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ABSTRACT 

A spatiotemporal database is a spatial database in which data objects may change their 

spatial locations and/or shapes with time. We consider three components, theme, location, 

and time, in the design. Based on previous studies of spatial and temporal databases, this 

thesis extends the relational data model to an extended relational model with the flavor of 

object-oriented databases in order to represent complex data objects with spatiotemporal 

information. A spatiotemporal query language, STSQL, is developed as an extension of the 

relational database language SQL. Moreover, an efficient spatiotemporal data storage 

structure and two indexing mechanisms are developed to facilitate the search of spatial data 

objects changing with time in the specified spatial framework. Sample queries from 

geographical applications are supplied to demonstrate the power and usefulness of the 

approach. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

Database management systems (DBMS), which provide high-level data models, data 

independency, data integration, data security, transaction management, and other facilities, 

have been widely used to manage textual information in business applications. With the 

advent of computer vision, graphics, and CADICAM technologies, many applications, for 

example map processing in geography, have evolved representations of the abstracted real 

world, both textually and graphically. However, it is known that traditional DBMSs have 

some limits, such as the ability to handle spatial or historical information. Thus it has become 

essential to develop or extend existing DBMSs to store and manage in an integrated fashion a 

vast amount of image data (multi-dimensional data) as well as textual data. For managing 

multi-dimensional data the DBMSs must support complex object representations as well as 

operations on the objects since these data naturally have topologic, structural and geometric 

features, such as location, shape, and size. Databases whose contents are continuosly updated, 

and allow queries of both old and new information must incorporate time. DBMSs that han- 

dle spatially changing objects over time are called spatiotemporal databases. 

1.2. Background 

From the earliest civilizations to the modem times, spatial data have been collected by 

navigators, geographers, and surveyors. The spatial distribution of the features of the earth's 



surface, or topography, is rendered into pictorial form by cartographers. Whereas topographi- 

cal maps can be regarded as for general purpose, maps of the distribution of rock types, soil 

series or land use are made for limited purposes. These special-purpose maps are often 

referred to as thematic maps because they contain information about a single subject or theme. 

Digital map data, line drawings, and region adjacency graphs are all instances of spatial data 

that are usually organized in a discrete structural form as opposed to the iconic form of the 

grey tone or color image. Such structural organizations can be derived by hand-gathering data 

or by segmenting an image, associating attributes with the image segments, and determining 

relationships between segments. Essentially, an image is a snapshot of the situation seen 

through the particular filter of a given surveyor in a given discipline at a certain moment in 

time. Actually, space is indivisibly coupled with time in geography. More recently, satellite 

imaging has made it possible to see how landscapes change over time and to follow the slow 

march of desertification or erosion or the swifter progress of forest fires, flood, locust swarms 

or weather systems. 

This thesis is not concerned with the origin or generation of the sequence of spatial data 

sets. We assume that a sequence of images, as shown in Figure 1.1, is stored in the database, 

each having a unique time stamp from when the image was derived, and that the information 

contained in these images has already been abstracted to higher level descriptions. In other 

words, an image is composed of a group of spatial objects which are interpreted as points, 

lines, or polygons. An object denotes a logical entity, such as a city, or a farm, instead of a 

fixed-size grid cell tessellation. For example, a city can be represented as a point or a polygon 

depending on the level of detail or the scale of a map. Furthermore, we assume that the spatial 

relationships among objects in different images have also been established. We will discuss 



how to model and represent the objects contained in the image sequence and how to query the 

past, present, or changed information during some period of time. 

Figure 1.1 A image sequence 

1.3. Possible Solutions to Spatiotemporal Database Designs 

In order to make a DBMS meet the functionality and performance requirements of such 

diverse application areas, many efforts have been made in studying a suitable set of data 

modeling tools, special operations, user interfaces and system architectures. Three sugges- 

tions have been made for a more generalized DBMS [Bou85]: 

(1) Put together specific DBMS and add a common user interface layer. For example, one 

DBMS could be for classical data, one for image data, and another for graphical data. 

The interface would simulate the extended model by converting schemas and queries 

into their relational counterparts. This is the approach used in GEM, which offers an 

entity-relationship database interface [TsZ84]. The attractiveness of such an approach 

lies in its inexpensive implementation using reliable existing technology. Its major 

shortcoming is its performance. The greater the difference between the end-user model 
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and the database model, the more complex is the translation process. Eventually this 

will be inefficient. This method is a short term solution. 

Take an existing database model and extend its capabilities. For example, the relational 

model could be extended for this purpose. This method is considered to be a medium- 

term solution. 

Define a new database model that is suitable for any kind of data and provides extensi- 

bility, like an extensible database, semantic database, or object-oriented database model 

ICDF86, GCK89, Gut891. This approach is a long-term solution since no efficient imple- 

mentation of such DBMS has been found sufficient for all kinds of applications, 

although they exist for specific domains. 

This thesis extends the idea of relational database system designs with object-oriented 

flavor. The emphasis is on extending the relational data model to capture spatiotemporal 

semantics, to support the extended relational spatiotemporal query language STSQL and phy- 

sical data organizations. The focus is mainly on new access methods. The relational model 

has a well understood formal basis that facilitates effective database design and query pro- 

cessing. Furthermore, relational database technology is well established, and the extensions 

that we will make to the relational model benefit from this state-of-the-art technology. The 

attraction of the relational model in practice has been that queries in these languages are 

expressed independently of the way in which relations are stored; thus the user is spared many 

. low level computational problems. Yet another reason for extending the relatonal model is 

that a relational DBMS is today the dominant choice for most database applications. By con- 

trast, the theory and practice of object-oriented database technology are still at the develop- 

mental stage. Consequently, extensions to the systems will enable users who have invested in 



relational technology to attain the additional functionality needed for newer applications. 

1.4. Organization of the Thesis 

This thesis consists of five chapters. In chapter 2, we analyze the requirements imposed 

on DBMS by some geographical applications and then discuss several ways to extend the 

relational model in order to represent spatiotemporal information and other structural hierar- 

chies to capture the meaning of the dynamic world. We also define our database schemes and 

algebraic operations on our proposed databases. Chapter 3 illustrates the query language 

STSQL, an extension of SQL, which exploits the operations on spatiotemporal attributes in 

our extended relational model. Sample queries in temporal geographical applications are sup- 

plied to demonstrate its capabilities. In chapter 4, we address the physical organization 

methods. A spatial data structure and a tree-based organization method are developed. More- 

over, extensions of the R -tree indexing structure to index on spatiotempord data are swdied 

with two indexing schemes, MR -tree and RT-tree. The algorithms for constructing the two 

trees are presented and their computational complexities are analyzed. Finally we provide our 

concluding remarks and future research directions in Chapter 5. 



CHAPTER 2 

EXTENDING THE RELATIONAL MODEL 

TO REPRESENT GEOGRAPHIC INFORMATION 

2.1. A Framework for Temporal Geographic Information 

Geographic data consists of three components - thematic, spatial, and temporal parts 

[Bur86,LaC88]. The geographic information is related to and is dependent upon the geo- 

graphic phenomena of interest to users. Such phenomena have to be spatially modeled and 

can be represented as geometric descriptions. To model such information, it is necessary to 

consider the geographic spatial features, relationships and temporal features which are 

involved in its use. 

Geographic Spatial Features 

Geographic data may exist in a database as individual objects with spatial features. 

These discrete objects can be grouped according to their spatial dimensionalities: 

(1) 0-D features, such as oil wells or cities; 

(2) 1-D features, such as roads, pipelines or rivers; 

(3) 2-D features, such as geological regions, land-use zones or municipalities; 

(4) 3-D features, such as buildings or hills. 

Note that the dimensionality can change depending on the level of detail with which one is 

concerned [FeP86]. 

Continuous features, such as the earth's surface, usually require different treatments 

than those for discrete ones. Our database system is targeted at managing large sets of 



discrete, related objects. 

Geographic Relationships 

There are two broad types of geographic relationships: 

(1) Spatial relationships: A spatial relationship states how actual features fit together in 

space. That is, they involve properties such as the connectivity, adjacency, and proxim- 

ity of spatial objects. The issue of spatial relationships is important since they need to be 

retrieved and analyzed in many kinds of applications. 

(2) Taxonomic relationships: These relationships concern how classes of features fit 

together. That is, they describe the hierarchy of classification (or categorization). For 

example, the general class called "forest" might include specific classes "spruce", 

"pine", etc. 

Time and the examination of changes play important roles in spatial information 

analysis. There are, in general, two types of temporalities: 

(1) Aspatial temporalities: Thematic changes, i.e., changes in feature attributes, are called 

aspatial temporalities. An example would be a farm that has been converted from agri- 

cultural use to other uses. We would say that the usage attribute of the farm object has 

changed. 

(2) Spatial temporalities: Changes in an object's spatial definitions are called spatial tem- 

porality. One example is geometric changes, such as growth of urban areas causing city 

boundary changes. If an object's shape is described by a geometric representation, shape 

changes will be described by geometric temporality . Another example is a change of 



topology that describes object adjacencies. Topological temporality pertains to the 

movement of objects relative to one another. Examples of these situations are shown in 

Figure 2.1. The striped object could change to a dotted object indicating that its usage 

attribute has changed to a different value in situation (a); it may also change in shape in 

situation (b); or its topological relation with another object may change as in situation 

(c). 

Figure 2.1 Spatial changes. 

2.2. Spatial Data Representations 

There are three database-oriented representation schemes for solid geometric object 

modeling which have been examined using different database models [KeW87]. The first is 

primitive instancing, where each geometric object is defined as a special instance of a generic 



primitive object. That is, one relation is created for every generic object type, and the attri- 

butes of the relation correspond to the parameters that describe the geometric objects. Each 

geometric object is stored as a tuple of the relation corresponding to the generic object class. 

An example of a generic object class is bracket with four holes, as shown in Figure 2.2. The 

representation scheme of this generic record type would be defined as follows. 

Figure 2.2 A geometric part. 

generic type BRACKET-4H 
length: real 
width: red 
height: real 
material: char 
HOLES: array [1:4] 
record 

diameter: real 
location; array [1:3] 

end record 
end generic type BRACKET 

The second method is constructive solid geometry, which is a widely used representa- 

tion in CAD/CAM systems. In this method an object is described as a composition of a few 

primitive objects. The composition is achieved via motional or combinatorial operators. The 

format is defined by the following context-free grammar: 

<mechanical part> ::= <object> 
<object> ::= <primitive> I 

<object> <motion op> emotion argument> 1 
<object> <set operaton <object> 



<primitive> ::= cube I cylinder I cone ( ... 
<motion op> ::= rotate I scale I ... 
<set operaton ::= union I intersection I difference I .. 
For the object "bracket with four holes", the decomposition tree is shown in Figure 2.3. (A tri- 

angle "A" represents the minus operation which means a part is composed of one sub-part is 

subtracted from the other sub-part. The sub-parts can be further divided until a primitive is 

reached. "U" represents the addition operation.) 

cylinder 69 O 
cube 

Figure 2.3 A decomposition tree. 

The third method is boundary representation. A solid object is segmented into its nono- 

verlapping faces. Each, in turn, is modeled by its boundary edges and vertices. Again the 

bracket example is represented in Figure 2.4. Note that this representation scheme consists of 



three abstraction levels, that is, faces, edges, and vertices. By contrast, the second method may 

lead to a deep tree for a complex object. 

f l  f2 f3 f 4 "  " "  
FACES 

Figure 2.4 A boundary representation. 

In geography, entities in one class are unlikely to be exactly the same, as is the case for 

geometric parts. Moreover, they can not be decomposed spatially into small number of primi- 

tive parts which have a constant number of parameters. Consider land use information con- 

tained in a 2-D map, as shown in Figure 2.5. The spatial features are the boundaries for dif- 

ferent types of regions such as cities and rivers, etc, all in various shapes. Thus only the third 

method, the boundary representation discussed above, can be considered a representation 

scheme for geographic information since geographical data can be reduced to three basic 

topological concepts, regions, lines, and points [Bur86], which are chosen as primitives. 



Without the loss of generality, we focus on 2-D map data. The methods can be similarly 

extended to handle higher dimensional data. 

Figure 2.5 A map. 

2.3. Relational Models for Geographic Spatial Data 

A logical model describes data at the conceptual and view levels, and is used to specify 

both the overall logical structure of the database and a higher level description of the imple- 

mentation. At this point we will not examine the formal definition of a relation. What is meant 

by the terms attribute and primary key will be provided later in subsequent sections. For now, 

we will study the ways in which relations are used, and in particular the distinction between 

storing data about real world objects, and the relationships between such objects. In this sec- 

tion, we describe how to model geographic data using a relational model. 

At the conceptual level, geographic data can be viewed as objects which form object 

classes, and one relation may be created for each class. All features are described in the 
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attributes of a relation. The relation could have one attribute for object identity and other attri- 

butes for an object's location, statistic information, relationships, etc. 

2.3.1. Purely Relational Model 

The original relational model was proposed by Codd in his seminal paper [Cod70]. This 

showed that a collection of relations could be used to model the relationships between real 

world items. The form of a relation is deliberately chosen to be simple. Unfortunately, it is so 

simple that spatial objects have to be decomposed into different relations. Let us illustrate this 

on relational boundary representation schema described below in Table 2.1 for the example of 

map data. 

LINE 

MAP-Component 

line1 point1 

line2 point2 

line3 point3 

ID 

1 

2 

3 

REGION 

linel 

POINT 

NAME 

city-a 

lake-1 

city-b 

Table 2.1 Purely relational model for a map data. 

REGION 

a1 

11 

b 1 

Notice that a map representation is broken up into different relations, where the relationships 

among the tuples in various relations are achieved via user-generated attribute values. This 



makes the model difficult to use. In order to retrieve and manipulate the data, one is required 

to have an intrinsic knowledge of the underlying schema definition. In order to display a lake, 

we have to retrieve all the points which involve joining four relations MAWomponent, 

REGION, LINE and POINT. 

Fortunately, we can extend the database modeling capabilities to handle spatial informa- 

tion in several ways. A fundamental choice for representation of a complex object is whether 

its structure should be visible or hidden at the level of the relational data model. That is, 

whether the object should be described by a collection of tuples from various relations, or by a 

single attribute value from a specific attribute domain for this kind of object. For manipula- 

tion, this determines whether the internal structure is accessible to the general facilities of the 

query language or only to domain-specific operations. The two ways of handling complex 

objects have been called structural and behavioral object orientations [Dit86, Gut891. 

2.3.2. NF Data Model 

The N F ~  (non-first-normal form) data model is one of the structural approaches which 

has originated from database technology and is essentially motivated on technical grounds 

[RKS88]. The model provides facilities for mapping spatial objects onto database structures 

and for retrieving these objects as entities. For our map data example, the relation is shown 

schematically in Table 2.2. 

Compared with the purely relational model listed in Table 2.1, the same query, "display- 

ing a lake", that is, "to find the points belonging to the lake", requires about the same number 

of joins. The N F ~  queries would be at least as complex as in the pure relational model 

[KeW87] and the model implicitly incorporates references to tuples of different relations. 

Thus it is a hybrid of the relational and hierarchical data model. There is, however, a data 
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redundancy problem; for example, p is an end point of lines 1 I and 12, but the same point has 

to be stored for each line. 

I 1 I REGION 1 

Table 2.2 NF" model for the map data represemtin-n-. 

2.3.3. Abstract Data Types 

Extensibility can be provided via new data types, operators, and access methods 

[GCK89, Gut891. One approach for behavioral extensions to relational database systems is the 

use of user-defined data types such as geographic attributes, and their methods. The 

behavioral approach has an application-oriented flavor. The identification of an object is 

largely determined by what the user perceives to be an entity that can be manipulated as a 

whole. Its internal representation should be hidden from the user. In geography, the basic spa- 

tial entities are regions, lines and points. Once these three data types as well as operations on 

them are defined, then they can be used as any other built-in data types. That is, attributes can 

be of a type that has been previously defined by the user as a data type. The graphical input 



and output are example operations on these data types. 

Returning to the map data example to demonstrate this method, in Table 2.3, the boun- 

dary of a city or other 2-D entity is represented under the data type REGION, while a road is 

stored in another relation which has the data type LINE to represent the course of a road. 

- - 

Table 2.3 Two relations with extended data types - REGION and LINE. 

To implement the spatial domain, such as REGION or LINE, there are two choices. One 

is that a new data type is defined on top of the relational model. For example, a data type can 

be a "structured" N F ~  object or network-like structure [Mit89]. In the above example, a 

ID 

4 

10 

... 

REGION object is seen as a string of characters in a table such as al,  a2 by ordinary users, but 

it is represented internally as a nested structure similar to table 2.2. The only advantage is that 

a user is relieved from knowing the complex internal structure if the query language provides 

the operations on the abstract data types. The disadvantage is its inefficiency. Another way is 

NAME 

S-22 

F-1 

.a .  

LINE 

!inc30 

line27 

... 



to modify the physical model to have long fields. This will be discussed in Chapter 4. 

2.4. Relational Models for Geographic Relationships 

A thematic map can be stored in a relation table as in our map data example. Spatial 

relationships of the objects in the map are implicitly embedded and can be detected using spe- 

cial functions provided by the query language. These will be studied in Chapter 3. Of course 

they can also be modeled explicitly at the relational level. For example, a binary relation 

ADJACENCY can be used to represent any two objects which are neighbor. However, this 

requires excessive space and involves redundancy. Nevertheless, there is an advantage to stor- 

ing the spatial relationships at the relational level; a query may be sped up since only table 

lookup is performed and no computation is required. This is a space-time tradeoff. 

Taxonomic relationships concern relationships among objects classes, subclasses and 

individuals which are usually organized into hierarchies or networks. These relationships 

should be expressed explicitly in our relational model in order to allocate individuals to 

classes or derive all instances of a class. The classification used for one purpose often seems 

to cut across the classification requirements of another purpose. To model the hierarchy, the 

relational model should be enhanced to support the domain whose values are names of rela- 

tions [BaA90] or the attributes of type "component-of'. General N:M relationships can be 

expressed by attributes of type "reference". The association of tuples is achieved via the so- 

called surrogate attributes [Cod79]. In such a relational model, a user must stimulate pointers 

by comparing identifiers in order to traverse from one relation to another (typically using the 

join operator). In contrast, the attributes of semantic models may be used as direct conceptual 

pointers. Thus, users must consciously traverse through an extra level of indirection imposed 



by the relational model. For this reason, the relational model has been referred to as being 

value-oriented as opposed to object-oriented. 

2.5. Relational Models for Geographic Temporal Information 

Usually, databases carry the most recent data. As the new data becomes available 

through updates, the old values are discarded. These changes are viewed as modifications to 

the state with the out-of-date data being updated to the present one. Such databases are called 

snapshot databases, since they only contain current information which is a snapshot of reality. 

In geography, however, the past states of a database are valuable and are often used for 

analysis. 

In the database community, the generalization of snapshot databases and their underly- 

ing relational model have been recently focused on aspatial temporal databases, which 

represent the progression of states of an enterprise over an interval of time. In such databases, 

changes are viewed as additions to the information in the database. One way is to base tem- 

poral databases on the snapshot model, with time appearing as an additional temporal attri- 

bute. The database model does not incorporate temporal attributes, instead, the query 

language must translate queries and updates involving time into retrievals and modifications 

on the underlying snapshot relations [Ari86, Sno871. Another approach is to extend the 

2 semantics of the relational model to incorporate time directly, as in NF or the time-stamping 

attribute method [TaG89]. In this thesis we will examine a model, which is, in some sense, 

intermediate between these two, where time varying data is visualized as a time sequence col- 

lection. 



A more theoretical research topic on temporal databases is the formulation of the seman- 

tics of time, which is closely related to knowledge representation issues [CU190]. Clifford and 

Warren have suggested using the entity-relationship model for formulating intensional logic 

[ClW831. This logic serves as a formalism for the temporal semantics of a temporal database 

much as first-order logic serves as a formalism for the snapshot relational model. This issue, 

however, is beyond our scope. 

Conceptually we can view a temporal relational database as a data cube whose depth is 

the time dimension. There are three choices to represent the time dimension which are (1) 

relational level versioning, (2) tuple level versioning, and (3) attribute level versioning. 

Relation level versioning stores a new version as a separate table with the same schema 

but different time stamp whenever any of its attributes changes. As an example, a relation, 

parts, whose content changes with time, is shown in Table 2.4. In this method, both changed 

and unchanged information are all stored as a new snapshot. As a result, much redundancy is 

involved. 

- - 

01 Jan 1980 

2 May 1981 

15 Oct 1981 

- - 

NAME 

A 

B 

A 
B 

C 

A 
C 
D 

COLOR 

red 

blue 

red 

blue 
red 

white 
red 

green 

Table 2.4 Parts represented by three relations. 
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Tuple level versioning marks each tuple with time. Usually two special attributes 

FROM and TO are used to represent valid time in the relational scheme. New tuples are 

added by appending them to the relation. Tuples are updated by amending their time attri- 

butes. The result is a large table that is accessed by matching tuples to specific time, and, as a 

result, querying for all the data at a specific time will suffer from such a growth. For example, 

present tense data may be queried more often than past tense data. The parts relation, 

represented in tuple level versioning, is shown in Table 2.5. 

red 
blue 
white 
red 

green 
... 

01 Jan 1980 
01 Jan 1980 
15 Oct 1981 
12 May 1981 

14 Oct 1981 
... 

14 Oct 1981 
14 Oct 1981 

now 
now 
now 
... 

Table 2.5 Pzrts relation represented in tuple versioning method. 

If we sort on an attribute, such as NAME or FROM, we could get a different view. Table 2.6 

is the result of sorting on NAME attribute from Table 2.5. 

SIZE 

10 
10 

20 
30 
40 
... 

NAklE 

A 
A 
B 
C 
D 
... 

15 Oct 1981 

COLOR 

red 
white 

blue 
red 

green 
... 

12 May 19811 now 
14 Oct 1981 1 now 

Table 2.6 Parts sorted on the NAME attribute. 



NAME I COLOR I FROM I TO 

A red 01 Jan 1980 14 Oct 1981 

A I white 1 l iOct l981 / now 

12 May 1981 

green 14 Oct 1981 
... ... ... ... 

Table 2.7 Tuple versioning for COLOR attribute of the parts. 

logical unit of information into more than one tuple is called the vertical anomaly [GaV85]. 

The third approach to managing changing information is attribute level versioning. 

Attribute versioning requires fields with variable lengths to hold lists of time-stamping 

NAME 

A 
A 
B 
B 
C 
D 
... 

Table 2.8 Tuple versioning for SIZE attribute of the parts. 

If another attribute, SIZE, in the parts relation changes differently from the COLOR 

attribute, the information should be horizontally split into two tables, one recording the begin- 

ning and ending time of the color, and the other recording that of size; the size and color of a 

part do not necessarily have the same beginning and ending time. This forced splitting of the 

horizontal format of a relation is called the horizontal anomaly. As a result, a logical unit of 

information, such as color of part A, is also split into several tuples. The forced splitting of a 

SIZE 

10 
11 
20 
30 
30 
40 
... 

FROM 

01 May 1980 
02 Jan 1982 
01  an 1980 
12 May 1980 
12 May 1981 
14 Oct 1981 

... 

TO 

01 Jan 1982 
now 

01 May 1980 
14 Oct 1981 

now 
now 

... 



attribute values. A nested historical relational model is defined where each attribute value is 

kept as a < time interval , value > pair so that each attribute can have its own time interval. 

As a result, the attribute versioning method expresses the lifespan of a logical unit better than 

other constructs. Attribute time stamping also avoids storing unchanged information, which 

happens in relational level versioning, and avoids tuples being broken into unmatched ver- 

sions within or across tables, which is common in tuple level versioning methods. However, 

the attribute versioning method may cause some redundancy when two or more attributes in a 

relation change at the same pace, and only one time stamp is needed for these attributes. This 

problem can be solved by grouping these attributes of a relation into one compound attribute 

in the physical organization to avoid repeatedly storing the same time stamps. However, this 

could require more processing time. Another shortcoming is that the whole relation will be 

searched when only one time slice is needed. However, if such a relation is well indexed, this 

problem can be alleviated. 

NAME COLOR SIZE 

2.6. The Extended Relational Model for Geographic Spatiotemporal Informa- 

tion 

cl4Oct8 l,now, D> 

Table 2.9 Parts represented in attribute versioning. 

<140ct81,now, green> <140ct819now, 40> 



We have discussed the extended relational model for atemporal spatial and aspatial tem- 

poral information. In this section we study an extended relational model to represent spatial 

objects that are changing with time, that is, spatiotemporal information. 

To associate temporal characteristics of geographic objects with their spatial features, 

we propose an extended relational model that is a combination of abstract data type N F ~  and 

attribute level versioning in an object-oriented way. We consider the logical time, which is 

when the objects are derived, to be associated with the attributes. First of all, each object has a 

unique identity, which is explicitly expressed in a relation from the OID domain. The OID 

definition differs from the key definition. That is, objects with the same identity in two or 

more different relations of a database are considered as the same object. Secondly, its 

corresponding spatial information is represented as an abstract data type. The instances of 

attributes from spatial domains such as regions, lines, and points are seen as icons, and in a 

graphical window, they can be viewed as geometric objects, which will be described in 

Chapter 3 in detail. Thirdly, the temporal information of a spatial object is associated with its 

spatial attribute, OID attribute and other attributes separately. These attributes are recorded in 

2 
NF fashion. As for spatiotemporal information added, since some formal definitions of 

nested relational databases have been explored in [RKS88], we will follow their lead and use 

this formalism to extend the definitions of our databases. 

2.6.1. The Model 

Definition 2.1: Let T be a set of time points mapped to the natural numbers, i.e., 0,1,2, ...a in 

increasing order. 0 is the relative beginning point. The symbol n denotes the present time 

instant and increments as time advances. A time interval t = [ i , j] is the temporal primitive 



and includes all the possible consecutive time points between i and j , where i , j E T, i 5 j , 

and i is the starting time and j is the ending time. 

A time unit is user-defined and can be a second, minute, hour, day, etc. This information 

is stored in the database dictionary. For instance, if the year is defined as the time unit and the 

database starts recording events from 1930 to the year 1990, then 1930 is mapped to 0 and 

1990 is mapped to 60 and T is 0 , 1  ,2  , . . ,60; a time interval [ 40,  SO] conatains the years 

between 1970 and 1980. 

Definition 2.2: An atom A = < t , v > is the fundamental construct of our model, where t is 

a temporal interval and v is a value from an attribute domain. Atom A denotes that the value 

v is valid over t . A spatiotemporal atom ST is an atom where v is from the spatial domain. 

The key-atom is an atom where v is an OID that is unique throughout a database. An ordi- 

nary atom is an atom where v is from other domains. 

Definition 23: A database scheme is a collection of relation schemes R ,, R,, . . . , R, of 

R, is internal if Rj appears on the right-hand side of some scheme; otherwise it is external. 

Rj=(Rjl,Rj, ... , R  )isaninternalschemeifR, isinternal. Rj=(Rj1,Rj2 ,R.  ) i s a  
2 J. J. 

spatiotemporal scheme if: (1) Rj is external; (2) Rjl is the name of key attribute which is 

composed of a < key - atom > set; (3) any Rji, 2 5 i 5 n , forms a spatial attribute (which is 

composed of spatiotemporal atoms), ordinary attribute (which is composed of ordinary 

atoms), or is an internal scheme. An internal scheme may not have a key attribute. A tuple of 

an external relation R, , denoted as ( e, , ej2, . . , e ), where e is < t , OID >, and for any 
1 J. J 1 

i , 2 1 i  I n ,  e .  is <tl,vl>,~~~,<tk,vk>,suchthatt,ntm =Oandtlutzu~~~ut,=t,foralll 
Ji 



and m , 1 I I < m I k ,  represents a history of an object. That is, those atoms of an attribute in 

a tuple have disjoint temporal components which are within the time interval of the key atom. 

An attribute is a column of a relation which contains a homogeneous set of data of the 

same type. If a relation contains all the objects in a map, the spatial history of the map from 

the above definition is represented by the spatiotemporal attribute of the relation. Each spa- 

tiotemporal atom of an object specifies a spatial description of the corresponding object exist- 

ing during a certain time interval that is the temporal component . 

We assume an object changes in space consecutively and continuously so that we do not 

need disjoint time intervals for one atomic value. As an example of such a scheme consider- 

ing the previously discussed map data example, the following table demonstrates our 

approach. 

BOUNDARY 
ID i N'4M.E 

REGION 

Table 2.10 Extended relational model for the map data. 

The instance <0 , 3  , a 1.1 > means city-a had the boundary representation a1 . 1 during 

time <0 ,3>. al.1 is a symbolic notation whose spatial expression can be displayed on a 

graphical window. An object is unlikely to have two atoms <ti , tj , v >  and <tk , t, , v> 

where ti and tk are not consecutive. That is, the features of an object may change periodically. 



If this situation does occur, for example, city-a has <0 , 3  , a 1.1 > and <20 ,30 , a 1.1 > 

instances in its boundary attribute, we could store the two atoms as two instances in time 

ascending order, or we could define the time set as a set of disjoint time intervals. In ther 

latter case, the atom should be < s , v >, where s is a time set and v is a value. 

Time, as captured in temporal databases, is not an isolated concern but rather an insepar- 

able feature of operational data. Our database model consolidates the operational and tem- 

poral concerns into a single unit. The discrete and finite set of successive relation instances 

completely describes the development of the enterprise captured by our data model over the 

entire period of time covered by the database. That is to say, our model can capture the com- 

pleteness of an object's development in a logical sense. 

The atomicity of events provides the level of detail needed for retrospective restructur- 

ing of information. In our database, how often to gather the spatial data defines the temporal 

density or the so-called granularity. The state of the database, or any object in it, at any point 

of time during the period between two successive events, can be inferred from available data- 

base states. The most common rule for derivation of such intermittent states is that a recorded 

value prevails until being changed by the recording of a subsequent event. Otherwise the una- 

vailable information should be explicitly stored as unkown values. 

Furthermore, by treating the geographical data as logical objects, the user is provided 

with a high level view. The ADT approach for spatial objects relieves users from reading or 

manipulating coordinates themselves, and the representation of geometric objects is hidden 

from the users. Using this method, the change from vector representation to raster or vice- 

versa would not cause the relations to be redefined or application programs to be rewritten, 

only the corresponding operations on spatial data would be correspondingly modified. 



Another reason to choose the abstract data type is that image data are conducive to visual 

representations so that different display facilities may require different operations. Attribute 

2 versioning plus NF expresses clearly the time existence intervals for an object and an expli- 

cit time span for each of its properties. 

2.6.2. The Relational Algebraic Operations 

Standard relational algebraic operations can be applied to our extended spatiotemporal 

relations with some modifications to deal with issues created by the spatial data types and 

temporal components. There are five fundamental operations of the relational algebra: select , 

project , cartesian product , union , and set difference . The first two operations are 

unary operations while the other three are binary operations. Two extra operations 

spatial join and unary function operations are introduced here for handling relations with 

spatial attributes. We will not discuss some operations either concerning only nested struc- 

tural relations, such as NEST and UNNEST, which are defined as in [RKS88], or naming, 

renaming an object, as well as other operations that do not involve retrieving. 

UNION: The union of two relations R and S that have the same scheme definition, 

denoted as R u S , is the set of tuples which are in R or S if these tuples have different 

key-atoms, or which are combined tuples if a tuple in R and a tuple in S have the same 

OID in their key-atoms, but possibly different temporal components in their attributes. 

Those combined tuples agreeing on the value parts of atoms are coalesced by taking the 

union of the temporal sets from corresponding components of each tuple. 

SET DIFFERENCE: The difference between two relations R and S that have the same 

scheme definition, denoted as R - S , is the set of tuples which are in R but not in S , or 



that are in both R  and S but with the reduced time span from corresponding components 

of each tuple if they represent the same objects with different temporal components. 

PROJECT: Projection is an operation that selects specified attributes from a relation, 

denoted as ni j,...A ( R  ) . This is the same as the standard projection operation except 

the result is still in nested form instead of a flattened one. 

SELECT: The selection operation, denoted by o , identifies the tuples that are defined 

in Definition 2.3 to be included in the new relation. This operation consists of condi- 

tions which contain operands, arithmetic comparison operators, logical operators, as 

well as the spatial, temporal, and spatiotemporal predicates that will be defined in next 

chapter. Operands can be spatial data as long as the comparator is compatible with the 

operands. A temporal predicate, represented in comparison expressions of temporal 

components in attributes, can be either TIME = t , which generates a view of a database 

for this or any specific time instance as specified, or TIME = [ t ,  , t2 ] which describes 

the objects existence in a database during the period specified. When a selection is per- 

formed with projection on one attribute, the time in temporal predicates is referred to as 

the temporal component associated with this attribute. For example, if R  is a spatiotem- 

poral relation with a spatial attribute ST, which represents spatial data of objects in a 

map, the query %, aTm, ( R ) outputs the values of spatiotemporal atoms in attribute 

ST if their temporal components include n . That is, the output is the present view of the 

map. If we change the selection predicate of above query from TlME = n to TIME = i 

and i is mapped to 1960, then the query generates the map for 1960. 

CARTESIAN PRODUCT: The product of two relations is the concatenation of every 

tuple of one relation with every tuple of the other one, denoted as R  x S . What we are 



concerned with is what the meaning of the product should be when both relations have 

spatial attributes. 

Note that in our spatiotemporal databases, the CARTESIAN PRODUCT has no meaning 

when totally unrelated spatial relations for different temporal values are joined together. 

Hence, we define the STJOIN operation on spatial relations. 

(6) ST JOIN: The spatiotemporal join, denoted as R xf (i, ,)S , where f is a binary spatial 

function and T is a temporal component, is applicable only when R and S are spa- 

tiotemporal relations which have spatial attributes i and j , and the two spatial attributes 

are compatible within the function f . We distinguish the following two cases. 

(a) T is given as apair of time instances, (t, , tr ); 

Let eri ={( <rt , rv > , . . . , < rtk , rvk > )} be the set of spatiotemporal atoms at 

colomn i of one tuple of R and es, = !(, <st , sv I> , . - . , a t m  , ~ 1 %  >)) be the 

set of spatiotemporal atoms at colomn j of one tuple of S .  Since rtx n rt,, = 0 ,  for 

l < x , y  Ik, andx #y,andst, nst, =@,for l I x , y  I m , a n d x  #y,tocompute 

R x f  (i jlS we 
T ' 

i) Compute R xS ; 

ii) For each tuple of R xS , we generate another column from eri and es, which is 

< T ,  f (% , SV, ) >, where t, E rt, , tr E st,, and rv, E eri , sv, E es . 

(b) T is absent. 

To derive the R x  (i, , )S we 

i) Compute R xS ; 

ii) For each tuple of RxS, replace R.i and S.j with the set, reixnsej, 

{< r t l m t l  ,f (rvl ,svl)> , <rt lmtZ ,f (ml , sv2)> , . . . 
9 
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<rt, a t k  , f (mk , SV,)> ) and remove all the atoms with empty time intervals. 

(7) UNARY FUNCTION: The unary function operation of a relation, denoted by F ( R ), 

will generate a relation that is R plus one extra attribute whose values are the results of 

the unary spatial function F. R is a spatiotemporal relation that has a spatial attribute at 

column i . The attribute should be compatible with the function F . Assume a tuple of R 

has the set of spatiotemporal atoms, st = < t l  , v l  > , . . . , < tk , vk > at column i .  

Then the extra attribute of this tuple is defined as < t , , F (v ) > , . . . , <tk , F (v, ) > . 

From the above discussions on the algebraic operations, we now make a final statement: 

The set of operations u , - , .n , a , x , xf and F generates valid relations in our database. 

That is, the results of the operations are representable in our database. To verify its validity, 

we first have to show that it is possible to represent each result relation from the five funda- 

mental operations. This is obviously shown by the result tuples and attributes in the relation 

construction from the definitions of the operations. Secondly, we need to show that each result 

of the spatial join and unary function on spatial attributes forms valid attributes. This follows 

if each spatial function used in our database is well defined on the spatial domain. Readers are 

referenced to the function definitions in Chapter 3, which accomplish this goal. 



CHAPTER 3 

STSQL: AN EXTENDED SQL FOR SPATIOTEMPORAL DATABASES 

3.1. High Level View of a User Interface 

Geographic information is a heterogeneous collection of spatial and non-spatial data 

which can be managed in our extended relational database system in an integrated way. Con- 

ventional query languages of relational databases, designed for storage, retrieval, and manipu- 

lation of alphanumeric data, are hard or impossible to be used directly to express queries con- 

cerning spatial or spatially changing information and graphical results. Two examples are 

"find the portion of Canada Highway 1 that is enclosed within the boundaries of city Van- 

couver", and "iind the coverage area changes of B.C. forests between 1970 and 1980". There- 

fore, additional capabilities are required, such as the retrieval of spatial and temporal informa- 

tion through specified spatial relationships and descriptions, or temporal primitives in spa- 

tiotemporal databases. Interactions with graphical input and display of spatial data are also 

required. 

Our user interface differs from conventional information systems by various graphical 

representations of spatial objects, and the specific interaction between spatial and non-spatial 

data. Thus the interface of our spatiotemporal database system is an integration of graphical 

and textual representations. Users articulate their instructions through the dedicated interface 

to communicate with the system. This interface must include tools and query language for dl 

the essential operations. By treating geographic entities as objects, the interface can provide 



users high level manipulations of geographic features, relieving a user from manipulating the 

complex internal representation of geographic information directly. Geographic objects could 

be "highway 9 9 ,  or "farm A", etc, which have feature attributes. 

- - -  
I I 

, User Interface , ,1 
Graphical 
Interface U Language I / 

Spatial 
Operation 
Primitives 

Spatial 
Access 

Methods 
I 

I Aspatial 
Access 

Methods 
I 

I Physical Storage I 
- - -  - - -  

Figure 3.1 The System Structure. 

There are three major types of interactions that must be integrated into the user inter- 

face. The first is the user interaction with graphically displayed results. [EgF88] provides a 

good example of the graphical interface design. Next is user lexical conversation with query 

. language, and we focus on extending SQL functionalities. The last one is interaction between 

query language processor and graphical display facility. Figure 3.1 shows our system architec- 

ture. The graphic interface handles visualization like DISPLAY the geographic objects in a 

graphic window. The STSQL, an extended SQL, handles alphanumerical information in a 



tabular form. These two are built on the top of DBMS kernel. 

3.2. Graphic Interface Facility 

The development of graphic interfaces is encouraged by the advent of workstation tech- 

nology, which provides relatively inexpensive bit-mapped displays and pointing devices. 

Interactive-graphic presentation is powerful for mapping systems because the content of maps 

can be quickly modified. Objects can be added to, removed from, or modified on an existing 

map without the need to start with a new drawing from scratch again. This requires the 

graphic interface to provide the tools to manipulate a map. This issue is rather involved with 

implementation details, so we will not further discuss it. 

3.3. Interaction Between Graphic Interface and Query Language Processor 

The approach used to extend the relational DBMS does not alter the relational view of 

data. The results are thus naturally expressed in the form of tables. Moreover, the temporal 

versions of an object are grouped together for display in a table. A domain is composed of 

instances and opearations which may be user-defined. Among the set of opearations applica- 

ble to an object, a user can define opearations to display and enter data in a way appropriate to 

human understanding. 

Graphical results are represented in a tabular form. These can be portrayed as icons. To 

display the contents of such a result, the particular icon is pointed to with the help of a mouse. 

Clicking a mouse on an icon displays the contents of the data in graphical form. More than 

one object or even a complete layer may be displayed and superimposed on the same window. 

Figure 3.2 illustrates this possibility. 



Figure 3.2 Portry the spatial data to graphical window. 

3.4. Extending SQL 

There have been some studies on expanding query languages for spatial databases and 

temporal databases in literature respectively. A QBE-like language PICQUERY is designed 

for PICDMS [JoC88], PSQL is an extension of SQL for pictorial databases [RoF88], and 

TQuel is an extension of Quel for temporal databases. However, different database models 

require different query languages manipulating databases in different ways. Here we present 

our sptiotemporal query language STSQL. The basic specifications of operations in query 

language reflect the notions of the data model, and its two generic parts directly correspond to 

objects in our database system, namely, the specifications of atemporal spatial and spatiotem- 

poral information. The syntactic form we have selected is based on a subset of SQL, with 

necessary extensions for the specification of the query's spatial, temporal aspects. The 
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relational model requires that relations be defined over domains, each of which has one form 

of data type or another. STSQL, corresponding to our extended relational model, extends the 

definition of relations over spatial and spatiotemporal types of domains defined in a discip 

limed way. 

The choice of extending SQL as the basic query interface has been influenced by the 

increasing acceptance of SQL as the standard interface for relational DBMS because of its 

simplicity and easiness for learning. Due to the length, we only discuss the STSQL retrieval 

operations. The number of operators depends on each individual domain and an application. 

We make no attempt to come up with a universal set of operators. Instead, the database sys- 

tem should be flexible enough to allow the users to define additional specialized domain 

operators, that is, to provide the DBMS with the extensibility. Such techniques in general 

have been discussed in [BLW88, CDR86, CDF86,Gut89]. Specificly, the user defined types 

for managing complex objects and their associated methods in an extensible relational DBMS 

have been implemented in LISP and C [GCK89]. 

3.4.1. Temporal Criteria For Data Retrieval 

The SQL retrieve statements consist of three basic components: SELECT the target list, 

specifying what to derive or calculate, FROM specifying from which relations to select attri- 

butes or compute the functions, and a WHERE clause, specifying which tuples participate in 

the derivation. To specify temporal conditions, it is more natural to add the WHEN clause 

instead of embedding them into WHERE clause. Similarly, DURING, AFTER, BEFORE, 

AT, IN and SINCE can be included into the STSQL as temporal constructs. The temporal 

information will be helpful to answer questions like "What, when, and where did a change 

occur? ". 



WHEN is the temporal analogue to SQL WHERE -clause. The clause consists of a tem- 

poral conditions and two time variables whose values are attached with attributes concerned. 

That is, every instance of an attribute has a starting time stamp and ending time stamp. So that 

the attribute value A is associated with a temporal element t = [ s , e ] ( I [ 0 , n 1) which 

gives the life span of the value, denoted as < t , A  >, and s and e can be referenced by 

A.start_time and A.end-time, respectively. A WHEN -clause may explicitly represent the tem- 

poral conditions by specifying the time associated to the specific attributes. Alternately, DUR- 

ING, AFTER , BEFORE, AT, SINCE and IN clauses only specify the time itself which is the 

time implicitly associated to the attributes occurred in WHERE clause or to the attributes con- 

cerned in SELECT statement. During implementation, these temporal clauses should be 

transformed to the equivalent WHEN-clauses. A WHEN-clause can also contain ordinary 

conditions in the same way as those expressed in a WHERE clause, but it indicates the time 

instances or intervals when the conditions are satified. If the time is not mentioned in query, it 

implies present tense by default. The temporal function TIME is defined below in order to get 

the time when specified conditions are satisfied. 

TIME : Returns the time when conditions in WHERE are satisfied. 

TIME(x) : Returns the time associated to attribute x .  

3.4.2. Spatial Criteria For Data Retrieval 

We extend SQL spatial functionalities by adding new operators to operate on the spatial 

data types and to explore the spatial relationships embedded in our relations. Retrieval opera- 

tions are discussed to show how the operations can be used to answer spatial andlor temporal 

questions. To query the database and to retrieve information from it, the SELECT command 



is used. To manipulate the spatial attributes, spatial functions are placed in the SELECT com- 

mand. The spatial predicates can appear in the WHERE - or WHEN-caluse. We distinguish 

functions and predicates, where functions return data sets as results and predicates return 

either true or fa lse .  Functions are usually called in SELECT clauses and predicates play 

roles in conditional clauses. There are four types of functions, namely unary, binary, aggrega- 

tion, and high level functions. The aggregate functions, similar to that in standard SQL, return 

a single value as a summary of information about a group of rows in a column. These func- 

tions and predicates are defined as follows . We use REGION, LINE, POINT, and NUM to 

indicate parameters and results of functions are from region, line, point, and numerical attri- 

bute domains, respectively. X and Y are used when a function can have more than one type of 

parameters or results. 

Spatial Functions 

(1) Unary Functions: 

CENTER(REGI0N) + POINT : The result is the center point of a region object. 

AREA(REGI0N) + NUM: The result is the area of a region object. 

PERIMETER(REGI0N) + NUM : The result is the perimeter of a region object. 

LENGTH(L1NE) + NUM : The result is the length of a line object. 

(2) Binary Functions: 

If both X and Y are REGIONS, the result is the common part of two region objects. 
J 

t If both X and Y are LINES, the result is the intersecting points of two line objects. 



included in a region object. 

UNION(REGION, REGION) -+ REGION: The result is the region which belongs to any of 

two region objects. 

DIFFERENCE(REGION, REGION) + REGION : The result region is the first region object 

subtracting the second region object. 

DISTANCE(X,Y) -+ NUM : 

If both X and Y are POINTS, the result is the distance between two point objects. 

If X is POINT and Y is REGION, the result is the distance between the region center and 

the point object. 

If X is POINT and Y is LINE, the result is the length of the shortest orthogonal line from a 

point to a line object. 

If X is REGION and Y is LINE, the distance is measured from the region center to the line 

that is defined in the same way as the distance between a point object and a line object men- 

tioned above. 

Other interpretations are also possible. 

(3) Aggregation functions: 

MINIMUM(REGI0N) -, REGION : Returns the region object with the minimum area 

among a group of rows of one column selected. 

MINIMUM(LINE) -+ LlNE : Returns the line object with the minimum length among a 

group of rows of one column selected. 

MAXIMUM(REGI0N) -, REGION : Returns the region object with the maximun area 

among a group of rows of one column selected. 

MAXIMUM(LINE) -+ LINE : Returns the line object with the maximun length among a 



group of rows of one column selected. 

AVERAGEtREGION) + NUM : Returns the average area of a group of region objects 

selected. 

AVERAGE(LINE) -+ NUM : Returns the average length of a group of line objects selected. 

SUM(LINE) + NUM : Returns the sum of lengths of a group of line objects selected. 

SUMtAREA) + NUM : Returns the sum of areas of a group of region objects selected. 

COUNT(*) + NUM : Returns the number of values of a group of rows in one column 

selected. 

NEAREST(P0INT) + POINT : Returns the point object which is the nearest to the point 

among a group of objects selected. 

FURTHEST(POIN7') + POINT : Returns the point object which is the furthest to the point 

among a group of objects selected. 

(4) High Level Functions: 

MOVING-DIR(X) + SOUTH, SOUTHEAST, etc : Returns the direction object X moved 

during the time period or the time instance specified in WHEN -clause. 

MOVING-SPEED(X) + NUM : Returns the division of a distance and a time period, where 

the distance is that object X shifted during the time period specified in WHEN -clause. If X is 

REGION, then the center of a region is concerned. 

CHANGING - RATE(REGI0N) -+ NUM : Returns the area changing ratio of a region object 

during the time period specified in WHEN -clause. 

INCREASED(REGI0N) -+ REGION : Returns the increased portion of a region object dur- 

ing the time period specified in WHEN -clause. 

REDUCED(REGI0N) + REGION : Returns the reduced portion of a region object during 



the time period specified in WHEN -clause. 

CHANGED(REGI0N) -, REGION : Returns the changed portion of a region object during 

the time period specified in WHEN -clause. This portion can be the increased or reduced part. 

Spatial Predicates 

(1) Simple Spatial Predicates: 

REGION INTERSECTS REGION : Returns TRUE if one region object overlaps with another 

region object; otherwise FALSE. 

REGION IS-COVERED-BY REGION : Returns TRUE if the first region is completely con- 

tained in the other region; otherwise FALSE. 

REGION NOT - COVERED-BY REGION : Returns TRUE if the first region is not contained 

in the other region; otherwise FALSE. 

REGION IS-NEIGHBOR-OF REGION : Returns TRUE if two regions have some common 

boundary; otherwise FALSE. 

LINE INTERSECTS LINE : Returns TRUE if one line intersects the other line; otherwise 

FALSE. z 

POINT IS-NORTH-OF POINT : Returns TRUE if the first point is located to the north of 

another point; otherwise FALSE. 

IS-SOUTH - OF, IS - EAST - OF, ... : Similarly defined as above. 

POINT WITHIN REGION : Returns TRUE if the point is within the region. 

POINT NOT - WITHIN REGION : Returns TRUE if the point is not within the region. 

LINE INTERSECTS REGION : Returns TRUE if the line intersects the region. 

POINT INTERSECTS LINE : Returns TRUE if the point is on the line. 



(2) High Level Predicates: 

IS-MOVED(X) + BOOL : Returns TRUE if the center of an object is moved or FALSE oth- 

erwise during the time period specified in WHEN -clause. 

IS-INCREASED(REGI0N) 4 BOOL : Returns TRUE if the area of an object is increased or 

FALSE otherwise during the time period specified in WHEN -clause. 

IS - REDUCED(REGI0N) + BOOL : Returns TRUE if the area of an object is reduced or 

FALSE otherwise during the time period specified in WHEN -clause. 

IS-CHANGED(X) + BOOL : Returns TRUE if the shape of an object is changed or FALSE 

otherwise during the time period specified in WHEN -clause. 

3.4.3. Sample Queries in STSQL For Data Retrieval 

3.4.3.1. Sample Schema 

In geography, a land informatioh database may consist of several layers. Each layer is 

composed of a sequence of maps derived at different time. A land use map, which classifies 

areas according to forestry, urban area, wet land, agriculture, and so on, can be represented by 

a relation landuse. We may represent provinces of Canada in one relation, called province, 

which divides a space into subspaces (provinces) according to municipality. Another relation 

city contains the information about cities' locations, and populations, etc. Some other impor- 

. tant geographic entities are highways, railways, lakes, rivers, and farmlands. Some of these 

entities will be wholly contained in a province and others will cross its boundary. As an 

, example, we assume the following relational schemes exist in our database. 



There are three types of queries as far as spatiotemporal information is concerned. One 

is to get the time when spatial or other conditions are satisfied. The second one is to get spatial 

or other information at a specific time instance or during a period. The last one is mixed of the 

above two kinds of queries. We use the following examples to explain how temporal and spa- 

tiotemporal information is retrieved and how those spatiotemporal functions and predicates 

are used one by one. 

3.4.3.2. Spatial Query Examples 

In this section, we use the following examples to demonstrate how spatial information 

should be queried. 

(1) Find the area and perimeter of a given region, say, B.C. province. 

SELECT AREA(region), PERIMETER(regi0n) 
FROM province 
WHERE province.name = "B.C. " 

The above query is an example of using unary functions. 

(2) Find the cities within Alberta. 

SELECT C.name 
FROM city C ,  province 
WHERE province.name = "Alberta" 



AND cityxenter IS - 1NSIDEprovince.region 

Some queries can be retrieved directly from an attribute search , others need first search 

and then compute. The user himself may decide'to choose a direct attribute searching or 

computing, or leave the problem to the system semantic optimizer. For example, when 

a query is to find the area of a province, if there is an area attribute in province relation, 

the user should retrieve this attribute instead of calling AREA function to compute the 

area. Similarly, in the above example 3, since there is an attribute inqrovince in rela- 

tion city, the query "find the cities in Alberta province" can be written in the following 

way. 

SELECT name 
FROM city 
WHERE city.ingrovince = "Alberta" 

(3) What is the total area of regions with 'clay' soil type and the regions are forest? 

SELECT SUM(INTERSECTION(S.region , L.region)) 
FROM soii S , landuse L 
WHERE ,$.type = "clay" 
AND L.usage = 'Iforest" 

In this example, both soil and landuse relations have an area attribute. However, the 

information is useless here since we need to generate new regions that satisfy the two 

conditions, that is, the soil type should be 'clay' and this land is also forest. Such areas 

are summed up by nesting the INTERSECTION in the SUM function. 

(4) Find the highways which intersect with highway 55. 

SELECT G.name, G.course 
FROM highway H , highway G 
WHERE H.name = "hwy-55" 
AND Hxourse INTERSECTS Gxourse 

This example shows how the predicate INTERSECTS is used for detecting one line seg- 

ment intersecting another. 



(5) Find the lakes one part of which is in B.C. and the other is in Alberta. 

SELECT L.name, L.region 
FROM lake L, province P 
WHERE P.name = "Alberta" 
AND L.region INTERSECTS P.region 
AND L.region INTERSECTS 

SELECT region 
FROM province 
WHERE name = "B.C." 

The predicate INTERSECTS in this example is used for detecting the overlapping of two 

regions. 

(6)  Find the lakes within B.C. province. 

SELECT lake.name, 1ake.region 
FROM lake , province 
WHERE province.name = "B.C. " 
AND 1ake.region IS-COVERED-BY province.region 

This example shows that to detect one region within another, the spatial predicate 

IS-COVERED-BY can be used. 

(7) Find the land whose distance to a highway with good condition is less than 500 meters. 

SELECT S.id, S.region, Hxourse, DISTANCE (S.region , H.course) 
FROM soil S,  highways H 
WHERE Hxondition = ''GOOD" 
AND DISTANCE(S.region , Hxourse) < 500 

The function DISTANCE appears in SELECT and WHERE clauses. The result of the 

function can be treated as the simple value which may be compared with other values if 

the function is used in WHERE statement. 

(8) Find the distance between Calgary and Vancouver. 

SELECT S.name , T.name , DISTANCE(S.center, T.center) 
FROM city S,  city T 
WHERE S.name = "Calgary 
AND T.cname = "Vancouver" 

The function DISTANCE is for calculating the distance between two points which are 



from two tuples of one relation. There are no temporal clauses in the above queries, that 

is, only the present information is concerned. For example, in the last query, the spatial 

join is on the relation S and T which are the aliases of relation city. The function DIS- 

TANCE takes the the center attribute of the relations S and T ,  where one is the center of 

Calgary and the other is that of Vancouver, and output the distance of the centers with 

present time stamps. A binary function generates a new attribute, such as DISTANCE 

generates an attribute whose values are from numerical domain, and INTERSECTION 

generates a spatial attribute when two relations are joined together. Notice that in the 

queries, no functions appeared in SELECT statement and only some spatial predicates 

are involved in WHERE clause. In such a situation, spatial join is performed in a similar 

way as if a spatial function is involved and the only difference is that the result of a spa- 

tial calculation will not be output and is only used as a condition checking. 

3.4.3.3. Temporal Query Examples 

Temporal information can be used as a condition such as in a WHEN statement. This 

condition can be a specific time instance or a time interval. Time as a value can also be 

extracted from our databases while certain conditions are satisfied. Such examples are as fol- 

lows. 

(1) What was the population of Burnaby in 1970? 

SELECTpopulation 
FROM city 
WHERE city.name = "Burnaby" 
IN I970 

(2) Print present population of each city in B.C. province. 

S E L E T  name, population 
FROM city 



WHERE city.inqrovince = "B.CV 
AT PRESENT 

where the AT PRESENT is optional. 

The above two examples are simple temporal queries which only concern a particular time 

instance and no spatial information is required. 

(3) How many highways were built between 1970 and 1980? 

SELECT COUNT(id) 
FROM highway 
DURING 1970 ,1980 

(4) How many species were in forest A before 1960? 

SELECT COUNT(species) 
FROM forest 
WHERE forest.name = "A" 
BEFORE 1960 

The above two examples are temporal range queries which concern the objects that 

existed within a period of time. 

(5)  Find all the cities which are located to the north of Calgary and has existed for less than 

80 years. 

SELECT S.name 
FROM city S ,  city T 
WHERE T.name = "Calgary" 
AND &center IS-NORTH-OF Txenter 

MINUS 
SELECT S.name 
FROM city S, city T 
WHERE T.name = "Calgary" 
AND S.center IS-NORTH-OF T.center 

IN 1910 

In the above example, we first select all the cities which are in the further north than Cal- 

gary. The second step is to derive the cities existed at least for 80 years in the subquery. 

The last step is to subtract the subquery result in the second step from the result from the 



first step. 

(6) When did the area of forest A become less than that of forest B? 

SELECT TIME 
FROM forest F ,  forest E 
WHERE F.name = "A" 
AND E.name = "B" 

WHEN AREA(F.region) < AREA(E.region) 

The WHEN -clause in this query is to extract the time at which forest A became smaller 

in area than forest B. This is still refered to as temporal query with a spatial condition. 

3.4.3.4. Spatiotemporal Query Examples 

In this section, the queries with spatial and temporal information are discussed. 

(1) What did the lake L look like 100 years ago? 

SELECT name , region 
FROM lake 
WHERE 1ake.name = "L" 
IN 1890 

This query is a simple spatiotemporal query which is to display the spatial data at a 

specified time instance. 

(2) Show the region of Vancouver when its population exceeded 10,000. 

SELECT city.name , city.region 
FROM city 
WHERE city.name = "Vancouver" 
WHEN citygopulation > 10,000 

Notice in the above query that a condition is expressed in WHEN clause which is dif- 

ferent from putting the same expresion in the WHERE clause. After the selection of the 

tuple whose name is Vancouver from the relation city, the WHEN statement extracts 

the temporal part of the first atom in the population attribute where the value of the 

population is greater than 10,000. Within the tuple, we then select an atom from the 



region 

attribute whose temporal part includes the time point extracted. If we remove the 

WHEN clause and put the condition in the WHERE clause, the TIME will be present 

time and the present version of the region will be the output. 

(3) What is the area of agricultural land in the south-east of the city Calgary that has not 

been under cultivation at least for two years?" 

SELECT soil.id, soil. region, AREA (soilxegion) 
FROM soil, city 
WHERE city.name = "Calgary" 
AND soil.type # "crop" 
AND soil.region IS - SOUTHEAST - OF city.center 

SINCE 1988 

or substitute SINCE clause with WHEN clause 

WHEN soil. type.start-time > = 1988 
AND soil.type.end-time = present 

(4) Determine all forestry regions in province B.C. converted to agriculture use during 

SELECT 1anduse.id 
FROM landuse, province 
IN 1970 
WHERE landusemage = 'Iforest" 
AND province.name = "B.C." 
AND 1anduse.region IS-COVERED-BY province.region 
AND landuse.id 
EXISTS SELECT id 

FROM landuse 
WHERE 1anduse.usage = "crop" 
IN 1980 

This query requires attribute search. In the land use map, we first find those lands whose 

usage attributes have value as forest in 1970 and value as crop in 1980. The query can 

only return those objects which have undergone attribute changes from one to another, 
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but not including those objects which were partially converted to crop. That is, these 

forests were reduced in size. In order to detect the partial convertions from forest to 

crop, we have the following STSQL statements. 

SELECT CHANGED(landuse.region) 
FROM landuse 
DURING 1970 ,1980 
WHERE 1anduse.id 
EXISTS SELECT 1anduse.id 

FROM landuse , province 
IN 1970 
WHERE 1anduse.usage = '[forest" 
AND province.name = "B.C." 
AND 1anduse.region IS-COVERED-BY province.region 
AND 1anduse.region 

INTERSECTS 
SELECT 1anduse.region 
FROM landuse 
WHERE 1anduse.usage = "crop" 
IN 1980 

The above statements are still not sufficient to answer the partial conversion query since 

a forest may change its covering area and some parts may be changed to crop and some 

to others although it overlaps with a crop region. In order to give the exact area of 

convertion, we have to fbd the region of a forest in 1970 which overlaps with the region 

of a crop in 1980. The intersection of the 1979 version of the forest area and 1980 ver- 

sion of the crop area is the actual area which is converted from forest use to agriculture 

use. The following is the correct answer. 

SELECT INTERSECTION(L.region , M.region) 
FROM landuse L , landuse M,  province 
WHERE L.usage = 'Iforest" 
AND M.usage = "crop" 
AND province.name = "B.C. " 
AND Lxegion FBIS-COVERED-BYprovince.region 

DURING 1970 ,1980 



(5) Determine Vancouver urban area growth rate during 1970s." 

SELECT CHANGING - RATE (region) 
FROM city 
WHERE city.name = "Vancouver" 
AND IS-INCREASED (cityxegion) 

DURING 1970 ,1979 

(6) How much has the Vancouver urban area been increased during 1970s. 

SELECT INCREASED (region) 
FROM city 
WHERE city.name = "Vancouver" 
DURING 1970,1979 

This question can also be queried in the following way if we do not use the spatiotem- 

poral function. Notice that the C.area intends to be the area in 1970 and B.area means 

the area in 1979. 

SELECT DIFFERECE (C.region, B.region) 
FROM city C city B 
WHERE C.name = "Vancouver" 
AND B.name = "Vancouver" 

WHEN C.area.start-time 5 1970 
AND C.area.end-time 2 1970 
AND B.area.start-time 5 1979 
AND C.area.end-time 2 1979 

The above four examples are spatiotemporal range queries. In these queries, when a time 

range is given, we can use the functions either to detect the spatial changes or to check 

the existence of some spatial features. 

The default options in retrieval operations are defined such that a query that omits the 

. spatial or temporal portion retains the standard meaning of the corresponding SQL SELECT 

i . operation. To summarize, the STSQL format is laid out in the Appendix. The syntax is 
€. 6 

I presented in Backus Normal Form. 



3.5. Implementation of STSQL Functions 

We have proposed the spatial functions and predicates which take parameters from spa- 

tial domains and output spatial data, numerical values, or other values correspondingly. Tem- 

poral information is used in temporal clauses as conditonal statements to decide which ver- 

sion of a spatial representation to participate in an operation and what temporal component to 

be attached to the result atom value. In our extended relational database, a column of a rela- 

tion contains a homogeneous set of data of the same type. Spatial functions are applied to spa- 

tial columns and the results are generated as new columns. Once spatial data in such a column 

is selected as a spatial function parameter, what has been left is to use geometric algorithms to 

efficiently compute the function. 

Unary and binary functions require calculations geometrically, such as AREA, 

CENTER, and INTERSECTION, which require calculating an area, finding a center point, and 

generating an intersection portion by a given representation, respectively. For example, a sim- 

ple polygon can be divided into several triangles and the area of the polygon is the sum of 

each triangle's area. This can be done in linear time once the triangles have been created. If a 

region is represented in a quadtree-based raster method ( see Chapter 4.7.1 ), AREA is derived 

by accumulating the areas of related leaf nodes. If 3-D data is involved, function VOLUME 

should be efficiently processed. These issues are studied in computational geometry [CoH79]. 

The spatial aggregation functions are nothing more than searching the spatial data and 

recording either the maximun, minimun, or other values to do comparisons or calculations. 

But the implementation of spatial aggregate functions is time consuming since it may need to 

search an entire map. In some cases, we wish to avoid exhaustive search of the whole plane, 

i.e., the spatial attribute of a relation or even the whole database, thus searching strategies are 



necessary. As an example, to compute the aggregation function NEAREST, we first locate 

where the target object p is , and make a circle as small as possible such that its center is p 

and it encloses a few points, so that the search space is narrowed down to a smaller region. 

As for the high level functions, we could decompose them into several unary, binary 

functions and other primitive operations. These operations then can be solved one by one. For 

example, the function CHANGE-RATE (a) can be derived in the following steps. Firstly from 

the temporal clause we decide the two time points t, and t,. The second step is to call 

DIFFERENCE function to derive a new region which is the difference between two versions 

of area a at the two time points. The third step is to call funtion AREA to calculate the area of 

the derived region. The last step is the division of two numbers, areal (t, - t,). Spatial predi- 

cates can be processed in a similar way as spatial functions except returning boolean values. 

An alternative of deriving the same result could be making some modifications in the second 

and third steps of the above procedure. Do the calculation of the areas of the two versions of 

spatial objects concerned in the second step. Then in the third step we get the difference 

between these two areas. This could sometimes mean a potentially efficient solution, since we 

may have already stored a attribute area in the original relation, thus avoid the need of gen- 

erating the new relation which represents the difference of the two spatial objects at these two 

time instances. 

Another operation, overlay, which is commonly required in geographic applications, can 

. be performed by a spatial join with the INTERSECTION function on two spatial relations. 

Each relation contains spatial objects whose spatial data in the REGION attribute forms a 

thematic map. The "overlay" concept is that the real world is portrayed by a series of layers in 

each of which one aspect of reality has been recorded (e.g., topography, soil type, roads, and 
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rivers, etc). The result of the operation is a new relation that is composed of new spatial 

objects which partition the plane into disjoint regions. Each resulting region is the intersected 

portion of two spatial objects in the two thematic maps, respectively. 

In spatial databases the calculation of functions harmonizes with the data structures and 

geometric algorithms, but more important issues for database researchers are the searching 

efficiency and the storage efficiency which are to be discussed in Chapter 4. 



CHAPTER 4 

PHYSICAL ORGANIZATION OF SPATIOTEMPORAL DATA 

4.1. Mapping Relations to Files 

A database relation at the physical level may be viewed as a collection of records. The 

DBMS performance depends on the efficiency of the data structures used to store the records 

in the database and on how efficiently the system is able to operate on these data structures. 

As is the case elsewhere in computer systems, a tradeoff must be made not only between 

space and time, but also between the efficiency of one kind of operation versus that of another. 

There are alternative methods of mapping a relation to a file [KoS86]. The simple 

approach is to store each relation in a separate file. Thus the database system may take full 

advantage of the file system functionalities provided as a part of the operating system. It is 

usually the case that tuples of a relation can be represented as fixed-length records, that is, 

relations are in the first normal form. However, in our extended relational database model, we 

have introduced the spatial attributes which usually have variable length of data and their time 

varying versions are organized in the non-first-normal form. Obviously, the fixed-length 

method and the one-file-per-relation method are not directly applicable to our system. In 

another approach, a database system does not rely directly on the underlying operating system 

for file management. Instead, one large operating system file is allocated to the database sys- 

tem. All relations are stored in this single file, and the management of the file is left to the 

database system. 



Data in databases are transferred between disk storage and main memory in units of a 

block. Since a spatial object may need more than one block to represent its spatial features, 

pointers are used to trace the spatial data when a relation is stored on the tuple-by-tuple basis 

such that the relation can be organized in a traditional way or in the partial normalized storage 

model for aspatial nested relations discussed in [Ha0881 as if spatial information is not intro- 

duced. That is, the spatial attribute should be stored separately from other aspatial attributes as 

shown in Figure 4.1. In this chapter we study how the separately stored spatial data can be 

structured. 

Spatial Data 
I I 

record 0 

record 1 

record 2 

record 3 
record 4 

record 5 

record 6 

Figure 4.1 A file structure. 

Access methods for secondary storage which allow efficient manipulations of a large 

volume of records are an essential part of a database management system. Traditionally, a 

relational database is indexed and searched according to its primary key or multi-keys. B - 

trees of one kind or another are the most common index structures for alphanumerical data 

. which can be sorted in a certain one-dimensional order [BaM72]. We can still use these 

methods to index aspatial attributes in our extended relational databases as before. 

However, spatial search according to an object's position is often required in spatial 

databases, and the classical database storage structures are not appropriate or sufficient for this 



purpose. Therefore, new indexing mechanisms should be incorporated in order to explore the 

spatial neighborhood of objects and to answer spatial queries efficiently. In this chapter, we 

introduce an efficient data structure and indexing methods specific for the separately stored 

spatial attribute. 

4.2. Spatial Index Methods 

There have been many spatial access methods developed for the efficient storage and 

accessing of spatial objects. Most of the methods represent spatial objects by a large set of 

small rectangles which are stored in a hierarchical data structures [Sam88]. The minimum 

bounding rectangle (MBR) of an object, with its edges parallel with the axes of the data space, 

usually serves as a simple geometric key for region object indexes in the spatial databases. 

An important property of this approximation is that a complex object is abstracted by a lim- 

ited number of bytes in the same way as the data space and its subspaces may be represented. 

If arbitrary bounding polygons are used [Jaggo], the overlapped and redundant space could be 

reduced by increasing the storage space to record the divisions (bounding polygons) them- 

selves in the index. However, some objects like highways, rivers which are represented in 

long line segments are very likely to be running parallel with the diagonals, such that 

corridor-like bounding polygons'which may not be parallell with the axes are necessary in 

order to narrow the search space down to a smaller sub-space. 

Spatial index methods can be summarized into the following four categories according 

to the principles which guide the decompositions. The first category is the quad-tree based 

regular recursive decomposition of space, which divides a region into equal-sized quadrants 

and a sub-region can be further divided into four parts till some condition is satisfied [Sam84]. 



The second category is the bucket methods or grid files, which include one- and multi-layered 

grid file structures [SiW88] and the LSD tree [HSW89]. The R -tree [Gut841 and its modified 

version, R+-tree [SRF87], belong to the third category. Both of the first two categories parti- 

tion all of the space, while the third one considers only the space that contains objects. The 

R -tree structure may contain overlapped sub-spaces while the R+-tree resolves overlaps by 

increasing the height of the tree. These trees are natural extensions of B -trees for N- 

dimensional object indexes. The performances of the R+-tree and the R -tree are analyzed in 

[FSR87] under the assumption of the line segments being uniformly distributed. Finally, the 

fourth category includes the transformation schemes that represent the MBR s as higher 

dimensional points which can then be organized by traditional accessing methods. For 

instance, a two dimensional rectangle is represented in a four dimensional point 

( U , V , W , Z) where U, V and W, Z are X and Y axes' minimum values and maximum 

values respectively. However, since the neighboring objects are usually not closely stored in 

such a structure, only a small group of queries which require the exact MBR searchings can be 

handled efficiently. It is also impossible to be used for arbitrary bounding polygon represen- 

tations since it requires variable dimensional points. 

4.3. Extending the Spatial Indexes for Spatiotemporal Data 

In our discussion of spatiotemporal databases for geographic information, we assume 

that the spatial objects are in non-rectangular shapes. Therefore, we distinguish the abbrevia- 

tion in index structure from the object data representation. We also assume that a sequence of 

images are stored in the database, each having a unique time stamp t i ,  i = 0,1, ..., n . For 

example, in Figure 4.2 and Figure 4.3, the spatial objects are represented as 0 0 2 ,  and 0 1', 



etc, and the same object 0, has two representations at two different time to and t which are 

0, and O;, respectively. The two representations, though differ in shape and/or position, 

denote the same spatial object. 

Figure 4.2. The image at time t,. 

! 

Figure 4.3. The image at time t 

To store a sequence of images with incremental time stamps, a simple method is to con- 

struct one separate spatial index structure for each image using the previously developed 

indexing techniques, such as the widely used R -tree and then associate with each image some 



temporal information. For example, we can construct a sequence of dense R -trees with their 

roots stored in a sequential array in ascending time order or indexed in a tree structure. There- 

fore, search in such a database corresponds to spatial data accessing with different time 

stamps. However, in most cases, the background information remains stable between succes- 

sive images, that is, there are only very few changes on the object locations and shapes. In 

such cases, instead of storing each complete image independently, data sharing should be 

explored for data storage and indexing. 

4.3.1. Typical queries and searching primitives 

We confine our discussion of query processing to temporal-relevant spatial queries 

because other kinds of queries can be processed by certain kinds of aspatial attribute searches. 

For example, to examine the geometric history of an object, the search is directed according to 

the object ID or its symbolic name which is usually indexed with the popualr R -tree tech- 

nique. Thus its temporal/spatial data can be found without searching through spatial index 

trees. 

Our discussion focuses on the following two kinds of search primitives: 

(1) search for the objects within a rectangle R at time ti ; and 

(2) search for the objects within a rectangle R from ti to ti. 

Although there could be other kinds of search primitives, the above two primitives 

represent typical ones involving both spatial and temporal searches. Many other spatio- 

temporal primitives can be derived from them by changing the search conditions, such as, 

substituting "overlapping" for "within" or "after tiw for "jrom ti to t,". 



4.3.2. Multiple R-trees 

The first improvement of indexing for the additional dimension time based on spatial 

access methods is a multiple R -tree structure, MR -tree. An MR -tree is a sequence of R -trees 

in which the first image at to is stored in an R -tree, the image at ti is constructed based on the 

R -tree of ti-, by sharing their common subtrees. 

Definition 4.1 Let I = (i,, i ,, ..., in) denote an image sequence derived at time to, t ,, ..., t, , 
respectively, in our spatiotemporal database. An MR -tree is a collection of trees R,, R ,, ... , 
Rn , where Ro is an R -tree which is used to index the image i,, and R, , 1 l j I n , is con- 
structed from Rj-, by the Algorithm 4.1 to index ij . 

To facilitate the processing of queries involving a sequence of images, an MR -tree can 

be constructed. Assume an R -tree is of the order M , that is, each node has at least M 12 and at 

most M entries which are of the form ( S , P ), where S is a rectangle that covers all the rectan- 

gles of its descendents. The MBR s of the physical spatial objects are stored in the leaves of 

the tree. 'The first index tree Ro is constructed using the typical R -tree insertion algorithm 

[Gut84]. Ri is constructed from Ri-, by rearranging only those objects at ti which are dif- 

ferent from those at ti-l. That is, a sub-tree of Ri can be shared with that of Ri-l if both cover 

the same set of (unchanged) objects. However, when there are changes for certain objects, 

these leaf nodes and their corresponding ancestor nonleaf nodes must be updated accordingly. 

Some entries will be deleted and others inserted. The sketch of the algorithm is listed below. 

We use E.S and E.P to refer to the spatial coverage of an entry E , and the pointer to its child 

node, respectively. 

Algorithm 4.1 Constructing tree Rk from tree Rk-, 

Input : a copy of tree Rk-l; 
DELET[] contains a list of entries which are in the ik-l but not in i,; 
LIST[] contains a list of entries which are only in i,. 



Output : tree Rk containing all the entries in LIST[]. 

BEGIN 
FOR each entry E in DELET DO 
BEGIN 

Find the leaf node which E belongs; 
Mark all the nodes on this path dirty; 
Remove E from the leaf; 
IF the leaf has less than M12 entries THEN mark it underflow 

END 
FOR each entry E in LIST DO 
BEGIN 

current := root; 
WHILE current is not a leaf DO 
BEGIN 

IF an entry A in current whose rectangle covers E.S THEN 
current := A.P; 

ELSE 
BEGIN 

Choose an entry A from current such that A.S needs 
least enlargement to cover E.S comparing other entries 

current := A.P; 
END 

Mark current dirty; 
END 
IF current has space THEN I* reached a leaf *I 

insert E ; 
ELSE 
BEGIN 

Put E and current to STACK ; 
Mark current overflow 

END 
END 
Change those pointers pointing to undirty nodes to corresponding nodes in Ri-l; 
Remove all the undirty nodes; 
Check underflow nodes and overflow nodes; 
Reorganize the tree to balance such that each node has at least M/2 entries and 

at most M entries with the principle of marking as less nodes dirty as possible; 
END 

In the above algorithm, the rebalance of the tree is delayed until all the deletions and 

insertions have been completed for the new image. The reorganization of the current tree is 

on the local nodes, that is, the nodes are marked dirty during construction, and other nodes 



which are shared by the previous tree should not be changed. 

Theorem 4.1 If each image i,, j 10, contains k objects, tree Rj+, can be constructed from 

the balanced tree R, using Algorithm 4.1 in O(k log k) steps and R,+, is a balanced tree. 

Proof Sketch: 

Let D and A be the numbers of entries to be deleted and inserted, respectively. D 

includes only the objects in R, but not in Rj+l and the objects whose shapes are changed from 

R, to R,+,, A includes only the objects in R,+, but not in R, and the objects whose shapes are 

changed from R, to Rj+l, and k is the total number of objects in each picture, so that 

A + D I 2k.  Because R , is a balanced tree with k entries in its leaves, if we can prove that R , 
can be constructed from R, in time O(k logk) and R, is a balanced tree, the rest is also 

proved. Let h be the height of R ,, which is in the order of O(log, k). The first part of Algo- 

rithm 4.1 is to remove D entries from the copy of R,, and removing each entry requires 

searching from the root to a leaf node and deleting the entry from the leaf. Thus D x h is the 

total steps for the first part, that is, O(D log, k). The second part is to insert A entries in the 

tree. Each insertion will start from the root and then go to a leaf node which costs h steps. The 

total steps for the second part is A x h ,  that is, O(A log,k). The third part can be done by 

traversing the tree in the breadth first fashion to make the undirty path to be shared with Ro. 

At leaf level, since i ,  also contains k objects, the overflow and underilow nodes can be rear- 

ranged within themselves, such that the resulted tree R , still keeps the same structure as R o. 

Because R o  is a balanced tree, therefor, so is R The total steps for the third part is in 

O(klm). Therefore, the time complexity is the sum of the three parts, that is, 

((A +D ) log, k + k) I (2k log, k) which is in the order of O(k logk). 



Corollary 4.1 The time complexity of constructing the MR -tree to index an image sequence I 

using Algorithm 4.1 is O(n x k log k ) .  

Proof Sketch: 

From Theorem 4.1 we know each image can be constructed using Algorithm 4.1 in 

O(k log k )  steps. Totally, there are n such images, therefore, the MR-tree construction 

requires O(n x k log k ) steps. 

Theorem 4.2 Given a balanced MR -tree, if each ij contains k objects, the time complexity of 

retrieving an object by its MBR and tj is at least O(log k ) .  

Proof Sketch: 

To search through the MR -tree, we first locate the root of Rj which indexes ij . If a hash 

table is used, the root can be found in one step. Secondly we start from the root to check each 

entry in a node whether it overlaps with the MBR and contains tj . For each overlapping entry, 

the search is going further to its child node and on until it reaches a leaf. If the object is 

indexed by the MR -tree, at least one path will exist from the root to a leaf, and its length is in 

O(log, k ) .  Therefore, the conclusion holds. 

Figure 4.4. The corresponding MR -tree for Figure 4.2 and Figure 4.3. 



For example, Figure 4.2 and Figure 4.3 show the images at t o  and t l ,  respectively. 

Notice that the only difference between the two images is the change in the size of the object 

0, (from 0 , to 0 0. Figure 4.4 illustrates the MR -tree for R and R ,. Furthermore, if a new 

object emerges near 0 4, or S20 increases, the corresponding tree will have very minor changes 

since the leaf node containing S,,' still has room for it. 

Figure 4.5. The image at time t , in the worst case. 

We examine two extreme cases. First, if two images are exactly the same at time t i- ,  

and t i ,  no new node is created and the same tree is assigned to both Ri-, and Ri .  Secondly, 

even if there is only one out of M entries changed in each leaf node, none of the leaves and 

their ancestors can be shared and Ri must be a completely new tree. One such example is 

shown in Figure 4.5, in which, comparing with Figure 4.2,O becomes 0 and is covered by 

S7 instead of S , ,  0 ,  is shifted to 0 2' and stored in a different subtree, and 0, is changed in 

size and becomes 0 ,'. Figure 4.6 shows the two trees, in which R does not share any node 

with R o. 

Although it is possible to reorganize the previously established trees to make more por- 

tions shared among different images in the MR -tree, it is in general an NP-complete problem 



to achieve the maximum memory utilization [Nis88]. Thus we will not further address this 

issue here. 

Figure 4.6. The corresponding MR -tree for Figure 4.2 and Figure 4.5. 

4.3.3. The RT-Tree Index Structure 

The cases discussed above can be handled more efficiently using another tree index 

structure, i.e. RT-tree. An RT-tree couples time intervals with the spatial ranges in each node 

of the tree so that only one index tree is maintained as opposed to the n index trees main- 

tained by the MR -tree technique [Xu90]. It is also more natural using an RT-tree to reorgan- 

ize index of the spatiotemporal attributes defined in our model when the data has already been 

2 
represented as the basic spatiotemporal atoms in NF . 



4.3.3.1. Definition of the RT-tree 

An RT -tree is an improved R -tree. An RT-tree of the order M is a height-balanced tree 

with the index records in its leaf nodes containing entries ( S , T, P ), where P (pointer) points 

to the physical object, T represents time interval from time ti to ti when the object is at S , 

and S is the MBR of the object. All the leaf nodes are chained together to facilitate the 

sequential search. Each entry of a nonleaf node has the same format, ( S , T, P ), however, P 

points to a subtree whose leaves have records ( Si , Ti, Pi), such that each Si is covered by S . 

Such Si 's may be overlapped among different images. Figure 4.7 shows the image which is 

the overlap of the images of the Figure 4.2 and Figure 4.5. 

Figure 4.7. The overlap of the images shown in Figure 4.2 and Figure 4.5. 

Definition 4.2 Let h10 be an integer, and m be a natural number, M=2m. An RT-tree 
satisfies the following conditions. 

(1) Each path from the root to any leaf has the same length h ; thus h is the height of the 
tree; 

(2) Each node except the root and the leaves has at least m index record entries which point 
to its child nodes. The root is a leaf or has at least two entries; 

(3) Each node has at most M entries; 

(4) Non-leaf nodes contain index record entries of the form ( S , T , P ) where T is [ti, tj I, a 
time range, which means from time ti to tj, and S is a rectangle which covers all the 



rectangles of the entries in the lower node pointed by P ; 

(5) Leaf nodes contain index record entries of the form ( S , T , P ) where T is the same as 
above, S is an MBR of an object, and P points to the spatial data of the object. Each leaf 
node has two extra entries which are used to chain its left neighboring node and right 
neighboring node in order to perform the sequential searches. 

4.3.3.2. Construction of the RT-tree 

Initially, an RT -tree is built in a way similar to the construction of an R -tree for the first 

image R,. At time ti when a new image Ri comes, it initiates a sequence of insertion opera- 

tions. The insertion of a record (MBR, , ti , P )  is performed as follows. First, it searches the 

leaf node to check whether there is an entry with the same MBR and the same data. If there is 

one, expand the time intervals of this entry; otherwise, check whether the current leaf node 

has free space for new entries. If it is full, it is split into two and the split process may pro- 

pagate up to the root. 

Algorithm 4.2 Insert An Entry Into An RT -tree 

Input: An RT -tree with the root R and an entry E (MBR, , ti, P ) to be inserted. 

Output: A balanced RT-tree with the root in R which contains the information about 
(MBR,, ti, P ) in a leaf node. 

BEGIN 
SW := MBR,, TW := [ ti , ti] 
LEAF-NODE = FIND-LEAF (R, SW, TW ) ; 
IF an entry E in LEAF-NODE conatains MBRA THEN 
I* this means the object may not change its shape from last image to the current one *I 
BEGIN 

Expand E.T to E.T' which includes ti ; 
lU3-m (R) ; 

END 
ELSE IF LEAF'-NODE has less than M entries THEN /* the leaf node is not full *I 
BEGIN 

Place the entry (SW , TW , P) in LEAF-NODE ; 
RITI'uRN (R) ; 

END /* insert an entry into a unfull leaf */ 
ELSE I* LEAF - NODE is full, has M entries */ 



BEGIN 
Get a new node NEW-NODE ; 
Place the entry (SW , TW , P) into NEW-NODE ; 
Split LEAF-NODE into two parts and put one part in NEW-NODE ; 
P this split should ensure both covering rectangles minimized, 

LEAF-NODE and NEW-NODE have M/2 and M/2 +1 entries respectively. */ 
Set LEAF-NODE .S , LEAF-NODE .T , NEW-NODE .S , N O D E  .T ; 
/* covering rectangles and time range */ 
Get the father node F-NODE of LEAF-NODE ; 

WHILE F-NODE is not the root R DO 
BEGIN 

IF F-NODE has less than M entries THEN 
BEGIN 

Place the entry NEW-NODE in F-NODE ; 
lU3TURN (R) ; 

END 
ELSE /* F-NODE is full *I 

E := NEW-NODE ; MID-NODE := FE:=NEW_NODE;MID_NODE:=F_NODE;NODE ; 
Get a new node called NEW-NODE ; 

Place the entry (E.S , E-T , E-P) into NEW-NODE ; 
Split MID-NODE into two parts and put one part in NEW-NODE ; 
/* this split should ensure both covering rectangles minimized, 
MID-NODE and NEW-NODE have M/2 and M/2 +1 entries respectively. */ 
Set MID-NODE .S , MID-NODE .T , NEW-NODE .S , NEW-NODE .T ; 
/* covering rectangles and time range *I 
Get the father node F-NODE of MID-NODE ; 

END 
IF F-NODE is the root R THEN 
BEGIN 

Get a new node and assign it to R ; 
Put the entry &EAF-NODE.S , LEAEN0DE.T , LEAENODE) to R ; 
Put the entry (NEW-N0DE.S , NEW-NODE-T , NEW-NODE) to R ; 
R E I " I '  (R) ; 

END 
END I* insert an entry into a full leaf node */ 

END /* end of INSERT */ 

. Procedure FINDJEAF (R , SW , TW) 

Input: An RT -tree with the root R and a search window (SW ,TW) 
where SW is the spatial rectangle, and TW is the time period. 

Output: The leaf nodes in the form of (S ,T 9) 
where E.S and E.T overlap the search window SW and TW , 



respectively. 

BEGIN 
initialize STACK ; 
current := R ; 
IF current is a leaf node THEN RETURN (current) ; 
IF current is not a leaf node THEN 
BEGIN /* choose one entry that needs least expansion to enclose SW and TW *I 

TEMP-S := 0 ; TEMP-T := 0 ; 
FOR each entry E in current node DO 
BEGIN 
enlarge E.S to E.(S+M) which encloses SW ; 
enlarge E.T to E.(T+N) which encloses TW ; 
IF M and N are smaller than TEMP-S and TEMET THEN 
BEGIN 

TEMP-S := M ; TEMP-T := N ; T E M W  := E.P ; 
END 

END I* FOR chosen the entry that needs least expansion */ 
call FIND-LEAF(TEh4P-P, SW , TW) ; 

END I* nonleaf */ 
END /* FIND-LEAF procedure *I 

Lemma 4.1 Given an RT-tree, if it has N entries in its leaf nodes, the average time complex- 

ity of an insertion operation, to insert a new entry into the tree, is in the order of O(log N). 

Proof Sketch: 

If an RT-free has N entries in its leaves, the height H of the tree is then in the order of 

O(log, N) which is similar to a B -tree analysis. The first part of an insertion is to find a leaf 

which may either contain the entry or should hold the entry. This operation starts from the 

root to a leaf node, so that it visits H nodes on the path. If the leaf has already contained the 

- entry, do nothing. Otherwise, if the leaf has room for another entry, then insert the entry. If 

the leaf is full, splitting might propagate to the root in the worst case where H nodes on the 

, path to the root wll be visited. Averaging the three cases, the time complexity, therefore, is in 

the order of O(log N). 



Theorem 4 3  The worst case time complexity of constructing an RT-tree for the image 

sequence I, each i, containing k  objects, 0 I j I n ,  using Algorithm 4.2, is in the order of 

O(n x k  log(n x k ) ) .  

Proof Sketch: 

From Lemma 4.1, to insert one entry to an RT -tree reqires O(log N )  time when the tree 

has N  entries. If all the objects are changing from one image to another in the worst case, the 

total number of entries to be inserted to the RT -tree is n x k . Therefore, the time complexity 

of constructing the RT-tree for I is at worst log 1 + log 2 + . . + log k +  . . + log n X k  = 

(log ( n x k ) ! ) ,  i.e., O(n x k  log ( n x k ) ) .  0 

RT 

Figure 4.8. The corresponding RT-tree of Figure 4.7. 

Notice that to make the spatial search more efficient, the selection of a nonleaf node 

under which the entry is to be inserted should be based on the minimal time interval and/or 

the least spatial coverage. Also, the covering rectangles and the time intervals of such nonleaf 

nodes should be updated during the insertion when expension is required. The total number of 

nodes, therefore, is reduced by sharing the old partitions as recorded in nonleaf nodes. That 

is, an RT-tree needs much fewer nodes than its corresponding MR -tree because it does not 



create duplicate paths. The price paid here is that the height of an RT-tree may be a little 

higher than the corresponding MR -tree (since it stores some more entries than those in one 

image of the MR -tree), and each node needs some more space to store the time interval. Fig- 

ure 4.8 shows the constructed RT-tree for Figure 4.7, which contains many overlapped parti- 

tions for images at to  and t (represented by Figure 4.2 and Figure 4.5). Notice that the RT- 

tree (Figure 4.8) has 11 nodes while the corresponding MR -tree (Figure 4.6) has 17 nodes. 

4.3.3.3. Retrieval of the RT-tree 

The retrieval algorithm descends the tree from the root in a manner similar to an R -tree. 

More than one subtree under a node visited may need to be searched, thus it is not possible to 

gurrantee the worst case performance. 

Algorithm 4.3 RT -tree Retrieval Within a Spatiotemporal Window 

Input: An RT-tree with the root R and a search window (SW , W )  where SW is the spatial 
rectangle, and W the is time period. 

Output: All index record entries E s in the form of (S , T, P )  where E.S and E.T overlap the 
search window SW and TW , respectively. 

BEGIN 
found := false ; 
IF R is not a leaf node THEN 
BEGIN 
FOR each entry E in R 

IF E.S overlaps SW and E.T overlaps TW THEN 
BEGIN R := E.P ; CALL RETRIEVE ; END 

END I* end of for */ 
END /* IF for nonleaf node */ 
ELSE I* R is a leaf node *I 
BEGIN 
FOR each entry E in R 

IF E.S overlaps SW and E.T overlaps TW THEN 
BEGIN 

found := true ; RETURN (E.S , E.T, E.P); 
END 



END P end of for */ 
IF found == false THEN RETURN ( NONE ); 

END I* leaf node *I 
END I* RETRIEVE *I 

Theorem 4.4 Given an RT -tree, if I contains N different entries, the best case time complex- 

ity of retrieving an object by its MBR and t is O(tog N). 

Proof Sketch: 

To search on the RT -tree, we start from the root to check each entry in a node whether it 

overlaps with the MBR and contains t .  For each overlapping entry, the search goes further to 

its child node and on until it reaches a leaf. If the object is indexed by the RT -tree, at least one 

path will exist from the root to a leaf, and its length is in O(1og N). Therefore, the conclusion 

holds. 0 

4.3.3.4. Node Splitting Strategies 

Similar to a B -tree or an R -tree, a node split operation should be performed on an RT- 

tree node if a node is full but a new entry has to be inserted. Node splitting is a process of 

reorganizing the information for a node, which should group related information closely 

together to faciliate accessing. Since there could be many versions in one or a group of spatial 

objects which may differ in time, location, shape and semantics, there should be different cri- 

teria for node splitting. It is often a conflicting goal to achieve both the minimal coverage of 

space and the minimal coverage of time in a node splitting. We suggest three node splitting 

preferences which could be used independentely or combinedly to form a more sophisticated 

strategy. 



(1) Spatial coverage preference: Split a node based on the minimal spatial covering rectan- 

gles. Suppose a node consists of two portions, each with a minimized spatial covering 

rectangle. Node split based on spatial coverage will facilitate the searches based on spa- 

tial criteria, however, it may not benefit the searches based on certain temporal criteria 

because the objects stored in each leaf node could belong to different images which 

represent different time intervals. As a result, a node covers a long time interval. 

Temporal coverage preference: Split a node based on the minimal time interval. Sup- 

pose [ t i ,  t i ]  is the time interval of a node, in which some entries have time interval 

[ t i ,  t k ]  and others [ th , t i ]  where th may be less than tk (some overlapping). Spatially, 

these entries could be located in the same covering rectangle. In the worst case, an entry 

could be in both the time intervals because it has not been changed from time ti to ti .  

This preference may facilitate searches based on certain time criteria. However, such a 

preference may lead to the same result as the MR -tree in regards to space cost if each 

leaf node covers one time instance only. 

(3) Semantic coveragepreference: Split a node based on the semantic knowledge about the 

images. A node can be split according to the meanings of different image segments. 

Objects in the same regions or with certain features may be grouped together or closely. 

This facilitates efficient data search for the frequently used semantic-oriented queries. 

For example, if a node contains both B.C. and Alberta (two neighboring provinces of 

Canada), node split could be based on the boundary line of the two provinces. A similar 

node splitting criteria could be based on the semantics related to time intervals. For 

example, if the comparison is always within a decade, the node should be split into two, 

in which one contains the objects in 1970's while the other contains those in 1980's. 



4.4, Comparisons between the MR-Tree and the RT-Tree 

We compare the performance of the two index structures, MR -tree and RT -tree, based 

on the storage space utilization and the processing efficiency of typical spatiotemporal 

queries. 

4.4.1. Space Cost Analysis and Comparison 

To simplify our discussion, we assume that for an RT-tree or an MR -tree of the order 

M,  each node contains at least m (= M 12) entries and at most M. Notice that in most real 

databases, a node is usually not full to avoid frequent tree reorganization caused by data inser- 

tions. Moreover, we assume that each image contains k objects among which there are on 

average x objects changed from ti to tj+l where 0 < j < n .  That is, on average, there are 

(k - x)  objects of image j remaining the same from image j to image j+ l ,  while there are x 

objects with locations or shapes changed. An entry which contains a pointer to its data is 

added for each changed object so that at least N = k + nx entries should be in the leaf nodes to 

accomodate the (n + 1) images. To analyze the memory cost of the two tree structures, we 

have the following theorems. 

Best Case of RT-tree Worst Case of RT-tree 
Height Num-of-node Num-of-entry Height Num-of-node Num-of-entry 

1 1 
M2 1 1 1 

2 
M2 M3 2 2 

3 3 
2m2 

4 
M3 M M 4  M 4 

2m2 2m 
2m3 2m 

Table 4.1 Storage space of an RT-tree: the best case vs. the worst case 

N - 1  N -2 
Theorem 4.5 The space requirement of an RT-tree is from - to 1+2- , i.e., in the 

M - 1  M - 2  



order of O(N IM ). 

Proof Sketch: 

Table 1 presents the numbers of nodes and entries at each level of an RT -tree, similar to 

that of a B -tree [KoS86]. M~ and 2m h-l are the best and the worst case number of entries at 

the bottom level (leaves) which should be able to store at least N nodes. Thus h must be 

greater than log, N and less than log, N - logm2 + 1, that is, in the order of O(log, N). 

N - 1  
Therefore, the number of nodes in the RT-tree is from - 

which is in the order of O(N IM ). 

Notice that the size of the RT-tree is determined by the number of the objects indexed. 

In constrast, the size of an .MR -tree is depefidem ?l:pcn nct mly the mmber of the objects 

indexed but also the locality of changes. 

nk n 
Theorem 4.6 For the number of nodes of the MR -tree, the worst case is - + -; the best 

M M 

k 2xn 
case is - + -. 

M M 

Proof Sketch: 

The tree for image at t o  is a complete R -tree whose number of nodes should be in the 

order of O(klM) and whose height should be in the order of O(logM k ). The number of nodes 

in the remaining trees is dependent on the order of insertions and concrete data. However, it 

is not difficult to study two extreme cases (the best and the worst cases). The worst case hap- 

pens when the updates are uniformly distributed in the search area as a new image is inserted, 



while the best case happens when the changes are clustered in a few nodes. Let L be the 

number of the leaf nodes in R o. In the worst case, x varying objects in the current image are 

scattered evenly corresponding to the objects in I (= min(x, L)) leaf nodes of the previous 

tree. Thus I new leaves plus their ancestor nonleaf nodes up to the root should be created for 

the new index tree. If x 1 L, the tree is a complete R -tree where no subtrees are shared with 

nk n n 
the first one. Thus the total number of nodes of an MR -tree is about - + -, where - is 

M M M 

the nodes for n roots, which is much worse than the RT-tree memory ultilization. In the best 

case, the previous versions of all the changed objects happen to be stored in the neighbouring 

leaves such that other (unaffected) nodes can be shared, Since each such tree (from the second 

X X X 2x 
on) requires at least - + - + - + . . . + 1 = - nodes, the total number of nodes of the 

M M~ M~ M 

k 2xn 
MR -tree in the best case is - + -. 

M M 

Corollary 4.2 In the best case, the memory ultilization of the MR -tree is close to that of a 

corresponding RT-tree; in the worst case, the memory ultilization of the MR -tree is much 

worse than the RT -tree. 

4.4.2. Time Cost Analysis and Comparison 

Suppose the size of each node is one page. Then the time cost is the total number of 

. pages accessed (the total number of nodes visited) in the retrieval of the inquired spatial 

objects. An RT-tree search starts at the root, following the entry ( S , T, P ) of a nonleaf node 

where S locates the search rectangle and T is a time ti or a time interval [ ti, ti ] until a leaf is 

reached. The cost of the search time depends on the height of the RT-tree and the overlap 



pings of nonleaf nodes. The spatial and temporal overlapping of nodes, depending on the dis- 

tribution and sizes of objects, is hard to decide. In the following analysis, we assume the RT- 

tree and the MR -tree have the same overlappings in their nodes so that the heights of the two 

trees are the major factor of time complexity. 

We examine the worst case for an RT tree. Suppose the RT-tree stores the objects each 

of which is changed from one image to another. Thus the total number of leaf entries to be 

stored should be n x k , which requires an RT -tree of height log, n x k = log, n + log, k , 

where m is the number of entries in each node. Since log,n is less than 1 if the number of 

images is less than the number of entries in a node, the RT -tree should have alomst the same 

height as an R, in the corresponding MR -tree. In an average case when the probability of an 

object changing is p where Oc p < 1, the total leaf entries in an RT -tree should be p x n x k . 

Hence the height of the RT-tree is defined by the number of different entries. 

An MR -tree search starts by finding the root R, of a subtree using the specified t and 

then searches for the spatial objects. If the roots, R,, 0 i j 5 n , of the subtrees, are organized 

into a balanced tree structure, the MR will be the root of subtrees, R, , 0 i j i n . From MR to 

an R, , the height is O(log, n ) if the tree is in the order of m . The height of an R, , 0 5 j 5 n , is 

O(log, k) from the Theorem 4.2. Totally, the MR -tree has the height O( log, n +log, k). The 

height of an MR -tree, different from that of an RT-tree, is purely defined by the number of 

objects in each image. Even when few things change, the number of trees with the same 

height is the same instead of being decreased. If a retrieval has a time interval from t,, to t, , 

then there are (z - y + 1) trees (i.e., R, , for j = y , y + 1, ..., z , in the MR -tree). The cost of 

accesses should be (z -y + 1) multiplied by the height of the MR -tree. In such a case, the 

MR -tree is much worse than the RT-tree in performance. Only if a query is about a specific 



time instance, then only one tree Rj is visited. 

Corollary 4.3 In some cases, when few objects change and most objects are stable, the RT- 

tree is a good choice. Instead, when most objects in an image changes from time to time and 

queries are about a whole space at specific time instances instead of time intervals, the use of 

the MR -tree will speed up the search process. 

4.5. Spatial Data Structures 

As we stated in the previous sections, geographical data is usually irregular in shapes 

which require variable length structures to store. Broadly, two types of representations to 

describe the positional extent of spatial objects are vector-based using coordinates and raster- 

based using grid cells. In vector format, a polygon is described by a series of lines or points, a 

line is also described by a series of points and a point is descrihec! e i k r  by absol~k cocdi- 

nates or by relative coordinates. Raster format using scan lines or image pixels is usually used 

for region object representation in terms of a regular grid cell or variable-sized cells. Argu- 

ments have been made in favor of either the raster or the vector format [Bur86]. However, par- 

ticular formats and format conversions are not our major interest, rather we are more con- 

cerned with how these representations are related to database storage structures. 

In our extended relational database, the spatial data is grouped into objects and each 

object has different versions so that its storage is different from organizing a thematic map or 

an image as one unit, especially for raster representations. In the consequent sections we dis- 

cuss the data structures used for representing a spatial attribute of one object. 



4.5.1. Data Structure Using Raster Representation 

One of the typical raster representations is the quadtree structure which is variable reso- 

lution arrays that allow a region to be split up into parts, or to contain holes without difficulty. 

Quadtrees are mostly used to represent binary images or region data. As shown in Figure 4.9, 

a region is regularly decomposed into quadrants and a subspace may be further divided into 

four equal parts until a quadrant is either completely contained in an object region or com- 

pletely outside [Bur86]. The smallest quadrant may be the single pixel. Each node of the tree 

could be represented as a record with six fields, of which four fields are pointers to the sons, 

one is a pointer to the father and the last encodes the color, i.e., black, white, or grey, of the 

node. The grey nodes are internal nodes. The region then is composed of those black nodes. 

Figure 4.9 A simple region on a rasterized map and the corresponing quadtree. 
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A thematic map or an image may contain more than one object. For example in Figure 

4.10, a map is composed of four objects, namely 0 ,, 02,  03,  and 0,. The index structure 

such as the RT -tree developed in last section can be used for indexing the four objects where 

each leaf node contains a pointer to the object's data set. In raster based representation, one 

object region has two parts. One is the position of the object in the map and the other is the 

relative region data itself. As an example, for object O3 in figure 4.10 , its MBR upleft coner 

is located at (8,8) in the map and its data is orgnized into a quadtree corresponding to the tree 

in Figure 4.9. 

Figure 4.10 A rasterized map. 

When object 0, increases at another time, say, at t , ,  as Figure 4.11 illustrates, the 

corresponding quadtree is constructed similarly. Notice that the two trees in Figure 4.9 and 

Figure 4.11 have much in common in this case such that sharing at storage level can be 

achieved by sharing common quadrants. Figure 4.12 demonstrates the possiblity. For a mov- 

ing object, say O3 shifted from (8,8) to (9,6), as Figure 4.13 shows, it only needs to record its 

MBR position and the second part can be completely shared with its previous version. 



Figure 4.11 The region at t and the corresponding quadtree. 

I - .  

Figure 4.12 Two quadtrees. 



Figure 4.13 The map at time t ,. 
Such arrangement clusters all the versions of one object together. This clustering can produce 

significant performance in processing queries on an object history. 

4.5.2. Data Structure Using Vector Representation 

Vector representation of an object is an attempt to represent the object as exactly as pos- 

sible. The coordinate space is assumed to be continuous, not quantized as with raster space, 

allowing all positions, lengths, and dimensions to be defined precisely. For example, the same 

object 0 in Figure 4.9 can be represented more compressedly and precisely as illustrated in 

Figure 4.14. One typical and simple vector representation is that a region is represented by 

polygons each of which is then represented as a series of points. More sophisticated methods 

have been suggested in order to avoid redundancy and to detect complex or nested polygons. 

Using a vector representation method, all the objects (polygons) in an image at one time 

instance are easily clustered together by network linkages [Bur86]. Queries about relation- 



ships among objects in one plane benifit from the clustering. However, queries about an 

object history may be costly processed since the versions of an object are stored further apart. 

That is, more disk accesses are required in order to get the necessary information about an 

object. 

Figure 4.14 Represent an object as a polygon. 

In our spatiotemporal databases, again, there are relative md absolute c~erdimtes te 

represent a polygon. Relative representation is good when objects do not change their shapes 

or geometric definations, but only change their topological relations, such as moving objects. 

The polygon representation differs from the quadtree method, in that the former is hard to 

achieve the sharability among the several versions of an object; while the later may be less 

precise or space consuming. 



CHAPTER 5 

CONCLUSIONS 

5.1. Contributions of This Thesis 

In this thesis we have proposed a spatiotemporal database management system 

(SDBMS) based on an extended relational data model. At representation level, a spatiotem- 

poral relation differs from a conventional relation in several ways. First we have extended the 

attribute domain to include such basic data types as OID , POINT, LINE, and REGION in 

relations. The basic construct of an attribute is the atom which consists of a temporal com- 

ponent and a value from an attribute domain, where the temporal component specifies the 

2 duration of the value. Objects are arranged in NF in order to provide users a clear view of 

objects and life spans of their various attributes. Moreover, relational algebraic operations 

have been defined on our database model. We have also discussed the interface and extended 

the retrieval statement of SQL query language to query on our databases. 

At physical level, we have studied indexing structures, multiple R -trees and RT -tree, for 

spatiotemporal domains based on the conceptual and complexity analysis. An RT -tree incor- 

porates temporal information with spatial objects in index nodes, which represents an elegant 

merge of multiple R -trees with different time-stamps. Therefore, it saves storage space and 

- improves the performance. 



5.2. Future Research 

The implementation of the whole spatiotemporal database management system concerns 

query parsing, optimization, buffer management, and concurrency control which should be 

studied based on our extended relational model. Specifically, efficient algorithms for spatial 

functions should be studied based on computational geometry theory and practice. Moreover, 

the performance of the RT -tree in experimental spatiotemporal databases and its comparison 

with other index structures are also interesting topics for our future study since these index 

methods are also applicable to other databases such as object-oriented spatial database sys- 

tems or other kinds of geographic information systems. 



APPENDIX 

SYNTAX FOR STSQL 

This syntax covers the examples used in Chapter 3. The meta-symbols used are '::=' and 

'1' and ' { ' and ') '. The brackets are used to enclose optional items. 

STSQL Constructs: 

SELECT columnl , .. ., column n 
FROM tablename, ... , tablename 
WHERE conditions 
WHEN conditions 

SELECT UNARY-FUNCTION(co1umn k), BINARY-FUNCTION(co1umn i, column j) , ... 
FROM tablename, ... , tablename 
WHERE conditions 
WEEN conditions 

SELECT columnl ,..., column n 
FROM tablename, ... , tablename 
WHERE conditions 
AND column i (comparison or spatial predicate) 

(subquery) 
WHEN column j (comparison or spatial predicate) 

(subquery) 

STSQL Syntax for Retrievd: 

<query>::= <a-query> {<time-spec>) {<con-spec>) 
<a-query>::= SELECT catt-spec7 FROM <relations> 



<function>::= <aggregate> (cattn) I 
<unary-fun> I 
<binary-fun> I 
<high-fun> I 
<temp-fun> 

<aggregate>::= <AVERAGE> I <COUNT> I <MINIMUM> I <MAXIMUM> I 
<NEAREST> I <FURTHEST> I <SUM> 

<unary-fun>::= <LENGTH> (<LINE>) I 
<DIAMETER> (<REGION>) I 
<PERIMETER> (<REGION>) I 
<AREA> (<REGION>) I 
<CENTER> (<REGION>) 

ct-dam>::= cattn.TIME I ct-value> 
ct-value>::= <t-pint> I ct-range> I (ct-value>, ct-value>) I 

expression with +, - operations on ct-value> 
ct-pint>::= PRESENT I time value in chronons 
ct-range>: := (ct-point>, ct-pint>) 
ct-unit>::= YEAR I MONTH I DAY I HOUR 1 MINUTE I SECOND 

<relations>::= <relation> I <relation>, <relations> 
<relation>::= existing table name 

<time-spec>::= AT ct-pint> I 
IN ct-pint> I 
DURING <t-pint>, ct-pint> I 
AFTER ct-pint> I 
BEFORE <t-pint> I 
SINCE ct-pint> I 
WHEN conditions 

<t-pint>::= PRESENT I time value in Chronons 
<t-conditions>::= ct-cond> I ct-cond> AND/OR ct-conditions> 
<t-cond>::= ct-dom> comp ct-dom> I ct-dom> <time-spec> 



<con-spec>::= WHERE <conditions> 

<conditions>::= <a-condition> 1 <s-condition> AND/OR <s-conditions> 
<a-condition>::= <a-at@> <camp> cattn ( 

<a-attr> <camp> <query> I 
<function> <camp> eattn I 
<function> <camp> <function> I 
<gee-attn <s-predicate> cgeo-attn I 
<h-predicate> (egeo-attr>) 

cs-predicate>:= IS-INSIDE 1 
INTERSECTS ( 
IS-NEIGHBOR-OF I 
IS-COVERED-BY I 
NOT-COVEREDBY I 
IS-NORTH-OF ( 
... 

WITHIN 
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