
AN OB JECT-ORIENTED CONSTRAINT SATISFACTION
SYSTEM APPLIED T O MUSIC COMPOSITION

Russell David Ovans

B. Sc. University of Victoria 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in thyschool

of

Computing Science

@ Russell David Ovans 1990

SIMON FRASER UNIVERSITY

August 1990

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Russell David Ovans

Degree: Master of Science

Title of thesis: An Object-Oriented Constraint Satisfaction System Applied
to Music Composition

Examining Committee: Dr. Veronica Dahl
Chair

Dr. Nick Cercone
Senior Supervisor

Date Approved:

Dr. Robert Hadley
Supervisor

Dr. Hans Miiller
External Examiner

August 7 , 1990

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Univers i ty the r i g h t t o lend

my thesis, proJect o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Univers l ty L lbrary, and t o make p a r t i a l o r

s i n g l e copies only f o r such users o r I n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f I t s users. I fu r ther agree t h a t permission

f o r mu l t i p l e copying of t h i s work f o r scholar ly purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r pub l i ca t ion o f t h i s work f o r f i nanc ia l gain sha l l not be allowed

without my wr i t t en permission.

T it l e o f Thes i s/Project/Extended Essay

An Obj ect-Oriented Constraint S a t i s f a c t i o n System Applied t o Music Composit ion.

Author:

(s ignature)

Russe l l David Ovans

(name

August 9 , 1990

(date)

Abstract

Constraint satisfaction problems (CSPs) are important and ubiquitous in artificial intelli-

gence and generally require some form of backtracking search to solve. This thesis provides a

methodology for solving CSPs using object-oriented programming and describes how music

composition can be formulated as a CSP. Firstly, we have built, using an object-oriented

programming language, a constraint satisfaction system that is applicable to any CSP. By

defining a methodology for the conversion of an abstract model of a CSP, namely the con-

straint graph, into a network of co-operating objects, we have isolated some useful abstrac-

tions of constraint programming. This system can solve CSPs involving constraints of any

arity, and frees the programmer from the details of tree-search and constraint propagation.

The second contribution of this thesis is an observation that music composition can be

formulited strictly as a CSP. Recent attempts to develop expert systems for music compo- -
sition have centred mainly around the rule-based approach, which we argue is frequently

inefficienkdue to its reliance on chronological backtracking as the control method. Con-

versely, when music composition is viewed as a CSP, the complexity of the problem, the

usefulness of the musical constraints, and the relationships among notes all become man-

ifest in the form of a constraint graph. Most importantly, consistency techniques can be

exploited in an effort to reduce backtracking and thus provide a more efficient procedure for

the generation of compositions.

The synthesis is the generation of contrapuntal music by modeling first species csnter-

point as a CSP and implementing its solution in our constraint satisfaction system. Using

this approach, we have undertaken an analysis of the rules of first species counterpoint by

measuring their individual effect on constraining the number of compositions belonging to

the genre.

Acknowledgements

For their time, insight, and encouragement I wish to thank Nick Cercone, Bill Havens,

Bob Hadley, Hausi Miiller, Dan Fass, Sanjeev Mahajan, Gary Hall, and Keith Harnel. For

their financial support, I thank the Natural Sciences and Engineering Research Council of

Canada.

Contents

Abstract iii

Acknowledgements v

List of Tables x

List of Figures xi

. 1.1 The Problem 2

. 1.2 Thesis Overview 3

' 2 Constraint Satisfaction Problems 4

. 2.1 Representing a Constraint Satisfaction Problem 6

. 2.2 Algorithms for Solution 7

. 2.2.1 Consistency Techniques 8

. 2.2.2 Arc Consistency Algorithms 10

. 2.2.3 Beyond Arc Consistency 13

. 2.2.4 Tree Search 15

. 2.3 The Attractiveness of Constraint Satisfaction 18

. 2.3.1 Constraints as Knowledge Representation 18

. 2.3.2 Constraint Programming Languages 19

3 An Object-Oriented Constraint Satisfaction System 2 1

. 3.1 The Required Object Classes 22

. 3.1.1 The Class Link 23

. 3.1.2 The Class Variable 24

. 3.1.3 The Class Constraint 25

. 3.1.4 The Class Csp 26

3.2 Converting a Constraint Graph to the Defined Object Classes 27

. 3.2.1 The Modified Constraint Graph 27

. 3.2.2 From Modified Constraint Graph to Objects 30

. 3.2.3 Representing Constraints 32

. 3.2.4 Arc Consistency within the Graph 34

. 3.2.5 Tree Searching the Graph 37

. 3.2.6 Complexity of the Modified Constraint Graph 39

. 3.3 A Sample Problem 41

. 3.4 The Accomplishment 41

4 .Music Composition as a CSP 42

. 4.1 Related Work in Computer Composition 43

4.2 Counterpoint as a CSP . 45

. 4.2.1 The Rules as Constraints 46

. 4.2.2 A Constraint Graph for Counterpoint 52

. 4.2.3 An Analysis of the Individual Rules 58

5 Discussion 65

. 5.1 CSP-IC 65

. 5.1.1 CSP-IC is More Than an A1 Problem-Solver 66

5.1.2 CSP-IC is More Than an Ad-Hoc Implementation 67

5.1.3 CSP-IC is More Than a Constraint Programming Language 67

vii

5.1.4 CSP-IC is Not Perfect . 69

5.2 Composition as a CSP . 70

5.2.1 The Intractability of Automated Composition 70

5.2.2 Consistency Techniques Can Help . 71

6 Conclusion 74

. 6.1 Summary of Results 74

6.2 Future Research and Extensions . 75

A The CSP Software-IC 78

. A.l The Class Link 78

. A.l.l Link.h 78

. A.1.2 Link.m 79

. A.2 The Class Variable 79

. A.2.1 Variab1e.h 79

A.2.2 Variab1e.m . 80

A.3 The Class Constraint . 83

A.3.1 C0nstraint.h . 83

A.3.2 C0nstraint.m . 84

A.4 The Class Constraint3 . 86

A.4.1 Constraint3.h . 86

A.4.2 Constraint3.m . 86

. A.5 The Class Csp 89

. A.5.1 Csp.h 89

. A.5.2 Csp.m 90

B A Solution to the n-Queens Problem 95

. B.l The Class Square 95

...
Vlll

. B.l.l Square.h 95

. B.1.2 Square.m 96

. B.2 The main Routine 97

. B.2.1 main.m 98

. B.3 Sample Run 100

C The Counterpoint Application 101

. C.l The Note Class 101

. C.l.l N0te.h 101

. C.1.2 N0te.m 102

. C.2 main.m 107

Bibliography 116

List of Tables

4.1 Empirical measures of findsolutions and findASolution when the graph is

pre-processed with makeArcConsistent. 59
4.2 Empirical measures of findSolutions and findASolution, without pre-processing. 59

4.3 Some importance ratios for the counterpoint rules. 63

5.1 Comparison of four search algorithms for generating counterpoint. 73

List of Figures

. 2.1 A constraint graph for the sample problem 7

. 2.2 The node consistency procedure 9

. 2.3 The REVISE procedure 10

. 2.4 Procedure AC1 11

. 2.5 Procedure AC3 12

. 2.6 Procedure AC2 13

. 2.7 A constraint graph that is both arc consistent and unsatisfiable 14

. 3.1 The hierarchy for the required classes 23

. 3.2 The instance variables and methods of class Link 23

. 3.3 The instance variables and some methods of class Variable 24

. 3.4 Alerting change in a Variable object's domain 25

. 3.5 The instance variables and methods of class Constraint 26

. 3.6 The instance variables and methods of class Csp 27

. 3.7 The binary constraint graph to be transformed 28

. 3.8 All undirected arcs become two directed arcs 28

. 3.9 The constraints instantiated as nodes 29

. 3.10 The completed modified constraint graph 29

. 3.11 Merging three constraint nodes into one 29

. 3.12 A constraint graph with a ternary constraint 30

3.13 Hyperarcs become directed hyperarcs . 30
3.14 The n-ary constraints instantiated as nodes . 31
3.15 Merging two ternary constraint nodes into one 31

3.16 The relationship between arcs and predicate parameters 33
3.17 The methods required to enforce the constraint A=B+C 34
3.18 The arc consistency procedure that results from instantiating node x 35

3.19 The makeArcConsistent algorithm . 35
3.20 Inducing a subhypergraph of a constraint graph 37
3.21 The MCG for the 4-queens problem . 40

4.1 Constraints that enforce the mode rule . 47
4.2 Constraints that enforce the mode and cadence rules 48
4.3 Binary constraints enforcing the perfect. first. harmonic. and melodic rules . . 50
4.4 Ternary constraints enforcing the skipstep and noThree rules 51

4.5 Quaternary constraints enforcing the parailel and octave rules 52

4.6 A constraint graph for first species counterpoint 53
. 4.7 A simplified constraint graph for first species counterpoint 54

4.8 The binary constraints in the MCG for first species counterpoint 54

4.9 The ternary constraints in the MCG for first species counterpoint 55
4.10 The quaternary constraints in the MCG for first species counterpoint 55
4.11 Algorithm for finding the width of a hypergraph 56

4.12 Finding the width of the counterpoint constraint graph 57

4.13 A four-bar melody for which counterpoint is to be generated 58
4.14 A seven-bar melody for which counterpoint is to be generated 58

4.15 A twelve-bar melody for which counterpoint is to be generated 58

4.16 Sample counterpoints generated for each of the melodies 60

xii

5.1 A given melody (c.f.) and its corresponding counterpoint search space (cpt.)

as generated by pre-processing the constraint graph with makeArcConsistent 72

...
Xlll

Chapter 1

Introduction

The discovery that constraint satisfaction problems (CSPs) occur in artificial intelligence

was a result of early work in general problem solving and computational vision. Informally,

the problem (which usually requires a backtracking search to solve) is to assign values to a set

of variables, each of which range over a finite domain, so that a set of constraints are simul-

tanemsly satisfied. Exp!oiting the effect the constraints have on limiting the sea& space

can result in significantly improved search efficiency, which has fueled continued research

into how a better exploitation of problem constraints can lead to more efficient algorithms

for their solution.

Exploring constraints and constraint propagation is a good idea. In everyday life hu-

mans quite effortlessly and effectively exploit the natural constraints of their environment,

employing them as a tool of intelligence. Or as Patrick Winston has said:

For us to make a computer do something, it is often necessary to understand
something about the world's constraints and regularities. These constraints and
regularities make it possible for individuals to be intelligent, be they computer
or human [Winston84, p. 581.

As such, artificial intelligence stands to benefit from a better understanding of constraints

and their propagation, particularly in their role as search-space reducers.

CHAPTER 1.' INTRODUCTION

1.1 The Problem

Two questions relating to CSP research are explored in this thesis. Can we build, using

an existing object-oriented programming language, a constraint satisfaction sys tem that

is applicable to any CSP? Specifically, can a transformation be found that converts an

abstract model of a CSP, namely the constraint graph, into the object-oriented paradigm of

classes, objects, and messages? Instead of creating yet another programming language, we

propose to isolate the useful abstractions of constraint programming and implement them

in an object-oriented programming language. Hopefully this methodology is as beneficial

as existing constraint programming languages where the control of constraint propagation
---- I___I

is separate A __^ . from the declaration of the constraints. This declarative feature relieves the

programmer from the details of tree search and constraint propagation, providing a reusable

framework for solving CSPs. For a general-purpose CSP-solving system to be truly useful,

it should be applicable to not only unary and binary constraints (respectively, constraints

involving one and two variables), but also to constraints of greater arity.

A suitable application for testing such a system is any toy CSP, like 8-queens: place

eight queens on a chess board so that no two are positioned to attack each other. However,

since the 8-queens problem can be formulated as a complete binary CSP where the same

binary constraint is applied to every pair of variables, its solution as a CSP would tell us

little of the methodology's overall strengths and weaknesses.

Alternatively, music composition provides a r a e r domain for testing constraint sat-

isfaction systems. Non-trivial problems in music composition involve complex constraint

relationships. An example is counterpoint: the simultaneous combination of several inde-

pendent voices (melodic lines) into a coherent whole, the art of which flourished at the

beginning of the 17th century. The rules of counterpoint, which limit allowable note com-

binations, act as the constraints whereas the notes are the variables to be assigned values.

CHAPTER 1. INTRODUCTION 3

Thus, counterpoint as CSP is useful for testing the effectiveness of the object-oriented con-

straint satisfaction system described in this thesis.

Examining music composition within the context of CSPs raises the second question:

What are the benefits of viewing music composition strictly as a constraint satisfaction

problem? Investigation of this question should provide insight on two fronts: the complexity

of automated composition in so far as the tractability of the problem such systems attempt

to solve; and, the syntax of a given compositional style by individual analysis of the effects

of each rule on reducing the number of acceptable compositions.

1.2 Thesis Overview

Empirical answers to these two questions are provided in this thesis. In Chapter 2, the

topic of constraint satisfaction problems is introduced with emphasis on their rgresentation,

algorithms for their solution, and their potential attractiveness as a programming paradigm.

In the third chapker a methnd for transforming a constraint graph into an object-oriented

program is outlined. Since the constraint graph is a well understood knowledge represen-

tation formalism for CSPs, this means that any CSP can be transformed to an equivalent

object-oriented representation where it can thus be solved by an object-oriented program-

ming language. The underlying implementation of tree search and constraint propagation is

self-contained in a small set of classes, thus providing a foundation for repeated and abstract

use.

The application of this object-oriented constraint propagation system to counterpoint,

which reveals the usefulness of the methodology as well as the appropriateness of viewing

music composition strictly as a CSP, is described in Chapter 4.

In the fifth chapter the results are discussed and evaluated. Chapter 6 contains a sum-

marization of what was achieved and details of future extensions.

Chapter 2

Constraint Satisfaction Problems

A ubiquitous problem class in computer science is that of the constraint satisfaction problem

(CSP), also known as the consistent labeling problem. The task can be succinctly stated as

follows: given a finite set of variables X = {xi , x2, . . . , x,) whose elements range respectively

over the finite (and not necessarily numeric) domains Dl, D2, . . . , D,, assign a value to each

vaxiable slxh that the finite set; of constraints C = {c:, cz, . . . , c,,,) is satisfied. The role of

the constraints is to reduce the cartesian solution space D = Dl x D2 x . . . x D,. Each

ci, 1 < i < m, is a relation on a subset of X that states which values are consistent with each

other. CSPs are solved by finding all points in the finite discrete space D that simultaneously

satisfy the constraints. Sometimes a single solution is all that is required.

As an example, consider the following toy problem. Instantiate the set of variables

X = {xl, x2,x3, x4) whose elements range over the domain {1,2,3). Let C, the set of

constraints, require that: 2 2 < xi, x4 < 23, xi # 23, and x2 # 24. This CSP has two
-

solutions:

21 = 2,x2 = 1,x3 = 3,X4 = 2

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 5

CSPs occur both within artificial intelligence (AI) and operations research. Scene label-

ing [Waltz75], truth maintenance [~o~le79] ' , and logic puzzles [VanHentenryck89] are some

of the applications in A1 that require solving a CSP. Expert systems have been shown to

benefit from an incorporation of constraint-based reasoning (for example, [Hayes-Roth861).

The relationship of CSPs to operations research is a result of the observation that graph

colouring is a CSP. Since graph colouring arises in connection with many of the scheduling

and partitioning problems found in operations research [Garey79], the class of CSPs as a

whole is of interest to the field.

This class of problems has received significant attention and a large body of knowledge

has accumulated. A complete overview of the topic of CSPs is beyond the limits of this the-

sis and is indeed unnecessary given the goals of this research, but a good survey is given in

[Mackworth87]. As well, the topic of numeric constraints over both continuous and discrete

domains, and their solution via linear programming, simplex algorithms, etc. for continu-

ous domains and integer programming for discrete domains, is ignored to concentrate on

symbolic constraints over a discrete space. The methodological advantages of the symbolic

model to the object-oriented programming paradigm are shown. More importantly, not ev-

ery CSP of interest can be easily stated as a set of equations, and in the case of continuous

domains, a set of equations is unsuitable for the inference methods to be introduced.

Because of the inherent finiteness of CSPs, the problems are decidable. A backtracking

[Golomb65] procedure can be used to systematically instantiate the variables and check if

the constraints are satisfied. Since the domains are finite, as is the number of variables

and constraints, the procedure terminates. However, efficiency is the issue, not decidability.

Graph colouring is known to be NP-complete [Garey79], thus a general purpose algorithm

for the entire class of CSPs requires (in the worst case) exponential time (unless P = NP).

In fact, despite the elimination of subspaces from the solution space D with each failed

'Recently de Kleer has shown that every CSP can be expressed as an assumption-based truth maintenance
system problem, but not vice-versa [deKleer89]

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 6

instantiation, backtracking is exponential in the number of variables in both the worst case

[Mackworth85] and average case.2 Therefore, research has focused on reducing the time

required for solving CSPs, mainly through the exploitation of the constraints and their

effect of reducing the search space. A summary of some of the resulting algorithms appears

later in this chapter.

2.1 Representing a Constraint Satisfaction Problem

A useful way of representing a CSP is as a network of constraints [Montanari74], or equiv-

alently as a constraint graph [Mackworth77]. In a constraint graph, the nodes are the

variables to be assigned values and are usually labeled with the name of the variable they

represent. It is sometimes also convenient to explicitly state the corresponding variable's

domain at each node in the graph. The arcs represent the constraints: adjacent nodes

participate in the constraint denoted by the arc connecting them. Unary constraints are

expressed with loops. To represent n-ary constrzi~its, n > 2, hyperarcs (zrcs th2k cconnect

more than two nodes) are required. We use the term constraint graph to refer to any graph,

hyper or normal, which represents a CSP.

The arcs are usually labeled with the name of the constraint to be satisfied. In the case

of binary constraints, directed arcs are useful for denoting the position of the variables in

the predicate that defines the constraint. An undirected arc denoting the binary constraint

P is equivalently two directed arcs: the predicate P and its transpose pT. (For expediency,

Mackworth omits the implicit transpose arcs.) There is no need for more than one arc

to connect adjacent nodes in a constraint graph since multiple constraints can always be

conjoined together.

The constraint graph for a corresponding graph colouring problem is in fact the graph

'The worst case is the pathological condition of a CSP where no solution exists solely because the only
inconsistent assignment is caused by the last variable instantiated. The full tree is explored before the
procedure terminates. One can expect that in the average case, only half of the complete tree is explored,
but this is still exponential in the number of variables. Rigorous proof is perhaps impossible given the
dependence on specific problem constraints.

CHAPTER 2.' CONSTRAINT SATISFACTION PROBLEMS

Figure 2.1: A constraint graph for the sample problem.

to be coloured. A constraint graph for the sample problem of the previous section is given

in Figure 2.1.

The constraint graph is not only a useful representation device but as a mathematical
.

model reveals limitations on the efficiency of searching for a solution to the problem it

represents. For example, in [Freuder82] a sufficient condition for backtrack-free search is

given as a fun'ct;i'on of the graph's connective s t r~c tu r e .~

2.2 Algorit hrns for Solution

Backtracking is a general but often inefficient algorithm for solving CSPs. Attempts at

improving the performance of CSP-solving algorithms led to the incorporation of consis-

tency techniques. Consistency techniques prune the search space before failure occurs, thus

improving the efficiency of tree search by reducing the number of backtrack points. Extra

time is invested looking ahead at each node in the tree in the hope that costly failures can

be prevented.

Even before any variable has been instantiated we can reason about the domains of the

variables insofar as to eliminate values that we know can never participate in a solution to

the problem. In our sample CSP we have that x2 must be less than XI. We can therefore

3A backtracking search is considered backtrack-free if an instantiation never needs to be undone as a
result of failure at a lower-level in the tree.

CHAPTER 2.' CONSTRAINT SATISFACTION PROBLEMS 8

eliminate 1 from Dl (and 3 from D2) since 21 t 1 (and 2 2 t 3) can never satisfy that

constraint. Similarly, 1 and 3 can be removed from D3 and D4 respectively.

Once a variable has been instantiated, further reductions can occur. If xl t 2, we can

remove 2 from D3 since the constraints require that 23 have a different value than XI. In a

likewise fashion, it can be deduced that 2 2 must take the value 1 in order that it satisfy the

lower-than constraint with XI . Since 2 4 must be different from 2 2 and lower-than 23, it has

to be 2. The problem has been solved, without backup, as a result of instantiating a single

variable.

This is an illustration of pruning the search space by means of domain reduction; values

from a variable's domain that cannot possibly participate in any solution to the problem

are eliminated, thus avoiding a possibly costly failure later on in the search tree. This is the

key idea behind the consistency techniques examined in this chapter.

2.2.1 Consistency Techniques

Consistency techniques are an alternative to dependency-directed backtracking [Stallman77],

which aims to backtrack intelligently by re-instantiating the variable most likely to have

been the cause of f a i l ~ r e . ~ In discussing the difference between consistency techniques and

backtracking, Van Hentenryck notes that ". . . dependency-directed backtracking. . . is more

a remedy to a symptom of the malady and not to the malady itself. Indeed, it is better to

prevent failures than to react intelligently to them" [VanHentenryck87].

Consistency techniques are weak inference methods: they always work, but will not al-

ways solve a CSP. They obtain their power through the propagation of constraints. This

propagation is used in two different ways: to filter domains (as in [Waltz75]) or to gener-

ate new values from known ones through networks resembling electronic circuit diagrams

[Sussman80]. Procedures of the former type are most often associated with symbolic domains

4Both intelligent and dependency-directed backtracking abandon a purely chronological method for vari-
able reinstantiation.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

procedure NC (i)
Di + D; n {x I E(X))

Figure 2.2: The node consistency procedure.

and are called labeling procedures. Those of the latter type are said to employ value propaga-

tion. In either case, global consistency is achieved through local computation [Winston84];

the difference between the two methods is in the control of inference. This thesis adopts the

labeling procedure approach, particularly because of its intuitive analogue to the constraint

graph representation. A potentially useful distinction in the CSP literature would be to

reserve the term constraint network for a structure that embodies the value propagation of

numeric equations. Conversely, the symbolic relaxation of constraints by means of a labeling

procedure is best represented with a constraint graph.

The fundamental consistency technique is to achieve node consistency [Mackworth77],

which essentially ensures that each node in the constraint graph meets any unary constraint

that may be acting upon it. (The node's initial domain can be seen as a unary constraint.)

This consistency is attained through a procedure (NC) that filters out any inconsistent

values in the node's domain (Figure 2.2). Constraints are represented by a predicate that

is true if the constraint is satisfied.

The next level of consistency is to achieve arc consistency ([Fikes7O, Waltz751, but for-

malized in [Mackworth77]), named so because the idea is to ensure that connected nodes

in the constraint graph are consistent with each other. This consistency is attained by a

filtering function Mackworth calls REVISE. In the case of binary constraints, the function

takes two nodes (i and j) as parameters. The domain Di is filtered such that each of its

members is supported (i.e., can satisfy the binary predicate Pij) by at least one member of

Dj.

The version of REVISE in Figure 2.3 is designed for the enforcement of binary con-

straints only. Different versions are required for constraints of greater arity. Without loss

CHAPTER 2: CONSTRAINT SATISFACTION PROBLEMS

function REVISE (i, j) : boolean
change + FALSE
Vx E Di do
i f 4 y E Dj such that PZi(x,y)
then begin

remove x from Di
change + TRUE

end
return (change)

Figure 2.3: The REVISE procedure.

of generality, the remainder of this chapter considers constraint graphs solely comprised of

unary and binary constraints.

2.2.2 Arc Consistency Algorithms

A constraint graph is said to be arc consistent if and only if all adjacent nodes in the graph

are consistent with each other. A graph becomes arc consistent when it is subjected to an

arc consistency algorithm, which in any of its forms essentially controls the propagation of

constraints by placing an ordering on calls to REVISE. In [Mackworth77], three different

arc consistency algorithms are discussed: AC1, AC2, and AC3.

The simplest of the arc consistency algorithms is AC1 [Mackworth77] given in Figure 2.4.

After ensuring node consistency, the procedure iteratively checks every binary constraint

(with a call to REVISE) until quiescence.

The efficiency of AC1 has been analyzed in [Mackworth85]. It is shown to be 0(a3ne)

where a is the size of the domains (assuming each Di is the same size), n is the number of

variables, and e is the number of edges in the constraint graph G.

CHAPTER 2: CONSTRAINT SATISFACTION PROBLEMS

procedure AC1 (G: constraint graph)
f o r i t l . . . n do NC(i);
Q +- {(i, j) I (i, j) E arcs(G), i # j)
repeat

change t FALSE

Q(i, j) ~ Q
change t REVISE(i,j) V change

u n t i l lchange

Figure 2.4: Procedure AC1.

Clearly AC1 can be made more effi~ient.~ The repeat loop in AC1 unnecessarily recon-

siders every arc in G. If REVISE(i, j) returns true (i.e., Di is reduced), it is only necessary

to reconsider those arcs that lead to node xi (with the notable exception of (j, i)), for it is

only those arcs that can be made inconsistent as a result of the change to Di. This is the

insight behind AC3, an improved arc consistency algorithm given in Figure 2.5.

It is not immediately intuitive why the arc (j, i) does not need to be considered if

REVISE(i, j) is true. Nadel claims we do not add (j, i) to Q because it is either already

there or it is already consistent [Nade188]. To see that this is true, consider a constraint

graph with two variables, A and B with respective domains DA and DB, connected by the

binary constraint P. In AC3, Q is initialized to {(A, B), (B, A)). Assume that arc (A, B)

is removed from Q first. After the call to REVISE(A, B) the following holds:

DL = {a E DA I 3 b E DB, P(a, b))

Adding (B, A) to Q is unnecessary since it is already there. Next, a call to REVISE(B, A)

is made because (B, A) is the remaining element in Q. After this call the following holds:

DL = {b E DB I 3a E DL, P(a, b))

5Both AC2 and AC3 are more efficient algorithms when implemented on a single processor, but AC1 has
more inherent parallelism [Mackworth87].

CHAPTER 2: CONSTRAINT SATISFACTION PROBLEMS

procedure AC3 (G: constraint graph)
f o r i t l . . . n do NC(i) ;

Q {(i,j) I (;,A E arcs(G),i # jl
while Q # 0
begin

se lec t and delete any arc (k, m) E Q
i f REVISE(^, m)
then Q t Q U {(i, k) I (i, k) E arcs(G), i # k, i # m)

end

Figure 2.5: Procedure AC3.

(Vb E DL) (3a E DL) (P(a, b))

AC3 does not add arc (A, B) to Q and the procedure terminates. It would be necessary to

reconsider arc (A , B) only if

(3a E DL) (Vb E DL) (-P(a, b))

That is, if DL does not support each member of DL. This could only happen if an element

of DL has its support solely in DB - DL. However, this is not possible since

DB - DL = {b E DB I Va E DL, l P (a , b))

That is, the elements discarded from DB were precisely those that supported not one element

of DL. Therefore (A, B) is not added to Q because it is already consistent.

In AC3, Q is treated as a set, but in practise it is either a queue or a stack: new elements

(the arcs to reconsider) are either added to the rear or to the front. In certain problems it

may be more appropriate to design Q one way rather than another. The question of which

order to re-visit the arcs ". . .is the analog for AC3 of the constraint check order issue that

arises for most, if not all, constraint satisfaction algorithms"[Nade188, p. 3251.

AC3 is shown to be 0(a3e) in [Mackworth85]; it is linear in the number of edges (i.e.,

the number of binary constraints).

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

procedure AC2 (G : consetraint graph)
f o r i t l . . . n do
begin

NC(i)
Q +- ((4 j) I (i, j) E arcs(G), j < i}
Q' .- {(j, i) I (j, i) E arcs(G) , j < i}
while Q # 0
begin

while Q # 0

Figure 2.5: Pmcedure AC2.

The final arc consistency algorithm introduced by Mackworth is AC2 (figure 2.6), an

equivalent algorithm to Waltz's procedure [Waltz751 and a special case of AC3. AC2 makes

one pass through the nodes of the graph, introducing each new node as it is reached in the

iteration. A node is introduced by first making it node consistent and then considering each

arc involving it and any previously introduced nodes.

2.2.3 Beyond Arc Consistency

Waltz's procedure is the embodiment of a school of thought that Nadel calls arc consistency

primary [Nade188]. The belief of this school is that attaining arc consistency is sufficient

for solving a CSP, and indeed for certain problems (e.g., scene labeling, the application

Waltz's procedure was designed for) this is often the case. However, arc consistency has two

serious shortcomings. If a constraint graph is arc consistent this does not necessarily imply

CHAPTER 2: CONSTRAINT SATISFACTION PROBLEMS

Figure 2.7: A constraint graph that is both arc consistent and unsatisfia

a search to solve it is backtrack-free. Arc consistency only implies backtrack-free search

if the constraint graph is in fact a tree [Freuder82]. Thus arc consistency alone does not

guarantee the eradication of exponential time requirements.6

A second deficiency is that a constraint graph can be both arc consistent and unsatis-

fiable. For example, given certain scenes as input, Waltz's procedure terminates without

a unique solution (that is, some nodes have more than one interpretation), yet the figure

has no consistent labeling [Freuder78]. Figure 2.7 is a simple constraint graph that is arc

consistent but has no solution.

F'reuder explains that these deficiencies in arc consistency are a result of its inability to

satisfy the global constraint of the problem. Arc consistency may remove all local inconsis-

tencies, but it is ineffectual when faced with incompatibilities that arise in paths through

the graph. Path inconsistency [Montanari74] is the following problem as illustrated by Fig-

ure 2.7. Nodes xl and x3 are arc consistent, allowing two pairs of values: (1,2) and (2,l).

However, neither pair of values is allowed by the indirect path from xl to 23. Each pair of

nodes in Figure 2.7 is similarly path inconsistent.

Algorithms to ensure path consistency were first developed in [Montanari74, Mackworth771.

61f it did, we would have a polynomial time algorithm for the solution of the general class of CSPs, which
includes graph colouring, and thus P would equal NP.

CHAPTER 2: CONSTRAINT SATISFACTION PROBLEMS 15

These polynomial-time procedures require a constraint representation that defines intersec-

tion and composition operators (e.g., a matrix). Procedural representations, in the form of

Boolean functions, are therefore unsuitable.

Path consistency is generalized in [F'reuder78] to be a special case of Kconsistency,

defined as follows. A graph is k-consistent if and only if every instantiation of any k - 1

variables that satisfies all the applicable constraints amongst those k - 1 variables also

permits the instantiation of any kth remaining variable such that the k variables together

are mutually consistent. Given this definition, node-, arc-, and path-consistency are k-

consistency for k = 1,2,3 respectively.7

F'reuder submits an algorithm for obtaining k-consistency in [Freuder78], but its use-

fulness is dubious given its inefficiency: the algorithm is exponential in k [Mackworth87].

Freuder later defined j-consistency for all j 5 k to be strong k-consistency [F'reuder82]. All

of the ACi algorithms are strong 2-consistency algorithms.

2.2.4 'Free Search

In contrast to the arc consistency school is the tree search primary school [Nade188], where

it is believed that CSPs need good tree searching more than they need arc consistency. The

claim is that for the majority of CSPs, consistency techniques alone will not settle on a

single consistent solution (although one could obtain k-consistency with k = n, a O(nn)

operation).

Nadel's dichotomy is an interesting one and is exemplified by differences in vertex label-

ing a line drawing (Waltz's problem) and the &queens problem. Line drawings are so highly

constrained that propagating these constraints often results in a single consistent solution

without resorting to tree search [Waltz75]. In other words, arc consistency is usually suffi-

cienct for the consistent labeling of junctions in a line drawing. Conversely, the constraints

in the 8-queens problem are much looser and permit 92 different solutions. In this case, tree

7~ssuming we restrict our definition of path-consistency, as most do, to paths of length two.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

search is necessary to solve the problem.

Tree search is an important method for solving underconstrained CSPs (i.e., CSPs with

more than one solution). A unified survey of many of the labeling procedure algorithms in

terms of tree search and arc consistency is given in [Nade188]. Nadel's paper combines the

work of Mackworth [Mackworth77] and Haralick and Elliot [Haralick80] into a single class

of algorithms that incorporate tree search with varying degrees of arc consistency, espousing

that ". . .in a search for greater efficiency, quite a few algorithms arose by development of

successively less complete forms of full arc consistency algorithms coupled with tree search"

INade188, p. 2971. The following discussion adopts Nadel's nomenclature. At level Ic of

a tree search, variables X I . . . xk-1 have been instantiated, xk is the current variable to be

instantiated, and xk+l. . . x,, the uninstantiated variables, are referred to as future variables.

Even the potentially exponential backtrack search can be seen to employ a measure of arc

consistency. At level k in the search tree, variable xk is instantiated to a value from domain

Dk. However, Dk is first filtered against all past instantiations of variables X I . . . xk-1. In this

sense, filtered means that the variable xk is checked against every constraint that involves

it and the variables X I . . . xk-1. However, these variables (xl . . . xk-1) are all instantiated:

their domains are of size one. This can result in a drastically reduced search tree compared

to simple depth-first search (see for example Knuth's exploration of the instant insanity

problem and his considerations (symmetry, etc.) that lead to the dramatic reduction in the

search tree [Knuth74]).

Forward Checking [Haralick80] improves upon backtracking by not only filtering Dk,

but also filtering all future variables' domains (Dk+l.. . D,). However, this filtering of

Dk . . . D, is only done with respect to the instantiated variable xk-1. Forward Checking

is more efficient than backtracking because it can detect dead-ends sooner; by checking all

future variables it can find an empty set for a future domain and know not to continue with

the current branch. However, Nadel cautions that ". . . unrepaid effort can be the downfall

of many an otherwise 'intelligent' algorithm. . . ", and ". . . it is the correct balance that is

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 17

so elusive and that really must be adjusted for each problem individually.. ." [Nade188, p.

3071.

Partial Lookahead [Haralick80] augments Forward Checking by filtering the current and

future variables7 domains with each other, not just the most recently instantiated variable's

(singleton) domain. This filtering is done only with respect to "more future" variables7

domains, i.e., variable x j is filtered with respect to xj+l . . . x, for k < j < n (thus Partial

Lookahead). This algorithm must utilize some form of Mackworth7s REVISE procedure

since it filters domain against domain, both of which may be larger than size one. At

shallow levels of the tree, the domains are large and supportive of each other, thus the extra

consistency checks can be very expensive. An intelligent search would know at what level

to turn Partial Lookahead on [Nade188].

Full Lookahead [Haralick80] filters the current variable's domain and all future variables'

domains against all other future variables' domains. However, only one pass through the

variables is made, which means that some inconsistencies are possibly missed (cf. AC1,

which iterates through the arcs until no change occurs).

The next level of lookahead would lead to an incorporation of full arc consistency, for

which Nadel develops nine full arc consistency hybrid search algorithms [Nade189]. The

result of each procedure is that full arc consistency is maintained for the entire graph at

each search tree node. The algorithms differ in the choice of arc consistency algorithm (AC1,

2, or 3) and the subgraph of G made arc consistent at each level k of the search tree. For

example, the algorithm Nadel calls TSAC3 works as follows. At level k in the search tree,

AC3 is applied to the subgraph of G induced by { x ~ - ~ , . . . , x,} and xk is assigned one of its

remaining values from Dk. In order to facilitate backtracking, the domains Dk . . . D, must

be saved before applying the arc consistency algorithm.

In summary, Nadel prefers avoiding full arc consistency, and his test results warrant

this claim. Forward Checking is the clear winner in efficiency (measured by the number of

constraint checks performed) when it comes to finding all solutions to the n-queens problem,

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 18

n 5 10. For some problems, ". . . it pays not to apply an arc consistency algorithm until

some variable has been instantiated" [Nade188, p. 3351. This intuitively makes sense for

underconstrained applications where the original domains are highly supportive of each

other. However, it should be noted that Forward Checking produces a larger search tree

than any full arc consistency search procedure.

2.3 The Attractiveness of Constraint Satisfaction

2.3.1 Constraints as Knowledge Representation

In the general sense, constraints are rules about acceptable and/or probable states of the

world, like the fact that traffic lights at an intersection don't conflict. Constraints aid in

the communication of natural language, in understanding what we see, in planning, and

in solving problems. In short, they help us act intelligently by restricting the number of

interpretations we apply to the world in any given situation. Within the domain of CSPs,

a constraint is more rigidly defined as a relation on a non-empty subset of the problem

variables. Still, this can have a very wide interpretation (see [Freuder78] for some useful

synonyms).

Within artificial intelligence, constraints are evolving as their own useful knowledge rep-

resentation formalism. Constraints have been included in ambitious projects like the expert

system shell KEE [Filman881 and the hybrid knowledge representation system Babylon

[Guesgen87]. In KEE, a constraint is a deduction rule whose consequent is always false,

thus rendering an inferred world inconsistent. In Babylon, constraints are used in two ways:

as their own knowledge representation formalism, and as silent watch-dogs over other for-

malisms. In both systems, like in the real world, the constraints function to reduce a search

space.

CSPs contain three declarative entities: variables, domains, and constraints. The man-

ner in which each of these is represented, particularly the constraints, is not important. The

CHAPTER 2: CONSTRAINT SATISFACTION PROBLEMS 19

method of inference, the control of these entities, is the important component. Stating a

problem as a CSP enables the utilization of consistency techniques as an efficient method of

inference. This is how the CSP approach to problem modeling can be advantageous com-

pared to other knowledge representation schemes and their corresponding inference proce-

dures.

2.3.2 Constraint Programming Languages

The emergence of constraints as a knowledge representation formalism and constraint prop-

agation as a useful control mechanism in A1 has lead to the recent introduction of constraint

programming languages. Constraint programming is a declarative task that separates the

control (method of constraint propagation) from the relationships amongst objects (the con-

straints) [Leler88]. Ideally the programmer only has to concern himself with the constraints

and not the chore of tree-search and constraint propagation. This is the goal of many recent

attempts to create constraint programming languages.

Constraint programming languages are distinct from their imperative counterparts in

the following ways. Since they have a declarative semantics, the programmer concentrates

on stating relationships (what), not on control (how) [Mackworth87]. Pure constraint pro-

gramming languages are devoid of assignment, procedures, and control flow. Further to

the absence of assignment, equality is a relational operator only. The control flow of a con-

straint language is managed by the constraint satisfier; the primary computation mechanism

is some form of constraint propagation (usually value propagation).

Some examples of constraint programming languages are Bertrand [Leler88], CON-

STRAINTS [Sussman80], and the constraint logic programming languages: CLP(R) [CohenSO],

Prolog I11 [ColmerauerSO], and CHIP [van~entenr~ck89].* Of this group, CHIP is the most

versatile and promising.

'It should be noted that Van Hentenryck considers CHIP to be the first declarative language based on
consistency techniques, and dismisses Bertrand and CONSTRAINTS as something other than true constraint
programming languages.

CHAPTER 2: CONSTRAINT SATISFACTION PROBLEMS 20

CHIP (an acronym for Constraint Handling in Prolog) is the result of recent attention

to the idea of embedding consistency techniques in logic programming. It has been shown

that every constraint graph can be converted to an equivalent logic program that elegantly

states the corresponding CSP [Rossi88]. Logic programming is thus a convenient method

for solving CSPs. However, since these problems are often best stated as generate and test

programs and are solved by an underlying backtracking algorithm, the resulting programs

are highly inefficient [VanHentenryck89]. Thus Van Hentenryck et al have worked on embed-

ding consistency techniques in Prolog, and on replacing resolution with constraint-solving.

The resulting paradigm is to constrain and generate.

Central to this goal is the incorporation of domains. Van Hentenryck claims that the

distinguishing feature of CSPs is the finiteness of the domains [VanHentenryck89]. CHIP

permits the clear expression of a variable's domain, and incorporates Forward Checking

and Lookahead as inference rules. Van Hentenryck's results in many operations research

applications are encouraging; a testament to the usefulness of consistency techniques and

constraint propagation.

Chapter 3

An Object-Oriented Constraint

Satisfaction System

An object-oriented programming (OOP) language is an appropriate implementation vehicle

for constraint propagation systems: not only have some successful projects been completed

using OOP, but it facilitates a natural expression of constraint propagation not available

with other programming paradigms.

Borning utilized OOP in the design of ThingLab [BorningSl], a constraint-oriented sim-

ulation laboratory written in the object-oriented language Smalltalk. Steels has proposed a

new mechanism for constraint languages that is implementable in any frame-based object-

oriented language [Steels85]. However, these systems have only employed value propagation

as the control mechanism. Instead, our proposal is to have objects encapsulate the nodes

of a constraint graph, and, by passing messages through the graph, enforce arc consistency

amongst the nodes. The problem is thus to establish a methodology for the construction of

such a constraint graph and a protocol for the communication among objects so that the

arc consistency of the graph is maintained before and as variables become instantiated.

The main objective of this proposal is to provide a convenient and flexible methodology

for the specification and solution of CSPs, but without burdening the programmer with

tree search, constraint propagation, and learning a new programming language. Though

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 22

the first two objectives are also the goals of many constraint programming languages, these

specialty languages often fail to provide any benefit to the computing public at large due to

their lack of availability (e.g., Bertrand and CHIP), domain specificity (e.g., Bertrand and

CONSTRAINTS can only represent numeric constraints), and/or their lack of acceptance

by conventional programming shops (an obstacle CHIP, as a logic language, may never

overcome). By examining how OOP can be used to implement a computation mechanism

based on label inference, we provide the general framework for the creation of a declarative

CSP-solving system.

The central idea of the methodology proposed in this chapter is that a constraint graph

can be implemented as a set of inter-connected, co-operating objects that attain arc consis-

tency amongst themselves by means of message passing. The end result is that a full arc

consistency algorithm (a variant of AC3) is a by-product of this message passing. Once a

small set of classes are defined, solving a different CSP is simply a matter of re-defining

the object instances that comprise the graph and/or the constraints that it enforces. Be-

cause these reusable classes comprise a software-IC [Cox861 for the solution of constraint

satisfaction problems, we have named this system CSP-IC.

The following discussion assumes prior knowledge of object-oriented programming and

its nomenclature. Good overviews are found in [Cox861 and [Stefik86]. The ideas introduced

are not particular to any one OOP language, however, the language used here is Objective-C

([Cox86], specifically [NeXT89]). A different implementation language would likely result

in a slightly different class hierarchy and/or programming approach.

3.1 The Required Object Classes

Before giving precise details of the structure of the object-oriented constraint graph, it is first

necessary to describe the object classes required for its implementation. The methodology

requires the definition of four new subclasses of the root class Object (see Figure 3.1). The

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 23

Object a

Figure 3.1: The hierarchy for the required classes.

Instance Variables: i d node
SEL l a b e l

Methods : - getNode
- getLabel
- setNode: anobject
- s e t l a b e l : aMethod

Figure 3.2: The instance variables and methods of class Link.

relative flatness of this design can be in part attributed to the suggestion in [Taenzer89]

that the construction approach to reuse is preferable to subclassing. Full implementation

details for each class are found in Appendix A, but a general discussion of each follows.

3.1.1 The Class Link

The structure of the graph is represented by the class Link (Figure 3.2). A Link is a couple

<node, label> and corresponds to a labeled, directed arc in a constraint graph. The object

node is the vertex the arc is incident to, and label is the label on the arc.

CHAPTER 3: AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 24

Instance Variables: List *domain
List *neighbours
STR name

Methods : + new: varName
- addToDomain: anabject
- addToNeighbours: aLink
- printDomain
- alertchanged
- instantiate: anobject

Figure 3.3: The instance variables and some methods of class Variable.

3.1.2 The Class Variable

Objects of class Variable, which represent variables in a CSP and thus nodes in a constraint

graph, have a name, a domain, and a collection of neighbours (Figure 3.3). In this respect,

Variable objects have the same attributes as their counterparts in a CSP.

The domain is a list of objects.' The type of these domain objects is problem specific

and thus defined by the user in a class separate from the four discussed here. More is said

about this aspect of the design in Section 3.2.3. A Variable object is considered instantiated

when its domain is of size one. If the domain ever becomes empty, a globally unsatisfiable

instantiation has occurred somewhere in the graph. The objects in domain are referenced

only and shared amongst other Variable objects: space for these objects is neither allocated

nor freed by objects of this class.

A Variable object's position in a constraint graph is defined by its neighbours. The

neighbours instance variable is a collection of objects of the class Link; there is one Link

object for each of the arcs incident from the variable in the constraint graph. The number of

elements in neighbours is thus equal to the out-degree of the vertex representing the variable.

When a Variable object experiences a domain reduction, it notifies its neighbours in the

'1n this implementation, all collections are of class List, but it could be an unordered type.

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 25

i = 0;
result = YES;
while (result && i < [neighbours count])

{
link = [neighbours objectAt: il; // get the ith neighbour
result = [[link getNode1 revise :self using: [link getlabell I ;

Figure 3.4: Alerting change in a Variable object's domain.

graph so that they may check for arc consistency given the new domain. This notification

is carried out by sending the message revise:using: to the object node for each instance of

Link in the neighbours collection (see Figure 3.4).

The call to revise:using: returns true if this change has propagated safely, i.e., has not

resulted in a variable's domain being reduced to size zero. The revise: argument is the

object that has changed and the using: argument is the selector for a method to be used as

the predicate with which to check consistency. The code fragment in Figure 3.4 is essentially

the method alertchanged.

3.1.3 The Class Constraint

The recipients of the revise:using: messages are objects of class Constraint (or one of its

descendant subclasses). The class Constraint embodies objects that are responsible for

filtering the domains of objects of class Variable (Figure 3.5).

An object of class Constraint constrains an (one) object of class Variable; namely, the

object defined as an instance variable in its class definition. In other words, it enforces and

propagates binary constraints. When the Constraint object receives a revise:using: message,

it checks the consistency (with regards to the constraint specified by the using: argument)

of variable with that of the Variable object it received the message from. Because the

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 26

Instance Variables : Variable *variable
Methods : - setvariable: avariable

- revise: avariable using: aMethod

Figure 3.5: The instance variables and methods of class Constraint.

constraint itself is a parameterized variable, Constraint objects can enforce any particular

binary constraint.

Subclasses of Constraint add an additional object to the instance variables (correspond-

ing to the additional Variable object to constrain) and change the implementation of the

revise:using: method to match the arity of the constraints it enforces. For example, Con-

straint3 defines objects that can enforce any ternary constraint. The exact number of

necessary subclasses is problem dependant; specifically, upon the maximum arity of the

occuring constraints. If binary constraints are all that appear in the CSP to be solved, then

no subclasses of Constraint are required. Unary constraints are not explicitly encapsuiaied

by a class. Instead, it is assumed that each Variable object's domain will be appropriately

initialized.

If a Constraint object succeeds in reducing the domain of its variable, it must prop-

agate these changes through the graph. It accomplishes this indirectly by sending the

message alertchanged to the Variable object it constrains. If this propagation is unsuccess-

ful alertchanged returns false and the Variable object's domain is reinstated to its original

unfiltered state.

3.1.4 The Class Csp

Class Csp is simply a list of objects of class Variable, and represents a specific CSP (Fig-

ure 3.6). Since Variable objects define their position in a graph with their instance variable

neighbours, a Csp object thus encapsulates an entire CSP's constraint graph. In this case,

CHAPTER 3: AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 27

Instance Variables: List *variables
Methods : - addToVariables: avariable

- f indsolutions
- f indASolut ion
- makeArcConsistent

Figure 3.6: The instance variables and methods of class Csp.

the distinction between CSP and constraint graph has been blurred completely: a CSP

is a constraint graph, and vice-versa. This class provides methods for making the graph

arc consistent (makeArcConsistent) and finding one (findASo2ution) or all solutions to the

represented problem (findSolutions) .

3.2 Converting a Constraint Graph to the Defined Object

Classes

A transformation can be performed on an arbitrary constraint graph that results in a new

graph realizable in the classes defined in the previous section. This new graph is called the

modrified constraint graph (MCG) .

3.2.1 The Modified Constraint Graph

As an example, this transformation is applied to the simple constraint graph given in Fig-

ure 3.7. For the sake of clarity, this first example involves binary constraints only. The

conversion comprises four steps.

1. Remove all loops representing unary constraints.

2. Make all implicit transpose arcs explicit by converting each undirected arc to two

directed, labeled arcs as in Figure 3.8.

CHAPTER 3: AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 28

Figure 3.7: The binary constraint graph to be transformed.

Figure 3.8: All undirected arcs become two directed arcs.

3. Instantiate each constraint as an unlabeled node and insert it between its adjacent

nodes while maintaining the directionality of the arc it splits (Figure 3.9). It is only

- necessary to maintain the label on the arcs incident to the new unlabeled node.

4. Combine those unlabeled nodes whose incident (labeled) nodes are the same. Fig-

ure 3.10 shows the completed graph for this example. This merging of unlabeled

nodes is also done for distinct constraints; that is, even when the arcs incident to an

unlabeled node have different labels. Figure 3.11 is an example of how three nodes

can be merged into one because they share a common incident node.

We now repeat the steps on a constraint graph comprised of three nodes and one ternary

constraint (Figure 3.12). In general, step 2 causes the conversion of a hyperarc representing

an n-ary constraint into n directed hyperarcs (Figure 3.13). This is perhaps a slightly

unnatural representation for a hyperarc, but is necessary to maintain the semantics of the

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 29

Figure 3.9: The constraints instantiated as nodes.

Figure 3.10: The completed modified constraint graph.

Figure 3.11: Merging three constraint nodes into one.

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 30

Figure 3.12: A constraint graph with a ternary constraint.

Figure 3.13: Hyperarcs become directed hyperarcs.

original constraint hypergraph.

When the constraints are instantiated as nodes, each hyperarc is split so that the new

node has out-degree n- 1 and in-degree 1, where n is the arity of the constraint the hyperarc

represents (Figure 3.14).

The merging of n-ary constraint nodes is somewhat complex: all unlabeled nodes whose

n - 1 incident-from arcs connect the same n - 1 labeled nodes should be merged into one.

Since none of the constraint nodes in Figure 3.14 have common arc destinations, no reduction

is possible. Figure 3.14 is thus the completed MCG for this example. Figure 3.15 illustrates

an instance where a merging of ternary constraint nodes is possible.

3.2.2 From Modified Constraint Graph to Objects

Once the constraint graph has been transformed into its corresponding MCG, it is a simple

matter to construct an equivalent object-oriented representation using the classes of the

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 31

Figure 3.14: The n-ary constraints instantiated as nodes.

Figure 3.15: Merging two ternary constraint nodes into one.

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 32

previous section.

Each node in the MCG is an instance of an object. The labeled nodes are instances of

class Variable %whereas the unlabeled nodes (as hinted at previously) are instances of the

class Constraint (or rather, one of its subclasses depending on the arity of the constraint it

is enforcing, denoted by its out-degree).

Each labeled arc is an instance of class Link. The incident-to Constraint object is the

node, and the label on the arc is the label. Each label is a selector for a method that the

objects comprising the Variable domains respond to. These methods define the constraints.

Unlabeled arcs denote instance variable initializations for Constraint objects.

The instances of class Variable collected together form an instance of class Csp. A

particular CSP is solved by creating and initializing the objects that comprise the cor-

responding MCG and sending the message findsolutions (perhaps after first sending the

message malceArcConsistent) to the Csp object.

3.2.3 Representing Constraints

Constraints are enforced by Boolean methods that return true if the constraint is ~atisfied.~

In CSP-IC a constraint is comprised of a declarative component (the predicate implemented

as a Boolean method) and a procedural component (the Constraint object that knows how

to use the predicate to filter domains). There is no direct mapping from the set of constraints

C in a CSP to objects in this system. When we say constraint we are generally referring to

the Boolean method. A single Boolean method often can be used to enforce every constraint

in a particular CSP. For example, n-queens and graph colouring are two CSPs where each

constraint is the same predicate applied to different subsets of the variables.

Since constraints are relations on the objects collected in the Variable objects' domains,

they are defined within the class to which these objects belong. By allowing the user to

2By choosing a procedural representation for the constraints we have ruled out the incorporation of any
of the path consistency algorithms. This is not a serious malady since ". . .past experiments show them to
be not cost-effective in general" [Nadelbg, p. 1891.

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 33

Constraint objects order parameters for the constraint predicates as follows:

(sender, variable, variable2, variable3, ...). For the above MCG, consistency would be checked by calling

P(a,b,c,d) for objects a, b, c, and d belonging to the domains of variables A, B, C, and D respectively.

Figure 3.16: The relationship between arcs and predicate parameters.

define the constraints within the implementation language, we have provided computational

completeness: constraints of arbitrary complexity can be defined amongst objects of arbi-

trary complexity. In particular constraints of a type Leier cails higher-order can be enforced

[Leler88]. These are constraints that depend on other constraints and require a conditional

operator for their implementation.

In general, n different methods need to be defined to enforce an n-ary constraint, each

corresponding to the filtering of n - 1 variables given a change to a single variable in the

relation. This is due to the shuffling of parameters in the predicates, and prompted the

transpose arcs in the MCG. In Figure 3.16, the relationship between arcs and predicate

parameters is clarified. Instances of subclasses of Constraint must be initialized carefully in

order to ensure the proper placement of predicate parameters.

Of course, some relations are fortuitously symmetric and require only the implementation

of one method. Some contain a symmetric component and require the definition of some

number in between 1 and n. Figure 3.17 lists the two methods that would be required to

enforce the ternary constraint A = B + C on objects of an ordered class that return their

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 34

// When A has changed.
- (BOOL) p i : b and: c
<

return (value == [b getvalue] + [c getvalue]) ;
>
// When B or C has changed.
- (BOOL) p2: a and: bOrc
<

return (value == [a getvalue] - CbOrc getvalue]) ;
1

Figure 3.17: The methods required to enforce the constraint A=B+C.

value when sent the message get Value. Method p2:and: can be used to check consistency

when either object B or C has experienced a domain reduction since B = A - C and

C = A - B, i.e;, the first and third parameters can be interchanged.

3.2.4 Arc Consistency within the Graph

As a result of the messaging that occurs within the MCG whenever a Variable object

experiences a change to its domain, a full arc consistency algorithm transpires. Figure 3.18

details the arc consistency algorithm that results when a variable in the graph is either

instantiated or has its domain reduced. To facilitate comparison with the arc consistency

algorithms dicussed in Chapter 2, it is assumed the constraint graph is comprised of binary

constraints only. Here G refers to the original constraint graph, not its corresponding MCG.

Alternatively, arc consistency can be enforced without variable instantiation by simply

sending the message makeArcConsistent to an instance of Csp. The resulting algorithm

is a variant of Mackworth's AC3. Figure 3.19 gives a comparative algorithm of the arc

consistency that occurs as a result of this message. The algorithms of Figure 3.18 and

Figure 3.19 are identical but for the initializations of Q.

There are three notable discrepancies in makeArcConsistent compared to AC3. Firstly,

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 35

Q +- W,x) I (j74 E arcsW,j # 4
while Q # 0

begin

POP (Q7 (km))
if REVISE(k, m)
then push (Q, {(i, k) I (i, k) E arcs((=), i # k))

end

Figure 3.18: The arc consistency procedure that results from instantiating node x.

Q t 0
for i = n..l do

push(&, {(j, i) I (j, i) E arcs(G), i # j})
while Q # 0

begin

POP (Q7 (k, m))
if REVISE(k, m)
then push (Q, {(i, k) I (i, k) E arcs(G), i # k})

end

Figure 3.19: The malceArcConsistent algorithm.

CHAPTER 3.' AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 36

node consistency is not explicitly enforced. The assumption is made that the variables'

domains have all been initialized appropriately. Second, Q is a stack: arcs to reconsider

are added to the front of Q. Finally, REVISE(i,j) returning true causes the unnecessary

addition of arc (j, i) to Q. This is an unwanted and unavoidable consequence of the com-

munication protocol within the graph.

As a result, maIceArcConsistent is susceptible to redundant arc considerations. A formal

comparison of the relative efficiency of maIceArcConsistent with respect to AC3 can be done

by applying the analysis in [Mackworth85]. Let e be the number of edges in the nondirected

constraint graph, and let d; be the edge degree of vertex i. Two restrictions apply: consider

only binary constraints and assume that I D; I = a, 1 5 i 5 n. As mentioned in section

2.3.2, with these restrictions AC3 is 0(a3e).

It is now shown that makeArcConsistent is also a 0(a3e) algorithm. Initially, the length

of Q is 2e; each arc and its transpose must be made consistent. The for loop carries

out this initialization of Q. During iterations of the while loop, the stack Q expands and

contracts until it is finally empty. In the worst case, each time REVISE(k,m) is called,

only one element is removed from Ic7s domain. Since this removal from the domain results

in REVISE returning true, all dk arcs incident to k are pushed onto Q. Therefore, dk arcs

are added to Q at most a times for each node in the graph. The total number of entries to

Q is:
n n

k= 1 k= 1

Each iteration removes one arc from Q leaving the total number of iterations at 2e+2ea i.e.,

the initial size of Q plus the number of additions. Each iteration of the while loop makes

one call to REVISE, which requires at most a2 evaluations of a binary predicate. The

total running time for the algorithm is thus at most a2(2e + 2ea) and maIceArcConsistent is

By comparison, AC3's running time is at most a2(2e + a(2e - n)). In the worst-case,

maIceArcConsistent requires a3n more time than AC3.

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 37

Constraint graph for A = B + C. Constraint graph induced by {B,C}.

Figure 3.20: Inducing a subhypergraph of a constraint graph.

3.2.5 Tree Searching the Graph

The method findSolutions (and finddsolution) performs a backtrack search augmented with

full arc consistency. At level k in the search tree, variable xr, is instantiated and the con-

straints propagated. A similar search, called TSAC3, is described in [Nade189]. However,

findSolutions is a slightly different implementation: it does not invoke a full arc consistency

procedure, like AC3, that checks every arc ir, the graph at least once. Instead, nodes are o d y

visited as necessary (see Figure 3.18 for the consistency checks performed when a variable is

instantiated). Moreover, because Nadel restricts his discussion to binary constraint graphs,

at level k in the search tree TSAC3 performs full arc consistency only on the subgraph of

G induced by {xkal, . . . , x,).

However, if G is a hypergraph, pruning by means of inducing a subhypergraph over

the uninstantiated variables becomes a complex operation. Consider the constraint graph

of Figure 3.20 representing the ternary constraint A = B + C, and the subhypergraph

induced by {B, C). As illustrated, inducing a subhypergraph actually requires changing

the constraint from a ternary relation on {A, B, C) to a binary relation on {B, C). If after

instantiating variable A the ternary relation is simply discarded, further search will yield

additional and incorrect solution paths.

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 38

There are two remedies to this problem when searching a hypergraph. One is to ac-

tually reconstruct the constraints over the induced subhypergraph. This is possible if the

constraints are represented in a declarative form (e.g., a table). For example, let R be a

relation denoting tuples acceptable to an n-ary constraint on {xl,. . . , x,). If xl +- a, then

the induced relation R' on {xs,. . . , x,) is, in relational algebra:

where T and 0 are the projection and selection operators respectively.

A less complicated method is to simply forget about restricting the node set that arc

consistency is applied to, i.e., do not induce a subhypergraph. Since the instantiated vari-

ables still have a role to play in constraining the future variables, they should stay within

the graph. This latter method is employed in findSolutions since the cost of restructuring a

hypergraph to avoid the unnecessary consistency checks with the instantiated variables was

seen as too high for any expected return in efficiency.

Therefore in findSolutions, at level Ic in the search tree, variable xk is instantiated and

arc consistency is propagated over all neighbouring nodes of the graph, not just nodes xk-1

to x,. As such, in finding all 92 solutions to the (complete binary) 8-queens problem,

findSo2utions performs 54,613 constraint checks compared to 51,188 for Nadel's T S A C ~ . ~

However, if TSAC3 is to work on constraint hypergraphs, it must adopt one of the two

described remedies: in its current form, it will report extra solutions.

Interestingly, only 602 consistency checks are required to determine that the &queens

graph is initially arc consistent. Thus, not preprocessing the graph with a call to makedrc-

Consistent did not result in a significant savings for findSolutions. Though espoused by

others as a potentially important use for AC3 [Mackworth85], preprocessing the constraint

graph before tree search begins in no way helps to reduce the search space for the &queens

'Some of these extra consistency checks in findsolutions may be attributed to its implementation of Q
as a stack rather than, as in TSAC3, as a queue, as well as redundant arc considerations inherent in the
algorithm.

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 39

problem. This is, of course, not true in general for CSPs as reaffirmed in Chapter 4.

In [Freuder82] the vertical order of a search tree (the order in which variables are instan-

tiated) is shown to be of potential importance in minimizing the number of backtrack points.

By making the instance variable variables in the class Csp an ordered collection, the vertical

order for the tree search is defined by the sequence of addToVariables messages. Similarly,

the horizontal order (the order in which values are assigned to a variable) is determined by

the sequence of addToDomain messages used to initialize a Variable object's domain.

3.2.6 Complexity of the Modified Constraint Graph

The modified constraint graph is more complex than the standard constraint graph from

which it is derived, but as demonstrated, its advantages include a direct correspondence to

objects in CSP-IC. The complexity of each step in the transformation can be analyzed by

noting how many additional edges and nodes are added to the original constraint graph.

The removal of loops from the constraint graph (step 1) cannot be seen as a reduction

in complexity as they are generally omitted anyway. The variable's domain can always be

initialized in such a way as to reflect any unary constraint.

- The introduction of all implicit transpose arcs (step 2) can potentially double the number

of arcs in the constraint graph to 2e arcs total (that is if the original constraint graph is

nondirected). This is a necessary step if any constraint graph is to be subjected to an arc

consistency procedure since they must be treated differently by the algorithm.

In step 3, a node is created for each arc in the graph that resulted from step 2. Thus,

up to 2e additional nodes are added to the graph. However, in step 4, many of these extra

nodes are collapsed. The exact number of constraint nodes that remain after step 4 is

dependant on the constraints of the original graph. Consider first the case of a graph with

binary constraints only. In general, if the graph is connected (i.e., each node participates

in at least one binary constraint), the completed MCG has n binary constraint nodes: one

incident to each variable. Figure 3.21 is the MCG for the 4-queens problem and illustrates

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 40

Figure 3.21: The MCG for the $-queens problem.

this point. A complete binary constraint graph, like n-queens, has n nodes and n(n - 1)/2

arcs. The corresponding MCG has n variable nodes, n constraint nodes, and n(n - 1) arcs,

a d thus the OOP implementation would require n Variable objects, n Constraint objects,

n(n- 1)/2 Link objects (remembering that the unlabeled arcs are only references to objects),

and one instance of class C S ~ . ~

Analysing the effect of n-ary constraints is more difficult and is too dependent on the

original constraint graph to attempt a formal analysis. Each hyperarc connecting n nodes in

the original constraint graph results in n additional (constraint) nodes and n + n(n - 1) arcs

in the MCG. Node collapses necessarily occur if the CSP is complete with respect to any

n-ary hyperarc. Regardless, hyperarcs in the original constraint graph have the potential

to seriously increase the complexity of the MCG.

4Domain objects are not an intrinsic part of CSP-IC. For n-queens there would be nZ domain objects.

CHAPTER 3. AN OBJECT-ORIENTED CONSTRAINT SATISFACTION SYSTEM 41

3.3 A Sample Problem

Appendix B contains the source code for, and small discussion of, the solution to the n-

queens problem, n 5 10, using CSP-IC. The MCG for the 4-queens problem, given in

Figure 3.21, is helpful for the comprehension of this implementation, particularly the main.m

file where the MCG is constructed.

3.4 The Accomplishment

Leler says that constraint programming is declarative, such that the control is at the dis-

cretion of the system [Leler88]. The proposed object-oriented system of this chapter is

consistent with this desire for declarativeness. Once the underlying structure (the object

classes detailed in section 3.2) is in place, there is no algorithm that the programmer need

be concerned with. To solve a CSP, the programmer need only worry about defining the

modified constraint graph and the methods (predicates) that enforce the constraints.

If liberating the programmer from tree search and constraint propagation is the most im-

portant reason for the development of constraint programming languages, then this method-

ology has achieved this result but without introducing yet another programming language.

By exploiting both the abstraction facilities of OOP (i.e., classes) and its message pass-

ing mechanism it is possible to construct a framework for the general solution of the class

of CSPs that incorporates a full arc consistency labeling procedure. This framework is

reusable, independent of any specific problem instance, and applicable to any CSP that can +

be represented by a constraint (hyper-) graph.

Chapter 4

Music Composition as a CSP

A true test for CSP-IC and its accompanying methodology is found in the domain of mu-

sic composition. Music composition can be readily viewed as a CSP: composers select the

attributes of the notes (pitch, duration, etc.), from finite domains, that satisfy the con-

straints they feel produce the most aesthetically pleasing results. Composition is also quite

appropriately suited to further our investigation hecause rn~sic call involve cornp!ex con-

straint relationships that render a CSP anything but a toy. In this chapter we apply our

methodology to the problem of producing music compositions in the style of 17th century

counterpoint.

Marvin Minsky has said that ". . .the problem of making a good piece of music is a

problem of finding a structure that satisfies a lot of different constraints" [MinskySO], and

Curtis Roads concurs that as a knowledge representation formalism for music, constraints

show promise [Roads85]. This chapter provides insight into the relevance of abandoning

all other forms of knowledge representation (rules, logic, frames, etc.) in favour of viewing

music composition strictly as a CSP.

There are two expected benefits to this approach. If a composition exercise has a natural

formulation as a CSP, and, in particular, as a constraint graph, then an important discovery

about its tractability can be made: the constraint graph representation of the problem

CHAPTER 4. MUSIC COMPOSITION AS A CSP 43

can suggest any expected limitations if backtracking is the control method used to solve

the CSP[Freuder82]. The second benefit is the ability to isolate each rule of syntax and

analyze its effect on constraining the number of allowable compositions considered a part of

a genre. This would allow one to subjectively rank the aesthetic importance of each rule in

determining the characteristics of a composition style.

The remainder of this chapter assumes a basic understanding of the fundamentals of

music. Counterpoint is a style of music composition that pre-dates our modern notion of

harmony. Whereas harmony is concerned mainly with vertical relationships among notes,

chords in succession, and supporting a dominant melodic theme, counterpoint is polyphonic

composition: the combination of several independent and equally interesting melodies into a

coherant whole. The rules of counterpoint, which constrain the allowable note combinations

occuring in a composition, were codified in 1725 by J. J. Fux. A translation of this work

appears in [Mann65]. The historical development of polyphonic music in general is detailed

in [Swindale62].

The normal manner of composition in counterpoint is to craft additional melodic lines

(called counterpoints) to be sung, or played, along with a previously composed cantus

firmus.l The new voices are in counterpoint to the original melody.

4.1 Related Work in Computer Composition

This brief overview of some earlier research into the problem of automated composition

and harmonization is not meant to be an exhaustic survey. Instead, we concentrate on

those systems that seek to work from a declarative musical knowledge base as oppossed to

algorithmic composition systems. In essence, we are concerned only with attempts to apply

ideas developed in artificial intelligence research to the domain of music composition. A

good survey of the field in general is in [Roads85].

'A melody, usually taken from a book of chorales. In this chapter, the terms melody and cantus firmus
are used interchangeably.

CHAPTER 4. MUSIC COMPOSITION AS A CSP 44

Hiller and Isaacson were the first to experiment with using a digital computer for music

composition [Hiller59]. Their system permitted the writing of simple melodies, and up to

four-part writing in first species counterpoint incorporating a fairly complete set of rules.

They employed a random generate and test method that moved sequentially through each

bar of the composition. After generating 50 unsuccessful candidates for the next required

note, their program gave up and started over: no backtracking was employed.

Hiller and Isaacson fully understood the importance of constraints as knowledge repre-

sentation:

... the process of musical composition requires the selection of musical materials
out of a random environment. This is accomplished by a process of elimination.
The extent of order imposed depends upon the nature of the restrictions imposed
during the process of selection [Hiller59, p. 221.

In other words, order depends on constraint.

Recent attempts to develop expert systems for music composition often employ a rule-

based knowledge representation scheme (IThomas85, Cope87, Ebcioglu86], among others);

this is understandable given the popularity and effectiveness of rule-based expert systems

in many domains outside of music. However, rule-based systems are frequently inefficient

due to their reliance on chronological backtracking as the control method. Those aware

of this dilemma resort to tactics such as intelligent backtracking (like Ebcioglu, who was

effectively trying to improve the search efficiency of logic languages at the same time as Van

Hentenryck succeeded in doing just that), but as of yet, no one has incorporated consistency

techniques in an effort to improve the search efficiency of automated composition. Since

many of these composition systems are attempting to satisfy multiple constraints across

several variables (i.e., solve a CSP) while utilizing backtracking as the control method, they

are susceptible to an exponential explosion.

However, Levitt has successfully utilized constraints in a system for Jazz improvisation

[Levitt84]. Levitt proposes to model some aspects of composition as a psuedo-electronic

circuit that, rather than filter domains, computes new note attributes from known ones (i.e.,

CHAPTER 4. MUSIC COMPOSITION AS A CSP 45

value propagation). But like all systems built upon this paradigm it is restricted to equality

relations and does not reduce its search space to the fullest capability [VanHentenryck89].

4.2 Counterpoint as a CSP

The remainder of this chapter describes how the problem of generating contrapuntal music

can be formulated as a constraint satisfaction problem. Specifically, compositions of first

species counterpoint that adhere to a fairly complete set of rules taken from [Mann65] and

[Swindale62] are modeled. The first species is counterpoint of the simplest form: two or more

voices comprised of notes of equal length. This restriction eliminates the myriad of represen-

tation problems concerned with rhythm and time. The only attribute of a note that requires

representation is its pitch, which can be done with an integer from 1 to 127 corresponding

to an ordering of the semi-tones with middle-C equal to 60. This is in accordance with the

Musical Instrument Digital Interface (MIDI) standard [IMA83]. A numeric representation

s ~ c h as this facilitates easy computatim of intervals; it merely requires subtractioa2

The task to be performed is that of adding a counterpoint to a given melody, which can

be modeled as a CSP; the variables are the notes of the counterpoint, and the constraints

are the rules regarding allowable intervals, motion, etc., which effectively filter the notes

that may appear together in a composition. A first species counterpoint composition in

two voices n bars in length is thus comprised of n counterpoint variables {cl,.. . , cn) and

n melody constants {ml,. . . , m,). It is convenient to think of the notes of the melody as

instantiated variables rather than constants. Using this notation, the ith bar of a compo-

sition is comprised of note m; in the melody and c; in the counterpoint. The task is thus

to assign values to {cl, . . . , c,) that satisfy the rules of first species counterpoint given an

instantiation for each of {ml, . . . , m,).

'Any representation scheme that facilitates the definition of constraint relationships on pitch values would
be acceptable.

CHAPTEa 4. MUSIC COMPOSITION AS A CSP

4.2.1 The Rules as Constraints

In this section we show how each rule of first species counterpoint can be converted to a local

constraint representation. As is shown, the enforcement of a single rule of counterpoint often

requires that many instances of the same predicate be applied to many different subsets of

the variables. In other words, a rule is comprised of many constraints. We therefore define

a rule to be a non-empty set of constraints. Each rule is referred to by the name given to

the predicate used by the constraint(s) that enforces the rule.

The rules are categorized here according to the arity of their corresponding predicate.

The variable(s) that the predicates are appropriately applied to is illustrated by a constraint

graph representing counterpoint compositions of length four, the smallest such compositions

that utilize all the rules of first species counterpoint. As the rules are introduced, more and

more constraints are added to the constraint graph until finally it completely embodies the

task of composing first species counterpoint.

Unary Constraints

The unary constraints restrict the pitch values for the notes of the compositions to those that

are realizable by a single instrument. Since counterpoint is generally written for voice, we

impose an arbitrary two-octave range, though others prefer that this range be even smaller

(see [Hiller59]):

Each note must be taken from the Aeolian mode (the white keys of a piano) and

must not range over more than two octaves.

Applying this unary predicate to each note of the composition satisfies this rule (Figure 4 . 1) . ~

Thus we see how a single rule of counterpoint is implemented by the application of multiple

local constraints.

31n this and other constraint graphs we are treating the notes of the melody as variables.

CHAPTER 4. MUSIC COMPOSITION AS A CSP

mode

mode

mode

mode

mode mode

mode mode

Figure 4.1: Constraints that enforce the mode rule.

Restricting the examples to the Aeolian mode is a simple way to avoid problems of

modulation since compositions in the Aeolian mode do not normally stray from the scale

[Swindale62]. The exception to this rule occurs during formation of the cadence:

The cadence in the Aeolian mode i s formed with G#.

This unary predicate is applied to the second to last note of the counterpoint and replaces

the looser mode constraint (Figure 4.2).

Binary Constraints

Most of the harmonic rules governing allowable intervals are binary relationships between

notes m; and ci. Though the counterpoint is restricted to stay within a twelfth of the

melody, no restriction regarding the crossing of voices is in place. A single constraint graph

containing all of the binary constraints to be introduced is given at the end of this section.

The last bar mus t be a perfect consonance. These are: unison, fifth, octave, and

twelfth.

CHAPTER 4.' MUSIC COMPOSITION AS A CSP

mode

mode

mode

mode

mode mode

cadence mode

Figure 4.2: Constraints that enforce the mode and cadence rules.

This predicate is thus applied to c, and m,, the notes that comprise the last bar of the

composition.

The following rule assures that the counterpoint is in the same mode as the melody.

If the counterpoint is in the lower part, the first bar must be either a unison or

an octave.

first(& j) if i > j
t h e n i - j = 1 2

else perfect(i, j)

This higher-order predicate is applied to the notes of the first bar. The allowable harmonic

relationships in all other bars is given by the following rule:

I n all other bars, permitted intervals are the consonances up to the twelfth (ex-

cluding unison). These are: minor third, major third, fifth, minor sixth, major

sixth, octave, minor tenth, major tenth, and twelfth.

CHAPTER 4.' MUSIC COMPOSITION AS A CSP

Instead of a unary constraint, one could define the cadence rule as a higher-order binary

relation:

If the counterpoint is in the upper part, there must be a major sixth in the second

to last bar. If the counterpoint is the lower part, it must be a minor third.

cadence(i, j) = if i > j
then i - j = 3

else j - i = 9

However, formulating the cadence in this manner creates a potential conflict with the mode

rule, which does not allow the usually necessary accidental to occur in the counterpoint. If

we assume that ". . . the second degree of a mode occurs always as the next to the last tone

in the cantus firmus.. ." [Mann65, pp. 28-29] then cadence applied to c,-1 is sufficient to

guarantee the appropriate cadence. This would also allow the application of a stricter unary

constraint on variable m,-1.

The following rule eliminates melodic intervals that, deemed difficult to sing, are strictly

forbidden:

Melodic skips greater than a minor sixth are not allowed, nor are skips of a

tritone (augmented fourth).

The constraint graph with the addition of these binary constraints is given in Figure 4.3.

Ternary Constraints

Local melodic contour rules require constraining three consecutive notes of a line. For

example, skip-step motion:

CHAPTER 4. MUSIC COMPOSITION AS A CSP

Figure 4.3: Binary constraints enforcing the perfect, first, harmonic, and melodic rules.

first

Any melodic skip greater than or equal t o a minor third mus t be followed by

stepwise motion; that is, motion less than a minor third.

Relationships on three successive notes are also an opportunity to promote variety by for-

bidding more than one successive repeat of a given note (a rule from [Hiller59]):

melodic

harmonic

The same note three t imes in a row i s not permitted.

p e ~ e c t

Though not an explicit rule of first species counterpoint, the noThree rule is included in our

treatment as it is a good example of how local constraints can be used to effect the global

contour of a melodic line. For example, a gradual upward slope in the counterpoint could

be enforced by a set of binary constraints like the following:

Since the srEipStep and noThree rules involve constraints on the same sets of variables,

it is convenient to combine them into a single predicate:

The inclusion of the ternary constraints results in the constraint graph of Figure 4.4.

CHAPTER 4. MUSIC COMPOSITION AS A CSP

ternary ternary

ternary ternary

Figure 4.4: Ternary constraints enforcing the skipstep and noThree rules.

Quaternary Cor,strair;ts

What could be considered the fundamental rule of counterpoint is enforced by a set of

quaternary constraints:

ParaUe2 motion to a perfect consonance is not permitted.

I i - k I
parallel(i, j, k, 1) lperfect(k, 1) V - < 0

I j -11

The last rule to be considered is also a quaternary constraint:

Progressions to an octave by a skip are not to be tolerated.

octave(i,j,k,l) - I I - k I # 1 2V(I i -k 15 3A 11 - j 15 3)

Again since these two predicates are to be applied to the same sets of variables it is

convenient to define

CHAPTER 4. MUSIC COMPOSITION AS A

Figure 4.5: Quaternary constraints enforcing the parallel and octave rules.

Figure 4.5 is this quaternary constraint applied to the appropriate variables in order to

enforce the parallel and octave rules.

4.2.2 A Constraint Graph for Counterpoint

The completed constraint graph for first species counterpoint of note against note is pre-

sented in Figure 4.6. It is, of course, in actuality a hypergraph. For the sake of clarity, the

unary constraints have been removed. This graph is for compositions of length four, the

shortest compositions to include all the rules of first species counterpoint, and can easily be

extended for compositions of greater length.

Implementing counterpoint as a CSP using CSP-IC requires the construction of a MCG

that corresponds to the constraint graph of Figure 4.6. The notes of the melody appear as

variables in the constraint graph, but since they are all instantiated, some slight simplifi-

cations can be made. Certain reciprocal constraints (e.g., harmonic from c2 to m2) can be

excluded and all constraints that would apply only to melody variables (e.g., melodic on

mi,mi+l) are assumed to hold and thus excluded altogether. Figure 4.7 is the constraint

graph that reflects these simplifications.

The corresponding MCG for Figure 4.7 is given as a collection of three different figures

(Figure 4.8, Figure 4.9, Figure 4.10) that separately detail the binary, ternary, and quater-

nary constraint components respectively. For expediency, we have failed to define the various

transposed predicates necessary in the actual implementation (e.g., ternary requires three

CHAPTER 4.' MUSIC COMPOSITION AS A CSP

ternary ternary

ternary ternary

Figure 4.6: A constraint graph for first species counterpoint.

diEerent versions depending on the variables it is applied to). Tne inclusion of ternary and

quaternary constraints results in a rather complex MCG. However, the nearest-neighbour

property of many of the constraints permits an easy extension to the size of the graph (i.e.,

the length of the composition). The main.m file that constructs the MCG for first species

counterpoint is in Appendix C. Results of this implementation are discussed later in this

chapter.

Intuition would suggest that first species counterpoint is not a hard problem; a standard

backtracking procedure may find an acceptable solution, and if so, often without any backup.

However, there is no guarantee that this will always be the case. In [Freuder82] it is shown

that a sufficient condition for backtrack-free search is the application of a strong k-consistent

algorithm to the constraint graph, given k is greater than the width of the graph. A

backtracking search that employs a vertical order with width less than k is then guaranteed

not to backtrack. The application of Freuder's theory to constraint hypergraphs, such as

CHAPTER 4. MUSIC COMPOSITION AS A CSP

ternary ternary

Figure 4.7: A simplified constraint graph for first species counterpoint.

first harmonic perfect

w w w

Figure 4.8: The binary constraints in the MCG for first species counterpoint.

CHAPTER 4. MUSIC COMPOSITION AS A CSP

Figure 4.9: The ternary constraints in the MCG for first species counterpoint.

... etc. ... etc.

Figure 4.10: The quaternary constraints in the MCG for first species counterpoint.

CHAPTER 4. MUSIC COMPOSITION AS A CSP

To find the width k of a simple hypergraph:
Remove from the hypergraph all nodes not connected to any others. Set k to 0.
Do while there are nodes in the hypergraph.

Set k equal to k + 1.
Do while there are nodes with degree less than or equal to k.

Remove all nodes from the hypergraph with degree less than or equal to k.
Generate the subhypergraph on the remaining nodes.

Figure 4.11: Algorithm for finding the width of a hypergraph.

needed to represent the counterpoint problem, requires a generalization of his algorithm for

the determination of width (Figure 4.11).

Using this algorithm it is determined that the hypergraph for first species counterpoint

has width k = 3 (see Figure 4.12 for the details of this calculation). Thus a backtrack-

free search is guaranteed if the graph is first processed by a strong 4-consistent algorithm.4

Therefore, pre-processing with a strong 2-consistent algorithm (e.g., AC3) does not guaran-

teed an efficient backtracking search. A general backtracking search without any consistency

techniques would certainly be prone to an exponential explosion, particularly if all solutions

are to be found.

However, Freuder7s result predicts nothing of the expected inefficiency of a tree search

coupled with arc consistency (e.g., findASoZution and findSoZutions). In practise, these algo-

rithms perform admirably well, requiring relatively few backups. Table 4.1 gives some em-

pirical measurements of the two methods at work on generating counterpoints for a four-bar

melody (Figure 4.13), seven-bar melody (Figure 4.14) and twelve-bar melody (Figure 4.15)

when the graph is first processed with makeArcConsistent. In contrast, table 4.2 gives the

same measurements when the graph is not first pre-processed. As seen from these results,

pre-processing the graph with a full arc consistency algorithm is a good idea. Particularly

4Therefore, a polynomial time algorithm exists for composing a single consistent counterpoint composition
of any length: make the graph 4-consistent, an 0(n4) operation, and follow up with a tree search that, since
it is guaranteed to be backtrack-free, will run in time linear in n.

CHAPTER 4.' MUSIC COMPOSITION AS A CSP

No nodes have degree < 2 . k = 2: ml , m3, and m4 have degree 2 .

Now c4 has degree 2 .

No other nodes have degree 2 or less. k = 3: cl and c3 have degree 3 .

Now c2 and m2 have degree 1. k = width = 3.

Figure 4.12: Finding the width of the counterpoint constraint graph.

CHAPTER 4. MUSIC COMPOSITION AS A CSP

Figure 4.13: A four-bar melody for which counterpoint is to be generated.

Figure 4.14: A seven-bar melody for which counterpoint is to be generated.

striking in comparison is the number of backtracks needed to find a single solution for the

12-bar melody: no backup is necessary if the graph is first made arc consistent compared

to the partial exploration of 1,496 dead-ends without the pre-processing.

Sample counterpoints generated by our implementation are found in Figure 4.16. We

have re-produced, as reported by the findSolutions method, the first and last permissable

counterpoints for each of the three melodies. These correspond respectively to the lowest

and highest allowable counterpoints within the two-octave range.

4.2.3 An Analysis of the Individual Rules

The constraints of counterpoint together define a space we might call the language of coun-

terpoint and allow us to test if a sentence (composition) is a member of this language. In

this sense, the constraints define the syntax of counterpoint and guide the generation of the

Figure 4.15: A twelve-bar melody for which counterpoint is to be generated.

CHAPTER 4. MUSIC COMPOSITION AS A CSP

findSolutions
4 Bar
7 Bar

12 Bar
findASolution

4 Bar
7 Bar

12 Bar

Number of Number of Nodes Constraint
Solutions Backtracks Expanded Checks

Table 4.1: Empirical measures of findSolutions and findASolution when the graph is pre-
processed with makeArcConsistent.

findSolutions
4 Bar
7 Bar

12 Bar
findASobtion

4 Bar
7 Bar

1 12 Bar

Number of Number of Nodes Constraint
Solutions Backtracks 'Expanded Checks

Table 4.2: Empirical measures of findSolutions and findASo2ution7 without pre-processing.

CHAPTER 4. MUSIC COMPOSITION AS A CSP

cpr. I

cpt.

Figure 4.16: Sample counterpoints generated for each of the melodies.

CHAPTER 4.' MUSIC COMPOSITION AS A CSP 6 1

correct sentences. Just as in a natural language, some of these correct sentences may be

deemed more beautiful or pleasing than the others.

In a natural language, the syntax does not provide clues about the pleasantness or beauty

of correct sentences: the beauty depends almost exclusively on the semantics. However,

music (a closed, non-referential system) is devoid of a formal notion of semantic^.^ Thus

even though music is more than just combinatorics of notes, a formal aesthetic analysis

is necessarily restricted to a discourse on syntax. We thus undertake an analysis of the

individual rules of counterpoint by means of measuring their respective effect of constraining

the space of allowable compositions.

One metric of a constraint is its satisfiability ratio or tightness in isolation of any

other constraint [Nade188]. Nadel defines the satisfiability ratio of an n-ary constraint

c(xl, "2,. . . , x,) as the fraction of tuples of the cross product Dl 3 D 2 x . - x D, that are

accepted by c. Search heuristics based on this metric are developed in [Nude183]. However,

satisfiability ratios are unsuitable for our analysis because we seek to examine the tightness

of a set of constraints - not necessarily an individual constraint - that enforce a single rule.6

By formulating counterpoint as a CSP, it is not difficult, as we have shown, to effi-

ciently generate every allowable counterpoint for a given melody. Enumerating all accept-

able counterpoints is not only an interesting exercise, it provides insight into the power of

the rules to individually and collectively reduce the solution space and thereby suggests

the aesthetic merit of existing and potential constraints. Though a ludicrous notion for a

performance, improvisation, or accompaniment system, the exhaustive search is useful for

analysis [Ebcioglu86].

CSP-IC is ideal for such a study. Not only can it efficiently generate all solutions to a

CSP, but it also permits the selective relaxation of the constraints that enforce the individual

' ~ h o u ~ h perhaps not semiotics nor emotion. See [Meyer56],
'Moreover, the satisfiability ratio is not necessarily an accurate reflection of a constraint's usefulness and

importance precisely because it ignores the other problem constraints it must interact with in a given CSP.
An empirical measure based on the constraint's role as one of many in a particular CSP would be more
useful.

CHAPTER 4: MUSIC COMPOSITION AS A CSP 62

rules, thus enabling the empirical measurment of each rule's relative effectiveness. We say

a constraint is relaxed when it is always true. Relaxing a rule requires either eliminating

the procedural component, or changing the declarative component, of the constraints that

enforce the rule (i.e., remove Constraint objects from the MCG or make the predicates

always return true) .

Using a fixed melody the nuqber of additionally accepted counterpoints given the re-

laxation of the constraints comprising a single rule can be determined. We have invented

the importance ratio (IR) of rule r for a particular CSP, which we define to be:

where yr is the number of solutions to the CSP csp when all the constraints that make up

rule r are relaxed, and z is the total number of solutions to csp satisfying all p rules that

comprise the CSP.

The intuition behind the importance ratio is that the relaxation of the most important

rule in a given CSP results in the largest increase in the number of solutions. A rule that

is responsible for every reduction in the search space has an importance ratio of 1. A rule

that is superfluous and thus has no effect on reducing the search space has an importance

ratio of 0.

In Figure 4.3 the rules of first species counterpoint and some associated importance

ratios are listed. We have given the IR for the four- and seven-bar problem instances,

denoted by IR4 and IR7 respectively. The discrepencies in the IR measurements between

the two problems can be attributed to the additional instances of certain constraints in the

seven-bar example, particularly harmonic. Attaining the IR for the twelve-bar example is a

highly intractable exercise given the proliferation of acceptable counterpoints when certain

constraints are relaxed.

Interestingly, the noThree rule has no effect whatsoever on reducing the search space

CHAPTER 4. MUSIC COMPOSITION AS A CSP

Rule IR4 (Rank) I& (Rank)
mode .0734 (5) .I688 (2)
cadence
perfect
first
harmonic
melodic
skipstep
noThree
parallel
octave

Table 4.3: Some importance ratios for the counterpoint rules.

for the two sample problems. However, it is responsible for eliminating 340 potential coun-

terpoints for the twelve-bar example and thus would have a non-zero IR for that problem

instance.

Elimination of the unary rules (mode and cadence) does not, as one might expect, result

in a drastic increase in the number of allowable counterpoints. The additional compositions,

though free to modulate, are generally held in place by the higher-arity harmonic and

melodic rules. Similarly, the quaternary constraints are mostly obviated by the interactions

of the other rules.

The IRs, somewhat surprisingly, suggest that the vertical rules (cadence, perfect, first,

and harmonic) are more important than the horizontal rules (all others). In both sample

problems a vertical rule has the highest IR: first for IR4 and harmonic for IR7. Thus, de-

spite the predominance of melodic considerations when writing counterpoint, the harmonic

requirements are more efficient in defining the genre.7

Examining the set of acceptable counterpoints can suggest some useful new rules. By

discovering the properties of the aesthetically poor counterpoints permitted by the current

'Only because the aesthetically important harmonic relationships are more readily definable in absolute
terms, whereas the melodic component is necessarily a more abstract, less constrained, though no less
important element of a counterpoint composition.

CHAPTER 4. MUSIC COMPOSITION AS A CSP 64

rule set, guidelines for the creation of new rules become evident. For example, the counter-

points listed in Figure 4.16 are generally poor because of their repeated use of the highest,

or climax, note. This suggests that an appropriate rule to add would be one that prohibits

the repetition of the highest note within some neighbourhood.

The usefulness of new rules can be tested and measured by merely adding clauses to

existing constraints or defining new constraints altogether. For example, to test the effect of

allowing melodic skips of a minor sixth only in an upward direction, the constraint melodic

could be changed to a higher-order definition. Similarly, the implementation of a gravity

rule whereby skips must be followed by a step in the opposite direction could be facilitated

by a change to the skipstep constraint.

Chapter 5

Discussion

In this chapter the results of the thesis are discussed in relation to other competing ap-

proaches.

5.1 CSP-IC

In order to fairly evaluate the system we have built, it must first be properly classified. A

good categorization of the tools commonly used to solve CSPs is given in [VanHentenryckSS],

which we paraphrase here. There are three usual approaches:

recast the problem inside integer programming and solve using a standard algorithm

(an example of this technique is in [VanHentenryck89]),

use an A1 problem-solver, like REF-ARF [FikesTO], or

implement, in an imperative language, an ad-hoc search procedure.

To this list, we add the following:

use a constraint programming language, like CHIP.

Van Hentenryck is critical of the first three approaches. Integer programming is seen as

a computationally expensive procedure. A1 problem-solvers he criticizes for not involving

CHAPTER 5.' DISCUSSION 66

the user in the problem-solving process. Because such systems are of the black box type,

the user is prohibited from exploiting domain dependent knowledge that might make them

work better for a particular problem. Finally, the ad-hoc approach is unsuitable because

it requires considerable programming effort and results in programs that are difficult to

modify and extend.

In contrast, Van Hentenryck sees CHIP as a viable alternative. Because of its declarative

semantics, programs written in CHIP have reduced development times and are easy to

modify and extend. Also, CHIP'S ability to handle both numeric and symbolic constraints

through consistency techniques, and its use of sophisticated labeling procedures, are seen

as beneficial features not offered by any competing approach.

We now argue that CSP-IC does not suffer from the drawbacks of the first three ap-

proaches yet provides the aforementioned benefits of CHIP. Our system, a software-IC

[Cox861 for the solution of CSPs, does not fit into the above categorization. CSP-IC is

neither A1 problem-solver, ad-hoc solution, nor constraint programming language, but it

can be seen to embrace the best qualities of each.

5.1.1 CSP-IC is More Than an A1 Problem-Solver

If viewed as an open architecture, our system addresses each of Van Hentenryck7s criticisms

of the A1 problem-solvers. Allowing the user access to the implementation details of the

system provides opportunity to improve performance for a given problem. In particular,

the extent of constraint propagation (i.e., full, or degrees of partial, arc consistency) can be

controlled by changing the manner in which reuise:using: filters domains and propagates

the constraints. Additional methods can be created to offer a choice ranging from pure

backtracking (no consistency techniques) to full arc consistency.

The ability to specify how a constraint is to be used is advocated as an important

feature of CHIP. Given the definition of various degrees of arc consistency through additional

methods, this would also be possible in CSP-IC. The MCG could contain information as to

CHAPTER 5.' DISCUSSION

what procedure will enforce each particular constraint.

Alternatively, measures can be taken to give the user run-time control over the constraint

propagation. The Csp class is not, strictly speaking, a necessary component of the CSP-IC.

In certain applications it may be more meaningful simply to maintain consistency in a graph

rather than find solutions to the CSP it models. User-directed constraint propagation and

search hold interesting possibilities. Given an appropriate user-interface, the user could

have run-time control over both the vertical and horizontal order of the search tree.

Further optimizations are possible. If the CSP of interest is comprised only of binary

constraints, a new method could be defined in the Csp class to exploit this restriction e.g.,

findSolutions can be modified to only perform arc consistency over the appropriate subgraph

at each level in the search tree (like Nadel's TSAC3).

5.1.2 CSP-IC is More Than an Ad-Hoc Implementation

The power to exploit problem features is often accompanied by inertia: the failure of many

ad-hoc implementations is their inflexibility when it comes to solving other problem in-

stances. Because they are not declarative, Van Hentenryck claims, imperative ad-hoc so-

lutions are necessarily difficult to modify. This need not be the case. CSP-IC is not only

reusable for any CSP, it is extensible to any datatype for the variables. This is accomplished

through its design, which has isolated the aspects of CSP-solving (tree search and constraint

propagation) that require the considerable programming effort and are most likely to be an

impediment to change. The resulting framework is very close to the declarativeness of a

constraint programming language. Implementing an imperative, ad-hoc solution does not

in itself guarantee a non-extensible system: bad software engineering does.

5.1.3 CSP-IC is More Than a Constraint Programming Language

Though CSP-IC is not a constraint programming language per se, it exhibits many of the

benefits of one while providing additional flexibility. Van Hentenryck argues that, because

CHAPTER 5.' DISCUSSION 68

CHIP has declarative semantics, program development time is reduced. Similarly, because

the CSP-IC programmer need only concentrate on the representation of the CSP (i.e., the

constraint graph), program development time is reduced. In fact, the constraint graph is

often a more intuitive and natural formulation of a CSP than a CHIP program. A user of

CHIP still needs a substantial logic programming skill-set in order to effectively state and

solve problems with that language.

CSP-IC programs are also easily extended and modified. This became evident during

the rule analysis of the previous chapter when, in order to obtain the data necessary to

calculate the importance ratios, problem instances were continually redefined.

Moreover, CSP-IC can be used to solve CSPs that require both numeric and symbolic

constraints. This is facilitated by its common representation scheme and consistency tech-

nique for both types of constraints. In CSP-IC, a single consistency technique (arc consis-

tency) is sufficient for the development of sophisticated labeling procedures given the unified

representation in the form of the MCG.

Interestingly enough, Van Hentenryck has wondered about the dubiousness of exploring

constraint programming languages:

Since logic programming has already proved useful for many other applications,
we think that a specific language for combinatorial problems will not be of much
interest [VanHentenryck89, p. 2071.

Though it is true that a language limited solely to the solution of CSPs may not be of

much interest, we find CSP-IC to be of great interest. Since CSP-IC is a software-IC, it

can be embedded in a system where constraint propagation is seen as a useful computation

mechanism. This is possible because of its separation of variable datatype from the system.

In particular, this freedom to define the domain objects and the constraints on these

objects outside of the system itself is seen as an important attribute. Because the con-

straints are defined in the implementation language, they are computationally complete

and not restricted by some notion of base- or higher-order constraints as they often are in

constraint programming languages. As well, the domain objects are not forced into a single

CHAPTER 5. DISCUSSION 69

interpretation that would restrict its applicability. The domain objects can even be other

CSPS.~

5.1.4 CSP-IC is Not Perfect

Despite the many benefits of our design, CSP-IC has two major (though correctable) flaws.

Firstly, recompilation is required if a new problem instance is to be solved. Changing

the declarative part of a constraint requires the recompilation of the class that defines the

Boolean method. Modifying any other component of a CSP requires recompiling the routine

that constructs the modified constraint graph (usually main.m) .
The other major drawback is the representation scheme. The MCG is an awkward

and often confusing CSP representation, particularly when n-ary constraints, n > 2, are

involved.

However, both drawbacks are surmountable. Incremental recompilation as featured in

other object-oriented languages would provide a more flexible setting for the redefinition

of problem instances. Therefore, implementing CSP-IC in such an OOP language would

circumvent this inconvenience. Objective-C does not yet provide the type of programming

environment conducive to rapid change.

Regarding the construction of the MCG, a potential solution is to create a separate

program that generates the code to build the MCG based on a constraint graph as input.

Since the structure of the MCG is completely determined by the constraint graph, this is

a possibility. As currently implemented, no part of the constraint graph to MCG trans-

formation is automated. An ideal environment would feature an interactive window-based

program that allowed the user to graphically construct a constraint graph. The program

would then generate the corresponding code to create the MCG.2

'The only structure imposed by CSP-IC is that domain objects respond to a print message by stating
their value.

2This idea is in part inspired by NeXT's Interface Builder.

CHAPTER 5.' DISCUSSION

5.2 Composition as a CSP

5.2.1 The Intractability of Automated Composition

Chapter 4 of this thesis proposed that music composition can be viewed as a CSP. As an

example, first species counterpoint was shown to be readily modeled as a CSP and using

CSP-IC, counterpoint was generated. However, it is unlikely that we have discovered a

practical method for automated composition. This was not our intention. Instead, the

simple fact that composition has a natural formulation as a CSP does have some important

ramifications for the computer music community: certain choices of control mechanism and

representation will likely lead to programs with exponential time requirements.

For example, in one well-published project on automated composition [Ebcioglu84,

Ebcioglu86, Ebcioglu881, a non-deterministic logic language, BSL, is used to harmonize

chorales. A BSL program compiles into a backtracking procedure that attempts to find all

satisfiable assignments to the existentially quantified variables (in this case, all four part

harmonizations of a given melody that satisfy the specified constraints). The language

does not incorporate consistency techniques, though it does utilize intelligent backtracking.

Heuristics, in the form of BSL formulas, are in place to bias the search towards more musical

solutions first. However, a single harmonization can require "15-30 minutes of VAX 111780

CPU time" even despite the "efficient implementation that compiles the [BSL] into C"

[Ebcioglu84, p. 841. This is quite perplexing for Ebcioglu, particularly when he purposely

avoided LISP and Prolog since

. . . the inefficiency of these languages has a tendency to limit their domain of ap-
plicability to computationally small problems, whereas the problem of generating
non-trivial music appears to require gigantic computational resources. . . [Ebcioglu86,
p. 7843.

This statement incorrectly labels LISP and Prolog inefficient rather than blaming the in-

tractable problems they are often used to solve. Ebcioglu's real problem is a failure to (at

least explicitly) recognize the intractability of the problem he is attempting to solve. After

C H A P T E R 5. DISCUSSION 71

all, BSL is merely a language that solves CSPs almost as fast as a backtracking C program

can; that is to say, not very fast for certain problem instances. Perhaps if he incorporated

consistency techniques the exhibited exponential explosion would be diffused (at least to a

degree).

Given infinite time, Ebcioglu's program would find a harmonization identical to that

produced by Bach, providing his rule-base is an accurate cognitive model of Bach chorales.

By examining the complete set of generated harmonizations and undertaking an importance

ratio analysis, it might be possible to more tightly define his rule-base. Biasing the search

towards the most musical solutions first is a good idea, but won't help to reduce the amount

of backtracking.

5.2.2 Consistency Techniques Can Help

Short of a major breakthrough in NP-complete problem-solving, rule-based chronologically

backtracking systems are likely to continue dominating the landscape of automated compo-

sition systems that seek to harmonize in accordance with some knowledge base (declarative

or otherwise). Consistency techniques in the form of constraint propagation are an effective

means of squelching the inevitable exponential explosion when these systems are applied to

non-trivial tasks.

An excellent illustration comes from our counterpoint implementation. A backtracking

procedure to produce counterpoint for a given melody, without consistency techniques, faces

a search tree with a branching factor of at least 25: the pitch for each note of the counterpoint

can come from the notes within the octave above and below the corresponding note of the

melody. If, however, the search space is first subjected to a full arc consistency algorithm,

a much smaller search tree results. Figure 5.1 is the twelve-bar melody of the previous

chapter and its resulting counterpoint search space after makeArcConsistent is applied to

the constraint graph. The resulting tree has a branching factor of x 5.42. The trade-off is

very small: only 12,181 consistency checks are needed to enact this dramatic reduction in

CHAPTER 5. DISCUSSION 72

Figure 5.1: A given melody (c.f.) and its corresponding counterpoint search space (cpt.) as
generated by pre-processing the constraint graph with makeArcConsistent

the search space.

It is not unreasonable to expect that even without consistency techniques a backtracking

procedure would find one solution without serious time requirements. However, one could

not predict the same for much larger tasks, say even four-part florid counterpoint. A rule

analysis, like the one undertaken in the previous chapter, that requires the generation of

all acceptable compositions would likely become genuinely intractable without consistency

techniques.

Nadel has suggested that the optimal search procedure for underconstrained CSPs is

Forward Checking [Nade188]. For the task of generating first species counterpoint, our test

results do not concur. Table 5.1 gives empirical measurements for four search algorithms

given the task of generating counterpoint for the twelve-bar melody of Figure 5.1. For

comparison, two new procedures, BT and FC, were implemented with CSP-IC by changing

the functionality of the revise:using: method. The two procedures correspond respectively

to straightforward backtracking with side-effect free forward checking (revise:using: nei-

ther filters domains nor propagates change) and Forward Checking with redundant checks

(revise:using: filters domains but does not propagate change). These two partial arc con-

sistency algorithms are compared with the full arc consistency algorithms findsolutions and

findASolution with and without (w/o) makeArcConsistent used as a pre-processor.

CHAPTER 5.' DISCUSSION

Report all solutions:
BT
FC

findSoIutions
findSolutions w/o

Report one solution:
BT
FC

findASo2ution
jindASolution w/o

Number of Nodes Constraint
Backtracks Expanded Checks

Table 5.1: Comparison of four search algorithms for generating counterpoint.

As seen from the results in this table, for this task the most important consistency

technique is the application of arc consistency as a pre-processor.

Chapter 6

Conclusion

In this chapter the accomplishments of the thesis are summarized and some suggestions for

further research are given.

6.1 Summary of Results

In this thesis we have undertaken an examination of two ideas: the notion that object-

oriented programming can be used to build a software-IC for the solution of CSPs, and that

music composition has a natural formulation as a CSP.

Like many of the good ideas from artificial intelligence (e.g., rule-based production sys-

tems, resolution theorem proving), constraint propagation has emerged as a useful computa-

tion mechanism, as realized by the recent proliferation of constraint programming languages.

However, to date it seems that constraint propagation is a better idea than any of these

existing implementations, which too often force a restricted domain of application upon the

user.

CSP-IC, as a tool for solving CSPs, is a useful alternative to existing constraint pro-

gramming languages and A1 problem-solvers. By defining a methodology for the conversion

of an abstract model of a CSP, namely the constraint graph, into a network of co-operating

objects, we have isolated some useful abstractions of constraint programming. This system

CHAPTER 6.' CONCLUSION 75

can solve CSPs involving constraints of any arity, and frees the programmer from the details

of tree-search and constraint propagation.

We have also shown how music composition can be readily viewed as a CSP. This provides

insight into the intractability of many approaches advocated for intelligent composition

systems. The CSP model is seen as beneficial because of its exploitation of consistency

techniques, which were shown to drastically reduce the search space of certain composition

problems. We do not necessarily advocate the CSP model, or for that matter the rule-based

approach in general, as an effective approach to automated composition. We do, however,

see it as an improvement over standard backtracking methods.

The synthesis of these two contributions was the generation of contrapuntal music by

modeling first species counterpoint as a CSP and implementing its solution in our constraint

satisfaction system. Using this approach, we undertook an analysis of the rules of first

species counterpoint by measuring their individual effect on constraining the number of

compositions belonging to the genre.

6.2 Future Research and Extensions

There are many possible paths to follow in future research for both CSP-IC and music

composition as a constraint satisfaction problem. The major extensions include, but are

not limited to, the following.

Because it is a software-IC, CSP-IC is seen in our eyes to be a potentially convenient way

to incorporate constraint propagation in existing systems. An interesting project would be

to embed CSP-IC in an object-oriented expert system shell. This would provide additional

insight into the appropriateness of its design, as well as hopefully suggest an alternative

representation scheme. There may be a more natural mapping from constraint graph, which

we see as a good representation for CSPs, to object-oriented program. Through the process

of embedding CSP-IC in an existing system, a better representation might become manifest.

CHAPTER 6. CONCLUSION 76

In particular, the development of an automated method for constructing the MCG would

improve the system's ease of use.

With regards to the modeling of composition as a CSP, we would like to see an incor-

poration of consistency techniques in Ebcioglu's work. However, since Ebcioglu has already

invested a significant amount of time in creating a substantial knowledge base in first-order

logic, CSP-IC is not necessarily the best platform to do so. CHIP, as a logic language, is

a more suitable vehicle for testing the hypothesis that Ebcioglu7s system could expect a

significant reduction in time requirements given the utilization of consistency techniques.

We note two additional future investigations of the CSP paradigm for composition. First,

by extending the counterpoint example to model even more complex composition styles, we

would gain a fuller understanding of the appropriateness of viewing composition strictly as a

CSP. Others have expressed reservations regarding a constraint-only approach [Ebcioglu84],

but we see possibilities, as does Marvin Minsky:

If you really had to think of all the things, all the multiple constraints that were
satisfied in a piece, you could never do it. But if you can just activate a lot
of experts that don't have to communicate very much but just send constraints
among one another saying, "Whatever you do don't put the -" [Minsky80].

Perhaps rather than the imitation of an historical style, contemporary music experimenta-

tion would be a more interesting application of the CSP paradigm.1

The second avenue of potential interest lies in the field of music education. A constraint

graph approach coupled with consistency techniques seems particularly suited for the edu-

cational environment where it is more important that the computer prevent mistakes than

generate compositions. Because consistency is maintained as each variable is instantiated,

the student can make a choice for a note value and see the ramifications in the form of the

resulting constraint propagation (e.g., ". . .if I choose a fifth for the interval in this bar, I

see that it rules out the A in the previous bar.. . "). This is possible with CSP-IC if the

Csp class is bypassed, instead letting the student guide the search and choose note values.

'Hiller and Isaacson similarly suggested this point of departure for their counterpoint system [Hiller59].

CHAPTER 6. CONCLUSION 77

Explication of domain eliminations is a possible feature of such a system by empowering the

Constraint objects with the ability to explain their actions.

Appendix A

The CSP Software-IC

The Objective-C class implementations listed in this appendix comprise the object-oriented

constraint satisfaction system described in Chapter 3. Taken together, these classes provide

a software-IC for the solution of CSPs representable by a constraint hypergraph.

Source listings are presented for each of the classes Link, Variable, Constraint, Con-

straint3 (as an example of a higher-arity REVISE procedure), and Csp,

A.l The Class Link

Qinterf ace Link: Object

C
id node;
SEL label;

3

- getNode;
- (SEL) getlabel;
- setNode: aconstraintobject;
- setlabel: (SEL) aConstraintMethod;

Qend

APPENDIX A. THE CSP SOFTWARE-IC

#import "Link.hM

@implementat ion Link

- getNode
t

return (node) ;

- (SEL) getLabel
I.

return (label) ;

- setNode: anobject

node = anobject;
return (self ;

1

- setlabel: (SEL) aSEL
I.

label = aSEL;
. return (self);

3

A.2 The Class Variable

@interface Variab1e:Object
<

L i s t *domain;

APPENDIX A. THE CSP SOFTWARE-IC

List *neighbows;
STR name ;

// for archiving ... (this should be a private variable)
List *backupDomains ;

- (BOOL) alertchanged;
- (BOOL) instantiate: anobject;

- save;
- restore;

- free;

Oend

#import Cstdio.h>
#import Cob j c/hashtable . h>
#import Variable. h"
#import "Link.hM
#import "Constraint. h"

Oimplementat ion Variable

// for NXCopyStringBuffer

+ new:(STR)varName
<

self = [super newl ;
neighbours = [List new] ;
domain = [List newl ;

APPENDIX A. THE CSP SOFTWARE-IC

name = ~ ~ ~ o ~ ~ ~ t r i n ~ ~ u f f e r (v a r N a m e) ;
backupDomains = [List new] ;
return (self) ;

3

/ / Blow away the object and its instance variables,
// but not the objects in the domain Lists.

- free
C

[neighbours freeobjects1 ;
[neighbours f reel ;
[backup~omains f reel ;
[domain f reel ;
[super f reel ;

3

- addToDomain : anOb j ect
C

[domain addobject: anobject] ;
3

- addToNeighbours: anobject
C

[neighbours addobject: anobject];
3.

- setDomain: newDomain
C

domain = newDomain;
3

- getDomain
C

return (domain);
3

/ / notify all its neighbours in the graph that its domain has been changed
// return TRUE if the changes did not result in an empty set

- (BOOL) alertchanged
C

unsigned i;

APPENDIX A. THE CSP SOFTWARE-IC

BOOL result;
Link *temp;

i = 0;
result = YES;

while (result && i < [neighbours count])
C
temp = [neighbours objectAt : il ;
result = [[temp getNode] revise:self using: [temp getconstraint]] ;
i++ ;

3

return (result) ;
3

// print the value of each member of domain

- printDomain
C
int i;

printf ("%s: ",name);
[domain make0bjectsPerf orm: @selector(print)] ;
printf (It; "1;

3.

/ / temporarily set the domain to be anobject and check for
// consistency; if not okay, change domain back

- (BOOL) instantiate: anobject
C

List *temp-domain;

temp-domain = [domain copy] ;
[domain empty1 ;
[domain addobject: anobject] ;

if ([self alertchangedl)
C
[temp-domain f reel ;
return (YES) ;

3

APPENDIX A. THE CSP SOFTWARE-IC

else / * inconsistent */
<
[domain f reel ;
domain = temp-domain;
return (NO);

1
1

// The next two methods are needed for backup searches

- save
C

List *backupDomain;

backupDomain = [domain copy] ;
[backupDomains addobject: backup~omainl;

1

- restore
<

[domain f reel ;
domain = CbackupDomains removeLast0bjectl;

1

A.3 The Class Constraint

@interface Constraint:Object

<
Variable *variable ;

1

- setVariab1e:aVariable;
- (BOOL) revise :sender using: (SEL) constraint ;

APPENDIX A. THE CSP SOFTWARE-IC

A.3.2 Constraint .m

#import "Constraint. h"

@implementation Constraint

// initialize the outlet variable ie. who are we constraining?

- setVariab1e:aVariable
C

variable = avariable;
return self;

3

// Mackworth's REVISE - filter members of variable wrt the sender
// using the method 'constraint'. This is done additively because of
// the use of the List class to model the domains.
/ / Return NO if changes prove to be inconsistent ie. a domain reduced to C)

- (BOOL) revise:sender using:(SEL)constraint
C

List *domahi, *domain2, *newDomain;
. unsigned i, j;
BOOL satisfied, changed;
id memberDomain1;

domain1 = [variable getDomain1;
domain2 = [sender getDomain1;
newDomain = [List new1 ;
changed = NO;

/ / Check that each member of domain1 is satisfied by at least one member
// of domain2. If so, add it to the newDomain.

for (i = 0; i < [domain1 count] ; i++)
C
memberDomain1 = [domain1 obj ectAt : il ;
satisfied = NO;

APPENDIX A. THE CSP SOFTWARE-IC

do

if ([[domain2 object At : j 1 perform: constraint with : memberDomain1l)
satisfied = YES ;

j++;

3
while ((! satisfied) && j < [domain2 count]) ;

if (! satisfied)
changed = YES;

else
[newDomain addobject: memberDomain1l;

3

// Decide the outcome of the revision...

if ([newDomain count] == 0) / / domain now (I! Don't change.

<
[newDomain f reel ;
return (NO);

3

if (changed)

[variable setDomain: newDomain1;
if ([variable alertchangedl) / / propagate !

return (YES) ;
else

<
[newDomain f reel ;
[variable setDomain : domain11 ;
return (NO); // inconsistent propagation

3
3

// no change to domain occurred at all
CnewDomain f reel ;
return (YES) ; // everything is still consistent

3
@end

APPENDIX A. THE CSP SOFTWARE-IC

A.4 The Class Constraint3

@interface Constraint3:Constraint
C

Variable *variable2 ;
3

// For enforcement of ternary constraints.

?!inport "Constraint3.h"

@implementation Constraint3

// initialize the outlet variable2 ie. who are we constraining?

- setVariable2:aVariable

variable2 = avariable;
return self;

Mackworth's REVISE, but for ternary constraints.
Filter members of variable and variable2 wrt the sender
using the method 'constraint'.
Over-rides the definition in the superclass.

- (BOOL) revise:sender using:(SEL)constraint
C

List *domainl, *domain2, *domain3,
mewDomain2, *newDomain3;

APPENDIX A. THE CSP SOFTWARE-IC

unsigned i, j, k;
BOOL satisfied, changed;
id memberDomain2, memberDomain3;

domain1 = [sender getDomain1;
domain2 = [variable getDomain1 ;
domain3 = [variable2 getDomain1 ;
newDomain2 = [List new] ;
newDomain3 = [List new] ;
changed = NO;

// Check that each member of domain2 is
// satisfied by at least one member of domain3 and
// domainl. If so, add it to the newDomain2.

for (i = 0; i < [domain2 count]; i++)
C
memberDomain2 = [domain2 ob j ectAt : il ;
satisfied = NO;

j = 0;
do

memberDomain3 = [domain3 object At : jl ;

k = 0;
do

if ([[domain1 objectAt: kl perform:constraint
with:memberDomain2 with:memberDomain31)

satisfied = YES;
k++ ;

3
while ((! satisfied) && k < [domaini count]) ;
j++;

3
while ((! satisfied) && j < [domain3 count]);

if (! satisfied)
changed = YES;

else
CnewDomain2 add0b j ect : memberDomain21;

3

APPENDIX A. THE CSP SOFTWARE-IC

if (CnewDomain2 count] == 0)
<
// domain now <I! Don't change.
CnewDomain2 f reel ;
CnewDomain3 f reel ;
return (NO);
1

// Check that each member of domain3 is
/ / satisfied by at least one member of domain2 and
/ / domainl. If so, add it to the newDomain3.

for (i = 0; i < [domain3 count] ; i++)
<
memberDomain3 = [domain3 obj ectAt : il ;
satisfied = NO ;

k = 0;
do

<
if ([[domainl objectst: k] perform:constraint

with:memberDomain2 with:memberDomain31)
satisfied = YES;

k++ ;
1
while ((! satisfied) && k < Cdomainl count]) ;
j++;

1
while ((! satisfied) && j < CnewDomain2 count]);

if (! satisfied)
changed = YES;

else
CnewDomain3 addobject: memberDomain31;

1

/ / Decide the outcome of the revision ...

APPENDIX A. THE CSP SOFTWARE-IC

i f (CnewDomain3 count] == 0)
C
// domain now {)I Don't change.
CnewDomain2 f ree l ;
CnewDomain3 f r ee l ;
r e t u r n (NO);

>
(changed)
C

[variable setDomain : newDomain21;
[variable2 setDomain : newDomain31;
if ([variable alertchangedl && [variable2 alertchangedl) // propagate !

r e t u r n (YES) ;
e l s e

C
CnewDomain2 f ree l ;
CnewDomain3 f ree l ;
[variable setDomain: domain2l;
[variable2 setDomain: domain31 ;
r e t u r n (NO); / / incons is ten t propagation

3
>

. // no change t o domain occurred a t a l l
hewDomain2 f ree l ;
CnewDomain3 f ree l ;
r e t u r n (YES) ; // everything is s t i l l cons is ten t

>
Qend

A.5 The Class Csp

APPENDIX A. THE CSP SOFTWARE-IC

C
List *variables;
long bts ,

sol,
nodes ;
1

- addToVariables: anobject;
- findsolutions;
- findASolution;
- (BOOL) makeArcConsistent ;
- free;

+ new;

// Metrics for search efficiency

- (long) getBts;
- (long) getSol;
- (long) getNodes;

#import <stdio.h>
#import "Csp. h"
#import "Variable. h"

@implementation Csp

+ new

self = [super new] ;
variables = [List new] ;
bts = nodes = sol = 0;
return (self ;

1

- free
C

[variables make0bjectsPerform:@selector(free)l;

APPENDIX A. THE CSP SOFTWARE-IC

[super free1 ;
3

- addToVariables : anOb j ect
€

[variables addobject: anobject] ;
3

- findSolutions2: (int) index for: (int) nuvariables

Variable *aVariable;
List *aVariablesDomain;
int i,j;
BOOL success;

// base case - at end of list of variables
if (index == numVariables)

€
sol++;
[variables make0bjectsPerform: @selector(printDomain)l;
printf ("\nu);
return ;
3

// select a variable from the list so we can instantiate it
. avariable = [variables ob jectAt : index] ;

aVariablesDomain = [Lavariable getDomain] copy] ;
index++ ;

// now try and instantiate avariable
success = NO;
for (i = 0; i < [aVariablesDomain count] ; i++)

€
/ / first take a picture of the world
for (j = index; j < numVariables; j++)

[[variables objectst: jl save] ;

// instantiate
if (Lavariable instantiate: LaVariablesDornain objectAt:il])

// recursively instantiate the future variables
€
success = YES;
nodes++ ;

APPENDIX A. THE CSP SOFTWARE-IC

[self findSolutions2: index for: numVariables1;

/ / now unarchive each future variable for the next instantiation
for (j = index; j < numvariables; j++)

[[variables objectAt : jl restore] ;

if (! success)
bts++;

f indSolut ions

[self findSolutions2: 0 for: [variables count]];

(BOOL) f ind0neSolut ion : (int) index for : (int)nunvariables

Variable *aVariable ;
List *aVariablesDomain;
int i,j;
BOOL success ;

// base case - at end of list of variables
if (index == numvariables)

sol++ ;
[variables make0bjectsPerform: @selector(printDomain)l;
printf ("Solution\nl') ;
return (YES) ;
3

// select a variable from the list so we can instantiate it
avariable = [variables objectst : index] ;
aVariablesDomain = [Lavariable getDomain] copy] ;
index++ ;

// now try and instantiate avariable
success = NO;
for (i = 0; i < CaVariablesDomain count] ; i++)

APPENDIX A. THE CSP SOFTWARE-IC

<
// first take a picture of the world
for (j = index; j < numvariables; j++)

[[variables objectAt : jl save] ;

// inst ant iat e
if (Lavariable instantiate: CaVariablesDomain objectst : i] 1)

/ / recursively instantiate the future variables
<
nodes++;
success = [self findonesolution: index for: numVariables1;
3

/ / now unarchive each future variable for the next instantiation
for (j = index; j < numvariables; j++)

[[variables objectAt : j] restore] ;

if (success)
break ;

3

if (! success)
{
bts++;
return (NO);
3

- findASolution
<

[self f ind0neSolut ion: 0 for : [variables count] 1 ;
3

- (long) getSol
{

return (sol) ;
3

- (long) getBts
{

return (bts) ;

APPENDIX A. THE CSP SOFTWARE-IC

(long) getNodes

return (nodes);

int i;

for (i = 0; i C [variables count] ; i++)
if (! [[variables objectAt : il alertchangedl)

return (NO);

return (YES) ;

Appendix B

A Solution to the n-Queens

Problem

This appendix contains the source code as an addition to CSP-IC needed to solve the classic

n-queens problem, n < 10. A class for the type of the domain objects is first introduced

followed by the main routine needed to construct the MCG.

B.l The Class Square

The domain objects, squares on a chess board, are encapsulated in the class Square. Objects

of class Square have a row and a col (column) defined as instance variables. It is in this

class that the constraint nodttack: is defined, which reports whether two squares are in the

same column or diagonal.

In order that solutions may be reported, the objects comprising the domains of the

variables must respond to the message print. In the class Square, only the column number

is printed in response to this message.

APPEhTDIX B. A SOLUTION TO THE N-QUEENS PROBLEM

int row,
col;

3

- (int) getRow;
- (int) getCol;
- setSquare:(int)row andCol:(int)col;
- print ;

+ (long) getcount;

// The constraints

- (BOOL) noAttack: other;

#import <stdio.h>
#import <math.h>
#.import "Square. h"

static long count = 0; // for counting constraint checks

@implementation Square

return (row) ;
3

- (int) getCol
<

return (col) ;
>

APPENDIX B. A SOLUTION TO THE N-QUEENS PROBLEM

row = &ow;
c o l = aCol;
r e t u r n (s e l f) ;

3

- p r i n t
C

p r i n t f (I' %dl1, c o l) ;
1

+ (long) getcount
C

r e t u r n (count) ;
1

// c o n s t r a i n t

- (BOOL) n o s t t a c k : o t h e r
C

i n t row2, co12 ;

row2 = [o ther getRowl ;
~ 0 1 2 = [o ther getCol1 ;

B.2 The main Routine

The main.m file builds the MCG, and, by sending the message findsolutions to the instance

of class Csp, reports solutions to the problem the graph represents. The size of the chess

board is given as a parameter to the program. As in most representations for the n-queens

as a CSP, the n variables are each assigned to a different row, thus reducing the complexity

of the problem. Comments throughout the program guide the construction of the MCG.

APPENDIX B. A SOLUTION TO THE N-QUEENS PROBLEM

// Import the CSP-IC. ..
#import "CSP/Variable.h"
#import "CSP/Constraint.hM
#import "CSP/Link.hM
#import I1CSP/Csp. h"

// The domain objects' class ...
#import "Square.hM

#define MAX-QUEENS 10

char *queenNames [MAX-QUEENS] = ("QO", "Ql" , "Q2", "Q3", "Q4",
11~511 , 11~611 , I I Q ~ I I , 11Q811 , "Q9");

// Used to decipher the run-time argument ...
int stringToInt(s)

char *s;
i

int i, integervalue, result;

result = 0;

for (i = 0; s[i] != '\O'; i++)

integervalue = s [i] - '0 ' ;
result = result * 10 + integervalue;

return (result);
3

void main(int argc , char *argv [I)

Variable *Q [MAX-QUEENS] ;
Constraint *cQ [MAX-QUEENS1 ;
Square *square ;
Link *L;

APPENDIX B. A SOLUTION T O THE N-QUEENS PROBLEM

int i, j , num-queens ;

num-queens = stringToInt (argv [I]) ;

// Create a problem instance.. .
csp = CCsp newl ;

// For each queen:
// create a Variable object
/ add it to the problem instance 'csp'
/ / create a binary Constraint object
// point the Constraint object at the Variable object
for (i = 0; i C num-queens; i++)

<
Q [il = [Variable new: queenNames [il 1;
[csp addToVariables : Q ti] 1 ;
cQ [il = [Constraint newl ;
[cQ [il setvariable : Q [ill ;

1

// Initialize the domain of each Variable object, and
// add one link for every other queen in the problem.
for (i = 0; i C num-queens; i++)
for (j = 0; j C num-queens; j++)

square = [[Square newl setsquare : i+l andCol: j+ll;
[Q [il addToDomain : square1 ;
if (i != j)

<
L = [Link newl ;
[L setNode: cQ[jll;
[L setconstraint: @selector(noAttack:)] ;
[Q [i] addToNeighbours : L] ;

1
// Arc consistency is ineffectual before a variable is instantiated,
// so no need to [csp makeArcConsistent1;

// Find all solutions and report statistics.
[csp f indSolutions1 ;

printf ("Number solutions : %ld\nM , [csp getSol]) ;
printf ("Number constraint checks: %ld\nU,[Square getcount]);

APPEhrDIX B. A SOLUTION T O TWE N-QUEENS PROBLEM

printf ("Number backtrack points: %1d\nM,[csp getBts1);
printf ("Number nodes expanded: %ld\n",[csp getNodes1);

// Clean up. . .
[csp f reel ;
exit (0) ;

B.3 Sample Run

%n,queens 6
Q5: 5; Q4: 3; Q3: 1; Q2: 6; Q1: 4; QO: 2;
Q5: 4; Q4: 1; Q3: 5; Q2: 2; Ql: 6; QO: 3;
Q5: 3; 94: 6; Q3: 2; Q2: 5; 91: 1; QO: 4;
Q5: 2; Q4: 4; Q3: 6; Q2: 1 1 3; QO: 5;
Number solutions: 4
Number constraint checks: 3104
Number backtrack points: 2
Number nodes expanded: 26
%

Appendix C

The Counterpoint Application

Generating counterpoint with CSP-IC requires the definition of a Note class (where the

constraints are defined) and the construction of a MCG (done in main.m) to reflect the

problem.

C.l The Note Class

A Note object is merely an integer in the range 1 to 127 in accordance with the pitch

representation in the MIDI standard.

int pitch;

1

- (int) getpitch;
- setPitch:(int)pitch;
- print ;
+ (long) getchecks;

APPENDIX C. THE COUNTERPOINT APPLICATION

/ / Some cons t r a in t s

- (BOOL) harmonic: o ther ;
- (BOOL) perf ectHarmonic : other ;
- (BOOL) perf ectCfHarmonic : other ;
- (BOOL) melodic: o ther ;

- (BOOL) skip: o ther s t ep : other2;
- (BOOL) skipped: o ther s t ep : other2;
- (BOOL) s tep : o ther skip: other2;

- (BOOL) nopara l le l : x2 To: x3 Per fec t : x4;
- (BOOL) noperfect : x2 From: x3 P a r a l l e l : x4;
@end

// Constants (musical i n t e r v a l s) .

#define unison 0
#define minor2nd 1
#define m a j or2nd 2
#define minor3rd 3
#define m a j or3rd 4
#define fou r th 5
#define trit one 6
#define f i f t h 7
#define minor6th 8
#define major6th 9
#define octave 12
#define minorloth 15
#define majorloth 16
#define twe l f th 19

s t a t i c long checks = 0;

@implementat ion Note

APPENDIX C. THE COUNTERPOINT APPLICATION

- (i n t) ge tp i t ch
<

r e t u r n (p i t ch) ;
3

- se tP i t ch : (in t) aP i t ch
C

p i t c h = aPi tch ;
r e t u r n (se l f ;

>
- p r i n t
<

pr in t f (" %dt ' ,pi tch);
1

// cons t r a in t s . . .
- (BOOL) harmonic: other
<

i n t i n t e r v a l ;

checks++ ;
i n t e r v a l = abs (p i t ch - [other getpi tch]) ;

r e t u r n ((i n t e r v a l == minor3rd) I I
(i n t e r v a l == major3rd) I I
(i n t e r v a l == f i f t h) I I
(i n t e r v a l == minor6th) I I
(i n t e r v a l == major6th) I I
(i n t e r v a l == octave) I I
(i n t e r v a l == minor10th) 1 1
(i n t e r v a l == major10th) I I
(i n t e r v a l == twel f th)) ;

3

- (BOOL) perf ectHarmonic : other
<

i n t i n t e r v a l ;

checks++ ;
i n t e r v a l = abs(p i tch - [other ge tp i tch]) ;

APPENDIX C. THE COUNTERPOINT APPLICATION

r e t u r n ((i n t e r v a l == unison) I I
(i n t e r v a l == f i f t h) I I
(i n t e r v a l == octave) I I
(i n t e r v a l == twelf th)) ;

3

- (BOOL) perfectCfHarmonic: other
<

i n t i n t e r v a l ;
checks++ ;

i n t e r v a l = abs(p i tch - [other ge tp i t ch]) ;
i f (p i t ch > [other ge tp i tch])

r e t u r n ((i n t e r v a l == unison) I I (i n t e r v a l == octave)) ;
e l s e r e t u r n ((i n t e r v a l == unison) I I

(i n t e r v a l == f i f t h) I I
(i n t e r v a l == octave) I I
(i n t e r v a l == twelf th) ;

3

- (BOOL) melodic: o ther
<

i n t i n t e r v a l ;

r e t u r n ((i n t e r v a l <= minor6th) && (i n t e r v a l != t r i t o n e)) ;
3

// t e rnary . . .
- (BOOL) noThree:other InRow:other2
{

checks++ ;
r e t u r n ((p i t c h != [other getpi tch]) I I (p i tch != [other2 getpi tch] 1) ;

3

- (BOOL) sk ip : o ther s tep : other2
{

i n t i n t e r v a l ;

APPENDIX C. THE COUNTERPOINT APPLICATION

i n t e r v a l = abs(p i tch - [other getpi tch]) ;

i f (i n t e r v a l >= minor3rd)
r e t u r n ((abs ([other getpi tch] - [other2 getpi tch]) <= major2nd) %%

[self noThree: other InRow: other21);
e l s e r e t u r n ([se l f noThree: other InRow: other21);

>
- (BOOL) skipped:other s tep:other2
<

i n t i n t e r v a l ;

checks++ ;
i n t e r v a l = abs(p i tch - [other ge tp i tch]) ;

i f (i n t e r v a l >= minor3rd)
r e t u r n ((abs (p i t ch - [other2 getpi tch]) <= major2nd) &&

[self noThree: other InRow: other21);
e l s e r e t u r n ([self noThree: other InRow: other21);

1

- (BOOL) s tep : o ther sk ip : other2
<

i n t i n t e r v a l ;

checks++ ;
i n t e r v a l = abs(p i tch - [other2 ge tp i tch]) ;

i f (i n t e r v a l <= major2nd)
r e t u r n ([se l f noThree: other InRow: other21);

e l s e
r e t u r n ((abs ([other getpi tch] - [other2 getpi tch]) < minor3rd) &&

[self noThree : other InRow: other21) ;

3

// quaternary ...
s t a t i c BOOL per fec t (x i , x2)

i n t x i , x2;
<

i n t i n t e r v a l = abs(x1 - ~ 2) ;

r e t u r n ((i n t e r v a l == unison) I / (i n t e r v a l = = f i f t h) I 1

APPENDIX C. THE COUNTERPOINT APPLICATION

1

- (BOOL) nopara l le l : x2 To: x3 Per fec t : x4

/ / avoid d iv i s ion by zero
checks +=2;
i f (1x2 getpi tch] == Cx4 getpi tch]) // no motion

r e t u r n (YES) ;

// octave cons t r a in t :
i f ((abs(Cx4 getpi tch1 - [x3 getpi tch]) == octave) &&

((abs(Cx4 getpi tch] - Cx2 getpi tch]) > major2nd) I I
(abs(p i tch - [x3 ge tp i tch]) > major2nd)))

r e t u r n (NO) ;

i f (pe r fec t ([x4 getpi tch] , Cx3 getpi tch]))

r e t u r n ((f l o a t) ((p i t ch - 1x3 getpi tch]) /
(Ex2 getpi tch] - Cx4 ge tp i tch])) <= 0.0) ;

e l s e r e t u r n (YES);
1

- (BOOL) noperfect : x2 From: x3 P a r a l l e l : x4

// avoid d iv i s ion by zero
checks +=2;
i f (p i t ch == [x2 ge tp i tch]) / / no motion

r e t u r n (YES) ;

// octave cons t r a in t :
i f ((abs(Cx4 getpi tch] - pi tch) == octave) &&

((abs(Ex4 getpi tch] - Cx3 getpi tch]) > major2nd) 1 1
(abs(p i tch - [x2 ge tp i tch]) > major2nd)))

r e t u r n (NO) ;

i f (perfec t (Ex4 getpi tch] , pi tch))

r e t u r n ((f l o a t) ((Cx4 getpi tch] - Ex3 getpi tch]) /

(p i tch - [x2 getpi tch])) <= 0.0) ;
e l s e r e t u r n (YES) ;

+ (long) getchecks
<

APPENDIX C. THE COUNTERPOINT APPLICATION

Qend

#import "Note. ht'

#define NUM-BARS 4

char *cp-namesC121 = {"cpi", "cp2", "cp3", "cp4", "cp5", "cp6", "cp7",
11cp8", "cpg", "cpio", " cp l l " , "cp12");

char *cf ,names[121 = {"cf I", "cf2", "cf 3", "cf4", I1cf5", "cf 6", t tcf7",
"cf 8" , "cf 9", "cf l o " , "cf i l l t , "cf 12");

void main(int a rgc , char *argv [I)
<

Variable *cp [NUM-BARS] ,
*cf [NUM-BARS] ;

Constraint *binary [NUM-BARS] ;
Constraint3 *ternary;
Constraint4 *quat ;
Note *note;
Link *L;

CSP *csp;
i n t i, j;

csp = [Csp new] ;

f o r (i = 0; i < NUM-BARS; i++)
i

cp [i] = [Variable new: cp,names [ill ;

APPENDIX C. THE COUNTERPOINT APPLICATION

[csp addToVariables : cp [ill ;
binary [i] = [Constra int newl ;
[binary [il s e t v a r i a b l e : cp [ill ;

cf [i] = [Variable new : cf ,names Cil l ;
[csp addToVariables : cf [i l l ;

3

// t h e cantus f i rmus ...
no t e = [[Note new] s e t p i t c h : 571 ;
[cf [O] addToDomain : note] ;
no t e = [[Note new] s e t p i t c h : 601 ;
[cf [I] addToDomain : note] ;
no t e = [[Note new] s e t p i t c h : 591 ;
[cf [21 addToDomain: not e l ;
note = [[Note newl s e t p i t c h : 571 ;
[cf [3] addToDomain: not e l ;

// t h e counterpoint ...
f o r (i = 0; i < NUM-BARS; i++)

<
i f (i != NUM-BARS -2)

C
no t e = [[Note newl s e t p i t c h : 451 ;
[cp [i] addToDomain: not e l ;
no t e = [[Note newl s e t p i t c h : 471 ;
[cp [il addToDomain : not e l ;
no t e = [[Note new] s e t p i t c h : 481;
[cp [il addToDomain : note] ;
no t e = [[Note new] s e t p i t c h : 501 ;
[cp [i] addToDomain : not e l ;
no t e = [[Note newl s e t p i t c h : 521 ;
[cp [i] addToDomain : not e l ;
no t e = [[Note newl s e t p i t c h : 531 ;
[cp [i] addToDomain : note] ;
no t e = [[Note new] s e t p i t c h : 551;
[cp C i] addToDomain : note] ;
no t e = [[Note new] s e t p i t c h : 571 ;
[cp [i] addToDomain : not e l ;
no t e = [[Note newl s e t p i t c h : 591 ;
[cp [i] addToDomain: not e l ;
no t e = [[Note new] s e t p i t c h : 601 ;
[cp [i] addToDomain: not e l ;

APPENDIX C. THE COUNTERPOINT APPLICATION

no t e = [[Note new] s e t p i t c h : 621 ;
[cp [i] addToDomain: note] ;
no t e = [[Note new] s e t p i t c h : 641 ;
[cp [i] addToDomain : note] ;
no t e = [[Note new] s e t p i t c h : 651 ;
[cp [i] addToDomain: note] ;
no t e = [[Note newl s e t p i t c h : 671 ;
[cp [i] addToDomain : not e l ;
note = [[Note new] s e t p i t c h : 691 ;
[cp [i] addToDomain : not e l ;

3
e l s e

C
no t e = [[Note newl s e t p i t c h : 561;
[cp [il addToDomain : not e l ;
no t e = [[Note newl s e t p i t c h : 681 ;
[cp [il addToDomain : note] ;
3

3

// binary c o n s t r a i n t s . . .

f o r (i = I ; i < NUM-BARS; i++)
<

L = [Link newl ;
[L setNode : binary [i-I] 1 ;
CL s e t c o n s t r a i n t : @se lec tor (melod ic :) l ;
[cp [i] addToNeighbours : L] ;

L = [Link new] ;
[L setNode : binary [ill ;
[L s e t c o n s t r a i n t : @selector(melodic :) I ;
[cp [i-11 addToNeighbours : L] ;

3

L = [Link newl ;
[L setNode : binary C011 ;
[L s e t c o n s t r a i n t : a s e l e c t o r (perf ectCfHarmonic:) I ;
[cf [Ol addToNeighbours : Ll ;

f o r (i = 1; i < NUM-BARS - 2; i++)

L = [Link newl ;

APPENDIX C. THE COUNTERPOINT APPLICATION

[L setNode : binary [i] 1 ;
[L setconstraint : @selector(harmonic :)I ;
[cf [il addToNeighbours : Ll ;

1

/ / There's no harmonic constraint on the 2nd last bar.

i = NUM-BARS - 1;

L = [Link newl ;
CL setNode: binaryLil1;
[L setconstraint : @selector(perf ectHarmonic:)I ;
Ccf [il addToNeighbours: L1 ;

// The ternary constraints...
for (i = 0; i < NUM-BARS - 2; i++)

C
ternary = [Constraint3 newl ;
[ternary setvariable : cp [i+ill;
[ternary setVariable2 : cp Ci+211 ;
L = [Link newl ;
[L setNode: ternary] ;
[L setconstraint : belector (skip: step:)I ;
[cp [i] addToNeighbours : L1 ;

ternary = [Constraint3 newl ;
[ternary setvariable : cp [ill ;
[ternary setVariable2 : cp [i+211 ;
L = [Link new] ;
[L setNode : ternary] ;
[L setconstraint: @selector(skipped: step:)I ;
[cp [i+il addToNeighbours : L1 ;

ternary = [Constraint3 new] ;
[ternary setvariable : cp [ill ;
[ternary setVariable2: cp [i+ill ;
L = [Link newl ;
[L setNode : ternary] ;
[L setconstraint: @selector(step:skip:)] ;
[cp [i+2] addToNeighbours : L1;

3

// quaternary ...

APPENDIX C. THE COUNTERPOINT APPLICATION

for (i = 0; i < NUM-BARS - 1; i++)

quat = [Constraint4 newl ;
[quat setvariable : cp Cill ;
[quat setVariable2 : cf [i+lll;
[quat setVariable3 : cp [+I1 I ;
L = [Link newl ;
[L setNode: quat] ;
[L setconstraint : @selector(noParallel :To :Perf ect :)I ;
[cf [il addToNeighbours : Ll ;

quat = [Constraint4 newl ;
[quat setvariable : cf Cill ;
[quat setVariable2 : cp [i+lI I ;
Cquat setVariable3 : cf [i+il I;
L = [Link newl ;
[L setNode: quatl ;
[L setconstraint: @selector(noParallel:To:Perfect:)l;
[cp [i] addToNeighbours : L1 ;

quat = [Constraint4 new] ;
[quat setvariable : cf [il I ;
[quat setVariable2 : cp [il I ;
[quat setVariable3 : cp [i+lll ;
L = [Link newl ;
[L setNode: quat] ;
[L setconstraint: @selector(noPerfect:From:Parallel:)];
[cf [i+l] addToNeighbours : L] ;

quat = [Constraint4 new] ;
[quat setvariable : cp Cill ;
[quat setVariable2 : cf [ill ;
[quat setVariable3: cf [i+lll;
L = [Link newl ;
[L setNode: quat] ;
[L setconstraint : @selector(noPerf ect :From:Parallel:)I ;
[cp [i+i] addToNeighbours : L] ;

3

if ([csp makeArcConsistent1)
[csp f indSolut ions] ;

else printf ("Not consistent .\n") ;

APPENDIX C. THE COUNTERPOINT APPLICATION

printf ("Num solutions: %Id, Num backtracks: %Id, Num nodes: %ld\nl1,
[csp g e t s o u , Ccsp getBts1, Ccsp getNodes]);

printf ("Num constraint checks : %ld\ntt , [Note getchecks]) ;

Ccsp free] ;

e x i t (0) ;
1

Bibliography

Borning, Alan. "The Programming Language Aspects of ThingLab."
TOPLAS, 3 (4), pp. 353-387.

Borning, Alan. "Constraint Hierarchies." OOPSLA 1987 Proceedings,
pp. 48-60.

Cohen, Jacques. "Constraint Logic Programming Languages ." Commu-
nications of the ACM, 33 (7), pp. 52-68.

Colmerauer, Alain. "An Introduction to Prolog 111." Communications
of the ACM, 33 (7), pp. 69-90.

Cope, David. "An Expert System for Computer-assisted Composition."
Computer Music Journal, 11 (4), 1987.

Cox, Brad. Object-Oriented Programming: An Evolutionary Approach.
Reading, Massachusetts: Addison-Wesley Publishing Company, 1986.

de Kleer, Johan. "A Comparison of ATMS and CSP Techniques." IJCAI
1989 Proceedings, pp. 290-296.

Doyle, J. "A Truth Maintenance System." Artificial Intelligence, 12, pp.
231-272.

Ebcioglu, Kemal. "An Expert System for Schenkerian Synthesis of
Chorales in the Style of J.S. Bach." ICMC 1984 Proceedings, pp. 135-
142.

Ebcioglu, Kemal. "An Expert System for Chorale Harmonization."
AAAI 1986 Proceedings, pp. 784-788.

Ebcioglu, Kemal. "An Expert System for Harmonizing Four-part
Chorales." Computer Music Journal, 12 (3).

Fikes, Richard E. "REF-ARF: A System for Solving Problems Stated
as Procedures." Artificial Intelligence, 1, pp. 27-120.

BIBLIOGRAPHY 114

Filman, Robert E. "Reasoning with Worlds and Truth Maintenance."
Communications of the ACM, 31 (4), pp. 382-401.

Freuder, Eugene. "Synthesizing Constraint Expressions." Communica-
tions of the ACM, 21 (l l) , pp. 958-966.

Freuder, Eugene. "A Sufficient Condition for Backtrack-Free Search."
Journal of the ACM, 29(1), pp. 24-32.

Garey, Michael and David Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco: W. H. Free-
man and Company, 1979.

Golomb, S.W. and L.D. Baumert. "Backtrack Programming." Journal
of the ACM , 12, pp 516-524.

Guesgen, H. W. et al. "Constraints in a Hybrid Knowledge Represen-
tation System." IJCAI 1987 Proceedings, pp. 30-33.

Haralick, R.M. and G. L. Elliot. "Increasing Tree Search Efficiency for
Constraint Satisfaction Problems." Artijicial Intelligence, 14, pp. 263-
313.

Hayes-Roth, Barbara et al. "PROTEAN: Deriving Protein Structure
From Constraints." AAAI 1986 Proceedings, pp. 904-909.

Hiller, Lejaren A. and Leonard M. Isaacson. Experimental Music: Com-
position with an Electronic Computer. New York: McGraw-Hill, 1959.

International MIDI Association. MIDI Musical Instrument Digital In-
terface Specification 1.0. International MIDI Association: North Holly-
wood, 1983.

Knuth, Donald E. "Estimating the Efficiency of Backtrack Programs."
STAN-CS-74-442, August, 1974.

Leler, Wm. Constraint Programming Languages: Their Specification
and Generation. Reading, Massachusets: Addison-Wesley Publishing
Company, 1988.

Levitt, David. "Machine Tongues X: Constraint Languages." Computer
Music Journal, 8 (I), pp. 9-21.

Mackworth, Alan K. "Consistency in Networks of Relations." Artijicial
Intelligence, 8, pp. 99-118.

Mackworth, Alan K. and Eugene Freuder. "The Complexity of Some
Polynomial Network Consistency Algorithms for Constraint Satisfaction
Problems." Artificial Intelligence, 25, pp. 65-74.

BIBLIOGRAPHY 115

[Mackworth87]

[M ann651

[Meyer56]

[Minsky80]

[Montanari74]

[N ade18 81

[Nade189]

[NeXT89]

[Nude1831

[Roads851

[Rossi88]

[St allman771

[Steels851

Mackworth, Alan K. "Constraint Satisfaction." Encyclopedia of Artifi-
cial Intelligence, New York: John Wiley & Sons, 1987, pp. 205-211.

Mann, Alfred ed. The Study of Counterpoint from Johann Joseph Fuz's
Gradus Ad Parnassum. New York: W. W. Norton, 1965.

Meyer, Leonard B. Emotion and Meaning in Music. Chicago: University
of Chicago Press, 1956.

Roads, Curtis. "Interview with Marvin Minsky." Computer Music Jour-
nal, 4 (3), pp. 25-39.

Montanari, Ugo. "Networks of Constraints: Fundamental Properties
and Applications to Picture Processing." Information Science, 7, pp.
95-132.

Nadel, Bernard A. "Tree Search and Arc Consistency in Constraint
Satisfaction Algorithms." Search in Artijicial Intelligence. L. Kana1 and
V. Kumar, eds. New York: Springer-Verlag, 1988.

Nadel, Bernard A. "Constraint Satisfaction Algorithms." Computa-
tional Intelligence, 5 (4), pp. 188-224.

NeXT Inc. "Object-Oriented Programming and Objective-C." On-Line
Documentation, Release 1.0.

Nudel, Bernard. "Consistent Labeling Problems and their Algorithms:
Expected-Complexities and Theory-Based Heuristics." Artificial Intel-
ligence, 21, pp. 135-178.

Roads, Curtis. "Research in Music and Artificial Intelligence." ACM
Computing Surveys, 17(2), pp. 163-190.

Rossi, Francesca. "Constraint Satisfaction Problems in Logic Program-
ming." SIGART Newsletter, 106, pp. 24-28.

Stallman, Richard M. and G. J . Sussman. "Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer Aided
Circuit Analysis." Artificial Intelligence, 9, pp. 135-196.

Steels, Luc. "Constraints as Consultants." Progress in Artificial Intelli-
gence. Chichester, England: Ellis Horwood, 1985.

Stefik, Mark J. and Daniel G. Bobrow. "Object-Oriented Programming:
Themes and Variations." AI Magazine, 6 (4), pp. 40-62.

Sussman, G.J. and G.L. Steele, Jr. "CONSTRAINTS - A Language for
Expressing Almost-Hierarchical Descriptions." Artificial Intelligence,
14, pp. 1-39.

BIBLIOGRAPHY 116

[Swindale62] Swindale, Owen. Polyphonic Composition. London: Oxford University
Press, 1962.

[Taenzer 891 Taenzer, David et aI. "Object-Oriented Software Reuse: the Yoyo Prob-
lem." Journal of Object-Oriented Programming, 2 (3), pp. 30- 35.

[Thomas851 Thomas, Marilyn Taft. "Vivace: A Rule Based A1 System for Compo-
sition." ICMC 1985 Proceedings, pp. 267-274.

[VanHentenryck87] Van Hentenryck, Pascal. "A Theoretical Framework for Consistency
Techniques in Logic Programming." IJCAI 1987 Proceedings, pp. 2-8.

[VanHentenryck89] Van Hentenryck, Pascal. Constraint Satisfaction in Logic Programming.
Cambridge, Massachusetts: MIT Press, 1989.

[Waltz751 Waltz, David. "Understanding Line Drawings of Scenes with Shadows."
The Psychology of Computer Vision. Patrick Henry Winston, ed. New
York: McGraw-Hill, 1975.

[Winston841 Winston, Patrick Henry. Artificial Intelligence (Second Edition). Read-
ing, Massachusetts: Addison- Wesley, 1984.

