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Abstract 

The rough ride problem is one of the major problems in the maintenance of heavy 

trucks, and it often frustrates truck engineers due to the large number of vibration sources 

causing vibrations in the driver's cab and cargo space. However, the Knowledge Based 

Expert System (KBES) approach provides a framework for organizing diagnostic solutions 

to the problems that can currently be solved only by a handful of highly experienced human 

experts using large amounts of domain-specific knowledge. Thexfm, the goals of my 

research are to extract and codify the knowledge of expert engineers for a better 

understanding of heavy truck dynamics and rough ride trouble-shooting, to &sign an expert 

system (RE - Ride Expert), capable of diagnosing rough ride trucks by identifying inherent 

vibration sources. 

Two levels of knowledge are stored in RE'S knowledge base, enabling it to find the 

problem sources from the symptoms and the fault signatures which are usually the results 

of analysis of vibration signals collected from various parts of the truck by a multi-probe 

system. Causal-level knowledge is extracted from Mechanical Signature Analysis, MSA, 

which manifests the signatures of trouble sources and hence finds the sources by using 

Spectrum Analysis techniques, whereas shallow-level knowledge is the heuristic knowledge 

extracted Erom expert engineers who accumulated this kind of knowledge by their own 

experience in trouble-shooting. The advantages of combining these two levels of knowledge 

are the capability of covering a wide range of rough ride problems, high diagnosis efficiency 

and better explanation features. 

A set of MSA techniques capable of identifying the sources of rough ride problems 

have been investigated and tested on road, and the signal processing subsystem for these 

techniques has been implemented The main KBES structure for rough ride diagnosis has 

been designed. 
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1 .  INTRODUCTION 

The rough $de problem is one of the major problems in the maintenance of heavy 

trucks, and it often frustrates truck ride engineers [Gillespie 851 due to the large number of 

vibration or other sources causing vibrations in the driver's cab and cargo space, and hence 

the difficulty of identifying those sources. This implies that the diagnostic task involves a 

large search space and a lot of uncertainty. Moreover, it can be done by only a handful of 

experienced engineers. 

These characteristics of this diagnostic problem make it a typical candidate for applying 

Knowledge Based Expert Systems, KBES [Hayes-Roth 831. 

This thesis describes an application of KBES to rough ride trouble-shooting, as a 

powerful diagnostic solution to the problem, owing to the combination of Mechanical 

Signature Analysis, MSA, and the heuristic methods used by expert ride engineers based 

on their own experience of trouble-shooting. 

1.1 Motivation 

In the modem truck design, higher priority is given to functional efficiency in order 

for the vehicle to be commercially viable, than to driver comfort and convenience. Such 

designs have forced the driver in a position that is less than optimum for good ride and that 

is sensitive to abnord  (even very small) vibrations from other parts of the truck [Gillespie 

851. These practices and the lack of vibration diagnosis expertise can therefore create major 

financial losses if the rough ride discourages potential buyers. Due to the countless 

combinations of vehicular components (various configurations) to best match consumer's 

needs, and the large number (30 - 40) of identifiable vibration modes (resonant modes) 

potentially affecting ride in the frequency range below 20 Hz and countless number of their 



combinations [SDRC 731, the task of diagnosing the vibration sources has been considered 

demanding and only a few human experts can currently do it. So, a diagnostic system with 

rough ride diagnosis expertise is needed. 
* 

Some research on the rough ride problem has been published [Gillespie 851, but none 

of it has suggested or supported a systematic approach for rough ride trouble-shooting. 

Power spectrum Density, PSD, has been suggested so that the vibration modes which cause 

the rough ride can be recognized, and hence the trouble sources with this modes can be 

identified, based on a good knowledge of vibration phenomena on heavy trucks. However, 

this is often difficult since some modes, with their harmonics and combinations, are too 

close to each other to be distinguished, and the mode frequencies are often not known 

accurately or are too costly to acquire in practice due to the variety of truck configurations. 

The only suggestion in the published research for truck ride engineers is to understand truck 

vibration responses of truck and to distinguish the sources at work [Gillespie 851. Up to 

now, therefm, in practice of rough ride diagnosis, ride engineers use such knowledge of 

truck vibration responses and their accumulated experience in trouble-shooting. Due to their 

emphasis on heuristic methods, the practice is more art than engineering, and of course the 

efficiency is low. 

In summary, some major characteristics of rough ride diagnosis on heavy trucks are 

listed here. First, due to the large number of trouble sources and their combinations, a large 

search space is involved in the diagnosis. Next, uncertainty is always involved due to the 

lack of infonnation in the diagnostic procedure, which is usually the case in practice. Finally, 

human experts are necessary, and a variety of techniques, ranging from heuristic to in-depth 

analysis of vibration data, are involved. Such a large search space and the uncertainty 

involved make it impossible for us to create a single analytical model of a truck so as to find 

the abnormal vibration sources causing rough ride with conventional algorithmic methods. 

'Therefore, a KBES approach was chosen for the diagnostic problem. 



1.2 Problem Statement 

The aim of the research in this thesis is to examine how expert engineers diagnose 

rough ride problepls by using various techniques ranging from heuristic to analytical, and 

to design a knowledge based expert system, RE (Ride Expert), as capable of coping with 

rough ride diagnostic problem as an expert engineer. 

Some special considerations have been given to the areas such as diagnosis coverage 

andeconomic efficiency of RE. RE is so designed that up to 90 percent of rough ride problems 

would be covered by RE with the help of an average truck mechanic. The cost of rough ride 

trouble-shooting would be reduced considerably with RE, by its powerful focus ability to 

reduce mechanical check-up. Computation efficiency has also been considered due to the 

computing cost of spectrum analysis. 

1.3 Approach 

A two-level diagnostic architecture combining heuristic and causal (shallow and deep) 

reasoning [Torasso 891 has been adopted in RE. The use of two levels of knowledge and 

reasoning scheme is largely because of the diversity of the techniques used in rough ride 

trouble-shooting. Most of the knowledge extracted from MSA (Mechanical Signature 

Analysis) is codified as causal-level knowledge, which usually represents the cause-effect 

relationship between rough ride trouble sources and observable facts, describing the faulty 

behavior of the modelled truck in a very precise way (causal model). A causal network, (a 

kind of semantic network), has been used to represent the causal-level knowledge, and a 

hypothetical reasoning scheme has been used in this level. Heuristic knowledge serves as 

shallow-level knowledge, which is extracted, through a series of interviews, from expert 

engineers who accumulated this kind of knowledge by their own experience in 

trouble-shooting. 



The= are several advantages of using such a twdevel reasoning architecture. Many 

techniques (diagnostic knowledge) can be used in rough xi& troubleshooting, depending 

on the situation and the type of problem. They can be grouped into two, heuristic and 
* 

analytical, and each of them model the truck in quite different ways. Expert ride engineers 

tend to solve problems using experience knowledge fmt, by directly associating their 

observations (findings, symptoms) with diagnostic hypotheses (trouble sources). In this way, 

less effort (measurements, check-up) will be involved. However, this can only solve a limited 

number of problems, and usually can not give satisfactory explanations for the diagnostic 

solution, due to the direct association used. In analytical methods, more observations 

(vibration signals and even its in-depth analysis) are taken and the correlation of the 

observation and the possible trouble sources is analyzed with the emphasis on their 

cause-effect relationship. This method can usually solve more problems and provide good 

explanations, But due to their higher costs, analytical methods are usually used after the 

heuristic methods fail. The combination of these two can provide the power of both and 

avoid their drawbacks. 

A set of MSA techniques capable of indicating vibration sources have been 

investigated, and the conditions or situations in which these techniques should be applied 

have been identified. A series of road tests have been carried out to verify these MSA 

techniques. The signal processing subsystem for these MSA techniques to be used in the 

KBES in RE has been implemented. The main KBES structure for RE has been designed, 

and initial knowledge acquisition has been done by a series of interviews with expert 

engineers &om F~ightliner of Canada Ltd. in Burnaby. 



2 .  DIAGNOSIS OF ROUGH RIDE TRUCKS 

In this chapyr, the major techniques for rough ride diagnostics are presented, with a 

brief introduction of the truck ride problem as the beginning. MSA provides some good 

tools for truck dynamic analysis, and hence can be helpful in rough ride trouble-shooting. 

2.1 Rough Ride Problems of Heavy Trucks 

A truck can be considered as a dynamic system, exhibiting vibration in response to 

excitation inputs, as shown in Figure 2.1- 1 

Figure 2.1-1, The truck dynamic system. 

Because the minimum tolerance (maximum sensitivity) o ~f human body is in the 

frequency range of 0 to 20 Hz 68, IS0 781, the primary focus of rough ride diagnosis 

is on the sources causing excessive cab vibrations in this frequency range. 

The excitation sources and the truck dynamic response properties determine the ride 

vibration at the driver's cab and ultimately determine the driver's perception of the cab as 

a work place. 

The major excitation sources by which truck ride vibrations may be excited can be 

classified as shown in Table 2.1- 1. 



Table 2.1- 1, Vibration excitation sources 

I CLASS I RESPONSIBLEPART I 
I RoadRoughness I road I 

Road roughness is described by the elevation profiles [Sayers 841, which fit the general 

category of broad-band random signals [Gillespie 851. A different combination of a road 

and a truck can give quite different ride. An interesting example is that some trucks give 

better ride on a rough road than on a smooth road (see example in Section 2.5). 

The vibrations attributed to tirelwheel assembly are usually caused by nonuniformities 

of the tires, wheels, hubs, brake drums, and other rotating parts, owing to imperfections in 

manufacture. Table 2.1-2 lists the major causes and &eix effects. 

I On-Board Sources 

The driveline is the third major source of vibration excitation. The major forms are 

shown in Table 2.1-3. 

tirelwheel assembly 

driveline I 

As shown in Figure 2.1- 1, the ride quality is also determined by the truck's dynamic 

response properties. Somt subsystems of the truck have a major influence on the response 

properties and hence cause rough ride if faults are present in these subsystems. Some of 

them are listed in Table 2.1-4. 



Table 2.1-2, Excitations of tirelwheel assembly 

Dimensional 

Variations 

Imbalance 

Stiffness 
Variations 

TYPE 
. ' 

eccentricity 

ovality 

high-order radial 

wobble 

high-order lateral 

static 

dynamic 

PARTS VIBRATION 

XEQUENCY 

VIBRATION 

DIRECI'ION 

verticalJongitudinal 

vertical,longitudinal 

vertical 

lateral 

lateral 

verticalJongitudinal 

aligning torque 

vertical 

where 

rps - the rotational speed of wheel (revolutions per second); 
n - 2,3, ...; 
t - tires; 
w - wheels; 
h -hubs; 
b - brakednuns. 

Table 2.1-3, Excitations of driveline 

TYPE CAUSING PARTS VIBRATION VIBRATION 

FREQUENCY DIRECIION 

Imbalance rotating parts Ips vertical Jateral 

Second Coupling universal joints 2 ~ s  longitudinal 



Table 2.1-4, Subsystems affecting truck response properties 

PART 
- -  

Suspension 

System 

Cab 

Mounting 

Driver's 

Seat 

Frame 

Fifth Wheel 

TYPICAL FAULT EFFECI'S 

fail to damp out the roughness of road, due to flat-leaf spring friction 

incorrect air bag height, spring damage, incorrect shackle angle 

insufficient travel on shock absorbers, etc. 

fail to damp out the roughness of road, due to overinflation, severe tin 

wear, aggressive tread pattern, etc. 

fail to isolate vibrations, due to loose or worn cab isolators, excessive cat 

movement allowed by cab mount, too rigid exhaust mounts or sleep 

fail to isolate vibrations, due to damaged seat mounting base and structure 

vibration aa large frame bending, due to failed welds, cracks at stres! 

points, loose components and cross members, etc. 

improper position causes large frame bending. 

Besides the primary vibration sources and truck response properties, there are two 

factors having an impact on the ride, the truck travelling speed and the load. Most excitations, 

either inherent or road oriented, are speed dependent, thus the speed has direct impact on 

the ride. The load on the truck changes the response properties to some degree, depending 

on the load distribution, the suspension and frame configuration. 

As a summary, the major factors affecting ride are listed in Table 2.1-5. 



Table 2.1-5, Factors affecting ride 

TYPE 
7 

ON BOARD 

OPERATING 

CONDITION 

FACTORS 

on board excitations 

truck dynamic response properties 
- - 

road roughness 

travelling speed 

loading 

Any significant change of on-board factors is considered to be caused by a fault in the 

truck, which is to be found by RE. As shown by the examples we will see in Figure 2.4-3 

and Figure 2.5-3, any combination of the three operating conditions in Table 2.1-5 (as a 

trigger) determines the presence of a ride problem, and hence should be carefully chosen 

during the road test in a diagnostic procedure. 

2.2 Heuristic Methods 

The heuristic method has been used for rough ride diagnosis since this problem became 

of concern. Truck ride engineers have accumulated a considerable amount of knowledge of 

ride problems, by their experience on trouble-shooting. The ride perception for a problematic 

truck by experienced ride engineers is usually classified into four categories, as shown in 

Table 2.2- 1. 

The connections between these expert engineers' perception of the ride and the 

vibration spectra taken from the truck sometimes can be found. For example, the perception 

of harmonic ride is usually related to an excessive strong peak on the PSD, such as that at 

6.6 Hz in Figure 2.4-3. This implies that the vibration is dominated by one frequency 

component, and is most likely a rotating vibration (a heuristic rule). 



Table 2.2- 1, Ri& perception with possible causes 

The road feels too rough. 
Harsh 
Ride 

The truck moves in a 
Harmonic bucking or bouncing 

Ride motion at a particular 
speed. 

Quiver or trembling, 
Vibration oscillation; 

Ride rotating vibration with 
higher harmonics. 

Shimmy Lateral oscillation. 
Ride 

MAJOR CAUSES 

suspension system is 
transmitting rather than 
damping road shocks. 

nonuniformities of 
rotating parts. 

damaged joints of rotating 
parts; 
improper rotating part 
mounting; 
worn out engine part. 

looseness or springiness in 
the steering system, 
dynamic imbalance. 

RESPONSIBLE 
PARTS 

tire, 
suspension, 
cab isolators, 
fifth wheel. 

tirelwheel, 
driveline, 
cab mounting, 
fifth wheel. 

driveline, 
clutch, 
engine, 
transmission, 
frame parts. 

steering system, 
tirelwheel, 
axlelsuspension. 

Such a classification as shown in the above table usually helps ride engineer very little 

in reducing the search space for a rough ride problem without some other heuristic rules 

(either searching strategies or classification), which are very difficult to organize in a table 

or on paper. Some major truck manufactures have made several ride manuals to collect ride 

diagnostic knowledge to help in trouble-shooting, like mightliner 841. Usually such a 

manual lists all the faults on a truck which could cause ride problems, but with very little 

knowledge which can be used to conduct an efficient search. Thus such a book can offer 

very little but exhaustive search guide, and hence inexperienced engineers might find them 

little use. 



2.3 Mechadcal Signature Analysis 

MSA deals with the extraction of information from measured signal patterns, which 

characterizes a specific system state. In our application, vibration signals are used as an 

information carrier, and the name "signature" denotes the signal pattern characterizing a 

specific trouble source causing ride a problem. 
I 

MS A has applications within the field of mechanical engineering, including machinery 

I condition monitoring, diagnostics, modal testing, noise/vibration abatement, and production 
I 

quality control. 

Three main steps are involved in MSA. The first is data acquisition which includes 

signal collection and signal condition. A multi-probe system [Rawicz 901 is used to collect 

vibration (acceleration) signals on several locations on the truck simultaneously for the ride 

diagnosis. Next, data reduction is used to reduce the previously acquired data which usually 

reach an overwhelming number of points in a very short period. It can be done by various 

techniques, including transformations to other domains, f~ltering and parametric modelling 

techniques, in various domains: time, frequency, amplitude, etc. We mainly use frequency 

domain for ride diagnosis. Finally, signature analysis is performed to reveal the 

characteristics of interest so that a classification can be carried out to recognize the system 

state of interest. The techniques and classification strategies used for this step vary with 

application domains, and those used for rough ride diagnosis are the main topics for the rest 

of this chapter. 

2.4 PSD Analysis 

The power spectral density (PSD) [Jenkins 681, has been a useful representation of 

vibration strength in truck dynamic analysis. For a vibration signal x(t), the PSD gives the 

distribution of the power of x(t) with frequency and is defined as 



where R, is the autocomelation function. For discrete signal x(k) with N samples separated 
< 

by interval T, we have 

1 
S,(k . Aj) = -x*(k . Aj) . X(k Aj). 

N 

where Af = 1INT and X(k Aj) is the Discrete Fourier Transform (Dm of x(k). 

In our application, PSD is applied to the acceleration amplitude of the vibrations on a 

truck, since excessive acceleration causes discomfort and human body damage and hence 

is of main concern. The vibration signals collected by accelerometers mwicz 901 and the 

PSD's are estimated (see Section 4.2). Then, these PSD's can be used in several ways in 

the diagnostic procedure. 

Peso-abs on PSP 

This is a method based on b e  idmacation sf the modal resonances responsible f a  

the peaks on the PSD. There are 30 - 40 identifiable resonant modes potentially affecting 

ride in the frequency range below 20Hz. Some of them are simple, such as "rigid-body" 

mode produced by the overall tire-suspension-body system with the resonant frequency of 

1 - 2 Hz. Others are quite complicated, like frame-bending mode with not only the 

fundamental resonant frequency but also visible higher harmonics owing to the frame's thin 

beam structure. Some of these resonant modes on a truck are produced by certain vibration 

sources and hence can be used as the signatures of these sources. Thus, with a good 

knowledge of what vibrations are present at evgr point on a truck and the resonant modes 

involved, the trouble source for some rough ride problems can be identified. For example, 



a strong peak at the axle vertical (hop) mode implies excessive excitation from tirelwheel 

assembly with some kinds of nonunifoxmities. Figure 2.4-1 shows typical spectral 

components of cab vibration with the identification of the major modes of interest. 

w-Y  
modes 

tlre nronant 
modes 

flra frame bei~Jlng mode 

2nd frame bendlng mode 

1 
I I 

5 10 15 SO 

FREQUENCY (Hz) 

Figure 2.4-1, Typical modes of cab vibration. 

Some of the ride-related faults shift frequency components on the PSD. 

For example, low height of the air-bag in suspension system causes strikes on the 

bumper stop inside the bag when a large deflection of the suspension happens, thus the 

suspension system loses damping capability at this point. This leads to the up shift of the 

low frequency components on the PSD, because high-amplitude road roughness is 

concentrated in a range of long wavelength (low frequency). The envelop of a typical PSD 



of cab vibrations [Gillespie 851 and the anticipated effect of low height air bag suspension 

are illustrated in Figure 2.4-2. This can happen on a shock absorber when it bottoms out due 

to insufficient travel. 
T '  

5 10 
FREQUENCY (Hz9 

Figure 2.4-2, Effect of incomct air bag height. - 
The frequency and amplitude of some of the vibration excitations on board are 

dependent on truck travelling speed. Thus, a strong peak on PSD at a resonant mode can 

take place on a truck at a specific speed and disappear after the speed changes. Figure 2.4-3 

shows two PSD's taken from the driver's cab of a truck at speed of 80 and 90 Km/h, 

respectively. At the speed of 80 Km/h, the imbalanced wheel produced an excitation at 6.8 



Hz, which is the same as the axle hop mode frequency. Hence a strong peak on the PSD at 

6.6 Hz is present. At 90 Km/h, the excitation produced by the wheel shifts to 7.4 Hz, away 

fn>m the axle hop mode, thus no strong peak is found on the PSD at this frequency range. 

0 2 4 6 8 10 
FREQUENCY (Hz) 

F i  2.4-3, Speed dependency. 



2.5 Coherent Power and Transfer Function 

Power spectrum analysis is useful for resolving the frequency and strength of the 

components of a given signal, but has several limitations in identifying the source of a 

particular component vibration. When two vibration modes are present with their frequencies 

very close to each other, PSD becomes of little use. This is worse when the accurate mode 

frequencies for some modes on heavy truck are hardly known due to the variety of truck 

configurations. The use of multi-probe sensing scheme and coherent power analysis [Braun 

863 provides a further aid in the identification and monitoring of subsystems. 

The major concern here is the portion of vibration power at an observed point, which 

is usually the driver's seat, that comes from a vibration source. The power contributions 

from different sources thus can be compared so that the sources causing the most trouble at 

this point can be identified. A least-square repssion method [Bendat 861 can be used to 

estimate portion of vibration power at an observed pointy (usually the driver's cab) which 

is contributed by a source x, by means of two vibration signals, x(t) and y(t) which are 

collected simultaneously by the accelerometers attached to x and y, respectively. 

This method is based on the closeness or commonality of x(t) and y(t) (the input and 

output), by splitting y(t) into two components, one having commonality with x(t) and the 

other not. In linear situation, we try to find h(t) and n(t) minimizing S,, where 

YO) =hO) QDx(t)+n(th (23.1) 

where S,Cn is the power spectrum of n(t), and QD is convolution. By minimizing S,, the 

maximum power due to the part of y(t) that is linearly related to x(t) can be found. Figure 

2.5- 1 depicts this model. 



Figwe 2.5-1, Linear model of relationship between x(t) and y(t). 

In this model, y(t) is split into two components: h(t) @x(t), which is linearly related 

to x(t); and the residual, n(t), which is due to other sources including noise and/or the 

nonlinearity in the actual physical relationship between y(t) andx(t). Following [Bendat 861, 

the solution of the above equations is given by 

where H f l  is the Fourier transform of Ntj: 

h (t) = J H V, a exp(j2nf) a df. 
-... 

and SV@ and S d  are the cross spectrum and power spectnun [Jenkins 681, respectively 

S,V, =x*v,. Y(f), (23.3) 

S,(f) =x'@ XO. (23.4) 

where l denotes complex conjugate, andX(n and Yfi are the Fourier transforms of x(t) and 

y(t), respectively. It can be readily seen that h(t) is chosen so thatx(t) and n(t) are uncarrelated 

or orthogonal to each other, as shown below 



where N m  is the Fourier transform of n(t). With this, the power components at y can be 

easily derived by 

It is now clear that with this linear model in Equation (2.5. I), the vibration power at 

y can be split into two uncorrelated components due to x(t) and no) respectively, as given 

by above equation. Thus the coherent power, which &notes the portion of vibration power 

at y due to x, is given by 

coherent output power $cn= total output power 

represents the fraction of the power of y(t) due to x(t). 

In this model, h(t) simply constitutes a mathematical function that &fines the best 

linear relationship between x(t) and y(t) in the least-square sense. Several comments are 



worth making. First, since x(t) and y(t) are collected simultaneously from one truck with the 

same sampling parameters [Rawicz 901 in our application, h(t) obtained by using this model 

has strong physical meaning in regarding to the actual relationship between x(t) and y(t), 
.I 

rather than has only purely mathematical meaning [Braun 8q. Next, owing to the 

orthogonality of x(t) and n(t), this model can discern vibration sources with quite different 

vibration patterns (uncorrelated or weekly correlated), such as excitation from road 

roughness and the power line on a truck. But it becomes of little use when the problematic 

path among several paths connecting x and y is to be identified. Finally, although nonlinear 

characteristics of the vibration propagation path on heavy truck do exist, because the small 

neighborhood of the operating point at which the sampling of x(t) and y(t) takes place is the 

only range we are interested in, linear approximation does not give much discrepancy in 

such a small neighborhood, for our diagnostic purpose. In summary, coherent power can be 

used as a good approximation of the power due to the part of y(t) contributed by x(t) for the 

purpose of identifying unmla ted  or weekly correlated vibration sources in our application. 

As an example, Figure 2.5-2 shows the coherence functions between the front axle 

and cab vibrations at the same situations as those in Figure 2.4-3. The vibrations at the front 

axle (caused by a imbalanced wheel) accounts for the most vibration power (87%) at 

frequency of 5-7 Hz on the cab when the truck traveled at speed of 80 Km/h, but not at speed 

of 90 Km/h. Therefare, the source (this imbalanced wheel) causing the rough ride problem 

in this particular case is identified. 



0 2 4 6 8 10 
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Figure 2.5-2, Coherence function between the front axle and cab vibrations. 

Some faults on a truck can change certain transmissibilities (input-output gain 

[Gillespie]) between points on the truck, and hence cause ride problem (see Section 2.1). 

As the best (in least-square sense) estimate of the transmissibility, the transfer function given 

by Equation (2.5.2) can be used to monitor such a change and to identify the faults. As an 

example, F i m  2.5-3 gives two transfer functions between the front axle and the Erame of 

a truck on two different road (rough, smooth). Due to the old flat-leaf suspension and the 

lack of lubrication on the spring pin, the suspension system exhibits a sevm hysteretic 

behavior [Sayers 811, a type of nonlinearity between the farce and displacement on the 

spring which causes higher effective stiffness when the displacement on the spring is small. 

On the smooth road, the displacement is small, and the higher effective stiffness of the 

suspension causes a peak on the response gain (absolute value of transfer function) at 10 
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3 .  EXPERT SYSTEM APPROACH FOR DIAGNOSTIC PROBLEM 

SOLVING 

3.1 Knowledge Based Expert System 

A KBES differs from algorithmic problem-solving, in using domain-specific 

knowledge to cope with the enormous search space of alternatives found in real-world 

problems. An expert system can generally be characterized as including the following: 

- extensive specific knowledge from the domain of interest; 

- application of search techniques; 

- support for heuristic analysis; 

- capability to infer new knowledge from existing knowledge; 

- an ability to explain its own reasoning. 

Most KBES's have three components in common: a working memory, a knowledge 

base and an inference engine. The separation of these three components is a major difference 

from conventional algorithmic programs. Three major formats for knowledge representation 

are rule, frame-based and semantic network. 

3.2 ES Architecture in RE 

Figure 3.2.1-1 depicts the KBES structure used in RE. The consultation system asks 

the user to provide the truck's conditions and configuration, and the symptoms of the rough 

ride problems observed by the user. This information is put in the working memory, along 



with the information (vibration signatures) provided by the vibration data collection and 

analysis system. The inference engine conducts an inference trying to find the trouble sources 

accounting for the symptoms in the working memory, by using the knowledge in the 

knowledge base. The inference engine also send out, directly or through consultation system, 

control signals to obtain more infoxmation for the diagnostic procedure. These signals could 

be 

- suggestion for a mechanical check-up, to either support or reject a diagnostic 

hypothesis; 

- suggestion for the allocation or re-allocation of vibration sensors, to focus the possible 

problem areas and hence to reduce the search space; 

- types of mechanical signature analysis, to avoid unnecessary computation of vibration 

signal processing involved, which is usually very costly. 

Figm 3.2.1- 1, The Overall Structure. 



3.2.2 Two-Level Diagnostic Architectu~ 

Diagnosis is a process of fault-fmding in a system based on the observed system 

behavior, using knowledge of the correlation between the faults and behaviors. Heuristic 

knowledge, which is the heuristic relationship between diagnostic hypotheses (system faults) 

andobserved data (system behaviors), is the only type of knowledge usedin earlierdiagnostic 

expert system, such as MYCIN [Shortliffe 761. Such a relationship is a shallow correlation 

between the faults and behaviors, and usually represented by means of IF... THEN ..., 
Production rules. Figure 3.2.2-1 shows an example of such a kind, 

IF 

spring suspension used, and 

it is two or three years old, and 

the truck is travelling on a smooth road 

THEN 

harsh ride at 6-12 Hz could be felt at driver's seat, 

with probability 0.2. 

Figure 3.2.2- 1, A simple rule for spring suspension. 

Such an approach, regarded as the first generation of KBES [Steels 851 and classified as 

"Heuristic Classification" [Clancey 851, corresponds to the behavior of a domain expert who 

can solve most of the problems that he faces simply by using the experience gained in solving 

similar cases. This experience knowledge is necessary for solving diagnostic problems, but 

it is not sufficient for several reasons [Steels 85% Partridge 871. First, heuristic systems have 

good performance on typical cases but &grade rapidly when different cases are met. Next, 

it does not permit the generation of useful explanation, because the reasoning path followed 



to find a solution usually differs from a convincing rational argument why the solution is 

valuable. As an example, the interleaf friction of spring suspension actually causes the harsh 

ride on smooth road when old and poorly maintained springs are used, but the rule in Figure 
.I 

3.2.2-1 does not reveal this. It provides the "correlation" (connection) but does not provide 

"why". Finally, finding heuristic rules has turned out to be extremely difficult, and there are 

always problems of incompleteness and inconsistency. These reasons led us to use 

knowledge at a deeper abstract level. 

Causal model [Bobrow 84, Reggia 83, Console 901, which models the system under 

consideration by cause-effect relationships between system states, is an answer. Such a 

causal relationship can be effectively used to describe the behavior of the modelled system 

in a very precise way. Figure 3.2.2-2 shows a causal model of the spring suspension problem 

in corresponding to the rule in Figure 3.2.2- 1. 

2 or 3 years old, 
on smooth road. 

Figure 3.2.2-2, A simple cause-effect in spring suspension. 

However, for several reasons, some systems can not be modelled purely by causal 

model. Since a deep causal model is built at a lower level of abstraction with more details 

involved, the complexity (computational and spatial) might be prohibitive [Kahn 841 in 
I 

some case for large systems. Reasoning purely on a causal model does not produce the 

behavior of a human expert who certainly uses some forms of experience, at least to focus 

deep reasoning. Human experts tend to solve problems using experience knowledge first, 

... 25 ... 



that is, by directly associating observations with diagnostic hypotheses so that they can find 

the solution quickly or at least reduce the search space quickly. When this attempt fails, they 

start to consider the problem in a different and deeper way. The consequence of these 
1 

observations about heuristic and causal reasoning suggests that a good scheme for a 

diagnostic system might be to represent domain knowledge at different levels, so that 

reasoning can be performed at different levels of abstraction to optimize system performance 

Ir;ink 85, S ticklen 88, Koton 88, Milne 871. 

Therefore, an architecture combining heuristic (shallow) and causal (deep) reasoning 

[Torasso 891 is proposed for the KBES for RE. There are two sources of diagnostic 

knowledge for RE. One is extracted from MSA, the other is extracted from expert experience. 

Most of the knowledge from MSA is codified in causal-level, whereas the major of 

knowledge at shallow-level comes from expert experience (Figure 3.2.2-3). 

T I 

SHALLOW KNOmE W E  CAUSAL KNOWLEDGE 

Figure 3.2.2-3, Knowledge sources for RE. 

InFigm 3.2.2-3, we can see that the shallow knowledge also can be generated directly 

from knowledge at causal-level, an inherent learning mechanism [Steels 85b, Pazzani 871 

(for future research). 
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Figure 3.2.2-4, Inference control for two-level reasoning. 

Figure 3.2.2-4 depicts inference control for the two-level reasoning in INFERENCE 

ENGINE in Figure 3.2.1-1. The shallow-level is involved first to gather the initial 

information and to generate initial diagnostic hypotheses. In the cases when the certainty 

factors of these generated hypotheses are not high enough or these hypotheses are not focused 

enough to suggest a mechanical check-up usually leading to a solution, or when a 

confirmation of these hypotheses is requested by the user, the causal-level is activated to 

confim these hypotheses. This usually invokes more data gathering activities (vibration 

data collection and analysis). If an explanation is desired, the causal-level is invoked to give 

an explanation for the solutions RE has found. 

A brief description of a two-level diagnostic architecture will be given in the remainder 

of this chapter. 



3.3 Heuristic Level 

The knowledge at the heuristic-level is represented by production rules, such as one 

in Figure 3.2.2- 1. Such rules can be easily implemented in Prolog [Borland 881. A certainty 

factor is attached to each rule which gives certainty for this rule. MYCIN's certainty 

combination scheme [Shortliffe 84, Adam 841 is used, and it is readily implemented in 

Prolog [Sterling 86, Clark 821. 

As an example, the implementation of the rule in Figure 3.2.2-1 is given below. 

suspension(fault, CF) :- 
suspension(f1at-leaf-spring), 
suspension(age, 3), 
road(smooth, CF-smooth-road), 
ride(harsh, CLharsh-ride), 
retract( cf(suspension-fault, CFsusp) ), 
combine-cf(CF, CFsusp, [CEharsh-ri&,CF-smooth-mad], 0.2), 
assert( cf(suspension-fault, CF) ). 

Figure 3.3-1, Prolog implementation of a heuristic rule. 

3.4 Causal Level 

3.4.1 Knowledge Re~resemtion 

The knowledge at causal-level is represented in a formalism of "causal network" [Pad 

8 1, Console 901, which is a type of semantic network. A causal network is made up of a set 

of nodes representing various entities (such as system states, diagnostic hypothesis and 

fmdings), connected by different kinds of relationships. 

Five types of nodes can be used to farm a causal network: HYPOTHESIS, STATE, 

ACTION, INITIAL-CAUSE and FINDING, as listed in Figure 3.4.1- 1. 



NODE GRAPHICS REPRESENTATION 
* 

HYPOTHESIS < >  Dlagnostlc Hypothesis 

STATE (7) system State 

INITIAL-CAUSE O T D  Initial Cause 

ACTION Event Causing State Transition 

FINDING /- Observable State 

Figure 3.4.1- 1, Nodes used in causal network. 

HYPOTHESIS nodes correspond to the diagnostic hypotheses considered by RE. The 

causal-level shares some hypstheses with the shdw-level. A STATE no& aepaesents a 

possible situation in which the modelled system can be at a given time. A FINDING node 

corresponds to an observable state of the modelled system, in comparison with internal states 

which are usually not observable. Two kinds of fmding are used: easily observable states 

and those valuable only after a sort of in-depth analysis, such as spectrum andysis in MSA. 

These nodes are connected by "arcs" representing the relationships among the nodes. 

Six types of arcs can be used in RE, namely CAUSAL, HAM (Has As a Manifestation), 

SUGGEST, DEFINED-AS, FORM-OF and LOOP, as listed in Figure 3.4.1-2. A 

I CAUSAL arc represents a cause-effect relationship (between system states) which is 

augmented with information about the events causing the state transitions. A condition can 

I. be attached to an arc under which the state transition can take place, as shown by the fcnmula 



is an external manifestation of the state. A DEFINED-AS arc represents the fact that the 

diagnostic hypothesis is defined as the presence of the state. A SUGGEST arc represents 

that presence of the state suggests the analysis of the hypothesis as a collateral or an 

alternative one. FORM-OF arcs connect HYPOTHESIS nodes to form the hierarchy of the 

diagnostic hypotheses in a causal network. 

ARC GRAPHICS MEANING FORMULA 

CAUSAL mAj+@TJ ,-  causeeffect 

MAY 
MAY-CAUSE C S1 may s2 cause-effect 

HAM 
HAM ( s F / manifestion 

DEFINEDAS S )--< H > definition 

SUG 
SUGGEST ( s x  H > suggestion 

LOOP A I causeeffect 

FORM 
FORM-OF < HI )--c< ~2 > specialization 

Figure 3.4.1-2, Arcs used in causal network. 

As an example, Figure 3.4.1-3 illustrates a causal model for air bag suspension system. 



Air beg suspension 0 
' ~ 1 ~ ~ ~ ~ /  improper setting 

F i p  3.4.1-3, A causal model for air bag suspension system. 

3 A.2 Hwothetical Reasoning 

Causal-level reasoning can be used to confirm a diagnostic hypothesis generated by 

shallow-level, or to provide deeper explanation. The main reasoning strategy for this 

confirmation purpose is discussed in this section. 

Suppose that a diagnostic hypothesis, H, is to be confirmed in a causal network. The 

following is the general reasoning procedure. 

I. A backward search is conducted for all STATE nodes, Sd, (i=l, ...a), defining H, 

and a confirmation for each Sd, is attempted, which comprises of 3 steps @, III 

and VI below). If every Sd, is confirmed (present), H is coflmed. 



A forward search for all the FINDING nodes connected from Sd, by HAM arcs is 

performed. Then, each of these nodes is checked for its presence. This could involve 

the consultation with the user and/or acquisition for vibration data. If one of these 

FINDING nodes is absent present, see explanation below), we say 

that the STATE node Sd, is rejected, and the attempted confhmtion for H fails. 

Otherwise, the reasoning procedure goes on. 

If the conditions attached to each causal arc entering Sd, are satisfied, go on to next 

step. This might demand more input idonnation. 

A backward search for all the causing STATE nodes connected to Sd, by causal 

arcs is conducted, and confinnation for each of these STATE nodes is attempted. 

If all these causing STATE nodes are confirmed, Sd, is confirmed. 

Figure 3.4.2- 1 illustrates the chain of such areasoning. If His confirmed, any suggested 

hypothesis connected by SUGGEST arc to any confmed STATE nodes in the above 

procedure will be a candidate to be analyzed or confirmed, 

I 1. BACKWARDSEARCH I I FORWARDSEARCH I 

Figure 3.4.2-1, An example of causal reasoning chain. 



This reasoning scheme (modified version of a hypothetical reasoning scheme [Console 

901) has been designed with two main concerns. First, in MSA, the data, which are either 

direct measurement or a result of in-depth analysis (such as transfer function analysis), 
, 

usually have some degree of ambiguity, and sometimes the analyzed fault signatures are 

masked by noise or the signals of other effects on the truck. Therefore, when the status of 

a FINDING node is to be determined based on input data, three linguistic value are used: 

present, absent and uncertain, with meanings of Dresent. and 

-, respectively. In step I, when one of the FINDING nodes is absent, the implication 

formula for HAM arc (Figure 3.4.1-2) does not hold if the STATE node is present 

(confirmed), and hence an inconsistency is found. This implies that certain assumptions 

(see below) previously made along the reasoning chain do not hold any more and the 

reasoning chain should be entirely or partially abandoned. One the other hand, when none 

of these FINDING nodes is absent, the reasoning process should continue, under an 

assumption that they are present if some of them are uncertain. Then, the reasoning is 

continued in a (hypothetical) reasoning woru [Kripke 59, Console 901 with this assumption 

present. If an inconsistency is found in this hypothetical world, it is rejected and the reasoning 

is continued in the previous world, by looking into other search branches. The similar 

hypothetical reasoning can be applied to MAY-CAUSE arcs [Console 901. 

The causal network should be so structured that the FINDING nodes closest to 

LNITIAGCAUSE nodes (e.g. M1 in Figure 3.4.2-1) have no or very little uncertainty in 

terms of determining their presence, such as the result from an accurate transfer function 

analysis (Section 2.5) or a mechanical check-up. Mechanical check-ups usually serve as the 

last resort of rough ride diagnosis because of the cost, but are always able to explain the 

observed facts with no or little uncertainty. In such a way, when the reasoning finally reaches 

the LNITIAGCAUSE, there is little uncertainty left for the acceptance or rejection of the 

hypothesis being confirmed. Such a (qualitative reasoning) characteristic of this hypothetical 



reasoning makes it, in some cases, certainly superior to shallow reasoning with certainty 

factor combination scheme when it provides the user with several competing diagnostic 

hypotheses with similar certainty factor. 

The other concern when this reasoning scheme was designed was computation 

complexity. In the reasoning procedure, the search space should be reduced as early as 

possible and as much as possible, with less expensive information. The further the reasoning 

proceeds, the more effort should be involved to obtain the solution, i.e. the more expensive 

is acquiring further information for the infe~nce procedure. This is like the way a human 

expert works on a problem. In a similar way, the reasoning scheme discussed above searches 

a causal network backwards from the fmal effects to the initial causes (can be considered 

as a kind of abductive inference [Charniak 85, Pople 82, Reggia 85]), so as to minimize the 

cost along the reasoning path. The final effects are usually observable at an early stage of 

the diagnosis and hence the acquisition for their manifestation is the least expensive (e.g. 

from consultation with the user), whereas the initial causes are usually revealed ultimately 

by a mechanical check-up, the most expensive one. 

The expert system is to be implemented in Prolog for several reasons. Some of available 

expert system shells support multiple schemes of knowledge representation and 

object-oriented programming which are necessary for RE implementation, but they are quite 

expensive (above $5,000) and none of them runs on IBM PC [Harmon 881. Turbo Prolog 

[Borland 881 is inexpensive and has a good interface with Turbo C which is used for 

implementation of signal processing subsystem of RE. Moreover, as we will see in the 

remainder of this section, by using an object-oriented programming scheme in Prolog 

[Torasso 891, the causal level can be implemented in Prolog, and the integration with the 

I shallow level can be readily achieved. 



Each node in a causal network is conside~d as an object which is characterized by a 

set of local variables and a set of reasoning methods, and represented by a set of Prolog 

clauses. The name of the predicate of these clauses' left hand side is the same with the name 

of this node. ~ o c a l  iariables are represented by ,assertions (facts), whereas reasoning methods 

are represented by complex clauses (rules). As an example, the implementation of a causal 

work is illustrated in Figure 3.4.3-1. 

I CAUSAL LEVEL 
PREPROCE(ISOR I 

I S l l  ... 

I s r ( ~ ~  nfirnn,...) :- s~(forw& ...I, 
S 1 (backward,...). 

I S l  (forward, ...) :- M1 (presence ,... ). 

I S 1 (backw ard,...) :- S 1 1 (confirm, ...). 
S l  (backw ard,...) :- S12 (confirm, ...). 

I S3 (confirm, ...) :- S3 (forward, ...), 
S3 (backward, ...). 

I S3 (forward, ...) :- M3 (presence ,... ). 

I S3 (b ackward,...) :- S l  (confirm, ...), 
S2 (confirm, ...). 

Figure 3.4.3- 1, Implementation of a causal network. 

... 35 ... 



3.5 A Complete Example 

In this section, we shall consider a simple hypothetical example of rough ride diagnosis 

by using the diagwstic techniques and the reasoning mechanism presented so far. 

At first, a symptom (a complaint from the driver) of harmonic ride (see section 2.2) 

is input into the expert system, and the shallow level generates a diagnostic hypothesis: 

rotating vibrations, by using a heuristic rule in the shallow level knowledge base: 

IF 

harmonic ride 

THEN 

rotating vibrations (cf4.6). 

Then, the causal level is invoked to confirm this hypothesis and to look further for the 

trouble source, by reasoning on the causal network of rotating vibrations as illustrated in 

Figuse 3.5:. 

The confirmation of hypothesis, rotating vibrations, starts from HYPOTHESIS node 

of rotating vibrations. First, the confirmation of STATE node of rotating vibration, which 

def~nes this hypothesis, is attempted. In the FOUNDING node connected from this STATE 

node, a PSD of vibrations in the driver's cab is acquired at truck speeds of 80 Km/h (at 

which the rough ride occurs according to the driver's complaint) and 90 Km/h. This PSD 

shows a strong peak at 6.6 Hz at speed of 80 Km~h, but does not at speed of 90 Km/h, and 

hence the speed dependency of vibration amplitudes (see section 2.4, Figure 2.4-3) is 

identified which confirms the existence of rotating vibrations. To find the initial cause, the 

reasoning goes on to confirm STATE nodes of front rotating vibrations and rear rotating 

vibrations. Node offront rotating vibrations is rejected by its FOUNDING node, in which 

... 36 ... 



Figure 3.5-1, A causal network of rotating vibrations. 

the coherence function between the vibrations of the front frame and the cab shows that a 

very small fraction of cab's vibration power comes from front part of the truck and hence 

the excessive vibrations comes from somewhere other than the front. The coherence function 

in the FOUNDING node connected from STATE node of rear rotating vibrations supports 

the presence of this STATE node (a peak at 6.6 Hz on this coherence function), and hence 

the reasoning continues in the branch of this causal network started from node of rearrotating 

vibrations to search back for the cause. In the FOUNDING node connected from STATE 

node of driveline vibrations, the frequency calculation shows that the frequencies of the 

vibrations generated by driveline at current speed (80 Km/h) are 28 Hz and its multiples 



(harmonics), far away from the frequency (6.6 Hz) at which the rough ride occurs. This 

STATE node is thus rejected. In the FOUNDING node connected from STATE node of 

LRR axle vibrations (the consequence of the MTIAL-CAUSE node of Imbalanced LRR 
1 

wheel), the coherence function between the vibrations of the left end of rear rear-axle (LRR 

axle) and the frame shows this part of this axle contributes the most of vibration power at 

rear frame, implying that the left rear rear-wheel (LRR wheel) has imbalance problem (the 

initial cause: trouble source). This is fmally proved by a mechanical check-up. 



4 .  RE DEVELOPMENT 

4.1 Vibration Data Collection 

The vibration data are collected by a multi-probe system [Rawicz 901 and transferred 

to a PC. The sample interval is 5 milliseconds, which gives us the undistorted signal under 

100 Hz (Nyquist sampling theorem), enough for our application: low frequency range. This 

sample interval also gives the necessary 0.38 Hz frequency resolution with only 512 

point-DFT (Af = 1 INT), that is - less computation. Each sample record has 16,384 points, 

which is enough for 32-segment averaging to get good quality PSD estimates (see next 

section). This is only suitable for a good surface road because it takes 82 seconds to acquire 

this lengthy record, and it does not change characteristics within this distance. By using 

Reverse Arrangements Test method [Bendat 861, stationarity tests of the smooth road with 

this length have been carried out and no evidence has been found to reject the stationary 

assumption [Nigam 831. 

4.2 Spectral Estimation 

The segment-averaging method [Nuttall 801 is used to estimate the auto-spectrum 

(PSD) and cross-spectrum, This method is based on dividing the signals, x(i) and y(i) with 

length of N, into M segments 



where N, = N IM is the length of each segment. We now compute the estimates of either 

auto-spectrum S, or cross-spectrum S, for each segment as 

whereXJ(i) and Yki) are the Discrete Fourier Transform (DFT) of xJ(i) andyJ(i), respectively. 

Then, we can get the estimate of either S, or S, by ensemble averaging 

The normalized random e m  (coefficient of variation) of these estimates is inversely 

proportional to the square root of M [Bendat 861. Because of our accelerometer's low 

response at high frequency range [Rawicz 901, the signals from these sensors are consihred 

as low-passed signals and hence low-pass filtering to prevent aliasing errors [Bendat 861 is 

no longer necessary. But a time weighting function (window) [Nuttall 8 11 is applied to each 

time segment in Equation (4.2.1) befm the DFT, toreduce the leakage error. Time weighting 

is preferred here to lag weighting [Bendat 861, since the frequency resolution which can be 

possibly achieved by using data records with a limited length is of main concern. 

The estimate of transfer function is given below [Bendat 861, by using the results 

obtained above 



4.3 Data Structure for spectra 

As we have seen earlier, vibration spectra are heavily used in RE as the diagnostic 

information carriers. Computation of these spectra is very costly, as seen in the previous 

section. The storage space for these spectra is also large, due to the overwhelming number 

of data points. So, compromises often have to be made between necessary recalculation 

when the same data is requested more once in a diagnostic procedure, and overwhelming 

storage space needed to prevent re-calculation. As a solution, a multilevel signal abstraction 

scheme [Milios 891 is used in RE to carry spectral information. 

Spectral information is expressed at three levels of abstraction: the numeric spectrum 

level, the peak level, and the harmonic peak set level. 

The numeric spectrum level is the lowest level of abstraction, and is described as a set 

of pairs: (frequency, amplitude), carrying all the detail information of a discrete frequency 

spectrum. This level is usually used to carry the raw spectra for further abstraction or analysis, 

and those spectra which can not be properly characterized by their peaks. 

In the peak abstraction level, spectra are characterized by their peaks by losing some 

detailed infomation, and are described as a set of peaks, each of which is described by 

(frequency, amplitude, characterization). Here, the "characterization" is used to 

characterize the peakin terms of peak strength. A spectnun at this level is consideredcarrying 

almost the same amount of information if the peaks are of only interest in the analysis, such 

as the example shown in Figure 2.4-3, but needs much less storage space than the numeric 

spectrum level. 

The harmonic set abstraction level is used to describe a spectrum by a set of harmonic 

sets, each of which is described by the fundamental frequency and a set of harmonically 

related peaks (at the multiples of the fundamental frequency) and the characterization. This 

is the highest level and is useful when high level description of the harmonic set is needed, 



such as the frame-bending modes: a harmonic set, shown in F i g m  2.4-1. A set of 

harmonically related peaks can be found Erom a vibration spectrum by using Cepstrum 

technique [Randall 80, Rawicz 901. 
< 

4.4 Program Organization 

RE comprises two major subsystems, the signal processing and the expert system. The 

signal processing subsystem is written in Turbo C, whereas the expert system is to be written 

in Turbo Prolog. Turbo Prolog has a good interface with Turbo C and they both provide 

good graphics facilities. As discussed in Section 3.2.1, the signal processing subsystem 

accepts the control signal from the expert system and returns the data requested by the expert 

system. This can be implemented by calling C functions (as predicates) from Prolog, to 

allow the expert system to be in main control. 



5. CONCLUSION 

The diagnos$c problem for rough ride on heavy trucks is a difficult problem, and has 

no systematic solution with conventional algorithmic methods. A variety of techniques with 

quite different characteristics can be used in the diagnosis, ranging from heuristic to 

analytical. These motivated this thesis. More specifically, this thesis studied the techniques, 

heuristic and analytical, which have good perfonmince on this diagnostic problem can 

be unified under the m f  of a Knowledge Based Expert System. The KF3ES for RE has been 

conceptually designed based on a good understanding of these techniques. 

The success of RE &pen& on several points which highlight some contributions of 

this thesis. These points are: 

1. A broad range of technologies must be used to cope with the difficulties in 

ride diagnostic problem. 

2. Mechanical Signature Analysis provides powerful tools for vibration analysis 

and hence for rough ride trouble-shooting. Coherent power is proved to be 

powerful enough to distinguish the trouble source from other vibration 

sources with considerably different characteristics. 

3. Two-level diagnostic architecture combines two kinds of knowledge and their 

advantages as well, providing the capability of covering a wide range of rough 

ride problems, with high diagnosis efficiency and better explanation features. 

The research in this thesis is the beginning of a large project: building RE with real 

I practical value. Future research will include the implementation of the prototype of this 

KBES to validate the major concepts in the &sign, to clear the road for the final system 

&sign and implementation. More techniques for higher diagnostic resolution, such as 

Cepstrum [Randall 801, are also worth being studied to improve the diagnostic resolution. 
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