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ABSTRACT

In the Bella Coola region of B.C, an experiment was
conducted to study whether gillnets lowered 48 inches below
the corkline would catch fewer steelhead (Oncorhynchus
gairdneri) without decreasing the commercial catch of other
salmon (Oncorhynchus). This project reports the work done on
the experimental design and data analysis of thé above study.
A randomized block design was chosen as most appropriate for
the experiment. Power estimates were used to determine the
recommended number of blocks. ANOVA techniques were used to
analyze the results from the experiment. Emphasis was put on
the investigation of the main treatment effect and its

interactions with various environmental factors.
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Introduction : Of Fish and Fishermen

The number of species of fish in the ocean will
probably never be known to humanity, but one thing is
certain; there are two kinds of fishermen/women, labelled
henceforth as fishers. The first.kind employs the use of
boats and nets to catch fish that eventually find their way
to our dinner tables. We will call this group the commercial
fishers. The other group angle for fish with rod and reel,

labelled henceforth, sport fishers.

Unfortunately, in the Bella Coola region, on the
coast of northern B.C the two types of fishers have
conflicting interests. The commercial fishers make their
livelihood on the ocean, by the mouths of the rivers. On the
other hand, the sport fishers catch their prey on the rivers,
and therefore would like to see as many fish as possible go
up the rivers on their way back to their spawning beds.
There has been a concern by the sporting community that
there are not enough fish in the rivers because too many are

caught by the commercial fishers’ nets.



Although the numbef of fish caught for sport is
minute compared to the harvest of commercial fishing, the
provincial government has a reason to encourage the activity.
Sport fishing generates consideréble revenue through related
business such as guiding and cabin and boat rentals, as well

as through hotels and restaurants.

Conflict would be unavoidable if it weren’t for
the fact that the two fisheries are interested in different
types of fish. The sport fishers’ chief delight is steelhead
(Oncorhynchus gairdneri), while the bread and butter of the
commercial fishery is chum salmon (Oncorhynchus keta), and to
a lesser degree the other salmon species: chinook
' (Oncorhynchus tshawytscha), pink (Oncorhynchus gorbuscha),
sockeye (Oncorhynchus nerka), and coho (Oncorhynchus

kisutch).

Unfortunately the nets used by the commercial
fishers do not discriminate between these different speéies.
They catch everything that gets its gills\caught in the mesh.
However, there has‘been some evidence that shows steelhead to
have a tendency of swimming close to the surface, while the

other salmon make their movement deeper under water.



Tﬁe natural response to this evidence is to design
néts with windows at the top. This is achieved simply by
hanging the mesh 48 inches (decided somewhat arbitrarily)
below the corkline. The Department of Fisheries and Oceans
was interested in contracting out an experiment to
investigate whether such a net will really catch fewer
steelhead without significantly reducing the catch of other

salmon, especially chum.

Western Renewable Resources came to Simon Fraser
University’s Statistical Consulting Service, looking for new
ideas that the Consulting Service might have regarding its
bid for the proposed experiment. It stated that its main
concern was. to design an experiment that would haVe-decent
power (to detect a substantial treatment effect) but at

feasible cost.

My first contribution described in this project was
to use power calculations to enhahce the proposal. As
mentioned above, the most important criterion for the
experimental design was to ensure that the experiment would
have adequate power but relatively low cost. As it turned
out, Western Renewable Resources was awarded the contract to
run a substantially reduced experiment, and it invited me to

analyze the results. I analyzed the data mainly wusing



analysis of variance methodology after applying the
logarithmic transformation. The analysis was complicated by
the necessity to include a variety of environmental

covariates.



Chapter 1 : Experimental Design

The main purpose of the experiment is to test whether a
net hung one meter below the surface will catch fewer
steelhead without decreasing the catch of salmon. An
intuitively appealing as well as 1logistically feasible
design is the randomized block. Each block would contain a
pair of nets: standard and treatment (the treatment being the
lowering of the net 48 inches below the surface). Each pair
would be set and picked at, as much as possible, at the same
time. (A net is picked when it is removed from the water, and
the fish caught in it are collected) are And each day the
nets would be assigned to the participating fishers, either

at random or on a systematic rotation basis.

By blocking we hobed to rule out all conceivable
confounding effects, except maybe for location. Unfortunately
gill nets tend to move with the current. Therefore the
location could not be held constant within blocks. As
mentioned in the intfoduction, optimizing the power of the
test was one of the experimenter’s main concerns. We hoped
that blocking would be useful in decreasing the error
variance, and hence increasing the power of the test to

detect substantial treatment effects.



The onious way to increase power without increasing the
1e§el of the test (set at 0.05) is by increasing the sample
size. Since our sampling unit is a net pick, then increasing
the sample size means increasing one or more of the follbwing
: the number of pairs of neté, the number of times each pair
ﬁas picked in a dax, or the number of days the experiment

was allowed to run.

The Power of the Experiment

A simple model:

For bidding purposes it was important to have an
estimate of the power of our proposed tests. For example the
government might have given}the experimenter an additional
pair of nets if he couldvéhow thaf this would improve the
power of the test significantly. However, the problem with
trying to estimate the power of a test before the experiment
was conducted was that we had to come up with a plausible

model in the absence of appropriate data.

In the past, Western Renewable Resources had collected
data on ' the <catch of the species of interest. The
observations included, the size of the catch, the sites of
the net, the time and date during which the net was set, and
the mesh size. I would henceforth refer to these data as

historical data The structure of the historical data was



clearly different from what we would expect to get from the

experiment, namely there were no treatment nets here.

The following tables summarize these data, recorded
from 1432 netpicks:

» Table 1.1:
A brief statistical summary of the historical data, where SH,
CM, CK, PK, S8X, and CO denote the number of steelhead, chum,

chinook, pink, sockeye, and coho caught in a single net

pick.
SH CM CK PK sX CcO
X 1.470 124.34 0.499 89.448 4.879 6.523
SD 2.217 151.315 1.291 226.054 12.819 10.333
n 1311 382 1376 1397 1393 1210
We can see, as expected, that chum was by far the most
important species to the commercial fishery. It was

interesting to note that chum was also the species for which
there were the most incidents of missing data. This suggested
that the fishers who collected the data might have been
insecure about giving out information on the size of their
harvest. This observation was in line with Western Rénewable
Resources’ hunch that the data for the other species were
also inaccurate, specifically, that the steelhead catch might
have been under recorded. Unfortunately we had no more

reliable data.



These 'data, and the ones we anticipated from the
exberiment arose from frequency counts and therefore were
clearly not normal. To get a feel of the structure of the
data I tried regressing the rate of catch (measured in fish
per hour for each net pick) against the covariates mentioned
above, with normal error terms. Using backward elimination I

arrived at the following selections of predictor variables

for the two most prominent species of interest - steelhead
and chum.
Table 1.2:
Selected covariates for steelhead and chum

from the historical data.

‘ DAWN SITE WEEK MESH == MONTH .
Steelhead * * *
Chum * * *

where * in row i and column j denotes that factor j is
significant’for the species at row i, and
DAWN is a variable that indicates whether the net was
set during dawn. |
SITE indicates one of the 3 sites where the net was set.
WEEK indicates one of the 12 weeks during which the data
were collected.
MESH indicates one of the five groups (grouped to the

closest inch) of the mesh size of the net.



MONTH indicates one of the four months during which the

data were collected.

Note that the time factor WEEK was used for steelhead, while
MONTH was used for chum. This was done because, for chum, ilf
the data was classified by WEEK there would not be enough

observations in some cells.

The residual plots for the above models can be found in
Figures 1.1 and 1.2. The plots suggest that the variability
of the rate of catch increases with the rate of the catch.
They also indicate that the data might have come from a
distribution with a large positive skewness. This suggests
that a log transformation of the data might allow us to apply
a simple analysis of variance technique using normal error

terms.

Note that the catch rate has a lower bound of 0. This
lower bound apprears in plots (1.1) and (1.2) as the
straight lines at the bottom of the graphs that go through
the origin. A raw residual can never be less than 0 minus the
estimate. This leads to an approximately linear lower bound

on the standardized residuals.



Figure 1.1

The residual plot for Steelhead before log transformation
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Figure 1.2

The residual plot for Chum before log transformation
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Figure 1.3

Residual plot for Steelhead, after log transformation
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Figure 1.4

Residual plot for Chum after log transformation
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After 'the logarithmic transformation we get the

foilowing data summary.

Table 1.3:
A brief statistical summary of the transformed historical
SH+ 1

elapsed time -

data, where LSH = log[ ] that is, the log of the

adjusted catch per hour in each net pick for steelhead.
Similarly, LCM, LCK, LPK, ILSX, ILCO are the 1log of the

adjusted catch rate for chum, chinook, pink, sockeye, and

coho.
LSH LCM LCK LPK LSX LCO
X -2.216 1.319 -2.591 0.203. -2.010 -1.301
SD 0.752 1.117 0.712 1.717 1.203 0.957
n 1306 380 1348 1353 1349 1186

To check the effectiveness of the transformation, I
fitted the following models (obtained through backward
elimination) for steelhead and chum:

LSH = Constant + DAWN effect + SITE effect + WEEK effect
+ MESH effect
ILCM = Constant + SITE effect + MONTH effect + MESH effect

The residual plots of the above models can be found in
Figures 1.3 and 1.4. Compared to the residual plots in of the
untransformed data in Figures 1.1 and 1.2, these plots‘seem
to have constant variance and substantially reduced skewness.
Therefore it seemed not unreasonable to assume that the log

transformation has done a good Jjob of stabilizing the

14



variance, and reducing skewness.

The log transformation would also give a physically
meaningful interpretation of any observed treatment effect.
The ratio of the catch rate between treatment and control
nets could be easily estimated by e(a1-a2), where o1 and o2
are the estimated treatment effects in the model fitted to

the transformed data.

In 1light of the above findings, I proceeded by
performing the same preliminary analysis to the transformed
historical data. The main purpose of the analysis was to
estimate the error variance of the model I hoped to fit to
- the data from the experiment (which at this point were not
yet available). The estimated error variances were then used

to calculate the estimated power of the experiment.

To the historical data I fitted the full model,

’ = ’ ’ ’ ’ ’ r
Yijklm u’+ ai+ 3J+ 7k+ 81+ ejmm (1.1)
where Yijklm = log of the adjusted catch per hour for each
net pick,
i’ = overall mean,

R
-
v
-
i
‘l—'
[\

are the dawn effects,

15



are the site effects,

<
~
il

1,...,12

are the week effects,

(o 2)
-

—
il

1,...,5

are the mesh size (to the closest inch) effects,

*

eljk are the iid normal errors term with mean 0 and
m

. 2
variance w°,

The following table shows the covariates for each
species that were chosen through backward elimination

(at a« = .05)

Table 1.4:
Selected covariates for the historical data after
logarithmic transformation.

DAWN SITE WEEK MESH MONTH
I.SH % * * *
LCM * % *
LCK * * *
LPK * * * %
LSX * * * %
L.Co * * *

16



Assumihg that the treatment and control groups would
haVe the same error variance, I could use MSE’s from the
above models as estimates for the error variances of the

models that I hoped to fit to the future data.

Table 1.5:
MSE’s from fitting linear models to the historical data.

LSH LCM LCK LPK LsSX LCO

MSE 0.357 0.264 0.924 0.465 0.724 0.455

After obtaining the above estimates, I considered a
simple model to be fitted to the data obtained from the
experiment to be :

YU =+ o, + BJ + eiJ 7 (1.2)

where Y is the natural log of the adjusted catch per hour for
each net pick for each species,

u is the overall mean,

o, is the treatment effect, 1i=1, 2

BJ is the block effect,j =1,...,n

€, is the error term,

with eij assumed to be iid N(O,oz),

and the MSE’s in table 1.5 were used as the estimates for 02.

At this stage, I excluded factors such as mesh size, the

site of the net, and a few other factors from this model

17



partly becaﬁse they were of secondary interest, but more
imbortantly, because there was no way of knowing the extent
to which the treatments might interact with the other
factors. I had also treated the random blocks as if they were
fixed, because there was no way of estimating the variance of
the block effect, nor the reduction of error variance due to

blocking.

At this point I would like to caution the reader of the
inherent uncertainty of building a model to be fitted to a
set of data that are not yet available. Of a particular
concern is the estimation of the error variance ( o® in model

1.2 ).

The error variance o¢° of the model (1.2) that I hoped
to fit to the anticipated data from the experiment, was
estimated by fitting a linear model to the historical data
(data that were obtained prior to the experiment). The two
sets of data have fundamentally différent structures. The
historical data arose from an observational study, whereas
the anticipated data would come from a controlled experiment.
The most important aspect of this difference is that there

were no treatment nets in the historical data.

Another difficulty arose from the fact that fish catches

18



tend to vary from year to year. Some years have stronger runs
than others. Therefore, the above estimates of o° were at

best educated guesses that were bound to be rough.

The power of the anticipated test:

The client was particularly concerned in the ability to
detect a reduction in the catch of 50% or more. Thus in the
alternative hypothesis we would have u= 0.5 u , where u
and uc were the mean catch of the treatment, and control nets
respectively. After the log transformation the above equation
is equivalent to

log(u,) = 1og(0.5 u ) = log(x ) - log(2).
Therefore we set up the anticipated treatment effect to be

approximately equal to 0.5log(2), with o= o= log(2).

Note however, that in general, for any random variable
X, Eflog(X)] # log[E(X)]. Therefore, the above approximation
of the treatment effect (a1 and azf'under the alternative
hypothesis may lead to the errors in the calculated power.
This is particularly true for a discrete random variable with
a small expected value, such as the catch rate for Steelhead.

The following simple example illustrates this point:

19



Let T'= the catch rate of the treatment net with the
following distribution:
0 / t with probability (1-p)
' { 1 / t with probaility p

where t is the elapsed time.

And let C = the catch rate of the control net, with the
following distribution:

{ 0 / t with probability (1-2p)
C =

1 / t with probability 2p

let T’/ be the log of the adjusted catch rate of the
treatment net with the distribution:
, { iog(l / t) with probability (1-p)
R ( log(2 / t) with probability p
and let C’ be the log of the adjusted catch rate of the

control net with a distribution analogous to T’.

Now we have E(C) = 2E(T). However, E(C’)' - E(T’) =
p*log(2), which is less than log(2) as approximated above.
This overestimation of the treatment effect lead to an

overestimation of the anticipated power.

20



To improve the estimation of the anticipated power would
require the knowledge of the distribution of the catch rate
of the treatment and control nets. Because the distributions
in question were unknown, I chose to estimate the treatment
effect under the alternative hypothesis of a 50% reduction in

the catch rate as 0.5log(2).

To calculate the power of the test of the hypotheses

Ho : o= a, = 0 Vs, Ha ma,= o= 0.51log(2) = 0.3466 (1.3)

in model (1.2) we used the fact that under Ha the
test statistic, F= MSTr/MSE has a noncentral F distribution,
defined as follows (Kendall, and Stuart, (1973), Pp-
268-269): |

If X, re..,X, are independent N(ui,l) for i=1,...,d then

d

Y = E:Xf has a non-central x2 distribution with d degrees

i=1
d

of freedom and noncentrality parameter A = z uf . Furthermore
i=1

Y / d

Z / h

non-central F distribution with d and h degrees of freedom

if 2 is a central xi, then we say that has a

and noncentrality parameter a.

21



The poﬁer of the test, as a function of the sample size,
cah then be calculated wusing the the non-central F
distribution. The computer package, P.C - SIZE (Dallal, D.E.
+ 1985) produces a table of n (the number of observations for
each treatment group, assuming a balanced design) and their
cbrresponding power, but we need to specify

a = the level of the test

d1 = the numerator degrees of freedom

A = the noncentrality parameter, specified as a
multiple of n, and

d2 = the denominator degrees of freedom, specified as a

linear function of n.

In model (1.2) we have :

a = 0.05
di = (the number of treatment levels - 1) =1
d2 = (sample size - number of parameters)

]

2n - ( 1+ 1 + (n-1))
=n - 1
The non-centrality parameter for the above test statistic F
under the alternative hypothesis can be obtained by
A = dl (E(MSTr) - ¢°)/c°
where MSTr is the mean of treatment sum of squares, and o’ is
the variance of the error terms.

( Graybill (1961): Theorem 11.16, p. 244 )

22



Using the well known result

E (MSTr)

|
3
Ry
+
9

where o, is the treatment effect for the i*" treatment level,
and a is the number of treatment levels.

R 2
After substituting MSE for o°,we get A = [n z af ) / MSE
T=1

where n = the number of observation for each group, and
o= -0 = 0.3466.
1 2

Therefore, we have

4 - D(.2403)
T MSE

The estimated noncentrality parameters A for the six species

are given as follows :

Table 1.6:
The estimated noncentrality parameters for the test statistic
F* under the alternative hypothesis that there is a 50%

reduction in the catch, based on the historical data.

Steelhead Chum Chinook Pink ~ Sockeye Cohoe
A n(.6730) n(.5281) n(.9101) n(.2600) n(.5167) n(.3319)

After running the program, PC-Size, we get the following
power table:

23



, Table 1.7:

The power to detect a 50% reduction, at a« level = 0.05 in
the catch rate of the six species, calculated based on the
historical data

n Steelhead Chum Chinook  Pink  Sockeye Coho

.8 0.516 0.427 0.641 0.240 0.419 0.292
16 0.866 0.775 0.945 0.480 0.766 0.578
24 0.970 0.926 0.993 0.668 0.920 0.771
32 0.994 0.978 1 0.798 0.976 0.884
40 0.999 0.994 1 0.882 0.993 0.944
48 l 0.999 1 0.933 0.998 0.974
56 1 1 1 0.963 1 0.989
64 l 1l 1 0.980 1 0.995

where n = (# of pairs of nets) x (# of times the nets are

picked each day) x (# of days the experiment is run).

Note the total sample size is N = 2n.

Because of the logistic constraints such as funds,
fishing regulations, and the commercial fishers’
(un)willingness to participate in the experiment, we could

not increase the sample size indefinitely.

24



Givén 'these restrictions, our ciient felt that the
optimal design to propose would be the following : 2 pairs
of nets, one pair with a 4.625" mesh and the other with a 6"
mesh (these mesh sizes were chosen because they'seemed to
catch the most steelhead, and chum). The four nets were to
be picked twice a day, two days a week for four weeks. The
corresponding power of our test can be obtained from the

above table with n = 32.

25



Chapter 2 : Data Analysis

Western Renewable Resources was awarded the contract to
carry out the experiment, but not with the experimental
design as proposed in Chapter 1. Unfortunately, due to
»restrictions in funding, the experiment could not be carried
out as planned. The two major modifications to the planned
design were :

1 Instead of two, there was only one pair of nets available
for the experiment.

2 Instead of twice a day, the nets were set and picked in a
manner that the fishers normally fish.

The experiment was conducted during the first two weeks in

July and the last two weeks in August with a total of 104 net

picks.

In addition to the the size of the catch for each
species in each net pick, the experimenter also recorded the

following information:

1 The time when the nets were set and picked. Of a special
interest was whether the net was soaking (in the water)
around dawn, as the fishers had observed that the size of
the catch tended to be different at dawn compared to the

other times of the day.
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2 The date ﬁhen the nets were picked.

3 The site where the catch was made. The area fished by the
Bella Coola fishers has been divided into five sites shown
in Figure (2.1).

4 Weather: sunny, broken cloud, overcast, or rain.

5 Wind: calm, moderate, or strong.

6 Surface condition: calm, choppy, or heavy.

Notation
The dependent variables of interest were the sizes of
the catches in each net pick for each of the six species of
fish. However, because the nets had different soaking time,
and the fish catches were frequency counts, as argued in
Chapter 1, I used the log transform of the adjusted catch

rate in each net pick as the dependent variable.

The dependent variable for steelhead was defined as:

LSH = log[the number of steelhead caught + 1]

elapsed time
ILCM, LCK, LPK, LSX, LCO were defined similarly for chunm,

chinook, pink, sockeye, and coho.

The TREATMENT effects were coded:
1 for treatment nets
T1 r 1= , ; where z T1 =0
2 for control nets
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Figure 2.1

The location of the five experimental [Lishing sites, where
' D1 = Dean channel along the shore,
D2 Dean’ chaunel on the open water,
D3 = Showquiltz along the shore,
D4 Whiteclif[ along the shore,
Ll Labouclere along the shore,
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ThevDAWN effects were coded:

D ;j =

J

1 for nets soaked during dawn
; where z D,= 0

2 otherwise

The WEEK effects were coded:

1 for the first week in July
2 for the second week in July . where z W =0
K

’

W s k = 3 for the third week in August

4 for the fourth week in August

The SITE effects were coded :

1 for site D1
: 2 for site D2 : where Z S1
1 3 for site 11
4 for site D3 or D4

i
o

See Figure (2.1) for the geographic locations of these sites.

The WEATHER condition effects were coded
if sunny
if cloudy

~1
=
s
|
o

if overcast

BW N

if rainy

The SURFACE condition effects were coded

1 for calm :
SUR ; n = ; where Z SUR = 0
n n
2 for choppy or heavy waves
And the BLOCK effects were coded as Bo , o=1,...,52 , again

with the restriction that Z B, =0

Note that the wind factor was not considered, since it

was highly correlated with surface condition (the sample
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correlation'of the two factors was virtually 1). Note also
that some of the adjacent levels of two of the factors (SITE
and SUR ) have been grouped into a single level. This was
done because there were not enough observations in some of

the cells to form an invertible design matrix..

A Preliminary Look

As our main objective was to investigate the main
treatment effect, I started the data analysis with a simple
comparison of the means between the treatment and control
groups for each of the six species. In this part of the
analysis, all factors, except for TREATMENT and BLOCK were

ignored.

The following table provides a brief comparison between
treatment and control nets. In the table, let
LSHt° = the log of the adjusted catch rate of the treatment
net from the o™ block for steelhead.
LSHc° = the log of the adjusted catch rate of the control net
from the o block for steelhead.
LSHA = their difference.
That is,

LSHdA = LSHt - LSHc .
° ) o
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The same variables were‘defined for the other species
with LCM, LCK, LPK, LSX, LCO as abbreviations for chun,

chinook, pink, sockeye, and coho.

Table 2.1 :
A brief statistical summary of the data from the experiment.
A comparison between control and treatment nets. Note: there
were 104 observations ( 52 in the treatment group, and 52 in
the control group )

LSHc LCMc LCKc LPKc LSXc LCOc
X -0.997 1.966 -1.232 =0.546 =0.739 =0.942
SD 0.614 0.578 0.527 0.857 0.673 0.592
" LSHt  LomMt LCKt LPKt  LSXt  Lcot
X -1.226 1.592 -1.271 =1.109 =0.990 -1.060
SD 0.586 0.786 0.558 0.649 0.733 0.590
LSHA LCMd LCKd LPKd - 1LSXd L.cod
X -0.240 -0.375 -0.039 -0.563 =-0.251 =0.119
SD 0.564 0.602 0.410 0.790 0.744 0.485
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To test the hypothesis that there was no treatment
effect for steelhead, I fitted the model,

ISH =g __ +T +B +¢ , (2.1)
io i o i

LSH o

where By = the overall mean of LSH,
T,, and Bodefined as above,

€ = normally distributed error terms.

Therefore,

LSHt = LSH
o 1o

=p+T + (B +¢ )
1 o

lo

LSHc = LSH
o 20
=u+T2+(Bo+82°)
LSHd = LSHt - LSHc
o o o

= 2T + ( €, " € )

o 20

Note that ( Bo + eio), ( Bo + 820), ( €. - 820) were

indistinguishable from random error terms, and were therefore

treated as such.

Testing the hypothesis of no treatment effect
(T = T, =0) is equivalent to testing for the location of
the mean of LSHd. Therefore we could focus our attention on
the distribution LSHA. The histograms of LSHd and LCMd can be
found in Figures (2.2) and (2.3). These histograms suggest
that the distribution of LSHd and LCMd are not far from

normal.
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Flgure 2.2

The histogram of LSHd

0
LSHd
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Figure 2.3

The histogram of LCHd
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Therefore we can test the hypothesis :

Ho P Hiene T 0 vs. Ha LSHd

4
A%
o

using the test statistic

LSHA
SDLSHd /4 52

If LSHd is normally distributed, then 2 will have a t
distribution with 51 degrees of freedom, which is very close
to the normal distribution. However, even if the assumption
of the normality of LSHd was not satisfied, the Central Limit
Theorem suggest that the test statistic 2 would still be

approximately normal..

Furthermore, 1let

S _ the number of Steelhead caught + 1
H = -
io elapsed time

= exp LSHw )
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After applying model (2.1) we get
SH10 =exp (4 + Ti) X exp (Bo + €. ).
Now exp ( u+T) can be viewed as the mean of the adjusted

catch rate of treatment group i. Therefore,

exp ( # + T)

exp (T1 - Tz) =
exp (M + Tg

can be seen as the ratio of the mean adjusted catch rate
between the control and treatment nets.

From model (2.1) we can see that LSHd is the obvious
estimator for (T, - T)), therefore, the straightforward
estimator for exp (T, - T,), the ratio of the mean of the

adjusted catch rate, is exp ( LSHA )

Identical hypothesis testing and estimation procedures

were performed on the other species : CM, CK, PK, SX, CO.
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The following table summarizes the results.

Table 2.2
The p-values of the above hypothesis
tests and the estimated ratio of the mean of
the adjusted <catch rate Dbetween the
treatment and control nets for each of the

six species

p-value estimated ratio
SH 0.0011 0.787
CM 0.0000 0.687
CK 0.2451 0.962
PK 0.0000 0.569
SX 0.0075 0.778
co 0.0384 0.888
Note that at « level = 0.05 the tests were significant

for all of the species, except for chinook. Also note that
the estimated ratios showed a greater reduction in the chum
catch (31.3%) than that in the steelhead (21.3%). This might
be an early indication that the treatment nets were releasing

proportionately more chum than steelhead.
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The aﬁovev preliminary inference on treatment effects
wefe meant only to be a preliminary analysis to get a general
feeling of the data. A more thorough analysis was done by
intfoducing statistical models that included several other

factors that might affect the size of the catch.
The model :

Now that I have obtained the data from the experiment,
I could expand the model (1.2) that was considered in Chapter
1 to include more significant factors. A fuller model that I
considered was
W+ T+ D+ W+ S+ WX+ SUR + B

Y =
it jklmno - o(jklm)

+ T.l?”) + T'W(lk)+ T.S(“)+ T.WXum)

* T'SUR(nn+ € skimno (2.2)
Where £ is assumed to be iid N (O,az)
B is assumed to be iid N (o,ag)fbr o=1,...,52, and

the effects of each factor add up to 0 , and
the error terms € and the random factor B are mutually

independent.

The only interaction terms included in this fuller model

were first order interactions involving TREATMENT, because
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they were the only interaction terms with applicable physical

interpretation.

Note also that:

1 All the factors were fixed effects, except for BLOCK which
was random.

2 The data contained different numbers of observations in
each cell.

3 Because every block (pair of nets) was set at the same
time, and therefore exposed to the same environmental
conditions, BLOCKS are nested in every combination of the

other factors, except for TREATMENT.

The model described in (2.2) is a mixed effects model -
with wunbalanced data and a nested design. The ANOVA
methodology with mixed effects and unbalanced data is quite
complicated. It involved estimating the vector of variance

2

components gz = [GB o;]’ by setting

2
E(q) = Cg",
where q is a vector, with the same dimension as gz, of any

linearly independent quadratic forms of the observations, and

C is a matrix, (Searle, 1987, pp. 495-496).

The difficulty lies in choosing q. For unbalanced data

there does not seem to be an optimal set of quadratic forms
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that can be'used as elements of q, whereas for balanced data
thé sum of squares of the analysis of variance do provide
estimators with certain desirable minimum variance and
unbiased properties.

(Searle, 1987, pp. 495-496)

I side stepped this complication by splitting the model into

two parts:

AVG = (Y
Jklmno

) /2

+ Y
1jklmno 2jklmno
and

DIF (Y )

Sklmno 1 jkimno ‘Y2jklmno
That is, AVG was the average of the 2 observations in each
block, and DIF was the difference of the observations between
~control and treatment nets in each block (much like LSHd in

ﬁbdel (2.1)).

From (2.2) we have

AVG = M +D + W+ S+ WX+ SUR
BO(Jklmn)+ (eljklmno+ 82jk1mno)/2

and

DIFJklmn= (T1- Tz) + (T'Dzj— T.D1j ) + ( T.W2k~ T.W1k )

+ (T°821— T.S11 )+ ( T.Wsz— T'WXM1)

+ T.SURzn— T'SURln ) + (ezjklmno— eljklmno)

40



Note, fhat after averaging within blocks, each block
contained only one observation. Because the factor B was
nested in every combination of the other. factors, the block
effect B was redundant, and could be treated as an error
term. Consequently, the subscript o was dropped and repléced

by the subscript p to denote replicates in each cell, and we

write:
- 4
AVG o= M + D + W + 8 + WX + SUR + € mp (2.3)
’ -
where ejklmnp_ Bo(jklmn) + (eljklmno + SZJklmno) / 2

~N (0 ,(0g+0;/2))

DIF can also be simplified by noting that it is a
dependént' variable arising from the differences between
contrecl and treatment nets within each block. The term (
'I‘.Dl‘1 - T’Da ) can be viewed as the difference between

control and treatment nets at the jth

DAWN level, that is:

2 x ( TREATMENT.DAWN ) interaction effect, and we can define
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it as T.Dj = ( T'Daj - T.Dﬁ ). After applying an analogous

argument to the other factors ( T.W, T.S, T.WX, T.SUR ), and

using the fact that T1= - T2 we can write:
DIF =27+ T.D. + T.W + T.S + T.WX + T.SUR
jklmnp 1 J -k 1 m n
n o
€ 1mnp ‘ (2.4)
where ¢g" = g - ¢
Jklmnp 1 jklmno 1jklmno
2
N (0, 20)).

Both (2.3) and (2.4) are fixed effect models which can
be analyzed using the standard ANOVA method. I have proceeded
to use (2.3) to select significant main factors ( DAWN, WEEK,
SITE, WEATHER, and SURFACE ) for each species of fish, and
have then used (2.4) to test the significance of TREATMENT
effect, and its interactions with the main effects that were

selected.

The estimates of the parameters obtained by fitting the
models (2.3) and (2.4) might not be equivalent to the
estimates that would have been obtained using the mixed
effects model (2.2). The following discussion shows that
other more complex estimates may exist with Dbetter

theoretical properties.

42



An overview of the parameter estimation in the mixed
effects model with unbalanced data is found in Searle (1987,

pp. 484 - 489).

The mixed effects model can be defined as follows:
y=X8+2 u + €
where y is a vector of the response variable, X is the
design matrix corresponding to the vector of fixed effects B,
u is the vector of random effects with corresponding design
matrix Z, and e is the error vector defined as
e =y - E(y|u),
where
E(y|u) = X B + Z u,
E(Y) = X B,
Var{u) = o, I and as usual,
Var(g) = oz I with the additional assumption
cov(u,g) =0
The symbol V is used for the variance covariance matrix of y:
V = var(y)

= 0°Z Z' + o°1
u e

The best 1linear unbiased estimators (BLUE) of the fixed

effects vector B is found to be

a 1

B = (xt'V 1

X) X’ V'y
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This éstimator is different from the one I used to
estimate the parameters in the fixed effects models (2.3) and
(2.4), namely

B'= (X'X)7'x’y
Consequently, our estimates of the fixed effects may not be
BLUE. However, there are advantages in choosing the simpler

estimates é’. Using the BLUE estimator B requires that one

estimate V, which involves the estimation of the variance

components ai and oi. As discussed above, this estimation
problem is full of difficulties, with no obvious optimal
solution.

(Searle, 1987, p. 489)

The other advantage of using the simpler estimator §(,
and therefore the fixed effects models (2.3) and (2.4) is a
practical one. I felt that it was important to keep the
methodology of this consulting problem as simple as possible,
so that the client could understand the applied techniques

thoroughly as possible.
Choosing Covariates

I used the stepwise regression procedure (with o to
enter = a to delete = 0.05), starting with an empty model to

see which of the variables in model (2.3) should be included.
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After some of these factors weré chosen, again the stepwise
regression procedure was applied to see which of the
variables (TREATMENT, and all first order interactions
between TREATMENT and all of the other factors that had been

chosen above) in model (2.4) should be included.

While there is no theoretical restriction to include
interaction terms between TREATMENT and factors that were not
included in model (2.3), the physical interpretation of it
may be confusing. Therefore I have restricted the interaction
terms that were considered to be included in model (2.4) to
only those between TREATMENT and factors that have been

included in model (2.3).
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In model (2.3)

AVG =pg+D +W + S + WX + SUR + ¢’

jklmn bl k 1 m n jklmn
for each of the six species, I used stepwise regression
procedure with partial F-test to choose between the factors (
D, W, S, WX, SUR ). After performing the tests (at a to enter
= o to delete = 0.05) and estimating the effects of each of

the significant factor, I arrived at the following models

for each of the six species:

Steelhead
LSHa = pu+ D + W + WX+ €/
Jkmp J k m jkmp
where LSHa (steelhead average) is (2.3) for steelhead.

The following least squares estimates were obtained:

TSHa = -1.117

u= -1.350

D= -0.231 D, = 0.231

W = 0.069 W = -0.026 W = -0.284 W = 0.241
1 2 3 4

A A A

WX = -0.088 WX = 0.321 WX = 0.187 ﬁx4 = -0.420

MSE = 0.171
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LCMa, =i+ § + &
where
ICMa = 1.779
o= 1.7
§, =0.18 § =-0.409 S = -0.170 8,
MSE = 0.316
Chinook
K = + D + W+ g’
LCRa, = H 3 k
where
ICRa = -1.252
L= -1.347
D = -0.243 D = 0.243.
1 2
W= -0.138 W = 0.007 W = -0.177 W
1 2 3 4
MSE = 0.185
Pink
LPKa =u+D+W+8'
Jkp bl k
where
TPRa= ~0.827
g = -0.922
D = -0.277 D = 0.277
1 2
WI = -0.408 W = 0.039 ﬁa = 0.021
MSE = 0.299

Chum
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Sockeye

= + + + z
LSXa‘llmp 1) +'D‘1 S1 : WXm e“mp
where
1SXa = -0.864
L= -1.194
D = -0.290 D = 0.290
1 2
S =0.213 § = -0.108 S = -0.400 § = 0.295
1 2 3 4
ﬁx1 = -0.033 ﬁxz = 0.098 ﬁx3 = 0.381 ﬁx4 = -0.446
MSE = 0.181
Coho
ILCoa = u + ¢’
p p
where
ICOa = g = -1.001
SD= 0.539

Residual plots of the above models for steelhead

chum can be found in Figures (2.4) and (2.5).
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Studentlzed reslduals

Figure 2.4

The resldual plot for LSHa
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Student |zed Reslduals
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Flgure 2.3
The reslidual plot for LCHa
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Note that both the sample average LSHa and i could
both be used as estimators of the overall mean u. LSHa is the
weighted sample average of all the cells means in the model,
while g is the unweighted sample average of the cell means. i

» wQuld be a better estimator if the cells were of equal

importance. However, the cells were not of equal importance.

The fishers tended to fish more often in some sites than
others, during some times of the day more than others, etc.
This inequality of cell importance was reflected in the
relative cell sizes of the data, because the experiment was
run, as much as possible mimicking the actual fishing
~ operation. Therefore the weighted sample average LSHa .is a
preferred estimator for the overall population mean pu. The

same reasoning was applied to the other salmon species.

The mean of the log of the adjusted catch rate for each
species u reflects the relative importahce of the six species
of fish to the local fishing industry. However, because it is
well known that chum is by far the most important species in
the fishery, the estimation of p is somewhat accessory. Of
more importance is the estimation of the treatment effect (if

it exists) for each species.
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To test the significance of the factor TREATMENT and its
first order interaction with the factors that had been chosen

above, I used the model (2.4),

DIF oy = 2T, T.D + T.W + T.S + T.WX + T.SUR
"
te Jklmnp
where e" - N(O, 202 )

Starting with an empty model, I used the stepwise regression
procedure with a to enter = a to delete = 0.05. I arrived at

the following models for each of the six species:

Steelhead

ISHA = 2T + "
P 1 P

ISHd = 2§i.= -0.240

SD = 0.564
Chum
LCMd, = 2T, + T.5 + &l
where
ICMd = -0.375
2T = -0.450

1

Tfs1 = 0.164 T.S, = -0.346 Tfs3 = -0.195 Tfs4 0.377

Il

MSE = 0.308
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Chinook

CKd = ¢"
P P
with
SD = 0.410
that is, the main treatment effect is not significant
chinook.
Pink
PKA = 2T + ¢"
p 1 p
where,
PKd = 2'1'1 = -0.563
SD = 0.790
Sockeye
§Xd = 2T + g"
p 1 p
where,
SXd = 2'1'1 = -0.251
SD = 0.744
Coho
cod = 2T + g
p 1 p
where,
cod = 2'1'1 = -0.119
SD = 0.485
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As befofe, the weighted sample average is the preferred
estimator of the overall population mean. In this case the
overall population mean is 2T1, twice the TREATMENT effect.
Also note that chum was the only species in which a first

order interaction involving TREATMENT (T.S) was significant.

For steelhead, pink, sockeye, and coho, the treatment
effect did not interact with any other factors, and therefore
could be estimated using table (2.2). The treatment effect
was not significant for chinook, while for chum, since there
was an interaction between treatment and the factor sites,
different treatment effects were estimated for different
sites as follows :

The MLE for [“mﬁd } was obtained by the sample cell

1
mean from each site, which in the model
LCMdlp = 2T1 + T.Sl+ e'l'p

is expressed by 2@1 + (T:S)l. Further, we can use exp { 2T1 +

(T:S)l} as the MLE for exp(u which is the ratio of the

LCMd ]’
t
catch rate between treatment and control nets in site i for

chum.

Further, the 95% Confidence Interval for [u can

LCMd ]
3

be obtained by applying appropriate standard errors to the
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above point estimators, that is:

{ 2T + (T.8)} * ( 2, x Jwsess2 }

Finally, the 95% confidence intervals for exp{uHMd], which

is the ratio of the mean catch rate between the treatment
- control nets in site i can be found by exponentiating
upper and lower 1limits of of the confidence intervals

[uum%] found above.

The following table summarizes the results.

Table 2.3
95% confidence intervals, and point estimates
for the ratio of the mean catch rate between
~treatment and control nets in each. site for

chum.

Site Point estimate Confidénce interval

1 75% ( 65% , 87% )
2 45% ( 39% , 52% )
3 52% ( 45% , 61% )
4 93% ( 80% , 108% )

Similarly, for steelhead, in the absence of

interaction terms involving TREATMENT, the MLE for exp(u

LSHd

and
the

for

any

)

and its corresponding 95% confidence interval can be found by
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exponentiating the upper and lower limits of the confidence

interval for pu :
LSHd

LSHd ¢+ ( 2z x SD( LsHd ) / 52 )

The following table summarizes the estimates:

Table 2.4
The estimates of the ratio of mean catch rates

between the treatment and control nets for

steelhead.
Point estimate : 79%
95% confidence interval : ( 67% , 92% )
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CONCLUSIONS

Although there are other methods of analysis that
can be applied to the experimental data, such as generalized
linear modeling, the classical ANOVA approach on
logarithmically transformed data. seemed adequate in this

context.

The analysis above 1leads to the following
conclusions. The treatment net, which was designed in hope
that it would decrease the catch of steelhead without
significantly decreasing the catch of other salmon,
particularly chum , seemed to decrease the catch of all the

» species,-except for chinook, by a substantial proportion.

Based on the estimates obtained in Chapter 2, the
treatment net decreased the catch of steelhead by 21% , pink
by 43% , sockeye by 22% , and coho by 11% , while the catch
rate for chinook did not seem to be affected. More
interestingly, the reductions of chum catches were different
in each site. Only in site 4 was the reduction of the chum

catch (7%) less than the reduction of the steelhead catch.
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Considering that the main species‘of interests were
steelhead and chum, the above analysis 1leads to the
recommendation that if treatment nets were to be used at all,
that they should only be implemented in site 4. Note that
site 4 is a grouping of two different sites (Showquiltz and

Whitecliff shores).

However, ﬁhe Department of Fisheries and Oceans has
already decided to take a different course of action. The
department has decided in enforcing the use of the treatment
nets for the entire fishing fleet in the region. But this
time, the nets will be lowered 30 inches instead of 48 below
the corkline. A similar study of the effectiveness of these

new modified nets may or may not be undertaken.
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Appendix 1

The Raw Historical Data

The columns are as follows : SH, CM, CK, PK, SX, CO, MESH, WEEK,

MONTH, ELAPSED TIME, DAWN, and SITE, as defined in Chapter 1.

PRRPPPRPRPPPRPRERREPREPBERPRPRBERPRPRFPPEPPPPPRPBERRERERRERRRP

0 1 2 1 10 0] 4.500 1 1 11 2
0 3 1 1 14 0] . 1 1 4 2
0 14 1 11 47 2 4.500 1 1 7 2
. 5 2 4 9 0 4.500 1 1 14 2
. 4 4 11 19 1 4.250 1 1 14 2
. . . . 5 . . 1 1 14.66 2
0 9 10 8 16 5 1 1 8 2
0 9 1 0 0 0 . 1 1 7.50 2
1 4 0 1 8 0 4.250 1 1 6 2
3 5 9 14 61 4 4.250 1 1 24 1
1 6 6 5 11 2 4.250 1 1 9.50 2
2 6 4 9 32 0] 4.250 1 1 17.16 2
3 8 0 10 23 0 4.500 1 1 16.08 2
0 0 5 0 11 0 1 1 8 2
0 3 0 3 13 0 . 1 1 9.83 2
0 1 0o 4 24 -2 4.500 1 O T 2
2 13 3 14 44 10 4.500 1 1 23.66 1
2 3 5 S c 2 4.375 1l 1 19.41 1l
0 11 2 15 74 9 4.250 1 1 16.833 2
0 1 1 9 12 6 . 1 1 7.167 2
2 7 5 8 42 2 4.500 1 1 17.500 2
3 6 3 7 19 4 4.625 1 1 17.833 2
0 1 0 1 7 0 . 1 1 6.167 2
3 5 6 25 37 2 4.250 1 1 14.333 2
2 2 9 6 6 1 4.250 1 1 15.167 2
2 6 0 10 35 2 4.625 1 1 20 1

1 3 6 13 2 . 1 1 14.917 2
3 8 10 24 52 11 4.500 1 1 19 1
1 2 4 7 16 4 1 1 5 2
. 1 0 2 17 0 . 1 1 19 1
7 9 5 4 11 0 4.250 1 1 11 2
1 12 0 23 59 8 . 1 1 24 1
1 12 13 2 6 2 6 1 1 14.667 2
1 8 2 1 2 3 . 1 1 4.250 2
0 0 0] 3 10 1 - 4.250 1 1 4.500 2
4 10 3 5 14 4 4.250 1 1 15.667 -2
1 1 3 3 9 1 1 1 8.333 2
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SH, CM, CK, PK, SX, CO,
SUR, B, as defined in

Appendix 2
WX,

S,

The Raw Experimental Data
D,

The columns are arranged as follows:

W,

T,

ELAPSED TIME,

Chapter 2.
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