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ABSTRACT 

Quasiparticle Dynamics, a computer simulation for nuclear reactions, 

is used to investigate reaction plane memory in intermediate energy 

heavy ion collisions. In particular, extensive simulations involving 

the generation of more than 21,000 events are performed for 

14N+154Sm at 35 A.MeV. The gamma ray circular polarization, as a 

function of trigger mass, energy and angle, is shown to be a measure 

of the correlation between the trigger plane and the reaction plane. 

Calculations of the inclusive particle spectrum, as well as circular 

polarization, are compared with experiment and the Boltzmann- 

Uehling-Uhlenbeck model. The dependence of the calculated 

observables on the assumed in-medium nucleon-nucleon cross 

section is also investigated. 
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Chapter One 

Introduction 

1.1 Introduction 

In heavy ion collisions, nuclear matter is usually compressed at the 

early stage of the reaction because of the interpenetration of the 

projectile and the target. Nucleon-nucleon collisions cause both the 

temperature and the entropy of the system to rise. The state of 

compression can only last for a very short time, typically about 

30  fm/c= 10-22 second. Then the system disassembles. The number 

of nucleon-nucleon collisions falls quickly and the entropy changes 

slowly. During the expansion phase of the reaction, the density 

decreases to a value where the nucleons are no longer interacting. 

This density is called the freeze-out density. In heavy ion reaction 

experiments, the detectors can only measure the experimental 

observables long after this stage. To understand the whole process 

of a nuclear reaction requires detailed analysis of the experimental 

observables. Reviews of heavy ion collision phenomena can be found 

in References 1 to 3. 

Computer simulations have been used for more than a quarter of a 

century to study some aspects of nuclear physics.4 In nuclear 

reaction experiments, the observables such as momenta and energies 

of particles emitted are measured a long time after the reaction 

begins. One cannot understand the step-by-step mechanism of the 



reaction from the measured observables alone. The advantage of 

computer simulation is that one can study the reaction at any time 

step throughout the whole reaction process. Further, experiments 

have no control on either the magnitude or the direction of the 

impact parameter between the projectile and the target in heavy ion 

reactions. In a computer simulation, the impact parameter can be set 

at whatever value desired. 

In many heavy ion collisions, the number of nucleons involved will 

be in the order of 100 and the reaction cannot be easily described in 

analytical form. The fermionic nature of nucleons requires that the 

antisymmetric wave function of a nucleus will have at least A! terms. 

There will be many more terms if one wants to determine the 

expectation value of observables such as kinetic energy. It would be 

computationally demanding to determine the time evolution problem 

of any observable by numerically propagating the nuclear wave 

function except for very light nuclei. Many models have been 

developed to attempt to reduce the many-body problem to a 

computationally manageable scale. In the next section, a brief 

review of computer simulations in nuclear studies is discussed. 

1.2 Brief Review of Computer Simulations In Nuclear 

Reaction Studies 

Several different models have been developed in the history of 

computer simulation of heavy ion collisions. One of the earliest 

methods of simulating nuclear reactions is by modelling the reaction 



using the equations of hydrodynamics. If the mean free path of a 

nucleon in nuclear matter is sufficiently short, then a local 

equilibrium may be established within the reaction zone and the 

region may evolve according to hydrodynamics. The nucleon mean 

free path is estimated to be of the order of the internucleon spacing.5 

One can determine the trajectory of a nuclear reaction by solving the 

hydrodynamic equations governing the time evolution of quantities 

such as the energy density, number density and momentum 

density.6 The attraction of hydrodynamics is the simplicity of its 

ingredients: conservation laws and an equation of state. Several 

numerical solutions of the hydrodynamic equations for heavy ion 

collisions have been performed.6 However, hydrodynamics demands 

that individual nucleon-nucleon collisions are frequent enough to 

maintain a local equilibrium during the course of a reaction. This 

method is not applicable to intermediate energy heavy ion collision. 

A more exclusive model than hydrodynamics is the Intranuclear 

Cascade Model (INC) in which nucleons are propagated in space by 

means of classical mechanics.' The motion of the nucleons is a 

straight line unless it is affected by a nucleon-nucleon collision, 

which occurs if the distance of closest approach of two nucleons falls 

below the classical scattering radius determined by the measured 

nucleon-nucleon (NN) cross section. This model is computationally 

fast and simple. Furthermore, it is a true A-body problem. It has 

been used to address a number of questions about the internal 

dynamics of a reaction such as the production of entropy in central 

collisions . 8  However, neither the nuclear potential nor the Pauli 



Exclusion Principle are considered in this model, and it cannot be 

used to describe fragment formation in nuclear reactions. 

For reactions at low energy, i.e., the projectile kinetic energy per 

nucleon is a few MeV above the Coulomb barrier, many of the 

individual nucleon-nucleon collisions are Pauli-blocked. The reaction 

is dominated by the nuclear mean field. Nucleus-nucleus collisions at 

small impact parameter lead to complete fusion of the projectile and 

the target. An equilibrated compound nucleus is formed. The 

deexcitation of the compound nucleus is by emission of particles and 

photons. At large impact parameters, the collisions are dominated by 

quasi-elastic reactions. At intermediate impact parameter collisions, 

the two nuclei largely retain their form but there is a large 

momentum and energy transfer.2 

Some aspects of the nuclear reactions at low energy can be described 

by the Vlasov equation9 which is the Boltzmann equation without the 

collision term: 

where f(r,p,t) is the one-body phase space density and U is the 

nuclear potential function. However, since it neglects nucleon- 

nucleon collisions, the Vlasov equation cannot be used to describe 

reactions at higher energies. 

For intermediate energy reactions, the projectile kinetic energy per 

nucleon is in the range of 20 to 200 MeV. The relative velocity of 



the two colliding nuclei in this range of energies is comparable in 

magnitude to the Fermi velocity in nuclear matter, ~ ~ ~ 0 . 3 ~ .  

In intermediate energy nuclear reaction, the energy is not high 

enough that the nuclear mean field and the Pauli exclusion principle 

can be neglected nor is it low enough that most of nucleon-nucleon 

collisions can be ignored because of Pauli blocking factor. 

1.3 Boltzmann-Uehling-Uhlenbeck Equation 

One way of addressing the intermediate energy nuclear reaction 

problem is by solving the Boltzmann equation for the single particle 

phase space distribution f(r,p, t). The equation includes both a force 

term, given by the gradient of the mean field potential, and also a 

collision integral term. However, this method is not very appropriate 

because effects such as Pauli blocking arising from nucleon-nucleon 

collisions are excluded. Therefore the nucleon-nucleon collision term 

should include the Pauli blocking factor for fermions as suggested by 

Nordheimlo and Uehling and Uhlenbeck.11 An equation resembling 

the classical Boltzmann equation has been developed for fermion 

distributions and is known as the Boltzmann-Uehling-Uhlenbeck 

(BUU) equation: 



The right hand side of equation (1.2) is the collision integral. The 

effects of the Pauli exclusion principle are partly included in the 

collision term: the (1-f)(l -f) terms inhibit nucleon scattering into 

regions of high density in phase space. If the right hand side is equal 

to zero, the equation reduces to the Vlasov equation (1.1). Solutions 

of equation (1.2) are usually found by using the Monte Carlo 

sampling technique.12 We will briefly discuss the numerical 

techniques for the BUU model in the next chapter. 

In many BUU calculations, the initialization used to represent the 

"ground state nucleus" is numerically unstable on the time scale of a 

few hundred fm/c. The initialization is not the true ground state of 

the potential U. Particles are slowly evaporated from a 'cold' nucleus 

even if there is no nuclear reaction. Therefore the calculation has to 

stop at about 200 fm/c in order to avoid evaporation of the system.13 

The BUU-like models are widely applied in intermediate and high 

energy nuclear reactions. For example, it has been used to calculate 

the proton spectra observed in the l2C+l60 reaction at 25 A.MeV.14 

Its predictions are in good agreement with the experiment. The BUU 

model which includes nucleon-nucleon collisions gives better 



predictions for intermediate energy heavy ion reactions than the 

Vlasov equation. For example, a comparison between the Vlasov and 

the BUU equations of the momentum space distribution for a central 

Ar+Ca collision at 137 A.MeV has been made.15 In the Vlasov 

approach, the final momentum distribution is still fairly close to that 

of the initial projectile and target, i.e., the nuclei are largely 

transparent to each other. On the other hand, the BUU approach 

shows a much larger change of the momentum distribution, and is in 

closer agreement with experiment. Discussion about the applications 

of the BUU model can be found in review articles Refs. 1-4. 

1.4 Quasiparticle Dynamics 

The BUU model is a one-body model. The correlations between 

nucleons have to be incorporated in a model-dependent fashion. For 

example, a number of assumptions must be made in order to extract 

fragments from the one-body distribution (we will discuss these 

aspects in Chapter Three.) 

In the time since the BUU model was developed, a considerable 

amount of effort16 has gone into developing simulations for many- 

particle distributions. These simulations include correlations 

between nucleons and so incorporate fragment emission from heavy 

ion reactions without further assumptions. One such model is the 

Quasiparticle Dynamics model,l7 which is Hamiltonian-based yet 

includes a stochastic nucleon-nucleon collision term. 



In the Quasiparticle Dynamics model, each nucleon is represented by 

a Gaussian wavepacket of width lla in coordinate space. The 

degrees of freedom for the equations of motion are taken to be ex> 

and cp>, the expectations of the individual wavepackets. Hence, each 

nucleon is represented by a quasiparticle whose phase space 

coordinates R and P are cx> and ep> respectively. 

The wavepackets are not used to form an antisymmetric 

wavefunction but a momentum-dependent potential acting pairwise 

between the quasiparticles is used to incorporate many of the effects 

on the fermions' energies arising from antisymmetrization. The 

complete Hamiltonian of the system also includes terms representing 

the nuclear interaction and the coulomb interaction. In Chapter Two, 

we give a brief description of the development of the QPD model. 

In Chapter Three, we use the Quasiparticle Dynamics (QPD) model to 

simulate the reaction 14N+154Sm at 35 A.MeV. The properties of the 

residual nuclei and the single particle spectra are studied. The 

predicted spectra are compared with experiment and results from a 

BUU calculation. 

1.5 Gamma Ray Circular Polarization 

One of the features of intermediate energy nuclear reactions is the 

incomplete fusion reaction. By definition, complete fusion reactions 

involve the projectile and the target completely fusing together and 

the momentum of the projectile being transferred to the composite 



system. The life-time of the compound nucleus is long enough that 

the internal degrees of freedom are equilibrated and memory of the 

entrance channel is lost. Particles are emitted by evaporation and 

their distribution is isotropic in the nucleus-nucleus center-of-mass 

frame. The velocity distribution of the residual nuclei is centered 

about the center-of-mass of the system. 

Incomplete fusion reactions denote processes in which some particles 

are emitted prior to the complete equilibration of the composite 

system. Those particles are called nonequilibrium particles, and are 

more energetic than those evaporated from the equilibrated nucleus. 

The angular distributions of the emitted particles are usually not 

isotropic in the center-of-mass frame. In the laboratory frame, the 

nonequilibrium light particle spectra are forward peaked. (See, for 

example, data summarized in Refs. 1-3.) 

Experimental evidence18 indicates that nonequilibrium particle 

emission in an incomplete fusion reaction exhibits preferential 

emission in the reaction plane which is perpendicular to the orbital 

angular momentum, Ji, of relative motion between projectile and 

target nuclei. The reaction plane is defined by the impact parameter 

vector, b ,  and momentum vector of the beam, ki, where Ji is defined 

as bxki. Tsang and co-workers detected light particles in coincidence 

with two binary fission fragments for 14N induced reactions on 197Au 

at 30 A.MeV incident kinetic energy.18 The two detected coincident 

fission fragments and the beam form the fission plane which is 

perpendicular to the orbital momentum of the fissioning nucleus. For 

simplicity, the intrinsic spins of the projectile and target nuclei and 



the angular momentum of particles emitted prior to fission are 

neglected. In this approximation, the total angular momentum of the 

fissioning nucleus is equal to the orbital angular momentum of 

relative motion between projectile and target nuclei. Therefore, the 

fission plane is approximately coplanar with the reaction plane. The 

light particles detected in the fission plane are called 'in-plane' 

particles while those detected perpendicular to the fission plane are 

called 'out-of-plane' particles. The ratio of particles emitted out-of- 

plane to those emitted in-plane is less than one. Thus the 

experiment shows preferential emission of light particles in the 

reaction plane. 

Preferential emission of nonequilibrium light particles is observed in 

the reaction plane, indicating a collective motion in this plane and 

transverse to the beam axis. To discuss this question quantitatively, 

let us define a sign convention for the reaction plane and angle. 

Figure 1 shows the sign of the deflection angle for emission of light 
kixkf  

particles. The quantization axis is defined as 
i f7kixkfr 

Thus, 

negative (positive) deflection angles of emission correspond to hi f -J i  

being positive (negative). 



I positive deflection angle negative deflection angle 

I 
Fig. 1.1 Sign convention for the deflection angles of the particles 

emitted. The momentum vector of the beam and that of the 
light particles are defined as k i  and kfrespectively. The 

impact parameter vector is defined as b .  

Microscopic calculationsl4 with the Boltzmann-Uehling-Uhlenbeck 

equation interpret the effects of enhanced emission of 

nonequilibrium light particles in the reaction plane (at intermediate 

bombarding energies) in terms of the deflection to negative emission 

angles by the attractive nuclear mean field. Since collective motion 

in the mean field is damped by the individual nucleon-nucleon 

collisions, the relative importance of positive and negative emission 

angles is sensitive to the interplay between mean-field dynamics and 

two-body dissipation. 

To address this issue, Tsang and co-workers19 measured the circular 

polarization of gamma-rays emitted by the residual nucleus in 



coincidence with nonequilibrium light particle triggers for the 

reaction 14N on 154Sm. The triggers are measured at polar angles of 

30' and 60' with respect to the beam. The photons are detected 

around the quantization axis. The sign of the gamma ray circular 

polarization follows the sign of the average emission angle of 

nonequilibrium light particles. Since light particles are 

preferentially emitted in the reaction plane, the quantization axis 

will be aligned with the angular momentum, J, of the heavy residue. 

Semiclassically, the photon's spin will be parallel to the spin of the 

residue. Therefore, positive circular polarization corresponds to 

negative deflection and an attractive mean field. 

Positive circular polarizations are observed for all light particle 

triggers at both angles. The magnitude of the measured polarization 

increases with increasing energy and mass of the triggers. This 

experiment establishes the preferential emission of nonequilibrium 

light particles to negative emission angles, consistent with an 

attractive nuclear mean field calculated by the BUU model and with 

measurements at lower energies.20 

In Chapter Four, we use the QPD model to calculate the sign and the 

magnitude of the gamma ray circular polarization in coincidence with 

the light particle triggers. The results are compared with experiment 

and the BUU code. We also study the microscopic dynamics of the 

nucleus-nucleus collision process. Finally, our conclusions and 

discussion are included in Chapter Five. 



Chapter Two 

Quasiparticle Dynamics 

2.1 Introduction 

On a quantum mechanical level, the fermionic nature of nucleons 

demands that a nuclear wave function has to be antisymmetrized. 

Thus there will be A! components to the wave function for a single 

Slater determinant of a single nucleus of A nucleons. For all but the 

lightest nuclei, it is impossible for existing computers to handle any 

time evolution problem in nuclear reactions by propagating the 

nuclear wave functions. Thus it is difficult to find a model to 

describe nuclei in an efficient manner in computer simulations. 

One method of tackling the problem is to find a classical potential 

which can incorporate some of the effects of antisymmetrization. In 

the Quasiparticle Dynamics (QPD) model,l7 the classical potential 

(referred to as the Pauli potential) is obtained from evaluating the 

expectation value of the kinetic-energy operator for a specific 

nuclear wave function. Then the nuclear and Coulomb terms are 

added to the potential such that the Hamiltonian of the system 

involves A2 terms. With this simplification, systems with several 

hundred nucleons can be investigated by computer simulation. 

The layout of this chapter is as follows: In Section 2.2 the derivation 

of the Pauli potential in QPD is described. The properties of ground 



state nuclei in QPD are discussed in Section 2.3. In Section 2.4 the 

nucleon-nucleon collision term is discussed. Finally, the differences 

between BUU and QPD are compared in Section 2.5. 

2.2 Pauli Potential 

One of the effects of Fermi-Dirac statistics is that the ground state of 

a fermion system has to have a non-zero expectation value of the 

kinetic energy operator: 

where the mass of the nucleon, m, is assigned to be 938.9 MeV. One 

can see that there are at least A(A!)2 terms in equation (2.1) for a 

nucleus with A nucleons, if YgeS. is antisymmetric. It is 

computationally prohibitive to propagate equation (2.1) for all but 

light nuclei. The motivation for the Quasiparticle Dynamics model is 

to try to seek approximations to express equation (2.1) in terms of a 

two-body interaction between the nucleons. With the approximation, 

the number of terms for the kinetic energy expression (2.1) is A2 

instead of A(A!)2. 

In QPD, each nucleon is taken to have a wave packet which is 

Gaussian in form 



This wave packet is centered at ra and has an average momentum pa. 

The two-particle antisymmetrized wave function formed from two of 

these wave packets is 

The total kinetic energy of a two-body system described by Yab is 

whe re  

The 3a2h2 term is a result of the uncertainty principle that the wave 

packet is not a delta function in momentum. The last term of 

equation (2.4) can be identified as a two-body potential between 

quasiparticles with phase-space coordinates @,,pa) and (rb,pb). Thus, 

in QPD the term 

is identified as a candidate form for the Pauli potential between 

classical quasiparticles which represent fermions. The Pauli potential 

vanishes when the quasiparticles are well separated in phase space 

and is repulsive for finite separation in phase space. A system of 

quasiparticles interacting via the Pauli potential has features17 which 

resemble the behavior of a many-particle Fermi gas. 



The energy of a system of particles interacting via equation (2.5) (the 

analogue of the free particle Fermi gas) is 

whe re  

The quasiparticles in the system hav e labels 1 and m.  

Consider that the quasiparticles of a many-body system are placed in 

a simple cubic lattice with lattice spacing a. If a a > > l ,  then the sites 

are decoupled and the ground state has kl=0 for all I. However, this 

is not the case for smaller separation. One can show17 that kl=0 is 

not a global minimum of E for aac2.2,  and therefore there exists a 

ground state of the system at some nonzero kl. 

Having found that the ground state of a system of quasiparticles has 

non-zero kinetic energy, one can estimate a in equation (2.5) by 

equating the ground state energy of a system of quasiparticles on a 

simple cubic lattice with that of an ideal Fermi gas at the same 

density. However, one finds that equation (2.5) always 



underestimates the energy of a Fermi gas for all a. This arises 

because only two-body terms in the Pauli potential have been used 

in evaluating the kinetic energy of the many-body system. 

Therefore, the strength of the Pauli potential has to be rescaled in 

order to approximate the energetics of the three- and higher-body 

terms. The Pauli potential is then rewritten as 

where V, is the scaling factor. The two parameters of the Pauli 

potential, V, and a, are fixed by equating the ground-state energy of 

a system of quasiparticles on a simple cubic lattice with that of an 

ideal Fermi gas at the same density over the density range of 

interest. The best fit of V, and a is found to be 1.9 and 112 fm-1 

respectively. 

To summarize, the Pauli potential is a classical potential that 

incorporates some of the properties of a system of non-interacting 

fermions. Its use allows the reduction in the number of terms in an 

A-body fermion Hamiltonian from A(A!)2 to A2. 

2.3 Nuclear Interaction 

In addition to the Pauli potential, the Hamiltonian of a nucleus must 

include terms arising from the strong and electromagnetic 

interaction. The nuclear potential energy density is taken to have 

the following form:17 



where p is  the local density at coordinate r ,  and po is the density of 

normal nuclear matter (taken to be 0.17 fm-3 here). The third term 

is used to describe the isospin dependence of the nuclear force and is 

a function of the local proton density, pp, and the local neutron 

density, pn. The last term depends on the gradient of the density. 

The density of the system is taken to be the direct sum of the 

density of each quasiparticle pi, such that 

This expression assumes that the cross terms in the X * X  product of 

antisymmetrized single-particle wave functions cancel. 

Defining (X)i = Ipi(r) X d3r, equation (2.8) becomes 

All summations but the second one involve of the order of terms. 

There are A3 terms in the summation over (p2/po2). Therefore it is 

approximated as 



which involves A2 terms. The second term of equation (2.11) 

vanishes for uniform nuclear matter. However, omission of this term 

allows unphysical density fluctuations to develop and can lead to 

ground state instabilities in nuclei heavier than the nucleus with the 

maximum binding energy per nucleon. Since gl and g2 a re  

parameters of the gradient terms, they can be replaced by G=gl+g2. 

The Coulomb potential between protons is also included in the QPD 

Hamiltonian. The functional form of the Coulomb potential between 

two protons with Gaussian charge distributions [i.e. equation (2.2)] 

contains error functions, which are time consuming to compute. 

Since this is not a critical part of the calculation, the Gaussian density 

distribution is replaced with a spherical charge distribution for the 

purposes of calculating the Coulomb interaction. A spherical charge - 
distribution with radius r0=34  2 x / 4 a  has been chosen to give a 

potential which approximates the exact potential. 

By putting equations (2.9) and (2.11) into (2.10) and calculating the 

integrals, an explicit form for the interaction between the 

quasiparticles due to the nuclear potential is found. Combining this 

with the Pauli and Coulomb potentials, the energy of the collection of 

quasiparticles can be written as 



where  

S i  = 1(-1) for protons (neutrons) 

f o r  r > r o  

o the rwi se  
2ro 

There are six parameters a ,  V,, A, B, C and G in equation (2.12). The 

value of V, and a are determined by approximating the properties of 

zero-temperature Fermi gas as shown in the last section. Four 

parameters remain to be determined. The method17 used in 

determining the parameters is to use three constraints imposed by 

the infinite nuclear-matter limit so as to reduce the fit to a search 

over one free parameter. The constraints are as follows: 

(i) The binding energy per nucleon of infinite nuclear matter at 

p=po=O. 17 fm-3 and small o=(pp-p,)/po is taken as EB=Eo+aso2 

where Eo=15.68 MeV, and a,=-28.06 MeV. 

(ii) The binding energy has a maximum at p=po and o = O .  

(iii) The energy in the infinite-matter limit can be calculated by 

using equation (2.8) and the ideal Fermi gas results for the 

kinetic energy. For small o ,  the energy is 



where EF is the Fermi energy at p=p, and is equal to 38.37 MeV. 

The binding energy is the difference between the energy in the 

infinite nuclear-matter limit and the energy when the 

quasiparticles are infinitely separated. 

Therefore, parameters A, B and C can be determined with the above 

constraints, and a one parameter fit for G can be performed by 

comparing the calculated binding energies and r.m.s. radii of various 

nuclei with data. 

The ground states of finite nuclei are calculated with the following 

method. First, the quasiparticles are placed in a body-centered cubic 

(bcc) lattice and momenta are randomly assigned with a local Fermi 

gas approximation. The nucleons are propagated under a set of 

damped equations of motions (based on Hamilton's equations) with 

the positions and momenta of the quasiparticles as degrees of 

freedom. The parameter set A=- 129.69, B=74.24, C=30.54 MeV, and 

G=29 1 MeV -f m5 produced acceptable ground states.17 For nuclei 

with A25, it is found that the binding energies and r.m.s. radii are 

usually within 10% of the experimental values over most of the 

periodic chart. 



2.4 Nucleon-Nucleon Collision Term 

As described above, a Hamiltonian for a system of quasiparticles has 

been developed. Hamilton's equations of motion are used to describe 

the motion of the quasiparticles. However, such a system is strictly 

classical and contains none of the randomness associated with 

quantum mechanics. In order to include at least some aspects of 

quantum mechanical scattering, a collision term is introduced. The 

scattering algorithm is chosen to be the following:l7 One test particle 

is assigned to each quasiparticle according to the Gaussian density 

distribution of the quasiparticle. If the distance between test 

particles of two approaching quasiparticles fa1l.s below the classical 

nucleon radius, RNN, an attempt is made to scatter the quasiparticles. 

The magnitude of RNN is determined by the total in-medium 

nucleon-nucleon cross section by assuming the simple classical 
2 

expression, ONN = xRNN. The CTNN is assumed to be isotropic. 

At the collision point, the scattering of two particles can be made to 

conserve both linear and angular momentum. Let p'l and p '2  be the 

momenta of the test particles after scattering, 

where pi is the momentum before scattering, f i j  = 2 lrijl and S is a 

scalar to be determined from conservation of energy. If energy is 

conserved, then 



The secant method is used to determine S. If there is no solution 

other than S=O, the collision is rejected. Once the new momenta of 

the scattering pair have been chosen, the collision is accepted if the 

momenta are not Pauli blocked. (See Ref. 17 for details of the 

method.) Once the scattering has been accepted, a new test particle 

is assigned to each quasiparticle. 

2.5 Comparison Between BUU and QPD 

Let us briefly discuss the numerical techniques used by the BUU 

model.20 In the BUU model, each nucleon is represented by N test 

particles in N samples of the system, i.e. one test particle per nucleon 

in each sample. The test particles are propagated by Newtonian 

mechanics with all N samples propagated simultaneously. To 

evaluate the nuclear potential U or the Pauli blocking term (both of 

which depend on the local phase space density), the value of the 

phase space density, f, is calculated by performing an average over 

all N samples using the number of test particles in the phase space 

volume of interest. The BUU equation includes scattering of the test 

particles. For each time step, two test particles of the same sample 

collide if 



(a) the particles pass the point of closest approach; 

(b) the distance at closest approach is less than the classical radius 

of scattering 4 oNN/x where (TNN is the in-medium nucleon- 

nucleon cross section; 

(c) their momenta after the collision are not Pauli blocked. 

The directions of the test particles' momenta after the collision are 

randomly selected from a predetermined distribution (usually 

assumed to be isotropic in the center-of-mass frame of the two test 

particles). The magnitudes of the momenta are determined from the 

conservation of energy and linear momentum. There is no guarantee 

of conservation of the angular momentum between the pair of test 

particles. Therefore the angular momentum of the whole nuclear 

system is not necessarily conserved. However, on average the 

angular momentum of the system does not change drastically. 

A comparison of the BUU model with the QPD model is as follows: 

(i) The QPD model is a many-body model in which the correlations 

between nucleons do not need to be incorporated in a model- 

dependent fashion. The positions and momenta of the nucleons 

at any time of the reaction are known. The BUU model is a 

one-body model. One can only know the probability of having 

a nucleon at certain point in phase space. One cannot know all 

the nucleons' positions and momenta simultaneously. 



(ii) In BUU-like models, the combined effects of the collision term 

and numerical integration approximations may lead to ground 

state nuclei which are unstable on the time scale of a few 

hundred fm/c. In one mode1,ls approximately 1 particle out of 

100 leaves the nucleus in the order of 100 fm/c. Therefore,  

one has to stop the simulation at 100-200 fm/c to avoid 

possible evaporation of the nuclei. In QPD, the nuclei are in 

true ground states of the Hamiltonian governing their 

equations of motion and this allow the reactions to be followed 

for thousands of fm/c. Because the ground state properties of 

the nuclei are included in QPD, it is straight-forward to 

determine quantities such as excitation energy distributions 

and to follow their time evolution. 



Chapter Three 

Single Particle Inclusive Spectra 

3.1 Introduction 

In this chapter, we use the QPD model to simulate a heavy-ion 

reaction. The properties of the residual nuclei and the single particle 

inclusive spectra are discussed. Moreover, the results are compared 

with the experimental results and with the BUU calculation of the 

same reaction. The layout of this chapter is as follows: In Section 3.2 

the simulation of a heavy-ion collision is described. The properties 

of the residual reaction products and the single particle inclusive 

spectra for light particles are discussed in Sections 3.3 and 3.4 

respectively. Finally, Section 3.5 contains a comparison between QPD 

and BUU calculations. 

3.2 Details of the Simulations 

The computer simulations are performed for l4N colliding with 154s m 

at 35 A.MeV bombarding energy in the laboratory frame. The 

corresponding center-of-mass energy per nucleon available to the 

compound system is 2.6 MeV. The specific projectile, target and 

bombarding energy of interest are chosen in order to compare the 

results of the simulation with those of experiments performed at the 

National Superconducting Cyclotron Laboratory at Michigan State 



University.19 Two data sets are generated. In the first set, a sample 

of 14,720 events is generated for the impact parameter, b, in the 

range from 0.5 to 7.5 fm in 1 fm steps. The number of events at 

each impact parameter is proportional to the area of the ring from 

b-0.5 to b+0.5 fm. For example, the number of events at b=7.5 fm is 

15 times the number at b=0.5 fm. The in-medium nucleon-nucleon 

(NN) cross section, GNN, for the simulation is taken as 28 mb. A 

second data set with 6,400 events of GNN at 60 mb is also generated 

over the same impact parameter range. These large event samples 

are required because of the trigger condition used in the 

experimental studies: we wish to be able to study the inclusive 

spectra as well as the circular polarization of the gamma rays 

emitted as a function of trigger fragment mass, energy and angle. 

Moreover, we want to compare two sets of data at different 

in-medium NN cross sections with the experimental results in order 

to see which GNN gives the better fit. 

For each event, the system of quasiparticles is propagated for 

250 fmlc elapsed reaction time. Such an event takes about 4 cpu- 

minutes to execute on an IBM 3801 mainframe computer. We find 

that the momenta and excitation energies of most of the reaction 

products stabilize by about 150 fmlc elapsed time in the reaction 

where the collision begins about 20 fmlc after the simulation starts. 

The total execution time for the generation of the two event samples 

is over 1,000 cpu-hours. 

For each event, after the nucleons have been propagated for an 

elapsed time of 250 fmlc, a cluster search is made over the 



nucleons' positions. In the search, quasiparticles whose positions are 

less than 3.5 fm apart are linked together to form a cluster. The 

clusters formed are not necessarily in their ground state at this point 

in the reaction. However, most of the clusters are equilibrated by 

this time and stable on a time frame of a thousand fm/c, a fact to 

which we will return in the next section. In other words, these 

clusters retain their integrity over a longer time scale than that for 

which it  is computationally economical to run the simulation. 

3.3 Properties of the Residual Reaction Products 

For each event, there is only one heavy residual nucleus which has 

mass greater than A=150. The other fragments generally have mass 

less than or equal to the mass of the projectile, A=14. Most of the 

fragments are unbound nucleons, whose multiplicities are 4.06 and 

4.21 for aNN=28 and 60 mb respectively. The multiplicities of the 

fragment species decrease with increasing mass of the species. The 

total multiplicities for A114 are 4.95 and 4.97 for oNN=28 and 60 mb 

respectively. The difference in total multiplicities calculated from 

the two in-medium NN cross section is not significant. 

In order to study the magnitude of the excitation energy of the 

residual reaction products, we examine the mass distribution of the 

residual nuclei. The fractional mass distribution of the residual 

nuclei of the reaction at uNN=28 mb is shown in Figure 3.1. The 

distribution is averaged over impact parameter and normalized over 

the mass range covered by the figure. It is obvious that most of the 



distribution lies at mass greater than the target mass of A=154, 

which means that some of the mass of the projectile has been 

transferred to the target. These nucleons are trapped in the residual 

nucleus which does not decay by the elapsed time when the 

simulation is stopped. 

Suppose we now take a particular nucleus close to the peak of the 

fractional mass distribution in Fig. 3.1, and evaluate its average 

excitation energy. We choose the l63Ho nucleus whose ground state 

energy is -8.34 MeV by the QPD rnodel.l7 The fractional distribution 

of excitation energy for this nucleus is shown in Fig. 3.2 where the 

same integration and normalization are chosen as those in Fig. 3.1. 

There is still a substantial amount of excitation energy remaining in 

the residual system. The excitation energy of the system found in 

the reaction with a larger in-medium NN cross section is higher than 

that of the one with smaller oNN. Presumably, this arises because 

there are more nucleon-nucleon collisions at higher ~ N N  and the 

system is more thermalized. 

In order to study the decay of the residual nuclei in a longer elapsed 

time frame, we randomly choose 100 and 70 163Ho nuclei from all 

residual reaction products at oNN=28 and 60 mb respectively. 

Quasiparticles of each residual nucleus are propagated for another 

1000 fmlc. It takes about 15 cpu-minutes to execute one event. 

We find that 12 out of 100 (12%) residual nuclei produced with 

oNN=28 mb undergo further decay by emitting one neutron. The 

rate for those at oNN=60 mb is 16 out of 70 (23%). We expect that 

the nuclei produced with oNN=60 mb will eventually emit more 



particles than those at oNN=28 mb if we allow the simulation to 

continue to 30,000 fm/c=lO-l9 second, which is the time scale of 

evaporative decay. In other words, the masses of the residual nuclei 

at oNN=60 mb will be less than those at oNN=28 mb. We have not 

performed the 30,000 fm/c calculation because it takes over 6 cpu- 

hours to execute one event. Even if we were to do so, the system 

may still be excited because (i) the QPD model is a classical model 

and does not include any decay via tunnelling through the potential 

barrier; and (ii) the model does not include any decay via the 

emission of gamma rays for which the time scale is in the order of 

1 0-16 second. 

Finally, we briefly discuss the systematic errors associated with the 

QPD code. The errors are associated with non-conservation of linear 

and angular momentum due to the finite step size of the equation of 

motion integration routine. The change in energy for a cluster is in 

the order of 0.1 MeV/A over an elapsed time of 250 fmlc.17 The 

change of angular momentum is observed to be less than 1% over an 

elapsed time of 1000 fmlc. Therefore, the QPD code conserves both 

energy and angular momentum very well; the main source of error 

in our predictions is statistical. 
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Fig 3.1 Predicted heavy nucleus mass yields for N+Sm at 35 A.MeV, 
averaged over impact parameter and integrated over 
fragment energy and angle. The yields are calculated after an 
elapsed time of 250 fm/c. The distribution is normalized to 
unity over the fragment mass range shown. 
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Fig. 3.2 Predicted fractional distribution of excitation energy for the 
163H0 nucleus calculated from the simulation of N+Sm at 
35 A.MeV, as in Fig. 3.1. The excitation energy is calculated 
after an elapsed reaction time of 250 fmlc. 



3.4 Single Particle Inclusive Spectra for Light Particles 

As we have discussed in Chapter One, one of the features of 

intermediate energy heavy-ion collisions is nonequilibrium particle 

emission during the equilibration stages of the reaction. These 

particles can carry kinetic energy per nucleon on the order of that of 

the projectile. On the other hand, the energy carried by particles 

emitted from a long-time evaporative decay is usually low. Since we 

stop the reaction at 250 fm/c which is approximately equal to 10-21 

second, we assume that products observed in the simulation are 

predominantly via nonequilibrium emission. 

In order to see how well the computer simulation agrees with the 

experiment, we compare the single particle inclusive measurements 

of the experiment with the predictions of the simulation. In the 

experiment,lg light particles-protons, deuterons, tritons and alpha 

particles-are detected at polar angles of 8=30•‹ and 60" with respect 

to the momentum vector of the projectile. Because of our limited 

statistics, we bin the QPD results into 20" bins centered at 30" and 

60" with respect to the beam momentum vector. The differential 

cross section at (E,8) is defined as: 

where AE=lO MeV; 

N(b) is the number of particles emitted in ASZ and within 
1 

(EqAE) for reaction at b; 



A(b) = 10 a[(b+0.5)2 - (b-0.5)2] mb; 

NT(b) is the number of events generated at b. 

The proton spectra for emission at 30" and 60" are shown in Figs. 3.3 

and 3.4 respectively. The results predicted by the QPD model are 

indicated by histograms: the dashed curve is for oNN=28 mb, and the 

solid curve is for oNN=60 mb. The experimental data are shown as 

solid dots. Since the systematic errors in the propagation code are 

much less than those of the statistical errors, only statistical errors of 

the predicted spectra are included in Figs 3.3 to 3.8. (All the error 

bars of the data and some of those of the predicted spectra for Figs. 

3.3 to 3.8 are omitted because they are too small). The predicted 

spectra show the usual behavior: there is a roughly exponential fall- 

off with emission energy at fixed angle, and a decrease with angle at 

fixed energy in the laboratory frame. The spectra for the two in- 

medium NN cross sections at 60" give similar results, while at 30•‹, 

the larger in-medium cross section yields a smaller inclusive cross 

section at proton energies of the order of the beam energy per 

nucleon. 

The calculated and measured inclusive spectra for deuteron clusters 

at both 30" and 60" are shown in Figs. 3.5 and 3.6 respectively. 

Although the multiplicities of deuterons are about 20% of the proton 

multiplicities at any specific ~ N N ,  angle and energy, the deuteron 

spectra have similar general behavior as the proton spectra. 

Deuterons from reactions with smaller ONN correspond to the larger 

inclusive cross section at forward angles and fragment kinetic energy 

per nucleon of the order of the beam energy per nucleon. The 



agreement between the experiment and predictions is at the two 
I standard deviation level for deuteron fragments with kinetic energy 

more than 40 MeV at both angles at oNNZ28mb. 

The inclusive spectra of triton clusters at both 30" and 60" are shown 

in Figs. 3.7 and 3.8 respectively. The multiplicities of tritons are only 

5% of the proton multiplicities at any specific ONN, angle and energy. 

The exponential fall-off with the emission energy of the calculated 

triton spectra is not as obvious as the proton and deuteron spectra. 

The shape of both predicted triton spectra at low trigger energy is 

quite different from that of the data. The agreement is quite good at 

the high energy part. The agreement between the experiment and 

the prediction is at the three standard deviation level for triton 

fragments over 100 MeV at 30" and within two standard deviations 

at 60' for those tritons with over 60 MeV at both BNN. The results of 

alpha-particle clusters are not plotted because the statistics of alpha 

particle production are poor. 

The proton and deuteron spectra at forward angles in Figs. 3.3 and 

3.5 show that the reactions at smaller ONN give larger inclusive cross 

sections for both triggers at fragment kinetic energies per nucleon 

larger than the projectile kinetic energy per nucleon. One may have 

expected that the higher the in-medium NN cross section of the 

reaction, the higher the single-particle differential cross sections. For 

example, in simulations of zero impact parameter La+La collisions at 

250 A.MeV, the wide angle cross section increases with in-medium 

cross section. The magnitude of the increase depends on target and 



projectile mass: the effect is much less pronounced for Ag+Ag than 

for La+La.23 

The results from Fig. 3.3 and 3.5 may appear to be somewhat 

surprising, taken at face value. What appears to be happening is that 

the higher the in-medium NN cross section, the greater the number 

of nucleon-nucleon scatterings. The population of nucleons with 

kinetic energy in the range of the projectile kinetic energy per 

nucleon is being reduced by scattering. These nucleons are trapped 

in excited residual nuclei which have not decayed by the time at 

which the simulation is stopped. Therefore, the number of fragments 

emitted at fragment kinetic energies per nucleon in the range of the 

beam decreases with increasing in-medium NN cross section. On the 

other hand, the energy-integrated angular distributions do not show 

a particularly strong dependence on the in-medium NN cross section. 

This can be seen from Table 3.1, in which the differential cross 

sections for proton, deuteron, triton and alpha-particle emission are 

integrated to give a fragment differential multiplicity as function of 

angle. Results are shown for both oNN=28 and 60 mb. 

1 60" 6 0  I 0.19 0.044 0.01 8 0.011 1 
Table 3.1 : Differential multiplicities of the fragments at different 

Angle GNN (mb) 
30" 2 8 
30" 6 0  , 

combinations of emission angle and in-medium NN cross 
section. 

Fragment Species (dN/dQ) 

P d t a 
0.44 0.097 0.020 0.015 
0.41 0.089 0.014 0.01 1 



The results of the inclusive spectra for protons and deuterons are 

generally within a factor of 2 of the experimental measurement. As 

we have discussed in the last section, the excitation energy of the 

residue is about 2 A.MeV. There should be more decays of the 

system such as evaporative decay and gamma ray emission in a 

longer time scale. Since there is no long-time evaporative decay 

process built into the QPD rnodel,l7 one should be not surprised that 

the predicted spectra are less than the measured spectra. Since the 

energy of particles evaporated from heavy residue deexcitation is 

lower than that of nonequilibrium particles from incomplete fusion 

reactions, the predicted spectra (especially the low energy part of the 

spectra) should be higher if evaporation of the excited residual 

nucleus is considered. Moreover, the masses of the residual nuclei 

should be smaller after decay. Although the predictions of the 

reactions at oNN=28 mb appear to have a better agreement with the 

experimental data, the experimental data do not necessarily 

distinguish between either value of ~ N N ,  since the predictions may be 

changed by long-time-frame decays. 



3 PROTON SPECTRA AT 30' 

g. 3.3 Comparison of experimental data19 with QPD predictions for 
proton emission at 30' in N+Sm at 35 A.MeV. The data are 
shown as the dots, while the predictions are the histograms 
(solid curve for oNN=28 mb and dashed curve for 60 mb). The 
error bars come from statistical errors only. 
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Fig. 3.4 Comparison of experimental data19 with QPD predictions for 
proton emission at 60' in N+Sm at 35 A.MeV. The data are 
shown as the dots, while the predictions are the histograms 
(solid curve for aNN=28 mb and dashed curve for 60 mb). The 
error bars come from statistical errors only. 
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Fig. 3.5 Comparison of experimental data19 with QPD predictions for 
deuteron emission at 30' in N+Sm at 35 A.MeV. The data are 
shown as the dots, while the predictions are the histograms 
(solid curve for oNN=28 mb and dashed curve for 60 mb). The 
error bars come from statistical errors only. 



DEUTERON SPECTRA AT 60' 

Fig. 3.6 Comparison of experimental data19 with QPD predictions for 
deuteron emission at 60' in N+Sm at 35 A.MeV. The data are 
shown as the dots, while the predictions are the histograms 
(solid curve for oNN=28 mb and dashed curve for 60 mb). The 
error bars come from statistical errors only. 
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Fig. 3.7 Comparison of experimental data19 with QPD predictions for 
triton emission at 30' in N+Sm at 35 A.MeV. The data are 
shown as the dots, while the predictions are the histograms 
(solid curve for oNN=28 mb and dashed curve for 60 mb). The 
error bars come from statistical errors only. 
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Fig. 3.8 Comparison of experimental data19 with QPD predictions for 
triton emission at 60' in N+Sm at 35 A.MeV. The data are 
shown as the dots, while the predictions are the histograms 
(solid curve for oNN=28 mb and dashed curve for 60 mb). The 
error bars come from statistical errors only. 



3.5 Comparison Between QPD and BUU Calculations 

It is worthwhile to compare the results calculated from the QPD 

model with those found in a BUU calculation.22 When we compare 

the single particle inclusive spectra from the QPD simulation with 

those from the BUU calculations, certain rearrangements of the QPD 

results should be made. BUU calculations do not give the free 

nucleon spectrum directly: an assumption has to be made in the BUU 

model to extract it from the one-body distribution of nucleons in 

phase space. A commonly adopted procedure is to evaluate the local 

coordinate space density in a region to determine the strength of the 

nuclear mean field, and from this extract the fraction of nucleons in 

that region which are unbound. 

In Ref. 22, a calculation of the same heavy ion reaction is performed 

in the BUU model for an elapsed reaction time of 200 fm/c. In the 

analysis of the simulation, individual nucleons are assumed to be 

contained in a fragment if the sum of their kinetic energy and the 

local U(p) which they experience is less than 6 MeV where 

U(p) = -356 - + 303 - MeV; (3 (;',T 
and p is the local density. Otherwise nucleons are assumed to be 

unbound. Under this condition, the fast unbound nucleons and the 

bound residues are clearly separated. BUU predicts that the target- 

like residual nuclei have mass of approximately 150 nucleons and 

will continue to decrease in mass with increasing elapsed time of the 

calculation due to compound evaporation processes. The average 



mass of the residual nuclei calculated here by the QPD model is 

approximately 10 mass units heavier than that found by the BUU 

model. However, a 'cold' nucleus in its ground state can evaporate 

nucleons on the time scale of a few hundred fmlc in a BUU 

calculation.13 Hence, it is not certain whether the evaporation 

predicted by the BUU model is due to the numerical instability of the 

model or to a good approximation of the evaporation process. 

In order to more directly compare our predictions with the BUU 

calculation, the proton and neutron cross sections from the QPD 

simulation are summed up. The spectra for mass A=l at 30" and 60" 

are shown in Figs. 3.9 and 3.10 respectively. The BUU results for the 

nucleon cross section are calculated with in-medium NN cross section 

at 20 and 41 mb. (Some error bars for both figures are omitted 

because they are too small.) The spectra from the results of the two 

models are similar in shape. The spectra from the BUU calculation 

are at a factor of two-three higher in magnitude than those from the 

QPD simulation. The reasons for the difference may be: (i) there is 

still substantial excitation energy in the residual nuclei at the time 

when the QPD simulation is stopped; and (ii) the QPD spectra do not ' 

include the light particles with mass A>1 whereas the BUU spectra 

include all nucleons which are not bound within the residual nuclei. 

Given the different definition of the observables in the two models, 

the agreement is in the range expected. Lastly, the BUU results for 

the integrated nucleon cross section do not show strong sensitivity to 

CJNN in the 20-41 mb range, which is similar to what is found in the 

QPD model. 
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Fig. 3.9 Comparison of BUU22 calculations with QPD predictions for 
nucleon emission at 30' in N+Sm at 35 A.MeV. The BUU 
results are shown as squares (solid square for oNN=20 mb and 
hollow square for 41 mb), while the QPD predictions are the 
histograms (solid curve for oNN=28 mb and dashed curve for 
60 mb). The error bars of the QPD predictions come from 
statistical errors only. 
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Fig. 3.10 Comparison of BUU22 calculations with QPD predictions for 
nucleon emission at 60' in N+Sm at 35 A.MeV. The BUU 
results are showe as squares (solid square for oNN=20 mb and 
hollow square for 41 mb), while the QPD predictions are the 
histograms (solid curve for oNN=28 mb and dashed curve for 
60 mb). The error bars of the QPD predictions come from 
statistical errors only. 



Chapter Four 

Gamma Ray Circular Polarization 

4.1 Introduction 

In the last chapter, we showed that the single particle inclusive 

spectra predicted by the QPD model give reasonable agreement with 

experiment. However, such comparisons reveal little of the 

relationship between the reaction dynamics and the nonequilibrium 

particles emitted. Nor do they show any azimuthal anisotropies of 

the light particles emitted. For example, one question of interest is 

the correlation between the trigger plane and the reaction plane. 

Such effects can only be revealed by more complex coincidence 

measurements.  

The first experimental evidence that nonequilibrium light particle 

emission from fusion-like reactions exhibit large azimuthal 

asymmetries was obtained from 14N induced reactions on 197Au at 

E/A=30 MeV.18 The data show that nonequilibrium light particles 

are emitted preferentially in the plane perpendicular to the entrance 

channel orbital angular momentum, indicating there is a collective 

motion in the plane and transverse to the beam axis. Microscopic 

calculations with the BUU equation interpret this effect in terms of a 

deflection to negative emission angles by the attractive nuclear mean 

field.14 However, the collective motion in the nuclear mean field is 

damped by nucleon-nucleon collisions. The relative importance of 



positive and negative emission angles is sensitive to the interplay 

between the nuclear mean field and nucleon-nucleon collisions. 

Tsang and co-workers address these issues experimentally by 

determining the circular polarization of gamma rays emitted by the 

residual nucleus in coincidence with the nonequilibrium light particle 

emission for the reaction l4N on 154Sm at E/A = 35 MeV.19 They 

observe that the gamma rays are positively circularly polarized, 

which corresponds to negative deflection angles as discussed in 

Chapter One. In this chapter, we use the QPD model to predict the 

gamma rays' circular polarization, and to study the correlation 

between the trigger plane and the reaction plane. The results are 

compared with those of the experiments and those calculated with 

the BUU model in Sections 4.3 and 4.4 respectively. Finally, the 

microscopic dynamics of the collision process is studied in 

Section 4.5. 

4.2 Methodology 

The measurements of the circular polarization of gamma rays 

emitted by the residual nuclei in coincidence with the emission of 

light particle triggers are performed at the National Superconducting 

Cyclotron Laboratory of Michigan State University.19 The method of 

detecting the light particles is described in the last chapter. The 

polarimeter to measure the circular polarization of gamma rays 

emitted defines a quantization axis, perpendicular to the trigger 



plane. The details of the experimental set up are thoroughly 

discussed in Refs. 19 and 24. 

The QPD model can give information about the positions, momenta, 

excitation energies and angular momenta of clusters at any time 

during the reaction. It does not include any mechanism for dealing 

with gamma ray emission. In order to calculate the circular 

polarization of the gamma rays, we adopt a model advanced in 

Ref. 19 in which the spin deexcitation of the heavy residual nucleus 

is assumed to proceed via stretched E2 transitions. Such transitions 

have a gamma ray multiplicity of M=IJ1/2 for a residual nucleus with 

angular momentum J. In the calculation, we only consider the orbital 

angular momentum of the nucleus and ignore the intrinsic spin of the 

nucleons. 

Before we go on any further, let us discuss the labelling convention 

for the vectors involved in the circular polarization calculation, as 

shown in Figure 4.1. The momenta of the beam, ki,  and the trigger 

fragment, k f ,  are used to define a trigger plane. The quantization 
k ixkf  

axis Bif is defined by I - 
irlkixkfl 

at which the polarimeter is located. 

The initial reaction plane, defined by the beam direction and the 

impact parameter vector b lies at an angle $ with respect to the 

trigger plane. 



Reaction 7 
Fig. 4.1 Sign convention for vectors and planes involved in the 

circular polarization determination. The vector J is the 
orbital angular momentum of the residual nucleus. The 
momentum vector of the beam k i  and that of the trigger kf  
form the trigger plane. The impact parameter vector b 
and k i  form the reaction plane. 

For each simulation event, there is only one large residual nucleus 

present, and its angular momentum vector is used to calculate the 

characteristics of the emitted gamma rays. In the stretched E2 

cascade, gamma rays with momentum k are emitted from the 

residual nucleus with an angular distribution, 

whe re  



The circular polarization of gamma ray is then: 

The polarization measured with a trigger fragment angle and energy 

(8,E) is given by 

where the average is taken over those events which satisfy the 

trigger conditions. The simulation event sample is the same as 

described in the last chapter. The integrals at both the numerator 

and the denominator of equation (4.5) are analytically integrated 

over the geometry of the polarimeter24 which covers a polar angle 

from 20" to 45" with respect to the quantization axis, ii, and the full 

range of azimuthal angles, 27c. Equation (4.5) becomes 

where yr is the angle between the angular momentum vector of the 

residual nucleus, J ,  and the quantization axis, ii. If J is parallel to ii, 

equation (4.6) gives the calculated maximum circular polarization, 

P,,,, of 0.97. 



If we write Eq. 4.6 as 

then the statistical errors for the circular polarization are 

4.3 Results of the  Calculation 

We begin with an overview of the behavior of the calculated circular 

polarization. In Figure 4.2, we show the dependence of the predicted 

polarization on fragment trigger mass and kinetic energy. (Since the 

systematical errors which are arrived from the uncertainties of the 

conservation of angular momentum are much less than the statistical 

errors, only statistical errors are included in all predicted circular 

polarization plots from Figs. 4.2 to 4.8). The trigger angle is fixed at 

30' and the in-medium NN cross section is chosen as 28 mb. Positive 

circular polarizations are observed for all trigger masses and kinetic 

energies. There are two trends: the circular polarization increases 

with the trigger mass and kinetic energy. These trends are 

qualitatively similar to what is observed experimentally. 

The dependence of trigger angle and kinetic energy for protons and 

deuterons (both at oNN=28 mb) are shown at Figures 4.3 and 4.4 



respectively. For proton triggers, there is little difference in the 

circular polarization calculated at 30" and at 60". For deuteron 

triggers, the angular dependence is more pronounced: the circular 

polarization increases with trigger angle. The trigger energy 

dependence shows a similar trend for both trigger fragment masses 

at both angles: circular polarization increases with trigger energy. 

These observations qualitatively agree with what is measured 

experimentally. We do not calculate the circular polarization at 

wider angles for either trigger fragments because we do not have 

enough statistics to draw any conclusion. 

Figures 4.5 and 4.6 show the calculated circular polarization at two 

in-medium NN cross sections and the experimentally measured one 

for proton triggers at 30" and at 60" respectively. It is obvious that 

the circular polarization predicted by the computer simulation 

decreases with increasing in-medium NN cross section. This is 

because more nucleon-nucleon collisions in the reaction with larger 

in-medium NN cross section tend to reduce the angular momentum 

alignment of the residual nucleus. The effect of decreasing circular 

polarization with increasing QNN is also seen in deuteron and triton 

triggers. Figures 4.7 and 4.8 show the results of the deuteron 

triggers. 

As shown in Figs. 4.5 to 4.8, the calculated circular polarizations are 

much higher than the measured ones. In Fig. 4.5, the calculated and 

the measured circular polarizations for proton triggers at energy 

below 40 MeV at 30' in oNN=60mb disagree by several standard 

deviations. The agreement for deuteron triggers at low energies at 



30" and oNN=60mb is within their uncertainty ranges but the errors 

are large. There are two reasons to explain the discrepancy between 

our predictions and the data: 

(i) When the simulations are stopped at an elapsed time of 250 fm/c, 

the systems are still highly excited. Evaporative decays tend to 

dealign the final residue angular momentum compared to the 

initial orbital angular momentum. Thus, the circular polarization 

is diminished. When a statistical code24 was used to provide an 

estimate of such effect, it was found that the predicted circular 

polarization could decrease by as much as 30%. 

(ii) When we do the calculation, we assume all the gamma ray 

emission is via stretched E2 transitions. If other nonstretched 

transitions are considered, the circular polarization can be 

reduced by 2O%.25 

However, the predicted circular polarizations are still be higher than 

the data even if the above factors are considered. 



KINETIC ENERGY (MeV) 

Fig. 4.2 Predicted trigger mass and energy dependence of circular 
polarization observed at 30'. An in-medium NN cross section 
of 28 mb is used for the calculation. The results are for the 
reaction N+Sm at 35 A.MeV and are averaged over impact 
parameter. Selected statistical error bars are included. 



N+Sm AT 35 A.MeV 
PROTON AT DNN-28mb 

E [MeV) 

Fig. 4.3 Predicted proton trigger emission energy dependence of 
circular polarization shown at both 30" and 60'. Other 
conditions are as in Fig. 4.2. Statistical error bars are 
included. 



Fig. 4.4 Predicted deuteron trigger emission energy dependence of 
circular polarization shown at both 30' and 60'. Other 
conditions are as in Fig. 4.2. Statistical error bars are 
included. 



Fig. 4.5 Comparison of simulation and experiment for proton 
triggered events at 30'. Two values of GNN were used in the 
simulation: 28 and 60 mb. Data are from Ref. 19. Statistical 
error bars of simulation are included. 



DATA 

Fig. 4.6 Comparison of simulation and experiment for proton 
triggered events at 60'. Two values of CJNN were used in the 
simulation: 28 and 60 mb. Data are from Ref. 19. Statistical 
error bars of simulations are included. 



N+Sm AT 35 A.MeV 
DEUTERON AT 30" 

DATA 

Fig. 4.7 Comparison of simulation and experiment for deuteron 
triggered events at 30'. Two values of ~ N N  were used in the 
simulation: 28 and 60 mb. Data are from Ref. 19. Statistical 
error bars of simulation are included. 



N+Sm RT 35 R.MeV 
DEUTERON RT 60" 
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Fig. 4.8 Comparison of simulation and experiment for deuteron 
triggered events at 60'. Two values of GNN were used in the 
simulation: 28 and 60 mb. Data are from Ref. 19. Statistical 
error bars of simulation are included. 



4.4 Comparison with BUU Calculations 

Since the circular polarization experiment has been analyzed through 

the BUU model, it is worthwhile making a comparison between the 

QPD predictions and those obtained in a BUU calculation19 of the 

same reaction. As we have mentioned in the last chapter, the BUU 

code separates the fast 'unbound' nucleons from the bound target- 

like nuclei. It cannot distinguish different species of fragments. The 

results calculated with the BUU simulation in Ref. 19 are energy 

integrated. In order to compare our results with those of the 

simulation in Ref. 19, we calculate the circular polarization 

associated with a single nucleon trigger averaged over trigger 

energy. The results of both QPD and BUU models are shown in Table 

4.1. The results predicted by QPD are higher than those by the BUU 

model by about 50% for a similar ONN. 

Table 4.1 Gamma ray circular polarization associated with nucleon 
triggers predicted by the QPD and BUU models. Results of 
the BUU model are taken from Ref. 19. 

Model 

QpD 
II 

BUU 

QpD 
It 

BUU 

ONN (mb) 
2 8 
6 0  
4 1 

2 8 
6 0  
4 1 

8 

30" 
II 

I t  

60" 
11 

I1 

P 

0.38 
0.24 
0.18 

0.5 1 
0.40 
0.25 



In order to illustrate the dependence of the predicted circular 

polarizations on the nucleon-nucleon collision dynamics, the BUU 

model19 is used to calculate the circular polarizations using various 

nucleon-nucleon scattering cross sections at a fixed impact parameter 

b = 6.5 fm. The results are shown in Table 4.2. The predicted 

circular polarizations decrease for larger values of ONN. These results 

qualitatively agree with our results: the reactions with larger oNN 

give smaller circular polarizations. 

Table 4.2 Circular polarization predicted19 by the BUU model using 
different ONN at a fixed impact parameter of b = 6.5 fm. 
The nucleon trigger angle is 60'. 

4.5 Microscopic Dynamics of the Collision Process 

Let us now use the results of the computer simulations to examine 

the microscopic dynamics of the collision process. The simulation has 

predicted large values for the circular polarization of the gamma rays 

emitted. Thus, one expects that there is a strong correlation between 



the trigger plane and the reaction plane. We begin our investigation 

of this question by examining the distributions of the impact 

parameters for a given trigger energy and angle. In this section, let 

us use the x and z axes of a Cartesian coordinate system to define the 

trigger plane: the z-axis is defined by the beam direction and the 

positive x-axis is the direction in which lies that component of the 

trigger momentum which is perpendicular to the beam. The impact 

parameter vector then lies in the x-y plane perpendicular to the 

beam. 

A scatter plot (from the simulation) of the impact parameter for 

proton triggers at 30' with 28 mb for the in-medium NN cross 

section is plotted in Figure 4.9. The three sections of the plot 

correspond to proton kinetic energies of 20-30, 40-50 and 60-70 

MeV respectively. Each dot on the plots represents the point where 

the beam intersects the x-y plane for one event. In other words, the 

impact parameter vector for each event is from the origin to the dot. 

In generating the scatter plots, we have shifted the magnitude (but 

not the direction) of the impact vector randomly up to k0.5 fm. If 

the magnitudes are not shifted, the data points will fall in concentric 

circles because the impact parameters used in the simulation are 

taken to be 0.5, 1.5, ... , 7.5 fm in 1 fm steps. The shift of magnitude 

will give a more clear display of the density of points. 

At low proton trigger energy, there is a very pronounced 

enhancement for impact parameters on the opposite side of the beam 

from the trigger momentum. There is a small enhancement on the 

same side as the trigger momentum. As one compares parts a) to c) 



of Figure 4.9, one can see the tendency for the impact parameter to 

be located on the opposite side of the trigger momentum becoming 

stronger with trigger energy. The same behavior can be found in the 

scatter plots of the deuteron trigger. Figure 4.10 shows the deuteron 

trigger at kinetic energies of 20-30, 40-50, 60-70 and 80-90 MeV 

respectively. The conditions are same as those in Figure 4.9. We can 

conclude that the higher the trigger energy, the stronger the 

tendency to scatter to the opposite side of the impact parameter 

vector, i.e., the stronger the tendency of negative deflection. 

For both trigger masses, the results of the simulation show that the 

path of the beam nucleus is bent around the target nucleus as the 

two nuclei interact. Some of the mass of the projectile is transferred 

to the target nucleus which gains angular momentum. The projectile 

nucleus usually does not "bounce off" the target, i.e. be positively 

deflected, at these trigger energies. This tendency is also what we 

have been led to expect from the circular polarization results. 

To make a more quantitative argument, we evaluate the expectation 

value of the angle @ between the reaction plane and the trigger plane. 

For all the cases considered, $=(@) is close to n, as one would expect. 

However, the average of randomly distributed angles on a plane is 

also n. To make sure the @ is not randomly distributed, we have 

evaluated the dispersion D of the angle @ where the dispersion D is 

defined as ( ( @ - ~ ) ~ ) l / ~ .  For randomly distributed angles on a plane, 

the dispersion is equal to n / G .  The calculated relative dispersion 
D 

R = -  
~ 1 4 3 '  is observed to decrease with increasing trigger energy 



and, correspondingly, with circular polarization. Figure 4.11 shows 

the behavior of the relative dispersion as a function of the circular 

polarization for proton and deuteron triggers at 30' and oNN=28 mb. 

This figure is constructed by evaluating the dispersion and the 

circular polarization for each energy bin in Figures 4.6 and 4.8. 

For low values of the circular polarization, the relative dispersion 

tends towards unity, indicating a random distribution of impact 

parameters on the xy-plane. As the circular polarization increases, 

the width of the impact parameter distribution narrows and the 

relative dispersion tends to zero as the circular polarization 

approaches unity. This is what one would expect: the larger the 

circular polarization (i.e., the more the angular momentum vector of 

the residual nucleus is perpendicular to the reaction plane), the more 

the reaction and trigger planes are coincident. In other words, the 

simulation shows the circular polarization is a good indicator of the 

correlation between the reaction and trigger planes. 



PROTONS FROM N + Sm AT 35 A*MeV 
e=30•‹, a,, =28rnb 

(a) 25 MeV (b) 45 MeV 

(c) 65 MeV 

Fig. 4.9 Distribution of impact parameter b for proton triggers 
emitted at 30' and a range of energies. The acceptance range 
of each energy shown is +5 MeV. Cross marks are placed on 
the axes every 4 fm. 



DEUTERONS FROM N + Sm AT 35 A o M e V  

8=30•‹, ONN =28mb 

(a) 25 M e V  (b) 45 M e V  

(c) 65 M e V  (d) 85 MeV 

Fig. 4.10 Distribution of impact parameter b for deuteron triggers 
emitted at 30'. 
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CIRCULRR POLARIZATlON 

Fig. 4.11 Relative dispersion of the orientation of the reaction plane 
with respect to the trigger plane shown as a function of 
circular polarization for both values of CTNN in the simulation. 



Chapter Five 

Conc lus ion  

In this thesis, we perform a computer simulation based on the QPD 

model for the reaction of 14N+l54Sm at 35 A.MeV. The single particle 

- proton, deuteron and triton - inclusive spectra and the gamma ray 

circular polarization in coincident with the light particle triggers are 

studied. The results are compared with the experimentally observed 

values and those calculated from the BUU model. 

The' difference between the data and the QPD are usually within 

three standard deviations for the inclusive spectra. The agreement is 

in the range expected. The difference between A value of 28 mb 

chosen for the in-medium NN cross section gives better agreement 

with the data compared to 60 mb, but a solid conclusion cannot be 

drawn because of the uncertainties which may arise from effects 

which are not incorporated in the model. 

For example, the collision is only followed for a time of 250 fm/c 

which is long enough to ensure that the clusters are stabilized. The 

residual system is still highly excited. It takes a much longer time 

for the residues and other clusters to decay into their ground states 

by particle or gamma emission- fiocesses such as evaporation have 

a much longer time-scale than that for which it is practicable to run 

the simulation. Moreover, the QPD model does not include any decay 

via tunnelling through the potentid b d e r  nor a mechanism for 

dealing with gamma decay. It is impossible for the QPD model to 



predict long-time decay. Certainly, long-time-frame evaporation will 

boost the yields of light mass particles and might bring the 

oNN=60 mb predictions into better agreement with the data. 

The nucleon spectra calculated from the QPD model have a similar 

shape to those found in a BUU calculation. The spectra from the BUU 

model are at a factor of two-three higher in magnitude than those 

from the QPD model. Given the different definition of the observable 

in the two models, the agreement is in the range expected. 

The predicted circular polarizations are in qualitative agreement 

with the data in terms of trends with respect to fragment trigger, 

mass, energy and emission angle. However, the predictions by the 

QPD model are consistently higher than the data. Again, part of the 

reason for the discrepancy lies in long-time decays which will reduce 

the alignment of the angular momentum vector of the residual 

nucleus. 

To see how large an effect this would be on the time scale of 

1000 fm/c, we take a sample of the 163Ho nuclei discussed in 

Chapter Three and propagate them for an extra 1000 fm/c. The 

change in orientation of the angular momentum vector is observed to 

be less than 1%. This demonstrates: 

i)  that there are few evaporative decays on a time frame which can 

be handled by the simulation, and 

ii) that the simulation conserves angular momentum very well. 



When a statistical decay code was used24 to provide an estimate of 

the depolarization effects of evaporative decays, it was found that 

the predicted circular polarization could decrease by as much as 30%. 

This estimate significantly reduces the discrepancy between our 

predictions and the data, but does not eliminate it entirely. Lastly 

the assumption that the gamma decays are stretched E2 may be too 

strong. If other nonstretched transitions are considered, the circular 

polarization can be reduced by 20%.25 

The circular polarizations calculated from the BUU model, which are 

about 50% of those predicted by the QPD model, seem to give better 

agreement with the data in comparison with the results of the QPD 

model. However, individual nucleon-nucleon scattering in the BUU 

model19 that we are comparing with does not necessarily conserve 

angular momentum. (The observed angular momentum for the 

whole nuclear system is usually conserved). On the other hand, the 

angular momentum of nucleon-nucleon scattering and thus that of 

the whole nuclear system in the QPD model is conserved. Since the 

conservation of angular momentum is a very important factor in the 

determination of the gamma ray circular polarization, we cannot 

agree that the BUU model gives better prediction than the QPD does. 

The central question which we ask of the simulation is whether there 

is a strong correlation between the circular polarization and the 

distribution of the reaction plane's orientation with respect to the 

trigger plane. The simulation finds that the angle between the two 

planes is about 180' and the dispersion of the angle decreases as the 



circular polarization increases. Therefore, it shows that there is 

indeed a correlation, and that the correlation becomes stronger the 

closer the circular polarization is to unity. Further the impact 

parameter tends to point in the opposite direction to the trigger 

direction. This indicates that the long range nuclear interaction tends 

to pull the nuclei around one another, although not sufficiently 

strongly as to result in an orbiting pair at these bombarding energies. 
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