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Abstract

SmSe and SmS undergo pressure-induced mixed-valence transitions. In the mixed-valence region
the Sm ions fluctuate between the 2+ and 3+ valence state on the time scale of the Debye
frequency. They are usually considered to be homogeneously mixed valent where the Sm-
chalcogenide ion pairs take a single average separation rather than a dynamically distorted
distribution with two ditferent equilibrium positions corresponding to the two valence states of the
rare earth ion. In this thesis x-ray absorption spectroscopy has been used to examine the transitions
at pressures up to 75 kbar. The experiments were performed at the Sm L,;, Lj; and Se K edges at
room temperature on both compounds. In order to reduce the thermal contribution to the dynamical
motion of the ions, the measurements were also made on SmSe at 77 K. These latter measurements
represent the first low temperature x-ray absorption spectroscopy measurements to be que as a

function of pressure.

Changes in the Sm valence with pressure were determined from the structure of the Sm L edges.
Sm-chalcogenide pair distribution functions were obtained from the EXAFS spectra. In SmSe the
EXAFS mean-square relative displacement between the Se and Sm ion pairs is observed to have a
maximum in the mixed valence region. This maximum is discussed in view of the possible existence
of two closely spaced Sm-coordination shells. From least-squares fitting in k- and in R-space and
from a beating analysis of the EXAFS phase we conclude that if the lattice does respond to the
fluctuation in the valence, then the two Sm-shells are separated by ~0.09 A. To obtain this result it
was first necessary to know the backscattering amplitudes and phase shifts for irteger-valent Sm. In

this thesis they were calculated from first principles according to curved-wave theory.



Acknowiedgements

I would like to thank all those who have assisted me during my research through their comments
and suggestions. | am indebted to Dr. Neil Alberding whose advice was atways very helpful. | would
like to thank Andrew Seary for his many suggestions regarding data analysis. Frequently he knew
the answer to a computing problem before | even had finished my question. About data analysis |

learned a lot from both of them.

Detong Jiang and Dr. Neil Alberding provided me with all the necessary information to run the

word processor and use the drawing programs.

I would like to thank my advisor, Prof. Daryl Crozier, for his constant encouragement and
interest in this work. | also thank him for his patience as the last parts of this thesis were being

completed with delay because | was already working as a “postdoctoral” student.

Like Andrew Seary, Ken Urquhart was a profound source of information regarding computers. It

makes work so much easier when one can depend on knowledgeable people.

During this work | appreciated many physics discussions with members of the “late-night” crowd

at the physics department, in particular with Ross Walker, Don Hunter, and Steve Purcell.

The experiments were performed at the Stanford Synchrotron Radiation Laboratory in
conjunction with the group of Prof. Robert Ingalls of the University of Washington in Seattle. | would
like to thank him and his students for assistance and for many discussions: John Whitmore, John

Tranquada, Brian Houser, and Jirgen Freund.

Thanks are due to Drs. A. Jayaraman, Fred Holtzberg, and Jim Allen for supplying SmSe
samples. | am gratetul to Dr. Grayson Via of EXXON Corp. who kindly let our group use his sample

positioner, designed to move heavy loads.



| am grateful to Dr. Jorge E. Muller of the Kernforschungsanlage in Jilich / West Germany who
took extra time to explain to me how to use his computer programs to calculate bandstructures in the
linearized augmented plane-wave method. The knowledge and availability of his programs was the

starting point for the calculation of scattering phases.

During my stay in Germany | also met with Prof. W.B. Holzapfel and Dr. J. Wittig who kindly

provided me with information regarding the design of a high-pressure cell.

Ithank Dr. Xiaohe Pan of IBM Corp. for lending me his laser printer to print drafts of this thesis.

1 do express my thanks to my thesis examiners who took great care reading this thesis and in

particular | wish to thank Prof. T.M. Hayes for his helpful suggestions.

My wish is that during my future career | will be encountering people who are equally helpful as
those mentioned in these acknowledgements. This is a decisive contribution to the success of any

project.



Table of Contents

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3

Approval

Abstract

Acknowledgements

Table of Contents

List of Tables

List of Figures

Introduction .

The EXAFS Equation
The EXAFS Formula

Obtaining g(R) from x(k)

The Cumulant Expansion

The EXAFS Debye-Waller Factor
Many Body Effects

Amplitudes and Phases
Calculation of Atomic Charge Densities
Muffin-Tin Potentials

Logarithmic Derivatives .

Vi

page

vi

Xii

0 O » b

11

19
19
23
32



3.4 Calculation of Amplitudes and Phases . . ) . : . . 36

3.5 Central-Atom Phase Shifts . : . . : . : : . 61
3.6 Pressure Dependence ot Amplitude and Phase . : . . . 64
4 Mixed Valence . : : : : : : : : . 73
4.1 Description of the Phenomenon . . . . . . . . 73
4.2 Sm Monochalcogenides . . . . . . ) ) . 75
4.3 Valence Determination by L/ L) -Edge Spectroscopy . . . .79
5 Experiment . : : : : . . . : : . 82
5.1 Synchrotron Radiation . . . . . . . . . . 82
5.2 X-Ray Monochromator . . . . . . . ) ) . 84
5.3 Absorption Coefficients . . . . ) ) . ) . 94
54 lonization Chambers . . . . : : : . . . 96
5.5 Optimum Sample Thickness . . . ) . . . . . 98
5.6 Signal-to-Noise Ratio . . . . . . : . ) . 104
57 Absorption Coefticients Obtained from Experiment . . . ) . 106
5.8 Pressure Calibration . . . . . . : : . . 115
5.9 High-Pressure Cell . . : : : . : . : . 123
5.10 Liquid-Nitrogen Cryostat . . . . . : . : . 136
5.11 Performing the Experiment . . . : . . : . . 137
6 Data Analysis . : : . . : : . : . 140
6.1 Averaging Datasets . . . . . : . . . . 140
6.2 Step Number-to-Energy Conversion . . . . , . . 143
6.3 Nomalizing EXAFS Datasets . . ) . . . . ) . 144
6.4 Monochromator Resolution . . . . . . . . . 154
6.5 Fourier Transform ) . . : . : : . . . 155

vii



6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

71
7.2
7.3
7.4

8.1
8.2
8.3

9.1
9.2
9.3
9.4
9.5

Window Functions

Fourier Filtering and the Determination of Amplitude and Phase

Log-Ratio and Phase-Comparison Methods
Degrees of Freedom of a Signal
Least-Squares Fitting of EXAFS Spectra
Beating.

Valence Determination .

Valence Interpolation Formula

Determination of Compression from the Scaling Reiation k-R = const.

Results for SmSe

Pressure Determination

Analysis of the Se K Edge EXAFS of SmSe
Analysis of the Sm L;; Edge EXAFS of SmSe

Valence Determination .

Results for SmS .
Pressure Determination
Analysis of the Sm L;;; Edge EXAFS of SmS

Valence Determination .

Discussion

Two-Shell Analysis for the Se K Edge EXAFS

Graneisen Parameter Derived from the Se K Edge EXAFS
Pressure Determination

EXAFS of the Sm L, Edge

Future Work

Viii

. 156
. 159
. 162
. 164
. 166
172
. 176
. 180
. 183

. 187
. 188
'. 210
. 236
. 249

. 265
. 265
. 267
. 275

. 282
. 282
. 289
. 291
. 294
. 295



10

10.1
10.2
10.3
10.4

mT m o O ®»® »

Summary

Lattice Relaxation in SmSe
Valence of SmSe

Amplitudes and Phase Shifts .
Additional Results

Appendix

Rydberg Atomic Units

Operating Range of the Monochromator
Gruneisen Relation and Gruneisen Parameter
Smoothing Function

Least-Squares Fitting of EXAFS Spectra

Formula for Valence Estimation

Bibliography

. 298
. 298
. 300
. 301
. 302

. 304
. 304
. 305
. 307
. 310
. 314
. 316

. 318



List of Tables

page
4.1 Properties of Sm monochalcogenides : : : . . : . 78
5.1 Properties of Principal Reflections and their Harmonics for Si Single Crystals . 91
52 Properties of Principal Reflections for Si Single Crystals i . . . 92
53 Pressure vs. reduced volume for Cu at 300K and at 77K . . . . 119
5.4 Pressure vs. reduced volume for RbCl at 300K and at 77K . . . 121
6.1 Properties of window functions . . . . ) . ) . 159
71 Pressure calibration from Cu K edge EXAFS at 300K (LOG.CU1.B) ) . 199
7.2 Pressure calibration from Cu K edge EXAFS at 300K (LOG.CU1.C) . . 201
7.3 Pressure calibration from Rb K edge EXAFS in RbCl at 77K (LOG.RB6.F) . 203
7.4 Pressure calibration from Cu K edge EXAFS at 77K (LOG.CU1.G) . . . 207
7.5 Se K edge EXAFS at 300K (LOG.SE10.B) . . . . . . 213
7.6 Se K edge EXAFS at 77K (LOG.SEN13.F2) ) . . . . . 217
7.7 Se K edge EXAFS at 77K (LOG.SEN14.F2) ) . . . : . 218
7.8 Se K edge EXAFS at 77K (LOG.SEN19.F2) . . . . . . 222
7.9 Se K edge EXAFS at 77K (LOG.SEN24.F2) . . . . . . 225
7.10 Se K edge EXAFS at 77K (LOG.SEN8.F2) . . . . . . 227
7.1 Se K edge EXAFS at 77K (LOG.SE10.G) . . . . . . . 229
7.12 Se K edge EXAFS at 77K (LOG.SE13.G) . . . . . . . 233
7.13 SmL edge EXAFS at 300K (LOG.SM4B) . . . . . . 237
7.14 Sm L, edge EXAFS at 77K (LOG.SM7.G) . . . . . . 242
7.15 Valence determination from the Sm L, edge of EXAFS datasets at 300K
(VAL.SMSEXF.B) . . . . . . . . . . 250
7.16 Valence determination from the Sm L;;, edge at 300K (VAL.SMSEED.C) . 252
7.17 Valence determination from the Sm L,;| edge of EXAFS datasets at 300K

(VAL.SMSEXF.C) ... ... . . . 253



7.18 Valence determination from the Sm L edge at 77K (VAL.SMSEE2.G) . . 254

7.19 Valence determination from the Sm L,;; edge of EXAFS datasets at 77K
(VAL.SMSEX3.G) . : : . : : . : : . 255
8.1 Pressure calibration from Cu K edge EXAFS at 300K (LOG.CU1.A) ) . 266
8.2 Sm L edge EXAFS at 300K (LOG.SM2.A) : : : . : . 269
8.3 Valence determination from the Sm L, edge at 300K (VAL.SMSX.A} . . 276
8.4 Valence determination from the Sm L;; edge of EXAFS datasets at 300K
(VAL.SMSXAF.A) : . . . . . . . : . 278
9.1 Se K edge EXAFS at 77K (LOG.SEN25.F2) . : . : : . 284
9.2 Grineisen parameter at 77K according to Eq. (9.3) . . : . . 290

9.3 Pressure calibration from Cu K edge EXAFS by the scaling method ) . 293

xi



List of Figures

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.13

Inelastic mean free path A as a function of k.

Muffin-tin potential along the [110]-direction in the fcc structure.

Backscattering amplitude for copper metal in plane-wave approximation. .

Backscattering phase for copper metal in plane-wave approximation.
Backscattering ampiitude for copper metal in curved-wave theory
for R=25A and K- or L;-edge absorption.

Backscattering phase for copper metal in curved-wave theory
for R=25A and K- or L-edge absorption.

Backscattering amplitude for Sm in SmSe in curved-wave theory
for K- or L|-edge absorption.

Backscattering phase for Sm in SmSe in curved-wave theory

for K- or L-edge absorption.

Backscattering amplitude for Sm in SmSe in curved-wave theory
for K- or L|-edge absorption.

Backscattering phase for Smin SmSe in curved-wave theory

for K- or L|-edge absorption.

Backscattering amplitude for Sm in SmSe in curved-wave theory
for R=2.5A and K- or L;-edge absorption.

Backscattering phase for Sm in SmSe in curved-wave theory

for R=25A and K- or L|-edge absorption.

Backscattering amplitude for Se in SmSe in curved-wave theory
for R=2.5A and L- or L-edge absorption.

Backscattering phase for Se in SmSe in curved-wave theory

for R=2.5A and Ly- or Ly-edge absorption.

Backscattering amplitude for Sm in SmSe in curved-wave theory

for K- or L;-edge absorption.

il

page

15

24

39

40

46

47

48

49

50

51

52

53

54

55

56




3.15

3.18

3.19

3.20
3.21

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2

Backscattering phase for Sm in SmSe in curved-wave theory

for K- or L|-edge absorption.

Backscattering amplitude for Se in SmSe in curved-wave theory

for Lj- or Lj;;-edge absorption.

Backscattering phase for Se in SmSe in curved-wave theory

for L);- or Ly -edge absorption.

Backscattering amplitude for Se in SmSe in curved-wave theory (R = 3.1 A)
for Lj- or L;;-edge absorption and for K- or L;-edge absorption.
Backscattering phase for Se in SmSe in curved-wave theory (R = 3.1 A)
for Ly)- or L;;;-edge absorption and for K- or L-edge absorption.
Central-atom phase shift for Se (K or L; edge).

Central-atom phase shift for Sm (L, or L;;, edge).

Pressure-volume relations for SmSe and SmS at room temperature.
Isothermal compressibility of SmSe at room temperature.

Sm Ly, absorption edge in SmSe at 77K.

Se K absorption edge in SmSe at 77K.

2/ugmse VS. photon energy.

Measured absorption-thickness product In NO/N1 vs. n(E)X.
Derivative with respect to (E) X ot the curve shown in Fig. 5.2.
Pressure vs. reduced volume for Cu at 300K and at 77K.
Pressure vs. reduced volume for RbCl at 300K and at 77K.
High-pressure cell.

Geometry and force diagram for the pressure cell.

Distance between the flats as a function of the amount of gasket compression. .
. 133
. 137

Torque T necessary to generate the force pgq A .

Schematic setup for an x-ray absorption experiment in transmission mode.

Cu K edge in Cu metal at 48.4 kbar and at 77K.
Cu K edge in Cu metal at 48.4 kbar and at 77K after background subtraction.

Xiii

57

58

59

60

61

63

64

76

77

80
81

. 104
. 109
. 113
. 120
. 122
. 126
. 127

132

. 145
. 146




6.3

6.4

6.5

6.6

6.7

6.8

71

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
7.10

Energy derivative of the spectrum shown in Fig. 6.2.

Straight-line fit to estimate the stepsize at the absorption edge, i.e. atk = 0.
Full spectrum of Cu after conversion to k-space. .

Data of Fig. 6.5 with background overlayed.

k2 x(k) for Cu

Normalized absorption spectrum of the Sm L, edge in SmSe

at 58.6 kbar and at 77K.

Backscattering amplitude for copper metal calculated in curved-wave theory
for R =2.553 A and K- or L|-edge absorption.

Sum of backscattering phase for copper, calculated in curved-wave theory for
R =2.553 A and K- or L|-edge absorption, and Teo and Lee's central phase.
Representative two-shell fit to BRCl in R-space at 42.9 kbar and 77K.

The magnitude of the Fourier transform ot k3 x(k) is shown. .
Backscattering amplitude for Cl calculated in curved-wave theory

for R =3.366 A and K- or L;-edge absorption.

Sum of backscattering phase for Cl, caiculated in curved-wave theory

for R =3.366 A and K- or L,-edge absorption, and Teo and Lee's

central phase for Rb.

Backscattering amplitude for Rb calculated in curved-wave theory

for R =3.887 A and K- or L|-edge absormption.

Sum of backscattering phase for Rb, calculated in curved-wave theory

for R =3.887 A and K- or L|-edge absorption, and Teo and Lee's

central phase for Rb.

Pressure of a copper calibrant vs. applied oil pressure according to Table 7.1.
Pressure of a copper calibrant vs. applied oil pressure according to Table 7.2.
Founier transform magnitude ot k3 x(K) for BbCl at 77K and for 42.9 kbar and
77.0 kbar. The central atom is Rb.

k3 x(k) for BRbCl at 77K and for 42.9 kbar and 77.0 kbar. The central atom

is Rb.

Xiv

. 147
. 148
. 149
. 151
. 153

. 178

. 190

. 191

. 192

. 193

. 194

. 195

. 196

. 200

. 202

. 204

. 205




7.13

7.14
7.15
7.16

7.17
7.18
7.19

7.20

7.21
7.22
7.23

7.24
7.25
7.26

7.27

7.28

7.29

7.30

7.31
7.32

Pressure of a RbCl calibrant vs. applied number of tums according to
Table 7.3.

Fourier transform magnitude of K3 x{k) for Cu at 77K and for 1 bar
and 72.2 kbar.

k3 x(k) for Cu at 77K and for 1 bar and 72.2 kbar.

Pressure of a Cu calibrant vs. applied number of tums according to Table 7.4.

Fourier transform magnitude of k2 x(k) for SmSe at 300K and for 1 bar and
68.3 kbar. The central atom is Se.

k2 x(k) for SmSe at 300K and for 1 bar and 68.3 kbar. The central atom is Se.
o2 vs. Ry at 300K according to Table 7.5.

Representative one-shell fit to SmSe in R-space at 52.0 kbar and 77K.
The imaginary part of the Fourier transform of k2 x(k) is shown.
Representative one-sheli fit to SmSe in R-space at 52.0 kbar and 77K.
The magnitude of the Fourier transform of k2 x(K) is shown. .

o2 vs. Ry at 77K according to Tables 7.6 and 7.7.

o5 vs. Ry at 77K according to Table 7.8.

Sm radial distribution functions g(R) with respect to Se at 77K and

at various pressures.

o> vs. Ry at 77K according to Table 7.9.

Ac® vs. Ry at 77K according to Table 7.10.

Fourier transform magnitude of k2 x(k) tor SmSe at 77K and for 32.6 kbar and
g

72.2 kbar. The central atom is Se.

k2 (k) for SmSa at 77K and for 32.6 kbar and 72.2 kbar. The central atom
is Se.

o5 vs. Ry at 77K according to Table 7.11.

Ac vs. Ry at 77K according to Table 7.12.

Nearest-neighbour distance in SmSe with respect to the Se atoms as a function

of pressure according to Table 7.12.
Ac’ vs. pressure at 77K according to Table 7.12.
Fourier transform magnitude of k2 x(k) for SmSe at 300K and for 1 bar and

68.3 kbar. The central atom is Sm.

XV

. 206

. 208
. 209
. 210

. 214
. 215
. 216

. 219

. 220

. 221

. 223

. 224

. 226

. 228

. 230

. 231

. 232

. 234

. 235
. 236

. 239



7.33
7.34
7.35

7.36
7.37
7.38

7.39

7.40

7.41
7.42
7.43
7.44
7.45
7.46
7.47

8.1
8.2

8.3

8.4

8.5

8.6

8.7

K2 x(k) for SmSe at 300K and for 1 bar and 68.3 kbar. The central atom is Sm.
o5 vs. Ry at 300K according to Table 7.13.

Fourier transform magnitude of k© x(k) for SmSe at 77K and for 1 bar and
72.2 kbar. The central atom is Sm.

k9 (k) for SmSe at 77K and for 1 bar and 72.2 kbar. The central atom is Sm.
o? vs. Ry at 77K according to Table 7.14.

Nearest-neighbour distance in SmSe with respect to the Sm atoms as a function
of pressure according to Tables 7.14 and 7.13.

Next-nearest neighbour distance in SmSe with respect to the Sm atoms

as a function of pressure according to Tables 7.14 and 7.13.
Second-nearest neighbour distance R, (Sm-Sm) vs. nearest-neighbour
distance R4 (Sm-Se) according to Tables 7.14 and 7.13.

Valence vs. pressure according to Tables 7.15 (300K) and 7.19 (77K). .
Valence vs. pressure at 300K according to Tables 7.15, 7.16, and 7.17. .
Valence vs. pressure at 77K according to Tables 7.18 (L)) and 7.19 (L))
Power law, fitted to valence vs. pressure at 77K (Table 7.19).

AE vs. valence according to Tables 7.15 (300K) and 7.19 (77K).

AE vs. valence at 300K according to Tables 7.15, 7.16, and 7.17.

AE vs. valence at 77K according to Table 7.18 (L;;)) and 7.19 (L.

Pressure of a copper calibrant vs. applied oil pressure according to Table 8.1.
Fourier transform magnitude of k2 x(k) for SmS at 300K and for 1 bar and

45.2 kbar. The central atom is Sm.

k2 x(k) for SmS at 300K and for 1 bar and 45.2 kbar. The central atom is Sm.
o5 vs. Ry at 300K according to Table 8.2.

Nearest-neighbour distance in SmS with respect to the Sm atoms as a function
of pressure according to Table 8.2. .

Next-nearest neighbour distance in SmS with respect to the Sm atoms

as a function of pressure according to Table 8.2.

Second-nearest neighbour distance R, (Sm-Sm) vs. nearest-neighbour

distance Ry (Sm-S) according to Table 8.2.

. 240
. 241

. 243
. 244
. 245

. 246

. 247

. 248
. 257
. 258
. 259
. 261

. 262
. 263
. 264

. 267

. 270

. 271

. 272

. 273

. 274

. 275




8.8

8.9

8.10

9.1

9.2
9.3

9.4

9.5
9.6

B.1

Valence vs. pressure at 300K according to Table 8.3.
Valence vs. pressure at 300K according to Table 8.4.

AE vs. valence at 300K according to Table 8.3.

Sm radial distribution functions g{R) with respect to Se at 77K and

at various pressures.

Two-shell fit in k-space to k2 y(k) for SmSe at 52.0 kbar and 77K.

Phase derivative at 52.0 kbar and 77K for the first coordination shell of
SmgSe with respect to the Se atoms.

Breathing motion of teh Se atoms with respect to the central mixed-valent
Sm atom.

g(e) vs. € calculated according to EqQ. (6.92) of Section 6.14. .

Pressure p obtained by scaling versus p obtained by fitting.

Limiting rays for a double-crystal monochromator.

Xvii

. 279
. 280
. 281

. 285

. 286

. 287

. 288

. 292

. 294

. 305



Chapter 1:  Introduction

In this thesis the x-ray absorption spectra of SmSe and SmS are investigated. Under ambient
conditions these compounds have two electrons in the conduction band and are therefore divalent.
By applying pressure both compounds become mixed-valent. In SmS this transition is sudden and
occurs at ~6.5 kbar! whereas in SmSe the valence changes gradually while the pressure increases
from zero to ~100 kbar. By applying pressure the average occupation of the 4f level of the Sm atoms
is reduced from 416 to 4f5 by promoting a 4f-electron into an empty 5d-state. This process makes the
Sm atoms trivalent. The screening of the nuclear charge and likewise the atomic volume of Sm is
reduced. Therefore the application of pressure will favour the trivalent state. In x-ray absorption this
can be studied quantitatively. The high density of empty Sm-5d states shows up inthe L- or L ;-
spectra of Sm in SmSe and SmS as a strong absorption peak (“White Line”) at the edge. Because of
the reduced screening by 4f-electrons the position of the trivalent Sm-White Line is shifte& by ~7eV
to higher binding energy. The height of the White Line contains information about the relative
occurence of di- and trivalent Sm atoms. In addition to the results from the near-edge region of Sm,
information about the relative positions of a Se atom and a Sm atom is provided by the pair
distribution function which is obtained from the extended x-ray absorption fine structure (EXAFS).
The EXAFS is the oscillatory part of the absorption coefticient after an absorption edge. The pair
distribution function of for example the Sm atoms contains information about the mean-square

relative displacement o2 of the Sm atoms with respect to the absorbing atoms.
The Se and Sm absorption spectra that were measured have the following edge energies:
S
ER° = 12655 eV, Ep = 6717 oV, E(, = 7313 eV.

For the pressure calibration the K-absorption edges of Cu and Rb were recorded. Their energies

are:

ES” = 8980 eV, ER® = 15202 eV.

1 hope that | can be forgiven for employing the old fashioned units kbar and A . They are related to the
proper units, Pa and m, by powers of 10: 1kbar=0.1GPa 1A=100pm.



The contents of each chapter are described in the following.

Chapter 2 describes the EXAFS equation, emphasizing its connection with the radial
distribution function. The most important section of this chapter is Section 2.5 which contains useful
results involving the inelastic mean free path. Further information on EXAFS spectroscopy is

provided by Refs. 1 10 6.

In this work we analyze the behaviour of the pair distribution function with respect to the
possible existence of two different equilibrium positions for the di- and trivalent Sm atoms, i.e. the
relaxation of the Sm atoms. This result depends on the availability of Sm-backscattering amplitudes
corresponding to the integer-valent states of Sm. Therefore amplitudes and phases for EXAFS were
calculated. These first-principles calculations were performed in order to find out whether the
scattering amplitudes and phases depend on the valence state and/or on pressure. The caiculations
yield the partial-wave phase shifts and hence also allow us to check the validity of the curved-wave
theory of Schaich [7] and McKale et al. [8-10] which takes into account the fact that the outgoing and
scattered electron waves are sphenical rather than planar. This theory does not include muttiple-
scattering effects though. Curved-wave theory introduces a slowly varying distance dependence of
amplitude and phase which are now also dependent on the orbital symmetry of the photoelectron,
i.e. the type of edge (e.g. K or L;;). Chapter 3 describes the calculations in detail. Sections 3.1 to
3.4 explain the calculationai steps leading to the scattering amplitude and phase. Central-atom
phase shifts are not calculated but Section 3.5 explains how they are extrapolated from Teo and
Lee's results [11] in order to cover a bigger k-space range. In Section 3.6 the pressure dependence

of amplitude and phase are investigated.

Chapter 4 is a brief introduction to the phenomenon of mixed valence and contains information

on the Sm monochalcogenides in particular.

Details regarding the experiment are presented in Chapter 5. Most of the experiments were
performed at liquid-nitrogen temperature in order to reduce the temperature contribution to the
mean-square relative displacement o2. Another reason for performing the high-pressure
experiments at low-temperature is to investigate whether the continuous valence transition in SmSe

becomes first order {12, 13].



The easiest way to generate the pressure that drives the valence transition is to ailloy SmSe or
SmS with an element whose atoms are smali. As the concentration of this element increases the
lattice compresses and the alloy becomes mixed valent. It has to be noted, however, that this
“chemical” pressure created by doping is not equivalent to pressure generated mechanically
[14, 15] because the dopant introduces extra electrons in the valence and conduction bands. We
prefer applying pressure mechanically because in this way we can study a “cleaner” system.
Because the experiments are also carried out at low temperature a pressure cell that can operate at
these temperatures had to be built. This is described in Section 5.9. An existing pressure cell that
generated the pressure hydraulically could not be used because the oil would freeze at low
temperature. Of the remaining sections in Chapter 5, the most important are 5.6 to 5.8. Section 5.6
discusses the signal-to-noise ratio and Section 5.7 analyzes in which way the measured absorption
coefficients are distorted by the presence of harmonics in the x-ray beam and pinholes in the
sample. Section 5.8 describes how the pressure-volume calibration curves for 77K are obtained

from those at room temperature.

A fair amount of EXAFS data analysis has been covered in this work (see Chapter 6 in
particular). This is so because EXAFS data analysis is still a topic of discussion as evidenced by a
recent report [16]. The data analysis is not straightforward and if one is not careful one may obtain
wrong results. A further reason for presenting the data-analysis procedure is to enable the reader to
follow in detail how the measured data is modified untit the final result is obtained (Sections 6.1 to
6.9). These sections can be omitted on a first reading. The remaining sections should not be
skipped because they contain information not so readily known. Section 6.10 describes in k- and in
R-space the fitting procedure and how 2 is evaluated. Section 6.11 treats the beating of two
closely-spaced coordination shells by analyzing the behaviour of the derivative of the EXAFS phase
shift with respect to the wave vector k, rather than by analyzing the phase shift itself. Sections 6.12
and 6.13 describe the determination of the valence of the Sm atoms. They refer to previous work on
this subject [17]. Finally, Section 6.14 describes a fast new method for obtaining the pressure from
normalized EXAFS datasets.

The remaining four chapters are the most important ones: Chapter 7 contains the resulits
obtained for SmSe and Chapter 8 contains those obtained for SmS. Chapter 9 contains a discussion

of these results while Chapter 10 is a summary of this work.



Chapter 2: The EXAFS Equation

2.1 The EXAFS Formula

The EXAFS spectrum for a system consisting of one species is given by the following
expression [5, 18, 19]:

oo

xK)=4nv Rl S2(K) If(,m)] - J g(R) e~2R/A(K) 512' sin(2kR+3(k)+3p(K)) R2dR . (2.1)

Here v is the number density, which is defined as the average number of atoms per unit volume.
f(k,7)| and &, (k) are the magnitude and phase of the plane-wave compiex backscattering amplitude
f(k,x) of an atom located a distance R away from the central (absorbing) atom. In the plane-wave
approximation the backscattering amplitude and the phase shift have no R-dependence. However,
when curved-wave theory is included and expressed as an effective (complex) scattering amplitude
then an R-dependence is introduced. This is discussed in Section 3.4 of the next chapter. Multiple
scattering, which can modify amplitude and phase, is not considered in this thesis. 3.(k) is the
central-atom phase shift which for K- or L-edge EXAFS is given by 8.(k) = 2 34(k}-m . 84(K) is the [=1
partial-wave phase shift (see Sections 3.4 and 3.5). For L;- or L|;-edge EXAFS the central-atom
phase shift is equal to 2 8y(k) or 2 85(k) where 5o(k) and 55(k) are the /=0 and /=2 partial-wave phase
shifts, respectively. e 2R/AX) is a damping term resulting from the mean free path A(k) and Sg(k) isa
slowly-varying dimensionless function of k which describes the reduction of the EXAFS signal due to
multielectron excitations [20, 21]. The values of Sg(k) are 0.7, approximately. g(R) is the radial
distribution function which describes the R-dependence of the number density, averaged over a
long period of time. g(R) is normalized such that

oo

N=4nv gg(R) R2dR , (2.2)

where N = ZN]' is the total number of atoms in the system. In an ideal solid (no disorder) the atoms
can be grouped in coordination shells around the central atom and the radial distribution function

becomes:



N.
g(R) = Z m- 3(R-R) . (2.3)

I

Nj is the number of atoms in the jth coordination shell.

A more realistic description of a solid is obtained by assuming broadened peaks rather than

d-functions. With Gaussian peaks, located at R;, we obtain for g(R):

N 1
4nR2y o]-‘/21t

g(R) = e~(R-R)2/2072 (2.4)

j
Inserting this expression into Eq. (2.1) and writing sin(x) as Im(eX) produces:

oo

2, 1 Ni i 1 _—(R-R:\2/26:2 .= i
(k) = S300) i Ik, 0_12_1t Im el (k) . OJ' 5 e(R-R)21202 6-2R/AK) 6i24R aR
1

(2.5)

Here we have introduced the total phase 8;(k) = 8.(k)+dy(k) . Since the integration cannot be done
analytically, we may expand é in a Taylor's series around Ri' This, however, becomes rather

. 1 . L .
laborious and instead we prefer to approximate R? by an exponential which is tangent to it at Rj:

1 oR-RYVR.
5 o=ye 2(R-R))/R; (2.6)
}

This approximation will lead to the same modification of the phase (see Eq. (2.8)) as found by others

[22, 23]. Inserting (2.6) into Eq. (2.5) yields after some tedious algebra:

_g2p 1 N a-2RYA expl o262 (k2 - (1/R 2
x(k?_So(k) o M)l Zoor e 2R{* exp[-202 (k2 - (1/R; + 1/2)2)]
j
2 -
x Im eid(k) exp[izkni (1 - 2%{j—h/ﬂj + 1/1)) : Iexp (-z2/2oi2)dz

~Rj+20j2(1/Rj+1/A)~2ikoj2

2.7)
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Values for oj are of the order of 0.1 A. This is much less than a typical coordination-shell radius Ri and
because Ri itself is much less than the mean free path A, the lower limit of integration can be replaced
by R;in Eq. (2.7). Since the integrand becomes very small at |z} =30;=0.3 A << R; we can set the

lower limit to — . Then the integral becomes oi\l 2n . After taking the imaginary part we have:

1K) = If(k.1t)| - 2 EJQ e"2R{* exp[-202 (k2 - (1/R; + 1/1)2)]
J

x sin(2kRi + 8y(k) — 4ko;2 (1/R; + 1/x)) . (2.8)

If we assume gj << Ri << A then we get the standard EXAFS formula for a one-component system:

R.

1K) = S2() % If(k.1)| - E EJQ e=20j2k2 g=2R}/A sin( 2R + 81(K)) - (29)
. )
J

The new term, 9'2012“2 , that we now have obtained is the EXAFS Debye-Waller factor which is a

measure of static and dynamic disorder (see Section 2.4).

From the condition Rj << A we conclude that Eq. (2.9) will not be reliable near the minimum of

the mean free path.

2.2 Obtaining g(R) from x(k)

Eq. (2.1) suggests that we could obtain g(R) by inversion of the integral with the help of the
Fourier transform. Practically the integration will be performed only over a finite interval of positive
k-values and possibly some form of apodization will be used. We theretore include here a window

function w(k—Kg), which is centered at kg, and obtain a broadening in R-space:

FT(w(k—q) ——XU—— e®(K)) = =L fwik—g )—XU—" k) gidt(k) o*i2kR" gk
20 ikl N 9 Mk
JdR' R R') ei2ko(R-R) Jdk __kx(k)  gigy(k) gi2kR"

So(K) IHk.m)| (2.10)

—co



Here W(R) is the Fourier transform of w(k). w(k) and W(R) are both real and even. We now write sin(x)

eix — e—ix
2i

A(k) — Aq . This yields:

in Eq. (2.1) as and assume for simplicity that the mean free path is independent of k, i.e.

oo oo

FT(w(k—*o) _2inh)_eiat<k>) =i2Vn v jdn' W(R=R") ei2ko(R-R") jdg-' g(R") e2R"/Ag
So(K) If(k,m)| - 0

oo

x fdk (ei2k(R'—R") — ei28y(k) ei2k(R'+R")) . (2.11)

—oo

For analytical simplicity we make the assumption that the total phase &;(k) can be approximated by a

straight line. This is a reasonable approximation over limited ranges of k it k > 6 A~1 . Hence we write:

&(K) =pg +P1 K, py<0. (2.12)
Using
[ei2kR dk = 1 8(R) (2.13)

—oo

we thus obtain:

oo oo

FT(w(k—o) 2—”‘5)—&5:(")) =i2Vn v jdn' W(R-R') ei2ko(R-R") J'dn" g9(R") e=2R"/Ag
Solk) If(k.m)l - 0

x [k (ei2K(R-R") _ gi2pg gi2k(R'+R"+py))

oo oo

=i2aVn v IdR' W(R-R') ei2ko(R-R") J'dnv- g(R") e=2R"/Ag
0

—oo

x (8(R"-R') - €i2P0 5(R"+R'+p1)) .

The second &-function peaks at a negative distance where g(R) is zero. Therefore this term
vanishes. (The negative value of p, is insufficient to make this d-function peak at a positive value.)

We then have:



oo

FT(w(k—q) —2k—xm—ei51<k))=i2n\/7: v de' W(R-R') ei2ko(R-R) g(R") =2R"Ag
So (k) (k)| - 214

We see that the pair distribution function g(R), together with the mean free path term, is convolved
with the Fourier transform of the k-space window function. Since deconvolution methods are

unreliable no attempt will be made at deconvolution.

If we employ the rectangular window of width Ak =k, — ki for maximum resolution we

obtain with

_ Ak sin(RAK)
WR)= = ZRak

FT(wikokg) —~ XKL &) = v . [dR g(R) 6 2Fo

5 ei2kmax(R—R')_giZKmin(R-R))
So (k) If(k,m)| —o

(2.15)

1
A

The imaginary part of Eq. (2.15) is given by:

Im FT(w(k—kq) _2um__ eidk) =
Sg(K) [f(k.m)|

nv- [dR g(R) e 2R7g RI—R,(sin(2kmax(R-—R'))—sin(2kmin(R—R'))) .

If Kmin =0, we obtain:

$iN(2K a5 (R—RY))
R-R'

Im FT(wik—kg) — XKL gi&(K)) = v [dR g(R) e 2R"A

2 (2.16)
Se(K) It(k,m)] —~

As Kmpax — o, the function sin(2kmax(R—R'))/ (R—R") approaches = 8(R—R) and the integral
becomes equalto = g(R) 62”0 . It is therefore essential that ko, =0 and k.., become as large

as possible. For this calculation a rectangular window function was assumed which, however, has the

disadvantage that large sidelobes are produced when a Fourier transform is performed. It was also

assumed here that the mean free path is independent of k.



2.3 The Cumulant Expansion

A mathematical model for the radial distribution function is the expansion in cumulants [22]. This
method yields the moments of g(R) e 2R/MK) and provides the correction terms to the amplitude

and phase due to disorder.
Using Eq. (2.1) we can write:

1K) = 4y S2K) [fiom)| Im <eidi(k) gi2kR> (2.17)

k°(

where the brackets signify the following average:

<t(R)> = B(K)- ff(R) g(R) e"2R/AK) 4R . (2.18)
0
The normalization constant B(k) is calculated from:
B! = fg(n) e~2R/AK) dR | (2.19)
0
Egs. (2.2) and (2.18) can be employed to obtain an expression for the number density v:

dnv = N . (2.20)

B(k)—1 < R2 g2R/AK) >

Following Ref. 24 we can express y (k) either in terms of the moments or of the cumulants of this

distribution:

Im <eidt(k) gizkR> = im ei&(k).z # (i2k)" <RM>
n=0

=Im exp | i5,(k) + Z # (i2K)" C,,

N=1
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(@‘))—, (2k)2" Cy

n=1

= exp

x Imexp| i8(k) + i- ((?nl—r (2k)2"71 Cpp_y

N=1

—-1\n
- exp Z %))—!(ZK)Z" Cop | sin| 8y(k) + ((z—n%), (2k)27~1 Cpp_y
N=

Nm=1

The cumulants can be expressed in terms of the moments of the distribution:

Cy=<R>

C, = <R2> - <R>?

Cq = <R3> -3 <R> <R2> + 2 <R>3

C4 = <R%> -3 <R2>2_ 4 <R> <R3> + 12 <R>2 <R?> - 6 <R>* (2.21)
etc.

These equations can be inverted:

<R> =C4

<R2> = Co+ C12

<R3>=C3+3C4Cy+C43

<R%> =C,4+4C1Cq +6C42C, +3Cx2 +Cy? (2.22)

etc.

For x(k) we obtain:

12
1 =anv L s30 nkmlexp] Y, (ot (202" Cop
N=1

x sin| 3y(k) + 2 2n—1)] (2k)2n—1 Con-1

N=1
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Employing Eq. (2.20) we get:

N $2(K) Jt(k,m)|

%K) = exp(-2k2C; + 2 K4C, + )

Kk B(k)—1 < R2 g2R/AK) >

x sin(8y(k) + 2kCy — §k3c3+ L) (2.23)
Thus the even cumulants modify the amplitude and the odd ones modify the phase.

According to the above, C1 = <R> . In the limit of small disorder the pair distribution function can
be approximated by a Gaussian and C, = 02 and all higher-order cumulants vanish. In this case, if
<R2 e2R/MK) > can be approximated by R2 e2R/AK) | Eq. (2.23) reduces to
Eq. (2.9) for one single shell. (B(k) is a slowly varying parameter.)

The cumulant expansion is an expansion about k = 0 . The cumulant coefficients C,, are
obtained by fitting x(k) over a finite interval Kpnin < K < Kynay - According to Section 2.2, it is desirable
that k., = 0 in order to determine g(R). Practically, however, kn,, will aways have a fintte value. The
determined cumulant coefficients will therefore depend on the fitting interval. Thus the C,, are not
unique. The cumulant expansion, however, provides a convenient functional form to extrapolate to
Kmin = 0 . One can then use the Splice Method [19, 23] to obtain g(R). The method will work if

multiple scattering does not occur.

2.4 The EXAFS Debye-Waller Factor

2k2

The EXAFS Debye-Waller factor is given by e ™20 where 012 is the mean-square relative

displacement which is defined as:

o2 = <(Rj - <R>12> . (2.24)

Here the distances are referred to the central atom which is considered as being at rest. According to
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Refs. 23 and 25 one can express sz in terms of the phonon spectrum as:

oo

__h f[do
T 4nu [0

pi(@) coth( 12— ) (2.25)

2
% 4am kgT

Here u is the reduced mass of the absorber backscatterer pair and pj(m) is the projected density of
phonon modes, i.e. the density of modes assuming the central atom is at rest. In many cases this
density can be approximated by a single 8-function, S(m—ij), where wg; is the Einstein frequency

for coordination shell j. Then 01-2 is given by:

2_ h 1 _hogj
9 = 4np ©f; h( 4n kBT) ' (2.26)

For temperatures above approximately the Einstein temperature 01-2 increases lineary with T. For
lower temperatures the behaviour is parabolic with a limiting value ojle_o = I::—ﬁ ﬁE—l . In some cases
the Einstein frequency OF; (or Einstein temperature eEj) can be estimated from force constants but
it is usually determined from a fit to ojz(T). A comparison with results of Raman measurements
showed close agreement of the Einstein frequencies as obtained from EXAFS with the average of
the symmetrical stretching mode frequencies [26]. The force constant of an absorber backscatterer

pair, linked by a bond, can then be estimated from fg=p mé )

Values for sz generally increase with distance from the central atom.

Frequently the Einstein model is employed (e.g., for tetrahedrally coordinated

semiconductors), but for metals the Debye model may be a better approximation.

2.5 Many Body Effects

Many body effects cause the decay of the excited state of the absorbing atom. They are
manifest in the finite mean free path A(k) which results from the excitation of plasmons, electron-
electron and electron-phonon interactions, and from the creation of electron-hole pairs.
Multielectron excitations also play a role in filling up the core hole and they produce a k-independent

overall reduction of the EXAFS signal. Of these effects the EXAFS equation only contains the one
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due to the mean free path. The mean free path was investigated as a function of energy by Lindau
and Spicer [27] and found to follow a “universal” curve for many elements and compounds. A more
thorough analysis was presented by Seah and Dench [28]. They investigated elements and
inorganic compounds and found curves for the two classes when they express A as a multiple of the
number of monolayers. Converting monolayers into lengths involves the density. Therefore their
result becomes density dependent. Besides, an extra factor of 2 is included because Seah and
Dench's values refer to intensities whereas the EXAFS function contains amplitudes [29]. The result

is then:

o B JE
)"Z(VWEZ + m\/vj. (2.27)

Here a and B have the following values:

a= 538(eV)2 and P =041 (eVA)"2 forelements and
a=2170 (eV)2 and PB=0.72 (eV A"12 forinorganic compounds.

v is the number density, i.e. the number of atoms per unit volume, and E is the energy of the

photoelectron.

For inorganic compounds we found from preliminary curve fits that the mean free path
according to Eq. (2.27) leads to coordination numbers that are too small, implying that Sﬁ equals 0.5.
Seah and Dench [28] investigated only ten inorganic compounds and stated regarding the validity of
their results that “The experiments to determine inelastic mean free paths are very difficult and it is
usually not possible to assess the experimental errors since the most important information, the
adsorbate morphology, cannot usually be monitored independently.” and that “Measurements for
compounds by several different laboratories would enable the general differences in inelastic mean
free path magnitude between elements and inorganic compounds to be clarified.”. We therefore
decided to employ for compounds the values a =538 (eV)2 and B =0.41 (eV A)™1/2,

corresponding to elements. !

1 Atter completion of the thesis, the program FEFF by Rehr et al. became available. The mean free path calculated
for Smse using FEFF was close to the vaiue for copper shown in Fig. 2.1.
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Detining
Y= 2—:“; (5%)2 =3.80998... eV A2 =381 eV A? (2.28)
and
n= 2_1[? Vi1o/y Vv (2.29)

we obtain using E = Yk :

I
l:%(n% v 10/y5 V—:(s— ) . (2.30)

A as a function of k (or E) exhibits a minimum at some k =k, . Differentiating with respect to k we

arrive at the following relation for ny:

o where Ay = Alkg) - (2.31)

n= Min

&

The term k/n dominates A for k > 6 A1 (= 150 eV). For n we obtain:

Ny = 0576 A2
"RLCI = 0.365A2
NSmse =  0.362 A2
NSms = 0383A72.

For RbCl we have used for the calculation of 1 its number density of 34.063 - 1073 A3 just after the

NaCl-to-CsCl phase transition occuring at 5.2 kbar.

The following figure shows the mean free path A for some materials that are of interest in this

work. The curves are calculated using Eq. (2.27) or (2.30). They are similar for all substances.



15
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Fig. 2.1: Inelastic mean free path A as @ function of k according to Seah and Dench [28] and
including a factor of 2 to convert from intensities to amplitudes. The parameters o and B were chosen

as o =538 (eV)2 and B =041 (eVA)12.

The finite mean free path corresponds to a lifetime 14 of the photoelectron:

Ty = &\(/51 =—2"h—mell((‘-‘1 , (2.32)

For k>6A™1 we have AKk)= % and 1, becomes independent of k:

2t mg
hn

(2.33)

Tg =

As a consequence the finite lifetime 1, resulting from many body effects can be incorporated into
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the single-particle EXAFS formula by a Lorentzian broadening with a width Iy according to

Heisenberg's uncertainty principle:

1 [g = Won . (2.34)
2

T = hf T _2yn = n762eVA2 (2.35)
e

We obtain for I'g:

re’cu = 439 eV

I‘e,RbC| = 2.78 eV

FosmsSe = 276 eV

re'sms = 292eV .

It is instructive to relate the mean free path in the form A(k) = k/n to an imaginary component
=V, of the scattering potential [30]. This gives rise to an imaginary component k;, of the wave

vector. We have:

E+iVig=y(k+ikm2=yKk —knd) +i2Ykkpmp .

We will assume that V|, << E and therefore ki, <<k.Then we get:

Vlm
2 v k-~

E=vk2and Vip =2 vkKm, OF ki, = (2.36)

Combining ei2kR and e 2R/MK) yields e2R(k+VA) Thus 1/A can be interpreted as the imaginary

part of the wave vector:

Kim = z—k) , (2.37)

Using Eq. (2.36) we obtain:

5

(2.38)

=3
[l
N

VIm
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Now we can rewrite Eq. (2.35) as I'g = V|, in accordance with the assumption V|, << E.

The Lorentzian broadening, which is described by

T2 (2.39)

1
"ol = 1 B2 r 22

produces in the time domain a muttiplication with the Fourier transform of wg(E):

oo

, I
FTWe(E)) = | wo(E) e/E12W/N dE = exp(— Shian |t |)=eﬂ‘V<21e>=e*/<21e>: t>0 .

—co

(2.40)

We can relate time with distance by noting that the photoelectron travels the distance 2R in time
t=2R/v . For 1, we can write: 14 = % A(K)/v . The factor 1/2 is necessary because A(k) is the EXAFS
mean free path, which refers to amplitudes. We thus obtain for the factor that multiplies the radial

distribution function: e 2R/AK)

For very small values of k the k™4-term in Eq. (2.30) becomes important and the width '
becomes a function of k (or E). Thus wg(E) is not Lorentzian anymore. We will not consider the
Fourier transform of this function. At low k we will use instead the above expression e 2F/A) with

A(k) as given by Eq. (2.30).

The lifetime of the core hole is finite because the hole is filled through radiative and Auger
transitions. If the core hole is not in the K-shell then Coster-Kronig transitions, which shorten the
lifetime considerably, also come into play. The finite core-hole lifetime results in a Lorentzian

broadening of the absorption spectrum with a width I',.:

re/2 (2.41)

1
wc(E) = E E2+_(——rc/2)2 .

Values for I'; can be found in Refs. 31 to 33. From Ref. 31 we obtain:
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fecu = 166V
e = 33ev
lhse = 256V
rt',Sm = 55ev
rt”,Sm =  44ev
rt“'_Sm = 36eV.

We see that the core-hole width increases with binding energy, thus corresponding to a
decrease of core-hole lifetime. We also note that the core-hole widths I', are comparable to the

widths Iy describing the finite lifetime of the photoelectron.

For the sake of completeness, atthough not needed here, the following formula to calculate the

width of a core hole in the K-shell of elements with Z > 40 is mentioned [34]:
N 240=17323%8 108 v . (2.42)

The twofold convolution of the EXAFS spectrum with the Lorentzians Egs. (2.39) and (2.41) is
equivalent to the convolution with a single Lorentzian of width T'y + T . The core-hole width T is
obviously independent of k as is the case for I', above ~6 A~1, Theretore we can absorb the core-

hole width in the mean free path constant n using Eq. (2.35)
2y f=Tg+T,, (2.43)
where v is the constant defined in Eq. (2.28).

Thus, for k> 6 A~1 the contributions from the finite mean free path as weli as from the finite
core-hole lifetime can both be accommodated in the modified mean free path constant 7 of
Eq. (2.43). If this is done the EXAFS equation, Eq. (2.1), takes these important many body effects

into account.
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Chapter 3: Amplitudes and Phases

In this chapter the calculation of scattering amplitudes and phases will be presented. it is
convenient for this purpose to use atomic units. This will be done with the exception of Section 3.1
where relativistic units are employed. For a description of units see Appendix A. EXAFS amplitudes
and phases have already been calculated by Teo and Lee [11]in the plane-wave approximation. The

present calculation was motivated for three reasons:

i)  Application of the curved-wave formalism of Schaich [7] and McKale [8-10].
This requires knowledge of the partial-wave phase shifts ;(k) which are not listed in Teo and
Lee's work.

i) Extension of the k-space interval for amplitudes and phases.
Teo and Lee's tabulations of amplitudes and phases extend from ki, = 3.78 A™! to
Kmax = 19.12 A~1 while in the present work the scattering amplitudes and phases are
calculated for an interval of kpin=1.5A7" to kg =21 A1,

i} Inclusion of crystal potentials.
It is desirable to include in the calculation crystal potentials to describe a solid, elemental or
compound, rather than employing potentials for single atoms. We will employ the muffin-tin

approximation for the crystal potential.

The procedure for calculating amplitudes and phases is briefly as follows: First atomic charge
densities are calculated, then a muffin-tin potential is formed, for which the wave equation is solved.
From the wave function the logarithmic derivative is calculated which immediately leads to the phase
shifts. An alternative approach, to be tried in the future, is that of calculating the phase shifts directly
from the potential, i.e. without logarithmic derivatives, according to the variabie-phase method
{35, 36).

3.1 Calculation of Atomic Charge Densities

Atomic charge densities are calculated from the time-independent Dirac equation:
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Hy=(ap+B+V({)y=Wy . (3.1)

Here W is the energy including the rest energy. B and the three components of a are 4 x 4 matrices

[37] and y is a four-component column vector. The polar form of the Dirac equation is:

|
Q
-~
~
Sy
+
- |"‘
TN

- K) +B + V(r)}\y=W\y. (3.2)

Here a,s% (ot) and K = (o1 + 1) and the wavefunction is [38):

r Y51—1/2 3

gu(n) (V4ps1/2)V2y 415
1/2
() (1-pa1/2)1V2y g o¥h*

W}l= S (3.3)
x N2l + 1 _ifK(r)(1—u+1/2)”2x+1/2Y7_1/2

. +1/2
i fi(r) (14n+1/2) V25 _q oYY

J
Wt is an eigenfunction of the Hamiltonian and also an eigenfunction of the operators 12, jz» and K with
eigenvalues j(j+1) , 1, and —x, respectively. p runs from —jto +j . x is a non-zero integer and is given
by:

K=+ 1)~ (+1/22 . (3.4)

For electrons the two upper components of wt are much larger than the lower ones. (The
opposite is true for positrons.) Thus g,(r) is called the “large component” while f(r) is dubbed the
“small component”. Inserting Eq. (3.3) into Eq. (3.2) produces the following two coupled differential

equations for the radial functions g=g,(r) and f=1.(r):

d
ar =W-vent-—Ktlg
(3.5)

df k-1
& T - (W-V-=1)g .
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These radial wave functions are normalized such that

oo

gr2 (g2 +12)dr =1 (3.6)

and the local charge density is calculated by adding the contributions of each electron:

N

o0 = oz Y [oin +ifn). (3.7)

i=1

In order to calculate the wave functions of a system of more than one electron we have to solve

the Hartree-Fock equations:

N
2
Hy v (ry) + z Jw;<r2> Wrz) = 432 |y
k=1

N
- [f Wi(r2) ¥ (r2) % dafz:l‘Vk(H) = Ejwj(ry) j=1..N .

k=1
(3.8)

The integrations include summing over the spins. Hq is the Hamiltonian of Eq. (3.1) for an electron at
position ry. ry» is its distance to another electron at r,. The first summation on the feft-hand side of
Eq. (3.8) is the average Hartree potential, which is the Coulomb energy of an electron at ry caused
by all electrons. This means that the electron at rq is acting on itselt too. The second summation, the
exchange term, corrects this deficiency by keeping electrons of like spins apart.This summation
results from the use of antisymmetrized wave functions and it leads to a reduction of electrons of like
spin in the vicinity of a given electron, called the “exchange-correlation hole”. Besides this exchange
correlation, all electrons are subject to their mutual Coulomb repulsion giving rise to a “Coulomb-
correlation hole”. The Hartree-Fock equations, however, do not include this latter eftect. For

electrons of like spin, which are already kept apart, Coulomb correlation is not very important but the
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effect is larger for electrons of unlike spin. Eqs. (3.8) hold only for filled shells. Open shells, which

exhibit a multiplicity of energy levels greater than one, are much more complicated to caliculate.

The exchange term constitutes the main difficulty in solving the Hartree-Fock equations (3.8)
because the number of exchange integrals that must be computed increases rapidly with the
number of occupied orbitals. Slater [39] found that the exchange potential can be simplified by
proper averaging. Furthermore, he applied the result to a free-electron gas and then obtained the

following approximation for the exchange potential (see Ref. 40 for a discussion):

N
2 1/3
Vexch. (F) wj (ry) = - E [f Vik(r2) v (r2) "2 da’z]\l’k(ﬁ) = _6(83_n P(f1)) v (ry) -
ka1

p(rqy) is the local charge density given by Eq. (3.7). This means that the exchange potential due to
Slater replaces the non-local exchange appearing in the Hartree-Fock equations by a local
exchange. This is not without problems because one cannot always expect a local potential to
correctly model the true exchange [41]. The exchange potential should also be energy dependent
in order to produce good scattering phases [42, 43]. Nevertheless Slater's exchange potential has
been found quite useful. It is a good approximation for low photoelectron energies [3] as confirmed
by many bandstructure calculations. Note that this exchange potential is attractive. Slater's exchange
potential formed the basis of the Xa method [44] where the exchange appears as

O Voych. With o =2/3 and Ooptimized = 0.7 - Values of o have been calculated for a number of
elements [45]. The results do not differ much from Qoptimized- Eqgs. (3.8) employing (3.9) are also

referred to as the “Hartree-Fock-Slater” equations [40].

In this work only spherically-symmetric potentials will be considered. Therefore rq can be
replaced by r. Slater's form of the exchange energy vanishes for large values of r. Consequently, an
electron far away from the nucleus would experience no force acting on it whereas it should be
subjected to the attractive force of the nucleus minus the charge of N — 1 electrons, i.e. one
elementary charge. In order to remedy this discrepancy we modify the exchange potential of Eq.

(3.9) according to Latter [40, 46):
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Vexch. (1) r<fo
Voxch. (N = 2 : (3.10)
-7 ; r2rg,
, - , 2. ) 2
o is the position where the function - intersects Vexch. (1) . = Vaxch. (fo) - (3.11)
(o)

The modified potential Vexch_ (r) has a discontinuous slope at r,, but this does not result in

discontinuities of the radial wave functions or their first and second derivatives at r,,.

The calculations were performed using a FORTRAN program, written by J.P. Desclaux (see also
Ref. 47) and obtained from J.E. Mdiller. It performs self-consistent Dirac-Hartree-Fock-Slater
calculations. Initial energy eigenvalues are obtained from Ref. 40. Although later on we will confine
ourselves to non-relativistic results, it is still advisable to calculate atomic charge densities

relativistically, particularly those for the heavier atoms.

For descriptions of multi-configuration Hartree-Fock codes see Refs. 48 to 51.

3.2 Muffin-Tin Potentials

We model the crystal potential by placing non-intersecting spheres around each atom. Inside
these spheres the potential is assumed to be spherically symmetric. In the interstitial region between
the spheres the potential is constant. This is the well-known muffin-tin model of a crystal potential. it
becomes a better approximation as the spheres fill up the space. Therefore crystals of fcc, hep, bec,
or sc type are good candidates, whereas open structures, like diamond, cannot be described well by
muffin-tin models. The maximum filling factors for these crystal structures are: 0.74 (fcc, ideal hep),
0.68 (bcc), 0.52 (sc), but only 0.34 for diamond. The NaCl structure, in which the Sm-monochalco-
genides crystallize, has the same filling factor as the sc structure if equal spheres are assumed. Even
in a dense structure, like fcc, the muffin-tin potential is not a good approximation to the real potential
along those directions in the crystal lattice where the (linear) density of muffin-tin spheres is low, for

example the [111]-direction in the fcc structure. It is convenient to set the constant interstitial
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potential equal to zero. The energy scale is then referred to the so called “muffin-tin zero”. A typical

mutfin-tin potential is sketched in Fig. 3.1.

Ato{m A Ato'Ln B Vacuum Level

Muffin-Tin Zero

Fig. 3.1: Muffin-tin potential along the [110]-direction in the fcc structure. The distance between
the two atoms is (RMT’ A+ RMT,B) V2 . Inside each atomic sphere the potential is shifted by a
constant amount. The muftin-tin radii have been chosen such that the unshifted atomic potentials

would intersect along the [100]-direction. Other choices of the radii are possible [52).

It is desirable to calculate the potential self-consistently. Satisfactory results can also be
obtained if one constructs the muftfin-tin potential in one of several non-self-consistent ways. One
procedure is called the Mattheiss prescription [53], in which the potential is constructed in the
following way [54]. First the atomic charge densities are calculated self-consistently and, preferably,
relativistically. Then Poisson’s equation is solved to determine the atomic potentials. There can be
different types of atoms present and we call the one whose mutfin-tin contribution we are calculating
the central atom. To the potential of the central atom we now have to add the contributions from the
neighbouring atoms. This is done by spherically averaging the atomic potentials of the neighbours

with respect to the central atom and then adding the result to the central-atom potential:

Véouq_ (N =Veontre (N + 2 Vp () . (3.12)
n

Here the sum is over the potential tails of the neighbouring atoms, spherically averaged with respect
to the central atom. In a crystalline solid the neighbouring atoms can be grouped in coordination

shells around the central atom. For solids consisting of different types of atoms it is possible for a
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coordination shell to contain atoms of different types. For the NaCl structure, however, it turns out
that this is not the case. All shells are “pure”. The same applies to the CsCl structure [55, 56]. The

radii and coordination numbers have been tabulated for various crystal structures [54, 57-59].

In the present work only the first 15 coordination shells are considered in the calculation.
(Loucks [54] employs 14 shells and Rehr et al. [60] use 34 coordination shells in a calculation for Cu.)
The effect of higher coordination shells is to flatten the crystal potential between the atoms, an effect

which to some extent the muftin-tin potential already takes care of due to its construction.

Eq. (3.12) constitutes the Coulombic part of the potential. The other part comes from the

exchange potential:
3 1/3
Vexch. (N =-6 (g p(r)) , (3.13)

P () = Pcontre (1) + Z Pn (N . (3.14)
n

We have again employed Slater's exchange potential. This is necessary for consistency. The effect
of the exchange potential is sizeable in comparison with the cohesive energy and using different
formulae for exchange for the calculation of charge density and muftin-tin potential would produce
the wrong result. The sum in Eq. (3.14) is again over the contributions of the neighbours. We have
not modified the exchange potential as we did in Eq. (3.10) because now we calculate an
r-dependent exchange potential only for r < Ryt << < . Note that unlike our procedure for the
Coulombic part we now spherically average the charge density instead of the atomic potential. This,
by the way, constitutes an approximation to Slater's exchange because only the spherically-

symmetric part of the charge density is involved.

The final result for the potential with respect to the central atom is then:

Viotal (f) = Veoul, (N + Vexch, (1) - (3.15)
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Now we have to determine the value of the constant potential in the interstitial region. This can
be done in two ways: One consists of averaging the spherically-symmetric potential at a given site in
the region from r = Ryt to r = Rysg , where Ryt is the muffin-tin radius and Ryg the Wigner-Seitz
radius [54]. The other, more precise, way consists of calculating the average potential by three-
dimensional integration over the interstitial region. In the present work both methods are employed.
For elemental solids the potential is calculated by the first method whereas for compounds, like
SmSe, we employ the second method which allows us to calculate better the value of the interior
potential with respect to the muffin-tin constant, i.e. the jump discontinuity of the potential at Ryt.
This discontinuity is adjusted such that the averaged interstitial potential becomes zero. Then the
potential inside a muffin-tin sphere corresponds to the electronic charge density contained within
the sphere. The value AV; of the discontinuity for an atom of type i at Ryt ; is calculated as indicated

in Ref. 61:

oxt. oxt.
AV: = — \Y) r . .
v' <VCOU| (r)> Surface'i < Coul. ( )> ext. Volume (3 16)

The first term is the average of the interstitial, or external, Coulomb potential over the surface of
muffin-tin sphere i and the second term is the average of the external Coulomb potential over the

volume of the interstitial region.

The calculation of the average external Coulomb potential can be performed by reducing the
present problem to the so called “Ewald problem” [62). Ewald calculated the potential of point
charges embedded in a constant charge density of opposite polarity such that the net charge was
Zero. We can express the present case as an Ewald problem by calculating the average interstitial
charge density and continuing it into the muffin-tin spheres. We will consider here only the NaCl
crystal structure. The charge contained inside a given muffin-tin sphere is, in units of the elementary

charge:

Rmi
Quri=Z - Of4n 2p(rydr ;  i=12. (3.17)
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i labels the the two different types of atoms in the NaCl unit cell. The interstitial charge density p for

this structure is:

QmT,1 + QMmT2

p = <p®Xt (r)> = . 3.18
P P Volume _aE 4 R3 R3 ( )
4 ~ 3 ( MT,1 * MT2)
ais the lattice constant. We now write for the charge inside the muffin-tin spheres:
4 3 — 4 3
QMT,i=(QMT,i + 3 Rwmi P) ~73 RwTiP - (3.19)

The term outside the brackets is the uniform background of electronic charge extended into the
muffin tin. Note that § was defined positive. The term in brackets will be called here the Ewald charge

Qewalg,i- It is the value of the point charge located at the position of an atom of type i.

4n 3
Qewald,i = QMT,i+ 3 RymiP - (3.20)

The Ewald problem for the case of the fcc structure has been described in Ref. 63 (see also
Ref. 64). The result for the NaCl structure can be obtained by superposition of two fcc results,
shifted by a/2 with respect to each other along the y-axis, say. The Coulomb potential of these
charges is given by Ref. 63, p. 310:

Veoul, () = 2 Qewak (0101 + 02(0)| o 0 o + 2 Qa2 (¢100) + 02(0) [ ) 0 @21)
with
atin =2+ 5 (1) + Ao 3.22)

and
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a is the lattice constant and 1, m, n are the direction cosines: 1=

The constants are: Aqg = —4.584850, A4 =-18.687, Ag=-1002.05, Ag=2326.1 . (3.25)

The first term in Eq. (3.21) is the Coulomb potential of a charge Qgy,/q 1 located at (0,0,0) and the
second term is the potential of a charge Qgyaid,2 at (0,a/2,0) . The factor two results from the fact
that we are using atomic units rather than cgs units as in Ref. 63. Now that the Coulomb potentials
are known the surface and volume averages for Eq. (3.16) can be calculated. These averages need
only be performed over 1/48 of an fcc Wigner-Seitz cell centered at (0,0,0). The calculation is
complicated by the fact that the second term in EqQ. (3.21) is not centered with respect to the sphere
over which the surface average is to be performed. Therefore the integration is carried out

numerically. The discontinuity AV; at the muffin-tin radius of atom i can be expressed as:
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AVi = Qewaid,1 2[<(¢1(r) ¥ ¢2(r))|(00 °)>

Surface.i

_ <(¢1(r) + ¢2(’))|(o,o.0)>

ext. Volume :|

+ Qewald,2 2[<(¢’1 (r) + ¢2(r))|(0 2/2,0)>

Surface,i

(3.26)

- <(¢1(r) * ¢2(r))'(0,a/2,0)> ext. Volume }

Now we have to consider the exchange potential. In the interstitial region we calculate it as:
oxt. 3 __\13
Vexch' =-6 (8_15 ) ) (3.27)

where p is given by Eq. (3.18). Since the exterior exchange potential is taken to be constant one can
simply subtract it from the total potential inside and outside the spheres. it does not contribute to the

jump discontinuity at the muffin-tin radius.

The result for the average interstitial potential is, taking into account Coulomb- and exchange-
contributions:
Y ext.

Vext. = V(RMT,) — AV + V,

loxch. - (3.28)

Vg, is subtracted from the mutfin-tin potential then the potential in the interstitial, or external,

region vanishes. Within the i-type spheres the shifted potential is:

- oxt.
VMT.i (n= Vtotal,i () —Vext. = Vtotal,i (- V(RMT,i) +AVi- Vgxch_ . (3.29)

Vto,au (r) is simply the sum of Coulomb- and exchange-potentials, Eq. (3.15). This result should be

compared to Ref. 65, which differs in some respects.
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Although this discussion focussed on a compound solid like NaCl it is of course also valid for an
elemental solid like Cu. For Cu, however, one may use the simplified method mentioned before
where one averages the potential in a shell with inner radius Ryt and outer radius Ryg. For Cu the

results of both methods were similar.

Now we must choose the muffin-tin radius. There is no difficulty in selecting the value of the
muffin-tin radius for an elemental solid because all muffin-tin spheres have the same radius. For
touching spheres their radius simply becomes proportional to the lattice constant a. For the fcc
structure Ryt = % V2 . If the solid consists, however, of different types of atoms then one has to
decide on the respective values of their muffin-tin radii. This will be explained for the NaCl structure.
Essentially, we will determine the radii from the intersection of two potentials centered at the
respective atom sites. These potentials depend, however, on the muffin-tin radius which is not yet
known. Thus we start out with equal spheres and construct muffin-tin potentials for each atom type
according to Eq. (3.29). These potentials are then simply extended beyond their muffin-tin radii in
order to find their point of intersection. This gives a new set of radii. Then we repeat the above
procedure until convergence is achieved. For touching spheres in the NaCl structure we always

have:

Rur,1 + Rur2= 5 - (3.30)

In this case the minimum filling factor o GE = 0.524 (compare sc) occurs when the two radii are equal

to % . The maximum filling factor of g (5 -3 ﬁ) =0.793 occurs when one of the two radii has

its maximum value of % \/5 .

As an alternative to the procedure of determining the muffin-tin radii from the intersection point
of the potentials, which is applied here, it is frequently suggested that the radii be chosen such that
the jump discontinuities AV; become minimal. For SmSe it was found that this leads to one species
haviﬁg a much larger muffin-tin radius than the other, thus approaching the situation where the filling
factor is maximum. If one chooses the muffin-tin radii of Sm and Se according to Norman [52] such
that their ratio is equal to the ratio of the atomic numbers of Sm and Se then one also obtains a much
larger radius for the Sm atoms. It would be interesting to compare scattering amplitudes and phase

shifts for SmSe calculated for different choices of the muffin-tin radii of the Sm and Se atoms.
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Finally we have to take into account that the atomic charge densities and the muffin-tin
potentials are only given for a set of discrete r-values. These are chosen to lie on a grid suggested by

Loucks [54]:

Rj=e88+005(G-1) ; j=1,2,..250 . (3.31)

Loucks' logarithmic grid puts more points in the region near the origin where the potentials are
rapidly varying. The j-scale is thus expanded in that region. To convert to Sl units simply multiply Ri by
agghr- In this work we only choose muffin-tin radii that lie on Loucks’ mesh. This results in cases
where the spheres do not touch, or, conversely, are allowed to overlap slightly. The muffin-tin radii
were selected such as to minimize this discrepancy in a least-squares sense. Obviously, one can
improve on this through interpolation procedures, allowing for r-values that are not on Loucks' grid.
On the other hand, the precise value of the muffin-tin radius for a given lattice constant is not too

critical [66).

With this constraint and according to the method described above, the muffin-tin radii for SmSe

and for Cu were chosen as:

Sm2*Se: a=6.200 A RuTsm2+= 1590 A Ryrge =1512A  (slight overlap)
(1=199) (i=198)

Sm3*Se: a=57A RMT sm3+= 1438 A Ryt ge =1.368A

—_ (i=197) = 196)

Cu: a=361A RmT cu= 1.238 A
(1=194)

Indicated in brackets is the corresponding index j of Loucks' mesh, Eq. (3.31).
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33 I thmic Derivati

in order to match interior and exterior wave functions at the muffin-tin radius one has to require
that the two wave functions have the same value and slope at Ry 1. This must be true independent
of the normalization constant. Therefore one can merely require that for interior and exterior wave
functions the ratio of slope to value, i.e. 1@ %\:}— , be the same at r = Ryy7 . Since this expression
resembles the derivative of log ¥, it is called the logarithmic derivative. This, however, does not imply
that ¥ be always positive. Some of the properties of the logarithmic derivative have been described

in Ref. 61.

At the muffin-tin radius there can be a jump discontinuity of the potential. In this case the
Schrédinger equation is not defined at RyT and the requirement that value and slope of the wave
function be continuous does not foliow directly. Nevertheless it can be shown that these continuity

conditions hold [67].

In this work the logarithmic derivative will always be expressed in the dimensionless form
RuT d¥ o I
DAE,RyT) = ¥ dr |Ryr At the muffin-tin radius the logarithmic derivative will be matched to the

logarithmic derivative for a free electron given by:

f.e. . =
of* € = (2 ) kX o)

K =0 corresponds to the constant value of the interstitial potential. j;(x) is a spherical Bessel function

as defined in Ref. 37.

In order to calculate the logarithmic derivative inside the muffin-tin spheres one has to solve the
radial’Schrddinger equation numerically, starting near r = 0 . Loucks’ mesh begins at
r=Ry=1510"% apohr Where the potential has a value comparable to or bigger than the electronic
rest energy. Hence it becomes necessary to take relativistic effects into account. This is done by
solving the radial Dirac equation instead. As explained in Section 3.1 this means solving the coupled

equations (3.5). These two equations are converted to atomic units by multiplying energies by 2/c2
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and lengths by ¢/2. At the same time one has to keep in mind that W contains the rest energy, that is

W =E + 1. The result is then [54]:

%?‘:(Ec—év+ 1)Cf" Kr+1g, (333)
c% - ";1 ci-(E-V)g . (3.34)

V = V(r) is the potential inside a muffin-tin sphere and E is the energy of the electron, which now
does not include the rest energy. Like Egs. (3.33) and (3.34) the radial Schrédinger equation, too,
can be written as a system of two first-order differential equations. When this is done it can be shown
that Eqs. (3.33) and (3.34) reduce to the non-relativistic case if, besides c — =, the following

relations hold:

j=I+1/2 and x=-1-1 . (3.35)

In the non-relativistic limit g, the large component, approaches the solution of the radial
Schrédinger equation and f goes to zero. The dimensionless logarithmic denvative is therefore

calculated from Eq. (3.33) as:

g§=r(E‘V+ 1)£~'+1. (3.36)

Q |~

This equation has to be evaluated at the muffin-tin radius Ryy7. It is convenient to introduce the two

New variables [54]:

P=rg: Qs=rcf. (3.37)
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Furthermore, we put the abscissa on a logarithmic scale:

X=Inr; rdx=dr (3.38)

and obtain in place of Eqs. (3.33) and (3.34) by using Eq. (3.35):

%=eX(EC‘2V+ 1)Q+(I+1)P (3.39)
A g+na-eE-VP . (3.40)

In terms of the new variables P and Q one obtains for the logarithmic derivative from Eq. (3.36):

- LQ ~ aX E-V .Q
D(EN= ¢ g =e ( o+ 1)P ol (3.41)
(The left-hand side can be written as % %:— -1 but this is not needed here.)

Since we are not interested in effects of the spin we remove the spin-orbit term that

automatically arises from the Dirac equation. In atomic units the spin-orbit interaction has the form:

1dv 1

Voo =2L —

(3.42)

With the choice (3.35) of j and x one obtains 2L-S=1.Using 2m=2 (E - V)/c2 + 1, which is

derived from mc2 = myc? + E -V, one obtains for Vg , expressed as a function of x:

-2
oy dV 1 (2 (E-V
Voo =lo 2xe'c—2(_(_c2——l . 1) . (3.43)

The spin-orbit term will be significant only near the nucleus. Vg  is suppressed by subtracting it
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from V in Egs. (3.39) and (3.40). Since the correction is much less appreciable for Eq. (3.39) it is
applied only to Eq. (3.40). The set of coupled ditferential equations, that is to be solved, is then:

Z 1)Q+(1+1)P, (3.39)

A+ 1Q-eE-VaVeo)P . (3.44)

The logarithmic derivative, Egs. (3.36) and (3.41), remains unchanged.

Note that one can readily obtain a first-order differential equation for the quantity g— which is

directly related to the logarithmic derivative. Combining Egs. (3.39) and (3.44) one obtains:

(%X (g) C O (E-VsVeo)-2( +1) PQ _ X (E 5 v, 1) (g)2 . (3.45)

This Ricatti ditferential equation for -g— is not suitable for numerical integration because g can
develop singularities at certain values of the radial coordinate. We therefore solve the two coupled
first-order equations (3.39) and (3.44) which constitute an initial-value problem. In order to start the
integration it is necessary to have starting values P4, Qq for P and Q. Since the system is
homogeneous one can choose one starting value, Py say, to be arbitrary and determine Qq from
Q= (%)1 P4 . Theretore one needs to know an initial value tor g = %f . The r-integration begins
very close to the nucleus where the potential is Coulomb like:

lim V() = 22 . (3.46)

r-0

In this case the spin-orbit term, Eq. (3.42), becomes:
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-2
Voo (r—0) =z%é(§ ( E + 272) + 1) . (3.47)

For I #0 the spin-orbit term dominates for small r over the Coulomb potential. One determines
then (%) 1 by assuming solutions of Egs. (3.39) and (3.44) in the form of power series in r (similar to

Ref. 37, p. 485). The result is a complicated expression that is omitted here.

However, for the case [ =0, or generally for a mere Coulomb potential, one obtains for the

initial value of the logarithmic derivative to lowest order (Ref. 68, Eq. (5.71)):

(%)1 = 22 = — . (3.48)

The energy dependence of the initial value (%)1 is weak and therefore not taken into account.

The final result does not depend sensitively on the starting values.

Once P4 and Q¢ have been given the integration is started using the fourth-order Runge-Kutta
method [69, 70] for the first six points and then calculating the result for the remaining 244 points of

Loucks' mesh by the Milne Predictor-Corrector method [54, 71].

3.4 Calculation of Amplitudes and Phases

The complex scattering amplitude f can be decomposed into magnitude A and phase ¢. In this
Section we follow EXAFS terminology and call the magnitude of the complex scattering amplitude

simply “arnplitude”.

Amplitude and phase depend on the magnitude k of the photoelectron wave vector and on the
Scattering angle 6. They aiso depend on whether plane or spherical waves are assumed. In the latter
case the scattering is a function of the distance R between emitter and scatterer. For R — « the

results of the curved-wave case approach the plane-wave result. The curved-wave modifications can



37

all be incorporated into amplitude and scattering phase. The central-atom phase 8, remains
unaffected. However, the curved-wave modifications of amplitude and scattering phase depend on
the symmetry of the central-atom phase shift, i.e. on the angular momentum ! of the photoelectron.
In the following the plane-wave and the curved-wave cases are discussed. The equations are written

down for an arbitrary scattering angle 6. For backscattering one has 8 == and Pj(cosn) = (-1 ).

Amplitude and phase are calculated from the tangent of the phase shift which is given by

Ref. 37:
dji(x) '
KRMT gy - DJ(E.R k R
tan&,(k) _ Mngx(X!X=k RMT I( MT) “( MT) ' . (E—VMT)_kz
1
K RmT dx | x=k RmT ~ Dy(E,RmT) ni(k Ryg)
(3.49)

VMT is the constant interstitial potential. The sums that appear in the remainder of this chapter are
from 1 =0 to I =1, . Knowing the muffin-tin radius one can estimate the maximum value kp,,, of k

for a given maximum value I, of I according to Ref. 37, p. 121:

I
Kmax = R’“—;T" . (3.50)

From this equation we can immediately deduce the additional k-space gain Ak for each increase of
Imax by one:
Ak= — | (3.51)

Thus one can divide the k-scale into channels of width Ak, labeled by I.

There are other formulae to estimate kp,,y, for example [60]:

1

NImax Umax*1) I’“ax+§

Ry or (see Section 3.6):  Kpx = Ao

Kmax =
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a) Plane-Waves

From elementary quantum mechanics the complex scattering amplitude f(k,0} is calculated

according to:
f(k,0) = A(k,8) e!0(x.8) = kl .3 (21 + 1) Py(cos8) e®(K) sing(k)) . (3.52)
!

Here 6 is the scattering angle and the §;(k) are partial-wave phase shifts. It is assumed that the §;(k)
have been calculated using a real potential. Thus the §,(k) are real functions, too. Eq. (3.52) can be

cast into a form that involves the partial-wave phase shifts only via tand;(k):

tand;(k)

m (1 +itandk)) . (3.53)

Ak©) k0 = L3 (21 4 1) Py(cosd)
]

This form is very useful because according to EqQ. (3.49) the phase shifts are calculated in the form
tang,(k) from the logarithmic derivative. Eq. (3.53) shows that the complex scattering amplitude

depends on §;(k) modulo =, not 2.

The calculation of the partial-wave phase shifts was described in the previous sections. Now
with §,(k) known we can employ Eq. (3.53) to calculate the backscattering amplitude A(k,r) and the
backscattering phase ¢(k,x) in the plane-wave approximation. We will show these results for the case
of copper. At the same time we compare them with the tabulated data of Teo and Lee [11], shown as

dashed curves.
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Fig. 3.2: Backscattering amplitude for copper metal calculated in the plane-wave approximation.
The dashed line is the result of Teo and Lee [11]. Teo and Lee's amplitude is smalier because they

include inelastic effects through a complex potential.
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Fig. 3.3: Backscattering phase for copper metal calculated in the plane-wave approximation. The
dashed line is the result of Teo and Lee [11]. There is a large discrepancy at low k-values which is
most likely due to differences in the potentials. At larger k-values a small discrepancy in the slopes of

the two phases occurs.

b) Curved-Waves

The curved-wave formalism of McKale et al. [8-10] is based on the work of Schaich [7] and
Milter and Schaich [72). It has the advantage that the form of the EXAFS equation remains
unchanged because the curved-wave effects can all be put into amplitude and phase. This formalism
does not include multiple-scattering contributions. It is argued that the EXAFS spectra can be
explained by a single-scattering theory down to very low k-values [72]. This cannot always be taken

for granted though [73]. An approach to curved-wave theory, that inciudes multiple scattering, is
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given by Refs. 74 and 75. Also of interest in connection with curved-wave theory are three papers by

Barton and Shirley [76-78].

The main effect of curved-wave theory is to introduce an R-dependence where R is the
distance from the absorbing atom to the scattering atom. For this reason the complex scattering
amplitude must now be written as f(k,8,R). The plane-wave case would then correspond to f(k,8,e0).
Note that no R-dependence was considered in the derivation of the standard EXAFS equation in
Section 2.1. Amplitude and scattering phase also depend on the angular momentum of the
photoelectron. For K- or Lj-shell absorption one has | = 0, whereas for Lj- or Ly|-shell absorption
onehas [ =0 or [=2.However, | =2 isfavoured 50:1 over the case / = 0 [11]. Therefore the

latter is ignored.
i) K- orL;-shell absorption:

The result for the complex scattering amplitude is [8]:

. 2 .
f(k,0,R) = A(k,0,R) ei08.R) - ;%ﬁ T (21 + 1) Py(cose) ei8;(K) sing; (k)
1

I+1 + 2 I + 2
x[zm hier (KR) + 577 My (kﬂ)]. (3.54)

hf (x) is an outgoing spherical Hankel function. Here it is defined as follows:
h (x) = i*1 (i () + i () - (3.55)

J (x) and n; (x) are the spherical Bessel and Neumann functions, respectively. They are defined as in

Ref. 37. With the definition (3.55) one has:

. 1 .
im  hy(x) = &% (3.56)
X oo
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Thus the term in square brackets on the right-hand side of Eq. (3.54) becomes in the limit of large R

equalto ei2kR/(k2R2) and Eq. (3.54) correctly yields the plane-wave result of Eq. (3.52).

As in the plane-wave case it is useful to express Eq. (3.54) as a function of tand;(k). The result

. 5 tand;(k)
io(k,0,R) — ﬁ . —-1)! I

Ak8R) ekOR) - Zoc E,( 17 Pileos®) I RanZs k)

!

x (1 +i tans,(k)) (A,(kn) +i 25,(kn)) . (3.57)
Ai(kR) and B,(kR) are given by:
A(KR) = (1 + 1) [i;?+1 (KR) - n‘,°;1(kn)] . l[ifqﬁ(ﬂ) -0, (kR)] , (3.58)
By(kR) = (! + 1) ji,1(kR) n 1 (kR) + I j_4(kR) n_4(kR) . (3.59)

The curved-wave formalism has been programmed according to Egs. (3.57) to (3.59). (For the

spherical Bessel and Neumann functions a stable algorithm according to Ref. 79 was employed.)

It is instructive to compare curved-wave theory with the case of plane-waves. After some
tedious algebra, which is omitted here, one arrives at the following result which is equivalent to that

of Egs. (3.54) or (3.57):

. 1 tand;(k) )
A(k,8) i0(k8) = K Z C,(kR) Py(cos6) W (1 +i tan8,(k))

I

tan(;(k) — n/2
‘22 Dy(kR) tand;(k) Pj(cos®) — tan?-I(SI(k)n— 7):/2) (1 +itan(8;(k) — 7:/2)) :
I

+

x| =

(3.60)
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Ci(kR) and D;(kR) are given by:

CkR)=(l + 1) |:p,2+1(kR) - qf+1(kn)] Ny [p12_1(kR) - q12_1(kR)] , (3.61)

Dy(kR) = (I + 1) pp,1(kR) qp1(kR) + ! p1(kR) qr¢(kR) . (3.62)
(There should be no confusion with the logarithmic derivative, labeled as Dy(E,r).)

The p; and g; are polynomials:

(/2]
2K -
Pylx) = 2< X G s (2X 72 (3.69)
[(1-1)/2]
(1+2K+1)! e
qi(x) = z (-1)k ke 1)! (,_2k_1)!(2x) k=1 (3.64)

The square brackets on the upper limits of the summation index signify the integer part of the term in

brackets.
Evaluating the first two of the C;'s and Dj's yields:

o ((R1Z-1);  CykR)= =g (KR)* = 10 (KR)2 + 6) ;

(k':‘)4

1 . __6 2 _
=R D{(kR) = KR)? ((kR)2 = 3) .

The functions C/(kR) are even and the functions D;(kR) are odd. When the argument approaches
zero C(kR) diverges like (kR)™22 and D(kR) diverges like (kR)™21 . For kR — = we have
C/—>2+1 and D;>0.
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The two summations in Eq. (3.60) describe the addition of two sets of I-dependent phasors
that are orthogonal to each other. The [-dependent amplitude ratio of the second set of phasors with
respect to the first is given by 2 D;(kR) tan8,(k)/C,(kR) . From this one can immediately conclude that
for k = 0 the second sum in Eq. (3.60) can be neglected with respect to the first. (Only for [ =0 is it
in principle possible that tand,(k) diverges as k approaches zero.) The behaviour of the complex
scattering amplitude in curved-wave theory as k — 0 is then determined by the term

;1 C/(kR) tang(k) . If k is small tand;(k) behaves like —a, K2+ [80]). Thus for k —» 0 the complex
scattering amplitude behaves like k™2 . This is different from plane-wave theory where the amplitude

tends to a constant.
i)  Ly- or Ly-sheli absorption:

The result for the complex scattering amplitude is in this case [8]:

f(k,0,R) = A(K.0,R) ei0k8,R) = X zm 2(2z+ 1) Pj(cos) eid;(k) sind,(k)

31(-1) + 2 I (1+1) +2
x[z @) @-n "2 KR+ ey M KR

3 (1+2) (I+1)
3 (20+3) (20+1) "2 (kﬂ)]-

(3.65)

Again, it is useful to express this result as a function of tang;(k). One obtains:

A(k,8,R) gi0(k,6,R) =

Hi+tp cos) - _tandlky
o2 Z‘” 1e0s) I tan2s )

x (1 +i tans,(k)) (R,(kn) +i 25,(kR)) . (3.66)
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Because of the term (—1)*1  instead of (—1)/, there is now an extra minus sign compared to

Eq. (3.57). A(kR) and B/(kR) are given by:

~ ]- .
AKR) =5 51 [,f_z(kn) - n,2_2(kR)]

I(I+1) 2+ r2 2 3(+1) (I+2) 12 >
* (21—’;) (21:3) [W‘R) - ”1<kR>] +W[ll+2(kn) - n,+2(kR)] . (3.67)

" I (-1
By(kR) = 2—3(25—_1)—) j-2(kR) ni_o(kR)

1 (1+1) (21+1) 3 (1+1) (1+2) .
* (21(-:))((21:3)) inkR) nkR) + (2 23) 2R N okR) (3.68)

The curved-wave formalism has been programmed according to Eqs. (3.66) to (3.68).
It is possible also in this case to derive a relation analogous to Eq. (3.60) but this is omitted.

We will now compare results of our calculations with those that have been published already by
Teo and Lee [11] and McKale et al. [8-10]. This will give an impression about how much different
calculations can deviate. It does not imply that Teo and Lee's or McKale's et al. values are correct.
These values are frequently employed because no others are readily available. It is in fact rather
difficult to claim that any calculation produces the “correct” ampiitude and phase. If the correct
backscattering (and central) phase were known, then one could obtain distances from EXAFS with

abso]ute, rather than relative, precision.

The next figures show some of the results obtained for backscattering amplitude and phase
from Eq. (3.57). Fig. 3.4 is a plot of the backscattering amplitude for copper metal, evaluated for a
distance of R = 2.5 A . This value was chosen in order to facilitate a comparison with the curved-wave

calculation of McKale (dashed line) which is presented in Ref. 10for R=25A and R=4A.
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Fig. 3.4: Backscattering amplitude for copper metal calculated in curved-wave theory for R = 2.5 A
and K- or L-edge absorption. The dashed line is the result ot McKale [10] who employed a real
potential, as is done in this work. Therefore there is good agreement for the high k-values. The

discrepancy below ~6 A~1 is due to ditferences in the potential.
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Fig. 3.5: Backscattering phase for copper metal caiculated in curved-wave theory for R = 2.5 A
and K- or L;-edge absorption. The dashed line is the result of McKale [10]. Since the phase is more
sensitive to the choice of the potential (see Section 3.6), we obtain bigger discrepancies than in the
previous figure. In particular, we notice that the phase calculated in this work (solid line) is shifted
upwards by a small amount above k ~ 10 A1 According to Section 3.6 below, this may be due to
the tact that the Cu-potential used in this work may be shifted downwards compared to the potential

employed by McKale et al., which is not published.

For SmSe the crystal potential was calculated for two cases. In the first case, ambient pressure
was assumed. Thus the Sm atoms are divalent and the lattice constant is 6.2 A. 30 partial-wave
Phase shifts (I = 0 - 29) were employed. In the second case, trivalent Sm atoms were assumed for
the high-pressure phase where the lattice constant is 5.7 A. This time 31 partial waves could be

employed. For each of these cases the backscattering amplitude and phase were calculated.
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Curved-wave theory was included with nearest-neighbour distances of 3.1 A and 2.85 A,

respectively. The results are shown in the next two figures.
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Fig. 3.6: Backscattering amplitude for Sm in SmSe in curved-wave theory and for K- or L;-edge
absorption. The solid line shows the result calculated for a crystal potential with Sm2+ atoms and a
lattice constant of 6.2 A. The absorber-backscatterer distance is R = 3.1 A . The dashed line is the
result calculated for a crystal potential with Sm3* atoms and a lattice constant of 5.7 A. The absorber-

backscatterer distance is R = 2.85 A . The two curves are practically identical.
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Fig. 3.7: Backscattering phase for Sm in SmSe in curved-wave theory and for K- or L|-edge
absorption. The solid line shows the result calculated for a crystal potential with Sm2* atoms and a
lattice constant of 6.2 A. The absorber-backscatterer distance is R = 3.1 A . The dashed line is the
result calculated for a crystal potential with Sm3*+ atoms and a lattice constant of 5.7 A. The absorber-
backscatterer distance is R = 2.85 A . Above 18 A~ the solid line curves up. This results from the
fact that in the divalent case only 30 partial waves could be employed. With more partial waves

Numerical instability occurred.

We now see that the results calculated for a crystal potential with divalent Sm atoms are
essentially equal to those for trivaient Sm atoms. Therefore only one and the same potential is
employed. We choose the one corresponding to the high-pressure phase (dashed lines in the two
Previous figures) because in that case the backscattering phase can be calculated to higher

k-values. The dashed lines, however, were calculated with R = 2.85 A whereas in the low-pressure
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phase the nearest-neighbour distance is 3.1 A. In the following two figures we therefore compare
the curved-wave results for R = 2.85 A with those for R = 3.1 A, both calculated for a crystal
potential for trivalent Sm atoms. We see that the modifications due to curved-wave theory can be

ignored for k-values above ~3 A™1.
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Fig. 3.8: Backscattering amplitude for Smin SmSe in curved-wave theory and for K- or L -edge
absorption. Results are calculated for a crystal potential with Sm2*+ atoms and a lattice constant of

6.2 A. The solid line refers to an absorber-backscatterer distance of R =3.1 A and the dashed line is

the result for R=2.85A .
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Fig. 3.9: Backscattering phase for Smin SmSe in curved-wave theory and for K- or L;-edge
absorption. Results are calculated for a crystal potential with Sm2* atoms and a lattice constant of
6.2 A. The solid line refers to an absorber-backscatterer distance of R =3.1 A and the dashed line is

the resultfor R=2.85A.

The following figures show calculations of the Sm- and Se backscattering amplitude and phase
for various values of the absorber-backscatterer distance R. Because there is no signiticant
difference between Sm2+ and Sm3+ crystal potentials, we can employ in the calculations always the

Crystal potential for trivalent Sm atoms. Eftects due to temperature are ignored.

In Figs. 3.10 to 3.13 we compare our results for SmSe with those available from McKale. In

order to do this we calculated the backscattering curved-wave amplitude for R = 2.5 A , although this
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distance does not occur in SmSe. it is to be noted that McKale et al. do not list results for Sm, nor for
Se, but for their neighbouring elements. Thus, for Sm and Se we have to perform an interpolation
linear in the atomic number Z in order to obtain the proper amplitude and phase. If we had chosen to
plot the result for the nearest-neighbour distance R4 = 3.1 A of SmSe, then a further interpolation
(linear in 1/R) between McKale's et al. result for R = 2.5 A and their resutt for R =4 A would have
been necessary. Furthermore it is to be kept in mind that the (complex) scattering amplitude in
curved-wave theory depends on the type of edge of the absorbing element. That is, for a Sm
scatterer the absorber will be Se and we have to consider K- (or L-) shell absorption. For Se as the

scatterer we have to consider an Ly- or L;-absorption edge of Sm.
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Fig. 3.10: Backscattering amplitude for Sm in SmSe calculated in curved-wave theory for R =2.5 A
and K- or L-edge absorption. The dashed line is the result of McKale et al., obtained as in Ref. 10,
Who employed a real potential, as is done in this work. The discrepancy below ~12 A} is due to

different potentials.
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Fig. 3.11: Backscattering phase for Sm in SmSe calculated in curved-wave theory for R =2.5 A and
K- or L|-edge absorption. The dashed line is the result of McKale et al.. The backscattering phase
calculated in this work is shifted upwards, probably stemming from the fact that our potential is a few

eV lower than the one used by McKale et al..
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Fig. 3.12: Backscattering amplitude for Se in SmSe calculated in curved-wave theory for R = 2.5 A
and Ly - or Ly;-edge absorption. The dashed line is the result of McKale et al.. The calculations

agree.
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Fig. 3.13: Backscattering phase for Se in SmSe calculated in curved-wave theory for R = 2.5 A and
Lyi- or Ly;-edge absorption. The dashed line is the result of McKale et al.. As in Fig. 3.11, the

backscattering phase calculated in this work is shifted upwards.

The next four figures are a comparison between the results of this work for R =2.5 A and for
R =3.1 A . This difference in R is already larger than the change of the nearest-neighbour distance
from R=3.1 A to R=2.85 A, achieved by pressurizing SmSe. The figures show that there is not

Much variation of the backscattering amplitudes and phases for the compressions occuring here.



56

1.8

1.4 r

[+]

Amplitude (A)

06

Fig. 3.14: Backscattering amplitude for Sm in SmSe calculated in curved-wave theory for K- or
L|-edge absorption. The solid line is the result for R =3.1 A and the dashed line corresponds to

R=25A.
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Fig. 3.15: Backscattering phase for Sm in SmSe calculated in curved-wave theory for K- or L|-edge

absorption. The solid line is the result for R = 3.1 A and the dashed line correspondsto R=25A.
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Fig. 3.16: Backscattering amplitude for Se in SmSe calculated in curved-wave theory for L;- or L-
edge absorption. The solid line is the result for R = 3.1 A and the dashed line corresponds to
R=25A.
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Fig. 3.17: Backscattering phase for Se in SmSe caiculated in curved-wave theory for L)- or L -
edge absorption. The two solid lines, which differ by 2r, show the result for R = 3.1 A and the

dashed line corresponds to R =2.5 A . Itis seen that there is a discrepancy for 4 A" <k <6 A1,
which is entirely due to curved-wave theory. Similar effects have been observed in Ref. 10 when

Phases obtained from curved- and plane-wave theories are compared.

Finally, we study the effect of the different types of absorption edges of the absorbing atom on
the curved-wave amplitude and phase. We choose Se with R =3.1 A and compare the results of

Ly- or Ly-edge absorption with those of K- or L-edge absorption.
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Fig. 3.18: Backscattering amplitude for Se in SmSe calculated in curved-wave theory (R = 3.1 A) for

Lyj- or Lj;-edge absorption (solid line) and for K- or L-edge absorption (dashed line).
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Fig. 3.19: Backscattering phase for Se in SmSe calculated in curved-wave theory (R = 3.1 A) for L -
or L;;-edge absorption (solid lines, differing by 2r) and for K- or Li-edge absorption (dashed line).

3.5 Central-Atom Phase Shifts

For K- or L|-shell absomption the phase shift of the central atom, i.e. of the absorbing atom, is

given by Ref. 11:

=287 . (3.69)

For Ly- or L;;-shell absorption the [ =2 contribution dominates. Therefore the central phase

involves only this angular-momentum value [11]:
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8 =28, . (3.70)

3¢ is obtained from the partial-wave phase shifts 8, or 8,. However, one should take the effect of the
core hole of the absorber into account. It results in the central-atom phase shift decaying more

rapidly with k than the partial-wave phase shift calculated for a neutral atom.

No attempt is made to calculate central phases in this thesis. Instead the central phases
calculated by Teo and Lee [11], which contain the effects of a core hole, are employed. As
mentioned at the beginning of Section 3.4, these phases are tabulated only for a limited k-range. It is
therefore necessary to extrapolate towards either side. In order to extrapolate to higher k-values one
may make use of the Born approximation for the phase shift [37]:

81 Born(K) = —kJV(r)

i2 (kr) r2dr . (3.71)

From the behaviour of jj(kr) it follows that for large values of k the behaviour of the phase shift can be
described by a power series in 1/k omitting the constant term so that the phase shitt properly goes to
zero for k — o . In order to extrapolate from 15.12 A™1 to 24 A~1 the first three terms of this power
series are employed to fit Teo and Lee's central phases starting at ~5 A~1. The validity of this
parametrization of the phase shifts at high k-values has been checked by fitting to partial-wave phase

shifts, calculated for the case without the core hole, and found to be quite satistactory.

For low k-values the central phase is extrapolated linearly to ~1.5 A=1. It cannot be extrapolated
in this way all the way to k = 0 becausethe [ =1 or I =2 phase shifts must have zero slope at k=0 .
Furthermore, they have to approach an integer muttiple of n in accordance with Levinson's theorem
[37).

The following figures display the central-atom phase shifts for Se and Sm.
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Fig. 3.20: Central-atom phase shift for Se (K or L; edge). The solid line is the fit described in the

text. The crosses show Teo and Lee's values [11].
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Fig. 3.21: Central-atom phase shift for Sm (L, or Ly edge). The solid line is the fit and the crosses

are Teo and Lee's values [11).

3.6 Pressure Dependence of Amplitude and Phase

In this section we will discuss a scaling relation between the energies and the lengths. Using
this relation we can show that the scattering amplitude and phase are approximately pressure
independent for small pressures, i.e. up to a few 100 kbar. For larger pressures the scattering phase
will become pressure dependent and for pressures of several Mbar the scattering amplitude will do

50 too [81].
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In a solid the effects of pressure, in the absence of a phase transition, are a broadening of the
bands and a reduction of the density of electronic states with an associated increase of the Fermi
level. When investigating the influence of pressure on the scattering amplitudes and phases one
has to realize that the atomic unit of pressure is 1 Ry/aBoh,3 = 147 Mbar , where 1 Ry =13.6¢eV.
The pressures attained here are 1000 times smaller, namely of the order of 100 kbar. Thus the effect
of this pressure on the atoms themselves is minute. We will show in this section that the logarithmic
derivative, and therefore the complex scattering amplitude, are approximately independent of

pressure, provided that a scaling relation between the energy scale and the length scale holds.

The scaling relation between energy and length scaies had been suggested by Mdller et al.

[82] and Natoli [83] (see also Lytle [84]):
(E - V) R2 = const. . (3.72)

Here V is the inner potential. It is a constant like the mutfin-tin zero, which in fact could coincide with
. E~ V is the kinetic energy of a photoelectron and R is a characteristic length, for example the
lattice constant. E refers to any feature in the spectrum but is not a variable. When the energy is

scaled according to (3.72), absorption spectra of, say, Cu and Ni become very similar, with a scaling

tactor (@ )2‘
an;

Eq. (3.72) can also be used to relate spectra corresponding to two different pressures. In this
Case one has:

(£, -v,)a2- (e, - V) &2. (3.73)

We assume that a 1< @ . Thus the left-hand side of Eq. (3.73) corresponds to a higher pressure
than the right-hand side. Applying pressure increases the crystal potential, i.e. makes it less
attractive. In the core region this increase is very nearly constant. Therefore V1 - V2 is positive and

Constant, even if Vy and V', were not. Hence we get:

(£, - (v, SV, -Vy)ai= (e, - Vy) e (3.74)
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Thus for higher pressure the zero of the kinetic energy is shifted to a higher value. The same applies

to the bottom of the conduction band of metals {see Eq. (3.87) below).

This is important when estimating the position of the Fermi level as a function of pressure. This
was studied for the case of Cu where an extensive bandstructure calculation for pressures up to
several Mbar was available for comparison [81] (see also Ref. 85). In the calculations for this thesis
the positive shift V1 - V2 was obtained as the difterence of a muffin-tin potential Vi 1 (r) at high
pressure and a second one at atmospheric pressure, V1 o(r). This difference was found to be
constant in the core region. To this shift the free-electron Fermi energy was added and the
agreement with the bandstructure result [81] for the Fermi energy was satisfactory. Changes in the

AE
position of the Fermi energy of Cu are very smail though. The initial change is Xpﬁ =5.5 eV/Mbar
[81].

In order to estimate the infiuence of pressure on the scattering amplitude and phase we
consider the logarithmic derivative at the muffin-tin radius. At r = Ry the potential is small and can
be replaced by the inner potential or muffin-tin zero, V yy1. At the muffin-tin radius the spin-orbit term
Can be neglected. Thus Eq. (3.45) can be written as

= (%) X (E-Vyp)-2( +1) & —eX (-pq)2 (3.75)

Where the term (E - VMT)/C2 has been neglected with respect to 1. Switching back to the variable

I'= eX and introducing

ulE.) =y =r %— (3.76)
2
u — u
One obtains: —r%(—r—l)= r(E—VMT)+2(I+1)TI +
au _
or: it = RE-Vyp+ @I+ Dy +4f (3.77)
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With the approximation (E -V y1)/c2 << 1, the logarithmic derivative from Eq. (3.41) is then:
D=y +! . (3.78)

Eq. (3.77) holds for a particular value of the muffin-tin radius Ry,1. This equation can be cast into a
more general form by employing Eq. (3.72):

VA 2 2
(E - VMT) Ryt = const. = ¢, . (3.79)

Equivalently one can express this relation as kvt BT = S (3.80)

where ¢, is a positive constant. kyt refers to any feature in the EXAFS spectrum and its subscript
“MT" indicates that the inner potential, i.e. the origin of the k-scale, depends on Ryt as explained

above in connection with Eq. (3.74). One obtains using (3.79):

dy, r 2 2 2
-rdhr =(%) Co+(21+1)U1+UI .

Introducing the dimensionless variable T=—-o—-1 (3.81)
which is small for r= RpT ., vields:

dy, 2 2
~(1+r)5=(1+r)2c°+(21+1)u,+u, . (3.82)

This equation is independent of the muffin-tin radius. Consequently the resultant logarithmic
derivative D; =u; +! will not depend on Ryt either and therefore not depend on pressure. This, of
Course, is true only as long as the scaling relation (3.72) holds. While D; is independent of pressure,
Or at least only weakly pressure dependent, the k-scale experiences a small pressure dependence
because of the change of its origin with pressure. It turns out that the pressure-dependent shift of

the potential is small so that this effect can be ignored.

The fact that the D;, and D in particular, are practically independent of pressure leads to an

€quation for E,, the bottom of the conduction band, in accordance with Eq. (3.72). This can be seen
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as follows. According to Ref. 86, p. 51, one can estimate the position E,, of the bottom of the

conduction band with respect to the zero of the atomic potential as:

3a
Eo=—5 s (3.83)
Rur
a4 is the scattering length which is obtained from the | = 0 phase shift as follows [37]:
lim  kcot §gk) = - 1 (3.84)
k-0 ag
Using Eq. (3.49) one obtains:
Do(V TR
aS=HMT 0( MT MT) . (3.85) -

1 + Do(VMT.RMT)

It we consider an fcc metal, like Cu, and touching muffin-tin spheres then we obtain from Egs. (3.83)
and (3.85):

3 Do(VMT.R
Eo RE = oV mT.RmT) (3.86)

1 + Do(VMT.RMT)

It Dy is indeed independent of pressure then we have a relation like Eq. (3.72), namely:
2
Eo Ryyr =const. . (3.87)

We can obtain an approximate solution to Eq. (3.82) by neglecting T with respect to 1. This will

result in an approximate equation for the logarithmic derivative. We get:

du 2 duy
g =Gt @I+1)y +u = -t = . (3.88)
dt ! 2 2
co+(21+1)u,+ul
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Thus, by separation of variables this differential equation can be integrated readily. The result is,

depending on the value of ci of Eq. (3.79):

i) 2> (+1/22:

DI=—%+\/ci—(l+1/2)2 cot[% + (F‘_rm? - K1)\[ c%—(l+1/2)2] (3.89)

i) c2=(+1/22:
1
D,=_21 +(L _ Kz) (3.90)

i) 2<(i+1/22:

Dz=—-21- +\/ (1+1/2)2 - &2 coth[(ﬁ - K3)—\[ (1+1/2)2 - ¢2 } . (3.91)

In all three cases the logarithmic derivatives as a function of r have some resemblance to a cotangent.
This is also true for their energy dependence [61]. Ky, Ko, K4 are constants of integration
determining the location of the singularities. In case i ) D; as a function of r has many poles. This will
lead to strong variations of the complex scattering amplitude unless successive partial waves of
higher angular momentum are included. Thus the complex scattering amplitude can be obtained
Satistactorily as long as Kmay = (Imax* %) / Ryt - Incases i ) and iii ) D; has at most one pole. We can
now calculate Do (V py1.RyT) appearing in Eq. (3.86). Since Dy is to be evaluated at the muffin-tin
Zero, which is the zero of the energy scale, we have cg =0 and therefore apply the result for case iii )

With 1 =0 and r = Ry obtaining instead of Eq. (3.86):

2
EoRyr=e%s~1 = const. >0 . (3.92)
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Thus E,, is positive. Since K3 determines the location of the singularity, we can conclude:
it E, Rﬁﬂ- > 1,then K3> 1 and there are no poles inside the muffin tin.

2
" E Rur

fE, R,%n- < 1,then K3 <1 and there is one pole inside the muffin tin if K5 is positive.

1,then K3 =1 and there is one pole at the muffin-tin radius.

It K3 is negative there is no singularity. Notice that the constant in Eq. (3.92) is positive. This implies

by comparison with Eq. (3.86) that the expression

_ Do(VmrRumT)
1+ Do(Vur Ry

is positive and DO(VMT,RMT) does therefore never fall within the interval [-1, 0]. Note also that the
Scattering length, Eq. (3.85), is positive.

It is of interest to check in how far Egs. (3.89) to (3.91) approximate the logarithmic derivatives

Calculated as described in Section 3.6. This will be done in the future.

For pressures much higher than those occuring in this work the scattering phase does depend
on pressure. Qualitatively, one can predict what will happen to the partial-wave phase shifts. When
Pressure is applied the atoms move closer together producing an increased overlap of their
electronic charge densities. This in tum produces a positive change of the atomic potentials as the
Coulomb attraction exerted by the nucleus is reduced. Employing the Born approximation for the
Phase shifts, Eq. (3.71), one concludes, at least for the larger k-values, that the positive change of
the potential results in a negative change of all partial-wave phase shifts 3;(k). In the Born
approximation this can be investigated quantitatively if the potential V(r) changes by a constant
amount AV. As in Eq. (3.71) the partial-wave phase shift is then:

Rmr
—kJ (V(r) + AV) j3(kr) 12 dr

81 Born(k) + AS(K)

Rmr Rmr
—k-(j V(r) ﬁ(kr) rdr - k Av-d'. j‘?(kr) r2 dr (3.93)
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The first integral is the partial-wave phase shitt corresponding to V(r). Switching to the integration

variable k r yields:

KRvT
AS(K) = - —%V . J' 2 (kr) (k)2 d(kr) . (3.94)

For I> 0 the integral is given by an identity that holds for spherical Bessel (and Neumann) functions
[371:

8 = - 2 (FFtRmr) = i (R ia(kRur) ) (kRur)® (3.95)

For the Born approximation to hold k must be large. Thus kRy,7 will be large too and the spherical

Bessel functions can be replaced by their asymptotic formula [37]:

: . 1 .
fim kn = — sin{kr-!mw2) .
kr ~> oo ]l( ) kf ( )

RmT AV

Inserting into Eq. (3.95) yields: A3k) = -

(3.96)

The importance of this result is that for large k the change of the partial-wave phase shift is

independent of |. For I =0 one obtains after inserting jo(kr) = ﬂr—:ém into Eq. (3.94):

MT

Hence, Eq. (3.96) holds for =0 too.
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We can now use these results to estimate the effect of the change AV in the potential on the

(complex) plane-wave scattering amplitude, Eq. (3.52), which can be written as follows:

(k) = —2—1—; (21 + 1) Pycose)(eR(3(+a8(K) — 1) = e2A8K) (k) + f(k0) .
1

(3.97)

In this equation we have dropped the subscript on A§;(k) because it does not depend on /. f(k,8) is
the scattering amplitude corresponding to the original potential V(r) and f(k,0) is the scattering
amplitude corresponding to the potential AV:
14(k9) = ﬁ (21 + 1) Pj(coso)(ei2ad(k) — 1) | (3.98)
!

Since the potential AV is small compared to V(r) its scattering amplitude f, (k,8) will have a small
magnitude, too, when compared with |f(k,8)| . Therefore, like in the case of the (k), the effect of the
extra potential AV will be a shift

Ryt AV
2405() = - —%— (3.99)
of the phase of f(k,0). As an example, for AV =0.5Ry =6.8eV, Ryy =4 ag,, =2.12A, and
k=8ag,, 1=15.12 A™! we expect a change of the phase of 2 A8(k) = —0.25 = —14° . (In order to
transform Eq. (3.99) to the MKSA system, simply divide its right-hand side by y= 3.81 eV A2,
Eq. (2.28),)

The magnitude of f(k,08) will be practically unchanged. This result is confirmed by caiculations of
the scattering amplitude, done during the course of this work. The backscattering amplitude and
Phase were calculated for Cu in the plane-wave approximation for various pressures, i.e.
Compressions, ranging from a lattice constantof a=3.61 A at1barto a=25 A at 23 Mbar. It turned

Out that the pressure dependence of the amplitude was much less pronounced than the one for the

Scattering phase. Therefore changes in the potential are best detected by the scattering phase.
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Chapter 4: Mixed Valence

This chapter constitutes a very brief introduction to mixed-valence materials, in particular the Sm
monochalcogenides. For further reading the following list of articles of varying length is included in

chronological order:  [87, 88, 13, 89, 12, 90-99] .

4.1 Description of the Phenomenon

Mixed-valent compounds are those where one of the constituent atom types occurs in two or

more valence states. Two cases are distinguished:

Inhomogeneous mixed valence is the case that occurs when the valence of a given atom
remains constant in time. Another atom of the same type may have a different valence. This requires
that the two atoms are located at inequivalent crystaliographic positions. Otherwise their valence
must be the same. It follows that inhomogeneous valence is a static phenomenon The value of the

mixed valence is obtained by spatially averaging over the atoms under consideration.

Homogeneous mixed valence is the case that is of interest here. In this case one and the same
mixed-valent atom assumes both valence states. This means that its valence has for a certain time a
given value and then changes to another. In other words, its valence fluctuates. Thus.
hOmOQeneous mixed valence describes a dynamic state of the mixed-valent atom. The value of the
Mixed valence is obtained by a femporal average over a mixed-valent atom. The valence fluctuations
occur with a frequency of ~1013 Hz [100, 101} which is comparable to phonon frequencies. As a

fesult, phonon anomalies are observed with mixed-valence transitions.

Measurements of the M3 Bbauer isomer shift [102] can be used to distinguish between
inhomogeneous and homogeneous mixed valence because the time scale of MdBbauer
experiments is much smaller than the time scale of the fluctuations of a homogeneously mixed-
valent material. Therefore one average valence-dependent isomer shift is observed in the case of
hol""Ogene0us mixed valence whereas for inhomogeneous mixed valence two isomer shifts,

Corresponding to the integer-valent 2+ and 3+ states, are seen.
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In the following we will consider only homogeneous mixed valence. This phenomenon occurs
in compounds containing 4t- and 5t-elements. Of these the lanthanides are of interest here,
samarium in particular. Mixed-valence occurs with rare earth compounds that contain a rare earth
element that is close to either end of the lanthanide series, like Ce, Pr, Tm, and Yb, or, like Sm and
Eu, close to the middle of the series. The mixed-valence phenomenon may occur already under
ambient conditions or it is brought about by variation of an external parameter such as temperature or

pressure.

The reason why (homogeneous) mixed valence occurs stems from the fact that in the
respective compounds the 4f-multiplet lies near the Fermi energy Ef. if the 4f-level is still below Ep
then the valence of the rare earth is two. If by variation of an external parameter the 4f-muttiplet
moves up and empties one complete electron into the conduction band, which has 6s- and 5d-
character, then the valence of the rare earth atom has increased by one. Symbolically we write this

process as:
[Xe] 4n (5d 6s)2 > [Xe] 4! (5d 65)3, (4.1)

where [Xe] denotes the Xe-core. Referring to the charge of the rare earth core it is common to label
the divalent state as 2+ and the trivalent state as 3+. Rare earth atoms and the electron sea together
are, however, neutral. If 0 <v <1 is the fraction of trivalent atoms then the valence v is given by

V=2 4+ v . Note that more than two configurations of the rare earth atom are never present.

The extra valence electron is supplied by the 4f-level. In the trivalent state the occupation
number of the 4f-level is reduced by one in comparison with the divalent case. As a result the
electronic screening of the nuclear charge of the rare earth atom is reduced. Since with a radius of
~0.2 A the orbit of the 4i-electrons is very close to the nucleus the reduction of screening affects all
electron states appreciably. This gives rise to a reduction of the size of the rare earth atom in the

3+ state. This size reduction is appreciable. For the ionic radius of Sm we find [103]:
P* - 113A: B* = 0964A o 2+ _ 3+ = 0.166A . (4.2)

The energetically lower electronic energy levels are affected more by the reduction in screening



75

than the levels at higher energy [104]. For the 2p levels of the rare earth atoms the energy

difference for the two valence states is of the order of 7eV.

4.2 Sm Monochalcogenides

The Sm monochalcogenides, SmS, SmSe, and SmTe, are compounds that are integer valent
(or almost integer valent) at atmospheric pressure but become mixed-valent at higher pressure.
Higher pressure favours the 3+ state because trivalent 4f atoms are smaller than divalent ones.
Nevertheless, full conversion to the trivalent state has not yet been observed in any of these
compounds. In this context it is also interesting to note that according to L-edge spectroscopy (see
next section) the valence at ambient pressure is not integral either. There seems to exist aiways a

non-negligible admixture of the 3+ state.

The Sm monochalcogenides crystallize in the NaCl structure. Under pressure they undergo a
phase transition without change in their crystal structure. At room temperature the transition is of first
order in SmS and continuous in SmSe and SmTe. The volume reduction is entirely due to the
change in size of the Sm atoms. Hence the transition is of electronic ongin and since all Sm sites are
equivalent the mixed valence is homogeneous. It has been argued [12, 13] that at sufficiently low
temperature the pressure-induced valence transitions in SmSe and SmTe should become first
order. From the results of the present work it can be said that at 77K SmSe still exhibits a continuous
transition. This would be expected for SmTe also since its mixed-valence transition occurs more

gradually than the one of SmSe which has been described as being weakly first order [105, 106].
The first to investigate such a pressure-induced valence transition was probably Rooymans
[107] who investigated the continuous phase transition in SmTe. His work was repeated by

Jayaraman et al. [108] who also discovered the transitions in SmSe and SmS [109].

The following figure shows the volume change that is brought about by applying pressure.
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Fig. 4.1:  Pressure-volume relations for SmSe (solid line) and SmS (dashed line) at room

temperature according to Ref. 110. For SmSe the volume collapse is continuous whereas for SmS it

is sudden.

Under ambient conditions SmS, SmSe, and SmTe, are relatively soft as manifested by their low
Debye temperature of ~150K. In the transition region their volumes change such that with increasing
pressure these substances become even more compressible (!). This is also described as volume
collapse. Once the volume collapse is complete the Sm monochalcogenides behave normally, that

is their compressibility decreases with increasing pressure.

The following figure shows the isothermal compressibility of SmSe. The transition region is

Characterized by a peak in the compressibility.
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Fig. 4.2: Isothermal compressibility of SmSe at room temperature as derived from the previous
figure. The data below 12 kbar has been omitted because it is distorted by end eftects due to

Smoothing.

In the low-pressure phase the Sm monochaicogenides are semiconductors. The Sm atoms are

divalent and have the configuration:
[Xe] 46 540 62  ;  7F, . (4.3)

According to Hund's rules this state is non magnetic. In the high-pressure phase these compounds

are metallic. The trivalent Sm atoms, that are present in this phase, have the magnetic configuration:

[Xe] 415 5d? 652 ;  BHyy . (4.4)
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Contrary to Hund's rules, however, the compounds are not magnetic in the mixed-valent state [11 1].
Their semiconductor-to-metal transition is reflected in the pressure dependence of the resistivity
[108, 109, 112-114]. At low pressure the resisitivity decreases exponentially with pressure,
characteristic of a semiconductor. Above a centain critical pressure the resistivity becomes metallic
and decreases at a much slower rate. For SmS the critical pressure is obviously the pressure where
the first-order transition occurs. For SmSe and SmTe it can be extracted from a plot of log p vs.
pressure , where p is the resistivity. The values can be found in the following table.

Table 4.1: Properties of Sm monochalcogenides:

SmS SmSe SmTe
Lattice Constant (A) 5.970 [115] 6.200 [115] 6.594 [115]
at 300K and 1 bar [109] (109] [109]
Density (g/cm3) 5.694 6.390 6.438
(from lattice constant)
Bulk Modulus (kbar) 476 [116] 520 [110] 400 [110]
at 300K and 1 bar
Critical Pressure (kbar) 6.5 [99] 30 [99]) 50 [99])
(from resistivity)
High-Pressure Valence >2.8 [95] >2.76 [98]) >2.66 [98]
Debye Temp. (K) 155 [117) 153 [117) 151 (117}
Energy Gap (eV) 0.20 [112] 0.46 [112] 063 [112]
Susceptibility at T=0 9.47 [112] 7.92 [112] 7.15 [112]

(1073 6.m.u./mol)
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4.3 Valence Determination by L -/ L;;-Edge Spectroscopy

The size reduction that accompanies the valence change of rare earth atoms can be used to
determine the valence. Methods involving the lattice constant, bulk modulus, magnetic
susceptibility, and the M&Bbauer isomer shift are in use. Here we will determine the valence by
L-edge spectroscopy. This method involves the analysis of the near-edge structure at the L, or Ly,
absomption edge of the rare earth atom (see Section 6.12). The method was introduced by
Vainshtein et al. [118) who used it to determine the valence of SmBg. it was later applied to a wide

range of mixed-valent rare earth compounds {17, 119).

Since valence fluctuations are on a time scale that is much slower than the characteristic time for
the x-ray absorption process (1 0716 s) the x-ray absorption spectrum of a mixed-valent material is the
sum of two absorption spectra, one corresponding to the divalent state and another one, shifted to
higher energy by about 7 eV, from the trivalent atoms. Since the x-ray absorption process is much
faster than the fluctuations we obtain a snapshot of the distribution of 2+ and 3+ atoms at any instant.
However, this means also that it is not possible with x-ray absorption spectroscopy to distinguish
between inhomogeneous (i.e. static) and homogeneous (i.e. dynamic) mixed valence (see also

Ref. 120).

The shift of about 7 eV between the two states can be detected very easily because the
Lanthanides have strong absorption peaks at their Ly, / L)) absorption edges. These peaks, also
called “White Lines”, are due to the large density of unoccupied 5d states in the Lanthanides. The
White Lines are not too broad and thus their shift due to the valence can be detected. The valence is
determined from the relative weight of the two absorption profiles. The absorption edge for trivalent
atoms occurs at higher energy than the one for divalent atoms because in trivalent rare earth atoms
the screening is reduced leading to increased binding energies. The absolute value of the valence
depends on the type of lineshape used to fit the data but valence changes can be determined very

well. In other words, the precision of the method is excellent while its accuracy is not very good.

The following figure shows the measured Sm L;; edge for several pressures at 77K. The edge
Structure changes significantly under pressure. The 3+ structure at higher x-ray energy grows with

Pressure whereas the 2+ structure decreases.
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Fig. 43: Sm L, absorption edge in SmSe at 77K for several pressures. The spectra are

Normalized to the edge jump.

In comparison the Se K edge in SmSe shows practically no pressure dependence as can be seen

from the next figure.
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Fig. 44: Se K absorption edge in SmSe at 77K for the same pressures as in Fig. 4.3. A small
Pressure dependence of the absorption spectrum can be detected. The correspondence between

line pattem and pressure is the same as in Fig. 4.3 and the spectra are normalized to the edge jump.
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Chapter 5: Experiment
In this chapter we discuss experimental aspects of Bragg monochromators, ionization

chambers, and high-pressure cells. We also derive equations for optimum sample thickness, signal-

to-noise ratio, and discuss the etfects of artifacts on the measured absorption spectrum.

5.1 Synchrotron Radiation

In this section some properties of synchrotron radiation are briefly reviewed. More information

can be found in Ref. 121.

Synchrotron radiation has several desirable properties which are listed here:

a) The intensity is high.

- b) 1tis highly collimated.

C) The spectrum is broad and continuous.

d) |t has a high degree of linear polarisation. (In the plane of the accelerated electrons or positrons
itis 100%.)

@) The time structure is well defined.

t)  The radiation source is chemically clean.

9) The properties of synchrotron radiation can be calculated.

These properties make synchrotron radiation a superior tool in many fields of x-ray work. Since
the EXAFS is a rather small signal, compared to the jump discontinuity of the absorption edge,
synchrotron radiation with its high intensity provides an ideal x-ray source. The small sample volume
Present in high-pressure experiments demands even more a high intensity. High-pressure EXAFS
experiments can, in fact, only be carried out at a synchrotron source. A further advantage ot
synchrotron radiation is its broad and continuous spectrum. This property, too, is desirable for
EXAFS experiments. For the study of single crystals one can make use of the fact that synchrotron
radiation is linearly polarized. In the present work, however, no single crystals are investigated and

therefore this property is not exploited. Likewise, the time structure ot the synchrotron-radiation
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Spectrum, resulting from the fact that the charged particles in the synchrotron move in bunches, is

not exploited here but this property is used in experiments on biological specimens.

Synchrotron radiation is produced by any accelerated charged particle. In practice, charge
Particles are accelerated in a circular accelerator. More precisely, the accelerator consists of an
évacuated tube passing through bending-magnet sections and being straight in between the
magnets. The radiation is generated at the bending magnets and passes through beam tubes to the
experimental stations. These evacuated tubes are sealed off by a Be-window. in vacuum ultra violet
work the vacuum of the experimental apparatus becomes part of the vacuum system of accelerator

because Be-windows would absorb too much intensity at these low energies.

In order to obtain a large x-ray intensity the charged particles are accumulated in a storage ring.
A storage ring is a synchrotron that is able to store a relatively large particle current (~500 mA). When
the current density is large the x-ray flux is high but beam instabilities can occur. At low current

densities the particle (and thus the x-ray) beam is stable but its x-ray flux is low.

Recently wigglers and undulators have been developed and placed into the straight sections
of the accelerator. They produce an approximately sinusoidally varying magnetic field which causes
the charged particles to move transversally in a sinusoidal pass. Thus additional x-ray intensity is
Produced in the straight sections of the accelerator. Beam line IV at the Stanford Synchrotron

Radiation Laboratory (SSRL) is a wiggler beam line employing 18 kG wiggler magnets..

The amount of energy radiated is inversely proportional to the fourth power of the particle's
Mass. Therefore electrons or positrons are accelerated in synchrotrons. Positrons have the
advantage that they do not combine with the mainly positive ions of the residual gas atoms in the

vacuum.

The energy that is radiated in form of x-ray photons is replenished by a microwave-cavity system

inside the accelerator.
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5.2 X-Ray Monochromator

In this section we will discuss properties of double-crystal Bragg monochromators. We will
derive formulae for the minimum and maximum energies Er:\in and E:nax for the transmitted x-rays
resulting from the geometrical arrangement of the two crystals. After explaining monochromator
resolution we will discuss harmonics and derive a maximum energy E; ax pasedon resolution. The
section concludes with a comparison of different Bragg planes used for diffraction and a brief

discussion about multiple-diffraction effects in Bragg crystals.

The high-pressure experiments were done on beamline 1V-1 at SSRL. The white x-ray beam is
monochromatized by two Si-single crystals in a non-dispersive arrangement, which means that the
monochromatic x-ray beam leaves the double-crystal monochromator paraliel to the incoming beam.

Using Bragg's law the energy of the monochromatic beam is given by:

E= hc
2 dpks sinBpg

(5.1)

h, k, and / are the Miller indices of the Bragg planes employed in the diffraction. The Miller indices
denote the Bragg planes that are operative in the diffraction of the incident x-rays. In this work these
Planes are parallel to the crystal surface. For a given energy the Bragg-reflected x-ray occurs at a
Unique angle that depends on the d-spacing of the desired reflection. In the experiment only this
reflected beam is tracked. 8, is the Bragg angle and dp is the spacing of the Bragg planes. in

Cubic crystals it is:

a

Vh2¢k 2412

Ah = (5.2)

Where a is the lattice constant. The value for Siis: ag; = 5.43102 A [122, 123]
hc has the value of 12398.42 eVA [123].

Since sinBy< 1 we infer from Eq. (5.1) that there is a minimum energy E;, below which the

Monochromator cannot operate. Ep;q, is given by:

Eo= NC
mn= g, (5.3)
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Due to geometrical effects (see Appendix B) the actual minimum energy is larger than E,,. For a

very small slit width s of the monochromator entrance slit we obtain using Eq. (B.4) of Appendix B:

E* = h ¢ = = —rlQ— 2 (5.4)
min 2 dhkl sin emax 2 dhkl 2d mm 2d

Now there is also a maximum energy given by:

E].l = h c = _g _9_
max 2 dhk/ sin em-m 2 dhk/ mln d (5.5)

The monochromator crystals are dislocation-free nearly-perfect single crystals. They must therefore

be described by the dynamical theory of x-ray diffraction. According to this theory, Bragg reflection
will occur not only at the Bragg angle but in a narrow region around 6, as well. Thus the diffraction
profile is not a delta function but can be approximated by a rectangle of unit height and width 364
[124):

Fhid 1
80, = 2 ¢ )2 |F
1= % oMV sinzen (5.6)

= %—9 is the wavelength of the radiation and F 4 is the structure factor of the unit cell whose

volume is V. r, is the classical radius of the electron, defined by:

1 @2 -5
I = — = .
[ ane, ) 5 =2818-1079A . 5.7)

Applying Bragg's law and using Eq. (5.2) one obtains for 58,:

80, 4l ____I__h_lsA__

Values for 304 at 10 keV are 1.31 eV and 0.57 eV for Si (111) and Si (220) crystals, respectively. The

integrated intensity (integrated over 8) of the diffracted beam is proportional to 384, which is also
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called the Darwin width. In the above approximation of a rectangular diffraction profile the result is
simply 864. The correct result for the integrated intensity valid for negligible absorption is in dynamical

theory [125]:
Jooo 4
hki= 3 %y . (5.9)

Note that the proportionality to the Darwin width implies that the intensity is proportional to |F |,
instead of |F,,|2. as would be the case in kinematical theory [125]. Egs. (5.6), (5.8), (5.9) are valid
for 5-polarization (electric-field vector perpendicular to the plane of incidence) and for symmetrical

Bragg reflection (crystal surtace parallel to the hk! lattice planes).

Since there are two monochromator crystals the combined width is determined from the
convolution of the diffraction profile with itself. In the approximation of rectangular profiles the FWHM
remains unchanged at 88, with the full width at the base of the convolution being broadened to

2 FWHM.

The finite angular range 88 gives rise to an intrinsic resolution of the monochromator. Hence
resolution cannot be improved beyond 864. A much bigger contribution to the resolution of the
monochromator stems from the divergence of the x-ray beam. If s is the width of the slit in front of
the monochromator and L the distance to the x-ray source then the vertical angular divergence is

simply:
=3 (5.10)

{Sometimes the vertical source dimension is added to s.) s is typically 1 or 2 mm. L is 18 m at SSRL.

The final result for the monochromator resolution is determined from the relation:

69=1’593+ae§ . (5.11)

0 corresponds to an energy width SE which is calculated by differentiating Bragg's law, Eq. (5.1),
With respect to 0, :
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Sj_‘ dE

E \2
E " |dep l Bpxi = (80pi) OOy = (8B (*—Emm) -1 (5.12)

(For convenience we have omitted a subscript hk/ for E.)

It there were no geometrical broadening then 36, would vanish but because of 864 there would still
be a finite resolution (ESE/E)min which only depends on hk/ and on the lattice constant and follows
from Eqs. (5.8) and (5.12):
(OE/E) min = (881) cOtOpys = (5.13)
This quantity is characteristic of the width of the diffraction profile and therefore of interest. For large
values of h, k, and / the numerator of Eq. (5.13) decreases and the denominator increases and
therefore 50, becomes very small. This in turn excludes the use of lattice planes belonging to high-
order Miller indices because with a monochromator consisting of two independent crystals the two

‘ reflections would miss each other uniess the crystals are perfectly parailel. Furthermore, mechanical

vibrations would make it very difficult to operate the monochromator in a higher-order reflection.

The intensity of the reflections is directly related to |Fhk,{, the magnitude of the (complex)

structure factor, which is defined by:

N

Frg = Dt ei2n(huprkvirn) (5.14)
j=1

The summation extends over all atoms in the unit cell. The atoms have positions Uj. Vi, and w;,
expressed as fractions of the lattice constant a. The 'i are atomic form factors. Since only one kind of
atom is present, i.e. Si or Ge, we can replace 1] by t and take it outside the sum. Performing the

summation over the 8 atoms in the cubic unit cell of the diamond structure yields the following result:
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a) h k /all odd:

1 1 -4; h+k+l = 4n-1
Re T Fhk/ =4 im f_ Fhk/ =
4, h+k+! = 4n+1
= |Fd=t-aV2 ; |Fhk/|2=f2'32
(5.15)
b) h, k /alleven:
Re 1 Frg=8 m T Fhg=0 ©  hek+l =4
) 2 f2
= |Fud=t8; |Fril =12 - 64
n=1,2,3,.

For the diamond structure for the permitted reflections all three indices are either odd or they are all

even with their sum being an integer muttipie of tour.

Hence values for |Fhk,{ can quickly be calculated without having to analyze matters for a
particular set of Miller indices. Note, however, that the atomic form factor f is different for ditterent
(hkh) due to its dependence on (sinB)/A = 1/2dpy = Vh24k2412 /2a . Values of the atomic
form factor for Si and Ge can be found in Ref. 126. With this information a table of properties of Bragg
reflections for Si crystals is set up (Table 5.2 below). The first three crystal types, (111), (220), and
(400) are available at SSRL but only the first two were used.

Bragg monochromators do not only diffract x-rays by the desired set of hkfplanes but also by
any set of planes that is parallel, i.e. those planes with Miller indices mh, mk, m/, m=2,3,4, ...
provided the structure factor is non-zero. Since all planes are parallel the Bragg angle is the same for
each. This gives rise to harmonics and as a consequence the Bragg-reflected beam is not perfectly
monochromatic. Note that the problem of hammonics is aggravated for x-rays due to their linear

dispersion but is far less a problem for neutrons, say.

We define the monochromaticity My, [127], using Eq. (5.9), as:
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2, Im
m=2

Here the Jm, are the intensities of the mth harmonic. m = 1 denotes the fundamental. If there were no

M= (5.16)

harmonics M,, would be infinity. Harmonics can be reduced by detuning, i.e. rotating one
monochromator crystal with respect to the other so that they are not parallel anymore. This

Procedure is based on the fact that the rocking curve of the harmonics is narrower than the one of
the fundamental [128]. If this is done then the monochromaticity goes through a maximum,
independent of the sign of the detuning angle, and then decreases because the intensity of the
fundamental also decreases. Thus monochromaticity depends on the detuning angle. The subscript
“0”in Eq. (5.16) indicates the case of tuned, i.e. parallel crystals. If we assume that the intensity of
the incident x-ray beam is energy independent then we can write for the diffracted intensity, which is

Proportional to 384, Eq. (5.8):

M°= |Fhkl| ) (5.17)
2 |th;mk;mll
me
m=2

We define the ratio P of the integrated intensity of the mth harmonic with respect to the intensity of

the fundamental plus all harmonics and obtain:

. _9m _ dm Mo _ 1 Ith:mk.mI{ Mo
Pm= — = TeMy T [Fd T+ Mo (5.18)
2 Jm
Mai

Note that tan 84 from Eq. (5.8) cancels out in Egs. (5.17) and (5.18) because the Bragg angle is the

Same for the lattice planes that produce harmonics.

The Bragg crystals of monochromators are not normally driven continuously but in steps of
fixed size. Thus the increment in Bragg angle is also fixed. Due to Bragg's law increments in energy-
Space will therefore increase with energy. For a given number of steps per degree this will eventually

lead to unacceptably large increments at small Bragg angles. The stepping motors employed at
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beamiine IV-1 at SSRL operate at 4000 steps per degree. A practical requirement is that the energy

+

increment per monochromator step not exceed ~5 eV. This then defines a maximum energy E .

(see Eq. (5.22) below) above which the sampling in energy space, or k-space, becomes too coarse.

We write the number of steps as { and obtain:

AE _ AE (AL\
AL T A® (AO) : (5.19)

Here A0 is in radians. The number of steps per degree is given by:

steps/degree = AL _n

A6 T80° = 4000/degree . (5.20)

We now make use of Eq. (5.12) to obtain AE/A® . We can expand the square root because

Emin << E . This yields:

% =[( E )2 - 15] Ermin - (5.21)

Emin

+

Inserting into (5.19) and writing E__, .

instead of E produces:

+ 1 AL AE 1
Emax= Emin \/ E A8 AL 2 ' (5.22)

min

Results tor E:'nax , requiring 2—% =5 eV/step and taking (5.20) into account, are presented in
Table 5.2
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Table 5.1: Properties of Principal Reflections and their Harmonics for Si Single Crystais:
hkl  m dpg t(sin/A)  |Frul (5E/E)min P
(A) (1076) %
111 1 3.13560 10.55 59.7 131 88
333 3 1.04520 6.4 36.2 8.86 6.7
444 4 0.78390 5.0 40.0 5.51 3.7
555 5 0.62712 3.75 21.2 1.87 1.3
777 7 0.44794 23 13.0 0.584 0.39
888 8 0.39195 1.9 15.2 0.523 0.35
999 9 0.34840 1.65 9.33 0.254 0.17
220 1 1.920155 8.7 69.6 57.5 80
440 2 0.96008 6.05 48.4 9.99 14
660 3 0.64005 3.9 31.2 2.86 4.0
880 4 0.48004 2.55 20.4 1.05 1.4
10100 5 0.38403 1.85 14.8 0.489 0.68
12120 6 0.32003 1.55 12.4 0.284 0.39
400 1 1.357755 75 60.0 248 84
800 2 0.67888 4.25 34.0 3.51 12
1200 3 0.45259 2.35 18.8 0.863 2.9
1600 4 0.33944 1.65 13.2 0.341 1.2
311 1 1.63751 8.1 458 275 93
933 3 0.54584 3.05 17.3 1.15 3.9
1244 4 0.40938 2.05 16.4 0.616 2.1
1555 5 0.32750 1.6 9.05 0.217 0.74
422 1 1.10860 6.7 53.6 14.8 87
844 2 0.55430 3.15 25.2 1.73 10

1266 3 0.36953 1.8 14.4 0.440 2.6
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Table 5.2: Properties of Principal Refiections for Si Single Crystals:
* * +
hki ~ Emin Emin Emax Emax M,
(eV) (eV) (eV) (eV)
111 1977.0 2358.0 13197 47618 7.5
220 3228.5 3850.6 21551 60867 3.9
400 4565.8 54455 30478 72405 5.3
311 3785.7 4515.2 25271 65919 13.8
422 5591.9 6669.4 37328 80147 6.9

The minimum and maximum energies E;in and E;ax are calculated according to Egs. (5.4) and
(5.5) using the following values: L, =66 mm, h, =13 mm, and dg = 10 mm . These energies are

only correct if the x-ray beam is incident on the rotation axis as in Fig. B.1 of Appendix B. Otherwise
g

E:nin and E;ax may be quite different. Indeed, we have used the Si (111) crystals to 17 keV and

the Si (220) crystals to 33 keV in EXAFS experiments.

The index triple (111) constitutes the lowest-order reflection possible. It allows for the largest
d-spacing which in turn reduces E;, to its smallest value. At the same time, however, the resolution
is worst as can be inferred from Eq. (5.12). The biggest advantage of the (111) reflection is the
absence of the harmonic at twice the energy of the regular beam. This is due to the fact that,
according to the selection rule, Eq. (5.15), the (222) planes do not reflect x-rays.
("Umweganregung” (= detour excitation) which is the result of consecutive reflections and leads to
tor example a (222) reflection [129] is neglected here.) The first harmonic that can pass a (111)
Crystal is the m=3 harmonic due to the (333) reflection. For a (220) crystal, harmonics at any integer
Muttiple of the fundamental energy can occur. This is a clear disadvantage of the (220) crystal but it is
Offset by the fact that its resolution is better and because of its greater structure factor. Even better
resolution is offered by the (422) reflection. Reflections like the (440) cannot be used as principal
reflections because they let the “subharmonic” resulting from the (220) planes pass. Besides, their
Miller indices are high, resulting in a narrow diffraction width 864 as mentioned before. This width is an
important parameter for the selection of crystals. The set of (311) planes may be a reasonable choice

in thig respect. Its resolution is slightly better than that of the (220} reflection and not all harmonics
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¢an pass. Unfortunately |F31 1 | =458 is a bit small. (311) crystals have not been employed on a large
scale which perhaps may be also due to the fact that Si-single crystal rods are usually not available
grown with (311) end faces but have to be cut from a larger piece of single crystal of (111) or (110)
orientation, which may be too wasteful. At L.U.R.E., however, Si (311) crystals are used [130]. They

are also employed in laboratory EXAFS facilities. See Ref. 131 for a review of these facilities.

The x-ray monochromator contains two independent singie crystals so that they can be slightly
detuned. This results, however, in the unwanted reduction of intensity of the regular beam as well.
Employing simple float-glass mirrors is a superior way in comparison [132). Mirrors act as low-pass
fiters for x-rays and can therefore suppress harmonics. Their x-ray reflectivities are as large as 95%.
The advantage of glass mirrors is that the crystals can remain tuned and therefore the output
intensity high. By detuning, in comparison, the x-ray intensity is reduced to approximately 50%.
Another advantage of glass mirrors is that those crystal glitches (see below) that are associated with

harmonics are eliminated.

Crystal glitches occur in monochromator crystals as a result of multiple diffraction of x-rays
(133, 134]. They occur whenever the Bragg condition is fulfilied for one or more extra sets of Bragg
planes simuttaneously and at the same energy as the regular reflection. This can only occur at certain
tixed energies. As a result the regular reflected beam loses intensity because suddenly more
diffraction channels have become available. In principle this does not constitute a problem as the
beam intensity is measured before and after the sample. The quantity of interest is the ratio of these
two intensities and therefore any intensity variation should cancel out. It turns out, however, that the
intensity variations due to multiple diffraction effects are drastic so that the ion-chamber detectors do
Not respond linearly. As a result the intensity variations will not cancel out upon forming the ratio.
Feedback circuits have been developed in order to reduce these intensity variations [135]. The
énergy-, or Bragg-angle-, spectrum of the glitches depends on the crystallographic orientation of the
rotation axis. The number of glitches increases with the ratio of wavelength to lattice constant. Thus
there are many more glitches at higher energy but at the same time they become less severe.
Conversely, at low energy there are fewer but more pronounced glitches. They can frequently be
avoided by a proper choice of the rotation axis [133]. A grazing-incidence mirror placed after the
Monochromator will remove many glitches. Since such a mirror acts as a low-pass fitter for x-rays this

indicates that many glitches are due to harmonics.
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In this work only Si-single crystals are used. It is also common to employ Ge crystals. Their main
advantage is the increased structure factors due to the larger atomic number. They also reach to
slightly lower energy because their lattice constant is bigger than the one of Si (5.66 A as opposed
to 5.43 A). Their disadvantages are the lower resolution and, in particular, the Ge K absorption edge
above which the reflectivity drops drastically. However, for energies below the Ge K edge, which
occurs at ~11104 eV [136], Ge is a Bragg crystal with a high intensity and has the added advantage

that those harmonics that are above the Ge K edge have a strongly reduced reflectivity [137].

5.3 Absorption Coefficients
This section defines the different types of absorption coefficients and how the absorption

coefficient for a compound is obtained from the absorption coefficients of the constituent elements.

Also their energy dependence is discussed.
Absorption of photons is described by an exponential decay of the incident intensity I:
I(x) = [ge*x . (5.23)

X is the sample thickness and p is the linear absorption coefficient. The mass-absorption coefficient

Hm is equal to the linear absorption coefficient, normalized to the density p:

Hm=wp . (5.24)

In order to calculate the absorption of a compound it is useful to define the atomic absorption

coefficient: Ha = Hm AN, . (5.25)

Np is Avogadro's number and A is the atomic weight. If v; atoms of species i are present then we

have:

“a:Zvi Ha i or Hm= %.Zvi A, Hm,i ; AEZVi A . (5.26)
i "
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The atomic absorption coefficients p, for the elements are tabulated as a function of energy in

Ref. 138, which also contains the following parametrization of the p, away from absorption edges:

ln(%) - Za" [m (R‘E‘v’)]n . (5.27)

It turns out that a two-parameter fit with a5 and a4 will describe most of the energy dependence of p,.

We obtain then for the mass absorption coefficient:

Na bam E \
Um = — 3 €% (keV) : (5.28)

a4 is roughly equal to —3 [139] which yields the first term of the Victoreen formuia [140]:
Mp=C-E3-D.E™® . (5.29)

At low Z the exponent a4 is approximately —3.5 [139]. The fact that a, is approximately the same for
each element implies that it is impossible to distinguish different elements or compounds on the
basis of the energy dependence of their absorption coefticients unless absorption edges are
present. Furthermore, the absorption coefficient u,(mE) at some multiple of the energy E is simply
Proportional to uy(E):

Hr(ME) = ma! p(E) = Hﬁs@ . (5.30)

For harmonics (m = 2, 3, ...) this yields Hm(2E) = % Hm(E) Hm(3E) = 21—7 Hm(E) . etc.,
with a transmission Ty, close to unity Tm= exp(—p Um(E) x /m3) .

This means that for harmonics the thickness x appears to be reduced by a factor of 1/m3. Any
absorber in the x-ray beam path will theretore preferentially transmit the harmonics rather than the

fundamental. It does not matter whether the absorber is placed before or after the monochromator.

Unnecessary absorbers, like for example Al filters, should therefore be avoided.
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5.4 lonization Chambers

The purpose of this section is to relate the measured signal from an ionization chamber to the

intensity of the incident x-ray beam.

The x-ray flux, i.e. the number of photons crossing unit area per unit time, is monitored by
ionization chambers before and after the sample. if the flux of the incident beam were sufficiently
constant the first ion chamber would not be necessary. The signal detected by either one of the ion

chambers is:
~ ~ F .
Ii=.qu=,q—A—' - i=0,1 . (5.31)

i=0 refers to the first ionization chamber, i.e. the ion chamber before the sample and i= 1 refers to
the second ionization chamber, that is the chamber after the sample. Ny, is the intensity of the
incident x-ray beam and N is the intensity of the beam after passage through the sample. The F, are
the x-ray fluxes and the A, are the cross-sectional areas of the x-ray beam when passing through ion
chamber i. Normally Ag is equal to A4 but when the pressure cell is placed into the beam the
respective cross sections may differ. A4 is then reduced because of the narrow collimator inserted in
the pressure cell. The quantities x; are proportional to the number of photons absorbed in ion
Chamber i. As a result the X; are proportional to A; and they depend on the species of counting gas
used. Each ionization chamber is connected to a current-to-voltage converter whose output in turn
is converted into a “count rate” by means of a voltage-to-frequency converter. The respective

conversion factors are:
Current-to-voltage converter: Sev,i= 10N V/A . (5.32)
Voltage-to-frequency converter [141]: Sy =100 kHZ/V . (5.33)

For the Keithley picoammeters used in our experiments, n; < 11 is an integer indicating the size of

the selected scale factor. Usually ng=9 and ny =11 so that the output voltages are around 1 V.

The dimensionless gain factors g; for the output signal are: gi=eSySey; - (5.34)
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e is the (positive) elementary charge. For k; we obtain: K=K g; A (1 - e““ixi) . (5.35)
K is a dimensionless quantity, which is the same for both ion chambers. It is defined by:
K = E/Epqy - (5.36)

E is the photon energy. Epai, is the average energy required to generate an electron-ion pair. The

signal detected by ionization chamber i is then:
lj= N xg A (1 - e-HiXi) . (5.37)

We get:

Ag {1 — e HoX0
Nly/ly = InN/Ny + In [90 o {1-¢ )J. (5.38)

g1 Ay (1 - e H1x1)

From the signal of the first ion chamber we can estimate the photon flux F of the incident x-ray
beam. Fo is equal to the current e Io/go produced in the chamber (typically 1 nA), divided by the

charge collected. Therefore we get:

Fo= e Io/go Io Epair

= (1 - e-uoxo) e E/Epair ) go E (1 - e—poxo) (5.39)

Epair varies from 41 eV in He to 22 eV in Xe [142, 143]. Values around 30 eV are typical for many
gases and for different types of radiation. For N (or air) and Ar the values are 35 eV and 26 eV,
respectively [142]. Epair is much greater than the ionization energy because there are also excitation
Processes taking place which do not result in ionization and consequently increase the average
énergy required to produce an ion pair. The positive ions and the electrons can recombine and
hence reduce the ionization-chamber current. If the operating voltage is increased to a sufficiently
high vajue then the ion chamber operates in the saturation or plateau region where ali charges
Produced by the x rays are collected before recombination. Under these conditions the output

signal is truly proportional to the incident x-ray flux. The saturation current can be obtained from a plot
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of 1/1versus 1/V2 according to the following equation [144], which holds when ditfusion can be

Neglected:

1 1 &3
T =, Y2 - (5.40)

<

land I are the ion-chamber and saturation currents, respectively. d is the plate separation which
here amounts to 10 mm. V is the applied voitage and a is a proportionality constant. Saturation sets

in at voltages such that the strength of the electric field in the chamber exceeds 100V/cm.

Recombination of positive ions with negative ions instead of electrons also occurs. This type of
recombination is very much faster than with electrons and it happens in gases, like for example
oxygen, that readily form anions by attaching electrons. If a gas mixture is used in an ionization
chamber then charge-transfer collisions become important. in such collisions a positive ion collides
with a neutral atom and exchanges an electron. For gas mixtures the result is a net transter of charge

to the gas component with the lowest ionization energy.

The experiments were carried out using parallel-plate ionization chambers operated in current
mode at a voltage of 300 V. The active region of the first ionization chamber was 119 mm long and
that of the second had a length of 271.5 mm. The first chamber should be as short as possible so
that not too much intensity is absorbed. The second ion chamber, on the other hand, should be very
long so that all photons are counted. It is advisable to employ the same gases in both chambers in
order to have the same diffusion times [145]. Each ionization chamber had two windows of Kapton

foil, 1 mil (= 25.4 um) thick. The gases were at atmospheric pressure.

55 Optimum Sample Thickness

In this section we derive a criterion for the optimum sample thickness for x-ray absorption

experiments based on results from counting statistics [146) (see also Ref. 147).

Considering the counting time t required for a given relative error p of the product ux, where p

is the linear absorption coefficient and x is the sample thickness, we have:



T

SO RCHECOROES

oT ux ux T

(ux)2

where T =e#X s the transmission. We can also express T as:
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(5.41)

(5.42)

Fo=co/t and Fq =c4/t are the fluxes or count rates and ¢, ¢4 are the number of counts of photons

before and after the sample, respectively. For the relative error of the transmission we get:

8T\2 _ (T 8co2 (T 8012 (op  ory
(T) =(a°o T) +(a°1 T) ‘(CO) +(°1) )

In the last step we have employed a result from counting statistics: (c)2=c; (i=0,1) .

This yields:

S HA ES WU B L
P o (CO ' C1)‘mx)2 w (7).

For a fixed count rate Fo=cg/t of the incident beam we obtain from Eq. (5.45):

T= ax;z—pé-‘ég(1+ep'x).

T, plotted versus px, has a minimum determined by:

WX)opt—2 = 2 @ (MX)opt = (W)opt=222 .

(5.43)

(5.44) -

(5.45)

(5.46)

(5.47)

If we choose the sample thickness x such that (5.47) holds then we obtain the shortest

counting time for a given precision p of the measured quantity ux . For the optimum, i.e. minimum,

Counting time we get using (5.47):

e, o 1 1 1 _ 2.05
P Fop? Wgpt (X)opt =2 = Fo p2

(5.48)
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We can formulate the condition for an optimum also in terms of the number of photons c¢q by

rewriting Eq. (5.46):

0= 5972 (1 +emx) = (Coopt= 25—25 , (5.49)

We see that the counting time or the number of photons are inversely proportional to the square of

the relative errorin px .

in order to get an idea of the sharpness of the optimum, it is useful to determine the points

(MX)min @nd (UX)mayx Where the function t versus px assumes twice its minimum value. The result is:

(X) i = 0.93 = (X)pt — 1.29 ; (X)max = 4-33 = (X)gpy +2.11 . (5.50)
Thus the minimum is rather wide and the optimum-thickness criterion not too stringent.

It turns out that the optimum condition depends also on the absorption in the ion chambers.

The ion chamber before the sample produces a signal given by
10=N0Kgvo(1 - e'P0X0)= —Tchgo (1 —e‘“O"O) , (5.51)

where 1 is determined by cg incident photons during a time interval <. Correspondingly, the second

ion chamber measures the signal I;:
Iy = Ng e™H0%0 0% x gy A; (1 - e=#1%1)
A
= %’ eH0X0 6 X xgy ot (1 - e H1x1) . (5.52)

Ao

The first two exponentials in this equation are the transmissions of the first ion chamber and the
sample, respectively. A, is the cross-sectional area of the beam after passage through the sample.

A4 can never exceed Ag: A <Ag . (5.53)

Forming the ratio we obtain for the transmission of the sample:
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I HoX0 -

(alz T 8lg\2 (3T 8l  (SlgR (8112
T)=(BIO T)+(al1 T)‘(10)+(11)

1 1

= + (5.55)
co (1 - e‘uoxo) co eHoX0 e™HX (1 - e‘“1x1) Ay/Ag
Similar to Eq. (5.44) we have used in the last step the following relations:
2
[8 co (1 - e 0%0)]" = co (1 - e0%0) , (5.56) -
A2 Ay

- - - Jhi I X —e- —

[6 Co e7H0X0 e™HX (1 -e P1"1) Ao] = ¢ eHo%o e™¥X (1 e P1X1) Ao (5.57)

Note that we have included here quantities like the number c,, of incident photons, the
absorber materials, and the cross-sectional areas of the x-ray beam, which all determine the number
of counts. x, gg, and g4, however, are merely gain factors which magnify the number of counts and

their variation by the same factor. For p2 we obtain:

Ro 1 (6_T)2 1 1 ) (1 + ehX /;_o e_“ELL) _ (5.58)

w2 \T/) 7 co (1 ~ e"HoXo 1 1-e™H1X

Writing ¢, = Fq © yields an equation similar to Eq. (5.46):

A HoXgo -
te 1 ! t4eux S0 SEOC=L) (5.59)
mx)= p= Fy (1 - e'uoxo) 11— e HX

Because t now depends on px , pugXg , and Hyxy we have to set the partial derivatives of t with
respect to these quantities equal to zero in order to find the optimum. We see after a bit of thought

that the derivative with respectto x4 of the second ion chamber cannot be equal to zero but
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approaches zero for: HiXy — oo . (5.60)
Setting the partial derivative with respect to Lgxg equal to zero results in the equation:

2
(eroxo - 1)7 = gL ewx (1 -emix). (5.61)

Similarly, setting the partial derivative with respect to ux equal to zero yields

Ay 1 — e—HqX
-2 = 2e'*°"‘1‘ 1__9_1_1_ = 2(e“0"0— 1), (5.62)
Ao eHoX0 - 1

where the last step follows from Eq. (5.61). Solving for pgxq gives: upgXg = In(ux/2) . (5.63)

The optimum counting time is obtained by inserting Eqs. (5.61), (5.62), and (5.63) into Eq. (5.59):

T = 1 1
CPtT P2 R, (ux - 2)2

(5.64)

Applying Eq. (5.61) once again, produces an equation which can be iterated for a given value of

H1Xq , the optimum being infinity, (5.60):

MX = 2(1 + '\[ %e-ux (1 —e‘“1"1) ) (5.65)

Once px is known, pgXo is calculated from Eq. (5.63). For pyxy — o= and Aq = Ag we obtain:

KX = 256 ; HoXo = 0.246 ;

(5.66)

) X g9
- 0702 72

.. _ 319 _ X 90 1
%t = D2F, T p2i, mx (mX - 2)

In the second step we have used Eq. (5.64) together with Fg = co/r and Egs. (5.51) and (5.63).
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These three conditions determine the optimum choice for the absorption-thickness product
(subscript “opt” omitted) for the two ion chambers and the sample. The result ux = 2.56 is not too
different from the previous one, (5.47), where the absorption of the ion chambers was ignored. Note
that the result (5.66) is exactly the same as the one in Refs. 5 or 148 which had been obtained in a
completely ditterent way. The present criterion includes in addition the dependence on the ratio
A1/A0 of the cross-sectional areas of the x-ray beam. For pyxy — ~ and Aq = 0.5 Ay we get
instead of (5.66):

5.63 X 9o
- 0980 - . 5.67
p? Fo p21 667

Wx = 242, HoXo = 0191 1o =
Thus, if the cross section of the x-ray beam in the second ion chamber differs, i.e. is smaller than the
first, then the sample thickness as well as the absorption in the first ion chamber are reduced tfor
optimum conditions. This optimum-thickness criterion, which is based on counting statistics, always
produces optimum sample thicknesses exceeding ux = 2 . Otherwise Eq. (5.63) yields negative

values for pgxg .

Since p depends on energy, whereas x does not, the product ux cannot remain constant. We
will therefore choose the sample thickness such that the average value of px in the EXAFS region is
approximately equal to 2 or so. if a sample contains several edges of interest it may occur that the
averages of jix at the corresponding edges cannot both be near 2. If that is the case then the
thickness cannot be optimized for all edges. In order to check whether simultaneous optimization is
Possible it is useful to plot the quantity 2/u . Aplotot 2/u versus energy is shown in Fig. 5.1 for
SmSe where the values of p were obtained from the parametrizations in Ref. 138. We see that in this

case it is possibie to optimize for both edges simultaneously.
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Fig. 5.1:  2/ugmse Versus photon energy. The jumps occur at the absorption edges. We see that a
sample thickness of x = 16-10~8 m would be a reasonable average thickness suited to measure the

EXAFS of the Sm L edges as well as the Se K edge.

In Section 5.7 it will be shown that if harmonics are present then the sample thickness shouid
be made as small as possible instead of being such that px=2.
5.8 Signal-to-Noise Ratio

This brief section describes how a guantitative measure of the signal-to-noise ratio in EXAFS is

obtained.
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As will be shown in Section 6.7 we can decompose the EXAFS function x (k) into amplitude and

phase which both depend on k. Therefore we get:

K- B

x(K) = A(k) sind(k) = ™

(5.68)

g is the the background, i.e. the slowly varying part of the absorption coefficient. We define the

signal-to-noise ratio as

s/ne Pett®) _ Astl) _ Ae®)

= Toud] " PHX " pHex 5:69)

where the second step follows from Eq. (5.41). Agg(K) is the effective or rms value of the EXAFS
signal. We obtain Agg(k) by assuming that A(k) is slowly varying with k. Hence we only consider the-
effective value of sind(k) which we assume is equal to 12 , as it would be for a pure sine function.

This is an approximation because in general there are several shells and ®(k) is not proportional to k.

We obtain:
Agk) = 28 o gn- AR (5.70)
V2 V2 p ppx
As an example, if pgx =2 has been obtained with a precision of p = 1% and A(k) happens to be 0.1
0.1
then the signal-to-noise ratio is S/N = 20 log{of =——— ) = 11dB.
9 "%Vz 0.01 . 2

Thus far the equations have been general, but in the following we distinguish two cases. The

first is that of not considering the ion chambers. Using Eq. (5.46) we obtain directly from Eq. (5.70):

S L Ak VFot __AK) Vo
V2 (1+e08%) V2 (1+e18%)

(5.71)

If we do take ion chambers into account then we obtain from Eq. (5.59) instead:
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N AK)  Fo t (1 - e=roxo)

2 (14 enpx A0 eHOT0-1
A1 —emk1Xy

In this equation, too, we may replace Fqt by co. We see that the signal-to-noise ratio is proportional

(5.72)

to the square root of the total number ¢, of photons or, equivalently, to the square root of the
incident x-ray flux Fo multiplied by the counting time t. Eq. (5.72) differs from the signal-to-noise ratio
given in Ref. 148, the most important difference being the absence of the derivative of the

absorption coefficient of the sample with respect to energy.

57 Y o0 Coefficients Obtained from Experi

In this section we investigate how harmonics, pinholes, and uneven sample thickness aftect
the measured absorption spectrum. In particular, we will investigate the effect of harmonics. We
derive how a lower bound on hy, the intensity fraction with the fundamental energy, can be
calculated from the experimentally observed step size, Eq. (5.85). If the transmission of ail other
absorbers, besides the sample, is known then one can actually determine the minimum value of hy,
Eq. (5.90). After having discussed absorption coefficients we consider the EXAFS which can be
treated as a small signal on top of the absorption coefficient. A small-signal gain is obtained from the
derivative of In NO/N1 with respectto p(E) X and it describes the effects on the EXAFS envelope
function due to artifacts (Eq. (5.93)). An example applying the results to a Cu foil is given at the end

of this section.

Absorption coefficients determined from ln(No/ N1) are subjected to experimental artifacts
such as the presence of harmonics in the beam, pinholes or bubbles in the sample, and an uneven
thickness when making samples from powders. These effects lead always to an apparent reduction
of the experimental absorption coefficient, i.e. ln(NO/N1) < ux . Ideally, the equals sign wouid hold. in
order to investigate these artifacts and to find out what can be done about them we first write down

the transmitted intensity for a sample of unitorm thickness with no pinholes.

We begin by considering the effect of harmonics. We may write:
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oo

N1(E)=J No(E) h(E-E) e~H(E) X dE ; fh(E-é) dE = 1. (5.73)

Here h(E—E) is a normalized weighting function describing the variation in energy, which is due to

harmonics and best described by a sum of 8-functions:

h(E-E)= D hy 8(ME-E) Y =1 met < P - (5.74)
m=1 M=1
Thus Eq. (5.73) becomes: N4(E) = 2 No(mE) h, e—H(mE)x
M=1

We now put any energy dependence of the intensity N of the incident beam into the coefficients .
hm and can therefore assume that Ny is constant. We can thus write:

oo

Ny(E)=Ng- D, hpy, e H(ME)X (5.75)
M=l

For a powdered sample, such as SmSe, we have to take into account that the thickness x is not
constant. Instead there is a thickness distribution characterized by a mean value X and moments My

of higher order. Following Ref. 149 we replace Eq. (5.75) by:
—u(mE)x L. [g-n(mE)(x-X) g’
N1(E)=NO. hm € p(mE)Xx s et das' . (5.76)
m=1

The integration is over the illuminated cross-sectional area S of the sample. Writing the exponential

underneath the integral as a series yields an expansion in terms of the central moments My [149]:

- - k
N1(E) = No - m21nm e HMENT . Y ()k KUME (5.77)
= k=0

with My = é .Sj(x—i)k as . (5.78)
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We have My =1 and My =0 . The thickness distribution of (x-X) can be assumed to be symmetric
and therefore the odd central moments will vanish. Provided that moments higher than M can be
neglected we have:

oo

Ni(E) =Ny 2 hey eH(ME) [1 +
m=1

a

> 32 (u(mE)‘Y)z] . (5.79)

The absorption coefficient at the energies of the harmonics is much smaller than the absorption
coefficient at the energy of the fundamental. We therefore neglect the former compared to the latter,

that is u(mE)=z0 for m=234, .. and obtain:

N1(E)=N0{h1 e—H(E)X [1 + 2""32 (u(E).7)2] + an}. (5.80)
X k=2

oo

Using 3 ty = 1-hy trom the normalization condition, (5.74), we get:
ka2

— M2 _\2
g - {1 —hy + hy e"H(E}X [1 + (n(E) %) ]} : (5.81)

Having made the approximation of transparency of the sample for harmonics we can easily take the
existence of pinholes into account because if there are pinholes then the sample is more
transparent, just as it is for harmonics. Therefore we assume in the following that the effect of
pinholes is contained in hy as well, besides the harmonics. hy, the fraction of intensity at the energy
of the fundamental, is of interest because it depends on the amount of harmonics and pinholes
present during an experiment. In the remainder of this section we will therefore investigate in how tar

it is possible to determine h;.

N and Ny are not the actually measured count rates. Instead Iy = kg Ng and Iy = ¥y Ny are

measured according to Section 5.4 and we obtain In No/Ny as follows:
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No To K1
n (M) - (11) o (io) | (5.82)

The absorption spectrum is therefore obtained by a constant shift of the measured quantity In IO/ Iy.
Theretore differences of In Iy/1; will be equal to differences of In No/Ny . If the shift is known then

InNo/Ny can be calculated directly.

The next figure is based on Eq. (5.81). For results from different treatments of the eftects of

harmonics and pinholes see for example Refs. 150 and 151.

4 L ]
~ 3t ]
Z
~ = -
o
Z 2t .
= 0 ;

1 r i}

O 1 l | 1 1 1 1 1

Fig. 5.2: Measured absorption-thickness product In NO/N1 versus the true value p(E)X
according to Eq. (5.81) and for hy =0.9 and M3 = 0. The straight line corresponds to the ideal case.
The limiting value —In (1 —h4) = 2.30 is indicated by the horizontal line.
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InFig.5.2 In NO/N1 is plotted versus p(E) X for hy = 0.9 and M, =0 . We see from the figure that In
NO/N1 is always smaller than the true value p(E) X . Regarding harmonics and pinholes it is therefore
desirable to make the sample as thin as possible in order to minimize this discrepancy. For large
values of p(E) X the function approaches its limiting value of —In (1 —hy) it hy < 1. The existence of
a limiting value for hy <1 means that A(in NO/N1) = A(In 10/11) cannot exceed —In (1 — hy) . This
implies a lower bound on hy:

hy 2 1-eDmax with Do = A(INNg/N¢)| = a(in1o/iy)] . (5.83)

max max

As was pointed out in connection with Eq. (5.82), ditferences of In Io/I; , like Dpyay. are useful
quantities. If there are no other energy-dependent terms then th~ difference D54 Can be evaluated
at any two energies. Often, however, there are other absorbers, like for example B4C anvil tips or
simply air, present whose absorption changes with energy. Therefore it is best to evaluate quantities
like Dpyax at two closely-spaced energy values. At an absorption edge the energy is practically
unchanged, i.e. E, = Eg . Therefore it will be of advantage to use the size D, of the measured edge

step in a calculation. D, is given by:
D, = In 1o/14 lB - InIp/1 |0L = In No/N; IB - In No/N1|a . (5.84)
The lower estimate for hy can now be extended: hy 2 1-ePmax > 1-6Do . (5.85)

Eq. (5.85) is important because it allows one to calculate a lower bound on hy4, the intensity fraction

with the fundamental energy, from the experimentally observed step size.

We now proceed to determine h,. Using Eq. (5.81) we can calculate hy for a thickness X with D,

and M, as parameters. Rewriting Eq. (5.81) we have:

N z 1 2
NJO' = 1—h1 +h1 G_M(E)'X T(1 + ‘2‘M2 u(E) ) . (586)

Note that Eq. (5.86) now includes the quantity T which stands for the combined transmission of all

other absorbers besides the sample, like for example B4C, air, etc.. Writing this equation down for



the energy EB above the edge and for E, below it and forming the ratio yields

e o X (1 + SMy uaz) ~ eDo e~hp¥ (1 + SMp uaz)

(5.87)

where D, is given by Eq. (5.84). Under ideal conditions we have hy =1 and My =0 . In this case the

sample thickness has the smallest possible value:

Xmin = Do (5.88)
min = Hp - Ha . :

According to Eq. (5.87) hy as a function of the sample thickness X possesses a minimum. This is so

because hy =1 occurs at the minimum thickness and it must also occur at infinite thickness. The

minimum of h4 (X) occurs at:

1 2
In (rpe/p 1+5Map
(rup/ua) re—2 278 Ly (5.89)

Xo = Xmin + ' 1
Hp = Hq 1+§M2pa2

Xmin iS given by Eq. (5.88). (For r=1 the second term happens to be the optimum sample thickness
determined from contrast maximization of the transmitted intensity at an absorption edge [152].)
Thus the minimum of hy occurs close to some optimum thickness which in turn will be close to the

actual sample thickness. Inserting this result into Eq. (5.87) yields:

R R

=1+
N1 min eDo - 1 Hp Hp — Hg

Thus, if the sample thickness is unknown we can still estimate the minimum value hy i, of hy.

If we again consider Eq. (5.86) just above and just below the absorption edge and subtract the

two equations, instead of dividing, then we obtain an equation which can be combined with
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Eq. (5.87) to eliminate the transmission T due to other absorbers. The result is an equation for hy,

independent of T, but containing now gain factors and cross-sectional areas:

do AO (1 - e—uoXO) I1/IOIB e_uai_ - 11/[0|q r e—pBY

h1 = 1 —_ — —
g1 Ay (1 —e‘H1X1) eHaX — r e HBX

, (5.91)

where r has been detined in Eq. (5.89). Because this equation is independent of T, i.e. of all the
other absorbers, it should be more reliable for determining hy. Eq. (5.91) contains three unknowns:
The first fraction, evaluated at the edge, the sample thickness X , and r, which frequently will be
close to untty. If we assume that in a series of high-pressure scans only X in Eq. (5.91) changes,
then the second fraction is invariant under pressure. If the second fraction were exactly zero this
would indicate that there are no harmonics or pinholes. Practically, however, it will be non-zero and

as long as the prefactor containing the gain tactors is unknown h, cannot be determined.

The EXAFS is a small variation of the absorption coefficient and we can therefore consider it as
a small signal. The small-signal gain g is obtained from the derivative of In No/ N, with respectto p(E)

X according to Eq. (5.81):

L No/Ni  dinly/l
“du(E)YX)  d(u(E)X)

N 2 ;A—fzu(E)i
=[1 - (1 =hy) ﬁ%] 1 - My — | 6%
1 + ‘z—ﬁ(u(E)X)

Obtaining No/N4 from Eq. (5.81) one can write equivalently:

L. (€)% (wE) % - 2)
_dinNg/Ny  dinlg/ly 2 x2" a .93
CdWE)D deED 1M e Mo 2)2 '
H h, eM(E) X 4 1 4 2 %2 (H(E)x)

For values of MQ/ 2%2 that are not too large, the right-hand side is positive and for p(E) X — oo it
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tends to zero. This confirms the known fact that in the presence of harmonics and/or pinholes the
EXAFS signal decreases with increasing sample thickness. Conversely, if one observes an EXAFS
signal with the correct ampliitude from a thick sample then this implies the absence of harmonics or

pinholes (see (5.83)).

The result of the above equations is shown in Fig. 5.3. It is simply the derivative of the curve

shown in Fig. 5.2.

1.0 T § i 1 1 i ¥ 1
— 038 i
prd il
o
z 0.6 a
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'c% ]
0.2 R
0.0
0 1 2 3 4

Fig. 5.3: Derivative with respect to p(E) X of the curve shown in Fig. 5.2.

The gain g resembles the amplitude reduction obtained in Ref. 150 by a different method. it
achieves its maximum value hy, independent of M, at p(E) X = 0 . Thus in order to maximize the
amplitude of the EXAFS interference function the sampie should be very thin. Since the absorption

Coefficient decreases during an EXAFS scan, the gain will increase approximately linearly with p(E) X.
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Let us now apply these results to calculate the gain of a Cu foil of known thickness x (M5 = 0;

T = 1). Using Eq. (5.81) we calculate hy from the measured jump D, at the Cu K edge:

(5.94)

The subscripts a and B refer to the low- and high-energy side of the absorption edge, respectively.
With Dy =1, Hg = P Hmg = 339.46 cm™ , g = p g =2589.3 cm™! , and x = 51074 cm we get

hy = 0.95 . The gain for the EXAFS signal right above the K edge is obtained from Eq. (5.93). The
value is gp = 0.83 . Using Eq. (5.92) we can follow how the small-signal gain increases during a scan.

We obtain:

No 1-49
In Ny - in (1 = h1) , (5.95)

Writing Eq. (5.95) once again for the particular gain gp at energy EB just above the edge, subtracting,
and solving for g vields:

g=1-(1-gp ed with D = Inlyl; - In 10/11|B . (5.96)

This equation means that at least for the case of a foil of known thickness we can determine the
increase of the gain as a function of energy E or wave vector k. This enhancement of the envelope
of the measured EXAFS must be removed. If gp = 1, as in the ideal case, then it is evident from

Eq. (5.96) that g = gp=1.1#Mais significant then the above analysis is not so simple.

In the high-pressure experiments on SmSe the thickness x is not known accurately but it could

be measured by recording 11 with and without the sample being present.

Looking at Fig. 5.2 again, one might suspect the generation of integer muttiples of the EXAFS
frequencies due to the curvature, in analogy to harmonic generation in an electronic amplifier. it tums
out that moderately large values of M, straighten the curves shown in Fig. 52.For M>=0 a

comparison of the second derivative of In No/N4 with the first derivative shows that the generation
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of integer multiples is typically less than 10% but can increase for rather thick samples. Therefore the
signal at twice the EXAFS spatial frequencies, which occur at 2 (Hj +0.5py) , is about 10% of the
signal at Ri +05py.

The assumption made so far that the sampile is transparent for the harmonics leads to an

overestimate of the transmitted intensity N. Hence we write Eq. (5.81) as an inequality:

WE)X 2 lnN%2 > —In[1 ~hy + hy e"H(E) X (1 + 1§M2 u(E)z)] ) (5.97)

58 Pressure Calipration

The pressure is determined from the EXAFS of a calibration material that is placed in the gasket
together with the sample. The contact of the calibrant with the sample requires that the two
substances do not react chemically. Analyzing the EXAFS of the calibrant yields the nearest-
neighbour distance. In order to convert this distance into a pressure the equation of state of the
calibrant must be known. To this end it is of advantage to employ isotropic {cubic) calibrant materials.
It is desirable that the EXAFS extend as far as possible. This requires that the Debye-Waller factor be
small and that there be no intervening absorption edges from the sample. In order to facilitate the
data analysis it is desirable for a calibrant to have a well separated first coordination shell and a Debye
temperature equal to or bigger than the temperature at which the experiment is performed so that
comrections due to asymmetry are not necessary. Furthermore, a calibrant should be highly
compressible in order to reduce the error in the pressure determination. For minimizing the etfects of
non-hydrostaticity the calibrant should possess a low shear strength. Finally, its absorption edge
must be in an accessible energy range and the absorption of the calibrant should be small in order to

reduce the overall absorption.

In this work two pressure calibrants are employed: Cu and RbCI. RbCl has one unwanted
property, namely a phase transition from the NaCl crystal structure to the CsCl structure. The
transition occurs at 5.2 kbar [153] which is below the pressures that interest us here. Note that the

error in pressure determination for RbCl is smaller due to its larger compressibility. The error in the
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EXAFS pressure calibration employed here is stili far greater than the error from the ruby
fluorescence scale which is about 0.5 kbar to 0.1 kbar [154). This method is not employed here as it
requires that at least one of the anvil tips be made from diamond. However, in the axial geometry
used in our experiments, this will introduce Bragg peaks in the EXAFS spectra preventing analysis
[155].

At room temperature the p-V relation for Cu is taken from Ref. 156. The same reference
contains also data for RbCl but these are discarded because they were obtained from shock
experiments which are not corrected for the presence of the NaCI-CsCl phase transition. Instead we
employ the data of Vaidya and Kennedy [153]. Their results, however, only extend up to 45 kbar and
it becomes necessary to extrapolate to approximately 100 kbar. This is done by fitting the data of
Ref. 153 in the interval from 5.2 kbar to 45 kbar to a theoretical p-V relation. As suggested in

Ref. 157 we employ a modified form of Jamieson's equation of state [158] which reads:

P __ 1 . VN 5.98
B (1-sm2  "F'TTa o (5.98)
B,, S, and a are parameters which are determined from a fit to Vaidya and Kennedy's data [153].

Their respective values are:
B, = 184 kbar ; S=153 ; a=08458 . (5.99)

With the room-temperature p-V relations known we now have to determine the corresponding
relations at liquid-nitrogen temperature. In doing this we will assume that the pressure for the NaCl-
to-CsCl phase transition of RbCl is approximately temperature independent. For a relation like an

equation of state which involves the three variables p, V, and T we can immediately write down the

following:
dp| ATy av| _ . | __ydef 1avf _
o ValeapT__1 or: aTly = VavTva p—BTB~ (5.100)

By is the isothermal bulk modulus and B is the coefficient of volume expansion. If these two

quantities were known the change of pressure with temperature could be calculated.
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When Bt B is not known the Grineisen relation (see Appendix C) is useful. It is given by:

C
Brp=vg v - (5.101)

Yg is the Griineisen parameter. It depends on volume and temperature. For most substances the
temperature dependence is weak in the range from 300K to 77K [159-164] (see Ref. 159 for RbCl in
particular). We will therefore ignore it and consider yg as only volume dependent. Any temperature

dependence of yg would be a direct consequence of increased anharmonicity.

Cy in Eq. (5.101) is the heat capacity at constant volume. in the Debye model it is given by:

C Vv,
v - p%a fo@/M = po 2 = fol@/D - (5.102)

©p is the Debye temperature which is here assumed to be temperature independent. However, ©p,
like Yg, does depend on volume. For Cu these volume dependencies can be found in Ref. 165.
They are linear in the pressure range that is of interest here. For RbCl the volume dependence of
the Debye temperature up to 20 kbar is given in Ref. 166. Values for higher pressures are obtained
by linear extrapolation. The volume dependence of the Griineisen parameter of RbCl is obtained
from the Debye temperature using the relation (see Appendix C):

dInBp

R (5.103)

2

The quantity A in Eq. (5.102) is the average atomic weight, i.e. A= % A, , where n is the number of

pry

atoms per formula unit. R is the gas constant, p the density, and fD(GD/T) is the Debye function

defined by:
y
3 eX
fony= % | ———=x4dx . 5.104
0
C
Using Eq. (5.101) we can rewrite Eq. (5.100) as follows: g% v YG VY . (5.105)
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Integrating, using Eq. (5.102), yields the (negative) change Ap in pressure when the temperature is

reduced,
77K 772 v 300K
3R

Ap = %% LT = e f V9T = —pe  XaV) lfo(Go(V)/T) ar

300K 300K A 77

(5.106)

where in the last step we have emphasized the volume dependence of yg and ©p.

The pressure at liquid-nitrogen temperature is now:
P(77K) = p(300K) + Ap . (5.107)

The results for the calibration are:



Table 5.3: Pressure versus reduced volume for Cu at 300K and at 77K:
I=300K 1=7IK

A'A p (kbar) A'A p (kbar)
0.896 200.0 0.904 188.12
0.904 180.0 0.912 168.05
0912 160.0 0.920 147.98
0.921 140.0 0.929 127.90
0.930 120.0 0.938 107.825
0.940 100.0 0.948 87.74
0.945 90.0 0.953 77.69
0.951 80.0 0.959 67.64
0.956 70.0 0.964 57.60
0.962 60.0 0.970 47.54
0.968 50.0 0.976 37.49
0.971 45.0 0.979 32.46
0.974 40.0 0.982 27.44
0.977 35.0 0.986 22.41
0.980 30.0 0.989 17.38
0.983 25.0 0.992 12.355
0.986 20.0 0.995 7.33
0.990 15.0 0.999 2.29
0.993 10.0 1.000 0.0
0.996 5.0
1.000 0.0

The results contained in this table are plotted in the next figure.
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Fig. 5.4: Pressure versus reduced volume for Cu. The solid line refers to room temperature and

the dashed line shows the result for liquid-nitrogen temperature.
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Table 5.4: Pressure versus reduced volume for RbCl at 300K and at 77K:
T=300K I=77K
Vv, p (kbar) A'A p (kbar)
0.716 194.14 0.726 184.38
0.728 174.54 0.738 165.15
0.740 157.00 0.750 147.98
0.752 141.25 0.762 132.60
0.765 127.07 0.776 118.80
0.777 114.27 0.788 106.38
0.789 102.695 0.800 95.165
0.801 92.19 0.812 85.02
0.813 82.65 0.824 75.83
0.825 73.96 0.836 67.48
0.837 66.03 0.849 59.88
0.8495 58.78 0.862 52.95
0.862 52.15 0.874 46.62
0.874 46.07 0.886 40.83
0.876 45.20 0.888 40.00
0.887 39.84 0.899 34915
0.899 34.81 0.9115 30.14
0.912 29.94 0.925 25.54
0.926 25.10 0.939 20.97
0.941 20.15 0.954 16.31
0.959 15.08 0.972 11.535
0.979 9.92 0.993 6.70
1. 5.16 1. 5.16

The results are shown in the following figure. It was assumed in the calculations that the pressure at

which the first-order phase transition occurs in RbCl is independent of temperature.
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Fig. 5.5: Pressure versus reduced volume for RbCl. The solid line is the room-temperature result

and the dashed line refers to liquid-nitrogen temperature.

We observe that the slope of the pressure-vs.-volume curves at 77K is more negative than the ones

at 300K:

QP_| i) or: aVv ,
aV]77x ~ 9V]300K " ap|7k T 9P |300K

(5.108)

a] oV
dT|p op

<0 or. 9. a—\il
T ©oapjTdT|p

It turns out that this is always so. Following an argument of Bridgman [167, p. 175] we write for the
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entropy content of a body:

T
’p T> o _ av

The last integral on the right-hand side of this equation thus has an upper bound S,. This means that

I must decrease with increasing pressure such that the limit S, is not exceeded. If gv

T
monotonic then this implies indeed aap %.Y < 0 asin Eq. (5.108). Note that because of

|

| 98 v h ith pr Th ted h t {

’ dplr="aT 0 < 0 the entropy decreases with pressure. The argument presented here stems from

the simple fact that the application of arbitrarily high pressure cannot reduce the entropy by more

than its initial value S,,.

If we plot the reduced volume at 77K then it will always be larger than the corresponding one at

300K:

\ \Y

o S . 5.110
Volp, 77k ~ Vo |p, 300K ( )

5.9 High-Pressure Cell

In this section a high-pressure cell for use at low temperatures is described and its design
criteria are explained. The force gain is calculated and Eq. (5.125) is derived which specities the
angle at which to set the pressure cell before compressing the sample. A formuia relating the

compression to the applied pressure, Eq. (5.133), is derived also.
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In order to carmry out high-pressure work a pressure cell was designed for pressures up to
100 kbar. This cell is shown in Fig. 5.6. The pressure is generated mechanically by compressing a
gasket placed between two opposing anvils. The gasket is an Inconel disk of ~10 mm diameter which
contains the sample in a small central hole of ~0.7 mm diameter. The anvil flats have a diameter of
about 3 mm. The axial geometry is employed, where the x-ray beam passes through anvils and
sample, rather than horizontally through gasket and sample. In the transverse geometry the gasket
has to be transparent to x-rays but at the same time strong. This makes Be the material of choice but
there are possible health hazards (see below). In the axial geometry the cross-sectional area of the
sample that is exposed to x-rays is unaffected by pressure and the sample thickness changes in a
controlled way. The fact that the x-ray beam has to traverse the anvils has a distinct disadvantage
though: it is not possible to employ anvil tips that are crystalline because Bragg diffraction would
produce peaks in the measured absorption spectrum that would contaminate the EXAFS so that
data analysis would become very difficult or impossible. Hence the anvils are made out of
polycrystalline boron carbide, B4C. Due to the lower hardness of this material, compared to diamond,
the anvil tips have to be 2 to 3 mm in diameter. This in turn requires larger forces in order to produce a
given pressure. In the future one may consider using sintered diamonds. They are hard and will not

cause Bragg peaks.

The pressure cell is intended for low-temperature work. Therefore the anvils are driven
mechanically rather than hydraulically as in earlier work at room temperature [155]. This will enable
one to change the pressure while at low temperature. The entire apparatus is made out of one
Material in order to avoid problems with differential thermal contraction. The pressure cell is made
from a maraging steel (VascoMax T-250) which can be easily machined in the soft condition and can
be hardened by simple heat treatment without any significant distortion. Maraging (martensite age
hardenjng) steels [168] are carbon-free alloy steels that acquire their high strength through
precipitation of intermetallic compounds at ~480°C. Although of lower hardness than BeCu
(1.8 wt. % Be), a maraging steel was preferred because the heat treatment of BeCu and the
necessary subsequent grinding to final dimensions require the satety measures of a special
Beryllium machine shop [169]. A disadvantage of maraging steels, not of concern here, is that they
rapidly lose strength at temperatures above ~480°C. Since almost all materials embrittle with
decreasing temperature the pressure cell has been designed with large safety margins applied to

the room-temperature material specifications.
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In the experiments performed for this thesis the thickness of the uncompressed gasket was
selected to be in the range from 0.381 to 0.508 mm (15 to 20 mil). The displacement of the anvils
cannot exceed this value. Therefore the cell is designed only for these small displacements. At the
same time a large force multiplication is desired. A special constraint at beamline V-1 at SSRL is that
the x-ray beam is only 50 mm away from a wall so that the pressure cell has to be narrow along one
cross-sectional dimension. The pressure cell was modeled after one designed by Syassen and
Holzaptel [170, 171] for use with diamond anvils. The present cell, which is shown in Fig. 5.6, is
bigger due to the larger force required. It has very good alignment stability because the force

advancing the piston acts strictly axially and the piston is also sufficiently guided in the bore.

Fig. 5.7 shows a sketch of the pressure cell. Indicated are the lengths L4 and L of bracket and
strut, their respective angles a4 and ay with the centre line, and various forces. F is the magnitude of
the force applied on one side and G is the magnitude of the resutting force that advances the anvil.

We will first investigate the kinematics. We introduce the quantity n, defined by:

ne2 1. (5.111)

From the figure we see:

) . sin oy
Lysinay = Lysinay = N = sinop (5.112)
Licosay = a-§+Lycosap = & = Ea1_ + \]nz—sinch - cosaq . (5.113)

The angle a4 can vary from 0° to arcsinn . This corresponds to a maximum possible displacement

Imay of:

Aadly = VI-12 - (1-7) . (5.114)

Omax/L1, plotted versus n has a maximum at 1= 1/V2 withvalue V2 — 1 =0.414 . The value
chosen for 1 is 40/63 = 0.635 with dp5,/L4 = 0.407 , close enough to the optimum.



126

b=
C:\—
>
= |
—'

U U

X-rays

r-— - —= ===

I N

Fig. 5.6: High-pressure cell (from Ref. 172). The pressure is generated by turning two gear-set
threaded spindles (T) . The two spindles are driven by a spur gear (SG) and through brackets (B)
and struts (S) move the two anvils (A) towards each other via the piston (P). The anvils compress
the sample which is contained within the gasket (G) . The end nut (N) is used to set the initial angle

of the brackets with the cell body.
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g

Fig. 5.7: Geometry and force diagram for the pressure cell, shown in Fig. 5.6. Turning the spindles
reduces the distance L¢, which then moves the two anvils together. Assuming that the right-hand
anvil is at rest, the left-hand anvil advances from its initial position &, to the position . The intial

thickness of the gasket is x.

Analyzing now the forces we obtain from the law of sines:

F i °
2 _sin(90 +aq) COS Q4
F =sin(apg-ay) - sin(ap-ay) (5.115)

Using G = F, cos a, we get:
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G COS 05 COS O sin o ~1
E =2 L= lt — = L — _tanaqy| . (5.116)
sin (as — aq) an an aq *(nz—sinzou

This equation describes the “force gain” G/F of the pressure cell. We have ignored the small lever
action due to Ly and L4. This gain only depends on a4 and 7. G/F should always be greater than
one which gives rise to a maximum angle ay max beyond which the gain is less than one. For

M = 40/63 we obtain oy nay =32.9°.

The force gain G/F increases with the ratio n. However, with increasing n the maximum possible
displacement becomes smaller. Also, for a given length of the cell body the bracket and strut will
have to become rather long for a bigger n-value. n = 40/63 is a compromise in this respect. It can be
seen from Eq. (5.116) that for oy — 0 the force gain increases to a very large number

(e, theoretically).

The diameter of the piston is 45 mm. The pressure cell is designed to produce 100 kbar when

the anvii-tip diameter is 4 mm. From this we can calculate the total force 2 G on the piston as:
2G = 100 kbar- 2 mm)2 - & = 126kN = G = 63KkN . (5.117)

To be safe the pressure cell is designed for G = 100 kN . Using G = 6 A we could calculate the cross-
sectional area A of brackets and struts required for a given tensile stress . This, however, does not
yield an actual design criterion because the effects due to bending are much more pronounced than
those due to tensile or compressive stress. The top plate as well as the two brackets are the
members of the pressure cell that bend most easily. As an example we mention here an equation
that approximately describes the bending of the bracket. From Fig. 5.7 we see that the force F4 acts
parallel to the bracket but displaced by a distance s giving rise to a torque that flexes the brackets
slightly outward when the cell is pressurized. Following for example Ref. 173 we obtain for the
deflection 5 in the middle of the bracket (at L1/2) with respect to either end:

Fys

_ .118
Ewtd (5.118)

§ =

Niw

Here E, w, and t are Young's modulus, the width and the thickness of the bracket. F, the force
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acting on the bracket, is obtained from F4 = F cos 0‘2/ sin (ax—01) . The displacement s will be equal
to the thickness, hence s =t. Young's modulus for the maraging steel used here is

Ems = 1.86 Mbar (27.0-108 psi) [168). Specitying & then yields values for the product w t2. We
chose w =57.15mm (2.25") and t =9.525 mm (3/8") . With these specifications the brackets still
visibly bend but this is necessary to provide a “spring action” so that a given pressure is maintained.
This will also ensure that the pressure changes smoothly. Like the brackets the top plate, too, acts in

this way.

The two brackets are pulled together by the action of two gear-set spindles turning in opposite
directions, which requires right- and left-hand threads. In the design of this mechanism several
points had to be considered. First the spindle diameter had to be decided upon. Using a modulus of
rigidity for maraging steel of 0.71 Mbar (10.3-10‘5 psi) [168], it was estimated that a 5/16" UNF fine -
thread with 24 threads per inch would result in a tolerable torsion of approximately 0.014°/mm. Next
the spindle length engaged in the threads of the two bolts was determined. Following an example in
Ref. 174, p. 298, it was found that a bolt diameter of 3/4" would be safe. The cell is designed such
that in the case of a thread seizure the two spindles can be cut apart and removed easily together
with the bolts. For a screw thread with only one thread start one can show that the torque T
corresponding to an axial force F is given by:

F
T- —2 . O<e<t . (5.119)

2T NneE
n = 24/25.4 mm is the number of threads per unit length and ¢ is the efficiency of the screw thread.

£ takes care of friction in the thread and a practical valueis £¢=0.5.

We can use Eq.(5.119) to calculate the necessary torque T for an applied pressure pgy;.
Referring to Fig. 5.7, the axial force on the spindles is F, = 2 F, where the factor of two results
because there are two threads per spindle. The fact that there are two spindies does not matter
because we only calculate the torque required for one spindle driving the other. Using pgy = 2 G/A
for the external pressure we get:

7. _Fa 2 F 1 2F 2G , _ PextA F

2nne 2nne 2nne2G A A_21tn£G'

(5.120)
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Using F/G from Eq. (5.116) we obtain:

A A sin a
nne 2mne |32 -sina,

We see that the torque is proportional to the force applied to the area A of the anvil tips and inversely

proportional to the number n of threads per unit length. The torque increases with the angle o.

In order to operate the pressure cell efficiently it is recommended that we make use of the
maximum force gain. This will make compression easiest. The maximum force gain is achieved by
starting out with the pressure cell opened by the correct amount. Then, after the two brackets are

fully closed the gasket is just fully compressed.

To derive the necessary equations we begin with Eq. (5.113), which determines the position of
the left-hand anvil tip as a function of angle ay. We start compressing the gasket and sample at the
angle a.¢ ,. After complete compression the final angle is a.4. This can be achieved by properly
positioning the right-hand anvil tip by means of the backing screw on the very right. We will briefly
discuss the case in which the final angle becomes zero. Assuming now o4 = 0° at the end we

calculate the final position & of the left-hand anvil tip from Eq. (5.113). We get:

& _a -
L =L +Mn-1. (5.122)

The angle at the beginning of the compression, when the left-hand anvil tip is at &, is aq ¢ according
to Eq. (5.113). Assuming that we intend to compress a fraction 0 < f <1 of the initial thickness x of

sample and gasket, we write:
é—&o =f-x = fL—f = COS 04 o — \]112—sin2011|o +n -1 . {5.123)

From Fig. 5.7 we see that the distance L between the centres of the two bolts is given by:

2L,
COS a4

Lo =2b+c=2(y+Lg+Latanay)sinay - +C

L = 2(Ly+Ly)sinay — 2L4c080y + C . (5.124)
1 3 1 4 1
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At the beginning of the compression we have a; = aq 4 and L¢ =L . Solving Eq. (5.123) for

cos a4 o and inserting the result into Eq. (5.124) yields the length L. , which has to be preset such
that when a4 = 0° the fraction f of the initial thickness x of sample and gasket is compressed. The
initial centre-to-centre distance L , of the bolts is set by means of the end nut. L¢ o, expressed as a

function of fx , is then:

2
(1 -21n7+7v2) 1-2ny+y
- - - 2L ;
Leo c+2(L1+L3)’\/1 4 (y-n)2 4 2(y-nm)
(5.125)
= fx
7_.1+L1 .

It is impractical though to measure L. ,. Since the two bolts are not completely round but have flats
one can easily measure the distance between the two flats with a vernier caliper. The distance Lg o

between the flats is simply:
Lro = Lgo+ 1651 mm . (5.126)

Fig. 5.8 is a plot of Lg , versus f-x according to Eqs. (5.125) and (5.126). For the lengths the

following values were employed:
Li=63/16" ; Lp=5/2" ; Lz=15/16" ; Lg4=3/16" ; c=11/4" .

N =Ly/L; has the value 40/63. Values for L , read from the curve of Fig. 5.8 should be increased
by some amount for safety. This insures that the arms of the pressure cell are not already closed
before all the compression has taken place. In this context it is also worthwhile noting that, because
there are 24 threads to the inch, each full turn of the gears changes L, by 2 - (1/24)" = (1/12)" =

21 mm.
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Fig. 5.8: Distance L, between the two flats that has to be set so that when the amms of the

pressure cell are fully closed the amount f-x of the gasket is compressed.

Fig. 5.9 shows the quantity T/(pe,d A), as obtained from Eq. (5.121), plotted versus Lg. The
number of threads per inchwas n = 24/25.4 mm and the efficiency of the thread was taken to be
€ = 0.5 . We see that the torque actually decreases with increasing pressure (decreasing length Lg).
Contrary to Fig. 5.8 the curve shown here does not require that the cell is closed after the desired
compression is obtained. In other words, the graph in Fig. 5.9 is independent of the particular

starting value for L. This is because the thickness x of sample and gasket does not enter here.



133

0.06

0.05

(mm)

0.04 -

T

0.03

T

0.02

T
pext' A

0.01 r

0.00 1 1 1 ! | 1
70 80 90 100 110 120 130 140

Le(mm)

Fig. 5.9: Torque T necessary to generate the force pg, A, plotted as a function of the distance

Lr between the flats.

Applying torques on the spindles produces friction in the threads which should be reduced by

lubrication with graphite powder or with MoS. This applies to the hinges as well.

We now develop a formula relating compression and pressure. Starting out from the defining

equation for the (isothermal) bulk modulus we obtain for constant By:

0 . d
Br=-v 5% ;o simplified: B = —V—d—VE : (5.127)

The volume contained between the two anvil tips is:
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V=A(x—(§—§o))=A(x+§o—E,) = dV=-Ad. (5.128)

A is the cross sectional area of the anvil tips. &, is the initial position of the left-hand anvil tip in Fig. 5.7

and & is its position after compression. Combining the last two equations yields:

g
___ BdE P B d&’
L e seur S L fx+éo—é'
%o
= p=—B~ln(1— F’—:X—F’i) (5.129)

In the last step we have assumed that the bulk modulus is independent of volume. Considering a .
volume dependence, like for example B = B, exp(a AV/VO) with o =4 and AV > 0 [175], one can
show that the volume dependence of the bulk modulus constitutes only a second-order effect. We

ignore here any volume dependence.
We can employ Eq. (5.129) to establish the relation between compression and externally

applied pressure peyt. To this end we consider the balance of the forces acting on sample and

gasket:

A, is the cross-sectional area of the sample and Ag is the cross-sectional area of the gasket,
excluding the sample and the uncompressed outer areas. ps and pg are sample and gasket
pressures, respectively.

Introducing p = —:s— (5.131)

yields: Pext = PsP + pg(1 -p) . (5.132)

Applying Eq. (5.129) for pg and Pg yields eventually:
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V, - - -
0 v - E: E.:o - _ﬂ =f= 1_exp( Pext ) . (5.133)

f is the (positive) relative compression (see Eq. (5.123)). B; and Bg are the (isothermal) bulk moduli
of sample and gasket, respectively. Because Bg and Bg may differ pg, will not be constant across
the area A. We mention here that one could insert the resutt for f into Eq. (5.125) in order to get the

corresponding length L, , (or Lg o).

We obtain further:

B 1 = g—;ﬁ . (5.134)
9

p B
"oes F-p)
S

The second step follows from the fact that p << 1 and that usually Bg 2 Bg . Thus, if the buik
modulus of the gasket is much bigger than that of the sample the sample will only experience a small
pressure. Conversely, if Bg were much smaller than B¢ then the gasket would not contain the

sample. Ideally, one would like to have Bg a little bit larger than By,

When performing the experiment it is difficult to ascertain by how much the pressure has
increased after turning the spindle by, say, a quarter turn. It has been attempted recently to monitor
the force acting on the piston by using electrical-resistance strain gauges. In this way it may be
possible to get an idea of the approximate pressure. ideally, one would obtain something like a
calibration curve to estimate the pressure. This work is not yet completed. One strain gauge each is
attached to the two struts. The 120 Q single-element strain gauges are attached to the struts
because the struts do not bend as much as the brackets thus producing a more reliable
measurement. Under strain the resistance of the strain gauges changes by a very small amount,
typically a few mQ. These small changes can be measured conveniently with a Wheatstone-bridge.
Following a recommendation in Ref. 176, p. 232, the circuit is designed with a resistance ratio in
either arm of the bridge of approximately 9:1. This yields a reasonable circuit sensitivity. A reference
gauge, attached to the same material and at the same temperature as the active gauges, must be
included in order to balance temperature effects. Since only small voltage changes (~mV) are

measured it is also necessary to use a regulated voitage source (~20 V).
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The Wheatstone bridge will be balanced only in the strain-free state. The smail nonlinearity,
produced when the gauges are under strain, is ignored here. in careful work one will take this

nonlinearity into account or re-balance the bridge each time.

It may perhaps be possible to estimate quickly the pressure through the relative volume change

determined from one measured dataset according to the method presented in Section 6.14.

5.10 Liquid-Nitrogen Cryostat

The cryostat designed to cool the pressure cell to liquid-nitrogen temperature is made out of
brass and consists of two chambers: One chamber houses the pressure cell and the other is the
reservoir for the liquid nitrogen. It would be ideal if the reservoir would connect to both sides of the
pressure-cell chamber. However, since beamline IV-1 is a side station, the centre of the x-ray beam is
only 50 mm away from the hutch wall. Hence the chamber housing the celt can only be cooled from
one side. For liquid-nitrogen temperatures this does not pose a severe problem though. This
cryostat is not evacuated. It therefore boils off quite a bit of liquid nitrogen (~5 Vhr). Because of the
large thermal mass of cryostat and pressure cell it takes about two hours to achieve liquid-nitrogen
temperature. This implies that the temperature, which was monitored by thermocouples, will only rise

very slowly.

To prevent icing up of the whole device the cryostat was covered with a few layers of aluminized
Mylar and it was enclosed in highly insulating ‘blue” styrofoam. The cryostat has a feedthrough tor a
wrench in order to adjust the pressure. When not in use the wrench is partly retracted in order to

reduce heat losses.
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5.1 Performing the Experiment

The setup for an x-ray absorption experiment in transmission mode is shown in the following

figure.

lonisation Chambers

Double-Crystal
Monochromator

Fig. 5.10: Schematic setup for an x-ray absorption experiment in transmission mode.

In the figure an x-ray beam from the synchrotron source is incident onto a doubie-crystal
monochromator. A narrow entrance slit is placed in front of the monochromator in order to reduce the
angular spread of the incident x-ray beam. The x-ray optics is completed with the exit siit in front of
the first ionization chamber which can be used to match the cross section of the beam to that of the
sample. The monochromatic x-ray beam enters the first ionization chamber, passes through the
sample, and enters the second ionization chamber. The ionization chambers measure the intensities

Io and I, from which the absorption is obtained through In /1, (Section 5.4).

As explained in Section 5.2 the monochromator is positioned by means of a stepping motor.

The number ¢ of monchromator steps depends linearly on the Bragg angle 6 (in degrees):
§ = (steps/degree)- 0 + , . (5.135)
& is an offset which is frequently set to zero. Usually the Cu K edge is used for calibration. We set

the energy of the minimum, that occurs halfway up the edge, to Eg,, = 8982.7 eV . At the Cu K edge

we have:



138

. Emin
Loy = (steps/degree) -6c, + §o :  Ogy = arcsin B, (5.136)
For a Si (220) monochromator with 4000 steps per degree we get 6¢, = 21.064° . It we set
{cy = 200000 we obtain L, = 115744 . If we set {, =0 we obtain (g, = 84256 .

If it happens that the monochromator is miscalibrated by a number A( of steps then a change
AE in the energy calibration results. The amount AE of this miscalibration increases with energy. It is

obtained by combining Egs. (5.19), (5.20), and (5.21) of Section 5.2:

n_ Emin E VY 1
o = Lo omin '[(Emin) - 2] AL (5.137)

If at the Cu K edge a Si (220) monochromator is miscalibrated by 1 step (= 1/4000 of a degree) then
the energy shift at the Cu K edge is 0.102 eV. At the K edge of Y (17038 eV), say, the energy shift
already amounts to 0.385 eV. The effects of miscalibration are worse for Bragg reflections with small

Miller indices.

After the monochromator is calibrated the table carrying the experimental setup is positioned so
that the centre of the x-ray beam passes through the two ionization chambers. Then table and
monochromator are linked by computer so that they move jointly when a new x-ray energy is
selected. This linkage is necessary because the output beam of the two-crystal monochromator

moves vertically when another energy (or Bragg angle) is selected.

Finally, the two ion chambers have to be flushed with counting gases. Frequently the same
gases are used in both chambers in order that they have the same characteristics. This reduces

noniinear behaviour.

After this setup has been done the sample is placed between the two ion chambers and the
actual experiment can begin. Usually three EXAFS scans are taken for later averaging. Then another
sample is put in the beam or, in pressure experiments, another pressure is selected. The software
controlling the experiment was written by Andrew Seary and it allows one to perform some on-line
data analysis in order to determine whether the quality of the data is good enough for EXAFS

analysis. In pressure scans it is necessary to perform some EXAFS data analysis, for example plotting
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the magnitude of the Fourier transform, in order to find out whether and by how much the pressure
has been increased by turning the wrench. In the experiments on the mixed-valence compounds,
SmS and SmSe, pressure changes are confirmed by the change in the valence, readily visible from
the Sm L, or Sm L, absorption edge. It is planned to monitor changes in pressure by strain gauges
attached to the pressure cell. It is also possible to estimate the pressure quickly by applying the

method explained in Section 6.14 of the next chapter.
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Chapter 6: Data Analysis

6.1 Averaging Datasets

In EXAFS spectroscopy it is common to measure a sample three or more times and then
average the resulting datasets. Compared to a procedure where one would measure just one
dataset for a correspondingly longer time, this method has the advantage that if the x-ray beam is
suddenly switched off one has at least some complete datasets. Also, all experimental parameters,
like for example beam current, have to be stable for only the approximately 20 minutes that it takes to

complete one scan.

The question then arises as to how the datasets are to be averaged. Let us assume that three
scans of one sample had been taken and let Fg, Gg, and Hg be their respective signals of the I,
chamber and F{, G4, and H; the signals of the Iy chamber. We will average only datasets that are on
exactly the same x-axis grid with the same number N of data points. Only those data sets will be
averaged that were taken with the same type of monochromator crystals, i.e. (111) or (220). This is
because different monochromator crystals have a different spectrum of harmonics (see Section 5.2).

There are then two possibilities to obtain the averaged 10/11 spectrum for any data point i:

a) Adding the individual signals:

In this case 10/11 is obtained by dividing the sum of all I signals by the sum of all 11 signals:

lo| __Foi*Goi+Hoj 6.1)
Liti Fqi+Gyi+Hyj
. 1
with Io" = '3‘ (Fo'l + G0’| + HO,I)
1
and I1,i E§(F1,i+G1.i+H1,i) .

b) Averaging the ratios:

Here 1o/1; is obtained by averaging the individual Io/Iy signals:

I 1 /Foi Go; Hoj
Io| _1/Fai , Goi, Hoi) 6.2
Lli 3 (Fu TGy H1,i) (62)
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Egs. (6.1) and (6.2) are not quite correct yet because the gain settings on the current-to-voltage
converters have not yet been taken into account. The gain settings may differ from scan to scan.
Similarly, the entrance slit, or some other aperture, may have been changed in between scans. Thus
the data of various scans may appear scaled with respect to the first scan, say, and this scaling has to
be accounted for when the averaging is done. The dataset containing Gy and G4 and the one
containing Hg and H, are referenced to the first, which contains Fy and F;. We therefore define

scaling factors as follows:
N
_ 1 Go,i . E: : _1 Go [Foi
Y 2 Foi 9 = N F1| ' %1 = N Gy I Fyj
i=1 |'1 |-1
and similarly: (6.3)
N N
21 N Hoi h . S Hoj [Foj
~ N Foi ° 1= N F1, ' 01 = N Hyi | Fyj
ja1 =1 =1
Hence Egs. (6.1) and (6.2) will be rewritten as:

)

1
Foi+—Gogi+rHoi
a) I_O B 0,i 9o 0. ho 0,i 64
hli g, ,1la. . . 1h.. '
F1,| +g1 G1,| + h, H1,|
. 1 ) 1
with loj =3 (Foli + 95 800 * ho Holi) (6.5)
1 1
and 11,|§§(F1|+g G+ H1,i) ; (6.6)

I 1 /Foi 1 Go; 1 Hgj
by o =g (B + - v 6.7
) "3 (Fu " 901 G1j " hoy Hyj ©.7)
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It there were only one scan or if all measurements were exactly the same then, of course, there
would not be any ditference between the two methods. But there are differences from scan to scan

and accordingly one may determine standard deviations 3lg;, 8l i, and 8(Io/14); -

a)

8o, = \/15 [(Fo.i - lo.i)2 + (éa Go,i — IO.i)2 + (ﬁa Ho,i- lo,i)z] ., (68)
1 1
811,i = V%[(F1'i—[1'i)2 + (9—1- G1,i_l1,i)2 + (F\—;H1'i_11-i)2j| (6.9)

where Iy j and 1, ; are given by Egs. (6.5) and (6.6).

b)

1 [(Foi _ o] ¥, (1 Goi kz’ 2, (L Hoi ko 2]
S k1 _ _ 1 Hoi _ 6.10
(0/ 1)| V 3 [(FLi 11 I) + (901 G“ l1 I) + (h01 H1‘i 11 |) ( )

I
where I—Q‘ _is given by Eq. (6.7).
11i

a) With the first method the relative error of the signal is:

8(Io/14); ) Blg; . Bly
(Io/19);i  Toi L4,

(6.11)
where Iy ;, 11 ; and dlg j and 81, j are given by Egs. (6.5), (6.6) and Eqgs. (6.8), (6.9).

S(Ig/14);
b) inthe second case the relative error —(%—Q/LI%L is directly given by Eqs. (6.7) and (6.10).
o/ 1li

It all errors are statistical in nature then both methods will yield the same relative error for each data

point. It tumed out, however, that relative errors are always smaller in case b ). This is so because
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fluctuations of the I and 14 signals correlate and cancel out to some extent when ratios are formed,

asincase b ). As a resutt, all datasets are averaged according to procedure b ), Egs. (6.7) and (6.10).

6.2 Step Number-to-Energy Conversion

So far the abscissa of the data is in step numbers, C, that is the number of stepping motor steps

needed for positioning the monochromator. As already explained in Section 5.11, this scale is

proportional to the Bragg angle 6:

§ = (steps/degree) -6 + {, .

L, is an arbitrary offset. Writing this equation down for the Cu K edge we get:

Loy = (steps/degree) - 6, + Co -

Taking differences we obtain:

_ § - Ccu
" (steps/degree)

G'GCU B.

After a bit of algebra we obtain:

min

~ -1
E=[c—giﬁ- + (sin B) 72 —Eczu]

Here we have used the following relations:

hc Emin Emin
E, = —— - = - = . ) = i
N =2 dpag Bcu = §in Ocu 898276V :  E=gineg

(6.12)

(6.13)

(6.14)

The calibration value of 8982.7 eV for Ec, refers to the small dip that occurs in the absorption

Spectrum halfway up the edge jump. in order to determine B, the number of steps per degree must

be known as well as the (arbitrary) step number {¢,, at the Cu K edge. (Ot course, {¢,, must be

Chosen such that { never becomes negative.)
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Eq. (6.13) thus describes how the x-ray energy E is obtained from the number of steps, .

6.3 Normalizing EXAFS Datasets

This section describes how y (k) is obtained from the averaged datasets.

The first step is the subtraction of a pre-edge background. This means that we fit a function to
that part of the absorption spectrum which is at a lower energy than the energy of the absorption
edge. The fitting function of the fit to the pre-edge part of the absorption spectrum is then extended
over the complete spectrum and then subtracted from the spectrum. Now the pre-edge region

hovers around zero. The fitting function is a slightly modified Victoreen fit [140]:
Iy A A
ln(ﬁ) =A% v Th (6.15)

Ag vanishes for a Victoreen fit. Here, however, it is necessary to include this parameter in order to
take care of the fact that due to scaling factors contained in Iy and/or 14 the measured spectrum may
be shifted by a constant value. It is possible, actually, that In(lo/ 1) is negative. This fact can only be

accounted for by the extra fit parameter Ag.

Including the remaining parameters A3 and A4 would produce a three-parameter fit. The pre-
edge background is, however, rather featureless and resembles more or less a straight line. Thus
one can only afford two fit parameters. Consequently A4 is set to zero in the present work. It A4 were
to vary then there would be strong correlations among the three parameters. The fitting function for

the pre-edge background is theretore:

|n(l—°) - Ay + g’g . (6.16)

The following two figures illustrate the pre-edge fitting.
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Fig. 6.1:  Absorption spectrum of the Cu K edge in Cu metal at 48.4 kbar and at 77K. The data,
which is an average of two scans, and the pre-edge Victoreen fit according to Eq. (6.16) are shown.
In(IO/ I;) is negative due to scaling of Iy and/or Iy. The pre-edge fit is over the interval from

8890.4 eV to 8961.73 eV.
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Fig. 6.2: Absorption spectrum of the Cu K edge in Cu metal at 48.4 kbar and at 77K after

subtraction of the Victoreen fit shown in the previous figure.

After the Victoreen fit is subtracted from the spectrum the energy scale must be converted to a
k-scale. This applies only to that part of the spectrum that is above the absorption edge. Therefore
the absorption edge has to be located first. This is done conventionally by chosing the first inflection
point of the edge jump. This inflection point is easily identified as the position of the first maximum of

the derivative of the edge jump. This is illustrated in the following figure:
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Fig. 6.3:  Energy derivative of the spectrum shown in Fig. 6.2. The first peak defines the position
of the absorption edge. Here it is located at 8979.05 eV, according to the monochromator calibration

employed.

The conversion to the k-scale is then performed according to:

ka—\lE;_EY_EQgg _ (6.17)

1

2
Y=5_(1);3mmM2MMmemmmwwmqm%y
mg \2n
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Now we have to estimate the size of the absorption jump. This jump is simply a number that we
need to know in order to obtain a x(k) that is properly normalized. The EXAFS signal is proportional to
the size of this edge jump. We can obtain the step size by fitting a straight line to the spectrum from
k=2 A1 to k=7 A1 (The fit may also be performed in energy space.) The value of this straight
lineat k=0 (or E= EEdge) yields the step size, which will be used later on. Fig. 6.4 illustrates this.

1.1 T T T T T T T
2 ' NANA J
D A /\
5 09+ \J o~ A~ f\\7£
g | EAERVARVAS
>
I 07’ 1
< o5} -
HO
c i ]
0.3 | ‘ : ‘ ‘ 1 :

k (A7)

Fig. 6.4:  Straight-line fit to estimate the stepsize at the absorption edge, i.e. at k = 0 . Shown is

part of the data of Fig. 6.2 after conversion to k-space. In this example the step size is 0.937.

Eventually we want to compute the Fourier transform of x(k). This will be done using the FFT
which requires a uniform grid in k-space. We therefore linearly interpolate the data in its present form
onto a grid consisting of uniformly-spaced k-values. The number of points for this new grid is equal to
the number of points of the old, non-uniform, grid. (Andrew Seary's data-aquisition software takes

the E-to-k conversion into account by positioning the monochromator such that the data points are



149

as close as possible to being on a uniform grid. In this way when the energy scale is converted to a

k-scale the interpolation error is minimized.) Fig. 6.5 shows the k-space data.
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Fig. 6.5: Full spectrum of Cu after conversion to k-space. At ~15 A~! we notice a glitch due to

multiple-diffraction effects in the Si (111) single crystals of the Bragg monochromator (Section 5.2).

The next step is the fitting of a background to the data. The fit will not start immediately at Egygq
because of edge features. Instead it will begin at k ~ 2 A=1_ The fit interval frequently extends to the
last data point. Due to various effects the background frequently exhibits slow variations that do not
result from the actual absorption coefficient. It is therefore difficult to prescribe a certain functional
form for this type of background. Various methods are in use, like for example polynomial or spline
fits [177], and each method has its advantages and drawbacks. In the present work we will use a
background that results from the sequential smoothing of the data. This type of background has the

advantage of being rather flexible but still easy to apply. The data is smoothed anywhere from 100 to
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600 times depending on how complicated the background is. Each smoothing pass is calculated

according to the three-point formula [178]:

1
Ynewi = 7 (yold,i-1 +2Yoid,i * yold,i+1) : (6.18)

The normalization factor of 1/4 is necessary so that a constant function would remain unchanged
after smoothing. Although not expilicitly stated, smoothing assumes a uniform grid. Then Eq. (6.18)
could be called a ‘triangular” smoothing function because the midpoint is weighted twice as high as

the neighbours.

With the above formula there are problems with the endpoints. This means that y,q 4 is not
defined because yq g o does not exist and ypew,N is NOt detined because there is No yqiq N41 1O
apply Eq. (6.18). These end-eftect problems are common with smoothing functions. According to ’

Ref. 178 the first and last points are therefore defined as

1 1
Yoew,1 = 3 (3 Yold,1 + Yolg2) ~and YnewN = (Yold.N-1 * 3 YoldN) -

This prescription leaves the endpoints variable. This, however, is not useful for background
subtraction because of the application of very many smoothing passes which cause this end eftect
to migrate inwards from the ends. Thus, after several smoothing passes the background may
become “disconnected” from the actual data. One way of fixing this problem is by setting
Ynew.1 = Yoid1 @nd YnewN =VYoidN after each smoothing pass. This procedure, however, produces a

X(kK) whose endpoints are tied to zero.

In order to avoid all of these difficulties, we make the endpoints variables in a two-parameter
least-squares fit that fits the background to the data for a given number of passes. Because the
endpoint values do not affect the inner part of the background, only 20%, say, of the data range at
either end have to be considered in this fit. (This also increases the sensttivity of the fit.) We may also
apply a weighting function of the form kP, where p is some number, for example p=1. Thus we have

Solved our problem by optimizing the endpoint values of the background by fitting to the data.
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There is so far no way of precisely determining the number of smoothing passes that is
required. One may, however, judge whether the background is correct by checking whether the
area of k (k) above the zero line is approximately equal to the area below. In addition, a formula is
given in Appendix D to estimate the required number of passes. Also by examining the magnitude of
the Fourier transtorm in the small-R region, it is possible to observe the extent to which the
background subtraction affects the Fourier components that contribute to the nearest-neighbour

coordination shell.
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Fig. 6.6: Same data as in Fig. 6.5 but with a background extending from 1.82 A™1 to 17.73 A~!

Overlayed. The background was determined by smoothing with 300 passes as described above.

The background-subtraction method described here has been employed for all datasets.
There are still some flaws with it which have not yet been solved. It occurs frequently that the number

of smoothing passes that are required for the high-k part of the background is much smaller than the
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number of passes needed for the low-k part. This can presently not be taken care of since the
smoothing passes are always calculated for the entire spectrum. However, this is only a minor
problem. The k % (k) and their Fourier transforms obtained by polynomial background removal were

practically identical to those obtained by the smoothing procedure.

It is important to keep in mind that the background extends over all of R-space. If this were not
the case then there would be coordination shells that could simply be filtered out without previous
background removal because there is no background component for this shell. Unfortunately, it is

not possible to circumvent a proper background-subtraction procedure.

Finally we have obtained a x(k) given by: x(K) = ys_;gpikg , (6.19)

where vy, Ybkg- and step are data, background, and step size, respectively. In the following graph we

show k2 x(k) , where x(k) is obtained according to Eq. (6.19).
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Fig. 6.7:  The function k2 x(k) for Cu extending from 1.82 A1 to 17.73 A™*, as in the previous
figure. The positive area of k2 x(k) is 51.3% and the negative area is 48.7%. The Si (111) glitch at
~15 A~1 either has to be removed by some method or be excluded by limiting kna, to 15 A, thus

Sacrificing resolution in R-space.

We have now obtained a normalized (k) but we will nevertheless apply a smali correction which
takes the physical variation of the x-ray absorption coefficient with energy into account. This

Correction becomes important above k= 10 At itis applied as follows:

According to Ref. 138 the mass absorption coefficient u,(E) above the absorption edge is
Computed as a function of energy for the element whose edge is being studied. A corrected (k) is

then obtained through:
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“m(EEdge)
k) = y(k) —=s98 ; E(k) = Yk . 6.20
um(EEdge) is the mass absorption coefficient just above the absorption edge. (k) is thus being
multiplied by a slowly increasing function whose value at EEdge is unity. This correction is applied to

all datasets.

6.4 Monochromator Resolution

The broadening of the spectra due to the finite resolution of the monochromator is small for the
SmL,, Ly, edges but it becomes appreciable at higher energy. Luckily its eftect on the EXAFS is
not severe and can be easily taken care of. The eftect of the monochromator resolution is taken into
account as described in Ref. 179 where a Gaussian was assumed for the spectrometer function:

1 denotes the width of this Gaussian and it is related to the FWHM according to:

FWHM

1= . (6.21)
2V2In2
The width of the spectrometer function as a function of energy is given by Eq. (5.12):
2 Eo+ 7?2
FWHM = 8E = 80 - (Eq+1®) (—Q————E , ) -1 (6.22)
min

In this equation we have expressed the photoelectron energy in terms of its wave vector k:
E=E, + k2, where E, is the edge energy and v is 3.81 eV A2 (see Eq. (2.28)). Epy, is the
energy corresponding to 8 =90°, Eq. (5.3).

38 is obtained from Eq. (5.11) of Section 5.2 but may be approximated by

30

v

(6.23)

where s is the width of the siit in front of the monochromator and L is the distance between the

Monochromator and the x-ray source.
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According to Ref. 179 the finite monochromator resolution is taken into account by multiplying

each shell with the following function:

. N2 12
B Pyl ] (6.24)

—(2
(k) = exp 8 v2 k2

1 is obtained from the resolution 88 using Egs. (6.21) and (6.22). p.(k) depends on the coordination-

shell radii Ri and on the average slope py; of the total phase of shellj.

The above approach has the advantage that a convolution of the data, which always slows

down the computation, is avoided.

6.5 Eourier Transform

The Fourier transform is calculated using the Fast Fourier Transform (FFT) [180]. For the FFT to
produce correct results it is necessary that the data be on a uniform grid in k-space. The FFT uses
only ordinate values. For the k-to-R and, symmetrically, for the R-to-k transtorm the ordinate is
muttiplied by 1/N'r . Thus the Fourier transform H(R) of a function h(k) is calculated as:

oo

jh(k) e*2ikR gk (6.25)

—0

4

H(R) = N
b4

The abscissa in R-space is calculated as follows:

n
m=0,1,2, ... %FI . (6.26)

= T m
NEFT 8k

NFET is the number of points used for the FFT. It has to be a power of 2. Here ngpT is usually 2048. dk
is the distance between two adjacent points in k-space. 3R = n/ (npETSK) | the point separation in
R-space, contains a factor of n which combines with 1/Nr to aresuttant factorof Vr for the inverse
transform. Because the FFT employs only ordinate values its result must be multiplied by 3k for the
k-to-R transform and by 3R for the inverse transform in order to obtain a resutt equivalent to the
analytical transtorm. Note that there are 1+ nF,_—T/z points in R-space for an nggy -point transform and

that the R-space signal begins at R =0 and extends to R,y = n/(28k) . The plus sign has been
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chosen in the exponent of Eq. (6.25) so that the imaginary part of the Fourier transform exhibits a
peak, rather than a minimum, at the abscissa value corresponding to a particular coordination shell.

Thus one can easily compare peak positions of imaginary part and transform magnitude.

It may happen that the EXAFS data y(k) is rather noisy. In this case the interpolation onto a
uniform grid, needed for the FFT, is questionable because it may add even more noise. One then

has to employ the conventional Fourier transform.

The inverse transform is given by:

1 .
— . |H(R) e 2kRdR . (6.27)
" Vn

—oco

6.6 Window Functions

Window functions, also called apodization tunctions, are employed in order to reduce
interference effects that result from the finite range of the data. They are functions which multiply the
data that is to be Fourier transformed. Window functions are usually symmetric with respect to the
midpoint of the data interval and normally tend towards zero at the endpoints. They are non-negative
and their maximum value is one. Although a window function will broaden a given peak it does
suppress sidelobes that arise after Fourier transformation. In this work window functions are only
applied when going from k- into R-space. If the inverse Fourier transform, i.e. the R-to-k transform, is
to be performed then the window function must be removed in k-space after the transformation. This
is simply done by dividing by the same window function that had been used initially. Therefore we
require that the window function be nowhere equal to zero. Furthermore, we will only consider

Symmetric window functions.

The simplest window function is a rectangle of unit height. This is equivalent to not applying any
window function at all. Sometimes this is permissible when the data is already tapered at the ends of
the data range. The rectangular window yields the highest possible resolution because it is broad in

k~Space and therefore its Fourier transtorm will be rather narrow. In order to discuss Fourier
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transforms of window functions it is sufficient to assume that the k-space data is centered at k=0 .
Thus —Ak/2 < k < Ak/2 , where Ak = Kqa, — Kmin - and the Fourier transform is a real function. For the
Fourier transform of a rectangular window function centered at k=0 we obtain a function of the form

(sin x)/x, aiso called a “sinc function”:

Ak/2
1 - Ak sin{R Ak
W,(R) = o fe*zkﬂ dk = Nt —ﬁ(z—k—l . (6.28)
~AK/2

The suppression of the biggest sidelobe is calculated from:

W(R=0
Sidelobe suppression = 20-l0g4¢ (lI—V\(/(R—)?i) dB . (6.29)
R* is the position where the biggest sidelobe occurs. For the rectangular window the sidelobe

suppression is only 13dB.

According to the convolution theorem the muitiplication of the k-space data with a window
function leads to a convolution of the Fourier transform of the data with the Fourier transtorm of the
window function. We see from Eq. (6.28) that the sidelobes extend rather far and thus there will be a
strong admixture of information from adjacent peaks which cannot always be tolerated. A window
function which achieves a better apodization, i.e. reduces the overiap of the peaks in R-space can
be constructed by refining the Fourier transform of the rectangular window function. Since we want
to reduce the spread of the sidelobes one can simply add to W, (R) two other sinc functions shifted
by a half period n/Ak in either direction so that these functions interfere destructively with the central

sinc function. The result is then [181]:

Wiy(R) = g Wo(R) + =2 [W,(R-1/AK) + W (R+m/Ak) (6.30)
MIR) = a Wo(R) + 5% [Wo(R-m/ak) + Wo(Rsm/ak)] . .

The central sinc function is weighted by o and the two shifted sinc functions are both weighted by

(1-a)/2 . For the Hamming window a is chosen such that the first sidelobe of W4(R), i.e. the second

sidelobe of IWO(R)I , perfectly cancels. This is the case for a = 25/46 = 0.543... . For the Hamming

window o is set to 0.54. In order to determine the form of Eq. (6.30) in k-space we write:

WMmR) = (o — (1 — a)) Wo(R) +2 (1-a) Wn(R) | (6.31)
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WN(R) = + Wo(R-m/AK) + % W,(R) +% W, (R+1/AK) . (6.32)

PR

WN(R) has a simple Fourier transform [180]: wn(k) = 0.5 + 0.5 cos(n 2k/AK) . (6.33)
Thus we obtain for the Hamming window:
whyk) = 20— 1+2 (1-a) wn(k) = o+ (1-a) cos(r 2k/AK) = 0.54 + 0.46 cos(n 2k/AK) .  (6.34)

Note that this function does not go to zero anywhere. In fact, the Hamming window is a special case
of the so called “Hanning” window (Don't confuse the two similar names!). The Hanning window is
obtained when a = 0.5 . Thus W)\(R), Eq. (6.32), and wn(k), Eq. (6.33), describe the Hanning

window.

The Hamming window w)(k), Eq. (6.34), will be used in this work most of the time. Very closely
related is the 10% Gaussian window function which consists of a Gaussian with endpoint values of
10% of its maximum value, i.e. endpoint values of 0.1. The Gaussian window functions are defined
by:

Wg(k)sexp[ (%%)2 - In wG(Ak/2)] . (6.35)

W(;(Ak/ 2) = wG(—Ak/ 2) is the value of wg(k) at the endpoints. For a 10% Gaussian we have
WG(Ak/ 2) = 0.1 . The Fourier transform of the Gaussian cannot be calculated analytically over a finite

k-space interval and is therefore omitted.

Note that the k-space interval and the type of window function determine the minimum peak
width in R-space. A measure for this width is 2 R, , where R, is the zero crossing of W(R) closest to

R = 0 . Some results for the window functions discussed here are summarized in the following table:
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Table 6.1: Propenrties of window functions:

Type 2 Ry Ak Sidelobe suppression
Rectangle 2n 13dB

Hamming an 43 dB

Hanning an 32dB

10% Gaussian 12.147 34dB

For a systematic review of the plethora of window functions that exist see Ref. 181. Choosing a
window function means finding the best compromise between resolution and sidelobe suppression.

The Hamming window is a good choice in this respect.

If Kmin <K <kmax instead of ~Ak/2 < k < Ak/2 , then the window functions must be shifted by

Ko = (Kmin + Kmax)/2 Which means replacing k by k—k, .

6.7 Fourier Filteri he nation of Ampli

Fourier filtering, or filtering in R-space, is effected by selecting an R-space interval for the region
of interest and setting all the rest of the Fourier transform to zero. A subsequent transform to k-space

yields the fittered (k).

In more detail, what one does is the following: First the EXAFS function x(k) is multiplied by
some power of k, pg, say, such that the resulting function kPF (k) has very roughly the same
amplitude everywhere. Then a window function w(k—kg) is applied in order to suppress sidelobes in
the Fourier transtorm. The window function is even with respect to the midpoint kg of the k-space
interval. For illustrative purposes we will consider the simple case where the distribution of atoms is
adequately described by a Gaussian and both |fi(k,n)| and S,j(k) are assumed to be independent of R.

Hence we have in k-space:
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(ko) kPF (k) = wik—o) KPF - )" Ai(K) sin(2KkR+8(k)) (6.36)
j
N:
where A;(K) is given by: A(K) = '—(—RLF lt(km)| e 2022 e 2RYA (6.37)

Now the Fourier transform is computed. Each coordination shell that is sufficiently resolved will
appear as a separate peak in a plot of the transform magnitude versus the coordination-shell radius
R. (The modulation of the backscattering amplitude of the heavier elements due to the Ramsauer-
Townsend effect may introduce a smali sidelobe peak besides a major peak.) For the coordination
shell of interest an interval is now selected that encloses the peak. At the interval limits, R,,;, and
Rmax- Of @ well-resolved peak the magnitude of the Fourier transform vanishes (or almost vanishes).
If we assume that in R-space we have isolated the jth coordination shell then we are left only with the
Fourier transform of EXAFS of the jth coordination shell, namely: ‘

oo

1 . :
H(R) = ol jw(k-ko) KPF Aj(k) sin(2kR;+8;(k)) e*2kR dk for  Rmin <R < Rmax

Hj(R) =0 otherwise .

(6.38)

According to this equation the Fourier transform outside the interval Ry, < R < Rpayx is set to zero.
Rmin and R4, are never negative.Therefore Hi(R) always vanishes for negative R-values. This fact
can be exploited by using the identity sin x = (6*X - e™X)/(2i) and writing H;(R) in the interval

Rmin S R<Rmayx as:

H(R) = i—\/‘:. [ wik=ko) KPF A((k) e*id1j(k) g*2Kk(R+R)) gk

l\)l_.

oo

11 (K a=ibyi(K) o+2ik(R-R;
"I [ wik—ko) KPF Aj(k) e 81j() e*2Ik(R-R}) gk

The first integral in the above equation will peak at R = —Rj (actualily slightly shifted due to the
Presence of the total phase au-<k) which is approximately linear in k). Because of the application of a

window function and because of the 1/ Rj?- dependence of Aj(k), the peak centered at negative R
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will hardly extend into the the region of positive R-values. Since the first term peaks at a negative
R-value and because according to Eq. (6.38) the Fourier transform is set to zero for negative

R-values we are left only with the second integral which peaks at a positive R-value:

oo

H(R) = \/— f [(— %) w(k—-Kq) kPF Aj(k) e~i8j(K) e—2ikR}-j, e*t2ikRdk for Rp,<R<Rn

T
Hi(R) =0 otherwise .
(6.39)

Taking the inverse Fourier transform according to Eq. (6.27) yields in k-space a modified EXAFS
function ij(k) corresponding to the jth shell. This function is now complex because H;(R) does not
contain anymore contributions from negative R-values. ij(k) is obtained from the term in square -
brackets in Eq. (6.39) after division by the window function and kPF:

k) = (- %) AK) 675 e 2R (6.40)

The desired unmodified EXAFS function Xj(k) of the jth coordination shell is then obtained as:
xj(k) = 2Re ij(k) = Ai(k) sin(2kRj+8,j(k)) . (6.41)

Because it is necessary in the process to remove the effect of the window function by dividing it out
in k-space, the window function must never be zero anywhere. Hence those window functions that

taper off to zero at the ends cannot be employed for EXAFS analysis.

We can also obtain the amplitude Aj(k) and the phase 2kRj+8q(k) by employing the folowing

relations:

Ak = 2|z . (6.42)

2R, + 8k} = arctan 59—%—1@) (6.43)
Im x;(k)
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The last equation can also be written in a form similar to the one given in Ref. 4:

2R, + &(k) = —arctan (M) + g . (6.44)
Re x;k)

Because the tangent has a period of n rather than 2r there is an ambiguity with respect to multiples

of n. This ambiguity is removed by considering the signs of real and imaginary part individually. For

example the phase 2kR; + (k) should be between 0 and w2 when Re %K) and Im x;(k) are

both positive. Similar conclusions hold for the other quadrants of the unit circle in the complex plane.

Thus the formulae must be as presented in Eqs. (6.43) and (6.44) above, with no n added or

subtracted. The phase is, of course, only determined modulo 2r.

It is important to note that the modified EXAFS function ii(k) may also be defined to refer to.
several coordination shells instead of only one. This occurs for example with beating when two (or
more) shells are too close together to be resoived. Then the beating eftect can be studied by

employing Eq. (6.41) or by investigating the amplitude or phase according to Eqs. (6.42) or (6.43).

It must be kept in mind that Eqs. (6.41) to (6.43) can only be obtained by employing an integral
transform like for example the Fourier transform. This results in transform artifacts that will always
appear as end effects. Therefore the fittered EXAFS function, the extracted amplitude or phase will
not be reliable at the ends. These artifacts may extend up to 10% of the available k-space interval on

each side.

6.8 Log-Ratio and Phase-Difference Methods

In EXAFS data analysis one needs a reference backscattering amplitude |fj(k,n)| and a reference
total phase B,j(k) for each coordination shell j that is to be analyzed. These functions can be taken
from the plane-wave calculations of Teo and Lee [11], the curved-wave calculations of McKale et al.
[8-10], or they may be calculated as in Chapter 3. Atermnatively, one may employ empirical amplitudes
and phases. Hereby one assumes that the amplitude [fg¢(k,7)| and phase & (gf(k) are the same for
reference compound and for sample. One may for example analyze GeO, by employing amplitude

and phase obtained from pure Ge, say. This approach assumes that the amplitudes and phases
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depend mainly on the elements themselves and remain unchanged in a compound or alloy. This,
however, cannot always be taken for granted. On the other hand it is to be kept in mind that Teo and
 Lee [11] also computed their amplitudes and phases only for elements, not for compounds (for
practical reasons, of course). Assuming now that the amplitudes and phases do not depend
significantly on the chemical environment we can employ the method described in the previous
chapter and obtain A g¢(k) and the phase ®ge(k) = (2kR,9f + St,,ef(k)) . Assuming that the distance

Ryt Of the reference material is known we can obtain the reference phase simply by subtraction:
& ref(K) = Prof(k) — 2K Rygf - (6.45)

For the sample under investigation we obtain ®(k) = (2kR, + & »(k)) . Using & 4(K) = & ¢1(k) we

can write for the unknown distance R, of the sample:
D, (k) — De(k) = 2k (R, = Rygp) - (6.46)

According to this equation R, is best determined by fitting @, (k) — ® (k) to a straight line that
passes through the origin. It may be necessary to adjust the k-scale of the sample by shifting AE,
such that the straight line indeed passes through the origin {4]. From the slope we immediately
obtain R,. This is the Phase-Difference Method. It can be applied for pressure-dependent studies
because the phase , (k) remains practically unchanged under pressure. However, the method is
not employed in this work because the pressure-induced distance changes are simply too small that
R, could be determined reliably from a straight-line fit according to Eq. (6.46). The result becomes
dependent on the choice of the fitting interval. Instead the EXAFS function x, (k) is fitted by least
squares (Section 6.10) because it is believed that in this way the results for R, are much less

dependent on the choice of the fitting interval.

The empirical amplitudes A,g¢(k) and A, (k) are obtained by employing Eq. (6.42) and we can

write:

N
Aref(k) = k_Rr_ef_z Ifret(K.m) e‘2°r9f2k2 e 2Rref/* |
ref
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N — —"
Acdk) = - R" 5 (k)| e 26,2k2 g=2R,/\
X

These two relations can be combined to yield:

A (k N R
(Rl o) ok ) e e

Here we have used |f,(k,r)| = [f,os(k,m)| . The last two terms on the right-hand side of this equation

can be neglected compared to the first terms. Then we get:

Ag(K) N 2 2
In( Ar:f(k)) = Ir(N—ri) - 212 (cx - ref) . (6.48)

We see now that a plot of the left-hand side of this equation versus k2 will yield a straight line. A fit will

Ny
Nref
EXAFS Debye-Waller factors. Eq. (6.48) is the basis for the Log-Ratio Method [182]. It is assumed

then provide the ratio of the coordination numbers as well as the difference of - °r29f of the
that the k-scales of sample and reference were adjusted by a AE,, shift with respect to each other
such that their phase difference, Eq. (6.46), passes through the origin. Again, this method is hardly
applied in this work because Eq. (6.48) is not a very reliable way for determining the EXAFS Debye-
Waller factor since the result depends on the choice of the fit interval when of differs very little from
ofef . Again, the fit to x, (k) is preterred because it gives more consistent results. To make the Log-

Ratio Method work well it is necessary to weight the straight-line fit to Eq. (6.48) properly [183].

Note that the Phase-Ditference and Log-Ratio methods are valid only in the case that a single

shell can be isolated.

6.9 Degrees of Freedom of a Signal

According to the sampling theorem a signal that is bandlimited in Fourier-space need only be
sampled at a certain rate. The minimum number of points that is needed to describe the signal is
called the number of degrees of freedom, ny,ee. Since the original signal can be in k- or R-space we

discuss both these cases.
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in k-space, g4, is given by:

Ak
=1+ — . 6.49
Ntree Pk ( )
Here py is the Nyquist sampling rate. if Fourier filtering is applied then the filtered data is bandlimited

in R-space and we have for py (see Ref. 180, p. 87):

R
= T —_max
= 2 Rmax [ AR ] (6.50)

AK = Kmax = Kmin 1S the k-space fit interval and AR = Ry, — Ry is the interval employed for Fourier

fitering. The square brackets denote the integer part of the argument. For ny,o we then obtain:

Rmax

2 Ak AR AR
T Rmax '
AR

We see that ny,,, increases linearly with Ak. If no fittering is applied then Rp,, =0 and

k-space: Nfree = 1+ (6.51)

Rmax = AR = 1/(28K) , Eq. (6.26), and we obtain:

rog =1+ K L w1 2AKOR

In this case the number of degrees of freedom is equal to M,, the number of data points.

In R-space, Ny is given by:

AR
Nreg = 1 + EE . (6.52)

Since the R-space data is bandlimited in k-space, pg, the Nyquist sampling rate for R-space, is:

K
PR= 57— [M] . (6.53)
2 Kmax L AK
AR = Ry — Rmin is the R-space fit interval, Ak = Koy — Knyin is the interval used for the Fourier
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transform and we have for ng 4!

R-space: Nfroo = 1+ (6.54)

6.10 Least-Squares Fitting of EXAFS Spectra

An EXAFS dataset contains contributions from the backscattering of various coordination
shells. The distances of these shells enter the EXAFS formuia in amplitude and phase, where the
effect on the phase is much more pronounced. In k-space this corresponds to the summation of sine
functions of different spatial frequencies. In R-space this is seen as an assembly of peaks in the -
Fourier-transform magnitude. Ideally, these peaks are well separated so that each one can be Fourier
fitered. Thus, in the ideal case, after filttering one would merely have to analyze single shells. This
analysis can be performed by employing the Log-Ratio Method. Obviously, one can also perform a
least-squares fit to a single shell. In order to approach the ideal case it is necessary that the EXAFS

signal extends far enough in k-space.

Frequently, however, it is not possible that k,,, be very large because the signal has already
decayed. Closely-spaced coordination shells, in particular, require a prohibitively large k-space
interval in order to be resolved. Therefore in practice one normally cannot separate individual
coordination shells but groups of shells instead. Typically 2 to 4 shells together can be Fourier
fitered thus producing a k-space EXAFS signal with a reduced number of coordination shells. When
there is more than one atomic species present this signal has to be analyzed by least-squares fitting.
If one wants to avoid the Fourier transform required for filtering, and thus all the artifacts that come
with it, one can perform a least-squares fit in R-space instead. If the measured EXAFS spectrum
contains contributions of only a few coordination shells, for example because of large Debye-Waller

factors, then this spectrum can be fitted directly without having to perform any Fourier transtorm at all.

In this work we fit EXAFS spectra to the following expression:
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N.
(k) = 2 e—(2 Rj+sj)212/872kj2 e~2RyA 0(2/3)C4jk* k_»rili
) 1)
x [ftm] 202K sin(2kjRj+3y(kj)+a) — (4/3)C k%) - (6.55)

The first three terms of this sum over the coordination shells j are frequently not included in EXAFS
analysis. They are, respectively, the monochromator resolution function according to Eq. (6.24), the
mean-free path term, and the amplitude correction due to a non-zero fourth-order cumulant. The
next terms in Eq. (6.55) invoive the radii Ri of shell j having coordination number N‘-, the magnitude of
the backscattering ampiitude, the EXAFS Debye-Waller factor, and the sine of the phase which here
includes a correction term due to a non-vanishing third-order cumulant. Besides, we allow for an
adjustment of the reference phase S,i(kj) by the parameter aj. it 3 is variable then one need not
necessarily vary the cormrection AE; of the inner potential for amplitude and phase of shell j. This is so
because aj acts approximately like AEi. AEj does not appear explicitly in Eq. (6.55) but it is contained

in the definition of kj:

k=vkZ-AE{Y . (6.56)

. h2 :
with y= —»— =3.81 eV A2 according to Eq. (2.28).
8ncmg
k is the magnitude of the wave vector of the photoelectron. This is the k-scale of the measured
EXAFS function and it is never moditied for fitting. The AEi are shell-dependent modifications of the
reference amplitudes and phases. Their effect is most pronounced at low k-values. a; instead is a
k-independent phase correction. Since AE; and a; are correlated only one of them should be varied

in a fit.

As mentioned before, one can perform a fit either in k-space or in R-space. In k-space one
would fit directly to the EXAFS equation (6.55) which may corespond to the full EXAFS data or to
Fourier-filttered data. In R-space no Fourier filtering is necessary and one fits the Fourier transtorm of
the model to the Fourier transform of the data. Both transforms are calculated in the same way using
the FFT. Thus transform artifacts will be equaily present in both the data and the model. In order to
compensate for the decrease of the backscattering amplitude with k the data and the model (k) are

Multiplied by kP. The power p of k is chosen to be 1, 2, or 3, depending on the type of backscattering



168

atom (p could also be fractional.). Thus, in k-space we fit kP y(k) to kP y wherey is the full EXAFS
data or the filtered data. In R-space we fit Re(FT(kP x(k))) to Re(FT(kPy)) and simultaneously
Im(FT(kP x(k))) to Im(FT(kP y)),where FT denotes the Fourier transform and Re and im stand for
the real and imaginary pan, respectively. It is also possible to fit the envelope and phase extracted
from the data. If one fits them separately then one suppresses any possible correlation among the
parameters used to fit these two datasets. Therefore it is recommended to fit to the full data, i.e.
simultaneously to the extracted amplitude and phase. This, however, poses problems as amplitude
and phase have quite a different k-dependence and one cannot decide how to weight the two so
that they become equally important in the fit. Fitting to the real and imaginary part of the data,
however, does not present this difficulty because they are both oscillatory functions possessing the
same envelope. Real and imaginary part are therefore weighted equally. A different method of

weighting, involving derivatives, is described in Ref. 5.

In order to perform the fit we have to calculate x2. which is a measure of the deviations of the
model from the data, at each iteration step. X2 is evaluated depending on whether k-space or

R-space is selected. In k-space the expression is:

2 _Niree ]2 ,
xR = kP]? wi (k) . 6.57)
Nfrge—N Mk ,_21’[ il ki ] K (
In R-space the formula becomes:
MR
2. Miree 1 _ P y)) - Re(FT(KP x(K)))]:2
2= e o 2 ([Re(FT0@ ) - Re(FT( 1))

+ [ImETR y) - ImETER x0N}?) waE) (6.58)

M, is the number of points in k-space. If the data is Fourier filtered then y; is the fittered data. w (k) is
a weighting function which is the reciprocal of the square of the envelope of kPy . (In order to avoid a
possible division by zero the minimum vaiue of the envelope is never less than 10% of its maximum

value.) If this weighting is applied the effect of kP is practically removed.
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In R-space there are MR points and wg(R) is an R-space weighting function which is the
reciprocal of the the square of the magnitude of the Fourier transform. (For the weighting tunction

the magnitude never goes below 10% of its maximum value, as before.)

If the error o2 = Oizlstatistica| + Oizlsystemaﬁc of each data point [16] is known then the
weighting functions w (ki) and wg(R;) can be replaced by 1/} . Inthis case x2 =1 will indicate a

good fit. In this work no weighting is employed. Therefore wy (k) and wg(R) are equal to one.

n which occurs in Egs. (6.57) and (6.58) is the number of variable parameters. nyqg is the

maximum number of variable parameters and is always > n.

It one fits to Mg points of the real and imaginary parts of a Fourier transform, which had been
obtained from M, k-space points, then the number of points that are used has changed by a factor ’
p = 2Mp/M, . This change is artificial because in R-space there is now neither more nor less
information available than before in k-space. Theretore ngoo and n have to be weighted by the same

factor p. Thus the term in front of the summation of Eq. (6.58) is

M Ntree 1
H Nirge —H N 2Mp

k
It we are fitting the Fourier transform from Rpin =0 to Ry, = Elts—k and if —’Zﬂfx [—A“lfx] , then

Moo = My as before and the factor in Eq. (6.58) becomes

2 Mg 1 2 Mg 1
2Mp -pn 2Mg MY ML 2Mg

Iif we approximate nge @S Nyrge = 1+ 2 AK AR/ then we can derive the following relation using

3R 8k = /npEt , where nep is the number of points used for the k-to-R Fast Fourier transform:

2
Moo — 1 = - Mg=1)}Mc—1) . (6.59)
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If 2 is defined as here then one can compare fits with different number of parameters and therefore
one can decide whether an added fit parameter actually has any significance. For this to be so we

require that x2 involving the extra parameter must be reduced by a factor of two.

In order to perform the fit we employ Marquardt's algorithm [184] as programmed in Ref. 178.
This algorithm works very well unless the starting values are extremely far off. The algorithm
proceeds towards the minimum in parameter space by making use of the following approximation for

the curvature matrix a, which in k-space is given by Ref. 178:

1 9%y2 Z d kiP x(kj) 9 kP x(k;)
®hmn = 5 = : - wi(kj) - 6.60
(@ = 2 apmapnlﬁ’o Pm '5’0 P |5>0 wi(ki) (6.60)
i
An analogous reiation holds in R-space. B’o =(P1,0 P20 - - - ) is the vector indicating the position in

parameter space where the derivatives are evaluated. We see that a has been approximated by
employing products of first order derivatives to avoid the second order derivatives. Note that the

curvature matrix is 1/2 times the Hessian. The fitting procedure terminates when

X2previous - X2current < 10—4')(2previous :

One can use the curvature matrix to calculate the error Ap,. of a particular fit parameter p,.. This

can be done as foilows [185, 186]:

Ap =ty x2 (@ Ve - (6.61)

Eq. (6.61) is frequently employed but in this work we will use a different approach (187, 188]. In
order to determine the error of a particular parameter p,. of an n-parameter fit we will vary the
parameter in steps near its optimum value and perform an (n-1)-parameter fit at each step. This will
Produce ¥2 as a function of the incremented parameter p,.. The error bars for p,. are determined from
the intersection points of the 2 vs. P curve with a horizontal line at 2 szin . The tactor of two
results because for a reduced y2, which ideally is equal to one at its minimum, the error is determined
by going from the minimum to a value of x2nin+1 . thatis to 2. Here, however, we do not obtain a

reduced y2 and therefore go to 2 x2min instead. Error bars determined in this way can be
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asymmetric because X2 is not always parabolic. They contain all effects of parameter correlations and

are therefore a reliable measure of the quality of the fit.

This method has another advantage because it allows to search for other possible minima of the
x2-surface. By stepping one parameter (and keeping it fixed at each step) while the other n—1 are
adjusted by least-squares fitting we immediately see whether there are other minima of X2 and if any
one of these is deeper than the one that we have found already. Investigating R; will in general

produce severai minima when more than one shell is present.

While the error Ap,. determined according to the above description takes all correlations into
account we do not know which parameters correlate with which ones. This information can be

obtained from the cormrelation matrix ¢ which is calculated from the inverse of the curvature matrix o

(©)ij= I ; -1<(e)j<t . (6.62)

The elements of the correlation matrix provide information about the sign and degree of the
correlation of any two of the variable parameters. Values of (c)ii with absolute values close to unity
signity strong correlation whereas (€)= 0 indicates no correlation between parameters i and j.

According to Eq. (6.62) the diagonal elements of the correlation matrix are equal to one.

A measure of the overall correlation are the global correlation coefficients g [189]:

1
Ok = { - —1 6.63
X \/ @)k (@ ik (689

The least-squares fitting program, which has been written, is too big (more than 5000 lines of
FORTRAN code) to be listed here. A brief introduction is presented in Appendix E and a detailed

description is given in Ref. 187.
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6.11 Beating

Beating has been investigated before [190, 191], but we will consider the eftect here in more

detail.

We determine the resulting amplitude A(k) and phase ‘¥(k) when several coordination shells m
of amplitudes a,(k) and phases y,(k) are added. All amplitudes and phases depend only on one
continuous parameter k. The amplitudes are generalized to contain all terms in front of the sine
function in the EXAFS formula and the phase is the argument of the sine function, including the

2kR-term. Beating will occur when two or more coordination shells are close together.
For simplicity we write each shell as a phasor. Adding the shells then gives:
AK) €K = D a (k) eVm(k) (6.64)
m
Beating phenomena are manifest in the amplitude as well as the phase. When beating occurs, the
amplitude exhibits a local minimum and the phase shows a step. We prefer to investigate the
behaviour of the phase rather than that of the amplitude because it is analytically easier and because
jumps in the phase are easier to detect than minima in the amplitude. Strictly, both effects need not
occur at the same k-value. It must be kept in mind that minima in the amplitude and steps in the phase
can also result from the k-dependence of the backscattering amplitudes and phases.
Writing the real and imaginary parts of Eq. (6.64) yields:
A(K) cos W(k) = Y am(K) cos yp(k) | (6.65)
m
A(K) sin W(k) = 2 am(k) sinym(k) . (6.66)
m

For the phase we theretfore obtain the relation:

tan w(k) = Y ap (k) sin yp(k) / Y am(k) cos yp (k) . (6.67)
m m
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For the amplitude we have:

(2 am(k) cos Wm(k)) 2 + (3 am(k) sin w(k) 2 . (6.68)

m

or:
(Zam eivm() - (D an(0 e¥n®) = D an k) an(k) eivmKi-vn(k)
n m,n
A2 = D, am(K) ag(k) cos(m(k) - va(k) - (6.69)

m,n

We now determine the derivative of ¥(k) with respect to k:

(tan ¥(k))'

¥'(k) = (tan ¥(k))' cos2¥(k) = T+ @an2¥(k)

(6.70)
Here the prime indicates a derivative with respect to k. Inserting Eq. (6.67) yields:

Y10 = g 2 amK) 20 K0 sin(¥n ) ~ i) + am(k) 3n(K9) w'(9 c05(wa(k) ~ ¥m(k9) -

AZ( mn

(6.71)

This equation forms the basis for our analysis of the beating effect. A2(k) is given by Egs. (6.68) or
(6.69). For three or more coordination shells Eq. (6.71) becomes too complicated because all
possible differences of distances appear. The equation is therefore evaluated only for the beating of

two shells. To this end we introduce the abbreviations:

as
C af;g and o(k) = wo(k) - (k) -7 . (6.72)
Using Eq. (6.71) we get after some tedious algebra the following formula describing the beating of
two shells:

¢ _ V1K) + wo'(k) 2 ¢'(k) (C(K) = 1/C(K)) = (In C(K))" sin (k)
) 2 * C(k) + 1/C(K) - 2 cos o(k)

(6.73)
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We will use this equation to determine the beating condition. A beat will occur at k-values where the
two phasors y4(k) and y»(k) are antiparallel. in this case ¢(k) is equal to an integer multiple of 2
ok,)=2rv,v=0,1,2, ..

Note that Eq. (6.73) is invariant under the interchange of the two shells, i.e. for C(k) — 1/C(k)
and ¢o(k) — ¢(k) = w1(k) — wo(k) — m . A closer inspection of Eq. (6.73) reveals that a divergence will
occurif C(k,) =1 for k2K, .

The case of C(k) =1 deserves special attention because then the second term on the right-
hand side of Eq. (6.73) is undefined at a beating node. Analyzing Eqs. (6.65) and (6.66) for the case

of equal amplitudes yields the result:

VW1 + v ()

¥ 2

(6.74)

which is just the first term on the right-hand side of Eq. (6.73). Now, however, there will not be any
structure in the phase derivative at a beating node. In other words, there is no beating effect in the
phase when the two amplitudes are equal. This can be understood also in the following way. The two

coordination shells, which have the same amplitude a(k), add up to:

AK) sin (k) = a(k) (sin (k) + sin yo(k)) or
- K
A(K) sin W(k) = 2 a(k) oos(“l(k) > “’Z(k))sin(‘ﬂ( ) . “’z(k)) . (6.75)

This result is well known. The rapidly varying sine term is modulated by a slowly varying cosine term.
Therefore the term of the right-hand side is also of the form amplitude x sin(phase) and hence

looks like a gingle shell with amplitude and phase given by:

v1(k) + wa(k)

A(k) = 280()00 2

and W(k) = (6.76)

y1(k) - va(k)
)

The beating is contained only in the amplitude, not in the phase. The phase is simply the arithmetic
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average of the two individual phases. Therefore, it we have two coordination shells of equal
amplitude that cannot be resolved in R-space we can still extract their combined phase (Section 6.7).
It the two shells consist of the same type of atoms (which is almost implied by the condition that their
amplitudes are identical) then we obtain the average distance R = (R + Rp)/2 . Since the two
amplitudes are never exactly equal, be it only for reasons of numerical precision, there may still be
peaks, or dips, ocurring in the phase derivative. The important point here is that the two shelis with

equal (or almost equal) amplitudes can be analyzed as one singie shell.

We will analyze beating by fitting to Eq. (6.73). The advantage of employing Eq. (6.73) is that it a
beat extends only over a small k-range, the amplitude ratio C(k), as well as the phasors (k) and
yo(K), can be assumed to be constant. This means then that no reference amplitudes or phases are
necessary. However, since the generation of ¥(k) involves an integral transform there will be artitacts
and thus a beating node near the high-k end cannot be analyzed. (Beating nodes near the low-k end
need not be analyzed because they correspond to fairly large distance differences and because
they are repeated at higher k-values.) Thus the situation here is the same as with the Log-Ratio

Method.

For EXAFS the phases wj(k), j=1,2 are given as k) = 2kRi + S,j(k) where S,j(k) is the sum of
the central and the backscattering phases. With ¢(k,)) = 2nv we get:

2nv = yo(ky) = wy(ky) — 7 = 2k,AR + 3ip(ky) = By (k) -,  AR=Ry-Ry . . (6.77)

We can sometimes approximate 85(k) - dy1(k) as a straight line (Chapter 2):
Sia(k) - 81(k) = (P2 — Po1) + (P12 —P11) K. Then we obtain for k,,:

(2v +1) n - (Pg2 - Po1)
k, =
v 2AR + P12 - P11 ' (6.78)

It AR is rather smail then the first beating node may lie outside the data range. It is thus difficult to
contfirm the existence of beating. If the presence of beating is not realized then wrong bondlengths

Mmay be obtained [192].
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2rn
M= ZaR v pyz - P11

The beating nodes k,, are evenly spaced with separation

If both shells consist of the same type of atoms then we get exactly ky = —@%ALF:L’E )
Here we see another advantage of investigating the phase rather than the amplitude: The
position of the minimum of the amplitude would invoive the Debye-Waller factor and the mean free

path whereas in Eq. (6.77) only the phase shift (k) appears.

We have not considered here the phase change associated with a local maximum of the
amplitude because it is less pronounced. We also have not taken into account a broadening of the
phase derivative of the data due to the finite transtorm range of the k-to-R Fourier transtorm

employed in extracting the phase.

6.12 Yalence Determination

As explained in Chapter 4, the mixed valence of rare earth compounds can be determined from
the L;;- or Ly;-absorption edges by fitting two integer-valent edge profiles of the same shape but
with different weighting to the normalized spectrum. We employ here the same lineshape as was
used before [17]. Other lineshapes [84, 193-196] invoive a Lorentzian peak superposed onto an
arctan-shaped background, a lineshape that is based on an early paper by Richtmyer et al. [197] who
assumed a constant density of final states. The lineshape employed here consists of a Lorentzian
convolved with a Gaussian, aiso called a Voigt line profile, with the edge jump built in afterwards

according to Ref. 17, p. 75:

o0

Y(E) = Yn}zax . f - 1 e“(*::”E)z/202 dE : E<E,
(E-Eo)2 + 12
(6.79)
YE) =1+ Ymax—1 1 e-(E-B)%202 g .  ExE,

——00
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where K is given by: K= f:?‘— e~E%20% 4 (6.80)
E

The lineshape peaks at the energy E, with peak height Y., > 1. T is the Lorentzian half width at
half maximum (HWHM) and o describes the width of the Gaussian contribution. Thus the lineshape is
characterized by four parameters: Eg, Ymax. I, @nd 6 . In order to fit the white line of a mixed-valence

material a second equal line profile, shifted in energy by AE, is added. If we write the valence v as
v=2+v 0<svst . (6.81)
and assume that the first peak of the white line corresponds to the divalent state then its weight is

1-v and the weight of the trivalent state is v. Thus in the case of mixed valence we need six fit

parameters.



178

| | i 1 1

= 2.0 L

@)
— 16 L

£
1.2 L

D
N 081
A
o0t

0.4 .
7270

7290 7310 7330
E (eV)

Fig. 6.8: Normalized absorption spectrum of the Sm L;| edge in SmSe at 58.6 kbar and at 77K.

The solid line is the data, an average of two scans, and the dashed line is the fit.

These near-edge fits are excellent as one can see from Fig. 6.8. (Deviations on the high-energy side

are due to the onset of EXAFS and not of concern in valence determination.) This may be due to the

fact that the lineprofile employed here is constructed such that it resembles the normalization

procedure. Normalization for edges, as opposed to EXAFS, consists of subtracting straight lines in

energy space from the left- and right-hand sides of the absorption maximum. Subsequently the

spectrum is normalized to the absorption step. The good fits insure that the results for the valence

are sensitive to small changes in the height of the white line. A table of the correlation coefficients for

the fit of Fig. 6.8 is shown below:
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AE -0.81
2T +0.21  -0.39
~020  +0.43  -0.91
Y max ~0.01 +0.05  -0.26  -0.06
v ~0.33  +0.09  +0.38  -0.24  -0.32
g2+ AE 2r o Y max

(E2* and AE specify the energies of the 2+ and 3+ states )

With this empirical approach we cannot claim to obtain the valence in an absolute sense,
though. Other methods will yield different values but should produce the same trends. There is a .
certain amount of correlation between the two width parameters I" and . It is, however, not possible
to do without either one of them because the white lines of the rare earths are fairly broad both at the
top and at the bottom. This is not solely due to finite instrumental resoiution which at the Sm L, or
Ly edge is rather small. In this work the resolution is normally neglected. Otherwise it is taken into
account by convolving the quantity I/Io as a function of energy with a Gaussian of full width equal to
the given instrumental resolution. I/Io is obtained by adding to the model the previously subtracted
background. This procedure is exact if I, is constant. Ideally, one would convolve the individual
counting rates I and I, but they cannot be obtained from the model. No attempt is made at
deconvolution of the absorption spectrum because, besides noise, it yields results that are not
uniquely defined. Note that the actual HWHM of the Voigt line profile has to be determined

numerically from I and ¢ [17, 198].

Frequently the second derivatives of the absorption spectra are fitted [199-201] in order to
determine better the positions of certain features in the spectrum. For valence determination this is
not a good method because the valence is contained in the amplitude and the second derivative (or
even the first derivative) has lost sensitivity to the amplitude. A fit result obtained by fitting to
derivatives is clearly in error when viewing it in the underived form. Besides, derivatives always add
Noise to the signal so that smoothing may become necessary. in Chapters 7 and 8 we see that there
exists a linear dependence of the valence obtained from fits and the energy difference

AE = E3+ - E2+ between the positions of the two absorption profiles. This dependence is not an
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artifact since AE and the valence are hardly correlated in the fits. Therefore one should be able to

determine the valence from AE alone.

Since the same lineshapes are employed for the two valence states it is not necessary to
integrate the area underneath the peaks in order to determine the valence. However, when
comparing different spectra, knowledge of the peak area may be useful. To this end, we provide the

area A underneath a single peak, Eq. (6.79), excluding the step:

nTNon
2 K

A = (2 Ymax — 1) . (6.82)

lile}

6.13 Yalence Interpolation Formulia

Fractional valences are frequently determined according to Vegard's law [202] by linear
interpolation between the two lattice constants a2* and a3* corresponding to integer-valent states.
Based on Ref. 203 it has been suggested to interpolate intermediate valences between the integer-

valent bulk moduli instead [204].

2+ 3+ . .
One may, however, also treat (Sm1_vva )Se as a mixture and then employ volumes instead
of lattice constants. This has been done for some alloys [205, 206] and we will adopt this latter ansatz

and write:
V= (1-v) V& 4y V3 (6.83)

where V2* is the volume of a unit cell if only Sm2* atoms are present and V3* is its volume if there are
only Sm3* atoms. Eq. (6.83) states that the volume of an intermediate-valent state is obtained by

linear interpolation.

This mode! will now be used to examine the limiting behaviour of the pressure dependence of
the valence, to introduce a valence compressibilty x,,, and to examine the relationship between the

inflection point in the valence-vs.-pressure curve and in the volume-vs.-pressure curve.
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Taking the derivative with respect to pressure we get:

dve+ ave+
dp +V dp

dv. _ v {3+ _ 2+ _
dp _dp(v V2+) + (1-v)

(6.84)

This equation tells us that #f dv/dp is positive then dV/dp must be negative (because dv2+/dp
dVv3+/dp , and V3* - V2* are all negative). The reverse conclusion does not follow. f dv/dp is
positive then Eq. (6.84) also shows that a transition that has a more rapid change in volume will
produce a more rapid change in the valence too provided that the pressure dependence of V2+ and

v3+ remains the same. These conclusions only confirm what we intuitively expected.

For the compressibility x we obtain from Eq. (6.84):

1dv _ v (vZ+-v3* Ve et
K=—Vdp=dp v )+(1—V)V x‘2++vv K (6.85)
The compressibilities x2* and «3* are defined as:
__ 1 av* . __ 1 aw
K+ = 75 “dp : = 3 dp (6.86)
For v=0 we have V = V2* and x must become equal to x?*. Therefore we require:
. dv _
v=0: ap =0 (6.87)
For v=1 we have V =V3* and for x to be equal to x3* we must require;
dv
v=1 dp =0 . (6.88)

Hence, in this simple model the valence as a function of pressure must approach its limiting values

with zero slope.

Eq. (6.85) furnishes the definition of a compressibility x,, stemming from the variation of v with

pressure:
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1\{ V2+ _ V3+
dp (—__V ) ) (6.89)

Ky

in accordance with Egs. (6.87) and (6.88) we have:
v=0or1: K =0. (6.90)

We can eliminate V3* by employing Eq. (6.83). This yields:

1 dv(vZ
“v=vdp(v - 1). (6.91)

This equation is undefined at v = 0 but according to Eq. (6.90) x,, assumes its limiting value of zero

as v—0.

By taking the second derivative of the volume V with respect to pressure we realize that the

327\2/ _ %vz_ (V3+ _ V2+) +2dgv[; aqp- (V3+ - V2+) + va%% (V3+ - V2+) + ddz:22+ )

2y
Inspecting this equation, we see that gsg = 0 does not imply dQ:;?‘i = 0 and vice versa. This will

be shown in Chapter 9.

By investigating the above equations it was not possible to obtain a useful relation that applies
to either the inflection point of the volume-vs.-pressure curve or the inflection point of the valence-
vs.-pressure curve. Neither could a practical equation involving the position of the maximum of the

compressibility x be obtained.
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6.14 D - ic ion { he Scaling Relation kR =

If the application of pressure leads to a uniform compression of the solid, i.e. a scaling of the
lattice constant, then the k-scale of the EXAFS of the compressed solid is expanded. Therefore one
may expect that by compressing the k-scale again one can reproduce the original EXAFS spectrum,
at least as tar as its phase is concerned. We now suggest a method in which this idea can be used to

determine the pressure.

We define the function g(e), with € being a small positive quantity:

k
o) = —5—

max - -
max—Xmin .[ dk K™ x() wk (1+€) - (6.92)

kmin

Here x(K) is the EXAFS of the sample at a reference pressure. ¥(k) is the EXAFS of the same sample
at a different pressure which we assume, without loss of generality, is higher. The application of
pressure leads to an expansion of the k-scale. If the compression is uniform then according to the
scaling relation, Egs. (3.72), (3.79), and (3.80), the low-pressure EXAFS measurement (k) and the
high-pressure result (k) shouid coincide after a proper compression of the k-scale of the latter. This
compression is indicated in Eq. (6.92) by k-(1+¢), which means that for a finite positive ¢ the
magnitude k of the wave vector has to be smaller. n and i are powers of k chosen such that x(k) and
%(K), respectively, have overall amplitudes that are almost independent of k. It should now be
apparent that if x(k) and the compressed x(k) do coincide, then g(e) will have a maximum and the

compression can be determined.
We introduce Ko = % (Kmin +Kmax) and Ak =K. —Kmin (6.93)

and substitute the EXAFS expressions:

k | +Ak/2 z |f(k)| I l(k)l -2(02+52) K2
ko—Ak/2 ij I

gle) =

x sin(2 k R+ &(K) sin((2 k (1+8) R; + 3y(K))) . (6.94)
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The tilde refers to the high-pressure EXAFS, y(k), and the indices i and j label the coordination shells
for x (k) and %, respectively. Note that we have modified k only in the phase of %(k). The changes of
the coordination-shell radii are so small that they can be neglected in the amplitude terms as well.
Besides, since the compression is so small, it is evident that the integral in Eq. (6.94) will only relate
coordination shells of the same order, which means i = j. According to Chapter 3 we will assume that
the backscattering amplitudes and the total phases are independent of pressure, i.e. I?i(k)l = If‘(k)l
and S,im = &j(k) . By proper choice of the powers n and A one can minimize the k-dependence of
the overall amplitudes. We thus assume that these terms are slowly varying functions of k and put

them in front of the integral:

2 n+h—2 2.2 2
gte) = Z | 09| : " e 2(0+5) K" 1(e) . (6.95)
i i

where I(g) is defined by:

> ko+Ak/2 -
)= - [ ok sin(2k R; +8i(K)) sin((2k (1+¢) R; + &(k)) . (6.96)
ko—Ak/2

We approximate the total phases by straight lines, Eq. (2.12):

&ii(k) = poi + P1ik ¢ P1i<0 . (6.97)
We introduce the abbreviations:

as2Rj+py; d=2(1+e)Rj+pj: b=pgi . (6.98)
This yields for the integrand of I(e):

sin(2k R, + 8;(k)) sin((2k (1+€) R; + &;k))) = sin(ak +b) sin(@ k +b)

= sin(ak) sin@k) + sinb) cos(@+a)k) + sin(b) cos(b) sin((a +a)k) .
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We now integrate. For this purpose we need the following integral:

Xq+AX/2 ( _
2 . . sin((p-q) Ax/2)
~ .xo_ijzn(px) sin(gx) dx = cos((p-q) xo) 50 Anl2

sin((p+q) Ax/2)

- cos((p+a) %) (ped) Axl2 (6.99)
We obtain for [(g) after some algebra:
. sin((a—é') AK/Zl . sin{ (a+3) Ak/zl
= - Ko+2 .
I(€) cos((a—a)ko) (a-3) AK/2 oos((a+a) ot b) (ard) AK2 .(61(7)‘0)‘
Resubstituting the original quantities, (6.98), yields:
N sin((Ri—(1+e) R;) Ak)
I(e) = cos((Ri—(1+e) Ri) 2 ko) -
(Ri-(1+¢) R;) Ak
. in{ (Ri+(1+€) Ri+py;
- cos((Ri+(1+e) Ri+p1i) 2 ko+2 poi) sm(( +{1+¢) Ri+py ) Ak) (6.101)

(Ri+(1+€) Ri+pq)) AK

The first term of this integral contains a sinc function, defined as sinc(x) = (sin x)/x . It is centered at

€ = g, where g is given by:

R; - R;
£y = _ (6.102)

~

Ri

The sinc function is thus centered at a (positive) value equal to the relative compression, referred to
the high-pressure state (R; in the denominator.). For uniform compression of the lattice the relative
changes of each coordination-shell radius will be all equal and therefore ¢, is independent of the

index i. If we ignore the cosine term, which is close to unity, then the FWHM is:
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Ri—(1+€) ﬁi| Ak = |eo - e1,2| R Ak = 1.8955

2:1.8955

= FWHM =2 [eo - €1/2| = = Ak
I

(6.103)
g4/ is the argument where the sinc function assumes half the value it has at &5. Note that the width,
as opposed to &,, depends on the coordination shell radii ﬁi. Hence each coordination shell
produces a peak (or valley, depending on the cos prefactor) at the same position but with a shell-

dependent width. The broadest peak results from the first coordination shell.

The second sinc function has the same width as the first and is centered at:

. R+R.+D¢;:
gt = i Pii _q

(6.104)
(o] R|

Thus the peak position depends on the order i of the coordination shell. The separation of the two

sinc functions is approximately equal to 2, independent of i:

€o— € =2 (1+€o) + ?’—‘ =2.
° R
1
Their widths are approximately 2/Ak , assuming ﬁi - ﬁ1 =2 A in Eq. (6.103). Since normally
2/Ak << 2, it will therefore be possible to distinguish the two sinc functions.

Thus the function g(e) according to Eq. (6.95) together with I(e) as given in Eq. (6.101)
constitutes a model-independent method of determining the compression. The widths are less
useful because g(e) is a superposition of peaks (or valleys) ot varying width and because the
selected powers of k, n and i, cannot completely remove the k-dependence of the amplitude. If the
compression is known and g(e) peaks (or dips) at €4 = (R;— ﬁi)/ ﬁi then this is a confirmation that the

scaling relation mentioned above actually exists.
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Chapter 7.  Results for SmSe

We begin the data analysis with the determination of the pressures from the EXAFS of a
calibrant. Then we investigate the Se K edge EXAFS which provides good R-space resolution.
Afterwards the EXAFS of the Sm Ly, edge in SmSe is analyzed and finally the valence is determined

from the Sm L, and L, edges.

The EXAFS data are always fitted to the following expression [187], which is a detailed form of
Eq. (2.9):

N; _sA. 2
x(K) = E qRzPelk e 2R exp (5 Ca *)
j -
x fik;,x) e_20’-2k1'2 sinf2 ki R; + 84:(k) + a; - 4 Cq k3 7.1y
g ‘ 7T O iT3v3 ) :
The index j labels the coordination shells which are located at R;. Each shell j has its individual k-scale

which is calcutated from the k-scale of the data as follows:

kja\/ K2 - AEj/y . (7.2)

The function pt(kj) results from the finite resolution of the monochromator and is defined in

Section 6.4. For theoretical amplitudes fi(kj.x) the mean free path is incorporated as e~2R/A  where
Ak) = k/ (Section 2.5). ojz is the mean-square relative displacement and S,'j(kj) the total phase of
shell j. a is an offset that can be used to correct the phase it necessary. The terms involving 03,- and
C4j are cumulants, taking effects due to asymmetry into account (Section 2.3). Seven parameters

may thus be allowed to vary for coordination shell j:
% 4E, Ry Cy Cq o N;-

Ot course, not all parameters are being varied simutaneously. Furthermore there are the two
parameters 7 (Eq. (2.43)) and the pre-monochromator siit width s which apply to all coordination

shells jointly. Here they are aways kept fixed.
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For R-space fits the Fourier transform of Eq. (7.1) is fitted to the Fourier transform of the data.

The data analysis is done separately for each run and in chronological order. The results are
given in tabular form and important graphs are presented. in all cases where the finite resolution of

the x-ray monochromator is considered the pre-monochromator slit width is assumed to be 1 mm.

In all cases a Hamming window (Section 6.6) was employed for the k-to-R Fourier transform. No

window function was employed for the R-to-k back transform.

While it is common practice when applying the phase-difference method to have the identical
k-space range for the unknown and the reference datasets, we have found with the R-space fitting
procedure (using empirical amplitudes and phases) that small changes of the k-space range have an

insignificant effect on the fit interval in R-space.

The tables with the EXAFS rasults contain aiso the R-space fit interval, the transform interval in
k-space, the edge energy, and the value szin at the optimum according to Eq. (6.58). The
numerical results presented in the tables have more significant figures than warranted by our error
analysis. However, the numbers were entered in this manner in order to permit one to repeat the fit

resufts if necessary and also to enable one to see the trends in the results with pressure.

7.1 Pressure Determination

The pressure for the SmSe datasets is determined from the EXAFS of a calibrant. Here this
calibrant is either Cu or RbC! and it is pressurized together with the sample. The EXAFS datasets for
the calibrant are measured for several applied pressures and the interatomic distances are
determined. With this knowledge the reduced volume v/ V, is calculated. Using known calibration
curves of V/ Vo vs. pressure one can then interpolate the pressure. In Cu we measure the nearest-
neighbour distance and in RbCl we determine both the nearest and next-nearest-neighbour
distances because it was not possible to separate a singie shell satisfactorily. For temperatures other
than room temperature the pressure calibration curves have to be modified as detailed in

Section 5.8. This modification is more pronounced for RbCl than it is for Cu.
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In all cases the EXAFS analyses for the pressure calibrants are performed in R-space only. In
this way the data and the fitting function are both Fourier transformed and thus artifacts are present in
both cases. If we fitted in k-space the data would have to be Fourier fittered and thus possibly
exhibiting some artifacts while the fitting function would not have undergone any Fourier

transformation.

We can analyze the EXAFS of Cu by, for example, extracting the EXAFS phase shift and then
applying the phase-comparison method (Section 6.8). However, because the compressibility of Cu
is not very high the pressure-induced changes in the nearest-neighbour distance are rather small.
Fitting the phase difference has subjective difficulties because the difference is not a nice straight
line when changes of the nearest-neighbour distance are minute. The pressure-induced change in
R that is obtained by using different fit intervals varies and the error bars for the change in R can be-

obtained from approximate error analysis.

We, however, prefer least-squares fitting. It has the added advantage that the data range is not
reduced due to Fourier-filtering artifacts as is the case with the phase comparison where
experimental phases have to be extracted. Also if one fits in R-space rather than k-space the artifacts
due to fitting to the inverse transform do not exist. The disadvantage with least-squares fitting is that
the scattering amplitude and phase must be known. It tumed out that they hardly change under the
pressures involved here (see Ref. 81 for Cu). Hence we employ one and the same backscattering

amplitude and phase for all pressures.

We also employ the curved-wave theory of Schaich [7] and McKale [8-10]. Since the changes
of the interatomic distances are too small to produce any significant variations in the curved-wave
effects on the backscattering amplitudes and phases we will calculate amplitudes and phases only
for atmospheric pressure. This calculation has been described in detail in Chapter 3. The central

phases are those of Teo and Lee [11] and no curved-wave effects need to be considered for them.

For Cu it turned out that one has to subtract ©/2 from Teo and Lee's central phase because
otherwise it is not possible to obtain a reasonable fit. Besides, the nearest-neighbour distance would
deviate too much from the crystailographic value of 2.553 A. The Cu-backscattering amplitude and

the total phase are shown in Figs. 7.1 and 7.2 as a function of k. The amplitude is practically identical
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to the one of Fig. 3.4 of Chapter 3 (2.553 A as compared to 2.5 A). The phase displayed in Fig. 7.2 is

the total phase, that is the sum of the backscattering and the central phase.
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Fig. 7.1:  Backscattering amplitude for copper metal calculated in curved-wave theory for

R=2553 A and K- or L-edge absorption.
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Phase

Fig. 7.2:  Sum of backscattering phase for copper metal, calculated in curved-wave theory for
R=2553A andK- or Li-edge absorption, and Teo and Lee's [11] central phase extrapolated as
described in Section 3.5.

It was not necessary to include asymmetry terms in the EXAFS analysis of copper.

In the case of RbC! we calculate the Cl- and Rb-backscattering amplitudes and phases
somewhat crudely by using simply the atomic potentials. it would have been better to do a more
extensive calculation like the one for SmSe but under pressure RbCl transforms very soon (at
5.2 kbar) from the NaCl structure into the CsCl structure. Because of this different crystal structure t
would thus be necessary to go through the whole formalism again. It is assumed that we can also get
reasonable results for interatomic distances with backscattering amplitudes and phases calculated

from atomic potentials rather than from muffin-tin potentials. Besides, we are only interested in
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changes of interatomic distances. For Rb it was not necessary to subtract w2 from Teo and Lee's

central phase.

The Fourier transform magnitude of a typical RbCl dataset is shown below. From this figure it is
clear that the pressure determination for RbCl involves the EXAFS analysis of two coordination

shells.

Fig. 7.3: Magnitude of the Fourier transform of k3 (k) of RbCl at 42.9 kbar (CsCl structure) and at
77K. The solid line is the data and the dashed line is the fit. The abscissa is not corrected for the
EXAFS phase shift. The insert shows the unfittered data as k3 x(K).

In RbCl the first coordination shell with respect to a Rb atom consists of Cl atoms, located at the

nearest-neighbour distance of R = 3.366 A . Its backscattering amplitude and total phase are shown
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in Figs. 7.4 and 7.5. Figs. 7.6 and 7.7 correspond to the next-nearest-neighbour shell of Rb atoms
located at R =3.887 A.
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Fig. 7.4: Backscattering amplitude for Cl calculated in curved-wave theory for R = 3.366 A and

K- or L;-edge absorption.
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Fig. 7.5: Sum of backscattering phase for Ci, calculated in curved-wave theory for R = 3.366 A
and K- or L-edge absorption, and Teo and Lee's [11] central phase for Rb extrapolated as described

in Section 3.5.
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Fig. 7.6: Backscattering amplitude for Rb calculated in curved-wave theory for R = 3.887 A and
K- or L|-edge absorption.
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Fig. 7.7 Sum of backscattering phase for Rb, calculated in curved-wave theory for R = 3.887 A
and K- or L-edge absorption, and Teo and Lee's [11] central phase for Rb extrapolated as described

in Section 3.5.

in these two-shell fits to RbCl we fix the ratio N2/N1 of the number of atoms in the second and
first coordination shells at its crystallographic value of 0.75. When RZ/ R, is fixed at a value of 1.17 the
parameter of interest, Ry, becomes uncorrelated with any other and good fits are obtained.

Rg/ Ry = 1.17 is sufficiently close to the value of 2/N3 =1.1547 , known from crystallography.

In order to obtain reliably the changes of interatomic distances with pressure it is important that
we suppress any correlation of the fitted distance R4 with other fit parameters, especially with AE;.

We first performed fits where AEj was variable. There was no evident pressure dependence in AEJ-.
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The fluctuation in AEi was 110 1.5 eV, approximately. Thus it was sufficient to perform a second

series of fits in which AEj was fixed at its average value.

The correlation between of and Ny is strong, too. However, neither of these parameters is
correlated with Ry and they can therefore be allowed to vary simultaneously, thus improving the fit.
Since of (and og, in the case of RbCl) and N4 are varied simultaneously in the EXAFS fits, their

individual values do not have much meaning and are therefore omitted from the following tables.

We do not consider any asymmetry effects in RbCl at 77K because they do not improve the fits.
Asymmetry is important at room temperature in the NaCl phase [157]. However, in the high-pressure
CsCl-phase Tranquada [157] found it sufficient to do two-shell fits without including asymmetry
effects. Besides, it is expected that asymmetry terms will decrease with increasing pressure and with

decreasing temperature. Thus C3j=0 and Cy4i=0.

Before we can analyze the data we have to caiculate 7. According to Section 2.5, this quantity
contains the effects of a mean free path but also those stemming from the finite core-hole lifetime.
The results are:

Te+Tc  4.39eV +1.6eV

Cu: fl = 2y = 2 v

0.786 A2 |

Te+Tc  2.78eV +3.3eV

= = 0.798 A2
x 2y 0.798 A=2 |

BhCl:

=
1
I

(absorbing element underlined) .

The following tables contain the results of the pressure calibrations. All fits to the calibrants
were performed in R-space to the Fourier transform (“FT”) of k3 x(k) . One-shell fits were employed
for Cu and two-shell fits for RbCl. From the nearest-neighbour distance Ry and a reterence nearest-
neighbour distance R, indicated in boldtace in the tables, one obtains the reduced volume for cubic

Crystals simply through:

VNG = (Ry/Ro)® . (7.3)
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Using known curves of V/ V,, versus pressure (Section 5.8) one can then determine the pressure. At
room temperature a hydraulically driven pressure cell is employed and the applied oil pressure Py is
listed. At liquid-nitrogen temperature the mechanically driven cell, described in Section 5.9, is used
and the number of tums, N, is listed in the tables. In this way it is possible to estimate pressures
based on P or Nt so that the EXAFS of the pressure calibrant need not be measured for every

pressure point. A plot of the calibrant pressure as a function of either Py, or Nt follows each table.

The error in extracting Ry is determined according to the method outlined in Section 6.10 and
in Refs. 187 and 188. The error bars are determined by the change of Ry when X2 increases to
2 - x2in While the other fit parameters are allowed to vary. Error bars obtained in this way are rather
conservative. From the error for Ry we obtain the error in the pressure by using the known calibration
curves. It tums out that the uncertainty in the pressure obtained from a copper calibration is
approximately 2.5 times greater than the pressure uncertainty resulting from a calibration using RbCl.

This is due to the smaller compressibility of copper as compared to RbCl.
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Table 7.1: Pressure calibration from Cu K edge EXAFS (LOG.CU1.B):
(Dec. '83; Si (111); T = 300K)

One-shell fits in R-space to FT(k3 x(k)) using theoretical amplitude and phase
fixed: a1 = —15708, AE1 = 1.036 eV; 031 =0.0; C41 =0.0
variable: Ry; o& N

Fitinterval (A)  Transtorm interval (A™1)

Dataset Ry (A) VIV, Pgojpsi) p(kbar) R Rerex Kenin Kerex
EgdgeleV) Lrrin (A8
CUSEO00.N00.B  2.555 1 0 0 1.083 2.953 1.812 12.159
8978.19 + 0.004 +6.1 0.12

CSSE07.N07.B 2.551 0.995 700 6.4 1.129 2.909 1.850 12.096
8978.53 +£0.006 £11.0 0.26 }
CSSC13.N10.B 2.542 0.984 1300 22.7 1.214 2.876 1.850 12.506
8981.14 +0.004 +7.0 0.20

CSSE19.N13.B 2.533 0.974 1900 39.6 1.127 2.850 1.813 13.571
8981.66 +0.005 +9.6 0.42

CSSE20.N27.B 2.531 0.9715 2000 441 1.131 2.849 1.812 12.605
8978.53 +0.004 +7.7 0.22

CSSE23.N30.B 2.525 0.965 2300 55.1 1.120 2.844 1.850 12.529
83979.57 +0.004 +7.6 0.22

CSSE27.N33.B 2.518 0.957 2700 68.3 1.077 2.909 1.850 12.529

8979.57 +0.004 8.2 0.20
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Fig. 7.8: Pressure p of a copper calibrant versus the oil pressure Pg; applied by a hydraulic
pump. The data are those of the previous table. A straight line was fitted excluding the origin. lts

slope is 3.1 0.1 kbar/(100 psi) and the interceptis —17 + 2 kbar .
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Table 7.2: Pressure calibration from Cu K edge EXAFS (LOG.CU1.C):
(April '84; Si (111); T = 300K)

One-shell fits in R-space to FT(k3 x(k)) using theoretical amplitude and phase

fixed: a;=-15708; AE;=-0924 eV, C31=0.0; C4y=00
variable: Ry; of Ny

Fitinterval (A)  Transform interval (A1)
Dataset Ry(A) VIV, Pojlpsi) p(kbar) Ry, Remex Kenin Kerex
Egdge(eV) Crmin A8)

Reference at 300K: R, = 2.542 A (estimated)

CUCA10.N20.C 2.538  0.996 1000 5.6 1.342 2.925 1.812  12.946
8978.71 10.004 t7.8 0.24 o
CUCA17.N31.C 25325 0.989 1700 16.4 1.271 2.901 1.812 13.074 -
8978.71 10.006 110.9 0.49

CUCA20.N59.C 2.521 0.975 2050 38.1 1.271 2.901 1.812 12.882
8978.71 $0.005 19.7 0.41

CUCA22.N78.C 2.519  0.973 2250 416 1.313 2.912 1.862 12787

8978.71 10.008 116.5 1.08
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Fig. 7.9: Pressure p of a copper calibrant versus the oil pressure P applied by a hydraulic
pump for the data of Table 7.2. The straight-line fit excluded the origin. The slope is
3.0 + 0.7 kbar/(100 psi) and the intercept is —27 £ 12 kbar .

The following table contains the results for the pressure calibration with RbCl. The reterence
nearest-neighbour distance is the distance just above the pressure of the NaCi-to-CsCl phase
transition at 77K. According to the discussion in Section 5.8 this value is R, =3.3504 A ata

pressure of 5.2 kbar.
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Table 7.3: Pressure calibration from Rb K edge EXAFS in RbCl (LOG.RB6.F):
(June '86; Si (220); T = 77K)

Two-shell fits in R-space to FT(k3 x(k)) using theoretical amplitudes and phases:
st shell: C; 2nd shell: Rb
fixed:  a;=00; AEj=-23eV; C31=0.0; Cyq=00;
a,=00; AEp;=-23eV; Ry/Ry=117; C3p=00; Cyp=0.0; Ny/N;=0.75
variable: Rjy; o‘?; Ny, og

Fitinterval (A)  Transform interval (A™1)

Dataset Ry (A VIV, Nr  p(kbar) Ry Rmex Krin Krrex
EEdge(eV) xzm'n (A—G)

Reference at 77K: R, = 3.3504 A »
RBCLN2.N30.F 3.209 0.879 1.75 442 1.700 4.167 1.850 11.9713
15199.36 +0.005 2.0 0.028

RBCLN3.N35.F 3.213 0.882 3 42.9 1.693 4170 1.858 11.963
15200.27 +0.006 2.3 0.041

RBCLNS.N40.F 3.191 0.864 5 52.0 1.700 4.167 1.850 12.061
15199.36 +0.006 2.5 0.046

RBCLN8.N45.F 3.172 0.848 8 60.1 1.734 4.026 1.858 11.963
15200.27 +0.007 3.2 0.084

RBCLN9.N51.F 3.146 0.828 9 73.2 1.741 4.022 1.850 11.987
15199.36 +0.007 +3.9 0.090

RBCLNF.N57.F 3.1395 0.823 15 77.0 1.672 4.046 1.858 11.963
15200.27 +0.006 3.5 0.078

The next two figures show in one graph data for low and for high pressure. Fig. 7.10 shows

Fourier transform magnitudes and Fig. 7.11 shows the same data in k-space.
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Fig. 7.10: Fourier transform magnitude of k3 x(k) for BOCI at 77K. The central atom is Rb. The solid
line corresponds to 42.9 kbar and the dashed line to 77.0 kbar.
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Fig. 7.11: k3 x(k) for BbCl at 77K for the same data as in the previous figure. The central atom is Rb.
The solid line corresponds to 42.9 kbar and the dashed line to 77.0 kbar.
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Fig. 7.12: Pressure p of a RbCl calibrant versus the number of tums Nt that were applied
according to the data of Table 7.3. The slope of the straight-line fit, which excluded the origin, is
2.8+ 0.5 kbar/turn and the intercept is 39 * 4 kbar . The straight line is outside the error bars of the
data points corresponding to 3 and to 9 turns, respectively.
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Table 7.4: Pressure calibration from Cu K edge EXAFS (LOG.CU1.G):
{Dec. '86; Si (111); T = 77K)

One-shell fits in R-space to Fr(k3 x(k)) using theoretical amplitude and phase
fixed: a1 = -1.5708; AE1 = (0.846 eV; 031 =0.0; 041 =0.0
variable: Ry, cf; N4

Fitinterval (A)  Transform interval (A™1)

Dataset Ry(A) VIV, Nt  p(kbar) Ry, Rimax Kmin Kmax
EEdge(eV) Crrin (A®)

CU00.N86.G 2.559 1 0 0 1.431 2.883 1.822 14.944
8979.05 +0.004 +6.9 0.73

CUO01.N88.G 2.554  0.994 1 9.40 1.435  2.870 1.817  15.045.
8979.05 +0.003 +5.3 0.55 .
CU03.N03.G 2.546  0.9845 3 243 1.640  2.902 1.824  14.955
8979.75 +0.004 +6.9 1.35

CU04.N08.G 2.5455 0.984 4 245 1514  2.923 1.824  15.101
8979.75 +0.004 +6.9 0.85

CUSM4T.N30.G 2.541  0.980 475 31.4 1.440  2.880 1.764 15216
8981.14 +0.003 +5.7 0.56

CUSMO05.N38.G 2541 0979 5 326 1.266  2.892 1.890 15.117
8979.05 +0.003 +5.7 0.28

CUSM5Q.N57.G 2.540 0.978 5.25 3355 1.435  2.870 1.817 15117
8979.05 +0.003 +5.8 0.51

CUSM06.N89.G 2533  0.9695 6 484 1.266  2.892 1.817  14.827
8979.05 +0.003 5.8 0.55

CUS11Q.N39.G 2.521  0.956 11.25 72.2 1.435  2.870 1.817  15.190
8979.05 +0.003 5.9 0.56

Fig. 7.13 shows the Fourier transform magnitudes of the data for low and for high pressure and

Fig. 7.14 shows the same data in k-space.
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Fig. 7.13: Fourier transform magnitude of k3 x(k) for Cu at 77K. The solid line corresponds to 1 bar
and the dashed line to 72.2 kbar.
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Fig. 7.14: k3 (k) for Cu at 77K for the same data as in the previous figure. The solid line
corresponds to 1 bar and the dashed line to 72.2 kbar.
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Fig. 7.15: Pressure p of a copper calibrant versus the number of turns Ny that were applied. The
data are those of Table 7.4. The slope of the straight-line tit, including the origin, is
6.4 + 0.4 kbar/turn and the intercept is 2 * 2 kbar .

7.2 Analysis of the Se K Edge EXAFS of SmSe

In this section we analyze the EXAFS data of the Se K edge, measured at 77K as a function of
pressure. Most of the data analysis is done by performing one-sheli fits with two variable parameters
to the nearest-neighbour coordination shell, which consists of Sm atoms. Table 7.8, however,
shows the results obtained by fitting two closely-spaced Sm shells to the nearest-neighbour shell.
Another series of two-shell fits will be discussed in Chapter 9. Table 7.9 contains the results of a one

shell fit to the nearest Se shell.
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All data are fitted to the Fourier transtorm of k2 x{k) . Most of the data are fitted using theoretical
amplitudes and phases. Tables 7.10 and 7.12 contain results obtained with empirical amplitudes and
phases. For the analysis with theoretical amplitudes and phases curved-wave theory is employed
and it was found that better fits could be obtained by subtracting /2 from the central phase of Se, as

was also done for Cu.

The one-shell fits using theoretical amplitudes and phases are arrived at as follows: The phase
offset a, is set to —/2. The remaining six parameters AEq, Rq, Cg4, C44, o‘?, and N, are all varied in
an initial fit to the datasets considered. Then the values of each parameter are plotted versus the
values of any other parameter obtained from the datasets under investigation. This is done in order
to make sure that no possible physical relationship among them is overlooked. Then the one
parameter which varies the least for all datasets is fixed at its average value and new fits are )
performed with only five variable parameters. The procedure is repeated until it is not physically -
reasonable to reduce the number of parameters further. In this process it is important to observe how
x?-, which takes the number of parameters into account (Egs. (6.57) and (6.58)), changes when this
number is reduced. If x2 increases drastically upon fixing one parameter then this parameter must be

released again.

The end result is a two-parameter fit. The nearest-neighbour distance Ry and the mean-square
relative displacement o‘? are varied. Their correlation in each fit is almost zero which implies that the fit
results for these two parameters are physically meaningful. Note that for N4, the number of nearest
neighbours, we frequently find a value smaller than the correct value of 6. This is not unexpected

because many body effects reduce the actual coordination number to approximately 70%.

For the fits employing theoretical amplitudes and phases we take the finite monochromator
resolution into account and consider the mean free path and core-hole lifetime eftects by defining
as:

g + T .
SmSe: A = Z+ ¢ _ 2.76e2\/;25ev - 0690A2 .

(absorbing element underlined) .
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For the fits employing empirical amplitudes and phases, resolution, mean free path, and core-
hole lifetime need not be considered for fitting because they are already contained in the reference
amplitude. This reference amplitude is obtained from one of the datasets (indicated in boldface) in
the form 14(ky.m) Ny e 201212 after muttiplication by R2/k; . ky is the k-scale, adjusted with AE,
according to Eq. (7.2). The empirical phase is obtained after subtraction of 2 kq Ry, where R, is
obtained from fitting. The method of extracting amplitude and phase is described in Section 6.7.
Since AE; and N, are already contained in the reference amplitude and phase, all datasets are fitted
with AE, =0 and N, =1 when empirical amplitudes and phases are employed. It is not necessary,
of course, to subtract n/2 from the phase. Hence the phase oftset aq is equal to zero. The mean-
square relative displacement is obtained as a difference with respect to the reference dataset,

namely Acs2 = 02 - 02
VT T et

For Table 7.5 the pressure is found from the oil pressure of a hydraulic pump, given in psi, by '
interpolation using Table 7.1. For Tables 7.6 to 7.10 the pressure is found with the help of Table 7.3
and for Tables 7.11 and 7.12 it is determined using Table 7.4.

For the fits in this section the error bars are determined according to the method presented in
Section 6.10. The error bars tor o2 are asymmetric, the positive error bars being the larger ones. The

listed error bars for 52 are averages of the positive and negative error bars.

The following table contains the resutts for Ry and o? at room temperature. In order to improve

the fits asymmetry was taken into account for the amplitude.
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Table 7.5: Se K edge EXAFS (LOG.SE10.B):
(Dec. '83; Si (111); T = 300K)

One-shell fits in R-space to FT(k2 x(k)) using theoretical amplitude and phase

fixed: a; =-15708; AE,=-40; C31=0.0; C4y=0107 103 A% N, =84
variable: Ry, o?

Dataset PoiPs)  pkbar  Ry(A) o2 (1073 A2)

EEdge(eV) kmin(A_1) kmax(A_1) Rmin(A) F*max(A) X2min (1073 A79)
SESM00.N00.B 0 0 3.109 £0.007 18.0+0.8

12658.27 3680  15.157 2.080 3.497 0.36
SESM13.N08.B 1300 22.7 3.059 1+ 0.007 16.75+0.7

12661.07 3734  14.829 1.848 3.470 0.65
SESM19.N10.B 1900 39.6 2.969£0.007 14.5+07

12661.07 3.918 14751 1734 3.377 1.31
SESM20.N30.B 2000 441 2.955 + 0.006 144106

12656.87 3.862 14711 1.693 3.316 0.93
SESM20.N32.B 2050 459 2.946 1 0.005 1481 0.6

12656.87 3.891 14.711 1.895 3.235 0.87
SESM23.N32.8B 2300 55.1 2.915+0.005 133105

12656.87 3.921 15.194 1.909 3.250 1.81
SESM27.N34.8B 2700 68.3 2.8945+0.005 12.7+0.5

12656.87 3.921 13.574 1.613 3.250 1.02

Fig. 7.16 shows the Fourier transform magnitudes of the data for low and for high pressure and

Fig. 7.17 shows the same data in k-space.
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Fig. 7.16: Fourier transform magnitude of k2 x(k) for SmSa at 300K. The central atom is Se. The

solid line corresponds to 1 bar and the dashed line to 68.3 kbar.
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Fig. 7.17: k2 x(k) for SmSe at 300K for the same data as in the previous figure. The central atom is
Se. The solid line corresponds to 1 bar and the dashed line to 68.3 kbar.

Fig. 7.18 shows the fit result. At 300K we see the reduction of c? with increasing pressure
(decreasing R4) as expected. There may be a small shoulder near 2.95 A but there is no peak as in

the corresponding graphs for 77K.
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Fig. 7.18: of versus Ry at 300K according to Table 7.5. N was set to 8.4.

The following five tables all contain the same datasets and refer to 77K. They contain results of

different ways of fitting the data.

Table 7.6 lists the results when asymmetry is included for the amplitude.
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Table 7.6: Se K edge EXAFS (LOG.SEN13.F2):
(June '86; Si (220); T = 77K)

One-shell fits in R-space to FT(k2 x(k)) using theoretical amplitude and phase

fixed: a;=-15708; AE;=0.0; C31=0.0;, C4q=0.16-1074A% N,=42
variable: Ry; o

Dataset Nt p (kbar) R1(A) o? (1073 A2)

Eedge(eV) KminA™") kmax(A™!)  Renin(A) Rmax(A) X2min (1073 A76)
SESMN2.N32.F 2.25 437 3.046£0.004  4.4:03

12654.04 3718 17728 2.033 3.350 2.91
SESMN3.N33.F 3 42.9 3.043£0005 4.4+04

12654.04 3.851  18.126 2.056 3.373 4.91
SESMNS5.N38.F 5 52.0 3.001£0.005  5.0%0.5

12654.04 3.851  15.736 1.918 3.396 3.14
SESMN6.N42.F 6 54.7 2971£0005 44104

12654.04 3917  16.732 1.894 3.327 4.39
SESMNB8.N44.F 8 60.1 294410004  3.9+03

12653.41 3.905  17.938 1.784 3.291 4.24
SESMN9.N47.F 9 73.2 291810004 36103

12654.04 3.917 20,052 2.125 3.258 12.64
SESMNT.N53.F 10.5 74.15 2.915+0003  35+0.3

12654.04 3.984  18.458 1.964 3.234 5.66
SESMNW.N54.F 12 75.1 2.912+0003  3.4+02

12653.41 3971 17.210 1.877 3.221 2.96
SESMNH.N55.F 13.5 76.05 2914£0003  3.6+02

12654.66 3930  17.916 1.889 3.201 2.82
SESMNF.N56.F 15 77.0 2.9111£0003  3.4:02

12654.04 3.984  18.591 1.918 3.211 3.34

Including asymmetry for the amplitude and not for the phase may be artificial. Besides, at low
temperature asymmetry is not expected to be signiticant. Therefore it is useful to fit the same data

without asymmetry, accepting increased values of szin- These results are shown in the next table.
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Table 7.7: Se K edge EXAFS (LOG.SEN14.F2):
(June '86; Si (220); T = 77K)

One-shell fits in R-space to FT(k2 x(k)) using theoretical amplitude and phase
fixed: a;=-15708;, AE;=00eV; C31=00, C4y=00; N;y=34

variable: Ry; o

Dataset Ny p(oa)  RyA)  o® (10342
EEdge(eV) kmin('b‘_1) kmax(A—1) Rmin(A) F‘max(A) X2min (10_3 A_G)
SESMN2.N32.F 2.25 43.7 3.046+0.005 2.9+0.5

12654.04 3.718  17.728 2.033 3.350 3.42
SESMN3.N33.F 3 42.9 3.043+0005 28+0.4

12654.04 3851  18.126 2.056 3.373 4.46
SESMN5.N38.F 5 52.0 3.001+0.005 35+0.5

12654.04 3.851 15736 1.918 3.396 3.87
SESMNGB.N42.F 6 547 2971 +0006 28+0.6

12654.04 3.917  16.732 1.894 3.327 4.80
SESMNB.N44.F 8 60.1 2944 +0.005 24+0.5

12653.41 3.905  17.938 1.784 3.291 4.83
SESMN9.N47.F 9 73.2 2.918+0.005 2.0+0.4

12654.04 3917  20.052 2.125 3.258 10.93
SESMNT.NS3.F 10.5 74.15 2.915+0.002 2.0+0.2

12654.04 3.984  18.458 1.964 3.234 4.36
SESMNW.N54.F 12 75.1 2.912+0.004 1.8+0.4

12653.41 3971  17.210 1.877 3.221 3.61
SESMNH.NS5.F 13.5 76.05 2.914+0.004 2.0+0.4

12654.66 3.930 17.916 1.889 3.201 3.26
SESMNF.N56.F 15 77.0 2911 +0.003 1.9+0.2

12654.04 3.984  18.591 1.918 3.211 3.09

The following two figures are shown to illustrate the fit quality.
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Fig. 7.19: Dataset SESMN5.N38.F (solid line) and R-space fit according to Table 7.7 (dashed line).

The imaginary part and the magnitude of the Fourier transform of k2 x(k) are shown.
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Fig. 7.20: Same data and fit as in the previous figure but the magnitude of the Fourier transform of

k2 y(k) is shown.

The results of the two previous tables are summarized in the following graph. When no
asymmetry is included Ny is smaller and 012 can become smaller, too. With no asymmetry the values

for o? are simply shifted downwards. The relative changes in 012 remain the same.
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Fig. 7.21: o? versus Ry at 77K. The '+ symbols refer to the results of Table 7.6, where asymmetry
for the amplitude was included and Ny was equal to 4.2. The 'x’ symbols refer to Table 7.7, where no

asymmetry was considered and N, was equal to 3.4.

The next table contains the results of fitting the first coordination shell with two closely-spaced
Sm shells instead of one. The R-space intervals as well as the k-space intervals employed for the
Fourier transform are the same as for the one-shell fits. The parameters describing asymmetry are
never varied because otherwise the correlation among the parameters would increase too much.
The AE and o2 values for the two Sm shells are always forced to be equal. We thus start out with
initial fits with six variable parameters: AE¢, Ry, o?, Ny, Rp, and N,. Reducing the number of variables
one by one we arrive at the three-parameter two-shell fits presented in Table 7.8, where Ry, 0‘12, and
R, are varied. The sum of the coordination numbers tumed outto be Ny + N, =5.5 and N, was

equal to 0.8.



Table 7.8:

Se K edge EXAFS (LOG.SEN19.F2):
(June '86; Si (220); T = 77K)
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Two-shell tits in R-space to FT(k2 x(k)) using theoretical amplitudes and phases:

1stshell: Sm; 2ndshell: Sm
fixed: a, = -15708, AEy=-19eV; Cg31=0.0; C41=00; N, =038;
ay=-15708; AEp=-19eV; Cgp=00; Cgp=00; oo=0% Ny=47
variable: Ry, o?; Ro
Dataset Nt p (kbar) Ry (A) Ro(A) Of (1073 A2)
EEdge(eV) kmin(A_1) kmax(Aﬂ) Rmin(A) Rmax(A) szin (1073 A7§)
SESMN2.N32.F 2.25 437 2.863 + 0.066 3.035 1 0.007 37104
12654.04 3.718 17.728 2.033 3.350 2.43
SESMN3.N33.F 3 429 2.861+0.16 3.032 £ 0.008 3.6+0.6
12654.04 3.851 18.126 2.056 3.373 3.61
SESMNS5.N38.F 5 52.0 2.8510.16 2.995 + 0.008 40+09
12654.04 3.851 15.736 1.918 3.396 2.41
SESMNG6.N42.F 6 54.7 2.792 £ 0.056 2.960 + 0.006 35104
12654.04 3.917 16.732 1.894 3.327 2.68
SESMNB8.N44 F 8 60.1 2.767 £ 0.048 2.934 £ 0.005 31104
12653.41 3.905 17.938 1.784 3.291 3.18
SESMN9.N47 F 9 73.2 2.734 £ 0.029 2.908 + 0.003 2.85103
12654.04 3.917 20.052 2.125 3.258 3.85
SESMNT.NS3.F 10.5 74.15 27310.12 2.904 £+ 0.005 2.8+0.5
12654.04 3.984 18.458 1.964 3.234 8.12
SESMNW.N54.F 12 75.1 2.735 £ 0.041 2.901 £ 0.005 26103
12653.41 3.971 17.210 1.877 3.221 3.28
SESMNH.N55.F 13.5 76.05 2.737 £ 0.049 2.904 £+ 0.005 28103
12654.66 3.930 17.916 1.889 3.201 4.45
SESMNF.N56.F 15 77.0 2.752 + 0.039 2.902 £ 0.004 24102
12654.04 3.984 18.591 1.918 3.211 3.25

Because N, is much larger than Ny, the second shell dominates. It exhibits the peak in the
mean-square relative displacement as a function of Ry, known from the one-shell fits. This is shown

in the next figure:
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Fig. 7.22: og versus R, at 77K according to Table 7.8. N{ + N> was setto 5.5 and N, was equal to
0.8.

The first shell constitutes only a small modification of the results of the one-shell fits by creating
a tail in the radial distribution function on the low-R side. This is expected from the large error bars for
R4, which signify that Ry is not well defined. Nevertheless, the radial distribution functions obtained
from these two-shell fits are of interest because even if the fit parameters are not well defined the
resulting distribution functions may still be correct because they are the combined result of these fit

parameters. Because of this integral property we draw the following figure:
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Fig. 7.23: Sm radial distribution functions g(R) with respect to Se at 77K obtained from the two-shell
fits of Table 7.8. The numbers on the curves indicate the following pressures:

#1: 43.7 kbar; #2: 52.0kbar; #3: 54.7 kbar; #4:. 60.1kbar, #5: 74.15kbar;, #6: 75.1 kbar

Comparing the values of x2min from Tables 7.6, 7.7, and 7.8 we notice that in Table 7.7, which
contains the results of simple one-shell fits, they are usually highest. On the other hand, the fits of
Table 7.6 (asymmetry for the amplitude included) or Table 7.8 (two shells) produce significantly lower
values for x2nin . This indicates that either the theoretical amplitude and/or phase are not quite

correct or that the radial distribution function is not Gaussian.

It is worthwhile investigating the behaviour of the nearest Se coordination shell around a Se
atom. Table 7.9 shows the results of one-shell fits in R-space to the Se shell. The R-space fit interval

begins with the endpoint of the R-space fit interval of the previous one-shell fits. The k-space interval
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used for the Fourier transform is the same as before. N4 tumns out to be 7.1, which is 59% of the

correct value of 12.

Table 7.9: Se K edge EXAFS (LOG.SEN24.F2):
(June '86; Si (220); T = 77K)

Se-8e; Kpnin, Kmax Same as before;
Rmin(this table) = R4, (previous one-shell fits, Se-Sm)

One-shell fits in R-space to FT(k2 (k)) using theoretical amplitude and phase

fixed: a; =-1.5708; AE;=-08¢eV, C31=00; C4y=00; Ny=7.1
variable: Ry, 012

Dataset Ny p(kba)  Rq(A) o4 (1073 A2)

EEdge(eV) kmin('b‘—1) kmax(A—1) F‘min(A) Rmax(A) szin (103 A75)
SESMN2.N32.F 2.25 43.7 4.305 £ 0.010 6.0t1.0

12654.04 3.718 17.728 3.350 4782 1.99
SESMN3.N33.F 3 42.9 4.299 + 0.008 6.0+ 0.8

12654.04 3.851 18.126 3.373 4.782 1.31
SESMNS5.N38.F 5 52.0 4.240 + 0.006 8.1106

12654.04 3.851 15.736 3.396 4.667 0.39
SESMNG6.N42.F 6 547 4.1875 £ 0.006 7.2+07

12654.04 3.917 16.732 3.327 4,528 0.69
SESMNS8.N44.F 8 60.1 4.151 £ 0.005 58105 ’
12653.41 3.905 17.938 3.291 4.450 0.78
SESMN9.N47.F 9 73.2 4.116 £ 0.006 54106

12654.04 3.917 20.052 3.258 4.459 1.34
SESMNT.N53.F 10.5 74.15 4114 £ 0.010 52110

12654.04 3.984 18.458 3.234 4.482 3.93
SESMNW.N54.F 12 75.1 4.102 £ 0.005 5.0+05

12653.41 3.971 17.210 3.221 4519 1.16
SESMNH.NSS.F 13.5 76.05 4.112 £ 0.008 54+08

12654.66 3.930 17.916 3.201 4.468 2.35
SESMNF.N56.F 15 77.0 4.103 + 0.007 5.7+0.7

12654.04 3.984 18.591 3.21 4.390 1.77




226

Plotting the results yields the familiar behaviour, this time, however, for the Se coordination

shell: o? = 029_89 .
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Fig. 7.24: o> versus R, at 77K according to Table 7.9.

So far the analysis of the Se K edge EXAFS employed theoretical amplitude and phase. Itis
also of interest to apply empirical amplitude and phase. Table 7.10 shows these results. Amplitude

and phase are extracted from the first dataset, which is indicated in boldtface.
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Table 7.10: Se K edge EXAFS (LOG.SEN8.F2):
{(June '86; Si (220); T = 77K)

One-shell fits in R-space to FT(k2 x(k)) using empirical amplitude and phase

fixed: a;=0.0; AE;=00; C31=00; C4y=0.0; Ny=10

variable: Ry; Ao’f

Dataset Ny p(kba)  Ry(A) ac® (1073 A2)

EEdge(eV) Kmin(A™)  Kmax(A™')  Rpin(A) Rmax(A) *2min (1073 A7)
SESMN2.N32.F 2.25 43.7 3.042 + 0.000 0.03 + 0.04
12654.04 3.718 17.728 2.033 3.350 0.044
SESMN3.N33.F 3 42.9 3.039 £ 0.003 0.00+0.2

12654.04 3.851 17.728 2.056 3.373 1.69
SESMN5.N38.F 5 52.0 2.997 £ 0.004 0.55+0.3

12654.04 3.851 15.736 1.918 3.396 1.36
SESMNG6.N42.F 6 54.7 2.967 £ 0.002 -0.09+0.2

12654.04 3.917 16.732 1.894 3.327 1.18
SESMN7.N43.F 7 57.4 2.944 + 0.004 -098+05

12653.41 3.971 13.238 1.599 3.291 1.72
SESMN8.N44.F 8 60.1 2.940 £ 0.003 -0.50+03

12653.41 3.905 17.673 1.784 3.291 2.92
SESMN9.N47.F 9 73.2 2.915 £ 0.002 -0.87+0.2

12654.04 3.917 17.728 2.125 3.258 2.53
SESMNT .N53.F 10.5 74.15 2.911 £ 0.004 -0.93+0.3

12654.04 3.984 17.728 1.964 3.234 5.75
SESMNW.N54. 12 751 2.908 + 0.002 -1.04+0.2

12653.41 3.97 17.210 1.877 3.221 1.68
SESMNH.NsS.F 13.5 76.05 2.910 £ 0.002 -0.83+0.2

12654.66 3.930 17.717 1.889 3.201 212
SESMNF.N56.F 15 77.0 2.906 £ 0.003 -1.016+£0.2

12654.04 3.984 17.728 1.918 3.211 4.13

Because o? is now defined with respect to a reference we obtain the mean-square relative

displacement as a difference: Acx‘;2 . The curve shown below has the familiar shape.
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Fig. 7.25: Aof versus Ry at 77K according to Table 7.10. Empirical amplitude and phase are

employed.

Looking at values for x2min We see that they are generally lower than those of Tables 7.6 or 7.8.
This could mean that the empirical amplitude and phase are better than the theoretical ones. On the
other hand, if the radial distribution function is indeed not Gaussian one would not be able to detect

this because this effect is absorbed in the empirical amplitude and phase.

The previous graph completes the analysis for the run ot June '86. The next two tables, which
contain results of two-parameter one-shell tits to the nearest-neighbour Sm shell, refer to another
run which also was taken at 77K. Its results are not as good as the ones from June ‘86 but its
pressure calibration was more reliable. Table 7.11 contains the results found with theoretical

amplitude and phase and Table 7.12 refers to empirical amplitude and phase. Each of these two
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Table 7.11: Se K edge EXAFS (LOG.SE10.G):
(Dec. '86; Si (111); T = 77K)

One-shell fits in R-space to FT(k2 x(k)) using theoretical amplitude and phase

fixed: a;=-15708; AEy=-173eV; C31=0.0; C41=00; Ny=52
variable: Ry, o?

Dataset Nt p (kbar) R1(A) 0‘1? (1078 A2

EEdge(eV) kmin(A™)  kmaxtA™)  Rein(A) Rmax(A) min (1073 A76)
SESM04.D010.G 4 24.5 3.054 + 0.011 52+13

12657.22 3.773 12.101 1.702 3.426 4.43
SESM05.D042.G 5 32.6 3.012 £ 0.007 59107

12654.43 3.708 15.040 2.109 3.397 3.54
SESM05.D43.G 5 32.6 3.025 1 0.007 556+07

12655.83 3.769 15.493 2.425 3.240 6.66
SESM5Q.D59.G 5.25 33.55 3.005 1 0.014 51113

12655.83 3.758 16.684 2.117 3.369 27.18
SESMS5H.D70.G 55 38.5 297910.014 59+17

12655.13 3.758 11.500 1.857 3.283 6.18
SESMSH.D71.G 5.5 38.5 2978+ 0.014 6.7+17

12655.13 3.901 11.436 1.532 3.259 3.69
SESM5T.D72.G 5.75 43.45 2.929 £ 0.010 6.8+1.2

12655.13 3.689 11.370 1.337 3.149 1.81
SESM5T.D73.G 5.75 43.45 2.927 £ 0.007 54108

12654.43 3.884 11.536 1.710 3.183 1.75
SESM06.D092.G 6 48.4 2.931 1 0.006 34105

12654.43 3.889 17.347 2.101 3.184 16.53
SESM07.D00.G 7 52.9 2.940 1 0.010 40109

12655.83 3.834 17.371 2.067 3.380 27.22
SESM7Q.N16.G 7.25 54.1 2.935 + 0.007 35106

12656.52 3.975 17.817 1.988 3.436 16.99
SESM7Q.N17.G 7.25 54.1 2.932 1 0.005 40104

12656.52 3.904 16.185 1.837 3.133 4.98
SESM8Q.D24.G 8.25 58.6 2.928 £ 0.009 39zx07

12656.52 3.850 19.907 2.119 3.317 28.88
SES11Q.D41.G 11.25 72.2 2.900 £ 0.005 34104

12655.83 3.900 17.689 1.770 3.065 9.80
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tables has multiple entries for some pressure values. Figures 7.28 to 7.31, which show results of

Tables 7.11 and 7.12, contain, however, only averaged data at these pressures.

Fig. 7.26 shows the Fourier transform magnitudes of the data for low and for high pressure and

Fig. 7.27 shows the same data in k-space.

x(K) | (A

| FT(k®

Fig. 7.26: Fourier transform magnitude of k2 x(k) for SmSe at 77K. The central atom is Se. The
solid line corresponds to 32.6 kbar and the dashed line to 72.2 kbar.
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Fig. 7.27: k2 (k) for SmSe at 77K for the same data as in the previous figure. The central atom is
Se. The solid line corresponds to 32.6 kbar and the dashed line to 72.2 kbar.

Fig. 7.28 shows the fit result:
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Fig. 7.28: 012 versus Ry at 77K according to Table 7.11. Ny was set to 5.2.

In the next table we see empirical amplitude and phase employed. They were extracted from

the second dataset, which is indicated in boldface.
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Table 7.12: Se K edge EXAFS (LOG.SE13.G):
(Dec. '86; Si (111); T = 77K)

One-shell fits in R-space to FT(k2 x(k)) using empirical amplitude and phase

fixed: a;=00; AE{=00; C31=0.0; C41=0.0; Ny=10

variable: Ry; Ao?

Dataset Ny p(kbar)  Ry(A) Ac? (1073 A2)

EEdQQ(eV) kmin(A—1) kmaX(A_1) l:(min(A) Rmax(A) X2min (10_3 A—G)
SESM04.D10.G 4 245 3.056 £ 0.013 -0.63+1.6

12657.22 3.773 12.101 1.702 3.426 5.58
SESM05.D42.G 5 32.6 3.013 + 0.001 0.00 + 0.1
12654.43 3.708 15.040 2.109 3.397 0.0830
SESM05.D43.G 5 32.6 3.027+0.006 —0.25+0.6

12655.83 3.769 14.992 2.425 3.240 4.37
SESM5Q.D59.G 5.25 33.55 3.004 + 0.006 -0.48+0.6

12655.83 3.758 14.979 2.117 3.369 3.64
SESM5H.D70.G 55 38.5 2.979 £+ 0.010 004112

12655.13 3.758 11.500 1.857 3.283 2.75
SESM5H.D71.G 5.5 38.5 2.978 £ 0.018 1.06 2.2

12655.13 3.901 11.436 1.532 3.259 5.68
SESM5T.D72.G 5.75 43.45 2.960 £ 0.012 094115

12655.13 3.760 11.370 1.337 3.149 2.51
SESM5T.D73.G 5.75 43.45 2957 +0.008 -0.54+10

12654.43 3.884 11.535 1.710 3.183 2.38
SESM06.D92.G 6 48.4 2.930 + 0.008 -222+0.7

12654.43 3.889 15.009 2.101 3.184 17.87
SESM07.D00.G 7 52.9 293910005 -1.45105

12655.83 3.834 15.020 2.067 3.380 493
SESM7Q.N16.G 7.25 54.1 2.935 + 0.007 -2.01+0.7

12656.52 3.975 14.978 1.988 3.436 10.13
SESM7Q.N17.G 7.25 541 2.932 £ 0.007 -1.76 £ 0.6

12656.52 3.904 14.978 1.837 3.133 10.62
SESM8Q.D24.G 8.25 58.6 2927 £0.005 -1.31105

12656.52 3.850 15.033 2.119 3.317 4.89
SES11Q.D41.G 11.25 722 290110008 -2.21108

12655.83 3.900 14.988 1.770 3.065 16.06
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Fig. 7.29: Aof versus Ry at 77K according to Table 7.12. Empirical amplitude and phase are

employed.

Since for the run of Dec. ‘86 the pressure calibration was reliable we can compare the results for
R4 versus pressure from Table 7.12 with Jayaraman's data [110, 207]. However, no data point at
room temperature and ambient pressure is available for absolute calibration of the nearest-neighbour
distances Ry. We therefore have to use some of the information that will be presented in the next
section. Table 7.14 of Section 7.3 contains values for R4 as a function of pressure, measured at 77K
with respect to the Sm atoms, rather than the Se atoms. The R, values of Table 7.14 can be
calibrated absolutely by shifting them by —0.0085 A, as discussed in connection with Fig. 7.38. By
shifting the R4 values of Table 7,12 according to Ry = Ry -0.023 A they will agree, within

experimental error, with the calibrated R4 values of Table 7.14 shown in Fig. 7.38.
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Fig. 7.30: Nearest-neighbour distance in SmSe with respect to the Se atoms as a function of
pressure. The solid line refers to the x-ray diffraction data of Jayaraman et al. [110, 207] at room
temperature. The crosses are the data of Table 7.12, obtained at 77K. They were shifted according

to: Ry > Ry -0.023A.

The normal behaviour of of as a function of pressure (or R4) is to decrease with increasing
pressure (or decreasing R4) because the atoms have less room to move away from their equilibrium
positions. For SmSe we find instead that o? exhibits a maximum. At large R4-values the mean-square
relative displacement decreases again. This behaviour could result from the fact that the first
coordination shell of Sm atoms consists of two closely-spaced Sm shells in the region of the valence
transition rather than one shell as assumed in our tit model. This point will be investigated in Chapter

9. Plotting for example the Aof-values of Table 7.12 versus pressure shows that the peak occurs in
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the region of the valence transition. It coincides with the peak in the isothermal compressibility

derived from the data of Jayaraman et al. {110, 207] and shown in Fig. 4.2.

The tinal graph of this section shows Ao12 as a function of pressure, rather than R4, at 77K.
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Fig. 7.31: Aof versus pressure (instead of Ry) at 77K according to Table 7.12. Empirical amplitude
and phase are employed.

7.3 Analysis of the Sm L .Edge EXAFS of Sm3e
The EXAFS of the Sm L;;; edge provides only limited R-space resolution because the Sm Ly,

edge intervenes at 7313 eV, thus limiting the k-scale to a maximum value ot 12.5 A1 However,

there was some Fe contamination present in the anvil tips so the data were even further limited
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because the Fe K edge occurs at 7111 eV. Thus the maximum of the k-scale was at ~10 A=1. No
attempt was made to subtract the Fe K absorption edge. Because of this limited resoiution in
R-space it was not possible to filter the tirst coordination shell satistactorily. Therefore two-shell fits
were performed. Theoretical Sm and Se curved-wave backscattering amplitudes and phases were
employed. A phase offset of —/2 was again introduced and the ratio N2/ Ny of the number of next-
nearest neighbour atoms to nearest neighbour atoms was fixed at the value 2 according to the NaCl
crystal structure. Furthermore, we assumed the AE values of both shells to be the same. Starting out
by varying the six parameters AE, Ry, o?, N4, and R, and og we obtained the value at which to fix
N4. AE4 can be left variable in these tits because the precision in the determination of Ry or R, is not
as stringent as in a pressure calibration. The fits were performed in R-space to the Fourier transform
of k2 (k) with five variable parameters: AEq, Ry, 0‘19‘, RQ/R1, and og . The finite monochromator
resolution was included in the fits as well as the mean free path and core-hole lifetime effects. The
latter effects are included via # which for the Sm L, edge amounts to:

) T +1¢ 2.76eV + 3.6eV )
SmSe: f=—py - 2y = 0834A2

(absorbing element underlined) .

The following two tables contain the results from fits to the Sm L, edge EXAFS at 300K and at
77K. The k-space interval used for the Fourier transform is indicated by ki, and k45 and the fit
interval by Ry and Rpyay- Again, multiple entries exist for some pressures but the graphs contain

only averaged values at these pressures.

For Table 7.13 N4 turned out to be 4.4. We obtained for the ratio Ro/Ry of the radii of the
second coordination shell to the first the following value: RQ/R1 =1.4120+£0.0047 .Thisisin

excellent agreement with the expected result of V2.

Table 7.13: Sm L), edge EXAFS (LOG.SM4.B):
(Dec. '83; Si (111); T = 300K)



238

Two-shell fits in R-space to FT(k2 y(k)) using theoretical amplitudes and phases:

ist shell: Se; 2ndshell: Sm

fixed: ay = -1.5708; C31=0.0; C41=00; Ny=44
ap=-15708; AE,=AEq; C3p=0.0; Cy4=00; Np/Ny=20

variable: AEq; Ry; o2 RfR;  ob

Dataset Poi(ps)  p(kbar) AEq(eV)  Ry(A) Ro(A) 0‘1? (1073 A2 og (1073 A2)
EEdge(eV) kminA™) Kmax(A™) Rmin(A)  Rpax(A) 2min (103 A79)
SMSE00.N00.B 0 0 0.8 3.112 4.396 10.8 13.7
6711.40 4.281 10.370 1.552 5.354 0.12
SMSE00.NO1.B 0 0 0.6 3.097 4.353 11.7 12.9
6701.44 4.252 9.993 1.765 5.028 0.24
SMSE00.N05.B 0 0 0.3 3.104 4.367 12.0 14.5 -
6701.16 4.267 10.006 1.770 5.022 0.19 ‘
SMSEO00.N06.B 0 0 3.0 3.121 4423 13.7 14.6
6702.86 4.288 10.084 1.753 5.013 0.40
SMSE07.N11.8% 700 6.4 2.4 3.094 4.376 12.3 13.2
6711.40 4355 9.597 1.408 5.174 0.20
SMSE07.N13.B 700 6.4 2.3 3.083 4388 13.7 16.4
6711.40 4.329 10.040 1.767 5.032 0.31
SMSE13.N14.B 1300 22.7 1.3 3.066 4.332 1.0 13.4
6711.97 4.339 10.099 1.764 5.024 0.34
SMSE18.N20.B 1800 36.8 21 2.974 4.208 8.7 16.1
6711.97 4.529 10.099 1.608 4.900 0.27
SMSE19.N17.B 1900 39.6 0.9 2.961 4.185 8.8 15.3
6711.97 4.561 10.132 1.607 4.899 0.23
SMSE20.N24.B 2000 441 1.2 2.935 4.145 7.4 15.7
6712.54 4.611 10.125 1,563 4.802 0.36
SMSE20.N34.B 2050 45.9 1.4 2.931 4.129 6.8 14.6
6711.40 4.645 10.006 1.495 4.793 0.39
SMSE21.N37.B 2125 48.7 -6.5 2.919 4.105 6.4 13.7
6718.82 4.448 10.043 1.469 4.739 0.265
SMSE23.N39.8 2300 55.1 -5.2 2.902 4.094 56 14.8
6718.25 4522 10.017 1.400 4.532 0.24
SMSE27.N42.B 2700 68.3 -5.1 2.880 4.056 5.45 14.7
6718.25 4.559 10.051 1.401 4.609 0.25

#:  The energy calibration was adjusted for this and the following datasets.
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Fig. 7.32 shows the Founrier transform magnitudes of the data for low and for high pressure and

Fig. 7.33 shows the same data in k-space.

(k) | (A7)

| FT(k®

Fig. 7.32: Fourier transform magnitude of k2 x(k) for SmSe at 300K. The central atom is Sm. The
solid line corresponds to 1 bar and the dashed line to 68.3 kbar.
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Fig. 7.33: k2 x(k) for SmSe at 300K for the same data as in the previous figure. The central atom is
Sm. The solid line corresponds to 1 bar and the dashed line to 68.3 kbar.
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Fig. 7.34: of versus Ry at 300K according to Table 7.13. N4 was set to 4.4. Like in Fig. 7.18, which

also refers to room temperature, no peak in the mean-square relative displacement is present.

‘ Table 7.14 shows the results at 77K. N, was set to 4.55. For the ratio Rz/ R4 we obtained
| Ro/Ry = 1.4118 £ 0.0040 , again close to V2.

Fig. 7.35 shows the Fourier transform magnitudes of the data for low and for high pressure and

Fig. 7.36 shows the same data in k-space.
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Table 7.14:  Sm Ly edge EXAFS (LOG.SM7.G):
(Dec. '86; Si (111); T = 77K)

Two-shell fits in R-space to FT(kO x(k)) using theoretical amplitudes and phases:
1st shell: Se; 2ndshell: Sm

fixed:  ay=~-15708; Ca1=00; C4y=0.0; Ny= 455
a,=-15708; AE,=AE;; C32=0.0; Cgp=0.0; Ny/N;=2.0
variable: AEq: Ry o5 Rp/Ry; o5
Dataset Nt p (kbar) AEq(eV) R1(A) RZ(A) 0:12 (1073 A3 03 (1073 A2)
EEdge(eV) KminA™") Kmax(A™) Rmin(A)  Rpax(A) %2min (1078 A72)
SMSE00.N81.G 0 0 0.6 3.094 4350 4.4 6.4 -
6710.26 4.205 9.872  1.410 4934 0.575
SMSE00.N82.G 0 0 3.8 3111 4419 355 5.7
6710.74 4.285 9.794 1729 4.887 0.92
SMSEO00.N83.G 0 0 1.5 3.100 4.368 4.1 3.7
6710.74 4.285 9.794 1520 4987 0.49
SMSEO0.N85.G 0 0 -0.2 3.081 4,356 4.2 41
6710.74 4.346 9.794 1.704 4837 0.88
SMSE03.N99.G 3 24.3 1.5 3.056 4313 295 6.4
6710.74 4.346 9916 1.704 4,887 0.50
SMSE04.N14.G 4 24.5 1.7 3.041 4.307 4.0 6.7
6710.26 4.388 9.933 1.712 4.883 0.48
SMSEO05.N33.G 5 32.6 2.8 3.013 4276 5.2 8.5
6709.79 4.429 10.011 1.694 4,905 0.43
SMSEO05.N36.G 5 32.6 1.1 3.007 4234 5.3 6.9
6709.79 4.490 10.071 1.694 4,905 0.34
SMSE05.N45.G 5 32.6 3.7 3.014 4272 45 9.1
6709.79 4.429 10.011 1.745 4.753 0.78
SMSEO06.N85.G 6 484 3.8 2.9305 4.133 3.45 12.5
6710.26 4.631 9.994 1.384 4732 0.1
SMSEO07.N06.G 7 52.9 1.8 2.916 4106 3.6 8.9
6710.74 4652 10.222 1.529 4736 0.23
SMSEAT.N24.G 475 31.4 0.1 3.018 4262 4.4 6.6
6710.26 4,409 10.043 1.628 4.760 0.48
SMSESH.N64.G 5.5 38.5 1.3 2.956 4172 3.9 8.5

6710.26 4510 10.238 1.535 4732 0.43
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Table 7.14, continued:

SMSESH.N66.G 5.5 385 1.1 2.955 4167 3.5 8.75
6710.26 4.534 10.261 1.543 4.783 0.21
SMSES5Q.N51.G 5.25 33.55 1.5 2.987 4.220 3.8 8.2
6709.79 4.429 10.132 1.542 4779 0.31
SMSEST.N76.G 5.75 43.45 1.4 2.933 4138 3.9 9.3
6710.26 4.57 10.299 1.586 4.707 0.40
SMSE7Q.N12.G 7.25 541 49 2.926 4121 3.5 10.9
6710.26 4.692 10.238 1.485 4.682 0.19
SMSEB8Q.N28.G 8.25 58.6 3.2 2.916 4107 3.4 10.95
6710.74 4.652 10.161 1.479 4.686 0.27
SMS11Q.N36.G 11.25 72.2 3.5 2.883 4.062 3.0 10.1
6711.21 4.734 10.207 1.372 4.665 0.17

| FT(x(k)) | (1072A7)

Fig. 7.35: Fourier transform magnitude of kO x(k) for SmSe at 77K. The central atom is Sm. The

solid line corresponds to 1 bar and the dashed line to 72.2 kbar.
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Fig. 7.36: kO x(k) for SmSe at 77K for the same data as in the previous figure. The central atom is
Sm. The solid line corresponds to 1 bar and the dashed line to 72.2 kbar.
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Fig. 7.37: o? versus Ry at 77K according to Table 7.14. Ny was set to 4.55. We see that at 77K o?

exhibits a peak.

Figs. 7.38 and 7.39 are plots of Ry and Ry as functions of pressure. They are compared with
the room-temperature x-ray diffraction result of Jayaraman et al. (110, 207]. Since distances obtained
from EXAFS are not absolutely correct, we must shift the data at room temperature and at liquid-
nitrogen temperature by the same amount such that the room temperature data at ambient pressure
agree with the crystallographic value. For SmSe the nearest-neighbour distance at room

temperature and ambient pressure is Ry = 3.100 A and the next-nearest neighbour distance has

the value R, =3.100 A V2 =4.384A.
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Fig. 7.38: Nearest-neighbour distance in SmSe with respect to the Sm atoms as a function of
pressure. The solid line is obtained from the result of Jayaraman et al. [110, 207] at room
temperature. The 'x' symbols refer to the data of Table 7.13 (300K) and the '+' symbols refer to the
data of Table 7.14 (77K). Both data were shifted by the same amount: Ry = Ry - 0.0085 A . The

error for Ry was estimated to be +0.01 A.
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Fig. 7.39: Next-nearest-neighbour distance in SmSe with respect to the Sm atoms as a function of
pressure. The solid line is obtained from the result of Jayaraman et al. [110, 207] at room
temperature. The 'x' symbols refer to the data of Table 7.13 (300K) and the '+ symbols refer to the
data of Table 7.14 (77K). Both data were shifted by the same amount: R, — R, — 0.0007 A The

error for R, was estimated to be +0.01 A,

Wae see that after shifting Ry and R, such that their room-temperature values at 1 bar become
equal to the correct values, the data follow Jayaraman's curve rather well. As in Fig. 7.30, the low-
temperature data points lie above the x-ray ditfraction result at high pressures, possibly indicating a
lower compressibility. It may be relevant that our calculations in Section 5.8 for Cu (Fig. 5.4) and RbCl

(Fig. 5.5) indicated a lower compressibility at 77K.
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Finally we plot R, as a function of R with these values shifted as explained in the previous two
figure captions. As is evident from the next figure they follow rather closely a straight line, which

indicates that the fitting is internally consistent.
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Fig. 7.40: Second-nearest neighbour distance R, (Sm-Sm) versus the nearest-neighbour distance
Ry (Sm-Se), with Ry and R adjusted as explained in connection with Figs. 7.38 and 7.39. The

'x' symbols refer to the data of Table 7.13 (300K) and the "+' symbols refer to the data of Table 7.14
(77K). Error bars are +0.01 A. The solid line is the result according to the NaCl crystal structure:
Ry=Ry V2 .
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7.4 Yalence Determination

The valence values are determined by fitting as explained in Section 6.12. The fit parameters
are the position E2* of the White Line of the divalent state, the difference AE = E3* - E2* of the
positions of tri- and divalent states, the HWHMs of the Lorentzian and Gaussian that are convolved,
thatis Tand & V21n2 , the amplitude Ymax of the White Line, and of course the valence v. With the
exception of the two width parameters all other parameters are hardly correlated with each other.
These six parameters are listed in the following tables as well as the derived quantities “HWHMy5;q"
and “Area”, which are, respectively, the resulting HWHM of the fitted lineshape and the peak area
according to Eq. (6.82). The pressure p is found by interpolation from the applied oil pressure P, or
from the number of tums N1, depending on which pressure cell was used. All these quantities are

presented here for completeness.

The results from edge scans are listed separately from those obtained from EXAFS scans. This
is so because the density of data points in the edge region is higher for an edge scan than for an
EXAFS scan. Hence it is possible that the peak amplitude Y, ., comes out smaller when an

absorption edge from an EXAFS dataset is analyzed (compare Tables 7.16 and 7.17).

The results are also listed separately for different temperatures and edge types (Sm L, or

Sm L|“).

At times the tables contain several entries for the same setting of the pressure cell. In such
cases the graphs, that correspond to these tables, only contain the average value. Plotting several
values for one setting of the pressure cell would emphasize certain data points too much. For the
same reason only averaged values from one pressure point are included when a fit is performed to

the data. These are fits to AE vs. valence and to the valence vs. pressure .

Table 7.15 contains the results of Sm L;; edge EXAFS scans at room temperature. The
pressures were determined according to Table 7.1. By inspection of Table 7.15 one will notice that
the energy calibration was adjusted after the data for zero pressure had been measured. However,

this adjustment affects only E2*, the peak position of the divalent absorption line.
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Table 7.15: Valence determination from the Sm L;, edge of EXAFS datasets
(VAL.SMSEXF B):
(Dec. '83; Si (111); T = 300K)

Dataset Poil(psi) p (kbar) v AE (eV) E2* (eV)
HWHMy it (€V) T (eV) o V2In2 (eV) Ymax Area (eV)

SMSE00.000.8 0 0 2.1 8.33 6705.68
364 3.14 1.30 1.67 12.695

SMSE00.A01.B 0 0 2.12 8.11 6704.24

3.58 2.525 1.895 1.685 11.97

SMSE00.004.B 0 0 2.12 8.22 6704.23

3.62 2.43 2.02 1.65 11.60

SMSE00.005.8 0 0 2.12 8.12 6704.14

3.60 2.38 2.04 1.68 11.74

SMSE00.A06.8 0 0 2.12 8.15 6705.67

3.60 2.39 2.03 1.69 11.90

SMSE07.010.B¥ 700 6.4 2.12 8.19 6712.79

3.64 2.44 2.035 1.64 11.57

SMSE07.011.B 700 6.4 2.12 8.12 6714.20

3.58 2.455 1.95 1.66 11.62

SMSE07.013B 700 6.4 2.105 7.97 6714.36

3.63 272 1.77 1.61 11.55

SMSE13.A14B 1300 227 2.14 7.87 6714.45

3.33 2.25 1.85 1.86 12.62

SMSE19.A17.B 1900 39.6 2.43 7.32 6714.74
324 2.01 1.96 2.155 14.645

SMSE18.A20.B 1800 36.8 2.41 7.36 671472

3.25 2.02 1.955 2.12 14.43

SMSE20.023.B 2000 441 2.45 7.30 6714.87

3.27 1.96 2.02 2.11 14.24

SMSE20.A24 B 2000 44.1 2.52 7.21 6714.96

3.305 1.96 2.06 2.16 14.79

SMSE20.A34.B 2050 459 2.55 7.14 6714.03

3.26 1.91 2.06 222 15.12

SMSE21.0378 2125 48.7 2.58 7.10 6714.07

3.28 1.86 2.12 222 15.09

SMSE21.0388B 2125 48.7 2.58 7.07 671411

3.28 1.855 2.12 2.22 15.06
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Table 7.15, continued:

SMSE23.A39.B 2300 55.1 2.65 6.98 6713.96
3.31 1.905 2.1 2.25 15.51
SMSE27 A42B 2700 68.3 2.73 6.82 6714.14
3.38 1.915 2.18 2.25 15.80

#:  The energy calibration was adjusted for this and the following datasets.

The next two tables contain results from the Sm L )| edge of another run, also at 300K. The
pressures were determined according to Table 7.2. Table 7.16 contains the results from edge scans

and Table 7.17 lists the results from EXAFS scans.
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Table 7.16: Valence determination from the Sm L, edge (VAL.SMSEED.C):
(April '84; Si (111); T = 300K)

Dataset Poil(psi) p (kbar) v AE (eV) E2* (eV)
HWHMVoigt (ev) T (eV) o V2:in2 (ev) Ymax Area (eV)
SME05.007.C 500 2.8 2.19 8.08 6712.80
3.32 1.24 2.59 2.39 15.52
SMED10.008.C 1000 5.6 2.19 8.19 6712.78
3.365 1.23 2.65 2.42 15.98
SMSE12.020.C 1200 8.7 2.19 8.02 6713.31
3.23 1.23 2.5 2.47 15.84
SMSE13.021.C 1300 10.2 2.19 8.01 6713.32
3.27 1.38 2.45 2.44 16.01
SMSE14.022.C 1400 11.8 2.20 7.98 6713.30
3.27 1.29 2.50 2.50 16.31
SMSE15.023.C 1500 13.3 2.20 7.90 6713.32
3.29 1.38 2.465 2.45 16.19
SMSE16.024.C 1600 149 2.21 8.05 6713.34
3.33 1.27 2.585 2.48 16.41
SMSE17.025.C 1700 16.4 2.22 7.94 6713.35
3.3 1.375 2.49 2.48 16.46
SMSE18.040.C 1800 22.6 2.22 7.87 6713.36
3.27 1.255 2.53 2.51 16.35
SMSE19.046.C 1900 28.8 2.24 7.79 6713.33
3.24 1.29 2.485 2.55 16.65
SMSE19.047.C 1950 31.9 2.29 7.72 6713.36
327 1.26 2.53 2.60 17.075
SMSE20.053.C 2050 38.1 2.40 7.60 6713.43
3.31 1.34 2,515 2.64 17.70
SMSE21.063.C 2150 39.85 2.49 7.39 6713.49
335 1.33 2.57 2.66 18.09
SMSE22.069.C 2250 416 2.55 7.24 6713.72

3.35 1.45 2.48 2.68 18.51




253

Table 7.17: Valence determination from the Sm L;;, edge of EXAFS datasets
(VAL.SMSEXF.C):
(April '84; Si (111); T = 300K)

Dataset Poil(psi) p (kbar) v AE (eV) E2* (eV)
HWHMyogt (8V) T(eV) o V2in2 (eV)  Ymax Area (eV)

SM000.000.C 0 0 2.11 8.07 6712.62
3.23 2.49 1.51 1.90 13.11

SMSE00.A01.C 0 0 2.1 8.08 6712.49
3.22 2.44 1.55 1.85 12.48

SMSE10.A09.C 1000 5.6 2.11 8.02 6712.53
3.27 2.47 1.57 1.85 12.67

SMSE17.A26.C 1700 16.4 2.15 7.87 6713.08
3.27 2.53 1.52 1.94 13.62

SMSE18.AAT.C 1800 22.6 2.16 7.81 6713.20
3.22 2.51 1.47 1.98 13.83

SMSE19.A48.C 1950 25.7 2.26 7.61 6713.22
3.24 2.48 1.53 2.05 14.48

SMSE20.A54.C 2050 38.1 2.37 7.45 6713.25
3.25 2.43 1.60 210 14.92

SMSE21.A64.C 2150 39.85 2.47 7.31 6713.41
3.27 2.28 1.75 2.15 15.18

SMSE22.A70.C 2250 41.6 2.53 7.22 6713.48
3.32 2.24 1.84 2.16 156.35

SMSE22.073.C 2250 41.6 2.52 7.24 6713.45
3.29 2.18 1.87 2.16 15.145

The following two tables correspond to a run at 77K. The pressures were determined according
to Table 7.4. Table 7.18 contains results from edge scans of the Sm L || edge and Table 7.19 lists the

results from Sm L, edge EXAFS scans.
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Table 7.18: Valence determination from the Sm L, edge (VAL.SMSEE2.G):
(Dec. '86; Si (111); T = 77K)
Dataset Nt p (kbar) v AE (eV) E2* (eV)
HWHMygigr (6V) T (eV)  oV21In2 (eV)  Ypgy Area (eV)
SMSE04.218.G 4 24.5 2.16 7.50 7307.77
2.99 1.24 2.255 2.20 12.80
SMSE4Q.219.G 4.25 26.8 2.17 7.56 7307.76
2.98 1.23 2.25 2.28 13.33
SMSE4H.220.G 4.5 29.1 2.19 7.50 7307.70
3.01 1.256 2.27 2.28 13.48
SMSE4T.221.G 4.75 314 2.21 7.47 7307.71
3.00 1.30 2.22 2.25 13.33
SMSE4T.A22.G 4.75 31.4 2.21 7.52 7307.86
3.03 1.20 2.32 2.28 13.48
SMSE05.231.G 5 32.6 2.28 7.45 7307.96
3.03 0.94 2.49 2.49 14.54
SMSE05.A47.G 5 32.6 2.30 7.43 7307.53
3.07 1.00 2.49 2.43 14.43
SMSES5Q.A49.G 5.25 33.55 2.34 7.38 7307.42
3.056 1.1 2.41 2.41 14.39
SMSESH.A61.G 5.5 38.5 2.44 7.27 7307.65
3.1 1.23 2.38 2.42 14.94
SMSEST.A74.G 5.75 43.45 2.54 7.14 7307.52
3.14 1.31 2.37 2.37 14.765
SMSE06.283.G 6 48.4 2.58 7.11 7307.93
3.16 1.09 2.52 2.49 15.38
SMSE06.284.G 6 48.4 2.58 7.08 7307.66
3.19 1.10 2.55 2.49 16.55
SMSE6Q.296.G 6.25 49.5 2.57 7.13 7307.19
3.15 1.26 2.40 2.42 15.10
SMSEEH.297.G 6.5 50.7 2.57 7.08 7307.14
311 1.06 2.50 2.40 14.47
SMSE6T.298.G 6.75 51.8 2.58 7.07 7307.49
3.13 1.19 2.43 2.46 15.18
SMSE07.299.G 7 52.9 2.59 7.06 7307.42
3.15 1.13 2.49 2.45 16.11
SMSE7Q.A10.G 7.25 54.1 2.63 6.99 7308.07
3.17 1.1 2.52 2.44 15.07
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255

SMSE08.321.G 8 575 2.64 6.99 7307.90
3.17 1.16 2.49 2.48 15.48
SMSE8Q.322.G 8.25 58.6 2.64 6.99 7308.01
3.19 1.25 2.46 2.43 15.31
SMSEBQ.A26.G 8.25 58.6 2.65 6.96 7308.07
3.17 1.15 2.50 2.50 15.61
SMSEST.A30.G 8.75 60.9 2.67 6.92 7307.95
3.19 1.23 2.47 2.41 15.115
SMSE9Q.332.G 9.25 63.1 2.68 6.86 7307.90
3.20 1.15 2.525 2.44 15.27
SMSE9H.333.G 9.5 64.3 2.68 6.84 7307.89
3.18 1.23 2.46 2.41 15.08
SMS10Q.334.G 10.25 67.7 2.70 6.79 7307.89
3.21 1.23 2.48 2.49 15.89
SMS11Q.335.G 11.25 72.2 274 6.73 7308.18
3.215 1.31 2.44 2.49 16.02
Table 7.19: Valence determination trom the Sm L,;; edge of EXAFS datasets
(VAL.SMSEX3.G):
(Dec. '86; Si (111); T = 77K)
Dataset Nt p (kbar) v AE (eV) E2* (eV)
HWHMyigt (eV) T (eV) oV2in2 (eV) Yma Area (eV)
éMSEOO.182.G 0 0 2.085 8.22 6713.28
3.44 2.58 1.66 1.71 11.98
SMSE00.A83.G 0 0 2.09 8.21 6713.17
3.42 2.27 1.94 1.77 12.04
SMSE00.185.G 0 0 2.09 8.21 6713.34
3.44 2.175 2.04 1.76 11.86
SMSE03.A99.G 3 243 213 8.04 6713.38
3.49 1.86 2.34 1.73 11.28
SMSE04.A14.G 4 245 2.14 8.00 671313
3.47 2.06 2.165 1.80 12.18
SMSE4T.A24.G 475 31.4 2.18 7.72 6712.81
3.30 2.12 1.93 1.89 12.62
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Table 7.19, continued:

SMSE4T .228.G 475 314 2.17 7.38 6712.74
2.87 2.23 1.32 2.10 13.33
SMSE05.232.G 5 326 2.23 7.75 6712.70
3.42 2.16 2.03 1.82 12.34
SMSEO05.A33.G 5 32.6 2.24 7.77 6712.63
3.465 2.00 2.21 1.81 12.186
SMSE05.A36.G 5 32.6 2.26 7.82 6712.55
3.44 1.67 2.43 1.91 12.55
SMSE05.A45.G 5 32.6 2.24 7.78 6712.64
3.582 2.28 2.04 1.74 12.07
SMSE5Q.A51.G 5.25 3355 2.29 7.79 671276
3.52 2.03 2.25 1.79 12.186
SMSESH.A64.G 5.5 38.5 2.39 7.61 6712.83
3.45 2.03 2.17 1.89 12.92
SMSESH.266.G 55 38.5 2.38 7.62 6712.61
3.46 217 2.07 1.80 12.305
SMSEST.A76.G 5.75 43.45 2.47 7.46 6712.87
3.49 2.00 2.23 1.93 13.38
SMSE06.A85.G 6 48.4 2.52 7.42 671280
3.53 1.85 2.39 1.94 13.40
SMSEO07.A06.G 7 52.9 2.55 7.37 6713.33
3.51 1.84 2.37 2.02 14.00
SMSE7Q.A12.G 7.25 54.1 2.57 7.30 6713.20
3.47 1.79 2.375 2.01 13.73
SMSESQ.A28.G 8.25 58.6 2.60 7.28 6713.26
3.465 1.94 2.255 213 15.01
SMS11Q.A36.G 11.25 72.2 2.70 6.99 6713.52
3.57 1.97 2.34 2.07 14.92
SMS11Q.338.G 11.25 722 2.70 6.98 6713.49
3.555 1.87 2.40 210 14.975

By plotting all possible combinations of the parameters listed in these tables the most
pronounced relations were found. These are the valence as a function of pressure (Figs. 7.41 to

7.43) and the difference AE of peak positions as a tunction of valence (Figs. 7.45 to 7.47).

In Figs. 7.41 to 7.43 we compare the pressure dependence of the valence as obtained from

the L), or Ly, edge, at room temperature or at 77K, or as obtained from edge scans or EXAFS scans.
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For EXAFS scans only a few data points are measured near the absorption edge and as a
consequence some of the fit results may be affected. In Figs. 7.41 to 7.43 typical error bars are
indicated. The uncenrtainty in the pressure was obtained from the error bars listed with the results of
the pressure calibrations, Tables 7.1, 7.2, and 7.4. The fit error in the valence determination was

assumed to be +0.04, based on previous experience with valence determination [17).
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Fig. 7.41: Valence versus pressure as obtained from EXAFS scans of the Sm L,;; edge. The

'+' symbols refer to Table 7.15 (300K) and the 'x' symbols refer to Table 7.19 (77K). The valence at
room temperature is slightly higher. There are not many room-temperature data points in the
immediate transition region so it is difficult to judge whether the transition at room temperature is

equally sharp as at 77K.

Fig. 7.42 shows the transition at room temperature with data from one edge and two EXAFS scans.
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Fig. 7.42: Valence versus pressure at 300K as obtained from scans of the Sm L;;, edge. The
'+' symbols refer to Table 7.15, the 'x’ symbols refer to Table 7.17, and the ' symbols refer to
Table 7.16.

The next tigure shows results at liquid-nitrogen temperature. The valence obtained from Sm L,

edge scans is slightly larger than the valence obtained from Sm L;; EXAFS scans.
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Fig. 7.43: Valence versus pressure at 77K as obtained from a Sm L,; edge scan and a Sm EXAFS
scan of the L;;; edge. The '+ symbols refer to Table 7.18 (L)), and the 'x' symbois reter to Table 7.19
(Ly)- The valence obtained from L;, edge scans is slightly larger than the valence obtained from

Sm L, EXAFS scans.

In the vicinity of a phase transition the properties of a physical system are described by power

laws. Therefore the pressure dependence of the valence is fitted to the following equation:

<
|

- a
-B+A(p pc) for p2pe
Pc

This equation contains four parameters: B is a constant background, which is practically equal to the
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valence for p <p.,where p. is the critical pressure. A is an amplitude factor and a is a positive

exponent. -

With these four parameters being variables in a least-squares fit the following results are

obtained:
Table 7.15: B = 2.125; A = 0.57; pe = 31.0 kbar; a =044 .
Table 7.18: B = 2.18; A = 0.50; pc = 31.9 kbar; a = 040 .
Table 7.19: B = 2.13; A = 0.50; pc = 31.6 kbar, a =044 .
The errors associated with the fit parameters are estimated to be:

AB = +0.04; AA = $0.05; Ap. = 1 kbar; Aa = +0.05 . ~

The pressure dependence of the valence as obtained from Tables 7.16 and 7.17 is not fitted

because there are not enough data points above p...

The following figure shows as an example the fit to the data of Table 7.19.
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Fig. 7.44: Valence versus pressure at 77K. The '+' symbols refer to Table 7.19 (L;;,). The solid line

is a fit according to Eq. (7.4).

Apart from the pressure dependence of the valence the dependence of AE on the valence is
of interest. This relation is established independently of the pressure calibration. AE versus the

valence is approximately linear as can be seen from the following figures.

One may argue that this dependence of AE vs. the valence is an artifact of the fitting
procedure. However, the fitting parameters are not very much correlated and the fitting correlation
coefficient between AE and the valence is particularly small. Thus the almost linear relation between
AE and the valence as obtained from different datasets is meaningful. It is probably due to

ditferences in the screening of the Sm2* and Sm3* ions. This will be discussed in Section 10.4.
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Fig. 7.47: AE versus valence at 77K. The '+ symbols retfer to Table 7.18 (L), and the 'x’ symbols
reter to Table 7.19 (L))

Fitting straight lines to AE as a function of the valence v, excluding points with AE exceeding

approximately 8 eV, yields:

Table 7.15: AE = 1166V - v-1.75eV or v = 663 - 0572eV! - AE .
Table 7.16: AE = 1256V — v 207 eV or v = 6.05 — 0.483eV 1. AE .
Table 7.17: AE = 114V — v-165eV or v = 690 — 0.607eV™!-AE .
Table 7.18: AE = 1046V — v 129eV or v =803 -0774ev™! AE .
Table 7.19: AE = 11.8eV - v 1.74eV or v =675 - 0573eV"! . AE .
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Chapter 8: Results for SmS
This chapter is structured like the previous ane. After the pressure calibration the EXAFS of the
Sm Ly, edge in SmS is analyzed, and finally the valence is determined. As before, the EXAFS is

analyzed in R-space.

The S K edge EXAFS could not be measured. The double-crystal monochromator used in our
experiments can function at energies as low as the S K edge. However, to avoid absorption by air the
exit beam must travel in helium. But even if this were done, the large absorption of the anvil tips in

the pressure cell at these low energies would have made the measurement impossible.

8.1 Pressure Determination -

For the SmS datasets the pressure is determined from the EXAFS of a Cu-calibrant. As in the
previous chapter the nearest-neighbour distance is determined from one-shell fits in R-space to the
Fourier transform of k3 x(k) . Theoretical amplitude and phase in curved-wave theory are employed
in the analysis. /2 is subtracted from Teo and Lee's central phase, as before. In the fits we consider
the finite resolution by assuming that the width of the entrance slit of the monochromator is 1t mm.

Mean free path and core-hole lifetime effects are included with 7§ given by:

Fe+T¢c 4396V +1.6eV

= = 0.786 A2
2y 2y

Cu: i =

The following table contains the pressure calibration. First the pressure is increased, then

completely released, and finally increased again.
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Table 8.1: Pressure calibration from Cu K edge EXAFS (LOG.CU1.A):
-(Jan. '83; Si (111); T = 300K)

One-shell fits in R-space to FT(k3 x(k)) using thegretical amplitude and phase
fixed: a1 5‘1.5708; AE1 = 1.531 evV; 031 EO.O; C41 =0.0
variable: Ry: o5 N

Fitinterval (A)  Transform interval (A™")

Dataset Rq (A) V/Vo Poil(psi} p (kbar) Ry Rmax Krmin Kmax
EEdge(eV) Crmin (A8)

CUSMO00.N0OO.A  2.563 1 o o 1.484 2.908 1.838 13.889
8979.57 £0.004 £6.1 0.25

CUSM11.N02.A 2558 0994 1100 8.6 1242  2.908 1838  13.737
8979 .57 £0.004 7.1 0.20 ' _
CUSM30.N04.A 2546 0980 3000  30.1 1236 2.893 1862  13.111
8979.92 £0.004 +7.7 0.27

CUSM36.N06.A 2539 0972 3600 435 1222 2.882 1.838  13.639
8980.27 +£0.005 +9.6 0.40

CUSM36.N07.A 2541 0974 3600 395 1363 2878 1.838  14.041
897957 +£0.004 +7.7 0.18

CUSM36.N08.A 25415 0975 3600  38.0 1363  2.938 1838  12.269
8979.57 +0.004 7.7 0.27

CUSM42.N10.A 2538 0971 4200 452 1356 2.863 1.862  14.536
8979.92 £0.004 +7.7 0.31

CUSM02.N13.A 2551  0.986 250  19.7 1475 2919  1.838 12.288
8980.27 +£0.004 6.9 0.18

CUSM14N15A¥ 2559 0995 1400  6.55 1242  2.908 1838 14.002
8979.57 +0.004 +6.9 0.16

#:  The externally applied pressure was completely released before pressure was applied for this

dataset.



267

50 T T T T T T T T T

40 b
= 30 b
Q )
0
= 20
Q_ -
10 |
0_ -

0 1000 2000 3000 4000

Foil (Psi)

Fig. 8.1: Pressure p of a copper calibrant versus the oil pressure Pq; applied by a hydraulic
pump for the data of the previous table. The arrows indicate the sequence of pressure points. First
the pressure is increased, then completely released, and tinally increased again. A straight-line fit
(dashed line) was performed for rising pressure only. The siope is 1.14 £ 0.07 kbar/(100 psi) and
the intercept is —1.7 £ 2.1 kbar . Emor bars are omitted for clarity. The data points for rising pressure

follow the straight line within their error bars.

8.2 Analysis of the Sm Ly Edge EXAFS of Sm3

As in the previous chapter the maximum k-value for the EXAFS of the Sm L, edge is ~10 A~
and two-shell fits are performed. Theoretical Sm and S curved-wave backscattering amplitude and

phase are employed. The phase offset is —/2 and the ratio N2/N1 is fixed at 2 according to the NacCi
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structure. We assume that the values for AE are the same for both coordination shells. As discussed
earlier in Section.7.3, by first varying the six parameters AE;, Ry, o?, Ny, and, R, and og one obtains
a value of 4.2 at which Ny is fixed. Fits to the Fourier transform of k2 x(k) are performed with five
vanable parameters: AEq, Ry, o?, R./Ry , and og . The finite monochromator resolution is included
in the fits together with the mean free path and core-hole lifetime effects. These latter effects are
included through 1 which for the Sm Ly, edge in SmS amounts to:

g +T 2.92eV + 3.6eV
. _ e [o] - - -2
sSmS: =" 7 2y 0.855 A2 |

(absorbing element underlined) .

The following table contains the results from R-space fits to the Sm L;;; edge EXAFS at 300K,
The k-space interval used to take the Fourier transform is indicated by k,;; and k2, and the fit -
interval by R i, and Rmay. We obtain for the ratio Ry/Ry of the radii of the second coordination shell
to the first the value R2/R1 =1.418 £ 0.013 deviating some amount from the correct value of V2.
At 8.6 kbar Table 8.2 contains two entries. Figs. 8.4 to 8.7, which show the results, contain only

averaged values at this pressure.



269

Table 8.2: Sm Ly edge EXAFS (LOG.SM2.A):
-(Jan. '83; Si (111); T = 300K)

Two-shell fits in R-space to FT(k2 x(k)) using theoretical amplitudes and phases:

1st shell: S; 2nd shell: Sm

fixed: a, = -1.5708; C31=0.0; C41=00; Ny=42;
a,=-15708, AE,=AEq; C3p=0.0; C4p=0.0; Ny/Ny=2.0

variable: AEq; Ry; of; Ro/Ry; og

Dataset PoilPsi)  p(kbar)  AEq(eV)  Ry(A) Ro(A) o (103 A2) o3 (1073 A?)
EEdge(eV) kminA™) kmax(A™) Rrin(A)  Rax(A) Xrmin (1073 A7)
SMS000.N13.A 0 0 3.1 2.975 4265 14.6 1.7~
6709.79 4158 10217 1524  4.989 0.47 )
SMS011.N17.A 1100 8.6 0.6 2.852 4.024 9.1 17.0
6717.39 4339  10.119 1299 4764 0.225
SMS011.N19.A 1100 8.6 3.6 2.872 4046 7.9 14.2
6717.39 4295  10.119 1.409  4.875 0.29

SMS030.N23.A 3000 30.1 5.2 2.826 3.995 4.1 11.7
6716.63 4443  10.129 1388  4.816 0.31

SMS036.N30.A 3600 40.3 75 2.841 4009 4.8 10.7
6716.63 4.443  10.129 1558  4.844 0.42

SMS042.N40.A 4200 45.2 3.4 2.808 3956 4.8 11.8
6717.01 4459  10.124 1.408 4787 0.45

SMS002.N46.A 250 19.7 5.6 2.843 4020 438 10.85
6717.01 4.404  10.124 1.464  4.872 0.31

SMS11.N51.A 1100 5.1 6.0 2.960 4270 16.6 14.3
6709.79 4.216 9.700 1.601  5.100 0.28

Fig. 8.2 shows the Fourier transtorm magnitudes of the data for low and for high pressure and

Fig. 8.3 shows the same data in k-space.
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Fig. 8.2:  Fourier transform magnitude of k2 (k) for SmS at 300K. The central atom is Sm. The

solid line corresponds to 1 bar and the dashed line to 45.2 kbar.
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Fig. 8.3: k2y(k) for SmS at 300K for the same data as in the previous figure. The central atom is
Sm. The solid line corresponds to 1 bar and the dashed line to 45.2 kbar.

The next figure shows 0‘3 versus Ry . As for SmSe at 300K, no peak is visible.
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Fig. 8.4: o? versus Ry at 300K according to Table 8.2. N, was equal to 4.2.

The pressure dependence of the nearest-neighbour distance Ry and next-nearest neighbour
distance R, is shown in the next two figures. The data is compared to the x-ray diffraction result of
Jayaraman et al. [110, 207]. The values for Ry and R, from Table 8.2 are shifted such that their
values at atmospheric pressure become equal to the crystallographic values. For SmS the nearest-
neighbour distance at room temperature and ambient pressure is Ry = 2.985 A and the next-

nearest neighbour distance is equalto Ry =2.985 AV2 =4.221 A



273

2.96 r 1
2.92 .
o<
~—_ 288 ¢ .
am
284 .
2.80 :
276 1 1 1 1 1 1 1 | 1 1 -

p (kbar)

Fig. 8.5: Nearest-neighbour distance R4 in SmS with respect to the Sm atoms as a function of
pressure and at room temperature. The crosses are the data of Table 8.2 and the solid line is
obtained from the result of Jayaraman et al. [110, 207]. The data were shifted according to:

Ry = Ry + 0.01 A The ervor for Ry is estimated to be +0.02 A.

We notice that in Fig. 8.5 the values of R, above the mixed-valence transition deviate
systematically from the x-ray diffraction result. The error bars cannot account for this discrepancy.
However, the two data points below the phase transition agree with the x-ray diffraction result. Since
the same phase shifts are employed at all pressures, the deviation is surprising. Furthermore, the
values of R, (as shown in Fig. 8.6) do follow very well the x-ray diffraction data. We do not yet know

why the values of Ry above the phase transition exceed the x-ray diffraction result.
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Fig. 8.6: Next-nearest neighbour distance R, in SmS with respect to the Sm atoms as a function of
pressure and at room temperature. The crosses are the data of Table 8.2 and the solid line is
obtained from the result of Jayaraman et al. {110, 207]. The data were shifted according to:

Ry — R, - 0.044 A . The error for R, is estimated to be +0.02 A.

In Fig. 8.7 we compare R, and Ry. This plot is independent of the pressure calibration and it
should agree with the result for the NaCl structure: Ro = R V2 . However, because Ry is too large
above the transition pressure (see Fig. 8.5) the agreement with the crystallographic result is not

good.
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Fig. 8.7: Second-nearest neighbour distance R, (Sm-Sm) versus the nearest-neighbour distance
R4 (Sm-S), with Ry and R adjusted as explained in connection with Figs. 8.5 and 8.6. The crosses
refer to the data of Table 8.2 and the solid line is R, = R4 V2 according to the NaCl structure. Ermror
bars are +0.02 A.

8.3 Yalence Determination

The tables in this section are exactly analogous to the ones in Section 7.4 and therefore need
not be described. The pressure is determined by interpolation from the applied oil pressure Pg;.

The first table contains the results from edge scans and the second lists those obtained from EXAFS
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datasets.
Table 8.3: Valence determination from the Sm L ;| edge (VAL.SMSX A):
(Jan. '83; Si(111); T = 300K)
Dataset Poillpsi) p (kbar) v AE (eV) E2* (eV)
HWHMVoigt (eV) T (eV) oV2In2 (eV) Ymax Area (eV)
SMSX05.101.A 500 3.9 2.29 7.81 6712.64
3.54 1.27 2.80 217 14.53
SMSX07.102.A 700 5.5 2.29 7.90 6712.53
3.545 1.44 2.69 2.02 13.56
SMSX09.103.A 900 7.0 2.32 7.81 6712.62
3.61 1.42 2.77 2.01 13.63
SMSX11.104.A 1100 8.6 2.60 713 6713.50
410 1.07 3.49 1.99 14.40
SMSX38.105.A 3800 40.4 2.85 6.66 6713.28
4.35 1.29 3.605 2.15 17.20
SMSX40.106.A 4000 42.8 2.86 6.46 6713.52
4.355 1.31 3.60 213 17.10
SMSX42.107.A 4200 452 2.86 6.35 6713.59
4.31 1.62 3.365 2.15 17.58
SMSX30.108.A 3000 37.45 2.85 6.53 6713.68
4.48 1.41 3.67 2.07 17.00
SMSX20.109.A 2000 31.0 2.85 6.55 6713.64
4.3 1.43 3.48 213 17.135
SMSX10.110.A 1000 24.5 2.84 6.48 6713.70
4.195 1.61 3.25 217 17.46
SMSX05.111.A 500 21.3 2.83 6.52 6713.69
4.11 1.57 3.19 222 17.535
SMSX02.112.A 250 19.7 2.82 6.65 6713.54
4.07 1.395 3.26 2.24 17.33
SMSX00.113.A 0 0 2.27 7.72 6712.50
3.34 1.32 2.56 2.22 14.37
SMSX03.114.A 300 1.4 2.29 7.60 6712.57
3.3 1.375 2.49 2.23 14.43
SMSX07.115.A 700 33 2.30 7.61 6712.58
' 333 1.33 2.54 2.23 14.415
SMSX09.115.A 900 42 2.31 7.60 6712.61

3.34 1.35 2.54 2.24 14.59
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Table 8.3, continued:

SMSX11.116.A ~ 1100 5.1 2.35 7.57 6712.61
3.335 1.34 2.54 2.27 14.80
SMSX12.117.A 1200 5.6 2.36 7.615 6712.60
3.375 1.31 2.61 2.28 14,97
SMSX13.118.A 1300 6.1 2.38 7.59 6712.66
3.37 1.34 2.58 2.29 15.09
SMSX14.119.A 1400 6.55 2.44 7.55 6712.75
3.42 1.285 2.67 2.31 16.335

In the next table there are multiple entries at some pressure points. For these pressures the

graphs and fits will only take into account a single averaged value of valence or AE.
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Table 8.4: Valence determination from the Sm L, edge of EXAFS datasets
-(VAL.SMSXAF A):
(Jan.'83; Si (111); T = 300K)

Dataset Poilpsi) p (kbar) v AE (eV) E2* (eV)
HWHMVoigt (eV) T (eV) oV21in2 (eV) Ymax Area (eV)
SMS000.A01.A 0 0 2.26 7.49 6712.77
3.16 1.85 1.995 2.16 14.13
SMS000.A03.A 0 0 2.26 7.48 6713.04
3.19 1.83 2.04 2.13 13.94
SMS000.A11.A 0 0 2.25 7.60 6712.50
3.48 2.27 2.00 1.85 12.96
SMS000.A13.A 0 0 2.26 7.63 6712.49
3.44 1.90 2.26 1.895 12.765 )
SMS011.A17.A 1100 8.6 2.59 7.11 6713.37
3.965 1.535 3.06 1.81 12.97
SMSO011.A19.A 1100 8.6 2.60 7.12 6713.22
3.92 1.60 2.975 1.85 13.28
SMS030.A23.A 3000 30.1 2.80 6.91 6713.25
4.11 1.39 3.31 1.925 14.305
SMS036.A30.A 3600 40.3 2.82 6.95 6713.02
4.125 157 3.21 1.93 14.625
SMS042.A40.A 4200 45.2 2.84 6.87 6713.09
412 1.55 3.21 1.95 14.81
SMS042.144.A 4200 45.2 2.84 6.98 6712.99
4.155 1.55 3.245 1.94 14.78
SMS002.A46.A 250 19.7 2.80 6.82 6713.30
3.78 1.57 2.85 2.095 15.17
SMS11.A51.A 1100 5.1 2.34 7.51 6712.66
3.32 172 2.26 2.08 13.73
SMS014.A56.A 1400 6.55 2.47 7.405 6712.71
3.39 1.56 2.445 2.14 14.23

In Figs. 8.8 and 8.9 the valence is plotted as a function of pressure. Fig. 8.8 contains the results
from edge scans and Fig. 8.9 lists the results obtained from EXAFS datasets. The error bars for the
pressure were obtained from Table 8.1 and the fit error for the determination of the valence was

assumed to be +0.04.
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Fig. 8.8: Valence versus pressure at room temperature according to Table 8.3. The '+' symbols
correspond to rising pressure. The 'V' symbols indicate the valence when the pressure is decreasing

and the 'x' symbols refer to increasing pressure.
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Fig. 8.9: Valence versus pressure at room temperature according to Table 8.4. The '+ symbols
correspond to rising pressure. The 'V' symbols indicate the valence when the pressure is decreasing

and the 'x' symbols refer to increasing pressure.

The dependence of AE on the valence is shown in the next figure.



281

j__T+ T 1 T T T
78 r 4 -
L X—H-}-)jj-_*_ + ]
——~ = X -
< 7.4
(€h) - i
— t
LL 70 r Xx
< B X _
6.6 | T
L =
1
6.2 1 1 1 L | I}

22 23 24 25 26 27 28
Valence

Fig. 8.10: AE versus valence. The '+ symbols refer to Table 8.3 and the 'x' symbols refer to Table

8.4.
Fitting straight lines to AE as a function of the valence v gives:

128eV - v-2.19eV or v=58 -0456ev! AE .
1046V — v 1.23eV or v = 8.405 - 0.810eV™! . AE .

Table 8.3: AE

Table 8.4: AE

In Section 10.4 the linear dependence of AE on the valence is discussed in terms of the different

screening of the Sm2* and Sm3* ions.
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Chapter 9: Discussion

In this chapter we discuss the peak in the mean-square relative displacement as a function of
pressure with respect to the possible existence of lattice relaxation in SmSe. We also calculate the
Grineisen parameter which is a measure of anharmonicity. Then we discuss the scaling method,
introduced in Sections 3.6 and 6.14, with respect to pressure determination. A final section lists

topics of future work.

9.1 Twe-Shell Analysis for the Se K Edge EXAFS

We may wonder whether the maximumin o2 as a function of pressure (or coordination-shell .
radius} may be due to the presence of two closely spaced Sm coordination shells around a Se atom.
This may be expected because valence tluctuations occur with phonon frequencies and the
interaction between valence tluctuations and phonons may result in relaxation ot the crystal lattice
around a Sm atom. This means that the first coordination shell around a Sm atom will have a smaller
radius when the central Sm atom is trivalent and small. However, the first shell will have a larger radius
when the central Sm atom is divalent and 0.17 A bigger. Since the x-ray absorption process is much
taster than phonon or valence fluctuation frequencies, the information contained in an x-ray
absorption spectrum corresponds to a “snapshot” picture of the atomic positions. For mixed-valent
SmSe one wouid therefore expect two slightly different Sm-Se distances corresponding to the
sampled distribution of di- and trivalent Sm atoms. Since the distance difference is expected to be
small it is advisable to analyze the Se K edge EXAFS, which can yield higher resolution than the
Sm L edge EXAFS. The Sm L, EXAFS has limited resolution because of the intervening Sm L,
edge and the Sm L, edge EXAFS is contaminated by the underlying remnants of the EXAFS of the
Sm L, edge. In the same way the Sm L, edge is contaminated by the remnants of the EXAFS of the

Sm L edge.

We now present the results of two-shell fits to the Se K edge EXAFS data. A larger k-space
domain was used for the fits than was employed in Chapter 7, although the data at high k are not as
good as at low k. The results are for weighted two-shell tits in k-space. The k-space weighting

tunction was described in Section 6.10 and consists of the square of the envelope function, raised
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to the power of —1. In this way regions of small amplitude, for example a beat node, have the same
weight as regions with large amplitude. Trying two-shell fits in B-space does not help because the
high-k end, where a possible beat node would occur, is not weighted sufficiently in a Fourier

transform with an apodization window.

The results of these weighted two-shell fits in k-space are presented in Table 9.1 below.
Although this table is similar to Table 7.8 it is not possible to compare readily the values of 2
because this time the fits are performed in k-space. The R-space interval used for Fourier filtering is
indicated by R,in and Rmay- Mean free path and core-hole litetime effects are taken into account by

setting % equalto 0.690 A2, as in Section 7.2.



Table 9.1:

Se K edge EXAFS (LOG.SEN25.F2):
-(June '86; Si (220); T = 77K)
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Weighted two-shell fits in k-space to k2 x(k) using theoretical amplitudes and phases:

1stshell: Sm; 2ndshell: Sm
fixed: a;=-15708;, AE;{=-19eV; C31=0.0; C4y=00;

ay=-15708; AEp=-19eV: C3p=00; Cgp=00; oo=c2 Ny +Np=46
variable: Ry; o5 Nji Ry
Dataset Ny p(kbar)  Ry(A) RoA) o (10342 N,
EEdge(eV) Kmin(A™1)  kmax(A™1)  Rmin(A)  Rpax(A) 2min (1072 A~4)
SESMN2.N32.F 225 437 2.948 3.046 27 0.7 N
12654.04 1992 20052  2.041 3.379 4.00 -
SESMN3.N33.F 3 42.9 2.947 3.0465 25 1.0
12654.04 1992  19.587  1.996 3.379 6.37
SESMNS.N38.F 5 52.0 2,951 3.037 16 2.2
12654.04 1992  19.985  2.041 3.274 8.10
SESMNG.N42.F 6 54.7 2.755 2.956 3.3 0.5
12664.04 2058 19786  1.891 3.379 513
SESMN8.N44.F 8 60.1 2.756 2.933 27 0.5
12653.41 2.052 20.056 1.861 3.274 4.28
SESMNI.N47.F 9 73.2 2.906 3.004 17 3.7
12654.04 2058 19985 1816 3.044 3.63
SESMNT.N53.F 10.5 74.15 27615 2.909 2.7 0.25
12654.04 2058 19521  1.966 3.199 2.79
SESMNW.NS4.F 12 75.1 2,789 2.908 1.95 0.5
12653.41 2.118 19.990 1.891 3.168 3.92
SESMNH.N55.F 13.5 76.05 2,912 2.912 2.8 0.0
12654.66 2065  19.848  1.891 3.044 3.61
SESMNF.NS6.F 15 77.0 2.909 3.115 27 4.4
12654.04 2.125 19.786 1.936 3.199 5.08

Wae see that no clear picture emerges regarding N4. Nevertheless, the Sm radial distribution

function with respect to a Se central atom is useful. In Fig. 9.1 a graph of g(R} is shown for some
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datasets of the previous table. The figure corresponds to Fig. 7.23 of Chapter 7, except that now the

k-space intervals-are larger and the two-shell fits are in k-space.

Fig. 9.1: Sm radial distribution functions g(R) with respect to Se at 77K obtained from the two-shell
fits of Table 9.1. The numbers on the curves indicate the following pressures:

#1: 43.7 kbar; #2: 52.0kbar; #3: 54.7kbar, #4: 60.1 kbar: #5: 74.15kbar; #6: 75.1 kbar.

Wae notice that for the dataset at 52.0 kbar (SESMNS5.N38.F) the radial distribution function
clearly shows two peaks. This was the only dataset that exhibited a radial distribution function with
two peaks and this dataset also was the one which produced the largest value of 62 in the one-shell
fits of Chapter 7. Fig. 9.2 shows the filtered k-space data at 52.0 kbar. At k = 18 A~! abeat can
clearly be seen. At the expense of increasing the correlation between variables, the overall fit could

be improved by changing more than the four variables R,, cf, N;, and R, used in the present fits.
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Fig. 9.2: k2 y(k) for SmSe for the dataset SESMN5.N38.F at 52.0 kbar and 77K. The central atom
is Se. The solid line is the data and the dashed line is the fit.

We notice that the envelope goes almost to zero at k= 18.1 A~1 . Assuming that the two Sm
shells have the same EXAFS Debye-Waller factor and scattering amplitude we can conclude that the
two shells have approximately equal weight. This would correspond to the presence ot equail
amounts of 2+ and 3+ Sm atoms and hence a fractional valence of 2.5. The position of the beat node
yields a distance ditference of AR = n/(2-18.1 A™1) = 0.087 A (see Eq. (6.78)), confirmed by the

least-squares fit result of Table 9.1.

In order to increase the confidence in the result a fit was also performed to the phase derivative
of the first coordination shell. This function is shown in Fig. 9.3 together with a fit according to

Eq. (6.73). Again the effect of the beat node at k = 18.1 A~1 can be seen showing that the first
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coordination shell is indeed split into two. The structure at around 8 A~1 stems from the
Sm backscattering phase and has nothing to do with beating. This was not clear originally but could
be traced back to the Sm phase that had been calculated in Chapter 3. The results from the k-space

fit and the fit to the phase derivative agree as expected.

< —
(eh) B ]
P
©
> 97 :
| -
GJ I~ ]
0
(¢h) -4 i
0
(4v]
c - i
o
—8 | 1 )| I 1 1 1

4 8 12 16 20

k (A7)

Fig. 9.3: Phase derivative at 52.0 kbar and 77K for the first coordination shell of SmSe with
respect to the Se atoms. The solid line is the data (SESMNS.N38.F, Table 9.1) and the dashed line is
the fit according to Eq. (6.73).

The results of this fit to the phase derivative are:

Ry=2932A; AR=0086A; Ny/N;=099 .
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The fit interval extended from ki, = 4.0 A™1 to Kmax = 19.5 A71 and it was assumed that og = 012 .

The value for AR-is the same as the one found from the fit of Table 9.1.

It seems then that in the middle of the valence transition two Se-Sm distances are present as
claimed previously [208]. This can be understood by considering the breathing motion performed by
the Se atoms around a mixed-valent Sm atom. As the Smion changes its valence from 2+ to 3+, say,
its volume decreases and the nearest-neighbour Se atoms move towards the central Sm atom. This

relaxation is indicated in the following tigure.

Se

Se

Se

Fig. 9.4: Breathing motion of the Se atoms with respect to the central mixed-valent Sm atom.
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9.2 Srineisen P Deri

In this section we caiculate the Griineisen parameter yg , which appears in the quasi-harmonic
approximation. In this approximation, anharmonicity of the pair potential is taken into account by
introducing a volume (or pressure) dependence to the vibrational frequencies via the Griineisen
parameter and leaving the pair potential harmonic. yg is zero for a harmonic potential and positive

when anharmonicity is present.

The one-shell fits of Chapter 7 showed that at 77K o2 as afunction of R or pressure exhibited
a maximum, which was not clearly present at room temperature. According to Tranquada [157] a

change in o2 can be related to a change in R according to:

2 5R .
6;% =6w R - (9.1

YG is the Gruneisen parameter. We can rewrite this equation as:

din (02/1073 A2) _
din (R/A)

615 - (9.2)

Thus yg can be determined immediately from the slope of In 62 versus In R, which is very similar to
o2 versus R . We denote the position of the maximumin o2 by Rc . Hence for R < R, we have
normal behaviour, characterized by a positive value of the Griineisen parameter. According to
Appendix C a positive value of yg means that the vibrational frequencies increase with a reduction
in volume, i.e. compression. For R > R. we find anomalous behaviour because yg is negative,
indicating a decrease of phonon frequencies when the volume is reduced. This means that the solid
becomes “softer” under compression. Unfortunately, there is only one data point above Re.
Theretore it is not clear whether softening sets in immediately under compression. Probably one will
find that under compression the solid will initially behave normally and then become soft and then
become normal again, similar to the behaviour of the bulk modulus or compressibility (see Chapter
4). In fact there is a relation involving the bulk modulus and the Griineisen parameter (see Appendix
C. Eq. (C.13)). This relation was also used to determine yg from Jayaraman's data [110] but it tumed

out that the derivative involved in determining the compressibility made the resutt too noisy. Thus
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Yg could not be obtained reliably with this method. Probably one should fit Jayaraman's data to a

model and then determine yg from the model.

According to the Grineisen relation (Appendix C, Eq. (C.8)),

CV QQ
Brb =%y - orfy
A negative value of yg also implies a negative coefticient of thermal expansion as well as an

increase of pressure with decreasing temperature. No thermal expansion or specific heat data for

SmSe was available to compare to yg via the Grineisen relation.

The results obtained for nearest-neighbour atom pairs from the slope of In 62 versus InR are

listed in the following table:

Table 9.2: Gruneisen parameter at 77K, obtained from the data of Tables 7.6 to 7.8 using
Eq. (9.2):
R<R. R>R,
Se-Sm (LOG.SEN13.F2) 2.00 £ 0.09 -1.50 (Asymmetry included)
Se -Sm (LOG.SEN14.F2) 328 +0.14 -2.22
Se-(Sm,8m) (LOG.SEN19.F2) 2.26 £ 0.26 -1.32 (Two Sm shells)

The results vary depending on what type of fit was performed. The positive values for the

Gruneisen parameter for the Se-Sm coordination vary from 2 to 3.3.

No error bars are listed for the results corresponding to R > R, because not enough data
points were available for an error estimate. Note that determining yg according to Eq. (9.2) involves
absolute values of o2. Since o2 is frequently overestimated in the fits, the values in the preceding

table constitute upper bounds for yg where yqg is positive and lower bounds where it is negative.
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There are no data to compare these results to, except an investigation of samarium glasses [209]

where at ambient pressure a Griineisen parameter of -0.615 was found.

9.3 Pressure Determination

It may be argued that the pressure that we measure is not truly hydrostatic. However, the Sm
monochalcogenides are rather soft matenals so that any pressure inhomogeneity in these samples

will be small. According to Ref. 210, at 50 kbar the pressure gradient across the sample is ~4 kbar.

The errors in the pressure calibration as obtained from least-squares fitting were found to be as
large as +8 kbar for Cu. As described in detail in Section 6.10, the error of a particular fit parameter
was determined by incrementing this parameter in steps around its optimum value and performing
least-squares fits at each step. In this way the effect of parameter correlations is taken into account
and one obtains X2 as a function of the parameter in question. Its error bars are determined from the
intersection points of the x2 curve with a horizontal line at twice the minimum value of x2. However,
plots of the valence versus pressure indicate a much smaller error in the pressure determination, say
+4 kbar. If the error were really as large as 18 kbar then it would be impossible to observe the rapid
valence vanation in the transition region. The fact that the error in the pressure is indeed smaller is
also supported by the slope of the straight-line fit in Fig. 7.15 of Section 7.1. The slope is
6.4 kbar/turn and if we assume that we may be out by 1/2 turn then the error is +3.2 kbar. We
conclude then that our error bars are very conservative, overestimating the true error by

approximately a factor of two.

We now illustrate an approximate method of pressure determination which does not require
least-squares fitting and is therefore easy to apply. It is based on Section 3.6 where it was argued
that a scaling relation exists between energies and lengths. In Section 6.14 the quantity
e=(Ry~ R)/ R, was introduced. ¢ is the relative change of the length scale with respect to a
reference length R, which is measured relative to the absorbing atom at a reference pressure,
usually atmosphaeric pressure. A function g(e) was derived which peaks at a value ¢ =¢* , with ¢*
corresponding to R*, the value of R at the applied pressure. With this information we immediately

obtain the relative change in volume:



. Vo i_n3
e = = vy = (1-¢")» . (9.3)

Using calibration curves we can obtain the pressure from V/V, as usual. This was done for the data
in Table 7.4. Each dataset was multiplied by k3 prior to calculating g(e) in order to make the amplitude
of the EXAFS signals more even. The function g(e), referenced to atmospheric pressure, is shown in

the next figure for two datasets at different pressures.

_400 i S 1 1 1 [\ { 1 {
0 0.02 0.04 0.06 0.08 0.10

- Fig. 9.5:  Function g(e) versus e calculated according to Eq. (6.92) of Section 6.14. The solid line
corresponds to a pressure of p = 32.6 kbar as obtained from the fit (Table 7.4) or p = 37.5 kbar
according to the scaling method (Table 9.3). The dashed line is the result for pressures

p =72.2 kbar and p = 77.7 kbar , respectively.
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From this graph we see that the precision of locating the maximum and hence of estimating p
depends on the sharpness of the peak in g(e). The peak will be narrower the larger the k-space

domain of the data is.

The next table shows the pressure p obtained with the scaling method for the datasets of Table
7.4. The pressure p obtained by least-squares fitting and listed in Table 7.4 is shown for comparison.
The domain of data is the same as in Table 7.4. To obtain g(e) each dataset was multiplied by k3. g(e)

is calculated using the first dataset, indicated in boidface, as the reference.

Table 9.3: Pressure calibration from Cu K edge EXAFS by the scaling method:

(compare Table 7.4 - Dec.'86;Si(111); T = 77K)

Scaling Fit Domain of data (A1)

Dataset (Ro-R)/Ry, V/Vy Nt p(kbar)  p(kbar) Krmin Kerexx
CUO00.N86.G 0 1 0 0 0 1.822 14.944
CUO01.N88.G 0.003 0.991 1 14.0 9.40 1.817 15.045
CU03.N03.G 0.007 0.979 3 32,5 24.3 1.824 14.955
CU04.N08.G 0.007 0.979 4 325 245 1.824 15.101
CUSM4T.N30.G 0.008 0.976 4.75 375 31.4 1.764 15.216
CUSM05.N38.G 0.008 0.976 5 375 326 1.890 15.117
CUSM5Q.N57.G 0.008 0.976 5.25 375 33.55 1.817 15.117
CUSM06.N89.G 0.012 0.964 6 57.8 48.4 1.817 14.827
CUS11Q.N39.G 0.016 0.953 11.25 77.7 72.2 1.817 15.190

Fig. 9.6 compares the pressures p obtained by scaling with p from least-squares fitting. There

seems to be an offset of the p values by about 6 kbar.
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Fig. 9.6: Pressure p obtained by scaling versus p obtained by fitting. The straight line corresponds

to E)Ep.

it seems then that this method of estimating the compression, and hence the pressure, is fairfy
reliable. Since the method is also very easy to apply, it could be employed to estimate the

compression of the sample during the course ot the experiment.

9.4 EXAFS of the Sm L Edge

As mentioned before, the x-ray absomtion process is much taster than the valence
fluctuations. Therefore, in the case of the Sm L, or L;;; edge one would expect that the EXAFS

spectra each consist of a superposition of two spectra whose energy thresholds differ by AE, that is
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by approximately 7 eV. This has been considered in the work of Krill et al. [211-213], Wetta [214],
and Martin et al. {215]. In order to decide whether this is really the case the minimum k-value used in
the data analysis must be very small. This in turn requires very good amplitudes and phases. At the
same time one has to extend ky,, to its maximum value of 12.5 A~1 determined by the energy of the
intervening Sm L), absorption edge. In the present data analysis k., was approximately 4 A~ At
this k-value a shift of 7 eV in the origin of the k-scale will create a shift in k-space of ~0.2 A~1, which is
rather small. k4, Was limited to 10.2 A~ due to the presence of an Fe contamination.
Consequently, due to our restricted k-space range, we did not address the question of two energy

thresholds in our data analysis.

9.5 Euture Work

The results presented thus far suggest further experiments:

i)  Measuring the valence transition below 77K

This experiment would decide whether the valence transition becomes indeed discontinuous at low
enough temperature as predicted by theory [12, 13]. At 77K no significant sharpening could be
observed. A cryostat for an experiment at temperatures below 77K has already been designed. In
order to be able to observe a discontinuous phase transition one has to make certain that no

significant pressure distribution exists in the sample.

i) Measuring the valence at very high pressures

This experiment could determine whether the phase transition will be completed at a high enough
pressure. Thus far it is not known whether in the Sm monochalcogenides the Sm atoms become
fully trivalent. This experiment should be relatively easy to do since it suffices to perform it at room

temperature.

In addition to these experiments, improvement in data analysis may be desirable. One problem
is the determination of the correct EXAFS background. In this work the background was determined

by smoothing, which yielded good results. Smoothing, however, is not without problems. Regions
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with large signal amplitude require more smoothing passes than those with smaller amplitude.
Alternatively one-may fit a polynomial to the data and use it as the background. However, when the
endpoints of the fit interval differ by too much, as is the case in k-space where ki, =3 A™' and
Kmax = 15 A~ then the polynomial develops too many inflection points. Furthermore, it will go to

+ oo at the endpoints. A way around this difficulty may be to fit to potynomials in In E, instead of k.
(Since the absorption coefficient varies approximately as E~3 one should fit the logarithm of the data
to In E.) Another functional form for the background may be a spline fit [177]. This was not
investigated in the present work, but one problem with a spline fit is the dependence of the result on

the choice of the location of the nodes.

In EXAFS data analysis it is customary to employ the Fast Fourier Transtorm (FFT). However, the
FFT requires a uniform k-space grid. In our data collection procedures, the EXAFS portion of the
absorption spectrum is collected with a k-space grid that is nearly uniform. Since the data is
measured versus monochromator step numbers, which are nonlinearly related to the wavenumber k
of the photoelectron, the conversion to k-space will not produce an exactly uniform grid. Hence
interpolation onto a uniform k-space grid is always necessary. While this poses no difticulty with good
quality data there may be distortion of the data when interpolating noisy data. Therefore one may
consider using the conventional Fourier transform instead which does not require a uniform k-space
grid. With present computing speeds the slowness of the conventional Fourier transform should be

no problem.

The data analysis presented here may be augmented by simultaneous fits to the Se- and the
Sm-EXAFS. In this way one could use constraints such as the nearest-neighbour distance as
obtained from the Se-EXAFS must be equal to the nearest-neighbour distance as obtained from the
Sm-EXAFS measured at the same pressure. One may even consider fitting the spectra of a whole
pressure run by forcing the number of nearest-neighbours to be the same throughout. A possible
problem with all these “grand fits”, apart from computing effort, is the relative weighting of the various

spectra. Nevertheless, it is worthwhile fitting several spectra at a time.

The scattering phases calculated in this work contain curved-wave effects. It turns out,
however, that the scattering amplitude tends to diverge as k approaches zero. This results from the

curved-wave modifications which contain spherical Neumann functions. These functions diverge at
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k = 0 and apparently the partial-wave phase shifts §;(k) do not prevent this divergence. A divergence
for k —» 0 is, however, unphysical. A measured absorption spectrum does not show signs of a

divergence at k=0.

In all fits to the Cu K, Se K, or Sm L, edge EXAFS employing theoretical phase shifts we had to
subtract /2 from the central-atom phase shifts of Teo and Lee [11] in order to obtain correct

distances. The origin of this artificial phase offset is not clear and should be investigated.

When fits to asymmetric pair distribution functions are performed it may be better to fit directly to
the expansion coefficients of the pair potential rather than to the cumulants derived from it. These
cumulants are related to the expansion coefficients of the pair potential by a set of equations rather

than corresponding to the expansion coefficients one by one.
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Chapter 10: Summary

For this thesis we carried out successfully x-ray absorption experiments at high pressure and
liquid-nitrogen temperature for the first time. The two principal results are a iattice relaxation in SmSe
and a power-law behaviour of the Sm valence of SmSe as a function of pressure. In this chapter we
will first summanze these results. We will then briefly mention our first-principles calculations of

EXAFS amplitude and phase shifts. Finally we will indicate some additional results.

10.1 Lattice Relaxation in SmSe

From a thorough analysis of the EXAFS of the Se K edge we obtained evidence of the )
existence of a split radial distribution tunction for the nearest-neighbour Sm atoms surrounding the
Se atoms. This double-peak radial distribution function was not observed when we analyzed the Sm
L)) edge EXAFS in SmSe or SmS. The split radial distribution function occurred at a pressure of
52.0 kbar + 2.5 kbar, Fig. 9.1, with the peak separation being 0.09 A + 0.02 A. At this pressure the
valence has the value 2.50 + 0.04, i.e. the average numbers of divalent and trivalent Sm ions are
equal. Two different distances may also occur at other pressures but the associated pair distribution
functions are not resolved. These facts suggest that lattice relaxation exists in the homogeneously

mixed-valent compound SmSe.

The EXAFS of the Sm L, edge is limited to a maximum k-value of 12.5 A~1 due to the
intervening Sm L, edge. This value of k5, is too small to detect a distance difference of 0.09 A with
its associated beat node at ~18 A1 but it would be sutficient if the lattice relaxation had its maximum
possible value of 0.17 A given by the difference of the ionic radii of divalent and trivalent Sm ions

[103].

In previous EXAFS experiments on mixed-valence compounds only the rare earth L, edge
EXAFS was measured. Martin et al. [215] and Boyce et al. [216] investigated the Sm,Y,_,S system
and Krill et al. [211] measured the Sm L;;; edge EXAFS of the SmS;_,O, system. In the tirst system
the smaller yttrium atoms replace the larger samarium atoms thereby compressing the lattice.

Similarly, in the SmS,_,O, system the smaller oxygen atoms replace the bigger sulfur atoms. This
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way of chemically generating pressure has the disadvantage that foreign atoms are introduced into
the crystal structsre. This could result in properties that are not quite like those of SmS. It is therefore
desirable to measure the EXAFS of SmS by applying pressure externally. This has been done by
Krill et al. [217] and they find again that only one average nearest-neighbour distance is present in
SmS. These negative results do not mean that there is no lattice relaxation in SmS but rather that it is
too small to be detected from the Sm L, edge EXAFS. Note also that for TmSe, which is mixed
valent at ambient pressure, the results from the EXAFS of the Tm L, edge do not show any lattice

relaxation [218]. (The Se K edge EXAFS was not measured.)

The present findings of lattice relaxation in SmSe are in contrast to results of a theory by Kohn
et al. [219] who investigated SmS. They considered the breathing motion of the six nearest-
neighbour sulfur atoms, which surround each Sm atom, when they respond to the changing size of
the Sm atom as it undergoes valence fluctuations. Taking into account that for a given valence there
is a balance between the energy of the conduction electrons, the elastic energy of the lattice, and
the energy of hybridization of the Sm-4f and conduction electrons they find that the displacement of
the S ions is small when the hybridization energy is large. With their choice of input parameters Kohn
et al. conclude that the difference between the Sm2+-S and Sm3*.S distances is less than 0.05 A.
However, their result depends sensitively on the magnitude of the hybridization matrix element,
which is difficult to obtain reliably, and the calculated separation could be larger. It is of interest to see

what the theory of Kohn et al. [219] would predict if it were applied to SmSe instead of SmS.

On the other hand, our result lends support to a theory by Baba and Kuroda [220] and Kuroda
and Bennemann [221} who claim that relaxation always occurs, leading to two dynamically distorted
positions of the anions. The amount of distortion depends strongly on the ratio of phonon

frequencies to valence-fluctuation frequencies.

The present high-pressure experiments on SmSe had the advantage that the Se K edge
EXAFS could be measured to much higher photon energies than the EXAFS of the Sm L, edge.
This meant that higher resolution could be obtained. In addition, we performed the experiments at
liquid-nitrogen temperature. Thereby the thermal contribution to the EXAFS Debye-Waller factor
due to dynamical motion of the lattice was reduced and the eftect of the breathing motion became

more evident. At 77K this breathing motion of Se atoms surrounding a pulsating Sm atom gives rise
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to a peak in the pressure dependence of the mean-square relative displacement of the Sm-Se atom
pairs when the data analysis assumes a single nearest-neighbour coordination shell. In SmSe this
peak is seen either in the EXAFS of the Se K edge (Figs. 7.21, 7.22, 7.25, 7.28, 7.29, 7.31) or the
Sm L, edge (Fig. 7.37). In Chapter 9 we found that the maximum of 62, as obtained from the Se K
edge EXAFS, led to a split radial distribution function of the surrounding Sm atoms at 52 kbar when
we replaced the nearest-neighbour Sm coordination shell by two closely spaced Sm coordination
shells. The peak in a2, obtained from one-shell fits, is also seen at liquid-nitrogen temperature for the

second-nearest neighbour Se-Se atom pairs (Fig. 7.24).

One-shell fits to the data at room temperature do not yield a peak in 62, at most perhaps a weak
shoulder (see Fig. 7.18, obtained from the Se K edge in SmSe, Fig. 7.34, obtained from the Sm Ly,
edge in SmSe, and Fig. 8.4, obtained from the Sm L;; edge in SmS). The mean-square relative .

displacement o2 decreases with increasing pressure.

10.2 Valence of SmSe

The near edge spectra were measured for the Sm L;;; and Sm L, edges which exhibit a
double-peak structure in the intermediate-valent state. From this structure the valence was obtained
by fitting two single-peak lineshapes, corresponding to integer-valent states. Since the behaviour of
a system near a phase transition is frequently described by power laws with the exponent being
characteristic of the system we fitted the pressure dependence of the valence of SmSe to Eq. (7.4):

- a
v=B+A(pp—cpi) for p2p. -

The power-law behaviour of the valence as a function of pressure has not been observed before.
The exponent a was found to have the value 0.43 £ 0.05 and hence is close to the one found in
the Ising model. There may be a similarity of the mixed-valence problem to the Ising model because

the Sm atoms can exist in one of two possible configurations: they can be either divalent or trivalent.
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The power law also showed that at liquid-nitrogen temperature the mixed-valence transition in
SmSe is not yet $irst order but still continuous. It has been suggested that the transition would

become first order at a low enough temperature [12, 13].

Furthermore, the power law defines a critical pressure p. at which the mixed-valence transition
sets in. The value obtained for p. was 31.5 + 1 kbar . This result agrees remarkably well with the
value of 32 kbar obtained from Raman experiments by Eimiger and Wachter [15] as the pressure at
which the 7F0 - 7F1 transition disappears. This transition vanishes because the 4f multiplet
reaches the Fermi energy at p. and the 4f electrons are promoted into the conduction band. Our
value of p. is in agreement with results from measurements of the resistivity as a function of
pressure. Below the critical pressure the resisitivity decreases exponentially with increasing pressure
as expected for a semiconductor. Above the critical pressure the resistivity becomes metallic and the
decrease is much slower. From these measurements a critical pressure of 30 kbar was obtained 199).
Finally, in a bandstructure calculation by Farberovich [115) the onset of hybridization of the f band
with the (5d, 6s) conduction band is predicted to occur in SmSe at a lattice constant of 6.0 A. With
6.2 A being the lattice parameter at ambient pressure this corresponds to a reduced volume of
V/Vo = 0.906 . Using the p-V relation for SmSe as measured by Jayaraman et al. [110, 207] at room

temperature we arrive at a pressure of 31.9 kbar for the onset of hybridization.

We can thus summarize that at approximately 32 kbar hybridization sets in, the 7F0 - 7F1

transition disappears, the valence begins to increase, and SmSe becomes metallic.

10.3 Amplitudes and Phase Shifts

The analysis of EXAFS data can proceed if there is a suitable reference material from which
empinical amplitudes and phase shifts can be extracted. Normally the best reference matenal in a
pressure-dependent study would be the material itself at atmospheric pressure. However, in our
samples of SmSe and SmS there was always a small 3+ admixture at ambient pressure and a pure
valence state for the extraction of amplitude and phase was not present. The small trivalent
contribution may be due to the fact that the samples were not completely stoichiometric. it may also

result from grinding the crystals to produce powdered samples.
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Moreover, the size of the effect that we were studying in this thesis was expected to be small
and could have been obscured it the amplitudes and phase shifts were pressure or valence
dependent. Thus in this work we calculated backscattering amplitudes and phase shifts from first
principles. These calculations, which are presented in detail in Chapter 3, were performed for the
SmSe solid in the muffin-tin approximation rather than for isolated Sm and Se atoms. The atomic
potentials were not calculated self consistently but the effects of the potentials of the neighbouring
atoms were included. Furthermore, the potentials inside the muffin tin spheres, which at first are
defined with the zero of energy at the vacuum level, were shifted such that the averaged interstitial
potential became zero [61]. In this way the potential inside the muffin-tin spheres corresponded to
the electronic charge density contained within the spheres. Our calculations showed that there is a
small pressure dependence of amplitudes and phase shifts. Up to 100 kbar, however, this
dependence is small. We also found that amplitudes and phases depend only weakly upon the

valence of Sm.

10.4 Additional Results

The near-edge analysis of SmSe and SmS also indicated that AE, which is the energy
separation of the absorption line shapes of the 3+ and 2+ states of the Sm ions, decreases linearly
with increasing valence. This linearity has been observed before for other mixed-valence
compounds [222] but has not been explained. We think that it may be due to a change in the
screening by the conduction electrons. The Sm3* ions are more screened by the conduction
electrons than the Sm2* ions. As the valence increases, more conduction electrons become
available for screening. This leads to a bigger rise of the L-level of the Sm3* ions than of the L-level

of the Sm2* ions. As a result, AE becomes smaller.

The one-shell fits to the Se K edge EXAFS yielded a maximum in the mean-square relative
displacement. From o2, as a function of the nearest-neighbour Se-Sm distance, we can determine
the Gruneisen parameter yg . At low pressure yg is negative meaning that the solid becomes soft.
This, in tum, indicates a phase transition. Note also that according to Eq. (C.8) of the Appendix a

negative value of the Griineisen parameter leads to a negative coefficient of thermal expansion.
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Because of the pronounced pressure dependence of the Sm valence, SmSe could be used
as a pressure cadibrant in x-ray absorption experiments. A possible disadvantage of SmSe may be its

relatively large absorption coefficient for x-rays.

In order to determine the compression of a pressure calibrant like Cu (or perhaps SmSe) one
may employ the scaling method described in Section 6.14 and discussed in Section 9.3. Without
having to perform a complete EXAFS data analysis one can obtain the compression and then, as
usual, determine the pressure from the known p-V relation of the calibrant. This scaling method is

fast and could be used to approximate quickly the pressure of the calibrant in the course of the

experiment.
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Appendix

-

A Rydberg Atomic Uni

Rydberg atomic units are obtained from Sl units by the following substitutions:

e - 2 ; L—)1- - 1 A1
4ne, ' 2n ' 4 ) (A1)

This means that the Bohr radius, ag = 0.5291772 A | is the unit of length. In S! units ap is given by:

- h 2'47“’30,1_
ag = 2% e2 mg

Making all three substitutions of (A.1) one obtains:

(A.2)

&
i
N

The fine-structure constant is in Sl units:

2n _e?

1
0= ameg mg " 1/137.03599 .

Using Eq. (A.2) and the first two substitutions of (A.1) yields for the speed of light:

c= = 274.07198 . (A.3)

1IN

For the Rydberg constant we obtain by substitution:

2n\2 (62 ¥ My _
Ry = (h) '(47:80) 2 ! (A.4)
Thus energy is measured in Rydbergs (1 Ry = 13.6057 eV).

Sometimes Hartree atomic units are employed. They differ in that the first substitution of (A.1) is

e2/anz, — 1,instead of 2. As a result energy is measured in Hartrees (1 Hartree = 2 Ry).

The number values were taken from Ref. 123.
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B Qperating Range ot the Monochromator
In this section we investigate the range of Bragg angles for which a double-crystal
monochromator can operate. Outside the range given by the limiting angles 6, and 8,5, Part of

the x-ray beam is lost and the output decreases. Fig. B.1 illustrates the situation:

Fig. B.1: Limiting rays for a double-crystal monochromator. The x-rays are entering from the left.

The central rays are directed towards the rotation axis, indicated by the circle.

For simplicity we assume that the monochromator is stationary and that a perfectly-collimated
x-ray beam is incident at variable Bragg angles 6. The vertical width of the beam is equal to the pre-
monochromator slit width s. We will consider only the case where the central ray intersects the
rotation axis of the monochromator which in Fig. B.1 is at the origin. it is assumed that the two crystals
are parallel and that each ray strikes each crystai once. Both crystals have length L, and they overlap
by the amount h,. Without loss of generality we can assume that the overhang h, does not exceed
L,/2 . The projection of the vertical beam width onto the crystal surface is given by s/sin6. In order
that the full beam hits the first crystal it is necessary that this projection does not exceed the crystal
dimensions. Since h, < Ly - h, we have that s/(2sinB) < h, - Thus we obtain the following

restriction on the Bragg angle:



sind > (B.1)

S

2hg -
The two crystals are separated by the distance dg. In Fig. B.1 the two limiting rays determining the
minimum and maximum Bragg angles, 8, and 6,,,,, have been indicated. From the geometry we

can establish the following relations:

a) minimum Bragg angle:

ds L s
tand > or coto< > — .
Lo - s/(2:sin0) ds ~ 2dgsind
Multiplying through by sin@, which is positive, yields:
Yo g - cosh - =5- >0 ’(82£
dg 2dg © :

b) maximum Bragg angle:

tang < ds or ot 52 4 >
15-(ho + s/(2-sing)) 2ds = 4dgsind
Multiplying by sin@ again gives:
Do b — cosp + 25— <0 (B.3)
2.dg ad, =Y~ ‘ '

We see that all lengths scale with dg, the separation of the two crystals. For zero slit width we get

immediately:

L . fo
coteminls_0= a and ootemaxls_o- 2a; (B.4)

We see that the minimum Bragg angle is determined by L/d¢ and that 6, is given by ho/ds -

When the slit width s is finite 6, becomes bigger and 6,,,, becomes smaller. Since Egs. (B.2) and

(B.3) have the same form we can write for both of them:

A-sind-B cos8—-C =0, (B.5)
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where we have written an equals sign instead of “>". Eq. (B.5) can be solved readily for 6:

C=Asing-B-cosh = a-sin@+f) = o=VA24B2 ; tanp=-B/A (B.6)
_ B G
8 = arctan (A) +am51n(m) . (B.7)

Making the corresponding substitutions we obtain:

dg , s/2d
Omin=arctan| — | +arcsin| ———>—— ; (B8.8)

Lo >

A ’ 1+Lo%’d s
__sladg -
Omax = arctan( ) arcsin ) (B.9y
A [ 1+h2/ad2

The parameters Ly, h,, and dg for the crystals used at beamiine IV-1 at SSRL are:
lo=66mm ;. hy=13mm ; dg=10mm . (B.10)

The pre-monochromator slit width s is typically 1 mm.

in order to establish an equation of state the pressure is calculated from the Helmhoitz free

T

energy as p = - a(ué—\} S T where the entropy is obtained from S = deT.. g% v Assuming

0

small oscillations one can write the internal energy in the harmonic approximation as

1
= . ne(k) ng(k) = ' ©
U Uo+'§h vg(k)-ng(k) s(k) ohvs(K)/kgT _ 1
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where k is the wave vector and s labels the phonon branches. The first term, which is independent
of temperature, 8 the internal energy at equilibrium at T =0 and includes the zero-point energy. The
second term is the thermal energy due to the lattice vibrations. Inserting Eq. (C.1) into the
expression for the entropy and integrating by parts finally gives for the pressure and its temperature

derivative [223]:

ou dvg(k)
pe-el - D n e €2
ks
ap| _ .avs(k) ‘ ans(k)) _ hovg(k) ong(k)
oT V‘"zh oV T v~ Yks V. 9T v €3
ks ks

Here we have assumed that the v4(k), like U, depend only on volume. The quantities yq are the so

called “mode gammas” defined by:

v avg(k) d Invg (k)
ks T Ty k) AV T amlmv (C.4)
The term following ¢ in EQ. (C.3) is the specific heat per unit volume for the mode ks:
Cys(k)  hvg(k) dng(k) c
vV VT v (C.5)
The Grineisen parameter yg is now defined as:
2 Cys(k)
Yks - V
X - C.6
YG = ' - = 'ZYks - Cys(k) . (C.6)
Cysh) Vi
\
ks
Thus Eq. (C.3 be wnitten as 9p =, ﬂ (C.7)
us Eq. (C.3) can be aTlv G v
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which, when combined with Eq. (5.100), §$ Ve Bt B, yields the Griineisen relation:

Cy
BrB=1vw v - (€8

In the harmonic approximation the frequencies v¢(k) will not depend on volume and thus the mode
gammas ygg, as well as yg, will be zero. According to Eq. (C.8) B will be zero as expected. A non-
zero value of yg therefore is an approximate way of taking modest anharmonicity into account while
at the same time retaining the harmonic approximation for the potential energy. This is referred to as
the quasi-harmonic approximation. It is useful if the temperature is not too high. yg introduces a
volume dependence for the vibrational frequencies as a compromise for neglecting anharmonic
terms. If yg becomes actually temperature dependent then this means that there is strong

anharmonicity.

One sees that yg can be calculated either microscopically, Eq. (C.6), or macroscopically by

using Eq. (C.8). In the Debye approximation all frequencies are proportional to the Debye frequency:

3 pNa\1/3 k
VD=CS~(G< —AA) ERBOD (C.9)

Therefore all mode gammas are equal to yg which is given by:

d InVD d In(-)D

G T30V T T 3Inv (C-19)

cs is the sound velocity and the other parameters are the same as in Eq. (5.102). From the
dependence of vp on cg Slater [224] established that in the Debye model the Griineisen parameter

can be calculated as:

a2gl

{ { dinBy 1 1 dBy 2 v VAT 1

GSlater =~ g "2 dinV -6 "2 dp - 32 3p| (©.1)
GVIT

This formula has a drawback though because Yg sjater do€s not vanish for a harmonic solid. This can

be seen as follows: The bulk modulus can be written as [225]:
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a?-u| 3BT aBTl
Br=V ave BTV(av 7T a—vp)-

(C.12)

1/3_V1/3)2
(o]

For a harmonic solidwe have =0 and U =K (V , [226], where K is a positive constant.

This yields:

22U dinBr 1 2 1
Br=V avalt and -y =73 T3 2 (vivy)'3

Evaluating this expression for the case of no compression yields for yg gja1e, according to

Eq. (C.11):

1
YG,Slater = 3 20 .

This deficiency was corrected by Dugdale and MacDonald [226], who derived the following

expression for yg:

QEE _10p 32(9\/2/3)[
Ly vl T ey oy v 5
¢ 2 d| , 2P 3 2 3pvas3y (C.13)
ov|T 3V RV T

For V=V, ie. p=0,this expressionis simply equalto Yg gjater — (Eq. (C.11)) .

1
3

Since it correctly reduces to zero for a harmonic solid, Eq. (C.13) should be employed rather

than Eq. (C.11).

o smoothing Fundi

We will estimate the atomic background by smoothing the EXAFS spectrum until all the
oscillations have disappeared. The procedure consists in the repeated application of the three-point
smoothing formula [178] given in Section 6.3:

i
Ynew,i = 4 - (yold,i—1 +2 - Yold,i * yold,i+1) . (D.1)
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It is assumed here that the data y; = y(k;) is given on a uniform grid of k-points extending from k4 to

ki, i=1,2, ..., N=-1.

kn- The difterence of two successive k-points is labeled by 5k: &k = k; i

+1 7

We now want to estimate how the smoothing in k-space affects the result in R-space. We will
deal with the problem of endeffects, which was mentioned in Section 6.3, by assuming that the
endpoints are unchanged under smoothing. Actually, the endpoint values of the smoothed function
are found by fitting but this would be too difticutt to take into account here. Since the endpoint

values are fixed we simply have:

Ynew,1 = Yoid,1 and Ynew,N = Yold,N ; i=1,2,..,N. (D.2)

The x(k) that is obtained after subtracting this background will have its endpoints tied to zero.
The number of smoothing passes will be labeled by s and the ith data point after s passes will

be denoted by yi(s) . Since the first and last points are fixed we can write:

To calculate the effects in R-space we compute the Fourier series:

o0

y(k) = %? Y (Ancoszkﬂn + Bn-sinszn) : (D.4)
n=1

Here we have employed the following detinitions:

Rn = np and Ak = ky—Ky . (D.5)

The coefficients A, and B, are determined by the well-known relations

Ak
Aﬂ - Kzi jy(k) . COSszn dk ; n=012, ..
0

Ak
2 .
- < A kR dk . n=1,2, ..
B, AkOJ'y(k) sin2kR
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which are mentioned here for completeness. They are not needed to determine the change of A,

and By, after a smoothing pass.

We now calculate the resulting Fourier series after one smoothing pass. In k-space we have

after one pass:

1 1 1 .

We can expand each of the three terms appearing on the right-hand side of this equation in a Fourier

series according to Eq. (D.4). For y,  we obtain for example:

o0

Yiq = % ) (AncosZ(ki—ﬁk)Rn + Bn-sin2(ki—6k)Rn) L K=k 8k
Nm1

inserting this and the analogous relations for the other two terms into Eq. (D.6) yields:

[e o)

, E An L 3 0052(k -3k)R, +;— -c0s2k;R,, +l cosZ(ki+8k)Rn)
N=1{

o0

B, (5 sin2(-8k)R, + 3 sin2kiR, + %-sinZ(ki+8k)Rn) .
N=1
i=2,3, ...N-1
1 1
Y(1)=Y1 ; Y(N)=YN
(D.7)
After some algebra this formula is brought into the form:
1 , . ,
v - 5’ A, E: AV cosakm, + Bl sinzkR, : i=23,. N1

=1
(D.8)
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where

Ay = AqcosP(ReSk) i n=0,1.2..
B - B .sinz(n &) :  n=12

n = n n ' - &

Eq. (D.8) constitutes the Fourier series of y(k) after one smoothing pass. After s passes the Fourier

coefficients will be:

A =oAL 0s®(Rdk) © n=01.2..
(D.9)
By = By sn®>(Ry) :  n=1.2
n = Bq n ; =12, ..
One can now calculate the change p,, of each frequency component R, as follows:
2 2
[A(nS)] + [B(nS)]
2s
Pn = = CosT(Rpk) . (D.10)
A2 + 82 ( )

n n

& appears here because the effect of the smoothing depends on the density of the data points in
k-space. The first zero of p,, occurs at Rn = n/(28k) . This is the Nyquist condition. There is no further

information beyond R, .

From Eq. (D.10) we can calculate the required number of passes s for a desired reduction p, at

distance R:

in(pq) (D.11)
2 Incos(R,8k)

S =

It it is required, for example, that p,, be 0.1 at R, =1A and if 8 =0.15 A, then the number of passes

hastobe s=102.
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If we assume that R is a continuous variable then we can omit the subscript n in Egs. (D.10) and

(D.11). Since in practical cases R:6k < 0.3 we can approximate Eq. (D.11) as:

In p _ inp _ —Inp ' (D.12)

2 -Incos(R3k) " 2 yp (4 _12, (R-5k)2)  (R3K)?2

We see that Ins versus In (R-8k) is linear.

In practice the number of smoothing passes is determined by trials. Eq. (D.12) is useful

nevertheless because it allows one to estimate the eftect of the k-space smoothing in R-space.

E Least-Squares Fiting of EXAFS Spectra -

In this appendix we present a brief introduction to some features of an interactive least-squares

fitting program that has been written to fit EXAFS data in k- or R-space [187].

The program introduced here fits EXAFS data in k-space to the expression (6.55). In R-space
the program fits the Fourier transform of the data to the Fourier transform of the model. The Fourier
transform of the latter is calculated numerically rather than analytically so that artifacts are equally
present in both Fourier transforms. Reference amplitudes and reference total phases can be read in
irrespective of their particular k-space grid. Up to nine coordination shells can be fitted which is much
more than normally needed but may be usetul when creating model spectra. The fit parameters are

as follows (6.55):

There are two parameters that apply to all shells: The pre-monochromator slit width s (Chapter 5)
and the mean-free path constant n (Chapter 2). Each shell is characterized by seven parameters:
The phase offset aj, the adjustment AE; for the inner potential, the radius R; of the coordination shell,
the third- and fourth-order cumulants Cg; and Cj, the mean-square relative displacement ojz, and
the coordination number N;. Nine shells correspond to a total of 65 parameters, 20 of which can be

varied.
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Least-squares fitting of EXAFS spectra frequently involves many parameters. It is therefore
desirabie to restrict this number to a minimum. This is achieved by taking any existing physical
constraints on the parameters into account. Such constraints are, for example, a fixed ratio of
coordination numbers known from the crystal structure or the same values of AE for coordination

shells consisting of like atoms. The fitting routine provides for the following constraints:

Fixing the ditference of phase offset, AE, R, a2, or N for any two shells.

Fixing the ratio of R, 52, or N for any two shells.

These constraints eliminate superfluous fit parameters. Nevertheless the number of
parameters can remain quite large, say, eight or so. In order to obtain information about as to whether
these parameters are meaningful one has to investigate their mutual correlation and estimate thejr
errors. The correlation coefficients are obtained from Eq. (6.62) and provide information about which
parameters interact with each other. The error estimates for each fit parameter are obtained by

scanning the parameter in question, as explained in Chapter 6. The program does this automatically.

In order to be versatile the program offers several built-in window functions: rectangle, Gaussian
of arbitrary percentage, Hamming, and Hanning window of arbitrary percentage and also with a
central plateau region of arbitrary width specified. For k-space fits Fourier filtering is possible.
Furthermore the interval over which Fourier transforms are taken can be set and a weighting function
which is equal to the inverse of the envelope of the k- or R-space data can be applied. Furthermore
limits can be specified for each parameter. A useful feature is the option to draw the EXAFS due to
separate coordination shells or due to partial sums of coordination shells. This can be done in k- and
in R-space. It is also possible to monitor selected parameters in the course of a fit. All parameters
specifying a fit are written into a parameter file so that the program can easily be restarted without
having to type them in again. This can also serve for archiving. There are several output files that the
program generates. Everything that happened during a fitting session is written into a temporary file
called -LOG. The output is written into the file —OUT. These files exist aiways. Amplitude and phase
of the data (if one-sheli fit) or the model (if muttishell fit) can be extracted and written into the files
~AMP and -PHASE. The model itselt can be written into a file called -MODEL and Fourier-filtered
data can be written into the file ~-DATAF. The Fourier transform of the data including the magnitude

of the transform can be written into —-DATAR.
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F E lafor Val Estimat

In order to derive a formula for the valence we write down the values of the fitting function at the

positions E2* and E3* of the two lines. Using Egs. (6.79) and (6.80) we get [17]:

oo

f - . e—(E-E2%)2/262 4
-E3*)e 4T

XI-A

YEZ) = (1-V) Ymax * V" Ymax

Y(E3+) = (1 —V)-(Ymax—1)' % - J'—:——E‘2+12~——2- e—(é—E3+)2/202 dé +1—V+V_-Ymax\ ..
e + I

—c0

(F.2)

The integrals appearing in the two equations are equivalent. Eliminating them, rather than Y, ,, as in

Ret. 17, yields after some algebra the following formula for the fractional part v of the valence v:

Y Ymax = Y(E3*) Y
vaell 4 —max ml—(—zll
Ymax =1 Ymax - Y(EZY)
v=2+v,except for Ce compounds where v=3+v . (F.3)

Unlike Y(E2*) and Y(E3*), the peak height Y 4, Of an individual line profile cannot be read from the

measured spectrum. Usually, however, Y54 = 2 . In this case we get for v:

2 - Y(E2Y) ‘ (F.4)

max =2 2 V= TV R - 2¥(E%)

In principle it is possible to introduce another function value of the normalized spectrum, like, for

example, Y((E2*+E3+*)/2), in order to eliminate Y,y This will not be pursued here.
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Application ot Eq. (F.3) is not limited to estimate rapidly the valence trom an absorption edge of

a mixed-valent coempound. It can aiso be used to anaiyze the error of the determined valence v.

In this derivation the effects due to the finite resolution ot the monochromator have been
. . . . . Yb
ignored because even at the highest L edge of a mixed-valent material, that is EL“ =9976 eV, the

broadening due to resolution is small (2.74 eV for a 1 mm slit and Si (111) crystals).
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