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ABSTRACT

A model of rigid strings with liquid-crystal-like order is
proposed. Both its classical and guantum mechanical properties
including renormalization are analyzed. It is shown that the model
describes an off-shell generalization of a theory of minimal
surfaces (or string worldsheets). A new kind of local symmetry, the
area-preserving symmetry, plays an important role in the model. A
saddle point approximation is employed and fluctuations around the
saddle point are considered. By analyzing the singularities of the

free energy of a gas of rigid strings, it 1s shown that the

Hagedorn temperature T, does not coincide with the critical

temperature T_, at which the effective string tension starts

vanishing. An intermediate region (a rough phase) is shown to exist
which separates a smooth phase from a crumpled phase. The phase
diagram of the model is worked out. It turns out that the phase
structure agrees nicely with that obtained from the numerical
simulations of discretized random surfaces with bending rigidity.
Implications for the finite temperature phase transitions in QCD

are discussed.
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Chapter 1

Introduction

There are common trends in statistical physics and quantum field
theory. In the past, this connection has been fruitful. An example
of this connection is the random walk and the propagation of free
particles[l]. One could hope for this connection in the case of the
"field of force”™, the color-electric flux for instance, where
random walks should be replaced by random surfaces. In fact,
problems involving the statistics of random surfaces appear in many
areas of theoretical physics, ranging from 2-d gravity and strings
to condensed matter and biophysics.

In the case of the free bosonic string[Z] it is now clear that
these surfaces can provide a representation of "strings"”, if the
dimension of the embedding space is less than onel3],

Related and perhaps more realistic random-surface theories arise
in the statistical mechanical descriptions of rigid strings[4'5],
which is proposed as QCD strings, as well as membranes @] . In these
theories the extrinsic-curvature term in the action is important in
determining the properties of the theories. It has also been argued
that such an extrinsic curvature term 1s relevant in a class of
regularized string theories without tachyons[7'8]. It might not be

too surprising that an effective bosonic string theory does not



have a tachyon in its spectrum since the extrinsic curvature term
might have a fermionic origin[g], that is, it might arise as a
result of integrating out fermions in the functional integrals.

Perturbative calculations indicate that the extrinsic curvature
term can only govern the short distance behavior[4'5'6llo], a
situation very similar to the low temperature behavior of the 2-d
Heisenberg model[1l] Recent non-perturbative investigations of
possible finite-temperature transitions of rigid strings showed
that [12] the theory has a square-root singularity at the
transition, Jjust like its counterpart, the Nambu-Goto string[13]. A
similar singularity also exists for rigid surfaces[14]

Recently rigid surfaces and/or membranes with crystalline order
have become an object of study and seem to have interesting phase
structure[15-18]  ami and Kleinert [15] showed that the crystalline
order does not change the renormaiization of the bending rigidity
at short distances. On the other hand, a perturbative calculation
by Nelson and Pelitill®] showed that the effective rigidity modulus
grows at large distances and predicted a crumpling transition. It
is important to note that their description (the bending free
energy (4) of ref. [16]) 1s non-covariant. Using a covariant
formulation, David and Guitter[l7] arrived at a similar conclusion
in a related model in the large-d limit, where an UV-stable fixed

point was found, associated with a second-order crumpling



transition. Paczuski, Kardar and Nelson[ls] developed a Landau
theory of the crumpling transition in which it was shown that
fluctuations drive the transition first order for embedding space
dimension less than 219.

In the context of fluid membranes, the surface density is in
fact fixed because of the large compression modulus of the fluid.
Helfrich[1%] and Forster[20] first pointed out that tangential
flows are induced by any normal displacement of the surface and
incompressibility then implies a (induced) long-range couplings
between the mean curvature at different points of the surface. A
full renormalization group analysis by pavid[21l] showed that those
long-range forces are in fact screened by thermal undulations
beyond a length which is much smaller than the persistence length

of the surface.

In this thesis, we consider a related problem, the implication
of fixed trace of the metric in a model of rigid strings. The first
order form of rigid strings[4] is used and the geometrical aspect
of the model is stressed. In the mathmatical literature[22],
surfaces can be classified into two distinct kinds according to
their mean curvatures: the minimal surfaces with vanishing mean
curvature and the general surfaces with nonvanishing mean

curvature. It is shown in this thesis that the model of rigid



strings with fixed trace of the metric describes an off-shell
generalization of a theory of minimal surfaces. A new kind of local
symmetry, the area-preserving symmetry, plays an important role in
the model. In fact, for minimal surfaces, this symmetry implies a
fixed trace of the metric (see Section 2.3).

Although our calculations and results may find applications in
condensed matter and membranes, we will pay special attention to
QCD strings[4'5] in this thesis. The basic assumption we accept
here is that the confinement of quarks in QCD is associated with
the formation of an infinitely long color-electric flux tube with
finite width formed by pulling a quark—-antiquark pair infinitely
far apart. To a good approximation, such a flux tube can be
described by a string.

As demonstrated by the existence of the Nielson-Olesen
vortex[23], an infinitely long flux tube or a string can be
perfectly stable classically (or/and at zero temperature). Quantum
mechanically (or/and at finite temperature), however, whether it
remains stable or not is an open question and depends on the
effective model of strings.

Usually, one assumes that the internal degrees of freedom of the
flux tube are "frozen" and concentrates on the resulting effective
dynamics of the string coordinate vector field, which is local and

reparametrization invariant [24]. Here arises the trouble. According



to the Mermin-Wagner-Coleman theorem[zs], no spontaneous breakdown
of global continuous symmetry, such as translation and rotation
invariances, can occur in a 2-dimensional theory with local
interactions. This is because the Goldstone bosons associated with
the symmetry breaking always destroy the long-range order of the
2-dimensional system with local interactions. Therefore, if the
Mermin-Wagner—-Coleman theorem applies to the model of strings, the
assumption that an infinitely long quantum flux tube of finite
width exists, is self-contradictory! Adding a rigidity term to the
effective action does not cure the problem[4'5'12].

We will show in this thesis that due to the classical constraint
of fixed trace of the metric, which induces effectively long-range
interactions at the quantum level (see Section 4.3), the
Mermin-Wagner—-Coleman theorem is inapplicable for the present
model. We can then study the phase transitions of the model.

After a suitable gauge fixing removing the unphysical degrees of
freedom, the path integral of the strings can be evaluated
non-perturbatively (in a saddle point approximation) in physical
dimensions to determine the phase diagram of the model. It is shown
that an intermediate region exists, which separates a smooth phase
from a crumpled phase. The phase diagram for the model is worked
out. It turns out that the phase structure of the model is, in

certain aspects, in common with that of liquid crystals. (Roughly



speaking, the existence of a smooth (or flat) phase at large scales
would imply a liquid-crystal-like order. This is because the smooth
(or flat) phase means both the long-range (orientational)

correlation between normals to the string worldsheet and the

long-range (positional) correlation of Xt field.) This would imply
that the classical constraint of fixed trace of the metric, which
is a natural result for minimal surfaces, induces a liquid-
crystal-like order at the quantum level. In fact, without fixing
the trace of the metric, the fluctuations of metric always destroy
the long-range order of the system for all finite temperatures. As
a result, the system does not have a flat phase at large
scales[14] | 1t is in this sense that we say the model to have a

liquid—-crystal-1like order.

The remainder of this thesis is organized as follows. In Chapter
2, we propose the model of rigid strings with liquid-crystal-like
order and discuss its (classical) symmetry properties. A comparison
of the model with other rigid strings, the Polyakov-Kleinert
string[4'5] and Pisarski's model(26] is made. In Chapter 3, a
generalized covariant gauge fixing procedure is devised. A saddle
point solution of the lagrange multiplier is obtained for d>2, and
its quantum fluctuations are calculated. In Chapter 4, we discuss

one possible phase transition in the model, the smooth-rough



transition. The Hausdorff dimension and the width of the string are
calculated.

In Chapter 6, we estimate the Hagedorn temperature of the model
under a well-motivated speculation. The Hausdorff dimension of the
string sheet at the Hagedorn temperature is calculated. Chapters 7
and 8 are more mathematical but standard. In Chapter 7,
computations on the path integrals and then the free energies of
rigid strings on a torus and a cylinder are presented respectively.
The mass spectrums for both cases are obtained. The tachyon free
condition is then obtained which is consistent with the saddle
point solution of Chapter 4. In Chapter 8, the Hagedorn temperature
of the system 1s calculated more rigorously than in Chapter 6. The
result agrees nicely with the simple estimate of Chapter 6. The
phase diagram of the model is worked out and compared with the
numerical result of discretized random surfaces. The implication
for the finite-temperature phase transitions in QCD is discussed in
Chapter 9.

We end this thesis with a conclusion in Chapter 9 followed by

three Appendices showing the details of evaluation of the

determinants of the operator (—A4—l°) on a cylinder and a torus

respectively.



Chapter 2
Liquid Crystalline, Minimal Surface and the Area-

Preserving Invariance

In this chapter, we propose a model of rigid strings with liquid-
crystal~like order and discuss its classical symmetry properties.
In particular, we argue that the proposed model describes an
off-shell generalization of the theory of minimal surfaces. We show
that the model of minimal surfaces has the area-preserving
invariance, besides the conformal invariance, at the classical
level. A comparison of the model with other rigid strings, the

Polyakov-Kleinert string and Pisarski's model, is made.
2.1 THE POLYAKOV-KLEINERT STRING

Since the Polyakov-Kleinert string[4'5] has a close relation
with the model to be proposed, we first review the former briefly.
The action for the Polyakov-Kleinert string is given by, in the

second-order form[5]:

S(an) _ Go'[dzéﬁ+ 21 J‘dzéﬁKiaKib ) ae 1
O,

where G, is the string tension at zero temperature and has the



dimension of mass square, 1/0L0 is the dimensionless bending

rigidity, g, is the induced metric and K',, is the second

fundamental form or the extrinsic curvature tensor defined by the
Gauss-Weingarten formulas:

Ha M
gab B aaX abx 7
H ey M 1 1ip
00x =T "0X + K n 9 2

TR By M
n, n, Sij ;0 aax =0 ,
( a,b,c =1,2; 1,9 = 3,4,...d; L =1,2,...d).

Using (2-2), the rigidity term in (2-1) can be rewritten as:

1 2 2
S_,, = —J‘d &fa (axt) ’
g.
204,
where 2-3
T aby p
A = (174919, (fg g0 xM)
The action (2-1) is invariant under reparametrizations:
ox* = 8% x* 2-4

The extrinsic curvature term (2-3) is invariant under the transfor-
mation:

o kxt 2-5

To obtain the equation of motion, we consider the variation:

x}; = Xu( E3) + SXH( &) 2-6

From 8S = 0, we obtain the equation of motion:



a ab 1l.a
9,2° = 6,0,(Jag"a X + (1/a)d, [Jg (59 Ax"Ax,

a PP a
-20°9,X 0 X AX - 3°AX)) ] 27

Conditions at boundaries, if exist, should be understood. Because
of the reparametrization invariance of the action, not all of the
equations of motion in (2-7) are independent. To remove the gauge

degrees of freedom, one can choose an orthonormal gauge[27]

In this case, Eg. (2-7) reduces to

—a a 1l.a 2 V.2 a V.2 an2
aa}:u = gd.d X, + (1/oco) aa<-2-a xua X0X, - 209.X9d xvabxu - 00 X))
= 6,0’x + (l/o,) (97X 9?x¥9?x - 29 92xvo?x 92X
un o v un a v un
— 4920 XY0 9°X 92X —4020 X¥0 0?X 9°X —29*x ) =0 . 2-9
b a T8 v b a v T8 T8

Furthermore, as a result of the reparametrization invariance,

the energy-momentum (EM) tensor defined by

b oL oL oL
T, = -8, L + 9 X —— - X0 ——— + IIX —— 2-10
dd,_X 80 0. X 80 0 X
c b b c
is not only conserved
.abTab =0 2-11
[28,29]

but also vanishes identically

10



Tb = 0 , 2-12

which in turn means that the EM tensor is traceless

It should be noticed that (2-12) or (2-13) does not necessarily
imply conformal invariance here except at the fixed point. In fact,
it is shown explicitly in Ref. [27] that there is generically no
local residual reparametrization invariance in the equation of
motion (2-9). This is not too surprising since conformal symmetry
in 2-d quantum field theory is generically a property of massless
theory, or of the renormalization group fixed point of massive
theory. The Polyakov-Kleinert string is a kind of massive quantum
field theory and so is generically not conformal invariant. The
conformal invariance is restored only at the fixed point of the
model.

There exists a first-order description of the model with the

action[4]

st 2 1 2
S Gojd &g + Jd e{Jg ax*)’+ lab(aaX”abX”- g}t

2a0

where g, 1s treated as an independent metric field, A%® is the

Lagrange multiplier which enforces the induced metric. Generically,

the action (2-14) is not Weyl invariant. It is easy to prove that

11



the action (2-14) is equivalent to the action (2-1) at the
classical level, that is, both lead to the same equations of

motion. From

63
— =0, and —— =0 2-15
S\ dg_,

(1lst)

we find, respectively,
g, =9x0x 2-16
and

b 1l ab 2 bd
AY = o0 g + Jq {—2-ga (Axh° - 2Ax*(g°°g DD XM}, 2-17

where we have used the identity

Ax”aax” =0 . 2-18

Egs. (2-16) and (2-17) can be viewed as constraints. The equation

of motion can be obtained from
(1st)

ds
=0 2-19
SxH /
we find,
{2kt -9 Aoxh )} =0 | 2-20
o

[0}

Substituting the constraints (2-16) and (2-17) into (2-20), we
recover the equation of motion (2-7).

Though there is generically no local residual reparametrization
invariance in (2—9)[27], for a special sector corresponding to

minimal surfaces (or string worldsheets), the theory is both Weyl

12



and conformal invariant classically. To show this, we reconstruct
the string worldsheet by means of the collection of its tangent

two-planes. In this formulation of the string evolution, the

Polyakov-Kleinert string is (classically) equivalent to G, 4

(S0(d) /SO (2)XS0(d-2)) ©o-model up to certain integrability
conditions, expressing the fact that not all collections of two
planes are tangent to some two—surfaces[4]. However, as shown in
refs. [22,30], for minimal surfaces, the integrability conditions

are trivially satisfied and the Polyakov-Kleinert string action is

equivalent to the Kahlerian G, 4 0-model coupled with 2-d gravity

d

which is classically both Weyl and conformal invariant [301,

In our formalism of X" fields, substituting HM=AXM=0 and the
expression for the lagrange multiplier (2-17) into the action
(2-14) gives an action which is explicitly Weyl and
reparametrization invariant. Though this minimal surface action
(on-shell) has the same form of Polyakov's bosonic string
action[2], the former is essencially different from the latter. One

way to see the difference is by counting the degrees of freedom of

the two models. The G, ; 0-model has 2(d-2) independent components.

The minimal surface action in terms of XM field has 2d components

13



with Weyl and reparametrization invariances. This can be seen from
the equation of motion (2-7). Substituting HM=AxXM=0 into (2-7)

gives A’xt=0 which has two sets of minimal-surface solutions

AX%1”=O. That is, the degrees of freedom of the X" fields are

doubled for minimal surfaces. Therefore, to get the correct number
of degrees of freedom for a minimal surface, four instead of two
longitudinal modes have to be removed by gauge fixing procedure.
This counting of degrees of freedom agrees also with that in the
Hamiltonian formalism of the Polyakov-Kleinert string[28]. As is
well known, Polyakov's bosonic string has only d components with

Weyl and conformal invariances classically.

2.2 PISARSKI'S MODEL

We now turn to Pisarski's model[26], which was proposed by

Pisarski as a toy model of quantum gravity with higher derivatives.

This is a nonlinear 6 model which can also be viewed as a model of

a rigid string with a flat metric. The action, given in our

notation by

14



1 2 2 2
S =_Jd (9" xM) 2-21
o) 2a
is subject to the constraint

dxfo xt =38 , 2-22
a b ab

By introducing a Lagrange multiplier A®°, the action can be written

as

1 .
e — | { @ s A" exx -5 ) 2-23
20,

Comparing (2-23) with (2-14), we see that Pisarski's model can

formally be obtained from the Polyakov-Kleinert string by assuming

9.y = Sab ) 2-24

However, 1t should be noticed that (2-24) is not a natural or
legitimate gauge for the Polyakov-Kleinert string because of the
absence of the Weyl invariance of the model as mentioned at the end
of Section 2.1. Therefore, these two models are in general not
equivalent.

The equation of motion of Pisarski' model 1is given by[26]

1 _.a 2 v.2 a V.2 a2
aa(?a xua X d X, - 20 abx 0 xvabxu-a 0 Xu)
2. ~2,V~2 2.V~2. ~a
=0 xva X 0 xu-zaaa X 0 xva X,
—49%) x¥9 9°x 9%x -43%0 x'0 9°x 3°x —-2d%x =0 2-25
b a M WV o Ca v T 1!

Comparing (2-25) with (2-9), we see that the equations agree with

15



each other up to a c, term. As shown in [27], this equation does

not have any local residual reparametrization invariance, which in
turn means that Pisarski's model does not have any local
invariance. ( In Ref. [26], Pisarski claimed that the model has
conformal invariance at the classical level. We do not agree.)

We would like to discuss the essential differences between the

two rigid strings, although they are equivalent at the classical

level, as shown above (the equations of motion coincide up to a o,

term) . Formally, the difference will show up at the quantum level
in the path integral. For the Polyakov-Kleinert string, the
conformal anomaly follows from the measure over the metric in the
functional integral[14'31], while in Pisarski's model of flat
surfaces there is no such conformal anomaly. In more physical
language, David and Guitter(17] pointed out that Pisarski's model
describes the large distance behavior of elastic membranes, where
the strain tensor defined by

1 Ho M
u =3(aaxabx -9

ab ) 2-26

ab 4

vanishes at the classical level. Obviously, the Polyakov-Kleinert

string generically does not have such an internal structure.

2.3 RIGID STRING WITH LIQUID-CRYSTAL-LIKE ORDER

16



Motivatied by the elastic-membrane interpretation of Pisarski's
model discussed above, we now consider a system with only
ligquid-crystal-like order. That is, at large distance, only the
trace of the strain tensor defined by (2-26) (the "spin-0" part)
vanishes, leaving the traceless part ( the "spin-2" part)
arbitrary. In other words, the system under consideration has a
large dilation elastic constant but a zero shear elastic constant.

The action is, therefore,

20
(o]

Spc. = Gon2§Po+ L szé'; {-‘;1--(82}(”)2 + X(aax”aax”—2po)} ,  2=27
(o)

where p, is a E-independent trace of the metric which can be viewed

as the constant mode of the trace of the metric. (In membranes,
such a quantity represents the surface density, number of molecules

per area.)

One may wonder that the A-term in the action (2-27) ensures a

fixed trace of the metric which is just a charateristic of a fluid.
Liquid crystalline properties imply the presence of an extra vector

field with an orientational degree of freedom. Our observation here

is that the vector d,X* contained in the strain tensor (2-26)

17



carries both indices W and a. In other words, d_x! can be viewed as

a vector in either d dimensions (spacetime) or two dimensions
(tangential planes of the string world-sheet). Classically or

purely geometrically, these are Jjust two equivalent ways to look at

the same thing. In other words, the order parameters, the d x*

fields, live in the coset space SO(d)/S0O(2)XS0(d-2) classically.
Therefore, as far as the classical action (2-27) considered, the
model describes a fluid with fixed density. Quantum mechanically,

however, one of the interesting findings in this thesis 1is that,

due to the condensate of the lagrange multiplier, aaX” will live in

either the symmetric space SO(d) or SO(d-2)xS0(2) depending on the
temperature. These correspond to two different phase transitions at
different temperatures. The tracelessness of the strain tensor
means either the orientational isotropy in d dimensions in the
high-temperature phase or 0(2)XS0(d-2) symmetry in the
low-temperature phase. The phase structure of the model is, in
certain aspects, in common with that of liquid crystals. It is in
the quantum mechanical sense that we say the model (2-27) to
possess a liquid-crystal-like order.

It is important to find out what kind of surfaces (string
worldsheets) the action (2-27) describes. Then it is important to

note that the action (2-27) can be obtained from that of the

18



Polyakov-Kleinert string (2-14) by following isotropic ansatz:

gab = p08ab ’ 2-28

ab ab
A, = Mag = a8 2-29

Generically, (2-28) is not a natural or legitimate gauge for the
Polyakov-Kleinert string due to the absence of the Weyl invariance
(of course, the conformal gauge is always possible because of the
reparametrization invariance of (2-14)). Nevertheless, as discussed
at the end of Section 2.1, for the minimal surface sector which we
concern in this work, the string action (2-14) has conformal and

Weyl invariances classically which can be described effectively by

a G, 4 0-model. In this case, (2-28) is a legitimate gauge due to

the Weyl invariance while (2-29) is just a classical solution of

the theory as can be seen by substituting HMY=AXM=0 into (2-17).

If we view the G, ; 6-model as an on-shell theory of minimal

surfaces (with Weyl and conformal invariances), then the action
(2-27) can be regarded as an off-shell generalization of the theory
(with Weyl and conformal invariénces only at the fixed point). It
is the bending energy of the surface, which moves the theory away
from the mass—-shell or the criticality. (Strictly, since the metric
is not yet conformal the first term in (2-27) is not equal to the

bending energy. Nevertheless, we expect that this term, in addition

19



to A fluctuations, can provide an effective description of the

bending energy at the quantum level.) Though it can be viewed as a
gauge-fixed form of the Polyakov-Kleinert string action (2-14) for
the off-shell generalization of minimal surface sector, we call
this model as rigid string with liquid-crystal-like order. The
reason is that the minimal surface is completely atypical, while
the Polyakov-Kleinert string action (2-14) is a theory of general

surfaces. The main reason for us to study the off-shell

generalization (2-27) instead of the G, 4 0—model for minimal

surfaces is that it is free of tachyon (see Chapter 7). Moreover,
it is convenient to study the off-critical behavior of minimal

surfaces. In addition, the physical singnificance of the geometric

description is more clear in the action (2-27) than in the G, 4

o-model.

One may wonder if we can choose the usual conformal gauge in
the Polyakov-Kleinert model to describe minimal surfaces. To answer
this question, we study the classical symmetries possessed by the
equation of motion for minimal surfaces. From the action (2-27), we

find the equation of motion to be

71 [Po_l(az)ZX” -9 A9.xt - Aaxxt] =0 . 2-30
o}

20



where A can be read off directly from (2-18) by using (2-28). (The

reason for this determination is that the model of minimal surfaces

(e.g., (2-27)) can be obtained from the Polyakov-Kleinert model by

using (2-28) and (2-29).) We find
2,02
7\,=LTr7» =0 C —M 2-31
2 ab o o 2p2 .

0

Using (2-31), we find that Eq. (2-30) contains a nontrivial sector
solutions, which solve the following set of equations ("nontrivial"
here means that it is not the solution in the trivial Nambu-Goto
limit of ao—%»):

-y = 0 , 2-32

and 7»0=0L00'0 or Ao/ O, =G, 2-33

Geometrically, a string world sheet determined by (2-32) and
(2-33) is a minimal surface. The equation of motion for minimal
surfaces respect the following residual reparametrization
invariances:

a) The conformal invariance defined by
3> £3(&)
with f2(§) satisfying

d,f, + o,f, - 0 df =0 2-34
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b) The area-preserving invariance defined by

E* > £2 (&)
with £2(§)=¢€"9,£(§) and 0%f=0 ’ 2-35
satisfying ?f, = 0 . 2-36

Solutions (2-35) form a group which is known as the area-preserving
symmetry group, which exists in the Dirac membrane when the
light-cone gauge is chosen[321,

To show the invariance of Eq. (2-32) under the conformal and
area-preserving transformations, we consider the general coordinate

transformation in two dimension:

£ — f2

It is straightforword to show that

,-agl-l = F [afl } with F = { 2 .fz} 2-37
Lagzj Lafz | £ £
and
P de}:F [_;2 _:12] ’ 2-38
where
£ = a};lfa and f! = a&2 N
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Then one can show that

2 1 2 2

2
d, + 9, = (6. + 0 2~39
£ £ detF El §2)
if and only if:
1,2 1, 2 -2 -2 o )
(f2) + (fl) = (f,) + (fl) and f2f2 = —flfl . 2~40
There exist two sets of solutions of the above equations:
s . - ] . _ _e' .
i) fl = f2 and f2 = fl ;
v - _ ' : v 2-41
ii) fl = —f2 and £, = fl

Solutions (i) correspond to the conformal transformations
determined by (2-34) while solutions (ii) correspond to the
area-preserving transformations determined by (2-35) and (2-36).
We therefore see that both conformal and the area-preserving
transformations leave the Eq. (2-32) invariant. In Chapter 4, we
will show that, in a covariant gauge fixing, it is necessary to
take into account the area-preserving invariance together with the
conformal invariance to remove the unphysical (longitudinal) modes
of X-fields. This will bring a new kind of ghost into the theory,
in addition to the usual conformal ghosts.

It is important to note that the area-preserving symmetry is
irrelevant in the conformal gauge as is the case in Polyakov's
bosonic string or the Polyakov—-Kleinert string, since the Weyl mode
is generically a dynamical quantity there. On the other hand,

area~preserving symmetry means a fixed trace of the metric for

23




minimal surfaces. This is not hard to see. Under general motion

including both tangential and normal flows, the dilation of the

string worldsheet is given by [33] 8¢==V“8§a + 2n'H (H is the mean

curvature) . The area-preserving invariance means that 8 =2n'H. For

general surfaces, H#0 and so that ¢ is generically a dynamical

quantity except in the critical dimension. For minimal surfaces,

however, H=0, which means 8 =0. That is, ¢ or the trace of the
metric is fixed.
The interesting observation here is that the Polyakov-Kleinert

model in the conformal gauge describes the general surfaces (there

exist only two longitudinal components of the XM fields and the
area-preserving invariance is irrelevant), where the trace of the

metric or the Weyl mode generically propagates. (Note that in this

case the vanishing of the quantity (g®°d X9 xM-p) does not mean a

liquid-crystal-like order.) The model of rigid string with liquid-
crystal-like order, on the other hand, describes the off-shell
generalization of minimal surfaces, where the area-preserving
invariance is of crucial importance.

We now summarize the symmetries of the model at the classical

level as far as the minimal surface sector (2-32) ié concerned,
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including the global rotation and translation symmetries in the
imbedding space.

(i) Local symmetries:

(a) The conformal symmetry defined by (2-34);

(b) The area-preserving symmetry defined by (2-35) and (2-36).

(ii) Global symmetries:

(a) Euclidean invariance in the (&!, &%) plane;

(b) the global 0(2) rotation invariance of the XMt field vector

The associated global 0(2) group can be mapped to the center of the

area-preserving symmetry group SU(w)[32].

(c) Translation invariance of the XM-field vector (along the

string) .

(d) The scaling invariance defined by

Y
E2okE2, p—o—2, A oA and xtoxt . 2-42
0 2 [ [

The local symmetries (i-a) and (i-b) are special for the minimal
surface sector (2-32). The global symmetry (ii-a) corresponds to
conservation of energy and momentum in two dimensions, while those
of (ii-b) and (ii-c) are the classical symmetries of the model,
since the action (2-27) only contains derivatives of the X-fields.

It is worth mentioning that Eq. (2-33) corresponds to the

"freezing" of the Lagrange multiplier at the classical level.

25



Therefore, it is important to see if these solutions (or the
symmetries listed above) are stable against quantum fluctuations.
For this purpose, we have to allow the Lagrange nultiplier to
fluctuate and see if the correlations of these fluctuations are of
short range. More precisely, we have to see if it corresponds to a
stable fixed point of the theory. The detailed calculation will be
given in the next two chapters. The anwser is that this is, indeed,

S0O.
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Chapter 3
Renormalization of the Bending Rigidity at Zero

Temperature

In this chapter, we study the scale dependence of the bending

rigidity l/OLo in the present model. The formulation of

perturbative renormalization is followed. The purpose of this
treatment is twofold: It may serve as a guide for a
non-perturbative treatment in Chapter 4. Also the role of guantum
fluctuations of the Lagrange multiplier can be seen explicitly in
this treatment. Since the temperature dependence of the coupling
will not be taken into account in the renormalization, we can view

it as renormalization at zero temperature.
3.1 RENORMALIZATION OF THE BENDING RIGIDITY
The renormalization procedure runs parallel to that followed by

Polyakov[4]. Starting from the action (2-35), we first split all

fields into slow and fast parts
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where momenta of fast quantities lie between q_,, and q.;,. The

factor of i in front of A, is chosen so that integration over A, in

iAK
the path integral is over real values (note that 5(K)=Jdle

where K=0 is a constraint). Up to quadratic in fast quantities, we
have
(a) ()
Spe. =St S S, 7 3-2

where S, is the action (2-35), which depends on slow fields only

and
{a) 1 2 -1 42 2 ,
n = J.dg {p. @x) +21A 3 X 9.X, ,
0
(b) 1 2
Siq —-Z—a- aé€ {Xoaaxlaaxl } ‘ 3-3
0

The reason for separating $;;/@ and Slgb)is that, S;,{@ can be

treated as the effective kinetic terms of the fast fields Xland7\.1

which determine the propagators of these fields while S ;(® must be

treated as a perturbation (or interaction term among the fast

gquantities) of S;;(®. To the same accuracy, we can consider the

quantities A  and d,X, to be &-independent in contrast to the fast

quantities. Also, in this approximation, the ghost determinants are
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not important, since the unphysical (longitudinal) modes of the
X-fields will be removed by the constraint (2-37) in the one-loop

approximation (see below). They become important in the

nonperturbative calculation in Chapter 4. From S; (@, we can find
the propagators of the fast fields Xland.ll. For this purpose, we
add the external source of the X, fields to S;;®,

II (o]

1
s (ot = gjdzi{pgl @xFPe2indxtoxt2a gtk b 3-a
(o]

Defining a Green function,

1
o p

o o

o' M (E-En=p 8" 8(E-E") , 3-5

and translating the X, fields,

AY

p p ~1 KV _
Xt = X+ plato, ’ 3-6
we find
(a) _l 2 1, V2Ol N2 1B BV v
S, (J,) = ———Jd& {po (%) -0 pl3.G 3,
20
(o]
. By M . 1 Hoy BV V _
+ 2iA3.x9.x + 2ip”'A9x79,6 I, } . 3-7
Translating the X, fields again,
W _i213a.m _
X; - x 1a4axopo ” 3-8
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where the quantity 1/0% should be viewed as a Green function, we

find
(a) L [4% L1 924R 2 ~1 MY Y
Sy (3 = o= Jd & {p (% 2 - aplagG” g,
(o]
(aakl)2 2 1 Koy BV _V
+ v Py +21p;TA 9.X 9.6 I, } _ 3-9

Translating the kl field

. - Had BV _V
aaxl - aaxl+ 1p03aaxoa G J, 5 3-10
we finally obtain
a A)?
(@, pu 1 2 12 m2 (%N 2
S;; (Jy) —Egjdi{po(a X))+ — P
o 0
o 9 xM9 x¥
-1 _uv
oy (PoG - ——=—=2250 } | ST
0
The path integral is defined by
1 “Sp.c. 9x)
z2(J,) = Z—j[dx dAle ,
o
with
Z,6 = 2(3,=0) . 3-12

Using (3-11), (3-12) and (3-5), we can easily read off the

propagator or the full Green function of the X; fields,
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<X (@, (=) >

o
— oo A= _
= =2 (Suv pola Xouaov) 5 3-13
g
where
Mp9°x 9Xx =2 and S =d | 3-14
(o] Ol a ov [TAY

From (3-13) and (3-14) we see that the two longitudinal degrees

of freedom of the X ,-field propagator have been removed by the

constraint (2-37). This explains why we can neglect the ghost

determinant in the one-loop calculation. In the same way as above,

we find the A-field propagator to be

—p)>= o p? -
<A (@E)A (p)>=ap®/p_ ‘ 3-15

In (3-13) and (3-15), g and p are momenta carried by X; and ll
respectively. Substituting (3-13) into S ;® gives a counterterm W,

to S :

(o]

1 2 d-2 qmax 2
W, =—— < X>A=— 1ln —— |d A 3-1¢6
1 zao J.d g aaxlaa 1 }\'O 41 n q J. E"po (o] °

min

We notice that there is no other coupling term of X or kothrough
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klin S;;®. As a result, Egq. (3-16) is the only counterterm for our

model at least at the one-loop level. This can be traced back to

the decoupling of p from the curvature fluctuation modes (i.e., the

pOX2 coupling in the rigidity term) by the constant density

constraint.

A discussion of the kinetic term of the kl field in (3-11) is

now in order: First, it is nothing but a kind of conformal anomaly

of the theory at the quantum level. This can be seen by the

observation that the Xl field has the same dimension as that of the

string tension. A scalar field in two dimensions with the dimension
of mass squared must be proportional to the scalar curvature of the

surface,
A~ R(E) . 3-17
With the identification (3-17), we immediately see that the

kinetic term of the A field in (3-11) has the same form as the

conformal anomaly. Secondly, it is a non-local interaction term
representing the internal interactions between distant Gaussian

curvatures and implying a long-ranged order in the model. Such an
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"anomaly" term arises as a result of quantum fluctuations which
force the Lagrange multiplier and, therefore, the density of the
string to fluctuate. This term also exists in crystalline membranes
and hexatic membranes[16! as a result of integrating out the
in-plane phonon. We shall show in the next section that such an
effective non-local interaction term arises at high temperature in
the saddle point approximation. Moreover, it 1s obvious that this

anomaly term does not renormalize the bending rigidity at the

one-loop level. Finally, we note that the ll term can be localized

by the following transformation:
2
A, = 0°0/p, P 3-18

where ¢ is a real scalar. The Jacobian introduced by the varible

transformation (3-18) has the effect of removing two massless
longitudinal degrees of freedom of the X-fields. However, in the
present one-loop calculation, it can be neglected just as the ghost

determinants can, as explained previously. It should be mentioned

that the ¢-field propergator is divergent and needs both

ultraviolet and infrared regulators.

Now, we obtain a renormalized action in the form
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1 2 1 2 2 n d-2 . 9max
o J-d F,{po (@°X)° + A (aax:aaXO—Zpo(l—a—ln ) }
[o]

SL C= o
Y i qmin

+ Gojdzﬁ p. , 3-19

After renormalizing the X  fields,

1/2 A A
Xo—)Z Xo ’ 0—) o’ po—) po

d-2 q
Z=1-—"0 1n—— , 3-20
4an qmin

we obtain

3" = — J.dZE_,{pgl @xh (3 x'9 x"- 20,) }

L.c.

200
J 2
+ 0 |d §po , 3-21
with
1 1 d-2 qmax
* o 1n 3-22
r ao 47t min :

The minus sign on the right hand side of (3-22) means asymptotic
freedom of the extrinsic coupling in the ultraviolet, which is a

desirable property of QCD. In (3-21), we have dropped the

subscripts "o" of the A and X fields. The result (3-22) agrees with

that of Refs. [6] [19] and [20].

For the Polyakov-Kleinert string, where p is coupled with the

curvature fluctuation modes, Polyakov has found[4], instead of
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(3-22),

1 d l qmax
- n 3-23
o, 4T q . .

min

1
o

r

The result (3-23) has also be found by a number of authors for the
Polyakov-Kleinert string[s] and the membranel10] in the

second-order form.
3.2. THE MEANING OF THE X-FIELD RENORMALIZATION

An interesting point, as can be seen from the above derivation,

is that only the XM fields undergo renormalization. The XO field

does not. This is different from the rigid string or the membrane

without the constraint of constant density, where both XM and XO

fields undergo wave-function renormalization[4].

We here argue that the xXM-field renormalization due to quantum
fluctuations could be expected for strings or membranes with fixed
density or liquid-crystal-like order. (In the Euclidean space ,
both the rigid string and the membrane have the same form of
Hamiltonian. The only difference is the manner of introdﬁcing the

temperature: In the case of rigid string, the temperature is

introduced through periodic Euclidean time (with period B=1/T),
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while in the case of the membrane, temperature is introduced in the

usual way through statistics, i.e., Z=Tre_BH. Therefore, the
following arguments on membranes can also be applied to string
world-sheet.)

As shown by Helfrich[6'34], the deformation of a membrane due to
thermal fluctuations makes its average size A' smaller than its

true area A:
A 1 a, 49
Al n 4n gq

max

3-24

min
where d=3 has been taken. The average size of the membrane can be

calculated from the correlation as

25

2
A'——  <[XE-XxEI > | 3
I&-&7 2~ & -0

It is clear that A is nothing but the correlation of the

undeformed membrane coordinates (the bare fields), while A' is the
correlation of the deformed membrane coordinates (renormalized
fields) .The significance of the XM-field renormalization due to
thermal fluctuations is that the average size of the membrane is
smaller than its true area. (The anomalous dimension of the
physical length is then closely related with the Hausdorff
dimension of the deformed membrane.)

It is also interesting to note that the renormalization of the

extrinsic coupling (3-22)) can be put into a form[6'34],
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111 1<Ix@-x¢) 15>
o o A/A'T o E_ER | 16-611"~ase0

If only the deformed X' fields undergo renormalization, then we see
from (3-23) that 1l/0 =(1/0)2Z with 2 given by (3-20), which is just

Helfrich's result[®/35]  1f both x* and A fields undergo

renormalization[4], then (3-26) shows that this is possible only if

the true area of the membrane A (or |E-£'[*) increases under thermal

fluctuations. It is now clear that the fact that only the X" fields
undergo renormalization implies that the true area of the membrane
remains unchanged, reflecting the constant density constraint of

the membrane.
3.3 PERTURBATIVE RENORMALIZATION GROUP
The result of the computations in Section 3.1. has the following

interpretation: We have a theory described by (2-35) with the

cut—off.Al(or a.) .- If we integrate over the fast quantities X,

max

with the wave vectors A S|q|<A,, we obtain the effective action

(3-21) which in the low energy limit has again the form (2-35) but

with the renormalized coupling (3-22). We therefore conclude that
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the physical theory, formulated with the cut-off A.1 and the bare
coupling, must be equivalent (for small momenta |q|<<1¥) to one

with the cut-off A.2 (or q . ) and the specially chosen new coupling

min

described by (3-22). This statement is called renormalizability.

The transformation from ao to o, and from A.1 to A.2 is called

renormalization group. In certain regions of momenta, nothing

prevents us from repeating the procedure and passing from A.2 to

A.3<A2 etc.

As shown in ref. [35]), renormalizability tells us that in a
theory without dimensional parameters, a so-called dimensional
transmutation takes place and the renormalized o (3—-22) can be

written in a form:

87 1 _ 2 8T
@) = = - with A=plexp- —————  3-27
=2 15(q°/0) (d-2) o)

All guantities which depend on oq) depend on a universal

1/2. E

correlation length A~ g. (3-27) 1is a true asymptotic expansion

for o(g) when q>>ll/2. The B function is easy to calculate. We find
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da —
dln (gq/W) 8n

Bla(q)) =

which only has a zero point (ultraviolet fixed point) at

oa(q) = 0 and g = oo . 3-29
However, we should remember that the above renormalizability is

only a one-loop approximation and, therefore, is valid only in

certain region of momenta. That is, the "arbitrary” scale U in

(3-27) and(3-28) cannot go to zero but only to some (infrared)

cut—-off A. The reason for this cut-off is the existence of a finite

width of the string, which is just an idealized description of the

color-electric flux tube. Such a finite width is supposed to be

inversely proportional to the glueball mass Myp. At the scale

A~ My v perturbation theory is no longer applicable.

In the next chapter, using a saddle point approximation in d>2,

we will show that the vacuum condensate of the Lagrange multiplier

lo has an interpretation as the inverse squared correlation length,
similarly to the situation in the nonlinear © model[1l], with this

relation, we then see from (3-32) that XO=O is compatible with
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ar=0. This implies that our classical solutions (2-32) and (2-33),

which have the conformal and the area-preserving invariances are
stable against quantum fluctuations.

Before ending this chapter, we would like to mention that in the
above perturbative renormalizability analysis we have not taken
into account the temperature dependence of the bending rigidity.
This analysis can, then, only be viewed as a pure quantum-field-
theoretical analysis at zero temperature. If the solution (2-32)
corresponds to some finite temperature instead of the zero
temperature, it then implies a smooth phase below that temperature,
which is most desirable. We leave these questions to the next two

chapters.
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Chapter 4

Generalized Gauge Fixing And The Saddle Point Solutions

In the last chapter, using the perturbative renormalization

method, we have shown that the renormalized coupling o depends on

1/2

a persistence length A~ (e.g., (3-27). In this chapter, we show

that, in the saddle point approximation, the vacuum condensate of

the Lagrange multiplier lohas such an interpretation[36].

Moreover, it is shown that a finite size (in the "time" direction)

effect survives the thermodynamic limit and, as a result, the

effective string tension and the saddle point value of lo vanish at

a finite critical temperature.
4.1 GENERALIZED GAUGE FIXING
We now consider the action (2-27). As discussed in Section 2.3,

this action can be obtained from the Polyakov-Kleinert string

action (2-14) by the following scaling gauge:

Jap = poaab 7 4-1
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and the isotropic ansatz for the lagrange multiplier (2-29). Here
the term "scaling gauge" implies that the scaling invariance (2-42)
is respected in this gauge. Only for the (on-shell) minimal surface
sector, the gauge (4-1) and the isotropic ansatz (2-29) can be
justified.

As discussed in Section 2.3, the theory (2-27) has residual
reparametrization invariances in the minimal surface sector. Now it
is natural to expect that the residual reparametrization freedom,

left after the "gauge" (4-1), is determined by the Killing equation
= V + V
agab aagb baga

q,,V°8E " + (L8 ), =0 , 4-2

with . .
(LOE )ab=Va8§b+ Vb8§a - gabV &ic , 4-3

which determines those transformations that leave the form of the

metric tensor (4-1) invariant (isometric mappings). In (4-3), the

superscripts "a.p." and "c." on 0f's denote the area-preserving and

the conformal transformations respectively. The solutions for

V38§aa-P‘=aaS§aa-P-=O are those given by (2-35) which form a group, the

area-preserving group, while solutions for (L3E%)_ =0 (i.e., (2-34))

form the conformal group. It is important to note that there will

be no area-preserving invariance, 1f one choose the usual conformal
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gauge. The term g,V in (4-2) will be absorbed into the

variation of the Weyl varible g¢_,80 in that case.

The Jacobian for the variable transformation is defined by

[dg] = (dd&*Pad&e ] J(p,) . 4-4
Following the standard procedure [37'38], the Jacobian is
determined by
. 2
1= J(po>f[d8§a'p'd8§° ] exp—118g1l"/2 , 4-5

where

2 2 ac bd ab cd
18g1 = Jd &g (™6 + cg™g 189,894

- szgpo(vcagi'p')2 (2+4C) + (LS, LOES) 4-6
and we find
1/2 1/2 +
J(p,) = det' (-8 A)det' (L L) ’, 4-7
where
(L'L8ES) = -V(V 8 +V 8 —g, VB ) | 4-8

The primes on the determinants omit the zero modes. With the
Jacobian given by (4-7), not only the usual conformal ghosts and
antighosts[z] but also a pair of new complex scalar ghost and
antighost associated with the gauge fixing of the area-preserving
symmetry, called imbedding ghost in ref.[39], arise in the theory.

The action for the imbedding ghost can be determined by

43



2
det ' (-A) = J.[de'de]exp{j%f- Fe'd e} . 4-9

From (4-8), we compute:

(L'L8E) =— V( V8 +V 8 -g, VB )
= - VL -[V,V )8

=—(A+%Ro)8§a . 4-10

To remove the unphysical components of the xH fields, we find

A, = -R,/2 p 4-11

where Ab is the vacuum condensate of the Lagrange multiplier. For

the flat metric (2-28), R =0. We will see below that at the

critical point, %b=0. That is, Eg. (4-11) holds at the critical

point. We assume that (4-11) holds even at off-critical points in
the gauge fixing procedure. We call the gauge fixing procedure
stated above a generalized gauge fixing procedure, thch can be
justified only at the fixed point. At points away from the fixed
point, the theory is neither conformal nor Weyl invariant and

so no gauge fixing is really needed. The unphysical modes

contained in the theory can only be removed by other reason. This
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may be a generic problem associated with any off-shell theory and
explains why in ref. [16] a noncovariant description is adopted, in
which only physical (transverse) modes are contained in the bending
energy term (Eq. (4) of ref. [16]). In our covariant description,
the unphysical modes are to be removed by the generalized gauge
fixing procedure stated above. The physical ground for the

generalized gauge fixing procedure is that the unphysical degrees

of freedom (the longitudinal modes of the XM fields for instance)
should not contribute even away from the fixed point.

An alternative but much simpler treatment of the model is to
consider an action which has the same form of (2-27) but only

contains transverse components for X fields. This is precisely an

nonlinear 0-model. No gauge fixing is needed in this case. The

shortcoming of this simple O-model description is that it is only

suiable for string worldsheets with trivial topology (a plane or a
sphere) . On the other hand, the description adopted in this Chapter

can be easily extended to the case of a torus (see Chapter 7).
4.2 SADDLE POINT SOLUTIONS[36]

The path integral is defined as follows

[dgdXdA]
Z = J——-V—exp—SL.C. (X, A, p,) , 4-12
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where V is volume of the residual reparametrization group and St .c.

is given by (2-27). Using the integral measure over the metric

defined by (4-4) and the Jacobian given by (4-7) and (4-11), the

integral over the group space cancels the group volume V and gives
z = J (dxdAl g(pP,) exp- S, . (X,A, p,) . 4-13

In order to continue the calculation we have to conjecture (and

check it in the next section) that the correlation length of the

Lagrange multiplier A is small in comparison with the size of our

region. If this is true, A can be replaced by their mean values
(the saddle point approximation).
The integral over X! is then Gaussian and can be performed in a

standard fashion. We find,

Z ~ exp-S_.. (P, M) ’, 4-14
where

4-15

d-2 A 2
Seff-=—-2-—lndet' [A2 —KOA] + (o, —go')Jd §po ,

and

A= p(:la2

From (4-15), we immediately see that all the longitudinal modes are

removed by the gauge fixing procedure. We now have to solve a set

of saddle point equations corresponding to the changes of Koand A
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(the area of the string sheet):

6s

eff
=90 4-16
A, g
and
6s
eff. — O 4_17
oA .

With the effective action (4-15), Eq. (4-16) becomes

po d_2 8 ' 2 2 2
s T 5 axoln det [(-9 /p)" -Ad /p]
=d—;3 G (E,& ) , 4-18

Here we have introduced the Green function,

~3°/P
2 2 2 16> 4-19
(-0 /p) - Ao /P, .

G(ara'r)‘o) = <§'|

Let us now solve the equation (4-18). In the momentum

representation, we have (p'2=p2/p0=—82/p0)

ap o iR E-E N p
R R e 4-20
(21) p' o+ A, 7
and therefore (4-18) becomes,
(d-2)0_ ¢ 45 1 (d-2)o  A?
1 = °J. P = 2 ln— 4-21
2 87 A .

(2m)” pri+ A, 0
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Solving for lo from (4-21), we find

A, =Alexp(-8m(d-2)a)  or o (A)= 8r/(d-2) 1nAZ/AS | 4-22

o}

where A is the renormalization scale. As discussed in Section 3.3,
there exists a momentum scale A~Mgb. at which perturbation theory

breaks down. On the other hand, the coupling o is dimensionless and

asymptotically free. So a dimensional transmutation occurs: the

dimensionless 0O and a dimensionful scale A can be traded for each

other. Since the theory requires renormalization, one must specify

the renormalization scale A at which the renormalized O(A) is
prescribed. We choose A~Mg.b as the renormalization scale to

specify a.

Comparing (4-22) with (3-27) we find that the vaccum condensate

of lo has the interpretation of the persistent length. A discussion

of Eq. (4-22) is now in order. Though Egs. (4-22) and (3-27) share
the same property of asymptotic freedom, their interpretations are
quite different. First, Eq. (3-32) represents a running charge with

explicit scale or momentum dependence while Eq. (4~22) is the "fixed
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charge" (The scale has been fixed to be A) which has implicit

temperature dependence. The temperature dependence arises from the

vacuum condensate of lo (see below). One might wonder if the fixed

scale charge (4-22) 1s consistent with the asymptotic freedom.

Indeed, this property will show up as the vacuum condensate XO

tends to zero which formally corresponds to keeping lo to be some

finite value and letting the scale A increase to infinity just as
the running charge (3-27). However, the physical meaning is quite
different. Loosely speaking, in (3-27), we fixed the temperature
(to zero) and considered the scale or momentum dependence of the

running charge while in (4-22), we did the opposite: to fix the

scale A and look at the temperature dependence of the fixed charge.

Secondly, Eq. (3-27) is obtained from a perturbative expansion,

while Eg. (4-22) 1is nonperturbative in nature at all temperatures.

The third, the vacuum condensate lo depends on the temperature (see

below) . That is, the persistence length of the present model is
temperature dependent in certain region, reflecting an unusal phase
structure of the system under consideration.

To solve Eq. {(4-17) we note that in the effective action (4-15),
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d-2 d-2
Tr'ln (-A)+

Tr'ln(-A+L) 4-23

d-2
— —lndet "AR-LA)=
Using a {-function regularization method[40/41] e find the
first term on the right hand side (RHS) of (4-23) to be

((d-2)/2)1n det' (-A) = —gﬂd—Z)n/G Ve 4-24

where we have set R'>> B' and R'=poB’ and the sheet C is defined by

c=1{ (L, )| o<ctlcr 1/~ 4-25

where the symbol ~ represents the equivalence relation (or the

periodicity in the intrinsic "time" &°) defined by

(&L, E2) . (&, 2B’ +E?) . 4-26
Similarly, we calculate the second term on the r.h.s. of (4-23)
and find
2
d-2 (d_z)p a 2
—lndet' (-A+A ) = (d-2)p mI(a) + ———>—(1+1nd") 4-27
2 o) o 8T 7\' Ve
(o]
where
[~ -]
dy 1/2 1/2
I(a) = 4J 2| (y+a/2m) ¥ (y + a/m)
o 1-
[~ -]
a 1
=——Z—K(na) - 4-28
2 n 1
e n=1
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and a? = AbBZ . 4-29
Here Kj (na) is the modified Bessel function and I(a) has the
limiting wvalues

-1/6 as a—0
I(a) = {

as a—eo

In (4-29), P=1/T (T denotes the physical temperature) is defined
by

2 LB £ S — 2 _
Aint=Jd§=2R[3 = 2f , 4-31

where A, . measures the intrinsic size of the string world-sheet

t

which differs from the "external" area of the sheet A:

A =J'Po dzé’; = 2Rf =2po[32 . 4-32

The reason for distinguishing between A and A, , is that the

t
operators involved (e.g. (4-15) or (4-23)) contain a factor paq and

so the real frequencies or momenta depend on P instead of PB' (e.g.,

(4-15)) .

Gathering all these pieces gives

Seff. = Geff.poBz + (terms irrelevant as p ,—) , 4-33

where

51



R

A, (@24, N  (a=2)m

c = 0‘———°+——(1+ln——) (1-6I(a)) 4-34
£f. ’

e ° 8T A, 6p2

which is the effective string tension defined by
1
(o) =—-1lim —1nZ 4-35
eff A .
A—>eo

Here Z is the path integral defined by (4-14).

It is worth mentioning that the last term in (4-34), the

B-dependent term is reminiscent of the Luscher term in the static
potential[13'24'41'43] and is a characteristic feature of QCD
string model arising from the zero-point transverse oscillations of
the stretched string. One might wonder whether such a term arises
because of the finite size (in the "time" direction) and may be

absent in the thermodynamic limit. However, in the present model,

by distinguishing A and A, (e.g., (4-31) and (4-32)), such a term

int

does survive the thermodynamic limit and should not be overlooked.
In fact, in the present model, this is the only term which
decreases the string tension (see (4-34) and also below) and so is
of crucial importance in reducing the effective string tension to
zero at the critical point (see also Chapter 5).

It should be mentioned that the "finite size" (here in the
"time" direction) effect which survives the thermodynamic limit is
by no means unique to the present model but exists in many other

models. In the context of QCD strings, one is often concerned two
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different limit behaviors of strings corresponding to two limit

shapes of the string worldsheet : R>>B[13'36]and B>>R[24'41_43].
In either case, the weight function Py is effectively fixed to be

infinity. As a result, the finite size effect, either the 1/P
term[13'36] or the 1/R term[24'4l_43], survives the thermodynamic
limit. In the case of membranes, it is not inconceivable that the
thermodynamic limit corresponds to the limit case of infinite
surface density (number of molecules per area). In this case, the
finite size effect, the 1/R term, survives the thermodynamic limit.

Using (4-33), the saddle point equation (4-17) reduces to

Cuee.= 0 . \ 4-36

We thus see that the value of p, is not determined by the saddle

point equation (4-17) which is merely a result of the global
scaling invariance (2-42) of the theory.

Results similar to (4-34) have also been found by Pisarski[3l],
David and Guitter(14] for the Polyakov-Kleinert string and rigid

random surfaces. In the equations (2-9) of Ref.{[31] and (2-23) of

Ref. [14], the B—dependent term, the last term on the RHS of

(4-34), was absent. That is, the zero-point energy term does not

survive the thermodynamic limit in those models. This is not
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surprising since those are models of general surfaces. The global
scaling invariance (2-42) is only an artifact of some special
gauge[44], such as the scaling gauge (4-1), instead of a true
symmetry as in the present model. Therefore, in the saddle point
approximation in the large d limit, one is allowed to choose some

physical gauge to break the global scaling symmetry[l4]. As a

result, p, is determined as a saddle point solution{14] instead of
treating it as arbitrary as in the present model. Therefore, in the

thermodynamic limit in those models both A and A, , must be taken to

be infinity since p, is just a determined value there. This

explains why no finite size effect can survive in the thermodynamic

limit in those models of general surfaces. Therefore, the real

reason for us to distinguish between A and A,  is the global

scaling invariance (2-42) which forces the density p, to be

undetermined. That is, though the area A of the string sheet is
supposed to be fixed, the ratio of the two lengths in the spatial

and "time" directions must left arbitrary if the global symmetry

is unbroken. Or in other words, p, is a free parameter (not a

dynamical quantity) in the present model due to the scaling
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invariance (2-42). As a result, in the thermodynamic limit, A—eo,

while A, = or P remains finite. (In this and the next chapter, we

only consider the limit case R>>P, that is, p . In Chapters 6,7

and 8, a more general case will be considered.)

Though Eq. (4-17) or (4-36) does not determine the value of P

in the present model, it, when combined with (4~22), determines the

value of Xo. The solution of (4-36) is

* __ 8n 1 4

°© d-2 lnA2/7\.o ¢

37

and

8o 2
+____°, A4n°

(1 - 6I(a)) -
o d-2 3[32 . 4-38

Comparing Eq. (4-37) with the result (3-27) shows that the vacuum
condensate of the Lagrange multiplier has the interpretation of the

inverse squared correlation length. One remarkable result of the

saddle point solution (4-38) is that KO vanishes at certain finite

critical temperature which corresponds to the fixed point of the

theory: B (oA )=da® )/dln(A%/A )~ -a*(A)=0 at A =0. Obviousely,

this critical point corresponds to the minimal surface or in other
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words, the minimal surface sector dominates at the fixed point.
Substituting (4-37) into (4-34) gives

(d—2)7\0 _ (d-2)7

c =0 +

(1-6I(a)) 4-39
eff. o 875 6[32 .

We see from (4-39) that the P-dependent term represents the effect

of thermal fluctuations which tends to lower the string tension. On

the other hand, the condensate of the Lagrange multiplier lo serves

as a dynamically generated string tension to control the

fluctuations.

4.3 ON THE FREEZING OF A

In this section, we check whether our conjecture concerning the

"freezing" of the lagrange multiplier is correct, i.e., to check if

the A-field fluctuations are of short range and so do not destroy

the long-ranged order in the low-temperature region. In the action

(2-27), we set
A& =4, + in(&) _ 4-40

We can find the quadratic term in the induced action for the T

field to be
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1 d?q 2
S;;M = ?.f SN(@N(-)B(1/q) ’, 4-41
(27)
where
k+49g
2
k
2 2
_ d—2J' dk (k- (k+q)) 4-42
2

2 4 2 4 2
(2m)  (k +A k) ((k+q) +A_ (k+q) )

Here we have accounted for the fact that M interacts with X fields

through the Lagrangian:

: jdzén(é) ex)" 4-43
2ar '

L,

int -

and the fact that the X-field propagator is given by
o
<X (KX (-k)> = ——— 35 4-44
) ’ k+A k" O g

where we have taken into account the ghost contributions and i, j

are normal indices. A straightforward estimate of (4-42) gives in

the limit 7‘0—’0’

5 clnq/Amin A
B(l/q) = ————;——%1+O(

q

min

)) ’ 4-45

where c=(d-2)/4%m. For nonvanishing ¢ (i.e., d>2) in (4-45),
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"substituting (4-45) into (4-41), we find that the correlation

function (or the amplitude of fluctuations) for the M—field is of
the order of (A%, lnq/A_ . )~!, where A,  is the intrinsic size of
our object. Therefore, in the case c#0 we can neglect the influence

of N—fluctuations since Amhlcan be consistently set to zero.

We here emphasize that the above derivation relies on the fact

that KO vanishes at a finite temperature. This means that our
conjecture that the A field can be treated as a mean field in the

last section is justified as Ab is close to zero. In other words,

our saddle point approximation becomes a very good one in any

dimension d>2 at low tempeature where xgao. This differs from the

situation of the Polyakov-Kleinert string as well as Pisarski's

model where the saddle-point approximation is a good one only in

the infinite d limit since A  never goes to zero.

At high temperature, on the other hand, where Xois finite and

serves as a natural infrared cut-off of our theory, the correlation
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length of the M field is the same order as the size of our object.

In this case, the quantum fluctuations of the A field enter the
theory. As a result, a "conformal anomaly" is generated
dynamically:

1 2 1
(Anomaly) = ——]d &n—n 4-46
20, -A

where we have used c=(d-2)/4m and the logorithmic factor in (4-45)

has been absorbed into the definition of the renormalized coupling

a_81t 1 4

= 47
r  d-2 lnqzlko .

Eg. (4-46) can be regarded as an effective non-local
interaction term, representing the effective interactions between
distant Gaussian curvatures and manifesting a long-range order in
the model. The importance of the anomaly term will be discussed in

Chapter 8 as the string suscepbility is calculated.
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Chapter 5

Smooth-Rough Transition

In this chapter, we discuss the finite temperature transition of
the model. It is shown that the saddle point solutions obtained in
the last chapter imply a smooth-rough transition in the present
model. The Hausdorff dimension of the string worldsheet and the

width of the string are calculated.

5.1 THE HAUSDORFF DIMENSION THE WIDTH OF THE STRING

Eq. (4-38) for the dynamically generated string tension or the

saddle point solution of the Lagrange multiplier }b* is reminiscent

of the situation in the Ising model [45] and must be solved
numerically to determine the critical temperature. However, it is
easy to see that there is always one solution, by using the
limiting value of I(a) in (4-30), if

30

T >T =  ——— 5-1
© T (d-2) .

As T—>T_ from above, A~ decreases and we may obtain its

asymptotic dependence by using the limiting value of I(a) in
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(4-30), that is,

o d-2 3[32

We see from (5-2) that Xb* approaches zero as T approaches Tc

from above, and vanishes asymptotically as

T 2
* v=1
Ao~ (1= —) 5-3
T . .
We note that alb*/aﬁlﬁ_éﬁc = -2n2/3ﬁc3 < 0, but XO* cannot be

negative since it is the inverse squared persistence length as can
be seen from (4-37). We conclude that Xb* remains zero at or below

the critical temperature T..

It is interesting to compare the critical temperature (5-1) for
the present model with that obtained in refs. [13] for the
Nambu-Goto string and [12] and [46] for the Polyakov-Kleinert
string. We find that the critical temperatures coincide numerically
even though the associated systems are generally different. In
fact, we will see soon that the features of the transitions

associated with these critical temperatures are very different.

The exponent for the power law behavior of the A" in (5-3) is
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given the symbol v=2/d, according to Polyakov[35]

(o]
* =/
A~ (1 - —2c5)ve 5-4
[e] C 7
with & = (d-2)nT%/3 and o© =0 = (d-2)7T .2/3. Here d. is the
o cr o cl H

Hausdorff (or fractal) dimension. Comparing (5-4) with (5-3) gives

d, = 2, that is, for rigid string with liquid-crystal-like order,

the Hausdorff dimension equals its topological dimension at or
below the critical temperature.

To confirm our conclusion on the Hausdorff dimension which
determines the fine structure of the string (or string worldsheet),
we compute the mean squared distance between any two points on the

sheet. Using the propagator of the X-fields (4-44), we find,
2 ik- (§-§")
2 dk (2-2e )
<|IX(E)-X(§")|I'> = (d—2)OLOJ > — 5-5
(2m) k (k +A)

Decomposing the propagator in the momentum space as follows

1 1 1
- 5-6

K’ (k2+xo) kokz A (k2+?»o) 7

substituting (5-6) into (5-5) and noticing the cancellation between

the massless modes, we find,

(d-2)a

2 [

<IXE-XEN 1> = ——— (1n(,/k0|§—§ l)+Ko(,/k0|§—§ ) 5-7
o
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For |§E&'|I<< A 1/2, that is, for A_—0, there is a cancellation

between the Bessel function and the logarithm. The leading behavior
is

(d-2) 0
|

é—é'lzln(\/X:|§—§'|) + const.

2
<|X(E)-X(E") | > " 50 - .

2
~ I a—-é' l 7 5-8
where we have used the renormalized coupling (4-37) to cancel the

logarithmic factor and have omitted a constant term for large

1E&-€'1. Eq. (5-8) means that the Hausdorff dimension of the sheet

is two which confirms our previous calculation. On the other hand,

for |E-&'|>> k;ﬂﬂ, the Bessel function decays exponentially, so

the leading behavior is
) (d—2)oco \/x—.
< -X(E") | ™> ~ — 1n £ 5-9
IX(E)-X(E") | RSty YA IEE D
The logarithm in (5-9) cannot be removed by the renomalized

coupling because the ratio lb/aoin (5-9) is (almost) fixed as both
XO and o change (see Eq. (6-15) below). Eq. (5-9) means that the

string worldsheet is crumpled for [§&-€'|>> X "1/2 with the

Hausdorff dimension infinity. This is the typical behavior of the
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Nambu-Goto string[47]. We thus see that in the region where XO

becomes large the model goes to the Nambu-Goto limit. There also

exists another Hausdorff dimension of string sheets in the
literature, d,=4 [13'42'48]. This value can also be obtained from

the present model. In the intermediate region, the sheet is
expected to be rough. Though the calculation of the Hausdorff
dimension in this intermediate region is highly non-trivial, we can

get some hint from the expression of the effective string tension

(4-39) . On very general grounds[24'49], the coefficient of the 1/

term is expected to be universal. In other words, various

universality classes of strings should in general be distinguished

by different universal coefficients of the 1/B term, i.e., the
coefficient (d-2) (1-6I(a))/2. Obviously, in this coefficient, (d-2)
is Jjust the number of the independent degrees of freedom of the
X-fields. What is the meaning of the quantity (1-6I(a))/2 then? We
conjecture that the quantity (1-6I(a))/2 may be identified with the

critical exponent of the present model in the intermediate region:

v=(1-6I(a))/2 = 2/dH 5-10

From the asymptotic behavior of the function I(a) of (4-30), we

immediately see that,
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5.2 THE WIDTH OF THE STRING

We now show that the critical temperature (5-1) associates with

a second-order smooth-rough transition. To prove this we need to

calculate mean fluctuations <u,> of the string world-sheet from a

reference plane, say the (§h §2)—plane, near the transition. This
issue had been studied more than a decade ago by Helfrich[34]. The

result is, in terms of our notation,

2 ar 27
<lu | > = ————— with q=— 5-12
q B .

4 2
Aint(q + )\'Cg )
In the regime of temperature TSTC, }b=0, and therefore,
@ =0 (e.g. (4-37) ). We thus have <|uq|2>=0 for T<T_, which means

that the string is smooth for TSTcl. ( We recall dH(TSTc)=2.)

In the regime of temperature T>T_and O<lb<l/B2, we have a >0 and

so that
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B2
<lu 1®> ~ ~ B 5-13
q 4 2 2
(2m) (1+A B /(2m) )

Eq. (5-13) means that the string is rough for T>T_and 0<A <1/p’.

From above analysis, we see that Ab plays a role of an order

parameter in the present model: it vanishes at T_ and remains zero

below T_, and the system is in the global 0(d-2)X 0(2) (and also

translation) symmetric phase since the string worldsheet is

essentially smooth (<|uq|>=0) with the Hausdorff dimension two.

Above the critical temperature, on the other hand, ko increases and

becomes finite. In this region the global 0(d-2)X 0(2) (and also

the translation) symmetry(ies) is (are) broken and the system is in

the rough phase (<|uq|2>~Ahm) with the Hausdorff dimension larger

than two. We thus see that there is a smooth-rough transition

associated with the critical temperature T_ (5-1). This is a

second-order transition since the persistence length (l/VKO) is

infinite at the transition. Although a critical temperature with
the same value of (5-1) was obtained in Refs. [13] and [46], it

does not associate with a smooth-rough transition since the smooth
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‘phase was absent there.
It should be noticed that this smooth-rough transition differs

from the well-known roughening transition, which exists in the

"solid~on-solid” modell®0] a5 well as the Z, lattice gauge

theory[Sl] and also other related models, though both share some
properties. In those models, a roughening transition is accompanied
by a non-analyticity of various quantities, including the surface
tension, as a function of the temperature (or the gauge coupling in
the case of lattice gauge theories). Moreover, the transition is of
infinite order. In our case, on the other hand, the smooth-rough
transition is accompanied by the vanishing effective string tension
and is of second order.

[50,51] 4,

This should not be too surprising since those models
quite different in nature from the present model. Among the
differences we would like to emphasize the following: First, in the
present model, the transition is related with the breakdown of the
continuous global symmetries (the 0(2) and translation invariances)
while in other models it is associated with the breakdown of
discrete translation symmetry. Secondly, in the present model, the
transition is driven by the Higgs-like mechanism due to the
effective long ranged interaction introduced by the internal
[50,51]

liquid-crystal-like order (see below), while in other models

it is driven by the Kosterlitz-Thouless mechanism. (There is an
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"effective U(1l) symmetry in the intermediate region in other
models[so].)

Let us now look at the Higgs particles of our model living in
the rough phase. Associated with the breakdown of the translation

invariance in 2 (or d-2) dimensions, there is a dynamically

generated mass m?=A . Correspondingly, there exist (d-2) massive

modes of the X-~fields as can be seen from the Green function of
these modes (4-20). These are the Higgs particles associated with
the translation symmetry breakdown. Furthermore, associated with
the global 0(2) symmetry breaking, there is an anomaly (4-46) which
is non-local. To make it local, we make a variable transformation

similar to (3-18):

n— 0% . 5-14
Using (5-14), the anomaly (4-46) becomes

1
(Anomaly) ~ —széaa¢aa¢ 5-15
20 '
r

At first sight, one might wonder whether this massless mode may

destroy the long-range order of the system. However, this is not

the case since the field ¢ in (5-15) will be "frozen" at or below

the critical temperature T_ where a;=0 according to (4-47) and

(4-38) . All these properties are due to the liquid-crystal-like
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"order, which forces the trace of the metric to be fixed, induces an
effective long-range interaction (4-46) into the theory, and so

makes the Mermin-Wagner—-Coleman theorem([2°] not applicable for the

present model.
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" Chapter 6

A Simple Estimate of the Hagedorn Transition

In this chapter, we make a simple estimate of the Hagedorn
transition for the present model under a well-motivated
speculation. A more rigorous derivation will be given in the
following chapters. The reason for us to make such estimate is that
it involves less mathematics than the rigorous derivation but

provides the correct physical picture.
6.1 THE HAGEDORN TEMPERATURE

It is well known that, in any string theory, there commonly
exists an exponential growth in the density of string oscillations
as a function of the mass. This is essentially because the string

is a one-dimensional extended object. The number of oscillations at

the nth level grows roughly like exp(CP) with C a constant [22],
This growth is so rapid that the partition function

z = Tre BH , 6-1

of the string gas converges only for sufficiently large B. This

"limiting temperature” was anticipated in earlier speculations and

known as the Hagedorn temperature[53]. It is associated with a
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' phase transition in recent studies of QCD strings[54'55].
Physically, the Hagedorn temperature 1s related to a transition

point where the entropy becomes infinite and dominant. One might

wonder 1f the Hagedorn transition is absent in the present model

because 1t involves a rigidity term which may suppress spikes and

make the string flat. However, from (4-38), we see that, as T>T_,

l0>0. From (4-37), we see that Ab>0 means € >0. We expect the

Hagedorn temperature T, larger than T_, which would imply the

bending modulus (1/ao) to be finite at T, due to the vacuum

condensate of the lagrange multiplier. Since the mean curvature in
(2-27) contains higher derivatives, it becomes irrelevant at large

scales. We then expect that the bending rigidity term in (2-27)

would become irrelevant at large scalea at T,. That is, the large

distance behavior of the system will be governed by the Nambu-Goto

term in (2-27) at T, and the Hagedorn transition exists in the

present model. (This will be further justified in the following two
chapters by explicit calculations. Here we presume that this is so
and estimate the Hagedorn temperature.)

To find the Hagadorn temperature for the present model, we write

the path interal of the string as follows [96];
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where the function I'(A) is proportional to the number of different

string world sheets of a given area A and is defined by

;; J'dzﬁ <aaX)2 }8<jd2§PO—A) , 6-3
(o]

I‘(A)=J.[dX]exp{—

where we have used the saddle point approximation to the lagrange

multiplier and the X-fields only contain the physical transverse

components. The A fluctuation can be described by (4-46), which

does not affect the Hagedorn temperature and can then be neglected
here. Its role in determining the string susceptibility will be

discussed in Chapter 8.

It is interesting to note that the 8-function in (6-3) can

be simply neglected since J-po d2§ = 2poﬁ2=A is trivially satisfied.
In Chapter 4, to find the saddle point solution near T , we only

considered the special case of R>>P or p,— and calculated the

log. determinants of the operator (-A) and (—A+7L0) given by (4-24)

and (4-27) respectively. The results (4-24) and (4-27) are correct
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bt it O C

only in the limit R'>>P'. To find the Hagedorn temperature,

however, we have to consider a more general case where the ratio of

R' to P' is arbitrary. In fact, the Hagedorn temperature is
P

determined by the singular behavior of the path integral near

p,—0.

For a general (§-independent) p_, Eq. (4-24) should be replaced

by [40]

-p T/ 3y= -4nwp
det'(-A) =e ° H(l—e °) ) 6-4

n=1

Clearly, the infinite product factor on the RHS of (6-4) tends to

one as p —° and can therefore be neglected. This is the case
considered in Chapters 4 and 5. However, for a general P, and in

particular, for small values of P, the large n contribution to the
path integral becomes dominant.
Integrating over Xt fields in (6-3), Using (6-4) and

concentrating on the large n behavior, we have

-(d-2)/2 = —4 nm
I' ~ det 2 -Ay - H( 1—e  Poy-ta=2) 6-5
n=1 ’
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" Let

®=e 4P, , 6-6

and

G(w) = H(l—m”)"(d'z’ = Zdnu)n _ 6-7
n=1

One can project out the level density d, from G(®) by a contour

integral on a small circle about the origin

1 G(w
d = § (@ 40 6-8
n 271 n+l

Since G(®W) vanishes rapidly for w—1, that is, pgﬁo, while if n 1is

very large, o™ is very small for ®w<l. There is consequently, for

large n, a sharply defined saddle point for ® near 1. It is a

classic result from number theory due to Hardy and Ramanujan[sz]

and was derived in the context of the (open) string due to Huang

and Weinberg[52] that as n-—oe
-(d+1) /4
d_ ~ (const.)n exp(2nJ(d—2)n/6 ) ) 6-9

In the usual Nambu-Goto string[57], the number n is related to
the the squared mass of the (open) string and the string tension

n = m2/27t00 6-10
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In the present case, the string tension is replaced by the

condensation of the Lagrange multiplier lo/ao. We have, instead of

(6_10) 14

n = mfa /27 6—-11
[e] o .

Using (6-11), the density of levels as a function of mass is

asymptotically

-(d-1)/2
p(m) ~ m exp (m/m ) p 6-12

where

The level density grows so rapidly with mass that the partition

function (6-1) developes a singularity at the temperature T =mj

which is known as the Hagedorn temperature[53]. What 1is interesting

here is that it is the condensation of the Lagrange multiplier
7\.0/0(O ; instead of the string tension G,/ which enters (6-13). This

leads us to expect that T, may take some different (larger) values

than T; given by (5-1) and to speculate a different kind of phase

transition than the smooth-rough transition discussed in Chapter 5

near TH.
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We want to express T, in terms of C, which is the unique scale

in the present model. (Since the bending rigidity l/OLo is
dimensionless and asymptotically free, it does not provide a basic
scale in the model. That is, the scale A should be determined by
the theory. This is reminiscent of the situation in QCD where no

basic parameter is present except the number of colors N_ which

corresponds to the bulk dimensions d in the present model.) This

involves three quantities T, lo and o (or A). So we need three

independent equations involving these three quantities to determine
them. These equations are (6-13) determined from the exponential
increasing level density, the saddle point solution (4-37)
representing the asymptotic freedom of the bending rigidity and the

saddle point solution (4-38) determined from the condition that the

effective string tension vanishes at T.. (We will see that the last

condition 1s equivalent to the tachyon free condition in the next

chapter.)

To solve for A /& at T,, we first rewrite the saddle point

equation (4-38) or (4-39) as follows
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(d-2)A _ 1/2
o-eff = (0'0+ . ) (1_ 2 (a2)m ) -0 6-14
8n 32 (o, + (a-2)h,/8T)

where we have neglected the I(a) term since it is exponentially

small for large Xo (see (4-30)) and presumed that the critical

exponent v=2/d, equals 1/2 at T, which will be proven soon (see

(6-27) below). Substituting (6-13) into (6-14), we find

A, (d=2)A,
-_—= 0'0 + — 6-15
o 8n .

[¢]

Comparing (6-15) with the classical equation (2-31), we see

that the quantum fluctuations effectively change the negative

(classical) rigidity term contribution to Xb/ao by a positive value
of (d—2)10/8n. As a result, the vacuum condensation, the ratio

Xb/ao, is not a constant O, but increases with Xo. This confirms

our previous expectation that Ty >T._.

To solve for Xo/ao in (6-15), we use the saddle point equation

(4-37) and set

1 (d-2) A (d-2) x
~ T T a. n T = T 6-16
o 8x A, 8T .

[e]
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" Substituting (6-16) into (6-15) gives

2 8o
x = 1nd" = 2 1 6-17
A A, (d-2)
From (6-17), we find
8no
A2 =X exp ( 4+ 1) 6-18
0 (d-2)A,
Using (6-18) we find from 8A%/8A 1,,.=0 and &A%/} 21,_,,>0
8o, 4t
Al = = , o =——
°o 7 g-2 o T d-2 ,
and A
-_—= 20‘0 6"‘19
o .
Substituting (6-19) into (6-13) gives
60
= f—=—2= =21 6-20

H (d-2)wm

Though (6-20) is derived for open strings it holds also for

closed strings. This is easy to see (and will be proved in Chapter

8). For closed string the level density dnCloseoc(d.n)2 where d_  is

given by (6-9). But this does not change m  in (6-13) since (6-11)

must be replaced by 4n=m’®, /27A_ in the case of closed string.

Eq. (6-20) implies the existence of a second phase transition

in the present model other than the smooth-rough transition which
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" 1s quite different from other string models. In the Nambu-Goto
string[13'54] and the Polyakov-Kleinert string[12'46'55], there is

only one phase transition. It 1s interesting to note that in these

models, T  is determined in a similar way as shown in Chapters 4

and 5, that is, determined by the condition that the effective
string tension starts to vanish in the large A limit, while T, 1is

determined by the exponential increasing level density in the large
n limit as shown above. It turns out that T =T, in these string

models.

This can be understood as follows. A string theory can only have
one phase transition at most if the singularities at the
transitions are tachyonic. (Here the term tachyonic singularity
means that beyond the transition, the squared mass becomes
negative.) The reasoning is the following. Suppose the model has
two tachyonic phase transitions with transition temperatures T (1)
and T(2). To be definite, suppose T(2)>T(1l). But this is impossible
since in the region T(1l)<T<T(2), the model is ill-defined because
of the tachyonic singularity. That is, we only have T(1)=T(2). This
is the case of the Nambu-Goto string as well as the Polyakov-

Kleinert string.
In the present model, T_  is not related to a tachyonic

singularity as can be seen from (4-39): it is the wvacuum
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" condensation of the Lagrange multiplier or the dynamically

generated string tension which makes the effective string tension

remain zero even at the temperature beyond T_ . This has also been

explicitly shown in the above derivation of T,. It is therefore

possible for the present model to have a second phase transition

other than the smooth-rough transition.

6.2 THE HAUSDORFF DIMENSION AT T,

To determine the nature of the Hagedorn transition, we calculate

the Hausdorff dimension at T, or at the large n limit. This work
has been done by Mitchell and Turok [98] for the Nambu-Goto string.
To be complete, we here mimic their calculations in terms of our
notations.

The operator representing the mean squared radius of an open

(orientable bosonic) string is defined by
Rl

Ar’ = (d—l)/R’)Jd&lz (X (E)—q)) s 6-21
0

where the symbol : : denotes normal ordering and g' the centre of

mass coordinate of the string. The expectation value of Ar?

averaged over all states at level n 1s given by
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2
— <yYlA
Ar? = Zw i 6-22

n

where the sum is over all states at level n. Neglecting terms in

(6-21) which do not contribute to (6-22), we can rewrite Ar? as

follows
2 (d—l)ao -

- -2 1 1
Ar = —— R and R = Zn o_ o

6—-23
A d

0 n>0

where we have used the general solution of the X fields which

satisfies the equation of motion of the Nambu-Goto string with the

string tension Xo/ao, i.e.,

o
o

i .1 i
X () =g + 1
A

Zn-laicos (nmE'/R") 6-24

o n#0

The trick used in Ref. [58] is to consider the trace of the

. NoR i o i
n>0
. ) ) 3-d
-1
tr (0¥ yR) = H(l—co“x““) (H(l—co“)) 6-25
n=1 n=1 *

Differentiate (6-25) with respect to ¥ and then set ¥=1. This will

give a series of terms and the coefficient of ®" will tell us the

81



sum of the R wvalues at level n.

(d/dy) tr(w ¥y )x:=1 = (1/(d-2))G(®)1nG (W) e 6-26

with G(®) given by (6-7). To determine the coefficient of ®" we use
a similar procedure to that leading from (6-8) to (6-9). The result
is

: n2n

d —_—
n n 6(d-2)

and hence from (6-22) and (6-23) we have

A;} B (d—l)O% n _d-1 n 6-28
N 6 (d-2) 20, V 6(d-2) 7

[e]

where we have used (6-19). But we know from (6-11) that vn is

proportional to m which is in turn proportional to the proper

length of the string (defined by m=206L). Thus we have the
important result that the mean squared radius of the string is

proportional to L at T,. This means that typical string

configurations at the Hagedorn temperature are random walks which
in turn implies that the Hausdorff dimension of the string sheet is

4:
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" Eg. (6-29) is consistent with our conjecture in Chapter 5 which

predicts 2<d,<4.Though (6-29) is derived for the open string it
holds also for the closed string by the same reason following

(6-20) .

At first sight, one may expect the Hagedorn transition to be

first order since XO>O at T,, which would imply the correlation

length to be finite. However, from (4-20), we see that Xo serves as

the dynamically generated mass squared of one sector of XM fields,
associated to the breakdown of the translation symmetry in 2 or

(d-2) dimensions. As discussed in Section 6.1, this massive sector
of xt fields becomes irrelevant at T,;. On the other hand, it is the

other massless sector of XMt fields associated to the breakdown of
the translation symmetry in d dimensions, as shown in (6-3), which

governs the critical behavior of the system at temperatures near

T,. Therefore, the correlation length of the system at T, may be

infinite and the Hagedorn transition may not be first order. In
fact, our detailed analysis in Section 8.2 will indicate that the

Hagedorn transition is possibly of second order.
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" Chapter 7

Free Energy of a Gas of Rigid Strings

Finite temperature field theory can be studied by considering

the propagation of fields on R%!x S!, where S! has circumference

B=1/T. For strings at finite temperature, Polchinski [37]
demonstrated by explicit computation that at the one loop level,
the free energy of a thermal gas of closed strings can likewise be
computed by carrying out world-sheet path integrals for string
propagation on R%!x S! (for bosonic strings, d=26). Following
Polchinski, in this chapter, we evaluate the free energy of a gas
of (both closed and open) rigid strings on a torus and a cylinder
respectively. This is compared with the free energy of a collection
of free particles, and hence the mass spectrums of excitations of
rigid strings are deduced. It turns out that the tachyon free
condition leads to the saddle point solutions obtained in Chapter

4.

7.1 GENERALIZED GAUGE FIXING FOR A MINIMALLY IMMERSED TORUS

We now turn to consider the path integral of rigid strings on a
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torus minimally immersed in d dimension[39] . The action is given
by:

n 1/2 2
s(X,qg,,,)= coj.go d§

1 1/2 2
d

4 ——

= g{ (axM e a gl @xax- g 0}, 7-1

where the subscript o on g, denotes that the metric is flat and

depends only on the Teichmuller parameters. Action (7-1) for a
minimally immersed torus can be obtained from the Polyakov-Kleinert

string action (2-14) by choosing the flat gauge
9 = 9

cab 7
and assuming

A = K4E;gab and A=A ,

o]

where we have used a saddle point approximation for the lagrange

multiplier A. The A fluctuations away from the saddle point can be

described by the "anomaly" (4-46) and (4-47). Action (7-1) is an

extension of (2-27) in the case of the minimally immersed torus.

To describe the torus, we take XM} and J,ap tO be periodic

functions of &*:

Xt (E+ B ER)=xH (EL E2+B)=xr(ELEY) 7-2-a
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g—oab (§1+ B’ §2)= goab(§1’§2+l3)= goab(él’ &2) . 7-2~b

Thus the unit cell is simply OSEISB, 05&25 B.

The path integral over a minimally immersed torus can be written

as

K
[dg,,,] [dX ]
Ztorus = J. exp(—S) Ve 7-3

v

where V is the volume of the residual symmetry group discussed in
Chapters 2 and 4.
In order to carry out the metric integration we make a change of

variables. Since the metric is flat, variation of the metric can

then be resolved into changes arising from § and T transformations.

(Weyl transformations are absent for a flat metric.) We then write

dg
oab
8g,,, = V.8 +V 8¢ + > ot

G.C. M.
= 89—oab + 89—oab 7 7-4

where
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G.C

Sgo;b' = Vasgb + Vb8§a
= goabvcsgz.p' + (LS&C.)ab » 7-5
and . .
(L8, = V.8g + V.eE - g, Vo ] 7-6

In (7-4), T is the Teichmuller parameter T=(TP12). The superscripts

"a.p."” and "c." on 8f's denote the area-preserving and the

conformal transformations respectively. The integral over the

metric thus separates into an integral over the general coordinate

group and an integral over 1. We wish to determine the Jacobian

defined by
(G.C.)_ (Mod.) 2
PYap = PYar  P%ap = [d8E d 11'J (1) . 7-7
G.c.) | .
In (7-7), Dg_,  is determined by
(G.c.)_ B ap. ape.
Dgoab - [dsgl JG.C. - [dsg d5§ ]JG.C. . 7-8

The Jacobian J; . is determined by (4-7), and therefore

Dgoab(G.C.) = det’ 1/2 (_SabA) det ! 1/2 (L1+Ll) [dsga.p.dsgc.] , 7_9

where

~J
I

(L'L8E™) = =V2(V 8 +V 8 —q Vet ) 10

The primes on the determinants omit the zero modes.
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In (7-7), Dg, Md.) is given by[37]

det<agab/ata,¢6>

det ( q)a,q)ﬁ )1/2

{Mod.)
ab

2 1/2
[dT] = det (faB)[dz‘t] , 7-11

where {¢a} are the zero modes of LT and faB are defined by (from

now on, we drop the subscript o on the metric and define g=g(T))

ac bd

faB= g 9 fab,afcd,B ’
P U 7-12
ab, 0 - 81 2gabgcd 81:

a a

There are also zero modes of L contained in [d8f], which should

be separated, we find [37]
detQ -1/2
2 2
[A8Ed 1) = (——) [d8E d 1] P 7-13
\4
T
where
1 2 abg,a b
QAB = E J-d E_,J;g CA CB , 7-14
1 2
v, = — |dtfq 7-15
BZ 7
and {2 =82 (A=1,2,...c) represent c independent conformal Killing

vectors (the zero modes of L) on the torus. It is well known that
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2 for a torus,
c =41 for a cylinder, 7-16

0 for a surface with genus > 1

Gathering all these pieces, the Jacobian in (7-7) is given by

detQ -1/2

/

J(1) = det’ 2fmﬁ(—zma) det'(-A)det' (-A+A,) 7-17
\Y
T

where we have used (4-10) and (4-11), which means that a
generalized (covariant) gauge fixing has been used.

For a torus, we have

2
1 L — )
gab = 1 } and gab = 1 7-18

T, ITI2) -1, 1) .

A straightforword calculation gives

det!/f,y = 2/1,% Vp =1 ’ 7-19

and detQ,; = 124 7-20

Therefore, (7-17) becomes,

I = (1/1,) {det’ (-Aydet' (-a+A) } |, 7-21
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7.2 PATH INTEGRAL ON A MINIMALLY IMMERSED TORUS

Integration over XM can be carried out as follows. The metric

for small variations in XM is defined as

118%™ 117 = iz J.dZE,,/;;ESX“SX“ ' 7-22
B

The measure for XM integration is defined in terms of the Gaussian

integral:

- &2
I I Jl[dSX”]e ez g ) 7-23
u

To carry out the XM integration, we separate the constant piece
XH(E) = x * + X'H(E) 7-24

where X'H(E) is orthogonal to the constant: dX = dX_ dX'. The
corresponding measure is defined by
[dX ] = [dX dX']J, 7-25

where J, is determined by the normalization (7-23), that is,
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1 2 2
-4 é'Jg-‘Xo _ 2
1= JTf e 0 framme™

= (2 3 I/ZJ[dSX g™ 8K 1172 7-26
W, -

We then find

M —|;8x'||2/2
J, =Hj[d8x le
1
2& [
{E_i}d/z as XO?EO 7 7-27

I
—
Q.
)
S
o
—
Q.

as A =0 7-28
2np? °

where, in (7-28), we have used the fact that due to the higher

derivatives in the action (7-1), there are 2d zero modes for XM
fields in the (on-shell) case of Kb=0. In this thesis, we are

mainly interested in the generic (off-shell) case of Xb¢0. The

integral over XM diverges and can be regulated by putting the

system in a periodic box of dimensions L! L?...L%. Using (7-27), we

perform the integral over X'" to obtain
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2
A dt
Zp = (—°)d/2| IL”J‘--—exp{—(60—-"-7\0 )sziJg}
o . amt, o

-1 -d/2+1
x (1,/2m) o/ {det' (-A)det ' (-A/A,+D} , 1-29

where we have used a formula, for a constant C and an operator F,

1
det' (CF) = E-det'(F) , 7-30

and the relation

V = order (D) j[dS&]' with order (D) = 1
This is because the path integral (7-29) is not invariant under the

modular transformation T— —-1/1 which corresponds to the

diffeomorphisms: &l——§l &2 — &2 (which respect the orientation,

the periodicity (7-2) but do not connect with the identity).

Det' (-A) has been calculated in ref. [37]:

2 TR, /3 amit 4
det' (-A) = 1.e | £ (e ) | ’ 7-32
where
OO 2 ,
£ (™Y = I I( 1 - e . 7-33
n=1

The determinant of (—Aﬂb + 1) is evaluated in Appendix B (see

also [38]):
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2
T a 2

det' (-A/A + 1) = exp [—2 (1+lnA- + 21T I(a) |
47t }'o 2
21tiw+ 4 -T,a
x|f (e Y1 (1 - e ) ’ 7-34

where I(a) and a are defined by (4-28) and (4-29) respectively and

w,=mT +iT, (m2+a2/4m?) /2,

Substituting (7—32)—(7-34) into (7-29) gives

Ao d/2 . 2(2-d)
Z - (_) HL j Rl (27t1$) d/2|f(e21t1‘r) |
21tiw+ 2(2-d) —Tza 2-d
x|fe (l-e )" exp(-G_,, A) b 7-35
where
2
o) — o A -2
o = -t (E2h (1+ln=—) - TlA72) 1-61(a)) , 7-36
eff. o q 8T }'o 6[52
F~={—-lSReTS-1-, Imt>0} ,
2 2 '
and A= 1 _ 7-37

We immediately see that (7-36) agrees with (4-34). Comparing (7-37)

with (4-32) shows that T,~2p . Indeed, the geometrical meaning of T,

is just the ratio of the two length scales (or radii) of the torus.

We note that the region of integration over the Teichmuller
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parameter T in (7-35) is not restricted to the fundamental

domain[37]:

F={-1/25Ret<1/2,Imt>0, |T|>1} . 7-38

This is because the path integal (7-35) is invariant under

T 1T+1 , ‘ 7-39

but changes under

THo-1/1 7-40
The invariance of the path integral (7-35) under the

transformation (7-39) means that, when we merge a closed string

back to itself at the time 2nB, a twist by an angle 2% in the final

string as compared with the initial one makes no change on the path

integral. (In fact, the geometrical meaning of T, is Just an

arbitrary twist. See also below.) The fact that (7-35) change under
the transformation (7-40) means that the two directions, the
spatial and the "time"” directions, of the string worldsheet are not
on the same footing. In other words, the modular invariance of the
theory is spontaneousely broken. It is the vacuum condensation of

the lagrange multiplier which makes the path integral (7-34) change

under modular transformation (7-40). (Recall that in the case Ab=0,
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the path integral (7-27) is modular invariant.) As a result of the
vacuum condensation of the lagrange multiplier, we will see below

that the theory is free of tachyons.
7.3 FREE ENERGY FOR A TORUS

In the same fashion as for the Polyakov's bosonic string we
evaluate the free energy F(B) for a gas of rigid strings in the

limit 13,14, ...1% e, L1 = 12 = B fixed[37]

po-1
F(B) - _(HL ) Zconnected ’ 7-41
p

where the subscript "connected" on the path integral simply means

that all the (disconnected) vacuum-vacuum amplitudes in the path

integral have been excluded. The leading P-dependence in F (B) comes
from tori which wind r times around the compact l-direction. (Note
that, to describe the statistical mechanics of strings, the
embedding space is chosen to be R¥'xS'. This differs from the
statistical description of random surfaces though both Hamiltonians
may have the same form.) The boundary condition (7-2-a) is then

modified to
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X“’(§1+I3,§2) = Xu(§1,§2)+rﬁ5'il Vg 7-42

XH(EL E24B) = xH(EL,E2) P 7-43

while (7-2-b) remains unchanged. It is convenient to separate XM

into a periodic piece and a linear piece,

W (EL E2) = yh (& E2) + cE'8) 7-44
The action (7-1) then becomes
2R2)\
S(X,g) = S(YIg) + _]:_LO 7-45
2‘52(10 7

while the free energy (7-41) takes the form
oo 1/2

A dt - omit 2 (2-d)
F.(B) =—(—°)d/2‘,""i at 2nt ) e e ) |
o 2nt2 2
o o 2 =172
omiw, | 2(2-d) “Ta p_g
x| fe )| (1-e )" “exp(-0__ A)
©0 2 2
-r BEA /20 T
xz e ° °7 _ 7-46
r=1

In order to understand the content of (7-46) we compare it with

the free energy for a collection of free particles whose spectrum

is @ = (k* + m?)1/2:
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2. 1 d "k —Bo,
FB,m) —Bj—d—ln(l—e )

(2m)
[o ]
ds -d/2 N —mzs/2 - rsz/ZS
=—| —(271s) e 7-47
s 0
° r=1

In terms of occupation—-number operators of transverse oscillators
2 (1) ~ (2)

< ~ (3) .
N ., N N. % and N , the spectrum of smooth strings
ni nil 4 ni 1 1

FaY
N-~
’ n

is given by

A 2 < (1)
~2 ~ (1) Z
m(a)=41t—o{0' L+Zin(N,+Nn.)
o eff. Tt . ni 1
o 2 i=1 n=1
d-2 R d-2
~ 2(2) ~ (2) a ~(3)
* Z i nNg; + Nz ) 4 '57{2 N}, 7-48
i=1 n=1 i=1
subject to the closed string constraints:
d-2 R
~ (1) = (1)
Zzn(N_—N,)=O 7-49%9-a
ni ni /
i=1n=1
d-2 R
~ ~(2)  ~(2)
Zzn(N~.—N~,) =0 ’ 7-49-b
ni ni
i=1 n=1
where
~ 2 2
n=\/n + a /4m? . 7-50

In (7-48) and (7-49), n is the mass level discussed in the last

chapter while N .= ai_nai which should not be confused with

N = Zm:lni = Znainai in (6-25). The differences between n and n

n>0 n>0
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~

or N . and N.. mean that the energy degeneracies due to the higher
derivatives in the action (7-1) are lifted by the condensation of

2 N
the Lagrange multiplier A, (note that a =AB%? in n).

Summing (7-47) over oscillator spectrum (7-48) subject to
constraints (7-49) yields exactly the free energy given in (7-46)

with the identification

tzzsxo/ao 7-51
Note that

1/2 d-2

dt {2mit 22 (RN @ }

1exp Ti ) n(N_, 01 )
-1/2 i=1n=1
S (1) ~u)
if 22 (N 1 nl)_o ’
— < i=1n=1
l 0 otherwise ’ 7-52-a

and similarly

1/2 a2
A (2 2
Jd‘texp{ZTClTZXn( ()— ()) }
-1/2 1=ln=1
d-2
, ~(2) 22
( 1 if n( -~ N-.) =0 ,
=< i=1 n=
l 0 otherwise ) 7-52-b

We then see that the T, integral in (7-46) enforces the constraints

(7-48) . This is not too surprising since, as mentioned before, the
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geometrical meaning of T, is just an angle (over 2m), a twist in

the final string as compared with the initial one when we merge a

closed string back with itself in a period of time 2mB. Since there

is no such twist when we merge an open string as obove, we expect

that there is no such T, integral in the free energy of open

strings. In the next section, we will show that it is indeed so.

There are a number of interesting features to take note of.
From (7-48) we see that there are only transverse modes in the

2 ~ (2) Z(2)

~ (1) (1
) and Nﬁi have

mass spectrum. The longitudinal modes Nni, N_,

i nil

been removed by the gauge fixing procedure discussed in Sect. 7.1.
~(1) ~ (2

In the spectrum (7-48), the number operators Nni and Néﬁ represent

independent right movers (the former associate with the operator

. . , < (1) < (2)
-A while the latter with -A+A;) while N . and N:' are the left

1

movers. These are commuting operators. N, arises from the

zero-point fluctuations of the string. The constraints (7-49) are
the usual ones for closed string, namely, the number of left-moving
degrees of freedom coincides with those of the right-moving degrees
of freedom.

Now consider the lowest mass state. The squared mass for this
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state in the presence of extrinsic curvature is given by
2 2
m (a) = 20_.. a /0 y 7-53

where G__. is given by (7-36). We immediately see that the

requirement of vanishing of tachyon mass is just the one of
vanishing of the effective string tension, i.e.,

8r / (d-2)
LA Sy 7-54-a

ao >
1n A /7\.0

8no

2
A= ——=2 + 4 (1 _61(a)) 7-54-b
d-2 B2

which coincide with the saddle point solutions (4-37) and (4-38).
It can also be seen from (7-48) that there are generically no

massless spin-2 states in the excitation spectrum of rigid strings

even in the limit of A =0. This agrees with the fact that rigid

string theory does not have modular invariance [52].

7.4 FREE ENERGY FOR A CYLINDER

Following Burgess and Morris[60] we choose the cylinder as the

region

(&', &) e [0, B/2]1 x [0, B] , 7-55

100



with (&1,0) identified with (ﬁl,B). This can be obtained from the

torus defined by 0 < &! <P and 0 < & < B through the mapping £,

£ (gL, eH = p-¢&.,8y 7-56

The Teichmuller parameters of the cylinder are obtained by

requiring the metric gajt) on the torus to be invariant under f_.

This has the effect of requiring 11=O and so there is only one real

parameter T, in gﬂjt) such that 0 <1 < oo , Therefore, for a

cylinder, we have

1 0
Jab = ) ' J; =T, Vo =1,/2 , 7-57
0 t?)
and  detf,, = 2/1? 7-58

Only one of the two conformal Killing vectors, Cza , defined on the

torus is even under f_ and so

c =1 . 7-59
Evaluating detQ,,, we get
detQ,, = detQ,, = 1,%/2 . 7-60
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The relationship between det'(-A)|. and det'(-A)|, has been

found by Burgess and Morris (601,
1/2

det' (-A) |, = 1, (det' (-A) 1) |T=iT i 7-61
2
where
T kel in 4
det ' (-A) IT=T§exp{-—3—2}|H(l—e2n T) | . 7-62

n=1
The quantity det'(—Aﬂb4-l)|Cis evaluated in the Appendix C. It is

related with det'(—A/lo+ 1) |, as follows:

-T,a T,a 172
det' (-AA+1)|_ = (1-e e (det'(-A/A +1)1,) 7 7-63

where det' (-A/A_+1)1, is given by (7-34). Det'(L,*L;)|. is given by

det' (L,*L)) I, = (det' (=A)[,) *?|x=ir, 7-64

In (7-61), (7-63) and (7-64), we note that the determinants of
the operators that occur in the theory for the cylinders are
related to those for tori not linearly but by the exponent of one
half. This result could have been expected since for a torus the

periodic boundary conditions (7-2) must be satisfied which identify

(EM4+B,EY) and (E!,E%+B) with (El, &%) . This requires that log.
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determinants lndet' (-A) and lndet'(—Aﬂb4-l) contain sum over

eigenvalues m,n € Z. In other words, the degeneracy of each
eigenvalue a, =~ ( with m,n not zero simultaneousely ) is four for
a torus. ( For example, a, ,=a, ,=a_, ,=a_, , ) For a cylinder, only

(EL,E2+B) is identified with (&, €%). In this case, m runs over

positive integers while n can be any integer. Therefore the

degeneracy of each eigenvalue a _ ( with m,n not zero simulta-

neousely ) 1is two for a cylinder. This i1s the topological source
of the power one half in (7-61), (7-63) and (7-64).
Combining all pieces of information together gives the free

energy for open rigid strings in one loop:

(==
dt = 271 2-d
oN\d/2) 2 1-d/2 nt
Fo(B) = ) f - (2ne ) [T a0

° 2 2 n=1

3 —2nn T, 2-d -T,8 p9-q ~Oere A -r2p2 /4a T,
x|||(1~e )T (1-e )% e o e 7-65
n=1 r=1
where

~ / 2 2 2
A = 12B2/2 , n=+n+a/4an® , a'= loﬁz 7-66

and
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Ao (=20, y -
0+ d—-2)A (1+lnA—) — M(l—GI(a))
eff. o (1,0 8n )“0 632

N VA (a-2)
B

Eg. (7-66) can be compared with the free energy for a collection

7-67

of free particles (7-47). In the same way as for the
closed strings, we find the mass spectrum for the open rigid

strings to be

oy - el B3 S i)

i=1 n=1
d-2

a '\(3)

—_ N, 7-68

2% 7
i=1

~ (1) A (2) ~ (3) .
where Nni, N-, and Ni are number operators and commute with each

other. Summing (7-47) over the mass spectrum (7-68) reproduces
(7-66) with the identification.ffﬂbs/ad The ground state is one in
which the number operators have zero eigenvalues. We find

m2(a) = a’c_ . /o . 7-69

where O__. is given by (7-67). We immediately see that the theory

is free of tachyons if
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That is

o =§MLL]2_2 7-71
°  1nA"/A, ’
and
8o 2
A+3E ) = —2 8 1 61 a) 7-72
o B0 a2 3p? :

Egs. (7-67), (7-71) and (7-72) agree with (4~-34), (4-37) and (4-38)

respectively except for the Vlo term which is nonuniversal and

corresponds to a constant term in the effective (thermal) potential

defined by GeﬁA=ﬁV(ﬁ), arising from the zero-point fluctuation of

the stretched string. Nevertheless, including such a term does not

change the critical temperature T_ since T_ is determined at lo=0.

Perhaps this term can be neglected due to the insensibility of

experiments to a constant term in the potential.
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Chapter 8

Hagedorn Temperature and the Phase Diagram

In Chapter 6, we estimated the Hagedorn temperature of the model
by assuming the irrelevance of the rigidity term at this
temperature. In this chapter, we rederive the Hagedorn temperature
more rigorously than in Chapter 6 by using the free energy obtained
in the last chapter. The phase diagram of the model is also worked
out and compared with numerical simulations for discretized random

surfaces with the topology of a torus with rigidity.

8.1 SINGULARITIES OF THE FREE ENERGY

We start by considering the free energy for open rigid strings

(7-65) and focus on the r=1 contribution. First consider the upper

limit where T, goes to infinity. Since A=TJ¥/2, we see that the

only relevant term in (7-65) in this limit is

-d/2 -1
F(A) A exp(—o;ﬁ.A) 8-1

In the usual bosonic string, —-C_.. A = 4mT, which corresponds to
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a tachyon in the string spectrum[37]. Therefore the thermopartition
function of the bosonic string is actually mathematically
ill-defined. In our case, however, there is no such divergence in
the free energy (7-65) because of the absence of a tachyon in the

string spectrum. The tachyon free condition determines the critical

temperature T_ associated with the smooth-rough transition: In the

rough phase, it is due to the condensation of the Lagrange
multiplier or in other words, the dynamically generated string
tension, the effective string tension remains zero and as a result,
no tachyons appear in this phase.

Comparing (8-1) with the expression which defines the string

susceptibility ¥ [31,

_3 KA
r@a) =a2e , 8-2

gives Y=(4-d)/2 for open rigid string at T.. The same is true for

closed rigid string as can be seen from (7-46). According to an

important result of Durhuus, Frohlich and Jonsson[61], in a class
of models of random surfaces on hypercubic lattices, if ¥ >0, then

the surface is a branched polymer. On the contrary, for y<0, the
average area of a planar surface at the critical point is finite.

(To obtain a large surface it is possible by fixing the total area
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to be large as in (6-3).) The marginal case is ¥=0 which

corresponds to d=4 in our case.

We next investigate the asymptotic behavior of (7-65) as 7,—0.

The examination of the path integral of strings made in Chapter 6

indicated that, as far as the behavior near 1,=0 is concerned,
potential trouble can come from a divergence in the level density

d, at large n. We need therefore to examine the convergence of

(7-65) at large n.
The integral over T, can be evaluated in the asymptotic limit

corresponding to large mass level, n— o, By the expansion of the
geometric series, we have

= —-2TT_n - (d-2) ~2TT d-2
IH(l—e 2y = [1+ z dmye ]

n=1 n=1

i —2T|T,n
1 + d 4o, (M)e 8-3

n=1

For large n, d 4, (n) is given asymptotically by Huang and

Weinberg[52]

N - (d+1)/4 2 (d-2)ny /2
d(d-2) (n) (n) exp T (T)
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) —21t125 -(d-2)
In order to estimate || I(l-e )| in (7-65), we proceed as
n>0

follows. Since for large n we have n—n and therefore

n_ -1

—2ntn 2 —2mtn —2mT.n
- (d-2) -(d-2) - (d-2)
|||<1-e Y z|||<1—e 2y x|||<1—e 2y

n>0 n=1 nZno *

8-5
In (8-5), n_  can be estimated by the requirement
2
a 1
~ or n ~ a 8-6

2 2 2
4T n T
]
Since the minimum value of a is zero, while that of n  is unity, we

set

n =c(a + 1) , 8-7

(o]

where 0 < ¢ < o is to be determined. Let

-2mT,

w=e , f() = H(l—(l)n) and f(®,n)) = H(l—mn) 8-8
n=n

n=1 ‘

The asymptotic limit of (8-5) can be estimated following refs. [52]

[57] and [62], we find as w—l

109



. (mn)m
f (o, no) = expln(l-® ) = exp-
n2n n2n0m>0 m
m no
() m_n 1
= exp- /) —m— (®) ~ exp- — 8-9
m>0 m n20 m>0m (l—O))no ‘
Therefore
2 1/n 1/n,
fo,n) ~ (exp- —m—)  ~ (£() , 8-10
° 6(1l-w)

where n_ is given by (8-7). Thus, as far as the asymptotic behavior

as w—1 is concerned, we have

1+1/n,
£(®) £(®,n) ~ (£(0)) . 8-11

Putting all these results together and considering those terms

for which n 2 N >> n_, (7-65) becomes asymptotically

A, d/2°° at, VAN i
F(B) ~ "'(a ) J. T (27“:2) z d (d-2)-(1+1/n,) (n)
2

o o n=N r=1

2np2
X exp- (21tn12+Lﬁ—7"°)

T
4(10 2

(n
{d=2)-(1+1/ng)

where an overall constant is omitted and K, [Br(2mn} /o )'/?] is a
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modified Bessel function. For large n, K4/, behaves as
s (Br mo)_l/zexp_rﬁ .Z.EELO 8-13
2 o o .

Substituting (8-4) and (8-~13) into (8-12) gives

~{(d-2)- (1+1/n)-d+4)/4
F(P) ~ - (n)

n=N r=1

2(d-2)

1/2
xexpn{ (1+1/no)n} exp-rf 2nnds 8-14
o .

o

The dominant contribution comes from the r = 1 term and the
critical temperature is determined by equating the exponents in

(8=~14) . We find

(d—2)1coco

= J1+ 1/c(a+l) [ —= 8-15

As a— 0, the extrinsic curvature term dominates. In this case, we

expect

1+ 1/c =2 . 8-16

This gives c=1 and (8-15) becomes

(d—2)7coc0
3A

o

B, = y1+ 1/(a+1)

Comparing (8-17) with (6-13), we see that both agree nicely
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since a in (8-17) is large at T,. We check this explicitly:
a(T,) = (,/AOB)T ~ \/(d—2)1toc(TH)/3 = 2n/ﬁ i 8-18
H

Therefore

-1

‘/1+1/(a+1) =~ 1+——1— = 1.10 8-19
21t/ﬁ+1 '

We can repeat the above computations for a torus. In this case,
we consider the free energy of an ensemble of closed rigid strings

(7-46) . Comparing (7-46) with (7-65) we find that they are in fact

quite similar. The T integral involved in (7-46) does not affect

the result since the level density is dominated by the value at

1,=0 for —1/2S1151/2. Another difference between closed and open

strings is that the former contains twice as many modes as the
latter. This is reflected in (7-46) where the exponents of

[£(e?™% | and |f (e?™VY.)| are twice that in (7-65). Nevertheless, we
note that the area of a torus is also twice as large as that of a
cylinder. This is reflected in (7-46) not only by the area term but
also by the exponents involving winding numbers. The latter are
also twice as large as that in (7-65). As a result, the Hagedorn
temperature for the closed string is the same as that for the open

string.
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8.2 THE STRING SUSCEPTIBILITY AT Ty

Our calculation below is inspired by the recent work [03] which

investigated the phase transition in Liouville theory. Setting

N=0%¢ in the conformal anomaly (4-46) gives

20

1
(Anomaly) = —sziaaq)a [0} 8
20 2

Motivatied by the resemblance of the ¢ action (8-20) to the
Kosterlitz-Thouless (KT) model in the continuum, we inquire into

the effects of vortexlike configurations of the form
6€) = -uin(g) 8-21

where &==(§f-k§f)l/2and we have centered the vortex at the origin

for notational convenience. For any M, (8-21) is a solution of
0°¢=0, which is the classical Euler Lagrange equation from the

action (8-21), in the presence of a 6-function source of amplitude

21y at the origin.
We now demand that the area around a vortex such as (8-21) be
convergent as seen in the d-dimensional space in which the string

world sheet is embedded. (This requirement is necessary for the
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¢0—field configuration (8-21) to be interpreted as a regular

vortex.) We can achieve this by integrating over a small region of
linear dimension a around the vortex and requiring that the proper

area

a

1/A2 ~ J-exp [¢(§)]d2§ » 8-22

0

be convergent. The local version of (8-22) can be used to define

a(§) which is a local cut-off in & space:

a®)’ = (1/AYexp[-0¢)] 8-23

Since (8-23) is only valid in a region where ¢(§) does not change
much over distances of order a, Eq. (8-22) therefore represents a

more general (non-linear and non-local) relation between a? and

1/A?. Convergence of (8-22) enforces U<2. For vortices with u=2,
the proper area diverges for any finite a(f) and remains finite

only as a(§) vanishes strictly. These are precisely the spike

degeneration into branched polymers and can be viewed as singular

vortices. We thus see that singular vortices or spikes have a

minimum amplitude H=2. Our speculation here is that it is this

singular vortex configuration with the minimum amplitude which
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plays an important role in determining the subleading behavior of

the system. The field energy for this singular vortex is given by

Ve

1
U = Jd2§(8¢)2=ﬂln(R/a) 8~24
20, o

r r

where the cutoff a corresponding to a(f) is kept finite and R is

the linear size of the system (or an outer cutoff radius on the ¢

field).

(8-14) can be compared with the asymptotic form of the level

density[57'62'64]:
p(m) ~ cm " exp(bm) ) 8-25
m —>o0

where m is related to n through (6-11) and plays the similar role

as A in (8-2). Note that R/a~<Vn in (8-24). Adding the contribution

from the anomaly (8-24) to the free energy (8-14) and comparing it

with (8-25), we find for the open string:

(d—2)(1+1/n0)—d+4 45

K= - - +3
2 o(T,)

d-2-d+4
- ———— - d+2+3 = 4-d » 8-26

where we have used (6-19) for a(TH). We see from (8-26) that the

marginal case for the open string is d=4. That 1is, the open string
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branches like random walks for d<3 at T,. For closed string, we

simply replace (d-2) by 2(d-2) in (8-26) to obtain

2 (d-2) (1+1/n0) ~d+4
K= - - 41t + 3
2 a(TH)

10-3d
—_— 8-27

The marginal case for the closed string is d=10/3. Acoording to

Cabibbo and Parisi[64], the asymptotic behavior (8-26) with Kk<2

(i.e., d>0) is typical of a second-order phase transition. We

conclude from (8-26) and (8-27) that a gas of rigid strings with

liguid-crystal-like order in the physical dimension d=4 exhibits

critical behavior at T=T,.

8.3 THE PHASE DIAGRAM

As mentioned in Chapter 6, the present model contains only one
basic scale 0_. All quantities such as T_, Ty, Xo and O can be
expressed in terms of c, . This makes the phase diagram of the model

quite simple. As shown in Fig. 1 (the (0_-T) diagram), unlike the

Nambu-Goto string and the Polyakov-Kleinert string, there exist
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three distinct regions in the present model: The regions (I) and

(ITI) are the smooth with v=1/2 (or d,=2) and crumpled phases with
V=co (or d =e) respectively while region (II) is a rough phase
possibly with continous changing critical exponent 1/2<v<1 (or

<4). It is interesting to compare our result with that

obtained from numerical simulations by Ambjorn, Durhuus and
Jonsson[05] for discretized random surfaces with the topology of a

torus with rigidity and fixed connectivity (without

self-avoidence). It has been found in ref. [65] that the Hausdorff

dimension of the surfaces is a function of the bending rigidity

l/ao. For 1/0LO sufficiently small the Hausdorff dimension is

infinite, but jumps to a value smaller or equal to 4 at a critical

value of l/aO where a crumpling transition is identified and

claimed to be second order in nature. For 1/0LO above the critical

value, their numerical data favour a continously varying Hausdorff

dimension, changing from 4 at the critical value of l/aoto 2 for

1/a  going to infinity. We thus see that our analytical results
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agree with that obtained from numerical simulations in ref. [65].

The main result found in this work is that there exists an
intermediate region (II) which separates the smooth phase from the
crumpled phase in the model. This differs from that obtained from
the Nambu-Goto string[13’54] and the Polyakov-Kleinert

string[12'46'55] where no such intermediate region is present and

T,=T.. This can be understood as follows. Up to a critical

temperature TC~O.69\/0'o at which the Nambu-Goto string or the

Polyakov-Kleinert string reaches its transition point with the
Hausdorff dimension 4 and so branches like random walks, the rigid
string with fixed density Jjust overcomes its stiffness and starts
to crease with the Hausdorff dimension 2. As the temperature rises
further, the string loses its stiffness further and behaves like

the Nambu-Goto string as the Hagedorn temperature i1s reached.

Therefore it could have been expected that T >T_.

Finally, we note that from the point of view of strings, the QCD
vacuum in the high temperature phase is complicated and
nonpertubative. Near the Hagedorn temperature one must expect that
small closed strings (or spikes) are likely to be formed due to the
relatively chaotic flux tube osillations, which cén burn off small
closed strings due to self-touchings or self-crossings. These small

closed strings (or spikes) are analogous to the vortices in the
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periodic Gaussian model in the high-temperature phase. The crumpled
phase then corresponds to a vacuum (nontrivial background) that
consists of a condensate of vortices (small closed strings or

spikes).

119



CHAPTER 9

Discussion and Summary

We identify T_ as the deconfinement temperature in QCD. The

reason is the following: First, the smooth phase corresponds to the

confined phase since both are characterized by a nonvanishing

string tension while for T>T_, ceﬁ=0 which corresponds to the
deconfined region in QCD. Moreover, the string model in the smooth

phase has a local SU(ee) symmetry which is known as the

area-preserving symmetry existing in the Dirac membranes in the
light—-cone gauge[32]. (We here emphasize that in the present model

the area-preserving symmetry is a true symmetry of the system in
the smooth phase.) The critical temperature T_ associates precisely
with the breakdown of this symmetry or its center group 0(2) or
U(l) which is equivalent to Z(N ) as N_ to be large, which
associates with the deconfinement transition in Qcp[66,671

We identify T, with the chiral transition temperature in QCD.

The reason is the following. For T<T, the system is in the

anisotropic region where 0(4) symmetry is broken. This resembles

the chiral symmetry broken region where the instanton molecules
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dominate. Recent analytic calculations([68] and numerical
investigations[69] have shown that in the broken chiral symmetry
region the QCD vacuum consists of an amorphous network of
instantons and anti-instantons constantly absorbing and emitting
light quarks of different flavors. The amorphous structure leads to
a delocalization of fermionic zero modes and to the spontaneous
breakdown of chiral symmetry. This picture is consistent with a
string in the intermediate region. The crumpled or isotropic phase
is the expected phase of quark-gluon plasma. In this phase, the
chiral symmetry is restored due to the isotropic orientation of the
instanton molecules[68,691 (We remind the reader that due to the
special property of instantons, the orientation of the instantons

in the color space is identical to that in space at least for
SU_(2).) The resemblence becomes closer if we note the following

isomorphism:

2
0(4) ~ SU )ZXSU(Z) 8-21
2

This relation perhaps implies that the present model describes
effectively QCD with two light quarks (i.e., u and d quarks).
Let us summarize our results. In Chapter 2, we have proposed
the model of rigid strings with liquid-crystal-like order and
carried out the classical symmetry study of the model. We have

shown that the model describes an off-shell generalization of the
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theory of minimal surfaces (string worldsheets). The area-
preserving symmetry together with the conformal symmetry has been
shown to play an important role in the present model.

In Chapter 3, we have carried out a perturbative renormalization
of the theory. We have calculated the renormalized bending rigidity
which agrees with that of the membranes (with fixed density)[6'35].
We have discussed the geometric meaning of the X-field
renormalization.

In Chapter 4, we have presented a generalized (covariant) gauge
fixing procedure and solved a set of saddle point equations. A
nontrivial saddle point solution of the Lagrange multiplier has
been obtained (e.g., (4-37) and (4-38)). We have also calculated the
quantum fluctuations of the Lagrange multiplier. It has been found
that the fluctuations take the form of conformal anomaly (4-46)
which is "frozen" at low temperature.

In Chapter 5, we have discussed the implication of the saddle
point solution obtained in Chapter 4 to a finite temperature phase
transition of the model. We have calculated the critical
temperature, the Hausdorff dimension, and the width of the string.
We have shown that there is a smooth-rough transition in the model.

The differences of the this transition from the roughening

transition existing in the s.o.s. model as well as the Z, lattice

gauge theory have also been discussed.
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In Chapter 6, we have estimated the Hagedorn temperature by
assuming the irrelevance of the rigidity term due to the vacuum

condensate of the Lagrange multiplier. We have found the remarkable

result that THz(VZ)TC. We have calculated the mean squared radius

of an open string at T, from which it has been shown that the

Hausdorff dimension of the string sheet is 4.

In Chapter 7, we have calculated the path integral and then the
free energy of a gas of rigid strings on a torus. The mass spectrum
of the closed strings has been obtained from which it has been
shown that the theory is free of tachyons. The calculation has also
been extended to the open rigid strings.

Finally, in Chapter 8, based on the free energy of a gas of open
rigid strings obtained in Chapter 7, we have calculated the
Hagedorn temperature more rigorously than in Chapter 6. It has been
shown that the result agrees nicely with the estimates in Chapter
6. The phase diagram of the model has been worked out and compared
with the numerical result of discretized random surfaces.

In conclusion, we have investigated the phase structure of the
model of rigid strings with liquid-crystal-like order in this

thesis. An intermediate region (rough phase) separates a smooth
phase with infinite correlation length and Hausdorff dimension d,=2

from a crumpled phase with the Hausdorff dimension infinite.
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APPENDIX A

{-Function Evaluation Of Lndet' (-A) And Lndet' (-A+))

First consider the operator -A and its real discrete eigenvalues

{a .}, with nm=1,2,...; call its eigenfunctions fmm(i)

_Afn,m(g) = an,mfn,m(g) ’ A-1

where A==82/p. (We drop the subscript o on p's for convenience.)

The domain C is defined by

c=( (&) 0<El<r" } / ~ > A-2-a
where ~ represents the equivalence relation defined by
( ELEE ) ~ (BN, 2B +E2 ) A-2-b

We define a function as follows,

called the {-function associated to -A. Then the sum extends over

all the eigenvalues of -A. We note that -A is real and
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which leads to
= =G, (0)
det' (-A) =H a =e A-5
or

Indet' (-A) = =L _A(0) A-6

We choose the following as the orthonormal basis satisfying (A-1)

and (A-2),
1
2 . mxf
fno® = \[rp St ¢
1 2
1 4 . mxf 2nnf
£o.8) = =B sin (=) cos( 'B' ) , (m,n=1,2,...) ,
2
2 4 . mng _ nmé
fm’n(g) = R'_B' 51n(T)Sln(——B'—) , A-7
The corresponding eilgenvalues are therefore,
1 mw 2
a == (= for £ (&) 3
p R m, O /
1 my 2 2nmW 2 1 2
a == [(= "+ (—="] forf, £ A-8
m,n p R B .

If we set
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R' = \/p[3 and [3'=[3/\/p »

the eigenvalues (A-8) become,

a = (EEE)2 for £ (&) ,
r pﬁ r
a = [ By 4 (20T ] for £, £ A-10
' pB p
Therefore,
2 2 _-s
d mi 2nm
Indet' (-A) = - —{2i [ —) + __) ]
ds m,n =1 (pﬁ ( ﬁ

+i [(ﬁ;—)zl S}S=O | A-11

m= 1

that is, p >> 1. In

The partition function is computed for R >> T ,
this case the sum over m can be replaced by an integral from - to

+oo ,

and
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dsm,n =1
d dmw 1
= _pB Z J_ | A-13
ds 2T 2 2nw 2.s S=0
n=1 [® (T)

Using the formula

jd_co 1 __1 IB-D _1-2 _p
2n (?+a?P  (4ml? T(P) ,
we find,
(s-1/2 2
Indet' (-a) = - PB4 Ts—1/20N% (B 4%
@ml2 ds  T(s) &= "2nrm s=0

d TI'(s-1/2) 25-1%0 1 s-1/2
2002 ) Y

- (4m)12 ds I'(s) m =, s=0
A-15
Using the standard I'-function formulas:
F(s-12)=1(2s=1) Jr A-16-a
I'(s) 22s -1 r
I'(s) = —F& 1 A-16-b
sinfis ' (1-3s) ,
'(2s-1) = ——— L 1 A-16-c
2sinNsScosTS " (2-2s) ’
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and

Ms=1/2) _ w/; F(2s-1) _ _ w/;sinnsrg(l—s)

I'(s) 2s-1 T(s)? n22¢ " lcosnsIT (2 -2s) ’
A-16-d

we find
v _ _:E_s-l/z ——M
Indet' (-A) = 4npz( ) |S=o - -2 i
n=1n

A-17

where we have used the well known result
1 s-1/2 1
2 (=) | og=C(-1) == , A-18
n=1 n

We see that (A-17) agrees with (4-24).

In the same fashion, we can calculate lndet'(-A+A). (We drop the

subscript o on A's for convenience.) We first introduce a mass

scale as follows,

1
det (-A + A) =L2det [—;(—A+K)] A-19
A A ’

The eigenfunctions are given by (A-7). The corresponding eigen-

values are therefore,
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mE y 2
a =:[(PB) + ] ,

1 m 2 n 2
0 = 5 L) +<2B”> + a1 A-20

We find, .

1
Indet' [ (- A+1)]
A

d N -
=-—{2 2 (—) m")2+(2“”)2+7»]
m, n=1 A B

1 -s ws
+i(—2) [ED2+a] T

m=1 A pB

0B i(_l_)sr(sl/z){z 1
(4m)l72 ds * A2 I'(s) pr| [(2_n7£)2+7\’]s—l/2 s=0

129



p d 1 -s[(s-1/2) {2 —— } l

(41t)1’2 ds (A ) F(s) s-1/2 s=0

=—o0 [ ( + A
n= B ]

_ pJ—d 2 2. I(s— 1/2[{2 1 B
Aﬁ [(s) 2 _ﬁﬁ_ 2. s-1/2 5=0

n=-—ee [n + (

We now use the Sommerfeld-Watson transformation to convert the sum
over m to a contour integral J,
> 1
J =

e [n2+ (ﬁ#—-) 2] s-1/2

dz 1
= Jcotnz-—-_— A-23
2
C

U e (B 7 e (B

2n 2%

where C 1s the contour shown in Fig. A-1. Since
irnz

COSTz e ,

cotmz = — = — - 1i (Imz > 0) ’
sinfz sinmz

-imz

e

cotz = —m— + 1 (Imz < 0) A-24
sinmz b

we have,
J=J1p *Jdp +J3 *+ Jy ,
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where

-1/2 s-1/2 21 4

cotig
co-ie —-imz
e 1 dz
U2 T .[ sinmz - s-1/2 21,
(z+1ib) (z-1b)
~co—ig
—00+iE
dz/2
J3 - _J- s— s=1/2
(z+1ib) (z-1Db) »
cotig
co—jig
dz/2
J, = J‘ s-1/2 s=1/2 A-26
(z+1ib) (z-1ib) »
—o0—iE

with b = BVA2m.

Consider the contour c, as shown in Fig. A-2. Since § = 0, we have

C1

—cotig

J, = J = J + j + J A-27
Ve
CO41ig €1 €2 Cr
where

Ijl < mrfr = 0 A-28
o r—0 -

Setting z=iy+ib, dz=idy, we have
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° - b -1/2
_.[ e -1 ay/2
o0
o0

o= [+

1 ©2

sinim(y+b) (y+2b)s_U2(y )sd/Z

+

[¢]

- {y+b) /2
e

(-1) ¥ *ay/2

+I
inif +b s-1/2 s-1/2
s SInIT(y+b)  (yiop) (y)

- (y+b) 1/2-s
dy e

(o o]
_J‘_ (-1) ( 11 )
~J 2 isinh + s=1/2 s-1/2 s-1/2
J isinhm (y+b) (y+2Db) v v .

Letting y =ye!®® and y*=y gives

sinm(s-1/2) [y(y+2b) ]~ ay

2| (y+b)

J, = -2

; 1 -e

27 (y+b
s—90 {y+b)

[« -]
d 1/2 1/2 '
— 2 f Y v % (y+2Db) A-30
o 1 — e

In the same fashion we find
Jp = J;

and

o0
dysinm(s-1/2)

s=1/2 s-1/2
(y+2b) \%

(o o]
sinm(s-1/2) dyy A—32
-1/2 — -
(2b)s et 2yb) (—-s+3/2) +(2s-2)

(-s+3/2) -1

Comparing J3 or J4 with the following
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T ae” ! m m
J = a_lA_ m/a B(—, m + n - —) A-33
+n a a 7,

a m
S (1 + At))

we find
a = i, A=1/2b , m = -s+3/2, n = 2s-2 ) A-34
Therefore,
5+ g = 2sinmis-1/2) B(-s+3/2, 2s-2)
3 4 25-2
(2b)
3 2sinm(s-1/2) I'(-s+3/2)I(2s-2) A-35
(2b)2$€ T'(s-1/2)
Using
T
T2s-2) = TTpZs2) T 3-29) ,
and
T
T(s-1/2) = sinm(s-1/2)T (3/2-s) ’

(A-35) becomes,

2sinm(s-1/2) sinm(s-1/2) F2(3/2—s)
5-2 sinm (2s-2) I'(3-2s)

J3 + J4 =

2
(2b)

2
2-2scosms I (3/2-s)
= A-36
(2b) sinnts I (3-2s) .

Gathering all these pieces gives,
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1/2-s
dy [ (y+2b) y]

2T (y+b)
1 - e

J = —4sinn(s—1/2)J

v (2b 2-2sCOSTS I2(3/2—s) A—37
(2b) sings T (3-2s) .

And therefore,

lndet'[i?(-A + A)]

3 d 2=m -2sF (s-1/2)
- erqu(Aﬁ) I'(s)

2-2sCOSTs T'(3/2 S)] |
sinns T (3-2s) =0

x [ sinm(s-1/2) I (b) +(2b)

__pvf" d 2n -2s Jrq31nnsr (1-s)

2s-1
T2 cosmsI' (2-2s)

2-2sCOSTS F (3/2- s)] I

x [ cosmsI(b)+(2b) Siome T(3-29) _, 238
Using
2(1l-s)-1
I'(2-2s) = —_—T1(1-5)T(3/2-5) p
Jr
I'(3-2s) = (2-2s)I'(2-25) ,
and
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l"z(l—s) F2(3/2—s) 3 l"z(l—s)l"z(3/2—s)

I'(2-2s) TI'(3-2s) (2—25)F2(2—25)
B Ttl"z(l—s)l"z(3/2—s)
(2-25)2° P (126) TP (3/2-5)
_ T
(2_25)22(1-—25) )
we finally get,
1
lndet ' [—(-A + A)]
N
= 27pI (b) + 2m prd 2oy -ze 1
- eTP Po 5s AB 2-2g ' s=0
: 0)\162 d al/2 -2s 1
= 2npl () + 2w ds ' A 2-2s Is=0
2 A2
=2npI(b) + p—)-‘-&(ln—-— + 1) A-39
4r A ¢
where I(b) 1s defined by
00
B dy 1/2 1/2
I(b) = 4 J‘——mm) vy (y+2Db) , A-40

with b =[3\/7»/21t. We immediately see that (A-39) and (A-40) agree

with (4-27)-(4-29).
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APPENDIX B

{-Function Evaluation Of Lndet' (-A/A+l) On A Torus

In this Appendix we wish to evaluate lndet' (-A/A+1) on a torus.

For a torus, the metric and its inverse are given by

(1) o _ [ W)

Jab LT o | g P
1 1
The Laplatian is
1 ab ab
A = ==9 95", =939,
Js
_ 1 252 2 _ _
T2{m 02+32-2139,} B-2
2
and the eigenfunctions are
27l 1 2
£ () = exp{T(mg + n&) } B-3

We introduce a mass scale A as follows,

' (o A vl
det ' ( A/K+1)—A2 det [-j—\z( A+ A)]

Therefore,
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1
det! [—2(—A+K)]
A

_  f 22232452 _ 2
= det' { [(t2+72)92+0] 2118182+12x}
B2t 2

2

},  B-sa

472

2
Arz

! 2
=I I —Ax_. {n312+(n-—mt)2+
R12p? 2 1

and

B2t
lndet! [—12—(—A+x) ] Z 1n { [m21322+(n—m1:1)2+ 2]
X m,n A2 232 4m2

B-5

We use the {-function regularization to find the finite part of

1ndet ' (-A+A) without additional subtraction. Similar to (A-6),we

have,

1ndet' [ (-A+h) /A%] = - ' camya2(0) B-6

where { ,..(s) is called the zeta function associated to —A+L (see

(A—-3) for definition). Therefore,
1
lndet'[—;(—A+KN
A
;\’BZ 2

i S 2.2 Cmt 2+
= 11m ; {A2 2[32 [m’tz+(n mt )2 +

]}_

B-7
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The sum over n is converted into an contour integral using the

Sommerfeld-Watson transformation (see (A-23)-(A-26)),

1
Indet' [~ (—A+A)]
X

d am? 2
=_llm -c_i-s_ ( 2 2 J z 2isinmz [m 122+(z——m11)2
KB c
e )
+ + n.c.
472
+1lim —{ ( [m'r +(z—m’r )
<50 A2 ZBZ : 2
a 2]— } A
+ 4+ h.c. 1n=
4m2 N7
B8

where a? = AP? and the contour ¢ passes above the real axis, from

o +i€ to —oo - 1€ (see Fig. A-1). The first term in brackets

converges at s = 0. We first consider
-0o4ig
inz 2.2 _
. d dz e 2 2 2 & S
-lim— —_— —— [m T, +(z-mT) 4 ]
0ds 21 sinmz 4r?
ootig
-oo+ig . 2 2
iRz
dz e 2 2 2 aft,
= -~ =————o 1n [m T, +(z-mT ) + ] B-9
21 sinmz 472
©O+ig ’
From
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2
mtT, + (z—m‘tl) + = (

we have

with

= + -
wi mt, * B-10
Consider the contour c¢ as shown in Fig. B-1l. we have
—co+ig
-0
b4
cotig ol ) €
where
Ijl <2rr 0
Cr r—->0
Setting z = w, + iy, dz = idy, we have

o

1d
(B-9) =_[l.y ——
2i sinm (iy+w )

in{iy + w,)

in(iy + wy)

©0
-d e
= J. Y - - (2|i)
2 sinm(iy+w )
o

21:.'|.w+

In (1 - e )
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[1n (iy+8) -1n (iy-8) ]
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Note that, for m > o,

. 2 2 2 ) 2 2 2
w, =Im|T, + 112\/m + a /4T , W_ Iml’c1 - 112\/m + a /4n ;

and for m < o,

, 2 2 2 , 2 2 2
W, =—m[T + 112\/m + a /4m w_ =-[m[T - 112\/m + a /4m

= -w_(m>0) , -w, (m>o0)

Therfore the first term on the RHS of (B-8) becomes,

2niw, = 21iw, 2 -T2
22 In(l - e ) =22 1njl - e [+ 21n(l-e )
m

m=1

B-~12

The factor 2 in front of each term is due to the fact that the same
contribution comes from the hermission conjugate.
The second term in the r.h.s. of (B-8) converges for s > 1. It

can be evaluated in the same fashion leading to (B-12), we find

2
d 2 -s sinms T (1-s) 1-2 1
1im E—( ;11:2 2) s I'(2-2s) (27,) SZ 2
s—o 45 A’CZB COSTs s m 2 a s-1/2
(m + '—;)
in
B-13

We have to use the Sommerfeld-Watson transformation once again
to convert the sum over m in (B-13) to an integral. This has been
done in Appendix A and is given by (A-23)-(A-37). Combining (B-12),

(B-13) and (A-37) gives the final result
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lndet' (-A/7L+l)=ln% + lndet' [l—(—A+7L)]
N K
21l::i.w+ 2 az't A2
=2 1ln |l - e l + 201+ 1n—
dy 1/2 1/2
+ 81“2"‘ 1 - ezn(y+a/2m Y (y + a/m)

with a2 = AR

o

+ 21n(l1-e7%a)

We see that (B-14)

agrees with (7-34).
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APPENDIX C

A Derivation of (7-63)

We now evaluate det’(—Aﬂnkl)Q, The spectrum of the operator
(-A/A+1) on a cylinder is the same as that on the torus with 7T

restricted to T = if, The {-function associated with (-A/A+1) can

be written as

1
-S
G apa M s) = 2 d.(a, Ya () p c-1
n,m
where a_ _ denote the allowed eigenvalues of the operator and
de(a, ,) is the degeneracy of the level (m,n).

The degeneracies are just the number of eigenfunctions even
under the involution f_ defined by (7-52). The eigenfunctions are

given by (B-3):

£ (858D = expzfi m&' +nE% c-2

Under the involution of f. (e.g., (7-52)), we have
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£ £ (ELED] = exp

= f-m,n (gl, §2)

B

2ni (m&! + n€?) exp2mim

. C-3

So the eigenfunctions that diagonalize f_. are

1
gmn=—J::(fmn+f—mn C-4
I 2 1 ’
It is easy to check
9, £ L8] = £ g (€8 c-5
Clearly, if m#0, then
1
dC (am,n) = ? dT (am,n) C-6
If m = 0, then
dc(ao,n) = dT(ao,n) c-1
Therefore,
>N IR Yy
Coroanser Ars) = ) dy(a, Ja (A)+ Py aoln(x)
m,n n
_ AB2t2
l l 4 2 S 2 2 s
= oyt M)+ 2D (A 7 (1 —2)
n AB 12 4n i
C-8

and
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lndet ' (=A/A+1) |

= —lsl_)o_t"c/ AA+ I(X,s)
- —Cc/—A/k+10"’o) ’ -9
where
Cc/ AN+ 10" 0) = %C"T/ AN+ lo\' 0)
2.2
+%lim ( 41t22 )_s (n2+ M ;2 - C-10
§50 1 AB 12 4n
The first term in the r.h.s. of (C-10)

is evaluated in Appendix B

(see B-14). The second term is just the m=0 part of the first one
From (B-12) and (B-13), we find
- XBZ
s
-hm 2( ) (e —2)
n AZBz’CZ
-‘tza 1:2a
= - In(l-e )- lne , c-11
where
2 = ) 2 -
a p c-12
Combining (C-9)-(C-12) gives
. }» -T,a a 1/2
- = - LI g
det' (-AA+1)|_ = (l-e (det' (-AA+1)1,) . c-13
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where det'(-A/A+1) |, is given by (B-14). (C-13) is just (7-63).
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FIG.

FIG.

FIG.

FIG.

1.

FIGURE CAPTIONS

A sketch of phase diagram for the model. The regions

(ITII) are the smooth and crumpled phases respectively

while the region

The contour C.

The contour C1°

The contour C.

(II)

is a crossover.
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Fig. A-1. The contour C.

Fig. A-2. The contour C,
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The contour C.

Fig. B-1.
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