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ABSTRACT 

We present a notion of tree-decomposition for first -order theories and 

structures, proving it equivalent to several other conditions. We conclude the 

discussion with examples of structures and theories satisfying these conditions. 
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"What had formerly mattered was following the sequences of ideas and the 

whole intellectual mosaic of a Game with rapid attentiveness, practiced memory, 

and full understanding. But there now arose the demand for a deeper and more 

spiritual approach. After each symbol conjured up by the director of a Game, each 

player was required to perform silent, formal meditation on the content, origin, 

and meaning of this symbol, to call to mind intensively and organically its full 

purport. The members of the Order and of the Game associations brought the 

technique and practice of contemplation with them from their elite schools, where 

the art of contemplation and meditation was nurtured with the greatest care. In 

this way the hieroglyphs of the Game were kept from degenerating into mere 

empty signs." 

-Hermann Hesse, The Glass Bead Game 

(Translated from the German by Richard and Clara Winston.) 

"It was not easy. It needed great powers of reasoning and improvisation. 

The arithmetical problems raised, for instance, by such a statement as "two and 

two make five" were beyond his intellectual grasp. It needed also a sort of 

athleticism of mind, an ability at  one moment to make the most delicate use of 

logic and at  the next to be unconscious of the crudest logical errors. Stupidity was 

as necessary as intelligence, and as difficult to attain.'' 

-George Orwell, Nineteen Eighty- Four. 



Introduction 

This thesis is concerned with a branch of model theory known as stability 

theory, some of whose basic notions are implicit in an early paper of Michael 

Morley. These notions were made explicit and generalized by Saharon Shelah, who 

introduced the idea of a stable theory. His work was motivated in part by the 

problem of classifying the models of a given first-order theory according to some 

organized and simple system of cardinal invariants, such as the dimension of a 

vector space over a given field, the number and cardinalities of the equivalence 

classes of an equivalence relation, or the torsion coefficients of an abelian group. 

One of his principal results, and one that accounts for the great interest in stable 

theories, is that without the hypothesis of stability, this problem is actually 

intractable, and no such cardinal invariants can exist. Furthermore, the number of 

such models in a given infinite cardinality greater than the cardinality of the 

language, a say, is actually the maximum possible, namely 2a. Thus one can hope 

to have a reasonable taxonomy for the models of a given theory only if that theory 

is stable. 

There are two definitions of stability common in the literature of the subject. 

One is that a theory is stable just if no infinite linear ordering of tuples in a model 

of the theory is definable by a formula; this the definition we use here. The other is 

that a theory is stable in case the space of types of finite tuples over an infinite 

subset of a model never exceeds the cardinality of that subset. It can be shown (see, 

e.g., [PI) that the two definitions are equivalent. Our Chapter 1 is primarily a 

compendium of basic results about stability, but concludes with two lemmas of 



general model theory not especially pertinent to the topics of stability or forking. 

Various conditions stronger than stability have been considered in the hope 

of achieving correspondingly stronger classification results. One such is called 

tree-decomposability, and first appeared in [BS]. This concept is first introduced 

here in Chapter 2, which is devoted to listing several conditions on a theory and 

establishing that each is equivalent to tree-decomposability. The main results here 

are drawn from [BS]. We hope that the treatment given here will be easier to follow 

than that of Baldwin and Shelah, who were pursuing a much wider investigation. 

Chapter 3 concludes the work by furnishing a few concrete examples of 

tree-decomposable theories. Tree-decomposability is such a stringent condition 

that such examples are fairly difficult to come by. 

The notation we have adopted is mostly standard, with a few exceptions 

which are worth noting here. Where letters a, A, represent objects of some kind, 

the same letters equipped with overbars, such as a, A, ..., are used to represent 

tuples (finite sequences) of objects of the same kind. The length of a tuple a is 

denoted !($. Where convenient, the same symbols a, A, ... are used for the 

ranges of these tuples. A symbol for an infinite sequence is obtained by enclosing a 

symbol for a typical entry in angle brackets, thus: (ai : i < w) . The empty 

sequence is denoted 0; if p, a are sequences, then we write p c a to mean that 

p is a proper initial segment of a. The sequence obtained by concatenating tuples 
- 
a, 6, ... is denoted a6 ..., and this practice is extended even to transfinite 

concatenation. In certain cases, particularly those which involve the independence 

symbol J., we also represent a union of two sets A U B or A U {b) by 

juxtaposition, thus: AB, Ab. Except where noted, if B is a set and A is a 



(possibly transfinite) sequence of sets, then AFB is the sequence of sets such that 

AFB has the same length as A and an entry of AFB is obtained from the 

corresponding entry of A by intersecting it with B. If E is an equivalence 

relation defined on some set including a, then ["IE is the equivalence class of E 

to which a belongs; if in addition A is a set, then E IA is E n (A x A) .  



Chapter 1 

Background 

Here we lay the foundation for the material to be presented in Chapter 2. 

We assume the reader is familiar with the concepts of first-order logic and model 

theory. A good general reference is the text of Chang and Keisler [CK]. Within 

model theory we shall be working with the concepts of stability theory, also called 

classification theory, a theory which has been developed largely by Shelah during 

the last two decades. In this regard several references are available. We shall rely 

on Pillay's book [PI which is less intimidating for the beginner than the more 

comprehensive works of Baldwin [B] and Shelah [S]. 

First-order theories considered will be assumed complete unless otherwise 

described. For each theory T, the underlying first-order language L is assumed 

relational, except that we permit constant symbols. The number of relation and 

constant symbols in the language L is denoted I L I .  Models will be denoted by 

M, N with or without subscripts and occasionally by other letters. The universe of 

a model M will also be denoted M and its cardinality by I M I . The restriction to 

relational languages should spare the reader any confusion arising from the failure to 

distinguish notationally between a model and its universe. Subsets of models will be 

denoted A, B, C, ... with or without subscripts. We will observe the following 

convention, first adopted by Shelah. In the context of a particular first-order 

theory T, all models of T considered are elementary submodels of a fixed monster 

model C, referred to in [PI as the big model, and therein denoted m. This model C 

is &-saturated for every K < 1C1, and is homogeneous in the sense that given two 



subsets A and B of C of like cardinality < 1 C 1 and an elementary map f from 

,4 to B, there is an automorphism of C extending f. The sets C and C /  are 

called conjugate over A if there is a automorphism of C which fixes A pointwise 

and maps C onto C ' .  

The relation of inclusion between elementary submodels of C is denoted I. 

If the models of T we wish to consider all have cardinality < A,  then any model 

C with the following mapping properties will do: 

( i )  If M 5 C, N is any elementary extension of M (not necessarily related 

to C), and I M 1 ,  I N I < A ,  then there exists an elementary embedding F of N 

in C which fixes M pointwise. 

(ii)  If M, N 5 C have cardinality < X and F : M -+ N is an isomorphism, 

then F can be extended to an automorphism of C. 

In the context of T,  not only are models assumed to be elementary 

submodels of C, but sets denoted A, B, C with or without subscripts are assumed 

to be subsets of (the universe of) C, and elements and tuples of elements are also 

assumed to be from & The monster model is valuable because at one stroke it 

makes accessible all consequences of the amalgamation property for elementary 

classes; it also makes it possible to shorten and simplify many arguments. 

Mnition 1.1 The first-order theory T is unstable if there are a formula 

$(Z,y) of L(T), with C($ = 4 3 ,  and l(3-tuples ai (i  < w) such that 

I= $(a. ,%.) if and only if i c j for all i, j < w. T is stable if it is not unstable. 
1 J  



This definition is not the one chosen by Pillay, but is shown equivalent in [P, 

Theorem 2.151. It is understood that the Zi are tuples of elements of the monster 

model C and that k refers to truth in C. Here we have tacitly adopted another 

model-theoretic convention. When we speak of the formula $(x,y) it is understood 

that a triple ($,x,y) is given, consisting of a formula $ and disjoint tuples of 
- - 

variables x, y such that every variable free in $ occurs in either x or y. 
When we speak of types, it should be clear from the context whether we are 

speaking of complete types or arbitrary types. The set of (complete) n-types over 

A is denoted Sn(A). If p E Sn(A), then a dejning schema d for p is a mapping 

$(x,y) I --+ d$(y), where x is a distinguished n-tuple of variables, $(x,y) runs 

through all formulas without parameters, dd(y) is a formula over A, and 

$(Z,6) E p <=> t= d$(Q 

for all 6 E A. One of the pleasant features of stable theories is that complete types 

are definable (see [P, Proposition 2.191): 

Theorem 1.2 Let T be stable and n < w. Every p E Sn(A) has a defining 

schema. 

From now on we are going to assume that the theory we are dealing with is 

stable. 

With the concept of stability in hand, we proceed to introduce the notions of 

forking and independence. Once again, for the sake of simplicity we use an 

equivalent condition rather than the definition chosen by Pillay. 



Definition 1.3 Let T be a stable first -order theory and #(x,y) be a 

formula of T. 

(1) The formula $(ji,6) is said to fork over A if there is a set {Si : i < w )  

indiscernible over A such that EO = 6 and the formulas $(2,Si) ( i  < w) are 

aImost disjoint in the sense that for some n < w, 

!= 1 3x ~{#(? ,6 . )  : i < n). 
1 .  

(2) A type p E Sm(B) forks over A if there is a formula #(x,6) E p which 

forks over A. 

(3) B and C are independent over A, written B 4 C, if for every c E C, 
A 

tp(cl A U B) does not fork over A; B and C are independent, written B L C, if 

The property we have chosen to define the forking of a formula over A is 

called dividing over A in [PI; see Proposition 6.8. Some useful properties of the 

independence relation are collected in: 

Theorem 1.4 (Properties of the independence relation) 

(1) (Finite character) 

(i) A J C if and only if A. 1 Co for all finite AO, CO with AO r A and 
B B 

Co L C. 

(ii) If l [ A  1 C], then there exists finite Bo c B such that 1 [A C] for 
B D 

all D with BO c D B. 



(2)  (Lowering) If A L C, then A 1 C for all D such that 
B D 

B c D c A u B u C .  

(3) (Raising) If A L C, D c B, and E c B ,  then A U D L C U E. 
B B 

(4) (Transitivity) If A L C and A D, then A D. 
B BUC B 

(5) (Symmetry) A L C if and only if C L A. 
B B 

(6) (Extension) For any A, B, C there exists C' conjugate to C over B 

such that A C r .  
B 

(7) For all A and B, there exists C c B such that 

ICI < ILI + IAI + N o  and A B. 
C 

Transitivity and extension are Proposition 3.8 (iii) and (iv) of [PI, while 

symmetry is Proposition 3.9 of [PI, reformulated in terms of independence. Part (7) 

is Proposition 3.23 of [PI. In the presence of symmetry, the other properties follow 

easily from the form of the definition of forking. In applying the above rules for 

manipulating the independence relation, we shall often use symmetry tacitly. 

There is an important connection between the definability of types and 

independence: 

Lemma 1.5 Let M be a model, l(Z) = l(x), and d be a defining schema 

for tp(Z 1 M). Then Z L B if and only if for every formula $(:,a and 
M 



We need the notion of strong type, which is somewhat awkward to define. 

Recall that an n-type over A is a consistent set of formulas $(F) over A, where 
- 
x is a designated n-tuple of distinct variables. Further, for an n-tuple a, the 

type of a over A, denoted tp(ZlA), is the set 

{$($ : $(F) is a formula over A and k $(a)). 
Let FE"(A) denote the set 

{E : E is an equivalence relation on 

and has only finitely many classes), 

and CFE"(A) denote U{@/E : E E FE"(A 

Cn which is definable over A 

)). A strong n-type over A is a 

subset p of C F ~ ( A )  such that n p # 0; p is called complete if p n (c"/E) # 0 

for all E E F ~ ( A ) .  For an n-tuple ii the strong type of over A, denoted 
- 

stp(a1 A), is {X E C F ~ ( A )  : a E X}. For a strong n-type p over A, the 

corresponding n-type p* over A is 

{$($ : $(x) is over A and 3X E p such that the 

solution set of $(x) in fl is u cr(X)). 
cr E Aut(C) 

For an n-type p over A the corresponding strong n-type pS is 

{X E C F ~ ( A )  : 3 $ ( 3  E p such that X is the solution set of 

Clearly, pS = qS if and only if the types p, q are equivalent, and (pS)* is 

equivalent to  p for any n-type p over A. If A is the universe of a model, i.e. of 

an elementary submodel of C, and p* and q* are equivalent, then p and q 

are equivalent in the sense that n p = n q. When we restrict to complete types and 

complete strong types over a model, then the mappings p I -+ pS and p 1-4 p* 



are bijections, and each is inverse to the other. A basic lemma about strong types 

is: 

Lemma 1.6 (1) For all a ,  A, B there exists 6 such that stp(61 A )  = 

stp(Z1A) and 6 1 B. 
A 

- 
(2) For all a, 6, A, B, if stp($/ A) = stp(G1 A), a J B, and 6 1 B, then 

A A 

Prooj (1) Choose a model M 2 A such that M 1 B. This is possible by 
A 

extension. Again by extension, choose 6 such that tp(61 M) = tp(Z(M) and 

6 1 B. By transitivity, B 6. Further, stp(Z1A) = stp(61 A) since a and 6 
M A 

realize the same strong type over M. 

(2) This is Proposition 4.34 of [PI. 

The first part of the lemma is essentially the rule of extension (Theorem 1.2 

(6)) for strong types. The analogue for types of the second part of the lemma is not 

true; this is the reason for introducing strong types. 

A sequence ( : i < w) is a Morley sequence over A if each ai realizes the 

same strong type over A and 1 %...ai for each i < w. 
A 

Lemma 1.7 Let (ai : i < w)  be a Morley sequence over A. 

(1) {Xi : i < w} is an indiscernible set over A. Then: 

(2) If % 1 A, then Z0Zl... J, A. 



P r o o j  (1) This is essentially Fact 7.3 of [PI 

(2) By induction on i, we show that %.. .ai 1 .4 for all i < w. By finite 
- 

character, this is enough. The basis is given. Suppose that %...ak I A. Since 

(Xi : i < w )  is a Morley sequence over A, Zk+l 1 go..." and stp(ak) = 
A 

- 
the latter, ak+l 1 A by comparison with go. By transitivity, io...akA., 

By raising, lowering, and finite character, we get 

- - 
From this and the induction hypothesis, we have %...akakil j A by transitivity. 

This completes the induction hypothesis and the proof. 

There are two other standard lemmas we shall need, which are not strongly 

connected with stability. A formula $(F) over A is called non-null if I= 3Z $(?). 

Lemma 1.8 (Tarski-Vaught Criterion) If every formula $(x) over A 

which is non-null has a solution in A, then A is the universe of a model. 

Of course, according to  our convention, A c C, and the conclusion means 

that A is the universe of an elementary submodel of C. 



Lemma 1.9 Let $(?r) be a non-null formula over A and B be a finite set 

such that != V?[@(?) --+ ? r l  B # 01. Then acl(A) fi i3 # 0. 

Proof: If $ has only finitely many solutions in M, the proof is easy. 

If not, let Z' (i < w) be distinct solutions of 4 in M. Choose s {1, ... ,q%)} 
and b. ( j  E s) with 1 s 1 as large as possible such that for infinitely many i ,  J 
a', = bi  for all j  E S. Note that 1 s 1 < 4:). By thinning we can suppose that 

J J 

ai. = b. for all i < w and j c s, and that aih # ak for all i, k < w and 
J J j 

h, j  E (1, ... ,I(:)) - s. This shows that s # 0; otherwise the hypothesis about A 

would be violated. To simplify notation, suppose that s is an initial segment of 

(1, ... ,l(F)}, and write F = F ,  where I(?) = I s 1 . Let m = I B I . Consider the 

formula 

This formula is non-null since M I= 7/45). Also, it is clear that if 6/ is any solution 

of $, then we can choose F such that M k $(6/E) and c n B = 0. Thus any 

solution of $ meets B. The result follows by induction on I(%). 



Chapter 2 

Main Results 

We recall that a first-order theory T is unstable if and only if there exist n,  

1 5 n < w, and a formula cp(x,y) of T with l(x) = (7) = n, such that in some 
- - 

model M of T, there are n-tuples iii (i < w) satisfying M I= y(a.,a.) <=> 
' J  

i < j ( i ,  j < w). This concept can be adapted to monadic logic in various ways. In 

this chapter, we introduce strong and weak notions of monadic unstability for 

first-order theories, and prove a theorem of Shelah showing that for strong monadic 
- - 

unstability, whether the definition is framed in terms of tuples x, y or singletons 

x, y makes no difference. Later in the chapter we introduce the notion of 

tree-decomposability for a first-order theory. We prove that a number of 

conditions are equivalent to tree-decomposability, among them strong and weak 

monadic stability. 

Definition 2.1 We define a first-order theory T to be strongly monadically 

unstable if there are a first-order formula $(x,y) in an extension TI of T by 

unary predicates and a model M of T I  such that $(x,y) linearly orders an 

infinite subset of M. We will say that T is weakly monadically stable precisely 

when it is not strongly monadically unstable. In the same vein, we define T to be 

weakly monadically unstable when there exist an extension T '  of T by unary 

predicates and a monadic formula #(Fly) of T /  such that l(x) = l ( y ) ,  and, for 

every cardinal A, there is a model M of T I  in which q5(F,y) linearly orders a 



subset of M4') of size A. T is strongly rnonadicolly stable when it is not weakly 

monadically unstable. 

Theorem 2.2 Let the first -order theory T contain some formula @(?,y) 
- 

such that (1) x and are of equal length k, and (2)  every linear ordering is 

realized as the ordering induced by $ in a set of k-tuples in some model of T. 

Then there is a formula 4' ( X , ~ , A )  with new unary predicates A, such that any 

linear ordering is realized - by interpreting the new unary predicates appropriately - 

as the ordering of individuals defined by $ I  in some subset of a model of T. 

Prooj  The following is a modified form of the argument given in Section 8 

of [BS]: 

Let a theory T and formula $(x,y) be given which satisfy the hypotheses 

of the theorem. Then there exists a model M of T and a collection of k-tuples in 

M such that $ defines among the tuples of the collection a dense linear ordering 

without endpoints. Invoking Rarnsey's theorem and compactness, we lose no 

generality by assuming the tuples to be order-indiscernible; given 

order-indiscernibility, we lose no generality by assuming the tuples to be pairwise 

disjoint. Furthermore, there is clearly nothing to prove unless k > 1. Proceeding 

by induction on k and using compactness again, it is sufficient to show that in 

some expansion of M by unary predicates some formula linearly orders an infinite 

collection of (k-1 )-tuples or 1 -tuples. 



Index the tuples as (a, : s E I), where (I,  ) is a suitable linear order, and 

suppose that for s and t in I, I= $(Zs,Zt) i f  and only if s < t. For notational 

convenience, split each as, s E I, as 6,c,. 

Towards a contradiction, assume that no formula in an expansion of M by 

unary predicates linearly orders an infinite set of (k-1)-tuples or 1-tuples. The key 

idea of the proof is to show that for s, t, u, v E I, 

(#) (U < s < t < v or v < s < t < u 3 t=p(6S~U,6t~y). 

Once this is established we will quickly reach a contradiction. Our main tool is: 

Proposition 2.3 Let J be an open interval of I and $(x) and ~ ( y , z )  be 

formulas which may contain parameters from u{Zi : i E I - J} but no others. Let 

s, t E J be distinct. Then 

(i) W s c t )  !--+ Y@,cs) 

(ii) W s c s )  !--+ 

(iii) kx(cs,ct) - x(ct7cs). 

- - 
Proof. Without loss of generality, s < t. Let Q = {ci : i E J). Let x ' , y ' 

be obtained from 2, y respectively by deleting the last entries. 

(i) Suppose the conclusion fails. Without loss of generality, 

k$(6,ct) & 1$(6tcs). Then for distinct u, v E J, 

u < v H k(3z E Q)[$~(6~z)  & 1$(6~z)]. 

Thus the formula (% E Q)[@(P/z) & 1$(yt z)] linearly orders the set {Ei : i E J}. 

This contradicts our initial assumption. 



(i i)  Suppose the conclusion fails. Without loss of generality, 

C$(6,ct) & ~ d ( 6 ~ c ~ ) .  From (i), C$(btcS). Thus cs is the unique solution of 

-$(6,2) & Q(z), so for distinct u, v E J, 

u < v C(3w E Q)(& E Q)[-nbUw) & -d($z) & v ( ~ ~ w , ~ ~ z ) ] .  

Again this contradicts our initial assumption. 

(iii) Suppose the conclusion fails. Without loss of generality, 

CX(C,,C~) & -x(ct,cS). Then ~ ( x , y )  linearly orders the set Q, which again 

contradicts our initial assumption. 

Now consider the following sequence of conditions on a 4-tuple (s,t ,u,v) of 

elements of I: 

(1) s = u < t = v  

(2) u < s < t = v  

(3) u < s < t < v  

(4) s < u < t < v  

(5) s < u < v < t  

(6) s < v < u < t  

(7) v < s < u < t  

(8) v < s < t < u .  

We claim that each of these conditions implies C99(6s~U,6t~v). For ( I ) ,  it is part of 

our hypothesis about . We see that each of (2)-(8) implies Cp(6scu,6tcv) 

because its predecessor does. For (2), apply (ii)  with ( = ( , c V )  For (3) ,  

apply (ii) with $(ji) = ip(6scu,jl). The transition from (5) to (6) uses (iii), while all 

the other transitions are applications of (i). 



Notice that since (3) and (8) each imply C W ( ~ ~ C ~ , ~ ~ C ~ ) ,  we have established 

(#). Reversing the ordering of I and replacing q(x,y) by ly(y,?) & ? # y, we 

obtain 

(##) ( v  < t < s < u or u < t < s < v) --+ ~ y ~ ( 6 ~ c ~ , 6 ~ c , ) .  

From (#) and (##) it follows that if we fix u and v such that u < v, then the 

formula p(x/cu,y/cv) linearly orders the set {Si : u < i < v}. This final 

contradiction completes the proof of the theorem. 

The reader may have observed that the formula p/ (x,y,A) generated by the 

last proof contains individual parameters as well as new unary predicates. It is a 

trivial matter to eliminate these parameters in favour of additional unary 

predicates. 

We now introduce a first-order theory P of the product of two infinite sets. 

The language of P will be the first-order language determined by three unary 

predicates Uo, U1, U2, and two binary predicates P1, P2. The intended 

interpretations of the predicates are as follows: Uo is the Cartesian product of two 

infinite sets U1 and U2, and PI and Pq are the projection relations which hold 

between a pair and its first and second entries. Thus suitable axioms for P are the 

following: for each positive integer n, axioms stating that there are at least n 

distinct individuals in each of U1 and U2; an axiom stating that for each xl in 

U1 and x2 in U2, there is a unique xo in Uo such that P1(xO,x1) and 

Pq(x0,x2); and an axiom stating that for each xo in Uo there exist unique xl in 

U1 and x2 in U2 such that P1(xO,xl) and P2(xO,x2). For our present 

purposes, nothing need be said about disjointness, so we leave P incomplete. 



The stage is now set for our second theorem. 

Theorem 2.4 If P is interpretable in T, then T is strongly inonadically 

unstable. 

Prooj If P is interpretable in T, then let Bo(x), B1(x), &,(a), - rl(xO,xl), 

and r2(x0,x2) be the respective interpret ations of Uo(x), Ul (x), U,(x) d , P1 (xO,xl) 

and P2(x0,x2) in T. In a model M of T, let B1 (M) ,  fl,(M) - be the respective 

solution sets of the formulas dl(x), B2(x). Select from the infinite sets B1(M), 

B2(M), equipollent infinite subsets A1, A2, together with a bijection f of A1 

onto A2 witnessing this equipollence. Let R be a linear ordering of A1. Using 

R and f, we will construct a formula $(x,y,X) and a subset S of M such that 

$(x,y,S) linearly orders an infinite subset of M. 

Define S = {ao E Bg(M): for some al E A1 and a2 E A2, 

M ' r1(a0,a1) & r2(a0,a2) and ~ ( a ~ , f - l ( q L  

and 

D = {ao E Bg(M): for some a1 E A1, M I= rl(aO,al) & r2(ao,f(al))}. 

Then the required formula $(x,y,X) is 

jz(x(z) k 3v(Bl(v) & rl(z,v) & rl(x,v)) & 3w(B2(w) & rZ(z,w) & r2 (~ ,w) ) ) .  

It is easily verified that D is infinite and that $(x,y,S) defines a linear ordering of 

D. 



An important ingredient of our next theorem is the following condition on a 

theory T: 

Definition 2.5 T will be said to satisfy the triviality condition, or to be 

forking-trivial, if, for all subsets A, C, D and all elements b of any model of T, 

A 3- C implies that either A b or C b. 
D C U D  A U D  

Theorem 2.6 If the stable theory T fails to satisfy the triviality condition, 

then some extension of T by unary predicates interprets P. 

Proo j  The aim of the argument is to construct some formula which provides 

a one-to-one pairing function from the Cartesian product of two infinite subsets of a 

model of T to a third subset of that model. We begin by choosing sets A, C, Dl 

and an element b which constitute a counterexample to forking-triviality. Naming 

the elements of D, we may suppose that D is empty. From Theorem 1.4 ( l)( i) ,  

there are tuples a. L A, i$ r C such that neither ?I0 1 b nor Go 1 b. From 
C A 

Theorem 1.4 (l)(ii),  there are tuples ?Il c A, El c C such that neither a0 -1- b 

e ~ e l  

nor 5 1 b. Applying Theorem 1.4 ( l ) ( i )  again, and writing for aoal, and c 
O aoa1 

for $el, we have 1 F but neither a / b nor c L b. 
c a 

Below, the tuples F will be denoted i$, Cg when convenient. Choose 
- 
al ,  3, ... in turn realizing s t p (9  such that 

(1) 
- - - 
ai+l 1 Zo...aibc (i < w). 



Next choose , , in turn realizing stp(c) such that 
- 

(2) 1 I So" ... bF o ...E 1 (i  < w). 

For induction on j suppose 
- 

(3) a i + l l a ~  ... ii i bc 0 ... t j . 

From (2) by lowering and raising 

By transitivity from (3) and (4) 
- 

... a bc ... c . ai+l '0 i O j+l 

Note that (3) holds for j = 0 by (1). Therefore (3)  holds for all i, j < w. By finite 

character, i.e., Theorem 1.4 (l)( i) ,  
- - - -  

(5) ai+l 1 $...aibcocl.. . 
- - 

From (5) and Lemma 1.6, al, a2, ... all realize the same strong type over 
- - - -  
abEooF1 ... . Hence, lowering abcoc l... in (5) we see that (ai : 1 5 i < w) is a 

- - -  
Morley sequence over abcoc l... . Similarly, (Ei : 1 5 i < w) is a Morley sequence 

- - 
over aoal ... bz. Now by Lemma 1.7 (2) 

- - - - 
(6) ala 2... 1 ZbEoFl ..., clc 2...1 ii 0 a 1 ... bE. 

We also observe from Lemma 1.7 (1) that {ai : 1 5 i < w} is indiscernible over 
- 
abEocl .. . and {ci : 1 5 i < w} is indiscernible over . b;. 

Since a J E, from (1) and Lemma 1.6, Xo, a l ,  ... all realize the same strong 

type over c. It follows from (1) that (ai : i < w) is a Morley sequence over F. 

Since ii 1 E, i$,Zl...l E by Lemma 1.7 (2). Now we see from (1) and (2) that 
- - - -  
ai l ao...ai - I~ (i  < w) and 
- - -  - - 
ci 1 a a ... c ... c (i < w). 0 1 0 i-1 



Repeating the argument of the last paragraph, we see that (ai : i < w) is a Morley 

sequence over GC and (ci : i < w) is a Morley sequence over Gal .. . . By 

Lemma 1.7 (I) ,  the sets {ai : i < w} and {Ti : i < w) we mutually indiscernible. 

By naming some elements if necessary, we can suppose that Zi n a .  = Ei n c. = 0 
J J 

for all i, j with i < j. 

Since neither a J b nor E b, there are formulas a(x,y,z) and ~ (x ,y , z )  
c a 

such that Ca(b,a,c) & ~(b ,a ,c ) ,  a(b,y,c) forks over C, and ~(b ,a ,z )  forks over a. 
Let x(x,y,E) denote u(x,y,z) & n(x,y,Z). 

Now let n = l(a) and m = l(E). For each integer i between 1 and n, 

introduce a new unary predicate Ui, and interpret Ui as the collection of i-th 

members of tuples 5, al ,  ... . For each i between 1 and m, introduce a new 

unary predicate Vi to represent the set of i-th members of tuples G, cl ... . Let 

L* be the expanded language. Note that types and indiscernibility mentioned 

below are relative to the original language. Because the tuples al ,  $, ... are 
- -- - 

indiscernible over ab c c lc2... and the tuples El, C2,. . are indiscernible over 
- -- - 
ab c a la2..., there can be only finitely many types over b among the tuples of 

U1 x.. . x Un x V1 x... x Vm, so that some single formula distinguishes the type over 

b of a?  from any other typeover b of a tuple in U1 x . . . ~  Un x V1 x . . . ~  Vm. 

Let x*(x,y,z) be an L*-formula such that I=x*(b,af ,El) if and only if 
- - 
a /  E U1 x...x Un, C' E V1 x. . .x  Vm, and tp(ZtE/ I b) = tp (aF1  b). Note that 

x*(x,y,F) implies x(x,y,$. We will now show that a' must intersect a and c' 
must intersect c. 



If, on the contrary, a' E U1 x . . . ~  U is disjoint from (say) and n 

!=~*(b,a '  ,c' ), then l=a(b,a' ,ct ). But a(b,y,cf ) forks over since tp(bct ) = 

tp(bc). This contradicts a/  J b which follows from (6) by lowering c'. We 
C '  

conclude that if I=x*(b,a/,c'), then a' meets a and c/  meets c. 
Naming b and then applying Lemma 1.9 to the formula ~*(b ,y ,z )  we see 

that a n acl(b) is non-empty, where algebraic closure is in the sense of L*. Thus 

there is an L*-formula %(x,y) such that %(x,b) has only finitely many solutions, 

of which at least one lies in a. Let aki, cki denote the i-th entries of Zk, Ek. By 

taking the conjunction with Ui(x) for suitable i,  we can suppose that the unique 

solution of O(x,b) is aoi. If B(x,b) had another solution in Ui, it would have 
- - 

infinitely many, for al, a2, ... all realize the same type over b. In the same way, we 

can construct a formula $(x,y) such that for some j, 1 5 j < m, the unique 

solution of $(x,b) is c . Let M be an N1 -saturated model of T including b, 
- - 0 j 
ak, ck (k < w). For each 1 and k, choose an element blk of M such that ali 

and ckj are, respectively, the unique solutions of %(x,blk) in Ui and $(x,blk) in 

V.. Let M' be obtained from M by adjoining unary predicates which pick out 
J 

Ui, V., and {blk : 1, k < w} .  Clearly T'  = Th(Mt) is an extension of T by 
J 

unary predicates which interprets P. 

De•’inition 2.7 In a structure M properly containing the set A, define a 

binary relation EA on M - A by a EA b if either a = b or .[a 1 b]. 
A 



Remarks (a)  If M 5 M j ,  then EA (in the sense of M) is the restriction 

to M of EA (in the sense of M J ) .  Thus EA depends on M only insofar as M 

restricts the domain. 

(b) a a if and only if a E acl(A). Thus when A is algebraically closed, 
A 

a EA b is the same as 1 [a I b]. 
A 

Definition 2.8 Let I? be a set of L-formulas, M be an L-structure, and 

A be a proper subset of M. The equivalence relation E on M - A is called a 
- 

I?-congruence on M over A if, whenever Zo, 5, ..., an and 60, IT1 ,..., 5, are 

tuples in M - A such that for all i, j, i < j 5 n, 

( i )  zi is included in a single E-class, ITi is included in a single E-class, 

(ii) the E-classes of zi and a. are disjoint, the E-classes of ITi and 5 .  
J J 

are disjoint, and 

(iii) [(ai) = 4Si) and t pr (5 1 A) = tpr (5 1 A), then 
- -  - 

tpr(a0al.. .an I A) = t ~ ~ ( 6 ~ 6 ~ .  . .ITn I A). 

Bearing the preceding definitions in mind, we can now proceed to the next 

theorem in the chain. 

Theorem 2.9 Let T be a forking-trivial stable theory, and A the set of 

quantifier-free formulas in T. If N 4 M I= T, then EN is a A-congruence on M 

over N. Moreover, if X is any set of equivalence classes of EN, then N U (U X) 

is an elementary submodel of M. 



Prooj We first prove that EN is an equivalence relation, following the 

method of [BS]. The properties of symmetry and reflexivity are clear. Now suppose 

that a EN b and b EN c. We have to show that a EN c. Without loss of 

generality, suppose that 7 [a L b] and 1 [b J. c]. Towards a contradiction suppose 
N N 

that a L c. Since T is forking-trivial, the following cases are exhaustive: 
N 

Case 1. a 5 b. From a 1 c we have a 1 Nc. By transitivity we have 
Nc N N 

a 1 bc, whence a 5 b, a contradiction. 
N N 

Case 2. c b. By the same argument switching a and c, we obtain 
Na 

b 1 c, which is again a contradiction. 
N 

This completes the proof that EN is an equivalence relation. 

There is a neat description of forking over N in terms of EN: 

Lemma 2.10 A B iff (Va E A)(Vb E B)l[a  EN b]. 
N 

Proof. It is sufficient to prove that 

[Ab 1 C] <=> [A 5 C & b 1 C]. 
N N N 

From left t o  right the implication is trivial. For the other direction suppose A L C 
N 

and b 1 C. From forking-triviality there are two possibilities: 
N 

Case 1. A 5 b. From b 1 C we have b 1 NC. From A 3. b we have 
NC N N NC 

b 1 AC. From b 5 NC and b 1 AC by transitivity we have b 1 AC. Hence 
NC N NC N 



b L C, andso C Ab. Also, C 1 N A  since A L C. From C 1 NA and 
NA N A N N N 

C ,4b by transitivity we get C L Ab. 
NA N 

Case 2. C b. In this case we get C 1 Ab immediately. The rest of the 
NA NA 

argument is the same as in Case 1. 

To show that EN is a A-congruence we establish three propositions: 

Proposition 2.11 Let y ( Z 9  be any formula over N, (ao) = !(al) = 4x), 
q6) = [(y), rp-tp($[N) = y-tp(Zl(N), and Zi 1 6 (i = 0, 1). Then 

N 

h G 0 , m  - rp(al16). 

- - 
Proof. We know that there is a formula drp(y7 over N such that y(ao,y) 

- - - - 
and drp((y) have the same solutions in N. By hypothesis y(ao,y) and y(al ,y) 

have the same solutions in N and so p(Zl ,?) and d d y )  have the same solutions 

in N. Since ai 1 6 (i = 0, 1) by Lemma 1.5 we have krp(;iii,6) if and only if 
N 

kdp(6) (i = 0, 1) as required. 

Below let rp'(x/ ,y l )  be the formula rp (g3  rewritten with x' = y and 
- - 
y' = x. 

Proposition 2.12 Let rp(F,a be a formula over N, C(Zi) = C($, !(ITi) = 

C(y), and 5 1 6i (i = 0 1 )  If rp-tp(%lN) = y-tp(ZllN) and i p - - t ~ ( 6 ~ ( N )  = 
N 

rp- -tp(E1 1 N), then b(Zo,bO) - l ~ ( Z ~ ' 6 ~ ) .  



Proof. Choose Z2 1 6 such that q~ - tp ( i i~  1 N) = p-tp(Zo 1 N). Next choose 
N 

b2 1 such that y--tp(S2 1 N) = y--tp(bO I N). Consider the sentences 
N 

W ( K ~ , ~ ~ ) ,  W ( Z ~ , ~ ~ ) ,  y(K1 ,b2), Y ( Z ~  ,bl). After the first one each is 

equivalent to its predecessor by an application of Proposition 2.1 1 with respect to 

either dx,?) or p-(k'  ,y'). For example, kd$,60) ++ w ( K ~ , ~ ~ )  since 6,' h2 

realize the same p--type over N, b0 1 Z2, and E2 1 a2. Clearly, the desired 
N N 

conclusion follows. 

- 
Proposition 2.13 Let Zl, ... ,an and bl, ... ,€in be tuples in M - N such 

that: 
- 

(i) each of the sets al, ... ,an, K1, .. . ,Iin is contained in a single EN-class, 

(ii) for 1 5 i < j < n, the EN-classes of Ei and a .  are disjoint and the 
J 

EN-classes of bi and 6 .  are disjoint, and 
J 

(iii) for 1 < i 5 n, t(Ei) = t(6i) and t p A ( 3  1 N) = tpA(Ei 1 N). 

Then 

tpa($ ... an I N) = tpA(6 1...6n I N). 

Proof. We proceed by induction on n. If n = 1, the result is clear, so 
- - -  - 

suppose n = k + 1 > 1. Define $ = al...ak, cl = an, a0 = 6 1 ... 6 k , and ?Il = 6, 

By the induction hypothesis, tpA(Eo I N) = tpA(ao I N) and tpA(cl 1 N) = 

tpA(?Il I N) is given. Further, since no entry of % is EN-related to an entry of 
- - 
c,, c, J, El. Similarly a0 1 al. By Proposition 2.12 applied to all quantifier-free 

N N 



formulas cp(ii,y) over N ,  

which completes the proof of the proposition. 

From Proposition 2.13, it is clear that EN is a A-congruence on M over 

N. 

Let A denote N U (U X) where X is a set of E N - ~ h S s e ~ .  We show that 

A is the universe of an elementary submodel of M by showing that A satisfies 

the Tarski-Vaught criterion. Let a E A and k3x cp(x,ii). We have to show that 

!=cp(b,a) for some b E A. Choose b' E M such that !=cp(b/,Z). If b' E A, we are 

done. Otherwise, by Lemma 2.10, bf  a. From Lemma 1.5 it follows that 
N 

kcp(b,$ for some b E N. This completes the proof of Theorem 2.9. 

To state the next theorem, we have first to introduce one of the principal 

notions of this work, that of a tree-decomposable theory. Here we follow [L2]. The 

original definition of tree-decomposability was given in [BS]. It will be stated in 

Chapter 3 when we are in a position to compare some consequences of the two 

definitions. 

Definition 2.14 A tree is a set of (ordinal) sequences of elements of some 

cardinal, closed under initial segments. The elements of the tree are called nodes 

and nodes which have some proper extension within the tree are called internal. We 



write ~ ( 1 )  for the set of internal nodes of the tree I. The natural strict partial 

ordering of the tree by proper extension is denoted C. The height of the tree I, 

denoted ht(I), is defined to be sup(t(7) + 1 : 17 E I). If the length of a node 7 of 

I is a successor ordinal P + 1, then rp is the initial segment of 7 of length P. 

For the next definition, we suspend the usual convention that all structures 

considered be elementary submodels of some "monster" model. 

Definition 2.15 Let I be a tree, and M a structure for the language L. A 

decomposition of M b y  I is a collection of L-structures M N indexed by the 
7' 17 

nodes 7 of I, together with a collection of equivalence relations ET indexed by 

the nodes T of L(I), such that: 

( i )  For each , IN I < ILI + N O .  
7 -  

(ii) Whenever p c o in I, then N c  no^ M o ~  M 
P P ' 

(iii) For each T E L(I), ET  is a A-congruence on MT over NT, whose 

equivalence classes are the sets Mo - NT, where o runs through the set of 

immediate successors of T in I. 

(iv) If 17 E I and the domain of 17 is a limit ordinal, then 

N = u{N; o c  7) and M = n{Mo: u c  7). 
11 17 

(v) M O  = u{N : 4 E I )  = M. 
17 



Remarks Some words of intuitive explanation may be helpful. The 

definition describes a process whereby a structure is gradually eaten away by small 

substructures growing inside it, so that any given individual of the structure is 

eventually consumed by one of these small substructures. (Refer to clause (v) 

above.) Clauses (ii) -(iv) detail the mechanism by which these small substructures 

grow: with each internal node 7 of I there is associated a small substructure N 
7 

and a substructure M of M. M serves as a pool of individuals from which all 
7 7 

elements of No ( o  3 7, o E I) are drawn. If 7 is not an internal node of I, the 

structures M and N are the same. 
7 7 

Definition 2.16 T is tree-decomposable if every model of T admits a 

decomposition by some tree. 

Remark A key point is that any tree I by which an L-structure is 

decomposed has height at most ( I L I + N ~ ) + .  This follows from the requirements 

that No be a proper extension of N whenever 7 c o, and that 1 N I < I L I + N o  
7 7 - 

(77 ,  E 1). 

Theorem 2.17 If T is a forking-trivial stable theory, then T is 

tree-decomposable. 

Proof: Let a model M of T be given, and let L be the language of T. 



CVithoutlossofgenerality I M I > I L I .  Set M M. Bythedownward 0 = 
Lowenheim-Skolem theorem, choose a model N < M of cardinality / L I + No. 0 - 
We define I(0) to be {()}, the singleton of the empty sequence. For a > 0, we 

define I(&) = { 7 E I : l(q) = a} by transfinite recursion on a, and simultaneously 

we define M and N for q E I(a). When cu = 0 + 1 is a successor ordinal, we 
77 rl 

also define E for 4- E I(P), M # N . The definitions are as follows: C C C 
Case 1. a is a successor ordinal P + 1. For each C E I(P) such that 

M f N we proceed as follows. M and N have already been defined so that 
( 4- C 4- 

N is an elementary substructure of M . We write E for the restriction of EN C 4- 4- 
from the monster model to M - N . Since M is a substructure of M, E i 4- C 4- 
certainly has no more than ( M  ( equivalence classes. Let K be the number of C 
equivalence classes of E . Labelling the equivalence classes of E with the C C 
ordinals i < K we define the next level of the tree by setting M . equal to the C7 4-1 

union of N with the equivalence class of E labelled i. N is then chosen as an < C 4-i 
elementary submodel of M . properly extending N and having the same 0 C 
cardinality. We set 

I(a) = {(i : ( E 1(/3), M f N i < KC). < C' 
Case 2. a is a limit ordinal. Writing rlri for the initial segment of q of 

length i, we define 

I(a) = ( 7 :  l(7) = a, (Vi<a)[qIi E I(i) &nocr lMo#~ocr lNd}.  

For c I(&) we define M = n Mo and Nrl = UocqNg. This completes the 
rl oC5' 

construction. 



We define I = u{I(a) : a an ordinal number). Let 7 E I(&); then 

(Nopi  : i 5 a )  is a continuous strictly increasing elementary chain. Therefore 

a = l(7) < I M I +. It is clear that I is a tree. Conditions (ii), (iv), and ( v )  of 

Definition 2.15 are clear from the construction, while (iii) follows easily from the 

construction and Theorem 2.9. We establish (i) and complete the proof of the 

theorem by proving: 

Claim. For all 17 E I, l(7) < ( I L I  + NO)+. 

Proof o f the Claim. Suppose the Claim fails. Denote ( I L  I + N ~ ) +  by a .  

Fix 17 E I with l(7) = a. From the construction N c M Also, for i < a, 
17 17' 

I NvIi  1 5 I L I + No by induction on i. Choose a E M - N . By Theorem 1.4 ( 7 ) ,  
17 17 

there exists A c N such that I A 1 5 I L  I + No and a I N Since a is a regular 
17 A 17m 

cardinal, there exists o c T,I such that A c No, whence a 1 N Choose 
N 17' u 

b E N - Nd Clearly, a, b are distinct elements of Mo - No in the same 
17 

Eo-class. This implies that -[a 1 b], which contradicts a 3 N This 

N o  N 9' o 

completes the proof of the claim and of the theorem. 

Our next goal is to prove that for a first-order theory, tree-decomposability 

implies strong monadic st ability. In preparation, we first develop a particular 

infinitary version of monadic logic; one of the principal features of the logic will be 

that only set variables will occur free in formulas. Let a structure M be given, 



along with a subset A of M. The logic will be tailored to  the pair (M,A). X, Y, 

Z will be used as variables for subsets of M. Our basic formulas will have the form 
- - -- 

3: p(x,X), where p(x,X) is a conjunction of atomic and negated atomic formulas 

over A. The tuples x and X are finite, while the conjunction may be infinite. 

Other formulas are obtained by closing the class of basic formulas under negation, 

arbitrary conjunctions, and existential quantification of set variables. Conjunctions 

may have only finitely many free variables. We refer to the class of formulas so 

obtainedas L (Mon,L,A), where L isthelanguageof M. ww 

Lemma 2.18 Given a (finitary) monadic L-formula over A, there exists a 

formula of Lmw(Mon,L,A) equivalent to it in every L-structure M such that A c 

M. 

Prooj By induction on formulas we show that for every monadic L-formula 

p(ii,P) over A, there is a formula yt(X,P) in Lww(Mon,L,A) such that 

is true in every L-structure M such that A c M. The rest is straightforward. 

Definition 2.19 If a set {q.(X) : j E J} of formulas in Lww(Mon,L,A) is 
J 

such that for every L-structure M with A c M and every tuple U of subsets of 

M exactly one of the sentences $.(U) is true in M, then that set is called a 
J 

partitioning set. If M is an L-structure, A c M, and E is a A-congruence on 

M over A, we denote by C(M,E) the class of all substructures N c M such that 

A c  N and N - A  is an E-class. 



We remind the reader that A denotes the set of quantifier-free formulas of L. 

Lemma 2.20 Given a set A and language L, for every 

Lmw(Mon,L,A)-formula y(X) over A, there exist a partitioning set 

{$.(X) : j E J} of Lmw(Mon,L,A)-formulas over A and a cardinal A such that for 
J 

every L-structure M 2 A, congruence relation E on M over A, and tuples go, 
- 
U1 of subsets of M, 

M I= d U 0 )  ++ 

whenever 

({N E C(M,E) : N I= $.(U IN)} I = K, <=> I {N E C(M,E) : N I= $.(U IN)} I = 6 
J 0 J 1 

for all j E J and K < A. 

Prooj We proceed by induction on formulas. The reader should observe 

that the partitioning sets constructed in the proof have the following additional 

property (*): if t= @(X) & $.(Y), then KIA = PIA.  
J J 

Consider first the case in which p(X) is 3Y @(Z,X), with @(x,X) a possibly 

infinite conjunction of atomic and negated atomic formulas over A. Let zl, z2, ... 

be a canonical list of all the individual variables. Let 0 be the set of all atomic and 

negated atomic formulas over A whose set variables are among those of X. Let S 

be the set of all subsets !P of 0 such that there exists ny such that at most 

zl, ..., z occur in the formulas of @. Let M be a structure, A c M, and U a 
n!# 

tuple of subsets of M with [(U) = [(X). We say that (M,u)  realizes @ E S if 



there exists c c M such that ((E) = n and C ( A  ) (  Clearly, there is a 

formula yq(K) of Lmu(Mon,L,A) such that (M,U) realizes Q if and only if 

M I= xq(U). Let J denote the power set of S. For each j E J,  let $(X) be the 
J 

formula 

A {xq(X) :  q € j }  & A  {7y,(X): q E S-j}.  

Clearly, for every (M,U) there exists a unique j E J such that M C $.(U). Notice 
J 

that Mi C $(U) (i = 0, 1) for some j E J if and only if the structures (MO,UO) 
J 1  

and (M1,U1) realize the same quantifier-free finite types over A. 

Let M be an L-structure, A M, E a congruence relation on M over A, 

and no, U1 be qX)-tuples of subsets of M. Suppose that 

I {N E C(M,E) : N I= $.(U IN)) 1 = m <=> I {N E C(M,E) : N I= 11, (8 IN)) I = m 
J 0 j 1 

for all j E J and m < w. Suppose that M I= 9(UO). To complete the treatment of 

49, it is sufficient to show that M I= p(U1). There exists a such that 

M I= A @((iuo). Without loss of generality, a n A = 0 and the entries in are 

distinct. By writing the variables 2 in a suitable order, we can ensure that ii has 
- -  - - 

the form ala 2...ak, where , , . a are the equivalence classes of E IZ. Let 

Ci denote the E-class which contains iii, Ni denote A u Ci construed as a 

member of C(M,E), and ji be the unique element of J such that 

Ni I= $. (no INi)  From the equivalence displayed above there are distinct structures 
Ji 

N;  E C(M,E) such that N j I= $. (U1 IN j ) .  Since $.(U) specifies which 
Ji J 

quantifier-free types over the set A and the language L u U are realized, there 

exists 2; realizing the same quantifier-free type over A in (N j ,U1) as ai 
realizes in (Ni,UO). From the definition of congruence over A, the quantifier-free 



type of a' = BiZi...Zh over A in (M,U1) is the same as that of in (M,no). 
Clearly, M C A @(Z',Ul) since each formula in P is atomic or negated atomic. 

Hence M I= p(Ul) as required. 

Now for the induction steps. The negation case being clear, we pass directly 

to the case of (arbitrary) conjunction. Consider A {ph(X) : h E H). By the 

induction hypothesis, for each h E H we have a cardinal A h  and a partitioning set 

{ (X) : j E Jh )  which witness the truth of the lemma for y = yh. Define 
J ,h 

h = sup {Ah : h E H), J = II {Jh : h E H) and $. = A { $  
h,j(h) 

: h E H) ( j  E J ) .  
J 

Clearly {$.(X) : j E J )  is a partitioning set which, together with A, witnesses the 
J 

truth of the lemma for p = A {%(X) : h E H}. 

The remaining case is that of existential quantification. Let p(X) have the 

form 3Y d(X,Y). By the induction hypothesis, there exist a cardinal p and a 

partitioning set {xk(X,Y) : k E K) which witness the truth of the lemma for 

d(X,Y). Let J be the power set of K, and for each j E J, put 

Let X be the largest of No, p, and 1 ~ 1 ' .  
Let M be an L-structure, A c M, E a congruence relation on M over A! 

and Uo, U1 be 1(X)-tuples of subsets of M. Suppose that 

I {N E C(M,E) : N I= $J (U IN)} I = K <=> I {N E C(M,E) : N I= $ (n rN)) I = rc 
j 0 j 1 

for all j E J and K < A. Suppose that M I= p(Uo). TO complete the treatment of 

@), it is sufficient, by the symmetry, to show that M I= P ( U ~ ) .  There exists 

Vo r M such that M I= d(UO,VO). 

Define mappings Go and G1 with domain J by: 



Go(j) = {N E C(M,E) : N C #.(U IN)} and 
J 0 

G l ( j )  = {N E C(M,E) : N C @(UI IN)}.  
J 

Observe that the hypothesis about ti0 and Ul is equivalent to: 

(1) IGo(j)l = IGl(j) l  or IGo(j)I ,  IGl(j)I  2 A for all j E J. Define 

Fo : K - ?(P(C(M,E)) by Fo(k) = {N E C(M,E) : N I= xk((UOVO) IN)} (k  E K). 

Our plan is as follows. We will define F1: K - P(C(M,E)) such that 

rng(F1) - (0) is a partition of C(M,E), and for all k E K 

(2) I F l (k)  l = I Fo(k) l or I F l (k)  I, I Fo(k) l t P and 

(3) F l (k )  u{G1(j) : k E j E J}. 

Suppose that such F1 is given. From (3) for each N E C(M,E) we can choose 
N V N such that N E F1(k) => N k xk((U1 I N ) v ~ )  (k  E K).  Since 

{xk(X,Y) : k E K} has the property (*) mentioned at the beginning of the proof, 

N and since Fo(k) f 0, V1 n A = Vo n A. Let V1 = U { V ~  : N E C(M,E)}. We have 

constructed V1 so that { N  E C(M,E) : N t= yk((UIV1) IN)) = Fl (k) ,  and by 

definition {N E C(M,E) : N I= xk((UOVO) IN)) = F 0 ( k )  Since I F&k) I = I F l ( k )  I 

or I I ,  I F l (k )  l L P by (2), we have 

I {N E C(M,E) : N k xk((v1V1) IN)} I = n <=> 

I iN E : xk((UOVO) IN)} I = 

for all K < p. It follows that M I= B(UIV1) and hence that M I= p(u l ) .  

It remains to find the function F1. Choose a bijection H such that: 

(4) dom(H) = : I Go(j) l < A, j E J} 

( 5 )  w ( H )  = W l ( j )  : IGl(j) l < A, j E J} 

(6) N E Go(j) <=> H(N) E Gl( j )  ( j  E J ,  N E dom(H)). 

Also, choose a family {Ck : k E K )  of pairwise disjoint sets such that 



(7) Ck c u{G1(j) : k E j} - mg(H) 

(8) Fo(k) dom(H) => Ck = 0 

(9) l[Fo(k) c dOm(H)] => I Ck I = min{ 1 Fo(k) 1 P } .  

To see that such sets can be chosen, consider a fixed k such that 

-[Fo(k) c dom(H)]. From (4), there exists j such that I Go(j) 1 2 A and k E j. 

From (I) ,  I Gl(j) I 2 A. Since h 2 p and Gl(j) n rng(H) = 0, we can choose 

Ck c GI (j). Since h > I K I , if the same j is chosen for more than one k, there 

will still be enough elements in Gl (j). 

Consider N E C(M,E) such that 

(10) N f rng(H) U u{Ck : k E K}. 

Since N j! rng(H), there exists unique jN E J such that N E Gl(jN) and 

I G1(jN) I 2 h. By hypothesis, I Go(jN) I 2 h. For each P E Go(jN), there exists 

kp E jN such that P I= xk ((UOVO) rP). Since h > IK I is infinite, by the 
P 

pigeon-hole principle there exists k E jN such that kp = k for at least h P's in 

GO(jN), whence I Fo(k) I > h. Set k(N) equal to such a value of k for each N E 

C(M,E) satisfying (10). 

Now we can define F1 by: 

Fl(k) = {H(N) : N E FO(k)) U Ck U {N E C(M,E) : k(N) = k}. 

We conclude by showing that F1 satisfies the requirements laid out above. 

Since the sets Ck (k E K) are pairwise disjoint and disjoint from rng(H) 

by (7) and since k(N) is defined only for N satisfying (lo), the sets Fl(k) are 

pairwise disjoint. Since h is onto and k(N) is defined for every N satisfying 

(lo), U rng(F1) = C(M,E). 



Consider k such that I Fo(k) I < p. Since H is 1-1, / Fl(k) n rng(H) I = 

/ Fo(k) fl dom(H) I .  From (8) and (9), either FO(k) c dom(H) and Ck = 0, or 

1 Ck 1 = I Fo(k) I .  Also, for no N do we have k ( N )  = k, so it is clear that 

I Fl(k) I = I Fo(k) I .  For k such that 1 ( k )  1 p, the same analysis shows that 

I Fl (k) I 2 p. Therefore (2) holds. 

Consider N1 E Fl(k) n rng(H). By definition of F1, N = H - ~ ( N ~ )  E Fo(k). 

Let j be the unique member of J such that N E Go(j). Then k E j since 

N I= xk((UOVO) !N). By (6), N1 E Gl(j). Consider next N1 such that k(N1) = k. 

Let j now denote the member of J such that N1 E Gl(j). Then k(N1) E j by 

definition of k(N1) From these remarks and ( 7 ) ,  (3)  holds. This completes the 

proof of the lemma. 

With the foregoing lemma in hand, we now proceed to the last result of this 

chapter. This theorem, together with Theorems 2.4, 2.5, 2.9, and 2.17 closes a cycle 

of implications, and thus proves that certain conditions on a first -order theory T 

are equivalent. The pertinent conditions are: 

(1) The theory P (see the description just before Theorem 2.4) is not 

interpretable in any extension of T by unary predicates. 

(2) T is forking-trivial. 

(3) T is strongly monadically stable. 

(4) T is tree-decomposable. 

(5) T is weakly monadically stable. 

(6) T satisfies the conclusions of Theorem 2.9. 



This is noteworthy in that it shows both that two equivalent theories are 

both tree-decomposable or both not, so that tree-decomposability is insensitive to 

choice of language. It also proves, remarkably, that the two apparently distinct 

not ions of monadic stability actually coincide. 

Theorem 2.21 A first-order theory which is tree-decomposable is strongly 

monadically st able. 

Proof: For the sake of a contradiction, let T be tree-decomposable but 

weakly monadically unstable, with p(x,y,X) a monadic formula witnessing the 

unstability. Let M I= T, and let U be a tuple of subsets of M such that 

p(x,y,U) orders some subset of M in the order type of an infinite cardinal y. Let 

D be the solution set of 3y[p(x,y,U) v q~(y,x,U)] in M, so that D includes all the 

individuals of M representing elements of y and possibly some others besides. 

Let the tree I A decompose the model M as described in Definition 

2.15. By choosing a large enough y, we can force the existence of an internal node 

r E ~ ( 1 )  of the tree which has members of D in as many different ET-classes as we 

please. We see this as follows. 

Define the subtree 1' of I by putting a node o of I in I' just if M o  

intersects D, so that o E I iff M o  n D # 0. Now, for every d E D, there exists 

o E I /  such that d E No. This follows because M = U No, and because 
o~ I 

No L M If now I D I is large, then I I /  I is large since I NoI 5 I L I + No for all 
0-. 

o. But h t ( I f )  5 ht(1) 5 ( 1  LI + N ~ ) + ,  so there must exist r E I /  such that r has 



many immediate successors in 11. More precisely, for any cardinal 6, we can 

ensure by choice of y that there exists r E ~(1)  such that D meets at least 6 of 

the equivalence classes of ET. 

Fix such a r, and for a c r, let a+ be the initial segment of r of length 

40) + 1. Augment L by new unary predicate symbols Ri, one for each i < !( r) ,  

writing L* for the expanded language, and A* for its set of quantifier-free 

formulas. At the same time, expand M to an L*-structure M* by interpreting 

Ri as Mr t i  - Mr~( i+ l ) .  Let E be the equivalence relation 

ET U U{E~I(M,  - Mo+) : o C r}. 

We now show that E is a A*-congruence on M* over Nr. Let 

6 . E Mr - N r  (1 5 j 5 kn) such that any two entries of 6.. are E-related and 
nJ 1J 

such that if j # j /  then no entry of 6.. is E-related to any entry of bij,. Let c. 
1J 1J 

(1 5 i 5 n, 1 5 j 5 ki) be tuples in distinct E-classes such that tpA*(E. I N,) = 
1 J 

I N,). We need to show that the concatenation of the F .  and the 
1J 

concatenation of the 6.. have the same A*-type over NT. (This is what is 
13 

involved in verifying that the definition of A*-congruence is satisfied.) Let 
- 
ai E Nu. -N (1 < i < n )  and Z n e N T - N  . We are done once we show 

1 'i-1 'n-1 

that the concatenations of the Zi and the E . and of the Zi and the 6.. have the 
1J 1 J 

same type over N . 
1 

The presence of the new unary predicates Ri in M* allows us, since 

tp(F . I Nr) = tp(6.. I N,), to locate E.. in M - M ( l ( i < n )  and c in 
1~ 1~ 1~ 0. 1 (oi)+ n j 



M - NT. Now, ET is a A-congruence on Mi over NT. The reader will recall 
T 

that A denotes the set of quantifier-free formulas in the language of M. Thus 
- - 

tpA*(c nl...cnkn I NT) = tpAr(6n1...6nkn I NT). For 1 5 i 5 n write ci for the 

concatenation of the E.. (1 5 j j ki). Then tpAr(Giin 1 N ) = 
1J On-1 

5 1 N ). By downward induction on i, we now have t p ~ * ( 6 n  n 

for 1 5 i < n - 1. For the induction, we use that E is a A-congruence on Mu. 
'i 1 

- - - - 
over Nu., that Cn<Cn-lan-l ... ai+ and 6ni$6n-l an-1.. .ai + 

are in 
1 

M - N which is an E -class not meeting Ci6i1 and that these tuples have (fTi)+ uil u. 1 

- -  - -  
the same type over N u  Setting i = 1 shows that cnan.. .clal and 6nZn...61Z1 

1 

realise the same type over N , which completes the proof that E is a 
ul 

A*-congruence on M* over NT. 

Let q*(S,U,X) E L (Mon,LINT) be equivalent to 3x3y[x E S k y E U & 
oow 

q ( x , ~ , q ] .  Apply Lemma 2.20 to the formula p*(S,U,X), the structure M* and 

the congruence E to obtain a partitioning set {$.(S,U,X) : j E J) and a cardinal 
J 

X fulfilling the conclusion of that Lemma. For the argument to go through, we 

need S larger than I J I .  Note that for this purpose the partitioning set can be 

determined as a purely syntactical object before the structure M* is formed. (L* 

is formed by adding I L ( + No new unary predicate symbols to L. M is expanded 

to M* by using as many of the new unary predicates as necessary, interpreting 

those which are left over as 0. In addition, 1 L / + No individual constants are set 



aside as names for the elements of N T ;  if I N I < I L / + No, some elements of N 

are named more than once.) Let ai E D ( i  < 6) lie in distinct ET-classes. For 

i < 6, let Mi be N r  U [ailE and let ji be the unique j E J such that 

Mf 1 != $j({ai},O,UIMi), where MT denotes the structure which results from 

restricting M* to (the universe of) Mi. Now I J I < 6, so there are distinct i, k < 

6 such that ji = jk. From the conclusion of Lemma 2.20 we now have 

M* @({ai} ,{ak} , u )  - q*({ak} ,{ai} ,U), from which 

M C p(ai,ak,U) ++ p(ak,ai,U). This contradicts that p(x,~,U) determines a linear 

ordering of the a's, and thus completes the proof. 



Chapter 3 

Some tree-decomposable structures 

Here we present some examples which illustrate the concepts introduced in 

the previous chapter. A structure M is called tree-decomposable if Th(M) is 

tree-decomposable. For a first-order theory tree-decomposability is the same as 

weak monadic stability, so if M is either an expansion by unary predicates or a 

reduct of a tree-decomposable structure, then M is tree-decomposable. We 

consider examples which differ from each other by taking reducts, passing to an 

elementarily equivalent structure, or expanding by unary predicates, to be 

essentially the same. Let us first describe the examples given in [BS]. 

Example 3.1 N = (Z ; S), where S is the successor relation. This is 

essentially the same as Example 3.1.6 of [BS]. An arbitrary model of Th(N) is a 

disjoint union of copies of N. For Th(N), A C means that if A and C 
B 

intersect one of the copies of N, then B intersects that same copy of N. Every 

model M of T is tree-decomposable by a tree of height 2. We can take N to 
(> 

be the empty structure, each M(i) = N(i) tobeacopyof  N, and E tobe the  
(> 

relation true of individuals a, b just when a, b lie in the same copy of N. 

Example 3.2 N = ( # w ;  EO, El,...), where Ei = {(o,r)  : o(k) = r(k) for all 

k i i).  Here A 1 C means that for any i < w, every Ei-class which meets both 
B 

A and C also meets B. To see that a theory is tree-decomposable, it is enough to 



check that all its reducts to a finite language are tree-decomposable, for any 

formula witnessing the monadic unstability of the theory would involve at most 

finitely many symbols of the language. So in the present case it is enough to check 

that each of the structures (Ww ; E07...,En) is tree-decomposable. Of course, it is 

also easy to check tree-decomposability by looking at the independence relation. 

However, such proofs provide no precise information about the height of a tree 

decomposing a model of the full theory Th(N). Employing a variant of the method 

of Theorem 2.17, we show below that such a model can be decomposed by a tree of 

height at most w + 2. The method used here differs from that of Theorem 2.17 in 

using the equivalence relations supplied with the model, rather than the forking 

relation, to provide the required A-congruences. 

Let M be some model of Th(N). We build a tree I c sW+l / M / and a 

decomposition of M by I in stages. At the initial stage, we define I(0) = {()), 

Mo = M, No = 0, and E E , and write K for the number of o =  0 (> 
equivalence classes of E . Index these equivalence classes by the ordinals 

(> 
i < K(). 

The next level 1(1) of I is 1(1) = { (i) : i < K ). For each i < K pick 
(> 0' 

a(i) 
fromthe i-thequivalenceclassof E anddefine M( i )= [a ( i ) ]EO,  0' 

N i  = { a i ,  and E = El M i  - N . ) Subsequent finite levels of the tree 
(1)  

are obtained in the same way. If n < w and 1 0 ,  I ( )  , 1 Mu, Nrl, Ell 

( 7  E I(0) U...U I(n)) are already defined such that E f(M - N7), then 
rl=Ee(I)) I) 

I (n+l)  and its structures and equivalence relations are obtained as follows. For 

each rl E I(n), let K be the number of equivalence classes of E Note that K is 
rl rl' 77 



infinite. Index these equivalence classes by the ordinals i < rc and choose from 
17' 

the i-th equivalence class an element aVi. By choice of E this a . is not 
17' 771 

presentinN Nowdefine I ( n +  1 ) =  {qi: v ~ I ( n ) , i < r c  ), andfor q ~ I ( n ) ,  
17' 77 

i < rc put 
17' 

NVi = N U {a .), 
17 17' 

MVi = N u [a .] , and 
17 V q ,  

E . = E  l ( M . - N . ) .  
1 n+l i 171 

This completes the construction at finite levels. For level w, define 

I(w) = {I) E W ~ ~ l  : Vi < w (qli E I(i))), 

i.e., define the w-th level of I as the set of w-sequences from I MI 

all of whose finite initial segments lie at some finite level. Then for each 17 E I(w), 

let M = n{Ma : a c 7) and N = u{Na : a c 7). For each 17 E I(w) such that 
77 17 

- N is nonempty, define E = {(a,a) : a E M - N ). For each such 17, let 
M77 77 17 17 17 
K = I M - N I and index the elements of M - N as a for i < K writing 

r ]  1 7 7 7  17 17 17i 17' 
M . = N  . = N  U{a .). 

171 171 17 171 

With I(w + 1) = { @  : 7 E I(w), N # M , i < rc ) and I = ~ { I ( c r )  : cu 5 w + 11, 
17 17 17 

the construction is complete. 

It is evident that with our definitions of I, M , N , and E , parts (i), (ii), 
1 7 7 7  17 

(iv), and (v) of Definition 2.15 are satisfied. For (iii), it is also clear that for 

internal nodes r of I, the equivalence classes of E r  are the sets Ma - N, where 

a is an immediate successor of T in I. It remains to show that for such internal 

nodes r, ET is actually a A-congruence on MT - NT. For this there are two 

cases to consider. First suppose that l( r) = w. Then any two elements of 



MT - N T  are ET-inequivalent, but Ei-equivalent for all i < w. Thus any tuples 

6, E of distinct elements of MT - N T  having the same length also have the same 

A-type over Nr,  which shows that ET is a A-congruence. Next, suppose that 
- 

!(r)  < w, and take 60, ,..., 6, and G, El ,..., cn satisfying (i),  ( i i ) ,  and 

(iii) of Definition 2.8, with I' = A, E = ET, and Ci replacing si.  Let 
- 

6061...6n = bob l...br and c c ... c = c c ... c Then 0 1  n 0 1  r' 
- -  - 

... c I N  ) = t ~ ( 6 ~ 6 ~ . . . 6 ~ l N , )  just in case for all k < w, i j r, and t ~ ~ ( c ~ c l  n r 

a e N ,  Ek(bi,bj) ++ Ek(ci,cj) and Ek(bi,a) ++ Ek(ci,a). Now it was already 

assumed that Ek(bi,a) ++ Ek(ci,a) since bi and ci are corresponding members of 

corresponding sub-tuples, and corresponding sub-tuples were supposed to have the 

same A-type over NT. Thus we are done if we can show that under these 

conditions Ek(b.,b.) ++ Ek(c.,c.). Towards a contradiction, suppose without loss of 
1 J  1 J  

generality that Ek(b.,b.) and -Ek(ci,cj). Then -ET(bi,bj) and 1E ( c . ,~ . ) ;  
1 J  T l J  

otherwise b.b. and C.C. have the same A-type over Nr. Since Ek(b. ,b.) and 
1 J 1 J  1 J  

( b i b j )  we have k < !(r). Now by construction, Ek(bi,ar) and E k ( b  a ), so 
J' 7- 

that Ek(ei,ar) and Ek(c  a ), whence E (c . ,~ . ) .  This is a contradiction. We 
J' T k l J  

conclude that ET is a A-congruence on MT over NT. Thus our attempted 

decomposition of M by I was successful. 

For this example, there is no canonical decomposition of the kind found in 

Example 1. This suggests the possibility of recasting the definition of 

tree-decomposability. In Definition 2.15 (ii) replace the strict inclusion between 

N and N by r, while adding "of height 5 maw( I L I , N ~ ) + "  at the end of 
P 7 

Definition 2.16. The theory developed in Chapter 2 requires only trivial changes, 

and any model M of the theory of Example 3.2 now has a canonical decomposition 



by a tree L ("l)fi for some n, constructed in a similar fashion. No is the 

empty structure when l(u) 5 w. If 1 5 l(o) = i < w, Mo is an Ei-l-class. If 

[(u) = w, then Mu is an ( n Ei)-class, and if C(o) = w + I, then Mo = Nu is 
i<w 

a singleton. 

Example 3.3 This is essentially Example 7.1.1 of [BS]. For n 1 let Ln 

contain unary predicates Pi (0 5 i 5 n) and binary predicates F and G. The 

axioms of theory Tn are as follows: 

(1) The Pi are pairwise disjoint, and, taken together, exhaust the universe. 

(2) For each x there is a unique y such that F(x,y) and a unique z such 

that F(z,x). (This can be taken to mean that F is a permutation of the universe.) 

(3) F has no finite cycles. (This actually requires an axiom schema.) 

(4) For each x there is a unique y such that G(x,y). (In other words, G 

is a function.) 

( 5 )  If F(x,yl), G ( Y ~ , Z ~ ) ,  G(x,y2), and F(y2,zZ), then zl = 22. (This 

means that F and G, taken as functions, commute.) 

(6) If F(x,y), then Pi(x) if and only if Pi(y) (0 < i 5 n). 

(7) If G(x,y) and Pi(x) (i  > 0), then Pi-l(y). 

(8) If Po(x) and G(x,y) then y = x. 

(9) For each y, {x : G(x,y)} is infinite unless Pn(y), in which case 

{x : G(x,y)) is empty. (Once again an axiom schema is required.) 

With the axioms given above, Tn is complete and w-stable. Tn is also 

(n+ 1) -tree-decomposable. It then follows from the theory given in Chapter 2 that 



Tn is monadically stable. The tree-decomposability is not surprising, for the 

models of TI1 fall apart into components which themselves enjoy a tree structure. 

There is another general construction of tree-decomposable theories, first 

announced in [L3]. To present this construction, we must introduce another 

definition. 

Definition 3.4 A theory T is coinductive if it can be axiomatized by the set 

of all its 3V-theorems, where an 3b'-formula is a prenex formula all of whose 

existential quantifiers precede all its universal quantifiers. A structure is called 

coinductive when its theory is coinductive. 

It is a basic result of [L2] that a coinductive theory over a relational language 

is tree-decomposable. This fact furnishes us with a stock of further examples of 

tree-decomposable theories. 

These new examples are graphs, possibly with some additional unary 

predicates; in fact, we will consider a graph to be a structure for one of the 

languages Li = {R, R1, ... , Ri}, where R is binary and R. (1 5 j 5 i )  are unary, 
J 

in which Vx Vy ((R(x,y) -, R(y,x)) & lR(x,x)) is true. In graph-theoretic terms, 

our structures are simple graphs with colours for the vertices, where a vertex may 

be coloured with more than one colour or with no colour at all. The examples we 

give are all constructed according to the following plan. 

Let T be a universal but not necessarily complete theory of graphs whose 

class of models is closed under disjoint union. Let {Mi : i E w} exhaust the finite 

models of T in the sense that each Mi is a finite model of T and any finite 



model of T is isomorphic to some Mi. Then the principal model MT of T is the 

disjoint union U Mi. (MT is determined up to isomorphism by the given data, 
i ~ w  

for we can construct an isomorphism between two such principal models by a 

standard back-and-forth argument.) Now it often happens that if a universal 

theory T of graphs whose class of models is closed under disjoint union is given, 

then Th(MT) is a (complete) coinductive theory. The conjunction of the following 

two conditions suffices: 

( i )  T imposes a uniform finite upper bound on the number of vertices adjacent to 

each of two distinct vertices, and (ii) in any model of T,  no infinite path can be 

embedded in a substructure of finite diameter. By a result alluded to above, each 

such theory T yields a tree-decomposable theory Th(MT)  The following 

examples are of this kind; all are taken directly from [L3]. 

Example 3.5 Let T be the Lo-theory of graphs without cycles. 

Example 3.6 Let T be the Lo-theory of graphs such that all cycles are 

3-cycles and any two 3-cycles have at  most one vertex in common. 

Example 3.7 We begin by defining an L2-structure N. The universe of N 

comes in three parts: 

n R1 = U{ w: 15115 w), % = Ww, with 

N = R1 U R2 U {(f,m,n) : f E Ww, m 5 n < w). 

Finally, the adjacency relation R is taken as the least symmetric relation 

containing all pairs of the forms 

(f, (f,O,n))7 ((f,m,n), (f,m+l,n)), ((f,n,n), f(O)...f(n)), 

where f E Ww and m < n < w. Our theory T is then the universal L2-theory 



such that M is a finite model of T if and only if M is the disjoint union of a finite 

number of finite structures embeddable in N. 
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