 23 and IE(F))l= (‘ni){?i);
and if n =3 (mod 4), then m; = 0, my = 1, m3 =4 and IE(Fy)l = (n+1)
Summarizing the above conclusions, we obtain
r’lﬁ%ll ifk=2andn=0, 2 (mod 3)
m%(r_@z ifk=2andn=1 (mod 3)
Kﬂlsﬁ‘ﬁl ifk=3and n=1 (mod 4)
Byl ={ @l ifk =3 and n =3 (mod 4)
M’_;*_zl if k =3 and n is even
méﬂm if k>4 andn £k (mod 2)
l(ﬂ.__)i_.__l* 8"-1‘—2 +n ifk>4 and n=k (mod 2)
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But, by Lemma 5.2.6, we have that f(n, k) = IE(F)I+€ where if k = 2 and m; = 2 or 3,
or if my_; = 1, then € = 1, and otherwise € = 0. From the calculating, this implies that if

k=2andn=0,1(mod 3),orifk=3andn=1 or 3 (mod 4), then € = I; otherwise € =
0. Therefore, we obtain the desired f(n, k). []

Corollary 5.2.9 If a graph H of order n has an S(k)-factor and IE(H)! > f(n,k), where

f(n, k) is as defined in the Theorem 5.2.8, then H has at least two S(k)-factors.

Remark 5.2.10 Hetyei (see [40]) proved that if a graph G of order 2m has a [-factor
and IE(G)! > m2, then G has at least two 1-factors. So this corollary is an extension

of Hetyel's result.

§5.3. The number of S(k)-factors in an r-regular graph.

For graphs Hy and Hj, the join of H; and Hj, denote H;+H>, is obtained from
H;UH; by joining all vertices in V(H;) to those in V(H;). Let eg(S1, S7) where S; <
V(G) and S, € V(QG), denote all edges in G which have one end in S; and the other in
Sa.

The following result will be used in this section.

Theorem 5.3.1 (Las Vergnas [31]; Hell and Kirkpatrick [23] and Amahashi and

Kano [2]) For k 2 2, the graph G has an S(k)-factor if and only if
1(G-S) < kIS! for all S & V(G).
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Theorem 5.3.2 Let G be a connected r-regular graph (r 2 4) of order n which is not

isomorphic to K, ;. Then G has at least n star-factors each of which is either a proper

S(r)-factor or a proper S{r-1)-factor.
Proof: Let x€ V(G) and the neighbours of x be denoted by N5(x) = {y1, y2, .., ¥}

Let Gx = G[V(G)-{x}-NG(x)] and I(Gy) = {z1, 22, ..., Zn} (Recall that I(Gy) denotes
the set of isolated vertices in Gy). Obviously, we have h < r-1. We study the

structrue of G by considering several cases.

(i) Suppose II(Gx)! = 0. In this case we claim that Gx has an S(r-1)-factor or
G = K41,0+1-F, where F is a 1-factor in K4 ;1. If Gx has no S(r-1)-factor, then by
Theorem 5.3.1 there exists a set S in V(Gy) so that i(Gx-S) > (r-1)ISl. Since
Ng(1(Gx-8)) & SUNG(x), on counting edges between SUNG(x) and I(Gx-S) we
have rlI(Gx-S)I £ rISI+r(r-1) or ISl+r-1 2 1(Gx-S) > (r-1)ISI. Simplifying we get IS|
=0Qorlasr24. Butl(Gx)=9,s50S # & and thus ISl = 1. Let S = {s}. Then
i(Gx-{s}) €r. But i(Gx-{s}) > (r-1), and thus i(Gx-{s}) = r. Moreover, as ri(Gy-
(s}) = r2= eg(I(Gx-{s},[s}UNGg(x)) and G is connected, it follows that G =
K,+1.r+1-F and the claim is proved.

@i1) If II(Gx)! = 1-1, it is easy to see that G = K, ;. Which has been excluded.

@iii) If 0 < II(Gx)! < r-1 and V(G) = I(Gx)U[x]UNgG(x), then G = (x, zq, ...,
zn}+ Gl{y1, ..., v}

(iv) Suppose that 0 < H[(Gx)l < r-1 and V(G) # (G )U{x}UNg(x). Let Gy'
= G[V(G)-{X, Z1, «er Zp» Y15 -+ Yr}]. Then IV(G)l 2 2 and I(G4') = D. We will show
that Gy' has an S(r-2)-factor. In fact, if G¢' has no s(r~2)-factor, then by Theorem
5.3.1 there exists a set §' in V(Gy') so that i(Gx'-S') > (r-2)IS'l. Moreover, as 1(Gy")
=0, §' is non-empty. Counting edges we have

(r-2)I8" < I(Gx'-S") < IS'l+r-h-1

or 1 <181 < (r-h-1)/(r-3) = 1+ f—;‘
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Since r 2 4 and h is a positive integer, h = 1. This implies that IS'l = 1. Thus we have
1(Gx'-S") =r-1. Now each vertex of I(Gx'-S") is adjacent to the one vertex of S' and to
r-1 vertices of {yi, y2, ..., yr}. But as x and z; are each adjacent to all of {yy, ya, ...,
vr}, we have at least 2r+(r-1)2 = r2+1 edges incident with (yy, y2, .... y;} which is
impossible.

Thus we conclude that G must be as described in (i),(ii) and (iv) and we now
study these graphs.

If G = Ky 41-For G = {x, 2y, 22, ..., zh}+G[{y1, ¥2, -.., yr}1, it is not hard to
find n proper S(r-1)-factors in G. In case (i), each vertex u of G is the centre of an r-
star which is easily extended to an S(r)-factor and this S(r)-factor has the only r-star
centred at u; thus giving n distint proper S(r)-factors in G. In (iv), each vertex is the
centre of the only (r-1)-star of the S(r-1)-factor. Thus we obtain n proper S(r-1)-

factors and each of these S(r-1)-factors has only one (r-1)-star centred at the

different vertices. We have the required factors. []

§5.4. Miscellaneous results on perfect matchings.

Chartrand et al. [14] have studied perfect matchings in the square of a graph
and showed that for any connected graph G the square G? has a perfect matching if
and only if G has even order. In this section, we study further properties of power
graphs with respect to perfect matchings. In particular we look at when the power
graphs are elementary and when they are l-extendable. In order to do so, we start by

studying trees and the powers of trees.

Lemma 5.4.1 For any tree T, there exists either a leaf which is adjacent to a vertex

of degree two or two leaves with a common neighbour in T.
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Proof: Let P be a longest path in T and x an end-vertex of P. Consider the vertex y
which is adjacent to x. If y is of degree 2, we are done. If y has degree at least 3, then

one of its neighbours is a leaf as otherwise P is not a longest path. []

Lemma 5.4.2 For any tree T of order 2m:
(1) there exists a perfect matching F in T2 which has at least one edge of T; and
(2) there exists a perfect matching F in T° with at least two edges of T, unless T

is isomorphic to Kj 2mm.1-
Proof: Use induction on m.

Obviously, both of (1) and (2) are true for m = 2.

Suppose that (1) holds form < n. Letm=n 2 3 and T be any tree of order 2n.
If T contains a leaf x which is adjacent to a vertex y of degree 2, then by the induction
hypothesis (T-{x, y})2 has a perfect matching F', and F'U{xy} is a suitable perfect
matching of T2. Otherwise, by Lemma 5.4.1, there exist two leaves x and y with a
common neighbour in T. Thus xy€ E(Tz). Again by the induction hypothesis
(T-{x, y})2 has a perfect matching F which contains at least one edge of T-{x, y}.
Then Fu{xy] is a suitable perfect matching of T

Next, we suppose that (2) is true form <n. Letm =n 2= 3 and let T be a tree
of order 2n, T £ K 25.1. By Lemma 5.4.1 there are vertices x and y in T so that either
x is a leaf adjacent to y which has degree two, or x and y are leaves with a common
neighbour. Let T' = T-{x, y}. If T" £ K; 253, then by induction hypothesis, (T')3 has a
perfect matching F' with at least two edges of T' and F'u({xy} is a suitable perfect
matching in T, Suppose that T' = K 253. Let the centre of K; 2,.3 be u and the leaves
be vy, va, ..., Vop.3. Since T £ K 251, T must be isomorphic to one of the three trees

given in Figure 5.3.
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In Figures 5.3(a) and 5.3(b), F = {xy, uvy, vavs, ..., vap.4V2n.3} is a pertect
matching of T containing two edges of T, and in Figure 5.3(c), F = {xv, uvy, yvs,

V4Vs, ..., Van4V2n.3) is a perfect matching of T containing two edges of T.

o0
Vi1 ® eoe0

V2 v -

(a) (b)

Figure 5.3

This completes the proof.  []

~Recall that a graph is elementary if the set of all edges which lie in perfect
matching of G (allowed edges) form a connected subgraph. Note that the allowed
edges form a spanning subgraph. Clearly, for connected graphs the property of being
elementary is weaker than that of being 1-extendable. So we begin by studying when

powers of trees are elementary.

Theorem 5.4.3 If T is a tree of even order, then T? is an elementary graph.
Proof: Let IV(T)! = 2n and P = vyv;...vm+1 be a longest path in the tree T. Then
dt(vy) =dt(vm+1) = 1.

Claim Let z = v3 (if dt(v2) = 2) or va (if dr(v2) 2 3). Then there exists a

perfect matching F of T2 so that the edge of F which is adjacent to zis in T.

105



The proof of the claim uses induction on m. When m = 2, then T = Kj 2.1 and
the claim follows easily. If m = 3, then T is isomorphic to the graph shown in Figure
5.4. If d(v7) = d(v3) = 0 (mod 2) take the edge viv; and vavy in F and if d(vy) = d(vz)

= | (mod 2) put the edge vavain F.

Vi v4

Figure 5.4

Suppose that the claim holds when m < k. Let m = k 2 4 and choose e€ E(Tz),

where
VkVk+1 if dT(Vk) =2 and

V'Vie1 if dr(vi) 2 3 and v' € N(vi)-{vi.1, Vk+1}, dT(v) = L.

Set T' = T-V(e). By the induction hypothesis, (T‘)2 has a perfect matching F' of the
required type, and so F'u(e} is a suitable perfect matching in T2. This proves the
claim.

We now use induction on IV(T)l to prove the theorem.

It is easy to check that the theorem is true for n =2 and n = 3.

Suppose that the theorem holds for n < k. Let n =k = 4. If d(vy) = 2, by the
claim, there exists a perfect matching F of T? so that the edge e = vay of F is in E(T).
This implies that vivo€ F. Then F' = F-{vyva, eJu{vv3, vay} is a perfect matching of

T*. Since the allowed edges in (T-{vy, vz])2 form a connected subgraph by the
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induction hypothesis (and are also allowed edges in Tz), and v;vi and v,y are allowed
edges, then the allowed edges of T? form a connected subgraph.

If d(v;) 2 3, then by the claim there exists a perfect matching F so that the
edge e of F which is adjacent to v; is in E(T). If e = vpv3, then there exists a leat v’
(adjacent to v3) so that v'vi€ E(F). Then F' = F-{v'vy, e}u{v vy, v'va} is a perfect
matching of T2, By the induction hypothesis, (T-{v/, Vl})2 is elementary. Since vivo
and v'vs are allowed edges, T? is also an elementary graph. If e = voy and y # v3
(notice that y must be a leaf), we may assume y = v (otherwise choose yvavi...vi 4
as a longest path). Let v'€ N(va)-{vy, va} and v'ze E(F). Then F' = F-{v'z, ¢}uU
{v'vy, vaz) is a perfect matching of T2, Again using the induction hypothesis,
(T-{v', vl})2 is elementary. Since v;v; and v'vy are allowed edges, T is an

elementary graph. []

Since trees are minimal connected graphs, we can easily generalize the above

result to all connected graphs.

Corollary 5.4.4 If G is a connected graph of even order, then G is elementary.
Proof: Let T be a spanning tree of G. By Theorem 5.4.3, T? is elementary. Since
every spanning supergraph of an elementary graph is elementary, G? is also an

elementary graph.  []

Although for every tree T of even order T? is elementary, it may not be the case
that T is l-extendable. For example, (Pzn)2 is elementary but not l-extendable.

However, we do have the following result.

Theorem 5.4.5 If T is a tree of even order, then T is 1-extendable.

Proof: Let IV(T)l = 2n. We use induction on n to prove the result.
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It is easy to see that the claim holds forn=1 and n = 2.

Suppose that the claim holds for n < m and let T be a tree with 2m vertices. By
Lemma 5.4.1 we know that T has vertices v; and v; so that either dt(v;) = 1, d1(va2) =
2 and vvo€ E(T), or dt(vy) = dt(vy) = 1 and v; and v, have a common neighbour. Let
T = T-{vi, v2}.

Case 1. Suppose that vy is adjacent to v2 in T and dt(v) = 2. Let v3 be the
other neighbour of v,. Let Nj = N1(v3)-v2 and Np = N7(Ny)-v3. By the induction
hypothesis, (T')3 is 1-extendable. To see that T° is l-extendable, we need only to
consider the edges of {vivz, vav3, vivaju{vix I x€é N{Ju{voy Il yE NJU{vyz |
z€ N7J.

For the edge vyva, let Fy be a perfect matching of (T')3. Then Fiu{viva}isa
perfect matching of T’ containing vivj.

For the edges vix (x€ N) and v;vs, let F; be a perfect matching of (T')3
containing vsx, then Fp-{v3ix}u(vyvs, vix} is a perfect matching of T containing v;x
and vavi.

For the edges vy (y€ N;) and v,v3, let F3 be a perfect matching of (T')3
containing yvj, then F3-{yv3}U{v,v3, vox} is a suitable perfect matching.

For the edges v,z (z€ Nj), there exists a vertex w belonging to N; so that zw
is contained in a perfect matching Fj4 of (T')3. Thus Fs-{zw}U{v|w, voy} is a perfect
matching of T as required.

Case 2. Suppose that both v; and v, are leaves of T with a common neighbour
vi. By the induction hypothesis, ('I“)3 is 1-extendable. Let N; = Np(v3)-{vy, v2} and
N2 = NT(Ny)-v3. To see that T is 1-extendable, we shall show that each edge of
{vivy, vavs, vivajul{vix ti= 1, 2; xe Ny Ju{viy i =1, 2; ye N,} lies in a perfect
matching.

For the edge vyvy, let F; be a perfect matching of (T')3. Then Fiu{vvy) isa

perfect matching of T containing vyvj.
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For the edges viv3 (respectively vavs) and vix (respectively v,x), x€ Ny, let
F2» be a perfect matching of ('I")3 containing vix. Then Fa-{vix}u{vvj, vax)
(respectively Fa-{v3x}U{vavs, vix}) is a perfect matching of T as required.

Finally, for the edges viy (1 = 1, 2; y€ N3,), apply the same argument as

previously but with F3 a perfect matching containing viy (y€ N»). (]

As before we may strengthen Theorem 5.4.5 so that it applies to all connected

graphs.

Corollary 5.4.6 If G is a connected graph of even order, then G’ is 1-extendable.

Proof: For any edge e = xye E(G3), let dg(x, y) =1 (1 €1 < 3). Then there exists an
induced path P of G from x to y with length i. Since any subtree of a connected graph
can be extended to a spanning tree, there is a spanning tree T of G containing the path
P. Hence e = xye E(T3). By Theorem 5.4.5, there exists a perfect matching of T, and

hence of G3, which contains e. Therefore G3 1s 1-extendable. D

Even though we have obtained some results on 1-extendability of powers of
graphs, there still remain many problems in this area. One is: Given n determine the
least integer m = m(n) so that the m' power of a graph is n-extendable. We have
shown that m(1) = 3. Another is to characterize those graphs G for which*G? is 1-

extendable.

Next, we give a Nordhaus-Gaddum type of result concerning matchings. This
result exhibits a relationship between graphs and their complements. More precisely,
letting F(G) denote the maximum number of independent edges in G, we shall study

upper and lower bounds for F(G)+F(G) and F(G)-F(G).
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Theorem 5.4.7 Let G be a graph of order 2n and G £ Ky, or I-(z,,. Then

n < F(G)+F(G)) < 2n, and

n-1 < F(G)-F(G) < n%,
The above bounds are sharp.
Proof: For any graph G of order 2n we have F(G) < n. Hence

F(G)+F(G) < 2n.
To see that the bound is sharp, Let G be a perfect matching of K;,. Then F(G) = n and
F(G) = F(Kz,-nK) = n.
For the lower bound, let M be a perfect matching in K, and G any graph of

order 2n. Then MNE(G) and MmE((-}), are independent edges in G and (-3
respectively. Thus IMNE(G)l < F(G) and IMAE(G)l € F(G). So F(G)+E(G) >

IMmE(G)I+IMmE(E})I = IMI = n. This bound is seen to be sharp by considering G =

Ky 2n1.
F(G)+F(5)
2

TaN

For any real numbers x and y, 4xy < (x+y)2. Thus F(G)~F(E}) <( )2
n’. This bound is sharp as if G = nK,, F(G)-F(G) = n%.

Since neither G nor E} is empty, then, as F(G)+F(E}) > n, we have F(G)-F(E})
2 F(G)(n-F(G)) and F(G) =2 1. Clearly, if F(G) = n, then F(G)-F(E}) 2n. So we
suppose that 1 € F(G) < n-1. The function f(x) = x(n-x) is increasing on [1, n/2] and
decreasing on [n/2, n-1] and hence

F(G)*F(G) = min{f(1), f(n-1)} = n-1.
Therefore for any graph G, G £ Ky, or I-(z,,, F(G)-F(E}) 2 n-1. Taking G = Kj 2.1, the

lower bound is achieved.  []
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We remark that this theorem can easily be extended to graphs of odd order.

Since this is more complicated we will not describe it here.
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