
Extending Relational DBMS
for Spatiotemporal Information

by

Xiaomei Xu

SIMON FRASER UNIVERSITY

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the ;jchool -
of

Computing Science

O Xiaomei Xu 1990

SIMON FRASER UNIVERSITY

July 1990 .

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Xiaomei Xu

Degree: Master of Science

Title of Thesis: Extending Relational DBMS for Spatiotemporal Information

Examining Commitee:

Dr. Stella Atkins, Chairman

Dr. Jia-Wei Han \I
Senior Supervisor

Dr. ~ & h u n Luk

Dr. Nick Cercone

Dr. Thomas K. Poiker
Department of Geography
Simon Fraser University
External Examiner

Date ~ ~ ~ r o v e d ~

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs i t y the r l g h t t o lend

my thesis, p ro jec t o r extended essay (t he t i t l e of which i s shown below)

t o users of the Simon Fraser Univers I t y L l brary, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l i b r a r y of any other un ivers i ty , or other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one of i t s users. I f u r t he r agree t h a t permission

f o r mu l t ip le copying of t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean of Graduate Studies. I t i s understood t h a t copying

o r publication o f t h i s work f o r f inanc ia l gain sha l l not be a l lowed

without my w r i t t en permission.

T i t l e of Thes i s/Project/Extended Essay

Extending R e l a t i o n a l Database Management Systems f o r Spat iotemporal Information.

Author: - -
(signature)

Xiaomei Xu

J u l y 9 , 1990

ABSTRACT

A spatiotemporal database is a spatial database in which data objects may change their

spatial locations and/or shapes with time. We consider three components, theme, location,

and time, in the design. Based on previous studies of spatial and temporal databases, this

thesis extends the relational data model to an extended relational model with the flavor of

object-oriented databases in order to represent complex data objects with spatiotemporal

information. A spatiotemporal query language, STSQL, is developed as an extension of the

relational database language SQL. Moreover, an efficient spatiotemporal data storage

structure and two indexing mechanisms are developed to facilitate the search of spatial data

objects changing with time in the specified spatial framework. Sample queries from

geographical applications are supplied to demonstrate the power and usefulness of the

approach.

ACKNOWLEDGMENTS

I owe a great debt of gratitude to Dr. Jiawei Han for his guidance, support, and

encouragement, without which this thesis would not have been possible. Thanks to Dr. Tom

Poiker, my external examiner, who made many thoughtful suggestions. I would also like to

thank the other members of my examining committee, Dr. Woshun Luk and Dr. Nick

Cercone, for discussions and comments on the thesis.

Encouragement from and discussions with fellow graduate students, especially Jie

Zhang, made the experience a pleasant one. I am thankful to Ed Levinson who helped greatly

to improve the presentation of this thesis.

Sincere thanks are due to my respected parents too, for their love, care and education.

This work is dedicated to them.

My deepest appreciation to my husband, Yan Chen, for his support and understanding

throughout this entire effort.

- iv-

CONTENTS

... Approval

.. Abstract

Acknowledgments ...

Contents ..

Chapter 1 INTRODUCTION ...

1.1. Motivation ..

1.2. Background ...

1.3. Possible Solutions to Spatiotemporal Database Designs

1.4. Organization of the Thesis ...

Chapter 2 EXTENDING THE RELATIONAL MODEL ..

2.1. A Framework for Temporal Geographic Information ..

2.2. Spatial Data Representations ...

2.3. Relational Models for Geographic Spatial Data ...

2.3.1. Purely Relational Model ..
2 2.3.2. NF Data Model ..

2.3.3. Abstract Data Types ..

ii

iii

iv

2.4. Relational Models for Geographic Relationships ... 17

2.5. Relational Models for Geographic Temporal Information 18

2.6. The Extended Relational Model for Geographic Spatiotemporal Information

...

2.6.1. The Model ..

2.6.2. The Relational Algebraic Operations ...

Chapter 3 STSQL: AN EXTENDED SQL FOR SPATIOTEMPORAL DATA-

BASES ...

3.1. High Level View of a User Interface ...

3.2. Graphic Interface Facility ..

3.3. Interaction Between Graphic Interface and Query Language Processor

3.4. Extending SQL ...

3.4.1. Temporal Criteria For Data Retrieval ...

3.4.2. Spatial Criteria For Data Retrieval ..

3.4.3. Sampie Queries in STSQL For Data Retrieval ...

3.4.3.1. Sample Schema ...

.. 3.4.3.2. Spatial Query Examples

3.4.3.3. Temporal Query Examples ...

3.4.3.4. Spatiotemporal Query Examples ..

3.5. Implementation of STSQL Functions ...

Chapter 4 PHYSICAL ORGANIZATION OF SPATIOTEMPORAL DATA

...

4.1. Mapping Relations to Files ..

4.2. Spatial Index Methods ...

4.3. Extending the Spatial Indexes for Spatiotemporal Data

... 4.3.1. Typical queries and searching primitives

4.3.2. Multiple R-trees ...

4.3.3. The RT-Tree Index Structure ..

... 43.3.1. Definition of the RT-tree

.. 4.3.3.2. Construction of the RT-tree

.. 4.3.3.3. Retrieval of the RT-tree

.. 4.3.3.4. Node Splitting Strategies

.. 4.4. Comparisons between the MR-Tree and the RT-Tree

.. 4.4.1. Space Cost Analysis and Comparison

... 4.4.2. Time Cost Analysis and Comparison

4.5. Spatial Data Structures ...

.. 4.5.1. Data Structure Using Raster Representation

... 4.5.2. Data Structure Using Vector Representation

Chapter 5 CONCLUSIONS ..

5.1. Contributions of This Thesis ...

5.2. Future Research ..

APPENDIX ..

.. . REFERENCES

CHAPTER 1

INTRODUCTION

1.1. Motivation

Database management systems (DBMS), which provide high-level data models, data

independency, data integration, data security, transaction management, and other facilities,

have been widely used to manage textual information in business applications. With the

advent of computer vision, graphics, and CADICAM technologies, many applications, for

example map processing in geography, have evolved representations of the abstracted real

world, both textually and graphically. However, it is known that traditional DBMSs have

some limits, such as the ability to handle spatial or historical information. Thus it has become

essential to develop or extend existing DBMSs to store and manage in an integrated fashion a

vast amount of image data (multi-dimensional data) as well as textual data. For managing

multi-dimensional data the DBMSs must support complex object representations as well as

operations on the objects since these data naturally have topologic, structural and geometric

features, such as location, shape, and size. Databases whose contents are continuosly updated,

and allow queries of both old and new information must incorporate time. DBMSs that han-

dle spatially changing objects over time are called spatiotemporal databases.

1.2. Background

From the earliest civilizations to the modem times, spatial data have been collected by

navigators, geographers, and surveyors. The spatial distribution of the features of the earth's

surface, or topography, is rendered into pictorial form by cartographers. Whereas topographi-

cal maps can be regarded as for general purpose, maps of the distribution of rock types, soil

series or land use are made for limited purposes. These special-purpose maps are often

referred to as thematic maps because they contain information about a single subject or theme.

Digital map data, line drawings, and region adjacency graphs are all instances of spatial data

that are usually organized in a discrete structural form as opposed to the iconic form of the

grey tone or color image. Such structural organizations can be derived by hand-gathering data

or by segmenting an image, associating attributes with the image segments, and determining

relationships between segments. Essentially, an image is a snapshot of the situation seen

through the particular filter of a given surveyor in a given discipline at a certain moment in

time. Actually, space is indivisibly coupled with time in geography. More recently, satellite

imaging has made it possible to see how landscapes change over time and to follow the slow

march of desertification or erosion or the swifter progress of forest fires, flood, locust swarms

or weather systems.

This thesis is not concerned with the origin or generation of the sequence of spatial data

sets. We assume that a sequence of images, as shown in Figure 1.1, is stored in the database,

each having a unique time stamp from when the image was derived, and that the information

contained in these images has already been abstracted to higher level descriptions. In other

words, an image is composed of a group of spatial objects which are interpreted as points,

lines, or polygons. An object denotes a logical entity, such as a city, or a farm, instead of a

fixed-size grid cell tessellation. For example, a city can be represented as a point or a polygon

depending on the level of detail or the scale of a map. Furthermore, we assume that the spatial

relationships among objects in different images have also been established. We will discuss

how to model and represent the objects contained in the image sequence and how to query the

past, present, or changed information during some period of time.

Figure 1.1 A image sequence

1.3. Possible Solutions to Spatiotemporal Database Designs

In order to make a DBMS meet the functionality and performance requirements of such

diverse application areas, many efforts have been made in studying a suitable set of data

modeling tools, special operations, user interfaces and system architectures. Three sugges-

tions have been made for a more generalized DBMS [Bou85]:

(1) Put together specific DBMS and add a common user interface layer. For example, one

DBMS could be for classical data, one for image data, and another for graphical data.

The interface would simulate the extended model by converting schemas and queries

into their relational counterparts. This is the approach used in GEM, which offers an

entity-relationship database interface [TsZ84]. The attractiveness of such an approach

lies in its inexpensive implementation using reliable existing technology. Its major

shortcoming is its performance. The greater the difference between the end-user model

- 3 -

and the database model, the more complex is the translation process. Eventually this

will be inefficient. This method is a short term solution.

Take an existing database model and extend its capabilities. For example, the relational

model could be extended for this purpose. This method is considered to be a medium-

term solution.

Define a new database model that is suitable for any kind of data and provides extensi-

bility, like an extensible database, semantic database, or object-oriented database model

ICDF86, GCK89, Gut891. This approach is a long-term solution since no efficient imple-

mentation of such DBMS has been found sufficient for all kinds of applications,

although they exist for specific domains.

This thesis extends the idea of relational database system designs with object-oriented

flavor. The emphasis is on extending the relational data model to capture spatiotemporal

semantics, to support the extended relational spatiotemporal query language STSQL and phy-

sical data organizations. The focus is mainly on new access methods. The relational model

has a well understood formal basis that facilitates effective database design and query pro-

cessing. Furthermore, relational database technology is well established, and the extensions

that we will make to the relational model benefit from this state-of-the-art technology. The

attraction of the relational model in practice has been that queries in these languages are

expressed independently of the way in which relations are stored; thus the user is spared many

. low level computational problems. Yet another reason for extending the relatonal model is

that a relational DBMS is today the dominant choice for most database applications. By con-

trast, the theory and practice of object-oriented database technology are still at the develop-

mental stage. Consequently, extensions to the systems will enable users who have invested in

relational technology to attain the additional functionality needed for newer applications.

1.4. Organization of the Thesis

This thesis consists of five chapters. In chapter 2, we analyze the requirements imposed

on DBMS by some geographical applications and then discuss several ways to extend the

relational model in order to represent spatiotemporal information and other structural hierar-

chies to capture the meaning of the dynamic world. We also define our database schemes and

algebraic operations on our proposed databases. Chapter 3 illustrates the query language

STSQL, an extension of SQL, which exploits the operations on spatiotemporal attributes in

our extended relational model. Sample queries in temporal geographical applications are sup-

plied to demonstrate its capabilities. In chapter 4, we address the physical organization

methods. A spatial data structure and a tree-based organization method are developed. More-

over, extensions of the R -tree indexing structure to index on spatiotempord data are swdied

with two indexing schemes, MR -tree and RT-tree. The algorithms for constructing the two

trees are presented and their computational complexities are analyzed. Finally we provide our

concluding remarks and future research directions in Chapter 5.

CHAPTER 2

EXTENDING THE RELATIONAL MODEL

TO REPRESENT GEOGRAPHIC INFORMATION

2.1. A Framework for Temporal Geographic Information

Geographic data consists of three components - thematic, spatial, and temporal parts

[Bur86,LaC88]. The geographic information is related to and is dependent upon the geo-

graphic phenomena of interest to users. Such phenomena have to be spatially modeled and

can be represented as geometric descriptions. To model such information, it is necessary to

consider the geographic spatial features, relationships and temporal features which are

involved in its use.

Geographic Spatial Features

Geographic data may exist in a database as individual objects with spatial features.

These discrete objects can be grouped according to their spatial dimensionalities:

(1) 0-D features, such as oil wells or cities;

(2) 1-D features, such as roads, pipelines or rivers;

(3) 2-D features, such as geological regions, land-use zones or municipalities;

(4) 3-D features, such as buildings or hills.

Note that the dimensionality can change depending on the level of detail with which one is

concerned [FeP86].

Continuous features, such as the earth's surface, usually require different treatments

than those for discrete ones. Our database system is targeted at managing large sets of

discrete, related objects.

Geographic Relationships

There are two broad types of geographic relationships:

(1) Spatial relationships: A spatial relationship states how actual features fit together in

space. That is, they involve properties such as the connectivity, adjacency, and proxim-

ity of spatial objects. The issue of spatial relationships is important since they need to be

retrieved and analyzed in many kinds of applications.

(2) Taxonomic relationships: These relationships concern how classes of features fit

together. That is, they describe the hierarchy of classification (or categorization). For

example, the general class called "forest" might include specific classes "spruce",

"pine", etc.

Time and the examination of changes play important roles in spatial information

analysis. There are, in general, two types of temporalities:

(1) Aspatial temporalities: Thematic changes, i.e., changes in feature attributes, are called

aspatial temporalities. An example would be a farm that has been converted from agri-

cultural use to other uses. We would say that the usage attribute of the farm object has

changed.

(2) Spatial temporalities: Changes in an object's spatial definitions are called spatial tem-

porality. One example is geometric changes, such as growth of urban areas causing city

boundary changes. If an object's shape is described by a geometric representation, shape

changes will be described by geometric temporality . Another example is a change of

topology that describes object adjacencies. Topological temporality pertains to the

movement of objects relative to one another. Examples of these situations are shown in

Figure 2.1. The striped object could change to a dotted object indicating that its usage

attribute has changed to a different value in situation (a); it may also change in shape in

situation (b); or its topological relation with another object may change as in situation

(c).

Figure 2.1 Spatial changes.

2.2. Spatial Data Representations

There are three database-oriented representation schemes for solid geometric object

modeling which have been examined using different database models [KeW87]. The first is

primitive instancing, where each geometric object is defined as a special instance of a generic

primitive object. That is, one relation is created for every generic object type, and the attri-

butes of the relation correspond to the parameters that describe the geometric objects. Each

geometric object is stored as a tuple of the relation corresponding to the generic object class.

An example of a generic object class is bracket with four holes, as shown in Figure 2.2. The

representation scheme of this generic record type would be defined as follows.

Figure 2.2 A geometric part.

generic type BRACKET-4H
length: real
width: red
height: real
material: char
HOLES: array [1:4]
record

diameter: real
location; array [1:3]

end record
end generic type BRACKET

The second method is constructive solid geometry, which is a widely used representa-

tion in CAD/CAM systems. In this method an object is described as a composition of a few

primitive objects. The composition is achieved via motional or combinatorial operators. The

format is defined by the following context-free grammar:

<mechanical part> ::= <object>
<object> ::= <primitive> I

<object> <motion op> emotion argument> 1
<object> <set operaton <object>

<primitive> ::= cube I cylinder I cone (...
<motion op> ::= rotate I scale I ...
<set operaton ::= union I intersection I difference I ..
For the object "bracket with four holes", the decomposition tree is shown in Figure 2.3. (A tri-

angle "A" represents the minus operation which means a part is composed of one sub-part is

subtracted from the other sub-part. The sub-parts can be further divided until a primitive is

reached. "U" represents the addition operation.)

cylinder 69 O
cube

Figure 2.3 A decomposition tree.

The third method is boundary representation. A solid object is segmented into its nono-

verlapping faces. Each, in turn, is modeled by its boundary edges and vertices. Again the

bracket example is represented in Figure 2.4. Note that this representation scheme consists of

three abstraction levels, that is, faces, edges, and vertices. By contrast, the second method may

lead to a deep tree for a complex object.

f l f2 f3 f 4 " " "
FACES

Figure 2.4 A boundary representation.

In geography, entities in one class are unlikely to be exactly the same, as is the case for

geometric parts. Moreover, they can not be decomposed spatially into small number of primi-

tive parts which have a constant number of parameters. Consider land use information con-

tained in a 2-D map, as shown in Figure 2.5. The spatial features are the boundaries for dif-

ferent types of regions such as cities and rivers, etc, all in various shapes. Thus only the third

method, the boundary representation discussed above, can be considered a representation

scheme for geographic information since geographical data can be reduced to three basic

topological concepts, regions, lines, and points [Bur86], which are chosen as primitives.

Without the loss of generality, we focus on 2-D map data. The methods can be similarly

extended to handle higher dimensional data.

Figure 2.5 A map.

2.3. Relational Models for Geographic Spatial Data

A logical model describes data at the conceptual and view levels, and is used to specify

both the overall logical structure of the database and a higher level description of the imple-

mentation. At this point we will not examine the formal definition of a relation. What is meant

by the terms attribute and primary key will be provided later in subsequent sections. For now,

we will study the ways in which relations are used, and in particular the distinction between

storing data about real world objects, and the relationships between such objects. In this sec-

tion, we describe how to model geographic data using a relational model.

At the conceptual level, geographic data can be viewed as objects which form object

classes, and one relation may be created for each class. All features are described in the

- 12-

attributes of a relation. The relation could have one attribute for object identity and other attri-

butes for an object's location, statistic information, relationships, etc.

2.3.1. Purely Relational Model

The original relational model was proposed by Codd in his seminal paper [Cod70]. This

showed that a collection of relations could be used to model the relationships between real

world items. The form of a relation is deliberately chosen to be simple. Unfortunately, it is so

simple that spatial objects have to be decomposed into different relations. Let us illustrate this

on relational boundary representation schema described below in Table 2.1 for the example of

map data.

LINE

MAP-Component

line1 point1

line2 point2

line3 point3

ID

1

2

3

REGION

linel

POINT

NAME

city-a

lake-1

city-b

Table 2.1 Purely relational model for a map data.

REGION

a1

11

b 1

Notice that a map representation is broken up into different relations, where the relationships

among the tuples in various relations are achieved via user-generated attribute values. This

makes the model difficult to use. In order to retrieve and manipulate the data, one is required

to have an intrinsic knowledge of the underlying schema definition. In order to display a lake,

we have to retrieve all the points which involve joining four relations MAWomponent,

REGION, LINE and POINT.

Fortunately, we can extend the database modeling capabilities to handle spatial informa-

tion in several ways. A fundamental choice for representation of a complex object is whether

its structure should be visible or hidden at the level of the relational data model. That is,

whether the object should be described by a collection of tuples from various relations, or by a

single attribute value from a specific attribute domain for this kind of object. For manipula-

tion, this determines whether the internal structure is accessible to the general facilities of the

query language or only to domain-specific operations. The two ways of handling complex

objects have been called structural and behavioral object orientations [Dit86, Gut891.

2.3.2. NF Data Model

The N F ~ (non-first-normal form) data model is one of the structural approaches which

has originated from database technology and is essentially motivated on technical grounds

[RKS88]. The model provides facilities for mapping spatial objects onto database structures

and for retrieving these objects as entities. For our map data example, the relation is shown

schematically in Table 2.2.

Compared with the purely relational model listed in Table 2.1, the same query, "display-

ing a lake", that is, "to find the points belonging to the lake", requires about the same number

of joins. The N F ~ queries would be at least as complex as in the pure relational model

[KeW87] and the model implicitly incorporates references to tuples of different relations.

Thus it is a hybrid of the relational and hierarchical data model. There is, however, a data

- 14-

redundancy problem; for example, p is an end point of lines 1 I and 12, but the same point has

to be stored for each line.

I 1 I REGION 1

Table 2.2 NF" model for the map data represemtin-n-.

2.3.3. Abstract Data Types

Extensibility can be provided via new data types, operators, and access methods

[GCK89, Gut891. One approach for behavioral extensions to relational database systems is the

use of user-defined data types such as geographic attributes, and their methods. The

behavioral approach has an application-oriented flavor. The identification of an object is

largely determined by what the user perceives to be an entity that can be manipulated as a

whole. Its internal representation should be hidden from the user. In geography, the basic spa-

tial entities are regions, lines and points. Once these three data types as well as operations on

them are defined, then they can be used as any other built-in data types. That is, attributes can

be of a type that has been previously defined by the user as a data type. The graphical input

and output are example operations on these data types.

Returning to the map data example to demonstrate this method, in Table 2.3, the boun-

dary of a city or other 2-D entity is represented under the data type REGION, while a road is

stored in another relation which has the data type LINE to represent the course of a road.

- -

Table 2.3 Two relations with extended data types - REGION and LINE.

To implement the spatial domain, such as REGION or LINE, there are two choices. One

is that a new data type is defined on top of the relational model. For example, a data type can

be a "structured" N F ~ object or network-like structure [Mit89]. In the above example, a

ID

4

10

...

REGION object is seen as a string of characters in a table such as al, a2 by ordinary users, but

it is represented internally as a nested structure similar to table 2.2. The only advantage is that

a user is relieved from knowing the complex internal structure if the query language provides

the operations on the abstract data types. The disadvantage is its inefficiency. Another way is

NAME

S-22

F-1

.a .

LINE

!inc30

line27

...

to modify the physical model to have long fields. This will be discussed in Chapter 4.

2.4. Relational Models for Geographic Relationships

A thematic map can be stored in a relation table as in our map data example. Spatial

relationships of the objects in the map are implicitly embedded and can be detected using spe-

cial functions provided by the query language. These will be studied in Chapter 3. Of course

they can also be modeled explicitly at the relational level. For example, a binary relation

ADJACENCY can be used to represent any two objects which are neighbor. However, this

requires excessive space and involves redundancy. Nevertheless, there is an advantage to stor-

ing the spatial relationships at the relational level; a query may be sped up since only table

lookup is performed and no computation is required. This is a space-time tradeoff.

Taxonomic relationships concern relationships among objects classes, subclasses and

individuals which are usually organized into hierarchies or networks. These relationships

should be expressed explicitly in our relational model in order to allocate individuals to

classes or derive all instances of a class. The classification used for one purpose often seems

to cut across the classification requirements of another purpose. To model the hierarchy, the

relational model should be enhanced to support the domain whose values are names of rela-

tions [BaA90] or the attributes of type "component-of'. General N:M relationships can be

expressed by attributes of type "reference". The association of tuples is achieved via the so-

called surrogate attributes [Cod79]. In such a relational model, a user must stimulate pointers

by comparing identifiers in order to traverse from one relation to another (typically using the

join operator). In contrast, the attributes of semantic models may be used as direct conceptual

pointers. Thus, users must consciously traverse through an extra level of indirection imposed

by the relational model. For this reason, the relational model has been referred to as being

value-oriented as opposed to object-oriented.

2.5. Relational Models for Geographic Temporal Information

Usually, databases carry the most recent data. As the new data becomes available

through updates, the old values are discarded. These changes are viewed as modifications to

the state with the out-of-date data being updated to the present one. Such databases are called

snapshot databases, since they only contain current information which is a snapshot of reality.

In geography, however, the past states of a database are valuable and are often used for

analysis.

In the database community, the generalization of snapshot databases and their underly-

ing relational model have been recently focused on aspatial temporal databases, which

represent the progression of states of an enterprise over an interval of time. In such databases,

changes are viewed as additions to the information in the database. One way is to base tem-

poral databases on the snapshot model, with time appearing as an additional temporal attri-

bute. The database model does not incorporate temporal attributes, instead, the query

language must translate queries and updates involving time into retrievals and modifications

on the underlying snapshot relations [Ari86, Sno871. Another approach is to extend the

2 semantics of the relational model to incorporate time directly, as in NF or the time-stamping

attribute method [TaG89]. In this thesis we will examine a model, which is, in some sense,

intermediate between these two, where time varying data is visualized as a time sequence col-

lection.

A more theoretical research topic on temporal databases is the formulation of the seman-

tics of time, which is closely related to knowledge representation issues [CU190]. Clifford and

Warren have suggested using the entity-relationship model for formulating intensional logic

[ClW831. This logic serves as a formalism for the temporal semantics of a temporal database

much as first-order logic serves as a formalism for the snapshot relational model. This issue,

however, is beyond our scope.

Conceptually we can view a temporal relational database as a data cube whose depth is

the time dimension. There are three choices to represent the time dimension which are (1)

relational level versioning, (2) tuple level versioning, and (3) attribute level versioning.

Relation level versioning stores a new version as a separate table with the same schema

but different time stamp whenever any of its attributes changes. As an example, a relation,

parts, whose content changes with time, is shown in Table 2.4. In this method, both changed

and unchanged information are all stored as a new snapshot. As a result, much redundancy is

involved.

- -

01 Jan 1980

2 May 1981

15 Oct 1981

- -

NAME

A

B

A
B

C

A
C
D

COLOR

red

blue

red

blue
red

white
red

green

Table 2.4 Parts represented by three relations.

- 19-

Tuple level versioning marks each tuple with time. Usually two special attributes

FROM and TO are used to represent valid time in the relational scheme. New tuples are

added by appending them to the relation. Tuples are updated by amending their time attri-

butes. The result is a large table that is accessed by matching tuples to specific time, and, as a

result, querying for all the data at a specific time will suffer from such a growth. For example,

present tense data may be queried more often than past tense data. The parts relation,

represented in tuple level versioning, is shown in Table 2.5.

red
blue
white
red

green
...

01 Jan 1980
01 Jan 1980
15 Oct 1981
12 May 1981

14 Oct 1981
...

14 Oct 1981
14 Oct 1981

now
now
now
...

Table 2.5 Pzrts relation represented in tuple versioning method.

If we sort on an attribute, such as NAME or FROM, we could get a different view. Table 2.6

is the result of sorting on NAME attribute from Table 2.5.

SIZE

10
10

20
30
40
...

NAklE

A
A
B
C
D
...

15 Oct 1981

COLOR

red
white

blue
red

green
...

12 May 19811 now
14 Oct 1981 1 now

Table 2.6 Parts sorted on the NAME attribute.

NAME I COLOR I FROM I TO

A red 01 Jan 1980 14 Oct 1981

A I white 1 l iOct l981 / now

12 May 1981

green 14 Oct 1981
...

Table 2.7 Tuple versioning for COLOR attribute of the parts.

logical unit of information into more than one tuple is called the vertical anomaly [GaV85].

The third approach to managing changing information is attribute level versioning.

Attribute versioning requires fields with variable lengths to hold lists of time-stamping

NAME

A
A
B
B
C
D
...

Table 2.8 Tuple versioning for SIZE attribute of the parts.

If another attribute, SIZE, in the parts relation changes differently from the COLOR

attribute, the information should be horizontally split into two tables, one recording the begin-

ning and ending time of the color, and the other recording that of size; the size and color of a

part do not necessarily have the same beginning and ending time. This forced splitting of the

horizontal format of a relation is called the horizontal anomaly. As a result, a logical unit of

information, such as color of part A, is also split into several tuples. The forced splitting of a

SIZE

10
11
20
30
30
40
...

FROM

01 May 1980
02 Jan 1982
01 an 1980
12 May 1980
12 May 1981
14 Oct 1981

...

TO

01 Jan 1982
now

01 May 1980
14 Oct 1981

now
now

...

attribute values. A nested historical relational model is defined where each attribute value is

kept as a < time interval , value > pair so that each attribute can have its own time interval.

As a result, the attribute versioning method expresses the lifespan of a logical unit better than

other constructs. Attribute time stamping also avoids storing unchanged information, which

happens in relational level versioning, and avoids tuples being broken into unmatched ver-

sions within or across tables, which is common in tuple level versioning methods. However,

the attribute versioning method may cause some redundancy when two or more attributes in a

relation change at the same pace, and only one time stamp is needed for these attributes. This

problem can be solved by grouping these attributes of a relation into one compound attribute

in the physical organization to avoid repeatedly storing the same time stamps. However, this

could require more processing time. Another shortcoming is that the whole relation will be

searched when only one time slice is needed. However, if such a relation is well indexed, this

problem can be alleviated.

NAME COLOR SIZE

2.6. The Extended Relational Model for Geographic Spatiotemporal Informa-

tion

cl4Oct8 l,now, D>

Table 2.9 Parts represented in attribute versioning.

<140ct81,now, green> <140ct819now, 40>

We have discussed the extended relational model for atemporal spatial and aspatial tem-

poral information. In this section we study an extended relational model to represent spatial

objects that are changing with time, that is, spatiotemporal information.

To associate temporal characteristics of geographic objects with their spatial features,

we propose an extended relational model that is a combination of abstract data type N F ~ and

attribute level versioning in an object-oriented way. We consider the logical time, which is

when the objects are derived, to be associated with the attributes. First of all, each object has a

unique identity, which is explicitly expressed in a relation from the OID domain. The OID

definition differs from the key definition. That is, objects with the same identity in two or

more different relations of a database are considered as the same object. Secondly, its

corresponding spatial information is represented as an abstract data type. The instances of

attributes from spatial domains such as regions, lines, and points are seen as icons, and in a

graphical window, they can be viewed as geometric objects, which will be described in

Chapter 3 in detail. Thirdly, the temporal information of a spatial object is associated with its

spatial attribute, OID attribute and other attributes separately. These attributes are recorded in

2
NF fashion. As for spatiotemporal information added, since some formal definitions of

nested relational databases have been explored in [RKS88], we will follow their lead and use

this formalism to extend the definitions of our databases.

2.6.1. The Model

Definition 2.1: Let T be a set of time points mapped to the natural numbers, i.e., 0,1,2, ...a in

increasing order. 0 is the relative beginning point. The symbol n denotes the present time

instant and increments as time advances. A time interval t = [i , j] is the temporal primitive

and includes all the possible consecutive time points between i and j , where i , j E T, i 5 j ,

and i is the starting time and j is the ending time.

A time unit is user-defined and can be a second, minute, hour, day, etc. This information

is stored in the database dictionary. For instance, if the year is defined as the time unit and the

database starts recording events from 1930 to the year 1990, then 1930 is mapped to 0 and

1990 is mapped to 60 and T is 0 , 1 ,2 , . . ,60; a time interval [40, SO] conatains the years

between 1970 and 1980.

Definition 2.2: An atom A = < t , v > is the fundamental construct of our model, where t is

a temporal interval and v is a value from an attribute domain. Atom A denotes that the value

v is valid over t . A spatiotemporal atom ST is an atom where v is from the spatial domain.

The key-atom is an atom where v is an OID that is unique throughout a database. An ordi-

nary atom is an atom where v is from other domains.

Definition 23: A database scheme is a collection of relation schemes R ,, R,, . . . , R, of

R, is internal if Rj appears on the right-hand side of some scheme; otherwise it is external.

Rj=(Rjl,Rj, ... , R)isaninternalschemeifR, isinternal. Rj=(Rj1,Rj2 ,R.) i s a
2 J. J.

spatiotemporal scheme if: (1) Rj is external; (2) Rjl is the name of key attribute which is

composed of a < key - atom > set; (3) any Rji, 2 5 i 5 n , forms a spatial attribute (which is

composed of spatiotemporal atoms), ordinary attribute (which is composed of ordinary

atoms), or is an internal scheme. An internal scheme may not have a key attribute. A tuple of

an external relation R, , denoted as (e, , ej2, . . , e), where e is < t , OID >, and for any
1 J. J 1

i , 2 1 i I n , e . is <tl,vl>,~~~,<tk,vk>,suchthatt,ntm =Oandtlutzu~~~ut,=t,foralll
Ji

and m , 1 I I < m I k , represents a history of an object. That is, those atoms of an attribute in

a tuple have disjoint temporal components which are within the time interval of the key atom.

An attribute is a column of a relation which contains a homogeneous set of data of the

same type. If a relation contains all the objects in a map, the spatial history of the map from

the above definition is represented by the spatiotemporal attribute of the relation. Each spa-

tiotemporal atom of an object specifies a spatial description of the corresponding object exist-

ing during a certain time interval that is the temporal component .

We assume an object changes in space consecutively and continuously so that we do not

need disjoint time intervals for one atomic value. As an example of such a scheme consider-

ing the previously discussed map data example, the following table demonstrates our

approach.

BOUNDARY
ID i N'4M.E

REGION

Table 2.10 Extended relational model for the map data.

The instance <0 , 3 , a 1.1 > means city-a had the boundary representation a1 . 1 during

time <0 ,3>. al.1 is a symbolic notation whose spatial expression can be displayed on a

graphical window. An object is unlikely to have two atoms <ti , tj , v > and <tk , t, , v>

where ti and tk are not consecutive. That is, the features of an object may change periodically.

If this situation does occur, for example, city-a has <0 , 3 , a 1.1 > and <20 ,30 , a 1.1 >

instances in its boundary attribute, we could store the two atoms as two instances in time

ascending order, or we could define the time set as a set of disjoint time intervals. In ther

latter case, the atom should be < s , v >, where s is a time set and v is a value.

Time, as captured in temporal databases, is not an isolated concern but rather an insepar-

able feature of operational data. Our database model consolidates the operational and tem-

poral concerns into a single unit. The discrete and finite set of successive relation instances

completely describes the development of the enterprise captured by our data model over the

entire period of time covered by the database. That is to say, our model can capture the com-

pleteness of an object's development in a logical sense.

The atomicity of events provides the level of detail needed for retrospective restructur-

ing of information. In our database, how often to gather the spatial data defines the temporal

density or the so-called granularity. The state of the database, or any object in it, at any point

of time during the period between two successive events, can be inferred from available data-

base states. The most common rule for derivation of such intermittent states is that a recorded

value prevails until being changed by the recording of a subsequent event. Otherwise the una-

vailable information should be explicitly stored as unkown values.

Furthermore, by treating the geographical data as logical objects, the user is provided

with a high level view. The ADT approach for spatial objects relieves users from reading or

manipulating coordinates themselves, and the representation of geometric objects is hidden

from the users. Using this method, the change from vector representation to raster or vice-

versa would not cause the relations to be redefined or application programs to be rewritten,

only the corresponding operations on spatial data would be correspondingly modified.

Another reason to choose the abstract data type is that image data are conducive to visual

representations so that different display facilities may require different operations. Attribute

2 versioning plus NF expresses clearly the time existence intervals for an object and an expli-

cit time span for each of its properties.

2.6.2. The Relational Algebraic Operations

Standard relational algebraic operations can be applied to our extended spatiotemporal

relations with some modifications to deal with issues created by the spatial data types and

temporal components. There are five fundamental operations of the relational algebra: select ,

project , cartesian product , union , and set difference . The first two operations are

unary operations while the other three are binary operations. Two extra operations

spatial join and unary function operations are introduced here for handling relations with

spatial attributes. We will not discuss some operations either concerning only nested struc-

tural relations, such as NEST and UNNEST, which are defined as in [RKS88], or naming,

renaming an object, as well as other operations that do not involve retrieving.

UNION: The union of two relations R and S that have the same scheme definition,

denoted as R u S , is the set of tuples which are in R or S if these tuples have different

key-atoms, or which are combined tuples if a tuple in R and a tuple in S have the same

OID in their key-atoms, but possibly different temporal components in their attributes.

Those combined tuples agreeing on the value parts of atoms are coalesced by taking the

union of the temporal sets from corresponding components of each tuple.

SET DIFFERENCE: The difference between two relations R and S that have the same

scheme definition, denoted as R - S , is the set of tuples which are in R but not in S , or

that are in both R and S but with the reduced time span from corresponding components

of each tuple if they represent the same objects with different temporal components.

PROJECT: Projection is an operation that selects specified attributes from a relation,

denoted as ni j,...A (R) . This is the same as the standard projection operation except

the result is still in nested form instead of a flattened one.

SELECT: The selection operation, denoted by o , identifies the tuples that are defined

in Definition 2.3 to be included in the new relation. This operation consists of condi-

tions which contain operands, arithmetic comparison operators, logical operators, as

well as the spatial, temporal, and spatiotemporal predicates that will be defined in next

chapter. Operands can be spatial data as long as the comparator is compatible with the

operands. A temporal predicate, represented in comparison expressions of temporal

components in attributes, can be either TIME = t , which generates a view of a database

for this or any specific time instance as specified, or TIME = [t , , t2] which describes

the objects existence in a database during the period specified. When a selection is per-

formed with projection on one attribute, the time in temporal predicates is referred to as

the temporal component associated with this attribute. For example, if R is a spatiotem-

poral relation with a spatial attribute ST, which represents spatial data of objects in a

map, the query %, aTm, (R) outputs the values of spatiotemporal atoms in attribute

ST if their temporal components include n . That is, the output is the present view of the

map. If we change the selection predicate of above query from TlME = n to TIME = i

and i is mapped to 1960, then the query generates the map for 1960.

CARTESIAN PRODUCT: The product of two relations is the concatenation of every

tuple of one relation with every tuple of the other one, denoted as R x S . What we are

concerned with is what the meaning of the product should be when both relations have

spatial attributes.

Note that in our spatiotemporal databases, the CARTESIAN PRODUCT has no meaning

when totally unrelated spatial relations for different temporal values are joined together.

Hence, we define the STJOIN operation on spatial relations.

(6) ST JOIN: The spatiotemporal join, denoted as R xf (i, ,)S , where f is a binary spatial

function and T is a temporal component, is applicable only when R and S are spa-

tiotemporal relations which have spatial attributes i and j , and the two spatial attributes

are compatible within the function f . We distinguish the following two cases.

(a) T is given as apair of time instances, (t, , tr);

Let eri ={(<rt , rv > , . . . , < rtk , rvk >)} be the set of spatiotemporal atoms at

colomn i of one tuple of R and es, = !(, <st , sv I> , . - . , a t m , ~ 1 % >)) be the

set of spatiotemporal atoms at colomn j of one tuple of S . Since rtx n rt,, = 0 , for

l < x , y Ik, andx #y,andst, nst, =@,for l I x , y I m , a n d x #y,tocompute

R x f (i jlS we
T '

i) Compute R xS ;

ii) For each tuple of R xS , we generate another column from eri and es, which is

< T , f (% , SV,) >, where t, E rt, , tr E st,, and rv, E eri , sv, E es .

(b) T is absent.

To derive the R x (i, ,)S we

i) Compute R xS ;

ii) For each tuple of RxS, replace R.i and S.j with the set, reixnsej,

{< r t l m t l ,f (rvl ,svl)> , <rt lmtZ ,f (ml , sv2)> , . . .
9

- 29 -

<rt, a t k , f (mk , SV,)>) and remove all the atoms with empty time intervals.

(7) UNARY FUNCTION: The unary function operation of a relation, denoted by F (R),

will generate a relation that is R plus one extra attribute whose values are the results of

the unary spatial function F. R is a spatiotemporal relation that has a spatial attribute at

column i . The attribute should be compatible with the function F . Assume a tuple of R

has the set of spatiotemporal atoms, st = < t l , v l > , . . . , < tk , vk > at column i .

Then the extra attribute of this tuple is defined as < t , , F (v) > , . . . , <tk , F (v,) > .

From the above discussions on the algebraic operations, we now make a final statement:

The set of operations u , - , .n , a , x , xf and F generates valid relations in our database.

That is, the results of the operations are representable in our database. To verify its validity,

we first have to show that it is possible to represent each result relation from the five funda-

mental operations. This is obviously shown by the result tuples and attributes in the relation

construction from the definitions of the operations. Secondly, we need to show that each result

of the spatial join and unary function on spatial attributes forms valid attributes. This follows

if each spatial function used in our database is well defined on the spatial domain. Readers are

referenced to the function definitions in Chapter 3, which accomplish this goal.

CHAPTER 3

STSQL: AN EXTENDED SQL FOR SPATIOTEMPORAL DATABASES

3.1. High Level View of a User Interface

Geographic information is a heterogeneous collection of spatial and non-spatial data

which can be managed in our extended relational database system in an integrated way. Con-

ventional query languages of relational databases, designed for storage, retrieval, and manipu-

lation of alphanumeric data, are hard or impossible to be used directly to express queries con-

cerning spatial or spatially changing information and graphical results. Two examples are

"find the portion of Canada Highway 1 that is enclosed within the boundaries of city Van-

couver", and "iind the coverage area changes of B.C. forests between 1970 and 1980". There-

fore, additional capabilities are required, such as the retrieval of spatial and temporal informa-

tion through specified spatial relationships and descriptions, or temporal primitives in spa-

tiotemporal databases. Interactions with graphical input and display of spatial data are also

required.

Our user interface differs from conventional information systems by various graphical

representations of spatial objects, and the specific interaction between spatial and non-spatial

data. Thus the interface of our spatiotemporal database system is an integration of graphical

and textual representations. Users articulate their instructions through the dedicated interface

to communicate with the system. This interface must include tools and query language for dl

the essential operations. By treating geographic entities as objects, the interface can provide

users high level manipulations of geographic features, relieving a user from manipulating the

complex internal representation of geographic information directly. Geographic objects could

be "highway 9 9 , or "farm A", etc, which have feature attributes.

- - -
I I

, User Interface , ,1
Graphical
Interface U Language I /

Spatial
Operation
Primitives

Spatial
Access

Methods
I

I Aspatial
Access

Methods
I

I Physical Storage I
- - - - - -

Figure 3.1 The System Structure.

There are three major types of interactions that must be integrated into the user inter-

face. The first is the user interaction with graphically displayed results. [EgF88] provides a

good example of the graphical interface design. Next is user lexical conversation with query

. language, and we focus on extending SQL functionalities. The last one is interaction between

query language processor and graphical display facility. Figure 3.1 shows our system architec-

ture. The graphic interface handles visualization like DISPLAY the geographic objects in a

graphic window. The STSQL, an extended SQL, handles alphanumerical information in a

tabular form. These two are built on the top of DBMS kernel.

3.2. Graphic Interface Facility

The development of graphic interfaces is encouraged by the advent of workstation tech-

nology, which provides relatively inexpensive bit-mapped displays and pointing devices.

Interactive-graphic presentation is powerful for mapping systems because the content of maps

can be quickly modified. Objects can be added to, removed from, or modified on an existing

map without the need to start with a new drawing from scratch again. This requires the

graphic interface to provide the tools to manipulate a map. This issue is rather involved with

implementation details, so we will not further discuss it.

3.3. Interaction Between Graphic Interface and Query Language Processor

The approach used to extend the relational DBMS does not alter the relational view of

data. The results are thus naturally expressed in the form of tables. Moreover, the temporal

versions of an object are grouped together for display in a table. A domain is composed of

instances and opearations which may be user-defined. Among the set of opearations applica-

ble to an object, a user can define opearations to display and enter data in a way appropriate to

human understanding.

Graphical results are represented in a tabular form. These can be portrayed as icons. To

display the contents of such a result, the particular icon is pointed to with the help of a mouse.

Clicking a mouse on an icon displays the contents of the data in graphical form. More than

one object or even a complete layer may be displayed and superimposed on the same window.

Figure 3.2 illustrates this possibility.

Figure 3.2 Portry the spatial data to graphical window.

3.4. Extending SQL

There have been some studies on expanding query languages for spatial databases and

temporal databases in literature respectively. A QBE-like language PICQUERY is designed

for PICDMS [JoC88], PSQL is an extension of SQL for pictorial databases [RoF88], and

TQuel is an extension of Quel for temporal databases. However, different database models

require different query languages manipulating databases in different ways. Here we present

our sptiotemporal query language STSQL. The basic specifications of operations in query

language reflect the notions of the data model, and its two generic parts directly correspond to

objects in our database system, namely, the specifications of atemporal spatial and spatiotem-

poral information. The syntactic form we have selected is based on a subset of SQL, with

necessary extensions for the specification of the query's spatial, temporal aspects. The

- 34 -

relational model requires that relations be defined over domains, each of which has one form

of data type or another. STSQL, corresponding to our extended relational model, extends the

definition of relations over spatial and spatiotemporal types of domains defined in a discip

limed way.

The choice of extending SQL as the basic query interface has been influenced by the

increasing acceptance of SQL as the standard interface for relational DBMS because of its

simplicity and easiness for learning. Due to the length, we only discuss the STSQL retrieval

operations. The number of operators depends on each individual domain and an application.

We make no attempt to come up with a universal set of operators. Instead, the database sys-

tem should be flexible enough to allow the users to define additional specialized domain

operators, that is, to provide the DBMS with the extensibility. Such techniques in general

have been discussed in [BLW88, CDR86, CDF86,Gut89]. Specificly, the user defined types

for managing complex objects and their associated methods in an extensible relational DBMS

have been implemented in LISP and C [GCK89].

3.4.1. Temporal Criteria For Data Retrieval

The SQL retrieve statements consist of three basic components: SELECT the target list,

specifying what to derive or calculate, FROM specifying from which relations to select attri-

butes or compute the functions, and a WHERE clause, specifying which tuples participate in

the derivation. To specify temporal conditions, it is more natural to add the WHEN clause

instead of embedding them into WHERE clause. Similarly, DURING, AFTER, BEFORE,

AT, IN and SINCE can be included into the STSQL as temporal constructs. The temporal

information will be helpful to answer questions like "What, when, and where did a change

occur? ".

WHEN is the temporal analogue to SQL WHERE -clause. The clause consists of a tem-

poral conditions and two time variables whose values are attached with attributes concerned.

That is, every instance of an attribute has a starting time stamp and ending time stamp. So that

the attribute value A is associated with a temporal element t = [s , e] (I [0 , n 1) which

gives the life span of the value, denoted as < t , A >, and s and e can be referenced by

A.start_time and A.end-time, respectively. A WHEN -clause may explicitly represent the tem-

poral conditions by specifying the time associated to the specific attributes. Alternately, DUR-

ING, AFTER , BEFORE, AT, SINCE and IN clauses only specify the time itself which is the

time implicitly associated to the attributes occurred in WHERE clause or to the attributes con-

cerned in SELECT statement. During implementation, these temporal clauses should be

transformed to the equivalent WHEN-clauses. A WHEN-clause can also contain ordinary

conditions in the same way as those expressed in a WHERE clause, but it indicates the time

instances or intervals when the conditions are satified. If the time is not mentioned in query, it

implies present tense by default. The temporal function TIME is defined below in order to get

the time when specified conditions are satisfied.

TIME : Returns the time when conditions in WHERE are satisfied.

TIME(x) : Returns the time associated to attribute x .

3.4.2. Spatial Criteria For Data Retrieval

We extend SQL spatial functionalities by adding new operators to operate on the spatial

data types and to explore the spatial relationships embedded in our relations. Retrieval opera-

tions are discussed to show how the operations can be used to answer spatial andlor temporal

questions. To query the database and to retrieve information from it, the SELECT command

is used. To manipulate the spatial attributes, spatial functions are placed in the SELECT com-

mand. The spatial predicates can appear in the WHERE - or WHEN-caluse. We distinguish

functions and predicates, where functions return data sets as results and predicates return

either true or fa lse . Functions are usually called in SELECT clauses and predicates play

roles in conditional clauses. There are four types of functions, namely unary, binary, aggrega-

tion, and high level functions. The aggregate functions, similar to that in standard SQL, return

a single value as a summary of information about a group of rows in a column. These func-

tions and predicates are defined as follows . We use REGION, LINE, POINT, and NUM to

indicate parameters and results of functions are from region, line, point, and numerical attri-

bute domains, respectively. X and Y are used when a function can have more than one type of

parameters or results.

Spatial Functions

(1) Unary Functions:

CENTER(REGI0N) + POINT : The result is the center point of a region object.

AREA(REGI0N) + NUM: The result is the area of a region object.

PERIMETER(REGI0N) + NUM : The result is the perimeter of a region object.

LENGTH(L1NE) + NUM : The result is the length of a line object.

(2) Binary Functions:

If both X and Y are REGIONS, the result is the common part of two region objects.
J

t If both X and Y are LINES, the result is the intersecting points of two line objects.

included in a region object.

UNION(REGION, REGION) -+ REGION: The result is the region which belongs to any of

two region objects.

DIFFERENCE(REGION, REGION) + REGION : The result region is the first region object

subtracting the second region object.

DISTANCE(X,Y) -+ NUM :

If both X and Y are POINTS, the result is the distance between two point objects.

If X is POINT and Y is REGION, the result is the distance between the region center and

the point object.

If X is POINT and Y is LINE, the result is the length of the shortest orthogonal line from a

point to a line object.

If X is REGION and Y is LINE, the distance is measured from the region center to the line

that is defined in the same way as the distance between a point object and a line object men-

tioned above.

Other interpretations are also possible.

(3) Aggregation functions:

MINIMUM(REGI0N) -, REGION : Returns the region object with the minimum area

among a group of rows of one column selected.

MINIMUM(LINE) -+ LlNE : Returns the line object with the minimum length among a

group of rows of one column selected.

MAXIMUM(REGI0N) -, REGION : Returns the region object with the maximun area

among a group of rows of one column selected.

MAXIMUM(LINE) -+ LINE : Returns the line object with the maximun length among a

group of rows of one column selected.

AVERAGEtREGION) + NUM : Returns the average area of a group of region objects

selected.

AVERAGE(LINE) -+ NUM : Returns the average length of a group of line objects selected.

SUM(LINE) + NUM : Returns the sum of lengths of a group of line objects selected.

SUMtAREA) + NUM : Returns the sum of areas of a group of region objects selected.

COUNT(*) + NUM : Returns the number of values of a group of rows in one column

selected.

NEAREST(P0INT) + POINT : Returns the point object which is the nearest to the point

among a group of objects selected.

FURTHEST(POIN7') + POINT : Returns the point object which is the furthest to the point

among a group of objects selected.

(4) High Level Functions:

MOVING-DIR(X) + SOUTH, SOUTHEAST, etc : Returns the direction object X moved

during the time period or the time instance specified in WHEN -clause.

MOVING-SPEED(X) + NUM : Returns the division of a distance and a time period, where

the distance is that object X shifted during the time period specified in WHEN -clause. If X is

REGION, then the center of a region is concerned.

CHANGING - RATE(REGI0N) -+ NUM : Returns the area changing ratio of a region object

during the time period specified in WHEN -clause.

INCREASED(REGI0N) -+ REGION : Returns the increased portion of a region object dur-

ing the time period specified in WHEN -clause.

REDUCED(REGI0N) + REGION : Returns the reduced portion of a region object during

the time period specified in WHEN -clause.

CHANGED(REGI0N) -, REGION : Returns the changed portion of a region object during

the time period specified in WHEN -clause. This portion can be the increased or reduced part.

Spatial Predicates

(1) Simple Spatial Predicates:

REGION INTERSECTS REGION : Returns TRUE if one region object overlaps with another

region object; otherwise FALSE.

REGION IS-COVERED-BY REGION : Returns TRUE if the first region is completely con-

tained in the other region; otherwise FALSE.

REGION NOT - COVERED-BY REGION : Returns TRUE if the first region is not contained

in the other region; otherwise FALSE.

REGION IS-NEIGHBOR-OF REGION : Returns TRUE if two regions have some common

boundary; otherwise FALSE.

LINE INTERSECTS LINE : Returns TRUE if one line intersects the other line; otherwise

FALSE. z

POINT IS-NORTH-OF POINT : Returns TRUE if the first point is located to the north of

another point; otherwise FALSE.

IS-SOUTH - OF, IS - EAST - OF, ... : Similarly defined as above.

POINT WITHIN REGION : Returns TRUE if the point is within the region.

POINT NOT - WITHIN REGION : Returns TRUE if the point is not within the region.

LINE INTERSECTS REGION : Returns TRUE if the line intersects the region.

POINT INTERSECTS LINE : Returns TRUE if the point is on the line.

(2) High Level Predicates:

IS-MOVED(X) + BOOL : Returns TRUE if the center of an object is moved or FALSE oth-

erwise during the time period specified in WHEN -clause.

IS-INCREASED(REGI0N) 4 BOOL : Returns TRUE if the area of an object is increased or

FALSE otherwise during the time period specified in WHEN -clause.

IS - REDUCED(REGI0N) + BOOL : Returns TRUE if the area of an object is reduced or

FALSE otherwise during the time period specified in WHEN -clause.

IS-CHANGED(X) + BOOL : Returns TRUE if the shape of an object is changed or FALSE

otherwise during the time period specified in WHEN -clause.

3.4.3. Sample Queries in STSQL For Data Retrieval

3.4.3.1. Sample Schema

In geography, a land informatioh database may consist of several layers. Each layer is

composed of a sequence of maps derived at different time. A land use map, which classifies

areas according to forestry, urban area, wet land, agriculture, and so on, can be represented by

a relation landuse. We may represent provinces of Canada in one relation, called province,

which divides a space into subspaces (provinces) according to municipality. Another relation

city contains the information about cities' locations, and populations, etc. Some other impor-

. tant geographic entities are highways, railways, lakes, rivers, and farmlands. Some of these

entities will be wholly contained in a province and others will cross its boundary. As an

, example, we assume the following relational schemes exist in our database.

There are three types of queries as far as spatiotemporal information is concerned. One

is to get the time when spatial or other conditions are satisfied. The second one is to get spatial

or other information at a specific time instance or during a period. The last one is mixed of the

above two kinds of queries. We use the following examples to explain how temporal and spa-

tiotemporal information is retrieved and how those spatiotemporal functions and predicates

are used one by one.

3.4.3.2. Spatial Query Examples

In this section, we use the following examples to demonstrate how spatial information

should be queried.

(1) Find the area and perimeter of a given region, say, B.C. province.

SELECT AREA(region), PERIMETER(regi0n)
FROM province
WHERE province.name = "B.C. "

The above query is an example of using unary functions.

(2) Find the cities within Alberta.

SELECT C.name
FROM city C , province
WHERE province.name = "Alberta"

AND cityxenter IS - 1NSIDEprovince.region

Some queries can be retrieved directly from an attribute search , others need first search

and then compute. The user himself may decide'to choose a direct attribute searching or

computing, or leave the problem to the system semantic optimizer. For example, when

a query is to find the area of a province, if there is an area attribute in province relation,

the user should retrieve this attribute instead of calling AREA function to compute the

area. Similarly, in the above example 3, since there is an attribute inqrovince in rela-

tion city, the query "find the cities in Alberta province" can be written in the following

way.

SELECT name
FROM city
WHERE city.ingrovince = "Alberta"

(3) What is the total area of regions with 'clay' soil type and the regions are forest?

SELECT SUM(INTERSECTION(S.region , L.region))
FROM soii S , landuse L
WHERE ,$.type = "clay"
AND L.usage = 'Iforest"

In this example, both soil and landuse relations have an area attribute. However, the

information is useless here since we need to generate new regions that satisfy the two

conditions, that is, the soil type should be 'clay' and this land is also forest. Such areas

are summed up by nesting the INTERSECTION in the SUM function.

(4) Find the highways which intersect with highway 55.

SELECT G.name, G.course
FROM highway H , highway G
WHERE H.name = "hwy-55"
AND Hxourse INTERSECTS Gxourse

This example shows how the predicate INTERSECTS is used for detecting one line seg-

ment intersecting another.

(5) Find the lakes one part of which is in B.C. and the other is in Alberta.

SELECT L.name, L.region
FROM lake L, province P
WHERE P.name = "Alberta"
AND L.region INTERSECTS P.region
AND L.region INTERSECTS

SELECT region
FROM province
WHERE name = "B.C."

The predicate INTERSECTS in this example is used for detecting the overlapping of two

regions.

(6) Find the lakes within B.C. province.

SELECT lake.name, 1ake.region
FROM lake , province
WHERE province.name = "B.C. "
AND 1ake.region IS-COVERED-BY province.region

This example shows that to detect one region within another, the spatial predicate

IS-COVERED-BY can be used.

(7) Find the land whose distance to a highway with good condition is less than 500 meters.

SELECT S.id, S.region, Hxourse, DISTANCE (S.region , H.course)
FROM soil S, highways H
WHERE Hxondition = ''GOOD"
AND DISTANCE(S.region , Hxourse) < 500

The function DISTANCE appears in SELECT and WHERE clauses. The result of the

function can be treated as the simple value which may be compared with other values if

the function is used in WHERE statement.

(8) Find the distance between Calgary and Vancouver.

SELECT S.name , T.name , DISTANCE(S.center, T.center)
FROM city S, city T
WHERE S.name = "Calgary
AND T.cname = "Vancouver"

The function DISTANCE is for calculating the distance between two points which are

from two tuples of one relation. There are no temporal clauses in the above queries, that

is, only the present information is concerned. For example, in the last query, the spatial

join is on the relation S and T which are the aliases of relation city. The function DIS-

TANCE takes the the center attribute of the relations S and T , where one is the center of

Calgary and the other is that of Vancouver, and output the distance of the centers with

present time stamps. A binary function generates a new attribute, such as DISTANCE

generates an attribute whose values are from numerical domain, and INTERSECTION

generates a spatial attribute when two relations are joined together. Notice that in the

queries, no functions appeared in SELECT statement and only some spatial predicates

are involved in WHERE clause. In such a situation, spatial join is performed in a similar

way as if a spatial function is involved and the only difference is that the result of a spa-

tial calculation will not be output and is only used as a condition checking.

3.4.3.3. Temporal Query Examples

Temporal information can be used as a condition such as in a WHEN statement. This

condition can be a specific time instance or a time interval. Time as a value can also be

extracted from our databases while certain conditions are satisfied. Such examples are as fol-

lows.

(1) What was the population of Burnaby in 1970?

SELECTpopulation
FROM city
WHERE city.name = "Burnaby"
IN I970

(2) Print present population of each city in B.C. province.

S E L E T name, population
FROM city

WHERE city.inqrovince = "B.CV
AT PRESENT

where the AT PRESENT is optional.

The above two examples are simple temporal queries which only concern a particular time

instance and no spatial information is required.

(3) How many highways were built between 1970 and 1980?

SELECT COUNT(id)
FROM highway
DURING 1970 ,1980

(4) How many species were in forest A before 1960?

SELECT COUNT(species)
FROM forest
WHERE forest.name = "A"
BEFORE 1960

The above two examples are temporal range queries which concern the objects that

existed within a period of time.

(5) Find all the cities which are located to the north of Calgary and has existed for less than

80 years.

SELECT S.name
FROM city S , city T
WHERE T.name = "Calgary"
AND ¢er IS-NORTH-OF Txenter

MINUS
SELECT S.name
FROM city S, city T
WHERE T.name = "Calgary"
AND S.center IS-NORTH-OF T.center

IN 1910

In the above example, we first select all the cities which are in the further north than Cal-

gary. The second step is to derive the cities existed at least for 80 years in the subquery.

The last step is to subtract the subquery result in the second step from the result from the

first step.

(6) When did the area of forest A become less than that of forest B?

SELECT TIME
FROM forest F , forest E
WHERE F.name = "A"
AND E.name = "B"

WHEN AREA(F.region) < AREA(E.region)

The WHEN -clause in this query is to extract the time at which forest A became smaller

in area than forest B. This is still refered to as temporal query with a spatial condition.

3.4.3.4. Spatiotemporal Query Examples

In this section, the queries with spatial and temporal information are discussed.

(1) What did the lake L look like 100 years ago?

SELECT name , region
FROM lake
WHERE 1ake.name = "L"
IN 1890

This query is a simple spatiotemporal query which is to display the spatial data at a

specified time instance.

(2) Show the region of Vancouver when its population exceeded 10,000.

SELECT city.name , city.region
FROM city
WHERE city.name = "Vancouver"
WHEN citygopulation > 10,000

Notice in the above query that a condition is expressed in WHEN clause which is dif-

ferent from putting the same expresion in the WHERE clause. After the selection of the

tuple whose name is Vancouver from the relation city, the WHEN statement extracts

the temporal part of the first atom in the population attribute where the value of the

population is greater than 10,000. Within the tuple, we then select an atom from the

region

attribute whose temporal part includes the time point extracted. If we remove the

WHEN clause and put the condition in the WHERE clause, the TIME will be present

time and the present version of the region will be the output.

(3) What is the area of agricultural land in the south-east of the city Calgary that has not

been under cultivation at least for two years?"

SELECT soil.id, soil. region, AREA (soilxegion)
FROM soil, city
WHERE city.name = "Calgary"
AND soil.type # "crop"
AND soil.region IS - SOUTHEAST - OF city.center

SINCE 1988

or substitute SINCE clause with WHEN clause

WHEN soil. type.start-time > = 1988
AND soil.type.end-time = present

(4) Determine all forestry regions in province B.C. converted to agriculture use during

SELECT 1anduse.id
FROM landuse, province
IN 1970
WHERE landusemage = 'Iforest"
AND province.name = "B.C."
AND 1anduse.region IS-COVERED-BY province.region
AND landuse.id
EXISTS SELECT id

FROM landuse
WHERE 1anduse.usage = "crop"
IN 1980

This query requires attribute search. In the land use map, we first find those lands whose

usage attributes have value as forest in 1970 and value as crop in 1980. The query can

only return those objects which have undergone attribute changes from one to another,

- 48 -

but not including those objects which were partially converted to crop. That is, these

forests were reduced in size. In order to detect the partial convertions from forest to

crop, we have the following STSQL statements.

SELECT CHANGED(landuse.region)
FROM landuse
DURING 1970 ,1980
WHERE 1anduse.id
EXISTS SELECT 1anduse.id

FROM landuse , province
IN 1970
WHERE 1anduse.usage = '[forest"
AND province.name = "B.C."
AND 1anduse.region IS-COVERED-BY province.region
AND 1anduse.region

INTERSECTS
SELECT 1anduse.region
FROM landuse
WHERE 1anduse.usage = "crop"
IN 1980

The above statements are still not sufficient to answer the partial conversion query since

a forest may change its covering area and some parts may be changed to crop and some

to others although it overlaps with a crop region. In order to give the exact area of

convertion, we have to fbd the region of a forest in 1970 which overlaps with the region

of a crop in 1980. The intersection of the 1979 version of the forest area and 1980 ver-

sion of the crop area is the actual area which is converted from forest use to agriculture

use. The following is the correct answer.

SELECT INTERSECTION(L.region , M.region)
FROM landuse L , landuse M, province
WHERE L.usage = 'Iforest"
AND M.usage = "crop"
AND province.name = "B.C. "
AND Lxegion FBIS-COVERED-BYprovince.region

DURING 1970 ,1980

(5) Determine Vancouver urban area growth rate during 1970s."

SELECT CHANGING - RATE (region)
FROM city
WHERE city.name = "Vancouver"
AND IS-INCREASED (cityxegion)

DURING 1970 ,1979

(6) How much has the Vancouver urban area been increased during 1970s.

SELECT INCREASED (region)
FROM city
WHERE city.name = "Vancouver"
DURING 1970,1979

This question can also be queried in the following way if we do not use the spatiotem-

poral function. Notice that the C.area intends to be the area in 1970 and B.area means

the area in 1979.

SELECT DIFFERECE (C.region, B.region)
FROM city C city B
WHERE C.name = "Vancouver"
AND B.name = "Vancouver"

WHEN C.area.start-time 5 1970
AND C.area.end-time 2 1970
AND B.area.start-time 5 1979
AND C.area.end-time 2 1979

The above four examples are spatiotemporal range queries. In these queries, when a time

range is given, we can use the functions either to detect the spatial changes or to check

the existence of some spatial features.

The default options in retrieval operations are defined such that a query that omits the

. spatial or temporal portion retains the standard meaning of the corresponding SQL SELECT

i . operation. To summarize, the STSQL format is laid out in the Appendix. The syntax is
€. 6

I presented in Backus Normal Form.

3.5. Implementation of STSQL Functions

We have proposed the spatial functions and predicates which take parameters from spa-

tial domains and output spatial data, numerical values, or other values correspondingly. Tem-

poral information is used in temporal clauses as conditonal statements to decide which ver-

sion of a spatial representation to participate in an operation and what temporal component to

be attached to the result atom value. In our extended relational database, a column of a rela-

tion contains a homogeneous set of data of the same type. Spatial functions are applied to spa-

tial columns and the results are generated as new columns. Once spatial data in such a column

is selected as a spatial function parameter, what has been left is to use geometric algorithms to

efficiently compute the function.

Unary and binary functions require calculations geometrically, such as AREA,

CENTER, and INTERSECTION, which require calculating an area, finding a center point, and

generating an intersection portion by a given representation, respectively. For example, a sim-

ple polygon can be divided into several triangles and the area of the polygon is the sum of

each triangle's area. This can be done in linear time once the triangles have been created. If a

region is represented in a quadtree-based raster method (see Chapter 4.7.1), AREA is derived

by accumulating the areas of related leaf nodes. If 3-D data is involved, function VOLUME

should be efficiently processed. These issues are studied in computational geometry [CoH79].

The spatial aggregation functions are nothing more than searching the spatial data and

recording either the maximun, minimun, or other values to do comparisons or calculations.

But the implementation of spatial aggregate functions is time consuming since it may need to

search an entire map. In some cases, we wish to avoid exhaustive search of the whole plane,

i.e., the spatial attribute of a relation or even the whole database, thus searching strategies are

necessary. As an example, to compute the aggregation function NEAREST, we first locate

where the target object p is , and make a circle as small as possible such that its center is p

and it encloses a few points, so that the search space is narrowed down to a smaller region.

As for the high level functions, we could decompose them into several unary, binary

functions and other primitive operations. These operations then can be solved one by one. For

example, the function CHANGE-RATE (a) can be derived in the following steps. Firstly from

the temporal clause we decide the two time points t, and t,. The second step is to call

DIFFERENCE function to derive a new region which is the difference between two versions

of area a at the two time points. The third step is to call funtion AREA to calculate the area of

the derived region. The last step is the division of two numbers, areal (t, - t,). Spatial predi-

cates can be processed in a similar way as spatial functions except returning boolean values.

An alternative of deriving the same result could be making some modifications in the second

and third steps of the above procedure. Do the calculation of the areas of the two versions of

spatial objects concerned in the second step. Then in the third step we get the difference

between these two areas. This could sometimes mean a potentially efficient solution, since we

may have already stored a attribute area in the original relation, thus avoid the need of gen-

erating the new relation which represents the difference of the two spatial objects at these two

time instances.

Another operation, overlay, which is commonly required in geographic applications, can

. be performed by a spatial join with the INTERSECTION function on two spatial relations.

Each relation contains spatial objects whose spatial data in the REGION attribute forms a

thematic map. The "overlay" concept is that the real world is portrayed by a series of layers in

each of which one aspect of reality has been recorded (e.g., topography, soil type, roads, and

- 52 -

rivers, etc). The result of the operation is a new relation that is composed of new spatial

objects which partition the plane into disjoint regions. Each resulting region is the intersected

portion of two spatial objects in the two thematic maps, respectively.

In spatial databases the calculation of functions harmonizes with the data structures and

geometric algorithms, but more important issues for database researchers are the searching

efficiency and the storage efficiency which are to be discussed in Chapter 4.

CHAPTER 4

PHYSICAL ORGANIZATION OF SPATIOTEMPORAL DATA

4.1. Mapping Relations to Files

A database relation at the physical level may be viewed as a collection of records. The

DBMS performance depends on the efficiency of the data structures used to store the records

in the database and on how efficiently the system is able to operate on these data structures.

As is the case elsewhere in computer systems, a tradeoff must be made not only between

space and time, but also between the efficiency of one kind of operation versus that of another.

There are alternative methods of mapping a relation to a file [KoS86]. The simple

approach is to store each relation in a separate file. Thus the database system may take full

advantage of the file system functionalities provided as a part of the operating system. It is

usually the case that tuples of a relation can be represented as fixed-length records, that is,

relations are in the first normal form. However, in our extended relational database model, we

have introduced the spatial attributes which usually have variable length of data and their time

varying versions are organized in the non-first-normal form. Obviously, the fixed-length

method and the one-file-per-relation method are not directly applicable to our system. In

another approach, a database system does not rely directly on the underlying operating system

for file management. Instead, one large operating system file is allocated to the database sys-

tem. All relations are stored in this single file, and the management of the file is left to the

database system.

Data in databases are transferred between disk storage and main memory in units of a

block. Since a spatial object may need more than one block to represent its spatial features,

pointers are used to trace the spatial data when a relation is stored on the tuple-by-tuple basis

such that the relation can be organized in a traditional way or in the partial normalized storage

model for aspatial nested relations discussed in [Ha0881 as if spatial information is not intro-

duced. That is, the spatial attribute should be stored separately from other aspatial attributes as

shown in Figure 4.1. In this chapter we study how the separately stored spatial data can be

structured.

Spatial Data
I I

record 0

record 1

record 2

record 3
record 4

record 5

record 6

Figure 4.1 A file structure.

Access methods for secondary storage which allow efficient manipulations of a large

volume of records are an essential part of a database management system. Traditionally, a

relational database is indexed and searched according to its primary key or multi-keys. B -

trees of one kind or another are the most common index structures for alphanumerical data

. which can be sorted in a certain one-dimensional order [BaM72]. We can still use these

methods to index aspatial attributes in our extended relational databases as before.

However, spatial search according to an object's position is often required in spatial

databases, and the classical database storage structures are not appropriate or sufficient for this

purpose. Therefore, new indexing mechanisms should be incorporated in order to explore the

spatial neighborhood of objects and to answer spatial queries efficiently. In this chapter, we

introduce an efficient data structure and indexing methods specific for the separately stored

spatial attribute.

4.2. Spatial Index Methods

There have been many spatial access methods developed for the efficient storage and

accessing of spatial objects. Most of the methods represent spatial objects by a large set of

small rectangles which are stored in a hierarchical data structures [Sam88]. The minimum

bounding rectangle (MBR) of an object, with its edges parallel with the axes of the data space,

usually serves as a simple geometric key for region object indexes in the spatial databases.

An important property of this approximation is that a complex object is abstracted by a lim-

ited number of bytes in the same way as the data space and its subspaces may be represented.

If arbitrary bounding polygons are used [Jaggo], the overlapped and redundant space could be

reduced by increasing the storage space to record the divisions (bounding polygons) them-

selves in the index. However, some objects like highways, rivers which are represented in

long line segments are very likely to be running parallel with the diagonals, such that

corridor-like bounding polygons'which may not be parallell with the axes are necessary in

order to narrow the search space down to a smaller sub-space.

Spatial index methods can be summarized into the following four categories according

to the principles which guide the decompositions. The first category is the quad-tree based

regular recursive decomposition of space, which divides a region into equal-sized quadrants

and a sub-region can be further divided into four parts till some condition is satisfied [Sam84].

The second category is the bucket methods or grid files, which include one- and multi-layered

grid file structures [SiW88] and the LSD tree [HSW89]. The R -tree [Gut841 and its modified

version, R+-tree [SRF87], belong to the third category. Both of the first two categories parti-

tion all of the space, while the third one considers only the space that contains objects. The

R -tree structure may contain overlapped sub-spaces while the R+-tree resolves overlaps by

increasing the height of the tree. These trees are natural extensions of B -trees for N-

dimensional object indexes. The performances of the R+-tree and the R -tree are analyzed in

[FSR87] under the assumption of the line segments being uniformly distributed. Finally, the

fourth category includes the transformation schemes that represent the MBR s as higher

dimensional points which can then be organized by traditional accessing methods. For

instance, a two dimensional rectangle is represented in a four dimensional point

(U , V , W , Z) where U, V and W, Z are X and Y axes' minimum values and maximum

values respectively. However, since the neighboring objects are usually not closely stored in

such a structure, only a small group of queries which require the exact MBR searchings can be

handled efficiently. It is also impossible to be used for arbitrary bounding polygon represen-

tations since it requires variable dimensional points.

4.3. Extending the Spatial Indexes for Spatiotemporal Data

In our discussion of spatiotemporal databases for geographic information, we assume

that the spatial objects are in non-rectangular shapes. Therefore, we distinguish the abbrevia-

tion in index structure from the object data representation. We also assume that a sequence of

images are stored in the database, each having a unique time stamp t i , i = 0,1, ..., n . For

example, in Figure 4.2 and Figure 4.3, the spatial objects are represented as 0 0 2 , and 0 1',

etc, and the same object 0, has two representations at two different time to and t which are

0, and O;, respectively. The two representations, though differ in shape and/or position,

denote the same spatial object.

Figure 4.2. The image at time t,.

!

Figure 4.3. The image at time t

To store a sequence of images with incremental time stamps, a simple method is to con-

struct one separate spatial index structure for each image using the previously developed

indexing techniques, such as the widely used R -tree and then associate with each image some

temporal information. For example, we can construct a sequence of dense R -trees with their

roots stored in a sequential array in ascending time order or indexed in a tree structure. There-

fore, search in such a database corresponds to spatial data accessing with different time

stamps. However, in most cases, the background information remains stable between succes-

sive images, that is, there are only very few changes on the object locations and shapes. In

such cases, instead of storing each complete image independently, data sharing should be

explored for data storage and indexing.

4.3.1. Typical queries and searching primitives

We confine our discussion of query processing to temporal-relevant spatial queries

because other kinds of queries can be processed by certain kinds of aspatial attribute searches.

For example, to examine the geometric history of an object, the search is directed according to

the object ID or its symbolic name which is usually indexed with the popualr R -tree tech-

nique. Thus its temporal/spatial data can be found without searching through spatial index

trees.

Our discussion focuses on the following two kinds of search primitives:

(1) search for the objects within a rectangle R at time ti ; and

(2) search for the objects within a rectangle R from ti to ti.

Although there could be other kinds of search primitives, the above two primitives

represent typical ones involving both spatial and temporal searches. Many other spatio-

temporal primitives can be derived from them by changing the search conditions, such as,

substituting "overlapping" for "within" or "after tiw for "jrom ti to t,".

4.3.2. Multiple R-trees

The first improvement of indexing for the additional dimension time based on spatial

access methods is a multiple R -tree structure, MR -tree. An MR -tree is a sequence of R -trees

in which the first image at to is stored in an R -tree, the image at ti is constructed based on the

R -tree of ti-, by sharing their common subtrees.

Definition 4.1 Let I = (i,, i ,, ..., in) denote an image sequence derived at time to, t ,, ..., t, ,
respectively, in our spatiotemporal database. An MR -tree is a collection of trees R,, R ,, ... ,
Rn , where Ro is an R -tree which is used to index the image i,, and R, , 1 l j I n , is con-
structed from Rj-, by the Algorithm 4.1 to index ij .

To facilitate the processing of queries involving a sequence of images, an MR -tree can

be constructed. Assume an R -tree is of the order M , that is, each node has at least M 12 and at

most M entries which are of the form (S , P), where S is a rectangle that covers all the rectan-

gles of its descendents. The MBR s of the physical spatial objects are stored in the leaves of

the tree. 'The first index tree Ro is constructed using the typical R -tree insertion algorithm

[Gut84]. Ri is constructed from Ri-, by rearranging only those objects at ti which are dif-

ferent from those at ti-l. That is, a sub-tree of Ri can be shared with that of Ri-l if both cover

the same set of (unchanged) objects. However, when there are changes for certain objects,

these leaf nodes and their corresponding ancestor nonleaf nodes must be updated accordingly.

Some entries will be deleted and others inserted. The sketch of the algorithm is listed below.

We use E.S and E.P to refer to the spatial coverage of an entry E , and the pointer to its child

node, respectively.

Algorithm 4.1 Constructing tree Rk from tree Rk-,

Input : a copy of tree Rk-l;
DELET[] contains a list of entries which are in the ik-l but not in i,;
LIST[] contains a list of entries which are only in i,.

Output : tree Rk containing all the entries in LIST[].

BEGIN
FOR each entry E in DELET DO
BEGIN

Find the leaf node which E belongs;
Mark all the nodes on this path dirty;
Remove E from the leaf;
IF the leaf has less than M12 entries THEN mark it underflow

END
FOR each entry E in LIST DO
BEGIN

current := root;
WHILE current is not a leaf DO
BEGIN

IF an entry A in current whose rectangle covers E.S THEN
current := A.P;

ELSE
BEGIN

Choose an entry A from current such that A.S needs
least enlargement to cover E.S comparing other entries

current := A.P;
END

Mark current dirty;
END
IF current has space THEN I* reached a leaf *I

insert E ;
ELSE
BEGIN

Put E and current to STACK ;
Mark current overflow

END
END
Change those pointers pointing to undirty nodes to corresponding nodes in Ri-l;
Remove all the undirty nodes;
Check underflow nodes and overflow nodes;
Reorganize the tree to balance such that each node has at least M/2 entries and

at most M entries with the principle of marking as less nodes dirty as possible;
END

In the above algorithm, the rebalance of the tree is delayed until all the deletions and

insertions have been completed for the new image. The reorganization of the current tree is

on the local nodes, that is, the nodes are marked dirty during construction, and other nodes

which are shared by the previous tree should not be changed.

Theorem 4.1 If each image i,, j 10, contains k objects, tree Rj+, can be constructed from

the balanced tree R, using Algorithm 4.1 in O(k log k) steps and R,+, is a balanced tree.

Proof Sketch:

Let D and A be the numbers of entries to be deleted and inserted, respectively. D

includes only the objects in R, but not in Rj+l and the objects whose shapes are changed from

R, to R,+,, A includes only the objects in R,+, but not in R, and the objects whose shapes are

changed from R, to Rj+l, and k is the total number of objects in each picture, so that

A + D I 2k. Because R , is a balanced tree with k entries in its leaves, if we can prove that R ,
can be constructed from R, in time O(k logk) and R, is a balanced tree, the rest is also

proved. Let h be the height of R ,, which is in the order of O(log, k). The first part of Algo-

rithm 4.1 is to remove D entries from the copy of R,, and removing each entry requires

searching from the root to a leaf node and deleting the entry from the leaf. Thus D x h is the

total steps for the first part, that is, O(D log, k). The second part is to insert A entries in the

tree. Each insertion will start from the root and then go to a leaf node which costs h steps. The

total steps for the second part is A x h , that is, O(A log,k). The third part can be done by

traversing the tree in the breadth first fashion to make the undirty path to be shared with Ro.

At leaf level, since i , also contains k objects, the overflow and underilow nodes can be rear-

ranged within themselves, such that the resulted tree R , still keeps the same structure as R o.

Because R o is a balanced tree, therefor, so is R The total steps for the third part is in

O(klm). Therefore, the time complexity is the sum of the three parts, that is,

((A +D) log, k + k) I (2k log, k) which is in the order of O(k logk).

Corollary 4.1 The time complexity of constructing the MR -tree to index an image sequence I

using Algorithm 4.1 is O(n x k log k) .

Proof Sketch:

From Theorem 4.1 we know each image can be constructed using Algorithm 4.1 in

O(k log k) steps. Totally, there are n such images, therefore, the MR-tree construction

requires O(n x k log k) steps.

Theorem 4.2 Given a balanced MR -tree, if each ij contains k objects, the time complexity of

retrieving an object by its MBR and tj is at least O(log k) .

Proof Sketch:

To search through the MR -tree, we first locate the root of Rj which indexes ij . If a hash

table is used, the root can be found in one step. Secondly we start from the root to check each

entry in a node whether it overlaps with the MBR and contains tj . For each overlapping entry,

the search is going further to its child node and on until it reaches a leaf. If the object is

indexed by the MR -tree, at least one path will exist from the root to a leaf, and its length is in

O(log, k) . Therefore, the conclusion holds.

Figure 4.4. The corresponding MR -tree for Figure 4.2 and Figure 4.3.

For example, Figure 4.2 and Figure 4.3 show the images at t o and t l , respectively.

Notice that the only difference between the two images is the change in the size of the object

0, (from 0 , to 0 0. Figure 4.4 illustrates the MR -tree for R and R ,. Furthermore, if a new

object emerges near 0 4, or S20 increases, the corresponding tree will have very minor changes

since the leaf node containing S,,' still has room for it.

Figure 4.5. The image at time t , in the worst case.

We examine two extreme cases. First, if two images are exactly the same at time t i- ,

and t i , no new node is created and the same tree is assigned to both Ri-, and Ri . Secondly,

even if there is only one out of M entries changed in each leaf node, none of the leaves and

their ancestors can be shared and Ri must be a completely new tree. One such example is

shown in Figure 4.5, in which, comparing with Figure 4.2,O becomes 0 and is covered by

S7 instead of S , , 0 , is shifted to 0 2' and stored in a different subtree, and 0, is changed in

size and becomes 0 ,'. Figure 4.6 shows the two trees, in which R does not share any node

with R o.

Although it is possible to reorganize the previously established trees to make more por-

tions shared among different images in the MR -tree, it is in general an NP-complete problem

to achieve the maximum memory utilization [Nis88]. Thus we will not further address this

issue here.

Figure 4.6. The corresponding MR -tree for Figure 4.2 and Figure 4.5.

4.3.3. The RT-Tree Index Structure

The cases discussed above can be handled more efficiently using another tree index

structure, i.e. RT-tree. An RT-tree couples time intervals with the spatial ranges in each node

of the tree so that only one index tree is maintained as opposed to the n index trees main-

tained by the MR -tree technique [Xu90]. It is also more natural using an RT-tree to reorgan-

ize index of the spatiotemporal attributes defined in our model when the data has already been

2
represented as the basic spatiotemporal atoms in NF .

4.3.3.1. Definition of the RT-tree

An RT -tree is an improved R -tree. An RT-tree of the order M is a height-balanced tree

with the index records in its leaf nodes containing entries (S , T, P), where P (pointer) points

to the physical object, T represents time interval from time ti to ti when the object is at S ,

and S is the MBR of the object. All the leaf nodes are chained together to facilitate the

sequential search. Each entry of a nonleaf node has the same format, (S , T, P), however, P

points to a subtree whose leaves have records (Si , Ti, Pi), such that each Si is covered by S .

Such Si 's may be overlapped among different images. Figure 4.7 shows the image which is

the overlap of the images of the Figure 4.2 and Figure 4.5.

Figure 4.7. The overlap of the images shown in Figure 4.2 and Figure 4.5.

Definition 4.2 Let h10 be an integer, and m be a natural number, M=2m. An RT-tree
satisfies the following conditions.

(1) Each path from the root to any leaf has the same length h ; thus h is the height of the
tree;

(2) Each node except the root and the leaves has at least m index record entries which point
to its child nodes. The root is a leaf or has at least two entries;

(3) Each node has at most M entries;

(4) Non-leaf nodes contain index record entries of the form (S , T , P) where T is [ti, tj I, a
time range, which means from time ti to tj, and S is a rectangle which covers all the

rectangles of the entries in the lower node pointed by P ;

(5) Leaf nodes contain index record entries of the form (S , T , P) where T is the same as
above, S is an MBR of an object, and P points to the spatial data of the object. Each leaf
node has two extra entries which are used to chain its left neighboring node and right
neighboring node in order to perform the sequential searches.

4.3.3.2. Construction of the RT-tree

Initially, an RT -tree is built in a way similar to the construction of an R -tree for the first

image R,. At time ti when a new image Ri comes, it initiates a sequence of insertion opera-

tions. The insertion of a record (MBR, , ti , P) is performed as follows. First, it searches the

leaf node to check whether there is an entry with the same MBR and the same data. If there is

one, expand the time intervals of this entry; otherwise, check whether the current leaf node

has free space for new entries. If it is full, it is split into two and the split process may pro-

pagate up to the root.

Algorithm 4.2 Insert An Entry Into An RT -tree

Input: An RT -tree with the root R and an entry E (MBR, , ti, P) to be inserted.

Output: A balanced RT-tree with the root in R which contains the information about
(MBR,, ti, P) in a leaf node.

BEGIN
SW := MBR,, TW := [ti , ti]
LEAF-NODE = FIND-LEAF (R, SW, TW) ;
IF an entry E in LEAF-NODE conatains MBRA THEN
I* this means the object may not change its shape from last image to the current one *I
BEGIN

Expand E.T to E.T' which includes ti ;
lU3-m (R) ;

END
ELSE IF LEAF'-NODE has less than M entries THEN /* the leaf node is not full *I
BEGIN

Place the entry (SW , TW , P) in LEAF-NODE ;
RITI'uRN (R) ;

END /* insert an entry into a unfull leaf */
ELSE I* LEAF - NODE is full, has M entries */

BEGIN
Get a new node NEW-NODE ;
Place the entry (SW , TW , P) into NEW-NODE ;
Split LEAF-NODE into two parts and put one part in NEW-NODE ;
P this split should ensure both covering rectangles minimized,

LEAF-NODE and NEW-NODE have M/2 and M/2 +1 entries respectively. */
Set LEAF-NODE .S , LEAF-NODE .T , NEW-NODE .S , N O D E .T ;
/* covering rectangles and time range */
Get the father node F-NODE of LEAF-NODE ;

WHILE F-NODE is not the root R DO
BEGIN

IF F-NODE has less than M entries THEN
BEGIN

Place the entry NEW-NODE in F-NODE ;
lU3TURN (R) ;

END
ELSE /* F-NODE is full *I

E := NEW-NODE ; MID-NODE := FE:=NEW_NODE;MID_NODE:=F_NODE;NODE ;
Get a new node called NEW-NODE ;

Place the entry (E.S , E-T , E-P) into NEW-NODE ;
Split MID-NODE into two parts and put one part in NEW-NODE ;
/* this split should ensure both covering rectangles minimized,
MID-NODE and NEW-NODE have M/2 and M/2 +1 entries respectively. */
Set MID-NODE .S , MID-NODE .T , NEW-NODE .S , NEW-NODE .T ;
/* covering rectangles and time range *I
Get the father node F-NODE of MID-NODE ;

END
IF F-NODE is the root R THEN
BEGIN

Get a new node and assign it to R ;
Put the entry &EAF-NODE.S , LEAEN0DE.T , LEAENODE) to R ;
Put the entry (NEW-N0DE.S , NEW-NODE-T , NEW-NODE) to R ;
R E I " I ' (R) ;

END
END I* insert an entry into a full leaf node */

END /* end of INSERT */

. Procedure FINDJEAF (R , SW , TW)

Input: An RT -tree with the root R and a search window (SW ,TW)
where SW is the spatial rectangle, and TW is the time period.

Output: The leaf nodes in the form of (S ,T 9)
where E.S and E.T overlap the search window SW and TW ,

respectively.

BEGIN
initialize STACK ;
current := R ;
IF current is a leaf node THEN RETURN (current) ;
IF current is not a leaf node THEN
BEGIN /* choose one entry that needs least expansion to enclose SW and TW *I

TEMP-S := 0 ; TEMP-T := 0 ;
FOR each entry E in current node DO
BEGIN
enlarge E.S to E.(S+M) which encloses SW ;
enlarge E.T to E.(T+N) which encloses TW ;
IF M and N are smaller than TEMP-S and TEMET THEN
BEGIN

TEMP-S := M ; TEMP-T := N ; T E M W := E.P ;
END

END I* FOR chosen the entry that needs least expansion */
call FIND-LEAF(TEh4P-P, SW , TW) ;

END I* nonleaf */
END /* FIND-LEAF procedure *I

Lemma 4.1 Given an RT-tree, if it has N entries in its leaf nodes, the average time complex-

ity of an insertion operation, to insert a new entry into the tree, is in the order of O(log N).

Proof Sketch:

If an RT-free has N entries in its leaves, the height H of the tree is then in the order of

O(log, N) which is similar to a B -tree analysis. The first part of an insertion is to find a leaf

which may either contain the entry or should hold the entry. This operation starts from the

root to a leaf node, so that it visits H nodes on the path. If the leaf has already contained the

- entry, do nothing. Otherwise, if the leaf has room for another entry, then insert the entry. If

the leaf is full, splitting might propagate to the root in the worst case where H nodes on the

, path to the root wll be visited. Averaging the three cases, the time complexity, therefore, is in

the order of O(log N).

Theorem 4 3 The worst case time complexity of constructing an RT-tree for the image

sequence I, each i, containing k objects, 0 I j I n , using Algorithm 4.2, is in the order of

O(n x k log(n x k)) .

Proof Sketch:

From Lemma 4.1, to insert one entry to an RT -tree reqires O(log N) time when the tree

has N entries. If all the objects are changing from one image to another in the worst case, the

total number of entries to be inserted to the RT -tree is n x k . Therefore, the time complexity

of constructing the RT-tree for I is at worst log 1 + log 2 + . . + log k + . . + log n X k =

(log (n x k) !) , i.e., O(n x k log (n x k)) . 0

RT

Figure 4.8. The corresponding RT-tree of Figure 4.7.

Notice that to make the spatial search more efficient, the selection of a nonleaf node

under which the entry is to be inserted should be based on the minimal time interval and/or

the least spatial coverage. Also, the covering rectangles and the time intervals of such nonleaf

nodes should be updated during the insertion when expension is required. The total number of

nodes, therefore, is reduced by sharing the old partitions as recorded in nonleaf nodes. That

is, an RT-tree needs much fewer nodes than its corresponding MR -tree because it does not

create duplicate paths. The price paid here is that the height of an RT-tree may be a little

higher than the corresponding MR -tree (since it stores some more entries than those in one

image of the MR -tree), and each node needs some more space to store the time interval. Fig-

ure 4.8 shows the constructed RT-tree for Figure 4.7, which contains many overlapped parti-

tions for images at to and t (represented by Figure 4.2 and Figure 4.5). Notice that the RT-

tree (Figure 4.8) has 11 nodes while the corresponding MR -tree (Figure 4.6) has 17 nodes.

4.3.3.3. Retrieval of the RT-tree

The retrieval algorithm descends the tree from the root in a manner similar to an R -tree.

More than one subtree under a node visited may need to be searched, thus it is not possible to

gurrantee the worst case performance.

Algorithm 4.3 RT -tree Retrieval Within a Spatiotemporal Window

Input: An RT-tree with the root R and a search window (SW , W) where SW is the spatial
rectangle, and W the is time period.

Output: All index record entries E s in the form of (S , T, P) where E.S and E.T overlap the
search window SW and TW , respectively.

BEGIN
found := false ;
IF R is not a leaf node THEN
BEGIN
FOR each entry E in R

IF E.S overlaps SW and E.T overlaps TW THEN
BEGIN R := E.P ; CALL RETRIEVE ; END

END I* end of for */
END /* IF for nonleaf node */
ELSE I* R is a leaf node *I
BEGIN
FOR each entry E in R

IF E.S overlaps SW and E.T overlaps TW THEN
BEGIN

found := true ; RETURN (E.S , E.T, E.P);
END

END P end of for */
IF found == false THEN RETURN (NONE);

END I* leaf node *I
END I* RETRIEVE *I

Theorem 4.4 Given an RT -tree, if I contains N different entries, the best case time complex-

ity of retrieving an object by its MBR and t is O(tog N).

Proof Sketch:

To search on the RT -tree, we start from the root to check each entry in a node whether it

overlaps with the MBR and contains t . For each overlapping entry, the search goes further to

its child node and on until it reaches a leaf. If the object is indexed by the RT -tree, at least one

path will exist from the root to a leaf, and its length is in O(1og N). Therefore, the conclusion

holds. 0

4.3.3.4. Node Splitting Strategies

Similar to a B -tree or an R -tree, a node split operation should be performed on an RT-

tree node if a node is full but a new entry has to be inserted. Node splitting is a process of

reorganizing the information for a node, which should group related information closely

together to faciliate accessing. Since there could be many versions in one or a group of spatial

objects which may differ in time, location, shape and semantics, there should be different cri-

teria for node splitting. It is often a conflicting goal to achieve both the minimal coverage of

space and the minimal coverage of time in a node splitting. We suggest three node splitting

preferences which could be used independentely or combinedly to form a more sophisticated

strategy.

(1) Spatial coverage preference: Split a node based on the minimal spatial covering rectan-

gles. Suppose a node consists of two portions, each with a minimized spatial covering

rectangle. Node split based on spatial coverage will facilitate the searches based on spa-

tial criteria, however, it may not benefit the searches based on certain temporal criteria

because the objects stored in each leaf node could belong to different images which

represent different time intervals. As a result, a node covers a long time interval.

Temporal coverage preference: Split a node based on the minimal time interval. Sup-

pose [t i , t i] is the time interval of a node, in which some entries have time interval

[t i , t k] and others [th , t i] where th may be less than tk (some overlapping). Spatially,

these entries could be located in the same covering rectangle. In the worst case, an entry

could be in both the time intervals because it has not been changed from time ti to ti .

This preference may facilitate searches based on certain time criteria. However, such a

preference may lead to the same result as the MR -tree in regards to space cost if each

leaf node covers one time instance only.

(3) Semantic coveragepreference: Split a node based on the semantic knowledge about the

images. A node can be split according to the meanings of different image segments.

Objects in the same regions or with certain features may be grouped together or closely.

This facilitates efficient data search for the frequently used semantic-oriented queries.

For example, if a node contains both B.C. and Alberta (two neighboring provinces of

Canada), node split could be based on the boundary line of the two provinces. A similar

node splitting criteria could be based on the semantics related to time intervals. For

example, if the comparison is always within a decade, the node should be split into two,

in which one contains the objects in 1970's while the other contains those in 1980's.

4.4, Comparisons between the MR-Tree and the RT-Tree

We compare the performance of the two index structures, MR -tree and RT -tree, based

on the storage space utilization and the processing efficiency of typical spatiotemporal

queries.

4.4.1. Space Cost Analysis and Comparison

To simplify our discussion, we assume that for an RT-tree or an MR -tree of the order

M, each node contains at least m (= M 12) entries and at most M. Notice that in most real

databases, a node is usually not full to avoid frequent tree reorganization caused by data inser-

tions. Moreover, we assume that each image contains k objects among which there are on

average x objects changed from ti to tj+l where 0 < j < n . That is, on average, there are

(k - x) objects of image j remaining the same from image j to image j+ l , while there are x

objects with locations or shapes changed. An entry which contains a pointer to its data is

added for each changed object so that at least N = k + nx entries should be in the leaf nodes to

accomodate the (n + 1) images. To analyze the memory cost of the two tree structures, we

have the following theorems.

Best Case of RT-tree Worst Case of RT-tree
Height Num-of-node Num-of-entry Height Num-of-node Num-of-entry

1 1
M2 1 1 1

2
M2 M3 2 2

3 3
2m2

4
M3 M M 4 M 4

2m2 2m
2m3 2m

Table 4.1 Storage space of an RT-tree: the best case vs. the worst case

N - 1 N -2
Theorem 4.5 The space requirement of an RT-tree is from - to 1+2- , i.e., in the

M - 1 M - 2

order of O(N IM).

Proof Sketch:

Table 1 presents the numbers of nodes and entries at each level of an RT -tree, similar to

that of a B -tree [KoS86]. M~ and 2m h-l are the best and the worst case number of entries at

the bottom level (leaves) which should be able to store at least N nodes. Thus h must be

greater than log, N and less than log, N - logm2 + 1, that is, in the order of O(log, N).

N - 1
Therefore, the number of nodes in the RT-tree is from -

which is in the order of O(N IM).

Notice that the size of the RT-tree is determined by the number of the objects indexed.

In constrast, the size of an .MR -tree is depefidem ?l:pcn nct mly the mmber of the objects

indexed but also the locality of changes.

nk n
Theorem 4.6 For the number of nodes of the MR -tree, the worst case is - + -; the best

M M

k 2xn
case is - + -.

M M

Proof Sketch:

The tree for image at t o is a complete R -tree whose number of nodes should be in the

order of O(klM) and whose height should be in the order of O(logM k). The number of nodes

in the remaining trees is dependent on the order of insertions and concrete data. However, it

is not difficult to study two extreme cases (the best and the worst cases). The worst case hap-

pens when the updates are uniformly distributed in the search area as a new image is inserted,

while the best case happens when the changes are clustered in a few nodes. Let L be the

number of the leaf nodes in R o. In the worst case, x varying objects in the current image are

scattered evenly corresponding to the objects in I (= min(x, L)) leaf nodes of the previous

tree. Thus I new leaves plus their ancestor nonleaf nodes up to the root should be created for

the new index tree. If x 1 L, the tree is a complete R -tree where no subtrees are shared with

nk n n
the first one. Thus the total number of nodes of an MR -tree is about - + -, where - is

M M M

the nodes for n roots, which is much worse than the RT-tree memory ultilization. In the best

case, the previous versions of all the changed objects happen to be stored in the neighbouring

leaves such that other (unaffected) nodes can be shared, Since each such tree (from the second

X X X 2x
on) requires at least - + - + - + . . . + 1 = - nodes, the total number of nodes of the

M M~ M~ M

k 2xn
MR -tree in the best case is - + -.

M M

Corollary 4.2 In the best case, the memory ultilization of the MR -tree is close to that of a

corresponding RT-tree; in the worst case, the memory ultilization of the MR -tree is much

worse than the RT -tree.

4.4.2. Time Cost Analysis and Comparison

Suppose the size of each node is one page. Then the time cost is the total number of

. pages accessed (the total number of nodes visited) in the retrieval of the inquired spatial

objects. An RT-tree search starts at the root, following the entry (S , T, P) of a nonleaf node

where S locates the search rectangle and T is a time ti or a time interval [ti, ti] until a leaf is

reached. The cost of the search time depends on the height of the RT-tree and the overlap

pings of nonleaf nodes. The spatial and temporal overlapping of nodes, depending on the dis-

tribution and sizes of objects, is hard to decide. In the following analysis, we assume the RT-

tree and the MR -tree have the same overlappings in their nodes so that the heights of the two

trees are the major factor of time complexity.

We examine the worst case for an RT tree. Suppose the RT-tree stores the objects each

of which is changed from one image to another. Thus the total number of leaf entries to be

stored should be n x k , which requires an RT -tree of height log, n x k = log, n + log, k ,

where m is the number of entries in each node. Since log,n is less than 1 if the number of

images is less than the number of entries in a node, the RT -tree should have alomst the same

height as an R, in the corresponding MR -tree. In an average case when the probability of an

object changing is p where Oc p < 1, the total leaf entries in an RT -tree should be p x n x k .

Hence the height of the RT-tree is defined by the number of different entries.

An MR -tree search starts by finding the root R, of a subtree using the specified t and

then searches for the spatial objects. If the roots, R,, 0 i j 5 n , of the subtrees, are organized

into a balanced tree structure, the MR will be the root of subtrees, R, , 0 i j i n . From MR to

an R, , the height is O(log, n) if the tree is in the order of m . The height of an R, , 0 5 j 5 n , is

O(log, k) from the Theorem 4.2. Totally, the MR -tree has the height O(log, n +log, k). The

height of an MR -tree, different from that of an RT-tree, is purely defined by the number of

objects in each image. Even when few things change, the number of trees with the same

height is the same instead of being decreased. If a retrieval has a time interval from t,, to t, ,

then there are (z - y + 1) trees (i.e., R, , for j = y , y + 1, ..., z , in the MR -tree). The cost of

accesses should be (z -y + 1) multiplied by the height of the MR -tree. In such a case, the

MR -tree is much worse than the RT-tree in performance. Only if a query is about a specific

time instance, then only one tree Rj is visited.

Corollary 4.3 In some cases, when few objects change and most objects are stable, the RT-

tree is a good choice. Instead, when most objects in an image changes from time to time and

queries are about a whole space at specific time instances instead of time intervals, the use of

the MR -tree will speed up the search process.

4.5. Spatial Data Structures

As we stated in the previous sections, geographical data is usually irregular in shapes

which require variable length structures to store. Broadly, two types of representations to

describe the positional extent of spatial objects are vector-based using coordinates and raster-

based using grid cells. In vector format, a polygon is described by a series of lines or points, a

line is also described by a series of points and a point is descrihec! e i k r by absol~k cocdi-

nates or by relative coordinates. Raster format using scan lines or image pixels is usually used

for region object representation in terms of a regular grid cell or variable-sized cells. Argu-

ments have been made in favor of either the raster or the vector format [Bur86]. However, par-

ticular formats and format conversions are not our major interest, rather we are more con-

cerned with how these representations are related to database storage structures.

In our extended relational database, the spatial data is grouped into objects and each

object has different versions so that its storage is different from organizing a thematic map or

an image as one unit, especially for raster representations. In the consequent sections we dis-

cuss the data structures used for representing a spatial attribute of one object.

4.5.1. Data Structure Using Raster Representation

One of the typical raster representations is the quadtree structure which is variable reso-

lution arrays that allow a region to be split up into parts, or to contain holes without difficulty.

Quadtrees are mostly used to represent binary images or region data. As shown in Figure 4.9,

a region is regularly decomposed into quadrants and a subspace may be further divided into

four equal parts until a quadrant is either completely contained in an object region or com-

pletely outside [Bur86]. The smallest quadrant may be the single pixel. Each node of the tree

could be represented as a record with six fields, of which four fields are pointers to the sons,

one is a pointer to the father and the last encodes the color, i.e., black, white, or grey, of the

node. The grey nodes are internal nodes. The region then is composed of those black nodes.

Figure 4.9 A simple region on a rasterized map and the corresponing quadtree.

- 79 -

A thematic map or an image may contain more than one object. For example in Figure

4.10, a map is composed of four objects, namely 0 ,, 02, 03, and 0,. The index structure

such as the RT -tree developed in last section can be used for indexing the four objects where

each leaf node contains a pointer to the object's data set. In raster based representation, one

object region has two parts. One is the position of the object in the map and the other is the

relative region data itself. As an example, for object O3 in figure 4.10 , its MBR upleft coner

is located at (8,8) in the map and its data is orgnized into a quadtree corresponding to the tree

in Figure 4.9.

Figure 4.10 A rasterized map.

When object 0, increases at another time, say, at t , , as Figure 4.11 illustrates, the

corresponding quadtree is constructed similarly. Notice that the two trees in Figure 4.9 and

Figure 4.11 have much in common in this case such that sharing at storage level can be

achieved by sharing common quadrants. Figure 4.12 demonstrates the possiblity. For a mov-

ing object, say O3 shifted from (8,8) to (9,6), as Figure 4.13 shows, it only needs to record its

MBR position and the second part can be completely shared with its previous version.

Figure 4.11 The region at t and the corresponding quadtree.

I - .

Figure 4.12 Two quadtrees.

Figure 4.13 The map at time t ,.
Such arrangement clusters all the versions of one object together. This clustering can produce

significant performance in processing queries on an object history.

4.5.2. Data Structure Using Vector Representation

Vector representation of an object is an attempt to represent the object as exactly as pos-

sible. The coordinate space is assumed to be continuous, not quantized as with raster space,

allowing all positions, lengths, and dimensions to be defined precisely. For example, the same

object 0 in Figure 4.9 can be represented more compressedly and precisely as illustrated in

Figure 4.14. One typical and simple vector representation is that a region is represented by

polygons each of which is then represented as a series of points. More sophisticated methods

have been suggested in order to avoid redundancy and to detect complex or nested polygons.

Using a vector representation method, all the objects (polygons) in an image at one time

instance are easily clustered together by network linkages [Bur86]. Queries about relation-

ships among objects in one plane benifit from the clustering. However, queries about an

object history may be costly processed since the versions of an object are stored further apart.

That is, more disk accesses are required in order to get the necessary information about an

object.

Figure 4.14 Represent an object as a polygon.

In our spatiotemporal databases, again, there are relative md absolute c~erdimtes te

represent a polygon. Relative representation is good when objects do not change their shapes

or geometric definations, but only change their topological relations, such as moving objects.

The polygon representation differs from the quadtree method, in that the former is hard to

achieve the sharability among the several versions of an object; while the later may be less

precise or space consuming.

CHAPTER 5

CONCLUSIONS

5.1. Contributions of This Thesis

In this thesis we have proposed a spatiotemporal database management system

(SDBMS) based on an extended relational data model. At representation level, a spatiotem-

poral relation differs from a conventional relation in several ways. First we have extended the

attribute domain to include such basic data types as OID , POINT, LINE, and REGION in

relations. The basic construct of an attribute is the atom which consists of a temporal com-

ponent and a value from an attribute domain, where the temporal component specifies the

2 duration of the value. Objects are arranged in NF in order to provide users a clear view of

objects and life spans of their various attributes. Moreover, relational algebraic operations

have been defined on our database model. We have also discussed the interface and extended

the retrieval statement of SQL query language to query on our databases.

At physical level, we have studied indexing structures, multiple R -trees and RT -tree, for

spatiotemporal domains based on the conceptual and complexity analysis. An RT -tree incor-

porates temporal information with spatial objects in index nodes, which represents an elegant

merge of multiple R -trees with different time-stamps. Therefore, it saves storage space and

- improves the performance.

5.2. Future Research

The implementation of the whole spatiotemporal database management system concerns

query parsing, optimization, buffer management, and concurrency control which should be

studied based on our extended relational model. Specifically, efficient algorithms for spatial

functions should be studied based on computational geometry theory and practice. Moreover,

the performance of the RT -tree in experimental spatiotemporal databases and its comparison

with other index structures are also interesting topics for our future study since these index

methods are also applicable to other databases such as object-oriented spatial database sys-

tems or other kinds of geographic information systems.

APPENDIX

SYNTAX FOR STSQL

This syntax covers the examples used in Chapter 3. The meta-symbols used are '::=' and

'1' and ' { ' and ') '. The brackets are used to enclose optional items.

STSQL Constructs:

SELECT columnl , .. ., column n
FROM tablename, ... , tablename
WHERE conditions
WHEN conditions

SELECT UNARY-FUNCTION(co1umn k), BINARY-FUNCTION(co1umn i, column j) , ...
FROM tablename, ... , tablename
WHERE conditions
WEEN conditions

SELECT columnl ,..., column n
FROM tablename, ... , tablename
WHERE conditions
AND column i (comparison or spatial predicate)

(subquery)
WHEN column j (comparison or spatial predicate)

(subquery)

STSQL Syntax for Retrievd:

<query>::= <a-query> {<time-spec>) {<con-spec>)
<a-query>::= SELECT catt-spec7 FROM <relations>

<function>::= <aggregate> (cattn) I
<unary-fun> I
<binary-fun> I
<high-fun> I
<temp-fun>

<aggregate>::= <AVERAGE> I <COUNT> I <MINIMUM> I <MAXIMUM> I
<NEAREST> I <FURTHEST> I <SUM>

<unary-fun>::= <LENGTH> (<LINE>) I
<DIAMETER> (<REGION>) I
<PERIMETER> (<REGION>) I
<AREA> (<REGION>) I
<CENTER> (<REGION>)

ct-dam>::= cattn.TIME I ct-value>
ct-value>::= <t-pint> I ct-range> I (ct-value>, ct-value>) I

expression with +, - operations on ct-value>
ct-pint>::= PRESENT I time value in chronons
ct-range>: := (ct-point>, ct-pint>)
ct-unit>::= YEAR I MONTH I DAY I HOUR 1 MINUTE I SECOND

<relations>::= <relation> I <relation>, <relations>
<relation>::= existing table name

<time-spec>::= AT ct-pint> I
IN ct-pint> I
DURING <t-pint>, ct-pint> I
AFTER ct-pint> I
BEFORE <t-pint> I
SINCE ct-pint> I
WHEN conditions

<t-pint>::= PRESENT I time value in Chronons
<t-conditions>::= ct-cond> I ct-cond> AND/OR ct-conditions>
<t-cond>::= ct-dom> comp ct-dom> I ct-dom> <time-spec>

<con-spec>::= WHERE <conditions>

<conditions>::= <a-condition> 1 <s-condition> AND/OR <s-conditions>
<a-condition>::= <a-at@> <camp> cattn (

<a-attr> <camp> <query> I
<function> <camp> eattn I
<function> <camp> <function> I
<gee-attn <s-predicate> cgeo-attn I
<h-predicate> (egeo-attr>)

cs-predicate>:= IS-INSIDE 1
INTERSECTS (
IS-NEIGHBOR-OF I
IS-COVERED-BY I
NOT-COVEREDBY I
IS-NORTH-OF (
...

WITHIN

REFERENCES

G. Ariav, A Temporally Oriented Data Model, ACM Transactions on Database
Syastems, Vol. 1 1, No. 4, December 1986,499-527.

A. Basu and R. Ahad, An SQL-based Query Language For Networks of
Relations, SIGMOD Record, Vol. 19, No. 1, Mach 1990.

D. S. Batory, T. Y. Leung and T. E. Wise, Implementation Concepts for an
Extensible Data Model and Data Languagee, ACM Transactions on Database
Systems, Vol. 13, No. 3, September 1988,23 1-262.

R. Bayer and E. McCreight, Organization and Maintainance of Large Ordered
Indexes, Acta Informatics, Vol. 1, No. 3, 1972, 137-1 89.

P. Boursler, Image Data Bases: A Status Report, Proceedings of IEEE Computer
Society Workshop on Computer Architecture for Pattern Analysis and Image
Database Management, Miami Beach, Florida, November 18-20,1985,359-366.

P. A. Burrough, Principles of Geographical Information System for Land
Resources Assessment, in Monographs on Soil and Resources Survey, P. H. T.
Beckett (ed.), Oxford Science Publications, No. 12, 1986.

M. 9. Carey, D. 9. DeWitt, 5. E. iiichardson and E. J. Shekita, Object and Fiie
Management in the EXODUS Extensible Database System, Proceedings of the
Twelfth International Conference on Very Large Data Bases, Kyoto, Japan,
August, 1986,91-100.

M. Carey, D. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J. Richardson and
E. Shekita, Architecture of EXODUS Extensible DBMS, Proceedings of
International Workshop of Object-Oriented Database System, Asilomar, CA,
1986,52-65.

T. Y. Cliff and R. R. Muntz, Query Processing Temporal Databases, Proceedings
of Sixth Internal Conference on Data Engineering, Los Angeles, California,
USA, Feb. 5-9,1990,200-208.

J. Clifford and D. S. Warren, Formal Semantics for Time in Databases, ACM
Transactions on Database Systems, Vol. 8, No. 2, June 1983,214-254.

E. F. Codd, A Relational Model of Data for Large Shared Data Banks,
Communication ACM, 13,1970,377-387.

E. F. Codd, Extending the Relational Database Model to Capture More Meaning,
ACM Transactions on Database Systems , Vol. 4, No. 4, December 1979, 397-
434.

J. Cohen and T. Hichey, Two Algorithms for Detertermining Volumes of Convex
Polyhedra, Journal of ACM, Vol. 26, No. 3, July 1979,401 -4 14.

[Ke W87I

[KoS 861

K. R. Dittrich, Object-Oriented Database Systems: The Notion and the Issues,
Proceedings of the International Workshop on Object-Oriented Database
Systems, California, September 1986,2-6.

M. J. Egenhofer and A. U. Frank, Towards a Spatial Query Language User
Interface Considerations, Proceedings of the 14th VLDB Conference, LOS

Angeles, California, 1988, 124-133.

C. Faloutsos, T. Sellis and N. Roussopoulos, Analysis of Object-Oriented Spatial
Access Methods, Proceedings of 1987 ACM-SIGMOD Conference on
Management of Data, San Fransisco, CA, May 1987,426-439.

M. Feuchtwanger and T. K. Poiker, Infological and Datalogical Spatial Models,
Proceedings of the workshop on Digital Mapping and Land Information,
University of Calgary, Calgary, Alberta, Canada, April 1986.

S. K. Gadia &d J. H. Vaishnav, A Query Language for a Homogenious Temporal
Database, ACM Symposiumm on Principle of Database Systems, New York,
1985,51-56.

G. Gardarin, J. P. Cheiney, G. Kieman, D. Pastre and H. Stora, Managing
Complex Objects in an Extensible Relational DBMS, Proceedings of the
Fifteenth International Conference on Very Large Data Bases, Amsterdam,
1989,55-65.

R. H. Guting, Gral: An Extensible Relational Database System for Geometric
Applications, Proceedings of the Fifeenth International Conference on Very
Large Data Bases, Amsterdam, 1989,33-44.

A. Guttrnan, R-Tree: A Dynamic Index structure for Spatial Searching,
Proceedings of I984 ACM-SIGMOD Conference on Management of Data,
Boston, MA, June 1984,47-57.

A. Hafez and G. Ozsoyoglu, The Partial Normalized Storage Model of Nested
Relation, Proceedings of the 14th VLDB Conference, Los Angeles, California,
1988.

A. Henrich, H. Six and P. Widmayer, The LSD tree: spatial access to
multidimensional point and non-point objects, Proceedings of the Fifteenth
International Conference on Very large Data Bases, Amsterdam, 1989,45-53.

H. V. Jagadish, Spatial Search with Polyhedra, Proceedings of Sixth Internal
Conference on Data Engineering, Los Angeles, California, USA, Feb. 5-9, 1990,
311-319.

T. Joseph and A. F. Cardenas, PICQUERY: A High Level Query Language for
Pictorial Database Management, IEEE Transactions on Sofn~are Engineering,
Vol. 14, No. 5, May 1988,675-681.

A. Kemper and M. Wallrath, An Analysis of Geometric Modeling in Database
Systems, ACM Computing Surveys, Vol. 19, No. 1, March 1987,47-91.

H. F. Korth and A. Silberschatz, Database System Concepts, McGraw-Hill,
1986.

G. Langran and N. R. Chrisman, A Framework for Temporal Geographic
Information, CARTOGRAPHICA, Vol. 25, No. 3,1988,l-14.

B. Mitschang, Extending the Relational Algebra to Capture Complex Objects,
Proceedings of the Fifteenth International Conference on Very Large Data
Bases, Amsterdam, 1989,297-305.

N. Nishimura, Complexity Issues In Tree-Based Version Control, Technical
Report 212188, Department of Computer Science, University of Toronto, June
1988.

M. A. Roth, H. F. Korth and A. Silberschatz, Extended Algebra and Calculus for
Nested Relational Databases, ACM Transactions on Database Systems, Vol. 13,
No. 4, December 1988,389-417.

N. Roussopoulos and C. Faloutsos, An Efficient Pictorial Database System for
PSQL, IEEE Transactions on Soffware Engineering, Vol. 14, No. 5, May 1988,
675-681.

H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM
Computing Survey, Vol. 16, No. 2, June 1984.

H. Samet, Hierarchical Representations of Collections of Small Rectangles, ACM
Computing Survey, Vol. 20, No. 4, December 1988,271-309.

T. Sellis, N. Roussopoulos and C. Faloutsos, The R+-~ree: A Dynamic Index for
Multi-Dimensional Objects, Proceedings of the 13th VLDB Conference,
Brighton, England, 1987,3-11.

H. Six and P. MTiCmayer, Sp&d Searchifig in Geometric Databases, Proceedings
of IEEE 4th International Conference on Data Engineering, Los Angeles, CA,
February 1988,496-503.

R. Snodgrass, The Temporal Query Language TQuel, ACM Transactions on
Database Systems , Vo1.12, No. 2, June 1987,247-298.

A. U. Tansel and L. Garnett, Nested Historical Relations, Proceedings of the
1989 ACM SIGMOD International Conference on the Management of Data,
Portland, Oregon, Vol. 18, No. 2, June 1989,284-293.

S. Tsur and C. Zaniolo, An Implementation of GEM - Suporting a Semantic
Data model on a Relational Back-End, Proceedings of 1984 ACM-SIGMOD
Conference on Management of Data, May 1984.

X. Xu and J. Han, RT-tree: The Index Structure for Spatiotemporal Databases,
The 4th International Symposium on Spatial Data Handling, Zurich, Switzerland,
July 1990.

